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Preface 

Electromagnetic theory has been based on Maxwell's equations for about 
a century. There is no need to elaborate the successes but from 1986 on we find 
publications claiming that Maxwell's equations generally do not have solutions 
that satisfy the causality law. Two scientists working independently and using 
different approaches arrived at the same result, which gives it great credibility. 
The mathematical investigations that uncovered the lack of causal solutions are 
necessarily complicated, otherwise it would not have taken a century to find 
this shortcoming of Maxwell's equations. 

The problem could be corrected by the modification of Maxwell's equations 
with an added magnetic current density term. Initially this caused concern 
since magnetic charges or charge carriers have not been observed reliably even 
though there are good theoretical arguments for their existence, e.g., the quan­
tization of the electric charge. However, it was soon realized that there was no 
need for magnetic monopole currents but that magnetic dipole currents were 
sufficient. The existence of magnetic dipoles is not disputed and their rotation 
can cause magnetic dipole currents just as the rotation of electric dipoles in a 
material like Barium-Titanate can cause electric dipole currents. 

Electric dipole currents were always an important part of Maxwell's equa­
tions but they were called polarization currents and this choice of words ob­
scured the unequal treatment of electric and magnetic dipoles. Electric dipole 
currents are needed to explain how an electric current can flow through the 
dielectric of a capacitor, which is an insulator for electric monopole currents. 

The causality law is of no significance for the transmission of power and 
energy, or generally for steady state solutions of Maxwell's equations. But it 
is a must for the transmission of electromagnetic signals. Signal transmission 
without causality is a contradiction in terms. 

We define a classical electromagnetic signal as a propagating wave that 
is zero before a certain time and has finite energy. All produced or observed 
propagating electromagnetic waves are of this type even though we often ap­
proximate them for mathematical convenience by infinitely extended sinusoidal 
waves. Signals are represented mathematically by functions or signal solutions 
that are zero before a certain time and are quadratically integrable. Such sig­
nal solutions satisfy the causality law and the conservation law of energy while 
infinitely extended periodic sinusoidal solutions satisfy neither. 

The modified Maxwell equations have been applied in four books and 
numerous papers to problems ranging from the propagation of electromagnetic 
signals in seawater to their interstellar propagation over distances of billions of 
light years. The time has come to advance from classical physics to quantum 
physics. 

It is one of the most basic principles of quantum mechanics that an obser­
vation interferes with what is being observed. In other words, a signal received 
during an observation changes what created the signal. Quantum electrody­
namics should thus be a good field of application for an electromagnetic theory 
that permits signal solutions. 

VII 
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This expectation turned out to be fully justified. The first success of the 
use of the modified Maxwell equations was the elimination of the infinite zero-
point energy that has been a problem for 70 years; the conventional theory 
can correct it only by renormalization, a process that is generally considered 
unsatisfactory. The infinite zero-point energy is shown to be reduced to a finite 
energy for both the pure radiation field and the Klein-Gordon equation. 

The Hamilton function of a charged particle in an electromagnetic field 
derived with the modified Maxwell equations contains many more terms than 
the conventional Hamilton function. This provides the basis for new results, a 
fact of interest to those who look for topics for PhD theses. 

The authors want to thank Humboldt University in Berlin for providing 
the computer power required for a number of complicated plots. 
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1 Introduction 

1.1 MAXWELL'S EQUATIONS 

Maxwell's equations have been the basis of electromagnetic theory for more 
than a century. Their original formulation as a continuum theory with elec­
tric charges, electric current densities, field strengths, and flux densities was 
extended by Lorentz to include particles and the concept of mass. Quantum 
theory required a further extension to include quantization effects. The applica­
tion of group theory to Maxwell's equations showed that the physically required 
conservation laws were satisfied as a result of certain symmetries but did not 
bring any further extension of Maxwell's equations (Fushich and Nikitin 1987). 
After a century of scrutiny and extensions, Maxwell's equations had become 
one of the more solid pillars of physics. 

With this background it is not surprising that publications claiming that 
Maxwell's equations have generally no solutions that satisfy the causality law 
were not well received1. Indeed, it was next to impossible to publish this re­
sult2. The mathematical methods used were difficult to follow, otherwise it 
would not have taken a century to recognize the problem. But two scientists 
working independently, using different approaches, and arriving at the same re­
sult give that result great credibility. Furthermore, none of the many attempts 
by opponents since 1986 to obtain a correct solution of Maxwell's equations 
that satisfied the causality law was successful. The question of causality for 
Maxwell's equations soon became a more fundamental question: How does the 
causality law enter the mathematical formulation of a physical problem? 

To answer this question we first spell out the causality law. It is rarely 
found or discussed in books on physics despite its undisputed importance to 
physics3. Let us state it in the following form: 

Every effect requires a sufficient cause that occurred a finite time earlier. 

It is sometimes believed that the causality law is a mathematical axiom 
that is automatically satisfied if one calculates correctly (Toll 1956). The word 
time in the causality law shows that this cannot be so. Pure mathematics 

iHarmuth 1986a, b, c; Hillion 1990, 1991, 1992 a, b, 1993 
2The credit for having the courage to publish goes to Peter W. Hawkes, editor of 

Advances in Electronics and Electron Physics (Academic Press) and the late Richard B. 
Schulz, editor of IEEE Transactions on Electromagnetic Compatibility. 

The causality law was recognized by the Greeks since it is impossible to think rationally 
without using it. The conservation laws of physics were accepted after 1800. 

1 



2 1 INTRODUCTION 

does not have the concept of time and there are neither a time variable nor 
spatial variables since these are concepts of physics. Instead we have complex 
variables, real variables, rational variables, integer variables, random variables, 
etc. No variable in pure mathematics has a physical dimension like meter or 
second. Only when mathematics is applied to physics can we have variables 
with physical dimension. But in this case both the mathematical axioms and 
the physical laws must be satisfied. 

The word earlier in the causality law introduces the universally observed 
distinguished direction of time: the effect comes after the cause. Nothing 
equivalent exists for spatial variables since there is no general law that demands 
something must always happen in front, to the right, or above a certain spatial 
point4. 

To see how the causality law enters when a physical process is described 
by a partial differential equation in a coordinate system at rest we note that in 
this case one must find a function that satisfies three requirements: 

1. The function satisfies the partial differential equation (s). 
2. The function satisfies an initial condition that holds at a certain time to 

for all values of the spatial variable(s). 
3. The function satisfies a boundary condition that holds at all times t for 

certain values of the spatial variable(s). 

A solution that satisfies the causality law requires that the initial condition 
at the time t = to is independent of the boundary condition at the time t > to. 
Without this requirement a cause at the time t > to could have an effect at the 
earlier time t = to-

Steady state equations and their solutions are always outside the causality 
law since the concept of cause and effect has no meaning in the steady state5. 
This explains why one can obtain useful results when ignoring the causality 
law. If one is interested only in power, energy, or their transmission one will 
usually be able to ignore the causality law. The exact opposite is true if one 
is interested in the transmission of information or the detection of signals. 
Information is transmitted by signals and detected by the reception of signals. 
The energy of a signal is of little interest as long as there is enough energy to 
make it detectable. But different signals may cause different effects and the 
propagation velocity of signals determines the time of an effect. Any serious 
study of information or signal transmission requires equations and solutions 
that satisfy the causality law. 

4For a discussion of the concepts of space and time, particularly why we use one time 
variable but several space variables rather than one space variable and several time variables, 
see Harmuth (1989, 1992). 

5Sometimes one reads that a process can go forward or backward in time. This is wrong, 
if the process is subject to the causality law, but it is only meaningless rather than wrong 
in the steady state (t —> oo) since the causality law is meaningless in the steady state. The 
claim irreversible processes have a distinguished direction of time but reversible processes 
do not can be rephrased as follows: An increase of entropy is the cause for the effect of 
irreversibility. The distinguished direction of time is due to the causality law applied to the 
particular physical concept of entropy. Reversibie is another word for the concept of steady 
state. 



1.1 MAXWELL'S EQUATIONS 3 

The special theory of relativity requires the concepts of signals and propa­
gation velocity of signals. We learned that signals cannot propagate faster than 
with the velocity c of light, but there is no theory of signal propagation based 
on Maxwell's equations that tells us more. The inability of Maxwell's equations 
to satisfy the causality law made a theory of electromagnetic signal propagation 
impossible. This changed immediately when the problem of Maxwell's equa­
tions with causality was recognized and corrected (Harmuth 1986a; Harmuth, 
Boules, and Hussain 1999; Harmuth and Lukin 2000). 

Let us turn to the concept of an electromagnetic signal. We define it as a 
propagating electromagnetic wave that is zero before a certain finite time6 and 
has finite energy. The word propagating is important since there are standing 
waves and captive waves that do not propagate. All observed or produced 
propagating waves are signals. They satisfy both the causality law and the 
conservation law of energy. Only in theoretical work do we encounter waves 
that are not zero before a certain time, such as periodic sinusoidal waves, or 
do not have finite energy, again like periodic sinusoidal waves. Mathematically 
a signal is represented by a function that is zero before a certain time and 
quadratically integrable. There are also constraints on the peak amplitude 
of the function since field strengths, fluxes, voltages, currents, etc. are never 
infinite. It is usual to think of a signal as a field strength, a voltage, or a current 
at a certain location as function of time, but a signal could also be something 
observable at a certain time as function of one or more spatial variables. 

Let us write Maxwell's equations in a coordinate system at rest using inter­
national units. We use the old-fashioned notation with curl and div since this 
notation was used when the lack of causal solutions was discovered. The sym­
bols V and • will be used when mathematical compactness is moie important 
than physical lucidity: 

cu r lH= — + g e (1) 
art 

- c u r l E = - (2) 

divD = pe (3) 

divB = 0 (4) 

Here E and H stand for the electric and magnetic field strength, D and B for 
the electric and magnetic flux density, ge and pe for the electric current and 
charge density. 

Maxwell's equations are augmented by constitutive equations that connect 
D with E, B with H, and ge with E. In the simplest case this connection is 

6When we produce a signal it will be zero before a finite time to and again after a finite 
time t\ > to- However, if the signal is received after passing through a lossy medium, it will 
generally only be zero before a finite time but may require an infinitely long time to drop to 
zero again. This means physically no more than the infinitely long time required to discharge 
a capacitor through a resistor. But it is the reason why we claim only finite energy and not 
finite duration for the wave 



4 1 INTRODUCTION 

provided by scalar constants called permittivity e, permeability fi, and conduc­
tivity a: 

D = eE (5) 

B = MH (6) 

ge = ffE (7) 

The scalar constants e, fi, a may be functions of time t and location r in a 
time-variable, inhomogeneous medium, and they may become variable tensors 
for an anisotropic medium. In more general cases Eqs.(5)-(7) are replaced by 
partial differential equations. 

When it was recognized that the set of Eqs.(l)-(7) generally had no solu­
tions that could satisfy the causality law, a magnetic current density term gm 

was added in Eq.(2) based strictly on mathematical considerations (Harmuth 
1986a, b, c). This modification produces equations associated with the group 
symmetry SU(2) rather than U(l) as the original Maxwell equations (Barrett 
1989c; 1990 a, b; 1993; 1995b). Solutions satisfying the causality law are ob­
tained. One may make the transition gm —> 0 at the end of the calculation and 
retain the causality of the solution. This decisive difference between choosing 
gm = 0 at the beginning or the end of the calculation may be explained by 
the different symmetries U(l) and 51/(2) or a singular behavior of the partial 
differential equations. It will become evident during the later calculations that 
one obtains different partial differential equations and that there is nothing 
surprising if one obtains different solutions. 

From 1990 on it was understood that a magnetic current density term 
added to Eq.(2) did not imply the existence of magnetic charges or monopoles. 
Magnetic dipoles can cause magnetic dipole currents and a magnetic (dipole) 
current density term is required to represent such dipole currents. The electric 
current density term ge in Eq.(l) always represented monopole currents carried 
by electric charges and dipole currents carried by dipoles. Maxwell called the 
dipole currents polarization currents since today's atomistic thinking did not 
exist in his time. Without a polarization or dipole current one cannot explain 
how an electric current could flow through a capacitor whose dielectric is an 
insulator—for monopole currents. If the term dipole current rather than po­
larization current had been used, the question would have been raised long ago 
why electric dipoles should cause electric dipole currents but magnetic dipoles 
should not cause magnetic dipole currents. 

For a brief discussion of dipole currents consider Fig. 1.1-1. On the left 
we see a negative and a positive charge carrier between two metal plates with 
positive and negative voltage. The charge carriers move toward the plate with 
opposite polarity. An electric monopole current is flowing as long as the charge 
carriers move. 

In Fig.l.l-lb we see how an induced dipole can produce a dipole current. 
A neutral particle, such as a hydrogen atom, is not pulled in any direction by 
voltages at the two metal plates. However, the positive nucleus moves toward 
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a b c 

+1 

FlG. 1.1-1. Current carried by independent positive and negative charges (a). Dipole 
current due to an induced dipole (b). Dipole current due to orientation polarization 
of inherent dipoles (c). 

the plate with negative voltage and the negative electron toward the plate with 
positive voltage. A restoring force, symbolized by a coil spring, will pull nucleus 
and electron together once the voltage at the plates is switched off. A dipole 
current is flowing as long as the positive and the negative charge carriers are 
moving either apart or back together again. This simple model becomes more 
complicated if we say that the probability density function for the location of 
the electron looses its spherical symmetry and is deformed into the shape of an 
American football with the nucleus off-center in the elongated direction. 

We note that a dipole current can become a monopole current if the field 
strength between the plates exceeds what is usually referred to as the ioniza­
tion field strength. One cannot tell at the beginning whether a dipole current 
will become a monopole current or not, since this depends not only on the 
magnitude of the field strength but also on its duration. As a result a term 
in an equation representing a dipole current must be so that it can change to 
a monopole current. Vice versa, a term representing monopole currents must 
be so that it can change to a dipole current, since two particles having charges 
with opposite polarity may get close enough to become a neutral particle. The 
term ge in Eq.(l) satisfies this requirement. 

Most molecules, from H2O to Barium-Titanate, are subject to electric ori­
entation polarization in addition to the induced polarization of their atoms. 
Figure 1.1-lc shows charges with opposite polarity at the ends of rigid rods. A 
positive and a negative voltage applied to the metal plates will rotate these in­
herent dipoles to line up with the electric field strength. Dipole currents 2iv are 
carried by each rotating dipole. There are also dipole currents 2ih perpendicular 
to the field strength but they compensate if there are counter-rotating dipoles 
as shown. Only the currents in the direction of the field strength will remain 
observable macroscopically if there are many dipoles with random orientation. 
Dipole currents due to orientation polarization exist for magnetic dipoles too, 
which may range from the hydrogen atom to the magnetic compass needle. 

In order to include magnetic dipole current densities one must add a term 
g m in Eq.(2). Equation (4) may be left unchanged for dipole currents, but the 
zero must be replaced by pm if there are magnetic charges or monopoles. This 

lh "lh 
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has been a disputed matter for more than 50 years. We do not have an ac­
ceptable explanation for the quantization of electric charges without admitting 
magnetic monopoles, but we do not have a direct experimental proof for the 
existence of magnetic monopoles either. 

Equations (5)-(7) have to be augmented by a relation between gm and H 
similar to the one for ge and E in Eq.(7). Hence, we must use the following-
system of equations if we want solutions that satisfy the causality law: 

cu r lH= — + g e yd) 

dB 
- c u r l E = — + g m (9) 

divD = /9e (10) 

divB = 0 or divB = pm (11) 

D = eE (12) 

B = /xH (13) 

ge = <TE (14) 

gm = sH (15) 

For the magnetic conductivity s with dimension V/Am apply comments cor­
responding to those made for e, fi, a in connection with Eqs.(5)-(7). We use s 
here as a scalar constant but it may be a function of time t and location r in a 
time variable, inhomogeneous medium. For an anisotropic medium s becomes 
a tensor. In more general cases Eq.(15) is replaced by a partial differential 
equation. 

1.2 STEP FUNCTION EXCITATION OF PLANAR TEM WAVE 

We want to obtain the field strengths E and H due to the excitation by a 
planar electric step function for both Eqs.(l.l-l)-(l.l-7) and (1.1-8)—(1.1-15). 
The coefficients e, fi, a, s shall all be scalar constants. It is sufficient to solve 
Eqs.(l.l-8)-(l.l-15) since the solution of Eqs.(l.l-l)-(l.l-7) can be obtained by 
the substitution s = 0. Consider a planar, transverse electromagnetic (TEM) 
wave propagating in the direction y. A TEM wave requires 

Ey = 0, Hy = 0 (1) 

while a planar wave calls for the following relations: 

dEx/dx = dEx/dz = dEz/dx = dEz/dz = 0 (2) 

dHx/dx = dHx/dz = dHz/dx = dHz/dz = 0 (3) 

Writing the operator curl in Cartesian coordinates and introducing the condi­
tions of Eqs.(l)-(3) brings Eqs.(1.1-8) and (1.1-9) into the following form: 
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-dHx/dy = edEz/dt + aEz (4) 

dHz/dy = edEx/dt + oEx (5) 

dEx/dy = ndHz/dt + sHz (6) 

-dEx/dy = ndHx/dt + sHx (7) 

With the substitutions 

E = Ex = Ez, H = Hx = —Hz (8) 

one may rewrite the two pairs of Eqs.(4) and (7) as well as (5) and (6) as one 
pair: 

dE/dy + ndH/dt + sH = 0 (9) 

dH/dy + edE/dt + aE = Q (10) 

Instead of using the substitutions of Eq.(8) we may make the more general 
substitutions 

Ex = E cos x, Ez = E sin x 

Hx = Hsmx, Hz = —Hcosx 

where x is the polarization angle1 measured from the positive x-axis to the vector 
E of the electric field strength or from the negative z-axis to the vector H of the 
magnetic field strength, to obtain Eqs.(9) and (10). Hence, E and H in Eqs.(9) and 
(10) represent the magnitude of the field strengths E and H. Since the polarization 
angle x is constant, the time variation of the field strengths E and H is the same as 
that of their magnitudes E and H. Hence, we can write our equations for E and H 
rather than for E and H. 

Circularly polarized waves can be obtained by replacing the constant polarization 
angle x by a time variable angle ujt: 

Ex = Ecosuit, Ez = Esinwt 

Hx = .ff sinu;£, Hz = —Hcosojt 

Substitution into Eqs.(4)-(7) yields again Eqs.(9) and (10). In this form one empha­
sizes functions with sinusoidal time variation. This distinction vanishes if one does 
not choose x as a linear function of time, x = wt, but as a general function x = f(t)-

1Some authors distinguish between a polarization angle and a rotation angle of a wave. 
They would call x a rotation angle. 
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Ex = Ecos[f{t)}, Ez = Esm{f(t)} 
Hx = Hsm[f(t)\, Hz = -Hcos[f(t)} 

The substitution of Ex, Ez, Hx, and Hz into Eqs.(4)-(7) produces once more Eqs.(9) 
and (10). 

Equations (9) and (10) were derived from Eqs.(1.1-8)—(1.1-15). The corre­
sponding equations derived from Eqs.(l.l-l)-(l.l-7) are obtained by choosing 
s = 0 in Eq.(9): 

dE/dy + fj.dH/dt = 0 (11) 

dH/dy + edE/dt + aE = Q (12) 

Elimination of H from Eqs.(11) and (12) yields a second order equation for E: 

d2E/dy2 - ned2E/dt2 - \xadEjdt = 0 (13) 

If E is found from this equation one may obtain H from either Eq.(ll) or (12) 

H{y,t) = -±J^dt + Ht(v) (14) 

H(y, t) = ~f ( e ^ f + ^ ) dy + Hy(t) (15) 

where Ht{y) is an integration constant independent of t and Hy(t) an integra­
tion constant independent of y. 

Let us assume that a boundary condition E(y, t) = E(0, t) and an initial 
condition E(y, t) = E(y, 0) are given for the electric field strength. One may 
then solve Eq.(13) for these electric boundary and initial conditions and obtain 
a function E(y, t) = Es(y, t). Substitution into Eqs.(14) and (15) yields the as­
sociated magnetic Geld strength H(y, t) with undetermined functions Ht(y) and 
Hy(t). These two functions can be determined by the requirement that Eqs. (14) 
and (15) must yield the same magnetic field strength H(y,t) = H&{y,t). All 
this assumes, of course, that a solution E-£,{y,t) of Eq.(13) and an associated 
solution Hs(y,t) of Eqs.(14) and (15) exist. No problem of existence seems to 
have been encountered if the time variation of EE(y,t) and H^,{y,t) was that 
of a periodic or analytic function. However, a problem arose when E%,(y,t) 
and H-E,(y,t) were required to represent signals. Observable or producible elec­
tromagnetic waves are always signals, periodic or everywhere analytic func­
tions can only be used for their mathematical approximation if causality is 
not important. 

Next let us assume that the boundary condition H(y, t) = H(0, t) and the 
initial condition H(y,t) = H(y,0) are given for the magnetic field strength. 

file:///xadEjdt
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Our method of solving first Eq.(13) and then Eqs.(14) and (15) fails. However, 
one can eliminate E from Eqs.( l l ) and (12) to obtain an equation for the 
magnetic field strength H: 

d2H/dy2 - ned2H/dt2 - fiadH/dt = 0 (16) 

If the magnetic field strength H is found from this equation one may obtain 
the electric field strength E from either Eq. ( l l ) or (12): 

E{y,t) = -nJ^Ldy + Ey(t) (17) 

E(y, t) = e-<^ (-\ J ^e'^dt + Et(y)^j (18) 

With the boundary and initial conditions for the magnetic field strength 
one may solve Eq.(16) and obtain a function H(y,t) = Hn(y,t). Substitution 
into Eqs.(17) and (18) then yields the associated electric field strength E(y,t) 
with undetermined functions Et(y) and Ey(t). These two functions can be 
determined by the requirement that Eqs.(17) and (18) must yield the same 
electric field strength E(y,t) = En(y,t). Again it is assumed that a solution 
Hn(y,t) of Eq.(16) and an associated solution En(y,t) of Eqs.(17) and (18) 
exist. 

In the general case, initial and boundary conditions will be given both for 
the electric and the magnetic field strength. In this case the magnitudes EQ and 
HQ of the combined field strengths are given by the sum of the electric and mag­
netic field strengths obtained from Eqs.(13) and (16), plus the associated elec­
tric and magnetic field strengths obtained from Eqs.(14), (15) and (17), (18): 

EG(y,t) = EE(y,t) + EH(y,t) (19) 

HG(y,t) = HK(y,t) + HE(y,t) (20) 

We will show later on that the associated magnetic field strengths of 
Eqs.(14) and (15) remain undetermined for an electric excitation force E(0,t) 
as boundary condition that has the time variation of a step function EoS(t) = 0 
for t < 0 and EoS(t) = EQ for t > 0. This result can be extended and holds 
generally for excitation forces with the time variation (t/T)nEoS(t) with n = 0, 
1, 2, . . . . First we introduce Maxwell's equations modified by a magnetic 
current density that overcomes the problem of undetermined associated field 
strengths. 

1.3 SOLUTIONS FOR THE E L E C T R I C F I E L D S T R E N G T H 

The problem of undefined associated field strengths was first overcome by 
adding the term g m in Eq.( 1.1-9). Later on it was realized that a magnetic 
dipole current caused by rotating magnetic dipoles demanded such a term on 
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physical grounds even if magnetic charges and magnetic monopole currents 
should not exist. It is sometimes claimed that the term gm can be transformed 
to zero (Jackson 1975) but this is not so due to a singularity for gm = 0 in 
Eq.(1.1-9) as will be seen later on. As a result of this singularity there is a 
difference whether one chooses gm = 0 at the beginning of the calculation or 
makes the transition gm —» 0 at the end. 

We start with Eqs.(1.2-9) and (1.2-10). The elimination of H yields a 
second order differential equation for E alone: 

d2E/dy2 - ued2E/dt2 - (fxa + es)dE/dt -saE = 0 (1) 

A comparison of this equation with Eq.(1.2-13) shows that the fourth term 
saE is added and one obtains a significantly different equation for s = 0. The 
third term (fia + es)dE/dt becomes only insignificantly different for s = 0. 

The magnetic field strength H = HE associated with the electric field 
strength E = EE follows from either Eq.(1.2-9) or (1.2-10) by the method of 
variation of the constant: 

H(y, t) = e-s*/" ( - 1 J ^e"'»dt + Ht(y)^ (2) 

H(y,t) = -J(e^+aE^dy + Hy(t) (3) 

We may also eliminate E from Eqs.(1.2-9) and (1.2-10) and obtain a dif­
ferential equation for H = Ha alone: 

d2H/dy2 - ued2H/dt2 - (ua + es)dH/dt - soH = 0 (4) 

The associated electric field strength E = En follows from either Eq.(1.2-9) or 
(1.2-10) by variation of the constant: 

E(y, t) = e-*'' (--e J ^Le'tt'dt + Et(y^J (5) 

E(y,t) = -J(ii™+8Hy)dy + Ey(t) (6) 

We replace the time variable t and the space variable y by the normalized 
variables 0 and £: 

at Zca > 1 fa Za _. fu ._. 
9=2-e = —t> ^ S V I ^ T " ' Z=Ve (7) 

The electric conductivity a is distinguished in Eq.(7) over the magnetic 
conductivity s. However, we could normalize the time variable t and the space 
variable y by 
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st cs , 1 IT s . . 
6 = Tp = 2Z^ C = 2 V ^ = 2 Z y (8) 

to distinguish s over a. Equation (7) is particularly useful if we want to in­
vestigate the limit s —» 0, a = constant, while Eq.(8) is useful for a —> 0, 
s = constant. A normalization that treats a and s equally is 

o s\ 1 / a s\ 
- + -)t, (=-[- + -)y 9 

These three normalizations permit one to study the limits a —> 0 or s —> 0 
but they are not readily usable if both a and s approach zero. In this case one 
may use the normalization 

e = t/T, C = y/cT (10) 

which gives no hint where the distinguished time T could come from. We shall 
see later on that the calculation provides an automatic answer. 

The normalization of Eq.(7), which works well for the limit s —> 0, brings 
Eq.(l) into the form 

d2E/d(2 - d2E/d82 - 2(1 + uj2)dE/d9 - WE = 0, J1 = — (11) 
(Tfl 

while the normalization of Eq.(9) yields 

d2E/dC2 - d2E/d$2 - DE/dO - p2E = 0, p2 = -^^—r^ (12) 
c2(a/j, + se)2 

and the normalization of Eq.(10) provides: 

d2E/d(2 - d2E/de2 - PldE/d6 -p%E = Q 

px = c2T(p,a + es), p\ = c2T2sa (13) 

An electric force function with the time variation of a step function is 
introduced as boundary condition: 

E(Q,6) = E0S(9) = 0 for0<O 

= E0 for 6 > 0 (14) 

As initial condition we choose that the electric field strength should be 
zero for all values C, > 0 at 9 = 0: 
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FIG.1.3-1. Electric field strengths of Eqs.(16) and (17) as functions of the normalized 
time 6 with the normalized distance Q as parameter. The solid lines represent Eq.(16), 
the stars Eq.(17). (Courtesy M.G.M.Hussain, University of Kuwait) 

E(C,0)=0 f o r < > 0 (15) 

For C = 0 the initial condition is already defined by the boundary condition of 

Eq.(14). 
We solve Eq.(l) for these initial and boundary conditions by means of 

Fourier's method of standing waves and make the transition s —• 0 at the end 
of the calculation. The calculation is carried out in Appendix 6.1. In terms of 
the normalization of Eq.(7) the result is 

E((,d) = EE((,e) = 0 

= E0 

for 6 < C 

, f /ejiU^Ztl 
(^2_7 ?2)l/2 

+ Io{V02-V2) )dv for 0 > C (16) 

where I0 and Ix are modified Bessel functions of the first kind. The field 
strength E(C,0)/Eo is plotted for the locations C = 0, 1, 2, . . . , 10 in the time 
interval 0 < 9 < 60 by the solid lines in Fig.1.3-1. 

If one starts from the original Maxwell equations and solves Eq.(1.2-13) 
rather than Eq.(l) by a Laplace transform one obtains (Kuester and Harmuth 
1987): 

EiK)=Q 

= E< ,(«-<+c/ hivtE^y 
(v2-e) 

2\l/2 

for 6 < C 

dr] for 6 > ( (17) 
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FlG.1.3-2. Plots according to Eq.(16) in the vicinity of 8 = (, with a large scale for 9; 
C = 1, 2, 4, 8. (Courtesy M.G.M.Hussain, University of Kuwait) 
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FlG.1.3-3. Plots according to Eq.(17) in the vicinity of 6 = £ with a large time scale 
for 6; C = 1, 4. (Courtesy M.G.M.Hussain, University of Kuwait) 

where Jj is again a modified Bessel function of first kind. At first glance 
Eqs.(16) and (17) look very different but the values E% '((,,6)/EQ represented 
by the stars for £ = 1, 5, 10 in Fig.1.3-1 show that they are actually quite 
similar. The plots of Eq.(16) in Fig.1.3-2 and of Eq.(17) in Fig.1.3-3 in the 
vicinity of 8 = £ with a much enlarged time scale for 6 show that there is a 
difference (Hussain 1992). 

1.4 ASSOCIATED M A G N E T I C F I E L D S T R E N G T H 

Either Eq.(1.3-16) or (1.3-17) substituted into Eqs.(1.2-14) and (1.2-15) 
should give the associated magnetic field strength for Maxwell's original equa­
tions, but it turns out that the magnetic field strength remains undefined. This 
unexpected result was the origin for the claim that Maxwell's equations require 
a modification to permit signal solutions rather than the usual solutions that 
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£ — 
FlG.1.4-1. The electric field strength according to Eqs.(1.3-16) or (1.3-17) as function 
of C with parameter 6 = 2, 4, 6. Note that the function e_l> yields the amplitude of the 
jumps at 9 = C- (Courtesy R.N.Boules, Towson State University, Maryland, USA) 

cannot satisfy the causality law. For a closer analysis we rewrite Eqs. (1.2-14) 
and (1.2-15) with the normalized variables ( and 9 of Eq.(1.3-7): 

H(C,t 

(1) 

(2) 

For 9 < 0 we have E = 0 and dE/d9 = 0 according to Fig. 1.3-1. The 
derivative 0E/d9 is not defined1 for 6 = ( but E can be defined as a finite 
right limit. Both E and 3E/d9 are defined and finite for 9 > (,. One might 
claim that OE/89 is infinite for 9 = (, but the integration with respect to ( 
over such an infinity would yield an undefined value. Hence, the same result is 
obtained for both points of view. 

Let us see what happens if a sum contains an undefined, non-negligible 
term A. The sum A + 1 + 1/2 is not defined if A is non-negligible. The same 
holds true for the infinite sum A+l /2+1/4- l = A+2 with denumerably many 
terms. If an integral—which is a sum with nondenumerable many terms— 
yields a defined value and we add a non-negligible, undefined value, we obtain 
an undefined value. Hence, if 0E/d9 is not defined and not negligible for just 
one point 9 = Q, the integral of Eq.(2) is not defined for 9 >(,, but it is defined 
and zero for 9 < £ if the electric excitation force is applied at the time 9 = 0 
at the plane £ = 0. 

A similar argument holds for the integral of Eq.( l) . First we plot the 
electric field strength E((;,9) of Eqs.(1.3-16) or (1.3-17) as function of C with 

^ h e discontinuities in Fig. 1.3-1 for 6 = £ can be shown analytically to exist for any 
finite distance (Boules 1989, p. 22). 
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FIG.1.4-2. Time variation of three electric field strengths E(C, 0) and their derivatives 
dE/dd, d2E/d02. The function 5(61 - C) is the unit step function which is zero for 
0 < £ and one for 6 > £. 

parameter 6 as shown in Fig. 1.4-1 rather than as function of 6 with parameter 
C as in Fig. 1.3-1. We note that the amplitude of the jumps varies like e_<> 
(Harmuth, Boules, and Hussain 1999, p. 160). According to this illustration 
the derivative dE/dC, is defined and finite for £ < 6, undefined for C = 0> 
and defined as well as zero for C, > 6. The integral with respect to 6 is not 
defined for C > 6, but it is defined for £ < 6. There is no pair of values £ > 0, 
6 > 0 for which the integrals in both Eq.(l) and (2) are defined. The functions 
H((8) or Hy(t) and Hg(() or Ht(y) cannot be determined without additional 
information. 

Our proof that the associated magnetic field strength HE{C,6) cannot be 
obtained from the electric field strength E^((^,8) does not depend in any way 
on how the electric field strength E = E& of Eq.(1.2-13) is obtained. The proof 
depends on only two propositions: 

a) Equations (1) and (2) are correct and describe the associated magnetic 
field strength in a realistic medium for the propagation of electromagnetic 
waves. 

b) Maxwell's equations yield electric field strengths that have undefined deri­
vatives2 dE/dt and dE/dy in at least one point such as y = ct that make 
a non-negligible contribution to the integrals in Eqs.(l) and (2). 

We note that our proof does not depend on the assumption of a wave 
excited at an infinite plane ( = 0. Equations (1.2-9)—(1.2-12) are obtained for 
spherical waves too (Harmuth 1986a, p. 231). Furthermore, we do not need 
to claim that Maxwell's equations will never yield a defined associated field 
strength for a signal solution. It is sufficient to show that Maxwell's equations 
fail in one example of physical interest. But it is prudent to extend the proof 
to excitation functions that do not have the time variation of the step function 
S(6). 

The column headed by E{C, 0) = E(C)S(6-Q in Fig.1.4-2 shows an electric 
field strength with the time variation of a step function. We want to generalize 
to electric field strengths that vary linearly like 6S(6 — C), quadratically like 
62S(6 - ( ) , or generally like 9nS(6 - Q with n = 0, 1, 2, . . . , for 6 > C,. The 

2The magnetic field strength remains undefined in a loss-free medium too, since the 
condition a = 0 in Eq.(1.2-15) does not change the argument. 
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PlG.1.4-3. A continuous function F(C, 6) of two variables having linear ramp functions 
•FXCo, 0) = 8S(6 — C) for any fixed value C — Co cannot have functions F(C, #o) with a 
jump for a fixed value of 8 = QQ. 

linearly and quadratically varying field strengths and their existing derivatives 
are shown in the second and third column of Fig.1.4-2. Consider the linearly 
varying field strength E(C,9) = E(Q9S(9 - C). Its first derivative dE/d6 is 
now defined3 and the integral in Eq.(2) becomes defined for 6 > £• The linear 
variation of E(Q9S(9 — £) with 9 for 9 > (, implies that E(Q cannot have a 
jump at 0 = C as in Fig.1.4-1 but must have a bounded derivative DE/dC, for 
any C, > 0 as is made evident by Fig.1.4-3. We may thus calculate H((,0) from 
Eqs.(l) and (2). However, a problem is encountered if the derivative dH/dO is 
then calculated from Eqs.(l) or (2): 

dO Z d{ [ ' 

oe - zj \de* +2de)d<:+ de (4) 

According to Fig.1.4-2 the second derivative d2E/d02 is not defined for 9 = (, 
or it is infinite, and the integral of Eq.(4) remains undefined. Hence, Eq.(4) 
states that dH/39 is not defined, but Eq.(3) states that OH/09 has a defined 
value4. This is a contradiction and the assumptions leading to Eqs.(l)-(4) 
must be wrong. 

Let us advance to the quadratic variation E(Q92S(9 — Q shown in Fig.1.4-
2. The first derivative dH/d9 can be obtained without difficulty since d2E/d92 

is defined, but the second derivative d2H/d92 yields: 

3 One may question whether dE/d6 at 6 = £ is zero or has a finite value E(£) > 0. But 
a finite value in one point makes only an infinitesimal contribution to the integral of Eq.(2). 
This is the reason why the term non-negiigibie has been used repeatedly. 

4One cannot assign a value to d2E/dQ2 to make Eq.(4) yield the same value for dH/d6 
as Eq.(3) since this would also change dE/d8 and E. 



1.4 ASSOCIATED MAGNETIC FIELD STRENGTH 17 

FIG.1.4-4. Normalized magnetic field strengths HE(C,0)/E0Z~1, Z = (p/e) l /2, asso­
ciated with the electric field strengths of Fig. 1.3-1. The normalized time 9 and the 
normalized distance C, are defined in Eq.( 1.3-7). 

d2H 
oe2 

O2H 

oe2 

1 d2E 

1 f (03E nd
2E\ ^ 

+ 
d2Hc(0) 

d62 

(5) 

(6) 

In Eq.(5) the derivative dE/d6 has the same time variation as the function E 
in the linear case E{(,)QS{6 — C) according to Fig.1.4-2. Hence, the derivative 
d2E/dC,d6 exists. On the other hand, d3E/d03 is not defined and Eqs.(5) and 
(6) contradict each other. 

The argument can be extended to any finite value of n in 6nS{6 — Q-
The result is strictly due to the use of a signal as excitation force at the plane 
C = 0 or y = 0, which is a time function that is zero before a certain time. 
Excitation forces with the time variation of periodic or analytic functions in 
the whole interval —oo < 6 < oo would not yield such a result. But we need 
solutions of Maxwell's equations or of some modification of these equations for 
signals, if we want to study signals and information transmission. Putting it 
differently, we need signal solutions if we want to introduce the causality law 
into electrodynamics. 

It is important to understand that Maxwell's equations do not yield a 
wrong result for the associated field strengths but an undefined one. As a result 
there are infinitely many solutions that will satisfy Maxwell's equations, and 
make one believe to have found the solution. But Maxwell's equations cannot 
tell us which of these many solutions is the one and only correct solution. 

The failure to obtain the magnetic field strength from Eqs.(l) and (2) 
for a time variation 6nS(0) with n = 0 for the electric force function at the 
boundary plane £ = 0 is instantly attention getting, while for larger values of n 
the problem shows up only for higher and higher derivatives dnH/dOn. We infer 
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FlG.1.4-5. Magnetic field strengths as in Fig.1.4-4 for C = 1, 4 but using a much 
larger scale for 9 in the vicinity of 6 = £. 

from Fig. 1.4-2 that the time 9 = £ when the associated magnetic field strength 
begins at the distance £ from the excitation plane £ = 0 is most conspicuous 
for n = 0, but become less and less conspicuous and thus harder to observe 
experimentally for increasing values of n. As n increases, 6nS(6 — C) looks 
less like a signal and more like an analytic function. The failure of Maxwell's 
equations to yield a defined associated magnetic field strength is most evident 
for n = 0 and disappears for n —> oo, while the beginning of a signal is most 
conspicuous for n — 0 and becomes unobservable for n —» oo. If a signal 
connects a cause with its effect at another location, the time difference will be 
best defined for n = 0 and it becomes undefined for n —* oo. The failure of 
Maxwell's equations should show up best where causality is most important, 
while there should be no problem when causality is unimportant. 

We turn to the associated magnetic field strength of the modified Maxwell 
equations as written in Eqs.(1.3-2) and (1.3-3). With the help of Eq.(1.3-7) we 
write them in normalized form with C and 6: 

H(C,0) = e 
fj,a 

(7) 

(8) 

Equations (2) and (8) are identical, but there is enough difference between 
Eqs.(l) and (7) to solve the problem of undefined associated field strengths. 
Barrett (1989c; 1990a, b; 1993; 1995b) has explained this difference in terms of 
symmetries of group theory. The transition s —• 0, gm —• 0 at the end of the 
calculation is equivalent to the concept of symmetry breaking. 

Figure 1.4-4 shows plots of the associated magnetic field strength H((, 9) = 
HE{(,6) obtained by substituting the electric field strength E(Q,9) = EE{C,8) 

of Eq.(1.3-16) into Eqs.(7) and (8). The calculation is presented in Appendix 
6.2 and H(t,B) is defined by Eq.(6.2-41) for Hs(() = 0. 

The plot of Fig.1.4-4 for ( = 1 and a new plot for C = 4 are shown with 
a large scale of 9 in Fig. 1.4-5 in the vicinity of 9 = C There are damped 
oscillations of the magnetic field strength just like those of the electric field 
strength in Fig.1.3-2. 
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FlG.1.4-6. The magnetic field strength according to Eq.(6.2-41) as function of ( with 
parameter 9 = 2, 4, 6. 

The field strength H(£, 6) as function of Q with 6 as parameter will b e ' 
needed in Section 1.6. Figure 1.4-6 shows such a plot. 

A completely different proof for the non-existence of causal solutions of 
Maxwell's equations is due to Hillion (1990, 1991, 1992a, b). Hillion knew 
that certain partial differential equations did not permit solutions with inde­
pendent initial and boundary conditions in a coordinate system at rest. He 
recognized that Maxwell's equations were of this type. Hence, we have here 
one of those rare cases when two scientists working independently and using 
different approaches arrived at the same result. 

Let us emphasize once more that our proof of the failure of Maxwell's 
equations to yield certain signal solutions of interest is based solely on the 
derivation of the associated field strength H from the electric field strength E 
defined by the differential equation (1.2-13) plus initial and boundary condi­
tions. There never was a claim that one could not find solutions of Eq.(1.2-13). 
Such a claim would be extremely hard to prove unless it is restricted to certain 
methods of solution of partial differential equations, which would make it use­
less for our purpose. Proving a contradiction between Eqs.(l) and (2) avoids 
any discussion of how to solve partial differential equations. A number of au­
thors derived solutions for Eq.(1.2-13), but by doing so they only proved that 
they had not read carefully what had been claimed. The method of deriving 
two contradicting equations will be used again in Section 3.1 to show that a 
generally accepted result cannot be correct. 

The fact that the problem of signal solutions of Maxwell's equations shows 
up for the associated magnetic field strengths in Eqs.(l) and (2) but not for the 
electric field strength of Eq.(1.2-13) explains why it took a century to recognize 
the problem. Anyone satisfied with the electric field strength derived from 
Eq.(1.2-13) and ignoring the associated magnetic field strength never noticed 
that anything was amiss. 
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FlG.1.5-1. Electric field strengths E-E{C,,0)/E\ according to Eq.(2) as function of the 
normalized time 6 with the normalized distance £ as parameter. 

1.5 FIELD STRENGTHS WITH CONTINUOUS TIME VARIATION 

The plots of the electric and magnetic field strength in Figs. 1.3-1 to 1.3-3, 
1.4-1, and 1.4-4 to 1.4-6 have jumps or steps at 6 = C, where the derivatives 
with respect to 6 or £ are not defined. This creates problems in certain cases 
which are readily avoided by replacing the step function EoS(9) of Eq.(1.3-14) 
with an exponential ramp function: 

E{0,9) = E1S(8)(1 - e-'8) = 0 for 6 < 0 

= E1{l-e-ie) for6»>0 (1) 

Instead of the field strength 2?E(C> #) of Eq.(1.3-16) we derive in Section 6.4 the 
following field strength: 

E(C,e)=EE(<:,e)=E1[(l-e-^1+^e)e-2^ + u(C,0)}, iv* = es/fia (2) 

The special value u = 0 used in Sections 1.3 and 1.4 is replaced by the general 
value ui > 0. Certain plots of EE/EI for u > 0 are shown in Figs.6.4-1 and 6.4-
2. Here we will concentrate on the special case u — 0 which reduces Eq.(6.4-28) 
to the following simpler form: 

u(C,0) = •HI sh(l-772)x/2flsinC?? 
( 1 _ ,,2)1/2 v 

dr) + 

OO 

/ 
sin(?72-\)x/26 sin ̂ V _ 

(v2-i)1/2 
dv) (3) 

Plots of EE(C,,6)IEI as function of the time 9 at various distances (, are 
shown in Fig.1.5-1. The functions rise like E{Q9S{0 - Q in Fig.1.4-2. The 
derivative dE^/dO is defined everywhere in the interval 0 < w < oo. 

Figure 1.5-2 shows the field strengths EE{(,9)/EI as function of the dis­
tance £ for various times 9. There are no steps as in Fig. 1.4-1 and the derivative 
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FlG.1.5-2. Electric field strengths E-E{C„9)/E\ according to Eq.(2) as function of the 
normalized distance C, with the normalized time 6 as parameter. 

dE^/dC, is defined everywhere in the interval 0 < C, < oo. We note that the pa­
rameter £ = 0 in Fig.1.5-1 shows the boundary condition while the parameter 
6 = 0 in Fig.1.5-2 shows the initial condition which is zero. 

The magnetic field strength HE((,8) associated with the electric field 
strength .EE(C> 0) of Eq.(2) is derived in Section 6.5 and represented by Eqs.(6.5-
10), (6.5-15) for the general case u > 0. Certain plots of HEZ/EI for w > 0 
are shown in Figs.6.5-1 and 6.5-2. The simpler special case u> = 0 suffices here: 

HE(C,0) = Z-1El[-2( + IE3(C,0) - /E4(C,0)] 

( r d 

IkW) = l 2 I_y[exp(-^/2)-l]^ 
^ L o 

(4) 

I J i / ' f l + ^ - ^ g g & f r 
(̂ 2 _ 1)1/2 J n 

(5) 

(6) 

The function IE3(C,^) holds for the limit d —• 0. This means no more than 
to say that (sin x) jx must be evaluated numerically for the limit x —> 0 if one 
wants its value at x = 0. By trial and error one finds that a reduction of d 
below 10 - 5 yields changes of less than the line width of the plots. 

Plots of H^Z/Ei as function of 9 at various distances £ are shown in 
Fig.1.5-3. Again there is no step where the functions begin to rise from zero 
and the derivative OHE/OO is defined everywhere in the interval 0 < 0 < oo. 
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FIG.1.5-3. Magnetic field strengths Hv{C,,9)Z/Ei according to Eq.(4) as function of 
the normalized time 6 with the normalized distance £ as parameter. 

FlG.1.5-4. Magnetic field strengths HE(C,0)Z/EI according to Eq.(4) as function of 
the normalized distance £ with the normalized time 6 as parameter. 

Figure 1.5-4 shows the associated magnetic field strength H-E{C,,9)Z/EI 
as function of the distance £ for various times 6. Again there are no steps at 
C = 1, 2, 3, 4 and the derivative dH^/dC, is defined everywhere in the interval 
0 < C < o o . 

1.6 M O D I F I E D M A X W E L L EQUATIONS IN P O T E N T I A L F O R M 

Since Maxwell's equations are often used in potential form we want to ex­
tend the results of Sections 1.1 to 1.5 about the existence of solutions satisfying 
the causality law to the potential form. We start from Eqs. (1.1-8) to (1.1-15) 
but substitute D = eE and B = p H . The velocity c of light and the wave 
impedance Z are used rather than \x and e: 

I T , ^ S H 

- c u r l E = — H 7 + S m c at 

(1) 

(2) 
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div E=Zcpe (3) 

divH = 0 or d i v H = - | / 9 m (4) 

ge = o-E (5) 

gm = sB. (6) 

Z = ,/jI/e = fic, c = l/y/jle, e = 1/pc2 = 1/Zc, \i = Z/c 

H = 4irx 1(T7 [Vs/Am], c = 299 792 458 [m/s] (definitions) 

2 = Mc = 376.730 314 [V/A] (7) 

The operator div applied to Eq.(l) and differentiation of Eq.(3) with re­
spect to time yields the electric continuity equation: 

divge + dpe/dt = 0 (8) 

If there is a magnetic monopole current—which is a controversial matter— 
we may also obtain a corresponding magnetic continuity equation by applica­
tion of the operator div to Eq.(2) and differentiation of Eq.(4) with respect to 
time: 

divgm + 0pm/0t = O (9) 

If there are no magnetic monopoles or charges pm we obtain the reduced equa­
tion for dipole and multipole currents, which are not controversial: 

divgm = 0 (10) 

Using both intuition and experience we assume that the magnetic field 
strength of a solution of Eqs.(l) and (2) can be written in the form 

c dA 
H = - curl Am - -^- - grad 0m (11) 

where Am and Ae are the magnetic and the electric vector potential, while <j>m 

is the magnetic scalar potential. Substitution of Eq.(ll) into Eq.(2) yields: 

With some more intuition and experience we define a new vector G by the 
relation 

c u r l c u r l G 4 ( ^ + g r a d ^ ) - ^ g m (13) 

and substitute it into Eq.(12). We obtain curlE: 

dA 
curl E = Zc curl curl G - curl —^ (14) 

dt v ; 
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The operator curl can be dropped. Since the curl of the gradient of a scalar 
is zero we must add such a gradient to maintain generality. Intuition and 
experience are needed once more to choose the scalar to be <j>e: 

BA 
E = Zccml G - - - ^ - grad <f>e (15) 

The comparison of Eqs.(ll) and (15) suggests the choice 

curlG = - cu r lA e (16) 

and Eq.(15) is brought into the form of Eq.(ll): 

BA 
E = -Zccurl Ae - - ^ - grad <pe (17) 

Substitution of Eqs.(ll) and (17) into Eq.(l) yields 

curlcurlAm = - 1 ( ^ +grad ^ ) + | g e (18) 

while the substitution of Eq.(16) into Eq.(13) brings: 

curl curl Ae = - 1 ( ^ + grad ^ ) + ^ g m (19) 

We further substitute Eq.(17) into Eq.(3) 

-U^***-)-* (20) 

and Eq.(ll) into Eq.(4): 

- f ( d i v ^ + V 2 0 m ) = P m (21) 

In the absence of magnetic charges we get the simpler equation 

BA 
d i v ^ + V2^m = 0 (22) 

The vector potentials are not completely specified since Eq.(ll) only defines 
curlAm and Eq.(16) curlAe. We may choose two additional conditions that 
we call the extended Lorentz convention: 

divAm + i ^ = 0 (23) 
c* at 

divAe + l ^ = 0 (24) 
c? at 

Using the vector relation 
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curl curl f = grad div f - V2f (25) 

we obtain from Eqs.(18)-(21), (23), and (24): 

VA.-^-DA.—1«. (27) 

vV.-^^sn*. = -ZcP, (28) 

vs*--?^sn*» = -l'» <29> 
Particular solutions of these partial differential equations may be repre­

sented by integrals taken over the whole space1: 

Ae(x,y,z,t) = ^L-JJJSm{t'r1>C>t-r/c)dZdr]dC (30) 

Am(x,y,z,t) = £-JJJge{^^t-r/c)d^dr1dC (31) 

(pe(x,y,z,t) = — / / / '—d£dr)dC (32) 

4>m{x,y,z,t) = ̂  U | fa^^'^-^dg^dC (33) 

Here r is the distance between the coordinates £, 77, £ of the current and charge 
densities and the coordinates x, y, z of the potentials: 

r = [ ( * - 0 2 + (!/-'7)2 + (* -C) 2 ] 1 / 2 (34) 

The electric and magnetic field strengths are here determined by currents 
and charges that excite them. If there is no magnetic charge, the scalar poten­
tial 0m drops out; if in addition there are no magnetic dipole currents exciting 
E and H, the vector potential Ae drops out too and only the conventional 
Eqs.(27) and (28) remain. Equations (11) and (17) are reduced to their usual 
form: 

c BA 
H = - c u r l A m , E = — ^ - g r a d & (35) 

JThe proof may be found in Abraham and Becker (1932, Part III, Ch.X, Sec.10) or 
in Abraham and Becker (1950, Part III, Ch.X, Sec.9). Both books call these solutions for 
A. = A m and <j> = cf>e general solutions, but later editions point out that they are only 
particular solutions to which one can add general solutions of the homogeneous versions of 
Eqs.(26)-(29) to obtain the general solutions (Becker 1957, 1964a, b). 
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We have not used Eqs.(5) and (6). These equations state the field strengths 
E and H required to drive the current densities ge and gm. We usually associate 
the equation ge = crE with ohmic losses but near zone radiation or interaction 
in vacuum would call for the same equation. 



2 Monopole, Dipole, and Multipole Currents 

2.1 E L E C T R I C MONO-POLES AND D I P O L E S W I T H CONSTANT M A S S 

We have seen in Sections 1.3 and 1.4 that the choice g m = 0 in Eq. ( l . l -
9) at the beginning of the calculation does not yield an associated magnetic 
field strength due to excitation by an electric field strength while the transition 
g m —> 0 at the end of the calculation does yield the associated magnetic field 
strength. An equivalent result is obtained for ge in Eq.( 1.1-8) if one uses 
excitation by a magnetic field strength and wants to calculate the associated 
electric field strength (Harmuth 1986a, Sections 2.6 and 2.7). 

In quantum field theory it is usual to quantize Maxwell's equations in 
'empty space' by choosing ge = 0 and g m = 0 at the beginning of the calcu­
lation. Since this cannot be done in the classical theory we will not expect it 
to work in quantum theory. This is a strictly mathematical objection to the 
choice g e = 0 and g m = 0. 

There is also a physical objection. We can define 'empty space' by the 
absence of particles and charges. But we cannot exclude dipoles unless we are 
prepared to claim that a capacitor with vacuum or 'empty space' as dielectric 
cannot be charged and does not permit an electric current with sinusoidal time 
variation to pass through. Such a claim would contradict observation. Since ge 

and g m in Eqs. (1.1-8) and (1.1-9) stand for any kind of electric and magnetic 
current densities we must use them whenever dipole or higher order multipole 
currents are possible, regardless of whether these dipoles and multipoles are reai 
or virtual. The only media in which real or virtual electric dipoles do not exist 
seem to be electric superconductors. Real or virtual magnetic dipoles appear 
to be even more ubiquitous. If there are no magnetic charges or monopoles 
there would be no magnetic superconductors that exclude magnetic dipoles. 

We shall need the current densities produced by moving monopoles and 
dipoles. Furthermore, we shall need equations of motion. The dipoles can be 
either induced as in Fig.2.1-lb or inherent as in Fig.2.1-lc. We begin with 
monopoles. 

An electric charge density pe moving with the velocity v produces an 
electric current density ge as shown in Fig.2.1-la: 

ge = PeV (1) 

The motion of a charge in an electromagnetic field is given by the Lorentz 
equation 

27 
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FIG.2.1-1. Particle with negative charge moving in an homogeneous electromagnetic 
field (a). Induced electric dipole in an homogeneous electromagnetic field (b). Inher­
ent electric dipole rotating in an homogeneous electromagnetic field (c). 

k m = pe ( E + — v X H (2) 

where k m is a force density that acts on the electric charge density pe. For 
a particle with charge e rather than a charge density pe we replace the force 
density k m in Eq.(2) by a force K m : 

K n = e E + - v x H (3) 

An equation of motion is obtained be equating K m with the force of inertia, 
which yields in Newton's mechanics for a particle with mass m: 

K m = m 
dv 

' dt 
(4) 

If the current density ge of Eq. (1.1-1) refers to an electric dipole current 
density rather than a monopole current density we must replace Eqs.(l)-(4) by 
equations holding for dipoles. Figure 2.1-lb shows an electric dipole represented 
by two particles with mass m each and opposite charge. A spring between 
them represents a restorative force that is proportionate to the distance s of 
the particles from their common center of mass. The current density ge = pev 
of Eq.(l) for a monopole becomes 

ge = 2peV (5) 

for a dipole since both charged particles in Fig.2.1-lb have the same mass. For 
a dipole induced from atomic hydrogen we would get 

ge = (1 + l/1836)/oev (6) 

since the current is due mainly to the movement of the electron while the 
heavy proton barely moves. Our investigation is simplified if we use generally 
the relation 
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J = 2mRz axis of 

FlG.2.1-2. Dumb-bell model of a rotating dipole with two masses m at the ends of a 
thin rod of length 2R. 

W]_ 

-V 

FlG.2.1-3. Electric quadrupole in an homogeneous (a) and an inhomogeneous (b) 
electric field. 

ge = PeV (7) 

but make p e either twice as large or 1 + 1/1836 = 1.0005 times as large as the 
charge of one part of the dipole. We get then the same relation ge = p ev for 
dipoles as for monopoles in Eq.(l) . 

The equation of motion of Eq.(4) gets an additional term ms/r^ that 
represents the restorative force proportionate to s: 

T^ dv ms 
K m = m — + — =m 

dt r-2 

crs s dv 

dt + 
p •> 

dt (8) 

Besides the induced electric dipole of Fig.2.1-lb we have inherent1 dipoles 
as represented by the two charges +e and —e at the fixed distance 2R in 
Fig.2.1-lc. Most molecules are inherent dipoles, e.g., H2O, HC1, NH3. Using 
the convention of Eq.(7) the current density of rotating inherent dipoles, which 
flows along a circle rather than a straight line as in Figs.2.1-la and b, equals 

ge peV = peR 
dt 0) 

If we denote with J the moment of inertia of the rotating dipole of Fig.2.1-lc 
and with 2R its length we obtain the equation of motion 

1Reitz, Milford, and Christy (1979) use the term polar instead of inherent. This book 
discusses electric dipoles in great detail. 
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KmR = 3lP (10) 

For the dumb-bell model of a rotating dipole with two masses m at the end of 
a thin rod of length 2R as shown in Fig.2.1-2 we have the moment of inertia J 
with magnitude J = 2mR2 and direction as shown in Fig.2.1-2. 

We note that a dipole can be both inherent and induced. For instance a 
polarized molecule such as H2O can be rotated by an electric field strength but 
in addition the electrons and the nuclei can be pulled apart. 

Beyond induced and inherent dipoles we have quadrupoles and higher order 
multipoles. Figure 2.1-3a shows an electric quadrupole in an homogeneous 
electric field. The field strength E produces neither a shift nor a rotation of the 
quadrupole. A more complicated electric field as shown in Fig.2.1-3b produces 
a rotation. We do not derive any relations for quadrupoles since they will not 
be needed in this book. But it is important to understand that monopoles and 
dipoles are not the only possible carriers of an electric current. 

From Fig.2.1-lb one may see that the distinction between electric dipoles 
and monopoles depends on the magnitude and the duration of the field strength 
E. A neutral hydrogen atom will first become a dipole if an electric field 
strength E is applied. If this field strength is larger than the ionization field 
strength and it is applied long enough we get a negative and a positive mono-
pole. A larger field strength can achieve the same effect in a shorter time. This 
possible transition from dipole to monopoles implies that any useful theory 
must treat monopoles and dipoles similarly since a dipole does not have a 
priori information whether an applied field strength will last long enough or 
will reach a sufficient magnitude to produce ionization. 

We turn to the currents carried by electric monopoles and dipoles. This 
investigation is important since we shall need a simple representation of dipole 
currents in Section 4.1 to derive partial differential equations of fourth order 
that can be solved analytically without excessive mathematical effort. With­
out such a simplification one obtains partial differential equations of higher 
order that are hard to solve analytically or transcendental equations that can 
be solved numerically only. At this stage of the development of quantum elec­
trodynamics based on the modified Maxwell equations it is more important 
to derive basic results analytically from simple equations rather than highly 
accurate results numerically from complicated equations. Complicated partial 
differential equations will be derived in Section 6.10 and they will demonstrate 
the virtue of simplicity very convincingly. 

For the simplest case of a monopole current we have Ohm's law connecting 
an electric field strength and an electric current density: 

ge = ffE (11) 

This law assumes that the current follows the field strength without delay, 
which implies current or charge carriers with negligible mass. Following Becker 
(1964a vol. I, b, § 58) we note that a current carrier with mass TOO, velocity v, 



2 .1 ELECTRIC MONOPOLES AND DIPOLES WITH CONSTANT MASS 3 1 

1° 
if 0 
b 

cS o 

1 ° 

1 

8 

6 

4 

2 

• / / ; / / 
/ / / 
' / ' ' ••• ' 

> 

•••'' ,.--' 
- • -

• " ' \ ' 

.••••'"% _,---" 

0 1 2 3 4 5 
$ = t/T — 

FlG.2.1-4. The step function excitation E/Eo = S(6) (solid line) and the lagging 
current densities ge(t)/irEo according to Eq.(14) due to a finite mass of the charge 
or current carriers for p= l /4 , 1/2, 1, 2, 4. 

and charge e is pulled by an electric field strength E with the force eE. Using 
Newton's mechanic we obtain the following equation of motion: 

mo—- = eE-
at 

?eV (12) 

The term £ev represents losses proportionate to the velocity. The term £e is 
usually referred to as Stokes' friction constant due to its original use in fluid 
mechanics. In electrodynamics any losses proportionate to v are more likely to 
come from near zone radiation that is absorbed by surrounding matter. The 
term £ev is clearly the simplest one that can account for losses. We do not 
have to decide what causes these losses unless we want to represent losses by 
more complicated terms than £ev. 

If we obtain the derivative dv/dt from Eq.(l) and substitute it into Eq.(12) 
we obtain an extension of Ohm's law to electric monopole currents having 
current carriers with finite, constant mass: 

ge + T m p - ^ = crE 

' mp 
mo 

dt 
Peer, mp 

TOQ 
(13) 

If the term Tmpdge/dt can be neglected we obtain the usual Ohm's law with 
conductivity a. To recognize the effect of Eq.(13) consider the electric field 
strength E with the time variation of a step function E(t) = E0S(t) as shown 
in Fig.2.1-4. In order to avoid the point t = 0 for which the step function S(t) 
is not differentiate we consider the infinitesimally larger time t = +0 . If we 
require a current density g e(+0) to be zero we obtain from Eq.(13) the current 
density 

Se(t) = aE 0 ( l - e -* / T ' »p )5 ( i ) = aEo{l-e-e'*)S{8), 6 = t/r, p = Tmp/r (14) 
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1 2 3 4 5 
6 = t/r —» 

FlG.2.1-5. The normalized electric field strength E/Eo represented by the exponen­
tial ramp function of Eq.(15) (solid line) and current densities ge/aEo according to 
Eq.(17) for p = 1/4, 1/2,1,2,4. 

which shows the current density lagging behind the field strength EoS(t). The 
normalized current density ge/<rEo of Eq.(14) is plotted in Fig.2.1-4. The 
lagging effect is seen to become negligible for p <C 1. 

In addition to the step function S(t) we shall need the exponential ramp 
function 

E( t ) /Eo = 1 - e - ' / T (15) 

shown in Fig.2.1-5 by the solid line. Equation (13) is replaced by 

fc + r m p ^ = f f E o ( l - c - * / T ) (16) 

and the current density of Eq.(14) is replaced by 

g e = crEo 

= <TE0 

1 - e _ t / T m p + 

t 

1 f e- t /Tm , _ e-t/r\ 
T~Tmn \ 1 

1 1 + | e 

'mp 

-t/rmp 

1 mp * T 

Tmp = T (17) 

Figure 2.1-5 shows plots of ge for r = 2rmp, r m p , and r m p / 2 . The difference 
between the plot of the field strength E( t ) /Eo and the plots for the current 
densities is never as large as in Fig.2.1-4 for the step function. 

For a dipole we obtain from Eqs.(8) and (12) the following equation of 
motion: 

dv m0 [ m o - r r + - o - / vd t - eE - £ev 
dt rl J 

(18) 

For the current density ge we obtain with Eq.(7) in analogy to Eq.(13): 
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dge 
ge + Tmp ^ + 

^-Jgedt = apE 

m0 

'mp € . ' f f p = ff=s6 
pee peern 

m0 

(19) 

The field strength E is replaced in liquids or solids by a smaller effective 
held strength F but this is of no concern here1. The conductivity a is often 
denoted by erp to indicate it is an electric polarization current conductivity or 
an electric dipole current conductivity. Equation (19) is Ohm's law extended to 
electric dipole currents with constant mass of the current carriers. A compar­
ison with Eq.(13) shows that the integral is characteristic for dipole currents, 
while a term dge/dt occurs in Ohm's law for monopole as well as for dipole 
currents if a delay is caused by the need to accelerate current carriers to give 
them a velocity. 

Let the electric field strength E in Eq.(19) have the time variation of the 
step function in Fig.2.1-4 

E = ^ E o S ( t ) (20) 

where 2p/q is a factor that will be explained presently. The inhomogeneous 
term in Eq.(19) is removed by differentiation: 

+££+*£-° fo->» 
The solutions are: 

(21) 

ge = geie-* / T e l + g e 2e- t / T«2 for rmp/rp + 1/2 

ge = (ge3 + g e 4 t ) e _ ' / T p for TmpJTp = 1/2 (22) 

i T; 
7-el,e2 = 9 — 

IT, 

2T, 

mp 

2 

III 
2T„ 

mp 

.2 

i ± 1 

\±i 

4 r 2 
r t ' mp 

4TL 

1/2' 

- 1 

1/2-

for 

f o r ^ 

< 2 

1 
>2 

f o r ^ £ (23) 

'See, e.g., Harmuth, Boules, and Hussain (1999), Section 1.3 or Harmuth and Lukin 
(2000), Section 1.2. 
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FlG.2.1-6. Time variation of dipole current densities according to Eq.(24) that trans­
port equal charges through a certain cross section of the current path for p = 1/2, 
q = 1/4, 1/2, 1, 2, 4 in the interval 0 < 6 < 10. 

Substitution of the conditions for g e (+0) = 0 yields: 

ge = 2CTpEo^0e- e /9 for p = \ , 6 > 0 
q* 2 

t/r = 0, TP/T = q, Tmp/rp = p 

The integral 

oo 

/ 
•^6e-e/qde = 1 
Q2 

(24) 

(25) 

explains the use of the factor \/q in Eq.(20) to obtain 1 or generally l / 2p in 
Eq.(25). The same charge will pass through a certain cross section of the path 
for the current density ge during the time 0 < t < oo. The function ge/2crpEo 
is plotted in Fig.2.1-6 for various values of q. The areas under the plots are 
all equal; they represent the constant charge passing through a certain cross 
section of the current path. As q decreases, the current density increases for 
an ever shorter time and approaches for q —> 0 an infinitely large and infinitely 
short needle pulse similar to Dirac's delta function. On the other hand, for 
large values of q we get a time variation similar to that of a monopole current 
according to Fig.2.1-4 up to fairly large values of 8. 

For p = Tmp/Tp ^ 1/2 we obtain with g e(+0) = 0 the following relations 
for the current density2: 

ge = 2CTPE0 

= 2crpE0 

p{e 
-6/B2 

9(1 -V) 1 / 2 

2pe-el2Pi . (4p 2 - l ) 1 /26) 

q{4p2-l)l/2 2pq 

for p < 

for p > 

2Harmuth, Boules, and Hussain (1999), Section 1.3. 

(26) 

(27) 



2.1 ELECTRIC MONOPOLES AND DIPOLES WITH CONSTANT MASS 35 

FIG.2.1-7. Time variation of dipole current densities according to Eq.(26) that trans­
port equal charges through a certain cross section of the current path for p = 1/4 and 
q = 1/4, 1/2, 1, 2, 4. The areas under the plots in the interval 0 < t < oo are equal. 
They are also equal to the corresponding areas in Fig.2.1-6. 

FlG.2.1-8. Time variation of dipole current densities according to Eq.(27) that trans­
port equal charges through a certain cross section of the current path for p = 1 and 
q = 1/4, 1/2, 1, 2, 4. The integrals over the plots in the interval 0 < 6 < oo are 
equal. They equal l/2p = 1/2 the value of the corresponding integrals in Figs.2.1-6 
and 2.1-7. 

1 = q fl + (1 - 4P2)1 /2! /2p, 62 = q \ l - ( l - 4p2)1 / 2 l /2p 

Plots of ge/2<TpE0 are shown in Fig.2.1-7 for Eq.(26) and in Fig.2.1-8 for 
Eq.(27). The areas under the plots are all equal: 

oo 
P

 1/9 / (e~e^ - e-WAde = 1 
l - 4 p 2 ) 1 / 2 i V ' 9(1-V) 

2p >£ f 
-iW 

. - ^ r i I , ( V - i ) 1 / a g 

q{4p2-lY/zJ 2pg 

(28) 

(29) 
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FIG.2.1-9. Normalized monopole current density g/aEo according to Eq.(ll) for 
an electric field strength with the time variation of the exponential ramp function 
of Eq.(15) (solid line) as well as normalized dipole current densities according to 
Eqs.(30) (dashed line) and (31) (dotted line). 

Figures 2.1-7 and 2.1-8 show that for large values of q = TP/T we get a 
time variation of the current density similar to that of a monopole current in 
Fig.2.1-4 up to fairly large values of 6. 

Consider the exponential ramp function of Eq.(15) for E in Eq.(19). The 
monopole current density for current carriers with negligible mass has the same 
time variation except for a factor a according to Eq . ( l l ) . This normalized 
current density ge/<rEo is shown by the plot with solid line in Fig.2.1-9. If 
we substitute the exponential ramp function for E into Eq.(19) for the dipole 
current density we can obtain with 6 = t/r functions 

gei/ffpEo = e~e - e~3-333e for p = 0.499 (30) 

g e 2 / a p E 0 = e-e - e~4-6050 for p = 0.498 (31) 

that are shown in Fig.2.1-9 by the plots with the dashed and the dotted lines. 
We see that the monopole current density ge = <rE can again be used as a 
crude but radically simpler representation of dipole currents. 

A monopole current requires charge or current carriers such as electrons, 
ions, holes in semiconductors, alpha particles, etc. The two parameters Tmp 

and a in Eq.(13) are thus material constants. This is quite different for the 
constants r m p , r p , and <rp of Eq.(19) since a dipole current can flow in vacuum, 
which implies that r m p , TP , and ap should have values for vacuum just like the 
permittivity e. Originally, the permittivity e of vacuum had to be obtained 
directly from observation. When Maxwell derived the relation c2 = l/(ie it 
became possible to calculate e from the definition fi = 4TT x 1 0 - 7 [Vs/Am] of 
the permeability for vacuum and the observed3 value c = 299 792 458 [m/s] of 
the velocity of light. 

For a measurement of r m p , TP , and ap of Eq.(19) we need a circuit as 
shown in Fig.2.1-10. By closing the switch S one applies a step voltage VS(t) 

3This observed value has become a definition. 
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FlG.2.1-10. Principle of a circuit for the determination of the parameters rmp , TP, 
and (Tp of an electric dipole current in vacuum. The ampere meter A represents a 
single-shot sampling oscilloscope. The voltmeter V is only needed to observe initially 
the switching characteristics of the switch S. It must also be a single-shot sampling 
oscilloscope. 

to the capacitor C with vacuum as dielectric. If the time variation of the 
current is observed—which would have to be done with a single-shot sampling 
oscilloscope rather than a conventional ampere meter—one can compare it with 
plots according to Figs.2.1-6 to 2.1-8 and determine which values of Tmp,rp, and 
tfp give the best fit. The time resolution of the fastest sampling oscilloscopes 
is currently about 10 ps. This may not be short enough to make the circuit of 
Fig.2.1-10 practical. 

2.2 M A G N E T I C M O N O P O L E S AND D I P O L E S W I T H CONSTANT M A S S 

We must develop relations for the magnetic current density g m and the 
hypothetical charge density pm in analogy to the relations for their electric 
equivalents g e and pe in Section 2.1. The equivalent of the electric current 
density ge in Eq.(2.1-1) for a hypothetical magnetic current density follows 
readily from Eqs.(1.6-2) and (1.6-4): 

gm = /amv (1) 

The force density ke of the motion of a hypothetical magnetic charge in 
an electromagnetic field is given by the magnetic Lorentz equation 

ke = Pm ( H - -Ĵ v x E ) (2) 

where ke is a force density that acts on the magnetic charge density pm; the 
negative sign is due to the negative sign in Eq.(1.6-2). For a particle with a 
magnetic charge q rather than a charge density pm we replace the force density 
k e in Eq.(2) by a force K e : 

Ke = 9 ( H " i V X E ) (3) 

As before an equation of motion is obtained by demanding that K e equals the 
force of inertia. Using again Newton's mechanic we get: 
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Even though a magnetic charge density pm and a magnetic monopole cur­
rent density g m associated with it are strictly hypothetical they can serve a 
practical purpose. In Eq. (1.1-15) we connected the magnetic current density 
g m via a conductivity s to the magnetic field strength H. The transition s - > 0 
in Eq.(6.1-40) and w = \fesfjia —> 0 in Eq.(6.2-41) means that the current 
density g m becomes zero, but one does not need to specify whether g m is a 
monopole, dipole, or higher order multipole current density and can think of it 
as a monopole current density. 

An induced magnetic dipole according to Fig.2.1-lb but with the elec­
tric charges ± e replaced by magnetic charges ±<? is just as hypothetical as a 
magnetic monopole but it can lead to equations that can be solved analyti­
cally while inherent, rotating dipoles according to Fig.2.1-lc have never yet 
lead to an analytically solvable equation. Furthermore, the induced dipole of 
Fig.2.1-lb has only one rest position defined by s = 0 while the inherent dipole 
of Fig.2.1-lc has a rest position for any value of the angle $. This requires 
averaging over many values of •& for numerical solutions. 

The magnetic current density g m for an induced dipole becomes in analogy 
to Eq.(2.1-7) 

gm = PmV (5) 

and the equation of motion has the form of Eq.(2.1-8) with K m replaced by 
K e : 

The comparison of Eqs.(2.1-8) and (6) shows that the equation for the 
hypothetical induced magnetic dipole current follows from Eq.(2.1-19): 

g m + r m p ^ + ^ | g m d i = 2 S p H (7) 

We have changed the notation ap to 2sp , where ap has the physical dimension 
A/Vm while sp has the dimension V/Am. The factor 2 takes into account that 
each dipole consists of two particles with equal mass. The results of Section 
2.1 may readily be used with a changed notation. 

Let us turn from the hypothetical induced magnetic dipole to the well-
established inherent magnetic dipoles. Consider the ferromagnetic bar magnet 
of length 2R in an homogeneous magnetic field of strength H and flux den­
sity B shown in Fig.2.2-1. We introduce the magnetic dipole moment mmo 

with dimension1 Am2 and the mechanical moment of inertia J with dimension 
Nms2 = kgm 2 of the bar magnet. The equation of motion equals 

1If we write m m o B = m m o / iH, the term mmo/x has the dimension Vsm and the sym­
metry with the electric dipole moment eR [Asm] is maintained, if the electric charge ±e 
replaces ±qm in Fig.2.2-1. The product (e.R)E[Asmx V/m] is then in complete analogy to 
the product m m o ^ H [VsmxA/m]. 

file:///fesfjia
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FlG.2.2-1. Ferromagnetic bar magnet in an homogeneous magnetic field (a) and its 
replacement by a thin rod with magnetic charges ±qm at its ends (b). 

J-Tp = -mmoB smi (8) 

where •& is the angle between the direction of the field strength and the bar 
magnet. The velocity of the end points of the bar has the value 

^ = ~RTt (9) 

which suggests to introduce a friction or generally an attenuation term £m into 
Eq.(8): 

d2rd d$ 
J~dW + ^mR~dt + mmoB sin d = ° (10) 

An analytic solution of this differential equation is generally impossible due to 
the term s in$. For small angles •& w s in$ it was already studied by Gauss2. 
The computer has freed us from the restrictions of the days of Gauss. We 
rewrite Eq.(10) in normalized form: 

dH 1 dd 1 . „ „ 
d02 pq d9 q2 

Q = 
J 

T V rnmoB 

J \/JmmoB 

r p = \ / J / m m o B , r m p = J/£mR, pq = rmp/r = J/^mRr (11) 

This differential equation can be solved numerically for the initial condi­
tions #(0) = n&o = $n and d$(0)/d9 = 0. The numerical values obtained for 

2A recent analysis may be found in Harmuth, Boules, and Hussain (1999), Section 1.4. 
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FlG.2.2-2. The functions V{6)T/R (a) and vy(e)r/R (b) according to Eqs.(12) and 
(13) for p — 1/4, r = TP, and ti„ = nn/8 with n = 1, 2, ... , 7 in the interval 
0 < e< 10. 
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FlG.2.2-3. The functions V{6)T/R (a) and vy(6)r/R (b) according to Eqs.(12) and 
(13) for p = 2, r = TP, and dn = nn/8 with n — 1, 2, ... , 7 in the interval 0 < 6 < 10. 

#(0) and d,&{9)/d9 may then be used to calculate the velocities v{0) and vy{9) 
of Fig.2.2-1: 

\ \ 0.6 / / \/\ \ 'i 

\\\ \UI/M\\ 

v{9) -R 
.dd 
dt 

RM_ 
' T ~d8 

vv{6) = v(0) sintf = - - ^ sintf 

(12) 

(13) 

Plots of v(9) and «,,(#) are shown in Figs.2.2-2a and b for p = 1/4, TP = r, 
and various values of i?n. Figures 2.2-3a and b show the same plots for p=2. 

We must connect the velocities vy(t) with the current density gm(i) of a 
magnetic dipole current. First we replace the bar magnet in Fig.2.2-la by a 
thin rod with fictitious magnetic charges ±qm at its ends as shown in Fig.2.2-
lb. The magnetic dipole moment mmo equals 2qmR. The charge qm must be 
connected with the magnetic dipole moment by the relation 

qm [Vs] /xmn 

2R 

Vs Am2 

Am m 
(14) 

where fi is the magnetic permeability, to obtain the dimension Vs for qm. The 
magnetic dipole current produced by such a bar magnet is 2qmvy(t). If there 
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FlG.2.2-4. The average velocity VS.VIV(6)T/R according to Eqs.(12)-(15) of the ends 
of randomly oriented bar magnets of length 2R for q = 1, p = 1/4, 1/2, 1, 2, 4, and 
initial velocity v{6) = 0 for 6 = 0 in the interval 0 < 9 < 10. 
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FlG.2.2-5. The average velocity t)av,j,(^)r/ii according to Eqs.(12)-(15) of the ends 
of randomly oriented bar magnets of length 2R for p = 1/4, q = 1/4, 1/2, 1, 2, 4, and 
initial velocity v{6) = 0 for 6 = 0 in the interval 0 < 0 < 10. 

are No bar magnets in a unit volume, all having the direction $o a n d the 
velocity vy(t) = 0 at t = 0, we would get the dipole current density gm{t) = 
2Noqmvy(t)y/y for the current flowing in the direction of the y-axis. For many 
randomly oriented bar magnets we must average all velocities vy{t) in the sector 
0 < i9 < 7r as well as in the sector 7r < •& < 2n, which yields the same result: 

«av,„(0) = ^ £ Vv(#n, 0), 0 < 6 = 0„ < 7T, 0 = t / T 

n=l 
(15) 

Figure 2.2-4 shows the average velocity vav,y(*) for g = 1 and various 
values of p in the interval 0 < 6 < 10. Multiplication with 2Noqm yields 
the magnitude of the current density g m as function of time. For a vanishing 
moment of inertial J the plots in Fig.2.2-4 become similar to a Dirac delta 
function. 

Figure 2.2-5 shows v&Vty(6) for p = 1/4 and various values of q, while 
Fig.2.2-6 shows the same but p = 1/4 is replaced by p = 2. 

The magnetic dipole current density in the direction of the y-axis becomes 
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FlG.2.2-6. The average velocity va.V:y(9)r/R according to Eqs.(12)-(15J of the ends 
of randomly oriented bar magnets of length 2R for p = 2, q = 1/4, 1/2, 1, 2, 4, and 
initial velocity v(9) = 0 for 9 = 0 in the interval 0 < 9 < 10. 

for pairs with magnetic charge ±qn 

gm = 2N0qmv&Vty(ty (16) 

where iVo is the number of magnetic dipoles. 
Let us attempt to write the extension of Ohm's law for rotating magnetic 

dipoles in a form comparable to Eq.(7). We obtain from Eq.(9) 

~dl~~ R ' ~dW~~Rdt' Rj V{> 

and we rewrite Eq.(lO): 

•JJ-JJ; + ZmV + mmoBsin ( - / v(t)dt) = 0 

Then we substitute Eq.(13) with t = Or: 

dt 

v(t) 
sini?(£) 

to obtain: 

J d i vy \ vy 

Rdt \ s m # / s m # 

Next we substitute 

flm,l9 

I f vv 
RJ sintf 

dt) =0 

v„ - 2N0qn 

and multiply with 2Noq„ 

J_d_ 

Rdt Vsin 
m - r 2 ^ + 2N0qmmmoB sin 

s m # 2iV0gmi? 
/ ffm,i9 

J sini? 

(17) 

(18) 

(19) 

(20) 

(21) 

dt) =0 (22) 
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FIG.2.2-7. Principle of a circuit for the determination of the parameters rmp , rp, and 
sp of a magnetic dipole current in vacuum. The ampere and volt meters represent 
single-shot sampling oscilloscopes. 

This differential equation yields the current density gm^ for a certain initial 
angle •& = $o of the dipoles as function of the magnetic flux density B or field 
strength H. The direction of gm,$ is that of the positive y-axis: 

y 
gm,l? = S m , « - (23) 

y 

Equations (21) and (22) are the extension of Ohm's law to magnetic dipole 
currents caused by inherent dipoles with certain initial orientation angle -d. We 
may substitute gm,^ for g m in Eq. (1.1-15) and—at least in principle—calculate 
E and H for the initial angle $o- If we calculate E and H for many possible 
angles •&$ and average in analogy to Eq.(15) we get the field strengths E and 
H for randomly oriented dipoles. 

One will not likely proceed in this way since Eq.(22) does not offer much 
hope for an analytic solution of Eqs.( l . l -8)-( l . l -15). For a numerical solution 
one will generally prefer to use Eqs. ( l l ) , (13), and (21) rather than Eq.(22). 
For an analytic investigation one has little choice but to use Eq.(7) holding for 
a hypothetical induced magnetic dipole. 

In Fig.2.1-10 we have shown a circuit for the measurement of the param­
eters r m p , rp , and <7p of an electric dipole current in vacuum. A corresponding 
circuit for magnetic dipole currents is shown in Fig.2.2-7. The most important 
difference is the replacement of the wires for an electric monopole current lead­
ing to the capacitor by a ring of ferromagnetic material with large cross section. 
The reason for this is the lack of magnetic monopole currents that could be 
fed to the 'gap' in Fig.2.2-7 and produce a magnetic dipole current across the 
gap. Since permalloy has a relative permeability between 10000 and 70000 
it is a good conductor for magnetic dipole currents compared with vacuum. 
But it would not work for switching times shorter than 1 /is. A ferrite material 
would work with switching times as low as 1 ns, but its relative permeability is 
in the range from 10 to 100. In the absence of electric monopole currents we 
could replace the circuit of Fig.2.1-10 by one according to Fig.2.2-7 with the 
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ferromagnetic ring replaced by a barium-titanate ring with relative permittivity 
between 1000 and 9000. 

2 . 3 MONOPOLES AND DlPOLES WITH RELATIVISTIC VARIABLE MASS 

For the transition from a fixed to a relativistic variable mass in Sections 
2.1 and 2.2 we write for the mass 

m0 

(1 - v2/c2)1/2 (1) 

and replace mdv/dt by d{m\)/dt: 

d{mv) dm dv 
dt dt dt 

m0 
dv dm dm dv v 

dt dv dt ~ c2 n - v2/c2)3/2 dt 

d(mv) mo dv 

dt ~ (l - v2/c2)3/2 ~dl 

Equation (2.1-4) becomes 

m0 
Km = 

dv 

(1 - v2/c2f'2 dt 

(2) 

(3) 

while Eq. (2.2-4) requires the subscript e in place of m. 
For the extension of the induced dipole equation to relativistic velocities 

we differentiate Eq.(2.1-8) with respect to t: 

dKm d2(mv) mv 
dt 

d2(mv) 
dt2 

dt2 +
 T2 

d2m dmdv d2v 
~dWv + 2~dtdi + mlt2 

(4) 

(5) 

For d2m/dt2 we get 

d (dm\ d (dm\ dv dm d2v d2m ( dv\ dm d2v d2m 
~dW ~ dl \~dt) ~ dl \dv dt dv dt2 

mo l + 2v2/c2 fdv\ 

c2 (1 - v2/c2f2 

and d2(mv)/dt2 becomes: 

d2(mv) 3mo 

1 — v2 jc 1ln2 

dv2 \dt 
2 d2v 

^7 + 

dt) +V'dt2 

dv dt2 

dv\ mo drv 
dt2 ~~ c2 (! _ v2/c2fl2V \dl) +

 ( 1 _ V2/C2fl2 Hi2 

(6) 

(7) 
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Since K m and v in Eq.(3) have the same direction we may use Km rather than 
K m : 

dKm m0 

dt (\-v2/c2)1'2 c2(l-v2/c2)2 \dtj 

dv\2 

1 d2v \_ 
+ 1 - v2/c2 dt2 + ^V (8) 

This provides the extension of Eqs.(2.1-8) and (2.2-6) to relativistically variable 
masses. 

For nonrelativistic velocities we had shown by Eq.(2.1-6) that the contri­
bution of the proton to the induced current of a proton-electron dipole was very 
small. This changes when the masses increase relativistically. Conservation of 
momentum demands 

m p v p = m e v e (9) 

if the subscripts p and e denote proton and electron. With the rest masses 
denoted mop and moe we get 

m0pVp _ m0eve 

( l _ w 2 / c 2 ) i / 2 ( 1 _ v 2 / c 2 ) i / 2 

since the direction of v p and v e is always opposite. The velocity vp of the 
proton is derived as a function of the velocity ve of the electron: 

m0eve 

vp = Y/2 ( n ) 
mop [l - (1 - m2Jm2

0p)v
2/c2] 

For ve —» c we get vp - t » e . In this case the proton contributes as much as the 
electron to the dipole current. 

The velocity ve of the electron must be very close to the velocity of light 
before the proton contributes significantly to the current density. For instance, 
a proton velocity vp/c = 0.01 requires an electron velocity ve/c = 0.99852, 
which implies a ratio of the current densities ge/gP = ve/vv = 0.99852/0.01 = 
99.85; hence, the proton contributes about 1% to the total current density 
ge + gp. For vp/c = 0.1 we get ve/c = 0.9999853 and ge/gp = 0.9999853/0.1 = 
9.999853, which means the proton contributes about 9% to the total current 
density. 

For the rotating dipole we start from Eq.(2.1-10) and substitute J = 2mR2 

for the magnitude of the moment of inertia of the dumb-bell model of Fig.2.1-2: 

dPd 
Km = 2Rm-^ (12) 

For the transition to the relativistic version of this equation we consider the 
velocity Rdfi/dt 
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,dtf „d2i9 dv 
t 

and rewrite Eq.(12): 

* * = - " ' R^ = -H <13> 

K o ™ d v _ o d ( m v ) 2m0 dv 
dt dt n - v2/c2) ' dt 

R 2mQR dH 
m [l-R2(dd/dt)2/c2]3/2 dt2 

The extensions of Ohm's law derived in Sections 2.1 and 2.2 require a 
further extension if the relativistic variation of the mass of the current carriers is 
taken into account. We start with Eq.(2.1-12). The force mdv/dt in Newton's 
mechanic becomes d(mv)/dt in relativistic mechanic. The term £ev in Eq.(2.1-
12) represents somewhat of a problem. If we leave it as it is we get evidently 
wrong results. Acceptable results are obtained if v is replaced by m v / m o , 
where m/mo is defined by Eq.( l) . The product mv /mo is reduced to v for 
small velocities v <C c. We replace Eq.(2.1-12) by the following relativistic 
equation: 

^X) = e E -^I (15) 
dt mo 

The term d(m\)/dt is defined by Eq.(2). Substitution of Eq.(2) into Eq.(15) 
brings: 

Since v and E have the same direction we may use their magnitudes and rewrite 
Eq.(16) as follows: 

{ P ) \1-I32d0 + pqP) Eo 

/3 = v/c = N0ev/N0ec, % = TmpeEo/m0c, rmp = m 0 / £ e 

<1 = TP/T, p = Tmp/rp, pq = Tmp/r, 6 = t/r (17) 

We note that j3 represents either the normalized velocity v/c or the normal­
ized current density N0ev/N0ec. For small values of j3 we obtain the normalized 
form of Eq.(2.1-13) with m = mo'-

dB 1 , jeE dge ,_, N0e
2rmp 

dv pq Eo dt mo 



2 . 3 MONOPOLES AND DIPOLES WITH RELATIVISTIC VARIABLE MASS 4 7 

2 m 2 ' 3 * 1 l P l 0 t S ° f t H e n o r m a l i z e d e l e c t l i c monopole current density /3(9) for E/E0 = 
Z t P<1-~ / ^ r ^ T . ? 1 U e S ° f 7e a c c o r d i n * t o Ecls-(17) and (18). (a) Relativistic 
plots using Eq.(l7). (b) Nonrelativistic plots using Eq.(18). 

^ qnT t i 0n n l 1 8 ) r l d S f ° r a S t G P f u n C t i ° n E = EoS^ and the initial condition p(U) = 0 the solution 

m = pqle (l - e-e/w) (19) 

Plots of Eq.(19) are shown in Fig.2.3-lb for pq = 1 and various values of 
he parameter 7 F o r large times 6 the plots approach 7e . On the other hand, 

the amplitude of (3(6) according to the relativistic Eq.(17) shown in Fig 2 3-la 
never exceeds 1. B' 

Let us turn to the relativistic correction of the extension of Ohm's law to 
electric dipole currents. For a fixed charge carrier density AT0 i n vacuum, a 
monopole current can be increased only by an increased velocity of the charge 
carriers. Dipole currents can be increased by either increasing the velocity of 
the charge carriers or the number of dipoles. There is no conservation law that 
prohibits an increase of dipoles. Only experimental work can decide whether 

t:z^u:^;tion for electric dipoie current densiti- we ** 
d(mv) 

dt + 
mv 1 f 
— + 72 
'mp T_ J 

mv dt = eE (20) 

We differentiate with respect to t in order to eliminate the integral. Since E 
and v have the same direction we can simplify the calculation by using the 
magnitudes E and v. 6 

d2(mv) 1 d{mv) 1 dE 
"i : 1 mv = e— dt2 

'mp dt dt (21) 

The terms d{mv)/dt and d2(mv)/dt2 were evaluated in Eqs.(2) and (7) Equa­
tion (21) assumes the following form: 
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mo .r*w d?v 
( 1 _ W 2 / C 2 ) 1 / 2 L C 2 ( 1 _ U 2 / C 2 ) 2 \ d t } \ - v2 / c2 dt2 

+ 
dv 1 

+ — v Tmp 1 - V2/c2 dt Tj 

Multiplication with r 2 / c brings Eq.(22) into the following normalized form 

( I - / ? 2 -1/2 _1 (d?£ j_d£ 
+ l-/32\d92 pqd9 J (1 - /J2 + •/3 d0 

+ - / 3 
92 . 

7e J_d£ 
pq E0 dQ 

(23) 

which uses the definitions listed in Eq.(17). 
The nonrelativistic limit of this equation is obtained for j32 —+ 0 and 

P(df3/d6)2 —* 0. We observe that dj3/d9 represents the acceleration of a charge 

carrier: 

d62 pqdO q2^ pqE0 dB 
dE 

(24) 
N0ecpq d9 K ' 

This equation should be compared with Eq.(2.1-21) for excitation by a step 
function E = E0S{6). 

For the numerical evaluation of Eqs.(23) and (24) we have the initial con­
ditions (3(9) = 0 for 0 = 0 since the current or current density should be zero 
initially. For a second initial condition at 6 = 0 we rewrite Eq.(23) for f3 = 0 

and integrate: 

For an electric step function excitation 

d2/3 l_d£_j1J_dE_ 
~dl)2 + pq dB ~ pq E0~dJ 

dB pqH pqE0
 K ' 

E{6) = -EoS{9) 

we get 

dm 
d9 pq" 

(25) 

(26) 

(27) 

(28) 

as the second initial condition since the term (3/pq is zero due to the first 
initial condition /?(0) = 0. Hence, for a step function excitation we obtain from 
Eqs.(23) and (24) the following equations and initial conditions: 
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FlG.2.3-2. Plots of the normalized electric dipole current density (3(9) for p = 1/4, 
q = 1, and various values of 7e according to Eqs.(29) to (31). (a) Relativistic plots 
using Eq.(29). (b) Nonrelativistic plots using Eq.(30). 

FlG.2.3-3. Plots of the normalized electric current density (3(9) for p = 2, q = 1, and 
various values of 7e according to Eqs.(29) to (31). (a) Relativistic plots using Eq.(29). 
(b) Nonrelativistic plots using Eq.(30). 

1 (d?(3 ldp\ 3 (d(3\ 

i-/32\de2 pqdej (i - pf p \de) 

0(0) 

de2 

0, d/3(0)/M = le/pq2 

pq dd qz 

(29) 

(30) 

(31) 

Computer plots of (3(0) according to Eq.(30) are shown for p = 1/4, q = 1, 
and various values of 7e in Fig.2.3-2b. Corresponding plots for p = 2 are shown 
in Fig.2.3-3b. As one would expect, the amplitude of the normalized current 
density /?(0) varies proportionate to j e . 

Equation (29) does not lend itself to an analytic solution but plots of (3(0) 
can readily be obtained numerically. Figure 2.3-2a shows plots for p = 1/2, 
9 = 1, and various values of %, while Fig.2.3-3a shows corresponding plots for 
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p = 2. A comparison with the nonrelativistic plots shows first of all that the 
normalized current density /3(6) does not vary proportionate to "fe and that it 
does not exceed 1. We further note that the values of 6 for which (3(9) equals 
zero are the same in the relativistic and the nonrelativistic cases of Fig.2.3-3. 

We turn to the rotating magnetic dipole described by Eq.(2.2-10). In order 
to obtain the relativistic form of the moment of inertia J we must specify in 
more detail where the mass of the bar magnet of Fig.2.2-la is located. We 
assume the bar magnet can be represented by the dumb-bell shown in Fig.2.1-
2 with the masses m at the ends of a thin rod of length 2R, just as was assumed 
in Fig.2.2-lb for the magnetic charges ±qm. Introduction of J = 2mR2 into 
Eq.(2.2-10) yields: 

2mR2 -T^+UR-J7+ mmoB sin 0 = 0 (32) 
dt1 at 

For the transition to the relativistic version of this equation we consider 
the velocity v(t) of Eq.(13) and rewrite Eq.(32) as follows: 

dv 
2mR— + £mv = mmoB sin •& (33) 

at 

The term on the right represents the force due to the flux density B which is 
imposed on the magnetic dipole. This force is independent of any relativistic 
change of the mass of the dipole. Terms m dv/dt and £ev were rewritten into 
relativistic form in Eq.(15). In analogy, Eq.(33) is rewritten: 

2Rd^nv)_ + Cm ( * = Bsin^ ( 3 4 ) 

at m,Q 

With m and d(mv)/dt from Eqs.(l) and (2) we obtain: 

2Rm0 dv £m . 
577 ~J: "! T7?u = mmo-B sin ti (35) 

(1 _ r2/c2)3/2 dt ( 1 - ^ 2 / ^ ) 1 / 2 

We re-substitute for v and dv/dt from Eq.(13): 

2^27710 dH RU d-d 

[1 - (R/c)2(d$/dt)2f2 dt2 [i _ (R/c)2(d-&/dt)2}1/2 dt 
= —mmosini? (36) 

Using the notation 8 = t/r and p = R/CT one can bring Eq.(36) into the 
following form: 
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FlG.2.3-4. The normalized velocities v(9)/c (a) and vy(9)/c (b) according to Eqs.(37), 
(40), and (41) for p = 1/4, q = 1, p = 4, and t9(0) = tin = n?r/8 with n = 1, 2, . . . , 7 
in the interval 0 < 6 < 10. 
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FlG.2.3-5. The normalized velocities v(6)/c (a) and vv(6)/c (b) according to Eqs.(37), 
(40), and (41) for p = 2, q = 1, p = 2, and 0(0) = tin = n7r/8 with n = 1, 2, . . . , 7 
in the interval 0 < 9 < 10. 

l - p a 

d0 

-1/2 
d2i? 1 dtf\ 1 . . n 

+ rr + -^Sintf = 0 i-p^dv/deyde2 pqdej q2 

t R R / 2m0 rp V 2 m 0 m m o B r, 

2.Rro0 „ / 2m0 

P9 = - ^ — , TP = R Ttn 

2m0R 

mp 

™ R ' m P 
(37) 

For p2{d'd/d6)2 —> 0 we obtain from Eq.(37) the nonrelativistic limit: 

dH I d-d 1 . 0 n 

do* pq do q2 

The initial conditions for both Eqs.(37) and (38) are 

(38) 

file:///-s/C
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FlG.2.3-6. Plots of the normalized magnetic dipole current density vetV,y(6)/c — 
/ W W for q = 1, p = 2, and p = 1/4, 1/2, 1, 2, 4 according to Eqs.(41)-(43). 
(a) Relativistic plots using Eq.(37). (b) Nonrelativistic plots using Eq.(38). 
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FlG.2.3-7. Plots of the normalized magnetic dipole current density vaVtV(6)/c = 
0*v,y(9) for q = 1, p = 4, and p = 1/4, 1/2, 1, 2, 4 according to Eqs.(41)-(43). 
(a) Relativistic plots using Eq.(37). (b) Nonrelativistic plots using Eq.(38). 

tf(0) = ntfo = K, dd(0)/de = 0 (39) 

where i9o is the initial angle d in Fig.2.2-1 before the flux density B is applied. 
We still need the velocities v{9) and vy{6) of Eqs.(2.2-12) and (2.2-13) in 

a rewritten form using the normalized distance p = R/CT: 

c 
vy(6) 

Rdti dd 

CT dB Pdd 

- p - s m t f 

(40) 

(41) 

The average velocity v&v>y of magnetic dipoles with random initial orien­
tation is again obtained with Eq.(2.2-15): 

vw,y{0) =/W*)=4E^ vy{dn,6) 

n = l 

p_ 
'N 

N 

£ « ^ ) s i n ^ n ) 0 ) (42) 
n = l de 
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The notation vy($n, 6) and $(#„, 6) indicates that the initial angle i?(0) = #o in 
Eq.(39) has to be replaced by $(0) = (n- l/2)n/N. The normalized magnetic 
current density follows from Eq.(2.2-16): 

gm _ 2N0qmv^y(e) y _ vm,y(0) y _ „ . y ^ 
2N0qmc 2N0qmc y c y y 

Equation (37) can readily be solved numerically and plots according to 
Eqs.(40)-(42) can be derived. Figure 2.3-4 shows v(0)/c and vy(9)/c for p = 
1/4, q = 1, p = 4 and various values of i?(0). The relativistic limitation v/c < 1 
is readily recognizable in Fig.2.3-4a while the limitation vy/c < 1 in Fig.2.3-4b 
is less conspicuous. Figure 2.3-5 shows the same plots but p = 1/4, p = 4 
is replaced by p = 2, p = 2. Again, the relativistic limitation v/c < 1 is 
conspicuous in Fig.2.3-5a. 

Figure 2.3-6 shows the normalized magnetic current density /3aV)!/(0) ac­
cording to Eq.(43) for q = 1, p = 2, and various values of p. On the left are 
relativistic plots derived from Eq.(37) while on the right are nonrelativistic plots 
derived from Eq.(38). Figure 2.3-7 shows the same plots but p — 2 is replaced 
by p = 4 to make the relativistic limitation /3aViy(#) < 1 more conspicuous. 

2.4 COVARIANCE OF THE MODIFIED MAXWELL EQUATIONS 

We start with the continuity equation for an electric current density and 
charge density defined by Eq.( 1.6-8): 

* v * + &-V-,. + t - 0 (1, 

A four-vector current density ge with the components gei = 9ex, 0e2 = 8ey, 
0e3 — Bez, 8e4 = icpe permits to write this equation in covariant form: 

v = l ^ : = ^ : = D l V 0 ^ D - f l e = o 

x\ = x, X2 = y, x3 = z, Xi = id (2) 

A corresponding four-vector current density gm with the components gmi = 
Smx, Sm2 = Smy, Bm3 = 5mz, flm4 = icpm permits to write Eq.(1.6-9) in covari­
ant form: 

^ = Divflm = D . f l m = 0 (3) 

Equations (1.6-27) and (1.6-28) define a four-potential 2(m with the components 
2lmi = Ami, 2lm2 = Am<2, 2lm3 = Am3, 2lm4 = i<j>e/c. These two equations may 
be combined into one: 
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= 9eA or D2tm = ge dxvdxv 

1 d2 

°'^-hh (4) 
The extended Lorentz convention of Eq.(1.6-23) becomes: 

f ™ 0 or • • 2 t m = 0 (5) 

From Eqs.(1.6-26) and (1.6-29) we obtain the equivalent relations for the four-
potential 2te with the components 2lei = Ae\, 2le2 = Ae2, 2le3 = -*4e3, 2le4 = 
i<t>m/c: 

= - ^ 0 m A Or D2te = - ^ - f l m (6) 
dxvdxv Zc Zc 

The extended Lorentz convention of Eq.(1.6-24) becomes: 

021, 
dxv 

= 0 or • • 2le = 0 (7) 

We rewrite Maxwell's modified equations into four-vector form. This is 
more readily done from the basic Eqs.(1.6-l)-(1.6-4) than from the expressions 
for E and H by means of potentials in Eqs.(1.6-11) and (1.6-17). First we write 
Eqs.(1.6-1) and (1.6-3) in component form: 

1 <9E 
curlH - -^--QT = /miei + fm2^2 + /m3e3 = gexei + geye2 + geze3 

_dH±_dHy__^_dE^_ 
/ m l ~ dy dz Zc dt ~ 9ex ~ 9el 

dHx _dHz I dEJL_ 
/ m 2 ~~ dz dx Zc dt ~ 9ev ~ 9e2 

dHy dHx 1 dEz 
fm3^~dx""Wz'c^r=9ez-9e3 (8) 

d i v E = ^ + ^ + ^ = Zcpe = -iZge4 (9) 
dx dy dz 

Next we introduce the electromagnetic field tensor F m with components fmiiv: 

/ml4 = — /m41 = Ex, /m24 = — /m42 — Ey, / m 34 — — / m 4 3 — — ~EZ 

/ml2 = — / m 2 1 = - B 2 , /m23 = — /m32 = BX, / m 3 i = — / m 1 3 = By 

/ m i l = /m22 = /m33 = /m44 = 0 (10) 
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Written as a matrix F m has the following form: 

( 0 Bz 

-Bz 0 

By —Bx 

—B„ 
1-EA 

BX Ey 

0 -%-Ez 
c 

-Ex -Ey -Ez 0 

(11) 

Consider the derivative 9fmiiu/9xu of F m . With p = Z/c we get: 

a/mll | a/ml2 | a/ml3 { 9fml4 _ Z / Q | 9ff, £>#;, 1 ftS, 

9xi &E2 9a;3 cfcr4 c \ 9y 9z Zc dt 

dfm21 9fm22 9fm23 <9/m24 _ Z 

dxi dx2 dxz 9x4 c ox 

1 9EV 

dz Zc dt 

dfmsi dfmS2 dfm3s d/m34 = Z (9Hy dHx 1 dEz 

dxi 3x2 dxz 9x4 c \ dx dy Zc dt 

9fm41 9fm42 9fm43 9fm44 

9xi 9x2 dx3 dx4 c 

9EX 9EV 9E, n 77^ + ̂  + — ^ + 0 
ox dy dz 

= - l^p. + ^L + ̂ p.+0) (12) 

A comparison of these equations with Eqs.(8) and (9) shows that we may write 
Eqs.(8) and (9) in covariant form: 

9fmixv _ Z_ 

9xv c e / i (13) 

The remaining two modified Maxwell equations are also written in the 
component form of Eqs.(8) and (9): 

7 dW 
- curl E — = fm4e1 + / m 5 e 2 + / m 6 e 3 = gmx^i + gmy&2 + 5m ze3 

/m4 = 
9EZ dEu Z dHx 

9y dz c dt 

f ldE* dE* ZdHv 
/ m 5 [ dz dx + c dt 

Jm6 — 

d i v H : 

9Ey__9Ex_ Z9HZ 

dx dy c dt 

9HX 

+ 
dH„ 9HZ 

— 9mx — 5ml 

= 9my — <7m2 

— 9raz = 9m3 

zpn Fffm4 
9x ' dy ' 9z Zr"L Z' 

Consider now the following sum of three derivatives of the tensor F n 

(14) 

(15) 
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dfmiiv , Of, dfu. 
dx\ dxy, dxv c mK 

K = 1, 2, 3, 4; A = 2, 3, 4, 1; fi = 3, 4, 1, 2; i/ = 4, 1, 2, 3; (16) 

We obtain with the help of Eqs.(lO) and (11) the following four equations: 

dfm34 dfmj2 <9/m23 

dx2 dxz dxi 

9fm41 dfmU 9/m34 

dx3 dxt dx\ 

9fml2 d/m24 C»/m41 

8X4 

dfm23 

dxi 

dxi 

dfm31 

dXn + 

dx2 

d/m!2 

dx3 

dE1_dE}L ZdHx 

dy dz c dt 

dEx dEz , ZdHy 

dz 

9E± 
dx 

dHx 

- + 

dx c dt 

dEx ZdHz 

dy c dt 

dHv OH, 

+ -dx dy dz 

~ + ~9mx 
C 

~9my 

-- + -9mz 
C 

-gm4=Pm (17) 

A comparison with Eqs.(14) and (15) shows that Eq.(16) is the covariant four-
vector equation of the modified Maxwell equations (14) and (15). The magnetic 
charge pm may or may not be zero. Equations (13) and (16) are equal to 
the corresponding equations in the conventional theory of Maxwell's equations 
without magnetic current densities except for the term — (—l)K(i/c)gmK instead 
of 0 inEq . (16 ) . 

Equations (10) and (11) favor the magnetic flux density B and the electric 
field strength E. The introduction of a new field tensor F e with the components 
fellI/ favors instead the electric flux density D and the magnetic field strength 
H: 

/. el4 ~/e41 = Hx, /e24 
C 

"/e42 = Hy, / e34 — ~/< e43 •Hz 

/e l2 = ~ /e21 = ~DZ, / e23 = - / e 3 2 = ~DX, / e31 — -ft el3 -Dy 

/ell = /e22 = /e33 = /e44 = 0 

In matrix form we get for the tensor F e : 

( 0 -D. Dv 

F e = 
Dz 0 

-Dy Dx 

-Hx -Hv -Hz 

-Hx 

-Dx —H v 

Hz 

(18) 

(19) 
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Let us consider the following relation of the derivatives 9/eM„ of the elec­
tromagnetic field tensor F e with e = l/Zc: 

dUy.v _ J_ 
dx„ - zc9m,i 

dfsu + dfei2 + df£ls + dU± = _J_ (dEz 3Ey [ZdHx\_ 1 

dxi dx2 dx^ 8x4 Zc \ dy dz c dt J Zc mx 

dfen + dU1 + dU3_ + dU4==_J_ / d E x dEz ^ZdHy\_ 1 

9a;i 9^2 9a;3 8x4 Zc \ dz dx c dt J Zc mv 

df^+dfe31 + dfS33+dU± = _J_ fdEy dEx {ZdHz\_ 1 

9a; 1 9a;2 00:3 cte4 Zc \ 9a; 9y c dt J Zc mz 

9/e41 9/e42 9 / e 4 3 9/e44 _ » f dHx 8Hy dHz\_ i C 

dx\ 8x2 dxz 8x4 c\8x dy dz J cZ m 

We recognize Eq.(17) as well as Eqs.(14) and (15). In analogy to Eq.(16) we 
write the following additional four-vector equation: 

df*H» + QfevX + 9/eAM = ( _ ! ) « ! „ 
8x\ dxy, 8xv c en 

1, 2, 3, 4; A = 2, 3, 4, 1; y, = 3, 4, 1, 2; 1/= 4, 1, 2, 3; 

"ex 
9/e34 9/e42 9/e23 _ i fdHz dHy 1 8EX 

9a;2 9a;3 9a;4 c \ dy dz Zc dt ) c 

9je41 9/el3 9 / e 3 4 _ lWdHx_dH± 1 dE2\ _i_ 
9a;3 9a:4 9a;j c \ 9x 9a; Zc dt J c ey 

dfel2,d%24 , 9 / e 4 l _ i_ ( dHy_ _dHx \ dEz\ _ _i_ 

9a;4 9a;i 9a;2 c \ 9a; dy Zc dt 

9fe23,9Ui ,dfsll__J_fdEx_ <)Ey_ ,dEz\_i __ ,ou 

an + dx2
 + dx3 ~ zc\dx + dy

 + dz ) ~ c 9 e 4 ~ Pe [Zi) 

Here we recognize Eq.(13) as well as Eqs.(8) and (9). Hence, the tensor F e is 
an alternate representation to the tensor F m of Maxwell's modified equations. 

The derivatives dfm\^/dxu — £mA^ OI t n e components of the tensor 
F m form a tensor of rank three. The same holds true for the derivatives 
dfeXii/dx Equations (17) and (21) may be written in the form 

trnXfiu + ' m p A + tmv\fj, — —( — 1) _5m/cj 'mAjiK — ~tmjj.Xv ~ ~Z (22) 

teX/j.1/ + tefwX + tel/A^x = ( — 1) ~<?eK> leA/ni/ = ~tey.Xv = ~Q (23) 
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Our next task is to write the Lorentz forces of Eqs.(2.1-2) and (2.2-2) in 
covariant notation. With the components gei — gex, <?e2 = gey, ge3 = gez, 
<?e4 = icpe of g e = pev and B = (Z/c)H we obtain from Eq.(2.1-2): 

2 
k m = —ge x H + p e E = fcmiej + fcm2e2 + fcm3e3 c 

^mi = 9eiBz — gezBy — g e i E x 

km2 = 9ezBx — ge\Bz — g e 4 E y 

km3 = 9eiBy - ge2Bx - -ge4Ez (24) 

According to Eq . ( l l ) we may write the components kmi with the help of the 
tensor F m : 

fcml = 0 + 5e2/ml2 + Se3.fml3 + 9eifmli 

km2 = 9e\fm2l + 0 + <?e3.fm23 + 9eifm2A 

km3 = flel/m31 + 3e2./m32 + 0 + 5e4/m34 (25) 

Equation (11) suggests to produce a four-vector by adding a component km4: 

km4 = -(flel/m41 + Se2./m42 + 0e3./m43 + 0) (26) 

Using the relation gefi = {c/Z)dfmlJ.u/dxv from Eq.(13) we may write Eqs.(25) 
and (26) in the following form (Note that a double sum over v = 1, 2, 3, 4 and 
A = 1, 2, 3, 4 is required): 

d/mi/A 

One may rewrite Eq.(27) some more by means of a new symmetric tensor T^: 

c ( 1 \ 

<5M„ = 1 for /i = V 

= 0 f o r / x ^ i / (28) 

This tensor is called energy-momentum tensor. Since it is the same tensor as 
used in the conventional theory we will not discuss it in any detail. Here it is 
sufficient to mention that it can be written in the form 
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T • 

T 
-1 x 

-*(ExH)x \ 

-M/y 

J-zy 

l-(E x H)y 

i-yz 

T 
±zz 

" ( E x H ) , 

- - (ExH) t f 

- - ( B x H ) , 
c 

5<T + ^ 

(29) 

The space part Txx to T0Z is equal to the Maxwell tensor that represents the 
flow of momentum. The time part (E2/Z + ZH2)/2c represents the energy 
density and the space-time part the energy flow. Equation (27) may be written 
in terms of TM„: 

m M ~ dxv 
(30) 

Everything in Eqs.(21) to (30) is equal to the conventional theory of 
Maxwell's equations without magnetic (dipole) currents. We shall need the 
Maxwell tensor with its components Txx to Tzz, written here with the help of 
D = (l/Zc)E and B = (Z/c)H to make it simple, but the replacement of D 
and B by E/Zc and ZH/c is often advantageous: 

TXx — -^y+DxEx — DyEy — DZEZ + BXHX — ByHy — BZHZ) 

Tyy = 7:{—DxEx + DyEy — DZEZ — BXHX + ByHy — BZHZ) 

1 
{—DXEX — DyEy + DZEZ — BXHX — ByHy + BZHZ 

•*-xy — -Lyx — -Ux-t^y ~r kjx**y 

Txz = Tzx = DXEZ + BXHZ 

TyZ = TZy = DyEZ + ByHZ (31) 

Let us turn to Eq.(2.2-2) and write it in the form of Eq.(24) with the 
components gmU gm2, gm3, gm4 = icpm of g m = p m v and with D = (l/Zc)E: 

Zc 
g m x E + /JmH = fceiej + fce2e2 + A;e3e3 

&el = —gm^Dz + gm$Dy <?m4-Hx 

K2 = -9m3Dx + gm\Dz - -gmiHy 

kez = -9miDy + gm2Dx —g m 4H z (32) 



6 0 2 MONOPOLE, DIPOLE, AND MULTIPOLE CURRENTS 

We use Eq.(19) to write the components fce; in terms of the tensor F e 

kel — 0 + <7m2/el2 + 9m3felS + 9mijel4 

ke2 = Sml/e21 + 0 + ffm3.fe23 + 0m4/e24 

fce3 = 3ml/e31 + 5m2/e32 + 0 + gmife34 (33) 

A four-vector is produced by adding a component fce4 according to Eq.(26): 

fce4 = - (#ml /e41 + 5m2./e42 + 5m3/e43 + 0) (34) 

Using the relation gmix = Zcdfe^/dx^ from Eq.(20) we may combine Eqs.(32) 
and (34) as follows, with a double sum over v and A: 

df. ev\ &e/x — ZC/epf rj (35) 

In analogy to Eq.(28) we may rewrite kefi by means of a symmetric tensor 
<-)lV 

1-fj.u — Zc y JeiiXJeXu + TOpj//eA/./eAi (36) 

This tensor is equal to the tensor TM„ of Eq.(29) except that the terms Txx to 
Tzz have to be replaced by Txx to 1ZZ: 

1* Xxy 

^yy 

*-zy 

^xz 

*yz 

T 
**ZZ 

- * ( E x H ) x \ 

- - ( E x H ) v 

- - ( E x H ) : 

\ - - ( E x H ) , •i(ExH)tf -^(ExH), L(^- + ZH*)J 

(37) 

2c' Z 

Equation (35) may be rewritten with TM„: 

ke"~ dxu 
(38) 

The calculation of the tensor components 1XX to 1ZZ is straightforward 
but lengthy1. We outline the process by writing Txx of Eq.(31) with D and H 
replaced by E/Zc and ZH/c: 

1The derivation of the tensor of Eq.(29) is shown in Becker (1964a), §83. The tensor 
of Eq.(36) is obtained with the substitutions H —• -D, E —• H/c , and a change from the 
Gaussian system to the International System. 
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2c 
^El-El-El)+Z{Hl-Hl-Hl) (39) 

Equation (28) requires the multiplication of Txx with Z/c. Then we compare 
Eqs.(ll) and (19), and make the substitutions 

B -> -D. or H. — -E./Z2 and E. 

to obtain 1xy/Zc according to Eq.(36): 

H 

Zc ~ 2c2 I(fl2_fl2-fl2)+i ( £ g - ^ - ^ ) 

(40) 

(41) 

Multiplication with Zc finally yields 1XX which is equal to Txx of Eq.(39). 
Generally we get: 

^fiu — -̂  \xv (42) 

2.5 ENERGY AND MOMENTUM WITH DIPOLE CURRENT CORRECTION 

We return to Section 1.6 which derived the potential form of the modified 
Maxwell equations. We had derived Eqs.(1.6-26)-(1.6-29) for the extended 
Lorentz convention of Eqs.(1.6-23) and (1.6-24) from Eqs.(1.6-18)-(1.6-21). 
The particular solutions of Eqs.(1.6-30)-(l.6-33) had been obtained for the 
potentials Ae, Am , <j)e, and 4>m. We note once more that (j>m is zero if there are 
no magnetic monopoles but Ae requires only the existence of magnetic dipoles, 
which is not disputed. General solutions of the potentials are obtained if one 
adds general solutions of the homogeneous equations 

• A e = 0, DAm = 0, D(£e = 0, D0„ 0 (1) 

to the particular solutions and observes the extended Lorentz convention of 
Eqs.(1.6-23) and (1.6-24). This yields the following generalizations of the po­
tentials: 

Ae -> Ae - grad Xe 

Am -» Am - grad %n 

<t>e - > </>e + dXm/dt 

<Am -» <Am + dXe/dt 

(2) 

(3) 

(4) 

(5) 

These generalizations of the potentials leave the field strengths H of Eq. (1.6-11) 
and E of Eq. (1.6-17) unchanged. The various choices of potentials for fixed field 
strengths are called gauges. The class of gauges satisfying the extended Lorentz 
convention of Eqs.(1.6-23) and (1.6-24) is called the extended Lorentz gauge. It 
has the two independent functions \e and xm , while in the conventional theory 
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we have only the one function X- There are two functions %e and Xm whether 
or not magnetic monopoles exist. 

Besides the extended Lorentz gauge we introduce the extended Coulomb 
gauge by the definitions 

divAm = 0 (6) 

divAe = 0 (7) 

Substitution into Eqs.(1.6-18)-(1.6-21) yields the field equations 

•Am - ^ grad -£ = - -g e (9) 

V2(Ae = ~Zcpe (10) 

V 2 0 m = - J p m (11) 

It is usual to state that the electromagnetic field in free space without cur­
rent or charge densities is represented by Eqs.(1.6-26)-(1.6-29) or Eqs.(8)-(11) 
with gm = ge = pe = pm = 0. We must be cautious with such choices. One 
may state that in the absence of electric and magnetic charges at the beginning 
one may choose pe = pm = 0 since the conservation law of charges prohibits the 
generation of charges from nothing. This reasoning does not apply to the cur­
rent densities ge and gm since they do not have to represent monopole current 
densities that require charges. Dipole and higher order multipole currents do 
not require net charges and they are thus not precluded by the conservation law 
of charge. If we accept the principle of vacuum polarization we must accept the 
creation of dipoles which in turn produces dipole current densities ge and gm. 
The different role of charges and dipole currents is shown by Eqs.( 1.2-9) and 
(1.2-10). If we choose there s = 0 or a = 0 we eliminate the current densities 
gm or ge according to Eqs.(l.l-14) and (1.1-15). But the choice pe = pm = 0 in 
Eq.(l.l-lO) and (1.1-11) has no effect on Eqs.(1.2-9) and (1.2-10). The choice 
of either s = 0 or a = 0 in Eqs.(1.2-9) and (1.2-10) eliminates the term soE in 
Eq.(1.3-1) and the resulting equation does not yield solutions that satisfy the 
causality law. Hence, the transition ge —» 0 and gm —> 0 in Eqs.(8) and (9) can 
be made only at the end of the calculation. 

The energy U of the electric and the magnetic field strength in a certain 
volume is given by the integral over the energy density u in that volume; dV 
denotes the three-dimensional volume element1: 

lrThe analysis follows closely Chapter I, § 1 of the renowned book by Heitler (1954) in 
order to facilitate comparison. 
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The product momentum x c will be referred to as usual as momentum. 
The momentum of the field defined in this way in a certain volume equals 

From Eqs.(2.1-2) and (2.1-3) as well as (2.2-2) and (2.2-3) we obtain the 
forces acting on electric and magnetic charges in a certain volume: 

Km = JJJkmdV = JJJPe ( E + | v x H ) dV (14) 

Ke = JJJ KdV = JJJ pm ( H - ^ V X E ) dV (15) 

Since Km and Ke equal the force of inertia of electric and magnetic monopoles 
they must also equal the change of mechanical momentum of the electric and 
magnetic monopoles per unit time: 

Km + K e = - $ (16) 
c dt 

If there are no electric or magnetic charges but induced electric dipoles 
and inherent magnetic dipoles one must use Eqs.(2.1-8) and (2.2-6) for Km 

and Ke. For a mixture of electric monopoles and dipoles one must use the sum 
of Eqs.(2.1-3) and (2.1-8) using mi, Vj or m^, \2 for m and v. 

The change of the kinetic energy Tm and Te of electric and magnetic 
monopoles is defined by 

dTm 

dt 
= JJJkm-vdV (17) 

ke-vdV (18) §-/// 
where km represents the density of force defined by Eq.(2.1-2) and ke the one 
defined by Eq.(2.2-2). 

Consider first Eq.(17). With the help of Eqs.(2.1-1) and (1.6-1) we may 
write 

%-Jff^'r-JIJ »*•{* + ****)« 
-III E-\™™--k™)dv <19> 

With the relation 
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and Eq.( 1.6-2) we obtain 

Equation (19) can be rewritten with the help of Eq.(12): 

^ = - ^ + / / / ( E - C U r l H - H ' C U r l E ) d y - / / / H - g m ^ 
(22) 

For dTe/dt of Eq.(18) we obtain with the help of Eq.(2.2-2) the following 
relation in analogy to Eq.(19): 

f • / / / f c " * - / / / w ' ( H - E v " ' ) * 
- / / / H •(-»+!§)«' (23» 

We may rewrite H • dH/di with the help of Eqs.(20) and (1.6-1): 

Equation (23) can be rewritten with the help of Eq.(12): dTe 
dt 

= ~1I+ / / A E ' CUrl H ~ H CUrl E^dV ~ IIIE 'ge dV ^ 
Using the relations 

div(E x H) = E • curl H - H curl E (26) 

/ div(E x H)dV = - I(E x H)n • dF (27) 

where n denotes the component of E x H normal to the surface of the volume, 
we obtain from Eqs.(22) and (25): 

d(Tm + U) 
dt 

d(Te + U) 
dt 

•I(ExH)n-dF-jJJli-gmdV (28) 

• / ( E x H ) n - d F - [Jf-E-gedV (29) 
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The sum of these two equations yields: 

= - i ( B x H)n • dF (30) 

With the help of Eqs.(14) and (17) we get 

JJJ E • ge dV = JJJ Fpe -ydV = JJJkm-vdV=^- (31) 

while Eqs.(15) and (18) yield 

JJJ H • gm dV = JJJ HPm • v dV = JJJ ke • v dV = ̂  (32) 

• £(E x H)„ • dF (33) 

and Eq.(30) assumes the final form: 

d(U + Tm+Te) 
dt 

The right side of this equation represents the electromagnetic power flow­
ing through the surface of a certain volume. The left side represents the change 
with time of the electromagnetic energy U as well as the kinetic energy Tm and 
Te of the electric and magnetic monopoles in the volume. 

Let us turn to Eq.(16). If we have electric and magnetic monopoles we 
obtain with the help of Eqs.(2.1-1), (2.2-1), and (1.6-l)-(1.6-4): 

ldu ffffl„,. „ ZTT 1TT 1 dE __\ Jjr 
— - = / / / —--EdivE H x c u r l H - ^ — - x H ) dV 
c dt JJJ \Zc c c2 dt J 

+ / / / ( f H d i v H - ^ E x c u r l E + l f x E ) d y (34) 

The first line in Eq.(34) is conventional, the second line shows the contribution 
of magnetic monopoles. With the help of the relation 

- ( E x H ) = - x H + E x - (35) 

as well as Eqs. (1.6-1) and (1.6-2) we may write 

^ x H = ^ ( E x H ) + - ^ E x ( c u r l E + gm) (36) 

^ x E = - 4 ( E x H ) - Z c H x ( c u r l H - g e ) (37) 
dt dt 
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Using Eq.(13) we obtain the following form of Eq.(34): 

~dt 
- ^ - ([J f - ^ E d i v E + ZH x curlH + ^ E x curlE J dV 

HI (-ZH div H + ZH x curl H + ^ E x curl E^ dV 

jJJKxgedV (38) 

dG 
dt 

+ Z 

The first line of this equation is equal to that of the conventional theory. The 
third line is due to the contribution of the magnetic monopoles. The second 
and the fourth line contain extra terms for lines one and two. 

From Eqs.(14) and (15) we get with the substitutions ge = pev and gm = 
PmV. 

| JjJ E x gmdV = cjjjke dV - cJJJPmKdV 

= cKe - Z /77HdivHdF 

Z If [H x gedV = -c HlkmdV + c Iff pe-EdV 

= -cKm + y HI E div E dV 

Using Eq.(16) we may now rewrite Eq.(38) in a shorter form: 

d(u + G) 

(39) 

(40) 

dt 

/ / / ( * 
EdivE + ZHdivH - ZH x curlH - - E x curlE dV (41) 

In order to show the physical meaning of Eq.(41) we introduce the Maxwell 
tensor discussed in Section 2.4: 

( ±xx -*-xy -Lxz \ 

•Lyx J-yy -Lyz I 

•* zx -L zy J-zz / 

x 2c 

lyy ~ 2c 

Tzz = 
2c 

±{+E2 _ E2 _ E2z) + Z{+H2 _ jj2 _ H2z) 

\{-El + El - El) + Z{-Hl + Hi - Hi) 

h-El - El + El) + Z(-Hl - Hi + Hi) 
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J-xy — -Lyx 1 7 c \Z 

-(-c \Z 

1 / l 

EXEy + ZHxHy I 

Txz = Tzx = - —EXEZ + ZHXHZ c \ Z 

Tyz = Tzy = - ( —EyEz + ZHyHz 

For the a;-component of the tensor divergence DivT we get: 

(42) 

p.. rp OlXX OlXy OlXZ 

dx dy 
dEx 

dz 
1 / Mx_ dEy_ dE, 
z V" dx *y dx ^ dx 

dx y dx + Z | H , ^ - H „ ^ - H / H -

+ 1 ^ + ^ 

[Hxit+Hy 

+ Z(HX^ + HZ 
dz 

dx 
dHx 

dy 
dHx 

dz 

.ExdivE + ZifxdivH 

Z(H x curlH)* - - ( E x curlE)a 
ZJ 

(43) 

This is the a;-component of the kernel on the right side of Eq.(41) multiplied 
by 1/c. Applying Gauss' formula to Eq.(43) 

/ D i v x 7 W = j>TxndF (44) 

we may write the ^-component of Eq.(41) in the following form: 

d(ux + Gx 

dt -f c d> Txn dF (45) 

The right side of this equation represents the a;-component of the momen­
tum flowing through the surface of a certain volume into that volume. The left 
side represents the change with time of the ^-components of the mechanical 
momentum u and the momentum G of the electromagnetic field. 

We note that divH = 0 according to Eq.( 1.6-4) will remove the term 
ZHdivH from Eq.(41) and the term ZHX divH from Eq.(43). Hence, the 
conservation of momentum applies both for divH = 0 and divH ^ 0. The 
same independence from divH holds true for Eq.(33); since divH was not 
used for its derivation it makes no difference whether it is zero or not. 



3 Hamiltonian Formalism 

3.1 UNDEFINED POTENTIALS AND DIVERGENT INTEGRALS 

If we choose Ae = 0 and cj>m = 0 in Eqs.(l,6-17) and (1.6-11) we obtain 
the field strengths E and H from the potentials Am and 4>e for the original 
Maxwell equations as previously shown by Eq.(1.6-35): 

E = - ^ - g r a d ^ e (1) 

H = | c u r l A m (2) 

We are going to show that Am is generally not determined or is represented 
by a divergent integral. One will suspect that this is a sufficient cause for at 
least some of the divergencies that plague quantum field theory and that are 
sidestepped currently by means of renormalization1. 

Let the electric field strength E of Eq.(l) be linearly polarized and point in 
the direction z as shown in Fig.3.1-1. The magnetic field strength H of Eq.(2) 
shall point in the direction of x: 

E = EE(C,e)ez = EEez (3) 

H = HE({,9)ex = HEex (4) 

Equations (1) and (2) are rewritten in component form: 

^ F + ̂  = 0 (6) 
at ay 

dAmz + d^^EE ( ? ) 

dt dz 
c i aAmz oAmy 

Z \ dy dz 
HE (8) 

1The results of this section were first mentioned on pages 2 and 6 of Harmuth and Lukin 
(2000). 

68 
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FiG.3.1-1. Orientation of the field strengths E and H of Eqs.(3) and (4) 

'dAmx dA 
mz dz 

dx 

dx 
dAmx 

dy 

= 0 

= 0 

(9) 

(10) 

Since E and H in Fig.3.1-1 represent a planar wave propagating in the direction 
y all derivatives with respect to x or z are zero: 

dcj)e _ d<pe dAmx _ dAmy _ dAmy _ 
dx dz dz dx dz 

Using the normalized notation of Eq.( 1.3-7) 

2f 2 1 IT 

a Zca a y H 

we obtain: 

dAmz 

dx 

h 

= 0 (11) 

(12) 

dA„ 

Za_ 
2 

dA my 
+ 

de 
d(pe 

dd ' ac 
Zca dAmz 

~2 W 
cadAmz 

2 d( 
ca dAmx 

2 dC, 

= 0 

0 

= £ E ( C , 0 ) 

= HE(c,e) 

= o 

(13) 

(14) 

(15) 

(16) 

(17) 

We see from Eqs.(13) and (17) that Amx is independent of C a n d 6, which 
means it is a constant. Furthermore, Eqs.(14)-(16) yield: 

- - / 

dAm 

d9 <-dc 

A — 
2 

Zca . 
JEE(C,9)de 

Amz = — [HE(c,e)dC 
ca J 

(18) 

(19) 

(20) 
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In Eq.(18) we may choose any value we want for Amy and get a defined value 
of <pe. This freedom to choose reflects the fact that a variety of gauges for 
A m yield the same field strengths E and H. In Eq.(19) we may substitute 
for EE((,0) the function E ^ of Eq.(1.3-17) and obtain a defined result for 
Amz according to the plots of E^] in Figs.1.3-1 and 1.3-3. But for HE(C,0) 
in Eq.(20) we must substitute HE{(,8) of Eq.(6.2-51). This equation contains 
a divergent integral and leaves the magnetic field strength Hv(£,6) undefined. 
Hence, Eqs.(19) and (20) contradict each other and Eqs.(l) and (2) must be 
wrong. 

The divergence of Eq.(6.2-51) is discussed in detail in Section 6.2. It is due to 
the first integral of Eq.(6.2-51), which may be written for values of the variable rj 
close to zero in the form 

/ ' 
Jo 

COSTjC , 1 
—5—d»7« -

V2 V 
£ < 1 

which shows the type of divergence. 
This result holds so far only for excitation by an electric step function 

according to Eq.(1.3-14) or an electric current density with the same time vari­
ation according to Eq.(1.6-5). However, the result derived for a step function 
has been generalized in Section 1.4 in connection with Fig.1.4-2 and this gener­
alization applies here too. Using series expansions in terms of time-shifted step 
functions we can obtain the electric and magnetic field strengths for electric 
excitation functions with any time variation that is of physical interest. It is 
possible that there are cases where Eqs.(19) and (20) do not contradict each 
other, but this must be shown rather than taken for granted. Of course, when­
ever the effect of magnetic dipole currents cannot be neglected one must use 
Eq.(l . l-9) with g m ^ 0 and Eqs.(l), (2) are replaced by Eqs.(21), (22) below 
regardless of the relation between current densities g e , g m and field strengths 
E, H. 

It has been known at least since Weisskopf and Wigner (1930a, b) that 
the quantization of the electromagnetic field based on Eqs.(l) and (2) leads to 
divergent integrals but it was generally believed that the problem was caused 
by the quantization process rather than by Maxwell's equations2. We shall 
discuss this point in more detail from Section 3.4 on. 

To see how the same calculation works with the potentials of the modified 
Maxwell equations we start with Eqs.(1.6-17) and (1.6-11): 

dA 
E = - Z c c u r l A e - —p- - graded (21) 

at 
c dA 

H = - curl A m - -jr^ - grad <pm (22) 

2Weisskopf and Wigner (1930a) start on p. 59 with our Eqs.(l) and (2) for 0e = 0 and 
arrive at an integral denoted (17) by them. In a footnote on p. 64 they point out that the 
integral diverges unless one limits the integration interval. But a skillful choice of the limits 
produces the desired result. 
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The equations are rewritten in component form using again the field strengths 
E and H of Eqs.(3) and (4): 

(dAez dAey\ dAmx dcf>e , . 
-Zc{-df--dr)--dr-^ = 0 ( 2 3 ) 

fdAex dAez\ dAmy d<pe _ n (0A, 
~Zc \~d~z dx~) ~ ~dT ~~dy~~U {Z) 

(dAev dAex\ dAmz d(j)e . . 
-Zc{-dx---dy-)--^r--d7 = EE ( 25 ) 

c fdAmz dAmy\ dAex d<j>m 

Z\dy dz J dt dx 
c (dAmx dAmz\ dAey d(f>m 

Z V dz dx J dt dy 
c ( dAmy dAmx\ dAez d(j>„ 

Z \ dx dy J dt dz 

HE (26) 

0 (27) 

=0 (28) 

The conditions of Eq.(ll) for a planar wave propagating in the direction y are 
augmented for cf>m and Ae: 

d<t>m _ d4>m _ dAex _ dAey _ dAey _ dAe 

dx dz dz dx dz dx 
Using the normalized variables of Eq.(12) we get: 

0 (29) 

c ^ + f = 0 (31) 

W-w-0-^)'**™ (32) 

? ( ^ f - ^ ) = ^ ^ ) (33) 

e ^ + ^ = 0 (34) 

9Amx+zdA^ = Q ( 3 5 ) 

d( d6 

Equations (31) and (34) yield </>e and 0m as functions of Amy or A 

= - c / ^ f d C (36) 

= - c / ^ « (37) 

file:///~d~z
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From Eqs.(30) and (35) one gets 

1 / OAmx 

or 

1 *&«---, J dAn 

dAez 

oe 

-dO 

d< 

(38) 

(39) 

Differentiation of Eq.(32) with respect to 9 and of Eq.(33) with respect to £ 
yields the one-dimensional, inhomogeneous wave equation for Amz 

d2Am2 d2Amz 2 (dEE BHE\ 
0(2 d62 Zca \ 

and the values of Aex as function of An 

+ Z-IK) 
(40) 

A e x - z J [ ^ + J U U = i / ( 1 f(dAm 

09 ' Zca^)a" = zJ l~aC ca' 
—HE d9 (41) 

Instead of Eqs.(40) and (41) one may also derive the following relations 
from Eqs.(32) and (33): 

dc2 
d2Aex d2Aex _ 2 (1 0EE 0HE\ 

09 J d62 Zca \Z dC 
(42) 

"§* + f*l* dJt + -kH^ ^ 
Equations (40) and (42) are inhomogeneous wave equations with one spa­

tial variable. Their solution is known3: 

C+(e-e') 
fdEE(c,e') { zdHE{t',e>)^dC 

*-«•*> = - * b / I ( oe> • - ac 
o l(-(e-e<) 

C-(e-e') 
z oc 

dJB' (44) 

d6' (45) 

The notation EE(C,9') and HE((,',9') means that the variables £ and 0 
of £ E in Eqs.(6.1-39), (6.4-29), (1.5-2) and for HE in Eqs.(6.2-41), (6.5-15), 
(1.5-4) are replaced by (/ and 9'. 

3Smirnov 1961, vol. II, Cha. VII, § 1, Sec. 174, Eq. 95 
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FIG.3.1-2. Plot of ZcoAmz«:;,B)/El according to Eq.(46) for w = 0.01 in the interval
o< ( < 5, 0 < B < 10.

FIG.3.l-3. Plot of ZcuAmz(,B)/E1 according to Eq.(46) for w = 0.1 in the interval
a< ( < 5, a< B< 10.

sa
FIG.3.l-4. Plot of ZcuAmz(, B)/El according to Eq.(46) for w = 0.99 in the interval
a< ( < 5, 0 < B< 10.
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FlG.3.1-5. Plot of ZcaAmz{C,6)/Ei according to Eq.(46) for u = 0.01 in the interval 
0 < C < 2 , 0 < e < 2.5. 

FlG.3.1-6. Plot of ZcaAmz(C,0)/Ei according to Eq.(46) for w = 0.1 in the interval 
0 < C < 2 , 0 < 0 < 2.5. 

FlG.3.1-7. Plot of ZcaAmz(C, 6)1 Ei according to Eq.(46) for w = 0.99 in the interval 
0 < C < 2 , 0 < e < 2 . 5 . 
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FlG.3.1-8. Plot of Z2ccrAez{C, 0)/Ei according to Eq.(47) for w = 0.05 in the interval 
0 < C < 5, 0 < 0 < 10. 

FlG.3.1-9. Plot of Z2caAez(C,6)/E1 according to Eq.(47) for u) = 0.1 in the interval 
0 < C < 5, 0 < 0 < 10. 

FlG.3.1-10. Plot of Z2caAez(C, 9)/Ei according to Eq.(47) for w = 0.99 in the interval 
0 < C < 5, 0 < 6 < 10. 
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FiG.3.1-11. Plot of Z2caAez(t, 6)/E1 according to Eq.(47) for w = 0.05 in the interval 
0 < C < 2 , O<0< 2.5. 

FlG.3.1-12. Plot of Z2caAez(C, 6)/Ei according to Eq.(47) for w = 0.1 in the interval 
0 < C < 2 , 0 < 6 " < 2.5. 

FlG.3.1-13. Plot of Z2caAet{C,, 8)/Ei according to Eq.(47) for ui = 0.99 in the interval 
0 < C < 2 , O < 0 < 2.5. 
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We may now recognize why the electric field strength of Figs.1.3-1 and 1.4-
1 as well as the associated magnetic field strength of Figs.1.4-4 and 1.4-6 were 
not satisfactory. The steps or jumps at 9 = £ yield undefined derivatives which 
create a problem in Eqs.(44) and (45). The field strength due to exponential 
ramp function excitation in Figs.1.5-1 to 1.5-4 have defined derivatives OEE/09, 
dEv/dC, and dHE/dO, dHE/d{ for all values of C and 9 in the interval 0 < C < 
°° , 0 < 9 < oo. These field strengths can be substituted into Eqs.(44) and 
(45). The evaluation offers not particular mathematical difficulties but it is 
very laborious. For this reason it is carried out in Sections 6.6 and 6.7. 

The two integrations of Eq.(44) can be done analytically and the normal­
ized component Amz{C,,9) of the potential A m can be brought into the form of 
Eq.(6.6-27): 

Zca 

~E7 
Am2((,9) 

e-2"C / I _ c h 2 w 0 w B-2(l+u,2)B 

u V w (l + w2) - w 2 

(1 + w2) sh 2u6 - w ch 2w9N 

+ 

16(l+o;2) 
r I — U. 

/ 
L o 

(1 + w2)2 

2 

sin $77 

•W 

+ 
OO 

/ 
sin Or] 

^%(j]2 +4w 2 ) 

(L21 sin 07 - L22 cos C,rj)dr) 

(L25 sin Cv - L26 cos C,rj)dr] 

W l = [ ( l - o ; 2 ) 2 - ^ ) 1 / 2 , W-{i-J?]x'\ ui = [r)" - (1 - W j ' j ' ' , w° — es/fia (46) 

The functions L2 i = L2i(C,0), ^22 , £25, and L26 are defined by Eqs.(6.6-15), 
(6.6-16), (6.6-19), and (6.6-20). 

Equation (45) for the component Aex(C,0) of the potential A e can be 
brought into the form of Eq.(6.7-18): 

^Aex((,e) = - e - 2 - c ( I ( 1 _ch2wfl) + — 
•C<1 ^UJ ( 1 • + w 2 ) 2 _ w 2 

x [[(1+ w2)2 +w]{e-^+»2V - ch2u;0) + (1 + w 2 ) ( l + u>) sh2w6>] | 

+ 
8 ( 1 + w 2 ) 

y »?: 
cos £77 

+ 4w2 
f 1 + o>4 + c^2 2w2 

1 + a;4 + u!2 

J 2 1 ^23 sin $77 

2w2 

+ 
00 

/
cos £77 T /?7: 

r,2 + 4w2 [ V 

7 7 ^ 1 

2 - l + o / 4 

^22 -<24 cos 9rj dr) 

770/2 
^ 2 5 

2w2 

^27 sin #77 
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T]2 - 1 + W4 - U)\T 2 w _ . 
L2 6 L2s cos #77 

TJUJ2 TJ 

,2\2 „2\l/2 

d?7 

W l = [ ( l - W
2 ) 2 - ^ ) ^ , u * = [ , , 2 - ( l - " a ) 2 ] - w2 = e*//«r (47) 

The function L2i to L28 are defined by Eqs.(6.6-15)-(6.6-22). 
We still have to show that Eqs.(46) and (47) are actual solutions rather 

than formal solutions. This can be done most convincingly by producing plots. 
Figures 3.1-2 to 3.1-4 show three-dimensional plots of ZcaAmz((, 0)/Ex accord­
ing to Eq.(46) for u = y/se/on = 0.01, 0.1, and 0.99 in the interval 0 < C < 5, 
0 < 6 < 10. We note that the peak amplitude in Fig.3.1-3 is smaller than the 
peak amplitudes in either Fig.3.1-2 or 3.1-4. Figures 3.1-5 to 3.1-7 show the 
same function with the same values of w but in the smaller interval 0 < £ < 2, 
0 < 6 < 2.5. Again the peak amplitude in Fig.3.1-6 is smaller than in Figs.3.1-5 
or 3.1-7. 

Figures 3.1-8 to 3.10 show Z2caAea:((,6)/Ei according to Eq.(47) for u> = 
0.05, 0.1, and 0.99. The value of u in Fig.3.1-8 was increased from 0.01 to 0.05 
since the function varies rapidly for small values of u>. Figures 3.1-11 to 3.1-13 
show again Z2caAex(C, 9) for w = 0.05, 0.1, and 0.99 but in the smaller interval 
0 < C < 2 , Q<0< 2.5. 

The derived results apply to the field strengths of Eqs.(3) and (4) excited 
by the exponential ramp function of Eq.(1.5-1) only. However, the purpose 
of this section is strictly to give a convincing example that Eqs.(21) and (22) 
rather than Eqs.(l) and (2) should be used. There is no need to demonstrate 
the general proof of Section 1.4 with more examples, particularly since we have 
the independent and different proof of Hillion mentioned in the third paragraph 
from the end of Section 1.4. 

The smoothness of the plots of Figs.3.1-2 to 3.1-7, 3.1-9, 3.1-10, and 3.1-13 
implies that the derivatives of the potentials with respect to £ and 6 exist and 
that the field strengths according to Eqs.(32) and (33) can indeed be derived 
from the potentials. Figures 3.1-8, 3.1-11, and 3.1-12 are not smooth due to 
the rounding errors of the computation for small values of u>, £, and 6. 

3.2 CHARGED PARTICLE IN AN ELECTROMAGNETIC FIELD 

We start with the Lorentz equation (2.1-3) and use the force of inertia 
d{mv)jdt rather than mdv/dt as in Eq.(2.1-4): 

— (mv) = e E + — v x H (1) 
dt c 

The field strengths E and H are written in the potential form of Eqs.(1.6-17) 
and (1.6-11): 

8A 
E = -Zccurl A. - ^ - grad 0e (2) 

at 

H = % curl Am - - r - 1 - grad 0m (3) 
Z at 
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Substitution of E and H into Eq.(l) yields: 

— (mv) = e( -grad0 e —^ + v x curlAm) 

(v x g r a d 0 m + v x — p + c 2 c u r l A e ) (4) 

The first line is the conventional equation of motion of an electrically charged 
particle in an EM field. The second line contains additional terms due to 
magnetic currents (Ae) and hypothetical magnetic charges (</>m). 

We follow the usual course in rewriting Eq.(4) with the help of a Lagrange 
function L, spatial variables Xj = x\, X2, xs — x, y, z and velocity variables 
dxj/dt = ij. The Lagrange function must satisfy the Euler equations 

d (dL\ dL . 

which derive the equation of motion from the principle of least action by Mau-
pertuis and Hamilton. 

In order to get the terms dAm/dt and v x dAe/dt in Eq.(4) to the left 
side we write: 

dAm dAm dAm . dAm . dAm . 
-ir = -dF + ^x-x+^y-y+^rz (6) 

d dv A dAe 

- ( v x A e ) = - x A e + v x — 
dv . dAe (. d . d . d \ , 

' z— (v -atxA-+vx^r + \±^+6di+id-z)ivxA') (7) 

Substitution of dAm/dt and v x dAe/dt into Eq.(4) brings: 

- ( m v + eAm) + - - ( v x A e ) 

/ dAm dAm dAm 

= e I - grad 0e + " S ^ + " ^ 2 / + "TT2^ + v x c u r l A " 

Ze 
+ — 

c 
dv A f. d . d . d \ , 

-vxgrad<Am + - x A e + ^ - + 2 / - + z - J ( v x A e ) 

- c 2 c u r l A e (8) 

We break Eq.(8) into two equations. The first is the same as obtained 
from the classical Maxwell equations, the second contains the terms due to the 
modification of Maxwell's equations: 
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— (mv + eAm) = e - grad <pe 

dAm. dA 
+ —z—x + dx dy 

H—-—z + v x curl An 0z (9) 

Ze d . A , Ze 
— (VX A e ) = 

c at c 
• v x g r a d <j>n dt 

x A , 

i'. 9 . d . d \ , . . , 
(10) 

Writing grad <f>e and v x curl Am in component form in a Cartesian coordinate 
system yields the following well-known re-component of Eq.(9): 

— (mi + eAmx) = e—(-(pe + Amx± + Amyy + Amzz) (11) 

The y- and z-components follow with the substitutions x —> y —• z —» x. 
These substitutions leave the term in parenthesis on the right side of Eq.(ll) 
unchanged. 

The Lagrange function £ M for Eq.(ll) is found in many textbooks; the 
subscript M refers to 'Maxwell': 

£ M = 2 m ( ± 2 +V2 + i 2 ) + e(-<k + Amxi + Amyy + Amzz) (12) 

Differentiation of £ M with respect to x yields 

dx 
•• mx + eAn (13) 

and the substitution of £ m for L in Eq.(5) yields Eq.(ll). 
Next we write v x Ae, grad<£m, (dv/dt) x Ae, and curl A of Eq.(10) in 

component form. The x-component of Eq.(10) becomes: 

Zed_ 
c dt 

(Aezy - Aeyz) = — — I {Aezy - Aeyz)x 

dAe 

dy 

+ \y-d-^
+i

d-z)(
Ae*i>-A°y*) 

dz 

dx\ (14) 

As before, the substitutions x —» y —» z —* x yield he y- and z-components. 
We try the following Lagrange function Lcx for Eq.(14); the subscript c 

refers to 'correction': 
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Jtc 
£e 
c 

\{Aezy - Aeyz)x + J [ - (^fy - ^ i ) + Aezij - Ae 

dAez dAev\ (. d . d . . „ . . ., 
dx 

UrxAe)xx+ / - f r x - | ^ j + (f x A e ) s - c2(curl A e ) a = —<{ (r x A e)^i;-

+ ( ^ + i | ' ( t X A e ) a ; dx 

r = ze^ + yev + zez 

Differentiation of Lcx with respect to x yields 

OKIQX Ze. 
{Aezy - Aeyz) 

(15) 

(16) 
dx c 

and the substitution of Hcx for L in Eq.(5) yields Eq.(14). 
In the case of the Lagrange function £ M of Eq.(12) we could differentiate 

with respect to x, y, or z to satisfy Euler's equation (5). This is no longer so. 
If we want to satisfy Eq.(5) for x% = y and X3 = z we must replace Eq.(15) 
by £jcy and Lcz. These functions are obtained from Lcx by the substitutions 
x —y y —> z —> x. We write them here explicitly due to their fundamental 
importance: 

-T{< £ci, = ^ ^ (Aexz - Aezx)y + z - — x I + J\exz J\ezx 
dx dz 

c 

Ze (,. 

dAea 

dz 

dAez 

dx + ' kTz+ *dx ' ^Aexi ~ Aez±^ dy\ 

= -^ | ( rx Ae)yy + y - r x 
dcj>m 

dv 
+ (f x A e ) y - c 2 ( c u r l A e ) ! / 

+ | z ^ + ^ ) ( r x A e ) * 
dy (17) 

£cz = — \ (Aeyx - Aexy)z + I 
d<pm . d(pm .\ .. . 

X — y J + JieyX — Aexy dy dx 

.,>(!** - ^ ) + ( * | + *£K^- .C*) 9a; 
dz 

Ze 
' r x A e ) 2 i 

' • / 
r x 

d<t>m 

dr 
+ (r x A , ) 2 - c 2 ( c u r l A e ) * 

^l+C^^W (18) 
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Let us observe that we added one term g m in Eq.( 1.1-9) to change the 
Maxwell equations to the modified Maxwell equations. But Eqs.(15), (17), 
and (18) written in vector form like Eqs.(1.1-8) to (1.1-11) add six terms to 
the conventional Lagrange function of Eq.(12). This increase of the number of 
terms is characteristic for the use of the modified Maxwell equations in quantum 
electrodynamics. 

For an understanding of the Lagrange function consider a spinning bullet 
shot upwards. The kinetic energy will be transformed into potential energy on 
the way up and back to kinetic energy on the way down. Such transformable 
energies are represented by the Lagrange function £ M of Eq.(12). The rota­
tional energy of the spinning bullet will not be transformed into either kinetic 
or potential energy. Since the axis of the spin does not change, the energies of 
the x-, y-, and ^-components of the rotational energy will not be transformed 
either. Such non-transformable energies are represented by the Lagrange func­
tion with the components Lcx, Lcy, and &cz of Eqs.(15), (17), and (18). One 
must be careful not to read too much into this analogy of a spinning bullet. 
The term cur lA e in Eq.(lO) represents a rotation but it is not evident why 
all the other terms should be interpreted as rotations. At this time it is best 
to think of transformable and non-transformable energy and avoid any more 
detailed interpretation. 

We may write the Lagrange function for Eqs. (4) or (8) as a vector £ that 
is the sum of two vectors £ M and £ c 

£fc = £ M + &ck, k = x, y, z (19) 

with the components Lk, k = 1, 2, 3 or Lx, &y, Lz. The three components 
&cx, &cy, &cz of £ c are defined by Eqs.(15), (17), and (18), while all three 
components of -CM a r e defined by Eq.(12). 

We shall need relations between the moments px, py, pz and the variables 
x, y, z. The moments are the derivatives of the components Lj = &x, &y, &z 

with respect to ij = x, y, z. From Eqs.(12) and (15) we get: 

ox ox c 

Py 

dLx 

dx 

dy 
A Z e , A A • \ 

my + eAmy + — ( A e x z - Aezx) 

d&z • . Z e . . . . . . 
Pz = -^r - =mz + eAmz H {Aeyx - Aexy) 

oz c 

(21) 

(22) 

In order to obtain x, y, z as functions of px, py, pz we must solve these 
equations for x, y, z. First we define a common denominator D: 

D •• m 
^£\ ( A2 , „2 , A2 ^ , _ 2 
c / 

(Aix + Aiy+Aiz)+m< = m m2 + (?-)! (23) 
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Then we write the solutions for Dx, Dy, Dz: 

/ 7f> \ 2 

Dx = ( — J Aex[Aex{px - eAmx) + Aey(pv - eAmy) + Aez(pz - eAmz)) 

+ -^[Aey(pz - eAmz) - Aez{jpy - eAmy)\ + m2{px - eAmx) 

(Ze\2 

= m2(p - eAm)x + ( — j AexAe • (p - eAm) 

+ ^ [ A e x ( p - e A m ) ] x (24) 
c 

DV = ( ~ ) Aey[Aex{Px - eAmx) + Aey(py - eAmy) + Aez(pz - eAmz)) 

+ —— [AeZ(px - eAmx) - Aex{pz - eAmz)\ + m2{py - eAmy) 

Ze' 

' 7 e> \ ^ 

= m2(p - eAm)B + ( — J AeyAe • (p - eAr 

+ - ^ [ A e x (p - eAm)]y (25) 

Dz — I I Aez[Aex[px — eAmx) + Aey(jpy — eAmy) + Aez[pz — eAmz)\ 

H \Aex\Py — eAmy) — Aey[px — eAmx)\ + m [pz — eAmz) 

(Ze\2 

= rn2(p - eAm)z + — AezAe • (p - eAm) 

+ - ^ [ A e x ( p - e A m ] , (26) 

For Ae = 0 we get the usual equations mx = px — eAmx, etc. In addition to 
the first derivatives x, y, z we will also need the second derivatives x, y, z. We 
multiply the second derivatives with the common denominator D2, where D is 
defined by Eq.(23). The vector notation rather than the component notation 
is used since it is shorter: 

/ 7t>\ ^ 
+ f — j {(AexAe + AexAe) • (p - eAm) + AexAe • (p - eAm)] 

+ - ^ [ A e x (p - eAm) + Ae x (p - eAm)]x \ 

-2m(—J A e - A e ^ m 2 ( p - e A m ) x + f — j AexAe • (p - eAm) 

+ ^ [ A e x ( P - e A m ) ] x | (27) 

file:///Aex/Py
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#s=D(°m-M'\ = y^u\rdT-y-ms=m 

Ze 

- 2 + ( f ) A2 m2(p - eAm)9 

+ \T) KAevAe + A*vAe) • (p - eAm) + AeyAe • (p - eAm)] 

+ -^—[Ae x (P - eAm) + Ae x (p - ekm)]y 

Ze 
c 

- 2 m ( —: ) A e- A j m 2 ( p - e A m ) y + ( —: I AeHAe • (p - eAm) ?)' 

D2z = D 
d(Dz) .3£> 

3t * « • , = m 

+ ^ p [ A e x (p - cAm)]„ J (28) 

m2(p - eAm)2 m 2 + ( ^ ] A2 

Ze\ 
+ [—) [(^eZAe + AezAe) • (p - eAm) + AezAe • (p - eAm)] 

+ - ^ [ A e x (p - eAm) + Ae x (p - eAm)]J I 

ZeV Ze 2m[~) Ae- A e j m 2 ( p - e A m ) z + I ^ j yUA e • (p - eAm) 

+ ^ [ A e x ( p - e A m ) ] , | (29) 

In order to obtain the Hamilton function JC from the Lagrange function 
£ we observe that XL is a vector with three components. Hence, "K must be a 
vector with three components "K^-

3 

0<k(Pj,Xj,t) = ^2PJ±J -Lk=p-r~Lk, k = x, y, z (30) 
3 = 1 

From Eqs.(20)-(22) we get 

^Pjij = pxx + pyy + pzz 

= m(x2 +f + z2) + e(Amxx + Amyy + Amzz) 

= mr2 + eAm • r (31) 

since the terms multiplied by Ze/c cancel. The following three components "Kk 
are obtained from Eqs.(19), (12), (15), (17), and (18) due to the cancellation 
of the terms Amxx + Amyy + Amzz: 
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3ix = -m(x2 + y2 + z2) + e<j>e - Lcx = -mi:2 + e<pe - Lcx (32) 

5iy = -m(x2 +y2 + z1) + e<j>e - Hcy = -mi2 + e(j>e - £ c y (33) 

"Kz = -m(x2 +y2 + z2) + e<j>e - Ccz = -mv2 + e<pe - Lcz (34) 

The Hamilton function should be written in terms of the momentum p and 
the potentials </>e, <pm, Am , Ae. One can do so by substituting x, y, z, x, y, z 
from Eqs.(24)-(29) into Eqs.(32)-(34) as well as Eqs.(15), (17), and (18). This 
is quite tedious. Let us first gain some understanding of the Hamilton function. 
To this end we return to Eqs.(20)-(22) and see under what conditions the terms 
multiplied by Ze/c will be small. Prom Eq.(20) we get a first condition 

—A e zy <C mx and —A e yz <S mx (35) 
c c 

which may be rewritten as follows: 

mc2 3> ZecAezy/x and mc2 » ZecAeyz/x (36) 

In case x is close to zero while y and i are not we require an alternate condition 
for Eq.(20): 

Amx » ZAezy/c and Amx > ZAeyz/c (37) 

Equations (36) and (37) state in essence that either the energy mc2 should 
be large compared with the energy due to the potential Ae or the magnitude 
of the potential Am should be large compared with the magnitude of Ae. 
More detailed statements referring to the terms y/x, z/x, y/c, and z/c are 
not of interest here. Relations equivalent to Eqs.(35)-(37) may be derived 
from Eqs.(21) and (22) too. If these conditions are satisfied we may rewrite 
Eqs.(20)-(22) in a simplified form: 

px = mx + eAmx, py =my + eAmy, pz — mz + eAmz (38) 

D = m3 (39) 

Equations (24)-(26) become: 

i = — (P - eAm)x , y = —(p - e A ^ , z = —(p - eAm)z (40) 
III ill TTt 

The three components of the Hamilton function become: 
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Wx = — (p - eAm)2 + e<f>e - £ c 

'X-y = ^ ( P - eAm)2 + e<j>e - £ c 

Mz = — (p - eAm)2 + ê >e - £ c 

(41) 

(42) 

(43) 

These are the terms of the conventional Hamilton function of a charged particle 
in an electromagnetic field plus correcting terms £ c x , £ c y , Zcz. The correcting 
terms will be negligible according to Eqs.(15), (17), and (18) if Ae, dAe/dr, 
d(pm/dr, r, and f are sufficiently small. 

Let us observe that the variability of the mass m with velocity is not taken 
into account in Eqs.(41) to (43). This simplification permits us to obtain the 
components CKX, 0iy, !KZ of the Hamilton function and the correcting terms 
&cx, £cy, £c2 explicitly. In the following Section 3.3 we will take into account 
that the mass m depends on the velocities x, y, z. The Hamilton function can 
then be obtained by means of series expansions only. 

We note that all deviations from the conventional values in Eqs.(20)-(22) 
are due to the potential Ae that is produced by magnetic monopole, dipole, 
or multipole currents gm according to Eq.(1.6-26). The correcting terms £ c of 
Eqs.(15), (17), and (18) contain mainly terms Ae' but the hypothetical magnetic 
charge pm enters through the terms d(pm/dr according to Eq.(1.6-29). 

We turn to the evaluation of Eqs.(32)-(34) without any approximation. 
Using Eqs.(23)-(26) and observing the relation a • (a x b) = 0 we obtain the 
following form for Eqs.(32)-(34): 

K = 
2m 

( p - e A m ) 2 + ( ^ ) {2[Ae-(p-eAm)]2 + [A e x( P - eA m ) ] 2 } 

+ ( £ ) A2[Ae.(p-eAm)]2 1-H^U2 
mcj 

1 - 2 

+ ed (44) 

The vector £ c has the three components Lcx, Zcy, and &cz of Eqs.(32)-(34). 
Each of these three terms consists of five components. For the first component 
of £>cx we obtain according to Eq.(15): 

•kcxi — \Aezy — AeyZ)x — 2~ I Aez[p — eAm)y Aey(p eAm)z 

+ —JyAez[Ae x (p - eAm)]y - Aey[Ae x (p - e A m ) ] z | j 

Ze 
(p - eAm)x + ( — ) AexAe • (p - eAm) 

+ —[A e x ( p - e A m ) ] a mc mcj 

- 2 

(45) 



3.2 CHARGED PARTICLE IN AN ELECTROMAGNETIC FIELD 

A second component £CX2 is defined according to Eq.(15) as follows: 

87 

£, cx2 
Ze f (d<f>m_. 00mA dx _ _Ze_ f 
c J \ dz " dy 

m2c J 
9<j>n 

(p - eAm)y - -o—(P - eAm)z 

+ ™ (~df [ A e x (p ~ eAm^y ~ ~di^Ae x (p ~ e A m^ 

For the third component £CX3 we obtain from Eqs.(15), (23), (28), and (29): 

Ze [ 
£cx3 = — / {Aezy - Aey'z)dx 

i+m + w A - Aez(p - eAm)y - Aey(p - eAm)z + — x 

{ylej[Ae x ( p - e A m ) + A e x (p-eAm)] ryle»[Ae x (p - eA m )+A e x (p-eAm)]2} 

/ 7 c \ ^ 

+ f — J [(AezAey - AeyAez)Ae • (p - eAm)] 

~ 2 (:— ) A e -A e ( i4 e 2 (p-eA m ) ; / -^ey(p-eA m ) 2 + — {Aez[Aex(p-eAm)}y 

y /TJC y \ 7TIC 
ZeY 
vac) 1+ I — I A2 

- 2 

da: (47) - Aey[Ae x ( p - e A m ) ] 2 } 

The fourth component ZCX4 in Eq.(15) remains unchanged: 

The fifth and last component £ c x 5 in Eq.(15) is particularly long. It follows 
with Eqs.(13), (23), (25), and (26): 

£c*5 = — / f y-jr + z— \ (Aezy - Aeyz) dx 

Ze 
(P - eAm)2, + 2—(p - eAm)y[Ae x (p - eAm)]y 
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- 'Y 
+ | — ) {[Ae x (p - eA m ) ] 2 + 2Aey{p - e A m ) y A e • (p - e A m ) } 

Z£ 
mc I 

A -
\mc 

+ 2( —- ] Aey[Ae x (p - eA m ) ] y A e • (p - eAn 

Zes 

+ 

+ \ ~ ) ^ [ A e - ( p - e A m ) ] 2 

Ze 

dAez 

dy 

(P - e A m ) y ( p - eAm)z + — { ( p - eA m ) v [A e x (p - e A m ) ] z 
mc 
+ (p - eA m ) z [A e x (p - eAm)]y} 

Ze 

mc 
+ ™ {A e x (p - eA m ) ] a [A e x (p - eA m ) ] 2 

+ A e 2[(p - e A m ) , + (p - eAm)*]A e • (p - e A m ) } 

( Ze 
+ ( — J { A e y [ A e X ( p - e A m ) ] z + A e Z [ A e x ( p - e A m ) ] y } A e - ( p - e A m ) 

+ 

+ 

Ze 

Ze 

A e y J 4 e 4 A e - ( p - e A m ) ] 5 dAez dAe 

dy dz 

(p - eAm)i + 2 — ( p - eA m ) z [A e x (p - eA m ) ] 2 

Ze 
+ I — J { [ A e x ( p - e A m ) ] 2 + 2 A e z ( p - e A m ) 2 A e - ( p - e A m ) } 

+ 2\mc) ^ " [ A e x (p - eA m ) ] 2 A e • (p - eA m ) 

ZeY + 1 ^ J ^[A e-(p-eAm)]2 
~dz~ i + ( ^ l A 

mc 

2 - 1 - 2 
2 dx (49) 

The correcting terms £ c y and £>Cz for Eqs.(42) and (43) may be obtained 
from Eqs.(45)-(49) by the substitutions x —* y —* z —> x. 

In the text following Eq.(18) we had pointed out that the one added term 
g m in Eq.(1.1-9) had grown to six added terms in Eqs.(15), (17), and (18). 
The replacement of z, y, z, x, y, z according to Eqs.(24) to (29) produces an 
avalanche of additional terms. 

3.3 VARIABILITY OF THE M A S S OF A C H A R G E D PARTICLE 

The variability of the mass m of a particle with the velocities x, y, z is not 
shown explicitly in Eqs.(3.2-32) to (3.2-34) or (3.2-41) to (3.2-47), and (3.2-49). 
These equations thus hold for a particle with essentially constant mass. The 
extension of the results of Section 3.2 to a variable mass is possible by means 
of series expansions only. We start with Eq.(3.2-1): 

d , . „ Ze 
— (mv) = eE H v x H 
dt c 

(1) 
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The velocity Vj = dxj/dt is replaced by the four-velocity wM = dx^/dr with 
the proper time differential 

dT = (l-v2/c2)V2dt (2) 

and with xM = x, y, z, ict. Since the variables x^ form a four-vector and dr is 
a scalar, the components u^ form a four-vector too: 

u4 = „ , „,1 / 9 , j = 1, 2, 3 
( l - w 2 / c 2 ) 1 / 2 ' (1 - v2 /c2)1 / 2 

4 

We define the four-vector of a force .&"„ as the product of ewM with the tensor 
F m of Eq.(2.4-11) having the components fmflv. Using the relation B = ZH/c 
we get: 

Kv = efmilvu^ (4) 
7 / 2 \ — V 2 

Kv = e(E + - v x H)„ f 1 - ^- ) . i> = l, 2, 3 o r z , y ,z (5) 

*« = # 5 . v ( l - £ ) " 1 / a (6) 

Equations (4)-(6) are the relativistic generalization of the right side of 
Eq.(l). On the left side of Eq.(l) one must replace the time differential dt by 
the proper time differential dr of Eq.(2), the velocity v by the four-velocity 
u of Eq.(3), and the mass m by the rest mass m^. The relativistic version of 
Eq.(l) becomes: 

—m0uu = e/mM„uM (7) 

m o V ^ ( E + ^ V X H ) (8) 
rfi(l-w2/c2)1/2 V c 

d TB0C2 _ 

Equation (8) represents the three spatial components of the equation of motion 
while Eq.(9) represents the law of conservation of energy. 

The product of the rest mass mo with the four-vector uM produces a new 
four-vector 

pM = m0wM (10) 
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with the three spatial components 

mQVj _ _ TTIQV 
Pi = 1 / 0 or p = -TTT, j = 1, 2, 3 (11) 

and the component p± 

icm0 _ i m0c
2 i 

Pi (l-vyc*)1'2 ~c{1_v2/c2)^--c
t w 

where E denotes an energy rather than the magnitude E of an electric field 
strength. Using Eq.(3) one obtains 

E2 

p - p - — = - m 2 c 2 or E = (p2c2 + m2c4)1 /2 (13) 

as connection between energy E and momentum p. 
For the relativistic generalization of the Lagrange function of Section 3.2 

we start with the conventional part £ M as defined by Eq.(3.2-12) and rewritten 
as follows: 

£ M = 2 m y 2 + e(->e + Am • v) (14) 

The relativistic generalization of £ M is found in many textbooks: 

-CM = -m0c
2 (1 - v2/c2)l/2 + e ( -0 e + Am • v) 

/ x2 + y2 + z2 \ 1 /2 

= -m0c
2 f 1 ^ ) + e(~0e + Amxx + Amyy + Amzz) 

= -m0c
2 + -m0v

2 + e ( -0 e + Am • v) for v2 /c2 <C 1 (15) 

We adopt this generalization of the part £ M of the Lagrange function £ of 
Eq.(3.2-19). The components of the correcting term £ c are left unchanged 
from their definitions in Eqs.(3.2-15), (3.2-17), and (3.2-18) since the mass m 
does not occur there and the potentials <pm, Ae come from a relativistic theory; 
we note that 0e and Am are the same in Eq.(15) as in Eq.(14) too. Hence, the 
relativistic generalization of the Lagrange function of Eq.(3.2-19) is 

& = -m 0 c 2 ( l - v2jc2)1'2 + e(-4>e + Am • v) + £ c (16) 

where £ c has the three components Zcx, &cy, Lcz and -C has the three compo­
nents £ i , £/2> ^3 or Lx, Ly, Hz. 

The nonrelativistic momenta px, py, pz of Eqs.(3.2-20)-(3.2-22) must be 
generalized to 'relativistic canonical momenta'. They assume the following-
form: 
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_ dHx _ d(£M +£c) 
dx dx 

max , Ze, . A -\ /-,-,̂  

= (i-vyc^ + eAmx + ~{AezV ~ AeyZ) {7) 

p^^ = (i-7/^v + eA™ + T^* ~ A^ (18) 

d&y _ moz Ze 
dz (1 _ v2/c2)l/2 C 

P* = -5T = - r7T-ul + eA™ + — (Aeyx-Aexy) (19) 

For the derivation of the Hamilton function from the Lagrange function 
we have Eqs.(3.2-30) and (3.2-31) but we must now use Eqs.(17)-(19) for px, 
py, &ndpz 

3 
mo Y^Vjkj = — r ^ ( ± 2 + y2 + z2) + e(Amxx + Amyy + Amzz) 

j = l (1 - V2/C2) 

mo
 7r2 + e A m - r (20) 

(i-v2/c*y 

and the three components "Kk of the Hamilton function are obtained in analogy 
to Eqs.(3.2-32)-(3.2-34): 

3 2 

0ik(pj,Xj,t) = y^Pjij - £* = ° . 4- e<j)e - £fc, k = x, y, z 
j=i (1 - v2l°2) 

2 

Xx = — 77o + e0e - £ - « (21) 

[ l - ( £ 2 + 2 / 2 + i2) /c2]1 / 2 

Jiy = T-p- + e0e — &cy (22) 
[1 - (±2 + y2 + i2)/c2]V2 

3̂ z = 77̂  + e0e - £cz (23) 
[l_(a;2 + y2 + i2)/c2]l/2 

We must eliminate the variables x, y, z and their derivatives x, y, z. In 
analogy to Section 3.2 the variables x, y, z are determined by Eqs.(17)-(19), 
but these are no longer three linear equations due to the term 

( l - « 2 / c 2 ) 1 / 2 = [ l - ( o ;
2 + y2 + i 2 ) / C

2 ] 1 / 2 

and the replacement of x, y, z by p, Am , <f>e, Ae, and 4>m becomes even more 
tedious than in Section 3.2. As before we shall first gain an understanding by 
using simplifying assumptions for Eqs.(17)-(19). The terms multiplied by Ze/c 
will be small in Eq.(17) if a first condition 
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Ze m0x Ze . . m0x ,ni. 
—A e zy < - ^ and —Aeyz < -^ (24) 

c ( l - v 2 / c 2 ) 1 / 2 c ( l - v 2 / c 2 ) i / 2 
is satisfied that may be rewritten as follows: 

2 2 
° / 2 » ZecAezy/x and — - ^ — - ^ » ZecAeyz/x (25) 

(1 — Vi/C'i) ' (1 — V2/C2) ' 

For small values of x but not y and z we require an alternate condition for 
Eq.(17): 

Amx > ZAezy/c and Amz > ZAeyz/c (26) 

Equation (25) states in essence that the energy due to the potential Ae should 
be small compared with the energy m0c

2/(\ — v2/c2)1/2 while Eq.(26) demands 
that the magnitude of Ae should be small compared with the magnitude of Am . 
With these simplifying assumptions we obtain from Eqs.(17)-(19): 

m0x 
Px~ (i-vyc2)1'2 mx 

m0y 

(l-v2/c2)1/2 rv — ,. o , os 1/2 t e ^ m v 

p>=(i-7/c2r+eA- (27) 

Solution of these equations for x, y, z yields: 

mo 

Squaring and summing x, y, and z yields: 

(l-v2/c2VI2 

x = [ ' ' (P - eAm)x (28) 
mo 

y={1~v2Jc2)1/\p-eAm)y (29) 
mo 

(l-v2/ c2)1/2 

"~[ ' ] - ( p - e A m ) , (30) 

x2 + y2 + z2 = v2 = V ° (P - e A m) 2 

m0 

(p - eAm)2 = m ° " - mgc2 

l - t ; 2 / c 2 ° V l - « 2 / c 2 

moc2 moc2 

(1 _ V 2 / C 2 ) l / 2 ^ _ (3.2 + y2 + i 2 ) / c 2 ] V 2 

= c [ ( p - e A m ) 2 + m 2 c 2 ] 1 / 2 (31) 
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Substitution of the last line of Eq.(31) into Eqs.(21)-(23) yields: 

Mx = c [(p - eAm)2 + m2c2]1/2 + e<f>e - £ c x (32) 

Xy = c [(p - eAm)2 + mfc2]1/2 + e0e - Zcy (33) 

%z = c [(p - eAm)2 + m2c2]1 / 2 + e0e - Lcz (34) 

If we leave out the correcting terms £cfr, £ c y , Lcz we have the conventional 
relativistic Hamilton function for a charged particle in an electromagnetic field. 
The assumption we had to make to obtain Eqs.(32)-(34) was that Ae must be 
sufficiently small. If we want to leave out the correcting terms Lc we get more 
complicated conditions since Eqs.(3.2-15), (3.2-17), and (3.2-18) contain not 
only Ae but also its derivatives and derivatives of <j>m. 

Let us turn to the solution of Eqs.(17)-(19) for x, y, z without approxi­
mations. A difficulty is created by the term 

(1 - v2/c2)^2 = [1 - (x2 +y2 + z2)/c2]1/2 

which makes these equations nonlinear while the corresponding Eqs. (3.2-20)-
(3.2-22) of the nonrelativistic theory were linear. There is no standard method 
of solution for a system of nonlinear equations and we must find a method 
suitable for this specific case. As a first step we ignore that v2 is a function of 
x, y, z and treat Eqs.(17)-(19) as a system of linear equations. We note that 
Eqs.(3.2-20)-(3.2-22) are transformed into Eqs.(17)-(19) by the substitution 

m - . m 0 / ( l - i ) 2 / c 2 ) 1 / 2 

according to Eq.(3.2-23): 

and we get our 'first step solution' of Eqs.(17)-(19) by making the same sub­
stitution in Eqs.(3.2-23)-(3.2-26). First we write the common denominator D 

z ? = m ; 
i + «2 

(1 - u2 /c2)3 / 2 . 

ZecAe / w 2 \ 1 / 2 ZecAe 

(35) 

ae = f, a, I - - ; = m (36) 
"ioc2 V c2J m0c

2/ (1 - v2/c2)1/2 

The constant ae represents the ratio of the energy due to the electric vector 
potential Ae and the rest energy of the particle. The reference energy is actually 
moc2/(l— v2/c2)1/2 rather than moc2 but we need v2 as explicit variable. Let us 
note that ae has no physical dimension but it is variable due to its component 
Ae. 

The solutions for x, y, and z as functions of px, py, and pz have the 
following form if we use the factor ae of Eq.(36): 
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. {1-vVc2)1/2, 
X = rn0 ^ - e A - ) - 1 + ae 1 

v2\1/2 [Ae x ( p - e A m ] a 

4- n2 (\ - —\ AexAe • (p - eAm)' 

e V <?) A2{p-eAm)x 

( l - w V c 2 ) 1 ^ 

Ae(p - eAm)x 

- l 

1 + ^ 1 - (37) 

mo 
-(p - eAm)y 

2 \ V2 
1 + ae 1 - — 

[Ae x (p - eAm]y 

Ae(p-eAm)y 

+ a2 ( 1 - —^ A e ! / A e ' ^P ~ e A m ) 
42(P - eAm)„ 1 + ^ 1 - ^ 

- l 

(38) 

* = ~ ( P - e A m ) 2 i+aefi-4V /2[A;^(p-eAml-
y l e ( p - e A m ) z 

+ rv2 11 - —^ ^ A e • (p - eAm) 
+ " l c2) A2(p-eAm)z 

2 \ T - l 

1+ai 1 - -

Equations (37)-(39) are squared and summed: 

1 - v2/c2 

x2 + y2 + z2 = v2 
-(p-eAmy 

+ 2ae 
1 ^ \ 1 / 2 [ A e - ( p - e A m ) ] 

+ < 1 

+ 

Ae
2(p - eAm)2 

[A. x (p - eAm)]2 + 2[Ae • (p - eAm)f 
A 2 ( p - e A m ) 2 

- eAm)]A 

(p - eAmy 
2 Q 3 (X _ ^\3/2 Ae • [Ae x (p - eAm)]Ae • (p - eAm) 

Q e V c2J AHp-eAm)2 

+ a l l - T 
2 \ 2 [ A e - ( p - e A m ) ] 2 i r 

A 2 ( p - e A m ) ^ 
1 + a 1 

To find an approximate solution of this equation for 

a e ( l - t ; 2 / c 2 ) 1 / 2 « l 

we use only the first term on the right side of Eq.(40): 

(39) 

(40) 

(41) 

2 1 - V2/C2 . A , 2 

v2 = ^— (p - eAmy 
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This is the same relation as shown in the first line of Eq.(31) and we get again 
the common term of the three components 0ix, "My, 0iz of Eqs.(32)-(34). We 
call this the zero order solution in ae of Eq.(40). 

To obtain the first order solution in ae of Eq.(40) we use the first two 
terms on the right of Eq.(40). Since p will eventually be replaced by differential 
operators we are careful to preserve the sequence of factors: 

1 — v2/c 2/„2 
V = ,J (P ~ eA™) 

"'n 

1 + 2 Q e ( l_!CV / 2[Ae-(p- eAm)] 
A 2 ( p - e A m ) 2 

21 
(43) 

The term (1 —w2/c2)1/2 multiplied by 2ae is replaced by the zero order solution 
of Eq.(42). The resulting equation is solved for 1 — v2/c2 and the following 
improvement of Eq.(42) in first order of ae is obtained: 

V2 __ TJIQC2 

c2 m2c2 + (p - eAmy 

x ( l - 2Q*moC(p ~ eAm)2
3/2

 [ A - ; ( P " e ^ ) + 0{al) (44) 
V [m2c2 + (p - eAm)2]3 / 2 A 2 ( p - e A m ) 2 J 

The first order approximation in ae of Eq.(31) follows from Eq.(44): 

(1 - v2/c2) 
H^-—=c[(P-eAm)2

+m2c2]1/2 

x | 1 + Q e m o c ( p ~ e A m ^ 3 / 2 ^ •(P ~ e A m y 1 + 0(a2
e) (45) 

1 [ ( P - e A m ) 2 + m2c2]3 /2 A e
2 ( p - e A m ) 2 J 

The three components of the Hamilton function of Eqs.(21)-(23) become in 
this approximation: 

0CX = c[(p - eAm)2 + mgc2]1/2(l + aeQ) + e<j)e - £ c x (46) 

My = c[(p - eAm)2 + m2
0c

2}^2(l + aeQ) + e<j>e - £ c y (47) 

0iz = c[(p - eAm)2 + mgc2]1/2(l + aeQ) + efc - Lcz (48) 

1 ( P - e A m ) 2 [ A e - ( p - e A m ) ] 2 

Q = 
m2c2 [i + (p _ eAm)2 /m2c2]3 / 2 Ae

2(p - eAm)2 

ZecAe Ze2 h Ae n XcAe 2-— = 2a 
moc2 2h mac e 

)35 x 10 - 3 fine structu 

ae = 2.210 x 10a^e for electron, ae = 1.204 x 102.4e for proton (49) 

Ze2 _, h 
a = —— = 7.297535 x 10 fine structure constant, Ac = 

In moc 
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For the evaluation of the terms Lcx, Ccy, Lcz we need x, y, z of Eqs.(37)-
(39) with the terms 1 — v2/c2 eliminated by means of Eq.(44). Only the zero 
order approximation in ae will be required: 

c(p - eAm)x 

v = 

[mgc2 + (p - e A m ) f / 2 

c(p - eAm)y 

K c 2 + (p -eA m )2 ] 1 / 2 

c(p - eAm) 

+ 0(a e) 

+ 0{ae) 

r-p; + 0(ae) 

For the first component Lcxi of Lcx we obtain from Eq.(3.2-15): 

(50) 

(51) 

(52) 

r - Z e ( A ,; A - " - - Qe ^ e Z ( p - e A m ) v - / l e i / ( p - e A m ) , 
c AemQ [i + ( p - e A m )2 /m2 c 2] 1 / 2 

(p - eAn 

[l + (p-eA m )Vm2 c 2] 1 / 2 
+ 0(a2

e) (53) 

The unusual way of writing the denominators is due to the replacement of p by 
operators at a later time and the resulting non-commutability of the factors of 
a product. This will become important in Section 5.2. The second component 
CCX2 is defined according to Eq.(3.2-15) as follows: 

Z e f ( d $ m . d<f>m A 
Lcx2 = Tj \-dy-Z--dz-y)dx 

ae f f d(j)m d<f>m \ 

X 1 + 
(p - eAm)2 

rrikc2 

-1/2 
dx (54) 

For the third component LCX3 we require the time derivative of y and z of 
Eqs.(50)-(52): 

£>cx3 = — / {Aezy - Aeyz)dx 

-xiV-
(p - eAm)y 

^ V [ l + (p-eAm)2/m2 c2]i /2 

- A 
(p - eAm)2 

ey 
1( 
dty[1 + {p_eAm)2/m2C2]^j\ 

dx (55) 
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The fourth component SLCX4 of Eq. (3.2-15) remains unchanged since there are 
no time derivatives of x, y, or z: 

The fifth and last component £jcx5 of Eq.(3.2-15) equals: 

Ze f (. d . d \ , . . . ..„ 
£cz5 = — / \y-Q- + z— 1 {Aexy - AeyZjdx 

V( j> - eAm)yd/dy + (p - eAm)zd/dz 

Aem0J \ [1 + ( p - eAm)2/mgc2]1/2 

•"•eg(p ~ cAm)^ — Aey(p — eAm)a 

[l + (p-eAm)Vm§c2]1/2 
dx (57) 

The correcting terms Lcy and Lcz for Eqs.(47) and (48) are obtained from 
Eqs.(53)-(57) by the substitutions x —> y —> z —> x. 

The Klein-Gordon and the Dirac equations are derived from the Hamilton 
functions in Eqs.(32)-(34) without the correcting terms £LCX, £ c y , and Lcz. 
The Hamilton functions of Eqs.(46)-(48) with first order correction in ae will 
yield first order corrections to the Klein-Gordon and the Dirac equations, while 
higher order solutions in ae of Eq.(40) will yield higher order corrections. 

It is important to keep in mind that the term gm in the Maxwell equation 
(1.1-9) had an effect on the solution even if the transition gm —> 0 was made 
at the end of the calculation since the term gm produced the term soE in 
Eq. (1.3-1). Without gm one obtains a different differential equation that leads 
to divergent integrals as discussed in Section 1.4 and in Section 6.2 from Eq.(6.2-
46) on. According to Eq.(1.6-26) the potential Ae represents the magnetic 
current density gm here. It is prudent to expect that the transition Ae —> 0 at 
the end of the calculation may have a similar effect as the transition gm —• 0. 
Hence, the terms with a factor ae in Eq.(46)-(48) cannot be ignored even if 
one takes the limit Ae —• 0 and gm —• 0 at the end of the calculation. 

If we want to carry the theory to second order in ae we must use the first 
three terms on the right side of Eq.(40). For the term Q 2 ( 1 — v2/c2) we must 
use 1 - v2/c2 of Eq.(42) while for 2ae(l - ^ / c 2 ) 1 / 2 we must use the better 
approximation 1 — v2/c2 of Eq.(44). We may proceed in this way to the third 
and fourth order approximation in ae. But the process does not stop there. For 
the fourth order approximation we use for the term a*(l — v2/c2)2 in Eq.(40) 
the value of 1 - v2/c2 of Eq.(42), but for the fifth order approximation we 
use 1 — v2/c2 of Eq.(44). There is no end. Every improved approximation 
yields new terms and presumably new effects. The one term gm in Eq.(l.l-
9) of Maxwell's modified equations produces denumerably many terms in the 
Hamilton function of a charged, relativistic particle. 

file:///y-Q-
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3.4 STEADY STATE SOLUTIONS OF THE MODIFIED MAXWELL EQUATIONS 

It is usual to derive the Hamiltonian form of Maxwell's equations for steady 
state solutions only. This is acceptable since we have seen that Maxwell's 
equations generally do not have solutions that satisfy the causality law and 
thus they can be valid for the steady state only. If infinitely extended periodic 
sinusoidal waves are used to represent a steady state solution one must observe 
that such solutions usually represent waves with infinite energy. Hence, they are 
outside both the causality law and the conservation law of energy; one should 
not be surprised if this leads to problems with infinite energy. It is possible 
to derive solutions of Maxwell's equations that satisfy the conservation law 
of energy but not the causality law. Such solutions based on the Gaussian 
bell function e~e have been developed (King and Harrison 1968; King 1993). 
They could be extended to the complete orthogonal system of parabolic cylinder 
functions, but few people seem to be aware of these non-sinusoidal solutions of 
Maxwell's equations. 

Since we do not want to loose the causality of the modified Maxwell equa­
tions we will have to find a way to derive the Hamiltonian form in a more 
general way. In order to do so we derive first the Hamiltonian form in the con­
ventional way developed for the original Maxwell equations and obtain a steady 
state theory. But this steady state theory will show what changes have to be 
made to derive the Hamiltonian form for a theory that satisfies the causality 
law. The corrected quantization will be carried out in Chapter 4. 

In order to rewrite Maxwell's equations (1.1-1)—(1.1-7) in Hamiltonian 
form it is usual to choose pe = 0 and ge = 0. According to the discussion 
following Eq.(2.5-ll) it is permissible to choose pe = 0 as well as pm = 0 
due to the law of conservation of charge, which we extend here to apply to 
electric and (hypothetical) magnetic charges. The choice ge = 0 and gm = 0 
cannot be justified by any widely accepted physical law since current densi­
ties may be due to dipole and higher order multipole currents in the absence 
of monopole currents carried by charges. Indeed, the choice ge = 0 implies 
that a capacitor with vacuum as dielectric cannot be charged, that it can­
not pass an alternating current, that the permittivity of vacuum is zero, and 
the velocity of light infinite. If we choose either ge = 0 or gm = 0 in the 
modified Maxwell equations (1.1-8) and (1.1-9) we get soE = 0 in Eq.(1.3-1) 
and obtain a differential equation that does not lead to solutions that satisfy 
the causality law. Hence, the choice ge = 0 and gm = 0 at the beginning 
of a calculation yields unacceptable equations, but one may try the transition 
ge —> 0 and gm —> 0 at the end of the calculation as shown by Eq.(6.2-41) 
for w = yJTsJJia —> 0. The closest we can come to the conventional deriva­
tion without giving up the causality law is to use Maxwell's modified equations 
with Coulomb gauge as shown by Eqs.(2.5-6)-(2.5-ll) and choose pe = pm = 0. 
The electric and magnetic field strengths are then defined by Eqs.(1.6-17) and 
(1.6-11). 

First we write the modified Maxwell equations for vacuum in accordance 
with Eqs.(1.6-l)-(1.6-4): 
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c u r l H = — ^ r + g e , divH = 0 (1) 
Zc at 

- c u r l E = - ^ + g m , divE = 0 (2) 
c at 

Then we write H and E according to Eqs.(1.6-ll) and (1.6-17) for </>e = <f>m = 0: 

(3) 

(4) 

pm = 0 and thus 

0 (5) 

0 (6) 

We want to solve the system of partial differential equations (5) and (6), 
writing the result in Hamiltonian form. For general solutions we may follow 
the calculations of Sections 1.2 to 1.5 as well as Sections 6.1 and 6.<J. If one is 
satisfied with steady state solutions one may follow the conventional calculation 
and make a Fourier representation of Am(r, t). By implication we have to 
represent Ae(r,t) in the same way. This is done by introducing a finite interval 
or a box with finite dimensions in order to be able to use a Fourier series 
with denumerable terms rather than a Fourier integral with non-denumerable 
terms. The introduction of boundary values on the surface of a box has the 
character of a cooking recipe: it works and people accept it. A more physical 
approach to obtain denumerable terms is provided by noting that infinitesimal 
distances dx or dt cannot be observed and thus can be only mathematical 
approximations for observable finite distances Aa; and At. There is no need 
to require some minimum value for Aa; and At, one only must demand that 
they are finite. A distance of 10_100m in space or 10 - 1 0 0s in time is still 
finite but completely different from dx and dt. It has been shown that the 
distinction between infinitesimal differences dx, dt and arbitrarily small but 
finite differences Aa;, At yields no significant effect in non-relativistic quantum 
mechanics but this is not so in relativistic quantum mechanics (Harmuth 1992, 
pp.228, 244). Hence, we must try to introduce finite intervals Ax, At even 
though we use infinitesimal intervals dx, dt for computational convenience. 

For the introduction of finite intervals Aa; consider the function A(x) — 
A(m) defined at the points mAa; with m = —n, —n + 1, . . . , n as shown 

H = - c u r l A m - — 

dA 
E = -ZccurlAe 

dt 

The potentials Am and Ae in Coulomb gauge for pe 

0e = 0m = 0 follow from Eqs.(2.5-6)-(2.5-9): 

V2Ae - -jAe = - — g m , divAe = 
C ZJC 

i ,. z 
7iA V 2 A m - — Am = ge, divAn 
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A(-n) 
AC-n-1) 

-nAx (-n*1 )Ax 
-2 Ax -Ax 

A(-1) 
A(-2) 

A(1) A(2) 
A(n-1) A(n) 

A(0) 

0 Ax 2Ax (n-1)Ax nAx 

x«mAx — 

F I G . 3 . 4 - 1 . A function A(x) = A(m) defined at the 2n + 1 points x = m A i with 
m = —n, —n + 1, . . . , n; L = 2nAx. 

in Fig.3.4-1. We may represent the 2n + 1 samples or discrete values of this 
function by a series with 2n + 1 'Fourier functions' 

1, \/2cos(27rma;/L), \/2sin(27rma;/L) 

m = 0, 1 , . . . , n; —nAx <x< nAx; L = 2nAx (7) 

where m = 0 denotes the constant function with amplitude 1 in the interval 
—L/2 < x < L/2. For n —* oo we obtain a series with denumerable terms. 
Let us observe that the representation of a discrete function A{m) with 2n + 1 
values of m by a Fourier series or other series of orthogonal functions with 
2n + 1 functions is exact. The concept of mean-square-approximation enters 
only if one approximates a function A{x) with non-denumerable values of x by 
a system of denumerable, orthogonal or linearly independent functions. 

Let1 the vector potential Am(r,£) and the (dipole) current density ge(r,£) 
of Eq.(6) be represented by a Fourier series in complex notation in the three-
dimensional interval -L/2 <x< L/2, - L / 2 < y < L/2, and - L / 2 < z < L/2: 

1 3 

Am(r, t) = -jj2 Y^, Yl ^m,kASkA exp(i27rk • r/L) 
A=2 k 

1 3 

Se(r> 0 = Jzj2 J2 Y^ 5e,kASkA exp(«27rk • r/L) 
A=2 k 

SkA = S_kA 

(8) 

(9) 

(10). 

The values A = 2, 3 are used to denote the two orthogonal components of 
transversal waves, while A = 1 is reserved for longitudinal waves that do not 
occur in Coulomb gauge. The factors SkA are linearly independent unit vec­
tors that define one of the possible two orthogonal polarizations of the wave 
component k: 

SkA = skXxex + s^yey + skXzez, skAz + slxy + si\z = * ( n ) 

Section 3.4 follows closely § 51 of vol. 2 of the book by Becker (1963, 1964 a) to facilitate 
comparison with the conventional theory. 
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The use of SUA in both Eq.(8) and (9) does not imply that Am and ge have the 
same direction, only that they are composed with the same vectors SkA- The 
terms k and r stand for the vectors 

*£ — ftjCj i ™y&y r ^z®Z) Kxi "-y> ^z — U> ^ l , -^-^> • • • 

r = xex + yey + ze2 (12) 

and the sum over k in Eqs.(8) and (9) represents the three sums over kx, ky, 
and kz. We use the factor L~3/2 rather than L~3 for normalization since the 
square of this factor will be needed. Equation (10) states that the polarization 
remains unchanged if we replace k by —k or kx, ky, kz by — kx, —ky, —kz. With 
this choice for the polarization we can make the right sides of Eqs.(8) and (9) 
real like the left sides by demanding that a change of the sign of k produces 
the complex conjugate: 

^m, -kA — ^m,-k,A — An,k,A — Amkx 

5e,-kA = £e,-k,A = fi£k,A = ffe.kA ( 1 3 ) 

The divergence of Am(r, t) is zero according to Eq.(6) 

divAm(r, t) = — — + —-*• + — — = 0 
ox ay oz 

2m 3 

^T ^2 Am^x(suxxkx + s^xyky + Sk\zkz) exp(i27rk • v/L) (14) 
L5/2 

A=2 k 

which implies 

SkA • k = 0 (15) 

The waves are thus transverse and A can have only two values as assumed in 
Eqs.(8) and (9). Substitution of Eqs.(8) and (9) into Eq.(6) yields: 

A 2 „ % 
An,kA + WkAm,kA = Se.kA 

C 

ul = (2nck/L)2 = (27rc/L)\k2
x + k\ + k2

z) (16) 

The general solution of the homogeneous equation is given by: 

AmMx(t) = B^xe™** + CmMXe-iUkt (17) 
A particular solution of the inhomogeneous equation is obtained by the method 
of variation of the constant: 
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AmMx(t) = Bm,kA(t)eiu'kt + C m , k A( t ) e -^ (18) 

Differentiation d2Am<k\(t)/dt2 and substitution into Eq.(16) yields: 

a«V m + dt J 
+ i^(°22&We*>>t - ^ W e - * - > « ) = _ | 5 e , k A ( 1 9 ) 

This equation is satisfied if the following two equations hold: 

dBmMX{t) ^ t + dCmMX{t) c_iuut = Q ^2Q^ 

dBmMx{t) ^ t _ dCmMX(t) iUkt = _Z 
dt dt cy' v ' 

Addition and subtraction of Eqs.(20) and (21) yield .Bm,k.\(£) and Cmfr\(t); 

BmMx(t) = + i ^ J 9e,kxe-iWktdt (22) 

CmM(t) = - i ^ J geMxeiUktdt (23) 

The particular solution of Eq.(17) becomes 

AmMx(t) = i ^ (eiWkt J geMxe-^dt - e~^ J g^xe^dt) (24) 

and the general solution of Eq.(16) equals 

AmMX(t) = BmMXetu"t + Cm,kAe-iu"'t 

+ i^j- (eiuJkt J 9e,wxe~iUktdt - e~^ J g^xe^dt) (25) 

where .Bm,kA and Cm)kA are two arbitrary constants. 
For Eq.(5) we obtain equivalent equations by exchanging the subscripts e 

and m as well as the factors Z/c and 1/Zc: 

i 3 

A*(r>') = Jm T, E ê,kASkA exp(i27rk • v/L) (26) 
A=2 k 

j_ 3 

gm(r, t) = -jj2 Y^ Y 2m,kASkA exp(i27rk • v/L) (27) 
A=2 k 

SkA = S-kA ( 2 8 ) 
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As.kA = As,k,A = ^e,-k,A> ftn.kA = 5m,k,A = 5m,-k,A ( 2 9) 

A 2 4 1 
A=,kA +Wk^le,kA = -"~-#m,kA 

wl = (27rck/L)2 = {2nc/L)2(k2
x + k2

y + k2
z) (30) 

AeMx(t) = B .^e*" - ' + CeMxe~iUkt 

+ i ^ ^ (eiUkt J g^kxe-^dt - e-*"** J g^e^dt) (31) 

We note that the system of functions {L~3/2exp(i27rkr/L)} is normalized 
as well as orthogonal: 

L/2 L/2 L/2 

L~3 / / / exp(i27rk • r/L) exp(-«27rj • v/L)dxdydz = 6^ 

-L/2 -L/2 -L/2 

<5iy = 1 for k = j 

= 0 f o r k ^ j (32) 

Let us calculate the energy U of the electric and magnetic field strength in 
the volume defined by the limits of the integral in Eq.(32). From Eq.(2.5-12) 
we get: 

Equations (3) and (4) yield with the help of Eqs.(13) and (29): 

E2 = (zccm\Ae + ^ i ] • (zccm\Ae +dAm^* 
dt J V dt 

^ • ^ + Z 2 c 2 curl Ae • curl Ae* + 2Zc^ • curl Ae* (34) at at at 

TTr, <9Ae dAl c2 , A . . . 2cdAe , . , .„„. 
~dt'~dt + z2curl A m ' c u r l A™ ~~z~dt"curl A ™ (35) 

Since only 4̂m,kA in Eq.(8) is a function of time according to Eq.(25) we obtain: 
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The second term in Eq.(34) can be simplified by partial integration (Heitler 
1954, p. 40): 

[J curl Ae • curl A* dV = I{Aex curl A*)ndO 

+ ([J Ae • curl curl A* dV (37) 

The surface integral vanishes either because our functions are zero outside the 
box with dimension L3 or because they repeat periodically2. The last term of 
Eq.(37) becomes with the help of Eq.(6): 

HI Ae • curl curl A*e dV = fff Ae • (grad div A*e - V2A*e)dV 

If we substitute Eqs.(26) and (29) we get a cancellation of the term g^ and 
obtain the final result: 

Jll curl Ae • curl Ae* dV = £ £ ^ Ae,kx A*eMX (39) 
A=2 k 

The third term of Eq.(34) requires curl A*. Using Eqs.(26), (11), and (12) 
one obtains: 

curl A* = -jj^ Y^ ^2AeMx[(sk>,ykz - skXzky)ex + {skXzkx - skXxkz)ey 

A=2 k 

+ {skxxky - skXykx)ez] exp(-i27rk • r/L) (40) 

For dAm/dt we get from Eqs.(8) and (11): 

dAm _ 
dt L3/2 , „ , 

A=2 k 

1 3 

575 Yl Yl ^m,kA(skA:ce:c + skXyey + skXzez) exp(i2?rk • r/L) (41) 

The inner product of Eqs.(40) and (41) yields zero: 

2The Fourier functions of Eq.(7) may be assumed to be zero outside the interval —L/2 < 
x < L/2 or periodically continued. The assumption of periodic continuation is more usual but 
in a science based on observation it seems to be preferable not to claim that every assumption 
and every result is continued periodically to infinity since infinite distances in time or space 
are beyond observation. 
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^ • c u r l A : = 0 (42) 

The three terms of H2 in Eq.(35) yield the following result in analogy to 
Eqs.(36), (39), and (42): 

/ / / ^ • f * = i ; Z ' i - » < u (43) 
01 °l A=2 k 

jjjcurlAm • curl A*mdV = £ £ ^ 4 n , k A ^ i k A (44) 

•curlA^ = 0 (45) 

A=2 k 

OAe 
dt 

Substitution of Eqs.(36), (39), and (42)-(45) into Eqs.(34), (35) and then 
into Eq.(33) yields the energy U: 

» ' i 
"-\ET. 2 

A=2 k L 

^ (^m,kA^m,kA + ^k^m.kA^m.kAJ 

2 
4- -(AeMXAlkX + ulAe>kXA*eMX) (46) 

The two terms in the first parentheses have the same form as in the conven­
tional theory, but one must observe that Am)kA contains the electric dipole 
current density terms <?e,kA according to Eq.(25). The two terms in the second 
parentheses are caused by the potential Ae that is due to the magnetic dipole 
current density gm according to Eqs.(1.6-26) and (31). 

We must rewrite the field energy U in the form of a Hamilton function 
3i(pj,qj) so that the equations of motion (16) and (30) follow from the equa­
tions 

Pj = -d^' qi = Wi (47) 

The variables Am>k\ and j4e,kA cannot be used as coordinates in the Hamilto-
nian representation due to the restrictions imposed on them by Eqs. (13) and 
(29). But one may use the ansatz 

am,kA = r Am kA H ^m,kA , «m _kA = o ^m,kA An,kA (48) 
2 \ ujk ) 2 \ w k / 

to introduce the new amplitudes am>kA as well as am _kA and to obtain 

An.kA = am,kA + ^m.-kAi An,kA = - ^ k ( a m , k A ~ a m,-kA) (49) 
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F u r t h e r m o r e , we wr i t e for <?e,kA: 

«e,kA = rffe.kA, "e,-kA = n^e.kA 

ffe.kA = ^e,kA + K,-kX (50) 

The conditions of Eq.(13) are now automatically satisfied while am<k\, a^, kx> 
/ie,kA, and /»*kA are no longer subject to any restriction. This suggests the 
possibility of using am,kA for the Hamiltonian representation of Eq.(46). Sub­
stitution of Eqs.(48) and (50) into Eq.(16) yields 

- ^ k ( a m , k A - a*m_kx) + w^(am,kA + a*m _k A) = Zc(heM\ + K^x) (51) 

and we get two differential equations of first order instead of one of second 
order: 

.Zc. 
am,kA + *k>kam kA = * /le,kA 

wk 

or 

n,-kA - * w ka m ,_kA = ~* 

Im,kA _ i w ka m , kA 

W k 

.Zc. 
i—/ 
w k 

-kA 

>,kA (52) 

In analogy to Eqs.(48)-(52) we may write for A e and g m : 

1 / A
 i X 

2 V Wk 

^4e,kA = Oe,kA + ^e.-kA' 

^m,kA = ^Sm.kA, 

< - k A = 2 ( A°*> ~ Z^AeMX) ( 5 3 ) 

^4e,kA = -«w k (a e ,kA - o*,-kA) (54) 

Ka,-kX = 2^m,kA (55) 

<Je,kA + *Wkae,kA 
Zujk 

ic 
K,k\ - i wkae,kA = - ^ 7 7 " m , k A 

-hm,kX 

-h* 
Zwy. 

(56) 

T h e field energy U of Eq. (46) m a y now be expressed in t e r m s of a m : k A , 
am,kA> ae,kA, a n d a* k A : 

1 3 r 2 

U = 0 5 3 5 1 £ c (am,kAam,kA + am, -kA a m,-kAj 
A=2 k L 

+ —^ (^e,kAae,kA + a e , _ k A a e , _ k A ) 

= ^ Z 5 1 ~jr ( ^am,kA f lm,kA + Z a * k A a e , k A A=2 k 

(57) 
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The terms with subscript m are separated from the terms with subscript e. 
This is a result of Eqs.(42) and (45), but more fundamentally it is due to 
Eqs.(5) and (6). The potentials Am are due to the electric current density ge 

and the potentials Ae are due to the magnetic current density gm. There is no 
interaction and the Hamiltonian formalism cannot change that. We may thus 
represent Eq.(57) by the sum 

!K = jam + CKe ("°J 

and the canonical coordinates according to Eq.(47): 

Qmj = am,kA, Pmj = ^ - a m , k A ( 5 9 J 

iZw* * fan\ 
qej = Ae.kA, Pej = ~ ~ ^e.kA l ° U ) 

The functions IKm and 9ie become 

3 3 w2 

^ m = ~i Y^ Yl ^^mjPmj = ^ J2 ^ a m , k A « m , k A (61) 
A=2 k A=2 k 

3 3 ZLJ2 

He = ~iJ2Y^ Wk9ejPej = Y^Y, ~ T < k A a e , k A (62) 
A=2 k A=2 k 

and their sum equals U of Eq.(57). 
A simplification will be achieved later if we replace the variables am,kA and 

ae,kA by new variables fcm>kA and 6e,kA: 

(Zch\l'\ ( ch\l/\ 
am,kA = I J om,kA, a e ,kA=|-~— I Oe,kA (63) 

Equation (57) is rewritten: 

3 

,kA&m,kA + &e,kAfce,kA) (64) 
A=2 k 

The canonically conjugate coordinates and momenta are now: 

Qmj = &m,kA, Pmj = *^m,kA (65) 

Qej = 6e,kA, Pej = *^e,kA (66) 

The transition from the original Maxwell equations to the modified ones 
that yield solutions satisfying the causality law requires that one (a) writes 
the conventional equations with subscripts m or e added and (b) uses the 
inhomogeneous equations (16) and (30); the transition to the limits <?e:kA —> 0 
and 5m,kA —* 0 may be made at the end of the calculation. 
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3.5 STEADY STATE QUANTIZATION OF THE MODIFIED RADIATION FIELD 

We rewrite Eqs.(3.4-61) and (3.4-62) with am}k\ and ae,kA replaced by 
frm.kA and 6e>kA according to Eq.(3.4-63) and obtain the two Hamilton functions 
in the following form: 

3 

^ m = J2 Yl ^k&m,kA&m,kA (1) 
A=2 k 

3 

,kA&e,kA (2) 
A=2 k 

For quantization we replace the complex amplitudes b^ kA, 6mikA and &ekA> 
6e,kA by operators b+ kA, 6" kA and 6+kA, 6"kA: 

^ , k A - < k A = ^ ( « C - ~ ) , W A - ^ , k A = ^ ( < + ^ | ) (3) 

^ , k A - < k A = ^ ( - C - ^ ) , * e , k A ^ k A = ^ ( " C + ^ ) (4) 

These equations may be written with b* and b interchanged: 

We have left out the subscripts m, kA and e, kA from the differential oper­
ators in order to simplify them. The choice of one of the two possible replace­
ments is a well known ambiguity that will be discussed briefly in Section 4.4 
(Becker 1963, 1964a, vol.2, §52; Heitler 1954, p.57). Here we choose Eqs.(5) 
and (6). Their substitution into Eqs.(l) and (2) yields: 

3 

^m = £ £ ^ m , k A < k A (7) 
A=2 k 

3 

^ = E E ^ e " , U < k A (8) 
A=2 k 

The vector potential Am(r,t) of Eq.(3.4-8) becomes an operator if we 
replace the coefficients Am,kA by am,kA + am _kA according to Eq.(3.4-49), then 
make the substitution of 6m,kA for am,kA according to Eq.(3.4-63), and finally 

frm.kA 

fre.kA 
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replace the coefficients 6„,kA and bm,kA by operators 6*ikA and fr~ kA according 
to Eq.(5): 

Am{r,t) = (^)l/2tE^:1/2(<^i2^/L 
V J A=2 k 

+ KM^i2Vk'r/L) 0 ) 

The vector potential Ae(r,t) of Eq.(3.4-26) is also rewritten with the help 
of Eqs.(3.4-54), (3.4-63), and (6). The main difference is that Z is shifted from 
the numerator to the denominator in Eq.(3.4-63): 

A*(r't]=G§01/2 £ E s^1/2 (<-ei2,rk'r/i 
V 7 A=2 k 

+ &e-,kAe"i27rk'r/L) (10) 

If Eqs.(7) and (8) held generally and not for the steady state only, their 
quantization would require that we add a function $(r, t) on the right side and 
replace "K by -(h/i)d$(r,t)/dt: 

3 

E E ^ - , k A < k A * m = ^ ^ = - i ^ r ( 1 1 ) 

A=2 k 
3 

E E ^ , k A < k A * e = !* .* . = - ^ (12) 
A=2 k 

For the steady state case we must rewrite the right sides of Eqs.(11) and (12) 
for a sinusoidal time variation of $ m and $ e : 

*m(r, t) = Sm(r) exp(-iEmt/ft) (13) 

<S>e(r, t) = $e(r) exp(-tEet/a) (14) 

The general Eqs. (11) and (12) are then replaced by equations with eigenfunc-
tions or eigenvectors $ m or $ e as well as eigenvalues Em or Ee. We emphasize 
that the causality law has no meaning in the steady state and that the transi­
tion from Eqs.(ll) and (12) to (15) and (16) implies a major reduction of the 
physical content: 

3 

E E ^ k ^ , k A b m , k A $ m = Mm$m = Em$m (15) 
A=2 k 

3 

E E ^ k W e t k A ^ e = « e * . = Ee$e (16) 
A=2 k 



110 3 HAMILTONIAN FORMALISM 

Consider a certain term of the sum of Eq.(15) for specific values of the 
subscripts k and A: 

W £ , k A * m = - g ^ * m (17) 

Using the explicit differential operators of Eq.(5) we obtain 

1 / I d 
7f(aC4|)^ Em,kA $ 

With the substitution 

£ = <*C (20) 

we obtain a standard form of the differential equation of the parabolic cylinder 
functions 

^ + ( 2 A m , k A - a * m = 0 (21) 

with the solution 

$m = e~*2/2x(0 (22) 

where x(£) satisfies the differential equation of the Hermite polynomials1 

0-2^f + 2A m , k A X = O (23) 
Solutions for $ m that vanish for £ —> ±oo exist for Am,kA = 0, 1, 2, . . . only. 
Using Eq.(19) we obtain: 

E m , k A = w k A / i U + - J , n = 0, 1, 2, . . . (24) 

For n = 0 we obtain the so-called zero-point energy of the electromagnetic 
field in vacuum. The parameter A has the two values 2 and 3 but k has 

1See, e.g.: Becker 1964a, b, vol.11, §15; Landau and Lifschitz 1966, vol. Ill, §23; 
Abramovitz and Stegun 1964 
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denumerably infinite values according to Eq.(3.4-12) and the total zero-point 
energy becomes infinite. 

We quote from the renowned book by Berestetzki, Lifschitz, and Pitajewski 
(1970, 1982; §3. Photons, second paragraph): But already in this state each 
oscillator has the 'zero-point energy' 2nfh/2, which differs from zero. The 
summation over the infinitely many oscillators yields an infinite result. We 
meet here one of the 'divergencies' that the existing theory contains because it 
is not complete and not logically consistent. 

We read further (§ 1. Uncertainty Relations in the Relativistic Theory, sec­
ond paragraph from the end): The lack of complete logical consistency shows 
in this theory by the existence of divergent expressions when the mathemati­
cal methods are directly applied; however, there are unambiguous methods for 
the removal of these divergencies. Nevertheless, these methods have largely 
the character of semi-empirical recipes and our belief in the correctness of the 
results obtained in this way is based in the end on their excellent agreement 
with experiment, but not on the inner consistency and the logic lucidity of the 
basic principles of the theory. 

Becker has the following to say: The ground state represented by [n = 0] 
corresponds to vacuum; it still contains zero-point vibrations, however, as in 
the case of the linear oscillator. Since we are dealing with an infinite num­
ber of oscillators the mean-square values of the field strengths, E2, H2 , must 
also be infinitely great. A completely satisfactory treatment of this anomaly 
does not yet exist2. The anomaly is directly associated with divergent inte­
grals: This divergence has for long been an insuperable difficulty of quantum 
theory; it has not yet been completely overcome, but has been ingeniously 
circumvented through the concept of the mass renormalization of the electron 
(Kramer, 1945)3. 

A detailed historical review of the problem of infinities in quantum field 
theory, listing many references, may be found in a book by Weinberg (1995, 
pp. 31-48). 

If we had used Eq.(16) instead of Eq.(15) we would have obtained again 
Eqs.(17) to (24) but the subscript m would have been replaced by the subscript 
e. The zero-point energy would again be infinite. 

Let us see how we ended up with a theory yielding infinite energy. The 
transition from Eqs.(ll) and (12) to (15) and (16) reduced the general theory to 
a steady state theory. But something more happened. In Section 3.4 we had the 
current densities gm and ge in Eqs.(3.4-5) and (3.4-6). These current densities 
lead to the terms gex\ and <?m,kA in Eqs.(3.4-25) and (3.4-31). Implicitly they 
are contained in the terms b^kx to foe,kA of Eq.(3.4-64). But they are not 
contained in the operators 6^ kA to 6~kA of Eqs.(15) and (16). If one chooses 
gm = 0 in Eqs. (1.1-9) and (3.4-2) one obtains equations that yield divergent 
integrals for the associated field strength in transient solutions; this means the 
magnetic field strength for electric excitation and the electric field strength 

2Becker 1964a, vol.11, §52, footnote p. 311 
3Becker 1964a, vol.11, §53, p. 319, small print following Eq.(53.9) 
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for magnetic excitation. We have pointed out at the beginning of Section 3.4 
that a possible transition gm —> 0 or ge —» 0 must be made at the end of 
the calculation to avoid divergent integrals. If the classical theory leads to 
divergencies one cannot expect that the quantized theory will do any better. 

There is a second analogy with the classical Maxwell theory without mod­
ification. In Eqs.(l) and (15) we have functions, operators, or constants with 
subscript m while in Eqs.(2) and (16) we have the same terms but with sub­
script e. One might say there are electric photons and magnetic photons with­
out any connection with each other. A similar situation existed in the classical 
theory when transient solutions for electric and magnetic field strengths were 
derived. Stratton (1941), who seems to be the only author of a text book that 
attempted to obtain such transient solutions, arrived at electric field strengths 
due to electric excitation and magnetic field strengths due to magnetic exci­
tation without any connection between the two. It took more than 40 years 
before the modification of Maxwell's equations permitted the derivation of an 
electric field strength plus an associated magnetic field strength due to electric 
excitation or a magnetic field strength plus an associated electric field strength 
due to magnetic excitation. 



4 Quantization of the Pure Radiation Field 

4.1 RADIATION FIELD IN EXTENDED LORENTZ GAUGE 

We start from Eqs.(1.6-26)-(1.6-29) and assume there are neither electric 
nor magnetic charge densities pe and pm. From Eqs.(1.6-32) and (1.6-33) we 
get in this case 

<j>e{x,y,z,t) = (f)m(x,y,z,t) = Q (1) 

and only Eqs.(1.6-26), (1.6-27) remain: 

v A e
 C2 a*2 - Z c ^ w 

V A m - ^ ^ = - - g e (3) 

The current densities gm and ge can refer in a vacuum—which is assumed 
by the concept of a 'pure radiation field'—to dipole and higher order multipole 
currents only. We have derived in Sections 2.1 to 2.3 a variety of equations 
linking ge and gm to the field strengths E and H. Here we are going to use 
the very simplest approximations ge = <rpE and gm = 2spH that one can 
derive from Eqs.(2.1-19) and (2.2-7) for small values of rm p in order to obtain 
equations that can be solved analytically. The text following Eqs.(2.1-29) and 
(2.1-31) explains this some more. Better approximations will be developed in 
Section 6.10. To reduce subscripts, we write a = ap and s = 2sp. Using 
Eqs.(1.6-11) and (1.6-17) we may then connect the current densities gm and ge 

with the vector potentials Am and Ae: 

S H = S ( | c u r l A m - ^ ) (4) 

= ffE = -ff (zccml Ae + ^ - J (5) 

The current densities in Eqs. (2), (3) may be eliminated and two equations 
containing the vector potentials Am and Ae only are obtained: 

113 
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V^Ae 
1 d2Ae _s_ 
c2 dt2 + Zc 

c dAe 

- c u r l A m - — 

VaAn 
1 d2Am aZ ( dA„ 

= 0 

= 0 

(6) 

(7) 

The potentials Ae and Am are connected in these two equations while they are 
independent for gm = ge = 0 in Eqs.(1.6-26), (1.6-27). Hence, we can expect to 
obtain electromagnetic photons instead of independent electric and magnetic 
photons as in Section 3.5. 

In Cartesian coordinates we write the vectors A, curl A, and V2A in 
component form with the unit vectors ex, ey, and ez: 

curl A = 
dAz dAv 

dy dz ex + 
dAx 

dz 
dA; 
dx e„ + 

dAy dAx 

dx dy 

V2A=(d*Ax ^d2Ax ^d2Ax 

\ dx2 dy2 dz2 
d2Av . d2An 

ex+{-d^ + -dy^ + 
dz2 

'd2Az d2Az d2A2 

dx2 dy2 dz2 

(8) 

(9) 

(10) 

With the help of these relations we may rewrite Eqs. (6) and (7) in Cartesian 
coordinates: 

d Aex d Ae, 

dx2 + dy2 + • 
d2Aea 

dz2 

s 
+ Tc 

d Aey d Aev d A l e y 

dx2 

d2Ae: 

dx2 

+ 
•ey 

dy2 + 
a ey 

dz2 

1 d2Ae, 
c2 dt2 

dAmz 

dy 

1 d2Ae, 
c2 dt2 

dAn 

dz 

+ 

+ dy2 + • 

Zc 

d2Ae 

c_ fdAmx 

Z\ dz 
1 d2Ae 

dAn 

dx 

dz2 dt2 

s 
+ Yc 

uAmi 

dx 
dAn 

dy 

d Amx d Amx d Amx ^ u Amx 

~lM*~ dy2 ~dzT ~ ~c* dt2 

OA.ey aZ 
c 

dAe 

dt 

dA, ey 

dt 

dAei 

dt 

dA, 

= 0 

= 0 

= 0 

n a •'-ey i , ~ - -mx 

dz J dt 

(11) 

(12) 

(13) 

(14) 
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02A my 
dx2 + • 

d2_Au 
dy2 + 

d Amz , o Amz 

dx2 + • 
dy2 + 

d2An 

dz2 

c 

d2Aa 

dz2 

aZ_ ~ 
c 

1 d2Am. 
c2 dt2 

Zc 

Zc 

dAe 

dz 
ld2Am 

c2 dt2 

dAei 

dx 

(dAe 

V dx 
dAe, 

dy 

+ 
dA my 

dt 

+ 
dAn 

dt 

= 0 

= 0 

(15) 

(16) 

Let us simplify these equations for a planar wave propagating in the direction 
of y. All derivatives with respect to x and z must be zero: 

dAe 

dx 
OAey 

dx 
dAe dAe 

dx dz 
dAn dAn dA„ dAn 

= dAey 

dz 
dAmy 

dx dx dx dz dz 

Equations (11)—(16) are reduced to the following form: 

dAez 

dz 
dAmz 

dz 

(17) 

(18) 

d2Ae 

dy2 

1 d2A, 
c2 dt2 

•ex . S dAn dAe 

d2Ae 

dy2 

d2Aez I d2Ae: 

dy2 c2 dt2 

Zc \Z dy 
1 d2Aey 

c2 dt2 

c dAm. 

dt 
S OA^y 

Zc dt 
dA, 

Zc \Z dy + dt 
= 0 

(19) 

(20) 

(21) 

d2An 

d2An 

dy2 

1 d2 A 
mx 

c2~d!2 

d Amy 

dy2 

1 d2Amz 

^{Zc9-^ 
c \ dy + 

dAn 

1 d2A 
my 

dt2 

dt2 

+ —[Zc 
c V dy 

dt 
aZ dAmy 

c dt 
dAmz 

dt 

= 0 

= 0 

= 0 

(22) 

(23) 

(24) 

If we further specialize to a transverse electromagnetic (TEM) wave we may 
demand that Ey and Hy are zero. This implies the following conditions for 
the vector potentials Ae and Am according to Eqs.(1.6-17) and (1.6-11) for 
4>e = 0m = 0: 

E„ -Zc 
(dAe 

Hv = ^ \ dz 

V dz 
dAmx 

dAe 

dx 
dAmz 

dx 

dAn 

dt 
dAe, 

dt 
= 0 

(25) 

(26) 
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Due to Eqs.(17) and (18) these two equations are reduced to 

dA, 1my 
dt 

0 (27) 

^ y = 0 (28) 
dt 

Equations(20) and (23) assume the form 

dy2 c2 dt* U l 2 9 ) 

" ™my 1 o Amy _ 
dy2 ? ~ 9 P ~ ~ U W 

since Eqs.(27) and (28) do not imply that the second partial derivatives with 
respect to t are zero. We make the following substitutions where the subscript 
v alludes to 'variable': 

A-ex — Aez
 = slev, Amx = — Amz == Amv ("1) 

Equations (19) and (21) as well as Eqs,(22) and (24) are reduced to one equation 
each with the variables Aev and j4mv: 

d2Aev 1 d2Aev s (c dAmv dA, 
dy2 c2 dt2 Zc {V-w+?w)=o m 

d Amv 1 a Amv aZ I dAev dAmv . . . 
dy2 c2 dt2 c \ dy dt 

The comments about polarization made in Section 1.2 following Eq.(1.2-
10) apply again if Ex, Hx, Ez, Hz, E, and H are replaced by 

A-exi ^ m u -^-ez) 
Amzi Aev, and Amv. 

For Eqs.(29) and (30) we have the following general solution for y > 0 and 
t > 0, where /eo, /ei, fmo, and / m j denote arbitrary functions: 

Aey(y, t) = Ae0fe(y -ct), y>0,t>0 (34) 

Amy(y, t) = Am0fm{y - ct) (35) 

These solutions hold for excitation functions or boundary conditions fe(0,t) 
and fm(0,t) at the plane y = 0 for all times t > 0 as well as initial conditions 
fe(y, 0) and fm(y,0) for t — 0 at all locations y > 0. 

In order to separate the variables Aev and Amv in Eqs.(32) and (33) we 
differentiate Eq.(33) with respect to y, express dAmv/dy by Eq.(32), differen­
tiate it as often as needed with respect to t and y, and substitute into the 
differentiated Eq.(33). We obtain: 
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d2Ve l02Ve 1 / _ _, 3 \ dVe f . 

d2Aev 1 d2Ae 

dy2 = Ve(y,t) (37) 

The dimension of Aev is As/m and the dimension of Ve is As/m3, which is 
an electric charge density. 

With the substitutions Aev <-> Amv, c/Z <-* Zc, s <-• <x one may transform 
Eq.(32) into Eq.(33) and vice versa. Equations (36) and (37) are then replaced 
by: 

d2Vm 1 d2Vm - ^ + ! ) ^ - ^ » = ° (38> 
= Vm(y,t) (39) 

i/2 c2 dt2 c\ Z> dt 
02Amv 1 a2 A 

3?/2 c2 S i 2 

The dimension of Amv is Vs/m and the dimension of Vm is Vs/m3, which 
is an hypothetical magnetic charge density. 

From the various normalizations for y and t discussed in Section 1.3 we 
choose the one of Eq. (1.3-10) 

6 = t/T, ( = y/cT (40) 

and rewrite Eqs.(36) and (37): 

d2ve d2ve dve 2 

'oc2~~^W~Pl'de~p2Ve = 0 

P! = cT(aZ + a/Z) = c2T(afx + se), p\ = c2T2os (41) 

Equation (41) is equal to Eqs.(6.1-1) or (6.4-6) if Ve is written for E and the 
normalization of Eq.(1.3-7) is used as one may infer from Eqs. (1.3-11) and (1.3-
13). Hence, everything said there about the electric field strength E applies to 
the auxiliary function Ve. Equation (42) is the inhomogeneous wave equation 
shown by Eq.(3.1-40) and solved by Eq.(3.1-44). We obtain as solution of 
Eq.(42): 

. c+(«-»') 

4»v(C,0) = - ^ - / [ / ve(C,e')dC)d8> (43) 7 / 
o \-(e-9') 
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The variables C and 6 of Ve(C,0) in Eq.(42) have to be replaced by £' and 6' 
when Eq.(43) is used. 

For the variable Vm(y, t) of Eqs.(38) and (39) we obtain the following three 
equations in analogy to Eqs.(41)-(43): 

d2Vm 02Vm dVm 2 

~ Pi-no-~ Pfim = 0 (44) ac2 oe2 IL do 
d2Amv d2A ' H I V „2rri2 

oc2 oe2 

9 , c+(«-e') 

= ^ rv m ( ( ,« ) (45) 

c2T2 

Amv((,8) = 2~y I J Vm{£,e')dZ'US' (46) 
o \_(e_fl') ' 

Again, C and 0 in Eqs.(44) and (45) must be replaced by C,' and 9' when Eq.(46) 
is used. 

If Aev(C,6) is found from Eq.(43) for certain boundary and initial condi­
tions, one may obtain the component Amv(C, 0) of an associated potential from 
either Eq.(32) or (33). Consider Eq.(32) first: 

A tr B\ ? f fd2Aev d2Aev ldAev\ Z fi 
Amv(C,0) = Zp.J ( ^ - ^ --ggr- --&-) d<< P° = 7cT = 7f (47) 

A second expression for Amv((,6) is obtained from Eq.(33) by treating this 
equation as an inhomogeneous equation for Amv with a known term dAev/dy 
or dAev/dC-

O Amv O Amv OAmv oA.ev fAc\ 

~dT2 W~ ~ P"~W = zp°-bT (48) 

,™ &T Z u au 1 .,„. 
, a = Z T c ( 7 = _ p s = _ = _ PsPff = _ = _ (49) 

The integration of Eq.(47) is much simpler than the solution of Eq.(48), but we 
cannot ignore Eq.(48). Since Eqs.(47) and (48) must yield the same result for 
Amv((,0) we generally need the solution of Eq.(48) to determine integration 
constants. 

Alternately, if Amv{(,6) is found from Eq.(46) for certain boundary and 
initial conditions one may obtain an associated potential Aev(C,6) from either 
Eq.(32) or (33). First we get from Eq.(33): 

The second expression for Aev((,6) is obtained from Eq.(32) by treating it as 
an inhomogeneous equation for Aev with a known term dAmv/dy or dAmv/d£: 
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~d(i W~~Js~df~ZPs d( [ ' 
Again, one must generally obtain j4ev(C> 9) from both Eq.(50) and (51) in order 
to determine the integration constants. 

If we denote the solution of Aev derived from Eq.(43) by Aeve and the 
associated solution obtained from Amv via Eqs.(50) and (51) by Aevm we obtain 
the general solution of Aev as the sum 

Aev(C,6) = Aeve(C,9) + Aevm(C,0) (52) 

Similarly, if we denote the solution derived for Amv from Eq.(46) by Amvm and 
the associated solution obtained from Aev via Eqs.(47) and (48) by Amve we 
obtain the general solution of Amv as the sum 

Amv(C, 0) = Amvm((, 9) + Amve(C, 9) (53) 

This means we can choose initial and boundary conditions independently for 
Aeve and Amvm, but the associated potentials Amve and j4evm are always auto­
matically excited with Aeve or Amvm. We can never excite Aev without exciting 
Amv and vice versa. 

For a first solution of Eq.(41) we assume as boundary condition at £ = 0 
a step function 

V;(0,6») = Ve0S{6) = 0 for 9 < 0 

= Ko for 6> > 0 (54) 

It is usual to assume a further boundary condition for £ —» oo 

14(00,0) = finite (55) 

We cannot use it since 9 and C, will be restricted to the finite intervals 0 < 9 < 1 
and 0 < C < 1- An alternative condition will be introduced presently. 

The boundary condition of Eq.(54) uses a step function that is not quadrat-
ically integrable. This may cause concern that an infinite energy is introduced, 
but there is no such problem. The boundary condition of Eq.(54) excites an 
electromagnetic wave with finite energy. Of course, one can easily eliminate the 
concern about quadratical integrability by subtracting from VeoS(9) a delayed 
step function VeoS(9 — 6{) and thus replacing the step function of Eq.(54) by 
a rectangular pulse. We shall discuss that in Section 4.6. 

We turn to the initial condition(s). As initial condition at 9 = 0 we assume 
the relation 

V.(C,0)=0 (56) 

but observe that this condition implies V^C^) = 0 for 9 < 0 due to Eq.(54). 
Hence, the potential Ae derived from j4ev will be zero for 9 < 0. We note that 
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a function of time that describes a physical process subject to the causality law 
must be zero before a finite time1. 

If Ve(C, 0) is zero for all values C > 0, its derivatives with respect to C must 
be zero too 

dnve(c,o)/dC = o 

which produces with the help of Eqs.(56) and (41) the equation 

that is satisfied by V^C.O) = 0 of Eq.(56) and the additional condition 

dVe{C,6)/d0 = Q for 61 = 0 (57) 

We assume that the general solution of Eq.(41) can be written as the sum 
of a steady state solution F(£) plus a deviation w(C, 6) from it: 

Ve({,6) = Veo[F(()+w((,6)} (58) 

Substitution of F(C) into Eq.(41) yields: 

d2F/dC2 - p\F = 0 

F{() = Al0e-^ + Ane»^ (59) 

The boundary condition of Eq.(55) would demand An = 0; the value 
.Aio = 1 would then follow from Eq.(54). Since we cannot use Eq.(55) we 
substitute the following reasoning: The function F(Q represents an amplitude 
and F2(C) an energy density. Since the energy comes strictly from the boundary 
C = 0 the energy in a certain interval AC cannot increase with increasing 
values of C; hence, An must be zero. Alternately, if the energy is fed in at the 
boundary C = 1 one must choose A\Q equal to zero. This is an issue introduced 
by the replacement of infinite intervals for time and space by arbitrarily large 
but finite intervals. A more general discussion will be found in the small printed 
text following Eq.(75) below. One may also claim that we do not need the most 
general solution but only a sufficiently general solution, which is provided by 
the choice An = 0. Since An = 0 implies Aio = 1 we write: 

F(C) = e-"2C (60) 

The introduction of F{() transforms the boundary condition of Eq.(54) 
for Ve into an homogeneous boundary condition for w, which is the reason for 
using Eq.(58): 

1 Mathematicians use sometimes the expression causal function for such functions. 
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ve(o,e) = ve0[F(o) + w(o,e)} = ve0 for0>o (ei) 

iu(O,0) = O for0>O (62) 

The boundary condition of Eq.(55) becomes 

w(oo,9) = finite (63) 
Again, the use of a finite interval 0 < C < 1 prevents us from using this 
boundary condition. It turns out not to be required anywhere. The initial 
conditions of Eqs.(56) and (57) yield: 

F (C)+MC,0)=0 , w(C,0) = -e-^ (64) 

dw(C, 6)1 dB = 0 for 6 = 0, ( > 0 (65) 

Substitution of Eq.(58) into Eq.(41) yields for w(£,6) the same equation as for 
ve(c,e): 

d2w/d(2 - d2w/d92 - pxdw/de -p\w = 0 (66) 

Particular solutions of this equation denoted wK{(,,6) are obtained by means 
of Bernoulli's product method for the separation of variables 

f*(C,0) = 0(CM0) (67) 

\d24> ia2v> Pidv> 2 , . .2 . . . . 

which yields two ordinary differential equations 

d24>/dC2 + (2TTK)20 = 0 (69) 

d2tp/d62 + pxd^/de + [(2TTK)2 + p\]i> = 0 (70) 

with the solutions 

0(C) = A2o sin 27T«( + A2\ cos 2-KKC, (71) 

1>(9) = A30 exp(7i0) + A31 exp(y26) (72) 

The coefficients 71 and 72 are the roots of the equation 
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7 2 + P I 7 + [ ( 2 T T K ) 2 + ^ ] = 0 

li = \l-Pi + (pl-d2)1'2) ford2<p2 

l2 = \[-pi-{p\-dy/*\ 

H = \[-pi+i(d2-pl)1/2} iovd2>p2 

l2 = \[-p.-i{d2-p\)l>2\ 

px = c2T(afi + se), d2 = 4[(2TTK)2 + p2
2], p\ = c2T2as (73) 

The boundary condition of Eq.(62) requires A21 = 0 in Eq.(71) and the 
particular solution wK(C,6) becomes: 

wK((, 6) = [Ax exp(716>) + A2 exp(72<9)] sin 2TTKC (74) 

The solution wK(C, 0) is usually generalized by making Ax and A2 functions 
of K, and integrating over all values of K as shown by Eq.(6.1-26). From this 
point we follow a path that is different from the usual one. 

We may generalize wK of Eq.(74) by making Ax and A% functions of K and 
taking the sum of denumerably many values of K. In essence the Fourier sine 
integral of Eq.(6.1-26) is replaced by a Fourier sine series. The constant term 
and the terms multiplied with cos 2-KKC, of the usual Fourier series have been 
eliminated by the boundary condition of Eq.(62). A Fourier series requires a 
finite interval for £ in Eq.(74) which we must define. This problem does not 
occur for the integral of Eq.(6.1-26) since the interval of the sine transform 
always runs from zero to infinity for both C, and K as shown by Eq.(6.1-30). We 
choose the finite interval for C to be 

0 < C = y/cT < 1 (75) 

where the time interval T is arbitrarily large but finite. 

Equation (75) makes it impossible to use the boundary conditions of Eqs.(55) 
and (63). Instead we had to use the argument in the text following Eq.(59) to re­
place Eq.(55); no replacement has been needed for Eq.(63). A completely different 
possibility is to replace the normalization 6 = t/T and £ = y/cT of Eq.(40) by the 
normalizations 9 = t/At and £ = y/cAt, where At is an arbitrarily small but finite 
time interval. We then get the finite intervals 

0 < t < T, 0<y<cToiO<9< T/At, 0 < C < T/At, T/At = N » 1 

and we can justify An = 0 in Eqs.(59), (60) with Eq.(55) rewritten Ve(N,9) = 
finite and C —* N 3> 1. We consider this an important improvement of the theory 
developed here since it eliminates both infinitely large time and space intervals as 
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well as infinitely small or infinitesimal intervals dt, dr. Both "infinitely large" and 
"infinitesimal" are beyond observation and can exist in a science based on observation 
for mathematical convenience only. We note that the upper limit of K in Eq.(76) below 
becomes very large but finite rather than denumerably infinite for a finite value of 
At. Since the largest value of K will represent the number of photons, an arbitrarily 
large but finite value for it is clearly preferable to either a nondenumerable or a 
denumerable infinite value. 

It is known that the use of arbitrarily small but finite intervals At, Ar produces 
changes in relativistic quantum mechanics but not in the nonrelativistic theory (Har-
muth 1989, pp. 236-303; 1992, pp. 197-269) and it is very satisfying that our theory 
suggests to use At, Ar. But we must limit the scope of this book and we sidestep 
the use of At. Hence, we use the normalization 9 = t/T, £ = y/cT and the intervals 
0 < 6 > < 1 , 0 < C < 1 - We hope to elaborate the use of 8 = t /At, £ = y/cAt in a 
future book. 

It is usual to continue a Fourier series outside its finite interval of defini­
tion periodically to ±oo, but there is no need to do so. Since we defined the 
boundary condition in Eq.(54) for C = 0 we are not interested in the interval 
C < 0 and can ignore it2. Similarly, we can ignore the interval £ > 1 since we 
can choose T as large as we want. A problem would only occur if we let T go 
to infinity, but this would take us beyond the realm of physics since we cannot 
make observations at an infinite distance in space or time. 

We generalize Eq.(74) by a sum with denumerably many terms of the 
variable K and a finite interval for the variable £: 

oo 

MC>0) = ^ H i O O e x p M + A2(K)exp(720)]sin27n< (76) 

Mathematicians call the sum over non-denumerably many values of K rep­
resented by the integral of Eq.(6.1-26) a generalization of Eq.(76), but in terms 
of physics it is an abstraction that may or may not be usable to simplify a 
calculation. Simplification of calculations is the only justification for the use 
of differentials dn, dx, dt, ... and non-denumerably many values for a physical 
observable. No observation can distinguish a wave with wave number K from 
one with wave number K + dn. A finite difference An is needed for an obser­
vation. We had discussed in the text following Eq.(3.4-6) that finite space and 
time differences Arc, At can be used instead of a finite interval or a box to 
obtain a Fourier series instead of a Fourier integral. Hence, we will use finite 
values An = 1 to obtain the Fourier series of Eq.(76) instead of the Fourier 
integral of Eq.(6.1-26). 

We need the derivative dw((,6)/d6. Instead of the integral of Eq.(6.1-27) 
we get now a sum with denumerably many terms: 

a OO 

-^ = ^ [ A i ( K h i e x p ( 7 i 0 ) + J42(K)72exp(726i)]sin27rKC (77) 
K = l 

2Instead of finding a solution in the interval £ > 0 and ignoring the interval ( < 0 w e 
could develop a solution for £ < 0 and ignore the interval £ > 0. Equation (75) would then 
have to be replaced by — 1 < £ < 0. 
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The functions A\{K) and ^ ( K ) can be obtained from Eqs.(76) and (77) 
with the help of Eqs.(64) and (65): 

w(C,0) = £ ) [ 4 I ( K ) + ^2(«)]sin27TKC = - e _ p 2 C (78) 
K = l 

^ ^ = f][ili(«)71 + ^2(«)72] sin27r«C = 0 (79) 
K = l 

These two equations must be solved for the functions AI(K) and AI{K). To this 
end consider the Fourier sine series in the following form: 

l 

S.(/e) = 2 f /.(C) sin 2TT/< ^C (80) 

o 
oo 

/s(C) = $3fls(«)sin27r«C (81) 
K = l 

The boundary condition of Eq.(65) avoids a term COS27TK£ in Eq.(78) and leads 
to the Fourier sine series of Eq.(81) rather than the general Fourier series with 
sine and cosine functions. The absence of a term COS27TK£ in Eq.(81) suggests 
to use the real rather than the complex form of the Fourier series. 

If we identify the function ga(K.) first with A\(K) + A^n) we obtain from 
Eqs.(78) and (80) 

AI(K)+A2{K) = - 2 /e- p a Cs in2TT/<d{ (82) 

while identification of </s(«) with A\{K)^\ + -I42(K)72 of Eq.(79) yields 

4 i ( « b i + 4 j ( « b a = 0 (83) 

Using the tabulated integral (Gradshtein and Ryzhik 1980, p. 196, 2663/1) 

/ 

vx • , epx (p sin qx-q cos qx) . . 
epx sin qx dx = — 1 1 2_Z. (84) 

p2 + q2 

one obtains from Eq.(82): 

4iTK,(l-e~p2) ^ 4irnp2 ^ 1p2 
{2-KKf+pl ~~(2ITK)2+P%~~2^, 

4TTK 
for pi > 1 

(27TK)2 + p2 

p\ = c2T2as (85) 
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If we had used the Fourier transform of Eq.(6.1-30) rather than the Fourier 
series of Eqs.(80), (81) we would have obtained an upper limit of infinity in 
Eq.(82) in analogy to Eq.(6.1-31)3; the solution represented by Eq.(6.1-42) 
is readily extended to a = 0 (Harmuth 1986, pp.54, 55). It is the use of 
denumerably rather than non-denumerably many values of K that introduced 
the arbitrarily large but finite time interval T and the very different results for 
P2 <C 1 and p2 ^ 1 in Eq.(85). We shall show in Section 6.8 that the choice 
P2 <C 1, which implies as —* 0, leads to a strange result. Here we will persue 
the result for p% = cTyfos » 1, which implies that the conductivities a and 
s cannot be zero. The choice pi = 7 yields already e~p2 < 0.001 and is thus 
sufficiently large compared with 1 for results represented by plots. 

We had discussed in Section 3.5 in the second paragraph from the end 
that the current densities gm and ge cannot be chosen to be zero which is the 
same as claiming a and s cannot be zero. We see here that this result follows 
directly from the choice of denumerably many values of the wave number K. 
If there were only monopole currents one could choose gm and ge zero in the 
absence of charge carriers, since the conservation law of charge would preclude 
their generation. But gm and ge can also stand for dipole current densities and 
there is no conservation law that prohibits the generation of dipoles in vacuum. 
Indeed we could not explain how a capacitor with vacuum as dielectric could 
be charged without the help of an electric dipole current. 

We return to the determination of the function w((,6). Equations (83) 
and (85) are solved for AI(K) and A2{K): 

4 7 T « ( l - e - ' » ) 72 
AnK) - — / o _ . . N 2 , „2 (27T/t)2 + p\ 7 2 - 7 l 

^ - ^ ) f 1 + _PJ_ \ forp?>d2 

* * - ^ _ _ i * I f0rd2>p2 

A2(K) = 

(27T«)2 + p2 ^ (dP-plf2 

47r«(l -e~P2) 7x 
(27TK)2 +pl 7 l - 7 2 

— (2,.)2+P2 ^ - ^ r ^ p j f o r^> d 

(27r«)2+p2 ^ {ffi-pO1'2) 

p\ = c2T2as, pi = c2T(ap + se), d2 = 4[(2TTK)2 + pl] (86) 

3We note that AI(K) and A2(K) refer here to the solution of Eq.(41) while in Section 
6.1 they refer to Eq.(6.1-1). 
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Substitution of Eq.(86) for AI(K), A2(K) and of Eq.(73) for 71, 72 brings 
Eq.(76) into the following form: 

w(C,8)-- -piO/2 

+ 1 
-(p2 - d2)l/29 

{P\-d2)l/2e 

+ 1 + 

(P
2-d2) 

0 0 

+ E 
K>K 

1/2 exp • 
2TTK 

sin 2-KKC, 

1 - V i 

(rf2-p?)1/2 exp 

exp • 
i{d? - P\y/2e 

(d2 - PD1'2 J " r 2 

tf = t^TKa/i - *e)|/47r, d2 = 4[(2TTK)2 + pjj] 

\{2-KKY+PI 

i{d2-P\)li2e 
2 

2T« . „ A 
s sin 27TKC r 

{2TTK)2+P2 SJ 

(87) 

The notation < K and > K in the limits of the sums means that the largest 
integer smaller than K or the smallest integer larger than K should be used. 

The exponential terms in Eq.(87) may be eliminated with the help of 
hyperbolic and trigonometric functions: 

o(C,e) = -2e-"^2(l - e-»*) J2(cH(p2-d2)l/2e/2} 

{p\-d2)1'2 J(27rK)2 + p2 

00 , 

+ Yt[coS[(d2-Pi)1/20/2] 
K>K 

p l 8 m [ ( d ' - p j ) i / ' g / 2 ] \ 27TK " 

, 2T -T2 , pi = c2T(ap, + se), pi = c2T 

d2 = 4[(2TT«)2 + pi], K = <?T\(p\i - se)|/47r (88) 

Equations (60) for F(C) and (88) for w(£,6) define Ve(t,0) according to 
Eq.(58). In order to obtain Aev(C,6) according to Eq.(43) we must replace the 
variables C, 9 by £', 9' and integrate over C'i #'• First we integrate over C and 
denote the result by dAev((^,9')/d9': 

dAev(C,9') c2T2K0 

C+(e-e') 

I [F(0 + f(C',W (89) 
C-(e-e') 
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Only two simple integrals need to be evaluated 

C+(e-0') 

C-(e-S') 

C+(e-e') 

sin 27r«C' ^C 

C-(e-e') 

/ e ^ ' d C ' = - —(e-MK+^e ' 2 ' ' - e ^ K - 9 ^ - " 9 ' ) (90) 
J Pi 

, , sin 2TTKC L (sin 2TTK9 COS 2TTK9'—cos 27TK0 sin 2TTK6') (91) 

and we obtain: 

a^ev(C,^) _ c T ye0 f 1 P2(c+e) P2g' _ -P 2«-f l) -P2es 

a<?' " 2 W e j 

+ 4e - p i e ' / 2 ( l - e - p 2 ) £ U[{p\-d^lH'/2]- PlSh[{pl-d2)l,2e'/2\ 

sin 27TK£ 

(27TK)2+pi 

(p?-d2)1/2 

(sin 27r/t6 cos 27TK;0' — cos 27TK:# sin 2TTK0') 

K>K V (^2 - Pi) 

sin 27TK£ 

(2TT«)2+P1 
(sin 2TT K6 COS 27r«#' — cos 2-KKO sin 2TTK6') (92) 

The terms in Eq.(92) have been written in a form that will facilitate the fol­
lowing integration over 0': 

Aev(C 
dAev({,e') 

09' 
d6' (93) 

We recognize the following integrals over 6' in Eq.(92): 

— I\e-i*«+<>)er*e' - e ^ C - ^ - ^ ' ) ^ = .le-^<(i _ chj0^) (94) 

if 

Lu (9, R)= f e'^'12 sh[(p2 - d2)l'2e'/2] cos 2™*?' dff (95) 
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9 

L12(0,K)= fe-"ie'/2sh[(p'i-d2)^2e'/2}sm2TTK,e'}de' (96) 

0 

0 

LI3(9,K) = / V ' i e ' / 2 c h [ ( ^ - d2)1/2e'/2}cos2nK0'de' (97) 
0 

e 

L 1 4 ( 0 , K ) = f e~i"6'l2ch[{P\-d2)1'2e'l2]sin2-KK6'del (98) 
o 

e 

L15{6,K)= f e-^e'/2siR[(d2 - p2
1)

1/2e'/2}cos2TTKe'd6' (99) 

o 
e 

L16(0,K)= fe-P^'/2sm[(d2-p2)1/2e'/2}sm2TTKe'de' (100) 

o 
9 

L17(9, K)= f e - ^ e ' / 2 c o s[( d2 _ plfl^e'12) cos 2-KK& dO1 (101) 

0 
9 

Ll8{e,K)= Ie-^e'l2cos[{d2-p\)1'2e'/2]sm2'KKB'de' (102) 

0 

The integrals of Eqs.(95)-(102) are either tabulated or can readily be rewritten 
into a tabulated form. Equation (93) assumes the following form: 

Aev(C,e) = c2T2Ve0[ 4 e _ P 2 C ( l - ch/o20) 
,P2 

<K 

+ 2(1 - e--){ £ [(*!.(»,«) + f ^ M ) ™*™° 

Ll4(e,K)+plLl2{0'Kl)coS2TrK8 

K>K 

sin 2-KKC, 

{p2-d2)l,2)~"~ \(2nK)2+p2 

L17(e,K)+PlLl5{9'Kl)sm2nK8 
(d2-pl)l/2 

Li8(e,n)+ P l L l 6 ( e ' f / „ ) c o s 2 7 r ^ 
sin 2TTK( 

(103) 

The constant V ô has the dimension As/m 3 like K in Eq.(37). We note 
that all terms of the two sums contain products that represent propagating 
sinusoidal waves: 
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sin 2-KKO sin 2-KKC, = - [cos 2-KK{(, - 6 ) - cos 2TTK(C + 9)\ 

cos 2-KKO sin 2TTKC = -z [sin 2-KK{C, —&) + sin 27TK(C + 0)] 

In order to simplify Eq.(103) we choose K to be smaller than 1: 

K = c?T\(aii-se)\/4Tr<l, T < 2-ir/c2\(afi - se)\ (104) 

The first sum in Eq.(103) is eliminated while the second sum runs from K = 1 
to infinity. All denominators d? — p\ are positive: 

Aev(c,e) = c2T2ve0l\e-»^a - chP2e) 
00 

+ 2 ( l - e - « ) £ 
« = i (d2 - P\) 

Lw{e,K)+PlLw{e^).\coB2^e 
{d?-P\)1'2 

sin 2-KKC, 

{2TTK)2+P
2. 

d2 = 4[(2TTK)2 + p2
2\, Pl = c2T(<7/i + se), pi = c2T2as (105) 

The integrals L\^{6,K) to LW(6,K) of Eqs.(99)-(102) can readily be rewritten 
with the help of two new variables qi = QI(K) and g2 = 92(K): 

9i = \{d2 - pl)1'2 + 2™, q2 =
 l-{d2 - p2Y'2 - 2™, d2 - p\ ; 0 (106) 

We obtain: 

LU{0,K) = 
9I 

+ 
92 

(P l /2)2 + g2 ( p i /2 )2+g2 
-M /2 

i'(j9i/2)sinqig + gicosgifl (pi/2) sin</20 + 92 cos<z20 

(Pi /2) 2 +9 2 
( P I / 2 ) 2 + 92

2 
(107) 

Ii6(fl,/c) 
Pi 

2V(Pi /2) 2 +9? (Pi/2)2 + g2
2 + e -pifl/2 

(pi/2)cosqiQ - qisinqiQ (pi/2) cosg20 - 92 sing20 

(p i /2) 2 +9 2 (pi/2)2+92
2 

(108) 

Lir(0,K) = - P\ 
+ • _ p -P i« /2 

2L2 V(Pi/2)2 + g2"(pi/2)2+g2
2

y 

(pi/2)cosqi0 — gising!^ (pi/2) cosg20 — <72sing2#
N 

(Pi /2) 2+9 2 + (p i /2 ) 2 +9 2
2 

(109) 
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Lia{0,K) 9i 92 _ p-PiB/2 

2L(Pi /2) 2 + 9? (p i /2) 2 + g2
2 

(pi/2) sin giO + g\ cos gi0 _ Q?i/2) sin g2fl + 92 cos g2fl 

( f t / 2 ) 2 + 9? (Pi/2)2 + g2
2 

If the relation 

afi = se or w = 
se 

apt, 

(110) 

(111) 

is satisfied the simplified Eq.(105) will hold for any value of T according to 
Eq.(104). In all other cases the first sum in Eq.(103) will apply to the smallest 
values of the wave number K for a sufficiently large value of T. The integrals 
LH(6,K) to LU(6,K) of Eqs.(95)-(98) will then be needed. With the two new 
variables 93 = q3 (K) and q4 = q4{n) 

93 = \[{p\ - d 2 ) 1 / 2 - ft], q4 = \[{p\ - d 2 ) 1 ' 2 + Pl], p\ - d2 > 0 (112) 

we obtain the following four integrals: 

LU(0,K) 
1 / ei*8(q3 cos 2nn6 + 2ITK sin 2-KKO) - q3 

2V 

+ 

g | + (2TT«)2 

e~qi6(q4cos27CK6 — 2T\K sin 2irn6) — q4 

q\ + (2TTK)2 
(113) 

r ,„ . 1/e«3fi(g3sin27rK^-27r«cos27rK6') + 27rK 
L»^=A ajrw^ 

+ 
e~qtB(q4 sin 2n K9 + 2TTK cos 2TTK6) — 2ITK 

gf + (2TT«)2 
(114) 

L13(6,K) 
1 / eq3B(q3 cos 2-KKB + 2TTK sin 27TK0) 93 

93
2 + ( 2 T « ) 2 

e_9'*e(<j,4Cos27rK# — 27TK sin 2TTK6) — g4 

q\ + (2TTK)2 
(115) 

L I 4 ( 0 , K ) = 
1 / e93S(g3 sin 2TTK9 - 2irn cos 27TK0) + 2TTK 

93
2 + (2™)2 

e~94fl(q4 sin 27T*;fl + 27r/t cos2TTK6) - 2TTKS 

g2 + (2™)2 (116) 
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We turn to the potential j4mv(C> 9) that is associated with Aev(C, 9) accord­
ing to Eq.(47). There are three integrals that have to be evaluated. Consider 
the first one: 

Amvi{C,9) = Zps / - - j dQ = Zp. 
dC2 

= c2T2 

<K r 

dAev(c,e) 
5 dc 

2ZPsVeo( -—e-p^(l-chp29) 

r <K 

+ 2{l-e-<»)\Yt 
*• K = l 

L13(fl,«)+ PlLll{e^l\sm2-KK6 

_ f Lu(oiK) + PiLiMfl , c o s 2 7 r / t0 
(Pl-d2)1/2 

{p\-d2f\ 

2TTK cos 2TTK( 

(2TTK)2+P
2 

K>K 

£17(fl,«)+ PlLl5{e'Kl)Sin27rKe 
(d2-p2)1/2 

- ( L 1 8 ( ^ . ) + ; i L l 6 ( ^ /
)

2 ) c o s 2 ^ 
(d2 - p\) 

2TTK cos 27r«C 1 i / , - ~N 

isg^rl <11T) 

The second and third integral in Eq.(47) are more difficult to evaluate due to 
the differentiations with respect to 6: 

AmV2«,9) = -ZPs J
 dAge

iy)dC = -Zps^J Aev(C,9)dC 

Amv3({,9) = -zj 9Aev
gf

e)dC = -Z^ J Aev(9,()d{ 

The integral f Aevd( follows readily from Eq.(103): 

J Aev((,9)dC = c2T2Ve0( - \e-"^(l -chp29) 

2 ( 1 - e 

LU{9,K) + 

P2){ E [(ii3(<>.«) + PlLn{6'Kl 1 s i n 2 ^ 

P\LX2{9,K) 

(p2-d2) 1/2 
cos 2TTK9 

{p\-d2f12. 

COS 27TKC 

27rK[(27TK)2 + p\\ 

K>K 

Ln(0,K)+ PlLl5{e>Kl)sm2irK9 
2\1/2 

(d2-p2 

Lia(9,K)+PlLl6{e'*l)cos2nK9 
cos 2TTK£ 

27T«;[(27r«;)2 + p\\ }) 

(118) 

(119) 

(120) 
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The component Amv3 of the potential defined by Eq.(119) can still be written 
without undue effort: 

Amv3{(,6) = -c2T2ZVe0\^e-P^shp2e 

<K 

+ fLl3 + ^ ^ ) c o s 2 ™ * 
9JL. 
06 

14 P\ dL\2 \ COS2TTK6 

~ ( p 2 _ d 2 ) l / 2 06 J 2-KK 

+ ( L H H Trt ) sin 2-KKO 

V {pl-d2)1/2J 

COS 27TKC 

(27rK)2 + p | 

dLm \ sin 27TK6> 
Y> fdLn pi dLi5 \ sin 27T< 

K>A\ de {d?-p\y/*) 06 ) 2™ 

, (T._, p i ^ i s *\ o_„o + Ul7 + COS 27TK0 
- \<P-P\f\ 

(dL\8 Pi dLie\cos2n K& 

~ \~dT + (cP - pif2 96 J^^T 

+ (L1S+
 PlL> PiLie \ . _ J COS27TKC M , 1 0 1 N 

The derivatives OLu/06 to 0L\%/06 are the kernels of the integrals of Eqs.(95)-
(102) with 6' replaced by 6: 

_ ^ i = g-p^/2 g h VO ^ c o s 27TK0 
06 2 

(122) 

0L- 18 = e " * 
2 ' c o s - 2TTK<9 (123) 

Writing the last component -AmV2 of the associated potential defined by 
Eq.(118) is a challenge. We multiply Eq.(121) by pB and differentiate with 
respect to 6: 

AmV2({,6) = -c2T2ZpeVe0\ -e-^chp26 
\P2 
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<K 

133 

*-»{£[(*+5r! 
PI d2Ln\sm2iTK6 

+ 2 ( ^ H + 
Pi 

d 2 ) V 2 d92 

dLn 

2TTK 

90 ' {p\-cP)112 99 

V {p\-<Pf2 

d2Lu , /9l 9 2 L i 2 \ COS27TK0 

cos 2TTK9 

sin 27r«;6 

d92 + 

+ 2 \ ^ + 
1 ae 

(pf-cp)1/2 56,2 7 2™ 
Pi 9 L i 2 ' 

( / , 2 _ d 2 ) l / 2 ^ 
sin 2ITK8 

+ 2TTK(L14+
 P l L l 2 

+ £ 
K > K 

d2L 

(p2-d?) 1/2 
i27T/t6l 

cos 2TTKC 

(27T«)2 + p2 

17 p i 9 2 L i 5 ^ sin27TK0 

+ 2 ( ^ + 

^ 2 ( d 2 - / 9 ? ) 1 / 2 96i2 J 2TT« 

P I 9-^15 

{d2_ ^ 1 / 2 a e 

/ r , Pl-C-15 
27TK( L i7 + 

V (rf2-p?)1/2 

cos 2-KKO 

sin 27TK61 

9 2 £ i 8 Pi ^ I / i e ^ COS27TK;0 

+ 2 

^ 2 ' ( d 2 - p 2 ) 1 / 2 ^ 2 / 27r« 

/ 5 L i 8 , Pi 0^16 " 

V 3 * (d2 - p2)V2 £ 0 

r 
sin 27TK0 

+ 27TK L i 8 + 
P l £ l 6 

V (d2-p?)1/2 COS 27TK^ 
COS 27T«C 

( 2 7 r « ) 2 + / 9 2 (124) 

T h e second der ivat ives d2Ln/d62 t o d2L18/d62 follow from Eqs . (122) a n d 
(123). W e wr i t e only d2Lu/d62: 

do2 2 2 

l(n? - H2W1P-PW rh (p\-d2)l/26 + ^p{-<P)ll2e • cos 2-KKO 

- 2-Kne-^l2 sh ( p * p ^ 2 6 s i n 2 ™ 0 (125) 

If we s u b s t i t u t e Eqs . (117) , (121), a n d (124) in to Eq. (47) we o b t a i n t h e 

c o m p o n e n t Amv = Amve of t h e po ten t i a l associa ted w i t h A e : 
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imv(C,0) = A, •xnvl ,mv2(C,0)+Anv3(C,0) 

= c2T2. 

+ 

. l f 1 + ^ e " « C 

' i f V [Yd 2 £i3 pi d2Ln\ sin 2 7 ^ 

P l
 1 / 2 ^ ( 2 c o s 2 ™ 0 + ^ ) 

•«2_W2\V2 961 / V 27TKO, J 

Pi 9I/H \ / sin27T«; 
r^r — ^ - 2 cos 27r/t6> + — 

( p 2 _ d 2 ) V 2 £0 j \ 2lTKp2 

+ (], PlLn \ c o s 2 7 r ^ 
V ^ {pl-d2)1/2J P2 

(d2L14 Pi a2Li2\cos27r/t6> 

V <902 + (pl-cP)1/2 dO2 ) 2ITK 

fdLu , Pi d ig x " pi 

( p ? _ d 2 ) V 2 -

, P l ^ l 2 

[-cfy- de J \ 27r«Ps / 

/ P1L12 \sin27r«;0 COS27TK;£ 
+ { 1 4 +

( p 2 _ d 2 ) l / 2 j — — J(27T«)2+p2 

V I Y ^ 2 I Pi 9 2 - L i 5 \ s i n 2 7 r ^ 
+ ^ i \ 3* 2 + ( d 2 - p 2 ) 1 / 2 ^ J ~ 2 ^ T " 

961 , 
^ i : — j (̂2 cos 2 ^ + ^ — - j 

, / r , P i^ i s \COS27TK0 

Q 2 

( ^ P ^ , , 2 < 

(d2L\% pi d2Li6\ cos2ITK8 

~ V 96»2 + ( d 2_ / , 2 ) l /2 QQ1 J 2lTK 

'dLis px dL16\fn . „ a cos27r/t61\ 

— + J ^ P W 2 ^ ) v " "^ri 
/ r Pi-^16 \ sin 27^01 cos27r«;C 

\ do 
\ u Hi) 

+ (LI8 + ^ ^ , 
V (dP - p: 

P\L\% \sin27TK0 

{cP-p2)l/2J P= . 

A significant simplification of this equation can be achieved by choosing K 
according to Eq.(104). We may then leave out the first sum and let the second 
sum run from K = 1 to infinity just as in Eq.(105). 

One still must solve Eq.(48) if one wants to determine integration con­
stants. We shall forgo this task at this time in order to stick to the most 
important goals and avoid getting overwhelmed by details. 

file:///cos27tk0
file:///sin27TK0
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For the general solution of Eqs.(52) and (53) one must still solve Eqs.(38), 
(39), (46), and (50), which implies a repetition of our calculations with the 
changed notation Ve —• Vm, Veo —> Vmo, Ae and A„ 

4.2 SIMPLIFICATION OF Aev(C,0) AND Amv((,Q) 

The functions Aev^,6) and Amv((,0) of Eqs.(4.1-103) and (4.1-126) define 
the components Aex, Aez, Amx, and Amz of the potentials Ae and Am accord­
ing to Eqs.(4.1-2), (4.1-3), and (4.1-31) for a step function excitation ^(0,0) 
according to Eq.(4.1-54) at the boundary ( = 0. The functions Aev(£,9) and 
^mv(Ci 0) are rather complicated and must be simplified for 6 > 0, C > 0. 

One might want to ignore the terms multiplied by e~Px6l2 in Eqs.(107) to 
(110) as well as the terms multiplied by e«3" and e~qi9 in Eqs.(113) to (116), 
which can be rewritten to show a factor e~PxBl2 explicitly. But this does not 
work since the energy of the wave is reduced to zero. In order to retain these 
terms we start out by rewriting Eqs.(4.1-106) to (4.1-110) and (4.1-112) to 
(4.1-116) in a slightly changed notation: 

<7i = \(d2 ~ P\)1'2 + 2™, q2 = \{d2- p\fl* - 2™, d2 - p\ > 0 (1) 

Lu{6, K) = L15A{K) + e-"^2L15B(e, K) 

9I 
• + • 

92 _ P - p i e / 2 
.(pi/2)2 + 5

2 r (Pi/2)2 + q2 

{pi/2) singxfl + qx cosqi8 (pi/2) sinq29 + q2 cosq2t 

(Pi/2)2 + <72 + (Pi/2)2 + <?2
2 (2) 

Lw(0, K) = LieA(«) + e-p l 9 / 2L1 6 B(0, K) 

PI 
+ e' -Pie/2 

2\(Pl/2)2+q2 (pi/2)2+<z2
2, 

{pi/2) cos q\6 — qx sin q\9 (Pi/2) cosg20 - <?2sing2( 
( P I / 2 ) 2 + 9 2 (Pi/2)2+?2

2 (3) 

L17{9,K) = L17A{K) + e-^2L17B(e,K) 

Pi 1 
+ 

_ p-piS/2 

2 V(p1/2)2 + g 2 T ( p i / 2 ) 2 + g 2
/ 

(pi/2)cosgi0 — gxsingi^ (pi/2)cosq20 — g2sin<?26 

(pi/2)2 + g? 
• + • 

(Pi/2)2 + 92
2 (4) 
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Lw{0, K) = LISACK) + e-pie/2L18B(0,«) 

91 92 _ P - M / 2 
L(Pi/2)2 + 9? (pi/2)2+q2

2 

(pi/2) sinqx9 + gi cosqifl _ (pi/2) sin g2# + 92 cosg2# 
(Pl/2)2 + g2 - (Pi/2)2 + q2

2 

Equations (4.1-112) to (4.1-116) assume the following form 

(5) 

93 = i [ ( p ? - d 2 ) 1 / 2 - p 1 ] ! g 4 = i [ ( p ? - d 2 ) 1 / 2 + p1], p\-d?>Q (6) 

Lu(e, K) = L11A(K) + e-""*Lun{0,«) 

93 94 
+ e - P I « / 2 

ql + {2-KKY q\ + (2™)" 

/exp[(pf - d2)1/2g/2](g3 cos27r/tfl + 2TTKsin27rw6>) 

V 9s + (2TW)2 

+ 
exp[-(pf - d2)1/26>/2](q4cos27rKfl - 2TTKsin2i:nJ9) 

q\ + (2KK)2 
(7) 

Ln(0,«) = L12A(«) + e- ' i e /2L1 2 B(0, /s) 
27TK 27TK 

+ e -PIB/2 

ql + (2™)2 ql + (2TTK)2 

exp[(pj - d2)1/26>/2](g3 sin27r/c(9 - 2TTKCOS27TW6>) 

q2
3 + (2TTK)2 

exp[-(p2 - d2)l/2e/2}{qA sin2nn6 + 2ITKCOS2nn0)\ 
+ ql + {2-KK? / 

(8) 

Lu(9, K) = LISA(«) + e~^e'2LlZB{e, K) 

93 
• + • 

94 

9 | + ( 2 7 T K ) 2 " g
2 + (27r«)2 + e -Pl0/2 

(exp[{p2 - d2)l'2e/2]{qz cos27r/c6> + 2nnsin2-KKO) 

V 92 + (2TTK)2 

exp[-(/?2 - d2)1/2d/2}{q4cos2iTKd - 2TTK sin 27T/c6>)' 

<Z2 + (2™)2 0) 
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L14(9, K) = L M A ( « ) + e" P l 9 / 2 i i4B(f l ,«) 

27TK 

+ 
27TK 

2 Lg | + (2TTK) 2 g 2
 + ( 2 7 r K 

+ e - ' i " / 2 

exp[(p? - d 2 ) 1 / 2 ^ / ^ ^ sin27T/te - 2TTKcos27TK0) 

?! + (2™) 2 

exp[-(yO? - d2)1/26'/2](g4 sin27TK:0 + 2TTKcos 2TTK<9) 

gl + (2TT«)2 

Equation (4.1-103) may be written in the following form: 

(10) 

Aev((,0) = c2T2vJ \ e - ^ ( l - chp29) 
\P2 

<K 
+ 2(1 2 )E 

K=0 

£ I 4 A ( « ) + 

- /.^ , P I ^ I I A ( K ) 

( p 2 - d 2 ) 1 / 2 
sin 27TK$ 

(p? - d2)V2 
COS 27TK0 

+ e-"lfl/2 

- (L14B(0,K) + 

OC 

+ 2 ( l - c - « ) ^ 

LI3B{&, Kj H : 77^- j sm27rK6> 

(Pi ~ ^ 2 ) 1 / 2 

PILI2B(0,K) 

( P I •<P) 1/2 
cos 2TTK9 

sin 2TTK;£ 

(2TTK)2 + P2
2 

LI7A{K) + 
PlLl5A(K) 

(cP-plf* 
sin 2TTK9 

,T , N . P l ^ l 6 A ( « ) I 0 Q 
- LX8A{K) H r V ^ I COS27TK0 

+ e" -P10/2 L17B(6,K) + 
PILI5B(0,K) 

(*-p?)1 /a 
sin 27TK# 

LIBB(0,K) + 
PILI6B(0,K) 

{d?-p\f2 cos 2TTK9 
sin 27TK£ 

(2^f+7iy 
(11) 

We recognize that the terms L . . A ( « ) do not contain the variable 6 and 
are connected with £ and 9 only via the products with sin27TK0, COS27TK;#, and 
sin27TKC The terms L..B(9,K) contain 0 and they are multiplied in addition 
by e~Pl6/2. If we succeed in eliminating 9 from L..B{9, K) and further eliminate 
e~Pl I we can use the usual quantization process. This elimination is possible 
by means of Fourier series expansions. The calculations are straight forward 
but lengthy. They will be found in Section 6.12. We recognize in Eq.(6.12-
43) the last two lines of Eq . ( l l ) , and in Eq.(6.12-60) lines 4 and 5 of Eq . ( l l ) . 
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The whole Eq.(ll) is shown in Eq.(6.12-61), still with the factors e~^0/2 and 
other features that need reworking. The required changes are carried out in 
the calculations that lead from Eq.(6.12-61) to (6.12-108) and its radically 
simplified form shown by Eq.(6.12-110). We copy this equation: 

Aev((, 9) = c2T2Ve0 J2 C°M s i n 2™C 

CeK(8) = 2( Aee(k) sm2n K6 + ABC(K) COS2-KKQ 

+ ^[-B e s(«, u) sin27TI/0 + BBC(K, v) COS2TW(9] J (12) 

Let us turn to the potential Amv((,6) that is associated with Aev(C,0) 
according to Eq.(4.1-47). Three integrals have to be evaluated. Here is the 
first one: 

d2Aev((,6)^ „ cL4ev(C,0) Amyl(C,e) = zPs J
 d Ag^'e)dc = zp, 

dC 

d 
c2T2Ve0Zps — J2 CeK(9) sin 2TT/< s^c K = l 

= c?T2Ve0Zpa ] T 2irKCeK{6) cos 2TTK( (13) 
K = l 

The third integral in Eq.(4.1-47) yields: 

Amvs(c,e) = -z J'^fd( 

s^fCBW.Mh< 
27TK 

J2^2T/ r7^dCeK(e)CQs2TTKC 
= cl Ve0Z^—- — — 

K = l 

— ^ - ^ = 2[27rK[Aes{K) cos27TK0 - i4ec(«) sin27TK0] 
cw \ 

+ ^jP 27rj/[Bes(«, v) COS2-KV0 - Bec(n, v) sin27r̂ 6»] J (14) 

The second integral in Eq.(4.1-47) calls for a second differentiation of AmV3(C, 0) 
with respect to 6: 
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Amv2{t,e) = -zPs j d2Aev({,e) 
oe2 dc 

-^v^Eft .w^ 
K = l 

= C r y e 0 ^ s ^ - ^ 2 £~T" 
K = 1 

d CeK{6) ^_2h27rK)2[Aes(K)sm2nKd + Aec(K)cos'2nK6} 
96>2 

+ J2(2nv)2[Bes{K, u) sin27Ci^e + BCC{K, V) COS2TXVB) \ (15) 
K = l 

The potential Amv(£,9) = Amve(C,e) associated with Aev{C,6) of Eq.(12) is 
the sum of Amv%, Amv2, and Amvz: 

Amv(C, 0) = Amvi{(, 6) + ^mv2(C, 6) + Amv3{C, 9) 
oo 

= c2T2Ve0Z J2 C^{B) COS27TKC 
K = l 

GmK(0) - 2™PsGeK(0) + 2 ^ - ^ — + 21TK dQ2 

= 2\— AeC{K) sin27TK:# + Aes(«) COS27TK0 

oo 

+ "^2[Ces(n, V) Sin 27TJ/0 + Cec(K, U) COS 27^0] | 

(2TTI/ ) 2 \ „ , , 2TTI/. 
Ces(K, v) - 2-nnps [ 1 - - - — ^ j Bes(K, v) - -—B e c{n, v) 

{2-Kv)2\n . . 2TTI/. 
CecCK.v) = 2-KKp3[ 1 - 7 ^ ^ 2 )-Bec(K,^) + -^^B^M (16) 

With have now simplified the expressions for Aev(C,0) and Amv(C,0) suf­
ficiently to be able to derive some useable results for the Hamilton function of 
the pure radiation field. 
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4.3 HAMILTON FUNCTION FOR PLANAR WAVE 

Our Fourier series expansion permits a largest time T and a largest distance 
cT in the direction y with the intervals 0 <t <T, 0 <y < cT. In the directions 
x and z we have not specified any intervals and we shall follow Eq. (3.4-32) to 
make them - L / 2 < x < L/2, - L / 2 < z < L/2. The energy U of the electric 
and magnetic field strength in this volume follows from Eq.(3.4-33): 

L/2 L/2 r cT 

dy 

-L/2 - L / 2 

E2 = -ZccurlAe 

dxdz 

Hi= - c u r l A m -

dAn 

dt 

dAe 

dt 

(1) 

(2) 

(3) 

We do not need the complex notation of Eqs.(3.4-34) and (3.4-35) since the 
potentials or their components were derived in real form in Section 4.1. 

From Eqs.(4.1-31), (4.1-34), and (4.1-35) we obtain the following values 
for the components of Ae and Am in Eqs. (2) and (3): 

Aex((,6) = Aev((,0) 

Aey(c,e) = Ae0fe(<:-e) 
Aez(t,6) = Aev((,6) 

Amx((,9) = Amv((,6) 

Amy(c,e) = Am0fm(C-d) 
Amz(W) =-Amv((,6) (4) 

The functions Aev(C,8) and Amv((,0) are defined by Eqs.(4.1-103) and (4.1-
126), while / e ( ( - 6) and / m ( ( - 6) are arbitrary functions. 

For the vector components of the expansion of the right sides of Eqs. (2) 
and (3) 

. Z c c u r l A e - ^ y = Z 2 c 2 c u r l 2 A e + 2 Z C c u r l A e - ^ + ( ' ^ Y (5) 

c . . 8Ae\
2 c2

 2 2c 0A.fdAe, 
- c u r l A m - — j = ^ c u r l A m - - curlAm- — + ^ — ) (6) 

we obtain with the help of Eqs.(4.1-17), (4.1-18), (4.1-27), (4.1-28), and (4.1-31) 
the following relations : 

curl2Ae = 2 f ' ^ l 
dy 

dAe 

c2T2 V dC 
(7) 
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curl AP • 
dAn 

dt 

dAn 

dt 

0Aev OA ev ^ ^ m v 2 OAevOA ev L /- r imv 

dy dt cT2 d( dd 

dA^2
 = 2_ f dAmv' ° 

dt 

curl2 Am = 2 

T2 V 06 

dAn 

curl An 

dy J c2T2 \ d( 
dAmvOAev 2 dAmvdAev dAe 

dt dy dt cT2 d( 06 

fdAe = 2 
dAev\

2 2 (0Ae
 N 2 

V dt ) V dt J T2 V de 

We get for £ 2 and H2 in Eqs.(2) and (3) 

(8) 

(9) 

(10) 

(11) 

(12) 

E1 
y2 

/ 0Aev \ 2 , n „ &4ev 9Amv / cMn 

V 3C 
+ 2Z- 9C <96> 00 

2 / <Mev <Mmv 

2 

r 2 V #C 

# a = 
z2r2 

2 

C"Am v \ . „ t / v l m v CM-ev , y2 I dAev 

d< ac <90 <9(9 

0A„ 
Z 2 T 2 V dC 

while the energy U becomes: 

+ Z 
dA^ 

de 

(13) 

(14) 

u = 
c2T 

L/2cT L/2cT l 

/ / {/ 
-L/2cT -L/2cT 0 

y dAev dAmv 

d( 08 

+ 
dA 

dC 
mv , rv 

OA, 

c2T ( L x 2 

cT )7 fdAe 
+ Z1 

de 

dA, 

2n 

«KsO<(£) 

+ 2Z 

\ d{ J ' ~ V de 

(jA.ev OA.rnV OA.mv OA.e 

'dAmvV fdAm 
1 dC J \ dO 

2l 

d( (15) 

We write A<.v((,6) and J4em(C,0) in the short form presented in Eqs.(4.2-
12) and (4.2-16). The functions CeK{6) and CmK{6) are defined there: 
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Aev((, 6) = c2T2Ve0 J2 cUe) sin 2TT/< (16) 

oo 

^mv(C^) = c 2 T 2 T 4 o Z ^ C m K ( 0 ) c o s 2 7 n < (17) 
K = l 

Equation (16) is a Fourier sine series as in Eq.(4.1-81) while Eq.(17) is a Fourier 
cosine series with the constant term for K = 0 equal to zero. 

Since the sine and cosine functions with different values of K in Eqs.(16) 
and (17) are orthogonal we get the following results for the terms of Eq.(15): 

1 2 

I (^f) dC = ^c2T2Ve0^ / ( E ^KCeK(9) cos 2itiA dC 
0 0 K = 1 

1 °° 
= ±(C

2T2yeO)2£(2™)2C2
K(0) (18) 

K = l 

1 dA, ^ 2 J / ~ Q~ /m 
d( = (c2T2ye0)2 f ( J2 d-^jf1 sin 27TKC) ^ 

o K = 1 

i(c2T2v;o)2f:(^^)2 (19) 

39 
o 

2 

K = l 

1 l o o 

Jdp(
vd^vdCHc2T2Veo)2zJ^2nKCeK(e)^^lcoS

22^CdC 
0 0 K = 1 

= I ( c 2 T
2 1 4 o ) 2 z f ; 2 7 r K C e K W ^ ^ (20) 

K = l 

1 ! oo 

/ ^ ^ d C = ^T2V^ZJl2 -^CmK(9)g^ sin2 27TKC d( 
Q n W—1 

= - i ( C
2 T 2 K o ) 2 ^ f > K C m K ( 0 ) % ^ (21) 

K = l 

1 . . o 1 

/ (^r) d C = (c2T2VeoZ^ / ( £ 2 7 r K < : 7-«(e) sm27T«c) ^ 
o o K = 1 

oo 

= i(c
2r2yeo^)2E(27rK)2c-W W 
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/(^f)V=(c2Tve 0^/(f: 
n n K—1 

0CmK(9) 
• cos 2-KKC, ] dC, 

= i (c 2 TV e oZ) 2 X:(%^) 2 (23) 
K = l 

Substitution of Eqs.(18)-(23) into Eq.(15) yields the energy U as the sum 
of the energy of the components CeK (9) and CmK (6): 

2 h 
dCmK(9) 

09 + {2-KKYCiM 

+ ( ^ f ^ ) 2 + ( 2 ™ ) 2 c e K w } (24) 

Note that neither CeK(9) nor CmK(0) have a dimension. All physical dimensions 
are contained in the factor ZV^0L

2T3c4 with the dimension VAs as required for 
an electromagnetic energy; the text following Eq.(4.1-37) gives the dimension 
of 14 as As/m3 and Veo has the same dimension according to Eq.(4.1-58). 

When we compare Eq.(24) with Eq.(3.4-46) we recognize the first and 
the last two terms, except for the change from real to complex notation and 
the difference between a solution satisfying the causality law versus a steady 
state solution. But the center terms containing products of CmK(9) and CeK(9) 
in Eq.(24) with the other's derivative represent now an interaction between 
electric and magnetic terms that is missing in Eq. (3.4-46). 

Equation (24) can be further simplified. However, the easy comparison 
with Eq.(3.4-46) is lost in the process: 

U = 
ZV&L2T*<* £[(2™CeK(0) + % ^ 

09 

+ \2iTKCmK(9) 
0CeK(9) 

09 
(25) 

Substitution of CeK and CmK from Eqs.(4.2-12) and (4.2-16) produces the 
following result for the two terms in large parentheses in Eq.(25): 

0CmK(6) 
2TTKCeK{9) + y ' = 47T Y, { [«£«(«, V) - vC^K, I/)] Sin 27TI/0 

» = i 

+ [nBee{K,v) +i/Ces(K,^)]cos27rj/6>j (26) 
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2TTKCmK{9) l^-i- = 4TT ^2{[UB„(K, V) + KCBS{K, V)\ sm2itv6 
u=l 

[vBes(K, v) — KCBC(K, V)] COS tori} (27) 

Squaring and summing these two expressions yields an impressive formula that 
we can show only in part: 

2nKCeK(6) + ^ ^ l ) \ ( KKCnV) - ^ 

= UCK + UVK(6) (28) 

oo 

t/CK = (47r)2^{2^[S 
ec 

(K, v)Ces{K, v) - Bes{n, v)Cec{K, v)] 
+ \(*2 + V2Wl{K, U) + B2

ec{K, V) + C!S(K, U) + C2
ec(K, „)}} 

2(2™fpi(K) + UI(K) (29) 

UU«) = £ Bec(K,v) + -Cee{n,v] 

+ ( Bes(K,u) CBC(K, V) 

-Bec(K,v) + Ces(K,v) 

+ -Bes(K,v) -Cec(n,v) 

(30) 

(31) 

The time variable term UVK(0) is much more complicated. We introduce four 
new functions Uvi(6) to UV4(9) but do not write them explicitly: 

UVK(9) = £ UVI{K, V) COSATTVO 

oo oo 

+ £ y"l[Uv2(K,V, A)sin2-KUOsin2-KXO + UVZ(K, V,X)COS2-KV6COS2-KX6) 
v=l A=l 
i/^A 

oo oo 

+ ££E/v4(K,2/,A)sin27n/0cos27rA0 (32) 
v=\ A=l 
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The term UCK represents an energy that does not depend on the time 9. 
The term UVK depends on 9 but its time average is zero. If we write UVK(9) = 
UVK(t)/T we have a time variable power with average power or energy equal 
to zero. This is a generally encountered result of the theory. For its physical 
explanation we may think of two plates of a capacitor with vacuum between 
them. An electric field strength drives an electric dipole current through this 
vacuum. We may assume that the dipoles are created by the field strength. 
But it is also possible that they are created and annihilated all the time in 
the absence of an electric field strength. The random orientation of the dipoles 
prevents an observable macroscopic effect. An applied field strength orients the 
dipoles and a macroscopic effect is produced in the form of a dipole current. 

The non-fluctuating part Uc of the energy U in Eq.(25) may be written in 
the following form: 

oo 

Uc = ZV^T'c4 ^2(2nKf[Ui(K) + Ul(K)} (33) 

For the derivation of the Hamilton function !K we first normalize the energy 
Uc in Eq.(33) 

Uc/ZV?0L
2T3c4 = M (34) 

M = Y, XK = £ ( 2 ™ ) 2 [ C / 2
S ( K ) + Ul{K)\ (35) 

and then rewrite JCK as follows: 

•KK = (2™)2{[C/C
2

S(K) + [72
C(K)] sin2 2TTK0 + [t/2

s(«) + C/2
C(K)] cos2 2 T T ^ } 

= {2itK)2[Uca(K) + iUcc(K)](sm 2nn9 - i cos 2TTK6) 

x [UCS(K) - iUcc(K)](sin27rK9 -\-i COS2TT K9) 

= -2iriKpK{9)qK(9) (36) 

For pK(9) and qK(0) we get: 

pK{9) = V2iriK[Ucs(K) +iUcc(K)]{sm2-n:K,9 - icos2nK9) 

V2^[UCC(K) - iUcs{K)]e2™6 (37) 

(38) pK = ^m1 = ( 2 ™) 3 / 2 [M«) - iUcs{K)]e^6 

qK{9) = \Z2nin[Ucs(K,) - iUcc(K)](sm2rcK9 + ICOS2TTK9) 

= V / 2 ^ [ ( 7 C C ( K ) + i[/cs(K)]e-27riKe (39) 
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QK = ^f1 = - ( 2 ™ ) 3 / 2 [ £ / C C ( K ) + iUQS{K)]e-^6 (40) 

The derivatives d<KK/dqK and d"KK/dpK equal: 

dl<K = -2-niKPK{e) = -{2mK)3/2[Ucc(K) - iUcs{K)]e2niKe (41) 
dqK 

dpK 
-2mKqK(6) = -{2-Kinfl2[Ucc{K) + iUcs(K)}e-

2*iK9 (42) 

The comparison of Eqs.(41) and (42) with Eqs.(38) and (40) yields the 
proper relations for the components "KK of the Hamilton function: 

d9iK . dJiK . 
-r.— = ~PK, -Z— = qK (43) 
dqK dpK 

Equation (35) may be rewritten in analogy to Eq.(3.4-61) by means of the 
definitions 

a« = [Ucc(«)-*Uc.(«)]e2,ri"8 

a*K = [Ucc(K)+iUcs(K)]e-2*iKe (44) 

to yield: 

OO OO OO f. 

M = -i Y, 2TTKPK9« = ^2(2Trn)2aKa*K = J^ -^jrhbKb*K 

K=l K—l K—l 

K = {-]r) aK> b: = {-ir) a: (45) 

Let us check whether the energy Uc of Eq.(33) is finite since an infinite 
energy would violate the conservation law of energy. The proof of finite energy 
is also required to permit in the following section the claim that mass renor-
malization is not needed. An infinitely large amplitude Veo of the excitation 
force Ve(0,6) in Eq.(4.1-54) or an infinitely large excitation area I? according 
to Eq.(l) would make Uc infinite, but this is of no interest. The factors T 
and c in Eq.(33) are finite. A finite value of T is assumed by the definition of 
Eq.(4.1-40) as well as by Eq.(4.1-75) and the text discussing it. The sum Uc in 
Eq.(33) and "K in Eq.(35) must be finite too, but this is something one should 
show explicitly. To do so we must show that U2

S and U2
C of Eqs.(30) and (31) 

approach zero sufficiently fast for K —> oo to yield a convergent series for JC. 
It is shown in Section 6.12 that U2

S decreases like 1/(27TK)6 for K —> oo 
while U2

C decreases like 1/(27TK)4. For the terms in the sum of Eq.(35) we 
obtain the decrease 
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JCK = (27rK)2[[7c
2
s(«;) + [/c

2
c(/t)]ocl/(27rK)2 for K - • oo (46) 

from Eq.(6.12-136). Hence, the terms of % in Eq.(35) decrease fast enough to 
make the sum convergent. 

The results derived here for a planar wave may readily be applied to a 
spherical wave. This is shown in Section 6.9. 

4.4 QUANTIZATION OF A PLANAR WAVE 

We start with the Hamilton function Ji of Eq.(4.3-45) using the functions 
bK and 6* 

oo fc ° ° 

M = ^ W « = - X ] 2 7 r « 6 B 6 ; (1) 

and follow the conventional procedure for quantization. The conjugate complex 
functions bK and b*K are replaced by operators fr+ and b~. There are two ways 
of making this replacement 

b*K-+b+, bK^b~ (2) 

or 

K^b-,bK^b+ (3) 

The choice of one of these replacements is a known arbitrariness or ambiguity 
of the conventional theory as pointed out in Section 3.5 following Eq.(3.5-6). 
We will first use Eq.(2) and later on Eq.(3). For the component K in Eq.(l) we 
obtain: 

K K ~ 2-KKk ~~ 2-KKk [ ' 

6 - = 1 f o C + I ^ , bt= 1 U-±±) (5) 
72 V ad{) ' K 72 V ad(J w 

If we apply the operators b~ and 6+ to a function $ we get: 

1 / I d 

^ ( a C ^ | ) $ 2TTKH 
$ 

2,2 1 d2 \ ^ _ n ( E K T 1 

A - i ^ - l (7) 
K ~ 2nnh 2 ( 7 ) 

These equations are essentially the same as Eqs.(3.5-18) and (3.5-19). We 
may thus use Eq.(3.5-24) to write EK of Eq.(7) in the form 
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2-KKH ( 1 
EK = HK„ = — I n + - \ , n = 0, 1,2, ... (8) 

This result is very similar to the conventional one shown by Eq.(3.5-24) 

Em,kA = w-kxti[n + - j = 2itfh( n+ - j , n = 0, 1, 2, . . . ; wkA = 27r/ (9) 

but the time interval T in Eq.(8) is finite while Eq.(9) assumes an infinite time 
interval since a frequency / is defined only for periodic sinusoidal functions in 
the whole interval -co < t < +oo. The period number K in Eq.(8) gives the 
number of periods in the time interval of duration T or a spatial interval of 
length cT. 

Let us turn to Eq.(8). If K runs from 1 to infinity we obtain according 
to Eqs.(4.3-33), (4.3-35), and (4.3-46) a finite energy. The energy of a pho­
ton increases proportionately to « according to Eq.(8) but their number must 
decrease like 1/K3 to make "KK of Eq.(4.3-46) decrease like 1/K2. Hence, this 
particular and historically first divergency is eliminated. 

We want to discuss this important result in a non-mathematical way. In 
Section 4.1 we started with vector potentials Ae and Am , while the scalar 
potentials 0e and </>m were assumed to be zero. These potentials define electric 
and magnetic field strengths E and H according to Eqs.(1.6-17) and (1.6-11). 
The substitutions Aex = Aez — Aev and Amx = —Amz — Amv of Eqs. (4.1-31) 
as well as Ve(y, t) and Vm(y, t) in Eqs.(4.1-37) and (4.1-39) tend to obscure that 
w((,6) in Eqs.(4.1-76) and (4.1-88) represents an electromagnetic wave by a 
superposition of standing sinusoidal pulses. But the two components Aey, Amy 

of the vector potentials Ae and Am are shown in Eqs. (4.1-34), (4.1-35) while 
the remaining four components Aex = Aez = Aev and Amx = — Amz = Amv 

are defined by Eqs.(4.1-103) and (4.1-126). These components of the vector 
potentials define via Eqs.(1.6-17) and (1.6-11) the electric and magnetic field 
strength of a wave. This wave is zero for 8 = t/T < 0 according to Eq.(4.1-
54). Hence, it will satisfy both the causality law and the conservation law of 
energy if its energy is finite. The step function excitation of Eq.(4.1-54) does 
not tell us whether the energy of the excited wave is finite. The finite energy 
follows from Eqs.(4.2-12) and (4.2-16) that define Aev and Amv in terms of 
Aes{K), ABC(K,), Bes(K,v), Bec(K,u), Ces(K,u), and Cec{K,u), which are shown 
in Eqs.(6.12-126) and (6.12-145)-(6.12-147) to decrease with increasing values 
of K sufficiently fast to make the energy of the wave excited by the step function 
of Eq.(4.1-54) finite. The quantization by the substitutions of Eq.(5) replaces 
the superposition of standing sinusoidal pulses representing a classical wave 
by a superposition of operators representing photons. The finite energy of the 
wave remains unchanged by this change of representation. The 'zero-point 
energy' for n = 0 remains finite because the finite energy of the wave makes 
the energy of any component of the wave finite. 
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We pointed out in the first paragraph of Section 3.4 that solutions with 
finite energy of Maxwell's original equations were developed from 1968 on, but 
these solutions do not seem to have ever reached quantum electrodynamis. 

We turn to the substitution of Eq.(3). It is usually ignored in the conven­
tional theory since an infinite energy is bad but an infinite negative energy is 
even worse. We obtain in analogy to Eqs.(4), (6), and (7): 

b+K 
2-KKk 

(10) 

1 / I d 1 ( , l < i , , 
V2 V a d( ' 

1 d 
" V - - ^ * = 2 oPdC? 

= *(ML + i 

xK 

\2TTKti 

ML + i 
2TTKH 2 

$ : 

2TTKtl 

2A«* 

<S> 

(11) 

(12) 

For n = 0 we obtain now a finite negative energy. It is not clear whether 
this result has any significance but we cannot simply ignore it: 

£•«. — t-K.n — 
2lTK,h ( •r n •• 0, 1, 2 , . . . (13) 

Equations (8) and (13) yield for n = 0 energies with the same magnitude but 
opposite sign. We have encountered in Eq. (4.3-32) time variable terms with positive 
and negative energy having the time average zero. They may be related to n = 0 in 
Eqs.(8) and (13). 

It is reasonably evident how one has to proceed if one wants to modify 
conventional quantum electrodynamics to make it correspond to the modified 
Maxwell equations. A lot of work is required but there are many scientists 
and PhD students qualified to do it. We want to concentrate here on tasks for 
which a detailed knowledge of the conventional theory is not of much help. The 
first such task is to investigate the replacement of the step function excitation 
of Eq.(4.1-54) by an exponential ramp function excitation. 

The excitation by an exponential ramp function is important because the 
convergence of the solution due to the step function excitation of Eq.(4.1-54) 
is not always fast enough. The step function must then be replaced by an 
exponential ramp function. Such a case will be encountered in Section 5.3. We 
shall elaborate the exponential ramp function solution in Section 4.5 in order 
to have it ready when needed. 

In Section 4.6 we study the replacement of the step function for excita­
tion by a rectangular pulse with finite duration. The finite duration is an 
important improvement over the infinitely extended step function. However, 
it inherently produces equations twice as long as the ones due to step function 
excitation. 

file:///2TTKti
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4.5 E X P O N E N T I A L R A M P F U N C T I O N EXCITATION 

We have solved Eqs.(4.1-41) and (4.1-42) for a step function Ve(0,6) as 
boundary condition or excitation function defined by Eq.(4.1-54). Equation 
(4.1-41) has the same form as Eq.(6.1-1), which is solved in Section 6.1 for a 
step function E(0,6) and in Section 6.4 for an exponential ramp function E(0,9) 
as boundary condition. The solution of Eq.(4.1-41) for an exponential ramp 
function differs only in the notation from the calculations in Section 6.4 until 
Eq.(6.4-19) is reached and the Fourier sine integral is replaced by the Fourier 
sine series in analogy to Eq.(4.1-76). Hence, we may rewrite the calculations 
of Section 6.4 with the new notation in short form. 

The partial differential equation for Ve as function of £ and 6 defined by 
Eq.(4.1-41) 

d2Ve d2Ve dVe 2 

is to be solved for the boundary conditions 

Vo(O,0) = V r e i S ( 0 ) ( l - e - l ' ) = O f o r 0 < O 

= Vei{l-e-ie) f o r ( 2 > 0 (2) 

for C, = 0. The usual further boundary condition for £ —• oo 

Ve(oo,0) = finite (3) 

is avoided just like in the case of Eq.(4.1-55). There are further the following 
initial conditions according to Eqs.(6.1-4)-(6.1-6): 

Ve(C,0)=0 (4) 

av.(C,o)/ac = o (5) 
dVe{{,6)/d0 = 0 for 6 = 0, C > 0 (6) 

Equation (1) is satisfied by the function 

ve(C, e) = vel [«(c, o) + (l - e-'e)F(()] (7) 
Substitution of V ^ l - e-L6)F{Q into Eq.(l) yields: 

F(C) = A10e-"^ + Anef»< (8) 

L = pi or i = 0 (9) 

The choice t = 0 yields a trivial solution. Using the argument that led from 
Eq.(4.1-59) to (4.1-60) we obtain: 
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K(C, 6) = Vel [«(C, 0) + (1 - e - ^ ) e - ^ ] (10) 

Since the function Ve(0,0) must satisfy the boundary condition according 
to Eq.(2) 

u(0,6) + l - e-p'e = 1 - e- '1" (11) 

we obtain for C, = 0 the homogeneous boundary condition 

u(O,0) = O (12) 

For ( -» oo we obtain with F(( —* oo) = 0 from Eq.(3) a second boundary 
condition 

u(oo,0) — finite (13) 

which we do not use due to the restricted interval 0 < C, < 1. It is not required 
anywhere. The initial conditions of Eqs.(4) and (6) yield: 

^e(C,0) = VelU(C,0) = 0 (14) 

du/dO + Ple-p^ = 0, du/09 = -pxe-f^ for 6 = 0, C > 0 (15) 

The calculation of u(£,6) proceeds as in Section 4.1 from Eq.(4.1-66) on 
with w(C,0) replaced by u(C,0) until Eqs.(4.1-76) and (4.1-77) are reached: 

u(C, 9) = J21M") exp(7i^) + A2(K) exp(72<?)] sin27TKC (16) 

o OO 

— = J2lM*hi exp(7i^) + A2(K)J2 exp(726>)] sin27T/< (17) 

Substitution of u(C,0) and du/d6 from Eqs.(14) and (15) into Eqs.(16) 
and (17) for 8 = 0 yields equations for the determination of Ai(n) and ^ ( K ) : 

«(C ,0 ) = £ [ J 4 I ( K ) + A 2 ( « ) ] = 0 (18) 

^ = Y^[M"hi + M*h2] sin27rKC = -Pie _ P 2 C (19) 

Using the Fourier sine series of Eqs.(4.1-80) and (4.1-81) we obtain the 
following two equations for the determination of AI(K) and ^ ( / t ) : 
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A^K) + A2(K) = 0 (20) 
1 

AI(K)~/I + A 2 ( K ) 7 2 = - 2 p i / e _ P 2 C s in27r<dC (21) 
o 

We evaluate the integral with the help of Eq.(4.1-84) 

fe-^^^dC^^-lV (22) 
J (2TTK)2 + pi 
o 

and obtain: 

A&yn + MKh*— (27n;)2 + p i 

47TKP1P2 , ^ 1 

" - ( 2 ^ + p l f ° ^ 2 < < 1 

f-2 f o r p 2 » l (23) 
4nnp 

(2TTK)2 + p | 

Following Eq.(4.1-85) we choose p 2 > 1- Equation (4.1-73) is then used to 
obtain A\(K) and J 4 2 ( K ) : 

=+ 

(2TTK)2 + p\ 7i - 72 

47TKP! 1 

(47tK)2+pl(pl-d2f2 

172 fo rd 2 >pf 
AlTKpi 

{^KY + PI (tf-p*)1 

d2 = 4[(2TTK)2 + p\], p \ = c2T2crs, pi = c 2 T(ap + se) (24) 

Substitution of Eq.(24) for AX(K), A2(K) and of Eq.(4.1-73) for 71, 72 
brings Eq.(16) into the following form: 

u(C 6) = -2p e-rW ( V exp[(pf - d2)^0/2] - exp[ - (p 2 - rf2)V2fl/2] 

v£i w-rf2)1/2 

27TK sin 27r/tC 
X (27TK)2 + P i 

y , exp[i(d2 - p2)1/26>/2] - exp[- i (d 2 - pj)^29/2] 2TTK sin 2-KKC,\ 
+ | ^ ^ 2 - p ? ) 1 / 2 ( W + P ^ 

if = c2T|(ffp-se)|/47r (25) 
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Using hyperbolic and trigonometric functions we may rewrite Eq.(25) in 
real form: 

«(c, e) = -ine-*"* ( r sh[( -̂d2)1
1
/
/
2
2
g/2] 2 - s i f - f 

^ s i n ^ - p f ) 1 / 2 ^ ] 27r«8in27r<\ 

k (*»-P?)1/a (2-)2+,iJ (26) 

Equation (8) for F(C) with Aw = 1, A n = 0, and Eq.(26) for u(C,0) 
define ^ ( ( , 0 ) according to Eq.(7). We need -Aev(C,0) of Eq.(4.1-43). In order 
to obtain it we must replace the variables £, 9 by £', 0' and integrate over £', 
6'. We integrate first over £' and denote the result by dAev(C,,9')/d9': 

dAev(c,e') _ l 2 2 
C+(e-»') 

= -^c2rVel I [(i-e-'i8 ')F(0 + «(C',<n]dC (27) 
C-(fl-e') 

As in the case of Eq.(4.1-89) we need to evaluate only two simple integrals: 

C+(0-e') 

/ e-P^'dC,' = -—a-"* ( e ^ V 2 " ' - ep26e-p*e'\ (28) 

C-(e-e') 

C+(e-e') 

/

sin ^TtKiC 
sin 2TTKC' dC' = (sin 27TK0 COS 2-KKQ' 

7TK 
C-(fl-fl') 

-cos27rK0sin27r«:0') (29) 

Substitution of Eqs.(26),(28), and (29) into Eqs.(27) yields: 

dAev(t,9<) _ c*T*Vel f 1 - e - « ' ^ _ P 2 ( c + , ) e P 2 e . _ e - „ K _ „ e _ „ , ) 
39' Pi 

+ 8Ple-»ie'/2 E s h K p f - d 2 ) 1 / 2 ^ ] 

" i W - d 2 ) 1 / 2 

x (sin 27TK0 cos 27TK0' - cos 2TTK6 sin 2-KKB') ^ — ^ 
' (27T«;)'! + p\ 

+ £ 
sm[(d2-pl)l^e'/2] 

x (sin 27TK0 cos 2-KK9' — cos 2TT K9 sin 2itK,9') 
(27T«) 2+p| 

(30) 
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The terms in Eq.(30) have been written in an expanded form that will 
facilitate the following integrations over 9': 

A,A(,s)=j9-^§nM' (31) 

One may readily recognize the following five integrals over 9' in Eq.(30): 

-P2C 

P2 
(1 - efiiB')(e-p*ee<*e' - ep*6 z-p^')av = —e / = le-P2i 

Pi 

— ( l - c h / 9 2 0 ) + -2 2 ( / °2 e ~ P i e -P2chp20 + P ishp 2 0) 
P2 P\~ P2 

(32) 

V 

Ln(0,K)= IV^'/2sh[(p?-d2)1/20'/2] c o s 2 7 ^ 0 ' ^ ' (33) 

o 
e 

Ll2{9,K) = J e-pie''2sh{{p\ - d2)1/29'/2}sm2TTK6'd9' (34) 

o 
e 

L1S(0,K) = I e-p'6'>2 sm[{d2 - p\)ll29'/2] cos 2TTK6>' tW (35) 

o 
e 

L16{9,K)= Ie-^6'l2sm\{d2-p\)l'2e'l2]sm2TTK6'de' (36) 

The integrals of Eqs.(33)-(36) have been evaluated in Eqs.(4.1-113), (4.1-114), 
(4.1-107), and (4.1-108). Equation (31) becomes: 

Aev((,0)=c2T2Vel \ - e - r t 
\Pi P2 

+ ~2 2~(Pze Pl6 - P 2 c h p 2 0 + p i shp 2 0) 
p\-p\ 

L\I(6,K) sin27r«;0 — L\2(6, K) cos2irn9 sin27r«;C 

(p2-d2)1/2 (2TTK)2+P2 

+ E 
K>K 

LIO{9,K) sm2iTKQ — L\${6,K) COS2ITK8 sin27TK£ 

(d2-p2)1/2 {2-KKf+pl 
(37) 

file:///-e-rt
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We turn to the potential Amv((,9) that is associated with Aev(C,6) ac­
cording to Eq.(4.1-47). Three integrals must be evaluated. Consider the first 

Amvl(C,9) = Zps J
 dAe

d
v£'9)dC = Zp, 
ac2 

= c2T2ZPsVeJ-e-"^ 

1 

dAev((,9) 
5 dC 

Pi 
-{l-chp29) 

+ - J 2 (Ple~ ~ Pi chP2e + Pi sh/920) 
Pi -Pi 

+ W £ 
<K LH(9,K) sin 2ITK9 — LI2(9,K)COS2TTK9 2WKCOS2TTK^ 

(2-KK¥ + PI 

K>K 

(p2-d2)l/2 

K9-L16(9 

{d2-p\)l/2 
E Li5(9,K)s'm2irK9 — Lie(9,K) cos 2TTK9 2WKcos2ITK(\ 1 . . 

<*> -0,112 (2™)2 + p2 )] W 

The differentiation with respect to 9 of the second and third integral in 
Eq.(4.1-47) makes the evaluation of these integrals more difficult: 

d2 

Amv2(c,e) = -zPs J
 dAgef

e)d<: = -zPs-^ IAev((,e)dc (39) 

i(C,6) = -zJ dAev((,9) d JAev(9,()d{ (40) 

The integral J Aevd( follows readily from Eq.(37): 

/ 
Aev(Z,6)d( = c'T'Vel a-P2( 

Pi Pi 
(i-chP2e) 

+ PI-PI 
p2e

 Pl$ — p2chp29 + pishp29) 

-^ E 
<K 

L\i(6,n)s,m.2itK9 - LI2(9,K)COS2TTK9 COS27TK;( 

+ E 
K>K 

(p2~d2)1/2 27r«[(27TK)2 +p2} 

Li5(9,K)sin2-KK9 — LIG(9,K)COS2TTK9 cos27T«;C \ ] 

(rf2-p?)V2 2WK[(2TTK)2+P?,}/ 

(41) 

The component AmV3(C,9) of the potential defined by Eq.(40) is readily 
derived from Eq.(41): 
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4nvs(C.0) = c2T2ZVel\ - \e~pAshp26 
I ft L 

+ -^-^(Pie-pie+p2shp2e - Plchp26) 
Pi ~ Pi 

+ 4pi 
<K 

t{(pl-d*)1/2\ de 2™ 
dL\\ sin27TK# 

+ L\\ C0s27T/t# 

8Li2 COS21TK0 T . „ \ COs27T/< 

- ^ - ^ r ^ + L l 2 S l n 2 7 r ^ 

+ £ 
dL\s sin27rK6 

KrK^-p\f2\do 2™ 
0Li6 COS 2iw8 

(2TTK)2+P
2 

+ L15 COS 27TK0 

COS 27TK£ 

06 2TTK 
+ L 1 6 s in27 r^ . 0

C O S . 2
2 ^ C

2 1 | (42) 
J (2TTK)2 + pl\ ) 

The derivatives OLn/Od to OLIQ/06 are the kernels of the integrals of Eqs.(33)-
(36) with 6' replaced by 6: 

dLn 

06 
9L12 

06 
dL15 

06 

06 

= e-"^'2 sh[(p2 _ d2f/26/2] cos2ir K6 

= e-"^2 sh[(pf - d2f'26/2] sin 2TTK0 

= e-"^'2 sin[(d2 - p\)x/26/2) cos 2TTK0 

e-f'6'2 sin[(d2 - p\)l'26/2) sin 2TTK6 

(43) 

(44) 

(45) 

(46) 

To obtain the last component j4mv2(C, 6) of the associated potential defined 
by Eq.(39) requires multiplication of Eq.(42) by ps and differentiation with 
respect to 6: 

Amv2({,6) = C2T2ZpaVeA - i C - / * < 
I P2 

1 

ch p26 

+ Pi-Pi 
2 {-p\epl9 + p\ ch p26 - p!p2 sh p26) 

+4 
<K 

E Pi fd2Lu sin27TK0 9LU n o 
-—TTK\ —^^ ^ H2——— cos2TTK,6 — 2nKLu sm2nK6 

K=l (p?-d2)1/2V ^ 2 2™ 90 

02Li2 cos2nK6 0L12 , \ COS2TTK;C 
+ 2 ^„ sin 27rK0 + 2~KKL\2 cos 27r«6' S(92 27TK (90 (27r/c)2+p| 

^ T i T a l " 5 2 ^ — 5 + 2 - ^ c o s 2 7 r « e - 2 7 r / c L i 5 s i n 2 7 r ^ 
K>K(d2-p2)1/2\ 962 2-KK 06 
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d2Li6COs27TK0 <9L16 . \ COS27TKC 11 

862 2-KK 86 )C1-KK)2+PI\ J 
(47) 

The second derivatives d2Ln/de2 to d2L16/862 follow from Eqs.(43)-(46). The 
term 82Ln/862 is written in detail in Eq.(4.1-125). 

If we substitute Eqs.(38), (42), and (47) into Eq.(4.1-47) we obtain the 
component Amv = Amve of the potential associated with A e : 

Amv((, 9) = Amvl ((, 6) + Amv2((, 6) + Amv3(C, 6) 

c'T'Zp3Vel Hs H shp26 
P2pS 

+ P\-Pl 

<K 

P2 

Pi 

p2 + P_±PAe-Ple 
Ps / 

+ p2( 1 + P i ) chp26 

+ {Pi+pl + ^-
Ps 

sh p26 

^(p2-d2)l/2 ^ ( ^ — - ^ — ) 

. „ „ sin27TK0\ dLn / . „ „ COS2TTK6\8LI2 
+ ( 2cos27TK0 + — ) — £ + ( 2s in2™0 - — — ^ 

2-KKps J 86 27TK/)S / 86 

1 
H (Lncos27TK0 + Li2sin27T«;0) 

Ps 

cos 27TK£ 

\{2*K)2+P
2 

Pi 

K>K (d2 - P?)1 /2 

1 

27TK 
ns 

862 sin 27TK0 
d2L 16 

„ sin27TK0\ 8Li5 
2COS2TTK6 + — —f- + 

2-Knpa J 86 
2 sin 2TTK6 • 

Q02 COS27T«0J 

COS 27TK0 \ 8Li6 

2-KK.ps J 86 

cos 27TK£ + —(L15 COS 27TAC0 + Lift Sin 27TAC0) 7 - rr T 
Ps J (2TTK)2+P^ 

(48) 

In order to simplify Aev((,6) and Amv((,6) of Eqs.(37) and (48) for 6 > 0, 
C > 0 one must go through the calculations of Sections 4.2, 4.3, and 6.12. 
These calculations are too long and their reliability is currently too low to 
justify printing them. We only state that these calculations yielded the result 

% oc 1/(27TK)4 for K —> oo (49) 

instead of Eq.(4.3-46). Assuming that the calculations leading to Eq.(49) will 
stand up to further scrutiny we may conclude that the exponential ramp func­
tion of Eq.(2) yields a much faster decrease of %K with K than the step function 
of Eq.(4.1-54). One would expect that a sudden step function excitation would 
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produce more "high frequency" terms—or more photons with large period num­
ber K—than the more slowly rising exponential ramp function excitation. 

The calculations of Section 4.4 apply to exponential ramp function excita­
tion as well as to step function excitation. Hence, we get again the eigenvalues 
EK of Eqs.(4.4-8) and (4.4-13). 

Let us reflect how the infinite zero-point energy of the quantized pure wave 
field was replaced by a finite energy. The excitation of a transient either by a 
step function or an exponential ramp function with finite amplitude Veo or Vei 
in an area of finite size 1? produces an EM wave with finite energy. This energy 
will remain finite if we represent the EM wave by a sum of photons rather than 
a sum of sinusoidal waves with finite extension. Furthermore, the energy will 
remain finite if the simple approximations of dipole currents in Eqs.(4.1-4) and 
(4.1-5) are replaced by the more sophisticated approximations or representa­
tions of Sections 2.1 and 2.2. The modification of Maxwell's equations not only 
permits to satisfy the causality law but also the conservation law of energy. 

The use of excitation functions with other time variation does not change 
anything. Such excitation functions have to be represented by sums of time 
shifted step functions or exponential ramp functions2 to produce solutions for 
the excited waves and any excited wave with finite energy will be represented 
by photons with finite energy. 

The excitation of an EM wave at a certain time t = 0 at a plane y = 0 
implies that there are no photons for t < 0. A wave excited at a plane y = 0 
travels both in the direction y > 0 and y < 0 even though we ignored the 
wave for y < 0 since it produces the same results except for a change of sign. 
However, a reflector or absorber can eliminate the wave for y < 0. An arbitrar­
ily large but finite time T had to be introduced to permit only denumerably 
many values of K. The finite time T implies a finite spatial interval cT or 
2cT. There is no question that infinite times and distances should not exist 
in a science based on observation except for mathematical convenience. But it 
seems to be the first time that a mathematical theory rather than philosophical 
considerations demanded a finite time and spatial interval. 

4.6 EXCITATION WITH RECTANGULAR PULSE 

In Section 4.1 we used the step function excitation Ve(0,9) of Eq.(4.1-54) 
and in Section 4.5 we used the exponential ramp function excitation of Eq.(4.5-
2). In both cases the excitation is applied in the whole time interval 0 < t < T 
or 0 < 6 < 1. According to Fig.4.6-1 we may produce an excitation function of 
shorter duration A0 by using the difference of two step functions with delay A0: 

RB(Q, e) = ve(o, e) - ve(o, e-M) = ve0[s(e) - s{o - AO)} (I) 
The concept applies to the ramp function excitation of Eq. (4.5-2) too. 

The solution Ve(C,0) defined by Eq.(4.1-58) for the step function excita­
tion of Eq.(4.1-54) assumes the following form for the rectangular excitation 
function Re(Q,6): 

2See, e.g., Harmuth and Lukin (2000), Section 1.6. 
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Ve(0.9-A9) 

~~0 F ^ A8 

FlG.4.6-1. A step function Ve(0,9) minus a delayed step function Ve(0,6 - A9) yields 
a rectangular function Re(0,0). 

Re«,e) = ve((,e) = ve0[F{() + w(<;,e)} for o<9<A9 
= Ve((,9)-Ve(C,9-A6) for A6<6<1 (2) 

The function F(Q is defined by Eq.(4.1-60) while the function w(C,6) is de­
fined by Eq.(4.1-88) and Ve(C,0 - A9) follows readily from Eq.(4.1-58) by the 
substitution of 9 — AO for 9: 

VeiC 9-A0) = Ve0[F(0 - w(C, 9 - A9)} (3) 

We obtain w(C,9 - A9) by replacing 9 with 9 - A9 in Eq.(4.1-88). Equations 
(4.1-43) and (4.1-47) yield then Aev(C, 0-AQ) and Amv(C, 9-A9). The simplifi­
cations of Aev(£,9-A9) andAmv((,9-A9) according to Eqs. (4.2-12) and (4.2-
16) requires the replacement of sin27r«;(9, cos27T«0, sin27ri/0, and cos27w0 by 
the time-shifted functions sin27TK(6»-A(9), COS2TTK(9-A9), sin2nn(9-A9), and 
cos2irv(0-A9). The coefficients ABS(K), Aec{K), Bes{K,u), Bec(K,u), CSS{K,V), 
and Cec(«, v) are not affected. 

In Section 4.3 the functions sin27TK0 and COS27TK0 vanish after Eq.(4.3-
17) while sml-nvO and cos27ri/0 vanish after Eq.(27), except for their use in 
Eq.(4.3-32). This implies that Eq.(4.3-46) also holds for the rectangular pulse 
of Fig.4.6-1: 

0iK oc 1/(2TT«)2 for K -> oo (3) 

The relative energy represented by "K and its components "KK will be less for the 
rectangular pulse than for the step function excitation, but Eqs.(4.3-46) and 
(3) refer only to the decrease of the components 5<K proportionate to l/(27r«;)2, 
nothing is claimed about the actual value of JiK. 

Let us point out that terms UVK(9) according to Eq.(4.3-32) occur for the 
ramp function excitation of Section 4.5 and the rectangular pulse excitation of 
the current section too. There is always a fluctuating power with time average 
equal to zero. 



5 Klein-Gordon Equation and Vacuum Constants 

5.1 MODIFIED KLEIN-GORDON EQUATION 

In Section 3.3 we derived two approximations of the Hamilton function for 
a charged particle in an electromagnetic field. The first approximation is pro­
vided by Eqs.(3.3-32)-(3.3-34), the second by Eqs.(3.3-46)-(3.3-49). The terms 
£>cx, •C'cy, and &cz in Eqs.(3.2-32)-(3.2-34) are defined by the non-relativistic 
Eqs.(3.2-45)-(3.2-49), while the equally denoted terms in Eqs.(3.3-46)-(3.3-48) 
stand for the relativistic Eqs.(3.3-53)-(3.3-57). 

We try to use the approximation of Eqs.(3.3-46)-(3.3-48). If we leave out 
the correcting terms aeQ, Zcx, Zcy, and Hcz we reduce these three equations 
to one: 

% = c[(p - eAm)2 + m2
0c

2)1'2 + e0e 

We rewrite this equation: 

(1) 

(p-eAm)2-±(X-e<pe)
2 = -m2c2 

(p* - eAmxf + (py - eAmy)
2 + (p, - eAmz)

2 - -j(5C - e<pe)
2 = -m\<? (2) 

Using the substitutions 

h d h d hd_ _hd_ 
Px~*ldx~' Py~*lfy' Pz~*ld~z' ^~*~ldi (3) 

and applying the resulting operators to a function \P transforms Eq.(2) into 
the Klein-Gordon equation: 

idx eAmx) +{idy Amy) +{idz 6An 

1 hd_ 
-e<pe 

2n 

4^fh 9 A ^ l 

U = i 
i dxi 

hd 
i at 

y. 

# = -moc 2 * 

-m2
0cH (4) 

160 
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With the relation 

h d 
i dxj 

eA„ 
d2 0 dAn 

" S 2 S j + M A " ^ + , e S l ^ + e ^ (5) 

we may rewrite Eq.(4) into the following alternate forms: 

£ ( - * £ + 2iefiAmXj A + ieH8-^ + e2A2
mXj OX^ 3 OX; OX* 

dt2 
o . fca^, e i „ 2 ±2 2ieh(f>e — — ieh——h e 

' dt dt 
f = -mfc2y (6) 

dt2 h2^ + 2ieh4>e^- + ieh?^ - e24>2
e ) tf 

dt 
J,it,1x-,2 

dt 

= c2(h^V2 - 2ieftAmgrad-ieftdivAm - e2A„ - m ^ ) * (7) 

We replace Eq.(l) by the complete Eq.(3.3-46) and proceed in analogy to 
Eq.(2): 

2„2-|l/2, "Kx = c [(p - eAm)2 + m2
Qc2} (1 + aeQ) + e<j>e - Lcx 

{0ix - efo + Lcx)
2 = c2 [(p - eAm)2 + m2c2] (1 + aeQ)2 

(8) 

(9) 

Since our calculation holds only in first order of ae we write (1 + aeQ)2 fa 
1 +2aeQ. Furthermore, we leave out the term Z,2X since all its components are 
multiplied by a2 according to Eqs.(3.3-53)-(3.3-57): 

(p - eAm)2 - ^{Kx - e<j>e)
2 + aj2 [(p - eAm)2 + m2

0c
2] Q 

( ^ - e ^ ^ + ^ ^ - e ^ e ) -,2„2 

ZecAe 

UIQC2 
< 1 

Instead of the function \P in Eq.(4) we use the function 

®x = *x0 + (Xe^xl 

(10) 

(11) 

and obtain 
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| (p - eAm)2 - ^{0ix - e<pe)
2 + ae 

\ ({Kx - e0e) — + ^ ( H , - e<j>e) 

2 [ ( p - e A m ) 2 + m 2 c 2 ] g 

= -mlc2(Vx0 + Qe*xi) (12) 

Since the five components of the correcting term £ c x 

4-

are all multiplied by ae in Eqs.(3.3-53)-(3.3-57) we may break Eq.(12) into one 
part of order 0(1) and a second one of order 0{ae): 

U p - eAm)2 - l ( 0 £ s - e</>e)
2 + m2

0cA * x 0 = 0 

Up-eAm)2-^{Kx-ecpe)
2+m2

0c
2jyxl = - 2[(p-eAm)2+m2

)c
2]Q 

(14) 

1 ({Xx - e 0 e ) ^ + ^ ( M s - e<pe) 
OCe ae 

tf xO (15) 

Equation (14) is essentially the old Eq.(4) while Eq.(15) is an inhomogeneous 
variant of that equation. 

The factor Q in Eq.(15) contains a term [l + (p — eAm)2/moC2]~3/2 accord­
ing to Eq.(3.3-49) while £ c x l to £/CX3 and Lcx5 according to Eqs.(3.3-53)-(3.3-
55) and (3.3-57) have the same factor with the exponent K = —3/2 replaced by 
K = —1/2. If we want to replace the momentum p by the differential operators 
of Eq.(3) we must explain what the resulting operators mean. This may be 
done by series expansion in the case of a denominator [1 + (p — eAm)2/mQC2]K: 

[1 + (p - eAm)2/m2c2]K w 1 + «(p - eAm)2/m2c2 (16) 

The term A2(p — eAm)2 in the denominator of Q in Eq.(3.3-49) is more 
difficult to deal with. First, we see how it can be explained as operator if there 
is only one spatial variable x. We obtain: 

A-e — -"-e ' -"-e — -^-ex^x ' **ex^x — e 

(p - eAm)2 = {px- eAmx)
2 

A2(p - eAm)2 = A2
ex(Px - eAmxf (17) 

Ae • (p - eAm) = Aex(px - eAmx) 

[Ae • (p - eAm)]2 = A2
ex(px - eAmx)

2 (18) 
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Since Eqs.(17) and (18) are equal we get a cancellation of the terms 

[A. - (p - eAm)]2 

Q o 2 - A2(p-eA»)» " 1 ( 1 9 ) 

in Eq.(3.3-49) and we avoid the problem of having to explain the meaning of 
l /A e

2 (p -eA m ) 2 . 
Consider now that the vectors in Eq.(19) are represented by matrices of 

rank 3 whose components are vectors: 

/ Aexex 0 0 \ 
Ae = 0 Aeyey 0 (20) 

V 0 0 AezeJ 

I {px - eAmx)ex 0 0 \ 
p - eAm = 0 (py- eAmy)ey 0 (21) 

\ 0 0 (p*-eAmz)ezJ 

We obtain 

[Aexex 0 0 \ [Aexex 0 0 \ 
A2 = 0 ^ e y e y 0 0 Aeyey 0 

\ 0 0 4 , , e z / V 0 0 AezezJ 

(A2
ex 0 0 \ 

= 0 ^ 0 (22) 
V 0 0 AlJ 

and 

2/" „A \2 Ae
2(P - eA 

' A2
ex{Px - eAmx)

2 0 0 \ 
0 A2

ey(Py - eAmy)
2 0 (23) 

0 0 A2
ez(Pz - eAmz)

2 J 

Ae • (p - eAm) 

' Aex(px - eAmx) 0 0 \ 
0 ^»(p»-ftAm») 0 (24) 
0 0 Aezipz - eAmz) J 

[Ae • (p - eAm)] 2 

' ^ L ( P - - e A m , ) 2 0 0 \ 
0 A2

ey(pv - eAmy)
2 0 I (25) 

0 0 A2
ez(Pz-eAn x I 2 
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Since Eqs.(23) and (25) are equal we get again a cancellation of the terms 
of Eq.(19) and Q02 = 1. Equation (3.3-49) may be simplified: 

Q 
(p - eAm)2 

m¥2 [1 + (p - eAm)2/m2c2]3/2 

With the help of Eq.(16) we can fully explain the meaning of Q = Qr 

Qr = (p - eAm)2 m0C ~ o ( p - e A m ) 

(26) 

(27) 

However, the subscript r suggests that one can readily write two more variants 
otQ: 

Qi = «0C - 2 ( P - e A m ) ' (p - eAm)2 (28) 

Qs 
mxc 

2„2 
m0c - T ( p - e A m ) ' ( p - e A m ) 2 moc - 7 ( p - e A m ) J (29) 

These obvious expressions are not the only possible ones. A short reflection 
shows that one can produce arbitrarily many variations of Eqs.(27)-(29). We 
note that the potential Ae that comes from the magnetic dipole current density 
term gm in the modified Maxwell equations has disappeared from Eqs.(27)-
(29). But its influence has not disappeared because p — eAm is now the matrix 
of Eq.(21) that was forced on us by Ae in order to obtain a usable form of Q. 

Having explained the term Q in Eq.(15) we turn to £ c x and its components 
defined by Eq.(13). We shall only write the 'right' variant corresponding to 
Eq.(27). Equations (3.3-53)-(3.3-57) yield: 

1 
Q„ 

J ca : l 

&CX2 : 

[Aez(p - eAm)y - Aey(p - eAm)z] 
Aemo 

i - / ( ^ < p - e A „ ) , - < ^ ( p - , A m ) v ) 

(p - eAm)2 

x 1 - 2mgc2 

(30) 

dx (31) 

1 r l f7 A d\i L \ (^ ( P - e A m ) 2 \ 

(p - eAm)2 

l e y dt 
(p-eA m ) , ( l - - 0 J 2 "- )]}dE (32) 

2m2c2 
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m0c
2 f / 

Ae J \ 

l f Aem0 J 

-f 

x [Aez(p-

dAey dAez\ 
dz oy r 

[(P cA™>y{1
 2m

2c2 Jdy 

A x {, ( p - e A m ) 2 \ d] 
' ( P ^ " H 1 2mgc2 )dz\ 

eAm)y j4ey(p eAm)j;J 1 1 
- eAm)2 

2m2
)c

2 

(33) 

dx (34) 

We substitute the operators of Eq.(3) into Eqs.(14) and (15). Equation 
(14) equals formally Eq.(4) but we must write matrices according to Eq.(21) 
as well as replace ^ by \PXQ: 

• Q ' " m i 
I OX 

0 

hd__ 
i dy 

0 

\ 

hd_ 
i dz 

•eAn 

(( h9 ^ 2 

~ldi~e4>e 

i dt 

0 

- e<t>e ) 0 

^mSc 2 0 0 \ 

+ 

V 

0 mlc2 0 

0 0 mlc2 

h d 

*xOx 0 0 \ 
0 * x 0 » 0 = 0 (35) 

. 0 0 ¥ „ < „ / 

This is essentially three times Eq. (4) without the summation sign but with the 
index j retaining the values j = 1, 2, 3: 

'h_d_ 

. i dxt 
-eA„ 

1 ( hd_ 

' i dt 
2„2 

- e0e + m0c Vxoxj = 0 (36) 
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Using the notation of Eq.(36) we may write Eq.(15) with the help of 
Eq.(27) in the following form: 

h d 
i dxj 

-eAn 
h d 

dt 
+ m\<? V 

= - 2 

x ( eAn 
i ox A 

1 
"j 

hd_ 
io~t 

S 3 . \ 2 2 
-T -g^ - eAmXj ] + m0c 

, , 3 (h d . 
m°C -2{~idx--eAa 

— C</>e ] (-Ccxlj + -Ccx2j + £cx3j + -^cx4j + ^cx5j) 

+ ( ^ c x l j + £ c x 2 j + £cx3j + £cx4j + £cx5j) ( r «7 _ e < ^ e J f *xOx., (37) 

The operators £Cxij to AJCx5j follow from Eqs.(30)-(34) with the help of Eq.(3) 
and the substitution 

~cxkj ^ ^cxkji <C — I , Z, o , 4 , 0 (38) 

The matrix £cxi has the terms £Cxij along its main diagonal and zeroes every­
where else: 

~cxlj 
Aemo 

A l-—-eA 
i dy 

2m,QC2 \ i dxj mx' 

_A t*JL-eA 
my j -n-ey \ . Q e-H-mz 

I OX 

1 (h d 
2m2

)c
2 \ i dxj 

j = 1, 2, 3; xi =x, x2 = y, x3 = z (39) 

For clarification we observe that the terms 

1 fh d 
2m,QC2 \ i dxj 

eAn 

are the terms of a matrix with rank 3 like the first matrix in Eq.(35) with the 
terms along the main diagonal varying according to j = 1, 2, 3. On the other 
hand, the terms 

Aez\ --^--eA 
j dy 

h d 
my i' Aey{ idz eAmz)' [idx eAn 

h d 
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form matrices of rank 3 with equal values for all elements in the main diagonal, 
like the second and third matrix in Eq.(35). 

For the remaining terms LCX2j to &cx5j we obtain from Eqs.(31)-(34) in 
analogy to Eq.(39) the following relations: 

~cx2j 
A j 

d<j>m 

dy 

h d 
-—-eAn 
i dz 

1 -

d(j>m 

dz 

1 

2m2
)c

2 

hd__ 

i dy 

h_d_ 

i dxi 

eAn 

-eA„ 
2n 

dx (40) 

~cx3j ~ Aj {Ae*dt{(idy eA„ 

Aeytt\lld~z eAa 1 -
1 

2m§c2 

h d 

Ivnkc? \ i dx 

h d 

i dxi 
e A 

-eAn 

-i) j} 

dx (41) 

*cx4j — 
1TIQ& 

Ae J OA.ey 

~dz~ 

dAe; 

dy 
dy (42) 

Aem0 

'hd_ 

i dz 

h d 
-—-eAn 
% dy 

1 -

+ 
eAmz 

hd_ 

i dy 

1 -

- eA, 

h_d__ 

2mQC2 \ i dxj mXj 

h d 

d_ 

dy 

2mQC2 \ i dxj 
eAn )]!} 

-A l*JL-eA 
i dz 

1 -
h d 

2ITIQC2 \ i dxj 
eA„ dx (43) 

Equation (37) is now completely defined in terms of time and spatial 
derivatives, the potentials A m , A e , (f>m, <f>e and the rest mass mo of a charged 
particle. Instead of the 'right' variant used from Eq.(30) to Eq.(43) we may 
write a 'left' and a 'symmetric' variant corresponding to Eqs.(28) and (29). 
Obvious questions are which variant should be used, are all three meaningful, 
and what shall we make of the infinitely many possible variations mentioned 
in the text following Eq.(29)? One definite result obtained is that ^xoXj in 
Eq.(36) is one of the three components of the last matrix in Eq.(35). This is 
different from the conventional theory which does not have that matrix. 

Equation (36) can be solved for certain initial and boundary conditions 
just like partial differential equations for the field strengths E and H or the 
potentials A e and A m derived from the modified Maxwell equations can be 
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solved. We note that a vector with three components that are scalars is formally 
similar to a matrix of rank 3 with three components in the main diagonal that 
are vectors. If the solution is done by Fourier's method of standing waves we 
are led to a quantization procedure as in Sections 4.3 and 4.4 for the pure 
radiation field without charged particles. 

The solution of Eq.(37) requires a particular solution of the inhomogeneous 
equation since the homogeneous solution is the same as for Eq.(36). If Am , <j>e, 
and TUQ are zero, Eq.(37) is reduced to the inhomogeneous wave equation with 
the very satisfactory solution used in Eqs.(3.1-44) and (3.1-45) or Eqs.(4.1-43) 
and (4.1-46). At this time we must hope that mathematicians will generalize 
that solution to m0 ^ 0, <f>e ^ 0, and Am ^ 0. 

5.2 PLANAR WAVE SOLUTION 

We have seen in Section 4.4 that the infinite zero-point energy for n = 0 as 
well as any other infinite energies for n > 0 are eliminated for the pure radiation 
field—or the pure electromagnetic wave—if the modified Maxwell equations are 
used as the basis of quantum electrodynamics. The need for renormalization 
was thus eliminated for this particular case. Here we will attempt to extend 
this result to the interaction of photons with bosons. To do so we must in 
essence replace Eqs.(4.1-38) and (4.1-39) by Eqs.(5.1-36) and (5.1-37). Hence, 
we turn to the solution of Eq.(5.1-36) by Fourier's method of standing waves. 
We write Xj = y in order to connect with previously derived results: 

h d 
i dy my 

h d , \ oo 
VxOy = 0 (1) 

To reduce the number of subscripts we write 

* = VxOy 

and obtain with the help of 

(2) 

h 9 . . _ 

h d 
idt 

from Eq.(l) 

,d2V 
dy2 

a* 
my 

+ e<j>e) tf = 

- £ 2 ^ T 4 + 2iheAmy^- + ( e2A2
m„ + ihe 

dA mMg (3) 

(4) 

dy2 
1 * * - * ! [ A c2 dt2 

a* 
""ay 

! ^ 2 
'•my 

Jat 
_ h(dA™v l d<k 

l e \ dy c2 Ot 

n2„2 
tf = 0 (5) 
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We choose Amy and 0 e to be independent of y and t. A partial differential 
equation with constant coefficients is obtained: 

dy1 ~ c2 dt* " 2lh{ my dy c 2 0 e a t J 

-?K-?<-^)*-° (6> 

Except for the term d^/dy and the imaginary constant i we have again Eq.(4.1-
38). Using the normalization 

6 = t/T, C = y/cT (7) 

we get 

- # ) < * ! . ^3 = ^ " (8) 

A comparison of Eq.(8) with Eq.(4.1-41) shows that they are very similar. This 
suggests finding a solution of Eq.(8) in terms of Fourier's method of standing 
waves that satisfied the causality law and the conservation law of energy. 

For a first solution of Eq.(8) we follow Eq.(4.1-54) and assume as boundary 
condition at £ = 0 a step function 

#(O,0) = #OS(0) = O for0<O 

= #o for 6 > 0 (9) 

The usual boundary condition for ( —> oo 

tf(oo,0) = finite (10) 
cannot be used just as in the case of Eq.(4.1-55). 

For the initial condition(s) we follow Eq.(4.1-56) and assume at 6 = 0 the 
relation 

*(C,o) = o ( i i ) 

This initial condition implies \I>(£, 0) = 0 for 6 < 0 due to Eq.(9). As in Section 
4.1 we emphasize that a function of time that describes a physical process 
subject to the causality law must be zero before a finite time. The choice 6 = 0 
for this time does not imply any loss of generality. 

a^_ a^_ /a* 
ac2 a*2 2lXl{d{ 

ecTAmy \ 2 _ \ 2 f i 0e 

file:///2_/2fi
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If ^(C,0) is zero for all values C > 0, all its derivatives with respect to £ 
must be zero too: 

dn#(C,0)/<9C" = 0 (12) 

We assume that the general solution of Eq.(8) can be written as the sum 
of a steady state solution -F(C) plus a deviation w(£,6) from it: 

*(C,0) = W ( C ) + ™(C,0)] (13) 

Substitution of F(Q into Eq.(8) yields: 

d2F/d(1 - 2iX1dF/dC - X\F = 0 

F(0 = Aw exp [i [x, + (A? - A2)1'2] C} 

+ AnexP{i[\1-(\t-\
2
2)

1/2}c} (14) 

Due to the relation A2 > A?> in Eq.(8) the root (A? — A?,)1/2 is always real. The 
boundary condition of Eq.(9) demands that F(0) equals 1, which implies 

F(0) = 1, A10 + An = l (15) 

F(Q = exp {i [Ax + (A? - A2)1/2] c} + A13e^< sin [(A2 - A2)1/^] (i6) 

The constant A13 remains undetermined at this time. 
Substitution of Eq.(13) into the boundary condition of Eq.(9) yields the 

boundary condition for w(0,0): 

*(0,6) = Vo[F(0) + w(0,0)} = * 0 for 6 > 0 

u>(O,0) = O f o r # > 0 (17) 

For C —> co we obtain from Eq.(10) the boundary condition 

w(oo, 6) = finite (18) 

which cannot be used but is not needed either, while the initial condition of 
Eq.(ll) yields 

F (O+MC,0) = 0, w(C,0) = -F(0 (19) 
dw((, 6)ld0 = 0 for 6 = 0, C > 0 (20) 
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Substitution of Eq.(13) into Eq.(8) yields for w((,6) the same equation 
as for \I> since the purpose of the definition of Eq.(13) is strictly to obtain the 
homogeneous boundary condition of Eq.(17) for w(0,9): 

Particular solutions of this equation denoted wK((,6) are obtained by separat­
ing the variables: 

wK(C,6) = MOW) (22) 

0 v ^ ~ ioc) = A~w~ 13 do)+X2=~{2nK) (23) 

We get two ordinary differential equations 

g-2a,| — 2 i \ i ^ + (27TK)20 = O (24) 

t 
QQ2 " " " 1 " 0 ^ 
^ • 2 i A 1 A 3 ^ + [(27r«)2 + A 2 ^ = 0 (25) 

with the solutions: 

</>(C) = j42oe1 ( A l + l o ) c + ^ 2 i e i ( A l _ t o K 

t 0 = [ ( 2 ^ ) 2 + A 2 ] 1 / 2 (26) 

i/f{0) = A 3 0 e i ( A l A 3 + 7 o ) e + A3le
i(-x'X3-^e 

7 o = [ ( 2 ™ ) 2 + A 2 A 2 + A 2 ] 1 / 2 (27) 

_ ecTAmy >2_x2 /^ i 4>e my \ _ <f>, 
fj ' J 1 \ " r2 A P1 A ' ° rA 

The boundary condition w(0, (?) = 0 in Eq.(17) requires in Eq.(26) the relation 

A2i = -A20 (28) 

and the particular solution wK(£,0) becomes: 

wK(C,0) = {i4iexp[t(AiA3 +•%)»] +i4aexp[t(AiA3 - 7o]0}e iAlCsintoC (29) 
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The solution wK(Ci 0) is usually generalized by making Ai and A2 functions 
of K and integrating over all values of K. We follow the alternate route of 
Section 4.1 from Eq.(74) on in order to replace the nondenumerable terms of 
the Fourier integral by the denumerable terms of the Fourier series. We need 
again an arbitrarily large but finite spatial interval 0 < y < cT and time interval 
0 < t < T, where T is finite but otherwise as large as we need it to be. The 
normalized variables £ and 6 will be used: 

0 < C = y/cT < 1, 0 < 6 = t/T < 1 (30) 

Instead of the Fourier sum of Eq.(4.1-76) we get: 

oo 

w(C, 9) = ^ jyli(K)exp[i(AiA3 + 70)0] + A2(K) exp[i(AiA3 - 70)6}} 
K = \ 

xe iAlCsint0C (31) 

The derivative of w(£, 6) with respect to 6 becomes: 

dw 

00 

OO 

J2 J{AI(K) (AIA 3 + 70) exp[i(AiA3 + 70 )0] 
K = l 

+ A2(K)(X1X3 - 70) exp[i(A!A3 - 7o)6>]}eUlC sintoC (32) 

The functions A\(K) and A2(K) can be obtained from Eqs.(31) and (32) 
with the help of Eqs.(19) and (20): 

00 

MC.O) = Y,IM*) + M")]*iXl< &"oC = -^(0 (33) 

^ M = f)i[i41(«)(A1A2 + 70) + A2(K)(X1\3 - 70)] 

xe i A^siniOC = 0 (34) 

In order to obtain the functions A\(K) and A2(K) we use the Fourier series 
according to Eqs.(4.1-80) and (4.1-81). The factor elAll» can be written in front 
of the summation sign since it does not contain n according to Eq.(27): 

00 

£ > i ( " ) + A2(K)] sin { [(2TT«)2 + A?]1/2 C} = - F ( C ) e - a i C (35) 
K = l 

^ [ A I ( K ) ( A ! A 3 + 70) + ^2(«)(AiA3 - 70)] 

x sin { [(2TT«)2 + Xi]1/2C} = 0 (36) 

Equations (35) and (36) do not have quite the form of Eq.(4.1-81). To bring 
them into that form we represent sin{[(27r«)2 + A2]1/,2C} by a Fourier series: 

K = l 

OO 
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smjpTT/^ + A?]1/^} 

a[K' ' + ^2 K K > n ) c o s 27rnC + &(«>n)sin 27rnC] (37) 
2 „_1 

1 

a(K,n) = 2 /sin|[(27T«;)2 + A?]1/2c}cos27rnCdC 
o 

2[(27TK)2 + A2]1/2 {1 - COS[(27TK)2 + A2]1/2} 

(2TTK)2 + A2 - (27rn)2 

l 

b(K,n) = 2 / s in {[(2TTK)2 + A2]1/^} sm27rr<dC 
o 
2[(2TTK)2 + A2]V2 sin[(27T^)2 + A2]1/2 

(38) 

(39) 
(27TK)2 + A2 - (27TO)2 

This expansion is not needed for sufficiently large values of K: 

sin|[(27r/«)2 + A?]1/2c} «sin27n< for « > K » AI/2TT (40) 

We note that the constant K is here not as precisely defined as in Eq.(4.1-81) 
for the pure electromagnetic wave. The coefficients a(K,n) and 6(«,n) can be 
computed for any K and n. We may thus produce the following sums : 

<K <K 

c(ri) — y j a ( « , n), d(ri) = >J b(n, n) (41) 

The summation limits < K mean the largest integer smaller than K. 
After the summation we may replace the variable n = 1, 2, . . . by the 

variable n — 1, 2, . . . 

C(K) = c{n), d{n) = d{n) (42) 

Equations (35) and (36) become with the help of Eq.(40): 

] T [ . 4 I ( K ) + A2(K)][co(K)cos27rKC + d0(«)sin27r<] = -F(C)e~2AlC (43) 

OO 

J][A1(«;)(A1A2+7o)+^2(«)(AiA2-7o)] 
K = l 

x [CO(K) cos 27T«C + do(«) sin 27TK£] = 0 (44) 

C0(K) = C(K), do(K.) = d(n) for K < K » AJ/27T = ecTAmy/2nh (45) 

= 0, = 1 for K > K (46) 
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Using Eqs.(43) and (44) we obtain from the terms with CQ(K) = C(K) and 
d0(n) = d(n) or C0(K) — 0 and d0(«) = 1 in analogy to Eqs.(4.1-80) and (4.1-81) 
the following relations: 

for K < K » Ai/27T 
l 

[AI{K) + A2(ii)}d(K) = - 2 f F{Qe-iXl<sin2nKCdC = - 2 7 F (47) 

o 

[Ai(«)(AiA3 + 7o) + A2(K)(X1\2 - 7o)]d(«) = 0 (48) 

for /c > JiT 
l 

AI(K)+A2(K) = - 2 f F{C)e-iX^sm2TTKCdC = -2IF (49) 

o 

^i(«)(AiA 3 + 70) + A2(K)(X1\S - 70) = 0 (50) 

If sin27r«C m Eqs.(4.1-80) and (4.1-81) is replaced by cos27r«C one obtains 
the essentially same result for K < K by means of the Fourier cosine series: 

for K < K 
l 

[AX{K) + A2{ii)]d(K) = - 2 /F(( )e - i X l < : COS2TT/<d( (51) 

o 

[Ai(«)(A!A3 + TO) + A2(«)(A!A2 - 7 o)]d(«) = 0 (52) 

Equations (47) and (48) as well as Eqs.(49) and (50) are readily solved for 
AI(K) and A2(K): 

A1(K) = - - ^ - ( l - ^ - ) ioTK<K»\1/2n 
d(n) \ 70 

A2{K)=*(l+>*>«) (53) 
d(/c) V 7o 

AI(K) = -IF (l - — ] for K > K 

A2(K) = -IF(I + ^ (54) 

For the evaluation of the integral Ip we start from Eq.(16): 
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F(C)e-^< = cos [(A? - A 2 ) 1 ^ ] +(i + A13) sin [(A2 - A 2 ) 1 ^ ] (55) 

If we choose A13 — —i we obtain: 

1 i 

I F{()e-iXlC sin 2-KKC dC,= f cos [(A? - A 2 , ) 1 / 2 ^ sin 2TT/< d ( 

1 

IF = 

0 0 

2JTK [l - cos(A2 - A2.)1/2] 

(2™)2 - (A? - Al) 

The functions A\{K) and ^ ( K ) become: 

(56) 

2 7 rK [ l -cos(A 2 -A 2 ) 1 / 2 ] (7o-A 1A 3 ) 
A l W = [(2^-Af + Aibo^) iOVK<K 

27r/c[l-cos(A2-Al)1/2](7o + A1A3) 
A 2 ( " ) _ [(2™)2-A2 + A|]7od(K) ( 5 7 j 

, , , 27rK[l-cos(A2-A2)V2](7o-A1A3) f 
^ i « = ^ F7^—^2 \2 1 \2i ioiK>K 

[(2TTK)2 - Af + A2,] 70 

4 , , 27rK[l-cos(A2-Al)1 /2](7o + A1A3) 
^ ) = [(2^-A? + A|]7o ( 5 8 ) 

Substitution of A\{K) and . ^ ( K ) brings Eq.(31) into the following form: 

^ 4 7 r « [ c o s ( A 2 - A J ) V 2 - l ] 

*' } h [ ( 2 ^ ) 2 - A 2 + A2]d(«) 

x I eiX ^e
Cos[[{2iXK)2 + X\Xl + Xl]l'2e) 

+ ihhe-i^^B g i n | [ ( 2 7 r K ) 2 + A2A2 + A2]l/2^j 

xe iAlCsin{[(27rK)2 + A2]1/2c} 

~ 47T/ t[cos(A2-A|)1/2-l] 
+ i ^ (2™)2-A2

 + A2 

+ 

x ( eix^e cos { [(2™)2 + A?A2 + A2]1 /^} 

iAiAs „_(AlAsfl s . n J [ (2?rK)2 + A ? A 2 + A2 ]1 /2^j 

xe iAlCsin{[(27rK)2+Af]1/2c} (59) 

7o 
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For K > K the first term of the second sum varies like rc-1 cos 2~KKB sin 2TT KC, 

if K grows beyond all bounds, which means this is a conditionally convergent 
sum. The second term varies like K _ 1 sin 2ITK6 sin 2TTK6 for K —> oo and is also 
conditionally convergent. 

In order to improve the convergence we replace the step function of Eq.(9) 
for the boundary condition by an exponential ramp function according to 
Eq. (4.5-2): 

*(0,0) = #iS(0)(l - e-'e) = 0 for 6 < 0, C = 0 

= # i ( l - e - t e ) for0>O (60) 

Again we avoid using the boundary condition 

*(oo, 6) = finite (61) 
As initial condition we have in analogy to Eqs.(4.5-4)-(4.5-6): 

*(C,o) = o 
a*(C,o)/ac = o 
dv(t,e)/de = o iore = o, c>o 

For the solution of Eq.(8) we try the function 

*(C, e) = * ! [u((, e) + (i - e-")F(0] 

Substitution of * i ( l - e-i9)F{£) into Eq.(8) yields: 

(62) 

(63) 

(64) 

(65) 

B2F 1_ ]W + ie F~2iX (l-e-^-A3^
eF 

-X2(l-e~Le)F = 0 (66) 

The terms with different functions of 8 must vanish separately. Hence, we 
get two equations: 

i2 + 2jA!A3i = 0 

Equation (68) has the trivial solution t = 0 and a useful solution 

i = —2«AiA3 

(67) 

(68) 

(69) 
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Equation (67) is the same as Eq.(14) and the solution for F(£) shown by Eq.(16) 
applies again. 

Since Eq.(65) must satisfy the boundary condition of Eq.(60) we get with 
F(0) = 1 from Eq.(15): 

u(0,e) + l-e-L9 = l-e-ie 

u(0,fl) = 0 (70) 

As always we ignore the boundary condition 

u(oo, 9) = finite (71) 

derivable from Eq.(61) for C —* oo. The initial conditions of Eqs.(62) and (63) 
yield with F(0) = 1: 

*(C,0) = *1u(C,0) = 0 (72) 

du/dO + ie-LeF(0 = 0, du/dO = -iF(£) for 9 = 0, C > 0 (73) 

The calculation of «(£, 9) proceeds as from Eq.(21) on with w(C, 9) replaced 
by u(£,9) until Eqs.(31) and (32) are reached: 

oo 

u((,9) = 5^{i4i(K)exp[i(AiA3 +70)«] +^2(«)exp[»(AiA3 -7o)»]} 

xe iAlCsint0C (74) 

^ ^ = ] T iM^Xs + 7o) exp^AjAa + 7o)0] 

+ ^ (^ (AiAs - 70) exp[i(AiA3 - 7o)0]}eiAlC sin t0C (75) 

Substitution of u(C.O) and du/d6 from Eqs.(72) and (73) into Eqs.(74) and 
(75) yields equations for the determination of AI{K) and A2(K). The factor 
elAl^ is moved to the right side since it does not depend on K: 

oo 

«(C,0) = ^[A1(«)+yl2(K)]sin{[(27rK)2 + A?]1/2c} = 0 (76) 

„ oo 

^ J = £ i[^i(«)(AiAs + 7o) + ^2(«)(AiA3 - 7o)] sin {[(2™)2 + A2]1 /^} 
K = l 

= -iF(C)e~iX^ = 2i\1\3F(C)e-iXli (77) 
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As in the case of Eqs.(35) and (36) our equations do not have quite the 
form of Eqs.(4.5-18) and (4.5-19). One must use the Fourier series of Eqs.(37)-
(39) and the approximation of Eq.(40) to achieve the correct form. In analogy 
to Eqs.(47)-(50) we obtain: 

for K < K » Ai/27r 

[Ai(K)+A2(K)]d(/c) = 0 (78) 

[AI(K)(AIA3 + 70) + A2(K)(X1X3 - 7o)]d(«) 
l 

= 2AiA3 I F(Qe-iX^ sin 2-KK£ dC = 2AXA3/F (79) 
o 

for K > K 

AI(K) + A2{K) = 0 (80) 

AI(K)(AIA 3 +70) + A2(K{X1X3 - 7 O ) = 2A!A3/F (81) 

Equations (78) and (79) as well as Eqs.(80) and (81) are solved for AI(K) 
and A2{K): 

A ( A , n A I A 3 / F 27rKA1A3[l-cos(Af-A|)1/2] 
AI{K) = -A2{K) = ——— = ———-t— — forK<.f£: (82) 

7od(«) [(27TK)2 - Af + A2,] 7orf(«) 
, , . , , v AiA3/F 27T«AiA3 [ l-cos(Af-Al)1 /2] 

AI(K) = - A 2 ( K ) = = .. \ 2 — 2 21 ^ forK>-ftT (83) 
7o [(2TTK)2 - X{ + A2,] 70 

Substitution of AI(K) and J42(K) into Eq.(74) produces the following rela­
tion for u(C,6): 

i ( C i?) = Y 47na1A3[l-cos(A2-A2)V2] 

£ l [(2TT«)2 - A2 + A2] [(2™)* + A2A2 + A2]1/2 d{n) 

x eiAlA3* sin 

+ £ 

in {[(27rK)2 + A2A2, + A2
!]1/20} 

x e ^ s i n j p T r ^ + A 2 ] 1 / 2 ^ 

4TTKA1A3[1 - cos(A? - X2
2)

1'2] 

fK [(2TT«)2 - A2 + A2] [(2™)2 + X\X\ + A2]1/2 

x eiX^e sin {[(2™)2 + A2A2 + A2]1/2*?} 

Xfi<A^sin{[(2jrK)2 + A?]1/2c} (84) 
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For K > K the terms of the second sum vary like K~2 sin 2ixK6 sin 2-KKC, if K 

grows beyond all bounds and the sum has absolute convergence. 
Equations (65) and (55) with the substitution A\3 = —i yield the following 

solution for \P(C,0): 

*(C, 6) = tf i {u(C, 0) + (l - e2iAlA3fl) e iAlf cos [(A2 - A2 .)1^] } (85) 

Let us observe that the term m2c2/e2, which shows the presence of a 
particle with rest mass mo and charge e, occurs in A2, of Eq.(8) and in 70 
of Eq.(27) via the term A2. It is through A2 and 70 that mo and e enter 
Eqs.(82) and (83) for AX(K) and A2(K) as well as Eqs.(84) and (85) for u((,9) 
and \I>(£,0). The term d(«) in Eqs.(82) and (84) does not contain m0 or e 
according to Eqs.(42), (41), and (39). 

5.3 HAMILTON FUNCTION FOR THE PLANAR KLEIN-GORDON WAVE 

The energy density of a wave according to the Klein-Gordon equation is 
defined by the term Too of the energy-impulse tensor1: 

1 dtf* <9* 
too + V** w + m°„c $*# (1) 

mm''' '' ' h? 
Since the dimension of Too is J/m3 the dimension of \I>*\I> must be J/m or 
VAs/m if one wants electromagnetic units for the energy. In the case of Eq.(5.2-
1) for a planar wave propagating in the direction of y we have V = d/dy. 

The Fourier series expansion of Eq.(5.2-84) permits a largest time T and 
a largest distance cT in the direction of y with the intervals 0 < t < T and 
0 < y < cT. In the direction of x and y we have not specified any intervals and 
we shall follow Eq.(4.3-1) to make them - L / 2 < x < L/2, -L/2 < z < L/2. 
The energy U of a Klein-Gordon wave in this interval becomes: 

L/2 L/2 r cT 
d$* dV 9** a* m2

nc2 

+ c2 dt dt dy dy h2 * * * )dy 

-L/2-L/2 L 0 

Using the normalized variables 

t/T = 6, y/cT = C, x/cT, z/cT 

we obtain U in the following form: 

dx dz (2) 

(3) 

U: 

L/2cT L/2cT r l 

- / / / 
-L/2cT-L/2cT L 0 

* * * dC 
d$* dV OV* d<i> mlc4T2 

^erestezki, Lifschitz, Pitajewski 1970, 1982; §10, Eq.10.13. 
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We substitute * from Eq.(5.2-85) rather than from Eq.(5.2-13) since u(C, 0) 
of Eq.(5.2-84) is simpler and converges faster than w{C,,6) of Eq.(5.2-59). The 
function u(C„6) of Eq.(5.2-84) is rewritten in a shorter form: 

u(C, 6) = eiXlX*eeiXiC £ B(K) sin { [(2ITK)2 + A2 A2 + \2
2}

1/29} 
K = l 

xsin{[(27TK)2+A;]1/2C} 

B(«) = 4 , ^ 3 ( 0 0 ^ - A | ) V 2 - 1 ] forl<K<^ 
[(2™)2 - A? + A2] [(2TT«)2 + A2A2 + X2\1/2 d{K) 

_ 4™A1A3[cos(A2-A2y/2- l ] h i K ^ K ( 5 ) 

[(2TTK)2 - A2 + A2] [(2™)2 + A2A2 + A2]1/2 

Prom Eqs.(5.2-85) and (5) we get: 

#*# = ^2{u*(C,e)u(C,e) + «*(C,0)(1 - e2iAlA3e)eiAlCcos[(A2 - A2)1/2^ 

+ u(C, 0)(1 - e-2 i A l*»')e- 'A l C cos[(A2 - A|)1/2C] 

+ (1 _ e~2iX^9)(l - e2iX^9) cos2[(A2 - X2
2)

1/2C}} 

tff ^ B(/c) sin {[(2TTK)2 + A2A2 + A2.]1'2*} 

xsin{[(27r/c)2 + A2]1/2C} 

+ 2(1 - cos2AiA30) cos2[(A2 - \2
2)

x/2£] 

Differentiation of \P(C,0) of Eq.(5.2-85) with respect to 9 or £ yields: 

(6) 

06 

du 

99 = * i ( ^ - 2 ^ A 3 e 2 ^ V A ^ cos[(A2 - A2)1 /^]) (7) 

= c'*i*«V*i< ^ B(«) sin {[(2TT«)2 + A2]J/2C} 
K = l 

x (*AiAssin {[(2TTK)2 + A?A2 + A|]1/20} 

+ [(2TT«)2 + A2 A2 + A2]1/2 cos {[(2TTK)2 + A2 A2 + A2]1'2*?}) (8) 

H = * 1 ^ + ( l _ e^^)eiXli{iXi CQS[(A2 _ A2 ) 1 / 2 c ] 

- (Aj -AiJ^s inKAj-Ai) 1 ^]}) (9) 
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du ™ = eiA!A, V* lC J2 B{K) sin {[(2™)2 + A2 A2 + X2
2}^2e} 

dC 

x (iAiSinl^TT^^A2]1/^} 

+ [(2™)2 + A2]1/2 cos {[(2TTK)2 + A2]X/2C}) (10) 

We may now write the first and second term in Eq.(4): 

a** a* = *?( |r ir ^^^^e^cos[(xi - x\f/\\ 

+ ^ A a g e - ^ ^ e - ^ cos[(A2 - A2)1/^] 

+ 4A2A2cos2[(A2-A2)1/2C] 

r / OO 

= *? ( X) S(K)A1A3 sin {[(2TTK)2 + A2Â  + A?,]1/20} 

x s i n l p T r ^ + A 2] 1^}) 

/ °° 
+ I Y, B{K)[{2IXK)2 + A2A2 + A2]1/2 cos {[(2™)2 + A?A2 + A2]1^} 

xsin{[(27r«)2 + A2]1/2C}) 

OO 

- 4AiA3 cos[(A2 - A 2 ) 1 ^ ] £ B(K) sin {[(2TTK)2 + A 2 ] 1 ^ } 

x (AIA 3 cos AiA30sin {[(2TT«)2 + A2A^ + A|.]1/20} 

- [(2TTK)2 + A2A2 + A2,]1/2sinAxA30cos {[(2TTK)2 + A2A2 + A2,]1/^}) 

+ 4A2A2cos2[(A2-Ai)1/2C]l (11) 

The second term is even longer: 
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0** d* T 2 (du* du du* , 9iX x fl, ,. , 

x {iM cos[(A2 - A2)1/^] - (A? - A2)1/2 sin[(A2 - A2)V2
C]} 

+ g(l_e-^3»)e-^< 

x { - iAa cos[(A2 - \l)V\] - (A2 - A2)1/2 sin[(A2 - A2)1/2^} 

+ (1 _ e-a^^.fljg-^xc 

x { - iX, cos[(A2 - A2)1/^] _ (A? _ A2)1/2
 s i n [ ( A2 _ A2}i/2C]} 

+ (1 _ e - » ^ * a « ) ( 1 _ eMAxAaff^J C 0 S 2 [ ( A 2 _ ^ 1 / 2 ^ 

+ (A2-A2)sin2[(A2-A2)1/2C]} 

= * i ( £ B ( K ) A l s i n ( I (2^ ) 2 + A2 A2 + A2]1/^} 

X8in{[(27TK)2+A?]1/2C} 

+ ( ^S(/c)[(27r/ t)
2 + A2]1/2sin{[(27r«)2+A2A2 + A2]1/2e} 

XCOB{[(27T«)2+A2]1/2C}) 

OO 

+ 4Ai sin AxA30 ^ B{K) sin {[(2™)2 + A2A2 + Xl\l'29} 

x ((A2 - A2) V^ s in[ (A
2 - A 2 ) 1 ^] sin {[(2™)2 + A2]V2

C} 

+ [(2™)2 + A2]1/2 cos[(A2 - A2)V2C] cos {[(2TTK)2 + A2]1/^}) 

+ 2(1 - cos2A1A30){A2 - A2 sin2[(A2 - A2,)1^]} (12) 

The next step is the integration of {d^*/d6){d^/36), (d$*/d(){dy/dQ, 
and #*<]> of Eqs.(ll), (12), and (6) with respect to C according to Eq.(4). This 
requires straight forward but lengthy calculations that will be found in Section 
6.11. Equations (6.11-23), (6.11-33), and (6.11-17) are obtained. Substitution 
of these equations into Eq.(4) yields the energy U. It is shown in Section 6.11 
that the energy U consists of a constant term Uc, defined by Eq.(6.11-44), 
and a time-variable term Uv with a time average equal to zero, defined by 
Eq.(6.11-54). We use Eq.(6.11-44) 

^ = ̂ £ W (13) 
K=0 
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where D(K) is defined for K = 0, 1, 2, . . . by Eqs.(6.11-55) and (6.11-56). The 
factor * i is the same as in Eq.(6), having the dimension J/m=VAs/m. 

Let us consider the constant energy Uc. Equation (13) corresponds to 
Eq. (4.3-33) for the pure radiation field. We follow the procedure developed 
from Eq.(4.3-33) on. 

For the derivation of the Hamilton function IK we first normalize the energy 
Uc in Eq.(13): 

2cTUc/LH\ = 0< (14) 
oo oo 

:*=]£«„ = ££>(«) (15) 
K=0 K=0 

The component !KK is rewritten in analogy to Eq.(4.3-36): 

^ > / W , „ ; , Q _ , . „ , _ Q . . ^ X / ^ ) ^ 
0iK = (2TTK) •¥— (sin 2TTK6 — i cos 2TTK9) „ (sin 2TTK9 + i cos 2TTK9) 

2-KK 2-KK 

= -2iriKPK(9)qK(e) (16) 

pK{6) = V ^ ^ P ^ e 2 ™ * (17) 

PK = ^ - = ( W / 2 ^ e « = 2^KPK{9) (18) 

qK(6) = V 2 ^ ^ P ^ e - 2 - ^ (19) 
2-KK 

qK = ̂  = -(2niK)3^^-e-^s = -2*1^9) (20) 

The derivatives d0iK/dqK and dJ(K/dpK equal: 

dqK 

dpK 

= -2-KinpK = -pK (21) 

= -2mK,qK = +qK (22) 

These are the proper relations for the components 9iK of the Hamilton function 
of Eq.(16). 

Equation (15) may be rewritten in analogy to Eq.(3.4-61) by means of the 
definitions 
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to yield: 

OO OO fc OO 

K=0 /t=0 K=0 

bK = {-ir) °- ^ ( — J °: (24) 

We check whether the energy C/c of Eq.(13) is finite to avoid violating the 
conservation law of energy and introducing divergencies. An infinite amplitude 
of $ ! in Eq.(5.2-60) or an infinite excitation area 1? according to Eq.(2) would 
make Uc infinite, but this is of no interest. The time T in Eq.(13) is finite. 
We have to show that the sum of D{K) is finite, which means that D(K) must 
decrease sufficiently fast for n —> oo to yield a convergent series for Uc and "K. 

Equation (6.11-55) yields for large values of K the following relation for 

£>(«): 

"KK = D{K) « (2TTK)2B2(K), K » 1 (25) 

From Eq.(5) we get for K > K 

W w 2 A 1 A , [ c o s ( A j - ^ - l ] > K>>1 ( 2 6 ) 

(27TK) 

and D(K) becomes: 

X.-IX,) •."****-?"-*, «»1 (27) 
(2-KK) 

Hence, the terms of "K in Eq.(15) decrease as fast as in Eq.(4.3-46) and the 
sum is convergent. 

5.4 QUANTIZATION OF THE P L A N A R K L E I N - G O R D O N W A V E 

Following Section 4.4 we start with the Hamilton function % of Eq. (5.3-24) 
using the functions bK and b*K: 

K=0 K=0 

We follow the conventional procedure for quantization and replace the conju­
gate complex functions bK and 6* by the operators 6+ and b~: 

b*K^bt, bK^b- (2) 
& : - £ , f>K-*b+ (3) 
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We have discussed the known arbitrariness of these two choices in Section 3.5 
following Eq.(3.5-6). As before we use Eq.(2) first. For a particular value of K 
in Eq.(l) we obtain: 

b+b- = £^I = ItL (4) 
K K 2-KKK 2-KKh K ' 

K = ^rU+l~i), bi = ±U-±£) (5) 
K V2\ adCJ K V2\ adCJ 

Application of the operators b~ and 6+ to a function $ yields: 

1 / I d 

Tirade 7l(aC4i)$ 
2TTKH 

$ 

2,2 1 d2\^_„fEKT 1 

AK _ 2™ft 2 W 

Using the solution of Eq.(3.5-18) we may write EK in the following form: 

E« = E-n = - ^ ( « + 2 ) . n = 0 , l , 2 , . . . (8) 

The energy EKn increases with K beyond all bounds for any value of n. But 
the total energy %K must decrease according to Eq.(5.3-27) like 1 /K 2 for large 
values of K. Hence, the number of particles with energy EKn according to Eq.(8) 
must decrease like 1 /K 3 to make the total energy %K decrease like 1 /K 2 . AS in 
the case of the pure radiation field of Section 4.4 there is no divergency and 
thus no need for renormalization. 

We note that our result is very general since we only needed the functions 
bK and b*K to derive it. If we had to use the functions aK and a* of Eqs.(5.3-
24) and (4.3-45) we would have to use the different definitions of Eqs.(5.3-23) 
and (4.3-44) for aK and a* which would have produced different results. This 
equality does not carry over to the total energy 3iK since Eqs.(5.3-27) and (4.3-
46) are quite different. Indeed, Eq. (4.3-46) holds for a step function excitation 
while Eq.(5.3-27) holds for excitation by an exponential ramp function. If we 
had used the solution w(£,#) of Eq.(5.2-59) holding for a step function excita­
tion rather than «(C,#) of Eq.(5.2-84) for exponential ramp function excitation 
we would not have obtained a decrease like 1/K2 for JiK and we would have 
ended up with a divergency. It is not surprising that the presence of a mass mo 
excludes the sudden excitation of a step function but permits the continuously 
increasing excitation of the exponential ramp function. 

The energies EK„ in Eqs.(4.4-8) and (8) are the same since the photons of 
a pure EM wave are the same as that of an EM wave interacting with bosons. 
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What differs is the fraction of photons with one of the energies EKn . These 
fractions depend, in a way that is too complicated to evaluate here, on the 
constants AI(K) and A2(K) in Eq.(4.1-86) or (4.5-24) for the pure EM wave 
while they depend on AX(K) and A2(K) in Eqs.(5.2-82), (5.2-83) for the EM 
wave interacting with bosons. The parameters Ai and 70 in Eqs.(5.2-82), (5.2-
83) contain the term rriQC2/e2 according to Eqs.(5.2-8) and (5.2-27) with the 
rest mass mo as well as the electric charge e of the bosons. On the other hand, 
Eqs.(4.1-86) or (4.5-24) do not contain any rest mass or electric charge. This 
shows how the analysis of the pure EM wave and the EM wave interacting 
with bosons leads to different results even though the possible energies of the 
photons are equal in both cases. 

A comparison of Eq.(8) with Eq. (4.4-9), Em>kA = 2irfh(n + 1/2), shows 
that the frequency / of the conventional theory is replaced by K/T. The use 
of the concept of frequency of a sinusoidal wave usually creates problems since 
it is defined for an indefinitely extended sinusoidal wave with infinitely many 
periods, which is outside the framework of an experimental science. If one 
truncates such a wave, its Fourier transform contains frequencies of the whole 
band 0 < / < 00 and one must explain which of the frequencies is to be used 
in the product 2irfh. No such explanation is needed in Eq.(8) since K = 1, 
2, . . . is an integer number and T can be chosen, provided it is large enough 
and finite. But another fine detail occurs. If we have a certain value K/T and 
increase T by an integer factor m = 1, 2, . . . we must increase K by the same 
factor to get the old result K/T = mK/mT. However, this is not so if m is not 
an integer since m,K may not be an integer in this case. Hence, the choice of T 
can have an effect on K/T. 

We have here considered the constant energy Uc of Eq.(5.3-13) only but 
mentioned in the text before Eq.(5.3-13) that there is also a variable energy 
Uv with time average equal to zero. Such a variable energy with time average 
zero also occurred for the pure EM wave excited by a rectangular pulse of 
finite duration in Section 4.3. This suggests that such variable energies are a 
significant part of the theory that is not likely to be eliminated by improved 
mathematical methods. We do not want to offer a physical explanation at this 
time going beyond the text following Eq. (4.3-32) since such explanations have 
a tendency to cause more harm than good if advocated too early. 

We turn to the substitution of Eq.(3) which is usually ignored in order to 
avoid an infinite negative energy. In analogy to Eqs.(4), (6), and (7) we get: 

b+b~ = ^ - (9) 

1 / I d 
-7= QC + ~37 $ 
y/2 V adC 

E « T $ 
2-KKK' 

«2C2 - \^)<s> = 2 (|4 + i) $ = 2A«* (!0) a2dC2J \2-KKh 2 

*"M + 5 (U) 

file:///2-KKh
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For n = 0 we obtain a negative but finite energy. We avoid any explanation 
of this result as premature at this stage of the theory. But there is no obvious 
reason why Eq.(12) should be ignored. 

5.5 D I P O L E C U R R E N T CONDUCTIVITIES IN VACUUM 

Observable constants that characterize the vacuum are important to im­
prove our understanding of the concept of physical vacuum. Initially the con­
cept of vacuum seems to have come from Greek philosophers who associated 
matter with 'something' and vacuum with 'nothing'. This was strictly abstract 
thinking without any connection to observation. In physics the vacuum repre­
sents the absence of matter but this is quite different from 'nothing'. Electro­
magnetic waves are known to propagate through vacuum, so there is something 
at least some of the time. Mathematicians have freely assigned features to the 
physical vacuum: It is a continuum, homogeneous, isotropic, limitless, has n 
dimensions, etc. The concept of the continuum predates Aristotle (1930, Apos­
tle 1969), the concept of limitless but finite is due to Riemann (1854), and the 
concept of n dimensions with flexible n grew out of the work of Bolyai (1832) 
and Lobachevskii (1840, 1856) on Euclid's parallel axiom. 

These mathematical features do not mean more for the physical vacuum 
than the abstract claims of Greek philosophers. To prove the existence of a 
continuum one has to make an observation at the locations x and x + dx, and 
in addition at the times t and t + dt if a space-time continuum is postulated. 
Nobody expects that such observations can actually be made. Apart from the 
infinitesimal distance dx and time interval dt one would need to assume that 
infinite information is represented by a finite distance AX or time interval AT. 
Infinite information is no more acceptable in a science based on observation 
than infinite energy. Neither can be produced or observed. If we can only 
observe at x and x+Ax or t and t+At the continuum disappears and is replaced 
by coordinate systems (Harmuth 1989, 1992). Limitless coordinate systems 
with n dimensions can readily be constructed by us not only in our mind or on 
paper but in reality. But these coordinate systems are evidently constructed 
by us, which makes them different from the continuum that mathematicians 
postulate to be provided by nature. 

To distinguish between inventions provided by humans and the vacuum 
provided by nature one needs observable natural constants that characterize 
the vacuum. The velocity c of light is such a constant. But it is the only one 
within electromagnetic theory, since the permeability \i = 4ir x 1 0 - 7 [Vs/Am] is 
defined and the permittivity e = l/c2fi as well as the wave impedance Z = /ic 
are derived from fi and c. The parameters Tmp, rp , and <rp used in Eq.(2.1-19) 
should be fundamental physical constants of the electromagnetic field in the 
absence of matter like the velocity c of light. Let us see how one could obtain 
values for the constants of electric dipole currents in vacuum. 
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D.Q Uc 
H A r~l tO Co 

b c 

FlG.5.5-1. Circuit with resistor R, capacitor C, switch S, and battery B (a). The 
same circuit without C and R but with a conductor of length D and cross section a 
(b). A plate capacitor C with area A and distance d between the plates is added (c). 

We have already shown the principle of circuits for the measurement of 
Tmp, TP, crp, and sp in Figs.2.1-10 and 2.2-7, but we want to add some details. 
Figure 5.5-1 shows a battery B with constant voltage Uo, a switch S, a resistor 
R, and a capacitor C. If the switch S is closed at the time t = 0 we obtain the 
following relation between UQ and the current i(t): 

t 
1 

U0 = iR + ±Ji(t')dt' (1) 
o 

The current and voltages according to Fig.5.5-la become: 

i=%-t/T, T = RC 
R 

Uc = Uo(l - e - ' / T ) 

UK = UQe-t/T (2) 

We ignore the term Tmpdge/dt of the monopole current in Eq.(2.1-13) and 
consider a conductor with length D as well as a cross section a. Since g e and 
E have the same direction we may use their magnitudes and we obtain: 

ar, U 
age = i = aaE = cr—U = — 

D R 
R=Tn ( 3 ) 

where U is the voltage drop over the length L of the conductor. The term iR 
in Eq.(l) is an approximation of Eq.(2.1-13). 

We ignore now the terms ge and Tmpdge/dt in Eq.(2.1-19). Consider a 
plate capacitor with area A and the distance d between the plates. One may 
again write ge and E for ge and E: 
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A^jgedt=^Jidt = apAE = ^Uc (4) 

U c ^ ^ H t t ^ l i d t 

A AapT% 

r2 

d drmp 

ffprP _ c (5) 

The term C _ 1 J idt in Eq.(l) is an approximation of Eq.(2.1-19). 
A measurement of U and i yields the conductivity a in Eq.(3) for known 

values of the length L and the cross section a of the conductor. Equation (5) 
yields a value for apTp/Tmp that is independent of A or d, which is a necessity 
for a quantity that characterizes vacuum rather than a capacitor. 

We turn to Fig.5.5-lb that shows a voltage Uo drive a current i through 
a conductor of length D and cross section a. With EQ — Uo/D we get from 
Eq.(2.1-14): 

age(t) = i(t) = ^U0 ( l - e - ^ - ) (6) 

Becker (1964a, 1964b, vol.1, §58) gives the value rmp = 2.4 x 10_14s for 
copper, but no value for Tmp was found for vacuum. The time resolution of 
the fastest sampling oscilloscopes for either periodic or single events is about 
10ps=10 -11s. If Tmp for vacuum is anywhere close to the value for copper, 
the direct observation of plots like those of Fig.2.1-5 is beyond our current 
means but without a study of dipole currents we would not know why an 
integral is written in Eq.(l). Light would propagate in 2.4 X 10~14 s the distance 
CTmp = 7.2 x 10 - 6 m or 7.2/im. The circuits of Fig.5.5-1 would thus have to 
have dimensions of the order of micrometer to make delay effects negligible. The 
technology of integrated circuits and chemical machining make this possible, 
but it is at the frontier of the current technology. 

Consider the circuit of Fig.5.5-lc. The current i = age in the conductor of 
length D and cross section a follows from Eq.(2.1-13): 

i + Tmp- = aa (7) 
di Uo - Uc 

>~r = aa ^~ 
dt D 

The current i = Age in the plate capacitor with area A and distance d between 
the plates follows from Eq.(2.1-19): 

i + rmpft + ̂ jidt = apA^. (8) 

Elimination of t/c from Eqs.(7) and (8) yields: 
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Odd 
1 + ̂ AD^i + T^ 1 + 

oad \ di 

opAD J dt 
-T7 + 

oad 
rp

2 opAD 
U0 (9) 

The solution of the homogeneous equation equals 

= he-*' 

lrp_Jop_AD 
Tl,2 = Tp 

£ T m p \ oaa 

1 r2 /auAD 

4 r£p V oad - + 1 
apAD I 1/2 

oad 
(10) 

where T\ and T% may be real or conjugated complex. A particular solution of 
the inhomogeneous Eq.(9) 

/ ' 

yields the general solution 

/ 
idt •• 

TD <T0A, .Tlhe-t/Ti_T2he-t/T> + j£_!^Uo 

' m p 

With the initial conditions i = 0 and f i dt = 0 for t = 0 one obtains: 

(11) 

(12) 

fidt = ±AUoU 
J Tmpd V 

-t/n 
T2 

+ • 
?2 «,-*M 

•T2 

_ vA 
n - ro) \ / 

For £ » T\ and i » r2 we get from Eq.(13): 

which leads back to Eq.(5). If we rewrite Eq.(5) 

eTmp/r. 2 
p/ ' P 

(13) 

(14) 

(15) 

(16) 

and substitute op into Eqs.(10) as well as (14) we know the values of all the 
parameters except TP. In principle one could make many plots of Eq.(14) for 
various values of TP and observe which plot corresponds best to an experimen­
tally obtained plot of i(t) to determine TP. This will not be possible in the 
foreseeable future and a more practical method to obtain either op or rp must 
be found. 
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Consider the replacement of the constant voltage C/0 in Fig.5.5-1 and Eq.(9) 
by a sinusoidal voltage: 

Equation (9) is rewritten: 

v(t) = Uosmujt (17) 

(1 + S)i + (1 + <5)rm p | + ^fidt=^U0smujt 
p 

aad 
apAD 

A particular solution of Eq.(18) may be written in the form 

i(t) = Ii sinujt + J2 coswt = IQ sin(wi + (p) 

and the following two equations are obtained: 

(18) 

(19) 

{l + 6)I3 + (l + 6)Tmpu>I1-'Zf6 mp1- T 

(l + 6)I1-(l + 6)Tmpwh + ^-I2 
T°U 

cos art = 0 

sin art = —UQ sin u>t 

Prom Eq.(20) we obtain the ratio 

h 
h T$LJ1 + 6 ' m p " 

Equation (19) yields a relation for <p: 

p - a i c t g j U a i c t g ^ ^ TmpW 

(20) 

(21) 

(22) 

(23) 

The observation of the phase shift ip between the voltage v(t) and the current 
i(t) at various circular frequencies w permits one to obtain rmp, rp, and <rp. 
Since the technology for sinusoidal waves with very high frequencies is better 
developed than the technology of step or rectangular waves with short switching 
times, we see here a more promising approach for the measurement of the 
constants rmp, TP, and crp for vacuum. 

The extension of these results from electric to magnetic dipole currents 
has not yet yielded any satisfactory results. One reason is the occurrence of 
the sinusoidal function sintf in Eq.(2.2-10) that shows up in variations all the 
way to Eq.(2.2-22). A second reason is that we can measure electric monopole 
currents directly but need a transducer to measure magnetic dipole currents. 
For electric dipole currents the problem of a transducer is solved by the dipole 
currents between the plates of a capacitor becoming monopole currents in the 
plates and their connecting leads. 



6 Appendix 

6.1 ELECTRIC FIELD STRENGTH DUE TO ELECTRIC STEP FUNCTION 

We start with Eq.(1.3-1) and rewrite it in normalized form with the defi­
nitions of 6 and (, shown in Eq.(1.3-7): 

d2E/d(2 - d2E/092 - 2(1 + UJ2)OE/09 - Aw2E = 0 

u)2 = es/fia, 9 = at/2e, C = Zay/2, Z = ^JJift (1) 

An electric force function with the time variation of a step function is 
introduced as boundary condition at the plane C, — 0: 

E(0,9) = E0S(9) = Q for<?<0 

= E0 for 6 > 0 (2) 

At a great distance C ^ 1 or £ —> oo we have a further boundary condition: 

E{oo, 6) = finite (3) 

Let E and H be zero for £ > 0 at the time 6 = 0. This yields the following 
initial conditions1: 

£ (C,0)=0 , H(C,0)=0 (4) 

If E(£, 0) and H(£, 0) are zero for all values C > 0, their derivatives with respect 
to C must be zero too: 

dE(C,0)/dC = 0, dH(C,0)/d{ = 0 (5) 

Equations (4) and (5) also imply the initial conditions 

dE{C 6)I'09 = 0, dH{(, 9)109 = 0 (6) 

for C > 0 and 6 = 0 according to Eqs.(1.2-9) and (1.2-10). 

'Even though we require E(£,9) = H(C,9) = 0 for 9 = 0 only, the implication is that 
E(C, 9) and H{C, 9) are zero for 9 < 0, since E{Q, 9) equals zero for 9 < 0 according to Eq.(2). 
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We assume that the solution of Eq.(l) can be written as a sum of a steady 
state solution F(() plus the deviation w((, 6) from it2 

E(C, 9) = EE((, 0) = Eo[F(C) + w((, 9)] (7) 

Substitution of F(C) into Eq.(l) yields the equation3 

d2F/dC,2 - 4o>2F = 0 (8) 

with the general solution: 

F(C) = AQOe-2^ + AQle
2^ (9) 

The boundary conditions of Eqs.(2) and (3) require Aoi = 0 and AQQ = 1: 

F(C) = e~2^ (10) 

For the calculation of w{(,, 6) of Eq.(7) we observe that the introduction of the 
function F(Q transforms the boundary condition of Eq.(2) for E = EE into an 
homogeneous boundary condition for w, 

EE(0,6) = E0 + Eow(0,6) = E0 for 6 > 0 (11) 

w{Q,0) = Q for6>>0 (12) 

while Eq.(3) yields 

w{oo, 0) = finite (13) 
The initial conditions of Eqs.(4) and (5) yield: 

F(O+w(C,0) = 0, W(C,0) = - e - 2 ^ (14) 

dw(C, 6)/de = 0 for 6 = 0, C > 0 (15) 

Substitution of Eq.(7) into Eq.(l) yields for w(C,6) the same equation as for 
E(c,ey. 

2The assumption of a solution of the telegrapher's equation in the form F(C) + «>(Ci 6) 
for the voltages and currents along a transmission line of finite length is discussed by Smirnov 
(1964, vol. 2, ch. VII) who credits Krylov (1929) as the initiator of the method. The finite 
length of the transmission line leads to a Fourier series for w(£,8) rather than a Fourier 
transform, which we will use. The telegrapher's equation uses the parameters inductance L, 
capacitance C, conductance G, and resistance R instead of jx, e, <r, and s in Eq.(l). The 
need to introduce a parameter R equivalent to the magnetic conductance s never arose, since 
the resistance R was always part of the telegrapher's equation, which predates Maxwell's 
equations. 

3Equation (8) as written follows from Eq.(l), but it is an ordinary differential equation 
and should be rewritten with d2F/d^2 replacing d^F/dC?. We shall forgo such strictly 
cosmetic steps. 
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d2w/d(2 - d2w/d62 - 2(1 + u2)dw/d6 - 4u2w = 0 (16) 

Particular solutions wK(C, 9) are obtained by the separation of variables using 
Bernoulli's product method 

Mt,0) = MM*) (17) 

<p-1d2(p/d(2 = i)-ld2ip/de2 + 2(1 + w2)i>-xd^lde + 4w2 = -(2TTK;)2 (18) 

which yields two ordinary differential equations 

d24>/d<;2 + (2-KK)2<t> = 0 (19) 

and 

d24>/d02 + 2(1 + u?)dil>ldB + [(2-KK)2 + 4w2] ^ = 0 (20) 

with the solutions: 

0(C) = Aio sin 27TKC + ^11 cos 27r«C (21) 

rp(0) = A20 exp(^e) + A21 exp(l20) (22) 

The coefficients 7 l and 72 are the roots of the equation 

72 + 2 ( l + a , 2 ) 7 + [ ( 2 ™ ) 2 + 4 W
2 ] = 0 (23) 

which we write in the following form: 

7 1 = - a + ( a 2 - 6 2 ) 1 / 2 for a2 > ft2 

72 = -a-(a2-&2)1 / 2 

7 l = - a + i ( 6 2 - a 2 ) 1 / 2 for62>a2 

l2 = -a-i{b2-a2)1'2 

a = l + w2, b2 = {2KK)2 + 4u)2 (24) 

The boundary condition of Eq.(12) requires Au - 0 in Eq.(21). The 
particular solution wK{C,,6) becomes: 

wK(C, 0) = [Ai exp(7i6>) + A2 exp(720)] sin 2TT/< (25) 

A general solution w(C,#) is found by making Ax and A2 functions of the 
normalized wavenumber K, and then integrating over all possible values of K: 
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w(£,6)= AAi(K)exp(7i0)+A2(/e)exp(720)]sin27r«;CdK (26) 
o 

The derivative dw/d6 equals: 

oo 

— = /[J41(/t)7iexp(7i^)+A2(«;)72exp(726')]sin27r<dK (27) 

o 

The initial conditions of Eqs.(14) and (15) demand: 

oo 

[[AI(K) + A2(K)\ sm2irK(dK = - e _ 2 u , c (28) 

/ [Ai(/c)7i + A2(K)J2] sin2irK(dK = 0 (29) 

These two equations must be solved for the functions A\{n) and . ^ ( K ) . TO this 
end consider the Fourier sine transform in the following form: 

oo oo 

ff,(«) = 2 /"/s(C)sin27n<dC, /.(C) = 2 J g.(K)sm2xKCdit (30) 

If we identify 2gg(«) first with AI(K)+A2(K) and then with AI(K)JI + ^2(^)72 
we obtain from Eqs.(28) and (29): 

AI(K) + A2(K) = 2gs(n) = - 4 /V2u ,csin27r/<dC (31) 
0 

A I ( « ) 7 1 + ^ 2 ( « ) 7 2 = 25S(K) = 0 (32) 

Using the tabulated integral (Gradshtein and Ryzhik 1980; p. 477, 3.893/1) 

OO 

/ e - « sin 2TTKC dC = ^ %K (33) 
J (27TK) + U* 
0 v 

one obtains from Eq.(31): 

^ ( K ) + A 2 ( « ) = - a = — 7 2 - (34) 
(27TK) + 4ui2 0 
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For the limit s - » 0 w e get: 

u)2 -+ 0, 62 -» (2TTK)2, AI(K) + A2(K) = -2/TTK 

Equations (32) and (34) are solved for AI(K) and A^K): 

^ ( 1 . ) = - ^ ^ 

for a2 > 62 

for 62 > a2 

A2(K) 

62 

ATTK 

62 

47TK 

62 

&TTK 

47TK 

62 

47TK 

7 2 -

( " 

( -
7i 

7 i -

( -

L . 

7 i 

(a2 

(62 

72 

(a2 

a 

- 62 ) 1 / 2 

ia 

-a?)112 

a 

- 62 ) 1 / 2 

ia 

b2 \ ( 6 2 - a 2 ) 1 / 2 

fora 2>& 2 

for 62 > a2 

Substitution of Eqs.(24) and (36) into Eq.(26) yields: 

K 

1 + 

+ 1 - ( a2 _ &2)V2 

K 

ia 

( 6 2 - a 2 ) 1 / 2 
exp [i(62 - a2)l'2e\ 

(35) 

(36) 

+ (1+SJ^)-H"2-°2»"29]Ji^^ 
sin 2-KKC, 

up-a2)1'*J ' L " ' J J 62/47TK 

A- = (1 - W2)/2TT, a = 1 + w2, &2 = (2TTK)2 + 4w2, to2 = es/fia (37) 

The imaginary terms in the second integral may be rewritten in real form by 
means of the formulas 

eiq + e~iq = 2 cos q, -i (eiq - e~iq) = 2 sin q 

while the first integral can be simplified with the help of hyperbolic functions: 

eq + e~q = 2chg, eq - e~q = 2shq 
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One obtains: 

7T 

-a6 7 (+l*-w4+±£$P) 
-d(2TTK) 

(a2 - 62)1 

2-KK sin 2-KKC, 

b2 

+ ]{~¥-*^V*f^ 
1-w 2 

(ft2 - a2) 

2-KK sin 2TTK(^ 

V2 d(2lTK) (38) 

To obtain EE(C,8)
 w e s t m n a v e to add .F(C) to w((,0) according to Eq.(7). 

With the help of Eq.(lO) we get: 

EE(C,0)=Eo[e-2^+w(C,e)] (39) 

We now make the transition to s = 0. From Eqs.(24) and (37) we get in this 
limit: 

b=2TTK = r], o = 1, 2TTK = 1 - J1 = 1 

Equations (38) and (39) become: 

(40) 

^- -M/H' -^^f f^ )^ 
+ /(^.^-EJfc^)-^ (41) 

£E(C,0) = £o[i + ™(C,0)] (42) 

Equation (42) may be rewritten into a form that shows analytically that 
the field strength E-E(C,,6) is z e r 0 for # < £ (Boules 1989). Using the relations 

cos ix = ch x, sin ix = sh x 

we rewrite tu(£, 0) as follows: 

,K.fl-|.-./(OT[,^-1,^]+-iMf^a)-^4,(„) 
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We further use the relation 

to obtain 
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d sin aa: 

ax a 
(44) 

OO 

m ( ; , , ) = - v ( | + i ) / s i ° f a ; - y ^ . i , (45) 
Using once more Eq.(44) we get: 

dw 2 e / d \ f sin Urj2 - l)l'2e\ , s 

ac = -r U+ 0 / (^-D^ cosC7?d7? (46) 

This integral is tabulated (Gradshteyn and Ryzhik 1980, p. 472, 3.876/1): 

/ 

sin [{rf - l)*/afl] 

0 (»?2- l) 
j y ^ - C O S ^ d ? ? 

= f ^ V ^ W 2 ) = ^ ( V ^ C 2 ) forO<C<^ 

= 0 for 0 < 6» < C (47) 

Here Jo(i^/62 — £2) is the Bessel function of the first kind of order zero. Fur­
thermore, I0 (y/92 — C2) is the modified Bessel function (of first kind) of order 
zero. Using Eq.(44) we may rewrite Eq.(47): 

dcJ ( l ? a - l ) ^ ^ - ^ = 2 7 ° ( ^ ^ ) f o r O < C < ^ 

= 0 for 0 < 9 < C (48) 

Integration of Eq.(48) introduces integration constants that are arbitrary and 
may be chosen so that a desired result is obtained. The ability to choose these 
constants reflects the fact that there are infinitely many ways to write Eq.(43). 
Our goal is to obtain 0 for the interval 0 < 6 < ( in Eq.(51) below. By 
trial and error one finds that this calls for the integration constant (7r/2) sh 9 
for 0 < 6 < ( in the following Eq.(49), which is the integral of Eq.(48) with 
respect to £. The integration constant for 0 < C < 6 is of lesser importance: 

7T 
= ^ s h 0 f o r O < 0 < C (49) 
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Equation (45) may now be written as follows: 

w(C,8) = -e-e ( ^ + l) JIoiVP^X for O<C<0 
o 

„ -0 d_ 
06 

+ 1 sh0=-e- e(chl9+sh0) = - l forO<0<C (50) 

Substitution into Eq.(42) brings the desired result 

EE(C,6) = Eo 1 - e " '/(^SS^c^K (02 _ py 
for 0 < C < 0 

= 0 for 0 < 6 < C (51) 

where h(\/02 — £'2) denotes the modified Bessel function of first kind of order 
one. 

6.2 MAGNETIC FIELD STRENGTH DUE TO ELECTRIC STEP FUNCTION 

In Section 6.1 we derived the electric field strength caused by excitation 
with an electric excitation force having the time variation of a step function 
S(6) at the plane C = 0. For u =/=• 0 or s ^ 0 the electric field strength is defined 
by Eq.(6.1-7): 

EE(C,e) = E0{F(O+w(C,e)} (1) 

The associated magnetic field strength is defined by Eqs.(1.4-7) and (1.4-8): 

HE(C,6) = e -2u> 20 

w2 = es/[ia, Z = \/n/e 

(2) 

(3) 

Substitution of Eq.(l) into Eq.(2) yields with the help of Eqs.(6.1-26) and 
(6.1-10): 
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OO 

J V7i+2w2 
±e-2^B _ l e 2w(«e -o 

72 + 2w2 ' 
+ He(C)e -2u»2e 

Z w 2IT J \ 7 i + 

^ ( 7 7 ) 7 7 

2u>2 
,7 i» 

-;^H»^ + ^fl(C)e-
-2w 2 e 

rj = 2-KK, 0 = at/2e, ( = Zay/2, w2 = esj\ia 

With the help of Eqs.(6.1-24) and (6.1-36) we obtain: 

(4) 

Ax (77)77 4T72 72 

71 + 2UJ2 b2 72 — 71 71 + 2w2 b2 

_ A_ 

~ b2 

= 7»(l + ft), a2>b2 

(l-iq's), b2>a2 

A^j)rL__W_^ 1 _ 4 fl2>62 
72 + 2w2 b2 71 — 72 72 + 2w2 b2 

2 ( l - w 2 ) - 7 7 2 

Qs = 

= -{l+iq's), b2>a2 

2(1 - OJ)2 - r?2 

2 [ ( l - w 2 ) 2 - 7 ? 2 ] 1 / 2 ' s 2 [ r ? 2 - ( l - a ; 2 ) 2 ] 1 / 2 

a = l + w2, 62=T72+4w2 

Substitution into Eq.(4) yields: 
(5) 

HE(C,0) 
E0 -2uC 

W 

le-{1+S)e / J | ( 1 + ft) exp J(a2 _ ^ 1 / 2 ^ 

+ (l-gs)exp[-(a2-62)1/2^]} COS77C 
drj 

+ J {(l-iq'a)exp[i(b2-a2)V2e] 

+ ( l + ^ ) e x p [ - ^ 2 - a 2 ) 1 / 2 ^ ] } ^ d T , ) ] +Jfffi(C)c-2-2e (6) 
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Using hyperbolic and trigonometric functions we obtain: 

HE(C,0) = = ^ / I P - 2 K _ l . - ( i + w
2 ) e 

Z w 
J (ch{[(l -u2)2-r,2}^20} 

[2(l-Lj2)-rj2}sh{[(l-uj2)2-r,2}l/2e}\ cosr/C 

2 [(1 - u2)2 - T?2]1/2 )rj2+Aw2 V 

+ / ( c o s { [ ^ - ( l - a ; 2 ) 2 ] 1 / 2 e } 
l - w 2 

| [ 2 ( l - ^ 2 ) - ? ?
2 ] S i n { [ 7 ?

2 - ( l - a ; 2 ) 2 ] 1 / 2 g } \ cosqC d ' 

2 [»7 2 - ( l - a ; 2 ) 2 ] 1 / 2 J V2 + ̂  V. 

+ He{Qe-2^e (7) 

We make the transition u —* 0 or s —* 0 for a ^ 0. The first term of Eq.(7) 
yields: 

lim -e~2ui = - - 2C 
w—»0 W 

(8) 

In order to calculate the first integral in Eq.(7) we observe that the denominator 
b2 = T]2 + Au>2 causes a problem for w = 0, but the denominator 2[(1 — w2)2 — 
772]1/2 does not since we get 

2 ( l -W 2 ) -7? 2 
^ - U ) - V s h J [ ( 1 _ w 2 ) 2 _ 2] i/a ,1 

2 [(1 - LJ2)2 - T)2} 

2-r,2 

2 ( 1 - T ? 2 ) 1 / 2 
s h ^ l - r ? 2 ) 1 ^ ] (9) 

which yields 6/2 for rj2 = 1. The first integral of Eq.(7) becomes for small 
values ofw: 

1 

0 

(2-r? 2 )sh[( l ->? 2 ) 1 / 2g]^ COSTJC 
+ - — — — - — T I T — ~ ) -2— ir^d r) (10) 

2(1-??2)1 / 2 / ?7 2 -4w 2 

This integral may be split into two parts by means of the identity 

COSTJC^ l-2sin2(?7C/2) (11) 
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to yield: 

i 

o 

( 2 - ? ?
2 ) s h [ ( l - T ? 2 ) 1 / 2 g ] \ dq 

2(1 - 772)1/2 7?72 + 4w2 

l 

-2 /(ch[(l-,!)"2«] 

2(i_7 ?2)1/2 ; r?2+4o;2 J 

We split this integral into four components of which only one depends on C and 
9, the other three are functions of 6 only: 

/ E I ( C , 0 ) = - M C , 0 ) + ha(0) +lis(0) - JwW (13) 

Here 7n(C>0) stands for the second integral in Eq.(12), which remains 
finite for u> = 0, 

x ( « ) ^ ( u , 

and can be evaluated by computer. The other three components of Eq.(13) 
are: 

sh [(1 - r?)1'^} 

o 
l 

^»-r-V(1-^;;+L^ (16) 

7l4(9) = V«/^MLfi^U (IT) 
7T 7 (1 _ ,,2)1/2 ( j?2 + 4 w 2 ) 

Integral Iu{6) remains finite for w —• 0 
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but ii2(#) and ii3(#) pose problems when rj approaches zero. Hence, we divide 
the integration interval 0 < rj < 1 into two subintervals 0 < rj < d and d <rj < 
1, where d <C 1 is a small constant: 

d „ , ,„ , 1 

0 d 

,„<„_«.-(f^i^m-^Ji^d^,) (2„) 
7T VJ {i-v2)f (772+4w2) 7 ( 1 - ^ ) 1 / 2 ^ 2 ; 

In the interval d < r\ < 1 the integrals are finite and they can be evaluated 
numerically by computer. In the interval 0 < rj < d the variable rj is small 
compared with 1 and we can resort to series expansions: 

(1 - ri2)1'2 « 1 - rj2/2 

{l-rj2)-l'2*l+rj2/2 

ch [(1 - J?2)1'2*?] « ch[(l - TJ2/2)6) 

w ch 9 ch(r]2e/2) - sh 0 sh(7?20/2) 

sh^l-T? 2) 1 / 2^] ~ Sh[(l - 772/2)0] 

« sh 6> ch(ij26/2) - ch 0 sh(r?20/2) (21) 

The two problem integrals in Eqs.(19) and (20) become: 

' ch [(1 - rj2)ll26] 4 _ , / c h 1 - ^ 1 

0 
<2 d 

H-/f^'-W^N « 
0 0 

r ^ 4 _9 /• s h [ ( l - r? 2 ) !^] 
J i3 P (0) = -e " 1-^-JT i—drj 

IT J (l-r72)1/2f772+4w2) ( l - r ?2 ) 1 / 2 (772+4w 2 ) 

4 _g 7 / r?2\ s h K l + r ? 2 ) 1 ^ ] _ 
~ e / 1 + "Tr — ^ — T A ; — - d ? 7 continued 
Ti" 7 V 2 / r?2 + 4w2 ' 

o 
d 
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=-« 
J v 

ch{r)26/2) 
"C ' Sh° ' n* + 4Jdr]-che ! "»"•"/. 7,'«fr J V 

sh(r?26l/2) 

+ 

2+4w2 

1 / ^ s h ^ l - r ? 2 ) 1 / 2 * ? ] 

y — w r ^ — d v (23) 

For two of these integrals we can make the transition u —> 0 without creating 
a pole: 

(25) lim 
sh(r?

26/2) ? sh(7?20/2) 
i m / !W^d ? ? = /W 
- o y 7J2 + 4W2 y 77 

dr? 

o o 
The problem has been reduced to just one integral. Using the relation 

cha; = l + 2sh2(a;/2) 

we obtain: 

d ch(7720/2) 

J V 
2+4w2 

d 7 ? =/^fb + 2 /^ 
0 0 0 

The second integral has again no pole for u> = 0, 

lim f 
<"-°y 

sh^7?2^/4) 
d?j 

a shVw^ 
r?2 + 4w2 ' J IT 

o o 
while the first is tabulated (Gradshtein and Ryzhik 1980, p. 60, 2.124/1): 

(26) 

(27) 

(28) 

a 

J V 
2 + 4 ^ " 2o;a r C t g2a; 

With the series expansion 

7T 1 1 
arctga:= h r r 

2 a; 3x2 

w 2 > 0 

a:2 > 1 

we get: 

d-q _ 1 /7r _ 2w\ _ 7T 1 

^tlib J r]2 + 4u2 ~ w—o 2w \ 2 d J ~ w—o 4w d 
o 

lim / 
"-°y 

(29) 

(30) 

(31) 
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Converting ch# and shO to exponential functions one obtains for Ii2P(&) and 
-?i3p(0) the following expressions for w —» 0: 

' 12p 
ie J * 1 „ f sh2(r]2e/4) , \ 

- ( l - e - ) / ^ » d , (32) 

w « - ^ - - ) ( i - i + . / * ! ^ 
_ ( 1 + e-M )y;h(^z?)d ,+ ie . .y sh[ (1_,2)1 /S( ,]„j (33) 

0 0 

The last integral of ii3P(#) becomes insignificant for small values of d and we 
may simplify 7i3P(0): 

/ l3p(<?) = -

n 
( 1 - e — ) £ - W ^ , 

_2e. [sh^e/2) (i + e - ) / ^ drj (34) 

The integrals ii2P(#) and ii3P(#) become equal when 0 approaches infinity. 
We return to the integrals Ii2(0) and Il3(6) of Eqs.(19) and (20). They 

may be rewritten as follows: 

'-w-ih-^te-W11^ 
(1 ,-«,, ?sh(l2"/2) . , . . , „ - , ' - » , /,sh(529/2)J„ , „__, / ch [(!-,')•«<)] ,}J^mdn+2e-,j: dr\ (35) 

''•w-fH-jfe-W s h V * / ^ 

(l + e" 
_29) ? s h ^ / 2 ) - / •Sh[ ( l -7 7

2 ) 1 /20 l • 

d 

(36) 
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The sum of I12(0) and Ii3(0) minus the integrals Iu{9) of Eq.(18) and hi{C,6) 
of Eq.(14) yields integral JEi(C,0) of Eq.(13). We sum first Il2(0) and I13(6): 

o 
i 

+ 
( i - ' ? 2 ) 1 

With the relation 2sh (x/2) = cha; — 1 we may rewrite the kernel of the first 
integral 

2sh2(?72l9/4) - sh(T?2(9/2) = ch(r]2e/2) - sh(r]2e/2) - 1 = exp(-rj26/2) - 1 

and obtain for IEI(C>#): 

d 

lEi(C,0) = - - - ^ + ~e-e\2[ 
to ird IT [J 
1 2 , 2n_efn [expi-rfOm^ 

o 

o 
l 

2 / ( c h [ ( 1_^ ] + f^^) ? 

J (i-v2)l/2 i 

d « 1, w « l (38) 

For finite values of 0 and sufficiently small values of d one may rewrite the first 
integral in Eq.(38): 

f exp(-v2e/2) - 1 , 6 t 6d 

J # dv = -2JdV = -Y 
o o 

This integral can be neglected for finite values of 9 and sufficiently small values 
of d. 

We introduce the notation -I'Bl(C,,9) for the function /E I (C ,# )
 m Eq.(38) 

without the term 1/LO: 
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JEI(C,0) = -JEI(C,<?) + 1/W 

d 

/ (d . [ . 1-^]+"-^v^)(^)\ 

+ 
i 

/ ( i - » ? 2 ) 1 / 2 " <} dr? (39) 

Let us turn to the second integral in Eq.(7). It remains finite for u —> 0 
and we get for this limit the function JE2(CI #): 

oo 

/E2(C^)=Um0Je- ( 1 +^ ) e J ( c o s f ^ - a - o ; 2 ) 2 ] 1 ^ } 
1 - w 2 

+ 
[2 ( l -o ; 2 ) - r ?

2 ] S i n{ [7? 2 - ( l - a ; 2 ) 2 ] 1 / 2 g} \ cosrjC 

2 [ T 7 2 - ( 1 - W 2 ) 2 ] 1 / 2 J?72+4w2 

OO 

I 

(2-7 ?
2 )s in[(r ?

2 - l ) 1 / 2^] ^ COSTJC 

2(?7 2 - l ) 1 / 2 

We may now rewrite HE{(,,6) of Eq.(7) for w < 1: 

d?y 

dr? (40) 

HE(C,0) 
Eo 
Z 
Eo 
~~Z 

--2C + iE1(c,9)---iE2(C,e) 
U) U> 

+ He(Q 

2C + IE1(C,e)-IE2(C,0)}+He(O (41) 

We see that the two terms 1/UJ and —1/w cancel and that HE(C, 9) thus remains 
finite for w —> 0, or s —> 0 and gm —> 0. 

We turn to the integral of Eq.(3). Substitution of the electric field strength 
EE(£,0) of Eq.(l) yields: 

I(%+2w)dC]+Hi{e) (42) Eo 
~~Z 

- -e~2"< + 
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Using Eqs.(6.1-26) and (6.1-27) we obtain: 

HE(C,B) = -

EQ 

- ̂ -^ - i - J [AMl^ + A2(r,W>] C^dr, 
0 

oo 

-\f [A^e^ + A2(r))e^e] ^ J + Htf) 
0 

oo 

w 2n J V 
A1(V)(-n+2)_^e 

_ A2(ri){T2 + 2)dn$ 

7] — 2ftK 

cosr)Cdr) + Hc(6) 

(43) 

From Eqs.(6.1-36) and (6.1-24) as well as from the definition of qs and q'a in 
Eq.(5) follows: 

Mv)hi + 2) _ 4r? 72 7 l + 2 = _A_ 
b2 

V b2 7 2 - 7 i V 
- n ( l + 9s), a 2 >& 2 

-p( l - t f . ) , b2> 
A 2 (T7) (72 + 2 ) _ 4?7 7i 72 + 2 = __4 

62 
»7 62 7 1 - 7 2 V 

- -= - ( ! -g s ) , a2>b2 

~ ( 1 + »«:), 6 2 > a 2 (44) 

The comparison of Eqs.(4) and (5) with Eqs.(43) and (44) shows that they are 
equal for 

He(Qe-2"2e = H((9) = H^e~2^e (45) 

The initial condition of Eq.(6.1-4) demands HEO = 0. 
Plots of HE,(C,,9) according to Eq.(41) as function of 9 for He{C) — 0 

are shown in Figs.1.4-4 and 1.4-5 for various values of (. Since / ^ ( C , ^ ) of 
Eq.(39) contains the small but otherwise undefined constant d one must choose 
successively smaller and smaller values of d until the change of the plots with 
d becomes less than the line width. The plots of Figs.1.4-4 and 1.4-5 were 
done with d = 0.001. The process is the same as used for the determination 
of the value of (sin x) jx for x = 0 by computer. For a discussion of the plots 
of Fig. 1.4-4 see Harmuth (1986a). This reference also derived the first plots 
for magnetic rather than electric step function excitation and for electric as 
well as magnetic excitation with force functions having the time variation of 
an exponential ramp function [1 — exp(—9)]S{9). 
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We have shown in Section 1.4 that no associated magnetic field strength 
can be obtained from Eqs. (1.4-1) and (1.4-2) that were derived from the original 
Maxwell equations. It is of interest to see how this general proof works out in an 
example. Using the electric field strength of Eq.(6.1-39) and (6.1-38)—without 
questioning how it was derived—we want to calculate the associated magnetic 
field strength from Eqs.(1.2-14) and (1.2-15) rather than from Eqs.(1.3-2) and 
(1.3-3). We see that Eqs.(1.2-15) and (1.3-3) are identical. Equation (1.3-2) 
becomes Eq.(1.2-14) if we choose s = 0. For s = 0 or w = 0 we obtain from 
Eqs.(l) and (2) with the help of Eq.(6.1-10): 

EE(C,6) = Eo[l + w{S,e)] (46) 

ffE(C,0) = 4 / ^ f ^ + tf0(C) (47) 

Substitution of Eq.(46) into Eq.(47) yields with the help of Eq. (6.1-26): 

CO 

.[(Mihe^ + A^hMcosriCdri+He{(:) 

T] = 2-KK (48) 

EQ 

0 

From Eq.(5) we obtain for u = 0 

Mv)v = 4 L 2 - V 
7i V2 V 2(1-7 ?

2 ) 1 / V' 
4 (, . 2-V2 \ = ^11^2^T1^J' ">1 

72 V' \ 2 ( 1 - rf) 

. 2-rj' 

\{^-l)l/2 
1 + * 2n f,l/2 ) ' V>1 (49) 

while Eq.(6.1-24) yields: 

7 I = - 1 + ( 1 - T ? 2 ) 1 / 2 , 1>V 

- - l + i ^ - l ) 1 / 2 , 77 > 1 

12 = -1-(1~V2)1/2, 1>V 

= - l - i C r ? 2 - ! ) 1 / 2 , t? > 1 (50) 
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Substitution into Eq.(48) yields: 

1 

Ê(ĉ ) = -fVe{/(ch[(i-7?Y/2^] 

(2 -7 ?
2 ) sh [ ( l - r ?

2 ) 1 / ^ ] \ cos7 ? C, 
2 ( l - f ? 2 ) 1 / 2 J V2 V 

CO 

+ / 7 cos \W - V'M +
 ( 2 - " 2 ) s i ° " " ' - " ' " ^ SO**, 

M L J 2 ( T ? 2 - 1 ) 1 / 2 / V2 Mv2-ir 
+ He(0 (51) 

The second integral equals - I E 2 ( C , # ) in Eq.(40) and (41) but the first integral 
is not defined. It equals /EI(C>#) of Eq.(10) for w = 0 and 7EI(C>0)

 i s shown 
in Eq.(38) to have a term — l/o> that is infinite for u> = 0. 

6.3 EXCITATION BY A MAGNETIC STEP FUNCTION 

In Sections 1.3, 1.4, 6.1, and 6.2 we investigated the excitation of a TEM 
wave by an electric excitation force with the time variation of a step function in 
the plane y = 0 at the time t = 0. We turn to the case of a magnetic excitation 
force. 

Using the normalized variables 6 and ( defined in Eq.(1.3-7) we consider 
the following step function for the magnetic field strength as a boundary con­
dition: 

if(O,0) = ifoS(0) = O for0<O 

= H0 f o r # > 0 (1) 

At the plane £ —> oo we have again the boundary condition corresponding to 
Eq.(6.1-3): 

if(oo,0) = finite (2) 

Let H(C, 0) be zero for ( > 0 at the time 9 = 0. We have then exactly the same 
problem as in Section 6.1, except that if, Ho, and Hn must be written for E, 
EQ, and EE- Equation (6.1-39) assumes the form 

HH((,9) = Ho[e-2^+w(C,e)], L O = ^ I ^ (3) 

where w{C,6) is defined by Eq.(6.1-38). 
The associated electric field strength En((,Q) due to the magnetic field 

strength if (0,0) at the boundary plane C = 0 follows from Eqs.(1.2-17) and 
(1.2-18): 



6.3 EXCITATION BY A MAGNETIC STEP FUNCTION 211 

Ea(C,9) = -Z j ' (^ + 2u?H^dQ + E^6) (4) 

25H(C, 9) = -Ze-*> j 9-^-e™d6 + E6{Qe~2e (5) 

We do not get a repetition of the calculations of Section 6.2 with E&{C,,6) 
replaced by I/H(C>0) since we want a solution for a > 0, s = 0 rather than 
s > 0, a = 0. 

Equations (3) and (5) yield: 

£H(C, B) = H0Z (we~*« - e~26 J | ? e M df l ) + EeiQe'26 (6) 

From Eq.(6.1-26) we get: 

H0Ze-™ f ^e26d6 
J 9C 

CO 

= 2irH0Ze-2e f [ f (Ai(«)exp[(2 + 7i)0] 
o 

+ A2{K)exp[(2 + 72)0])d0\ Kcos2-KKC, dn 

00 

— y I2T77 e x p ^ 7 1 6 > + 2T72"exp^729))T)cosr)<>^ 

7? = 2-KK (7) 

2?r 
0 

Using Eqs.(6.1-36) and (6.1-24) we obtain: 

MV)V 4a;2 , 2 

2 + 71 7?2 + 4w2 ( 1 - P i ) for (1 - w2)2 > rr .2 

4o>2 

(l + ip2) for (1 - w2)2 < rj2 

2 + 72 772 + 4w2 

4a;2 

?72 + 4w2 

?72 + \w2 

(1+Pi) for (1 - w*)2 > ??: A2(?7)?7 _ 4w2 „ , _ , r__ „ . , . 2 ^ o 

2\2 ^ „ 2 (1 - ip2) for (1 - w2)2 < r] 

= ??2 + 2a;2(l-a;2) = ^ + 2o;2(l - a,2) 
1 2w 2 [ ( l -o ; 2 ) 2 -77 2 ] 1 / 2 ' 2 2w2 [T?2 - (1 - w2)2]1 /2 
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Equation (6) becomes: 

EH((,6) = ZH0Le~2^ 

2
 1 _ u ' 3 

- y e - C ^ J | ((l-Pl)exp{[(l-W
a)2-,Y/2<?} 

+ (l+Pl)exP{-[(l-W
2)2- '72]1 /2^}); 

COS7/C 

+ 

7?2 + 4w2 

I (^l + ip2)exp{i[r1
2-(l-uj2)2}1^e} 

dq 

l - w 2 

+ (1 - ip2) exP{-i[V
2 - (1 - a;2)2]1/2*} ) j j ^ g j A , ] } + £e(C)e-2« (9) 

Equation (9) is rewritten with the help of trigonometric and hyperbolic func­
tions: 

EH(£,e) = ZH0{we-*« 
4w2 

-(1-W2)0 I (ch{[(l-W
2)2-^/^} 

T)2 + 2 ^ 2 ( 1 - UJ2) 

2UJ2 [(1 - w2)2 - r)2} 
-sh^l-uf-r,2}^} 

r\2 + 4w2 drj 

+ /" r c o s { [ i ; a - ( l - w 2 ) 2 ] 1 / 2 f l } -
l - w 2 

7?2+2a;2(l-a;2) 

2w2[772 ' - ( l -w2)2]1 / 2 

x sin {[r,2 - (1 - W)2]V20} ) - J ^ j * , ] } + Ee(Oe-2° (10) 

We make the transition s —> 0 for a > 0, or w = ^/es/ficr —• 0. This result 
should be compared with Eq.(6.2-8). The first term in Eq.(lO) vanishes. The 
remainder of Eq.(10) becomes: 

n \J (l-n2)1'2 
( I - T ? 2 ) 1 

+ / s i n [ ( , 2 - l ) ^ ] c o s ? ? c X + g e ( c ) e _ 2 f l ( u ) 

(V2 ~ 1) ' ' / 

This is the electric field strength derived from Eq.(5). We turn now to the 
electric field strength defined by Eq.(4). Substitution of Eq.(3) yields: 
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En((,9) = ZH0 (-e~2^ - J ^d( - 2u2 J w d(^j + Ec(6) (12) 

With the definitions of Eqs.(6.1-26) and (6.1-27) for w(£,6) and dw/d6 we 
obtain for 77 = 2TTK: 

00 

EaiCO) = ZHQ{ - e-** + ^ J [(2a,2 +ll)A1(V)e^e 

0 

+ (2a;2 + l2)A2W
e] ^ r f r ? } + Ec(6) (13) 

The following relations are obtained from Eqs.(6.1-36) and (6.1-24) for 77 = 27TK 
with pi and p2 defined in Eq.(8): 

,4i(7?)(2a;2+71) 

V 

A2(ri){2w2 + l2) 

V 

4a,2 

7?2 + 4a,2 

4a,2 

?72 + 4a,2 

4a,2 

7?2 4- 4a,2 

4a,2 

r)2 + 4a,2 

Substitution of Eq.(14) into Eq.(13) yields: 

( 1 - P i ) for (1 - a;2)2 > rf 

(l+ip2) for (1 - a,2)2 < ?72 

(1+Pi) for (1 - a,2)2 > T?2 

(1 - ip2) for (1 - a,2)2 < rj2 

2a,2 

EH((,9) = ZH0Le-2"< 

^ 4 I ((l-Pl)exp{[(l-a,2)2-7?
2]1/^} 

0 

( H - p O e x p l - K l - a , 2 ) 2 - , 2 ] 1 ^ } ) - ^ ^ 

OO 

+ J ^(l + ip 2 )exp{i[7 ?
2 - ( l -a , 2 ) 2 ] 1 / 2^} 

+ (1 - iP2) exp {-i[7?2 - (1 - a,2)2]1/2*?} COS77C 
•dr\ 

(14) 

?72 + 4a,2 

Equations (9) and (15) are equal for any value of a, if we choose 

+ E((e) (15) 
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FIG.6.3-1. Magnitude EH of the associated electric field strength according to Eq.(ll) 
caused by a magnetic step function excitation at the plane C, = 0 of a lossy medium 
for £ = 0, 1, 2, 3. Note that the maximum of En{C,,0) is very close to the jump for 
C = 0—too close to show in our plot—but shifts to the right for £ > 0, as clearly 
shown by £ H ( 3 , 9). 

Ee{Qe-w = E((6) = Enoe -26 (16) 

The initial condition of Eq.(6.1-4) requires EHO = 0. 
The magnetic field strength of Eq.(3) assumes for ui = 0 the form 

HH(C,6) = H0[l + w(C,6)] 

where w(C,0) is defined by Eq.(6.1-41). It may be rewritten in the form of 
Eqs.(6.1-51) or (1.3-16): 

(17) 

Hu = Hn 1 - e " 
(02 _ ^/2)V2 

= 0 f o r C > < 

+ Io(V0TZr^))dC for ( < 6 

(18) 

Plots of iJH(C>0) a r e shown in Figs.l.3-1 and 1.3-2 if EE and E0 are re­
placed there by Hu and Ho- Plots of the associated field strength En(C,6) 
according to Eq . ( l l ) are shown in Fig.6.3-1 for £ = 0, 1, 2, 3. The functions 
are zero for 6 < 0. There is a jump at 6 = £. All plots approach zero for 

The delays and the jumps in Fig.6.3-1 correspond to the results for the 
associated magnetic field strength due to electric excitation in Fig.1.4-4. But 
the curves now drop to zero for 6 —> co rather than increase linearly with 6. 
The reason is that the magnetic field strength is not attenuated directly by 
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losses. It must first be transformed into an electric field strength, which is then 
attenuated by ohmic losses. As the electric field strength approaches zero, the 
ohmic losses approach zero too, and a time invariant magnetic field strength 
without electric field strength remains. This is, of course, what we expect to 
observe when an electromagnet is switched on. 

It turns out that Eqs.(9) and (15) for w = 0 or s = 0 can be obtained by 
choosing w = 0 at the beginning of the calculation. This was not possible in 
Sections 6.1 and 6.2. We show here the simplified solution. Instead of Eq.(3) 
we use 

HH((,e) = H0\l + w(<;,6)} (19) 

Substitution into Eq.(5) yields: 

EH(C, 0) = -ZH0e-*> J | p * d 0 + Ee(Oe-2e 

oo 

• / (££$*•"' + ^ - e * ' ) vcosvCdv + EM)e-" (20) 7 \ 2 + 7i 2 + 72 / 
ZHp 

o 

From Eqs.(8) and (6.1-24) we obtain for w = 0: 

Mv)v _ 2 
2 + 7! (1-V2)1/2 

for 1 > rf 

2 , , 
+i z-rz for 1 < rf 

W - 1)1/2 

for 1 < if (21) 

2 + 72 (1 - ,2)Va 
2 

W ~ D1/2 

7 l = - 1 + (1 - 7 ? 2) l /2 ; 7 2 = _ ! _ ( 1 _ , 2 )1 /2 for 1 > , 2 

7 l = - 1 + i(r,2 _ 1)1/2, 7 2 = - 1 _ i(rf - 1)V2 f ( ) r , 2 > l ( 2 2 ) 

Substitution into Eq.(20) yields Eq.(ll). This was much simpler than the 
calculation from Eq.(6) to Eq.(ll). Let us see whether the transition w —> 0 at 
the beginning rather than at the end of the calculation can be made for Eq.(4) 
too. Substitution of Eq.(19) into Eq.(4) yields for u = 0: 

EH(C,6) = -zJ^dC + E((6) 
OO 

= ^ / [Mvhxe^ + A2(Vh2e^] C-^dr, + Ec{6) (23) 
o 
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From Eq.(14) we obtain for w = 0: 

M(V)J. 1 = +7: ZTH for 1 > V2 

7? ( l - r ? 2 ) 1 / 2 

2 , 2 

a?? forKl2 

for 1 > ri2 MOl* 2_ _ ^ , . . 2 
V ( l - r / 2 ) 1 / 2 

= +V^ip forl<r?2 (24) 

Substitution into Eq.(23) yields again Eq.(ll) with the term Eg(()e~2e replaced 
by E^(r)). Hence, the substitution u = 0 at the beginning of the calculation 
worked again. 

We have assumed a > 0, s —* 0 in Sections 6.1 to 6.3. The opposite case 
s > 0, a —> 0 follows readily from the symmetry of Eqs.( 1.2-9) and (1.2-10). 

6.4 ELECTRIC FIELD STRENGTH DUE TO ELECTRIC RAMP FUNCTION 

We replace the electric step function of Eq.(6.1-2) by an electric exponen­
tial ramp function 

E{0,9) = EiS(0){l - e~te) = 0 for 9 < 0 

= El{l-e-Le) for<9>0 (1) 

and repeat the calculation. At a great distance £ we have the further boundary 
condition 

£(oo,0) = finite (2) 

If E(£, 9) and H((, 9) are zero for C > 0 at the time 9 = 0 we have the initial 
conditions 

J5(C,0) = ff(C,0) = 0, C > 0 (3) 

This equation implies that the derivatives with respect to £ must be zero too: 

0£(C,o)/0C = 0ff(c,o)/0C = o W 
According to Eqs.(1.2-9) and (1.2-10) the derivatives of the field strengths with 
respect to 9 must vanish, if the field strengths and their derivatives with respect 
to £ are zero: 
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dE(C, 6)/d6 = dH((, 6)/d0 = 0 for (9 = 0, C > 0 (5) 

We assume that the solution of the previously derived Eq.(6.1-1) 

d2E/dC,2 - d2E/d62 - 2(1 + u2)dE/d6 - ALO2E = 0 

J2 = es/fia, 6 = at/2e. ( = Zay/2, Z = sfpjl (6) 

can be written in the form: 

E(C, 9) = JSE(C, 9) = Ex [«(C, 6) + (1 - e-'e)F(0] (7) 
Substitution of Ei(l - e-Le)F(Q into Eq.(6) yields: 

( l - e - ^ ) 0 + i a e - l « F ( C ) - 2 i ( l + W V t 9 i ! , ( C ) - 4 w 2 ( l - c - t 8 ) F ( C ) = O (8) 

Since F(Q is assumed to be a function of ( but not of 0, the terms with different 
functions of 6 must vanish separately. We get thus an equation for the first 
and the last term of Eq.(8) 

a2F/aC2 - iuJ2F = 0 (9) 

and a second equation for the two remaining terms 

t - 2 ( l + w 2 ) = 0 (10) 

Equation (9) yields again the solution of Eq.(6.1-10) 

F(C) = e~2ui (11) 

while Eq.(lO) yields i as function of e, s, n, and a: 

t = 2{l+uj2)=2a = 2{l + es/iMT) (12) 

Substitution of Eq.(ll) into Eq.(7) yields: 

E(C, 6) = EE(C, 0) = El MC, 0) + (1 - e-2ae)e-2^} (13) 

We equate EE(0,9) with the boundary condition of Eq.(l) 

«(0,8) + l - e~2ae = 1 - e~2ae (14) 

and obtain the homogeneous boundary condition 

u(O,0) = O (15) 
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which is the goal of this mathematical method. At the plane ( - t o o w e obtain 
from Eq.(2) with F(oo) = 0 the boundary condition 

u(oo,9) = finite (16) 

The initial condition of Eq.(3) yields 

EE(C,O) = EM<,O) = O (17) 

while the second initial condition of Eq.(5) requires according to Eq.(13): 

du/09 + 2ae~2aee~2"c = 0 for 6 = 0, C > 0 (18) 

The calculation of u[C,,9) proceeds as in Section 6.1 for w(C,#) until 
Eqs.(6.1-26) and (6.1-27) are reached: 

OO 

u{C,0)= [Ai(K)exp(i1e)+A2(K)exp('y20)]sm2TrK(dK (19) 

o 

OO 

-^ = / [Ai(«;)7iexp(7i^) +A2(K)72exp(72e)]sin27rKCrfK (20) 

o 

The coefficients 71 and 72 are defined by Eq.(6.1-24). Substitution of Eqs.(19) 
and (20) into Eqs. (17) and (18) yields: 

OO 

J[Ai(K)+A2(K)}sm2TrKCdK = 0 (21) 

0 
00 

/ [ A I ( K ) 7 I + A 2 (K)7 2 ] sm2nnCdK = - 2 a e _ 2 ^ (22) 
0 

These two equations should be compared to Eqs.(6.1-28) and (6.1-29). Using 
the Fourier sine transform pair of Eq.(6.1-30) we obtain from Eqs.(21) and (22): 

A1(K)+A2(K)=0 (23) 
OO 

^ I ( K ) 7 1 + A2(ii)-y2 = - 8a f e~2"c sin 2TT/< d( (24) 
0 

Using Eq.(6.1-33) we obtain: 

A 16a7TK IQa-KK, 
Mnhi + A2(K)12 = - ( a w ) a + w , = — p r - (25) 
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With the help of Eq.(6.1-24) we may solve Eqs.(23) and (25): 

A I ( K = - A 2 ( K ) = - T o T r = 77? f o r a > b 

&2(7l-72) 62(a2_62)l/2 

= + i
 8 a 7 r / t f o r a 2 < 6 2 (26) 
62(62_a2)l/2 

We substitute Eqs.(26) and (6.1-24) into Eq.(19): 

« « , * ) = - 4 « - ( / e x P [ ( a
2 - ^ ) ^ ] - e x p [ - ( a 2 - 6 2 ) ^ ] s , 2 c ^ 

\ 7 ( a 2 - b 2 ) 1 / 2 &2/2TTK 

_ . f exp[i(b2 - a2y/2e] - exp[-i(b2 - q?)V*0] sin2?n< \ 

V (62 - a 2 ) 1 / 2 62 / 2 7 r K
d «J 

X = (1 - w2)/2?r, a = 1 + J2, b2 = (2TTK)2 + 4w2, J2 = es/fia (27) 

This equation may be rewritten into a more compact form with the help 
of hyperbolic and trigonometric functions as well as the substitution 2TTK. = rj: 

,s m 4 / , 2N r / , 2^nJ f s h { [ ( l - W 2 ) 2 - T ? 2 ] 1 / 2 ^ } 7? s i n fr, 

w(c^)=--(iw)exp[-(iw)^ j [(
[;_a;2;2_;2

J
]1/2

l^T#^ 
J 2 [T?2 - (1 - W2)2]l /2 ^2 + 4 w 2 Vj 

J2 = es/na, 2-KK = T] (28) 

Equation (7) may be rewritten as follows: 

E(C,6) = EE(C,e) = El [(l-e-2^+^e)e-2^+u(C,9)] (29) 

Figure 6.4-1 shows plots of EE(C,0)/EI for £ = 1 and ( = 3 as function 
of 9 for various values of w. The values of LJ are chosen by observing that the 
relation 

o es I s ,„„, 
w2 = — = - j - 30 

fj,cr Z2 a 

implies s/a = Z2OJ2. 

Figure 6.4-2 shows plots of EE{C, 6)/Ei for 0 = 1 and 0 = 3 as function of 
£. The number of values of the parameter u> has been reduced compared with 
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FlG.6.4-1. Electric field strengths EE((, 0)/Ei according to Eq.(29) as function of the 
normalized time 6 with the normalized distance C = 1, 3 and u> = 0, 0.1, 0.2, 0.4 as 
parameters . 

E — 
FlG.6.4-2. Electric field strengths EE{C, 0)/E\ according to Eq.(29) as function of t he 
normalized distance C, and the parameters 6 = 1, w = 0, 0.4 and 8 = 3, ui = 0, 0.2, 
0.4. The solid lines hold for u> = 0, the dotted line for LJ = 0.2, and the dashed-dotted 
lines for ui = 0.4. 

Fig.6.4-1 since the plots are very close together. We note that EE(£,9) has 
defined derivatives dE^/dd or dE-E,/dC, in the interval O<0<oo ,O<C<<x>. 

6.5 MAGNETIC FIELD STRENGTH DUE TO ELECTRIC RAMP FUNCTION 

From the electric field strength EE(C„6) of Eq.(6.4-29) excited by an elec­
tric exponential ramp function follows the associated magnetic field strength 
# E ( C , 0 ) by means of Eqs.(1.3-2) and (1.3-3) or Eqs.(1.4-7) and (1.4-8) for 
normalized notation: 

HE((,e) = e- HI dEEc2u2e„ 

HE(C,e) = ~J(j^.+2E^dC + Hc(0) (2) 

The various derivatives and integrals are calculated with the help of Eq.(6.4-
29). First we determine HE(C,0) of Eq.(l): 
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Z 
J (i _ e - 2 d + - 2 ) ^ !L-2*ie2Jede 

*±l(l+Jie-W+<S)'\e-** (3) 
Z w \ / 

Using Eq.(6.4-19) we get another term of Eq.(l): 

Ei.-to'e fdu(<;,9)c2u,*ed0 -T'^'I 
2TT.EI 1 ( AX{K)K rli6 i A2{K)K ^ g 

Z 7 V7i+2w 2" 
e '1" + " ' „e7iig cos 2?rC« d« (4) 

72 + 2w2 ' 

Substitution of Eqs.(3) and (4) into Eq.(l) brings: 

# E ( C , 0 ) = Y 
I ( l + w

2
e-2( i+"V) e-2w< 

- / Tr-z-e11 H —z-e12 cos27rc« 
y V7i+2w 2 72 + 2w2 J 

+ He(C)e-2^6 (5) 

We obtain with the help of Eqs.(6.4-26) and (6.1-24): 

2TTKAI(K) 4a 

7i+2a;2 ¥ 
4a, 

(1 + 9e), for a2 > 62 or (1 - w2)2 > (2TTK) 

= ^ ( 1 - iq'e), for a2 < 62 or (1 - w2)2 < (2TTK)2 

2TTKA2(K) 4a 2 „ 

— — = ^ ( l - & ) , fora2>&2 

= ^(l + iq'e), f o r a 2 < 6 2 

(6) 

(7) 

1-w 2 

9e = 
1 - W 2 

[(1 - w2)2 - (2TTK)2]1/2 ' * [(2?r«)2 - (1 - w2)2]1/2 

a = 1 + w2, b2 = (27TK)2 + 4w2, u>2 = es/fia (8) 

Substitution into Eq.(5) yields: 
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Z I u> \ ) it 

J ((1 + ge) exp[(a2 - b2)^e] + (1 - ge) exp [-(a2 - b^'H cos(r) 
di) 

+ y ( ( l - ^ ) e x P [ z ( 6 2 - a 2 ) 1 / ^ ] + ( 1 + ^ ) e x P [ - i ( 6 2 - a 2 ) V ^ ] J £ ^ d ? 7 

+ JEfi(C)e-2u'2e (9) 

i - w 2 

Using hyperbolic and trigonometric functions we obtain: 

HE(C, 0) = | J i (l + ̂ e-^^" 8 ) ' ) e"2** 

_ 4 ( 1 + a ; 2 ) a+u,7)g 

r 1-W 

J (ch{[(i-ur-v2]1/2e} 
0 

[ ( l _ w 2 ) 2 _ 7 ? 2 ] l / 2 1.1V > ' J J 7 772 + 46U2 

oo 

+ f fcOs{[7?
2-(l-W2)2]1/20} 

1-w 2 

+ 1 - " 2
 1 / 2 S in{[,2-(l-a,2)2]^}^ c o s ^ 

f J 7 2 _ ( 1 _ w 2 ) 2 l l / 2 I 1 ' J b ? 2 - ( i - ^ 2 ) 

We turn to Eq.(2). From Eq.(6.4-29) we get: 

r?2+4a;2dr? 

+ Fe(C)e-2w2e (10) 

ffB(C, *) = f [± (1 + "2e-2aB) e-2wC + / ( g + 2«) dC 

Equations (6.4-19) and (6.4-20) yield: 

+ #c(0) (11) 

oo 

/(|+2u)dC = - / (^1(«)e- + ^ ( K ) e - ) c o . S h r C « * c (12) 
o 

With 7i, 72 from Eq.(6.1-24) and AX{K), A2{K) from Eq.(6.4-26) we obtain: 



6.5 MAGNETIC FIELD STRENGTH DUE TO ELECTRIC RAMP FUNCTION 2 2 3 

FiG.6.5-1. Associated magnetic field strength Hv{C,,Q)Z/E\ according to Eq.(lO) as 
function of the normalized time 6 with the normalized distance £ = 1, 3 and u) = 0, 
0.1, 0.2, 0.4 as parameters. 

E — 
FlG.6.5-2. Associated magnetic field strength HE(C,8)Z/EI according to Eq.(10) as 
function of the normalized distance £ and the parameters 0 — 1, w = 0, 0.4 and 0 = 3, 
ui = 0, 0.2, 0.4. The solid lines hold for w = 0, the dotted line for w = 0.2, and the 
dashed-dotted lines for w = 0.4. 

2 + 7i A i N 2 + 7i 16a-KK 4 a , , . . 9 , , 
~ ^ i ( « ) = -Trr^ToTT. 7T = T2-(1 + 9e) f o r a 2 > 6 2 

2TTK 2TTK 6 2 ( 7 I — 72) b2 

4 a , 
= ^(l-iq'e) fora2<&2 

2 + 72 , , , 2 + 72 16O7TK 4 a . 2 L2 
•-75 M{K) = - TOT r = To(l - ge for a2 > b2 

2-KK 2TTK 62(72 - 7 1 ) b2 ' 

= ^(l+iq'e) f o r a 2 < 6 2 (13) 

The coefficients ge, q'e are defined by Eq.(8). Substitution of Eqs.(12) and (13) 
into Eq . ( l l ) yields again Eq.(9) but the integration constant HeiQe-2"6 is 
replaced by H^(6). Hence, the condition 

H$(0e-2"V = HC(0) = H ^ 2u6 (14) 

must be satisfied. The initial condition of Eq.(6.4-3) requires HEO = 0. 
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For w = 0 one may rewrite Eq.(lO) into the following form (Harmuth 1986, 
Eqs.2.9-28 to 2.9-30): 

ffE(C,0) = §r[-2C + Jk3(C,0)-/E4(C,0)] (15) 

IE3(C,9) = ^{2 

l 

+ e" " 

i - / [ e x p ( - ^ / 2 ) - l ] ^ 
o 

d < 1 (16) 

e 

d 

WC,fl - Je- / U * - I,*. + i ^ P ) =£* (17) 
to2 - 1 ) ' 

The function /E3(C> #) holds for the limit d —* 0. Plots made with decreas­
ing values of d show that for d < 10 - 5 one obtains changes that are of the order 
of the line width of the plot. 

Figure 6.5-1 shows plots of the associated magnetic field strength HEZ/Ei 
for C = 1 and £ = 3 as function of 9 for various values of u>. Figure 6.5-2 shows 
HE(C,9)Z/Ei for 9 = 1 and 9 = 3 as function of f. The number of values of 
the parameter u has been reduced compared with Fig.6.5-1 since the plots are 
very close together. We note that HE{(, 9) has denned derivatives 9HE/d9 and 
DHE/dC in the interval 0 < 0 < oo, 0 < C < oo. 

6.6 COMPONENT Amz OF THE VECTOR POTENTIAL 

For the evaluation of the integral of Eq.(3.1-44) we obtain first the deriva­
tive 0EE(C,9')/99' from Eq.(1.5-2) with the substitutions C-*C',0-* e': 

^rEE(C,9') = (1 - e-W+u'^e-**' + u(C,9') (1) 

1 9EE „ , , , . .2^ -2(l+w2)6' -2uC' , du 

£ = 2(1 + ^ e - ^ + ^ V 2 ^ ' + ^ (2) 
Ei 09' ' ' 09' 

Next we derive 9u{C,9')/09' from Eq.(6.4-28): 
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;drj 

, l-u/ 

UU' o'\ = _ K l ± ^ ! 2 e - ( i W ! ) 0 ' ( f &U101 Vsin('r, 
v o 

sinw2^' rjsmCv I 
l - U ) 2 

u>2 rj2 + 4w2 drj 

Wl = [ ( l - W
2 ) 2 - ^ 2 ] 1 / 2 , ^ = [rf-{l-^f]l'\ u? = eslp,o 

du_ _ 4(1 +a;2) n+^)e' 
36' + w 

L 0 

• shwi#' — chwi^' A rjsinCv 

+ 
OO 

+ ̂  . 
-^—sin^f -cosw2t/ -5 —^ 
^ J V + 4w 

?72 + 4w2 

A >? sin C ' ^ ' 

dr? 

(3) 

The derivative dHE(C,Q')/dC of Eq.(3.1-44) follows from Eq.(6.5-10) for 
He(Qe-2^6 = 0: 

Z_ 
[ HE(C, 9') = i ( l + o ;^-^^" 2 )" ' ) e - 2 ^ ' + W(C, *') (4) 
/ 1 (J \ / 

7T 

r 1-w* 

f (chw1<9' + ^ — ^ - s h w ^ ' 
L 0 

Wi 

\ cosC'?7 , 

. . „i 1 — w2 . _.\ cos C'v , 
+ j j cosw2<9 + — — sinw20 ) , , \ 0dr) / ( « 

1-w2 
W2 772 + 4w2 (5) 

The differentiation with respect to (f does not have to be carried out since 
it is followed immediately by an integration over £' in Eq.(3.1-44). 

We turn to the integration over (,' in Eq.(3.1-44). The first term on the 
right in Eq.(2) yields: 

C+(0-0') 

Iei(C,0')= f 2(l + u;2)e~^l+^e'e-2^'dC' 

C-(e-s') 

_ 1 + V c-2u,C (e2u6e-2{\+w+u,2)e' _ e-2u6e-2{l-w+u*)e'\ /gx 
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The final form of 7ei (£,#') was chosen to facilitate integration over 9' later on. 
Integral 7hi(C,^') is obtained from the first term on the right of Eq.(4): 

C+(»-0') 

/ h i (C,0')= J A I(l+w2e-2(1+i^e-2.c' 
C-(6-e>) 

< 

C+(«-e') 

C-(e-e-) 

( f i2««'+ wa e-2(i-«+<-V)] (7) -2wfl 

The integral of du(C,',0')/dO' over £' is derived from Eq.(3) and denoted 

CH8-8') 

C-(e-e') 
, 1-W2 r C+(«"« ' ) 

o •-c-(e-e') 
C+(«-e') 

i -w 2 

+ I f \j^-WXiW2ff-CMW2ff\^. 
,\ rysinC'r? , 

2+4w2 

C-(e-e') 

CJ77 

dv, 

8(l + ^ 2 ) , _ a + ^ e -

+ 
1-w2 

r l - u T 

/ sin ̂ 771 -
- 0 

00 

/ sinflr? I 

shwi^'—chwi#' 
,̂  sin £?? cos &r\—cos £77 sin 9'r) 

rf + 4w2 dry 

1+w2 . „, .\ sinC^cos^'r?—cos Cr? sin #'77 , 
8111U2S — COSW2P ) , , ,. o drj 

rj2 + 4w2 (8) 

The terms sin £77 cos O'rj — cos £77 sin 9'r\ are written in this expanded form to 
facilitate integration of Ie2((,0') over 9'. Our last required integral over f is 
that of <9«/<9<': 
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C+(0-«') 

/h2(C,<n= J ^d(' = v((',e') 

C-(e-e') 

_ 8(1 + a ; ) 2
 (1+j>)9> 

C+(9-«') 

C-(e-e') 

/ sin #77 I( 
Q/ i 1—w2

 u fl/^ sinC??cos6'rj—cos £77 sin 6"?7 

+ 

chwi<?' + shwifl' — ' , „ -dr] 

, 1—LJ2, \ sin £?7 cos B'r\ —cos Qq sin 6'r) 

/
sin 9r> I cos W2O' + -—— sin LJ2O' 

\ U2 
1-w2 

T]2 + 4W2 -dr) (9) 

The next step is to integrate 7ei, 7hi, 7e2, and 7h2 over 0' according to 
Eq.(3.1-44): 

Kel({,6) = J Iel((,6')d6' 

1 + w 2 

w [ ( l + w 2 ) 2 - w 2 ] 
e~ 2 w C [ ( l+u ; 2 ) sh2a ;0 -wch2w0] (1 0) 

^hi(C,0) = J hi(C,6')d6' = ^ - 2 w c / 1 " C h 2 ^ 

2r / i i ,.,2\ or -2(i+«2)9 _ u K1 + ^ ) s h 2 6 ^ - ^ ch 2o;(9] ~\ 
( l + w 2 ) 2 - w 2 ~ ( l+w 2 r -w 2 ; 

(i i) 

#.i(C,0) + tfhi(C,0)] 
e-2u.c / i _ c h 2 w ( 9 

a> \ o> 

^ 3 . -2 f i+^f l , ( l+^ 2 )sh2o;6>-a;ch2a;6>\ 
( 1 + W 2 ) 2 _ W 2 ( 1 + W 2 ) 2 _ W 2 y <• > 

lim [iiTei(C,«) + #hi(C,0)] = - 1 + 261 - 202 (13) 

The integral over 7e2(C,0') with respect to 6' follows from Eq.(8) and is 
denoted Ke2'. 
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Ke2(C,e) = J ie2(C,0')de' = 8a + ^ 2 ) | e - ( i + .v 

/ sin^7jl - s h w ^ ' - c h w i ^ 
,\ sin £?? cos O'-q—cos £77 sin O'-q 

+ 

772 + 4w2 

sin £7/ cos 6'T]—cos £?? sin 6'rj 

dr\ 

\ sin#7?( s inw2^ ' -cosw2^ / | „ * 
J \ u)2 ) r) + 4w2 

L-t, 

/ 

dr\ d$' 

8 ( 1 + w 2 ) J f sin Or) 

7/2 4- 4w2 sine,?? L2i - L23 

• COS (,77 [ — 1/22 - -^24 
">l 

d?7 

+ 
OO 

/
sin 

r7+ 
0r? 

4w2 

1-w2 

sin £77 ( Z/25 - ^27 

- cosCr? L2e - ^28 
1 W2 

dr,) (W) 

The integrals L21 = L21 (#,»?) to L24 = £24 (fl,7?) are listed in Gradshteyn 
and Ryzhik (1980) as 2.674, 1-4 and L25, L2e as 2.664, 1. Integrals L2e and 
L27 are readily transformed into tabulated integrals: 

Z, 2 1(0,T?) = J e-<1+ua>*'8hw10 / cos 776*' d6' 

+ 

_ e ^ i - i - " 2 ) " ^ _ 1 -cj2)cos7?6' + T?sin^] - (o>i - 1 - a ; 2 ) 

2 [(Wl - 1 - w2)2 + T/2] 

e-(^+ 1+"2) f l[(a;1 + 1 + w2) cos 770 - 7? sin7?0] - (wi + 1 + w2) 

2[(wi + l + a ; 2 ) 2 + 7 i 2 ] 
(15) 

L22(e,v) = f e^l+^e' shoj-^O'smr^e'd9' 

e(W l-i-u/2)9[(W i _ l _ w2) s i n ? ? ^ _ ,ycosri^] + 77 

+ 

2[(wi - 1 - w2)2 + r?2] 

e-(u>i + l+u/2)fl^a,i + l-)-u;2)sinT?g + 77COS7?g] - 77 

2[(w1 + l+w2)2+r?
2] 

(16) 
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L2z{0,r)) = / e - ( 1 + w 2 ) e chwifl' cos7/0' dff 

o 

_ e ^ x - i - ^ 2 ) ^ ^ - 1 - t j 2 ) cos 770 + 77 sin q f l ] - ^ ! - 1 - u2) 

2 [ ( w i - l - w 2 ) 2 + r / 2 ] 

_ e-("i+1+"2)f l[(a;1 + 1 + a;2) COST?!? - 77 sin7?g] - ( ^ + 1 + QJ2) 

2[{col + l+u2)2+r1
2} 

(17) 

L2i(0,v) = f e-^+^o'chu^O'sinvO'd6' 

o 

2[{ui - 1 - w2)2 + r?2] 

e-(w1 + l+w2)9[^ i + X + w2) s i n r ? g + ^ cosr?<9] _ JJ 

2[(Wl + l + w 2 ) 2 + 7 7 2 ] 

e 

Lzb{6,r}) = f e~^1+^e' smu)2e'cosrid'dd' 

o 

e-(1+u ,2>e[(l + w2) sin(w2 + rj)e + (w2 + v) cos(w2 + /?)0] - (a>2 + r?) 

(18) 

2[(l + w2)2 + (w2+»?)2] 

e- ( 1 + a , 2 ) e [ ( l + u>2) sin(a;2 - v)8 + (^2 - ??) cos(a;2 - y)0] - {u>2 - v) 
2{(1+U2)2 + (OJ2-T])

2} 
(19) 

W M ) = I e-^+^e' smw2B'sin-qO'd9' 

_ e~(l+" >e[(l + c^2) cos(^2 + T?)6> - ((J2 + >?) sin(cj2 + t?)fl] - (1 + a;2) 

2[(l + W2)2 + (W2+7?)
2] 

e-(l+^)9[ (1 + ^2) c o s ( ^ _ v ) e _ {UJ2 _ v ) sin{<jj2 _ v)&] _ ( 1 + ^2) 

2[(1 + W2)2 + ( W 2 _ 7 ? ) 2 ] W 

9 

-£-27(0,7?) = f e-^+^o' cosurf'cosrje'd6' 

0 

e-(1+"2>*[(l + a;2) cos(a;2 + vW - (hfr + q) sin(^2 + r,)6] - (1 + c^2) 

2 [ ( l + w 2 ) 2 + (w2+?7)2] 

e - d + " a ) g [ ( l + q;2) coafo - r/)0 - fo - y) sin(^2 - 7?)fl] - (1 + OJ2) 

2[(l + W
2 ) 2 + (W 2-»7)2] [ZL) 
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L28(9,v) = I e-(l+"2W cosw20'sinr,9' d0' 

e-<1 +"2)g[(l + oJ2) sin(g>2 + y)0 + (a>2 + r?) cos(o>2 + v)0] ~ (^2 + ??) 
2 [ ( l + w 2 ) 2 + (w2+? ?)2] 

e~ ( 1 + a , 2 ) g[(l + w2) sin(w2 - TJ)0 + (w2 - v) cos(w2 - ??)0] - (w2 - 7?) 
+ 2[ ( l+W 2 ) 2 + (w2-T?)2] 

(22) 

We turn to the integral over 7h2(C;^') vvith respect to 0' as defined by 
Eq.(9). It is denoted Kh2((,0): 

Kh2(C,e) = j /h2(c,e') dff = 8{1+^> | ^=MI±^2 L-d+^' 

l—LJ 

/ sin6>T7(ch^i6>'+~ " sha>ifl') """> ' / ~_i\ ~t~~^'' ' dr) 
Q/t 1—OJ2

 u a , ^ sin (ij cos 0'T? — cos £77 sin #'77 

+ 
00 

/ sin Or] I c 

1 - w 2 

T72 + 4w2 

„, X—w1 . \ sin Cv cos 0'r?—cos Cn sin 0'?7 , 
cosw26>'+ sinw20' — — ' „ 0 ' '-dr] 

w2 / rj'+iu;' 
d9' 

8 ( 1 + w 2 ) f -J V2-
sin Or] 

•K I J r)' + 4w2 

0 

sin C,r] L2 3 H L2\ 

1 - w 2 

cos(r? L2 4 H L2 2 dr? 

+ 7 *?2-
sin #77 

+ 4w2 

1-w 2 

sin C»? £27 H -^25 
o>2 

COS £77 ( 1-28 H ^26 <M (23) 

We may now rewrite Eq.(3.1-44) as a function of C, and 0 without the 
integrations over (' and 0'. First, Eq.(3.1-44) is normalized to bring it into 
conformity with our current notation: 

Zca 

Ex 

r C+(0-«') 

'^A ^ / n _ _ / f ( l 9EE 1 Z dHA 
^ Am2{(„V)- J J ^ dQI + ^ Q(., J C-(e-e') 

d0' (24) 
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We obtain with the help of Eqs.(lO), (14) and (11), (23) 

e . c+(0-0') 

EE 06' 
C-(fl-e') 

/ / 
0 \ - ( 9 - 0 ' 

/ / 
o ^c-(e-9' 

1 dEfdAd6' = Kel((,9) + Ke2(C,0) (25) 

e , M-(e-e') 
Z dI%dAde' = Khl(C,6) +Kh2(<;,6) (26) 
Ei dc 

(-(6-6') 

and Amz(C,0) can be written in a form that requires only one numerical inte­
gration over the variable 77: 

Zca . , , „, e-2u* / l - c h 2 w 0 w 3 _„ 1 ± , . ,2 
( 

( l+w 2 )sh2w0-wch2w0 

A (C 0\ - -t 1 1 ~ " 1 ^ ' 7 _ -2(1+^)9 

+ • 
( l + w 2 ) 2 - w 2 

16(1-K>2) 
r 1-w 

/ ^ (^n+L2)(Lzi sin Cr> -L22 cos <ri)dri 
L 0 

/
sin #77 . , . , r , . , 

o ; 2 ( 7 ?
2 + 4 c 2 ) ( L 2 5 S m C?? ~ L26 C ° S Cr?)d?? 

(27) 

The terms L21, £22, £25, and L26 are listed in Eqs.(15), (16), (19), and (20). 
There are no poles or singularities. Hence, we need to check only the limit 
77 —> 00 to confirm that Eq.(27) is an actual rather than a formal representation 
of Amz(£, 6). We obtain the following variations of L21 to L^% for large values 
of 77: 

|£231 « 4 

\Ln\ « 4 lL2s| « £ (28) 

Due to the factor l/(r72 + 4w2) in the kernels of the integrals of Eq.(27) all 
terms of the integrals decrease like I/773 or I/774 for large values of 77. Given 
the complexity of Eq.(27) such a fast convergence is very fortunate. 

6.7 COMPONENT Aex OF THE VECTOR POTENTIAL 

We need to evaluate the integral of Eq.(3.1-45). The calculation is quite 
similar to that in Section 6.6 but we have now the derivatives dEE(C Q')/dC,' 
and dHE(C,0')/de' instead of dEB{C,9')/d6' and dHE(C',0')/dC'. One does 

| £ 2 ih 

1̂ 251 ' 

1 
rp-

^ 1 

1-̂ 221 

|-^26| 

~ V 
1 

M t 

\Lm\ ' 

1 

V 
1 

V 
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not have to carry out the differentiation of EE with respect to C since it is 
followed immediately by an integration with respect to £'. Hence, we get for 
the first term in Eq.(3.1-45) from Eqs.(6.4-28) or (6.6-1) and (6.6-3) for C - • C, 
6^6': 

~EE(C,e') = ( I - e - 2 ( i + - V ) e-*"<' + U ( c , 0 ' ) (i) 

u(C,e') = -^ -e 
n ' / UJI r/2 -I- 4w2 drj 

sinw2^' rjsmC'v 
J UJ2 rj2 + Aw2" 

u1 = {{l-J?-r?Y'2, W 2 = [ T ?
2 - ( 1 - W

2 ) 2 ] 1 / 2 , w
2 = es/fia (2) 

u>2 rj2 + 4u)2 

The derivative OHB({',6')/d6' of Eq.(3.1-45) follows from Eqs.(6.5-10) and 
(6.6-4) for He{C,)e-2"*e = 0: 

E 
:-HE(C,0') = -(l+ L>2e-2(1+»2V>') e~2^' + v(C,6') (3) 

Z dHf = _ 2 ( i + W 2 ) a , e - 2 ( 1 W ) < V 2 < + % (4) 
Ei 06' 

The term 0v((',9')/06' follows from Eq.(6.6-5): 

0v_ = 4(1+ u;2) (1+u2)$, 
06' n 

06' 

2w2 ch uj-i.6' + ( — - wj ) sh wx6' 

+ 

L—Ul 

J 
0 
oo 

/ 2w2cosw2<9'+( 
l - o ; 4 

w2 
+ W2 I SinW2' 

cos C'v 
7}2 + 4W2 

cos ('T) 

drj 

r\2 + 4w2 dr,) (5) 

Let us turn to the integration over C in Eq.(3.1-45). The first term on the 
right of Eq.(4) yields: 

<+(e-e') 

Jhl((,6') = -2(1 + w2)uje-^l+^e' J e-^dC' 

C-(e-e') 
= _ ( i + w

2)e~2^ (e2»ee-
2^+»+»2)<>' _ e -2u* e -a ( i -«+«V) ( 6 ) 
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As in Section 6.6 the specific form of Jhi{(,8') w a s chosen to facilitate integra­
tion over 0' later on. The integral Jei{(,0') is obtained from the first term on 
the right of Eq.(l) : 

C+(0-O 

Jel(W)= J ±[{l-e-^^s')e-^']dC 

[e™ ( e-2u>0' _ e-2(l+w+u J)f l 

-2wfl 

) 

(e2"*' 0 -2( l -u+w 2 ) f l ' (7) 

The integral of dv/dO' over Cf is derived from Eq.(5). It is denoted 

C+(»-«') 

JM*)= J ^dC' = ^ ± ^ e - ^ ^ ' 
C-(s-e') 

i-«2
r c+(0-0') 

/ / ( 
o Lc-(e-e') 

C+(6-9') 

2^ c h ^ + ^ ^ - ^ a h ^ - ^ U ' 
wi /?7' i+4a; i dr7 

+ / / (2w 2cosw 20' 
, , 1 - W 4 + O J | . A cosC'r? , . , 

" " ^ ^ ^ T ^ dr; 

8(l + ^ 2 ) „ - ( 1 + a , ^ 

u o 
oo 

+ 
1 - U ) 2 

/
/ l — W4 — W2 \ 

cos C??( L sh wi 0'+2w2 ch W! 0') 

oo 
|4+aio . „/ „ o A sin 07? cos 0'r?—cos 077 sin 0'T? , 

-s inw20 +2w2cosu>20 ) , ,/ , , , / -dr? 

sin 0?7 cos 0'?7—cos 0?7 sin 0'?7 

77(?72 + 4w2) 

sO'rj—cos 07) 

77(772 + 4 w 2 ) 

d?7 

(8) 

As in Section 6.6 the terms sin0?7cos0'77 — cos Qr\ sin 0'?7 are written in this 
expanded form to facilitate integration of Jh2(C>^') o v e r &'• We still require 
the integral of du/dC,' over Cf: 
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C+(0-<»') 

Je2(C,e')= I g idC = «(C,*,)£ 
C-(B-e') 

. 8 0 ^ ) e _ ( 1 + w 2 ) e , 
IT 

CH6-9') 

(0-0') 

1—U 

I r] cos £77 sh CJI8' sin Or/ cos 0'?? - cos Or] sin 0'ry 
d?7 

+ 
OO r-

U)\ T]2 + 4w2 

cos C,r) sin o»2^' sin Qr\ cos '̂77 — cos Or] sin #'77 

1-w 2 w2 
?72 + 4w2 dr? (9) 

We must integrate Jhi , J e i , Jh2, and Je2 with respect to 6' according to 
Eq.(3.1-45). Let us denote the resulting integrals by Mhi and Me2i 

Mhl(C,0) = J Jhl(C,0')dO' 

1 + w 
(1+w 2 ) 2 

2 

_ _ e - 2 ^ C [(! + w2j ^,-2(1+^)0 _ c h 2 w / ^ + w s h 2w0J ( 1 Q ) 

-2u< -( l-ch2w0) Mel(C,0) = J JeliCO'W 
0 

+ ,,2+2V 2 sh 2"e + n x 2̂2 2 (e"2(1+w2)e - ch 2*e) 

The sum of Mhi(C,#) and Mei(C,#) becomes: 

(11) 

Mh l(C,0)+Me l(C,0) = e - ^ | i ( 1 - c h 2 ^ ) + ( i + ^ 1
) 2 _ ^ 

x [[(l + w2)2+w](e-2(1+w2)e-ch2w6») + ( l+w 2 ) ( l + a;)sh2w6'] | (12) 

The integral over Jh2(Ci#') with respect to 0' follows from Eq.(8). It is 
denoted Mh2(C,0): 
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M, h2 « • • > - / Jh2«,0')d0' = 
_ 8(1 +a;2) f-(1+j*)t> ^1 

| f cos(r)(——^-shwii9'+2a;2cha;i6l'N) 

o 
oo 

sin Br] cos #'77 —cos 07] sin #'77 

l - w : 

sinw2# +2o; cosw2^' 

8 ( l + w 2 ) / /" cosC»? 

77(T72 + 4w2) 

^ sin Or] cos #'77—cos #77 sin #'77 

77(T72 + 4w2) 

l - w 4 - w ? 

e/77 

^Ue' 

f f cosCr? r . „ / l - w 4 - w ? r „ 2 , \ 

, 1—W4—W? o 
- c o s #77 ( • -L 2 2+2w L24 

+ 

CX) 

/ 
cos £77 

77(T72+4C<;2) 
sin #77 

Wj 

Z/25+2W -^27 

7̂7 

W2 

-cos 07] I1 u +"2 L26+2u2L2^J dr]\ (13) 

The terms L21 to L2a are defined by Eqs.(6.6-15)-(6.6-22). 
Let us turn to the integral over Je2{C,,6') with respect to 6' as defined in 

Eq.(9). We denote it Me2(C,0): 

0 

Me2(c,e) = J je2(c,0')de> = JS^fAJe-i^w 

v 0 
00 

cos £77 sh wi 9' sin Or] cos #'77 — cos #77 sin #'77 

Wl ?72 + 4 w 2 
d77 

+ / 
77 cos £77 sin OJ2O' sin #77 cos #'77 — cos #77 sin #'77 

1-w 2 

8(1 + u2) 

•K 

+ 

u>2 

• 1 - w 

d-q d& 

L 0 
00 

?72 +4w2 

/
T) cos CTI 

o;1(772+4a;2) ( L 2 1 S i n ^ ~ L 2 2 C ° S ^ ) d 7 ? 

J w2(»] 

cos £77 

1 - w 2 
(?72 + 4w2) 

(L25 sin 677 — L26 cos #77)̂ 77 (14) 
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We have accumulated enough integrals to rewrite Eq.(3.1-45) as a function 
of C and 6 without the integrations over (' and 6'. First, we rewrite Eq.(3.1-45) 
for our current normalization: 

tfr-M-l I (i 
C+(e~0') 

dEv(C_,e') , z dH^',ff)\ , 
•+ 

o [f_(e_e') 

Using Eqs.(l), (7), (11), (9), and (14) we obtain: 

dCJ Bx dd' 
dd' (15) 

/ / W1
9EEdc'9')dC de' = M^>e) + M*2«>0) (16) 

o V-(e-e') / 

while Eqs.(3), (6), (10), (8), and (13) yield: 

J J ^—^~d< 

o Y_(e~e') 
E\ d9> 

d&' = Mia(c,e) + Mh2((!e) (17) 

/ 

The component Aex((, 6) of the potential Ae can be written in a form that 
requires only one numerical integration over the variable T}\ 

Z2 

Ex 
Aex(C,0) = ~[Mhl(C,<?) + Mei(C,#) + Mh2(C,0) + Me2«,<?)] 

= _e-2-f { i ( i - ch2w6) + * j 

x [[(1 + J2)2 + ^){e-^l+^e - ch2w<9) + (1 + w2){\ + u) sh2w6>] | 

+ 
8(1 + w2) 

J n2 + ^2i\ 
LI21 123 sm6ri 

V
2-l+uj4+u2

r 2w2 

~L22 L2i COS Of] dr\ 

+ J V 
COSC/H 
2 + 4w2 

l-w» 

rf - 1+ ur - w; 4 2 2w2 

J?w2 

2 L 2 5 - —— i-27 I sin^f? 

T]2~\+wA-i4T 2w2
T . . 

-L26 L28 COS dr) 
r)u2 V 

dr,) (18) 



6.7 COMPONENT Aex OF THE VECTOR POTENTIAL 237 

Equations (6.6-15)-(6.6-22) define the terms L21 to L28. 
The first integral of Eq.(18) requires some analysis of the limit r] —>• 0 

before one can feed it into a computer. We separate the first integral into two 
terms, the first term for the interval 0 < 77 < e <S 1 and the second term for 
the remaining interval e < 77 < 1 — tu2. We obtain for 77 <C 1: 

COSCT? 

772 + 4u>2 -L21 £ 2 3 s i n 077 
77^1 77 J 

frj2-l+aj4+u2
T 2a;2 \ ' 

- -L22 -^24 COS 077 

- {L2i + L23)0 +-{L22 + L24) 7? < 1 (19) 

From Eqs.(6.6-15)-(6.6-18) we obtain for 7? < 1: 

L2i{e,v) 

L23(0,V) 

1 _ e-2u,2e 1 _ e-2e 

4w2 4 

1 _ e-2*2e 1 _ e-26 

4LJ2 + 

L22(0,7?) «77 
1 - (1 + 2uj26)e-2"*e 1 - (1 + 20)e" •261 

8w4 

T ,„ . : \ - ( l + 2u)2e)e-2^e l - ( l + 20)e-2f l 

£ i n ( M ) « i ? ( ^ 4 + § 

(20) 

(21) 

(22) 

(23) 

Substitution into Eq.(19) brings: 

( £ 2 1 + £ 2 3 ) 0 + - ( £ 2 2 + £24) 

2a\„-2u' =-Mi-^e)+Ml+^^ (24) 

With 

e 

| i [ l - ( 3 - 2 0 ) e - 2 S ] d ^ = | [ l - ( 3 - 2 0 ) e - 2 e ] (25) 

we may rewrite the first integral in Eq.(18) in the following computer friendly 
form: 
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h cos (77 

+ 4w2 dVK6-[l-(3-2e)e-2S] 

+ 
l—Uf 

J rj-
cos £77 
2 + 4w2 

rf - 1 + u 4 + u>2 

T)U>l 

L 2 i L23 sin 07/ 

2w2 

-^22 ^ 2 4 COS 077 
7? ' 

d77, £ < 1 (26) 

Certain advanced computer programs do not require Eqs.(19)-(26). 

6.8 C H O I C E O F p2 < 1 IN E Q . (4.1-85) 

In Eq.(4.1-85) we pointed out that one has to choose p2 » 1 rather than 
Pi -C 1 to obtain results in line with observation. The calculations of Section 
4.1 hold generally for any value of p2 but in the following Section 4.2 we used 
the simplification p2 3> 1 from Eq.(4.2-6) on. We return here to Eq.(4.1-103) 
and see what becomes of Aev(C,9) for p2 <K 1: 

Aev(C,0) = c2T2Ve0[ \ e - ^ ( l - chp26) 
.P2 

<K r 
P I L H ( 0 , K ) + 2(l-e-^)(^[(L13(0)K) + ^ 

U = i L V (p( 

-(Lli(e,K)+PlLl2{e>Kl)coS2™e 

sin 2'KKO 

K>K 

d2)1'2 

sin 2IXK(, 

{p\-d?Y''J \(2-KK)2+PI 

Ln(Q,K) + -—r-h: I sin27TK0 
( d 2 - p f ) 1 / 2 

L18(0,.)+;;2
Li6(;;r /

)
2)cos27rK0 

(d2 ~ Pi) 

sin 27TKC 

(27TK)2+ /9
2 (1) 

The condition /^ = cTy/as < 1 implies that at least one conductivity a 
or a approaches zero. The first line of Eq.(l) becomes: 

\e-p^{l-chp26 
p* 2 

The value of K in Eq.(l) equals 

for a —• 0 and/or s —> 0 

K = c2T\{ap, - se)|/47r < 1 for er -> 0 and s -> 0 

the factor 1 — e - ' ' 2 is reduced to 

(2) 

(3) 
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1 - e~p2 tup2 = cTy/as for as -> 0 

and Eq.(l) assumes the following form: 

(4) 

f 1 °° 
A»v(C,fl) = c2T2Ve0\ - -e2 + 2p2 J2 L 1 7(g,«)+ / > l I ' 1 5 ( ' ? ' ! { , l )Bin27rKg 

-{Ll8(e,K)+
p^p2)coS2nKe 

{<P-P\)1I2< 
sin27r«;C 1 ,2 2 /~\ 

The first sum in Eq.(l) is eliminated by the value K < 1 for the upper limit 
and the second sum runs from K = 1 to infinity. We first consider the case 
where either a or s approach zero, but not both. This implies p2 —» 0 but 
Pi ^ 0. A check of L15(6,K) to LW(8,K) in Eqs.(4.1-107)-(4.1-110) shows that 
the terms of the sum of Eq.(5) are finite and the sum vanishes for p2 —> 0. 

If both a and s approach zero we have p2 —• 0 and p\ —> 0. In this case 
one must check the terms 

92 
and 

ft/2 
(P l /2)2 + g2 W 2 ) 2 + g2

2 

in Eqs.(4.1-107)-(4.1-110). We get the following results for px -+ 0: 

52 = 27TK 1 - p\ 

ll (AX. 
4(2TTK)2 

— 2-KK 

\ATTKJ ' V^) " ^ " ( f 

\A-KKj 

PlQ2 -» P? 
(47T«;)2 (6) 

We obtain for the largest terms for p\ —> 0 and p 2 —» 0 in Eq.(5) with the help 
ofEqs.(4.1-107)-(4.1-110): 

Ln(e,K): 

PILI5(0,K) : 

L18(6,K): 

PILU(6,K) : 

p 20/4 

(Pi/2)2 + q22 

P2M2 Pi 
(pi/2)*+q2 2™ 

Pl9g2/2 _ J Pi\% 

(pi/2)2 + q2~ \A*K) 

p?0/4 
(Pi/W+ql :Ple 

(7) 

(8) 

(9) 

(10) 

All terms have either a value 0 < 9 < 1 or approach zero for p\ —+ 0. Hence, 
Eq.(5) approaches 

file:///AttkJ
file:///A-KKj
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Aey(C,0) 
1 

(?TzVe06\ for s = 0 and/or a = 0 (11) 

The spatial variable C, has disappeared. We draw the conclusion that the con­
ductivities a and s cannot be assumed to be zero since we cannot exclude 
displacement or dipole currents in vacuum within either the original Maxwell 
theory or its modification by magnetic dipole currents. 

6.9 EXCITATION OF A SPHERICAL W A V E 

The last two sentences in Section 4.3 state that the results obtained in 
Sections 4.1 to 4.3 for planar waves could readily be applied to spherical waves. 
To show this we write Eqs.(4.1-6) and (4.1-7) in spherical coordinates. First 
we rewrite A and certain functions derived from it in analogy to Eqs.(4.1-8)-
(4.1-10): 

A = AreT + A$e0 + A^e^ 

curl A 
1 (d{Avsmd) dA#\ 1 

rsiwd dti 
1 dAv d(rAv) 

r \ sin d dtp dr 

l / 3 ( r A ? ) dAx 

+ r\ dr dd 

d i v A = 
1 d{r2Av) 1 a(A>sintf) 

dr + r a n t W + 
1 dAv 

rsintf dip 

(1) 

(2) 

(3) 

The vector V 2 A of Eq.(4.1-10) is much more complicated in spherical 
coordinates than in Cartesian ones. We shall need only terms that are circularly 
symmetric in (p. This makes it possible to leave out terms dA./dip from the 
beginning and use the shortened version of V 2 A: 

V 2 A = grad div A - curl curl A for dA./dip = 0 

d ( 1 d{r2Ar) 
+ 

0(4* sin tf) 

+ 

dr \r2 dr r sini? dd 

1 d\(d{rA*) dA 

r2smddti[\ dr dd 

1 0 / 1 d{r2Ar) 1 0(Atf8in0)\ 1 d (djrA*) dAr 

r 01? \ r 2 dr r sin $ 0i? ) ' rdr\ dr d-d 

1 02(ApSinfl) , ,ld2(rAv) | 

. r dr2 r 2 sin # 0i92 

e^ 

(4) 

Equations (4.1-6) and (4.1-7) assume the following form in analogy to 
Eqs.(4.1-ll)-(4.1-16) for dA./dip = 0: 
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0 f 1 d(r2Aer) | 

dr \r2 

dAe 

dd 

dr 

s i m 

1 d{A^sxa.-Q) 

r sin •& 9i? 

d 

r2 sin i? d-d 

fd{rAe<,) 
dr 

ld2AeI] af c a (y l m y s in^ ) ^ e r \ _ Q ( 5 ) 

c2 dt2 Zc\Zrsmd dd dt 

1 9 / 1 g( r 2 A e r ) 1 <9Q4easin#)\ 1 9 fdjrA^) aAe , 

rdd\r2 dr rsini? d~d ) rdr\ dr dft 

1 d2Aep s 

c2 dt2 Zc 

c d(rAmv) dAe 

Zr dr dt 
0 (6) 

1 d2{rAev) 

r dr2 + 
a2 (Tas in i ? ) 

r2 sin i? 
1 d2A, B(fi 

dt2 

d&2 

+ Yc 
c /d(rAm#) _ dAmv 

Zr V dr d& 

dA, e<p 
dt 

= 0 (7) 

a (i a(r2Am,) + i d{Am$ sini?) 
Sr \^r2 9 r 

a# 
sini 

r sinw 

c2 at2 

a# 
a 

r 2 sin •& d$ 

(d{rAm#) 

dr 

Zo / Zc d(Aeip sin i?) a A m r , = 

c I r sini? atf a t ' U 

1 9 / 1 d(r2Amr) | 1 0(Amtfsin 
r Si? \ r 2 3 r r sin i? a # 

1 d2Am# Zo_ 

32 dt2 c 

1 a (d{rAmii) dA 
mr 

r a r \ a r Si? 
Zc d{rAetp) dAm$ 

r dr dt 
0 (9) 

1 d2(rAmv) 

r dr2 + 
1 a2(Am v , sini 

r" sin 17 
i a2Am , 

c2 dt2 

d-d2 

Zo Zc/djrAeo) dAel 

r V dr dfl 
+ • 

dA, imp 

dt 
0 (10) 

Two more equations are obtained from the extended Lorentz convention 
of Eqs.(1.6-23) and (1.6-24) for 0 e = </>m = 0 using Eq.(3) and dA./d<p = 0: 

d i v A m 

div A . 

1 
r2 

1 

d{r 

d(r 

AmT) 
dr 

Aev) 

dr 

+ 

+ 

1 d(Am$ sin i?) 
r sin i? a $ 

1 d{Aey sin d) _ 
r sin i? dd 

= 0 (11) 

(12) 
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We want to derive a TEM wave, which means the components ET and HT 

of the electric and magnetic field strength should be zero. Equations (4.1-25) 
and (4.1-26) for Cartesian coordinates are replaced by equations for spherical 
coordinates with the help of Eqs.(1.6-ll), (1.6-17), and (2): 

E Zc d{Aeif sm$) dAmT 

rsintf d-d dt 

Ht = 
c d(Amif> sin •&) dAe 

Zr sin $ 3d dt 
= 0, 

dAe. 

dtp 

dAm. 

dip 

= 0 

= 0 

(13) 

(14) 

Substitution of Eq.(13) into Eq.(8) and of Eq.(14) into Eq.(5) yields the fol­
lowing two equations: 

d ( 1 d(r2Amv) 

dr \r2 dr 
+ • 

d 
r2 sin •& d-d 

d(Am#8m&) 

» dd 

d(rAm<,) dAn 

dr dti 
sini? 

ld2Am 

c2 dt2 = 0 (15) 

d ( 1 d(r2Aer) 1 d(Aeosmti) 

dr \r2 dr rsind dd 

(djrAeo) 

V dr 

1 d 
r2 sin •& d"d 

dAet 
sini? 

1 d2Ae 

c2 dt2 = 0 (16) 

A comparison of these two equations with V 2 A of Eq.(4) yields the following-
equations for the amplitudes of the vectors e r if A is replaced by A m or A e : 

V * A m -
1 9 2 A „ 

c2 dt2 = 0, V 2 A e 
i d2Ae 

c2 dt2 0 (17) 

Hence, Eqs.(5) and (8) will be satisfied if the radial components of A m and A e 

satisfy the wave equation. 
We have Eqs.(6), (7), (9), (10), (11), and (12) left to determine the six 

variables Amr, Am#, Amv, Aer, Ae$, and Aev>. Let us substitute Eq.(12) into 
Eq.(6) 

1 d fdjrAei)) dAet 

r dr\ dr dtf 

and Eq . ( l l ) into Eq.(9): 

1 d2Ae# s ( c d(rAm^ dA^\ = Q , _ 

c2 dt2 Zc\Zr dr dt 

1 d (d{rAm$) dA 
mr 

r dr\ dr dfl 

1 d2Am<> Za (Zcd{rAeif) dAm#\ 

c2 dt2 • + • 
dr dt J 

= 0 (19) 
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Equation (7) is rewritten 

d{rAmd) QAmr ^ZjZc 
dr dfi c\ s 

and substituted into Eq.(19): 

d2(rAe^) 1 d2(Aev,smti) 
dr2 rsintf 

r d2A, 

dd2 

+ 
eifi 

c2 dt2 + r-
8A •e<p 

dt 
(20) 

1 d Z \Zc\ fd2{rAeip) 1 d2(.4e¥,sinfl)\ r d2Aetp 

dr2 rsin?? d-d2 J c2 dt2 r dr c \ s +r-
dA, •eip | 

at 

c2 dt2 c \ r 

Equation (21) suggests the substitutions: 

1 d2Amj, Zo /Zcd(rAeif>) dAm#\ =Q ^ 
dr dt 

Ae^r,t,#) = ^f, 
* sin i? 

Am#(r,t,d) = A'mAr,t) 
sintf 

(22) 

We observe that A'(r,t) is not a function of $ and obtain from Eq.(21): 

Z_\d_ 
c r dr 

Zcf d2(rA'ev) rd2A'\ dA'eip 

s \ dr2 c2 dt2 J dt + 
Z2od(rA'ev) 

dr 

l ^ W - ^ W - O (23) 
c2 dt2 dt 

In analogy to Eq.(20) we rewrite Eq.(10) 

d(rAe#) dAeT 1 
dr d$ Zc 

c (d2{rAmJ | 1 d2(Amtpsind) r d2Amlfi 

V dr2 rs in$ 9$ c2 dt2 Zo 
dAB 

dt 
(24) 

and substitute into Eq.(18): 

1 1 c (d2{rAmip) | 1 d2{Amvsmti) r d2Amip 

Zcr dr [ Zcr \ dr2 r s in % W dt2 
dA m<p 

dt 

1 d2A^ s f c d(rAmv>) t dAe#\ _ n 

c2 dt2 Zc\Zr dr + dt ) ~ ( ' 

The following substitutions for Amv(r, t,•&) and Ae#(r, t, #) are suggested 
by Eq.(25): 
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•**-mv>\Tj t, 
A'mv(r,t) ,_ t ^ A'^(r,t) 

sin# 
-, Aeo(r,t,d) = 

sini 

Since A'(r,t) is not a function of # we obtain from Eq.(25): 

(26) 

Zc r dr 
c (d\rA'mv) r d2A'n 

V dr2 Za c2 dt2 

dA'm s d(rA'mv) 
Z2r dr at 

c2 dt2 zc dt ~ [ ' 

Substitution of Eq.(22) into Eq.(ll) and of Eq.(26) into Eq.(12) yields 
equations for the components Amv and Ael: 

0(r2Ami) __ Q) d(r2Aev) = ^ 

dr dr 
(28) 

These equations suggest to choose the following solutions for Amr and Aer that 
are independent of both ip and •& and thus spherically symmetric: 

Amv = Amv(r, t) = ^—; -̂ er — Ael(r,t) = —^— (29) 

Since ylmr and Aer do not depend on # we obtain the following two relations: 

dAer „ dA 
mr o, = 0 

dd ' dti 

Equations (30) permit the simplification of Eqs.(18) and (19): 

(30) 

1 d2(rA'^) 1 d2A'^ s dA'e„ s 0(rA'mv) 
r dr2 c2 dt2 Zc dt Z2r dr 

1 d\rA'mij) 1 d2A'm# Za dAm<> ^ Z2a d(rA'ev) 
dr2 dt2 dt 

+ • 
dr 

0 

(31) 

(32) 

Equations (31) and (32) suggest to multiply by r and to replace the variables 
A'e$ and ^ 4 ^ by the new variables rA'e^ and rA'm#: 

d2(rA'e^) 1 d2{rA'^) s d(rA>e#) 
Zc dr2 

d2(rA'm, 
dr2 

dt2 dt 

s d{rA'mtp) 

Z2 dr 
= 0 

1 d2(rA'me) Zad(rA'm,) { ^(rA^) _ , 
dt2 dt dr 

(33) 

(34) 

Next we substitute Eq.(30) into Eqs.(23) and (27), and we replace the variables 
A' and A' by the new variables rA' and rA'm(f: 
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d2 fd(rA'eip)\ 1 d2 (d(rA'eifi)\ s d fd(rA'eip)\ fl(r^) 
dr2 V dr J c2 dt2 \ dr J Zcdt\ dr J aS dr 

s d 2 M U ) asd(rA'me) _ 
+ z2c2 dt2 +Yc~~df~-{) {ib) 

d2 (d{rA'mlf)\ 1 d2 fd(rA'mv>)\ Za d (d(rA'mv,)\ 0(rA'my) 

dr2\ Or J c2dt2\ dr ) c dt\ dr J °S dr 

Z2a d2(rA'e,) ZasdjrAU) _ 

Substitution of d(rA'mif)/dr in Eq.(33) into Eq.(36) produces an equation for 
the variable rA'e$ alone: 

d2ve id2ve i / s \ a y e 

^--^-flF-cl^+zJlT-^"0 (37) 

d\rA'e,) 1 W 
a r 2 C2 ^ 2 - ^ . ( r , t ) (38) 

These are essentially Eqs.(4.1-36) and (4.1-37). If we further substitute the 
derivative d(rA'e(fi)/dr of Eq.(34) into Eq.(35) we obtain an equation for the 
variable rA'm# alone: 

d2Vm ldVm 1 / ^s\dVm . 

9 r 2 c2 9 i 2 ^ l * ^ ^UJ 

These are essentially Eqs.(4.1-38) and (4.1-39). 
The functions rA'e# and r A ^ can be obtained from Eqs.(38) and (40) in 

analogy to Eqs.(4.1-43) and (4.1-46). The final two functions rA'mifi and rA'eip 

may then be obtained from Eqs.(33) and (34). 

6.10 BETTER APPROXIMATIONS OF DIPOLE CURRENTS 

We use again the first three equations of Section 4.1 and thus stay with 
the extended Lorentz gauge of Section 4.1: 

<j>e(x,y,z,t) = <l>m(x,y,z,i)=Q (1) 

V A e c2 dt2 - Zcgm [ ' 

V A m - ^ ^ r - = - 7 g e (3) 
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Equation (4.1-5) is replaced by Eq.(2.1-19) for electric dipole currents. The 
conductivity a is written instead of <rp to reduce the number of subscripts: 

ge + r m p | + ^jSedt = <7E= -<r(zccur lA. + ^ ) (4) 

In order to represent magnetic dipole currents we could rewrite Eq. (2.2-22): 

J d / g m , j A gm,fl 
Rdt\smvJ + ^msintf 

2N0qm(immo sin ( — / ?^dt 
\2NoqmRJ sin® 

- H = - | c u r l A m + ^ (5) 

The result of the calculation would hold for a particular initial angle $ and one 
would have to average over all angles. A strictly numerical solution may one 
day proceed in this way. Here, we shall use the hypothetical induced magnetic 
current according to Eq.(2.2-7). We write s instead of 2sp: 

, dgm T- f (c dAe 
T--df + ^? / g ^ = *H = S ( - c u r l A m - — 

The parameters r^p and rp have received a prime in order to distinguish them 
from rmp and rp in Eq.(4). 

We substitute ge from Eq.(3) into Eq.(4) and gm from Eq.(2) into Eq.(6) 
to obtain the generalization of Eqs.(4.1-6) and (4.1-7): 

v m c2 dt2 J+Tmpdt\ m c2 dt* J 

^/ ( v 2 A "-^>-? (—- + ^) - m 

V * A , - I ^ W „ »(v'A, 18!A« 
dt2 J mpdt\ e c2 dt2 

+ % / ( v 2 A e - ^ ^ ^ + ^ ^ c u r l A m - ^ ) = 0 (8) 

As in Section 4.1 the potentials Ae and Am are connected in these two equa­
tions. 

In order to write Eqs.(7) and (8) in component form in Cartesian coordi­
nates we differentiate first with respect to t: 
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'dt2 Tmp fl+2
 + QJ- + ' mp 

~7T 
V2An 

19 2 A„ 
dt2 

o_Z_d_( 
c dt\ 

ZccurlAe dt 
0 (9) 

mpdt2 + m T, 
V ' A . -

c2 at2 

+ 
d (c , A 3A, 
— I — curl Am — 

Zcdt\Z dt 
= 0 (10) 

Using Eqs.(4.1-8)-(4.1-10) we obtain: 

r ^ l + ^ + Î P 
m p s < 2 + â  r2 

a u a 2 ^ 
n dx2 

c dt 

dy2 + 
d2An 

Zc 
dAez 

dy 

dz2 

dAe 

dz 

ld2Am 

c2 dt2 

+ 
dAn 

dt 
= 0 (11) 

d2 d T„ 
+ TTT + — 'dt2 dt 

(d2Am 

\ dx2 

_aZLd_ 
c dt 

+ • + 
d2_A» 

dy2 
d2An 

dz2 

dAe 

dx 

ld2An 

c2 dt2 

dA 
+ • my 

dt 
= 0 (12) 

9dt2 
0_ 7\np 

• dt + r2 

\(d2Amz d2Amz 

l \ dx2 dy2 
d2Amz 1 d2A 

+ ~dz2 " ~ 

aZ_d_ 
c dt 

dAey dA, 
Zc ^3L-

lex 

dx dy 

dt2 

+ dAmz 

dt 
= 0 (13) 

, d2 d 
T 1 1-

mpdt2 dt 

T mp 
T72" 'P 

O A.ex u A.ex d Ae 

dx2 + 
s d 

dy2 + dz2 

dA, my 

1 d2Aex 

c2 dt2 

dA, 
Zcdt[Z\ dy dz dt 

= 0 (14) 

d2 d T' 
mpdt2 ^ dt T!2 

'd2Aev . d2Aev . d2A 
V dx2 + 

ey 

dy2 + • 
dz2 

a d \c fdAmx dAmz 

Zcdt[Z\ dz dx 

1 d2Aey 

c2 dt2 

dA, 

dt 
= 0 (15) 
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j_d_ 

d2Ae. | 

dy2 

c I dAm 

d2Aez 1 a2Ae 

022 C2 9t2 

M n 

Zcdt[Z\ dx dy 
dAei 

dt 
= 0 (16) 

For planar waves propagating in the direction of y we may use Eqs.(4.1-17) and 
(4.1-18) to simplify Eqs.(ll)-(16): 

mpa*2 a* T P V V 9y2 c2 at2 

£ £ / „ d2Aez d2Am. 
c \ dydt + Dt2 0 (17) 

mp , 
j ? ! 9 TYnp\ (d2Amy _ i a 2 A 
9«2 dt TP

2 J\ dy2 c2 a*2 
my aZ d2Am 

c dt2 = 0 (18) 

d2 , a , r m p y ^ m ; 
mpa*2 + at r p

2 A 9y2 c2 at2 

a z / „ a2Aea: a2A 
+ ~\ ~dyW~~dW 

= 0 (19) 

mpdt2 dt r; 
a 2 ^ i a2Ae 

ay2 
at2 

+ _s_^_ca2An 
ZcV^ dydt 

d2Aes 

dt2 0 (20) 

npdt2 dt r /2 

/a2Ae 

V dy2 
id2 A •ey 

c2 dt2 

d2Ae 

Zc dt2 0 (21) 

T'mpdt2 + m + T< 
(d2Aez 

V dy2 
1 d2Aez\ 

c2 dt2 J 

s t c d2Amx d2Aez 

Zc\Z dydt dt2 0 (22) 

If we further specialize to a transverse electromagnetic wave we may demand 
that Ev and Hy are zero. This implies the conditions of Eqs.(4.1-25) and 
(4.1-26) for Ae and Am , which are again reduced to 

dA» 
dt »• d~w'a (23) 
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due to the conditions of Eqs.(4.1-17) and (4.1-18) for a planar wave. If we 
integrate Eqs.(18) and (21) with respect to t we get thus: 

- I^T?/* )^-?^)- 0 (24) 

mpdt r'2 J ) \ dy2 c2 dt2 

where the nota t ion 

'mp / ,. / d A m y 1 a A m y \ _ Tm p / / a A m y 1 o A m y [,, fd2Amy _ 1 d2Amy\ _TEL [ (i 
7 V dy2 c2 dt2 J- r2 J \ dt 

dy2 c2 dt2 

is used. With the substitutions 

d A m y 1 d A m y _ . 
dy2 c2 dt2 -^„(y,t) (to) 

&A^_±d*Aey_Ve^t) ( 2 7 ) 

dy2 c2 dt2 

one obtains the ordinary differential equations 

<tt2 + r m p dt + ^ - ° (28) 

^ ^ ^ r ^ ^ - 0 (29) 

If we solve these equat ions for Vm y and Vey we may obtain A m y and A e y in anal­
ogy to Eqs.(4.1-43) and (4.1-46). This requires the transi t ion to the normalized 
variables 

6 = t/T, C = y/cT (30) 

that brings Eqs.(28) and (29) into the following form: 

d62 + r m p d6 + r 2 / ^ - ° ( 3 1 ) 

tUsL + JL^IK + ILV -o (32) 
d92 +rLp d6 + r ^ / - - ° <&> 

Equat ions (26) and (27) become: 
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^ - ^ = ^ - . ( { , » ) (33) 

^L-^L = c^Vey(C,e) (34) 

With the help of Eqs.(4.1-43) and (4.1-46) we obtain: 

m̂„(C,<?) = - £ f - / [ / vmy{t,e')d('\de' (35) 
17 / S T ^ - f 

/ / 
0 \ _ ( 0 - 0 ' 

/ J Vey(C,9')dC') Av(c,<?) = - ^ y i y ^ ( c . u ' K ' K (36) 
o \-(e-e') 

The solutions of Eqs.(31) and (32) are given by: 

W C > 0 ) =^myi(C)e7™Kie + K,„2(C)c7m»a' 
l r 

Imyl,my2 = —Z (1 T iVS) (37) 
^ "̂mp 

Vey(C,6) =Veyl(C)e^B + Vey2(C)e^e 

7e!/i,eS/2 = - i - ^ ( l = F n / 3 ) (38) 
/ T m p 

When Vmy(C,^) and Vey(C,,9) are substituted into Eqs.(35) and (36) one must 
make the substitutions £ —> £', 6 —• 9'. 

We make again the substitutions of Eq.(4.1-31), with the subscript v al­
luding to 'variable': 

Equations (17) and (19) as well as (20) and (22) are reduced to one equation 
each with the variables Amv and Aev: 

d2 0 rmp\/d
2Amv 1 d2An 

+ TTT + mpdt2 dt T2 J\ dy2 c2 dt2 

, 7 Z / ^ + % I ) = 0 <«> 

, d2 0 , r'mp\fd
2Aev Id2A 

Tmpdt2 + dt+ T'2 ) \ dy2 c2 dt2 

- l f £ ^ » + ^ = 0 (41) 
Zc\Z dydt + dt2 J { ' 
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The comments about polarization made in Section 1.2 following Eq.(1.2-
10) apply again if Ex, Hx, Ez, Hz, E, and H are replaced by Aex, Amx, Aez, 
AmZ) Aev, and Amv. 

In order to separate Aev and Amv we solve Eq.(40) for d2Aev/dydt 

d2Ae 1 
dydt Z2a 

d2 d rmp\/d
2Amv 1 d2Amv 

mpdt2 dt T2 J V dy2 c2 dt2 

Za d2Am 

c dt2 (42) 

and differentiate Eq.(41) with respect to y and t: 

, d2 d 
+ 7TT + mp d4Aev i d4Aev\ 

mpdt2 dt T'2 J\dy3dt c2 dydt3 J 

Zc\Z dy2dt2 + dydt3 J [ ' 

The terms d4Aev/dy3dt and d4Aev/dydt3 are obtained from Eq.(42 ): 

d4Aev _ 1 
dy3dt Z2a 

o4 

+ 
d3 

+ 
Tmp 02 \ fd2Amv 1 d2An 

dy2dt2 dy2dt T2 dy2 J \ dy2 c2 dt2 

Za d4Am 

c dy2dt2 (44) 

a4Ae 1 
dydt3 Z2a 

d4 d3 rmD d2 \ (d2A 
mpdt4 + dt3 + T2 dt2 dy2 

ld2An 

c2 dt2 

Zad4A 
c dt4 (45) 

Substitution of Eqs.(44) and (45) into Eq.(43) yields: 

d2
 + d_ + rmD\{d2Vm ld2V» , &_ d_ T^ ^ ^_ 

Tmpdt2 + dt+ T>2 ){Tmpdt2 " dt^ T2 J V dy2 c2 dt2 

Za ( , d2 d r'n 
+ TT7 + 

mp 
mpdt2 dt T!2 

, , d2 ^ d rmp 
+ Tc(T^W + ei + lf l+sa 

d2vm 

dt2 0 (46) 

Vm(y,t) = 
d2An 

dy2 
1 d2Am 

c2 dt2 (47) 
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These equations should be compared with Eqs.(4.1-38) and (4.1-39). We obtain 
again a partial differential equation with the wave equation as variable, but it 
is now of fourth order rather than of second order. 

Instead of solving Eqs.(40) and (41) for Amv we may solve it for Aev. The 
exchanges 

Tmp <-• T'mp, Tp <-• Tp, Amv <-+ Aev, Z(J *-+ s/Z (48) 

reproduce Eqs.(40) and (41). Hence, we may make the same exchanges in 
Eqs.(45) and (40): 

mpdt2 + dt r'2 J \mp0t2 dt T_2 J V dy2 c2 dt2 J 

Zo( , &_ d_ <± 
Tmp^2 +

 d t
+

 T/2 

+ ±(T dL + l + ^IL 
+ zc\mpdt2 d* T2 + sa 

d2Ve 

dt2 

Ve(y,t) 
d2Ae 

dy2 
1 d2Ae, 
c2 dt2 

0 (49) 

(50) 

These equations should be compared with Eqs.(4.1-36) and (4.1-37). 
Equations (49) and (50) are rewritten into the following form with the 

help of the notation 6 = t/T and C = y/cT: 

^ - + £ + 0 ' mpd62 06 p 
d2ve d2ve 

l { d2 d \ ( d2 d \ d2ve 

d62 = 0 

'mp — T mp/- ' ; "mp ~~ Tmpl ^ ' "p ~ TmpJ- / T p i "p — T
m p i / T p 

pa = ZTca, ps = Z/scT, p\ = c2T2as (51) 

c2T*Ve(W) = ^ - ^ 
d(2 d62 

The solution of Eq.(52) is the same as of Eq.(4.1-42) by Eq.(4.1-43): 

2 2 e (c+{e-e"> \ 

Aev(c,o) = -^-J\ J ve(C,e')d<'\d0' 
o Y-(B-e') 

(52) 

(53) 

For the variable Vm{y, t) in Eq.(47) we obtain the following three equations 
in analogy to Eqs.(51)-(53): 



6 .10 BETTER APPROXIMATIONS OF DIPOLE CURRENTS 2 5 3 

^PQP + oe+ep) [e'mW + de+e'p)\ 
1 

IPs 

d2Vm d2Vm 

dC? de2 

]mW + m+9p)+pa{e'mpW + dd+e'p)+P2 
d2vm 

oe2 

cWm(C,0) = 
d2Amv d2A 

n d(2 de2 

^mv(C,̂ ) = - ^ J J vm(C,0')dC I de' 
2j>2 

0 (54) 

(55) 

(56) 

o \c-(0-fl') 

If Aev{(,,9) is obtained from Eq.(53) for certain initial and boundary con­
ditions, one may obtain the component Amv(£,6) of the associated potential 
from either Eq.(40) or (41). Consider Eq.(41) first: 

Amv(C,6) = Zps ff d" i d \Q>\(d2A" mPd62 00 PJ\ dC? 
d2Ae, 
oe2 

1 d2Ae 

P. oe2 f \ ]dC, * = ^ ( 5 7 ) 

A second expression for Amv is obtained from Eq.(40) by treating this equation 
as an inhomogeneous equation for Amv with a known term d2Aev/dydt or 
d2Aev/d(d6: 

&_ 0_ 
mpoe2 + oe + 

, \ fd2Amv _ &A 
PJ\ oc2 de' 

mv 

de~ Po-
d2An 

oe2 = zPt 
d2Aev 

' dC.de 

pa = ZTca, ps = Z/scT, pspa = ap,/se = \jw2 (58) 

It is generally simpler to integrate Eq.(57) than to solve Eq.(58), but one 
cannot ignore Eq.(58). Since Eqs.(57) and (58) must yield the same result for 
Amv we generally need them both to determine integration constants. However, 
experience teaches that one does not always need all the integration constants. 

If Amv(C,0) is found from Eq.(56) for certain initial and boundary condi­
tions one may obtain the associated potential Aev(C,e) from either Eq.(40) or 
(41). We get from Eq.(40): 

Aev(t,e) ZpJ {! . mpoe2 + de+ p 
d2An d2AB 

dc2 oe2 

1 d2Amv 

z ee2 de }d( (59) 

http://dC.de
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The second expression for Aev is obtained from Eq.(41) by treating it as an in-
homogeneous equation for Aev with known term d2Amv/dydt or d2Amv/dCd0: 

r °2 d iAf92^ d2A°A ld2^_ 1 d2Amv mpd02 00 v v dC2 do* ) Ps do2 zPs d(d0 K ' 

Generally one must obtain Aev(£,0) from both Eq.(58) and (60) in order 
to obtain all the integration constants. 

We denote the solution of Aev derived from Eq.(53) by Aeve and the asso­
ciated solution obtained from Amv via Eqs.(59) and (60) by Amve. The general 
solution of Aev is the sum 

Aev{C, 0) = Aeve(C, 0) + Amve({, 9) (61) 

In analogy we denote the solution of Amv derived from Eq.(56) by j4mVm 
and the associated solution obtained from Aev via Eqs.(57) and (58) by AeVm 
and we obtain the general solution Amv as the sum 

^mv(C, 0) = Amvm(C, 0) + Aevm((, 0) (62) 

Hence, one may choose initial and boundary conditions independently for .Aeve 
and j4mVm! but the associated potentials Aevm and Amve are always automat­
ically excited with Aeve and Amvm. One cannot excite Aev without exciting 
Amv and vice versa. 

Let us try to find a solution for Ve(C,0) of Eq.(51) for a boundary con­
dition at C = 0 with the time variation of an exponential step function which 
approaches a step function for 9S —• oo: 

Ve(0,0) = Ve0e-e^S(9) = 0 for 0 < 0 

= Ve0e-$/e° for 0 > 0 (63) 

It is usual to assume a further boundary condition for C —• o°: 

Ve(oo,0) = finite (64) 

It was explained in the text following Eq.(4.1-55) why we cannot use it. As 
initial condition at 0 = 0 we choose 

Ve(C,0) = 0 fo rC>0 (65) 

Differentiation with respect to C yields more relations for the derivatives: 

dnV^6KQ forC>0, n = l ,2 , ... (66) 

Equation (51) may be written in the following form: 
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d 
+ 7TT 

de2\dc2 de2 pl de p2e) 
^Ve d2Ve d^Ve d3Ve d2Ve 

1 de2d(2 + Pp ac2 Pm de4 Pem oe3 [Pp Pep) oe2 

^ o2 ( d4v. d2v. \ 

d2 ( d2V. d2Ve \ 
•+Pmp-QQ2-+PPPVe) = 0 Pm de2 \Hmm de4 

Ppm = #mp + # m p , Pp = 0p+ 0p, Pem = #mp/Ps + #mpP<T 

Pep = Qp/Ps + OpPo, Pmm = ^mp^mp, Pmp = ^mp^p + ^p^mp) Ppp = ^P^p (67) 

Some simplification is achieved by integrating twice with respect to 9: 

dc2 oe2 pl oe p2 e 

pmd(2d9 p J dC,2 Pm d93 Pem dO2 p Pep d& 
d*Ve , d2Ve ffd^e,.,., 

Pmm dC,2d62 Pmp ~d~CT Ppp J J IK2 

d*ve d2ve 
- Pmm-ggf - Pmp-gfi- - PppVe = 0 (68) 

Substitution of Eq.(65) and Eq.(66) for n = 2 into Eq.(68) yields the 
following result for 9 = 0, C > 0: 

dVe _, 02Ve dVe . 
— + P i K + Pm-^2" + P™-QQ + &P + Pep>Ve 

d*Ve dVe] fd2Ve ffd2veM,a, n (RQ, 
+ Pmm-^3- + P m p ^ - - Pp J -g^d9 - Ppp J J -^-d9 d9 = 0 (69) 

We note that f(d2Ve/dC2)d9 can be a function of £ but its time derivative 
would still satisfy Eq.(66). 

A sufficient condition to satisfy Eq.(69) is that Ve, its time derivatives up 
to d3Ve/393, and the two integrals of d2Ve/DC,2 are zero. The two terms in 
Eq.(69) containing Ve yield again Eq.(65), but the derivatives of Ve and the 
integrals of d2Ve/d(2 yield the following additional conditions: 
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for C > 0, 6 = 0 
ee 

d2ve 

oe2 

d*ve 

= o 

= o 

= o 

/ / 

/ 
d2ve 

dC,2 

d63 

0— 
dOde' = Q 

(70) 

(71) 

(72) 

(73) 

(74) 

These conditions may not be the only possible ones but they are sufficient. 
Equations (70)-(74) have led previously to useful solutions (Harmuth and Lukin 
2000, Section 2.2). 

We assume that the solution of Eq.(68) can be represented as the sum of a 
steady state solution F{C,)e~e/9s, plus a deviation w(C, 6) from the steady state 
solution (Habermann 1983, p. 258): 

ve(<;,9) = veo\w((,e) + F(<;)e-e/e>} 

First we calculate F(£). With 

(75) 

gn 
Q^FiOe-W* = (-l)»(9,-»F(Oe-9/9 ' 

f F0e-e/e-d6 = -esF(Oe-e/e-

[[F0e-e/e'dede' = e2
sF{Qe-e/e-

we obtain from Eq.(68): 

(76) 

(77) 

(78) 

d2F (l Pi+0
2\F 

+ PA dC 

_,_ , Pmm _,_ \ d2F ( 

&F ( Pm _ Pem Pp+£ep\ p 

dc2 +\6! e2 + es ) 

.2 Pmm Pmp i p 

s M e2 PPP)* 
e-e/e» = 0 (79) 

This equation has the trivial solution 0S = 0 and a non-trivial solution contain­
ing the terms d2F/dC,2 and F: 
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dC2 L 2 ' L 2 L-C V L 2 

T - 2 , cfi Pi + Pp + Pep , 1 + P m + Pmp Pm Pmm 
^ 2 - P2 + Ppp ~ Ppp^s jjj 1" 02 "flT + 5/4 

Li = l - p m p - P p 0 . - ^ + ^ (80) 

Equation (80) has the general solution: 

F(C) = A0 0e-C / L + A0ie</L (81) 

Following Eq.(4.1-60) we choose J4OO = 1 and Aoi = 0: 

F(C) = e-^L (82) 

For the calculation of w(C, 6) of Eq.(75) we observe that the introduction of the 
function F{C,)e~e/9' transforms the boundary condition of Eq.(63) for Ve(0,9) 
into an homogeneous boundary condition for w(0,6), which is the purpose of 
this method of solution: 

V.(O,0) = Ve0[w(0,e) + e-o/O'] = Ve0e-e'e-

w(0,(9) = 0 (83) 

The second boundary condition given by Eq.(64) yields: 

to(oo, 6) = finite (84) 
The text following Eq.(4.1-63) explains that it cannot be used but it is not 
required either. The initial conditions of Eqs.(65) and (70)-(74) yield: 

for 6 = 0, C > 0 w(C, 0) + F(C) = 0, w(C, 0) = - e _ c / L 

dw(C,0) 

I 

de 
£>MC,Q) 

dO2 

de3 

d(2 

|2. 

= 0 

= 0 

= 0 

= 0 

JJ *%%,».0 (85) 
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Substitution of Eq.(75) into Eq.(68) yields for w(£,6) the same equation 
asforK(C,0): 

d2w d2w dw 2 

d3w fd2w
M

 d3w 92w dw 
+ P™dC2d6 +PvJ -Q^dd - Pn-QQS - P<™-Q02 - (PP + Pep)-Q0 

d^w d2w ff . 
+ fam iQQ2 + f a P ^ + PPP J J wd9d0 

d4w d2w 
-Pmm-g^- P m p " ^ ~ PppW = 0 (86) 

Using Bernoulli's product method to find a particular solution wK(C,,8) by 
separation of the variables we substitute 

wK(C,6) = <p(OW) (87) 

into Eq.(86), divide by tprp, and separate the terms containing <p or ip: 

1 d2ip ( d2ib dip , f , > _ 1 

vl(2- = {Pmmlet + pmM+i) + PpJi)de, 
( <*V' „ ,d2i> . .dip . 2 

X I p m m ^ J + (1 + Pem + P m p ) ^ " + (Pi + Pp + Pep)^ + (/>2 + PppjV1 

-PPP [fipdede'\ (88) 

This equation can only be satisfied if both sides are equal to a constant that 
we denote — (2TTK)2: 

dC? 

Equation (89) has the solution 

+ (2TTK)V = 0 (89) 

</j(C) = >lio sin 2TTK( + An cos 27r/< (90) 

but the boundary condition of Eq.(83) requires An = 0 and Eq.(90) is reduced 

to 

<p(Q = A10sin27r/< (91) 

The right side of Eq.(88) can be rewritten with the constant -(27TK)2 as follows: 

d4tp r/„ >9 i d2ip r. ,2 -.dtp 
Pmm^J + [(2™ypmm + l+pem+pmp\ -jjp+ [(27T«)'pm+pl+pp+Pep\ ~^ 

H(%+PPPW+(?™)3PP f ipde-prp JJ ipdedtf = 0 (92) 
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Equation (92) is solved by the substitution tp(9) = exp(A0) and the fol­
lowing characteristic equation is obtained for the six roots A = Ai, . . . , Xe-

PmmA6 + [(27TK)2pmm +1 + Pem + Pmp] A4 + [(2TTK)2 pm +p! +pp + pep] A3 

+ {pl+PPP)X2 + (2nK)2ppX-ppp = 0 (93) 

This equation is very similar to a previously derived equation (Harmuth 
and Lukin 2000, Section 2.2, Eq. 31). We stop here since the evaluation of 
this equation appears to be as much work as that of the previously derived 
equation. 

For small values of a and s one may leave out the terms multiplied by a 
or s in Eqs.(17)-(22). Six equations of the form of Eqs.(24) and (25) have then 
to be solved. Using a series expansion one may add correcting terms caused by 
the terms in Eqs.(17)-(22) multiplied by a or s. 

6.11 EVALUATION OF EQ.(5.3-4) 

For the integration of {d^*/d6)(d^/d9), (dV*/dO(dV/dO, and * * * of 
Eqs.(5.3-ll), (5.3-12), and (5.3-6) with respect to £ we write the square of the 
sums in those equations in the following form: 

] T B{K) sin {[(2TTK)2 + A?A2. + A2]1/2*?} sin {[(2TT«)2 + A 2 ] 1 ^ } 
K = l 

OO 

= J2 B\K) sin2 {[(2™)2 + A2A2 + A 2 ] 1 / ^} sin2 {[(2™)2 + A2]1*^} 
K = l 

+ £ ^B(«)JB(j)sin{[(27rK)2+A2A2+A2]1/20}sin{[(27rj)2+A2A2+A2]1/26} 
K = l .7 = 1 

x sin {[(2™)2 + A2]1/2C} sin {[(27rj)2 + A2]1/2C} (1) 

J2 B(K)[{2TTK)2 + A2A| + A2]1/2 cos {[(2TTK)2 + A2A| + X2}l'2e} 

K = l 

xsin{[(27TK)2 + A2]1/2C} 
OO 

= J2 B2(K){{2TTK)2 + A2A2 + A2] cos2 {[(2™)2 + A?A2 + X2}l'2e} 

xsi^jpTr^+A 2 ] 1 /^} 
oo.^j oo 

+ E EB(K)B(^2^)2+xlxs+^]l/H^j)2+\ix2+x2}^2 

K = l j = l 

x cos {[(2™)2 + A2A2. + X2
2)

ll29} cos {[(2TT.J)2 + X2X\ + X2]l'26) 

x sin {[(2™)2 + X\)l'2Q sin {[(2TTJ)2 + A2]1/^} (2) 
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( J2B(K)[(2TTK)2 + A?]1/2sin{[(2™)2 + A2A2 + X2
2}^0} 

xcos{[(27r«)2+Af]1/2C} 

OO 

= Y, B\K)[(2TTK)2 + A2] sin2
 {[(2TT«)2 + A2A2 + X2

2}^26} 

xcos2{[(27rK)2 + A2]1/2C} 

+ £ ^ JB(K)5(j)[(27rK)2
 + A2]1/2[(27rj)2

+A2]1/2 

( C = l j = l 

x sin {[(2TT«)2 + A2A2 + Al]1/2^} sin {[(2TTJ)2 + A2A^ + Xl\l'2e} 

x cos {[(2™)2 + A2]1/^} cos {[(27TJ)2 + A2]1/2C} (3) 

The products of sine and cosine functions of C, are transformed into sums 
with the help of the relations: 

sin {[(2™)2 + A2]V2
C} sin {[(27TJ)2 + A 2 ] 1 ^ } 

= i [cos ({[(2™)2 + A2]1/2 - [(27ri)2 + A?]1 /2}^ 

- cos ({[(2TTK)2 + A2]1/2 + [ ( ^ j ) 2 + A2]1 /2}^] (4) 

cos {[{2-KK? + A2]1/2*:} cos {[(27TJ)2 + A2]V2C} 

= \ [cos ({[(2™)2 + A2]1/2 _ [(27ri)2 + A?]V>}c) 

+ cos ({[(2™)2 + A2]1/2 + [(27ri)2 + Ximc)] (5) 

s i n l ^ T r ^ + A ^ ^ C l c o s P f - A 2 ) 1 / ^ ] 

= i[sin({[(27rK)2
 + A 2 ] ^ - ( A 2 - A 2 ) V 2 } C ) 

+ sin ({[(2™)2 + A2]1/2 + (A2 - A2)1 /2}^] (6) 

sin[(A2-Al)1/2Clsin{[(27r«)2
 + A2]V2C} 

= i[cOS({[(27rK)2 + A2]V2_(A2-A2)V2} C) 

- cos ({[(2™)2 + A2]1^ + (A2 - A 2 ) 1 ^ ) ] (7) 
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cos[(A2-A|)1/2C]coS{[(27r«)2 + A?]1/2C} 

= i[cos({[(27r«)2
 + A 2 ] 1 /2 - (A?-A 2 ) 1 /2 K ) 

+ cos ({[(2™)2 + A2]1'2 + (A2 - A2)1/2}C)] ( 8 ) 

We shall further need the following integrals: 

0 

1 

I cos ({[(2717c)2 + A?]1/2 ± [(27TJ)2 + A2]V2}C)dC 
0 

sin {[(2TPQ2 + A2]1/2 ± [(2wj)2 + A2]1/2} 

[(27rK)2 + A2] 1 / 2 ±[ (27r j )2 + A 2 ] 1 / 2 

I 

J sin ({[(2™)2 + A2]V2 ± (A2 - Xl)^}()d{ 
o 

1 - COS{[(27TK)2 + A2]1/2 ± (A2 - A2.)1/2} 

[(2™)2 + A 2 ] 1 / 2 ±(A 2 -A 2 ) 1 / 2 

I 

| c o s ({[(2™)2 + A2]V2 ± (A? - A2}C)< 

0 

_ sin {[(2TT«)2 + A2]1/2 ± (A? - A2)1^} 

(11) 

(12) 

(13) 
[(27r«)2 + A 2 ] 1 / 2 ±(A 2 -A 2 ) 1 / 2 

/ ^ - W I - | ( H ^ - T ) a.) 
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For the simplest integral in Eq.(5.3-4) we obtain from Eq.(5.3-6): 

l l x 

f tf** d( = *? f (j2 B ^ ^n {[(2TTK)2 + A?A' + A2!]1^} 
o o K=1 

x sin {[(2™)2 + A2]1/2C}N) + 2(1 - cos2A1A30) cos2[(A2 - X2
2)

l'2(} dC 

= *H E B\K) sin2 {[(2™)2 + A?A2 + A2]1/^} 
*• K = l 

1 

x fsm2{[(27rK)2 + Xl}^2C}dC 

o 

+ 5 E E ^ ^ W ^ i ^ ^ + AfAi + A2]1/̂ } 
K = l J = l 

xsinpTrjf+AfAl + A2]1/^} 

l 

x J cos ({[(2™)2 + A2]1/2 _ [(27TJ)2 + X2}^2}c)dC 

0 

1 -1 

- I cos ({[(2™)2 + A2]1/2 + [(27rj)2 + A2]V2}C)dC 

1 

+ 2(l-cos2A1A2e) /cos2[(A2-Al)1 /2C]dc| (16) 

o 

Using constants C3i(/t), C^i^,])-, a n d C33 we may rewrite Eq.(16) as follows: 

/ ***dC = *? ( E C3l(«) S ln2 {^27rK)2 + A 'A3 + X%1/20} 

+ E EC32(«,J>m{[(2 7r«) 2 + A 2 A 2 +A 2 ] 1 ^} 
K = l j = l 

x sin {[(2TTJ)2 + A2A2 + XlY'2e} + C33(l - cos2A1A30)N) (17) 
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2 W V 2[(2™)2 + A2]1/2 

r ( ., 1 m v m ., /mn {[(27T/.)2 + XlfH - [(2TTJ)2 + A?]1/2} 

(18) 

sin {[(27m)2 + A2]1/2 + [(2irj)2 + A2]1/2} 

[(27r«)2 + A2]1/2 + [(27rj)2+A2]1/2 

2(A 2 -A 2 ) 1 / 2 

sin2(A2-A2)V2 

Next we integrate Eq.(5.3-ll): 

(19) 

(20) 

/•a**a* „ T2 / 2 \ 2 Â A; 

] T B(K) sin {[(2™)2 + A2A2 + A2.]1/^} sin {[(2TT«)2 + A2]1/^} 

K = l 

/ °° 
+ I ^ B ^ p T r ^ + AfAl + A ^ ^ c o s l p T r ^ + AfAl + A2]1/2^} 

xsin{[(27r«)2 + A2]1/2C}') 

oo 

- 4AiA3 cos[(A2 - X\)l'2(\ Y, B(«) sin {[(2™)2 + A 2 ] 1 / 2 ^ 

x (AiA3cosAiA30sin{[(2TTK)2 + A2 A?, + A?,]1/20} 

- [(2TTK)2 + X\X\ + A2]1/2 sin AiA30 cos { [(2™)2 + A2 A2 + A?.]1^}) 

+ 4A2A2cos2[(A2-A2)1/2C] dC (21) 

The six integrals over £ are separated: 
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J oe de dC ~ *l AlAs 

0 

\ 

x Y, B2{K) sin2 {[(2™)2 + A2A2 + A2]1/2*?} / sin2 {[(2™)2 + A 2 ] 1 / 2 ^ 

+ A?A3 £ ^ ^ ) 5 ( i ) s i n { [ ( 2 7 r « ) 2 + A2A2 + A2]1/2e} 
K = l J = l 

x s i n ^ j f + A ^ + A2]1/2*} 
l 

x J sin {[(2™)2 + A2]1/^} sin {[(2TTJ)2 + A ^ K 
0 

oo 

+ Y, B\K)[(2TTK)2 + A2A2 + A2] cos2 {[(2™)2 + A2A2, + A2]1/^} 

1 

x /'sin2{[(27rK)2+A2]1/2C}dC 
o 

oo,^j oo 

+ Y E sw s0')[(2 7 r«)2+A?A l+A l]1 / 2[(2^)2+A?A i+A2]1 / 2 

K = l J = l 

x cos {[(2TTK)2 + A2A2 + A2]1/2^} cos {[(2TTJ)2 + A2A2 + A2]1'2*} 
l 

x J sin {[(2™)2 + A2]1/2*;} sin {[(2TTJ)2 + A ? ] 1 ' 2 ^ 
0 

oo 

- 4AiA3 £ B(K) (AIAS COS AJ A3#sin {[(27m)2 + A2A2 + A2.]1/2!?} 
K = l 

- [(2TTK)2 + A2 A2. + X2]1'2 sin Ax A20cos {[(2TTK)2 + A2 A2. + A?,]1/2*?}) 

l 

x /"sin{[(2™)2 + A 2 ] 1 ^} COS[(A
2 -A?,)1/2C]dC 

o 

I 

+ 4A2A2 |cos2[(A2-A2)1/2C]dc] (22) 

Carrying out the integrations is lengthy but straight forward: 
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/ ^ ^ r f C = *?(EC 1 1(«)s in 2{[(27r«) 2 + A?Ai + A | ] 1 / ^ } 

o K=1 

oo,^j oo 
+ E E^KJ)sin{[(27r«)2+A?A2+A2]1 /^}sin{[(27rj)2+A?A2 + A2]1/^} 

K = l j = l 

OO 

+ E Ci3(«) cos2 {[(2™)2 + A2A2 + Xl\l'2e) 
K = l 

oo,/;/ oo 

+ E EC«Kj)cos{[(27rK)2+A2A2+A2]1^}Cos{[(27rj)2+A2A2+A2]1 /2e} 
K = l j = l 

- E C^K) cos AiAa^sin {[(2TT«;)2 + A2A| + A2,]1/2*?} 
K = l 

OO 

+ E £"»(") sin AiAs^cos {[(2TT«)2 + A2 A2, + X^d) + Cn ) (23) 
K = l 

Cll(.) = lA 2A^ 2
Wf l - s i n 2 ' ^ 2 + A?; 

2 ' ' V 2[(27TK)2 + A2]1 / 

1/2 \ 2 
= A 2 A 2 C 3 I (K) (24) 

c12(.i) - himK)B{j)( - E i l P ^ i M ^ - J ^ + A 2 ] ^ 2 } 
2 W V [(27rK)2 + A2]1/2-[(27ri)2 + A2]1/2 

sin {[(27r/t)2 + A2]1/2 + [(2TTJ)2 + Af]1/2}' 

[(27r«)2 + A2]1/2 + [(27rj)2 + A2]1/2 

C„(K) - -B2(K)U2-KK)2 + A2A2 4- A21 (l sin2[(27r/t)
2 + Af]1/2 

Cia(K) - 2 5 («)[(2™) + A,A3 + A2] ^1 - ^ ^ ^ + ^ 

(25) 

= [ ( 2 ™ ) 2 + A2A2 + A2]C3I(K) (26) 

= \B{K)B{j)[{2^f + A? A2 + \^2[{2nj)2 + A2A2 + A2,]1/2 

sin{[(27nQ2 + A2]V2 _ [(2TTJ)2 + A2]1/2} 

(27) 

x 
[ (2™)2 + A 2 ] 1 / 2 - [ ( 2 T T J ) 2 + A 2 ] 1 / 2 

sin {[(2TTK)2 + A2]1/2 + [(2TTJ)2 + A2]1/2} 

[(2TTK)2 + A2]1/2 + [(2TTJ)2 + A2]1/2 

CI 5 (K) = 2 A 2 A 2 B ( K ) C 1 5 6 ( « ) (28) 

C16{K) = 2A1A3[(2TT«)2 + A2A| + A1] 1 / 2 B(K)C 1 3 6 (K) (29) 
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Cl56(K) = 
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1 - cos {[(2TTK)2 + A2]1/2 - (A? - A2,)1/2} 

[ (2™) 2 +A 2 ] 1 / 2 - (A 2 -A 2 ) 1 / 2 

1 - cos {[(2™)2 + A?]V2 + (A2 - X2f'2} 

[(2™)2 + A2]1/2 + (A 2 -A 2 ) 1 / 2 

n O N 2 V S / I s i n 2 ( A 2 - A | ) 1 / 2 \ 0 - 2 x 2 -

Cl7 = 2Al " 3 1 1 + 2 (A? - A 2 ) 1 ' 2 J = 2Al A3C33 

Finally, Eq.(5.3-12) yields: 

(30) 

dC = tf? /" (^B(K)A1sin{[(27rK)2 + A?Â  + Al]1/2e} a** a* 

0 ""~i 

xsinlpTTK^ + A2]1/^} 

/ °° 
+ f J2 B(K)[(2TTK)2 + A2]1/2

 Sin {[(2TT«)2 + A2A2 + X2]l'29) 

XCOS{[(27TK)2 + A 2 ] 1 / 2 C} 

OO 

+ 4AX sin AiA3fl J2 B ^ s"i {[(2™)2 + X2X2
3 + A2.]1/2*?} 

K = l 

x ((A2 - A2)1/2 sin[(A2 - A2)V2
C] s i n {[(2™)2 + A?] 1 ^} 

+ [(2™)2 + A2]1/2 cos[(A2 - Xlf'H] cos {[(2™)2 + A2]1 '^}) 

+ 2(1 - cos2A1A36l){A2 - A|sin2[(A2 - A?,)1/2C]} 

There are eight integrals over C, that need to be separated: 

a** a* 

d{ (31) 

[
OO 

A f ^ ^ W s i ^ l ^ T r ^ + AfAl+A2]1/^} 

I 

x f sin2 {[(2nK)2 + X2]l'2C}d( 

0 
oo.^j oo 

+xi £ E s ( K ) B W s i n { [ ( 2 7 r K ) 2 + A i A 3 + A 2 ] 1 / 2 ^ 

xsinlpTrjf+A^A^ + A2]1/^} 
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1 

x I sin {[(2™)2 + A2]1/^} sin {[(27TJ)2 + A 2 ] 1 / ^ 

0 
oo 

+ J2 B2(K)[(2TTK)2 + A2] sin2 {[(2TTK)2 + A?A2 + A2]1/2*?} 

l 

x /"cos2{[(27r«)2 + A2]1/2C}rfC 
o 

oo,^j oo 
+ g ^5WS(j)[(27r«)2 + A2]1/2[(27rj)2 + A2]1/2 

K = l j = l 

x sin {[(2™)2 + A2A! + XlY'H} sin {[(2TTJ)2 + A2A| + A2,]1/2*?} 
l 

x 

0 

J COS {[(27TK)2 + X\Y'\} COS {[(27TJ)2 + X2}^C}dC 
0 

oo 

+ 4Aj s i n X ^ e J^ B(K) sin {[(2™)2 + X2X2
3 + X2

2]
l'2e) 

1 

\x2 - A2)1/2 Jsin[(A2 - A2)V2
C] sin {[(2™)2 + A2]1/2

C}dC 
o 

l 

+ [(2™)2 + A2]1/2 Jcos[(A2 - A2)1/^] c0S {[(2™)2 + A ^ C R 

o 
I l 

+ 2(1-COS2AIA30)('A2_ fdC-Xl /sin2[(A2 - X2
2)^

2C}dA 

0 0 

The integrations are cumbersome but not scientifically challenging: 

l 

/ IF?dc=*? ( £ C2I(K) sin2 {[{2nK)2+A?A|+xl]1/2e) 
0 K = 1 

°o,^j oo 
+ £ £C2 2(«, j)s in {[(2™)2 + A2A2 + X2]1'2e} 

K=l j = l 

xsin{[(27ri)2 + A2A2+Al]1 /^} 
OO 

+ 5Z CM sin2 {[(2TTK)2 + A2Ai + X2]l'2e} continued 
K = l 

(32) 
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+ E E ^ ^ ^ s i n l p T r ^ + AfAl + Ai]1/^} 
K=l j = l 

xSin{[(2Trj)2 + X2X2+X2}V26} 
00 

+ E C 2sW sin AiAs^sin {[(2TT«)2 + A2A§ + Xj}1^} 
K=l 

+ C26(l-cos2A1A36/)) (33) 

Cai(«) - 2XlB («) ^l - 2[(27r/c)2 + A?]1/2 J - WiO (34) 

2 V [(27r«)2+A?]1/2-[(27rj)2 + A?]1/2 

sin {[(27T/Q2 + A2]1/2 + [(2TTJ)2 + A2]1/2} 

[(27r«)2 + A2]1/2
 + [(27rj)2 + A2]1/2 

C25l(«) = 
[(2™)2 + A?] 1 / 2 - (A?-A 2 ) 1 / 2 

v2 , 2 , sin2(A2-AD1 /2\ 

(35) 

C24(«,i) = ^(«)5(i)[(27r«)2 + A2]1/2[(27rj)
2 + A2]1/2 

sin {[(27m)2 + A2]1/2 - [(2TTJ)2 + A2]1/2} 

[(2™)2 + A2]1/2-[(27rj)2 + A2]1/2 

| sin{[(27rK)2 + A2]V2 + [(27rj)2 + A2]V2}\ 

[(27r«)2 + A2]1/2 + [(27ri)2 + A2]1/2 7 

C25(«) = 2AaB(«){(A2 - A1)[C25I(K) - C282(«)] 

+ [(2TT«)2 + X\]^2[C25I(K) + <7252(«)]} 

sin {[(2TTK)2 + X2]1'2 - (A2 - A!)1/2} 

[(2»K)2+A;i1/2 + ( A ; - A | ) 1 / a 

a - m - ^ i - 2W-_Ai-/2 j (39, 

Equation (5.3-4) is rewritten: 

TT L2 }/W&9 a** a * m2
0c

4T2 _, \ _, , . „ , ^^/bor*^**^**)* (40) 
0 
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In order for U to have the dimension or energy, J=VAs, the constant \1/2 in 
Eqs.(17), (23), and (33) must have the dimension J /m=VAs/m. Equations 
(17), (23), and (33) are substituted into Eq.(40). The resulting equation can 
be rewritten with the help of the relations 

cos2 a; = - ( 1 + cos2x), sin2 x = - ( 1 — cos2x), x = KQ or jo (41) 

to yield: 

°°^3 oo r 

+ E E 
K = l j=\ 

T2\tf2 < \ 39 / T7)V4T2 

u = ^rL E ( C^K)+C^K)+c2i(«)+<?2s(«) + -^—csi(«: 
- 2 E ( C " ( K ) - C i3(«) + C 2i(«) + C 2 3 ( K ) + - ^ g — C 3 I ( K ) j cos2K o0 

<• m2c4T2 

KCn(K,j) + C 2 2 ( K , J ) + C M K J ) + °ri2 C32(«,.?) 

x sinKo^sinj'o^ + C I 4 ( K , j ) cos Kofi cos jo^ 

00 

— /_^[C ,IO(K;) cos AiA3#sin KQB + Ciei1^) sin\1\3OcosKoQ 
K = l 

+ C 2 5 ( K ) sin Ai\3& sin K 0 #] 

+ Cu + C 2 6 ( l - COS2AJA30) + m ^ 2
T C33(l - cos2AiA3fi) j 

K0 = [(27rK)2 + A2A2 + A2]1 /2 , jo = [(27rj)2 + A2A2 + A2]1 /2 (42) 

The energy U consists of a constant part Uc and a time-variable part Uv 

with time-average equal to zero. The part Uc is readily copied from Eq.(42): 

U = UC + UV (43) 

Note that in the following equation the second line becomes the term K = 0 
of the sum in the third line: 

Uc = 
L2Vi 

2cT 
E (CII(K) +CX3(«) +C 2 I (K) +C23(«) + - ^ - C 3 I ( K ) 

+ 2 ( Cn + C26 H Tj—£33 continued on following page 

file:///1/3O
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L 2 * 2 

2CT £ (Cn{K)+CIZ{K)+C2I{R)+°25{K)+^y-°M 
K=0 ^ 

7-2VT/2 ° ° 

K=0 

Cn(0) = 2(Ci7 + C26), Cis(O) = C21(0) = C25(0) = 0, C31(0) = 2C33 (44) 

A few more transformations are required to write the variable part Uv of 
the energy U in a practical form: 

sin2{[(2™)2 + A?Al + X2}^29} sin2{[(27rj)2 + A 2 ^ + A2]1/2^} 

= - (cos K\ 6 — cos K26) (45) 

cos2{[(2™)2 + X2X2
3 + A2,]1/2*?} cos2{[(27rj)2 + X2X\ + X2

2]
1/20} 

— -(cos KiQ + cos K26) (46) 

K l = 2{[(27T«)2 + A2A2 + A2]1/2 _ [(27ri)2 + A?A2 + A2]l/2} ( 4 ? ) 

K2 = 2{[(2™)2 + A2A2 + A2]1/2 + [(27rj)
2 + A2A2 + A2]1/2} ( 4 8) 

cosAiA3#sin2Ko# = -(siiiK30+ sinK40) (49) 

sin AIA3#COS2KO# = -(sinK3# — sin/«40) (50) 

sin AiA3#sin2Ko# = -(cos K^O — COSK46) (51) 

K3 = 2[(2™)2 + A2 A2 + X2]1'2 + Ai A3 (52) 

K4 = 2[(2TTK)2 + X\Xl + X\]l/2 - A1A3 (53) 

The time-variable part Uv of Eq.(42) may now be written in the following form: 

v «=i N ^ = ~ 2 ^ ^ ' ( C l 3 ( K ) " C l l ( K ) " C 2 l ( K ) ~ C 2 3 ( K ) 

H^lc731(«))COB2«0e 
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Ci2(n,j) + C14(K,J) + C22K J') + C24(«,i) 

2 „ 4 T 2 
I I L 

— ^ C732(K,j) ) COSKi^ 

+ f CI4(K,J) - C12(K,J) - C22(«,j) - C24(K,J) 

C 3 2 ( « . i ) COSK20 
m j ^ T 2 

fi2 

0 0 

+ y ^ [ - C i 5 ( « ) ( s i n K 3 < 9 + s inK 4 #) + C16(K)(sinK:30 - s in«40) 

+ C25(«)(C0SK4^ — COSK36)] 

m j ^ T 2 

C26 + 
/ i 2 3 j cosAiA30> C33 cosAiA30> (54) 

The term D(K) in Eq.(44) will be needed explicitly and we write it in more 
detail: 

D(K) = A ^ + I)CSI(K) + Cis(«) + C2 3(K) + C 3 I (K) 

= £*»(«) 
™ 2 „ 4 T I : 

2 X 2 , o \ 2 , \ 2 1 m0c 1 2 „ 4 T 2 

2(2TT«;)'! + 2Af A| + 2Af + Xj + 
h? 

2A2A2 , A2 , rn2c*T2\ sin2[(27r,c)2 + A2]V2 
2X1X3 + X2 + - ^ ) 2 [ ( 2 7 r K ) 2 + A 2 ] 1 / 2 J 

for K = 1, 2 , . . . (55) 

D(0) = 2[Cl7 + C26 + T^^-C33 tf 

= 2 
mic4 

2A| -j- 2A} A3 — A2 H : 
T 2 

fi2 

+ I 2A2A2 + A2 4. < ^ l l \ sm2(A2-A2)1 /2] 
+ (2A1A3 + A2 + ^ ^ - j 2 ( A2_A22 )V2 . for K = 0 (56) 

The term B(K) is defined in Eq.(5.3-5), the constants Ai, A2) and A3 are found 
in Eq.(5.2-8). 

6.12 CALCULATIONS FOR SECTIONS 4.2 AND 4.3 

The auxiliary variables d2, qi, q2, q$ and q4 are frequently needed. We list 
them here together with a number of relations derived from them to help with 
the equations of this section: 
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d2 = 4[(27TK)2 + p2] (1) 

(2) 9i = + i ( d 2 - / > 2 ) 1 / 2 + 2™, d2>p\ 

92 = + i ( d 2 - p 2 ) 1 / 2 - 2 ™ , d2>p\ (3) 
2 

93 = +|(p?-d2)1/2-Ipi ) d
2<p2 

g4 = +I(p2-d2)v2 + l p l ; d 2 < p 2 

(4) 

(5) 

92 = 9i - 47TK, 94 = 93 + Pi (6) 

gi = 2™ + [(2TT«)2 + p2 - p 2 / 4 ] ^ (7) 

g2 = -2TTK + [(2TTK)2 + p\ - p?/4)1/2 (8) 

(d2 - p2)1'2 = 2(gi - 2™) = 2(92 + 27r/s), d2 > p2 (9) 

( p 2 - d 2 ) 1 / 2 = 293 + p i = 2 9 4 - p 1 , d 2 < p 2 (10) 

92 + ( f ) 2 = 2(27rK)2 + p 2
+2(27rK ) 2 ( l + ^ - | / i y / 2 , d2 > p\ (11) 

92
2 + ( | ) 2 = 2(27r«)2+p2-2(27rK)2(l + ^ - | / i y / 2 , d2 > p? (12) 

We start with the second sum holding for K > K in Eq. (4.1-103) which is 
the same as Eq. (4.1-105) for K < 1. Later we shall extend the investigation to 
the whole of Eq.(4.1-103). Equation (4.1-105) is shown once more in Eq.(4.2-
11) with the terms Lis(0, K) to L\%(9,K) broken up into LI5A(«)> £I5B(0>«O, 

... , LISB(6,K). We denote the two terms of the second sum of Eq.(4.2-ll) by 
ABS(K) and ABC(K): 

Aes(«0 = ——-2 5- L17A(K) + 
(2^)2+p2V 1 ' " " (d*-plf2 

Pi 1 
(27TK) 2 + P | 2 ( g i - 2 7 T K ) 

91 -*" + «2+™ . 1 (13) 
g2 + ( P l / 2 ) ' 92

2 + (Pi/2) 

£ I 8 A ( « ) + 

(5hr«)a+piV (^2-P2)1/2 
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1 1 

(2TTK)2 + p\ 2(?i - 2TTK) 

'91(9! - 2 7 T K ) - p ? / 4 _ 92(92+ 2 T T K ) - P ^ / 4 

9? + (Pi/2)2 q2
2 + (Pi /2)2 

K> K = cT\{aZ - s/Z)\/4n if used for Eq.(4.1-103) (14) 

For the third term of the second sum in Eq.(4.2-11) we obtain with Eqs.(4.2-
2)-(4.2-5): 

(d2 - p2)l'2Lim{e, K) + PiLl5B(9,«) 

{d2 - p2)1'2 [(2TT«)2 + p2] 2 (29! - 2-KK) [(2TTK)2 + p2,] 

[pi(gi - 2TTK) + P191] cos qx9 - [2gi(gx - 2TTK) - pf/2] singifl 

2 [9? + (Pi/2)2] 

[Pi(9i - 2TTK) + piq2] cosq29 - [2g2(gi - 27TK) - p2/2] sing^? 

2 [92
2 + (Pi/2T 

= A57(K,)cosqi9 + B57(n)sinqi9 + C57(K) cosq29 + D57(K) sin q29 (15) 

A57(K) = = - y y - -y (16) 

4(9 l - 2TTK) [(2™)2 + p|J [g2 + (pi/2)2J 

R f^ 1 2 g 1 ( g 1 - 2 ^ ) - p 2 / 2 
•057(K) = + ? -r-f— TT (17) 

4 (gj - 2;r«) [(2™)2 + p2J [g2 + (Pl/2)2J 

C57(«) = P i f o - f t n Q + P i f t ( 1 8 ) 

Z)57(K) = + * * w , y " ' -T- ( 19 ) 
4 (gx - 2™) [(2TTK)2 + p2J [g2 + (P l /2)2 

The third term of the second sum in Eq. (4.2-11) may now be written as follows: 

r /a \ , PILI5B(6,K)\ SIII2-KK9 

(d2-p2)l/2J ( 2 ™ ) 2 + p | 

= A^t (K) COS g! sin ITXKB + B$7 (n) sin gj sin 27TK0 

+ C57(K)cosg20siii27rK# + .D57(K)sing2#sin27r/c0 (20) 

Using the changed wavenumbers 27TK ± qi and 27TK ± g2 
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2irK-qi= nK-(n2K2 +p\- p2 /4)1 / 2 (21) 

2-ITK + ft = 3TTK + (TTV + p\ - p?/4)1/2 (22) 

2TTK - q2 = 3TTK - (TTV +pl- p?/4)1/2 (23) 

2TTK + q2= 7rK+(7T 2 K 2 +^-p 2 /4) 1 / 2 (24) 

we obtain for the products of sine and cosine functions in Eq.(20): 

sin27rK#cosgi0 = -[sin(27r« - ft)0 + sin(27TK + q{)9) (25) 

sin2-nnOsmqiQ — -[cos(27r« - ft)0 - COS(27TK + q{)9) (26) 

sin 2TTK9 COS q26 = - [sin(27rK - q2)9 + sin(27TK + q2)9] (27) 

sin 2TTK9 sin q29 = - [COS(27TK - q2)9 - COS(27TK + q2)9) (28) 

We turn to the fourth term of the second sum in Eq.(4.2-ll). Instead of 
Eqs.(15)-(19) one obtains: 

{d2 - p\)l'2Lim{9, K) + PlLl6B(0, K)= + 

(<P - p\)1'2 [(27T«)2 + p2] 2 (qi - 2TTK)) [(27TK)2 + p2] 

[piili -2TTK) + p!ft]sinftfl + [2qi(qi - 2TTK) - p\/2] cosftfl 

2 [q2 + (pr/2)2] 

_ [Pi(ft - 27rw) - piq2\ smq26 + [2g2(ft - 2TTK) + p2/2] cosq29\ 

2[g2
2 + (pi/2)2] ' 

= A§s (K) sin ft 0 + 5 6 S(K) cosqi9 + CQ&{K) sin q29 + Deafa) cos q29 (29) 

Aes(*) = +
 P l

r
( 9 l" 2 r ) +

I r
i ^ = -MM (30) 

* » ( « ) « + ^ - 2 ^ - ^ / 2 + f l 8 7 ( i e ) ( 3 1 ) 

4 (Ql - 27r«) [(2™)2 + p2] [q2 + (Pl/2)2] 

2 f t ( f t -27nQ-p 2 / 2 

4 (ft - 2-KK) [(2TTK)2 + p2] [q2 + (Pl/2) 

Pi{qi-2nK,)-piq2 

4 (ft - 2TT«) [(2TTK)2 + p2] [g2 + (Pl/2)2] 

2g2(ft-27rK)+pj/2 

4 ( ( ?
2 - 2 ™ ) [ ( 2 ™ ) 2 + p 2 ] [g2

2 + (pi/2) 

r ,„-, p 1 ( f t -27r / t ) -p 1g 2 (V). 

r«)[(27rK)2+p2][g2+' " 

A»(*) = 2 ^ - 2 ^ / 2 (33) 



6.12 CALCULATIONS FOR SECTIONS 4.2 AND 4.3 275 

The fourth term of the second sum in Eq.(4.2-11) may be written as follows: 

-fwM) +
 P l W ^ Y cos 2ITK6 

(<P - p\)1'2 ) (2TTK)2 + p\ 

= A^{K)sm.q\Bc,Q%2-KKQ + BQ$(K)cosqi0cos2irK6 

+ C68(K) sinq^O cos27TK0 + D6S(K) COS q26 cos 2TTK9 (34) 

Using the changed wavenumbers of Eqs.(21)-(24) we obtain for the products 
of sine and cosine functions in Eq.(34): 

cos27r«;#sin<)'i0 = -[—sin(27TK — q\)9 + sin(27r« + q\)9) (35) 

COS27TK^COS5I^ =-[+cos(27TK — q\)6 + cos(27r«; + q\)ff\ (36) 

cos27TK#sin<220 = x [— sin(27TK — q^jO + sin(27r/t + q2)9] (37) 

cos27TK0cosg2^ =-[+cos(27rK — q2)0 + COS(2TTK + q2)0] (38) 

We introduce four more auxiliary variables: 

^ 5 7 ( « ) = ^ [ C B 7 ( « ) - C 6 8 ( K ) ] 

/Mi 
4 (gi - 2TT«) [(2TTK)2 + pi] [ql + (P l /2) ; 

(«)] 

pi(2qi - 2TTK) 

^BS(K) = \[C57{K) + C68(K)} 

4 (9l - 2-KK) [(2™)2 + pi] [ql + (Pl/2)' 

Pill 

^57(«) = \[D57(K) + D68(K)} 

4 (9l - 2TTK) [(2TT«)2 + pi] [ql + (P l /2) ; 

68 («0] 

292(91 - 27TK) 

Feain) = -\{D57(K) - £>68(K)] 

4 fo - 2™) [(2TT«)2 + p2.] [ql + (Pl/2)2 

The third and fourth terms of the second sum of Eq.(4.2-ll) become: 

(39) 

(40) 

(41) 

(42) 
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L>nB{V, K) + — —T77 I ——^ 
(<P - P\f'2 ) (27TK)2 + p\ 

PILHB(8,K)\ cos2-7r/t# 
LI8B(0,K) + '• 

(<P - p\)1'2 J (2™)2 + p\ 
= A57(K) sin(27TK — q{)9 + B68(K) COS(27TK — qi)6 

+ E-o7(n) sin(27TK - q2)6 + E68(n) sin(27TK + q2)9 

+ F57(K) COS(2TT/C - q2)6 + F 6 8 ( K ) COS(2TTK + q2)9 (43) 

We turn to the first sum in Eq.(4.1-103) that contains more complicated 
terms. With the help of Eqs.(4.2-7)-(4.2-10) we obtain: 

A , , = {Pi - d2)1/2Ll3A{K) + PILUA{K) 

(p2-rf2)1/2[(27r«)2 + p|] 

93 g 4 (44) *iWi / J- i 

(2g3 + P i ) [ ( 2 T T K ) 2 + p2] V ( 2 T T « ) 2 + q2
3 ( 2TTK) 2 + q\ 

A U) = (Pi ~ rf2)1/2£i4A(«0 + PIL12A(K) 

(Pi-rf2)1/2[(27r«)2+p|] 

= 27TK / q4 93 

(2q3 + Pl) [ ( 2 ™ ) 2 + pl\ V (2TTK) 2 + q2 ( 2 ™ ) 2 + q\ 

K<K = cT\(aZ - s/Z)\ if used for Eq.(4.1-103) (45) 

The terms with the subscript B rather than A are more complicated: 

(p2
l-d

2)1/2L13B(0,K)+p1LnB(e,n) 

(p2 - d*)l/2 [(2™)2 + p2} (2q3 + Pl) [(2™)2 + p\ 

(2?3+pi)e/2 93 c o s 27r«;0 — 27TK s in 2-KKQ 

(2TTK) 2 + 93
2 

-(2q3+p1)e/2 q4COS2TTK,6 — 27TKSm2TTK6 

X j g 4 e ™ w , - / o_ ^ | 2 

— q%e 

(2TTK)* + q\ 

e{2qs+Pl)8/2[A13(K)cos2nKe + B13(K)sin2nK8} 

+ e - ( 2 ^ + P i ) e / 2 [ c 1 3 ( K ) c o s 2 7 T ^ + £ > I 3 ( K ) s in27r«0] (46) 

A1S(«) = + , ! ^ n r - r W 
(2q3+pl)[(2irK)2 + p2\ [(2™)2 + gf] 
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2™qi (48) 

(49) 

r i r i ( 5 0 ) 
(2g3 + Pi) [(2TT«)2 + pl\ [(2TTK)2 + q\ 

We still need the terms with subscripts 14B and 12B: 

{P\ - d2)ll2LlAB{6, K) + PlL12B(0, K) _ 1 

-013W — 

C i 3 ( « ) = 

n.„i,f\ — 

(2q3 + Pl) [(2TTK)2 + pi] [(2nnf + g|] 
93 94 

(2g3 + Pi) [(2TTK)2 + pi] [(2TT«)2 + qf] 

2iutqz 

{p\ - d 2 ) 1 / 2 [(27TK)2 + p l ] (2Q3 + P l ) [(27TK)2 + p 2 

(2g3+Pi)e/2 93 S m 27TK0 — 27TK COS 27TK0 

(27T«)2+<?3
2 

-(293+pi)e/2 94 S U 1 2TT«^ + 27TK COS 27TK0 

M W ,„ , 2 ^ o 

93 e 
(2TT/02 + gf 

= eS2q3+Pl)e'2 [A24(K) sin 2TTK6) + 524(«) cos 2TTK6>] 

+ e-(2«3+''l)e/2[C,
24(K) sin27r/«0 + £>24(«) COS2TTK(9] (51) 

^24 («) = f ^ ^ -T (52) 

(2g3+Pi)[(27r«)2 + piJ [(2™)2 + g3
2J 

s 2 4 W = + f
 2jP^u 2-^T <53) 

(2Q3+Pl)[(27T«)2+piJ [(27T«)2 + q\\ 

C24(K) = + F q m , r T (54) 
(2g3 + Pi) [(2TTK)2 + pij [(2TTK)2 + q\\ 

A M («) = + F ; T-r ; "T (55) 
(2g3 + Pi)[(27rK)2 + pij [(2™)2 + q\\ 

The comparison of Eqs.(52) to (55) with Eqs.(47) to (50) provides the following 
relations: 

A2A(K) = -A13(K) (56) 

B24(«) = - B I S ( K ) (57) 

C24(«) = +C13(«) (58) 

A>4(«) = +Di3(«) (59) 
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The sum of Eq.(46) multiplied by sin27rK0 and of Eq.(51) multiplied by 
cos2nK9 yields: 

PILIIB(9,K)\ sm.2'KK9 
2 . «2 {pl-d^'^J^KY + pl 

LI3B{0,K) + 
{Pi-d^y 

- U I 4 B ( 0 , « O + 

= -e^+P^e/2B13(K)cos4nKe 

PIL\2B{6,K)\ COS2KK,9 

{pl-d?)1,2)(2KK)2 + pl 

+ e -(2q3+Pi)e/2 [Ci3(K)sin4nK0 + D13(K)} (60) 

Substitution of Eqs.(13), (14), (43)-(45), and (60) into Eq.(4.2-7) yields: 

Aev((,9) = c2T2Veo\\e-"^(1 - chp20) + 2(1 - e" ' 2 ) 

<K 

2 j [Aes (K) sin 2KK9 + Aec (K) COS 2TTK9] sin 2TTKC 

,<K 

+ ( ^ Z —e(293+A'l)e/2
JBi3(«)cos47r«6»sm27r«C 

<K 

+ Y, e~{,2q3+p^9l2[Cn{K) sin4TTK0 + Dl3] sin 2TT/< 
K = l 

OO 

+ 2~\ [^es(K) sin2-KKQ + A 6 C ( K ) COS2TTK0] sin2TTK( 

+ e-PiO/2 

oo 

2 J [^4O7(K) sin(27rK — q\)9 + B6S(K) COS(27TK-, — q\)9] sin27rreC 

K>K 

oo 

+ ^ [i?57(«;) sin(27TK; - q2)9 + F57(K) COS(27TK - q2)9\ sin 27T/< 
K>AT 

+ ] T [E 6 8(K) sin(27Trt + g2)<? + F 6 8 ( K ) COS(2TTK + g2)0] sin 2TTKA > (61) 

The term e ( 2 9 3 + p l ) 9 / 2 may cause concern but it is multiplied with e~piB/2. 

The exponent of the product equals: 



6.12 CALCULATIONS FOR SECTIONS 4 .2 AND 4 . 3 279 

FlG.6.12-1. Three-dimensional plot of the function exp(-p2C)(l-cnP20) f°r C~# > 0 
in the interval 0 < p2Q < 8, 0 < p26 < 8. 

[(2ga + Pi) - Pi\6/2 = [{p\ - d2f'2 - Pl}6/2 

= {lpl-4(2irK)2-4PW-Pl}e/2 (62) 

The relation 

(p2 - d2)1'2 = [p2 - 4(2TTK)2 - 4p2}1'2 > 0 

implies 

[p\ - 4(2™)2 - 4p2} -p1<0 (63) 

and the terms in Eq.(61) multiplied with e~PlS/2e<-2q3+Pl)e/2 become very small 
for large values of 6. 

Consider the very first term in Eq.(57). To recognize what values it may 
assume we rewrite it as follows: 

\e~^{\ - chp2e) = \ ( e - " « - \e-r^-V _ Ie-P2<C+«A 
Pi Pi\ 2 2 / 

= -T2e~P2{i~6) forC, A » l (64) 

The constraint ( — 6 > 0 assures that this term will vary only in the interval 
from 0 to —1/2/92- Figure 6.12-1 shows this variation in detail. 

Equation (61) contains functions like e~pie/2 and e
(-2q3+Pl)e/2 that rep­

resents attenuation due to losses. Such terms have no meaning in quantum 
mechanics since photons are never attenuated. To eliminate these attenuation 
terms, as well as the phase shifted arguments 2-KK — q\ and 2TTK ± qi of some 
of the sine and cosine functions we resort to the Fourier series. We write it in 
the following form: 
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oo 

/«(0) = 5 o + X ^ S K M sin 2-KVO + gCK(v) cos 2itv0] 

i i 

5 s K(^) = 2 J fK(6)am2Kve<W, gCK{v) = 2 /"/„(») cos2irv9d6 

o o 
l 

5o = f fK(9) M, 0<6 = t/T<l (65) 

o 

We apply this series expansion to the second sura in Eq.(61): 

fKi(0) = e**°Bw(,K) cos A-KK6 (66) 
I 

gSK,\(v) = 2 / eq3eBiz(K)cos4TTK,6sxn2Ttv6de (67) 

o 
l 

5CKI(^) = I eqs6Bl3(K) cos Ait K6cos2-Kvede (68) 

0 

5o = 0 (69) 

The following integrals are required to evaluate gaKiiy) and gCKi{v): 

l 

7 I ( K , I / ) = 2 / e93" cos 4TTK6> sin 2%vB dB = hx (K, V) 4- /32(K,^) (70) 

0 
1 

I2(K,V) = 2 I eq3e cos4irK8cos2TTved6 = I41(K,V) + I42(K,V) (71) 

b 
1 

/ s i (« , v) = I e^e sin[27r(2« + v)]d9 = +2n{2K + " ) ( 1 ~ ^ 
ql + [2TT(2K + v)]2 

0 

2 7 r ( 2 K - i / ) ( l - e « 3 ) 
/„(*, ,) = / e«" sin[2,(2« - „)],* = - f ^ 2 K _ v)]2 

0 
1 

J„ («,*) = J e<3» COB[2*(2K + „)]d* = - f t 8 + ^ ( 2 f 8 + 

0 
1 

/)]= 

(72) 

(73) 

(74) 

/ « ( « , „ ) = / e « ' cos[27 r (2. - u)]dB = - ^ ^ L - (75) 
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Substitution of Eqs.(70) to (75) into Eqs.(66) to (68) yields for gaK\{v), 9CK.I{V), 
and }Ki (9) the following relations: 

gaKi{v) = B13(K)[I3I(K,V) + I32(K,V)\ (76) 

9cKi{y) = BI3{K)[I4I(K,I/) + U2{K,V)) (77) 

oo 

A i W = ^ 5 1 3 ( « ) { [ / 3 i ( « ^ ) +/32(«,»')]sin27ri/0 
i /=i 

+ [ A l K " ) +i42(« ,^) ] COS 1-KV&) (78) 

Let us turn to Eq.(61) for Aev{(^,9). The second sum, multiplied by e Pl in 
Eq.(61) becomes: 

< i f 

Y^ -e?3<?Bi3(K)cos47TK(9sin27r/< 

< X 00 

= - 5 Z 5 Z BIS(K)[II(K, V) sin27ri>0 + 72(«, v) COS2-KV9\ sin27r/< (79) 

27r(2« + v) 27T(2K - v 

q\ + [2-K(2K + V)}2 ~ q% + [2TT(2K - i/)]2 
J1(K,i/) = ( l - e f l ) ( , - , , r < w , 0 ^ ^ 1 2 ) (80) 

J-"-"-"-'"»U+[(3^.+»p^+p.g«-»]0 (81) 

We turn to the third sum in Eq.(61). The term e-Pi»/2e-(2g3+p l)e/2 i g a l s o 

eliminated by means of a Fourier expansion: 

/«2(0) = e-^+^e[C13(K)Sm4TrKe + D13(K)] (82) 

Following the steps from Eq.(66) to (79) we get a similar but considerably more 
complicated result: 

<K 
J2 e- ( 9 3 + P l ) e[C 1 3(K) sin4TTK9 + D13{K) COS2TTK6>] sin27r/< 

« = 1 

< K 00 

= J ! X){[CI3(K)I5(K, v) + D13(K)I6(K, V)\ sin 2TTI/« 
/ C = l U = l 

+ [ C I 3 ( « ) J 7 ( K , 1/) + £ » I 3 ( K ) J 8 ( K , 1/)] cos 2 T T ^ } sin27r«C (83) 
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The four integrals I5(K,V) to IS{K,V) are defined as follows: 

l 

h{K,v) = 2 [ e-{q3+Pl)e sin4irK9sm2iw9d9 = -(q3+pi) (l-e-
{q3+PlA 

o 

1 1 
(84) 

,(q3+Pi) +[2TT(2K+P)Y (q3+Piy + [2ir{2K-v)YJ 
l 

I6(K,V) = 2 j e-(^+Pl)esm2-Kv9d9 = 2 ( l - e " t e + P l ) ) 

o 

x ^ (85) 

1 

I 7 ( K , ^ ) = 2 f e-(q3+pl)esm4TTK9cos2iris9d9 = ( l - e- («3 + ' , 1>) 

b 

x / 2K(2K+V) 27r(2^-^) \ 

V(93+Pi)2 + [27r(2K+^)]2 (gs+pi ) a + [27r(2/c-i/)]V 
I 

h{n,v) = 2 Ie-^+ri9 cos2in;9d0 = 2(q3+pi) (l-e-(q3+p1^ 

o 
q3 + pi 

X (q3 + Plf + (2™f 
The first three sums in Eq.(61) may now be combined: 

<K 

(87) 

>J{J4es(«;) sin27r«0 + Aec(n) COS2-KK9 
K = l 

-e«3eS13(K)cos47TK;6> 

+ e- ( 9 3 + ' , l ) e[Ci3(K) sin47TK0 + DI3(K)}} sin 2TTK;< 

= V ^ { A S S ( K ) Sin2TTKd + Aec(li) COS27TK0 
K = l 

oo 

+ V*[.Bes(K, v) sm2in>6 + Bec{K,v)K0s2-Kv9}}sh\2-KK(, 

„=1 

Bes(n,i/) = B I 3 ( K ) / I ( K , ^ ) + C I 3 ( K ) J 3 ( K ) I / ) + - D I 3 ( K K 6 ( K , ^ ) 

Bec(«:, i/) = B13(K)I2(K, V) + C13(K)I7(K, V) + D13(K)I6(K, U) (88) 

We turn to the last three sums in Eq.(61). They are all multiplied by 
e-PiB/2 a n ( j they a q j j a v e a shift _ 5 l o r ± g 2 i n the arguments of the sine and 

cosine functions. Following Eq.(82) we write: 
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/KS(0 ) = e-P'e'2{Ab7{K) sin(27rK - q{]6 + B6S(K) COS(2TT/I - qi)0] (89) 

Following the steps from Eq.(66) to (77) we get: 

e-Ple/2 Y^ \A-O1{K) sin(27TK - qi)6 + B68{K) COS(2TTK - qi)6] sin27r/< 

K>K 

oo oo 

= ^ ^2{[A57{K)I9(K,IS) + B68{K)Iio(K,v)]sm2iTv6 

K>KV=\ 

+ [A57{K)III(K,V) + S68(K)/i2('«,J/)]cos27r^6l}sin27rKC (90) 

The integrals IQ(K,V) to II2{K,U) are more complicated than the previous in­
tegrals II(K,V) to IS(K,V): 

I 

IQ(K,V) = 2 /e- p i e l 2sm{2-KK,-q 1)esm2'Kvede 

o 

_ e-"1/2{( /91/2) cosg! + [2TT(K; + v) - q{\ sinqi} - ft/2 
\2 , m / , \ _ i 2 ( P l ^ r + ^ K + I / ) - ^ 

e~ P l / 2 {(Pi /2)cosgi + [2TT(K - v) - qx] singx} - ft/2 

( P l / 2 ) 2 + [ 2 7 r ( K - i / ) - g i ] 2 
(91) 

i 

J 1 0 ( K , I / ) = 2 J e-pl9/2 COS(2TTK - q±)9sin2TTv6d9 

o 

_ e-"^2{{px/2) singi - [27T(K+I/) - g i ] cosgi}+27r(/t+jy) -qx 

( f t /2 ) 2 + [2TT(K + v) - ? i]2 

e~ ' , 1 / 2 {(p 1 /2)s in5i- [27r(K-f) -gi ]cosgi}-( -27r(K-i / ) -g 1 

(ft/2)2 + [2TT(K - I/) - 9 l ] 2 

l 

hi{n, v) = 2 J e-
pxe/2 sin(27r« - q{)6cos2TT^d0 

(92) 

o 

_e -P 1 / 2 {( f t /2 ) s inq 1 - [27r ( / t+ t / ) -g 1 ] cosg 1 } + 27r(ft+t/)-g1 

(Pl/2)2 + {2n(K + v)-qi}
2 

, e -P^ 2 {(p 1 / 2 ) s ing i - [27 r ( / t - i / ) -9 i ] cosg i}+27r ( / t - t / ) -g 1 

( f t /2 ) 2 + [ 2 7 r ( « - ^ - 9 l ] 2 
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1 

I12(K,V) = 2 / e-pie/2cos(2Trn-q1)ecos2ni>ed6 

o 

_ e-i>^2{{pi/2) cosg! + [2n(n + v)- qx} sing!} - px/2 

(Pl/2)2 + {27r(K + v)-qi}
2 

e - " ^ / 2 { ( p ! / 2 ) cos ft + [2TT(/C - v) - 9 l ] sin ft} - P l / 2 

( P l / 2 ) 2 + [2TT(K - i/) - qi]
2 

(94) 

The second sum from the end in Eq.(61) is written in analogy to Eq.(82) 
as follows: 

fKi{6) = e-pie/2[Eb7{K) sin(27TK - qi)0 + F57(K) COS(2TTK - q2)9] (95) 

Again we follow the steps from Eq.(66) to (77) and obtain: 

oo 

e-Pi0/2 \ p [E57(K) sin(27r«: - q2)6 + F57 COS(2TT«; - q2)0] sin 2TT/< 

oo oo 

= Yl ^2{[E57(K)II3{K,U) + F57(K)I14(K,p)}sm27rue 

K>Kv=l 

+ ES7(K)I15(K, V) + F57(K)II6(K, V)\ COS 2TTV6} sin 2-KKC, (96) 

The integrals I\z{n, v) to I\Q(K, V) can be written with the help of the integrals 
h{n,v) to I12(K,V): 

I 

h3(K,v) = 2 J e-pie/2sm(2iTK-q2)6sm2irv6d6 

o 

= Ig(n,v) with (ft replaced by q2 (97) 
l 

IU(K, V) = 2 / e - ^ 2 cos(2?r«; - q2)Qsm.2irvOd6 

o 

= IIQ(K,P) with 9i replaced by q2 (98) 

l 

/ i 5(«, i / ) = 2 I e-fne/2sm{2TrK-q2)6cos27n;9de 

o 

= IH(K; , V) with gi replaced by q2 (99) 

i 

Ji6(«, v) = 2 [ e-
pi0/2 cos(2?r« - g2)0cos27ri/0 

o 

d6 

I\2(K,V) with gi replaced by q2 (100) 
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We turn to the last sum in Eq.(61). In analogy to Eq.(82) we write it in 
the following form: 

/ K 3 (<9) = e-pie/2[E68(K) sin(27TK + q2)6 + F68(K) C O S ( 2 ™ + q2)6\ (101) 

Following the steps from Eq.(66) to (77) a final time we obtain: 

oo 

e-Ple/2 ^ {[E68{K) sin(27TK + q2)6 + F68(K)(2TTK + q2)6] sin27r/< 
K>K 

oo oo 

= Y^ X^68^17^'^ + *88(K)/18(K,i')]sin27ri/0 
K>KV = \ 

+ [E68(K)I19(K, v) + F68{K)I20(K, V)] COS2TTI/0} s in27r< (102) 

The integrals IU(K, P) to hoi**, v) can be written with the help of the integrals 
h{n,,v) to h2(n,v): 

I17(K, V) = 2 e-
pl6/2 sin(27r«; + q2)9 sin 2itv8 d9 

o 

= IQ(K,I/) with q\ replaced by —q2 (103) 

l 

I1S(K,V) = 2 e - ^ l 2 COS(2TTK + q2)6 sin2nv6 d6 

o 

= IIO(K, V) with 9i replaced by — q2 (104) 

l 

II9(K,V) = 2 / e-pie/2sm(2TVK + q2)6coa2irv6d6 

o 

= III(K,V) with q\ replaced by — q2 (105) 

l 

I20{K,V) = 2 / e~Pl6/2 COS{2KK + q2)6cos2irv6d6 

o 

= hi{K,v) with gi replaced by —q2 (106) 

The sums 4 to 7 of Eq.(61) may be combined: 
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K>K 

y ^ {Aes(K) sin 2-KKQ + ABC{K) COS 2TTK6 

>K 

+ e-pi9/2[A57(K) sm(2itK - q{)6 + B68(K) COS(2TT« - qx)6 

+ E57(n) sin(27r/t - q2)6 + F57 cos(27r« - q2)6 

+ Eea(K) sin(27r« + q2)0 + FSS(K) COS(27TK; + g2)#]} sin 2-KKC, 
oo 

2 J {A>S(KO sin27TK0 + Aec{n) cos2ir K9 
K>K 

+ \_j [Be* (K>v) s m 27Tiv̂  + Bec (K, V) COS 2TTU6] } sin 2-KKC, 

v=\ 

BBS(K, v) = A57(K)I9(K, V) + B68{K)IIO(K, V) + E57(K)II3(K, V) 

+ F57(K)IU(K, V) + E68(H)I17(K, V) + F68{K)IIS{K, V) 

Bec(K, v) = Ab7{K)hi{K, v) + B68(K)II2{K, V) + E57(K.)I15(K, V) 

+ F57(K)II6{K, V) + E68(K)II9(K, V) 

+ F68(K)I20(K,V) (107) 

The very first term e -P2 l»(l — ch p28) in Eq.(61) can be represented by a 
product of Fourier series with £ and 6 as the transformed variables. We shall 
not do so now in order to preserve the compactness and clarity of the notation 
e~P2^(l — chp26) compared with its Fourier representation. Equation (61) is 
written in the following form with the help of Eqs.(88) and (107): 

Aev(C,0) = c2T2Ve 2 ' 
IP2 

<K 

\e~p2i(l - chp26) + 2(1 - e-p2) 

\]{Aes(n) sin27i"K# + Aec(ii) COS2TTK0 

+ yj[2?e5(<t, u) sin 2ixv6 + BBC(K, U) cos 2ni>6]} sin 27TK£ 

00 

+ y ^ {Aes{ii) sin 2TTK0 + Aec(K,) cos2TTK9 
K>K 

00 Y 

+ \ \ [Bes (K,v) sin 2TTV9 + Bec (K, V) COS 2-KVQ] } sin 2TTK( J 

i /= i 

(108) 

A radical simplification of the writing of this equation is necessary to make it 
usable: 
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Aev((,6) = c2T2Ve0i AoiCO) + ^CeK(e)sm27TK(; 

Pi 

CeK{6) = 2(1 - e~"2) ( ABS(K) sin2TTK0 + Aec(/t) COS2TTK0 

+ ^T[Bea(K, v)sm2-Kv6 + Bec(n,v)cos2irv6] J (109) 

We may make two simplifications that hold generally by using the relation 
pi = cTy/oa » 1 of Eq.(2.2-9). First the factor 1 — exp(—p2) is essentially 
equal to 1. Second, the absolute value of Aeo{C,,6) is less than 0.5//92 according 
to Fig.6.12-1. Hence, we write: 

Aev{{,0) = c2TVeO£;<?eK(0)sin27r/< 
K = l 

CeK{9) = 2(j4eS(«0 s i n 2 7 r K # + -Aec(«) cos2ITK9 

+ Y^[Bes(K,u)sm2nKi/0 + Bec(K,v)cos2nv6] ) (110) 
i /=i ' 

We need the limits for K —> oo of most of the expressions derived in this 
section. First we write the auxiliary expressions of Eqs.(l) to (12) as well as a 
few more frequently required expressions: 

for d2 = 4[(2TTK)2 + pi] > PI, K-+ OO 

d2 » 4(2TTK)2 (111) 

ft„4™+£^, 9 2 « ^ ^ (112) 
47TK 47TK 

(d2 - p\ f ' 2 « 4TTK (113) 

9 1
2 + ( f ) 2 « 4 ( 2 7 r « ) 2 + 2 p | - ^ 2 (114) 

ll+.o, 4 ®2~\* 2 2 (-) 
gi - 2ITK » 2TT« + P2 ~ P l ' 4 (116) 

47TK 

92 + 27TK « 27TK + P 2 ~ (117) 
47TK 
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Starting with Aes(K) of Eq.(13) we follow the listing and obtain for the limit 
K —> oo the following results: 

1 . . . \ ( p\ 
^es(K) « ^ ( K ) « — — • 1 - ^ | (118) 

{2TTKYPI (27TK)3 V p\} ' 
3^i R , s 1_ 

16(2™)* ^ 5 r W ~ 4(2TTK)3 ^ ^ ) ^ - T ^ £ ^ S " ( « ) « 7 7 ^ ( 1 1 9 ) 

C57(K) « -75-V- ^ W ^ - ^ l s f 1 - ^ ) (12°) {2TTKYPI 4(2TTK)3 \ 3 p ? / 

^ W l e f e * " " ^ *"<"> w 4 ( 2 ^ - ^ r ( i c ) (121) 

CW") «-7o-V- ^ 8 («)«-^±44 (122) 

^ 7 ( K ) W - ( 2 ^ ^ " " ( d ^ T (123) 

F B ^ W - 2 ( 2 ^ F 6 8 ^ - 4 ( 2 ^ ( 1 - 4 | ) <124> 

The integrals 7I (K, V) to i s t a V) are not needed for the limits K —> oo, but 
the integrals Ig(/c, i/) to I<2O(K,I/ are: 

^ " - ( ^ F J ^ . " ) « - ( ^ d«) 
2 r / \ Pi 

_ /„(«,„) „__ a 
27TI/ 47TI/ 

( 2 ^ / l 4 ( K ' " ) f t i - ( 2 ^ ) 

' " ( " • " ^ - ^ 7 i 2 ( « ^ ) « 7 ^ ) 2 (126) 

A 3 K ^ ) « 2 p 1 7 £ ^ 3 J l 4 (« ,v) « - 7 ^ 2 ( I 2 7 ) 

I 1 5 ( , , , ) « ^ / l f l M „ _ £ _ (128) 

^ ( " . " ) « ^ ( ^ » ^ ' ^ ^ " ^ ( 1 2 9 ) 

/ ! . ( « , - ) « 2 ^ ' ^ * 2 ( ^ ( 1 3 0 ) 

We may now produce the functions BeB(n,v) and Bec(n,i>) of Eq.(107). 
Since we do not want to evaluate the sums over v we cannot write « (approx­
imately) but must write oc (proportionate): 

B"{K'v)xjd^ B°*{K'P)*^KY (131) 

The functions Ces(n,v) and Cec(K,v) of Eq.(4.2-16) vary for K —• oo as 
follows: 
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Ces{n, v) « 2-KnpsBes(K, v) - - — B B C ( K , V) OC (132) 

—*„(,.,„) « _ ) a C e c (K, ^ ) « 2lTKpsBec(K, v) + ^^B^K, ^ ) OC / a x 2 (133) 

For £/C
2

S(K) and J7C
2

C(K) in Eqs.(4.3-30) and (4.3-31) we get: 

^cs (« ) « ( Bec(K,v) + -Ces(K,l/)j + f Bes(K,v) - -Cec(K,v) 

« (2^F < 1 3 4 ) 

^cc( K ) ^ ( ~Bec 
(K, V) + Ces(K, u)\ + f -Bes(K, p) - C e c ( « , ^ ) 

« ( 2 ^ ^135) 

The normalized energy of the component of the wave represented by the 
sinusoidal pulse with K cycles in the interval 0 < y < cT or by all the photons 
with the period number K varies for K —* oo as follows: 

•KK = (2nK)2[Ul(K) + [£(«)] ex ^ - L j for « - oo (136) 
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satisfy the causality law. An additional term for magnetic dipole currents corrected 
this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just 
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currents. Electric dipole currents were always part of Maxwell's equations. 

This book shows that the correction of Maxwell's equations eliminates the infinite 
zero-point energy in quantum electrodynamics. In addition, it presents many more 
new results. 

ISBN 981-02 <!//()-? 

9 "789810"247706" 


	Contents���������������
	PREFACE��������������
	LIST OF FREQUENTLY USED SYMBOLS��������������������������������������
	1 Introduction���������������������
	1.1 Maxwell's Equations������������������������������
	1.2 Step Function Excitation of Planar TEM Wave������������������������������������������������������
	1.3 Solutions for the Electric Field Strength����������������������������������������������������
	1.4 Associated Magnetic Field Strength���������������������������������������������
	1.5 Field Strengths with Continuous Time Variation���������������������������������������������������������
	1.6 Modified Maxwell Equations in Potential Form�������������������������������������������������������

	2 Monopole Dipole and Multipole Currents�����������������������������������������������
	2.1 Electric Monopoles and Dipoles With Constant Mass������������������������������������������������������������
	2.2 Magnetic Monopoles and Dipoles With Constant Mass������������������������������������������������������������
	2.3 Monopoles and Dipoles With Relativistic Variable Mass����������������������������������������������������������������
	2.4 Covariance of the Modified Maxwell Equations�������������������������������������������������������
	2.5 Energy and Momentum With Dipole Current Correction�������������������������������������������������������������

	3 Hamiltonian Formalism������������������������������
	3.1 Undefined Potentials and Divergent Integrals�������������������������������������������������������
	3.2 Charged Particle in an Electromagnetic Field�������������������������������������������������������
	3.3 Variability of the Mass of a Charged Particle��������������������������������������������������������
	3.4 Steady State Solutions of the Modified Maxwell Equations�������������������������������������������������������������������
	3.5 Steady State Quantization of the Modified Radiation Field��������������������������������������������������������������������

	4 Quantization of the Pure Radiation Field�������������������������������������������������
	4.1 Radiation Field in Extended Lorentz Gauge����������������������������������������������������
	4.2 Simplification of Aev(C 0) and Amv(C 0)��������������������������������������������������
	4.3 Hamilton Function for Planar Wave��������������������������������������������
	4.4 Quantization of a Planar Wave����������������������������������������
	4.5 Exponential Ramp Function Excitation�����������������������������������������������
	4.6 Excitation With Rectangular Pulse��������������������������������������������

	5 Klein-Gordon Equation and Vacuum Constants���������������������������������������������������
	5.1 Modified Klein-Gordon Equation�����������������������������������������
	5.2 Planar Wave Solution�������������������������������
	5.3 Hamilton Function for the Planar Klein-Gordon Wave�������������������������������������������������������������
	5.4 Quantization of the Planar Klein-Gordon Wave�������������������������������������������������������
	5.5 Dipole Current Conductivities in Vacuum��������������������������������������������������

	6 Appendix�����������������
	6.1 Electric Field Strength Due to Electric Step Function����������������������������������������������������������������
	6.2 Magnetic Field Strength Due to Electric Step Function����������������������������������������������������������������
	6.3 Excitation by a Magnetic Step Function�������������������������������������������������
	6.4 Electric Field Strength Due to Electric Ramp Function����������������������������������������������������������������
	6.5 Magnetic Field Strength Due to Electric Ramp Function����������������������������������������������������������������
	6.6 Component Amz of the Vector Potential������������������������������������������������
	6.7 Component Aex of the Vector potential������������������������������������������������
	6.8 Choice of p2 << 1 in Eq.(4.1-85)�������������������������������������������
	6.9 Excitation of a Spherical Wave�����������������������������������������
	6.10 Better Approximations of Dipole Currents����������������������������������������������������
	6.11 Evaluation of Eq.(5.3-4)������������������������������������
	6.12 Calculations for Sections 4.2 and 4.3�������������������������������������������������

	7 REFERENCES AND BIBLIOGRAPHY������������������������������������
	INDEX������������



