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PREFACE TO VOLUME 3

THis is the third of three volumes intended to cover the electromagnetism
and potential theory usually included in an undergraduate’s course of study.
These books are intended only as an introduction to electromagnetism and
have been prompted by discussion with first-, second- and third-year under-
graduates.

The general scheme of the volumes is to start with the simple case of
steady fields and to develop the appropriate generalizations when this
constraint is relaxed. Thus, in the first volume we started with the fields
associated with stationary charges and relaxed the stationary condition to
allow consideration of the flow of steady currents in closed circuits.

In the first volume we considered the experimental results which require
mathematical explanation and discussion, in particular those referring to
phenomena which suggest that the simple Newtonian concepts of space
and time are not fully valid. Then we considered steady state fields and dealt
next with electrostatics including dielectrics, energy theorems, uniqueness
theorems, and ended that volume with a chapter on the steady flow of
electric currents. SI units were used throughout, although the older systems
were briefly mentioned.

In the second volume we first of all considered the magnetic field of steady
currents—magnetostatics. This was followed by a chapter on the methods
of solving potential problems drawn from electrostatics, magnetism, current
flow and gravitation. Relaxing the constraint of stationary steady currents,
we were led to consider electromagnetic induction when the current strengths
in closed circuits vary or when the circuits move. This led to the necessity
of considering the breakdown of Newtonian ideas and the introduction of
special relativity. When we further relaxed the contraint of closed circuits
and considered the motion of charges we were led to introduce the displace-
ment current because of the relativistic theory already set up, and so were
led to Maxwell’s equations.

In this third volume we consider the implications of Maxwell’s equations,
such as electromagnetic radiation in simple cases, and deal further with
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the relation between Maxwell’s equations and the Lorentz transforma-
tion.

We assume that the readers are conversant with the basic ideas of vector
analysis, including vector integral theorems.

Our thanks are due to the University of Oxford, to the Syndics of the
Cambridge University Press and to the Senate of the University of London
for permission to use questions set in their various examinations.



CHAPTER 11

ELECTROMAGNETIC WAVES

11.1 Plane electromagnetic waves

We have shown earlier, pp. 419420 of Volume 2, that the various field
vectors and potentials of Maxwell’s theory each satisfy a wave equation.
The general solution of the wave equation is of little practical value; parti-
cular solutions are much more important and contribute a great deal to our
understanding of certain physical phenomena. One simple solution of
Maxwell’s equations corresponds to a plane wave; its importance stems
from the fact that complicated fields can be constructed from plane wave
solutions by application of Fourier’s theorem. Further, a plane wave can be
produced experimentally to a fair degree of accuracy in the shape of a
parallel beam of light.

For a plane-wave solution we seek a solution of Maxwell’s equations in
which the field quantities depend upon distance along the direction of pro-
pagation of the beam, and upon the time, but are uniform in directions ac-
ross the beam. We choose the direction of the frame of reference so that the
x-axis gives the direction of propagation of the beam, and consider only free
space in which there is no charge or current density. With these restrictions
Maxwell’s equations reduce to eight component equations as follows, and
all quantities depend, in general, only on x and ¢.

oD, oE,
=

divD =p = 0; o o—a7=0. (11.1)
div B =0; %}xf =0. (11.2)
curlE—}-aa—? =0; aaB;x =0, (11.3)

—%Ef+a—§t1=0, (11.4)

441



442 ELEMENTARY ELECTROMAGNETIC THEORY, VOL. 3

%%ﬁaﬁz 0. (11.5)

curlH—aa%t)=0; 80%20’ (11.6)
_#Lo%i:_goa_a’i;y_=o, (11.7)

% %._ 08;, — 0. (11.8)

Equations (11.1) and (11.6), (11.2) and (11.3) show that both E,, B, are
independent of x and of ¢. This means that they must be constants. Since we
are primarily interested in varying fields we take these constants to be zero.
The remaining components B, B, E,, E, all satisfy the wave equation

&f 1 ¥f

X2 ¢ o’
where eouo = 1/c% The general solution of this equation is
f(x, 1) = F(x—ct)+G(x+ct)

where F and G are arbitrary functions of a single argument. The term F(x — c7)
corresponds to a wave travelling in the positive x-direction with speed c,
and G(x+ cf) to another wave travelling in the negative x-direction also with
speed c. In our discussion of the propagation of a wave we consider, without
loss of generality, only one of these terms.

We see that eqns. (11.4), (11.8) relate E,, B, and that eqns. (11.5), (11.7)
relate E,, B,, one pair being independent of the other pair. Hence we write

for B,
B, =0, B,=Fi(x—ct), B;=Fy(x—ct); (11.9)

and obtain for E,

E.=0, E,=cFa(x—ct), E,=—cF(x—cl). (11.10)

These results show

(i) that both fields are perpendicular to the direction of propagation, i.e.
the waves are transverse; and

(i) that iXE = cB. This latter relation shows that E, B and the direction
of propagation, #, form a right-handed set of mutually perpendicular
directions.
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The most important case of the plane-wave solution is the harmonic plane
wave. This is one in which the time variation of all the field quantities is a
simple harmonic variation with frequency w/(2x) and corresponds to

Fi(x—ct) = acos (wt—wx/c+a), (11.11)

where « is a phase angle (constant). The wavelength A is given by 4 = 2nc/w,
and the wave number is k = w/c = 2x/A. The most convenient method of
handling these harmonically varying quantities is to use complex exponen-
tials (see § 9.7, Vol. 2) so that the time variation is given by the factor e'**,
which can in most cases be removed by cancellation on both sides of an
equation. Using this method we take

B, = Aeiwt—kd B, = Beilw—kx) (11.12)

so that
E, = cBeit—kx  E, = —cAei@—k», (11.13)

where 4, B are (constant) complex numbers whose arguments give the phase
constant «, and whose moduli give the amplitude of the oscillations. The
basis of this method is that physical values are given by the real parts of the
complex expressions (sometimes by the imaginary parts); its main advantage
lies in the fact that differentiation w.r. to the time (9/0f) can be replaced by
multiplication by iw, and differentiation with respect to the space coordinate
(0/0x) is replaced by multiplication by —ik.

The solution given by (11.12), (11.13) corresponds to (mutually ortho-
gonal) vectors E, B at any point which change their magnitude and direction
with time. If we imagine the vector B (or E) as a directed segment of a line
drawn from the point, then (11.12) and (11.13) imply that the end of the
vector traces out an ellipse. This wave is therefore said to be elliptically
polarized.

Since we are considering physical values the real parts are, for B, and B,,

B, = acos(wt—kx+a), B, = bcos(wt—kx+p).
We solve these two equations for cos (w¢—kx) and sin (w?—kx) and obtain

cos (wt—kx) _ sin (wt—kx) _ 1
aB, sina—bB, sin 8 ~ aB,cosxa—bB, cos B~ absin (x—p)

Hence
(aB, sin «—bB, sin B)2+ (aB; cos a«—bB, cos B)2 = a®b? sin®(x—p),

ie. b®B%—2abB, B, cos (x—p)+a’B2 = a®b? sin® (x—p).
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This relation implies that the end of the vector B traces out an ellipse (see
Fig. 11.1a).
(In all these cases illustrated in Fig. 11.1 the direction of propagation of the
wave is towards the reader.) The special cases are illustrated in the figure
as follows:

Figure 11.1 (b) (i). In this case a = b, 8 = a+m/2. The ellipse becomes a
circle which is traced out as indicated. Such a wave is circularly polarized
in the right-hand sense.

B, B, B,

\ ~\(i)

o 1N a
e By \J By By

- \ (ii;\

(a) (b) (c)
FiG. 11.1

Figure 11.1 (b) (ii). In this case a = b, § = e —x/2. The ellipse is a circle
traced out in the opposite sense; this wave has left-hand circular polarization.

Figure 11.1 (c). In this case the arguments of both 4 and B are equal and
the ellipse degenerates to a straight line. This wave is a plane-polarized wave,
the orientation of the plane being given by the angle o.

11.2 Reflection and transmission: normal incidence

Light is reflected from the smooth surface of a sheet of metal; at the sur-
face of glass, water, or other transparent media, some of the incident light is
reflected and some is transmitted—after refraction at the surface—if the
light is incident obliquely on the surface. These general phenomena are
familiar in daily experience and the laws governing the directions of the rays
are well known in elementary physics:

reflection: 6 = 6;

refraction: #nsin 0 = sin 6 (Snell’s law),

where # is the refractive index of the (optically dense) medium occupying
the region below the surface as illustrated in Fig. 11.2. Also, all three rays
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Incident
ray

0 Reflected
0 ray

Refracted ray

9"
Fic. 11.2

and the normal lie in one plane—the plane of incidence. The special case we
consider in this section is that of normalincidence in which § = 6" = 6" = 0.

We give an account of these phenomena in terms of Maxwell’s theory and
the conditions which must apply at the surface of discontinuity separating
the two regions. We assume that the permittivity of the upper region
(x > 0) is &¢ (i.e. the medium is a vacuum or a gas such as air) and that the
permittivity of the lower region (x < 0) is Keo, where K is the dielectric
constant of the optically denser medium. We take the magnetic permeabilities
to be uo for both x = 0 and x < 0, and assume that there is no charge or
current on the surface of separation, Fig. 11.3.

To discuss the process of reflection and refraction we assume an expression
obtained from eqns. (11.12) and (11.13) for a plane harmonic wave, and
take one such expression for each of the incident, reflected and refracted

Incident Reflected
wave wave
+
Refracted
wave

Fic. 11.3
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waves. For the incident wave we take
B={0 0 bpeirtka} (11.14)
E={0 —cbeier+kn 0} (11.15)

Here we have altered the sign of ¢, compared with (11.12) and (11.13),
because this wave is moving in the negative x-direction and we have chosen
the z-direction to coincide with the vector B. We also have the relation

c=wlk (11.16)

for the velocity.
Similarly, for the reflected wave we take

B ={0 b, by }ei@t=kn (11.17)
E' ={0 cby —cby}eit—kx, (11.18)
Here we must have
c=ow'lk. (11.19)
For the refracted wave we take
B’ ={0 by by} etk (11.20)
E”" = {0 —vby wby'}ei t+k'n), (11.21)

Here v is the velocity of propagation of the wave in the optically dense

medium given by
wocoK = 1/0%, v = ow"[k",
ie. v =ow"/k" = c/[vK. (11.22)

We know from the previous section that these expressions satisfy Maxwell’s
equations in the various regions. The resultant fields are

B, =B+B', E.=E+E, for x=0;

11.23
B_=B", E_=E", for x<O. ( )

At the surface of discontinuity the unit vector normal to the surface is i,
and so the field vectors in (11.23) satisfy the four conditions

is(B,—B_)=0, ix(B,—B_)uo=0, (11.24, 25)
i+(¢0E+ —KogoE) = 0, ix(E.—E_) = 0. (11.26, 27)

We now have to find the various quantities b,, b;’, ', ®"’, etc., in eqns.
(11.17), (11.18), (11.19), (11.20), (11.21) so that the boundary conditions are

satisfied at all times.
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First we notice that, since x = 0 on the boundary, the field vectors are
constant there except for the time factors e!*, e*”, ¢'“"*, Because the boundary
conditions must apply for all, arbitrary, values of ¢, the time factors must be
identical, so that

o=0 =o0". (11.28)

We deduce from this that incidence on the surface does not alter the fre-

quency of the wave.
We now substitute the vectors into (11.24)-(11.27) and obtain the follow-

ing results.

(11.24): 0=0.
(11.25): three component equations, 0=0,
—b—bs+b3' =0, (11.29)
by—by = 0. (11.30)
(11.26): 0=0,
(11.27): three component equations 0=0
cby—vb, = 0. (11.31)

—cb+cby+ovby =0.  (11.32)

These give the results

by = by =0,
’ c—v o 2C
b= b B =.b (11.33)

This last result can be expressed in alternative forms
bl — \/K—lb_ n—1
8T WK+1T T nt17

v 24K . 2n
bs —\/K+1b_n+lb’

(11.34)

(where we have used the result n? = K, which we derive later, for the refractive
index). The expressions in (11.34) give the amplitudes of the reflected and
refracted waves in terms of the amplitude of the incident wave.

The Poynting vector E X H gives the density of energy flow corresponding
to a given field; when we use the complex notation we can obtain the mean
value of this flow as the real part of the expression T1E XH" (see Vol. 2,
p.- 406) and evaluate the energy carried by the incident, reflected and re-
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fracted rays. (Here the star * denotes complex conjugate.) The densities are

incident  ¢b*/Quo) = 1,

o _ (n=1y?
reflected  ¢bs%/(2u0) = (n+—1)2 , (11.35)
2
refracted  vb;'2/(2ue) = % —(n—;_n—l)—z

in the appropriate direction along the x-axis. The mean energy flow on the
positive side of the surface of separation (x > 0) is Re (3E, X H}, ), where

1

1 1
E.xH} = 5—E.xB} = 35— (E+E)x(B*+B"™).
2 2u0

2#0
We substitute the expressions (11.15-18) for the field vectors, remembering
that b, = 0, and obtain

1

S E,xHY = 5 (—bekxtbje—ikx) (be-ikx byt eikx) {1 0 O},
2 2”0

The coefficient of the unit vector {1 0 0} is

L T TS ) (11.352)
To obtain the energy flow we need the real part of this, which is (taking b to
be real)

c 2 1%
m(—b +b3bs*).

Hence the energy transported toward the surface is that of the incident ray,
from the term —5? and away from the surface is that of the reflected ray.
The remainder of (11.35a) is imaginary and makes no contribution to the
energy flow. Since E_ = E"”, B_ = B"’ for x < 0, the energy transported
away from the surface into the medium is that in the refracted ray. We see
from eqn. (11.35) that the sum of the reflected and refracted energies is equal
to the incident energy. A reflection coefficient R and a transmission coefficient
T can be defined as the ratio of the corresponding energy to the incident
energy and have the values

_ in——l)2 _ 4n
T (n+1)° T (n+12°
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Example 1. The field vectors of a train of plane-polarized electromagnetic waves.
travelling in vacuo are given at the point (x, y, z) by

E =FE,cosx(z—ct), B = B,cosx(z—ct).
Prove that
kXE, = cB,, c(BXk)=E,.

If such a train of waves is incident normally on a perfectly conducting plane z = 0,
show that the density of the induced surface current is
(2/10) (ByX k) cos xct
and prove that the average pressure on the plane is 2BZ/u,.

=
First we find the relations satisfied by E,, B, in order that the expressions given satisfy-
Maxwell’s equations. We consider the equations in succession:

divE = 0; divE = Eyegradcosx(z—ct) = —(Ey*k)» sinx(z—ct) = 0.

Therefore
Eyek =0, (1)

Similarly the equation div B = O implies that
Bk = 0. 2

curl E+aa—f =0; curl E=—FE,xgradcosx(z—ct) = (Eyx k)x sin x(z—c?),

oB .
o = cxB, sin x(z —ct).
Therefore Eyxk+cBy, =0, ie kxE,= cB,. 3)
curl H——aa% = 0; curl H=—(B,/uo) xgrad cos x(z—ct) = u~} By x k)x sin »(z—ct)
oD .
o cxeoE, sin x(z —cf).
Therefore By x k = poeocEy, ie.  c(Byx k) = E,, 4)

since pogo = 1/c2.

Because the metal is a perfect conductor there can be no fields on the side z < 0 of the
surface, when the wave is incident from the side z > 0. We assume the presence of a
reflected ray, but no refracted ray, Fig. 11.4. The charge and current distributions on the:
metal are such as to “screen” the region in the metal from all fields.

We use the forms used in the first half of the question and write:

Incident ray: E = E, cos #(z+ct), B = — B, cos x(z+ct);
Reflected ray: E’ = E;cosx(z—ct), B’ = Bjcosx(z—ct).
z
Reflected Incident
ray ray

//I 7 Z 7
B=0 E=0

Fic. 11.4
EET 3-2
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The minus sign occurs in the incident ray since it is travelling in the negative direction
of the z-axis. Consequently the relations (3) and (4) become

Incident ray: kXE,=cB,, c(kXB, =—E,; (3a)
Reflected ray: kXE; = cB;,, c(kXB;) =—E,. (4a)

The boundary conditions take the form, for z = 0,
keo(eoE+eE) =0, kX(E+E)=0, ke(B+B)=0, kX(B+B)/u =K,

where o, K are the surface charge and surface current densities. When we put z = 0,
‘these conditions reduce to

k«(Ey+ E;) cosx ct = 0/¢, 5) kX(E,+E;) =0, 6)
k+«(—By+B;) =0, 0 kX (—By+By) cosx ct = uK (8)

In eqn. (6) we use the relations (3a) and (4a) so that

c¢By+cB; =0, ie. By,=-—Bj.
We can therefore deduce that

E; = —c(kXB;) =+c(kXBy) =—E,

.and so o = 0 at all times. Because eqn. (2) applies to both reflected and refracted rays (7)
is satisfied identically and finally we have

oK = —2(kX B,) cos xct,

giving the required result.
This current is situated in a field of strength B+ B’ evaluated for z = 0. This field strength
is —2Bg cos xct, and so the force exerted on unit area of the conductor is

K X (—2B; cos xct) = —(4/p) ([ByX k] X By) cos? xct = —(4/u,) kBE cos® xct.

The minus sign shows that the force is into the metal, i.e. a pressure of amount
(4/wo)Bj cos? xct having a mean value 2B3/u,.

Example 2. Prove that the formulae
E,=0, E,=Aexp {2niv(t+ ”c—x)} E, =0
for the resolutes of the electric vector and the formulae
B,=0, B,=0, B,=— % exp {va(ﬁn?;;)}

for the resolutes of the magnetic vector represent a plane-polarized simple harmonic wave
of frequency » travelling in a homogeneous dielectric of specific inductive capacity »* and
permeability u,.

Such a plane-polarized wave falls normally from free space on an infinite slab of homo-
geneous dielectric of thickness 4, the back face of which is coated with a layer of perfectly
conducting matter. Show that the amplitudes of the incident and reflected waves in free
space are equal, but that, at the front face of the slab, the phase of the reflected wave



§11.2 ELECTROMAGNETIC WAVES 451

exceeds that of the incident wave by
tan 6
n—2tan! (-n—),

where 0 = 2avnh/c.

%
i/*%)%h 'L Incident ray
N
\7(2)/ (1) Reflected ray
2,

Fic. 11.5

In order to represent the reflections and transmissions that occur we use an incident ray
in each section, free space and the dielectric, and corresponding reflected rays, Fig. 11.5.
At the conducting plane we apply boundary conditions as in the previous example; fur-
ther, at the plane x = 4 we also apply boundary conditions as in (11.24-27).

First we write down suitable expressions for the fields corresponding to the diagram
of Fig. 11.5. They are:

Incident ray (I):  Ea =0, Ep=dexp {2(i+3)} Ei=o,
A . x
By=0, B,=0, By=-Zex {an(t—i-?)}.
Incident ray (2): E,, =0, E, = A;exp {2niv(t+ r::_x)}, E,, =0,
nA . nx
B,;,=0, B,;=0, B,= ——C——z exp {Zrzw(t-f-—c—)}.
Reflected ray (2): El, =0, Ejy = Ajexp {Zniv(t— ”Ci)} E, =0,

2 . 1
B, =0, 2 = 0, 2 = ”%exp {va(t—%)}.

Reflected ray (1): E’; = 0, v = A’ exp {Zniv(t——zi)}, E, =0,

By=0, Bjy=0, Bi=ex {Zniv(t— i)}
c c
[The expressions differ in the reflected rays from the corresponding incident expressions
in the sign of c¢; otherwise they correspond, with n = 1 for region (1).]
At the conductor (x=0) the tangential components of E, and the normal component of
B, are zero. The remaining components correspond to the charge and surface currents
induced on the conductor by the radiation. These conditions, in terms of components,
give
E

v2 + Ej2 =0, Ep+E;,;=0, Bg,+B,=0.

2*
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These equations lead to the one relation
A, exp 2nive)+ A, exp Qnive) = 0, ie. Ay,+A4;=0.
At the surface x = h there is no charge or current density so that the boundary condi-

tions give:
Tangential components of E:

Ey + Ejp = E +E),, E,+ Ep=E +E,;. 1), 2
Normal component of D:  ¢,n*(E, o+ E,5) = &o(E,;; +E;,). @3)
Normal component of B:  to(B,a+ Bzs) = po(B.1+ Bzy)- @)

Tangential components of H:
(By2+Byo) 1o = (Byj1+Byo) e,  (Ba+B)/ e = (Ba+ By - (5), (6)

[In the subsequent work we incorporate the result A, = — A4 already obtained.]
Of these relations only (1) and (6) give non-trivial relations. We obtain the relations by
putting x = h so that, from (1),

A {exp (2nivnh/c)—exp (—2aivnh/c)} = A exp (2nivh/c)+ A’ exp (—2rivh/c),
and from (6)

’

exp (—2mivh/c).

—E%z— {exp (2nivnh/c)+exp (—2zivnh/c)} = — % exp (2zivh/c)+ /:-

These reduce to

A"+ 477" = 2id,sin 6, A" —A'e™* = 2nd, cos 6.

Ael?lm ncos 6+1isin 6

Therefore T =~ 1 —. (7»
Ae ncos@—isin 6

Hence |A| = | 4’|, showing that the amplitudes of the incident and reflected rays in free

space are equal. At the front face of the slab in free space the incident and reflected rays.
are given by the (complex) expressions

Ae" exp Qnive),  Ae " exp (2nive).

Hence the phase difference between these two waves is the difference between those of
Ael®in, 4’e=10m From eqn. (7),

Ale~In — _ gebing =25

where tan é = (tan 0)/n. Thus the phase of the reflected ray exceeds that of the incident:
ray by

n—20 =n—2tan"! (t_a%_(i)

Example 3. Show that E, B defined by

E,=Ae™"*, E,=E,=0, B,=0, cB,=+/(K)de “ "), B =0,
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where A, w are constants, satisfy Maxwell’s equations for a uniform medium of dielectric
constant K and permeability u,, provided that u = 1/K]c.

The region 0 < z =< his filled with material of dielectric constant 4 and permeability x,,
and the rest of space is empty. A plane-polarized plane wave of frequency w/27, travelling
in the positive direction of Oz, is normally incident on the face z = 0. Show that the ratio
of the amplitude of this incident wave to the amplitude of the reflected wave in z < 0 is

(1418 cosec? 6)!/2,
where 0 = 2wh/c.

Incident L (2) Refracted ray
ray
o h z
Reflected __
ray (1) (2)
Fic. 11.6

The expressions quoted can easily be shown to satisfy Maxwell’s equations. Since
reflection and transmission can occur at both surfaces we assume a set of incident rays as
shown in the diagram of Fig. 11.6. Adopting the notation of the first part of the question,
we use the following expressions.

Incident ray (1): E, = Ae~lot-zo, E, =0, E, =0,

B, =0, B, = (d/c)e-twt=2 B, =0.
Incident ray (2): E,, = Aje~iot=%l0, E, =0, E,=0,

B, =0, By, = (24,/c)e-'w¢-2o B, =0.
Refracted ray: E; = 4A"e-let—z0, E’ =0, E;=0,

By =0, B, = (A"[c)e~lwt~z B =0,
Reflected ray (2): g = Aje~l0¢+2lo El, =0, E,, =0,

B, =0, By, =—(243/c)e~tw¢+2lo B, = (0.
Reflected ray (1): 1 = Ale~lot+ze El =0, E;; =0,

B3 =0, B, =—(4"[c)e—te¢+zla, B = 0.

The boundary conditions to be applied at each surface are the standard ones corres-

ponding to no charge or current on either surface. As in previous cases, only a few of the
component equations give non-trivial relations.

From the conditions at z = 0 we obtain:
tangential components of E:

Ae—lwl+A’e—lml P AZE'“‘”-%—A;C"M”,
tangential component of B:
(dfc)e~1w—(4’[c)e~1t = (244/c)e~ 1wt —(24;/c)e ¥,
ie. A+A" = Ay+A;, A—-A = 2A,—A4)),
whence A= (3A4;,—A4)[2, A = (—A.+34))/2. (€))
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From the conditions at z = h we obtain:
tangential components of E:  A4,e%iwhlc | gie—2iwkje — f”elwhlc @

tangential component of B: 2A4 je?iwhic 2 4 e~ 2Hwhic = f"elwhjc, 3

We eliminate the quantities A5, A2, A" by solving (2) and (3) for A,, A2 and then sub-
stituting into eqn. (1). After some manipulation we obtain

A 3e0-3e-18 3isin 6
A~ —e®4+9-8" 4cosf—Sisinf’
Va: 9sin® 6 1

Hence A | T 16cos?6+25sin* 6  1+3¢ cosec? 0

This shows the required relation between the amplitudes.

Exercises 11.2

1. Show that a solution of the equations of the electromagnetic field in a vacuum is given
by B=VxA and E = — A, where V¢4 = 0, v24—(1/c®)A = 0. Verify that these
conditions are satisfied by taking A to be

{cos (wt+ kz) sin (wt+ kz) 0},

where k¢ = w; determine the corresponding vectors B and E.

A wave of this sort in the region z > O falls upon the face z = 0 of a perfect conduc-
tor. Find the reflected wave, and show that, at any fixed point, the vectors B and E for
the combined field of the incident and reflected waves are parallel and constant in
magnitude.

2. Space is empty except for a uniform slab of dielectric of unit permeability and dielectric
constant n%, and of thickness A. A polarized plane electromagnetic wave of vacuum
wavelength 2nh is incident normally on the slab. Show that outside the slab there is no
reflected wave and that in the centre of the slab the amplitude of the electric field is 1/
of its amplitude outside the slab.

3. A plane polarized wave of period 27/ travels in free space and is normally incident on:
a plane slab of thickness / and dielectric constant g2 Prove that the intensity 7 of the
transmitted wave is related to the intensity 7, of the incident wave by

I, .1 1\% .,
7= ITT (q—;) sin2 6,
where 6 = gnh/c.
4. Show that a solution of Maxwell’s equations for the electromagnetic field in a non-
magnetic insulator with dielectric constant K is given by

E, = Aexpi(wt—az), H,= A(ca/w)exp i(wt—az),

where A is constant and the remaining components are zero, provided that cx = w v/ K.

Three such media, with dielectric constants K, K,, K;, occupy the regions z < 0,
0 < z < d, d < z respectively. There is an incident wave of the above form in the first
medium. If the thickness of the second medium in one-quarter of a wavelength, so that
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a,d = 37 (where ca, = @ v/Kj,), show that the ratio of the amplitudes of the reflected.
wave and the incident wave in the region z < 0 is

| V(K:K5)— K |
| V(K1 Ky)+K, |

11.3 Reflection and refraction: oblique incidence

To discuss the process of reflection and refraction at oblique incidence in:
terms of Maxwell’s equations we now need to use plane harmonic wave
solutions of Maxwell’s equations whose direction of propagation is inclined
to the normal. We use a coordinate frame of axes which has the positive
direction of the x-axis directed into the optically less dense medium, i.e.
the same frame as we used in the last section; and so we must use waves.
which are propagated in a direction specified by the unit vector n, which is
not parallel to a coordinate axis.

For a wave propagated in this direction the space variable x in (11.12)
and (11.13) must be replaced by #n+r, where r is the position vector of a field
point. When the wave is a plane polarized wave of frequency «/(27) we can
take the expression for B as

B = b exp i{wt—k(#i-r)}, (11.36)

where b is a constant vector. Since E, B, a form a right-handed triad we then
have

E = c(bx h) exp {wt—k(fi-r)} (11.37)
for the electric field. The velocity of propagation c is given by [eqn. (11.16)]
c=owlk.
Taking directions of reflected and refracted rays as indicated in Fig. 11.2
we assume the following forms:
reflected ray: B’ = b’ exp {w't—k'(#"-r)},

E' = c(b'xn’)exp i{w't—k'(# +r)}; (11.38)
refracted ray: B" = b" exp i{w"'t—k"'(n"-r)},
E" =v(b"xn")exp fw''t—k" (A" +r)}. (11.39)
In these expressions the velocities of propagation are given by
c=0o'lk', v=w"lk" = c//K. (11.22y

All these expressions can be shown to satisfy Maxwell’s equations in the
respective regions.
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The conditions which must be satisfied at the boundary x = 0 are the
same as those set out in the previous section in eqns. (11.23) to (11.27),
viz.

B, =B+B', E. =E+E for x=0,
B_=H", E_=E" for x <O0;

and, at the surface of discontinuity,
is(B,—B_)=0, ix(B,—B_)=0,
is(c0E, —eoKE_) =0, ix(Ey—E_)=0.

For the same reason as before, in order to ensure that these conditions
are satisfied at all times we must have

Now, however, when we put x = 0 on the boundary the exponential factors
nvolve y and z in the following way:

incident ray: exp i{ —ka-(jy+kz)};
reflected ray: exp i{—Kk'A'«(jy+kz)};
refracted ray: exp i{ —k"'n"+«(jy+kz)}.

The boundary conditions have to be satisfied at every point on the surface
x = 0 and so each of these exponential factors must be the same, and we
obtain the following results by equating coefficients of y and z,

k(fi<j) = k'(7'«j) = k" (A" +j), (11.40)
k(f-k) = K'(7' k) = k" (7" +K). (11.41)

Since the orientation of the y- and z-axes is, as yet, unspecified we now choose
the z-axis to be perpendicular to the plane of incidence, i.e. nx i is parallel
to k, or n-k = 0. Equation (11.41) now shows that the reflected and refracted
rays also lie in this plane. We take the plane of the diagram of Fig. 11.7 to
be the “plane of incidence” in which the dotted lines represent the wave-
fronts of the respective rays. When we substitute for k, k', k" in eqn.
(11.40) from eqns. (11.16) and (11.22) we obtain

o(j)/c = o(@'+j)/c = o /K@"j)/c.
Therefore

Rej = '+, ie. sinf =sinb’, (11.42)
n'’«j = (n-j)/[v/K, ie. sin 0" = sin 0//K. (11.43)
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Fic. 11.7
Hence the refractive index is given by
n* =K (11.44y

and the laws of reflection and refraction are verified. Since v = ¢/v/K we
see that the refractive index is also given by

n=cfv. (11.45)

Thus far the vectors b, b’, b’ have not entered into the calculations; the
remaining steps in working out the implications of the boundary conditions
at the line x = O give the relations between the amplitudes of the incident,
reflected and refracted rays, corresponding to the results in eqn. (11.34):
for normal incidence. When we substitute the expressions (11.36) to (11.39):
into the boundary conditions, the exponential factors cancel out and we
are left with four relations which must be satisfied by the amplitudes b, ', "'.
These relations are:

is(B,—B_)=0; is(b+b —b") = 0; (11.46)
ix(B,—B_)=0; ix(b+b—b") = 0; (11.47)
is(e0E,—KeoE_) = 0; i-{c(bx A)+c(b’x i) —vK(b" x#")}=0; (11.48)
ix(E,—E_)=0; ix{c(bxA)+cb xA)—v(b" x i)} = 0. (11.49)

In order to make progress in working out the implications of these equa-
tions we must take account of the direction of polarization of the fields.
The reflected and refracted waves depend upon the direction of polarization
of the incident wave. In§ 11.1 we saw that the magnetic vector consisted of
two components at right angles, each component corresponding to a plane-
polarized wave. Combinations of two such components with various ampli-



458 ELEMENTARY ELECTROMAGNETIC THEORY, VOL. 3

tudes and phase relations give rise to elliptic, circular, left-handed or right-
handed polarization. Therefore, in working out the consequences of eqns.
(11.46)-(11.49) we resolve the vectors into two components, one lying in the
plane of incidence and the other being normal to this plane; each component
is at right angles to the direction of the ray. When we resolve the vector b in
this way, with the direction of the ray given by n, we denote the magnitudes
of the components by b, parallel to the plane, and b, normal to the plane.
Thus, for the incident ray we have the following resolutions, in the xyz-
frame:

Incident ray: i={—cosf sinf O}, (11.50)
b={b,sin0 b,cosb by}, (11.51)
bxn={—b,sinf —b,cosb b} (11.52)

The same resolution applied to the other rays gives

Reflected ray: n ={cos6 sinf O}, (11.53)
b'={b,sin0 —b,cosb b, (11.54)

b'xn ={—b,sin0 b,cosbl b} (11.55)

Refracted ray: n"’ ={—cos 6” sin 6" 0}, (11.56)
b" ={b,’ sin 6" b, cos 0" b}, (11.57)

b"xn" ={—b, sin 0" —b, cost’ b, }. (11.58)

We can now use eqns. (11.46)—(11.49) to determine the amplitudes b;,
b,, b, b, in terms of those for the incident ray, viz. b,, b,. We obtain the

n Ypo

following relations on taking the components of eqns. (11.46)—(11.49):

(11.46) gives: b,sin@ +b,sinf —b/sin6’ =0; (11.59)
(11.47) gives: bycos —b,cos® +b,cost’ =0, (11.60)
b, +b, —by =0; (11.6])
(11.48) gives: —cb,sin @ —cb,sin§ +ovKb, sin 0’ =0; (11.62)
(11.49) gives:  —ch,cos  +ch,cos O —wvb,’ cos @’ =0, (11.63)
cb, +cb, —wb,’ =0. (11.64)

Because of Snell’s law and the relation between the velocities, the refractive
index and K given in eqns. (11.43), (11.44), (11.45), we see that eqns. (11.61)
and (11.62) are identical, and eqns. (11.59) and (11.64) are identical also.
Thus eqns. (11.59)-(11.64) reduce to two pairs of equations; one pair relates
b,, b, to b,, and the other pair relates b,, b, to b,. In fact the components
polarized parallel and normal to the plane of incidence behave independently
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of each other. The relations (Fresnel’s formulae) are:

forb,, b,': cb, —vb,’ +cb, =0,
—b, cos 6+4b,’ cos 6"'+b, cos 6 = 0;
. , _ ccos B”"—wvcos 0 o 2cos 6 )
T b= s 6" +v cos 0 b, by = by (11.69)

ccos 0"+vcosO *
and for b,, b, b, -b) +b, =0,
¢b, cos 6—wb,’ cos 6" —cb, cos § = 0;

, ccosf—wvcosb’ "o 2ccos 0
bn = ¢ cos B+v cos 6"’ bu, b’ = ¢ cos B+4+v cos 0"’ by (11.66)

Note that when 6 = 0 eqns. (11.65) and (11.66) both reduce to the result
(11.33) obtained for normal incidence. These equations can be expressed
alternatively, after use of Snell’s law, in the form

c )
sin@ ~ sin "’

thus
, _ sin(6—-6") . sin20
bp - —m— bp’ bp ~ sin 6+067) bp’ (11.65a)
and
, _ tan (6—6") "o sin 26
n — W bns bn - Sin (0+ 6/1) cos (6_6,,) b,,. (11.663)

The resultant fields can now be written out in the two cases.

(a) Magnetic vector normal to the plane of incidence, i.e. b, = 0 so that
{ =kb,. Then for the incident ray:

B, = kb, exp {wt—k(i-r)},

A ) . . (11.67)
E, = c(kxn)b, exp i{wt—k(n+r)} = c(B,x1);
for the reflected ray:
B, = kb, e)ip 1{'wt—k.: (n -r)},, ,. . (11.68)
E, = c(kxn')b, exp i{wt—k'(n'+r)} = c¢(B,x i');
for the refracted ray:
B, = kb, exp i{wt—k''(R"' 1)}, (11.69)

E. = c(kx#")b. exp i{ot—k"(R" r)}=v(B, XA").
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(b) Magnetic vector in the plane of incidence, i.e. b, = 0. In this case the
electric vector is normal to the plane of incidence so that we have the follow-
ing results:

Incident ray:
B, = (i x k)b, exp i{wt—k(n-r)} = (A X Ep)/c,

E, = ckb, exp i{owt—k(#-r)}, "
Reflected ray:
B, = (i k)b, oxp ifwt—k'@n)} = GxEple,
E; = ckb, exp i{wt—k'(7'-r)},
Refracted ray:
By = "k}’ exp ifwr—K"("n)} = @' XEDv () 0o

E;' = vkb,' exp i{wt—k"(#" -r)}.

These formulae also prove another well-known physical result, Brewster’s
law. If, in eqn. (11.66a), the angles 0, 6" satisfy

0+6" =n/2, (11.73)

then b, = 0, bl', # 0. Hence, when eqn. (11.73) is satisfied so that the
reflected and refracted rays are perpendicular, the reflected ray is polarized
in one plane. The angle of incidence, 6, for which this occurs is called the
polarizing angle and is given by

sin 6 sin 6

n—_—m:m=tan 6. (1174)

For other angles of incidence, provided that b, and b, are of comparable
orders of magnitude, this result means that b, > b, and the reflected light
is predominantly composed of light polarized in one plane. If this light is
viewed through spectacles which do not allow light polarized in this plane
to pass, then the glare caused by light reflected from a surface is consi-
derably reduced. This is the principle behind the action of polaroid spectacles
which reduce the glare of reflected light off a shiny road surface or the sea.

11.4 Energy relations for oblique incidence

In discussions of energy in connection with harmonic waves the results
are simplified by using mean values which are easily obtained in the complex
number representation we are using. We may assume that one of the ampli-
tude components of the incident ray is real; then for elliptic or circular
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polarization the other component differs in its argument as well as its
amplitude from the first (see § 11.1, p. 444).

The mean rate of propagation of energy in connection with a harmonic
wave such as that given by eqns. (11.36) and (11.37) is the real part of
P = J(ExH") = (ExB")/(2u0). Therefore,

P = c(bxn)xb*|(2uo).

If we consider an incident ray given by eqns. (11.50-52),
— A\ ah B — b5 B*
P= (M) (A(B-b*)— b(+b")).
But beb* = bybi+bbl, Aeb =0 = iib*.
Therefore P =5 {lb, 24|62 A. (11.75)
2[1,0

Similarly there are energy flows associated with the reflected and refracted
rays given by

' — ,-,c_ 12 r12y f’!
and

o fv_ 119 12N St
P= (b 12+1B 1A (11.77)

To investigate the pattern of energy flow on each side of the surface of
separation we consider the two vectors

P, = 3E. xH! = (E+E)X(B*+B™)/(2p0)

and
P_=E_xH* =P".

The flow in the positive region (x = 0) is given by the real part of
P, =P+P +(ExXB™+E XB*)|(2u0). (11.78)

Although it is not obvious at first sight, substitution of the various expres-
sions in (11.36-8) for the field vectors shows that the last term in (11.78)
is an imaginary quantity, so that the energy flow above the surface of sepa-
ration reduces to the sum of the contributions from each ray separately.
The flow of energy in the normal direction toward the surface in the positive
region is

=P i = ccos 0( b, [*+ | bul*— | bp|*— [ bn])/(110) (11.79)
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and the flow in the negative region away from the surface is
—P_.i =wcos 0"(|b, 1*+1b, [>)/u,)- (11.80)

The relations obtained from the boundary conditions [used best in the forms
(11.65) and (11.66)] show that the energies involving b,, b,, b,’, and the
energies involving b,, b,, b, balance separately in (11.79) and (11.80). Hence
the two modes of polarization discussed on pp. 459-460 of the previous
section behave independently, and the energy brought to the surface by the
incident ray, for either polarization, is carried away from the surface by the
reflected and refracted rays of the same polarization. The components of
P, P_ in directions parallel to the surface are not equal; this means that
the oblique rays give a net flow of energy both parallel to the surface of
separation and normal to it. It is only the latter components which, through
eqns. (11.79) and (11.80), need to satisfy conservation of energy.

We define coefficients of reflection and transmission for these oblique
rays, as in § 11.2, but here we have one of each coefficient for each mode of
polarization, four coefficients in all. They are:

(a) Magnetic vector normal to the plane of incidence:

R = Reflected energy flow _ [by]>ccos 6 |b,[*
"7 Incident energy flow ~  |bu|2ccos O  |ba|?
tan? (0—0"")
_ 11.
tan? (6407) ° (1150
T - Refracted energy flow b, |?> v cos 6"
" Incident energy flow ~  |b,|2 ¢ cos 0

2 sin 26 cos 6" sin 6"

= sin? (04+6") cos2(0—-0"")" (11.82)
(b) Magnetic vector parallel to the plane of incidence:
R — Reflected energy flow  |By|>ccos O |b,|?
P Incident energy flow ~ |b,|2ccos O  |b,|?
_ sin?(6—-0")
= S 010 (11.83)
T Refracted energy flow  |b,"|? v cos 6"
p Incident energy flow ~  |b,|2 ¢ cos 0
2 sin 20 sin 6"’ cos 0"

= T . (11.84)
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In these expressions we have eliminated the velocities » and ¢ by using Snell’s
law of refraction in the form v sin 6 = ¢ sin 0" It can easily be verified that
R,+T,=1,and R +T, = 1.

These coefficients are different, for a given angle of incidence, for the
two modes of polarization and so it follows that the polarizations of the
reflected and refracted rays are both altered from that of the incident ray
by the encounter with the surface, and these differences, as well as the inten-
sities of the rays, vary with the angle of incidence.

Exercises 11.4

1. State the conditions under which a lincarly polarized plane electromagnetic wave
will be totally reflected at a plane interface separating two dielectric media of dielectric
constants K; and K, and permeability y,. Obtain an expression, in terms of K,, K, and
the angle of incidence 0, for the phase difference é between the components in and nor-
mal to the plane of incidence of the electric vector of the reflected wave, and show that
& cannot exceed the value

1-n?
~1 (27
2 tan ( o )
where n = +/(K,/K)).

2. A plane electromagnetic wave, polarized with the electric vector in the plane of inci-
dence, crosses a plane boundary from a medium with dielectric constant X, to a medium
with dielectric constant K, the magnetic permeability being w, for each. If 8, ¢ are the
angles of incidence and refraction, respectively, prove that the angle of reflection is 6,
and that K{/ sin 0 = K}/*sin ¢.

Prove also that the amplitudes E;, E’, E,, of the incident, reflected, and refracted
fields are related by
E tan (0 —¢) E, 2 sin¢ cos §

E,  tn(@+¢)’ E,  sin(0-+¢p)cos(@—¢)°
3. The field vectors of a train of plane polarized electromagnetic waves travelling in a
medium of dielectric constant k and permeability g, at a field point of position vector r
are given by

E = Aexp {io(t—usr)},
H = Cexp {io(t—u-r)},

where 4, C and u are constant vectors. Prove that
||t = (keougl'?,  egkE = Hxu, poH = uxE.

If such a train of waves is incident normally on the plane face of a semi-infinite block
of glass of refractive index n, show that the intensities of the incident, reflected and
refracted waves are in the ratio (n+1)*: (n—1)%: 4n.

4. A plane electromagnetic wave in free space is incident at an angle 0 on the plane bound-
ary of a non-conducting medium of dielectric constant K and of permeability z¢,, the
wave being polarized with the electric vector in the plane of incidence. Prove that the
angle of refraction ¢ is given by sin § = 4/K sin¢ and that the ratio of the electric
field strength of the reflected wave to that of the incident wave is given by

tan (0 —¢)/tan (0 +¢b).
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5. If I, m, n are a right-handed triad of constant unit vectors, show that the fields

ey

A . . ner
E = Ve exp {1w(1~———7&— r)}l, B = A \/uexp {m)(t—- v—)}m,

with v = (ue)~ 13, satisfy Maxwell’s equations for a uniform non-conducting medium
of permittivity ¢ and permeability &, and that they form a planc-polarized plane wave
travelling with velocity v in the direction n.

Such a wave travelling in the vacuum is incident on the plane face z = 0 of a semi-
infinite uniform dielectric medium of permittivity ¢ and permeability w,. The electric
vector is in the plane of incidence, and the acute angle between the direction of propa-
gation and the z-axis is 6; = tan~1y/(¢/gy). Show that the boundary conditions at the
surface are satisfied if there is no reflected wave, if the transmitted wave has the same
plane of polarization as the incident, and if it is propagated in the plane of incidence
in a direction making an angle 0 = 3z —0, with the normal.

11.5 Total internal reflection

Total internal reflection is a phenomenon well known in elementary
physics. It occurs when a ray, travelling through an (optically) dense medium,
meets the boundary surface at an angle of incidence which is greater than the
critical angle. The critical angle is that angle of incidence (in the dense
medium) which corresponds to an angle of refraction (in the external medium,
of a right angle (see Fig. 11.8). The difference between the situations of
Figs. 11.7 and 11.8 is that in Fig. 11.8 the incident and reflected rays, i.e.
the region with x = 0, are in a medium with permittivity Keo, and their
velocity of propagation is v = 1/4/(Keouo); the region x < 0, containing
the refracted ray, is a medium with permittivity o corresponding to a velo-
city of propagation ¢ = 1/4/(eou0). The results obtained in § 11.3 can there-
fore be adapted to the present case by interchanging the roles of ¢, v wherever
they occur in the formulae.

X
A h
n n
, K
o6 o
+
- » y
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| n
€o

FiG. 11.8
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So long as the angle of incidence 0 is less than the critical angle, the analy-
sis of § 11.3 applies without change except for replacing ¢ by v, and vice
versa. We are here concerned with the case in which 6 exceeds the critical
value. We shall see that this leads to the appearance of imaginary, or com-
plex, values instead of some of the real values in § 11.3, and we give here a
changed interpretation which takes account of this appearance of complex
quantities in the analysis.

The boundary conditions which we applied in § 11.3 must continue to
hold even for angles of incidence exceeding the critical angle, so we deduce,
because of the interchange of v and ¢, that

v=owlk, c=owlk"=v4K (11.85)
As before the frequency w must be common to all three rays, and they

must lie in one plane, i.e. nek = n'<k = n"’+k = 0 [eqn. (11.41)] for the
same reasons. The condition which led to Snell’s law (11.43) now gives

n"«j = (k/k') (f1-j) = (k/k") sin 0 = (c/v) sin 0 = (v/K) sin 0.
This must hold for all possible angles of incidence including angles of inci-
dence greater than the critical angle. We write

c v
cosh¢ ~ sin B

n"’«j = cosh ¢,

when sin 6 > v/c =1/4/K. Since n’’«k = 0 and a"’ is a unit vector, we must

also have
cos 0" = n"+i = 4/(1—cosh? ¢) = isinh ¢.

Therefore n’ ={isinh ¢ cosh¢ O} (11.86)

The case of critical incidence therefore corresponds to ¢ = 0. The applica-
tion of the boundary conditions now leads to the following results [instead of
those of eqn. (11.65)]

, _wcosB’'—ccosf  isin B sinh ¢—cos 6 cosh ¢
?7 wcosb’'+ccosB P isin 6 sinh ¢+cos 6 cosh ¢ 7
_ cos 0+i9) _ Gnt2m)
=~ cos(i=ig) b = &+* s, (11.87)

where tan « = tan 0 tanh ¢. Similarly,

, _wcosfl—ccos §”  sin 6 cos 6—i cosh ¢ sinh ¢ b — e-26h
" wcos B4+ccos 8" sin 6 cos B+1 cosh ¢ sinh ¢ n = € ""0ns
(11.88)

EET 3-3
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where _ cosh ¢ sinh ¢
tan § = cos Osin

This shows that |b,| = |b,|, |b,| = |b,| and that the reflected ray differs
from the incident ray in phase, but not in amplitude.
The results corresponding to (11.65-6) for the refracted ray are

b — 2v cos 0 _ 2 sin 0 cos 0 b
P " pcos0”+ccos @ 7 cos 6 cosh ¢+isin 6 sinh ¢ 7
= (P~ sin 20)e—b,, (11.89)
where P = |cos (0—i¢)|;
o 2v cos 0 _ 2 sin 6 cos 6 b
" " wcos O4+ccos 6’ " sin 0 cos 6+isinh ¢ cosh ¢ "
— (N1 sin 20)c=b,, (11.90)

where N = |sin 0 cos 0+1i sinh ¢ cosh ¢ |.

We now consider the interpretation of the expressions we have obtained,
and the effect of the complex components. Since the quantities referring to
the incident and reflected rays are real, as in § 11.3, there is no change to be
made to the interpretation for the region x > 0. We look at the region
x < 0 where the field is given by B, E".

The exponential factor in B”, E", when the angle of incidence exceeds the
critical angle, is given by

exp {wt—k"'(n" «r)} = exp iw{t—i(x/c) sinh ¢ —(y/c) cosh ¢}
= e«(x/9sinb ¢ exp jw{t—(y/c) cosh ¢}.
. B" = (b"ex(x/9sinh ¢) exp iw{t—(y/c) cosh ¢}, (11.91)
E" = c(b"” x a" )e>*lo)sinb ¢ exp iw{t—(y/c) cosh ¢}. (11.92)

Since the factor e**/9s8¢ jg real we interpret this as harmonic waves,
exp iw{t—(y/c) cosh ¢}, with amplitudes which depend on x through the
factor e“™/9sinb ¢ The harmonic wave is propagated in the y-direction, i.e.
along the surface of separation, with speed

¢ _ v
cosh¢ ~ sinf°

Because the region is one for which x < 0 the dependence of the amplitude
of the wave on distance from the surface is a rapid exponential decrease;
the rate of decrease is greater for higher frequencies. The reader can picture
the situation by visualizing a train of straight (water) waves approaching a
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////v
|e| f—————— shore line

\tail'//

Fic. 11.9

v/sin 0

straight shore obliquely, Fig. 11.9. The “tail” of each wave dies out as it
runs a short distance up the shore, and each tail runs directly along the shore
line as the wave arrives; this is the velocity v/sin 6. The fact that B”, E”’
are not zero but decrease exponentially for x < 0 shows that there is slight
penetration by the field into the “forbidden” region.

The results obtained in § 11.4 can be used to investigate the transport
of energy by the fields we are considering. The situation in the region
x > 0, except for the interchange of v and ¢, is exactly as given in § 11.3
and the transport of energy is given by eqns. (11.76-8). Since |b,',| = |b,|
and |b,| = |b,|, it follows from (11.79) that there is no net flow of energy,
either toward or away from, the surface, in the region x > 0. For the region
x < 0 we use (11.80) and obtain

—P_.i = ic sinh ¢(|B) 12+ B’ 1/Quo), (11.93)

since cos 6'' = i sinh ¢. Since this is a purely imaginary quantity, it implies
that there is no transport of energy by the field E’’, B”. Therefore the whole
of the energy brought to the surface by the incident ray is carried back into
the medium by the reflected ray. Hence there is total internal reflection.

11.6 Propagation of waves in a conducting medium

In this section we consider the effect of conductivity when an electro-
magnetic field is established in a conducting medium. We assume a uniform
medium specified by the constants: permittivity e, permeability u, conduc-
tivity o; and we assume that these constants are independent of position,

time and field strength. The equations to be satisfied now are
oD

divD =p, divB=0, curl E—f—%—f =0, curlH—W =J,

where D=¢E, H=Blu, J=0oE.

As in § 11.1 we look for a field which depends only on x, ¢ and assume that
o = 0. We cannot assume that J = 0, as we did in § 11.1, for if there is an

3
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electric field inside the conductor a current must flow. The last of Maxwell’s
field equations therefore becomes

D
curlH—%t— =cE. .

We consider each equation separately in terms of components.
OE, _

divD = div (¢E) = 0: S =0, (11.94)
. oB. _
div B = 0: =% =0. (11.95)
curl E%—g\lE =0: 0B: _ 0: (11.96)
ot ot
OE, 0B, _
— i =, (11.97)
OFE, ©oB.
Sr+i=0. (11.98)
crl H—22 _ £ % _op (11.99)
ot ot
1 8B, OE,
- —e—2 =oE, B
e = b (11.100)
| 8B, ®E,
- - = oF,. 1.
o ox £ 5 oE, (11.101)

From (11.95-6) we cantake B, = 0 as before. However, (11.94) implies
that E, can depend only on ¢ and (11.99) gives this dependence as
E.=E e " This shows that the longitudinal component of E dies out
exponentially with #, but is not identically zero as is B,. However, the time
(of relaxation) is very short, i.e. E, dies out very rapidly so that we can
effectively consider this as zero also. (The term “longitudinal” is used be-
cause E, is the component of E in the direction of propagation.)

The remaining equations fall into two independent pairs (11.97) and
(11.101) involving E,, B,, and (11.98) and (11.100) involving E,, B,. It is
easy to see that all four of these components satisfy the scalar equation

o _ ey o

This differs from the wave equation in containing the extra term uo 9f/0t;
it is this term which gives rise to the special properties of the conducting
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medium. If the medium were non-conducting (¢ = 0), the velocity » of
propagation of waves would be given by ue = 1/v%

We will, for simplicity, consider one of the independent pairs of equations,
viz. (11.98) and (11.100), and seek a solution corresponding to (11.12-13), a
harmonic wave. We notice that the vectors B, E are perpendicular to each
other and to the direction of propagation. We write

E, = E exp i(wt—kx), B, = B exp i(wt—kx), (11.103)
where E, B are constants. From (11.98) we obtain
—ikE exp i(wt—kx) = —iwB exp i(wt—kx),
and from (11.100)
ik B exp i(wt—kx)+ pe(—ik)E exp i(wt—kx) = oF exp i(wt—kx).

These two last equations reduce to

kE = 0B, (11.104)
and

ikB = (iwep+ po)E. (11.105)
Therefore k? = w’ep—iuow. (11.106)

A convenient, quick method to obtain the results for a conducting medium
is to replace ¢ for the medium by e—io/w. Thus, for the refracted ray,
k'? = 0?/v? = w’uineqn. (11.22),and k'"* = w’u(e —io/w)in eqn. (11.106).

This implies that k is a complex number, and that E, B differ in their
arguments as well as moduli. (In § 11.1 both amplitudes were real—or had

the same complex arguments.) We write

k=a—if («, B real) so that,
a?—p% = vy, 2af = uoow, (11.107)

and obtain for the field strengths

E, = Ee—5* exp i(wt—ox),
. (11.108)
B, = Be~f* exp i(wt—ax).

These represent harmonic waves having a phase velocity w /o, propagated in
the positive x-direction, but having amplitudes Ee~?*, Be~#* which decrease
with increasing x, i.e. the wave is attenuated as it is propagated through the
conductor. Both the attenuation factor e™?* and the phase velocity /e«
vary with the frequency w. This dependence of the velocity of propagation
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on o is a new feature; the different frequencies travel with different speeds.
If a wave containing more than one frequency enters the conductor its
profile and energy distribution alter as it travels. In general this means that
energy is propagated with a velocity different from the phase-velocity and
the concept of “group-velocity” arises. This dependence of velocity on
frequency causes “dispersion”. However, the dominant effect of conductivity
is that of attenuation, or absorption, of the wave in the conductor. Because
of this a wave never penetrates very far into a conducting medium, the
higher the frequency, or the greater the conductivity, the less the penetra-
tion. This results in the “skin effect” which means that all oscillating fields
are confined to a narrow layer, or skin, near the surface of the conductor.
For a perfect conductor (¢ -~ ) the penetration is zero and there is no
field at all inside a perfect conductor.

In order to see more clearly the effect of the conductivity we obtain
expressions for «, 8 corresponding to small and large (but not infinite)
values of o.

When o is small

k = (@*/r*—ipow)? = (w/v) (1-ic/(cw)}V?
~ (0/v) {1 —io(2ew)}.
Therefore x = /v, B = a/(2ev), (11.109)

where we have written » = (eu)~ /2, v being the velocity of propagation of
a wave in a similar medium without conductivity. In this case, ¢ small, the
velocity of propagation a/w has the “normal” value v, and the attenuation
is slight.

When o is large (compared with ew), as in “good conductors”™ such as
copper, we write from (11.106),

k* = —iuow; k = (1—1i) (uow/[2)V/2.
Therefore o = (pow/2)? = B. (11.110)

In this case the velocity of propagation is w/x = v(2we/o)"/2. This shows
that the velocity of propagation is reduced well below the “normal” value
v, and the attenuation is heavy.

The extent of the penetration is measured by the skin-depth 8. This is
the distance in which the amplitude of the wave is reduced to 1/e of its
value originally. Therefore

1 9 \12
b= g~ (ﬁ) A1.111)
for large values of o, or high frequencies. These are the cases when the effect
is important.
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At certain levels in the earth’s atmosphere the gas is ionized to an
appreciable extent so that the atmosphere at this level has an appreciable
conductivity. Because of this fact radio waves cannot penetrate the layer,
but are reflected back to the surface of the earth. Roughly speaking, this
explains why reception of radio signals is possible although the radio trans-
mitter is well “out of sight” of the receiver and the rays have had to come
round the curvature of the earth’s surface. They have been reflected around
the curvature from one of these conducting layers (e.g. the Appleton layer).

This process of reflection by a conductor can be investigated by a discus-
sion similar to that used in § 11.3. We consider a surface z = 0 separating
aregion z > 0, which is a vacuum with permittivity and permeability eo, uo,
from the conducting region z < 0 where the permittivity, permeability and
conductivity have the respective, uniform, values e, u, 0. We assume a
plane wave incident on the surface together with a reflected and a refracted
wave and the boundary conditions, corresponding to (11.24-27), are now

i«(B,—B_)=i-(B+B —B") =0, (11.112)
is(coEy —€eE_) = is(e0E+eoE'—c¢E") = 0, (11.113)
ix(Hy—H_)=ix(B[uo+B'[uo—B"[u) = 0, (11.114)
ix(E,—E_.)=ix(E+E —E") = 0. (11.115)

We adopt the notation and representations used in § 11.3 [see Fig. 11.7
and eqns. (11.36) to (11.39)]. First, the requirement that the exponential
factors are identical for all points and times on the boundary surfaces leads
to

w=0 =", k=olc=k.

But for the refracted ray complex values must be used for k", cos 6", sin 6"
though the forms of the results remain the same. Since k"2 = w?eu—iuosw
[eqn. (11.106)] and

ksin =ksin0 =k"sin0”’, kcosO =kcosb =k"cosb”,

both sin 8" and cos 0'* are complex. We have
k' cos 0" = (k''2—k''? sin 0"")1/2
= (wue—iwou—k? sin? )12,

where ue = 1/v?, k? = w?/c2.

Therefore k" cos 0" = p—igq, (11.116)
where Pi—q* = (0?/v?)—(w?/c?) sin? 6 (=0) (11.117)
2pq = woy, (11.118)

and we may take p, g = 0.
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Now, since n”” = {—cos §"" sin §"" 0} the exponential factor is

exp {wt—k"' (A" +r)} = exp i{wt+k"'x cos 0" —k""y sin "'}

= e?* exp {wt+ px—yk sin 6}. (11.119)
This is a harmonic wave in which surfaces of constant amplitude, x =con-
<tant, are different from surfaces of constant phase, px—ky sin 0 = constant.
Since ¢ > 0 we see that as the wave penetrates further into the metal (x < 0)
the amplitude must decrease, and the “skin effect” is displayed as before.
The planes of constant phase advance in a direction given by the unit vector
{—cosy sin6B O}, ie. p is the effective angle of refraction. The velocity
of propagation is given by

u = of/(p>+k?sin? 02 = o/(g>+w?[v*)2. (11.120)
The direction 9 is given by
cosp = plu, siny =k sin 8f/u = (kjo) (g®+w?/v>)2sin 0.  (11.121)
The last result shows that the effective refractive index is

n— sin k
Csing  w(git+ o)

and this depends upon the angle of incidence 6, through the dependence of
g on 8 given by eqns. (11.117-118). This is yet a further complication in the
effect of the metallic surface on the wave. When we look at the Fresnel
formulae in (11.65-66) the occurrence of the complex quantities in cos 6"
shows that the process of reflection at a metallic surface is by no means so
simple as it appears. We can deduce, in general, that unlike reflection from
a non-conducting surface, there is a difference of phase between b,, b, and
b,, b,; also that |b,| = |b,| and |b, | = |b,|. This latter result implies that all
the energy in the incident ray is reflected by the surface. The detailed discus-
sion of the relations between the amplitudes of the various rays is given in
advanced books on electromagnetic theory; the calculations are tedious
but mostly elementary.

Exercises 11.6

1. State the electromagnetic field equations, and deduce that for an uncharged medium
of homogeneous properties &, u, o, the electric field satisfies the equation
O*E oF
ViE = et tor gy

where a system of rectangular cartesian coordinates and components is implied.
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The plane z = 0 is the interface between two media; for z < O the medium is of zero
conductivity, and for z > 0 the conductivity of the medium is o. The dielectric constants
and permeabilities are ¢,, ¢, and &,, 4, respectively. An electromagnetic wave, for which

E = Ef0 exp [iw(t—z/v))] 0}

is incident on the interface from z < 0. State the value of v, and show that the trans-
mitted wave varies as
exp {iw(t—kz)},

, ious
where k% = eopy— He

Determine the complete electromagnetic field, and find the ratio of the amplitudes
of the reflected and incident electric fields.

2. The electric intensity E of a wave in a medium of conductivity o, permeability x and
permittivity ¢ is given by
E = ieitwt—k2)

where i is a unit vector along the x-axis. Determine & and the magnetic field.

A linearly polarized plane wave of period 27/w is incident normally from free space
on the plane face of a semi-infinite metal. Ifo > we and o > wu show that the amplitude
of the electric vector is reduced on reflection in the ratio 1 —+/(wu/270) approximately.

3. A uniform isotropic material has conductivity o, permeability ¢ and permittivity .
Show that Maxwell’s equations have a solution in which the only non-zero components
of E and H are E, and H,, and in which E, = de~“™"° cos w(t—nx/c) whare
n*—m? = c®ep and nm = tciuojm.

An infinite slab of this material fills the space x = 0 and a plane electromagnetic
wave with E = {0 & cos w(f—x/c) 0} is incident on the slab. Determine the reflected
and transmitted waves.

4. Prove that in a medium of conductivity o, permeability ¢ and permittivity ¢ there is a
solution of Maxwell’s equations of the form
E = iEexp (it —inw z/c —awz/c),
B = jB, exp (iwt —inwz/c —awz/c),
where B, = (n—ix)E,/c? and (n—ix)* = c*(ue—iop/w).

Material of conductivity o fills the region O =< z, and a plane harmonic wave in vacuo
of frequency w/2x, given by

E = id exp (iwt—iwz/c), B =j(A/c)exp (iwt—iwz/c)

in the region z < 0, is incident on the face z = 0. Prove that the ratio of the energy of
the wave reflected by the material to the energy of the incident wave is (n—1)/(n+1).
Find the fraction of the incident energy which crosses a plane distant z (=0) from the
surface of separation.

11.7 Waveguides

A waveguide is a hollow metal tube, made of highly conducting material
down which electromagnetic waves are propagated. In this section we inves-
tigate the effects of the conducting walls on the waves which can pass along
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the tube. In our theoretical discussion we assume that the tube is a cylinder
whose generators are parallel to the z-axis and that the medium inside the
tube is a vacuum (eo, po), the walls of the tube being perfect conductors.
Waveguides used in practice approximate to this, but have imperfectly con-
ducting walls, may have bends or junctions in the tube, and may even be
partly occupied by dielectric media. We do not discuss the effects of these
latter modifications, but merely establish the basic types of wave that can
travel in a straight waveguide.

The discussion has two aspects: first, we look for a special form of solu-
tion of Maxwell’s equations which corresponds to a wave propagated in the
z-direction, but whose amplitude is not uniform across the tube. (This is the
chief difference between our analysis and our previous discussion of plane
waves.) Second, we see what restrictions the presence of boundary walls
of perfect conductors place on the solutions so obtained. We use complex
exponentials to represent the oscillating fields and assume no charge or
currents inside the tube. (There will, of course, be charges and currents on
the walls of the tube to correspond with the fields.)

We seek solutions of the form

E = e(x, y) exp {i(wt—yz)}, B =b(x, y)exp {i(wt—yz)}. (11.122)

Here, unlike previous discussions, e and b depend upon x, y, but z only
occurs in the exponential factor. These expressions correspond to harmonic-
ally varying fields in which the planes z = constant are planes of constant
phase; these planes advance with the phase-velocity w/y. We consider, when
necessary, complex values for y which will correspond to attenuation of the
wave. But, so long as y is real (and positive) the solution corresponds to
propagation without attenuation.

We substitute the expressions (11.122) into Maxwell’s equations and
obtain

c o o A Oex Qey .
divkE = 0: dive—iy(k-e) = 0; x +§ ive; = 0; (11.123)
. A . . A ob, ©ob, .,
divB = 0: leb ]y(k'b) = 0, é‘x“*'ﬁ;_l'ybz = O, (11.124)
oB . .
curl E+€t— =0: curl e—ip(kx e)+iwb = 0, (11.125)
ode; . .
or —+iye,+iwby = 0, (11.125a)

oy
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%e, . ,
— _g_]yex+lwby =0, (11.125b)
Oe, Oex . Y
§—§+1wbz = 0, (11125C)
oD . .
curl H_Ft_ =0; curl b—iy(kxb)—i(w/c?)e = 0, (11.126)
ob, . iw
or 5?+I'yby—? ey = O, (11.1263)
ob, . iw
~ o _bex_c_zey =0, (11.126b)
ob, ©0b, iw
5;__6;_?&_0' (11.126¢)

In eqn. (11.126) we have used the relation eouo = 1/c2. From (11.125) and
(11.126) we see that

kecurl e+iw(bek) =0, k-curl b—i(w/c®)(e-k)=0. (11.127)
This shows that there are three possible types of solution.

1. One for which k-curl e = 0 = (b+k) in which case there is a transverse
magnetic field; these are called TM-waves (sometimes E-waves).

2. One for which k.curl b = 0 = (e-k) in which case there is a transverse
electric field; these are called TE-waves (sometimes H-waves).

3. One for which both ke.curl e and k.curl b vanish, in which case
both electric and magnetic vectors are transverse. These are called
TEM-waves. The general solution of the form (11.122) is an arbitrary
linear combination of these three types.

We continue the discussion further for TM-waves, and give, without
derivation, the corresponding results for TE-waves.

TM-waves

For these waves b, = 0, and the equations show that all other components
of b and e can be expressed in terms of e,. Since b, = 0 everywhere,

b,  ob,
ox +Fy_ - ox

w Ce, . w? _
b, = (W)ex, By +1y(1 _yz—cz)ey =0,

0,
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w Oe, .
by = —(;6—2) ey, 3 +1y(1—
ob, _a_bx i dey Oe,
x oy e ox Oy

Elimination of all components except e, leads now to

n aey) - ('}’2_?2‘)82 R V2€z.

O%,

Oe:
ox?

2
2 = i‘y(l —_%)_2) (aex
oy Y% ox

Hence we may write

+

0% 0%

8x2+872+vu¢ =0
eTM:__iZi_aii’_ TMz_E’_a_di
* 2 ox’ 7 vz oy’
5™ — o 8¢ oy __ i0 09
vie? oy’ 7 v%c? ox’
The corresponding results for TE-waves are
oy o
Sx2 B2 o TP =0
oTE _ o Oy oTE i Jy
* 2 9y’ 7 ? ox’
TE __ 17’ aw TE _ 1?’ aw
bi* = 12 9x’ by" = 2 ¥y
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602
‘)}2—02)9); = 0,

w2

(11.128)
e = ¢,

(11.129)
b™ = (.

(11.130)
e =0,

(11.131)
bIE = .

We now have to apply the usual boundary conditions

n-B=0, nxE =0,

where n stands for the unit normal to the bounding surface drawn into the
field, see Fig. 11.10, which must apply to any field at the surface of a perfect

conductor.

Fic. 11.10
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First we consider TM-waves. On the boundary, with the unit normal
given by n = il+jm (P+m? = 1),

n-B = ———(zl+]m) (_’é?“?ai) =0.
Therefore _laa<y;5 aai = 0. (11.132)
Also
nxE = (zl+]m)><{ - ( %2-*-] Zi)+k¢}
— imp—jlp— 2 k( 2¢ %) — 0. (11.133)

Both these conditions are satisfied if ¢ = O everywhere on the boundary
curve C in the xy-plane. Since ¢ depends only on x and y,

grad ¢ =i ¢+]%ﬁ
Therefore
0 0
nxgrad ¢ = (zl+]m)><( d) +j a‘ﬁ) k( -a%—m—éq)%).

But since ¢ = 0 on C, grad ¢ is parallel to the normal n, and their vector
productiszero. Hence, to determine the TM-waves given by eqns. (11.128-129)
we must solve (11.128) subject to the condition ¢ = O everywhere on the
boundary C. This is an eigenvalue problem which has solutions ¢; only for
certain eigenvalues »;; also these eigenfunctions ¢; satisfy an orthogonality
condition

J.J‘ ¢i¢j dx dy = 6,'1'

where the integral is taken over the area enclosed by C. Further, an arbitrary
solution satisfying the boundary conditions can always be written as a
Fourier-type expansion ¢ = ) a,¢,. By means of such an expansion we can

obtain a TM-wave corresponding to any given field values at the end z = 0
of the tube.

From the derivation of (11.128) we have
y? = w?/c—12. (11.134)

Because v can only take one of a set of discrete values ¥, only certain values
of y are possible for a given frequency. Also, if attenuation of the wave is
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not to take place, y must be real and therefore w must exceed the value cv;.
Hence frequencies below cv,/(27) cannot be transmitted down the tube in
the mode corresponding to ¢;; there is a cut-off frequency. Note that
different frequencies corresponding to a given mode v, travel with different
velocities, and different modes with a given frequency also travel with diffe-
rent velocities. Hence, in addition to the “cut-off” effect, the “profile” of
the signal is altered as it travels down the tube and distortion takes place.
(This effect is familiar in acoustics where the sound of a voice after it has
travelled along a pipe is very different from the original.)

The situation with TE-waves is closely similar. When we apply the bound-
ary conditions to eqns. (11.131) we obtain

7B = (il+jm)- { _ (ia—”’+j a’*’)+kw} = (1%+m-ai”) =0,

2\ ax oy 2 \"ax ' oy
A e ) Loy LOp\] o oy op\
nxE = (tl+]m)><{? ( i 3y +Ja—x)} “Fk(l§+m§);) =0.
These conditions are both satisfied if
oy op _ oy _
lax +m‘a—5}— - 787 - 0, (11'135)

where dy/on is the derivative of y along the normal to C. Therefore the
possible TE-waves are obtained from the solution of eqn. (11.130) subject
to the boundary condition 9y/on = 0 everywhere on C. This again is an
eigenvalue problem which has a solution y; only for certain, discrete values
of v = »,. The other considerations apply as for TM-waves.

The solution for TEM-waves is trivial unless the region in the xy-plane
enclosed by C is multiply connected. The discussion of this case is given in
the example below (p. 480).

The determination of the TM- or TE-waves depends first of all on the
solution of eqns. (11.128) or (11.130) subject to the boundary conditions,
followed by derivation of the fields from (11.129) or (11.131).

The mean energy-flow in the tube associated with either TM- or TE-
waves is easily obtained as the real part of the complex Poynting vector

P = L(ExH*) = (ExB")/(2uo).

Provided that ¢, or 7, obtained from the solution of (11.128) or (11.130),
is real, the Poynting vector for TM-waves is

1 e 3p. o B4, wy [(3p\* (36
P‘ﬂ;{‘w‘f"a?' oy i | (ax) +(57)]k}'
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So long as y is real this shows a mean energy-flow only in the z-direction

of amount
wy [(9¢)\? " 0 \?2
2v4c4y0 ox oyl [

If y is imaginary, the mean energy flow is zero since P has no real part,
and corresponds to the fact that, when 92 < 0, attenuation of the wave takes
place. Similarly for TE-waves the mean energy flow is

vo_[(Bv\*, (Bv)*®
2uevt ( ax) ( oy )
in the z-direction.

The energy in the field is distributed with mean density

Re 1{}eoE-E*+%uy'B-B*).

In the TM-mode, the energy in unit length of the tube is therefore the real

part of
z o¢ )
_H{ v4— + 2 (ay)+¢]
w? [(0¢ 90
1 T
+ o it [(ax) +(8y) ]}dx dy,
where the integral is taken over the area of cross-section of the tube. This is

o ([ ) [(22) (2 o) e

From Green’s theorem and eqn. (11.128) we show that, since ¢ = 0 on C,

rre

0= o5y as= [[ooron axar= [[rgrwomara

J J

”{ )}dxdy—v2m¢2dxdy

I
=;3ﬁ‘;” )dedy

Therefore

so that
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The rate of flow of energy down the tube is

z ad)
V4CH0J_[ ay)}d» dy = Wo,,

where v, the “group-velocity” is the velocity with which energy is apparently
propagated along the tube and differs from the phase-velocity v,. Note that
wy 2y c? . )

= =, 1e 0,0, = %
;. > ple
204820 Eqw? Eollo® v,

Vg =

(The phenomenon of “group-velocity” arises whenever the phase-velocity
of a wave depends on the frequency. This dependence on frequency occurs
here.)

Example. The discussion for TEM-waves.
These waves correspond to case 3 on p. 475 with
(esk) =0=c¢,, (bek)=0=0,.
The remaining equations from (11.123-126¢) now give

de, e, ab, b

—_x = It N Tt A 2

B dy 0, €)) ox T oy 0, (2)

de, e, b, b,

& " on =0 3) 5 o =0 @)

e, = —(w/Y)b,, ©) b, = (w/ycde,, (6)
= (w/7)b,, O] b, = —(w/ycte,. (8)

Clearly, eqns. (5)-(8) are satisfied, apart from the trivial case e, = ¢, = b, = b, = 0,
only if

e _r 2
Y =@ ie.

w?
= )

This is equivalent to »>=0 in (11.134). This also implies that egns. (1) and (3) are the
same as eqns. (4) and (2) respectively. We can satisfy (4) by writing

_of of
b, = P b, = By (i.e. b = gradf)
f 0
where 'a-x2‘+*ay2 = 0. (10}

Here f'is a single-valued function only if the region enclosed by C in the xy-plane is singly
connected. Otherwise f is a cyclic function.

Now the imposition of the boundary conditions on the solution of (10), viz. f = 0, or
0f/0x = 0 on C, implies that the only solution, in a singly connected space, is f = 0. Hence
there can be no waves of type TEM in a single hollow pipe. Such waves can be propagated
in a coaxial cable, where one conductor encloses the other. In this case f'is a cyclic function
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and non-zero fields exist. We cannot pursue the discussion of propagation along coaxial
cables here; for this the reader should consult special treatises. If the field is established
in the space outside a conducting tube, the area is doubly connected and the TEM mode
can exist (see § 11.8).

Rectangular waveguides

We develop the solution for the special case of a tube with rectangular
cross-section shown in Fig. 11.11. We will consider only TM-waves.

Y

/ a X

z
Fic. 11.11

We have to solve (11.128), viz.
824> 029
ox? +—+ ® =

subject to the boundary condition ¢ = 0 on all boundaries x = 0, x = a,
y = 0,y = b. The solution is found by the method of separation of variables.

which gives
_ . (rAX\ . (STY
s —A,ssm( g )sm( 5 ),

where the eigenvalues are given by

2 = 2 — ’:@24_ fﬁ
rs a2 b2 b
and r,s (= 1,2, ...) must take integral values in order to make ¢,, = O
on all boundaries. (It is here obviously convenient to use two suffixes 7, s,
instead of the single suffix i, when we label the various eigenvalues and
eigenfunctions.)
The various components of the field are given by

E™ — -——1% Aps (%r) cos (r ax) sin (s by) exp {i(wt—yrs2)},

rs

rs

e g (7 i (7 cos () exp fior—
EM = )2 A,s(b)sm( P )cos( b )exp{l(wt VrsZ)}s

EET 3-4



482 ELEMENTARY ELECTROMAGNETIC THEORY, VOL. 3

. [rax\ . [s
E™ = 4, sin (T) sin (

J;_y) exp i@t —7rs2)}, (11.136)

prv— 1® A,s(fbf) sin ("Z") cos (s - ) exp {i(0r —7,2)},

v2c?

iw rm rmox Ty
B™ — - A"(?) cos ( P ) sin ( A ) exp {(iof —y,2)},

VysC
BIM =0,

where
2 2 2
r S (0]
2 2 2 2
Vi =m = pe .
rs ( b2 ) b Vrs c2 rs

‘These results, as they stand, are not particularly illuminating but we can
-obtain certain other results from them.
The simplest mode of TM-wave occurs with » = s = 1 and

1 1
V%l = n2(a‘2‘ + -b—z)

.and the “cut-off” frequency is

AR

ﬂ_cvu (4 1 1\12
27:“‘2%'“5( ) :

A wave of this frequency has a wavelength in free space of

2mc 1 1\-12
}.0 —_ (,()0 2(&5‘*“52—) .

“This indicates that the wavelength in free space of radiation which can pass
down the tube without attenuation must have the same order of magnitude,
or less, as the transverse dimensions of the tube. For a square section of
side 5 cm the maximum wavelength transmitted is 7-1 cm. (We give the wave-
length “in free space” because inside the tube the wavelength is given by
2n/y; but for the critical frequency of cut-off y = 0 and the wavelength
in the tube is infinite.)
The corresponding solutions for TE-waves come from the solution of the
equation
%y %

8A2+8y =0
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subject to the conditions:

oy _

o on x=0, a;

E2

The solutions, obtained by the method of separation of variables, are

rax ST
Yrs = By cOS (—a—) cos (—bl),

2 2 2
r S w
2 — o2 2 — 2
Vs =7 ( bg) VYes = 2 Vps -

The simplest modes correspond here to
x
w10 = Byo cos (%), o1 = Boy cos (zbz)

The critical wavelengths of cut-off are 2a, 2b having frequencies ¢/(2a),
¢/(2b) respectively.

Example 1. The parallel plate waveguide

This is a waveguide with walls consisting of the planes x = 0, x = a only in which
propagation takes place in the z-direction, but there is no dependence on y. We include
this because the solution enables us to understand how the more complicated phenomena
with rectangular, and other shaped, waveguides arise physically.

Because there is no dependence on y we start, for TM-waves, with the solution of

6¢+v2¢_0 ¢=0 on x=0, a

‘This is given by

¢, = A4, sm(zx), r=12,...,

_rm @ ral
Ve = a ’ 7,. - cg az (l)
‘The field components are, from eqn. (11.129),
E, = y, A cos ( ) exp {i(wt—y,2)}, E, =0,
E, =4, sm( )exp {i(wt —p,2)}, @

B,=0, B,= %A, cos (’Ea’f) exp {i(wt—y,2)}, B, =0.
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From (1) we may put

r w w
B=—- = osine p = o cos a,
. rax 1 irax 1 irmx
and insert cos (—) = — exp (——) +— exp (————
a 2 a 2 a
1 ixw sin o ixw sin o
o (o ()
L a a

into the field components. We obtain, for example,
E, = —(i/2) (cot @) A,[exp {(iw/c) (ct— x sin a—z cos a)}
+exp {(—iw/c) (ct+ x sin o« — z cos a)}]

with similar expressions for E,, B,. These expressions represent the combination of two
harmonic waves with constant amplitudes propagated with phase-velocity ¢ in the direc-
tions —isina-+k cosa, i sino—+k cos o (see Fig. 11.12).

X
«
/
o (A
z
y
Fic. 11.12

The expressions (2) correspond to a wave (with variable amplitude) propagated in the
z-direction, having frequency w/(2x), wavelength 2x/y,, and phase velocity w/y,. These are
seen to be the resultant of plane waves, with constant amplitude, reflected obliquely to and
fro between the plates, each wave having frequency w/(2x), wavelength 2znc/w (the “free
space value”) and phase velocity c¢. The “cut-off” wavelength corresponds to an angle
o = m/2 in which the waves are reflected directly across perpendicular to the plates and so
transmit no energy in the z-direction. In this solution (a TM-wave) B is always transverse,
while E has a component in the z-direction; the corresponding TE-wave has E, = E, = 0
and B has a z-component, the solution being given by reflection as before.

We can now understand how the reflection from another pair of faces in the rectangular
waveguide, or from the curved surface of some other shaped tube, builds up the more
complicated modes in the general investigation.

Example 2. Show that the formulae
E—curlcul S, B=-L curl (§)

c2

for the electric and magnetic vectors satisfy Maxwell’s equations irt empty space provided
that in a rectangular coordinate system the vector function S is a solution of the wave
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equation
c? V2§ = 028/0¢%.

Verify that Ak sin ox sin (wf—yz) is a possible form of S, where A4, «, y are real con-
" stants, X, y, z rectangular coordinates and k is a unit vector along the z-axis, if «, ¥, and w
satisfy a certain condition.

Find the condition that such a solution should represent a field between two perfectly
conducting planes x = 0 and x = a, and prove that if the field is that of a wave propagated
along the z-axis then w > nnc/a, where n is an integer.

Show also that the time average of the energy-flow is parallel to the z-axis and of amount
wyax®4?/(411,) per unit width.

With the suggested forms for the field vectors the equations

dvE=0, divB=0 ' cmB—cE 0,
Ho or
are satisfied identically. The remaining equation gives

a5y
or?
1 o8 }

= curl {grad div §—-v3S+ = ¢

curl E +% = curl {curl curl § +—1—
ot c?

Since curl grad u = 0, where in this case u = div S, the fourth of Maxwell’s equations is
satisfied when S satisfies the stated relation.

When S = kA sin (ax) sin (wt — y2),
V28 = k(—a®—p?)Asin (ax) sin (wf —yz),
o = — w2kA sin (xx) sin (ot — yz).
or?
Therefore 02+ 9% = w?/c?. (03]

Also
curl § = —jad cos (ax) sin (wt —yz),

curl curl § = —iyad cos (ax) cos (wt — yz)+ koA sin (xx) sin (wt —yz) = E.
Therefore B = —jawA cos (ax) cos (wf —yz).

The boundary conditions to be satisfied on x = 0, x = aare i+B = 0, iXE = 0. The
first of these is identically satisfied, and the second is satisfied for x = 0. When x = a we
must have the condition sin (xa) = O so that

o« = nnja, n=12,...).

For propagation of a wave in the z-direction y must be real and y* > 0, and so, from (1),

The instantaneous value of the energy-flow is given by the Poynting vector P, where

P = u(ExH) = (EXB)
= {wadA? sin (eex) cos (ax) sin (wt —yz) cos (wt —yz)+ ka2ywA? cos? (ax) cos? (wt —yz).
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Because of the factor sin (w? —yz) cos (wf —yz) the time-average of the x-component of P
is zero, and the z-component has the mean value 3[ywo®4%/u,] cos? (ax). Therefore the
total flow in the z-direction across unit width in the y-direction between the plates is

a
ywA%o?
2

2 42
fcosz (ax) dx = ywa'd'a
J 4po

Example 3. Electromagnetic waves travel along a perfectly conducting guide of rectan-
gular cross-section bounded by x = 0, x = a; y = 0, y = b. Prove that, for the E,,,
mode, the component of the electric field parallel to the axis of the guide can be expressed
in the form

E, = sin (mnx/a) sin (nmy/b) exp {i(wt—Bz)},

and determine the other components of E and B.

Determine the critical wavelength and the wavelength in the guide corresponding to a
wavelength A in the unbounded medium.

Find the limits between which the length of the side of a guide of square cross-section
must lie in order that only the E;; mode is transmitted without attenuation.

This case was discussed in the text, with a slight difference of notation, viz. r, s were
used instead of m, n here, and y,, was used instead of § here. With these changes the field
vector components are given in eqns. (11.136).

The critical wavelength for any mode of oscillation is the wavelength A, in free space
which a wave having the “cut-off” frequency must have. The “cut-off” frequency for the
mode given here is w/(2n) where w/c has the value making %,, (or ) vanish, i.e.

2nc m?  n?\-u2
b= 00 =2+ ge)

For other frequencies the wavelength in the tube is 4, where A, = 27/8, and the free
space wavelength is A = 2zc/w. Hence, from the relation

52_ wz 2 m2 n2
I V=

we deduce that
11 1m
FrEy T (a—2+F)'

For a square waveguide and an oscillation in the Ey; mode, @ = b, m = n = 1. Hence the
frequency of the oscillation must exceed the cut-off frequency. Therefore

w? 27 .
=T g e a>= VvV (2)rclw.

The modes with the nearest cut-off frequency to this value are the E,;, E;s modes with
v¥, = v} = 5n%/a®. Hence, if these modes are not to be transmitted, the frequency must
lie below the “cut-off” value for these modes, i.e.

w?  5n?

<A ie. a< 4/(S)nclw.



§ 11.7 ELECTROMAGNETIC WAVES 48T
We thus obtain the limits on a to be
(wc/w) /2 < a < (nc/w) /5,

where w/(27) is the frequency of the wave being used.

Example 4. A long circular cylinder, of uniform material, of radius a and permittivity
¢ and permeability y, isembedded in a perfect conductor, the axis of the cylinder being the
z-axis. If the magnetic field has no component along this axis, and all other field quantities.
are of the form R(r) ©(6) exp {i(w?—pz)}, where w, # are constants and (r, 6, z) are cylin-
drical polar coordinates, show that J,(va)=0, where J,(x) is the Bessel function of the
first kind, » being an integer, and

2 — @ 2 2
= ( v ) F

where v is the phase velocity of electromagnetic waves in the medium.
Show that, for a given n, there is a critical value w, which @ must exceed if waves of this-
type are to be transmitted in the cylinder.

We include this example as an indication of how non-rectangular wave guides may be
discussed, and to show how there is a corresponding pattern of possible modes of oscillation.

‘We return to eqns. (11.123), (11.125) and (11.126) where the field vectors are expressed
in terms of e, b, which depend only on the position of the field point in the cross-section
of the waveguide, the dependence on z and ¢ being included in the factor exp {i(w? —f2)}.
[Here B replaces v of the previous discussion.] Since we use cylindrical polar coordinates
(r, 0, z) (suggested by the form of the boundary) we now regard e, b as functions only of
r, 0.

Since we are given that the magnetic field has no component along the z-axis, we put
bek = b, = O and take e«k = ¢. We find, as before, that all field quantities can be ex-
pressed in terms of ¢. The form taken by Maxwell’s equations now is [we replace ¢? by’
1/(ue) since the medium is not a vacuum]:

o 1 )
dive—if(kee) = 0;  — {% (re,)+% (eo)} =i

. X 1 0 0
div b—ifken) = 03 - {a r5)+ 55 (bo)} =0.

curl e—if(k x e)+iwb = 0:

19 d . o 18

e D5 v} = iB—en—iwb; - Gh = —ifeg—ivh;

0 0 . . 0 . .

e (e,)—a (P) = iB(e,) —iwbg; —e% = —ifle,+iwby;

1 0 0 (e 689 €y 1 6e, —n.
o g} = 0s rtr e =

curl b—if(k x b)—iwuce = 0:

1 (0 0 . .
{55 O 55 (b0} =iB(—bo+ivuse; by = (@pslPe,;

0 0 . .
55 655 (0) = iB(b) +iouees; b, = —(@pe/Pe;

1 (9@ 0 . . Obg by 1 0b, .
- {5 (rbg)—% (b,)} = lwuep; Ty iwped.

r
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After some manipulations these equations lead to the following results, which corre-
spond to eqns. (11.128-129),

p 1 ap 1 8%

et B T ap = (Bwtkad = -, 6]
__ip 3o __ip rep
“=warr 9T Tw oy T @

br_lwye 1 o by = iwue O¢

oy T B0 3

Since the boundary of the field is a perfect conductor, eqn. (1) must be subject to the
‘boundary condition ¢ = 0.
When we seek a solution of (1) in the form given we obtain

1 1 e
. . — — 2
R(R : rR)+r2() v,

If © is to be a single-valued function of position we must have

,

o = —n%, 6 = A cos (n0)+ B sin (nf), n=0,1,2,...),

so that
rR” +rR +(»*r*—n®)R = 0.

This is Bessel’s equation of order # with the general solution
R = CJ,(vr)+CyY,(vr).

Because Y,(vr) - — oo as ¥ - 0 we must choose C, = 0 in order to make R (and there-
fore ¢) finite everywhere inside the waveguide. It follows that

R(r) = CyJ,(vr).

The boundary condition at the metal surface requires that J,(va) = 0, and implies that v
must take one of a discrete set of values ;.
The velocity of propagation of the waves is given by w/f§ where

v} = w’ue—f* = (w/v)*—p2.

As in the discussion in the text, if the wave is to be transmitted along the guide, £ must be
real and so w must exceed a critical value given by wo = vv;.

Example 5. Verify that Maxwell’s equations for free space are satisfied by

B = grad ¢ xk

?¢>

138
c® ot
E= k>
C

a grad ¢

where k is the unit vector along the z-axis, and ¢ satisfies

oy = L &%

c o’
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Show that ¢ can be of the form
A sin (ax) sin (8y) cos (yz) cos (w?),

provided that the angular frequency w and the constants «, §, y satisfy a certain relation.
Find the cartesian components of E in this case, and deduce that such a field can exist in
the region 0 < x </, 0 =< y =< [, 0 = z =< [, where the boundaries are perfectly conduct-
ing, if a, B,y have suitably chosen values. If the field does not vanish identically, show
that the least allowed value of w is (zc/l) v/2.

This is not strictly a problem on waveguides but its solution has many features in
common with waveguide problems and shows how problems concerning electromagnetic
fields inside cavities with conducting walls can be treated.

The verification of Maxwell’s equations is a matter of manipulation of the vector diffe-
rential operations. Since k is a constant vector, we can write the expression for B in the
form

B = Lz 56_ curl (ko).

Hence div B = 0, identically. Also

gf grad ¢ = grad (%) = grad (k.grad ¢).

oz
Therefore
1 oB
curl E = — v 6 o (curl k) = ~ar
since curl grad (9?) = 0.
oz
2
Since the term —E e has only a z-component,
. 0 (1 &%
divE = 3 (c2 e )+— (div grad ¢)

0 1o _,
:67{ ¢t or T/_("[J}:O
by virtue of the condition satisfied by ¢. Finally
_ 0
curl H = uglcurl B = gy — 3 curl curl (ko)

= ¢ % {grad div (k) —V*(ko)}

) od\ , L\ _ ., © 62¢ 1]
_a‘,a—t{grad (a) kv¢}—soa’—{ = 612 (graqu)
_ L E_
IR TER-T

Hence, all of Maxwell’s equations for free space are satisfied.
Substitution of the given expression for ¢ into the wave equation shows that

w4242 = w?/c
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)
2 )

E, = — A(a®+ 8?) sin (2x) sin (By) cos (yz) cos (w?), [: (gif+g;¢)]

"The field components corresponding to the given ¢ are

E, = — Awy cos (ox) sin (By) sin (yz) cos (w?), [

E, = — APy sin (ax) cos (By) sin (yz) cos (1), [:

‘The value for E, is obtained by noting that, since ¢ satisfies the wave equation,

o L B o o
cTTEE T A 9

i .0 .0p
-Also, since grad p xk =i _y_ = ox
_ 12  fo . .
2= dEEyer & A sin (ax) cos (By) cos (yz) sin (w?),
_ 1 & ao . . B
B, = T axar & A cos (oex) sin (By) cos (yz) sin (wf), B, = 0.

When we substitute, in succession, x = 0, y = 0, z = 0 into these expressions we find
‘that
onx=0: E =E,=B,=0;
ony=0: E,=E,=B,=0;
onz=0: E,=E, =0, with B, =0 identically.

‘These results conform to the boundary condition
neB = 0, AXE=10

-on each face. When we substitute x = I, y = [, z = [ we find that
onx=1I: E,=E =B,=0 if sin@)=0, «=mafl
ony=1I: E,=E,=B,=0 if sin()=0, B=na/l;
onz=1I1: E,=E, =0 if sin(y)=0, 9y =p=a/l;
where m,n=1,2,3,...,andp=0,1,2, ....

‘The extra possible value p = 0, whereas m, n = 0, occurs because the dependence of ¢
on z is through cos (yz). Equation (1) now shows that

w?[c? = n¥(m?+ n?+ p¥)/2,

and so the minimum possible value for w is givenbym =1 = n, p = 0, i.e.

= (emfl) /2.

Exercises 11.7

1. If the field resolutes are referred to rectangular axes Oxyz, show that there exists a
solution (possessing continuous second derivatives) of the form

E,=B,=B,=0; E,=0y/dz, E,=-08y[ox, c*B,=—0y/ot,
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where p is a function of x, z and ¢ satisfying

y 1

T T E o

Assuming a solution of the form wy(z) exp {i(x—vt)}, of given frequency »/2x,
where v > xc, find the form of the function y,(z) valid in the region 0 =< z =< a, and
the value of , if y, vanishes only for z = 0 and z = a.

2. An E_,-wave of frequency w/2n is propagated along a perfectly conducting wave-
guide whose sides are the planes x = 0, x = gq, y = 0, y = b. Show that the electric
field component along the axis of the guide is of the form

E, = Asin (mnx) sin (ﬂy)
a b

w\? m?*  n?
where b= () (% 5)

Determine the other field components, and obtain an expression for the energy-flow
along the guide.

3. An electromagnetic E-wave of frequency w/2x is propagated along a rectangular wave
guide having perfectly conducting walls x = 0, x = a, y = 0, y = b. Obtain the field
components in the form

_ if4 m=m max\ . (nwy\. _ AiwK nx . (max nmy\ .
E, =— 2 —a—cos( p )sm( b)’ B, = o) Tsm( 2 )cos( b)’
_ifA nm . (mnx nmy\ . _ AioKmn mnx\ . (nmy\.
E,,———-—vz 7sm (—a )cos( A ), B‘,————vzc2 —a—cos(—a )sm (—b—),
E, = Asin (ﬂ) sin (@), B,= 0,
a b

where K is the dielectric constant of the medium filling the guide, the permeability is
unity,

w?
g% = ';5‘—1’2,

2= (mn)2+ (nn)2

“\a b/’
m and n are integers and v is the velocity of propagation in the unbounded medium.
Show that at all points in the field, the electric and magnetic fields are perpendicular

and that there is a phase difference of /2 between the magnetic vector and the longi-
tudinal resolute of the electric vector.

4. Prove that a wave whose field components are

E, = Asin (n%) exp {i(wt—B2)},

H, = Bsin (22 exp {i(wt —B2)},
v b

H, = Ccos (r%zz) exp {i(wt—B2)},
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where n is an integer, may be propagated in the direction of Oz between two perfectly
conducting planes y = 0 and y = b, in a medium of dielectric constant K and per-
meability u. Give the equation satisfied by 8 and find the ratio 4 : B: C.

If A is the wavelength of these waves and 4, that for waves of the same frequency in
an unbounded medium, show that

1 1 n?

E AR 4
Under what conditiens could this field exist in a rectangular waveguide ?

5. Show that Maxwell’s equations for an isotropic homogeneous non-conducting mediunt
of permeability u and permittivity ¢ can be satisfied by taking

E = real part of curl curl (yk),

B = real part of —gt» curl (pk)

provided that p is a solution of the wave equation V3 = ued?p/0r.

Taking = XY exp {i(wt—pz)}, where X is a function of x only and Y is a function
of y only, obtain the components of E, B for a field in a rectangular waveguide bounded.
by perfectly conducting planes x =0, x = @, y = 0, y = b, and find the condition
that this field should be propagated without attenuation.

11.8 The transmission line

Like a waveguide, a transmission line is an arrangement of conductors
which “guide” the propagation of an oscillatory electromagnetic field.
Whereas the waveguide is a hollow conductor with the field propagated
down the inside, a transmission line consists, usually, of two parallel con-
ductors and the field is established between them. One kind of line is exempli-
fied in telegraph or telephone wires, or power cables, where the conductors
are outside one another. Another kind is the coaxial cable where one con-
ductor completely encloses the other and the field is established in the space
between them.

We shall discuss chiefly the simplest case of two straight conductors,
having infinite electrical conductivity, which are embedded in a uniform
medium. This medium may have a finite electrical conductivity correspond-
ing, for example, to a submarine cable. In practice the medium surrounding
the conductors is not uniform, e.g. there are layers of special insulation
surrounding the wires, nor is the conductivity of the wires infinite.

We saw that, unless the section of a waveguide was a doubly- (or multiply-)
connected region, only TM- or TE-type waves were possible; waves of
TEM-type were impossible, and the “cut-off” frequency was due to the
reflections which took place from the walls of the tube. Since the transmission
line field is established outside the conductors these reflections (from the
outer walls) do not take place. Consequently, only TEM-type waves can
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occur; in this case TM- and TE-type waves cannot be established with
perfectly conducting boundaries.

The “field outlook” regards the space where the field is established as
the primary seat of the phenomena of electromagnetism. Hence, correspond-
ing to this field there are distributions of current, charge and voltage on the
conductors of the transmission line. In most practical applications these
currents and voltages—the signals transmitted—are of more importance
than the field strengths. Also the quantities we consider all vary harmonically
with time and so, effectively, the conductors carry alternating currents and
voltages. So it is natural to describe the behaviour of the line in terms of
impedances, which relate the currents and voltages, as in alternating current
theory.

The arrangement we consider is made up of one or more, usually two,
long, straight conductors with uniform cross-section perpendicular to the
z-direction. We look for fields which correspond to the propagation of
waves in the z-direction by the same assumptions as in § 11.7 and use expres-
sions (11.122) for the field strengths. The analysis is identical as far as eqn.
(11.131). Because the field now extends to infinity we must impose condi-
tions to be satisfied at infinity, as well as on the conducting boundaries,
before we can determine unigue solutions to the field equations. These
conditions are usually known as the “Sommerfeld radiation conditions”.
We cannot give a thorough discussion of these here, and content ourselves
with the following account which draws an analogy with the conditions for
uniqueness in electrostatics. The “standard” boundary conditions applied
there for a field in two dimensions (and uniform in the z-direction) were

V=0(nr), |E|=0Q1/r), r—>c.

In physical terms this means that the potential and field correspond to the
field of a line charge through the origin; this is the simplest cylindrically
symmetric solution of Laplace’s equation.
In considering TE- and TM-waves we found that the functions ¢, v had

to satisfy Helmholtz’s equation for two dimensions, viz.

0% %

— =0.

axt T TV
The “radiation conditions” require that at infinity ¢, or y, should correspond
to the simplest (cylindrically) symmetric wave propagated from a source
lying along the z-axis. The conditions for this are

¢ = 0(/r2), r - oo lim 12 (%;ﬁi-%—ivq&) =0. (11.137)

r—>oco
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When these conditions are satisfied at infinity, Helmholtz’s equation has a
unique solution if ¢ and/or ©¢/on is specified on finite boundaries. (The
conditions are sufficient for uniqueness; this does not imply that they are
also necessary.) Equation (11.137) replaces the qualitative statement about
the absence of reflections. The consequence of applying (11.137) is that TE-
and TM-waves do not exist outside perfectly conducting transmission lines.

Example. We illustrate the above by considering the case of a perfectly conducting
cylinder of radius a.

Because of the complete cylindrical symmetry we look for an axially symmetric solution
of

% o o,
W+a—y2+v¢—0

which vanishes for » = a. In cylindrical polars this becomes, because ¢ is independent of 6,

d2¢ . 1 d¢ 24 —
-+ __;‘_4_ P ¢) =0,
which has the genera] solution

¢ = AJo(vr)+ BYo(vr),

where Jo(vr) and Yo(vr) are Bessel functions of the first and second kinds of order zero.
To investigate the behaviour of ¢ at infinity we use the asymptotic forms

Jo(or) =~ sin :/r(j—Z jro)s vr Y om ~ sin z;(;::ro)s vr
for large values of r.
It is clear that the first of conditions (11.137) is satisfied for
|r2¢(r)| = |(A+ B) sin vr+(A — B) cos vr|[+/(7v) < K.
Also

au (%_qu\) _ (A+iA+B—iB)v cos vr+(—A+iA+ B+iB)v sin vr
v (7v)
_(4+B) sin vr+ (A4 — B) cos vr
2r 4/(zv)

If the second of conditions (11.137) is to be satisfied, the coefficients of cos vr and sin vr
in the first fraction must both vanish, i.e.

A(1+1)+B(1—i) =0, A(—-1+i)+B(1+i) = 0.
Therefore B=—-i4
and D(r) = A{Jo(vr) =Y, (vr)} = AHP(vr).
This particular combination of J, and Y, is known as a Hankel function, H@®(vr), which

has the property that it does not vanish for any real value of the argument. Hence we can
only satisfy the boundary condition ¢(a) = O by taking 4 = 0. Therefore, as long as
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v # 0, there is no solution corresponding to TE- or TM-waves. (A similar argument
applies to solutions which depend on the polar angle 6. Again there are no TE- or TM-
solutions.)

Since only TEM-waves are possible the field vectors satisfy eqns. (11.122),.
with E, = 0 = B,. Hence

aex aey _ abx aby 3
_a;“"_a;‘ - 0, 5;-}-_5; = 0,
Qe B, _,  dbs_8b _ (11.138).
oy ox  ° dy ox

ex =—(w/y)by, e, = (w[p)bx, bx = (wuely)e,, b, =—(wpelylex,

so that
7 = wle,

(i.e. v = 0). We use u, ¢, rather than uo, €0, so that we can include in our
discussion the case of conductors embedded in a medium, instead of a
vacuum, and, by using a complex value for the permittivity ¢’ = ¢—io/w,
we can also include the case of a surrounding medium with conducting.
properties. When ¢ is real, the velocity of propagation of the waves is
v =ofy = 1/v/(ue).

The solution of eqns. (11.138) is obtained by introducing a potential
function @ as follows:

W 0

__%0 6w, _2»? 730 |
ex = o’ e, = 3y’ bx—w oy’ b, = o ox’ (11.139)
where

62@_'_62@_0
oxz ' 92

In addition (0 must be constant on the boundaries, or 8(0)/on must be speci-
fied. At infinity (0 must satisfy the radiation conditions (11.137).

We notice that @) is the potential function of a two dimensional electro-
static field. Since the first of conditions (11.137) prevents (0 from containing.
a term In r, the net charge residing on the finite boundaries of this electro-
static field must be zero. Because the charge on a single isolated conductor
in a field must be all of one sign (see Vol. 1, p. 80) it follows that no wave,.
of the kind we consider here, can be propagated along a single perfectly
conducting guide. Therefore, in what follows we shall consider a transmission
line consisting of two conductors. [The assumption that we make by adopting.
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the forms (11.122) as our starting-point is that the harmonic wave extends
uniformly along the whole (infinite) length of the line. If a charge, for example,
is situated on part of the line a disturbance is propagated, both ways, along
the line with velocity », but this disturbance cannot be represented by a
wave of the kind considered here with a single frequency. If the line is not a
perfect conductor, then a wave can be propagated along it, but this wave
is not of the TEM-type.]

With the addition of the factor exp {i(w¢—yz)} the expressions in (11.139)
give the instantaneous values of the field quantities. Hence the “static” field
given by (U gives the amplitude, in any transverse plane, of the oscillatory
quantities which constitute the complete field. We now investigate what
charges, currents and voltages on the conductors of the line correspond to
these fields.

A
n

I>

FiG. 11.13

We consider two curves S; and S2 in the xy-plane (Fig. 11.13) which are
the profiles of the conductors. The static field (@ corresponds to charges Q,
(25 on unit length of these conductors, where

Q:1+Qy,=0 (11.140)
and

le—ef%? ds, Qes=-—c¢ J% ds. (11.141)
S

St

Also the surface current density on the boundary corresponding to the mag-
netic field is given by nx H = (nx B)/u. This corresponds to total currents
4 and s flowing in the z-direction along each conductor given by
y (0@ y (0@ 1
—_Y |ov =1 | =2 1.
1 on | o ds, 2 on | o ds, (11.142)
S 5

since (nxB)/u = —(ylwu) (8 /on)k. Hence we see that &y = —» and
the current flowing along one conductor returns along the other. If we denote
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these currents and charges by +&, +Q, we see that
I = yQ/(wue) = Q[v/(ue). (11.143)

The conductors in the “static” field are at potentials (0; and (0, where
@ = @,—», and so the capacitance C of unit length of the two conductors
is given by

C(V1—@s) = Q = CO (11.144)

and C may be calculated from the potential function but depends only on
the shape and relative dispositions of the curves S, Se. We also define the
inductance per unit length, L, in terms of the magnetic energy

l 2 — 1 2
ELQ -—ﬂ'”‘B dx dy,

where the integral is taken through the field outside the conductors. Then

ngz . ﬂ{ y)}dxdy
=—2w2y”@§1- ds,

where we have used Green’s theorem remembering that d/0n is here taken
into the field region. The contribution from infinity is zero. Therefore

yX0oQ _ 1
20%ue 2

LQZ ((O1Q1+Q)2Q2) Q. (11.145)

These results mean that at any point on the length of the conductors the
current strength is given by (the real part of)

I = Hexp i(wt—yz)}

and the potential difference between the conductors at this point is (the real
part of)
V = @ exp {i(wt—yz)}.

These quantities are found in a system with a capacitance C and inductance

L per unit length. From eqn. (11.144) we have Q = C(0, and, from (11.145),
1P =00EF = Ve = Gloy.

Therefore --— = —ip@ exp {i(wt—yz)} = —iwLd exp {i(wt—yz)} = —iwLl.

oz
(11.146)
EET 3-5
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Also, since g = (0/y)Q = (w/y)CO,
ol . (o .
== —1y(;)CV — —iwCV. (11.147)

If we remember that in this case 9/0f = iw these results are equivalent to

LA A B

S tLer =0, = +C5-=0, (11.148)
which lead to

o o oW o

2= Cop 52~ % (11.149)

These latter equations, (11.149), are known as the “equations of telegraphy”
for a loss-free transmission line. (We can write iwl = ©I/0t in general
because an arbitrary periodic function I of the time can, by Fourier’s
theorem, be written as the sum of a number of different frequencies, to each
of which this relation applies.) Since ¥, I are alternating quantities, we define
the characteristic impedance of the line Z by

o _ o A(ue) L
1Ze=V/I=@)3 = = T (11.150)

In this case the current I and voltage ¥ are in phase.

We consider now what modifications become necessary if the medium
surrounding the conductors is a conducting medium (with a conductivity
small compared with that of the line itself). In practice this means that the
current entering an element of the line divides into a component which goes
on down the line and another, small, component (the “shunt” current) which
“leaks” across the medium to the other line conductor. The modifica-
tion we make is to use a complex permittivity ¢ = e—ig/w. Since
y[ = (ue)*{1 —io/(ew)}*?] is complex, the imaginary part of y leads to
attenuation of all quantities, including ¥V, I along the line.

We consider unit length of line and the field enclosed between two planes
z = constant at unit distance apart. The mean rate of dissipation of heat
in this part of the field is given by (the real part of) 1oE-E *. If we regard
this heat as produced by the passage of the “leak” current flowing between
the conductors at a potential difference (@ the expression for this is +GO@*,
where G is the conductance, i.e. the reciprocal of the resistance, between
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unit length of the conductors of the line. Then

%G(O@*: ffE -E* dxdy—~ jf{a@ 80 87) o0 }dxdy

ox ©Ox 8y oy

1 o™ 1 @Q*
=727 © on ds = 297¢
S1+S:
Therefore GO =oQle, ie. G =aCle.

If we use ¢’, instead of ¢, in the expression for the capacitance, we obtain
a complex value

, & (00 ., ic\ ¢ (00 . icC
C""@f%ﬂ“‘(“&)?ﬁfs ds=C—0¢

C' = C—iG/w.

Hence

Hence the modifications we have to make to the results already obtained
are:
oV

from (11.146) P —iwLI, (no change); (11.151)
ol . ol .
from (11.147) i —1wC’'V  becomes Frie —({wC+G)V; (11.152)
oV G G G124 .
from (11.148) 5E+L§_O’ —é;-f-Cﬁ-FGV—O, (11.153)
and from (11.150)
- L(C—iG|w) = u(e—io/w). (11.154)

Finally, we consider line conductors which have a large, but not infinite,
conductivity. When this is the case there must be a component of E in the
direction of the line because, in general, there is a current flowing in the
z-direction through the resistance of the line. Hence E, = 0, and the field
is no longer of the TEM-type. We assume, for lines made of good con-
ductors, that the TEM-field gives a sufficiently close approximation to
the field outside these conductors, but inside these conductors there is
the necessary longitudinal component E,. The alternating current
dexp {i(wt—yz)} is not now exactly a surface current, but it penetrates
into the conductor through the skin effect. This has two consequences.
First in addition to the variation of voltage in the z-direction given by
oV [0z = —iy(@ exp {i(wt—yz)} we must have a variation &R, 6z in a length

5%
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dz due to Ohmic resistance, the “internal” resistance of the line R, per unit
length. Hence the voltage 6V between two points separated by a line-
distance 0z is given by

OV = —iy0 0z exp {i(wt—yz)}—IR; oz.
Therefore

7 = —IR;—iy(@ exp {i(wt—yz)}.

The second consequence is the addition of an internal inductance L
to L. The magnetic energy in unit thickness of the field is (the real part of)
1/(4uw) J' [ B-B* dx dy, where the integral must now include the cross-section
of the line-conductors where the current is no longer strictly zero. We
therefore write

1 * 1 * 1 * 1o A
EJJB.B dXdy—Zﬁ Jf B-B dxdy+;i; '” B.B* dx dy

c0—S8;—S; S1+ S,

1 * 1 *

The first integral is taken outside the conductors (e —S1—.S53) and is the

same as in eqn. (11.145); the second integral over (S1+.S5) is the internal

integration. Hence we replace L by L+ L, where L, is the internal inductance

of the wires in the line. The further modifications necessary in eqns.

(11.151-153) now give
oV

= —I[R,+160(L+Lt)]:

5 = —(ioC+G)V. (11.155)

I
oz
If, instead of the harmonic time variation, we consider any variation, we have
the results

8
+(L+L,) +RI 0, gl +C%I;+GV 0. (11.156)
Elimination of ¥, or I, leads to the final version of the “equation of tele-
graphy”.

oA

] C(L+L,) —{CR;+G(L+L:‘)}%§——R,~GI= 0, (11.157)

which is also satisfied by V.
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Example. For our subsequent use we consider here a network of impedances which is
made up of a sequence of elements 4,4, ,:B, 1B, connected end to end forming two
conducting lines 414, ... A,A,,14,,2 ... and ByB, ... B,B, 1B, s ... as in Fig. 11.14,

A, A, L*tL; R, A L+L; R, A, A,
000000~ —— — ——0*=— 00000 — MWV 0= 00000 — AW 0= 00000 /- — = == = = == -0

Ir Ir+1 Ir+2

$=1/G3 =c s=1/63 =C

1 Xr Yr :[+1 Xr+1 Yr+1
o r r -
B1 Br Br+1 Br+2 Br

Fic. 11.14

We denote the current entering each element at A,, and leaving at B, by I,, at 4,,; by
I,.1, and so on; similarly the potential difference between 4,, B, is V,, between A4, ,,,
B, ,11is V,,1, and so on. The equations for the network, when the time variation is given
by the factor e'*, are

Ve=Vip1 = L[Ri+io(L+Ly), 1

V¢+1 = er = X,/G, Vr+1 = ,V,/(lwc),
Ir = Ir+1+xr+yn

where x, and y, are the currents “leaking” through the “shunts” S and C. The latter
equations give

L—1,,; = x4y, = V4 1(G+iwC). (2

The results (1) and (2) of the above example show an obvious (and
contrived) resemblance to the equations of the transmission line. We can
make the resemblance complete if we regard the element 4,4, ,B, B,
as a model of part of the transmission line of length 6z. Then we make the
following identifications:

oI o

L=1 La=Itg b V.=V, Via=V+z 8,

and the impedances are replaced as follows:

R; by R; 62, L+L; by (L-’rL,) 62,
é=G by Gz, C by Coéz

In the latter two identifications we are using the rules for connecting resist-
ances in parallel, and capacitors in parallel. Then eqns. (1) and (2) of the
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above example become

aa—z 0z = I[R;+iw(L+L;)] 6z,
oI oV .
T e = (V+"aE az) (G+iwC) bz.

After division by 0z these become identical with (11.155) in the limit 6z — 0.

This model of a network of impedances is usually used in discussions of
transmission lines, and because the final equations are identical with (11.155)
all the results are equivalent to a discussion using the field vectors. In this
model the conductor B, ... B, ... B, is usually taken to be the earth, and the
line consists of the single conductor 4, ... 4, ... A4,. This differs from
our original specification of two conductors. The discrepancy can be avoided
if we regard the two conductors as separated by an infinite conducting plane
at zero potential. The second line is then the image of the line of the first
conductor in this plane. This plane is taken to be the earth conductor in the
model.

We now complete our discussion of the transmission line starting from
the equations (11.156-157) and pay little attention to the field strengths; we
shall use a model of the type we have just used to make any modifications
for special cases. So far we have considered an infinite line, but now we shall
consider a “long” line, i.e. one whose total length in the z-direction is very
large compared with the separation of the conductors, or their dimensions;
a “signal” is applied at one end, consisting of a varying voltage or current
which is transmitted down the line and at the other end the two conductors
are connected together through an impedance representing the receiving
apparatus. The mathematical discussion consists of finding a solution of
eqns. (11.156-157) subject to boundary conditions at z=0 and z=/ (or ).

Because of the resistance in the conductors the signal suffers attenuation
as it is transmitted down the line; the important practical case is that in
which attenuation occurs without distortion. If the attenuation depends on
the frequency, a given signal, which contains many different frequencies,
will have these different components attenuated to different degrees when it
reaches the end of the line, and so suffers distortion. Similarly distortion
occurs if the different frequencies are transmitted with velocities which
depend on the frequency. We shall see that by adjusting the values of the
parameters R, L, L;, C, G a line can be made distortionless. Such a line can
have amplifiers inserted into it at suitable points along its length to over-
come the attenuation, and a clear signal can then be transmitted over long
distances.
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To simplify the working we drop the suffix i (for “internal”) and combine
L+L,; into a single term L to denote the total inductance of unit length of
the line. The equations governing the behaviour of the line are therefore

oV ol ol oV .
87+L§+RI—O’ §+C§+GV—O. (11.158 a, b)

For a signal of frequency w/2x these become

%;+(R+iwL)I =0, %+(G+iwC)V =0. (11.159a,b)

A wave given by ¥V = @ exp {i(wttyz), I = S exp {i(wt+yz) is propagated
along the line if

tiyV+(R+iwl)l = 0, +iyI+(G+iwC)V =0,
. y2 =—(R+inL)(G+inC) = (w*LC — RG)—iw(LG+ RC).
Since LG+ RC = 0 we write y = a—if where

a?—f? = w’LC—~RG, 2af = o(LG+RC), (11.160)

so that «, § are either both positive or both negative, corresponding to the
two cases +y, —y. When «, 8§ = 0 the wave is

V = @@e~*z exp {i(wt—az)}, I=e# exp {i(wt—az)}.

The velocity of propagation of the wave along the line is w/e, and the factor
e~P7 gives the attenuation; the positive signs for «, 8 correspond to propaga-
tion in the positive z-direction with attenuation; and the negative signs for
«, B correspond to propagation in the negative direction, also with attenu-
ation.

If the quantities «, B are independent of w, then all frequencies are pro-
pagated with the same speed and suffer the same attenuation. In this case
the line is distortionless. If we eliminate « from eqns. (11.160), we find

w* LG+ RC)?*—45Hw?LC— RG)—484 = 0.
The value of 8 is independent of w if the coefficient of w? vanishes, i.e. if
48°LC = (LG+RC)?, 4f2RG—4p* =0, ie. (2= GR.

Therefore ~ 4RGLC = (LG+RC)®, ie. (LG—RC): =0,
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Hence for a distortionless line we must have

L R
— = 2 = 2 = 2 11.161
c- o f2 = RG, «?=0?LC, (11.161)
and the velocity of propagation is (LC)~ /2.
The general solution of the eqns. (11.159) corresponding to a harmonic

wave is
I = (Pe—iyz + Qeiyz)eiwt’ V = 1'}"( _Pe—iyz + Qeiyz)eiwt/(G + I(DC),

and corresponds to a wave in each direction. For a single wave travelling
in (say) the direction z > 0, at any point we have (with Q = 0)

I= Pexp{i(wt—yz)}, V= —wP exp {i(wt—yz)}.

G+inC
Therefore
_V _ —iy  (R+iwL\12
Ze = T = GFieC = (G+iwc) (11.162)

The quantity Z_ is the characteristic impedance of the line.

Thus far we have not considered the effect of the ends of the line. We
suppose that the signal put into the line at 4, z = 0, is given by current /,
and voltage V4. Then the impedance “seen by the transmitter” is Z, =V /1 ,,
where

Iy = (P+Q)elet, V4= Zc(P—Q)elot,

At the end B, where z = I, we suppose that there is an impedance Z, (the
load) connecting the two conductors of the line. For z = [ we have

IB — (Pe—iyl+ Qeiyl)eiw!’ VB — ZC(Pe—i'yl_ Qeiyl)eiw! .
Then

Vs Qe —Pe-ivl
—=Zg=2Z=Z¢ ————‘—“Q ei7’+Pe-iY’ .

From these equations we deduce that

Q Zc—Z[ 2ipl ZA Z/+IZC tan ‘})l
_= e — = ————— | 11.1
P Zc+ 7, e Zc Zc+1Z; tan ‘))l ( 63)

We can draw certain conclusions from these results. In general we see that
every signal must give rise to a reflection from the far end (Q > 0, in general).
There are three particular results:

1.If Z, = Z, Q = 0 and there is no reflection.
The line is then matched and Z, = Z_.
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2. When the line is on open-circuit Z, is infinite, Z, = —iZ_ cot y/, and
Q =—Pe® 5o that there is a phase difference m—2y/ between
the signal at 4 and its reflection.

3. When the line is short-circuited Z; = 0, then

Z4y=1iZctanyl, Q = Pe2¥,

If there are no (heat) losses R = 0 and G = 0, so that y*> = ©?LC and y
is real, and there is no attenuation. In general, the solution of problems
concerning transmission lines requires ideas and techniques very closely
similar to those required for waves on strings, both finite and infinite in
length.

Example. In a transmission line 49A4,4,...A4,,1 each of the elements 4,4, ...,
A, _14, has inductance L, and each of the junctions 4,, 4,, ..., A, is connected to earth
through a capacitor of capacitance C. Resistance is negligible, and the impedance of the
elements A,4; and 4,4, is zero. A (complex) alternating current x, is fed in at the
terminal Ao, and x, is the current along 4,4,,;; show that, provided LCw? < 4,

X,—2%,,1€08 0+ x, 45 = O,
where cos 6 = 1-1LCw?

Write down the general solution of this equation.

Show that if the terminal 4,, ., is connected to earth through a receiver of resistance R
and inductance 1L, and if RCw = +sin 6 then the current x, through the receiver is
XoeFinb,

L L L L L L L

AO A1 A2 A3 _____ Ar'1 Ar Ar+1 Ar:Z____ An—z An—1 An AnH
cl cl ¢ LT eT™ el e MK R
LK T2 T2 /T TeovTae Tae T Tree T Ta 3L

— B1 B2 BS Br—1 B, B i Br+2 Bn—Z Bn Bn __E"'H
Fic. 11.15
We represent the currents flowing in this network by currents xg, X1, Xa, - .5 Xy - - +»

X, -1, X, circulating in the closed loops as indicated in Fig. 11.15. By this means Kirchhoff’s
first law is satisfied. We apply Kirchhoff’s second law to the various loops and obtain

iw%(x,ﬂ—x,)%—icuLx,H%—iw% (Xp41—X,32) =0
forr=0,1,2,...,n-2.

e Xppe—2(1=1LCw?) x, 41+ x, = 0. €))
If 1-1LCw? > -1, i.e. LCw? < 4, the difference equation (1) can be written

Xyp2—2€08 Ox,p1+x, =0, )
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where 0 is a real angle such that cos § = 1—-2LCw? 0 < 0 < 7. The solution of (2) is
x, = Aeiff+ Be-¥6, 3)

By putting » = 0 we obtain
Xo = A+ B. (4)

We apply Kirchhoff’s second taw to the loop B,A4,4,,1B,1 and find

1. 1
Rx,.+—2—1wLx,,+i7C— (Xp—Xp—1) = 0.

Since RCw = +sin 6,

Xu—1 = Xo(1=1LC0?+iRCw) = x,(cos 0 %1 sin §).
i.e. Xp_1 = Xpetif, (5)

Substituting from (3) into (5), we obtain
Aeinb Be—in8 — e:ia{A ein-16 B e—i(n—l)o}_
Using the upper sign we find, with the help of (3),
Ae"6+Be-ind = fein-264 Be-inf; 4 =0, B=x,
Using the lower sign we find

Aeitd Be~inf = geib+ Be-in-26; B=10, A=x,
. Xy = Xpe€Tinb, (6)
The conditions cos8 = 1-1LCw? RCw = +sinf imply that either w =0 or

o* = 4(L —CR?/(L3C). Hence this transmission line will transmit only signals with this
frequency without diminishing the amplitude, i.e. | x,| = |xo/|.

Exercises 11.8

1. A uniform cable has constant resistance R, capacity C and inductance L per unit length.
Prove that the potential ¢ at a point at distance x along the cable from a fixed point
satisfies the equation

T _ o0 o
r = LC 5 TRC .

An alternating e.m.f. of amount E cos pt is applied at the end x = 0, and the other
end x = [is connected to earth through an instrument of complex impedance k(R + ipL).
Show that the phase difference between the potentials at the two ends of the cableis

ar { kn }
g kn cosh nl+sinh nl §°
where 2 = —p?LC+ ipRC.

2. A potential E sin wt? is applied at x = 0 to a cable that stretches from x = 0tox =
and has an earth return. Show that it induces a periodic potential at distance x, whose
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value at time 7 is
Ee-%*sin (w1 —px),
where (@ +if)? = (R+iwL) (D+iwC).

3. A transmission line of length /, for which R/L = G/C, is initially at unit potential. At
t = 0 the end x = O is earthed. Show that at subsequent time # the potential at x is

4 0 = 1 sin 2n+ Dzx cos (2n+ Dmat
n = 2n+1 21 2] ’

where ¢ = R/L and a = (LC)~12,

Miscellaneous Exercises XI

1. State Maxwell’s equations for an isotropic conducting medium of conductivity o,
permeability #, and permittivity & and show that the interior of such a conductor may
be assumed to be uncharged.

Show also that the propagation of electromagnetic waves, of period 2z/w, in such
a medium is the same as for propagation in a transparent medium of complex per-
mittivity ¢’ given by
& = e—oijw.
The field vectors of a train of plane polarized electromagnetic waves, travelling in
the above medium, at a field point of position vector r are given by

E = A, exp {io(t—uer)}
H = B exp {iw(t—uer)}

where B = Bye'f, u = u,e* and the resolutes of Ay, B, and #, are all real. Show that
u, E and H form a right-handed triad. Show also that

B =4=—}tan"! (0/cw),

lugl™! = c(eou)™ Y2 where &2 = 2+ 0%/w?

2. An infinite conductor fills the region z < 0 and has a plane face z = 0. The region
between the planes z = 0 and z = a is filled with uniform isotropic dielectric material
having dielectric constant K. A plane electromagnetic wave, whose wavelength is.
(27t/k) propagates freely in the region z > a so that it is normally incident on the surface
of the dielectric. Prove that the reflected wave in the region z > a s either in phase with
the incident wave, or has the opposite phase to the incident wave, provided

v/ K tan (ka+1pn) = tan (ka 1/ K),
where p = 0, or 1.

3. Obtain from Maxwell’s equations for a homogeneous medium of dielectric constant
K, conductivity o and magnetic permeability x the “equation of telegraphy” satisfied
by the electric vector E, and obtain a similar equation for the magnetic vector H.
Discuss the propagation in this medium of plane polarized waves of period 27/w,
and determine the wave velocity and absorption coefficient.

If the medium is highly conducting, show that the E waves and H waves are out of
phase by approximately /4, and that the “depth of penetration” is 1/(Ac/uo), where 4
is the wavelength in free space.
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4. Prove that, if an electromagnetic field independent of y exists in the space 0 <z=<a
between perfectly conducting planes, then

O, O, g__1o%.

E =

Bz Tax ¢ ot

satisfy Maxwell’s equations, provided that (x, z, f) satisfies the wave equation.
If p = po(2) e"F=—", where y, is chosen to satisfy the boundary condition (tangential
electric force zero over z = 0 and z = a), show that, if » > fec,

¥/c2-B2 = w? = ra¥a?, (r=1,23,...),

and that any one of these solutions corresponds to the portions 0 < z =< a of two
unlimited trains of plane waves propagated with speed ¢ in the directions of unit
vectors

= {witpk}.

5. Show that the field defined by

04 .
E= A B=curld, A= {d,sinay cos(wt—yz)00},
satisfies Maxwell’s equations for free space provided «*+9? = w?/c%.
Establish conditions on « and @ which must be satisfied so that these expressions can
represent a possible field propagating without attenuation in the region between two
perfect conductors with surfaces y =0 and y = a.

6. A surface current of density i flows in a metal sheet occupying the plane z = 0 and the
rest of space is empty.

By integrating Maxwell’s equation for curl H over a suitable surface, or otherwise,
express 7 in terms of the discontinuity in the magnetic field at z = 0. State the other
conditions which must hold.

Verify that a possible solution of Maxwell’s equations is, using cartesian coordinates,

E = {00 A4 sin n(x—cph)}

H = {0 —AA sin n(x—ct) 0}
for z > 0, where A = 1/(uc), and E = H = 0 for z < 0. Determine the current in the
sheet necessary to maintain the oscillation.

7. A general dielectric medium is divided into two regions, denoted 1 and 2, by a metal
sheet S which carries a current of surface density . By integrating Maxwell’s equation
for curl H over a suitable infinitesimal surface, or otherwise, show that i is related to
the discontinuity (H:,— H,)) in the tangential component of H across S by the formula

H[,—}le = ixﬁ,

where # is a unit vector along the normal to S directed from region 1 into region 2.

The sheet S is in the shape of an infinite cylinder of radius a, whose axis lies along
the z-axis; the space inside and outside S is empty. Verify that a possible solution of
Mazxwell’s equations is, using cylindrical polar coordinates (r, 6, z),

= % cos w(t—z/c) 5,

A ~
E = g; cos w(t—z/c)F
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10

forr > a,and H = 0,E = 0 for r < a, where ¥ and § are unit vectors in the directions
of increasing » and 6. Determine the current in the sheet necessary to maintain this
oscillation.

19 1 F, OoF,
[aivF =2 gm0t o

_ (1 OF, OF,\ . (OF, OF) s 1 o(rFg) 1 OF) .
el F= (o 55— 50) ¥ (5 =5) 0+ (5 "5~ 39) 2]

. Prove that in an electromagnetic field independent of the coordinate y, where the

axes Ox, Oy, Oz are rectangular cartesian, and i, j, k are unit vectors along them,
the vectors
oS. oS

. _ ,0S,
E—at—ak, H——ﬁEJ

satisfy Maxwell’s equations provided that S satisfies the wave equation

0% 0*S 1 oS
Wt~ E
where f§ is a constant, to be found, 8S/0z = 0, and c is the velocity of light.
Find an electromagnetic field in the region of space 0 << x < @, 0 =< z << b, so cho-
sen that the tangential electric field vanishes over the planes x =0, x = a, z = 0,
z = b, and show that, if the frequency is /2, then

w?  Pa? s*a?
Fz?.*__b?’ (r,j=1,2,3,...).

. Show that Maxwell’s equations for an isotropic homogeneous non-conducting charge-

.

free medium can be satisfied by taking

E = Re (—%quba), B = Re (V XV x¢a)

where a is a constant unit vector and ¢ satisfies the wave equation.
Taking @ in the z-direction, show that the wave equation in cylindrical polar coor-
dinates (R, 60, z) has an axially symmetric solution

¢, - Jo(%R)C“h_w”

where x* = w?/c2—k? and J, denotes the Bessel function of zero order.

For a hollow waveguide with a perfectly conducting cylindrical boundary R = a,
show that the solution represents transverse electric wave modes. Find the permissible
values of k for a given frequency and show that the critical frequency o, for a given k
satisfies the relation w? = w?—c2k2.

For a certain electromagnetic field in a non-conducting dielectric the scalar potential
is zero and the vector potential is 4, = 0, Ag = 0, 4, = f(r) g(¢)e™*~* in cylindrical
coordinates r, ¢, z. Determine the electric and magnetic field intensities.

Show that electromagnetic waves of this type can be propagated along a dielectric
cylinder with perfectly conducting boundaries at r = @, ¢ = 0 and ¢ = 7/2 with a
velocity u{l+ (S%/o?)}*/2, where u is the velocity of light in the dielectric and S is a
root of J,,,(Sa) = 0, where m is a positive integer.
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11. Show that Maxwell’s equations for a vacuum possess a solution of the form

E, = %u/dy, E,=-0u/dx, E,=0,
H,.=0, H,=0, H, = &, 0u/ot,

where u satisfies the equation

0%u Qi _ lazu
ETE - E

Obtain an integral of this equation in the form

V+y
u = e~%if(x, y) = eitw—cn J‘ e—iket s,
0

where k is a constant and 72 = x2+y~.
Prove that the wave function

ekt cos ky-+ e~ e/ a) e f(x, y)+f(x, —)]

furnishes a solution of the problem of the diffraction of an infinite, plane, monochro-
matic beam of light, incident normally on the semi-infinite perfectly reflecting plane,
y=0,x=0.

42. In an electromagnetic field which is independent of z new coordinates &, 5 (6= 0) are
introduced where x = 3(§2—7?%), y = &n. Find those electric fields which are time-har-
monic with frequency w/2x and which have the form E, = 0,E, = 0, E, = f(§)e™ "%,
where k = w/c.

The plane wave E, = 0, E, = 0, E, = ¢** is incident on the perfectly conducting
parabolic cylinder y*+2x = 1 from x > 0. Find the reflected wave.



CHAPTER 12

THE LORENTZ INVARIANCE OF
MAXWELL’S EQUATIONS

12.1 Groups of transformations

We have already considered how some of the electromagnetic quantities
transform when we make the coordinate transformations

t’ = ﬁ(t—‘?)x/cz), x, = ﬁ(x—‘?)t), y’ = Jf, Z’ = z,
where B = (1—v?/c)~ 12,

and we write the equations in ¢ first (as we shall for the rest of this chapter).
It is now time to take up the general question of invariance. A scientific
theory is, generally speaking, invariant under some group of transforma-
tions. The reader may be reminded that by a group is meant a set of quan-
tities between which a binary operation is defined. (This binary operation,
often regarded as a product, for transformations consists of applying
two transformations in succession.) The binary operation is associative and
for the existence of a group there must be an identity element and a reciprocal
of every element. In the case of transformations the identity element is the
identity transformation and the reciprocal element is the inverse transfor-
mation. These ideas are already familiar in the case of the orthogonal group
in three dimensions (i.e. transformations from one set of orthogonal axes to
another), under which Euclidean geometry is invariant. Indeed the whole
invariance under this group is automatically built into a theory as soon as
it is expressed in vectorial form. Accordingly the theory of electromagnetism
must be invariant under some group which has the orthogonal group in
three dimensions as a subgroup. Exactly what group this is we shall return
to shortly. Before that, let us consider exactly what it means to say that the
theory is invariant.

We can envisage using different coordinate systems, connected by a group

511
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of transformations, and corresponding to each coordinate system the physi-
cal situation is represented by a set of numbers. For example, in the case
of electromagnetic theory the numbers might be the six components of the
electric field and the magnetic flux density, E and B. Imagine then three

coordinate systems
S1, S2, S3

with the corresponding sets of numbers

¢la ¢2, ¢3 .

Here ¢ denotes a set of numbers—for instance, it might be the six compo-
nents of E and B in the coordinate system S;. The coordinate systems are
related by certain transformations which can be represented diagrammati-
cally by

RYRENE L N

As a result the sets of numbers are transformed by corresponding trans-
formations

¢1—— ¢2 —"— ¢3.

Now the transformations of coordinates obviously have as a result a single
transformation
Sl _T!’—’ S 3

and this can be thought of as giving rise to a single transformation of the
numbers

¢1 —" ¢3.

Of course from the mere definition of the transformation of coordinates it

follows that
T23T1s = Tis

where the product is meant to be read from right to left in accordance with
the usual method of writing transformations, i.e. we write

So = T1251,

S3 = T23Ss
so that
S3 = T93(T1251) = (T23T12)S1.

In such circumstances it is to be expected that, if and only if the numbers
really represent properties of the physical system, and not merely properties
of the coordinate system, then the corresponding transformations for them
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will satisfy uz = v. On the other hand, if they are merely numbers represent-.
ing in part the properties of the coordinate system, it must make a difference
whether one proceeds from the first to the third system directly or via some
intermediate stage, and in this case the conditions ut = » will not be ful-.
filled. The condition just expressed on the transformations of the sets of
numbers is known technically as requiring the transformations to be a
representation of the original group and the argument which we have just
given (which is the general form of the principle of relativity) can be put by
saying that any physically significant set of numbers must transform under:
a representation of the group of transformations of the theory.

The next problem is how to find such representations. It is instructive to.
look first at the example of the orthogonal group in three dimensions. Here
we know of one example of a representation in the components of an ordin--
ary vector. We may write

3
u= Yy ue
i=1

where e, es, e3 are taken as unit vectors along the three axes, and when
we make a coordinate transformation, say by rotating the unit vectors along
the three axes to three new directions e; we have

3
u=>y ue.
i=1
Such a rotation must be expressible, however, in the form
, 3
e; = Z l,-je,-,
j=1

since the new unit vectors have certain components along the old ones, and
this is all that is expressed by this equation. However, not all linear transfor--
mations of this kind are permitted, since we have to ensure that the new set
of unit vectors are again at right angles and the condition for this is easily-
derived as follows: both the original and the new unit vectors satisfy

€icej = 6,'_,', e,f-e,’ = 6,‘j
where 6;;=0 if isj and 6;=1 if i=]j.

Hence
Y lipligepoeq = 3 liplip = bi;.
pa P

This is the condition for the linear transformation to be an orthogonal one.
Returning now to the original vectors it is clear that the transformation of"

EET 3-6
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components is determined by
Y uje; =y, (uiliyej,
j ni

ie. w =Y Lui,
i

which, by using the condition of the transformation, can be rewritten in the
form

oty = Y bojlijui =} Bpitt; = 1y

J i i
(cf. the equation for e; above). In this case, then, we see that the components
of the vectors transform in the same way as the unit vectors themselves, but
this is a coincidence.

What has basically been done here is to derive a representation of the
group by regarding a vector as a displacement; in other words, one chooses
something which, from its geometrical or physical interpretation, is known
to be independent of the coordinate system and so to transform under a
representation of the group, and uses its representation to define a whole
class of such objects. In this way one could construct a series of more com-
plicated representations. For example, continuing with the orthogonal group
in three dimensions one could consider the array of quantities

Ai i = Uu;v;
where u;, v; are both components of vectors, and then evidently this array
will transform under the rule

3
Ay = Z lipliqApq s

P, q=1
which must from its construction define a representation of the group, as the
reader may verify. These more complicated transformations are called the
tensor representations of the group. The particular transformation above is
of a tensor of rank 2. By taking products of more than two vectors we get
the higher order tensor representations.

These are by no means all the possible representations, although they are
important ones, as can be seen from the following example. Consider, for
simplicity, a tensor of rank 2 in two dimensions for which the orthogonal
transformations can be represented by [(for a vector uy, us)]:

Uy = uy cos O+us sin 0,

(12.1)

uy = —uy sin 04 uy cos 6.
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Writing out the transformation of the tensor at length it is easy to derive

Aiy = A11 cos? 0+ (Aa1+ A12) cos 0 sin 0+ Ay sin? 6,
Als = A1z cos?0— Az sin? 04 (Aze— A11) cos 0 sin 6,
Az = Agq cos? 0— Ay sin? 0+ (A2a— A11) cos 9 sin 6,
Azy = A11 8in2 0 —(Ag;+ Aj2) cos 6 sin 0+ Ass cos? 0,

from which it follows that
Ay + Ay = Ay + Ags .

It is already well known, and is again obvious from the formulae, that
another invariant is given by 4;2— A21, so that the parts of the tensor which
actually transform are only two in number, and their transformation can be
conveniently represented by

Ajpt+ Ay = (Arg+ Ay) c0s 20+ (Ap— Ayy) sin 20,

) i (12.2)
Ago— A7y = —(Ayy + Ayp) sin 20+ ( Ay, — Ayp) cos 26.

It is a very striking fact that this transformation is of exactly the same form
as that originally assumed for the vectors except that the angle of rotation is
replaced by double its original value. This suggests reversing the whole
argument and beginning by considering two quantities ¢1, ¢; whose trans-
formation is
91 = ¢ cos (8/2)+ ¢, sin (912, (123
$2 = — ¢ sin (6/2)+ ¢, cos (0/2).

By interpreting these as one of the vectors in the above argument and intro-
ducing 4, y2 for the other, and then halving all the angles, it is then clear
that the two quantities (P192+ Payp1, Pappa—h1p1) are the components of a
vector in the two-dimensional space. The quantities ¢1, ¢2 are then trans-
formed under a two-valued or spin representation of the group since, when
the new vector is rotated through an angle 2z and so returns to its original
value, these quantities are rotated through z and so are changed in sign.

12.2 Four-vectors and six-vectors

It is now time to consider the different transformations of sets of numbers
corresponding to coordinate systems in uniform relative motion. In this case
we have a rather obvious choice to begin with, when we seek for sets of
quantities obviously transforming under a representation of the group, for
we can choose (¢, r) as a prototype.

6
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Any set of quantities
(d)s A) = (¢’ Als A2; A3) (124)

transforming in the same way will be called a four-vector. We have then,
for any four-vectors, the transformation

¢ = fp—vA[c?), A =plA—vd), A=A, Ay=4;, (12.5)
and we may notice about such a four-vector the important fact that
C2¢2_A2

is also unchanged by the transformation. In the particular case of the time
and space coordinates the corresponding quantity which is also unchanged is
2—r? = 2 —x%—y?— 72, Corresponding to two four-vectors

(¢, 4), (v, B)

we can define their sum as (¢ +v, 4+ B), and in view of the linear character
of the transformations concerned, this sum will also be a four-vector. It will
have a corresponding invariant

(¢ +y)*—(4+B)?

and, if we subtract from this the parts c2¢%— A2, c*yp>— B? already found as
being invariant, we are left with an important invariant bilinear product of
two four-vectors, c2¢y — A+ B, which is obviously related to the scalar pro-
duct in ordinary vector analysis.

The next step is to inquire about analogues of the vector products in
ordinary vector analysis. It is, of course, obvious that under the orthogonal
group, for example, we could consider, instead of the vector product, the
array of nine quantities transforming under the second-order tensor repre-
sentation but it is not convenient to do so here because electromagnetic
theory is not concerned, in general, with such quantities. (They enter, for
instance, in rigid mechanics, in the definition of moments and products of
inertia, and in certain other branches of applied mathematics, such as elasti-
city.) Accordingly we shall consider products of (¢, 4) and (y, B) which are
made up of the following scalar and vector expressions:

¢'P, ’lpA, ¢B5 A'B, AXB.

By the very way in which these are written down they must be automatically
invariant under the orthogonal group in three dimensions but we are con-
cerned also in transforming between coordinate systems in uniform relative
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motion. Writing down the transformations we get

Y Ay = B[pA,—vA, B [c?— vy +v*PBy/c?], (12.6)
v Ay = BlyAd,—vB,4y/c?], (12.7)
Y Ay = Blyds—vB 45/, (12.8)

and it is at once obvious that, in egn. (12.7), quantities (B1A42) are entering
which do not arise in the original set of scalar and vector expressions;
similarly B1As enter eqn. (12.8). Accordingly, the quantity pd4 by itself
cannot be part of our product, but by observing the details of its transforma-
tion it suggests that we should consider instead ¢B—yA4. When we do this
we get

¢B1 ’/’Al ¢B,—pA,, (12.9)
OBy 4y = 6Byl (48— 4B).  (12.10)
&' Bi—y 4y = ($By—p )~ 0 (4B 4B, (12.11)

and we now see that we are half-way to a satisfactory formulation of the
product. The only remaining difficulty is that the transformation involves,
as well as the particular combination of vectors with which we started, the
components of the vector product of the two vectors. But the transformation
of these,

A,B}— A\B} = A,By— A;B,, (12.12)
A;B;— 4By = B(AsBy — A,By) +Bo(§By—pAy), (12.13)
A1By— A;B; = B(A1By— A;,B1) — Br(§ By —pAy), (12.14)

does not introduce any new quantities and so we have succeeded in defining
something which does transform under a representation of the group.
If we write the vectors P, Q for

P =¢B—yd, Q= AXxB,

their components in the new frame are given by eqns. (12.9-11) and eqns.
(12.12-14) and may be written

P =P, 0; =0,
Py =p (Pz“c%' Qa), 05 = B(Qy+vPy), (12.15)

B=f(Ptg)  0=FQuR)
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We can now call any quantity (P, Q) transforming like (¢B—yA4, Ax BY
a six-vector.

It is interesting to notice that for transformations in which the velocity
v is small compared with that of light, eqns. (12.15) reduce to

P'~P, Q =Q-VxP.

Example 1. Prove that (div P, curl Q—0P/@¢) is a four-vector if (P, Q) is a six-vector.
Prove also that P2—Q?/c?, P«Q are invariant.
An immediate calculation gives

., (0x ® ot D o, v 3 (p. v
div' P’ = (5;; ax Tax a_t)Pl+ﬁ5;(P2 FQs)'*‘ﬂgz‘(Pa‘*‘ e Qz)

= ﬁ[div P—— (curl Q—%—I;)l],

which is the transformation for the “time-component” of a four-vector. The remaining
results follow directly from the transformations.

Example 2. If P, Q is a six-vector, and (¢, A) is a four-vector, prove that

(A+P, AXQ+CP)
is also a four-vector.
First consider A«P.

Then
AP’ = A\P{+A;P;+ Ay P;

= ﬁPIAl_ﬂPlv¢+ﬂ(P2_%QS)AZ'{"ﬂ(Pa'{"":TQz)AS
= B{P-A-; (4:04- 4,0, + %P }.

This is the transformation of the time-component of a four-vector if the quantity in brack-
ets, A,03—A30:+c*pP; is the x-component; and in fact it is the x-component of
A xQ+c*pP.

The calculations of the transformation of the remaining components are carried out in
similar manner.

Example 3. (a) Prove that the operator
(@ )
¢z o’

is a four-vector. Use this to deduce the first part of Example 1 again.
(b) If (¢, A) is a four-vector, deduce that

P ..
7&+dlv A
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is invariant and that
1 (04
— = 2 —
{& (Gr+vieen). —vxa}
is a six-vector.

(a) _L_a_z__l_(at 9 ox a)

cor —e\or s tor ax
1 © v 0
bz oo ()
0 0 10
(-a) = 6l(-2)—(z 5))

which proves the first result. Then Example 1 follows, by using the result of Example 2,.
with (¢, A) taken as
10
(c—z o’ ”V)'

(b) The first expression is obviously the invariant derived from
1 9
(3 -v) and @A

The second is the six-vector constructed from them.

12.3 The Lorentz group

We must now inquire exactly what is the group with which we are concerned
here. We know already that it has the orthogonal group in three dimen-
sions as a subgroup. In fact we can prove that the set of all rotations, to-
gether with all Lorentz transformations of the kind considered before, that
is transformations of the form

2\ —1/2
t =ﬂ(t—%), X =p(x—vt), y =y, zZ =z with §= (1—%) ,

do form a group. In order to establish this we have to show that the product
of any two elements of the group again belongs to the group. As far as the
product of two rotations is concerned this is well known and amounts to
the theorem that any member of the rotation group is a rotation in the ele-
mentary sense about a certain axis (Euler’s theorem). If we are concerned
with the product of a Lorentz transformation and a rotation, it is clear from
the way in which we are able to write our Lorentz transformation in vectorial
form that this will again lie in the group. Indeed we tacitly take account of
this whenever we choose the x-axis as the direction of separation of the two
coordinate systems; for this is equivalent to performing a rotation of the
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-axes so that the given direction is along the common x-axis. It only remains
therefore to consider the product of two Lorentz transformations. Two
cases arise depending on whether the direction of the velocity in each case
is the same or different. If it is the same, we have for the first transformation

t = Bt—uxlcd), X' = Bux—u),

and then applying a second transformation we have

¢ = ﬂuﬁv(1+%§) (t utr X ) (12.16)

- 1+uv/c® ¢
X = ﬂvﬂ”(x—ut—vt+%x),

:ﬂuﬂv(l+%) (t utv t). 12.17)

T 1+uv/c?

In order to establish that the resultant transformation still belongs to the
.group it is clear from these equations that we only need to show that

uv
B =Bubo(1+5)-
where

u+v

= (1 —=V?2/c2)-1/2 =
r=(0A=P2fe)=2k ¥ 14+uv/c?

(12.18)
and corresponds to a relative velocity ¥ between the frames. The reader may
instantly verify this by using the definitions.

If the two velocities are not in the same direction, we consider first the
case in which they are perpendicular, and we choose these directions as the
x- and y-axes. The first transformation becomes

U =ft—ux/ch), X =p(x—ut), y =y.

The second transformation as well gives the result

t" = Bo{But— Wh.x+vy)/c?, (12.19)
x" = Bu(x—ut), (12.20)
V" = Buo(y —vBut+Puuvx/c?). (12.21)

Since the z-coordinates are unchanged in both of these transformations we
need not consider them at all in this piece of work. In order to show that the
transformation ¢, x, y to ¢’, x”, " is a transformation of the group we
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rearrange the relations, by a suitable choice of ¥V, &, 7, &, " in the form
1= By(t—VE[D), & =BuE—Vr), 7' =n (1222-24)

First we consider the coefficient of # in the equivalent relations (12.22) and
(12.19). We must have

ﬂV = ﬂulgv, i-e. 1—V2/02 S (1_u2/02)(1_02/02)'
The latter relation can be written in the alternative forms:

V? = w2+ 02(1—1?/c?) = u*+v*/B2 (12.25)
or
V2 = 2+ uX(1—22/c?) = v+ u?/F2. (12.26)

The remaining terms, concerned with space coordinates, give

BrVE = Bo(uBux+vy).
Therefore
ux vy . ,
7+ 7 X €Os &+ Sin e, (12.27)
where
cosa = ufV, sine=v/(Vf,) or tane =v/(up,) (12.28)

in accordance with eqn. (12.25).
We now eliminate ¢ between eqns. (12.20) and (12.21). This leads to

vBux" —uwy" = vB,fox—ubyy—Pufot*vx/c?
= VBuBox(1—1u2/c?)—uByy

or
wy'”  ux
vx' — = ——uy. (12.29)
5 = B W )

Guided by the form of eqn. (12.27) and the relations (12.25) and (12.26)
we divide (12.29) by —V and obtain

v, u v u
—7 X +7‘8;y =——V—/3:x+7y
or —Xx'""sina’’+y" cosa” = —Xx sin «+y cos «, (12.30)
which we identify with (12.24) in the form
7' = —x"sina’"+y" cosa” = —xsinat+ycosa =17, (12.31)

where cosa’”’ = u/(Vfy), sina’”’ = v/V, or tanoa” = vf,/u. (12.32)
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‘Corresponding to the first section of (12.31) we should have

s

£ = x" cosa+y” sino = ;‘/’;v +_y_
- Vgu (e—ut)+ P2 (y— vﬁup,@%)
i (e e ()
ey e
N
= By(x cos a+y sin a)—_ﬂ“Vﬁ Ve

= Bu(E—-V1),

which is eqn. (12.23).

The relations between (&, 1) and (x, y) and between (&', ') and (x", y"’)
are both rotations through the angles «, &'’ respectively with &« > «’’. Hence
these two successive Lorentz transformations are equivalent to a space-
rotation through an angle «, followed by a Lorentz transformation for
velocity V along the new axis (§-axis), followed by a further rotation through

o'’ to give the final positions of the x", y"* axes. The chief importance of
this result is that by a suitable choice of u, v the angle o, i.e. the direction
of the velocity V, can be given any value and so we deduce that a Lorentz
transformation in any direction is equivalent to two such transformations
along axes at right angles. This result, combined with that for two transfor-
mations in the same direction, suffices to prove that we are dealing with a
complete group of transformations. When we speak of the invariance of
Maxwell’s equations we are referring to their transformation properties
under this group of transformations.

Example 1. When the two velocities in perpendicular directions have equal magnitudes

we have the special results:
V2 = u?(2—-u?/c?);

cosa = ulV, sina = ufvf, tana=1/p,
cosa”’ = u/VB, sina” = ulV,
tana” =f; B =pB,=p8,=1-u*c)12

Hence o’ = /2 —a.
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Example 2. If V, « are chosen, the velocities along perpendicular axes which give the
same transformation are given by
u= Vcosa, V2= u2+v®—u2v?/c
Therefore
v¥{1—(V?/c?) cos?a} = V*(1—cos?a),
ie. v = Vsina{l —(V?/c?) cos? o} 112,

12.4 Maxwell’s equations

In order to establish these transformation properties we need certain
experimental results. The first result is that the charge, being simply the
number of electrons present, is unchanged by the transformation. Let us
adopt two coordinate systems, in which the primed coordinate is that in
which a small element of charge is at rest. We can write for the total charge

e = go dx’ dy’ dz'. (12.33)
Now consider the transformation to another coordinate system in which

ar = ﬂ(dt— Vc‘j" ) dx' = Bdx—Vdf), dy =dy, dz = dz.

We are concerned with an element of volume in the new (primed) coordinate
system, which is dx dy dz (with d¢z = 0) unlike in the primed system where
itis dx’ dy’ dz’ (with d#’ = 0). That is to say the volume of the element has
the value dx’ dy’ dz'/B. If the total charge is not to be altered by the trans-
formation, then it must follow that

e =pdxdydz = (p/f) dx’ dy’ dz' = go dx’' dy’ dZ/,

and as a consequence
o = Boo. (12.34)

It is useful now to relate this to the way in which velocity transforms,
because a moving charge also constitutes a current and a product of the
charge density and the velocity gives the current density. We have already
considered the formulae for transformation of velocity:

, Ve—V o — _1_ vy
_-va ’ > = ﬂV I—Ex———

c? c?

, and so on,
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and in the discussions above about the combination of Lorentz transforma-
tions in the same direction we proved [eqn. (12.18)] that

frbo=—P0 .
1— x

c2

It follows immediately as a consequence of these two results that
Bovx = Br(Bovx—BV),  Buty =Bovy.

In other words, the expression (5, fv) behaves just like the time and space
coordinates (7, r) under the transformation, and is therefore a four-vector.
Accordingly if one defines the charge and current four-vector as (o, J)
= (p, nv) the expression will have as its scalar (time) component the density
in any frame. Accordingly we take the charge-current four-vector as the
basis needed to estimate the transformation properties of the whole set of
equations.

In discussing the invariance of the equations it is necessary to take up
again the method of derivation which was discussed in the last volume.
We will take for granted the three equations

oB

divD=yp, divB=0, curlE:——a—t.

(It is, of course, an assumption that these particular equations are to be
left unaltered, and only the remaining equation is to be changed. At this
stage the main reason for this assumption is that it is logically consistent
to assume these three equations, whereas the remaining one cannot hold for
non-steady currents. But ultimately the justification is the agreement of the
predictions of the whole set of equations with observation.) The remaining
equation was derived from the fact that curl H ¢ J, by observing that the
equations of continuity for the charge-current vector gives

. oe
d1vJ-—§ # 0.

Now in fact our derivation, which followed Maxwell’s argument, was in-
complete, since all that is shown by these arguments is that the expression

oD
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has zero divergence. By well-known theorems in vector analysis it follows
that

curl H = %—?+J+curl G,

where we can in addition impose the supplementary equation div G = 0.
Now it follows from Example 1 of p. 518 that (p, J) will be a four-vector if
(D, H—G@G) is a six-vector. By a similar argument, (B, —E) is also a six-vector.
The difference between the equations found by this method, and Maxwell’s
equations as found in Volume 2, is not in the four main equations at all.
For these become identical with the previous set by writing H' = H—G
for the magnetic field vector. But the difference appears, of course, in the
constitutive relations. In vacuum the introduction of the field G may lead
either to the relation

(a) B = ‘uoH’
orto (b) B = uoH.

If we assume the first of these we have at once

curl curl H' = ——;—0 VB =—¢g %ii:
in free space so that
S22 B =0, (12.35)
where c%couo = 1. In the same way
1 PE__op_ o (12.36)

¢z or

On the other hand, if we assume the second we find

1 _, OB
1 9B
.—CE‘ —672——V2B = —‘uo V2G, (12.38)
1 &% _, ®
2 W—V E—"MOE curl G. (12.39)

The first of these relations, eqns. (12.35) and (12.36), predicts the existence
of freely travelling electromagnetic waves and is therefore in agreement with
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Hertz’s experimental results. The second pair, eqns. (12.38) and (12.39), do
not have the form of wave equations, because of the expressions on the right-
hand side which depend upon the auxiliary field G. Accordingly we use
Hertz’s experiments to decide in favour of the first alternative and so identify
the field which arises including the auxiliary field as the magnetic field which
we now call H. From the fact that (D, H) (B, —E) are six-vectors we may
write down at once the transformation laws of the electric and magnetic
quantities and they are as follows:

D]I_ =D, H{ = H,,
, 14 )

D, = ﬂ(Dz—g Ha), Hj = B(H,+VD;), (12.40), (12.41)
, LV )

Dy = ﬂ(D3"'§H2)a H; = B(H;~V D),

By = By, E, = E,,
, 14 ,

B, = ﬂ(BergEs), E,= B(E,—VBy), (12.42), (12.43)
, 14 ,

B; = ﬁ(Ba—gEz), E; = B(E3+VBy).

An immediate consequence of these transformations is the following.
We can, by the ordinary rotation of the axes, obviously reduce one of the
two vectors which form any six-vector (P, Q) to the form @ = {0 0 Qs}, and
in general the axes can be chosen so that the other one has then the form
P = {0 P, P3}. Suppose now that a transformation of coordinates of the
usual form is made. As a result these two forms acquire the expressions

Pi = 0, Qi = 0,
Py = ﬂ(Pz—-g Qa), Q; = BVP;,, (12.44), (12.45)
Pé:ﬂP3, Q::’:ﬂ(Qs"VPz)-

Two different cases now arise. Firstly, let it be supposed that P; = 0, so
that the original two vectors were perpendicular. By choosing

C2P2 . cP,
V=12 if |—==| <1,
0s | 0s
it follows that
P =0, (12.46)

0 =000 (12.47)
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and the magnitude of the only remaining component of the form is

03 = V(Q3—P)). (12.48)
On the other hand, if
05 ’ Os
=== =<1
V P2 and | CP2 = 1,

the reduction is carried out the other way round to the form
0=0, (12.49)
P = {0 P, 0}, (12.50)

with the sole remaining component

P= 1/ (P%—C—ﬂgg).

Both of these reductions are impossible in the case of Q2 = ¢?P3, which
is the one arising for plane waves, see Chapter 11. Another reduction, which
is always possible, even when P3 = 0, is to make the two vectors parallel.
From the same equations the condition for this is

Pg—(V/Cz)Qa - P3
VP3 Q3— VP2 ’

and this easily reduces to
Vie PyQs/c |PxQ|

1+V2/02 - p2_Q2/c2 - P2—Q2/62 :

By a simple algebraic manipulation this can be written

(1--V/C)2 _ P3+P3—03/c>—2PQs/c _ ,

1+V]c) = PIrPi—Qi+2PQyfc  °
and if « is the positive number determined by this equation we have

v |
Pl e (12.51)
Notice that the above reductions can be carried out either with the six-vector
(D, H) or with (B, —F). The reader can easily verify the equivalence of such
reductions in the special case of vacuum, where D = ¢oE, B = uoH.
Another interesting application of the transformations is to the experiment
of Wilson and Wilson mentioned earlier. This experiment concerns a mag-
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netic dielectric (which was made by embedding small steel balls in sealing
wax). This dielectric is between the plates of a moving condenser and the
plates of this condenser are short-circuited by means of brushes and a wire
which passes through a ballistic galvanometer. The condenser moves with a
uniform speed in the direction of the x-axis, the x-y plane being chosen
parallel to the plates of the condenser. A magnetic field is then applied in
the y-direction (see Fig. 12.1). In the laboratory coordinate system it follows

' e*‘° y

S J . —— x
=S Velocity
W g
+
+

+T+++++

Fic. 12.1

that B = {0 B 0}. We have to apply the constitutive relations in the dielec-
tric, and accordingly we must transform to a frame of reference in which the
dielectric is at rest. In this frame of reference, because the plates are short-
circuited, it follows that E3 = 0 in the dielectric and therefore also, in parti-
cular,

Hy = f(Hy+VDy),

By = BB,,

E; = BVB,,

, vV
D, = ﬂ(D3+EEH2).
Applying the constitutive relations gives
14
By = u(Hz+VD3), D3+25H2 = eVB,,

or, as an expression for D in terms of the magnetic field,

VHz(,us — 1/02)

Da =
3 1—pel?
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The way in which the experiment is carried out is for the direction of the
magnetic field to be suddenly reversed, in which case a charge is observed
to flow by means of the ballistic galvanometer. This charge moves because
the value of Dj alters by an amount

WHy(ue—1/c?)
1—pueb? °

which is equal to the change in o, the charge density on the plates. The mag-
nitude of this charge is in good agreement with the results predicted by the
theory. The experiment is difficult to discuss at all without special relativity,
but the most plausible classical argument gives a corresponding result with
w replaced by po (so that the magnetic properties of the dielectric should not
affect the result according to classical theory).

12.5 The electromagnetic potentials

It remains to say a few words about the representation of the field vec-
tors by means of scalar and vector potentials. We saw above that, since

1 © . .
(?_ ﬁ—v)’ is a four-vector, any four-vector (¢, A4) gives rise to

(i) aninvariant %—{—div A,

. . 1 /o4
(ii) a six-vector { -= (_ﬁf + V(¢c2)) , curl 4 }

Let us now compare these expressions with those derived in Volume 2 for
Maxwell’s equations
B .
curl E = —%7’ div B = 0.
From div B = 0 it follows that B = curl 4 and so the remaining equation
becomes
04
curl (E+ 5) =0,
showing that E 404/t is a gradient. This suggests that the six-vector (ii)
is (E/c%, B), and that
o4
E = ——a—;—‘-c V¢.

EET 3-7
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In other words, the time-component of the four-vector (¢, 4) is not the
usual electrostatic potential but differs from it by a factor ¢%. If instead
V has its usual meaning in electrostatics, then (V/c2, A) is a four-vector.
This identification is confirmed by observing that the invariant expression
(1) is the one expected from the usual Lorentz condition [eqn. 13.5].

Example 1. 1f (P, Q) is a six-vector, show that (Q, —c?P) is a six-vector also, and there-
fore show that the fact that (E/c?, B)is a six-vector is consistent with the fact (found earlier)
that (B, —E) is a six-vector.

We can rewrite the transformation equations for P in the form
—C%P] = —c*P,,
—c*P; = B(—c*P,+ VQy),
~c%P; = B(—c*P3—VQy),

and similarly for those of Q.

Example 2. Show that Maxwell’s equations for a field in empty space are covariant
under Lorentz transformations.

The equations D = ¢E and B = pH are valid for a medium at rest. Obtain expressions
for D and B in terms of E, H, &, u when the medium is moving with uniform velocity o.
Choose v in the direction of the x-axis. We then have
D] = D, = ¢E, = ¢Ej,
, v
D, = ﬂ(Dz_z,f Hs)
v
= ﬂ(£E2—~2; Ha)
c
B>

’ ’ v ’ ’
= B2e(E;+vB;)— =3 (H3+vDy),

v
so that Dj = eEjevBg— 2 Hj.

Similarly

By = ﬂ(Ba"%Ez)
d

’ ’ ?) ’ r
- 52{‘uH3+ oDy~ 5 (Eg+ vBa)},
which gives

’ ’ ’ v ’
B; = ,uH3+,uvD2—EEE2.
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Eliminating D, gives

(1— pev?)B] = (ue—%) vE;+,u(l—%) Hj.
Similarly for the other components

D; = eE;—evB3+(v/c)H}3,
B, = pHj—pvDi+ (v/c*)E;.

Example 3. A linearly polarized plane electromagnetic wave is propagated in free space
from a transmitter fixed in an inertial frame S. The fields of the transmitted wave observed

in S are
E = {0 A; exp iwi(t—%) 0}

. x
B = {0 0 ¢4, exp 1w;(t——c-)}.

The wave is normally incident on the plane face x” = 0 of a dielectric medium of refractive
index n carried by a frame S’ moving with uniform velocity {¥ 0 0} relative to S. Prove
that

(i) in the frame S’, the observed reflection coefficient is (1 —n)/(1+ n);
(ii) in the frame S, the observed frequency w, of the reflected wave is given by

o2 2

(iii) in the frame S the observed reflection coefficient is

(1—?‘/) (l—n)/(l+?V) (1+n).

In the dielectric the speed of propagation of light is ¢/n (see Fig. 12.2).

"

7

.
1

Fig. 12.2

(i) The observed reflection coefficient in S’ is that for the wave normally incident on a
stationary plane face; this is the type of problem on plane waves considered in Chapter 11,
where the reflection coefficient was shown to be (1 —n)/(1+ n), see p. 447.

(ii) In S’ the fields are

E’ = {08(1—v[c) A; etz 0},
B = {o 0 % B —vlc) A, e'ww—zle>}.

7‘
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Moreover, the indices of the exponential are such that

w(t—x/c) = wi(t’—x"[c)

= w;B(t—x/c) (1+v/c),
o=oin/(t57)
i i 1-v/c)’
But in S’ the face is stationary, so the reflected frequency is
o = o - o \/(l—v/c)
r T TRV \1+v/e)
The exponent of the reflected wave is therefore
. 1-v/ey ,
1w,»\/(~1~+—6/?) t'+x'[c)
=i \/(1‘”/6) (t+x/c) (1—v/ec)
B 1+v/c * v

= iwir\/(%:_‘z;%) (t+x/c)

= iw{(t+ x/c).

Hence the reflected frequency is as stated.

(iii) The reflection coefficient is found in a corresponding way.

Example 4. A particle of rest mass m, and charge e moves from rest in a uniform
electric field Ej and a uniform magnetic field Bk, where E < c¢B. By means of a moving
frame of reference such as will eliminate the electric field, or otherwise, show that the

position of the particle at time ¢ may, by suitable choice of coordinates, be expressed in
the form

myc*EB

¥ T ABT-EYcyE

. myc’E
(6—sinb), y= AB—Ec) (1—cos 0)
where

0 — e(B%*—E?/c?)4? ( Ex)

myc?

Making the usual transformation we find

E;=BE-VB)=0 if V=EB<ec.

Then also
, E2\ B E?
5 = 8(8-3z) = 3 (7 )
= _—B_ L(BZ_E?/CZ) = ,1_ V(B —E?/c?)
+/(B*—E?%/c?) Bc? Tt :
Hence

PN
—(T,;(mr)—e(E+va),



§ 125 THE LORENTZ INVARIANCE OF MAXWELL'’S EQUATIONS 533

where m = mgy/+/(1 —v"2/c?), so that
d . ., ,
ar (mz’y=0, sothat 2 =0, 2z =0 always,
3 my = £y v - B
dar c? ’
Ly = -4 5 VBB
dar c? :
From the last two equations
., d on o @ N
X (mx")+y W(my)~—0,
dm d /1
H 2 T — = p2} =
i.e. v dt'+m a (2 v ) 0.

Since this is easily seen to be inconsistent with the usual relation between m and v’ it fol-
lows that dm/dt’ = 0 and » = constant. »

The starting velocity in this frame is — V' = — E/B, so that this is the constant value of
the velocity and

mg mOB
m= = -
Vi) V(%)
c%B? c?
Altogether, then,
moB% = c—iy"(B?—EZ/cz),
moBy’ = X'(B*~E¥/c?),
which integrate to give
o, ie(BE—E%c® ., E
x+1y+—"—1;52-3;—-(x+ly)— ._B-,

ie. dc:' [(x+iy") exp {ie(B*—E*/c?) ' [(moc*B)}] = — % lexp {ie(B? — E*/c?)t’[(myc* B)}}
so that
2
(x"+1iy") exp {ie(B*—E?/c?) t’' [(myc?B)} = "B 5’222 I3
[exp {ie(B?— E2/c®)’ [(moc?B)} — 1].
But

v =b(-5) = Ve ()

so the exponents are 6, and

b Emc? —16
X +iy = B —E ) {1—e-16},
Hence
. Emyc? .
X = m sSin 0,
2
Yy =+ Emoc (1—cos6) = y.

e(B*—E?/c?)
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The expression for x comes from

1.

x = B(x’+ot)
_ B E B _Ex Emqc? .
= VB-ES) {§ VB—Ec) (’ EEE) "B =B " 6}

_ myc*EB e
= m{e sin 0}.

Miscellaneous Exercises XII .

(a) A particle of charge e and mass m is in a region of space in which there are uniform
electric and magnetic fields perpendicular to each other. Find the possible states of
motion of the particle for which the acceleration will be zero.

(b) Prove that if E and B are perpendicular in one Lorentz frame, they are perpendi-
cular in all Lorentz frames, and that if | E|<| c¢B| in one Lorentz frame, then |E|<|cB|
in all Lorentz frames.

. Prove by direct use of the Lorentz transformation that the operator 7% —(1/c?)(0%/0¢%)

is invariant under the transformation.
If j, 0, A, ¢ are the usual current-density vector, charge density, vector potential and
scalar potential, so that

04
E—_qu—?t‘.
B = curl 4,

oD

curl H = a—t+],
divD = p,

show that (g, ji, js, j5) is a four-vector, and so is (Pc?, Ay, Ay, A3).

. A classical point magnetic dipole g at rest has a vector potential 4 = gXr/r®. Show

that, if the magnetic dipole moves with'a velocity #» such that » <« ¢, there is an electric
dipole of moment p associated with the magnetic dipole, where p = vX u.

. The equations for the electromagnetic four vector in vacuo are

o4y _

04, %4,
ox, Oox2

=0 (prqg=1,2,3,4),

X, =X, X, =Y, X3 = Z, X, = ict.

Verify that A4, = a, exp (ik,x,) satisfies these equations, provided a,, k(p,q =
= 1, 2, 3, 4) are constants such that a,k, = 0, k2 = 0. By considering the four-vector
property of A,, deduce that a, must transform as a four-vector under the Lorentz
transformation and that k,x, must be a scalar, so that k, also transforms as a four-
vector.

An observer, moving with uniform velocity » in the negative x,-direction, uses coor-
dinates X, related to x, by

x1—i(v/c) x4 _ xgti(v/c) x,

fl=ml,—,, X2 =X X3= X3 x‘_{l—(T/c’)}ll_"
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By considering a similar transformation for k, show that the new observer regards
the frequency of a plane monochromatic electromagnetic wave as being increased by

the Doppler factor
v COoS & v?\1/2
1+ ( 1 ——2) ,
c c
where « is the angle between the direction of propagation and the positive x,-direction

as determined by the first observer. Show also that the corresponding angle & determined
by the new observer is given by

_ v vcosa)~l
cosd = (cosa+?) (l+ ) .

g

Describe briefly a method for transforming the components of the electromagnetic
field in free space from one Lorentz frame to another.

By means of this transformation, show that the field at a point P due to a charge e
moving with uniform velocity V is, at time ¢,

E- _ﬁ—i[(,+£cf)/s3], H = Ex[7),

where 8 = B(¥V), r is the position vector of the charge relative to P, s = r+ Ver/c,
and square brackets indicate that the quantities enclosed are evaluated at time 7 —{r]/c.
Show that the fields are as expected for V « c.



CHAPTER 13

RADIATION

13.1 General properties of radiation

We shall be interested in this chapter in electromagnetic fields which

change at high frequency. In this case the inequality

>

holds. Accordingly the ordinary current in the Maxwell equations is negli-
gible compared with the displacement current and we may take the equations

as
curleai), curlE=—%
ot ot
so that, since B = uoH, D = &yE,
oE oH
curlH—eoa, curlE——‘uoﬁ.

By taking curl of each equation and using the identity
curl curl 4 = grad div 4—Vv?24,
one can at once derive

1 @E_ . LOH_ o

FeE Ve @

(13.1)

where c¢ is the velocity of propagation of the disturbance described by the

equations and has the value ¢ = (eopo) V2.

These equations contain the essential features of the propagation pro-
perties of the field and were investigated in detail by Hertz. His investigation
will be given in the next section but before this it is a good idea to try and

536
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obtain some intuitive idea of how outgoing radiation behaves. It is clear
from the equations, since they are wave equations, that the field will be
transmitted with a finite velocity c. If one considers some particular changing
configuration of charges, for example, the field of two equal and opposite
charges, which give the field of a dipole at large distances, one can think of
their electric and magnetic lines of force related to each other in a spatial
pattern which moves with this velocity (of value about 3%X10® ms™1). In a
complete oscillation of the charges the field lines will alter their direction
twice, once in each half-period of oscillation, and so the change of direction
becomes more rapid the higher the frequency of the oscillation. One can see
in a general way the effect of this. Since the field propagates with a finite
speed, the field lines which are remote from the source will have no time to
return to the directions corresponding to the ones nearer to the charges.
In other words, as frequency increases, the field lines tend to separate. Those
which are near enough to the dipole will move away from it and back
towards it, but there will be some critical surface which separates these
from the more distant ones which cannot get back. These more distant ones
correspond to the radiation field in which we are principally interested here.

13.2 The Hertz vector
In considering the fourth Maxwell equation
divB=0
we have in earlier chapters made the substitution

B = curl A.

However, in this substitution it is clear that the vector A4 is not uniquely
determined and could be altered to the form

A = A+ vy,

and accordingly further restrictions are usually placed upon the vector
potential 4. In the case of the static or slowly changing field the most con-
venient further restriction is

divd4 =0. (13.2)
This involves solving the equation

Vi = —div A,
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Poisson’s equation, and this is always possible in general. However, it will
prove to be more satisfactory to use a different restriction here. Substituting
in the equation
H= 1 curl 4 (13.3)
Lo
we find

o4

From this it follows in the usual way that

GV |
E=-vé-—7-, (134

and by putting this back into the original equations and using the identity
for the repeated curl again, the equation

2
grad div 4—v?%4 = —yos()(grad % .9 A)

ot T

results. It would be very convenient at this point if the vector A4 also satisfied
the wave equation. We see that this is indeed the case provided that
o9

V(le A+60,Uo 5) = 0.

Since we have the possibility of imposing some additional restriction, we can
choose the restriction
. 1 9¢
divA+— —=0.
+ ¢ ot
If this condition is not satisfied already we can transform to a new vector

potential A" = A+ V. In order that E should be unchanged we must then
transform to a new ¢’, so that

v¢’+a§/ = v¢>+%—‘f,
ie. V(' +p—¢) = 0.
Let us choose, then,
y =2

TN
A = A+vy,
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and then
., 199" /. 1 0¢ 1 %
divA'+ 2 5 = (d““”? 57)‘(? ETVZ"’)’

so that we have only to solve the inhomogeneous wave equation

1 o2 o 1 2¢
(o7 = diva+ ;-
The condition
. 1

is often known as the Lorentz condition. It has the effect of making both
A and ¢ satisfy the same wave equations as the field vectors (which the reader
may verify in the case of ¢). Now the starting-point for Hertz’s analysis is to
notice that, if the potentials are to satisfy the Lorentz condition, then they
can always be written in the form

oIl

¢=—d1VH, A= ?9

(13.6)

% —

where I is some new vector, and it is again the case that the new vector
which has been introduced here, known as the Hertz potential, satisfies
the two conditions

3 (1 oI, "

ot (@ 2o —vH) =0,
. (1 oI
div (F ’a?—vzﬂ) = 0.

These conditions are very reminiscent of the wave equation and accordingly
we propose to consider the special case in which the field satisfies

o4 _, .
2 'aT—Vﬂ—o. (13.7)
(This was the special case considered by Hertz.) Substituting for the poten-
tials the field strengths take the form

H= so—a— curl 77, (13.8)
ot
2
E = grad div IT — 1 o1 = curl curl I1. (13.9)

¢ or
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Exercises 13.2

1. A region contains no charge or current densities but contains a distribution of electric
polarization P, so that D = ¢E+P, B = uH. Show that the Hertz potential satisfies
the equations

2
0T 5)__.0’ ai(vzu__[ue

oI P
or ¢ ) 0.

dlv( VAT — e — T +é—_

in the region concerned.
(This relates the Hertz potential to the distribution of electric dipoles.)

2. Show that Maxwell’s equations, in the absence of charge and current densities, are

satisfied by the following substitutions
*

D = curl A*, H = grad V"+aA

o’
where
o+ v o*4*
VgV*" = 0, A"“LLG at2 = 0,
*
if div A*+ pue aaV =0.

3. A region contains no charge or current densities but contains a distribution of magnetic
polarization so that D = ¢E, B = u(H+ M). Show that Maxwell’s equations are satis-
fied by (see eqn. 2)

*
D =curl 4*, H = grad V*+aA

o’
*
with A* =—,uaag , V*=divIT*
where
or* 0 oxrT*
2 JT* — 9 (o> —
div (VII 1e =35 +M) 0, 3 (vII e g +M) 0

13.3 Solutions with axial symmetry

The use of Hertz’s vector is particularly appropriate in conditions of
symmetry. The first kind of symmetry which springs to mind is that of
spherical symmetry. Now the Hertz vector would have the form

IT = Xr

where X = X(r, 7) is a function of » and ¢ only. However, when one prepares
to substitute this value into the expression for the field strength, it at once

follows that
curl IT = (VX)xr = 0,
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corresponding to zero field. This suggests that spherically symmetric waves
are impossible, a conclusion which is immediately verified by making the
substitution

E=f(r), H=g0r,

in the original equations. It is therefore necessary to go up to the next stage
of complication, that is, to the situation where there is symmetry about a
line, which we may take as the z-axis.

We shall suppose that the charges present, which produce the field, are
located very near to the origin and are fluctuating in some way so as to
produce the radiation conditions necessary. In fact the solution which we
shall find is mainly applicable to a dipole whose strength varies with the
time, but we shall also consider the general case. It is natural to use polar
coordinates for the more detailed calculations; because the axis of sym-
metry is the z-axis, the angle between this and the radius vector r may
be taken as 0. The Hertz vector, IT, in order to preserve the axial symmetry
can only have components radially outwards and parallel to the z-axis.
Both of these components can only depend upon the distance from the origin.
However, Maxwell’s equations are all linear equations, so that the radial
component which would correspond to a superimposed spherically symme-
trical field will in fact contribute nothing and we may choose for the Hertz
vector some vector in the direction of the z-axis.

This Hertz vector now satisfies the wave equation which may be expressed
in polar coordinates as

o 2oH _ 1 ¥l

orr r or ¢z o’

(13.10)

In this equation the Hertz vector is to be assumed in the form
IT = f(r, Ok, (13.1D

so that we have, in effect, a scalar wave equation for the function f. We shall
be particularly interested in the special case in which the wave field has a
periodic character, in which case we would write the Hertz vector in the
simpler form

IT = II(r)eik. (13.12)

(Here, as usual, the real part of the exponential function is intended.)
By making this substitution in the wave equation we obtain the ordinary
differential equation for the dependence of IT on the distance, viz.

oI 2 ol w?
orr ' r €;+?H_O'
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This equation may be integrated at once by the substitution /I = u and

leads to the solution

IIr) = 1%) giwrle,

The Hertz vector therefore takes the form, in this particular case,
11, .
II = — €Xp {iw(t—r/c)}k = f(r, Ok, (13.13)

in which the outgoing wave nature of the solution is clearly exhibited.
In the general case the function f must simply be some solution of the wave
equation and therefore has the form

T = %g(t—r/c)k, (13.14)

by means of a similar argument. However, it will be more convenient to
leave it in its original form IT = f(r, t)k for subsequent calculations.

13.4 Discussion of the field strength

Taking then the Hertz vector in the form

II = f(r, t)k.
it follows that

curl IT = —ai”xk.
or

Accordingly the magnetic field is given by

2
H = 80_g‘f_

YT Fxk, (13.15)

and so the magnetic field lines are circles whose centres lie on the z-axis.
In polar coordinates the only non-zero component of the magnetic field is

therefore
2

H¢ = 80—% sin 6.

Taking the particular case

f(r’ H =

oo exp {iw(t—r/c)},
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where M/(4neo) is now written for the constant I7, corresponding to periodic
solutions, an immediate calculation gives

M . i 2 .
Hy= ;—sin 0{ — ;—‘;’ +%} exp {iw(t—r/c)}.

Since the real part has to be taken, this means that the component of the
magnetic field has the form

2
H; = %Sin 6{% sin w(t—%)—l—% cos w(t—%)}. (13.16)

We notice that one of these parts falls off inversely as the square of the
distance while the other falls off inversely as the distance. The distinction
between these two parts corresponds to that between the near zone and the
distant zone mentioned in our earlier intuitive argument.

Next, for the calculation of the electric field we have

Ezcml{i af“xk}

and this immediately reduces to the form

E=-2%p, 2 (é a—f) Foki—k).

The electric field now has components in the two directions at right angles
to the magnetic field, radially and transversely. The value of these compo-
nents can at once be calculated as

E,=F-E=—Ea—fcos(9,
r or
L2, (1Y
Eg——a sm()—q—ra (757)51[10

Taking again the particular case of the periodic solution, these components
have the values

Mcosf (1 r « . r
E = e {F cos w(t—?) ——z sin w(t—?) }, (13.17)
E - Msin0 (1 — "V ® Gnofl—— _ﬁcosw L
- B 2] {2 e

(13.18)



544 ELEMENTARY ELECTROMAGNETIC THEORY, VOL. 3

Here again the distinction between the near and distant zones is very clear.
The part of the electric field which is important nearest to the origin falls
off as the cube of the distance and the part which is important a great way
off again falls off inversely as the distance. Approximately, one can say that
the values of the fields near to the oscillating system are

M cos 0 r

Er = W COS w(t—?), (1319)
M sin 6 r

By = Sy cos w(t-— ?)’ (13.20)
wMsin0 . r

— - 2
H, A2 SID w(t p ), (13.21)
whereas those a great way away have the form
E =0, (13.22)
Mw? sin 6 r

Ey = — 2 0 cos w(t—?), (13.23)
Mw? sin 0 r

H¢ = W Cos (D(t——c-), (13.24)

approximately. It is important to notice that the field in the distant zone
satisfies the two conditions

eoE? = uoH?, E-H =0 (13.25)

which we have already discussed in connection with plane radiation fields.
These conditions do not depend upon the particular Lorentz frame of
reference.

13.5 Interpretation of the results

We first consider the results corresponding to a periodic oscillation
because the interpretation of this is most straightforward and this is in fact
the most important form of solution. Very near to the oscillating charges
the fields have the form

E, —Mcoswt

" 2merd ’
M sin 0

Eg—Wcoswt,

4r?
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In order to interpret this one needs to compare the electric field with that.
of a dipole. The field of a dipole of moment m directed along the polar-
axis is

m cos 0 m sin 0

E= e B e

so that the electric field corresponds to such a dipole with varying moment
m. Now such a varying moment may be considered as due to a current
element. One can think of a current element whose length is equal to /,,
that of the dipole (considered as a very short length). Accordingly the value:
of H for such an element will be given by

_ 421l sin 0 sin

Hy 4y

wt
where I is the r.m.s. value of the current (so that 74/2 is the peak value):
and o is its frequency. If now

114/2 = oM,
the magnetic fields agree. Moreover, this equation involves

M= vz =gql.
w
When the dipole is thought of as a charge oscillating up and down a short:
length / the charges at the ends of / are + g cos wt and m = g/ cos wt. The
current / in the element arises from the variations given by d/d#(q cos w?) =
—wg sinwt. Hence the peak value is I4/2 = wq. This is in complete-
agreement with the electrical picture. Thus both the fields imply that the-
solution we have found corresponds to an oscillating dipole at the origin,
directed up the z-axis.

It is to be noticed that from the equations for the field in the near zone:
the squares of the field strength (which enter into the expression for the:
energy) are inversely proportional to the sixth power of . Moreover, the:
electric and magnetic field strength differ in phase by %n. The Poynting vector,
which describes the passage of energy, is therefore proportional to (using the:

polar components):
ExH = (E6H¢’ _'ErH¢’ 0)’

i.e. has both its components proportional to

cos w(t—i) sin w(t——i) = l sin {2w(t__r_) }
c c 2 c

EET 3-8
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As a result of this the energy from the dipole flows out during half the period
.of oscillation into the near zone, and then in the next half it flows back
again. On the other hand, the equations for the distant zone show the
electric and magnetic fields in phase. The Poynting vector now has compo-
nents proportional to {E;H, 0 0}, i.e. it is purely radial and proportional to
cos’w(t—r/c). There is therefore an energy-flow outwards. (Since the radial
component of the electric field vanishes the shape of the distant field is
generally a cylindrical one, which accounts for the fact that it falls off in-
versely as the distance.) As a result the energy decreases only as the inverse
square of the distance.

Thus apart from the two zones differing by the size of the fields and the
manner in which these fields fall off with distance there is also another
important distinction in the behaviour of the energy in them. In the near
zone the energy flows out and back, so that in so far as the transmission of
radiation is concerned the whole behaviour is really a pretence. On the
other hand, the energy in the distant zone flows continually outwards and so
there is a genuine transmission of radiation. The region in which the pretence
takes place will be larger when the near zone is larger, that is, the lower the
frequency or the longer the wavelength. For a wavelength of about 60 cm
the near zone has a radius of about 5 cm, whereas for a wavelength of 6 km
the near zone has a radius of about 500 m. This is the basic reason why
experimental demonstration of the waves which Maxwell saw must exist was
delayed for about 10 years. It is also the reason why long-wave radio trans-
mitters need a large amount of apparatus and a considerable source of
energy whereas very short-wave transmitters may be small enough to be
carried in the hand. The large amount of energy consumed by the long-wave
transmitter is mostly used in setting up the pretence of transmission in the
near zone which is in fact only a pumping in and out of energy.

13.6 Other kinds of radiative solutions

The solution of Hertz, which has been described above, is historically of
the greatest importance, but the reader will have noticed that there is a
certain element of luck in its derivation. Certain plausible assumptions
about the scalar and vector potentials lead to a solution which can then,
by looking at the near field, be seen to correspond to an oscillating dipole
at the origin. Two different directions suggest themselves for proceeding
from this point. Firstly we might preserve the general features of the deri-
vation of the scalar and vector potentials from a Hertz vector which is again
the product of a constant vector and a scalar field (but without making
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the same restrictions on the dependence of the scalar fields on time and space
variables). In the present section we look at one example of a solution found
in this way. Alternatively we might seek to find the radiation field from a
system of moving charges, by building this field up from that of a single
charge. In this way the physical significance of what is found is certain, but
there is the disadvantage that the calculation of the field in general is not so
easy.
Returning then to the first course of action, let us write

IT =Fkf(r, 1),

where k is a unit vector which may, without loss of generality, be chosen to
lie along the z-axis, and fis now any function of position and time. Since

. 1 a1l
¢o=—divil, A= 2
we have
1 .
¢ =—kVf, A= c—zkf. (13.26)

From this it is easy to calculate the fields. Here f'is a scalar function satisfying
the wave equation

12 _,

= == = 0.

c? or vf
From any solution of this equation we can derive corresponding radiation
fields.

In illustration, instead of considering the type of solution involved in
Hertz’s calculation, let us try something of a more symmetrical kind. If fis
independent of #, we know that there is a so-called elementary solution of the
resultant equation (Laplace’s equation) of the form f = 1/r. Now if, for the
time being, we define ir = s so that the wave equation becomes

82f "f of L OF

acrf "ot Tast Tast

=0,

(i.e. Laplace’s equation in four dimensions), we can expect a similar elementary
solution except that the power of R = 1/(c®f*+53+s3+s2) may well be
different. In fact, if

S = gR),
of ct
then -a (ct) =&
2 2 2
so that Of _ L e, @,

3 TR g e g

8*
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o 30 3 1
= =—=g'+g" = = (R¥') =0.
Hence B(cl? + 295" R g'+g R3( g")
Therefore R3¢’ = A (a constant)
B
so that g= R;Z-+C, (13.27)

where B, C are constants. Disregarding the constant C, since it results in no
field, we can take the elementary solution as

1 1 1

T R T it sits P

(13.28)

Strictly speaking, this is a solution of the wave equation at all points
except those at which ¢%? = r2 at which this solution has a singularity.
If we confine ourselves to values of £ = 0 we can think of this singularity
as beginning at the origin at # = 0. Then, as ¢ increases, the singular points
all lie, at any instant, on a sphere of increasing radius (a sphere, in fact,
whose velocity is given by |r|/t = c). The solution therefore represents an
extremely short pulse of light emitted at the origin at ¢ = 0.

There is, however, a purely formal procedure that enables us to derive
from such a solution, with a singular surface, another solution with no singu-
larities. First suppose that the original singular event occurs, not at the
origin, but at the time #o and the position ro. The solution then obviously
becomes

1
8= Fa—tr— o (1529

In this solution one can replace 2o, o by complex numbers, say
to = d+iﬂ,
ro = a+ib,

and a short calculation proves that here [8 » (1—1v%c*)™]

1
g= A—iB’
where A = A(t—a)—(r—a)>— 282+ b2,
B = 2[c®B(t—a)—b+(r—a)].
Hence also
_ A+iB

€= g = UtV
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and, since g satisfies the wave equation, it follows that U, V satisfy it also.
Now U, V can only be singular if 42+ B? = 0, and this involves 4 = B = 0.
So long as ¢?*3? > b?, this means that
cH(t—a)? = (r—a)?
(by using A = 0), and so
pre(t—a)® > BA(r—a)’®
> b%(r—a)?/c?
= [b-(r—a)]*/c*
so that B > 0, and therefore U, V' are non-singular.

Now that the complex numbers have done their work they can be dis-
regarded; the linearity of the wave equation is what makes this method
possible. Of course, by a (real) change of origin it is possible to make
o = 0, a = 0. Since ¢?3% > b? it is also possible, by means of a real Lorentz
transformation, to make the real four-vector (8, b) correspond to the time-
axis, i.e. to make b = 0. Then

A= c2—r2—cB%, B = 2c%t,
and so the ¥V solution (for example) has the form
2¢%8t
(C2t2—r2—c2ﬁ2)2+4c4ﬂ2t2 *
How is one to interpret such a solution of Maxwell’s equations? There
are no singularities—that is, no sources of the field anywhere or at any time.

But, none the less, there are field strengths that can be calculated with a
little trouble from the potentials given by the formulae

1 o
To get some idea of how the field varies, we can plot ¥ as a function of time
for given r. The curve is obviously of the form shown in Fig. 13.1 since V=0

V= (13.30)

Vv

FiG. 13.1
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when ¢ = 0, V & Kt when tis very small, and when ¢is large V = K/#3. Thus a
disturbance builds up, changes somewhat, and disappears again.

The existence of this kind of solution of Maxwell’s equations suggests
that Maxwell’s theory may be incomplete. It seems to lack some additional
restriction that will serve to ensure that fields originate only from sources
like charges and magnets. But we do not know how to modify the theory so as
to rectify this defect.

13.7 The fields of moving charges

We now seek to investigate the fields (in particular the radiation fields)
of a number of charges in motion. Consider first the Maxwell equations in
the absence of other matter than the charges:

amnE=—p8,  dvE=2,

ot ’ €o
curl H = 60%—64—], divH = 0.
Thus
curl curl E = grad (p/e0)— V2E
0 oE
—"‘Mog{gogt—'FJ}a
1 %6 _, oJ 1
so that ? W—V E = —‘uog—g VQ- (13.32)
.. 1 o°H 0
Similarly =gV H = curl J. (13.33)

It is to be noticed that the sources on the right-hand sides of these equations
are very intractable, because they involve the derivatives of ¢ and J. This
suggests a simpler situation, where we can write E, H as derivatives; in other
words, if one introduces the potentials.

When we write, then, as before

H = i curl 4,
Ho

o4
E=-vo—a
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it follows that
o ..
-—V2¢— 'a"t' (le A) = Q/Eo

1 924 1 9¢
and curl curl 4 = —= W—v(? 5{)+”°J'
But curl curl 4 = grad div 4—v24,
so that
1 024 0q . 1 9¢
=z VA= ,qu+V(d1v A+ E)'

If we again fix 4, ¢ by the Lorentz condition

. 1 2¢
div 4 +? E =0
it follows that A4 will satisfy the (inhomogeneous) wave equation. Moreover,.
¢ will satisfy

1o _, o
e V=4,

A word is appropriate here about the solution of these wave equations.
A common method in some theories (e.g. acoustics), where the scalar wave
equation arises, is to seek for coordinate systems in which there exist separ-
able solutions. In point of fact, there are known to exist exactly eleven such
coordinate systems, of which cartesian, spherical polars and cylindrical
polars are the best known. But here we have to solve a vector wave equation
also; in every coordinate system but cartesians the operator V2 must be in-
terpreted as —curl curl + grad div. As a result one component of the operation
of v2 on a vector involves the other components also. Very little is known
about the separable solutions of this equation. Accordingly we must have
recourse to other methods.

Consider then the scalar wave equation above. As usual with differential
equations of the inhomogeneous type, the complete solution consists of any
solution of the homogeneous equation

1 2% _,,
e e V=0

(complementary function), together with some particular integral of the
original equation. To find such a particular integral let us divide the space
up into very small portions and find the separate fields produced by the
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«charges in each of these small elements. The resultant of all these fields will
then be a particular integral. For any given volume element dz containing a
charge o dr we have then to solve the homogeneous wave equation every-
where, except in the immediate neighbourhood of the volume element where
‘the charge corresponds to a point charge o dr (which is a function of time).
Choosing, for a moment, the origin at the volume element, we have to solve
the wave equation which will be (for a spherically symmetric partial func-
tion d¢)
1 ¥4 18 (r2 a(aqs)_) o

¢ ot P or or
-As usual, we can solve this by writing d¢ = ru, when we find that

1 2% %
= %7—5-2—= X (13.34)
‘which has the solution u = f(¢—r/c)+g(t+r/c), for any functions f, g.
We are here looking for one particular solution, so we may choose one of the
functions f, g to be zero. In most elementary cases, the most convenient
:choice is g = 0. This corresponds to a solution in which a disturbance in the
‘charge produces effects in the field afterwards rather than before it happens.
But it by no means follows from this rough appeal to causality that the same
choice is always required. Certainly Maxwell’s theory allows the choice
J =0, which has been put forward in some theories of the classical electron.
However, for our present purposes it will be sufficient to confine ourselves to
the case g = 0.

As a result 6¢ = (1/r) f(t—r/c); and the function f'is still at our disposal.
We have to choose it so as to make the potential correspond to the correct
value of the charge, that is, to make the potential have the correct value
very near the origin, as » - 0. Accordingly, for our case

dr

47180 ’

J® =00
We must now transform to a general origin, and so derive

o(t—rfc, ¥y dr’
dmegr

d(r) =

where ¥ = |r—r'|, and ¢’ is the point occupied by charge (so that dz’ is the
volume element at that point) whilst r is the position of the field point, at
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which d¢ is required. The total field is therefore
t—rfc, r)dr’

dmeor

_ [[eld”
= j . (13.35)

where we introduce square brackets to mean the so-called retarded value.
To this field we should in general add any solution of the homogeneous
wave equation which is then chosen so as to satisfy the conditions of the
problem. For our purposes, however, it will be sufficient merely to consider
in detail the particular integral found (called the retarded solution). By writing,
the vector wave equation in cartesians, a similar argument on each compo-
nent leads to the result

A = o —[ [_’4]_7[‘1;_'__ (13.36)

13.8 The Liénard-Wiechert potentials

The general formulae which we have just found for ¢, 4 are not usually
very easy to apply in practice. But their chief importance is that they express.
the potentials of the field of a moving charge in an explicit form which,,
as we can see from the expression, depends on its velocity but not on its
acceleration.

Suppose that we have a single charge, moving in any manner. We have to
consider the limiting case of these formulae as the density corresponds to the
singular one of the point charge. However, a little care is needed in the
limiting procedure. We cannot simply replace [p]dr by e since we have
initially a distribution of charge, and different parts of it will have different
retarded times. It is not true that it makes no difference whether we carry out
the limiting operation before or after taking retarded values. There is only
one frame of reference in which this is true—that in which the charge is.
instantaneously at rest. In this frame of reference the potentials are

e

= e A=0. (13.37)

¢

Now we use two facts: first, from the form of the expression for ¢, 4
in a general reference frame, it is clear that they will depend only on the
velocity of the charge and not on its acceleration. Second, we are concerned
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with retarded values; so that the signals at a point (say, the origin) at time ¢,
from a moving charge e at r = r(f) will arise from the charge when it is at a
point r(t"), where

[r()| = c(t—1).

Let us first apply this formula in the frame of reference in which the charge
is at rest. Then
e

= daeoc(t—1t") "’ 4=0

¢

in this frame of reference.
In order to see the value in any other frame of reference it is necessary
to express everything in four-vector form. The velocity four-vector, for the
charge, is defined by (8, Bv) where B is, as usual, (1 —v2/c%)~Y2. Accordingly
in the rest-frame of the charge, it is (1, 0). Moreover, the combination
(¢/c% A) is also a four-vector, and has in this reference frame the value

(4nclffi r)y’ 0)‘ (13.38)

‘These two four-vectors are proportional, and we should therefore expect the
factor of proportionality to be independent of the reference frame. Now the
condition for the retarded time, above, can be written

e(t—tyR—r =0,

which is certainly an invariant relation for the four-vector (t—¢', —r) ob-
tained by subtracting the two four-vectors (¢, 0) and (', r(t')) =(?, r’). Now
from this four-vector and the velocity, in the reference frame in which the
particle is at rest, the invariant

s = cB(—t")+Poer (13.39)

has the value c*(r—t'). Hence in this frame of reference the potential
four-vector is derived from the velocity four-vector by multiplying it by
toce/(4ms). Since this factor is invariant the same is true in every reference
frame, so that, in general

¢ _ pocep _ Hocepo
T s AT T (13.40)

It only remains to put these into three-dimensional form. For this purpose
it is more useful to go over to having the origin chosen at the charge, and to
consider the field at a point r; this corresponds to a change of sign of r in
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these formulae. Using
E(t—t) =r?,

we have, with the understanding that everything on the right-hand side is
evaluated at the retarded time 7',

¢ Woe e
F=— o o p=——o,
¢ 47z(r—rcv) 47!80("—'—-;-,) (13.41)

and A=—m——, where r = |r|.

(13.42)

These are the Liénard-Wiechert potentials.

13.9 Calculation of the field strengths

‘We now have to use the formulae

04 1
0 H—-%curlA

E=-v¢—
to determine the field strengths. But the differentiations here are all with
respect to ¢ and r, whereas the Liénard—Wiechert potentials are given in
terms of #'. Some care is therefore needed in the differentiation.

Since #(t') = c(¢—1'), it follows that

% = c(l _%). (13.43)
But we can find an alternative expression by differentiating in the form
o _ar o
ot or ot
Now P =r
so that r éati, =r. %;

and Or/ot’ =—v (by definition). Hence

g __reo
o = r
or _reo ot

and

2t T e
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Collecting these results together, it follows that
or _ 1
ot 1_"Y )
re

(13.44)

Using r(t') = c(t—1'), it also follows that

Hence vt =—

c(r—"") . (13.45)

In carrying out the calculations, it is convenient to use two subsidiary
definitions:

R=r-"2, (13.46)

and s=r-2, (13.47)

VR=F—" = E,
c r
and r-S = rR.
Moreover, at a fixed point,
OR . FeD red FeF FeD red
~ = r— —_ = —_————
ot c c r c c
and r = —v, so that
B_R __rew v rev DS rev
o8  r "¢ ¢ r c’
The potentials now take the form
=€ — Ho®
¢ = 4meR’ 4 4R’ (13.48)
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so that

_ e o [uoev
4nE = V(m)—a( R )

Notice here that the gradient is to be evaluated when ¢ is held constant,
not ¢', so that, collecting all the results together,

E= 4nsoR2r+:lneoR2 r ¢ )eR
Uo€d T Woed (v-S tij) r

4R R 4R\ r " ¢ R’ (13.49)

eS e (v-S r-é) r

The details do not matter so much as the fact that E contains some terms
that are independent of the acceleration, and these terms fall off, roughly,
as the square of the distance (counting, for this purpose, r, R and § as all
of the same size), whilst there are other terms proportional to the accelera-
tion and these—the characteristic radiation terms—fall off as the distance.

In fact the terms independent of the acceleration become (remembering
that Czyoé‘o = 1)

_ e {S Sr 1 v(v-S)} e 1 ( IRY
r

E= 4meoR2 CcRr ¢ R = AmeoR2 ¥ 1+—07)S.
(13.50)

(If v = 0, so that the charge is at rest, this at once reduces to the electro-
static form.) For the radiation terms, we have

e redr Or prred

- 4neoR2 | 2R~ ¢ R

e red L _ér_
T 4neR? [ZZ—E ( c ) 02]
e . .

But we noticed before that
Rr =r.S,

so that the expression for E can be rewritten

fhoe

E=are

[rx (Sx)]. (13.52)

The first field (independent of the acceleration) is evidently the field of
charge in uniform motion and this expression could have been derived by
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making a Lorentz transformation of the field strengths directly. The second,
however, depends on the acceleration, and so is non-zero even for a charge
which is instantaneously at rest. In fact, for such a charge, with acceleration
f, the total field consists of the Coulomb field together with a radiation
component of

PN ,
E = 22 ix #x/). (13.53)

The calculation of the magnetic field is carried out in the same way, and it
turns out that

_ 1 (E) (13.54)

Thus the magnetic field is everywhere perpendicular to the electric field.
This fact was to be expected of the radiation parts of the fields but it is:
surprising that it holds of the total field.

It remains to draw the readers’ attention to one disquieting fact about
these results. We began by solving the wave equation for the potentials,
found a solution that depended only on velocity and not on acceleration,,
and then differentiated this solution in order to derive a field that depended
both on velocity and on acceleration. This suggests that, if we had begun
with the Hertz potential being independent of the acceleration, then the
ordinary potentials would have depended on acceleration, and the fields on
its derivative. Does our argument forbid this? Some discussion has taken
place on this subject, and the matter is still not clear. It is our opinion,
however, that the argument we have given contains a hidden assumption.
When we solved the scalar wave equation

we sought a particular integral that was spherically symmetric, about an
origin chosen at the position of charge involved. If ¢ were to depend on the
acceleration—which would then have a definite direction, even in the rest-
frame of the charge—this assumption of spherical symmetry would no longer
be justified. Instead we would need axially symmetric solutions, of which,
of course, there are many, involving Legendre polynomials. Conversely,
when we make the assumption of spherical symmetry, we are assuming,
that the accelerations are unimportant here. The solution that we have
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derived must then rely, for its complete justification, on its experimental
confirmation, and fortunately there is ample experimental verification that
it is, in fact, true.

Example 1. An infinite uniform wire occupies the z-axis in free space, the current in it
vanishing for ¢ = 0 and having the constant value J for # > 0. Show that the vector poten--
tial at a point P, whose cylindrical coordinates are r, ¢, z, is given by

ct+(c*2—r?)l?
r

A=,u02%7cln for t=r/c,

and
A=0 for t<rje,

and that the electromagnetic field of the current at P when ¢ = r/c is given by

—Jke Jctaa
__ 27,@2,2_,2)1/2 4 /‘OH“ 2,".((.2,2__,2)1/2 °

Find the flux of energy across unit length of a cylinder passing through P and coaxial:
with the wire, when ¢ = r/c.

(1) Using formula (13.36) in the text

[Jk] dz, _ 1 [Jk] dz,
Vo et v e

_ Mo [
Ar, =52 J
where the part of the wire involved is such that

(— V{(z1—2)*+ 1%} =0,

c
ie. (zy—2)® =< 2t —r?
so that z;—z ranges from +4/(c%*—r?), if ct=vr.

Changing variables gives

V(%2 —r?)

_ otk dA pedk [ (AN
A(r, t) = 4n f VELH 2 sinh (7)]0
-V (222 —r?)
_wdk V(R otk ., (ct
= sinh 1{ " } =5 cosh™! (7)

Lolk In { ct+ \/(cztz—rz)}
r b

7 (ct=r).

If ct = r, the field is obviously zero.
(ii) For the field vectors
_ 04 _ D fuolk _afct
E=—or =5 {“5r o ()}
_ Molk c/r _ — polke
2n /@D —-1] T 2m /(2B —r?)"
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Similarly

_ uoJk et )}

uoH = curl{ 7 cosh ( )0
_J 0 (et

H= 5 Pxko {cosh (T)}
__Jg_ (el
- 27z¢> Vicr/r)—1]
.lct$

= =)

o2

(iii) Finally ExH = AR — 1)

which then gives the flux of energy.

Example 2. Show that in a vacuum Maxwell’s equations are satisfied by

E,=_1 0u -1 ou - (_32 L?f‘i)
T 7 dber: T*T rsinb apors T T \orr & o)
—_ % % _ & Ou -

Hy = rsinf 8¢ ot’ He =3 5000 H=0

where r, 0, ¢ are spherical polar coordinates and u satisfies a certain differential equation.
‘Show that if the field is symmetrical about 8 = O this equation has a solution

u = P,(cos ) rmt1 (-i— g;)” {—i—f(t—%)}

From the double differentiations involved in the expressions for the field quantities,
it is clear that some analogue of the Hertz potential is required. Recalling that

H = g, curl Ir

:suggests that we try a vector IT whose components of curl in spherical polars are

{0 __1 odu1l %}

rsinf 0¢ r 064"
But a comparison with the general expression for curl in spherical polars shows that IT
must then be radial, of magnitude —u. With this choice

H = ¢y curl I
so that div H = 0. Next calculate
curl curl IT = {__1_ [9_ (Si 06_14)] # ai _l ._,al _.__1__ 3211_
T \Esin 0166 "7 56) | Vst 6¢F T 8r00 rsin6 drog S
This will agree with the given solution only if u satisfies the differential equation

1 Q% 0%u 1 0

1 Q% _ 0% Kl (sin 6 au) 1 0%u
EoF ~ o” Trsing 90 +

96/ " r¥sin0 B¢t
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(Note that this is not the wave equation in spherical polars!) If u satisfies this equation,
then we have

E = curl curl IT
so that divE=0
o0E oD
and curlH=eo§=E.

Three of Maxwell’s equations are therefore satisfied, and it remains only to verify that
curl E = — u (0H/o1).
The first step is to calculate the r-component of curl E thus:

1 0 /. 1 0%u 0 (1 0% _
“rsing {@ (s"’o rsin 521%7)"%(7 aoar)} =0

In calculating the other components the terms involving mixed derivatives with respect to
r, 0, ¢ cancel, leaving

1 o%u 1 0%
curl E = {0 CPrsing 0poF  cr 90 atz}
oH
— ot _(_aﬁf_o)

as required.
If the solution is independent of ¢, one term vanishes in the “wave” equation. By
exactly the same treatment, as in the case of Laplace’s equation,
1 92 /. ,0f
Snd 30 (sm 0 —) =—nn+1)f

if f = P,(cos 6), so that a separable solution is given by u = A(r, f) P,(cos ), where

1 024 024 n(n+1)
FaE m g A4=0
The given solution in the case n = 0 is obvious.

Consider next the case n = 1. Then the given solution is
A=r E— ,

or
where C satisfies
1¥c_@c 28c
¢ o 6r2+7 or’
i.e. the true wave equation. In fact,
14 8 1
c2 ot or\ct azz)
22
“Tor\errr ar)
_,¥C ¥ _20C
o orr r or
i
T orr
which is the correct equation.

EET 3-9
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In the general case, if

and Upyq = FH2 (
then
— pn+l 7
Upg1 =T or (_r""'l)

and a similar piece of working proves the result by induction.

Example 3. Show that a charge moving in a circle with constant speed u emits no radia-
tion in the plane of the circle in directions inclined at an angle cos ! (u/c) to the direction
of motion.

The radiation fields contain the factors

(-1},

B = l?xE.
c
Hence
ExH o EX(fXE) = E%

since E+F = 0. Thus the direction in which there is no flux of radiation is the direction
in which E vanishes. For the circular motion there is one obvious way of satisfying this,
by making

(r—%) parallel to .

Since d is along the radius to the circle this shows at once, from Fig. 13.2, that sin a=u/c,
which gives the result.

FiG. 13.2

But might there be other directions for which E = 0? It is clear that there cannot be,
since r, v and » are all in the plane of the circle, so that the contents of the braces are
normal to this plane and cannot be parallel to a direction r in the plane.
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Example 4. Two Hertzian radiators P,, P, are oscillating in phase in free space. Each
has dipole moment poe'®'k, and the position vector of P, relative to P, is ak, k being a
unit vector. Show that the electromagnetic field at the point r relative to P, is the field
of P, alone multiplied by the factor

1+ exp {iwaker/(cr)},
provideda < r.

If a = nA, where A is the wavelength and » an integer, discuss the radiation pattern
in the wave zone. Show that the ratio of the total energy radiated to that radiated by two
non-interfering oscillators is

3

1——4(’”1)2 .
F
r
P,
af
P,
Fic. 13.3

With reference to Fig. 13.3 it is a sufficient approximation to consider the field point F
equidistant from the two oscillators as far as the field strengths are concerned, but it is
necessary to take account of the difference in calculating the retarded time. Then

2a 1/2
P,F = (r*+a?—2ar cos )12 =~ r(l -~ cos 0) ~ r—acosf.

Since, from the text, Eg and Hy are each proportional to p = —w?pe'*, the total field is
proportional to
. r . r acosf
exp {m)(t——)} +exp {1w(t——+ )}
c c c

- e fnfo-£J) [0 {E2222 ),

which is the result given, since cos 6 = rek/r.

If a = nA, then, since Av = cand w = 2av, it follows that a = 2anc/w, so that the factor
is 14¢?%n 28 The energy radiated at an angle 6 is proportional to the square of the
modulus [since (x+if)e* = |a+if|e!“+?) where y = tan~1B/a], i.e. to

[1+exp {(iwa cos 8)/c}] [1+exp {(—iwa cos B)/c}] = 2+2 cos {(wa cos H)/c}

= 2[1+cos (27n cos H)].
There are therefore nodal lines whenever cos (2zn cos §) = —1,
. 2k+1
1.e. C056=T (k=0,...,n—1).

g%
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The energy emitted at an angle 6 is proportional to [1+cos (271 cos 6)] sin? 6, since
the factor sin 6 occurs in the expressions for the field strengths. The total energy is therefore
proportional to

T
_f {1+cos (27n cos 6)] sin® 6 sin 6 df
)

11
= +%+f cos (2zn cos 6) sin? 6 sin 6 d6.
(1}

The second integral is (if # = cos 0)
1

f (1—u?) cos 2nu du

-1
1

= — fu”cosZnnudu =—
-1
after integrating twice by parts.
If the two oscillators did not interfere, the corresponding integral is 4, so the ratio is
__3
4(nn)?’

1

nn?

Example 5. A wire of negligible resistance lies along the z-axis and carries a varying
charge g(z, 1) per unit length and a current j(z, £). Given that the lines of force of E run
radially outwards from the wire, and that those of B are circles round the wire, evaluate
E(r, z, ) and B(r, z, t) in terms of g and j, where r denotes distance from the wire; and
show that

o0E OB

FERE T
08 _10E_,
T

Comment on the relation between the last equation and the equation of conservation
of charge on the wire.

The expression for A4 is

_k - Hoj(2'y t—r'[c) dz’
A(r,z, 1) = in -7
where r?=ri+(z' —2)%.

The corresponding expression for the ﬁeld is
B=curl4 = ‘u" ( fj————-—(z t=r'je) dz ) xk

— 00

— o f(_J_ ” EJ___"_FI_) dz’ x k

“4n c’ ¥ ot 3

[,
- [4;: J(cr'z o )dz]?xk

—o0

_ M r 61
“4n f (cr’2 at )dz¢o,
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t being understood that j and 0,/0t are retarded values. The scalar potential is most easily
ound by noting the Lorentz condition,

%‘P— =—c*div 4

e f((z—Z’) 9oj , (z— Z)J)d,

“4n cr’® Bt %
— oo

in the same way. Since, moreover, j = dg/dt, we can integrate this to give

I [ (z=2) (-2
¢ - - f ( 72 ./+ '3 ) dz

cr

—oco

From ¢, A the electric field can be found.
The Lorentz condition

leA+1 %—O

¢t ot
ives, sinc - ¢—6A
gives, since = =V T
oB 04
T curl (E) = —curl E.

If E={E,00} in cylindrical polars, it readily follows that curl E = {09E/0z0}, so
that
BB oE

o ez =0
The other Maxwell equation can be written
1 oD oE
curl H = EcuﬂB—ﬁ—eoa—

and since B = {0 B0} it follows that

curIB={ ‘;f 0 %—(B)}

(of which the last component must vanish). Hence

o8, 1 0E _
=z TEer

The last equation can be written in the form

1 8B  OE_°H 8D _,

U 0z "ot oz o

When applied to the field immediately outside the wire we can take H to be equal to the

current density on the surface of the metal, and D is equal to the charge density on the

surface. The equation can therefore be written in terms of the scalar values of the vectors
6.1 Oo

+at =0.
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In this form the equation denotes conservation of charge on the conductor, implying that
changes in the current strength along the surface of the conductor (the z-direction) are
due to corresponding variation—in time—of the charge density. It is the relevant form,
for the surface, of the equation

div J+0p/0t = 0.

Miscellaneous Exercises XIII

1. Verify that, in the notation of § 13 : 9,

. 2
R+ S r(l—o—)
c

c?

and so deduce the alternative form for the field of a particle moving with uniform
speed.

2. Carry out the calculation of the magnetic field mentioned in § 13.9, eqn. (13.54).
3. Show that the electric and magnetic intensities, E and H, can be expressed in terms of
potentials ¢, 4 by the equations

E = —grad ¢—2—':, oH = curl 4.

Derive the second-order differential equations connecting ¢ and 4, and show that
it is possible to simplify them by taking ¢» and A4 to satisfy

. 1 0¢
div A+'c—2 'ét— = 0.
. elw(r/e—t)
The vector Z is defined by Z =a —

where a is a constant vector, w is a constant, and # is the distance from a given origin.
Verify that

. . 1 oZ
(i) ¢ =-divZ, A='c?§,
(i) ¢ =0, A=curl Z,

give two solutions of Maxwell’s equations in vacuo (r ¢ 0). What is the relation be-
tween these solutions?

4. Distributions of charge and current of densities o(x, 7) and j(x, ) in a region in which
there is no dielectric or magnetic material give rise to electric and magnetic intensities
E and H. Prove that it is possible to express E and H in the form
uoH=curl 4, E=—A—grad ¢,
where A, ¢ satisfy the equations

div A+zlgq'5 =0, vM—%J =—j(x, 1),

vqu—éqﬁ = —g(x, 1)/¢,.
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Prove that, in a region where there is no current,

cos 7}

=k{f(r—ct)—rf' (r—ct)} ——

is a solution of the wave equation determining A4. In this expression k is a constant
vector, ¥ = |r|, cos 8 = z/r, and f'is any thrice-differentiable function.

5. Write down Maxwell’s equations for free space and show that there is a possible
solution given by
E = curl cwrl (k¢),

uoH = curl (ci)k/cz),

where & is a fixed unit vector and ¢ is a scalar function that satisfies the wave equation
Vi = P/c*.

An electric dipole at the origin has a moment kM(f) which varies with the time.
Find the function ¢ for the field produced by this dipole and show that the equation
of a line of electric force in a plane containing the origin and the polar axis is, in terms
of polar coordinates,

c“M(t—r/c)+r—1M(t—r/c) = A cosec? 0,

where A is a constant, 6 being measured from the direction of &.

6. Show that there is a solution of Maxwell’s equations for electromagnetic waves in
vacuo in which the components of the magnetic intensity are

H, = 08'S/oydr, H,=-0'S/oxo:, H,=0,

where rS = f(ct—r), ris the distance from the origin, ¢ the speed of light and f an
arbitrary function.

Obtain the corresponding formulae for the components of the electric intensity;
and prove that the lines of electric force are the meridian curves of the surfaces

00S/0p = constant,
where
0 = (X+yHE
7. Write down Maxwell’s equations for the vacuum. Show that these equatnons are
satisfied if E, H are given by

E——%4~—grad¢ Hol = curl A,

where the scalar ¢» and the vector 4 are related by

1 3¢
div A+— PR 0,
and where ¢ and the cartesian components of A satisfy the homogeneous wave
equation.
Prove that the expression
omtnts { flct—r) N g(ct+r)}
ox™ oy 0z* r r

satisfies the homogeneous wave equation, where f, g are arbitrary differentiable func-
tions, m, n, s are positive integers, and r is the distance from the origin.

[P.T.O.
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)

r

It is given that

Verify that

T ot r

_k 0 {f(ct—r)}

satisfies the equations, and show that this solution gives the field of a dipole of momeny
kf(ct) situated at the origin, k£ being a unit vector in the direction of the z-axis.

8. Show that for an electric dipole of moment &ykf(?) situated at the origin, the vector
potential at any point is given by

1 © r
A=k (z—?),

where k is a unit vector in the direction of the z-axis and r is the radius vector.
Determine the corresponding scalar potential, and hence find the fields E and H
expressed in spherical polar coordinates.
In the case of an oscillating dipole with f(f) = M sin wt, prove that the mean rate
of energy radiation is 47M?w?4/(C3¢yc®).

9. A current j flows in a homogeneous region V of dielectric constant K and permeability
1. Assuming that the vector potential A and the scalar potential ¢ may be chosen to

satisfy
rK o _
Ved+ ¢ ot 0,
find the equations satisfied by 4 and ¢.
Assuming that a solution for 4 at the point (x', y’, z’) when j = J(x, y, 2)e ™! is
of the form
e—i(wl—kr)

——dx dy dz,

r

AX,y,2)=p fJ
| 4
where
2= (x—x)+@y-y)+(z-2)3 k = o(uKe )2,
show that a solution for the electric field vector is

(0}

ie—iwl eitr
Ew,y,2) = e [ W9y vk S axdy oz
0
\ 4

where

,0 .0 0

10. Define the electromagnetic vector potential 4 and the scalar potential ¢p. Determine
what condition on 4 and ¢ will ensure that in the absence of material,
1 824
=L g4 =]
¢ or v J
A point charge ¢ is oscillating in free space, so that at time ¢ its position is
R(t) = R, cos wt,

where Row < c¢. Show that, for r > c/w,

Bir, ) = — s rx Rr—r/o).



CHAPTER 14

THE MOTION OF CHARGED
PARTICLES

14.1. Introduction

The motion of electrically charged particles in electromagnetic and
gravitational fields is of interest in various studies of astronomical and
engineering problems. During the past five decades research into the motion
of charged particles in the terrestrial magnetic and gravitational fields has
greatly improved our understanding of the structure and extent of the
terrestrial magnetic field. In electronics, devices such as the magnetron were
designed after theoretical studies similar to those illustrated in the examples
of this chapter; in thermonuclear research, studies of magnetic bottles, wells
and traps are of prime importance.

However, much care must be taken when attempts are made to generalize
the results for a single particle to the case of an ionized gas, which consists
of a multitude of charged particles, in a magnetic field, since the interactions
between charged particles can modify or completely change the calculated
(and observed) results concerning a single particle. In fact the essential
feature of the motion of a charged particle in a magnetic field is the tendency
of the particle to spiral around the magnetic field lines. This is regarded as
the counterpart of the magnetohydrodynamic (or ionized-gas) phenomenon
in which a highly (electrically) conducting material can flow freely along the
lines of magnetic force but motion of the material perpendicular to the
magnetic field carries the magnetic field lines with the material. [This result
is similar to the classical hydrodynamic result that vorticity lines are “frozen”
into a perfect fluid.]

In this chapter, we first give an account of the non-relativistic motion of a
charged particle in uniform crossed electric and magnetic fields. This is
followed by a brief account of the flow of charged particles when space
charge density is taken into account. Finally relativistic corrections are

569
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considered. However, in this chapter we give only an elementary account
of the motion in crossed electric and magnetic fields. For more detailed
investigations in cases where the magnetic field is non-uniform or gravita-
tional fields are present the reader should consult more advanced works
devoted entirely to this subject.

14.2 Non-relativistic motion of an electric charge in an
electromagnetic field

The fundamental equation for the motion of a particle of mass m carrying
an electric charge e in crossed electric and magnetic fields E and B respec-
tively and moving with velocity v, is (in the absence of other forces)

do

m-gr = e(E+vxB). (14.1)

[The term evX B on the right-hand side is, of course, the Lorentz force on
the particle (see Vol. 2, p. 359).]

Clearly, since the Lorentz force is perpendicular to the velocity, the
magnetic field does no work on the charge and so the changes in kinetic
energy of the particle arise solely from the effect of the electric field. In fact,
taking the scalar product of eqn. (14.1) with v we find

d 1
= (7 mo ) — ¢E-v. (14.2)

In particular, when E = 0 the kinetic energy, and therefore the speed v
of the particle remain constant. Further, if the magnetic field B is constant,
the path of the particle is a circular helix described at constant speed. This
result is proved as follows:

Choose the z-axis of coordinates to be parallel to B so that

B={00B}, r={xyz.
The resolutes of the equation of motion are
mX = eByp, myj =—eBx, mzi=0,
which can be written
X=ny, y=—nx, £=0,
where n = eB/m. Writing { = x+1iy these equations are equivalent to

{ =—in(x+ip) =—inf, =0
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which integrate to give
{=—in(—-Clo), Z=w,
where o, w are constants of integration. Integrating again
{ =Co=ae iz = wtsz,

where a (complex), zo are constants. Writing a = « €', where «, 4 are real, we
find

(o = ae—in1=9) . (14.3)
so that

x—xo = a cos(nt—0), y—yo= —asin(nt—39s), z—zo= wt.

These are the parametric equations of a circular helix. In fact the particle
moves so that the resolute v, of its velocity parallel to B remains constant
and if e > 0 it gyrates about the lines of magnetic force in the (clockwise)
sense shown in Fig. 14.1. This gyration about the lines of magnetic force

FiG. 14.1

is the fundamental characteristic of the motion of a charged particle in a
magnetic field. Note also that since the speed of the particle is constant the:
resolute of velocity perpendicular to the magnetic field, » |, is also constant
and so the trajectory cuts the lines of force at a constant angle. The radius.
of the circular cylinder on which the spiral lies is called the Larmor radius
of the particle; this radius is, in fact, « where « is defined in eqn. (14.3).
But, from (14.3), |{| = na, and since v, = 4/(X2+3?) = |{|, we find that
the Larmor radius is

v, [n = mv, [(eB). (14.9)
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We can best describe the motion as a uniform drift along a line of magnetic
force combined with a steady circular motion around that line of force. The
angular velocity of rotation about the line of force is n = eB/m and is
called the cyclotron frequency (or Larmor frequency) of the charge.

In the following examples we discuss a number of phenomena which
bear on problems of physical interest.

Example 1. A particle of mass m and charge e moves in a uniform magnetic field
B = {B0O0} and a uniform electric field £ = {0 E0}, referred to rectangular cartesian
axes Ox,;x,x;. The particle initially moves in a plane perpendicular to Ox,. Prove that in
general its path is a uniform circular motion relative to a centre which drifts with the velo-
city {00 —E/B}. Show also that the frequency of the circular motion is eB/(2mm),

The equation of motion

do
m P eE+evXB
has resolutes
mi; = 0, (1
m¥, = eE+eBxs, 2)
m).C.a = ‘—eB)‘Cz. (3)

The initial conditions can be taken to be

X1 =Q;, Xp=0, Xz=4a3 X =0, X=Ux=7V, at t=0. (4
Integration of eqn. (1) gives x; = a, so that the particle moves in a fixed plane perpendi-
cular to Ox;. Writing { = x,+ix;, ® = eB/m, eqn. (2) +i eqn. (3) leads to

Friof = £ )
m

The solution of eq. (5) subject to the initial conditions (4), which can be written{= a,+ia;,
¢ =U+iV,is

iEt . 1(E . ;
{= —T+a1+laz+5 (-§—1U+ V) (1—e~iv,

i.e. {—Cp = Re—iwt—n+d) (6)
where
E VvV . U Et . 1 (E
= = 4z 2= -ig = -~ (S gy
Cp (a1+wB+w)+1(a2 o ), Re - (B+V 1U),

so that R, ¢ are real constants.

Equation (6) implies that the point { is a fixed distance R from the point {» which itself
drifts with velocity —E/B parallel to Ox;. Further the vector {p rotates clockwise with

angular velocity w. Therefore the motion is as described, the frequency of the angular
motion being w/(27) = eB/(2zm).

Example 2. A beam of electrons passes through a small aperture into a uniform magne-
tic field of strength B. If the electrons have a speed v at the aperture and are moving in
directions nearly parallel to the magnetic field, prove that the beam will focus at a
distance 2znmuv/(eB) from the aperture, where —e and m denote the charge and mass of
the electron. (Neglect interactions between the electrons.)
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Again we use rectangular cartesian coordinates Ox;xzx; but this time take B = {00 B},
Then the equation of motion for a single electron is

do
m—d—t— =—eoXB

with resolutes

X1+wx, =0, X,—wx; =0, X;=0,

where w = eB/m. Integrating these equations as in Example 1 above we find that the
coordinates of the particle which starts from {0, 0, 0} with speed {U V v), where U, V are
small compared with v, are

x1+ix2 =+%(iU"' V) (l—e“‘"), (])
X3 = vl. 2

Then
X;—ix, = ——:7 AU+ V) (1 —eiw), A3)

Multiplying corresponding sides of egns. (1) and (3) we find
x3+x3 =2(U%+ V?) (1 - cos wt)/w?.

The beam will focus where x%+ x3 is least, i.e. where cos w? = 1. This focussing first takes
place when ¢t = 2n/w at which instant the particles are distant 2nv/w = 2nvm/(eB) from
the aperture.

Example 3. An electron of negligible mass carries a charge e and moves with uniform
velocity » in a medium which offers a resistance ko to its motion. The motion is driven by
uniform electric and magnetic fields

E={(E 0 0}, B={0 B 0}

Calculate o in terms of e, k, E, and B.

A conducting medium may be regarded as composed of a large number » of electrons
per unit volume, whose motion is resisted (according to the above law, with k given) by
a fixed framework of positively charged particles, the total charge-density of the medium
being zero. On the assumption that the magnetic field due to the current j is negligible,
calculate the conductivities 0; and o, in the relation

Jj=1{0.E 0 o0;E}.

When the conductor is bounded by planes z = constant, initial currents in the z-direc-
tion establish surface charges on the bounding planes which give rise to a z-component
of electric field. Calculate the strength of this field in the final steady state when the
z-component of current has been reduced to zero. Show also that the corresponding con-
ductivity o5 in the relation

Jj={03E 0 0}

satisfies the equation

The equation of motion of the electron is

m%=e£—kv+eox8. )



574 ELEMENTARY ELECTROMAGNETIC THEORY, VOL. 3
‘When the electron moves with constant velocity, do/dt = 0, and eqn. (1) reduces to
eoXB—ko = —¢E. 2
Taking scalar product of (2) with B gives
—koeB = —¢E.B. 3)
Also taking vector product of (2) with B gives
e(oXB)XB—kox B = —eE x B,

ie. e{(v*B)B—B%}—kvoxB = —eExB.

Then using eqn. (2) to substitute for » x B and eqn. (3) to substitute for o« B, we have finally

2
0 ¢ExB+ kE+% (E-B)B}. @

-__ € {
T k*+eB?
The current density vector j is given by

Jj = neo, )

see Vol. 1, p. 153. With the given expression for E, B we find

., ne®E
J= m{k 0 CB}.
kne? ne®B
Hence = R

When the z-component of current has been reduced to zero, let the z-component of
electric field be E;. Then eqns. (4) and (5) now give

, net

(he vanishing of the z-component implies that

E; = —eBE/k.
Therefore
ji={i. 0 0}
where
neX(kE+ e*B%E|k)
= prep
kne? ne®B \? kne?
T Wwrer +(k2+e232) / (k2+e232)}E
= o3E.
Therefore
g3 = 01+0_§ .

0
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Example 4. A particle of mass m and charge g, initially at rest at the origin, is acted on
by a constant electric field {E and a constant magnetic field kB, where i and k are unit
vectors along the x-and z-axes. The particle is subjected to a resistance mAp, where o is
the velocity and 4 is a constant. Show that the subsequent motion is given by

qE

'—_-ﬂ_-pl —-A'ig. =
x+1y—pmt (1—e—®), p= +1m, z=0,

mp?

and determine the direction and magnitude of the terminal velocity.

As in Example 3 above, the equation of motion of the particle is

d _eE_ 5, 9«p
dr m m
with cartesian resolutes
<, 2. 9B . _gE
X+Ax et et (¢))
B
j+ip+ =0, @
m
i+ Az = 0. 3)

The initial conditionsare x =y =2=0,x=y =2 =0, atz = 0.
Equation (1)+iegn. (2) gives

. igB\ E

E+(a 2N =2,
m m

where { = x-+iy. The solution of this differential equation (subject to the initial conditions

{=0="Catt=0)is

where p = A+igB/m, as required. Equation (3) integrates to give z = 0.
As t — oo,
.. .. 9E _ qE[(A—igB[m)
x+ly pm  m(A2+@*B*m?) "

Hence the terminal velocity has resolutes

(g oo )

K K
where K = m(A%+ ¢q*B*/m?).

Example 5. A certain rectifying device consists of two coaxial circular cylindrical con-
ductors of radii a and b(a < b). A potential difference is maintained between the conduc-
tors, and a magnetic field parallel to the axis is applied; the space between the conductors
is evacuated. Electrons, of massm (assumed constant) and charge g, are released from the
inner cylinder with negligible velocity. Assuming that the electric potential ¢ and the
magnetic flux density B are functions of the axial distance r, prove that

Im(F2+r26%) = g{p(a)—p(r)} and mr? =—gq f sB(s) ds,

where 6 is the longitude.
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Deduce that, if the electrons reach the outer cylinder, the potential difference between
the cylinders must be at least as great as

| g] N*/(872mb?),

where N is the magnetic flux between the cylinders.
[Neglect interactions between the electrons.]

We use cylindrical polar coordinates (7, 8, z) with the origin on the common axis of the
conductors and Oz along the axis. Then the longitudinal (transverse) and axial resolutes of
the equation of motion are

m 4 s —omn &
T ar (r 6) = —qB(r) dr’ (§)]
mz = 0. 2)

Equation (1), written in the form
d L. dr
m g 6) = arB) 47 »
integrates (w.r. to 7) to give

mrif = —gq f sB(s) ds 3)

on using the conditions # = 0 = 6 when r = a (following from negligible velocity of
emission).

Equation (2), combined with the initial condition z = 0 = 7 at emission, implies that
z = constant and so each electron moves in a plane perpendicular to the axis. Then the
energy equation (14.2) implies that the gain of kinetic energy 1mo? is equal to the loss of
potential energy g{¢(a) —¢(r)}. Expressed in cylindrical polar coordinates this gives

Im(#+r26%) = g{Pp(a)—P(r)}. G)
From eqns. (3) and (4) we find

# = 2 (pa) -9}~

;::rz { f sB(s) ds}. ) )

For the electrons to reach the outer cylinder 72 > 0 for a < r < b and in particular 72 = 0

when r = b, i.e.
b

2
2 2
L ip@-goR = 1 f sB(s)ds} . ©)

But the magnetic flux, N, between the cylinders is given by

b
N =2z [ 5 B(s) ds

and so the inequality (6) becomes

—g{p(b)—P(a)} = ¢°N?/(8a*mb*?)
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which, since g is negative, reduces to
P(b)—P(a) = | q| N?/(8n*mb?)

which is the required relation.

Example 6. The equation of motion of a charged particle moving in uniform constant
electric and magnetic fields E and B is

F=E+FxXB 1y
where r is the position vector and dots denote differentiation with respect to time.

The particle is projected from the origin with velocity o; E is parallel to o, but perpendi--
cular to B. Show that after a time ¢,

F = Et+rxB+o, @)

Feof = pev+2Eer, 3)
reB =0, )
F+Br = E+oxB+ExBLt. 5)

Hence deduce that

r = (E+ox B) (1—cos Br)/B*+(B%+ B x E) (sin Bt)/B3+(Ex B)t/B%.

Equation (1) integrates at once to give
F = Et+rxB+C,

where C is a constant vector. The initial conditions r = 0, r = p give C = p and so egn..
(2) follows.
Taking the scalar product of both sides of eqn. (1) with 7 we have

Fef = EF,
. d /1. d
1.€. E— (’ff.r) = E (E‘r).
Integrating we find

¢ 1]

] - [,

0 ()

i.e., FoF = pov+2Eor. (€))

Taking the scalar product of both sides of eqn. (2) with B, remembering that r x B is.
perpendicular to B by definition and that E and o are given to be perpendicular to B, we:
find

FeB = 0.

Therefore % (reB)=0

or reB = A, where A is a constant scalar. Since r = 0 at ¢ = 0, it follows that 4 = 0 and
eqgn. (4) holds.
Now substitute # from egn. (2) into the r.h. side of eqn. (1). Then
¥F= E+(Et+rxB+v)xB = E+EXBt+(rxB)xB+oXxB
= E+ ExBt—B®r+(Ber)B+0oXxB,
i.e. ¥+B% = E+oxXB+EXBt (5)

on using eqn. (4).
EET 3-10
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The solution of eqn. (5) is

r=r.tr,, (6)
‘where
F.+B%, =0,
i.e. r, = L cos Bt+ M sin Bt, @)

L, M, being arbitrary vectors. The particular integral of (5) is clearly
r, = (E+oxB+EXBt)[B*. 8)

.Substituting from eqns. (7), (8) in eqn. (6) and using the initial conditions r = 0, r = v
Jeads to the required answer.

Example 7. A particle, of mass m carrying a charge e, moves in vacuo in an electric
field £ and a magnetic field with magnetic flux density vector B. Referred to a system
-of rectangular cartesian axes Oxyz, E = {E;x E,y0}, B = {00 B,}, where E,, B, are
.constants. Show that the velocity of the particle parallel to Oz remains constant. Show
.also that, if e2B3 > 4mekE,, the distance of the particle from the axis Oz remains finite.

If this is so and the particle is initially at rest at the point {a 0 0}, find the maximum
.distance of the particle from the origin O during the subsequent motion.

Referred to rectangular cartesian axes Oxyz the resolutes of the equation of motion
.of the particle P are

mi = eEyx+eB,y, (¢))
my = eEyy—eByX, 2
mz = 0. A3)

Equation (3) integrates at once to give Z = constant, implying that the velocity of P
‘parallel to Oz remains constant. Writing { = x+iy and taking egn. (1) + ieqn. (2) gives

mi +ieBol —eEgl = 0. @)
The general solution of eqn. (4) is
{ = Per'+ Qe

‘where P, Q are complex arbitrary constants and @, , are the roots of the auxiliary equa-
tion

mw?+ieByw—eE, = 0,
ie. wy, Wy = {—ieByt v/ (4meE, —e*B})}/(2m).

If w,, w, are purely imaginary, then |{ | is bounded and so v/(x2+ y?) remains finite. There-
fore the distance of P from Oz remains finite if

e2B3 > 4meE, .

In this case, and when the particle is initially at rest at {a 00}, eqn. (3) integrates to
:give z = 0. Also
C - Peimt_;,_erql
where
%1, 2 = {—eByt 1/(e*B%—4meE,)}/(2m)



§ 142 THE MOTION OF CHARGED PARTICLES 579
and ¢ = a, ¢ = 0 at t = 0. Therefore
P+Q =a, ixP+ix,Q =0,

whence
a
.= P (xzeix,t_,‘leiml)_
in this case
I a%{x3+ 2% — 2% %, COS (xl—xz)t}
(%, —x5)?
The greatest value of » = +/(x%+ %) occurs when cos (x; —x,)t = —1 and in fact

Pmax = |a(¢1+%3) /(%1 —%5) |
! aeB, l
(e2Bi—4meE,) |

Example 8. Find the equation of motion in cylindrical polars r, ¢, z if a particle of
mass m carrying a charge e is moving in the magnetic field due to a constant current I in a
long straight wire along the axis of z. Find 7* as a function of r and, by sketching this func-
tion, prove that the distance of the particle from the wire oscillates between fixed upper
and lower bounds.

In the equation of motion

mb = e(E+ox B), [€))
s P
B={0 2%%; O}, v={r rp z}, E=0,

5 = {F-rd® % %(rzqé) z}.

‘Therefore the resolutes of eqn. (1) are

w_ e _ poel _z_
Ford 2am r’ @
1 d :
14 gy o, &)
5 _ Mol _"_
= 2am v @
The energy integral gives
P+ (rd) +2 = a (constant) 0]

and the angular momentum integral [the integral of eqn. (3)] is

2$ = h, (6)
The first integral of eqn. (4) is
_ el r )
where b is constant. Therefore eqn (5) gives [using eqns. (6), (7)]
= [ (5)] =
P=a i | (5] =S, say. ®
Then
df 1 2K  piel® ln(L)]
E‘.~T[—rf_ 272m® b/l

10+
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20Yr?
In(r/b)
b r
FiG. 14.2

The first term in the bracket is a strictly decreasing function of r, the second term an increas~
ing function, see Fig. 14.2.

Therefore df/dr has only one zero which must be a maximum of f (df/dr changes from.
+ve to —ve there). The conditions of projection imply that /2= 0 at, say, r = R.

f(r)

Fic. 14.3

When /* > 0 at r = R, f(r) > O there. Also, as r - 0, f(r) > —oo; and as r - oo,
f(r) > —oo. The graph of f(r) is therefore as sketched in Fig. 14.3, and the shaded portion
corresponds to the possible positions of the particle which must oscillate between o and £,
the time of oscillation being finite since

B

[ ey

o
converges.

a 7R 7

(i) (iii).
FiG. 144




§ 142 THE MOTION OF CHARGED PARTICLES 581

When i = 0 at r = R, we may have one of the following cases shown in Fig. 14.4.

(i) the particle oscillates between R and S,
(ii) the particle oscillates between « and R,
(iii) » remains constant.

Example 9. The use of the Lagrangian
Show that the equation of motion of a charged particle may be written
d (oL oL
E(a—xu)_a_%’ («=1,23)
where

L = tmv*—ed+eve A,

and where 4 and ¢ are the potentials of the external field, x, are rectangular cartesian
coordinates, and d/d¢ operating on a field variable denotes the time derivative following
the motion of the particle.

If E = 0 and B is uniform, show that the particle moves in a helix.

When the “generalized” coordinates x, are in fact the cartesian coordinates of the
particle, then Lagrange’s equations of motion in the form
d (9oT\ OT
)2 - x
(axu) ox K= M

dr

have the rectangular resolutes of the force acting on the particle as the right-hand sides.
In mechanical systems under the action of conservative forces the components are the
derivatives

X, = —-0oV/ox, )

of the potential energy. When the forces depend on the velocities X, in a special manner
the usual form of the equations of motion can be retained. This is possible when

d (oU\ oU
X= g (%) ~om, @
This reduces to (2) if 9U/0x, = 0.] The Lagrangian function is defined as
L=T-U
so that (1) becomes the usual form
d (OL oL
ar lo5)~am = O @

The Lorentz force acting on a charged particle can, in fact, be put into the for m (3)
Expressed in suffix notation the Lorentz force is

X = e(E+v X B), = eEq+ &,8,%gB, .
We now substitute the vector and scalar potentials

E= —grad¢v—%—1:, B = curl 4,

i.e.,
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Then
([ op o4, . 04,
R
[ 0p 04, _ 04,
=e { r AT + (0280~ Ouclap)%p o }

[ 3 Bd., , 0dp . 04,
= e{‘a:“ ot TPox, P ax,,}'

Since A4, depends upon x, and ¢ we can write

dd, 04, . 04,
dar ~ ot Poxg”

o _ . 0dg
Also 'aTa (XﬂAp) = xﬂ 'éz .

Therefore X, = e{—% (¢—J&,3Ap)—dg:}.
-2

If we now introduce U = e(¢p — xgAp), we find

(V). ok
dr \&x,/ — ~ar
Therefore Xo = e{_aa—x-U'i'd_dt (GGTU)}

. "}Il'he equation of motion of the particle can thus be put into the Lagrangian form (4)
" L =T-U = }mv*—ep+expdg = }mo’—ed+e(ve A).
For the uniform fields E = 0, B = Bk we take ¢ = 0, 4 = 1B(kXr).
Then L = 1mv?+LeB(oek xXr) = tm(%}+ %3+ %32+ LeB(x1 X2 — x2%;)

and the equations of motion are
d .1 P
ar (mx,—%eBx;)—%LeBx, = 0,
d v 1 1,85
Et— (mx2+—2-eBx1)+§eBx1 = O,
d .
ar (m3g) =0,

i.e. ¥1—(eB/m)xy = 0, Xy+(eB/m)x, =0, X3=0.

These equations are the same as those given on p. 570 and lead to eqn. (14.3) and corre-
spond to motion on a helix.
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Exercises 14.2

1. A charged particle of mass m and charge e moves under the influence of a uniform
electric field of intensity E parallel to the x-axis and a uniform magnetic field of intensity
B parallel to the z-axis. The particle starts from rest at the origin at time ¢ = 0; show
that at time ¢ its coordinates are given by

E E .
X = w—B(l—cosmt), y= —w—B(wt-—smwt), z=0,

where w = eB/m, and show that the speed of the particle is given by +/(|2eEx/m)|).

2. An electron of mass m and charge —e is emitted with negligible velocity from a thin:
straight wire, and thereafter moves under the action of a magnetic field of intensity
B parallel to the wire and an electric field of potential Er, where 7 is the distance from the:
wire and E and B are constants. Show that the electron describes a cardioid with
angular velocity eB/2m about the wire,

3. A bead of mass m, and bearing a charge e, is free to slide on a smooth, circular, non-
conducting loop of radius q, fixed horizontally. A vertical magnetic field has magnitude:
By(t)a?/(a®+r?), where t is the time, and r the radial distance in the horizontal plane
from the centre of the wire. Show that if the bead is initially at rest, its velocity at time
t, with an appropriate sign convention, is

e

v = ﬁ[BO(O)—BO(t)] In2.

4. A magnetic field, parallel to the z-axis, whose magnitude depends only on distance:
from the z-axis, holds a charged particle in a circular orbit about the z-axis. Show that
the speed of the particle can be increased by the action of the electric field induced.
by varying the magnetic field, without any change in the radius of the orbit, provided
that the average magnetic field inside the orbit is twice the field at the orbit.

5. A radial electric field of uniform intensity — E is maintained between a circular cylinder
of radius a and a uniform wire lying along its axis, and a uniform magnetic field of
intensity B is applied parallel to the wire. If electrons of mass m and charge —e leave
the wire with negligible speed, show that the path of such an electron is a cardioid and
that none of the electrons will reach the cylinder if

B? > 8mE/(ea).

6. An ion of mass m and charge e moves in a gas in a constant electromagnetic field of
vectors E, B and undergoes a resistance of amount v/k, where o is its velocity. Assuming
a terminal velocity V for the motion of the ion, show that this is given by

V(1 +k?2B?) = keE+ k?*e2E x B+ k%°B(B-E).

7. Current I flows along a circular cylinder of radius a, surrounded by a concentric
conducting cylinder of radius b, which is maintained at a constant potential ¥ above
that of the inner cylinder. A uniform field B is applied parallel to the cylinders.

Electrons of mass m and charge —e are released with negligible velocity from the
inner cylinder. Neglecting variation of mass with velocity, show that, in cylindrical
polar coordinates (r, 0, z)

g = ‘;% A=), 3= —;‘—;;%’; In r/a.
[P.T.O.
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From energy considerations, or otherwise, show that if electrons are to reach the outer

cylinder,
_ e B ., o\%, sl b\)?
Vo s @) + G ) ]

8. A particle of mass m, carrying a charge ¢, moves in free space in an electric field
= —grad f(r) and in a uniform magnetic field of induction B, = By = 0, B, = B.
(r, 6 and z are cylindrical polar coordinates.) At time ¢ = 0, Z = 0. Show that

z,  Im@E+r0)+qf(r), mr*6+1qBr

remain constant throughout the motion.

An infinite earthed wire of negligible radius lies along the axis of an infinite circular
cylinder of radius a whose potential is ¥; a uniform magnetic field of induction B is
applied parallel to the wire. An electron of charge —e(e > 0) and mass m is emitted
from the wire with zero velocity. Show that it cannot reach the cylinder if

ea*B?
8m °

9. Prove that the path of a particle moving in a uniform magnetic field Bk is a helix
of the form

x = (Ulw)sinwt, y= Ulw)coswt, z= Wi,

where w = eBy/m, and {UO W} are the components of the velocity of projection.
If the field is non-uniform, being given by

B = By(cyi+exj+k),

where ¢ is small, prove that the components {u v w} of the velocity at time ¢ are
approximately,

u = U coswt, =-U(l-eW/w)sinwt, w= W,
the circumstances of projection being the same as above. (The unit vectors i, j, k
denote the directions of the coordinate axes.)

10. A particle of mass m and charge e moves in the magnetic field of a current J flowing
in an infinite straight wire.
Show that

(i) the angular momentum of the particle about the axis of the wire is constant,
. etioJ
(ii) mv cos 6 — % In r = constant,

where v is the speed of the particle, r its distance from the axis of the wire,
and 6 the angle its direction of motion makes with the direction of the current.

Show further that if the particle be projected from a point P distant a from the wire
with velocity u in the direction of the magnetic field at P, the trajectory will be confined
to the region of space a < r =< b, where b is the positive root of the equation

@ (epod \* r\?
1 P (anu) (ln 71_)

other than a.
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14.3 Charged particles and currents

Since electric currents consist essentially of moving electric charges,
some insight into certain problems of current flows can be obtained by
considering the motion of a number of electric charges under the influence
of electromagnetic fields. A complete discussion of the dynamics of a fully
or partially ionized gas (or plasma) is beyond the scope of this book; as
indicated on p. 569 the mutual interactions between the moving particles
may profoundly influence the results which those for an isolated particle:
might suggest. However, we derive below two results of physical importance:
from the elementary equations.

1. THE POYNTING VECTOR

Since the force acting on a charged particle is, with the usual notation,,
F = ¢(E+vx B), the rate of working by the electromagnetic field on the
particle is F.v, i.e. eE-v. Suppose now that in an element dr of the volume
contained within a closed surface T there are N charges of magnitude +e, the
velocity of the rth of these charges being V,, and n charges of magnitude:
—e, the velocity of the sth of these being v,. Then the rate of working of the:
electromagnetic field on all the charges within the element dz is

E. (eZI:: V,—eivs).

But the electric current j is defined by

N n
eY Vi—ed)v,=jdr
1 1

(see Vol. 1, p. 153). It follows that the rate of working of the electromagnetic
field on the charges within dr is j-E dr and so the rate of working on the

charges within T is
[[[jE dx.
T

Here, of course, E is the total electric field. Then it follows by the results of”
Vol. 2, pp. 425-427 that the Poynting vector E x H may be interpreted as the:
intensity of flow of electromagnetic energy.
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2. CURRENT LIMITED BY SPACE CHARGE

The emission of electrons and ions from charged conductors is important
in various problems of electronics. We now consider the steady flow in
vacuo of a current in which only electrons or ions are present so that the
current is carried by charges of one sign only and the net space charge g in
the neighbourhood of charges is not zero. Further, we assume that the
motion of the charges is so slow that the electrostatic potential ¥ and field
E can be calculated as if the charges were stationary. Then Poisson’s equation
must be satisfied so that

V2V = —p/eo. (14.5)

If each particle has mass m and gains its energy solely from the electric field,
then the energy equation of a typical particle is

3t = e(Vo—V), (14.6)

where V' is the electrostatic potential at the point of emission of the particle.
Further, the current density j at any point is given by

j=o. (14.7)

Eliminating ¢ and v from eqns. (14.5)-(14.7) gives a differential equation
for V.

Unidirectional flow

As a special case we consider a one-dimensional flow. Suppose that the
charges are emitted freely in unlimited quantity from the plane x = 0, at
which V= ¥y, and move parallel to Ox, the current per unit area flowing
parallel to Ox being I. Then in this case the equation for ¥ is

dz I m
T e V{ze(Vo—V)}' (149

Since in the steady state charges are emitted at the plane x = O until the
electric field vanishes there (i.e. until the field can no longer move the charges
away from the plane) the boundary conditions are

dv

V———Vo, a-;_‘:-o at x =0.
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The first integral of eqn. (14.8), obtained after multiplying by the integrating
factor dV/dx, is
AV\e_ 4L [ mFo=V)
(dx) T & 2e )
A further integration, after taking the square root, gives

91 m
Vo—V)B2 = — ) x2 (14.9
( 0 ) 4eg (12€)x ’ (1 )

If V' = 0 when x = g, so that the plane x = a is an earthed plate, eqn. (14.9)

gives
1/2 3/2
1=%(2_r:) % (14.10)

Equation (14.10), known as Child’s equation, shows that the current varies as
the voltage to the power % The effect of the space charge is to retard the
flow of current which is therefore said to be space-charge limited. Note that
since m is much larger for ions than for electrons the space-charge limitation
effect is much greater for ions than electrons.

Example. Electrons of mass m and charge —e are liberated with negligible velocity
from an infinite cylindrical conductor of radius a at zero potential and pass towards an
outer concentric cylindrical conductor maintained at a higher potential. Treating the
particles in the space between the cylinders as a continuous distribution of negative
charge, show that when a steady current I per unit length of the cylinder is flowing, the
potential ¥ at a distance r from the axes of the cylinders satisfies the equation

axv 4V

a9

where

, 3,172
x=In(/a), = 8;% (ZeV ) .

m
Hence, show that y satisfies the differential equation

d? dy\? d
yEhe 1) a(

and find the three coefficients 4, B, C of the series solution
y = Ax+Bx*+Cx*+ ...

This example is a much closer approximation to cases which occur in practice where
electrons are emitted from a long cylindrical cathode (of small radius) and accelerated by
a radial electric field so as to move towards a coaxial (larger) cylindrical anode.
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Using cylindrical polar coordinates as specified, and assuming axial symmetry so that
all variables depend on r only, egns. (14.5)-(14.7) become

&V 14V e

[ n
1mv? = eV, 2y
1 = —2arpv,, 3)

where v, is the (radial) velocity, I is the total current emitted per unit length of the
cylinders. Elimination of g, », from eqgns. (1)-(3) gives

av  dv I m
re e = ma V) @
Making the substitution » = ae® so that
rdV/dr = dV/dx, r?d&V/dr2 = @V/dx®—dV/dx,
eqn. (4) becomes
azyv rl m
dx T 27z, (ZeV)' )
Then defining y by the relation
8ne, (2el/3\1/2
27 — 0
il = 20 (2 ©
transforms egn. (5) into
aav 4V
rria (7)

as required.
To obtain the equation for y, we eliminate ¥ from eqn. (7) and eqn. (6), which can be
written V = ke?*/3y4/3, where k is constant. We find
LEY_4 Tk 4dy, 4 by
V dx® ™ 9 "9y dx 3y dx? ' 9y \dx
and substitution in egn. (7) gives
dry LAY dy
3}’@—1 y (a) —4.}’a 8y
as required.

Assuming the series solution specified and equating coefficients in the usual manner,
we find the solution of eqgn. (8) to be

2 1 4T

YEXTE X120 ¥ 73300
after using the initial conditions y = 0, dy/dx = 1 at x = 0. These conditions follow
from the fact that ¥ = 0 = dV/dr when r = a, i.e. V = 0 = dV/dx when x = 0.

x4 ...

14.4 Relativistic motion of charges

The correct equation of motion for a charge which may be moving at a
speed comparable to that of light was obtained in Vol. 2, p. 359, in the form

%’:‘ = e(E+vxB), (14.11)
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where
T V(A—¥ed)

These equations of motion are far from easy to solve in general, and we
shall confine ourselves in this section to cases where the electric and magnetic
fields are constant both in time and space. The first step is to derive the
change of the mass of the particle with time, that is, we calculate

p=mo (14.12)

AT @\ VA=A (- (14.13)

In order to do this it is only necessary to notice that

dm d { mo } movev/c?

_ _ mov-do/c? mo dv
dp=vdm+mdo=v (1= 22 + V(=¥ °
Hence v-dp/c* = dm,

so that by using the original equation of motion the magnetic field drops
out and the result
dm eE-v
g gL (14.14)
follows. Thus the rate of change of mass is determined only by the work
done by the electric field on the particle. This is because the magnetic force
acts on the particle in a direction at right angles to the direction of motion.
Consider now a charge in a uniform constant electric field E, when the
magnetic field is zero. The direction of the field may be chosen as one of the
coordinate axes, say the x-axis. It is clear from the equation of motion that
the path will lie in one plane which may be chosen as the plane Oxy. With
these conventions the equation of motion can be written [if p = {p1 p2 ps}]

pr=¢eE, p.=0
and these may be integrated once to give
p1 = eEt+ci, p2=cs.

It is clear from the form of the first of these equations that, for some value
of the time, the x-component of the momentum vanishes. It is therefore
convenient to choose this moment as the zero for time reckoning and use
the simpler solution in the form

D1 = eEt, P2 = Ca. (1415)
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But the mass of the particle may be written in the form
m = /(mi+p?/c?), (14.16)

and so, by inserting this into eqn. (14.15) the mass is determined as a function
of the time in the form

m = /{m}+(c}/c)*+ (eEt)*/c%} = {m3+ (eEt)*/c?}, (14.17y

where 7o denotes the mass at time # = 0. Now the velocity of the particle
has the form v = p/m, and, since this is the time derivative of the position,
the x-coordinate can be found by one integration thus:

dx eEt

2
& = Ve o eiEv{rﬁg+(eEt)2/c2}. (14.18)

Here the origin has been chosen as the initial position of the particle so that
there is no constant of integration. In the same way y is easily found, thus:

»___ o o s (2).

dr ~ Vimt(ER’ ¥ T eE oC

By eliminating ¢ the equation of the path is found to have the form

_ C'my eEy
x= 7 cosh (E) (14.19)

that is, a catenary.
Consider next the case when there is a magnetic field but no electric
field. Choose the direction of the field as the z-axis. The equation of motion

now takes the form
P = uoevx H.

However, m is now constant (so that [v| must be constant) and so

dv  pee
— =" pxH,
dt m oX
. poeH . oeH .
1.e. Uy = o vy, Uy =—-‘u—m~ Vy, U,=0.

These are just the equations in the non-relativistic case, except that m has a

different (but constant) value. We integrate them in the same way. If the

second of these equations is multiplied by i and added to the first, we obtain
poeH

d . . .
a(vx+wy)=——1w(vx+wy), where o = prant
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which can be integrated at once. Writing the solution in the form
vet+iv, = ae~i®t, g = pe~i*,
where b, a are real, it follows that
vy = b cos(wt+e), v, =—b sin (wt+a). (14.20)
The results which have just been found can easily be integrated again and

show that the projection of the motion on the x— y plane is a circle. At the:
same time, from the third equation of motion it follows that

z = zo+kt,

corresponding to a uniform motion up the z-axis. The total path is therefore:
again that of a circular helix.

It remains to consider the case when both electric and magnetic fields are
present. The interesting special case here is that in which the fields are
perpendicular. Even without this restriction one way of dealing with the:
problem is by successive approximation. We first of all solve the non-
relativistic equation as in § 14.2 above, which is straightforward because the
mass is constant. The Newtonian solution may then be used as an approximate:
solution for determining the variation of the mass and the resulting equations
integrated again. This is not, however, a very satisfactory way of proceeding,.
for it requires that the velocity of the particle shall remain very small and.
this is found to require the component of the electric field perpendicular to
the magnetic field to be very small. In the case in which we are most interested
the electric field is entirely perpendicular to the magnetic field.

A Dbetter way of proceeding is to use the transformation of electric and
magnetic fields found in Chapter 12. It was shown there that any pair
of mutually perpendicular electric and magnetic fields could be transformed
into either a purely electric or a purely magnetic field by a Lorentz transfor-
mation. The only restriction is that if the fields are mutually perpendicular-
and a certain relation exists between their magnitudes (i.e. uoH? = &oE?) this
transformation is impossible. For perpendicular fields, then, it is only neces-
sary to consider this limiting case. This can be done as follows: choosing the
coordinate axes so that the E-field is parallel to the y-axis, and the H-field
is parallel to the z-axis, we have

Dx = epov,H = %E,
P, = eE—euovH = eE( —”7) (14.21)

5. = 0.
(Here we have used the fact that H = 4/(co/uo)E, and also c2uoeo = 1.)
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These equations have the usual consequence that

dm e e
—_— = —-—-E-v = '—Ev .
dt c? 27

Accordingly, on integrating,

p: = constant,

Px—mc = constant = —e (say). (1422)
Moreover,
mct = mic2+p?,
so that
m?c*—p? = mic®+p2+p? = pi+k* (say), (14.23)
where k is constant. Hence
(mc+pJa = py+k?, (14.24)
so that
_ Dtk
me+py ==,
whilst
mec—py = o
as before. Hence
_1 Ptk
me = (a+T), (14.25)
_ L (p+k
Pe=7 (T‘“)-

Moreover, since p,, = mv,, the second equation of motion becomes

mp, = eE(m—i’ci) - ffiﬁ (14.26)

This now gives a differential equation that will connect p, and ¢. For since
mc = p, +a, and p, is given in terms of p,, it follows that

1 pi+k> 1 ).
{oc 3 T —Eoc}py—eEoz, (14.27)

SO

1 p3 k2
wpy+5 ‘;_y + = py = 2eEat. (14.28)
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(Here we are assuming that p, = O when ¢ = 0.) The rest of the determination
of the trajectory is performed by changing the variable from ¢ to p,, for

mdp, = eEx dr,
and
m3x
dr = b=
so that
A _ope 1 ¢ [p+R
dp, = eEx = 2 eEx P )
Hence
L PN 2
*= 2eEx? (e —a )py+6eEazz ’ (14.29)
and similarly,
c2 zc2
y=sg8 z=2p, (14.30)

which define a twisted cubic curve in parametric form.

Example. A particle of rest mass m and charge e moves in a uniform magnetic field
of flux density B. Show that the velocity » of the particle has a constant magnitude v
and that the particle describes a helix with axis parallel to the magnetic field. If the angle
between o and B is «, show that the helix lies on a cylinder of radius

(mev sin @)/[eB{1 — (v/c)?}V/?] .

By means of a moving frame of reference, or otherwise, show that if such a particle
moves in uniform fields of intensities E and B, at right angles to each other and such that
c¢B > E, and the particle starts from rest at ¢ = 0, its mass at time ¢ is

m{B%—(E?/c?) cos 0}

B —(E*/¢)
where te{B*—(E*[c})}*® = m{B%0 —(E%/c?) sin 6}.
Let M = W'—TW be the relative mass. The equation of motion is
4 (MF) = ef X B.
dr
Hence
Mie c?t (MFi)=0
so MFr? = constant,
. mi?
i.e. T-FE = constant,

which implies 72 = constant and so M = constant.
EET 3-11
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We return to the original equation and integrate once:

MrF = erx B+ c,
so that
Be+F = c+B/M = constant.

Since 72 is also constant, this proves that the tangent to the path makes a constant angle
with the fixed direction B, i.e. that the path is a helix.
Taking B = Bk, by a suitable choice of axes, we then have

Mx = eBy+c,,
My = —eBx+c,,
M: = C3,

so that the z-component of velocity is also constant. By choosing the origin suitably, it is
obviously possible to make ¢; and ¢, vanish. Then

M2 = —e*B%x,
so that
eBt . [eBt eBt
x = Pcos (T/I—) +Qsin (W) = R cos (W—qb), (say) ()
with y = M#/(eB) = — Rsin (%—qﬁ), @)
In order to determine R, we observe that
X242 = ReB v?sin® «
V= = .
Muvsin a mv sin a
R= eB ~ eB+y/(1—-v%cd) G

When E and B are at right angles and ¢B > E it is possible to choose a frame of reference
in which the electric field vanishes, for if B = Bk, E = Ej and we perform a Lorentz
transformation along the x-axis, with velocity V, then in general

E; = E,, Bi = By,
E; = B(E;—VBy), B; = B(By+ VE;/c?),
Ej = B(E;+VBy)  B; = f(B;— VE,/c?),

which give, with the special choice V = E/B,
E'=0, B ={0 0 B/f}.
In the primed coordinate system the initial velocity of the particle is

{—E/B 0 0}
so that
v'? = E*/B*.

In this frame O’x’y’z’ there is no electric field and so the motion corresponds to tha
discussed above leading to eqns. (1), (2) and (3). Since the initial velocity of the particle
in this frame, is {—E/B 0 0} the phase constant, ¢, in eqn. (1) is 7, and the (constant
speed of the particle is ¥* = E/B. Because z’ = 0 initially the motion takes place entirely
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in the plane z’ = 0, i.e. « = 7/2, and is the circle

x" = —R’sin (?11\34/; ) y = R’ cos (_e%), =0 4)
corresponding to (1) and (2). The radius of this circle is
R - M _ mv’ _ mE
eB’  eB(1—v?cH?  eBB{1—E/(B:cH))* °
Since B’ = B{B—E*[(Bc®)/? = (B2—E%[c?)'2,
mE

’

9(32 Ez/cz)l/.

The information concerning the motion is required in terms of observations made in the
frame Oxyz and ¢,

VPR mE* . [eBt BRI -1
0= B vrje) = {1~ sin (S ) HI - )
eB'r ¢ E?

o ="\ — __(B—-"1\¢r
We put M’ mB (B ct ), ’
so that

- mB0
AB*—E¥c?) °
2() 21,2y o1

and _ m{B*0 — (E?/c?) sin 0}

0( B3 — E2/c2)312

In order to calculate the mass we must know the velocity; and we can easily find this
in the frame O’x’y’z’ and transform it to the frame Oxyz by using the addition formulae
for velocity (see Vol. 2, § 9.2).

y o »+E/B » v {1 —E*[(B*c*)}M*
T URWEIBE YT T 1F 0 ENBS)
Now
,_dx" Rl __E
vy = T Y —cos f B cos 8,
v, = %);—, = RA;B sinf) --—-i— sin 0.
o — (EBY(—cost) - (E[B)sin ({1 —E*/(Bic)*
T (BB cos T v T 1= (E2/B%?) cos O
giving
v? = vl
2 D2 ¢
_EBE (1 —cos 6)%+ (I—L) sin? 61,
{B*—(E?*/c?) cos 0}* Btc*
D‘.‘. B (BZ_EZ/C2)2
Hence ' T B (ES cos O
_ m _ m{B*—(E*/c?) cos 6}
and M= a-- v-z/cz)lfz - B»z_Ez/cz
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1.

Miscellaneous Exercises XIV

Solve the problem of a particle moving relativistically in an electric field Ej and a mag-
netic field Bi by successive approximation.
Find conditions for your solution to be valid (so that » <« ¢ throughout the motion).
Contrast the first approximation found in the case when g fI* = &,E* with the solu-
tion found in the text.

. A stream of electrons, each of mass m and charge —e, is emitted normally from a

cathode lying in the yz-plane, and moves under the action of an electric field of variable
intensity E(x), parallel to the x-axis, and a magnetic field of uniform intensity mam/e,
parallel to the z-axis, w being a constant. If i, v are the x, y components of the velocity
of the electrons at any point, show that in the steady state

du e dov

H——=—-—FEXx)—ov, and ——=0m, u#0.

dx m dx
An electron of mass m, charge — e and velocity », moving in a constant uniform mag-
netic field Bk, experiences a force

—eBox k,

where k is a fixed unit vector. Prove that if the electron is subject also to a force F = f(r)r,
where r is the position vector of the electron relative to a fixed origin O, the equation
of its motion relative to a frame rotating with constant angular velocity mk about O is

m{F - 20k X F 0’k X (k xr)} = F—eBi x k—eBo(k xr) x k.

Hence show that if eB/m is small the effect of the magnetic field is, to the first order
in eB/m, to cause electron orbits to precess with angular velocity (eB/2m)k.

When there is no magnetic field an electron moves in simple harmonic motion with
frequency n along a straight line /. Show that in a constant uniform magnetic field,
inclined at an acute angle « to / and of magnitude B such that eB/m is small, the motion
of the electron is composed of vibrations with frequencies n, n-+-n" and n—n’, where

n = eB/(4nm).

. Electrons leave the surface of a conducting circular cylinder of radius a with negligible

initial velocity and are accelerated towards the surface of a coaxial conducting cylinder
of radius b (b > a) by means of a radial electric field. The difference in potential between
the cylinders is V' and a current I flows along the inner cylinder. Neglecting effects
due to space charge, show that if a uniform magnetic field B is applied parallel to the
axis of the cylinders the electrons will fail to reach the outer cylinder if

e /toL( ’1) B e }
V$8/11{ n? In a 1 b? (b=’

Show also that the radial component of velocity of an electron at distance » from the
axis is given by

2 2eV LA L - )12
W i Gy MO e O @ g 0 ()

. Assuming that the force on a unit charge moving with velocity v in vacuo in an electric

field E and magnetic field of induction B is

E+vxB,
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b

7.

b

show that the rate at which work is done by the field on a continuous distribution of
charge moving in a region V¥ bounded by a surface Yis

.o bod g, B
e ﬁ(ExB)-d.Sw o ”f (u,I: ’ ,1;,') dr.
Py v

Electrons of charge e and mass m leave an infinite plane cathode x = 0 at zero potential
with initial speed vy and zero initial acceleration, to impinge upon a parallel plane
anode x = a at potential V. Show that, if there is a steady thermionic current I across
a unit area perpendicular to the x-direction, then the specd v of the electrons at distance
x from the cathode is given by

(v —vg) (V4 204)* = 9lex*[(2eqm).

Hence, if v, is small in comparison with the specd of impact upon the anode, show

that
_4e .14
~ 9a? (_) VIR

A current  flows in a circular loop of radius a. Prove that a particle of mass m and
charge ¢ can move in a circular orbit of radius r (<a), concentric and coplanar with
the loop, provided its angular velocity is

a

lll(jlq Z (2[1)' (2” - ])! (r )2:1 .

T 2ma =, ()t

[The formulae

1
Pyy(0) = (= 1yr (20D

Po0) = (=1 A2 Sl

228(nl)2’

may be used without proof if required.]

A particle of mass m and electric charge ¢ moves in the magnetic field produced by
a constant current J in an infinitely long straight fixed wirc. Derive the equations of
motion of the particle in cylindrical polar coordinates r, 0, z with the wire as axis.

The particle is projected from a point at distance a from the wire with a velocity of
magnitude v in the direction coplanar with and perpendicular to the wire and away
from it. Show that in the subsequent motion » will vary between the limits ae** and that

2amv
the radius of curvature of the path is kr, where k = ———J Show that when the
0

particle is for the first time again moving directly away from the wire it will be displaced
from its original position by a distance

1
dka [ sinh (k v/(1-4%) dA
0

measured parallel to the wire.

A polar molecule, free to rotate in space about its centre under the influence of an
electric field, is represented by two particles each of mass m, carrying equal and opposite
charges *e, at the ends of a light rigid rod of length 2a, whose mid-point is fixed.

The particle with charge + e is assumed to be at

{asinfcosy asinOsiny acos 0}
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and that with charge —e at
{—asinfcosyp —asinOsiny —acosl}.

The electric field is taken to be of strength E in the z-direction. Show that the Lagrangian
function for the system is

L = ma*(6*+92 sin? () + 2¢Ea cos 0.

Obtain the Lagrangian equations of motion and prove that a stcady motion is
possible with 6 = z/4 if

P2 = y/2eE[(ma).



ANSWERS TO THE EXERCISES

Exercises 11.2 (p. 454)

1.E = o{sin(wt+kz) —cos(wt+kz) 0}
B = k{—cos(wt+kz)—sin(wt+kz) 0}
E’ = w{—sin(wt—kz)—cos (wt—kz) 0}
B’ = k{—cos(wt—kz)—sin(wt—kz) 0}
|E4-E'| = 2wsinkz, |Bi-B’| = 2k cos kz.

Exercises 11.6 (p. 472)
f:; My — kv |
Eu Hat ko, |
k= wrue—iwop, = (ko) j exp {i(w!—kz)}.
. Reflected wave:

vy = (g8 71,

2 [ — (m2 + n*) u3] cos w(t + x[c) — 2mpegey sin (24 x/c)
(14 npo)* +mu

—chB.

Transmitted wave:

(e + npg) cos w(t—nx/c)+ mpg sin w(t—nx/c)
(p+ npo)®+m*ud

[inpe+ (02 —m?) ol cos w(t— nx/c)+ (mp+ 2mnug) sin w(t — nx/c)

E’;’ =24 e—mwjc

]

B =28 e—mwzc
s ¢ (1 npe)®+mPud

. 2e-Besie/(n |- 1),

Exercises 11.7 (p. 490)

1. po(2) = Asin(nz/a), x* = v¥/c:i—n?/d’.

2.Seecqn. (11.136) with 4,, = 4, p,, = f, v} =n (’;‘2 +AZ -
3. Energy-f Bw (mPn* , (max o2 (rmy wn® sin? (mnx cos® (n_nLv
. Energy-flow T { p cos ( p ) sint ) e e ) S\

4. p* = 0¥ —n*n?/b®, pw: f: —inn/b.

2 2
5. X = sin (rax/a), Y = sin(sny/b), f*= Héwz"”z(r Zz) = 0.
599

)}
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Miscellaneous Exercises XI (p. 507)

5.u = rafa, r=1,2,3,...; o= rala.
6.i={H, 0 0).

7.0 = k(cA/a) cos (w(t—z[c), o = (Ala)cosw(t—z[c).
8.8 =¢, S= Asin(ax/a)sin (sny/b) [:): ] wl.

9, k¥ = w*[ct—xE, where Ji(x,4) = 0, i.c. xa arcethe zeros of  Jy(x).

Miscellancous Exercises XII (p. 534)

1(a). It can move in a direction perpendicular to E with a speed v=|E|/B, where B is
the component of B in a direction at right angles to o in the planc containing o and B.

Miscellancous Excercises XIII (p. 566)

5.9 = {M(:—{_).

6p =1L oS o _Les 1 (.@iﬁs _1 ,aff?)
YT e 0z0x’ YT py0yoz’ T g \0z2 ¢ o
c r 1 o r
8.V = ben {5 (= 0) 4 5/ (- 2) )
04 . %
24 .- = 2h - uKep = - =
9, V24 - uKe, o I, V %p — 1Ke, 3 0.

Miscellaneous Excrcises X1V (p. 596)

9, all-a (',3"’ sin 0 cos 0+ (eEfm) sin 0 = 0, a(—l'« ((}5 sin® 0) = 0.
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Alternating currents 493
Appleton layer 471
Attenuation 469, 474, 477, 479, 502, 503

Brewster’s Law  46()

Capacitance (of transmission line) 497
Characteristic impedance 498, 504
Child’s equation 587

Circular polarization 444, 458

Coaxial cable 480
Conductance 498
Constitutive relations
Covariant 530
Critical angle (of internal reflection) 464
Cut-off frequency 478, 482, 484, 486, 492
Cyclotron frequency 572

525, 528

Dispersion 470
Distortion 478, 502

Eigenfunction 477, 481

Eigenvalue 477, 478, 481

Elliptical polarization 443, 458

Energy density 479

Energy flow 447-448, 461, 467, 478, 480,
485

Equation of telegraphy 498, 500

Fourier expansion 477
Fourier’s theorem 441
Four-vector 515, 525, 529
Fresnel’s formulae 459, 472

601

Group 511-513, 519
Group-velocity 470, 480

Hankel function 494

Harmonic plane wave 443, 455, 469
Helix 571

Helmholtz equation 494

Hertz 526, 536, 539, 546

Hertz potential 539, 558

Hertz vector 537, 540-542

Impedance 493, 501, 504
Inductance (of transmission line) 497
Invariant 511, 516, 529

Lagrangian 581

Larmor frequency 572

Larmor radius 571

Lorentz condition 539, 551

Lorentz group 519

Lorentz transformations
591, 594

511, 524, 558,

Multiple connection 478, 492

Orthogonal group 511, 513, 516
Orthogonality condition 477

Phase 443, 450

Phase velocity 469, 474, 480

Plane polarization 444, 449, 455, 457, 460
Plane wave 441, 443, 455
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Plasma 585

Poisson’s equation 538, 586

Polarization 443, 444, 457

Polarizing angle 460

Poynting vector 447, 461, 478, 485, 585
Pressurc 449

Radiation conditions 493

Radio waves 471

Reflection 444-445, 455

Reflection coefficient 448, 462
Refraction 444-445, 455

Refractive index 444, 457, 458
Representation (of a group) 513-517
Retarded (value) 553

Rotation of axes 513

Scalar potential 529, 546
Single (simple) connection 480
Six-vector 515, 518, 525, 526, 529

INDEX

Skin effect 470, 472

Snell’s law 444, 458-459, 465
Sommerfeld radiation conditions 493
Space charge 586-587

TEM waves 475, 478, 492, 495, 499
Tensor 514, 516

Terrestrial magnetic field 569
Transmission 444

Transmission coefficient 448, 462
Transverse electric (TE) waves 475-476
Transverse magnetic (TM) waves 475-476
Transverse waves 442, 475

Vector potential 529, 546

Wave number 443
Wavelength 443, 482, 484
Wilson and Wilson 527



