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Introduction 

James Clerk Maxwell 

Maxwell's Equations' 
Differential form Integral form 

dt -»с dt 

V-D = pv j>D-ds=Q 

V-ß = 0 j>JSds=0 

BIOGRAPHY 

James Clerk Maxwell was born on June 13, 1831, in Edinburgh, Scotland, and was 
educated at his country home until he was 8 years old, when his mother died. At 
age 10, he attended Edinburgh Academy, where he was given the nickname" "Dafty." 
At age 16, he attended the University of Edinburgh, and, at age 19, he went to 
Peterhouse Cambridge but moved to Trinity to obtain a fellowship. In 1856, he 
moved to Marischal College in Aberdeen to be near his father, who shortly thereafter 
died. Maxwell married Katherine Mary Dewar, the daughter of the Principal of 
Marischal College, in 1859. In 1860, Maxwell was appointed to the chair of Natural 
Philosophy at King's College in London, where he did his most productive work, 
and, from 1871 until his death on November 5, 1879, he was the first Cavendish 
Professor at Cambridge, where he produced his two-volume treatise,'" created a 
working laboratory, and edited Henry Cavendish's researches for publication. Albert 

X l l l 



xiv Introduction 

Einstein once described Maxwell's work'v as the "most profound and the most 
fruitful that physics has experienced since the time of Newton." 

E L E C T R O M A G N E T I C C O N C E P T S IN T H E MID-1800s 

John Tyndall wrote a series of essays, addresses, and reviews entitled Fragmenfs of 
Science? which began with the copy of a 1865 essay on "The Constitution of 
Nature,'"' in which the perspective of "modern" science described electromagnetics 
as follows: 

From the phenomena of sound, as displayed in the air, "men's minds" ascend to 
the phenomena of light, as displayed in the ether; which is the name given to the 
interstellar medium. The notion of this medium must not be considered as vague or 
fanciful conception on the part of scientific men. Of its reality most of them are as-
convinced as they are of the existence of the sun and the moon. The luminiferous 
ether has definite mechanical properties. It is almost infinitely more attenuated than 
any know gas, hut its properties are those of a solid rather than of a gas. It resembles 
jelly rather than air. 

It was the revolutionary thinking of Einstein that changed that description to a 
relativistic philosophy that there is no luminiferous ether, but, rather, the speed of 
light is the same for all observers, independent of their own velocity relative to the 
source. Einstein was one of the first scientists to adopt the rubric of the observer for 
logically deducing outcomes, but it was an extension of one of the fundamental 
principles of science1" that this text has used to develop a process of explaining 
physical processes: "Upon every particle there exists an observer and that observer 
is you." Students in this endeavor are asked to "think like an electromagnetic wave" 
for the purpose of finding a logical solution. 

In an article on "Scientific Materialism'"'"' in 1868, Tyndall also noted 

Mathematics and physics have been long accustomed to coalesce, and here they 
form a single section. No matter how subtle a natural phenomenon may be, whether 
we observe it in the region of sense, or follow it into that of imagination, it is in the 
long run reducible to mechanical laws. But the mechanical data once guessed or 
given, mathematics are all-powerful as an instrument of deduction. The command of 
Geometry over the relations of space, and the far-reaching power which Analysis 
confers, are potent both as a means of physical discovery, and of reaping the entire 
fruits of discovery. 

In this book, we follow one of the most beautiful and fruitful applications of 
mathematics that has ever been written. It is the culmination of many individual 
mathematicians and scientists that has led us to the solutions of Maxwell's equations. 
Most of these early mathematicians were not interested in applications, and most did 
their work prior to the development of Maxwell's equations. French, German, and 
English academicians such as Bessel, Cauchy, Clebsch, Dirichlet, Fourier, Gauss, 
Green, Hankel, Helmholtz, Hermite, Hubert, Laguerre, Laplace, Laurent, Legendre, 
Lorentz, Lorenz, Neumann, Poisson, Rayleigh, Schmidt, Stokes and Wronski built 
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a foundation of solutions for partial differential equations that stood alone. When 
Sturm and Liouville categorized their work into a common framework, they were 
able to demonstrate that a set of complete, orthogonal, functions could uniquely 
describe a set of eigenfunctions that guaranteed a solution to Maxwell's equations. 
This framework is one of the most elegant sets of solutions ever to be devised, and 
we are the beneficiaries of their work. We shall adopt their efforts with reference to 
their work. Relevant texts for this systematic approach are given by Arfken,'" and 
Jackson," and a self-study set of outlines is available from Spiegel."1 

Rather than focus on mathematical proofs of solutions, this book is intended to 
be a foundation for the discipline of electricity and magnetism upon which measure-
ments, simulations, and "rules-of-thumb" are built. In that sense, it is intended to be 
a book that takes theory to practice. It is written in the language of an electrical 
engineer rather than a mathematician or physicist and is intended to support 
engineering practice."" 

Practical work has provided a dilemma for scientists since the time of Maxwell. 
For example, following an essay "On Prayer as a Form of Physical Energy," Tyndall 
includes a comment on the popular interest in understanding electromagnetics: 

It is the custom of the Professors in the Royal School of Mines in London to give 
courses of evening lectures every year to working men. The lecture-room holds 600 
people; and tickets to this amount are disposed of as quickly as they can be handed to 
those who apply for them. So desirous are the working men of London to attend these 
lectures that the persons who fail to obtain tickets always bear a large proportion to 
those who succeed. Indeed, if the lecture-room could hold 2,000 instead of 600, I do 
not doubt that every one of its benches would be occupied on these occasions. The 
information acquired is hardly ever of a nature which admits of being turned into 
money. It is therefore, a pure desire for knowledge, as a good thing in itself, and 
without regard to its practical application, which animates the hearers of these 
lectures. 

Tyndall concludes his Fragments of Science with the following insight: 

Two orders of minds have been implicated in the development of this subject; first, the 
investigator and discoverer, whose object is purely scientific, and who cares little for 
practical ends; secondly, the practical mechanician, whose object is mainly industrial. 
It would be easy, and probably in many cases true, to say that the one wants to gain 
knowledge, while the other wishes to make money; but I am persuaded that the 
mechanician not infrequently merges the hope of profit in the love of his work. 

E X T E N S I O N O F E L E C T R O M A G N E T I C T H E O R Y I N T O T H E 2000s 

One of the great ironies of history is that Maxwell's equations were not written by 
Maxwell, at least not in their vector form stated on the first page. Maxwell was 
convinced that the laws of electromagnetism would be best formulated in the form 
of a quaternion, which had been invented by the Irish mathematician Sir William 
Rowan Hamilton in 1843 because they worked in four dimensions and could 



xvi Introduction 

therefore include three-dimensional space and time. The original form of Maxwell's 
equations was thus in the form of 20 quaternion expressions that will be discussed 
in the vector chapter, which included eight equations dealing with electromagnetic 
fields that include the magnetic vector potential and 12 that deal with the magnetic 
scalar potential, magnetic mass, and magnetic conductivity. Some scientists today"" 
say that the vector-reformulated equations by Heavyside, Gibbs, Fitzgerald, Lodge, 
and Hertz are insufficient to describe some physical outcomes such as the Aharonov-
Bohm effect, the Josephson effect, the quantum Hall effect, the De Hass Van Alphen 
effect, and the Sagnac effect, all of which make the magnetic scalar and vector 
potentials (sometimes called the Αμ fields with μ = 0, 1, 2, 3) physically meaningful 
constructs. The Heavyside formulation (and this book) treats the magnetic vector 
field as a mathematical convenience. As Lord Kelvin said in 1892, "Quaternions 
came from Hamilton after his really good work had been done; and, though beauti-
fully ingenious, have been an unmixed evil to those who have touched them in any 
way, including Clerk Mawell." Maxwell's first formulation of a magnetic charge 
density and the possible existence of magnetic monopoles were forgotten for half a 
century until P. A. M. Dirac again speculated on their existence in 1931. In defer-
ence to my former colleague, Yakir Aharonov, these potentials are mentioned 
extensively in this book but usually in the vein of an engineer's interpretation that 
they give the correct mathematical result but show few practical macroscopic proper-
ties and do not interact directly with particles. A few scientists like H. Harmuth and 
K. Meyl go a step further to state that there exist no kind of monopoles, electric or 
magnetic; that the alleged electric monopoles (charges) are only secondary effects 
of electric and magnetic fields. We will see that this description of fields as wavelike 
entities is contained in the dual nature of matter as either particle or wavelike, 
depending on the interpretation for a given application. Both descriptions have a 
disconcerting problem: the magnetic vector potentials require "action at a distance" 
and that electromagnetic history influences current properties, whereas the vector 
field interpretation requires that waves propagate in luminiferous ether that has no 
physically measurable properties. 

INTENT OF THE BOOK 

It is the intent of this book to first clarify the concept of Tyndall's jelly, which 
transmits "action at a distance" (as it was called in 1865). This portion of the book 
is a mathematical and physical treatment that enables "working men" (and women) 
to understand the greatest set of equations ever devised,1 now called Maxwell's 
equations. It focuses on our "pure desire for knowledge" and is intended to permit 
the readers to convince themselves that Maxwell's equations provide a framework 
for a multitude of application. In the current book, techniques that show how to 
obtain analytic solutions to Maxwell's equations for ideal materials and boundary 

1 In 2004. Physics Web readers voted Maxwell's equations and Euler's equation to be the greatest 
equations of all time. 
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conditions are presented. These solutions are then used as a benchmark for the 
student to solve "real world" problems via computational techniques, first confirm-
ing that a computational technique gives the same answer as the analytic solution 
for an ideal problem. A subsequent book. The Foundations of Signal Integrity"" 
concentrates on the solutions to Maxwell's equations in a variety of media (various 
flavors of jelly) and with a variety of boundary conditions. 

This information is presented to the twenty-first-century students2 in the hope 
that they will consider mathematical and physical concepts as integral. The students 
are challenged to not accept uncertainty but to be honest with themselves in appre-
ciating and understanding the derivations of the electromagnetic giants. After the 
mathematical solution has been obtained, we hope that the students will ask, "What 
are these equations telling me?" and "How could I use these in some other applica-
tion?" Perhaps the students will delve even deeper to ask, "What are the physical 
phenomena that cause fields to exist, to move, to reflect, or to transmit through 
materials?" With such an armada of knowledge, the students can take these electro-
magnetic concepts to further applications and to further "stand on the shoulders of 
giants"3 (perhaps for monetary gain). 

And while the students may criticize the concept of luminiferous ether and make 
fun of the ancient practice of including an essay on Prayer in the context of natural 
law, they should review the beauty of such a set of symmetric equations named 
for Maxwell. It is worthy of note that, while we call these equations Maxwell's 
equations, a student might ask, "Why do these equations describe nature in such a 
simple form?" "Is it possible that the mind of man is incapable of understanding or 
postulating a more complex set of equations?" or "Is it not possible that nature is 
so mathematically beautiful because God made it that way for our pleasure?" 

NOTES 

i. James Clerk Maxwell, "A Dynamical Theory of the Electromagnetic Field," Philosophical Transac-
tions of the Royal Society of London 155 ( 1865): 459-512. Oliver Heaviside reformulated Maxwell's 
equations (originally in quaternion format) to this asymmetric vector form. In Chapter 7, concepts 
of electric vector potential and magnetic vector potenlial are shown to make the equations fully 
symmetric. 

ii. http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Maxwell.html 
iii. James Clerk Maxwell, A Treatise on Electricity & Magnetism, Vol. 1, unabridged 3rd ed. (New 

York: Dover, 1954), Vol. 2 (La Verne, CA: Merchant Books, 2007). 

! One reader from the Physics Web polled that rated Maxwell's equations as the most beautiful 
equations ever derived recalled how he learned Maxwell's equations during his second year as an 
undergraduate student, "1 still vividly remember the day I was introduced to Maxwell's equations 
in vector notation." he wrote. "That these four equations should describe so much was extra-
ordinary ... For the first time 1 understood what people meant when they talked about elegance and 
beauty in mathematics or physics. It was spine-tingling and a turning point in my undergraduate career." 
' The quote "If I have seen farther than others, it is because I have stood on the shoulders of giants" 
was attributed to Sir Issac Newton because it appeared in a letter he wrote to Robert Hooke in 1675 
but was also used by an eleventh-century monk named John of Salisbury, and there is evidence he 
may have gotten it from an older text while studying with Abclard in France. 
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iv. Paul Arthur Schilpp, ed., Albert Einstein: Philosopher-Scientist (La Salle, IL: Open Court, 1951), 
63. Einstein once wrote, "The special theory of relativity owes its origin to Maxwell's equations of 
the electromagnetic field." 

v. John Tyndall, Fragments of Science, Vol. 1 (New York: D. Appleton, 1897), 4. 
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viii. President's Address to the Mathematical and Physical Section of the British Association at Norwich. 
ix. Hans J. Wever and George B. Arfken, Mathematical Methods for Physicists, 6th ed. (Burlington, 

MA: Elsevier Academic Press, 2005). 
x. John David Jackson, Classical Electrodynamics, 3rd ed. (Danvers, MA: John Wiley & Sons, 1999). 
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NJ: John Wiley & Sons, 2009), and Howard Johnson and Martin Graham, High-Speed Signal 
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Chapter 1 

Foundations of Maxwell's 
Equations 
LEARNING OBJECTIVES 

• Review selected chronological developments of electromagnetic concepts 
• Appreciate the role of electromagnetic theory in electrical engineering 
• Use fundamental electromagnetic field quantities, units, and universal constants 
• Use statistical concepts for determining the precision of a measured number 
• Understand and apply principles of complex variables and phasor notation 

1.1 H I S T O R I C A L O V E R V I E W 

Some credit the existence of electric charge to a discovery more than two and a 
half thousand years ago by a Greek astronomer and philosopher, Thaïes of Miletus. 
He found that an amber (ήλεκτρον) rod, after being rubbed with silk or wool, 
would attract straw and small pieces of parchment. The Greek word for amber is 
éléktron, from which the words electron, electronics, electricity, electromagnetic, 
and electrical engineer are derived. 

The discovery of the magnetic polarities of lodestone (μάγνηζ), a natural mate-
rial found in the Thessalian Magnesia, from which we derive' the name magnetic, 
by Pierre de Maricourt occurred around 1269. From that time through the early 
seventeenth century, progress in the study of magnetism was slow, but, during the 
seventeenth century, there were notable contributions by a number of scientists 
toward understanding magnetism. A. Kirchner demonstrated that the two poles of a 
magnet have equal strength, and Newton attempted to formulate the laws governing 
the forces between bar magnets. 

The inverse square law of electric and magnetic forces was not postulated until 
John Michell proposed it in 1750 and Coulomb confirmed it in 1785. Coulomb's 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 
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2 Chapter 1 Foundations of Maxwell's Equations 

law may be said to be the starting point of modern electromagnetic theory. Subsequent 
landmark developments in electromagnetic theory include the derivation by Laplace 
in 1782 and Poisson in 1813 of the famous equations that bear their names. Gauss 
published the divergence theorem, often called Gauss's law, in the same year. 

Experiments with electric current could be performed only after invention of 
the battery by Volta in 1800. Having a source for generating a continuous current, 
Oersted, in 1820, was able to demonstrate the production of magnetic fields by 
electric currents. His discovery prompted others to investigate the relationship 
between electric current and magnetic fields. In 1820, Ampere announced a discov-
ery relating to the forces between electric current-carrying conductors and magnets 
and the mutual attraction or repulsion of two electric currents. These experiments 
led to the formulation of what is now called Ampere's law. In 1820, Biot and Savait 
repeated Oersted's experiment to determine a law of force between current carrying 
conductors, giving us the so-called Biot-Savart law. 

During the period of Oersted and Ampere, Faraday was also experimenting on 
the interaction between current-carrying conductors and magnetic fields and devel-
oped an electric motor in 1821. Faraday's experiments on developing induced cur-
rents by changing magnetic fields led to the law of electromagnetic induction in 
1831. Faraday also proposed the concept of magnetic lines of force and laid the 
foundation of electromagnetic field theory. 

In 1864, Maxwell proposed" A Dynamical Theory of the Electromagnetic Field 
and thus unified the experimental researches of over a century through a set of 
equations known as Maxwell's equations. These equations were verified by Hertz 
in 1887 in a brilliant sequence of demonstrations. It is now generally accepted that 
all electromagnetic phenomena are governed by Maxwell's equations. 

1.2 ROLE OF ELECTROMAGNETIC FIELD THEORY 

Electromagnetic field theory is the study of the electric and magnetic phenomena 
caused by electric charges, c/, at rest or in motion. There are two kinds of electric 
charges, positive and negative, following a definition given by Benjamin Franklin. 
Both positive and negative charges are sources of an electric field intensity,1 E (or 
£). Moving charges produce a current that can further give rise to a magnetic field 
intensity, H (or / / ) . A vector field is defined as a spatial distribution of a vector 
quantity, which may or may not be function of time. A time-varying electric field 
intensity is always accompanied by a magnetic field intensity and vice versa. In other 
words, time-varying electric and magnetic field intensities are intrinsically coupled 
and result in an electromagnetic field intensity. Time-dependent electromagnetic 
field intensities produce waves that radiate from their source toward an observation 
point. Many authors call this the causality principle because, they argue, the phenom-
enon does not work in the opposite direction. But, in our study of electromagnetic 

1 Other authors often use a bold type or a capital letter with an overhead vector to represent a vector 
quantity and interchange the two designations freely. This book will also color-code the electric field 
intensity and magnetic lield intensity to make their representation clear in equations and drawings. 
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fields propagating in a waveguide, wc will see that boundary conditions at a conduct-
ing surface boundary require a charge density distribution to support the electric and 
magnetic field intensities defined by Maxwell's equations. Because conduction elec-
trons do not travel at velocities comparable with field propagation velocities, we can 
argue that the surface charges on the conductors must be induced by the field intensi-
ties. Such a picture of the physical universe gives symmetry to nature as defined by 
a "principle of equivalence": It is equivalent to view charges and currents as the 
source of electromagnetic fields or to view electromagnetic fields as the source of 
induced charges and currents. 

The concept of propagating fields and waves is essential in the explanation of 
action at a distance. Satellite and mobile communications demonstrate that electric 
fields and magnetic fields propagate; that electromagnetic waves move in free space 
or in a medium such as air, water, resin fiberboard, or any other material. As we 
will see, they propagate without the presence of a luminiferous ether or "jelly." 

Electromagnetic field theory is important in that it can explain many phenomena 
and solve complicated problems that conventional circuit theory cannot address. For 
instance, a mobile antenna can receive signals transmitted from base stations, where 
there are no physical connections between the transmitter and receiving antennas, and 
no free-space currents or voltages defined as in circuit theory. Another good example 
is the strong coupling that may exist between components printed some distance apart 
on circuit boards even though there are no identifiable resistance, capacitance, or 
inductance elements between them. By using computer techniques and electromag-
netic theory, however, the intentional coupling between widely separated antennas 
and the unintentional coupling between nearby circuit components can be accurately 
predicted. In the discipline of Signal Integrity, the phenomenon is called "cross talk." 

1.3 ELECTROMAGNETIC FIELD QUANTITIES 

Historically, quantities in electromagnetic field theory are divided into two catego-
ries: source quantities and field quantities. The source of an electromagnetic field 
usually refers to electric charges at rest or in motion, while field quantities are usually 
observed or computed at an observation or field point. In this chapter, we will 
distinguish between classical view of cause and effect, at least for the purpose of 
discussion by routinely displaying source coordinates with a prime, for example, 
(x1, y', z')\ and field or observation coordinates as unprimed, for example, (x, y, z). 
However, we are mindful that it is equivalent to take the view that fields induce 
charges or charges induce fields and we shall see in the case of field propagation in 
a transmission line or waveguide that this duality can lead to a more complete 
understanding of power loss. 

Electric Charges and Charge Densities 

The symbol ц or Q is used to denote electric charge, which is a fundamental property 
of matter and exists only in positive or negative integral multiples of the charge on 
an electron, -e, where 
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e = 1.60217653(14)xl0"'9C. (1.1) 

С is the abbreviation for the meter—kilogram-second (or International System of 
Units [SI]) unit of charge, coulomb.2 A coulomb is a very large unit for charge 
because it takes 1/1.60 x 10~19 or 6.25 x 1018 electrons to make up 1С The quantity 
in parenthesis (14) is the standard deviation in all measurements that have been 
compiled by the National Institute of Standards and Technology to obtain an average 
of the measured values of e. This and other quantities described below can be found 
at http://physics.nist.gov/cgi-bin/cuu/Value7e. 

The principle of conservation of electric charge is a fundamental postulate. The 
statement that electric charge is conserved simply means that it can neither be created 
nor destroyed. The principle of conservation of electric charge must be satisfied at 
all times and in all situations in electrical engineering. 

Next, we define a volume charge density, p„ as a source quantity as follows: 

P . = h f f ( C / m ' ) , (1.2) 

where Aq is the amount of charge in a very small volume Av. In many cases, an 
amount of charge Ac/ may be identified with an element of surface, Δ?, or an element 
of line, Al. In such cases, it will be more appropriate to define a surface charge 
density, Σ„ or a line charge density, A,: 

i, = i m 3 = % / m 2 ) (1.3) 
*-><> As ds 

A, = l i m ^ = ^ ( C / m ) . (1.4) 
*-*» AI dl 

In general, all charge densities are point functions of space coordinates and may also 
be time dependent. In some texts, the surface charge density, Σ„ may be labeled o", 
or Pi, and the line charge density, λ,, may be labeled p,. Alternate labeling is neces-
sary in preventing confusion when, in the same section or publication, we discuss 
electrical conductivity, traditionally labeled cr, and/or scattering cross section, 
traditionally labeled σ,. Likewise, we often refer to the distance to the г-axis in 
cylindrical coordinates by the symbol p. 

Current and Current Density 

Electric current is the rate of transfer of charge across a reference surface with 
respect to time;3 that is, 
1 One of the oddities of science and technology is that we traditionally do not capitalize the written 
unit that represents a person's name (like Coulomb) unless the symbol (e.g., C) is used for that unit. 
' As mentioned earlier, a time-varying electric field intensity is always accompanied by a magnetic 
field intensity and vice versa. In this book, charges and electric field intensities will be colored red and 
currents and magnetic field intensities blue. Thus, a time derivative of a red quantity produces a blue 
quantity, as shown in Equation 1.5 and vice versa. 
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/ = lim ^ - = ^ · (C/s or A), (1.5) 
*-* At dt 

where the unit of current is a coulomb per second (C/s) or ampere (A). A physical 
current must flow through a finite area; hence, it is not a point function but may be 
time dependent. However, in electromagnetic held theory, we define a vector point 
function, current density,./, which measures the amount of current flowing through 
a unit area normal to the direction of current flow. The current density J is a vector 
whose magnitude and direction are the current per unit area (A/m2), and the direction 
of current flow at a point in space, respectively. ./ may also be a time-dependent 
quantity. 

Electromagnetic Field Quantities 

An electromagnetic field can be described by four field quantities: 

Electric field intensity E (V/m); 
Electric flux density or displacement D (C/m2); 
Magnetic field intensity H (A/m); and 
Magnetic flux density В (Wb/m2 or T). 

Here, the unit T stands for the tesla or volt-second per square meter and is 
named in honor of Nikola Tesla (1857-1943), who helped the understanding of 
rotating field poles in electric motors and transformers. The electric field intensity 
E is the vector field used in electrostatics when charge is at rest in free space 
and is defined as the electric force on a unit test charge. The electric displace-
ment vector D (also called the electric flux density or displacement flux) is a 
vector field used in studying the electric fields inside material objects. Similarly, 
magnetic field intensity H is a vector needed in discussing magnetic phenomonen, 
that is the field generated at a point in free space by steady or time-varying 
electric currents in a source; it is related to the magnetic force acting on a 
moving charge. The magnetic flux density В is useful in the investigation of the 
magnetic fields within material objects where the material modifies the field 
intensity. 

When there is no time variation in field quantities, the electric field quantities 
(£, D) are independent from the magnetic field quantities (H,B). In time-dependent 
cases, however, the electric and magnetic fields are coupled; that is, time-varying 
(E, D) will give rise to (H, B) and vice versa. The electromagnetic properties of 
materials are governed by the so-called constitutive relations between E and D, and 
H and B. The equations that represent these constitutive relations are called 
Maxwell's equations. 
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1.4 U N I T S A N D U N I V E R S A L C O N S T A N T S 

In this book, as in most contemporary engineering texts, we will adhere to the 
SI, often called the meter-kilogram—second system built from seven basic units, 
as shown in Table 1.1. All derived units can be expressed in terms of these 
quantities. 

In the SI system, the speed of light is an exact quantity as a consequence of the 
definition of the meter adopted in 1983, the definition of the kilogram adopted in 
1889, the definition of the second adopted in 1967: 

1. Meter is the length of the path traveled by light in a vacuum during a time 
interval of 1/299,792,458 of a second. 

2. Kilogram is the unit of mass; it is equal to the mass of the international 
prototype of the kilogram. 

3. Second is the duration of 9,192,631,770 periods of the radiation correspond-
ing to the transition between the two hyperfine levels of the ground state of 
the cesium-133 atom. 

4. Ampere is that constant current that, if maintained in two straight parallel 
conductors of infinite length, of negligible circular cross section, and placed 
I m apart in vacuum, would produce between these conductors a force equal 
to 2 x 10"7 newton per meter of length. 

5. Kelvin, the unit of thermodynamic temperature, is the fraction 1/273.16 of 
the thermodynamic temperature of the triple point of water. 

6. Mole is the amount of substance of a system that contains as many elemen-
tary entities as there are atoms in 0.012kg of carbon 12; its symbol is "mol." 
When the mole is used, the elementary entities must be specified and may 
be atoms, molecules, ions, electrons, other particles, or specified groups of 
such particles. 

7. Candela is the luminous intensity, in a given direction, of a source that emits 
monochromatic radiation of frequency 540 x 1012Hz and that has a radiant 
intensity in that direction of 1/683W per steradian. 

Table 1-1. Seven Basic Units 

Quantity Unit Abbreviation 

Length 
Mass 
Time 
Current 
Temperature 
Amount of substance 
Luminous intensity 

Meter 
Kilogram 
Second 
Ampere 
Kelvin 
Mole 
Candela 

m 
kg 
S 

A 
К 
mol 
cd 
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In electromagnetic field expressions, we frequently encounter three constants: 
the speed of light (and all other electromagnetic waves) in free space, c, the dielectric 
permittivity of free space, % and the magnetic permeability of free space, μο· Note 
that there is no uncertainty (no standard deviation) in any of these terms because 
they are defined exactly. 

We define 

с = 299,792,458 (m/s) « 3 x 108 (m/s). ( 1.6) 

In addition, the magnetic permeability of free space, μο> is defined as 

A) = 4 f fXlO _ 7 (H/m)(o rN/A 2 ) (o rQs /m) . (1.7) 

Thus, using an equality that we will later derive for free space that includes the 
electric permittivity of free space, fb, we can deduce the exact value 

ε0 = \/μ0α
2 = 8.854187817... x l O " ' 2 ( F / m ) ( o r C 7 N m 2 ) ( o r s / n m ) (1.8) 

where the units H/m and F/m stand for henry per meter and farad per meter, respec-
tively. We again note that, because they are defined, there is no uncertainty in any 
of the constants c, £<>, or μ,,. 

For convenience, we will often use the value 3 x 108m/s for the speed of light 
because it is easier to recall than the defined figure, and, consistent with this approxi-
mation and Equation 1.8, we will often use the approximation 1/36πχ lO'CVNm2 

for s,. This practice is common in the study of electromagnetic fields and seldom 
leads to significant error. Nonetheless, in critical computations, the more accurate 
values of с and ε» may be required. 

In free space, the constants s> and μ,, are the proportionality constants between 
the electric field intensity, E, and the electric flux density, D, and the magnetic field 
intensity, H, and the magnetic flux density, B, respectively, such that 

D = εη Ё ( in free space ) (1.9) 
В = μ0Η (in free space). (1.10) 

Finally, we note that the force, Fi2, between two charges, c/, and </:, is given by the 
experimentally confirmed Coulomb's law, which is expressed as 

г|2 4πε0 12 

where ke is Coulomb's constant and is approximately equal to 9 x l09Nm2/C2. 
From Equation 1.11, we can see that a measurement of F , 2 (in kg m/s2) and of 

Г12 (in m2), with the derived quantity for ε» of Equation 1.8 for two identical charges, 
q, leads to a measured value of charge, c/, in units of mass, length, and time. 

The measured value of the ampere as defined by the SI is found from the force 
created by two parallel wires of length d/|-carrying current /, and ^-car ry ing current 
A respectively, by the Biot-Savart force law: 

- _MW(M/2) (im Г | 2 - - 2 "12- U - I Z ) 
4π r,i 
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As we will see, the inverse square "law" of Coulomb (Equation 1.11) and the 
inverse square "force law" of Biot-Savart (Equation 1.12) also lead us to Maxwell's 
equations. Many researchers have tried, unsuccesfully to date, to measure any devia-
tion from the inverse square law for these quantities. It is worthy of note that the 
gravitational force between two masses, mx and m2, separated by rl2 follows a math-
ematical expression similar to that of Coulomb's law or the Biot-Savart law: 

- „m,m2 „ 1 m\m-, „ ,. .„, 
Fn = G^-an = - 4-2-ân, (1.13) 

rn 4πε, г« 
where G = 6.673(10) x 10"" nvVkgs2 is the gravitational constant. In this equation, 
the author has chosen to define a new constant, eg, so that the gravitational force law 
looks the same as Coulomb's law. 

The symmetry of the equations leads the casual observer to postulate4 another force 
due to the mass current K, and K2 in two parallel lengths dl, and dl2, respectively: 

bmbS**WM± (U4) 
4π r,2 

Here, another constant, <JS, has been defined in order to make the force due to mass cur-
rents symmetric to the Biot-Savart force law. This force has been postulated by others 
and a measurement of it is being attempted by a group of researchers from Stanford and 
NASA.1" 

Many researchers have also tried to measure deviations from an inverse square 
law for Equation 1.13 as well. It is partly the similarity of these forces that gives us 
confidence that the "laws" are correct. However, we should note that more powerful 
forces within the nucleus, the weak and strong forces, do not obey an inverse square 
law, so we should leave open the possibility that a future correction may need to be 
made to any one or all of these "laws." 

EXERCISES 

1.1 Compare the gravitational and electric forces5 between a proton and an electron 
if they are separated by the same distance, as shown in Figure 1.1. 
SOLUTION Suppose an electron at r, and a proton at r2, so the distance 
between them is ri: = \rl2\ where r[2 = r2 - rt. 

We know from Coulomb's law that F12 = K(cliclJrvi)^\2 is the electro-
static force between the electron and the proton and from Newton's law 

4 Areas of speculation are often used in this text in shaded boxes; they are intended to stimulate 
thinking of the student on a topic she might not otherwise have considered. 
5 Gravitational force « weak force « electromagnetic force « strong forces. 
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z »3 

',|2 = '!2-'!l 0n=02-0l 

Figure 1.1 Vector representations of physical locations in space. 

that Fi2 = G(mxm2lrn)rx2 is the gravitational force between the electron and 
the proton. 
NOTE Both terms are attractive, both are proportional to the product of 
two measured quantities (charge and mass, respectively), and both are propor-
tional to the inverse square of their separation. The gravitational constant G 
is 6.67 X 10-"m3/kgs2 and the electric constant it, is 8.99 x 109Nnv7C2. The 
measured masses and charges are me = 9.11 x 10"3lkg, qe = -1.60 X 10~I9C, 
m„ = 1.67 x l<r27kg, qp = +1.60 x 10"I9C. Thus, 

fdue,oe,ec,rosancchar8« = (8.99xl09Nm2/C2)(l.60xl0-,9C)(l.60xl0-|9C)(r12/r1
2

2) 

/Wavuy = (6.67x10-" Nm2/kg2)(l.67xl0-27kg)(9.11xl0-,lkg)(rl2/r1
2

2) 

and the ratio of these two forces is 2.27 x 1039, independent of their separation. 
SOLUTION The electrostatic force between an electron and a proton is so 
much larger than the gravitational force between an electron and a proton that 
we may ignore the gravitational forces. 

1.2 Using classical arguments for an electron bound to a proton in a hydrogen atom 
with a circular radius of 1 A, determine its tangential velocity. 
SOLUTION From Exercise 1.1, Fiac l0 clcc„0SMlic tha,gcS = 2.30 x 10"28 Nm\fl2/u). 

For га = (1Â)2 = 10-20m2, Fdue IO eleclrosaiic cbarge< = 2.30 x Ю- 8 ^ , , . 
This force seems small until you use it to compute the acceleration of an 
electron: 

k l = |4«to.i«m»ttIicchUg«|/mt = 2.3x 10"8 N/9.11 x 10"3' kg 
= 2.52 x 1022 m/s2 = 2.58 x 102' g, 

where g is the acceleration of gravity. 
From our knowledge of centripetal forces, for an electron circling a proton 

at a radius of 1 À, ae = v2/r, where v, is the electron's tangential velocity. Thus 

v,2 = ra, = (10"10 m)(2.52x 1022 m/s2) or v, = 1.58x 106 m/s. 
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CONCLUSION The tangential velocity of an electron circling a hydrogen 
nucleus (a proton) is approximately 0.5% the speed of light.6 For larger Z 
atoms, the accelerations and tangential velocities will be even closer to the 
speed of light, so we must take into account relativistic effects when computing 
electron velocities for heavy atoms. 

Electrical engineers prefer to express the properties of an electromagnetic 
wave" via its frequency, / (in Hz), or its wavelength, Я (in m), which are 
related by 

c = A/. (1.15) 

Physicists and astronomers often express the properties of an electromag-
netic wave via its energy, E, or its temperature, T, which are related by 

E = hf, (1.16) 
where 

h = 6.62606876(52) x 10"M Js (or 4.13566727(16) x 10~15 eVs) 

is Plank's constant. 

E = kBT, (1.17) 

where k„ = 1.3806503(24) x 10"23J/K is Boltzmann's constant. 

1.3 Find the wavelength, energy, and temperature of a 2.4-GHz wave.7 

SOLUTION 

, с 3.00xl08m/s 
Я = — = r—$- = 0.125m = 12.5cm 

/ 2.40xl09 l /s 
£ = /,/ = (4.14xl0"" l5eVs)(2.40xl09l/s) = 9.94xl04 ,eV = 1.59xl0"24J 

!■■■£■- 1 · 5 9 Χ 1 0 Γ ; -0L115K 
k„ 1.38xl0""j/K 

1.4 Find the wavelength, frequency, and characteristic temperature of a 1 keV 
x-ray.8 

SOLUTION 

E (lO-'Hl.oOxlO-^CW s 
T = — = ± ^ .. . ; =11.6x10'К 

kB 1.38xlO_23j/K 
E _ (!03)eV 
h ~4.14xlO" l5eVs 

/ = -=л,;/_,5 4t =2.42xlO'7H7. 

6 Had our answer come out closer to the speed of light, we would need a recalculation using the 
special theory of relativity for mass rather than the classical theory for rest mass. 
7 This frequency is common in computer central processing units (CPUs), cell phones, and microwave 
ovens. 
* This energy is common at the face of a cathode ray tube (CRT) if electrons are accelerated by a 1 kV 
potential. 
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χ = £ = 3.00xl0Ws = L 2 4 x l 0 . m = 12-4A 
/ 2 .42x lO l 7 l / s 

1.5 Because l/>//4>Co = с for electromagnetic waves, it is not unreasonable to postulate 

that ΐ/^μχεΗ = с for gravomagnetic waves. With this postulate, find the value of 
the constants es and μχ and compare the magnitude of the force caused by a 1 C/s 
electrical current with that of a 1 kg/s mass current if they are in the same lengths 
and have the same distance of separation. 

SOLUTION 
If G = 6.673 x 10"" Nm2/kg2 = 1/4πε„, then es = 1.193 x 109kgs7m\ 
If 1/VA<A = c, then μ, = 9.317 x l(r27m/kg. 

• = ^ - = 1.35xlC Ллагв« cufrcra / i d _ , э « - ^ 1 л 2 0 

1.6 If there is one "free electron" (conduction electron) per Cu atom,9 compute the 
number of free electrons in a Ι-ην' block of Cu and find the average velocity 
(drift velocity) of electrons needed to produce a current of 1 C/s in one direction 
and Ihc mass current of those same electrons. 

SOLUTION The number of "free electrons" in a block of copper is 

density . , , 8 .93x l0 3 kg /m 3 , , „ . ι η „ , Λ 
N = — Avogadro s number = -.——. (6.023 x 10 e/mol ) 

molar mass 64x10 kg/mol 

and 

qN = N{\ .60 x 10"19 C/e) = 1.34 x 1010 C/m3. 
is the "free electron" charge in a block of copper. If this charge in a 1-m3 block 
is moving across one of the 1-m2 faces at a velocity of lm/s , then it will 
produce a current / = 1.34 x 10"'C/s. Thus, to produce an electric current of 
1 C/s, <v> need be only 7.44 x 10 '" m/s. 

The mass of the "free electrons" in the block of copper is mN = N (9.11 x 
10"3lkg/e) = 0.0766kg/m'. If this mass is moving at an average velocity of 
7.44 x 10"" m/s, then the mass current across a 1-m2 face of the block will be 
5.70 x 10"" kg/s. 

4 The designation "free electrons" is given by those electrons outside the bound core of an ion; these 
electrons interact with their neighbors to such an extent that they lose track of which one was their 
parent and thus are "free" to move in the conductor. 
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1.5 PRECISION OF MEASURED QUANTITIES 

Standard Uncertainty and Relative Standard Uncertainty 

Definition 

The standard uncertainty σ, of a measurement result, y, is the estimated standard 
deviation of y. 

Meaning of Uncertainty 

If the probability distribution characterized by the measurement result y and its 
standard uncertainty <xv is approximately normal (Gaussian), and σ,. is a reliable 
estimate of the standard deviation of y, then the interval from y - σν to y + σ,, is 
expected to encompass approximately 68.26% of the distribution of values that could 
reasonably be attributed to the value of the quantity Y of which y is an estimate. 
This implies that it is believed with an approximate level of confidence of 68.26% 
that Y is greater than or equal to y - σν and is less than or equal to y + <τν, which is 
commonly written as Y = y ± ay. 

Use of Concise Notation 

If, for example, y = 1234.56789 U and σ> = 0.00011U, where U is the unit of y, then 
Y = (1234.56789 ± 0.00011) U. A more concise form of this expression, and one 
that is in common use, is Y= 1234.56789(11) U, where it understood that the number 
in parentheses is the numerical value of the standard uncertainty referred to the 
corresponding last digits of the quoted result. 

Appendix A contains a review of statistical definitions, examples, and inter-
pretations. See http://physics.nist.gov/cuu/Uncertainty/index.html for additional 
information. 

1.6 INTRODUCTION TO COMPLEX VARIABLES 

Complex numbers are frequently used in the applications of electromagnetic applica-
tions. In this section, the definition and fundamental operations of complex numbers 
and complex variables will be reviewed. 

A complex number, -, can be written as 

.- = Re(:) + yIm(:) = .v + /v, (1.18) 

where л and у are both real numbers; л is said to be the real (Re) part of -, у is said 
to be the imaginary (Im) part of :., and j = V^T. г can be also be expressed in polar 
form by 

z = \z\eie, (1.19) 
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where \:\ and Θ are both real and are called the amplitude and phase of г. With the 
use of Euler's identity 

e' -cosÔ+ysinÔ, 
we obtain 

,-; = |.:|cosÖ+7|.-|sinö. 

Comparing Equations 1.20 and 1.21, we conclude 

-v = |;|cosö, 
y = |z|sin0, 

and, inversely, 

kl=v^T7 
0 = t a n - ' 4 0 < θ < 2 π . 

(1.20) 

(1-21) 

(1.22a) 
(1.22b) 

(1.23a) 

(1.23b) 

The above relations can be graphically represented as shown in Figure 1.2. 
The complex conjugate of z, designated with an asterisk (*), is a complex 

number that replaces j with -j in all places; that is, 

z* = (x + jy)* = (.x-jy) = \z\e л - u u - j » (1.24) 

The magnitude of z is the square root of the product of z and its complex 
conjugate: 

or 

I = л / Г ? = V(-v + jy)(-V + jy)* - VV + 3·3 

\z\ = ^\z\e^\z\e-ie=^7T7. 

(1.25a) 

(1.25b) 

Arithmetic Operations with Complex Numbers 

Arithmetic with complex numbers is tedious when carried out by hand but otherwise 
is very much like arithmetic with real numbers. 

Im(z) 
z-plane 

z=*+/H--H9 

Re(z) Figure 1.2 The relation between rectangular and 
polar coordinates. 
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1. Addition and subtraction: 

Z\ + z2 = (x\+ jy\ ) + (x2 + jy2 ) = (λι + x2 ) + j( y, + y2 ) (1 -26a) 
Zl = Zi = (x\+jy,)-(x2 + jy2) = (xi-X2) + j(y<-y2) (1.26b) 

2. Multiplication: 

ZiZ2 = (xi+jy,)(x2+jy2) = (xrX2-y\-y2) + j(xry2 + X2-y\) (1.27a) 

In the polar form, the multiplication of two complex numbers can be written as 

zl-z2 = \Zi\enz2\e^ = \ziz2\e
J 

= |ziZ2 |[cos(0,+02)+./sin(0 l+02)]' 
3. Division: For any z2 * 0, 

Zi _ (x\ + ]У\ ) _ (x\ + ]У\ ) (X2 - jy2) 

Zi {хг+)Уг) (x2 + jyi)(x2-jy2) 
_ Ul*2 + >'l>'2 ) + j (Х2У1 + Х1У2 ) 

(x!+yl) 

or 
Z\_ _ \z,\eje> _ Jzi| Μ-βι) 

г2 I u l e * |z2| 
= i^l [cos (Θ, -62) + j sin (0, - 02 )] 

|Z2| 
4. Power: For any positive or negative integer n, we have 

(1.27b) 

(1.28a) 

(1.28b) 

г = Uze ]" = \z\"e»° (1.29) 
= |z|"[cos(n0)+;sin(n0)] 

Arithmetic Functions of Complex Numbers (Complex Variables) 

A function of a complex number could be a combination of addition, multiplication, 
power, or other functions of a complex quantity, for example, (г + 1/z), sinz, ez, 
tanh~'z. An excellent resource for the review of functions of complex numbers is 
given by Spiegel." 

In electrical engineering, it is common for the field vectors E, D, H, B, and the 
current density, J, to be written as complex quantities. Furthermore, real and imagi-
nary parts of the field vectors are likely to be functions of space and time. Such 
variable fields are called complex variables. The real part of the complex field vector 
(e.g., Re£) is typically labeled as u(x, >·, z, 0. and the imaginary part of the complex 
field vectors (e.g., Im£) is typically labeled as v(x, y, z, f) in Cartesian coordinates. 
It is shorthand to just write the electric field vector as E without denoting the fact 
that it is a complex quantity that depends on space and time coordinates. Some texts 
remind the student of this fact by expressing E as E(x, t) no matter if the coordinate 
system is Cartesian, cylindrical, spherical, or other. Some texts even put a tilde over 
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the vector field to remind the student that Ë is a complex variable, but we will not 
choose that complicated notation here. Our advice is to always assume that a quantity 
in question is a complex variable unless otherwise known or stated (e.g., x, y, z, r, 
θ, φ, and / are always real). 

Fortunately, with computers, the tedious manipulation of complex numbers is 
very easy. Not infrequently, however, we will be required to carry out derivations 
using complex algebraic expressions. Although even symbolic simplification can be 
accomplished with computers, it will nonetheless be useful to become adept at doing 
complex algebra by hand. 

1.7 PHASOR NOTATION 

In electromagnetic engineering, electric and magnetic fields that vary sinusoidally 
with time play a large role. In the sense that an arbitrary but otherwise periodic 
field can be expanded into a Fourier series of sinusoidal components and a 
transient nonperiodic field can be expressed as a Fourier integral, we can con-
centrate on analyzing steady and sinusoidal fields with the confidence that our 
theory can be extended to the more general situation involving nonsinusoidal 
time dependence. 

In this section, we first review the phasor notation and then represent Maxwell's 
equation with the phasors. Here, we would like to illustrate the uses of phasor nota-
tion by looking at some examples. Let us consider the series resistor, inductor, 
capacitor (RLC) circuit shown in Figure 1.3 with an applied voltage 

V(t) = V0 cos (eot), (1.30) 

where V„ is the amplitude of the voltage and ω is the angular frequency (rad/s), 
which is equal to 2л/, with/being the frequency in Hz. 

Our objective is to solve for the corresponding current /(f), which, in general, 
can be expressed as 

/(i) = /„cos(<yf + 0), (1.31) 

where /0 is the current amplitude and ф designates the current phase. 
Using Kirchhoff 's voltage law, we have 

L ^ - + Ri(t)+-ji(t)dt = V(t). (1.32) 

m — w v -
ко© =1=c 

Figure 1.3 A series RLC circuit. 
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Using the phasor notation, we can express'" 

V(t) = V0co*(a») = -Rc[(V,*»)e*·] 

= Re[V"] ( - ' 
and 

/ ( 0 = /o cos(ft» + 4>) = Re[(ll,e
i0)ei'"] 

= Re[/s^] ' (L34) 

With the phasor notation, we can deduce that 

dildt = Re[j(Dlse
im] (1.35) 

jidi = Re —he1'" 
lj<o 

(1.36) 

Substitution of Equations 1.35 and 1.36 into Equation 1.32 leads to 

1 
R + jmL- ls = Vs (1.37) 

from which the phasor current, Is - VsfZSeria RLC, can be easily obtained. We note 
that the phasor current, Is, includes information about both the magnitude, /„, and 
phase, φ, and that the corresponding instantaneous current, i(t), then follows from 
Equation 1.34. 

As seen in Equations 1.35 and 1.36, by using phasor notation, differentiation 
and integration in the time domain are converted to a simple algebraic operation 
symbolized by the following time-frequency conversion operations: 

— <=>ju> (or -i(o in physics books) (1.38a) 
dt 

\dt <=>— [or in physics books). (1.38b) 
J jco \ -i(0 I 

Because algebraic equations are much easier to solve than integral-differential 
equations, time-harmonic electromagnetic fields are much easier to analyze than 
time-varying fields. 

NOTE Cheng and Hayt and Buck use a subscript S on the complex variable (e.g., 
Is or Vv) to remind the reader that the variable is changing only with spatial quanti-
ties. Balanis and Inan and Indan use a script б (x, y\ z, t) = E(x, y, z)ei°" convention 

10 Electrical engineers almost always use the convention e>™' for the time dependence, while physicists 
and mathematicians conventionally use e "". In these cases, j = V^T and i = -J—l so that, when 
we take the real part, cos(cui) results. However, if we take the derivative, defmldl = jwe1"' but 
de °"ldl = -i<ûe~m, we see that a negative sign occurs in equations with derivatives. We must take 
care to know which convention is being used in reading a given text when using Maxwell's equations. 
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to indicate that £ varies only with spatial variables. Paul and Edminister use the 
convention E(x, y, z, t) - E(x, y, zV* to indicate that E varies only with spatial 
variables. Pozar uses the convention that E (jr, y, z, t) = Re[E(x, y, zV*], and Rao 
use the convention E(x, >·, z, t) = E(x, y, z)é°" to indicate that F. varies only with 
spatial variables. We will adopt the Rao convention in the following sections and 
will color electric fields in red and magnetic fields in blue in equations and figures. 
When the mathematician's convention for time harmonics, e~'°", is used, we will 
highlight that fact by coloring the imaginary number. When é°" is used, there will 
be no color for the imaginary number. 

Time-Harmonic Electromagnetics 

For a general time-varying electromagnetic field, the differential (or point) form of 
Maxwell's equations can be written as 

νχΕ = -μ^- (1.39a) 
dt 

УУ.Н=1+ЕЩ- (1.39b) 
Э/ 

y.E = B^l (1.39c) 
ε 

VB = 0. (1.39d) 

Now, considering a time-harmonic electromagnetic field with the time variation of 
c<?.v(ci)r), we can write the electric and magnetic fields as 

E(x, у, z, t) = Ref t (л-, >·, z)eJm] (1.40a) 
H{x, y, z, t) = Re[H(x, y, z)ejm ], (1,40b) 

where E(x, y, z) and H(x, y, z) are vector phasors that contain information on direc-
tion, magnitude, and phase. Using phasor relations in Equation 1.38a, we can sim-
plify Equations 1.39a to 1.39d as 

VxE = -j(OßH (1.41a) 
VxH=J + jmË (1.41b) 

VE = pv/e (1.41c) 
VB = 0, (1.41d) 

where the time variable has been eliminated from the differential form 1.39 of 
Maxwell's equations. Equations 1.41 are called the time-harmonic differential form 
of Maxwell's equations. Note that all fields in above equations are phasor quantities, 
and, to convert them to the time domain, we only have to use the relations 1.40a 
and 1.40b. 
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PROBLEMS 

Using Complex Numbers 

1.1 Two complex numbers are given as Z\ = 5 - ß and Zi = 4 +j6. 

a. Express Z\ and ц in polar form. 
b. Determine ZfZi in rectangular and polar forms. 
c. Determine zjz2 in rectangular and polar form. 
d. Determine (zif and (z2)5 in polar form. 

1.2 If z = 3 + j4, determine following quantities in polar form. 
a. z3 

b- И 
с. l/iz3! 
d. Re( |z'| ) 
e. Im(l/|z3|) 

1.3 Complex numbers z\ and zi are given as zi = \§e~'m and Z2 = Se130". In polar 
form, determine the following: 
a. product Z1Z2 
b. ratio Z1/Z2 
с ratio Zi*/Z2* 
d. value Vz7 

1.4 If two complex number are given as zi = 2 —ß and zi = 4 +j5, find the value 
ofln(z,)ln(z2). 

1.5 If two complex number are given as Z\ = 4 —ß and z2 = 5 +j4, find the value 
of eJie*"2. 

Using Phasor Notation 

1.6 A voltage source V(r) = 100cos(67rl09/ - 45°)(V) is connected to a series RLC 
circuit, as shown in Figure 1.3. If R = 10ΜΩ, С = lOOpF, and L = 1 H, use 
phasor notation to find the following: 
a. /(0 
b. V,(/), the voltage cross the capacitor 

1.7 Find the phasors for the following field quantities: 
a. Ex(z, f) = £ocos(ux - ßz + &)(Vlm) 

b. E,(z, t) = 100e-3:cos(ö» - 5z + /r/4)(V/m) 
с IIXz, t) = //„««(ft* + ßz)(Alm) 

d. W,(z, t) = 12()TO5icos(û)f + ßz + φ,ΧΑΙηι) 
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1.8 Find the instantaneous time domain sinusoidal functions corresponding to the 
following phasors: 
a. EXz) = £„e*(V/m) 
b. Ey(z)= lOOe-'V^V/m) 
с IXz) = 5 +j4(A) 
d. VXz)=ßOei"'\\) 

1.9 Write the phasor expression / for the following current using a cosine 
reference. 
a. i(t) = /,,cos(û» - л/6) 
b. /(г) = /„sin(iuf + л/3) 

1.10 Find the instantaneous V(t) for the following phasors using a cosine 
reference. 
a. Vs = IV""4 

b. Vs = \\2-j5](V) 

1.8 QUATERNIONS 

Because of its historical significance as the mathematical language of Maxwell, the 
subject of quaternions should be briefly known to students of electromagnetics. As 
mentioned in the "Introduction," Maxwell's equations were in the form of eight field 
equations that explicitly contained the magnetic vector potential and 12 quaternion 
equations that contained magnetic mass, magnetic charge, scalar magnetic potential, 
magnetic charge current, and magnetic conductivity of media. The complete set of 
equations is given in the next section. However, we must first understand the opera-
tions of the four-dimensional (4-D) complex numbers in which the formation exists. 
This formalization was devised by Sir William Rowan Hamilton in 1843. At that 
time, vector algebra and matrices had not yet been developed, but the vector dot and 
cross product were a result of Hamilton's work. It is said that Hamilton was walking 
across the Royal Canal in Dublin with his wife when the solution to quaternions 
came to him in the form of an equation, which he inscribed in stone on the bridge 
now called the Brougham or Broom Bridge. The original inscription has faded but 
a Quaternion plaque exists there today that reads, "Here as he walked by on the 16th 
of October 1843, Sir William Rowan Hamilton in a flash of genius discovered the 
fundamental formula for quaternion multiplication 

i2 = f = k2 = ijk = -1 (1.42) 

and cut it on a stone of this bridge."" 
In his formalism, Hamilton devised a four-vector form of a complex number 

that had the components of a 4-D space just as the two-dimensional (2-D) complex 

Equalion 1.42 added for this book. 
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number (a + ib), where a and b are real and i2 - —1. In quaternion language, a 
complex number would be written as 

Q = a + ib + jc + kd, (1.43) 

where a, b, c, and d are real. The scalar part of the quaternion is a, and the vector 
part is ib +jc + kd. The appealing characteristics of the quaternions is that they obey 
the same rules of addition and multiplication as 2-D complex numbers: 

(a, + ib, + jc, + kd,)+(a2 + ib2 + jc2 + kd2 ) 
= (a, + a2) + (b, + b2)i + (c, + c2)j + (d, + d2)k 

and 
(a, + ib, + jc, +kd,)(a2 + ib2 + jc2 + kd2 ) 

= (a,a2)+(a,b2)i + (a,c2)j + (a,d2)k 
+ (b,a2 )i + (b,b2)i

2+(b,c2)ij + (b,d2)ik 
+ (c,a2)j + (c,b2)ji + (c,c2)f + (c,d2 )jk 
+ (d,a2)k+(d,b2)ki + (d,c2)kj + (d,d2)k

2 

using the additional ring properties: 

ij = k, ji = -k, jk = /', kj = —i, ki = j , ik =-j (1.46) 

from Equation 1.42. Note that, unlike the commutative relations of 2-D complex 
numbers. Equation 1.46 shows that the 4-D quaternions do not commute (i.e., 
ab Ф ba). 

In Appendix B, we have examined the roots of complex number equations like 
z2 + 1 = 0 in 2-D space and found the roots to be at ; and -i. Using the analogous 
equation in 4-D space, we would consider Q2 + 1 = 0 and find an infinite number 
of solutions. We could draw the locus of these solutions in 3-D space when there 
was no real part (a = 0) for the quaternion with no real part, Q - ib + jc + kd and 
b2 + c2 + d2 = 1. These solutions form a unitary sphere centered on zero in the 3-D 
pure imaginary subspace of quaternions. We could then say that the locus of the 
solutions in 3-D space for a fixed real part (a, = cAt) was a larger sphere with radius 
squared b2 + c2 + d2 = 1 + c·2/!/2 in 3-D space. Thus, the radius of the solution sphere 
is growing with time at a rate of cAt. Sequencing the value of a to successively 
larger values would correspond to sequential spheres of larger radius. One can see 
that the appeal for saying the solutions in quaternion space is a movie of solutions 
with spheres of growing radius like the expansion of a spherical potential at constant 
velocity, c, in 3-D space (the scalar dimension corresponding to a multiple of с 
times time). 

1.9 ORIGINAL FORM OF MAXWELL'S EQUATIONS 

Maxwell originally introduced the following eight equations to represent the com-
ponents of the electromagnetic field: 

(1-44) 

(1.45) 
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J = j + dÖ/dt (1.47) 
VxH = J (1.48) 

μΗ=Ρχλ (1.49) 
Ε = μ(νχΗ)-3λ/Βι-Ρφ (1.50) 

D = eÉ (1.51) 
j=aË (1.52) 

VD = -pe (1.53) 
V] = -dpeßt (1.54) 

While the original field equations do not exactly correspond to the Heavyside vector 
formulation, they will be addressed in the coming chapters. For example, the original 
field equations explicitly contain the magnetic vector potential, A, which does not 
appear in the Heavyside vector formulation, but we will define μΗ = v x A as a 
mathematical convenience, and Ε^κ„. - -дЛ/dt - V<p as part of the Lorenz gauge, 
in which case the equations look alike. ЕтпЛт - μ(ν x H) is the one term that appears 
to be discarded. Hertz interpreted the velocity, v, as the (absolute) motion of charges 
relative to the luminiferous ether, but, if v is interpreted as relative velocity between 
charges, then the Maxwell Heavyside equations are defined for the case v = 0 (i.e., 
test charges do not move in the observer's reference frame). 

Maxwell also described 12 quaternion equations by employing scalar and vector 
operators: 

SQ = S(a+ib+jc+kd) = a (1.55) 
V-Q = V-(a + ib + jc + kd) = ib + jc + kd, (1.56) 

so that when he put 5 or V in front of a quaternion, he means that S is an operation 
that yields only the scalar part of the quaternion and V is an operation that yields 
only the vector part of a quaternion. The original equations are applied to isotropic 
media, normal letters imply a scalar quantity, and a capital letter implies a quaternion 
without the scalar: 

B = VVA 
VvB-dÄ/dt-
VvB + eË-m' 
Β=Η + 4πΜ 
4nJlol = VVH 

J = CÉ 
0 = ΚΕ/4π 

./,„, = J + до/dt 
Β = μΗ 

e = SVD 
in = S-VM 
H=-Vü. 

V<p 
Vil 

(1.57) 
(1.58) 
(1.59) 
(1.60) 
(1-61) 
(1.62) 
(1.63) 
(1.64) 
(1.65) 
(1.66) 
(1.67) 
(1.68) 
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The eight field Equations 1.47-1.54 and the 12 quaternions 1.57-1.68 constitute 
the original form of Maxwell's equations. The equations include the magnetic scalar 
potential, Ω, and the magnetic charge, m. The V = id/dx, + jd/dx2 + kd/dx} is a qua-
ternion operator without the scalar part. The factor of An came about as a result of 
using Gaussian or cgs units. As a result of the vector form of Maxwell's equations, 
we will deduce Equation 1.54, the so-called equation of continuity (or conservation 
of charge statement). It is also interesting that Maxwell included the equation of 
Lorentz force, Equation 1.59, as one of his quaternion equations. We will use this 
force law as the starting point for the development of magnetic field intensity as it 
pertains to two parallel current-carrying wires through the Biot-Savart formulation, 
an inverse square law, which is now the National Institute of Standards and 
Technology standard for measuring the unit of force (the newton). 

In Maxwell's original formulation, Faraday's A field was central and had physi-
cal meaning. The magnetic vector potential was not arbitrary, as defined by boundary 
conditions and choice of gauge as we will discuss; they were said to be gauge 
invariant. The original equations are thus often called the Faraday-Maxwell theory. 
The centrality of the A field was abandoned in the later interpretation of Maxwell 
by Heavyside. In this interpretation, electromagnetic fields E and D, H and В are 
the only physical entities, and the magnetic vector potential is considered a math-
ematical convenience. Some say this perception replaces action-at-a-distance, as 
defined by Newton; by contact-action, as defined by Descartes; that is, a theory 
accounting for both local and global effects was replaced by a completely local 
theory. The local theory can address global effects only with the aid of the Lorenz 
gauge. These concepts will be more meaningful when we address time-varying 
fields in Chapter 7. 
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Chapter Σ 

Vector Analysis 
LEARNING OBJECTIVES 

• Use vector algebra to carry out addition, subtraction, and the dot product and cross 
product, of vectors and to understand the results pictorially 

• Use fundamental orthogonal coordinate systems—Cartesian, cylindrical, and spheri-
cal coordinates—in the description of geometric configurations commonly encoun-
tered in the study of fields and convert from one system to another 

• Use and interpret the "del" or V operator in computing spatial derivatives involving 
vectors, that is, the gradient, divergence, curl, and Laplacian 

• Derive and understand the divergence theorem and Stokes's theorem 

INTRODUCTION 

In electromagnetic engineering, in addition to scalar quantities, there are many 
quantities defined not only by their amplitudes but also by their directions, for 
instance, the electric field intensity, E(x, y, z, t). 

At a given time, t, and position, (x, y, z), a scalar is completely specified by its 
(possibly signed; i.e., positive or negative) magnitude and with appropriate units. 
Some representative scalars are mass, and electric charge. 

A vector quantity, however, is defined, at a specified location and time, by both 
a magnitude and a direction. In a three-dimensional (3-D) space, this leads to three 
spatial components, the projections of the vector onto the three coordinate axes at 
its location. 

2.1 ADDITION AND SUBTRACTION 

Definition of a Vector and Unit Vector 

In general, an arbitrary vector A can be written as 

À = Aà, (2.1) 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 

23 
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where A is the magnitude of the vector that usually has the unit and dimension, and 
â is a dimensionless unit vector (with magnitude 1) in the direction of A . Thus, we 
have 

«=A/|A| = A/A, (2.2) 

as shown pictorially in Figure 2.1. 
Because of the nature of a vector as a directed quantity, it follows that a parallel 

displacement of a vector does not alter it materially, or, in other words, two vectors 
are equal if they have the same magnitude and direction. This is illustrated in Figure 
2.2, where we would say A = A'. 

Vector Components 

It is usually convenient for a vector calculation to express a vector in component 
form. In the Cartesian coordinate system, the vector A can be written as 

A = A, + Av + A- = Ада.( + Α,.ά,. + A.â„ (2.3) 

\ л 

â,. A, 
■+У 

Figure 2.1 Vector A and its unit vector./. 

л, -'·, 

''· Л 

/ 

": 

/ 

A ' 

/ 

A 2 Xi 

Figure 2.2 Two equal vectors À and .4'. 
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where three scalars, A„ A„ A- (shown in blue in Figure 2.1), are called the com-
ponents of A. Thus, the magnitude of a vector can be expressed in terms of com-
ponents as 

4 = | A | = V ( A ) 2 + ( 4 V ) 2 + ( A ) 2 (2.4) 

(the 3-D Pythagorean theorem). 

Vector Addition and Subtraction 

Two vectors, A and B, can be added graphically by using the parallelogram rule or 
"head-to-tail" rule. The resultant vector, С = A + B, is the diagonal vector of the 
parallelogram constructed by A and B, as shown in Figure 2.3. This is equivalent to 
the "head-to-tail" rule, in which the tail of A connects to the head of B, and the vector 
С = A + В is the vector drawn from the tail of A or В to their vector sum. 

Because both vectors, A and B, can be written in component form, their sum 
can written as 

C = C,âx + C,âv + C-à: 

= À + В = (Axâx + Ayây + Azâz)+(Bxâx + Byây + B:à.) 
= ( Ax + Bx)âx + ( Av + Sv ) ây + (A, + В. ) аг (2.5) 

Subtraction can be defined in terms of vector addition by a new vector that has the 
same amplitude as the original vector but in the opposite direction, that is, 

D=Â-B = Â + (-B) (2.6) 
D = Dxâx + Dyâr + D,âz 

= Â-B = (Axâx + A,ây + Л.а-)-(й1а, + β,,ά,. + B.â.) 
= (ЛД -β . , )ά Λ +(Λ -Bv)ày + {A: -B:)â: (2.7) 

z 

4 
A. 

B. 

C = A + B 

A. B. 
->y 

Figure 2.3 Sum of two vectors A and В to 
produce a vector С = A + B. 
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2.2 MULTIPLICATION 

Multiplication of a Vector by a Scalar 

Multiplication of a vector A by a positive (or negative) scalar, C0 (or -Co), changes 
its magnitude by C0 times in the same (or opposite) direction. 

and 
С = C0A = C0Aâ = C(,A,à, +C 0 Aâ, + C0A:â: 

D = -C0A = -C0Aâ = -C0.4,â, -C0A,ât -C0A:â: 

(2.8a) 

(2.8b) 

Scalar Product 

We define the scalar product (dot product) (inner product) of two vectors as the 
scalar equal to the product of the magnitudes of the vectors and the cosine of the 
angle between them, or 

А-В = AB coseAB, (2.9) 

where ΘΑΒ is the angle between the two vectors .4 and If in the plane of the two 
vectors, as shown in Figure 2.4. 

In Figure 2.4, we show the special case of A and В in the x—y plane in order to 
make the point that ΘΑΒ = ΘΒ - ΘΑ, where ΘΒ is the angle between the vector В and 
the x-axis, while ΘΑ is the angle between the vector A and the x-axis. 

It is clear from Equation 2.9 that, because the cosine is an even function of Θ, 
the order of terms does not change the scalar product; that is, 

AB=BA. 

Hence, the scalar product is commutative. 

(2.10) 

Av By 
- У 

Figure 2.4 Special case in which two 
vectors, Л and II, lie in the лг-.у plane. 
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We also see 

A-A = A2. (2.11) 

If we know the Cartesian components of Д and B, we can calculate their scalar 
product directly rather than use Equation 2.9; that is, 

A · « = ( , ! « , + A,âv)(B,â, + Byây) 
= AxBx + AvBy (2.12) 

where we have used the unit vector relations 

a, ■ âx = 1 

â„ f l v =1 (2.13) 

âx-ây = 0 

In the more general case of vectors with three components, 

A ■ В - (A,â, + Ayây + A.â:)-(B,âx + Byây + B.â.) 
= AxBx + AyBy + AzB; (2.14) 

In Appendix С, we examine the even more general case of vectors with n-compo-
nents and even permit the value of n to go to °°. 

Vector Product 

The vector product (or cross product) is written as Ax В and is defined as 

Â x В = ABsin9ABâ„, (2.15) 

where ΘΑΠ is the angle (smaller than π between the vectors A and В in the plane of 
A and B, and ά,, is a unit vector perpendicular to the plane containing A and B.' The 
direction of ά,, follows the right-hand rule, namely, the thumb of a right hand when 
the fingers rotate from A and В through the angle ΘΑΒ. This is illustrated in Figure 
2.5 for the special case of A and В in the x—y plane. 

From the definition of the vector product (Equation 2.15) and the fact that the 
sin is an odd function, we can see that 

ÄxB = -BxA. (2.16) 

Thus, the vector product (or cross product) is not commutative. 
The vector product can also be written in terms of the rectangular components. 

For the special case of the vectors A and В in the x-y plane as shown in Figure 2.5, 
we find that 

1 Note that the quantity All un ΘΛ„ is also numerically equal to the area of the parallelogram formed by 
À + />' in the x-y plane. 
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2 

A 

■ ■ C = A* В 

··(.. ft 

Figure 2.5 Cross product of vectors À and 
В for the special case of A and В in the x—y 
plane. 

A x B = (Λ,ά, + Λ,Α,^χίβ,ά, + Byây) 
= (AxBy-ÀyBx)â. (2.17) 

For the more general case of vectors A and В with three components, 

A X В = (Л ,ά, + Ayây + AM. ) X (ß, â, + ß,«v + ß :« ; ) 
= (A,.S. - À.By)âx +(A:Bx-AxB:)ây+(AxBy-AyBx)âl (2.18) 

Equation 2.18 may be written as a determinant in the form 

<"', 
A,-
B, 

«, 
Av 

В 

(l-

A. 
B; 

Axli= Ax A, A. . (2.19) 

Tensor Product 

Finally, we note that a tensor product of the form 

AB = ÄB = (Л,ы, + Ayây + AM- ){Bxâx + Byây + Вм: ) 

AB = AJixà,âx + Л, Byâxây + Л,B:âxâ: + AyBxâyâx + AyByâyây 

+ A, Bzâyà. + A.Byâ-â, + A.Bvâ.ây + A.B.â,âz (2.20) 

can be defined for applications in relativity and for influences brought about by 
noncubic atomic structures. While this is a special class of important products, it 
requires an entire formulation of tensors that are beyond the scope of this text. We 
therefore recommend a study of tensor analysis in classic books.' 
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2.3 TRIPLE PRODUCTS 

There are two products involving three vectors, the scalar triple product and the 
vector triple product, which will be useful in derivations that follow. 

A typical form of the scalar triple product is A-(B x C), which can also be 
conveniently written in terms of the rectangular components. By using cyclical 
relations between unit vectors, 

and 

ax x ay = az 

ây xâ . =â, 
â. x я, = ây 

â, xâ, = âv Xâv = â. Xâ: = 0. 

We can verify that 

Ä(BXC)=B(CXÄ) = C(ÄXB) = 

A, 
ft 
с, 

А, 
я» 
cv 

л. 
/1 
С; 

(2.21а) 
(2.2 lb) 
(2.21с) 

(2.2 Id) 

(2.22) 

Figure 2.6 gives a graphical interpretation of the scalar triple product D ■ (A x B) for 
the special case of two vectors A and В that lie in the x-y plane and a vector D that 
has three components. 

As noted above, the area of the parallelogram formed by A and В is \A x В \. 
Vector D makes angle ß with respect to the vector product A x B, so the volume of 
the parallelepiped formed by A , B, and D is D(Ax B). 

The vector triple product, with form .4 x (B x C), is the vector product of one 
vector, with the result of the vector product of two other vectors. It can be shown 
that the triple vector product can be expanded as 

Volume of a parallelepiped 
V = [|Ö|cos ß] [\À χ S|] = B-2 x S 

Ва$е area = [4 χ Β\ 

Figure 2.6 Scalar triple product I) ■ (Λ x B). 
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Äx(BxC) = B(Ä-C)-C(Ä-B), 

which is known as the "back-cab" rule. 

(2.23) 

2.4 COORDINATE SYSTEMS 

Cartesian Coordinates 

In Cartesian coordinates, named after René Descartes (1596-1650), an arbitrary 
space location P(x0, v(l, ;,,) can be specified by three quantities or coordinates, x, v, 
and z, as shown in Figure 2.7. 

The three mutually perpendicular unit vectors, defined in the three coordinate 
directions, are called the base vectors. 

As mentioned earlier, the base vectors satisfy the following relations: 

a, x a y = a. 
ay xa . = âx 

Ô; X άχ = fly 

(2.24a) 
(2.24b) 
(2.24c) 

and 

âx x â, = ây x ây =â:xâ:=0 (2.24d) 

â, -âx = ây -ây = â: -â. = 1. (2.24e) 

The position vector from the origin to the point P(x<„ \<„ Zo) can then be written as 

OP = Λ(1Α.ν + y0ây + zt,â-. (2.25) 

>y 

Figure 2.7 Definition of Cartesian 
coordinates. 
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Note that the base vectors, «,., ây, â. in the Cartesian coordinate system can be 
located anywhere (here shown at the tip of vector OP rather than at the origin). This 
is to emphasize that the х-, у-, z-directions in Cartesian coordinates are independent 
of the location of the point P0 (unlike cylindrical and spherical coordinates in the 
following discussion). 

The vector A in Cartesian coordinates can be written in a component form as 

A = A A + A,ây + A.âz, (2.26) 

so its scalar (dot product) and vector (cross product) with В are 

AB = AKB,+A,BV+A;B: (2.27) 

AxB = 
<t. 

A, 
B, 

<" ' . 
Л, 
в] 

il 

A: 
B. 

(2.28) 

A vector differential length in Cartesian coordinates can be expressed as 

dJ = dxàx + dyâ, + dzâ: (2.29) 

and a differential volume in Cartesian coordinates is the multiplication of differential 
lengths in the three coordinate directions: 

dv = dxdydz. (2.30) 

Note that A„ Д , A. are the components of A in the direction of the x, y, z 
axes, so they are the projection of A onto these axes with the angles a, β, γ. 
Thus, Л, = Л cos a, Л, = Acosß, A = A cosy, and we can write A = Acosaâ, + 
A cos/3«, + A cos yd-. 

We can use this equation to evaluate 

Л = Щ = (л, Àf = (Л? + А] + Л,2 )'/2 = (Л2 cos2 а + Л2 cos2 ß + A2 cos2 yf 

or 

A = A (cos2 a + cos2 ß+cos2 7) ' 

from which we can conclude that 

1 = cos2 a + cos2 ß+cos2 γ (law of cosines in 3-D). (2.31) 

Cylindrical Coordinates 

In cylindrical coordinates, an arbitrary space location P (plh фи, zo) can also be speci-
fied by three quantities or coordinates, p, ф, and z, which is illustrated in Figure 2.8. 
In cylindrical coordinates, we can now define a set of three mutually perpendicular 
unit vectors âp, άψ, and â.. 

In Figure 2.8, â remains in the same direction as in the Cartesian coordinates; 
âp is chosen to be in the direction of increasing p and is perpendicular to â- (âp is 
parallel to the x-y plane); and <?„, is perpendicular to both of these and in the 
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>У 

Figure 2.8 Definition of cylindrical 
coordinates. 

direction of increasing φ (<îs. is also parallel to the x-y plane). These unit vectors 
satisfy the following relations: 

(2.33a) 
(2.32b) 
(2.32c) 

and 
a. x aB = a„ 

âp-â9= άφ ■ à- = «,, · â- = О (2.32d) 
(2.32e) âp ■ <;,, = άψ ■ άφ = â. ■ a. = 1. 

We can express an arbitrary vector A in terms of components in cylindrical 
coordinates 

À = Apa„ + Λφ(\, + Ам:. (2.33) 

The resulting scalar or dot product is 

Â ■ В = (Apâr + \Ϊιφ + A.à. ) ■ (Bp(i,, + Βφΰψ + B.â. ) 
= Α,,Βη+ΑφΒφ+Λ:Β: (2.34) 

We can also define the vector differential length in cylindrical coordinates 

dJ = ащ cit, + du2 â„, + du} â. = dp «,, + p άφ ùl0 + dz â:, (2.35) 

so that its components in the directions of increasing p, ф, and z are ащ = dp, 
du2 = pdφ, and du3 - dz, respectively. Therefore, the differential volume in cylindri-
cal coordinates is 

dv = dut du2 du) = pdpdçdz- (2.36) 
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Figure 2.9 Differential volume element in 
cylindrical coordinates. 

The differential volume element in cylindrical coordinates is shown in 
Figure 2.9. 

Spherical Coordinates 

In this system, the location of a point P(Ro, во, фо) is specified by three coordinates, 
R0, #o, a n c ' Фо s n o w r i ш Figure 2.10. 

It is seen that R0 is the distance from the origin to observation point, во is the 
angle made by R0 with respect to the positive z axis, while фо is again the angle made 
with the positive лг-axis by the projection of R0 onto the x-y plane. 

Similarly as with the Cartesian and cylindrical coordinates, we define a set of 
three mutually perpendicular unit vectors âK, àlh and άφ, in the sense of increasing 
R, Θ, and ф, respectively, as shown in Figure 2.10. We see that all these unit vectors 
are functions of the location of P and that they satisfy the relations 

(iR X (i,i = a 

ασΧαΗ =(i„ 

and 
(1,1 ■ (t0 = (~t0 ■ (\, = (Ιφ ■ (1ц = 0 

(iK (iR= âe - Ci,, - L· ■ <L = 1. 

(2.37a) 
(2.37b) 
(2.37c) 

(2.37d) 
(2.37e) 

A vector A can be written in terms of components in spherical coordinates: 

A = AKûR + Α,,ά,, + Αφΰφ. (2.38) 



3 4 Chapter 2 Vector Analysis 

► У 

Figure 2.10 Definition of spherical 
coordinates. 
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Figure 2.11 Differential volume element in 
spherical coordinates. 

The scalar or dot product is 

ÂB = (Α,,ιΊκ + A0ô0 + Л,,«,,, ) ■ {BRâg + Β,,άο + Βφάφ ) 

= ΛιιΒ« + ΛθΒη + ΑφΒι!, (2.39) 

The vector differential length in spherical coordinates is 

dl - du, à, +du2 â2+duj â3 = dRôK + RdOL· + Rsiaddcci., (2.40) 
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so that its components in the directions of increasing R, Θ, and φ are dux = dR, 
du2 - Rd6, and аиъ = Rsin Θ dtp, respectively. 

The differential volume in spherical coordinates is 

dv = ащ du2 du} = R2 unddRdOdip, (2.41) 

as shown in Figure 2.11. 

2.5 COORDINATE TRANSFORMATIONS 

To solve a practical electromagnetic problem, we often need to concurrently use two 
coordinates (for instance, to find input impedance and radiation patterns for a rect-
angular microstrip patch antenna). Here, we need to both use Cartesian and spherical 
coordinates and go back and forth between them. 

In general, we derive the a component in any orthogonal coordinates by 
computing 

A„=âa-À, (2.42) 

where the vector Л can be defined in any coordinate system. This implies that, as 
long as we know the relationship between unit vectors, we can find any component 
of Л in our preferred coordinates. 

Transformation between Cartesian and Other Coordinate Systems— 
Matrix Representation 

In Appendix C, we show how vectors can be expressed in terms of column 
matrices. 

Using a numbered base vector convention (Figure 2.12), we can write 
A = Atâ[ + A:â2 + Aßi. 

Now, let us switch to another set of orthonormal base vectors, ά\, ά'2, «·, that 
are rotated in some defined way relative to the set âu â2, â3, as shown in Figure 2.13. 

In the primed numbered base vectors, we can write A - A\â\ + Α'/ι\ + Α'/ι'?.. 
It is clear that the vector A did not change: only the description of the vector 
changed. 

Thus, 

Α,ιι, = Α'ί'ι' (Summation convention implied) (2.43) 

Transformation of Base Vectors 

We just concluded above that each of the ù': could be expressed in terms of the â, 
by using the direction cosine description 

3 

â'j = lcosÖiy и, +1 cos02; i'2 +1 cos0,; «i = ^cosöi , â, = cosi^ â,. (2.44) 
1=1 
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Figure 2.12 Vector A in terms of numbered base vectors 
а,, <ь, Wt. 

>*, 

Figure 2.13 Vector A in terms of the numbered 
base vectors и , <i', <<'. 

For example, for u\, 
3 

<"/' = lcos<?n à\ + lcos02i à2 + lcosö3, â3 = У cosfli à, = costy, ά,. 

For example, for αί, 
3 

« · = lCOSÖ,2 й, + lCOS022 "2 + lCOS032 Ô3 = ^Γ COS0,2 à, = COS0i2 à,. 
ι-Λ 

For example, for a'-„ 
3 

«i = lcos0|3 à, +lcosö23 «2 + lcosö33 â3 = ^ c o s ö n â, = cosöl3 «,. 
i=l 

AU of these equations can be written as a single matrix equation as 

(«ί ίι': â',) = (âi â2 ά3) 
COS ö, i COSr3l2 COSÖ,3 

COS02I COS022 COS ©23 

V COS #3, COS032 COS θ 3 3 / 

= (Â, «2 â3)T (2.45) 
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Note that, because cos 0 is an even function of 0, cos 0,, = cos 0,,. Г is a square 
matrix whose elements are the direction cosines between the primed and the unprimed 
base vectors. This equation is valid for any rotation of axes. We will next define a 
rotation of base vectors for a cylindrical coordinate system and then for a spherical 
coordinate system, and the transformation of base vectors will be written through 
the transformation matrix T. 

Transformation of Components of Vectors 

Any vector A can be written as A = A fit or as A = A]u. so, from above, 

Да, = Ajà'i = Aj (cos0„ âi) = {A'j cos0Ö)à{. 

Thus, for any of the coefficients of «,, 

for example, for ûu 

A, = /l|'cos0|i + Л: cos0|2 +A{ cose,, 

for example, for â2, 

A- - A! COS021 + A i COS022 + A» COS023 

for example, for <33, 

A, = A!cos03| + Ai cos032 + Ai cos033, 

which may be written in matrix form as 

хивпУЛП (A'\ 
(2.46) 

fA> 
A 

.Ai> 

-
( cos 0,i 

COS 021 

, COS 031 

COS 0 i 2 

COS 022 

COS 032 

COS 0 , з ^ 

COS 023 

COS 033 j 

(A;> 
Ai 

и>> 
= т 

(A;> 
Α': 

Αί; 
where T is the same square matrix as above. However, the student must recognize 
that, for the base vector row matrix in Equation 2.45, the prime quantities are on 
the left, while, for the component column matrix in Equation 2.46, the prime quanti-
ties are on the right. 

CONCLUSION Given the components of a vector A expressed in any primed 
coordinate system, we may use Equation 2.46 to find its components in any 
unprimed coordinate system. Conversely, given the components of a vector A 
expressed in any unprimed coordinate system, we may use 

ГА;\ 
A'I 

vAi/ 
= T' 

(Α,Λ 
Аг 

A, 
(2.47) 

to find its components in any primed coordinate system. 
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It is possible to show" that, for any coordinate system that can be expressed as 
a rotation from another, the transformation is a Unitary Transformation for which 
T~ = T* (the tilda over T meaning exchange columns for rows). Because all of the 
components of T are real, the complex conjugate has no effect and we can conclude 
lhat 

r' = 
( COS 0 M 

COS 0,2 

COS 0,з 

COS 021 
COS 022 

cos 02, 

COS 031 

COS 032 

COS 033 y 

(2.48) 

We will use this transformation matrix for both the cylindrical coordinate 
system and the spherical coordinate system in the next sections. 

Cylindrical Coordinate System Transformations 

By careful inspection of Figure 2.8, it can be seen that the unit vectors in Cartesian 
and cylindrical coordinates can be related by 

«,, =CQS<pa, +sin<pa> 

«„ = - sin φ â , + cos φ ây 

â. = â. 

(2.49а) 
(2.49b) 
(2.49c) 

or, from Equation 2.48, 

(â,' «· â',) = (âr àv à.) 
(cos<p -sin<p 0N 

= (â, ây â:) sin<p cosç) 0 
, 0 0 1 

= (â, â2 â})T (2.50) 

By Equation 2.46 and by using the Unitary property that 7"1 - f*, the com-
ponents of A in cylindrical coordinates can be written as 

ΆΛ (αο&φ sin<p °λ(ΑΛ (ΑΛ 
A«, = - s i rup cos<p 0 Д, =7""' Аг (2.51) 

(А;\ 
Ai 

or inversely 

(At^ 
A, 

cosip -sinip 0 
sin^ cos<p 0 

0 0 1 

9 

(2.52) 

Spherical Coordinate System Transformations 

The unit vectors in spherical coordinates can also be expressed in terms of their 
components in Cartesian coordinates as 

au =s in0cosç>ô, +sin0sin<p«, + c o s 0 « 
a,, = cos0cos<p«, + cos0sinipa4 — s in0« r 

αφ = - sin φ я , + cos φ â, 

(2.53a) 
(2.53b) 
(2.53c) 
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so, by using Equation 2.46, 

(("(,' (Ί' t't') = ((~IK (lU <\i) 

fsinÖcosip cos Θ cos φ -sinip^ 
= («., âv â:) sinΘsinφ cosΘsinφ cos<p 

, cosö - s in0 О 
= (α, ά2 β,)Γ. (2.54) 

By Equation 2.48 and by using the Unitary property that T~[ = 7"*, the components 
of A in spherical coordinates can be written as 

(A{\ 
Ai 

vAiy 

or inversely 

A» 
sinö cos φ sin Θ sin <p cos(? 
cos Θ cos φ cos Θ sin φ - s inö 

V -sin<p cos<p 0 

A, 
A, = T' 

И. 

smöcosip cos Θ cos φ - s i n p 
sin Θ sin <p cos Ö sin «p cos<p 

cosö - s in0 0 
Αβ 

vAi/ 
(2.55) 

(2.56) 

2.6 VECTOR DIFFERENTIATION 

In this section, we are going discuss several frequently used vector differential 
operations, gradient and Laplacian operations of a scalar field, and divergence and 
curl operations of a vector field. Herein, we prefer to explain physical contents of 
these vector differential operations rather than derive them through strict math 
approaches. 

Gradient of a Scalar Field 

Suppose we have a scalar quantity V that is a function of position so that V = V 
(x, y, z) in 3-D or V(M], иъ... w„) in и-D space. Such a function is called a scalar field 
and has only one number associated with each point in space; that is, it has и" com-
ponents.2 Examples are temperature (K), electric potential (V), density (kg/m3), and 
pressure (N/m2). Such quantities are invariant to a transformation of coordinates; 
that is, at one point in space, they are the same whether expressed in Cartesian, 
cylindrical, or spherical coordinates. 

The vector differential operator V (del) (nabla) (grad) is usually defined in 
3-D as 

Й - Э , Э f Э „Э „Э „Э 
V = i— + j — + k— = al— + a2— + a>—, 

ox ay az aut au2 ou} 

(2.57) 

where и, indicates the use of curvilinear coordinates (for example cylindrical 
coordinates or spherical coordinates), as shown in Figure 2.14. 

2 Such quantities are called a tensor of rank 0. 
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" 3 

«> 

Figure 2.14 Orthonormal curvilinear coordinate system 
notation. 

In cylindrical and spherical coordinates, the gradient of a scalar field is 

e „ -,3V „,3V .,dV - dV 
W = a, —— + a: -— + « ' - — = α,, τ— + и ди2 ди} 

dV . 3V 
m + 0-

рд(р dz 

VV = a +(/. 
dui du2 

'dp 
.,dV , dV . dV . dV 

" · "::— = an ~z—·""« —^—•""o :::—· 
Э«3 dR Rd0 Rsinedç 

(2.58) 

(2.59) 

The gradient of a scalar quantity is a vector quantity that represents both mag-
nitude and direction, so it has three numbers associated with each point in 3-D space 
and n numbers in n-D space; that is, it has n' components.3 Examples are electric 
field intensity, E(x, y, z, t) (V/m), magnetic field intensity, H(x, y, z, t) (A/m), fluid 
velocity, v(x, y, z, t)v (m/s), and electric current density, J(x, y, z, t) (A/m2). Such 
quantities are called a vector field and are typically variant to a transformation of 
coordinates; that is, at one point in space, their components are different when 
expressed in Cartesian, cylindrical, or spherical coordinates. 

We can also write the gradient of a scalar function, V(uu u2,1/3), as 

an 
(2.60) 

where â„ is a unit vector in the direction of V V and dVldn is its magnitude. This 
vector can also be written in matrix notation as 

P V e e , — + a 2 — - + α 3 — = (α, 
ÖU] au2 дщ 

â2 аг) 
dV/дщ \ 
dV/du2 

дУ/диг 

(2-61) 

and, from Equation 2.47, we can write the components of V V in another (primed) 
coordinate system as 

VV = {a{ c'i': (~h) 
dv/du! 
dV/dul 

av/Эиз' 
= (5|' i/_' à')T 

fdV/дщ 
dV/du2 

dV/дщ 
(2.62) 

' Such quantities are called a tensor of rank I. 
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where 7"' is given for cylindrical and spherical coordinates by Equations 2.51 and 
2.55 respectively. 

EXAMPLE 

2.1 Suppose/ is a function of R (not of θ, φ) so that f(R) = f[-Jx2 + y + z ) -
A specific example would be the electric potential at a point in space for 

a charge q at the origin of coordinates. Then, Vf= â^dfldx + â^dfldy + â,dfldz, 
in Cartesian coordinates. 

by the chain rule and 

Э0 " дф 

9 / . 
дх' 

. Э/ dR 
' dR дх ' 

Э/Э0 
у ъе дх ' 

^ = 0and|>- = 

дф дх 

= 0 

and 

Likewise, 

so, 

dR _ д , 2 2 2 \'/2 _ ■* _ x 

- = - ( x + y + z ) = _ _ _ _ ? _ _ _ . 

Эй v ,dR z — = — and — = —, 
dy R dz R 

s . . ( # л Л . (4f уЛ „(dfz\,. . . , I d / /?d/ . d/ 
U/гЛУ \dRRj \dRRJ R dR R dR dR 

CONCLUSION The gradient of a function of Я is a vector («„ <//Ш) in the 
positive or negative radial direction. 

Now, consider a space point P + ΔΡ, which is displaced by dl = âxdx + â,dy + 
й-dz from the point P. In general, the value of the scalar function V(P) will change 
to V(P) + dV, where 

dV = (dV/dx)dx + (dV/dy)dy + (dV/dz)dz, (2.63) 

which can be written as the scalar product of two vectors: 

dV = (à, dV/dx + âv dV/dy+â. dV ldz)(âxdx+à}dy+â,dz) 
dV = (a, dV/dx + âv dV/dy + à: dV/dz)dï 

dV=(VV)-dï (2.64) 
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Geometrical Representation of the Gradient Operator in 2-D 

Suppose V(x, >·) describes a surface above the x,y plane. Then, V(x, y) = С defines 
a curve above the x,y plane, as shown in Figure 2.15. 

In what direction is V V? 

Й 1 , . dV . bV . dV . dV . dV 
"V = a, r— + a2 T—+a3 T— = ö.. — + e » — 

ощ ou2 σ«3 ox ay 

Along the curve 

dV dV fdV - dV. \ , . . ч 

V = С, dV = i l - Ä + ^ - d y = 0 or [ ^ - Й . , . + — α , -(oxa, +ö}a, ) = 0. Э* Эу Эд: r)v 

But (dxâ, + dxâ.) along the curve С is tangent to curve C. Therefore, since 
dV dV 
—— * 0 and —- Ф 0 in general, V V must be perpendicular to the curve С. 
Эд: Эу 

Geometrical Representation of the Gradient Operator in 3-D 

Suppose V(x, y, z) = С defines an iso-surface (isotherm, iso-potential, or equipoten-
tial) surface, as shown in Figure 2.16. 

On this surface, dV = 0, so (dV/dx)dx + (bVßy)dy + (dV/dz)dz = 0. As in 
Equation 2.63, we can rewrite this expression, as in Equation 2.64, as a dot 
product, 

dV -\ a,— + a,— + a--— \{aldx + aldy + a:dz) = 0 
\ ox oy oz J 

= ax—+ay—+a.-—\-dl = 0 
V dx dy dzj 

= {VV)dï = 0 

* »W) 

urve С 

Figure 2.15 Plol of VU. y) as a function 
of x and y. 
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Figure 2.16 An equipotential surface for a charge, 
q. al the origin. 

But we can see that, if we restrict ourselves to the iso-surface (the sphere), then dl 
must be on the surface of the sphere, so we conclude that V V must be orthogonal 
to the sphere. 

PROBLEMS 

2.1 Find a unit vector parallel to the (дг, у) plane and normal to the curve x1 - xy 
+ y2 = 7 at the following: 
a. the point (-1,2) 
b. any point (л:, >·) on the curve 

2.2 The electric field intensity Ê = -V V. Determine Û at the point (1, 1, 0) if 
a. V = Vl)e-'sm7^-

b. V= V„/?cosft 

Divergence of a Vector Field 

The del operator can be expressed in Cartesian coordinates from Equation 2.57 as 

V = ardßx + aydßy + a:dßz (2.65) 

and, letting V operate on a vector field, A (x, y, z), we define the divergence of A as 

div A= VÄ = (i/, д/дх + ау д/ду + а; Э/Эг)-(«,А, +ΰνΑγ +â.Az) 
= дА, βχ + ЪАУ ßy + дА: ßz ' (2.66) 

which can be written in matrix notation as 

VA = 
дх ду dz 

A 
Ay 

A, 
(2.67) 
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Physical Meaning of Divergence 

Suppose the current density at the point E at x0, Уо, Zo is 

J(xo, Уо, Zo) = JAxo, yo,Zo)â, +Jy(xo, Уо, Zo)ây+Jz(xo, Уо, Ъ>Ж, (2.68) 
as shown in Figure 2.17. Then, the current flowing into the volume element through 
face EFGH is approximately J.,(XQ, >Ό, Zo)AyAz" because the other components of J 
flow parallel to the face. Of course, the current density might be different at various 
points on this face, so the current flowing through EFGH would be exactly this 
amount only in the limit as Ay —> 0 and Az —» 0. The current flowing out of the 
volume element through face ABCD would be J,(x0 + Ax, y0, Zo)AyAz in the limit as 
Ay —> 0 and Az —» 0. The net current flowing out of the volume element in the 
^-direction is thus 

h =№ΛΧΟ+ΔΧ, Уо, Ζο)-·Λ(·*ο. yo,Zo)]AyAz. (2.69) 

However, we can see that the difference in the square brackets (in the limit as 

Ax, so the net current flowing out of the volume element Ax-^0) is just —-̂  
ox 

in the дг-direction is 

r„ + Δζ - -

Λ„ + Δ Ϊ / - * 

Figure 2.17 Current flow out of a small volume element ΔχΔγΔζ. 

4 We can also write this term as - ./(*„, y0, Ζο)-ΔσΕΚΗ if we interpret AÖEFGH = -AyAzâ, as the 
part of the surface, EFGH, of the volume element that points outward. 
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/, = a/, AxAyAz. (2.70a) 

Now, we can carry out the same calculation for current flowing into the volume 
element through face AEHD and out of the volume element through face BFGC to 
compute the net current flowing out of the volume element in the y-direction as 

/, = AxAyAz. (2.70b) 

Finally, we can carry out the same calculation for current flowing into the 
volume element through face ABFE and out of the volume element through 
face CGHD to compute the net current flowing out of the volume element in the 
z-direction as 

/. = 
dJ_ 

dz 
AxAyAz- (2.70c) 

Thus, the net current flowing out of the volume element is 

/ ,+/ ,+/ .= 
ÔV, a/. 

ед.то.щ ЧУ Эг 
AxAyAz. (2 71) 

However, from Equation 2.66, we recognize the quantity in square brackets as 
I Д Л ' -'(V *-П 

CONCLUSION The net current flowing out of a volume element at x, y, z is 

I „,,=V-J AxAyAz. (2.72) 

Because electric charge, qy is conserved in any volume element of space, we 
can say 

^-+V-JAxAyAz = 0, 
Э/ 

and dividing through by AxAyAz, 

dp 
'dt 

+V ■ J = 0 (Continuity equation), (2.73) 

where we have defined p = lim ιηΔ'Δ>Δ' a s m e c n a r g e density at дг, у, z. 
ΔΧ.ΔΪ.ΑΖ->Ο AxAyAz 

NOTE If — is a negative quantity (i.e., P ■ J is a positive quantity), charge is 
at 

coming out of the volume element at x, y, z- Thus, we could say that this volume 
element is a source of charge or that charge diverges from this volume element 
(hence the name divergence). 
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We can use a similar outflow of current argument with the differential volume 
element for cylindrical coordinates (shown in Figure 2.9) to find the divergence of 
a vector in cylindrical coordinates to be 

θ - 1 Θ , , . 1 dAv дЛ 

pop p όφ dz 
(2.74) 

We can use a similar out flow of current argument with the differential volume 
element for spherical coordinates (shown in Figure 2.11) to find the divergence of 
a vector in spherical coordinates to be 

ал. 
V-A = 

_1__Э_ 
R2dR 

(R2AH)+ _ 1 d_ 
Rsmdde 

(A,, sind) + 
Rs'm6 όφ 

(2.75) 

2.7 DIVERGENCE THEOREM 

In developing Equation 2.73, we could have taken note of the footnote 4 to 
alternatively say that in calculating /„,., we have taken a sum of J ·Δσ, over all six 
faces of the volume element and the minus signs in the sum account for the fact that 
ζΐσ, points out of the volume element. We will adopt this convention, and rewrite 
(2.73) as 

^£y-4cr, = V-JAxAyAz, (2.76) 

where it is understood that the six values of Δσ, are the six faces of the volume 
element ΔχΔγΔζ that point out of the volume. This is the differential form of the 
divergence theorem. If we now consider a large arbitrary volume V surrounded by 
a closed surface S, as shown in Figure 2.18: 

In this figure, we can consider the volume V to be subdivided into a large 
number, n, of volume elements ЛЦ. If we take the sum of the differential form of 
the divergence theorem over all such volume elements in Equation 2.76 in the limit 
as ΔΥ, —» 0, the right-hand side becomes the volume integral over the volume V: 

Face, Δσ 
onΔΚ.that is 
defined by surface 

Surface 5 ■ 
surrounding 
volume У 

Figure 2.18 Surface S surrounding 
subdivided volume V. 
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π 6 л 

lim £ £ .7 · 4σ, = £ V ■ JAV,; = JJJ 7 ·./' </V. (2.77) 
' ι=1 ί=1 ί=Ι 

On the left-hand side of Equation 2.76, we will take the sum over all six 
sides, J ■ Δοί, of every volume element within the volume V, but the Δσ, of 
adjacent cells (such as the adjacent elements АЦ.\, AV„ AVM shown in Figure 
2.18) is in the outward direction from each of those volume elements, so all 
of the terms cancel one another unless they are the surface element Δσ^ on 
the outer surface S (where there is no adjacent cell). Thus, the only remaining 
terms, in the limit as Δ^ —» 0, that do not cancel on the left-hand side reduce 
it to 

n 

lim Y,J-Aöi=jj>_ J ■ dö. (2.78) 
1 (=1 

Equating the right-hand sides of Equations 2.77 and 2.78, we get 

jj> .7 ■ da = jfl V- .7 dV (The divergence theorem ). (2.79) 
We have considered a special case of the vector field of current density J to get 

a physical meaning for the divergence, but, in general, this could have been any 
vector field, A. Thus, the divergence theorem applies to all vector fields and is most 
commonly written as 

Ö A-dd = j ] j V-ÀdV (The divergence theorem) (2.80) 

The quantity on the left hand side of (2.80) is conventionally called the flux, Φ, 
of a vector field A (x, v, z) written as 

0 = jj> Âdf. (2.81) 

The divergence theorem is one of the most powerful theorems of vector math-
ematics and is used in the manipulation of Maxwell's equations when we consider 
Gauss's laws of electrical and magnetic charge. In the electric field intensity case, 

the electric flux is defined as Φ, =(fp lids, and, in the case of magnetic field 

intensity, it is defined as Φ« =ib Bds. 

Curl of a Vector Field 

While the divergence gives a measure of the strength of a radiating source, another 
type of source, called a vortex source, is described by a circulation of the vector 
field. Examples of such a source would be fluid mass in a sink that spirals as it goes 
down a drain, the air molecules in a hurricane or passing over an airfoil at high 
velocity, and the supercurrent (from Cooper pairs of electrons) that surrounds normal 
regions in a Type II superconductor. The curl of a vector field gives a measure of 
the strength of the vortex source. 
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Physical Meaning 

Because most of us have experienced the first of these examples, and this was the 
historical first use of the measure, we will consider the physical meaning of the curl 
by considering an incompressible fluid whose mass density, p (kg/m3), is constant 
(the fluid is incompressible) and whose velocity is v(x, y, z)- Figure 2.19 shows a 
rotating fluid around a square path, C, in the x, y plane. 

The angular momentum (per unit volume) of the mass flowing 
(circulating) around the small area Ασ = AxAy (path С) in 2-D is defined as 
J (pv)dJ = ф (pv)dl, where С is the contour bounding Δσ= AxAy and, by 
convention, its direction or rotation is in the ά direction (defined by the right-hand 
rule for counterclockwise flow), φ v ■ dl in the дг, у plane is defined as the â: com-
ponent of the circulation around Δσ= AxAy is liv,dx + \:Vydy + \\VX (-dx) + J4vv (—dy) 
and the circulation per unit area (rotation) of the fluid in the x, y plane (the â: 

component) is defined as 

rot v. = lim 
vdl 

Δσ->α Δθ 
(2.82) 

Looking at path segments 1 and 3 in Figure 2.19, we see the net "circulation" along 
these two paths is 

J vxdx+ Î vt(-dx)= }?т{Ь>ЛУоУ\Лх + Ыу0+Лу)](-Лх)} 

or 
l i m [v,0b + 4y)-v,(>b)] ( } = _(ЪЛ 

Δσ-*0 Ду у Э>' j 
AxAy. (2.83а) 

And the net circulation along the two paths 2 and 4 in Figure 2.19 is 

J vydy + \ vv(-dy)= lim{[v,U, + Ax)]Ay + [vy(x0)](-Ay)} 

У 

У„ + Δν 

.'V 

Path С -
Л ВС DA 

-*■ x 

Figure 2.19 Circulation around a path C. 
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or 
,.[ν,(χ0+Δχ)-ν,(χ())] (dvy, 
lim — (ΔχΔ\>) = \ —— \ΔχΔγ. 

*»-*> Δχ \дх 
Thus, the net "rotation" in the «--direction is 

dvy dvx 

дх ду 

(2.83b) 

(2.84a) 

and, similarly, by looking at a small area in the y, z plane, we find the "rotation" in 
the ά,-direction is 

3v. dvy 

ду dz 
(2.84b) 

and, similarly, by looking at a small area in the z, x plane, we find the "rotation" in 
the ^..-direction is 

' dvx 3v, 
Эг дх 

Adding all of the components of the rotations, we get the net vector rotation as 

(2.84c) 

rot v 
_ ( dvy 3v, V ( dv. dvy V (dvx dv. \ . 
v=l -дх—ду-Г +Ьу—д7Г +1&~аГА (2.85) 

In general, we can use Equation 2.82 to define the net circulation (circulation) 
of any vector field, A, around a closed path as the scalar line integral over the path: 

Circulation of Л around contour С = Ф Ä · dl. (2.86) 

Curl 

We can define the curl of a vector field Д at a point x, y, z to be a vector whose 
magnitude is the maximum net circulation of A per unit area (as the area tends 
to zero) and whose direction is the normal direction of the area when the area is 
oriented to make the net circulation maximum: 

curl Â = VxÂ = l i m — Γ ο „ φ Â-dî\ 
<ΐσ->0 Λ<τ L J с J; 

(2.87) 

But, as we have seen, we can also treat the del operator, V, as a vector operator, 
which is taken as the cross product with A to give the curl. In Cartesian coordinates, 
we have 

Ô, Ay «; 

curl Â = V x A = д/дх д/ду д/dz 
Л, Л, А. 

= «., (ЭЛ /ду-ЭЛ, /dz)+à, (ЗА, / Э г - д А : / д х ) + â z (ЭЛ,./дх- ЭЛ, /ду) 
(2.88) 
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In cylindrical coordinates, we have 

VxÂ = -
P 

ap αψρ (i; 
д/др д/д<р д/dz 
A„ ρΑψ Α: 

In spherical coordinates, we have 

VxA=^ 
A2sin0 

âR âHp âtpRsine 
д/dR д/дв д/д<р 

Ак RAH (usine) Αφ 

(2.89) 

(2.90) 

CONCLUSION F x Л is a measure of the rotation of a field. If V x A = 0, we say 
the field A is "irrotational." 

2.8 STOKES'S THEOREM 

We have seen that V X A as defined by Equation 2.88 gives us the rotation of A and 
we can see that, for an infinitesimal area Лет,, 

VxÄAöj =j> Àdî. (2.91) 

If area Лет, is a part of a larger 2-D surface, as shown in Figure 2.20, it has direction 
à . 

On the right-hand side of Equation 2.91, we can see for this surface that the 
line integrals around adjacent areas also cancel one another, except for those small 
areas that have no adjacent elements (i.e., on curve C). 

Suppose Aöj is a part of a complex open surface S, as shown in Figure 2.21. 
On the right-hand side of Equation 2.91, we can see for the surface in Equation 

2.21 that the line integrals around adjacent areas also cancel one another, except for 

Δσ = Δχ. Δν.ά 
I 1 ') I 

iOi Path C" 

Figure 2.20 Subdivided surface enclosed by Γ. 
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Open surface S 

Closed path С 
"enclosing" 

open surface S 

Figure 2.21 Subdivided surface enclosed by C. 

those small areas that have no adjacent elements (i.e., on curve C). Thus, taking the 
sum of all such small areas, 

lim Y(VxÂ) АО, = lim Уф A-dl (2.92) 

or 

J (VxÄ)dö = j> A-dl (Stokes's theorem). (2.93) 

SPECIAL CASE If the surface S is a closed surface (i.e., if we shrink the path С 
to a point), there is no integral over C, so 

j>(VxA)do = 0. 

2.9 LAPLACIAN OF A VECTOR FIELD 

If V(x, y, z) is a scalar function of*, >·, z, the operation of V2 in Cartesian coordinates 
is defined as 

V2V=V-VV = (û, d/dx + âv d/dy + â: d/dz)(âx dV/dx + âv dV/dy + à: dV/dz) 

V2V = d2 V/дх2 + Э2 v/ду2 + Э2 V/dz2 <2"94> 

V2 = Э2/о\г + Э2/Э>'2 + Э2/Эг2 is called the Laplacian operator. 

NOTE If V(x, >·, z) satisfies V2V = 0, then VV is a vector field that is both (a) 
solenoidal (divergenceless) and (b) irrotational (curl free). 
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PROOF 

a. V2V = V■$ V = 0 so if Ê = -Ϋ V, Ϋ-Ë = 0. 
b. VxÊ^-VxVV = -Vx (âJV/дх + âJV/ду + âdV/dz) so 

à, âv 

VxE = -
a. 

dßx dßy d/dz 
dV/дх dV/dv dV/dz 

= -ci, (â2V/âydz -dV/dzdy) + ây (d2V/dxdz -d2V/dzdx) 
- et (dV/âyâ* -d2V/dydx) = 0 

Conversely, if V x Ê - 0, then we can find a V(x, y, z), so that Ê = -V V 
(called a conservative vector field), where V is a scalar potential that satisfies 
V2V = 0. 

This is a very powerful proof that we shall use many times in the following 
chapters. 

Laplacian in Curvilinear Coordinates 

We have found that 

and that 

V · £ = 1 Э 

_=,, . dV „ dV „ dV ,. , . , 
VV=an ——Va„—-—\-a — cylindncal 

Эр ρόφ " dz 
,=,, , dV . dV . dV . , 
V V = ii,, —— + ii и -—— + a„ sphencal 

dR Rd9 tfsin0d<p F 

V-E = -^-{pEl,) + - ^ + — cylindrical 
pop p όφ dz 

1 Э 
—— (R 2ER ) + — j — j-(E asiné>) + 1 Э 5 ' spherical 
R2dRy ' ÄsinÖdÖ Rsine d<p 

Therefore, 

ν-ννΛ± 
рдр 

Pbp~ 

v.vv= ' " >-2dv 

—— — —- H—I — I cylindrical 
ρόφ{ρόφ) dz\dz> 

1 Э / _2 3V \ 1 Э / . _ 1 dV 
—TT-\R-r—\ + sin© 
R2 dR\ dRI /?s in0d0\ R дв 

tfsinö d<p[ 7?sin0 dip J SP e n C d 

or 
1 d ( dV Л 1 dV dV 

V2V=~\p^-
pdp{ dp ) p- d(p dz 

i Э l„,dV\ 1 Э / . „dV\ 1 

2 ι „ 2 +-ΤΤ 

Ä2d/?\ dtf/ /?-s in0d0\ 

cylindrical 

d2v 

(2.95) 

(2.96) 

(2.97) 

(2.98) 

(2.99) 

dö / R2 sin2 Θ d(p2 spherical (2.100) 
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EXAMPLE 

2.2 \fJ{R) = R", evaluate Vj[R), V[aHJ[R)], V2 J[R) and V x [««Д«)]. 

a. Vf(R) = V(R" ) = â„ = âRnR"~' (see example following Equation 
2.63) dR 

b. V-[âRf(R)] = ^[R2f(R)} = ^f(R)+^- = l+nR-' =(n+2)Ä"-' 

c. ^/(й) = ~ [ й ! AÄ"1 = ~ [ « « " Ί = я(п+1)Г! 

R2dR. dR J /?2ЭК1 J 

d. F x [««/(/?)] = - ^ 
ά« Râg /îsinOâ, 

Э/ЭЯ Э/Эв Э/Э<р 
f(R) О О /?2sin0 

F х UhfiR)] = (l//?2sin θ) [</(/?θ//9<ρ - ^J?sin в(Э/7Э0)] = О 

Divergence and Curl 

The divergence and the curl of a vector field are basic operations used in the solu-
tions of Maxwell's equations. Two of the most important applications of their use 
are stated by the Helmholtz's theorems: 

1. A vector field is uniquely specified if its divergence and its curl are known 
within a region and its boundary conditions5 are specified over a surface 
(perhaps at infinity). 

2. Any vector field with both source and circulation densities vanishing at infin-
ity may be written as the sum of two parts, one of which is irrotational (curl 
free) and the other is solenoidal (divergenceless). 

Boundary conditions (BCs) may be simple Dirichlet or Neumann ВС or may 
be mixed on different parts of a closed surface but cannot both be specified on the 
same part of a surface without being too restrictive; that is, there is no solution. 
Often, the BCs are implied (e.g., the vector field goes to zero on the surface at 
R = oo), so it is important for the analyst to ask, "Where is the surface that encloses 
the region where a solution is desired?" 

Sometimes, the solutions to Maxwell's equations require an arbitrary (conve-
nient) choice of the form of the divergence of a field to uncouple the resulting dif-
ferential equations. For example, Lorenz chose a restriction on the magnetic vector 
potential Л to be V-A + μϋε^νβΐ = 0 (V being the scalar electric potential), while 
Coulomb chose V-A = 0. As we will see, these choices are convenient in different 
circumstances; they change the value of the magnetic vector potential Л but retain 
unique values for the measurable quantities of scalar potential (e.g., V) and vector 

' if the vector field has a specified value on a boundary, we say the BCs are Dirichlet ВС if the 
function (e.g., the electric polenlial) is specified and Neumann ВС if the normal derivative (e.g.. the 
electric field intensity) is specified. 
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fields (e.g., E or H). These choices are called the Lorentz gauge and the Coulomb 
gauge, respectively. 

From the physical meaning discussions above, we have seen that the strength 
of the source flowing out of an infinitesimal volume is V-A, and the rotation of a 
vortex source at a point in space is V x A, so it is not surprising that a complete 
description of a source field that vanishes at infinity would include a sum of the two, 
as stated by Helmholtz's second theorem. Mathematically, we will see the time 
harmonic version of this statement written as 

Ê(x,y, z) = -VV(x, v,z)+j<oVxÄ(x, >·, г), (2.101) 
where E is the electric vector field, V is the electric scalar potential field, and A is 
the magnetic vector potential field. 

The first term in Helmholtz's second theorem is based on the fact that the curl 
of a vector field integrated over a closed surface Я,[ V x (V V)] do is zero. We can 
see this mathematically from Stokes's theorem: 

JJ [Vx(Vv)]-dâ = j>(Vv)dî = j>dV = 0. 

In electrical engineering, we say the change in electric potential around a closed 
path that returns to its starting point is zero (a conservative field). Because this 
is true for any surface (even an infinitesimal surface), we can see the integrand 
V x ( V V) = 0 at any point in space. In other words, the curl of the gradient of 
any scalar field is zero or conversely, if a vector field is curl free, then it can be 
expressed as the gradient of a scalar field. We thus see that a curl-free vector field 
is a conservative field, so an irrotational (conservative) vector field can always 
be expressed as the gradient of a scalar field. 

The second term in Helmholtz's second theorem is based on the volume integral 
of V- ( V x A ) and the use of the divergence theorem followed by Stokes's theorem, 
where the surface .S' is a closed surface (see Figure 2.21; there is no path С that 
encloses S): 

Ш V{VxÄ)dV = jj>(VxÄ)dö = 0 (2.102) 

Point Conclusion 

Because the volume V is arbitrary, we may consider it to be an infinitesimal volume 
in which case, we see the integrand must itself be zero, that is, V- ( V x A ) = 0 at 
any point in space. We conclude that 

1. the divergence of the curl of a vector field identically zero, and 
2. conversely, if a vector field is divergenceless, then it is solenoidal and can 

be expressed as the curl of another vector field. 

We will use this fact in the construction of magnetic flux density by asserting 
that, because Vli = 0 in Maxwell's equations, we can define a magnetic vector 
potential field A such that В = V x A. 
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In Chapter 3, we apply the vector field conclusions of Chapter 2 to electro-
magnetic fields. 

ENDNOTES 

i. A. P. Wills, Vector Analysis with an Introduction to Tensor Analysis (New York: Dover, 1958). 
ii. Jon Mathews and R. L. Walker. Mathematical Methods of Physics (New York: W. A. Benjamin, 

1965), 145. 



Chapter 3 

Static Electric Fields 
LEARNING OBJECTIVES 
• Understand the differential and integral forms of two fundamental properties of 

electrostatics that specify the divergence and curl of the electric field intensity, E 
• Understand the concepts of the electric field intensity, £, scalar electric potential, V, 

electric flux density or electric displacement, D, and dielectric constant 
• Understand Coulomb's and Gauss's laws 
• Know how to derive tangential and normal boundary conditions for E and D for static 

fields 
• Understand the definitions of capacitance and capacitors 

INTRODUCTION 

Electrostatics is the study of the electric phenomena at rest and the electric fields, 
generated by discrete point charge or continuous distribution of charge that does not 
change with time. It is the basis of time-varying electromagnetic fields, and many 
concepts developed in electrostatics can be extended in future chapters for discussion 
of time-varying electromagnetic fields. 

3.1 PROPERTIES OF ELECTROSTATIC FIELDS 

Point Charge 

It is convenient to begin with the case of a point charge in which it is assumed that 
all of the charge is located at a geometric point in space. This is obviously an 
idealization but can be approximated in the laboratory by using distances of separa-
tion that are large compared with the dimensions of charged objects. 

We can compare the magnitudes of point charges q, and q2 by introducing 
another arbitrary test charge q„ putting it at a fixed distance R from q, and measuring 
the resultant force F, on q„ as illustrated in Figure 3.1. Then, we can do the same 
measurement of F2 by replacing qt by </; at the same distance R from t/„ as also 
shown in Figure 3.1. Because both q, and R are the same in the two cases, the 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 

56 
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9, 

1 
1 

?2 

·- — 

R 

4, 

^Δ 
^1 

я, 
— · » F Figure 3.1 Electric charges and their exerted forces. 

difference in forces can only be a result of the difference in the numerical values of 
the charges q, and q2, and it is natural to ascribe the magnitudes of the forces as 
being directly proportional to the magnitudes of q, and q2, namely, 

Ш Ы (3.1) 

This result can be further extended to the Coulomb's law that describes the relation 
between two charges qt and q2 and force. 

Coulomb's Law 

As mentioned in Chapter 1, Coulomb's law is an experimental law.' It states that 
force between two point charges or charge bodies, qt and q2, which are very small 
in comparison with their distance of separation, Л|2, is proportional to the product 
of the two charges and inversely proportional to the square of the distance between 
the two charges, with the direction of the force being along the line connecting the 
charges, as illustrated in Figure 3.2; that is, 

with 

F\7 = anK -~r 
«12 

Ri2 —Щп\ — Щг ~Rn 

(3.2) 

(3.3) 

Figure 3.2 Two charges and position vectors in 
Coulomb's law. 

1 Some researchers have tried to measure a deviation of force from the inverse square relationship 
without definite success to date. Many of the relationships that follow are a consequence of the inverse 
square law and would need to be modified if any such deviation were ever discovered. 
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where Fl2 is the vector force exerted by q, on q2, â,2 is a unit vector in the direction 
from </i to q2, and ke is a proportionality constant depending on the medium and 
system units. 

If q, and q2 are of the same sign (both positive or both negative), Fn is positive 
(repulsive); and if q, and q2 are of opposite signs, Fl2 is negative (attractive). In the 
later discussion, we will write the constant coefficient, ke, that appears in Equation 
3.2 as 

fce=(l/4TOb), (3.4) 

where fb (£b = 1/с2Д) = КГ'/Збл) is called the permittivity of free space, a universal 
constant and from Equation 3.2, its units must be C2/N m2. 

Electric Field Intensity 

It is convenient to introduce a physical parameter to describe the strength of the 
electric force per unit charge generated by arbitrary electric charges. The electric 
field intensity, Ê, is defined as the force per unit charge when a very small stationary 
test charge, q„ is placed in the neighborhood of another charged particle, namely, 

Ë = \\mFlq, (Уjm) (3.5) 
а-»о 

It can be seen that the electric field intensity, £, is proportional to and in the 
direction of the force F, where F is the measured electric force on q, in Newtons 
(N), q, is in Coulombs (O, and Ê is in volts per meter (V/m) in the International 
System of Units. From the analysis above, V/m = N/C. 

Electrostatic Fields in Free Space 

Based on Coulomb's force law (Equation 3.2) and the electric field intensit) defini-
tion for static point charges (Equation 3.5), two properties of electrostatic fields in 
free space can be deduced: 

V-Ë = pje0 (3.6) 

VxË = 0, (3.7) 
where pv is the volume charge density of free charge (C/m3). Equation 3.7 asserts 
that static electric field intensity is irrotational, and Equation 3.6 implies that a static 
electric field represents a charge source and is solenoidal only if pv = 0. These 
properties are deduced in the following sections. 

3.2 GAUSS'S LAW 

Let us calculate the electric flux, Ф,., for the case of a sphere of radius R that sur-
rounds a point charge Q located at the origin of coordinates, as shown in Figure 3.3. 
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Figure 3.3 A sphere of radius R surrounding a point charge Q at the origin. 

On the surface of the sphere at radius R, the electric field intensity is 

Ë = F/4l=ke(Q/R2)âK. 

We can find the integrated electric flux on the surface of the sphere to be 

Φ, =fy Edö = jj [ke(Q/R2)âR](Rsined<p)(Rde)âR 

= км\2\\"^10ав)аф = 2лке Q ̂ ύηθάθ = β/ε0 (3.8) 

CONCLUSION The total electric flux, Φ,, passing through a sphere that surrounds 
a point charge Q in free space is Фе = Q/fb. This answer is independent of the radius 
R of the sphere. Thus, the sphere can be of arbitrary radius. We can even take the 
radius of the sphere to be R in the limit as R —» 0. 

We can also use the divergence theorem in Equation 3.8 to see that 

0r=jj> Edö = jjj VËdv = β/ε„, (3.9) 

and, if we take the limit as R —» 0, the sphere of volume V is of infinitesimal size, 
and V-E is evaluated at the origin. Thus, 

VÊ = (Q/V)/e0=pv/e0. (3.10) 

Equation 3.10 is a point differential relation that is valid for charges at the 
origin and it is one of Maxwell's equations commonly called the point form of 
Gauss's law. 
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Note that, while we used the surface S to be a sphere above, we can reuse the 
divergence theorem for any surface 5' that surrounds the origin. That is, 

Щ VEdv = j^ßdö = Q/e0. (3.11) 

The surface S' could be the surface shown in Figure 3.4. 
But, even if Q is not at the origin of coordinates, we can make a transformation 

of coordinates to show that Equation 3.11 is valid for the surface S\ as shown in 
Figure 3.5. 

We can see that, if there is only one point charge Q inside the surface S\ we 
can shrink it down arbitrarily to infinitesimal size. Thus, we conclude that 

V ■ Ë = (Q/V)/e0 = pv /ε0 at any point in space. (3.12) 

SPECIAL CASE In the absence of charge, V-E = 0 and Ë is a solenoidal field. 
We can see that Equation 3.12 is valid no matter what the size of Q is or even 

if there are two, three, or n charges, q„ within the surface S1; it only matters that the 
charges are inside S'. Thus, 

<U> Ë-da = Q/e0= ]£ </,/εο Gauss's Law. (3.13) 

The integral form of Gauss's law given by Equation 3.13 is one of the most 
important relations in electrostatics. It states that the outward electric flux of the 

Figure 3.4 Arbitrary surface 5' surrounding Q at the 
origin. 

Figure 3.5 Arbitrary surface .9" surrounding Q at any 
point. 
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electric field intensity, Φ, =£b £ · d ö integrated over any closed surface 5 ' in free 
space is equal to the total charge inside that surface divided by Eo and may be used 
to calculate the electric field intensity generated by charges in specific symmetrical 
charged configurations. We give examples of its use in the following sections. 

EXAMPLE 

3.1 a. Use Gauss's law to determine the electric field intensity for an infinitely 
long, straight line in free space with a uniform line charge density ρ,. 
SOLUTION Because the line charge density pL is infinitely long and 
straight, we can observe that the resulting electric field intensity must be 
along the radial direction and perpendicular to the line; that is, Ê - âpEp. 
Any other components will be canceled by each other because of symmetry 
of the structure. By mentally constructing a Gaussian surface, as shown in 
Figure 3.6, 

ζ2π ρρ , 
j>sËds = J0*J0"«„£p ·ά:ράράφ-Ιο" ^άρΕρ·ά:ράράφ + ̂ ο' jo άρΕρ·άρράφάζ 

φ É-ds =2npLEp, (3.14) 

where the first and second terms integrated on top and bottom surfaces, 
respectively, are zero because the unit vectors of the differential surfaces 
are perpendicular to electric field intensity on that surface. Thus, the surface 
integration includes only the integral over the side-wall surface. 

Using Gauss's law, we have 

or 

2npLEp = Lpi/e0 

È = âpEp = -^1 

2πε„ ρ 

(3.15) 

(3.16) 

Figure 3.6 Gaussian surface used lo calculate the electric 
field intensity produced by a uniform infinite line charge 
density, pi, using Gauss's law. 
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Notice that the length L of the cylindrical Gaussian surface does not 
contribute to electric field intensity, so we could choose a cylinder with 
arbitrary height. 

b. Use direct integration to determine the electric field intensity for an infinitely 
long, straight line in free space with a uniform line charge density p,, as 
shown in Figure 3.7. 
SOLUTION Because the line charge is uniform, infinitely long, and 
straight, the electric field intensity at a point P caused by a charge element 
Δζί at z = Zi must produce a z component that cancels the z component of 
the charge element 4z,· at z = -Zi-

The component of the electric field intensity in the radial direction at 
point P caused by the charge element 4z, at z = Z\ must add to the component 
of the electric field intensity in the radial direction caused by the 
charge element 4z,- at z = -Z/. 

Thus, the net vector electric field intensity at point P can be written as 

where 
AÈ, = άρΕιφ = « А {Мши /R2 )2COS0, 

cos© = p/Jp2 + zf and R2 = (p2 + z,2)· 

(3.17) 

Any other components of the electric field intensity at P will be can-
celed by each other because of symmetry of the structure. Using Aqal ti = 
ρ,Δζ,-, we find 

-4£, = àpk, ΡιΔζ, - p 

(р2+г,2) 47^ 
= 2кер, 

(ρ2 + ζ?) 
2 43/2 "I Чр (3.18) 

Now, if we take the sum of all such elements 4z, from z = 0 to 111 (we 
have already taken into account the charge elements at negative values of г,), 

E = 
Pi l i m t - ■AZiâp = Pi ("2 

2πε0 *^'«ti (P2 + iff12 2m 

and, if we look up the integral in tables, 

Г 
Jo 

(p2 + z2f 
■dz (3.19) 

■=-m 
Figure 3.7 Electric field components at point /' 
caused by infinitesimal charge elements at г/ and -г 
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С 
1/2 

-dz = p-
(p2

 + z
2f2 V ( P 2 + Z2)'/2 

and in the limit for 111 » p 

1/2 1/2 

p[p2+(//2)2] /1\2l l /2 

E = cipEp = 
2πεα p 

1 . 
-ap, 

(3.20) 

(3.21) 

which is the same as Equation 3.16. 
CONCLUSION Gauss's law, with the appropriate Gaussian surface, pro-
duces the electric field intensity in a much easier manner than a direct integra-
tion technique. 

3.2 a. Use Gauss's law to determine the electric field intensity for an infinitely 
large, charged surface with a uniform surface charge density ps (alternately 
labeled £s). 
SOLUTION Because the surface charge is infinite in the plane of the 
surface, the electric field intensity must be perpendicular to the surface. 
Thus, if we let the surface be in the x—y plane, Ê - â,E;. Any other compo-
nents will be canceled by each other because of symmetry of the structure. 
By mentally constructing a Gaussian surface, as shown in Figure 3.8, 

Here, the Gaussian surface is in the form of a pillbox of radius b and 
height h that penetrates the x—y plane at its geometric center. 

By symmetry, we can see that the electric field intensity points in the 
«^-direction above the x—y plane and in the -indirection below the x—y 

Perspective view 

Area A = π b2 

Charge density = ps 

Cross-sectional view t 

ft 

1 
T 

Area A = к b 

Charge density = p, r 
-Area/) - лЬ 

Figure 3.8 Electric field intensity caused by a uniformly charged, infinitely large surface. 
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plane. Thus, the dot product of the electric field intensity and the differential 
area on the sides of the pillbox are zero, while the dot product of the electric 
field intensity on the upper circular surface gives an electric flux on the 
upper surface of Φ,, = Ε,ΐώ2 and an electric flux on the bottom surface of 
Фе = E:7tb2. Because the charge inside the pillbox is psirf»2, we can use 
Gauss's law: 

2E:Kb1=psnbtlEa (3.22) 

to find the electric field intensity above a uniformly charged plane as 

£=(ρ, /2ε ( , )Α ζ . (3.23) 

b. Use direct integration to determine the electric field intensity for an infinitely 
large, charged surface with a uniform surface charge density ps. 

SOLUTION We will first consider the electric field intensity at a point P 
along the г-axis due to an infinitesimally small charged area, ρΔφΔρ, as 
shown in Figure 3.9. 
If charge Q is spread uniformly on a circular disk of radius a in the x-y 
plane, its charge density per square meter is ps = Q/таг2. From Coulomb's 
law 3.2 and 3.5, 

(<2/πα2)ρΔφΔρ . 
ΔΕΗ = ke j - jT aR 

and the г-component of this electric field intensity is 

pz. AEZ=k}Qina:)pTp™e=k<Q 

(z2+P2) 
2\V2 

*«'(z2+p2) 
ΔφΔρ. 

(3.24) 

(3.25) 

So if we take the limit as Δψ —> 0 and Δρ —¥ 0 and add the electric field 
intensity components in the г-direction due to all such infinitesimal areas, 

Δ£„ »̂ , ! Δ£"Γ = |Д^я| cos© 

î \J 

Figure 3.9 Electric field intensity at a point on the z 
axis due to an infinitesimal element of charge in the 
x-y plane. 
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2ktQzr° 

π«2ΐο(ζ2+Ρ2)У Uo J «2 J n ( z 2 + o2f2 («*+^r 
(3.26) 

(*2+p2) 

and from integral tables 

E: =-{2KQzla1){z2
+P

1Yn{ =(2krQ/a2)[l-z(z2
+a>yy2]. (3.27) 

Equation 3.27 is the exact answer for the electric field intensity caused by 
a uniformly charged disk of radius a. Now, if we let Q = ps7ca2 and take 
the limit for z « a, we can write 

£ : = ( 2 ^ р , я а
2 / « 2 ) [ 1 - г ( г 2

 + а
2 ) - | / 2 ] = (р , /2 е о ) [1-( г /«)(1 + (г/а)2)-' /2] (3.28) 

and expanding 

(ΐ + (ζ/α)2)4/2 = 1-1/2(ζ/«)2 + (1/2)(3/2)/2!(ζ/«)4-(1/2)(3/2)(5/2)/3!(Ζ/α)6+... 

For small values of (z/a), we see that 

£ = (ρ,/2ε0)ά2, (3.29) 

which is consistent with Equation 3.23. 
CONCLUSION Direct integration and the use of Gauss's law yield the 
same result, but it is much easier to use Gauss's law. 

33 Use Gauss's law to determine the electric field intensity for a large, uniformly 
charged, spherical shell of radius a. 

SOLUTION If the charge, Q, on the sphere is uniformly distributed, ps = 
QIAm2, and we can find the electric field intensity using a Gaussian surface 
of radius R, as shown in Figure 3.10. 

Gaussian 
surface 

Spherical \ 
conductor 

Figure 3.10 Gaussian sphere of radius R 
surrounding a uniformly charged spherical shell of 
radius п. 
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Using symmetry arguments for the electric field intensity, dÊR, we can 
see that it will have only a radial component and that this component will be 
parallel to a differential surface element at every point on the Gaussian surface, 
so 

and, thus, 
Φ, = Qmw/«b = Q/so = % E dö=F.R 4nR2 

E = {QlAne0R
i)âK 

(3.30) 

(3.31) 

PROBLEM 

3.1 Use direct integration to determine the electric field intensity for a large, 
uniformly charged spherical shell. HINT Consider the charged shell, as 
shown in Figure 3.11. 

Parallel Plate Capacitor 

Let us apply Gauss's law to a large parallel plate capacitor, as shown in Figure 3.12. 
In the upper-left corner of Figure 3.12a, Gaussian (black) surface (like that 

shown in Figure 3.8) encloses an amount of positive charge, Q = +pSAjib2, so there 
is an equal electric flux, Φ,. = JAÊdô = Е:ЛяЬг, as a result of this charge on the top 
surface of the pillbox and on the lower surface (there is no electric flux on the 
cylindrical side surface). Using Gauss's law, we thus conclude that 

2E:Anb2=Q/e0 = ps^b2/e0 (3.32) 

dERb AdE: = \dËR\c^ 

(z-ucosfl) C-^— R= V(z-ucose)2 + (asine)2 

Figure 3.11 Blectric field intensity at a point on the г-asis due to an infinitesimal element of charge 
on the surface of a sphere of radius a. 
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E., +£. , = 0 
. Cross-sectional view 

[ШШ :̂ДШШ1 
: pïûbôx"! 

Лам ■кЬг'^--л+Е--.г = '1Е:.\ 'gaussian·— 

,Uii . lU? u r f a - e J , . 
rVpv. i = negative; 

Zero net 
charge in 
gaussian 
surface 

I 
1 

*v 
" I v 

£·. ,+£·. , = 0 

-Area = nb' J 
Figure 3.12 Cross-sectional view of the charges and electric field intensity produced by a large 
parallel plate capacitor. 

£| = (Ps.i /2ε0 )«.- on the top and Я, = (pSJ /2ε0 ) ( -â . ) on the bottom. (3.33) 

In the lower-left corner of Figure 3.12, another Gaussian surface encloses an 
amount of negative charge so the electric field intensity on its two surfaces is exactly 
opposite to those of Equation 3.23. 

We can conclude that the electric field intensity in the region between the two 
parallel plates due to the two charged surfaces reinforces to produce a net electric 
field intensity 

Ê = (—ps/Во)аг in the region between the plates. (3.34) 

We can also use a larger Gaussian cylindrical surface like that shown on the 
right-hand side of Figure 3.12 to see that there is no net charge enclosed, so the 
electric field intensity on the upper surface due to the positive charge is exactly 
canceled by the electric field intensity on the upper surface due to the negative 
charge. 
CONCLUSION The electric field intensity in the neighborhood of a large parallel 
plate capacitor is zero outside the capacitor and is / = ( ;h/e„),': in the region 
between them. 

Spherical Charged Cloud 

1. Suppose a uniformly charged spherical cloud inside a sphere of radius b, as 
shown in Figure 3.13 with a Gaussian surface at radius R> b. 

From symmetry, we can see that the electric field intensity is of constant 
magnitude anywhere on the Gaussian surface and points in the outward radial 
direction parallel to a surface element on the Gaussian surface, so 
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Gaussian 
surface 

Figure 3.13 Uniform charged cloud inside a sphere 
of radius b with a Gaussian surface al R. 

0,. = <$sEdo = EK 4π« 2 = ο,„.«*/ε0 

and because Qimiie = Q, 

ER = (l/4œ0)(Q/R2) 

as if all the charge were located at the origin. 

(3.35) 

(3.36) 

2. Now, suppose the Gaussian surface is of radius R < b, as shown in Figure 
3.14. 

Again, from symmetry, we can see that the electric field intensity is of 
constant magnitude anywhere on the Gaussian surface and points in the 
outward radial direction parallel to a surface element on the Gaussian surface, 
so that 

Φ,. = jj> Ё ■ dö = ER AnR1 = ô„,W£o- (3.37) 

But. in this case. 

so that 

о,,„, = (4я/г3/з)[о/(4^7з)] 

ER={\lAn€o){Qlb2)(Rlb). (3.38) 

Note that, at R = b, the two values of ER (Equations 3.36 and 3.38) are 
the same. Thus, if we plot the magnitude of the electric field intensity as a 
function of /?, we get the dependence shown in Figure 3.15. 

GOOD QUESTIONS Given that the electric field intensity inside a perfectly 
conducting material is zero, use Gauss's law arguments to answer the following 
questions: 
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Gaussian 
surface 

Figure 3.14 Uniform charged cloud inside a sphere of 
radius b with a Gaussian surface at R. 

1 
i 

' 0 
47Щ b2 

л 2b 

E =-±-2-

3* R 

Figure 3.15 Electric field intensity as a function of Л for a uniformly charged spherical cloud. 

a. How will a charge Q distribute itself on the perfectly conducting sphere 
shown in Figure 3.16a? 

b. How will a charge Q distribute itself on the perfectly conducting spherical 
shell shown in Figure 3.16b? 

с If a charge Q is located at the center of a conducting spherical shell, as shown 
in Figure 3.16c, how does the magnitude of the electric field intensity behave 
with radius /?? 

d. If a charge Q is located at the center of a conducting spherical shell and 
another charge -Q is added to the shell, how does the charge distribute itself 
and how does the electric field intensity vary with radius R? 

HINT Mentally construct a spherical Gaussian surface concentric with the origin 
with subsequently larger radius. If the radius of this surface is in a conductor the 
field must be zero at this point. 

Using this classical picture of charge distributions how do you suppose the 
charge is distributed within a spherically shaped electron, proton or neutron? Is it 
a uniform cloud, a point, a shell? Could there be a mixture of positive and negative 
charges for these fundamental particles? Could you tell without probing inside 
them? Do the answers change if you ground the sphere? 
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Figure 3.16 Perfectly conducting spherical conductors with 
(a) charge Q on a solid sphere, (b) charge Q on a sphere with an 
interior spherical cavity, (c) charge Q in the interior of a sphere 
with a spherical cavity, (d) charge Q in the interior and charge -Q 
on the exterior of a sphere with a spherical cavity. 



3.3 Conservation Law 71 

If the cross sections of Figure 3.16 represent a cut through a long cylindrical 
conductor or cylindrical shell with charge per unit length, p, = Q/l, how would the 
electric field intensity distributions differ from the above answers? 

3.3 CONSERVATION LAW 

The curl of the electric field intensity (Equation 3.7), V x Ë, may be evaluated by 
using Stokes's theorem for any arbitrary vector field, A as we deduced in Chapter 
2 (Figure 2.21). Here, we recall Stokes theorem 

j(VxÄ)ds=j>Ä dl (2.93) 

for any open surface S enclosed by the curve C. 
However, when we consider the particular case of an integral of static electric 

field intensity, A => F and Vx Ê = 0 everywhere on the surface S, so the line integral 
around the closed path С in Equation 3.38 vanishes: 

f(VxE)-dS = j>ßdI = 0. (3.39) 

Because scalar line integral of the static electric field intensity around any closed 
path is adding up the differential electric potential elements, dV = F.-dl, around a 
path that returns to the point where it started. Equation 3.39 is an expression of 
Kirchhoff 's voltage law in circuit theory that states that the algebraic sum of voltage 
drop around any closed circuit is zero. 

Conservation Law for Electric Field Intensity 

We may also see that Equation 3.39 implies that, in electrostatics, the voltage 
between any two points depends only on the starting and end points and is not 
relevant to voltage integral path by considering the curve С in Figure 3.17a to be 
composed of two parts, (', and C2, as shown in figure Figure 3.17b. Mathematically, 
we would write this as 

j> Ëdï = j Êdï+jcÊdï. (3.40) 

In Figure 3.17c, we consider the integral between P2 and Pt to be the negative of 
the integral between P, and P2. Thus, Equation 3.40 may be rewritten as 

tp2 - ,τ f^i &Edi=[2 Ëdl + \' Ëdl=Q or 
J ( JPi(l'.nhCi) JPj(PalhCi) 

Édî=[Pl Ëdî-C' ËdI=Q or 
JPl(PuthCi) J/'iO'jiliC;) 

f Ë-dÎ=[P2 Êdï or finally 
J/>](l'iiihC|) JPi(PaihC;) 

f2 Ë-dî=\Pl Ëdï, 

(3.41) 
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>;iih C" 

Path C, 

Path C, 

Path C, 

(d) P, 

Figure 3.17 (a) Arbitrary closed path С considered as (b) the 
sum of two parts (C, between P, and P, and Cj between /^ and 
Л) (c) (Ci between f, and /*2 and -(".· between P, and />г) and 
(d) (C, between P, and P2 and -C . between P, and P2). 

which states that the scalar line integral of the irrotational electric field intensity is 
independent of the integral path; it depends only on the starting and end points. If 
the value of a line integral is independent of the path taken, we say that such fields 
are conservative. 

CONCLUSION Static electric fields are irrotational ( V x £ = 0) and are thus 
conservative; that is, the line integral / 2 Êdl is independent of the path taken 
between P, and P2-

3.4 ELECTRIC POTENTIAL 

If an electric charge q, is located at a point (x, y,A) in a uniform electric field intensity 
(like that produced by a parallel plate capacitor), as shown in Figure 3.18, and the 
charge is displaced to z = B, a constant force F - q.E-â. will be required. Thus, the 
work carried out by the force F in displacing the charge will be 
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Figure 3.18 A charge q, in a uniform eleciric 
field intensity E = -ЯД-. 

AWAB = \&Fd7= \"q, E: dz=q, E:(B-A). 
JA JA 

(3.42) 

Note that AWAB is a positive quantity as long as q, is positive. We also note that a 
charge q, at point z-B has the potential to give up that work if we allow it to "fall" 
to z = A ; that is, it has electric potential energy, AUAn, at point ß relative to point A of 

AUAH=UB-UA=q,E:B-q,E:A. (3.43) 

We could define the electric potential energy at В to be UB = q,E,B, but that 
would be merely a statement of its energy relative to z = 0. 

Electric Potential 

We will define the "electric potential" difference between two points, AV, to be the 
electric potential energy per unit charge: 

AVAB=AUab/q, =ЕЛВ-А). (3.44) 

Because the electric field intensity, £ = -Ем-, and the external force needed to move 
the charge, F = q,Eß; = -</,£', are in opposite directions, 

AVAB=\B
A-Ëdî (3.45) 

Note that, if В is infinitesimally close to A, dV = -E-dl = -E:dz, so 

E:=-dV/dz- (3.46) 

We could make a similar argument for electric field intensity in the -^-direction to 
show that £, = -dVldx and likewise for electric field intensity in the -y-direction 
to show that Ev = -dVldy. Thus, if a field has components in the —х-, —у-, and 
-z-directions, 



74 Chapter 3 Static Electric Fields 

Ë = -dV/dxâx-dV/dyây-dV/dzâz=-VV (3.47) 

Note that the units of AVAB = AU„,Jq, are volts, so 1V = 1J/C = 1N m/C. A good 
conversion to remember is lhal V/m = N/C. 

Electric Potential of a Point Charge at the Origin 

Suppose a charge Q at the origin and another charge q, at radius RA, as shown in 
Figure 3.19. 

From Coulomb's law, we can find the electric field intensity at R as E = 
keQIR2ân and the force required to push c/, toward the origin as F = -/:,.(/,β//?2ίί„, 
so the work carried out in pushing q, from RA to RB will be 

Δ\νΛΒ = J* - k e ^ â „ <ЖЙ = keq,Qj 
RH 

= -keq,Q\—-
«Л V « A " £ 

1 1 (3.48) 

This work is a negative quantity for RB > RA so the charge q, at RA has the potential 
to do work as it "falls" to RB; that is, it has positive "electric potential energy" 
AUAB = ktq,Q(\IRA - \IRB) at point A relative to point В or it has electric potential: 

AVAB = keQ(l/RA-l/RB) (3.49) 

If we agree that RB = °° is a common reference radius, we can say that the absolute 
potential at RA is VA - keQIRA. Unless it is otherwise stated, we will assume a refer-
ence point at RB = °° and write 

V(R) = keQ/R 

as the absolute potential around a point charge Q. 

(3.50) 

, ' ' 
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^ά' : , 
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_'* Figure 3.19 A charge q, in an electric field intensity 
caused by a point charge Q at the origin. 
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Electric Potential of a Point Charge at R' 

The electric potential at a point P due to a point charge, q at the origin, is a scalar 
function of R, where R is the radius of a sphere from the point charge. If the charge 
is not at the origin but at /?', as shown in Figure 3.20, then the electric potential at 
point P will be 

V(R) = keq/\R-R'\, (3.51) 

where the observation position vector, source position vector, and distance between 
the source point and observation point in Cartesian coordinates are specified by 

R = âxx + âyy + â.z (3.52a) 
R' = âxx' + àyy' + âzz' (3.52b) 

| ft - Ä'| = V(* - x'f +(y- /f +(z- z'f ■ (3.52c) 
In this book, we will generally use the convention that any quantities with a 

prime sign are source parameters and that unprimed quantities will be points of 
observation. Therefore, using Equation 3.47. 

E = â„Ep = <l, <ΐ/*πε0 \R - R'\\ (3.53) 

where the normal unit vector, </,„ on the Gaussian surface can be written as 

â„=(R-R')/\R-R'\ (3.54) 

then Equation 3.53 becomes 

ËP =q(R-R')/4Ke0\R-R'f (V/m). (3.55) 

Equation 3.55 indicates that the electric field intensity of a positive point charge, q 
at /?', is in the outward radial direction of the Gaussian surface and has a magnitude 
proportional to the charge and inversely proportional to the square of the distance 
from the charge. In particular, if the charge q is located at the origin of the coordi-
nates, the electric field intensity can be simplified as 

V 
4* 

R 

Figure 3.20 Electric field intensity due to a point 
charge, q, at an arbitrary position, R'. 
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Electric Potential of a Point Charge at R' 

The electric potential at a point P due to a point charge, q at the origin, is a scalar 
function of R, where R is the radius of a sphere from the point charge. If the charge 
is not at the origin but at /?', as shown in Figure 3.20, then the electric potential at 
point P will be 

V(R) = keq/\R-R'\, (3.51) 

where the observation position vector, source position vector, and distance between 
the source point and observation point in Cartesian coordinates are specified by 

R = âxx + âyy + â.z (3.52a) 
R' = âxx' + àyy' + âzz' (3.52b) 

| ft - Ä'| = V(* - x'f +(y- /f +(z- z'f ■ (3.52c) 
In this book, we will generally use the convention that any quantities with a 

prime sign are source parameters and that unprimed quantities will be points of 
observation. Therefore, using Equation 3.47. 

E = â„Ep = <l, <ΐ/*πε0 \R - R'\\ (3.53) 

where the normal unit vector, </,„ on the Gaussian surface can be written as 

â„=(R-R')/\R-R'\ (3.54) 

then Equation 3.53 becomes 

ËP =q(R-R')/4Ke0\R-R'f (V/m). (3.55) 

Equation 3.55 indicates that the electric field intensity of a positive point charge, q 
at /?', is in the outward radial direction of the Gaussian surface and has a magnitude 
proportional to the charge and inversely proportional to the square of the distance 
from the charge. In particular, if the charge q is located at the origin of the coordi-
nates, the electric field intensity can be simplified as 

V 
4* 

R 

Figure 3.20 Electric field intensity due to a point 
charge, q, at an arbitrary position, R'. 
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\R-(d/2)â:\'
3 =[(R-(d/2)âz)(R-(d/2)âz)]'V2 =[R2 -Râ-J + id/D2]'312 

= R-3[\-Râ,d/R2]'312 =R-}[l + 3Râzd/2R2] (3.59) 

where we have expended the above equation by using the series replacement 

(a-x)'m =a'm +ma'm~,x + m(m + l)/2\a-m-2x2 +---(m>0) (3.60) 

and taken first two terms in the approximation. Similarly, we have 

\R+(d/2)âz\'
3 = /Г3 [ l - (3 /2) ( /? iU/ /? 2 ) ] . (3.61) 

In Equation 3.58 we may now substitute the approximate value of \R - (dl2) 
аг\~

3 by the value given in Equation 3.59 and the approximate value of 
\R+ (J/2)«;)r3 by the value given in Equation 3.61 to obtain 

Ë = (q/4Ke0R
3)[3(Râ,d/R2)R-âzd]. (3.62) 

We can define the electric dipole moment as 

p = â.qd (3.63) 

in which case Equation 3.62 can then be written as 

Ë = (l/4ne0R
3)[3(Rp/R2)R-p]. (3.64) 

By converting the electric dipole vector into spherical coordinates, we have 

p = âzp = p(âK cosö - an sinö) (3.65) 
Rp = Rpcosd (3.66) 

£*<* s (ι>/4πε0 R
i)[âK2cosd+ίι„ sind]. (3.67) 

It is seen that the electric field intensity of an electric dipole decays much 
faster in space (i.e., \ЁЛр,,,е\ «= 1/Ä3) than \/R2 in Coulomb's law for the 
electric field intensity produced by a point charge (also called an electric 
monopole). This is because the electric field intensities generated by +q and 
-q tend to cancel each other as R increases. 

3.6 ELECTRIC POTENTIAL FOR A SYSTEM OF CHARGES 

The electric potential created by a group of n-discrete charges, q,,q2,..., </„, which 
are located at different positions are also found by the principle of superposition. 
The total electric potential at point P is simply the algebraic summation of all the 
electric potentials generated by individual charges: 

Ц , = ( 1 / 4 Я Е О ) Х ^ / | А - А ; | . (3.68) 
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EXAMPLE 

3.5 Starting with Equation 3.68, find the electric potential for the electric dipoie 
shown in Figure 3.21. 
SOLUTION Using the notation in Example 3.4, for the position vectors for 
two point charges R'^ = (d/2)âz and Riq = -(d/2)âz, we have 

VP =(q/4jieo){l/\R-(d/2)ât\-l/\R+{d/2)ât\) (3.69) 

If the observation point is in the "far field" region, then d « R and we can 
write 

\R-(d/2)âz[
,=[(R-(d/2)âl)iR-(d/2)âz)]-V2 

^R-'ll-Râ.d/R2]'"2 =R-'[l + (\/2)R-azd/R2] (3.70) 

and, substituting Equation 3.70 into Equation 3.69, 

VP =(<i/4jte0R){Râzd/R2) = p-ô,/4n£0R
2. (3.71) 

PROBLEM 

3.2 Use £ = —VV in spherical coordinates to show that Equation 3.71 gives the 
same electric field intensity as Equation 3.67. 

EXAMPLE 

3.6 Starting with Equation 3.57, find the electric field intensity for a linear electric 
quadrupole, as shown in Figure 3.22. 

Figure 3.22 Configuration of a linear electric quadrupole. 



3.7 Electric Field for a Continuous Distribution 79 

Here, the position vectors for four point charges are R'+q = (d/2)âz, Ri^ = 0, 
and R',q = -(d/2)â. so we have 

F-q„aär^„e =(<7/4πε0 ){R- К )I\R - К I3 -2qR/47tE0 Щ3+c,(R- K4 )βπφ - # , | 3 

(3.72) 

P R O B L E M 

3.3 In the "far field" region, show that the electric field intensity of a linear elec-
tric quadrupole decays much faster in space (i.e., I Equadlupoie I °= l/R4) than 
l/R3 for the electric field intensity produced by an electric dipole and l/R2 for 
an electric monopole. 

3.4 In spherical coordinates, show that the electric potential of an electric quad-
rupole behaves as УЧ,„„,,„,,„/,.(А) <χ l//?3. 

A mullipole charge distribution requires 2""' charges and its potential 
behaves as follows (Table 3.1): 

3.7 ELECTRIC FIELD FOR A CONTINUOUS DISTRIBUTION 

We often encounter situations in which charges are so close together compared with 
a discrete state that we can regard them as being continuously distributed. We can 
deal with such cases by considering a region of the charge distribution that is so 
small that the charge with it can be written as dq' and treated as a point charge, as 
illustrated in Figure 3.23. 

By defining that p (C/m3) is volume charge density, a function of coordinates; 
then dq = p dv' is a differential charge; according to Equation 3.57, we have 

dË = aR „ (dq/4m> \R - R'\2 ) = <V „.. (pdv'JAKEo \R - R'f ) , (3.73) 

Table 3.1 Electric field intensity and electric potential radial behavior of mulltipole 
charge configurations 

Name 

Monopole 
Dipole 
Quadrupole 
Octapole 
Hexadecapole 

II 

1 
2 
3 
4 
S 

Number of charges 

2 ° = 1 
2' = 2 
22 = 4 
23 = 8 
24= 16 

lei« 
kr/R

2 

k,/R} 

k/R* 
kf/R

5 

K/R6 

V(Ä)~ 

kê/R 
k/R2 

k/R3 

kJR1 

ke/R
s 

Multipole n 2"'"' Ä,./Ä"'+' k/R" 
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Figure 3.23 Electric field intensity due to a charge 
distribution. 

where àK^R- is the unit vector in the direction of R - R', which is a vector from the 
source pointing toward the observation point P. It should be noted that âA_«· varies 
with different space locations, R - R'. In Cartesian coordinates, 

| t f- /? ' | = V(*-* ' ) 2 + ( y - y ' ) 2 + ( z - z ' ) 2 . (3-74) 
Then, the total electric field intensity generated by the entire volume of charge 
distribution is 

Ë=ίίίνdÈ=\\\v ' " 'л ' " ·p ανΊΑπε» I* - ̂ f · <3-75a) 
Because âK tf = R — R'/\R- R'\, Equation 3.75a can be rewritten as 

E = (l/4ne0)jjjv,p[{R-R')/\R-R'f]dv' (3.75b) 

If the charge is distributed on a surface with a surface charge density p> (C/m2), thus, 
the electric field intensity becomes 

Ë = (1/4πε0 ) Jjs, âK-n[ps/\R - R'f ] ds', (3.76) 

where the integration is on the charge distributed surface. Similarly, if the charge is 
distributed along a line with a line charge density p, (C/m), thus, 

Ë = ( l /47re0)J t /Vr [pi/\R - Rf]dl\ (3.77) 

where the integration only needs to be taken along the charge distributed line. 

3.8 CONDUCTOR IN A STATIC ELECTRIC FIELD 

Classification of Materials 

We usually classify materials into three types: conductors, semiconductors, and 
insulators (or dielectrics). In general terms, a conductor can be defined as a region 
in which charges are free to move under the influence of electric field intensity. A 
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conductor has many free charges (often one free electron per atom) and is an excel-
lent material for electric conducting. A conductor can be crudely thought of by using 
the periodic table and thinking of a metal as a periodic structure of atoms with posi-
tively charged nuclei and orbiting electrons. The inner (tightly bound) electrons 
remain associated with a specific nucleus even though there are nearby neighbors, 
but the electrons in the outermost shells of the atoms (loosely bound) of a conductor 
atoms are very loosely held and associate with their neighbors just as easily as their 
parent nucleus. These electrons are more or less "free" to migrate from one atom to 
another. Most metals belong to this group. 

An insulator or dielectric is a material that is unable to conduct electricity. In 
the periodic atomic model, the electrons in the atoms of insulators or dielectrics are 
bound more tightly to their parent nuclei and are thus more or less confined to their 
atomic orbits; they are not "free" to move from atom to atom in normal circum-
stances, even with the application of external electric field intensity. The electrical 
properties of semiconductors fall between those of conductors and insulators in that 
they possess a relatively small number of "free" charges. 

Electric Fields inside Conductors 

If electric field intensity were present in a perfect conductor, the "free" electrons 
would move under its influence, and we would not have the static situation we are 
assuming in this chapter. Hence, inside a perfect electric conductor (PEC) under 
static conditions, 

p ,„w = 0 (inside a PEC) (3.78) 
£ = 0 (inside a PEC). (3.79) 

It then follows directly from Equations 3.68 and 3.75b that the electric potential 
V is constant with the conductor; that is, the conductor is an equipotential volume, 
or 

V = constant (inside a PEC) (3.80) 

and that the electric field intensity inside a perfect conductor is zero.2 This can be 
explained with the following argument. Assume that that some positive (or nega-
tive) charges are introduced in the interior of a PEC. These charges will set up 
electric field intensity in the conductor, and the field will exert a force on the "free" 
electrons to make them move. This movement will continue until all charges reach 
the conductor surface and redistribute themselves in such a way that both the net 
charge and electric field intensity inside vanish. In a PEC, we assume that the 
redistribution will happen instantaneously. In a good conductor, we will have to 
permit fields to exist for a short period of time (about 10~l7s for Cu) until 
the charges can redistribute themselves. This more complicated case will be con-
sidered when we take up the subject of external electric field intensity that changes 
with time. 

2 Noie il is possible to have a free charge density, p, on the surface of a PEC. 
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Boundary Conditions at a Conductor Interface 

Now, let us consider the situation at the surface of a conductor that is adjacent to 
free space. As we have seen, the electric field intensity in the nearby frcc-spacc 
region outside of a conductor certainly can be different from zero. 

Suppose that Ê„mide could make an angle with the surface, as shown in Figure 
3.24. For this hypothetical example, we have resolved F. into a perpendicular (normal) 
component to the surface E„ and a parallel (tangential) component to the surface E,. 

From our previous arguments, if E. were different from zero inside the conduc-
tor, there would be a tangential force on the "free" charges inside the conductor and 
they would move parallel to the surface, in which case we would no longer have the 
static situation we are assuming in this chapter. Therefore, for static fields, E, ии«ь = 

0. The same argument can be made about E„ ,„jiA because the surface of a conductor 
may be charged, but the charges are not "free" to move into the free-space region 
outside the conductor. Thus, we can conclude that, inside the surface of a 
conductor, 

/-;. = 0 {inside the surface of a PEC) (3.81) 
E„ = 0 (inside the surface of a PEC) (3.82) 
V = constant (inside the surface of a PEC) (3.83) 

CONCLUSION Under static conditions, the electric field intensity inside a PEC 
surface is zero, so the surface and every point interior to the PEC are an equipoten-
tial. The same conclusion may be drawn for a good conductor if the "free" charges 
have come to equilibrium. We say that, for copper, after a period of 10"'7s, there is 
no flow of "free" electrons, so the conductor is "quasi-static." 

Now, we can derive boundary conditions at a point just outside a conductor in 
free space from the line integral form of Maxwell's equation. 

By choosing an enclosed line integral contour C, with thickness At, as shown 
in Figure 3.25 in blue, and taking the limit as At —» 0, 

j>cÊ-dî = E„„MlAw - E„„„ullcAw = 0, 

where Aw is the finite width of the integral contour (i.e., Aw * 0). But, because 
E, »вие= 0, then E, „„„„д. must also be zero. Thus, 

Figure 3.24 Hypothetical direction of £ just outside a conducting surface. 
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Figure 3.25 An infinitesimal path С for calculating the boundary condition for the electric field 
intensity in a direction tangential to the surface just outside of a conductor. 

Figure 3.26 A Gaussian (pillbox) surface for calculating the boundary condition for the electric 
field intensity in a direction normal to the surface of a conductor. 

E, inside — E, tmmde ~ 0 (3.84) 

CONCLUSION The tangential component of the electric field intensity just 
outside a good conductor surface under quasi-static static conditions must be zero. 

Next, we derive the boundary condition of the electric field intensity along a 
normal direction to the surface of a conductor. 

By constructing a Gaussian closed surface, as shown in Figure 3.26, in black 
and letting the radius of the "pillbox" be small, we can see that the direction of E„ 
is orthogonal to a surface element on the cylindrical sides of the pillbox and is paral-
lel to the surface element, â,„ on the top of the pillbox. The charge inside the 
Gaussian surface is the surface charge density, p„ times the area of the pillbox. 
Using Gauss's law, we have 

sÊdd = E„imideâ„ ■ Kb2â„to„om + E„oulsidfâ„ ■ πο2ά„lop - psnb2/ε0 

and, because E„ ,mW(. = 0, 

E, ,,„,,= ρ,/ε,, (3.85) 

CONCLUSION The normal component of the electric field intensity just outside 
a conductor-free space interface is equal to the surface charge density, p„ on the 
conductor divided by the free-space permittivity. 

# 
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3.9 CAPACITANCE 

Definition of a Capacitor 

A capacitor is a frequently used circuit component in electronic circuits. A typical 
parallel plate capacitor consists of two large conductors of area A separated by free 
space or a dielectric medium by distance d, as shown in Figure 3.27. When a DC 
voltage source, V, is connected between the conductors, a charge transfer occurs, 
resulting in a charge +Q on one conductor and -Q on the other. 

We define the capacitance of a capacitor to be 

C = Q/V (3.86) 

But, because E - pjEo - (ζ)/Α)/ε„ = V/d, as was shown in Equation 3.33, we can see 
that (QIV) = EoA/d, so the quantity С depends only on the geometry of the capacitor 
and the permittivity of the medium between conductors of the capacitor. 

Series and Parallel Connections of Capacitors 

Capacitors are frequently connected in series and parallel connections, as shown in 
Figure 3.28. 

a. In series connection, when a potential difference (electrostatic voltage V) is 
applied on the capacitor circuit, charges +Q and -Q will be induced on the 
internally connected conductors, so that the same amount of charge, +Q and 
-Q, will appear across each capacitor independently of its capacitance. 
Hence, we have 

V = Σν> =QIC«™ ~Q/Q +Q/C2 + -Q/C„, (3.87) 
i 

which implies that the equivalent capacitance, Cseri„, of series-connected 
capacitors is 

V 

Charge ι Q —~y/ 

Charge (J~~/f 

^ A r e a / 1 

/ Î 
_/ 1 1 

Figure 3.27 A typical parallel-plate capacitor. 
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Figure 3.28 (a) Series connection of 
capacitors; (b) parallel connection of 
capacitors. 

1/С«пы=1/С1+1/С2 + - + 1 / С (3.88) 

b. In parallel connection of capacitors, the applied potential difference (elec-
trostatic voltage V) will be the same for all capacitors, and the total charge 
across all capacitors is the summation of all charges. 

Q = YÀQi=Qi+Qi + -+Qn=Clv+Cïv + -cnV = Cl parallel v (3.89) 

Thus, equivalent capacitance, CM, of parallel-connected capacitors: 

CpamUel = Cl + C2 + -+C, (3.90) 

Capacitance in Multiconductor Systems 

Multiconductor systems have many applications in printed circuit boards. We now 
consider the situation of more than two conducting bodies, as shown in Figure 3.29 
in an isolated system. The positions and geometric shapes of conductors are arbitrary, 
and one of conductors may represent ground. Obviously, the presence of charges 
in the system will affect the electric potential distribution of the entire systems. 

Because electric potentials and charges are linearly related, we may write n 
equations relating the potentials V,, V2 V„, of the n conductors to the n charges 
Ô.,Ô2,...,0„: 
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A ß i Уг.Ог 

Figure 3.29 An isolated multiconduclor 
system. 

Vl=PnÔl+A2Ô2+--- + /'lnÔ„ 
V2 = P21Ô1 + P22Ô2 + ■ · · + PmQ„ 

v„ =p„,Ql+ PniQi +■■■+PnnQ,,, 

(3.91) 

where the p,/s are called the coefficients of potential, which are constants whose 
values depend on the shape and relative position of the conductors as well as the 
permittivity of the surrounding medium. This set of linear equations may be written 
in matrix format as 

V ; 

V', 

/ ' . 1 

P2\ 

P12 

P22 
Pin 

VAH Pm 

02 

Qn 

In an isolated system, we note 

β, + β 2 +. . . .+ρ„=ο 

(3.92) 

(3.93) 

By inverting Equation 3.92, we can express the charges as functions of potentials 
as follows: 

ßl=c„V,+c12V2+--- + cl„V„ 
Q2=C2,V,+C22V1+--- + C2„VI, 

Qn=c„,Vl+c„2V2+--- + cmV„ 

(3.94) 

where the q, are constants, whose values depend only on the values of the inverse 
matrix elements, />"·,'. The coefficients, Сц, are called the coefficients of self-
capacitance, which are equal to the ratios of the charge Q, to the electric potential 
V, of the ith conductor (i = 1, 2 , . . . , n) with all other conductors grounded. The Сц 
(i &j) are called the capacitive coefficients of mutual induction. The equations may 
be written in matrix format as 
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' ô0 
& 

ν & , 

= 

(г 

c?' 

Λ ΐ 

C\1 ■ 

Cll ■ 

C„2 ■ 

- с,Л 
■■ c2„ 

■■ c„„j 

(VA 
V: 

Xo 

(3.95) 

If a positive Q, exists on the /th conductor, V, will be positive relative to ground, 
but, for an isolated system, the Q, induced on they'th ((' Ф]) conductor will be nega-
tive; the c„ are positive, and the ci} are negative. Reciprocity guarantees pi} = pSi and 
Cjj = Cjj. Numerical codes such as Synopsys' of Mountain View, CA, H-Spice yield 
negative values for the c,} (/' Φβ terms. 

The diagonal elements of the matrix (c) are called the self-capacitance of the 
rth object relative to everything else. Thus, if one of the objects is ground, then the 
Cjj term will be the capacitance of an object relative to ground plus the capacitance 
elements relative to all of the other objects: 

i'n = t'l. (3.96) 

3.10 DIELECTRICS 

Concept of the Induced Electric Dipole in Dielectric 

As opposed to conductors, ideal dielectrics do not contain "free" or mobile charges. 
When a dielectric is placed in external electric field intensity, there are no induced 
free charges that can move to surface and make the interior charge density and 
electric field intensity vanish, as with conductors. However, dielectrics contain 
bound charges. The presence of external electric field intensity can cause a torque 
to be exerted on each charged particle pair that results in small displacements of 
positive and negative charge in opposite directions. In some atoms or molecules, the 
presence of external electric field intensity will cause an internal shift of charge in 
an otherwise neutral atom or molecule so we say that electric dipoles have been 
induced in the material. Whether the dipoles are permanent or induced, the applied 
electric field intensity both inside and outside the dielectric material will be modified 
as a result of such electric dipoles. 

In the absence of applied electric field intensity, permanent dipoles are 
randomly oriented, but in the presence of applied electric field intensity, these 
permanent electric dipoles tend to align with the applied field, as is illustrated in 
Figure 3.30. 

A solid dielectric possessing a persistent polarization is called an "elcctret," 
which is an analog of a permanent magnet. Depending on the temperature 
of the sample, the partially aligned electric dipoles interact with one another 
to cause a general orientation in the direction of the applied electric field 
intensity. 
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Figure 3.30 Orientation of permanent electric dipoles in external electric field intensity: 
(a) no applied field; (b) a medium applied field; (c) a large applied field. 

Equivalent Charge Distributions of Polarized Dielectrics 

To analyze the microscopic effect of induced electric dipoles, we consider the per-
manent electric dipole moment of a molecule (e.g., water) as shown in Figure 3.31: 

We can define the polarization vector, P, for a collection of such molecules as 

P = l i m T ^ / Δ ν = N,p, (С/т 3 ) , (3.97) 

where N, is the number of molecules per unit volume, and /?, is the electric dipole 
inomenl of a single molecular dipole. The numerator represents the vector sum of 
the induced electric dipole moments contained in a very small volume, Δν. Ρ is the 
average vector volume density of the electric dipole moments. 

If the infinitesimal dipole moment dp = Pdv, it produces an electric potential 

dV=J^JLldv> 
47teaR

2 
(3.98) 

as described in Equation 3.71), and, if we define R - К as the distance from the 
source point dv to an observation point, \R-R'\ = \l(x — x')2+(y — y')2 +(z-z'f 
and the electric potential due to the volume V of the dielectric is 

V = (\/4Ke0)lv,(pâR/\R-R'\2)dv'. 

By direct differentiation of Equation 3.99, it can be shown that 

V'(\R-R'\-') = â,t/r/\R-R'\2. 

(3.99) 

(3.100) 

Substitution of Equation 3.100 into Equation 3.99 leads to 
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Pi 

T 
1 

'/: 

+ Figure 3.31 Electric dipole moment formed by the separation of 
electric charge, </„ in a molecule by distance, x,. 

V = (l/4K£0)jv/V'(\R-R'\~')dv\ (3.101) 

and, by recalling the vector identity 

V(aB) = aVB+BVa (3.102) 

and applying this in Equation 3.101, we can rewrite the equation as 

V = (l/4Ke0)[l,V'-(P/\R-R'\)dV'-lv{V'-P/\R-R'\)dv''\, (3.103) 

where the first term on the right side of Equation 3.103 can be converted to an 
enclosed surface integral by the divergence theorem to produce 

V = (l/4Ke0)^siP-ù;J\R-R'\)ds'+(l/4n€0)lv[{-V'-P)/\R-R'\]dv', (3.104) 

where the primed del (V) operator implies that the differential operation being 
exerted on source region point and â'„ is the outward normal from the surface element 
ds' of the dielectric. Hence, the electric potential due to a polarized dielectric may 
be calculated from the contributions of surface and volume charge distributions 
having, respectively, densities 

p„s = P-â„ (3.105) 
pv =-VP. (3.106) 

We may infer that these are polarization-charge densities or bound-charge den-
sities. In other words, a polarized dielectric may be replaced by an equivalent 
polarization surface charge density p,„ and an equivalent polarization volume charge 
density pv for field calculations to produce 

ν = _ ! _ φ Pii^.ds'+-±-( -ß—dv: (3.107) 
4jteoJi'\R-R'\ 4πε0

} V'\R-R'\ 
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3.11 ELECTRIC FLUX DENSITY 

In a polarized dielectric, an equivalent volume charge density pv is thus introduced. 
In particular, the divergence relation 3.6 postulated in free space is no longer valid 
for a given source distribution in a dielectric, and it must be modified to include the 
bound-charge density pv: 

VE = ^L = -(pfm+Pv) (3.108) 

£o Co 

Because pv - - V- P, we obtain 

V(e0E + P) = pfm (3.109) 
We can now define a new fundamental quantity to describe the electric field 

intensity associated with a dielectric, the electric flux density, or electric displace-
ment, D, such that 

D = e0Ë + P(C/m2), (3.110) 

where 

VD = pfm, (3.111) 

and where p„ is ihe volume density of free charges. Its volume integral leads to 

jvVDdV = jvP,mdv. (3.112) 

By using divergence theorem, we have 

j>sDds=Qlree(C). (3.113) 

Equation 3.108 is the form of Gauss's law in a dielectric, which states that the 
total outward electric flux of the electric displacement, or, simply, the total outward 
electric flux, over any closed surface is equal to the total free charge enclosed by 
the surface. 

When the dielectric properties of the medium are linear and isotropic, the polar-
ization vector is directly proportional to the electric field intensity, and the propor-
tionality constant is independent of the direction of the electric field intensity. Hence, 
we can write 

Ρ = ε0χΧ (3.114) 

where χ, is a dimensionless quantity defined as electric susceptibility. A dielectric 
is said to be linear if χ, is independent of the electric field and is homogeneous if 
%t is independent of space coordinates. 

Substitution of Equation 3.114 into 3.110 yields 
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δ = ε0Ε+Ρ = ε0(1+χ<)Ε = ε0εΓΕ = εΕ, (3.115) 

where ε, is the relative permittivity or the dielectric constant of the medium and ε 
is the absolute permittivity of the medium. 

Note that the dielectric constant £r can be a function of space coordinates. If ε, 
is independent of position, the medium is said to be homogeneous. A linear, homo-
geneous, isotropic medium is called a simple medium. 

In general, ϋ=ε-Ε for an anisotropic medium can be expanded as 

D.l 
Dy 

A. 
= 

Γε,ι 
«21 

ßz\ 

£|2 £l3 

^22 ^23 

^32 £ 3 3 . 

\E, 
E 

ß 
(3.116) 

where ε is called the permittivity tensor. 
For many crystals 

D , l D, 
D._ 

= 
"fill 

0 
_0 

0 
«22 
0 

0 ] 
0 

£33. 

\E, 
Ey 

_E. 
(1117) 

where the relative permittivity is a diagonal tensor and in homogeneous, isotropic 
media εΜ = ε22 = ε33 = ε,εο. 

Electric held intensity within a real solid is extremely complicated if one exam-
ines the fields at a subatomic level. For example, in materials with an incomplete/ 
shell, it is not uncommon to experimentally measure electric field intensity at nuclei 
in megavolts per meter even with the application of no external electric field intensity 
except those imposed by the neighboring atoms in a crystal lattice. 

The study of electric field intensity distributions inside atoms or molecules is 
beyond the scope of this course. We will instead normally measure electric field 
intensity in a macroscopic sense, averaging electric field intensity distributions over 
many hundreds of atoms to yield a vector "mush average" of the polarization field 
P, and will calculate the polarization due to the local field at an atom by using a 
Lorentz cavity model later in this chapter. 

3.12 DIELECTRIC BOUNDARY CONDITIONS 

In section 3.3 we considered the boundary conditions between a conductor and free 
space. In the general electromagnetic problem involving two or more materials, we 
need to find the relations of field intensity quantities at an interface between two 
different media, one or both of which is a dielectric. In this part, we derive the 
boundary conditions at the interface from the integral form of the field relations. 

Constructing a small enclosed line integral contour С at the interface between 
medium 1 and medium 2 as shown in Figure 3.32, taking the limit as At —> 0, and 
considering q> Edl = 0 , 
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j> Ë-dï = 0=ËrAw + Ë2-(-Aw). 

Because Aw = â,Aw, where â, is the unit vector in tangential direction at the 
interface, 

EU = E2, or D„/e, = D2,/e2, (3.118) 

which indicates that the tangential component of the electric field intensity, £, is 
continuous across the interface between two media, but the electric flux density, Д 
is not. 

By constructing a Gaussian surface as an infinitesimally small pillbox at 
the interface, as seen in Figure 3.32, and using Gauss's theorem associated with 
dielectric materials, φ Dds = ôws«k. then we have 

j> Dds = (Dr «„. + D2 ■ a„, ) AS = я„: · (Ä - D2 )AS = psAS, 

where the relation between two unit vectors at the interface, â„2 = -<"',. ι, is used. The 
above equation can be further simplified as 

â„:(Dl-D2) = Pl or Du,-Dbl=p„ (3.119) 

which further indicates that the normal component of displacement field is discon-
tinuous across an interface where a surface charge exists, and the amount of discon-
tinuity is equal to the surface charge density. 

If medium 2 is a conductor. Equation 3.119 becomes 

Figure 3.32 An interface between two media. 
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D,„ =£,£,„ =ps, (3.120) 

and, when two dielectrics are in contact with no free charges at their interface, 
Dh,=D2„ or е,Еь,=ЕгЕъ, (3.121) 

As opposed to Equation 3.85, it is seen that, when the interface between two materi-
als is charge free, the normal component of the electric flux density, D,„ is 
continuous. 

3.13 ELECTROSTATIC ENERGY 

Electrostatic Energy in Discrete Charge Systems 

When a number of point charges Q„ Q2,..., Q„ are held fixed in space in close 
proximity to each other, energy is stored in the resulting field because the charges 
tend to move with respect to each other as a consequence of Coulomb forces. 

To compute this energy, let us consider three point charges Q„ Q2, and Qy that 
initially are located at infinity and find the energy required to move these charges 
from infinity to their final positions. For simplicity, we assume that the region ini-
tially is otherwise devoid of additional charges. Bringing the first charge ρ, from 
infinity to a point P, requires no energy because we assume that the region initially 
has no charge and, hence, that no force is exerted on Q,. When bringing the second 
charge Q2 from infinity to a point P: in the vicinity of Q2, an energy W2I is required, 
where 

W2l = Q2V2I = Q2 (ρ,/4πε0Α2ΐ), (3.122) 

where /f2i is the distance between the final fixed positions of Q, and Q2, and V2, is 
the electric potential at P2 due to Qt. Now, with the positions of Qt and Q2 fixed, 
the energy required to move Q, from infinity to a point P, is 

W3{+Wn =Q3V3i + Q>Vn =0.,(о1/4л£оАз,)+Оз(02/4яе0Аз2), (3.123) 

where W„ = Q,[Q/4KEoR,ji = QMj. 
Thus, the total energy to assemble all three charges in their final position is 

We = W2l + W3i + Wn = Q2V2I + Q,VM + о.,Ц2 (3.124) 

Note that Wu = Wr„ which implies the energy required to move Q, to P, in the pres-
ence Qj, is the same as the energy required to move Qj to P, in the presence of Q,. 
Therefore, Equation 3.124 can also be written as 

We = Wl2+Wn+W23 = QtVl2 +Ö,V13 +ß2V2, (3.125) 

Adding Equation 3.124 to 3.125 yields 

2We = ρι(νΙ2 + ι/,,)+ρ:(ΐΛ1+ν2.ι)+ο.*(ν3ι + ν,2) (З.Ш) 
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Note that V2 = VZI + V2\ is the absolute electric potential at P2 in the absence of Q2 

at the point as a result of the absolute electric potentials of βι and ß3 , respectively. 
We can alternately write 

j=l 
'*j 

3 

W e=(l/2)£ß,V;. (3.128) 
( = 1 

By extending this result to the assembly of an N point charge system, we have 

W - ( l / 2 ) £ f t V t , (3.129) 

where K·., the electric potential at Qk, is caused by all the other charges: 

К = ( 1 / 4 я е 0 ) Х о ; / Я д (3.130) 
J=i 

Electrostatic Energy as a Result of a Continuous Charge Distribution 

For a continuous charge distribution of density p, the formulation for We in Equation 
3.129 can be slightly modified. Without going through a separate proof, we replace 
Qk by pdv and the summation by an integration to obtain 

We=(l/2)f ,pVdv'. (3.131) 

Using Gauss's law in the point form, V-D = p„ we can further obtain 

We=(l/2)J [V-D)VdV. (3.132) 

To simplify this integral, we use the identity 

V(VD) = V(PD)+DVV. (3.133) 

Substituting the vector identity, we derive 

We = (1/2)J V-(VD)dv'-(i/2)j DVVdv' 

= (l/2)$VD-('i„ds' + (1/2)J p-Êdv' ' (3.134) 

where the divergence theorem has been used for the first volume integral 3.134. If 
we allow the volume V in Equation 3.134 to include all space, the surface 5 in 
Equation 3.134 goes to infinity. As the distance between the source and observation 
point increases, the potential V decays as l/R, D decays as l/R2, and the surface area 



3.13 Electrostatic Energy 95 

increases as R2. Thus, the integral in the first term in Equation 3.134 goes to zero 
as S tends infinity. The remaining integral yields 

W. =(1/2)J 0·£</ν = (1/2)| ,ε|£|2ί/ν = (1/2)| \ο(/εώ>. (3.135) 

By defining an electrostatic energy density, 

we=(l/2)DÈ = (y2)e\É\2=(l/2)\D\2/e, (3.136) 

We=j wedv. (3.137) 
where 

EXAMPLE 

3.7 Static fields in a coaxial cable: A coaxial cable consists of a long, cylindrical 
conductor of radius ra, an air space between ra and r,„ a dielectric insulator 
between rh and rc, an air space between r, and rd, and a grounded conducting 
sheath between rd and re, as shown in Figure 3.33. 

As a function of the radius, r, plot the magnitude of the following: 
a. electric field intensity, E 

b. electric flux density, D 

с polarization field, P 

d. electric potential, V 

e. Compute the capacitance per unit length, C,, of a coaxial cable. 

Figure 3.33 Cross section of a long coaxial cable. 
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SOLUTION 

a. The electric field intensity inside a conductor is zero so 

|£| = 0 for 0<r<ra and \É\ = 0 for rd <r <re 

The permittivity inside and outside of the dielectric sheath is fifo. so, from 
Equation 3.14, 

|/:l = ——— for ra < r < rb and for rc<r< rd. 
Τ,πες, r 

The permittivity interior to the dielectric sheath is £b ε,, so 

N= - ^ — for rb<r<rc. 
£, 2πε0 r 

The electric potential at r = rf is zero, so 

|Ëf | = 0 for r e < r < ° ° 

These results are shown plotted in Figure 3.34. 
b. For all regions, D - ε&Ε. Using the results of part a the values of electric 

flux density are thus shown plotted in Figure 3.35. 
с For all regions, P = D- e^E or Ρ = (ε- £ό)£, so P = (er - l)£b£. Using 

the results of part a and part b the values of electric polarization are thus 
shown plotted in Figure 3.36. 

d. V(re) = V(rd) = 0 so 

V(,) = p-E(r)är = ̂ - ^ = ^-in^ Jr<i *ч 2πε0 r 2πεα rc 

and we can find V(r) for rc<r< rdby replacing rc in this equation by r. 

\£,\ 

Figure 3.34 Magnitude of the electric field intensity |E,I as a function of radius, r. 



3.13 Electrostatic Energy 9 7 

Figure 3.35 Magnitude of the electric flux density | Dr\ as a function of radius, : 

ΙΛΙ 

ftfe-i) 
2π r„ 

-

1 

'<) 

4 

i 

ч 

" * ' Ό · , _ 
" * ~ -О- - _ _ 

1 

- - - -о 

1 ». 
r„ 4 rc rd rt r 

Figure 3.36 Magnitude of the polarization vector, IP, I, as a function of radius, r. 

2πε0ε, Jr< r 2πε0 . rc ε, rb _ πε0ε, -U 

V(ra) = V(rb)-J^p^= _ ... 
2πε0

 J» r 2πε0 . rc ε, η, 

Pi Г"dr Pi 1п̂ - + -1гД + ьД 

These values are shown plotted in Figure 3.37. 
e. Note that, since V(ra) = V„ because the battery holds the electric potential 

at Vn, we can compute the value of p; from 

Va = 
Pi 

2πε„ . rc ε, rb r„. 

and because С = Q/Vthen C, ==*- = — = 2πε„ F 

. rc ε, rb ra\ 
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Figure 3.37 Scalar electric potential, V, as a function of radius, r. 

3.14 ELECTROSTATIC FIELD IN A DIELECTRIC 

In Equation 3.107, wc found that the electric potential due to a polarized dielectric 
may be calculated from the contributions of surface and volume charge distributions 
having, respectively, densities pp, = P-ù„ and pv = —V-P and we inferred that a 
polarized dielectric may be replaced by an equivalent polarization surface charge 
density p,„ and an equivalent polarization volume charge density p, for field cal-
culations. Taking the negative gradient of Equation 3.107 and using Equation 3.100, 
V(\R-kV) = -âKRAR-k\\ 

È = J _ t £Eà±JLdsr+J_( MltSLM. (3.138) 
4πε„ 3 s' Iд _ д'р 4πε„} "' \R - R'\~ 

The surface charge density term agrees with the physical picture of charge, as shown 
in Figure 3.38. 

In Figure 3.38, an imaginary box has been drawn (dotted lines) with a net nega-
tive surface charge density, p, = -Pti„, on the top and a net positive surface charge 
density, p, = Ρ·ά„, on the bottom. The charge density inside the imaginary box is 
net zero, so (if we do not look too closely, i.e., atomically) we can argue that the 
average electric field intensity macroscopically inside the box can be calculated by 
using pv = 0. Thus, the additional electric field intensity Ex = P/£Q macroscopically 
in the dielectric due to these two charge density sheets in the -ά,-direction and thus 
reduces the external electric field intensity, E0 = (Q/A)/Eo, to the macroscopic electric 
field: 

g _ (Q/A), P. , . , „ . 
^Macroscopic — ax ai- (ЭЛЗУ) 
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Figure 3.38 Equivalent surface charge density as a result of partial alignment of electric dipole 
moments by external electric field intensity. 

Local Field 

Lorentz found the local electric field intensity at an atom inside the dielectric by 
calculating the electric field intensity inside a spherical cavity in a uniformly polar-
ized medium, as shown in Figure 3.39. 

As shown in Figure 3.39, the surface charge density on a spherical cavity will 
vary as Pcos Θ, so the component of the electric field due to this charge density in 
the ά,-direction will be kePcos2 θ/r2. Integrating over all rings of area (27rrsin θ)άθ, 

E„ = · 
1 r * (2кгппв) P cos2 в(гс!в) 

4πε, Г 
Jo 

3ε„ 
NOTE The local electric field intensity at the center of a cavity does not depend 
on the radius of the cavity, so it holds for atoms or for empty, finite spherical cavi-
ties in a dielectric. The total electric field intensity at a local point P inside a dielec-
tric sheet will thus be 

ЁР={Ё Macroscopic ■Р/Зво). (3.140) 

Polarizability 

The polarizability of an atom, a,, is defined in terms of the electric dipole, ph formed 
by the movement of electrons in the atom of type i (relative to its nucleus) by a local 
electric field intensity located at the atom at point, P, like that given in Equation 
3.140: 

Pi=aßP (3.141) 

Polarizability is thus an atomic property related to the tendency of atomic elec-
trons to move in response to a local field. Surprisingly, electrons in a closed shell 
of electrons can also be displaced relative to the nucleus so that even the noble gases 
can have polarizability as will be shown by measurements.' The polarization, P, of 
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Φ%Φ% 
%%ΦΦ%%Φ 

$Φ$Φ% 

Φ$Φ$ 

$%$® Φ®%Φ Φ®%Φ 
■Ф-$-Ф-%-ф-ШЪ-®%е% 

I 

Figure 3.39 Electric field intensity at a point P inside a spherical cavity due to the surface charge 
induced by the alignment of electric dipoles in the dielectric. 

/V, atoms per unit volume in a crystal is expressed at the product of the polarizabilities 
of atoms of type i times their atom concentration as 

i 

If the local field is given by Equation 3.140, then 

Ρ = ΣΝ'Ρ·=\ΣΝ'αi ](£*»■«** + ^/3ε0) 

(3.142) 

(3.143) 

and, if we use Equation 3.115 for the macroscopic field, P = SaXeËMacroscopic, then 

ΣΝ,α,-/ε0 P 
X.= ε0Ε, Macroscopic l -£w,a , /3e 0 

(3.144) 

and because f, - 1 = χ,. 
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3ε<,Τ ε, + 2 
(3.145) 

which is known as the Clausius-Mossotti relation," which relates the relative dielec-
tric constant to the electronic polarizability, but only for crystal structures for which 
Equation 3.140 holds. If we view a, as an invariable molecular constant for a single 
pure i'th type molecule, the quotient (ε, — 1 )Ι(ε, + 2) is proportional to the material 
density, p in (gm/cm3) as 

ε , - l Ni ΝΛ ρ 
= — α , = — — α , , 

εΓ + 2 3ε„ 3ε„Μ 
(3.146) 

where ΝΑ is Avogadro's number (6.02217 x 10" molecules per mole) and M is the 
molecular weight (gm/mole). 

PROBLEM 

3.5 If there are liquid water electric dipoles inside the spherical cavity, calculate 
the additional local field created by those dipoles and thereby find £',. for water 
absorbed in a fire retardant (FR-4) cavity with ε, ~ 4. Let ε, ~ 80 for distilled 
water at 20°C for this problem and consider how your answer would change 
if the temperature rose to 100°C. See Figures 5.13 and 5.14 from Huray, The 
Foundations of Signal Integrity.'" How would the answer change if the water 
molecules were in a vapor state? 

GENERAL CHAPTER PROBLEMS 

3.6 If a uniform electric field intensity, £ = 300a, - 400a. (V/m), exists in air 
above the x-y plane, as shown in Figure 3.40 and the area below the x-y plane 
is water at 20°C, determine the electric field intensity, the electric flux density, 
and the polarization below the surface of the water. 

3.7 Repeat Problem 3.6 if the temperature of the water is increased to 100°C. 

Figure 3.40 blectric field intensity above the 
surface of water contained by a fiat pyrex dish used in 
Problems 3.6, 3.7, and 3.8. 
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Figure 3.41 Three capacitor circuits for Problem 3.9. 

P(R,e.nl2) 

Figure 3.42 (Left) Geometry used to calculate the electric field intensity at a point P in space due 
to a charged ring of radius />. (Right) Thin concentric conducting ring surrounding a conducting disk 
as it is used in a capacitive switch. 

3.8 Find the electric held intensity in the flat Pyrex (ε, ~ 4) dish below the water 
in Problem 3.6 between z = -5 cm and z - -6cm and in the air below 
z = -6cm, and sketch the angles on the drawing in Figure 3.40. 

3.9 Three otherwise identical capacitors, C,, C2, and C3, are filled with air, water 
at 20°C, and titanium dioxide (ε, ~ 100) for the circuits shown in Figure 3.41. 
Find the relative charges across the capacitors in each case. If the permittivity 
of Ti02 is constant, how does the answer change if the water temperature is 
raised to 100°C? How could you use these answers to make a thermometer? 
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Which configuration would be the most sensitive to the temperature change? 
Would the thermometer work if C2 had a fixed separation that you put across 
an earlobe? 

3.10 Two terminals of a thin, contactless (nonmechanical) capacitor used in an 
elevator switch are shown on the right in Figure 3.42 as a thin conducting 
disk surrounded by a thin concentric annulus. If a charge + Q is placed on 
the disk and a charge -Q is placed on the annulus, use Gauss's law to show 
how the charge distributes itself on the conductors. Use the geometry in the 
left panel of Figure 3.42 to find an integral that describes the electric field 
intensity at a point / ' in space (for R » h) (HINT Look Ahead to Example 
6.2 in Chapter 6.) Sketch the electric field intensity in space above the plane 
of the ring and annulus, and explain what happens to the charge on the two 
conductors if a biologic sample (e.g., a finger) is placed above the ring. 
Assume that a battery of constant voltage supplies the charge. Show a circuit 
that would "sense" the presence of a finger using such a switch. Discuss how 
the size and spacing of the two conductors would be chosen to make the 
switch most sensitive to fingers. 

ENDNOTES 
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nische warmetheorie," Vol. II, p. 62, Viewcg, 1879. 

iii. Huray. The Foundations of Signal Integrity, Chapter 12. 



Chapter 4 

Solution of Electrostatic 
Problems 
LEARNING OBJECTIVES 

• Derive Poisson's and Laplace's equations and develop their solutions through separa-
tion of variables techniques for simple boundary value problems 

• Understand the uniqueness theorem and its conditions 
• Use the method of images for solving electric potential problems involving rectan-

gular, cylindrical, and spherical boundary geometries 
• Know how to incorporate boundary values into the analytic Green's function 

technique 

I N T R O D U C T I O N 

Electrostatic problems deal with the effects of electric charges at rest. Their solutions 
usually call for the determination of electric potential, electric field intensity, and 
electric charge distribution. 

Because this chapter is an extension of Chapter 3, we mainly concentrate on 
Poisson's and Laplace's equations, uniqueness of electrostatic solutions, and the 
method of images. 

4.1 P O I S S O N ' S A N D L A P L A C E ' S E Q U A T I O N S 

The fundamental governing equations for electrostatics, from the previous chapter, 
are 

V-D=p (4.1) 
VxÊ = 0 (4.2) 

The electric potential 

Ë = -VV (4.3) 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 

104 
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In a linear and isotropic medium, 

D = eË = ε0ε,Ε (4.4) 

Substitution of Equations 4.4 and 4.3 into Equation 4.1 leads to 

ν-εΕ = ν-ε(-νν) = ρν 

or 

ν2ν = -ρν/ε, (4.5) 

where the operator V2 is often called del squared, or the Laplacian operator as 
studied in Chapter 2, standing for divergence of the gradient of ( V- V). Equation 4.5 
is known as Poisson's equation. 

In Cartesian coordinates, 

V = ^-ax+^-av+^-a- so V2V = V-VV 
ax ay az 

or 

or 

a . , ( a , Э „ Э . \( Э . Э . Э . \ , p , 

д2У д2У а2У = p., 
Э*2 + Эу2 + Эг2 ~ ε 

„а Э2 Э2 Э2 

Э*2 Э>·2 Эг2 

(4.6) 

Similarly, in cylindrical coordinates, 

V2V = - - P-- + - - ' - + - - - _ (4.7, 

in spherical coordinates, 

p dp{ dp) p2 αφ2 dz2 ε 

vW = ±^(R^)+^^±(une^L)+^l^^L = _^ (4.8) 
R2 dRK oR) R2smede\ дв ) R2 sin2 Θ д<р2 ε 

At points in a simple medium where there is no free charge density, then 

V2V = 0, (4.9) 

which is known as Laplace's equation. 
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4.2 SOLUTIONS TO POISSON'S AND LAPLACE'S EQUATIONS 

n2 a2v d2v d2v pv 
V V = ——- + ——γ + — - = in Cartesian coordinates is a second-order, first-

dx dy dz~ ε 
degree (linear) inhomogeneous partial differential equation (PDE). In the special 
case of pv = 0, the equation is homogeneous. The solution to the PDE is a linear 
combination of 

1. the solution to the inhomogeneous PDE (with - ρν/ε * 0) and 
2. the solution to the homogeneous PDE ( V2V = 0). 

The solution to the inhomogeneous PDE is called the particular solution and, 
as we shall show in section 4.4, it is unique. 

The solution to the homogeneous PDE is called the general solution and is often 
found by using the separation of variables technique as follows. 

Separation of Variables Technique 

Assume that the answer VhomogeiKHls(;r, y, z) may be written as the product of three 
functions X(x)Y(y)Z(z) and put this product into the homogeneous PDE to obtain 

Y(y)Z(z)d2X(x)/dx2 + X(x)Z(z)d2Y(y)/dy2 + X(x)Y(y)d2Z(z)/dz2 = 0 (4.10) 

And dividing through by X(x)Y(y)Z(z), we obtain 

д2х/дх2 d2Yjdy
2 d2z/dz

2 

X Y Ζ 
= 0. (4.11) 

In this equation, we can see that all of the x dependence is in the first term, all 
of the v dependence is in the second term, and all of the z dependence is in the third 
term. The only way an л- dependent term can cancel terms that depend upon у and 
z is that this term be at most a constant. For convenience (seen later), let us call this 
constant -a2 and recognize that a might be a complex number. Likewise, we will 
call the second term -β2 and the third term -γ2, so that Equation 4.11 becomes 

d2x/dx2 = -a2X 

d2Y/dy2=-ß2Y (4.12) 
d2z/bz2 = -y2Z 

with the requirement that -a2 - β2 - γ2 = 0. 
The technique has separated the PDE variables x, y, z into three ordinary dif-

ferential equations, as shown in Equation 4.12, whose solutions (in Cartesian coor-
dinates) are 
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„ / ч „ ■ fcosax l 
X(x) = Acosax + Bsinax = { . > 

4 ' [smax\ 
Y(y) = Ccosßy+Dsmßy = {™ß

ß^ (4.13) 

-ri \ с· ir · [COSJZ] 
v ' ' ' [sinyzj 

Subject to the restriction that 

α2+β2+γ2=0. (4.14) 

In summary, we have found a solution to the homogeneous PDE of the form 

*-^y.*-™rbW-fëffl$W%$. (4.15) 
Thus, the most general solution to Poisson's equation is 

.. . . fcosaxl fcosß>'l \cosyz\ , ,. , ч 

with 

α2+β2 + γ2 =0. 

In cylindrical coordinates,1 the answer can be written as 

v( x y z ) = p - ( « P ) If cosm^lfe-« 
K,y'Z) \Nm(ap)i\smm<pl\e" J + ^ с и 1 а г ( р , 9 , г ) . 

(4.16) 

(4.17) 

In spherical coordinates, the answer can be written as 

V(x,y,z) = 
R 

R: 

n 
P,'" (cos0) 
ОГ (COS0). 

->,W+VWticUhr(/W)· (4.18) 

The choice of coordinate systems usually depends on the statement of boundary 
conditions (ВС) (e.g., the electric potential = V„ on a cylindrical surface is easiest 
to express in cylindrical coordinates). Note that the solution to the homogeneous 
equation may be written as a linear combination of the functions (e.g., in spherical 
coordinates, radial terms in R with / = integer are multipole potentials, as was 
discussed in Chapter 3). 

Jm(ap) and N,„{ap) are the Besscl function and the Neumann function. 
/'/"(cose) and ß/"(cosö) arc the associated Lcgendre polynomials of the first and second kind. 
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Application Example: Potential in a Charge-Free Box with ВС 

Consider above solution to the case of a rectangular box with a given electric poten-
tial specified on its sides, as shown in Figure 4.1. 

ВС 

The electric potential on surface S is: V(x, y, c) = V()C*> y) on the surface at z = с and 
zero everywhere else. From Equation 4.16, we can write the solution as 

vb**-{* 
with 

Jcosaxl Jcosj3>'l fcosyz 
sinaArJlsin/J^Jlsinyz 

α2+β2+γ2 = 0. 

+ νιαπκα\Α
χ^,ζ) 

In the hypothetical case of V = 0 on all faces, we could choose Vpar,iCU|ar(x, У, z) 
= 0, but, if the electric potential on the six faces had been 14 V, we would have 
chosen Vpar,ic„iar(j:, y, z) = 14 volts because V = constant satisfies V*V = 0 and the 
ВС. However, we have a more difficult problem to solve because we are given that 
V(x, y) = V„(x, y) on the surface at z = с Thus, we will need to solve the homoge-
neous problem first and then find Vpmiai\u(x, y, z). Note that the ВС have made the 
problem inhomogeneous in our example. 

For the homogeneous problem with homogeneous ВС to be solved, V(0, y, z) 
= 0 on the face at x = 0, the coefficient of the cosine term in X{x) can be chosen as 
zero. In order to make the electric potential satisfy the ВС, V(a, y,z) = 0 on the face 
at x = a, we can see the constant a can be chosen to be an integer multiple, n, of 
nJa. 

We can make a similar argument that the cosine term in Y(y) can be chosen 
as zero to satisfy the homogeneous ВС, V(x, 0, z) = 0 on the face at у = 0 and that 
the constant β can be chosen to be an integer multiple, m, of Ttlb to satisfy the ВС, 
V(x, b, z) = 0. 

V(xj/) = V„(xy) 

v=o 
v=o 

r=o Figure 4.1 Rectangular box with Dirichlel 
boundary conditions specified on its surface S. 
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NOTE The lowest integer n permitted in X(x) and m permitted in Y(y), respec-
tively, is 1 because the values n = 0 or m = 0 would give a null solution. 

Finally, we can satisfy the condition in Equation 4.14 by choosing 

У = \-
η2π2 т2к2 

a2 b2 

so the most general solution can be written as 

. . . . v . · π ■ π ■ I " 2 я 2 т2к2 ,. ,η. 
V(x, y,z)= У А„„ sin n - х sin m — y sin./ = -г— г, (4.19) 

п% « Ь V a b 
where we have taken the sum over positive integer values of n and m because there 
is no reason to select one value over another. We can also use ûajyz with sinh γζ 
to write Equation 4.19 as 

... . -A . π π . , \η2π2 т2л2 ., _.. 
V(x,y,z)= У A,„„smn — x sin/и — у sinn./—г—+ —r— z. (4.20) 

Hi a b \ a b-
Finally, we can use the ВС at г = с to find the particular solution by setting 

,,/ ч v^ . ■ я ^ ■ , \η2π2 ηι2π2 , , . . , . ^ , , 
V(x,y,c)= 2JAmStan-xsmm-ysmiiJ—r+—n-c = V0(x,y). (4.21) 

Ht a b \ a h 
In Equation 4.21, we can multiply both sides by sinn' — xsinm'—y and 

a b 
integrate over the ranges 0 < x < a and 0 < y < b, respectively, to evaluate the 
coefficients A„m as 

4 fiff* it к 
Г I VJx,y)smn'-xsmm'-ydy\dx. (4.22) 

η'2π2 т'2к2 J°LJo a b ] 
Kv 

aftsinh. 
\ a2 + b2 

The coefficients Α„·η· found in Equation 4.22 are constants. We can put those 
constants into Equation 4.21 to find the most general solution to the boundary value 
problem. 

(4.23) 

Very Special Case 

Suppose V„(x, y) = V0 = constant. In that case, 

1 4 I' 
aosinnW—j—+ —2—с 

a 
cc 

L η'π 

. _ 4K, 

a ,π "'" b ,π 
COS/1 —X COS»! — 

η'π a J0L т'к b 

η'2π2 τη"π 
==^[ l -cosn '7r ] [ ] -cosm' ; r ] . (4.24) 
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We can see that nonzero values of Α„·,„· only occur for n' and m' = odd, so 

V(x,y,c) = X 
lbVltsmn — xsmm — y 

a b 
n.m=\,odd nmsinh п2п2 пек1 

- + -

sinh 
η2π2 т2к2 

(4.25) 

V(x,y,c) = l6Vt> X 
n,m=\,odd 

π 
sinw—x 

a 
n 

π ^ 
sin m — y 

b 
sinh 

« V т2кг 

- + -

sinh 
η2π2 т2л 

= ■ (4.26) 

NOTE If the rectangular box has different specified electric potentials on all six 
sides, we can use the above technique and add the answers for each of the six sides 
because each of the answers will satisfy Laplace's equation and the specified ВС. 

NOTE This technique works well for charge-free volumes (like abc) with speci-
fied ВС on the surface, S. We could also use the technique with Equations 4.17 and 
4.18 in the event that cylindrical or spherical ВС are specified. 

If we want to solve Poisson's equation for the above problem with an interior 
charge specified in the box, we will need to find Урат̂ ьг for that case. One powerful 
technique for solving such problems with inhomogeneous ВС was found by George 
Green in 1824. The Green's function technique is described in the following section. 

4.3 GREEN'S FUNCTIONS 

Before the advent of computers, an analytic technique for solving inhomogeneous 
PDEs with inhomogeneous ВС was described by George Green. The solutions are 
written as integrals in which the integrands are known or can be chosen conve-
niently. For that reason, the Green's function solution lends itself well to computa-
tional solutions of Poisson's equation. The technique also lends itself to solutions 
involving images (shown in section 4.5) and can even be used in time-dependent 
problems to include the effects of responses (electromagnetic fields) that travel at 
the speed of light in a material. The latter effects are found when we work with 
time-dependent problems in section 7.13. 

Green's Theorems 

Let us consider a vector field Л = φΨψ, where φ and ψ are arbitrary scalar fields. 
We have shown in Chapter 2 that 

V (ψνψ) = <pV Ϋψ + νφ-Ψψ = φΥ2ψ + Ϋφ-νψ (4.27) 

and that φνψ·ή= (pdy/ldn, where dldn means the normal derivative at the surface 5 
(directed outward from the volume V). Substituting these into the divergence theorem, 
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jjjyV(f^)dv = jjj (<pV24/ + V(p-Vy/)dv = jj> Xq>Vy/)-dsor (4.28) 

\\\γ{φν2ψ + νφνψ)άν = §>s<P^-ds 
Эй 

(4.29) 

Equation 4.29 is known as Green's first identity. 
Now, let us write Equation 4.29 again with ф and ψ exchanged as in Equation 

4.30 

iff (ψν2φ+νφ·νφ)άν = &ί ψ^-ds 
JJJv JJ s З и 

and subtract Equation 4.30 from Equation 4.29 to obtain 

Jl\v(9V2
¥-¥V

2ç)dV = §s 

du/ д(р 
■φ^—ψτ~ 
'. an an _ 

ds. 

(4.30) 

(4.31) 

Equation 4.31 is known as Green's second identity or as Green's theorem. 
This theorem applies to any two scalar fields ф and ψ. Green's theorem can be used 
to solve Poisson's equation by choosing ψ= \l4nR and <p= V(R) (the scalar electric 
potential). Here, Equation 4.31 becomes 

Ш.1"· 
I 

4nR 

I 

AKR 
V2V)dv = fyt V-

I 

an\AKR) \4KRJ an 

1 Λθν/ 

ds, (4.32) 

where we can substitute V2V = -ρν/ε in the volume integral. 

Properties of the Dirac Delta Function 

In spherical coordinates, we can use the Laplacian operator to find that 

* Э / 1 — K f k f (—11=0 fo 
4nRI R2 dRl dR\4KRlj 

(4.33) 

However, V2(\I4KR) at R = 0 requires a limiting process for its evaluation. We 
can use the divergence theorem to see that as R —» 0, 

And, by using the definition of V(\/4KR) = —(1/4я/?)а„ in spherical coordinates, 
oR 

fff V2(—)dV = lim—\2Ί''(^^R2sШdθdφ = -\. (4.35) 

We can thus see that V2(-l/4nR) has the property that it is zero for all finite 
values of R, it goes to infinity at R = 0, and its integral is 1. We call such a function 
the Dirac delta function and plot it as shown in Figure 4.2. 
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S(R) 

-*-R 

S(x~x·) 

л' 
Figure 4.2 · Properties of the Dirac delta 
function. 

As shown in Figure 4.2, the delta function has the properties that 

S(x-x') = 0 for χφχ' 

δ(χ-χ')-*°° as x—> x' 

j~J(x-x')dx = \ and 

j~jW(x-x')dx = f(x'). 

(4.36) 

Thus, if we use R = \x -x'\ in Equation 4.32, 

JJJ (vlS(x-x')]-
4π\χ-χ"\) ε 

,Ъ(\ 
4πη*_ dn'KR 

}_Υόν_ 
RJdn'. 

ils' 

(4.37) 
or 

V(x) = fff -&&-*>-±& \ у ± ( Щ 1 ) Щ а х , (4.38) 
'"У4πε\χ-χ'\ 4n**s\_ dn'\RJ \RJdn'} 

This answer is very powerful because it gives the scalar electric potential at a 
point x as a result of a charge distribution at x' in the volume V and it includes the 
scalar electric potential and its normal derivative over the surface .S' that surrounds V. 

However, giving the scalar electric potential and its normal derivative on a 
surface S overspecities the ВС. While there may be some combination of scalar 
electric potential or its derivative on parts of the boundary S, both are never given 
for the same part of the boundary. 

Green got around this problem by saying that Equation 4.38 may be written as 

vm-mod-naffl dv'-fy V^(G(x-x'))-G{x-x')^ 
on on . 

ds\ 

(4.39) 
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where G(x - .?') satisfies the differential equation 

V2G(x-x') = -5(x-x') (4.40) 

subject to the ВС of his choice. Thus, if V is specified on the surface S, Green chose 
G(x - x') - 0 on the surface 5. so that the last integral in Equation 4.39 vanishes. 
But, if dVldn is given on the surface 5, Green chose dG(x - x')ldn = 0 on the surface 
.*>. so that the next to the last integral in Equation 4.39 vanishes. Many texts solve for 
the Green's function that satisfies Equation 4.40 and one of the two ВС on a surface 
S (rectangular box, cylinder, or sphere), but it is beyond the scope of this book. 

What Is the Point of Using Green's Functions? 

We derived the mathematical Green's second identity in Equation 4.31 and chose 
to apply it to electrical engineering problems by choosing ψ= \IAnR and φ= V(R), 
so that we got Equation 4.32. We then found that V2( \/AKR) = -σ(χ - χ') and chose 
Gauss's law in the form V2V =—ρνΙε to deduce that 

V(ï)= iff &&*-# [ t v ( Ä ) i ( ± ) - i ± ) M ) l , , v •шМ7геЯ « s . dnKAnR) \AnR) dn 

Because we normally take sources to be primed quantities and answers to 
be at unprimed vector locations, we exchanged primed quantities for unprimed 
quantities in the variable of integration to get Equation 4.38. We then let G(x — x') 
= (1/4π|.ν - -v'|) so that Equation 4.39 resulted. This is the big answer because we 
can write (1/4π|ί - i ' | ) in Cartesian, cylindrical, or spherical coordinates to solve 
the integrals depending on the boundaries specified in the problem. 

Furthermore, if we are given Dirichlet ВС, (V„,. s), we can choose G(x - x') = 0 
on the surface to remove the last surface integral in Equation 4.39. If we are given 
Neumann ВС, (д\'„„ s/dii), we can choose dG(x - x')ldn = 0 to remove the other 
surface integral. 

Equation 4.39 thus gives us the answer, V(x), and also satisfies the ВС. This is 
a powerful statement because we have now solved all problems for which we know 
charge density, p\(x'), in some volume of space and either the Dirichlet or Neumann 
ВС. All we need is the solution to V2G(x - χ') = -σ(χ - χ') with homogeneous ВС, 
G(x - x') = 0 or dG(x - x')ldn = 0. Once we have solved these two problems (once 
for Dirichlet and once for Neumann ВС), we have found an integral form for the 
scalar electric potential at any point in space for all bounded problems in which 
Ρι(ί') is known. 

PROBLEM 

4.1 Show that, if we are given mixed ВС, aV„„ s + p\dV„„ s/dn) instead of Diri-
chlet or Neumann ВС, the answer can be found in closed form by setting 
aG(\x -x'\) + p\dG(\x -x'\ldn) = Q. 
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We will use these answers in solving future boundary value problems and 
will even be able to find a similar solution for problems that involve time in 
section 7.13 for which the speed of light must be taken into account. Such 
answers are often called causal solutions because an answer cannot exist at a 
vector location in space till the speed of light has permitted the scalar electric 
potential to arrive at that point from a primed vector location, traveling at the 
speed of light in that medium. 

4.4 UNIQUENESS OF THE ELECTROSTATIC SOLUTION 

Uniqueness Theorem 

A particular solution of Poisson's equation—Laplace's equation is a special case— 
that satisfies the given ВС is a unique solution. 

Proof 

Let us suppose a volume τ that is bounded outside by a surface S„ and a number of 
charges interior to τ with surfaces 6Ί, .S\,.· .S„ that enclose each of the charges at 
specified scalar electric potentials, as shown in Figure 4.3. Assuming that, contrary 
to the uniqueness theorem, there are two solutions, V, and V:, to Poisson's equation 
in τ' where т/ is the volume τ minus the volumes interior to the surfaces Si, S:,... S„ 
(i.e., there is no charge in the volume τ'), 

v2vt=-Pv/e 
V2V2=-pv/e. 

(4.41a) 
(4.41b) 

Let us also assume that both V, and V: satisfy the same ВС on surfaces S,, S2,..., 
S'„, and S0· Now, if we define a new difference scalar electric potential, 

V„=V,-Vr. (4.42) 

«o 

Figure 4.3 Surface V. enclosing volume τ thai 
includes n-conducting charges, q,, qlt...q„. The 
surfaces ΛΊ, ,V......V„ are interior to .V„ and enclose 
each of those charges. 
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From Equations 4.41a and 4.41b, 

V2V,,=0. (4.43) 

Recalling the vector identity, 

V{}A) = fV-A + AVf. 

Then, 

V■ (V,VV,, ) = VdV■ VV„ + VVj ■ VV„ 
I -

= VdV
2Vj+\VVJ (4.44) 

Thus, 

where using 

we have 

jt,V(v,lVV,l)dv = ji(y,lV
2Vd+\VVl,\

2)dv 

jy-A = j>AdS, 

ί,. { у № ) ■ ä-ds = ί Ψν·< f dv> (4·45> 
r' 

where â„ denotes the unit normal outward from τ'. Surface S' consists of S0 as well 
as5„S2 S„. 

Over the conducting boundaries (S,, S:,..., S„) 

Vd = V, - V2 = 0. (4-46) 

By choosing .S',, to be very large sphere with radius R, 

i {vdVVd)ânds«L~R2^0. (4.47) 
•"So4 ' R R 

Therefore, 

J \VVd\
2dv = 0 (4.48) 

or 

\VVd\ = 0 (4.49) 

considering Equation 4.46, 

V,,=0 or V,=V2. (4.50) 
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CONCLUSION The solution to Poisson's equation in any volume with normal 
ВС is unique; that is, if we can find one solution that satisfies Poisson's equation 
and the ВС, we have found the only solution. 

4.5 METHOD OF IMAGES 

There is a class of electromagnetic problems with ВС on a volume τ that appear to 
be difficult to satisfy if the governing Laplace's equation is to be solved directly, 
but the condition on the boundary surfaces in these problems can be set up to produce 
the same conditions on the surfaces by the addition of an appropriate image charge, 
so that the potential distribution can then be determined in a straightforward manner. 
By finding a solution that satisfies Laplace's equation in the volume г and the ВС 
for the image problem, we have found the only solution (according to the uniqueness 
theorem). 

Consider the following problem, as shown in Figure 4.4. 
The formal procedure for solving the problem is to solve Laplace's equation in 

Cartesian coordinates: 

V2V = 
b2V b2V d2V 

+ —-r = 0, 
Э*2 dy2 dz2 

which should be valid for у > 0 except at the position of the point charge. 

(4.51) 

(0. d, 0) 

(a) (b) 

Figure 4.4 Point charge and ground plane conductor, (a) Physical arrangement; (b) equivalent 
image charge arrangement. 
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The solution \\x, y, z) should satisfy the following conditions: 

1. V(x,0,z) = 0. 

2. Because V —» QIAne^fi as R —» 0 at points very far from Q; that is, 

(x —> ±°°,y —> °°,z —> ±°°), 

the scalar electric potential approaches zero on an infinite hemisphere above 
the x,z plane. 

3. The electric potential function is even with respect to x and z coordinates; 
that is, 

V(x,y,z)=V(-x,y,z)=V(x,y,-z) (Symmetry) 

It appears difficult to construct a solution for V that will satisfy all these condi-
tions. From another point of view, we may reason that the presence of a positive 
charge Q at y = d would induce negative charges on the surface of the conducting 
plane, resulting in a surface charge density ps(x, 0, z). Hence, 

V(x,y,z) = (Q/4œ0)[x2 +(y-df + z2]'"2 +(1/4πε0)|ν[ρ5(χ',0,ζ')/Αι]ώ', (4.52) 

where R, is the distance from the differential area ds' to the field point under con-
sideration (x, y, z), and ,S" is the surface of the entire conducting plane at y = 0. 

However, for the scalar electric potential, V(x, y, z) to be calculated, the surface 
charge density ps(x, 0, z) must be known in Equation 4.52. Without the method of 
images (below), this would be difficult to find. 

Point Charge near a Conducting Plane 

In the above problem, if we remove the conductor and replace it by an image point 
charge—»Ö a t >' = ~d, then the electric potential at a point P(x, y, z) in the y > 0 
region is 

V(x,y,z) = (Q/47te0)(l/R+-l/IL) (4.53) 

where 

R+ = yjx2+(y-df + z2, and R = yjx2+ (y + d)2+ z2 (4.54) 

and 

V2V = 0. 

It is easy to prove that Equation 4.53 satisfies Laplace's equation and all four 
conditions listed above. We have found a solution in the region above the y = 0 
plane that satisfies Laplace's equation and the ВС on the infinite hemisphere above 
the x, y plane, so we have found the only solution. 
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EXAMPLE 

4.1 Find the surface charge density on a conducting plane near a charge Q. 
We can compute the electric field intensity in the region y > 0 from Equa-

tion 4.53 for either the charge Q and its image or for the charge Q and the 
grounded conducting plate at y = 0 because they are the same: 

v=0 "У 

or 

Ε(χ,0,ζ) = -(.ζ)/4πεΙ)) 

E(x,0,z) = -VV\y=0 = -dVßy\y=a 

-(y-d) (y + d) 

(4.55) 

[[x>Hy-dY+zT [x2+(y + df+zT. 

so if we evaluate the electric field intensity at y = 0, 

f:(xAz) = -(2dQ/4ne0){x2+d2 + z2)~3'2ây 

αν, 
,-» 

(4.56) 

This electric field intensity has no component in the x or the z direction as 
expected from Equation 3.84. However, from Equation 3.85, 

-3/2 
ps = ε0Ε„ = (-2Qd/4n)(x2 +d2+ z2) . (4.57) 

We see that this function is a maximum for x = 0, z = 0, where ps = -2Q/47td2, 

and it falls off with p = yJx2 + z2 as 

ps=(-2Q/4Kd2)(l + p2/d2)---, (4.58) 

as shown in Figure 4.5. 
CHECK Let us integrate ps over the surface at the y = 0 plane to determine 
the total charge induced on the conducting surface. So the charge induced is 

0 0.5d \.0d 1.5 rf 2.0 i/ 2.5 d p 

Figure 4.5 Charge density distribution induced on a conducting plane near a charge Q. 
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-3/2 

f " F{-2Q/4Kd2)p(\ +p2/d2)-1 dpdQ = (-Q/d2)n\ + p2/d2) ' 2pdp 
(4.59) 

Charge Induced = (-Q/d2)[-d2(ï + p2/d2y,/2]Çi = ~Q- (4 6 0> 

The total charge induced on the conducting plane at y = 0 due to the charge 
Q at y = d is - Q. 

PROBLEM 

4.2 Find the force on a charge, Q, if it is located a distance, d, from an infinite, 
conducting grounded plane. 

EXAMPLE 

4.2 Point charge near two conducting planes: As shown in Figure 4.6, a positive 
point charge Q is located at distances d, and d2, respectively, from two-
grounded, perpendicular, conducting half-planes. Determine the force on Q 
caused by the surface charges induced on the planes. 

In this case, we can argue that three images charges would be required to 
cause the scalar electric potential on the surface at y = 0 and the surface at 

J 

M„ d2, z) 

V(0,y,z) = 0 1 

+Q 

(-d'-d2,z) 

(dx,dvz) 

^~V(x, 0, z) = ( 

(</,. ^ 2 · Ζ) 

(a) (b) 

Figure 4.6 (a) Point charge, Q, in the neighborhood of two perpendicular conducting planes; 
(b) equivalent image arrangement of four charges that give the same scalar electric poteniial in the 
first quadrant. 
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x = 0 to be zero. This can be deduced by considering the electric potential of 
a test charge, q„ as it approaches the configuration of four charges from infinity 
along the x- or v-axis. 

Given three image charges, we thus have for the net force on Q: 

F = F,+F2 + F3 where 
F,=-ay[Q2/47teo(2d2)2] 

F2=-âx[Q2/4ne(l(2d])
2) 

F, - (Q2/4πε0)[(2rf, f + (2d2 f У'\ах 2d, + â,2d2 ). 

(4.61) 
(4.62a) 
(4.62b) 

(4.62c) 

Therefore, 

Q2 

F = 
16πε0 

", · 
[MfHdS ] dt [[w)2+(*)*] 

,.V2 dl 

(4.63) 

PROBLEM 

43 Find the scalar electric potential at a point (x, y, z) in the first quadrant, and 
calculate the induced surface charge density on the two plane surfaces at 
x = 0 and y = 0. Explain what happens at the point (0, 0, z). 

EXAMPLE 

43 Line charge near a conducting plane: Suppose a line charge, pf, parallel to the 
z-axis is located above a conducting, grounded plane, as shown in Figure 4.7. 

+P,(0,d.z) 

-P,(ß.d.z) 

Figure 4.7 Orthogonal view of an 
infinitely long line of charge at height, y = d, 
above the grounded, conducting plane at y = 0 
and its image line charge (of charge density, 
-pi) located at y = -d below the x, z plane. 
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According to the uniqueness theorem, the scalar electric potential in the 
charge-free region above the л:, z plane is the same for the conducting line 
charge in the neighborhood of a grounded conducting plane at у - 0 and for 
the line charge and its image because the potential at у = 0 and at R = °° is the 
same for both problems, and the electric potential satisfies Laplace's equation 
in both problems. We will thus choose to calculate the potential here using the 
method of images to find the electric field intensity at the point P located at 
arbitrary point x, y above the у - 0 plane. 

Using the results of Example 3.5 for a single line of charge density, we 
can see from Figure 4.7 that the electric field intensity at point P(x, y) for the 
line of charge and its image is given by 

- = p, (R-dâ,) p, (R + da,] 

2nso\R-dây\
2 2™-o\R + dâyf 

(4.64) 

Note that this configuration of two line charges produces zero scalar elec-
tric potential on the y = 0 plane and because charges are static, vxE = 0, so 
the electric field intensity is a conservative field. Thus, the path integral 
between any point P„ on the y = 0 plane to the point P(x, y) 

V(x,y) = -jp Edl (4.65) 

is independent of the path taken. Furthermore, it does not matter whether the 
point Pa is on the л-, Z plane because this plane is an equipotential. If we choose 
the point /', to be the point directly below the point P(x, y) on the y = 0 plane 
and choose the path of integration to be dl = dy'ây, as shown in Figure 4.8, 
we will evaluate the scalar electric potential at P(x, y) relative to the y = 0 
plane (which is at zero potential). 

P,(0,d,z) 

Palh of 
, integration 

-ΡΛ0.Ί.Ζ) Figure 4.8 Path of integration for 
Equation 4.65 between the point P„ 
and the point P(x, y). 
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For the path of integration in Figure 4.8, we need the ^-component of the 
electric field intensity at every point along the path because Edy'ây = E}dy'. 
We can find the components of ER at each point R = xâx + y'ây along the path 
of integration from Equation 4.64 as 

£*(* . / ) = 
p. (xäx + y'ây-day) Pi (xâ.,+y'ây+dây) 

so that 

and 

2πεο \xâx+y'ây -dây\
 2πε» \xâx+y'ây+dây\ 

(y' + d) 
£«.,(*, /) = 

„ _ p, (y'-d) Pi 

2πε0 x2 + (y' - df 2πε0 x2 + ( / + d f 

(y' + d) 
v(xy) = -ß-r (У Z£j У! +(/) 

v "' 2πεα
ίο _x2+(y'-d)2

 x
2+(y' + d)2_ 

dy'. 

(4.66) 

(4-67) 

(4.68) 

We can separate the two terms into two integrals and make a substitution 
of variables in the first using v" = y' - d so that dy" = dy' and in the second 
using y" = y' + d so that dy" = dy' in which case Equation 4.68 becomes 

V(x,y) = Pi 

2πεα 
GVbr*"-/. 

•y+d y' 

x* + y x2
+y"2dy" 

(4.69) 

and because 

V{x,y) = J^\n
(y + d)\+X\ 

4πε0 (y-d) +хг (4.70) 

4.4 Charged cylinder near a conducting plane: We can use Equation 4.70 to 
compute the electric potential on the surface of a cylinder by recognizing that 
the equipotential lines for the parallel wires are found when V(x, y) = V,, where 
V, is a constant. The values of x and у that satisfy this condition are 

D.=e — Λ
4;Γ£θι'ι/Ρ/ _ (y + d)- + x2 

(y-df + x2 

or 

v-< 
, A + 1 
A - l + x~ = 

2JVÄY 
Д - 1 

(4.71) 

(4.72) 

We conclude that equipotentials are asymmetric cylinders surrounding 
the line of charge, as shown in Figure 4.9. 
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Figure 4.9 Uquipolcntial surfaces in the neighborhood of a line of charge near a grounded 
conducting plane. 

Points on the equipotential surface are those on the surface of a cylinder whose 
electric potential is determined by an external voltage source. 

PROBLEM 

4.4 Given a cylinder of radius a at scalar electric potential V,, with its center 
located at a distance b from a grounded conducting plane, show that the param-
eter D|, the equivalent charge per unit length of a charged wire, and the 
capacitance per unit length are 

D, =(2b2/a2 -]) + 2b/aJ{b2/a2 - l ) 
ρ,=4πε0ν/1ηΟ, 

C,=p,/Vi=4«Eo/lnA. 

(4.73a) 
(4.73b) 
(4.73c) 

EXAMPLE 

4.5 Charges near spherical conductors: Consider the "spherical capacitor" shown 
in Figure 4.10. By using Gauss's law for the Gaussian surface of radius r, 

jjj Vi)d,x = jj> Dds=Q (4.64) 



124 Chapter 4 Solution of Electrostatic Problems 

Figure 4.10 Cross section of a charged 
spherical conductor inside of (and concentric 
to) another grounded spherical conductor. 

and, recognizing that | /3 | is of constant magnitude on S and always normal to 
the differential surface ds, 

\DR\4nR2 = Q 

so 

D = (Q/4KR2)C',II (4.74) 

and 

VaJ> = P - £ · di = -(ΰ/4πε0 ) Г R~2dR = (ζ)/4πε0 )(\/r„ - l/r„) 

The capacitance can be thus be written as 

CaJ, = <?/V,,„ = 4πε0 [ra rh/(/·„ - r„ )] (4.75) 

and in the limit as rh -» °°, 

Са=4ке0га, (4.76) 

which we can call the capacitance of an "isolated sphere." 

Nonconcentric Charges near a Grounded Conducting Sphere 

The more general case is for a charge Q that is not concentric with an outer sphere. 
Here, we can use the method of images to find the electric field intensity. Figure 
4.11 shows a charge Q located a distance z from the concentric center of a spherical 
conductor of radius Ra. 

Because of spherical symmetry, we have chosen the г-axis to lie along the 
direction between the sphere center and the charge Q. Now, let us locate an image 
charge -Q' on the z-axis at point z' so that it produces a zero scalar electric potential 
on the spherical surface at /?„. We will thus want 
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Figure 4.11 Potential at point R due to a 
charge Q outside a grounded conducting sphere. 

V(R,6) = Q Q' 
4πε„ \R- zâ:I 4πε0 \R - z'âz 

(4.77) 

to produce zero potential when R is located anywhere on the sphere at R„: 

V(Ra,e)=A
Q . . ' . - 6 ' , , Ц . (4.78) 
4πε0 \Ra -za:\ 4ЯЕЬ |/?„ - г аг| 

То make this happen, we can factor Ra out of the first term in Eqaution 4.78 and z' 
out of the second term to get 

V(R 0)- Q ] Q' ! 
4яЕоАа|ая-(г/А(,)аг| 4πε0ζ'|(Αο/ζ')-ά< 

We can make the two terms cancel by choosing 

Q _ Q' r . z R 

(4.79) 

^- = ^ and -±- , 

Thus, the magnitude and position of the image charge should be 

Q' = Q^ and z' = ^ 
z z 

so that the scalar electric potential at a general point R is 

V(R,d) = Q Q RJz 

4πε 0 |Α-ζά : | 4яг0 |л-(/га
2/г)а: | 

(4.80) 

(4.81) 

(4.82) 
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PROBLEMS 

4.5 Show that the surface charge density on the conducting sphere is given by 

» . g X:Rlle) , (4.83, 
4nR2

a (1 + R;/z2 -2Rjzcose) 

and plot the charge density as a function of Θ. 
4.6 Show that the force exerted on the charge Q by the induced charge density on 

the sphere is 

\р\--Я—№ 
4πε0ϋΐ 

1-%| . ,4.84) 
v. z 

4.7 Find the scalar electric potential inside a grounded conducting sphere if a 
charge Q is located at z inside the sphere. 

Nonconcentric Charges near an Insulated Conducting Sphere 

We can also use the method of images to calculate the scalar electric potential due to 
an insulated (as opposed to grounded) conducting sphere. Suppose we want to find 
the potential of a conducting sphere with total charge Q" in the presence of a point 
charge Q. We can think of the process to construct the situation by first calculating 
the field due to a charge Q in the neighborhood of a grounded conducting sphere as 
above. This process will produce a net charge -QRJz on the grounded conducting 
sphere. Then, we can disconnect the ground wire from the sphere. The scalar electric 
potential at the conducting surface will still be zero. Now, if we add charge Q" + 
QRJz to the conducting sphere (distributed uniformly over its surface), the net charge 
on the sphere will be Q", and the scalar electric potential at a point R in space will be 

i W ^ - g - ' - g * · ' * | + <Q" + g y > (4.85) 
4x£o\R-zâ:\ 4πε0|/?-(/?β

2/ζ)ά..| 4πε0|Κ| 

And the force on the charge Q will be 

\F\ = -
Q (R, 

4πε„Λ; 
R 2 \ 2 

+ <g» + gy>. (4.86) 
4πε0 {Ri 

Nonconcentric Charges near a Conducting Sphere at Potential V„ 

We can also use the method of images to calculate the scalar electric potential due 
to a conducting sphere held at electric potential V0 in the presence of a point charge 
Q. The technique is the same as the one above, except the total charge on the sphere 
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will be Q" = АтщУ,Яа from Equation 4.76. Thus, the scalar electric potential and 
forces due to this configuration become 

V(R,0) = Q 1 Q Kiz 
4πε„|Λ-ζά2| 4πε0 \R-(R;,/z)âz\ 

(A7ie0VHRa+QR«iz) 
4πε,, \R\ 

(4.87) 

F = 
Q2 (Ra 1- R 

+ 
(4jce0V0Ra+QRa/z) 

4πε0|Α|2 
(4.88) 

EXAMPLE 

4.6 Dipoles in the neighborhood of conducting planes: We can also consider a 
configuration of charges in the form of vertical or horizontal electric dipoles 
as shown in Figure 4.12. 

X 

(a) (b) 
Figure 4.12 (a) Vertical and horizontal electric dipoles above a grounded conducting plane and 
(b) the equivalent electric dipoles with their respective electric dipole images. 

Figure 4.13 Equivalent vertical and horizontal 
magnetic dipole moment pairs that yield the same 
magnetic lield intensity in space as a magnetic dipole 
and the induced surface current density on an infinite 
conducting plane. 
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PROBLEM 

4.8 Justify the image electric dipoles shown in Figure 4.12, and find the image 
electric dipole for an electric dipole above a grounded conducting plane if it 
makes angle Θ with respect to the horizontal. 

With a similar analysis, we could deduce the equivalent image linear vertical 
or horizontal quadrupole charges that would produce the same scalar electric poten-
tial above a grounded conducting plane. 

Does it thus make sense that we could produce a similar analysis for a multipole 
configuration of charges above a grounded conducting plane? If so, and if the general 
distribution of charges can be written as a linear combination of monopole, dipole, 
quadrupole,..., charges, is it possible to give the solution for the general configura-
tion of charges in the neighborhood of a grounded conducting plane? 

LOOK AHEAD We will perform a similar analysis for the case of magnetic 
dipoles below a grounded conducting plane with the result shown in Figure 4.13. 
This figure is given here for completeness. 



Chapter 5 

Steady Electric Currents 
LEARNING OBJECTIVES 

• Relate electric field quantities to currents in circuits 
• Understand Ohm's current law, Kirchhoff's current law, and Joule's law from the 

point of view of fields 
• Have a basic appreciation of superconductors and the role they are likely to play in 

future technologies 
• Understand the basic theory of a free electron gas and the development of band gaps 

in materials 
• Derive the boundary conditions for current density in a conductor 

INTRODUCTION 

Previously, we dealt with electrostatic problems, where field problems are associated 
with electric charges at rest. We now consider charges in motion that constitute 
current flow. There two types of electric current caused by the motion of free 
charges: 

a. Conduction currents in conductors and semiconductors that are caused by 
the drift motion of conduction electrons, holes, and ions 

b. Convection currents that result from the motion of electrons and/or ions in 
a vacuum, gas, or insulating medium 

In this chapter, we will deal mainly with currents in conductors or 
semiconductors. 

5.1 CURRENT DENSITY AND OHM'S LAW 

Consider the steady motion of N charge carriers per unit volume, each of charge q 
(negative for electrons), and average drift velocity, й, across an element of surface, 
As. in a long, uniform wire as shown Figure 5.1. 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 
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-l = uM-
s- Charge i/ 

» Δ.? ; —*·Δί 
■■■ »· · л ■ . . . ■·-. / 

^ /V charge carriers per unit v 

->Д5 —Ь-Δί 

' charge carriers per unit volume 
Figure 5.1 Charge carriers within a length, /, of a uniform wire of cross-sectional area, Д?. 

We can see that in time At, an amount of charge 

AQ=pvuAtAs=qNuAsAt{C) (5.1) 

will flow across the cross-sectional area Δ?. Because current is the time rate of 
change of charge flowing across Δν, we have 

AlsAQ = qN£àSAL = 

At At 

where Av = â„As is a vector quantity. 
By defining a vector point function,,/, to be the current density, in amperes per 

square meter (A/m2), 

j = Nqu (A/m2) (5.3) 
then, 

AI = NcfiAs = JAs(A). (5.4) 

The total current / following through an arbitrary surface S is then the integral 
of the current through 5: 

I = fJds(A). (5.5) 

Noting thai Ihe product Ne/ is free charge per unit volume, we can rewrite 

J=Nqü = pvü (A/m2), (5.6) 

which is the relation between the conduction current density and the average velocity 
of the charge carriers. 

Conduction Current 

In the case of conduction currents, there may be more than one kind of charge 
carrier (electrons, holes, and ions) drifting, with different average velocities, in 
which case 

.7 = £ л ^ / Д ( А / т 2 ) . (5.7) 
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n-Type Materials 

If the conduction current is predominantly a result of the movement of negative 
charges, such as in most conductors, the conducting material is said to be n-type. 
In the case of negatively charged electrons, the average velocity of each of conduc-
tion charges, c, is directly proportional to (and opposite from) the electric field 
intensity applied to that charge;1 

u = -ßeE(m/s), (5.8) 

where μ,, is the electron mobility measured in (mVVs). Therefore, 

J = Nqu = -pvßtE (A/m2), (5.9) 

where pv is the charge density of the electrons. 
For conductors, for example copper with /j,, = 3.2 x 1СГ3 (m2/Vs), the outermost 

electrons of the constituent atoms are the primary charge carriers because they are 
less massive than ions or holes and are not necessarily associated with their parent 
atom but are relatively "free" to move to their adjacent neighbors. We often say 
these conduction electrons form a "free electron gas" spread uniformly within a large 
conductor volume of atoms so that the net electrical charge density remains neutral, 
while the electrons are able to move. As we will see when we study band theory in 
the next section, this mental picture is an oversimplification of the details but in the 
end produces the same phenomenological results. 

We can also rewrite Equation 5.9 as 

J = -pv^É=-aeË(A/m2), (5.10) 

where the constant σ, = p\ße is a macroscopic parameter of the conducting medium 
called the electrical conductivity. 

p-Type Materials 

If the conduction current is predominantly a result of the movement of positive 
charges, such as in some semiconductors or insulators, the conducting material is 
said to be /»-type. In the case of positively charged holes (e.g., atoms from which an 
electron has been removed), the average velocity of each of conduction charges, +e, 
is directly proportional to the electric field intensity applied to that charge: 

ΰ = μ„Κ (m/s), (5.11) 

where μ,, is the hole mobility measured in mVVs. 

1 Note that this behavior is in contradiction to Newton's second law. /·' = ma or a = qElm = (qlm)E 
because the charge carriers are accelerating, bumping into obstacles (which causes their deceleration), 
reaccelerating, and so forth. Paul Drude proposed this model in 1900 to explain ohmic conduction in a 
homogeneous, isotropic, linear, local time invariant material. Under a static electric field, Equation 5.8 
states the charge carriers will have an average velocity that takes into account these multiple 
scatterings. We will study these scattering effects in detail later in this chapter. 
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Therefore, 
./' = Nqu = ρκνμ„Ε (A/m2 ), (5.12) 

where р,,л is the volume charge density of the holes. 

Net Conduction Current 

For semiconductors, both electrons and holes can cause conduction. For example, 
in silicon with μ,, = 0.12 m2/Vs and μ,, = 0.03 m2/Vs, both the outermost electrons 
of the constituent atoms and the holes are relatively "free" to move to their adjacent 
neighbors. In accordance with Equations 5.7, 5.10, and 5.12, 

.7 = -Nr \e\üt + Nh \е\щ = -ρ,.μ«.£+ p,,.vphË = σΕ ( A/m2 ). (5.13) 

For pure silicon at room temperature, σ= 0.0016 A/Vm or Siemens per meter 
(S/m). By comparison, for copper, <y— 5.8 x I07 S/m and, for fused quartz, σ= 1.0 
x 10~17 S/m. The conductivity of materials is clearly one of the most variable quanti-
ties in nature; its contributions coming from the density of competing carriers, their 
respective motilities, from impurities in the material, its electric potential relative to 
an adjacent material, and from its temperature. The value of a taken from a table of 
parameters for various materials is thus likely to be quite different from that for a 
particular specimen. 

Equation 5.13 is a constitutive relation of a conducting medium. Isotropie 
materials for which the linear relation 5.13 holds are called ohmic media. The con-
ductivity, σ, is large and relatively constant for practical conducting materials, but, 
in semiconductors and insulators, it may depend highly upon external effects such 
as the temperature of the material, the amount of water absorbed, and the frequency 
of the applied electric field intensity (considered constant in this chapter) in which 
case it may even have an imaginary component. 

Drift Velocity 

As noted above, the force on a "free" electron is caused by the applied electric field 
intensity and by the collisions with other electrons, impurities, ions, or the thermal 
vibrations of the atomic lattice. For an electron in a typical conductor, the average 
time between collisions is very short (e.g., 10"14 s for copper). Unless the frequency 
of the external electric field intensity is very high (e.g., 100 terahertz for copper), 
collisions of the conduction electrons will be a dominant factor in their movement. 
For frequencies much less than 1014 Hz, an electron suffers many scattering events 
per driving cycle and ohmic loss is apparent. 

Electromigration 

The scattering of electrons from positive atomic ions in a lattice can cause a dif-
ferential collisional pressure on ion cores at high current densities (typically above 
104 A cm"2). If there is a differential pressure on two different types of cores (e.g., 
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Figure 5.2 Preferential back scattering of an electron current from an Al ion core in a Cu ion 
lattice. 

Al in Cu) because of a difference in their scattering cross section, the differential 
pressure can displace one type of metal ion relative to the other. This displacement 
generally takes place slowly but, over months or years, can cause the transport of 
mass (positive ions) in the same direction as the electron current. This mass transport 
is called electromigration and is indicated by the two-dimensional sketch shown in 
Figure 5.2. The effect is usually ignored, but, if small features in a device (such as 
a man-made barrier of a concentration of atoms in a transistor) involves a region of 
high concentration of one type, its relative proportion may be physically spread over 
time. Electromigration can result in the failure of an electronic system over a long 
period of time, so it is often advisable to estimate the time required for such failure 
compared with its useful replacement time or to reduce the incident current density. 

If the differential cross section of an Al ion core (in a vertical set of Cu ions) 
is larger than that of a Cu ion core as shown in this figure, more electrons will be 
back scattered from the Al, and, thus, the momentum transfer, ΔρΜ, will be larger 
than that for Cu ions, ApCu. If this momentum transfer occurs in a time. At, then a 
differential force will be experienced by the Al ion, AF = (ΔρΜ - ApCu)IAt. The col-
lisions will be a statistical average over time, so, most of the time, the differential 
force will be small compared with the force needed to overcome the potential barrier 
for a displacement of the Al ion one atomic lattice displacement to the right. On 
occasion, however, there may be a statistically large number of collisions on the Al 
ion that will be sufficient for the Al ion to be displaced, and the Al will migrate to 
the right. 

The Al ion is shown in this figure as an impurity in a Cu lattice but it might 
also be part of an Al superlattice that forms some man-made geometric structure. In 
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that case, the migration of one of the AI ions will disrupt the planned structure and 
potentially disrupt the intent of the structure (i.e., a barrier caused by a line of Al 
ions). For example, aluminum-based alloys (Al-Cu, Al-Si, ...) are widely used in 
interconnects for integrated circuits. One of the problems associated with Al-bascd 
alloys is their poor resistance to electromigration in terms of their time-to-failure of 
a device. 

5.2 RELATION TO CIRCUIT PARAMETERS 

Ohm's law from circuit theory states that the voltage Vi: across a resistance /?, in 
which a current / follows from point 1 to point 2, is equal to Rl as shown in Figure 
5.3: 

In basic circuit courses, we have learned that 

AVn = Rl2l (5.14) 

gives the voltage (potential) drop across a finite length wire of length (/2-/|), but 
Equation 5.14 is not a point relation. Although there is little resemblance between 
Equations 5.13 and 5.14, the former is generally referred to as the point form of 
Ohm's law and holds at all points in space. 

We can use the point form of Ohm's law to derive the voltage-current relation-
ship of a wire of homogeneous material of conductivity, o", length, (/2-/1), and 
uniform cross section, AS, from Figure 5.3. The potential difference (voltage) 
between the two ends is 

AVll = fdV = -j2ÊdÎ 

AVn = -ζ(3/σ)·ά = -υ/σ)(12-1, ) (5.15) 
AVl2 = l(l,-l2)/oAS 

and, if we define 

Ra = ih-k)loAS (5.16) 

We can see that the point Equation 5.13 yields the macroscopic Ohm's Law, Equa-
tion 5.14. Hence, we have the formula for the resistance of a straight piece of 

\*— dî= S. Δ/=μ,ΕΔί —*\ 
Charge,/ 

Δ.Ϊ h V— àV- -^*\ 

! 
;V charge carriers per unit volume y 

Figure 5.3 Voilage Δνι: = V; - V,, across a long, homogeneous wire of resistance R, in which a 
uniform current / flows from poini I 10 point 2. 
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homogeneous material of uniform cross section for steady current (DC). Electrical 
resistivity, p, is defined as 

ρ = \/σ (5.17) 

and electrical conductance, G, is defined as 

G s I//? (Mhos). (5.18) 

Because the electrical conductivity, σ, depends upon temperature, the electrical 
resistivity also depends upon the temperature of the material. A convenient linear 
relationship near room temperature is often written as 

p = p0[l+a(T-T0)]. (5.19) 

Here, T0 is a selected reference temperature, p0 is the resistivity at that tempera-
ture, and a is the temperature coefficient of resistivity. Table 5.1 gives the electrical 
resistivity, p0, of some common materials at room temperature and gives their tem-
perature coefficient of resistivity, a, at that same temperature. 

Figure 5.4 shows measured values of resistivity for copper as a function 
of temperature. It is seen from this figure that the temperature dependence is not 
quite linear but that at room temperature the resistivity is p 0 = 1.69 x 1 0 s Ωηι, 
and the slope is a = 4.3 x If)"3 K~'. If we examine the resistivity near the absolute 
zero of temperature, we will find that the resistivity does not go to zero, as 
implied by Figure 5.4, but approaches a small limiting amount, called the residual 
resistivity, determined in part by the trace impurities in the sample. Most normal 
conductors exhibit similar behavior. 

Table 5.1 Electrical Resistivity, p0, and the Temperature Coefficient of Resistivity, a, of 
Some Common Materials at Room Temperature 

Material po (Qm) at 293 К a (K"1) at 293 К 

Silver 1.62x10-" 4.1 x 10 ■' 
Copper 1.69X10"8 4.3x10" ' 
Aluminum 2.75 x 10-* 4.4 x 10~3 

Iron 9.68 x 10" 6.5 x 10 3 

Platinum 10.6xl0"8 3.9x10"3 

Silicon (p-type)" 2.8 x 10"' — 
Silicon (n-type)" 8.7 x 10-1 — 
Silicon (pure) 2.5 x 10' -70 x 10 ' 
Glass 10'° x 1014 — 
Fused quart/. 2 x 10'7 — 

'Pure silicon doped wilh aluminum impurities to a charge carrier density of 1023 m"3. 
hPure silicon doped with phosphorus impurities to a charge carrier density of 1023 ιττ'. 
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Figure 5.4 Resistivity of copper as a function of temperature. 

5.3 SUPERCONDUCTIVITY 

In 1898, James Dewar succeeded in liquefying hydrogen at a temperature of 20 K, 
and, in 1908, Heike Kamerlingh Onnes succeeded in liquefying helium at a tem-
perature of 4.2 K. Onnes used his (then unique) low-temperature capability to 
measure the electrical resistance of a variety of metals at low temperatures. Onnes 
began his studies with platinum and gold but felt there were trace impurities left in 
those materials. In purifying his samples, he reasoned that, because mercury is liquid 
at room temperature, he could use a standard distillation process to obtain the purest 
sample possible. In 1911, to his surprise, an assistant, Gilles Holst, immersed a thin 
capillary tube of mercury into a helium bath and measured the resistance curve 
shown in Figure 5.5. 

Onnes had surmised that, without impurities, the resistivity of a very pure metal 
like mercury would approach zero smoothly with decreasing temperature. He 
repeated his measurements many times before he became convinced that the resis-
tance of mercury dropped suddenly at 4.2 К to an unmeasurable value (the lower 
limit of his measurement equipment was 10"6 Ω). This critical temperature is today 
called T, and it denotes the transition to the superconducting state for a material. In 
1913, Onnes won the Nobel Prize in physics for his research. That year, he also 
discovered that there was a "threshold value" of the current density, J,, that can be 
carried by a superconducting sample before it reverts to its normal (metallic) state 
and that./, increased as the temperature of the superconductor was lowered below 
Tr. In 1914, Onnes reported that an applied magnetic field intensity, H,, can also 
destroy the superconducting state and that the critical field was also temperature 
dependent. Based on a fit of the empirical data, it was possible to quantitate this 
temperature dependence as 

H,(T)~H,,[\-(T/TC)2]. (5.21) 
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Figure 5.5 Resistance versus temperature curve for Hg that Kamerlingh Onnes reported to 
announce the discovery of superconductivity in 1911. 

The best measurements that have been carried out to date conclude that the DC 
resistance of superconductors is dead zero (not just a very low value). We can also 
conclude that it is not correct to define a superconductor as a medium that satisfies 
the nondispersive constitutive relation J = Oof- with σ0 —» °o because electric field 
intensity cannot exist in a perfect conductor. 

Two-Fluid Model 

In 1934, Cornelius Goiter and H. B. G. Casimir found that many of the properties 
of superconductors, including the Meissner effect (which states that magnetic flux 
density inside a superconductor is zero), can be explained by a constitutive relation 
for the current density in a material in the superconducting state: 

J =J„+JS, (5.22) 

where J„ and ,Λ are the current density of normal electrons and superconducting 
electrons, respectively. In this model, the total number of conduction electrons in a 
material, n„„, can be written as 

, = n(T) + 2n*(T) for all 7, (5.23) 

where n is the number of unpaired (normal electrons) and n* is the number of Cooper 
pairs (superconducting electrons). The microscopic theory proposed by John 
Bardeen, Leon Cooper, and Robert Schrieffer in 1957 (known as the BCS theory) 
showed how electrons could become paired when they interact with the lattice of 
parent atoms and one another. These electron pairs are called Bosons because they 
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Figure 5.6 Periodic lable of (he superconducting elements. 

have integer spin and are not subject to the Pauli exclusion law for half-integer spin 
particles that no two electrons can have all their quantum numbers identical. The 
superelectron pairs have the charge and mass of two electrons and can carry abso-
lutely lossless supercurrents, whereas the normal electrons produce lossy currents 
like a normal conductor. Many elemental metals are superconductors, as shown in 
Figure 5.6. 

At least one of the 5 f elements, Am, is also a superconductor, but studies of 
others are difficult because of their limited quantities available for measurement. 
Many alloys or compounds of pure elements are also superconductors, including 
some between elements that are not superconductors as pure materials (e.g., MgB2). 

The theory of superconductivity seemed to be reasonably complete until 1987 
when Paul Chu and Maw-Kuen Wu demonstrated that YBa2Cu307 was a supercon-
ducting material with a critical temperature of 95 K. Note that none of these elements 
by themselves are superconductors (as is seen in Figure 5.6). The importance of this 
discovery is enormous because it concluded that superconductivity had a high-
enough transition temperature to be cooled by inexpensive liquid nitrogen (which 
boils at 77 K). There are other copper oxide materials that retain their superconduct-
ing properties above 120 K, but their mechanical brittleness makes them difficult to 
form into long wires. A compromise material, magnesium diboride with a T(- of 
39 К is cheap to form into wires and can be cooled by liquid hydrogen (boiling point 
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20.2 K). It thus appears that commercial applications of superconductivity may soon 
become more widespread and common. 

The BCS theory of superconductivity does not explain the properties of high-
temperature superconductors, so we will not give further details about their pro-
perties. A student of electrical engineering today will likely use these materials 
in practical applications in his or her professional career, so critical currents, 
temperatures, and magnetic lields are topics worthy of regular review. 

5.4 FREE ELECTRON GAS THEORY 

The "free electron gas" model provides a first-order approximation to the behavior 
of conduction electrons in which we view electrons as waves through a probability 
wave function, ψ(χ, t). In 1905, Albert Einstein postulated that all electromagnetic 
radiation could be viewed as a collection of particles known as photons whose 
energy, ε, and momentum, />, can be written as 

ε = ηω and p = hk, (5.24) 

In 1924, Louis de Broglie took the inverse position by describing particles as 
matter waves in his doctoral thesis. Equations 5.24 are known as the Einstein-de 
Broglie relations. Here, the total energy, ε, of a quantum particle is related to its 
frequency of oscillation, ω, and its momentum, p, to the wave vector k, where the 
magnitude of к is related to the matter wavelength, A, in the usual way: 

\ϊ\ = 2π/λ and n = h/2n, (5.25) 

where h = 6.62606876(52) x КГ34 J s or 4.13566727(16) x 10"15 eV s). The Einstein-
de Broglie relations let us go back and forth between the wavelike and the particle-
like behavior of matter. 

With these ideas in mind, let us find an equation of motion for the simplest 
quantum system: a "free" electron. We will begin by writing the classical expression 
for conservation of energy as 

Κ.Ε. + Ρ.Ε. = ε,οωΙ (5.26a) 
(\/2)mv2+aV(,x) = £„„„, (5.26b) 

(]/2m)mvmv + qV(x) = £,„,„, (5.26c) 
p-p/2m-eV(x) = eMah (5.27) 

where V(x) is the electric potential. Now, if we substitute Equation 5.24 for p into 
this equation for a "free" electron (i.e., \\x\ = 0), then 

ft2 \k f/2m = (h2/2m) (k] + k2 + k2) = ε,0„„. (5.28) 

This equation says that the energy of a free electron is related to the magnitude 
of its wave vector К and is called the dispersion relation for matter waves. 

In section 7.7, on E&M waves (i.e., nonstatic or time-dependent variations 
of electric and magnetic waves), we will see that the electric field intensity and 
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magnetic field intensity in charge-free regions of space obey time-dependent vector 
wave equations: 

ν2Ε = \ξ^ or V2H=\^-, (5.29) 
г дГ с дГ 

where the quantity с is called the speed of the wave in the medium. In Cartesian 
coordinates, each of these equations represents three scalar equations for each com-
ponent of the electric field intensity or magnetic field intensity. If we say that the 
quantity ψ(χ, t) can represent any of the Cartesian components of the electric or 
magnetic field intensity, we can write the general form of the wave equation as 

*ψ<Μ-\*Φ*· (5.30) 
С dt 

This equation may be interpreted as saying that each of the Cartesian compo-
nents of the electric field intensity and magnetic field intensity behave as waves 
because each satisfy the wave equation. As we shall see, the solution to the wave 
equation can be assumed to consist of a spatial quantity. ψ(χ). times a time quantity, 
<·"'*, where ω is called the angular frequency of the wave measured in rad/s. 

This is a method of solving second-order partial differential equations known 
as the separation of variables technique, described previously in section 4.2. If we 
make this assumption, we can take the second derivative with respect to time on the 
right-hand side of the equation to see that 

ν2ψ(χ)ε'"" = -(ω2/ε2)ψ(χ)είω (5.31) 

and canceling out the time-dependent terms, 

ν2ψ(χ) + (ω2/α2)ψ(χ) = 0. (5.32) 

The latter equation is called the vector Heimholt/, equation and describes the 
spatial variation of either electric field intensity or magnetic field intensity. Electrical 
engineers call the quantity, ψ(χ), the phasor descriptor for the wave. We often set 
the ratio (ale1 - k2 because it is just a constant property of the wave (called the wave 
number) determined by the frequency and the speed of the wave in a medium. For 
a wave, we can also show that к = 2πΙλ, where A is called the wavelength. We can 
also interpret k2 = I k~ \2 = к ■ k, where the vector, k, is called the wave vector because 
it describes the direction of propagation of the wave as ψί(χ) = ψ^" in charge-free 
space. We can use the de Broglie formulation above, ε= fi(Uandp = Ьк, to reinterpret 
electric and magnetic field intensity waves as having both energy and momentum 
as if they were particles. 

Suppose we adopt the duality interpretation of matter by saying that electrons 
may be considered as waves instead of particles. If that is the case, electrons should 
also satisfy a wave equation, and the uniform plane wave that describes them should 
be of the form 

¥i,t ns(x,t)=y,0e
i{li-") (5.33) 
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that satisfies the dispersion relation.2 From this point on, we will be talking about 
the wave description of electrons, so we will drop the subscript electrons and the 
carrot on the quantity y/with the understanding that it describes the phasor property 
of electrons. 

Schrodinger noticed the similarity between these equations and saw that the 
interpretation 

-(h2/2m)V2y/-k = (Ä2/2m)|*|Vi (5.34) 

in Equation 5.28 led to an expression that described the evolution of free wave-
particles in space and time that looked like the Helmholtz equation. Schrodinger 
wrote this equation as 

-s^-stlNrffH-^""-**4· (5-35) 
In this equation, we have interpreted the total energy of the "free" electrons as 

ε,ο,αΐ = £f = ti2k2/2m = h2k- к/2m. (5.36) 

Schrödinger's equation is a second-order, first-degree, homogeneous PDE. If it is to 
meet the periodic boundary conditions, the answer must be periodic in x, y, z with 
period L, so 

ψΕ(χ + L, >·, z) = ψ-κ(χ, y, z) (5.37) 

and similarly for y and г. By using a normalization factor over the volume V= L? 
so there will be one electron found in each unit cell of volume V, Equation 5.37 
yields the same answer as Equation 5.34 if 

Ψΐ(χ, t) = ¥oe
i{i*-m) = e'V'^/JV (5.38) 

and the values of к are restricted to 

kx = 0; kx = ±2njL\ kx = ±4K/L; ...kx = nx 2n/L where nx = integer (5.39) 

and similarly for ky and k:; that is, any component of к is of the form 2njtiL, where 
n is a positive or negative integer. The components of к are the quantum numbers 
for the problem, along with the quantum number ms for the spin direction. 

Pauli Exclusion Principle 

No two fermions (half-integer spin particles, e.g., electrons) can have the same 
quantum numbers. By Equation 5.32, this also means that no two electrons can have 

2 Note lhal we are using the physics notation that / = -J-\ rather than the electrical engineering 
convention of j so the equations will look like those in physics journals. Physicists conventionally use 
e~"" for time dependence, while electrical engineers use e"*. 
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*T* ^Filled states 
■ Empty states 

Figure 5.7 At temperature T = 0, ЛМ'гее electrons in 
the lowest occupied energy states till up the available 
energy states from the zero of energy to the highest 
possible energy (the Fermi energy). 

the same wave function (they cannot exist at the same place at the same time with 
the same spin). 

We have now found the wave function for the dispersion equation (equation of 
state) of free electrons in a box of volume V = Ü. There are some very important 
constraints on the wave function that we must apply, one of which is 

Sc = -
trk2 

2 m 
Ь' 1,1 , 2 ,2\ Й / 2 2 2 4 4 » 

2m 2m L 
(5.40) 

Equation 5.40 says that there are only discrete energy states that the "free" 
electrons can occupy (i.e., the electron energy states are quantized). There are only 
two electrons in each of these energy states (one with spin-up and one with spin-
down). Furthermore, if we want to put N electrons into the box of volume V = L3, 
we can add them two at a time, with the first two going into the lowest energy state 
(nx = 0, ny = 0, п. = 0). The next six will go into the next highest energy states (one 
of the /t, = 1 and the others = 0), and so forth, until we have put all N electrons into 
the available lowest energy states. When the N electrons have all been added to the 
box, they will fill up all of the available (discrete) values of wave vectors, as shown 
in Figure 5.7. Although there are only specific points in Λ-space that can be occupied, 
they are so close together that they appear to be a continuum of states. 

The highest filled energy states are at energy et = h2kj/2m. In the sphere of 
volume Aiulß, the total allowed number of states is N12. Thus, 

(4nk}
F/3)/(2n/LY = Vk\lbK- = N/2. 

We can solve Equation 5.41 to get 

(5.41) 

(5.42) 

which depends only on the particle concentration (and not the mass). Thus, the Fermi 
energy is 

eF = (tf/2m)(te2N/v 
.2/3 

(5.43) 
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Table 5.2 Fermi Surface Parameters for Electrons in Monovalent Metals 

Material 

Li 
Na 
К 
Rb 
Cs 
Cu 
Ag 
Au 

Electron 
concentration, 

MV(xl02"m-') 

4.6 
2.5 
1.34 
1.08 
0.86 
8.50 
5.76 
5.90 

Fermi wavevector, 
^ (х10 1 0 т - ' ) 

1.1 
0.90 
0.73 
0.68 
0.63 
1.35 
1.19 
1.20 

Fermi velocity. 
уДхЮ6 m/s) 

1.3 
1.1 
0.85 
0.79 
0.73 
1.56 
1.38 
1.39 

Fermi energy, 
eF(eV) 

4.7 
3.1 
2.1 
1.8 
1.5 
7.0 
5.5 
5.5 

and the electron velocity, vF, for electrons at the Fermi surface is 

VF = MF/m = (fi/m)(3K2N/vf. (5.44) 

Calculated values for vF and ε,. for a variety of monovalent metals are given in Table 
5.2. 

Effects of Temperature 

If the free electron gas interacts with atoms that are above the absolute zero of 
temperature, it comes into thermal equilibrium with the atoms. Electrons that have 
energy below the Fermi energy are in a filled quantum state with specific values of 
n„ tiy, пг. A nearby energy state (e.g., n'x = n„ n'y = ny, nz = nz+ 1) will be filled, so 
the addition of thermal energy to the electron at n„ nv, n: cannot make it jump to 
the energy state n„ riy, n': because the higher energy state is already filled and the 
Pauli exclusion principle does not permit two electrons to have the same quantum 
numbers. However, electrons just below the Fermi level can absorb thermal energy 
and move to a higher (unoccupied) state with energy above the Fermi energy without 
violating the Pauli exclusion principle. The Fermi-Dirac distribution 

f(£) = [e«-^T + ïy' ( 5 4 5 ) 

gives the probability that the energy level at energy ε will be populated.' The quantity 
μ is called the chemical potential and is itself a slight function of temperature chosen 
in such a way that the integral under the curve remains constant, but, at all tempera-
tures, Де) is equal to ιΔ when ε = μΛΒ is the Boltzmann constant (kB = 1.3806503[24] 
x 1 0~23 J/K) we reviewed in Chapter 1 that expresses energy as a temperature. When 
this probability function is multiplied by the Fermi distribution of states at T= 0, as 
shown in Figure 5.7, the product describes the filled and unfilled states. It can 
be interpreted that some states below the Fermi level have a probability of being 
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t r cr-
ia) Energy, ε (b) Energy, ε 
Figure 5.8 Density of available conduction electron states as a function of energy (parabolic solid 
line). The shaded red area under it shows the occupied states at (a) 7" = 0 and (b) for general 
temperature T. 

unoccupied and that some states above the Fermi level have a probability of being 
occupied. In a sense, multiplying the Fermi distribution of Figure 5.7 by the Fermi— 
Dirac distribution 5.45 makes the Fermi sphere of occupied states become fuzzy. 
This effect can be shown quantitatively by calculating the number of permitted 
conduction electron states per unit energy range, 

D(e) = dN/de = —[(v/3K2)(2me/h2f2] = (v/27r2)(2m/Ä2)3/V2 (5.46) 

called the Density of States, as is shown in Figure 5.8. 
For 7 = 0 , only states below ε,. are occupied. The curve (b) to the right is the 

parabola multiplied by the Fermi-Dirac function, the probability that the state is full 
at that energy (shown as the blue dashed line). The area under the blue dashed line 
shows the occupied states for a finite temperature T (i.e., some of the states below 
εΛ are empty, and some of the states above eF are occupied). 

The high-energy tail of the distribution, when (ε - μ) » kBT, is called the 
Boltzmann or Maxwell distribution, and, when multiplied by the Fermi distribu-
tion of states at T = 0, as shown in Figure 5.8, it gives the probability of a filled 
energy state above the Fermi energy as an exponentially decreasing (but finite) 
population 

f(£) = e("-e)/tsT. (5.47) 

This result can be interpreted as showing how the proportion of filled states 
below the T - 0 Fermi energy can absorb thermal energy at temperature T to move 
to a higher energy state above the Fermi energy. In this sense, the Fermi sphere 
of occupied states at T = 0 becomes a fuzzy Fermi sphere of occupied states at 
temperature T. 
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Figure 5.9 Free electron gas energy states allowed at temperature '/'= 0 K. The pink energy hand 
below ef indicates that those states are populated. The white energy band above eF indicates that those 
states are vacant. 

Figure 5.8 is often shown in a rotated orientation in which the filled states are 
shown in energy, which we showed in Equation 5.40 C£ = btëllm. This is plotted in 
Figure 5.9. 

5.5 BAND THEORY 

The free electron model gives good results for the electrical conductivity of metals 
and also gives good results for thermal conductivity, heat capacity, magnetic sus-
ceptibility and electrodynamics of metals. However, the model fails to give a satis-
factory explanation of the electrical properties of semiconductors and insulators and 
cannot explain the large temperature dependence of the conductivity of semiconduc-
tors like germanium and silicon, as is shown in Figure 5.10. 

For example, the probability distribution of Equation 5.41 can be approximated 
by a Taylor series in \lkBT (shown in Figure 5.8). As the temperature increases, the 
number of filled permitted electron states near the Fermi level with an adjacent 
empty permitted electron states grows, increasing the conductivity of the material 
and suggesting no qualitative difference between metals, semimetals, and insulators. 
Comparing the temperature dependence of Figure 5.4 for a metal with Figure 5.10 
for a semiconductor, we see that there is, in fact, a very different mechanism at work 
between these materials. 

The explanation of these fundamental differences lies in the crude approxima-
tion that was made for conduction electrons as constituting a "free electron gas." 
For example, in assuming a "free electron gas," we knew that we were neglecting 
the interaction of the conduction electrons (outer electrons) with the potential atomic 
core potentials in a lattice, as shown in Figure 5.11. 
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Figure 5.10 Conduction electron concentration for silicon and germanium as a function of 
temperature. 

Potential energy, U 

Ion core 

(b) 

Figure 5.11 (a) Potential energy function surrounding the atomic cores in a material lattice; 
(b) interaction of a propagating conduction electron (A = a) with the atomic cores. 
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Because the atomic cores of the atoms are effectively screened by the other 
conduction electrons, it was argued in the early part of the twentieth century that 
the effective potentials at the atomic cores were of very short range (compared with 
the atomic lattice dimensions) and that they were shallow enough to ignore. That 
approximation becomes questionable when the periodic structure of the material 
permits the constructive interference between waves that are scattered from many 
atomic cores. This is especially important when the wave vector of a conduction 
electron produces a wavelength, A = па, that is an integer multiple of the lattice 
spacing a; that is, we can expect problems with the free electron model when 

|Ε|α = /ΐ7Γ. (5.48) 

Except for a simple cubic lattice, there are several wave vector directions in 
Л-space for which multiple integer of ^condition 5.48 can occur. These directions are 
called the Bragg reflection directions for electrons in crystals and are the subject of a 
much deeper discussion than is possible in this text. We will note that, for those к 
values that satisfy Equation 5.48, the energy versus к curves is modified, as is shown 
in Figure 5.12. Here, we see that the permitted values of к are relatively continuous 
(except for the fact that they are very densely quantized) but that there are values of 

Third allowed 
energy band 

Forbidden energy band 

Second allowed 
energy band 

Forbidden energy band 

First allowed 
energy band 

Figure 5.12 Plot of energy versus wave vector magnitude, k. for a linear lattice of square well 
potentials with lattice spacing a. 
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energy that are forbidden when condition 5.48 is met. This view is called the extended 
zone scheme for square well potentials. 

Some texts show only the rectangular boxes in Figure 5.12 (allowed energy 
bands) to the left of the ε versus к solutions as they fill all or part of the lowest boxes 
to the level eF with a background shade to indicate the electron filling of the box to 
the Fermi energy at temperature T = 0. As one would expect, the details of the ε 
versus к solutions will change with the kind of well potential for the core ions, but 
the location of the forbidden energy bands continues to satisfy condition 5.48. The 
separation between the allowed energy bands is usually called an energy gap, Er 

We know that, at temperature T, the population of allowed states near the Fermi 
energy will become fuzzy as some of the states below et become vacant and some 
of the states above eF become populated. The width or spread of the distribution will 
be proportional to kHT. However, if there are no allowed states above the Fermi 
energy and the temperature is insufficient to raise a populated state to the bottom of 
the next highest allowed energy band, there will be only a statistically low probabil-
ity that any electrons will be promoted to a higher band. Thus, the density of states 
at the Fermi level will be very small, and the conductivity of the material will be 
very low. This will be the case for an insulator, as shown in the left boxes in Figure 
5.13. 

If the Fermi energy falls within an allowed energy band, and the temperature 
is 7", there can be a substantial spreading (fuzziness) of the populated states near the 
Fermi level, and hence there can be many electrons ready to move under the influ-
ence of an external applied electric field. We say that the density of states is high 
in that case, and the conductivity of the material will be relatively high. This will 
be the case for a metal, as shown in the second set of boxes in Figure 5.13. Here, 

Impurity energy states 

Empty energy states 

| Forbidden energy states 

Filled energy states 

\ Forbidden energy states 

- Filled energy states 

Insulator Metal Semimetal Semiconductor Semiconductor 

Figure 5.13 Ranges of available energy states for conduction electrons in various classes of 
materials. Energies within the boxes are bands that are allowed, but energies between the boxes are 
forbidden. The forbidden energies are said to constitute band gaps. 
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the allowed band is said to be half-full as would be the case for copper in which 
two 4 s electrons are required to fill the lowest allowed band, but only one 4 s elec-
tron is available. 

For a particular crystal structure of the core ions, the details of the ε versus к 
solutions will also depend upon the direction of the vector k. Solutions for a particu-
lar value of к might have an allowed first energy band that extends above the bottom 
of the second allowed energy band in a different direction. In that case, care would 
have to be taken when measuring the energy bands for a single crystal of sample. 
For a polycrystalline sample (the normal situation for conductors on printed circuit 
boards (PCBs), we would have to produce an angular average over all possible 
angles for single crystals. This average process can permit adjacent bands to overlap 
one another in the energy variable, as shown in the case of a semimetal, in Figure 
5.13 in which the bands have been folded back in a "reduced zone scheme." 

Semiconductors can be even more complicated if the material is composed of 
a compound material or if the pure material has had impurity atoms inserted in a 
pure crystal in small quantities. In this case, the temperature may be able to raise 
the energy of populated states just below the filled band to the next allowed band 
by making smaller jumps to allowed impurity levels that reside between the bands. 
This case is shown in the next to last set of boxes in Figure 5.13, but the small 
number of impurity levels between the allowed bands is not shown. Finally, some 
semiconductors are produced by "draining off" the highest energy electrons just 
below the Fermi energy at the top of an otherwise full energy band. The process to 
drain off the highest energy electrons can be accomplished by a different nearby 
material, by an applied electric potential, or both. Such a situation is shown in the 
set of boxes on the right-hand side of Figure 5.13. 

Summary 

The shaded areas of Figure 5.13 indicate that energy states that are filled with con-
duction electrons and the white areas are empty. States at the upper energy level 
(the Fermi Energy) can move to an empty adjacent state with an incremental addition 
of energy (such as that provided by the temperature of the material). In an insulator, 
a large amount of energy, Eg, is required to overcome the band gap to boost a con-
duction electron into a permitted state, so Equation 5.45 would provide only a small 
fraction of those states, and the material would be a poor electrical conductor. By 
comparison, a metal with a half-filled band has electrons at the Fermi level that are 
easily moved to the next highest empty level, and the density of those states given 
in Equation 5.46 is large, so the material is a very good electrical conductor. A 
semimetal may have two energy bands that are partially filled in different momentum 
directions relative to the crystal structure, so a small amount of energy is needed to 
scatter the electrons between the bands, but the density of available states may can 
also be small, resulting in a conductivity that is intermediate between metals and 
insulators. Semiconductors are so influenced by their impurities that they require a 
separate discussion. 
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5.6 EQUATION OF CONTINUITY 

Conservation of charge is a fundamental postulate that, to our knowledge, has never 
been seen to be violated. Simply stated, electric charge may not be created or 
destroyed. Unless there is a source of charge inside a volume AV, indicated sche-
matically in Figure 2.17, the total charge that enters the volume from any direction 
is the same as the charge that leaves. 

However, this is a statement that must be evaluated over a long period of time 
because a net charge can build up inside the volume in a short time At. We have 
examined this principle previously as a specific example of the divergence theorem. 

We concluded that, because charge, </, is conserved in any volume element of 
space, 

dpvßt+VJ = 0 (Continuity Equation), (2.58) 

where we have defined pv= lim q^^.M^/AxAyAz as the volume charge density 
Δχ.Δ>:Δζ-<0 

at x, y, z. In Chapter 3, we further derived the point form of Gauss's law to be 

ν·Λ- = (ρ/ν)/εο = ρ,/ε0. (3.6) 

So, if we apply Equation 5.13, J = σΕ, to Equation 3.6, we get 

ν{]/σ) = ρν/ε0 (5.49) 
in which case Equation 2.58 becomes 

Эр,/Эг + σρ, /ε0 = 0 (5.50) 

Equation 5.50 is a first-order, linear, homogeneous, ordinary differential equation 
with solution 

pv(t) = Pv(0)e-°"e\ (5.51) 

where both p,<t) and p,{0) can be functions of the space coordinates. 

EXAMPLE 

5.1 Use Equation 5.51 to find the relaxation time for free charge in a conductor 
like copper. 
SOLUTION We can rewrite Equation 5.51 in the form pv<i) = pv{0)<f"r, 
where τ = fo/aand use the value of conductivity from Table 5.1, Ι/σ{293 Κ) 
= 1.69 x 10~8 Qm and £<, = 8.85 x 10"12 F/m to find Tcoppcr = 1.5 x 10-'9 s. Thus, 
we conclude that, in the time 1.5 x 10~19 s, the conduction electrons in copper 
rearrange themselves to reduce externally applied electric field intensity to 1/e 
(36.8%) of its original value. This time is so short; we can state that conduction 
electrons inside a good conductor will move to reduce externally applied elec-
tric field intensity to zero for practical times; good conductors will behave like 
static conductors (with zero internal electric field intensity) unless times are 
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extremely short or frequencies are very high (>10IK Hz). This is called the 
"quasistatic approximation." 

PROBLEMS 

5.1 Find the relaxation time for a good insulator like fused quartz at room tempera-
ture. What does this imply about static charge that is deposited on a good 
insulator? 

5.2 Find the relaxation time for n-type and p-type doped silicon at room tempera-
ture. What does this imply about the ultimate speed of a transistor made of 
these materials? 

5.7 MICROSCOPIC VIEW OF OHM'S LAW 

Electrical resistivity in metals can arise from scattering of the conduction electrons 
from impurities or vacancies in the lattice or from deformations caused by grain 
boundaries as shown schematically for a two-dimensional lattice in Figure 5.14. 

Note that the nearest neighbor atoms to the vacancies (lower left) or to the 
impurities (red, upper right) have been relocated to account for a local lattice strain. 
Of course, second nearest neighbors or further could also shift ± from their periodic 
locations. We could approximately account for these deviations in a periodic poten-
tial function, V(Fj), in Equation 5.32 by adding a differential potential, V"(r), to the 
periodic potential. Thus, to lirst-order, Equation 5.27 could be written as 

-(h2/2m)V2y,-k+JjV(ï)ii/i:(ï)+VXr)y,-k(r) = £-t4,-k(r). (5.52) 
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Vacancy 
Figure 5.14 Two-dimensional view of potentials caused by a periodic melal lattice showing the 
deviations from simple periodicity caused by impurities or vacancies in the lattice. 
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An approximate solution to Equation 5.52 can be found by first solving Equation 
5.52 with V'(r) = 0 to find the solution to a pure metal as in section 5.6 above and 
then using those solutions for i/[(r) to measure their scattering from the vacancy or 
impurity (including distortions from periodicity by nearest neighbors). Such a tech-
nique would produce a first-order approximate solution called the first Born 
approximation: 

Ψ&)~Ψ%?)+ΨιΓ&). (5-53) 
One popular technique in solving such problems is then putting the first-order 

approximate solution back into Euqation 5.52 and recalculating a new scattered 
wave function in a second-order approximation called the second Born approxima-
tion. The process may be repeated until one computes a limiting answer that differs 
by an arbitrary amount (say, 1%) from the previous one. Such techniques are popular 
when solving Equation 5.52 computationally. But the students must be warned that, 
while the process may yield a convergent solution, they should ask, "Is the conver-
gent solution the correct solution?" 

Electrical resistivity in metals can also arise from scattering of the conduction 
electrons from lattice vibrations as shown schematically for a two-dimensional 
lattice in Figure 5.15. 

The permanent alterations from the periodic potential shown schematically in 
a one-dimensional lattice in Figure 5.9 clearly depend on the sample temperature, 
and the lattice deformations will change with time as the atom structure vibrates. 
Deformations may be along the х-, у-, or г-axis or along any other axis of the crys-
talline structure, and each of the deformations will have a characteristic frequency 
of oscillation that depends on the direction of deformation because of the coupling 
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Figure 5.15 Two-dimensional view of potentials caused by a periodic melal lattice showing the 
deviations from simple periodicity (along the horizontal axis) caused by thermal vibrations. 
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interactions among the atoms. Such periodic time variations of the lattice are called 
phonons because they are similar in nature to vibrations caused by acoustic vibra-
tions and represent distortion waves among the periodic atomic structures. Of course, 
at a finite temperature, we would expect all possible vibrational modes (in arbitrary 
directions k) to be present and that the amplitude of a particular mode to depend on 
the energy of that mode in accordance with the Fermi-Dirac population statistics of 
Equation 5.26, β,έ) = [e(e~'"rt«r + 1]"'. The assemblage of all such phonon modes of 
oscillation is called a phonon gas and represents the ensemble of all of the thermal 
vibrations of atoms. In the symmetry of nature as postulated by Einstein and 
DeBroglie, we can also think of the wavelike vibrations of the atoms in terms of 
phonon particles that are moving with momentum and energy through the lattice. 
We can see that these phonon particles would also be influenced by impurities and 
vacancies and might themselves be scattered just like the electrons in a conduction 
electron gas. 

The solution of Schrödinger's equation, for these periodic variations in potential 
is the subject of a solid state physics course and is complicated enough to defer to 
alternate consideration. We can, however, consider the scattering process of elec-
trons and phonons through a classical argument that explains the wide variations in 
the conduction electron velocities at the Fermi level and the velocity caused by the 
drift in a charge current as discussed in the following sections. 

Electron Scattering from Impurities, Vacancies, and Lattice Vibrations 

We have found in Equation 5.8 that conduction electrons have a drift velocity й = 
-μ,Ε under the application of an electric field by an external potential, and, for 
copper, the electron mobility is μΡ = 3.2 x 10~3 (mVVs). For an internal field of 
0.5 V/m, this would result in a drift velocity of I ΰ 1491 = 1.6 x 10"3 m/s. 

PROBLEM 

5.3 Calculate the current caused by an electric field intensity of 0.5 V/m in a #12 
copper wire. 

We have also seen from Table 5.2 that the velocity of a conduction electron at 
the Fermi level for copper is vf= 1.56 x 10'' m/s. While there are many electrons in 
a free electron gas with velocities below the Fermi velocity, the difference between 
electrons at the Fermi velocity in copper and the electron drift velocity for a field 
of 0.5 V/m is nine orders of magnitude! Classically, this enormous difference is 
explained by the theory of scattering in which conduction electrons travel many 
lattice locations before they encounter an impurity, a vacancy, or a lattice deforma-
tion caused by a phonon, as indicated in Figure 5.16. 

In Figure 5.16, the presence of electric field intensity causes a gradual drift of 
the electron in the horizontal direction. Were this electric field intensity 0.5 V/m, in 
this figure, the drift velocity would be very small compared with the Fermi velocity, 
so the difference in the green and red trajectories would be very small. 
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■x
 v

( Electron trajectory: 
vf\ Without E 
\γ With£ 

Figure 5.16 Trajectory of an electron as it moves in a conductor between a random sequence of 
scattering events (green line). The same electron trajectory is shown schematically as it moves 
between the same random scattering events in the presence of an external electric field intensity (red 
line). 

Classical Numerical Analysis 

An electron of mass, me, placed in an electric held intensity, E, will experience an 
acceleration a = F/me = -eElme. In the average time, r, between collisions with a 
scattering point, the electron will change direction randomly but will experience a 
drift speed of ue = I ä I г = {-еЁ1те)т. Because ./ = eNur - (e2Nt/me)E = σΕ, we can 
solve for r: 

T-mea/e2N = mJe2Np. (5.54) 

For copper, Ι/σ = p = 1.6 x 10" Qm, e = 1.6 x lO-19 C, mt = 9.1 x 10"31 kg/e, and 
density 9.0xl03kg/m3 , n „ i n 2 3 e . .. 

N = = —-, 6.023 x 10 (assuming there is one 
molecular mass 64x10 kg/mole mole 

free e per copper atom), so we get г = 2.5 x 10"4 s as the average time between 
collisions. For electrons traveling at the Fermi velocity of 1.56 x 106 m/s, they will 
move A = νΓτοτ A = 3.87 x 10"s m = 387 Â in this time (about 150 times the distance 
between nearest-neighbor copper atoms). 

CONCLUSION We can conclude from the above numbers that conduction elec-
trons move very fast, collide with scattering points in a short time (but a long relative 
distance between scattering potentials), and change their velocity on the average in 
time as a result of the random scattering events (in the presence of external electric 
field intensity) by a very small amount of drift velocity. 
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5.8 POWER DISSIPATION AND JOULE'S LAW 

Collisions of electrons with the conductor grain boundaries, lattice vibrations, impu-
rities, vacancies, or interstitials result in thermal heating of the conductor. The work, 
Awh carried out by electric field intensity, £, on a conduction charge, </„ in moving 
through a displacement, Ath is Aw{ = q,Ë-Alh and the power (rate of work per unit 
time) is 

Pi = Aw,/At = qß· Alii At = QiË-û,, (5.55) 

where й, = dljdt = lim AU At is the drift velocity of the /th charge. The amount of 
Лг-*0 

power delivered into the volume dx = SAI, as was shown in Figure 5.3. 
The total power delivered to all the charge carriers in a volume dx is 

dP = ]T dP, = £-ί Σ N,qfi, ]dx, (5.56) 

where N,- is the number of charges of type i per unit volume, which, by virtue of 
Equation 5.7, is 

dP=Ë-Jdv (5.57) 
or 

dP/dv=EJ. (5.58) 

Thus, the point function EJ ha power density under steady-current conditions. 
For a given volume, V, the total electric power converted into heat is 

P = fvÈJdv(W). (5.59) 

Equation 5.59 is known as Joule's law, but power is expressed in watts (not joules). 
In a conductor of a constant cross section, AS, as shown in Figure 5.3, 

dv = ASdl, with dl measured in the direction 7, Equation 5.59 can be written as 

P = j Edlj Jds = Vl (5.60) 

and because V = Rl, 

P=I2R. (5.61) 

5.9 BOUNDARY CONDITION FOR CURRENT DENSITY 

When current obliquely crosses an interface between media with different conduc-
tivities, the vector current density, ./, changes in both direction and magnitude. A 
set of boundary conditions can be derived for 7 from the above equations for current 
density,./, in the absence of a source or sink of charges (Table 5.3): where the curl 
equation was obtained by combing Ohm's law ./ = σ£ with Ϋ x È = 0. 
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Table 5.3 Summary Current Density Equations 

Differential form Integral form 

V-.l = -dpjdt (Continuity equation) & j-ds = -dQinsU,eSfdt 

V-J = 0 (special case for steady φ .ids = 0 (./ is solenoidal for steady currents) 
currents) 

Vx (Jla) = 0 (irrotational flow) Φ (j/a)-dl = 0 (note J itself is not conservative) 

Perspective view 
Area AS, 

Boundary 
between 

medium 1 and 
medium 2 

•Ji . Cross-sectional view 
\ ff1}2 ^ - Area AS, Boundary 

V3J / between 

Ah 

1. 
\ 

\ 

medium 1 and 
medium 2 

~Area AS, 

Figure 5.17 Two arbitrary conductors in a lossy dielectric medium. 

We can use these equations to determine the current density change at the 
boundary between two media, 1 and 2, with conductivities, <T| and σ2, respectively 
as is shown in Figure 5.18. From φ J-ds = 0 , we can conclude 

./,„ = ./2„ (5.62) 

just as we did for Gauss's law. We can also conclude from φ [Ifо}·dl = 0 that 



5.10 Resistance/Capacitance Calculations 157 

Figure 5.18 Boundary conditions at the interface between two conducting media (1 and 2). 

Λ Α , = σ,/σ2, (5.63) 

which states that the ratio of the tangential components of the current density at two 
sides of an interface is equal to the ratio of the conductivities in those two media. 

Special Case 

For a homogeneous conducting medium, with a constant value of G everywhere, we 
can further deduce that 

7x7 = 0. (5-64) 

So, if we let J =—Ϋψ, and substitute this into V · J = 0, we get Laplace's equation 

F > = 0, (5.65) 

where Ψ is called the current density potential. A problem of steady-current flow in 
a homogeneous conducting medium can therefore be solved by determining solu-
tions of Laplace's Equation 5.65. 

5.10 RESISTANCF7CAPACITANCE CALCULATIONS 

As discussed previously, the capacitance between two conductors separated by a 
dielectric medium can be expressed as 
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/•i φ Dds φ eË-ds 
C = ^- = T* _=Ύ$. , _, (5.66) 

V - J Е-Д -J £·<« 

where the surface integral in the numerator is carried out over a surface, S, enclosing 
the positive conductor (such as the conductor surface itself S0 or any other surface 
Si, S2, that encloses the positive conductor), and the line integral in the denominator 
is from the negative (lower-potential) conductor to the positive (higher-potential) 
conductor along any path, L (such as one of the dotted field lines shown in Figure 
5.17, L\, L2, ... , L12), that connects any point on one conductor to another point on 
the other conductor. This is a consequence of the fact that the conductor surfaces 
are equipotential surfaces and that electric fields are conservative (i.e., only the 
endpoints matter in the integral). 

Likewise, if the dielectric medium is lossy (having a finite conductivity), a 
current will flow from the positive conductor to the negative conductor. The resis-
tance between the conductors is 

Y -\Ëdî -\f:dï 
Ä = -V = - p = = - ^ 4 , (5-67) 

' φ J ds φ σΕ-ds 

where the line and surface integrals can be taken to be the same (L and S) as those 
chosen in Equation 5.66. Using Equations 5.66 and 5.67, we can thus see that 

- f Edl &eE-ds £ 
RC = - ^ y . _ , = - . (5.68) 

j> σΕ-ds -J Edl σ 

CONCLUSION If we know ε and a for a dielectric medium, we can compute R 
if we know С (or vice versa) from 

RC = C/G = e/a. (5.69) 

E N D N O T E 

i. Charles Kittel, Introduction to Solid State Physics. 7th ed. (Hoboken, NJ: John Wiley & Sons, 1996), 
146. 



Chapter О 

Static Magnetic Fields 
LEARNING OBJECTIVES 

• Develop the origins of the magnetic field intensity, H, magnetic flux density, B, 
magnetic vector potential, ,4, magnetization, M, and magnetic permeability, μ 

• Define the Lorent/. force equation and use it to develop the Biot-Savart law 
• Show differential and integral forms of fundamental postulates that specify diver-

gence and curl of magnetic flux density, В 
• Derive tangential and normal boundary conditions for // and В 
• Use magnetic monopole charges and currents to describe equivalent magnetic fields 
• Develop definitions of inductance and show how to use them in examples 
• Describe magnetic moments in terms of quantum numbers and populations 

INTRODUCTION 

We began the mathematical analysis of electric fields by examining fundamental 
force "laws" that were discovered experimentally by Coulomb and others. In a 
similar fashion, the mathematical analysis of magnetic fields follows from the 
experimental "laws" of magnetic forces. In both cases, we recognize our limited 
ability to measure the laws because we are restricted to make measurements in a 
macroscopic manner at the scale of humans. For example, we only infer the electric 
and magnetic forces that exist at a nucleus from applications of electromagnetic 
theory as it shifts energy levels, or we compute the electrostatic potential or magnetic 
fields of a neutron star by applying theory to extreme circumstances that prevent it 
from collapsing into a black hole; we cannot measure them directly. In addition, we 
idealize our experimental setups by modeling the conductors and insulators as per-
fectly flat, homogeneous materials when we know that this is not the case. For this 
reason. The Foundations of Signal Integrity' discusses the ideal model versus the 
real world, limits of experimental measurements, numerical simulation of complex 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 
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boundary conditions, and finally perturbations of the theory to partially account for 
the microscopic variations in geometry. But Maxwell's equations are fundamentally 
based on two force laws, so we begin the study of magnetic fields with experimen-
tally observed forces. 

6.1 MAGNETIC FORCE 

Electric Force Summary 

Previously, we have learned that the following two fundamental equations form the 
basis for electrostatic fields: 

VD = pv (6.1) 
VxE = 0. (6.2) 

In the special case that the permittivity tensor is diagonal and all of the diagonal 
components are the same (i.e., ε is a scalar), the electric field intensity E and the 
electric flux density (or electric displacement) D are related by 

D = eË. (6.3) 

When a small test charge q is placed in an electric field, E. it experiences an 
electric force Fe, which is a function of </: 

Fr = qE. (6.4) 

Magnetic Force Symmetry 

When a test charge is in motion in a magnetic field characterized by a magnetic flux 
density, B, experiments show that it experiences another force, Fm, in which 

• the magnitude of Fm is proportional to </; and 
• the direction of F„ at any point is at right angles to both the velocity vector, 

v, of the test charge and the normal component of the magnetic flux 
density, B, at that point (F„ « ί x B), as shown in Figure 6.1. 

Fm. the magnetic force, can be described by defining the magnetic flux density, ß , 
that specifies the direction and constant of proportionality in International System 
of Units (SI) as 

Fm = eivxB, (6.5) 

where f (m/s) is the test particle velocity vector and />' is measured in webers per 
square meter (Wb/nr) or tesla (T). In Equation 6.5. choosing the constant of pro-
portionality to be unity defines the magnitude of the magnetic flux density in SI units 
from measured quantities of force, charge, and velocity in SI units. 
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*■ в 

Figure 6.1 Direction of the force, Fm, on a charged particle, i/, 
wilh velocity, v, due to a magnetic flux density, H, at that point. 

Combined Electric and Magnetic Forces 

The total electromagnetic force on a charge due to electric and magnetic fields is 

F = q(Ê + vxB), (6.6) 

which is called the Lorentz force equation. 

6.2 MAGNETOSTATICS IN FREE SPACE 

Magnetostatics means steady (static) magnetic fields (or as we shall see, magnetic 
fields produced by steady electric currents). Magneto.vrafic equations in free space 
that mirror the electrof/atfc Equations 6.1 and 6.2 are 

VB = 0 (6.7) 

νχΒ = μ0], (6.8) 

where μο is the magnetic permeability in the free space and 

μ„ = 4πχ10~7(Η/πι)οΓ(ΤηνΑ). (6.9) 
From Equation 6.8, we can use the equation of continuity, V-J = —dpjdt, to deduce 
that, for steady charge densities, 

VVxB = ν·(μ01) = 0 for V-J = 0. (6.10) 

Taking the volume integral of Equation 6.7 and applying the divergence theorem, 
we have 

HI V-Bdv = $ B-ds=0, (6.11) 
where the surface integral is carried out over the surface boundary, S, of the arbitrary 
volume, V. By comparison to Gauss's law for electric flux, Equation 6.11 indicates 
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that there are no magnetic charges, q, to mirror the divergence equation for electrical 
fields and electric charge, q, and, thus, magnetic flux lines always close upon them-
selves; that is, there are no sources or sinks of magnetic flux. 

Symmetry Note 

If we choose to make Equations 6.7 and 6.8 completely symmetric to Equations 6.1 
and 6.2, we would logically use the symmetry shown in Table 6.1. 

These equations would be mathematically more satisfying and would lead to 
a more symmetric form of Maxwell's equations. However, the symmetry in the 
divergence equations implies there is a magnetic charge density per unit volume, p„ 
that mirrors the electric charge density, p,, and the symmetry in the curl equations 
implies that there is a magnetic charge current density, -J, that mirrors the electric 
charge current density, J. In terms of images of bare electric charges (which we 
called electric monopoles), the divergence equation thus implies that there is a class 
of magnetic particles called magnetic monopoles. Note that we have chosen the color 
to mirror the time derivative of magnetic charge, as in the case of electric change. 
To date, no one has detected the existence of isolated magnetic monopoles although 
there have been many searches" for them. If there are no isolated magnetic mono-
poles, then it would be difficult to have a current density of magnetic monopoles, 
so we would conclude that both p, = 0 and J = 0. Some electrical engineering texts 
(e.g., Balanis and Harrington) prefer to use the symmetric form of the equations 
because they lead to a simpler set of combined partial differential equations that can 
be more easily solved. Then, after the solution, the fact that p, = 0 can be imposed 
on the solution. 

As we shall see in section 6.7, it is possible to use the concept of magnetic 
dipolcs aligned in a magnetic field to imagine that an excess of north charges appears 
on one surface of a material and that an excess of south charges appears on another 
surface of a material. Mathematically, this is equivalent to saying that virtual mag-
netic north poles exist on one surface, and virtual magnetic south poles exist on the 
other surface. In a macroscopic sense, we do not need to insist that magnetic mono-
poles do not exist and, in fact, can permit their existence because they yield an 
equivalent electromagnetic field distribution for a permanent magnet. 

If the virtual north and south poles can move, they can produce virtual magnetic 
monopole current densities. Furthermore, as an electromagnetic wave propagates 

Table 6.1 Symmetric Forms of the Divergence and Curl Equations for Electrostatic and 
Magaelostatic Fields 

Electrostatic equations Magnctosia/i'c equations 

Divergence V- D = pr VR = pv 

Curl VxË = -J VxH=J 
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from one end of a material with magnetic dipoles to the other, it will undergo an 
energy loss in aligning the dipoles as it proceeds. This loss can be measured as a 
kind of resistance to virtual magnetic charge flow not included in Maxwell's qua-
ternion equations of section 1.9. This concept was developed by Leon Chu in 1971, 
and leads to the concept of memristance. 

The traditional designation of north and south poles in a permanent bar magnet 
does not imply that an isolated positive magnetic charge exists at the north pole and 
a corresponding amount of isolated negative magnetic charge exists at the south 
pole. As shown in Figure 6.2, magnetic poles cannot be isolated.1 

Integral Forms 

The integral form of the curl in Equation 6.8 can be obtained by applying Stokes's 
theorem 

j j Vxß-rf.y=^()JJ J ds or 

Bdl =μ„/, (6.12) 

where the path С for the line integral is the contour bounding the surface, S, and / 
is the total electric current passing through the surface S. The direction of the path 
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Figure 6.2 Successive division of the poles in a bar 
magnet. 

1 A list of searches for the magnetic monopole can be found at http://arxiv.org/abs/hcp-ex/0302011. 
To date, accelerator searches have been conducted to 1.8 TcV. cosmic ray searches have been 
conducted to 10" GcV, and matter searches have been conducted in meteorites, iron ore and aerosols. 
manganese, and seawater. Several positive results have failed to be repeated and remain unexplained. 
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Table 6.2 Assymetric Forms of the Divergence and 
Curl Equations for Magneto.vfaii'c Fields in Free Space 

Differential form Integral form 

V-B = 0 ft li-ds=0 

Bdl =μ0Ι 

С (counterclockwise) and the direction of electric current flow follows the right-
hand rule. 

Equation 6.12 is the form of Ampere's circuital law, which states that the cir-
culation of the magnetic flux density in free space around any closed path is equal 
to /i(, times the total electric current flowing through the surface bounded by the path 
(Table 6.2). 

EXAMPLE 

6.1 An infinitely long, straight, solid conductor with a circular cross section of 
radius a carries a steady uniform electric current, / (Figure 6.3). Determine the 
magnetic flux density, B, inside and outside the conductor. 
SOLUTION 

a. Inside the conductor, r<a:B = Βΰάσ and dl = а„гаф so 

6 Bdl=Ç" Bard<t> = 1nrB,„ 
7 Path a Jl) 

With a uniform electric current density, the electric current through the area 
enclosed by path a is 

1„ = {лг2/ла2)1=(г/а)21. 

! Path b 

Figure 6.3 Integration paths for finding the 
magnetic [lux densiiy for an infinitely long. 
circular cylinder (shown in cross-section). 
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a 2a 3a 
Figure 6.4 Magnitude of the magnetic flux density. Ifil, as a function of radius, r, for a conductor 
of radius, a, carrying a uniform electric current density, J = //(TO2). 

Thus, from Ampere's circuital law, 

(j> В ■ dî = 2лгВв = μ0{Γ2/α2 ) I 

or 
Β = ίιφΒφ = ά,ι,(μ„Γ/2πα2)ΐ. 

b. Outside the conductor r > a, 

В = Βφάφ and dl = αφτάφ, 

so 
ώ /i ■ dî = [2* Btrdé = 2πτΒΦ. 
JPathb JO 

The electric current through the area enclosed by path b is /,, = /. Thus, from 
Ampere's law, 

Bdl = 2mB0 = μ„/„, or В = άφΒφ = a,(ßo/2jtr)I. 

CHECKPOINT The solution to parts a (for r = a) and b is В = â9(pd 
2ла)/. The magnitude of the magnetic flux density is shown plotted in 
Figure 6.4. 

6.3 MAGNETIC VECTOR POTENTIAL 

The relation V- В = 0 assures that В is solenoidal, and we showed in Chapter 2 that 
the divergence of the curl of any vector field is identically zero. As a consequence, 
we can express В as the curl of another vector field called A, such that 

/J = T7xA(Wb/m2)or(T). (6.13) 
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Defined in this way, the vector field ,4 (Wb/m) is called the magnetic vector 
potential. Thus, if we can find A for a given current distribution, Б can be obtained 
from Equation 6.13. Unfortunately, there are an infinite number2 of vector fields A 
that satisfy Equation 6.13, so a unique definition of this vector field requires an 
additional specification. Coulomb made one such specification by also defining the 
divergence of Л to be zero as shown below. 

Combining Equation 6.8 with Equation 6.13, we can see 

VxB = VxVxÄ = HoJ, (6.14) 

and, by using the vector identity 

VxVxA = V{V-Ä)-V2A, (6.15) 

Equation 6.14 becomes 

ν(ν-Α)-ν2Α = μ0] (6.16) 

To simplify Equation 6.16, Coulomb chose the additional constraint 

VA = 0, (6.17) 

which is now called the Coulomb gauge* and it reduces Equation 6.16 to 

ν2Α = -μη]. (6.18) 

This is a vector form of Poisson's equation, which is, in fact, three equations 
when we separate the left- and right-hand sides in Cartesian coordinates. The three 
equations are 

V2A, =-μ„.Ι, (6.19a) 
7Μ, = -μ0.Λ (6.19b) 
V2A: = -//„./-. (6.19c) 

To obtain the solution to these equations in free space, we can compare them 
with the electric potential solutions of Poisson's Equation 4.5 in free space: 

V2V = -Pv/e0, (4.5) 

which we have shown (Equation 4.37) to have the particular solution 

V(-x) = iff *(* '> dv> = _ L · [if £ L d v ' . (4.37) 

1 For example, if A yields /} = Р х Д then A + С with С = constant will yield the same li. 
The Coulomb gauge is used with static fields. As we will see in Chapter 7 when we deal with 

time-dependent fields, an alternate definition called the l-orenz gauge will be more convenient. 
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Hence, we can write the particular solutions for all of the Equations 6.19 as 

/Ό i f f /» *., АХ = Щ[\ —dv' (6.20a) 

A ëLiii Ldv> (6.20b) 

A. = ̂ - f f f - r f v ' (6.20c) 

or 

: ~ **»>* R (6.21) 

From Equation 6.21, we can now find В via /Î = v X A and can find the magnetic 
flux Ф (Wb) through a given area S that is bounded by contour С via 

Ф = JJ Bds = jj(VxÂ)ds = j> Adï. (6.22) 

PROBLEM 

6.1 Show that v-(V x A), where Л is given by Equation 6.21 yields 0. 

6.4 THE BIOT-SAVART LAW 

In applications involving current carrying wires, we are interested in magnetic fields 
such as that shown in Figure 6.5. 

For a thin wire with cross-sectional area As and length L with dv' = Asdl ', we 
have 

JdV = J ■ AsdV = IdV, (6.23) 

|« dî =й,.Д/ ·| 
s- charge <y, 

►Δΐ i —ί»Δί · *й, = ц,Е'. —Ι»Δϊ —»As 
.' *.^*· · * ·· · ··' \ / \ y' ^ . · · . ■ У к У 

^ Wcharge carriers per unit volume 
Figure 6.5 Long, thin wire carrying a uniform electric current. 
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so Equation 6.21 becomes 

A - * 

and 

where 

B=VxA=Vx 

4n3iivR An'LR 

r<" Ж\уЛ, /fo/f Λ ' 
4π 

1/2 
Ä = [ ( x - x ' ) 2 + ( y - ; y ' ) 2 + ( z - z ' ) 2 ] ' . 

(6.24) 

(6.25) 

(6.26) 

Here, the curl operation implies differentiation with regard to the unprimed 
space coordinates of the field point, and the integral operation is with respect to the 
primed source coordinates, so that V operates only on the R function. Using 

Vx(fG) = fVxG + (Vf)xG (6.27) 

with/= l/R and G = d/, we have 

β = (μ0//4/Γ)| [(l/R)Vxdf+V(l/R)xdf] (6.28) 

and the first integral is zero. Thus, because 

l/R = [(x - x'f + (>· - y'f Hz- z'f J ' / 2 (6.29) 
Г(1/А) = а1Э(1/А)/Э^+а,Э(1/А)/Эу+агЭ(1/А)/Эг 

?α/*)-«'(χ-' ?+^-f ) + a- (^g=-f («о) 
V(l/R) = -âR/R2 

where â„ is the unit vector directed from the source point to the field point. Finally, 

μ0Ι f dî'xâg В - if2i Г £LÜ 
4π Jt Я2 (6.31) 

The above equation is known as Biot-Savart law. It is the formula for deter-
mining H caused by a current / in a path L. Some texts write Equation 6.31 as 

B = \LdB 

in which 

dB = 
μ.>/ 
4π 

dl' x ά„ 
4π 

dl'xR 
R3 

(6.32) 

(6.33) 

and then call the differential form, Equation 6.33, the Biot-Savart law. 
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EXAMPLE 

6.2 Find the magnetic flux density, И, produced by a circular loop of radius b that 
carries a current /. as shown in Figure 6.6. 
SOLUTION We first find the magnetic vector potential A by the relation 

д - * ' (6.34) 
dV_ 

4π J c - R, ' 

where Rv is the distance between the source element Idl' and the field point 
P. as shown in Figure 6.6. Because of symmetry, the magnetic flux density is 
obviously independent of angle φ (the field point). For convenience we can 
pick /'(/?, Θ, Till) in the y-z plane: 

Idl' = l(-âx sin φ' + ây cos φ') bd(p'. (6.35a) 

For every Idl', there is another symmetrically located differential electric 
current element on the other side of the _y-axis that will contribute an 
equal amount to A but will cancel the contribution of Idl' in the άν direction, 
namely, 

Idl" = I(-о., sin φ' - ây cos<p')bd(p'. 

Equation 6.34 can thus be written as 
μ0Ι r2*bsin ф' 

A ш-aJHLr 
Απ Jo 4π J" R, 

• _ . μ0Ι f/2 esin0 ' 
A — α„ 

ея/-

1-я, 4π 3-Φ Re 

4φ'οτ 

■άφ'. 

(6.35b) 

(6.36a) 

(6.36b) 

z . r * 

/ * ! 
/ Ί 

y vA ! 
A ' i 1 

Г1У / / / A 

rt( К /i 

» 

Figure 6.6 Parameters involved in the calculation of the magnetic vector potential due to a loop of 
wire of radius b carrying current i. 
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Using the law of cosines as shown in Figure 6.6, we have 

Rr = (R2 + b2-2bRcosy/)"\ (6.37) 

where Л cos ψ is the projection of R on the radius OQ, which is the same as 
the projection of OS (OS = tfsin Θ) on OQ. Hence, 

Rr = [R2 +b2 -2bRsinösinф']т and \/R,- = (\lR)[\+b2/R2-№№)ύηθύηφ'γ12 

When R » b, we have 

\/Rr = [\ - (2b/R)sin Θ sin φ']'"2 /R = [\ + (b/R)sme sin φ']/R. 

Thus, 

Л = ά.(μ0/2π)(//>//?) \Ф [ l+ (VÄ)s in0s in f ] s in f άφ', 

which yields 

Л = â^0/4K)(lKb2/R2)sin6. (6.38) 

Finally, 

B~VxÀ = (ßH/4n)(lnb2/RJ)(aK2cos0+all sin0). (6.39) 

Let us now rearrange the expression of the magnetic vector potential in 
Equation 6.38 as 

Â~âu(fo/4K)(lnb2/R2)sine (6.40a) 
or 

Л = (μ0 /4π) m xûR/R2, (6.40b) 
where 

ih=â,IS = âzlKb2 (6.41) 

is defined as the magnetic dipole moment. Correspondingly, we have 

BäiP„,e - (H<l/4K)(ni/R3)U~iK2cose+<~ill sin0). (6.42) 

6.5 HISTORICAL CONCLUSIONS 

The similarity of Equation 6.42 to that of the electric field intensity in Equation 
3.67 is 

F-*po>< = (1/4πε0)(/> I'R3)(àR2cose+àesme), (3.67) 

where the electric dipole moment defined as p = â-qd is clear. A comparison of the 
two fields is shown in the near region in Figure 6.7. 



6.6 Atomic Magnetism 171 

Figure 6.7 (a). Electric field intensity in the near-field region of an electric dipole moment, 
p = qdä.. (b). Magnetic flux density in the near-field region of a magnetic dipole moment, m = lnb2â-, 
caused by electric current in a loop. 

In these two figures, we can see that the electric field intensity and magnetic 
flux density distribution in the near-region (R ~ b, R - d) is different but that 
the field intensity distribution in the far-field region (R » b, R » d) is similar. In 
the case of electric dipoles, we normally consider the electric field intensity to be 
evaluated in the lim, and, in the case of magnetic dipoles, we normally consider 

d-,0 the magnetic flux density to be evaluated in the lim. Thus, in both cases, we ' *-»o 
normally consider the fields in the far-field region. 

The Chinese discovered the effects of magnetic field distributions hundreds of 
years B.C. by scattering iron filings in the neighborhood of magnetite and arrived 
at the qualitative distribution given by Equation 6.42, as shown in Figure 6.8. 

6.6 ATOMIC MAGNETISM 

Because iron is so inexpensive, it is commonly used in the construction of bar 
magnets. Iron has the good characteristic that it can retain a magnetic N and S pole 
even after the polarizing field has been removed, but the saturation field is limited 
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Figure 6.8 Magnetic flux density, B, in the neighborhood of a bar magnet. 

Table 6.3 Relative Magnitude of a Number of Magnetic Field Sources 

Source of magnetic field 

Earth's white noise 
Earth's natural surface field 
Iron magnets 
Rare earth magnets 
Superconducting magnets 
Cu+ superconducting magnets 
Pulsed magnets 
Conventional explosive magnets 

Typical period 

Random (1 ps-l ms) 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 
-1 s 
-1 ps 

Magnitude 

lO^G 
1 G 
2 T 
5T 

25 T 
45 T 
65 T 
100T 

to about 2 T (20 kG IGaussJ). By comparison, the magnetic flux density at the 
surface of the earth is about 1 G. Table 6.3 gives a few typical fields for a variety 
of sources: 

Sources of Material Magnetism 

Material magnetism arises from the behavior of electrons in a pure metal or 
chemical compound as is determined by their nominal electron structure, as shown 
in Figure 6.9. 

Magnetism Due to Loosely Bound Electrons (in Electronic 
Energy Bands) 

In Figure 6.9, the electronic structure is given for atoms that are widely separated 
from one another. If the separated atoms are brought closer together, the electrons 
of a particular atom will begin to interact with the electrons of its nearest neighbors. 
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Periodic Table of the Elements 
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Figure 6.9 Nominal electronic structure of the elements. 

In the case of a pure material, the outer electrons (those with the most physical extent 
from the nucleus such as the s electrons) may form an energy band structure like 
that discussed in Chapter 5. If the atoms come even closer together, the next elec-
trons with physical extent from the nucleus (like the d electrons) may also form an 
energy band structure. 

As a practical example, Figure 6.10 shows a typical relationship of the 4s and 
3d bands for metallic copper.'" As we see from Figure 6.9, an isolated copper atom 
has one electron in the 4s shell and 10 electrons in the 3d shell (Five with spin-up 
[T] and five with spin-down [4-]). 

The d bands with spin Î and spin 1 are shown with the same bottom and top 
energies, and both are fully populated. The relative area of the boxes implies the 
number of possible states for that original electronic designation (two per atom for 
the 4s band; about half of which are populated). The fact that the spin Î and spin -I 
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electronic states in Figure 6.10 are equally populated implies that copper is a non-
magnetic material. 

As a second example. Figure 6.11 shows the relationship of the 3d and 4s bands 
for metallic nickel (one less electron per atom than copper). While Figure 6.9 implies 
that an isolated nickel atom has two electrons in the 4s shell and eight electrons in 
the 3d shell, some tables list the configuration of nickel metal as having one electron 
in the 4s shell and nine electrons in the 3d shell, and others list the configuration of 
nickel metal as having zero electrons in the 4s shell and 10 electrons in the 3d shell. 
The energy band specification, as shown in Figure 6.11, indicates the inadequacy of 
using single-energy atomic states for the designation. 

Fermi energy - i » 
2.2 eV 

5.0 3dT Electrons 
per atom 

5.0 3 d ! Electrons 
per atom 

3.46 eV 
7.1 eV 

Figure 6.10 Relative energy bands of the 3d and 4s bands (T implies spin up) for electrons in 
metallic copper. 

- 0.54 Holes per atom 
Fermi energy 

4.46 3 d l Electrons 
per atom 5.0 3dT Electrons 

per atom 

V 
II 

Figure 6.11 Relative energy bands of the 3d and 4s bands for electrons in metallic nickel. 
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The d bands with spin T and spin 4- are shown with different bottom and top 
energies because of an exchange interaction between the two states. Because the d 
bands are displaced, only one is fully populated, while the other is partially populated 
with 0.54 electrons per atom in the 4s band and 4.46 electrons per atom in the 3di 
band. 

In this electronic band (itinerant electron) model, the temperature is assumed to 
be below the Curie temperature of Ni (627 К) and is thus in a ferromagnetic regime. 
Similar graphs exist for other 3d transition metals Fe and Co. Even this picture is 
too simple for quantitative analysis because it still needs to take into account a 
magnetic moment contribution for an orbital electronic motion of electrons from 
neighboring atoms that are relatively tightly bound to their respective ion core. 

For atoms of higher Z, such as the rare earth lanthanides or the man-made 
actinides, the ion cores are small compared with the distance to their nearest neigh-
bors so that even the least tightly bound electrons in the 4f or 5f ihell do not interact 
significantly with the electrons of their nearest neighbors. While the least tightly 
bound 6s or 7s electrons may form an energy band structure like that discussed 
above, they are not magnetic and do not contribute significantly to the atomic mag-
netism. As we will see below, the electrons responsible for magnetism in these 
elements do not overlap significantly and hence do not have a strong exchange 
energy between them. These elements thus form ferromagnets (and antiferromag-
nets) only at very low temperatures. At room temperature, the magnetism is domi-
nantly characterized as paramagnetic or diamagnetic, which is a magnetic alignment 
similar to the dielectric alignment of electric dipoles in an insulator. However, for 
a strictly classical atomic system in thermal equilibrium with its surroundings, no 
magnetism will be created even in an externally applied magnetic field. As we will 
also see in the next few sections, magnetism depends strongly on quantum mechan-
ics, so much that the two topics are entwined. 

Magnetism Due to Tightly Bound Electrons 

To determine the source of magnetic fields in f-electron materials, we consider the 
field produced by an unpaired electron in its orbit about a nucleus, as shown in 
Figure 6.12: 

We can calculate the classical magnetic moment of the electron as 

μ„„„„,, = iAL = {AqlAt)Aâz = [-e/(2w/v)](Kr)âz = (-evr/2)âz (6.43) 

and, because the orbital angular momentum of a mass me traveling in a circular orbit 
of radius, r, at velocity, v, is L — mevrâ:, 

Й„м„,1 = -(е/2те)1. (6.44) 

In quantum mechanics, the orbital angular momentum is a quantized quantity, 
and the component of angular momentum along the г-axis is 
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Figure 6.12 Magnetic dipole moment caused by an 
electron traveling at constant speed, v, in a circular path 
of radius, r. 

Lz = m,(h/2n) = m,h, (6.45) 

where mt = 0, ±1, ±2, ±3 , . . . , and fi is Plank's constant. If we express Equation 6.44 
in terms of the quantum number mb we thus get 

μ,,Μ,,,ι. : = -mi(eh/4Kme ) = -ηι,μ,,, (6.46) 

where μΒ is a fundamental quantity called the Bohr magneton. Using the known 
values for e, Й, and mr, the Bohr magneton has the value also found at the National 
Institute for Standards and Technology (NIST) web site http://physics.nist.gov/ 
cgi-bin/cuu/Value?mublsearch_for=elecmag_in! 

μ,, = 9.27400949 (80) x 10-24 J T~\ (6.47) 

Spin 

Magnetic moments of electrons also arise from their spin, which can be similarly 
expressed through their spin angular momentum, S, as 

ß>,„„ = -(e/me)S. (6.48) 

The magnetic flux density produced by the spin of an electron (relative to its 
spin angular momentum and its spin magnetic dipole moment) is shown in Figure 
6.13. 

If an electron is located in an external magnetic flux density, ß,-,„„„,/= В,.х!,ашДг, 
neither the orbital angular momentum, L, nor the spin angular momentum, S, will 
necessarily lie in the direction of the external magnetic flux density (the z-direction), 
as indicated in Figure 6.14. 

In general, the total angular momentum of the electron is У = L + S, and the 
total magnetic moment of the electron is /J,,,,,,, = Д„,„,„, + μ,,„„ so that 

μ = -g/'«·/ (6.49) 
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Figure 6.13 Magnetic dipole moment, £,,„„ of an electron due to its spin angular momentum, 5. 

External r 
M 

if 
T/.s 

jf -e 

Figure 6.14 Relative directions of the orbital angular momentum, L, spin 
angular momentum, S, and total angular momentum, J, to an external 
magnetic flux density in the г-direction. 

and, if we take the г-component of the magnetic moment 

ti: = -gyJJ(J + l)ß№, (6.50) 

where the quantity g is called the Lande g factor. For an electron with only spin 
(no orbital angular momentum) g = 2.0023, (usually taken as 2.00),4 and, for a 
free atom whose electrons have both spin and orbital angular momentum, g, has 
the value 

g = l+[(\j\ + \s\-\L\)/2\j\]=l+[(J(J+l)+S(S+l)-L(L+l))/2J(J+l)]. (6.51) 

The г-component of the electron's spin can be expressed through its spin 
angular quantum number, ms (which has values of +V2), so 

^Orbital 

P Total 

4 Quantum physics of the electron, quantum electrodynamics (QED), reveals that g is slightly greater 
than 2.00, but most texts ignore this correction factor. 
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Ρψίπ. - = -ms(eh/2nmr ) = ±μΒ. (6.52) 

The z-component of the electron's orbital angular momentum can be expressed 
through its orbital angular quantum number, mh (0 for an s-electron with / = 0), 
( -1 , 0, 1 for a p-electron with / = 1), (-2, - 1 , 0, 1, 2 for a J-electron with / = 2), or 
(-3, -2 , - 1 , 0, 1, 2, 3 for an /electron with / = 2). The orbital angular momentum 
of an electron thus depends upon its orbital state (s, p, d, f), and its orbital angular 
quantum number, mh is 

μ,,,Μ,,ι., = ±m,{ehj2Kme ) = ±«,μ„. (6.53) 

The г-component of the total magnetic moment of an individual electron is thus 

μ„„„Κ: = ±(1 + /η,)μ„, (6.54) 

where we need only take the numerical sum because we are expressing the answer 
in terms of the component of the total angular momentum in the z-direction. 

Magnetism Due to Atoms 

To find the magnetism due to an isolated atom, we need to sum the total electron 
magnetic moments overall of the individual electrons in the atom. This would be a 
large sum for high-atomic number atoms except for the fact that most of the inner 
shells of electrons in an atom are full; that is, there are as many spin T electrons as 
spin i electrons and there is no net orbital angular momentum caused by electrons 
in a full shell. Thus we need only take the sum of the individual electrons over those 
electrons in an unfilled shell. Because of the Pauli exclusion principle that no two 
electrons can have the same quantum numbers, there can be only two electrons in 
an s-shell (one for spin T and one for spin 4-), 6 electrons in a/»-shell, 10 electrons 
in a d-shell, and 14 electrons in an/-shell, consistent with 2(2/ + 1) electrons in a 
full shell. 

Hund's Rule 

Even if we ignore the sum of angular momentum quantum numbers over full shells, 
the possible number of combinations of spin and orbital angular momentum quantum 
numbers over an unfilled shell is large. At high temperatures, the thermal energy 
imparted between atoms in a material will cause a distribution of spin and orbital 
states to exist in an ensemble of atoms and we would have to take the average overall 
atoms to find the magnetism due to a material. However, at low temperatures, 
defined as a lattice kinetic energy small compared with kBT, the electrons in an 
unfilled shell will decrease to their lowest energy level or "ground state." Hund was 
one of the first experimentalists to give a general rule about which states in an atom 
would exist for atoms in their ground state: 
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Electrons in the ground state of an atom will arrange themselves to produce 

• maximum spin angular momentum (S. = V ms) and then to achieve maximum 

orbital angular momentum (L: = 2-l
mi) consistent with that spin, 

• total angular momentum of Jz = L- - Sz if the shell is half-full or less and 
J. = L: + S- if the shell is half-full or more. 

EXAMPLE 

6.3 Let us take the case of uranium in a chemical +3 charge state (with three 5f 
electrons in its unfilled shell) or neodymium in a chemical +3 charge state (with 
three 4/electons in its unfilled shell). Hund's rule would be satisfied if the three 
electrons all had their spin t ; that is, S: = Y ms - 1/2 +1/2 +1/2 = 3/2. Because 
the electrons all have the same spin state, m„ they cannot also have the same 
orbital state, m,, so L- = ^ m , = 3 + 2 + 1 = 6, where we have chosen the 
maximum value of L- possible. The total angular momentum will thus be J. = 
L- - 5; = 6 - 3/2 = 9/2 because the shell is less than half-full. Thus, we can 
calculate 

g = l+ [ ( | J |+ | 5 | - |Z | ) / 2 | J | ]= l+ [ ( J ( J+ l )+S(S+ l ) - I ( I + l))/27(/ + l)] = -0.727 

and 

μ,,, = -gJWTVß,, = 0.727V(9/2)(ll/2)A/„ = 3.62μ«. 

A similar calculation has been carried out for each of the atoms in the lathanidc 
(actinide) 4f (5f series) to produce a table of theoretical magnetic moments for those 
elements in the +3 charge state. Those values are shown in Table 6.4. 

The measured effective magnetic moments, μ,ή, for the lanthanide and actinide 
ions in various charge states for several compounds are plotted in Figure 6.15 as a 
function of their probable ion configuration. 

These data tell us a number of things: 

1. In its paramagnetic state, the magnetic moment of the lanthanide and actinide 
elements dysprosium, holmium, californium, and einsteinium in their +3 
charge state is 10 Bohr magnetons or greater, as predicted by L-S coupling 
(above) and Hund's rule. This is the largest magnetic moment ever observed, 
so these elements could likely be combined with other materials in a ferro-
magnetic arrangement below their curie temperature to make practical 
magnets with supermagnet strengths. 

2. The metals of those same elements above their curie temperature behave 
paramagnetically as if they were in the +3 charge state because their 
magnetic moment is the same as that of compounds that are chemically in 
the +3 charge state. The three conduction electrons per atom are assumed to 
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Table 6.4 +3 Charge States, Spectroscopic Designation, and Effective Magnetic Moment, 
\1ф Given by L-S Coupling and Hund's Rule for the Lanthanides and Actinides 

Lanthanide 
element 

Lanthanum 
Cerium 
Praseodymium 
Neodymium 
Promethium 
Samarium 
Europium 
Gadolinium 
Terbium 
Dysprosium 
Holmium 
Erbium 
Thulium 
Ytterbium 
Lutetium 

Actinide 
element 

Actinium 
Thorium 
Protactinium 
Uranium 
Neptunium 
Plutonium 
Americium 
Curium 
Berkelium 
Californium 
Einsteinium 
Fermium 
Mendelevium 
Nobelium 
Lawrencium 

+3 Ion 
configuration 
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f 
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f4 
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Figure 6.15 Measured effeclive magnetic dipole moment, //,„ (in μ„) in the paramagnetic regime 
for several lanthanide and actinide ions as a function of their probable ion configuration. 

exist in a free electron gas or band structure like those of lower Z metals, so 
their electrical conductivity should be high. 

3. The 4f and 5f electrons undergo a small-enough exchange interaction with 
those of a neighboring atom of the same kind that they act relatively inde-
pendent of one another at temperatures above their curie temperature in 
chemical compounds. Even in their metallic form (except for Pa, U, Np, Pu 
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Table 6.5 Charge States, Number of 3d Electrons, Spectroscopic Designation, and 
Effective Magnetic Moment Given by L-S Coupling and Hund's Rule for the "Iron 
Transition Group." Measured Values Are Seen to Be Better than the Value of Predicted 
Moment withy = s (i.e.. When the Orbital Moments Are Quenched) 

Ion 

Ti3*, V4t 

V" 
Cr'\ V2* 
Mn3t, Cr2' 
Fe3*, Mn2* 
Fe2+ 

Co2+ 

Ni2t 

Cu2t 

Configuration 

3d' 
3d2 

3d1 

3d4 

3d' 
3d6 

3d7 

3d8 

3d" 

Basic level 
2D,/2 
3F2 

%a 
5D„ 
Ssn 

5D4 

F9/2 
3F4 
2 D 5 / 2 

-W-/U + 1) 

1.55 
1.63 
0.77 
0 
5.92 
6.70 
6.63 
5.59 
3.55 

-gsls(s+i) 

1.73 
2.83 
3.87 
4.90 
5.92 
4.90 
3.87 
2.83 
1.73 

f-'measui 

1.8 
2.8 
3.8 
4.9 
5.9 
5.4 
4.8 
3.2 
1.9 

and Am), the atoms exhibit magnetic behaviors like those of compounds in 
a +3 charge state, so they must be physically tightly bound to their parent 
ion so that they have relatively small overlap. 

4. The large moments of the lanthanides and actinides must be sufficiently large 
to overcome crystal field effects provided by the local environment of the 
crystal structure. Otherwise, we would expect to observe a quenching of the 
orbital angular momentum of the electronic structure in highly crystalline 
compounds like the sesqui-oxides. 

To complete the magnetic properties of the 3d, 4f, and 5f elements, we show 
in Table 6.5 the effective magnetic moment of some 3d ions predicted by L-S cou-
pling and Hund's rule and the measured values for those ions. 

Finally, Figure 6.16 shows the character of the ferromagnetic and antiferromag-
netic state as a function of temperature for the lanthanide and actinide metals. The 
temperature at which the magnetism changes to the paramagnetic state is the curie 
temperature. Note that Cm metal occurs in both a double hexagonal close packed 
(DHCP) and a face centered cubic (FCC) structure. 

NOTE In the above tables, we have expressed the "basic level" of the atoms in 
terms of their so-called "spectroscopic" designation |2StllL/ notation. 

CONCLUSION We have seen that the magnetic moments of electrons in an atom 
are caused by their total spin or total orbital angular momentum. For atoms in a 
lattice, the magnetization of the ensemble will be a vector sum over all of the mag-
netic dipole moments caused by multiple electrons. Electrons in a full shell (from 
the periodic table of the elements) contribute no magnetic moment. The remaining 
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Figure 6.16 Measured magnetic character of the lanthanide and actinide metals as a function of 
temperature. 

unpaired electrons can cause a substantial enhancement of the external magnetic flux 
density as they align with that field. 

6.7 MAGNETIZATION 

In the absence of an external magnetic field intensity, the magnetic dipole moments 
of atoms in most materials (except permanent magnets) have random orientations, 
resulting in no net magnetic moment. The application of an external magnetic field 
intensity induces an alignment of the electron spins and their orbital motion that 
causes an alignment of their magnetic dipole moments into distinct quantized ori-
entations. The thermal collisions between atoms cause a change in the population 
of atoms in different energy states and result in an average magnetic moment for 
the ensemble. At low temperatures, low energy levels with magnetic moments paral-
lel to the external magnetic field intensity are dominantly populated. At higher 
temperatures, higher energy orientations are populated according to a Boltzmann 
distribution. If the net magnetic alignment is generally opposite to the applied field, 
the material is said to be diamagnetic. If the net magnetic alignment is generally in 
the same direction as the applied field, the material is said to be paramagnetic. 

In some materials like iron, cobalt, nickel, gadolinium, dysprosium, and their 
compounds or alloys, the spins of electrons in an atom can interact strongly at low 
temperatures with their neighbor atoms so that there is a strong alignment of their 
magnetic dipoles in spite of the randomizing effect of thermal collisions between 
neighbors. This alignment can give ferromagnetic materials permanent magnetism 
in the absence of an external field. Sometimes, the interaction of neighboring atoms 
causes an alternation in direction of the magnetic dipole moments in atomic layers 
or crystalline structures; materials that exhibit this type of alignment are called 
antiferromagnets, which can also exhibit complicated structures like spiral align-
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ments of their spins. All magnetic structures are temperature dependent, and materi-
als typically revert from strong interatomic magnetic coupling at low temperatures 
to paramagnetism or diamagnetism at temperatures above a critical temperature 
called the curie temperature. 

Diamagnetism and Paramagnetism 

To understand the partial alignment of magnetic dipole moments in a diamagnetic 
or paramagnetic material, let us consider the magnetic dipole moment of a single 
atom to be μ = μ„,ι„ωΙ + Д,,„„, as described in Equation 6.49. In diamagnetism and 
paramagnetism, we assume neighboring atoms interact only slightly, so the main 
energy of interaction is between the electrons in individual atoms and the external 
applied magnetic flux. If there are n atoms per unit volume, we can then define a 
magnetization density vector, M, as 

M = lim Y йк /ΔV, (6.55) 

which is the volume density of the individual magnetic dipole moments in a mate-
rial. The magnetic dipole moment dfl of an element volume dv' is thus dß = Mdv\ 
and that moment, according to Equation 6.40b, will produce a magnetic vector 
potential, d/\, at the point R due to the magnetic dipole moment at R' of 

dk = (μ„/4π)(Α/ xàR R./\R-R'\2)dv', (6.56) 

where 

|Ä-Ä'| = -J(x-x')2Hy-y'Y + (z-z')2 

and so 

A = Jv.dA = (//„/47Г)\v.(M x <V H./\R - R'f )dv'. 

Now, by using Equation 3.95, ^(1/ΙΛ - ΚΊ) = âK^l\R - k\2 

A = (μ0/4π)$ fixV'(]/\R-R'\)dv' 

and using the vector identity 

M x V'(\/\R - R'\) = (\/\R - R'\) V' x M -V'x (M/\R- R'\), 

we can write 

Λ=(μ„/4π)\ ,(r'xAf/|Ä-Ä'|)rfv'-(Aio/4^)J V'x(M/\R-R'\)dv'. (6.60) 

PROBLEM 

6.2 Use the divergence theorem iff V-Adv' = <u> Äds' with Л = Fx С where 

С is a constant vector, to show that 

(6.57) 

(6.58) 

(6.59) 
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J V'xFdv' = -j>Fxds\ (6.61) 

where F is any vector field with a continuous first derivative. HINT See 
Schaum's Outlines of Vector Analysis by Murray R. Spiegel. 

Using the identity found in Equation 6.61 in the second integral of Equation 
6.60, we can write 

Л = (μ„/47Γ) J ,(V'xM/\R-R'\)dv' + (ßu/4K)j> {Mxaj\R-R'\)ds', (6.62) 

where û'„ is the unit outward normal vector from ds', and S' is the surface bounding 
the volume V. 

6.8 EQUIVALENT SURFACE CURRENT DENSITY 

Similar to the case of polarized charges in a dielectric material (Equations 3.100 and 
3.101), we can define a volume current density 

j ' = V'xM (6.63) 

and a surface current density 

J's=Mxâ: (6.64) 

in which case 

Α = {μ0ΐ4π)\ν{]'Ι\ά-ν\)άν' + (μ0ΐ4π)§^Γ,Ι\ϊί-ά'\)ά*'. (6.65) 

We can interpret this equation with the help of a figure that shows the fields produced 
by a set of magnetic dipoles that constitute a volume in a material, as shown in 
Figure 6.17. 

Note that adjacent interior currents cancel, while currents in the surface layer 
of thickness b do not. We can see from Figure 6.16 that ./ '= V x M = 0 interior to 
the sample but that, on the surface of the sample, we have an equivalent current 
density .//= M x ä'„ * 0, so Equations 6.62 and 6.65 need consider only the second 
surface integral to calculate Л and В = V X Л. 

6.9 EQUIVALENT MAGNETIC MONOPOLE CHARGE DENSITY 

In the current-free region of space, exterior to a sample volume, ./ = 0, so from 
Equation 6.8, V x В = μ«7 = 0; that is, the magnetic flux density in free space is 
curl free. Thus, magnetic flux density В can be expressed as the gradient of a scalar 
field, and we can write 

Β = -μ0νν, (6.66) 
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Figure 6.17 Representative cross section of a 
magnetic material with atomic scale magnetic dipole 
moments (there would be a much greater number of 
circles for a real sample) (arrows indicate the direction 
of current flow). 

where V is called the scalar magnetic potential.5 As in the case for scalar electric 
potential, V will be a conservative field, so we can conclude that, in free space, for 
two points F, and P2 

ν2-ν, = -0β/ / ίοΗί (6.67) 
independent of the path taken between Px and P2. 

If there were magnetic monopole charges with a volume density p\ (A/m2), 

V = (\lAK)\v{pvl\R-R'\)dv\ (6.68) 

but, because isolated magnetic monopole charges have never been observed experi-
mentally, they must be considered fictitious. Nevertheless, we have seen that, in the 
far-field region, the magnetic llu\ densitj caused by a small bar magnet is the same 
as that of a magnetic dipole moment. For a bar magnet, we often draw the fictitious 
north magnetic charge, +</, and the south magnetic charge, —q, as being separated 
by a distance d to form an equivalent magnetic dipole moment: 

m = qd = (â„IS). (6.69) 

The scalar magnetic potential V caused by this magnetic dipole moment can then 
be written as 

V = màR Ä./4w|Ä-Äf. (6.70) 

If, in terms of a magnetization vector M (volume density of magnetic dipole 
moments), with dm = Mdv, we write 

dV = {M-aR-rJ4n\R-R'f}dv' (6.71) 

1 Maxwell specifically included the scalar magnetic potential (which he called i->) in his quaternion 
expressions 1.68. The Hcavyside vector field interpretation of Maxwell's quaternions usually ignores 
this field except as a mathematical convenience. 
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and 

V = (1/4лг)| [M-à* r/\R-R'\2\dv', (6.72) 

then V can be expressed as 

V = (\/4π)^(Μ -:i'/\R- Rf)ds' + (\/4K)jv,[-V'- M /\R- R'\2)dv\ (6.73) 

where ά'„ is the outward normal to the surface element ds' of the magneti/ed body. 
For field calculation, a magnetized body may be replaced by an equivalent 

(fictitious) magnetization monopole surface charge density ps and an equivalent 
(fictitious) magnetization monopole volume charge density pv such that 

ps=M-ci„ (6.74) 
p, = -V- M 

We can, for example, consider the cylindrical sample of magnetic material that was 
shown in Figure 6.12 from the horizontal perspective, as shown in Figure 6.18. 

N indicates a north magnetic monopole charge, and 5 indicates a south magnetic 
monopole charge. Note that all interior magnetic monopole charges cancel, while 
charges on the upper and lower surfaces create a magnetic monopole charge density 
in a half atomic layer thickness. 

Figure 6.18 Representative cross section of a magnetic material with atomic scale magnetic dipole 
moments (there would be a much greater number of magnetic dipole moments for a real sample). 



6.10 Magnetic Field Intensity and Permeability 187 

Conclusions 

We can conclude from the last two sections that the magnetic flux density, B, for a 
cylindrical-shaped material may be calculated as shown in Figure 6.19 via the 
following: 

a. A volume integral for the magnetic vector potential over the magnetiza-
tion M 

B=VxÂ= νχ(μο/4π) ί , M x V'(l/\R-R'\)dv' (6.75) 

b. A surface integral for the magnetic vector potential over the material 

В = V x .4 = V x (μο /4π) j>, (J'S/\R - R'\) ds' (6.76) 

with Js= M x «,. on the cylindrical surface, or 
с A surface integral for the scalar magnetic potential over the material 

В = -μ0ν\' = -(μ0/4π) ^ ( р , / | Я - R'f )ds' (6.77) 

with рн = M ■ âz on the top and bottom surfaces 

6.10 MAGNETIC FIELD INTENSITY AND PERMEABILITY 

When an external magnetic flux density, B, caused by a free-electric current density, 
./, is applied to a material, a partial alignment of the internal magnetic dipole 
moments occurs according to the atomic interaction between the individual magnetic 

(a) (b) (c) 
Figure 6.19 (a) Magnetization volume; (b) cylindrical surface electric current density; (c) top and 
bottom surface magnetic monople charge density tor the equivalent integral calculations of magnetic 
flux density. 
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moments and the temperature of the sample. In Equation 6.62, we calculated the 
additional magnetic vector potential due to the induced magnetization of the atomic 
dipoles via an expression just like Equation 6.21 for the free-electric current density. 
However, in Equation 6.63, we used an equivalent volume current density, Vx M, 
to find the magnetic vector potential due to the magnetic dipole moment alignment. 
If we reason that the sum of the two currents gives the magnetic flux density caused 
by free currents,./, and the induced magnetization from a material, we can generally 
rewrite the point form of Ampere's law (Equation 6.8) for materials as 

Vx(e/ß0) = ] + VxM (6.78) 

or 
Vx(B/no-M) = J. (6.79) 

The quantity (Blfo - M) is a fundamental field quantity in magnetism that 
incorporates not only the applied magnetic flux density but the induced magnetiza-
tion caused by materials. This quantity is called the magnetic field intensity, H, 
where 

H = Β/μο - M (6.80) 

so that 

VxH = J, (6.81) 

where the right side is the volume density of free current. The corresponding integral 
form of Equation 6.81 is 

J(VxW)iis=J Jds 

or 
j>Hdi = I (6.82) 

Equation 6.82 is a more complete form of Ampere's law that implies that "the 
circulation of the magnetic field intensity around any closed path is equal to 
the free electric current flowing through the surface bounded by the path." This 
is a very powerful statement that we will use to calculate magnetic field intensity in 
space, even when magnetic materials are present. 

6.11 FERROMAGNETISM 

In general, the degree of magnetization of a material will depend upon the direction 
of the applied external magnetic field intensity. This is especially true of ferromag-
nets in which there is typically a so-called easy axis along which materials may be 
magnetized that is caused by their crystal structure or grain boundaries that can orient 
during sample forging or drawing processes. It is also generally the case that sample 
geometry is important in the magnetization of materials (e.g., long, thin rods are 
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easier to magnetize along their axis of symmetry than in a perpendicular direction). 
For our understanding of magnetic phenomena, we will first consider a special case 
in which the magnetic properties of the medium are linear and isotropic. 

Special Case 

If a magnetic material is linear and isotropic (such as is the case of diamagnetism 
and paramagnetism), 

Μ = χ„,Η, (6.83) 

where the constant of proportionality, χ„, is a dimensionless quantity called the 
magnetic susceptibility. Putting this linear relation back into Equation 6.80, we see 

В = μο( 1 + χη)ίΐ= μ„μ, H = μΗ, (6.84) 

where μ, = 1 + χ„, - μ/μ,, is a dimensionless quantity called the relative permeability 
of the medium, μ = μ^μ, is usually called the absolute permeability (or often just 
the permeability) of the medium. 

Ferromagnetic Applications 

The term susceptibility is not normally used with ferromagnets because the magnetic 
flux density is not linearly proportional to the magnetic field intensity. However, the 
relation /ί = μΐΐ is often used for ferromagnetic materials, with the knowledge that 
μ is not a constant but depends strongly upon I//1. 

A typical plot of H versus // for a ferromagnetic material is shown in Figure 
6.20. The magnetization curves for different iron compounds depend highly on the 
exact composition and heat treatment, as shown in Figure 6.20, for a number of 
practical alloys used in motors and transformers. Arrows on each curve indicate the 
direction of increasing // for the first magnetic induction of /i in the material. 

The subject of ferromagnetism is complicated by the fact that magnetic moments 
minimize their energy by forming into magnetic domains (small clumps) that are 
reluctant to move until they overcome the polycrystalline grain boundaries of the 
material that "pin" them in place. Once the domains achieve enough field to over-
come their "pinning" by the grain boundaries, they orient in the same direction and 
tend toward saturation where large numbers (and density) of moments then contrib-
ute to magnetization. The domains "remember" their orientation because the process 
is not reversible; a coercive force must be present to coerce the domains to overcome 
their grain boundary pinning and align in the other direction. Thus, we often see 
magnetization curves that exhibit a hysteretic behavior as the field intensity is ini-
tially increased and then reduced back to zero, as shown in Figure 6.21. Here, a 
remnance of magnetic flux density, li„ remains induced in the magnetic material (a 
memory of the ferromagnetic alignment) even after the initial field intensity has been 
removed. This is the effect that creates permanent magnets. If the magnetic field 



190 Chapter 6 Static Magnetic Fields 

0 200 400 600 800 1000 1200 1400 
H (ampere/meter) 

Figure 6.20 Curves of magnetic llux density, />, for several ferromagnetic 3d materials below their 
curie temperature as a function of externally applied magnetic field intensity, h. 

intensity is further reduced to negative values, some of the magnetic domains begin 
to align in the opposite direction to the point where there is no longer any net induced 
magnetic flux density in the material; the applied field for which this occurs is called 
the coercive field intensity (sometimes called the coercive force), H,. Continuing to 
decrease the magnetic field intensity will result in a saturation of the domains in the 
opposite direction from their initial saturation direction. After that, increasing and 
decreasing the applied magnetic field intensity cause the magnetization to follow the 
external curve, as shown in Figure 6.21 for Alnico V iron. In practical applications, 
there will likely be multiple turns of the inducing field wires that proportionately 
increase the applied field intensity, so the horizontal axis includes units of ampere-
turns per meter. 

Analyses of magnetic circuits are often based on Ampere's law (Equations 6.81 
and 6.82) in which Vx H = J or φ Hdl = 1. For example, if a closed path С is 
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-1.6 

Figure 6.21 Hysteresis curve for ferromagnetic alnico V iron. 

chosen to enclose N turns of a winding carrying a current, /, in a toroidal configura-
tion such as that shown in Figure 6.22, we have 

j> Hdl=NI. (6.85) 

The toroidal geometry is useful because, except for some small leakage flux, 
the magnetic flux is primarily contained within the donut-shaped torus, and it is 
relatively constant as a function of the poloidal radius (the small radius of the donut 
body). For this reason, the geometry is employed in a Tokomak confinement scheme 
for plasmas used in fusion reactors. The geometry is often also used in the construc-
tion of high-magnetic field magnets used in chemistry or physics labs where an air 
gap (also shown in Figure 6.22) is created in the torus so that samples may be 
inserted to test their magnetic properties. 

Using Ampere's law for this configuration with the path С taken to be a circle 
of radius r0, as shown in Figure 6.22, we can see that the magnetic field intensity H 
will lie in a direction parallel to С at all points and will be a constant over this path. 
Thus, 

j> HdJ = \н\2пщ = NI or |//| = ΝΙβπη,. (6.86) 
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Leakage flux 

Figure 6.22 Current carrying coil on a 
loroid form with an air gap. 

Note that the magnetic held intensity is the same for any toroidal material, but the 
magnetic flux density depends upon the magnetic permeability of the torus as 

Щ = μ,μ^ΝΙ I2nr0. (6.87) 

If the toroidal form is a diamagnetic or paramagnetic (e.g., copper), then μ, ~ 1, and 
we can see that the largest magnetic flux density that can be obtained in the air gap 
(which the magnetic flux extends across) depends upon the number of turns, N, the 
current, /, and is inversely proportional to /·(1. The number of turns, N, is often alter-
nately written as N = Ν,2π>Ό, where N, is the number of turns per unit length. In this 
form, for a given number of turns per unit length, Equation 6.83 becomes simply 
\Β\=μοΝ,Ι. 

If the toroidal form is a ferromagnet (e.g., iron), then μ, ~ 104 unless the 
magnetic domains all lie in the direction of the applied external magnetic field 
intensity; in this case, we say the material is saturated because there is no more 
magnetization to be had from more magnetic field intensity except that applied by 
the current. The engineering associated with ferromagnetism is closer to hammer-
and-tongs forgery than science because the relative permeability and the saturation 
held of iron depend strongly on its impurities and polycrystalline structure or other 
alloy materials. The science of ferromagnetic materials is closer to an art because 
the exchange mechanism between material atoms is so complex. Historically, engi-
neers have tested many compounds and alloys of materials in an attempt to find 
the largest value of μ, for applied magnetic field intensities before they begin to 
saturate. Modern applications include the use of magnetic chokes that operate in 
the reversible field region where the inductance (Φ = HA = LI) is high until they 
experience a large current to induce saturation of the domains (where the effective 
inductance is relatively lower due to a lower value of dBIdH). In radar applications, 
the high to low inductance transition can act as a fast, high-power switch to turn 
on high current at a rapid rate; for example, for 106 V, current can rise as fast as 
10' A in 10 ns. 
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6.12 BOUNDARY CONDITIONS FOR MAGNETIC FIELDS 

Normal Direction 

Similarly as in the process we used for electric fields, we can see from Figure 6.23 
Bds - 0 and in the limit as Ah —> 0 we have ß, ·Α\ά„2 + ß:-A2<i,i = 0. 

Considering A, = A2 and û„2 = -â„i, we finally have 

ß,„ = B2„. (6.88) 

For linear media, H, = βιΙΙ,, and B2 = ß2H:, Equation 6.88 becomes 

μλΗχ„ = μ2Η2„. (6.89) 

Tangential Direction 

Starting from Ampere's equation, 

j>rHdJ = Ic,u.lmeil. (6.90) 

Choosing the integral path, as shown in Figure 6.24, in the limit as Ah —» 0, we 
have 

or 

Hdl = H,- ννά,.ι + H2 ■ (-ννά,.ι ) = J/W 

H\, — H2, = h 

â„2x(Hl-H2) = Jl, 

where ./ is the surface current density normal to the contour C. 

(6.91a) 

(6.91b) 

Figure 6.23 Gaussian surface in the form of a pillbox extending through the interface between 
two materials. 
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^ .2-4 iV. w i d t h 

Figure 6.24 Path с used in the integral of magnetic field intensity that penetrates the interface 
between two materials. 

6.13 INDUCTANCE AND INDUCTORS 

Consider two neighboring closed loops, C, and C2, bounding surfaces S, and S2, 
respectively, as shown in Figure 6.25. If a current /, flows in C b a magnetic field 
B, will be created.6 Let us designate a mutual flux Φι2. 

Φί2= ί BfdSî (6.92) 

From the Biot-Savart law, Equation 6.32, we know that ß, is directly proportional 
to /,; hence, Φ,: is also proportional to /> 

<fi2 = £«/i, (6.93) 

where Ln is called the mutual inductance between loops C, and C2, with units Henry 
(H) = Wb/A. If C2 has N2 turns, the flux linkage Л,. due to Ф,. is 

Equation 6.94 yields 

or 

, \ i ; = W20,:(Wb). 

A,; = L,2/i 

(6.94) 

(6.95) 

The mutual inductance between two circuits is then the magnetic flux linkage with 
one circuit per unit current in the other. 

0 Lenz showed that a time-varying / (and. therefore, a lime-varying Ф, ) will produce an induced 
electromotive force or voltage in C,, as we shall see in Chapter 7 when we consider time-variable 
magnetic flux density. 
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Figure 6.25 Two magnetically tlux coupled loops. 

A more general definition for L, 

Ln = dJ£- (6.96) 
dh 

The total flux linkage with C, caused by /, is 

Λη = Ν&ι>Ν&2. (6.97) 

The self-inductance of loop C, is defined as the magnetic flux linkage per unit 
current in the loop itself; that is, 

L,, = y - = MjSi(ß,//.)-<ff. (6.98) 

for a linear medium, in general 

Lu = d-^. (6.99) 

EXAMPLE 

6.4 If an air-filled coaxial transmission line (Figure 6.26) has a solid inner conduc-
tor of radius, a, and a very thin outer conductor of inner radius, b, determine 
the inductance per unit length of the line. 
SOLUTION See Example 6.1. 
1. Inside the inner conductor 

( 0 < r < a ) : 
Б - о - / V , Β\ = ««οψι = а,-—τ' 

2πα 
2. Outside the inner conductor: 

(a<r<b): 

В2 = ааВо2 = а 0 - ^ 1 
2πκ 
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Figure 6.26 Perspective view of an air-filled coaxial transmission line. 

Now, consider an angular ring in the inner conductor between radii r and 
r + dr. The current in a unit length of this annular ring is linked by the magnetic 
flux that can be obtained by integrating magnetic flux densities. 

άΦ' = J ' B„dr + J*Ba2dr = (μ0ΐ/2πα2)Ι°rdr + (и>//2ж) j\l/r)dr 

= (μ0ΐ/4πα2){α2-Γ2) + {μ0Ι/2π)]η-
a 

The current in the annular ring is only a fraction of the total current 1(2лгаг1тю2 = 
2rdr/a2), and the flux linkage for this annular ring is 

dA' = (2rdr/a2)d0'. 

The total magnetic flux linkage per unit length is 

Л' = JJi/Λ' = (μ0ΐ/πα2)\(\/2α2 ) £ (α 2 - r2 )rdr + la(b/a)j°rdr\ 

Λ' = (μ0Ι/2π)[\/4 + \ηψ/α)] 

The inductance of a unit length of the coaxial transmission line is therefore 

L' = Λ'/Ι = (μίΙ/2π)[ϊ/4 + \η^/α)] = {μ„βπ) + (μ0/2π)\η^/α). 



6.13 Inductance and Inductors 197 

<//--H|< r 4< a H 

Figure 6.27 A closely wound toroidal coil with a rectangular cross section. 

EXAMPLE 

6.5 N turns of wire are tightly wound on a toroidal frame of rectangular cross 
section with dimensions as shown in Figure 6.27. Assuming the permeability 
of the medium to be μ,,, find the self-inductance of the toroidal coil. 
SOLUTION 

Assuming a current / in the conducting wire, 

В = Веаф 

and 
dl = афгаф 

so 
j> В dl= 2πΓΒύ = μιιΝΙ 

so 
Βφ = μ0ΝΙΙ1πΓ 

so that 

0 = lB.ds=j(^^Mr) = ^f^ = ^N,h/2nr)ln(b/a). Js Js\ 2nr I 2кг Ja r 

The magnetic flux linkage is 

д = ΝΦ = (μ0Ν
2ΙΗ/2πή\η (b/a) 

so that we obtain 

L = A/1 = ^0N
2h/2nr)\n(b/a)(H). 
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6.14 TORQUE AND ENERGY 

Torque on a Magnetic Dipole 

The torque on a rectangular loop of wire of length a and width h carrying current / 
is shown in Figure 6.28. 

The forces on the four individual sides of the rectangular loop are shown as F,, 
F2, F3, and F4; the two forces on sides of 2 and 4 cancel one another, while the two 
forces on sides 1 and 3 cause a torque: 

τ = μχΒ (6.100) 

that tends to align the magnetic moment of the loop with the external magnetic tield 
intensity. 

PROBLEM 

6.3 Show that the torque on a circular loop of radius b (area ιώ2) carrying current 
/ gives the same torque as 6.100. 
NOTE Equation 6.100 is the same form as that for torque that tends to align 
an electric dipole, p, in an external electric field intensity, E. 

* f j = laB 

Figure 6.28 Rectangular loop of wire carrying current / in an external magnetic flux density H. 

The loop is free to rotate about an axis, as shown in the top isometric view; below that is a side view. 
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The potential energy of a magnetic dipole moment, fi, that makes angle Ö with 
respect to an external magnetic flux density, B, is 

υη(θ) = \\(Θ')(1Θ' = μΒ(\ -COS0). (6.101) 

Because the zero of potential energy is arbitrary, we can alternately express the 
potential energy relative to the angle Θ = л/2 as 

U L(e)=[" τ(θ')(ΙΘ' = -uBcos0 = -ÜB (6.102) 
Jn/2 

Equation 6.102 is the form that Zeeman used to express the potential energy of 
different magnetic states in an external magnetic flux density; that is, if fi is aligned 
with ß, its potential energy is -μΒ\ if opposed, its potential energy is μΒ. The energy 
level representation of this equation is shown in Figure 6.29 for a magnetic dipole 
moment with spin quantum number ms = Vi or ms = -Уг, μ. = -gJflu = -2.003 $μ« 
(as would be the case for a hydrogen atom electron with only spin angular 
momentum). 

In the special case that a system has only two levels the equilibrium populations, 
Ni and N2 are given" by the Boltzmann distribution 

N[ eWB/k„T) д ^ е( -μΒ/кцТ) 

~~j^ = gUlKßnT) ~ ~{ μΗ/кцТ) a n d ~jj~ =
 ei.ull/kBT) + β(-ί(β/**Γ> " ( 6 . 1 0 . ) 

Here, N, is the population of the lower level, N2 is the population of the upper level, 
and N = N, + N2. The fractional population of the magnetic moments of the upper 
and lower states is plotted in Figure 6.30. 

The resultant magnetization for N atoms per unit volume is 
Jull/kBT)_ Λ-μΒ/квТ) , g \ 

M = (AT, - Ν 2 ) μ = Νμ e i M + e(.M) ~ ΝμΒ t a n h [ ^ j , (6.104) 

where the approximate symbol comes from μ = g(\l2)μll and g ~ 2. This function 
is shown plotted in Figure 6.31. 

Note that the comparison of the average magnetic dipole moment, (μ), plotted 
as a function of (μκΒΑΒΤ) in Figure 6.30 to that of the average electric dipole 
moment, (/»), plotted as a function of (p„E/kBT) in Figure 5.10 of The Foundations 
of Signal Integrity'. Main differences areas follows: 

T ~ '/2 -f, 

2μΒ 

Figure 6.29 Energy level "Zeeman" splitting for one 
electron in a magnetic Mux density IS directed along the z axis. 



200 Chapter 6 Static Magnetic Fields 
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(lower energy level) 
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И/У) 
Figure 6.30 Relative populations of electrons with total angular momentum quantum numbers ±Vi 
in a magnetic flux density, И, in thermal equilibrium at temperature f. 

0 0.5 1 1.5 2 2.5 3 

Figure 6.31 Average magnetic dipole moment per atom, (μ) = MINuK, plotted as a function of 

1. The orientation of electric dipoles is continuous with angle, while magnetic 
dipoles are either parallel or antiparallel to the external fields. 

2. p„E is typically much smaller than μ„Β. 

For the more general case of an atom with angular momentum quantum number 
J, there will be U + 1 equally spaced energy levels, with a magnetization given in 
terms of the Brillouin function, B/. 

M = Щ^ИВ,\ -
U,,B 

where 
kBT 

U e 7 V J У 2 kBT ) 2J {kBT 

(6.105) 

(6.106) 
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Summary Conclusions 

1. Magnetic forces are a result of electric monopole charges, q, and the vector 
cross product of their velocity, P, and an externally applied magnetic flux 
density, B. Maxwell's equations for divergence and curl are similar to their 
electric analogs if we assume that there is no magnetic monopole charge, 
4-

2. Electric dipolc fields and magnetic dipolc fields follow the same far-field 
basic geometric distributions if we take the electric dipole moment to be /i 
= qd and the magnetic dipolc moment to be m = ijcb2aL. 

3. Magnetic flux density, B, can be calculated through the use of Ampere's 
equation if the current distribution is known and circuit self and mutual 
inductances, Ln and L)2, can be calculated from the ratio of the magnetic 
flux to that current by L = ΦΙΙ. 

4. If electronic orbitals of atoms cause outer electrons to be disassociated from 
their parent ions, band structure formalism is required to determine mag-
netic effects. 

5. Material magnetism is primarily a result of quantum effects of electronic 
states in atoms. The orbital and spin angular momentum of electrons yields 
a net vector magnetic moment whose z-component can be described in 
terms of the projection of the magnetic moment along the applied field 
direction. For atoms with unfilled shells, the vector sum of all such elec-
tronic states, consistent with the Pauli Exclusion Principle and Hund's rule, 
can be added to find effective atomic magnetic moments for isolated ions 
in chemical compounds. 

6. At temperatures in the paramagnetic regime, the population of possible 
quantum states follows a Boltzmann distribution. The net magnetization 
depends on the sum of the proportion of those states individual magnetic 
moments. 

7. If the crystal structure of a chemical compound is tight enough to cause the 
states of extended atomic orbitals, for example, in many 3d ions, to be 
quenched by their neighbors, the magnetic moments will be caused primar-
ily by the atom's net spin quantum number. 

8. In the paramagnetic regime, the magnetic vector potential of a specimen 
may be calculated by using three equivalent mathematical formalisms: 
direct calculation due to the vector sum of individual magnetic dipole 
moments, equivalent macroscopic surface currents, and a surface distribu-
tion of magnetic monopoles. 

9. For tightly bound electrons, for example, in many 4f and 5f atoms, the 
crystal structure permits the total angular momentum to determine the net 
magnetic moments. 

10. Below a curie temperature, the exchange interaction of atomic orbitals with 
their neighbors can overcome the Boltzmann thermal energy to form local 
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magnetic ordering. In a few cases, antiferromagnetic ordering occurs at a 
higher temperature, and ferromagnetism occurs at lower temperature. 

11. Magnetism of metals and alloys is a result of magnetic domains that align 
in directions determined by the physical geometry, polycrystalline grain 
boundaries, and impurities. Once pinning energy is exceeded, domains can 
align to form permanent magnets. 

ENDNOTES 

i. Paul G. Huray. The Foundations of Signal Integrity (Hoboken. NJ: John Wiley & Sons, 20O9), Chapter 
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iii. Charles Kittel, Introduction to Solid State Physics. 7th cd. (Hoboken, NJ: John Wiley & Sons. 1996). 

451. 
iv. Ibid., 421. 
v. Huray, The Foundations of Signal Integrity, Figure 5.10. 



Chapter 7 

Time-Varying Fields 
LEARNING OBJECTIVES 
• Use Maxwell's equations to derive the macroscopic relations between time-varying 

electromagnetic field quantities E, D, H, and В 

• Develop the concept of time-dependent scalar electric potential V and magnetic vector 
potential A and relate them to the electromagnetic field quantities E, D, //, and В 

• Derive time dependent boundary conditions that apply to E, D, II, and В 

• Review separation of variable and Green's functions techniques and employ them to 
find causal solutions to Maxwell's equations using time-dependent scalar and vector 
fields 

• Review the use and characteristics of the electromagnetic frequency spectrum 
• Show that time-dependent magnetic fields in a dielectric medium penetrate conductor 

boundaries and slowly propagate into the conductor inducing electric fields in both 
regions thereby creating "surface impedance, Z" 

• Explore the field interpretation of memristance and electric vector potential 
• Compare field definitions of the fully symmetric Maxwell's equations with circuit 

definitions of resistance, inductance capacitance, and memristance 

I N T R O D U C T I O N 

In constructing an electros/a/ic model in the first chapters of this text, an electric 
field intensity vector field, /-.', and an electric flux density (electric displacement) 
field, D have been given a definition that satisfy the relations 

VxE = 0 (7.1) 
VD = py. (7.2) 

For linear, isotropic (homogeneous) media, the macroscopic electric field quan-
tities F. and D are proportional to one another through the constitutive relation 

D = £Ë. (7.3) 

For the magneto.çfar/c model, we have also defined the magnetic field intensity 
vector field, H, and a magnetic flux density field, B, that satisfy another set of 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 
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Table 7.1 Fundamental Static Relations 

Fundamental relations Electrostatic model Magnelostatic model 

Governing equations Vxt = 0 Vx H = J 
VD = pv VB = 0 

Constitutive relations (linear, isotropic D = εΕ li = μΗ 
media) 

macroscopic relations: 

VxH = J (7.4) 
VB = 0. (7.5) 

For linear, isotropic (homogeneous) media, the magnetic field quantities are 
proportional to one another through the constitutive relation 

Β = μΗ. (7.6) 

As was pointed out in Chapter 6, the latter approximation is poor for microscopic 
analysis of a solid material (especially a single crystal) where Equations 7.3 and 7.6 
would need to take into account directions relative to the crystal structure and hence 
would, in general, be described via a tensor relationship. In addition, on a microscopic 
level in a solid, fields will be strongly influenced by the orbital and spin angular 
behavior of electrons associated with material atoms and those in the conduction 
band. Equations 7.3 and 7.6 will be altered by those electrons in the presence of 
electric and magnetic fields and they can in turn produce enormous fields at the 
nuclei of atoms so that Equations 7.3 and 7.6 are not even good approximations. 

On a macroscopic scale of millions of atoms, the field quantities E, D, //, and 
В can be averaged over the volume element so that Equations 7.3 and 7.6 begin to 
represent average fields in the media. In a liquid, the approximation is better, and, 
in a gas or vacuum, the constitutive relations become very good approximations. In 
the following sections, only average fields on a macroscopic scale will be consid-
ered, and, because many of the applications will be to field quantities propagating 
in a liquid or gas, our approximations will be considered acceptable. With these 
qualifications, the fundamental relations of electrosrof/c and magneUwra/ic fields are 
summarized in Table 7.1. 

In these static cases, we observe that electric fields and magnetic fields form 
separate, independent pairs. 

7.1 FARADAY'S LAW OF INDUCTION 

Michael Faraday, in 1831, discovered experimentally that a current was induced in 
a conducting loop when the magnetic flux linking the loop changed with time. The 
quantitative relationship between the induced einfand the rate of charge flux linkage 
based on experimental observation is known as Faraday's experimental law. 
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emf « -3 ( J J В · ds)/dt = -дФ/dt, (7.7) 

where Ф is called the magnetic flux passing through the surface S. Thus, a funda-
mental postulate for electromagnetic induction between electric and magnetic quan-
tities was made 

VxE = -dBJbt (7.8) 
because applying Stokes's theorem yields 

JJ V X £ · ds = j> Ê ■ dl = emf = - J J (dß/dt)- ds = - дФ/dt. (7.9) 

According to Faraday's experimental law, Equation 7.9 should be valid for any 
surface S with bounding contour C, whether or not a physical circuit exists around 
C. Note that the sign in Faraday's law is arbitrary. It was chosen to be negative 
because an increasing magnetic flux with time causes an emf thai acts to resist the 
imposed flux; that is, the current induced in the loop creates its own magnetic 
flux density in the opposite direction to the one applied; most texts call this 
response Lenz's law. 

7.2 E&M EQUATIONS BEFORE MAXWELL 

Differential Form of Maxwell's Equations 

Including Faraday's law, the fundamental equations for electromagnetic fields, prior 
to Maxwell's addition of a displacement current, were thus given by 

VxÈ = -dB/dt (7.8) 
V-D = pv (7.10) 
VxH = J (7.11) 
VH = 0. (7.12) 

If we also apply the principle of conservation of charge to these equations, we found 
the continuity equation, (Equation 2.58) 

VJ = -dpv/dt (7.13) 
or 

JJJ VJdv = jj> Jds = - ЭЩ, pvdV/dt = - dQ/dt, 

which is contradictory to Equation 7.11 because we can show by direct differentia-
tion that V-(Vx H)-0, and, therefore, according to Equation 7.11, 

V(VxH) = 0 = V-J. (7.14) 

Except for the very special case of time-independent, free charge density, 
Equations 7.13 and 7.14 come to two different conclusions. Is one of these equations 
wrong? Did we miss something? 



206 Chapter 7 Time-Varying Fields 

This conundrum needed resolution in 1860 and was resolved by revising 
Ampere's Equation 7.11 by adding another time-dependent term that related magnetic 
and electric field quantities and that was symmetric with Faraday's Equation 7.09: 

VxH = J + dF)/dt. (7.15) 

The term dD/dt was called displacement current density and introduced by 
James Clerk Maxwell (1831-1879). 

7.3 MAXWELL'S DISPLACEMENT CURRENT 

When the symmetric differential equations and their integral equivalents was com-
pleted by Maxwell by adding a displacement current to Ampere's law, it was the 
leap in thinking that made James Clerk Maxwell the greatest electromagnetic theorist 
of all time! Because of the historical importance of this step, we will consider the 
logic in some detail to assure ourselves that it makes sense. The displacement current 
is the only term that was deduced and not taken from an experimental law. 

At the time Maxwell made the addition, the concept almost violated common 
sense because it stated that a current existed between two terminals of a simple 
parallel plate capacitor, as shown in Figure 7.1, even if the conductivity in the inter-
vening medium was zero. 

To make his analysis. Maxwell used a conundrum. For the positive terminal of 
a capacitor to be charged, a current, /, must flow. However, thinking before the 1860s 
said that no current could flow between the +Q and -Q terminals if the space 
between them was a vacuum, as shown in Figure 7.1. 

Thus, 

a. if we consider a circular surface S, (bounded by path C), Ampere's law states 
that the magnetic field on С is ф Fi- dï = //п'иялс an-d because S, has current 
/ flowing through it, |ß | * 0 on С; and 

b. if we consider the bullet-shaped surface S: (also bounded by path C) and 
use I860's "common sense" that no current flows through this surface, we 
conclude that ф FldJ = 0 and, thus, \Fi\ = 0 on C. 

Path С 

Figure 7.1 Conceptual view of displacement current in a simple parallel plate capacitor. 

О 
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Path С л2 -h 

Figure 7.2 Conceptual view of displacement current in a simple parallel plate capacitor with a 
modified surface. 

The two statements are contradictory, so Maxwell concluded that either 
Ampere's law was wrong or something was missing. He reasoned from Faraday's 
law that, because electric fields are induced by changing magnetic flux density, 
magnetic fields should be induced by changing electric Них density. To quantitate 
this symmetry, he redrew the closed Figure 7.2. 

Maxwell noted that the electric field produced between the two charged paral-
lel plates is £ = ά,ρ/ε«, where p, is the charge per unit area. If we ignore the 
fringe fields at the edge of the plates and say that E = 0 everywhere except between 
the two plates, then Ф = <Й> £ i f s = <ff> Ëds - Ë-Â=(Q/A)/e0A = Q/e0, 

where A is the area of the +Q terminal. Thus, 

dQ/dt = e„d0/dt. (7.16a) 

Maxwell reasoned that, if Q changes with time, a "current" is caused by the 
displacement of charge to the +Q terminal; that is, 

/,., = dQ/dt = ε„ d(p/dt (7.16b) 

may be thought of as a displacement current that passes through .S\", and Ampere's 
law must be modified to include this current; that is, 

£ / i < / f = p0/,„s/rff( +№/,,. (7.17) 

Maxwell concluded that magnetic fields are caused by conduction currents and are 
induced by changing electric fields. 

Using Stokes's theorem, he concluded the differential form 

(j> BdI=fy(VxB)ds=n<)j J■ ds + pkfod\\ Ê-ds/dt (7.18) 
or 

Vxll = μ0.ϊ + μ0ε0 dEJdt. (7.19) 

Finally, we obtain the point form (or differential form) of Maxwell's equations: 
VxE = -dß/dt (7.20a) 

VxH = J + dD/dt (7.20b) 
VD = pv (7.20c) 
VB = 0. (7.20d) 
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Note that pv is the volume density of free charges and J is the density of free 
currents. 

Although Maxwell's equations consist of four vector equations, they are not all 
independent. Two divergence equations can be derived from two curl equations. The 
four fundamental field vectors E, D, H, B, each having three components, represent 
12 unknowns, which, in principle, can be solved by two vector curl equations and 
two vector constitutive relations. 

7.4 INTEGRAL FORM OF MAXWELL'S EQUATIONS 

For solving problems with finite objects of specified shapes and boundaries, it is 
convenient to convert Maxwell's equations into their integral forms. 

j> Êdî = -jj(dê/dt)ds (\jVxÊds=j> Êdl) (7.21a) 

j> HdJ = l + IJ(dD/dt)-ds (l=jjj-ds) (7.21b) 

jJDds=Q (JJJ VDdv = <$ Dds) (7.21c) 

j>Bds=0 (ö = JJJ f>\ dv) (7.2Id) 

Maxwell's equations are summarized in Table 7.2. 

Maxwell's equations represent the vector field quantities: 

E = Electric field intensity (volts/meter). 
В = Magnetic flux density (weber/meter2 or tesla) 
H = Magnetic field intensity (ampere/meter) 
D = Electric flux density (coulombs/meter2) 
J - Electric current density (ampere/meter2) 
pv = Electric charge density (coulomb/meter') 

Units of the field quantities in SI units are shown in parentheses. 

Table 7.2 Maxwell's Equations 

Differential form Integral form Name 

Vx È = -dB/dt ф F. ■ dï = - ί ί (dB/dl)-ds Faraday's law 

VxH = J + dD/dl j> Hdï = I+\\(dn/dt)ds Ampere's law 

V-D= pv <LP Dds = Q Gauss's law for electric charge 

V- В = 0 <0> В ■ ds = 0 Gauss's law for magnetic charge 
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7.5 MAGNETIC VECTOR POTENTIAL 

We have shown in Chapter 3 that the divergence of the curl of any vector field is 
identically zero; that is, 

V ■ (V x A) = 0 for any vector field A. (7.22) 

Because the fourth of Maxwell's equations states that IS is solenoidal, as given by 
Equation 7.20d (VIS = 0), we can thus assume that IS may be written in terms of 
another vector field. A, that we will call the magnetic vector potential: 

B = VxA. (7.23) 

NOTE We can see from Equation 7.23 that, given a magnetic flux density, B, there 
will be an infinite number of vector fields, Д, that can satisfy the identity; for 
example, adding a constant to A will also satisfy Equation 7.23. This means that, to 
specify a unique definition of the vector field, A, we will need to make an additional 
restriction on A. The additional restriction is called a gauge and it is arbitrary. 
Coulomb and Lorenz made two different restrictions, as we will see below. 

Substituting Equation 7.23 into Faraday's Law (Equation 7.20a) (V x E = 
-dlS/dt), we can write 

VxË = -d(VxÀ)/dt 
or 

Vx(Ê + dÀ/dt) = 0. (7.24) 

We have also shown in Chapter 3 that V x (- VV) = 0 for any scalar field. Thus, 
because the curl of the vector field shown in parenthesis in Equation 7.24 is zero 
(i.e., it is irrotational), then that field can be written as the negative gradient of 
another scalar field, V, that we will call the electric scalar potential: 

Ë + dA/dt = -VV 
or 

Ë = -VV-dÂ/dt. (7.25) 

NOTE We can see from Equation 7.25 that the electric field intensity, E, can be 
written in terms of the electric scalar potential, V, and the magnetic vector potential, 
A. As long as these two potentials are unique, the electric field intensity will also be 
unique.' 

In the special case of static (time-independent) fields and potentials, ЭЛ/Э/ = 0, 
and we can see that Equation 7.25 reduces to E - - VV, as we found in Chapter 6 
for static fields. 

1 Nalure always finds unique electric field intensities. If the electric field intensity as defined by Equation 
7.25 is multiple valued, then there is a problem with our mathematical definition of electric scalar potential 
or magnetic vector potential, and it must be resolved. Lorenz defined (in Equation 7.28 below) a further 
restraint on the magnetic vector potential that resolved multiple values for the electric field intensity. 
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In the more general case of time-varying fields and potentials, we can substitute 
Equations 7.23 and 7.25 into Ampere's law, V x H = .1 + дО/dt (Equation 7.20b), 
along with В = μίΐ and D = εΕ for homogeneous media, to yield 

or 

νχ(νχΑ) = μ.Ι+με dË/Bt 
or 

V xV xÄ = μ] + μώ{-νν - dÂ/dt)/dt. (7.26) 

Now, using the identity Vx Vx A = V(V-A) - V2A in Equation 7.26, we see 

ν{ν-Α)-ν2Α=^-ν(μεάνβι)-μεά2Αΐάι1 

or 
ν2Λ-μεΒ2Α/3ί2 =-μ1 + ν(ν-Λ+με3ν/3ή. (7.27) 

Now, the definition of a unique vector field A requires an additional restriction or 
gauge. One way to provide this restriction is to specify its divergence; that is, 
although the curl of Л is designated ß, we are still liberty to choose the divergence 
of A. Lorenz made the choice' 

νλ + μεΒνβΐ = 0, (7.28) 

which is now called the Lorenz gauge for potentials. The rationale for that choice 
is clear because it reduces Equation 7.27 to a second-order, linear, inhomogeneous 
partial differential equation (PDE) 

V2A -μεά2Αβΐ2 = -μϋ, (7.29) 

which is called the inhomogeneous wave equation for the magnetic vector potential. 

NOTE Equation 7.29 does not include the electric scalar potential, V, the electric 
field intensity, E, or the magnetic field intensity, //; only the electric current density, 
J, need be known to solve for A. Through the choice of the Lorenz gauge, Equation 
7.28, we have been able to separate the terms in the four coupled Maxwell's 
differential Equations 7.20 into a single, PDE. 

We can find a corresponding wave equation for the electric scalar potential, V, 
by substituting Equation 7.25 into Gauss's law, VD = pv (Equation 7.20c): 

ν-Ε = ρν/ε^ν(νν + 3Α/Βή = -ρν/ε, (7.30) 

which leads to 

ν2ν + ΰ(νΑ)/3ΐ = -ρν/ε. (7.31) 

Using the Lorenz gauge. Equation 7.28 (V-A + μεθν/θί = 0), we see that the 
electric scalar potential, V, also satisfies an inhomogeneous wave equation 

ν2ν-με32ν/Βί2=-ρ,/ε. (7.32) 
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In the more general case of time-varying fields and potentials, we can substitute 
Equations 7.23 and 7.25 into Ampere's law, V x H = .1 + дО/dt (Equation 7.20b), 
along with В = μίΐ and D = εΕ for homogeneous media, to yield 

or 

νχ(νχΑ) = μ.Ι+με dË/Bt 
or 

V xV xÄ = μ] + μώ{-νν - dÂ/dt)/dt. (7.26) 

Now, using the identity Vx Vx A = V(V-A) - V2A in Equation 7.26, we see 

ν{ν-Α)-ν2Α=^-ν(μεάνβι)-μεά2Αΐάι1 

or 
ν2Λ-μεΒ2Α/3ί2 =-μ1 + ν(ν-Λ+με3ν/3ή. (7.27) 

Now, the definition of a unique vector field A requires an additional restriction or 
gauge. One way to provide this restriction is to specify its divergence; that is, 
although the curl of Л is designated ß, we are still liberty to choose the divergence 
of A. Lorenz made the choice' 

νλ + μεΒνβΐ = 0, (7.28) 

which is now called the Lorenz gauge for potentials. The rationale for that choice 
is clear because it reduces Equation 7.27 to a second-order, linear, inhomogeneous 
partial differential equation (PDE) 

V2A -μεά2Αβΐ2 = -μϋ, (7.29) 

which is called the inhomogeneous wave equation for the magnetic vector potential. 

NOTE Equation 7.29 does not include the electric scalar potential, V, the electric 
field intensity, E, or the magnetic field intensity, //; only the electric current density, 
J, need be known to solve for A. Through the choice of the Lorenz gauge, Equation 
7.28, we have been able to separate the terms in the four coupled Maxwell's 
differential Equations 7.20 into a single, PDE. 

We can find a corresponding wave equation for the electric scalar potential, V, 
by substituting Equation 7.25 into Gauss's law, VD = pv (Equation 7.20c): 

ν-Ε = ρν/ε^ν(νν + 3Α/Βή = -ρν/ε, (7.30) 

which leads to 

ν2ν + ΰ(νΑ)/3ΐ = -ρν/ε. (7.31) 

Using the Lorenz gauge. Equation 7.28 (V-A + μεθν/θί = 0), we see that the 
electric scalar potential, V, also satisfies an inhomogeneous wave equation 

ν2ν-με32ν/Βί2=-ρ,/ε. (7.32) 
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Gauge Invariance 

Maxwell's original quaternion equations used the gradient of a scalar magnetic 
vector potential H= - νΩ (Equation 1.68) to calculate magnetoj/afic field intensity 
and included the equation of continuity as fundamental. This made the magnetic 
vector potential Л a physically meaningful field (not a mathematical convenience 
like we have just described). However, the original equations included a magnetic 
mass m that was part of the Lorenz force equation, as shown in Equation 1.59. 
In addition, the mass m could be calculated according to_ Equation 1.67 as m = 
S.VM, which takes the scalar part of the four vector M to yield an equation 
similar to Gauss's Law for electric charge density, as shown in Equation 1.66, 
e = S. VD. This became the basis for the P.A.M. Dirac formulation of a magnetic 
charge density and the possible existence of magnetic monopoles (instantatons) 
in 1931. Although no one has found an isolated magnetic monopole, we have 
seen in Chapter 6 that it is possible to think of a magnetic monopole layer and 
a magnetic monopole current as a mathematical convenience in which case we 
arrive at the same answers for electromagnetic field quantities. Note also that, 
if we compare Equation 7.25 (E = -VV - д/Vdt) with Equation 1.58 (E = 
V.vli - dAJdt - Vç), the term V.vli (the vector part of vli) is missing. Thus, 
Ётяюп — H(v x II) is the one term that appears to be discarded. Hertz interpreted 
the velocity, v, as the (absolute) motion of charges relative to the luminiferous 
ether; however, if v is interpreted as relative velocity between charges, then the 
Maxwell Heavyside equations are defined for the case v = 0 (i.e., test charges 
do not move in the observer's reference frame). The first Einstein postulate that, 
in a uniform moving system all physical laws take their simplest form, indepen-
dent of the velocity, requires that observers always measure the undamped wave 
equation (e.g., Equation 7.29) with no terms that pertain to the first time 
derivative. 

Maxwell agreed with Faraday that there existed a medium characterized by 
polarization and strain, through which radiation propagated from one local region 
to another local region. Instead of force residing in the medium. Maxwell adopted 
the Faraday force field concept that there was a distinction between quantity and 
intensity. Magnetic intensity was represented by the line integral described in 
Chapter 6 and referred to the magnetic polarization of the medium and magnetic 
quantity was represented by a surface integral that referred to the magnetic 
induction in the medium. In all cases, a medium was required and was the basis 
for electromagnetic phenomena, that is, the electromagnetic field did not exist 
except as a state of the propagating medium in which there were no electrical 
conduction currents (only displacement currents) and in which there were no 
electrical or magnetic sources. Rather than electricity producing a disturbance in 
a medium, the presence of electricity was the disturbance. Maxwell thus thought 
of electric current as a moving system with forces communicating the motion 
from one part of the system to another; equations of motion were defined only 
locally. 
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7.6 SOLUTION OF THE TIME-DEPENDENT 
INHOMOGENEOUS POTENTIAL WAVE EQUATIONS 

To solve a time-dependent inhomogeneous PDE (wave equation) of the form 

ν2ψ-μεά2ψ/&2 =f(x,t), (7.35a) 

we need to find a particular solution to the inhomogeneous PDE (called the particular 
solution, γ/janicuiar)· ^° s o ' v c t n c fu" equation, we will need a solution (called the 
homogeneous solution, •/'homogeneous) to the homogeneous PDE 

ν2ψ-με32ψ/Βί2=0. (7.35b) 

Then, the general solution to the problem will be 

Ψ = ^particular + ^homogeneous· I / . 3 0 ) 

NOTE The student is asked to refer to mathematical books like Schaum's Out-
lines on Differential Equations by Richard Bronson or Mathematical Methods for 
Physicists by George Arfken for techniques to solve these equations. These and 
other authors conclude that it is possible to show that 

a. a particular solution to the inhomogeneous PDE 7.35a is unique; that is, if 
you find a solution to Equation 7.35a by any technique, you need not search 
further because you have found the only solution; and 

b. there are, in general, two linearly independent solutions to the second-order 
homogeneous PDE 7.35b, so the most general solution to this equation is a 
linear combination of the two. Any arbitrary coefficients in the final problem 
solution 7.36 will need to be chosen to satisfy the boundary conditions of 
the particular problem. 

NOTE In the special case of a source-free problem (p, = 0 and./ = 0), for example, 
in a nonconducting medium like free space, we can see that all four of the PDEs in 
Equation 7.33 are homogeneous PDEs. Thus, the solution to these equations in this 
special case need not contain a particular solution, and the most general solution 
will be a linear combination of the two linearly independent solutions to the homo-
geneous PDEs. Even in the general case of the inhomogeneous PDEs, we will need 
the solutions to the homogeneous PDEs in our answer, so we begin with the solution 
to the homogeneous PDEs. 

NOTE Many students and professionals become so caught up in the detailed solu-
tions of these equations that they lose sight of what they are trying to accomplish. 
Entire math and physics course sequences are designed to justify a solution that is 
unique and complete, so it is not surprising that a state of misunderstanding or 
confusion results, and sometimes students decide they are not capable of doing this 
kind of work. It is thus recommended by the author that the student first read to the 
end of this chapter (without trying to understand the detailed solutions) to get a clear 
picture of where we are headed. 
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7.7 ELECTRIC AND MAGNETIC FIELD EQUATIONS FOR 
SOURCE-FREE PROBLEMS 

For the special case of source-free problems (i.e., pv = 0 and ./ = 0), we can see 
that Maxwell's equations reduce to the form shown in Table 7.3: 

So, if we take the curl of Faraday's law, 

or 
V xVxE = -Vxdß/dt 

ν(ν-Ε)-ν2Ε = -μ9(νχΗ)/&. (7.37) 

Now, substituting Gauss's law ( V- E = 0) and Ampere's Law into Equation 7.37, 
we see 

V2Ë-ned2Ë/dt2=0. 

Likewise, taking the curl of Ampere's law, 

VxVx H = Vxdö/dt 

(7.38) 

or 
V(VH)-V2H = ed(VxD)/di. 

axwell's equations (V-i 

V2H-ned2H/dt2=0. 

(7.39) 

And using the fourth of Maxwell's equations (V-H = 0) with Faraday's law, 
we see 

(7.40) 

CONCLUSION In source-free space, V, all of the components of A, all of the 
components of E, and all of the components of /7 satisfy the homogeneous wave 
equation. 

NOTE We often label με = \lu2
p and μ„ε„ = M с2 in the wave equation. 

Table 7.3 Maxwell's Equations for Source-Free Problems 

Differential form Integral form Name of law 

V x E = -dB/dt 

V X H = SD/dt 

VD = 0 

VB = 0 

j> E-dT=-jj (дв/dt)-ds 

j> HdJ=jj (dnfdt)-ds 

j> Di/.y=0 

Bds=0 

Faraday's law 

Ampere's law 

Gauss's law 

No isolated magnetic charge 
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7.8 SOLUTIONS FOR THE HOMOGENEOUS WAVE EQUATION 

Time Dependence 

The homogeneous wave equation lends itself well to a solution using the separation 
of variables technique. In this technique we assume that the solution to the PDE, 
ψ(χ, f). can be written in the form of a product, ψ(χ, t) = ψ^χ)Τ(ΐ), where ψ<,(χ) is 
a function of only the spatial variables and T(t) is a function of only the time 
variable. Putting this product form into Equation 7.36, we see 

ν2ψ5(χ)Τ{ί)-μεο-2[ψ$(χ)Τ(ι))/Βι2 =0 . (7.41) 

Now we recognize that the operator V2 operates only on the spatial part of the 
product and that the operator Э2/Э/2 operates only on the time part of the product so 
that 

T(t)V2
¥s(x) = μεψ5(χ)?Τ(ί)/υ\ (7.42) 

and, if we then divide Equation 7.42 through by the product ψ^χ)Ί\ί), we get 

Ϋ!ΐ^1 = με^(^\ (7.43) 
Vs(x) TU) 

In Equation 7.43, we see that the left-hand side of the equation depends only on 
spatial variables and that the right-hand side of the equation depends only on time. 
We can argue that there is no way that these two quantities can equal one another 
except in the case that they both equal a constant (the same constant). We are free 
to name this constant, so let us call it -k2 (recognizing that this constant might turn 
out to be a complex number). 

Then, 

Ϋΐψ.=^ and ^imi*L=-k>. {1M) 
ψΑχ) П О 

The beauty of these two equations is that they are easy to solve because they 
reduce to 

V24/s(x) + k24fs(x) = 0 and d2T(t)/dt2=-(k2/ne)T(t) (7.45) 

The first of these equations is called the scalar Helmholtz equation, and the 
second is the equation for a harmonic oscillator with solution 

r(f) = Asin<w + Bcostw = C « y " + D e - / " = f S i n < W } = ( e 7 » v ' ICOSÛWJ [e-*** 
with 

ω = k/-jjli. 
This solution2 is a linear combination of the two linearly independent functions 

sin (ùi and cos ft)/ or alternately of the linearly independent functions e"a and e'1"* 

2 Some authors use (he matrix symbol { | to mean take a linear combination of the contents and some 
use a matrix symbol ( ) to mean the same thing; both are equally common are interchangeable in this text. 

(7.46) 
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(the choice of form is usually obvious when we examine the boundary conditions 
for the problem). The matrix form of the answer on the right of Equation 7.46 is 
shorthand for the same linear combinations. 

We have now found the time-dependent part of the product ψ(χ, t) = ψ·,{χ)Ί\ί) 
and we can find the spatial part of the product by solving the scalar Helmholtz 
equation 

V2yfs(x)+k2yfs(x) = 0 (7.47) 

subject to the condition that k1 = αΐμε, and we will write the general answer as 

ψ(χ, l) = ψΒ(χ) (7.48) 

The solution to Equation 7.47 will depend on the coordinate system because 
V2 is different in Cartesian, cylindrical, or spherical coordinates. The choice of 
coordinate system is usually apparent from the boundary conditions given in the 
problem; for example, if the quantity ψ,^χ) or dy/s{x)/dn is specified on the surface 
of a rectangular box, the obvious choice of coordinate system is Cartesian. 

NOTE There are very special problems in which the boundary conditions are 
specified on the surface of an elliptical shape or a toriodal shape. For those problems, 
other more complex coordinate systems might be employed with their concurrent 
forms for the Laplacian, V2. 

For most real-world problems, the boundary conditions are very hard to specify 
in any simple coordinate system, and we will need to revert to a numerical solution 
of the Helmholtz equation. Many commercial computer codes" have been written 
for these solutions such as High Frequency Structure Simulator (HFSS) by the 
Ansoft Corporation of Pittsburg, PA. 

NOTE The choice of coordinate systems cannot change the answer to the problem. 
In nature, there is only one unique answer to the problem so our choice of coordinate 
system is only a convenience to being able to state the boundary conditions in a 
simple way. 

Spatial Dependence 

The spatial dependence of the homogeneous wave equation is found by solving the 
scalar' Helmholtz equation V2y/S(x) + Ιάψ&χ) = 0. 

For Cartesian coordinates, we can express the Helmholtz equation as 

d2ws(x)/dx2 + av s(*)/a/+э>$(*)/э г
2+*>*(*)=о. (7.49) 

' In Cartesian coordinates, the vector Helmholtz equation separates into three independent scalar 
equations. In cylindrical or spherical coordinates, this is not the case; the topic is considered in Huray, 
The Foundations of Signal Integrity, Chapter 6. 
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If we again employ the separation of variables technique by assuming that the 
spatial function can be written as the product of functions, ψ·,{χ) = X(x) Y(y) Z(z), 
then we can substitute this into Equation 7.49 and divide by ψ±(χ) to obtain 

д2Х(х)/дх2
 | Э2Г(.у)/Эу2

 | d2Z(z)/dz2
 = k2 

X(x) Y(y) Z(z) 

Again, we can see that all of the x dependence is in the first term, all of the у 
dependence is in the second term, and all of the z dependence is in the third term. 
The only way these terms could cancel one another for all values of x, y, and z is 
that the terms individually, at most, be equal to a constant. For convenience, let us 
call the three constants -кх

2, -к/, and -k,2, where any one or all of the constants 
could potentially be a complex number. This choice renders Equation 7.50 into the 
three separate equations 

д2Х(х)/дх2=-к2Х(х) (7.51a) 
d2Y(y)/dy2=-k2Y(y) (7.51b) 
d2Z(z)/dz2=-k2Z(z) (7.51c) 

with the condition that 

k2+k2.+k2=k2. (7.5 Id) 

By separating variables, the partial derivatives now operate only on functions 
that contain the derivative variable, so they can be replaced by ordinary derivatives. 
The solutions to these differential equations are all the same in Cartesian 
coordinates: 

X<*Hcos£j = U < * (7'52a) 

/sin^/V'n 
"Ky> [coskyy t*>, 

(7.52b) 

The choice of form of the linear combination is often obvious because it is easy 
to specify the boundary conditions in a particular problem. For example, in Cartesian 
coordinates with free-space boundary conditions, it is convenient to use the vector 
definition к = &Д, + kyây + kßz to specify a direction of propagation so that к х -
kxx + kyy + kzz and the most general solution to the homogeneous wave equation can 
be simply written as 

e-m\ w i th* 2 =£»V· (7.53) 

This solution is a plane wave traveling in the ±k-direction, depending on the 
choice of the sign in the exponent of the time-dependent term. The constraint k2 = 
οτμε will place very important restrictions on the kind of solution that can exist in 
specific boundary value problems (e.g., rectangular waveguides). 
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In other applications (e.g., potential interior to a rectangular cavity with fixed 
wall potentials), it may be more convenient to use the solution form 

w(x,t) = \ .' , · 4 ,- withurue = A;+Av+Α,\ (7.54) 
γκ ' \coskxx]\coskyy )\cosk:z)\cosœt) * ■ z 

For cylindrical coordinates, we can express the scalar Heimholt/ equation as 

pdpV dp ) p2 Эф' dz 

If we again employ the separation of variables technique by assuming that the 
spatial function can be written as the product of functions, ψι{χ) = Ρ(ρ)Φ(φ)Ζ(ζ), 
then we can substitute this into Equation 7.55 and divide by ψ^χ) to obtain 

1 Э ( ЭР 
τζτζΡτ-

1 Θ2Φ 1 d2Z 
+ -—т = -к\ (7.56) 

Pp Эрl/ Эру Фр2 дф2 Zdz 

NOTE In Equation 7.56, we have dropped the arguments of the P(p), Φ(φ), Ζ(ζ) 
functions for brevity but can see that the partial differentials may be exchanged by 
ordinary differentials. Here, we can recognize that all of the z dependence occurs in 
the last term on the left-hand side (LHS) so we can conclude 

1 d-Z 

Z dz2 
= -ai (7.57a) 

and Equation 7.56 becomes 
p Э ( dP} 1 Э2Ф г 2 

РЭр^ г Эр^ Ф дф2 

from which we can conclude 

1 д2Ф 

ФЬф2 = -m2 (7.57b) 

and 
p д ( дР\ , 
- — p—- \-m2 -a-p =-klpl 

or with γ2 = к2 - а2 
Р Вру dp 

The solution to Equation 7.57c is a linear combination of a Bessel function, J,„(Yp), 
and a Neumann function, Ν„,(γρ), so 

,_ . IJm(yp)\lsinтф\1 sinaz\(e''m\ г(* , )ши.(5))(оо.4Лс«Дл·} (7·58) 

The linear combination of Bessel and Neumann functions can have coefficients 
that describe a real and an imaginary part, in which case the answer can be 
expressed as a linear combination of a Hankel function of the first kind, Η\1\γρ) = 
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JmiYP) + jNm(yp) and a Hankel function of the second kind, Η(2\γρ) = Jm{yp) -
jNm(yp). These functions are often used for problems in which there is a known 
incoming or outgoing cylindrical wave (e.g., for antenna problems). 

In the event that the argument is negative (i.e., when y2 = k2 - a2 is negative), the 
solution can be written as a linear combination of a modified or "hyperbolic" Bessel 
function, Ι,„(γρ)=e-'^JJjyp) and a McDonald function, Κ,„(γρ) = (j7tl2)e>ml2H{„\ \γρ). 
These functions occur in potential problems associated with cylindrical 
superconductors. 

In some circumstances (e.g., for fields inside a good conductor), the argument 
of the radial function can be expressed in terms ofyf] = e'"/4 (called a phase XA 
number) in which case we may write the real and imaginary part of the modified 
Bessel function as lm{\[jYp) = Berm(yp) + jBei„,(yp) and the real and imaginary part 
of the McDonald function as Κ„,(γρ^/]) = Кег„,(ур) + jKei,„(Yp). 

Because these various forms of the solution of the Helmholtz equation are linear 
combinations with coefficients that may be complex numbers, we are at liberty to 
choose the form of a solution that most easily satisfies our given boundary 
conditions. 

For spherical coordinates, we can express the scalar Helmholtz equation as 

R2 dR\ dR J R2sm0de\ ΒΘ ) R2 sin2 в дф2 

(7.59) 
If we again employ the separation of variables technique by assuming that the spatial 
function can be written as the product of functions, \ffs{x) = Γ(/?)Θ(0)Φ(0), then we 
can substitute this into Equation 7.59 and divide by ψ$(χ) to obtain 

I dfD2dT\ 1 д ( . пдЭЛ 1 Ь2Ф , 2 _ . _ , 
<?"т- + . -, . гтгг s i n e — + — ■ , ■ ■ , . - ■ , = - * ■ (7-60) TR2 dR\ dRJ eR2smede\ дв J <PR2 sin2 вдф 

NOTE In Equation 7.60, we have dropped the arguments of the Γ(/?), θ(ο), and 
Φ(φ) functions for brevity but can see that the partial differentials may be exchanged 
by ordinary differentials. Here, we can also multiply through by /?2sin2 θ\ο recognize 
that all of the φ dependence occurs in the last term on the LHS so we can 
conclude 

ά2Φ/άφ2 =-т2Ф (7.61а) 

and Equation 7.60 becomes 

Э (о2дГЛ 1 Э ( . адв\ m1
 ; 2 

R τ- \+ _ , . . т - s i n e - - , . , . =-k2. TR2 MV" dR)' QR2unedeV"" дв) R2 sin2 Θ 

Multiplying through by R2, we can conclude 

1 3 f . , 3 n 1 Э ( . аЪ&Л m2
 l2o2 

— — R — + s i n e — — = -klRl. 
rdRK dR) ©sineael de) sin2e And rearranging terms on the LHS and right-hand side (RHS), 
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1 Э (»'3Γ\ I 2 D 2 -1 Э ( . ÛЭΘ^ /; ——I /?" — 1 + * Ä = : — Stnö 
rdR\ dRJ 0 s in0 3 0 l Э0/ sin2 0 

We see that the variables are again separated, so we can set them equal to an 
arbitrary constant; in this case, -/(/ + 1), so that 

', 1 d ( . ndQ\ Λ ιη'θ 
: s ' s i n 0 — +/(/ + ! ) © — — ^ = 0 (7.61b) 

sin0J0V ί / θ ; sin"0 
and 

or 

R2— \+k2ff-l(l+l) = 0 
rdR\ dR, 

я2 эя\. э/?; л2 — — \ R — | + * T - =0 . (7.61c) 

The solution to Equation 7.61b is the associated Legendre function of the first 
kind, P/"(cos 0), and the associated Legendre function of the second kind, ß/"(cos Θ). 
For к * 0, the solution to Equation 7.61c is the spherical Bessel function, ji(kR), and 
the spherical Neumann function, tfi(kR). We can thus write the solution to the homo-
geneous wave equation in spherical coordinates as 

^-'H^)U;4cos4^4,-4 (7·62) 

The linear combination of spherical Bessel and Neumann functions can have 
coefficients that describe a real and an imaginary part, in which case the answer 
can be expressed as a linear combination of a spherical Hankel function of the first 
kind, h',!,\kR) = j,„(kR) + jr\m(kR) and a spherical Hankel function of the second 
kind, h%XkR) = j,„(kR) - jη,„(kR). These functions are often used for problems in 
which there is a known incoming or outgoing spherical wave (e.g., scattering from 
a spherical shape, as are discussed in Huray, The Foundations of Signal integrity, 
Chapters 6 and 7. 

In a few applications, it is desired to write the solution as a linear combination 
of a modified spherical Bessel function, i„,(kR) = -^K/lkRIm^n(kR), and a modified 
spherical McDonald function, k„,(kR) = ^2lnkRKm^ß{kR). These functions occur 
in potential problems associated with spherical conductors. 

In some circumstances, we write the real and imaginary part of the modified 
spherical Bessel function as im(kR) = her,„(kR) +jbei,„(kR) and the real and imaginary 
part of the spherical McDonald function as k,„(kR) = kerm(kR) + jkei,„(kR). 

As in the case of cylindrical coordinates, these various forms of the solution of 
the scalar Helmholtz equation are linear combinations with coefficients that may be 
complex numbers, so we are at liberty to choose the form of a solution that most 
easily satisfies our given boundary conditions. 

NOTE For к = 0 (the special case when ω - 0, i.e., the static case). Equation 7.59c 
is simply 
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j a / 2 | n « / ± i E = 0 , (7.63) 
R2 dR\ dRj R2 

T(R) = 

which has two linearly independent solutions R' and R (,+l) so that 

/?' 

The total solution for the static case can be written as 

R1 V P,"'(cos0)Y <>< 

V /?- ( ' + I>JIÖ;"(COSÖ)JU 

because both of the time-dependent exponentials are e** = 1. 

(7.64) 

№.. )=L" .„ " "z: ; - 1 <™> 

7.9 PARTICULAR SOLUTION FOR THE INHOMOGENEOUS 
WAVE EQUATION 

Wave Equations with Sources 

We now consider the particular solution of the inhomogeneous wave equations: 

ν2ψ-με&ψΙ&2 = f(x,t) where (7.66a) 
f(x, t) = -p(x, t)/e when ψ(χ, t) = V (x, t) and (7.66b) 

f(x, t) = -μ.Ι,(χ, t) when ψ(χ, t) = Λ,(χ, t) (7.66c) 

for each of the i components of the magnetic vector potential in Cartesian coordi-
nates. Equation 7.66c thus represents three equations. 

As noted previously, any technique that provides a solution provides the solution 
because the particular solution is unique. Some authors (e.g., Matthews and Walker) 
often use an informed guess technique, and others (e.g., Jackson) use a formal 
Green's function technique to obtain an answer, as we discussed in section 4.3 for a 
static case. We provide the latter technique here for completeness. The Green's func-
tion technique is optional in the sense that the student may go straight to the answer 
below and try that answer in Equations 7.66 to see that it satisfies the PDEs. Using 
this result as their informed guess, the students can conclude that they have found an 
answer and thus have found the mathematical solution to the problem. The only 
remaining issue will be to determine what physical characteristics the answer implies. 

Green's Function Technique 

For time-varying fields we can find the solution for an inhomogeneous PDE by first 
taking its Fourier transform with respect to the variable t. We will use the Fourier 
integral representations:4 

1 Justified by (he last paragraph of Appendix С because e "" j-Jbi are solutions of a Sturm-Liouville 
differential equation. 
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ψ(χ, t ) = ( l / 2 * ) £ V(*. œ)e-i"dœ (7.67a) 

f{x, t) = ( 1 / 2 π ) | 2 / ( ί , û>)e~*"Ao (7.67b) 

and their inverse transformations 

\lf(x,<o) = \°\(x,t)eiu"dt (7.67c) 

f(x, ώ) = ]" fix, t)e'°"dt. (7.67d) 

Substituting these representations back into Equation 7.66a, we find that the 
Fourier transforms satisfy the inhomogeneous Helmholtz equation: 

(V2+k2)4/(x,a>) = f(x,<0) (7.68) 
for each value of ft). We will later consider the restriction ω = k/yffle to see that it 
imposes a causality condition on the solution. 

Two important relations between the Fourier transforms are that 

(1/2π)Ι\Αω~ωΊ'άΐ = δ(ω-ω') (completeness relation) (7.69a) 

(\/2n)j\M'-'">d(0 = 5(t -1') (orthogonality relation), (7.69b) 

where δ(χ - a) is the one-dimensional Dirac delta function. 

NOTE The one-dimensional delta function is defined by its properties: 

1. δ(χ - a) = 0 for x it a 

2. SZ%X - a ) d x = ! 
3. Sy.x)SOc-a)dx=fl.a) 

4. JZfix)S'(x - a)dx = -f(a) 

One picture of the one-dimensional delta function is that it is in the shape of a 
Gaussian distribution centered about its mean at a and with a vanishingly small 
standard deviation. 

NOTE It is also possible to define a three-dimensional delta function in Cartesian 
coordinates for which 

1. δ(χ- χ') = δ(χ - χ') öiy - y) δ(ζ - ζ') 

Ш , 1 if AV contains x = x' 

5(x-x')d3x = iV 0 if AV does not contain x = x 
Fourier reasoned that we could solve Equation 7.68 by taking its transform with 

respect to time and then each of the spatial variables, x, y, and z, put them into 
Equation 7.69, find an algebraic solution for the transform, and then take its inverse 
Fourier transforms to find the answer. We might call this the Fourier technique, but 
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it suffers from the fact that we need to solve Equation 7.68 for each possible charge 
or current density distribution, flx, a>). 

In 1824, George Green claimed that, if we solve the equation 

(ν2-μεά2/Βί2)θ(χ,ν,χ',ΐ') = δ(χ-χ')δ(ί-ΐ') (7.70) 

then (in infinite space with no boundary surfaces) the solution of Equation 7.66a 
will be 

Ψ(Χ, О = J JJJG(*, r, X', t') f{x', t')d3x'dt'. (7.71) 

Proof 

Let us assume that we have found G(x, /; x', f) that satisfies Equation 7.70. If George 
Green's claim is correct, then ψ(χ, t) formed by Equation 7.71 should satisfy 
Equation 7.66a. 

To see if this is true, we will putψ(χ,ί) = jjjJG(x,t;x',t')f(x',t')d3x'dt' 
into V2yr - μ&Ρψ/Β? to see if it produces β,χ, t). 

Check 

V2 JJ|JG(X, t; x\ t')f(x, t')d3x'dt'-ßsd2jjjJG(x, t; x\ t')f(x\ t')d3x'dt'/dt2 

= jjjjV 2G(x, f, x\ t')f(x, t')d3x'dt'-ßejjjjd2G(x, t; x, t')/dt2 f(x\ t') 

d3x'dt' = J" jjj\f2G (χ,ι;χ,ί')-με32ΰ(χ,ί; x, t')/dt2 ]f ( x, /') d3x'dt ' 

= \\\\[8(x-x')8{l-t'))f(x\t')d'x'dt' = f{x,t) 

Thus, it is proven. 
Of course, the Green's function G(x, /; x", t') will have to satisfy appropriate 

boundary conditions demanded by physical considerations and causality. G(x, r; x', t') 
is often called the point source response function because it is the answer (response) 
at the point x and time t to a point source that was created at the point x ' and time /'; i.e., 
we can see that Equation 7.66 is the same as Equation 7.70 in the special case that 
fix, t) = δ(χ - x')6(t -1'). The emphasis on the word was is used to emphasize that the 
point source has to be created at time t' before the time t that we seek the answer; that 
is, causality demands that we obtain a response only after the point source originates. 
Furthermore, we can conclude that the response at the point x and time t must provide 
enough time for the potential or vector potential point source at the point fand time /' 
to reach the response point traveling at the speed of light in the medium, с = Ι/^με. 
This condition is called the retarded response. 

The power of using the Green's technique is that we can solve Equation 7.70 
(in whatever coordinate system we choose), and the answer is independent of the 
source distribution f(x, t) in our particular application. That is, once we have found 
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an answer, G(f, ί; χ', r')> to Equation 7.70, we will then put it into Equation 7.71 
along with fix', t') to get an answer, yrt,x, t), for a particular source distribution 
fix, t). 

To solve Equation 7.70, we can insert the four dimensional Fourier transform 
of the Green's function, g(k, ω), on the LHS of the equation and the four dimensional 
delta function representation on the RHS of the equation as follows: 

G(x, t; x', t') = jjjd3kjdmg{k, соУш-Г)е-м'-п (7.72) 

δ(χ - χ')δ{ί -1') = ΐ/(2π)4 JJJrf3* jdcve**-?>e-i<*>-n ( 7 . 7 3 ) 

The result is a simple algebraic equation: 

н{к,(о) = []/(2п)*](к2 -μεω2)-1 = [I/(2TT)4](Â:2 -Û» 2 /C 2 )" ' . (7.74) 

PROBLEM 

7.1 Show that Equation 7.74 results from putting Equations 7.72 and 7.73 into 
Equation 7.70. 

We can substitute Equation 7.74 back into Equation 7.72 to find the Green's 
function but we must recognize that, in carrying out the integral over ω, there is a 
singularity in the integrand at the points a> = ±kc. We can use a Cauchy integral in the 
complex ω-plane to evaluate the answer using the blue path С shown in Figure 7.3: 

,.2 0jUx-.f)0-Mi-n 
d(0 is not defined because there Formally, the integral I 

(2πΤ {(0-kc){w + kc) 
are two singularities on the path C. This mathematical problem can be overcome by 
displacing the singularities below the path С by adding an infinitesimal term ja to 
each term in the denominator and taking the limit as a -» 0 (a being a positive real 

i(ie 

ω-plane 

Path С Ul 

I'aih С 

Path С 

tù- + —==- -ja 

με 
Path CR 

for / < f 

Figure 7.3 (Left) Path С for integration over variable ω because i_j>fl(0)d<o = j,fi(0)dar. 
(middle) closed contour path С plus C„ for evaluating the CO integral using the method of residues 
for the case I < l'; (right) closed contour path Г plus CR for evaluating the ω integral using the method 
of residues for the case ; > ;'. 
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number). The reason for displacement below the path С is that the result satisfies 
the physical solution as opposed to a displacement above the path ('. 

According to the Residue Theorem for integrals in the complex ω-plane, 

G(x, t\ x', / ') = JJJrf'jfcJ А»я(*, (ù)eÎHÎ-r)e-m'-'"> 

with 

g(*,ö)) = -lim- с2 1 

"-*" (2/r)4 (ω-kc- ja)(co+he - ja) 

has two poles of order 1, so, for t > t\ the solution is 

««'■>№'# еМ*-У) (7.75) 
(2тг) [ 2kc 2kc 

and, for l < t', the solution is 0. Thus, 

G(x, r, x\ П = [α/(2πγ]Щ^се*<**> Ê ^ z £ 2 , (7.76) 

PROBLEM 

7.2 Show that the integrand goes to zero for points on the semicircle (red Path CH) 
in Figure 7.3b for t < t' and for points on the semicircle (red Path CR) in Figure 
7.3c for I > t'. 

We can take the integral over d3k by first integrating over angles: 
m jkR cos» 

G(x,t\x\t') = (cl4n2)ydkj"(1Θ sinjfcc(f-i')sm0ii0, 

where 
R = |jc-jt'| 

or 
m /Mcosfl 

G(x, t\ Г, t') = ( ί /4π 2 ) fdk j dd sin*e(i-t')d(cosd) 

G(x,t;x',i') = (c/2K1R)fdksmkRsmkc(t-t'). (7.77) 

Now, because the integrand is even in k, the integral can be written over the interval, 
-°o < к < °° with a change of variable, x = kc: 

G(x, t; x', !') = (-l/SK1R)j^dx[eJU-n-R/l)x - e * 4 1 * 1 · ] (7.78) 

and from Equation 7.69b, we can see the integrals are just Dirac delta functions: 

G(x, t; x\ t') = {-\/4nR)[S((t-l')-R/c)-S((t-t')+R/c)] (7.79) 

However, because I > l\ the argument of the second delta function is never 0, so 

G(x, r; x', / ') = (-\/4KR)S((I - t')-R/c) 
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G(x,t;x',t') = (-l/4n\x-x'\)ô((t-t')-\x-x'\/c). (7.80) 

This Green's function is called the retarded Green's function because it exhib-
its causal behavior associated with the propagation of a wave source to a response 
location; that is, an effect observed at a point x due to a source at a point x' and 
time t' will not occur until the wave has had time to propagate the distance \x - x'\ 
traveling at speed с = \/^[με. 

Finally, we can use Equation 7.74 to find the solution to the inhomogeneous 
wave equation in the absence of boundary conditions as 

ГА ') = -№Wt~lV~X~>P/C)f&> Ъ**#. (7.81) 
JJJJ 4π\χ-χ\ 

The integration over di can be performed to yield the "retarded solution" 

ψ(χ,ί) = -\\\[ί(χ,,,')]'ίω'Μά'χ'. (7.82) 
J J J 4π\χ-χ'\ 

The potential due to a charge distribution over a volume V is then 

V(R,,) = (ißne)iJl^l^d^ (7.83) 

called the retarded scalar electric potential, which indicates that the scalar electric 
potential at (/?, /) depends on the value of charge at an earlier time (t - Rlc). 

Similarly, we can obtain the retarded magnetic vector potential 

A (R, t) = W4n)fJlH'-R
R/c)d3x'. (7.84) 

Time-Harmonic Solutions 

If we have the special case of 

p(x,t) = ps(x)eja' and J(x,t) = Js(x)eja', 
then 

P(*. t^aräeä ) = Ps(x)e-Jk]î-'' eJa" and .7 (x, t) = J^iK^V"'. 

In that case. Equations 7.83 and 7.84 reduce to the special case answers 

V(x,x',t) = (l/47te)jtf р^х'){е-^-п1\х-х'\)агх'е}ш (7.85) 

A(x,x\ t) = (μ!4π)\\\ js(x')(e-'kr"-~xy\x-x'\)d3x'ei0". (7.86) 

NOTE As compared with Equations 7.83 and 7.84, Equations 7.85 and 7.86 
contain the factor e''^x'x\ which takes into account the retarded time. 
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7.10 TIME-HARMONIC FIELDS 

Special Case of Time-Harmonic Electromagnetics 

In this section, we summarize the special case of time-harmonic (steady-state sinu-
soidal) field relationships. If we can express 

E(x, y, x, t) = Re[És(x,y, z)eim], (7.87) 

where Ε^,χ, y, z) is a purely space-dependent, vector phasor that contains information 
on direction, magnitude, and phase, the time-harmonic Maxwell's equations can thus 
be written in terms of phasors: 

V x Es = -j(OßHs (д/dt -> j(o) (7.88a) 
V x H s = Js + ja>eËs (7.88b) 

V-Ës = ps/e (7.88c) 
Vßs=0. (7.88d) 

From the last section, the time-harmonic wave equations for scalar potential and 
vector potentials, respectively, become 

V2VH + k2Vs = -ps(x)/e (7.89) 
V2Âs+k2Âs=^Js п ш 

d2/dt2^(jcof=-a>2, 

where 

is called the wave number. 
Lorentz's condition is 

k=a)/c (7.91) 

νλ5 + ]ωμεν>=0, (7.92) 

and the phasor solutions of potentials for the inhomogeneous equations are 

VS(R) = (l/4/re)Jv,ps [e-ikS/R]dv' (7.93) 

As(R) = WAn)\v]s[e-ikRlR)dV\ (7.94) 

which give the retarded scalar and vector potentials due to time-harmonic sources. 

Very Special Case of Time-Harmonic, Source-Free Fields in 
Simple Media 

In a simple, nonconducting, source-free medium characterized by (J = 0, pv = 0, 
σ = 0), the time-harmonic (д/dt -> ja>) Maxwell's equations become 
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VxEs=-jOWHs (7.95a) 
VxHs=jOXÊs (7.95b) 

V-Ês=0 (7.95c) 
VBs=0, (7.95d) 

and the vector w a v e equat ions b e c o m e 

V2F:s+k2Es=0 (7.96a) 
V1Hs + k2Hs=0. (7.96b) 

For this very special case , there are no sources , so there are no part icular solu-
tions, and the most general solut ions to problems are l inear combina t ions of the t w o 
linearly independent solut ions of the h o m o g e n e o u s equat ions . 

7.11 ELECTROMAGNETIC SPECTRUM 

We note that Maxwel l ' s and wave equat ions impose no limit on frequency of the 
waves and that all e lec t romagnet ic waves propaga te at any frequency with the s ame 
velocity (Figure 7.4). 

7.12 ELECTROMAGNETIC BOUNDARY CONDITIONS 

By using Gauss ' s law (integrating over the surface of a small pi l lbox), a s seen 
in Figure 7.5a, and Stokes theorem (integrating around the per imeter of a small 
rectangle), as seen in Figure 7.5b, the boundary condi t ions be tween t w o media for 
t ime-varying fields are derived as 

<Π) DdA = qlmide and taking lim Dl ■ Л, + D , · /Û = Σ , SA 
JJ Pill-Box Ah-*0 

or (D2 - D,)■ ~ax = Σ , , (D:„ - D„,) = Le,s (7.97a) 

II (VxE)cß = S> Ëdï = ——<& Bds and taking 
JjRccuin¥lcv ' J C 3 f J J Kcclangle 

lim [В, -ЕЛ-wL· =0o r £„ = Ev (7.97b) 
J / M ! I ' 

(Б ÎidÂ = 0 and taking lim В, À, + ß , -Ä2 =(ß- - Bt)âxA =0o r «,„ = ß v 
Ппи-ва, ы,^а - (7.97c) 

ff (VxH)-ds=<i Hdï = <ÎÎ jds+dë> Bds/dt 
JjRecunglev ' *C JJKccianglc П Rectangle / 

and taking lim â, x ( / 7 . - H,)w = .7,„.ω. 
4A->0 Ч ' 

(H2,-Hu) = Jinsidelw = Jl. (7.97d) 



7.12 Electromagnetic Boundary Conditions 229 
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Figure 7.4 Spectrum of electromagnetic waves. 
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Interface between a Dielectric and a Perfect Electric Conductor 

For a perfect conductor (having infinite conductivity, σ —> °°), the boundary condi-
tions can be described as in Table 7.4. 

The direction of the fields and their corresponding sources are shown in Figure 
7.5 and Ji is the current per unit length. 

NOTE In The Foundations of Signal Integrity,'" we consider an electric field 
intensity E2„ as it propagates in the г-direction with velocity c2 = \/^μ2ε2 ■ In that 
case, the current per unit length will be produced by the motion of the surface charge 
density Σ,.ν and J, = Z,..sc2. Thus, the magnetic field intensity created by the moving 
charge density will be H2, = Σ,_s j-Jih^i- The ratio of the normal component of the 
electric field intensity, E2n, to the tangential component of the magnetic field inten-
sity in medium 2, H2„ will thus be 

E2JH:, = (Σ, ,/ε2)/Σ„,A^iT = VMTM- (7.98) 
This ratio has the units of volts/amps (ohms) and is called the wave impedance of 
medium 2. 

Interface between a Dielectric and a Good Electric Conductor 

For a good conductor (e.g., for copper, aCu = 5.8 x 107Ω"' m"') that has finite con-
ductivity, the solutions are more complicated because magnetic field intensity can 
penetrate the conductor in an exponentially decaying fashion. For copper, we will 
restrict our consideration of time-harmonic fields to frequencies below 10l8Hz 
because we have seen in example 5.1 that conduction electrons in copper quickly 
reduce electric fields (with a time constant of Tcopp„ = 1.5 x 10"l9s) to zero. This fre-
quency range'' is called the "Quasistatic" regime because düjdt = 0 inside the con-
ductor (just_ as it would for the static case). Thus, Ampere's law in the quasistatic 
regime is Vx H, = .1,. Multiplying through by μ, and using the identity for mag-
netic flux density in terms of magnetic vector potential and the current density in 
terms of the electric field intensity, 

Table 7.4 Boundary Conditions Between a Perfect Electric 
Conductor and a Dielectric (Time-Varying Case) 

On the conducting 
(medium 1) 

E„ = 0 
н„ = о 
£>,„ = 0 
B,„ = 0 

side On the dielectric side 
(medium 2) 

£2, = 0 
H 2, = J, 

D2„ = Σ,„ 
/<:„ = 0 

5 Some engineers refer to the frequency range 0 S / < I015H/. as "DC to daylight." 



7.12 Electromagnetic Boundary Conditions 231 

Vxll = u,j. orVxVxA, ~μ,σ,Ε, or 
и и ' (7.99) 

ν(ν-Α)-ν2λ,=μισιΕι. 
Now, using the Lorentz gauge, from Equation 7.28, V-A, + ß&dVJdt = 0, and 
Ex - -VV, - ЭЛ/Эг from Equation 7.25, with the scalar electric potential VV, ~ 0 
and dV,/dt ~ 0 (the quasistatic approximation), we deduce 

V2A, ^μ,σ,Μ,/dt. (7.100) 

This equation, called the diffusion equation, determines how the magnetic vector 
potential in the conductor, A,, propagates with time, and it is fundamentally different 
from the wave equation because of the^ïm derivative with respect to time. 

For time-harmonic fields, A,(x, t) = А,{х)еш, we can replace the derivative with 
respect to time withjfi) to see that 

ν2Α,(,χ) = ]ωμισιΑ,(χ). (7.101) 

For a large, flat boundary between medium 1 and medium 2 in Figure 7.5, we would 
expect no variation of A, in the y- or the г-direction, so Equation 7.101 would 
simplify to 

д2А,/дх2 =]ωμ,σ,Α,, (7.102) 

which has solution Д,(дг) = Ä^±IU;>/i if 5 = -Jl/ωμ,σ,. We thus conclude that A, 
propagates in medium 1 according to 

A,(x) = Ä,e*/V(x/ä+<B". (7.103) 

Here, we have chosen the positive exponent of e under the assumption 
that, for large negative values of x (penetration into the conductor), the magnetic 
vector potential will decay exponentially rather than grow to infinity. Note that 
the propagation of the magnetic vector potential is in the -x-direction. By 
considering a point on the wave for which (.v/<5 + cot) is a constant, 
up = dxjdt = -ωδ = -^ΐω/μ,σ, =->/2/^μ,ει -Jcoeja,. Thus, we can see that the 
magnetic vector potential is decaying exponentially with χ/δ and propagating at the 
speed of light in medium 1, l/V/ι,ε,, divided by the quantity -Jo, /2coEi ■ We choose 
to express the ratio this way because (σ\Ι(οε\) » 1 is the definition of a good 
conductor, δ is called the skin depth because it is the depth to which x must 
go to decrease the surface quantity by e~l. We can compute δ = ^β/μ^ωσ, for copper 
using μ, = μο = 4π x 10"7Qs/m and σ0ι = 5.8 x lO'Q-'nT1, so that <5 = О.Обб/V/m 
if / is measured in Hz. For /= 60 Hz, δ = 0.85 cm. Fo r /= 10'°Hz, δ = 0.66 μηι. 

We also see that the field is propagating into the conductor at a phase velocity 
much less than the speed of light in medium 2, so the field is diffusing slowly into 
the conductor. For a copper conductor at room temperature, we can take ε, - &,-
(l/Збя) x 10-''(s/ßm) then (σ,/ωε,) = 1.04 x 10l8//so that и,, = (c/7.2x 10s)V/, 
where/is measured in Hz. For/= 60 Hz, the speed of the propagation is only J.2m/s! 
For /= 10"'Hz, the speed of propagation is 42km/s, which is faster but well below 
the speed of light. Thus, a t /= 60 Hz, the time for the initial field intensity at x = 0 to 
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Table 7.5 Values of Various Copper Properties as a Function of Frequency 

σ 

/(Hz) 

60 
10' 
10'' 
10' 
10'° 
10" 
1012 

ωε„ 

1.74 x 1016 

1.04 x 10" 
1.04 x 1012 

1.04 x 10' 
1.04 x 108 

1.04 x 107 

1.04 x 106 

up (m/s) 

3.22 
13.2 
416 

13.2 x 103 

41.6 x I05 

132 x 10' 
4.16 x 105 

5(m) 

8.53 x 10"5 

2.09 x 10"' 
66.1 x 10"" 
2.09 x 10-" 
0.66 x 10"6 

0.21 x 10"6 

66.1 x 10"9 

/ M s ) 

2.65 x 10-3 

1.59 x 10"" 
1.59 x 10-7 

1.59 x 10" 
1.59 x 10"' 
1.59 x 10"' 
1.59 x 10"' 

From the last column we see that the field at a depth of I δ is I rad different than the field at the 
surface for all frequencies; that is, the field at a depth of I δ is caused by the field that occurred at the 
surface 57° before the increment of time, Aig. 

reach one skin depth is Ats = 8/up = (0.158//)* = 2.6ms. We call the currents that are 
produced by this diffusion eddy currents and we use them for heating copper pans on 
an induction stove. 

Values of various quantities for copper at different frequencies are given in 
Table 7.5. 

PROBLEMS 

7.3 Using a geological pole reversal time of 106 years for the earth's magnetic field 
intensity, estimate the conductivity of molten iron and the permeability of iron 
to calculate the skin depth in the earth's mantle and the time for field intensity 
to penetrate one skin depth. 

7.4 A microwave oven heats a bowl of soup (roughly the salinity of seawater) by 
induction at a frequency/= 2.4 x 109Hz. Using the permittivity of seawater, 
explain why the soup boils around the edge of the bowl instead of in the center. 

7.5 If you put a piglet in a weak microwave oven, how far does the heating extend 
into its muscle? 

Field Penetration into a Good Conductor 

We have shown in Equations 7.86 and 7.94 that the direction of the magnetic vector 
potential, Д, in medium 1 is in the same direction as the current density, J,. 
However, we must be very careful to recognize that the electric current density in 
a conductor can be'v written as the sum of two terms: 

·/,=./,.,+/,.„ (7.104) 
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where Aujs called the longitudinal current density (or irrotational current density 
because Vx J,, = 0) and У,., is called the transverse current density (or solenoidal 
current density because V-J,, = 0). The longitudinal current density found in the 
Coulomb gauge Equation 7.34b is eV(d\'/dt) = .1 ·.,.. This substitution cancels the 
longitudinal part of the current density in Equation 7.34b and yields 

Ρ 2 Λ - μ ε 9 2 Λ Μ 2 = - μ Λ , . (7.105) 

Here, the longitudinal wave is moving normal to the conductor interface at a 
relatively low phase velocity, as shown above. The quasistatic approximation permits 
a fast charge relaxation (relative to the phase velocity) in this direction and cancels 
out most of the longitudinal current density (except at very high frequencies). By 
comparison, the fields tangential to the conductor interface are moving at a high 
phase velocity because of their continuity with the fields in medium 2 (the dielectric), 
where u2_p = c/vf: · These displacements are so fast that the quasistatic approxima-
tion does not cancel the current density tangential to the conductor interface, so ./{J 

is finite. Furthermore, we have argued that, for the quasistatic case (frequencies 
below 10"Ήζ) Ampere's equation is F x //, = ./, and J, = at E\, so we should be 
able to find the relative directions of the electromagnetic fields. Let us begin by 
arguing that a very good electric conductor should be an approximation to a perfect 
electric conductor, the difference being that tangential fields penetrate with an expo-
nential decay into the surface of the good conductor. 

For a perfect conductor, Table 7.4 shows that magnetic field intensity, //., just 
outside of a conducting boundary is tangent to the surface and that electric flux 
density, D2, in medium 2 is normal to the boundary (i.e., in the ά,-direction in Figure 
7.5). Let us choose //;(.v, /) = // e""âv for the magnetic field intensity outside a good 
conductor (consistent with the field outside a perfect conductor). We now know that 
A, penetrates into the conductor and, thus, that./, penetrates into the conductor, so 
we do not expect the magnetic field intensity to be discontinuous at the boundary as 
it was in the case of a perfect conductor. We can also make use of the fact that the 
spatial variations of the fields normal to the surface are more rapid than the variations 
parallel to the surface (especially with the constant value of external field with the y 
and z variables as chosen above). We can thus take V ~ â,d/dx so that Vx Hi = 
-âfiHt /дл\.ы>- + Й.-Э//].,/ЭД:|,=(К ~ .11 ~ σ,ΔΊ just inside the conductor. But we have 
chosen the magnetic field intensity just outside the conductor (at x = 0+) to have only 
а у component, so we expect the field just inside (at x = 0-) to have a mainly у com-
ponent. Thus, we expect the second term (in the г-direction) to be the dominant term 
that shows that li, is in the г-direction and that //, is in the y-direction just below the 
surface. Because of the charge density on the boundary, the electric field intensity is 
discontinuous across the boundary; that is, just outside the good conductor, E2 is 
mainly normal to the surface (in the jr-direction), while, just inside the good conduc-
tor, £| is mainly parallel (in the г-direction). By comparison, the magnetic field 
intensity is continuous across the boundary. We can write the continuity condition 

а х х ( Я 2 - Я , ) | л = о = 0 (7.106) 

and we can use the expressions above to write 
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/:, =(1/σ,)ΓχΑ, =(1/ст,)(ЭЯ|у/Эд:)аг (7.107а) 

and 

tf, =(l/jœfr)VxËl -Q/jœtoXdEjaxiâ,. (7.107b) 

We can also take another derivative of Equation 7.107a with respect to the x 
variable and use Equation 7.107b to substitute for dEl:/dx to write 

or 
d2Hly/dx2 = ./ωσ,μ,//,, = [(1 + j)/ô]2Hlx (7.108) 

where 
δ = ^2/ωμισ, 

The solution to this second-order, ordinary differential equation with boundary 
conditions is 

//,(*, t) = Hu(0)e( δ ' e"ma, (7.109a) 
and using Equation 7.107a, 

El(x,t) = [(l+j)/alS]Hty(0)e s eia,a„ (7.109b) 
where the variable л: is a negative number in medium 1. In the figure below, we thus 
substitute ξ = -x. We can see from Equation 7.109b that the surface impedance Z, 
is given by 

Z, =Ε,,(0)/Η„(0) = [(1 + ; ) /σ5] , (7.110) 
and the boundary conditions at x = 0 can be described as in Table 7.6 . 

The magnitude of these fields are shown as a function of x = -ξ in Figure 7.6. 
Figure 7.6 is shown in this orientation to mimic the physical arrangement of 
electromagnetic plane waves that propagate in a dielectric (medium 2) under a con-
ducting trace (medium 1 ). The transverse electromagnetic waves that propagate in 
FR-4 are thus into the page, as seen in this rear view of a cross section of a copper 
trace above the propagating medium. The graph of relative amplitude is to be 
read by rotating the figure by 90 degrees in a clockwise manner. Thus, we see that 

Table 7.6 Boundary Conditions Between a Good Electric Conductor and a Dielectric 
(Time-Varying Case) 

On the conducting side (medium 1) On the dielectric side (medium 2) 

E„ = £1;(0) = [(1 +])/σιδ]Η,:Φ) E2, = £2;(0) - £,,(0) 
W„(0) = // H;, = Ht 

Du, = 0 D2„ = Σ...5 
B,„ - 0 R,. = 0 
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Figure 7.6 Variation of the electric and magnetic field intensity as a function of the penetration 
depth, ς = -v. in the region near the boundary of a dielectric and a good conductor. 

the magnitude of the electric and magnetic field intensities in medium 2 is relatively 
constant with the variable x, whereas the magnitude of the electric and magnetic 
field intensities in medium 1 (Cu) falls in a co-sinusoidal manner limited by an 
exponentially decaying function with the variable ξ = -x. 

Interface between Two Lossless Linear Media 

A lossless linear medium can be specified by a permittivity, ε, and a permeability, 
μ, with σ = 0. There are no free charges and no surface currents at the interfaces, 
so the tangential components of the electric and magnetic field intensity are continu-
ous at the boundary between the two media as are the normal components of the 
electric and magnetic flux density, as shown in Equations 7.111 and Table 7.7. 

£ „ = £ ; , о D„/D: ,=£, /£2 (7.111a) 
Hi, =H2, *>Ви/В2, =lbj}h (7.111b) 

Din = D2„ <=> ε,Ε1η = ε2Ε2» (7.111c) 
β,„ =β,„ ομ,/Υ,,, =μ7Η2„. (J.llld) 
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Table 7.7 Boundary Conditions between Two Dielectrics (Time-Varying Case) 

On the dielectric side 
(medium 1) 

E„ = E 

Hu = Щ 

DU = D± 

Вы = B_ 

On the dielectric side 
(medium 2) 

Ег, = £ц 
H2t = W|| 
Z>2„=DX 

въ, = в. 

7.13 PARTICULAR SOLUTION FOR THE WAVE EQUATION 
WITH INHOMOGENEOUS BOUNDARY CONDITIONS 

In some cases, the boundary conditions or initial conditions for a problem can render 
it inhomogeneous even if there are no sources. The Green's function technique is 
so powerful that it gives the solutions to these problems as well as the solutions to 
the inhomogeneous wave equation with inhomogeneous boundary conditions. 

For example, if we wish to find the particular solution of the inhomogeneous 
wave equations 

V2y/-ned2y//dt2 = /(5, t) (7.66a) 

and we can find the function G(x, t; x', /') that satisfies 

(ν2-μεο2/9ί2)0(χ,ν,χ',η = δ(χ-χ')δ(ί-Ο (7.70) 

as we did in section 7.10, then we will require as part of causality that G(x, f; x', f) 
must be zero if / < t' + \χ-χ'\\[με\ that is, the response at the position x at time t 
will be zero unless the source that occurred at position x' at time i has had time to 
move the distance \x - x"\, traveling at speed of light c2 = 1/%/με in that medium. 

Some texts like to use the argument that responses are symmetric and that we 
can exchange the primed for the unprimed variables to argue that, inversely, the 
source that occurs at point x at time / will cause the response G(x", t'\ x, t) at point 
x" at time /' to be zero if 

t'<t + \x-x'\/c. (7.112) 

They accomplish this symmetry by a "causality requirement" 

G(x,r,x\t') = G(x',-t';x,-t). (7.113) 

The "causality requirement" is useful when we derive the time-dependent Green's 
theorem. 

Time-Dependent Green's Theorem 

In Equations 7.66a and 7.70, let us exchange primed for unprimed variables so that 

ν'2ψ(χ',ί')-με92ψ(χ\η/3ί'2 = f(x',t') (7.114) 
(V'2 -ßed2/dt'2)G(x', t'\ x,t) = 5(x'-x)5(t'-t). (7.115) 
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Now, we can multiply Equation 7.114 by G(x', /'; x, t) and multiply Equation 7.115 
by у(.Г, t') and subtract the last result from the first: that is, 

G(x', t'\ x, ί)νΛψ(χ\ ί')-μεβ(χ', t'\ x, t)d2y/(?, t')/di'2 

= G(x',t';x,t)f(x',i')min\is 

(ψ(χ\ t')V'2G(x', t'; x, t) - μεψ(χ\ t')d2G(x', t'\ x, t)/dt'2 ) 

= ψ(χ',ί')δ(χ'-χ)δ(ΐ'-ι) 

and integrate over the volume of the domain and over time (ί') from 0 to t*, where 
f is just greater than t. We will use the definition of the delta functions and note 
that 

Β[ψ(χ', t')(dG(x\ t'\ x, t)/dt')-G(x', t'\ x, t)(dy/(x', t')/dt')]/dt' 

= ψ(χ', t'){d2G(x', /'; x, t)/dt'2)-G(x', t'\ x, t)(d2y/(x', t')/dt'2). (7.116) 

The integral involving the terms on the right can be integrated, but, because at the 
upper limit, t = (, we must use Equation 7.113 to conclude 

G(x',t';x,t) = 0 
at t' = t+>t + \x-x'\/c (7.117) 

dG(x',t';x,t)ßt' = 0 

Thus, by using Equation 7.113 inside all integrals, 

Ψ{*' ') = Jo J J J v G № f; J ' · n f { r ' «')^*'Л' 
+ 4με\\\\ψ{χ\ 0)~G(x, t\ χ', 0)-G(x, f, χ', 0)-ίρψ(χ', 0)\d3x' 

+ f<$> lG{x,t;x',t')~w(x\t')-¥(x\t')^-G(xj;x',t'))ds'dt'. (7.118) J o Jsl on' on 1 

Equation 7.118 is the answer to all E&M problems for which boundary conditions 
are specified on the boundary 5 to a volume V on which either the quantity ψ{χ', t') 
or the quantity ЭуСс', t')/dn is specified and either the initial condition ψ(χ', 0) or 
ду/(х', 0)/Эи' are specified throughout the volume V. 

Note that this solution even contains the answer for homogeneous problems, 
where fix', t') = 0. In this case, the first integral in Equation 7.118 is zero. 

Furthermore, because the function and its derivative cannot both be specified 
(an overspecification of the problem), we can see the following conditions that must 
be imposed on the Green's function in Equation 7.118 to get a solution: 

• If ψ{χ', 0) is specified in V, we will choose G(x, t\ x', 0) = 0 in V. 

• If dy*x', 0)/9f' is specified in V, we will choose dG(x, f; x\ 0)/dt' = 0 in V. 

• If ψ(χ', t') is specified on 5, we will choose G(f, f; x', f) = 0 on S. 

• If Βψ(χ', t')/dt' is specified on 5, we will choose dG(x, r; x\ t)tbt = 0 on S. 
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This is the solution that many numerical codes use to build in boundary condi-
tions that are specified on the surface S surrounding a finite volume V and initial 
conditions that are specified in the closed volume V. Let us be in awe of a mathema-
tician like George Green who could have solved such a complete boundary value 
problem with initial conditions in 1824. 

7.14 MEMRISTORS 

In section 1.8, the quaternion form of Maxwell's equations was described in terms 
of the magnetic vector potential. A, which was a three-component, time-dependent, 
vector in physical space. But, unlike the mathematical convenient construction of A 
described in section 7.5, Maxwell considered the magnetic vector potential to be 
invariant to the chosen gauge and had physical meaning. Although Heavyside aban-
doned the physical interpretation, Herman Weylvv' considered the transport of vec-
tors"' in a three-component physical and one-component time (with distance ct) 
space in which the magnetic flux, <f\,, was separated into spacelike and timelike'' 
quantities, as shown in Equation 7.119: 

Φ„=<$> Âdî + I' Aé.cdt. (7.119) 

Weyl made the first attempt to formulate a unified field theory in which both 
gravitation and electromagnetism were incorporated into a single geometrical struc-
ture of a space-time manifold. Among other things, Weyl postulated that the length 
of a four dimensional vector displaced in a parallel fashion around a path С in three 
space and over the time interval (t' - t) would undergo a change in physical length. 
Einstein pointed out that a consequence of Weyl's theory would be that the frequen-
cies of spectral lines emitted by atoms would depend on the electromagnetic history 
of the atoms. An experimental testvl" of Weyl's postulate for the frequency change, 
Aflf, of iron Mössbauer nuclei, as explained in section 8.3, showed that such effects 
(if they exist at all) would be proportional to the dimensionless quantity, Ф^/е, to 
less than ±2 x 10~48. The importance of this discussion here is that magnetic flux 
can be constructed7 from a time integral of scalar potential difference, as shown in 
Equation 7.119. 

In 1971 ,Leon Chua"1 considered the ratio dOJdc/ to be characteristic of a fourth 
kind of circuit element he called the memristor (short for memory resistor) and noted 
that either term in Equation 7.119 would describe a passive two-terminal functional 
relationship between the integrals of magnetic vector potential or voltage and current 
because Stokes theorem gives 

h Maxwell referred lo scalar electric potential difference in Equation 1.58 as Δό, rather than scalar 
electric potential, V, relative to ground as used in Equation 7.85. 

One justification of color coding Maxwell's equations is that it emphasizes that time derivatives and 
time integrals of electric quantities (charge density, scalar potential, electric field intensity', electric flux 
density) give rise to magnetic quantities (effective magnetic monopole density, current, magnetic flux 
density, magnetic vector potential) and vice versa. 
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Resistance К = 
ώ 

Capacitance С = 

Inductance L = </<!> 
-ЛЛГ-

ί/Φ 
Memristance M = — 

dq 

Figure 7.7 Symmetry of voltage, current, 
charge, and magnelU flux linked to one another 
by fundamental material properties: resistance. 
capacitance, inductance, and memristance. 

} Àdï = jj VxÀds=f] Fids. 
Chua further argued that the relationship between magnetic flux and charge change 
completed a symmetry with the resistor, inductor, and capacitor that defined rela-
tions between four circuit variables voltage, current, charge, and magnetic flux; 
the device that linked the flux and the charge being the memristor, as shown in 
Figure 7.7. 

Chua argued that the powerful part of this symmetry is that not only arc instan-
taneous time varying quantities like voltage and current linked by material properties 
of resistance, but the time integral of voltage and the time integral of current (i.e.. 
charge) are linked by material properties of memristance. Thus, in nonlinear devices, 
a hysteresis of the voltage versus current curves could be permanently retained until 
the charge was reversed in a complete cycle. 

In 2008," a team at Hewlett-Packard (HP) led by R. Stanley Williams announced 
the discovery of such a nonlinear device based on the resistive properties of titania.8 

In mildly reducing atmospheres, TiO; tends to lose oxygen and become substoichio-
metric ТЮ2_Х. For example, in its stoichiometric form at 25°C, Ti02 has a resistivity 
of 10'" Ωιη comparable to that of a good insulator, but, when raised to 700°C, its 
resistivity decreases to 2.5 x 102 Ωηι comparable to that of semiconductors. The HP 
team assumed that the boundary between Ti02 and Ti02-., migrated under the influ-
ence of an electric field, as shown in Figure 7.8 to achieve a resistance versus charge 
behavior that persists even when the electric field was removed. However, the 
boundary moves only nanometers, and the chemistry of the material is uncertain. 
For example, it is unknown if there is an additional absorption or depletion of oxygen 
atoms in either of the two titania materials or if the concentration of the oxygen 
depleted volume changes to Ti02-y. 

Because the titania material provides both capacitive and resistive properties, 
the voltage, V(/), that moves the boundary by an amount, y, is a combination of the 
two charging mechanisms. Depending on the character of the voltage or current 

* Titania is often used in the construction of ceramic capacitors because it has a high dielectric 
strength of 4kV/mm, a high relative dielectric constant off'. = 85. and a low tan δ of ft x 10"4 at 
I MHz. 
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, = ГО'С(/)1'(/)Л+#/(/)<// 
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Insulating Ti02 

Conducting Ti02_x 
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Insulating Ti02 

Conducting Ti02. 
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Figure 7.8 Williams's interpretation of the migration of the boundary between insulating TiO: and 
conducting Ti02-, under the influence of a voltage differential. 

Ferromagnetic 
Semiconductor conductor 

Figure 7.9 Device for the transport of spin-up electrons from a semiconductor into a spin-up 
conduction band of a conducting ferromagnet. 

supply and the speed of the migrating boundary, one of these effects might dominate 
the other in a given frequency range. However, the memory mechanism (the resis-
tance of the system) depends upon the boundary to remain in its last configuration 
once the voltage has been removed. The material would thus need to have a very 
low thermal diffusion constant to retain this information for long periods, as 
proposed in memory storage applications such as crossbar architectures. 

Spintronic Memristor 

Another proposed" type of memristor is based on the spin of conduction electrons 
in ferromagnetic conductors, as shown in Figure 7.9. 

As we have seen in section 6.6 on atomic magnetism, spin-dependent conduc-
tion bands in magnetic materials are often preferentially filled. In the case of 
ferromagnets, we conclude that one band (say the spin-up band) can have most or 
all of the conduction electrons at the expense of a nearly empty band (say, the spin-
down band). This condition is shown on the right-hand side of in Figure 7.9 as a 
ferromagnetic conductor region with red arrows pointing up to indicate that the 
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conduction electrons in this region dominantly have spins that point up; that is, the 
current density of conduction electrons have proportion щ that is much greater than 
the proportion wj.. Electrons in the nonmagnetic region on the lcfthand side are in a 
semiconductor region with equal populations of spin-up and spin-down electrons 
(n-[ ~ ni) involved in current transport (propagating to the right in a random sequence 
of scattering events, as shown in section 5.7). At the contact boundary between the 
semiconductor and the ferromagnetic conductor, the spin-up electrons are permitted 
to continue their propagation to the right, while the spin-down electrons will be 
reflected back into the semiconductor. This will lead to a buildup of the population 
of spin-down electrons just to the left of the contact boundary, as shown by the 
decreasing length down arrows to indicate that the scattered spin-down electrons 
undergo spin relaxation back to the equal distribution condition. The local current 
density caused by the reflection of thespin-down electrons depends on the gradient 
of the population as J î , i , = σΕ + eDVnitfy, where D is a diffusion coefficient. The 
additional term proportional to the change in spin populations alters the effective 
conductivity of the device and results in spin-dependent conductivity. Device designs 
that can flip spin-up and spin-down region of the ferromagnet can cause a transition 
between a high and low resistance state at rates as fast as picoseconds. For reading 
a hard drive magnetized region, for example, we would want fast switching of the 
magnetic field, which would show up as a fast change in resistance. It is thought 
that the ferromagnetic regions might be contained in a nanometer of material that 
could lead to very high-density memory devices. The spintronic memristor, however, 
can suffer from the loss of memory of its magnetic state after power is turned off, 
but it is thought that a spin state can be held longer than a charge state. 

Afemcapacitors and Mem inductors 

Circuit elements that store information without the need for a power source would 
represent a paradigm change in electronics, allowing for low-power computation 
and high-density storage. Ventra, Pershin, and Chua have speculated"' that many 
systems may belong to this class, including the thermistor (whose resistance depends 
on the temperature of the system). These researchers argue that the concept of a 
memory device is not necessarily limited to resistances but can be generalized to 
capacitive and inductive systems. 

The exact character of the materials and several other candidate examples 
remains an area of speculation, but the application of such devices is worthy of a 
large research effort whether or not it represents a fourth fundamental circuit element. 

7.15 E L E C T R I C V E C T O R P O T E N T I A L 

In the last part of the twentieth century, some electrical engineers (e.g., Harrington 
and Balanis) modified the set of Maxwell equations to make them symmetric, as 
shown in Table 7.8 by including the magnetic monopole charge density and the 
magnetic monopole current density. The symbols used for magnetic charge density 
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Table 7.8 Symmetric Form of Maxwell's Equations 

Differential form Integral form Name 

V X Ê = -J - dß/Э/ 

VxH=J+ büßt 

V-D=pv 

VB = p, 

and magnetic current density are dependent on the particular author, but the equa-
tions in Table 7.3 are consistent with the color-coding introduced earlier. 

Maxwell's equations represent the same vector field quantities given in Table 
7.2 with the additional quantities: 

J = Magnetic current density (volts/meter2) 
Pi = Magnetic charge density (weber/meter1) 

with the units of the new field quantities in SI units shown in parentheses. Likewise, 
we can develop an equation of continuity for both electric and magnetic charge 
density using conservation of charge to write the symmetric forms shown in 
Equations 7.120 and 7.121 : 

VJ = -dpv/dt (7.120) 
VJ = -dpv/dt. (7.121) 

We can again choose to use vector and scalar potentials as mathematical tools 
to solve the symmetric form of Maxwell's equation; that is, we have shown in 
Chapter 3 that the divergence of the curl of any vector field is identically zero; 

V-(VxA) = 0. (7.122) 

Thus, in a source-free region of space, both I) and В are solenoidal, ( V- В = 0) 
and (V-D= 0), so we can thus assume that В may be written in terms of another 
vector field. A, called the magnetic vector potential: 

B = VxÂ (7.123) 

and that D may be written in terms of another vector field, A called the electric 
vector potential: 

D = VxA. (7.124) 

To specify a unique definition of the vector fields, Л and A, we will need to make 
an additional gauge restriction on both. 

Substituting Equation 7.123 into (V x E = -J - dB/dt) for free space (with 
J - 0), we can write 

j> Èdï = -I-\\ (dB/dt) ds Faraday's law 

ά Hdl = I+\\ (dO/dt) ■ ds Ampere's law 

<rb Dds =Q Gauss's law for electric charge 

(Π) Bds = Q Gauss's law for magnetic charge 
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VxË = -d(VxÀ)/dt or Vx(E+d/\/dt) = 0. (7.125) 

Substituting Equation 7.124 into (Vx H = ./ + dD/dt) for free space (with J = 0), 
we can write 

VxH = -d(VxÀ)/dt or Vx(H + dÀ/dt) = 0. (7.126) 

We have also shown in Chapter 3 that V x (- VV) = 0 for «n>· scalar field. Thus, 
because the curl of the vector field shown in parentheses in Equations 7.125 and 
7.126 is zero, then that field can be written as the negative gradient of another scalar 
field that we will successively call the electric scalar potential, V and the magnetic 
scalar potential, V, with 

E + dÄ/dt = -VV or Ë = -VV-dÀ/dt (7.127) 
H + dÂ/dt = -VV or H = -VV-dÂ/dt. (7.128) 

We can see from Equation 7.127 that the electric field intensity, E, can be 
written in terms of the electric scalar potential, V, and the time derivative of the 
magnetic vector potential, A As long as these scalar and vector potentials are unique, 
the electric field intensity produced by them will also be unique. 

NOTE In the special case of static (time-independent) fields and potentials, dA/dt 
= 0, and we can see that Equation 7.127 reduces to E = - VV as we found in Chapter 
6 for static electric fields. 

We can see from Equation 7.128 that the magnetic field intensity, H, can be 
written in terms of the magnetic scalar potential, V, and the time derivative of the 
electric vector potential, A As long as these scalar and vector potentials are unique, 
the magnetic field intensity produced by them will also be unique. 

NOTE In the special case of static (time-independent) fields and potentials, dA/dt 
- 0, and we can see that Equation 7.128 reduces to H = -VV, as Maxwell originally 
proposed (see Equation 1.68). 

For homogeneous media in time-varying fields, we can substitute В =jiH and 
D = ε£ into the symmetric forms to yield VxB = μ] + μώΕ/dt or Vx(VxÂ) = 
μΐ + μά)Ε/3ί or 

V x V x Л = μ] + μώ(-νν - ЭД/Э/)/Э; (7.129) 

and, using the identity ^ x VxA= V(V-A) - V2A in Equation 7.129, we see 

ν(νΑ)-ν2Λ = μ]-ν(με3ν/3ί)-με32Α/ΒΓ 
or 

V2A- με32Α/3ί2 =-μ! + V(V ■ À+ μεΒνβί). (7.130) 

Likewise, using the symmetric form V x E = -./ - dli/dt or V x (V x A) = - ε / 
- edfi/dt or, 

V x V x À = eJ + μεΒ{-VV - ЭА/'Э/)/Э/ (7.131) 
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and, using the identity Vx Vx A- V(V-A) - V2A in Equation 7.131, we see 

ν(νΑ)-ν2Λ = ε]-ν(με3νβι)-μεο2λ/Βι2 

or 

V2A-ßed2A/dt2=-eJ + V(VÄ + ßedV/di). (7.132) 

Now, the definition of a unique vector field A or A requires an additional restriction 
or gauge. One way to provide this restriction is to specify their divergence; that is, 
although the curl of A or A is designated or В or /3, we are still at liberty to choose 
the divergence of A or A As we noted in Equation 7.28, we can use the Lorenz gauge 
to write1 

VA + ßedV/dt = 0 (7.133) 
ν λ + μεΒνβι = 0, (7.134) 

that choice reduces Equations 7.130 and 7.132 to second-order, linear, inhomoge-
neous PDEs: 

ν2Λ-με32Λ/Βί2=-μ3 (7.135) 
ν2Α-μεΒ2Λ/οΓ=-ε1 (7.136) 

for which Equation 7.135 is the inhomogeneous wave equation for the magnetic 
verlor potential and Equation 7.136 is the inhomogeneous wave equation for the 
electric vector potential. 

Equations 7.135 and 7.136 need only the current density, J or J, to solve for 
A or A. Some electrical engineering texts choose the Lorentz gauge for A and A to 
separate the terms into single PDEs that can be solved by integration techniques 
that were developed in section 7.9. Those texts then find a corresponding wave 
equation for the electric scalar potential by using Gauss's law VI) = pv and 
Equation 7.127: 

V-E = pv/e=>V-(VV + dÄ/dt) = -pv/e, (7.137) 

which leads to 

ν2ν + ϊ)(ν-Λ)/άί = -ρν/ε, (7.138) 

and, using the Lorenz gauge (V-A + μεΒν/Βΐ = 0), we see that the electric scalar 
potential, V, also satisfies the inhomogeneous wave equation: 

V2 V - με Э2 V/dt2 =-pv/e (7.139) 

Equation 7.139 needs only pv to solve for the electric scalar potential, V. 
Likewise, those texts then find a corresponding wave equation for the magnetic 

scalar potential by using Gauss's law VR = pv and Equation 7.128: 

ν-Η=μρ, =^ν(νν + 3Α/άή = -μρν, (7.140) 
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which leads to 
V2V + d(VA)/dt=-ßpv (7.141) 

and, using the Lorentz gauge (V-A + pedV/dt = 0), we see that the magnetic scalar 
potential, V, also satisfies the inhomogeneous wave equation: 

Ϋ2ν-με32ν/3ί2=-μρν, (7.142) 

Equation 7.142 needs only pv to solve for the magnetic scalar potential, V. 

Conclusion 

With a prior knowledge of pv , pv , .1 and ./, we can separate the x, >·, and z com-
ponents of the wave equations and solve for V and V and each component of Л and 
A independent of the others. All three of these equations are of in the form of the 
same inhomogeneous wave equation and they are independent of one another. Thus, 
given the electric charge density, the magnetic charge density, the vector electric 
current density, and the vector magnetic current density, we can solve the inhomo-
geneous wave equation (subject to boundary conditions specified by a particular 
application) to find the potentials V, V, A and A from which we can then find all of 
the components of the electric field intensity and magnetic field intensity. 

Equations 7.139, 7.142, 7.135, and 7.136, for V, V, A and A form a set of four 
equations equivalent in all respects to the symmetric Maxwell's equations (subject 
to the restriction of the Lorenz gauge). However, unlike Maxwell's equations, these 
four inhomogeneous PDEs are independent of one another, so they will be much 
easier to solve. 

NOTE Using the electric vector potential and the magnetic vector potential results 
in electric and magnetic field that originates from 

B = VxA (7.123) 
D = VxA. (7.124) 

Ë = -VV-dÂ/dt (7.127) 
H = -VV-dÂ/dt. (7.128) 

The resulting total electric and magnetic field is the vector sum due to both 
potentials: 

Ε,,,,,ι = -VV - dÂ/dt + VxÂ/e (7.143) 
Η,ο,α, = -VV - dÂ/dt + Vx Â/μ. (7.144) 

Engineers sometimes use electric vector potential and magnetic vector potential 
to develop solutions because they are easier to find via the inhomogeneous wave 
equations with boundary conditions, as shown in section 7.9. The solutions can be 
chosen to have boundary conditions so that one part of the solution yields a trans-
verse electromagnetic, transverse electric, or transverse magnetic solution in a par-
ticular coordinate system. The technique suffers from the fact that there are two 
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vector potentials to find and from the fact that magnetic charge density may be 
approximated by Equation 6.74 and magnetic current density may be approximately 
by Equation 6.64. However, we are always mindful that this approximation is poor 
when considering fields in the microscopic near-field regime such as that shown in 
Figure 6.7. 

CONCLUSION While it is more straightforward to obtain a solution, the two 
vector potential technique will not suffice for the analysis of crystal field effects or 
fields internal to atoms or molecules. 

The physics community usually assumes that there is no such thing as magnetic 
charge density or a magnetic current density so that pv = 0 and J = 0. In this formal-
ism, Maxwell's equations in Table 7.8 are equivalent to their asymmetric form 
in Table 7.2. Because we will often evaluate near fields, the asymmetric form 
of Maxwell's equations is used in The Foundations of Signal Integrity"" to find 
solutions to applied problems in Signal Integrity. 
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Appendix A 

Measurement Errors 

THE BINOMIAL DISTRIBUTION 

Measurements can be made only a finite number of times and the precision of the 
measurement is predetermined by the accuracy of the measuring instrument: a dis-
crete measure. In any single measurement, there will be a probability associated 
with a particular outcome (value obtained in that measurement). A sense of the 
mathematics associated with these probabilities can be obtained by conducting a 
measurement where the probabilities are known for a given event. For example, in 
tossing a die, only integer values can be measured: 1, 2, 3, 4, 5, or 6. In some mea-
surements, the probability of obtaining a particular value will not change from one 
measurement to the next. Such events are said to be independeni. Such is the case 
for tosses of a die: p = 1/6 is the probability that a particular integer will occur in 
any given toss, and q = 1 - p = 5/6 is the probability that a particular number will 
not occur. The probability that a particular integer will occur exactly x times in n 
tosses (and n - x failures will occur) is given by the binomial distribution or the 
probability density function (PDF): 

fix) = (" W~* = ,,"' / У (A.I ) 
W x\(n-x)\ 

This discrete probability function is called the binomial distribution because the 
coefficients and powers are the same as those of the *th term in a binomial 
expansion: 

*+#-*№^' + ·-- + '-%-3Εα'<". (Α.2) 
The mean of the binomial distribution is x = np, the variance is σ2 = npq, and 

the standard deviation is a = -Jupq. The binomial probability distribution function 
for the example of 20 tosses of a die is shown in Figure A. 1. 

Figure A. 1 shows that, on 20 throws of the six-sided die, the probability that a 
given value will occur x, times is given by fix,). The probability that a given value 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 

247 



248 Appendix A Measurement Errors 

0.25 

0.20 

0.15 

■й 

1 . . , ,1 

0.10 

0.05 

0.00 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

x 

Figure A.l Binomial probability density function for the case off» = 1/6 and n = 20. 

will occur X] or *2 times is given byf[x,) +fi,x2)- The probability that a given value 
n 

will occur 0 or 1 or 2 or 3, or ... , or 20 times is Σ/(■*<)■ ^У replacing q=\—p, 

it can be seen from Equation A.2 that this sum is 1; that is, the sum of all of the 
discrete heights of bars in Figure A.l is 1. The binomial probability density function 
is thus said to be normalized. 

THE GAUSSIAN DISTRIBUTION 

For an infinite set of measurements of a continuous quantity in which the measure-
ments are independent of one another, a continuous PDF called the normal distribu-
tion, the bell-shaped curve, or the Gaussian distribution, is given by 

or 

/ ( * ) = 

/ ( ' ) = · 

1 1 

σ-Ιϊπ' 

(χ-χ)' 

(-о°<л:<°о) 

(2π -e ' where t -
(x-x) 

σ 

(A3) 

(A.4) 

The Gaussian PDF is shown plotted in Figure A.2. 
The coefficients in the Gaussian PDF are chosen so that the area under the curve 

is 1 ; that is, the probability that some value of t is obtained in a given measurement 
is 1. The quantity a is called the standard deviation, and г is a variable that expresses 
дг - x in terms of the number of standard deviations. 

In contrast to the discrete binomial PDF, the continuous Gaussian PDF gives 
the probability, P, of finding a measurement between x, and x2 as an integral: 
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-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 
I 

Figure A.2 Gaussian probability density function for a continuous variable, л 

'2 *2 I i ('-x) 

P*.n = \fWdx=\—Ere~ 2° dx 
σ -Jin 

(A.5) 

or 

P,IJ2 = \f{t)dt where r, = (*' x) and t2 = ̂  -
a σ 

(A.6) 

The integral of a normalized Gaussian PDF (i.e., the area under the curve) gives 
the probability of finding a given measurement between x, and x2 (or equivalently 
/i and u). The probability of finding a given measurement between -°° and +<*> is 1. 
This can be seen by programming a calculator to integrate the Normalized Gaussian 
PDF or by finding the areas in Figure A.3, which gives the area under the curve 
between t = 0 and t. 

Here, an integral from x = x or t = (x-x )Ισ = 0 to x = °° or / = (x - x )Ισ = °° 
is 0.5000. 

Because the normalized Gaussian PDF is a symmetric function about / = 0, the 
integral from x = -«> or t = (x — H )Ισ = -°° to x = x or / = (x - x )Ισ = 0 is also 
0.5000. By adding the two integrals (areas under the curve) P^„ = 0.5000 + 0.5000 
= 1.0000 as expected (i.e., there is a probability of 1 that a given measurement will 
be found between -°° and +■*>). 

EXERCISE 

A.l What is the probability that the next precise measurement will lie between 
a. x and (x + σ)? 
b. (3c - σ) and (x + σ)? 
c. (х + σ) and (x + 2σ)? 
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Figure A.3 Area under the Gaussian probability density function between ( = 0 and some other 
value of I on the horizontal axis. 

-4.0 -3.0 -2.0 -1.0 

Figure A.4 The area under the Gaussian probability density function between x, = x and 
X2 = ï + a o r f | = 0 a n d t2 = I is P0.i = 0.3413. 

C'x-ANSWERS P,. „ = f(x)dx = area under the f(x) curve between xt and 

Î
I2 

f{t)dt = aiea under the f(t) curve between ?,. 

and /2. Values of f(t) = (\/J27c)e 2 are found by using an integrating 
calculator (or the values plotted in Figure A.3). 
a. For л-| = x and x2 = x + о or 11 = 0 and t2 = 1, the probability is given by 

the area under the PDF curve, as shown in Figure A.4. 
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-4.0 -3.0 -2.0 -1.0 

Figure A.5 The area under the Gaussian probability density function between .v, = x - aand x2
 : 

x + стог г, = -1 and /. = 1 is P.,,, = 2P„., = 2(0.3413) = 0.6826. 

Figure A.6 The area under the Gaussian probability density function between x, =X + aand x2 = 
x + 2ffor r, = 1 and h = 2 is Р,л = Pa.: - Ρ0.ι = 0.4773 - 0.3413 = 0.1360. 

b. For x, = x - σ and x2 = x + σ or (, = -1 and i2 = 1, the probability is given 
by the area under the PDF curve, as shown in Figure A.5. 

с For x, = x + σ and x2 = x + 2σ or t, = 1 and r2 = 2, the probability is given 
by the area under the PDF curve, as shown in Figure A.6. 

RELATION BETWEEN THE BINOMIAL AND GAUSSIAN PDF 

The normalized Gaussian PDF applies strictly only to an infinite set of precise 
measurements of the continuous quantity .v. In practice, an infinite set of 
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measurements is never obtained, and measuring devices are never infinitely precise 
but are discrete. Nevertheless, it is convenient to have a standard shorthand scheme 
that allows one to report measurements of x to others without giving them all of the 
N measurements x, (where r = 1 to Λ0 and without explaining the limits of our ability 
to make each measurement. For this to be carried out, a property of the binomial 
PDF is used that it becomes closely approximated by the Gaussian PDF in the limit 
as n becomes large if neither p nor q is too close to zero. Textbooks on probability 
and statistics prove that this characteristic is valid.1 

In a sense, this procedure is accomplished by comparing the discrete variable 
plot of the binomial PDF fx, ) of Figure A. 1 with the plot of the continuous variable 
fix) of the Gaussian PDF of Figure A.2. This comparison is shown in Figure A.7, 

0.40 T 

0.30 -

" I I I I I I I I I I 1 1 

9 10 11 12 13 14 15 16 17 18 19 20 

0.25 -г 

0.20 -

0.15 -

0.10 ■·--

0.05 

0.00 ™ 4 1 1 1 1 1 1 1 1 1 1 1 

9 10 11 12 13 14 15 16 17 18 19 20 

Figure A.7 Plot of the Gaussian probability density function with x = 3.333 and <T = 1.6667 
above a plot of the binomial probability density function of Figure A.l (with bars of width Ax = 1). 

1 For example, Murray R. Spiegel and Larry J. Stephens. Schaums Outlines of Theory and Problems 
of Statistics. 4th ed. (McGraw-Hill. 2008). p. 172. 
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where the discrete plot values of chart of Figure A. 1 have been changed to bars of 
width Ax = 1. In this plot, the value of x for the Gaussian PDF has been chosen as 
x = np = (20)(l/6) = 3.3333, and the standard deviation, σ, has been chosen as 
σ = -Jnpq = ■N/(20)(l/6)(5/6) = 1.6667. The values of x and σ are thus the same 
for both plots, but one (the Gaussian) PDF is for the continuous variable, and the 
other (the binomial) PDF is for the discrete variable. 

AVERAGE If a statistical process is followed for a finite number of discrete mea-
surements, x„ that can be compared with the infinite continuous set of Gaussian 
values and can be reported as the average of measurements, x, according to the 
formula, 

« N i r=nmax 
J = * l > = ̂  Σ "rx, (A.7) 

Here, the n different values of x, (each of which was reported nr times) have 
been summed, and the result has been divided by N (the total number of 
measurements). 

Standard Deviation 

For the standard deviation, σ, to be reported, the variance, μ, given by 
1 ^ i r=n max 

^ = ТТЕ^-^2 = Т7 Σ "r(xr-xf (A.8) 

is defined. The quantity μ is the average square of the deviation of the r"1 measure-
ment from the average, (x, -x). The square is desirable because the deviation is a 
positive number no matter whether xr is smaller or larger than x . The positive square 
root of the quantity μ thus gives an indication of the average absolute deviation of 
our measurements from the average, σ = -,/μ. 

NOTE Some textbooks define the value s = %[μ to indicate that it was calculated 
by using a finite number of measurements and σ for a continuous distribution. 

NOTE The values of x and <7voften have units associated with them (e.g., cm or 
s). Unless the answer includes a number and a unit for both quantities, it is 
incorrect. 

Measurement Precision 

Measuring devices often have some inherent precision limits. For example, a meter 
stick may be incremented only to the nearest millimeter. While it may be possible 
to interpolate a given length measurement to the nearest tenth of a millimeter, it is 
questionable that giving a report to the nearest hundredth of a millimeter makes any 
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sense. It might be better to choose to make all reports only to the nearest millimeter 
and say that, if the measure looks like it is closest to one value, that value will be 
reported (e.g., if the measure looks like it lies between 32 and 33 mm but closer to 
32 mm than 33 mm, the measure will be reported as 32 mm). This is a personal 
convention but one that is often used. Measurements could then be reported only to 
the nearest mm, but consecutive measurements might yield different values for the 
reported length (e.g., the first measurement might be reported as 32 mm, and the 
next one might be reported as 33 mm). 

Had the same precision convention been used for a continuous variable, any 
value that falls between 31.5 and 32.5 mm would be reported as 32 mm. This allows 
us to interpret measurements in terms of a normalized Gaussian PDF (that applies 
only to an infinite number of exactly precise measurements of a continuous variable). 
Thus, the probability that the next measurement in a series will be reported as 32 mm 
is approximately the area under a normalized Gaussian PDF curve between 31.5 and 
32.5 mm. Of course, in order to compute this probability, it must be known which 
values of x and σ arc to be used for the normalized Gaussian PDF. It will be agreed 
that those values will be determined by the measurement convention above for a set 
of discrete measurements. 

Below are sample problems. If they can be answered correctly, the reader prob-
ably understands measurement error concepts well enough to report them in a 
publication. 

EXERCISE 

A.2 Assuming that the precision of a set of measurements can be expressed only 
to the nearest whole cm and, that using Equations A.7 and A.8. previous 
measurements have yielded the value x = 32 cm + 0.707 cm. what is the prob-
ability that the next measurement will be 
a. 32 cm? 
b. 33 cm? 
c. 33 cm or greater? 
ANSWERS x = 32 cm and σ= 0.707 cm 
Because the measurements are expressed only to the nearest whole cm and the 

curve / ( i ) = (\/у/2л)е 2 is a function of a continuous variable, t, 

a. We can interpret any value of the continuous variable x between 31.5 and 
32.5 cm as being reported as 32 cm with a device that measures to a preci-
sion of 1 cm. Thus, the probability that the next measurement will be 
between 31.5 cm, or 

t = (*,-J) = (31.5cm-32.0cm) ^ Q ? f f 7 

σ 0.707 cm 

and 32.5 cm, or 
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-4.0 -3.0 -2.0 -1.0 

Figure A.8 Area under the Gaussian probability density function between /, = 41.707 and 
/, = 40.707. 

( _ (*2 -■*) _ (32.5cm-32.0cm) _ Q ? Q ? 

σ 0.707 cm 

as shown in Figure A.8, is />-o.707,w).7O7 = 2/Ό.ο.7θ7 = 2(0.2602) = 0.5204. 
b. Any value of x between 32.5 and 33.5 cm can be interpreted as being 

measured as 33 cm. The probability that the next measurement will be 
between 32.5 cm, or 

(JC, - jt ) = (32.5 cm - 32.0 cm) = 0 ? f f 7 

a 0.707 cm 
and 33.5 cm, or 

{ = (x2-x) = (33.5cm-32.0cm) = 2 ^ 
σ 0.707 cm 

IS 
П.707Д.1И = /Ό.2.,22 - о̂,о.707 = 0.4830 - 0.2602 = 0.2228, 

as shown in Figure A.9. 
c. Any measurement between 32.5 cm, or t, = (x,-x) (32.5cm-32.0cm) 

σ 0.707 cm 
= 0.707, and °°, or t2= °°, will be reported as 33 cm or greater. Thus, the 
probability that the next measurement will be between t,= 0.707 and °° is 

I w . - = 1 ~ - 1o.707 = 0.5000 - 0.2602 = 0.2398, 

as shown in Figure A. 10. 

A.3 Six decay rate measurements yield 200, 206, 204, 204, 206, and 204 counts 
per min. Plot a bar graph that shows the results, compare this to a theoretical 
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Figure A.9 Area under the Gaussian probability density function between (, = +0.707 and f2 : 

+2.122. 

Figure A.10 Area under the Gaussian probability density function between f, = +0.707 and l2 = < 

graph of a Gaussian distribution with the same value of x and σ, and indicate 
on the graph an area that shows the probability that the next measurement will 
be 204 counts per min. 
ANSWER There are three different values of count rate, r, measured: 
200 c/min 204 c/min 206 c/min 

n, = 1 
r2 

n2 = 3 n3 = 2 
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Thus, 

and 
i=3 

W = £n ( = 6, 

r=— y n ^ = -[(l)(200c/min) + (3)(204c/min) + (2)(206c/min)] = 204c/min 
Ή~Τ{ 6 

V = ^Yf,(n-rf = ^[(1)(^с/тт)г + (2)(2c/mmf] = 4c/mm, 
Ν^ί 6L 

so 
СТ = лУ/Х=2с/гП1П. 

A bar graph for these measurements is shown in Figure A. 11. 
The probability that the next report will be 204 c/min = Ргыытт is 

f204.5c/min f0.5c/min/2c/min fO.25 

/Wmin = f f(x)dx=\ f(t)dt=\ f{t)di 
лис/пип J2m n J 4 / J-0.5c/min/2c,'min ^ J - 0 . 2 5 - ' ' 

or 

Î204c/min = 2jo°'25 / ( / ) Л = 2 (0.0987) = 0.1974, 

as shown in Figure A. 12. 

Decay rate measurements 

?, 2 

S 1 

198 199 200 201 202 203 204 205 206 207 208 209 

Counts / min (r) 
Figure A. l l Frequency of discrete decay rate measurements reported. Superimposed on the 
discrete measurements bar graph is a Gaussian probability density function, with the same mean 
and standard deviation as that produced by the discrete measurements. 
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1.0 2.0 3.0 4,0 

Figure A.12 Area under the Gaussian probability density function between i, = -0.25 and 
/, = +0.25. 

The measurement bar graph can be compared to a normalized Gaussian PDF 
which has an average of 204 c/min (f = 0), and a standard deviation of 2 
c/min (σ= 1) on a scaled horizontal axis, as shown to the right but, it is rec-
ognized that a Gaussian PDF applies only to a continuous set of precise 
measurements. 

Sometimes, the vertical scale of the Gaussian distribution is also scaled 
to make the comparison on the superimposed graphs, as shown in Figure A. 11. 
Here, the vertical scaling is chosen to make the height of the Gaussian the 
same as the height of the bar at / = 0. With a larger number of measurements, 
the areas could be chosen equal. 

SUMS AND PRODUCTS OF MEASURED QUANTITIES 

Sums 

If we add one measured number x, ± at to another measured number x2 ± <72, how 
would the sum be expressed? For an infinite number of measurements of the quanti-
ties, there would be two Gaussian distributions to be added, so their sum would be 
another Gaussian distribution centered at x, + x2. However, the sum of two uncertain 
numbers has an even broader distribution because of the uncertainty of each. A 
mathematical analysis of the sum of two Gaussian distributions shows the answer 
to be σ.ν,„„ = V°~f + o\. 
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Products 

If one measured number (x, ± σ,) is multiplied by another measured number (x2 ± 
σ2), how would the product be expressed? For a continuous set of measurements of 
the quantities, there would be two Gaussian PDFs. The product of two uncertain 
numbers would be expected to have an even broader distribution because of the 
uncertainty of each. A mathematical analysis of the sum of two Gaussian distribu-
tions shows the answer to be 

(x, ± σ, ) (x2 ± σ2 ) = x,x2[l + л/σ,2 /x2 + σ\ jx\ ] . 



Appendix ÏJ 

Graphics and Conformai 
Mapping 

GRAPHIC INTERPRETATIONS 

Functions of a complex variable z are usually written, fl_z), or w. For example, 

f(z) = z2 = (x+jyf = (x2-y2)+j2xy 
f(z) = z2 = (rejef = r V " = r2 [cos 20+./sin 20] 
/ ( z ) = z

2 = (r2cos20) + y'(r2sin20) 
f(z) = z2 = (real part) + 7(imaginary part), 

which is conventionally renamed as 

w = u(x,y)+jv(x,y) (B.2) 
where 

и (x, y) = (x2 -y2) = r2 cos 2Θ 

and 
v(x,y) = 2xy = r2sin2e 

EXAMPLES 

B.l Equations with z can also be represented by points in the w-plane, for example, 

f(z) = z2 = \ (B.3) 
means 

(x2-y2) = l and 2xy = 0 

or 
и = 1 and v = 0 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 
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This equation can be graphically represented by showing that the point I 
in the z-plane with an arrow and the function w = z2 pointed toward a w-plane, 
where the corresponding point и = 1, v = 0 is located. This figure is in every 
regard equivalent to Equations B.3. It could be said that the point z = 1 (point 
/>') transforms to the point w = 1 (point P) under the transformation w = z2. 
Equation B.3 and Figure B.l are equivalent; given one, we can draw or write 
the other. 

B.2 Equations of z can also be solved for z; for example, 

f(z) = z2 = 2.25 

can be solved as 

(B.4) 

z = 2.25 1/2 

or 

or 

or 

z = {2.25e'T and z = (2.25^2") J2MV2 

z = \.5eJU and z = 1.5e' 

z = 1.5 and z = - l -5 

This inverse relationship can be equivalently represented graphically by 
showing the point 2.25 (point P) in the w-plane with an arrow and the function 
z = w"2 pointed toward a z-plane, where the corresponding points x = 1.5, 
v = 0 (point P') and x = -1.5, v = 0 (point P") are located. Figure B.2 is in 
every regard equivalent to Equations B.4. It can be said that the point w = 2.25 
transforms to the point z = 1.5 under the transformation z = w"2. Because 
Equation B.4 and Figure B.2 are equivalent; given one, the other can be drawn 
or written. 

z-plane 

- f -

u'-plane 

Figure B.l Maping of the point /'' from the г-plane onto point /' in the w-plane under the 
transformation W = r . 
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V 

' 2-plane 

P" l>" 

H l·-

iv-plane 

Figure B.2 Maping of the point P from the »-plane onto point P and P" in the г-plane under the 
transformation z = wm. 

Figure B.2 also points out a problem that there is not a one-to-one cor-
respondence between points in the w-plane and points in the z-plane. By 
labeling the point (2.25, 0) in the w-plane as the point P, we could say that P 
maps from the w-plane under the transformation z = w"2 into the two points 
P' and P" in the z-plane. The inverse way to say this is that both of the points 
P' and P" in the z-plane map to the single point P in the w-plane under the 
transformation w = z2. 

B.3 Find the values of z that satisfy the equation, 

Solution: 

or 

z2 = -2.25 (B.5) 

z = (-2.25)V2 = (2.25ey*)v and (2.25e'3") \"
2 

г = \.5е* and \.5e 2 

The two points Q' and Q" in the z-plane can be represented by the trans-
formation w = z2 by using an arrow pointing from the z-plane to the w-plane, 
where the corresponding point Q is located. Of course, this equation inversely 
implies that the point Q in the w-plane maps onto the two points Q' and Q" 
in the z-plane under the transformation z = w"2. All of these statements need 
not be made if Figure B.3 is shown; the figure says it all! 

B.4 Suppose 

then, 
z2 = 2.25;. (B.6) 

z = (2.25jY''=\2.25e 

1/2 

and 2.25e'2 

v. 
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vv-planc 

Q' 

•=г 
н — ► · . 

Figure B.3 Maping of the point Q from the w-plane onto point Q' and Q" in the z-plane under the 
transformation z = H1"2. 
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z-plane 
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w=z2 

1 
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R 
iv-plane 

1 1 fc. 
[ I ^ 

Figure B.4 Mapping of the point ft in the w-plane onto points R' and К" in the г-plane under the 
transformation г = w"2. 

or 
я ,5π 

г = 1.5e'4 and 1.5e'4, 

as shown in Figure B.4. 

B.5 Let us put all of the points P, R, and Q on the same graph, as shown in 
Figure B.5. Can you locate the image z-plane points that correspond to the 
point S in the w-plane? 
ANSWER The point S in the w-plane is at 2.25e'4, S' is at 1.5«'«, and S" 

.9* 
is at 1.5e s in the z-plane. 
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r-plane 

Q' 
Л" 

<mf 

/'' Q 
· i 

V 

~i 

A' 
и'-planc 

S 
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Q' 

Figure B.5 Mapping of points /', R, and Q in the tv-plane onto points f, R\ and Q' and the points 
P", R", and Q" in the z-plane under the transformation z = wm. 

z-plane 

Figure B.6 Mapping of all points on the curve C" in the iv-plane onto points on the curve С . С", 
and С in the z-plane under the transformation z = w'°. 

B.6 Show how the points on the path С shown in Figure B.6 in the vv-plane 
map onto corresponding points in the г-plane under the transformation 
Âz) = z\ 

ANSWER The image points are shown in Figure B.6 as three curve seg-
ments labeled C, C", and C". It is understood that there are an infinite number 
of points on the path C, and there are also an infinite number of points on the 
paths C, C", and C". 

B.7 For the confusion of having a 3:1 correspondence between points in the 
г-plane and image points in the w-plane to be avoided, there is a common 
mathematical construct called a "branch cut" that restricts the values of Θ in 
the z-plane to lie in the range 0 < Θ < 2п1Ъ (sometimes called the principal 
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У v 

г-plane w-plane 

I 1 ( -

R' 
— f 

H H I h -\ h 

r - w " 

Figure B.7 Branch cut in (he c-plane and the image branch cut in the w-plane that avoids the 
mapping of points onto multiple image points in the other plane. 

branch). This is shown graphically by making a boundary line (shown in 
Figure B.7 as a heavy red line). 

With such a branch cut, we will then agree never to cross the heavy red 
line with points on a contour (e.g., the segment C'). There is a corresponding 
boundary in the vv-plane given by an "image branch cut" along the «-axis. 
With this "no-crossing" rule, it can now be shown that there is a one-to-one 
correspondence between points in the region R' of the г-plane and points R in 
the entire w-plane. 

CONFORMAI, MAPPING 

It is clear that a graphic analysis of complex functions can help our understanding 
in solving problems quickly. Let us try to categorize some common functions along 
with their graphic interpretations. 

Addition of a Constant 

Figures B.8 and B.9 show that addition of a constant (even a complex constant like 
a +jb) corresponds to a graphic translation of the point P in the z-plane to the cor-
responding image point, P', in the w-plane. Likewise, the point Q or R or S in the 
г-plane corresponds to a graphic translation to the points Q', R', and S' in the w-plane. 
It is also clear that any point, г, on the line between P and Q, or Q and R, or R and 
5, or 5 and P in the г-plane shown in Figure B.10 translates by the same amount in 
moving to the w-plane. Furthermore, we can argue rigorously that any point, г, 
within the boundary formed by P, Q, R, S, and P in the z-plane translates into the 
region within the boundary formed by P', Q', R', 6", and P1 in the w-plane. 

Note that the function, Дг) = z + a +jb, in Figure B.10 is not needed beside the 
arrow of transformation. Once the points P, Q, R, and S are shown in the г-plane 
and their corresponding images in the w-plane, it is clear that translation has occurred 
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z-plane 

Λ ζ ) = ζ + 2 

tv-plane 

Figure B.8 Mapping of the point /' in the г-plane onto the point P" in the tv-plane under the 
addition of a real constant. 

у к z-plane 

m=z+j 

»-plane 

/" 
-H 1 1 1 1 f — ^ 

Figure B.9 Mapping of the point P in the г-plane onto the point f in the tv-plane under the 
addition of an imaginary constant. 

I 1 1 b 

z-plane 

S . ,R D 
P Q 

H 1 > - * · 

f(z)=z + 2+j 

tv-plane 

-1 1 1 1 1 1 ! - ♦ ■ 

Figure B.IO Mapping of all points interior to the box denned by P, Q. R. and S in the ;-plane onto 
points within the box ly. ( / . R'. and Л" in the tv-plane. 
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and, hence, addition is implied. Once that is understood, the inverse transformation 
Z = w - a -jb is also implied. Formally, we do not need to see more than the points 
on the corners of a boundary in the two planes to understand that addition of a 
constant is the function that has produced the transformation; nevertheless the func-
tion or its inverse is conventionally stated somewhere on the page. We say that we 
have mapped points in the region bounded by P, Q, K, and S onto the translated 
region bounded by P', Q', P.', and .S" by the addition of a constant (i.e., addition by 
a constant = a graphic translation). 

Multiplication by a Constant 

Figure B.l 1 shows that multiplication by a constant, for example, Дг) = / о Л . cor-
responds to a rotation and a magnification of the region bounded by P, Q, R, S, and 
P in the z-plane into its corresponding region in the w-plane; that is, multiplication 
by a constant —» a graphic rotation and magnification. 

Complex Conjugat ion 

Figure B.l2 shows that the function,/(г) = z*, produces a reflection of points 
bounded by /■'. ' ', / ' . and .S in the ;-plane onto its corresponding region in the 
H'-plane; that is, complex conjugation = a graphic reflection through the x-axis. 

Combinations of Operations 

We can combine a series of operations (e.g., complex conjugation, multiplication 
by a complex constant, addition of a complex constant), as graphically shown 
in Figure B.13, to produce an algebraic result like Дг) = 2z*e? — 3.5 — 2.75/. 
Note that we would need the whole series of figures to unambiguously infer that the 
function that produced the conformai mapping was a combination of the specific 
functions used. 

Through a series of mathematical transformations corresponding to reflection, 
rotation, magnification, and translation, as shown in Figure B.13, we can map the 
area bounded by P, Q, R, and .S' onto points within the area bounded by P'", Q'", R"\ 
and .S"". We may also use graphic transformations found by others (e.g., Schaum's 
Outlines on Complex Variables') in a series of transformations where it might be 
useful for solving two-dimensional (2-D) problems in which Laplace's equation is 
known to be satisfied. As long as all of the transformations in the series are analytic, 
then we can be sure that Laplace's equation is satisfied in any of the transformed 
regions. 

More Complicated Transformations 

Mathematicians have studied many more complicated transformation equations than 
those mentioned above. Some of these are cataloged in tables like Schaum 's Outlines, 
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/(z) = 2ze" w-plane 

Figure B.l l (a) Mapping of the point /' in the г-plane onto the point С in the vv-plane under 
multiplication by a phase factor e"; (b) mapping of points within the rectangle formed by P. Q. R. and 
S in the г-plane onto points within P'Q'R'S' in the w-plane under multiplication by a phase factor e"; 
(c) mapping of points within the rectangle formed by /'. Q. R, and S in the г-plane onto points within 
P'Q'R'S' in the vv-plane under multiplication by the real number 2; (d) mapping of points within the 
rectangle formed by PQRS in the г-plane onto points within P'Q'R'S' in the vv-plane under multiplica-
tion by a magnitude and a phase factor, 2e". 

z-plane v 

S R 

w-plane 

X в 
R' 

Figure B.12 Mapping of points within the rectangle formed by P. Q. R. and S in the г-plane onto 
points within P'Q'R'S' in the w-plane under complex conjugation. 
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R' 

w' = w2e"2 

w"-plane 
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Figure B.13 Mapping of points within the rectangle formed by P. Q. R. and S in the z-plane onto 
points within fQ'K'S1 in the to-plane under a combination of operations; complex conjugation, 
multiplication by a magnitude, and a phase factor e", and then addition of a complex constant. 

which shows a variety of functions that might appear in an electrical engineering 
problem (e.g., Л «*", ύηπζ/α, cosh πζ/α, a/l[z + Vz), [1 + zfl[\ - zf, lnz). It is 
possible for the user of such mappings to trust the mathematician that she has carried 
out the mapping correctly and to use the results in a 2-D problem solution, as shown 
below. 

The mathematicians Cauchy and Riemann defined single-valued functions 
f(z), where г is a complex number, to be analytic in R if their derivative 

Д г ) « Ш п 
Δζ-*0 

f(z + Az)-f{z) 
Δζ 

exists in a region R and is independent of the manner 

in which Δζ —» 0. They showed that a necessary and sufficient condition for analytic-
ity is that the conditions ди/дх = Θν/Эу and Эи/ду = -dv/дх be met. These are called 
the Cauchy-Riemann conditions. The word conformai in conformai mapping means 
that transformations are analytic in the region bounded by a specified area in 
the z-plane or in the w-plane and that /'(г) * 0. Points where / '(г) = О are called 
critical points of the transformation. Conformai mapping preserves the angle of 
intersection of two curves C, and C2 at a point (дт0, >0) in the г-plane when the two 
curves are mapped into curves Cf and Ci and intersect at the point (м0, v0) in the 
w-plane. 



270 Appendix B Graphies and Conformai Mapping 

USE OF CONFORMAL MAPPING IN SOLVING 2-D ELECTRIC 
POTENTIAL PROBLEMS 

One of the consequences of the Cauchy-Riemann conditions is that wc may 
take their derivative to produce the properties д2и/дх2 + д2и/ду2 = 0 and d2v/dx2 + 
Э2у/Эу2 = 0. Thus, the real and imaginary parts of an analytic function satisfy 
Laplace's equation in 2-D, V2u = 0 and V2v = 0 at all points where Дг) is analytic. 
It can be shown that any function [Ё(х, у), L\x, у), В(х, у), Н(х, у), Л(х, у), or 
V(x, у)] that satisfies Laplace's equation in a region R of the г-plane also satisfies 
Laplace's equation in an image plane produced by an analytic transformation 
(Spiegel). 

A consequence of Maxwell's equations in charge free space is that all of the 
electromagnetic fields (electric field intensity, magnetic field intensity, magnetic 
vector potential, and electrostatic potential) satisfy Laplace's equation. 

CONCLUSION Electromagnetic fields in a 2-D region of space defined by an x—y 
plane (the г-plane) satisfy Laplace's equation in any plane to which the region may 
be transformed by an analytic transformation. 

APPLICATION Given a boundary value problem of any electromagnetic quantity 
in which the boundary conditions are specified on the boundaries of a 
region R in the x—y plane, conformai mapping of that region may be made to a 
corresponding region of an image plane (by one or a series of transformations). 
For example, a transformation sequence that maps the region R in a problem 
into the corresponding region of a parallel plate capacitor R' with simple 
boundary conditions (ВС) can then be solved by inspection in R'. For the 
solution in the original region R to be found, the inverse transformation can be 
used. 

Before the advent of computers, conformai mapping was a technique to analyti-
cally solve 2-D boundary value problems in electromagnetic theory (and in fluid 
flow, mechanical strain, or any other problems that had a variable that satisfied 
Laplace's equation). The technique is still useful to check the results of a computa-
tional model in 2-D to be sure that it yields the correct solution before proceeding 
to more complicated boundary conditions. 

EXAMPLE 

B.8 Conformai mapping may be used to find the electrostatic potential, V(x, >·), in 
a region of space bounded by the wedge shown in Figure B.14 with boundary 
conditions V(x, 0) = 0 V and V(r, rim) = 100 V. 
SOLUTION 

In Figure B. 14, an open region of a wedge of angle itim in the z-plane bounded 
by the lines connecting A, B, C, D, and E has been mapped onto the upper 
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Figure В.14 Mapping of points within the triangle formed by the points ABCDE in the г-plane 
onto points within the infinite slab A"B"C"-C"+D"E" in the и'-plane under a combination of 
operations; w = :'" and then iv' = In win. 

half of the w-plane by the transformation1 w = z!". Note that the image points 
A', B\ C, D\ and E' in the w-plane correspond to points on the w-axis. The 
arrows indicate that points A and E may be very far out on the boundary lines 
(even infinitely far) and that their corresponding images in the iv-plane are 
also very far along the corresponding u-axis boundary line. 

In a successive mapping corresponding to the transformation w' = (In \ν)Ιπ, 
the region in the upper half of the w-plane has been mapped onto a strip of 
the w'-plane bounded by the «'-axis and the horizontal line v' = /. The image 
points A", B", C", D", and F." are also shown on the boundaries of the strip, 
with a notation that it depends on whether the point С in the w-plane is an 
infinitesimal amount less than zero (C—) or an infinitesimal amount more than 
zero (C'+). The image point of zero in the w-plane is recognized to be ambigu-
ous when mapped to the w'-plane, so care should be taken in inferring any 
solutions to Laplace's equations at this critical point. 

The application of this problem to an infinitely large parallel plate capaci-
tor (a 2-D problem) is indicated by the configuration to the left of the w'-plane. 
Here, we have a boundary value problem in which the potentials V(u, 1 ) = 
100 V and V(u, 0) = 0 V and V(«', v') satisfy Maxwell's equations. We will 
later show that, in a charge-free region of space, Maxwell's equations yield 
an electric potential, V(u', v') that satisfies Laplace's equation V2V(u', v') = 0 
or d2Vßu'2 + drV/dv'2 = 0 in 2-D. The second derivative term with respect to 

Murry R. Spiegel. Schaum's Outlines on Complex Variables (McGraw-Hill. 1999). 205. 
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the variable perpendicular to the w'-plane has been ignored because we can 
see that there is no variation in the potential in this direction. Furthermore, 
there is no variation in potential with respect to the variable u', so we can 
ignore this derivative as well, and Laplace's equation becomes 32V/3v'2 = tfV/ 
dvn = 0. Solving this differential equation, we get V(u', v') = a v' + b. Applying 
the ВС that V(u', 0) = 0 requires b = 0, and applying the ВС that V(u', 1) 
= 100 V requires a = 100 V. Thus, V(u', / ) = 100 V v' or V(u', / ) = 100 V 
Im(w'). 

We can use the inverse transformation, In w - mv\ to write V(u, V) = (100 
volts/7T)Im(ln w) and thus find the potential in the region R' of the vv-plane. 
Finally, we can use the transformation relationship w = z"\ to find the potential 
in the z-plane as 

K(x,v) = (100volts^)Im(lnz'") = (100volts/^)Im(mlnz) 

or 

or 

V(x, v) = (100 volts/ff) Im [m (In re'" )] 

V(jc,y) = (lOOvolts/Ä-)Im[wlnr + jm0J = (lOOvolts/^)/n0. 

EXERCISE 

Find the equipotential lines and electric field lines in all of the three regions, R, R', 
and R" of space. 

EXAMPLE 

B.6 A long cylinder is split in two, and the halves are insulated from one another. 
One of the halves is grounded, and the other is raised to a potential V„. Find 
the potential V(x, y) at all points inside the cylinder. 
SOLUTION The function w = ( 1 + z)/( 1 - z) maps the unit circle onto the 
half-plane, as shown in Figure B.15. Furthermore, in Example 1, it was shown 
that the function w' = lnw maps the half-plane onto a parallel plate 
capacitor. 

z-plane tv-plane 

V = 0 

1 - z 

H - l 
w + I y 

. iv'-plane 

Figure B.15 Conformai mapping of a unit cylinder onto a parallel plate capacitor. 
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V2V = 0 in any of the regions of the z-, w-, or the w'-plane because the map-
pings are conformai (the transformations are all analytic). In the w'-plane, we 
have a boundary value problem in which d1V/du'2 + b2Vßv'2 = 0 subject to 
V(M', Л/2) = V,i and V{u\ -тс/2) = 0. The solution to this problem in the w' 
plane is 

V(u',v') = (Vtl/n)v'+Va/2 

or 

or 

V(u', v') = (V0/2){l+(2/w)Im (In w)} 

V(«',v') = (Vo/2){l+(2/^)Im[ln(«+jv)]} 

where 
(ы + y'v) = re' = V" , j /tan 

Thus, Im[ln(V «2+v2) + ytan '(V/M)] = tan"'(v/w). s o the solution in the 
w-plane is 

V(u, v) = (V0/2){l+(2/ff)tan-'(v/«)}. 

To obtain the solution in the z-plane, we recognize w = (1 + z)/(l - z), so 

l-x-jy 
or 

(l±m-jO-r±J2y 
(U + JV) \-x2+y2 

so 
У(х,у) = (У„/2){] + (2/л)1ап-'[2у/{]-х2-у2)]}. 

PROBLEMS 

B.l Show that equipotentials, V= aV„ (0 < a < 1), are circles with centers on the 
±j-axis and passing through the points x = ±1. 

B.2 Find the potential V(x, y) for all points outside the split cylinder. 
HINT Consider the function w = 1/z. 

E N D N O T E 

i. Murry R. Spiegel, Schuum's Outlines on Complex Variables (McGraw-Hill. 1999), 205-11. 



Appendix С 

Vectors, Matrices, Orthogonal 
Functions 

When using higher dimensions, it is easier to use a numerical designation for the 
Cartesian coordinate axes, as shown in Figure С.1. 

In Figure C.l, the names of the base vectors â„ ây, â: have been replaced with 
â\, â2, â3, and the names of the components of the vector Л along the xu x2, x$ coor-
dinate axes have been replaced with Аь A2, Αλ. This convention is convenient for 
writing the vector À as 

f=3 

A = Да, + A2â2 + A3â3 = ^ Д«, = A,<5, (C. 1 ) 

where the summation convention has been used such that when an index subscript, 
i, is repeated, the sum over i is implied. This is shorthand in three dimensions, but 
it is crucial when we want to express a vector A in four dimensions or higher where 
it is impossible to visualize the four components of A but for which the algebra 
continues to apply. 

/i-DIMENSIONAL (w-D) VECTOR SPACE 

In an n-D vector space, there are n linearly independent vectors in the space but not 
n + I. Linear independence means that, for the n vectors in the set x-„ there is no set 

II 

of coefficients c, such that ^ c , x , = 0 except the set c, = 0. If a set of vectors a, 

forms a basis' (coordinate system) for a vector space, there exists a set of numbers 
II 

х-, such that x = V χ,α, for any arbitrary vector л: in the space. 

1 A basis set is any set of vectors a. that "spans the space"; that is. given an arbitrary vector in the 

space, we may find a set of Xj so that x = } χ,ύ,. 

Maxwell's Equations, by Paul G. Huray 
Copyright © 2010 John Wiley & Sons, Inc. 

274 
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Figure C.l Cartesian coordinate axes for three dimensions. 

GRAM-SCHMIT ORTHOGONALIZATION 

If we can define a scalar product (л:, >·) (called the inner product or dot product), we 
can create an orthonormal basis set, â„ from the set ä, by using a process called a 
Gram-Schmidt orthogonalization. The technique follows: 

Given an arbitrary set of basis vectors a,·, 

1. Pick one (e.g., «',) and define «, =—7· (Note that |я,|2 = (fli,2i) 
= 1.) 

2. Pick another (e.g., ti:) and define ci2 = — l-^- . Here, we will choose c, 
l«2-C|a|| 

so that (d|, â2) = 0. We can see that this will be the case if ct = (â,, ä2), so we 
(â 2 - ( â | , â2)â,) can write аг = 
\ä2-(a,,ä2)a, 

3. Pick another (e.g., 53) and define â3 = ^ — ^ ^ 7 ^ . Here, we will 
|e3 -c 2 â | -c 3 â 2 | 

choose c2 and c3 so that (âu d3) = 0 and that («2, â3) = 0. We can see that 
this will be the case if c2 = («1, «0 and c3 = (d2, a3), so we can write 

(«3 - (â , , i73)â, - (« 2 , â3)â2) a3 = 
|α , - (« ι , о.,)«1 -(аг, a3)â2\ ' 

4. The trend from the first three vectors in the orthonormal baisis set illustrates 
how each new basis vector is formed. However, it also illustrates that the 
choice of which vector is called ci„ which is called ci·, which is called â3 and 
so forth, is completely arbitrary. 

Thus, even though the Gram-Schmidt process defines an orthonormal basis set it is 
not a unique set. 
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Note that we can teach a computer to do these operations for any и-D space2 

and we can even take the limit as n —> °° so it will always be possible to construct 
at least one orthonormal basis set. 

Conclusion 

Since it is always possible to construct an orthonormal basis set from an arbitrary 
basis set, we lose no generality in always working with orthonormal basis sets, where 
(Д, âj) = S,j. We shall thus always assume an orthonormal basis set in this book. 

SCALAR PRODUCT DEFINITIONS 

1. If we have a set of vectors in n-D space with only real components, we see 
the following: 
a. (0,V) = (V,0) commutative law 
b. (0,V + W) = (0,V) + (0,W) associative law 
с (aO,V) = a(0,V) multiplication by a scalar 
d. (0,0) > 0 and (0,0) = 0 iff 0 = 0 

2. If we have a set of vectors in n-D space with complex components, we see 
the following: 
a. (0,V) = (V,0)* the scalar product is not commutative 
b. (0,V +W) = (0,V) + (0,W) associative law 
с (aO.V) = a*(0,V) multiplication by a scalar 
d. (0,0) > 0 and (0,0) = 0 iff 0= 0 

3. If we have complex-valued functions fix) and g(x) on the interval (0 < x < 
1 ) we can consider the functions at a particular value of x to be a component 
of a vector. Because there are an infinite number of points, x, on the interval, 
we could consider the function to be an infinite dimensional vector, with a 
different component corresponding to each value of x. If the functions fix) 
and g(x) have a real and imaginary components, then we can use the rules 
for an и-D space with complex components (as in [2J above) to form the 
rules for a scalar product but we will need to take the limit as n —» <». 
Breaking the interval into n equal parts, we can define a scalar product in 

ft 

the n-D space to be ( / , g) = ^ /*(л; , )#(х,) (the vector symbol over/and 

g has been added for emphasis to indicate that we are thinking of the func-
tions as vectors, but this is not a common notation, so we will drop the 
vectors hereafter). We now take the limit as n —> °<= but we can see that, for 

2 Noie thai the basis set is not unique because the orthonormal basis set depends upon which of the 
basis vectors S, we choose to call Si, which we choose to call <?., and so forth. 
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finite functions, the sum of the products would generally approach infinity. 
However, if we multiply the product by Δχ, the space between two adjacent 

II 

points of evaluation, we can then define (f,g) = '^f*(xi)g(xi)Ax and, if 

we take the limit as n —> °°, we must also take the limit as Δχ —» 0, so 
we will generally produce a finite scalar product quantity defined as 

(f,g) = \imYf*(xi)g(xi)ax=\f*(x)g(x)dx. This is the traditional 
'=1 0 

definition of an inner product of two complex-valued functions, and it obeys 
the following properties: 
a · (f> s) = (gif)* t n e scalar product is not commutative 
b. (f, g + h) = {f, g) + (f, h) associative law 
с (af, g) = a*(f,g) multiplication by a scalar 
d. (f,f)> 0 and (f,f) = 0 iff/= 0 almost everywhere3 

MATRIX CONVENTIONS 

It is a common convention to specify a vector u = u/i, + uyây + иД in the numerical 
designation й = ща\ + игсь + м3«, because it is easy to extend the vector to 
«-dimensions. Using a definition of matrix multiplication, we can see that this is 
the same as 

й = (â, â2 âj ) 
« I 

Щ 

Most authors" use shorthand and simply write й = with the understanding that 

the column matrix is to be multiplied by a row matrix («, â2 âs). 

The condition lhal/= 0 almost everywhere is a condition mathematicians use when they study 
discontinuous functions. For example, if we have a function fix) = 0 except at the points x = Va, Чг, and 

I 
%, where/= 1, then I f*(x)j(x)dx = 0. The integral would also be equal to 0 for any finite 

о 
number of points .Ï, on (0 < x < 1 ) for which fix,) = 1. 
4 Physicists like to use the "bra"-"ket" notation for a vector in which the ket vector |ii> = й = 

(multiplication by the row base vectors is understood). In this convention, the bra vector 
(u|=(ii| Ui U) ). This is especially convenient for a scalar product Of a bra and a ket vectors, where 

fv, 
(Й|Р> = (иГ »? «.?) = и, ï', + н2 v; + и, v}. Note that this brakel convention holds for vectors in 

л-dimensions and also holds for the scalar product of two functions in the integral definition. 
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When we take the scalar product of two vectors with complex components, we 
can write 

(w, V) = <й| V) = (и, «2 u3 ) 
\v3J 

= щ v, + u2 v2 + «3 v3. (C.2) 

MATRIX MANIPULATION IN EXCEL 

Microsoft Excel is set up to manipulate matrices5 for the following operations: 

Matrix Inversion 

1. Put the matrix elements in separate cells; for example, put a 3 x 3 matrix in 
Al, Bl, Cl, A2, B2, C2, A3, B3, C3 (Excel calls this range A1:C3). 

2. Select 3 x 3 cells anywhere; for example, select Dl, El, Fl, D2. E2, F2, D3, 
E3, F3, and type "minverse(Al:C3)". 

3. Then hit CTRL + SHIFT + ENTER. The inverse matrix of A1:C3 appears 
inDl:F3. 

4. Note that you can now change any one of the elements in A1:C3, and its 
inverse will update automatically. 

Matrix Multiplication 

1. Select 3 x 3 empty cells for the final answers, for example, G1, H1,11, G2, 
H2,12, G3, H3,13, and type "mmult(Al:C3,Dl:F3)". 

2. Then hit CTRL + SHIFT + ENTER. The product of matrix A1 :C3 and matrix 
D1:F3 will appear in G 1:13. 

3. Note you can change any element in the two matrices and the product will 
update automatically. 

Square Matrix Times Column Matrix 

1. Put the square matrix elements in separate cells; for example, put a 3 x 3 
matrix into A1:C3. 

2. Put the column matrix elements in separate cells; for example, put a 3 x 1 
matrix into Dl, D2 and D3. 

3. Select 3 x 1 cells anywhere; for example, select El, E2, E3 and type 
"mmult(AI:C3, D1:D3)". 

4. Then hit CTRL + SHIFT + ENTER. The product of square matrix A1:C3 
and column matrix D1:D3 will appear in E1:E3. 

5 Be sure thai all cells in the Excel file used have a number format. 
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Figure C.2 Excel examples. 

Excel Examples are shown in Figure C.2 for a 

• three by three matrix inversion (with a check), 
• four by four matrix inversion (with a check), 
• five by five matrix inversion (with a check), and 
• three by three matrix multiplied by a three by one column matrix. 

n-D VECTOR SPACE 

By expressing vector components as a column matrix, we can formulate a scalar 
product for an n-D vector space on the interval (0 < x < 1) by taking the limit as 
n —> °° (and as Ax —» 0) to define a scalar product of two complex valued functions 
using the logic of the last section. Here, 

I-
(U,v) = (u\v) = limTu*(Xi)v(Xi)ax= \u*(x)v(x)dx (C.3) 

1=1 0 

Treating row and column matrices as the complex and real components of a 
vector function on a continuous interval, we see that the analogy to an infinite 
dimensional vector space is synonymous to the inner product as an integral, and all 
of the properties stated in 3a, 3b, 3c, and 3d on page 277 are valid. 
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Note that we have arbitrarily chosen the interval for the functions to be 
(0 < л < 1) but we could just as well have chosen the interval to be (-1 < x < 1), 
(-L < x < L), or (« < x < b) and arrived at the same definitions. In addition, we chose 
to make the inner product finite by multiplying f*(x)g(x) by Δχ and taking the limit 
as Δχ -» 0, where we could have accomplished the same result by multiplying 
through by w(x) Δχ. When a function w(x) is chosen, it is called a weighting func-
tion, and it is useful in some applications, as we shall see. 

ORTHOGONAL FUNCTIONS 

One of the most useful applications of the infinite dimensional vector analysis is 
when we combine it with the Gram-Schmidt orthogonalization technique to create 
a series of orthogonal functions. 

For example, we can generate a set of polynomial functions that are mutually 
orthogonal to one another on the interval (-1 < x < 1) by beginning with the 
nonorthogonal powers of x: Ι,χ,χ2, χ3, x1, ... . 

Using the Gram-Schmidt orthogonalization process, we can choose the first 
vector function to be φ,(χ) = cn(\) and find a second function φι(χ) = c21(l) + c22(x), 
and a third function ф3(х) = c3l(l) + ci2(x) + c^x2), and so forth. If the first 
two functions are to be orthogonal on the interval (-1 < x < I), then 

j c,l(])[c2\(\) + c22(x)]dx = 0 from which we conclude that cn[2c2i] = 0 from 
which c2| = 0 since cM * 0. In order that ф,(х) and ^(л) be normalized on the 
interval (-1 < x < 1), we require I (СЦ ) dx = 1 and I (c22x)'dx = \ from 

which cu=±yJ\J2 and c22 =±-j3/2. Thus, we find the first two orthogonal 
functions to be ф,(x) = ±4Щ and ф2(х) = ±-JbJïx. 

PROBLEMS 

C.I a. Show that the coefficients Cj, = ±~j5/8, c32 = 0, and c33 =+3>/5/8 so that 
фЛх) = ±^5/2[Ъх2-\]/2. 

b. Show that ф4(х) = ±>/7/2 [5x5 -3x]/2. 

с Show that Ф, (x) = ±vW2 [35x4 - 30л2 + 3]/8. 

C.2 Find the factor that makes these orthogonal functions equivalent to the 
Legendre Polynomials: 

P„(x)=l fl (*) = *, A W = [3x 2 - l ] /2 , 
fl (jr) = [Sx3 - 3x]/2, fl (x) = [35л4 - 30л:2 + 3]/8, 
flW = [63x 5 -70r ' + 15^]/8 

Note the Legendre polynomials satisfy P„(l) = 1, P„(-l) = (-1)" and 
J' |[fl(x)]2^ = 2/(2« + l) 
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C.3 Given the set of functions, 1, x, x2, лг, л:4, ... , find an orthonormal set on the 
interval (—1 < x < I) if the weighting function is w(x) = x. These are called 
the normalized Legendre Polynomials. 

C.4 Given the set of functions, c0, C\ + c2 x, c3 + слх + c5 x
2, ... , where c, = con-

stants, find the constants so that the functions form a mutually orthogonal set 
on the interval (0 < x < 1). 

C.5 Given the set of functions, c,h ct + c2 x, c.i + c, x + c$ x2, ... , where c,- = con-
stants, find the constants so that the functions form a mutually orthogonal set 
on the interval (a < x < h). 

USE FOR AN ORTHONORMAL FUNCTION SET 

By analogy to the set of orthogonal basis vectors, ф,{х), we can see that an arbitrary 
function, fl,x), can be expanded as a set of mutually orthonormal functions; 

/(х) = ^с„ф„(х) on the interval (a < x < b). Furthermore, we can see that the 

coefficients c„ are unique and that c„ = f{x)ty„(x)dx. The orthonormal series so 
Ja 

defined are a generalization of the Fourier series, and the coefficients c„ are called 
the generalized Fourier coefficients. 

As we will see later when we study spherical coordinates, it is often convenient 
to expand an arbitrary function of μ = cos0 on the interval (-1 < μ < 1) in terms of 
the Legendre Polynomials. 

Other sets of orthogonal functions (e.g., Bessel, Laguerre, Hermite, Chebyshev) 
can be used to describe arbitrary functions in electromagnetic problems on a given 
interval and/or with respect to a given weighting function. We will wait until we 
encounter those problems, but the rationale for their use is the same as the Gram-
Schmidt process described above. 

STURM-LIOUVILLE EQUATION 

One of the most elegant and beautiful proofs in the annals of mathematical physics 
lies in the solution to the Sturm-Liouville equation: 

d_ 

dx 

with some given boundary conditions in the general form 
a L v (a )+a 2 / (« ) = 0, ß,y(b)+ß2y'(.b) = 0, (C.4b) 

where p(x), q(x), r(x), α,, ο^, βι, βι are real and Я or у may be complex. 
Quantities such as the electric field intensity, the magnetic field intensity, the 

electric vector potential, or the magnetic vector potential obey Maxwell's equations 
subject to some given boundary conditions, and these four coupled partial differen-
tial equations can usually be rewritten in terms of a set of uncoupled partial 

P ( 4 
dx. 

+ [q(x)+Xr(x)]y = 0 (C.4a) 
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differential equations. Our choice of coordinate system (e.g., Cartesian, cylindrical, 
spherical, elliptic cylindrical, parabolic cylindrical, bipolar, prolate spheroidal, 
oblate spheroidal, parabolic, toroidal, bispherical, confocal ellipsoidal, conical, con-
focal parabolic) will depend on the specified boundary conditions. Typically, we are 
given Dinchlet boundary conditions y(a), Neumann boundary conditions y'(a), or 
mixed boundary conditions aty(a) + 1X2/(0) = 0 on the boundary a of some geometric 
shape. Applying the boundary conditions is made easier with a choice6 of a particular 
coordinate system. In this book, we will limit ourselves to Cartesian, cylindrical, 
and spherical coordinate systems. 

An excellent technique for solving the partial differential equations that come 
from combining Maxwell's equations is using separation of variables, as explained 
in detail in section 7.8. The ordinary differential equations that pertain to any one 
of the variables are in almost all cases in the form of the Sturm-Liouville equation. 
While the individual differential equations may be coupled through their use of a 
common parameter or constant, the solution to the Sturm-Liouville equation gives 
the function that will typically be multiplied by other functions to uniquely specify 
the solution to electromagnetic problems. Fortunately, Sturm-Liouville theory 
assures us of a complete orthogonal set of functions (called eigenfunclions) that span 
the space, so, once we have solved that differential equation, we can just write down 
the solution within some arbitrary constants whenever we encounter that problem 
in the future. The final solution to the problem is thus choosing the constants to meet 
the given boundary conditions. 

EIGENVALUES 

To find the properties of the eigenvalues, A, for the Sturm-Liouville equation, we 
consider the complex conjugate of Equations C.4a and C.4b: 

d 

dx 

ос1у(а)+а2у'(а) = 0, ßly(b)+ß2y'(.b) = 0 (C.5b) 

p(X)f 
dx 

■[q(x) + Xr(x)]y = 0 (C.5a) 

where the tilde over the eigenfunction у or the eigenvalue A denotes the complex 
conjugate. We can multiply Equation C.4a by у and Equation C.5a by у and subtract 
to see 

^-[p(x)(yy'-yy')} = {l-ty(x)yy (C.6) 
dx 

and integrating from a to b, 

(A-X)JV r(x)dx = p(x)(yy'-yy't =0 (C.7) 

6 Nature does not know anything about coordinate systems, as that is a mathematical construction of 
humans. Thus, the answer to the problem cannot depend on our choice of coordinate system. Any 
choice will do. but some may lend themselves better to the application of a boundary condition. 
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upon using conditions C.4b and C.5b. However, because r(x) > 0 and is not identi-
cally zero everywhere on (a < x < b), the integral on the left of Equation C.7 is 
not zero. Thus, the only possibility is that λ = λ from which we conclude that 
eigenvalues, Я, of Sturm-Liouville equations are real. 

EIGENFUNCTIONS 

We can also show that eigenfunctions, y, and y2, belonging to two different eigen-
values, Я, and λι, are orthogonal with respect to the weighting function r(x) on the 
interval (a < x < b). Here, we rewrite Equations C.4a and C.4b for the two 
functions: 

d_ 
dx 

«,>·,(«) + a2y!(a) = 0, ßiyi(b) + ß2y;(b) = 0 (C.8b) 

d_ 

dx 

axy2(a) + a2y'2(a) = 0, ßy2(b) + ß2y2{b) = 0- (C8d) 

dx 

p(x)— 
dx 

+ [q(x) + Xir(x)]y,=0 (C.8a) 

+ [ l i i ) + V W ] » = 0 (C.8c) 

If we now multiply Equation C.8a through by y2 and Equation C.8c through by y, 
and subtract, we find 

^-[р(х)(у1У2-У2У^)] = (^-^)г(х)у1у2. (С.9) 
dx 

Integrating from Equation C.8a to C.8b and using Equation C.8b and C.8d, 

(A, -Хг)\\угг(х)ах = р(х)(у1У'2-у2у'Х = О (С.10) 

and because X, * L·, it is required that 

[b
yiy2r(x)dx = 0. (CM) 

We have thus concluded that the eigenfunctions yt and y2, belonging to two 
different eigenvalues, A| and Яг, are orthogonal with respect to the weighting 
function ;-(.v) on the interval (a < x < b). 

Completeness of Eigenfunctions 

A final characteristic of eigenfunctions is that they form a complete set; that is, any 
arbitrary, single-valued function, β,χ), that is picccwisc continuous on an interval 
(a < x < b) can be exactly represented by the series 

/ W = !>„</»„ U) (C.12) 



284 Appendix C Vectors, Matrices. Orthogonal Functions 

if the functions, tp„(x), are eigenfuctions of a Sturm-Liouville equation" Specifically, 
we can say that the set ф„(х) is complete because the limit of the mean square error 
vanishes as m —» °° as follows: 

lim f* f(x)-fcA.(x) w(x)dx = 0 (C.13) 

In the language of a linear vector space, we can say the orthonormal functions, 
<p„(x), on the infinite dimensional vector space interval (a < x < b) form a basis that 
spans the space as long as we define the inner product according to Equation C.l 1. 
Such a space is called a Hubert space. The concept is fully discussed in Arfken' and 
other basic texts on Mathematical Physics. 

Summary Application 

In section 7.8, we showed that Cartesian components of the electric field intensity, 
magnetic field intensity, electric flux density, magnetic flux density, scalar potential, 
or magnetic vector potential satisfy an inhomogeneous Helmholtz equation: 

- .2 

ν2ψ-με^- = /(χ,ί). (C.14) 
at 

We chose to let ψ(χ,ί) = ψ,(χ)Τ(ι) so that the functions satisfy 

£V^=_,2 and ^mÊ!t=-e. (eis) 
¥s(x) ПО 

We then let ψ3(χ) = X(x)Y(y)Z(z) so that д2Х{х)1Ъх2 = -1&С(х), d2Y(y)/dy2 = 
-k$Y(y), and d2Z(z)laz2 = -lcZ(z), with the condition that fc2 + Ιξ. + le2. = k2. 

We now see that each of the spatial terms and the time-dependent term 
satisfy a Sturm-Liouville equation, so we are assured that the eigenvalues of 
the equations are real and that the eigenfunciions form a complete set of 
orthogonal functions. This means that we can expand the functions in a series 
ψ(χ, t) = (1/2*)£V(*> a>)e~'"d<o, f(x, t) = (1 /2яг)£ / ( ί , ю)е^таш in the time 
variable and in a similar series for each of the spatial variables. In section 7.8, we 
took it for granted that we could expand the individual space and time functions as 
Fourier transforms but we now see from the Sturm-Liouville theory that these expan-
sions are assured to be orthogonal and complete, so we are rigorously justified in 
our adoption of the Fourier transform. 

ENDNOTE 

i. George Arfken. Mathematical Methods for Physicists, 3rd cd. (Burlington. MA: Elsevier Academic 
Press, 1985). 
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