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To the memory of Max Planck (1858 — 1947)

We owe respect to the living; to the dead we owe only truth.
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Preface

Electromagnetic theory has been based on Maxwell’s equations for about
a century. There is no need to elaborate the successes but from 1986 on we find
publications claiming that Maxwell’s equations generally do not have solutions
that satisfy the causality law. Two scientists working independently and using
different approaches arrived at the same result, which gives it great credibility.
The mathematical investigations that uncovered the lack of causal solutions are
necessarily complicated, otherwise it would not have taken a century to find
this shortcoming of Maxwell’s equations.

The problem could be corrected by the modification of Maxwell’s equations
with an added magnetic current density term. Initially this caused concern
since magnetic charges or charge carriers have not been observed reliably even
though there are good theoretical arguments for their existence, e.g., the quan-
tization of the electric charge. However, it was soon realized that there was no
need for magnetic monopole currents but that magnetic dipole currents were
sufficient. The existence of magnetic dipoles is not disputed and their rotation
can cause magnetic dipole currents just as the rotation of electric dipoles in a
material like Barium-Titanate can cause electric dipole currents.

Electric dipole currents were always an important part of Maxwell’s equa-
tions but they were called polarization currents and this choice of words ob-
scured the unequal treatment of electric and magnetic dipoles. Electric dipole
currents are needed to explain how an electric current can flow through the
dielectric of a capacitor, which is an insulator for electric monopole currents.

The causality law is of no significance for the transmission of power and
energy, or generally for steady state solutions of Maxwell’s equations. But it
is a must for the transmission of electromagnetic signals. Signal transmission
without causality is a contradiction in terms.

We define a classical electromagnetic signal as a propagating wave that
is zero before a certain time and has finite energy. All produced or observed
propagating electromagnetic waves are of this type even though we often ap-
proximate them for mathematical convenience by infinitely extended sinusoidal
waves. Signals are represented mathematically by functions or signal solutions
that are zero before a certain time and are quadratically integrable. Such sig-
nal solutions satisfy the causality law and the conservation law of energy while
infinitely extended periodic sinusoidal solutions satisfy neither.

The modified Maxwell equations have been applied in four books and
numerous papers to problems ranging from the propagation of electromagnetic
signals in seawater to their interstellar propagation over distances of billions of
light years. The time has come to advance from classical physics to quantum
physics.

It is one of the most basic principles of quantum mechanics that an obser-
vation interferes with what is being observed. In other words, a signal received
during an observation changes what created the signal. Quantum electrody-
namics should thus be a good field of application for an electromagnetic theory
that permits signal solutions.

Vil



VIII PREFACE

This expectation turned out to be fully justified. The first success of the
use of the modified Maxwell equations was the elimination of the infinite zero-
point energy that has been a problem for 70 years; the conventional theory
can correct it only by renormalization, a process that is generally considered
unsatisfactory. The infinite zero-point energy is shown to be reduced to a finite
energy for both the pure radiation field and the Klein-Gordon equation.

The Hamilton function of a charged particle in an electromagnetic field
derived with the modified Maxwell equations contains many more terms than
the conventional Hamilton function. This provides the basis for new results, a
fact of interest to those who look for topics for PhD theses.

The authors want to thank Humboldt University in Berlin for providing
the computer power required for a number of complicated plots.
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1 Introduction

1.1 MAXWELL’S EQUATIONS

Maxwell’s equations have been the basis of electromagnetic theory for more
than a century. Their original formulation as a continuum theory with elec-
tric charges, electric current densities, field strengths, and flux densities was
extended by Lorentz to include particles and the concept of mass. Quantum
theory required a further extension to include quantization effects. The applica-
tion of group theory to Maxwell’s equations showed that the physically required
conservation laws were satisfied as a result of certain symmetries but did not
bring any further extension of Maxwell’s equations (Fushich and Nikitin 1987).
After a century of scrutiny and extensions, Maxwell’s equations had become
one of the more solid pillars of physics.

With this background it is not surprising that publications claiming that
Maxwell’s equations have generally no solutions that satisfy the causality law
were not well received!. Indeed, it was next to impossible to publish this re-
sult?. The mathematical methods used were difficult to follow, otherwise it
would not have taken a century to recognize the problem. But two scientists
working independently, using different approaches, and arriving at “he same re-
sult give that result great credibility. Furthermore, none of the many attempts
by opponents since 1986 to obtain a correct solution of Maxwell’s equations
that satisfied the causality law was successful. The question of causality for
Maxwell’s equations soon became a more fundamental question: How does the
causality law enter the mathematical formulation of a physical problem?

To answer this question we first spell out the causality law. It is rarely
found or discussed in books on physics despite its undisputed importance to
physics®. Let us state it in the following form:

Every effect requires a sufficient cause that occurred a finite time earlier.

It is sometimes believed that the causality law is a mathematical axiom
that is automatically satisfied if one calculates correctly (Toll 1956). The word
time in the causality law shows that this cannot be so. Pure mathematics

1Harmuth 1986a, b, c; Hillion 1990, 1991, 1992 a, b, 1993

2The credit for having the courage to publish goes to Peter W. Hawkes, editor of
Advances in Electronics and Electron Physics (Academic Press) and the late Richard B.
Schulz, editor of IEEE Transactions on Electromagnetic Compatibility.

3The causality law was recognized by the Greeks since it is impossible to think rationally
without using it. The conservation laws of physics were accepted after 1800.
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does not have the concept of time and there are neither a time variable nor
spatial variables since these are concepts of physics. Instead we have complex
variables, real variables, rational variables, integer variables, random variables,
etc. No variable in pure mathematics has a physical dimension like meter or
second. Only when mathematics is applied to physics can we have variables
with physical dimension. But in this case both the mathematical axioms and
the physical laws must be satisfied.

The word earlier in the causality law introduces the universally observed
distinguished direction of time: the effect comes after the cause. Nothing
equivalent exists for spatial variables since there is no general law that demands
something must always happen in front, to the right, or above a certain spatial
point?.

To see how the causality law enters when a physical process is described
by a partial differential equation in a coordinate system at rest we note that in
this case one must find a function that satisfies three requirements:

1. The function satisfies the partial differential equation(s).

2. The function satisfies an initial condition that holds at a certain time tg
for all values of the spatial variable(s).

3. The function satisfies a boundary condition that holds at all times ¢ for
certain values of the spatial variable(s).

A solution that satisfies the causality law requires that the initial condition
at the time t = ¢ is independent of the boundary condition at the time t > t,.
Without this requirement a cause at the time ¢t > g could have an effect at the
earlier time t = tg.

Steady state equations and their solutions are always outside the causality
law since the concept of cause and effect has no meaning in the steady state®,
This explains why one can obtain useful results when ignoring the causality
law.  If one is interested only in power, energy, or their transmission one will
usually be able to ignore the causality law. The exact opposite is true if one
is interested in the transmission of information or the detection of signals.
Information is transmitted by signals and detected by the reception of signals.
The energy of a signal is of little interest as long as there is enough energy to
make it detectable. But different signals may cause different effects and the
propagation velocity of signals determines the time of an effect. Any serious
study of information or signal transmission requires equations and solutions
that satisfy the causality law.

4For a discussion of the concepts of space and time, particularly why we use one time
variable but several space variables rather than one space variable and several time variables,
see Harmuth (1989, 1992).

5Sometimes one reads that a process can go forward or backward in time. This is wrong,
if the process is subject to the causality law, but it is only meaningless rather than wrong
in the steady state (¢ — co) since the causality law is meaningless in the steady state. The
claim irreversible processes have a distinguished direction of time but reversible processes
do not can be rephrased as follows: An increase of entropy is the cause for the effect of
irreversibility. The distinguished direction of time is due to the causality law applied to the
particular physical concept of entropy. Reversible is another word for the concept of steady
state.
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The special theory of relativity requires the concepts of signals and propa-
gation velocity of signals. We learned that signals cannot propagate faster than
with the velocity c of light, but there is no theory of signal propagation based
on Maxwell’s equations that tells us more. The inability of Maxwell’s equations
to satisfy the causality law made a theory of electromagnetic signal propagation
impossible. This changed immediately when the problem of Maxwell’s equa-
tions with causality was recognized and corrected (Harmuth 1986a; Harmuth,
Boules, and Hussain 1999; Harmuth and Lukin 2000).

Let us turn to the concept of an electromagnetic signal. We define it as a
propagating electromagnetic wave that is zero before a certain finite time® and
has finite energy. The word propagating is important since there are standing
waves and captive waves that do not propagate. All observed or produced
propagating waves are signals. They satisfy both the causality law and the
conservation law of energy. Only in theoretical work do we encounter waves
that are not zero before a certain time, such as periodic sinusoidal waves, or
do not have finite energy, again like periodic sinusoidal waves. Mathematically
a signal is represented by a function that is zero before a certain time and
quadratically integrable. There are also constraints on the peak amplitude
of the function since field strengths, fluxes, voltages, currents, etc. are never
infinite. It is usual to think of a signal as a field strength, a voltage, or a current
at a certain location as function of time, but a signal could also be something
observable at a certain time as function of one or more spatial variables.

Let us write Maxwell’s equations in a coordinate system at rest using inter-
national units. We use the old-fashioned notation with curl and div since this
notation was used when the lack of causal solutions was discovered. The sym-
bols V and O will be used when mathematical compactness is moie important
than physical lucidity:

curlH = %]-;)— + ge (1)
—curlE = %? (2)
divD = p, (3)
divB =0 (4)

Here E and H stand for the electric and magnetic field strength, D and B for
the electric and magnetic flux density, g, and p, for the electric current and
charge density.

Maxwell’s equations are augmented by constitutive equations that connect
D with E, B with H, and g, with E. In the simplest case this connection is

6When we produce a signal it will be zero before a finite time to and again after a finite
time t1 > tg. However, if the signal is received after passing through a lossy medium, it will
generally only be zero before a finite time but may require an infinitely long time to drop to
zero again. This means physically no more than the infinitely long time required to discharge
a capacitor through a resistor. But it is the reason why we claim only finite energy and not
finite duration for the wave
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provided by scalar constants called permittivity €, permeability u, and conduc-
tivity o:

D=¢E (5)
B=yH (6)
g. = oE (M

The scalar constants €, g, 0 may be functions of time ¢ and location r in a
time-variable, inhomogeneous medium, and they may become variable tensors
for an anisotropic medium. In more general cases Eqs.(5)—(7) are replaced by
partial differential equations.

When it was recognized that the set of Eqs.(1)—(7) generally had no solu-
tions that could satisfy the causality law, a magnetic current density term gp,
was added in Eq.(2) based strictly on mathematical considerations (Harmuth
19864, b, c). This modification produces equations associated with the group
symmetry SU(2) rather than U(1) as the original Maxwell equations (Barrett
1989c; 1990 a, b; 1993; 1995b). Solutions satisfying the causality law are ob-
tained. One may make the transition g,, — 0 at the end of the calculation and
retain the causality of the solution. This decisive difference between choosing
gn = 0 at the beginning or the end of the calculation may be explained by
the different symmetries U(1) and SU(2) or a singular behavior of the partial
differential equations. It will become evident during the later calculations that
one obtains different partial differential equations and that there is nothing
surprising if one obtains different solutions.

From 1990 on it was understood that a magnetic current density term
added to Eq.(2) did not imply the existence of magnetic charges or monopoles.
Magnetic dipoles can cause magnetic dipole currents and a magnetic (dipole)
current density term is required to represent such dipole currents. The electric
current density term g, in Eq.(1) always represented monopole currents carried
by electric charges and dipole currents carried by dipoles. Maxwell called the
dipole currents polarization currents since today’s atomistic thinking did not
exist in his time. Without a polarization or dipole current one cannot explain
how an electric current could flow through a capacitor whose dielectric is an
insulator—for monopole currents. If the term dipole current rather than po-
larization current had been used, the question would have been raised long ago
why electric dipoles should cause electric dipole currents but magnetic dipoles
should not cause magnetic dipole currents.

For a brief discussion of dipole currents consider Fig.1.1-1. On the left
we see a negative and a positive charge carrier between two metal plates with
positive and negative voltage. The charge carriers move toward the plate with
opposite polarity. An electric monopole current is flowing as long as the charge
carriers move.

In Fig.1.1-1b we see how an induced dipole can produce a dipole current.
A neutral particle, such as a hydrogen atom, is not pulled in any direction by
voltages at the two metal plates. However, the positive nucleus moves toward
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M| M| *

ih I -V
-l -] -1
F1c.1.1-1. Current carried by independent positive and negative charges (a). Dipole

current due to an induced dipole (b). Dipole current due to orientation polarization
of inherent dipoles (c).

the plate with negative voltage and the negative electron toward the plate with
positive voltage. A restoring force, symbolized by a coil spring, will pull nucleus
and electron together once the voltage at the plates is switched off. A dipole
current is flowing as long as the positive and the negative charge carriers are
moving either apart or back together again. This simple model becomes more
complicated if we say that the probability density function for the location of
the electron looses its spherical symmetry and is deformed into the shape of an
American football with the nucleus off-center in the elongated direction.

We note that a dipole current can become a monopole current if the field
strength between the plates exceeds what is usually referred to as the ioniza-
tion field strength. One cannot tell at the beginning whether a dipole current
will become a monopole current or not, since this depends not only on the
magnitude of the field strength but also on its duration. As a result a term
in an equation representing a dipole current must be so that it can change to
a monopole current. Vice versa, a term representing monopole currents must
be so that it can change to a dipole current, since two particles having charges
with opposite polarity may get close enough to become a neutral particle. The
term g, in Eq.(1) satisfies this requirement.

Most molecules, from HoO to Barium-Titanate, are subject to electric ori-
entation polarization in addition to the induced polarization of their atoms.
Figure 1.1-1c shows charges with opposite polarity at the ends of rigid rods. A
positive and a negative voltage applied to the metal plates will rotate these in-
herent dipoles to line up with the electric field strength. Dipole currents 2i, are
carried by each rotating dipole. There are also dipole currents 2iy, perpendicular
to the field strength but they compensate if there are counter-rotating dipoles
as shown. Only the currents in the direction of the field strength will remain
observable macroscopically if there are many dipoles with random orientation.
Dipole currents due to orientation polarization exist for magnetic dipoles too,
which may range from the hydrogen atom to the magnetic compass needle.

In order to include magnetic dipole current densities one must add a term
8m in Eq.(2). Equation (4) may be left unchanged for dipole currents, but the
zero must be replaced by py, if there are magnetic charges or monopoles. This
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has been a disputed matter for more than 50 years. We do not have an ac-
ceptable explanation for the quantization of electric charges without admitting
magnetic monopoles, but we do not have a direct experimental proof for the
existence of magnetic monopoles either.

Equations (5)—(7) have to be augmented by a relation between g, and H
similar to the one for g. and E in Eq.(7). Hence, we must use the following
system of equations if we want solutions that satisfy the causality law:

curl H = aa—lt) + g (8)
—curlE = 66—? +8m 9)
divD = p, (10)
divB =0 or divB = pn (11)
D=<¢E (12)
B=pH (13)

ge =0E (14)

gm = sH (15)

For the magnetic conductivity s with dimension V/Am apply comments cor-
responding to those made for ¢, p, ¢ in connection with Eqgs.(5)—(7). We use s
here as a scalar constant but it may be a function of time t and location r in a
time variable, inhomogeneous medium. For an anisotropic medium s becomes
a tensor. In more general cases Eq.(15) is replaced by a partial differential
equation.

1.2 STEP FUNCTION EXCITATION OF PLANAR TEM WAVE

We want to obtain the field strengths E and H due to the excitation by a
planar electric step function for both Eqs.(1.1-1)-(1.1-7) and (1.1-8)—(1.1-15).
The coefficients ¢, p, o, s shall all be scalar constants. It is sufficient to solve
Egs.(1.1-8)—(1.1-15) since the solution of Egs.(1.1-1)-(1.1-7) can be obtained by
the substitution s = 0. Consider a planar, transverse electromagnetic (TEM)
wave propagating in the direction y. A TEM wave requires

BE,=0, H,=0 (1)

while a planar wave calls for the following relations:
OFy/0r = 0Ey /02 = 8F,/0z = 0E, [0z =10 (2)
OH,/0x = 0H,/0z = OH,/0x = 0H,/0z =0 (3)

Writing the operator curl in Cartesian coordinates and introducing the condi-
tions of Egs.(1)—(3) brings Egs.(1.1-8) and (1.1-9) into the following form:
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—~0H, /0y = e0F, /0t + oE, (4)
8H, /8y = eDE, /0t + 0 Ey (5)
OFy /0y = u0H, /0t + sH, (6)
—OFEx /0y = pOHy /Ot + sHy (7
With the substitutions
E=E.=E,, H=Hy=-H, (8)

one may rewrite the two pairs of Eqgs.(4) and (7) as well as (5) and (6) as one
pair:

OF [0y + uoH/0t+ sH = 0 (9)
OH/0y+ edE/ot+oFE =0 (10)

Instead of using the substitutions of Eq.(8) we may make the more general
substitutions

Ex=Fcosy, FE,=FEsiny
Hy=Hsiny, H,= —~Hcosy

where 7 is the polarization angle! measured from the positive z-axis to the vector
E of the electric field strength or from the negative z-axis to the vector H of the
magnetic field strength, to obtain Eqs.(9) and (10). Hence, E and H in Egs.(9) and
(10) represent the magnitude of the field strengths E and H. Since the polarization
angle x is constant, the time variation of the field strengths E and H is the same as
that of their magnitudes E and H. Hence, we can write our equations for £ and H
rather than for E and H.

Circularly polarized waves can be obtained by replacing the constant polarization
angle x by a time variable angle wt:

Ey = FEcoswt, E,= Esinwt
Hy = Hsinwt, H,=—Hcoswt

Substitution into Eqs.(4)-(7) yields again Eqgs.(9) and (10). In this form one empha-
sizes functions with sinusoidal time variation. This distinction vanishes if one does
not choose x as a linear function of time, x = wt, but as a general function x = f(t):

!Some authors distinguish between a polarization angle and a rotation angle of a wave.
They would call x a rotation angle.
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E. = Ecos[f(t)], E,= Esin[f(t)]
H, = Hsin[f(t)], H, = —H cos[f(t)]

The substitution of Ey, E., Hy, and H, into Eqs.(4)~(7) produces once more Egs.(9)
and (10).

Equations (9) and (10) were derived from Egs.(1.1-8)—(1.1-15). The corre-
sponding equations derived from Eqs.(1.1-1)-(1.1-7) are obtained by choosing
5=0in Eq.(9):

OE/0y + u0H/0t =0 (11)
OH/O0y+ eBE/Ot+0E =0 (12)

Elimination of H from Eqs.(11) and (12) yields a second order equation for E:

O*E/0y® — ued*E/0t* — nodE/0t =0 (13)
If F is found from this equation one may obtain H from either Eq.(11) or (12)

Ht) = [ Sodt+ Hily) (14)
H(y,t) = — / (e%—f + aE) dy + H,(t) (15)

where Hi(y) is an integration constant independent of ¢ and Hy(¢) an integra-
tion constant independent of y.

Let us assume that a boundary condition E(y,t) = E(0,t) and an initial
condition E(y,t) = E(y,0) are given for the electric field strength. One may
then solve Eq.(13) for these electric boundary and initial conditions and obtain
a function E(y,t) = Eg(y,t). Substitution into Eqs.(14) and (15) yields the as-
sociated magnetic field strength H(y,t) with undetermined functions H(y) and
Hy(t). These two functions can be determined by the requirement that Eqs.(14)
and (15) must yield the same magnetic field strength H{y,t) = Hg(y,t). All
this assumes, of course, that a solution Fg(y,t) of Eq.(13) and an associated
solution Hg(y,t) of Eqs.(14) and (15) exist. No problem of existence seems to
have been encountered if the time variation of Eg(y,t) and He(y,t) was that
of a periodic or analytic function. However, a problem arose when Eg(y,t)
and Hg(y,t) were required to represent signals. Observable or producible elec-
tromagnetic waves are always signals, periodic or everywhere analytic func-
tions can only be used for their mathematical approximation if causality is
not important.

Next let us assume that the boundary condition H(y,t) = H(0,t) and the
initial condition H(y,t) = H(y,0) are given for the magnetic field strength.
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Our method of solving first Eq.(13) and then Egs.(14) and (15) fails. However,
one can eliminate E from Egs.(11) and (12) to obtain an equation for the
magnetic field strength H:

O*H/0y* — 11€0°H/0t* — uocdH/0t =0 (16)

If the magnetic field strength H is found from this equation one may obtain
the electric field strength E from either Eq.(11) or (12):

O0H
E(y,t) = —p ST W+ E,(t) (17)
1 [ 6H
_ —otfe | _ ot/e
Blyt) = ( 6/-——-—6ye dt—i—Et(y)) (18)

With the boundary and initial conditions for the magnetic field strength
one may solve Eq.(16) and obtain a function H(y,t) = Hu(y,t). Substitution
into Eqs.(17) and (18) then yields the associated electric field strength E(y,t)
with undetermined functions Ei(y) and E,(t). These two functions can be
determined by the requirement that Eqs.(17) and (18) must yield the same
electric field strength E(y,t) = Fu(y,t). Again it is assumed that a solution
Hy(y,t) of Eq.(16) and an associated solution Ep(y,t) of Eqs.(17) and (18)
exist.

In the general case, initial and boundary conditions will be given both for
the electric and the magnetic field strength. In this case the magnitudes Eg and
Hg of the combined field strengths are given by the sum of the electric and mag-
netic field strengths obtained from Eqs.(13) and (16), plus the associated elec-
tric and magnetic field strengths obtained from Egs.(14), (15) and (17), (18):

EG(y’ t) = EE(y7 t) + EH(y7 t) (19)
HG(y’ t) = HH(y7 t) + HE(y’ t) (20)

We will show later on that the associated magnetic field strengths of
Eqs.(14) and (15) remain undetermined for an electric excitation force F(0,t)
as boundary condition that has the time variation of a step function EpS(t) = 0
for t < 0 and EpS(t) = Eg for t > 0. This result can be extended and holds
generally for excitation forces with the time variation (¢/T)" EpS(t) withn = 0,
1, 2, ... . First we introduce Maxwell’s equations modified by a magnetic
current density that overcomes the problem of undetermined associated field
strengths.

1.3 SOLUTIONS FOR THE ELECTRIC FIELD STRENGTH

The problem of undefined associated field strengths was first overcome by
adding the term g, in Eq.(1.1-9). Later on it was realized that a magnetic
dipole current caused by rotating magnetic dipoles demanded such a term on
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physical grounds even if magnetic charges and magnetic monopole currents
should not exist. It is sometimes claimed that the term g, can be transformed
to zero (Jackson 1975) but this is not so due to a singularity for g, = 0 in
Eq.(1.1-9) as will be seen later on. As a result of this singularity there is a
difference whether one chooses g, = 0 at the beginning of the calculation or
makes the transition g, — 0 at the end.

We start with Egs.(1.2-9) and (1.2-10). The elimination of H yields a
second order differential equation for F alone:

0%E/0y? — ued*E/0t? — (o + €s)0E/0t — saE =0 (1)

A comparison of this equation with Eq.(1.2-13) shows that the fourth term
soE is added and one obtains a significantly different equation for s = 0. The
third term (uo + €5)0F/8t becomes only insignificantly different for s = 0.

The magnetic field strength H = Hg associated with the electric field
strength E = Eg follows from either Eq.(1.2-9) or (1.2-10) by the method of
variation of the constant:

H(y,t) = e=ot/n (—i / %’;-est/ﬂdwrm(y)) @)
Hyt) = — / <e%—f + aE) dy + H, (1) (3)

We may also eliminate E from Egs.(1.2-9) and (1.2-10) and obtain a dif-
ferential equation for H = Hy alone;

02 H/0y? — ned*H/0t* — (uo + es)0H/0t — soH = 0 (4)

The associated electric field strength F = Ey follows from either Eq.(1.2-9) or
(1.2-10) by variation of the constant:

Bt) = e (-1 [ Gheat+ i) 5)
Bty =~ [ (Wl + o) dr+ B0 ®)

We replace the time variable ¢ and the space variable y by the normalized
variables 6 and (:

ot Zco 1 [n Zo \/ﬁ
5= 5 b (=57 Y ; (7)

The electric conductivity ¢ is distinguished in Eq.(7) over the magnetic
conductivity s. However, we could normalize the time variable ¢ and the space
variable y by

6
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st cs 1 [e s
6 = — = — = - — = e 8
o2z ¢ 2\/;33/ 27Y ®

to distinguish s over ¢. Equation (7) is particularly useful if we want to in-
vestigate the limit s — 0, ¢ = constant, while Eq.(8) is useful for ¢ — 0,
s = constant. A normalization that treats ¢ and s equally is

0= (2+2)0 ¢=1(24+2)y 9)

These three normalizations permit one to study the limits ¢ — 0 or s — 0
but they are not readily usable if both ¢ and s approach zero. In this case one
may use the normalization

=t/T, ¢=y/T (10)

which gives no hint where the distinguished time T could come from. We shall
see later on that the calculation provides an automatic answer.

The normalization of Eq.(7), which works well for the limit s — 0, brings
Eq.(1) into the form

S€

O*E[0¢? —~ 0°B/062 — 2(1 + w?)OE/00 — 4w*E =0, w?= -~ (11)
while the normalization of Eq.(9) yields
28102 — 52 2 - 2 _ gs
O°E/0¢* — O°E[/06% — DE/86 — p°E = 0, E(on+ 50)? (12)
and the normalization of Eq.(10) provides:
O*E/8(* — O°E/00% — p,OE/00 — p2E =0
p1 = T (uo + e€s), p2 = c*T?so (13)

An electric force function with the time variation of a step function is
introduced as boundary condition:

E(0,6) = FoS(6) =0  for§ <0
=E, for6>0 (14)

As initial condition we choose that the electric field strength should be
zero for all values ¢ > 0 at § = 0:
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F1G.1.3-1. Electric field strengths of Eqs.(16) and (17) as functions of the normalized
time 6 with the normalized distance ¢ as parameter. The solid lines represent Eq.(16),
the stars Eq.(17). (Courtesy M.G.M.Hussain, University of Kuwait)

E(,0)=0 for (>0 (15)
For ¢ = 0 the initial condition is already defined by the boundary condition of
Eq.(14).

We solve Eq.(1) for these initial and boundary conditions by means of
Fourier’s method of standing waves and make the transition s — 0 at the end
of the calculation. The calculation is carried out in Appendix 6.1. In terms of
the normalization of Eq.(7) the result is

E((,0) = Eg((,0)=0 for 6 < ¢
¢
_ 0[1(\/02'—7]2)
= EO ‘:1 — € 9/ (——-——‘(92 _ 772)1/2
0

+ Io( 02-—7)2))d77] for 8 >¢ (16)

where Iy and I; are modified Bessel functions of the first kind. The field
strength E(¢,8)/Eo is plotted for the locations (=0, 1, 2, ..., 10 in the time
interval 0 < 8 < 60 by the solid lines in Fig.1.3-1.

If one starts from the original Maxwell equations and solves Eq.(1.2-13)
rather than Eq.(1) by a Laplace transform one obtains (Kuester and Harmuth
1987):

EYY =0 for 6 < ¢
0 / —_—
=Eq <e‘< + C/ L ((7];72—25)212: ndn) for 8 > ¢ 1

¢
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F1G.1.3-2. Plots according to Eq.(16) in the vicinity of 8 = ¢ with a large scale for 6;
(=1, 2,4, 8. (Courtesy M.G.M.Hussain, University of Kuwait)
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F1G.1.3-3. Plots according to Eq.(17) in the vicinity of 8 = { with a large time scale
for 6; ( =1, 4. (Courtesy M.G.M.Hussain, University of Kuwait)

where I is again a modified Bessel function of first kind. At first glance
Eqgs.(16) and (17) look very different but the values EEK)(C ,8)/ Eg represented
by the stars for ( = 1, 5, 10 in Fig.1.3-1 show that they are actually quite
similar. The plots of Eq.(16) in Fig.1.3-2 and of Eq.(17) in Fig.1.3-3 in the
vicinity of § = ¢ with a much enlarged time scale for § show that there is a
difference (Hussain 1992).

1.4 ASSOCIATED MAGNETIC FIELD STRENGTH

Either Eq.(1.3-16) or (1.3-17) substituted into Eqs.(1.2-14) and (1.2-15)
should give the associated magnetic field strength for Maxwell’s original equa-
tions, but it turns out that the magnetic field strength remains undefined. This
unexpected result was the origin for the claim that Maxwell’s equations require
a modification to permit signal solutions rather than the usual solutions that
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3 A
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F1G.1.4-1. The electric field strength according to Egs.(1.3-16) or (1.3-17) as function

of ¢ with parameter # = 2, 4, 6. Note that the function e~¢ yields the amplitude of the
jumps at # = {. (Courtesy R.N.Boules, Towson State University, Maryland, USA)

cannot satisfy the causality law. For a closer analysis we rewrite Eqgs.(1.2-14)
and (1.2-15) with the normalized variables ¢ and 6 of Eq.(1.3-7):

1(¢,0) =~ [ G20+ Ho(0) 1)
HC,0) = —%/ (%?HE) d¢ + H(6) @)

For & < 0 we have E = 0 and O0FE/96 = 0 according to Fig.1.3-1. The
derivative OE/06 is not defined! for 6 = ¢ but E can be defined as a finite
right limit. Both E and 0E/06 are defined and finite for § > ¢. One might
claim that OF /00 is infinite for 8 = ¢, but the integration with respect to ¢
over such an infinity would yield an undefined value. Hence, the same result is
obtained for both points of view.

Let us see what happens if a sum contains an undefined, non-negligible
term A. The sum A 4+ 1+ 1/2 is not defined if A is non-negligible. The same
holds true for the infinite sum A+1/24+1/4+- - - = A4+2 with denumerably many
terms. If an integral--which is a sum with nondenumerable many terms—
vields a defined value and we add a non-negligible, undefined value, we obtain
an undefined value. Hence, if 9E/96 is not defined and not negligible for just
one point 8 = ¢, the integral of Eq.(2) is not defined for 8 > ¢, but it is defined
and zero for 8 < ¢ if the electric excitation force is applied at the time 6 = 0
at the plane ( = 0.

A similar argument holds for the integral of Eq.(1). First we plot the
electric field strength E((,6) of Eqs.(1.3-16) or (1.3-17) as function of ¢ with

1The discontinuities in Fig.1.3-1 for § = ¢ can be shown analytically to exist for any
finite distance (Boules 1989, p. 22).
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F1G.1.4-2. Time variation of three electric field strengths (¢, §) and their derivatives
8E/88, 3*E/86°. The function S(8 — ¢) is the unit step function which is zero for
6 < ¢ and one for 6 > (.

parameter 6 as shown in Fig.1.4-1 rather than as function of 8 with parameter
¢ as in Fig.1.3-1. We note that the amplitude of the jumps varies like e~¢
(Harmuth, Boules, and Hussain 1999, p.160). According to this illustration
the derivative 0E/0¢ is defined and finite for ¢ < 6, undefined for ¢ = 6,
and defined as well as zero for { > 6. The integral with respect to 8 is not
defined for { > 6, but it is defined for { < 8. There is no pair of values ¢ > 0,
6 > 0 for which the integrals in both Eq.(1) and (2) are defined. The functions
H¢(6) or Hy(t) and Hg(¢) or Hi(y) cannot be determined without additional
information.

QOur proof that the associated magnetic field strength Hg(¢, ) cannot be
obtained from the electric field strength Eg(¢,8) does not depend in any way
on how the electric field strength E = Eg of Eq.(1.2-13) is obtained. The proof
depends on only two propositions:

a) Equations (1) and (2) are correct and describe the associated magnetic
field strength in a realistic medium for the propagation of electromagnetic
waves.

b) Maxwell’s equations yield electric field strengths that have undefined deri-
vatives® OF/0t and OE /8y in at least one point such as y = ct that make
a non-negligible contribution to the integrals in Egs.(1) and (2).

We note that our proof does not depend on the assumption of a wave
excited at an infinite plane ¢ = 0. Equations (1.2-9)-(1.2-12) are obtained for
spherical waves too (Harmuth 1986a, p.231). Furthermore, we do not need
to claim that Maxwell’s equations will never yield a defined associated field
strength for a signal solution. It is sufficient to show that Maxwell’s equations
fail in one example of physical interest. But it is prudent to extend the proof
to excitation functions that do not have the time variation of the step function
S(6).

The column headed by E((,8) = E({)S(6—¢) in Fig.1.4-2 shows an electric
field strength with the time variation of a step function. We want to generalize
to electric field strengths that vary linearly like 6S(6 ~ (), quadratically like
625(0 — ¢), or generally like 67S(6 —¢) withn =0, 1, 2, ..., for > ¢. The

2The magnetic field strength remains undefined in a loss-free medium too, since the
condition o = 0 in Eq.(1.2-15) does not change the argument.
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F1G.1.4-3. A continuous function F({, 6) of two variables having linear ramp functions
F(¢o,8) = 65(6 — () for any fixed value ¢ = {p cannot have functions F({, o) with a
jump for a fixed value of 8 = 6,.

linearly and quadratically varying field strengths and their existing derivatives
are shown in the second and third column of Fig.1.4-2. Consider the linearly
varying fleld strength E((,0) = E(¢)8S(0 — ¢). Its first derivative E/80 is
now defined® and the integral in Eq.(2) becomes defined for § > ¢. The linear
variation of E(¢)8S(6 — ¢) with 8 for § > ¢ implies that F({) cannot have a
jump at 6 = ¢ as in Fig.1.4-1 but must have a bounded derivative 8E/9¢ for
any ¢ > 0 as is made evident by Fig.1.4-3. We may thus calculate H(¢, 8) from
Egs.(1) and (2). However, a problem is encountered if the derivative 8H/96 is
then calculated from Egs.(1) or (2):

OH 1 0F

86 ~  Z o @)
OH 1 O’E OF OH.(0)
Ee‘-"z‘/(ﬁe?“%)d“—w @

According to Fig.1.4-2 the second derivative 82 E/86? is not defined for 6 = ¢,
or it is infinite, and the integral of Eq.(4) remains undefined. Hence, Eq.(4)
states that OH/06 is not defined, but Eq.(3) states that 0H/00 has a defined
value?. This is a contradiction and the assumptions leading to Eqgs.(1)-(4)
must be wrong.

Let us advance to the quadratic variation E({)625(0—¢) shown in Fig.1.4-
2. The first derivative 9H/06 can be obtained without difficulty since 62 E/56?
is defined, but the second derivative 92H/36? yields:

30ne may question whether 8E /86 at 6 = ( is zero or has a finite value E(¢) > 0. But
a finite value in one point makes only an infinitesimal contribution to the integral of Eq.(2).
This is the reason why the term non-negligible has been used repeatedly.

4QOne cannot assign a value to 82E/862 to make Eq.(4) yield the same value for 8H /86
as Eq.(3) since this would also change dE/d6 and E.
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F1G.1.4-4. Normalized magnetic field strengths Hg(¢,8)/EoZ™%, Z = (u/€)*/?, asso-

ciated with the electric field strengths of Fig.1.3-1. The normalized time 6 and the
normalized distance ¢ are defined in Eq.(1.3-7).

®H _ 10°F )
802~ Z 9ol
a2H a3E L OB 82H(6)

6z~ / ( 965 T2 ) do+ g2 (6)

In Eq.(5) the derivative OF /09 has the same time variation as the function E
in the linear case E(()0S5(8 — {) according to Fig.1.4-2. Hence, the derivative
0?E /8¢00 exists. On the other hand, 8*E/86° is not defined and Egs.(5) and
(6) contradict each other.

The argument can be extended to any finite value of n in 625(8 — ).
The result is strictly due to the use of a signal as excitation force at the plane
¢ =0 or y =0, which is a time function that is zero before a certain time.
Excitation forces with the time variation of periodic or analytic functions in
the whole interval —co < 8 < 0o would not yield such a result. But we need
solutions of Maxwell’s equations or of some modification of these equations for
signals, if we want to study signals and information transmission. Putting it
differently, we need signal solutions if we want to introduce the causality law
into electrodynamics.

It is important to understand that Maxwell’s equations do not yield a
wrong result for the associated field strengths but an undefined one. As a result
there are infinitely many solutions that will satisfy Maxwell’s equations, and
make one believe to have found the solution. But Maxwell’s equations cannot
tell us which of these many solutions is the one and only correct solution.

The failure to obtain the magnetic field strength from Egs.(1) and (2)
for a time variation 6™5(8) with n = 0 for the electric force function at the
boundary plane ¢ = 0 is instantly attention getting, while for larger values of n
the problem shows up only for higher and higher derivatives 8" H/86™. We infer
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F1G.1.4-5. Magnetic field strengths as in Fig.1.4-4 for { = 1, 4 but using a much
larger scale for 6 in the vicinity of 8 = (.

from Fig.1.4-2 that the time 6 = ¢ when the associated magnetic field strength
begins at the distance ¢ from the excitation plane ¢ = 0 is most conspicuous
for n = 0, but become less and less conspicuous and thus harder to observe
experimentally for increasing values of n. As n increases, §"S(8 — ¢) looks
less like a signal and more like an analytic function. The failure of Maxwell’s
equations to yield a defined associated magnetic field strength is most evident
for n = 0 and disappears for n — oo, while the beginning of a signal is most
conspicuous for n = 0 and becomes unobservable for n — oo. If a signal
connects a cause with its effect at another location, the time difference will be
best defined for n = 0 and it becomes undefined for n — oo. The failure of
Maxwell’s equations should show up best where causality is most important,
while there should be no problem when causality is unimportant.

We turn to the associated magnetic field strength of the modified Maxwell
equations as written in Egs.(1.3-2) and (1.3-3). With the help of Eq.(1.3-7) we
write them in normalized form with ¢ and 6:

H(G,0) = ™2 [_%/ g_?e?“zode—}—Ho(C)} , wi= ,‘j‘ff' (7)
H(C,0)=—%/ <%§+2E> d¢ + He(6) (8)

Equations (2) and (8) are identical, but there is enough difference between
Eqs.(1) and (7) to solve the problem of undefined associated field strengths.
Barrett (1989¢; 1990a, b; 1993; 1995b) has explained this difference in terms of
symmetries of group theory. The transition s — 0, g, — 0 at the end of the
calculation is equivalent to the concept of symmetry breaking.

Figure 1.4-4 shows plots of the associated magnetic field strength H(¢,0) =
Hg((,9) obtained by substituting the electric fleld strength E((,6) = Eg((,6)
of Eq.(1.3-16) into Eqs.(7) and (8). The calculation is presented in Appendix
6.2 and H(¢,9) is defined by Eq.(6.2-41) for Hg(¢) = 0.

The plot of Fig.1.4-4 for { = 1 and a new plot for { = 4 are shown with
a large scale of # in Fig.1.4-5 in the vicinity of § = (. There are damped
oscillations of the magnetic field strength just like those of the electric fleld
strength in Fig.1.3-2.



1.4 ASSOCIATED MAGNETIC FIELD STRENGTH 19

HeCB)/EZ

; 5
F1G.1.4-6. The magnetic field strength according to Eq.(6.2-41) as function of { with
parameter 8 = 2, 4, 6.

The field strength H((,6) as function of { with 8 as parameter will be
needed in Section 1.6. Figure 1.4-6 shows such a plot.

A completely different proof for the non-existence of causal solutions of
Maxwell’s equations is due to Hillion (1990, 1991, 1992a, b). Hillion knew
that certain partial differential equations did not permit solutions with inde-
pendent initial and boundary conditions in a coordinate system at rest. He
recognized that Maxwell’s equations were of this type. Hence, we have here
one of those rare cases when two scientists working independently and using
different approaches arrived at the same result.

Let us emphasize once more that our proof of the failure of Maxwell’s
equations to yield certain signal solutions of interest is based solely on the
derivation of the associated field strength H from the electric field strength £
defined by the differential equation (1.2-13) plus initial and boundary condi-
tions. There never was a claim that one could not find solutions of Eq.(1.2-13).
Such a claim would be extremely hard to prove unless it is restricted to certain
methods of solution of partial differential equations, which would make it use-
less for our purpose. Proving a contradiction between Eqs.(1) and (2) avoids
any discussion of how to solve partial differential equations. A number of au-
thors derived solutions for Eq.(1.2-13), but by doing so they only proved that
they had not read carefully what had been claimed. The method of deriving
two contradicting equations will be used again in Section 3.1 to show that a
generally accepted result cannot be correct.

The fact that the problem of signal solutions of Maxwell’s equations shows
up for the associated magnetic field strengths in Egs.(1) and (2) but not for the
electric field strength of Eq.(1.2-13) explains why it took a century to recognize
the problem. Anyone satisfied with the electric field strength derived from
Eq.(1.2-13) and ignoring the associated magnetic field strength never noticed
that anything was amiss.
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F1G.1.5-1. Electric field strengths Eg (¢, 8)/E: according to Eq.(2) as function of the
normalized time @ with the normalized distance ¢ as parameter.

1.5 FIELD STRENGTHS WITH CONTINUOUS TIME VARIATION

The plots of the electric and magnetic field strength in Figs.1.3-1 to 1.3-3,
1.4-1, and 1.4-4 to 1.4-6 have jumps or steps at 6§ = { where the derivatives
with respect to 6 or { are not defined. This creates problems in certain cases
which are readily avoided by replacing the step function EpS(6) of Eq.(1.3-14)
with an exponential ramp function:

E(0,0) = E;S(0)(1 —e %) =0 for <0
=E(1-¢e*) for6>0 (1)

Instead of the field strength Fg((,8) of Eq.(1.3-16) we derive in Section 6.4 the
following field strength:

E(¢,6) = Eg(C,0) = Ey[(1 — e 20+0)o=2C 4 0(¢ 0)], w? =es/uo (2)

The special value w = 0 used in Sections 1.3 and 1.4 is replaced by the general
value w > 0. Certain plots of Eg/E; for w > 0 are shown in Figs.6.4-1 and 6.4-
2. Here we will concentrate on the special case w = 0 which reduces Eq.(6.4-28)
to the following simpler form:

1 [~

4 sh(1—5?)/2 sin¢n sin(n?—1)/20 sin (n
U(C,a)”‘_;e 0(/ (1 —7’)2)1/2 n dn +/ (772_ 1)1/2 n dﬂ) (3)
0

Plots of Eg(¢,0)/E, as function of the time 6 at various distances ¢ are
shown in Fig.1.5-1. The functions rise like E(¢)6S5(0 — ¢) in Fig.1.4-2. The
derivative 0Fx /00 is defined everywhere in the interval 0 < w < co.

Figure 1.5-2 shows the field strengths Eg(({,6)/E; as function of the dis-
tance ( for various times 8. There are no steps as in Fig.1.4-1 and the derivative
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F1G.1.5-2. Electric field strengths Eg((, 8)/E1 according to Eq.(2) as function of the
normalized distance { with the normalized time 6 as parameter.

OEg/0( is defined everywhere in the interval 0 € ¢ < co. We note that the pa-
rameter { = 0 in Fig.1.5-1 shows the boundary condition while the parameter
# = 0 in Fig.1.5-2 shows the initial condition which is zero.

The magnetic field strength Hg((,8) associated with the electric field
strength Eg (¢, 0) of Eq.(2) is derived in Section 6.5 and represented by Eqgs.(6.5-
10), (6.5-15) for the general case w > 0. Certain plots of HgZ/E; for w > 0
are shown in Figs.6.5-1 and 6.5-2. The simpler special case w = 0 suffices here:

Hp((,0) = Z7 Er[-2 + Iig (¢, 6) — Ipa(C, 0)] (4)
1 7 dn
£a(C,6) = { [31 0/ exp(-179/2) - 1]
oo 25
v (s =) ()

—_ é -6 Ji 2 1/2 sin(n2 - 1)1/29 cos (7
Ig4((,0) = e / (cos(n — 1) + o = 1)1/2 P dn (6)
1

The function I43(¢,8) holds for the limit d — 0. This means no more than
to say that (sinz)/z must be evaluated numerically for the limit z — 0 if one
wants its value at x = 0. By trial and error one finds that a reduction of d
below 1073 yields changes of less than the line width of the plots.

Plots of HgZ/E, as function of § at various distances ¢ are shown in
Fig.1.5-3. Again there is no step where the functions begin to rise from zero
and the derivative 0Hg /00 is defined everywhere in the interval 0 < 6 < oco.
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F1G.1.5-3. Magnetic field strengths Hg(¢,0)Z/E: according to Eq.(4) as function of
the normalized time 6 with the normalized distance { as parameter.
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F1G.1.5-4. Magnetic field strengths Hg(¢,8)Z/FE; according to Eq.(4) as function of
the normalized distance ¢ with the normalized time 6 as parameter.

Figure 1.5-4 shows the associated magnetic field strength Hg(¢,8)Z/FE)
as function of the distance ¢ for various times #. Again there are no steps at
¢=1,2,3, 4 and the derivative 0Hg/0( is defined everywhere in the interval
0< ¢ <00

1.6 MODIFIED MAXWELL EQUATIONS IN POTENTIAL FORM

Since Maxwell’s equations are often used in potential form we want to ex-
tend the results of Sections 1.1 to 1.5 about the existence of solutions satisfying
the causality law to the potential form. We start from Egs.(1.1-8) to (1.1-15)
but substitute D = ¢E and B = yH. The velocity ¢ of light and the wave
impedance Z are used rather than g and e

1 OE
H= —22—+ 1
curl Zc ot e M

Z 0H
_ = £ 2
cwlE = ===+ gn (2)
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divE = Zcp, (3)
dvH=0 or divH= —;—pm (4)
g. =0E (5)
gm = sH (6)

Z =/ple=pc, c=1/\/iE, e=1/uc* =1/Z¢, p=Zjc
p=41 x 1077 [Vs/Am)], c=299792458 [m/s] (definitions)
Z = pc = 376.730314 [V/A] (7)

The operator div applied to Eq.(1) and differentiation of Eq.(3) with re-
spect to time yields the electric continuity equation:

divge + 0pe /0t =0 (8)

If there is a magnetic monopole current—which is a controversial matter—
we may also obtain a corresponding magnetic continuity equation by applica-
tion of the operator div to Eq.(2) and differentiation of Eq.(4) with respect to

time:
div gm + 0pm /0t =0 (9)

If there are no magnetic monopoles or charges p,, we obtain the reduced equa-
tion for dipole and multipole currents, which are not controversial:

divgn =0 (10)

Using both intuition and experience we assume that the magnetic field
strength of a solution of Egs.(1) and (2) can be written in the form

c 0A,
H= 7 curl A, — 5 grad ¢y, (11)

where A, and A, are the magnetic and the electric vector potential, while ¢,
is the magnetic scalar potential. Substitution of Eq.(11) into Eq.(2) yields:

_ 0An 7 (O°A. ¢
curlE = curl 5 T o ( 51 + grad _8_t_> + 8m (12)

With some more intuition and experience we define a new vector G by the
relation

1 /0%A. O¢ 1
curleurl G = = < 5 + gra —ﬁ) - ‘Z—Egm (13)

and substitute it into Eq.(12). We obtain curl E:

curlE = Zccurlcurl G — curl ag{“ (14)
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The operator curl can be dropped. Since the curl of the gradient of a scalar
is zero we must add such a gradient to maintain generality. Intuition and

experience are needed once more to choose the scalar to be ¢,:

E=ZccurlG — ?—gt_ — grad ¢,

The comparison of Egs.(11) and (15) suggests the choice
curl G = —curl A,
and Eq.(15) is brought into the form of Eq.(11):

E=—~Zccurl A, — QaAt—m — grad ¢,

Substitution of Egs.(11) and (17) into Eq.(1) yields

2
curleurl A, = _clz <aa":‘2m +grad 5;:) + _f_ge

while the substitution of Eq.(16) into Eq.(13) brings:

1 [(8%A, Odm 1
curlcurl A, = = <—— + gra ___> + zgm

ot? ot
We further substitute Eq.(17) into Eq.(3)

1 . OAn 2 _
~7 (dlv +V ¢e> = Pe

ot
and Eq.(11) into Eq.(4):
Z (. OAe 2 _
—'z (leT +V ¢m> = Pm

In the absence of magnetic charges we get the simpler equation

div% + V2 =0

(15)

(16)

a7)

(18)

(19)

(21)

(22)

The vector potentials are not completely specified since Eq.(11) only defines
curl A, and Eq.(16) curl A.. We may choose two additional conditions that

we call the extended Lorentz convention:

16‘¢e
divAn, + — =51 =0

1 06m _
d1A+ e =0

Using the vector relation
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curlcurl f = grad div f — V3£ (25)
we obtain from Eqs.(18)-(21), (23), and (24):

VA, - 212-8;;"2‘6 = OA. = —%gm (26)
VA, - clzaza_tA;: =0A, = —%ge (27)
V24, - (—;‘56;;’28 = O = ~ Zep. (28)
V24, — j—ﬁ%—f—’; = Ofm = ~fm (29)

Particular solutions of these partial differential equations may be repre-
sented by integrals taken over the whole space!:

_ 1 gm(f,‘f],C,t—T‘/C)
Aoyt = g [[[ BRI B acapag 30

An(eat) = = [[[ B2 deanag (31
el zyt) = o [[ [ LB g gy g (32)
bmloinzt) = o [[[ 2280 g aga;

Here 7 is the distance between the coordinates €, 7, ¢ of the current and charge
densities and the coordinates z, y, z of the potentials:

2 2 211/2

r=[e-*+y-n*+(2-¢? (34)

The electric and magnetic field strengths are here determined by currents

and charges that excite them. If there is no magnetic charge, the scalar poten-

tial ¢, drops out; if in addition there are no magnetic dipole currents exciting

E and H, the vector potential A, drops out too and only the conventional

Eqs.(27) and (28) remain. Equations (11) and (17) are reduced to their usual
form:

. c _ 6Am 3 |
H=_cumlAn, BE=-—F—gradge (35)

1The proof may be found in Abraham and Becker (1932, Part III, Ch.X, Sec.10) or
in Abraham and Becker (1950, Part III, Ch.X, Sec.9). Both books call these solutions for
A = An and ¢ = ¢e general solutions, but later editions point out that they are only
particular solutions to which one can add general solutions of the homogeneous versions of
Eqs.(26)—(29) to obtain the general solutions (Becker 1957, 1964a, b).
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We have not used Eqgs.(5) and (6). These equations state the field strengths
E and H required to drive the current densities g, and g,,. We usually associate
the equation g, = ¢E with ohmic losses but near zone radiation or interaction
in vacuum would call for the same equation.



2 Monopole, Dipole, and Multipole Currents

2.1 ELECTRIC MONOPOLES AND DIPOLES WITH CONSTANT MASS

We have seen in Sections 1.3 and 1.4 that the choice gy = 0 in Eq.(1.1-
9) at the beginning of the calculation does not yield an associated magnetic
field strength due to excitation by an electric field strength while the transition
gm — 0 at the end of the calculation does yield the associated magnetic field
strength. An equivalent result is obtained for g, in Eq.(1.1-8) if one uses
excitation by a magnetic field strength and wants to calculate the associated
electric field strength (Harmuth 1986a, Sections 2.6 and 2.7).

In quantum field theory it is usual to quantize Maxwell’s equations in
‘empty space’ by choosing g, = 0 and g, = 0 at the beginning of the calcu-
lation. Since this cannot be done in the classical theory we will not expect it
to work in quantum theory. This is a strictly mathematical objection to the
choice ge = 0 and g, = 0.

There is also a physical objection. We can define ‘empty space’ by the
absence of particles and charges. But we cannot exclude dipoles unless we are
prepared to claim that a capacitor with vacuum or ‘empty space’ as dielectric
cannot be charged and does not permit an electric current with sinusoidal time
variation to pass through. Such a claim would contradict observation. Since g,
and gy, in Egs.(1.1-8) and (1.1-9) stand for any kind of electric and magnetic
current densities we must use them whenever dipole or higher order multipole
currents are possible, regardless of whether these dipoles and multipoles are real
or virtual. The only media in which real or virtual electric dipoles do not exist
seem to be electric superconductors. Real or virtual magnetic dipoles appear
to be even more ubiquitous. If there are no magnetic charges or monopoles
there would be no magnetic superconductors that exclude magnetic dipoles.

We shall need the current densities produced by moving monopoles and
dipoles. Furthermore, we shall need equations of motion. The dipoles can be
either induced as in Fig.2.1-1b or inherent as in Fig.2.1-1c. We begin with
monopoles.

An electric charge density p. moving with the velocity v produces an
electric current density ge as shown in Fig.2.1-1a:

e = PV (1)
The motion of a charge in an electromagnetic field is given by the Lorentz
equation

27
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F1G.2.1-1. Particle with negative charge moving in an homogeneous electromagnetic
field (a). Induced electric dipole in an homogeneous electromagnetic field (b). Inher-
ent electric dipole rotating in an homogeneous electromagnetic field (c).

K = pe (E—f—%va) @)

where ky, is a force density that acts on the electric charge density p.. For
a particle with charge e rather than a charge density p. we replace the force
density ky, in Eq.(2) by a force K,

Km=e<E+§va> (3)

An equation of motion is obtained be equating K, with the force of inertia,
which yields in Newton’s mechanics for a particle with mass m:

dv

If the current density g. of Eq.(1.1-1) refers to an electric dipole current
density rather than a monopole current density we must replace Egs.(1)—(4) by
equations holding for dipoles. Figure 2.1-1b shows an electric dipole represented
by two particles with mass m each and opposite charge. A spring between
them represents a restorative force that is proportionate to the distance s of
the particles from their common center of mass. The current density g. = pev
of Eq.(1) for a monopole becomes

Be = 2peV (5)
for a dipole since both charged particles in Fig.2.1-1b have the same mass. For
a dipole induced from atomic hydrogen we would get

ge = (1+1/1836)p.v (6)

since the current is due mainly to the movement of the electron while the
heavy proton barely moves. Our investigation is simplified if we use generally
the relation
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F1G.2.1-2. Dumb-bell model of a rotating dipole with two masses m at the ends of a
thin rod of length 2R.

F1G.2.1-3. Electric quadrupole in an homogeneous (a) and an inhomogeneous (b)
electric field.

8e = PeV (7)

but make pe either twice as large or 1+ 1/1836 = 1.0005 times as large as the
charge of one part of the dipole. We get then the same relation g. = pev for
dipoles as for monopoles in Eq.(1).

The equation of motion of Eq.(4) gets an additional term ms/Tg that
represents the restorative force proportionate to s:

dv ms d?s s dv 1
= i —_— —_— —_— —_— = — _— dt
K mdt+7'p2 m(dt2+7'§> m(dt+‘rg/v ) ®)

Besides the induced electric dipole of Fig.2.1-1b we have inherent! dipoles
as represented by the two charges +e and —e at the fixed distance 2R in
Fig.2.1-1c. Most molecules are inherent dipoles, e.g., HoO, HCI, NH;3. Using
the convention of Eq.(7) the current density of rotating inherent dipoles, which
flows along a circle rather than a straight line as in Figs.2.1-1a and b, equals

dd
= (9)

If we denote with J the moment of inertia of the rotating dipole of Fig.2.1-1c
and with 2R its length we obtain the equation of motion

Be = peV = peR

1Reitz, Milford, and Christy (1979) use the term polar instead of inherent. This book
discusses electric dipoles in great detail.



30 2 MONOPOLE, DIPOLE, AND MULTIPOLE CURRENTS

d*9
KnR=1J yr) (10)
For the dumb-bell model of a rotating dipole with two masses m at the end of
a thin rod of length 2R as shown in Fig.2.1-2 we have the moment of inertia J
with magnitude J = 2mR? and direction as shown in Fig.2.1-2.

We note that a dipole can be both inherent and induced. For instance a
polarized molecule such as HyO can be rotated by an electric field strength but
in addition the electrons and the nuclei can be pulled apart.

Beyond induced and inherent dipoles we have quadrupoles and higher order
multipoles. Figure 2.1-3a shows an electric quadrupole in an homogeneous
electric field. The field strength E produces neither a shift nor a rotation of the
quadrupole. A more complicated electric field as shown in Fig.2.1-3b produces
a rotation. We do not derive any relations for quadrupoles since they will not
be needed in this book. But it is important to understand that monopoles and
dipoles are not the only possible carriers of an electric current.

From Fig.2.1-1b one may see that the distinction between electric dipoles
and monopoles depends on the magnitude and the duration of the field strength
E. A neutral hydrogen atom will first become a dipole if an electric field
strength E is applied. If this field strength is larger than the ionization field
strength and it is applied long enough we get a negative and a positive mono-
pole. A larger field strength can achieve the same effect in a shorter time. This
possible transition from dipole to monopoles implies that any useful theory
must treat monopoles and dipoles similarly since a dipole does not have a
priori information whether an applied field strength will last long enough or
will reach a sufficient magnitude to produce ionization.

We turn to the currents carried by electric monopoles and dipoles. This
investigation is important since we shall need a simple representation of dipole
currents in Section 4.1 to derive partial differential equations of fourth order
that can be solved analytically without excessive mathematical effort. With-
out such a simplification one obtains partial differential equations of higher
order that are hard to solve analytically or transcendental equations that can
be solved numerically only. At this stage of the development of quantum elec-
trodynamics based on the modified Maxwell equations it is more important
to derive basic results analytically from simple equations rather than highly
accurate results numerically from complicated equations. Complicated partial
differential equations will be derived in Section 6.10 and they will demonstrate
the virtue of simplicity very convincingly.

For the simplest case of a monopole current we have Ohm’s law connecting
an electric field strength and an electric current density:

Be = oE (11)

This law assumes that the current follows the field strength without delay,
which implies current or charge carriers with negligible mass. Following Becker
(1964a vol.1, b, §58) we note that a current carrier with mass my, velocity v,
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F1G.2.1-4. The step function excitation E/E¢ = S5() (solid line) and the lagging
current densities g.(t)/cEo according to Eq.(14) due to a finite mass of the charge
or current carriers for p=1/4, 1/2, 1, 2, 4.

and charge e is pulled by an electric field strength E with the force eE. Using
Newton’s mechanic we obtain the following equation of motion:

dv
mo— = eE — £.v 1
Odt € Ee (2)

The term &.v represents losses proportionate to the velocity. The term &, is
usually referred to as Stokes’ friction constant due to its original use in fluid
mechanics. In electrodynamics any losses proportionate to v are more likely to
come from near zone radiation that is absorbed by surrounding matter. The
term &.v is clearly the simplest one that can account for losses. We do not
have to decide what causes these losses unless we want to represent losses by
more complicated terms than £, v.

If we obtain the derivative dv/dt from Eq.(1) and substitute it into Eq.(12)
we obtain an extension of Ohm’s law to electric monopole currents having
current carriers with finite, constant mass:

d
g +Tmp% =oE

mo Pe€ Pe€Tmp
Tmp = —, 0 = — = —— 13
P fe {e Mo ( )

If the term Tmpdg./dt can be neglected we obtain the usual Ohm’s law with
conductivity ¢. To recognize the effect of Eq.(13) consider the electric field
strength E with the time variation of a step function E(t) = EoS(¢) as shown
in Fig.2.1-4. In order to avoid the point t = 0 for which the step function S(t)
is not differentiable we consider the infinitesimally larger time ¢t = +0. If we
require a current density g.(+0) to be zero we obtain from Eq.(13) the current
density

g.(t) = an(l—-e_t/T’“P)S(t) = an(l—e‘g/p)S(ﬁ), 6=t/T, p="Tmp/T (14)
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F1G.2.1-5. The normalized electric field strength E/Fo represented by the exponen-
tial ramp function of Eq.(15) (solid line) and current densities g./0Eq according to
Eq.(17) for p=1/4, 1/2, 1, 2, 4.

which shows the current density lagging behind the field strength E¢S(¢). The
normalized current density g./oE; of Eq.(14) is plotted in Fig.2.1-4. The
lagging effect is seen to become negligible for p « 1.

In addition to the step function S(t) we shall need the exponential ramp
function

E(t)/Eg=1—e"" (15)

shown in Fig.2.1-5 by the solid line. Equation (13) is replaced by

dge _
ge + Tmp';igt_ = UEO(I —€ t/T) (16)

and the current density of Eq.(14) is replaced by

g. =0k [1 — e~ t/Tme . (e“t/““" - e_t/T)] » TmpFT

T = Tmp

= oK, [1 - (1 + _t__> e_t/‘rmp] , Tmp =7 (17)

Tmp

Figure 2.1-5 shows plots of g, for 7 = 271p, Tmp, and Tmp/2. The difference
between the plot of the field strength E(t)/Eg and the plots for the current
densities is never as large as in Fig.2.1-4 for the step function.

For a dipole we obtain from Egs.(8) and (12) the following equation of
motion:

dv mo
moa%-;g—/vdt:eE——fev (18)

For the current density g. we obtain with Eq.(7) in analogy to Eq.(13):
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dg. Tmp
ge+Tmp_(_it—+—7:g_ gedt=0pE
mo Pe€ Pe€Tmp
Typ = —, Op =0 = =270 (19)
e ge P ge mo

The field strength E is replaced in liquids or solids by a smaller effective
field strength F but this is of no concern here!. The conductivity o is often
denoted by o}, to indicate it is an electric polarization current conductivity or
an electric dipole current conductivity. Equation (19) is Ohm’s law extended to
electric dipole currents with constant mass of the current carriers. A compar-
ison with Eq.(13) shows that the integral is characteristic for dipole currents,
while a term dg./dt occurs in Ohm’s law for monopole as well as for dipole
currents if a delay is caused by the need to accelerate current carriers to give
them a velocity.

Let the electric field strength E in Eq.(19) have the time variation of the
step function in Fig.2.1-4

E= %pEoS(t) (20)

where 2p/q is a factor that will be explained presently. The inhomogeneous
term in Eq.(19) is removed by differentiation:
> dg.

T d2g
—p ZBe | 27 Be
8+ Tmp Gt T

=0 fort>0 (21)

The solutions are:

e = et /™ + gege™ ™2 for Ty /Ty # 1/2
ge = (8e3 + ge4t)e—t/rp for Trmp/Tp = 1/2 (22)

r 1/2
1 72 472 1
Tenez = =B |14 (1 - 22 for T2 < =
2 Tmp T2 Tp 2
i 1/2
1 12 472 " 1
==-—L |1+4 r;p—l forT——p>—
2 Tp ] TS Tp 2
1 72
e =t =1, forTﬂE:l (23)
2 Top Tp

1See, e.g., Harmuth, Boules, and Hussain (1999), Section 1.3 or Harmuth and Lukin
(2000), Section 1.2.
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F16.2.1-6. Time variation of dipole current densities according to Eq.(24) that trans-
port equal charges through a certain cross section of the current path for p = 1/2,
q=1/4,1/2,1,2, 4 in the interval 0 < 8 < 10.

Substitution of the conditions for ge(+0) = 0 yields:

1 _, 1
ge=20pE0(—15«96 /9 forp=§,0>0

t/T =6, 7'p/T =q, Tmp/Tp =D (24)
The integral
7 1
-8 _
/ 3596 /946 = 1 (25)
0

explains the use of the factor 1/g in Eq.(20) to obtain 1 or generally 1/2p in
Eq.(25). The same charge will pass through a certain cross section of the path
for the current density g. during the time 0 < t < co. The function g./20,Eg
is plotted in Fig.2.1-6 for various values of g. The areas under the plots are
all equal; they represent the constant charge passing through a certain cross
section of the current path. As g decreases, the current density increases for
an ever shorter time and approaches for ¢ — 0 an infinitely large and infinitely
short needle pulse similar to Dirac’s delta function. On the other hand, for
large values of ¢ we get a time variation similar to that of a monopole current
according to Fig.2.1-4 up to fairly large values of 6.

For p = Tmp/Tp # 1/2 we obtain with ge(+0) = 0 the following relations
for the current density?:

p(e0/0 — e=0/02) 1
= - 2
g. = 20,E e 4p2)1/2 for p < 5 (26)
—6/2pq 2 _ 1 1/29 1
=20,Eg 2pe 75 sin (4p ) forp> = (27)
a(4p? — 1)V 2pq 2

2Harmuth, Boules, and Hussain (1999), Section 1.3.
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F1G.2.1-7. Time variation of dipole current densities according to Eq.(26) that trans-
port equal charges through a certain cross section of the current path for p = 1/4 and
qg=1/4,1/2, 1, 2, 4. The areas under the plots in the interval 0 < ¢ < oo are equal.
They are also equal to the corresponding areas in Fig.2.1-6.
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F1a.2.1-8. Time variation of dipole current densities according to Eq.(£7) that trans-
port equal charges through a certain cross section of the current path for p = 1 and
g =1/4, 1/2, 1, 2, 4. The integrals over the plots in the interval 0 < 8 < o are

equal. They equal 1/2p = 1/2 the value of the corresponding integrals in Figs.2.1-6
and 2.1-7.

91 =q[l+(1—4p2)1/2 /Qp, 62=q[1_(1_4p2)1/2 /2p

Plots of go/20,E¢ are shown in Fig.2.1-7 for Eq.(26) and in Fig.2.1-8 for
Eq.(27). The areas under the plots are all equal:

— P [ (e -0 =1 (28)
— A2 1/2/(e € -
q(1-4p?) "

T 2 _1)1/29
-—(B?-p—i)—l—ﬁ-/e_e/msin %d0= 1 (29)
q\dp® —
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F1G.2.1-9. Normalized monopole current density g/ocEo according to Eq.(11) for
an electric field strength with the time variation of the exponential ramp function

of Eq.(15) (solid line) as well as normalized dipole current densities according to
Eqs.(30) (dashed line) and (31) (dotted line).

Figures 2.1-7 and 2.1-8 show that for large values of ¢ = 7,/7 we get a
time variation of the current density similar to that of a monopole current in
Fig.2.1-4 up to fairly large values of 6.

Consider the exponential ramp function of Eq.(15) for E in Eq.(19). The
monopole current density for current carriers with negligible mass has the same
time variation except for a factor o according to Eq.(11). This normalized
current density g./oEp is shown by the plot with solid line in Fig.2.1-9. If
we substitute the exponential ramp function for E into Eq.(19) for the dipole
current density we can obtain with 8 = t/7 functions

ge1/0pEg =% —e73333¢  for p = 0.499 (30)
ge2/0pEp = 7% — 748058 for p = 0.498 (31)

that are shown in Fig.2.1-9 by the plots with the dashed and the dotted lines.
We see that the monopole current density g. = oE can again be used as a
crude but radically simpler representation of dipole currents.

A monopole current requires charge or current carriers such as electrons,
ions, holes in semiconductors, alpha particles, etc. The two parameters Ty,
and ¢ in Eq.(13) are thus material constants. This is quite different for the
constants Tmp, Tp, and oy, of Eq.(19) since a dipole current can flow in vacuum,
which implies that 7mp, T, and op should have values for vacuum just like the
permittivity e. Originally, the permittivity € of vacuum had to be obtained
directly from observation. When Maxwell derived the relation ¢2 = 1/pue it
became possible to calculate € from the definition g = 47 x 10~7 [Vs/Am)] of
the permeability for vacuum and the observed® value ¢ = 299 792458 [m/s] of
the velocity of light.

For a measurement of Tmp, Tp, and o, of Eq.(19) we need a circuit as
shown in Fig.2.1-10. By closing the switch S one applies a step voltage V.S(t)

3This observed value has become a definition.



2.2 MAGNETIC MONOPOLES AND DIPOLES WITH CONSTANT MASS 37

—

® ®

L3

F1G.2.1-10. Principle of a circuit for the determination of the parameters Tip, 7p,
and g, of an electric dipole current in vacuum. The ampere meter A represents a
single-shot sampling oscilloscope. The voltmeter V is only needed to observe initially
the switching characteristics of the switch S. It must also be a single-shot sampling
oscilloscope.

to the capacitor C with vacuum as dielectric. If the time variation of the
current is observed—which would have to be done with a single-shot sampling
oscilloscope rather than a conventional ampere meter—one can compare it with
plots according to Figs.2.1-6 to 2.1-8 and determine which values of Typ,7p, and
op give the best fit. The time resolution of the fastest sampling oscilloscopes
is currently about 10 ps. This may not be short enough to make the circuit of
Fig.2.1-10 practical.

2.2 MAGNETIC MONOPOLES AND DIPOLES WITH CONSTANT MASS

We must develop relations for the magnetic current density g, and the
hypothetical charge density p, in analogy to the relations for their electric
equivalents g. and p. in Section 2.1. The equivalent of the electric current
density g. in Eq.(2.1-1) for a hypothetical magnetic current density follows
readily from Eqs.(1.6-2) and (1.6-4):

Bn = PmV (1)

The force density k. of the motion of a hypothetical magnetic charge in
an electromagnetic field is given by the magnetic Lorentz equation

ke = pm (H—%vxE) (2)

where k. is a force density that acts on the magnetic charge density pm; the
negative sign is due to the negative sign in Eq.(1.6-2). For a particle with a
magnetic charge ¢ rather than a charge density p,, we replace the force density
ke in Eq.(2) by a force K,:

Ke=q<H—%vxE> (3)

As before an equation of motion is obtained by demanding that K. equals the
force of inertia. Using again Newton’s mechanic we get:

dv
K. =m— 4
€ dt )
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Even though a magnetic charge density p,, and a magnetic monopole cur-
rent density g, associated with it are strictly hypothetical they can serve a
practical purpose. In Eq.(1.1-15) we connected the magnetic current density
gm Vvia a conductivity s to the magnetic field strength H. The transition s — 0
in Eq.(6.1-40) and w = y/es/uo — 0 in Eq.(6.2-41) means that the current
density g., becomes zero, but one does not need to specify whether g, is a
monopole, dipole, or higher order multipole current density and can think of it
as a monopole current density.

An induced magnetic dipole according to Fig.2.1-1b but with the elec-
tric charges +e replaced by magnetic charges +q is just as hypothetical as a
magnetic monopole but it can lead to equations that can be solved analyti-
cally while inherent, rotating dipoles according to Fig.2.1-1c¢ have never yet
lead to an analytically solvable equation. Furthermore, the induced dipole of
Fig.2.1-1b has only one rest position defined by s = 0 while the inherent dipole
of Fig.2.1-1c has a rest position for any value of the angle ¥. This requires
averaging over many values of ¥ for numerical solutions.

The magnetic current density g, for an induced dipole becomes in analogy
to Eq.(2.1-7)

8m = fmV (5)
and the equation of motion has the form of Eq.(2.1-8) with K, replaced by

K.:
d’s s dv 1
Ke=m(gﬁ+§>—m<a+%/vdt> (6)

The comparison of Eqgs.(2.1-8) and (6) shows that the equation for the
hypothetical induced magnetic dipole current follows from Eq.(2.1-19):

8m + Tmpds—tm + Tm—; 8mdt = 25, H (7)
Tp
We have changed the notation o, to 2s;,, where 0}, has the physical dimension
A/Vm while s, has the dimension V/Am. The factor 2 takes into account that
each dipole consists of two particles with equal mass. The results of Section
2.1 may readily be used with a changed notation.

Let us turn from the hypothetical induced magnetic dipole to the well-
established inherent magnetic dipoles. Consider the ferromagnetic bar magnet
of length 2R in an homogeneous magnetic field of strength H and flux den-
sity B shown in Fig.2.2-1. We introduce the magnetic dipole moment mpy,
with dimension! Am? and the mechanical moment of inertia J with dimension
Nms? = kgm? of the bar magnet. The equation of motion equals

1If we write mmoB = MmouH, the term mmop has the dimension Vsm and the sym-
metry with the electric dipole moment eR [Asm) is maintained, if the electric charge te
replaces +¢y, in Fig.2.2-1. The product (eR)E[Asmx V/m] is then in complete analogy to
the product mmopH [VsmXxA/m].
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F1G.2.2-1. Ferromagnetic bar magnet in an homogeneous magnetic field (a) and its
replacement by a thin rod with magnetic charges +¢,, at its ends (b).

d?9 .
JW = ~Mp.Bsind (8)

where 9 is the angle between the direction of the field strength and the bar
magnet. The velocity of the end points of the bar has the value

dd

which suggests to introduce a friction or generally an attenuation term &, into
Eq.(8):

2
J%t—f +§mR%? + MmpeBsind =0 (10)
An analytic solution of this differential equation is generally impossible due to
the term sin®. For small angles ¢ ~ sin? it was already studied by Gauss?.
The computer has freed us from the restrictions of the days of Gauss. We

rewrite Eq.(10) in normalized form:

d2_19 + _:Li’l?_ + i 1
d?  pgdf  ¢?
J Tp J \% JmmoB Tmp

1
1=V mmeB 7 PT R, &R T

To = VJ/MmoB, Tmp = J/nR, Dg=Tmp/T = J/énRT (11)

This differential equation can be solved numerically for the initial condi-
tions ¥9(0) = ndy = ¥, and d¥(0)/d§ = 0. The numerical values obtained for

2 A recent analysis may be found in Harmuth, Boules, and Hussain (1999), Section 1.4.
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F1G.2.2-2. The functions v(8)7/R (a) and v,(8)7/R (b) according to Egs.(12) and
(13) for p = 1/4, 1 = 7p, and 9, = nn/8 with n = 1, 2, ..., 7 in the interval
0<6<10.

F1G.2.2-3. The functions v(6)7/R (a) and vy(0)7/R (b) according to Eqgs.(12) and
(13)forp=2,7 =75, and ¥, = nw/8 withn =1, 2,..., 7 in the interval 0 < 4 < 10.

9(6) and d¥(6)/d6 may then be used to calculate the velocities v(6) and v,(6)
of Fig.2.2-1:

dd RdY

vy(0) = v(f)sind = —?Z—z sin?d (13)

Plots of v(8) and vy (6) are shown in Figs.2.2-2a and bforp=1/4, 7, = 7,
and various values of ¥,,. Figures 2.2-3a and b show the same plots for p=2.

We must connect the velocities v, (t) with the current density gm(t) of a
magnetic dipole current. First we replace the bar magnet in Fig.2.2-1a by a
thin rod with fictitious magnetic charges +q,, at its ends as shown in Fig.2.2-
1b. The magnetic dipole moment my,, equals 2¢, R. The charge g, must be
connected with the magnetic dipole moment by the relation

pmmo [ Vs Am?
2R Am m

where p is the magnetic permeability, to obtain the dimension Vs for g,,. The
magnetic dipole current produced by such a bar magnet is 2¢,v,(t). If there

gm [Vs] = (14)
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F1G.2.2-4. The average velocity vav,y,(6)7/R according to Eqgs.(12)—(15) of the ends
of randomly oriented bar magnets of length 2R for g =1,p=1/4, 1/2, 1, 2, 4, and
initial velocity v(6) = 0 for 6 = 0 in the interval 0 < § < 10.
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F1G6.2.2-5. The average velocity vav,y(8)7/R according to Eqs.(12)—(15) of the ends
of randomly oriented bar magnets of length 2R forp = 1/4, ¢ =1/4,1/2, 1, 2, 4, and
initial velocity v(6) = 0 for € = 0 in the interval 0 < 6 < 10.

are Np bar magnets in a unit volume, all having the direction ¥y and the
velocity vy(t) = 0 at t = 0, we would get the dipole current density gm(t) =
2Noqmvy(t)y/y for the current flowing in the direction of the y-axis. For many
randomly oriented bar maguets we must average all velocities v, (t) in the sector
0 <9 <7 as well as in the sector 7 < ¥ < 2, which yields the same result:

N
Vawy (6) = % S 0y(9n,8), 0<O9=0,<m, 6=t/r (15)
n=1

Figure 2.2-4 shows the average velocity vay,y(t) for ¢ = 1 and various
values of p in the interval 0 < 8 < 10. Multiplication with 2Npg,, yields
the magnitude of the current density g, as function of time. For a vanishing
moment of inertial J the plots in Fig.2.2-4 become similar to a Dirac delta
function,

Figure 2.2-5 shows v,y (#) for p = 1/4 and various values of ¢, while
Fig.2.2-6 shows the same but p = 1/4 is replaced by p = 2.

The magnetic dipole current density in the direction of the y-axis becomes
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F1G6.2.2-6. The average velocity vav,,(8)7/R according to Eqgs.(12)-(15) of the ends
of randomly oriented bar magnets of length 2R for p = 2, ¢ = 1/4, 1/2, 1, 2, 4, and
initial velocity v(8) = 0 for # = 0 in the interval 0 < 6 < 10.

for pairs with magnetic charge ¢y,

m = 2ZNogmVav,y(t) (16)

@ |«

where Ny is the number of magnetic dipoles.
Let us attempt to write the extension of Ohm’s law for rotating magnetic
dipoles in a form comparable to Eq.(7). We obtain from Eq.(9)

v o(t) d*9  1ldv | 1
"('Z't— - R 5 dt2 = ‘I_—EE, ﬁ——ﬁ/’l)(t)dt (17)
and we rewrite Eq.(10):
Jdv 1
Td + €mv + My B sin (R /v(t) dt) =0 (18)
Then we substitute Eq.(13) with t = 67:
vy (t)
= 19
v(®) sin ¥(t) (19)
to obtain:
Jd Vy (1 / Uy >
—_— oB — ——dt } =0 20
Rdt (sm19)+£msint9+mm Sm<R sin ¥ (20)
Next we substitute
Gm,9
- 21
v 2Nogm 2V

and multiply with 2Npgn:

4 (Imo 9m.9 ; /9"”9 ):0 22
(. )+§ms 19+2NOQmmmOBSIB<2N0qu sin (22)
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F1G.2.2-7. Principle of a circuit for the determination of the parameters Tmp, 7p, and
sp of a magnetic dipole current in vacuum. The ampere and volt meters represent
single-shot sampling oscilloscopes.

This differential equation yields the current density gm g for a certain initial
angle 9 = 9y of the dipoles as function of the magnetic flux density B or field
strength H. The direction of gy is that of the positive y-axis:

o = gm,ﬂg (23)

Equations (21) and (22) are the extension of Ohm’s law to magnetic dipole
currents caused by inherent dipoles with certain initial orientation angle 9. We
may substitute g, 9 for gm in Eq.(1.1-15) and—at least in principle—calculate
E and H for the initial angle ¥o. If we calculate E and H for many possible
angles ¥y and average in analogy to Eq.(15) we get the field strengths E and
H for randomly oriented dipoles.

One will not likely proceed in this way since Eq.(22) does not offer much
hope for an analytic solution of Egs.(1.1-8)—(1.1-15). For a numerical solution
one will generally prefer to use Eqs.(11), (13), and (21) rather than Eq.(22).
For an analytic investigation one has little choice but to use Eq.(7) holding for
a hypothetical induced magnetic dipole.

In Fig.2.1-10 we have shown a circuit for the measurement of the param-
eters Tmp, Tp, and o, of an electric dipole current in vacuum. A corresponding
circuit for magnetic dipole currents is shown in Fig.2.2-7. The most important
difference is the replacement of the wires for an electric monopole current lead-
ing to the capacitor by a ring of ferromagnetic material with large cross section.
The reason for this is the lack of magnetic monopole currents that could be
fed to the ‘gap’ in Fig.2.2-7 and produce a magnetic dipole current across the
gap. Since permalloy has a relative permeability between 10000 and 70000
it is a good conductor for magnetic dipole currents compared with vacuum.
But it would not work for switching times shorter than 1 us. A ferrite material
would work with switching times as low as 1ns, but its relative permeability is
in the range from 10 to 100. In the absence of electric monopole currents we
could replace the circuit of Fig.2.1-10 by one according to Fig.2.2-7 with the
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ferromagnetic ring replaced by a barium-titanate ring with relative permittivity
between 1000 and 9000.
2.3 MONOPOLES AND DIPOLES WITH RELATIVISTIC VARIABLE MASS

For the transition from a fixed to a relativistic variable mass in Sections
2.1 and 2.2 we write for the mass
mo
m= —————— (1)
(1 -v2/c2)'/?

and replace mdv/dt by d(mv)/dt:

. dt .t
dm _dmdv v mo __dv
dt  dvdt (1 y2/c2)%2 dt
d(mv) mg dv @)
dt (1 —w2/e2)%? dt
Equation (2.1-4) becomes
_ Mo dv 3)

(1—v2/c2)%? dt

while Eq.(2.2-4) requires the subscript e in place of m.
For the extension of the induced dipole equation to relativistic velocities
we differentiate Eq.(2.1-8) with respect to t:

dK,, d*(mv)  mv

dt ~  di? T2 )
d*(mv)  d*m dm dv d%v

=gVt 2—— Mo 5

dt? @ ' aa T ()

For d?m/dt* we get

d®m _d (dm> _d <dm> dv  dmd> _d’m <dv>2 dm d*v
T dt

a2~ dt \dt W)d wdE dr \dt) T d

14202/ (dv\? d%
= Mo [ v/ ( > +Ud_tz— (6)

2 (1—v2/c2)*? | 1—2?/c? dt

and d?(mwv)/dt? becomes:

d?(mv) 3mg (dv>2 me  d% "
(

= _— 4+ —_——
dt? 2(1- Uz/c2)5/2v dt 1—v2/c2)%/? dt?
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Since Ky, and v in Eq.(3) have the same direction we may use K, rather than
K.

v
dt (1- 1,2/02)1/2 2(1- vz/cz)2

dKm mo 3 v
dt

1 d 1
T—wjeae T2 ©®
This provides the extension of Egs.(2.1-8) and (2.2-6) to relativistically variable
masses. )

For nonrelativistic velocities we had shown by Eq.(2.1-6) that the contri-
bution of the proton to the induced current of a proton-electron dipole was very
small. This changes when the masses increase relativistically. Conservation of
momentum demands

MpVp = MeVe (9)

if the subscripts p and e denote proton and electron. With the rest masses
denoted mop and mg. we get

MopUp _ Moele
1/2 — 1/2
(1-v2/e2)Y (1 —v2/c2)Y

since the direction of v, and v, is always opposite. The velocity v, of the
proton is derived as a function of the velocity ve of the electron:

(10)

MoeVe
1/2
map [1 ~ (1 ~ m3, /md,)v2/c?]

For v, — ¢ we get v, — v.. In this case the proton contributes as much as the
electron to the dipole current.

The velocity v, of the electron must be very close to the velocity of light
before the proton contributes significantly to the current density. For instance,
a proton velocity v,/c = 0.01 requires an electron velocity ve/c = 0.99852,
which implies a ratio of the current densities ge/gp = ve/vp = 0.99852/0.01 =
99.85; hence, the proton contributes about 1% to the total current density
ge + gp. For vy/c = 0.1 we get ve/c = 0.9999853 and ge/g, = 0.9999853/0.1 =
9.999853, which means the proton contributes about 9% to the total current
density.

For the rotating dipole we start from Eq.(2.1-10) and substitute J = 2mR?
for the magnitude of the moment of inertia of the dumb-bell model of Fig.2.1-2:

(11)

Vp =

d?9

For the transition to the relativistic version of this equation we consider the
velocity Rdd/dt
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dy d*9 dv
R— = —v, RW =-= (13)
and rewrite Eq.(12):
_ dv d(mv) 2mg dv
Km = -2m dt — =2 at = - (1 _ v2/c2)3/2 at
2mgR d%y

- [1— R2(d9/dt)?/c?)3/? dt? (14)

The extensions of Ohm’s law derived in Sections 2.1 and 2.2 require a
further extension if the relativistic variation of the mass of the current carriers is
taken into account. We start with Eq.(2.1-12). The force mdv/dt in Newton’s
mechanic becomes d(mv)/dt in relativistic mechanic. The term £.v in Eq.(2.1-
12) represents somewhat of a problem. If we leave it as it is we get evidently
wrong results. Acceptable results are obtained if v is replaced by mv/my,
where m/mg is defined by Eq.(1). The product mv/myg is reduced to v for
small velocities v « ¢. We replace Eq.(2.1-12) by the following relativistic
equation:

d(mv) Eemv
e eE — p_ (15)
The term d(mv)/dt is defined by Eq.(2). Substitution of Eq.(2) into Eq.(15)
brings:
v2) 72 1 dv | &V
- = _— =cE 1
mo(l 02> (1—1)2/02 dt+m0) ¢ (16)

Since v and E have the same direction we may use their magnitudes and rewrite
Eq.(16) as follows:

_pya (LB, > 2B
¢! ﬂ2)12< 7@ )" B

B =v/c= Noev/Noec, Ye = TmpeEo/moc, Tmp = mo/&e
q=Tp/T7 pszp/T;n quTmp/T, 0=t/7’ (17)

We note that 3 represents either the normalized velocity v/c or the normal-
ized current density Noev/Ngec. For small values of 3 we obtain the normalized
form of Eq.(2.1-13) with m = mg:

d Y E d Noe?r,
_B IH rTmp%"'ge:UE, g=——"mp

, e = BNpec (18
7 E ge = BNoec (18)

mo
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F1G.2.3-1. Plots of the normalized electric monopole current density 3(6) for E/Eg =
S(8), pq = 1 and various values of 7e according to Eqs.(17) and (18). (a) Relativistic
plots using Eq.(17). (b) Nonrelativistic plots using Eq.(18).

Equation (18) yields for a step function E — EpS(6) and the initial condition
B(0) = 0 the solution

B(0) = pgve (1 - e“’/’"’) (19)

Plots of Eq.(19) are shown in Fig.2.3-1b for pg = 1 and various values of
the parameter ~y,. For large times # the plots approach Ye- On the other hand,
the amplitude of 3(6) according to the relativistic Eq.(17) shown in Fig.2.3-1a
never exceeds 1.

Let us turn to the relativistic correction of the extension of Ohm’s law to
electric dipole currents. For a fixed charge carrier density Ny in vacuum, a
monopole current can be increased only by an increased velocity of the charge
carriers. Dipole currents can be increased by either increasing the velocity of
the charge carriers or the number of dipoles. There is no conservation law that
prohibits an increase of dipoles. Only experimental work can decide whether
there is a relativistic limitation for electric dipole current densities. We start
from Egs.(2.1-18) and (15):

1
M+—m—‘i+—-/mvdt=eE (20)
dt Tmp T2

We differentiate with respect to t in order to eliminate the integral. Since E
and v have the same direction we can simplify the calculation by using the
magnitudes F and v:

?(mv) 1 dimy) 1 dE
dt? + Tmp dt + Tp2 mv=e dt 1)

The terms d(mwv)/dt and d2(mwv)/dt? were evaluated in Eqgs.(2) and (7). Equa-
tion (21) assumes the following form:
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Mo 3 v dv 2 1 d?v
(1_02/82)1/2 02(1_1,2/62)2 dt 1—v2/c2 dt?
1 1 dv 1 dE
My ‘""’] e )

Multiplication with 72/c brings Eq.(22) into the following normalized form

N B l@) 3 dp\*
(1 ﬂ)lz[l—ﬂQ(d92+qu0 +( g2)2ﬂ Tz ﬂ
"/eldE

which uses the definitions listed in Eq.{17).

The nonrelativistic limit of this equation is obtained for > — 0 and
B(dB/d8)* — 0. We observe that dB/df represents the acceleration of a charge
carrier:

@8 1d8 1, % 1dE _ o, dE
62 t e pq df 2ﬂ pq Eo df  Ngecpq df
This equation should be compared with Eq.(2.1-21) for excitation by a step
function E = EpS5(0).
For the numerical evaluation of Eqs.(23) and (24) we have the initial con-
ditions A4(6) = 0 for § = 0 since the current or current density should be zero
initially. For a second initial condition at # = 0 we rewrite Eq.(23) for 8 =0

(24)

P 1df v 1 dE

— et —— = ——— 25
do?  pqdb pqEy db (25)
and integrate:
dﬂ Ye 1
—E(6 26
B = M EO) (26)
For an electric step function excitation
1
E(6) = EEOS(B) (27)
we get
dﬁ(O) Ye
htad M/ L0 28
do pg? (28)

as the second initial condition since the term (/pg is zero due to the first
initial condition B(0) = 0. Hence, for a step function excitation we obtain from
Eqs.(23) and (24) the following equations and initial conditions:
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F1G.2.3-2. Plots of the normalized electric dipole current density 5(8) for p = 1/4,
¢ = 1, and various values of 7. according to Egs.(29) to (31). (a) Relativistic plots
using Eq.(29). (b) Nonrelativistic plots using Eq.(30).
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F1G.2.3-3. Plots of the normalized electric current density 8(6) for p = 2, ¢ = 1, and
various values of v, according to Eqs.(29) to (31). (a) Relativistic plots using Eq.(29).
(b) Nonrelativistic plots using Eq.(30).

1 d? 1dg 3 ap
1—ﬂ2<21_9_§+pqd9>+( )2ﬂ< >+ p=0 (29)
g 1dB

?1797+pqd0 2ﬁ 0 (30)

B(0) = 0, dB(0)/df = v./pq* (31)

Computer plots of 3(6) according to Eq.(30) are shown for p = 1/4, ¢ = 1,
and various values of 7, in Fig.2.3-2b. Corresponding plots for p = 2 are shown
in Fig.2.3-3b. As one would expect, the amplitude of the normalized current
density (0} varies proportionate to 7.

Equation (29) does not lend itself to an analytic solution but plots of 3(6)
can readily be obtained numerically. Figure 2.3-2a shows plots for p = 1/2,
g =1, and various values of 7., while Fig.2.3-3a shows corresponding plots for
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P = 2. A comparison with the nonrelativistic plots shows first of all that the
normalized current density #(€) does not vary proportionate to . and that it
does not exceed 1. We further note that the values of 6 for which 8(6) equals
zero are the same in the relativistic and the nonrelativistic cases of Fig.2.3-3.

We turn to the rotating magnetic dipole described by Eq.(2.2-10). In order
to obtain the relativistic form of the moment of inertia J we must specify in
more detail where the mass of the bar magnet of Fig.2.2-1a is located. We
assume the bar magnet can be represented by the dumb-bell shown in Fig.2.1-
2 with the masses m at the ends of a thin rod of length 2R, just as was assumed
in Fig.2.2-1b for the magnetic charges +¢m,. Introduction of J = 2mR? into
Eq.(2.2-10) yields:

d?9 dv
2mR2Et—2 + &R + MmoBsind =0 (32)

For the transition to the relativistic version of this equation we consider
the velocity v(t) of Eq.(13) and rewrite Eq.(32) as follows:

QmRz—: + &t = MpeBsind (33)

The term on the right represents the force due to the flux density B which is
imposed on the magnetic dipole. This force is independent of any relativistic
change of the mass of the dipole. Terms mdv/dt and £v were rewritten into
relativistic form in Eq.(15). In analogy, Eq.(33) is rewritten:

d(mv)  &m . .
——————— —_— = . 5 4
2R 7 + o (mv) = MpeBsind (34)

With m and d(mwv)/dt from Eqgs.(1) and (2) we obtain:

2Rmy dv ém

— = MmoBsind 35
(L o2/ dt + aQ —v2/c2)1/20 Mmo B sin (35)

We re-substitute for v and dv/dt from Eq.(13):

2R?%*my 92_19 N Ré¢n dd
[1— (R/c)2(d9/dt)2]*/* 48 [1— (R/c)2(dD/dt)2)"/? dt
= —mgesintd (36)

Using the notation § = t/7 and p = R/cT one can bring Eq.(36) into the
following form:
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b

F1G.2.3-4. The normalized velocities v(8)/c (a) and v,(8)/c (b) according to Eqs.(37),
(40), and (41) forp=1/4,9q=1,p=4,and 9(0) = ¥, = nr/8withn=1,2,...,7
in the interval 0 < # < 10.

F16.2.3-5. The normalized velocities v(8)/c (a) and v,(8)/c (b) according to Eqs.(37),
(40), and (41) forp=2,g=1,p=2,and 9(0) = Jn = nw/8 withn=1,2, ..., 7
in the interval 0 < 6 < 10.

—1/2
1 9 1dY 1
- —— —sin? =0
[1 2 } T_2(@0/doZ a2 + pq d@) tasn
t R R | 2myp _T V2MmemmeB  Tmp
9:—’p=——- q=—— p:———-—-——:-——
T TV mmeB T’ €m Tp
2Rm0 2m0 2m0R
=— =Ry ——, Tmp = — 37
& PR =, 7
For p?(d¥/df)? — 0 we obtain from Eq.(37) the nonrelativistic limit:
2
@y, 14 + ! 5 sind =0 (38)

@ " pqdd
The initial conditions for both Eqs.(37) and (38) are


file:///-s/C
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Fic.2.3-6. Plots of the normalized magnetic dipole current density vavy(6)/c =
Bavy(0) for ¢ = 1, p = 2, and p = 1/4, 1/2, 1, 2, 4 according to Egs.(41)—(43).
(a) Relativistic plots using Eq.(37). (b) Nonrelativistic plots using Eq.(38).

F16.2.3-7. Plots of the normalized magnetic dipole current density vav,,(8)/c =
Bavy(8) for g = 1, p = 4, and p = 1/4, 1/2, 1, 2, 4 according to Eqgs.(41)—(43).
(a) Relativistic plots using Eq.(37). (b) Nonrelativistic plots using Eq.(38).

9(0) = ndp = ¥, d9(0)/d6 =0 (39)

where 15 is the initial angle ¥ in Fig.2.2-1 before the flux density B is applied.
We still need the velocities v(8) and vy (6) of Eqs.(2.2-12) and (2.2-13) in
a rewritten form using the normalized distance p = R/ct:

v(6) R dd dd

c  cerdo 'db (40)
w(0)  do
It A yuidl 41
S P g sin ¥ (41)

The average velocity vay,y of magnetic dipoles with random initial orien-
tation is again obtained with Eq.(2.2-15):

N
5 . —=Y —M sind(9n,0) (42)

n=1 n=1

’l)av,y( ) —ﬂav,y( ) 1 Z vy(ﬂn,G)

2|‘°
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The notation vy (dn, ) and (9, 0) indicates that the initial angle ¥(0) = ¥ in
Eq.(39) has to be replaced by #(0) = (n — 1/2)w/N. The normalized magnetic
current density follows from Eq.(2.2-16):

8m _ 2NOvaav,y(6) Z _ 'Uav,y(e) X _ IB ( )
2Nogme 2Nogme Y ¢ oy

(43)

@ |

Equation (37) can readily be solved numerically and plots according to
Eqgs.(40)-(42) can be derived. Figure 2.3-4 shows v(6)/c and v,(8)/c for p =
1/4, ¢ = 1, p = 4 and various values of 9(0). The relativistic limitation v/c < 1
is readily recognizable in Fig.2.3-4a while the limitation vy/c < 1 in Fig.2.3-4b
is less conspicuous. Figure 2.3-5 shows the same plots but p = 1/4, p = 4
is replaced by p = 2, p = 2. Again, the relativistic limitation v/c < 1 is
conspicuous in Fig.2.3-5a.

Figure 2.3-6 shows the normalized magnetic current density B.v,(0) ac-
cording to Eq.(43) for ¢ = 1, p = 2, and various values of p. On the left are
relativistic plots derived from Eq.(37) while on the right are nonrelativistic plots
derived from Eq.(38). Figure 2.3-7 shows the same plots but p = 2 is replaced
by p = 4 to make the relativistic limitation B, ,(#) < 1 more conspicuous.

2.4 COVARIANCE OF THE MODIFIED MAXWELL EQUATIONS

We start with the continuity equation for an electric current density and
charge density defined by Eq.(1.6-8):

divge +

Pe _ o Ope
ot =V BT g

A four-vector current density ge with the components ge1 = e, He2 = Beys
fe3 = fez; fea = iCPe permits to write this equation in covariant form:

=0 1)

Ofev O0gev Ty _ _
ZBCL‘U —T Divg.=0:-g.=0

Ty=2, Tp =1y, T3 = 2, T4 = iCt (2)

A corresponding four-vector current density g, with the components gm; =

fmz> Bm2 = Omy, Om3 = Omz) Omd = ICPm permits to write Eq.(1.6-9) in covari-
ant form:

O08my
oz,

Equations (1.6-27) and (1.6-28) define a four-potential 2, with the components
A1 = Am1y Az = Amg, Ums = Ams, Ame = ide/c. These two equations may
be combined into one:

=Divgn=0-gn=0 (3)
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029 1 Z A
oz, 0z, = _;ge)\ or OA, = _'de
1 92
— 72

The extended Lorentz convention of Eq.(1.6-23) becomes:

Uy
oz,
From Eqgs.(1.6-26) and (1.6-29) we obtain the equivalent relations for the four-

potential A, with the components Ae1 = Aa1, Yoz = Aoz, ez = Aez, Aes =
idm/c

=0 or O-Ap=0 (5)

9 1 1
9z, 0z, = _ng)\ or OA, = _ng (6)
The extended Lorentz convention of Eq.(1.6-24) becomes:
82{‘9!/ - _
?9—;: =0 or O0-A =0 (7)

We rewrite Maxwell’s modified equations into four-vector form. This is
more readily done from the basic Egs.(1.6-1)—(1.6-4) than from the expressions
for E and H by means of potentials in Eqs.(1.6-11) and (1.6-17). First we write
Egs.(1.6-1) and (1.6-3) in component form:

curl H — 'Zl_caa_f = fmlel + fm2e2 + fmSe3 = Jex€1 + Jey©2 + Gez€3
0H, O0H, 1 0F,
fm1= B9 =5 " Ze ot " Jes =9e1
O0H, OH, 1 0E,
Tm2= 5y " on "o ot T

oH, ©0H, 1 OE,

fma = oz 8y Zc Ot

= ez = Ge3 (8)

OF, + OEy + OFE,
Oz Oy 0z

Next we introduce the electromagnetic field tensor Fy, with components fru.:

divE =

= ZCPe = —1ZGe4 (9)

fm14:—fm41=_EE:v7 fm24="fm42=_zEy, fm34=_fm43=_EEz

fmiz=—fm21=Bz, fm2s=—fm32=Bz, fma1=—fmiz=DBy
fm11 = fm22 = fm33 = fraa =0 (10)
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Written as a matrix Fy, has the following form:

Counsider the derivative 0 fmu, /02, of Fr. With = Z/c we get:

afmll +8fm12 8fm13 afml-’l
Oy Oza Oxs 01'4

_Z
c
6fm21+6.fm22+0fm23 Ofm24 Z( 5Hz 1 BEy)
c
_Z (98,
C

8Hz BH 1 0E; )
_I_

or, Orq Ozs 8rs Zc Ot
6fm31+6fm32+0fm33 0 fm34 z 1 8E, )

0z, Ozxq Ozx3 Oxy ay " Zc Ot
0 fma1 X O fmaz n 0 fmas 4 Ofmaa _ 1 8Ea: O, 3E )
ory Oxg Oz3 Ozy c \ Oz 8y Oz

(12)

A comparison of these equations with Egs.(8) and (9) shows that we may write
Eqs.(8) and (9) in covariant form:

afm/.w Z
—_— = — 1
8my c ge/—t ( 3)

The remaining two modified Maxwell equations are also written in the
component form of Eqs.(8) and (9):

Z 0H

—curlE - P = fma€1 + [m5€2 + fm6€3 = Imz€1 + Imy©2 + Im-€3
G (OB 9B, ZOH\_ - _
ma = By 92 ¢ ot ) Ime T Im

s = — 8E1_3EZ+§(9H1/ . _
ms = D2 B A —8t = 9my = Gm2

0E, OE, ZO0H,
m = — ——— _ = mz — m 14
Jme ((% oy + o ) g gms (14)
0H, ©H, O0H, ¢ )
divH P By 5 =~ 7" 7 Jmé (15)

Consider now the following sum of three derivatives of the tensor F,:
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6fm/.w 8fml//\ 6fm)\;.t . K,i
Oz), Oz, t 6w, (=1 o Jme

k=1,23,42=2,3, 41 p=3,41,2,v=4,1,2 3 (16)

We obtain with the help of Eqgs.(10) and (11) the following four equations:

o O3 Oy 9z ¢ ot =+ 9me
8fm4l+afm13 Ofmaa _ 1( =i
Ozs Oty Oz, c Or ¢ Ot ™
6fm12 8fm24 afm41 <_6_E___?E_£ g%) _ )
Ory o, Ba:z
Ofm Ofm Ofm 0H, O0H, OH, )
£w123+ £w231+ gﬂvf: _< oz T y+ 0z )=_Egm4=pm (an

afm34+6fm42 0fm23 ___z_( . OE, Z6H) i
c

aE _0E, Z8H>_i

A comparison with Eqgs.(14) and (15) shows that Eq.(16) is the covariant four-
vector equation of the modified Maxwell equations (14) and (15). The magnetic
charge py may or may not be zero. Equations (13) and (16) are equal to
the corresponding equations in the conventional theory of Maxwell’s equations
without magnetic current densities except for the term —(—1)*(4/¢)gmx instead
of 0 in Eq.(16).

Equations (10) and (11) favor the magnetic flux density B and the electric
field strength E. The introduction of a new field tensor F with the components
feur favors instead the electric flux density D and the magnetic field strength
H:

foaa=—fer1 = _EH:L', Je2a = —fesr = "EHyy fesa = —feaz = _Z.Hz

fei2=—~fen1 = =D, feas = —fes2 = —Dg, fe31 = —fe13 = —Dy
fe11 = fe22 = fess = foas =0 (18)

In matrix form we get for the tensor Fe:

0 -D, D, —%Hz
D, 0 -D, —iH,
F. = ¢ (19)
2
-p, D, 0 —-H,
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Let us consider the following relation of the derivatives dfeu, of the elec-
tromagnetic field tensor Fe with € = 1/Z¢:

6f8p,ll _ i

dr, ZcTmm
O0fe11 | Ofer12 afe13+0fel4__ 1 <_3__f§_ OE, +Z<9H >=_1_
oz, O, Ozxs Ozs Oy 0z ¢ Ot chmc
6fe21 6fe22 6fe23 6f924 _i BEZ 6E ZBH ) i
O + Ozo + Ors + Oy = 9z Oz te c Ot chmy

dr,  Ore = Ozrz | Oxg dxr Oy o ZcIme
Ofear | Ofeaz | Ofeas  Ofeas 1 3Hz OH, OH.\ i
Oz, + Oxo + Ozs + dzs ¢\ Oz + Oy 8z |

Ofest afe32+6fe33 Ofesa 1 <0E OF; Z6H) 1

P (20)

SRS
Nf e

We recognize Eq.(17) as well as Eqs.(14) and (15). In analogy to Eq.(16) we
write the following additional four-vector equation:

Bfe v Bfel//\ afe/\,u ni

81:},1\ + Oz, * oz, =D e
£=12,3 4 X2=2,3,4,1; u=3,4,1, 2, v=4,1, 2, 3,
Ofess | Oferz  Ofers _ 1 <8H _3_{1__i35 ) s
Oza Org Ox4 c Zc Ot c
afe41+afel3+6fe34= f<3H _3£___1_5E2> iy
Oz3  Oxzy Oz ¢ Zc Ot Y

drs = Oz, | Ozg "0y  Zc ot

Ofeas  Ofesr Ofeia 1 (0B, OE, OE,\ i
Oz, + Oz, + drs or + + 9z =gea= P (21)

afe12+8fe24+6fe41_ ( 2 OH, 1 Q&>=_i

Here we recognize Eq.(13) as well as Egs.(8) and (9). Hence, the tensor F, is
an alternate representation to the tensor Fy, of Maxwell’s modified equations.
The derivatives 0fman/02, = tmaus of the components of the tensor
F,, form a tensor of rank three. The same holds true for the derivatives
Oferu/0%, = texu, . Equations (17) and (21) may be written in the form

7 6fm/\/.1,

tm/\,uu + tm;u//\ + tmu/\p, = _(_1)N'gmm tm/\;w = —tmp)\u = (22)
c Oz,
) Ofex
te)\/.w + tep.u)\ + teu,\y = (_1)H'gem te/\yu = -teu)\v = fe = (23)
c Oz,
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Our next task is to write the Lorentz forces of Egs.(2.1-2) and (2.2-2) in

covariant notation. With the components ge1 = ez, ge2 = Jeys Je3 = Geuz,
Ged = iCpe Of 8¢ = pev and B = (Z/c)H we obtain from Eq.(2.1-2):

A
ky = 8 X H + p.E = k€1 + kmaez + knzes
)
km = ge2Bz - geBBy - Ege4Em
)
kmo = ge3Ba: = ge1 B, — EgezlEy

)
kns = gelBy - geZB:L' - Ege4Ez (24)

According to Eq.(11) we may write the components ky,; with the help of the
tensor F:

kml =0 + ge2fm12 + ge3fm13 + ge4fm14
kn2 = ge1fma1 +0 + ge3fm23  + GeaSm24
kn3 = ge1fm31  + ge2fmzz +0 + eafmaa (25)

Equation (11) suggests to produce a four-vector by adding a component ky4:

kma = —(ge1fma1 + ge2fma2 + Ge3fmaz + 0) (26)

¢
¢
Using the relation ge, = (¢/2)0 fmuv/0z, from Eq.(13) we may write Eqgs.(25)
and (26) in the following form (Note that a double sum over v =1, 2, 3, 4 and
A =1, 2, 3,4 is required):

6fmu)\
61:)\

C
kmp, = Efm;w (27)

One may rewrite Eq.(27) some more by means of a new symmetric tensor T},

c 1
T;w = ‘Z‘ (fmu)\fm)\u + Z‘Suufm/\Lfm/\L>

bpp=1 forp=v
=0 forps#v (28)

This tensor is called energy-momentum tensor. Since it is the same tensor as
used in the conventional theory we will not discuss it in any detail. Here it is
sufficient to mention that it can be written in the form



2.4 COVARIANCE OF THE MODIFIED MAXWELL EQUATIONS 59

T:m: Ta:y Ta:z —E(E X H)a:
)
Tyz Tyy Tyz _E(E x H)y
T;u/ = i (29)
sz sz Tzz _E(E X H)z
7 1 i 1 E?
—- — —- — (= + ZH?
C(ExH)x c(ExH)y c(ExH)z 2c( 7+ )

The space part Ty, to Ty, is equal to the Maxwell tensor that represents the
flow of momentum. The time part (E?/Z 4+ ZH?)/2c represents the energy
density and the space-time part the energy flow. Equation (27) may be written
in terms of T,

a7,
kmp = _ax‘:"

Everything in Egs.(21) to (30) is equal to the conventional theory of
Maxwell’s equations without magnetic (dipole) currents. We shall need the
Maxwell tensor with its components Ty, to T,,, written here with the help of
D = (1/Zc)E and B = (Z/c)H to make it simple, but the replacement of D
and B by E/Zc and ZH/c is often advantageous:

(30)

1

~

1
yy = 5(_D2Ez + DyEy -D,E,— B H; + ByHy — BZHZ)

1
T,, = 5(“‘D17E3; - DyEy+D,E, ~ B,H; — B,H, + B,H,)
Ty = Ty = Do Ey + B, H,
Tpr = zz — Da:Ez + Ba:Hz
Ty, = Ty = DyE, + B,H, (31)

Let us turn to Eq.(2.2-2) and write it in the form of Eq.(24) with the
components gm1, gm2, Im3, Yms = iCPm Of Em = pmv and with D = (1/Zc)E:

1
k. = 7 Bm X E+ pmH = kere1 + kegea + kezes
)
key = —GmaD: + gm3Dy - Egm4Hx
i
ke2 = _gm3Dm + gmlDz - "c'gm4Hy

%
ke3 = —gmlDy + JmeDy ~ ng4Hz (32)
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We use Eq.(19) to write the components k; in terms of the tensor Fg:

kep =0 + gmafe12  +9mafers + gmafers
kea = gmi1fe21 +0 + Ggmafe2z 4 Gmafers
kes = gmifes1 +gmafesz +0 + gmafe3a (33)

A four-vector is produced by adding a component ko4 according to Eq.(26):

]
kes = —(gm1 fear + gmaSeaz + gm3foas +0) (34)

Using the relation gmy, = Zc0fe../0z, from Eq.(20) we may combine Egs.(32)
and (34) as follows, with a double sum over v and A:

afelu\
(9.’13)\

kep = Zcfepw (35)

In analogy to Eq.(28) we may rewrite k., by means of a symmetric tensor
Tuv:

1
Tp.u =Zc (fey./\fe)\v + Z(spufeALfeAL) (36)

This tensor is equal to the tensor T}, of Eq.(29) except that the terms T}, to
T,. have to be replaced by %, to T,,:

(3

Tzz ‘Izy Ta:z - E (E X H)z
i
Tyz Tyy Tyz “;(E x H)y
Ty = p (37)
Tz:r: sz Izz - Z (E X H)Z

i ) 1 1 E? 9
‘E(EXH)z —'C'(EXH)y _Z(EXH)z '2‘5(—Z"+ZH)

Equation (35) may be rewritten with T,,:

o
hew = 5 (38)
The calculation of the tensor components T, to T, is straightforward
but lengthy!. We outline the process by writing Ti, of Eq.(31) with D and H
replaced by E/Zc and ZH/c:

1The derivation of the tensor of Eq.(29) is shown in Becker (1964a), § 83. The tensor
of Eq.(36) is obtained with the substitutions H — —D, E — H/c , and a change from the
Gaussian system to the International System.
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Tm=2i %(Eﬁ—Ef,—Ef)+Z(H§—H§—-Hf) (39)
C

Equation (28) requires the multiplication of Ty, with Z/c. Then we compare
Egs.(11) and (19), and make the substitutions

B —-D o H—-E/Z? and E — H (40)
to obtain %5, /Zc according to Eq.(36):

Iz Z 11 2 g2y, L (g2 g2 pe

ch__‘@ E(Haz:—'Hy‘Hz)_‘_‘ZE(Ez_Ey—EZ) (41)
Multiplication with Zc finally yields T, which is equal to Ty, of Eq.(39).
Generally we get:

Tuw =T (42)

2.5 ENERGY AND MOMENTUM WITH DIPOLE CURRENT CORRECTION

We return to Section 1.6 which derived the potential form of the modified
Maxwell equations. We had derived Eqs.(1.6-26)—(1.6-29) for the extended
Lorentz convention of Egs.(1.6-23) and (1.6-24) from Eqs.(1.6-18)-(1.6-21).
The particular solutions of Eqgs.(1.6-30)-(1.6-33) had been obtained for the
potentials A, A, ¢, and ¢,,. We note once more that ¢, is zero if there are
no magnetic monopoles but A, requires only the existence of magnetic dipoles,
which is not disputed. General solutions of the potentials are obtained if one
adds general solutions of the homogeneous equations

OA. =0, DAp=0, O¢e=0, Dom=0 (1)

to the particular solutions and observes the extended Lorentz convention of
Eqgs.(1.6-23) and (1.6-24). This yields the following generalizations of the po-
tentials:

A, - A, —gradx. (2)
Ap — AL —grad xm (3)

$e — Pe + dxm/di (4)
B — Pm +dxe/dt (5)

These generalizations of the potentials leave the field strengths H of Eq.(1.6-11)
and E of Eq.(1.6-17) unchanged. The various choices of potentials for fixed field
strengths are called gauges. The class of gauges satisfying the extended Lorentz
convention of Egs.(1.6-23) and (1.6-24) is called the extended Lorentz gauge. It
has the two independent functions x. and xm, while in the conventional theory
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we have only the one function x. There are two functions x. and xm whether
or not magnetic monopoles exist.

Besides the extended Lorentz gauge we introduce the extended Coulomb
gauge by the definitions

divA,, =0 (6)
divA, =0 (7)

Substitution into Egs.(1.6-18)-(1.6-21) yields the field equations

1 0¢m 1
OA. - = grad — = 5 = T 7.Em (8)
1 Ode _ Z
DAm - 62 grad ot - c 8e (9)
Vige = —Zcpe (10)
2 I e —
Vipm = me (11)

It is usual to state that the electromagnetic field in free space without cur-
rent or charge densities is represented by Eqs.(1.6-26)—(1.6-29) or Eqs.(8)—(11)
with gm = 8¢ = pe = pm = 0. We must be cautious with such choices. One
may state that in the absence of electric and magnetic charges at the beginning
one may choose pe = pp, = 0 since the conservation law of charges prohibits the
generation of charges from nothing. This reasoning does not apply to the cur-
rent densities g, and g, since they do not have to represent monopole current
deunsities that require charges. Dipole and higher order multipole currents do
not require net charges and they are thus not precluded by the conservation law
of charge. If we accept the principle of vacuum polarization we must accept the
creation of dipoles which in turn produces dipole current densities ge and gn,.
The different role of charges and dipole currents is shown by Eqs.(1.2-9) and
(1.2-10). If we choose there s = 0 or ¢ = 0 we eliminate the current densities
Em Or g, according to Eqs.(1.1-14) and (1.1-15). But the choice p, = pm =01in
Eq.(1.1-10) and (1.1-11) has no effect on Eqgs.(1.2-9) and (1.2-10). The choice
of either s = 0 or ¢ = 0 in Eqgs.(1.2-9) and (1.2-10) eliminates the term so £ in
Eq.(1.3-1) and the resulting equation does not yield solutions that satisfy the
causality law. Hence, the transition g, — 0 and g, — 0 in Egs.(8) and (9) can
be made only at the end of the calculation.

The energy U of the electric and the magnetic field strength in a certain
volume is given by the integral over the energy density u in that volume; dV
denotes the three-dimensional volume element?:

Sl () oo

1The analysis follows closely Chapter I, § 1 of the renowned book by Heitler (1954) in
order to facilitate comparison.
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The product momentum X ¢ will be referred to as usual as momentum.
The momentum of the field defined in this way in a certain volume equals

G=///ng=%///EdeV (13)

From Egs.(2.1-2) and (2.1-3) as well as (2.2-2) and (2.2-3) we obtain the
forces acting on electric and magnetic charges in a certain volume:

om [[[wwar= [[[n(5+Zoxm)ar
= [[f et [[[m (8- LvxB)av

Since K, and K, equal the force of inertia of electric and magnetic monopoles
they must also equal the change of mechanical momentum of the electric and
magnetic monopoles per unit time:

ldu
K,+K.= P (16)

If there are no electric or magnetic charges but induced electric dipoles
and inherent magnetic dipoles one must use Egs.(2.1-8) and (2.2-6) for K,
and K. For a mixture of electric monopoles and dipoles one must use the sum
of Egs.(2.1-3) and (2.1-8) using my, vy or my, vo for m and v.

The change of the kinetic energy T3, and T, of electric and magnetic

monopoles is defined by
dly,

%:// ke -vdV (18)

where ky, represents the density of force defined by Eq.(2.1-2) and k. the one
defined by Eq.(2.2-2).

Consider first Eq.(17). With the help of Eqs.(2.1-1) and (1.6-1) we may
write

e [ [ (o2
:///E <curlH— —Zl—c%> av  (19)

With the relation
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E? .\ 1. dE dH
2dt<Z ZH) B ot ZH — (20)
and Eq.(1.6-2) we obtain
1 _dE _1d (E* Z_,
ZcE Eoo@ <Z+ —H ) +H-curlE+ H- g, (21)

Equation (19) can be rewritten with the help of Eq.(12):

_m___+// (E-curlH - H - curlE)dV — // H gndV (22

For dT. /dt of Eq.(18) we obtain with the help of Eq.(2.2-2) the following
relation in analogy to Eq.(19):

e f[f v [ (- o)
—///H <curlE+%%> v (23)

We may rewrite H - dH/dt with the help of Eqgs.(20) and (1.6-1):

A dH 1d (E? Z _,
_HE“53<—ZZ —H)—E-curlH+E-ge (24)

c
Equation (23) can be rewritten with the help of Eq.(12):

d;;e = _(fi_(t]_‘_// (E-curlH—H-CurlE)dV—///E'gedv (25)

Using the relations

dv(ExH)=E -curlH-H:curlE (26)
/ div(E x H)dV = ~ f (E x H), - dF 27)

where n denotes the component of E x H normal to the surface of the volume,
we obtain from Eqs.(22) and (25):

wz_}{(ExH)n-dF—// H-gndV (28)

dT. +U) +U) f(EXH .dF — ///E g dV (29)
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The sum of these two equations yields:

Lo (% fffrn) 5 (% fffn)

-f(E < H), -dF  (30)

With the help of Eqgs.(14) and (17) we get

// E-gedV=///Epe~vdV=///km-vdV=% (31)

while Eqgs.(15) and (18) yield

// H-gde=// Hpm-vde// ke-vdV=d;;e (32)

and Eq.(30) assumes the final form:

M%J’—T) }[ (E x H), - dF (33)

The right side of this equation represents the electromagnetic power flow-
ing through the surface of a certain volume. The left side represents the change
with time of the electromagnetic energy U as well as the kinetic energy 17, and
Te of the electric and magnetic monopoles in the volume.

Let us turn to Eq.(16). If we have electric and magnetic monopoles we
obtain with the help of Egs.(2.1-1), (2.2-1), and (1.6-1)-(1.6-4):

ldu Z 1dE
P /// <——Ed1vE——H><curlH i H> av

_ 1 dH
+/// (;Hde—%ExcurlE+ i XE) v (34)

The first line in Eq.(34) is conventional, the second line shows the contribution
of magnetic monopoles. With the help of the relation

d
(E H)—d—E H+Ex dI;I (35)
as well as Eqs.(1.6-1) and (1.6-2) we may write
dE d 1
ar = £ — 3
= xH= dt(EXH)+ ZcEx (curl E + gr) (36)
dH

d
— B = a(ExH)—ZcHx(curlH—ge) (37)
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Using Eq.(13) we obtain the following form of Eq.(34):
du dG 1. 1
il e /// (——Z—EdlvE+ ZH x curl H + fE X curlE) dv

dt
Z gm

- fi-d% —-/// <—ZHdivH+ZH X curl H + %E X curlE> dV

+Z///ngedV (38)

The first line of this equation is equal to that of the conventional theory. The
third line is due to the contribution of the magnetic monopoles. The second
and the fourth line contain extra terms for lines one and two.

From Egs.(14) and (15) we get with the substitutions g, = p.v and g, =

L[ ®xgmiv e [[[ cav - [[] puttav
=cKe—-Z///HdideV (39)
Z///ngedV=—c///kde+c///peEdV

=—cKm+%///EdivEdV (40)

Using Eq.(16) we may now rewrite Eq.(38) in a shorter form:

fi

dlu+G)
dt

/// (%EdivE-}— ZHdivH — ZH X curlH — %E X curlE) v (41)

In order to show the physical meaning of Eq.(41) we introduce the Maxwell
tensor discussed in Section 2.4:

Tix sz T:.
T=|Tye Tyy Ty

Tza: sz Tzz
101 1
Tro = o | 5 (+BZ — By — BZ) + Z(+H; — H - H})
1 '1 1
Ty = | B+ B = B) 4 2(-H2 4 H} — 1Y)
111 ]
T, = % Z(_Eg - Eg +E§) + Z(_Haz: - Hg +Hz2)
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1/1
Toy=Tye = ¢ <§ExEy + ZHmHy>
sz = Tzz = 1 (lEa:Ez + ZHsz)
c\Z
1/1
Ty, =T,y = p <7EyEz + ZHsz> (42)

For the z-component of the tensor divergence DivT we get:

0Ty + 0Ty + oT,,
oz Ay 0z

1 0E, _ OE, _ OE,
(2220

Div, T =

¢ ox or
9H, oH, OH,
+Z<H$ Oz ~Hy oz - H. 8:1:)
aE oH, OH,
*z < > + ( "oy vy )
1 aE OH, OH,
2( )*Z(HW%—&)]
- l[—E divE + ZH, divH
cl|lZ

—Z(H x curl H),, — —1Z-(E x curl E), (43)

This is the z-component of the kernel on the right side of Eq.(41) multiplied
by 1/¢. Applying Gauss’ formula to Eq.(43)

/ Divy TdV = }{ Typn dF (44)

we may write the z-component of Eq.(41) in the following form:

d(uf + ) f Ty, dF (45)

The right side of this equation represents the z-component of the momen-
tum flowing through the surface of a certain volume into that volume. The left
side represents the change with time of the z-components of the mechanical
momentum u and the momentum G of the electromagnetic field.

We note that divH = 0 according to Eq.(1.6-4) will remove the term
ZHdivH from Eq.(41) and the term ZH,divH from Eq.(43). Hence, the
conservation of momentum applies both for divH = 0 and divH # 0. The
same independence from divH holds true for Eq.(33); since divH was not
used for its derivation it makes no difference whether it is zero or not.



3 Hamiltonian Formalism

3.1 UNDEFINED POTENTIALS AND DIVERGENT INTEGRALS

If we choose A, = 0 and ¢, = 0 in Eqs.(1.6-17) and (1.6-11) we obtain
the field strengths E and H from the potentials A, and ¢, for the original
Maxwell equations as previously shown by Eq.(1.6-35):

OA

E= ~ 5 " grad e (1)
H= %curl An (2)

We are going to show that A, is generally not determined or is represented
by a divergent integral. One will suspect that this is a sufficient cause for at
least some of the divergencies that plague quantum field theory and that are
sidestepped currently by means of renormalization!.

Let the electric field strength E of Eq.(1) be linearly polarized and point in
the direction 2z as shown in Fig.3.1-1. The magnetic field strength H of Eq.(2)
shall point in the direction of z:

E= EE(C: 0)ez = Ege, (3)
H = Hg((,0)es = Hpeq )

Equations (1) and (2) are rewritten in component form:

a’g‘t“” + 8;:: =0 (5)
Do 1 e~ (6)
ohes 2,
< (flg;; - 3%) - Hp (8)

1The results of this section were first mentioned on pages 2 and 6 of Harmuth and Lukin

(2000).

68
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H
X

F1G.3.1-1. Orientation of the field strengths E and H of Egs.(3) and (4)

¢ (0Amz OAm.\ _
Z < 8z oz > =0 ©
¢ (OAmy OAmz\
A ( oz Oy ) =0 (10)

Since E and H in Fig.3.1-1 represent a planar wave propagating in the direction
y all derivatives with respect to z or z are zero:

0%e _ 0% _ OAms _ OAmy _ OAmy _ OAms

E)z_az_az:amzaz:amzo (11)
Using the normalized notation of Eq.(1.3-7)
2¢ 2 2 [e 2
t—;—ﬁ—-%—ﬁ, y=- ;C—%C (12)
we obtain:
Aums _
= =0 (13)
Zo (9Amy 6¢e
=z = 14
) (C 56 T ac) 0 (14)
Zco 0Am,
R 0 (15)
co 0Am.
co 0An,
2 8¢ (an

We see from Egs.(13) and (17) that Ang is independent of ¢ and 8, which
means it is a constant. Furthermore, Eqs.(14)-(16) yield:

An

¢e=—c aagydc (18)
2

Ams = o= [ Ba(¢, 0000 (19)

Amz = E‘/HE(Cae)dC (20)

cao
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In Eq.(18) we may choose any value we want for A, and get a defined value
of ¢.. This freedom to choose reflects the fact that a variety of gauges for
A, yield the same field strengths E and H. In Eq.(19) we may substitute
for Eg(¢,6) the function E(EK) of Eq.(1.3-17) and obtain a defined result for
An: according to the plots of EI(EK) in Figs.1.3-1 and 1.3-3. But for Hg((,6)
in Eq.(20) we must substitute Hg((,8) of Eq.(6.2-51). This equation contains
a divergent integral and leaves the magnetic field strength Hg((,6) undefined.
Hence, Eqgs.(19) and (20) contradict each other and Egs.(1) and (2) must be
wrong.

The divergence of Eq.(6.2-51) is discussed in detail in Section 6.2. It is due to
the first integral of Eq.(6.2-51), which may be written for values of the variable 7

close to zero in the form
€ cosn¢ 1
/ ;7 dn~ —
0 7 n

€

, €X1
0

which shows the type of divergence.

This result holds so far only for excitation by an electric step function
according to Eq.(1.3-14) or an electric current density with the same time vari-
ation according to Eq.(1.6-5). However, the result derived for a step function
has been generalized in Section 1.4 in connection with Fig.1.4-2 and this gener-
alization applies here too. Using series expansions in terms of time-shifted step
functions we can obtain the electric and magnetic field strengths for electric
excitation functions with any time variation that is of physical interest. It is
possible that there are cases where Eqs.(19) and (20) do not contradict each
other, but this must be shown rather than taken for granted. Of course, when-
ever the effect of magnetic dipole currents cannot be neglected one must use
Eq.(1.1-9) with g, # 0 and Eqgs.(1), (2) are replaced by Egs.(21), (22) below
regardless of the relation between current densities g, g, and field strengths
E, H.

It has been known at least since Weisskopf and Wigner (1930a, b) that
the quantization of the electromagnetic fleld based on Eqgs.(1) and (2) leads to
divergent integrals but it was generally believed that the problem was caused
by the quantization process rather than by Maxwell’s equations®. We shall
discuss this point in more detail from Section 3.4 on.

To see how the same calculation works with the potentials of the modified
Maxwell equations we start with Eqs.(1.6-17) and (1.6-11):

0A

E=—Zccurl A, — a—tm — grad ¢ (21)
c 0A

= — _ c _g m 22

H 7 curl Ay, o grad ¢ (22)

2Weisskopf and Wigner (1930a) start on p. 59 with our Egs.(1) and (2) for ¢e = 0 and
arrive at an integral denoted (17) by them. In a footnote on p. 64 they point out that the
integral diverges unless one limits the integration interval. But a skillful choice of the limits
produces the desired result.
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The equations are rewritten in component form using again the field strengths
E and H of Eqs.(3) and (4):

0Ac;  0Aey\  0Ams 6¢e _
‘ZC< b2 ) ot (23)
6Aea: _ 04 O0Any
~ge (Lo U} _ % =0 (24)
-7 ( aAeW) aAmz — 6¢e = EE (25)
Oy
C aAmy aAe:c a¢m o
z ( ) ot = 2
C 3Amm 0Amz aAe'y 6¢m
c = 27
VA < oz ) ot 0 @0
C aAmy aAmm 8A82 a¢m _
E(ax - 6y>_ ot 9z =0 (28)

The conditions of Eq.(11) for a planar wave propagating in the direction y are
augmented for ¢, and A,:

Obm  Obm 0wy 0Ay 0Ay  0A.,

dr =02 - 0z ox 0z 0w 0 (29)
Using the normalized variables of Eq.(12) we get:
Zaggz + a‘;;“ ~0 (30)
cag;'y + %L? =0 (31)
(2% - %) = i) (32)
« ("’gg'z - ‘934;1) = Hz((,0) (33)
86 oL+ %‘“ =0 (34)
—6-3—’(“’- + Z%‘;ﬁ =0 (35)

Equations (31) and (34) yield ¢ and ¢y, as functions of Apy or Aey:

O0An
de=c [ g (36)

¢m = —c 6Aey

d¢ (37)
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From Eqs.(30) and (35) one gets

1 [0Ame,, 1 [OAmg
Ae==7 | 3¢ %="73 a¢ a6 (38)
or
Dhez ) _ DAes
Am—~Z/ e =2 [ et (39)

Differentiation of Eq.(32) with respect to § and of Eq.(33) with respect to ¢
yields the one-dimensional, inhomogeneous wave equation for A,

2Amz 2Amz
8 B 2 (aEE ZBHE) (40)

52~ 862 Zeo \ 90 T2TaC

and the values of A., as function of Ay, :

1 [ (0Am: 2 1 [ [0Am 2
te=g [ (G pmtn)ac= [ (H2-2me) a0 @)

Instead of Eqs.(40) and (41) one may also derive the following relations
from Eqs.(32) and (33):

0%Aey %Ay 2 (IBEE BHE> @)

52 002 Zeo \Z oc | o0

O0Aex cO _ O0Acs i
Amz=Z/( B¢ +—5—EE>d0—Z/< 50 +ZCO'HE)dC (43)

Equations (40) and (42) are inhomogeneous wave equations with one spa-
tial variable. Their solution is known?:

L amnce) oHg(C9)
Am:(C,0) =—%/ / an,’ +2Z EBC,’ >d(’]d0’ (44)
o Le-(o-o)
P (¢,8)  BHg(C,8)
Aez(c,9)=—%/ / (E EaC" + E@O’, )d(']d&' (45)
o Lee(o-o)

The notation Eg(¢’,8') and Hg(¢',8) means that the variables ¢ and
of Eg in Eqs.(6.1-39), (6.4-29), (1.5-2) and for Hg in Egs.(6.2-41), (6.5-15),
(1.5-4) are replaced by ¢’ and ¢'.

3Smirnov 1961, vol.II, Cha. VII, §1, Sec. 174, Eq. 95
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F1G.3.1-2. Plot of Zeo Am:(¢,8)/E1 according to Eq.(46) for w = 0.01 in the interval
0<{<5 0<6<10

F1G.3.1-3. Plot of Zco Am:(¢,8)/E1 according to Eq.(46) for w = 0.1 in the interval
0<({<50<8<10.

F1G.3.1-4. Plot of ZcoAm.(¢,9)/E1 according to Eq.(46) for w = 0.99 in the interval
0<({<50<8<10.
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F1G.3.1-5. Plot of ZcoAm.({,8)/E1 according to Eq.(46) for w = 0.01 in the interval
0<(<2,0<8<25.

F1G.3.1-6. Plot of ZcoAm.(¢,8)/E: according to Eq.(46) for w = 0.1 in the interval
0<(<20<f<25.

F1G.3.1-7. Plot of Zco Am:(¢,8)/E1 according to Eq.(46) for w = 0.99 in the interval
0<(<2,0<8<25.
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F1G.3.1-8. Plot of Z%co A (¢, 8)/E1 according to Eq.(47) for w = 0.05 in the interval
0<¢<5 0<b<10.

FiG.3.1-9. Plot of Z%coAe:((,8)/E: according to Eq.(47) for w = 0.1 in the interval
0<(<50<8 <10

F1G.3.1-10. Plot of Z%¢co A (¢, )/ E1 according to Eq.(47) for w = 0.99 in the interval
0<¢<50<8<10.
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F1G.3.1-11. Plot of Z%co A.(¢,8)/E1 according to Eq.(47) for w = 0.05 in the interval
0<(<2,0<6<25.

FI1G.3.1-12. Plot of Z%co Ae. (¢, 0)/E1 according to Eq.(47) for w = 0.1 in the interval
0<(<20<6<25.

F1G.3.1-13. Plot of Z2c0 Aez (¢, 8)/ E1 according to Eq.(47) for w = 0.99 in the interval
0<¢<20<8<25,
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We may now recognize why the electric field strength of Figs.1.3-1 and 1.4-
1 as well as the associated magnetic field strength of Figs.1.4-4 and 1.4-6 were
not satisfactory. The steps or jumps at 8 = ¢ yield undefined derivatives which
create a problem in Egs.(44) and (45). The field strength due to exponential
ramp function excitation in Figs.1.5-1 to 1.5-4 have defined derivatives 0Eg /86,
OFg/d¢ and 0Hg /06, 0Hg/0¢ for all values of ¢ and @ in the interval 0 < ¢ <
00, 0 € 6 < 0. These fleld strengths can be substituted into Eqs.(44) and
(45). The evaluation offers not particular mathematical difficulties but it is
very laborious. For this reason it is carried out in Sections 6.6 and 6.7.

The two integrations of Eq.(44) can be done analytically and the normal-
ized component Ap,,(¢,8) of the potential A, can be brought into the form of
Eq.(6.6-27):

Zco e2%¢ /1 — ch2wb w? 2
hhady} 9 = —2(1+w®)8
El mz(Ca ) < w (1+w2)2 _w26
(14 w?)sh 2wl — wch2w0>
(1+w?)? —w?
16(1+w2)

y sindn )
/ T (L21sin(n — Laa cos¢n)dn
0

o
sin @
/ 2+Z % (Las sin¢n — L2SCOSCTI)d77J

—w?

wi=[1-w?? =2 wy= [P - (1= ?]Y?, WP =esfuo (46)
The functions Ly; = L21(¢,8), L2 , Los, and Log are defined by Egs.(6.6-15),
(6.6-16), (6.6-19), and (6.6-20).

Equation (45) for the component Ae.((,0) of the potential A, can be
brought into the form of Eq.(6.7-18):

Z%o
£

1

1
Aew ,9 = - _2(‘)( —_ —_ —_——
©.6) ¢ {w(l ch20) + (14 w?)? - w?

x [[(1 +w?)? + w)(e"20+9N8 _ (h20) + (1 + w?)(1 +w)sh 2w9] }

2

1—w
8(1 + 2 2__1 4 2 2
+ ( w){/ cos(n [(n + w +w1L21—27L23>sin0n

™ n? + 4w? w1
2 4. 2 2
n? — 14wt + u? 2w ) ]

(= T — 2 Loy ) costnld

( —_ 22 1 24 nyaen
o0
cos(n 7%~ 1+ w? — w2 2w? ,

+ Los — 2= 9

/ n? + 4u? [ ( nwy e

1—w?
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Wy = [(1 —w?)? “772)1/2, W = [772 - —w2)2]1/2, w? = es/uc (47)

The function Lg; to Lag are defined by Eqgs.(6.6-15)—(6.6-22).

We still have to show that Egs.(46) and (47) are actual solutions rather
than formal solutions. This can be done most convincingly by producing plots.
Figures 3.1-2 to 3.1-4 show three-dimensional plots of Zco A,,,(¢,0)/ E; accord-
ing to Eq.(46) for w = /s€¢/ou = 0.01, 0.1, and 0.99 in the interval 0 < ¢ < 5,
0 £ 8 £ 10. We note that the peak amplitude in Fig.3.1-3 is smaller than the
peak amplitudes in either Fig.3.1-2 or 3.1-4. Figures 3.1-5 to 3.1-7 show the
same function with the same values of w but in the smaller interval 0 < ¢ < 2,
0 < 6 <€ 2.5. Again the peak amplitude in Fig.3.1-6 is smaller than in Figs.3.1-5
or 3.1-7.

Figures 3.1-8 to 3.10 show Z2¢co A, ((,0)/E; according to Eq.(47) for w =
0.05, 0.1, and 0.99. The value of w in Fig.3.1-8 was increased from 0.01 to 0.05
since the function varies rapidly for small values of w. Figures 3.1-11 to 3.1-13
show again Z2co Aex (¢, 6) for w = 0.05, 0.1, and 0.99 but in the smaller interval
0<¢<2,0<60<25.

The derived results apply to the field strengths of Eqs.(3) and (4) excited
by the exponential ramp function of Eq.(1.5-1) only. However, the purpose
of this section is strictly to give a convincing example that Eqgs.(21) and (22)
rather than Eqgs.(1) and (2) should be used. There is no need to demonstrate
the general proof of Section 1.4 with more examples, particularly since we have
the independent and different proof of Hillion mentioned in the third paragraph
from the end of Section 1.4.

The smoothness of the plots of Figs.3.1-2 to 3.1-7, 3.1-9, 3.1-10, and 3.1-13
implies that the derivatives of the potentials with respect to ¢ and 6 exist and
that the field strengths according to Eqs.(32) and (33) can indeed be derived
from the potentials. Figures 3.1-8, 3.1-11, and 3.1-12 are not smooth due to
the rounding errors of the computation for small values of w, ¢, and 6.

3.2 CHARGED PARTICLE IN AN ELECTROMAGNETIC FIELD

We start with the Lorentz equation (2.1-3) and use the force of inertia
d(mv)/dt rather than mdv/dt as in Eq.(2.1-4):

%(mv) =e¢E + %Ev xH (1)

The field strengths E and H are written in the potential form of Eqs.(1.6-17)
and (1.6-11):

E = —ZccurlA, — Qgt—m — grad ¢ (2)
A,
H = — curl A, - OA. _ grad ¢, 3)

Z ot
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Substitution of E and H into Eq.(1) yields:

d 8AnL
Ei(mv) = e(—~ grad ¢, — 5t +v Xxcurl Ap)

- %g(v x grad ¢, + v X %“? +c2curlA,) (4)

The first line is the conventional equation of motion of an electrically charged
particle in an EM field. The second line contains additional terms due to
magnetic currents (A.) and hypothetical magnetic charges (¢m).

We follow the usual course in rewriting Eq.(4) with the help of a Lagrange
function L, spatial variables z; = z1, g, 23 = z, y, 2z and velocity variables
Oz;/0t = &;. The Lagrange function must satisfy the Euler equations

d [ OL oL .
_<0_o'3j>=—5;;’ =123, z1=2, 2=y, Tz =2 (5)

which derive the equation of motion from the principle of least action by Mau-
pertuis and Hamilton.

In order to get the terms A, /8t and v x 8A./0t in Eq.(4) to the left
side we write:

dA, 0OA, 0A, 0A 0A,

P T e M L P ©)
d dv
VXA = &
ov O0A. 0 1s] .0
_EXA6+VX 5 +( 6m+y6y+z5;>(VXAe) (7

Substitution of dA,,/8t and v x 8A. /0t into Eq.(4) brings:

——(mv +eAn) + g-——(v x Ae)

. OA, ., OA,. OAn..
—e(—grad¢e+ o T+ By 7+ P z+vxcurlAm>
Ze _ ov .0 .0 .0
+T|:—ngrad¢m+‘5?XAe+<l‘a—x+ya—y+Zaz-)(VXAe)

—c2curl Ae] (8)

We break Eq.(8) into two equations. The first is the same as obtained
from the classical Maxwell equations, the second contains the terms due to the
modification of Maxwell’s equations:



80 3 HAMILTONIAN FORMALISM

d
Ei(mv +eAp) = e( — grad ¢,

OAn . O0An . 0A,,
+ e T+ By ¥+ 5% z+vxcur1Am> (9)
Ze d Ze ov
?E(VXAe)—-C—[—VXgI‘ad(ﬁm-F-a—tXAe

+< 9 +yaay+za>(va)—c curlA] (10)

Writing grad ¢, and v x curl Ay, in component form in a Cartesian coordinate
system yields the following well-known z-component of Eq.(9):

d (ma;+eAmm) —eaa (—
The y- and z—components follow with the substitutions z — y — z — =z.
These substitutions leave the term in parenthesis on the right side of Eq.(11)
unchanged.

The Lagrange function Ly for Eq.(11) is found in many textbooks; the
subscript M refers to ‘Maxwell’:

Pe +Ammx+Amyy+AmzZ) (11)

1 . , .
Ly = §m(x2 + :l)2 + 22) + e(_¢e + Ape® + Amyy + Amzz) (12)

Differentiation of L)y with respect to & yields

BLM
“ox
and the substitution of Ly, for L in Eq.(5) yields Eq.(11).
Next we write v X A, grad ¢y, (0v/dt) x A,, and curl A of Eq.(10) in
component form. The z-component of Eq.(10) becomes:

=ML+ eAmny (13)

Ze d Ze 0 . N\
‘c‘a(Aezy Aey2) = ° Oz {(Aezy — Aey )T

6¢m . a¢m . _ aAez _ a14ey>
+/[ < 9% Y- By >+Aezy AgyZz—c (—6y P
+ (yaay R ) (Aezy — Aeyz)] da:} (14)

As before, the substitutions  — y — z — z yield he y- and z-components.
We try the following Lagrange function L., for Eq.(14); the subscript c
refers to ‘correction’:



3.2 CHARGED PARTICLE IN AN ELECTROMAGNETIC FIELD 81

_Zef i A O _ 06, o
Lew = —E—{(Aezy - Aeyz)z +/ [ ( 62 6y Z) +Aezy Aeyz

204 0Aey .9 ._6_) - .]d}
‘ < y oz ) T\Ugy T i) et Au)|dr

=2 ans [ - (ix%) 6 x A - el A,

i} 3
(135 135) € Ao}
r = Te; + ye, + ze, (15)

Differentiation of L., with respect to z yields

0Ly Ze . .
% = _C'(Aezy - Aeyz) (16)

and the substitution of L., for L in Eq.(5) yields Eq.(14).

In the case of the Lagrange function Ly of Eq.(12) we could differentiate
with respect to &, g, or # to satisfy Euler’s equation (5). This is no longer so.
If we want to satisfy Eq.(5) for z3 = y and z3 = z we must replace Eq.(15)
by L¢y and L.,. These functions are obtained from L., by the substitutions
T — y — z — z. We write them here explicitly due to their fundamental
importance:

Lcy Ze {(Aemz ezi")y +/ [ (8;3; ¢ ?gf'm> + Aezz - Aezi

0A OA 0 7]
_ 2 eT ez s 2 i S .
¢ <—8z p ) + (za + x8m> (Aex? Aez:r)] dy}

Z
= 76{(1.' X Ae)yy+/ [h (r x (?%“_)y + (r x Ae)y - c2(curlAe)y

+<z§;+m§> (rxA)} } (17)

Ze o 6¢m. O¢m . . .
Lz = {(Aey.'l? - e:z:y)z +/ [_ < (9y E‘l}) + Aeym - Aemy

0A 0A 9] g |
2 ey exr . 9 . O . .

(% ; ya%) (i x Ae>z: dz} (18)
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Let us observe that we added one term gy, in Eq.(1.1-9) to change the
Maxwell equations to the modified Maxwell equations. But Egs.(15), (17),
and (18) written in vector form like Eqgs.(1.1-8) to (1.1-11) add six terms to
the conventional Lagrange function of Eq.(12). This increase of the number of
terms is characteristic for the use of the modified Maxwell equations in quantum
electrodynamics.

For an understanding of the Lagrange function consider a spinning bullet
shot upwards. The kinetic energy will be transformed into potential energy on
the way up and back to kinetic energy on the way down. Such transformable
energies are represented by the Lagrange function Ly of Eq.(12). The rota-
tional energy of the spinning bullet will not be transformed into either kinetic
or potential energy. Since the axis of the spin does not change, the energies of
the z-, y-, and z-components of the rotational energy will not be transformed
either. Such non-transformable energies are represented by the Lagrange func-
tion with the components L¢p, Loy, and L, of Eqs.(15), (17), and (18). One
must be careful not to read too much into this analogy of a spinning bullet.
The term curl A, in Eq.(10) represents a rotation but it is not evident why
all the other terms should be interpreted as rotations. At this time it is best
to think of transformable and non-transformable energy and avoid any more
detailed interpretation.

We may write the Lagrange function for Eqs.(4) or (8) as a vector £ that
is the sum of two vectors Ly and L.

L=Ly+ L
Ly = Lm + Lk, k= z, Y, 2 (19)

with the components Ly, k = 1, 2, 3 or L, L, L,. The three components
Lezy Loy, Ley of L are defined by Eqs.(15), (17), and (18), while all three
components of Ly are defined by Eq.(12).

We shall need relations between the moments p;, py, p, and the variables
Z, ¥, 2. The moments are the derivatives of the components £; = Lz, £y, L,
with respect to #; = &, ¢, £. From Egs.(12) and (15) we get:

0L, oL + ch . Ze . .
po= g = B i e+ S - o) 0
oL . Ze . .
Py = Tyy_ =my + eAmy + T(Ae:cz - Aez.’lf) (21)
oL Ze .
— z - 3 = o ¥ _Aem 22
Dz 92 mz + 6Amz + c (A y T y) ( )

In order to obtain #, ¢, # as functions of p;, py, p, We must solve these
equations for z, 7, . First we define a common denominator D:

Ze =m [mz + (-Zc—eAe> 2] (23)

2
D=m [<7> (A2 + A%, + A%) +m?
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Then we write the solutions for D&, Dy, Dz:

be= <g£> Aco[Acx(Pr —~ €Ama) + Aey(Py — €Amy) + Aez(pz — €Amn:)]
¢

Zem [Aey(pz - eAmz) - ez( eAmy)] +m ( - eAmx)
Z
= mz(p —eAn): + <-CE> AczAe - (p—€An)

Zem
+

[Ae x (p —eAn)]s (24)

Dj = (Z—)2 Aoyl Aes(Bs — Aume) + Acy(By — eAmy) + Aca(ps — eAm)
2™ (e — eAma) — Aea(ps — Ams)] + M3 (py — eAmy)
=m%(p —eAn)y + <-Z{:) AcyAe - (P — €An)
+ 20 A x (b - eAn)l, (29)
Di= (%)2 Ac:Aez(Pr — €Ama) + Aey(Py — €Amy) + Acz(pz — €Am;))
2 A (py — Amy) — Ay (s — EAma)] + M2(ps — eAms)

2
= m2(p -~ eAm)z + (%) Aeer . (P - eAm)

Zem

+ {A X (p—eAnl, (26)
For A, = 0 we get the usual equations mz = p, — eAmx, etc. In addition to
the first derivatives &, g, £ we will also need the second derivatives &, §, 2. We
multiply the second derivatives with the common denominator D2, where D is

defined by Eq.(23). The vector notation rather than the component notation
is used since it is shorter:

D% = D(i?%t)i') - a£> m Km"’ + (Z—ce>2 A";H {mzﬁp —eAm)s

+ (Zce) (AezAc + AczAe) - (P — eAr) + AexAe - (P — eAy)]

Zem
+

[A x (p—eAp) + Ao x (p—eAn)s }
—om (Z:) A, Ae{m2(p_eAm)z + (%)2&1& - (p—eAm)

+ _Zec_m[Ae x(p -~ eA—m)]m} (27)
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D?j = D(a(gg}) - y%?) =m [m2 + (—Zc—e>2 Az] {mz(l') —eAn)y

+ <Ze) [(AGUA + AeyA ) (p - eAm) + AeyAe ) (p - eAm)]

Zem

[Ae X (P — €An) + Ae x (P — eAn)l, }

z . Ze\?
—2m< ce) Ae~Ae{m2(p—eAm)y+<?e) AcyAe - (p—€eAp)

Zem
+

aid7e x(p—eAmn} (28)

5= (223 00) [ (%)ZAz] o chu.

+<Zce) [(AezA. +Aez-A-e) (p—eAn )+Aeer-(1')—eAm)]

Zem

[Ae x (p — cAn )+Aex(p—eAm>1z}
~2m <Z;e> A, Ae{m2(P —eApn): + (%>2Aeer “(p—eAn)

+ 2 x (o canll. ) (29

In order to obtain the Hamilton function 3 from the Lagrange function
L we observe that £ is a vector with three components. Hence, { must be a

vector with three components Hy:
3

G{k(Pj,zjyt)=iji'j—£lk=l3'i"‘£'k, k=$’ Y, Z (30)
=

From Eqs.(20)—(22) we get

3

ijd':j = ol + PyY + P22
j=1

=m(? + §* + 32) + e(Ame? + Amy¥ + Amz2)
=mi? +eAy - T (31)

since the terms multiplied by Ze/c cancel. The following three components I

are obtained from Egs.(19), (12), (15), (17), and (18) due to the cancellation
of the terms Aped 4+ Apyy + Am 2
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1,
Hy = %m(a‘? +97 4 2%) + efe — Lo = Smi + ede — Lo (32)

1 1,
9y = 5m(@® +9° + £%) + efe — Loy = gmi® +epe — Loy (33)

1
g{z = %m(xz + 172 + 32) + €¢e - ch = §mr2 + €¢e - LCZ (34)

The Hamilton function should be written in terms of the momentum p and
the potentials ¢e, ¢m, Am, Ae. One can do so by substituting %, 9, 2, &, §, Z
from Egs.(24)-(29) into Eqs.(32)—(34) as well as Eqs.(15), (17), and (18). This
is quite tedious. Let us first gain some understanding of the Hamilton function.
To this end we return to Egs.(20)—(22) and see under what conditions the terms
multiplied by Ze/c will be small. From Eq.(20) we get a first condition

VA Z
—::Aezy <« mz and —chey;': L mz (35)
which may be rewritten as follows:

mc? > ZecAq,y/t and mc? > ZecAq, s/t (36)

In case  is close to zero while g and # are not we require an alternate condition
for Eq.(20):

Amz > ZA,g/c and Az > ZAq %/c (37)

Equations (36) and (37) state in essence that either the energy mc? should
be large compared with the energy due to the potential A, or the magnitude
of the potential A, should be large compared with the magnitude of A..
More detailed statements referring to the terms ¢/, #/%, y/c, and £/c are
not of interest here. Relations equivalent to Eqs.(35)-(37) may be derived
from Eqgs.(21) and {22) too. If these conditions are satisfied we may rewrite
Eqs.(20)-(22) in a simplified form:

Pr = ME + eAnge, Py = MY + eApy, p, =mi + eAy, (38)
D=md (39)

Equations (24)-(26) become:

. , 1 . 1
T = E(P‘eAm)m y= E(P—eAm)y: z= E(P_eAm)z (40)

The three components of the Hamilton function become:
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1

g{z = Q—m(p - eAm)2 + e¢e hd LCI (41)
1

g'cy = %(p - eAm)2 + epe — £‘cy (42)
1

H, = %(p ~eAp)? + epe — Lo (43)

These are the terms of the conventional Hamilton function of a charged particle
in an electromagnetic field plus correcting terms Lz, Loy, Lcp. The correcting
terms will be negligible according to Eqs.(15), (17), and (18) if A., 8A4./0r,
O¢m/Or, 7, and ¥ are sufficiently small.

Let us observe that the variability of the mass m with velocity is not taken
into account in Eqs.(41) to (43). This simplification permits us to obtain the
components H, H,, H, of the Hamilton function and the correcting terms
Lezy Loy, Leo explicitly. In the following Section 3.3 we will take into account
that the mass m depends on the velocities %, ¢, 2. The Hamilton function can
then be obtained by means of series expansions only.

We note that all deviations from the conventional values in Eqgs.(20)-(22)
are due to the potential A, that is produced by magnetic monopole, dipole,
or multipole currents gy, according to Eq.(1.6-26). The correcting terms £ of
Eqs.(15), (17), and (18) contain mainly terms A¢ but the hypothetical magnetic
charge py, enters through the terms 0¢,,/0r according to Eq.(1.6-29).

We turn to the evaluation of Eqgs.(32)—(34) without any approximation.
Using Eqs.(23)-(26) and observing the relation a - (a x b) = 0 we obtain the
following form for Eqgs.(32)-(34):

2
g{=§H(p—eAm)2+<%> {2(Ac (p—eAm)]+[Acx (P—eAn)]}

; (%)4A3[Ae (o~ eAng] [1+ (%)QA] o eb—t. (41

The vector £ has the three components L¢g, Lcy, and L., of Eqs.(32)-(34).
Each of these three terms consists of five components. For the first component
of L. we obtain according to Eq.(15):

Ze . .  Ze
Leg1 = _c‘"(Aezy — Aey2)t = mle <Ae2(p —eAn)y — Aey(p —eAn),

+ 2 Al x (b = ehnlly - Aulhe x (b= chu)l} )

Ze\?
X !:(p - 6Am)w + <%> Aeer ' (p - eAm)

+ %[Ae X (p— eAm)]z] [1 + (%)2 AE] B (45)
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A second component L.y is defined according to Eq.(15) as follows:

8 m . a m .
Lego = ——/( gz 9 — ——gy z) dz
Opm Opm
-2 [0 - can)y - 20 - chm):

+ 28 (Pnia,x (b chnlly - Z1A x (p - e

Odm Ofm
+ (mc) ( 92 A ey — E—Aez) Ae . (p - EAm):‘

[1+<f::) AZ]_ldx (46)

For the third component L3 we obtain from Eqs.(15), (23), (28), and (29):

L‘ca:S = 'Zc_e (Aez:i/. - Aeyz)dl'

= [ (22 2] [t - ey = et e+ 22

{Aes[Acx (p—eAp)+Acx (P—eAn)]y —Aey[Ae X (P~€A )+ A X (D~eA )]}

+ ( f:) [(AegAey — AeyAez)Ae - (p — eAm)l}

Ze Ze
=2 ('m ) A e(Aez(p_eAm)y‘Aey(p_eAm)z+%{Aez[Ae><(P—eAm)]y

— Aoy[Ae X (p— eAm)]z}>} [1 + (%)2 Af} -

The fourth component L.y4 in Eq.(15) remains unchanged:

_ 0Aey  OAe,
Lcm—Zec/( 52 oy )d:c (48)

The fifth and last component Lcr5 in Eq.(15) is particularly long. It follows
with Eqs.(13), (23), (25), and (26):

Ze 7] a

Lows = 2 [ (= + 50— )Aez Ay’

5= Z [ (v + 25z ) (Ausi = Aty o
Ze

= 3 { {(P - eAm)f, + 2%(p —eAm)y[Ae X (P — eAn)ly
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2
+ (_Z_€> {[Ae x (p - eAm)]f/ + 2Aey(p - eAm)yAe ' (P - eAm)}

me
Ze\?
+2 e Aey[Ae X (P~ eAy)jyAe - (p — eAn)

2 aquz
Oy

. (%)Zzyme (D - eAn)]

+ [(p - eAm)y(P ~eAn). + %{(P - eAm)y[Ae X (p—~eAn)l.
+ (P —eAn).[Ac X (p—eAyn)],}
Ze\?
+ (E) {Ae X (P —eAn)y[Ae x (P — eAn)]:
+ Aez[(p - eAm)y + (p - e1Xm)z]*Ae . (p - eAm)}

+<—Z—3> {AcylAcx (P—eAm)): +Ac:[Ac X (P—eAm)]y } Ac- (P—€Am)

mc
Ze 4 2 0A,, E)Aey
+ (%) AeyAez[Ae - (p ~ eAp)] ] (B—y - W)

+ [(p —eAn)? + Qi—i(p —eAnm):[Ae X (P—eAn):

2
N (—Z-—) {[Ae % (b — eAm) + 240s(p — eAn)sAe - (p - eAn)}

mc

Ze\®
+ 2(%) AclAc x (p—eAp)):Ae - (P —eAm)

+ (EE>4AEZ[Ae (p- eAm)]Q] 8_‘432} {1 + (%>2A2] _zdm (49)

me 0z

The correcting terms L, and L, for Eqgs.(42) and (43) may be obtained
from Egs.(45)-(49) by the substitutions z — y — z — z.

In the text following Eq.(18) we had pointed out that the one added term
gm in Eq.(1.1-9) had grown to six added terms in Egs.(15), (17), and (18).
The replacement of z, ¢, 2, &, §, # according to Egs.(24) to (29) produces an
avalanche of additional terms.

3.3 VARIABILITY OF THE MASS OF A CHARGED PARTICLE

The variability of the mass m of a particle with the velocities z, ¢, 2 is not
shown explicitly in Eqs.(3.2-32) to (3.2-34) or (3.2-41) to (3.2-47), and (3.2-49).
These equations thus hold for a particle with essentially constant mass. The
extension of the results of Section 3.2 to a variable mass is possible by means
of series expansions only. We start with Eq.(3.2-1):

%(mv) =eE + %v x H (1)
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The velocity v; = dx;/dt is replaced by the four-velocity u, = dz,/dr with
the proper time differential

dr = (1 —v?/c?)Y %t (2)

and with z, = 2, y, 2, ict. Since the variables z,, form a four-vector and dr is
a scalar, the components u, form a four-vector too:

v; ic

u‘:_——.—-’ u4=—-—’ j=1’2,3
T (1 - v2fe2)? (1—02/c2)!/?
4
Uty = Zui = —¢c? (3)
p=1

We define the four-vector of a force K, as the product of eu, with the tensor
Fp, of Eq.(2.4-11) having the components fu,,. Using the relation B = ZH/c
we get:

K, = efm;wu;t (4)
7 9N\ —1/2
K,,:e(E-l——c—va),,(l——) , v=1,2 3o0rz, y,2 (5)

e ’U2 -1/2

Equations (4)-(6) are the relativistic generalization of the right side of
Eq.(1). On the left side of Eq.(1) one must replace the time differential d¢ by
the proper time differential dr of Eq.(2), the velocity v by the four-velocity
u of Eq.(3), and the mass m by the rest mass mg. The relativistic version of
Eq.(1) becomes:

Emouu = efm,uuup, (7)
d MoV Z
a(l—zﬁ/cz)l/2 —6<E+?VXH) ®)
d M2

dt (1 —v2/) 2 ¢E-v (9)

Equation (8) represents the three spatial components of the equation of motion
while Eq.(9) represents the law of conservation of energy.

The product of the rest mass mg with the four-vector u, produces a new
four-vector

Dy = Moty (10)
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with the three spatial components

movy moVv

pj =7 Of P=———,
T (1= vz /) (1 —v2/c2)/?

i=1 2,3 (11)

and the component py

iemyg i mec?

= - =—E
(1—v2/)?  c(1-v2/2)?

pa= (12)
where E denotes an energy rather than the magnitude E of an electric field
strength. Using Eq.(3) one obtains

E2
PP-5= -m?c® or E = (pic® +mict)/2 (13)

as connection between energy E and momentum p.
For the relativistic generalization of the Lagrange function of Section 3.2

we start with the conventional part Ly as defined by Eq.(3.2-12) and rewritten
as follows:

Ly = %va +e(~¢e + Am V) (14)

The relativistic generalization of Ly is found in many textbooks:

1/2

Ly = —moc® (1 —v?/c*)"" + e(—¢e + Am - V)

.2 .9 o 1/2
= —m002 <1 - Hz—zﬂ) + e(_¢e + Amx-’i‘ + Amyy + Amzé)
1
= —moc? + §mov2 +e(—pe +Ap-v) for v/« 1 (15)

We adopt this generalization of the part Ly of the Lagrange function £ of
Eq.(3.2-19). The components of the correcting term L. are left unchanged
from their definitions in Eqgs.(3.2-15), (3.2-17), and (3.2-18) since the mass m
does not occur there and the potentials ¢, A come from a relativistic theory;
we note that ¢, and A, are the same in Eq.(15) as in Eq.(14) too. Hence, the
relativistic generalization of the Lagrange function of Eq.(3.2-19) is

L= —mpc?(1 — 02/ A% 4 e(—¢pe + Am - V) + Loc (16)

where L. has the three components Lz, Ley, Lo, and L has the three compo-
nents L1, L2, L3 or Ly, Ly, L.

The nonrelativistic momenta ps, py, p. of Egs.(3.2-20)—(3.2-22) must be
generalized to ‘relativistic canonical momenta'. They assume the following
form:
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0L, _ O(Lm+Le)

P = ot o5

= g e+ e = Ant) (1)
py =2 - (1—-% ey + (At~ Ad)  (18)
p= 2 (1__% tehmst (At~ Aut)  (19)

For the derivation of the Hamilton function from the Lagrange function
we have Eqs.(3.2-30) and (3.2-31) but we must now use Eqgs.(17)-(19) for ps,
Py, and p,

3

. my .92 .9 .2 . i .
E pit; = ——————(2° + " + £°) + e(Amat + Amy¥ + Amz2)
= et} (1_’02/02)1/2 x Y mz

mQ

. , 9 s
= ——————(1 - 1)2/c2)1/2r +eAy -t (20)

and the three components Hy, of the Hamilton function are obtained in analogy
to Eqgs.(3.2-32)—(3.2-34):

3 2
, - S L. LA - -
g{k(pﬁl‘jvt) - jz_:lp]x] [-‘k - (1 — 02/02)1/2 +6¢e Lka k= z, Y, =
2
_ moc _
T @i i
2
_ moC
Hy = e oo — Ly (22)
(1— (22 +3%+22)/c?
2
moC
H, = 0 5+ ege — Loz (23)

[1— (&2 +92+22)/c?

We must eliminate the variables &, 3, Z and their derivatives &, 4, 2. In
analogy to Section 3.2 the variables &, ¢, 2 are determined by Eqs.(17)-(19),
but these are no longer three linear equations due to the term

(1— vz/cz)l/2 — [1 — @2+ + Z-z)/cz] 1/2

and the replacement of , 9, 2 by p, A, e, Ae, and ¢, becomes even more
tedious than in Section 3.2. As before we shall first gain an understanding by
using simplifying assumptions for Eqs.(17)-(19). The terms multiplied by Ze/c
will be small in Eq.(17) if a first condition
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Ze , mol
A S e

is satisfied that may be rewritten as follows:

moiif

Z
d Sy« —2
c (1-v2/c?)

(24)

moc?
(1—v2/c2)'/?

For small values of # but not y and Z we require an alternate condition for
Eq.(17):

> ZecAe,y/t and > ZecAeyt/t (25)

mocC
(1- vz/cz)l/2

Amz > ZAe.y/c and Amz > ZAeyz/c (26)

Equation (25) states in essence that the energy due to the potential A, should
be small compared with the energy moc?/(1—v2/c?)!/2 while Eq.(26) demands
that the magnitude of A, should be small compared with the magnitude of A .
With these simplifying assumptions we obtain from Eqgs.(17)-(19):

_‘_ moi‘
Pz = _(1 ~ ’1)2_/—02)1/2 +eAme
- ™oy
Pu= (1- 1;2/02)1/2 +edmy
mo2
P = 0 +eAn. (27)

Solution of these equations for &, 9, # yields:

_ (1 _ U2/02)1/2

™o (P—eAn)s (28)
' 1 — 92/c2)1/2
Y= (—-R/o;(p ~eAn)y (29)
1 — 02/c2)1/2
=0 - e, (30)
Squaring and summing #, ¥, and # yields:
1— 2 /.2
P4t =02= —Z-L(p —eAn)®
My
2,2
oA O _eaf 1 1)
(P —eAn)” = 1—v2/c? o¢ (1 —v2/c2
moc? mec?

(L—02/)12 "~ [1— (a2 + g2 + 22)/ 2] /°
=c[(p—eAn)? +mic? Y2 (31)
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Substitution of the last line of Eq.(31) into Eqs.(21)~(23) yields:

g’fz =c [(p - eAm)2 + mgcz] 1/2 + e¢e - £'c:ar: (32)
9, = c[(p - eAm)? + m3?]"* + ege — Loy (33)
H, = c[(p — eAm)? +m2c?])? + e — L (34)

If we leave out the correcting terms L¢g, Ly, Lc, We have the conventional
relativistic Hamilton function for a charged particle in an electromagnetic field.
The assumption we had to make to obtain Eqs.(32)-(34) was that A, must be
sufficiently small. If we want to leave out the correcting terms L. we get more
complicated conditions since Egs.(3.2-15), (3.2-17), and (3.2-18) contain not
only A. but also its derivatives and derivatives of ¢,.

Let us turn to the solution of Egs.(17)-(19) for &, g, # without approxi-
mations. A difficulty is created by the term

(1= ¥/A)? = [1 = (& + 47 + 22) /]

which makes these equations nonlinear while the corresponding Eqgs.(3.2-20)-
(3.2-22) of the nonrelativistic theory were linear. There is no standard method
of solution for a system of nonlinear equations and we must find a method
suitable for this specific case. As a first step we ignore that v? is a function of
z, g, £ and treat Eqs.(17)-(19) as a system of linear equations. We note that
Eqs.(3.2-20)—(3.2-22) are transformed into Eqs.(17)-(19) by the substitution

m — mo/(1 - v2/c?)!/?

and we get our ‘first step solution’ of Egs.(17)—(19) by making the same sub-
stitution in Eqs.(3.2-23)-(3.2-26). First we write the common denominator D
according to Eq.(3.2-23):

3 2
my 2 v .
= — 1 — —
b (1—v2/c2)*? {1 e ( czﬂ (35)
_ ZecA. v? 1/2 ZecA.
*T ez % 1-= = 2 2/,2\1/2 (36)
0C ¢ moc?/ (1 —v2/c?)

The constant a, represents the ratio of the energy due to the electric vector
potential A. and the rest energy of the particle. The reference energy is actually
moc?/(1—v?/c?)1/? rather than moc? but we need v? as explicit variable. Let us
note that a. has no physical dimension but it is variable due to its component
Ae.

The solutions for &, g, and # as functions of p,, p,, and p, have the
following form if we use the factor ¢, of Eq.(36):
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1 — 02 /e2)1/2 1/2
¢:<_v/c_>(p_eAm)z{1+ae(1_c_2>

mo

[Ae x (D — €Anls
Ac(p—eAn):

e (o-5) ettt )]

(1 -2 Y2 (Ae x (P~ eAm]y
_T(p—CAm)y[1+ae (l—c—2> A( —eAm)y

vt (=) s et (- 5)] o

(=¥ v’ \? [Ae x (p — eAn],
= o pP—eApn)|1+a0.(1 = A(p —eAn).

2 2 -1
2 v AczAc - (P—eAp) 2 v
+ o (1 c2> A (p - cAL). 1+ai(1 = (39)

Equations (37)-(39) are squared and summed:

1—- 2 /.2
P+ r=0= ——————————Uz/c (p—eAm)2[1
my

1/2 2
[A (p— eAm)]
20 (1 - ‘2> AZ(p — eAn)?

02\ [Ae X (P — eAm)]? + 2[A. - (p — A2
+ae (1 - ‘5) AZ(p = cA,)?

+ 2a3 (1 — i) ” Ao [Ae X (p—eAn)Ac-(p—eAn)
NS A2 (p - eAn)”

woi(i-5) Bt (-5)] @

To find an approximate solution of this equation for

oe(l—v%/cH)Y? <1 (41)
we use only the first term on the right side of Eq.{40):
s 1—22/c?

= ——"—(p-eAn)®
v ma (p—eAn)

<1‘P“>w=[ v )

2 /
¢ m3c? + (p — eAm)Z]
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This is the same relation as shown in the first line of Eq.(31) and we get again
the common term of the three components H, H,, H, of Eqs.(32)-(34). We
call this the zero order solution in a, of Eq.(40).

To obtain the first order solution in ce of Eq.(40) we use the first two
terms on the right of Eq.(40). Since p will eventually be replaced by differential
operators we are careful to preserve the sequence of factors:

) 1=v% vﬂ)”z[Ae«p—eAm)P (43)

v = —— —eAm2[1+2ae<l——
mg (P oAn) Z) AI(p-cAn)

The term (1—v?/c?)'/2 multiplied by 2a is replaced by the zero order solution
of Eq.(42). The resulting equation is solved for 1 — v2/c? and the following
improvement of Eq.(42) in first order of . is obtained:

2 2
v m,
1- = 0

¢ m§e? + (p - eAm)’
g <1 _ 2aemoc(p —eAn)® [Ac-(p—eAn)?
[mdc? + (p — eAm)2)”/? AP —eAn)?

c2

) +0(a?) (44)

The first order approximation in ae of Eq.(31) follows from Eq.(44):

2
moc 1/2
7z =cllp- eAn)? +mic?]

(1-02/c2)

x |1+ aemoc{p — eAm)2 [A. - (p— eAm)]2
[(p— eAm)? + m2c2*’? AZ(p - eAn)®

> +0(a?) (45)

The three components of the Hamilton function of Eqgs.(21)-(23) become in
this approximation:

Ha = c[(p — eAm)? + M3 ?(1 4+ 2eQ) + e — Locx (46)

Hy = c[(p — eAm)? + mZHY2(1 + aeQ) + e — Loy (47)

H, =c[(p — eAm)? + M3?)Y2(1 + Q) + ede — Loz (48)
1 (P —eAm)’(A. - (p — eAn)]

M8 (14 (p — eAm)2/m3c*? A(p — eAn)?
ZecA, Ze? h A, AcA.
Qe = —F = fomrm — — = 20‘—_'
moc? 2h mgc e e
Ze® _3 h
a = —— = T7.297535 x 10™° fine structure constant, A\¢ = —
2h mocC

ae = 2.210 x 10% A, for electron, a, = 1.204 x 10%A, for proton (49)
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For the evaluation of the terms L¢z, Lcy, Lo, we need &, g, 2 of Egs.(37)-
(39) with the terms 1 — v?/c? eliminated by means of Eq.(44). Only the zero
order approximation in ae will be required:

c(p—eAn)s
= 2 + (p— oAn )7 + O(ae) (50)
8 c(p—eAn)
- [m3c® + (p - eA:,)Z]W +oted oy
ce(p—eAn),
o [m3c + (p — eAm)?]"/* +ote) 2

For the first component Lcz1 of L., we obtain from Eq.(3.2-15):
Qe Aez(P —€Am)y — Aey(P — €Am).
Ao (14 (p - eAm)2/m3c2]"?

(p—eApn)s
1+ (p - eAm)?/m3c?|

chl = —ZCE(Aezy - Aeyz.)j: =

+0(a?) (53)

1/2

The unusual way of writing the denominators is due to the replacement of p by
operators at a later time and the resulting non-commutability of the factors of
a product. This will become important in Section 5.2. The second component
Lo is defined according to Eq.(3.2-15) as follows:

Loz = — -yt Z2adar-vel

Ze (3¢m. 0w > dz
c dy Oz

Qe

= Qe <%(p —eAn); - %(p - eAm)y)

A, Oy 0z
-1/2
(p—eAm)?\ ™"
X <1 + ——mgT— dr (54)

For the third component L¢z3 we require the time derivative of § and 2z of
Eqs.(50)-(52):

Leos = _sz /(Aez:ij - Ae’y‘é)dm
3 o )
A ) U0 \[1+ (p — eAm)?/m3c2]/*

_ Aey% ({ (P~ eAn) )} dz (55)

1+ (p — eAp)2/m3c?]™?
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The fourth component Lcza of Eq.(3.2-15) remains unchanged since there are
no time derivatives of z, vy, or z:

0Aey OAe, emoC? ( 0Ae, OAc, )
= - - - dr (56
Lcm4 Zec/ ( Bz 6y ) dx - oz 6y X (5 )

The fifth and last component L.z5 of Eq.(3.2-15) equals:
Ze .0 .0 . )
Lexs = - (y@ + za) (Aezy — Aey?)dx

_ % / <(P — eAw),0/0y + (p - eAm)z8/82>
Aemo [+ (p — eAn)2/mic2]

Acr(p—eAn)y — Aey(p — eAm)zd
X 172 z
1+ (p~eAn)?/mic?|

(57)

The correcting terms Ly and L, for Eqs.(47) and (48) are obtained from
Eqs.(53)—(57) by the substitutions z — y — z — .

The Klein-Gordon and the Dirac equations are derived from the Hamilton
functions in Eqs.(32)-(34) without the correcting terms Leg, Loy, and Lc;:
The Hamilton functions of Eqs.(46)—(48) with first order correction in @, will
yield first order corrections to the Klein-Gordon and the Dirac equations, while
higher order solutions in o, of Eq.(40) will yield higher order corrections.

It is important to keep in mind that the term g, in the Maxwell equation
(1.1-9) had an effect on the solution even if the transition g, — © was made
at the end of the calculation since the term g, produced the term soF in
Eq.(1.3-1). Without g,, one obtains a different differential equation that leads
to divergent integrals as discussed in Section 1.4 and in Section 6.2 from Eq.(6.2-
46) on. According to Eq.(1.6-26) the potential A, represents the magnetic
current density g, here. It is prudent to expect that the transition A, — 0 at
the end of the calculation may have a similar effect as the transition gn — 0.
Hence, the terms with a factor a, in Eq.(46)—(48) cannot be ignored even if
one takes the limit A, — 0 and g, — 0 at the end of the calculation.

If we want to carry the theory to second order in a. we must use the first
three terms on the right side of Eq.(40). For the term o2(1 — v?/c?) we must
use 1 — v?/c? of Eq.(42) while for 2a.(1 — v2/¢?)/? we must use the better
approximation 1 —v2/c? of Eq.(44). We may proceed in this way to the third
and fourth order approximation in a,. But the process does not stop there. For
the fourth order approximation we use for the term o2(1 — v%/c?)? in Eq.(40)
the value of 1 — v2/c? of Eq.(42), but for the fifth order approximation we
use 1 — v?/c? of Eq.(44). There is no end. Every improved approximation
yields new terms and presumably new effects. The one term g, in Eq.(1.1-
9) of Maxwell’s modified equations produces denumerably many terms in the
Hamilton function of a charged, relativistic particle.
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3.4 STEADY STATE SOLUTIONS OF THE MODIFIED MAXWELL EQUATIONS

It is usual to derive the Hamiltonian form of Maxwell’s equations for steady
state solutions only. This is acceptable since we have seen that Maxwell’s
equations generally do not have solutions that satisfy the causality law and
thus they can be valid for the steady state only. If infinitely extended periodic
sinusoidal waves are used to represent a steady state solution one must observe
that such solutions usually represent waves with infinite energy. Hence, they are
outside both the causality law and the conservation law of energy; one should
not be surprised if this leads to problems with infinite energy. It is possible
to derive solutions of Maxwell’s equations that satisfy the conservation law
of energy but not the causality law. Such solutions based on the Gaussian
bell function e~ have been developed (King and Harrison 1968; King 1993).
They could be extended to the complete orthogonal system of parabolic cylinder
functions, but few people seem to be aware of these non-sinusoidal solutions of
Maxwell’s equations.

Since we do not want to loose the causality of the modified Maxwell equa-
tions we will have to find a way to derive the Hamiltonian form in a more
general way. In order to do so we derive first the Hamiltonian form in the con-
ventional way developed for the original Maxwell equations and obtain a steady
state theory. But this steady state theory will show what changes have to be
made to derive the Hamiltonian form for a theory that satisfies the causality
law. The corrected quantization will be carried out in Chapter 4.

In order to rewrite Maxwell’s equations (1.1-1)—(1.1-7) in Hamiltonian
form it is usual to choose p, = 0 and g, = 0. According to the discussion
following Eq.(2.5-11) it is permissible to choose p, = 0 as well as p,, = 0
due to the law of conservation of charge, which we extend here to apply to
electric and (hypothetical) magnetic charges. The choice g. = 0 and g, =0
cannot be justified by any widely accepted physical law since current densi-
ties may be due to dipole and higher order multipole currents in the absence
of monopole currents carried by charges. Indeed, the choice g, = 0 implies
that a capacitor with vacuum as dielectric cannot be charged, that it can-
not pass an alternating current, that the permittivity of vacuum is zero, and
the velocity of light infinite. If we choose either g, = 0 or g, = 0 in the
modified Maxwell equations (1.1-8) and (1.1-9) we get soE = 0 in Eq.(1.3-1)
and obtain a differential equation that does not lead to solutions that satisfy
the causality law. Hence, the choice g, = 0 and g,, = 0 at the beginning
of a calculation yields unacceptable equations, but one may try the transition
ge — 0 and g, — 0 at the end of the calculation as shown by Eq.(6.2-41)
for w = /es/uoc — 0. The closest we can come to the conventional deriva-
tion without giving up the causality law is to use Maxwell’s modified equations
with Coulomb gauge as shown by Egs.(2.5-6)-(2.5-11) and choose p = pr = 0.
The electric and magnetic field strengths are then defined by Egs.(1.6-17) and
(1.6-11).

First we write the modified Maxwell equations for vacuum in accordance
with Egs.(1.6-1)-(1.6-4):
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1 JE

curl H 7o ot + g, divH=0 (1)
—curlE = ZoH + 8m; divE=0 (2)
c Ot

Then we write H and E according to Eqs.(1.6-11) and (1.6-17) for ¢ = ¢pm = O:

c OA.
= — _ == 3
H 7 curl A, 5 (3)
OA
E Zccurl A, 5 4)

The potentials A, and A, in Coulomb gauge for po = pm = 0 and thus
@e = ¢m = 0 follow from Eqgs.(2.5-6)—(2.5-9):

1 1
V2A, — C—er = —7-8m divA. =0 (5)
2 1 Z .
VA, - c_2A-m ==&, divA, =0 (6)

We want to solve the system of partial differential equations (5) and (6),
writing the result in Hamiltonian form. For general solutions we may follow
the calculations of Sections 1.2 to 1.5 as well as Sections 6.1 and 6... If one is
satisfied with steady state solutions one may follow the conventional calculation
and make a Fourier representation of An(r,t). By implication we have to
represent Ag(r,t) in the same way. This is done by introducing a finite interval
or a box with finite dimensions in order to be able to use a Fourier series
with denumerable terms rather than a Fourier integral with non-denumerable
terms. The introduction of boundary values on the surface of a box has the
character of a cooking recipe: it works and people accept it. A more physical
approach to obtain denumerable terms is provided by noting that infinitesimal
distances dx or dit cannot be observed and thus can be only mathematical
approximations for observable finite distances Ax and At. There is no need
to require some minimum value for Ax and At, one only must demand that
they are finite. A distance of 107 m in space or 1071%s in time is still
finite but completely different from dx and dt. It has been shown that the
distinction between infinitesimal differences dz, dt and arbitrarily small but
finite differences Az, At yields no significant effect in non-relativistic quantum
mechanics but this is not so in relativistic quantum mechanics (Harmuth 1992,
pp. 228, 244). Hence, we must try to introduce finite intervals Az, At even
though we use infinitesimal intervals dz, dt for computational convenience.

For the introduction of finite intervals Az consider the function A(z) =
A(m) defined at the points mAz with m = —n, —n + 1, ..., n as shown



100 3 HAMILTONIAN FORMALISM

Aln-1)
An) Aln)
Abned an A

A}

0 Ax 2Ax  (DAx  nix

XsMAX ——

____-bx  -Ax
-nAX FlAx l |

ARD)

A1)

F1G.3.4-1. A function A(z) = A(m) defined at the 2n + 1 points = mAz with
m=-n,—n+1,...,n; L =2nAx.

in Fig.3.4-1. We may represent the 2n + 1 samples or discrete values of this
function by a series with 2n + 1 ‘Fourier functions’

1, V2cos(2rmz/L), V2sin(2rmz/L)
m=0,1,..., n; —-nAzr<z<nlAz; L[=2nAzx (7

where m = 0 denotes the constant function with amplitude 1 in the interval
—-L/2 < 2 € L/2. For n — co we obtain a series with denumerable terms.
Let us observe that the representation of a discrete function A(m) with 2n+1
values of m by a Fourier series or other series of orthogonal functions with
2n + 1 functions is exact. The concept of mean-square-approximation enters
only if one approximates a function A(z) with non-denumerable values of z by
a system of denumerable, orthogonal or linearly independent functions.

Let! the vector potential A, (r,t) and the (dipole) current density ge(r, t)
of Eq.(6) be represented by a Fourier series in complex notation in the three-
dimensional interval —L/2 <z < L/2,-L/2 <y < L/2,and —L/2 <z < L/2:

1 3

A(rt) = T3/2 Z Z Am xSk exp(i2rk - r/L) (8)
r=2 k
3
1 )
go(r,t) = 7573 ?L:; Zk: ge k2Skx exp(i2rk - r/L) (9)
SkA = S_kX (10)

The values A = 2, 3 are used to denote the two orthogonal components of
transversal waves, while A = 1 is reserved for longitudinal waves that do not
occur in Coulomb gauge. The factors sy are linearly independent unit vec-
tors that define one of the possible two orthogonal polarizations of the wave
component k:

2 2 2 _
SkA = Skaz€z + Skay€y + SkAz€z  Skar T Skay T S, =1 (11)

1Section 3.4 follows closely § 51 of vol. 2 of the book by Becker (1963, 1964 a) to facilitate
comparison with the conventional theory.
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The use of sy, in both Eq.(8) and (9) does not imply that Ay, and g have the
same direction, only that they are composed with the same vectors sky. The
terms k and r stand for the vectors

k= kze; + kye, + k.e,, kg, ky, k, =0, £1, £2, ...
r = ze; + ye, + ze, (12)

and the sum over k in Eqgs.(8) and (9) represents the three sums over kg, ky,
and k,. We use the factor L™3/2 rather than L=3 for normalization since the
square of this factor will be needed. Equation (10) states that the polarization
remains unchanged if we replace k by —k or kz, ky, k, by —k;, —ky, —k,. With
this choice for the polarization we can make the right sides of Egs.(8) and (9)
real like the left sides by demanding that a change of the sign of k produces
the complex conjugate:

Am—ix = Am—kx = Af ko = Ao
* *
Ge,~kX = Fe,~kA = Je kA = o kA (13)

The divergence of Ay, (r,t) is zero according to Eq.(6)

0A A 0A
divA £ = ma my mz _
v Am(r,?) oz T Oy T 0
oM o
= 572 Z Z Am kr(Skazkz + Skayky + Skazk:) exp(i2rk - r/L) (14)
A=2 k
which implies
Sk k=0 (15)

The waves are thus transverse and A can have only two values as assumed in
Eqgs.(8) and (9). Substitution of Egs.(8) and (9) into Eq.(6) yields:

2
Amir + wWiAnn = — 7 Jekr

wp = (2mck/L)? = (2mc/L)* (k% + k2 + k2) (16)
The general solution of the homogeneous equation is given by:

A kr(t) = B xa€™*t + Cip re " (17)

A particular solution of the inhomogeneous equation is obtained by the method
of variation of the constant:
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Am,k)\(t) = B,K,,]()\(t)ewkt + Cm’k,\(t)e_wkt (18)
Differentiation 02 A, xx(t)/0t? and substitution into Eq.(16) yields:

a 8‘Bm k/\(t) ’kat + 6Cmvk>\ (t) e—’i.wkt
ot ot ot
. OBm i (t) . OCh xA(t) _; VA
-Hwk( 6lt‘>‘( )e Kt 611:)\( ) k’> = —‘c‘ge,kA (19)

This equation is satisfied if the following two equations hold:

8-Bm,k/\(t)

i aCm kA (t) -1
Twyt ’ Twit —
T e 0 (20)
a-BITI kA (t) zwkt aCm k)\( ) —’kat — Z
—Bt ot == o Ge kX (21)

Addition and subtraction of Eqs.(20) and (21) yield By xx(t) and Cpy xa(t):

. Z —i
Bua(t) = -H2cwk / Gexre”ridt (22)

VA .
m t)=—i e Bt
C Yk,\( ) ’L2 - /g k)€ dt (23)

The particular solution of Eq.(17) becomes

Z I ~
Am,k)\(t) =Z2Wk (e“‘"‘t/ge,k,\e ktdt _ e Wkt/ge,k,\ew“tdt) (24)

and the general solution of Eq.(16) equals

Am i (t) = B €™t + Cr g™ %!

(eiwkt/ge,k/\e—iwktdt_e—iwkt/ge,k)‘eiwktdt) (25)

where By, ka and Cp ky are two arbitrary constants.
For Eq.(5) we obtain equivalent equations by exchanging the subscripts e
and m as well as the factors Z/c and 1/Zc:

Qka

1 ,
(T, 1) =T Z Ae xaSkx exp(i2rk - r/L) (26)

3
. 5
Em = 732 Z; zk: gm,krSkx exp(i27k - r/L) (@7)

SkA = S_kA (28)
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Aeir = Aeer = ALk ns Imkr = ImkA = Im,—k,2 (29)
. ) 1
Aexr + wicAe kr = — o ImkA
wi = (2mck/L)? = (2mc/L)?(k2 + k2 + k2) (30)

Acr(t) = Bere™t + Ce gre ™kt

(eiwkt / gm,k,\e_iwktdt _ e—iwkt / gm’k,\eiwktdt) (31)

+22chk

We note that the system of functions {L~3/2 exp(i2rkr/L)} is normalized
as well as orthogonal:

L/2 L/2 L/2
L3 / / / exp(i2rk - r/L) exp(—i27j - v/ L)dzx dy dz = by
~L/2-L/2-L/2
=1 fork=j
=0 fork#j (32)

Let us calculate the energy U of the electric and magnetic field strength in
the volume defined by the limits of the integral in Eq.(32). From Eq.(2.5-12)

we get:
1 1 _» Z_,
2///<ZE +;H)dV (33)

Equations (3) and (4) yield with the help of Eqgs.(13) and (29):

E? <churlA +%—) <churlA +6A )

ot ot
6A. 5A:‘n 2 2 * aAm *
=5 o + Z4c*curl Ae - curl A + 2Z¢ i curl A (34)
OA,. OA* (2 2c OA,
2 _ e . e x __ CURe * |4
H? = TN + == 73 curl Ay, - curl A% 7 50 -curl A} (35)

Since only Ap, kx in Eq.(8) is a function of time according to Eq.(25) we obtain:

/ / A gy = Z > Ampadn o (36)

A=2 k
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The second term in Eq.(34) can be simplified by partial integration (Heitler
1954, p. 40):

/// curl A, - curl A* dV = f(A-e x curl A7),dO
+ /// A, -curlcurl A dV (37)

The surface integral vanishes either because our functions are zero outside the
box with dimension L*® or because they repeat periodically?. The last term of
Eq.(37) becomes with the help of Eq.(6):

/// A, -curlcurl A dV = // A, - (graddiv A? — V2AX)dV
—— [[] A (A - gn) v (@9

If we substitute Eqs.(26) and (29) we get a cancellation of the term g and
obtain the final result:

/// curl A -curl A2 dV = Z }: Ae JoAg (39)

A=2 k

The third term of Eq.(34) requires curl A%. Using Eqgs.(26), (11), and (12)
one obtains:

curl A =

3
L°/ ZZ e ;A [(Skavkz = Siazky)es + (Suazkz — Skacks)ey
A=2 k

(Sk)‘zky - sk,\ykm)ez] exp(—i27rk . I‘/L) (40)

For 0A,, /8t we get from Eqgs.(8) and (11):

6 1 , '
= L3/2 Z Z Am g (Skacez + Skayey + Skaze;) exp(i2rk - r/L) (41)
A=2 k

The inner product of Eqs.(40) and (41) yields zero:

2The Fourier functions of Eq.(7) may be assumed to be zero outside the interval —L/2 <
z < L/2 or periodically continued. The assumption of periodic continuation is more usual but
in a science based on observation it seems to be preferable not to claim that every assumption
and every result is continued periodically to infinity since infinite distances in time or space
are beyond observation.
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OA
==, o 42
’ curl A} =0 (42)

The three terms of H? in Eq.(35) yield the following result in analogy to
Eqs.(36), (39), and (42):

6A OA
<dV = Z ZAe 0 AS 1 (43)
A=2 k
/// curl Ap, - curl A} dV = ZZ Am JaAL o (44)
A=2 k
% curl A} = (45)

Substitution of Eqgs.(36), (39), and (42)-(45) into Eqs.(34), (35) and then
into Eq.(33) yields the energy U:

3
1
=522 [ Amgoadl o + Vi Am oA k)
A=2 k
7 . .
+ 2 (Aegordt o + R AcgaAlin) | (40)
The two terms in the first parentheses have the same form as in the conven-
tional theory, but one must observe that A, k) contains the electric dipole
current density terms ge xx according to Eq.(25). The two terms in the second
parentheses are caused by the potential A, that is due to the magnetic dipole
current density g, according to Egs.(1.6-26) and (31).
We must rewrite the field energy U in the form of a Hamilton function
H(p;,q;) so that the equations of motion (16) and (30) follow from the equa-
tions

. oH 0K
pi = G = — 47)
J 6qJ J 6pj (
The variables Ap, x» and Ae iy cannot be used as coordinates in the Hamilto-
nian representation due to the restrictions imposed on them by Egs.(13) and
(29). But one may use the ansatz

1 i . N 1
Qmkx = 3 <Am,kA + w—kAm,k«\> O S i

3 (Am,kA - 'u—j;Am,k/\> (48)

to introduce the new amplitudes am xx as well as ay, _,, and to obtain

Amir = 0mior + 0 _jonr Amjor = —i0k(Gmjx — 03 _k2) (49)
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Furthermore, we write for ge xa:

1 1
hexx = 5 9eiker: hy_xxr= 59e.1cx

Gejer = hegon + RS _ix (50)

The conditions of Eq.(13) are now automatically satisfied while am,kx, @}, 1z,
he,kx, and k7, are no longer subject to any restriction. This suggests the
possibility of using @, x» for the Hamiltonian representation of Eq.(46). Sub-
stitution of Eqs.(48) and (50) into Eq.(16) yields

— i (Gmka = O —kr) + Wi (@mr + 8 _100) = Z(hexr + B k) (51)

and we get two differential equations of first order instead of one of second
order:

) ) Zc
Gm,kA T WWKkGm kx = —Re xx
Wk

Zec
- L . _ e,
A, —kn — WO, _xex = —i—hg _y5
Wk
Zc
Cx - . .
or  Gpm ~ Wkl kx = ~1—he i (52)

In analogy to Eqs.(48)-(52) we may write for A. and gm:

1 i . 1 i .
Tefer = 5 (Ae,k,\ + w—kAe,k,\) y Gg_ja = 3 <Ae,k>\ - Z);Ae,k,\> (53)
Ackr = Gekix + a¢ _iors Acjor = —iwi(Gesr — 0% _xy)  (54)
1 1
hma = 5 9m ks b —xx = 59m A (55)
) . ic
Oe k) + Wile k) = Z—hm,kA
wi
a1 — WKy = ——ig—h* (56)
e,k e, kA Z(I.)k m, kA

The field energy U of Eq.(46) may now be expressed in terms of am x»,
a:‘n’k,\, ek, and a;kk:

3 2
— 1 wk * * )
U= 5 E Ek [Z (am,k,\am,kA + 0, kA 0m,— kX

Zwl2( * *
+ _C Qe k2 Te k) + Qe ) Te,—kA
3 2
w 1
= Z -zf(— <§afn,k)\am,k)\ + Za;,k)\ae,k)\> (57)
=2 k

A=2
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The terms with subscript m are separated from the terms with subscript e.
This is a result of Eqs.(42) and (45), but more fundamentally it is due to
Eqs.(5) and (6). The potentials A, are due to the electric current density g
and the potentials A, are due to the magnetic current density gn. There is no
interaction and the Hamiltonian formalism cannot change that. We may thus
represent Eq.(57) by the sum

H=Hn+H, (58)

and the canonical coordinates according to Eq.(47):

iwk

dmj = Gm k), Pmj = Za:n,k)\ (59)
iZwk "

Gej = Ge ks Pej = ——lc (60)

The functions H,, and H, become

3 3 2
. W &
o= i3 Vrtospns = 18 Bstma (1)
A=2 k A=2 k
3

3
) Zw?
He=—i Z Zkaejpej = Z Tka:,k,\ae,k/\ (62)
A=2 k A=2 k
and their sum equals U of Eq.(57).
A simplification will be achieved later if we replace the variables a,, xx and
Qe by new variables b, k and be xa:

Zeh\ V2 ch \ /2
Omxr = (E) b, Qe o\ = (Zwk> be kA (63)

Equation (57) is rewritten:

3
U= Z Z P (b 1cAbm,kex + Bg 13 De,kx) (64)
A=2 k

The canonically conjugate coordinates and momenta are now:

Qmj = bm,k)\, Pmj = ihb:n,kx (65)
Qej = beka, Dej = ihb:,k)\ (66)

The transition from the original Maxwell equations to the modified ones
that yield solutions satisfying the causality law requires that one (a) writes
the conventional equations with subscripts m or e added and (b) uses the
inhomogeneous equations (16) and (30); the transition to the limits ge x» — 0
and gmkx — 0 may be made at the end of the calculation.
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3.5 STEADY STATE QUANTIZATION OF THE MODIFIED RADIATION FIELD

We rewrite Egs.(3.4-61) and (3.4-62) with amkx and aexy replaced by
bm xx and be k» according to Eq.(3.4-63) and obtain the two Hamilton functions
in the following form:

3
He = Z Z P, 10 bm ko (1)
=2 k
3
= Z Z kb:,k)‘be,kx (2)
A=2 k

For quantization we replace the complex amplitudes b:n,k)\’ bm.xx and b;’k)\,
be xx by operators b;,k,\? b i and b;':k)\, boxa:

. 1d a 1d
m,k)\_)b;,kz\ \/_( C_EdC> mk,\—>bm,k,\=ﬁ<aﬁ'+'&d—g> (3)

1 1d 1 1
b* — + T e— — —— — — = — -_—
e, kA be,k)\ \/§ (ac o dC)’ be»k)\ be,k/\ \/5 (ac + o dc) (4)

These equations may be written with b* and b interchanged:

1 1d 1 1d
St = - * - - -
bm,k)\ bm,kA \/-2— (C!C P dC)’ mk\ m, kA \/§ <Ol< -+ o d<> (5)

1 1d * - L 1d
ber = bl = V2 <a( B EEZ)’ cior = bejer = V2 (a( Ta dC) ©

We have left out the subscripts m, kA and e, kA from the differential oper-
ators in order to simplify them. The choice of one of the two possible replace-
ments is a well known ambiguity that will be discussed briefly in Section 4.4
(Becker 1963, 1964a, vol.2, §52; Heitler 1954, p.57). Here we choose Eqs.(5)
and (6). Their substitution into Egs.(1) and (2) yields:

Z h‘”kbm kA m kA (7)

i

A=

[

> e 3 bes (8)
k

The vector potential Ay, (r,t) of Eq.(3.4-8) becomes an operator if we
replace the coefficients Am xx by @m,xx +aj; _y, according to Eq.(3.4-49), then
make the substitution of by kx for am ik according to Eq.(3.4-63), and finally
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replace the coefficients b\, and bny,kx by operators b;k,\ and b, 1\ according
to Eq.(5):

2 3
An(r,t) = Zeh\ Y ZS -1/2(p+  gizmkor/L
m\lyl) = I3 kAW m, kA
k

+b

m, kA

e-—i‘27rk~r/L) (9)

The vector potential A.(r,t) of Eq.(3.4-26) is also rewritten with the help
of Eqs.(3.4-54), (3.4-63), and (6). The main difference is that Z is shifted from
the numerator to the denominator in Eq.(3.4-63):

ch \Y/2 3 ~ .
Ac(r,t) = <_—ZL3> ZZSM“’klm(bzk,\eﬂ ker/L

A=2 k
+ be—’k/\e—iZﬂ’k-r/L) (10)
If Egs.(7) and (8) held generally and not for the steady state only, their

quantization would require that we add a function ®(r,t) on the right side and
replace H by —(h/t)0®(r,t)/0t:

3
KO,
YO by b 0B = Hn B = e (11)
=2 k
3 h0®
) by bl e = He®e = — = —= (12)
Fe s ’ ’ i Ot

For the steady state case we must rewrite the right sides of Eqs.(11) and (12)
for a sinusoidal time variation of ®,, and ®,:

&, (r,t) = O (r) exp(—iEmt/h) (13)
Do (r,t) = Pe(r) exp(—iket/h) (14)
The general Eqgs.(11) and (12) are then replaced by equations with eigenfunc-
tions or eigenvectors ®,, or ®. as well as eigenvalues E,;, or E,. We emphasize
that the causality law has no meaning in the steady state and that the transi-

tion from Eqs.(11) and (12) to (15) and (16) implies a major reduction of the
physical content:

3
Z hnb ia b ar @m = Hin®m = B (15)

>

D hunh b @e = He®e = Eoe (16)
A=2 k
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Consider a certain term of the sum of Eq.(15) for specific values of the
subscripts k and A:

- Em k2
b bt O = ==, 17
m, kA" m kA ﬁwk ( )

Using the explicit differential operators of Eq.(5) we obtain

1 1d
= (I)m
ﬁ( “ta dcﬂ ( > ]
2.0 1 d? Emkar 1
(- G )en=2(222 - Don=2hsatn  (19)
Emix 1
Amkxr = R, 2 (19)
With the substitution
E=aof (20)

we obtain a standard form of the differential equation of the parabolic cylinder
functions

d?®,,

dEZ + (2>‘m kx ™ 5 )Q) (21)

with the solution

B = e /2 (¢) (22)

where x(¢) satisfies the differential equation of the Hermite polynomials?

& - 25 + 2 x=0 (23)
d§2 df m,kA
Solutions for ®,, that vanish for £ — +oo exist for Apxy =0, 1, 2, ... only.
Using Eq.(19) we obtain:

2Amm_2< m, kA —1> =2n

w2
1
Emxx = wink (n + §> , n=0,1, 2, ... (24)

For n = 0 we obtain the so-called zero-point energy of the electromagnetic
field in vacuum. The parameter A has the two values 2 and 3 but k has

1See, e.g.: Becker 1964a, b, vol.1I, §15; Landau and Lifschitz 1966, vol.III, §23;
Abramovitz and Stegun 1964
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denumerably infinite values according to Eq.(3.4-12) and the total zero-point
energy becomes infinite.

We quote from the renowned book by Berestetzki, Lifschitz, and Pitajewski
(1970, 1982; § 3. Photons, second paragraph): But already in this state each
oscillator has the ‘zero-point energy’ 2w fh/2, which differs from zero. The
summation over the infinitely many oscillators yields an infinite result. We
meet here one of the ‘divergencies’ that the existing theory contains because it
is not complete and not logically consistent.

We read further (§ 1. Uncertainty Relations in the Relativistic Theory, sec-
ond paragraph from the end): The lack of complete logical consistency shows
in this theory by the existence of divergent expressions when the mathemati-
cal methods are directly applied; however, there are unambiguous methods for
the removal of these divergencies. Nevertheless, these methods have largely
the character of semi-empirical recipes and our belief in the correctness of the
results obtained in this way is based in the end on their excellent agreement
with experiment, but not on the inner consistency and the logic lucidity of the
basic principles of the theory.

Becker has the following to say: The ground state represented by [n = 0]
corresponds to vacuum; it still contains zero-point vibrations, however, as in
the case of the linear oscillator. Since we are dealing with an infinite num-
ber of oscillators the mean-square values of the field strengths, E?, H2, must
also be infinitely great. A completely satisfactory treatment of this anomaly
does not yet exist?. The anomaly is directly associated with divergent inte-
grals: This divergence has for long been an insuperable difficulty of quantum
theory; it has not yet been completely overcome, but has been ingeniously
circumvented through the concept of the mass renormalization of the electron
(Kramer, 1945)°.

A detailed historical review of the problem of infinities in quantum field
theory, listing many references, may be found in a book by Weinberg (1995,
pp. 31-48).

If we had used Eq.(16) instead of Eq.(15) we would have obtained again
Egs.(17) to (24) but the subscript m would have been replaced by the subscript
e. The zero-point energy would again be infinite.

Let us see how we ended up with a theory yielding infinite energy. The
transition from Eqs.(11) and (12) to (15) and (16) reduced the general theory to
a steady state theory. But something more happened. In Section 3.4 we had the
current densities gy, and ge in Egs.(3.4-5) and (3.4-6). These current densities
lead to the terms gex» and gm xy in Eqs.(3.4-25) and (3.4-31). Implicitly they
are contained in the terms by ) to bexa of Eq.(3.4-64). But they are not
contained in the operators b:;'k/\ to by of Eqs.(15) and (16). If one chooses
gm = 0 in Egs.(1.1-9) and (3.4-2) one obtains equations that yield divergent
integrals for the associated field strength in transient solutions; this means the
magnetic field strength for electric excitation and the electric field strength

2Becker 1964a, vol. I, § 52, footnote p. 311
3Becker 1964a, vol. II, § 53, p. 319, small print following Eq.(53.9)
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for magnetic excitation. We have pointed out at the beginning of Section 3.4
that a possible transition g, — 0 or g — 0 must be made at the end of
the calculation to avoid divergent integrals. If the classical theory leads to
divergencies one cannot expect that the quantized theory will do any better.

There is a second analogy with the classical Maxwell theory without mod-
ification. In Eqs.(1) and (15) we have functions, operators, or constants with
subscript m while in Eqs.(2) and (16) we have the same terms but with sub-
script e. One might say there are electric photons and magnetic photons with-
out any connection with each other. A similar situation existed in the classical
theory when transient solutions for electric and magnetic field strengths were
derived. Stratton (1941), who seems to be the only author of a text book that
attempted to obtain such transient solutions, arrived at electric field strengths
due to electric excitation and magnetic field strengths due to magnetic exci-
tation without any connection between the two. It took more than 40 years
before the modification of Maxwell’s equations permitted the derivation of an
electric field strength plus an associated magnetic field strength due to electric
excitation or a magnetic field strength plus an associated electric field strength
due to magnetic excitation.



4 Quantization of the Pure Radiation Field

4.1 RADIATION FIELD IN EXTENDED LORENTZ GAUGE

We start from Eqgs.(1.6-26)—(1.6-29) and assume there are neither electric
nor magnetic charge densities p, and pp. From Eqgs.(1.6-32) and (1.6-33) we
get in this case

$e(2,Y,2,t) = dm(2,y,2,1) =0 1)
and only Egs.(1.6-26), (1.6-27) remain:

1 0%A 1
2 e _
\Y% Ae - ZE atz - ——Z_Cgm (2)
1 6%A,, Z
VAL - T am - o% 3)

The current densities g, and g, can refer in a vacuum—which is assumed
by the concept of a ‘pure radiation field’—to dipole and higher order multipole
currents only. We have derived in Sections 2.1 to 2.3 a variety of equations
linking g. and g, to the field strengths E and H. Here we are going to use
the very simplest approximations g, = opE and g, = 2s,H that one can
derive from Egs.(2.1-19) and (2.2-7) for small values of Tmp in order to obtain
equations that can be solved analytically. The text following Eqs.(2.1-29) and
(2.1-31) explains this some more. Better approximations will be developed in
Section 6.10. To reduce subscripts, we write ¢ = ¢, and s = 2s;. Using
Egs.(1.6-11) and (1.6-17) we may then connect the current densities g, and g,
with the vector potentials A, and A.:

c OA.
gm=sH=s (E curl Ay — —8T> (4)
g.=0E=—0¢ (churl A+ aaitm-) (5)

The current densities in Egs.(2), (3) may be eliminated and two equations
containing the vector potentials Ay, and A, only are obtained:

113
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2y _1O0%A. s (c _aAe>_
VA, = 7.\ 3 curl A, ) = 0 (6)
1 0%A, z 0Am
V2Am - -Cia—a‘tT e UT' (ZCCUI‘lAe + __at_) =0 (7)

The potentials A, and A, are connected in these two equations while they are
independent for g, = g, = 0 in Eqs.(1.6-26), (1.6-27). Hence, we can expect to
obtain electromagnetic photons instead of independent electric and magnetic
photons as in Section 3.5.

In Cartesian coordinates we write the vectors A, curl A, and V2A in
component form with the unit vectors e;, ey, and e;:

A= Aze, +Aje, + Ase, (8)

_ (DA, DA, 0A, OA, 0A, B 3Az>
curlA_(@y 8z)em+<6z 6m>ey+(0x ay ) ©)
8%4, 024, O%A 024, 0?4, 02%A
24 T T T Y Y Y
VA= < 0z ' oy? T >ex ( oz2 = 0y? = 0z2° )ey

+ %A, + 0%A, + 32Az> e. (10)
azr? ' oy 022 )

+

With the help of these relations we may rewrite Eqs.(6) and (7) in Cartesian
coordinates:

A | Ao | PAw 1 0Me
Oxz? oy 022 2 o2

S r [ aAmz aAmy> 6Ae:t ]
— |= - - =0 11
*Ze L Z < Oy 0z ot | (1)
02 Aey + 0% Aey + 0% Aey a i82Aey
Ox? oy? 822 Ot?
s [c [0Amzs OAm. ) 0Aey ]
== - - =0 12
+ Zc | Z ( 0z Oz ot | (12)
%Ay 0%A., 0?4, 1 0%A.,

Ox? + Oy? 022 2 ot

S & 6Amy OAmz 6Aez:l
s (e _ _ =0 1
+Zc{z< 5z oy > bt (13)

PhAms | PAne | PAne 1 P Aug
Ox? y? Hz* ¢ o2

4 0A., 0Agy BAm,;]
- = ez _ =0 14
c [Zc( Oy 0z ) LT (14)
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PAmy 1 0%Any

my my L
522 T a2 T 62 & oe
0Z [ (0Aw OAu)  OAmy
_ — o 1
c _ZC< 0z 6a:>+ ot ] 0 (15)

P hms | P An: | PAns 1 Phus
Ox? Oy? 922 c? o2
[ € er ‘AmZ
oz Zc(aAy 04 >+a

¢ or oy ot

]:o (16)

Let us simplify these equations for a planar wave propagating in the direction
of y. ARl derivatives with respect to  and z must be zero:

Ohey OAey Oy 0Ay O0Aey OAes

6m=6x=6m=6z=62=8z=0 (7
OAnmy  O0Apmy  O0Anm: 0Amg  0Any  0Am. 0 (18)
or = ox 98z 9z 0z = 0z
Equations (11)—(16) are reduced to the following form:
%Ay 10%Aex s [ cOAm, O0Aes
57 & o +EE<“Z‘ 3y ot )‘0 (19)
PAhey, 1024y s OAyy
oyt 2 02 Zc ot =0 (20)
92 A, 1 824, 8 [¢cO0Amy OAe,
o2 & on “Z('Z oy | ot >‘0 (21)

PAme 1 0%Ame 0Z [ OAer  OAms
o2 2 o2 -T<ZC Oy + ot )*0 (22)
P?Amy 1 2Any  0Z 0Amy
o2 2 o2 ¢ ot =0 (23)
?Am, 10%Am, 0Z [, OAw OAm.
By & op _(ZC oy ot )‘0 (24)

If we further specialize to a transverse electromagnetic (TEM) wave we may
demand that E, and H, are zero. This implies the following conditions for
the vector potentials A, and A,, according to Egs.(1.6-17) and (1.6-11) for
$e = ¢m = 0

B 0Aecz  0Ac\ OAmy

By = ZC( 9z oz )' ot O (25)
_ ¢ 8Am:c aAmz aAey —

Hy‘z(az a am>_ ot 0 (26)
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Due to Eqgs.(17) and (18) these two equations are reduced to

0Amy

ot 0 @7)
0Ay
=0 (28)

Equations(20) and (23) assume the form

024, 1 0°A.,

oy & o 0 (29)
PAny 1 0%Amy
o2 2 o 0 (30)

since Egs.(27) and (28) do not imply that the second partial derivatives with
respect to t are zero. We make the following substitutions where the subscript
v alludes to ‘variable’:

Az = ez = Aev: Amz‘ = _Amz = Amv (31)

Equations (19) and {21) as well as Eqgs.(22) and (24) are reduced to one equation
each with the variables Ao, and Ay:

62Aev _ _1_62Aev _ i _c_aAmv + 0Aey =0 (32)
Oy2 ¢ Ot2  Zc\Z 0y ot )~
PhAny 1 0PAny 0Z 0Aey | 0Any
G2 2 o ‘T(ZC oy | ot >'0 (33)

The comments about polarization made in Section 1.2 following Eq.(1.2-
10) apply again if E,, H,, E., H,, E, and H are replaced by Aez, Amz; Aez,
Az, Aev, and Ay,

For Egs.(29) and (30) we have the following general solution for ¥ > 0 and
t > 0, where feo, fe1, fmo, and fy1 denote arbitrary functions:

Aey(y’t) = AeOfe(y - Ct)a Y2 0,t> 0 (34)
Amy(yy t) = AmOfm(y - Ct) (35)

These solutions hold for excitation functions or boundary conditions fe(0,t)
and fi,(0,¢) at the plane y = G for all times ¢ > 0 as well as initial conditions
fe(y,0) and fin(y,0) for t = 0 at all locations y > 0.

In order to separate the variables Ae, and A, in Egs.(32) and (33) we
differentiate Eq.(33) with respect to y, express dAmv/9y by Eq.(32), differen-
tiate it as often as needed with respect to ¢ and y, and substitute into the
differentiated Eq.(33). We obtain:
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oV, 10%W. 1 s\ OVe

& OB _"(”Z+E) TG (36)
0%A., 1 0%Aey
o 2oz - Wt 7

The dimension of Ay is As/m and the dimension of V, is As/ m3, which is
an electric charge density.

With the substitutions Aey « Ay, ¢/Z <« Zc, s < 0 one may transform
Eq.(32) into Eq.(33) and vice versa. Equations (36) and (37) are then replaced
by:

Ve  10%n 1 s\ OV,
Z m_ - m_ - ZyIm o = 3
By 2 o2 ¢ ( Z Z) ot~ o%Vm (38)
0% Amy 1 PhAny
ayz _-0_2 8t2 - m(yat) (39)

The dimension of A, is Vs/m and the dimension of Vy, is Vs/m?®, which
is an hypothetical magnetic charge density.
From the various normalizations for ¢ and ¢ discussed in Section 1.3 we
choose the one of Eq.(1.3-10)
0=t/T, (=y/cT (40)
and rewrite Eqgs.(36) and (37):

PV Ve ove

2y, —
54—2‘—39—2’—/’1 50 —-paVe=0
pr=cT(0Z +8/Z) = T (op + s¢), pi = c*T?0s {41)
2Aev 2 ev
Tl _ Tl _ apoy(c,g) (42)

acz 062

Equation (41) is equal to Eqs.(6.1-1) or (6.4-6) if V, is written for E and the
normalization of Eq.(1.3-7) is used as one may infer from Eqgs.(1.3-11) and (1.3-
13). Hence, everything said there about the electric field strength E applies to
the auxiliary function V,. Equation (42) is the inhomogeneous wave equation
shown by Eq.(3.1-40) and solved by Eq.(3.1-44). We obtain as solution of
Eq.(42):

C2T2 ] C+(0-6")
AanlG,6) = -5 / ( / V;(C’,O’)d(’)de’ (43)
0 X—(6-¢)
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The variables ¢ and 6 of Ve((,8) in Eq.(42) have to be replaced by ¢’ and ¢’
when Eq.(43) is used.

For the variable Vi, (y,t) of Eqs.(38) and (39) we obtain the following three
equations in analogy to Eqs.(41)-(43):

Ve Ve OV

5er " o Mg~ PiVm =0 (44)
PAmy  PAmy g
T&'_W“CTVm(Cae) (45)
6 , ¢+(6-6")
272
Amv((,0) = - 5 / < Vm(C'ﬂ')‘K') ¢’ (46)
0 Ve-(3-89)

Again, ¢ and 6 in Eqs.(44) and (45) must be replaced by ¢’ and ¢’ when Eq.(46)
is used.

If Ay (¢, 0) is found from Eq.(43) for certain boundary and initial condi-
tions, one may obtain the component Amy(¢,8) of an associated potential from
either Eq.(32) or (33). Consider Eq.(32) first:

Aee  0%A 1 0Ae zZ
Amv(<79)—Zps/< 5T 902 5 00 )dC, Ps =% =% (47)

A second expression for Any(¢,8) is obtained from Eq.(33) by treating this
equation as an inhomogeneous equation for Ay, with a known term 8A.. /0y

or 9Aey/OC:

6214mv 62Amv a14mv 614ev
acz o Poag CZPae (48)
oT Z 7 ou 1
= = — = —= = = -7 4
po = ZTco P Ps scT ST’ PsPo o o2 ( 9)

The integration of Eq.(47) is much simpler than the solution of Eq.(48), but we
cannot ignore Eq.(48). Since Eqs.(47) and (48) must yield the same result for
Anv(¢,8) we generally need the solution of Eq.(48) to determine integration
constants.

Alternately, if Any(¢,0) is found from Eq.(46) for certain boundary and
initial conditions one may obtain an associated potential A.,({,6) from either
Eq.(32) or (33). First we get from Eq.(33):

1 82Amv 82Amv 8AmV
Aev(Caa) = m‘/( 8(2 - 862 — Po 90 )dc (50)

The second expression for Ae,((,6) is obtained from Eq.(32) by treating it as
an inhomogeneous equation for Ae, with a known term 8Amy /0y or 0Am/0¢:
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Ay PAey  10Ay _ 1 0Any
a¢? 062 ps 00~ Zps OC
Again, one must generally obtain A.,(¢,8) from both Eq.(50) and (51) in order
to determine the integration constants.
If we denote the solution of A., derived from Eq.(43) by Aeve and the
associated solution obtained from A, via Eqs.(50) and (51) by Aeym We obtain
the general solution of Aey as the sum

(51)

Aev(c’ 9) = Aeve (C, 9) + Aevm(Cv 0) (52)

Similarly, if we denote the solution derived for Ay from Eq.(46) by Apym and
the associated solution obtained from Ae, via Eqs.(47) and (48) by Anve we
obtain the general solution of Ay as the sum

Amv(cae) = Amvm((a 0) + Amve(c, 0) (53)

This means we can choose initial and boundary conditions independently for
Aeve and A m, but the associated potentials Ayve and A.vm are always auto-
matically excited with Aeve OF Ajvn. We can never excite A., without exciting
A, and vice versa.

For a first solution of Eq.(41) we assume as boundary condition at { = 0
a step function

Vo(0,6) = VeoS(6) =0  for 6 <0
=Veo forf=>0 (54)

It is usual to assume a further boundary condition for { — oo

Va(00, 8) = finite (55)

We cannot use it since 8 and ¢ will be restricted to the finite intervals 0 < 6 < 1
and 0 £ ¢ < 1. An alternative condition will be introduced presently.

The boundary condition of Eq.(54) uses a step function that is not quadrat-
ically integrable. This may cause concern that an infinite energy is introduced,
but there is no such problem. The boundary condition of Eq.(54) excites an
electromagnetic wave with finite energy. Of course, one can easily eliminate the
concern about quadratical integrability by subtracting from V,05(6) a delayed
step function VeoS(6 — 61) and thus replacing the step function of Eq.(54) by
a rectangular pulse. We shall discuss that in Section 4.6.

We turn to the initial condition(s). As initial condition at # = 0 we assume
the relation

Ve(¢,0) =0 (56)

but observe that this condition implies Vo(¢,8) = 0 for 8 < 0 due to Eq.(54).
Hence, the potential A derived from A., will be zero for # < 0. We note that
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a function of time that describes a physical process subject to the causality law
must be zero before a finite time?.

If Ve (¢, 0) is zero for all values ¢ > 0, its derivatives with respect to ¢ must
be zero too

0"Ve(¢,0)/0¢" =0
which produces with the help of Eqs.(56) and (41) the equation

o [0V.(¢,0
5@(_6(5 )+P1Ve(C,O))=0

that is satisfied by V,(¢,0) = 0 of Eq.(56) and the additional condition

AVa(¢,0)/080 =0 for=0 (57)

We assume that the general solution of Eq.(41) can be written as the sum
of a steady state solution F({) plus a deviation w(¢,6) from it:

Ve(¢,0) = Veo F(C) + w(¢, 0)] (58)
Substitution of F(¢) into Eq.(41) yields:

d?F/d¢: — piF =0
F(C) = Ayoe™# + Ay ef* (59)

The boundary condition of Eq.(55) would demand A;; = 0; the value
Ao = 1 would then follow from Eq.(54). Since we cannot use Eq.(55) we
substitute the following reasoning: The function F({) represents an amplitude
and F?(¢) an energy density. Since the energy comes strictly from the boundary
¢ = 0 the energy in a certain interval A( cannot increase with increasing
values of ; hence, A;1; must be zero. Alternately, if the energy is fed in at the
boundary ¢ = 1 one must choose Ajg equal to zero. This is an issue introduced
by the replacement of infinite intervals for time and space by arbitrarily large
but finite intervals. A more general discussion will be found in the small printed
text following Eq.(75) below. One may also claim that we do not need the most
general solution but only a sufficiently general solution, which is provided by
the choice A1 = 0. Since A;; = 0 implies A;o = 1 we write:

F(¢) =eP2¢ (60)

The introduction of F({) transforms the boundary condition of Eq.(54)
for V. into an homogeneous boundary condition for w, which is the reason for
using Eq.(58):

IMathematicians use sometimes the expression causal function for such functions.
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Ve(0,6) = Veo F(0) + w(0,6)] = Veo  for 6 >0 (61)
w(0,0) =0 for>0 (62)

The boundary condition of Eq.(55) becomes
w(oo, #) = finite (63)
Again, the use of a finite interval 0 < ¢ < 1 prevents us from using this

boundary condition. It turns out not to be required anywhere. The initial
conditions of Eqgs.(56) and (57) yield:

F(¢) +w(¢,0) =0, w((,0)=—e ¢ (64)
ow(C,0)/00 =0  for6=0, (>0 (65)

Substitution of Eq.(58) into Eq.(41) yields for w((, 6) the same equation as for
Ve(¢,0):

0*w/0¢? — 8%w/060% — p10w /06 — prw =0 (66)

Particular solutions of this equation denoted wy((,8) are obtained by means
of Bernoulli’s product method for the separation of variables

wx(¢,0) = ¢(C)¥(6) (67)

1% 10% ;o

which yields two ordinary differential equations

d?¢/d¢? + (2mk)29 =0 (69)
d*/df® + prdip/d6 + ((2mk)? + palip = 0 (70)
with the solutions
d(¢) = Aggsin 2wkl + Aoy cos 2wk (71)
Y(0) = Aso exp(m8) + As1 exp(720) (72)

The coefficients y; and 75 are the roots of the equation
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Y+ p1y + [(2mk)% + p§l =0

1

7= 5l-p1+ (o —d)V?  for d® < p}
1

Y2 = 5l=p1 = (] = d)!/?]
1 .

1 =5l +id® - p})? for & > pf
1

12 = 5[=p1 - i(d® - p})M?
p1 =T (op+ s€), d? = 4[(2mk)? + p3], p2 = *T?0s (73)

The boundary condition of Eq.(62) requires Ay; = 0 in Eq.(71) and the
particular solution w(¢,8) becomes:

wy({,0) = [A1 exp(110) + Az exp(726)] sin 2ws( (74)

The solution w (¢, 8) is usually generalized by making A; and A, functions
of k, and integrating over all values of x as shown by Eq.(6.1-26). From this
point we follow a path that is different from the usual one.

We may generalize w, of Eq.(74) by making A; and A3 functions of x and
taking the sum of denumerably many values of . In essence the Fourier sine
integral of Eq.(6.1-26) is replaced by a Fourier sine series. The constant term
and the terms multiplied with cos 2rk¢ of the usual Fourier series have been
eliminated by the boundary condition of Eq.(62). A Fourier series requires a
finite interval for ¢ in Eq.(74) which we must define. This problem does not
occur for the integral of Eq.(6.1-26) since the interval of the sine transform
always runs from zero to infinity for both ¢ and x as shown by Eq.(6.1-30). We
choose the finite interval for ¢ to be

0<({=y/cT<1 (75)
where the time interval T is arbitrarily large but finite.

Equation (75) makes it impossible to use the boundary conditions of Egs.(55)
and (63). Instead we had to use the argument in the text following Eq.(59) to re-
place Eq.(55); no replacement has been needed for Eq.(63). A completely different
possibility is to replace the normalization § = t/T and { = y/cT of Eq.(40) by the
normalizations 8 = t/At and { = y/cAt, where At is an arbitrarily small but finite
time interval. We then get the finite intervals

0<t<T, 0<y<cTor 0<OHLT/AL, 0K L<T/At, T/At=N>»1
and we can justify A1 = 0 in Eqgs.(59), (60) with Eq.(55) rewritten Vo(N,0) =

finite and { — N > 1. We consider this an important improvement of the theory
developed here since it eliminates both infinitely large time and space intervals as
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well as infinitely small or infinitesimal intervals dt, dr. Both “infinitely large” and
“infinitesimal” are beyond observation and can exist in a science based on observation
for mathematical convenience only. We note that the upper limit of k in Eq.(76) below
becomes very large but finite rather than denumerably infinite for a finite value of
At. Since the largest value of k will represent the number of photons, an arbitrarily
large but finite value for it is clearly preferable to either a nondenumerable or a
denumerable infinite value.

It is known that the use of arbitrarily small but finite intervals At, Ar produces
changes in relativistic quantum mechanics but not in the nonrelativistic theory (Har-
muth 1989, pp. 236-303; 1992, pp. 197-269) and it is very satisfying that our theory
suggests to use At, Ar. But we must limit the scope of this book and we sidestep
the use of At. Hence, we use the normalization § = t/T, { = y/cT and the intervals
0<6<1,0<¢ <1 We hope to elaborate the use of § = t/At, { = y/cAt in a
future book.

It is usual to continue a Fourier series outside its finite interval of defini-
tion periodically to 4oo, but there is no need to do so. Since we defined the
boundary condition in Eq.(54) for { = 0 we are not interested in the interval
¢ < 0 and can ignore it2. Similarly, we can ignore the interval ¢ > 1 since we
can choose T" as large as we want. A problem would only occur if we let T go
to infinity, but this would take us beyond the realm of physics since we cannot
make observations at an infinite distance in space or time.

We generalize Eq.(74) by a sum with denumerably many terms of the
variable « and a finite interval for the variable ¢:

o0
w((,0) =Y _[A1(k) exp(m16) + Az(k) exp(126)] sin 2mx¢ (76)
k=1
Mathematicians call the sum over non-denumerably many values of k rep-
resented by the integral of Eq.(6.1-26) a generalization of Eq.(76), but in terms
of physics it is an abstraction that may or may not be usable to simplify a
calculation. Simplification of calculations is the only justification for the use
of differentials dk, dz, dt, ... and non-denumerably many values for a physical
observable. No observation can distinguish a wave with wave number & from
one with wave number x + dx. A finite difference Ak is needed for an obser-
vation. We had discussed in the text following Eq.(3.4-6) that finite space and
time differences Az, At can be used instead of a finite interval or a box to
obtain a Fourier series instead of a Fourier integral. Hence, we will use finite
values Ax = 1 to obtain the Fourier series of Eq.(76) instead of the Fourier
integral of Eq.(6.1-26).
We need the derivative w((, 6)/06. Instead of the integral of Eq.(6.1-27)
we get now a sum with denumerably many terms:

%102 = Z[Al (k) v1 exp(m8) + Aa(k)ve exp(y20)] sin 2wk 77
k=1

2Instead of finding a solution in the interval ¢ > 0 and ignoring the interval ¢ < 0 we
could develop a solution for { < 0 and ignore the interval ¢ > 0. Equation (75) would then
have to be replaced by -1 < ¢ < 0.
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The functions A; (k) and Ags(x) can be obtained from Egs.(76) and (77)
with the help of Eqs.(64) and (65):

w(G,0) = Y_[Ai(s) + Ag(s)}sin2mn¢ = —e72¢ (T8)
k=1
Wé% 0) _ ;[Al(,g)»n + Ag(K)y2] sin 2mkC = 0 (79)

These two equations must be solved for the functions A; (k) and Az(x). To this
end consider the Fourier sine series in the following form:

1

ga(K) = 2/fs(C) sin 2k d¢ (80)
0

£:(€) =Y ga(k) sin 2k (81)
k=1

The boundary condition of Eq.(65) avoids a term cos 2rx(¢ in Eq.(78) and leads
to the Fourier sine series of Eq.(81) rather than the general Fourier series with
sine and cosine functions. The absence of a term cos 2mk¢ in Eq.(81) suggests
to use the real rather than the complex form of the Fourier series.

If we identify the function g¢(x) first with A;(x) + A2(x) we obtain from
Eqgs.(78) and (80)

1
A; (k) + A2(k) = —2/ e™P2¢ sin 27k d¢ (82)
0
while identification of gs(x) with A1(k)y1 + A2(k)72 of Eq.(79) yields

A1(k)m + A2(k)y2 =0 (83)
Using the tabulated integral (Gradshtein and Ryzhik 1980, p. 196, 2663/1)

. eP*(psingr — q cos qr)
PT dxr = 84
/e sinqr dz P (84)
one obtains from Eq.(82):
drr(l—er2) | dnkpy . 2p2
_ o =22 o 1
Axr) + Az(r) (2mK)2 + p2 (27K)24+p3 27k or P2
ik
e f >1
(@rR)7+4} .

pa = c*T%os (85)
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If we had used the Fourier transform of Eq.(6.1-30) rather than the Fourier
series of Egs.(80), (81) we would have obtained an upper limit of infinity in
Eq.(82) in analogy to Eq.(6.1-31)%; the solution represented by Eq.(6.1-42)
is readily extended to ¢ = 0 (Harmuth 1986, pp.54, 55). It is the use of
denumerably rather than non-denumerably many values of k that introduced
the arbitrarily large but finite time interval T and the very different results for
p2 € 1 and po > 1 in Eq.(85). We shall show in Section 6.8 that the choice
P2 < 1, which implies os — 0, leads to a strange result. Here we will persue
the result for pg = ¢T'\/as > 1, which implies that the conductivities o and
s cannot be zero. The choice py = 7 yields already e™*? < 0.001 and is thus
sufficiently large compared with 1 for results represented by plots.

We had discussed in Section 3.5 in the second paragraph from the end
that the current densities g, and g. cannot be chosen to be zero which is the
same as claiming o and s cannot be zero. We see here that this result follows
directly from the choice of denumerably many values of the wave number k.
If there were only monopole currents one could choose g, and g, zero in the
absence of charge carriers, since the conservation law of charge would preclude
their generation. But g, and g. can also stand for dipole current densities and
there is no conservation law that prohibits the generation of dipoles in vacuum.
Indeed we could not explain how a capacitor with vacuum as dielectric could
be charged without the help of an electric dipole current.

We return to the determination of the function w((,8). Equations (83)
and (85) are solved for A;(x) and Az(k):

drk(l —e™P2)

Ai(k) = —
= e v
2mr(l - e™??) ( p1 ) 2 72
= - 1+ for p7 > d
V] 1
(2mK)? + p3 (p? - a2)'/?
(1 — e=P ;
—_ 7(72"( 2e 2) <1_ zP12 1/2> for d? > p?
TR\ @ -
drr(l —e P2
Az(li) - ( . 2) Y1
(2m8)>+p5 -1
k(1 — e7#2) ( p1 ) 2
- 1- for p3 > d?
71 2 172 1
(2mK)2 + p2 (0% — d?) /
2mk(l — e™P2) ( ip1 ) 2 9
= - 1+ for d° > p
2 2 2 1
(2mK)2 + pd (d2 — p%)l/
p3 = c*T%0s, p1 = T (op + se), d* = 4[(27k)? + p3] (86)

IWe note that A;(k) and Ag(k) refer here to the solution of Eq.(41) while in Section
6.1 they refer to Eq.(6.1-1).
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Substitution of Eq.(86) for A;(x), A2(k) and of Eq.(73) for 71, 72 brings
Eq.(76) into the following form:

<K
w(c,0)= ~‘3_”19/2(1—6_"2){2 [(H ( y )1/2) exp (i - )20

k=1 P% —d? 2
—(p2 — d2)1/28
4 (1 _ 4! 1/2> exp (pt = d%) ] 27;“ sin 2mk(
(0 - @) 2 (2mk)% + 3
o . .
o ip i(d® — p})1/%6
tX IS (@ - p%)W) P
; (A2 _ 2\1/2
+ <1 + ! T 2) exp Ud” — pi) 0] 27;” sin 27m(}
N 2 (2k)” + p3
K = T|(op — se)|/4m, d® = 4][(27k)? + pd] (87)

The notation < K and > K in the limits of the sums means that the largest
integer smaller than K or the smallest integer larger than K should be used.

The exponential terms in Eq.(87) may be eliminated with the help of
hyperbolic and trigonometric functions:

<K
w((,0)=—2e~73(1 - e'ﬂz)[ Z(ch{(pf-dz)“?o/m

w=1

2_ g2\1/2
4 Pshl(pi=d®) 9/2]> 2K inomC

(03— a2)*/* (2rk)* + p}
£ 3 ((coslia? - 2072

w>K
| prsinf(d® — pD)V 2«9/2]> 21k
(a2 - p})!/? (2k)” + p

sin 2mk(

pr = T (op + se), p2 = c2T?os
& = 4[@ns)? + g, K = AT|(op — s€)|/4m (38)

Equations (60) for F(¢) and (88) for w(¢,8) define V¢({,8) according to
Eq.(58). In order to obtain A.,((,8) according to Eq.(43) we must replace the

variables ¢, 8 by ¢’, # and integrate over (', 8. First we integrate over (' and
denote the result by 0A4.,(¢,8")/06":

ev\S _ _C 0 ; ;o ,
o0 2 / [F(C) +w(¢',6')]d¢ (89)

(—(6-¢")
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Only two simple integrals need to be evaluated

(+(0-0)
e ge’ = ____1__(6—/32(C+9)ep29’ - e—pz(C—G)e—pzﬂ’) (90)
P2
¢(-0")
C+(6-0") 9
sin 2wk’ d¢’ = s_lg;r_zr_n_c (sin 2wk cos 2wk’ —cos 2mkf sin 2mkd’)  (91)
¢—(6-0")

and we obtain:

aAev(Ca 91) = C2T2‘/e0 {l(e—p2((+9)el’20l — e~."2(<—0)e_/729’)
o8 2 P2
<X 2 _42\1/2¢ 2]
—018/2(9 _ ,—p2 2 2\1/2q p1sh[(p7 —d*) /
+4e7 7% (1—e )[Z<Ch[(/’1 d*)>%0' 2]+ (o — @2)

k=1

sin 2 5 (sin 270 cos 2wk’ — cos 2wkl sin 2wkl")

X 2
(2mk)” + p3

S g1 PrSl(d? — )20 /2)
+§{(cos[<d2—p%>1/20/21+ @) )

sin 27k 5 (sin 2mkf cos 2wk’ — cos 2mrd sin 27m0')] } (92)

(2nr)” 1 o3

The terms in Eq.(92) have been written in a form that will facilitate the fol-
lowing integration over 6':

eV 9 7
Aev(€,0) / 04 a«(9€ do (93)

We recognize the following integrals over 8 in Eq.(92):
6
1 /(e—pz(c+0)ep26’ _ e—pz(c—e)e—pzf?’)dg/ = %e—pz((l — ch pgb) (94)
P

P2 2
0

0
Lq1(6,k) = /e“’le’/2 sh{(p? — d%)*/2¢' /2] cos 26’ do’ (95)
0
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4
Ly2(8,k) = /e_”le’/2 sh[(p? — d2)Y/2¢’ /2] sin 2nk6'] d6’ (96)
0
6
L13(8, k) = / e=P19'/2 ch[(p? — d2)/2¢' /2] cos 2mkb’ db’ (97)
0
6
L14(0,K) = / e=P28/2 ch[(p? — d2)Y/2¢ /2] sin 2k’ dO’ (98)
0
6
L5(0, k) = / e~ 2 gin[(d? — p2)Y/26' /2] cos 2kt d6’ (99)
0
6

Lis(6, k) = / =919 2 in|(d? — p2)/20/ /2] sin2mkf A6’ (100)

o

9
Ly7(8,k) = /e“’“"'/2 cos|(d? — p2)1/24’ /2] cos 2m k8’ 4O’ (101)

[=}

6
Lig(8,k) = / e~P18'/2 cog(d? — p2)1/26' /2] sin 2k’ db’ (102)
0

The integrals of Egs.(95)-(102) are either tabulated or can readily be rewritten
into a tabulated form. Equation (93) assumes the following form:

AEV(C) 0) = C2T2‘/eo (%B"PZC(l —ch p20)
2

<K

+ ?(1 — e P ){ ; [(Lm(e, K) + &i“—i%f%) sin 2mkf

- (LM((),n) + _p_l_lL"’(e’_f)z> COSQWNg] &;"4_
(03 - )/ (2rr)? + p}

o0

p1L15(0,K) \ .
+ [(Ln(G, k) + ——=———= | sin 2mk0
Z;( (d2 — p)"/?

p1L16(0, k) sin 27k
— (LlB(o, l‘i) -+ m) CcOs 27m0] m}) (103)

The constant Vi has the dimension As/m3 like V. in Eq.(37). We note
that all terms of the two sums contain products that represent propagating
sinusoidal waves:
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sin 2mk0 sin 27 k¢ = %[cos 2wk(¢ — ) — cos 2wk (( + 9)]

cos 2mk0 sin 2k = %[sin k(¢ — 8) + sin 27k(¢ + 8)]
In order to simplify Eq.{103) we choose K to be smaller than 1:

K = cT|(op — s€)|/an < 1, T < 2n/c?|(op — se)| (104)
The first sum in Eq.(103) is eliminated while the second sum runs from k =1
to infinity. All denominators d2 — p? are positive:

Aev(¢,0) = cszlfeo{/%e"M (1 — ch pa6)
2

+2(1-e™) ; [ (L17(9» k) + ———(”;f_l"’f);f/)z

- <L18(0, K) + LLM—(G’TK/)Z> cos27m€] _SE'@&C'E}
(d? — p?) (2mx)” + p3

) sin 2w k6

d?® = 4[(27k)? + p3], p1 = 2T (op + s¢€), p§ = *T?0s (105)
The integrals L15(6, k) to L1s(8, &) of Egs.(99)-(102) can readily be rewritten
with the help of two new variables ¢; = ¢1(k) and g2 = g2(x):

1
@ = 5(d — )+ 2me, g = (@ = )P = 2me, =350 (106)
We obtain:

1 Qi 92 —p16
Lis(6,%) = = — e
15(0,5) = 5 [(p1/2>2 ¢ g ¢
5 ((p1 /2)sing10 +qicos 16 (p1/2)singab + g2 cos ‘129” (107)
(r1/2)? + ¢ (p1/2)? + 3
1 /M 1 1 -
L6,y = L[ 21 _ mb/2
16(0, ) 2[ 2 ((p1/2)2+lﬁ (01/2)24"1%) e
N ((/21/2) cosqif —qising16  (p1/2)cosqaf — g2 sianG)] (108)
/27 + a7 (p1/2)* + 43
1] p 1 1 —p18
Lo _1[m _ o—P19/2
vr(6,%) 2[2 ((01/2)2+qf * (p1/2)2+<J§> °

y ((p1 /2)cosq1f — qisingif | (p1/2)cosgef —~ gasin qz")] (109)
(/2 + 4} (p1/2)? + 43
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! @ q2 piB
Lig(0,x) = = - — e—P10/2
19(0:) 2 [(P1/2)2+qf (p1/2)2 + g2 €

3 ((p1/2) sin g1 + g1 cos 16 (p1/2)sin ga6 + ga cos q?")] (110)
(p1/2)2 + @7 (p1/2)? + a3

If the relation

2 S€
op=8 O W =—=
op

(111)
is satisfied the simplified Eq.(105) will hold for any value of T according to
Eq.(104). In all other cases the first sum in Eq.(103) will apply to the smallest
values of the wave number & for a sufficiently large value of T. The integrals
L11(0, k) to L14(6, k) of Eqs.(95)—(98) will then be needed. With the two new
variables g3 = g3(k) and g4 = g4(k)

1 1
a3 =517 =d)? — 1], aa=5M0F =)+ i), pi-d? >0 (112)

we obtain the following four integrals:

1 [ €%%(gs cos 2mk0 + 27k sin 2mk0) — g3
fu@m)= -2-< a3 + (2mx)?
e~ %% (qy cos 2mkO — 2wk sin 2mKO) — g4 )

* g + (27k)?

(113)

9% (g3 sin 2mk6 — 27k cos 2mK0) + 2mk
g3 + (2mx)?
e™949 (g, sin 2w kB + 27k cos 2mkb) — 27k
q; + (2mk)? >

Lia(8, %) = %(

+ (114)

€938 (g3 cos 2mk0 + 2mk sin 2 KB) — g3
g3 + (2mk)?
e~ %49(g, cos 2k — 2mk sin 2mK0) — g4
B g + (27k)2 )

Lus(6,%) = %(

(115)

€939 (g3 sin 27k — 27k cos 27 k0) + 2nk
g3 + (2mk)?
e~94% (g4 sin 2mK0 + 27k cos 2mkb) — 27K
B ¢ + ()2 >

L1a(6, ) = .21.<

(116)
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We turn to the potential Ay (€, 8) that is associated with Aey (¢, 8) accord-
ing to Eq.(47). There are three integrals that have to be evaluated. Consider
the first one:

2 Aev{(¢, 8 Aoy (¢, 0
AmVl(C70)=Zps/a—aC(2C__)dC=Zpsa a((( )

1
= *T%ZpsVeo < - p—e-f’2< (1 — chp29)
2

9 —p2 & p1L1i(6,x) \
+2(1—e7?)¢ Y 1| Lis(6,5) + L ) sin2mkd
k=1 (pl -d )

(L14(9 k) + M%) cos 2 6] 2_71(:_0;_2#_/{2(
(03 - d?)" (2mK)2 + p2

+ i [(L”(o K) + ﬁLL_ls__[()l)l/)E> sin 2mk6

>K (

pLie(0,K) ) } 27k cos 27mC}
— | L1s(8, —_— 2wkl | ———— 117
< 18(0, &) + @ - ) o8 21K T (117)

The second and third integral in Eq.(47) are more difficult to evaluate due to
the differentiations with respect to 6:

2 eV ’9
Anal¢,0) = ~2p, [ P2elDie oz, T [anicoic 9
Amsl6,0) = -2 [ PlBac= 72 [ 40,0 (19)

The integral [ Aeyd( follows readily from Eq.(103):

/Aev(c, 8)d¢ = *T?V,o ( - l%e_”zc(l — ch pa6)

2
<K

-2(1- e"”z){ Z {<L13(9,n) + %) sin 2w k0

mLi2(8,k) cos 2kl
—{ L4(8 Lt i SANARATE O intitecd. S
( 14(0,8) + ~ cos 2wkl SRR £ 7]

+ Z L17(0, k) + M sin 2wk6
k>K (d p%)l/z

p1L16(6, K) cos 2wk
_ <L18(9, K) + W) cos 27m0} W}) (120)
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The component Amy3 of the potential defined by Eq.(119) can still be written
without undue effort:

Amv3(<, 0) = —CZT2Z‘79() (%e—ﬁ’z( sh p29
2

<K
- 0Lys P1 OL11 \ sin 2wk
~21-e Pz){ZK =7+ = B 0%

K=1 (pg nk
L
+ <L13 + _2_;01_11%) cos 2ké
(p —d?)
3 (6L14 M OL12 )\ cos2mkf
6 = (p2 - da2)t/? 00 21k
p1L12 . cos 2kl
4 { Ly + —2222 ) gin | T
( 14 % —d2)1/2> sin 27wk ] T
6L17 151 6L15) sin 2wrx6
[C
3 [+ ey s
+{ L7+ __,01_125_ cos 20
(a2 - p)"/?
_ OL1g 4 P, OL1g\ cos 2wkl
96 (g2 - p2)t/? 08 2nk

p1Lie ) . ] cos 2wk }
+ | Lig + ——— | sin 2760 | —————— 121
< P - e +if) 2

The derivatives 9L11/00 to 3L13/00 are the kernels of the integrals of Egs.(95)—
(102) with ¢’ replaced by #8:

2 _ 42)1/2

aggll — e—P10/24} (pt )76 cos 2wk (122)
2 _ 2\1/2

3;618 — e=P19/2 cog (d® — p1)" %6 sin 2w k6 (123)

Writing the last component Anyo of the associated potential defined by
Eq.(118) is a challenge. We multiply Eq.(121) by p, and differentiate with
respect to 6:

Amva (Ca 0) = —02T2ZPsVe° (ple—pzc ch p6
2



4.1 RADIATION FIELD IN EXTENDED LORENTZ GAUGE 133
<K 2 ) )
—2(1 —e?) Z 0°Ls n 14 0*Lq; \ sin 2wk
962 (02 _d2)1/2 962 oK
k=1 pl

+2 OL13 P1 0Ly
96 (p2 — g2t/ 06

) cos 27kl

-2k <L13 + (—;%) sin 2wk
£

8%L14 + ,M 8%2L12\ cos 2mkb
06% (p2 _ g2)}/? 067 2k

OL14 P1 OL1g\ |
+2< 50 +(p%—d2)1/2 50 sin 2wk6

L 2
+ 2Tk <L14 + __/’1—12]/_5) cos 271’/69] cos 2mg

(p? — d2) (2mk)2 + pi
62L17 P1 62L15 sin 2wk
-2 [(% )
Sx 00 d2 _ p%)l/2 00?2 2rK
0Ly, p1 0Ly
+2( 2 + @ —p%)l/z 5 cos 2wk

- 21K (Ll-, + ﬂ%ﬁ) sin 27w k6
(@2 —p})

_ 8%L1s 4 3 8%Lq¢ \ cos 2mké
96% (g2 - p2)!/? 062

2TK

OL1g ”m 0L
2
+ <69 T @ ) o

p1lie cos 21K (
2 L — hnciluibi
+ 7m< 18+ @ - p%)1/2> cos27m9] I }) (124)

The second derivatives 82L11/062 to 0?L15/96? follow from Eqs.(122) and
(123). We write only 02L,;/06:

> sin 2wx6

82L11 _
062

2 2\1/2
—%e""o/z sh (ﬁl—d)——o cos 2mk6

2 2 2
+ (P% _ d2)1/2e—P10/2 ch (pl —(21 )1/ 6

cos 27 K6

DO

2y1/2
;l) esin27m0 (125)

If we substitute Eqs.(117), (121), and (124) into Eq.(47) we obtain the
component A, = Amve Of the potential associated with A,:

2
— omkeP18/2gh (Pt —
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Amv(C>9) = Amvl (C,G) + Amv?(Cae) + Amv3(<79)

:cszz,,SVeo(_ L (14 )
P2 PspP2

<K
— 82L13 71 62L11 sin 27rk0
Tal-e pz){ZK 562 T iR ope ) R
k=1 (pf —d?)

OL+3 23 0Ly sin 2wk
+ 2n kb
( 00 +(p?—d2)1/2 oo ) \Beosamo 27mpz>

L 2wk
+ (Lls I ”1/2) cosamr
(p} — d?) P2
_ <32L14 " P 8%L12 \ cos 2wkl
062 (02 ~ d2)1/2 002 2rK
oL
" ( ‘ 14 It 8L12> 9 sin 2 Kh — cos 2wk
90 (p?2 —g2)'/? 08 2k pg

p1L12 sin27kf] cos 2wkl
L
" ( u (p? —d2)1/2> Ps ] (2mk)? + pj

+ Z |:<62L17 1 62L15> sin 27k
S L\ 062 g2 p%)l/z 062 2rk

oL I OLy5 sin 2wK6
+ < 20 + @ —p%)lﬂ 50 2cos2mkf + S,
L 2T K0
+ <L17 + 2 125 1/2) =
(d® - p1) Ps
B <B2L18 + I 62L16> cos 2mkO
062 (g2 - p2)1/? 067 2mk

+ <6L18 + o1 6L15> <2$in oKl — cos27m0>

06 (g2 - p2)l/? 00 2mkps

L sin2mrkf@| cos 2wk
+<Lw+<dz- 2)‘/2> o)) 09

51

A significant simplification of this equation can be achieved by choosing K
according to Eq.(104). We may then leave out the first sum and let the second

sum run from & = 1 to infinity just as in Eq.(105).

One still must solve Eq.(48) if one wants to determine integration con-
stants. We shall forgo this task at this time in order to stick to the most

important goals and avoid getting overwhelmed by details.


file:///cos27tk0
file:///sin27TK0
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For the general solution of Eqs.(52) and (53) one must still solve Egs.(38),
(39), (46), and (50), which implies a repetition of our calculations with the
changed notation V. — Vi, Voo = Vino, Aev — Amv, and Ay — Aey.

4.2 SIMPLIFICATION OF A ((,60) AND Apy(¢,6)

The functions Aey(¢,6) and Ay (¢, 8) of Eqs.(4.1-103) and (4.1-126) define
the components Az, Aez, Amz, and An, of the potentials A, and A, accord-
ing to Eqs.(4.1-2), (4.1-3), and (4.1-31) for a step function excitation V,(0,6)
according to Eq.(4.1-54) at the boundary ¢ = 0. The functions Ae,(¢,8) and
Anv(¢,0) are rather complicated and must be simplified for 6 > 0, ¢ > 0.

One might want to ignore the terms multiplied by e~#:¢/2 in Egs.(107) to
(110) as well as the terms multiplied by e%® and e~%¢ in Egs.(113) to (116),
which can be rewritten to show a factor e=?1%/2 explicitly. But this does not
work since the energy of the wave is reduced to zero. In order to retain these
terms we start out by rewriting Eqgs.(4.1-106) to (4.1-110) and (4.1-112) to
(4.1-116) in a slightly changed notation:

1 1
@ = §(d2 -2+ 2k, go = §(d2 -V ok, d2-p2>0 (1)

L15(6, K/) = L15A(I‘i) + e—p19/2L15B(9, l‘i)
_ l[ q + % e
20(p/2)2+ a8 " (p1/2)+ 3
y ((P1/2) singi10 + gy cos g6 | (p1/2)singa8 + go cos 429)] )
(11/2)% + 2 (p1/2)% + a3

L16(0, K,) = L16A(I£) + e"”o/szB(ﬁ, Ii)

:l[-&.( 1 _ L >+6—P19/2

2l 2\ (m/2)2+d (n/2%+4

» <(P1/2) cosqif —qisingif  (p1/2)cosgaf — go Sin(]ze)] 3)
(p1/2)% + ¢ (1/2)% + a3

L17(6,k) = Liza(k) + e "%/2L175(6, k)

= .]:{p_l.( 1 + 1 ) — e—p10/2
202 \(01/2)2+q2 "~ (p1/2)*+d2
« <(p1/2) cosqif —qising16 | (p1/2) cosgafl — gasin Q29>} (@)
(p1/2)% + ¢} (01/2)% + 63
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L18(9, li) = ngA(K) -+ e‘P19/2L183(0, Ii)

= l [ a — 92 — e—P10/2
21(n/22+af  (1/2)+4}
y ((Pl/z) sing;0 +qicosq1f  (p1/2)sin a6 + ga cos Q29)] (5)
(P1/2)2 + ¢} (n/2)* + 4¢3

Equations (4.1-112) to (4.1-116) assume the following form

(P2 —-d) 2+ p1], p2—-d®>0 (6)

[ R

1
q3 = 5[(0? - d2)1/2 -p1), Ga=

L11(0, K) = L11A(I€) + €_p10/2L11}3(9, K,)
- l[_ ©___ G o
2 a + (27r,'-:)2 q3 + (27k)
" <exp[(p§ — d?)1/20/2)(qs cos 2k + 27k sin 2wk0)
g¢ + (2x)?
+ exp[—(p? — d2)1/26/2](q, cos 2K — 2wk sin 27m0)>] ™
a3 + (2mk)?

L12(8,) = Liaa (k) + e P%/2L195(0, k)
1 [ 2mk 21K

- - 5 + e—P19/2
g+ (2mk)? q; + (2rx)

2
9 (exp[(pf — d?)1/20/2)(qs sin 21k6 — 27k cos 2mkb)
¢ + (27k)?
exp[—(p? — d?)1/20/2)(qq sin 27k + 27k cos 2mkH) )] ®)
a3 + (2nr)’

+

L13(0, KZ) = L13A(I€) + e'”10/2L133(6’, K:)

1 a3 44 —p16/2
=1 - + +e7
[ g2+ (2mk)? a2+ (27rf-c)2

2
o (exp['(p% — d?)}/20/2)(g3 cos 2mK0 + 27k sin 2w k0)
a3 + (2mx)’°
exp[—(p? — d2)1/26/2](q4 cos 2k — 2wk sin 2mk0) >} ©)
a2 + (27K)?
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L14(8, %) = Liaa(x) + e P*/2 L1456, )
1 [ 21K + 2k
2 @+ 2nr)?  q2 + (27k)*

(exp[(pf — d?)1/26/2)(g3 sin 2mkf — 27k cos 27KH)

X
a3 + (2nx)’
exp[—(p? — d2)1/20/2](qq sin 27K8 + 27k cos 2mkH) 1
- 2 P] ( 0)
g + (2mk)

e—p19/2

Equation (4.1-103) may be written in the following form:

Aer(¢,0) = PT?Veo (%e-f'ﬂC (1 — ch pq)
2

S prLia(x)
+2(1—e72) Z { <L13A(K)) + ;—HAW> sin 2mk6
k=0 (pl - d2)

- L14A(K)+‘@M cos 2m K0
(43 — a2)'/?

4 e—P16/2 Li3g(8, k) + M)- sin 2w k6
(0} — d2)'/*

- <L14B(9:"“) + %@) cos 27m0] }%
(1 —d?) (2mk)" + p2

= L
+2(1 —e™#?) Z { <L17A(I€) + %) sin 2w K6
K>SK (a2 = pi)

- L18A(/~”~)+M cos 2mKb
(@2~ p})"?

+e P92\ Lu(6, k) + P1L1ss(6, k) sin 2w k0
2 2y1/2
(d? - p1)

- (LlsB(Q, K)+ M-B(i’l%)—) cos 27mt9] }—8—111—221@%> (11)
(@ —p}) (2w + 73

We recognize that the terms L s(x) do not contain the variable  and
are connected with ¢ and @ only via the products with sin 2rx6, cos 2w«8, and
sin 2mk(. The terms L g(#, ) contain 6 and they are multiplied in addition
by e~#1%/2, If we succeed in eliminating 6 from L (8, k) and further eliminate
e~P19/2 we can use the usual quantization process. This elimination is possible
by means of Fourier series expansions. The calculations are straight forward
but lengthy. They will be found in Section 6.12. We recognize in Eq.(6.12-
43) the last two lines of Eq.(11), and in Eq.(6.12-60) lines 4 and 5 of Eq.(11).
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The whole Eq.(11) is shown in Eq.(6.12-61), still with the factors e=?1%/2 and
other features that need reworking. The required changes are carried out in
the calculations that lead from Eq.(6.12-61) to (6.12-108) and its radically
simplified form shown by Eq.(6.12-110). We copy this equation:

Aey(¢,0) = PT?Vip Y Cor(6) sin 21k

k=1

Cer(6) =2 (Aes(ka) Sin 2766 + Aec(k) cos 2wkl

+ Z[Bes(li, V) sin 2mv8 + Bec(k, V) cos 27r1/6]> (12)

v=1

Let us turn to the potential Any((,6) that is associated with Ae(¢,0)
according to Eq.(4.1-47). Three integrals have to be evaluated. Here is the
first one:

0?4 (¢,0)
0¢?

aAev (C: 9)

Amvl(Cye) =7 8(

d¢ = Zps
= 02T2V;OZps£ i Cer(6) sin 2wkl

0¢ &
= *T?VeoZps Y , 2mKClex(6) cos 2rC (13)

k=1

The third integral in Eq.(4.1-47) yields:

al4ev
Ama(6,0) = ~Z | 2de

cos 27K(

a o0
_ 2y, 79
_cTVeOZBOE:C%(e) -

BCeK(B) c0s 2mk(
_ 272
c“T“VeoZ E B

8C.r ()
50

=2 <27m[Aes(n) €08 21 kb — Aec(k) 8in 2k0)

o0
+ Z 27V (Bes(k, V) €05 28 — Beo(k, V) sin 27r1/9]> (14)

v=1

The second integral in Eq.(4.1-47) calls for a second differentiation of Any3(¢,6)
with respect to 8:
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02 Aev(¢,0)

Amv2(¢,0) = —Zps 802

d¢

cos 2mK(

&
. p2rp2
=c'T Ve,OZpsa_QEnE:l Cex(9) IR

o0
02Cerc (0) cos 2mr(
— 22 § ek

=T VeoZps 59?2 Ik

k=1

0%Cex(6)

—p = -2 <(27r/e)2[Aes(K) sin 27k0 + Aec(k) cos 2mk0]

+ Z(Z?rz/)z[Bes(n, v) sin 2700 + Bec(k, V) cos 27w0]> (15)
rk=1

The potential Ay, (¢,0) = Apve(C,8) associated with Agy(¢,0) of Eq.(12) is
the sum of Amvi, Amve, and Anys:

Amv(c, 9) = Amvl (C, 0) + Amv2 (C; 9) + Amv3 (4, 9)

=TV, Z Z Cone(8) cos 2mk(

r=1

~ 1 8Cr(8)  ps 82Cen(8)
Cmn(G)—anpsCe,i(O)Jf-é;; 96 * Srn 562

=2 { ~ Aec(K) 8in 27K0 4 Ags(k) cos 2kl

+ Z{Ces(fc, v)sin 2wv0 + Cec{k, V) cos 27r1/0]}

v=1

Ces(k, V) = 2mRps (1 — %%) Bes(k,v) — %—VBec(n, v)

2
Cec(R, V) = 2K ps (1 — %)Bﬂ(m, v)+

TR
2mv
5‘7};395(}6, I/) (16)

With have now simplified the expressions for Aey(¢,8) and Ay (¢, 8) suf-
ficiently to be able to derive some useable results for the Hamilton function of
the pure radiation field.
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4.3 HAMILTON FUNCTION FOR PLANAR WAVE

Our Fourier series expansion permits a largest time T and a largest distance
T in the direction y with the intervals 0 <t < T, 0 < y < cT'. In the directions
z and 2z we have not specified any intervals and we shall follow Eq.(3.4-32) to
make them —L/2 <z < L/2, —L/2 < z < L/2. The energy U of the electric
and magnetic field strength in this volume follows from Eq.(3.4-33):

L/2 LJ2 [eT
o= [ [ [ (Ree 207) dy] - "
-L/2-Lj2 Lo
E? ( Zccurl A —%) (2)
H?= <—;— curl A, — %) (3)

We do not need the complex notation of Eqgs.(3.4-34) and (3.4-35) since the
potentials or their components were derived in real form in Section 4.1.

From Eqgs.(4.1-31), (4.1-34), and (4.1-35) we obtain the following values
for the components of A, and A, in Egs.(2) and (3):

Aem((ae) = Aev(<7‘9) Amw(c,a) = Amv((70)
Aey((a 0) = AeOfe(C - 9) Amy((ae) = AmOfm(C - 0)
Aez(c,e) = Aev(C;O) Amz(c,e) = _Amv(Ca 9) (4)

The functions Aey(¢,0) and Any((,8) are defined by Eqs.(4.1-103) and (4.1-
126), while fo({ — 0) and f,({ — ) are arbitrary functions.
For the vector components of the expansion of the right sides of Egs.(2)

and (3)

OAn\’ oo o OAm  (0Am\
(—churlAe—W> =Z%°curl* A.+2Zccurl A, _Bf—+ ot (5)

OA. c? 9 OA. [OA. )
(EcurlA 5 ) =pour url* A, —ZcurlA 5t +( 5 (6)

we obtain with the help of Eqs.(4.1-17), (4.1-18), (4.1-27), (4.1-28), and (4.1-31)
the following relations :

2x _of04n\? 2 <6Aev>2 ;
curl Ae—2( By = Z77 aC (7
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OAn 0Ae OAmy 2 0Aey OAmy

. - - = 8
e 5= =253 ~ a2 ¢ o8 ®
2 2 2
0An )\ _, (04m\* _ 2 (a/’flmv> )
Bt Bt T2\ 50
2 _ aAmv 2 _ 2 (6Am">2 1
curl* A, =2 < By = 7% B (10)
HA OAmy OA 2 0Am OA
: [butieli my A A mv al 11
curl A - — 25 ot = oC o8 (11)
2 2 2
0Be )" _g(O0he)"_ 2 <5A6V> (12)
ot ot T2 \ 50
We get for E2 and H? in Egs.(2) and (3)
OA OAe, OA OAmy \ 2
2 _ 2 ev ev mv mv
b T2[2<6<> T2 8 +<69”
2 [, 0Ae | Am )\’ ‘
-1 (7% ) (13)
2 2 [(0Am)\? . 0Am 0de | 6Aev>2
H=mrm\\Tac ) %% a0 % \"m
2 [(0Amy . 0Ae )\’
= ZZT?( ac T2 % > (14)

while the energy U becomes:

L/2¢T L/2cT

Sy RIC )
Sz 56
~L/2¢T ~L/2¢T 0
8‘4mV aA-ev 2 x z
+( ac T4 5 ) ]dc}d%)d(ﬁ)
1
2T /L \? o (04 \°  _, [0Aer\?
‘*<5)”Z<6c> ”(60)
0

aAev 8Amv a141'[1V aAEV
¢ o0 ac o0

OAmy \* | [ 0Amy -
(%) + (%) J« 0o

We write Ae,((,0) and Aem(¢,6) in the short form presented in Eqs.(4.2-
12) and (4.2-16). The functions Cex(#) and Cr,(0) are defined there:

vz (
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Aey(¢,0) = PT?Veo Z Cew(6) sin 2wkl (16)
k=1
Anv((,0) = PT?Veo Z Z Crur(8) cos 2msl (17)
K=1

Equation (16) is a Fourier sine series as in Eq.(4.1-81) while Eq.(17) is a Fourier
cosine series with the constant term for x = 0 equal to zero.

Since the sine and cosine functions with different values of s in Eqgs.(16)
and (17) are orthogonal we get the following results for the terms of Eq.(15):

1

1 ) 2
/ (aAeV) = (PTVi)? / (szrncm(e) 2m<) dg
5 k=1

0

x

= S(ATVio) Y (209)2C2,(0) (18)

k=1

2
sm 2mK( > d¢

. 2§<ao )2 -

1
8Aev aAmv dc 2T2 eO /Z 2 Cen 6Cmn( ) COS2 27”{/4 d(

¢ oo
o r=1
OCmx(9)
— 2(2T2V.
(cT 20) Z;lz KCen(0) =5 (20)
1 1o
dAmv aJ4ev 2T2‘/e0 QZ/Z 27”{'0mn(9 ( ) sin2 QTI'KC dc
o o0 ° |
1 0Cex(0)
= ‘E(cw%)zz;l 2mkConn (6) =35 (21)
[ (04 [ (S 2
/( m") = (CQTQVEOZ)Q/ <Z27r/c0m,i(6) sin27m(> d¢
0 0 k=1
= (AT 2 3 (2mw) R 0) (22)

k=1
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1 2
<6Amv) 2T2 eOZ 2/< ac’mn( )COSZWKZC> dc
0

X\ [ 0Cme(0)\?
= §(C2T2Veoz 2y ( ) (23)

K=1

o

Substitution of Eqs.(18)-(23) into Eq.(15) yields the energy U as the sum
of the energy of the components Ce, () and Cp,.(6):

U= &L;TT i { [ (%g-@y + (27m)2o,2m(0)]

= aCeK(e) 6Cmn(9)
_47m(Cmn(9) 50 _CEK(B)T>
2
+(557) remrao) e

Note that neither Cey(0) nor Cp(6) have a dimension. All physical dimensions
are contained in the factor ZV3 L*T3¢* with the dimension VAs as required for
an electromagnetic energy; the text following Eq.(4.1-37) gives the dimension
of V. as As/m? and Vo has the same dimension according to Eq.(4.1-58).

When we compare Eq.(24) with Eq.(3.4-46) we recognize the first and
the last two terms, except for the change from real to complex notation and
the difference between a solution satisfying the causality law versus a steady
state solution. But the center terms containing products of Cmx(6) and Ce.(6)
in Eq.(24) with the other’s derivative represent now an interaction between
electric and magnetic terms that is missing in Eq.(3.4-46).

Equation (24) can be further simplified. However, the easy comparison
with Eq.(3.4-46) is lost in the process:

ZVSIAT3 A & OCme(0)\?
U= —2— Z |:<2ﬂ'/‘écen((9) + ——a—é—)

+ (27r/eCmK(6) - —8—2’3—;—(-0—)> 2} (25)

Substitution of Ce, and Cy,,; from Eqgs.(4.2-12) and (4.2-16) produces the
following result for the two terms in large parentheses in Eq.(25):

K=1

2k Co(6) + Z {[K,Bes(li V) — Cec(k, V)] sin 2700
=1

+ [£Bec(k, V) + vCes(k, V)] cos 27ru0} (26)
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OCex(0)

21k Cmi(0) — 50

=4 Z {[VBec(fi, V) + kCes(k, V)] sin 210
v=1

— [VBes(k, V) — £Cec(k, V)] cos 2771/9} (27)

Squaring and summing these two expressions yields an impressive formula that
we can show only in part:

(275Cur®) + om0 (ki) - 2]

= Uex + Um(0) (28)

o0

Uew = (47)2 3 { 260[Bec(, v)Ces (8, ¥) — Bea(5, ) Cec (5, v)]

v=1
+ 5 (6% + ) B (s w) + Bh(s,v) + Chln,v) + Gl )]}
= 2(2mw)* (U () + U2(e)] (29)

UZ(k)=>_ [(Bec(n, v)+ %Ces(n, V)>2

=1

AN

N (Bem, V)~ Lol u))z] (30)
i [( ec (K, 1) + Ces(r, V))2

V=

—

¥ (gBes(n,u) — Cec(r, u)ﬂ (31)

The time variable term U, (f) is much more complicated. We introduce four
new functions Uy1(6) to Uys() but do not write them explicitly:

£
=

I
M8

Uy1(k,v) cosdnvf

<
il
-

n
gk
M8

[Uva(r, v, A} sin 2mv6 sin 2 A0 + Uys(k, v, A) cos 216 cos 2w A6)

T T
il
o
>
]
va

+
M8
NIE

Uya(k, v, A) sin 2718 cos 2w A0 (32)

N
Il
-
>
1
—
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The term U, represents an energy that does not depend on the time 8.
The term Uy, depends on 8 but its time average is zero. If we write U, (0) =
Uy (t)/T we have a time variable power with average power or energy equal
to zero. This is a generally encountered result of the theory. For its physical
explanation we may think of two plates of a capacitor with vacuum between
them. An electric field strength drives an electric dipole current through this
vacuum. We may assume that the dipoles are created by the field strength.
But it is also possible that they are created and annihilated all the time in
the absence of an electric field strength. The random orientation of the dipoles
prevents an observable macroscopic effect. An applied field strength orients the
dipoles and a macroscopic effect is produced in the form of a dipole current.

The non-fluctuating part U, of the energy U in Eq.(25) may be written in
the following form:

U, = ZV3L*T® 42 (2mK)HUZ (k) + U2 ()] (33)

k=1

For the derivation of the Hamilton function H we first normalize the energy
U in Eq.(33)

Ue/ZVAL T3¢ = K (34)
=3 % = 3 (@rm)2[U2(x) + UL () (35)
k=1 k=1

and then rewrite H, as follows:

= (27K) {[ ) + U2 (k)] sin® 27k + [UZ () + U2, (k)] cos? 27m0}
= (27K)?[Ucs () + iUcc (k)] (sin 276 — i cos 2mkf)
X [Ues() — tUcc(k)](sin 27K + i cos 2mx0)
= _QWiKpn(e)qn(a) (36)

For p,.(8) and ¢,(8) we get:

P(0) = V2mik[Ues (k) + iUcc (k)] (sin 2750 — i cos 2mk)
= V2rik[Uee(k) — iUcq(k)]e>7150 (37)

. Opu(6
D 50

~—

= (27rin)3/2[Ucc(f~z) ~ iU (k)] €29 (38)

Il

4x(0) = V2mik[Ugs (k) — iUcc(k)](sin 2wx0 + i cos 2mkH)
2mik[Uee (k) + iU (k)]e~2miR0 (39)
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_ 04:(8) _

dr 50 —(27ri/~a)3/2[Ucc(/i) + iU (k)] e~ 270 (40)

The derivatives K, /0q, and 8H,/8p, equal:

OH,,

aq = —2mikp,(0) = —(27ril€)3/2[Ucc(Kl) _ ich(ﬂ)]ezmxo (41)
——ai}cn 3 y 3/2 . —27ikb
O —2mikqe(0) = —(2miK)* 2 [Uee (k) + iU (x))e 2T (42)

The comparison of Egs.(41) and (42) with Eqs.(38) and (40) yields the
proper relations for the components H,, of the Hamilton function:

09, . 9.
94r =—DPxks S =4k (43)

Equation (35) may be rewritten in analogy to Eq.(3.4-61) by means of the
definitions

ar = [Uee(k) — iUcs(k)]e2™?

a = [Uee(K) + iUcs(k))e 72710 (44)
to yield:
e > 2 2 ok *
H= —zNEIQszNqN = ;(QWR) axa) = '; -?hb,eb,c
b — <27r;;T> 1/2am b = (27r;;T> 1/2,1: )

Let us check whether the energy U, of Eq.(33) is finite since an infinite
energy would violate the conservation law of energy. The proof of finite energy
is also required to permit in the following section the claim that mass renor-
malization is not needed. An infinitely large amplitude Vg of the excitation
force V,(0,0) in Eq.(4.1-54) or an infinitely large excitation area L? according
to Eq.(1) would make U, infinite, but this is of no interest. The factors T
and ¢ in Eq.(33) are finite. A finite value of T is assumed by the definition of
Eq.(4.1-40) as well as by Eq.(4.1-75) and the text discussing it. The sum U, in
Eq.(33) and ¥ in Eq.(35) must be finite too, but this is something one should
show explicitly. To do so we must show that U2 and U2, of Eqs.(30) and (31)
approach zero sufficiently fast for £ — co to yield a convergent series for H.

It is shown in Section 6.12 that U2 decreases like 1/(27k)% for k — oo
while U2, decreases like 1/(2wk)*. For the terms in the sum of Eq.(35) we
obtain the decrease
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H, = (216)2[UL(K) + U (k)]  1/(27k)%  for k — 00 (48)
from Eq.(6.12-136). Hence, the terms of 3 in Eq.(35) decrease fast enough to
make the sum convergent.

The results derived here for a planar wave may readily be applied to a
spherical wave. This is shown in Section 6.9.

4.4 QUANTIZATION OF A PLANAR WAVE

We start with the Hamilton function H of Eq.(4.3-45) using the functions
b, and b},

o0 h [e o]
H=) Hr= TZmbe; (1)
k=1

k=1
and follow the conventional procedure for quantization. The conjugate complex

functions b, and b’ are replaced by operators b7 and b . There are two ways
of making this replacement

bt —bf, b — b (2)

or

by = by, be — b7 3)

The choice of one of these replacements is a known arbitrariness or ambiguity
of the conventional theory as pointed out in Section 3.5 following Eq.(3.5-6).

We will first use Eq.(2) and later on Eq.(3). For the component « in Eq.(1) we
obtain:

— +_ —

bebe = 2rkh ~ 2wkh (4)
-1 1d +_ 1 ,_1d
b= (e 5) b= 75 (o2 ) ®

If we apply the operators b and &} to a function & we get:

1 1d 1 1d E.T
7a (o) (5 (o 3k ) o] = mme

1 42 E.T 1
2 2—-———- = a —_— =
(a ¢ 2 dCQ) =2 <27mh 2) D =2).0 (6)
ET 1
*T 9rkh 2 (7)

These equations are essentially the same as Eqs.(3.5-18) and (3.5-19). We
may thus use Eq.(3.5-24) to write E, of Eq.(7) in the form
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2nkh 1
En—Enn— T <n+§>, TL=0, 1, 2, (8)

This result is very similar to the conventional one shown by Eq.(3.5-24)

1 1
Em,k,\=wk)\ﬁ<’n+§> =27rfh<n+ 5), n=0,1, 2 ...; wer=27f (9)

but the time interval T" in Eq.(8) is finite while Eq.(9) assumes an infinite time
interval since a frequency f is defined only for periodic sinusoidal functions in
the whole interval —oco < t < 4+00. The period number & in Eq.(8) gives the
number of periods in the time interval of duration T or a spatial interval of
length cT.

Let us turn to Eq.(8). If k runs from 1 to infinity we obtain according
to Eqgs.(4.3-33), (4.3-35), and (4.3-46) a finite energy. The energy of a pho-
ton increases proportionately to x according to Eq.(8) but their number must
decrease like 1/x3 to make H, of Eq.(4.3-46) decrease like 1/x2. Hence, this
particular and historically first divergency is eliminated.

We want to discuss this important result in a non-mathematical way. In
Section 4.1 we started with vector potentials A, and A, while the scalar
potentials ¢, and ¢, were assumed to be zero. These potentials define electric
and magnetic field strengths E and H according to Eqs.(1.6-17) and (1.6-11).
The substitutions Aez = Aez = Aev and Ay = —Amz = Amyv of Egs.(4.1-31)
as well as V(y,t) and Viu(y,t) in Eqs.(4.1-37) and (4.1-39) tend to obscure that
w((,0) in Eqgs.(4.1-76) and (4.1-88) represents an electromagnetic wave by a
superposition of standing sinusoidal pulses. But the two components Aey, Amy
of the vector potentials A, and Ay, are shown in Egs.(4.1-34), (4.1-35) while
the remaining four components Aey, = Aey = Aev and Apz = —Apy = Amv
are defined by Eqgs.(4.1-103) and (4.1-126). These components of the vector
potentials define via Eqgs.(1.6-17) and (1.6-11) the electric and magnetic field
strength of a wave. This wave is zero for § = t/T < 0 according to Eq.(4.1-
54). Hence, it will satisfy both the causality law and the conservation law of
energy if its energy is finite. The step function excitation of Eq.(4.1-54) does
not tell us whether the energy of the excited wave is finite. The finite energy
follows from Egs.(4.2-12) and (4.2-16) that define A, and Ay, in terms of
Aes(K), Aec(k), Bes(t,V), Bec(k,v), Ces(k,v), and Cec(k, V), which are shown
in Eqs.(6.12-126) and (6.12-145)—(6.12-147) to decrease with increasing values
of k sufficiently fast to make the energy of the wave excited by the step function
of Eq.(4.1-54) finite. The quantization by the substitutions of Eq.(5) replaces
the superposition of standing sinusoidal pulses representing a classical wave
by a superposition of operators representing photons. The finite energy of the
wave remains unchanged by this change of representation. The ‘zero-point
energy’ for n = 0 remains finite because the finite energy of the wave makes
the energy of any component of the wave finite.
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We pointed out in the first paragraph of Section 3.4 that solutions with
finite energy of Maxwell’s original equations were developed from 1968 on, but
these solutions do not seem to have ever reached quantum electrodynamis.

We turn to the substitution of Eq.(3). It is usually ignored in the conven-
tional theory since an infinite energy is bad but an infinite negative energy is
even worse. We obtain in analogy to Eqgs.(4), (6), and (7):

by = ;T"—’Z; (10)
-2 i 22) -
(- 5 )e=2(En+ 1) o=nr0 (1)
02)

For n = 0 we obtain now a finite negative energy. It is not clear whether
this result has any significance but we cannot simply ignore it:

EN=Em=2ﬂ;ﬁ<n—%), n=01,2,... (13)

Equations (8) and (13) yield for n = 0 energies with the same magnitude but
opposite sign. We have encountered in Eq.(4.3-32) time variable terms with positive
and negative energy having the time average zero. They may be related to n =0 in
Eqgs.(8) and (13).

It is reasonably evident how one has to proceed if one wants to modify
conventional quantum electrodynamics to make it correspond to the modified
Maxwell equations. A lot of work is required but there are many scientists
and PhD students qualified to do it. We want to concentrate here on tasks for
which a detailed knowledge of the conventional theory is not of much help. The
first such task is to investigate the replacement of the step function excitation
of Eq.(4.1-54) by an exponential ramp function excitation.

The excitation by an exponential ramp function is important because the
convergence of the solution due to the step function excitation of Eq.(4.1-54)
is not always fast enough. The step function must then be replaced by an
exponential ramp function. Such a case will be encountered in Section 5.3. We
shall elaborate the exponential ramp function solution in Section 4.5 in order
to have it ready when needed.

In Section 4.6 we study the replacement of the step function for excita-
tion by a rectangular pulse with finite duration. The finite duration is an
important improvement over the infinitely extended step function. However,
it inherently produces equations twice as long as the ones due to step function
excitation.
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4.5 EXPONENTIAL RAMP FUNCTION EXCITATION

We have solved Egs.(4.1-41) and (4.1-42) for a step function V,(0,8) as
boundary condition or excitation function defined by Eq.(4.1-54). Equation
(4.1-41) has the same form as Eq.(6.1-1), which is solved in Section 6.1 for a
step function E(0, 8) and in Section 6.4 for an exponential ramp function E(0, 8)
as boundary condition. The solution of Eq.(4.1-41) for an exponential ramp
function differs only in the notation from the calculations in Section 6.4 until
Eq.(6.4-19) is reached and the Fourier sine integral is replaced by the Fourier
sine series in analogy to Eq.(4.1-76). Hence, we may rewrite the calculations
of Section 6.4 with the new notation in short form.

The partial differential equation for V, as function of ¢ and 6 defined by
Eq.(4.1-41)

PV Ve Ve

21, —
is to be solved for the boundary conditions
Vo(0,0) = Va1 S()(1 —e ) =0 for 8 <0
=Va(l—e"®) forf >0 (2)

for { = 0. The usual further boundary condition for { — oo

Ve(00,8) = finite (3)

is avoided just like in the case of Eq.(4.1-55). There are further the following
initial conditions according to Eqgs.(6.1-4)-(6.1-6):

Ve(¢,0)=0 4)
Ve((,0)/0¢ =0 (5)
oV.(¢,6)/06 =0 for6=0,(>0 (6)
Equation (1) is satisfied by the function

Ve((,60) = Ver [u(¢,6) + (1 — e™*)F(C)] (7)

Substitution of Vi1 (1 — e ) F(¢) into Eq.(1) yields:
F(¢) = Aroe ¢ + Ay1e”? (8)
t=p; ort=0 (9)

The choice ¢« = 0 yields a trivial solution. Using the argument that led from
Eq.(4.1-59) to (4.1-60) we obtain:
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Ve(C,0) = Ver [u(C,0) + (1 — e7P20)emr2¢] (10)

Since the function V,(0,9) must satisfy the boundary condition according
to Eq.(2)

u(0,0) +1—e "0 =1 e P10 (11)
we obtain for ( = 0 the homogeneous boundary condition

u(0,8) =0 (12)

For { — oo we obtain with F({ — oo) = 0 from Eq.(3) a second boundary
condition

u(00, 8) = finite (13)

which we do not use due to the restricted interval 0 < ¢ < 1. It is not required
anywhere. The initial conditions of Egs.(4) and (6) yield:

Ve(C,O) = Velu(CaO) =0 (14)
0u/80 + p1e ¢ =0, Ou/0f=—pre ¢ forf=0,¢>0 (15)

The calculation of u((,8) proceeds as in Section 4.1 from Eq.(4.1-66) on
with w(¢,8) replaced by «(¢,8) until Eqs.(4.1-76) and (4.1-77) are reached:

u(¢,0) = Z[Al(n) exp(110) + Az(k) exp(y20)] sin 27wk (16)
k=1
5 = L0 ) + Aslmelndlsndra ()

Substitution of u(¢,0) and du/00 from Eqs.(14) and (15) into Eqgs.(16)
and (17) for 8 = 0 yields equations for the determination of A;(x) and As(k):

(o]

u(¢,0) = Z[Al(n) + As(k)] =0 | as)
k=1

% = Z[A1(l<a)71 + Ag(K)yo] sin 2mk( = —pre P2 (19)
k=1

Using the Fourier sine series of Eqs.(4.1-80) and (4.1-81) we obtain the
following two equations for the determination of A;(x) and As(x):
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A]_ (h?) -+ AQ(K«) =0 (20)
1
A1(rR)1 + Az(k)ye = —2p1 f e 26 sin 27K¢ dC (21)
0
We evaluate the integral with the help of Eq.(4.1-84)

2mk(l — e~ P2)

(2mK)? + p3 (22)

1
/ e P2 sin 21k d¢ =
0
and obtain:

4mkpy (1 —e=P2)
(27k)% + p3
__AmKpypy
(27x)2 + p}
ATkpy
NEDET:
Following Eq.(4.1-85) we choose p2 > 1. Equation (4.1-73) is then used to
obtain A;(x) and Ax(x):

Aj(&)m + Ao(k)ye = —
for po < 1

for pa > 1 (23)

4Tk, 1
A —A =—
0=~ Al = P+ v -

Amkpy 2 _ 2
for d° < p
(47m) + p3 (p? (12)1/2 !
= Amrpy : — for d® > p

(47k)* + p3 (d? - p?) /

d® = 4](2mk)? + p3], p3 = T?0s, p1 = AT (op + se) (24)

Substitution of Eq.(24) for A;(k), Aa(x) and of Eq.(4.1-73) for v, 1
brings Eq.(16) into the following form:

0 = - 35 = 003 ol =

k=1 ( % - d2)1/2
27K sin 2wk (
(2mr)? + p3
+ i expli(d® — p})!/26/2] — exp[—i(d® — p7)1/26/2] 2k sir; 2MC>
ey i(d? — p3)"/? (2rk)” + p

K = T|(op — s€)|/4m (25)
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Using hyperbolic and trigonometric functions we may rewrite Eq.(25) in
real form:

. .
u(¢,0) = _4p1e—pla/2(<2 shi(p} — d*)'/26/2] 2 sin 2mr
, L2l d2)1/2 (2nk)? + p2
37 Sl g0y drsininsg
Sk (@=-p)'? (2m) 403

Equation (8) for F(¢) with A1p = 1, 417 = 0, and Eq.(26) for u(¢,8)
define V,((, 8) according to Eq.(7). We need Aey(¢,0) of Eq.(4.1-43). In order
to obtain it we must replace the variables ¢, 8 by ¢’, 8 and integrate over ¢/,
6’. We integrate first over ¢’ and denote the result by 8Aev(¢,8')/06¢":

¢+(8-0")
Pelll) 2otV [ (0= FQ) +ulc o (21)
¢—(6-6")

As in the case of Eq.(4.1-89) we need to evaluate only two simple integrals:

¢+H(6-8")
e—PzC'dC/ - __1-6—172( (e—ﬂzf)epzo' _ ep29e—/326") (28)
¢—(6~-8') P
¢+(6-6") -
sin 27k’ d¢ = Sim—ﬂﬂ—ﬂ((sin 27wk0 cos 2mkd’
¢—(0—-0")

— cos 2wk sin 2wk6’)  (29)
Substitution of Eqs.(26),(28), and (29) into Eqs.(27) yields:

0A(C,0) ATV, { 1— ¥

50 =—3 po (e—ﬂz(C+9)ep29’ _ e—pz(c—e)e—p29’>

<K o
+ 8p1e—p19'/2 [ Z sh[(p? — d?)1/20' /2]

= (p-a)t?

sin 2wk

X ( sin 2mk0 cos 2k’ — cos 2wk sin 27m6') —(27m)2 T p%

+ i sinf(d® — p3)'/%6'/2]
k>K (d2 - p%)1/2

X (sin 2mk6 cos 2rk6’ — cos 2mkB sin 2mkd’) -(—2—:%] } (30)
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The terms in Eq.(30) have been written in an expanded form that will
facilitate the following integrations over 8':

94 (C,6) .,
Aey(¢,0) = / s 04 (C,0) 4 (31)

One may readily recognize the following five integrals over 8 in Eq.(30):

e— P28

/(1 _ ep10’)(e—/-720epz«9’ _ epz(?e—pze’)dgl = 36—02(

P2 P2

1 1 .
X [p—(l —chpaf) + P (p2¢™"1® — pach paf + p1shpaf)|  (32)
2

1 2

)
L (0,k) = /e—ﬂl"'/z sh[(p? — d?)1/2¢' /2] cos 2m k6’ db’ (33)

(=)

@
Lig(8,k) = [ e=?9"/2sh[(p? — d*)1/26' /2] sin 2n k' df’ (34)

Lis(8,5) = | e P92 gin[(d? — p?)*/20' /2] cos 2n k6’ dO’ (35)

Li(0,5) = | e=P%/2sin[(d? — p?)1/26' /2] sin 2wk’ db’ (36)

O O g O

The integrals of Eqgs.(33)—(36) have been evaluated in Egs.(4.1-113), (4.1-114),
(4.1-107), and (4.1-108). Equation (31) becomes:

Aev(¢,0) = C2T?Vel{ie—mc [pi(l - ch paf)
2

P2
1
+ 55— (p2e™"% — py ch p26 + p1 sh 029)]
P}~ r3
4 XK L11(6, k) sin 27k — L12(0, k) cos 2mkd  sin 2mk(
R

N Z L15(6, k) sin2mkf — L1(0, k) cos2mké  sin2mk( )} (37)

Sk (d2 - p})? (27k)? + o}
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We turn to the potential Ayy(¢,8) that is associated with Aev((,6) ac-
cording to Eq.(4.1-47). Three integrals must be evaluated. Consider the first
one:

0%Aey(C,0) 0Aev(¢,0)
o¢2 o¢

= CZTQZPsVd{ —e7 [;1-(1 — ch paf)
2

Amvl(Ca 0) =Zps a¢ = Zps

1
T3 02 (p2e™"*® — pach paf + pysh pge)]
— P2

P
& L11(0, k) sin 2wk — L19(6, k) cos 2wk 2mk cos 2mk(
+ip Z 2 172 (2mk)2 + p2
=1 (bt — d?) TR)T T P2

L15(0, k) sin 2wk — L16(8, k) cos 2mkl 27k cos 2wkl
+ Z 150, ) : 116/(2 ) G T >} (38)
k>K (d - pl) P

The differentiation with respect to @ of the second and third integral in
Eq.(4.1-47) makes the evaluation of these integrals more difficult:

32Aev ,0
Anin(C,0) = ~2p, [ T2Oge =75, 0 / Aen(C,0)dC (39)
Amia(C,8) = —Z /aAe““ Dig= 22, / Aen(6,0)d (40)

The integral [ Ae,d( follows readily from Eq.(37):

/Aev(C79)dC = csz‘/el{ - lze—ch [i(l —ch pga)
P P2

1 -
+ 55— [P2€ #18 — py ch paf + pysh Pze)}
P — P

4 (§ Ly1(8, k) sin 2k — L12(8, k) cos 2mxd cos 27k
P~ (p? — d2)1/2 2mk[(2nK)2 + pE]

k=1

+ Z Ly15(0, 5) sin 2mkf — L16(0, 5) cos 2wkl cos 2mr( )} (a1)
S (d2 - p1)'/? 2mk|(2mK)? + p3]

The component Any3(¢,8) of the potential defined by Eq.(40) is readily
derived from Eq.(41):
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1 1

Anvs(¢,0) = C2T2ZV;1{ - pize—PzC [Sh p2b
2

+ 2 (p1e77*® + pyshpaf — p; ch pze)]
2

P}~
<K .
1 8Ly, sin 2mk0

4
" P1[Z ( 2_d2)1/2< 80 onk + L1y cos 2mkh
k=1 \P1

_ 0Ly cos 2mk0
06 2k

€08 2K
(27K)% + p3
o

! OLy5 sin 2wk6’
" K;{ (@ — p2)'/? ( 6 onn T Liscos2mkf

OL1g cos 2wkl . cos 2Tk(
_ L el
80 2k + Ligsin 27m0> (27K)2 + p2 (42)

+ Lygsin 27m9)

The derivatives 8L1,/00 to dL16/00 are the kernels of the integrals of Egs.(33)—
(36) with ¢’ replaced by 6:

6Lu

50 = e~P19/2 gh(p? — d?)*/20/2] cos 2w Kb (43)
?% = e~P19/2 gh(p? — d?)1/20/2] sin 2w Kb (44)
% = e7P19/25in[(d? — p2)'/20/2] cos 27 K0 (45)
—ag% = e=P19/2 gin[(d? — p?)*/20/2] sin 27K0 (46)

To obtain the last component Amva (¢, 8) of the associated potential defined
by Eq.(39) requires multiplication of Eq.(42) by ps and differentiation with
respect to 6:

Amv2(<, ‘9) = C2T2ZP3V;1{ - ';:l_e—pzc [Ch paf
2

1
+ ———(—p1e”*’ + p3 ch paf — p1pash pzﬁ)]
P1— P2
4 § p1 /52L11 sin 27 k0 +28L11 oK —9mk L1 sin 2Kk8
+ 2 (p%—dQ)I/Z\ 502 2nr 56 cos 2mkf—2mkL;yq sin
8%Lyg cos2nkd _OLyo 08 2Tk
T omr +2 50 sin 27k6 + 2wk L2 cos 2wkl (W—‘*‘P%
oo 2 . 0
Z 1 75 (8 L215 sin 21 +26L15 cos 2mk0—2mK L5 sin 2w k6
S (d2—p?) 12\ 06 2Tk 06
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8% L1 cos 27 k0 +9 8L
T892 2mk 86

c0oS 2TK(
in 2mk6+2mkL 2RO | oy 47
Sin 27k6+2mK L6 COS 7m>(27m)2+p%]} (47)

The second derivatives 9% L11/86% to 8% L1/96? follow from Egs.(43)-(46). The
term 6%L,,/06? is written in detail in Eq.(4.1-125).

If we substitute Egs.(38), (42), and (47) into Eq.(4.1-47) we obtain the
component Apy = Amve of the potential associated with Ag:

Amv(c, 0) = Amvl (C; 9) + Amv2(<a 9) + Amv3(<} 9)

= —c2T?Zp Va1 (e_”zc{l (1 + sh p26>
P2 P2Ps

1 < 2 P1P2) —py8 P1
+5—|(p2—pi+ =) e 4 po 1+ p1 — — ) chpaf
p%—p%[ ) p

s S

o2
+ (Pl +03+ p_z) Shpze} }
s

<K 2 2
P1 1 0 L11 . o] L12
+ 4{ E -Tz)l/z [% ( 862 sSin 27'('/{0 — 692 COS 27'”430

w=1 (P
+ (2 cos 2mk6 + %) 6;;1 + (2 sin 2k — %) aaiol%
+ i(Ln cos 2mkf + Ly sin 2#50)} %%g
’ §< 2)1/2 {2; (62521 ~ sin 2mef — %%9 cos 2”")
+ (2 cos 2mkf + S—g%?) 85615 + (2 sin 2wk — %) %

1 . cos 2Tk
+ "0:(L15 cos 2mkb + L16 s 27Tl€9):| m }) (48)

In order to simplify A, (¢,6) and A, (¢, 6) of Egs.(37) and (48) for 6 > 0,
¢ > 0 one must go through the calculations of Sections 4.2, 4.3, and 6.12.
These calculations are too long and their reliability is currently too low to
justify printing them. We only state that these calculations yielded the result

H o 1/(27k)* for k — o0 (49)

instead of Eq.(4.3-46). Assuming that the calculations leading to Eq.(49) will
stand up to further scrutiny we may conclude that the exponential ramp func-
tion of Eq.(2) yields a much faster decrease of H,, with x than the step function
of Eq.(4.1-54). One would expect that a sudden step function excitation would
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produce more “high frequency” terms—or more photons with large period num-
ber k—than the more slowly rising exponential ramp function excitation.

The calculations of Section 4.4 apply to exponential ramp function excita-
tion as well as to step function excitation. Hence, we get again the eigenvalues
E, of Egs.(4.4-8) and (4.4-13).

Let us reflect how the infinite zero-point energy of the quantized pure wave
field was replaced by a finite energy. The excitation of a transient either by a
step function or an exponential ramp function with finite amplitude Vg or Vi
in an area of finite size L% produces an EM wave with finite energy. This energy
will remain finite if we represent the EM wave by a sum of photons rather than
a sum of sinusoidal waves with finite extension. Furthermore, the energy will
remain finite if the simple approximations of dipole currents in Eqs.(4.1-4) and
(4.1-5) are replaced by the more sophisticated approximations or representa-
tions of Sections 2.1 and 2.2. The modification of Maxwell’s equations not only
permits to satisfy the causality law but also the conservation law of energy.

The use of excitation functions with other time variation does not change
anything. Such excitation functions have to be represented by sums of time
shifted step functions or exponential ramp functions? to produce solutions for
the excited waves and any excited wave with finite energy will be represented
by photons with finite energy.

The excitation of an EM wave at a certain time ¢ = Q at a plane y = 0
implies that there are no photons for t < 0. A wave excited at a plane y =0
travels both in the direction y > 0 and y < 0 even though we ignored the
wave for < 0 since it produces the same results except for a change of sign.
However, a reflector or absorber can eliminate the wave for y < 0. An arbitrar-
ily large but finite time T had to be introduced to permit only denumerably
many values of k. The finite time T implies a finite spatial interval ¢T or
2¢T'. There is no question that infinite times and distances should not exist
in a science based on observation except for mathematical convenience. But it
seems to be the first time that a mathematical theory rather than philosophical
considerations demanded a finite time and spatial interval.

4.6 EXCITATION WITH RECTANGULAR PULSE

In Section 4.1 we used the step function excitation V.(0,6) of Eq.(4.1-54)
and in Section 4.5 we used the exponential ramp function excitation of Eq.(4.5-
2). In both cases the excitation is applied in the whole time interval 0 <t < T
or 0 < @ < 1. According to Fig.4.6-1 we may produce an excitation function of
shorter duration A#@ by using the difference of two step functions with delay Ag:

Re(0,8) = Va(0,8) — Va(0,6 — AB) = Veo[S(6) — S(6 — AB)] (1)

The concept applies to the ramp function excitation of Eq.(4.5-2) too.

The solution V,(,8) defined by Eq.(4.1-58) for the step function excita-
tion of Eq.(4.1-54) assumes the following form for the rectangular excitation
function R (0, 8):

2See, e.g., Harmuth and Lukin (2000), Section 1.6.
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wos)
Ve(0, 8-06) V*“r’—'
R0.6) b

0 = 18

F1G.4.6-1. A step function V,(0,6) minus a delayed step function V. (0,8 —~ Af) yields
a rectangular function R.(0, 6).

Re(C,e) = %(C)g) = %O[F(C) + U)(C,e)] for 0<6< Af
= Ve((,0) — Ve(C, 6 — A6) for AG<6<1 (2)

The function F(() is defined by Eq.(4.1-60) while the function w(¢,8) is de-
fined by Eq.(4.1-88) and V,(¢, 6 — Af) follows readily from Eq.(4.1-58) by the
substitution of 8 — A# for 9:

Ve((, 60 — Af) = Veo[F(¢) — w((, 6 — AB)] (3)

We obtain w(¢,8 — Af) by replacing 6 with 8 — Af in Eq.(4.1-88). Equations
(4.1-43) and (4.1-47) yield then Aey (¢, 6—A8) and Ay (¢, 8—A8). The simplifi-
cations of Aev(¢,0—Af) and Any (¢, 60— AB) according to Eqs.(4.2-12) and (4.2-
16) requires the replacement of sin 27«6, cos2mkf, sin 2716, and cos 2mv8 by
the time-shifted functions sin 2x(6— Af), cos 2rk(8—A8), sin 2ru(6—AH), and
cos 2y (60— Af). The coefficients Aes(k), Aec(k), Bes(, V), Bec(k,v), Ces(k,v),
and Cec(k,v) are not affected.

In Section 4.3 the functions sin 2wx6 and cos2wk6 vanish after Eq.(4.3-
17) while sin 2710 and cos 27v6 vanish after Eq.(27), except for their use in
Eq.(4.3-32). This implies that Eq.(4.3-46) also holds for the rectangular pulse
of Fig.4.6-1:

He < 1/(2mk)2 for K — oo 3)

The relative energy represented by 3 and its components H,, will be less for the
rectangular pulse than for the step function excitation, but Eqs.(4.3-46) and
(3) refer only to the decrease of the components H,; proportionate to 1 /(2mK)2,
nothing is claimed about the actual value of H,.

Let us point out that terms Uy, () according to Eq.(4.3-32) occur for the
ramp function excitation of Section 4.5 and the rectangular pulse excitation of
the current section too. There is always a fluctuating power with time average
equal to zero.



5 Klein-Gordon Equation and Vacuum Constants

5.1 MoDpIFIED KLEIN-GORDON EQUATION

In Section 3.3 we derived two approximations of the Hamilton function for
a charged particle in an electromagnetic field. The first approximation is pro-
vided by Eqs.(3.3-32)—(3.3-34), the second by Eqs.(3.3-46)—(3.3-49). The terms
Lexy Loy, and L, in Eqs.(3.2-32)—(3.2-34) are defined by the non-relativistic
Eqs.(3.2-45)—(3.2-49), while the equally denoted terms in Eqgs.(3.3-46)—(3.3-48)
stand for the relativistic Eqs.(3.3-53)—(3.3-57).

We try to use the approximation of Eqs.(3.3-46)—(3.3-48). If we leave out
the correcting terms ce@, Lz, Loy, and L, we reduce these three equations
to one:

H=c[(p— eAm)? + mac}]'/? + ege (1)

We rewrite this equation:

1
(p—eAy)?— 0—2(5{ —ee)? = ~mic?
1
(pr — €Amz)? + (Py — eAm.y)2 +(p, —eAn,)? - 0—2(5{ —ede)? = —mic® (2)

Using the substitutions

h
RO ho kO 5 0

pm_*'i"é;a Py"*;b'g, Pz—*zaa d i Ot (3)

and applying the resulting operators to a function ¥ transforms Eq.(2) into
the Klein-Gordon equation:

Ko 2 (Ko ® (ho 2
(535 etne) + (55~ cm) + (555 cne)
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With the relation

O0Ama;
=+ jeh——t 4 242

B0 2 , 02 9
5 = — T ) mx me; 5
< —eAn J) 13 522 + 2iehA ’6 o5; . (9

) &BJ 3

we may rewrite Eq.(4) into the following alternate forms:

3
0 OhAme, . 2.
[Z ( 2 + 2iefiAmg; 6—933 + ieh————= ey +e Amz’

=1

2
-1 ( - hZa— - 2’ieh¢e —ieh—— 99 + equz) —mic®¥  (6)

c? ot? ot

i 0
<h 57 T ie h¢e + en e e2¢§>\1/
= c2(ﬁ2V2 - 2zehAm grad —iehdiv A, — e?A2 —m2cHT  (7)
We replace Eq.(1) by the complete Eq.(3.3-46) and proceed in analogy to
Eq.(2):

5o = c[(p— eAn)? + mEc?] " (1 + aeQ) + e — Lo ®)
(Ho — epe + Leg)? = 2 [(p — eAm)? + mic?] (14 cQ)? (9)

Since our calculation holds only in first order of a, we write (1 + a.Q)?
14 2c,Q. Furthermore, we leave out the term L2, since all its components are
multiplied by o2 according to Eqgs.(3.3-53)-(3.3-57):

(p—eAy)?— ciz(f}{m —ege)? + ae{Z [(p—eAm)? +mic?] Q

1 'E’c.’L‘ LCI
-3 [(f}fz — ege) ~ + = (3, — e¢e)] } = —m%CZ

ZecA.
moc?

<1 (10)

e =
Instead of the function ¥ in Eq.(4) we use the function

U, = \IIzO + ae\I/:vl (11)

and obtain
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{0 ean = 0t e+ au 20 - can)? + 210
_ 0—12 ((f}{z - e¢e)£:: 4 i:: (Hy — €¢e)>] }(‘I’mo + e¥y1)

= —m2ct(Vp0 + ae¥r1) (12)
Since the five components of the correcting term L,

ch = chl + ch2 + Lcm3 + ch4 + LcmS (13)

are all multiplied by a. in Egs.(3.3-53)-(3.3-57) we may break Eq.(12) into one
part of order O(1) and a second one of order O(a,):

<(p —eAn)? - ;}5(9{1 —ede)? + mgc2> U,0=0 (14)

((p~eAm)2— ciz(f}{m—e¢e)2+m§c2> Uy =— [2[(p—eAm)2+mgc2]Q

Lea + Lea (Hy — eqﬁe))]\llxo (15)

Qe a

- c%((%z ~ ed)

Equation (14) is essentially the old Eq.(4) while Eq.(15) is an inhomogeneous
variant of that equation.

The factor Q in Eq.(15) contains a term [1+(p—eA )2 /m3c?]~3/2 accord-
ing to Eq.(3.3-49) while Ly to Leps and Legs according to Eqgs.(3.3-53)—(3.3-
55) and (3.3-57) have the same factor with the exponent x = —3/2 replaced by
k = —1/2. If we want to replace the momentum p by the differential operators
of Eq.(3) we must explain what the resulting operators mean. This may be
done by series expansion in the case of a denominator [1+ (p — eAn)%/m2c?]":

[1+ (P — eAn)?/mpc’]" = 1+ k(P — eAm)?/mjc? (16)

The term A2(p — eA,)? in the denominator of @ in Eq.(3.3-49) is more
difficult to deal with. First, we see how it can be explained as operator if there
is only one spatial variable z. We obtain:

Az =A. A= Aea;ez * Aea:e:l: = Azz
(p - eAm)2 = (pa: - eAma:)2
AE(P - eAm)2 = Agm(pz - eAmw)2 (17)

A.- (P - eAm) = Aez(pz - eAma:)
(Ac- (p— eAm)) = A% (Ps — €Ama)’ (18)
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Since Eqs.(17) and (18) are equal we get a cancellation of the terms

Q . [Ae ' (p - eAm)]2
2 AZ(p —eAn)?
in Eq.(3.3-49) and we avoid the problem of having to explain the meaning of
1/A2(p —eA,)>.
Consider now that the vectors in Eq.(19) are represented by matrices of
rank 3 whose components are vectors:

=1 (19)

Agzey 0 0
A = 0 Acyey 0 (20)
0 0 A€,
(pa: - eAmx)ea: 0 0
p—eA, = 0 (py — eAmy)ey 0 (21)
0 0 (P2 — eAmz)e:
We obtain
Agzer 0 0 Aeze, 0 0
AZ=| 0 Age, 0 0 Aye, O
0 0 Aezez 0 0 Aezez
AEI 0 0
= 0 Azy 0 (22)
0 0 Agz
and
Ag(P - el&m)2
Azx(pm - eAmc::)2 0 0
= 0 Al (py — eAmy)? 0 (23)
0 0 A%, (p, — eAmz)?
Ae ’ (p - eAm)
Aez (pz - eAmz) 0 0
- 0 Aey(Py — eAmy) 0 (24)
0 0 Aez (pz - eAmz)

[Ae : (P - 6Am)]2

Ae2a:(pz - eAmz)2 0 0
= 0 Azy (py — €Amy)? 0 (25)

0 0 A2, (p, — eAnz)?
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Since Egs.(23) and (25) are equal we get again a cancellation of the terms
of Eq.(19) and Qo2 = 1. Equation (3.3-49) may be simplified:

1 (p m e*Am)2

= (26)
M3 [+ (p — eAm)2/m3c?*?
With the help of Eq.(16) we can fully explain the meaning of @ = Q,:
~ (b —eAn)? [m3e* - 3(p - eAn)’ (27)

However, the subscript r suggests that one can readily write two more variants

of Q:

Q= [mgc2 - —g-(p - eAm)z] (p—eAp)? (28)

@ = 7z [t - 3o - cAn?] (0 - ean)? i — 2o - cany?| @9)

These obvious expressions are not the only possible ones. A short reflection
shows that one can produce arbitrarily many variations of Eqs.(27)-(29). We
note that the potential A, that comes from the magnetic dipole current density
term g, in the modified Maxwell equations has disappeared from Eqs.(27)-
(29). But its influence has not disappeared because p — eA, is now the matrix
of Eq.(21) that was forced on us by A, in order to obtain a usable form of Q.

Having explained the term @ in Eq.(15) we turn to L., and its components
defined by Eq.(13). We shall only write the ‘right’ variant corresponding to
Eq.(27). Equations (3.3-53)-(3.3-57) yield:

1 1
_._LC ~
Qe el Aemo

[Aez(P ~ eAm)y — Aey(p — eAm).]

x (1 - W)(p - eAm)g_.<1 - %ﬁ) (30)

Lo oL [(0m 2n
@ ch2~ Ae./( 6y P eAm)z (P eAm)y)

X (1 - M)dm (31)

202
2mgc

1 1 (p—eAm)z)]
aech3~A_e/{ ezat [(p—BA ) < - Qm%CZ

- A [ eams(1- E2 ) e a2

2
2m§c
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1 m002 6Aey aAez

—Lezq = — d 33
G = A <8z 6y>x (33)

1 1 (p—eAn)?\ 0

aeLcmS ~ AemO / [(p_ eAm)y (1 2m302 3y

(p - e‘Am)2 0

+(p—eAn): (1 T 2mle? Oz

—eA,)?
es(p Ay — Ao — eAni](1- B2 o (a4
0

We substitute the operators of Eq.(3) into Eqs.(14) and (15). Equation
(14) equals formally Eq.(4) but we must write matrices according to Eq.(21)
as well as replace ¥ by ¥ 0:

<-:E(%—eAm>2 0 0
2
0 (?aﬁy—eAmy) 0
2
Lo ot
(Bo-w) o
_Clz 0 (-?%-e@)z 0
2
0 0 (—?%— ¢e)
m3c 0 0

This is essentially three times Eq.(4) without the summation sign but with the
index j retaining the values j =1, 2, 3:

) 2 1/ ho 2,
(Fag —etnes) (-5 -o%) +mie]mam =0 @0
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Using the notation of Eq.(36) we may write Eq.(15) with the help of
Eq.(27) in the following form:

h O 2 1/ hmo 2
[(2@‘;‘”‘“1‘) ‘?('za“e‘ﬁe) +m3”2]‘p“”
h O 2
=~{2](Fa; ~ o) 4t
J
) 2 ., 3(h D 2
X (;‘(ﬂ;‘&Asz> {moc — 5(;533—]—6.14‘1”;]) :l

- ‘1' _f’:g‘_e¢e (Scxl'+£cz2'+£cm3'+£cx4‘+£cm5')
) i ot J 4] 5 3 4]

ho
+ (Eczlj + l-‘fca:2j + £cx3j + Scz4j + £cw5j)( - '{5{ - e(be)] }‘I/a:O:cj (37)

The operators £cz15 t0 Legs; follow from Eqs.(30)—(34) with the help of Eq.(3)
and the substitution

1
a_Lcmkj = Lerkjs k=1,2 3,45 (38)

e

The matrix £¢;1 has the terms £.41; along its main diagonal and zeroes every-
where else:

! ko Ko
l-fcar:l] - AemO [Aez ("z" 8y - eAmy) - Aey<i Bz - EAmz>:|
1 (KO 1/nao
x [1 T 2m3c? <-z- oz; eAmxj) ] (;5:1—: - eAmz>

1 (B0 2
x [1‘%37;5(;37;‘“%”

7=1,2,3 m=z 2=y 13=2 (39)
For clarification we observe that the terms
1 (kO 2
| —— —eAmng.
2mdc? (1 Ox; ¢ mm])
are the terms of a matrix with rank 3 like the first matrix in Eq.(35) with the

terms along the main diagonal varying according to j = 1, 2, 3. On the other
hand, the terms

k0 h o h O
Aez <;5§ - eAmy)a Aey (;5‘; - eAmz)a (;5} - eAmz)
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form matrices of rank 3 with equal values for all elements in the main diagonal,
like the second and third matrix in Eq.(35).

For the remaining terms Lcyzo; to Legs; We obtain from Eqs.(31)—(34) in
analogy to Eq.(39) the following relations:

Opm Opm
Sew2j = - / [ (za eA‘"’)’ oz <zc’?y eAmy)

x [1 - —1—<’—?i - eAmj>2] do (40)

2.2 .
2mgcee \ @ Oz,

8 ((hd 1 (K 8 2
(A“a{%a‘”‘my) - (i o) |}
a((kd 1 (k& 2
— A= =5 — ——s| = - . 41
A { (22 et 1 g (2~ etun) ]} o 0

2
moc OAey OAe:
Leptj = - 42
4 cxdj ( 9z ay dy ( )

2
o (o) i ) 18
2
(35 = etee) - g (T o) [32)
X [Aez<:l§y eAmy> — A (haaz eAmz>]
X {1 - ﬁ(?a—i; —eAmzj>2}dz (43)

Equation (37) is now completely defined in terms of time and spatial
derivatives, the potentials Ay, Ae, ®m, ®e and the rest mass mgp of a charged
particle. Instead of the ‘right’ variant used from Eq.(30) to Eq.(43) we may
write a ‘left’ and a ‘symmetric’ variant corresponding to Eqgs.(28) and (29).
Obvious questions are which variant should be used, are all three meaningful,
and what shall we make of the infinitely many possible variations mentioned
in the text following Eq.(29)? One definite result obtained is that Wsos; in
Eq.(36) is one of the three components of the last matrix in Eq.(35). This is
different from the conventional theory which does not have that matrix.

Equation (36) can be solved for certain initial and boundary conditions
just like partial differential equations for the field strengths E and H or the
potentials A, and A, derived from the modified Maxwell equations can be
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solved. We note that a vector with three components that are scalars is formally
similar to a matrix of rank 3 with three components in the main diagonal that
are vectors. If the solution is done by Fourier’s method of standing waves we
are led to a quantization procedure as in Sections 4.3 and 4.4 for the pure
radiation field without charged particles.

The solution of Eq.(37) requires a particular solution of the inhomogeneous
equation since the homogeneous solution is the same as for Eq.(36). If Ay, ¢,
and mg are zero, Eq.(37) is reduced to the inhomogeneous wave equation with
the very satisfactory solution used in Eqs.(3.1-44) and (3.1-45) or Eqs.(4.1-43)
and (4.1-46). At this time we must hope that mathematicians will generalize
that solution to mg # 0, ¢ # 0, and A, # 0.

5.2 PLANAR WAVE SOLUTION

We have seen in Section 4.4 that the infinite zero-point energy for n = 0 as
well as any other infinite energies for n > 0 are eliminated for the pure radiation
field—or the pure electromagnetic wave—if the modified Maxwell equations are
used as the basis of quantum electrodynamics. The need for renormalization
was thus eliminated for this particular case. Here we will attempt to extend
this result to the interaction of photons with bosons. To do so we must in
essence replace Egs.(4.1-38) and (4.1-39) by Eqgs.(5.1-36) and (5.1-37). Hence,
we turn to the solution of Eq.(5.1-36) by Fourier’s method of standing waves.
We write z; = y in order to connect with previously derived results:

ha 2 1/ ko 2
[(f_—eAmy> _0_2(—;_67_6(]56) +mgc2]\Ilzoy=0 (1)

To reduce the number of subscripts we write

U = Uy, (2)
and obtain with the help of

ko 2 ,0%0 o 02 aAmy>
n9 =-nrl> el he v (3
(i 3y eAmy> o h 552 + 2iheAm, 3y + (e Any +1 By 3)
Ko 2 G000 QU [, . O
Z=Z = K2 hulind — jhe—= 4
(i 5 +e¢e) V= R g~ Difiege s + (e ¢% —ihe—2 |0 (4)
from Eq.(1):

0’ 10%Y e (A or 1 6\11)

o " @oe PR\t T %

e’ , 1,5 AfOAn, , 1 8¢e) mgcz]
_ P O e — - =0 (6
[A 2 Pe Ze( Ay + c? ot e? ()
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We choose Apy and ¢e to be independent of y and t. A partial differential

equation with constant coefficients is obtained:

8%y 1 9%¥ € 6\11 ov
e

Oy 2 o2
e? m3c?
_h2< my 2¢ - O >‘II=0 (6)

Except for the term ¥ /8y and the imaginary constant ¢ we have again Eq.(4.1-
38). Using the normalization

6 =1t/T, ¢ =y/cT (7)
we get
RV 8 . [0V BT )
B_G_W—2z/\l<a_<_>\389> AQ\I/_
_eTAmy (2 _ 2 : mc? 2 _Pe
A= 3 s )‘2 = )‘1 (1 CZA?ny e2Amy < )‘1’ Az = Amy (8)

A comparison of Eq.(8) with Eq.(4.1-41) shows that they are very similar. This
suggests finding a solution of Eq.(8) in terms of Fourier’s method of standing
waves that satisfled the causality law and the conservation law of energy.

For a first solution of Eq.(8) we follow Eq.(4.1-54) and assume as boundary
condition at ¢ = 0 a step function

¥(0,0) = ¥oS(6) =0 for0<0
= \I/O for 8 > 0 (9)

The usual boundary condition for ( — oo

U (00, 6) = finite (10)

cannot be used just as in the case of Eq.(4.1-55).
For the initial condition(s) we follow Eq.(4.1-56) and assume at § = 0 the
relation

¥(¢,0)=0 (11)

This initial condition implies ¥(¢,0) = 0 for § < 0 due to Eq.(9). As in Section
4.1 we emphasize that a function of time that describes a physical process
subject to the causality law must be zero before a finite time. The choice § = 0
for this time does not imply any loss of generality.
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If ¥(¢,0) is zero for all values ¢ > 0, all its derivatives with respect to ¢
must be zero too:

™U(¢,0)/0¢" =0 (12)

We assume that the general solution of Eq.(8) can be written as the sum
of a steady state solution F({) plus a deviation w(¢,8) from it:

U(¢,0) = To[F(C) +w((,0)] (13)
Substitution of F(() into Eq.(8) yields:

O F[8¢% — 2N OF/0¢ — NoaF =0

F(¢) = Awoexp {i [A+ (0 - 23] ¢
+Anexp{i [\ - (- 212 ¢} (1)

Due to the relation A2 > A in Eq.(8) the root (A} — A2)1/2 is always real. The
boundary condition of Eq.(9) demands that F(0) equals 1, which implies

F0)=1, Ap+An=1 (15)
F(Q) = exp {i [M + (03 = 2)M2] ¢} + Ange™sin [0 - 2D)V2¢] (16)
The constant A;3 remains undetermined at this time.

Substitution of Eq.(13) into the boundary condition of Eq.(9) yields the
boundary condition for w(0, 8):

T(0,6) = Wo[F(0) + w(0,0)] = Ty for 6 >0
w(0,) =0 for8>0 (17)

For ¢ — co we obtain from Eq.(10) the boundary condition

w(oo, ) = finite (18)

which cannot be used but is not needed either, while the initial condition of
Eq.(11) yields

F(¢) +w((,0) =0, w((,0)=-F(C) (19)
w(C,0)/06 =0  for6=0, (>0 (20)
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Substitution of Eq.(13) into Eq.(8) yields for w((,6) the same equation
as for U since the purpose of the definition of Eq.(13) is strictly to obtain the
homogeneous boundary condition of Eq.(17) for w(0, 8):

Pw  Pw ow | ow 9

Particular solutions of this equation denoted w,((,8) are obtained by separat-
ing the variables:

we(¢,0) = (C)P(6) (22)
1/0% o % oY _
$<6—C2—2)\ 64) d}(w 2>\1)\309)+)\§——(27m)2 (23)

We get two ordinary differential equations

¢ 0¢
acz ~2Zihge ac

2
‘Z (;f % ,\1A38— +[(2r8)? + A2l = 0 (25)

+ (27K)2¢9 =0 (24)

with the solutions:

B(C) = AgoelPrFio)l 4 Ay, giPa—to)
= [(27”{)2 + )\f]l/Q (26)

P(8) = Asoei(A1A3+7o)9 + Aglei(’\l’\3_'7°)9
o = [(2mk)? + A2A2 + AZ]) /2 (27)

ecTA ¢2 m3c? &,
)\ = Ty 2 = 2 -——0——- = €
1 A ) )‘2 )‘1< 2Amy e2Amy 3 /\3 CAmy

The boundary condition w(0,8) = 0 in Eq.(17) requires in Eq.(26) the relation

Ay = —Ayp (28)

and the particular solution w({,8) becomes:

w,e(¢,0) = {A1 expli(A1 Xz +70)8] + Az exp[i(A1 Az — Yo]0}e* Csineol  (29)
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The solution w (¢, 8) is usually generalized by making A; and A functions
of k and integrating over all values of k. We follow the alternate route of
Section 4.1 from Eq.(74) on in order to replace the nondenumerable terms of
the Fourier integral by the denumerable terms of the Fourier series. We need
again an arbitrarily large but finite spatial interval 0 < y < ¢T and time interval
0 <t < T, where T is finite but otherwise as large as we need it to be. The
normalized variables ¢ and 6 will be used:

0<¢=y/cT<1, 0<6=t/T<1 (30)
Instead of the Fourier sum of Eq.(4.1-76) we get:

[}

w(¢,0) = Y {41 (w) expli(hids +70)6] + Aa(w) expli(rsds — 70)6] }

k=1

x e ¢sinp¢  (31)

The derivative of w((,6) with respect to 8 becomes:

%%U =2 i{Al (5)(A12s + 0) expi(A1 A3 + 70)6]

k=1
+ A (k) (MAs = 10) expli(MAs = 10)8] e < sinio¢  (32)

The functions A;(k) and Az(k) can be obtained from Egs.(31) and (32)
with the help of Eqs.(19) and (20):

(o]

w((,0) =Y [Ai(k) + Aa(r)]e™ sineo¢ = —F(() (33)
k=1
0w((,0) _ &

> " i[A1(5) (M de + 70) + A2(k) (A1 As — 70)]

r=1

o6
x e™¢sin ¢ = 0 (34)

In order to obtain the functions A4; () and Aa(x) we use the Fourier series
according to Eqs.(4.1-80) and (4.1-81). The factor e**1¢ can be written in front
of the summation sign since it does not contain x according to Eq.(27):

S [A1(%) + Ao sin { [(2mn)? + A2 7 ¢} = —F(Q)e™¢ (35)

K=1

> [Ar(8) (A s + 70) + A2(k) (A1 ds — 70)]
x sin {[(27rn)2 + X3¢} =0 (36)

Equations (35) and (36) do not have quite the form of Eq.(4.1-81). To bring
them into that form we represent sin{[(2mx)2 + A2]*/2¢} by a Fourier series:
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sin {[(27m)2 + )\f]lﬂg}

= @ + i[a(fc,n) cos 2rn¢ + b{k,n) sin2mn¢] (37)

n=1

a(k,n) =2 / sin {[(27m)2 + )\f]l/zC} cos 2mn( d¢

2[(2m~c)2 + X312 {1 — cos{(2mk)? + A2]V/2}

(38)
(2rk)® + A2 — (27n)°
1
b(k,n) = 2/s [(2mk)? )\f]l/zg} sin 2mrn¢ d¢
0
_2[mr)* + A2|1/25in[(2nk)? + A3]Y/2 (39)
(21K)° + A2 — (27n)?
This expansion is not needed for sufficiently large values of x:
sin {[(27”;)2 + A%]INC} msin2rk( for k > K> A /27 (40)

We note that the constant K is here not as precisely defined as in Eq.(4.1-81)
for the pure electromagnetic wave. The coefficients a(x,n) and b(k,n) can be
computed for any « and n. We may thus produce the following sums :

<K <K
c(n) = Z a(k,n), d(n)= Z b(k,n) (41)
k=1 k=1

The summation limits < K mean the largest integer smaller than K.
After the summation we may replace the variable n = 1, 2, ... by the
variable k =1, 2, ...

(k) =c(n), d(k)=d(n) (42)
Equations (35) and (36) become with the help of Eq.(40):

oo

D [A1(k) + Aa(s))[co(k) cos 2Tk + do(k) sin 2mr¢] = —F(¢)e™2M1¢  (43)
k=1
D [A1(k)(Mda + 70) + Az(k) (MAz — 0]

X lco(k) cos 2k + do(k)sin2mx(] =0  (44)

co(k) = c(k), do(k) =d(k) for k < K> M/2rn =ecT Amy/2nh (45)
=0, =1 fork > K (46)
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Using Eqgs.(43) and (44) we obtain from the terms with ¢o(x) = ¢(x) and
do(k) = d(k) or co(x) = 0 and dg(x) = 1 in analogy to Eqs.(4.1-80) and (4.1-81)
the following relations:

for k <K > A\ /27
1

[A1(k) + Az(k)]d(k) = —2 / F(Q)e~™Csin2mr¢d¢ = —2Ip  (47)

[A1(k)(MAs +0) + A2(k) (A1 A2 — 70)]d(k) = 0 (48)
fork > K
1
Av(K) + Ag(k) = 2 / F(¢)e= ™€ sin 2mx¢ d¢ = ~21p (49)
0
Ar(k)(A1A3 +70) + A2(K)(MAs = 70) =0 (50)

If sin 27k in Eqs.{4.1-80) and (4.1-81) is replaced by cos 2mk( one obtains
the essentially same result for £ < K by means of the Fourier cosine series:

for K < K
[A1(K) + Az(K)]d(k) = —2 / F(¢)e™™¢ cos 2mk( d¢ (51)
0
[A1(8)(A123 + 70) + A2(k) (A1 A2 — Y0)ld(k) = 0 (52)

Equations (47) and (48) as well as Eqs.(49) and (50) are readily solved for
Ai(k) and Aa(k):

Iy A1hs
_ _ A /2
Ai(k) ) (1 o ) for k < K > A /21
Ir AAs3
S 53
) =5 1+ %) i
Ai(k) = —Ip (1 - )\’172\3> fork > K
A1A
Aol = 1 (14222 (54)

For the evaluation of the integral Ir we start from Eq.(16):
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F(Q)e™ ™€ = cos [(0F = M)V2¢] + (i + Awg)sin [0 = ND) V2] (55)

If we choose A13 = —¢ we obtain:

1

1
Ip = 0/ F(C)e ™6 sin 2mk¢ d¢ = o/ cos [(,\2 ~X )1/%] sin 27k d¢
_ 2nk [1—cos(A} - )\%)1/2]

56
(@27r)® — (A2 — 73) (56)
The functions A;(x) and As(x) become:
2Tk [1 — cos()\% - )\%)1/2] (0 — A1 )3)
A = - P K
1(%) [(27r)? — 32 + 22 70d() or Kk <
ok 1 — cos(A2 — \2)1/2 A
Ay(k) = ~ m | Cosg i 2)‘2) i | (70 + A1 )s) (57)
[(2mk)? — A + Ag] vod(x)
2Tk [1 ~ cos(A\? — )\2)1/2] (Y0 — A1 As)
=" >
Ai(x) [(2rr)? = )‘2 T e fork > K
ok [1 — cos(A2 — A2)1/2 A
Ag(k) = ~ I8 [1 = cos(A] = A)12] (0 + M1 )s) (58)

[(2mk)2 — AF + Af] Y0
Substitution of A;(x) and Aa(x) brings Eq.(31) into the following form:

Z K amk [cos(A — A3)V/2 - 1]

w66 = 2 anw) = 33 1 2207

X ( A1hal o9 {[ 2mk)E 4+ A3+ A ]1/20}
+ ——————1)‘1)‘3 e~ MAsl iy {[(271‘;@)2 +A2)2 4 )\3]1/29} )
Yo
x 1€ sin {[(27”4)2 + /\f}l/zc}
i 47k [cos(A2 — A3)1/2 — 1]
(2mr)2 — A2+ A3

K>K
X (e’"‘““o cos {[(27m)2 + A2 + /\gll/za}
+ __“;’\3 e~ %9 sin {[(2m)? + NDAF + X3]1/%6 ) >
0
x eMCsin { [(270)? + M2} (59)
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For k > K the first term of the second sum varies like k=1 cos 2«6 sin 2mk(
if k grows beyond all bounds, which means this is a conditionally convergent
sum. The second term varies like k™! sin 278 sin 2wk for kK — oo and is also
conditionally convergent.

In order to improve the convergence we replace the step function of Eq.(9)

for the boundary condition by an exponential ramp function according to
Eq.(4.5-2):

T(0,0) = ¥;180)(1 —e ) =0 for 6 <0, (=0
=0 (1-e*®) for>0 (60)

Again we avoid using the boundary condition

¥ (00, #) = finite (61)
As initial condition we have in analogy to Eqgs.(4.5-4)—(4.5-6):

T(¢,0)=0 (62)
0¥(¢,0)/0¢ =0 (63)
8U(¢,0)/00 =0 for6=0, ¢ >0 (64)

For the solution of Eq.(8) we try the function

T(C,8) = Taful(,8) + (1 — e ™) F(C)] (65)
Substitution of ¥1(1 — e~**)F(¢) into Eq.(8) yields:

2

F
(1- e_“g)%zg +2e7UF — 20 (1 - e“o)%z- —~Aate™®F

N1 -e)F=0 (66)

The terms with different functions of § must vanish separately. Hence, we
get two equations:

»F .. OF
o g 67
ge ~ gy ~ME=0 (67)
24+ 2M gL =0 (68)

Equation (68) has the trivial solution ¢ = 0 and a useful solution

L= —2i\ ) (69)
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Equation (67) is the same as Eq.(14) and the solution for F(¢) shown by Eq.(16)
applies again.

Since Eq.(65) must satisfy the boundary condition of Eq.(60) we get with
F(0) =1 from Eq.(15):

u(0,0)+1—e ¥ =1—¢**
u(0,0) =0 (70)

As always we ignore the boundary condition

u(00, ) = finite (1)

derivable from Eq.(61) for ¢ — oco. The initial conditions of Eqs.(62) and (63)
yield with F(0) = 1:

ou/80 +1e”YF(¢) =0, 0u/08=—1F(¢) for8=0,¢(>0 (73)

The calculation of u(¢, 8) proceeds as from Eq.(21) on with w((, §) replaced
by (¢, 0) until Egs.(31) and (32) are reached:

o0

u(¢,0) =D _{As(k) expli(A1Xs + 70)6] + Az () exp[i(MAs — 710)0]}
x e Csinigl  (74)
3“2% 6) _ ; i{A1(k) (M3 + 7o) expli( A1 A3 + 70)6)]

+ Aa(k)(AM1As — 70) exp[i( A1 A3 — 70)8]}e* 1 sin ol (75)

Substitution of u(¢,0) and Ju/d8 from Eqs.(72) and (73) into Eqs.(74) and
(75) yields equations for the determination of A4;(x) and As(x). The factor
e**1¢ is moved to the right side since it does not depend on «:

u(¢,0) = Z[Al(’i) + Az(x)]sin {[(27ng)2 + )\?]1/2c} -0 (76)
% = " i[A1(%)(MAs +70) + Az(k) (Mg — 7o)} sin {[(QWH)z + )\%]1/24}
k=1

= = F(¢)e™ ™M = 2iM A F(C)e™ ¢ (77)
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As in the case of Eqs.(35) and (36) our equations do not have quite the
form of Egs.(4.5-18) and (4.5-19). One must use the Fourier series of Egs.(37)—
(39) and the approximation of Eq.(40) to achieve the correct form. In analogy
to Egs.(47)-(50) we obtain:

fork < K> M\ /2rm

[A1(k) + Az(k)]d(x) = 0 (78)
[A1(r)(A1As +70) + A2(K) (M Az — o0)]d(x)

1
=2\ A3 / F(Q)e ¢ sin 21k d¢ = 20 Aslr  (79)
0

fork > K
Ar(k) + Ag(k) =0 (80)
A1 (K)(A1A3 +70) + A2(K(A1A3 — Y0) = 2M A3l (81)

Equations (78) and (79) as well as Eqs.(80) and (81) are solved for A4;(x)
and Ag(k):

CAdslp | 2mEMAg [1 - cos(A2—A3)1/2]
T ed(r) | [(27R)2 — A2 + AZ] yod(k)
_ CAdalp | 2mrAAg [1 - cos(AF—A3)Y/?]
Al ==l = Y [(27k)2 — A2 + M)y

Ai(k)=—As(k) for k < K (82)

for k > K (83)

Substitution of A;(x) and A3(k) into Eq.(74) produces the following rela-
tion for u((,6):

K—1
Ak As[l — cos( A2 — A2)1/2
u((,0) = Z 13 (M = A39)17

=1 [(2me)? = X2+ 23] [(2m) + ABAE + 23 d(w)
X ei/\1)\39 sin {[(27.”{/)2 + )\?)\g + A§]1/20}
x e1¢ gin {[(27m)2 + Aﬂl/zc}
) Ak Azl — cos(A} — A3)1/?]
% [(2m)? = N2+ 7] [(2mw)? + A2AF 4+ 23]
x ethraf gin {[(27!‘/1)2 + )\%)\g + Ag]l/zo}

x 1€ gin { [(27m)2 + )\f]l/%} (84)

-+

K=
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For k > K the terms of the second sum vary like k™2 sin 2wk sin 274 if &
grows beyond all bounds and the sum has absolute convergence.

Equations (65) and (55) with the substitution A3 = —1 yield the following
solution for ¥((,0):

U((,0) = U {u((,0) + (1 - €¥2257) ¢:¢ cos (22 - )|} (85)

Let us observe that the term mc®/e?, which shows the presence of a
particle with rest mass mgo and charge e, occurs in A3 of Eq.(8) and in o
of Eq.(27) via the term A2, It is through A2 and 7o that mo and e enter
Eqs.(82) and (83) for A1(x) and Az(k) as well as Eqs.(84) and (85) for u((,6)
and ¥(¢,6). The term d(x) in Eqs.(82) and (84) does not contain mq or e
according to Eqs.(42), (41), and (39).

5.3 HAMILTON FUNCTION FOR THE PLANAR KLEIN-GORDON WAVE

The energy density of a wave according to the Klein-Gordon equation is
defined by the term Ty of the energy-impulse tensor!:

1 0U* 0¥ « méc?
pr R TairTy + VU - VU 4 ——— e
Since the dimension of Tyg is J /m the dimension of ¥*¥ must be J/m or
VAs/m if one wants electromagnetic units for the energy. In the case of Eq.(5.2-
1) for a planar wave propagating in the direction of y we have V = 9/0y.

The Fourier series expansion of Eq.(5.2-84) permits a largest time T and
a largest distance ¢T" in the direction of y with the intervals 0 < ¢t < T and
0 £y £ cT'. In the direction of z and y we have not specified any intervals and
we shall follow Eq.(4.3-1) to make them —L/2 <z < L/2, —L/2 < 2 < L/2.
The energy U of a Klein-Gordon wave in this interval becomes:

Too = T (1)

L/2 L/2  ¢T .
19Ut ou | 9utou  md
U=
/ / /<02 ot ot o oy (9y 2 ‘I’ \I/>dy dz dz (2)
—L/2-LJ2
Using the normalized variables
t/T:o, y/aT:(, .’E/CT, z/cT (3)

we obtain U in the following form:
L/2¢T L/2eT

1
_ ov* 0¥ 8\11* ov moc‘lT2
Usd / / [/(ae % T acat TR WW)‘K
0]

—L/2¢T —L/2cT

!Berestezki, Lifschitz, Pitajewski 1970, 1982; § 10, Eq.10.13.
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We substitute ¥ from Eq.(5.2-85) rather than from Eq.(5.2-13) since u((, 8)
of Eq.(5.2-84) is simpler and converges faster than w((,8) of Eq.(5.2-59). The
function u(¢,8) of Eq.(5.2-84) is rewritten in a shorter form:

u(C,0) = etrrafgirad Z B(x)sin {[(2n&)? + 2222 + A%]Y/%9)

k=1

x sin {[(2mk)? + A2]V/2¢}

- 4mrAi Az[cos(A2 — A3)1/2 — 1]

[(2m)2 = X+ 3] [(2m)2 + X0AF + X ()
_ 4mkA1Az[cos(A2 — )\%)1/2 ~1

[(2mr)2 — X2 + 23] [(2m)? + A3AS + 232
From Egs.(5.2-85) and (5) we get:

B(k forl<k <K

fork > K (5)

0 = W {u* (¢, 0)u((, 0) + u* (¢, 6)(1 — *120)eC cos[(AF — AZ)1/3(]
+ (¢, 0)(1 ~ e HMAf)em N cos[(AF — AZ) /3]
+ (1 _ e—2iA1,\39)(1 _ eQiA1A39) 0052[()& _ )\%)1/2(]}

= 03](( 3 Blsysim{[tzme)? + X23 + 231%0)

k=]

2
x sin {[(27k)% + )\f]l/%})

+ 2(1 — cos 2A1 A38) cos?[(A2 — )\3)1/241] (6)

Differentiation of ¥({,8) of Eq.(5.2-85) with respect to 8 or ¢ yields:

ov Ou ) ’ A

8= U, <_60 — 2iA hge?iMRalethC o612 /\3)1/2(]) (7
5 ' ) oo
_az = e1%0e0 N " B(k)sin {[(2mx)? + AZ]V/2(}

k=1

x (z’)\l)\g sin {[(27k)? + A2AZ + A3]/26}
+ () + X20Z + M2 cos {[(2mk)? + A2NE + X326} ) (8)
ou o ‘ e
a—c =", (6—’2 + (1 - 621/\1)\39)6 >\1C{2)\1 COS[()\% _ )\%)1/24—]

- (= sl - ) (0)
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Ou iAAad _idiC > . 2 232 211/2
— = M1M8%e! B(k)sin {{(27k)° + A{A; + A 0
% > Ble)sin {(@mn)" + X3 + 451 %)

X (i/\l sin {[(27k)? + /\f]l/zf}

+ [(27k)? + A2 cos {[(27k)% + )\f]l/zC}) (10)

We may now write the first and second term in Eq.(4):

ov* 9w ou* du . fu* o, ;
50 B0 = 2 (H}"bﬁ - 22}\1)‘3W82 MdsfpihaC oog[(A2 — A2)/2(]

+ 21')\1)\3%%&_2“‘1)‘396""\14 cos[()\% - A%)l/zd

+4A}] cos’[(A] — ,\g)l/2c]>

=0} [( i B(k)MAgsin {[(276)% + AIAZ + A3]Y/%0}

k=1

2
x sin {{(2nk)? + A%]I/ZC}>

+ ( B(k)[(2mk)% + A222 + A2]V/2 cos {[(2mk)? + A2AZ + A3]V/%6)}

k=1

2
x sin {{(27k)* + ,\311/%})

—4X1 A3 cos[(A2 — /\%)1/2(] i B(x)sin {[(271%)2 + /\%]1/%}

k=1

x <,\1,\3 cos A Agfsin {[(2mk)% + A2AZ + A3]V/26}
= [(27K)% + A2A2 + AZ)M2sin A Az8 cos {[(27k)% + AIAZ + /\5]1/20})

+ 4X302 cos?[(\2 — A§)1/2(]} (11)

The second term is even longer:
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ov* v e <8u* ou Ou* (1- ezi,\l,\go)eihc

o ¢ - "\ acac T A
x {idy cos[(Af — A2 = (A] = 23)2sin[(A] — A9)Y/*¢]}
+ _g.’lé(l _ 6—21')\1)\39)6—-1‘)\1(

x { = i cosl(A2 — X)V/2] — (X2 — A3)V2 sin[(32 — X3)1/2(]}
+ (1 _ e—2‘i/\1A39)6-—i)\1C

x { —iA1cos{(A2 — AH)V/2¢] — (A2 — AH)VZsin[(A2 — A2)Y2¢))
+ (1 — 7 2urely(q _ 2Rl 32 0os?[(A2 — A2)V/2(]

+ 0 - ) a0 - 39)20])

=] K i B(k)Aysin {[(2mk)% + A20Z + A2)V/%0)

k=1

2
xsin {[(2me)? + X2} )

+ ( i B(r)[(2mK)? + A% sin {[(27x)? + A2AZ + AJ]Y/20}

K=1

2
x cos {[(2mK)? + )\%]1/%})

o0
+4Asin A\ As0 Y B(k) sin {[(2rk)? + AIA3 + A3]/%0}

w=1

x (A2 = X3)M2sin[(X2 ~ A3)/2¢sin {[(2m)? + X33}
+ ((2m)? + D312 cos|(AF — A3)/2¢] cos {[(2mr)? + X2)/2¢ )
+2(1 — cos 2A Aa0) { A2 — AZsin?[(A2 — A9V} (12)

The next step is the integration of (9U*/56)(8¥/86), (0¥*/0¢)(0¥/0¢),
and U*¥ of Eqs.(11), (12), and (6) with respect to ¢ according to Eq.(4). This
requires straight forward but lengthy calculations that will be found in Section
6.11. Equations (6.11-23), (6.11-33), and (6.11-17) are obtained. Substitution
of these equations into Eq.(4) yields the energy U. It is shown in Section 6.11
that the energy U comsists of a constant term U, defined by Eq.(6.11-44),
and a time-variable term U, with a time average equal to zero, defined by
Eq.(6.11-54). We use Eq.(6.11-44)

1292 &

<= S 2 (%) (13)
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where D(k) is defined for k =0, 1, 2, ... by Eqs.(6.11-55) and (6.11-56). The
factor ¥2 is the same as in Eq.(6), having the dimension J/m=VAs/m.

Let us consider the constant energy U.. Equation (13) corresponds to
Eq.(4.3-33) for the pure radiation field. We follow the procedure developed
from Eq.(4.3-33) on.

For the derivation of the Hamilton function J we first normalize the energy
U, in Eq.(13):

2cTU./L?0? = K (14)
H= iﬂfn = iD(n) (15)
r=0 k=0

The component H, is rewritten in analogy to Eq.(4.3-36):

v D(x)

(sin 270 — i cos 2mk0) (sin 2wk + i cos 2mk0)

_ vV D(x)
i}C,.; = (27TI€)2W

2Tk
= —27Ti’€pn(0)‘bc(9) (16)
pal60) = ViR YU pami a7)
. Q&g_ _ . 3/2\/D("i) 27ikd _ o, .
b= 25 = (2mik) o ¢ = 27ikp, (6) (18)
0 (0) = Varin Y2 oo (19)
. 0qs . 3/2VD(") —27ikd __ ,
=3 = (2mik) e € = ~2miKg (6) (20)
The derivatives 0, /0q, and 0K, /Bp, equal:
OH,. o
Bg. — 2mieP = Px (21)
OH, , .
oo —2miKkg, = +qx (22)

These are the proper relations for the components H, of the Hamilton function
of Eq.(16).

Equation (15) may be rewritten in analogy to Eq.(3.4-61) by means of the
definitions

D : v/ .
ax = (K') e27rm0’ (l: - 22,(:;) e—-21rm€ (23)

2k
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to yield:

[
=—1 Z 2mkpL(6)gs(6) = 2(27“6)20%(1 == Z 2m kb b},
K=0

x=0
1/2 1/2
b = (2”}':T> e, b= (27“}’_;T> o (24)

We check whether the energy U, of Eq.(13) is finite to avoid violating the
conservation law of energy and introducing divergencies. An infinite amplitude
of ¥, in Eq.(5.2-60) or an infinite excitation area L? according to Eq.(2) would
make U, infinite, but this is of no interest. The time T in Eq.(13) is finite.
We have to show that the sum of D(x) is finite, which means that D(x) must
decrease sufficiently fast for & — co to yield a convergent series for U, and .

Equation (6.11-55) yields for large values of & the following relation for
D(k):

H, = D(k) ~ (276)°B%(k), K>1 (25)
From Eq.(5) we get for k > K

21 Az[cos(A2 — M3)V/2 — 1]

Blw) (2nk)?

, &>1 (26)

and D(x) becomes:

4X2)2[cos(A} — A3)/2 - 1)?
(27k)?

Hence, the terms of 3 in Eq.(15) decrease as fast as in Eq.(4.3-46) and the
sum is convergent.

H,, = D(k) ~ , k>1 27)

5.4 QUANTIZATION OF THE PLANAR KLEIN-GORDON WAVE

Following Section 4.4 we start with the Hamilton function H of Eq.(5.3-24)
using the functions b, and by:

o0 h oo
H=> H.= T Z%??Tﬁtbnb: (1)
K=

k=0

We follow the conventional procedure for quantization and replace the conju-
gate complex functions b, and b}, by the operators b} and by :

by = b, b by @)
bt — by, be— bl (3)
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We have discussed the known arbitrariness of these two choices in Section 3.5
following Eq.(3.5-6). As before we use Eq.(2) first. For a particular value of &
in Eq.(1) we obtain:

Application of the operators b and b7 to a function ® yields:

1 1d 1 1d E.T
7 <°‘< * ad?) [—2 (“ B a&) ‘I’] = Drnhi

22 _ L BN o ET 1\ g _
<a( o7 42 $=2 o 3 P =2),.® (6)
E.T 1
/\n—27mh—§ (7)

Using the solution of Eq.(3.5-18) we may write E,; in the following form:

Ex = Exn

_ 2rkh 1
- 2

T n—}——), n=0,1,2, ... (8)

The energy E., increases with s beyond all bounds for any value of n. But
the total energy 3, must decrease according to Eq.(5.3-27) like 1/x2 for large
values of k. Hence, the number of particles with energy E,, according to Eq.(8)
must decrease like 1/x3 to make the total energy ¥, decrease like 1/k2. As in
the case of the pure radiation field of Section 4.4 there is no divergency and
thus no need for renormalization.

We note that our result is very general since we only needed the functions
b, and by to derive it. If we had to use the functions a, and a}, of Egs.(5.3-
24) and (4.3-45) we would have to use the different definitions of Eqgs.(5.3-23)
and (4.3-44) for a,; and a’ which would have produced different results. This
equality does not carry over to the total energy H, since Eqs.(5.3-27) and (4.3-
46) are quite different. Indeed, Eq.(4.3-46) holds for a step function excitation
while Eq.(5.3-27) holds for excitation by an exponential ramp function. If we
had used the solution w(¢,8) of Eq.(5.2-59) holding for a step function excita-
tion rather than u(¢,6) of Eq.(5.2-84) for exponential ramp function excitation
we would not have obtained a decrease like 1/x% for H,, and we would have
ended up with a divergency. It is not surprising that the presence of a mass mg
excludes the sudden excitation of a step function but permits the continuously
increasing excitation of the exponential ramp function.

The energies E,, in Eqs.(4.4-8) and (8) are the same since the photons of
a pure EM wave are the same as that of an EM wave interacting with bosons.
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What differs is the fraction of photons with one of the energies E.,. These
fractions depend, in a way that is too complicated to evaluate here, on the
constants A;(x) and Az(x) in Eq.(4.1-86) or (4.5-24) for the pure EM wave
while they depend on A;(x) and Az(x) in Eqgs.(5.2-82), (5.2-83) for the EM
wave interacting with bosons. The parameters A; and 7 in Eqs.(5.2-82), (5.2-
83) contain the term mdc?/e? according to Egs.(5.2-8) and (5.2-27) with the
rest mass mo as well as the electric charge e of the bosons. On the other hand,
Eqs.(4.1-86) or (4.5-24) do not contain any rest mass or electric charge. This
shows how the analysis of the pure EM wave and the EM wave interacting
with bosons leads to different results even though the possible energies of the
photons are equal in both cases.

A comparison of Eq.(8) with Eq.(4.4-9), Emxx = 27 fh(n + 1/2), shows
that the frequency f of the conventional theory is replaced by /7. The use
of the concept of frequency of a sinusoidal wave usually creates problems since
it is defined for an indefinitely extended sinusoidal wave with infinitely many
periods, which is outside the framework of an experimental science. If one
truncates such a wave, its Fourier transform contains frequencies of the whole
band 0 € f < oo and one must explain which of the frequencies is to be used
in the product 27 fA. No such explanation is needed in Eq.(8) since k = 1,
2, ... is an integer number and T can be chosen, provided it is large enough
and finite. But another fine detail occurs. If we have a certain value x/T and
increase T by an integer factor m = 1, 2, ... we must increase x by the same
factor to get the old result /T = mk/mT. However, this is not so if m is not
an integer since mk may not be an integer in this case. Hence, the choice of T
can have an effect on x/T.

We have here considered the constant energy U, of Eq.(5.3-13) only but
mentioned in the text before Eq.(5.3-13) that there is also a variable energy
U, with time average equal to zero. Such a variable energy with time average
zero also occurred for the pure EM wave excited by a rectangular pulse of
finite duration in Section 4.3. This suggests that such variable energies are a
significant part of the theory that is not likely to be eliminated by improved
mathematical methods. We do not want to offer a physical explanation at this
time going beyond the text following Eq.(4.3-32) since such explanations have
a tendency to cause more harm than good if advocated too early.

We turn to the substitution of Eq.(3) which is usually ignored in order to
avoid an infinite negative energy. In analogy to Eqs.(4), (6), and (7) we get:

_ET

biby = D 9)

7o oz [7a (22 o] - e
<a2C2 - %%) ®=2 (% + %) @ =2)\,0 (10)
=


file:///2-KKh

5.5 DIPOLE CURRENT CONDUCTIVITIES IN VACUUM 187

EK - Kn T

=2”“h<n—%>, n=01,2, ... (12)

For n = 0 we obtain a negative but finite energy. We avoid any explanation
of this result as premature at this stage of the theory. But there is no obvious
reason why Eq.(12) should be ignored.

5.5 DIPOLE CURRENT CONDUCTIVITIES IN VACUUM

Observable constants that characterize the vacuum are important to im-
prove our understanding of the concept of physical vacuum. Initially the con-
cept of vacuum seems to have come from Greek philosophers who associated
matter with ‘something’ and vacuum with ‘nothing’. This was strictly abstract
thinking without any connection to observation. In physics the vacuum repre-
sents the absence of matter but this is quite different from ‘nothing’. Electro-
magnetic waves are known to propagate through vacuum, so there is something
at least some of the time. Mathematicians have freely assigned features to the
physical vacuum: It is a continuum, homogeneous, isotropic, limitless, has n
dimensions, etc. The concept of the continuum predates Aristotle (1930, Apos-
tle 1969), the concept of limitless but finite is due to Riemann (1854), and the
concept of n dimensions with flexible n grew out of the work of Bolyai (1832)
and Lobachevskii (1840, 1856) on Euclid’s parallel axiom.

These mathematical features do not mean more for the physical vacuum
than the abstract claims of Greek philosophers. To prove the existence of a
continuum one has to make an observation at the locations z and z + dz, and
in addition at the times ¢t and t + dt if a space-time continuum is postulated.
Nobody expects that such observations can actually be made. Apart from the
infinitesimal distance dz and time interval dt one would need to assume that
infinite information is represented by a finite distance AX or time interval AT
Infinite information is no more acceptable in a science based on observation
than infinite energy. Neither can be produced or observed. If we can only
observe at z and x+Ax or t and t+At the continuum disappears and is replaced
by coordinate systems (Harmuth 1989, 1992). Limitless coordinate systems
with n dimensions can readily be constructed by us not only in our mind or on
paper but in reality. But these coordinate systems are evidently constructed
by us, which makes them different from the continuum that mathematicians
postulate to be provided by nature.

To distinguish between inventions provided by humans and the vacuum
provided by nature one needs observable natural constants that characterize
the vacuum. The velocity ¢ of light is such a constant. But it is the only one
within electromagnetic theory, since the permeability 4 = 47 x 10~7 [Vs/Am] is
defined and the permittivity ¢ = 1/c?u as well as the wave impedance Z = uc
are derived from p and ¢. The parameters Tpp, 7p, and o, used in Eq.(2.1-19)
should be fundamental physical constants of the electromagnetic field in the
absence of matter like the velocity ¢ of light. Let us see how one could obtain
values for the constants of electric dipole currents in vacuum.
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Uc_’c D, IR
i i -
Bl_} Rl* -B' S lf E;s/ l’
L5 —~le | -
h— =~ Up—~ b— 0.0
a b c

F16.5.5-1. Circuit with resistor R, capacitor C, switch S, and battery B (a). The
same circuit without C and R but with a conductor of length D and cross section a
(b). A plate capacitor C with area A and distance d between the plates is added (c).

We have already shown the principle of circuits for the measurement of
Tmp» Tp» Op, and s, in Figs.2.1-10 and 2.2-7, but we want to add some details.
Figure 5.5-1 shows a battery B with constant voltage Uy, a switch S, a resistor
R, and a capacitor C. If the switch S is closed at the time ¢ = 0 we obtain the
following relation between Uy and the current i(t):

t
Uo=iR+ é/i(t’) dt’ (1)
]

The current and voltages according to Fig.5.5-1a become:

i = %(—)e_t/'r, T=RC

Uc = Up(1—e7¥7)
Ur = er’t/‘r (2)

We ignore the term 7,,,dg,/dt of the monopole current in Eq.(2.1-13) and
consider a conductor with length D as well as a cross section a. Since g, and
E have the same direction we may use their magnitudes and we obtain:

&
I

age =1 =o0a

=R

a
O'BU—-

R=

slo

(3)

where U is the voltage drop over the length L of the conductor. The term iR
in Eq.(1) is an approximation of Eq.(2.1-13).

We ignore now the terms g, and Typdge/dt in Eq.(2.1-19). Consider a
plate capacitor with area A and the distance d between the plates. One may
again write g, and F for g, and E:
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Tmp =Ime [ = _ %4 4
ATS ge dt = 2 /zdt 0, AE ¥ Uc (4)
dr, 1
Ug= —E& /idt:—fidt
opATZ C
Ao,12
C= A _ A%
d  drmp
2
P _ (5)
Trmp

The term C~! [idt in Eq.(1) is an approximation of Eq.(2.1-19).

A measurement of U and { yields the conductivity ¢ in Eq.(3) for known
values of the length L and the cross section a of the conductor. Equation (5)
yields a value for ap'rg /Tmp that is independent of A or d, which is a necessity
for a quantity that characterizes vacuum rather than a capacitor.

We turn to Fig.5.5-1b that shows a voltage Uy drive a current 7 through
a conductor of length D and cross section a. With Ey = Up/D we get from
Eq.(2.1-14):

age(t) = i(t) = ZUp (1 — e~/ ) (6)

Becker (1964a, 1964b, vol.1, §58) gives the value Tpp = 2.4 x 1075 for
copper, but no value for T, was found for vacuum. The time resolution of
the fastest sampling oscilloscopes for either periodic or single events is about
10ps=10~1's. If 7y, for vacuum is anywhere close to the value for copper,
the direct observation of plots like those of Fig.2.1-5 is beyond our current
means but without a study of dipole currents we would not know why an
integral is written in Eq.(1). Light would propagate in 2.4 x 10714 s the distance
CTmp = 7.2 X 10~%m or 7.2 um. The circuits of Fig.5.5-1 would thus have to
have dimensions of the order of micrometer to make delay effects negligible. The
technology of integrated circuits and chemical machining make this possible,
but it is at the frontier of the current technology.

Consider the circuit of Fig.5.5-1c. The current 7 = ag. in the conductor of
length D and cross section a follows from Eq.(2.1-13):

di Ug ~
i+ Tmpd—z = cm—oTU—v9 (7)

The current ¢ = Ag, in the plate capacitor with area A and distance d between
the plates follows from Eq.(2.1-19):
. di Tm . UC
7:+Tmpa+'7__§p/7:dt=0'p147 (8)

Elimination of Ug from Egs.(7) and (8) yields:
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cad cad \ di T cad ga
( + AD)@-}-Tmp (1-{— AD> + 72 0,AD idt DUo 9)

The solution of the homogeneous equation equals

1= Ioe_t/T
1 7p (0pAD 1 72 (0,AD 2 opAD 12
= -— 1) - 1
n2= Tp{ZTmp< oad +1>i[4*r§lp oad + oad (10)

where 77 and 79 may be real or conjugated complex. A particular solution of
the inhomogeneous Eq.(9)

2
/idt - ;TP—%UO (11)
mp

yields the general solution

2
Tp 0pA

/idt = —nhe " — e t/m 4 B Py, (12)

Tmp d
With the initial conditions i = 0 and [id¢ = 0 for ¢ = 0 one obtains:

2
Jiar= By (1 Denin s Bn) )
Tmpd T — T T, — To
2
. UPA T —t/T —t/72
=P P [ 1 14
’ d Tump(T1 — T2) 0 ( ¢ ) (14)

For ¢t > m and t > 15 we get from Eq.(13):

dTmp
= 1
Uy = pA'rz/ idt = C/’Ldt (15)

P

which leads back to Eq.(5). If we rewrite Eq.(5)

Op = €Tmp/T (16)

and substitute o, into Eqs.(10) as well as (14) we know the values of all the
parameters except 7p. In principle one could make many plots of Eq.(14) for
various values of 7, and observe which plot corresponds best to an experimen-
tally obtained plot of i(t) to determine 7,. This will not be possible in the
foreseeable future and a more practical method to obtain either o, or 7, must
be found.



5.5 DIPOLE CURRENT CONDUCTIVITIES IN VACUUM 191

Consider the replacement of the constant voltage Up in Fig.5.5-1 and Eq.(9)
by a sinusoidal voltage:

v(t) = Upsinwt (1n

Equation (9) is rewritten:

, di  Tmpd [ . oa_.
(1+8i+(1+ 6)Tmp‘—ﬁ + —“'TE;/zdt = -D—Uosmwt
oad
=— 18
o, AD (18)
A particular solution of Eq.(18) may be written in the form
i(t) = Iy sinwt + Iz coswt = Iy sin{wt + @) (19)
and the following two equations are obtained:
Tmpd
1+ 8)Iz + (1 + 8)Tmpwlh — o Il coswt =0 (20)
3

Tmpd . oa .
{(1 +68)I1 — (14 6)Tmpwla + ?r:%fg} sinwt = BUO sin wt (21)

From Eq.(20) we obtain the ratio

2w _© 22
I sz 1+6 Tmp® ( )
Equation (19) yields a relation for ¢:
Iz Tmp 6
@ = arctg I, arctg (’rgw T35~ Tme (23)

The observation of the phase shift ¢ between the voltage v(t) and the current
i(t) at various circular frequencies w permits one to obtain 7y, 7, and oy,
Since the technology for sinusoidal waves with very high frequencies is better
developed than the technology of step or rectangular waves with short switching
times, we see here a more promising approach for the measurement of the
constants Ty,p, Tp, and Op for vacuum.

The extension of these results from electric to magnetic dipole currents
has not yet yielded any satisfactory results. One reason is the occurrence of
the sinusoidal function sin? in Eq.(2.2-10) that shows up in variations all the
way to Eq.(2.2-22). A second reason is that we can measure electric monopole
currents directly but need a transducer to measure magnetic dipole currents.
For electric dipole currents the problem of a transducer is solved by the dipole
currents between the plates of a capacitor becoming monopole currents in the
plates and their connecting leads.



6 Appendix

6.1 ELECTRIC FIELD STRENGTH DUE TO ELECTRIC STEP FUNCTION

We start with Eq.(1.3-1) and rewrite it in normalized form with the defi-
nitions of § and ¢ shown in Eq.(1.3-7):

0*E/0¢% — 0°E /062 — 2(1 + w?)OE/80 — 4*E =0
w? =es/po, 8 =o0t/2, ¢ =Zoy/2, Z=/u/e (1)

An electric force function with the time variation of a step function is
introduced as boundary condition at the plane { = 0:

E(0,0) = EoS(6) =0 for 6 <0
=Ey for0>0 (2)

At a great distance { > 1 or { — oo we have a further boundary condition:

E(o0,0) = finite (3)

Let E and H be zero for ¢ > 0 at the time 6 = 0. This yields the following
initial conditions!:

E((,0) =0, H((,0)=0 (4)

If E(¢,0) and H((,0) are zero for all values ¢ > 0, their derivatives with respect
to ¢ must be zero too:

0E(¢,0)/0¢ =0, 0H((,0)/0¢( =0 (5)
Equations (4) and (5) also imply the initial conditions

0E(¢,0)/00 =0, 0H(C,0)/060 =0 (6)
for ¢ > 0 and 8 = 0 according to Eqgs.(1.2-9) and (1.2-10).

1Even though we require E(¢,8) = H({,6) = 0 for & = 0 only, the implication is that
E(¢,0) and H((, ) are zero for § < 0, since E(0, 8) equals zero for § < 0 according to Eq.(2).

192
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We assume that the solution of Eq.(1) can be written as a sum of a steady
state solution F(¢) plus the deviation w((,6) from it?

E(¢,8) = Ex(¢,0) = Eo[F(C) +w(¢,0)] (7)
Substitution of F(¢) into Eq.(1) yields the equation®
B F/0¢% — 4w F =0 (8)
with the general solution:
F(¢) = Apoe™ ¢ + Ag1e®* (9)

The boundary conditions of Egs.(2) and (3) require Ap; = 0 and Agg = 1:

F(¢) = e™2¢ (10)

For the calculation of w((,8) of Eq.(7) we observe that the introduction of the
function F(¢) transforms the boundary condition of Eq.(2) for £ = Eg into an
homogeneous boundary condition for w,

EE(O,H) = Ey + EQ’LU(O, 9) =FEy for6>0 (11)
w(0,8)=0 for6>0 (12)

while Eq.(3) yields

w(oo, ) = finite (13)
The initial conditions of Egs.(4) and (5) yield:

F(¢) +w(¢,0) =0, w(¢,0) = —e~2¢ (14)
ow((,0)/06 =0 for§=0,¢>0 (15)

Substitution of Eq.(7) into Eq.(1) yields for w((,8) the same equation as for
E((,0):

2The assumption of a solution of the telegrapher’s equation in the form F(¢) + w(¢, )
for the voltages and currents along a transmission line of finite length is discussed by Smirnov
(1964, vol. 2, ch. VII) who credits Krylov (1929) as the initiator of the method. The finite
length of the transmission line leads to a Fourier series for w((,§) rather than a Fourier
transform, which we will use. The telegrapher’s equation uses the parameters inductance L,
capacitance C, conductance G, and resistance R instead of u, €, o, and s in Eq.(1). The
need to introduce a parameter R equivalent to the magnetic conductance s never arose, since
the resistance R was always part of the telegrapher’s equation, which predates Maxwell’s
equations.

3Equation (8) as written follows from Eq.(1), but it is an ordinary differential equation

and should be rewritten with d2F/d(¢? replacing 82F/8¢2. We shall forgo such strictly
cosmetic steps.
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Pw/0¢* — 8%w/00% — 2(1 + w?)Ow/0 — 4ww = 0 (16)

Particular solutions w, (¢, #) are obtained by the separation of variables using
Bernoulli’s product method

wie(¢,0) = ¢(C)1(0) (17)
¢710%¢/0¢% = ¢ 10%p/06% + 2(1 + WYL OY/00 + 4w? = —(27k)?  (18)

which yields two ordinary differential equations

d?¢/d¢? + (2mk)24 =0 (19)
and
d*p/d6? + 2(1 + w?)dy/df + [(27k)% + 4w?] P =0 (20)
with the solutions:
@(¢) = Ajpsin 2wkl + Aqg cos 2wkl (21)
Y(0) = Az0exp(110) + A21 exp(720) (22)

The coefficients ; and 7, are the roots of the equation

Y2 +2(1 + w?)y + [(27K)% + 4w?] =0 (23)

which we write in the following form:

v = —a+ (a? = b))% for a® > b?
12 = —a - (a® = b})!/2
v = —a+1i(b? —a?)V/?  for b? > o?
Yo = —a — i(b? — a?)}/?
a=1+uw? b = (21k)% + 4u? (24)

The boundary condition of Eq.(12) requires A;; = 0 in Eq.(21). The
particular solution wy(¢,8) becomes:

w,((,0) = [Ar exp(118) + Az exp(728)] sin 2wk ( (25)

A general solution w((,8) is found by making A; and Ap functions of the
normalized wavenumber &, and then integrating over all possible values of :
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w((,0) = /[Al(n) exp(710) + Az(k) exp(7260)] sin 27 k¢ ds (26)
0
The derivative dw/08 equals:
dw [ .
0= /[Al(n)'yl exp(110) + Aa(k)y2 exp(y20)] sin 2wk dk (27)
0

The initial conditions of Eqs.(14) and (15) demand:

/[A1 (k) + Ag(k)] sin 27k dk = —e™2¢ (28)
0
/[Al(m)'yl + Ag(K)ve]sin 27k de = 0 (29)
0

These two equations must be solved for the functions A;(x) and Aa(x). To this
end consider the Fourier sine transform in the following form:

[+ <}

0(e) =2 [ £Qsin2nncde, £(0)=2 [ gulw)sintmecar  (30)
0

0

If we identify 2¢,(x) first with A;(x)+ A2(x) and then with A;(k)y, + A2(k)72
we obtain from Egs.(28) and (29):

Ay (k) + Ag(k) = 2g5(k) = —4 / e 2% sin 21k d¢ (31)
0

Ar(k)m + A2(k)y2 = 29:(k) = 0 (32)

Using the tabulated integral (Gradshtein and Ryzhik 1980; p. 477, 3.893/1)

o0

2k
e “sin2mk¢ df = ———— 33
0/ cde (27K)? + u? (33)
one obtains from Eq.(31):
Ar(R) + Agl) = ——o2F___ 8Tk (34)

B (2rk)? + dw? ez
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For the limit s — 0 we get:

w? =0, b2 - (21k)?, Ai(k) + As(k) = —2/7k (35)
Equations (32) and (34) are solved for A;(x) and Ag(k):

Ai(x) = —82-—: ,72’_7_2,71
.—_-4;:—: <1+(a2_—ab2)—1/_2> for a? > b?
=—é;;—ﬂ <1—-(b2——i—z2)1/5) for b% > a?
Aalr) = _8:_: 711172
= _4;r2m (1 E ab2)1/2> for a® > b
= —4;:—: (1 + W) for b2 > a? (36)

Substitution of Eqgs.(24) and (36) into Eq.(26) yields:

w(¢,8) = -a*’{ /K [( )1/2) exp [(a2 - b2)1/26}
0

_ a 2 an1/2 sin 2mk(
+ (1 _(a2 - b2)1/2> exp[ (a® - b%) OH YT de

I )t
K

ia 2 ayi/2,] | Sin27KC
+ (1 + _(b2 _ a2)1/2) exp [ i(b* — a®) 0] ] Yy dk
K=01-w?)/2r, a=14+w? b = (2nk)% + 4u?, w? = es/po 37

The imaginary terms in the second integral may be rewritten in real form by
means of the formulas

€+ e™ =2cosq, —i(e?~e ") =2sing

while the first integral can be simplified with the help of hyperbolic functions:

e?+e ?¥=2chq, €9-e"7=2shg
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One obtains:

2

1—w
h 2 _ b2 1/20
w0 = _%e—-ae[ / (Ch [(az - b2)1/20] e (Ez(;_ b2)1)/2 ]>
0
X —27m SlbI; RALS d(27k)
7 in [(82 — a2)1/26
+ / <cos [(b2 _az)x/za} + asnn(g_a;;li2 ]>
1-w?

2mr sin 2wK(
x ——

02T 4(om )] (38)

To obtain Eg(¢,8) we still have to add F({) to w(¢,8) according to Eq.(7).
With the help of Eq.(10) we get:

EE(C»H) = Ey [6—2‘0( + w(c’o)] (39)
We now make the transition to s = 0. From Egs.(24) and (37) we get in this
limit:
b=27tk=7n,a=1 2rK=1-w?=1 (40)
Equations (38) and (39) become:

>-Hm

w(¢,0) = — 9[/1 (ch 1/20] sh [(1*772)1/20])sinnc in
0

(1—n2)"? U

+1/ (cos {(7]2 _ 1)1/20} 4 sin ([7(772,2__1;3/1:29] ) SiI;UC dﬂ] (41)

Equation (42) may be rewritten into a form that shows analytically that
the field strength Eg((,6) is zero for 8 < ¢ (Boules 1989). Using the relations

cosix = chz, sinizx=shz

we rewrite w(¢, ) as follows:

2 7 sin [(n? — 1)}/26] \ sin (7
w((,0) = —=e 00/ (cos ~1)1/20] + (7}2—1)1/2 ) ” dn (43)
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We further use the relation

cosar = & sinaz 44
Tdr a (44)
to obtain
o0
9 sin | 1)1/20] sin (n
w60 =2 (+1) [ZE AT
0
Using once more Eq.(44) we get:
8 2 8 7 sin [(n? — 1)1/26)
ow _ _ £, il A/ ) I |
o = e <80+1>_/ L cos{ndn (46)

This integral is tabulated (Gradshteyn and Ryzhik 1980, p. 472, 3.876/1):

]osin [(n? — 1)1/29)

o 1)1/2 cos¢ndn

(V62 ~¢?) for0<(<6

for0<0<¢ (47)

m|>a

5J0(iv/07 = 32) =
0

Here Jy (i\/ ) is the Bessel function of the first kind of order zero. Fur-

thermore, Io(\/ C2) is the modified Bessel function (of first kind) of order
zero. Using Eq.(44) we may rewrite Eq.(47):

o Tanl(r 1) sy —
8_(/ )7 7 d7I=-2-Io( 62 —(2?) for0<(¢<¥6
0

=0 for0< @< (48)

Integration of Eq.(48) introduces integration constants that are arbitrary and
may be chosen so that a desired result is obtained. The ability to choose these
constants reflects the fact that there are infinitely many ways to write Eq.(43).
Our goal is to obtain 0 for the interval 0 < 6 < ¢ in Eq.(51) below. By
trial and error one finds that this calls for the integration constant (7/2)sh@
for 0 < 6 < ¢ in the following Eq.(49), which is the integral of Eq.(48) with
respect to . The integration constant for 0 < ¢ < 6 is of lesser importance:

.\_q

sin [(n? — 1)/26) san
/ T

l\D

¢
/10(\/92—412)(14' for0<¢<8

=
[=)

=—sh6 for 0< @< ¢ (49)

[
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Equation (45) may now be written as follows:

¢
w(¢,0)=—e"? (585+1> /I()(\/G2 - ¢?)d¢’ for 0<({<#
0
_—_-e-9<—+ 1) shf=—e (chf+shf)=—1 for 0<h<¢  (50)

Substitution into Eq.(42) brings the desired result

Eg((,0) = [1—e H/C(GII Ve - ) +Io(\/92——C’2))dC'}
0

(62 — (72) 1/2

for0<(<#
=0 for0<@<( (51)

where I; (\/62 - C’z) denotes the modified Bessel function of first kind of order
one.

6.2 MAGNETIC FIELD STRENGTH DUE TO ELECTRIC STEP FUNCTION

In Section 6.1 we derived the electric field strength caused by excitation
with an electric excitation force having the time variation of a step function
5(0) at the plane { = 0. For w # 0 or s # 0 the electric field strength is defined
by Eq.(6.1-7):

Eg((,0) = EolF(¢) + w(¢,6)] (1)

The associated magnetic field strength is defined by Egs.(1.4-7) and (1.4-8):

Hg((,6) = e [ = 6(;5(;3 2w29d0+Ho(C)] (2)
Hg((,6) = ——/ <‘9EB +2EE> d¢ + He(6) (3)

wr=es/uo, Z =+/pfe

Substitution of Eq.(1) into Eq.(2) yields with the help of Egs.(6.1-26) and
(6.1-10):
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Hg(¢,0) = _Ezge—zaﬂo/ ( —2we~ %S 4 ?;Z) 2040 4 Hg(C)e‘z“’ze

o<

__Eo a9 1 guwe—o) / o +207)8

= Ze we + 27 2w2
0

+ __A2 (k)x (12 +20*)0

7+ 207 ) cos 2k dn] + Hy(C)e~2"¢

' o0
_ &[le—zwc _ _1__/< A (m)n emné

T+ 2w2

A
t 2;(7’2)32 e"’o) cos(n dn] + Hy(¢)e™ 2"

n=2mk, 0=0t/2%, (= Zoy/2, ¥ =es/uo (4)
With the help of Eqs.(6.1-24) and (6.1-36) we obtain:

A (n)n an? vy 1 4 .
Ailn _ At v _4 ;
71 + 2&)2 b2 YT2—7m + 2&)2 b2(1 + ‘Is), a® >
4
= (1 -iq), b2 > a?
Az(m)n i’ v 1 4 -
ooz T T = 15 — {s b b
72 + 2w ¥ n—rr+w? pl-a), o>
= :—2(1 +iql), b*>a
==Vt o 21-w)?—n
T —wr o2 T g — (1 w2)2
a= 1+w2, b2=772+4(4)2 (5)

Substitution into Eq.(4) yields:

2

1
Hg(¢,0) = —EZE [56_2“’( - %e—(uw?)o( / {(1 + ¢s) exp [(a2 - b2)1/20]
0
+ (1 —gs)exp [ — (a? - b2)1/20}}%1-7£dn
+ /°Q {(1 —igl)exp [i(b2 - a2)1/20]

1

+ (1 +14q)) exp [~ i(5% — a2)1/20]}00277C )] + Ho(()e™2"0  (6)
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Using hyperbolic and trigonometric functions we obtain:

1—w?

Hz(C,6) = %{%e—zwc _ ie—(1+w2)o[ / <ch {11 - w?)? — 72]+/28}
0

T

4 2(1 - w?) —nIsh {[(1 - w?)* — 772]1/29}> cosné
2[(1 - w?)2 — 2/ n? + 4w?

+ / (cos{[n2 - (1 -w?)?)/2}

1-w?

[2(1— w?) —n¥sin {[n? — (1 - w?)?]¥20}\ cosn¢
[7] _(1 0.}2)2]1/2 >?72+4w2d :I}

+ Hp(Q)e 20 (7)

We make the transition w — 0 or s — 0 for ¢ # 0. The first term of Eq.(7)
yields:

. 1 —2w¢ _ 1
ul;l—~mo @ T w % ®)

In order to calculate the first integral in Eq.(7) we observe that the denominator
b? = n% + 4w? causes a problem for w = 0, but the denominator 2[(1 — w?)? —
n%]*/2 does not since we get

im 2(1 — w?) ~
I 30—y

73 sh{ (1—w?)? —7)2]1/20}

2
s Tmala-m] o

which yields /2 for n? = 1. The first integral of Eq.(7) becomes for small
values of w:

Ig1(¢,0) % 9/1< (1— 1/29]
0

(2-nH)sh[(1- 7]2)1/20] cosnl
- 2(1 —n2)*/? )772—4w2

dn (10)

This integral may be split into two parts by means of the identity

cosn¢ = 1 — 2sin%(n¢/2) (11)
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to yield:

Ie1(¢,0) = %e_g{/l<ch (2 — 2%
0]

L @=n?)sh[A -2\ dy
2(1_7]2)1/2 n2+4w2

—2/1<ch [(1—n2)1/2e]

0
(2 =) sh [(1 - n*)"/20] \ sin®(n¢/2)
)i} o

We split this integral into four components of which only one depends on ¢ and
0, the other three are functions of 8 only:

Ig1(C,0) = —111(C,0) + [12(0) + T13(8) — T14(6) (13)

Here I11((,0) stands for the second integral in Eq.(12), which remains
finite for w = 0,

2, | avyag] L (2= 77 sh[(1—n?)12]
Ill(C)e) = ;e / (Ch [(1 -n ) 9] + 2(1 _7]2)1/2 >
0
sin(n¢/2) | ?
X (————————n/2 ) dn (14)

and can be evaluated by computer. The other three components of Eq.(13)
are:

! _n2y1/2
]
1
4 _ sh [(1 —n?)/26]
g) = —e~*? d 16
I(8) = 2e 0/ T (16)
1
2 2 h (1_ 2)1/29
ha®) = e [ (;’_Snz[)l,z (Z2+4w]2)dn (17)

0

Integral I14(f) remains finite for w — 0
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1
2 sh [(1 —7?)1/26]
lim I14(8) = =e° / — 2y (18)
0 —p2\1/2

“ S (-n%)

but I12(0) and I;3(6) pose problems when 1 approaches zero. Hence, we divide

the integration interval 0 < n < 1 into two subintervals 0 < n < dand d < 1 <
1, where d <« 1 is a small constant:

5

n +4w2

d 2)1/2 L 912
Ia(6) = ( / b (Gl Y / C—h—[(l—n;’)—ﬂdn> (19)
0 d

d 1
4 - sh [(1 - n?)1/26)] sh [(1—n?)1/20]
hs(0) = e <0/(1_772)1/2 (TI2+4u12)d77 +/ (1 -7 dn> 0

In the interval d < n < 1 the integrals are finite and they can be evaluated
numerically by computer. In the interval 0 < n < d the variable 7 is small
compared with 1 and we can resort to series expansions:

Q- =1-9%/2
(1-7*)"2 = 14072
ch[(1- n%)!/26] ~ ch|(1 - n?/2)6]
~ ch8ch(n%0/2) — sh6sh(n?6/2)
h [(1 - 7%)"/20] = shi(1 - n2/2)6]
~ sh 8 ch(n?6/2) — chsh(n?6/2) (21)

The two problem integrals in Egs.(19) and (20) become:

d
4 _, [ch[(1-n*"?%
hp(0) = Ze 9/ ‘[—772‘@2—]‘1’7

SYES

d d
_4 ch(n?6/2) sh(n*6/2)
o]

d
4 sh [(1 —n?)Y/26]
IlSP(e) 7r 9/ (1 —7]2)1/2 (772 +4w2)

=1|~>-

d
-8 (1 +7 )1/20] .
/ ( —) —————mw2—dn continued
0
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4 ch(n? 0/2 sh(n26/2
~;€ <Sh6/ 2+42 ha/ 2+4w2
)

d
1/772sh (1 —n?)1/%9]
+_.
2
0

7% + 4w? d") (23)

For two of these integrals we can make the transition w — 0 without creating

a pole:

i n Zsh{(1- 2)1/29]d
w—0 n? + 4w?

[=]

w—0

hm/dsh(n%/Q) in /sh(r::o/m :

n2+4w2

The problem has been reduced to just one integral. Using the relation

chz =1+ 2sh*(z/2)

we obtain:

d d d
/ ch(n?6/2) g = / dn__ / sh%(n20/4) p
P4 T | Py 4wt e+ dw?
0 0
The second integral has again no pole for w = 0,

d d
i [S20P0/4) [ sh’(0r°60/4)
tm, [ St = [ S

while the first is tabulated (Gradshtein and Ryzhik 1980, p. 60, 2.124/1):

d

d—nziarctgld w2>0
n?+4w? 2w 2wy’
0
With the series expansion
T 1 1 9
arctgm:—é—;+3—ﬁ—..., z¢>1

we get:

ety n? +4w? w02 \2 " d) T wstdw d
0

/d sh [(1 - n2)1/2e] dn

(24)

(25)

(26)

(27)

(28)

(30)

(31)
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Converting ché and sh# to exponential functions one obtains for I;2,(8) and
I3,(0) the following expressions for w — 0:

d
2 o[ T 1 /shz(n20/4)
== — = g
Iygp 7r[(1+e )<4w d+2 7 n
0

d
—(1- e*z")/s’h(iﬂdn] (32)
0

I3p(6) = %{(1 - e"z")<£-) - % +2/d s_h2_(777]r‘;9ﬂdn>
0

_29)/ sh(n 9/2 sh(n’6/2) . 2e"00/dsh [(1—7)2)1/29] dn} (33)

The last integral of I;3,(#) becomes insignificant for small values of d and we
may simplify I13,(6):

d 5 .
0

d
— (1 4+e72) / shin 9/ 2) dn] (34)
[}

The integrals I15,(6) and I13,(8) become equal when ¢ approaches infinity.
We return to the integrals I12(f) and I;3(8) of Egs.(19) and (20). They
may be rewritten as follows:

d 2
L12(0) = ;[(1 +em20) <zﬂ; L / sh (:7;9/4) dn)
0

? sh(n26/2) [ ch [(1—n2)1/26)]
—(1 —6_29)/%—6177*‘26_9/—7—‘17)] (35)
0 d

d n?

o) = - (£ - 1 [0,
0

d 1
_ e—20 sh(n?6/2) e sh [(1 - 772)1/29]
(1+ )/—_7]2 dn+2 /———(1 T dn] (36)
0 d -
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The sum of I13(8) and I13(6) minus the integrals I14(9) of Eq.(18) and I11(¢, 6)
of Eq.(14) yields integral Ig;(¢,6) of Eq.(13). We sum first I12(8) and [,3(6):

d
1 2 4 2 20\ d
ha(0)+ ha(0) = 55 - 15+ ‘6_9{/ (200 T2 - 57)

o[ (sl )

With the relation 2sh?(z/2) = chz — 1 we may rewrite the kernel of the first
integral

2sh?(26/4) — sh(n?0/2) = ch(%6/2) — sh(n?0/2) — 1 = exp(—n26/2) — 1

and obtain for Ig;(¢,0):

d
12 2 exp(—n%6/2) — 1
(G, 0) = == — — + ~e Q{Q/MT/)dn

1
+2d/ (ch [(1 - n2)1/29] + %217/22_0]) z_;’

h —n?)s _a2)1/2 sin 2
_0/<ch (1= n2)20] + (2 nQ)(lh_[(;2)172) 9]>< ;7}42/2)> i

1
sh [(1 — n?)1/26]
+/ (1~n2)"? dn}
)

d<gl, wxkl (38)

For finite values of @ and sufficiently small values of d one may rewrite the first
integral in Eq.(38):

d d
exp(—n%6/2) -1, _Q/ _ 6d
/ 7 =3 [ d="-3
0

This integral can be neglected for finite values of 8 and sufficiently small values
of d.

We introduce the notation —I, (¢, ) for the function Ig;1(¢,8) in Eq.(38)
without the term 1/w:
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IIEI(Ca 0) = _IEl(C) 0) + 1/(4)
1

2 2 _ sh [(1 ~7%)'/20] \ dn

E-— ; 0{2/<Ch [(1_n2)1/20:| +——(1_n2)1/2 >’l7_2
d

h —n2 _ 2y1/2 in 2
_O/<ch [(1—n2)1/20]+(2 n2)(s1h_[(;2)172) 9]><s 5}772/2)> i

+ 0/1 et 11//220] inf (0
)

It remains finite for w — 0

Let us turn to the second integral in Eq.(7
and we get for this limit the function Iga((, 6):

Ig2(C,0) = lim %e'(”“’?)e / (cos{[n2 -(1 —w2)2]1/29}
1-w?

201 - w?) —n’]sin {[y” - (1 ~w2)211/20}) cos ¢
2[n2 — (1 — w?)2]*/? 72 + 4w?

9/<cos 7 —1)1/20]
1

(2 = n?)sin [(n? - 1)1/26] \ cosn¢
+ - 7 ) 5—dn  (40)

We may now rewrite Hg (¢, 8) of Eq.(7) for w < 1:

+

>}|4>

Hy(¢,0) = 2 [— 20 4 Ty (6,0) = — Teac, o)] - Hy(0)

‘2"[ 2 + 11 (€,6) - IEz(c,0>]+Ho(c> (a)

We see that the two terms 1/w and —1/w cancel and that Hg((, 8) thus remains
finite for w — 0, or s —» 0 and g, — 0.

We turn to the integral of Eq.(3). Substitution of the electric field strength
Eg(¢,0) of Eq.(1) yields:

Ho(0) = -3 [ (2552 4 2P0+ 20(.0) ¢ + He(0)

. [ Lo [ (22 2w)dc] FHG) @)
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Using Eqs.(6.1-26) and (6.1-27) we obtain:

o0

E,
Ho(0) = =2 - 2o~ o [ [strimen® + datnmet] Ly
0

=1|H

-2 [ @er + aataen) =y + o)
0

By[l, auc_ 1 / A +2)
]
Z |w 2 7

_ A2 +2) 0
n

7 =27k (43)

>] cosn¢ dn + H¢(6)

From Eqs.(6.1-36) and (6.1-24) as well as from the definition of g5 and ¢/ in
Eq.(5) follows:

Ai(n)(m +2) n v mn+2 4 2
SR TE . L2 T S (14g), ai>b?
1 Py-m 1 ptl+e)

=_b (l—lq;), b2>a2
St M M ML Sy 2>
4 . ! 2 2

—_Aa+vig), Bea (@)

The comparison of Eqgs.(4) and (5) with Eqs.(43) and (44) shows that they are
equal for

Ho(Q)e™* = H¢(8) = Hpoe " (45)

The initial condition of Eq.(6.1-4) demands Hgg = 0.

Plots of Hg({,8) according to Eq.(41) as function of 8 for Hp(¢) =
are shown in Figs.1.4-4 and 1.4-5 for various values of . Since If({,0) of
Eq.(39) contains the small but otherwise undefined constant d one must choose
successively smaller and smaller values of d until the change of the plots with
d becomes less than the line width. The plots of Figs.1.4-4 and 1.4-5 were
done with d = 0.001. The process is the same as used for the determination
of the value of (sinz)/z for z = 0 by computer. For a discussion of the plots
of Fig.1.4-4 see Harmuth (1986a). This reference also derived the first plots
for magnetic rather than electric step function excitation and for electric as
well as magnetic excitation with force functions having the time variation of
an exponential ramp function [1 — exp(—§)]5(6).
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We have shown in Section 1.4 that no associated magnetic field strength
can be obtained from Eqgs.(1.4-1) and (1.4-2) that were derived from the original
Maxwell equations. It is of interest to see how this general proof works out in an
example. Using the electric field strength of Eq.(6.1-39) and (6.1-38)—without
questioning how it was derived—we want to calculate the associated magnetic
field strength from Eqs.(1.2-14) and (1.2-15) rather than from Eqs.(1.3-2) and
(1.3-3). We see that Eqs.(1.2-15) and (1.3-3) are identical. Equation (1.3-2)
becomes Eq.(1.2-14) if we choose s = 0. For s = 0 or w = 0 we obtain from
Eqgs.(1) and (2) with the help of Eq.(6.1-10):

B(0.0) = Bt + (0] (40)
o6, =~ [ 222D+ 11 )

Substitution of Eq.(46) into Eq.(47) yields with the help of Eq.(6.1-26):

1e(¢,0) =~ [ 2550 as -+ Ho(0)

__Bo [ (&0 00, Al e
= 2”Z0/< e . cosn¢ dn + Hp(C)

n = 27K (48)
From Eq.(5) we obtain for w = 0

A 4 2—-n?
1(71)77:__5 1+ n1/2 C1sq
ge! 7 2(1-n?%)
4 2 —n?
=—2 1—2—'——77?/2' y ’f]>].
n 2(n2-1)
A 4 2-—n?
2(77)7I=_2_ 1 nl/2 1wy
72 ] 2(1-1n?%
4 . 2-—n?
=—=|14i——" |, p>1 49
W( um—ﬁ”) ! “

while Eq.(6.1-24) yields:

n=-1+1-7")"2 1>
=-14+im*-1)Y2, n>1
Y=-1-(1-7)2, 1>n
=-1-i*-1Y2, n>1 (50)
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Substitution into Eq.(48) yields:

Hs((.6) = -2 2o /1 (et [a=oyv2g
0

N (2 —n%)sh (1 —n?)1/20] > cos17Cd77

2(1 —7]2)1/2 172
7 —n?)si 2 _1y1/2
+/ (cos n°—1) 1/20] (2w sin [( I 21) 0]>coszncdn}
/ 2(n2—1)" n

+Ho(C) (51)

The second integral equals —Ig2(¢,6) in Eq.(40) and (41) but the first integral
is not defined. It equals Ig;(¢,6) of Eq.(10) for w = 0 and Ig;1(¢, ) is shown
in Eq.(38) to have a term —1/w that is infinite for w = 0.

6.3 EXCITATION BY A MAGNETIC STEP FUNCTION

In Sections 1.3, 1.4, 6.1, and 6.2 we investigated the excitation of a TEM
wave by an electric excitation force with the time variation of a step function in
the plane y = 0 at the time ¢ = 0. We turn to the case of a magnetic excitation
force.

Using the normalized variables # and { defined in Eq.(1.3-7) we consider
the following step function for the magnetic field strength as a boundary con-
dition:

H(0,0) = HoS(6) =0  for 6 <0
=Hy for8>0 (1)

At the plane { — oo we have again the boundary condition corresponding to
Eq.(6.1-3):

H(o00,0) = finite (2)

Let H{(,8) be zero for { > 0 at the time § = 0. We have then exactly the same
problem as in Section 6.1, except that H, Hy, and Hy must be written for E,
Ey, and Fg. Equation (6.1-39) assumes the form

Hy(¢,6) = Ho [6'2WC +w((,0)], w=+es/uo (3)

where w(¢, 6) is defined by Eq.(6.1-38).

The associated electric field strength Fx(¢,6) due to the magnetic field
strength H(0,6) at the boundary plane { = 0 follows from Eqs.(1.2-17) and
(1.2-18):
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1(¢,0) = —Z/ <%+2 2HH> d¢ + E¢(6) (4)
&«v>-z-“/aH”w+mw-” (5)

We do not get a repetition of the calculations of Section 6.2 with Eg((,6)
replaced by Hy((,0) since we want a solution for ¢ > 0, s = 0 rather than
§>0,0=0.

Equations (3) and (5) yield:

EH(Ca 6) =HyZ ((416—2“’C - e_zo/%%e%’dg) +E9(C)e‘20 (6)

From Eq.(6.1-26) we get:

ow
HZ‘Q"/—”
oZe ace do
o0

= 2rHoZe % / [/ (Al (k) exp[(2 +71)0]
0
+ Az(k) exp[(2 + 72)0]) d0] K cos 2rk dk

_HoZ [ (A zw
=5 / <2 . exp(m6) + —— G exp('ygﬁ) ncosn¢ dn
0

n=2rK (7

Using Eqgs.(6.1-36) and (6.1-24) we obtain:

Ai(n)n 4w?

24 m 77 +4w2(
2

;) for (1—wh)Z>p?

(1+14py) for (1 —w?)? < n?

= 2+4w2
Ar(mn _ _ 4w®
2_‘(_7)2 T 4o 5(1+p1) for (1 — w?)? > n?
4? .
= m(l —ipg) for (1 —w?)? < 7?
7%+ 2w?(1 — w?) P42 (1 —w?)

n= , = 8
T ariiowr - P - (1 w2 ®
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Equation (6) becomes:

Eu(C,0) = ZHo{we-2w<

1—w?

...gw_z ~(1+w?)8 (1—p1)e [(1- 2)2_ 2]1/29
€ [0/ ( n XP{ w n }

T

i B /2L ) _cosmC
+ (U p)enp {2 -2} ) S0 gy
[o
+ / ((1 + ipy) exp {i[nz -(1- w2)2]1/20}
1-w?
; 2 2\211/2 cosng¢ -26
+(1—2P2)GXP{—Z[77 - (1 - ‘9}>mdn]}+Eo(C)e 9)
Equation (9) is rewritten with the help of trigonometric and hyperbolic func-
tions:

1—w?

Eq(C,0) = ZHo{we-M - ﬁe-ﬂ—‘f)"[ / <ch {[(1 —W?)? - n?]l/za}
0

s

2 2 2
_ 2wl -w?) — N2 n211/2 cosn¢
ATyt g = =10} )

00 772 +2w2(1 _w2)
N / (cos {[772 (- w2)2]1/29} T2 = (1— w2)2 2

1-w?

: 2 (1 21172 cosn¢ —29
X sm{[n (1 -w)?] 9} ) n——————z T4 dn| ? + Eg()e (10)
We make the transition s — 0 for ¢ > 0, or w = y/es/po — 0. This result
should be compared with Eq.(6.2-8). The first term in Eq.(10) vanishes. The
remainder of Eq.(10) becomes:

[ sh(1 - n%)1/2)

2
EH(C,Q) = ;T—ZHoe_0</ (1 — n2)1/2 COS'I]Cd’l?
]

o0
sin[(n® — 1)'/26] —26
+/——(;2—-1)TCOST]CdT] + Eg({)e (11)
This is the electric field strength derived from Eq.(5). We turn now to the
electric field strength defined by Eq.(4). Substitution of Eq.(3) yields:
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Eu(C,0) = ZHo (—6‘2“’4 - %%d( — 22 / wd() +E(O)  (12)

With the definitions of Eqs.(6.1-26) and (6.1-27) for w((,0) and dw/08 we
obtain for n = 27«:

oo

Bu(6,0) = ZHo{ - e+ o [ (262 + v i ()
0

+ 27+ ) )] 2 + B (0) (19)

The following relations are obtained from Eqs.(6.1-36) and (6.1-24) for n = 27k
with p; and p, defined in Eq.(8):

A 2w? + 40?
1) M) for - s
4uw? . 2\2 2
=—T]2—+m(l+’lp2) for (1-—(4) ) <7]

A 2w? + 402
2o - 1) gLt for (1) >

4w2

= -—m(l —ipy) for (1 —w?)? < n? (14)

Substitution of Eq.(14) into Eq.(13) yields:

Eu(¢,0) = ZHy {we—ZwC

1-w?

207 o~ (ta? —p1)ex —whH2 ¥
- Z et "’[0/ (@ -pem {ia-wt? - 1720}

s

11 a2\2 L 211/2 cosn¢
+(1+p1)exp{ (1 -w®)® —n? 0})———n2+4w2d7)

+ / ((1 +ipy) exp {i[nz -(1- w2)2]1/26}

1~w?

+ (1= ipa) exp { —ifn® — (1 — w?)?V/20 } ) H—%dn] } +E¢(6) (15)

Equations (9) and (15) are equal for any value of w if we choose
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F1G.6.3-1. Magnitude Ey of the associated electric field strength according to Eq.(11)
caused by a magnetic step function excitation at the plane ¢ = 0 of a lossy medium
for ¢ =0, 1, 2, 3. Note that the maximum of Eu((,8) is very close to the jump for
¢ = 0—too close to show in our plot—but shifts to the right for ¢ > 0, as clearly
shown by En(3,0).

Eo(¢)e™ = E¢(9) = Euoe™ (16)

The initial condition of Eq.(6.1-4) requires Eg = 0.
The magnetic field strength of Eq.(3) assumes for w = 0 the form

Hu(¢,0) = Ho[l +w((,0)] (17)

where w((,0) is defined by Eq.(6.1-41). It may be rewritten in the form of
Eqgs.(6.1-51) or (1.3-16):

¢2) 1/2

<
Hy =H0[1—6 9/ (9[1(\/02 C/2 1 ( /92—C,2)> dc/] for ¢ <0
0

=0 for(>6 (18)

Plots of Hy(¢,8) are shown in Figs.1.3-1 and 1.3-2 if Eg and Ep are re-
placed there by Hyg and Hy. Plots of the associated field strength En(¢,6)
according to Eq.(11) are shown in Fig.6.3-1 for ( = 0, 1, 2, 3. The functions
are zero for # < 0. There is a jump at # = (. All plots approach zero for
0 — oo.

The delays and the jumps in Fig.6.3-1 correspond to the results for the
associated magnetic field strength due to electric excitation in Fig.1.4-4. But
the curves now drop to zero for # — oo rather than increase linearly with 4.
The reason is that the magnetic fleld strength is not attenuated directly by



6.3 EXCITATION BY A MAGNETIC STEP FUNCTION 215

losses. It must first be transformed into an electric field strength, which is then
attenuated by ohmic losses. As the electric field strength approaches zero, the
ohmic losses approach zero too, and a time invariant magnetic field strength
without electric field strength remains. This is, of course, what we expect to
observe when an electromagnet is switched on.

It turns out that Eqs.(9) and (15) for w = 0 or s = 0 can be obtained by
choosing w = 0 at the beginning of the calculation. This was not possible in
Sections 6.1 and 6.2. We show here the simplified solution. Instead of Eq.(3)
we use

Hy((,6) = Holl + w((,0)] (19)
Substitution into Eq.(5) yields:

Eu(¢,0) = —ZHpe™ % / %Z—’e”de + Ep(¢)e%

_ZHy / (Al(n) me Az(n) (12
2 J 247 2472

) ncosn dy + Eg(C)e‘” (20)

From Eqgs.(8) and (6.1-24) we obtain for w = 0:

glﬁz? - —(1 ~ 7272)1/2 for 1 > 7°
= +i—————(n2 _21)1/2 for 1 < n?
1;124(.77’3: = - 7272)1/2 for 1 > n?
= —ia2—_2T)17§ for 1 < n? (21)

n=-1+1-)2 yp=-1-Q-9})"* for1>n?
m=-1+in* =YY% p=-1-in*-1'? fon®*>1  (22)

Substitution into Eq.(20) yields Eq.(11). This was much simpler than the
calculation from Eq.(6) to Eq.(11). Let us see whether the transition w — 0 at
the beginning rather than at the end of the calculation can be made for Eq.(4)
too. Substitution of Eq.(19) into Eq.(4) yields for w = 0:

Eu((,0) = -—Z/ —d( + E(6)

ZHo

=2 [A1(m)me™? + A, (77)’726729] C

——dn+ E(6) (23)
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From Eq.(14) we obtain for w = 0:

Avlmm _ + 2

2
n = - 7]2)1/2 for1>n
—_ 2 2
= ‘ZW for1< n
Az (m)2 2 2
n =-—(1_—’r’2)1/‘2 for1>7]
. 2
= +ZW forl < 7]2 (24)

Substitution into Eq.(23) yields again Eq.(11) with the term Eg(¢)e~%¢ replaced
by E¢(n). Hence, the substitution w = 0 at the beginning of the calculation
worked again.

We have assumed ¢ > 0, s — 0 in Sections 6.1 to 6.3. The opposite case
s> 0, 0 — 0 follows readily from the symmetry of Egs.(1.2-9) and (1.2-10).

6.4 ELECTRIC FIELD STRENGTH DUE TO ELECTRIC RAMP FUNCTION

We replace the electric step function of Eq.(6.1-2) by an electric exponen-
tial ramp function

E(0,0) = E1S(0)(1 —e™) =0 for 6 <0
=E(1-e*) for6>0 (1)

and repeat the calculation. At a great distance { we have the further boundary
condition

E(c0,6) = finite (2)

If E(¢,0) and H((,0) are zero for ¢ > 0 at the time § = 0 we have the initial
conditions

E(,0)=H((,0)=0,(20 (3)

This equation implies that the derivatives with respect to ¢ must be zero too:

0E(¢,0)/0¢ = 0H(¢,0)/0¢ =0 (4)

According to Eqgs.(1.2-9) and (1.2-10) the derivatives of the field strengths with
respect to § must vanish, if the field strengths and their derivatives with respect
to ¢ are zero:
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OE((,0)/00 = OH(C,0)/00 =0 for§=0, ¢ >0 (5)

We assume that the solution of the previously derived Eq.(6.1-1)

O*E/8¢* — °E/00% — 2(1 + w?)OE /00 — 4 E = 0
w? =es/uo, 6 =at/2. (= Zoy/2, Z =/p/e (6)

can be written in the form:

E(¢,6) = Eg((,0) = Ex[u(,0) + (1 — e ™) F(()] (7)
Substitution of E;(1 — e~*)F(¢) into Eq.(6) yields:

-8 62F 2,10 2\ ,—t8 2 —10
(1—e )5—4—2—+L eYF() - 2(1+wh)e ™ F(() - 4w (1—e*)F(¢) =0 (8)

Since F(() is assumed to be a function of ¢ but not of 8, the terms with different
functions of @ must vanish separately. We get thus an equation for the first
and the last term of Eq.(8)

O*F/o¢? — 4P F =0 (9)
and a second equation for the two remaining terms
=21+ w?) =0 (10)
Equation (9) yields again the solution of Eq.(6.1-10)
F(¢)=e™¢ (11)
while Eq.(10) yields ¢ as function of ¢, s, , and o:
t=2(1+w?) = 2a = 2(1 + es/ o) (12)
Substitution of Eq.(11) into Eq.(7) yields:

E(¢,0) = Eg((,6) = Er[u(¢,6) + (1 — e 2¥)e™2¢] (13)
We equate Eg(0,8) with the boundary condition of Eq.(1)
u(0,0) +1—e729% =1 _ =29 (14)

and obtain the homogeneous boundary condition

u(0,6) =0 (15)
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which is the goal of this mathematical method. At the plane { — oo we obtain
from Eq.(2) with F(c0) = 0 the boundary condition

u(00, #) = finite (16)
The initial condition of Eq.(3) yields

while the second initial condition of Eq.(5) requires according to Eq.(13):

Ou/90 + 2ae72%%e=2¢ = for =0, ¢ >0 (18)

The calculation of u((,6) proceeds as in Section 6.1 for w((,8) until
Eqgs.(6.1-26) and (6.1-27) are reached:

o0

u(6,6) = [ 143() exp(m0) + Aa(w) exp(raf)sin2mnCds (19)
0

5 = [ 1Astem exp(m0) + Aalsm expld)]sin2mncas  (20)

0

The coefficients y; and 72 are defined by Eq.(6.1-24). Substitution of Egs.(19)
and (20) into Eqgs. (17) and (18) yields:

/[A1 (k) + Az2(r)]sin27x{dr =0 (21)
/ [A1 (k)71 + Ag(k)72] sin 2mkC dk = —2ae™2%¢ (22)
0

These two equations should be compared to Eqs.(6.1-28) and (6.1-29). Using
the Fourier sine transform pair of Eq.(6.1-30) we obtain from Egs.(21) and (22):

Ar(K) + Ag(k) =0 (23)

o0
A1(r)11 + Aa(K)y. = —8a / e~ sin 2mK( d¢ (24)
0

Using Eq.(6.1-33) we obtain:

16amk 16amk
Al (K’)A/l + AQ(K’)72 =- (27”(1)2 + 402 =- b2 (25)
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With the help of Eq.(6.1-24) we may solve Eqgs.(23) and (25):

16ark 8amk
By —72)  b52(a2 - b2)2
8amk
b2 (b2 —- a2)1/2

Ai(k) = —As(k) =~ for a? > b?

= +i for a? < b? (26)

We substitute Egs.(26) and (6.1-24) into Eq.(19):

u(C,0) = _4ae_a9</Kexp[(a2 ~ b2)1/29] — exp[—(a? — b2)1/26] sin 2wk

(a2 — b2)}/? b2/2mk
0

.7exp[z’(b2 — a?)/20] — exp[—i(b? — a2)'/26] sin 27KC
—1 dk
(b2 — a2)'/? b2 )27k

K
=(1-w?)/2m, a=1+w? b= (21k)? + 4w?, W? = es/po (27)

This equation may be rewritten into a more compact form with the help
of hyperbolic and trigonometric functions as well as the substitution 27k = n:

1-w? .
u((,0)= (1+w )exp[—(1+w2)g]< / sh{[(1-w?)?—n?]*/26} nsin(n dn

A S e LTS

.\ 7’ sin{fn? = (1 = w226} nsingn )

W? =es/uo, 2mK =1 (28)

Equation (7) may be rewritten as follows:

E((,0) = En(¢,6) = By [(1— e 20+90) o2 Ly 0)]  (29)

Figure 6.4-1 shows plots of Ex((,8)/E; for { = 1 and ¢ = 3 as function
of § for various values of w. The values of w are chosen by observing that the
relation

2_f8 _ 13

T po T 220 (30)
implies s/ = Z%w?,

Figure 6.4-2 shows plots of Eg(¢,8)/E; for 8 = 1 and 8 = 3 as function of

¢. The number of values of the parameter w has been reduced compared with
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F1G.6.4-1. Electric field strengths Fg(¢, 8)/E1 according to Eq.(29) as function of the
normalized time 6 with the normalized distance ¢ = 1, 3 and w = 0, 0.1, 0.2, 0.4 as
parameters.
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F1G.6.4-2. Electric field strengths Eg((, 6)/E1 according to Eq.(29) as function of the
normalized distance ¢ and the parameters § =1, w=0,04 and 6 = 3, w = 0, 0.2,
0.4. The solid lines hold for w = 0, the dotted line for w = 0.2, and the dashed-dotted
lines for w = 0.4.

Fig.6.4-1 since the plots are very close together. We note that Fg(¢,0) has
defined derivatives 0Fg/08 or 0Fg/d¢ in the interval 0 < 8 < 00, 0 < { < o0.

6.5 MAGNETIC FIELD STRENGTH DUE TO ELECTRIC RAMP FUNCTION

From the electric field strength Eg((,6) of Eq.(6.4-29) excited by an elec-
tric exponential ramp function follows the associated magnetic field strength
Hg(¢,0) by means of Eqs.(1.3-2) and (1.3-3) or Eqgs.(1.4-7) and (1.4-8) for
normalized notation:

Hg(C,0) = e-2w29( Z ach 2“’20d0+Hg(C)> W = % (1)
=~ / <6EE + 2EE> d¢ + He(6) @)

The various derivatives and integrals are calculated with the help of Eq.(6.4-
29). First we determine Hg((,6) of Eq.(1):
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B 9.7 —2(14+w?)8 0 —2w( 2w?0
- —Z—-e / (1 —e ) 526 e de
_E1 2,-2(1+w?)0) p—20¢
== (1 “+w ) e (3)

Using Eq.(6.4-19) we get another term of Eq.(1):

_ By s [ 0u($,6) oty

Z B
MEL [ [ Ai(k) As(k)
Yis KKk KK

=- zl/<7112w26719+7212w26%9) cos 2 (4)

Substitution of Egs.(3) and (4) into Eq.(1) brings:

Hg(C,0) = % % (1 Tt ) gk

o0
/ (27mA1(K Mo | ZI'fAZ’_(")e”ﬂ") cos 27rCfi] dk
0

T + 2w? Yo + 2w?
+ Ho(Q)e™> (5)

We obtain with the help of Eqs.(6.4-26) and (6.1-24):

2rkA
%% ;1)(21(1 +4¢.), fora®>b%or(1-w??> (21k)?
1

_4a

=7 —(1—iql), fora® < b?or (1 ~w?)? < (2nk)? (6)
2rkAsz(k 4a
72—4_;% = b—z(l—-qe), for a? > b2

4a s ! 2 2

= b_2(1 +iql), fora®<b (7

g = 1—w? g = 1-w?

(1 -w?)? = @re) 2" [(2mn)? - (1 - w?)2]' /2
2

a=1+w? b =21k)?+4w?, w?=es/po (8)

Substitution into Eq.(5) yields:
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(1 + w26—2(1+u2)0) 2w ?;‘le—ae

g€l

X [ 7“' ((1 + ge) exp[(a2 - b2)1/29] +(1—qe)exp [_(az _ b2)1/29] )w:#dn
0

+

1—w?

\8

<(1 —iq)) exp [i(b2 - a2)1/20}+(1+iq;) exp [—’i(b2 - a2)1/29] ) Egz——fﬂdn}}

+ Ho(Q)e™2"  (9)

Using hyperbolic and trigonometric functions we obtain:

Hg((,0) = &{ L (1 + w2e'2(1+“’2)9) e—2w¢

Z\w
1-w?
_ A0+ :‘”2)6—(1+w2)0[ / <ch {[(1 - w?)? - nz]”?o}
0
1—w? 2 a2 ) cos (n
+ (1 - w?)2 —g2)"/? Sh{[(l — ')’ =] 9} n? + 4w2d

+ /oo (cos {W —(1- w2)2]1/20}

1—-w?

2
T (11 “‘;2)2]1/2 sin { [ — (1 - w2)2]1/20} ) n;‘f foﬂ dn] }

+ Hy(¢)e™*  (10)

We turn to Eq.(2). From Eq.(6.4-29) we get:

Hy(¢,0) = % B (14 w2e200) =26 4 / <-§% +2u> dC] +H(0) (1)

Equations (6.4-19) and (6.4-20) yield:

o]

/(6u+2u> d(:—/(2+’y1 Al(n)e7‘9+—2—2%A2(n)e”0> cos2n¢kdr (12)
0

99 2TK

With v;, 72 from Eq.(6.1-24) and A;(x), Az(x) from Eq.(6.4-26) we obtain:
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0

F1G.6.5-1. Associated magnetic field strength He((,0)Z/E; according to Eq.(10) as
function of the normalized time 6 with the normalized distance { = 1, 3 and w = 0,
0.1, 0.2, 0.4 as parameters.

F1G.6.5-2. Associated magnetic field strength He({,6)Z/E) according to Eq.(10) as
function of the normalized distance ¢ and the parameters § = 1, w =0, 0.4 and § = 3,
w =0, 0.2, 0.4. The solid lines hold for w = 0, the dotted line for w = 0.2, and the
dashed-dotted lines for w = 0.4.

_22-;ZIA1(I~:) = 22-;:1 bz(l;ilaiifm) _ i—:(l +q) fora? >b?

= %g-(l —iql) for a® < b?
J;;Zmz(n): 2;”32 bz(l’y62a-7i’f)’1) _ %;(1_%) for a2 > b2

= :—g(l +igl) fora? <b? (13)

The coefficients g, ¢, are defined by Eq.(8). Substitution of Egs.(12) and (13)
into Eq.(11) yields again Eq.(9) but the integration constant Hg(¢)e=2*? is
replaced by H(6). Hence, the condition

Hy(()e™%9 = H,(#) = Hgoe 2° (14)

must be satisfled. The initial condition of Eq.(6.4-3) requires Hgo = 0.
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For w = 0 one may rewrite Eq.(10) into the following form (Harmuth 1986,
Eqs.2.9-28 to 2.9-30):

HE(C’ 9) El

Igs(¢,0) = { [
0

_et 1 c 1/2 sh(1 —n?)!/%9 dn

d/(h(l e )

1
o6 ch(1 — n2)1/2 sh(1—n?)Y20\ (sin(¢n/2) >
!(hu (E (1-n)"? < n/2 > @

d<1 (16)

— (=20 + Tgs(C, 6) — Ina(¢, 6)] (15)

d
/exp 7%6/2) —1](;—2

&.I'—‘

7 _\1/2
Ini(ci0)= 27 | (cos(ntl)l/z“ SHE(Z-SL'A’ 0) (1)
1

The function I5(¢,8) holds for the limit d — 0. Plots made with decreas-
ing values of d show that for d < 1075 one obtains changes that are of the order
of the line width of the plot.

Figure 6.5-1 shows plots of the associated magnetic field strength HgZ/E;
for ( =1 and ¢ = 3 as function of 8 for various values of w. Figure 6.5-2 shows
Hg(¢,0)Z/E, for 8 =1 and § = 3 as function of {. The number of values of
the parameter w has been reduced compared with Fig.6.5-1 since the plots are
very close together. We note that Hg((,8) has defined derivatives 8Hg/86 and
OHEg/O( in the interval 0 < 8 < 00, 0 < { < 0.

6.6 COMPONENT A, OF THE VECTOR POTENTIAL

For the evaluation of the integral of Eq.(3.1-44) we obtain first the deriva-
tive OFg(¢’,0')/06' from Eq.(1.5-2) with the substitutions { — ¢/, § — 6"

EleE«',e’) = (1 — e 200 =20 4 oy(', 6) 1)
ou

1 0Eg — 201+ 2)6—2(1+w2)9' ~2w¢ I 5

2
£y 06 @)

Next we derive du(¢’,6")/06’ from Eq.(6.4-28):
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1—-w?
4(1+w?) _ 20 shwq6’ nsind'n
u(¢’,0') = ——( - )e (1+w%)8 < / —_wl n———2+4w2d

m . 0’ - CI

sinwef® nsinl’n

—_—d
+ / wo n2+4w2 7])
1—w?

wy = [(]_ _ w2)2 _ ,,72]1/2, wy = [nz - (1- w2)2]1/2’ w2 = 68/“0

1-w
@=+4(1+w ) —(1tw?)e /
oo’ T

0

7 1 2 i
+ / < :zw sinwze’——cosw29’> Mdﬂ} (3)

nsin(’n
n? 4 4w?

Sh w19’ —ch Wi 9’)

7% 4 4w?
1—-w?
The derivative OHg((',6')/9¢" of Eq.(3.1-44) follows from Eq.(6.5-10) for
Ho(¢)em2"0 =0

g HE(Cla 91) =

7 (1 + w2e‘2(1+“’2)9') e~ ¢ 4 (¢, 8') (4)

€l

2
e

1—-w?

1—w? cos¢'n
/ <chw19' + o Shw19') Wd’l’]
0

7 g2 /
+ / (cosw29'+ 1-w sinw20'> ﬁg——d] (5)
wa

X

7% + 4w?

1—-w?

The differentiation with respect to ¢’ does not have to be carried out since
it is followed immediately by an integration over ¢’ in Eq.(3.1-44).

We turn to the integration over ¢’ in Eq.(3.1-44). The first term on the
right in Eq.(2) yields:

C+(6-0)
Ie] (C, 9/) — / 2(1 + w2)6~2(1+w2)9/e—2wc’dcl
¢—(6~0")

2
_ 1 "L'Uw e—2w¢ (e2w96—2(1+w+w2)9' _ e—2w96—2(1—w+w2)9') (6)
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The final form of I.1(¢,#’) was chosen to facilitate integration over 8’ later on.
Integral Ini(¢,6’) is obtained from the first term on the right of Eq.(4):

¢+(6-9")
In(¢,6) = &'-
¢—(6-0")
= _1. (1 +w2e—2(1+w2)01) e—2w(’
¢ ¢—(0-0")
= —-1—6"2“’4 [ez"’e (e“z“’o' +w2e—2(1+w+w2)o’)

W
e~ 2w8 (e2w9’ + w2e—2(1—w+w2)9') ] (7

1 2 —2(14+w?)¢’\ —2w(’ ’
» (1 +w’e ) e d¢

¢+(6-0")

The integral of du(¢’,8")/06" over {’ is derived from Eq.(3) and denoted
‘[32 (C) 91):

C+(6—0’)6 4(1 2)
N ou g AL +WT) 1ty
Ie2(C,0 ) - ae,dc T €
¢~ (8-9)
1 ¢+(0-8") ) 9 ¢’ -
+w , A\ nsindn .,
- 0 ) ——=d¢'|d
x{ / [ / ( o shw0" — chuw, >n2+4w2 ¢’ dn
o le—(a-0 -
o0 ¢+(6-6") 1 2 ,
+ [ :“’ Sinwge'—cosw20') "S‘“C"dc dn}
2

1-w? L¢—(8-6)

_ 8 40%) _arure

™
2

. 14+w? sin {7 cos §'n—cos (nsin &'y
X [ / sin 07)( o shw; 8 —ch w19'> o dn
0

o0
, 14+w? | sin {n cos #'n—cos (nsin 6’y
+ /Sm on ( > sinwq8’ —cos w29'> e dn| (8)

1-w?

The terms sin(ncos#'n — cos(nsin@n are written in this expanded form to
facilitate integration of I,2(¢,8") over #. Our last required integral over ¢’ is
that of dv/0¢":
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¢+(9-6") a
Lna(C,8) = / S’ = (¢, 0)

(-(6-¢)

¢+(0-8")

¢—(6-6")

— 8(1 + (-U)z e—(1+w2)0’
™

2

1—w
1— 2 : 0'n— ing’
x[ /sinan (chw10'+ w‘: Shw10'> s1nCncosn2n+:ZZCnsm nd??
4]

2

. ;o Ny
w sinw29'> sin ¢ cos #’'n—cos{nsind

n
d 9
7% + 4w? (9

oo .
1—
+ / sin O (cos wob' +

1-w?

The next step is to integrate Iy, Ini, le2, and Ig over 8’ according to
Eq.(3.1-44):

[}
Ka(C,0) = / La(¢,8)de’
1]

1+ w?

T [(1+w?)? —w? e”2¢[(1 + w?)sh2wf —wch2wd]  (10)

0
Kni(¢,0) = /Ihl(g,of)def = le—%C(}_:_c_}l%‘*’_e
w w
0
_ w? -2+ _ w2[(1 + w?) sh 2wh ~ wch 2wn9]) (11)
(1+w?)?—w? (1+w?)? —w?
e"2%¢ (1~ ch2wh
Ka(6.0) + Kun(,0)] = == (122
w? —o(1+w? 1 + w?) sh 2w — wch 2w
h 2)2 2° o )9+( . ) o2 2 ) (12)
14wt —w 1+w?) —w
‘li_'n})[Kel(C,a) + Kni(¢,0)] = -1+ 20 — 26° (13)

The integral over I.o((,6’) with respect to 8’ follows from Eq.(8) and is
denoted K,o:
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e 6
2
Ke(¢,60) = / La(¢, 0)de = ———8(1:“’ ) / i
0 0

1—w?

1 2 : oy CNY: V)

9 /sin9n< +w shiwyd —chuwn 8 sin {7 cos §'n—cos (n sin § M
wy n? + 4w?

0

o0
1 2 : /o sl
+/ sin0n< :w sinw20'—cosw20'> sin {7 cos §'n—cos (7 sin § ndn} do’
2

n2 + 42
1—w?
si+u?) [T sine 14w?
+w sin fn . +w
= - { / T 42 [san< o1 Ly -Lzs)
0
14 w?
— cos(n ( o Ly ~ L24) ]dn

o0

sin @ . 14 w?
+ / m[SlnC’I]( s L25—-L27>

1—-w?
1+w?
— cos(n < o L6 — Lzs) ]dﬂ} (14)

The integrals Lg; = L21(6,n) to Loy = La4(6,7) are listed in Gradshteyn
and Ryzhik (1980) as 2.674, 1-4 and Lss, Log as 2.664, 1. Integrals Lsg and
Lo7 are readily transformed into tabulated integrals:

9
Loy(6,m) = /e_(““’z)gl shun @' cosnd’ db’
0

e =1=9M0 () 1 — ?) cosnh + nsinnb] — (wy — 1 — w?)
- 2[(w1 — 1 - w?)? +7?
+ e=@r+140M0(( 11 + w?) cosnd — nsinnf] — (wy + 1 + w?)

15
2[(w1 + 1+ w2 + 77 "
[
Loy(6,m) =/e‘(1+‘“2)9' shw; 8’ sinné’ do’
0
_ el (), — 1 — w?)sinnd — ncospb] + 7
= Awr —1- w2 +7
—(w1+14+w?)8 %) si _
L e [(wy+1+w?)singd +neosndl —n

2{(w1 + 1 +w?)? + 52
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8
Lys(8,m) = /e_(1+“’2)9 chw, 8 cosnd’ db’
0

_ e(“’l‘l“"z)e[(wl —1—w?)cosnd +nsinnd] — (w; — 1 — w?)
N 2w =1 —w?)? + 77
e~ @1t 1+w0( + 1 4+ w?) cosnf — nsingb] — (wy + 1 + w?)

h (wr + 1+ w2)2 + 17 (17)
0
Lyy(6,1m) = /e_(l"""Q)ol chw, & sinnd’ d¢’
0
_ e@1=1=w"0(y — 1 — w?)sinnd — ncosnd)] +17
2f(wn -1 —w?)2 477
B e~ @11+ (4 + 1+ w?) sinnd + ncosnd] — 7 (18)
2[(wy + 1+ w?)2 +n?
0
Los(0,m) = /e'(H“’z)ol sin wq#’ cosnd’ do’
0

e=HMO[(1 4 w2 sin(wy + )8 + (w2 + 1) cos(wa +)6] — (wa + 1)
2[(1 + w?)? + (w2 +n)?]
_ e*(1+“’2)9[(1 + w?) sin{wy — 1)0 + (w2 — ) cos(wa — )] — (w2 ~7)
2[(1 + w?)? + (w2 — n)?]

(19)

6
Log(8,m) = /e_(1+“’2)9, sinwsf’ sinnb’ d§’
0
e~ W+9((1 4 w?) cos(ws +7)6 — (w2 + 1) sin(wz +7)8] = (1 +w?)
2[(1 + w?)? + (w2 +n)?]
_ OO + w?) cos(wn — m)f — (wp —m) sinwn —n)f] — (1 +w?)
2[(1 + w?)? + (w2 — 1)?]

(20)

9
Loy(8,m) = /e“(l‘*""z)e, cos wob’ cosnb’ db’
0
_ e~ [(1 4 02) cos(ws + )8 — (w2 +n) sin(ws +7)6] — (1 + w?)
2[(1 + w?)? + (w2 +1)?]
e=(1+"0((1 1 )2) cos(wy — 7)8 — (wg — 1) sin(wz — 7)6] — (1 + w?)

- (L +w?)Z + (wa =07 (21)
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0
Loyg(0,m) = /e'(l‘*‘"z)o, cos wof' sinnd’ df’

e OHN(1 4 w?) sinws + )8 + (wa + 1) cos(wa +0)8) ~ (w2 + 1)
2((1 + w?)2 + (w2 +n)?]
e‘(1+“’2)9[(1 + w?) sin(wg — 1)8 + (wa — n) cos(wz — )] — (wa — n)
¥ 21+ w2 + (ws — 1) (22)

We turn to the integral over Iya(¢,0’) with respect to & as defined by
Eq.(9). It is denoted Kp2(¢,8):

) D)
KhZ(C,e) — /Ih2(c,01) d9' 8(1 +0J /e—(1+w2)9/
0 0
1—w?
) 1-w? sin (7 cos #'n—cos (n sin 'y
x[ /sxn&n(chw10'+ o shw10> e dn

0

oo
1-w? ¢ 74
+ / sin 6n (cos walb’ + Y sin w20> sin ¢y c0s 6'n —cos ¢n sin g } dg’
wg
w2

7% +4w?
1
9 1—w?
8(1 +w?) sinfn 1-
=—7r——{ / 7 + dw? sin¢n | L2 + L21
0

L22) ] dr

T sin 6n )
+ [ wlma (e
2

l-w

1-
st (1 15

2
L26> ]dn} (23)

We may now rewrite Eq.(3.1-44) as a function of ¢ and 6 without the

integrations over ¢’ and &’. First, Eq.(3.1-44) is normalized to bring it into
conformity with our current notation:

— o8 (7 <L28 +

¢+(6-6")
Zeo

1 0Eg Z OHg ]
E_lAmz((,e) = "'/ [ / <—E‘1“5§7‘+ B, oC >df}d6 (24)
0 S¢—(o-0"
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We obtain with the help of Eqgs.(10), (14) and (11), (23)

6 , ¢+(6-8") 1 8E
_* UVLE _

/( / T 50 dC>d9 Kea1(¢,0) + Ke2(¢, ) (25)

0 *¢—-(6-0")

E, 8¢

6 , {+(6-0") 7 oH
/ ( / Ed(’) d¢’ = Kpn1(¢,0) + Kp2(¢,0) (26)
0 N¢—(6-8)

and A,;;(¢,8) can be written in a form that requires only one numerical inte-
gration over the variable 7:

Zco e~2%¢ /1~ ch2wé w? 2(1+w?
Zeo _ _ —2(1+w*)8
B, Ans(6) (= A+ -
(14+w?)sh2wd —wch 2w0)
1+ w?)? ~ w2
1—w?
16(1+w?) sin 6n ;
T / wi(n?+4w?) (L sin g 2 €S G
[= o] . 9
sinén .
+ | - Lo @
1—w

The terms L1, Lgg, Las, and Lgg are listed in Eqgs.(15), (16), (19), and (20).
There are no poles or singularities. Hence, we need to check only the limit
11 — o0 to confirm that Eq.(27) is an actual rather than a formal representation
of An(¢,0). We obtain the following variations of Ly; to Laog for large values
of n:

1 1 1 1
|Laa| = = |Lag| ~ n | Los) = 7 |Log| =~ .
1 1 1 1
| Los| ~ a |Log| =~ = |Lo7| ~ 3 | Lag| ~ n (28)

Due to the factor 1/(n? + 4w?) in the kernels of the integrals of Eq.(27) all
terms of the integrals decrease like 1/7% or 1/n* for large values of . Given
the complexity of Eq.(27) such a fast convergence is very fortunate.

6.7 COMPONENT Ae; OF THE VECTOR POTENTIAL

We need to evaluate the integral of Eq.(3.1-45). The calculation is quite
similar to that in Section 6.6 but we have now the derivatives 8FEg({’,6')/0¢’
and OHg({',6')/0¢ instead of HEg(¢’,0')/86' and OHE((',6')/8¢’. One does
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not have to carry out the differentiation of Fg with respect to ¢’ since it is
followed immediately by an integration with respect to ¢’. Hence, we get for
the first term in Eq.(3.1-45) from Egs.(6.4-28) or (6.6-1) and (6.6-3) for ¢ — ¢/,
60— 06"

FB(¢0) = (1- 20099 28’ Ly ) (1)
E
4(1 + w?) " st nsing’
W) (140218’ shw sin
w(¢',6) = E— (1+4°)8 ( / wll nn—2+4:2d77

o
sinwg8’ nsin(’n d
Wa 772 + 42

1-w?

w = [(1-w?)? =012, we=" - (1 -2, W =es/po (2)

The derivative 0Hg(¢’,6') /06" of Eq.(3.1-45) follows from Eqs.(6.5-10) and
(6.6-4) for Hg(¢)e= 240 = 0;

Z r iy 1 2 ,—2(1+w?)8"\ ,—2w¢’ ' ot
—E—lHE(C,G)—;(1+we )e 2 (', 0) @3)
Z 0Hg 2y =201+w?) ~2w¢’ | OV
i dtuint.- sl 4
B 50 2(1 + w®)we e + 5 (4)

The term dv({’,8")/06" follows from Eq.(6.6-5):

8’U - 4(1 + UJ2) e_(1+w2)91

06 ™
1—w? 1 4 C’
N & ST /] cos¢'n
x{ / {20.) chw6 +< o w1> sthB]n2+4w2 n
0
o0
1—w?

-t /
[20.)2 coswyf + (1 ww +w2> sinwze'] Mdﬂ} (5)

* 2 n? + dw?

Let us turn to the integration over ¢’ in Eq.(3.1-45). The first term on the
right of Eq.(4) yields:

¢+(6-6")
JIh1 (C; 91) = —2(1 + wz)we—2(1+“’2)9/ / e—2w(’dcl
¢—(8-6")
— __(1 +w2)e—2w( <e2w9e—2(1+w+w2)a' _ 6_2w96_2(1_w+w2)9,) (6)
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As in Section 6.6 the specific form of Jy,1(¢,8’) was chosen to facilitate integra-
tion over & later on. The integral Je1(¢,6’) is obtained from the first term on
the right of Eq.(1):

¢+(6-6")

Jer (¢, 6) = / 8% [(1 - em2areter) g-2ee] g
¢—(6-6)

- 1 - 2\
= _p—2C [ezwa (6 2w _ ,—2(1+wtw )o)

- e (i) | ()

The integral of 8v/0¢ over (' is derived from Eq.(5). It is denoted
Jn2(¢, 6'):

C+(0-8") \
Jn2(¢,0') = 0 jor = A0+ )e‘(““’z)el

dc’
¢~(6-0")

o9 T
1—w? C+(0-0") 4 2 ,
x{/ [ / <2w2chw16’+1_w—_wlsh 10) c0s (' C}
0

w1 2 42
¢—(6—6")

oo ¢(+(0-0")

-+

1—w?

11— 4 2 /
<2w2 coswod + wT;-wg_ sinw29'> ngo_{s_inzdc } }

¢—(6-6")
— 8(1 + w2) e_(1+w2)9/

s

2

1—w
1—wt—w? - b o
x[/COSCU(%ShmG%Qaﬂ chw19> sm&ncos()n COS@’I] Slnend’r]
1

n(n? + 4w?)
i 1—wh 4w} O cos 0’ O sin ¢/
—witws | , 2 ,)sm 7 cos @' —cosOnsin 'y
+ [ cos — Zsinwyf +2 0 dn| (8
/2 <n< o 20’ +2w?cos wy 07+ ) n| (8)
l1—w

As in Section 6.6 the terms sin®fncos@'n — cosfnsin@'n are written in this
expanded form to facilitate integration of Jy2(¢,6’) over 8. We still require
the integral of du/9¢" over ¢’
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<+(0—(9’)(‘3 +(0-8")
J. ,0/ _ U _ ) -
2(< ) / OC,dC U(C ,0) C—(6-6")
¢—(6-¢)

- _8(1 + w2) e_(1+w2)91
™

2

1—
o ( /w ncos(nshuw, 8 sinfncosb'n —-coansin()’ndn

wh n2+4w2
0
T (nsinwsf’ sin n cos &' O sin 8/
7 cos {n sinws b’ sin by cos#'n — cosHnsinb'n
d 9
+ / wa 7% + 4w? 77) )
1—w?

We must integrate Jp1, Je1, Jn2, and Jeo with respect to 6’ according to
Eq.(3.1-45). Let us denote the resulting integrals by My; and M,:

[}
Min(¢,6) = / Jo1 (¢, 0)d0/
0

2
G _,_1;2.)(: 1 ™% [(1 +w?) (e—2(1+w2)9 ~ch 2w0) +wsh 2w0] (10)
7 1
Mel (Cva) = /Jel(C, 0')d0' = €_2w< [“;(1 —ch 20.)9)
0
1+ w2 ”) —2(14w?)8
Ar ey = 20+ =g (70 - eh2e) |

The sum of My1(¢,0) and M. (¢, ) becomes:

1

—owe [ 1
Min(C,6) + Ma((,0) = {21 - ch2h) +

X [[(1 + w?)? + w](e~21+90 _ ch 208) + (1 + w?)(1+ w)sh 2w9] } (12)

The integral over Jiuz(¢,8’) with respect to ¢ follows from Eq.(8). It is
denoted Mp2(¢,6):
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9 0
2
Mia(¢,0) = / Toa(¢, 0o’ = L) / A
0 )
—y?

l—-w
x{ / cos ¢ <1 u:) wy shw16’+2w20hw10'> sin #n cos 8'n—cos O sin § nd
1
0

n(n? + 4w?)

o0
1-w?+wf | 9 sin 61 cos 8'n—cos 67 sin ' ,
+/cos {n (T sin w28’ +2w?cos web’ o7 T 49) dnpdf
1-w?
2

l—w
8(1+w?) cos¢n [ . 1—wt—w? 9
— pulRasu— Y L
- O/ TP 407 sin Oy o Loy +2w*Log

1-— 4_ 2
—cosfn (—%——(ﬂl—Lzz +2uw? L24)} dn
1

4 2
—cos Oy (L%L% +2w2L28)] dn} (13)
2

The terms Lg; to Log are defined by Eqgs.(6.6-15)—(6.6-22).
Let us turn to the integral over Je2({,8’) with respect to 6’ as defined in
Eq.(9). We denote it Me2(¢,6):

9 0
2
e2 C 0 /JeZ(C, al)dal ?&:r_w_)/e-(1+w2)0
0 0

1-
( / 'r) cos (17 sh w8’ sin 07 cos 6’y — cos O sin 6’y

7’2 + 402 dn
0

o0
+ / 71 cos {7 sin wqf’ sm6n0050’ — cosfOnsin 6§’ nd 40’
w2 7% + 4w?

1—w?
s+ [ T _ncos¢
+w 7 cos{n .
= — on)d
- / O 1 4 (Lg1 8infn — Log cos On)dn
i ¢
ncos(n )
—_— - on)d 14
+ / ool 1 4 2)(L258111977 L cos 6n) n] (14)

1-w?
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We have accumulated enough integrals to rewrite Eq.(3.1-45) as a function
of ¢ and @ without the integrations over ¢’ and ¢’. First, we rewrite Eq.(3.1-45)
for our current normalization:

al ¢+(6-0")
Zco 1 0Bg(¢,8")  Z Hg(C, 0N |
—E_l'Aem(Cae)"‘_O/ / ('E—s'; ac/ +E 56" )dc dg (15)
¢~(0-8")

Using Eqgs.(1), (7), (11), (9), and (14) we obtain:

‘] (+(9—-0')
_1_ aEE(C’» 9’)
Ey O
0 \{-(6-8")

dC' df’ = Mel(c;e) + Me?((f 6) (16)

while Egs.(3), (6), (10}, (8), and (13) yield:

6 [ ¢+{6-6")
_Z_aHE(CIael)
Eq o¢’

0 \¢~(6~0")

d¢’ [ 8’ = Mp1(¢,0) + Mn2(¢,0) (A7)

The component Aex((, 9) of the potential A. can be written in a form that
requires only one numerical integration over the variable ;.

Z2co + :
E, Aex(,0) = ~[Mu1((, 6) + Me1(¢, 0) + Mn2(¢, 6) (¢, )
—2w 1 | - W
o2 C{_(l—Ch2w9)+ ﬁ__._z_)z_:__z_

X [{(1 + w?)? 4 w) (e 20+ _ ch2wh) + (14 w?)(1 + w)sh 2w9} }

1-w?
8(1+ w?) cos(n [(n®~1+w+wi 2w? ) .
e Ly — —L 6
+ = / ORI on 21 7 23 | smon

2 _ 4 2 2
_ (ﬂ__ﬁi’_t‘il_ Loy 22 L%) cos 977] dn
nwi N

+]° cos ¢ [(n2_1+w4-w§L ot )Smgn
n? + dw? nwa BTy

1~w?

2 _ 4_ 9 2
_ (’_L____W__& Lo 2 L28> cos 9,7] dn} a18)
/%] 7
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Equations (6.6-15)-(6.6-22) define the terms Loy to Las.

The first integral of Eq.(18) requires some analysis of the limit  — 0
before one can feed it into a computer. We separate the first integral into two
terms, the first term for the interval 0 < n < ¢ < 1 and the second term for
the remaining interval € < < 1 — w?. We obtain for n <« 1:

cos(n n? — 14 w* + w? 2w? .
Loy — — 6
Tt d? [( o 2= Las | sinfin

2 _ 4 2 2
— <W}_L22 — gﬂ.L24> Ccos 917]
nwi n
1 1
~ 5 [ — (La1 + Log)0 + 5(L22 + L24)}, n<1l (19)

From Eqs.(6.6-15)—(6.6-18) we obtain for n < 1:

1— e—2w29 1-— 6—29

La1(8,m) ~ —~ 1 (20)
Las(8,m) ~ 1 —46‘;2%29 N 1 _:—29 1)
Loa(@.7) ~ 1 (1 -1+ zzze)e—%?o _1-q +829)e—20) 22)
Loa(6,m) ~ ?7(1 —(1+ gzze)e—zwﬁo . 1-(1 +826)e—zo> (23)

Substitution into Eq.(19) brings:

1 1
3 { — (La1 + L23)0 + ;’(L22 + L24)]
6 2% 1 20\ ,~2w?0
= g7 (1= ) 4 g [1+ A+ 220e7%] 29)
With
[1
/ gl1- (- 20)e]an = Z[1- (3 26)e%] (25)
0

we may rewrite the first integral in Eq.(18) in the following computer friendly
form:
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2

1—w
cos(n ~ E e ~26
/ n——2+4w2[...]dn~ S[1- - 2007
0
1-w?
cos(n [<n2—1+w4+wf 202 ) .
+ / Lot — 2 Lys ) sin6
J Tt du? o 21 . 23 n
2 _ 1 4 2 2 2
- <77———ML22 - LL24> COS@U] dn, e<1 (26)
nwi n

Certain advanced computer programs do not require Eqs.(19)-(26).

6.8 CHOICE OF p3 < 1 IN EQ.(4.1-85)

In Eq.(4.1-85) we pointed out that one has to choose ps >> 1 rather than
p2 < 1 to obtain results in line with observation. The calculations of Section
4.1 hold generally for any value of pp but in the following Section 4.2 we used
the simplification pa > 1 from Eq.(4.2-6) on. We return here to Eq.(4.1-103)
and see what becomes of Ay ((,6) for po < 1:

Aev((a 9) = C2T2‘/e0 (pi2.e“P2C(1 —ch p26)
2

ot {32 (e + 22208 ) s

k=1 (pl -
p1L12(6, k) sin 2wk
_ <L14(9,/-c) + ) cos 2mkf G T

Lis(0,k .
+ Z [(LN %) sin 27K0

k>K (d2 - p

Lqg(0 sin 2wk
<L18(9 K) + {(;116—’[()1)3)5) cos 27m0] @?ﬁ?%}) (1)

The condition g = ¢T'\/os < 1 implies that at least one conductivity o
or s approaches zero. The first line of Eq.(1) becomes:

%e“”zc(l —ch pof) = —%92 for 0 — 0 and/or s —» 0 (2)
p

The value of K in Eq.(1) equals

K =cT|(op — se)|/ar <1 foro —0and s -0 3)

the factor 1 — e~ 72 is reduced to
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l—e P py=cTV/os foros—0 (4)

and Eq.(1) assumes the following form:

A (C,8) = 2TV, Loz o f: L17(8 L6, %)
eV(C, ) =cC e0y ™ § + P2 17( an) + d2 Y 1/2
k=1 ( pl)

p1L1s(0, %) sin 27k( o o
_ (Lls(ﬂ, K) + @ _p%)lﬂ cos 2m Kl ——__(21”:)2 A d*>pi (5)

> sin 2w k0

The first sum in Eq.(1) is eliminated by the value K < 1 for the upper limit
and the second sum runs from & = 1 to infinity. We first consider the case
where either o or s approach zero, but not both. This implies p2 — 0 but
1 # 0. A check of Li5(8, k) to L15(8, ) in Eqs.(4.1-107)-(4.1-110) shows that
the terms of the sum of Eq.(5) are finite and the sum vanishes for ps — 0.

If both ¢ and s approach zero we have ps — 0 and p; — 0. In this case
one must check the terms

2 p1/2
—— and —r—s
(p1/2)* + ¢} (h1/2)? + 3
in Egs.(4.1-107)—(4.1-110). We get the following results for p; — 0:

i p\°
= _— 1 - - —_—
G2 = 27K [1 4(27m)2] 2mK — (47m>

4 2 2 3
2 P [ 2 [ __Pi
q2 - (471'K> ’ ( 2 > + qa — < 2 ) 3 P19z — (471'/{/)2 (6)

We obtain for the largest terms for ;7 — 0 and py — 0 in Eq.(5) with the help
of Eqgs.(4.1-107)-(4.1-110):

Lir(6,5) - (7);7;;)2/—4+q3 ~0 )
p1L1s(0, k) : ‘('/_)f/%g)q—;fq;z ~ “5%1; (8)

Lis(8, k) : % ~ 4({%)29 (9) |
p1L11(8,K) : (/’T% = p16 (10)

All terms have either a value 0 < 8 < 1 or approach zero for p; — 0. Hence,
Eq.(5) approaches


file:///AttkJ
file:///A-KKj
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Ar(C,0) = —%c2T2Veoez, for 5 = 0 and/or o = 0 (11)

The spatial variable ¢ has disappeared. We draw the conclusion that the con-
ductivities ¢ and s cannot be assumed to be zero since we cannot exclude
displacement or dipole currents in vacuum within either the original Maxwell
theory or its modification by magnetic dipole currents.

6.9 EXCITATION OF A SPHERICAL WAVE

The last two sentences in Section 4.3 state that the results obtained in
Sections 4.1 to 4.3 for planar waves could readily be applied to spherical waves.
To show this we write Eqs.(4.1-6) and (4.1-7) in spherical coordinates. First

we rewrite A and certain functions derived from it in analogy to Eqs.(4.1-8)—
(4.1-10):

A = Are; + Agey + Ape, 1)

ulA = L (6(A¢51m9)_6A,9> r 1( 1 0A, 8(rA¢))eq9

rsind a9 dp r sinﬁ%— or

N 1<B(rA,9) aAr)% @

r\ or 9
. 1 9(r?A) 1 O(Agsind) 1 04,
diva = 2 or rsnd 99 T remo Oy 3)

The vector V2A of Eq.(4.1-10) is much more complicated in spherical
coordinates than in Cartesian ones. We shall need only terms that are circularly
symmetric in . This makes it possible to leave out terms 0A./0¢ from the
beginning and use the shortened version of V2A:

V2A = graddivA — curlcurl A for 0A./0p =0

_ [ [18(24) 1 O(A,ysinﬁ)>
T lor\r2 or rsind o9

1 8 [[/0(rAs) OA\ . ] }
_ 9 - 9| te,
rZsing 89 [( o 99 ) Smel e

+[1 a < 1 0(r?A,) 1 O(Ay sin19)> 10 (3(7‘1419) BAr)]

rod\r2 Or rsind oY ror or 0)
18%(rdy) 1 8% A,sind) )e @
r Or? r2sind 092 ®

Equations (4.1-6) and (4.1-7) assume the following form in analogy to
Eqgs.(4.1-11)-(4.1-16) for 0A./0p = 0:
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or\rz  or rsind o9 " r2gind 69 or
2 .
B aAer) sin 19} 1 %A, s < ¢ O(Ampsind) BAe,> —0

] ( 1 a(7~2Ae,)+ 1 a(Ae,,sinﬂ)> 1 0 Kﬂmw)

ol fle 5 - 5
oY ¢z Ot2 Ze\ Zrsind ot ot (5)

10 (1 O(r? Aer) + 1 O(Aew sinﬁ)) + 10 (8(7"Aeg) aAer>

rod\r2  or rsind 09 ror\  or Er)
3 laerﬂ i _ _c_a(TAm‘p) _ BAw) _ (6)
c? 0Ot? Zec Zr  Or ot -

0%(rAey) + 1 0%(Aepsind)
or? r2sind 992
1 824, s [ c <a(TAm19) B aAmr) 3 BAW] _0

1
-

"2 o2 TZe|Zr\ or 59 ot ()

£<i8(r2Amr) N 1 O(Ams sin19)> 1 i[(@(rAmg)
r2sind 99

or \ r? or rsind o9 or
OAmr\ . 1 0%Amy  Zo [ Zc O(Aepsin®) | O0Ame) _
Y >S““9] Ta@ e _c—(rsim? a9 a )0 ®

19 _1_8(7'2Am,) N 1 O(Anssind) + 10 O{(rAms) _ OAm:
r 09\ r2 or 7 sin 9 a9 T Or or o
18%A,9 Zo Zc 6(TAe¢) OAme _

_c_z_a?z—_T<_T'—5r_+7> =0

10%(rAmy) N 1 0*(Amgsind)
r  Or? r2gind 092
18%4An, Zo[Zc[O0(rAes) OAe 0Ame]|
TE or _T[T< ar _619>+ ot ]‘0 (10)

Two more equations are obtained from the extended Lorentz convention
of Eqs.(1.6-23) and (1.6-24) for ¢e = ¢y = 0 using Eq.(3) and 9A./9p = O:

. 1 0(r?An) 1 O(Amssind)

div A = 2 or rsin ¥ o =0 (1)
. 1 9(r?As) 1 O0(Aepsin®)

divA. = re  or rsind 89 =0 (12)
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We want to derive a TEM wave, which means the components E, and H;
of the electric and magnetic field strength should be zero. Equations (4.1-25)
and (4.1-26) for Cartesian coordinates are replaced by equations for spherical
coordinates with the help of Eqs.(1.6-11), (1.6-17), and (2):

_ Zc O(Aeysin 19) 0Am: 0Ae.

E: = " rsind 09 ot 0 0p 0 (13)
_ ¢ O(Anysind) 04, 0Am,

Hr= and o9 ~o =0 dp (14)

Substitution of Eq.(13) into Eq.(8) and of Eq.(14) into Eq.(5) yields the fol-
lowing two equations:

d < 1 8(r®Am:) 1 0(Amo sinﬂ))

or or rsin?d o9
1 O [[O0(rAms) OAme\ . 1 824, _
_rzs'mﬁa_ﬁK or 89 > ' 19] T2 o2 =0 (15)
0 (108(r*Ae) 4 1 9(Aepsind)
or\r? Or rsind o9
1 B(TAe,g) 0Aer . 1 02 Ae,
T Zsin0 99 [( ar 59 >S”“9] Z oz =0 (19

A comparison of these two equations with VZA of Eq.(4) yields the following
equations for the amplitudes of the vectors e, if A is replaced by A, or A.:

1 0%An 1 9%A.
<V2Am - C—QW> =0, (Ver ~ ?W) =0 (17

Hence, Eqgs.(5) and (8) will be satisfied if the radial components of A, and A.
satisfy the wave equation.

We have Egs.(6), (7), (9), (10), (11), and (12) left to determine the six
variables Apmr, Amg, Amep, Aer, Aes, and Ae,. Let us substitute Eq.(12) into
Eq.(6)

or o9

1 0 [(O(rAey) OAer 1 8%Aes c B(TAmLp) 6Aeg
=0 (18)
ror Zc Zr  or | ot

and Eq.(11) into Eq.(9):

10 (0(rAme) 0Am: 13%Ans  Zo (ZcO(rhey) OAme
— | -= — == ) =0 (19)
ror or ov ¢ ot? c\r Or ot
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Equation (7) is rewritten

- s Or? rsind 092

O(rAms) OAm: Z{Zc[ (62(7'Ae¢) 1 0%(Aep sim9)>
Nl Bkl B +
or 09 c
2
X Aw] +T6Ae¢} 0

c? Ot? ot

and substituted into Eq.(19):

2 2 ; 2
10 Z{_Z_E[_ (8 (rAeq,)_'_ 1 0%(Ae, 51n19)>+c7'_2661212e¢]+T8Ae¢

rorcl s or? rsind 992 ot
10%Anmy  Zo (ZcO(rhey) OAmo
= Z | == T = 21
2 ot? + ¢ ( r Or ot 0 (1
Equation (21) suggests the substitutions:
AL (r,1) Al o(r,t)
A = Tmd\r 7
Aep(r,t,9) = e Aps(r,t,9) = pry (22)

We observe that A, (r,t) is not a function of ¥ and obtain from Eq.(21):

Z10 [_Z_g ( _ P(rAL,) Lazqu,) N 6A;¢,} | 2P0 0rAy,)

crir| s or? cz Ot2 r ot r or
1024, ZodAl,
g o o 0@

In analogy to Eq.(20) we rewrite Eq.(10)

Zo

Arhey) 0OAe 1 [ c <82(rAmL,,) 1 0%(Amysindg) 7 82Am¢>

ar 09 Zc or? rsind 09 VST
O4n,

]

and substitute into Eq.(18):

1198 c 82(1°Am¢)+ 1 0%(Amy sinﬂ)_iazAm¢ _ OAny
Zeror|Zo\ or2  rsnd 09 2o ) ot
1 8%Aey s (¢ O(rAmy) | 0Aes\ _
T2 o _EZ(E or T ot )‘0 (25)

The following substitutions for Ay, (r,t,9) and Aeg(r,t,9) are suggested
by Eq.(25):




244 6 APPENDIX

Aimp (’f', t)
sind ’

Since Af,,(r,t) is not a function of ¢ we obtain from Eq.(25):

Aua(r,1,9) = Zeo(:1) (26)

Amp(r:1,9) = sin

1100 c (Brdny) 1 P4ny)  OAn,] s Ordm)
Zcrdr|Zo or? 2 o2 ot 7 or
124, s DAL,

“Z e zeat ~0 @D

Substitution of Eq.(22) into Eq.(11) and of Eq.(26) into Eq.(12) yields
equations for the components A, and Ag;:

O(r?Am;) _ O(r?Aer)
or or

These equations suggest to choose the following solutions for A, and Ae, that
are independent of both ¢ and 4 and thus spherically symmetric:

0, =0, (28)

" "
Ame = Ame(r ) = A—“;(i), A = Aur(r,t) = i;%(t—) (29)

Since Apr and Ae; do not depend on 9 we obtain the following two relations:

aAer =0 aAmr
a9 a9

Equations (30) permit the simplification of Egs.(18) and (19):

=0 (30)

162(1",4;19) 3 i(‘)?Agg _ i@A’w _ -_s__a(rA;mP) —0 31)
r  Or? c? Ot2 Ze Ot Z2r  or
VPl dlyy) 1Ay 200Ano | 20 Aty

r or: ¢ o2 ¢ ot T or

=0 (32)

Equations (31) and (32) suggest to multiply by  and to replace the variables
Al and A, by the new variables rA., and rA, ,:

0%(rAg) _1_82(7"4219) _ 8 0(rAy) __"”_a(rAiw) =

oz 2 a2 Zc Ot 72 or 0 (33)
0%(rAl ) 10%rAl,) Zod(rAl,) o O(rA,)

m - m —_— o, m _ L = 4

or? ¢z ot c ot +20 or 0 (34)

Next we substitute Eq.(30) into Eqs.(23) and (27), and we replace the variables
A, and AL, by the new variables rA,, and rA,,:
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O (OrA,)\ 10 (00AL,)\ s 0 (0(rdL)) _ 0rdL,)
or? or c? Ot2 or Zc Ot or or

s ‘92(7'Alm19) + ﬁs_a(TA/mﬁ) —
Z2c¢t  Ot? Zc Ot

0 (35)

or c? ot? or c ot Br or
Z20 0%(rALy) ZosO(rAly)
e o a0 @

Substitution of O(rAy,,)/0r in Eq.(33) into Eq.(36) produces an equation for
the variable rAL, alone:

2V, 1%, 1 s\ OV. ‘
T a2 ) T o= 87
2 / l
0 (TAeﬂ) _ ia(rAeﬂ) - ‘/e(r, t) (38)

or? ¢z ot2

These are essentially Egs.(4.1-36) and (4.1-37). If we further substitute the
derivative 8(rA,)/0r of Eq.(34) into Eq.(35) we obtain an equation for the
variable rA! , alone:

0%V 10Vm 1 OV
_ErT_c_ZW—_<ZU+Z> g~ oVm=0 39)
0%(rAl_5) 10(rAl )
aorz 2 gtz Vi (7, 2) (40)

These are essentially Eqs.(4.1-38) and (4.1-39).

The functions ALy and rA, , can be obtained from Eqs.(38) and (40) in
analogy to Eqs.(4.1-43) and (4.1-46). The final two functions r Ay, and rAg,
may then be obtained from Egs.(33) and (34).

6.10 BETTER APPROXIMATIONS OF DIPOLE CURRENTS

We use again the first three equations of Section 4.1 and thus stay with
the extended Lorentz gauge of Section 4.1:

¢e(m, y,z,t) = ¢m(9€,y,2, t) =0 (1)
ap _LOA. 1
VA, 2o T ZcEm @
2
VA, - 5i8m 2o 3)

c2 ot? ¢
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Equation {4.1-5) is replaced by Eq.(2.1-19) for electric dipole currents. The
conductivity ¢ is written instead of o, to reduce the number of subscripts:

ge+Tmpa§te +Zm—p/ dt—aE——a(churlA +%> (4)

In order to represent magnetic dipole currents we could rewrite Eq.(2.2-22):

J d 8m,v 8m,d . Zm, 19 -
[R dt (siu 19) §m } [QNoqm/Jmmo S <2Noqu / sin 19

A,
=-H= —7 curl Ay, + 5 (5)

The result of the calculation would hold for a particular initial angle ¥ and one
would have to average over all angles. A strictly numerical solution may one
day proceed in this way. Here, we shall use the hypothetical induced magnetic
current according to Eq.(2.2-7). We write s instead of 2sp:

0 T c OA,
gm + ,’np—gtﬂ+— gmdtstzs(EcurlAm— W) (6)

The parameters T mp and 7, have received a prime in order to distinguish them
from Tmp and 7, in Eq.(4).

We substitute ge from Eq.(3) into Eq.(4) and g, from Eq.(2) into Eq.(6)
to obtain the generalization of Eqs.(4.1-6) and (4.1-7):

9 10°An (2, _10%°An
(V An =G ) T\ VA~ Z 50

Tmp 2y _10%An\ 92 9Am ) _
+ <V An 2 o0 dt - Zccurl Ae + En 0 (7

2 2
(720, L280) 1, 2 (w2, - A2A)

2 92 P gt 2 ot?
Thp 5 1 9%A. s (c _0Ac\ _
+ ?F <V A, - 2—2-_‘—37:2 dt + T\ Z curl A, Y =0 (8)

As in Section 4.1 the potentials A. and A, are connected in these two equa-
tions.

In order to write Egs.(7) and (8) in component form in Cartesian coordi-
nates we differentiate first with respect to t:
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# D Tmp N 1 8%Am
<Tmpw+ag+;p2—><v Am—c—2 2 >
oZ O0An

c Ot ot

o2 o T 1 0%A
! = —_ __n:l_E. 2 - e
(T‘“p wmtat /2 > (V A e Ot? )

s 8¢ 0A.\ _
+—Z—CE<ZCUI'1Am——67‘>-—O

Using Eqs.(4.1-8)—(4.1-10) we obtain:

( % 0 rmp><azAm 62Am+a2Amz 1 62Am>

o5 T o 2 0x? oy? 92 & o
_0Z 39 OAez aAey) 4 0Ams| 0
¢ Ot Ay 0z ot |~

62 a Tmp 82-Amy azAmy 62Amy 1 82Amy
(Tmpszﬂa*r—g)( 52 "o T2 2 o )
aza[ (OAez BAez> 6Amy}
—— C = 0
ot

c Ot oz or

82 m 2‘Am 2mz 2mz 2II‘ll
(rmpgg+§+7_p><3 :, PhAn; | Phn. 1 5PA )

ot 72 Ox? oy? 022 2 o2
020, (0 O 9Am] _,
c Ot Oz Oy ot |~

(T, 0 0 Tmp) (Pl A L P 1 DA
POt ot T2 Ox? oy 022 2 Ot?

s 8 [c <6‘Amz aAmy) ~ BAEJ,} 0

Zceot|Z\ oy 02 ot

2 0 Tho\[0%Aq  0?A, 04 1 0%4
;o 9 9 Tmp ey ey ey 1 ey
(Tmpatﬁ tHE Tt T;,2>< 522 o o2 2 o >

+
Oc(0Anz 0Am:\ 0Agy —0
ot Z\ 8z oz gt |

s
Zc

247

— ———g— (churlAe -+ —) =0 (9)

(11)

(13)

(14)

(15)
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(T’ ?—2- + —8— i& aerz 62Aez 62‘492 _ 1 aerz
TP otz | ot T}')2 o2 A2 922 2 o2
s [3<6Amy aAm> oA,

Z AN T, Bt]zo (16)

For planar waves propagating in the direction of y we may use Eqgs.(4.1-17) and
(4.1-18) to simplify Eqs.(11)-(16):

0 0 Tup)[P®Ame 1 0%Amg
(i + 51+ %) (% - 2 7)

0Z (. Ay 0 Ame
—T<Zc Suor o )_0 (17)
0 0  Tup\[PAmy 10%Amy\ 0Z0%Am,
<T““’5t_2+§+?>< o2 2 o )‘T oz =0 (8)
<T 9 L0 Tmp ?Am, 1 0%An,
TPorz T ot T2 E
0Z ([, PAe 0%Am,
+T<Zc—6yat -5 )_0 (19)
82 8  Tho\[0%Aw 104
/ i il ﬂ exr - €T
(Tmpatz Ta T q,?)( o2 & o )
s (¢ O%An, 0%°Ae
+%<Z Gyt on )‘0 (20)

o2 o T, 02 A. 1 9%A. s 0%A,
(o * 52*"3)( o~ 5 ") ~ e =0 @

B0 (e 10
TPot2 ot Th? Oy 2 o2
s <ca2Am 82 A,

- = =0 (22
Ze\Z oyt | 6t2> (22)
If we further specialize to a transverse electromagnetic wave we may demand

that E, and H, are zero. This implies the conditions of Egs.(4.1-25) and
(4.1-26) for A, and A,,, which are again reduced to

OAmy O0Aey
— = 2
ot 0, ot 0 (23)
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due to the conditions of Egs.(4.1-17) and (4.1-18) for a planar wave. If we
integrate Eqs.(18) and (21) with respect to t we get thus:

) Ty PAmy 1 Amy
(Tmp 5t T 1+ 72 dt) ( ayZ 2 o2

] Tmp %Ay 1 0%Aey
(mpat+1+ /dt>(0y2 i >_0 (25)

where the notation

I,_n_p/dt PAmy 1 PAmy =In_12/ PhAmy _ 1 P Am
72 9y & o T2 0y? 2 ot?

is used. With the substitutions

0 (24)

PAny 1 0%An,

8y2 - EE ot2 = me(y,t) (26)
Ay 1 PAy
ay2 62 atz - Vey (yv t) (27)

one obtains the ordinary differential equations

PV 1 Vi, 1

aZ T dt +7_3me—0 (28)
PV | 1 dVey | 1

ez T a T =0 (29)

If we solve these equations for Vi, and V4, we may obtain Amy and Agy in anal-
ogy to Egs.(4.1-43) and (4.1-46). This requires the transition to the normalized
variables

0=t/T, (=y/cT (30)
that brings Eqgs.(28) and (29) into the following form:

d2me T dVny T2
762 + :p 7] + T,%,p me =90 (31)
d2Vey l dVey T2

-}

az T, T =0 (3)

Equations (26) and (27) become:
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PAmy  0%Amy

aC? T o2 T CZTQme(CaG) (33)
0% Ae 8% A,
e~ g =T Ve(G,6) (34)

With the help of Eqs.(4.1-43) and (4.1-46) we obtain:

9 , ¢+(6-6")
c*T?
Amy((»e) == 9 < me(C'ﬁ')lK') ag’ (35)
0 N—(9-6
6 , (+(6-0")
c2T?
Aofc.0) == [ ( Vey(c',e'>d<'> @ (36)
0 X~(6-6")

The solutions of Eqgs.(31) and (32) are given by:

me(c, 6) =me1 (C)e'mela + me2(<')e’7mg29

1T .
Ymyl,my2 = ——5—(1 F ’L\/g) (37)
Tmp
Vey (¢, 8) =Vey1()e7? + Veya(¢)e™v?°
17T .
Yeyrevz = —5 (1 F iV3) (38)
Thp

When Vi, (¢, 8) and Vey (¢, 8) are substituted into Egs.(35) and (36) one must
make the substitutions ¢ — ¢/, § — &',
We make again the substitutions of Eq.(4.1-31), with the subscript v al-
luding to ‘variable’:
Aem = Aez = Aeva Am:): = _Amz = Amv (39)

Equations (17) and (19) as well as (20) and (22) are reduced to one equation
each with the variables Ay and Aey:

T, 6_2+§_+I_"£ 62Am" — iaQAmv
TPot2 ot 2 Oy? 2 Ot?
oZ 8PA., 0%An,
- —(:-(Zc————ayat + e > =0 (40)

00 Tmp) (PhAw 1P Aw
A A R T
s [¢c8%A 824
2 (L8 Ay ) =0 (41
z(:(z oot T o ) (41)
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The comments about polarization made in Section 1.2 following Eq.(1.2-
10) apply again if E,, Hy, E,, H,, FE, and H are replaced by Aes, Amz, Aez,
Az, Aey, and Ap,.

In order to separate Aey and Apy we solve Eq.(40) for 92 A.,/0yot

5% A, 1 P 0 Tmp\[PAm 1 0*Amy
— = | Tprs + = + — -
oot  Zic Pot2 T ot T T2 oy? c2 o2
Zo 0% Amy
T o ] (42)

and differentiate Eq.(41) with respect to y and ¢:

< o2 +g+59_ PAe 1 0Aq,

Tmp 52 )2 OyBot 2 dyord
s (¢ Am A
—<an2at2 8y8t3> =0 43

The terms 0*Ae, /8y30t and 9*A., /0y0t® are obtained from Eq.(42 ):

64A-ev _ _1_ <T o4 + 83 4 Tmp 7-mp 82 62A-mv _ _]_-_aQAmv
oot Z2 |\ "PoyPor T oy?ot | 12 ay? 0y? c? ot?

Zo 0%An,
I 8y28t2] (“44)

64Aev _ _1_ T 64 + 23_ + T_m_E_((ﬁ azAmv _]-_azAmv
oydtd ~ Z20 |\ "™Pott T 913 2 Of2 e @ o2
Zo * Ay
¢ ot } (45)

Substitution of Eqs.(44) and (45) into Eq.(43) yields:

2 o 2 0 T\ [0V 10,
o2 42y P —_— L P __m_ - m
(T‘"P a2 "ot ) (T‘“P a2 ot >< 02 & o )
Zof, &® D  Tmp
e \Tmr gz ot? + + W

s 0 0 Tmp 0*V
+-Z—C-<Tmpat2 +a+'7'_p—> +SG:|W_O (46)

PAny 1 0%An,

Vm(y7 t) = ayg - Ez— atg
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These equations should be compared with Eqgs.(4.1-38) and (4.1-39). We obtain
again a partial differential equation with the wave equation as variable, but it
is now of fourth order rather than of second order.

Instead of solving Eqgs.(40) and (41) for A, we may solve it for Aey. The
exchanges

Tmp “ Timps

Tp < Ty Amy & Aev, Z0 > 8/Z (48)

reproduce Eqs.(40) and (41). Hence, we may make the same exchanges in
Eqgs.(45) and (40):

7! 62+2+7-'I“_p T 2?_+Q+Tmp Ve l..ai‘é
mP ot T ot "Pot2 T ot oy 2 o2
_ ﬁ 7-/ 8_2 + = a + 2B T‘{np
c \™Pot2 " 8t T2
s 0% 8 Tmp A
+ Z(Tmpé? + & -+ sz—) +30':| v 0 (49)

0PA., 10%4
‘/;(y,t)_ 8y2 _EE 92

These equations should be compared with Eqs.(4.1-36) and (4.1-37).
Equations (49) and (50) are rewritten into the following form with the
help of the notation 6 = t/T and ¢ = y/cT"

2 8 L 90 o, V.
g 9 9 g _
<0‘“*’ 562 a0t > (emp 56° T 56 T ) ( 5~ 962 )
1 2 8 2 8\ W
- [Z(a‘“*’am ae”)“"’( mp 592 + ao*e) ez =0
Omp = Tmp/ T, Oy = Trp/T» Op = TopT /T2, 0, = 7',’,IPT/7"’,2
po = ZTco, ps = Z/scT, pi = c*T?0s (51)

(50)

0%Aey  0%Aey

272 = - 52
The solution of Eq.(52) is the same as of Eq.(4.1-42) by Eq.(4.1-43):
6 ¢+(6-6")
AT
Aev((,0) = — 5 / / Ve(¢',0)d¢ | 6 (53)
0 \¢-(5-0)

For the variable Vi, (y,t) in Eq.(47) we obtain the following three equations
in analogy to Eqgs.(51)-(53):
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9% 0 , 92 8\ [0V 0%V,
(9‘“" 562 Tag T ) (em a0z g6 0 ) ( 5z o6
1/, & o ®2 ,16%Vi
= v / o ’ - 4
[ps (9"‘302 + 550 > +pa<9mp602 = +ap> +p2] =0 (54)

%Ay PAny

CszVm(Cae) = ac? T T 992 (55)
o [ ¢+(6-6")
c*T? 1IN gt ’
Amv(Caa) =- D) Vm(C ,0 )dC do (56)
0 \¢—(6-¢)

If A.v(¢,0) is obtained from Eq.(53) for certain initial and boundary con-
ditions, one may obtain the component Ay, (¢,60) of the associated potential
from either Eq.(40) or (41). Consider Eq.(41) first:

62 8 %A 024
= ' ) (Ll _ & Lev

1 8%Aey yA

A second expression for Ay, is obtained from Eq.(40) by treating this equation
as an inhomogeneous equation for Ay, with a known term 02A.,/dydt or

0% Ay | DCO0:

o O 0 PAmy  PAmy Phmy _ , 0Aey
mP5e2 T 58 ac2 902 "2~ “P"5con
po = ZTco, ps = Z/scT, psps = op)se = 1/w? (58)

It is generally simpler to integrate Eq.(57) than to solve Eq.(58), but one
cannot ignore Eq.(58). Since Egs.(57) and (58) must yield the same result for
Amv we generally need them both to determine integration constants. However,
experience teaches that one does not always need all the integration constants.

If Anv(¢,0) is found from Eq.(56) for certain initial and boundary condi-
tions one may obtain the associated potential Aey((,8) from either Eq.(40) or
(41). We get from Eq.(40):

1 9 0 PAny P Amy
a0 = g [ { [ | (Gonia+ 55.+0) (555 - )

10%Am,
- 555 ]d@}dc (59)
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The second expression for Aey is obtained from Eq.(41) by treating it as an in-
homogeneous equation for A., with known term 92Ap,, /0yt or 8% Ay /0CHH:

ac2 962

2 2 2 2 2
<:np%*'a%+9;><6AEV 8Aev>__l_6A2ev____1_6Amv (60)
ps 06 Zps 0¢O6

Generally one must obtain A..(¢,8) from both Eq.(58) and (60) in order
to obtain all the integration constants.

We denote the solution of Aey derived from Eq.(53) by Aeve and the asso-
ciated solution obtained from A, via Egs.(59) and (60) by Ayve. The general
solution of A,y is the sum

Aev(c, 9) = Aeve(c’ 0) + Amve(Cya) (61)

In analogy we denote the solution of Ay, derived from Eq.(56) by Amvm
and the associated solution obtained from A, via Eqs.(57) and (58) by Aeym
and we obtain the general solution Ap,, as the sum

Amv((y 6) = Amvm(C, 9) + Aevm((y 9) (62)

Hence, one may choose initial and boundary conditions independently for Aeye
and Amvm, but the associated potentials Aevm and Anve are always automat-
ically excited with Aeve and Amym. One cannot excite Ao, without exciting
A, and vice versa.

Let us try to find a solution for V,(¢,8) of Eq.(51) for a boundary con-
dition at ¢ = 0 with the time variation of an exponential step function which
approaches a step function for 8, — oo:

V.(0,8) = Vipe % 5(6) = 0 for 6 < 0
= Veoe %% for >0 (63)

It is usual to assume a further boundary condition for { — oo:

Ve(00,8) = finite (64)

It was explained in the text following Eq.(4.1-55) why we cannot use it. As
initial condition at 8 = 0 we choose

Ve(¢,0)=0 for (>0 (65)
Differentiation with respect to ¢ yields more relations for the derivatives:
a"Ve(¢, 0
—8—%—)=0 for(>0, n=1, 2, ... (66)

Equation (51) may be written in the following form:
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o° <a2v; 0%,  oV. 2v>

262\ 5cz ~ ooz P ae TP
Lo e . 2V, oV PV - )a Ve]
50 |Pmog2acz T PP acz T Pmper T Pempgs T \Pr T Per) Tpa

8? 9*V, A
+ = 6(2 (pmm 804 +pmp 602 +pPP‘/e>
o2 02V, 0%V,
502 (pmm D64 + Pmp 75 002 +pPPV> =0
m = Omp + eir\p’ pp =0p + 0;1 Pem = emp/ps + H:nppa
Pep = bp/ps + 9;/00, Pmm = empainp: Pmp = OmPH; + epei‘np’ Ppp = GPQ;) (67)

Some simplification is achieved by integrating twice with respect to 6:

Ve V. Ve

acz 02 "he —piVe

8V, 82V, PV, 82V, CIA
+ /'_dg_pm 603 — Pem 755 802 (pp+pep)'8'—6—

+ Pm5ezpe Be2
A 82Ve Ve o,
94V, FUA

~ Pmm AT ~ Pmpgm T popVe =0 (68)

Substitution of Eq.(65) and Eq.(66) for n = 2 into Eq.(68) yields the
following result for 8 =0, { > 0:

9 9% 6V+ aV+( + Pep) Ve
56 | 09 g6z TPmg T (Pet e

BV, oVe iR A 0?Ve
+ Pmm 553 003 + Pmp 54 90 :| pp/ 8C2 ——df — Ppp // 64.2 —-dfdf’ =0 (69)

We note that [(6%V./0¢?)df can be a function of ¢ but its time derivative
would still satisfy Eq.(66).

A sufficient condition to satisfy Eq.(69) is that V., its time derivatives up
to 8%V,/063, and the two integrals of 9*V./9¢? are zero. The two terms in
Eq.(69) containing V, yield again Eq.(65), but the derivatives of V, and the
integrals of 82V, /0¢? yield the following additional conditions:
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for ¢ >0, 6=0 %%:o (70)
% =0 (71)
%22;‘* —0 (73)
/ %22; —0 (74)

These conditions may not be the only possible ones but they are sufficient.
Equations (70)—(74) have led previously to useful solutions (Harmuth and Lukin

2000, Section 2.2).

We assume that the solution of Eq.(68) can be represented as the sum of a
steady state solution F(¢)e~%/%, plus a deviation w(¢,6) from the steady state

solution (Habermann 1983, p. 258):

Ve(¢,0) = Veo[w(¢,0) + F(¢)e™ /%] (75)
First we calculate F(¢). With
aaann F(C) —8/6, = (_1)n9s—-nF(<)e—0/0, (76)
/ F¢)e™%/%d0 = —0,F(¢)e?/% (77)
/ F¢)e~%/%d0 40’ = 62 F(¢)e /% (78)

we obtain from Eq.(68):
P 2
0. + p2> F

2F (1
{d_@_(o_?_

Pm

(e e 9)

&2F )
+me dC2 + pppas

d*F
d¢?

Pmm
+ (L2

Pm
* (es

Pem
0%

+

Pp+Pep
— = |F
)

This equation has the trivial solution 65 = 0 and a non-trivial solution contain-

ing the terms d2F/d¢? and F:
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2 L L
F 1p_y Lol o/
acz ~ I? ? I Ly
PrLt+po+pPep  1+Pm~+Pmp  Pm | Pmm
Ly = p§ + Ppp = Pppbs — ; =+ 2 p_§3—+ ;4
8 s 8 S
Ly =1 pmp — pobs — ’;‘“+’;—;‘ (80)

Equation (80) has the general solution:

F(¢) = Agoe™/E + Agre¢/* (81)
Following Eq.(4.1-60) we choose Agp = 1 and Ag; = 0:

F(¢)=e /" (82)

For the calculation of w(¢, ) of Eq.(75) we observe that the introduction of the
function F(¢)e~%? transforms the boundary condition of Eq.(63) for V,(0,6)
into an homogeneous boundary condition for w(0,8), which is the purpose of
this method of solution:

V.(0,8) = Veo[w(0,8) + /%] = V,ge0/b
w(0,6) =0 (83)

The second boundary condition given by Eq.(64) yields:

w(oo, §) = finite (84)

The text following Eq.(4.1-63) explains that it cannot be used but it is not
required either. The initial conditions of Eqgs.(65) and (70)—(74) yield:

for6=0, (>0 w(¢,0) + F(¢) =0, w(¢,0)=—e"¢/L
ow(c,0) _
00
o*w(G,0) _
002
Fw(,0) _
T8
0*w(¢,0)
/ e owl,0) 1 _ g
Pw((,0)
/ 0 Fw(6,0) 4o g = ¢ (85)
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Substitution of Eq.(75) into Eq.(68) yields for w(¢,6) the same equation
as for V(¢,0):

Pw  w ow 2
acz " ooz Piag v
FBw OPw Pw 8w Bw
+ i izgy + e | a0~ PngE — pen g — e T ) g

o'w 0w
+pmm5’<'.2-6‘9_2 +pmp6_<,2' + Ppp //dedG’

8w 8w

- Pmm‘%‘ - Pmpw — PppW = 0 (86)

Using Bernoulli’s product method to find a particular solution w, (¢, ) by
separation of the variables we substitute

wx(¢,6) = o(()P(0) (87)
into Eq.(86), divide by ¢, and separate the terms containing ¢ or :
1 d?%p d%y
'(;_ <pmmd62 +pmd9 +1/)+p13/1/)d0)
dep d? d)
x (Pmmw + (1 + pem + pmp) 573 402 + (pr+pp + Pep) + (03 + ppp)¥

~ Py / do de') (88)

This equation can only be satisfied if both sides are equal to a constant that
we denote —(27k)?:

d2

el + (276)20 =0 (89)
Equation (89) has the solution
p(¢) = Arosin2mk( + Ayq cos 27kl (90)

but the boundary condition of Eq.(83) requires A;; = 0 and Eq.{90) is reduced
to

©(C) = Ao sin2mk( (91)
The right side of Eq.(88) can be rewritten with the constant —(2rx)? as follows:

4

a’y 2 d*y
Pmm 50—4’ + [(QWK) Pmm +1 +pem +pmp] W +

o)+ @)y [0 d8=pon [[wa0ar =0 (52)

ay
[(27”9)2Pm +p1+Pp+pep) 96
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Equation (92) is solved by the substitution ¥(f) = exp(A#) and the fol-
lowing characteristic equation is obtained for the six roots A = Ay, ..., Xe:

Pmm)\6 + [(27”‘5)2Pmm +1+4pem +pmp] A4 [(27”‘5)2pm +p1+0p +pep] A3
+(03+Ppp) A2 +(27K) 2 ppA—ppp = 0 (93)

This equation is very similar to a previously derived equation (Harmuth
and Lukin 2000, Section 2.2, Eq.31). We stop here since the evaluation of
this equation appears to be as much work as that of the previously derived
equation.

For small values of o and s one may leave out the terms multiplied by o
or s in Egs.(17)-(22). Six equations of the form of Egs.(24) and (25) have then
to be solved. Using a series expansion one may add correcting terms caused by
the terms in Eqgs.(17)-(22) multiplied by o or s.

6.11 EvALUATION OF EQ.(5.3-4)

For the integration of (6¥*/86)(0¥/89), (8¥*/8¢)(0¥/8(), and T*T of
Eqs.(5.3-11), (5.3-12), and (5.3-6) with respect to ¢ we write the square of the
sums in those equations in the following form:

> 2
(Z B(r) sin { [(2mx)? + A}AF + A3]1/26} sin {[(27x)? + Aﬂ“c})

k=1

M

B?(k)sin® {[(2mk)% + A2A2 + A3]Y/26} sin? {[(27k)? + A2)V/2()
1

8
&

_|.
ANgER

B(r)B(j) sin { [(2mx)2+MINE+23]1/260} sin {[(2m5) 2+ 22N +03)1/20}

x
1l
-
=
1
-

x sin {[(2mk)% + M3]/2¢ ) sin {[(275)2 + N2)V2¢) (1)

o0
( Z B(r)[(2mk)? + AIAZ + M2}V 2 cos {[(2mk)2 + A2AZ + A2]Y/29)

k=1

2
x sin { [(27k)% + /\¥]1/2C}>

=" B(k)[(2mK)% + A2\Z + AZ] cos? {[(27k)? + AIA2 + AZ]V/29}
k=1
x sin® {{(27k)? + A2)V/2¢)
©0,#j oo
+ ) > B(k)B(5)[(2ms)? + XIAZ + MZV2[(2m5)2 + AIAS + A/

k=1 j=1
x cos {[(2mk)? + A2A3 + A3]Y/20} cos {[(2m5)% + A2AZ + A3)V/%0)
x sin {[(2mk)2 + M]1/2¢ Y sin {[(2m)2 + AF)M3¢C} (2)
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( i B(r)[(275)% + MV %sin {[(276)% + AINZ + 23]V/%0)}

k=1

2
x cos {[(2mK)? + Af]l/zﬁ})

= i B2(x)[(2mx)? + Af]sin® {[(27k)% + A2NE + A2]Y/%0)

k=1
x cos? {[(2mk)? + A2]V/%¢}
00,#j oo
+ 3 > B(R)B()(2mk)? + M1 2[(2m5)% + A2

x sin {[(2mx)? + AZA3 + A3)1/20} sin {[(274) + A2A3 + AZ)Y/26)

x cos {[(27k)% + M]Y/2¢} cos {[(277)% + AE]M2¢} (8)

The products of sine and cosine functions of ¢ are transformed into sums
with the help of the relations:

s {[(2m)? + NP2} sin {[(2m3)" + N3}
= l[cos ({[(27m)2 +AZM2 —[(2m))? + /\%]1/2%)

2
- cos ({I(2mm)? + M2 + [(2m5)" + MTV?)C) | (@)

cos {[(2mm)? + NP2} cos {[(2m)? + X}
= 2 eos ({12mm? + 23172 — [(2mi)? + XP2)c)

2
+ cos ({[(27m)2 + 22V2 4 [(2m5) + )\?]1/2}C)] (5)

sin {[(2mk)2 + A2]Y/2¢} cos[(A2 — A3V
= 2 ({emm)? + 2312 - (3%~ 28)72)¢)
+sin ({[2me)? + X2+ (F = 29)2)¢)] - (6)

Sin[()\% - A§)1/2C] sin {[(27”;)2 + )\%]1/2(}
= %[cos ({[(27”:)2 + Xﬂl/z _ (/\% _ )\%)1/2}<)

— cos ({2mn)? + X7 + (02 - 3912)0)] (@)
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cos[(A? — A2)Y/%¢] cos {[(27r/<e)2 + )\f]l/%}
= 2 [eos ({12m? + X2 - (0 = 3972}
+ cos ({[(27m)2 + /\%]1/2 + ()\% - /\5)1/2}C)] (8)

We shall further need the following integrals:

_ sin2[(27k)% + /\f]l/2>

2[(2mk)? + A2]? ®)

1
/sin2 {[(2mK)? + 22M2¢}d¢ = -;—(1
0

1
2 2, y211/2 _1 sin 2[(27k)% + A)1/2
0/co {l[(2mr)? + A3]M/2¢}dC 5 <1 + 2(2nr) + )\%]1/2 ) (10)

/ cos ({[(2mw)? + A3JM/2 £ [(2m3)” + X2} ¢ )d
0

_ sin {[(2mr)? + M3]/2 £ [(2m5)? + A3/}

[(2mm)2 + A3Y? & ((2m5)2 + 232 )
1
/sin ({[(27m)2 + M2 £ (A2 - )‘g)l/z}f) d¢
0
_1zeos{l@m? s PP R -V
S lemer R (8 -0
1
/cos ({[(27m)2 M2 4 (N2 - Ag}()dc
0
_sin {l2mrk)2 + A2)/2 £ (A2 — AZ)Y/?} (13)
[(2m)? + M2 £ (A2 - 23)'/?
1
_ 1 sin2(A} — A)1/2
0/ sin?[(A = A3)/*¢Jd¢ = 5 (1 - W) (14)
1
1 sin2(A\2 — \2)1/2
!cosz[(A? = 2)AJd¢ = 5 (1 + W) (15)
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For the simplest integral in Eq.(5.3-4) we obtain from Eq.(5.3-6):

1 1 .
Jrva=w [ [( S Bls)sin {[(2mm)? + X2AZ + X3]/26)
0]

0 k=1

x sin {[(27k)% + )\2]1/26}> + 2(1 — cos 21 A30) cos?[( A2 )\5)1/2(]} ¢

= \1@{ > B2(k)sin? {[(2mk)2 + A1N3 + AJ)H/%6})

k=1

1
x /sin2 {[(2mr)? + A2)M2¢}d¢
0

l\::l»-‘
i Mii

Z k)B(j)sin {[(271’}:)2 + ,\2)\3 + )\2 1/29}
x sin[(2m7)2 + A2AZ + 23|29}

X [/ cos (27”6)2 + /\f]l/2 — [(2m5)® + ’\%]1/2}C) ¢
0
/cos {[ (2mk)? + )\2]1/2 + [(27r3) + )‘2]1/2}4) d(]
0

1
+ 2(1 = cos 21 A26) / cos?[(A2 — A%)l/QC]dC} (16)
0
Using constants Cs1(x), Cs2(k, j), and Cs3 we may rewrite Eq.(16) as follows:

1 oo
/ W d¢ = V2 < D" Ca(s)sin® {[(2mk)% + 1A + A3]V/260}

K=l

00,#] o0

+3 3 Coalm )sin {[(2m)? + AP + 21/ %6)

k=1 j=1

x sin {[(27)2 + ATA3 + A2}1/20} + Cs3(1 — cos 2/\1/\30)> (17)
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_lpaa(y_ sin 2[(27k)? 4+ A3)1/2
Cale) = 5 B )<1 2[(2mk)? + 222 ) (18)
L1 . (sin {[(2mk)? + N)V/2 — [(2m5)2 + A}]1/2}
Caa(k,j) = 2B(K)B(J)< [(27{%)2 N /\%]1/2 _ [(27fj)2 + )\%]1/2
_sin {[(27)% + A2 + [(2m5)° + A%JW}) (19)
[(2mw)2 + X312 + [(2m5)2 + X3
o = 14 52N =N (20)

20 - 29"
Next we integrate Eq.(5.3-11):
[ ov° 0w /
9F 9% 4 _ w2 212
o0 o9 4= / [’\1’\3
Y 0
> 2
x < Z B(k)sin {[(2rx)? + A2A3 + A3]Y/26} sin {[(27k)? + )\%]1/2(}>
k=1

+ < D B(R)[(2mk)? + A3+ AZM2 cos {[(27k)% + A2AZ + AZ)H/26)

k=1

2
x sin {[(2mk)* + A%]1/2§}>

— 412z cos[(M? — A2)Y/%¢] i B(r)sin {[(2mr)? + MN2JM/2¢)

r=1

X (/\1/\3 cos A Agfsin {[(27r/-:)2 + )\f,\g + ,\%]1/29}
— [(2m)? + 373 + A1/ sin As af cos {[(2m)? + X3AE + A3]/26} )

4NN cos[(A2 A%)Wd] dc (1)

The six integrals over ( are separated:
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1
avr ow o,
0

. 1
X Z B?(x)sin® {[(2mx)? + A2A2 + AZ]V/ 26} /Sin2 {[(2mr)? + A2)/2¢ Y d¢
0

k=1

00,#j oo
+ A2 Z Z B(r)B(j)sin {[(2r&)? + A22Z + A3)'/%0}

k=1l j=1
x sin {[(275)% + MA3 + A3]'/26}

x [ s {{(2mm) + X2} sin {[(2n7)? + N2} dg

+ Z B2(k)[(2mk)? + A2A% + AZ] cos? {[(2mk)? + A3 + AZ]V%6)

k=1 .
X /sin2 {[(2mr)® + A2)M2¢}d¢
0

00,#j oo
+ Y Y B(r)BG(2mR)? + XA + AJ1V2((2m5)% + AT + A3
k=1 j=1

x cos {[(27k)2 + A2A2 + A2]Y/20) cos {[(277)% + A2A2 + AZ]/ %0}
1

X /sin {[(2mr)? + AZY2¢} sin {[(2m)2 + AZ)M2¢ d¢
0

—4\Xs ) B(x) (,\1,\3 cos A Agfsin {[(27x)2 + AIAE + A3]Y/20}

K=l

~ [(27K)% + A2A2 + AZ]Y2sin A Agf cos {[(2mk)2 + A2AZ + /\511/29})

1
X /Sin {l(2nr)? + )\%]1/2C} cos[(A2 = A2)Y2()d¢
0
1
+ 4222 / cos?[(A2 - A%)l/zc]dg] (22)
0

Carrying out the integrations is lengthy but straight forward:
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0\11* ov

3 K= \1:2(2011 )sin? {[(27k)? + A20Z + AZ)M/26}

0
©0,#j 00

+ 373" Cras, 5) sin {[(2ms)? + AIAF+AZ]M/20) sin {[(2m5)% + ATA+A3) /%0
k=1 j=1

oo}
+ Z Cha(k) cos? {[(2mk)? + MIAZ + M|V %0}
k=1
00,#j oo
+ > Cua(s, ) cos {[(2mr)2+ATAF+A3]"/%6} cos {l(2m)2+ 23N+ 22120}

k=1 j=1

_ Z Chs(k) cos A\ Aafsin { [(2mk)% + AIXZ + A2]1/%6)

k=1

o0
+ ) Cue(s)sin A Asf cos {[(2mk)? + AIA] + AJ)H/%60} + 017> (23)

k=1

sin 2[(27k)% + A3)1/2
2((2mk)2 + A2)/?
sin {[(27x)% + A}/ — [(27j)% + A} /%)
[(2mk)? + )2 — [(2mf)2 + X3]/*

2
Cual) = SA3B%(x )( >=A§A§csl(m> (24)

Cualw ) = 333B(6) B0

_ sin{[(2mw)? + AJV2 + [(275)% + A 2}> (25)
[(2mr)2 + X3)V2 + [(2mg)2 + X3 /2
_1 sin 2[(27k)2 4 A2)1/2
Cra(k) = 232(5)[(27”1)2 + 205 + A3 <1 T (22 + )\%]11/2 )
= [(27k) + A{A3 + A3]Cai (k) (26)

N1 .
Cia(k,5) = 5 B(R)BE)(2ms)? + MAS + AFJM2[(2m5)° + XDAE + AG)/*

(sin {[(27m)2 + A2 —[(275)2 + Af]lﬂ}
X
[(2mk)2 + 222 — [(21)2 + A3/
_ sin{[(2m)? + N2 + [(2m5)° + Xﬂl”}) (27)
[(2rk)? + M312 + [(2mj)2 + N3
Cis(k) = 22222 B(k)C1s6 (k) (28)
Crs(k) = 2\ As[(27k)? + AJAZ + AJ]Y/2 B(k)Clss(x) (29)
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1~ cos {[(2mR)? + ATJY/2 — (OF - A3)?)
[(2mr)? + X3V2 = (02 — 23)Y/*
L Lo cos{[(2me)” + M2 + (0 - A3)/?)
()2 + 32+ (A2 - 3)
sin2(2\3 — A2)1/2

Cise(k) =

Cir = zwg(l N ) = 2X2)2C5s (30)

Finally, Eq.(5.3-12) yields:

1 1
oY 9v = ,
J 3¢ B¢ “- W%O/ [(NY;IB(K)AI sin {[(27%)* + A1AS + A]/26}
2
x sin {[(27K)? + A§]1/2C}>

+ ( Z B(k)[(27x)? + A2]Y2sin {[(27x)2 + A2A2 + A3])Y/%6}

k=1

2
x cos {[(2mk)? + /\%]1/2C}>

oo
+4d;sin A As8 > B(k)sin {[(2mk)% + X222 + \2]1/%0
143+ A3

k=1
x ((X‘{ — X9V 2sin[(A — A3)/2¢] sin {[(2m)? + AJ]V/3¢}
+ [(2m)? + A2 cos[(AF — A3)1/2¢] cos {[(2m)? + ATM/%C})
+2(1 — cos 221 A30) {22 — AZsin?[(AZ — A3)1/%(] }] d¢  (31)

There are eight integrals over ¢ that need to be separated:

1 o0
/ 8;!4 % d = w?[A% 2 B (w)sin® {[(2ms)® + XX + 23]/ %6}
0 k=1

1
X /sin2 {1(27mk)? + A2} d¢
0

00,#j oo
+ A2 Z ZB(R)BU) sin {[(27)% + A2% 4+ \3|V/%0}

k=1 j=1
x sin {[(27m)% + A2AZ + A3]1/26}
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1
X /sin {[(27m)2 + /\%]1/2(} sin {[(27rj)2 + /\%]1/2§}dc
4]

+ i B2(k)[(2mk)? + N3 sin? {[(27K)? + AINE + AZ]M/26)}

k=1

1
X / cos? {[(2mr)% + A2)M2¢}dC
0

00,%#] oo
+ Y Y B(R)B(G)(2mk)? + AFMY2[(2mj)? + MF]/2
k=1 j=1

x sin {[(2mk)2 + A2A3 + A2]M20} sin {[(277)% + A2)A3 + AZ])Y/26)}

1
X /cos {1(2mR)? + X3M2¢} cos {[(2m])% + N2H/2¢}dC
0

xR
+4X;sin M As0 Y B(k)sin {[(27x)? + A2 + A3]1/20}

k=]

x ((A‘f’ —a2)V2 [ sinf(2 = A2)Y/2¢]sin {[(2m)? + A2} de

g O\H

1)+ X2 [ cos (0 = 392 cos{[(2m)? + X2 )
0

1 1
+2(1 - cos 2A\1 A36) (,\% / d¢ — A2 / sin?[(\? — ,\g)l/zc]cx)] (32)
0 0

The integrations are cumbersome but not scientifically challenging:

1
/ ov 8‘1’ dg \1/2(23021 )sin? {{(27x)% + AIA3 + AZ]V/%6}
0

00,#j oo

+ Z Z Caa(k, j)sin {[(2mx)® + AIAZ + AZ]Y/ %0}

k=1 j=1

x sin {[(2m5)% + A3A3 + AZ]M/%0)

+ Z Cas(r) sin® {[(2mk)% + A3AZ + A3]Y/26}  continued
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00,#j oo

+ Y Y Coals, 5)sin {[(2mk)? + A2AZ + A3]/26)

k=1 j=1
x sin {[(2m7)% + A2AZ + AZ)1/26)}
o0
+ ) Cas(k) sin A Asfsin {[(27x)2 + A2AZ + AZ]/26}

K=1

+ Ca6(1 — cos 2)\1)\30)> (33)

sin 2[(27k)?% + A3]1/2
2[(2mk)? + A2]'/2
sin {[(2mk)2 + A2]Y/2 — [(27j)% + A2)1/2}
[(2mw)? + AZY2 - [(2mj)2 + 23/?
_ sin {[(275)% + M]V/2 + [(2m5) + )\%]1/2})
[(2mr)? + X3? + [(2ms)2 + X2

Ca1(k) = -;-/\fBz(n) (1 - ) = \2(C3) (k) (34)

Canlw.) = 32 BOOBU)

@“”=%me%mhaﬂ@+mﬂmmf+ﬁwj

2[(27k)2 + A2]/?
Caals ) = 3BR)BG)(2mn)? + X /2](2m)? + N2
y (sin {{(2mr)Z + NF]H/2Z — ((2m5)% + N2]V/2}
[(2mr)2 + X3]2 — [(2m)2 + X33
. sin{[(2mr)? + M2 + [(2m)° + M 2}>
[(2m)? + M3)2 + [(2md)2 + 23]/?
Cas(k) = 221 B(x){ (A} = A3)[Cas1(k) — Casa(k)]
+ [(27K)2 + A2)M2[Cas1 (k) + Casa(x))}
sin {[(2mK)? + A3]M/2 — (A2 - A3)Y/?}
[(2mr)2 + A3]/% = (A2 - 23)"/*
sin {[(2mk)% + A2]H/2 4+ (02 — A3)V/2}
[(2mr)2 + A2 + (2 = 23)/?
sin 2(\2 — /\3)1/2>
2(M - A3)"/*

37)

Cosi(k) =

Cosa(k) = (38)

Ca6 = 202 — A2 (1 - (39)

Equation (5.3-4) is rewritten:

50 00 " ac oc T T Rz ‘I"I’>C (40)

C

1
_L_Q/(a\p*aw oU* 0¥ mdciT?
0
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In order for U to have the dimension or energy, J=VAs, the constant ¥? in
Egs.(17), (23), and (33) must have the dimension J/m=VAs/m. Equations
(17), (23), and (33) are substituted into Eq.{40). The resulting equation can
be rewritten with the help of the relations

1
cos’z = 5(1 +cos2z), sin‘z= %(1 —co82z), x=4KgoOr Jo (41)

to yield:

L2\IJ2 m3AT

cT{QZX?M”+a“@+@ﬂ@+@wﬂ+

K=1

- % Z (Cll("@) — C13(k) + Co1 (k) + Cos(k) + ——5—

2031(5))

2
moc ‘T ———C51(k )> cos 2kf

2 4T2

+ Z }:(012("5’.7) + C22(K’7j) + 024(“3"7') + mO;Z 032("{%.7‘))

X sin ko8 sin jof + C14(k, ) cos kof cos joﬁ]

— Z[Ck—,(,‘i) cos Ap 38 sin ko + Cig(x) sin A; Az6 cos kob

+ Cas{x) sin A1 A38 sin k)

m3ciT?

+ Ci7 + Caa(1 — cos 2 Asf) + 7

Cs3(1 — cos 2) /\39)}
ko = [(2mK)2 + A2A2 + M2V2, o = [(2m9)% 4+ AIAE + AZ)Y/2 (42)

The energy U consists of a constant part U and a time-variable part U,
with time-average equal to zero. The part U, is readily copied from Eq.(42):

U=U.+U, (43)

Note that in the following equation the second line becomes the term k£ = 0
of the sum in the third line:

2\s2 o0
U, = LQC\:IIJ,I [';1 <C'11(/c) + Ci13(k) + Ca1 (k) + Cas(k) +

moc‘lT2

Ca(x ))

m3cT?
2(6’17 +Co + T 033>} continued on following page


file:///1/3O

270 6 APPENDIX

22 X
= 52 (09 + e + st 4 Cantr) + 85 )

k=0
L2702
= 2T ZD (%)

C11(0) = 2(Cy7 + Ca6), C13(0) = C21(0) = C25(0) = 0, C3,(0) = 2C33  (44)

A few more transformations are required to write the variable part U, of
the energy U in a practical form:

sin 2{[(27k)? + AZA3 + A2]/20} sin 2{[(2m7)2 + AZAZ + AZ]Y/26)

= %(cos k10 — cos k0)  (45)

cos 2{[(2mk)% + A2A3 + AZ]M/20} cos 2{[(2m5)2 + AIA3 + A3]V/26)

= %(cos K16 + cos ko8)  (46)

k= 2{[(2m6)? + ATN] + NJ]/2 — [(2m5)% + AIA3 + M3)V2) (47)
ko = 2{[(276)% + XA+ NIV +[(2m)2 + AN + 0312} (48)

cos A1 Az8sin 2k8 = %(sin k3 + sin k46) (49)
sin A;Azf cos 2kp8 = %(sin K36 — sin k40) (50)
sin A1 A3fsin 2x08 = %(cos k38 — cos k40) (51)
= 20(2mk)? + A2X2 + 2A)V2 4 Mg (52)

kg = 2[(2mK)% + X2A2 + A31/2 — Mg - (53)

The time-variable part U, of Eq.(42) may now be written in the following form:

202 (&
U= 2cT1 { Z (Cla(”) — C11(K) — Ca1(r) — Caz(k)
k=1
m0C4T2
h?

Ca (n)) cos 2kp06
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00,#j o0

+z§j@meQMﬁ+%w»%mM>

k=1 j=1

m(2)42

+ T 032(5,.7)) cos k16
+ (C'm('i,j) — Cra(k, j) — Ca2(k, 5) — Caalk, j)
24T
- ﬁ T ————C132(k, _7)) cosn20]

+ Z[—Cw(n)(sin k38 + sin k46) + Ci6(x){(sin k38 — sin k40)

k=1

+ Cas(k)(cos ka8 — cos k30)]
2,472
- (Cze + e ¢l 6'33) cos >\1)\39} (54)

The term D(k) in Eq.(44) will be needed explicitly and we write it in more
detail:

2,12 m%C4T2
D(Ii) = /\1()\3 + 1)031(,"&) + C13(K) + 023(1-6) -+ —-—-——-031(#&)
7noc4T2
h2
m2cAT?\ sin 2[(27k)2 + A2]1/2

~ <2,\§A§ + 2+ ) (2mr)” - 11]/2

2[(27k)? + A%

fore=1,2,... (55)

= -B2(/-z) [2(27m)2 +2M202 4202 + A2 +

2 4T2
D(0) = 2<Cl7 + Cos + Css)

2
=2 [2)& + 20302 - X2 + m°;2T

m3ctT? sin2(A2 — \3)1/2
2=

+ (2)@)@ + A2+ } for k=0 (56)

The term B(k) is defined in Eq.(5.3-5), the constants Ay, Az, and A3 are found
in Eq.(5.2-8).

6.12 CALCULATIONS FOR SECTIONS 4.2 AND 4.3

The auxiliary variables d?, g1, g2, g3 and g4 are frequently needed. We list
them here together with a number of relations derived from them to help with
the equations of this section:
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d® = 4[(2nk)? + p}) O
1
1
a2=+5(d* = p})V2 - 2mn, & > 4} (3)
! 1
@ =3l =) =g, & < (4)
1 1
au=tg0l - g, & <p %)
g2 =q1 — 47TI€, g4 = Q3 + P1 (6)
@ =276+ [(2mw)” + pf - p} /42 (7)
a2 = —2mr + [(2mk)? + pf — p}/4)"2 (8)
(d2 - P%)1/2 = 2(q1 — 2mk) = 2(q2 + 27K), 2> p? 9)
(P —d) =2g3+p1 =2 —pr, d®<p? (10)

9 2 _ 2748\ /2
&+ (P_Ql) = 2(2mK)? + p +2(27m)2(1 + "—2(2—7£—;—2/—> AP >l (1)

2 2 2 1/2

2+ (%1) = 2(21k)? + p? — 2(27m)2<1 + %ﬁ) ,d2> 2 (12)

We start with the second sum holding for k > K in Eq.(4.1-103) which is

the same as Eq.(4.1-105) for K < 1. Later we shall extend the investigation to

the whole of Eq.(4.1-103). Equation (4.1-105) is shown once more in Eq.(4.2-

11) with the terms Lq5(8, &) to L1g(f,x) broken up into Lis4(x), Li58(8, &),

..., L1sg(8, k). We denote the two terms of the second sum of Eq.(4.2-11) by
Aes(k) and Aeo(k):

B 1 p1Lisa(k)
= g (e B

(2rk)? + p3 2(qu — 2mk)

4 —TK g2 + 7K
13
g (q% T B+ (P1/2)2> )

_ 1 p1L16a(x)
Aol = e 7 (LIBA(K) T 2)
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1 1
(2nk)? + p3 2@ — 27k)
» 01(q1 = 27x) — p}/4  qo(ge + 2mk) — P%/‘l)
@+ (p/2)° a2+ (p1/2)°

k> K =cT|(0Z — s/Z)|/4m if used for Eq.(4.1-103) (14)

For the third term of the second sum in Eq.(4.2-11) we obtain with Eqs.(4.2-
2)—(4.2-5):

(& = pD)2L17e(6, 5) + prLass(0,5) 1
(@- ) [m)? + 03] 20201 — 2mm) [(2mm) + 4
N ([m(ch — 27k) + p1ga] €08 16 — (261 (g1 — 27k) — p3/2]sing,6
2 (g3 + (n/2)%]
[p1(q1 — 27K) + p1ga] cos go8 — [2g2(q1 — 27K) — pi /2] sin Q29>
2[a3 + (p:/2)"]
= As7(k) cos q10 + Bsr(k)sin q16 + Cs7(k) cos ga6 + Ds7(k)singaf  (15)

+

- 27K) +
Aso(k) = — p1{@ ) e,

(16)
4(q1 — 2mx) [(2m0)* + 3] |3 + (p1/2)7]
2q1(q1 — 2mk) — p3/2
Bar(x) = + : an
T g —ome) [(2nn) 4 48] [af + (0127
Carlk) = — P1§q1 —27k) + P42 (18)
T e - o) [ 4 3] [+ (01/2)]
Dsa(k) = + 2g2(q1 — 27k) — /2 (19)
4(q1 = 2mx) |(2mx)? + 3| [ + (01/2)°]

The third term of the second sum in Eq.(4.2-11) may now be written as follows:

<L17B(9,n) + P1L153(9,,€)> : sin 27k0

(2 = p)"'? ) (278)" + 03
= As7(k) cos gy sin 2mkf + Bsr (k) sin gy sin 2rk6
+ Cs7(k) cos a0 sin 2mkf + Ds7(x) sin gof sin 2rx8  (20)

Using the changed wavenumbers 27x & ¢; and 27k + ¢
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21k —q1 = 7wk — (m2Kk% 4 p3 — p3/4)Y/? (21)
21k + q1 = 31k + (262 + p3 — p?/4)1/?2 (22)
21k — go = 3wk — (W2Kk2 + p3 — p3/4)'/? (23)
21k + g0 = wk+ (12k% 4 pi — p?/4)Y/? (24)

we obtain for the products of sine and cosine functions in Eq.(20):

sin 2mkf cos 16 = %[sin(%m —q1)0 +sin(27k + ¢1)0] (25)
sin 2wk sin g0 = —;—[cos(27m —q1)0 — cos(2mk + ¢1)6] (26)
sin 27 k6 cos g2 = -;—[sin(?lm — g2)0 + sin(27k + ¢2)0] (27)
sin 27 k0 sin go0 = %[cos(27m — g2)0 — cos(2mk + ¢2)6) (28)

We turn to the fourth term of the second sum in Eq.(4.2-11). Instead of
Eqgs.(15)—-(19) one obtains:

(d = p3)/%L1sp(6, k) + p1L168(6, ) -4 1
(@ = o)™ [(2mw)? + 3] 2 (g1 — 2mw)) [(2mm)° + 3]
« <[P1(CI1 = 2mk) + prqa] sin @10 + [2g1 (@1 — 27k) — pi/2] cos ¢:0
2[a} + (/2]
_ (g1 — 27k) = p1go] sin g26 + [2g2(q1 — 27K) + p3/2] cos Q29>
2[a3 + (p1/2)°)
= Agsg(x) sin q10 + Bes(r) cos 10 + Ces(k) sin qob + Des (k) cos gz  (29)

Py — 27K) + P o —dg(s) (30)
4(qr - 2mr) [(27)* + 93| [ + (p1/2)°]
2q1(q1 — 27K) — p}/2

Ags(k) = +

B = = = = +Bs7(x) (31)
68("3) +4 (ql _ 27(_”) [(27”{,)2 + P%_ [q% + (p1/2)2- 37

c __ pL{q1 — 27K) — p1g2 (32)
o=t 4(qr - 2mx) [(2nn)* + 03] (a3 + (91/2)]

DSS(KI) — _ 2(12((11 - 27{'/{,) + p%/2 (33)

4(a} - 2mr) [(2mn)? + 03] (8 + (1 /2)7)
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The fourth term of the second sum in Eq.(4.2-11) may be written as follows:

Liss(6, %) pLies(6,k)\ cos2nkd
—_— 18B\V, K + 2 2 1/2 (2 )2 + 2
(d? — p3) TR ]

= Ags(k) sin 10 cos 2mk6 + Bgg(k) cos q10 cos 2mkb
+ Ces (k) sin g8 cos 2wk + Des(k) cos 26 cos 2k (34)

Using the changed wavenumbers of Eqs.(21)~(24) we obtain for the products
of sine and cosine functions in Eq.(34):

cos 2mkfsin g10 = —;—[—- sin(2mk — ¢1)0 + sin(27k + ¢1)6] (35)
cos 2wkl cos 10 =%[+ cos(2mk — q1)8 + cos(2mk + q1)6] (36)
cos 2mk0 sin go6 = %[— sin(27k — qo)0 + sin(27k + g2)6) (37)
cos 2mkf cos g =%[+ cos(2mk — qa)0 + cos(2mk + ¢2)0] (38)

We introduce four more auxiliary variables:

Bsr(s) = 3(Cs1(x) ~ Cis()]

P11
_ (39)
4(q = 2mr) [(2mr)? + 3] [ + (p1/2)"]
Ees(k) = %[057(*6) + Cos (k)]
p1(2q1 — 2mk)
= - (40)
4(q1 — 2mx) [(20)” + 3] [ + (1/2)?]
Fsr(k) = %[DM(K) + Des(~)]
pi/2
= - (41)
4(q1 — 27k) [(27m)2 + pg] [q% + (p1/2)2]
Fua() = —3[Ds1(x) — Das()]
— 2QQ(q1 - 27”‘:) (42)

(g1~ 2em) [0 4 73] [ + (/D))

The third and fourth terms of the second sum of Eq.(4.2-11) become:
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<L17B(9 K) + P1L153(9,,€)> sin 2w k0
’ (d? - P%)l/2 (27m)2 + p2

Liis(6, 27K0
- <L1aB(9,K)+p1 s “))(“’S i

(22 - p2)"/%/ (27m)° + 3
= As7(k)sin(2rk — q1)8 + Bes(k) cos(2mx — q1)0

+ Esr (k) sin(2mk — q2)0 + Egg(k) sin(2wk + g2)8

+ Fs7(k) cos(2mk — q2)0 + Feg(k)-cos(2mk + g2)0 (43)

We turn to the first sum in Eq.(4.1-103) that contains more complicated
terms. With the help of Eqs.(4.2-7)—(4.2-10) we obtain:

Aes(k) = (p} — d*)V2L134(k) + prLi1a(k)
T @ e 1 4]

4344 1 _ 1 44
(243 + p1) [(zm>2+p%]<<2m>2+q§ (2m>2+qz) “

(p? — d®)Y2L14a(K) + p1Li2a(r)

Aec(k) = —
(o} — )% [(2mk)? + p}]
2k q4 g3
- 2 PENpTI T 2
(293 + p1) [(27”-;) + p%} (2rr)"+q3  (27K)" +qf
k< K =cT|(0Z — s/Z)| if used for Eq.(4.1-103) (45)

The terms with the subscript B rather than A are more complicated:

(p = d*)/?L13g(6, %) + p1L118(6, k) _ 1
(ﬁ—ﬁf”k%@ﬁuﬂ (205 + 1) [ (278)° + 3]
« (q o(203+p1)0/2 93.COS 2rrl —227m sin 2wkl
(27k)° + g3
—(2qs+p1)8/2 94€082mK0 — 2mk sin 27m9)
(27)" + ¢}

— qs€

= ¢(2051P1)9/2[ 4, 4(k) cos 2mkB + Bys(k) sin 2wkb]
+ e~ (2as+p1/2((C1 (k) cos 2mKB + Dia(k) sin 2mkf]  (46)

Ass(k) = + 9594 (47)
T (e + ) [(2mw)® 4 3] [(2n)? + ]
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2MKQy

B13(KZ) = — ]

(205 + ) [(2n0)? + 3] [(2m)” + 3]
Cis(k) = — ] ;13(14 1T 2

(205 + p1) [@70)” + 93] [(2mm)? + 2]
Dya(k) = + ] 227”“]3 TT 2

(293 + p1) .(27m) +p§_ L(27r,‘<;) +qﬂ

We still need the terms with subscripts 14B and 12B:

(Pi —d*)'V2L14p(6,K) + p1L12B(6,K) 1

(p3 — d2)1/2 [(27”@)2 + p%] (2g3 + p1) [(27m)2 + pg]
y <q4e(2q3+p1)9/2 g3 sin 2wk —227m cos 2Tkl
(27mk)" + ¢3
—(2qs+p1)8/2 44Sin2mKE + 27k cos 27m€)
(27k)* + g2

— q3€

= e(20%,1)8/2( 4y, (k) sin 27k + Bog(k) cos 2mk)]

+ e (20+£1)6/2[, (i) sin 2K + Dayg(k) cos 2mkb]

Agg(K) = — 4394
(2g5 + p1) [(27m)2 + pg] [(2m)2 + qg]

2mKqy

B 4(K)) = -+

i (2q3 + p1) [(27m)2 + pg] [(27rf-c)2 + qg]
Caa(k) =+ _ 9394 _
(293 + p1) -(27m)2 + pg] -(27[‘,{1)2 + qz-
Dau(k) = + ] 2TKQ3 _ _
(2(]3 + Pl) _(271%)2 -+ p%} -(27”;)2 + q‘%—

(51)

The comparison of Eqs.(52) to (55) with Eqs.(47) to (50) provides the following

relations:

[«5, B ) §
-~ @

~ o~~~
(S
© o
- L =
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The sum of Eq.(46) multiplied by sin 27x8 and of Eq.(51) multiplied by
cos 2mk0 yields:

<L13B(9,,§) n P1L11B(9,/-6)> : sin 27 k0

(p2 —d2)'"* /) (27K)" + o}

p1L198(9, K) ) cos 2mk6
(

— | L14(0, ) +
( (03 = a2)'/? ) (21) + p3

= —elB+P10/2 B o () cos dmkb

+ e~ (29 +p08/2(C 5 (k) sin 4wk + Dis(k)]  (60)

Substitution of Eqs.(13), (14), (43)-(45), and (60) into Eq.(4.2-7) yields:

1
Aev(cae) = C2T2‘/eo{;2-6—p2§(1 — Ch p20) + 2(1 — e*Pz)
2

<K
x [ Z[Aes(m) sin 2wkl + Aec (k) cos 28] sin 2wk
k=1

+e*/’1 6/2

<K
+ < Z —e(2qa+p1)9/2B13(m) cos 4wkl sin 2k

w=1

<K
+ Z e™(293+p1)8/2(C1 5 () sin 47k6 + Di3] sin 27m(>

k=1

+ Z es(K) 8IN 2TKG + Aec(k) cos 2mkH)] sin 2mk(
w>K
+e“‘P19/2

[e o]

X < Z [As7(k) sin{27mk — ¢1)0 + Bes(k) cos(2mk — g1)0)] sin 2mk(
k>K

(o]
+ Z [Es7(k) sin(2mk — ¢2)8 + F57(k) cos(2mk — g2)6] sin 2wk
K>K

+ Z [Ees(k)sin(2mk + g2)0 + Fes(x) cos(2mk + g2)0] sin 271'KC>] } (61)

k>K

The term e(293+1)0/2 ;ay cause concern but it is multiplied with e=P9/2,
The exponent of the product equals:
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F1G.6.12-1. Three-dimensional plot of the function exp(—p2¢)(1—ch p28) for (-6 >0
in the interval 0 < p2¢ < 8, 0 < p28 < 8.

[(2g5 + p1) — p1]6/2 = [(0% — d*)'/2 — p1]6/2
= {[p? — 4(2rK)? — 4p3]"/% — p1}6/2 (62)

The relation

(02— d®)'/% = [p? — 4(2mk)? — 4p3]/% > 0

implies

[P} — 4(27mK)* — 4p3] — p1 < 0 (63)
and the terins in Eq.(61) multiplied with e~#19/2¢(243+£1)8/2 hecome very small
for large values of 6.

Consider the very first term in Eq.(57). To recognize what values it may
assume we rewrite it as follows:

1 1 1 1
e P2 (1 = ch paf) = =5 [ e7P2¢ — —e=P2(=0) _ —g=palCH)
e (1= chp20) p%( 2¢ 2° >
1
- _Eﬁe—pz(c—ﬂ) for ¢, 0> 1 (64)
2

The constraint ¢ — 8 > 0 assures that this term will vary only in the interval
from 0 to —1/2p%. Figure 6.12-1 shows this variation in detail.

Equation (61) contains functions like e=#19/2 and e(24s+r1)0/2 that rep-
resents attenuation due to losses. Such terms have no meaning in quantum
mechanics since photons are never attenuated. To eliminate these attenuation
terms, as well as the phase shifted arguments 27k ~ q1 and 27x £ g2 of some
of the sine and cosine functions we resort to the Fourier series. We write it in
the following form:
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fu(0) =go + Z[gsn(u) Sin 2700 + gex (V) cos 2n1/6]

v=1
1 1

gsu(V) = 2/f,<(9) sin 27006 df, g (V) = 2/f,¢(0) cos 276 df
0

0
1

go= [ 10088, 0<o=yT <1
o]

We apply this series expansion to the second sum in Eq.(61):

fx1(8) = €% Bi3(k) cos 4mkb

1
Jsu1(V) = 2/6‘139313(/@) cos 4mk0 sin 20 db
0

Jer1 (V) eqagBlg(n) cos 4mkf cos 2wl df

!
o o\_‘

go

The following integrals are required to evaluate gsx1(v) and gex1(v):
Lik,v) =2

e®? cos Amkf sin 2mv0 df = I3y (K, v) + Iag(k,v)

Ik, v) =2 €98 cos dmkf cos 2mv0 df = L (k,v) + Laa(k,v)

O O~ .

1
I (k,v) = /e‘“a sin[27(2k + v)}do =
0

2m(2k 4+ v)(1 — %)
+ @2 + [2m(2x +v))?

22k — v)(1 — €%)

qs6 ., — = -
e’ sin[21(2x — v)]do gz + [2m(25 — V)2

[32(/1, I/) =

- O —

Q3(1 - 6‘13)
2+ 272k + v))?

I (k,v) = [ €% cos[2m(2k + v)]df = —

g3(1 — e®)

q3f — = -
%% cos[2r(2x — v)|df & + 2n(26 — v)]?

-[42(’{’7 V) =

O\H o'\

(70)

(71)

(72)

(73)

(74)

(75)
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Substitution of Egs.(70) to (75) into Eqs.(66) to (68) yields for gex1 (v/), gex1 (V),
and f.1(0) the following relations:

gsw1 (V) = Bia(k)[Is1(k, v) + Is2(k, V)] (76)
Gew1 (V) = B1a(k)[La1(k, v) + Laa(k,v)] (77)

fr1(6 Z Bys(k){[Is1{k,V) + Isa(k, V)] sin 2w

v=]

+ [L (&, v) + Lya(k,v)] cos 26} (78)

Let us turn to Eq.(61) for Aev(¢,0). The second sum, multiplied by e™** in
Eq.(61) becomes:

<K
Z —e% B3 (k) cos 4mkf sin 2wk
r=1
<K oo
= - Z Z Bis(k)[I1(k,v) sin 2708 + Iz(k, v) cos 2mvf] sin 2k (79)
k=1lv=1

3 o 2r2s+v)  27(2k—v)

hsv)=(1-e )(qg + 22+ V)P @f + [27(2k - V)]2> &
3 . q qs

hosv) = ~(1-¢ )<q§ + [(27r(32m T T T en(en - V)P) (&

We turn to the third sum in Eq.(61). The term e~?19/2¢~(24s+r1)6/2 ig also
eliminated by means of a Fourier expansion:

Fr2(8) = e~ BTP09 05 (k) sin dwkf + Dy3(k))] (82)

Following the steps from Eq.(66) to (79) we get a similar but considerably more
complicated result:

<K
Z e (BP0 4 (k) sin dmkb + Di3(k) cos 2mkl] sin 2mk(
x=1
<K oo
= Z Z{[C’lg(n)ls(n, v) + Dy3(k)Ig(k, V)] sin 2
k=1v=1

+ [C13(k) I7(k,v) + D13(k)Is(k,v)] cos 2nv0} sin 2wkl (83)
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The four integrals I5(x,v) to Is(k,v) are defined as follows:

Ii(k,v) =2 e_(q3+p1)9 sindnkd sin 2nv8 df=—(gs+p1) (1—6_(‘73+”1))

o\\’_

1 1
g <(q3+m)2+[27r(2n+u)12 (os +p1)2+{27r(2n—y)]2) (84)

1
Is(k,v) = 2/6_(‘13+”‘)0 sin 2rv8 df = 2 (1 - e_(q”'"l))
0
2
T (85)
(q +p1)? + (2m)?
1
/ e~ (@+P09 i 4 kh cos 2l dff = (1 - e‘(q3+”1)>
0
27r(2n+ v) 27 (26 —v)
X 5 5 (86)
(g3+p1)°+2m(26+0)]*  (gs+p1)*+[2m(26—))]
1
Is(k,v) = 2/ e~ (93400 68 9110 df = 2(ga+p1) (1 e‘(q3+p1)>
D
g3 + M (87)
(QS +p1)? + (2mv)?
The first three sums in Eq.(61) may now be combined:
<K
Z{Aes(n) sin 2k + Aec(k) cos2mkb
k=1
— e%% B13(k) cos 4nkf
+ e~ @+P1)9(C5(k) sin 4mkb + D13(x)]} sin 2mkC
= Z:{Aes ) sin 27k0 + Aec(k) cos 2wkl
+ Z[Bes(/e, v) $in 2nv0 + Bec(k, V) cos 2mv0]} sin 2mk(
=1
Bes(k,v) = Bia(k)I1(k,v) + C13(k)I5(k,v) + D13(k)Is(~,v)
Beo(k,v) = Bi3(k)I2(k,v) + Ci3(x)I7(s,v) + D1a(x)Is(k,v) (88)

We turn to the last three sums in Eq.(61). They are all multiplied by
e~719/2 and they all have a shift —g; or gy in the arguments of the sine and
cosine functions. Following Eq.(82) we write:
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fr3(8) = e™P9/2[Agy (k) sin(27mk — q1)0 + Bes(k) cos(2rk — q1)6] (89)

Following the steps from Eq.(66) to (77) we get:

o= P16/2 Z Ysin(2mk — q1)0 + Bes() cos(2mk — q1)8)] sin 27K(
&>K

= Z i{[As-,(n)Ig(n, v) + Bes(k)L10(%, V)] sin 2w

k>Kv=1
+ [As7(k) 11(5, V) + Bes(k)12(k, v)] cos 2mv8} sin 27k¢ (90)

The integrals Ig(k,v) to I12(k,v) are more complicated than the previous in-
tegrals [;(k,v) to Ig(k,v):

1
Iy(k,v) =2 / e™P1%/25in(2rk — q1)0 sin 2mv0 df
0
_¢ —P1/2{(p1/2) cos g1 + [2m(k +v) — q]sinq1} = p1/2
(p1/2)* + [2m(r +v) — @]
_ e {(p1/2) cosqr + [2n(k — v) — qi]sinq1} — p1/2 (91)
(p1/2)* +[2n(k —v) — ai]”

1
Lo(k,v) = 2/@“’19/2 cos(2mk — q; )0 sin 2mv0 db
0

_e 91/2{(/)1/2)s1nq1—[27r(/-:+1/) ql]cosq1}+27r(/c+u)—q1
(p1/2)* + 27 (k + V) — qu]?

e=P1/2{(p,/2)sin g, — [27(k—v) —q1] cos g1 } +2m(k—v) —qy (92)
(p1/2)° + 2n(k = v) — @]’

1
Iii(k,v) =2 / e P9/2 5in(21k — q1)6 cos 2mu6 db
0
_e7P 2 {(p1/2) sin gy —[21(k+v) —gi] cos g }+27(k+v) —qu
(p1/2)* + [2m (s + v) — a)?
L@ s rle ) —aleosa} 2D gy
(p1/2)* + 27 (k5 — v) — @]
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1
Ip(k,v) = 2/6""19/2 cos(2mk — g1)0 cos 2mvb db
0

e=P/2{(p1/2)cosqu + [2m(k + v) — qi]sing1} — p1/2
(p1/2)* + [27(k +v) — @]
_eT™/2{(p1/2) cosqi + [2m(k — v) — q1]singi } — p1/2
(p1/2)? + 2m(k — v) — @]

The second sum from the end in Eq.(61) is written in analogy to Eq.(82)
as follows:

(94)

Fra(8) = 7?1972 [Byr(x) sin(2mk — g1)8 + Fir(x) cos(2mr — g2)6) (95)

Again we follow the steps from Eq.(66) to (77) and obtain:

o
e~P19/2 Z [Es7(k)sin{2mk — g2)6 + Fs7 cos(2mk — g)8] sin 2wk
k>K
[e o} o0

= Z Z{[EW(R)IH(K, V) + Fsr(k)[14(x,v)] sin 2mv8
k>Kv=1

+ Es7(k)15(k, V) + Fs7(k) [16(k, V)] cos 2mv8} sin 27k (96)

The integrals I13(x,v) to I16(k,v) can be written with the help of the integrals
Ig(k,v) to Ia(k,v):

1
hs(k,v) = 2/6_”1‘9/2 sin(27k — go )@ sin 2706 df
0

= I11{x,v) with ¢ replaced by go (99)

La(k,v) with gy replaced by go (100)



6.12 CALCULATIONS FOR SECTIONS 4.2 AND 4.3 285

We turn to the last sum in Eq.(61). In analogy to Eq.(82) we write it in
the following form:

frs(0) = e~ P92 Egg(k) sin(2mk + g2)0 + Fes(k) cos(2mk + g2)6)] (101)

Following the steps from Eq.(66) to (77) a final time we obtain:

o0
eP19/2 N " {[Egs(x) sin(2mk + g2)0 + Fos (k) (2K + g2)6] sin 2mk(

>K

= Z Z{[EGB(K)IN(K, V) + Feg(k)18(k, V)] sin 2710
k>Kvr=1
+ [Ees(k)I19(k, V) + Fog(r)Iao(k,v)] cos2mvl} sin 2l (102)

The integrals I17(k, v) to Iao{k,v) can be written with the help of the integrals
Ig(k,v) to Iia(k,v):

1
Liz{k,v)=2 / e~P1%/2in(2rk + q2)0 sin 270 df
0
= Ig(k,v) with ¢; replaced by —gs (103)
1
Lig(k,v) =2 / e~ P16/2 cos(2mk + g2)0 sin 26 db
= Io(k,v) with ¢; replaced by —qo (104)
1
Iig(k,v) = 2/ e P9/2 5in(2mk + g2)6 cos 210 df
0
= I11(k,v) with ¢; replaced by —g, (105)
1
Ino(k,v) =2 / e™P19/2 cos(2mK + 2)0 cos 21 df
0

= I12(k,v) with ¢; replaced by —g (106)

The sums 4 to 7 of Eq.(61) may be combined:
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o0
Z {Aes(k) sin 27 k6 + Aec(k) cos 2wl

K>K
+ e7P9/2[ Agr (k) sin(2mk — q1)0 + Beg(k) cos(2mk — )0
+ Es7(k) sin(2nk — g2)8 + Fs7 cos(2mk — q9)0
+ Egs(k) sin(2mk + g2)6 + Feg (k) cos(2mk + q2)0]} sin 2mk(

= Z {Aes(k) sin 2k6 + Aec(k) cos 2mkb

w>K

-+

s

[Bes(k, V) sin 2mv0 + Bec(x, v) cos 2mv6)} sin 2 k¢

v=1

Bes(k,v) = As7(k)Ig(k,v) + Bes(k)I10(k, ¥) + Es7(k)I13(k,v)
+ F57(I§)I14(K,, V) + Ess(l‘&)]n(l‘&, l/) + Fss(K)Ilg(H, l/)

Beo(k,v) = As7(k)h1(k,v) + Bes(k)ha(k,v) + Esr(k)15(k, V)
+ Fsr(x)16(k,v) + Ees(k)I19(k, V)

+ Feg(ﬁ).[go(h), l/) (107)

The very first term e™?2¢(1 — ch po6) in Eq.(61) can be represented by a
product of Fourier series with ¢ and 6 as the transformed variables. We shall
not do so now in order to preserve the compactness and clarity of the notation
e~P2¢(1 — ch py6) compared with its Fourier representation. Equation (61) is
written in the following form with the help of Egs.(88) and (107):

Aev(Ca 6) = C2T2vve0 [%C_ch(l _ Ch ,029) + 2(1 - e—pz)
2

<K
X ( Z{Aes(n) sin 2kl + Aec(k) cos 2wkl
k=1

(=]

+ Z[Bes(n, V) sin 2118 4 Bec (K, v) cos 2nv6]} sin 2wkl

v=1

o0
+ Z {Aes (%) 8in 2mK6 + Aec(k) cos 2mkb
K>K

+ i [Bes(t, V) sin 2108 + Be. (&, v) cos 2mv6]} sin 27”6()] (108)

v=1

A radical simplification of the writing of this equation is necessary to make it
usable:



6.12 CALCULATIONS FOR SECTIONS 4.2 AND 4.3 287

Aer(C,0) = TV, <Aeo(C, 8) + Y Cex(6)sin 27m<>

k=1

AeolC,0) = %e"’ﬁ(l ~ chpat)
2

Cor(6) =2(1 — e #2) <Aes(fi) Sin 27kl + Aec(K) cos 2wkl

o0
+ Z[Bes (k,v)sin 2mv8 + Bk, V) cos 27w0]> (109)

v=1

We may make two simplifications that hold generally by using the relation
p2 = cT/os > 1 of Eq.(2.2-9). First the factor 1 — exp(—p2) is essentially
equal to 1. Second, the absolute value of A.o(¢, ) is less than 0.5/p3 according
to Fig.6.12-1. Hence, we write:

o0
Aey(C,0) = PT?Vep »_ Con() sin 2msC

k=1

Cex(0) =2 (Aes(n) sin 27k6 + Aec(k) cos 2mkb

+ Z[Bes(n, V) sin 2nkv8 + Bec(k, V) cos 27rw9]) (110)

v=1

We need the limits for £ — oo of most of the expressions derived in this
section. First we write the auxiliary expressions of Eqgs.(1) to (12) as well as a
few more frequently required expressions:

for d? = 4[(27k)? + p2] > p?, K — o0

d? ~ 4(27k)? (111)

Q1 =~ 4Tk + Bg—i;f;i/—é, gs & pg;ﬂ# (112)

(@ — p))Y? x 47k (113)
4 + (%)2 ~ 4(27k)% + 203 — %pf (114)
g (2) ~ L | (s
g1 — 27k =~ 27K + é;—;—ﬁ-& (1186)

go + 27K = 27K + M (117)

4Tk
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Starting with Aes(k) of Eq.(13) we follow the listing and obtain for the limit
& — oo the following results:

Aes(k) ~ - Aec(k) = L (1 - ﬁ) (118)
(2mK)2p1 (2mk)® P
Asr(k) ~ _16(32+1;~:)4 Bsr(k) ~ m (119)
Cir(s) ~ _ﬁfﬂ Dy (k) ~ ‘4(27?:,;)3 (1 - g—%-) (120)
Ags (k) ~ Wg},{ﬂ ~ —As7(k) DBes(s) = 4(?15)3 ~ Bsr(k)  (121)
Cos(k) =~ —(Er_:)—?;I Des(k) = —%% (122)
Esr(k) ~ —m Egs(k) ~ —ﬁ (123)
Fsz(r) & —m Fgg(k) ~ :1—(%5)3- (1 - 4%) (124)

The integrals I; (k,v) to Is{k,v) are not needed for the limits & — oo, but
the integrals Ig(x,v) to Isg(k, v are:

4pv 4y

Io(s,v) & s Lol )~ ~ s (125)
Ik, v) ~ _27% Tk, v) ~ (2,/?—;)2 (126)
is(k,0) ~ 217 22::)3 Da(r,) ~ = 24:””)2 (127)
Liz(k,v) = -2—7%; Lig(k,v) =~ 2(2;;;)—5 (128)
Li7(k,v) = 2p1(22%/)—3- Lig(k,v) = —(22:—:)2 (129)
Iig(k,v) ~ ﬁ; Ing(k,v) = —2-@% (130)

We may now produce the functions Bes(x,v) and Bec(x,v) of Eq.(107).
Since we do not want to evaluate the sums over v we cannot write = (approx-
imately) but must write oc (proportionate):

(131)

Bes(k,v) x Bec(k,v)

1 1
(2rK)S (2mk)3
The functions Cegs(k,v) and Cec(k,v) of Eq.(4.2-16) vary for kK — oo as
follows:
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2y 1
~ _ v S 2
Cos(k, V) & 27k ps Bes (K, V) 27mBec(n, V) x G (132)
Crcltis V) ~ 2k Bee(kt, 1) + 2% Bus(ti, ) 06 s (133)
ec\R, V) =~ sTTKPsDec\Ky, V omp e\ (27”{,)2
For UZ%(x) and UZ2.(x) in Eqs.(4.3-30) and (4.3-31) we get:
2 2
2 v v
U0 ¢ (Bues) + Gl )+ (Burlssr) = ZCusti) )
o — (134)
(2mk)8
v 2 v 2
U2 (k) (EBec(n, V) + Ces(k, z/)) + <;Bes(n, V) — Cec(k, V))
1
135
* (27k)* (15)

The normalized energy of the component of the wave represented by the
sinusoidal pulse with & cycles in the interval 0 < y < ¢TI or by all the photons
with the period number & varies for k — co as follows:

He = (27K)2[UL (k) + U2 (k)] (Twlk? for k — o0 (136)
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MODIFIED MAXWELL EQUATIONS IN QUANTUM
ELECTRODYNAMICS

Divergencies in quantum field theory referred to as “infinite zero-point energy” have
been a problem for 70 years. Renormalization has always been considered an
unsatisfactory remedy.

In 1985 it was found that Maxwell’s equations generally do not have solutions that
satisfy the causality law. An additional term for magnetic dipole currents corrected
this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just
as rotating electric dipoles in a material like barium titanate produce electric dipole
currents. Electric dipole currents were always part of Maxwell’s equations.

This book shows that the correction of Maxwell’s equations eliminates the infinite
zero-point energy in quantum electrodynamics. In addition, it presents many more
new results.
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