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Preface

This volume contains 12 chapters that provide some recent developments in the analy-
sis and numerics ofMaxwell’s equations. The contributions result fromWorkshop 1 on
“Analysis andNumerics of Acoustic and Electromagnetic Problems” held at the Radon
Institute for Computational and Applied Mathematics (RICAM) in Linz, Austria, Octo-
ber 17–22, 2016. This workshop was the first workshop within the Special Semester
on “Computational Methods in Science and Engineering,” which took place in Linz,
October 10–December 16, 2016; see also the website:

https://www.ricam.oeaw.ac.at/specsem/specsem2016/

Maxwell’s equations of electro-dynamics are of huge importance in mathematical
physics, engineering, and especially in mathematics, leading since their discovery to
interesting mathematical problems and even to new fields of mathematical research,
particularly in the analysis and numerics of partial differential equations and applied
functional analysis. The impact to science in general has been formulated by the
famous physicist, Richard Feynman:

From a long view of the history of mankind – seen from, say, ten thousand years from now – there
can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s
discovery of the laws of electrodynamics. The American Civil War will pale into provincial insignifi-
cance in comparison with this important scientific event of the same decade.

The deep understanding of Maxwell’s equations and the possibility of their numer-
ical solution in complex geometries and different settings have led to very efficient
and robust simulation methods in Computational Electromagnetics. Moreover, effi-
cient simulation methods pave the way for optimizing electromagnetic devices and
processes. Digital communication and e-mobility are two fields where simulation
and optimization techniques that are based on Maxwell’s equations play a deciding
role.

More than 70 scientists from 14 countries participated in the workshop; see Fig-
ure 1. The workshop brought together different communities, namely people work-
ing in analysis of Maxwell’s equations with those working in numerical analysis of
Maxwell’s equations and computational electromagnetics and acoustics. This collec-
tion of selected contributions contains original papers that are arranged in an alpha-
betical order. We are now going to give short description of these contributions.

In Chapter 1, Alonso Rodríguez, Bertolazzi, and Valli proposed and analyzed
two variational saddle-point formulations of the curl-div system. Moreover, suitable
Hilbert spaces and curl-free and divergence-free finite elements are employed. Finally,
numerical tests illustrate the performance of the proposed approximation methods.

https://doi.org/10.1515/9783110543612-201
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Figure 1: Participants of the first workshop of the special semester 2016 at RICAM.

In Chapter 2, Bauer gives an asymptotic expansion of time dependentMaxwell’s equa-
tions in terms of iterated div-curl systems in case that charge velocities are small in
comparison with the speed of light.

In Chapter 3, Bauer, Pauly, and Schomburg prove that the space of differential
forms with weak exterior- and co-derivative is compactly embedded into the space of
square integrable forms. Mixed boundary conditions and weak Lipschitz domains
are considered. Furthermore, canonical applications such as Maxwell estimates,
Helmholtz decompositions, and static solution theories are shown.

In Chapter 4, Bonnet-Ben Dhia, Fliss, and Tjandrawidjaja considered the 2D
Helmholtz equationwith a complexwavenumber in the exterior of a convex polygonal
obstacle with a Robin-type boundary condition using the principle of the half-space
matchingmethod. It is proved that this system is of Fredholm type and the theoretical
results are supported by numerical experiments.

In Chapter 5, Cogar, Colton, and Monk present an approach to the problem of the
possible non-uniqueness of solutions to inverse electromagnetic scattering problems
in anisotropicmedia through the use of appropriate “target signatures,” i. e., eigenval-
ues associated with the direct scattering problem that are accessible to measurement
from a knowledge of the scattering data. In this contribution, three different sets of
eigenvalues are utilized as target signatures.

In Chapter 6, Costabel and Dauge investigate Maxwell eigenmodes in three-
dimensional bounded electromagnetic cavities that have the form of a product of
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lower dimensional domains in some system of coordinates such as Cartesian, cylin-
drical, and spherical variables. As application of their general formulas, explicit
eigenpairs in a cuboid, in a circular cylinder, and in a cylinder with a coaxial circular
hole are found.

In Chapter 7, Hiptmair andPechstein show stable discrete regular decompositions
for Nédélec’s tetrahedral edge element spaces of any polynomial degree on a bounded
Lipschitz domain. Such decompositions have turned out to be crucial in the numerical
analysis of “edge” finite element methods for variational problems in computational
electromagnetics. Key tools for these constructions are continuous regular decompo-
sitions, boundary-aware local co-chain projections, projection-based interpolations,
and quasi-interpolations with low regularity requirements.

In Chapter 8, Kress presents a survey on uniqueness, that is, identifiability and on
reconstruction issues for inverse obstacle scattering for time-harmonic acoustic and
electromagnetic waves. New integral equation formulations for transmission eigen-
values that play an important role through their connections with the linear sampling
method and the factorization method for inverse scattering problems for penetrable
objects are given as well.

In Chapter 9, Nicaise and Tomezyk suggest a variational formulation of the time-
harmonic Maxwell equation with impedance boundary conditions in polyhedral do-
mains, and show existence and uniqueness of weak solutions by a compact pertur-
bation argument. Corner and edge singularities are investigated and a wavenumber
explicit error analysis is performed.

In Chapter 10, Osterbrink and Pauly investigate time-harmonic electro-magnetic
scattering or radiation problems governed byMaxwell’s equations in an exterior weak
Lipschitz domain with mixed boundary conditions. A solution theory in terms of a
Fredholm-type alternative using the framework of polynomially weighted Sobolev
spaces, Eidus’ principle of limiting absorption, and local compact embeddings is
presented.

In Chapter 11, Picard considers a coupled system of Maxwell’s equations and
the equations of elasticity, where the coupling occurs not via material properties
but through an interaction on an interface separating the two regimes. Evolutionary
well-posedness in the sense of Hadamard well-posedness supplemented by causal
dependence is shown for a natural choice of generalized interface conditions. The
results are obtained in a Hilbert space setting (Picard’s approach) incurring no regu-
larity constraints on the boundary and the interface of the underlying regions.

In Chapter 12, Waurick addresses the continuous dependence of solutions to cer-
tain equations on the coefficients. Three examples are discussed: A homogenization
problem for a Kelvin–Voigt model for elasticity, the discussion of continuous depen-
dence of the coefficients for acoustic waves with impedance-type boundary condi-
tions, and a singular perturbation problem for a mixed-type equation. By means of
counterexamples optimality of these results are obtained.
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The careful reviewing process was only possible with the help of the anonymous
referees who did an invaluable work that helped the authors to improve their contri-
butions. Furthermore, we would like to thank the administrative and technical staff
of RICAM for their support during the special semester. Last but not least, we express
our thanks to Apostolos Damialis and Nadja Schedensack from the Walter de Gruyter
GmbH, Berlin/Boston, for continuing support and patience while preparing this vol-
ume.

Linz, Essen, St. Petersburg Ulrich Langer
December 2018 Dirk Pauly

Sergey Repin
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Ana Alonso Rodríguez, Enrico Bertolazzi, and Alberto Valli
1 The curl–div system: theory and finite
element approximation

Abstract: We first propose and analyze two variational formulations of the curl–div
system that rewrite it as a saddle-point problem. Existence and uniqueness results are
then an easy consequence of this approach. Second, introducing suitable constrained
Hilbert spaces, we devise other variational formulations that turn out to be useful for
numerical approximation. Curl-free and divergence-free finite elements are employed
for discretizing theproblem, and the correspondingfinite element solutions are shown
to converge to the exact solution. Several numerical tests are also included, illustrating
the performance of the proposed approximation methods.

Keywords: Curl–div system, well-posedness, finite element approximation

MSC 2010: 65N30, 35J56, 35Q35, 35Q60

1 Introduction
The curl–div system often appears in electromagnetism (electrostatics, magnetostat-
ics) and in fluid dynamics (rotational incompressible flows, velocity–vorticity formu-
lations). Let Ω ⊂ ℝ3 be a bounded domain (i. e., a bounded, open and connected set):
depending on the boundary condition, in its most basic form it reads

{{
{{
{

curlu = J in Ω
divu = f in Ω
u × n = a on 𝜕Ω ,

(1.1)

or

{{
{{
{

curlu = J in Ω
divu = f in Ω
u ⋅ n = b on 𝜕Ω ,

(1.2)

with in addition some topological conditions assuring uniqueness.
The aim of this paper is two-fold: first, at the theoretical level, we present a couple

of saddle-point variational formulations of the curl–div systemand show that they are

Ana Alonso Rodríguez, Alberto Valli, Department of Mathematics, University of Trento, Povo (Trento),
Italy, e-mails: ana.alonso@unitn.it, alberto.valli@unitn.it
Enrico Bertolazzi, Department of Industrial Engineering, University of Trento, Povo (Trento), Italy,
e-mail: enrico.bertolazzi@unitn.it

https://doi.org/10.1515/9783110543612-001

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 3:59 PM



2 | A. Alonso Rodríguez et al.

well-posed; second, focusing on discretization, we devise other non-standard varia-
tional formulations of this problem which lead to simple and efficient finite element
schemes for its numerical approximation.

Concerning the second issue, the main novelty resides in the functional frame-
work we adopt: we look for the solution in the spaces of curl-free or divergence-free
vector fields. For the sake of implementation, we also describe in detail how to con-
struct a simple finite element basis for these vector spaces; convergence of the finite
element approximations is then shown easily. A key point of our approach is a suit-
able tree–cotree decomposition of the graph given by the nodes and the edges of the
mesh.

The paper is organized as follows. In Section 2, after having recalled some clas-
sical results, by means of a saddle-point approach we show that the curl–div system
has a unique solution, for both types of boundary condition. Sections 3 and 4 are de-
voted to devising two other new variational formulations, that will be used for numer-
ical approximation, and to prove that they are well-posed. In Section 5, we give an
overview of some previous results related to the discretization of the curl–div system.
In Sections 6 and 7, the finite element numerical approximation of the curl–div sys-
tem based on the new variational formulations is described and analyzed. In the last
section, we finally present several numerical results that illustrate the performance of
the proposed approximation methods.

2 Theoretical results
Let us start with some notation. Let Ω be a bounded domain of ℝ3 with Lipschitz
boundary 𝜕Ω and let (𝜕Ω)0, . . . , (𝜕Ω)p be the connected components of 𝜕Ω, (𝜕Ω)0 being
the external one. From the topological point of view, p is the rank of the second ho-
mology group of Ω, namely, the second Betti number β2(Ω). The unit outward normal
vector on 𝜕Ω is indicated by n.

The space of infinitely differentiable functions with compact support in Ω is de-
noted by C∞0 (Ω). The classical Sobolev spaces are denoted by Hs(Ω) or Hs(𝜕Ω), for
s ∈ ℝ; for s = 0, we write H0(Ω) = L2(Ω). The space of (essentially) bounded and
measurable functions defined in Ω is denoted by L∞(Ω). Moreover, we define

H(curl;Ω) = {v ∈ (L2(Ω))3 | curl v ∈ (L2(Ω))3} ,

H(curl0;Ω) = {v ∈ (L2(Ω))3 | curl v = 0 in Ω} ,

H(div;Ω) = {ξ ∈ (L2(Ω))3 | div ξ ∈ L2(Ω)} ,

H(div0;Ω) = {ξ ∈ (L2(Ω))3 | div ξ = 0 in Ω} .

The space of traces on 𝜕Ω of functions ϕ belonging to H1(Ω) is the space H1/2(𝜕Ω)
(whose dual space is the space H−1/2(𝜕Ω)); the space of normal traces ξ ⋅ n on 𝜕Ω of
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1 The curl–div system: theory and finite element approximation | 3

vector fields ξ belonging to H(div;Ω) is H−1/2(𝜕Ω); the space of tangential traces v × n
on 𝜕Ω of vector fields v belonging to H(curl;Ω) is denoted by H−1/2(divτ; 𝜕Ω) (for the
interested reader, an intrinsic characterization of this space can be found in Buffa and
Ciarlet [24, 25]; see also Alonso Rodríguez and Valli [8, Section A1]).

In the following, we also need to consider a set closed curves in Ω, denoted by
{σn}

g
n=1, that are representatives of a basis of the first homology group (whose rank is

therefore equal to g, the first Betti number β1(Ω)): in other words, this set is a maxi-
mal set of non-bounding closed curves in Ω. Let us recall that an explicit and efficient
construction of the closed curves {σn}

g
n=1 is given by Hiptmair and Ostrowski [39]. For

a more detailed presentation of the homological concepts that are useful in this con-
text, see, e. g., Bossavit [20, Chap. 5], Hiptmair [37, Section 2 and Section 3], Gross and
Kotiuga [35, Chapter 1 and Chapter 3]; see also Benedetti et al. [13], Alonso Rodríguez
et al. [4].

2.1 The curl–div system with assigned tangential component on
the boundary

Let η be a symmetric matrix, uniformly positive definite in Ω, with entries belonging
to L∞(Ω). Given J ∈ (L2(Ω))3, f ∈ L2(Ω), a ∈ H−1/2(divτ; 𝜕Ω), α ∈ ℝp, we look for
u ∈ (L2(Ω))3 such that

{{{{{{{{
{{{{{{{{
{

curl(ηu) = J in Ω
divu = f in Ω
(ηu) × n = a on 𝜕Ω

∫
(𝜕Ω)r

u ⋅ n = αr for each r = 1, . . . , p .

(2.1)

The data must satisfy the necessary conditions div J = 0 in Ω, ∫Ω J ⋅ ρ + ∫𝜕Ω a ⋅ ρ = 0 for
each ρ ∈ ℋ(m), whereℋ(m) is the space of Neumann harmonic fields, namely,

ℋ(m) = {ρ ∈ (L2(Ω))3 | curlρ = 0 in Ω,divρ = 0 in Ω,ρ ⋅ n = 0 on 𝜕Ω} , (2.2)

whose dimension is known to be equal to g, the rank of the first homology group of
Ω, and finally J ⋅ n = divτ a on 𝜕Ω (for a summary of the properties of the spaces of
harmonic fields and for a definition of the tangential divergence operator divτ; see,
e. g., Alonso Rodríguez and Valli [8, Section A1 and Section A4]).

By means of a variational approach Saranen [59, 60] has shown that this problem
has a unique solution (see also the results proved in Alonso Rodríguez and Valli [8,
Section A3], and the more abstract approach by Picard [52, 53]). Let us briefly sum-
marize the principal points of this procedure. The method is based on the Helmholtz
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4 | A. Alonso Rodríguez et al.

decomposition, namely, a splitting of the solution in three terms, orthogonal with re-
spect to the scalar product ∫Ω η

−1v ⋅w, that reads

ηu = η curlq + grad χ + ηh .

Here, the vector field q satisfies curl(η curlq) = J in Ω and (η curlq) × n = a on 𝜕Ω; χ
is the solution to div(η−1 grad χ) = f in Ω and χ = 0 on 𝜕Ω; h is a generalized Dirichlet
harmonic field, namely, it is an element of the finite dimensional vector space

ℋη(e) = {π ∈ (L
2(Ω))3 | curl(ηπ) = 0 in Ω,divπ = 0 in Ω,

(ηπ) × n = 0 on 𝜕Ω} ,
(2.3)

whose dimension is known to be equal to p (precisely,h is the unique element ofℋη(e)
satisfying ∫(𝜕Ω)r h ⋅ n = αr − ∫(𝜕Ω)r η

−1 grad χ ⋅ n for each r = 1, . . . , p).
Since a solution q to curl(η curlq) = J in Ω and (η curlq) × n = a on 𝜕Ω is not

unique (q+gradϕ is still a solution), other equations have to be added. Typically, one
imposes the gauge conditions divq = 0 in Ω, q ⋅ n = 0 on 𝜕Ω and q⊥ℋ(m).

The approach we have just described has thus led to two variational problems:
a standard Dirichlet boundary value problem for χ, and a constrained problem for q
(the determination of the harmonic field h also needs some additional work, but it is
an easy finite dimensional problem).

Numerical approaches for approximating these two problems are easily devised.
In fact, the first one is a standard elliptic problem. Numerical approximation can be
performed by scalar nodal elements in H1(Ω), looking for the unknown χ and then
computing its gradient, or by means of a mixed method in H(div;Ω) × L2(Ω), in which
grad χ ∈ H(div;Ω) is directly computed as an auxiliary unknown.

Concerning the problem related to the vector field q, a first choice is to work in
H(curl;Ω) ∩ H(div;Ω), hence with globally-continuous nodal finite elements for each
component of q; the drawback is that, in the presence of re-entrant corners, the solu-
tion is singular (it does not belong to (H1(Ω))3) and (H1(Ω))3 is a closed subspace of
H(curl;Ω)∩H(div;Ω), hence in this case a finite element scheme cannot be convergent
(see, e. g., Costabel et al. [29]).

An alternative method is to formulate the problem as a saddle-point problem for
the vector fieldq inH(curl;Ω), inwhich the divergence constraint is imposed in aweek
sense, introducing a scalar Lagrange multiplier; in this way the number of degrees of
freedom is rather high, as, besides an edge approximation of the vector fieldq, one has
also to consider a nodal approximation of the scalar Lagrange multiplier. The result-
ing algebraic problem is associated to an indefinite matrix; however, for its resolution
efficient regularization techniques are known (see Hiptmair [37, Section 6.1]).

A way for avoiding the introduction of a Lagrange multiplier is to solve the equa-
tion curl(η curlq) = J in Ω by using edge elements without any gauge. Though the
matrix to deal with is singular, the conjugate gradient method is known to be a viable
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1 The curl–div system: theory and finite element approximation | 5

tool for solving the associated algebraic problem (see the theoretical result by Kaass-
chieter [40]; see also Bossavit [20, Section 6.2], Bíró [16]); however, the computation of
the right-hand side should be done with particular care (see Fujiwara et al. [33], Bíró
et al. [17], Ren [56]), and, for problems with a large number of unknowns, it is not easy
to devise an efficient preconditioner.

Summing up, the most classical variational formulations of the curl–div system
are not completely satisfactory when numerical approximation has to be performed.
We will present in Section 3 a new variational formulation of problem (2.1) that looks
much more suitable for finite element discretization.

However, before coming to this point, we want to put the problem on a solid foun-
dation, providing in this and in the following section a proof of the well-posedness of
the curl–div system. Instead of reporting the classical result obtained by Saranen [59,
60], we propose a saddle-point formulation that to our knowledge has not been con-
sidered yet. With this approach, one does not introduce the potentials q and χ, keeps
the original unknown u and imposes the curl constraint by means of a Lagrange mul-
tiplier: it could be seen as a least-squares formulation with a constraint on the curl of
u, or similarly, a Lagrangian method for a constrained optimization problem.

Let us derive step by step the variational problem we are interested in. Taking the
gradient of the second equation in (2.1) we obtain grad divu = grad f . Multiplying for
a test vector field ξ , integrating in Ω and integrating by parts we obtain

−∫
Ω

(divu − f )div ξ + ∫
𝜕Ω

(divu − f )ξ ⋅ n = 0 .

The integral on the boundary will be omitted in the variational formulation, in order
to impose in a suitable weak sense the condition divu − f = 0 on 𝜕Ω.

Multiplying the first equation in (2.1) by v, integrating in Ω and integrating by
parts we find

∫
Ω

J ⋅ v = ∫
Ω

curl(ηu) ⋅ v = ∫
Ω

ηu ⋅ curl v + ∫
𝜕Ω

n × ηu ⋅ v ,

hence

∫
Ω

ηu ⋅ curl v = ∫
Ω

J ⋅ v + ∫
𝜕Ω

a ⋅ v .

Then, introducing a Lagrange multiplier p, we are led to consider the problem

∫
Ω

divudiv ξ + ∫
Ω

ηξ ⋅ curlp = ∫
Ω

f div ξ

∫
Ω

ηu ⋅ curl v = ∫
Ω

J ⋅ v + ∫
𝜕Ω

a ⋅ v .
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6 | A. Alonso Rodríguez et al.

Now the natural question is: which are the variational spaces for u, ξ , p and v? Define
the Hilbert spaces

𝒲 = {ξ ∈ H(div;Ω) | ∫
(𝜕Ω)r

ξ ⋅ n = 0 for each r = 1, . . . , p}

𝒬 = {v ∈ H(curl;Ω) | ∫
Ω

v ⋅w = 0 for eachw ∈ H(curl0;Ω)} .
(2.4)

We choose u, ξ ∈ 𝒲 and p, v ∈ 𝒬. It is worth noting that the space H(curl0;Ω) can be
described as

H(curl0;Ω) = gradH1(Ω)
⊥
⊕ℋ(m) (2.5)

(see, e. g., Alonso Rodríguez and Valli [8, Section A3]). Therefore, by integration by
parts, an element v ∈ 𝒬 can be characterized as an element in H(curl;Ω) such that
div v = 0 in Ω, v ⋅ n = 0 on 𝜕Ω and v⊥ℋ(m).

Summing up, our variational problem is

find u ∈𝒲 ,p ∈ 𝒬 :

∫
Ω

divudiv ξ + ∫
Ω

ηξ ⋅ curlp = ∫
Ω

f div ξ

∫
Ω

ηu ⋅ curl v = ∫
Ω

J ⋅ v + ∫
𝜕Ω

a ⋅ v

for each ξ ∈𝒲 , v ∈ 𝒬 .

(2.6)

Before analyzing this problem, we need an additional tool. It is known that it is
possible to select a basis {πη

s }
p
s=1 of the space of harmonic fieldsℋη(e) defined in (2.3)

with the properties

∫
(𝜕Ω)r

πη
s ⋅ n = δrs

(see, e. g., Alonso Rodríguez and Valli [8, Section A4]; for η = Id we simply write πs).
Then, if u is a solution to problem (2.1) with αr = 0, r = 1, . . . , p, we check easily that
u + ∑pr=1 αrπ

η
r is a solution to problem (2.1) with given αr .

This also says that a solution u of problem (2.1), if it exists, is unique. In fact,
taking vanishing data, it follows from the first three equations that u ∈ ℋη(e), and
consequently it can be written as u = ∑ps=1 usπ

η
s . Then, for each r = 1, . . . , p,

0 = ∫
(𝜕Ω)r

u ⋅ n =
p
∑
s=1

us ∫
(𝜕Ω)r

πη
s ⋅ n = ur ,

and in conclusion u = 0.
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1 The curl–div system: theory and finite element approximation | 7

Theorem 1. If (u,p) is a solution to problem (2.6) then p = 0 and u is a solution to
problem (2.1) for αr = 0, r = 1, . . . , p.

Proof. By the Stokes theorem for closed surfaces, we know that curl v ∈ 𝒲 for each
v ∈ 𝒬. Therefore, taking ξ = curlp in the first equation we find

∫
Ω

η curlp ⋅ curlp = 0 ,

hence curlp = 0; since the elements in 𝒬 are orthogonal to H(curl0;Ω) (with respect
to the L2(Ω)-scalar product), it follows p = 0.

Choosing ξ ∈ (C∞0 (Ω))
3 we find that grad(divu − f ) = 0 in Ω in the distributional

sense, hence (divu − f ) is constant in Ω. Take ξ̂ ∈ H(div;Ω) and define ξ̂r = ∫(𝜕Ω)r ξ̂ ⋅n.
Then ξ = ξ̂−∑pr=1 ξ̂rπ

η
r belongs to𝒲 and satisfies div ξ = div ξ̂ . Hence thefirst equation

in problem (2.6) is satisfied for each ξ̂ ∈ H(div;Ω), and by integration by parts we find
divu − f = 0 on 𝜕Ω, hence divu = f in Ω.

Let us prove that the second equation is indeed satisfied for each v̂ ∈ H(curl;Ω).
Let Pv̂ be the L2(Ω)-orthogonal projection of v̂ on H(curl0;Ω). Then Pv̂ = grad ω̂ + ρ̂,
with ω̂ ∈ H1(Ω) and ρ̂ ∈ ℋ(m), v = (v̂ − Pv̂) ∈ 𝒬, and curl v = curl v̂. Moreover,

∫
Ω

J ⋅ v + ∫
𝜕Ω

a ⋅ v = ∫
Ω

J ⋅ v̂ + ∫
𝜕Ω

a ⋅ v̂ − ∫
Ω

J ⋅ Pv̂ − ∫
𝜕Ω

a ⋅ Pv̂

and, by integrating by parts in Ω and on 𝜕Ω,

∫
Ω

J ⋅ Pv̂ + ∫
𝜕Ω

a ⋅ Pv̂ = ∫
Ω

J ⋅ (grad ω̂ + ρ̂) + ∫
𝜕Ω

a ⋅ (grad ω̂ + ρ̂)

= −∫
Ω

div Jω̂ + ∫
𝜕Ω

J ⋅ nω̂ + ∫
Ω

J ⋅ ρ̂ − ∫
𝜕Ω

divτ aω̂ + ∫
𝜕Ω

a ⋅ ρ̂ = 0 ,

having used the compatibility conditions on the data J and a.
Hence the second equation is satisfied for each v̂ ∈ H(curl;Ω), and taking v̂ ∈

(C∞0 (Ω))
3 it follows curl(ηu) = J in Ω in the distributional sense. Repeating the same

procedure for v̂ ∈ H(curl;Ω), integration by parts gives ηu × n = a on 𝜕Ω.

The existence of a solution to problem (2.1) is therefore reduced to the proof of the
existence of a solution to problem (2.6). This is a consequence of well-known results
for saddle-point problems (see, e. g., Boffi et al. [19, Section 4.2]). In fact, the following
two propositions permit us to apply the general well-posedness theory.

Proposition 1. The bilinear form a(ψ, ξ ) = ∫Ω divψdiv ξ is coercive in the space
ℬ0 × ℬ0, where

ℬ0 = {ξ ∈𝒲 | ∫
Ω

ηξ ⋅ curl v = 0 for all v ∈ 𝒬} .
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8 | A. Alonso Rodríguez et al.

Proof. Indeed, we have already seen that, if ξ ∈ ℬ0, then it follows that ∫Ω ηξ ⋅curl v =
0 for all v ∈ H(curl;Ω). Therefore, by integration by parts we deduce at once that
curl(ηξ ) = 0 in Ω and ηξ × n = 0 on 𝜕Ω. Coercivity follows from the Friedrichs in-
equality: there exists a constant C > 0 such that for any vector field ξ belonging to
H(div;Ω), with curl(ηξ ) ∈ (L2(Ω))3, ηξ × n = 0 on 𝜕Ω and satisfying ∫(𝜕Ω)r ξ ⋅ n = 0 for
each r = 1, . . . , p, it holds

‖ξ ‖L2(Ω) ≤ C(‖curl(ηξ )‖L2(Ω) + ‖div ξ ‖L2(Ω)) .

This result can be shown by adapting in a straightforward way the proof presented,
e. g., in Fernandes and Gilardi [32], using the fact that the space

{ξ ∈ H(div;Ω) | curl(ηξ ) ∈ (L2(Ω))3,ηξ × n = 0 on 𝜕Ω}

is compactly imbedded in (L2(Ω))3 (see, e. g., Weber [64], Picard [54]).

Proposition 2. The bilinear form b(ξ , v) = ∫Ω ηξ ⋅ curl v satisfies an inf–sup condition,
namely, there exists β > 0 such that for each v ∈ 𝒬 there exists ξ ∈𝒲, ξ ̸= 0, satisfying

∫
Ω

ηξ ⋅ curl v ≥ β‖ξ ‖𝒲‖v‖𝒬 .

Proof. If curl v = 0 in Ω, nothing has to be proved. Then suppose that curl v ̸= 0. We
have already seen that curl v ∈ 𝒲 for each v ∈ 𝒬, and that any vector field v ∈ 𝒬
satisfies div v = 0 in Ω, v ⋅ n = 0 on 𝜕Ω and v⊥ℋ(m). The thesis follows by choosing
ξ = curl v, as div ξ = 0 in Ω and the Friedrichs inequality

‖v‖L2(Ω) ≤ C‖curl v‖L2(Ω)

is valid for v ∈ H(curl;Ω) ∩ H(div0;Ω) satisfying v ⋅ n = 0 on 𝜕Ω and v⊥ℋ(m) (see,
e. g., Girault and Raviart [34, Section 3.5] ifℋ(m) = 0, or Fernandes and Gilardi [32] if
ℋ(m) ̸= 0).

In conclusion, bymeans of these twopropositionswehaveproved that the saddle-
point problem (2.6) has a unique solution, and thus the same is true for problem (2.1).

2.2 The curl–div system with assigned normal component on
the boundary

Let μ be a symmetric matrix, uniformly positive definite in Ω, with entries belonging
to L∞(Ω). Given J ∈ (L2(Ω))3, f ∈ L2(Ω), b ∈ H−1/2(𝜕Ω), β ∈ ℝg , we look for u ∈ (L2(Ω))3
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1 The curl–div system: theory and finite element approximation | 9

such that

{{{{{{{{
{{{{{{{{
{

curlu = J in Ω
div(μu) = f in Ω
μu ⋅ n = b on 𝜕Ω

∮
σn

u ⋅ ds = βn for each n = 1, . . . , g ,

(2.7)

where the data satisfy the necessary conditions div J = 0 in Ω, ∫Ω f = ∫𝜕Ω b; moreover,
sinceweneed to give ameaning to the line integral ofu onσn, we follow the arguments
in Alonso Rodríguez et al. [7, Section 2] and we also assume that J ⋅n = 0 on 𝜕Ω (which
is more restrictive than the necessary condition ∫(𝜕Ω)r J ⋅ n = 0 for each r = 1, . . . , p).

The variational approach proposed by Saranen [59, 60] shows that this problem
has a unique solution (see also Alonso Rodríguez and Valli [8, Section A3], and the
results obtained by Picard [52, 53]). Again, the method is based on a orthogonal de-
composition result, through which the solution is split as

u = μ−1 curlq + grad χ + h ,

where the vector field q is a solution to curl(μ−1 curlq) = J in Ω and q × n = 0 on 𝜕Ω;
χ is the solution to div(μ grad χ) = f in Ω and μ grad χ ⋅ n = b on 𝜕Ω; h is a generalized
Neumann harmonic field, namely, it is an element of the finite dimensional vector
space

ℋμ(m) = {ρ ∈ (L
2(Ω))3 | curlρ = 0 in Ω,div(μρ) = 0 in Ω,

μρ ⋅ n = 0 on 𝜕Ω} ,
(2.8)

whose dimension is known to be equal to g (precisely, h is the unique element of
ℋμ(m) satisfying ∮σn h ⋅ ds = βn − ∮σn μ

−1 curlq ⋅ ds for each n = 1, . . . , g).
Since a solution q to curl(η curlq) = J in Ω and q × n = 0 on 𝜕Ω is not unique

(q + gradϕ, with ϕ = 0 on 𝜕Ω, is still a solution), other equations have to be added.
The standard gauge conditions are divq = 0 in Ω and q⊥ℋ(e), whereℋ(e) is the space
of Dirichlet harmonic vector fields, namely,

ℋ(e) = {π ∈ (L2(Ω))3 | curlπ = 0 in Ω,divπ = 0 in Ω,
π × n = 0 on 𝜕Ω} .

(2.9)

We do not specify the details of the proof of the existence of a solution q because here,
as in the previous case, we base the theoretical analysis of the curl–div system (2.7)
on a saddle-point variational formulation, quite close to that proposed by Kikuchi [42]
(the limitations in that paper are that the domain has a simple topological shape, the
boundary conditions are homogeneous and the coefficient μ is a constant scalar pa-
rameter). With this approach, the introduction of the potentials q and χ is not needed,
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10 | A. Alonso Rodríguez et al.

the original unknown u is kept and the equation related to the divergence is imposed
by ameans of Lagrangemultiplier; more precisely, what we propose looks like a least-
squares formulationwith a constraint on the divergence ofu. Let us also point out that
another variational formulation, more suitable for numerical approximation, will be
introduced in Section 4.

We proceed as follows. Taking the curl of the first equation in (2.7) we obtain
curl curlu = curl J. Multiplying for a test vector fieldv, integrating inΩand integrating
by parts we obtain

∫
Ω

(curlu − J) ⋅ curl v + ∫
𝜕Ω

n × (curlu − J) ⋅ v = 0 .

The integral on the boundary will be omitted in the variational formulation, in order
to impose in a suitable weak sense the condition n × (curlu − J) = 0 on 𝜕Ω.

Multiplying the second equation in (2.7) by φ, integrating in Ω and integrating by
parts we find

∫
Ω

fφ = ∫
Ω

div(μu)φ = −∫
Ω

μu ⋅ gradφ + ∫
𝜕Ω

μu ⋅ nφ ,

hence

∫
Ω

μu ⋅ gradφ = −∫
Ω

fφ + ∫
𝜕Ω

μu ⋅ nφ .

Then, introducing a Lagrange multiplier λ, we are led to consider the problem

∫
Ω

curlu ⋅ curl v + ∫
Ω

μv ⋅ grad λ = ∫
Ω

J ⋅ curl v

∫
Ω

μu ⋅ gradφ = −∫
Ω

fφ + ∫
𝜕Ω

bφ .

The variational spaces are

𝒱 = {v ∈ H(curl;Ω) | curl v ⋅ n = 0 on 𝜕Ω,

∮
σn

v ⋅ ds = 0 for each n = 1, . . . , g}

ℛ = {φ ∈ H1(Ω) | ∫
Ω

φ = 0} ,

(2.10)

and the variational problem is
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1 The curl–div system: theory and finite element approximation | 11

find u ∈ 𝒱 , λ ∈ ℛ :

∫
Ω

curlu ⋅ curl v + ∫
Ω

μv ⋅ grad λ = ∫
Ω

J ⋅ curl v

∫
Ω

μu ⋅ gradφ = −∫
Ω

fφ + ∫
𝜕Ω

bφ

for each v ∈ 𝒱 ,φ ∈ ℛ .

(2.11)

Let us select a basis {ρμm}
g
m=1 of the space of harmonic fieldsℋμ(m) defined in (2.8)

with the properties

∮
σn

ρμm ⋅ ds = δnm

(see, e. g., Alonso Rodríguez and Valli [8, Section A4]; for μ = Id we simply write ρm).
Then, if u is a solution to problem (2.7) with βn = 0, n = 1, . . . , g, the vector field u +
∑gn=1 βnρ

μ
n is a solution to problem (2.7) with assigned βn.

A consequence of this remark is that a solution u of problem (2.7), if it exists, is
unique. Taking in fact vanishing data, it follows from the first three equations that
u ∈ ℋμ(m), and thus it can be written as u = ∑

g
n=1 unρ

μ
n. Then, for each n = 1, . . . , g,

0 = ∮
σn

u ⋅ ds =
g
∑
m=1

um∮
σn

ρμm ⋅ ds = un ,

and in conclusion u = 0.

Theorem 2. If (u, λ) is a solution to problem (2.11), then λ = 0 and u is a solution to
problem (2.7) for βn = 0, n = 1, . . . , g.

Proof. For φ ∈ ℛ it holds ∮σn gradφ ⋅ ds = 0 for each n = 1, . . . , g, hence gradφ ∈ 𝒱 for
each φ ∈ ℛ. Therefore, taking v = grad λ in the first equation we find

∫
Ω

μ grad λ ⋅ grad λ = 0 ,

hence grad λ = 0 and λ = const inΩ; since the elements inℛhave zeromean, it follows
λ = 0.

Choosing v ∈ (C∞0 (Ω))
3 we find that curl(curlu − J) = 0 in Ω in the distributional

sense. Moreover, integrating by parts we also find

∫
𝜕Ω

(curlu − J) ⋅ n × v = 0

for each v ∈ 𝒱. Since (curlu − J) is curl-free, from (2.5) we know that it can be written
as

curlu − J = grad χ +
g
∑
n=1

ζnρn
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12 | A. Alonso Rodríguez et al.

for χ ∈ H1(Ω) and ζn ∈ ℝ. Thus we have

0 = ∫
𝜕Ω

(curlu − J) ⋅ n × v = ∫
𝜕Ω

grad χ ⋅ n × v +
g
∑
n=1

ζn ∫
𝜕Ω

ρn ⋅ n × v .

In addition, we recall from Buffa [23], Hiptmair et al. [38] that the tangential trace of
v ∈ 𝒱 can be written on 𝜕Ω as

n × v = n × grad ϑ +
g
∑
m=1

ηmn × ρ
󸀠
m ,

where ϑ ∈ H1(Ω), ηm ∈ ℝ and the vector fields ρ󸀠m satisfy the relations

∫
𝜕Ω

ρn ⋅ n × ρ
󸀠
m = δnm

(see Hiptmair et al. [38], Alonso Rodríguez et al. [7, Lemmas 4 and 5]). By integration
by parts on 𝜕Ω, we find

∫
𝜕Ω

grad χ ⋅ n × v = − ∫
𝜕Ω

χ divτ(n × v) = 0 ,

as divτ(n×v) = − curl v ⋅n on 𝜕Ω; similarly, ∫𝜕Ω ρn ⋅n× grad ϑ = 0 for each n = 1, . . . , g.
In conclusion, we have obtained

0 = ∫
𝜕Ω

(curlu − J) ⋅ n × v =
g
∑

n,m=1
ζnηm ∫
𝜕Ω

ρn ⋅ n × ρ
󸀠
m =

g
∑
n=1

ζnηn .

Since ηn are arbitrary, it follows ζn = 0 for each n = 1, . . . , g, and consequently curlu −
J = grad χ inΩ.On the other hand, from the assumptions on the data, div(curlu−J) = 0
in Ω and (curlu − J) ⋅ n = 0 on 𝜕Ω, hence grad χ = 0 in Ω.

Let us prove now that the second equation is indeed satisfied for each φ̂ ∈ H1(Ω).
Let φ̂Ω =

1
measΩ ∫Ω φ̂. Then φ = (φ̂ − φ̂Ω) ∈ ℛ and grad φ̂ = gradφ. Moreover,

−∫
Ω

f φ̂ + ∫
𝜕Ω

bφ̂ = −∫
Ω

fφ + ∫
𝜕Ω

bφ − φ̂Ω(−∫
Ω

f + ∫
𝜕Ω

b)

= −∫
Ω

fφ + ∫
𝜕Ω

bφ ,

having used the compatibility conditions on the data f and b.
Hence the second equation is satisfied for each φ̂ ∈ H1(Ω), and taking φ̂ ∈ C∞0 (Ω)

it follows div(μu) = f in Ω in the distributional sense. Repeating the same procedure
for φ̂ ∈ H1(Ω), integration by parts gives μu ⋅ n = b on 𝜕Ω.
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1 The curl–div system: theory and finite element approximation | 13

As in the previous section, the existence of a solution to problem (2.7) is therefore
reduced to the proof of the existence of a solution to a variational saddle-point prob-
lem, in this case problem (2.11). Applying the general theory reported, e. g., in Boffi
et al. [19, Section 4.2], we prove that problem (2.11) has a unique solution. In fact, the
following results hold true.

Proposition 3. The bilinear form a(w, v) = ∫Ω curlw ⋅ curl v is coercive in the space
𝒟0 ×𝒟0, where

𝒟0 = {v ∈ 𝒱 | ∫
Ω

μv ⋅ gradφ = 0 for all φ ∈ ℛ} .

Proof. Indeed, we already know that, if v ∈ 𝒟0, then it holds ∫Ω μv ⋅ gradφ = 0 for all
φ ∈ H1(Ω). Therefore, by integration by parts we deduce at once that div(μv) = 0 in Ω
and μv ⋅ n = 0 on 𝜕Ω. Coercivity follows from the Friedrichs inequality

‖v‖L2(Ω) ≤ C(‖curl v‖L2(Ω) + ‖div(μv)‖L2(Ω)) .

This inequality is valid for a vector field v belonging to H(curl;Ω), with div(μv) ∈
L2(Ω), μv ⋅ n = 0 on 𝜕Ω, and satisfying curl v ⋅ n = 0 on 𝜕Ω and ∮σn v ⋅ ds = 0 for
each n = 1, . . . , g. This result can be shown by adapting in a straightforward way the
proof presented, e. g., in Fernandes andGilardi [32] (see alsoAlonsoRodríguez et al. [7,
Lemma 9]), using the fact that the space

{v ∈ H(curl;Ω) | div(μv) ∈ (L2(Ω))3,μv ⋅ n = 0 on 𝜕Ω}

is compactly imbedded in (L2(Ω))3 (see, e. g., Weber [64], Picard [54]).

Proposition 4. The bilinear form b(v,φ) = ∫Ω μv ⋅gradφ satisfies an inf–sup condition,
namely, there exists β > 0 such that for each φ ∈ ℛ there exists v ∈ 𝒱, v ̸= 0, satisfying

∫
Ω

μv ⋅ gradφ ≥ β‖v‖𝒱‖φ‖ℛ .

Proof. We can suppose gradφ ̸= 0. The thesis follows by choosing v = gradφ, as
curl v = 0 in Ω and the Poincaré inequality

‖φ‖L2(Ω) ≤ C‖ gradφ‖L2(Ω)

is valid for φ ∈ ℛ (see, e. g., Dautray and Lions [31, p. 127]).

In conclusion, we have proved that the saddle-point problem (2.11) has a unique
solution, and thus the same is true for problem (2.7).
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14 | A. Alonso Rodríguez et al.

Remark 1. The same existence result can be proved for the problem

{{{{{{{{
{{{{{{{{
{

curlu = J in Ω
div(μu) = f in Ω
μu ⋅ n = b on 𝜕Ω

∫
Ω

μu ⋅ ρμn = βn for each n = 1, . . . , g ,

(2.12)

where the field J is only required to satisfy the necessary compatibility conditions
div J = 0 in Ω and ∫(𝜕Ω)r J ⋅ n = 0 for each r = 1, . . . , p (namely, the more restrictive
assumption J ⋅ n = 0 on 𝜕Ω has been dropped).

In the variational formulation, one has only to replace the space 𝒱 by

𝒱♯ = {v ∈ H(curl;Ω) | ∫
Ω

μv ⋅ ρμn = 0 for all n = 1, . . . , g} ,

keeping the other spaceℛ (that still satisfies gradℛ ⊂ 𝒱♯).
The proofs can be easily adapted: the only point that deserves some explanation

is that now the variational solution u is shown to satisfy curl(curlu − J) = 0 in Ω, and
moreover, (curlu−J)×n = 0 on 𝜕Ω. This latter result follows from the fact that the first
variational equation is indeed satisfied for all v̂ ∈ H(curl;Ω), and not only for v ∈ 𝒱♯.
In fact, let Pμv̂ be the orthogonal projection of v̂ on ℋμ(m) with respect to the scalar
product ∫Ω μv ⋅w. Then v = (v̂−Pμv̂) ∈ 𝒱♯ and curl v = curl v̂, as the elements inℋμ(m)
are curl-free.

Thus (curlu − J) ∈ ℋ(e), and the conditions ∫(𝜕Ω)r (curlu − J) ⋅ n = 0 for each r =
1, . . . , p permit to conclude that curlu− J = curlΦ in Ω (see, e. g., Cantarella et al. [26]).
Therefore,

∫
Ω

(curlu − J) ⋅ (curlu − J) = ∫
Ω

(curlu − J) ⋅ curlΦ

= ∫
Ω

curl(curlu − J) ⋅Φ + ∫
𝜕Ω

(curlu − J) ⋅ n ×Φ = 0 ,

namely, curlu = J in Ω.

3 A new variational formulation for problem (2.1)

The discussion at the beginning of Section 2.1 should have explainedwhy our aimhere
is to find a different variational formulation for problem (2.1), a formulation that turns
out to be more suitable for numerical approximation.
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1 The curl–div system: theory and finite element approximation | 15

In our procedure, the first step is to find a vector field u⋆ ∈ (L2(Ω))3 satisfying

{{{
{{{
{

divu⋆ = f in Ω

∫
(𝜕Ω)r

u⋆ ⋅ n = αr for each r = 1, . . . , p . (3.1)

Such a vector field does exist: for instance, one can think to take J = 0 and a = 0 in
(2.1), or any choice of J and a satisfying the compatibility conditions (indeed, we will
not assume in the sequel that curl(ηu⋆) = 0 or (ηu⋆) × n = 0).

The vector fieldW = u − u⋆ satisfies

{{{{{{{{
{{{{{{{{
{

curl(ηW) = J − curl(ηu⋆) in Ω
divW = 0 in Ω
(ηW) × n = a − (ηu⋆) × n on 𝜕Ω

∫
(𝜕Ω)r

W ⋅ n = 0 for each r = 1, . . . , p ,

(3.2)

and the second step of the procedure is finding a simple variational formulation of
this problem.

Multiplying the first equation by a test function v ∈ H(curl;Ω), integrating in Ω
and integrating by parts, we find:

∫
Ω

J ⋅ v = ∫
Ω

curl[η(W + u⋆)] ⋅ v

= ∫
Ω

η(W + u⋆) ⋅ curl v − ∫
𝜕Ω

[η(W + u⋆) × n] ⋅ v

= ∫
Ω

ηW ⋅ curl v + ∫
Ω

ηu⋆ ⋅ curl v − ∫
𝜕Ω

a ⋅ v .

Let us introduce the space

𝒲0 = {ξ ∈ H(div;Ω) | div ξ = 0 in Ω,

∫
(𝜕Ω)r

ξ ⋅ n = 0 for each r = 1, . . . , p} .
(3.3)

Note that this space can be written as 𝒲0 = curl[H(curl;Ω)]: in fact, the inclusion
curl[H(curl;Ω)] ⊂ 𝒲0 is obvious, while the inclusion𝒲0 ⊂ curl[H(curl;Ω)] is a clas-
sical result concerning vector potentials (see, e. g., Cantarella et al. [26]). The vector
fieldW is thus a solution to

W ∈𝒲0 : ∫
Ω

ηW ⋅ curl v = ∫
Ω

J ⋅ v − ∫
Ω

ηu⋆ ⋅ curl v

+ ∫
𝜕Ω

a ⋅ v ∀ v ∈ H(curl;Ω) .
(3.4)
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16 | A. Alonso Rodríguez et al.

More precisely,W is the unique solution of that problem: in fact, assuming J = u⋆ =
a = 0, and taking v such that curl v =W, it follows at this point ∫Ω ηW ⋅W = 0, hence
W = 0.

Let us remark at once that, due to the identity𝒲0 = curl[H(curl;Ω)], an edge finite
element scheme related to this variational formulation leads to a well-structured stiff-
ness matrix: the one of the curl curl operator (for a suitable set of the basis functions,
see (6.9) and Proposition 6).

Remark 2. Let us consider the electrostatic problem in a domain with simple topo-
logical shape, namely, problem (2.1) with J = 0 in Ω, a = 0 on 𝜕Ω, and p = 0. We
have already seen in Section 2.1 that ηu = grad χ in Ω, where the potential χ satisfies
div(η−1 grad χ) = f in Ω and χ = 0 on 𝜕Ω. In this situation, the simplest way for de-
termining the approximate solution is clearly to solve this Dirichlet boundary value
problem by using nodal finite elements.

4 A new variational formulation for problem (2.7)
The variational formulation of the curl–div system with assigned normal component
on the boundary that we present here is similar to the onewe have proposed in Alonso
Rodríguez et al. [4] for the problem of magnetostatics. However, we think it can be
interesting for its particular simplicity, as here we will formulate the problem in the
space 𝒱0 = grad[H1(Ω)], while in [4] it was set in the space H(curl0;Ω), which in the
general topological case is more complicated to discretize.

Also in this case, we need a preliminary step: to find a vector field u∗ ∈ (L2(Ω))3

satisfying

{{{
{{{
{

curlu∗ = J in Ω

∮
σn

u∗ ⋅ ds = βn for each n = 1, . . . , g . (4.1)

This vector field does exist: for instance, one can choose f = 0 and b = 0 in (2.7), or
any choice of f and b satisfying the compatibility condition (indeed, we do not need
to assume in the sequel that div(μu∗) = 0 or (μu∗) ⋅ n = 0).

The vector field V = u − u∗ satisfies

{{{{{{{{
{{{{{{{{
{

curlV = 0 in Ω
div(μV) = f − div(μu∗) in Ω
(μV) ⋅ n = b − (μu∗) ⋅ n on 𝜕Ω

∮
σn

V ⋅ ds = 0 for each n = 1, . . . , g ,

(4.2)

and now we only have to find a variational formulation of this problem.
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1 The curl–div system: theory and finite element approximation | 17

Multiplying the second equation by a test function ϕ ∈ H1(Ω), integrating in Ω
and integrating by parts we find:

∫
Ω

fϕ = ∫
Ω

div[μ(V + u∗)]ϕ

= −∫
Ω

μ(V + u∗) ⋅ gradϕ + ∫
𝜕Ω

[μ(V + u∗) ⋅ n]ϕ

= −∫
Ω

μV ⋅ gradϕ − ∫
Ω

μu∗ ⋅ gradϕ + ∫
𝜕Ω

bϕ .

Let us introduce the space

𝒱0 = {v ∈ H(curl;Ω) | curl v = 0 in Ω,

∮
σn

v ⋅ ds = 0 for each n = 1, . . . , g} .
(4.3)

Note that this space can be written as 𝒱0 = grad[H1(Ω)]: in fact, the inclusion
grad[H1(Ω)] ⊂ 𝒱0 is obvious, while the inclusion 𝒱0 ⊂ grad[H1(Ω)] is a classical
result concerning scalar potentials (see, e. g., Cantarella et al. [26]). The vector field V
is thus a solution to

V ∈ 𝒱0 : ∫
Ω

μV ⋅ gradϕ = −∫
Ω

fϕ − ∫
Ω

μu∗ ⋅ gradϕ

+ ∫
𝜕Ω

bϕ ∀ ϕ ∈ H1(Ω) .
(4.4)

It is easy to see thatV is indeed the unique solution of that problem: in fact, assuming
f = b = 0, u∗ = 0, and taking ϕ such that gradϕ = V, it follows at once ∫Ω μV ⋅ V = 0,
hence V = 0.

Also in this case we remark that, due to the identity 𝒱0 = grad[H1(Ω)], a nodal
finite element scheme related to this variational formulation leads to a very simple
andnice stiffnessmatrix: the one of the Laplace operator−Δ (for all the basis functions
except one, see (7.7)).

5 Finite element approximation: generalities

Without pretending to be exhaustive, in this section we give a general overview of the
methods that have been proposed for the finite element numerical approximation of
the curl–div problem (mainly for the magnetostatic case given by (2.7) with f = 0 and
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18 | A. Alonso Rodríguez et al.

b = 0); our aim is simply to show here the advantage of the finite element methods we
are going to introduce.

The magnetostatic problem has been considered since a long time, though very
often in a simple topological situation, as it is probably the “most frequently encoun-
tered field problem in electrical engineering design” (see Chari et al. [28]).

A formulation in terms of a vector potential A such that curlA = μu is quite clas-
sical, and has been analyzed by Coulomb [30], Barton and Cendes [12], Preis et al. [55]
(see also the more recent point of view involving mimetic finite differences presented
in Brezzi and Buffa [22], Lipnikov et al. [43]). Since the unknown is a vector field, the
computational cost is higher than that needed to solve problem (2.7), that, as we will
see in (7.7), in our formulation is essentially a scalar problem. Moreover, the magnetic
vector potential approach presents two additional disadvantages: firstly, the right-
hand sides f and bmust be vanishing, or, if this not the case, one has the additional
step given by the identification of a scalar function Ψ such that div(μ gradΨ) = f in Ω
and μ gradΨ ⋅ n = b on 𝜕Ω; secondly, the vector potential A needs a gauge condition,
thus another scalar equation (and unknown) has to be introduced. The method we
devise in Section 6 for solving problem (2.1) has two steps: the first one has the aim of
simply reducing the problem to the search of a suitablemagnetic vector potential, and
the second step can be performedwithout introducing a differential gauge, so that the
overall scheme is cheap and efficient.

The remark concerning the computational cost also holds for many methods
formulated in terms of the field u: let us mention the mixed methods proposed by
Kikuchi [42], Kanayama et al. [41], the least-squares approaches by Chang and Gun-
zburger [27], Bensow and Larson [14], Bochev et al. [18], the negative-norm least-
squares schemes by Bramble and Pasciak [21], the weak Galerkin formulations by
Wang andWang [63], and the evenmore expensive two field-basedmethods by Rikabi
et al. [58], Perugia [49] and Alotto and Perugia [10].

The co-volume method proposed by Nicolaides and Wu [48] is based on a system
of two orthogonal grids like the classical Voronoi–Delaunay mesh pair, and for this
reason this approach is not completely general, as some restrictions on the primal
mesh and on the topological properties of the computational domain are needed.

Finally, the methods based on a magnetic scalar “potential” (the so-called re-
duced scalar potential) require the preliminary determination of a source field He.
Doing this by means of the Biot–Savart formula is not cheap from the computational
point of view, and sometimes it induces cancellation errors (see Simkin and Trow-
bridge [62], Balac and Caloz [11]). In Mayergoyz et al. [45], it was suggested how to
avoid this drawback by introducing an additional scalar potential, thus proposing a
more expensive scheme (a complete analysis of this more complex formulation is in
Bermudez et al. [15]). The method we propose in Section 7 for solving problem (2.7)
presents two steps: the first one leads to a problem where the unknown is essentially
a magnetic scalar “potential,” but this is done without using the Biot–Savart formula,
and in the end it turns out to be cheap and reliable.
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1 The curl–div system: theory and finite element approximation | 19

Our methods in Section 6 and Section 7 are related to the so-called tree–cotree
gauge used for the numerical approximation of magnetostatic and eddy current prob-
lems (see, e. g., Albanese and Rubinacci [1, 2], Ren and Razek [57], Manges and Cen-
des [44]); it could be seen as a rigorous mathematical version of that approach.

Before going on, a few remarks are in order. The techniques based on a tree–cotree
decomposition of the nodes and the edges of the mesh can have some drawbacks,
both for the construction of scalar or vector potentials and for the determination of
a finite element basis. In fact, the stability of the methods depends on the choice of
the tree (see Hiptmair [36]), and a clear theoretical result concerning the best selec-
tion for numerical approximation is not known. In this paper, as well as in our previ-
ous experience (see Alonso Rodríguez et al. [4], Alonso Rodríguez et al. [5]), choosing
a breadth-first spanning tree has shown to be suitable and has lead to efficient nu-
merical schemes. However, there are no rigorous results on this subject, and a deeper
analysis, that would be quite interesting, could be the topic of a future research.

Let us introduce now some notation. In the following sections, we assume that
Ω ⊂ ℝ3 is a polyhedral bounded domain with Lipschitz boundary 𝜕Ω. We consider a
tetrahedral triangulation 𝒯h = (V ,E, F,T) of Ω, denoting by V the set of vertices, E the
set of edges, F the set of faces and T the set of tetrahedra of 𝒯h.

We will use these spaces of finite elements (see Monk [46, Section 5.6, Section 5.5,
Section 5.4 and Section 5.7] for a complete presentation): the space Lh of continuous
piecewise-linear elements, with dimension nv, the number of vertices in 𝒯h; the space
Nh ofNédélec edge elements of degree 1,with dimension ne, the number of edges in 𝒯h;
the space RTh of Raviart–Thomas elements of degree 1, with dimension nf , the number
of faces in 𝒯h; the space PCh of piecewise-constant elements, with dimension nt, the
number of tetrahedra in 𝒯h.

The following inclusions are well known:

Lh ⊂ H1(Ω) , Nh ⊂ H(curl;Ω) , RTh ⊂ H(div;Ω) PCh ⊂ L2(Ω) .

Moreover, grad Lh ⊂ Nh, curlNh ⊂ RTh and div RTh ⊂ PCh. The basis of Lh is denoted
by {ψh,1, . . . ,ψh,nv }, with ψh,i(vj) = δi,j for 1 ≤ i, j ≤ nv; the basis of Nh is denoted by
{wh,1, . . . ,wh,ne }, with ∫ej wh,i ⋅ τ = δi,j for 1 ≤ i, j ≤ ne; the basis of RTh is denoted by
{rh,1, . . . , rh,nf }, with ∫fm rh,l ⋅ ν = δl,m for 1 ≤ l,m ≤ nf .

Fixing a total ordering v1, . . . , vnv of the elements of V , an orientation on the el-
ements of E and F is induced: if the end points of ej are va and vb for some a, b ∈
{1, . . . , nv} with a < b, then the oriented edge ej will be denoted by [va, vb], with unit
tangent vector τ = vb−va

|vb−va|
; if the face fm has vertices va, vb and vc with a < b < c, the ori-

ented face fm will be denoted by [va, vb, vc] and its unit normal vector ν = (vb−va)×(vc−va)|(vb−va)×(vc−va)|
is obtained by the right-hand rule.

We have already introduced the set of closed curves {σn}
g
n=1. We recall here that

indeed they can be constructed as 1-cycles in 𝒯h, therefore, they are suitable for being

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 3:59 PM



20 | A. Alonso Rodríguez et al.

employed in finite element approximation (see Hiptmair and Ostrowski [39]; see also
Alonso Rodríguez et al. [4]).

6 Finite element approximation of problem (3.4)

We are ready now for the presentation of our finite element approximation procedure
of problem (2.1). It can be performed in two steps. The first one, that is quite cheap, is
finding a finite element potential u⋆h ∈ RTh such that

{{{
{{{
{

divu⋆h = fh in Ω

∫
(𝜕Ω)r

u⋆h ⋅ n = αr for each r = 1, . . . , p , (6.1)

where fh ∈ PCh is the piecewise-constant interpolant IPCh f of f . This can be done by
means of a simple and efficient algorithm as shown in Alonso Rodríguez and Valli [9].

The second step concerns the numerical approximation of problem (3.4). Here,
the main issue is to determine a finite element subspace of 𝒲0, and a suitable finite
element basis. The natural choice is clearly

𝒲0,h = {ξ h ∈ RTh | div ξ h = 0 in Ω,

∫
(𝜕Ω)r

ξ h ⋅ n = 0 for each r = 1, . . . , p} .
(6.2)

For the ease of notation, let us set nQ = ne − (nv − 1). As proved in Alonso Rodríguez
et al. [6], the dimension of𝒲0,h is equal to nQ − g, and a basis is given by the curls of
suitable Nédélec elements belonging to Nh.

To make clear this point, following Alonso Rodríguez et al. [6], some notation
are necessary. As shown in Hiptmair and Ostrowski [39] (see also Alonso Rodríguez
et al. [4]), it is possible to construct a set of 1-cycles {σn}

g
n=1, representing a basis of the

first homology groupℋ1(Ω, ℤ), as a formal sumof edges in 𝒯h with integer coefficients.
More precisely, let us consider the graph given by the vertices and the edges of 𝒯h on
𝜕Ω. The number of connected components of this graph coincides with the number of
connected components of 𝜕Ω. For each r = 0, 1, . . . , p, let Sr𝜕Ω = (V

r
𝜕Ω,M

r
𝜕Ω) be a span-

ning tree of the corresponding connected component of the graph. Then consider the
graph (V ,E), given by all the vertices and edges of 𝒯h, and a spanning tree S = (V ,M)
of this graph such thatMr

𝜕Ω ⊂ M for each r = 0, 1, . . . , p. Let us order the edges in such
a way that the edge el belongs to the cotree of S for l = 1, . . . , nQ and the edge enQ+i be-
longs to the tree S for i = 1, . . . , nv − 1. In particular, denote by eq, q = 1, . . . , 2g, the set
of edges of 𝜕Ω, constructed by Hiptmair and Ostrowski [39], that have the following
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1 The curl–div system: theory and finite element approximation | 21

properties: they all belong to the cotree, and each one of them “closes” a 1-cycle γq
that is a representative of a basis of the first homology groupℋ1(𝜕Ω, ℤ) (whose rank is
indeed equal to 2g). With this notation, we recall that the 1-cycles σn can be expressed
as the formal sum

σn =
2g
∑
q=1

An,qγq =
2g
∑
q=1

An,qeq +
ne
∑

i=nQ+1
an,iei , (6.3)

for suitable and explicitly computable integers An,q.
The idea that leads to the construction of the basis of𝒲0,h is now the following:

first, consider the set

{curlwh,l}
nQ
l=2g+1 ,

Then look for g functions zh,λ ∈ RTh, λ = 1, . . . , g, of the form

zh,λ =
2g
∑
υ=1

c(λ)υ curlwh,υ ,

where the linearly independent vectors c(λ) ∈ ℝ2g are chosen in such a way that

∮
σn

(
2g
∑
υ=1

c(λ)υ wh,υ) ⋅ ds = 0

for n = 1, . . . , g. This can be done since σn is formed by the “closing” edges eq, q =
1, . . . , 2g, and by edges belonging to the spanning tree, so that

∮
σn

(
2g
∑
υ=1

c(λ)υ wh,υ) ⋅ ds =
2g
∑
q=1

An,q ∫
eq

(
2g
∑
υ=1

c(λ)υ wh,υ) ⋅ τ =
2g
∑
q=1

An,qc
(λ)
q ,

and thematrixA ∈ ℤg×2g with entriesAn,q has rank g (seeHiptmair andOstrowski [39],
Alonso Rodríguez et al. [4, Section 6]). Thus we only have to determine a basis c(λ) ∈
ℝ2g of the kernel of A, λ = 1, . . . , g. An easy way for determining these vectors c(λ) is
presented in Alonso Rodríguez et al. [6].

Proposition 5. The vector fields

{curlwh,l}
nQ
l=2g+1 ∪ {curl(

2g
∑
υ=1

c(λ)υ wh,υ)}
g

λ=1
⊂𝒲0,h

are linearly independent and in particular they are a basis of𝒲0,h.

Proof. The proof that these vector fields are linearly independent is in Alonso Ro-
dríguez et al. [6, Proposition 2]. The second statement is then straightforward, as their
number is nQ − g, the dimension of𝒲0,h.
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22 | A. Alonso Rodríguez et al.

Let us denote this basis by {curlωh,l}
nQ
l=g+1, with

ωh,l =
{{{
{{{
{

wh,l for l = 2g + 1, . . . , nQ
2g
∑
υ=1

c(l−g)υ wh,υ for l = g + 1, . . . , 2g .
(6.4)

Proposition 6. The vector fields {ωh,l}
nQ
l=g+1 are linearly independent.

Proof. Suppose we have∑nQl=g+1 θlωh,l = 0 for some θl. This can be rewritten as

0 =
nQ
∑

l=2g+1
θlwh,l +

2g
∑
l=g+1

θl(
2g
∑
υ=1

c(l−g)υ wh,υ)

=
nQ
∑

l=2g+1
θlwh,l +

2g
∑
υ=1
(

2g
∑
l=g+1

θlc
(l−g)
υ )wh,υ ,

thus θl = 0 for l = 2g + 1, . . . , nQ and ∑2gl=g+1 θlc
(l−g)
υ = 0 for υ = 1, . . . 2g, as {wh,l}

nQ
l=1

are linearly independent. Since the vectors c(l−g) ∈ ℝ2g , l = g + 1, . . . , 2g, are linearly
independent, we also obtain θl = 0 for l = g + 1, . . . , 2g, and the result follows.

We are now in a position to formulate the finite element approximation of (3.4),
that reads as follows:

Wh ∈𝒲0,h : ∫
Ω

ηWh ⋅ curl vh = ∫
Ω

J ⋅ vh − ∫
Ω

ηu⋆h ⋅ curl vh

+ ∫
𝜕Ω

a ⋅ vh ∀ vh ∈ N
⋆
h ,

(6.5)

where

N⋆h = span{ωh,l}
nQ
l=g+1 . (6.6)

The corresponding algebraic problem is a square linear system of dimension nQ − g,
and it is uniquely solvable. In fact, we note that𝒲0,h = curlN⋆h , hence we can choose
v⋆h ∈ N

⋆
h such that curl v⋆h = Wh; from (6.5) we find at once Wh = 0, provided that

J = u⋆h = a = 0.
The convergence of this finite element scheme is easily shown by standard argu-

ments. For the ease of reading, let us present the proof.

Theorem 3. Let W ∈ 𝒲0 and Wh ∈ 𝒲0,h be the solutions of problem (3.4) and (6.5),
respectively. Set u = W + u⋆ and uh = Wh + u⋆h , where u

⋆ ∈ H(div;Ω) and u⋆h ∈ RTh
are solutions to problem (3.1) and (6.1), respectively. Assume that u is regular enough, so
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1 The curl–div system: theory and finite element approximation | 23

that the interpolant IRTh u is defined. Then the following error estimate holds:

‖u − uh‖H(div;Ω) ≤ c0(‖u − I
RT
h u‖L2(Ω) + ‖f − I

PC
h f ‖L2(Ω)) . (6.7)

Proof. Since N⋆h ⊂ H(curl;Ω), we can choose v = vh ∈ N
⋆
h in (3.4). By subtracting (6.5)

from (3.4), we end up with

∫
Ω

η[(W + u⋆) − (Wh + u
⋆
h)] ⋅ curl vh = 0 ∀ vh ∈ N

⋆
h ,

namely,

∫
Ω

η(u − uh) ⋅ curl vh = 0 ∀ vh ∈ N
⋆
h . (6.8)

Then, recalling that𝒲0,h = curlN⋆h , so thatWh = curl v⋆h for a suitable v
⋆
h ∈ N
⋆
h , using

(6.8) we find

c1‖u − uh‖
2
L2(Ω) ≤ ∫

Ω

η(u − uh) ⋅ (u − uh)

= ∫
Ω

η(u − uh) ⋅ (u −Wh − u
⋆
h )

= ∫
Ω

η(u − uh) ⋅ (u − curl v
⋆
h − u
⋆
h )

= ∫
Ω

η(u − uh) ⋅ (u − curl vh − u
⋆
h )

≤ c2‖u − uh‖L2(Ω)‖u − ξ h − u
⋆
h‖L2(Ω) ∀ ξ h ∈𝒲0,h .

We can choose ξ h = (I
RT
h u − u⋆h ) ∈ 𝒲0,h; in fact, div(IRTh u) = IPCh (divu) = I

PC
h f = fh

and ∫(𝜕Ω)r I
RT
h u ⋅ n = ∫(𝜕Ω)r u ⋅ n = αr for each r = 1, . . . , p. Then it follows at once

‖u−uh‖L2(Ω) ≤
c2
c1
‖u− IRTh u‖L2(Ω). Moreover, div(u−uh) = f − fh = f − I

PC
h f , and the thesis

is proved.

A sufficient condition for defining the interpolant ofu is thatu ∈ (H
1
2+δ(Ω))3, δ > 0

(see Monk [46, Lemma 5.15]). This is satisfied if, e. g., η is a scalar Lipschitz function
in Ω and a ∈ (Hγ(𝜕Ω))3, γ > 0 (see Alonso and Valli [3]). Moreover, if u ∈ (H1(Ω))3 and
f ∈ H1(Ω) we have ‖u − uh‖H(div;Ω) = O(h).

6.1 The algebraic problem

The solutionWh ∈ 𝒲0,h is given byWh = ∑
nQ
l=g+1Wl curlωh,l. Hence the finite dimen-

sional problem (6.5) can be rewritten as
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24 | A. Alonso Rodríguez et al.

nQ
∑
l=g+1

Wl ∫
Ω

η curlωh,l ⋅ curlωh,m = ∫
Ω

J ⋅ωh,m − ∫
Ω

ηu⋆h ⋅ curlωh,m

+ ∫
𝜕Ω

a ⋅ωh,m ,
(6.9)

for eachm = g + 1, . . . , nQ.

Theorem 4. The matrix K⋆ with entries

K⋆ml = ∫
Ω

η curlωh,l ⋅ curlωh,m

is symmetric and positive definite.

Proof. It is enough to recall that the vector fields {curlωh,l}
nQ
l=g+1 are linearly indepen-

dent (see Proposition 5). More precisely, they are a basis of𝒲0,h, henceK⋆ is the mass
matrix in𝒲0,h with weight η.

7 Finite element approximation of problem (4.4)
Similar to the previous case, also the finite element approximation of problem (2.7)
involves two steps. The first one is finding a finite element potential u∗h ∈ Nh such that

{{{
{{{
{

curlu∗h = Jh in Ω

∮
σn

u∗h ⋅ ds = βn for each n = 1, . . . , g , (7.1)

where Jh ∈ RTh is the Raviart–Thomas interpolant IRTh J of J (we therefore assume that
J is so regular that its interpolant IRTh J is defined; for instance, as already recalled, it
is enough to assume J ∈ (H

1
2+δ(Ω))3, δ > 0: see Monk [46, Lemma 5.15]). An efficient

algorithm for computing u∗h , based on a tree–cotree decomposition of the mesh, is
described in Alonso Rodríguez and Valli [9].

The second step is related to the numerical approximation of problem (4.4). It is
quite easy to find a finite element subspace of 𝒱0 and a suitable finite element basis.
The natural choice is clearly

𝒱0,h = {vh ∈ Nh | curl vh = 0 in Ω,

∮
σn

vh ⋅ ds = 0 for each n = 1, . . . , g} ,
(7.2)

which can be rewritten as 𝒱0,h = grad Lh. Since the dimension of this space is nv − 1,
a finite element basis is determined by taking gradψh,i, i = 1, . . . , nv − 1, ψh,i being the
basis functions of the finite element space Lh.
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1 The curl–div system: theory and finite element approximation | 25

The finite element approximation of (4.4) is easily obtained:

Vh ∈ 𝒱0,h : ∫
Ω

μVh ⋅ gradϕh = −∫
Ω

f ϕh − ∫
Ω

μu∗h ⋅ gradϕh

+ ∫
𝜕Ω

bϕh ∀ ϕh ∈ L
∗
h ,

(7.3)

where

L∗h = span{ψh,i}
nv−1
i=1 = {ϕh ∈ Lh |ϕh(vnv ) = 0} . (7.4)

The corresponding algebraic problem is a square linear system of dimension nv − 1,
and it is uniquely solvable. In fact, since 𝒱0,h = grad L∗h , we can choose ϕ

∗
h ∈ L
∗
h such

that gradϕ∗h = Vh; from (7.3) we find at once Vh = 0, provided that f = b = 0, u∗h = 0.
The convergence of this finite element scheme is easily proved by following the

arguments previously presented.

Theorem 5. LetV ∈ 𝒱0 andVh ∈ 𝒱0,h be the solutions of problem (4.4) and (7.3), respec-
tively. Set u = V+u∗ and uh = Vh +u∗h , where u

∗ ∈ H(curl;Ω) and u∗h ∈ Nh are solutions
to problem (4.1) and (7.1), respectively. Assume that u and J are regular enough, so that
the interpolants INh u and IRTh J are defined. Then the following error estimate holds:

‖u − uh‖H(curl;Ω) ≤ c0(‖u − I
N
h u‖L2(Ω) + ‖J − I

RT
h J‖L2(Ω)) . (7.5)

Proof. Since L∗h ⊂ H
1(Ω), we can choose ϕ = ϕh ∈ L∗h in (4.4). By subtracting (7.3) from

(4.4), we end up with

∫
Ω

μ[(V + u∗) − (Vh + u
∗
h)] ⋅ gradϕh = 0 ∀ ϕh ∈ L

∗
h ,

namely,

∫
Ω

μ(u − uh) ⋅ gradϕh = 0 ∀ ϕh ∈ L
∗
h . (7.6)

Then, since 𝒱0,h = grad L∗h and thus Vh = gradϕ∗h for a suitable ϕ
∗
h ∈ L
∗
h , from (7.6) we

find

c1‖u − uh‖
2
L2(Ω) ≤ ∫

Ω

μ(u − uh) ⋅ (u − uh)

= ∫
Ω

μ(u − uh) ⋅ (u − Vh − u
∗
h )

= ∫
Ω

μ(u − uh) ⋅ (u − gradϕ
∗
h − u
∗
h )
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26 | A. Alonso Rodríguez et al.

= ∫
Ω

μ(u − uh) ⋅ (u − gradϕh − u
∗
h )

≤ c2‖u − uh‖L2(Ω)‖u − vh − u
∗
h‖L2(Ω) ∀ vh ∈ 𝒱0,h .

We can choose vh = (INh u − u
∗
h ) ∈ 𝒱0,h; in fact, curl(I

N
h u) = I

RT
h (curlu) = I

RT
h J = Jh and

∮σn I
N
h u ⋅ ds = ∮σn u ⋅ ds = βn for each n = 1, . . . , g. Then we find at once ‖u − uh‖L2(Ω) ≤

c2
c1
‖u−INh u‖L2(Ω). Moreover, curl(u−uh) = J−Jh = J−I

RT
h J, and the assertion follows.

Sufficient conditions for defining the interpolants of u and J = curlu are that they
both belong to (H

1
2+δ(Ω))3, δ > 0 (see Monk [46, Lemma 5.15 and Theorem 5.41]). This

is for instance satisfied if μ is a scalar Lipschitz function in Ω and b ∈ Hγ(𝜕Ω), γ > 0
(see Alonso and Valli [3]). Moreover, if u ∈ (H1(Ω))3 and J ∈ (H1(Ω))3 we have ‖u −
uh‖H(curl;Ω) = O(h).

7.1 The algebraic problem

The solutionVh ∈ 𝒱0,h is given byVh = ∑
nv−1
i=1 Vi gradψh,i. Hence the finite dimensional

problem (7.3) can be rewritten as

nv−1
∑
i=1

Vi ∫
Ω

μ gradψh,i ⋅ gradψh,j = −∫
Ω

fψh,j − ∫
Ω

μu∗h ⋅ gradψh,j

+ ∫
𝜕Ω

bψh,j ,
(7.7)

for each j = 1, . . . , nv − 1.
We have at once the following.

Theorem 6. The matrix K∗ with entries

K∗ji = ∫
Ω

η gradψh,i ⋅ gradψh,j

is symmetric and positive definite.

8 Numerical results
In this section,wepresent somenumerical experimentswith the aimof illustrating the
effectiveness of the two proposed formulations and the behavior of their finite element
approximation.

All the numerical computations have been performedbymeans of aMacBookPro,
with a processor 2.9 GHz Intel Core i7, 16 GB 2133MHz RAM. We have used Netgen (see
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1 The curl–div system: theory and finite element approximation | 27

[61]) to construct the meshes, and the package Pardiso (see [51, 50]) to solve the lin-
ear systems by means of a direct method (thus circumventing possible conditioning
problems).

A peculiar point of our procedure is the choice of a suitable spanning tree of the
graph given by the nodes and the edges of the mesh. As we have already noted, the
stability of the method depends on this choice, in a way that is not completely clar-
ified at the theoretical level. In our computations, we have systematically chosen a
breadth-first spanning tree; this, together with the use of direct solvers for the alge-
braic systems, has always provided good numerical results. Breadth-first spanning
trees have also shown to be an efficient choice in Alonso Rodríguez et al. [4], Alonso
Rodríguez et al. [5].

We consider different test cases for each one of the two proposed formulations.
For both formulations, the first test case is a problem with a known analytical solu-
tion. In this way, we can validate the code and illustrate the convergence properties
of the finite element discretization. In the second test case, the data are very similar
to those of the first test case, the difference only being a concentrated perturbation of
the datum at the right-hand side of the divergence equation. We expect a solution that
mainly differs from the solution of the first test case in a neighborhood of the support
of the perturbation. For the problem inwhich the tangential component of the velocity
is assigned, we present the computations for two different topological situations, in
order to show that the approximation method is insensitive to the shape of the com-
putational domain. In the third test case, the computational domain is similar to that
of problem number 13 in the TEAM workshop (see [47]). The aim of this test case is to
check the behaviour of the methods in a more realistic setting.

8.1 Numerical results for the problem with assigned tangential
component on the boundary

Let us recall the system of equations that we consider:

{{{{{{{{
{{{{{{{{
{

curl(ηu) = J in Ω
divu = f in Ω
(ηu) × n = a on 𝜕Ω

∫
(𝜕Ω)r

u ⋅ n = αr for each r = 1, . . . , p .

For the sake of simplicity, in the sequel we will take η equal to the identity.
The data of the first test are such that the vector field u = [−x1x2, x1x2,0]T is the

exact solution, hence in particular we have J = [0,0, x2 + x1]T and f = x1 − x2.
The computational domainΩ is a cylinderwith a cavity. The cylinder has a vertical

axis, height equal to H = 100, and the cross section given by the circle centered at the
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origin and of radius R = 60. The cavity is a similar cylinder but with height h = 60
and cross section of radius r = 30. The boundary of Ω has therefore two connected
components. We include the Netgen file describing the geometry.

algebraic3d

solid cyl1 = cylinder(0,0,0;0,0,1; 60.)

and plane( 0, 0, 50 ; 0, 0, 1 )

and plane( 0, 0,-50 ; 0, 0, -1 );

solid cyl2 = cylinder(0,0,0;0,0,1; 30.)

and plane( 0, 0, 30 ; 0, 0, 1 )

and plane( 0, 0,-30 ; 0, 0, -1 );

solid cyl_in_cyl = cyl1 and not cyl2;

tlo cyl_in_cyl;

To check that the convergence rate is linear as expected, we solve the problem with
five different meshes, described in Table 1.1.

Table 1.1: Description of the five meshes for the problem with assigned tangential component on the
boundary (first test case, simply-connected domain).

Elements Faces Edges Vertices DOF

Mesh 1 538 1246 886 180 707
Mesh 2 4304 9288 6048 1066 4983
Mesh 3 34432 71584 44264 7114 37151
Mesh 4 275456 561792 337712 51378 286335
Mesh 5 2203648 4450816 2636256 389090 2247167

The relative error is computed in the following way:

RE(h) =
√∑t∈T |t|(u|t − uh|t)2

√∑t∈T |t|(u|t)2
, (8.1)

being T the set of tetrahedra of the mesh and |t| the volume of the tetrahedron t.
The convergence rate is estimated comparing the error for two different meshes:

Estimated Rate = log[RE(h1)/RE(h2)]
log(h1/h2)

. (8.2)
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Table 1.2: Relative error, mesh size, convergence rate and computational cost for the problem with
assigned tangential component on the boundary (first test case, simply-connected domain).

Relative error h Rate CPU [ms]

Mesh 1 0.216 41.99 ≈ 14
Mesh 2 0.131 31.68 1.657 ≈ 62
Mesh 3 0.068 16.30 0.969 ≈ 707
Mesh 4 0.034 8.16 0.998 ≈ 11161
Mesh 5 0.017 4.09 1.009 ≈ 407829

The results are reported in Table 1.2.
In the second test case, we consider a perturbed problem, namely, a problemwith

the same values of J, a, and αr for each r = 1, . . . , p, but with a new value for the diver-
gence, given by fϵ = f + ϵ, where ϵ = 1000 in the ball of radius 10 centered at the point
[45,0,0]T and ϵ = 0 otherwise. In Figure 1.1, one can compare the solutions of the first
test case and of the second test case (namely, of the problem with a known analytical
solution and of the perturbed problem). We are not showing the whole computational
domain but only a cut along the plane x2 = 10.

Figure 1.1: The solution u of the test problem in a simply-connected domain with a known analytical
solution (left) and with a perturbed value for the divergence (right). In the figures, the domain is cut
along the plane x2 = 10.

In order to show the proposed method is also working for a domain with a more gen-
eral topological shape, we have solved the problem for a toroidal domain with a con-
centric toroidal cavity. The connected components of the boundary are two and also
the first Betti number of the computational domain is equal to two. More precisely, the
computational domainΩ is the subtraction two domains: the larger one is the cylinder
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of height 2 with circular cross section of radius 1.2 minus the cylinder with the same
height and cross section of radius 0.4; the cavity is the cylinder of height 1.6 with cir-
cular cross section of radius 1 minus the cylinder of the same height and cross section
of radius 0.6. All the mentioned cylinders have their axis coincident with the x3-axis.

For completeness, we include the Netgen file describing the geometry:

algebraic3d

solid cyl1a = cylinder(0,0,0;0,0,1; 1.2)

and plane( 0, 0, 1 ; 0, 0, 1 )

and plane( 0, 0,-1 ; 0, 0, -1 );

solid cyl1b = cylinder(0,0,0;0,0,1; 0.4)

and plane( 0, 0, 1 ; 0, 0, 1 )

and plane( 0, 0,-1 ; 0, 0, -1 );

solid cyl2a = cylinder(0,0,0;0,0,1; 1.)

and plane( 0, 0, 0.8 ; 0, 0, 1 )

and plane( 0, 0,-0.8 ; 0, 0, -1 );

solid cyl2b = cylinder(0,0,0;0,0,1; 0.6)

and plane( 0, 0, 0.8 ; 0, 0, 1 )

and plane( 0, 0,-0.8 ; 0, 0, -1 );

solid cyl1 = cyl1a and not cyl1b;

solid cyl2 = cyl2a and not cyl2b;

solid cyl_in_cyl = cyl1 and not cyl2;

tlo cyl_in_cyl;

The data of this test are such that the exact solution is u = [x3x1, x3x2, x23]
T , hence in

particular we have J = [−x2, x1,0]T and f = 4x3.
Again we have solved the problem with five different meshes, described in Ta-

ble 1.3. The results are reported in Table 1.4.
In this case, the related perturbed problem has this form: we have kept the same

values of J, a and αr for each r = 1, . . . , p, just modifying the datum at the right-hand
side of the divergence equation, now given by f̂ϵ = f + ϵ, with ϵ = −15 in the ball
centered at the point [−0.8,0,0.9]T and radius 0.1, ϵ = 15 in the ball centered at the
point [0.8,0,0.9]T and radius 0.1 and ϵ = 0 otherwise.
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Table 1.3: Description of the five meshes for the problem with assigned tangential component on the
boundary (first test case, non-simply connected domain).

Elements Faces Edges Vertices DOF

Mesh 1 1358 3169 2264 453 1810
Mesh 2 10864 23540 15393 2717 12675
Mesh 3 86912 181072 112270 18110 94159
Mesh 4 695296 1419584 854668 130380 724287
Mesh 5 5562368 11240704 6663384 985048 5678335

Table 1.4: Relative error, mesh size, convergence rate and computational cost for the problem with
assigned tangential component on the boundary (first test case, non-simply connected domain).

Relative error h Rate CPU [ms]

Mesh 1 0.685 0.101 ≈80
Mesh 2 0.498 0.060 1.634 ≈170
Mesh 3 0.250 0.031 0.956 ≈1931
Mesh 4 0.125 0.015 1.008 ≈ 34779
Mesh 5 0.063 0.008 1.012 ≈2481110

Figure 1.2: The solution u of the test problem in a non-simply connected domain with a known ana-
lytical solution (left) and with a perturbed value for the divergence (right). In the figures, only half of
the domain is drawn.

In Figure 1.2, one can compare the solutions of the problem with a known analytical
solution and of the perturbed problem.We are showing only half of the computational
domain.

Let us note that we have not indeed constructed the basis described in Proposi-
tion 5, as we have used the set of generators {curlwh,l}

nQ
l=1, that in the case of a non-
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simply connected domain, are not linearly independent (the dimension of 𝒲0,h is
nQ − g). In this case, the associated linear system is singular, but it is possible to find
a solution in an efficient way (for instance, using the package Pardiso).

In the third test problem, the domain is the box (−300 300) × (−300 300) ×
(−250 250) (in mm), with three cavities corresponding to two channels and a plate
(see Figure 1.3). The geometry is inspired to the problem number 13 in the TEAM
workshop (see [47]). The thickness of the channels and the plate is δ = 3.2mm,
the width w = 50mm and the height l = 126.4mm (so the plate is the hexaedron
(−1.6, 1.6) × (−25, 25) × (−63.2, 63.2)). The distance between the plate and the channels
is 0.5mm, while the distance between the channels and the plane x2 = 0 is 15mm.
The datum J is supported in a coil placed between the channels and the plate. More
precisely, its support is the cylinder of height 100mmwith circular cross section cen-
tered at the origin and of radius 120mm minus the analogous cylinder of the same
height and cross section of radius 30mm. Within the coil, we have J = [−x2, x1,0]T ,
while J is zero outside the coil. All the other data, namely, f , a and αr for r = 1, . . . , p,
are equal to zero.

The Netgen description of the geometry is the following.

algebraic3d

solid m1 = orthobrick(4.2,15,60;122.2,65,63.2);

solid m2 = orthobrick(4.2,15,-63.2;122.2,65,-60);

solid m3 = orthobrick(122.2,15,-63.2;125.4,65,63.2);

solid n1 = orthobrick(-122.2,-65,60;-4.2,-15,63.2);

solid n2 = orthobrick(-122.2,-65,-63.2;-4.2,-15,-60);

solid n3 = orthobrick(-125.4,-65,-63.2;-122.2,-15,63.2);

solid s = orthobrick(-1.6,-25,-63.2;1.6,25,63.2);

solid m = m1 or m2 or m3;

solid n = n1 or n2 or n3;

solid hole = m or n or s;

solid box = orthobrick(-300,-300,-250;300\,300\,250);

solid cyla = cylinder(0,0,0;0,0,1; 120.)

and plane( 0, 0, 50 ; 0, 0, 1 )

and plane( 0, 0,-50 ; 0, 0, -1 );

solid cylb = cylinder(0,0,0;0,0,1; 30.)
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and plane( 0, 0, 50 ; 0, 0, 1 )

and plane( 0, 0,-50 ; 0, 0, -1 );

solid cyl = cyla and not cylb;

solid mat1 = box and not (hole or cyl);

tlo cyl;

tlo mat1;

In Figure 1.3, we show the computational domain and the datum J. A description of
the usedmesh is in Table 1.5. Figure 1.4 shows the solution u of the third test problem.

We also show in Figure 1.5 four level sets of the solution and in Figure 1.6 ten dif-
ferent level sets from |u| = 1000 to |u| = 3000.

Figure 1.3: The computational domain and the datum of the third test problem.

Table 1.5: Description of the mesh for the third test problem.

Elements Faces Edges Vertices DOF

2070592 4171728 2461752 360620 2101133
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Figure 1.4: The solution u of the third test problem.

Figure 1.5: Four level sets of the solution u of the third test problem: |u| = 300 (top-left), |u| = 1200
(top-right), |u| = 2500 (bottom-left), |u| = 5000 (bottom-right).
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Figure 1.6: A single figure with ten level sets of the solution u, from |u| = 1000 to |u| = 6000.

8.2 Numerical results for the problem with assigned normal
component on the boundary

We recall the system of equations:

{{{{{{{{
{{{{{{{{
{

curlu = J in Ω
div(μu) = f in Ω
μu ⋅ n = b on 𝜕Ω

∮
σn

u ⋅ ds = βn for each n = 1, . . . , g ,

and, for the sake of simplicity, in the sequel we will take μ equal to the identity.
In the first and second test case, the computational domain is the toroidal domain

with a concentric toroidal cavity that we have considered in the previous section. The
data of the first test are again such that the exact solution is u = [x3x1, x3x2, x23]

T . In
Table 1.6, we report the data of the meshes used for estimating the convergence rate,
already presented in Table 1.3 but now including the number of degrees of freedom of
this specific formulation.

Table 1.6: Description of the five meshes for the problem with assigned normal component on the
boundary.

Elements Faces Edges Vertices DOF

Mesh 1 1358 3169 2264 453 452
Mesh 2 10864 23540 15393 2717 2716
Mesh 3 86912 181072 112270 18110 18109
Mesh 4 695296 1419584 854668 130380 130379
Mesh 5 5562368 11240704 6663384 985048 985047

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 3:59 PM



36 | A. Alonso Rodríguez et al.

Table 1.7: Relative error, mesh size, convergence rate and computational cost for the problem with
assigned normal component on the boundary.

Relative error h Rate CPU [ms]

Mesh 1 0.126 0.685 ≈ 25
Mesh 2 0.084 0.498 1.234 ≈ 59
Mesh 3 0.050 0.250 0.748 ≈506
Mesh 4 0.027 0.125 0.881 ≈5188
Mesh 5 0.014 0.063 0.952 ≈113083

The relative error and the convergence rate are computed as in (8.1) and (8.2), respec-
tively. The results are reported in Table 1.7.

In the second test problem, we consider a perturbed problem with the same val-
ues of J, b, and βn for each n = 1, . . . , g, just modifying the datum at the right-hand side
of the divergence equation, setting f̂ϵ = f + ϵ, with ϵ = −15 in the ball centered at the
point [−0.8,0,0.9]T and radius 0.1, ϵ = 15 in the ball centered at the point [0.8,0,0.9]T

and radius 0.1 and ϵ = 0 otherwise. (Note that ∫Ω ϵ = 0, hence the compatibility con-
dition ∫Ω f̂ϵ = ∫𝜕Ω b is satisfied.) In Figure 1.7, one can compare the solutions of the
problem with a known analytical solution and of the perturbed problem. Only half of
the computational domain is shown.

Figure 1.7: The solution u of the test problem with a known analytical solution (left) and with a per-
turbed value for the divergence (right). In the figures, only half of the domain is drawn.

In the third test case, the geometry of the problem is again inspired to that of problem
number 13 in the TEAMworkshop. However, in order to have a non-simply connected
computational domain, we have slightly modified it, as the plate now has thickness
equal to 4.2mm (instead of 3.2mm), and thus touches the channels. From the topolog-
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ical point of view now, we have only one cavity, precisely, a 2-torus, and thus also the
computational domain Ω is a 2-torus.

We include the Netgen file describing the geometry:

algebraic3d

solid m1 = orthobrick( -1.6, 15, 60; 122.2, 65, 63.2);

solid m2 = orthobrick( -1.6, 15,-63.2; 122.2, 65, -60);

solid m3 = orthobrick(122.2, 15,-63.2; 125.4, 65, 63.2);

solid n1 = orthobrick( -122.2, -65, 60; 1.6, -15,63.2);

solid n2 = orthobrick( -122.2, -65,-63.2; 1.6, -15,-60);

solid n3 = orthobrick( -125.4, -65,-63.2; -122.2, -15,63.2);

solid s = orthobrick(-1.6,-25,-63.2;1.6,25,63.2);

solid m = m1 or m2 or m3;

solid n = n1 or n2 or n3;

solid hole = m or n or s;

solid box = orthobrick(-300,-300,-250;300\,300\,250);

solid cyla = cylinder(0,0,0;0,0,1; 120.)

and plane( 0, 0, 50 ; 0, 0, 1 )

and plane( 0, 0,-50 ; 0, 0, -1 );

solid cylb = cylinder(0,0,0;0,0,1; 30.)

and plane( 0, 0, 50 ; 0, 0, 1 )

and plane( 0, 0,-50 ; 0, 0, -1 );

solid cyl = cyla and not cylb;

solid mat1 = box and not (hole or cyl);

tlo cyl;

tlo mat1;

The structure of the computational mesh is reported in Table 1.8.
As before, the datum J is supported in the cylinder of height 100mm and circular

cross section of radius 120mmminus the cylinder of the sameheight and cross section
of radius 30mm (both cylinders have their axis coincident with the x3-axis). In this
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Table 1.8: Description of the mesh for the third test problem (one 2-torus cavity).

Elements Faces Edges Vertices DOF

2075264 4181824 2468392 361832 361831

Figure 1.8: The computational domain and the datum of the third test problem (one 2-torus cavity).

Figure 1.9: The solution u of the third test problem (one 2-torus cavity).
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Figure 1.10: Four level sets of the solution u of the third test problem (one 2-torus cavity): |u| = 1500
(top-left), |u| = 2500 (top-right), |u| = 3500 (bottom-left), |u| = 4000 (bottom-right).

Figure 1.11: A single figure with ten level sets of the solution u, from |u| = 1000 to |u| = 6000 (third
test problem with one 2-torus cavity).
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Figure 1.12: The solution (left) and the level set |u| = 3500 (right) of the third test problem. The
computational domain is simply-connected and has three cavities as in problem number 13 of the
TEAM workshop.

coil, we have J = [−x2, x1,0]T , while J is zero outside. All the other data, namely, f ,
b and βn for n = 1, . . . , g, are equal to zero. In Figure 1.8, we show the computational
domain and the datum J.

Figure 1.9 shows the solution u of the third test problem. We also show in Fig-
ure 1.10 four level sets of the solution and in Figure 1.11 ten different level sets from
|u| = 1000 to |u| = 6000.

For permitting a comparison, we also present some results for the problem with
the same data but with three cavities, namely, for the computational domain of the
problem number 13 of the TEAM workshop (in particular, this computational domain
Ω is simply-connected). Themesh is the same than in Table 1.5, except for the number
of degrees of freedom, that now is coincident with the number of vertices less one,
namely, 360 619.

In Figure 1.12, we report the solution and just one level set, the one corresponding
to |u| = 3500, because the results are very similar to those in Figures 1.9 and 1.10.
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Sebastian Bauer
2 Darwin and higher order approximations
to Maxwell’s equations inℝ3

Abstract: This contribution is concerned with an asymptotic expansion of Maxwell’s
equations in case that charge velocities are small in comparison with the speed of
light. In every order of expansion, two curl–div systems have to be solved in which
solutions of the previous order enter on the right-hand side. It is proved that in case
of a bounded underlying domain Ω in every order k of expansion solutions are well-
defined and give an approximation of solutions of Maxwell’s equations with a L2 error
bound 𝒪((v/c)k+1) if initial values of the electromagnetic fields are suitably adapted.
In case ofΩ = ℝ3, weighted L2 spaces are used for solving curl–div systems. It is shown
that solutions of the approximation are only L2, if certain derivatives of the multipole
expansion of the sources vanish. For that reason, a careful analysis of mapping prop-
erties of vector differential operators in weighted L2 spaces is given which might be of
interest in its own right.

Keywords: Asymptotic expansion, Maxwell’s equations, Darwin approximation,
weighted L2 spaces, exterior domain, spherical vector harmonics

MSC 2010: 35C20, 35J46, 35Q60, 41A60, 78A25, 78A30

1 Introduction

Roughly speaking, Maxwell’s equations were the classical culmination point of a
number of earlier systems of equations systems attempting to describe electromag-
netic phenomena. Here, we shall mention three historical milestones on the way to
Maxwell’s equations. The first is given by the equations of electro and magnetostatics

divE = ϱ
ε0
, curlB = μ0j ,

curlE = 0 , divB = 0 ,
(1)

established by Coulomb, Lagrange and Gauss. The second set of equations involves
Faraday’s law of induction and is sometimes referred to as the eddy current model:

divE = ϱ
ε0
, curlB = μ0j ,

curlE = −𝜕tB , divB = 0 .
(2)
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46 | S. Bauer

Finally, Maxwell added the so-called displacement-current and ended with a Lorentz-
invariant set of equations which contains two dynamic and two constraint equations:

divE = ϱ
ε0
, curlB = μ0j +

1
c2
𝜕tE ,

curlE = −𝜕tB , divB = 0 .
(3)

Here, all equations are written in SI units, ϱ and j are given source distributions, ε0 is
the dielectric constant, μ0 themagnetic permeability and c the light velocity, where all
three constants relate to vacuum and we have c2ε0μ0 = 1. Local charge conservation,
i. e., 𝜕tϱ+div j = 0, is built-in in (3), but not in (2). For another set of equations, known
as Darwin equations, the electric field E = EL + ET is formally split into a curl-free
part EL, curlEL = 0 and a divergence-free part ET , divET = 0. In contrast to Maxwell’s
equations, the time derivative of the transversal part is neglected:

divEL = ϱ
ε0
, curlB = μ0j +

1
c2
𝜕tE

L , curlET = −𝜕tB ,

curlEL = 0 , divB = 0 , divET = 0 .
(4)

While (3) is a hyperbolic system, the equation systems (1), (2) and (4) are of elliptic
type. In (1), two independent curl–div systems have to be solved, in (2) two curl–div
systems have to be solved successively and the solution of the first system enters as
source term into the second system. Finally, in (4) we have three curl–div systems, the
solution of the first enters as source into the second and the solution of the second
enters as source into the third system.

It is well known (see, e. g., [10, 28, 4]) that systems (1), (2) and (4) can formally be
derived fromMaxwell’s equations as zeroth-, first- and second-order approximations,
respectively, in an asymptotic limit of small charge velocities if compared to speed of
light. We shall give the corresponding scaling in Section 2 and the formal asymptotic
expansion of Maxwell’s equations is given in (8), (9). This formal expansion leads to
twomain questions: First, are the equations of the asymptotic expansion well-posed?
Secondly, do the solutions of the asymptotic expansion give a good approximation of
solutions of Maxwell’s equations with a suitable error bound?

With regard to initial boundary valueproblemsofMaxwell’s equations inbounded
domains of ℝ3, both questions have been tackled successfully, in [10] for natural
boundary conditions and in [24, 25] for Silver–Müller absorbing boundary condi-
tions on an artificial outer part of the boundary. For numerical implementations, see
[8, 7]. We give a self-contained presentation of the bounded domain case with natural
boundary conditions using a simple solution theory of curl–div systems going back
to [23] and [26, 27] in Section 5. For the convenience of the reader, the usual proof of
the approximation property is given before in Section 4.

However, our main interest here is to understand the case of unbounded domains
inℝ3, particularly exterior domains. Some results on Darwin systems and asymptotic
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2 Darwin and higher order approximations to Maxwell’s equations inℝ3 | 47

expansions in exterior domains of ℝ3, which we have occasion to return to in Sec-
tion 11, are given in [17, 11, 18]. For sake of simplicity and in order to focus on the
effects of the unboundedness of the domains and to be able to ignore the influence of
boundary effects, we shall restrict our attention to the free space case, Ω = ℝ3.

From studies of the asymptotic expansion of coupled systems of charged matter
and electromagnetic fields in [16, 15, 14, 3, 5, 1, 2], we are used to the fact that well-
posedness and the approximation property of the asymptotic expansion break down
in order ( |v|c )

3 due to effects of so-called “radiation damping,” which have to be taken
into account by means of some extra radiation terms. Coupled systems here means
that charged matter, which enters Maxwell’s equations by means of source terms, is
also a degree of freedom governed, e. g., by Newton’s equation of motion if matter
is modeled by point particles or governed by a Vlasov equation if matter is modeled
by a kinetic approach. The electromagnetic field enters as force term the equations de-
scribing thematter. In both cases, particle and kinetic, the extra radiation term is built
using the third time derivative of the dipole moment of the zeroth-order contribution
ϱ0 of the charge distribution, i. e., ∫ℝ3 xϱ⃛0(t, x) dx; see [16] for a particle model and [1]
for a kinetic model.

The studies mentioned above rely on classical solutions and pointwise estimates
and investigate coupled systems. Nevertheless, we shall show in this paper that effects
due to radiation of multipoles also enter asymptotic expansions of Maxwell’s equa-
tions with prescribed sources in an L2 setting; see Section 10. The occurring mathe-
matical difficulties in unbounded domains mostly rely on the fact that for those do-
mains differential operators acting on suitable L2 spaces do not have closed ranges.
This problem is often remedied byusing polynomiallyweighted L2 spaces.Withw(x) =
(1 + |x|2)1/2 and for s ∈ ℝ, we say f ∈ L2s if and only if f ∈ L

2
loc and w

sf ∈ L2; the L2s norm
of f is given by the L2-norm of wsf . We use weighted Sobolev spaces with growing
weights, e. g., E ∈ Hs(curl) if and only if E ∈ L2s and curlE ∈ L

2
s+1. With the correspond-

ing scalar products, all of these spaces are Hilbert spaces. For precise definitions, see
Section 9. The key ingredient of this paper is a careful analysis of the usual vector
differential operators grad, div and curl acting on weighted Sobolev spaces ofℝ3. Ac-
tually, this analysis has already been done in [31] in ℝn and has been generalized to
exterior domains of ℝn with inhomogeneous and anisotropic media in [20] using dif-
ferential forms and exterior derivatives. Furthermore, results of [20], relevant for this
paper, have been translated into the language of vector calculus in [21, Appendix B].
For the convenience of the reader, we shall give a self-contained presentation of the
reasoningand results of [31] forℝ3 usingvector calculus insteadof calculus of differen-
tial forms from the beginning, thereby reproving some results from [21]; see Sections 7,
8 and 9. For this purpose, we first give a representation of vector differential operators
in spherical coordinates; see Section 7. Secondly, harmonic homogeneous polynomi-
als play a major role in characterizing kernels and defects of differential operators in
weighted Sobolev spaces. For the Laplacian, this has been shown in [19]. We establish
a fine-structure of harmonic homogeneous vector polynomials using vector spherical
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48 | S. Bauer

harmonics (see Section 8), which we thirdly use in Section 9 to exactly characterize
defects and kernels of vector differential operators in weighted Sobolev spaces; see
Theorem 4. In Section 10, we use this result to analyze the well-posedness of the itera-
tion scheme used in the asymptotic expansion. In short, we shall show that assuming
smooth charge and current distributions in L2s for sufficiently large s the solution of
the Darwin approximation is in (unweighted) L2 if and only if the second time deriva-
tive of the dipole moment of the charge distribution vanishes, i. e., ∫ xϱ̈(x, t) dx = 0.
Otherwise, the solutions are only in L2s for all s < −1/2 and in particular not in L2;
see Subsection 10.3. The usual proof of the approximation property (see [10] or Sec-
tion 4) gives L2-error bounds and essentially relies on L2 approximations. In order to
get this proof working, we also need the third-order approximation in (unweighted)
L2, which is the case if and only if the third time derivative of the quadrupole moment
of the charge distribution and the third time derivative of somemoment of the current
distribution vanishes; see Subsection 10.4.

2 Scalings
We are looking for physical situations in which the equation systems (1), (2) and (4)
might be good approximations ofMaxwell’s equations. To this end,we introduce char-
acteristic values for the physical quantities and derive dimensionless Maxwell’s equa-
tions. From given sources ϱ and j, we take a typical length ̄l, e. g., the diameter of sup-
port of the source distribution, and a typical time ̄t, e. g., the time a typical charged
particle needs to travel the distance ̄l. From this, we have the typical velocity v̄ = ̄l ̄t
and we assume that η := v̄/c ≪ 1. With scales Ē, B̄, ̄j of the electromagnetic fields and
the current density, unspecified until now,we define dimensionless quantities x = ̄lx󸀠,
t = ̄tt󸀠, E = ĒE󸀠, B = B̄B󸀠, ϱ = ϱ̄ϱ󸀠, j = ̄jj󸀠, E󸀠(t󸀠) = E( ̄tt󸀠)

Ē . . .. A simple computation gives
dimensionless Maxwell’s equations

v̄Ē
c2B̄
𝜕t󸀠E
󸀠 − curl󸀠 B󸀠 = −μ0

̄j ̄l
B̄
j󸀠 , ε0Ē

̄lϱ̄
div󸀠 E󸀠 = ϱ󸀠 ,

v̄B̄
Ē
𝜕t󸀠B
󸀠 + curl󸀠 E󸀠 = 0 , div󸀠 B󸀠 = 0

and dimensionless charge conservation

ϱ̄v̄
̄j
𝜕t󸀠ϱ
󸀠 + div󸀠 j󸀠 = 0 .

In the literature, there are two different scalings leading to slightly different asymp-
totic expansion. In this contribution, we use the scales from [10]:

Ē =
̄lϱ̄
ε0
, B̄ = Ē

c
, ̄j = cϱ̄ . (5)
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This choice leads to the following set of equations (for simplicity, we shall suppress
all primes):

η𝜕tE − curlB = −j , divE = ϱ ,
η𝜕tB + curlE = 0 , divB = 0 ,

together with the charge conservation equation

η𝜕tϱ + div j = 0 .

In connection with the Vlasov–Maxwell system, the scaling is not made explicit, but
some computations show that the scalings in, e. g., [28, 3] differ from the scaling above
by the definition of ̄j. In the latter two publication ̄j = v̄ϱ̄ is used, leading to

η𝜕tE − curlB = −ηj , divE = ϱ ,
η𝜕tB + curlE = 0 , divB = 0 ,

and charge conservation equation

𝜕tϱ + div j = 0 .

Of course, this leads to slightly different asymptotic expansions.

3 Formal asymptotic expansions

We now formally expand the resulting dimensionless Maxwell’s equations with nat-
ural boundary conditions in powers of η, where ν is the outward unit normal on the
boundary of the underlying domain. For the scaling (5), we have

η𝜕tE
η − curlBη = −jη , divEη = ϱη , Eη ∧ ν = 0 , Eη(0, ⋅) = Eη0 ,

η𝜕tB
η + curlEη = 0 , divBη = 0 , 𝜕tB

η ⋅ ν = 0 , Bη(0, ⋅) = Bη0 .
(6)

We make the formal Ansatz

Eη = E0 + ηE1 + η2E2 + ⋅ ⋅ ⋅ , Bη = B0 + ηB1 + η2B2 + ⋅ ⋅ ⋅ ,

ϱη = ϱ0 + ηϱ1 + η2ϱ2 + ⋅ ⋅ ⋅ , jη = j0 + ηj1 + η2j2 + ⋅ ⋅ ⋅ ,
(7)

equate in every order of η and find the resulting equations

curlE0 = 0 , divE0 = ϱ0 , E0 ∧ ν = 0 ,

curlB0 = j0 , divB0 = 0 , 𝜕tB
0 ⋅ ν = 0

(8)
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for k = 0 and
curlEk = −𝜕tB

k−1 , divEk = ϱk , Ek ∧ ν = 0 ,

curlBk = 𝜕tE
k−1 + jk , divBk = 0 , 𝜕tB

k ⋅ ν = 0
(9)

for k ≥ 1. In the k-th step approximation, we have to solve curl–div systems, where the
given sources and the solutions of the k − 1 step enter as right-hand sides. While this
is rather simple for a bounded domain (see Section 6), it is rather involved for exterior
domains, since in that case solutions of a curl–div systems with right-hand sides in
L2 are generally not in L2 but only in some weighted L2 spaces. Therefore, iterating
becomes difficult; see Section 10.

4 Proof of the approximation property
In this section, we repeat the proof that if the iteration scheme (8), (9) is well-defined
with solutions in L2, these solutions give an approximation of solutions of Maxwell’s
equations (6) with a suitable error bound provided suitably adapted initial values of
(6). We shall use the classical Sobolev spaces of vector analysisH(grad,Ω),H(curl,Ω),
H(div,Ω) as well as H(

∘
grad,Ω), H(

∘
curl,Ω), H(

∘
div,Ω), the latter generalizing the asso-

ciated natural boundary conditions in a weak sense; see, e. g., Section 5. For sake of
brevity, we set, e. g., H(curl,div,Ω) = H(curl,Ω) ∩ H(div,Ω) and so on. For a function
or field f = f (t, x), we set f (t) = f (t, ⋅) and ‖ ⋅ ‖ denotes the usual L2 norm over Ω

We start with a classical result on solutions of (6) which might be obtained by
using for instance semi-group theory.

Proposition 1. For a given domain Ω ⊂ ℝ3, η > 0, T > 0 and given source distributions
ϱη and jη with

ϱη ∈ C1([0,T]; L2(Ω))

jη ∈ C1([0,T]; L2(Ω; ℝ3)) ∩ C0([0,T];H(div;Ω))
0 = η𝜕tϱ

η + div jη charge conservation

(10)

and given initial fields

Eη0 ∈ H(
∘

curl,div,Ω) and Bη0 ∈ H(curl,div,Ω)

satisfying the constraints

divEη0 = ϱ
η(0) and divBη0 = 0 ,

the Maxwell initial boundary value problem (6) (boundary conditions in weak sense)
admits a unique solution (Eη,Bη) with

Eη ∈ C1([0,T]; L2(Ω; ℝ3)) ∩ C0([0,T];H(
∘

curl,div,Ω)) and

Bη ∈ C1([0,T]; L2(Ω; ℝ3)) ∩ C0([0,T];H(curl,div,Ω)) .
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The following a priori estimate is also classical; a sketch of the proof can be found
in [10].

Proposition 2. For a domain Ω ⊂ ℝ3, T > 0 and fields

e ∈ C1([0,T]; L2(Ω; ℝ3)) ∩ C0([0,T];H(
∘

curl,Ω)) and

b ∈ C1([0,T]; L2(Ω; ℝ3)) ∩ C0([0,T];H(curl,Ω))

define

k = η𝜕te − curl b , l = η𝜕tb + curl e ,

ℰ = (∫
Ω

e2 + b2 dx)
1/2
, m = (∫

Ω

k2 + l2 dx)
1/2
.

Then we have for all 0 ≤ t ≤ T

ℰ(t) ≤ ℰ(0) + 2
η

t

∫
0

m(s) ds .

Now we can give the approximation property theorem.

Theorem 1. Let k ∈ ℕ, T > 0 and

ϱη = ϱ0 + ηϱ1 + ⋅ ⋅ ⋅ + ηk+1ϱk+1 ,

jη = j0 + ηj1 + ⋅ ⋅ ⋅ + ηk+1jk+1 ,

such that ϱη and jη satisfy (10) for all η ≥ 0. Assume that there are fields E0, . . . ,Ek+1

and B0, . . . ,Bk+1, such that

El ∈ C1([0,T]; L2(Ω; ℝ3)) ∩ C0([0,T];H(
∘

curl,div,Ω)) and

Bl ∈ C1([0,T]; L2(Ω; ℝ3)) ∩ C0([0,T];H(curl,div,Ω)) ,

for l = 0, . . . , k+ 1, satisfying the iteration equations (8) and (9), respectively. Let (Eη,Bη)
be the solution of (6) according to Proposition 1 subject to initial values

Eη0 = E
0(0) + ηE1(0) + ⋅ ⋅ ⋅ + ηkEk(0) + ηk+1Efree

Bη0 = B
0(0) + ηB1(0) + ⋅ ⋅ ⋅ + ηkBk(0) + ηk+1Bfree

with

Efree ∈ H(
∘

curl,div,Ω) , divEfree = ϱk+1 ,

Bfree ∈ H(curl,div,Ω) , divBfree = 0 .
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52 | S. Bauer

Then the following estimate holds for all 0 ≤ t ≤ T and all 0 ≤ η:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Eη(t) −

k
∑
i=0

Ek(t)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ ηk+1(󵄩󵄩󵄩󵄩󵄩E

free
0 − E

k+1(0)󵄩󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩B

free
0 − B

k+1(0)󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩E

k+1(t)󵄩󵄩󵄩󵄩󵄩 + 2
t

∫
0

󵄩󵄩󵄩󵄩󵄩𝜕tE
k+1(s)󵄩󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩𝜕tB
k+1(s)󵄩󵄩󵄩󵄩󵄩 ds)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Bη(t) −

k
∑
i=0

Bk(t)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ ηk+1(󵄩󵄩󵄩󵄩󵄩E

free
0 − E

k+1(0)󵄩󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩B

free
0 − B

k+1(0)󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩B

k+1(t)󵄩󵄩󵄩󵄩󵄩 + 2
t

∫
0

󵄩󵄩󵄩󵄩󵄩𝜕tE
k+1(s)󵄩󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩𝜕tB
k+1(s)󵄩󵄩󵄩󵄩󵄩 ds)

Proof. Setting

e = Eη −
k+1
∑
i=0

Ei b = Bη −
k+1
∑
i=0

Bi

we only have to compute

η𝜕te − curl b = −η
k+2𝜕tE

k+1 ,

η𝜕tb + curl e = −η
k+2𝜕tB

k+1 ,

apply Proposition 2 and are done.

Remark 1. In contrast to [10], we allow for higher order contributions to the initial
electromagnetic fields. For this reason,we can also admit for current densities varying
fast in a neighborhood of t = 0, compare [10, (3.29)]. For a discussion of non-adapted
initial electromagnetic fields, see [10, pp. 41–42].

5 Curl–div systems in bounded domains

First, we give a well-known and very simple solution theory of curl–div systems using

L2-decompositions. For an arbitrary domain Ω ⊂ ℝ3, let
∘
C∞(Ω) denote the space of

smooth functions or fields with compact support. We denote the curl operator acting
on test-fields by curl :

∘
C∞(Ω) ⊂ L2(Ω) → L2(Ω). Then H(curl;Ω), as set, is the domain

of the adjoint operator curl∗. In this section, we denote with curl the usual curl oper-
ator acting as unbounded operator in L2, i. e., curl : H(curl) ⊂ L2(Ω) → L2(Ω). Finally,
we define

∘
curl as the adjoint of curl and H(

∘
curl,Ω) as domain of

∘
curl. It is well known

that for sufficiently smooth domains Ω, such that a tangential trace may be defined,
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2 Darwin and higher order approximations to Maxwell’s equations inℝ3 | 53

H(
∘

curl,Ω) is just the kernel of the tangential trace operator. Thus, E ∈ H(
∘

curl,Ω) is
a generalization of the boundary condition E ∧ ν = 0 on 𝜕Ω. We immediately get the
following orthogonal L2-decomposition (the bar denotes closure in L2):

L2(Ω; ℝ3) =
∘

curl H(
∘

curl,Ω) ⊕ H0(curl,Ω) = curlH(curl,Ω) ⊕ H0(
∘

curl,Ω) ,

where E ∈ H0(curl,Ω) if and only if E ∈ H(curl,Ω) and curlE = 0 and so on. In the
same manner, we define grad, div := −grad∗,

∘
grad:= −div∗ and div, grad := −div∗

and finally
∘
div:= − grad∗ leading to the following decompositions:

L2(Ω; ℝ3) =
∘

grad H(
∘

grad,Ω) ⊕ H0(div,Ω) = gradH(grad,Ω) ⊕ H0(
∘
div,Ω) ,

L2(Ω) = divH(div,Ω) =
∘
div H(

∘
div,Ω) ⊕ Lin{1} .

Note that E ∈ H(
∘
div,Ω) is just the generalization of vanishing normal trace. If the

underlying domain is bounded and sufficiently smooth (e. g., weakly Lipschitz is
enough), then the embeddings

H(
∘

curl,Ω) ∩ H(div,Ω) 󳨅→ L2(Ω) and H(curl,Ω) ∩ H(
∘
div,Ω) 󳨅→ L2(Ω) (11)

are compact (the spaces on the left-hand side are equipped with their graph norms);
see [30, 29, 22, 32] and [13, 6] for results with mixed boundary conditions. If these
embeddings are compact, it is easy to see that Poincaré-type estimates hold and the
ranges are already closed. We define so-called Dirichlet and Neumann fields:

ℋD = H0(
∘

curl,Ω) ∩ H0(div,Ω) and ℋN = H0(curl,Ω) ∩ H0(
∘
div,Ω).

Using compactness, it is easy to see that both spaces are finite dimensional. Actually,
also in rather non-smooth settings the dimensions ofℋD andℋN are given by the first
and second Betti number of the underlying domain; see [23]. Using compactness, the
inclusions

∘
curl H(

∘
curl,Ω) ⊂ H0(

∘
div,Ω) and

∘
grad H(

∘
grad,Ω) ⊂ H0(

∘
grad,Ω) as well as

the decompositions itself we get refined decompositions:

L2(Ω; ℝ3) = H0(
∘
div,Ω) ⊕ gradH(grad,Ω)

=
∘

curl H(
∘

curl,Ω) ⊕ℋN ⊕ gradH(grad,Ω)

=
∘

curl (H(
∘

curl,Ω) ∩ H0(div,Ω)) ⊕ℋN ⊕ gradH(grad,Ω)

=
∘

curl H(
∘

curl,Ω) ⊕ H0(curl,Ω) (12)

L2(Ω; ℝ3) = curlH(curl,Ω) ⊕ H0(
∘

curl,Ω)

= curlH(curl,Ω) ⊕ℋD⊕
∘

grad H(
∘

grad,Ω)
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54 | S. Bauer

= curl(H(curl,Ω) ∩ H0(
∘
div,Ω)) ⊕ℋD⊕

∘
grad H(

∘
grad,Ω)

= H0(div,Ω)⊕
∘

grad H(
∘

grad,Ω)

L2(Ω) = div(H(div,Ω) ∩ H0(
∘

curl,Ω))

=
∘
div (H(

∘
div,Ω) ∩ H0(curl,Ω)) ⊕ Span{1}

From (12), one can easily conclude the following proposition (with boundary condi-
tions in a generalized sense).

Proposition 3. Let Ω ⊂ ℝ3 be a domain with compactness property (11). For F ∈
L2(Ω; ℝ3), f ∈ L2(Ω) and G ∈ L2(Ω; ℝ3), g ∈ L2(Ω) the curl–div systems

{{{{
{{{{
{

curlE = F
divE = f
E ∧ ν = 0

E ⊥ℋD

and
{{{{
{{{{
{

curlB = G
divB = g
B ⋅ ν = 0

B⊥ℋN

(13)

are uniquely solvable in H(curl;Ω) ∩H(div,Ω) if and only if F ∈ H0(
∘
div,Ω), F ⊥ ℋN and

G ∈ H0(div,Ω), G ⊥ ℋD, ∫Ω g dx = 0, respectively. In these cases, the solution operators
are continuous.

6 Well-posedness of the iteration scheme in
bounded domains

For F ∈ H0(
∘
div,Ω), f ∈ L2(Ω) with F ⊥ ℋN and G ∈ H0(div,Ω), g ∈ L2(Ω) with G ⊥ ℋD,

∫Ω g dx = 0, we denote the solutions of the curl–div systems (13) according to Proposi-
tion 3 by ΓD(F, f ) and ΓN(G, g), respectively. With ΠℋD

and ΠℋN
, we denote the orthog-

onal projectors on ℋD and ℋN, respectively. By straightforward computations using
the decompositions (12), we get the following result on well-defined iterations in L2.

Theorem 2. Let Ω ⊂ ℝ3 be a bounded domain with compactness property (11), k ∈ ℕ0,
T > 0 and

ϱη = ϱ0 + ηϱ1 + ⋅ ⋅ ⋅ + ηk+1ϱk+1 ,

jη = j0 + ηj1 + ⋅ ⋅ ⋅ + ηk+1jk+1 ,

such that ϱη and jη satisfy (10) for all η ≥ 0.

Then the iteration scheme (8), (9) has solutions

El ∈ C1([0,T]; L2(Ω; ℝ3)) ∩ C0([0,T];H(
∘

curl,div,Ω)) and

Bl ∈ C1([0,T]; L2(Ω; ℝ3)) ∩ C0([0,T];H(curl,div,Ω))
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2 Darwin and higher order approximations to Maxwell’s equations inℝ3 | 55

for l = 0, . . . , k + 1 if and only if j0 ⊥ ℋD. In this case, all solutions are given by (l =
1, . . . , k)

E0(t) = ΓD(0, ϱ
0(t)) + φ0

0 −
t

∫
0

ΠℋD
j1(s) ds

B0(t) = ΓN(j
0(t),0) + γ00

El(t) = ΓD(−𝜕tB
l−1(t), ϱl(t)) + φl

0 −
t

∫
0

ΠℋD
jl+1(s) ds

Bl(t) = ΓN(j
l(t) + 𝜕tE

l−1(t),0) + γl0
Ek+1(t) = ΓD(−𝜕tB

k(t), ϱk+1(t)) + φk+1(t)

Bk+1(t) = ΓN(j
k+1(t) + 𝜕tE

k(t),0) + γk+1(t)

with time-independent fields φ0
0, φ

l
0 ∈ ℋD and γ00, γ

l
0 ∈ H0(curl,Ω) ∩ H0(div,Ω) and

possibly time-depending fields

φk+1(t) ∈ C1([0,T];ℋD) and γk+1(t) ∈ C1([0,T];H0(curl,Ω) ∩ H0(div,Ω))

to be chosen freely.

Remark 2. Combining Theorem 1 and Theorem 2, we notice that in order to have the
approximation property we need additional constraint equations on the initial elec-
tromagnetic fields: Decomposing Eη0 according to the seventh line of (12) in E

η
0 = E

η,1
0 +

Eη,20 + E
η,3
0 with

Eη,10 ∈ curl(H(curl,Ω)), Eη,20 ∈ ℋD, Eη,30 ∈
∘

grad H(
∘

grad,Ω)

we see that Eη,30 is fixed by the usual constraint equation divEη0 = ϱ
η(0), Eη,10 is deter-

mined up to relevant order by adaption to the asymptotic expansion and Eη,20 remains
to be chosen freely.

With regard to the initial magnetic field, we consider a non-standard decomposi-
tion of Bη0 according to

L2(Ω; ℝ3) =
∘

curl (H(
∘

curl,Ω)) ⊕ H0(curl,Ω) ∩ H0(div,Ω)⊕
∘

grad H(
∘

grad,Ω)

with

Bη,10 ∈
∘

curl (H(
∘

curl,Ω)), Bη,20 ∈ H0(curl,Ω) ∩ H0(div,Ω), Bη,30 ∈
∘

grad H(
∘

grad,Ω) .

Bη,30 is fixed by the usual constraint equation divBη0 = 0, B
η,1
0 is determined up to rel-

evant order by adaption to the asymptotic expansion and Bη,20 remains to be chosen
freely.
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7 Spherical vector calculus

We introduce the usual orthonormal basis vector fields of spherical coordinates er, eϑ
and eϕ. A vector field E may be decomposed in its three parts:

E = Erer + E
ϑeϑ + E

ϕeϕ

and we call Er := Erer the radial part of E and Es := Eϑeϑ + Eϕeϕ the spherical part
of E. Furthermore, we make use of the following operator notation: D is the deriva-
tive w. r. t. r and M is multiplication with r. The usual differential operators grad, curl
and div have the following representation in spherical coordinates, where we use the
usual convention for matrix multiplication and ∧ is the usual vector product in ℝ3,
particularly er ∧ eϑ = eϕ, eϑ ∧ eϕ = er and eϕ ∧ er = eϑ:

grad u = (er , 1) (
Du

M−1 Grad u
)

curlE = (er , 1) (
0 M−1 Curl

−M−1er ∧ Grad M−1DMer∧
)(

Er

Es
)

divE = (M−2DM2, M−1 Div) (E
r

Es
)

(14)

where the spherical differential operators Grad, Div and Curl in spherical coordinates
are given by

Grad u = (eϑ , eϕ) (
𝜕ϑu

(sin ϑ−1)𝜕ϕu
)

curlEs = (sin ϑ)
−1(𝜕ϑ(sin ϑE

ϕ) − 𝜕ϕE
ϑ)

DivEs = (sin ϑ)
−1(𝜕ϑ(sin ϑE

ϑ) + 𝜕ϕE
ϕ) ;

see, e. g., [12]. In this notation, the operator D does not act on the basis vector-fields er,
eϑ, eϕ but only on the vector component functions, e. g., D(Eϕeϕ) := (𝜕rEϕ)eϕ. Nowwe
can represent the higher order differential operators (using, e. g., that Curl Grad = 0
and er ∧ (er ∧ Es) = −Es):

curl curlE = (er , 1) (
−M−2 Curl er ∧ Grad M−2DMCurl er∧

M−1DGrad −M−2er ∧ GradCurl−M−1D2M
)(

Er

Es
)

grad divE = (er , 1) (
DM−2DM2 DM−1 Div

M−3DM2 Grad M−2 GradDiv
)(

Er

Es
)

For later purposes, we need some commutators with radial functions. Let ψ = ψ(r)
smooth. For a differential operator 𝒟, we define the commutator with multiplication
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with ψ by C𝒟,ψ = 𝒟ψ − ψ𝒟. Elementary computations yield

Cgrad,ψu = ψ
󸀠uer

Ccurl,ψE = ψ
󸀠er ∧ Es

Cdiv,ψE = ψ
󸀠Er .

(15)

Combining these formulas and employing Δ = curl curl− grad div for vector fields and
Δ = div grad for functions, we find

CΔ,ψE = (−ψ
󸀠M−2DM2 − ψ󸀠󸀠)E (16)

8 Spherical harmonics and spherical vector
harmonics

We introduce the well-known spherical harmonics Ym
n , n ∈ ℕ0, −n ≤ m ≤ n as the

complete set of L2-orthonormal eigenfunctions of the scalar Laplace–Beltrami opera-
tor Div Grad on the unit sphere S2; see, e. g., [9]. We have

DivGradYm
n + n(n + 1)Y

m
n = 0 and ∫

S2

Ym
n Y

m󸀠
n󸀠 = δnn󸀠δmm󸀠 , (17)

where δij is Kronecker’s symbol. Then with

Um
n :=

1
√n(n + 1)

GradYm
n and Vm

n := er ∧ U
m
n (18)

the set {Um
n ,V

k
l : n, l ∈ ℕ , −n ≤ m ≤ n , −l ≤ k ≤ l} is a complete L2-orthonormal set

of eigenvector functions of the vector Laplace–Beltrami operator

GradDiv+er ∧ GradCurl on L2(S2).

In particular, we have

CurlUm
n = 0, DivUm

n = −√n(n + 1)Y
m
n , GradDivUm

n = −n(n + 1)U
m
n ,

DivVm
n = 0, CurlVm

n = −√n(n + 1)Y
m
n , er ∧ GradCurlV

m
n = −n(n + 1)V

m
n .

(19)

For every smooth vector field E on ℝ3 or
∙
ℝ3 = ℝ3 \ {0}, there are unique expansions

E =
∞
∑
n=0
∑
|m|≤n

yn,mY
m
n er +

∞
∑
n=1
∑
|m|≤n

un,mU
m
n +
∞
∑
n=1
∑
|m|≤n

vn,mV
m
n , (20)

ΔE =
∞
∑
n=0
∑
|m|≤n

ỹmnY
m
n er +

∞
∑
n=1
∑
|m|≤n

ũn,mU
m
n +
∞
∑
n=1
∑
|m|≤n

ṽn,mV
m
n , (21)
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where yn,m, ỹmn, un,m, ũn,m, vn,m and ṽn,m are smooth functions of r alone. Now let us

assume that E is a smooth harmonic vector-field onℝ3 or
∙
ℝ3, i. e., ΔE = 0. We expand

E and ΔE according to (20) and (21). Using ΔE = 0 and the convergence properties of
the expansion, we get the following set of differential equations for yn,m, un,m and vn,m:
For n = 0, we have

0 = ỹ0,0 = −DM
−2DM2y0,0 (22)

For n ∈ ℕ, we use the abbreviation λn = n(n + 1) and compute

0 = ṽn,m = (M
−2λn −M

−1D2M)vn,m (23)

0 = ỹn,m = (λnM
−2 − DM−2DM2)yn,m − 2√λnM

−2un,m (24)

0 = ũn,m = −2√λnM
−2yn,m + (λnM

−2 −M−1D2M)un,m (25)

Equations (22) and (23) have each two fundamental solutions:

y0,0 = r and y0,0 = r
−2

vn,m = r
n and vn,m = r

−n−1

The equations (24) and (25) are coupled and have four fundamental solutions:

un,m = √nr
−n−2 yn,m = −√n + 1r

−n−2,

un,m = √n + 1r
n−1 yn,m = √nr

n−1,

un,m = √n + 1r
−n yn,m = √nr

−n,

un,m = √nr
n+1 yn,m = −√n + 1r

n+1.

From these fundamental solutions, we obtain the well-known family of homogeneous
harmonic functions inℝ3 and

∙
ℝ3, respectively: For n ∈ ℕ0 and −n ≤ m ≤ n, we define

pmn := r
nYm

n , qmn := r
−2n−1pmn .

Now we create a suitable system of harmonic homogeneous vector fields. Two single
homogeneous harmonics needs an extra place in this system:

P11,0 := rY
0
0er Q1

1,0 = r
−2Y0

0er = r
−3P11,0

In Cartesian coordinates, these fields are simply

P11,0(x) =
1
4π

x and Q1
1,0(x) =

1
4π

x
|x|3
.

For n ∈ ℕ and −n ≤ m ≤ n, we define

P2n,m = r
nVm

n

Q2
n,m = r

nVm
n = r
−2n−1P2n,m
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P3n+1,m = r
n+1(−√n + 1Ym

n er + √nU
m
n )

Q3
n+1,m = r

−n−2(−√n + 1Ym
n er + √nU

m
n ) = r

−2n−3P3n+1,m (26)

P4n−1,m = r
n−1(√n + 1Ym

n er + √nU
m
n )

Q4
n−1,m = r

−n(√n + 1Ym
n er + √nU

m
n ) = r

−2n+1P4n−1,m .

Therefore, p.n, P
⋅
n,⋅ are harmonic on ℝ3 and homogeneous of degree n, while q.n, Q

⋅
n,⋅

are harmonic on
∙
ℝ3 and homogeneous of degree −n − 1. For notational convenience,

for σ ∈ ℕ0, m ∈ ℤ and l = 1, . . . , 4 we set pmσ = q
m
σ = 0 and Plσ,m = Q

l
σ,m = 0 if still

undefined. Every field E on ℝ3 with ΔE = 0 can be written as

E =
4
∑
l=1
∑
n,m

pn,m,lP
l
n,m

with en,m,l ∈ ℂ while a field E on
∙
ℝ3 with ΔE can be written as

E =
4
∑
l=1
∑
n,m
(pn,m,lP

l
n,m + qn,m,lQ

l
n,m)

with pn,m,l, qn,m,l ∈ ℂ. By direct computations, the following equations can be verified:

grad p00 = 0 grad pmn = √nP
4
n−1,m, n ≥ 1

divP11,0 = 3p0,0 curlP11,0 = 0

divP2n,m = 0 curlP2n,m = −√n + 1P
4
n−1,m

divP3n+1,m = −2(n + 3)√n + 1p
m
n curlP3n+1,m = 2(n + 3)√nP

2
n,m

divP4n−1,m = 0 curlP4n−1,m = 0

(27)

The analogue relations for the qs and Qs are

grad q00 = −Q
1
1,0 grad qmn = √n + 1Q

3
n+1,m, n ≥ 1

divQ1
1,0 = 0 curlQ1

1,0 = 0

divQ2
n,m = 0 curlQ2

n,m = √nQ
3
n+1,m

divQ3
n+1,m = 0 curlQ3

n+1,m = 0

divQ4
n−1,m = (1 − 2n)√nq

m
n curlQ4

n−1,m = (1 − 2n)√n + 1Q
2
n,m

(28)

For σ ∈ ℕ0 and l = 1, 2, 3, 4, we define

𝒫 l
σ := Lin{P

l
σ,m : m ∈ ℤ}

𝒬l
σ := Lin{Q

l
σ,m : m ∈ ℤ}

pσ := Lin{pσ,m : m ∈ ℤ}
qσ := Lin{qσ,m : m ∈ ℤ}
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60 | S. Bauer

and

𝒫 l = ⋃
σ∈ℕ0

𝒫 l
σ , 𝒬l = ⋃

σ∈ℕ0
𝒬l
σ , p = ⋃

σ∈ℕ0
pσ , q = ⋃

σ∈ℕ0
qσ

and

𝒫 l = ⋃
σ∈ℕ0

𝒫 l
σ , 𝒬l = ⋃

σ∈ℕ0
𝒬l
σ , p = ⋃

σ∈ℕ0
pσ , q = ⋃

σ∈ℕ0
qσ

Note that the spaces 𝒫1
0, 𝒫

2
0, 𝒫

3
0, 𝒫

3
1 and 𝒬1

0, 𝒬
2
0, 𝒬

3
0, 𝒬

3
1 and 𝒫1

σ, 𝒬
1
σ for all σ ≥ 2 are

trivial. In the following diagram 󳨅→ indicates a bijection. Using (27) and (28), for σ ≥ 1
we conclude the first four lines and for σ = 0 we find the four last lines:

𝒫3
σ+1

curl
󳨅→ 𝒫2

σ
curl
󳨅→ 𝒫4

σ−1
curl
→ {0}

𝒫3
σ+1

div
󳨅→ pσ

grad
󳨅→ 𝒫4

σ−1
div
→ {0}

𝒬4
σ−1

curl
󳨅→ 𝒬2

σ
curl
󳨅→ 𝒬3

σ+1
curl
→ {0}

𝒬4
σ−1

div
󳨅→ qσ

grad
󳨅→ 𝒬3

σ+1
div
→ {0}

𝒫1
1

curl
→ {0}

𝒫1
1

div
󳨅→ p0

grad
→ {0}

𝒬1
1

curl
→ {0}

q0
grad
󳨅→ 𝒬1

1
div
→ {0}

(29)

Therefore, the vector fieldP11,0 is special: It is rotation-free, and thus a gradient, namely
in Cartesian coordinates P11,0(x) = grad(x

2/8π), but not a gradient of a harmonic func-

tion. On the other hand, Q1
1,0 is special, as it has vanishing divergence in

∙
ℝ 3, but is

not a rotation of a harmonic vector field. Note that q00 is just Green’s function for the
Laplace operator, and in Cartesian coordinates, we have q00(x) =

1
4π|x| .

9 Vector differential operators in weighted Sobolev
spaces

We use the following radial weight function:

w(x) = (1 + |x|2)1/2

and for s ∈ ℝ we define the following Hilbert spaces:

L2s := L
2
s(ℝ

3) := {f ∈ L2loc(ℝ
3) : wsf ∈ L2(ℝ3)}

L2s := L
2
s(ℝ

3; ℝ3) := {E ∈ L2loc(ℝ
3; ℝ3) : wsE ∈ L2(ℝ3; ℝ3)}

Hm
s := H

m
s (ℝ

3) := {f ∈ Hm
loc(ℝ

3) : 𝜕αf ∈ L2s+|α|(ℝ
3) for all |α| ≤ m}
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2 Darwin and higher order approximations to Maxwell’s equations inℝ3 | 61

Hm
s := H

m
s (ℝ

3; ℝ3) := {E ∈ Hm
loc(ℝ

3; ℝ3) : 𝜕αE ∈ L2s+|α|(ℝ
3) for all |α| ≤ m}

Hs(curl) := {E ∈ L
2
s : curlE ∈ L

2
s+1}

Hs,0(curl) := {E ∈ L
2
s : curlE = 0}

Hs(div) := {E ∈ L
2
s : divE ∈ L

2
s+1}

Hs,0(div) := {E ∈ L
2
s : divE = 0}

together with natural scalar-products, e. g.,

⟨f , g⟩L2s = ∫
ℝ3

w2sf ḡ .

Note that the usual L2-scalar-product

⟨f , g⟩ := ∫
ℝ3

f ḡ and ⟨F,G⟩ := ∫
ℝ3

F ⋅ G

gives dualities between L2s and L
2
−s. We consider the following operators:

curls : Hs−1(curl) 󳨀→ L2s
E 󳨃󳨀→ curlE

divs : Hs−1(div) 󳨀→ L2s
E 󳨃󳨀→ divE

grads : H1
s−1 󳨀→ L2s
u 󳨃󳨀→ grad u

(30)

Remark 3. Let s ∈ ℝ.
(i) By a standard approximation argument, we have

0 = ⟨E, curl F⟩ − ⟨curlE, F⟩ for all E ∈ Hs−1(curl), F ∈ H−s(curl)

0 = ⟨f ,divE⟩ + ⟨grad f ,E⟩ for all f ∈ H1
s−1,E ∈ H−s(div)

(ii) For later reference, we note that for all m ∈ ℕ the following three statements are
equivalent:

Pln,m ⊂ L
2
−s,

Pln,m ⊂ H−s(curl) ∩ H−s(div) ∩ H
m
−s,

n < −3/2 + s .

Similarly,
pmn ⊂ L

2
−s,

pmn ⊂ H
m
−s,

n < −3/2 + s

are equivalent.
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62 | S. Bauer

The starting point is a result by McOwen about the Laplace operator in weighted
Lp spaces, here specialized to L2.

Lemma 1 (McOwen [19]). Let J := ℝ \ {1/2 +m : m ∈ ℤ}.

Δs : H2
s−2 󳨀→ L2s
u 󳨃󳨀→ Δu

defines a Fredholm operator if and only if s ∈ J. In that case, its kernel and range are
given by

ker(Δs) = ⋃
n<1/2−s

pn

im(Δs) = {f ∈ L
2
s : ⟨f , p⟩ = 0 for all p ∈ ⋃

n<s−3/2
pn}

If the operator Δ = curl curl− grad div on vector fields is represented in Cartesian
coordinates, it is just the scalar Δ-operator on the Cartesian coefficients. Therefore,
this result is immediately generalized to vector fields.

Lemma 2.

Δs : H2
s−2 󳨀→ L2s
u 󳨃󳨀→ (curl curl− grad div)E

defines a Fredholm operator if and only if s ∈ J. In that case, its kernel and range are
given by

ker(Δs) = ⋃
n<1/2−s

4
⋃
l=1

𝒫 l
σ

im(Δs) = {F ∈ L
2
s : ⟨F,P⟩ = 0 for all P ∈ ⋃

n<s−3/2

4
⋃
l=1

𝒫 l
σ}

In particular, for s ∈ J we have that Δs is injective for s > −1/2 and surjective
for s < 3/2, and thus bijective in (−1/2, 3/2) ∩ J. In the next step, we characterize the
harmonic vector-fields by means of certain harmonics.

Lemma 3. For s ∈ J, we have

Hs,0(curl) ∩ Hs,0(div) = ⋃
σ<−3/2−s

𝒫4
σ (31)

Proof. If E ∈ ⋃σ<−3/2−s 𝒫
4
σ , then E ∈ Hs,0(curl) ∩ Hs,0(div). On the other hand, if E ∈

Hs,0(curl) ∩ Hs,0(div) then E ∈ ker(Δs+2); therefore, E ∈ ⋃σ<−3/2−s⋃
4
l=1 𝒫

l
σ and we can

write

E = ∑
σ<−3/2−s

4
∑
l=1

Plσ .
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2 Darwin and higher order approximations to Maxwell’s equations inℝ3 | 63

Using diagram (29) and orthogonality on sphere, ω denoting the integration variable
on S2, we find

∫

S2

Pln,m(1,ω)Pl
󸀠

n󸀠 ,m󸀠 (1,ω) = δnn󸀠δmm󸀠δl,l󸀠 and ∫
S2

pmn (1,ω)pm
󸀠

n󸀠 (1,ω) = δnn󸀠δmm󸀠 ,

and conclude P1σ = P
2
σ = P

3
σ = 0 for all σ < −3/2 − s.

We introduce finite dimensional subspaces to complete im(Δs−2) in L2s. To this end,
we define dual bases to the homogeneous harmonic functions and vector fields: We
chose a smooth function ψ in ℝ3 such that 0 ≤ ψ ≤ 1, ψ = 0 on B1(0) and ψ = 1 on
ℝ3 \ B2(0). Then some elementary computations using the introduced calculus (see
(16)), and recall CΔ,ψ = Δψ − ψΔ as well as the orthonormality of {Ym

n } and {U
m
n ,V

m
n }

on S2:

⟨CΔ,ψq
m
n , p

m󸀠
n󸀠 ⟩ = −3δnn󸀠δmm󸀠

⟨CΔ,ψQ
k
n,m,P

l󸀠
n󸀠 ,m󸀠⟩ = δnn󸀠δmm󸀠δklc(n)

(32)

with constants c(n) ̸= 0. In the following, the notation⨁ indicates an algebraical and
topological direct sum. From (32) and Lemma 2, we conclude the next result.

Lemma 4. For s ∈ J, we have in the vector case

L2s = im(Δs−2)⨁CΔ,ψ𝒬σ<s−3/2 ,

where

𝒬σ<s−3/2 :=
4
⨁
l=1
⨁

σ<s−3/2
𝒬l
σ ,

and in the scalar case

L2s = im(Δs−2)⨁CΔ,ψqσ<s−3/2 ,

where

qσ<s−3/2 := ⨁
σ<s−3/2

qσ .

Remark 4. We have

CΔ,ψ𝒬σ<s−3/2 = ⨁
σ<s−3/2

CΔ,ψ𝒬σ and CΔ,ψ𝒬σ =
4
⨁
l=1

CΔ,ψ𝒬
l
σ

and

CΔ,ψ𝒬σ<ϱ ⊂ C
∞
0 (
∙
ℝ3) .
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64 | S. Bauer

We define the annihilator of the −s integrable harmonic polynomials:

𝒜4
s := {F ∈ L

2
s : ⟨F,P⟩ = 0 for all P ∈ ⋃

σ<s−3/2
𝒫4
σ}

and for s > 3/2
L2s,0 := {f ∈ L

2
s : ⟨f , 1⟩ = 0}

Note that Lin{1} = pσ=0.

Lemma 5. Let s ∈ J. Then

divHs−1(div) = L
2
s if s < 3/2 (i)

divHs−1(div) = L
2
s,0 if s > 3/2 (ii)

L2s = L
2
s,0⨁CΔ,ψqσ=0 if s > 3/2 (iii)

curlHs−1(curl) + gradH
1
s−1 = 𝒜

4
s (iv)

L2s = 𝒜
4
s⨁CΔ,ψ𝒬

4
<s−3/2 (v)

Proof. Let s ∈ J. We start with the scalar case and equation (iii): The inclusion “⊃” is
obvious. In order to show the inclusion “⊂” let f ∈ L2s. According to Lemma 4, we have

f = div grad u + ∑
σ<3/2−s

CΔ,ψqσ

with u ∈ H2
s−2 and qσ ∈ qσ . Now we have to show that for σ > 0 functions CΔ,ψqσ are

divergences of some Hs−1(div) vector-fields. A simple computation yields

CΔ,ψqσ = div(Cgrad,ψqσ) + Cdiv,ψ grad qσ .

Clearly, the first term is in divHs−1(div) as it is smooth and has compact support. Using
(28), we have grad qmσ = √σ + 1Q

3
σ+1,m for σ ≥ 1. (For σ = 0, we recall grad q00 = −Q

1
1,0.)

Employing (15), (19) and (26), we find

Cdiv,ψQ
3
σ+1,m = −√σ + 1ψ

󸀠r−σ−2Ym
σ = div(

1
√σ

ψ󸀠r−σ−1Um
σ ) ,

being divergence of a smooth field with compact support. Therefore, equations (iii)
and (i) are shown.

Since pσ=0 = Lin{1} partial integration yields divHs−1(div) ⊂ L2s,0 for s > 3/2 and
according to (iii) the spaces divHs−1(div) and L2s,0 have same co-dimension in L2s and
are thus the same, which is equation (ii).

Next, we turn to the vector case and equation (v). Again the inclusion “⊃” is obvi-
ous. For the other inclusion, let F ∈ L2s. According to Lemma 4, we may decompose F
into

F = curl curlH − grad divH +
4
∑
l=1
∑

σ<s−3/2
CΔ,ψQ

l
σ

Brought to you by | Chalmers University of Technology
Authenticated

Download Date | 8/26/19 2:34 PM



2 Darwin and higher order approximations to Maxwell’s equations inℝ3 | 65

with some H ∈ H2
s−2 and Q

l
σ ∈ 𝒬

l
σ . We now show that for l = 1, 2, 3,

CΔ,ψQ
l
σ ∈ 𝒵 := curlC

∞
0 (
∙
ℝ3) + gradC∞0 (

∙
ℝ3) .

A simple computation gives

CΔ,ψQ
l
σ = curl Ccurl,ψQ

l
σ + Ccurl,ψ curlQ

l
σ − grad Cdiv,ψQ

l
σ − Cgrad,ψ divQ

l
σ . (33)

The first and the third term are fine, being curl or gradient of a smooth compactly sup-
ported field or function, respectively. Nowwe consider the second term Ccurl,ψ curlQl

σ .
For l = 1 and l = 3, we have curlQl

σ = 0; see (28). In the remaining case l = 2, we have
using in this order (28), (26), (15), (18), (14) and (18):

Ccurl,ψ curlQ
2
σ,m = Ccurl,ψ√σQ

3
σ+1,m

= Ccurl,ψ√σr
−σ−2(−√σ + 1Ym

σ er + √σU
m
σ )

= ψ󸀠er ∧ σr
−σ−2Um

σ

= ψ󸀠σr−σ−2Vm
σ

= curl(−√ σ
σ + 1

ψ󸀠r−σ−1Ym
σ er)

being curl of a smooth compactly supported vector-field. Now we consider the fourth
term Cgrad,ψ divQl

σ in (33). Since divQl
σ = 0 for l = 1, 2, 3 (see (28)), here is nothing

to do. All together equation (v) is shown. In order to prove equation (iv) using partial
integration, we have curlHs−1(curl) + gradH1

s−1 ⊂ 𝒜4
s and according to equation (v)

both spaces have same co-dimension in L2s and are, therefore, the same.

As an easy consequence of Lemma 5, we obtain decompositions of Helmholtz–
Weyl type of weighted L2-vector-spaces.

Theorem 3. For s ∈ J, we have:
(i) for s < −3/2

L2s = Hs,0(curl) + Hs,0(div)

⋃
σ<−3/2−s

𝒫4
σ = Hs,0(curl) ∩ Hs,0(div)

(ii) for −3/2 < s < 3/2,

L2s = Hs,0(curl) ⊕ Hs,0(div)

(iii) for s > 3/2,

L2s = Hs,0(curl) ⊕ Hs,0(div) ⊕ CΔ,ψ𝒬
4
<s−3/2
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66 | S. Bauer

Proof. Notice that curlHs−1(curl) ⊂ Hs,0(div) and gradH1
s−1 ⊂ Hs,0(curl). The second

line of (i) is just a repetition of Lemma 3. Therefore, using Lemma 5, the only things
which remain to prove are the inclusions Hs,0(curl) ⊂ 𝒜4

s and Hs,0(div) ⊂ 𝒜4
s . These

inclusions are a direct consequence of the first and second line in (29).

Now we consider restrictions of the curls and divs operators defined in (30) to
spaces with vanishing divergence and rotation, respectively, which leads to Fredholm
operators. In a slight abuse of notation, these restricted operators are called curls and
divs again.

Theorem 4. Let s ∈ J.Then
(i)

grads : H1
s−1 󳨀→ Hs,0(curl)
u 󳨃󳨀→ grad u

is a surjective Fredholm operator with

ker(grads) = {
{0} for s < 3/2
pσ=0 = Lin{1} for s > 3/2

.

(ii)

curls : Hs−1(curl) ∩ Hs−1,0(div) 󳨀→ L2s ∩ Hs,0(div)
E 󳨃󳨀→ curlE

is a Fredholm operator with

ker(curls) = ⋃
σ<−1/2−s

𝒫4
σ

and

im(curls) = {F ∈ Hs,0(div) : ⟨F,P⟩ = 0 for all P ∈ ⋃
σ<s−3/2

𝒫2
σ}

(iii)

divs : Hs−1(div) ∩ Hs−1,0(curl) 󳨀→ L2s
E 󳨃󳨀→ divE

is a Fredholm operator with

ker(divs) = ⋃
σ<−1/2−s

𝒫4
σ

and

im(divs) = {f ∈ L
2
s,0 : ⟨f , p⟩ = 0 for all p ∈ ⋃

σ<s−3/2
pσ}
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2 Darwin and higher order approximations to Maxwell’s equations inℝ3 | 67

We shall prove the second and third statement of Theorem 4 together with the
following theorem, which states that we can enforce surjectivity by augmenting the
operators curls and divs in a suitable way.

Theorem 5. Let s ∈ J and s > 3/2. Then
(i)

?curls : Hs−1(curl) ∩ Hs−1,0(div) ⊕ CΔ,ψ𝒬4
σ<s−5/2 󳨀→ L2s ∩ Hs,0(div)

E 󳨃󳨀→ curlE

is a topological isomorphism
(ii)

d̂ivs : Hs−1(div) ∩ Hs−1,0(curl) ⊕ CΔ,ψ𝒬4
σ<s−5/2 󳨀→ L2s

E 󳨃󳨀→ divE

is a topological isomorphism

Proof. First, we prove (i) of Theorem 4. The statement on the kernel is obvious. In
order to prove surjectivity, let F ∈ Hs,0(curl). According to Lemma 5 and Theorem 3,
we have F = curlE + grad u with some E ∈ Hs−1(curl) and u ∈ H1

s−1. Using 0 = curl F =
curl curlE+curl grad u, wefind curl curlE = 0; therefore, curlE ∈ Hs,0(curl)∩Hs,0(div).
Employing Lemma 3 curlE can be represented by certain vector harmonics

curlE = ∑
σ<−3/2−s

P4σ with some P4σ ∈ 𝒫
4
σ .

Utilizing the second line of (29), there are pσ+1 ∈ pσ+1 such that grad pσ+1 = P4σ . Since
pσ+1 ⊂ H1

s−1 for σ < −3/2 − s, this yields curlE ∈ gradH
1
s−1. Hence, (i) is proved.

Now we proceed to Theorem 4 (ii) which we shall prove together with Theo-
rem 5 (i). The statement on the kernel follows by Lemma 3. For the statement on the
range, let F ∈ Hs,0(div). We decompose F according to Lemma 5. Since ⟨F,P4⟩ = 0 for
all P4 ∈ ⋃σ<s−3/2 𝒫

4
σ we have F = curlE +grad uwith some E ∈ Hs−1(curl) and u ∈ H1

s−1.
Using div F = 0, we conclude div grad u = 0 and using Lemma 3 grad u ∈ ⋃σ<s−3/2 𝒫

4
σ .

With the first line of (29), we have grad u = curlP2 with some P2 ∈ ⋃σ<s−5/2 𝒫
2
σ ⊂ L

2
s−1.

Summarizing, we have F = curlE with some E ∈ Hs−1(curl). The next step is to show
whether we can replace this potential E by some potential with vanishing divergence.
To this end, we again decompose E according to Lemma 5 into

E = curlE1 + ∑
σ<s−5/2

CΔ,ψQ
4
σ with E1 ∈ Hs−2(curl) and Q

4
σ ∈ 𝒬

4
σ .

(The gradient-term in the decomposition can be dropped since we are only interested
in curlE.) Clearly, div curlE1 = 0 but div∑σ<s−5/2 CΔ,ψQ

4
σ ̸= 0 in general. We shall look

for some projectors that indicates the contribution to F coming from ∑σ<s−5/2 CΔ,ψQ
4
σ .
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68 | S. Bauer

To this end, we define P4σ = r
2σ+1Q4

σ ∈ 𝒫
4
σ , P

2
σ+1 = curl

−1 P4σ ∈ 𝒫
2
σ+1 and pσ+1 = grad

−1 P4σ;
see the first two lines of (29). For σ < s − 3/2, we have P2σ+1 ∈ L

2
−s, pσ+1 ∈ L

2
−s. Let

Ẽ ∈ Hs−1(curl) ∩ Hs−1,0(div), we compute

⟨curl Ẽ,P2σ+1⟩ = ⟨Ẽ,P
4
σ⟩ = ⟨Ẽ, grad pσ+1⟩ = −⟨div Ẽ, pσ+1⟩ = 0

⟨curl CΔ,ψQ
4
σ ,P

2
σ+1⟩ = ⟨CΔ,ψQ

4
σ ,P

4
σ⟩ ̸= 0.

Therefore, Theorem 4(ii) and Theorem 5(i) are proven.
Now we turn to Theorem 4(iii) and Theorem 5(ii). Again the statement on the ker-

nel follows with Lemma 3. For the statement on the range, let f ∈ L2s,0. Using Lemma 5,
we have f = divE with some E ∈ Hs−1(div). Using Lemma 5 again, we decompose E
into

E = grad h + ∑
σ<s−5/2

CΔ,ψQ
4
σ with ∈ H1

s−1 and Q
4
σ ∈ 𝒬

4
σ

(here we can drop the rotation term) and define pσ+1 as above. Then we have for all
Ẽ ∈ Hs−1(div) ∩ Hs−1,0(curl)

⟨div Ẽ, pσ+1⟩ = −⟨Ẽ,P
4
σ⟩ = −⟨Ẽ, curlP

2
σ+1⟩ = 0

⟨div CΔ,ψQ
4
σ , pσ+1⟩ = −⟨CΔ,ψP

4
σ ,P

4
σ⟩ ̸= 0.

Hence, everything is proved.

10 Well-posedness of the iteration scheme inℝ3

Nowweuse themappingproperties of div andcurl inweightedL2-spaces to investigate
the well-posedness of our iteration scheme defined in (8), (9). For sake of simplicity,
we assume

ϱη = ϱ0 (34)

jη = j0 + ηj1 (35)

with div j0 = 0 and 𝜕tϱ0 + div j1 = 0, but the analysis can be easily generalized to the
case of general asymptotic expansion like in (7). Furthermore, we shall assume that
all sources are sufficiently smooth, say C∞, and decay sufficiently fast at infinity, such
that the sources together with all time derivatives are in L2s for sufficiently large s.

For convenience, we introduce some additional notation: For ̂s ∈ ℝ and a function
or a vector-field u, we say u ∈ L2< ̂s if and only if u ∈ L

2
s for all s < ̂s; we say u ∈ L

2
> ̂s if and

only if u ∈ L2s for some s > ̂s. In addition for t ∈ ℝ and some set V ⊂ L2t , let V
⊥ denote

the annihilator of V in L2−t with regard to the L
2
−t − L

2
t duality ⟨⋅, ⋅⟩, i. e.,

V⊥ = {w ∈ L2−t | ⟨w, v⟩ = 0 for all v ∈ V} .
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2 Darwin and higher order approximations to Maxwell’s equations inℝ3 | 69

For s ∈ ℝ, we set

𝒫2
σ<s := ⋃

σ<s
𝒫2
σ and pσ<s := ⋃

σ<s
pσ .

10.1 Zeroth order: Electro and magneto statics

In this order, we have to solve the following curl–div systems:

curlE0 = 0, divE0 = ϱ0,

curlB0 = j0, divB0 = 0.
(36)

Using Theorem 4, we have for s ∈ J:

E0 ∈ L2s−1 ⇔ ϱ0 ∈ L2s ∧ ϱ0 ∈ (pσ<s−3/2)
⊥

B0 ∈ L2s−1 ⇔ j0 ∈ Hs,0(div) ∧ j0 ∈ (𝒫2
σ<s−3/2)

⊥

The solutions E0 and B0 are uniquely defined in L2>−3/2 by (36). Without any further
assumptions on the source distributions, we have E0 ∈ L2<1/2. If the monopole con-
tribution ⟨ϱ0, p0,0⟩ vanishes, we conclude E0 ∈ L2<3/2. Since 𝒫2

σ=0 is trivial, we have
B0 ∈ L2<3/2. Hence, the zeroth-order approximation is well-defined in L2.

10.2 First order: eddy-current approximation

With (E0,B0), the unique solutions of (36) in L2<1/2×L
2
<3/2 wehave to solve the following

curl–div systems:

curlE1 = −𝜕tB
0, divE1 = 0,

curlB1 = j1 + 𝜕tE
0, divB1 = 0 .

(37)

Using that 𝜕tB0 is the unique solution in L2<3/2 of the problem curl 𝜕tB0 = 𝜕t j0,
div 𝜕tB0 = 0 we have

E1 ∈ L2s−1 ⇔ 𝜕tB
0 ∈ Hs,0(div) ∧ 𝜕tB

0 ∈ (𝒫2
σ<s−3/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:(1)

⇔ 𝜕t j
0 ∈ L2s+1 ∧ 𝜕t j

0 ∈ (𝒫2
σ<s−1/2)

⊥
∧ (1)

With regard to B1, we notice that 𝜕tE0 ∈ L2<1/2 is the unique solution of curl 𝜕tE0 = 0,
div 𝜕tE0 = 𝜕tϱ0. Using 𝜕tϱ0 + div j1, we compute
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B1 ∈ Ls−1 ⇔ j1 + 𝜕tE
0 ∈ Hs,0(div) ∧ j

1 + 𝜕tE
0 ∈ (𝒫2

σ<s−3/2)
⊥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
:=(2)

⇔ 𝜕tϱ
0 ∈ L2s+1 and 𝜕tϱ

0 ∈ (pσ<s−1/2)
⊥ ∧ (2)

Due to our general assumption 𝜕tϱ + div j1 = 0, we have local, and thus global charge
conservation, that is, ⟨𝜕tϱ0, p0,0⟩ = 0. Thus, without further assumptions on the
sources E1 ∈ L2<3/2 and B1 ∈ L2<1/2 and the first-order approximation is well-defined
in L2.

10.3 Second order, Darwin approximation

With (E0,B0) ∈ L2<1/2 ×L
2
<3/2 and (E

1,B1) ∈ L2<3/2 ×L
2
<1/2 the unique solutions of (36) and

(37), respectively, we have to solve the following curl–div systems:

curlE2 = −𝜕tB
1, divE2 = 0,

curlB2 = 𝜕tE
1, divB2 = 0.

(38)

Utilizing that 𝜕tB1 ∈ L2<1/2 is the unique solution of curl 𝜕tB
1 = 𝜕t j1 + 𝜕2t E

0, div 𝜕tB1 = 0
and 𝜕2t E

0 ∈ L2<1/2 is the unique solution of curl 𝜕2t E
2 = 0, div 𝜕2t E

0 = 𝜕2t ϱ
0 we find for

s ∈ J

E2 ∈ L2s−1 ⇔ 𝜕tB
1 ∈ im(curls)

⇔ 𝜕tB
1 ∈ Hs,0(div) ∧ 𝜕tB

1 ∈ (𝒫2
σ<s−3/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(1)

⇔ 𝜕t j
1 + 𝜕2t E

0 ∈ im(curls+1) ∧ (1)

⇔ 𝜕t j
1 + 𝜕2t E

0 ∈ Hs+1,0(div) ∧ 𝜕t j
1 + 𝜕2t E

0 ∈ (𝒫2
σ<s−1/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(2)

∧(1)

⇔ 𝜕2t ϱ
0 ∈ im(divs+2) ∧ (2) ∧ (1)

⇔ 𝜕2t ϱ
0 ∈ (pσ<s+1/2)

⊥ ∧ (2) ∧ (1)

– Since, without further assumptions on the sources, only the second time deriva-
tive of the monopole moment has to vanish, i. e., ⟨𝜕2t ϱ

0, p0,0⟩ = 0, we can only
conclude E2 ∈ L2<−1/2.

– If the second time derivative of the dipole moment does not vanish, i. e., if there
is any i{±1,0} with ⟨𝜕2t ϱ

0, p1,i⟩ ̸= 0, then E2 ̸∈ L2>−1/2.
– If the second time derivative of the dipole moment vanishes, we conclude E2 ∈

L2<1/2, note that conditions (2) and (1) are void for s < 3/2.

Hence, E2 ∈ L2<1/2, and thus in L
2, if and only if the second time derivative of the dipole

moment of the charge distribution vanishes.
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Now we turn to B2: Using that 𝜕tE1 ∈ L2<3/2 is the unique solution of curl 𝜕tE1 =
−𝜕2t B

0, div 𝜕tE1 = 0 and 𝜕2t B
0 ∈ L2<3/2 is the unique solution of curl 𝜕2t B

0 = 𝜕2t j
0,

div 𝜕2t B
0 = 0 we conclude for s ∈ J:

B2 ∈ L2s−1 ⇔ 𝜕tE
1 ∈ im(curls)

⇔ 𝜕tE
1 ∈ Hs,0(div) ∧ 𝜕tE

1 ∈ (𝒫2
σ<s−3/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(3)

⇔ 𝜕2t B
0 ∈ im(curls+1) ∧ (3)

⇔ 𝜕2t B
0 ∈ Hs+1,0(div) ∧ 𝜕

2
t B

0 ∈ (𝒫2
σ<s−1/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(4)

∧(3)

⇔ 𝜕2t j
0 ∈ im(curls+2) ∧ (4) ∧ (3)

⇔ 𝜕2t j
0 ∈ Hs+2,0(div) ∧ 𝜕

2
t j
0 ∈ (𝒫2

σ<s+1/2)
⊥
∧ (4) ∧ (3)

– Without further assumptions on the current distribution, we can only conclude
B2 ∈ L2<−1/2.

– If the second time derivative of the “first current moment” does not vanish, i. e.,
if there is any i{±1,0} with ⟨𝜕2t j

0,P21,i⟩ ̸= 0, then B
2 ̸∈ L2>−1/2.

– If the second time derivative of the first current moment vanishes, we conclude
B2 ∈ L2<1/2, note that conditions (4) and (3) are void for s < 3/2.

Hence, B2 ∈ L2<1/2, and thus in L2, if and only if the second time derivative of the first
current moment of the zeroth-order current distribution vanishes.

10.4 Third order, radiation order

With (E0,B0) ∈ L2<1/2×L
2
<3/2, (E

1,B1) ∈ L23/2×L
2
<1/2 and (E

2,B2) ∈ L2<−1/2×L
2
<1/2 the unique

solutions of (36), (37) and (38), respectively, we have to solve the following curl–div
systems:

curlE3 = −𝜕tB
2, divE2 = 0,

curlB3 = 𝜕tE
2, divB3 = 0.

(39)

In the same manner as in the previous orders, we find

E3 ∈ L2s−1 ⇔ 𝜕tB
2 ∈ im(curls)

⇔ 𝜕tB
2 ∈ Hs,0(div) ∧ 𝜕tB

2 ∈ (𝒫2
σ<s−3/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(1)

⇔ 𝜕2t E
1 ∈ im(curls+1) ∧ (1)

⇔ 𝜕2t E
1 ∈ Hs+1,0(div) ∧ 𝜕

2
t E

1 ∈ (𝒫2
σ<s−1/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(2)

∧(1)
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⇔ 𝜕3t B
0 ∈ im(curls+2) ∧ (2) ∧ (1)

⇔ 𝜕3t B
0 ∈ Hs+2,0(div) ∧ 𝜕

3
t B

0 ∈ (𝒫2
σ<s+1/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(3)

∧(2) ∧ (1)

⇔ 𝜕3t j
0 ∈ im(curls+3) ∧ (3) ∧ (2) ∧ (1)

⇔ 𝜕3t j
0 ∈ (𝒫2

σ<s+3/2)
⊥
∧ (3) ∧ (2) ∧ (1)

– In general, we only have E3 ∈ L2<−3/2, and thus the solution E
3 is only determined

by (39) modulo a time-dependent spatially constant vector.
– If, in addition to our general assumptions, 𝜕3t j

0 ∈ (𝒫2
1 )
⊥, since conditions (3), (2),

(1) are void for s < 1/2, we have E3 ∈ L2<−1/2 and E
3 is unique.

– If, in addition to our general assumptions, 𝜕3t j
0 ∈ (𝒫2

1 ∪ 𝒫
2
2 )
⊥ then E3 ∈ L2<1/2. Note

that in this case for s < 3/2 conditions (2) and (1) are void and for 1/2 < s < 3/2
condition (3) is satisfied: Since now 𝜕3t j

0 ∈ im(curls+3) we have 𝜕3t B
0 ∈ L2<5/2 and

have to show 𝜕3t B
0 ∈ (𝒫2

1 )
⊥.We already know thatE1 ∈ L2<3/2, and thus 𝜕

2
t E

1 ∈ L2<3/2.
Because of curl 𝜕2t E

1 = 𝜕3t B
0 ∈ L2<5/2 we conclude 𝜕

2
t E

1 ∈ H3/2(curl) and using
Remark 3 as well as (27) we compute for i ∈ {±1,0}

⟨𝜕3t B
0,P21,i⟩ = ⟨curl 𝜕

2
t E

1,P21,i⟩ = ⟨𝜕
2
t E

1, curlP21,i⟩

= −√2⟨𝜕2t E
1,P40,i⟩

Now we utilize 𝜕2t E
1 = curl 𝜕tB2 ∈ L2<3/2 and 𝜕tB

2 ∈ L2<1/2, thus 𝜕tB
2 ∈ Hs(curl) for

all s < 1/2 and we continue using Remark 3 and (27) again

⟨𝜕2t E
1,P40,i⟩ = ⟨curl 𝜕tB

2,P40,i⟩ = ⟨curl 𝜕tB
2, curlP40,i⟩ = 0 .

Summarizing, we have E3 ∈ L2 if and only if 𝜕3t j
0 ∈ (𝒫2

1 ∪ 𝒫
2
2 )
⊥.

Now we shall proceed with B3:

B3 ∈ L2s−1 ⇔ 𝜕tE
2 im(curls)

⇔ 𝜕tE
2 ∈ Hs,0(div) ∧ 𝜕tE

2 ∈ (𝒫2
σ<s−3/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(4)

⇔ 𝜕2t B
1 ∈ im(curls+1) ∧ (4)

⇔ 𝜕2t B
1 ∈ Hs+1,0(div) ∧ 𝜕

2
t B

1 ∈ (𝒫2
σ<s−1/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(5)

∧ (4)

⇔ 𝜕2t j
1 + 𝜕3t E

0 ∈ im(curls+2) ∧ (5) ∧ (4)

⇔ 𝜕3t E
0 ∈ L2s+2 ∧ 𝜕

2
t j
1 + 𝜕3t E

0 ∈ (𝒫2
σ<s+1/2)

⊥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(6)

∧(5) ∧ (4)

⇔ 𝜕3t ϱ
0 ∈ im(curls+3) ∧ (6) ∧ (5) ∧ (4)

⇔ 𝜕3t ϱ
0 ∈ (pσ<s+3/2)

⊥ ∧ (6) ∧ (5) ∧ (4)
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– If the third time derivate of the dipole moment of the charge distribution does not
vanish, thenwe only haveB3 ∈ L2<−3/2, and thus the solutionB

3 is only determined
by (39) modulo a time-dependent spatially constant vector.

– If the third time derivate of the dipole moment vanishes, we have B3 ∈ L2<−1/2, and
thus B3 is uniquely defined by (39), note that conditions (6), (5), (4) are void for
s < 1/2.

– If the third time derivate of the dipole moment vanishes, we have B3 ∈ L2<−1/2. If
in addition, the third time derivative of the quadrupole moment vanishes, i. e.,
⟨𝜕3t ϱ

0, p2,i⟩ = 0 for all i ∈ {±2, ±1,0}, then B3 ∈ L2<1/2. Note that in this case for
1/2 < s < 3/2 conditions (5) and(4) are void and condition (6) is satisfied: Since
𝜕2t j

1 + 𝜕3t E
0 ∈ L2<5/2 in this case, using Remark 3 and (27), we can compute for all

i ∈ {±1,0}:

⟨𝜕2t j
1 + 𝜕3t E

0,P21,i⟩ = −⟨curl 𝜕
2
t B

1,P21,i⟩ = ⟨𝜕
2
t B

1, curlP21,i⟩

= −√2⟨𝜕2t B
1,P40,i⟩ = √2⟨curl 𝜕tE

2,P40,i⟩

= −√2⟨𝜕tB
2, curlP40,i⟩ = 0 .

Summarizing, we have B3 ∈ L2 if and only if the third time derivatives of the dipole
and of the quadrupole moment vanish.

11 Discussion

In this contribution, we proved that the asymptotic expansion of electromagnetic
fields up to order two (Darwin order) gives approximation fields in L2 if and only if
the first time derivative of the monopole moment and the second time derivative of
the dipole moment of the charge distribution as well as the second time derivative of
the first current moment ⟨j0,P21,i⟩, i = −1,0, 1 of the zeroth-order contribution to the
current density vanish.

The third-order approximation is in L2 if and only if in addition the third time
derivative of the quadrupole moment of the charge distribution and the third time
derivative of the second current moment ⟨j0,P22,i⟩, i = −2, . . . , 2, of the zeroth-order
contribution to the current distribution vanish. In all other cases, approximations of
second and third order are only given in weighted L2 spaces and the approximation
property can only be expected with respect to weighted L2 norms. In particular, with-
out these assumptions on the sources, it is not possible to use initial values of the
approximation fields as initial data for theMaxwell fields and to solveMaxwell’s equa-
tions by usual L2-theory at the same time.

The results obtained here are in good accordance with usual multipole expansion
of radiation fields in physics textbooks (see, e. g., [12]) but are in contradiction to [18],
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74 | S. Bauer

where for the second-order approximation both L2-fields and the approximation prop-
erty are claimed without assumptions on the multipole contributions to the sources.

In [11], Darwin systems are studied for exterior domains ofℝ3 with boundary (see
also [17] for the two-dimensional case) provingwell-posedness in L2−1 (in our notation).
We expect that these results can be sharpened by generalizing the approach of the
paper at hand to exterior domains with boundaries using results from [20, 21] and
their vector calculus equivalents.
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3 Weck’s selection theorem: The Maxwell
compactness property for bounded weak
Lipschitz domains with mixed boundary
conditions in arbitrary dimensions

Abstract: It is proved that the space of differential forms with weak exterior and
co-derivative, is compactly embedded into the space of square integrable differen-
tial forms. Mixed boundary conditions on weak Lipschitz domains are considered.
Furthermore, canonical applications such as Maxwell estimates, Helmholtz decom-
positions and a static solution theory are proved. As a side product and crucial tool for
our proofs, we show the existence of regular potentials and regular decompositions
as well.
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tor potentials
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1 Introduction
The aim of this contribution is to prove a compact embedding, so called “Weck’s selec-
tion theorem” or (generalized) Maxwell compactness property [28, 29, 24], of differen-
tial q-forms with weak exterior and co-derivative into the space of square integrable
q-forms subject to mixed boundary conditions on bounded weak Lipschitz domains
Ω ⊂ ℝN , i. e.,

D̊qΓτ (Ω) ∩ ε
−1Δ̊qΓν (Ω) 󳨅→ L2,q(Ω)

is compact. The main result is given by Theorem 4.8. Here, N ≥ 2 and 0 ≤ q ≤ N
are natural numbers, the dimension of the domain Ω and the rank of the differential
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78 | S. Bauer et al.

forms, respectively. This generalises the results from [1], where bounded weak Lips-
chitz domains in the classical setting of ℝ3 were considered. In fact, the results from
[1] can be recovered by setting N = 3 and q = 1 or q = 2.

Similar results for strong Lipschitz domains in three dimensions can be found in
[11, 8]. For a historical overview of themathematical treatment ofWeck’s selection the-
orem (Maxwell compactness property), see [1, 13, 25] and the literature cited therein.
In particular, let us mention the important papers [28, 27, 24, 3, 32, 11, 25]. We empha-
sise that in [32] Witsch was able to go even beyond Lipschitz regularity (p-cusps). In
[30], Weck applied Witsch’s ideas to the theory of elasticity.

The central role of compact embeddings of this type can, for example, be seen in
connection with Hilbert space complexes, where the compact embeddings immedi-
ately provide closed ranges, solution theories by continuous inverses, Friedrichs/Po-
incaré-type estimates, and access to Hodge–Helmholtz-type decompositions, Fred-
holm theory, div–curl-type lemmas, and a posteriori error estimation; see [21, 20, 22].
In exterior domains, where local versions of the compact embeddings hold, one ob-
tains radiation solutions (scattering theory)with thehelp of Eidus’ limiting absorption
principle [5–7]; see [14–16, 18, 17, 19]. We elaborate on some of these applications in
our Section 5.

Finally, we note that by the same arguments as in [24] our results extend to Rie-
mannian manifolds.

2 Notation, preliminaries and outline of the proof
Let Ω ⊂ ℝN be a bounded weak Lipschitz domain. For a precise definition of weak
Lipschitz domains, see Definitions 2.3 and 2.5. In short, Ω is an N-dimensional
C0,1-submanifold of ℝN with boundary, i. e., a manifold with Lipschitz atlas. Let
Γ := 𝜕Ω, which is itself an (N − 1)-dimensional Lipschitz-manifold without boundary,
consist of two relatively open subsets Γτ and Γν such that Γτ ∪ Γν = Γ and Γτ ∩ Γν = 0.
The separating set Γτ ∩ Γν (interface) will be assumed to be a, not necessarily con-
nected, (N − 2)-dimensional Lipschitz-submanifold of Γ. We shall call (Ω, Γτ) a weak
Lipschitz pair.

We will be working in the framework of alternating differential forms; see, for ex-
ample, [10]. The vector space C̊∞,q(Ω) is defined as the subset of C∞,q(Ω), the set of
smooth alternatingdifferential formsof rank q, having compact support inΩ. Together
with the inner product,

⟨E,H⟩L2,q(Ω) := ∫
Ω

E ∧ ⋆H
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3 Weck’s selection theorem | 79

it is an inner product space.1 Wemay then define L2,q(Ω) as the completion of C̊∞,q(Ω)
with respect to the corresponding norm. L2,q(Ω) can be identified with those q-forms
having L2-coefficients with respect to any coordinate system. Using the weak version
of Stokes’ theorem,

⟨dE,H⟩L2,q+1(Ω) = −⟨E, δH⟩L2,q(Ω), E ∈ C̊∞,q(Ω), H ∈ C̊∞,q+1(Ω), (1)

weak versions of the exterior derivative and co-derivative can be defined. Here, d is the
exterior derivative, δ = (−1)N(q−1)⋆d⋆ the co-derivative and ⋆ the Hodge-star-operator
on Ω. We thus introduce the Sobolev (Hilbert) spaces (equipped with their natural
graph norms)

Dq(Ω) := {E ∈ L2,q(Ω) : dE ∈ L2,q+1(Ω)}, Δq(Ω) := {E ∈ L2,q(Ω) : δE ∈ L2,q−1(Ω)}

in the distributional sense. It holds

⋆Dq(Ω) = ΔN−q(Ω), ⋆Δq(Ω) = DN−q(Ω).

We further define the test forms

C̊∞,qΓτ
(Ω) := {φ|Ω : φ ∈ C̊

∞,q(ℝN), dist(suppφ, Γτ) > 0}

and note that C̊∞,q0 (Ω) = C
∞,q(Ω). We now take care of boundary conditions. First, we

introduce strong boundary conditions as closures of test forms by

D̊qΓτ (Ω) := C̊
∞,q
Γτ
(Ω)

Dq(Ω)
, Δ̊qΓν (Ω) := C̊

∞,q
Γν
(Ω)

Δq(Ω)
. (2)

For the full boundary case Γτ = Γ (resp., Γν = Γ), we set

D̊q(Ω) := D̊qΓτ (Ω), Δ̊q(Ω) := Δ̊qΓν (Ω).

Furthermore, we define weak boundary conditions in the spaces

D̊qΓτ (Ω) := {E ∈ D
q(Ω) : ⟨E, δφ⟩L2,q(Ω) = −⟨dE,φ⟩L2,q+1(Ω) for all φ ∈ C̊∞,q+1Γν

(Ω)},

Δ̊qΓν (Ω) := {H ∈ Δ
q(Ω) : ⟨H ,dφ⟩L2,q(Ω) = −⟨δH ,φ⟩L2,q−1(Ω) for all φ ∈ C̊∞,q−1Γτ

(Ω)},
(3)

and again for Γτ = Γ (resp., Γν = Γ), we set

D̊q(Ω) := D̊qΓτ (Ω), Δ̊q(Ω) := Δ̊qΓν (Ω).

We note that in Definitions (1) and (2), the smooth test forms can by mollification be
replaced by their respective Lipschitz continuous counterparts, e. g., C̊∞,qΓτ

(Ω) can be

1 For simplicity, we work in a real Hilbert space setting.
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replaced by C̊0,1,qΓτ
(Ω). Similarly, in Definition (3) the smooth test forms can by com-

pletion be replaced by their respective closures, i. e., C̊∞,q+1Γν
(Ω) and C̊∞,q−1Γτ

(Ω) can be
replaced by Δ̊q+1Γν

(Ω) and D̊q−1Γτ
(Ω), respectively. In (2) and (3), homogeneous tangential

and normal traces on Γτ, respectively Γν, are generalised. Clearly,

D̊qΓτ (Ω) ⊂ D̊
q
Γτ
(Ω), Δ̊qΓν (Ω) ⊂ Δ̊

q
Γν
(Ω)

and it will later be shown that in fact equality holds under our regularity assumptions
on the boundary. In case of full boundary conditions, the equality even holds without
any assumptions on the regularity of the boundary, as can be seen by a short func-
tional analytic argument (see [1]) but which is unavailable for the mixed boundary
case.

We define the closed subspaces

Dq0(Ω) := {E ∈ D
q(Ω) : dE = 0}, Δq0(Ω) := {E ∈ Δ

q(Ω) : δE = 0}

as well as D̊qΓτ ,0(Ω) := D̊
q
Γτ
(Ω) ∩ Dq0(Ω) and Δ̊

q
Γν ,0
(Ω) := Δ̊qΓν (Ω) ∩ Δ

q
0(Ω). Analogously, for

the weak spaces,

D̊qΓτ ,0(Ω) := D̊
q
Γτ
(Ω) ∩ Dq0(Ω), Δ̊qΓν ,0(Ω) := Δ̊

q
Γν
(Ω) ∩ Δq0(Ω).

In addition to the latter canonical Sobolev spaces, we will also need the classi-
cal Sobolev spaces for the Euclidean components of q-forms. Note that Ω, together
with the global identity chart, is a N-dimensional Riemannian manifold. In particu-
lar, q-forms E ∈ L2,q(Ω) can be represented globally in Cartesian coordinates by their
components EI , i. e., E = ∑I EIdx

I . Here, we use the ordered multi-index notation
dxI = dxi1 ∧⋅ ⋅ ⋅∧dxiq for I = (i1, . . . , iq) ∈ {1, . . . ,N}q. The inner product for E,H ∈ L2,q(Ω)
is given by

⟨E,H⟩L2,q(Ω) = ∫
Ω

E ∧ ⋆H = ∑
I
∫
Ω

EIHI = ∑
I
⟨EI ,HI⟩L2(Ω) = ⟨E⃗, H⃗⟩L2(Ω),

where we introduce the vector proxy notation:

E⃗ = [EI ]I ∈ L
2(Ω; ℝNq), Nq := (

N
q
).

For k ∈ ℕ, we can now define the Sobolev spaceHk,q(Ω) as the subset of L2,q(Ω) having
each component EI in Hk(Ω). In these cases, we have for |α| ≤ k,

𝜕αE = ∑
I
𝜕αEIdx

I and ⟨E,H⟩Hk,q(Ω) := ∑
0≤|α|≤k
⟨𝜕αE, 𝜕αH⟩L2,q(Ω)

and we use the vector proxy notation also for the gradient, i. e.,

∇E⃗ = [𝜕nEI ]n,I = [. . . ∇EI . . .]I ∈ L
2(Ω; ℝN×Nq).
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3 Weck’s selection theorem | 81

In particular, for E,H ∈ H1,q(Ω),

⟨E,H⟩H1,q(Ω) = ⟨E,H⟩L2,q(Ω) + N
∑
n=1
⟨𝜕nE, 𝜕nH⟩L2,q(Ω) = ∑

I
(∫
Ω

EIHI +∑
n
∫
Ω

𝜕nEI𝜕nHI)

= ∑
I
(⟨EI ,HI⟩L2(Ω) + ⟨∇EI , ∇HI⟩L2(Ω))

= ⟨E⃗, H⃗⟩L2(Ω) + ⟨∇E⃗, ∇H⃗⟩L2(Ω) = ⟨E⃗, H⃗⟩H1(Ω).

Boundary conditions for H1,q(Ω)-forms can again be defined strongly and weakly, i. e.,
by closure

H̊1,qΓτ (Ω) := C̊
∞,q
Γτ
(Ω)

H1,q(Ω)
and by integration by parts

H̊1,qΓτ (Ω) := {E ∈ H
1,q(Ω) : ⟨EI , 𝜕n ϕ⟩L2(Ω) = −⟨𝜕n EI ,ϕ⟩L2(Ω) for all n, I and all ϕ ∈ C̊

∞
Γν (Ω)},

respectively. Let us also introduce the following Sobolev type spaces:

Dk,q(Ω) : = {E ∈ Hk,q(Ω) : dE ∈ Hk,q+1(Ω)},

Δk,q(Ω) : = {E ∈ Hk,q(Ω) : δE ∈ Hk,q−1(Ω)}.

Remark 2.1. We emphasise that by switching Γτ and Γν we can define the respective
boundary conditions on the other part of the boundary as well. Moreover, all defini-
tions of our spaces extend literally to any open subset Ω ⊂ ℝN and any relatively open
complementary boundary pairs Γτ and Γν.

Finally, we introduce our transformations ε.

Definition 2.2. A transformation ε : L2,q(Ω) → L2,q(Ω) will be called admissible, if ε is
bounded, symmetric, anduniformly positive definite.More precisely, ε is a self-adjoint
operator on L2,q(Ω) and there exists ε, ε > 0 such that for all E ∈ L2,q(Ω)

ε|εE|L2,q(Ω) ≤ |E|L2,q(Ω) ≤ ε√⟨εE,E⟩L2,q(Ω).

2.1 Lipschitz domains

Let Ω ⊂ ℝN be a bounded domain with boundary Γ := 𝜕Ω. We introduce the setting
we will be working in. Define (cf. Figure 3.2)

I := (−1, 1), B := IN ⊂ ℝN , B± := {x ∈ B : ±xN > 0}, B0 := {x ∈ B : xN = 0},
B0,± := {x ∈ B0 : ±x1 > 0}, B0,0 := {x ∈ B0 : x1 = 0}.
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Definition 2.3 (Weak Lipschitz domain). Ω is called weak Lipschitz, if the boundary Γ
is a Lipschitz submanifold of the manifold Ω, i. e., there exist a finite open covering
U1, . . . ,UK ⊂ ℝ

N of Γ and vector fields ϕk : Uk → B, such that for k = 1, . . . ,K
(i) ϕk ∈ C0,1(Uk ,B) is bijective and ψk := ϕ−1k ∈ C

0,1(B,Uk);
(ii) ϕk(Uk ∩ Ω) = B−

hold.

Remark 2.4. For k = 1, . . . ,K, we have ϕk(Uk \ Ω) = B+ and ϕk(Uk ∩ Γ) = B0.

Definition 2.5 (Weak Lipschitz domain and weak Lipschitz interface). Let Ω be weak
Lipschitz. A relatively open subset Γτ of Γ is called weak Lipschitz, if Γτ is a Lipschitz
submanifold of Γ, i. e., there are anopen coveringU1, . . . ,UK ⊂ ℝ

N of Γ andvector fields
ϕk := Uk → B, such that for k = 1, . . . ,K and in addition to (i), (ii) in Definition 2.3 one
of
(iii) Uk ∩ Γτ = 0;
(iii󸀠) Uk ∩ Γτ = Uk ∩ Γ ⇒ ϕk(Uk ∩ Γτ) = B0;
(iii󸀠󸀠) 0 ̸= Uk ∩ Γτ ̸= Uk ∩ Γ ⇒ ϕk(Uk ∩ Γτ) = B0,−

holds. We define Γν := Γ \ Γτ to be the relatively open complement of Γτ.

Definition 2.6 (Weak Lipschitz pair). A pair (Ω, Γτ) conforming to Definitions 2.3
and 2.5 will be called weak Lipschitz.

Remark 2.7. If (Ω, Γτ) is weak Lipschitz, so is (Ω, Γν). Moreover, for the cases (iii), (iii󸀠)
and (iii󸀠󸀠) in Definition 2.5 we further have
(iii) Uk ∩ Γτ = 0 ⇒ Uk ∩ Γν = Uk ∩ Γ ⇒ ϕk(Uk ∩ Γν) = B0;
(iii󸀠) Uk ∩ Γτ = Uk ∩ Γ ⇒ Uk ∩ Γν = 0;
(iii󸀠󸀠) 0 ̸= Uk ∩ Γτ ̸= Uk ∩ Γ ⇒ 0 ̸= Uk ∩ Γν ̸= Uk ∩ Γ ⇒ ϕk(Uk ∩ Γν) = B0,+ and

ϕk(Uk ∩ Γτ ∩ Γν) = B0,0.

In the literature, the notion of a Lipschitz domainΩ ⊂ ℝN is often used for a strong
Lipschitz domain. For this, let us define for x ∈ ℝN ,

x󸀠 := (x1, x2, . . . , xN−1), x󸀠󸀠 := (x2, . . . , xN−1).

Definition 2.8 (Strong Lipschitz domain). Ω is called strong Lipschitz, if there are an
open covering U1, . . . ,UK ⊂ ℝ

N of Γ, rigid body motions Rk = Ak + ak, Ak ∈ ℝN×N

orthogonal, ak ∈ ℝN and ξk ∈ C0,1(IN−1, I), such that for k = 1, . . . ,K
(i) Rk(Uk ∩ Ω) = {x ∈ B : xN < ξk(x󸀠)}.

Remark 2.9. For k = 1, . . . ,K, we have

Rk(Uk \ Ω) = {x ∈ B : xN > ξk(x
󸀠)}, Rk(Uk ∩ Γ) = {x ∈ B : xN = ξk(x

󸀠)}.
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3 Weck’s selection theorem | 83

Definition 2.10 (Strong Lipschitz domain and strong Lipschitz interface). Let Ω be
strong Lipschitz. A relatively open subset Γτ of Γ is called strong Lipschitz, if there ex-
ist an open coveringU1, . . . ,UK ⊂ ℝ

N of Γ, rigid bodymotions Rk, and ξk ∈ C0,1(IN−1, I),
ζk ∈ C0,1(IN−2, I), such that for k = 1, . . . ,K and in addition to (i) in Definition 2.8 one of
(ii) Uk ∩ Γτ = 0;
(ii󸀠) Uk ∩ Γτ = Uk ∩ Γ ⇒ Rk(Uk ∩ Γτ) = {x ∈ B : xN = ξk(x󸀠)};
(ii󸀠󸀠) 0 ̸= Uk ∩ Γτ ̸= Uk ∩ Γ ⇒ Rk(Uk ∩ Γτ) = {x ∈ B : xN = ξk(x󸀠), x1 < ζk(x󸀠󸀠)}

holds. We define Γν := Γ \ Γτ to be the relatively open complement of Γτ.

Definition 2.11 (Strong Lipschitz pair). A pair (Ω, Γτ) conforming to Definitions 2.8
and 2.10 will be called strong Lipschitz.

Remark 2.12. If (Ω, Γτ) is strong Lipschitz, so is (Ω, Γν). Moreover, for the cases (ii), (ii󸀠)
and (ii󸀠󸀠) in Definition 2.10 we further have
(ii) Uk ∩ Γτ = 0 ⇒ Uk ∩ Γν = Uk ∩ Γ ⇒ Rk(Uk ∩ Γν) = {x ∈ B : xN = ξk(x󸀠)};
(ii󸀠) Uk ∩ Γτ = Uk ∩ Γ ⇒ Uk ∩ Γν = 0;
(ii󸀠󸀠) 0 ̸= Uk ∩ Γτ ̸= Uk ∩ Γ ⇒ 0 ̸= Uk ∩ Γν ̸= Uk ∩ Γ ⇒

Rk(Uk ∩ Γν) = {x ∈ B : xN = ξk(x
󸀠), x1 > ζk(x

󸀠󸀠)},

Rk(Uk ∩ Γτ ∩ Γν) = {x ∈ B : xN = ξk(x
󸀠), x1 = ζk(x

󸀠󸀠)}.

Remark 2.13. The following holds:
(i) Ω strong Lipschitz ⇒ Ω weak Lipschitz
(ii) (Ω, Γτ) strong Lipschitz pair ⇒ (Ω, Γτ) weak Lipschitz pair

For a proof just define ϕk := φk ∘ Rk with φk : Uk → B given by

φk(x) :=
[[

[

x1 − ζk(x󸀠󸀠)
x󸀠󸀠

xN − ξk(x󸀠)

]]

]

.

Note that the contrary does not hold as the implicit function theorem is not available
for Lipschitz maps.

For later purposes, we introduce special notation for the half-cube domain

Ξ := B−, γ := 𝜕Ξ (4)

and its relatively open boundary parts γτ and γν := γ \ γτ. We will only consider the
cases

γν = 0, γν = B0, γν = B0,+ (5)

and we note that Ξ and γ, γτ, γν are strong Lipschitz, see Figure 3.1.
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Figure 3.1:Mappings ϕk and ψk between a ball Uk and the cube B.

2.2 Outline of the proof

Let (Ω, Γτ) be a weak Lipschitz pair for a bounded domain Ω ⊂ ℝN .
– As a first step, we observe H̊1,qΓτ (Ω) = H̊

1,q
Γτ
(Ω), i. e., for the H1,q(Ω)-spaces the strong

and weak definitions of the boundary conditions coincide; see Lemma 2.14.
– In the second and essential step, we construct various regular H1,q-potentials on

simple domains, mainly for the half-cube Ξ from (4) with the special boundary
constellations (5), i. e.,

D̊qΓν ,0(Ξ) = D̊
q
γν ,0
(Ξ) = d H̊1,q−1γν (Ξ), Δ̊qΓν ,0(Ξ) = Δ̊

q
Γν ,0
(Ξ) = δ H̊1,q+1γν (Ξ);

see Section 3. Potentials of this type are called regular potentials.
– In the third step, Section 3.3, it is shown that the strong and weak definitions of

the boundary conditions coincide on the half-cube Ξ from (4) with the special
boundary constellation (5), i. e.,

D̊qΓν (Ξ) = D̊
q
Γν
(Ξ), Δ̊qΓν (Ξ) = Δ̊

q
Γν
(Ξ). (6)

– The fourth step proves the compact embedding on the half-cube Ξ from (4) with
the special boundary constellations (5), i. e.,

D̊qΓτ (Ξ) ∩ ε
−1Δ̊qΓν (Ξ) 󳨅→ L2,q(Ξ) (7)

is compact; see Section 4.1.
– In the fifth step, Theorem 4.7, (6) is established for weak Lipschitz domains, i. e.,

D̊qΓτ (Ω) = D̊
q
Γτ
(Ω), Δ̊qΓν (Ω) = Δ̊

q
Γν
(Ω).

– In the last step, we finally prove the compact embedding (7) for weak Lipschitz
pairs, i. e.,

D̊qΓτ (Ω) ∩ ε
−1Δ̊qΓν (Ω) 󳨅→ L2,q(Ω)

is compact; see our main result Theorem 4.8.
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2.3 Some important results

Within our proofs, we need a few important technical lemmas. First, the strong and
weak definitions of the boundary conditions coincide for H1,q(Ω)-forms, which is a
density result for H1,q(Ω)-forms. This is an immediate consequence of the correspond-
ing scalar result, whose proof can be found in [11, Lemma 2, Lemma 3] and with a
simplified proof in [1, Lemma 3.1].

Lemma 2.14 (Weak and strong boundary conditions coincide for H1,q(Ω)). Let Ω ⊂ ℝN

be a bounded domain and let (Ω, Γτ) be a weak Lipschitz pair as well as

H̊
̃
1,q
Γτ
(Ω) := {u ∈ H1,q(Ω) : u|Γτ = 0}

in the sense of traces. Then H̊1,qΓτ (Ω) = H̊̃
1,q
Γτ
(Ω) = H̊1,qΓτ (Ω).

Another crucial tool in our arguments is a universal extension operator for the
Sobolev spaces Dk,q(Ω) and Δk,q(Ω) given in [9], which is based on the universal exten-
sion operator for standard Sobolev spaces Hk(Ω) introduced by Stein in [26]. “Univer-
sality” in this context means that the operator, which is given by a single formula, is
able to extend all orders of Sobolev spaces simultaneously. More precisely, the follow-
ing theorem, which is taken from [9, Theorem 3.6], holds.

Lemma 2.15 (Stein’s extension operator). Let Ω ⊂ ℝN be a bounded strong Lipschitz
domain. Then for k ∈ ℕ0 and 0 ≤ q ≤ N there exists a (universal) linear and continuous
extension operator

ℰ : Dk,q(Ω) → Dk,q(ℝN).

More precisely, ℰ satisfies ℰE = E a. e. in Ω and there exists c > 0 such that for all
E ∈ Dk,q(Ω)

|ℰE|Dk,q(ℝN ) ≤ c|E|Dk,q(Ω).
Furthermore, ℰ can be chosen such that ℰE has a fixed compact support in ℝN for all
E ∈ Dk,q(Ω).

Our third lemma summarises well-known and fundamental results for the theory
ofMaxwell’s equations from [23, 24]. For this, we denote orthogonality and the orthog-
onal sum in L2,q(Ω) by⊥ and ⊕, respectively, and introduce the harmonic Dirichlet and
Neumann forms

ℋq
D(Ω) := D̊

q
0(Ω) ∩ Δ

q
0(Ω), ℋq

N (Ω) := D
q
0(Ω) ∩ Δ̊

q
0(Ω),

respectively.
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Lemma 2.16 (Picard’s generalisation of Weck’s selection theorem, Helmholtz decom-
positions and Maxwell estimates). Let Ω ⊂ ℝN be a bounded weak Lipschitz domain.
Then the embeddings

D̊q(Ω) ∩ Δq(Ω) 󳨅→ L2,q(Ω), Dq(Ω) ∩ Δ̊q(Ω) 󳨅→ L2,q(Ω)

are compact andℋq
D(Ω),ℋ

q
N (Ω) are finite-dimensional. Moreover, the Helmholtz decom-

positions

L2,q(Ω) = d D̊q−1(Ω) ⊕ Δq0(Ω) L2,q(Ω) = dDq−1(Ω) ⊕ Δ̊q0(Ω)

= D̊q0(Ω) ⊕ δ Δ
q+1(Ω) = Dq0(Ω) ⊕ δ Δ̊

q+1(Ω)

= d D̊q−1(Ω) ⊕ℋq
D(Ω) ⊕ δ Δ

q+1(Ω), = dDq−1(Ω) ⊕ℋq
N (Ω) ⊕ δ Δ̊

q+1(Ω)

are valid. In particular, all ranges are closed subspaces of L2,q(Ω) and

d D̊q−1(Ω) = D̊q0(Ω) ∩ℋ
q
D(Ω)
⊥, dDq−1(Ω) = Dq0(Ω) ∩ℋ

q
N (Ω)
⊥,

δ Δq+1(Ω) = Δq0(Ω) ∩ℋ
q
D(Ω)
⊥, δ Δ̊q+1(Ω) = Δ̊q0(Ω) ∩ℋ

q
N (Ω)
⊥.

Furthermore, there exists c > 0 such that

c|E|L2,q(Ω) ≤ |dE|L2,q+1(Ω) + |δE|L2,q−1(Ω)
holds for all E ∈ D̊q(Ω) ∩ Δq(Ω) ∩ℋq

D(Ω)
⊥ and all E ∈ Dq(Ω) ∩ Δ̊q(Ω) ∩ℋq

N (Ω)
⊥, i. e., the

Maxwell (or Friedrichs–Poincaré-type) estimates are valid.

Corollary 2.17 (Refined Helmholtz decompositions). Let Ω ⊂ ℝN be a bounded weak
Lipschitz domain. Then

D̊q(Ω) = D̊q0(Ω) ⊕ (D̊
q(Ω) ∩ δ Δq+1(Ω)), d D̊q(Ω) = d(D̊q(Ω) ∩ δ Δq+1(Ω)),

Dq(Ω) = Dq0(Ω) ⊕ (D
q(Ω) ∩ δ Δ̊q+1(Ω)), dDq(Ω) = d(Dq(Ω) ∩ δ Δ̊q+1(Ω)),

Δq(Ω) = (d D̊q−1(Ω) ∩ Δq(Ω)) ⊕ Δq0(Ω), δ Δq(Ω) = δ(d D̊q−1(Ω) ∩ Δq(Ω)),

Δ̊q(Ω) = (dDq−1(Ω) ∩ Δ̊q(Ω)) ⊕ Δ̊q0(Ω), δ Δ̊q(Ω) = δ(dDq−1(Ω) ∩ Δ̊q(Ω)).

Let πq,Ω : L2,q(Ω) → δ Δ̊q+1(Ω) be the orthonormal Helmholtz projector onto
δ Δ̊q+1(Ω). By the latter corollary, πq,Ω maps Dq(Ω) to

Dq(Ω) ∩ δ Δ̊q+1(Ω) = Dq(Ω) ∩ Δ̊q0(Ω) ∩ℋ
q
N (Ω)
⊥.

Corollary 2.18 (Maxwell estimate for d and Neumann boundary condition). Assume
Ω ⊂ ℝN to be a bounded weak Lipschitz domain. Then for all E ∈ Dq(Ω) it holds
πq,ΩE ∈ Dq(Ω) ∩ δ Δ̊q+1(Ω) and dπq,ΩE = dE as well as

c|πq,ΩE|L2,q(Ω) ≤ |dE|L2,q+1(Ω),
with c from Lemma 2.16.
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3 Weck’s selection theorem | 87

If Ω = ℝN , a similar theory holds true utilising polynomially weighted Sobolev
spaces; see [23] for details. Let πq,ℝN : L

2,q(ℝN ) → Δq0(ℝ
N ) be the orthonormal

Helmholtz projector onto Δq0(ℝ
N ).

Lemma 2.19 (Helmholtz decompositions and Maxwell estimate for d in the whole
space). It holdsℋq

N (ℝ
N ) = ℋq

D(ℝ
N ) = {0} and

L2,q(ℝN) = Dq0(ℝ
N) ⊕ Δq0(ℝ

N), Dq(ℝN) = Dq0(ℝ
N) ⊕ (Dq(ℝN) ∩ Δq0(ℝ

N)).

Moreover, for all E ∈ Dq(ℝN ) it holds πq,ℝNE ∈ D
q(ℝN ) ∩ Δq0(ℝ

N ) and dπq,ℝNE = dE as
well as

|πq,ℝNE|Dq(ℝN ) ≤ |E|Dq(ℝN ).

Regularity in the whole space (see, e. g., [12, (4.7) or Lemma 4.2(i)]) shows the fol-
lowing result.

Lemma 2.20 (Regularity in the whole space). Dq(ℝN ) ∩ Δq(ℝN ) = H1,q(ℝN ) with equal
norms. More precisely, E ∈ Dq(ℝN ) ∩ Δq(ℝN ) if and only if E ∈ H1,q(ℝN ) and

|E|2H1,q(ℝN ) = |E|2L2,q(ℝN ) + |dE|2L2,q+1(ℝN ) + |δE|2L2,q−1(ℝN ).

3 Regular potentials
As one of our main steps (step 4), in Section 4.1 the compact embedding is proved
on the half-cube Ξ ⊂ ℝN . This will be achieved (in step 2) by constructing regular
H1(Ξ)-potentials for d-free and δ-free L2,q(Ξ)-forms, which will then enable us to use
Rellich’s selection theorem. This section is devoted to the construction and existence
of these regular potentials, i. e., to step 2.

3.1 Regular potentials without boundary conditions

Let us recall

dDq−1(Ω) = Dq0(Ω) ∩ℋ
q
N (Ω)
⊥, δ Δq+1(Ω) = Δq0(Ω) ∩ℋ

q
D(Ω)
⊥

from Lemma 2.16. The next two lemmas ensure the existence of H1,q(Ω)-potentials
without boundary conditions for strong Lipschitz domains.

Lemma 3.1 (Regular potential for d without boundary condition). Let Ω ⊂ ℝN be a
bounded strong Lipschitz domain. Then there exists a continuous linear operator

𝒯d : D
q
0(Ω) ∩ℋ

q
N (Ω)
⊥ → H1,q−1(ℝN) ∩ Δq−10 (ℝ

N)
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such that for all E ∈ Dq0(Ω) ∩ℋ
q
N (Ω)
⊥

d 𝒯dE = E in Ω.

Especially,

Dq0(Ω) ∩ℋ
q
N (Ω)
⊥ = dH1,q−1(Ω) = d(H1,q−1(Ω) ∩ Δq−10 (Ω))

and the regular potential depends continuously on the data. Particularly, these are
closed subspaces of L2,q(Ω) and 𝒯d is a right inverse to d. By a simple cut-off technique
𝒯d may be modified to

𝒯d : D
q
0(Ω) ∩ℋ

q
N (Ω)
⊥ → H1,q−1(ℝN)

such that 𝒯dE has a fixed compact support in ℝN for all E ∈ Dq0(Ω) ∩ℋ
q
N (Ω)
⊥.

Proof. Suppose E ∈ Dq0(Ω) ∩ ℋ
q
N (Ω)
⊥. By Lemma 2.16, there exists H ∈ Dq−1(Ω) with

dH = E in Ω. Applying Corollary 2.18, we get πq−1,ΩH ∈ Dq−1(Ω) ∩ δ Δ̊q(Ω) with
dπq−1,ΩH = dH = E and

|πq−1,ΩH|Dq−1(Ω) ≤ c|E|L2,q(Ω).
Note that πq−1,ΩH is uniquely determined. By the Stein extension operator
ℰ : D0,q−1(Ω) → D0,q−1(ℝN ) from Lemma 2.15, we have ℰπq−1,ΩH ∈ D0,q−1(ℝN )
with compact support. Projecting again, now with Lemma 2.19 onto Δq−10 (ℝ

N ), we
obtain πq−1,ℝNℰπq−1,ΩH ∈ Dq−1(ℝN ) ∩ Δq−10 (ℝ

N ) (again uniquely determined) with
dπq−1,ℝNℰπq−1,ΩH = d ℰπq−1,ΩH and

|πq−1,ℝNℰπq−1,ΩH|Dq−1(ℝN ) ≤ |ℰπq−1,ΩH|Dq−1(ℝN ) ≤ c|πq−1,ΩH|Dq−1(Ω).
Lemma 2.20 shows πq−1,ℝNℰπq−1,ΩH ∈ H

1,q−1(ℝN ) ∩ Δq−10 (ℝ
N ) with

|πq−1,ℝNℰπq−1,ΩH|H1,q−1(ℝN ) = |πq−1,ℝNℰπq−1,ΩH|Dq−1(ℝN ).
Finally, 𝒯dE := πq−1,ℝNℰπq−1,ΩH ∈ H

1,q−1(ℝN ) ∩ Δq−10 (ℝ
N )meets our needs as

|𝒯dE|H1,q−1(ℝN ) ≤ c|E|L2,q(Ω)
and d 𝒯dE = dπq−1,ℝNℰπq−1,ΩH = d ℰπq−1,ΩH = dπq−1,ΩH = dH = E in Ω.

By Hodge-⋆-duality, we get a corresponding result for the δ-operator.

Lemma 3.2 (Regular potential for δ without boundary condition). Let Ω ⊂ ℝN be a
bounded strong Lipschitz domain. Then there exists a continuous linear operator,

𝒯δ : Δ
q
0(Ω) ∩ℋ

q
D(Ω)
⊥ → H1,q+1(ℝN) ∩ Dq+10 (ℝ

N),
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3 Weck’s selection theorem | 89

such that for all E ∈ Δq0(Ω) ∩ℋ
q
D(Ω)
⊥

δ 𝒯δE = E in Ω.

Especially,

Δq0(Ω) ∩ℋ
q
D(Ω)
⊥ = δH1,q+1(Ω) = δ(H1,q+1(Ω) ∩ Dq+10 (Ω))

and the regular potential depends continuously on the data. In particular, these are
closed subspaces of L2,q(Ω) and 𝒯δ is a right inverse to δ. By a simple cut-off technique
𝒯δ may be modified to

𝒯δ : Δ
q
0(Ω) ∩ℋ

q
D(Ω)
⊥ → H1,q+1(ℝN)

such that 𝒯δE has a fixed compact support in ℝN for all E ∈ Δq0(Ω) ∩ℋ
q
D(Ω)
⊥.

3.2 Regular potentials with boundary conditions for the half-cube

Now we start constructing H1,q(Ξ)-potentials on Ξ with boundary conditions. Let us
recall our special setting on the half-cube

Ξ = B− and γν = 0, γν = B0 or γν = B0,+.

Furthermore (cf. Figure 3.2), we extend Ξ over γν by

Ξ̃ = int(Ξ ∪ Ξ̂), Ξ̂ := {
{x ∈ B : xN > 0} = B+, if γν = B0,
{x ∈ B : xN , x1 > 0} = {x ∈ B+ : x1 > 0} =: B+,+, if γν = B0,+.

Lemma 3.3 (Regular potential for d with partial boundary condition on the half-cube).
There exists a continuous linear operator

𝒮d : D̊
q
γν ,0
(Ξ) → H1,q−1(ℝN) ∩ H̊1,q−1γν (Ξ),

such that for all H ∈ D̊qγν ,0(Ξ)

d𝒮dH = H in Ξ.

Especially,

D̊qγν ,0(Ξ) = D̊
q
γν ,0
(Ξ) = d H̊1,q−1γν (Ξ) = d D̊

q−1
γν (Ξ) = d D̊

q−1
γν (Ξ)

and the regular H̊1,q−1γν (Ξ)-potential depends continuously on the data. In particular, these
spaces are closed subspaces of L2,q(Ξ) and 𝒮d is a right inverse to d. Without loss of
generality, 𝒮d maps to forms with a fixed compact support in ℝN .
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90 | S. Bauer et al.

Figure 3.2: The half-cube Ξ = B−, extended by Ξ̂ to the polygonal domain Ξ̃, and the rectangles
γν = B0 and γν = B0,+.

Proof. The case γν = 0 is done in Lemma 3.1. Hence let γν = B0 or γν = B0,+. Suppose
H ∈ D̊qγν ,0(Ξ) and define H̃ ∈ L

2,q(Ξ̃) as extension of H by zero to Ξ̂ by

H̃ := {
H in Ξ,
0 in Ξ̂.

(8)

By definition of D̊qγν ,0(Ξ) (definition of theweak boundary condition), it follows d H̃ = 0
in Ξ̃, i. e., H̃ ∈ Dq0(Ξ̃). Because Ξ̃ is strong Lipschitz and topologically trivial, especially
ℋq

N (Ξ̃) = {0}, Lemma 3.1 yields a regular potential E = 𝒯dH̃ ∈ H1,q−1(ℝN ) ∩ D
q−1
0 (ℝ

N )
with dE = H̃ in Ξ̃ and

|E|H1,q−1(ℝN ) ≤ c|H̃|L2,q(Ξ̃) ≤ c|H|L2,q(Ξ).
In particular, E ∈ H1,q−1(Ξ̂) and dE = 0 in Ξ̂, i. e., E ∈ H1,q−1(Ξ̂) ∩ Dq−10 (Ξ̂). Using
Lemma 3.1 again, this time in Ξ̂, we obtain F = 𝒯dE ∈ H1,q−2(ℝN ) ⊂ H1,q−2(Ξ̂) with
d F = E in Ξ̂ and

|F|H1,q−2(ℝN ) ≤ c|E|L2,q(Ξ̂).
Since E ∈ H1,q−1(Ξ̂), we have F ∈ D1,q−2(Ξ̂). Let ℰ : D1,q−2(Ξ̂) → D1,q−2(ℝN ) be the Stein
extension operator from Lemma 2.15. Then

𝒮d : D̊qγν ,0(Ξ) 󳨀→ H1,q−1(ℝN )
H 󳨃󳨀→ E − d(ℰF)

is linear and continuous as

|𝒮dH|H1,q−1(ℝN ) ≤ |E|H1,q−1(ℝN ) + |ℰF|D1,q−2(ℝN )
≤ |E|H1,q−1(ℝN ) + |F|D1,q−2(Ξ̂) ≤ |E|H1,q−1(ℝN ) ≤ c|H|L2,q(Ξ).
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3 Weck’s selection theorem | 91

Since 𝒮dH = 0 in Ξ̂, we have 𝒮dH|γν = 0, which means 𝒮dH ∈ H̊̃
1,q−1
γν (Ξ). Therefore, by

Lemma 2.14 we see 𝒮dH ∈ H̊1,q−1γν (Ξ) ⊂ D̊
q−1
γν (Ξ) ⊂ D̊

q−1
γν (Ξ). Moreover, d(𝒮dH) = dE = H̃

in Ξ̃, especially d(𝒮dH) = H in Ξ. Finally, we note

d H̊1,q−1γν (Ξ) ⊂ d D̊
q−1
γν (Ξ) ⊂ D̊

q
γν ,0
(Ξ), d D̊q−1γν (Ξ) ⊂ D̊

q
γν ,0
(Ξ) ⊂ d H̊1,q−1γν (Ξ),

completing the proof.

Again by Hodge-⋆-duality, we obtain the following.

Lemma 3.4 (Regular potential for δ with partial boundary condition on the half-cube).
There exists a continuous linear operator

𝒮δ : Δ̊
q
γν ,0
(Ξ) → H1,q+1(ℝN) ∩ H̊1,q+1γν (Ξ),

such that for all H ∈ Δ̊qγν ,0(Ξ)

δ𝒮δH = H in Ξ.

Especially

Δ̊qγν ,0(Ξ) = Δ̊
q
γν ,0
(Ξ) = δ H̊1,q+1γν (Ξ) = δ Δ̊

q+1
γν (Ξ) = δ Δ̊

q+1
γν (Ξ)

and the regular H̊1,q+1γν (Ξ)-potential depends continuously on the data. In particular, these
spaces are closed subspaces of L2,q(Ξ) and 𝒮δ is a right inverse to δ. Without loss of
generality, 𝒮δ maps to forms with a fixed compact support in ℝN .

3.3 Weak and strong boundary conditions coincide for
the half-cube

Now the two main density results immediately follow. We note that this has already
been proved for the H1,q(Ω)-spaces in Lemma 2.14, i. e., H̊1,qΓτ (Ω) = H̊

1,q
Γτ
(Ω).

Lemma 3.5 (Weak and strong boundary conditions coincide for the half-cube).

D̊qγν (Ξ) = D̊
q
γν (Ξ) and Δ̊qγν (Ξ) = Δ̊

q
γν (Ξ).

Proof. Suppose E ∈ D̊qγν (Ξ), and therefore dE ∈ D̊q+1γν ,0
(Ξ). By Lemma 3.3, there exists

H = 𝒮d dE ∈ H̊1,qγν (Ξ) with dH = dE. By Lemma 3.3, we get E − H ∈ D̊qγν ,0(Ξ) = D̊
q
γν ,0
(Ξ),

and hence E ∈ D̊qγν (Ξ).
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4 Weck’s selection theorem

4.1 The compact embedding for the half-cube

First, we show the main result on the half-cube Ξ = B− with the special boundary
patches

γν = 0, γν = B0 or γν = B0,+

from the latter section. To this end, let ε be an admissible transformation on L2,q(Ξ)
and let us consider the densely defined and closed (unbounded) linear operator

dq−1τ : D̊
q−1
γτ (Ξ) ⊂ L

2,q−1(Ξ) → L2,qε (Ξ) ; E 󳨃→ dE

together with its (Hilbert space) adjoint

− δqν ε := (d
q−1
τ )
∗
: ε−1Δ̊qγν (Ξ) ⊂ L

2,q
ε (Ξ) → L2,q−1(Ξ) ; H 󳨃→ − δ εH .

Note that by Lemma 3.5 we have Δ̊qγν (Ξ) = Δ̊
q
γν (Ξ). Here, L

2,q
ε (Ξ) denotes L

2,q(Ξ) equipped
with the inner product ⟨ ⋅ , ⋅ ⟩L2,qε (Ξ) := ⟨ε ⋅ , ⋅ ⟩L2,q(Ξ). Let ⊕ε denote the orthogonal sum
with respect to the L2,qε -scalar product. The projection theorem yields immediately.

Lemma 4.1 (Regular Helmholtz decompositions for the half-cube). The Helmholtz de-
compositions

L2,qε (Ξ) = D̊
q
γτ ,0
(Ξ) ⊕ε ε

−1Δ̊qγν ,0(Ξ), D̊qγτ ,0(Ξ) = d H̊
1,q−1
γτ (Ξ), Δ̊qγν ,0(Ξ) = δ H̊

1,q+1
γν (Ξ)

hold. Moreover, the refined Helmholtz decompositions

D̊qγτ (Ξ) = d H̊
1,q−1
γτ (Ξ) ⊕ε (D̊

q
γτ (Ξ) ∩ ε

−1 δ H̊1,q+1γν (Ξ)),

ε−1Δ̊qγν (Ξ) = (d H̊
1,q−1
γτ (Ξ) ∩ ε

−1Δ̊qγν (Ξ)) ⊕ε ε
−1 δ H̊1,q+1γν (Ξ),

D̊qγτ (Ξ) ∩ ε
−1Δ̊qγν (Ξ) = (d H̊

1,q−1
γτ (Ξ) ∩ ε

−1Δ̊qγν (Ξ)) ⊕ε (D̊
q
γτ (Ξ) ∩ ε

−1 δ H̊1,q+1γν (Ξ))

are valid, and the respective regular potentials, given by the operators 𝒮d and 𝒮δ from
Lemma 3.3 and Lemma 3.4, respectively, depend continuously on the data.

Proof. The projection theorem yields L2,qε (Ξ) = d D̊
q−1
γτ (Ξ) ⊕ε ε

−1Δ̊qγν ,0(Ξ). Furthermore,

d D̊q−1γτ (Ξ) = d D̊
q−1
γτ (Ξ) = d H̊

1,q−1
γτ (Ξ) = D̊

q
γτ ,0
(Ξ)

by Lemma 3.3 and

Δ̊qγν ,0(Ξ) = Δ̊
q
γν ,0
(Ξ) = δ H̊1,q+1γν (Ξ)

by Lemma 3.4. The other assertions follow immediately.
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Lemma 4.2 (Weck’s selection theorem for the half-cube). The embedding

D̊qγτ (Ξ) ∩ ε
−1Δ̊qγν (Ξ) 󳨅→ L2,qε (Ξ)

is compact.

Proof. Let (Hn)n∈ℕ be a bounded sequence in D̊qγτ (Ξ)∩ε
−1Δ̊qγν (Ξ). By Lemma 4.1, we can

decompose

Hn = H
d
n + H

δ
n = dE

d
n + ε
−1 δEδn ∈ (d H̊

1,q−1
γτ (Ξ) ∩ ε

−1Δ̊qγν (Ξ)) ⊕ε (D̊
q
γτ (Ξ) ∩ ε

−1 δ H̊1,q+1γν (Ξ)),

with Edn = 𝒮dH
d
n and E

δ
n = 𝒮δH

δ
n . Then dH

δ
n = dHn and δ εHd

n = δ εHn as well as

|Edn |H1,q−1(Ξ) ≤ c |Hd
n |L2,q(Ξ) ≤ c |Hn|L2,qε (Ξ),

|Eδn|H1,q+1(Ξ) ≤ c |Hδ
n |L2,q(Ξ) ≤ c |Hn|L2,qε (Ξ).

By Rellich’s selection theorem and without loss of generality, (Edn ) and (E
δ
n) converge

in L2,q−1(Ξ) and L2,q+1(Ξ), respectively. Moreover,

|Hd
n − H

d
m|

2
L2,qε (Ξ) = ⟨Hd

n − H
d
m,d(E

d
n − E

d
m)⟩L2,qε (Ξ)

= −⟨δ ε(Hd
n − H

d
m),E

d
n − E

d
m⟩L2,q−1(Ξ) ≤ c |Edn − Edm|L2,q−1(Ξ),

|Hδ
n − H

δ
m|

2
L2,qε (Ξ) = ⟨Hδ

n − H
δ
m, ε
−1 δ(Eδn − E

δ
m)⟩L2,qε (Ξ)

= −⟨d(Hδ
n − H

δ
m),E

δ
n − E

δ
m⟩L2,q+1(Ξ) ≤ c |Eδn − Eδm|L2,q+1(Ξ).

Thus (Hd
n ) and (H

δ
n) converge in L

2,q
ε (Ξ) and altogether (Hn) converges in L2,qε (Ξ) as well.

Remark 4.3. The use of Helmholtz decompositions and regular potentials in the proof
of Lemma 4.2 demonstrates the main idea behind an elegant proof of a compact em-
bedding. This general idea carries over to proofs of compact embeddings related to
other kinds of Hilbert complexes as well, arising, e. g., in elasticity, general relativity
or biharmonic problems; see, for example, [22].

4.2 The compact embedding for weak Lipschitz domains

The aim of this section is to transfer Lemma 4.2 to arbitrary weak Lipschitz pairs
(Ω, Γτ). To this end, we will employ a technical lemma, whose proof is sketched in [24,
Section 3] and [31, Remark 2]. We give a detailed proof in the Appendix. Let us con-
sider the following situation: Let Θ, Θ̃ be two boundeddomains inℝN with boundaries
ϒ := 𝜕Θ, ϒ̃ := 𝜕 Θ̃ and let ϒ0 ⊂ ϒ be relatively open. Moreover, let

ϕ : Θ→ Θ̃, ψ := ϕ−1 : Θ̃→ Θ
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94 | S. Bauer et al.

be Lipschitz diffeomorphisms, this is, ϕ ∈ C0,1(Θ, Θ̃) and ψ = ϕ−1 ∈ C0,1(Θ̃,Θ). Then
Θ̃ = ϕ(Θ), ϒ̃ = ϕ(ϒ) and we define ϒ̃0 := ϕ(ϒ0).

Lemma 4.4 (Pull-back lemma for Lipschitz transformations). Let E ∈ D̊qϒ0 (Θ), respec-
tively, E ∈ D̊qϒ0 (Θ) and H ∈ ε−1Δ̊qϒ0 (Θ), respectively, H ∈ ε

−1Δ̊qϒ0 (Θ) for an admissible
transformation ε on L2,q(Θ). Then

ψ∗E ∈ D̊q
ϒ̃0
(Θ̃), resp., D̊q

ϒ̃0
(Θ̃) and dψ∗E = ψ∗ dE,

ψ∗H ∈ μ−1Δ̊q
ϒ̃0
(Θ̃), resp., μ−1Δ̊q

ϒ̃0
(Θ̃) and δ μψ∗H = ± ⋆ dψ∗ ⋆ εH = ± ⋆ ψ∗ ⋆ δ εH ,

where μ := (−1)qN−1 ⋆ ψ∗ ⋆ εϕ∗ is an admissible transformation. Moreover, there exists
c > 0, independent of E and H, such that

|ψ∗E|Dq(Θ̃) ≤ c|E|Dq(Θ), |ψ
∗H|μ−1Δq(Θ̃) ≤ c|H|ε−1Δq(Θ).

Let (Ω, Γτ) be a bounded weak Lipschitz pair as introduced in Definitions 2.3
and 2.5. We adjust Lemma 4.4 to our situation: Let U1, . . . ,UK be an open covering
of Γ according to Definitions 2.3 and 2.5 and set U0 := Ω. Therefore, U0, . . . ,UK is an
open covering of Ω. Moreover, let χk ∈ C̊∞(Uk), k ∈ {0, . . . ,K}, be a partition of unity
subordinate to the open covering U0, . . . ,UK . Now suppose k ∈ {1, . . . ,K}. We define

Ωk := Uk ∩ Ω, Γk := Uk ∩ Γ, Γτ,k := Uk ∩ Γτ, Γν,k := Uk ∩ Γν ,
Γ̂k := 𝜕Ωk , Σk := Γ̂k \ Γ, Γ̂τ,k := int(Γτ,k ∪ Σk), Γ̂ν,k := int(Γν,k ∪ Σk),

σ := γ \ B0, γ̂τ := int(γτ ∪ σ), γ̂ν := int(γν ∪ σ).

Lemma 4.4 will from now on be used with

Θ := Ωk , Θ̃ := Ξ, ϕ := ϕk : Ωk → Ξ, ψ := ψk : Ξ→ Ωk

and with one of the following cases:

ϒ0 := Γτ,k , ϒ0 := Γ̂τ,k , ϒ0 := Γν,k , ϒ0 := Γ̂ν,k .

Then ϒ = Γ̂k and ϒ̃ = ϕk(Γ̂k) = γ as well as (depending on the respective case)

ϒ̃0 = ϕk(Γτ,k) = γτ, ϒ̃0 = ϕk(Γ̂τ,k) = γ̂τ, γτ ∈ {0,B0,B0,−}, γν = γ \ γτ,
ϒ̃0 = ϕk(Γν,k) = γν , ϒ̃0 = ϕk(Γ̂ν,k) = γ̂ν , γν ∈ {0,B0,B0,+}, γτ = γ \ γν .

Remark 4.5. Lemmas 3.3, 3.4, 3.5, 4.1, 4.2 hold for γν = B0,− without any (substantial)
modification as well.

It is straightforward to show the following.
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3 Weck’s selection theorem | 95

Lemma 4.6 (Localisation). Let (Ω, Γτ) be a bounded weak Lipschitz pair and let k be in
{1, . . . ,K}. Then for E ∈ D̊qΓτ (Ω), respectively, E ∈ D̊

q
Γτ
(Ω) and H ∈ Δ̊qΓν (Ω), respectively,

H ∈ Δ̊qΓν (Ω) it holds

E ∈ D̊qΓτ,k (Ωk), χkE ∈ D̊
q
Γ̂τ,k (Ωk), H ∈ Δ̊qΓν,k (Ωk), χkH ∈ Δ̊

q
Γ̂ν,k (Ωk),

E ∈ D̊qΓτ,k (Ωk), χkE ∈ D̊
q
Γ̂τ,k (Ωk), H ∈ Δ̊qΓν,k (Ωk), χkH ∈ Δ̊

q
Γ̂ν,k (Ωk).

Theorem 4.7 (Weak and strong boundary conditions coincide). Let the pair (Ω, Γτ) be
bounded and weak Lipschitz. Then D̊qΓτ (Ω) = D̊

q
Γτ
(Ω) and Δ̊qΓν (Ω) = Δ̊

q
Γν
(Ω).

Proof. Suppose E ∈ D̊qΓτ (Ω). Then we see χ0E ∈ D̊q(Ω) ⊂ D̊
q
Γτ
(Ω) by mollification. Let

k ∈ {1, . . . ,K}. Then χkE ∈ D̊
q
Γ̂τ,k (Ωk)byLemma4.6. Lemma4.4, Lemma3.5 (with γν := γτ)

and Remark 4.5 yield

ψ∗k (χkE) ∈ D̊
q
γ̂τ
(Ξ) = D̊qγ̂τ (Ξ), γ̂τ = ϕk(Γ̂τ,k), γτ ∈ {0,B0,B0,−}.

Then χkE = χkϕ∗kψ
∗
kE ∈ D̊

q
Γ̂τ,k (Ωk) ⊂ D̊

q
Γτ
(Ω) follows by Lemma 4.4. Therefore, we obtain

E = ∑k χkE ∈ D̊
q
Γτ
(Ω). Δ̊qΓν (Ω) = Δ̊

q
Γν
(Ω) follows analogously or by Hodge-⋆-duality.

Now the compact embedding for bounded weak Lipschitz pairs (Ω, Γτ) can be
proved.

Theorem 4.8 (Weck’s selection theorem). Let (Ω, Γτ) be a boundedweak Lipschitz pair
and let ε be an admissible transformation on L2,q(Ω). Then the embedding

D̊qΓτ (Ω) ∩ ε
−1Δ̊qΓν (Ω) 󳨅→ L2,qε (Ω)

is compact.

Proof. Suppose (En) is a bounded sequence in D̊
q
Γτ
(Ω)∩ε−1Δ̊qΓν (Ω). Thenbymollification

E0,n := χ0En ∈ D̊
q(Ω) ∩ ε−1Δ̊q(Ω)

and E0,n even has compact support in Ω. By classical results (see [28, 29, 24]), (E0,n)
contains a subsequence, which is again denoted by (E0,n), converging in L2,qε (Ω). Let
k ∈ {1, . . . ,K}. By Lemma 4.6,

Ek,n := χkEn ∈ D̊
q
Γ̂τ,k (Ωk), εEk,n ∈ Δ̊

q
Γ̂ν,k (Ωk),

and the sequence (Ek,n) is bounded in D̊q
Γ̂τ,k (Ωk) ∩ ε−1Δ̊

q
Γ̂ν,k (Ωk) by the product rule. By

Lemma 4.4, we have ψ∗kEk,n ∈ D̊
q
γ̂τ
(Ξ) and

|ψ∗kEk,n|Dq(Ξ) ≤ c|Ek,n|Dq(Ωk)
,
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96 | S. Bauer et al.

showing that (ψ∗kEk,n) is bounded in D̊qγ̂τ (Ξ). Analogously, (ψ
∗
kEk,n) ⊂ μ−1k Δ̊qγ̂ν (Ξ) is

bounded in μ−1k Δ̊qγ̂ν (Ξ) with the admissible transformation μk := (−1)qN−1 ⋆ ψ∗k ⋆ εϕ
∗
k .

Thus (ψ∗kEk,n) is bounded in

D̊qγ̂τ (Ξ) ∩ μ
−1
k Δ̊qγ̂ν (Ξ) ⊂ D̊

q
γ̂τ
(Ξ) ∩ μ−1k Δ̊qγν (Ξ), γν ∈ {0,B0,B0,+}, γ̂τ = γ \ γν .

Thus, by Lemma 4.2 and without loss of generality, (ψ∗kEk,n) is a Cauchy sequence in
L2,q(Ξ). Now

Ek,n = ϕ
∗
kψ
∗
kEk,n ∈ L

2,q(Ωk)

and Lemma 4.4 yields

|Ek,n − Ek,m|L2,q(Ωk)
≤ c|ψ∗kEk,n − ψ

∗
kEk,m|L2,q(Ξ).

Hence (Ek,n) is a Cauchy sequence in L2,q(Ωk) and so in L2,qε (Ω) for their extensions by
zero to Ω. Finally, extracting convergent subsequences for k = 1, . . . ,K, we see that

(En) = (
K
∑
k=0

χkEn) = (
K
∑
k=0

Ek,n)

is a Cauchy sequence in L2,qε (Ω).

Remark 4.9 (Independence of the transformation). By standard techniques, it can be
shown that Weck’s selection theorem is independent of the transformation ε, i. e., the
compactness of the embedding in Theorem 4.8 does not depend on ε. For details,
see [2].

5 Applications
Fromnow on, let Ω ⊂ ℝN be a bounded domain and let (Ω, Γτ) be aweak Lipschitz pair
as well as ε : L2,q(Ω) → L2,q(Ω) be admissible. Then by Theorem 4.8, the embedding

D̊qΓτ (Ω) ∩ ε
−1Δ̊qΓν (Ω) 󳨅→ L2,q(Ω) (9)

is compact. The results of this section immediately follow in the framework of a gen-
eral functional analytic toolbox; see [21, 20, 22]. For details, see also the proofs in [1]
for the classical case of vector analysis.

5.1 The Maxwell estimate

Afirst consequenceof (9) is that the spaceof so-called “harmonic”Dirichlet–Neumann
forms

ℋq
ε (Ω) := D̊

q
Γτ ,0
(Ω) ∩ ε−1Δ̊qΓν ,0(Ω)
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3 Weck’s selection theorem | 97

is finite-dimensional, as the unit ball inℋq
ε (Ω) is compact by (9). Using the Helmholtz

projections of Theorem 5.2, we see that the dimension of ℋq
ε (Ω) does not depend on

ε, in particular dimℋq
ε (Ω) = ℋ

q(Ω). By a standard indirect argument, (9) immediately
implies the so-called Maxwell estimate.

Theorem 5.1 (Maxwell estimate). There exists a positive constant cm, such that for all
E ∈ D̊qΓτ (Ω) ∩ ε

−1Δ̊qΓν (Ω) ∩ℋ
q
ε (Ω)
⊥ε

|E|L2,qε (Ω) ≤ cm (|dE|2L2,q+1(Ω) + | δ εE|2L2,q−1(Ω))1/2.
Here, we denote by ⊥ε orthogonality with respect to the L2,qε (Ω)-inner product.

5.2 Helmholtz decompositions

Applying theprojection theorem to thedenselydefinedandclosed (unbounded) linear
operators,

dq−1τ : D̊
q−1
Γτ
(Ω) ⊂ L2,q−1(Ω) → L2,qε (Ω) ; E 󳨃→ dE

with (Hilbert space) adjoint (see Theorem 4.7)

− δqν ε := (d
q−1
τ )
∗
: ε−1Δ̊qΓν (Ω) ⊂ L

2,q
ε (Ω) → L2,q−1(Ω) ; H 󳨃→ − δ εH

and

−ε−1 δq+1ν : ε
−1Δ̊q+1Γν
(Ω) ⊂ L2,q+1(Ω) → L2,qε (Ω) ; H 󳨃→ −ε−1 δH

with adjoint (see Theorem 4.7)

dqτ := (−ε
−1 δq+1ν )

∗
: D̊qΓτ (Ω) ⊂ L

2,q
ε (Ω) → L2,q+1(Ω) ; E 󳨃→ dE

we obtain the Helmholtz decompositions

L2,qε (Ω) = d D̊
q−1
Γτ
(Ω) ⊕ε ε

−1Δ̊qΓν ,0(Ω), (10)

L2,qε (Ω) = D̊
q
Γτ ,0
(Ω) ⊕ε ε−1 δ Δ̊

q+1
Γν
(Ω). (11)

Therefore, D̊qΓτ ,0(Ω) = d D̊
q−1
Γτ
(Ω)⊕εℋq

ε (Ω) and, altogether, we get the refined Helmholtz
decomposition

L2,qε (Ω) = d D̊
q−1
Γτ
(Ω) ⊕ε ℋ

q
ε (Ω) ⊕ε ε−1 δ Δ̊

q+1
Γν
(Ω). (12)

Theorem 5.2 (Helmholtz decompositions). The orthonormal decompositions

L2,qε (Ω) = d D̊
q−1
Γτ
(Ω) ⊕ε ε

−1Δ̊qΓν ,0(Ω)

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:03 PM



98 | S. Bauer et al.

= D̊qΓτ ,0(Ω) ⊕ε ε
−1 δ Δ̊q+1Γν

(Ω)

= d D̊q−1Γτ
(Ω) ⊕ε ℋ

q
ε (Ω) ⊕ε ε

−1 δ Δ̊q+1Γν
(Ω)

hold. Furthermore,

d D̊qΓτ (Ω) = d(D̊
q
Γτ
(Ω) ∩ ε−1 δ Δ̊q+1Γν

(Ω)) = d(D̊qΓτ (Ω) ∩ ε
−1Δ̊qΓν ,0(Ω) ∩ℋ

q
ε (Ω)
⊥ε),

δ Δ̊qΓν (Ω) = δ(Δ̊
q
Γν
(Ω) ∩ ε d D̊q−1Γτ

(Ω)) = δ(Δ̊qΓν (Ω) ∩ ε(D̊
q
Γτ ,0
(Ω) ∩ℋq

ε (Ω)
⊥ε))

and

d D̊q−1Γτ
(Ω) = D̊qΓτ ,0(Ω) ∩ℋ

q
ε (Ω)
⊥ε , δ Δ̊q+1Γν

(Ω) = Δ̊qΓν ,0(Ω) ∩ℋ
q
ε (Ω)
⊥,

D̊qΓτ ,0(Ω) = d D̊
q−1
Γτ
(Ω) ⊕ε ℋ

q
ε (Ω), Δ̊qΓν ,0(Ω) = δ Δ̊

q+1
Γν
(Ω) ⊕ε−1 εℋq

ε (Ω).

The ranges d D̊q−1Γτ
(Ω) and δ Δ̊q+1Γν

(Ω) are closed subspaces of L2,qε (Ω). Moreover, the d-,
respectively, δ-potentials are uniquely determined in D̊qΓτ (Ω)∩ ε

−1Δ̊qΓν ,0(Ω)∩ℋ
q
ε (Ω)
⊥ε and

Δ̊qΓν (Ω)∩ε(D̊
q
Γτ ,0
(Ω)∩ℋq

ε (Ω)
⊥ε ), respectively, and depend continuously on their respective

images.

Proof. For ε = id, (10) and (11) yield

Δ̊qΓν (Ω) = (d D̊
q−1
Γτ
(Ω) ∩ Δ̊qΓν (Ω)) ⊕ Δ̊

q
Γν ,0
(Ω),

D̊qΓτ (Ω) = D̊
q
Γτ ,0
(Ω) ⊕ (D̊qΓτ (Ω) ∩ δ Δ̊

q+1
Γν
(Ω))

and thus with (10), (11) and (12)

δ Δ̊qΓν (Ω) = δ(Δ̊
q
Γν
(Ω) ∩ d D̊q−1Γτ

(Ω)) = δ(D̊qΓτ ,0(Ω) ∩ Δ̊
q
Γν
(Ω) ∩ℋq(Ω)⊥),

d D̊qΓτ (Ω) = d(D̊
q
Γτ
(Ω) ∩ δ Δ̊q+1Γν

(Ω)) = d(D̊qΓτ (Ω) ∩ Δ̊
q
Γν ,0
(Ω) ∩ℋq(Ω)⊥).

Now Theorem 5.1 implies the closedness of the ranges and the continuity of the poten-
tials. The other assertions follow immediately.

Corollary 5.3 (Refined Helmholtz decompositions). It holds

D̊qΓτ (Ω) = d D̊
q−1
Γτ
(Ω) ⊕ε (D̊

q
Γτ
(Ω) ∩ ε−1Δ̊qΓν ,0(Ω))

= D̊qΓτ ,0(Ω) ⊕ε (D̊
q
Γτ
(Ω) ∩ ε−1 δ Δ̊q+1Γν

(Ω))

= d D̊q−1Γτ
(Ω) ⊕ε ℋ

q
ε (Ω) ⊕ε (D̊

q
Γτ
(Ω) ∩ ε−1 δ Δ̊q+1Γν

(Ω)),

ε−1Δ̊qΓν (Ω) = (d D̊
q−1
Γτ
(Ω) ∩ ε−1Δ̊qΓν (Ω)) ⊕ε ε

−1Δ̊qΓν ,0(Ω)

= (D̊qΓτ ,0(Ω) ∩ ε
−1Δ̊qΓν (Ω)) ⊕ε ε

−1 δ Δ̊q+1Γν
(Ω)

= (d D̊q−1Γτ
(Ω) ∩ ε−1Δ̊qΓν (Ω)) ⊕ε ℋ

q
ε (Ω) ⊕ε ε

−1 δ Δ̊q+1Γν
(Ω).
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5.3 Static solution theory

As a further application, we turn to the boundary value problem of generalized elec-
tro and magnetostatics with mixed boundary values: Let F ∈ L2,q+1(Ω), G ∈ L2,q−1(Ω),
Eτ, Eν ∈ L2,qε (Ω) and let ε be admissible. The problem is to find E ∈ Dq(Ω) ∩ ε−1Δq(Ω)
such that

dE = F,
δ εE = G,

E − Eτ ∈ D̊
q
Γτ
(Ω),

ε(E − Eν) ∈ Δ̊
q
Γν
(Ω).

(13)

For uniqueness, we require the additional conditions

⟨εE,Dℓ⟩L2,qε (Ω) = αℓ ∈ ℝ, ℓ = 1, . . . , d, (14)

where d is the dimension and {Dℓ} an ε-orthonormal basis of ℋq
ε (Ω). The boundary

values on Γτ and Γν, respectively, are realised by the given volume forms Eτ and Eν,
respectively.

Theorem 5.4 (Static solution theory). (13) admits a solution, if and only if

Eτ ∈ D
q(Ω), Eν ∈ ε

−1Δq(Ω),

and
F − dEτ ⊥ Δ̊

q+1
Γν ,0
(Ω), G − δ εEν ⊥ D̊

q−1
Γτ ,0
(Ω). (15)

The solution E ∈ Dq(Ω) ∩ ε−1Δq(Ω) can be chosen in a way such that condition (14)
with α ∈ ℝd is fulfilled, which then uniquely determines the solution. Furthermore, the
solution depends linearly and continuously on the data.

Note that (15) is equivalent to

F − dEτ ∈ d D̊
q
Γτ
(Ω), G − δ εEν ∈ δ Δ̊

q
Γν
(Ω).

For homogeneous boundary data, i. e., Eτ = Eν = 0, the latter theorem immediately
follows froma functional analytic toolbox (see [21, 20, 22]),which even states a sharper
result: The linear static Maxwell-operator

M : D̊qΓτ (Ω) ∩ ε
−1Δ̊qΓν (Ω) 󳨀→ d D̊qΓτ (Ω) × δ Δ̊

q
Γν
(Ω) × ℝd

E 󳨃󳨀→ (dE, δ εE, (⟨εE,Dℓ⟩L2,qε (Ω))dℓ=1)
is a topological isomorphism. Its inverseM−1 maps not only continuously onto its do-
main of definition D̊qΓτ (Ω)∩ε

−1Δ̊qΓν (Ω), but also compactly into L2,qε (Ω) by (9). For homo-
geneous kernel data, i. e., for

M0 : D̊qΓτ (Ω) ∩ ε
−1Δ̊qΓν (Ω) ∩ℋ

q
ε (Ω)
⊥ε 󳨀→ d D̊qΓτ (Ω) × δ Δ̊

q
Γν
(Ω)

E 󳨃󳨀→ (dE, δ εE)
,
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we have ||M−10 || ≤ (c
2
m + 1)

1/2. For details and a proof of Theorem 5.4 in the classical
setting of vector analysis, see [1].

5.4 General regular potentials and decompositions

A closer inspection of the proof of Lemma 3.3 shows that Lemma 3.3 and Lemma 3.4
hold for more general situations. Using the partition of unity from Section 4.2 and the
concept of extendable strong Lipschitz pairs, we can even generalise Lemma 3.3 and
Lemma 3.4 to general strong Lipschitz pairs. Note that by Theorem 5.2

d D̊qΓτ (Ω) = D̊
q+1
Γτ ,0
(Ω) ∩ℋq+1

ε (Ω)
⊥ε , D̊q+1Γτ ,0

(Ω) = d D̊qΓτ (Ω) ⊕ε ℋ
q+1
ε (Ω). (16)

Theorem 5.5 (Regular potentials and decompositions for strong Lipschitz domains).
Let Ω ⊂ ℝN and let (Ω, Γτ) be a bounded strong Lipschitz pair.
(i) There exists a continuous linear operator

𝒮q
d : d D̊

q−1
Γτ
(Ω) → H̊1,q−1Γτ

(Ω),

such that d𝒮q
d = id |d D̊q−1Γτ

(Ω). Especially,

d D̊q−1Γτ
(Ω) = d H̊1,q−1Γτ

(Ω)

and the regular H̊1,q−1Γτ
(Ω)-potential depends continuously on the data. In particular,

these spaces are closed subspaces of L2,q(Ω) and 𝒮q
d is a right inverse to d.

(ii) The regular decompositions

D̊qΓτ (Ω) = H̊
1,q
Γτ
(Ω) + d H̊1,q−1Γτ

(Ω) D̊qΓτ ,0(Ω) = d H̊
1,q−1
Γτ
(Ω) + (H̊1,qΓτ (Ω) ∩ D̊

q
Γτ ,0
(Ω))

= 𝒮q+1
d d D̊qΓτ (Ω) ∔ D̊

q
Γτ ,0
(Ω), = d H̊1,q−1Γτ

(Ω) ⊕ℋq(Ω)

= d H̊1,q−1Γτ
(Ω) ⊕ε ℋ

q
ε (Ω)

hold with linear and continuous regular decomposition, respectively, potential op-
erators, which can be defined explicitly by the orthonormal Helmholtz projectors
and the operators 𝒮q

d . Note thatℋ
q(Ω) is a subspace of smooth forms, i. e., it holds

ℋq(Ω) = D̊qΓτ ,0(Ω) ∩ Δ̊
q
Γν ,0
(Ω) ∩ C∞,q(Ω).

Hodge-⋆-duality yields the corresponding results for the co-derivative δ.

For details, see [2]. In the case of no or full boundary conditions, related results
on regular potentials and regular decompositions are presented in [4].
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3 Weck’s selection theorem | 101

Appendix A. Proof of Lemma 4.4 (pull-back lemma
for Lipschitz transformations)
We start out by proving the assertions for the exterior derivative.

A.1 Without boundary conditions

Let E = ∑I EI d x
I ∈ Dq(Θ). We have to show ψ∗E ∈ Dq(Θ̃) with dψ∗E = ψ∗ dE.

(i) Let us first consider Φ = ∑I ΦI d xI ∈ C0,1,q(Θ), i. e., ΦI ∈ C0,1(Θ) for all I. In the
following, we denote by ⋅̃ the composition with ψ. We have

dψj = ∑
i
𝜕iψj d x

i, ψ∗Φ = ∑
I
Φ̃Iψ
∗ d xI = ∑

I
Φ̃I (dψi1 ) ∧ ⋅ ⋅ ⋅ ∧ (dψiq ),

dΦ = ∑
I ,j
𝜕jΦI (d xj) ∧ (d x

I).

By Rademacher’s theorem, Φ̃I = ΦI ∘ ψ and ψj belong to C0,1(Θ̃) ⊂ H1(Θ̃) and the
chain rule holds, i. e., 𝜕iΦ̃I = ∑j 𝜕jΦI𝜕iψj. As ψj ∈ H1(Θ̃) we get dψj ∈ D10(Θ̃) by

⟨dψj, δφ⟩L2,1(Θ̃) = −⟨ψj, δ δφ⟩L2,0(Θ̃) = 0
for all φ ∈ C̊∞,2(Θ̃). Thus by definition, we see

dψ∗Φ = ∑
I
(d Φ̃I ) ∧ (dψi1 ) ∧ ⋅ ⋅ ⋅ ∧ (dψiq ) = ∑

I ,i
𝜕iΦ̃I(d x

i) ∧ (dψi1 ) ∧ ⋅ ⋅ ⋅ ∧ (dψiq )

= ∑
I ,i,j
𝜕jΦI𝜕iψj(d x

i) ∧ (dψi1 ) ∧ ⋅ ⋅ ⋅ ∧ (dψiq )

= ∑
I ,j
𝜕jΦI (dψj) ∧ (dψi1 ) ∧ ⋅ ⋅ ⋅ ∧ (dψiq ).

On the other hand, it holds

ψ∗ dΦ = ∑
I ,j
𝜕jΦI(ψ

∗ d xj) ∧ (ψ
∗ d xI) = ∑

I ,j
𝜕jΦI (dψj) ∧ (dψi1 ) ∧ ⋅ ⋅ ⋅ ∧ (dψiq ).

Therefore, ψ∗Φ ∈ Dq(Θ̃) and dψ∗Φ = ψ∗ dΦ.
(ii) For general E ∈ Dq(Θ), we pick Φ ∈ C̊∞,q+1(Θ̃). Note suppΦ ⊂⊂ Θ̃ = ϕ(Θ). Re-

placing ψ by ϕ in (i) we have ϕ∗ ⋆ Φ ∈ DN−q−1(Θ) with dϕ∗ ⋆ Φ = ϕ∗ d⋆Φ and,
since ϕ∗ ⋆ Φ = ∑I ?(⋆Φ)Iϕ

∗ d xI holds, suppϕ∗ ⋆ Φ ⊂⊂ Θ. By standard mollifica-
tion, we obtain a sequence (Ψn) ⊂ C̊∞,N−q−1(Θ) with Ψn → ϕ∗ ⋆ Φ in DN−q−1(Θ).
Furthermore, ⋆Ψn ∈ C̊∞,q+1(Θ). Then

⟨ψ∗E, δΦ⟩L2,q(Θ̃) = ∫
Θ̃

ψ∗E ∧ ⋆ δΦ = ±∫
Θ̃

ψ∗E ∧ ψ∗ϕ∗ d⋆Φ = ±∫
Θ̃

ψ∗(E ∧ ϕ∗ d⋆Φ)
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102 | S. Bauer et al.

= ±∫
Θ

E ∧ ϕ∗ d⋆Φ = ±∫
Θ

E ∧ dϕ∗ ⋆Φ← ±∫
Θ

E ∧ dΨn

= ±∫
Θ

E ∧ ⋆ ⋆ d⋆ ⋆Ψn = ±⟨E, δ⋆Ψn⟩L2,q(Θ)
= ±⟨dE, ⋆Ψn⟩L2,q+1(Θ) → ±⟨dE, ⋆ϕ∗ ⋆Φ⟩L2,q+1(Θ) = ±∫

Θ

dE ∧ ϕ∗ ⋆Φ

= ±∫

Θ̃

ψ∗(dE ∧ ϕ∗ ⋆Φ) = ±∫
Θ̃

(ψ∗ dE) ∧ ⋆Φ = −⟨ψ∗ dE,Φ⟩L2,q+1(Θ̃)
and hence ψ∗E ∈ Dq(Θ̃) with dψ∗E = ψ∗ dE.

(iii) Let E ∈ Dq(Θ). By (ii), we know ψ∗E ∈ Dq(Θ̃) with dψ∗E = ψ∗ dE. Hence

|ψ∗E|2L2,q(Θ̃) = ∫
Θ̃

ψ∗E ∧ ⋆ψ∗E = ∫
Θ

ϕ∗ψ∗E ∧ ϕ∗ ⋆ ψ∗E

= ±∫
Θ

E ∧ ⋆(⋆ϕ∗ ⋆ ψ∗)E ≤ c|E|2L2,q(Θ)
and

|dψ∗E|L2,q+1(Θ̃) = |ψ∗ dE|L2,q+1(Θ̃) ≤ c|dE|L2,q+1(Θ).
A.2 With strong boundary condition

Let E ∈ D̊qϒ0 (Θ) and (En) ⊂ C̊
∞,q
ϒ0
(Θ)with En → E inDq(Θ). By Appendix A.1(ii), we know

ψ∗En,ψ∗E ∈ Dq(Θ̃) with dψ∗En = ψ∗ dEn as well as dψ∗E = ψ∗ dE. Furthermore,
ψ∗En has compact support away from ϒ̃0. Using standard mollification, we obtain
ψ∗En ∈ D̊

q
ϒ̃0
(Θ̃). Moreover, by A.1(iii), ψ∗En → ψ∗E in Dq(Θ̃). Therefore, ψ∗E ∈ D̊q

ϒ̃0
(Θ̃)

with dψ∗E = ψ∗ dE.

A.3 With weak boundary condition

Let E ∈ D̊qϒ0 (Θ) and Φ ∈ C̊∞,q+1
ϒ̃1
(Θ̃), where ϒ1 = ϒ \ ϒ0. By Appendix A.1(ii), we

again know ψ∗E ∈ Dq(Θ̃) with dψ∗E = ψ∗ dE. Moreover, by Appendix A.2, we have
ϕ∗ ⋆ Φ ∈ D̊N−q−1ϒ1

(Θ), and hence ⋆ϕ∗ ⋆ Φ ∈ Δ̊q+1ϒ1
(Θ). We repeat the calculation from

Appendix A.1(ii) to arrive at

⟨ψ∗E, δΦ⟩L2,q(Θ̃) = ∫
Θ̃

ψ∗E ∧ ⋆ δΦ = ±⟨E, ⋆ϕ∗ d⋆Φ⟩L2,q(Θ)
= ±⟨E, ⋆dϕ∗ ⋆Φ⟩L2,q(Θ) = ±⟨E, δ⋆ϕ∗ ⋆Φ⟩L2,q(Θ)
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3 Weck’s selection theorem | 103

= ±⟨dE, ⋆ϕ∗ ⋆Φ⟩L2,q+1(Θ) = −⟨ψ∗ dE,Φ⟩L2,q+1(Θ̃) = −⟨dψ∗E,Φ⟩L2,q+1(Θ̃)
and, therefore, ψ∗E ∈ D̊q

ϒ̃0
(Θ̃).

A.4 Assertions for the co-derivative

It holds by Appendix A.1(ii),

εH ∈ Δq(Θ) ⇔ ⋆εH ∈ DN−q(Θ) ⇔ ψ∗ ⋆ εϕ∗ψ∗H ∈ DN−q(Θ̃) ⇔ μψ∗H ∈ Δq(Θ̃).

Moreover, using Appendix A.1(iii) μ is admissible since for all H ∈ L2,q(Θ̃),

⟨μH ,H⟩L2,q(Θ̃) = ±⟨⋆ψ∗ ⋆ εϕ∗H ,H⟩L2,q(Θ̃) = ±⟨ψ∗ ⋆ εϕ∗H , ⋆H⟩L2,N−q(Θ̃)
= ±∫

Θ̃

ψ∗ ⋆ εϕ∗H ∧ H = ±∫
Θ

⋆εϕ∗H ∧ ⋆ ⋆ ϕ∗H

= ±⟨εϕ∗H ,ϕ∗H⟩L2,q(Θ) ≥ c|ϕ∗H|2L2,q(Θ) ≥ c|H|2L2,q(Θ̃).
Furthermore,

δ μψ∗H = ± ⋆ dψ∗ ⋆ εH = ± ⋆ ψ∗ ⋆ δ εH .

The remaining assertions now follow by Appendix A.1–A.3 and Hodge-⋆-duality.
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Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss, and
Yohanes Tjandrawidjaja
4 Numerical analysis of the half-space
matching method with Robin traces
on a convex polygonal scatterer

Abstract:We consider the 2D Helmholtz equation with a complex wavenumber in the
exterior of a convex polygonal obstacle, with a Robin-type boundary condition. Using
the principle of the half-space matching method, the problem is formulated as a sys-
tem of coupled Fourier-integral equations, the unknowns being the Robin traces on
the infinite straight lines supported by the edges of the polygon. We prove that this
system is a Fredholm equation of the second kind, in a L2 functional framework. The
truncation of the Fourier integrals and the finite element approximation of the corre-
sponding numerical method are also analyzed. The theoretical results are supported
by various numerical experiments.

Keywords:Helmholtz equation, Fourier-integral operators, Fredholmequation,Mellin
transform, error estimates

MSC 2010: 35J05, 31A10, 65N12, 65R20, 35S30

1 Introduction

1.1 Motivation

This study takes place in the general framework of the development of numerical
methods for the simulationand theoptimizationof ultrasonicNon-Destructive Testing
(NDT) experiments. NDT consists of detecting defects in an elastic structure by mea-
suring the ultrasonic echoes produced by these defects, when they are illuminated by
some incident ultrasonicwave. In particular, oneneeds to simulate the interaction of a
given incident wave with a compactly supported defect in an infinite medium. When
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106 | A.-S. Bonnet-Ben Dhia et al.

this medium is homogeneous and isotropic, there exist several efficient methods to
solve this problem, like perfectly matched layers or integral equations. However, dif-
ficulties arise in more complex configurations [5, 7, 21]. Among them, one important
case which remains unsolved is the case where the infinite medium is an infinite elas-
tic plate made of an anisotropic homogeneous material.

A new method called the Half-Space Matching (HSM) method (inspired by [13])
has been introduced recently (see [20]) in view of tackling this problem. As a first step,
the method has been applied in [8] to the acoustic scalar problem inℝ2, showing that
anisotropy can be taken into account easily, without any additional cost. The method
mainly relies on a decomposition of the infinite domain, exterior to the obstacle, into
the union of several overlapping half-spaces, where a Fourier-integral representation
of the solution is available.

In this first version of themethod, the unknowns of the Fourier-integral equations
are the Dirichlet traces of the field on the boundaries of the different half-spaces. But
with this choice, themethod cannot be extended to the case of the elastic plate, where
both the traces of the displacement and of the normal stress are required to derive the
half-plate representations. This is a first motivation of the present paper where we
consider still a scalar problem but with different types of traces, including Neumann,
Dirichlet, and Robin traces.

The content of the present paper is the following. We first derive the HSM formu-
lation for general types of traces. Thenwe prove the well-posedness of the continuous
problem by adapting the arguments used in [8]. More importantly, the main contribu-
tion of this paper is the numerical analysis of the discretized formulation which is not
straightforward and has never been addressed in previous works.

The model problem that we consider is presented in the next subsection. The cor-
responding HSM formulation is the object of Section 2. Section 3 is devoted to the the-
oretical analysis of the formulation: we use Fredholm theory, themain tools being the
Mellin transform [12, 17] andHilbert–Schmidt operators [19, p. 210]. The discretization
aspects are detailed in Section 4 and error estimates are derived for an appropriate
Fourier discretization. Some numerical results are finally presented in Section 5.

1.2 The model problem

Theproblem thatwe consider is the 2DHelmholtz equation in the exterior of a compact
convexpolygonal obstacle𝒪,with aboundary conditionofRobin type.Moreprecisely,
the problem takes the following form where ω, α, and β are some complex constants
whose characteristics are specified below, ν denotes the outgoing normal to𝒪 and the
data is a given function g defined on the boundary of the obstacle 𝜕𝒪:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Δp + ω

2p = 0 in Ω = ℝ2\𝒪,
αp + β𝜕p𝜕ν = g on 𝜕𝒪. (1)
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4 Numerical analysis of the half-space matching method | 107

In the sequel, we will use the following assumptions:

Imω > 0, β ̸= 0, Im( α
βω
) ≥ 0, and g ∈ L2(𝜕𝒪), (2)

which lead to several results as follows:
1. Since Imω > 0 (which can be justified in a dissipative medium), we will look for

a solution p which belongs to H1(Ω). More precisely, p is exponentially decaying
at infinity and satisfies∀ε < Im(ω), (x, y) 󳨃→ p(x, y)eε√x2+y2 ∈ H1(Ω). (3)

However, we emphasize that the numerical method also works in the non-
dissipative case, that is when ω ∈ ℝ+. In this latter case, p is chosen as the
outgoing solution of (1) (defined as the unique solution satisfying the Sommer-
feld condition).

2. As β ̸= 0, the problem (1) admits the following variational formulation:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Find p ∈ H1(Ω) such that for all q ∈ H1(Ω)∫
Ω

∇p ⋅ ∇q − ω2 ∫
Ω

pq̄ − α
β
∫
𝜕𝒪

pq̄ = −1
β
∫
𝜕𝒪

gq̄. (4)

Using the fact that for p ∈ H1(Ω):
Im(−1

ω
(∫
Ω

|∇p|2 − ω2|p|2 − α
β
∫
𝜕𝒪

|p|2))= Im(ω)|ω|2 ∫
Ω

|∇p|2 + Im(ω) ∫
Ω

|p|2 + Im( α
βω
) ∫
𝜕𝒪

|p|2,
one deduces, due to the assumption that Im( αβω ) ≥ 0, that the bilinear form is
coercive. Then the problem is well-posed by the Lax–Milgram theorem.

Remark 1. For the data g on the boundary,wemake the assumption g ∈ L2(𝜕𝒪), which
is convenient for our approach, and which differs from the natural one (g ∈ H− 12 (𝜕𝒪))
that would be used in a variational approach. In particular, since g ∈ L2(𝜕𝒪), we know
from classical regularity results [15] that p ∈ H3/2(Ω).
Remark 2 (The Dirichlet case). Taking β = 0 and α ̸= 0 in (1), one simply recovers a
Dirichlet boundary condition (a case which has been already treated in [8]). In that
case, the natural hypothesis in a variational approachwould be g ∈ H 1

2 (𝜕𝒪). We point
out that our approach allows to consider more general Dirichlet data which are only
in L2(𝜕𝒪). As a consequence, the solution may not be in H1 up to the boundary (see
[3] for a similar problem). Note that the numerical analysis performed in Section 4 is
also valid in the Dirichlet case, which is illustrated numerically in Section 5.3.1.
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2 The half-space matching formulation
The half-space matching method consists in coupling several analytical representa-
tions of the solution in half-planes surrounding the obstacle.

2.1 Geometry and notation

Let us consider a convex polygon𝒪 with n edges Σj𝒪, j = 0, . . . , n − 1. For convenience,
we introduceℤ/nℤ the ring of integers modulo n. For j ∈ ℤ/nℤ, the angle between Σj𝒪
and Σj+1𝒪 is denoted as θj,j+1 or equivalently θj+1,j. Because of the convexity, one has

0 < θj,j+1 < π. (5)

To define the half-spaces, we introduce several local coordinate systems (xj, yj). The
origin of all of them is the centroidO of the polygon𝒪. We choose the reference Carte-
sian coordinate system (O, e0x , e0y ) such that e0x is orthogonal to Σ0𝒪 and oriented to the
exterior of the polygon,while the axis e0y is π/2 counter clockwise to e0x . The other local
coordinate systems (O, ejx , ejy) are defined recursively as follows:∀j ∈ ℤ/nℤ, ej+1x = − cos θj,j+1ejx + sin θj,j+1ejy ,

ej+1y = − sin θj,j+1ejx − cos θj,j+1ejy . (6)

If we define lj as the distance of the centroid of the polygon to the edge Σj𝒪, each half-
plane Ωj is defined in the local coordinate system (O, ejx , ejy) as∀j ∈ ℤ/nℤ, , Ωj = {xj ≥ lj} × {yj ∈ ℝ},
and its boundary denoted by Σj is given by

Σj = {xj = lj} × {yj ∈ ℝ}.
All these notations are summarized in Figure 4.1 for three examples of polygon.

Figure 4.1: Examples of polygons𝒪 for n = 3,4, and 6 and associated notation.
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2.2 Half-space problems

The jth half-space problem is defined as follows: given ψ ∈ L2(Σj), Pj(ψ) is the unique
solution in H1(Ωj) of 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ΔP

j + ω2Pj = 0, in Ωj,
αPj + β𝜕Pj𝜕xj = ψ on Σj. (7)

This problem is well-posed under assumptions (2) for the same reasons than the ones
detailed in Section 1.2. Remark again that in the usual framework, we would takeψj ∈
H−1/2(Σj), but here we take ψj ∈ L2(Σj). Applying the Fourier transform in yj defined as∀ψj ∈ L2(Σj), ψ̂j(ξ ) = 1√2π ∫

ℝ

ψj(yj)e−𝚤ξyjdyj, (8)

we obtain the following ordinary differential equation in xj, parametrized by the
Fourier variable ξ : 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕2P̂j(𝜕xj)2 + (ω2 − ξ 2)P̂j = 0, xj > lj,
αP̂j + β𝜕P̂j𝜕xj = ψ̂j, xj = lj, (9)

whose unique L2 solution is given by

P̂j(xj, ξ ) = A(ξ )e𝚤√ω2−ξ 2(xj−lj), (10)

where Im√ω2 − ξ 2 > 0 and (α + 𝚤β√ω2 − ξ 2)A(ξ ) = ψ̂(ξ ). (11)

One can check that, thanks to assumptions (2), the quantity α+ 𝚤β√ω2 − ξ 2 never van-
ishes for ξ ∈ ℝ. Finally, by taking the inverse Fourier transform, the solution Pj(ψ) of
(7) is given by

Pj(xj, yj) = 1√2π ∫
ℝ

ψ̂(ξ )
α + 𝚤β√ω2 − ξ 2 e𝚤√ω2−ξ 2(xj−lj)eiξy

j
dξ . (12)

2.3 Half-space matching integral equations

For the solution p of problem (1), let us define the Robin traces∀j ∈ ℤ/nℤ, φj := (αp + β 𝜕p𝜕xj )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj . (13)
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110 | A.-S. Bonnet-Ben Dhia et al.

Figure 4.2: Compatibility conditions on Σ1 ∩ Ω0 and Σ2 ∩ Ω0.

Note that φj ∈ L2(Σj) since p ∈ H3/2(Ω). Our objective is to derive integral equations
linking the φj by using half-space representations of Section 2.2 and the fact that the
half-spaces Ωj overlap. First, the restriction of p in Ωj is the solution of (7) for ψ = φj.
By uniqueness,

p|Ωj = Pj(φj). (14)

Then the quantity (αp + β 𝜕p𝜕xj±1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj±1∩Ωj
(15)

is equal both to

φj±1󵄨󵄨󵄨󵄨Σj±1∩Ωj (by definition of φj±1)
and to

αPj(φj) + β𝜕Pj(φj)𝜕xj±1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj±1∩Ωj
(by (14)).

This provides the compatibility relations (see Figure 4.2)

φj±1 = αPj(φj) + β𝜕Pj(φj)𝜕xj±1 on Σj±1 ∩ Ωj, ∀j ∈ ℤ/nℤ. (16)

Remark 3.
– Such compatibility relations have been firstly introduced in [6, 13] for Dirichlet

traces in the case of periodic media.
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4 Numerical analysis of the half-space matching method | 111

– Here, we have used the overlap of two consecutive half-spaces Ωj and Ωj±1. This
will be sufficient for our formulation, even for polygonswithmore than four edges
where non-consecutive half-spaces may overlap (see Figure 4.1 on the right).

This leads to introducing the following Fourier integral operator:

Dj,j±1 : L2(Σj) → L2(Σj±1 ∩ Ωj) (17)

ψ→ αPj(ψ) + β𝜕Pj(ψ)𝜕xj±1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj±1∩Ωj
, (18)

which can be expressed, using (12), as a kernel operator acting on the Fourier trans-
form [Dj,j±1ψ](r) = 1√2π ∫

ℝ

kj,j±1(r, ξ )ψ̂(ξ )dξ , r ≥ 0 (19)

with the following kernel:

kj,j±1(r, ξ ) = α + β(− cos(θj,j±1)𝚤√ω2 − ξ 2 + sin(θj,j±1)𝚤ξ )
α + 𝚤β√ω2 − ξ 2 e𝚤√ω

2−ξ 2r sin(θj,j±1)e𝚤ξ (a
±
j +r cos(θ

j,j±1)).
(20)

Here, a±j denotes the ordinate of the intersection point of Σj and Σj±1 in (xj, yj) local
coordinates and r is the radial variable of the polar coordinates centered at this inter-
section point. If θj,j+1 = π/2 (which holds for instance for all j when 𝒪 is a rectangle),
the previous operator has the simpler form[Dj,j±1ψ](r) = 1√2π ∫

ℝ

α + 𝚤βξ
α + 𝚤β√ω2 − ξ 2 e𝚤√ω2−ξ 2re𝚤ξa

±
j ψ̂(ξ )dξ . (21)

It is not so difficult to see that the operator Dj,j±1 is continuous from L2(Σj) to L2(Ωj ∩
Σj±1). Indeed, ifψ ∈ L2(Σj), we can show that Pj(ψ), the solution of the half-space prob-
lem (7) in Ωj, is inH3/2(Ωj). It suffices then to use the continuity of the trace operators.
Let us remark that it is less obvious when using directly the expression (19)–(20) of
Dj,j±1, but this will be a by-product of the next section.

Summing up, we have finally the following system of coupled equations satisfied
by the φj’s:

φj = {{{{{{{
Dj−1,jφj−1 on Σj ∩ Ωj−1

g on Σj𝒪 ∀j ∈ ℤ/nℤ
Dj+1,jφj+1 on Σj ∩ Ωj+1, (22)

where we have used the boundary condition satisfied by p on 𝜕𝒪. The system of equa-
tions (22) can be written in a matricial form as(𝕀 − 𝔻)Φ = G, (23)

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:03 PM



112 | A.-S. Bonnet-Ben Dhia et al.

where

Φ ∈ V := {(φ0,φ1, . . . ,φn−1) ∈ n−1∏
j=0

L2(Σj)}, (24)

𝕀 corresponds to the identity operator and𝔻 is given by
𝔻 := [[[[[[[[[[[

0 D1,0 0 . . . 0 Dn−1,0

D0,1 0 D2,1 . . . 0 0
0 D1,2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 Dn−1,n−2

D0,n−1 0 0 . . . Dn−2,n−1 0

]]]]]]]]]]]
, (25)

where for all j ∈ ℤ/nℤ we have identified a function of L2(Σj ∩ Ωj±1) to a function of
L2(Σj) by extending it by 0. Remark then that for all Φ in V ,𝔻Φ is in Ṽ where

Ṽ := {Φ̃ = (φ̃0, φ̃1, . . . , φ̃n−1) ∈ V , φ̃j = 0 on Σj𝒪 ∀j ∈ ℤ/nℤ}. (26)

Remark 4. If we want to make the extension by 0 explicit, we have to replace in 𝔻,
Dj,j±1 by Ej,j±1Dj,j±1 where

Ej,j±1 : L2(Σj±1 ∩ Ωj) → L2(Σj±1)
ψ 󳨃→ Ej,j±1ψ

(27)

with

Ej,j±1ψ = {ψ on Σj±1 ∩ Ωj

0 on Σj±1 \ (Σj±1 ∩ Ωj).
All the properties of Dj,j±1 also hold trivially for Ej,j±1Dj,j±1. In order to enhance read-
ability, we have chosen to drop these extension operators.

Lemma 5 (Equivalence). Let g ∈ L2(𝜕𝒪). If p ∈ H1(Ω) is solution of (1), then Φ =(φ0,φ1, . . . ,φn−1) where φj is defined by (13) belongs to V and is a solution of (23).
Conversely, if Φ ∈ V is a solution of (23), then p satisfying (14) for all j ∈ ℤ/nℤ is a

function defined “unequivocally” in Ω. Moreover, p ∈ H1(Ω) and is solution of (1).
Proof. The first assertion is true by construction. Conversely, suppose that Φ =(φ0, . . . ,φn−1) ∈ V is a solution of (23). This implies that the φj’s satisfy the system
of coupled equations (22). Now, let us introduce Pj(φj) ∈ H1(Ωj) for all j ∈ ℤ/nℤ, the
solution of the half-space problem (7) with ψ = φj. By definition,

φj = αPj(φj) + β𝜕Pj(φj)𝜕xj 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj . (28)
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4 Numerical analysis of the half-space matching method | 113

Because the φj’s satisfy the first set of equations of (22), we have by definition of Dj±1,j

that

φj = αPj±1(φj±1) + β𝜕Pj±1(φj±1)𝜕xj on Σj ∩ Ωj±1, ∀j ∈ ℤ/nℤ. (29)

From (28) and (29), we have that

αPj(φj) + β𝜕Pj(φj)𝜕xj 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj∩Ωj±1
= αPj±1(φj±1) + β𝜕Pj±1(φj±1)𝜕xj 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj∩Ωj±1

.
In particular, the previous relations for j = 0 and ± = + and for j = 1 and ± = − yield to

αP0(φ0) + β𝜕P0(φ0)𝜕x0 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ0∩Ω1
= αP1(φ1) + β𝜕P1(φ1)𝜕x0 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ0∩Ω1

and

αP1(φ1) + β𝜕P1(φ1)𝜕x1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ1∩Ω0
= αP0(φ0) + β𝜕P0(φ0)𝜕x1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ1∩Ω0

.
Let

Q = P0(φ0) − P1(φ1) in Ω0 ∩ Ω1.
Because P0(φ0) and P1(φ1) satisfy the same Helmholtz equation and because of the
previous relations, Q satisfies the problem󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ΔQ + ω

2Q = 0 in Ω0 ∩ Ω1,
αQ + β𝜕Q𝜕ν = 0 on 𝜕(Ω0 ∩ Ω1),

where ν is the interior normal toΩ0∩Ω1. This problem iswell-posedunder assumptions
(2) for the same reasons as the ones detailed in Section 1.2. So Q = 0 in Ω0 ∩ Ω1 which
means that P0(φ0) and P1(φ1) coincide in the overlapping zone Ω0 ∩ Ω1.

Similar arguments enable us to show that for all j ∈ ℤ/nℤ, Pj(φj) and Pj+1(φj+1)
coincide in the overlapping zoneΩj∩Ωj+1.We can thendefineunequivocally a function
p by ∀j ∈ ℤ/nℤ, p|Ωj = Pj(φj).
Because the half-space solutions coincide two by two in the overlapping zones, the
function p is in H1(Ω) and is solution of the Helmholtz equation in Ω. Moreover, by
definition∀j ∈ ℤ/nℤ, (αp + β 𝜕p𝜕xj )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj𝒪 = (αPj(φj) + β𝜕Pj(φj)𝜕xj )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj𝒪 = φj󵄨󵄨󵄨󵄨Σj𝒪 = g,
where the last equality is obtained by using the second set of equations of (22). Hence,
the function p is then solution of (1).
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114 | A.-S. Bonnet-Ben Dhia et al.

Finally,

G := (g0, g1, . . . , gn−1) ∈ V where gj = {g on Σj𝒪 ,
0 otherwise.

(30)

Writing

Φ = G + Φ̃ (31)

where Φ̃ is in Ṽ , we obtain an equivalent system(𝕀 − 𝔻)Φ̃ = 𝔻G. (32)

This system constitutes the half-space matching formulation which will be analyzed
in Section 3.

3 Analysis of the continuous formulation

In this section, we consider the general problem

Find Φ̃ ∈ Ṽ , (𝕀 − 𝔻)Φ̃ = F, (33)

where Ṽ is defined in (26), 𝔻 is defined in (25), and F ∈ Ṽ . Denoting ℒ(A) as the set
of bounded linear operators of a vector space A, we show in this section the following
main results.

Theorem 6. The operator (𝕀−𝔻) ∈ ℒ(Ṽ) is the sumof a coercive operator anda compact
one. Moreover, Problem (33) is well-posed.

A naive idea would be that𝔻 ∈ ℒ(Ṽ) is compact, but it is not. However, it can be
decomposed as the sum of an operator of norm strictly less than 1 and a compact op-
erator. This decomposition is linked to a similar decomposition of the operators Dj,j±1.
Inspired by the proofs for theDirichlet case shown in [8],weprove the properties of the
operators for the Robin case in Section 3.1 and finally show the theorem in Section 3.2.

3.1 Properties of the operators Dj,j±1
Let us concentrate first on the operator D0,1 and similar properties will be given, with-
out proof, for all the operatorsDj,j±1 at the end of this section. To simplify the notation,
we denote in this section, D0,1 = D, x0 = x, y0 = y. We will identify, when necessary,
Σ0 to ℝ, its upper part Σ0 ∩ Ω1 to (a+0 , +∞), its lower part Σ0 ∩ Ωn−1 to (−∞, a−0) and
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4 Numerical analysis of the half-space matching method | 115

finally Σ1 ∩ Ω0 to ℝ+. Let us also introduce for any open interval I included in J, an
open interval of ℝ, the restriction operator χI

χI : L2(J) → L2(J)
φ 󳨃→ χIφ = φ on I

χIφ = 0 on J \ I
In the sequel, we are going to decompose the operator D progressively in order to iso-
late a compact part and a part for which we get the norm explicitly.

First, from the definition (17), we can decompose simply D as

D = DD + DN (34)

where

DD : L2(Σ0) → L2(Σ1 ∩ Ω0)
ψ 󳨃→ αP0(ψ)|Σ1∩Ω0

and
DN : L2(Σ0) → L2(Σ1 ∩ Ω0)

ψ 󳨃→ β𝜕P0(ψ)𝜕x1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ1∩Ω0
. (35)

Lemma 7. The operator DD : L2(Σ0) → L2(Σ1 ∩ Ω0) is compact.
Proof. By definition of DD, we have∀ψ ∈ L2(Σ0), DDψ(r) = ∫

ℝ

kD(ξ , r)ψ̂(ξ )dξ
with

kD(ξ , r) = α

α + 𝚤β√ω2 − ξ 2 e𝚤√ω2−ξ 2r sin θ0,1e𝚤ξ (a
+
0+r cos θ

0,1).
Using Fubini’s theorem, we obtain󵄩󵄩󵄩󵄩kD(ξ , r)󵄩󵄩󵄩󵄩2L2(ℝ×ℝ+) = ∫

ℝ

∫
ℝ+

|α|2|α + 𝚤β√ω2 − ξ 2|2 e−2 Im(√ω2−ξ 2)r sin θ0,1drdξ

= ∫
ℝ

|α|2
2 Im(√ω2 − ξ 2) sin θ|α + 𝚤β√ω2 − ξ 2|2 dξ< +∞.

This proves thatDD is the composition of the Fourier operatorψ 󳨃→ ψ̂ and of a Hilbert–
Schmidt operator. The lemma follows.

Let us focus now on DN . For allψ, DNψ is, up to the parameter β, the normal trace
on Σ1 ∩ Ω0 of the half-space solution P0(ψ) in Ω0 with a Robin data ψ on the bound-
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ary Σ0. Because the half-line Σ1 ∩ Ω0 touches Σ0, the operator DN is not compact. The
lack of compactness is precisely due to the intersection point. So let us isolate the in-
tersection point by decomposing DN thanks to restriction operators (see Figure 4.3):

DN = χ(0,b)DN + χ(b,+∞)DN , with b > 0. (36)

Figure 4.3: Decomposition of the operator DN into χ(0,b)DN and χ(b,+∞)DN.

Lemma 8. For any b > 0, the operator χ(b,+∞)DN : L2(Σ0) → L2(Ω0 ∩ Σ1) is compact.
Proof. By definition of DN , we have∀ψ ∈ L2(Σ0), DNψ(r) = ∫

ℝ

kN (ξ , r)ψ̂(ξ )dξ
with

kN (ξ , r) = β(−𝚤√ω2 − ξ 2 cos θ0,1 + 𝚤ξ sin θ0,1)
α + 𝚤β√ω2 − ξ 2 e𝚤√ω

2−ξ 2r sin θ0,1e𝚤ξ (a
+
0+r cos θ

0,1). (37)

Again by Fubini’s theorem, we get for b > 0󵄩󵄩󵄩󵄩kN (ξ , r)󵄩󵄩󵄩󵄩2L2(ℝ×(b,+∞))= ∫
ℝ

+∞∫
b

|β|2| − 𝚤√ω2 − ξ 2 cos θ0,1 + 𝚤ξ sin θ0,1|2|α + 𝚤β√ω2 − ξ 2|2 e−2(√ω
2−ξ 2)r sin θ0,1drdξ
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= ∫
ℝ

|β|2| − 𝚤√ω2 − ξ 2 cos θ0,1 + 𝚤ξ sin θ0,1|2
2 Im(√ω2 − ξ 2) sin θ0,1|α + 𝚤β√ω2 − ξ 2|2 e−2 Im(√ω2−ξ 2)b sin θ0,1dξ< +∞.

We conclude as in the proof of Lemma 7.

As you can notice, this proof requires that b > 0. To analyse the non-compact part
χ(0,b)DN , inspired by the Dirichlet case [8] andmore generally by the singularity theory
[17], we decompose finally χ(0,b)DN as

χ(0,b)DN = χ(0,b)LN + χ(0,b)(DN − LN )
where LN is obtained by taking ω = 0 in the expression (37) of kN (ξ , r)
LNψ(r) = 1√2π ∫

ℝ

ψ̂(ξ )(− cos θ0,1 − 𝚤 sgn(ξ ) sin θ0,1)e−|ξ |r sin θ0,1e𝚤ξ (a+0+r cos θ0,1)dξ , r > 0.
(38)

The operator LN is similar to DN , but it is associated with the Laplace operator.
Indeed, it can also be defined as

LN : L2(Σ0) → L2(Σ1 ∩ Ω0),
LNψ := β 𝜕𝜕x1 v(ψ)󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ1∩Ω0

, (39)

where, for all ψ ∈ L2(Σ0), v(ψ) is the solution (at least in the distributional sense) to󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 −Δv = 0 in Ω0,
β 𝜕v𝜕x = ψ on Σ0.

We refer to the Appendix for the precise definition of the appropriate functional
framework for this problem.

Lemma 9. The operator χ(0,b)(DN − LN ) is compact.
Proof. It is a kernel operator whose kernel is given by

k(ξ , r) = (c1(ξ )e𝚤√ω2−ξ 2r sin θ0,1 − c2(ξ )e−|ξ |r sin θ0,1)e𝚤ξ (a++r cos θ0,1)
where from (37) and (38), we have that

c1, c2, 1/c2 ∈ L∞(ℝ), and
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 c1(ξ )c2(ξ ) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 → 1 when ξ → +∞

Consequently, 󵄨󵄨󵄨󵄨k(ξ , r)󵄨󵄨󵄨󵄨 = |c2(ξ )|e−|ξ |r sin θ0,1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 c1(ξ )c2(ξ )e−q(ξ )r sin θ0,1 − 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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where

q(ξ ) = √ξ 2 − ω2 − |ξ | = −ω2√ξ 2 − ω2 + |ξ | = 𝒪( 1ξ ).
We deduce that 󵄨󵄨󵄨󵄨k(ξ , r)󵄨󵄨󵄨󵄨 ≤ C|q(ξ )|e−|ξ |r sin θ0,1
which enables us to conclude as in the proof of Lemma 7.

Finally, let us focus on the properties of LN which are summarized in this funda-
mental lemma.

Lemma 10. The operator LN is continuous from L2(Σ0) to L2(Σ1 ∩ Ω0) and its norm is
bounded by 1. Moreover, we have:
– ∃C ∈ (0, 1), ∀φ ∈ L2(Σ0), ‖LNχ(a+0 ,+∞)φ‖ ≤ C‖χ(a+0 ,+∞)φ‖;
– LNχ(−∞,a−0 ) is a compact operator.

We give the proof which is quite technical in Appendix A. As we will see in the
proof of Theorem 6, it is not sufficient to know that the norm of LN is bounded by 1.
This is the second part of the lemma which will enable us to conclude that 𝕀 − 𝔻 is
a sum of a coercive operator and a compact one. As indicated in the Appendix, the
constant C is linked to the angle θ0,1 between Σ0 and Σ1 ∩ Ω0:

C = cos(θ0,1/2).
When θ0,1 tends to 0, this constant tends to 1.

Gathering all the results of this section,we can show the following properties ofD.

Proposition 11. The operator D is such that D − L is a compact operator from L2(Σ0) to
L2(Σ1 ∩ Ω0) where L is a continuous operator from L2(Σ0) to L2(Σ1 ∩ Ω0) which satisfies:
– ∃C ∈ (0, 1), ∀φ ∈ L2(Σ0), ‖Lχ(a+0 ,+∞)φ‖ ≤ C‖χ(a+0 ,+∞)φ‖;
– Lχ(−∞,a−0 ) is a compact operator.

Proof. The operator L is nothing else but χ(0,b)LN . Indeed, using all the operators in-
troduced in this section, we write

D − χ(0,b)LN = χ(0,b)(DN − LN ) + χ(b,+∞)DN + DD.
From Lemmas 7, 8, and 9, we have that the operator D − χ(0,b)LN is compact. As LN
satisfies Lemma 10, the operator χ(0,b)LN inherits similar properties.

Finally, we have obviously similar results for all the operators Dj,j±1 for j ∈ ℤ/nℤ.
Again, we will identify, when necessary, Σj to ℝ, its upper part Σj ∩ Ωj+1 to (a+j , +∞),
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its lower part Σj ∩ Ωj−1 to (−∞, a−j ). Finally, in order to give a short statement of the
following theorem, we use the notation∀j, (a−j , −∞) = (−∞, a−j ).
Theorem 12. The operator Dj,j±1 is such that Dj,j±1 − Lj,j±1 is a compact operator from
L2(Σj) to L2(Σj±1 ∩ Ωj) where Lj,j±1 is a continuous operator from L2(Σj) to L2(Σj±1 ∩ Ωj)
which satisfies:
– ∃Cj,j±1 ∈ (0, 1), ∀φ ∈ L2(Σj), ‖Lj,j±1χ(a±j ,±∞)φ‖ ≤ Cj,j±1‖χ(a±j ,±∞)φ‖;
– Lj,j±1χ(a∓j ,∓∞) is a compact operator from L2(Σj) to L2(Σj±1 ∩ Ωj).
Remark 13. The constant Cj,j±1 is linked to the angle θj,j±1 between Σj and Σj±1 ∩ Ωj.
More precisely, we can show, as in Appendix A, that

Cj,j±1 = cos(θj,j±1/2).
Remark 14. Theorem 12 has links with classical analysis for second kind boundary
equations on non-smooth domains. Indeed, using the notation xj = (xj, yj), Dj,j±1 can
be written in layer-potential form as

Dj,j±1ψj(x) = − 1
β
∫
Σj

(αG(x,xj) + β 𝜕G𝜕xj±1 (x,xj))ψj(xj)dxj, x ∈ Σj±1 ∩ Ωj, (40)

where G is the Green’s function for the Helmholtz equation satisfying the Robin con-
dition on Σj (see for instance [10] for a characterization of G). Formula (19) is nothing
else but the Plancherel equality applied to (40). As G is a smooth perturbation of the
Green’s function of the Laplace equation with Neumann boundary condition on Σj,
and as Im(ω) > 0, the properties of Dj,j±1 can be deduced from those of the double
layer potential operator defined by∫

Σj

𝜕G0𝜕xj±1 (x,xj)ψj(xj)dxj, x ∈ Σj±1 ∩ Ωj,
where

G0(x,x󸀠) = 1
2π

log(|x − x󸀠|).
This operator, as an operator acting on L2 functions on the sides of a bounded polygon
has been discussed and analyzed in [4, 9]. Let us mention that in [9, Lemma 1], the
same bound for the norm of the operator Lj,j±1 has been found.
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120 | A.-S. Bonnet-Ben Dhia et al.

3.2 Proof of Theorem 6

Let us provenow that the operator 𝕀−𝔻 is the sumof a coercive operator anda compact
one in Ṽ . Using Theorem 12, and the following obvious decomposition∀Φ̃ = (φ̃0, φ̃1, . . . , φ̃n−1) ∈ Ṽ , ∀j ∈ ℤ/nℤ, φ̃j = χ(−∞,a−j )φ̃j + χ(a+j ,+∞)φ̃j

we can decompose the operator𝔻 as follows:∀Φ̃ ∈ Ṽ , 𝔻Φ̃ = 𝕃Φ̃ + 𝕂Φ̃, (41)

where𝕃 :=[[[[[[[[[[[[

0 L1,0χ(−∞,a−1 ) 0 . . . 0 Ln−1,0χ(a+n−1 ,+∞)
L0,1χ(a+0 ,+∞) 0 L2,1χ(−∞,a−2 ) . . . 0 0

0 L1,2χ(a+1 ,+∞) 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 Ln−1,n−2χ(−∞,a−n−1)

L0,n−1χ(−∞,a−0 ) 0 0 . . . Ln−2,n−1χ(a+n−2 ,+∞) 0

]]]]]]]]]]]]
,

(42)

and

𝕂 := [[[[[[[[[[[
0 K1,0 0 . . . 0 Kn−1,0

K0,1 0 K2,1 . . . 0 0
0 K1,2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 Kn−1,n−2

K0,n−1 0 0 . . . Kn−2,n−1 0

]]]]]]]]]]]
, (43)

with ∀j ∈ ℤ/nℤ, K j±1,j = (Dj±1,j − Lj±1,j) + Lj±1,jχ(a±j±1 ,±∞) (44)

From Theorem 12, we get easily that the operator𝕂 is compact in Ṽ .
Moreover, by Theorem 12, for all j ∈ ℤ/nℤ, we have that for all φ̃j ∈ L2(Σj) such

that φ̃j|Σj𝒪 = 0󵄩󵄩󵄩󵄩Lj,j−1χ(−∞,a−j )φ̃j󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩Lj,j+1χ(a+j ,+∞)φ̃j󵄩󵄩󵄩󵄩2 ≤ C2j [󵄩󵄩󵄩󵄩χ(−∞,a−j )φ̃j󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩χ(a+j ,+∞)φ̃j󵄩󵄩󵄩󵄩2]= C2j ‖φ̃j‖2L2(Σj),
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4 Numerical analysis of the half-space matching method | 121

where Cj = max(cos(θj,j−1/2), cos(θj,j+1/2)). Consequently, the norm of the operator 𝕃
is strictly less than 1. This implies that the operator 𝕀−𝕃 is coercive in Ṽ , its coercivity
constant being given by

α = 1 − max
j∈ℤ/nℤ

cos θ
j,j+1

2
. (45)

Let us now show that Problem (33) is well posed. Since it is Fredholm of index 0, it
is sufficient to show the uniqueness. We will suppose that 𝔽 = 0 and show that the
corresponding solution Φ̃ ∈ Ṽ necessarily vanishes. By Lemma 5, we can define un-
equivocally a function p satisfying (14) for all j ∈ ℤ/nℤ. Moreover, p ∈ H1(Ω) and is
solution of (1) with g = 0. Problem (1) being well posed, p = 0 and then Pj(φj) = 0 for
all j. Consequently, φj = 0 for all j ∈ ℤ/nℤ.
4 Discretization

4.1 The discrete problem

Toget adiscreteproblem thatwe can solvenumerically,weuse threemain ingredients:
1. We truncate the integrals which appear in the definition of the integral operators

Dj,j±1: the integral for ξ ∈ ℝ is replaced by an integral for |ξ | ≤ T̂ for some T̂ ∈ ℝ+.
2. Then we introduce finite dimensional subspaces Ṽh of Ṽ on which a Galerkin ap-

proximation is computed. To define the space Ṽh, we truncate the infinite lines Σj

as follows:

ΣjT = {(xj = lj, yj), −Tj < yj < Tj} (46)

and we mesh these truncated lines into segments [Mj
i ,Mj

i+1], i ∈ {1, . . . ,Nj} whose
maximum length is hj. Let T = minj Tj and h = maxj hj. Finally, the space Vh with
h = (T , h) built with Lagrange finite elements of degree l (l ∈ ℕ∗) is given by{(ψ0

h, . . . ,ψn−1
h ) ∈ V , ∀j, ψj

h is polynomial of degree l on [Mj
i ,Mj

i+1], i ∈ {1, . . . ,Nj}},
(47)

and Ṽh = Vh ∩ Ṽ . Let us emphasize that of course∀Ψ̃ ∈ V , inf
ψh∈Vh
‖Ψ −Ψh‖ 󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→h→(+∞,0)

0. (48)

3. Finally, quadrature formulae have to be used to evaluate the Fourier integrals
which appear in the variational formulation.

In what follows, we will study the error due to points 1 and 2 but not the quadrature
formulae.

For this purpose, we consider the three following variational problems:
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122 | A.-S. Bonnet-Ben Dhia et al.

0. The exact problem:
Find Φ̃ ∈ Ṽ such that (𝔹Φ̃, Ψ̃) = (𝔻G, Ψ̃), ∀Ψ̃ ∈ Ṽ , (49)

where 𝔹 = 𝕀 − 𝔻,𝔻 is defined by (25), Ṽ by (26), G by (30), and (⋅, ⋅) denotes the
L2 scalar product in V . We have the expression∀ (Φ,Ψ) ∈ V , (𝔻Φ,Ψ) = ∑

j∈ℤ/nℤ
( ∫
Σj∩Ωj+1

[Dj+1,jφj+1]ψj + ∫
Σj∩Ωj−1

[Dj−1,jφj−1]ψj), (50)
with∀j ∈ ℤ/nℤ, ∀ψ ∈ L2(Σj), [Dj±1,jψ](r) = 1√2π ∫

ℝ

kj±1,j(r, ξ )ψ̂(ξ )dξ , r ≥ 0,
and kj±1,j(r, ξ ) is given by (20).

1. The semi-discrete problem (truncation of the integrals):
Find Φ̃T̂ ∈ Ṽ such that (𝔹T̂Φ̃T̂ , Ψ̃) = (𝔻T̂G, Ψ̃), ∀Ψ̃ ∈ Ṽ , (51)

where 𝔹T̂ = 𝕀 − 𝔻T̂ and𝔻T̂ is defined by∀ (Φ,Ψ) ∈ V , (𝔻T̂Φ,Ψ) = ∑
j∈ℤ/nℤ
( ∫
Σj∩Ωj+1

[Dj+1,j
T̂

φj+1]ψj + ∫
Σj∩Ωj−1

[Dj−1,j
T̂

φj−1]ψj), (52)
where [Dj±1,j

T̂
ψ](r) = 1√2π T̂∫

−T̂

kj±1,j(r, ξ )ψ̂(ξ )dξ , r ≥ 0. (53)

2. The discrete problem (truncation of the infinite lines Σj and meshing):
Find Φ̃T̂ ,h ∈ Ṽh such that(𝔹T̂Φ̃T̂ ,h, Ψ̃h) = (𝔻T̂ Gh, Ψ̃h), ∀Ψ̃h ∈ Ṽh, (54)

where Gh ∈ Vh is the interpolate of G.
Our first objective is to prove that for T̂ andT large enough, and for h small enough, the
above discrete problem is well posed. The second objective is to prove that the error‖Φ −ΦT̂ ,h‖ (where ΦT̂ ,h = Φ̃T̂ ,h + Gh) tends to 0 when T̂ → +∞, T → +∞, and h → 0.
And finally if theφj’s are regular enough (whose precise definitionwill be given later),
we will also estimate the convergence rate.
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4 Numerical analysis of the half-space matching method | 123

Remark 15. As in [18], the difficulty of the numerical analysis comes from the fact that
the operator appearing in the discrete problem is the sum of a coercive part and a
compact part, which both depend on T̂.

As a first step, we will derive the same type of result but only for the semi-discrete
problem.

4.2 Numerical analysis of the semi-discrete problem

For T̂ > 0, we denote by ΠT̂ the projection operator on L
2(ℝ) defined by

∀ψ ∈ L2(ℝ), ΠT̂ψ(y) = 1√2π T̂∫
−T̂

ψ̂(ξ )eiξydξ . (55)

In other words, ∀ψ ∈ L2(ℝ), Π̂T̂ψ(ξ ) = χ[−T̂ ,T̂](ξ )ψ̂(ξ ). (56)

Then we denote by IΠT̂ the projection operator on V defined by∀Φ = (φ0, . . . ,φn−1) ∈ V , IΠT̂Φ = (ΠT̂φ
0, . . . ,ΠT̂φ

n−1). (57)

Using Plancherel and Lebesgue theorems, one can easily check the following proper-
ties that will be used in the sequel:‖IΠT̂Φ‖V ≤ ‖Φ‖V (58)∀Φ,Ψ ∈ V , (IΠT̂Φ,Ψ) = (Φ, IΠT̂Ψ) (59)∀Φ ∈ V , ‖IΠT̂Φ −Φ‖V → 0 when T̂ → +∞ (60)

Using this definition, we have 𝔻T̂ = 𝔻IΠT̂ , where DT̂ is defined by (52). The main
results of this section are given in the following theorem.

Theorem 16.
1. [Stability] There exists T̂min such that the semi-discrete problem (51) is well posed

for T̂ ≥ T̂min.
2. [Convergence] The solution Φ̃T̂ of the semi-discrete problem (51) tends to the exact

solution Φ̃ of (49) when T̂ tends to infinity.
3. [Error estimates] Let Φ = Φ̃ + G = (φ0, . . . ,φn−1), where Φ̃ is the solution of (49).

If there exists s > 0 such that for all j ∈ ℤ/nℤ, φj ∈ Hs(Σj), we have󵄩󵄩󵄩󵄩Φ̃ − Φ̃T̂
󵄩󵄩󵄩󵄩V ≤ C

T̂s
∑

j∈ℤ/nℤ
( 1√sin(θj,j+1) 󵄩󵄩󵄩󵄩φj+1󵄩󵄩󵄩󵄩Hs(Σj+1) + 1√sin(θj,j−1) 󵄩󵄩󵄩󵄩φj−1󵄩󵄩󵄩󵄩Hs(Σj−1)). (61)
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The rest of this section is dedicated to the proof of this theorem. To do so, we will
need several lemmas:
– the two first lemmas give properties of the operators Lj±1,jΠT̂ for the L

j±1,j appear-
ing in (42). These results are the equivalent of the two properties stated in Theo-
rem 12, but they are not a straightforward consequence of this theorem. The dif-
ficulty comes from the fact that, in general, for a function ψ, the support of ΠT̂ψ
is not the same than the one of ψ. These lemmas enable us to deduce properties
of the operator 𝔻IΠT̂ , used in Lemma 20 as a basic tool for the stability and the
convergence result.

– To establish the error estimates, we will use finally Lemma 21.

Lemma 17. For all j ∈ ℤ/nℤ, the operator Lj±1,j appearing in Theorem 12 satisfies∃C̃j±1,j ∈ (0, 1), ∀φ ∈ L2(Σj±1), 󵄩󵄩󵄩󵄩Lj±1,jΠT̂χ(a∓j±1 ,∓∞)φ
󵄩󵄩󵄩󵄩 ≤ C̃j±1,j‖χ(a∓j±1 ,∓∞)φ‖;

where C̃j±1,j = max(sin(θj±1,j/2), cos(θj±1,j/2)).
Proof. As explained in the proof of Lemma 11, L0,1 = χ(0,b)LN where LN is defined by
(39). It suffices then to show that∀T̂ > 0, ∀ψ ∈ L2(Σ0) ‖LNΠT̂χ(a+0 ,+∞)ψ‖ ≤ C‖χ(a+0 ,+∞)ψ‖ (62)

with

C = max(sin(θ0,1/2), cos(θ0,1/2))
to obtain the result for L0,1. A similar proof can be applied to other Lj±1,j.

We stress again that (62) is not adirect consequenceof Lemma10 sinceΠT̂χ(a+0 ,+∞)ψ
is not supported in (a+0 , +∞).

We introduce the linear operators S and A of ℒ(L2(ℝ)) defined by∀ψ ∈ L2(ℝ), Sψ(y) = 1
2
(ψ(y) + ψ(2a+0 − y)) and Aψ(y) = 1

2
(ψ(y) − ψ(2a+0 − y))

We have obviously S + A = Id.
The key point is that ΠT̂ commutes with S and A. Indeed, from

Ŝψ(ξ )e𝚤2a+0ξ = Ŝψ(−ξ ),
we deduce that ΠT̂Sψ is symmetric with respect to a+0:

ΠT̂Sψ(2a+0 − y) = 1√2π T̂∫
−T̂

Ŝψ(ξ )ei(2a+0−y)ξdξ
= 1√2π T̂∫

−T̂

Ŝψ(−ξ )e−iyξdξ
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= 1√2π T̂∫
−T̂

Ŝψ(ξ )eiyξdξ= ΠT̂Sψ(y).
Similarly, we prove that ΠT̂Aψ is anti-symmetric with respect to a+0:

ΠT̂Aψ(2a+0 − y) = −ΠT̂Aψ(y).
Finally, gathering all these properties, we get

SΠT̂ψ(y) = 12 (ΠT̂ψ(y) + ΠT̂ψ(2a+0 − y))= 1
2
(ΠT̂Sψ(y) + ΠT̂Aψ(y) + ΠT̂Sψ(2a+0 − y) + ΠT̂Aψ(2a+0 − y))= ΠT̂Sψ(y),

and the same result can be obtained for A. To summarize, we have

ΠT̂Sψ = SΠT̂ψ and ΠT̂Aψ = AΠT̂ψ. (63)

Now let us apply all these properties to our purpose. Since S + A = Id, S2 = S, and
A2 = A:

LNΠT̂ = LNΠT̂ (S + A)= LNΠT̂(S2 + A2)= LNSΠT̂S + LNAΠT̂A

so that∀ψ ∈ L2(Σ0), ‖LNΠT̂χ(a+0 ,+∞)ψ‖ ≤ ‖LNS‖‖ΠT̂‖‖Sχ(a+0 ,+∞)ψ‖ + ‖LNA‖‖ΠT̂‖‖Aχ(a+0 ,+∞)ψ‖.
(64)

Moreover, since for any ψ ∈ L2(ℝ),‖ΠT̂‖ ≤ 1 and (65)‖Sχ(a+0 ,+∞)ψ‖L2(ℝ) = ‖Aχ(a+0 ,+∞)ψ‖L2(ℝ) = 1√2 ‖χ(a+0 ,+∞)ψ‖L2(ℝ), (66)

we get ‖LNΠT̂χ(a+0 ,+∞)ψ‖ ≤ 1√2 (‖LNS‖ + ‖LNA‖)‖χ(a+0 ,+∞)ψ‖. (67)

Finally, the estimates (90) and (91) proven in the Appendix enables us to show (62).
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Remark 18. Let us emphasize that the key property (63) is true because in the defini-
tion of ΠT̂ , the Fourier integral has been truncated to a symmetric interval [−T̂ , T̂].
Lemma 19. For all T̂, the operator Lj±1,jΠT̂χ(a±j±1 ,±∞) is compact.

Moreover, let ψn be a sequence of L2(Σj±1), for T̂n → +∞ and for j ∈ ℤ/nℤ such that
ψn converges weakly to 0 in L2(Σj±1), then

Lj±1,jΠT̂n
χ(a±j±1 ,±∞)ψn → 0 in L2(Σj ∩ Ωj±1).

Proof. As explained in the proof of the previous lemma, it suffices to show the result
replacing Lj±1,j by LN to deduce the one for L0,1 and in a similar way the one for the
other Lj±1,j.

Again, the difficulty is that, in general, for a function ψ, ΠT̂χ(−∞,a−0 )ψ is not sup-
ported in (−∞, a−0), so that the results cannot be deduced from the second point of
Lemma 10.

We decompose

LNΠT̂χ(−∞,a−0 ) = LNχ(−∞,a−0 ) + LN (ΠT̂ − I)χ(−∞,a−0 )
From Lemma 10, we know that LNχ(−∞,a−0 ) is compact. We show in the rest of the proof
that LN (ΠT̂ − I)χ(−∞,a−0 ) is a Hilbert–Schmidt operator and that LN (ΠT̂ − I)χ(−∞,a−0 ) → 0
when T̂ → +∞, and the results of the lemma follow.

Using the expression of LN in (38), we get

LN (ΠT̂ − I)χ(−∞,a−0 ) = R+T̂e𝚤θ0,1 + R−T̂e−𝚤θ0,1 ,
where, for ψ ∈ L2(Σ0),

R+T̂ψ(r) = 1
2π
∫

ξ>T̂

dξ
a−0∫
−∞

dy e−ξr sin θ
0,1
e𝚤ξ (a

+
0−y+r cos θ

0,1)ψ(y),
R−T̂ψ(r) = 1

2π
∫

ξ<−T̂

dξ
a−0∫
−∞

dy eξr sin θ
0,1
e𝚤ξ (a

+
0−y+r cos θ

0,1)ψ(y).
By Fubini’s theorem, we deduce that

R±T̂ψ(r) = 1
2π

a−0∫
−∞

k±T̂ (r, y)ψ(y)dy
with

k±T̂ (r, y) = e−T̂(r sin θ
0,1±𝚤(a+0−y+r cos θ

0,1))

r sin θ0,1 ∓ 𝚤(a+0 − y + r cos θ0,1) .
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Since the denominator never vanishes for r ≥ 0 and y < a−0 < a+0, one can easily check
that

+∞∫
0

a−0∫
−∞

󵄨󵄨󵄨󵄨k±T̂ (r, y)󵄨󵄨󵄨󵄨2dy dr
is finite and tends to 0 when T̂ → +∞.

From these two lemmas, we deduce the following result.

Lemma 20. For all T̂ > 0, the operator 𝔹T̂ is the sum of a coercive operator and a com-
pact operator in Ṽ .

Moreover, there exists γ > 0 and T̂min such that for T̂ ≥ T̂min∀Φ̃ ∈ Ṽ ‖𝔹T̂Φ̃‖ ≥ γ‖Φ̃‖ (68)

Proof. Let T̂ > 0. Let us remind that 𝔹T̂ = 𝕀 − 𝔻IΠT̂ . By the definitions (25) of 𝔻 and
(57) of IΠT̂ , the operator𝔻IΠT̂ is nothing else but (25) with the terms Dj±1,j replaced by
Dj±1,jΠT̂ . Finally, as in (41–42–43), we have the decomposition𝔹T̂ = 𝕀 − 𝔻IΠT̂ where 𝔻IΠT̂ = 𝕃T̂ + 𝕂T̂
with
– 𝕃T̂ having the form of (42) where the terms Lj±1,jχ(a∓j±1 ,∓∞) are replaced by

Lj±1,jΠT̂χ(a∓j±1 ,∓∞). Using Lemma 17 and the same arguments as in Section 3.2, we
can show that the norm of 𝕃T̂ is strictly less than 1, the norm being independent
of T̂. Therefore 𝕀−𝕃T̂ is coercive in Ṽ with a coercive constant γ̃ independent of T̂.

– 𝕂T̂ has the form of (43) where the terms K j±1,j are replaced by K j±1,j
T̂

with

K j±1,j
T̂
= (Dj±1,j − Lj±1,j)ΠT̂ + Lj±1,jΠT̂χ(a±j±1 ,±∞). (69)

By using Theorem 12 and Lemma 19, K j±1,j
T̂

is compact. The operator 𝕂T̂ is then
also compact in Ṽ .

Wehave then proven the first part of the theorem.We show the secondpart of the theo-
rem by contradiction. We suppose the existence of a sequence Φ̃n ∈ Ṽ and a sequence
T̂n → +∞ such that ‖Φ̃n‖V = 1 and 𝔹T̂nΦ̃n → 0 in Ṽ . Using the first part of the proof,
we have 𝔹T̂n = (𝕀 − 𝕃T̂n ) − 𝕂T̂n ,
where the operator (𝕀 − 𝕃T̂n ) is coercive with a coercivity constant γ̃ independent of n
and𝕂T̂n is compact. Rearranging the terms and taking the scalar product, we have(𝔹T̂nΦ̃n, Φ̃n) + (𝕂T̂nΦ̃n, Φ̃n) = ((𝕀 − 𝕃T̂n )Φ̃n, Φ̃n) ≥ γ̃ > 0, (70)
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and we will show that the left-hand side tends to 0 with n to establish the contradic-
tion.

Since Φ̃n is bounded in the Hilbert space Ṽ , it admits a weakly convergent subse-
quence that we denote also by Φ̃n: Φ̃n ⇀ Φ̃ in Ṽ . By (59) and (60),∀Ψ̃ ∈ Ṽ , (IΠT̂n

Φ̃n, Ψ̃) = (Φ̃n, IΠT̂n
Ψ̃ − Ψ̃) + (Φ̃n, Ψ̃) → (Φ̃, Ψ̃),

which means that IΠT̂n
Φ̃n ⇀ Φ̃. As a consequence,𝔹T̂nΦ̃n = Φ̃n − 𝔻IΠT̂n

Φ̃n ⇀ Φ̃ − 𝔻Φ̃ = 𝔹Φ̃.
Since by hypothesis, 𝔹T̂nΦ̃n → 0, we conclude that 𝔹Φ̃ = 0 which implies Φ̃ = 0
because 𝔹 is invertible (see Theorem 6).

On the other hand, aswritten in (69), each operatorK j±1,j
T̂n

involved in the definition
of𝕂T̂n is the sum of two operators such that:
– (Dj±1,j − Lj±1,j)ΠT̂n

φ̃n → 0 when φ̃n ⇀ 0 since ΠT̂n
φ̃n ⇀ 0 because of (60) and(Dj±1,j − Lj±1,j) is compact because of Theorem 12;

– Lj±1,jΠT̂n
χ(a±j±1 ,±∞)φ̃n → 0 when φ̃n ⇀ 0 because of Lemma 19.

Consequently, as Φ̃n ⇀ 0, we have𝕂T̂nΦ̃n → 0 in Ṽ when n tends to +∞.
Gathering all these results, we have (𝔹T̂nΦ̃n, Φ̃n) + (𝕂T̂nΦ̃n, Φ̃n) tends to 0 with n.

This contradiction completes the proof.

To establish the error estimates of Theorem 16, we need the following lemma.

Lemma 21. Let s > 0 and ψ ∈ Hs(Σj). There exists a constant C > 0 independent of ψ
and T̂ such that 󵄩󵄩󵄩󵄩Dj,j±1(I − ΠT̂ )ψ󵄩󵄩󵄩󵄩L2 ≤ C

T̂s√sin(θj,j±1) ‖ψ‖Hs(Σj). (71)

Proof. By definition (19)–(20) of Dj,j±1, we have, by Cauchy–Schwarz inequality, Fu-
bini’s theorem, and by the Fourier definition of the Sobolev spaces [1]:󵄩󵄩󵄩󵄩Dj,j±1(I − ΠT̂ )ψ󵄩󵄩󵄩󵄩2 ≤ ‖ψ‖2Hs(Σj) ∫

|ξ |>T̂

+∞∫
0

|kj,j±1(r, ξ )|2(1 + ξ 2)s dξ dr. (72)

Moreover, an easy calculation gives

∫
|ξ |>T̂

+∞∫
0

|kj,j±1(r, ξ )|2(1 + ξ 2)s dξ dr = ∫
|ξ |>T̂

F(ξ )dξ ,
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4 Numerical analysis of the half-space matching method | 129

where

F(ξ ) = |α + β(− cos(θj,j±1)i√ω2 − ξ 2 + sin(θj,j±1)iξ )|2
2|α + iβ√ω2 − ξ 2|2 Im(√ω2 − ξ 2) sin(θj,j±1)(1 + ξ 2)s

is such that

F(ξ ) ≤ C
ξ 2s+1 sin(θj,j±1)

for some constant C depending only on α, β, ω, and s. The result follows.

Proof of Theorem 16.
1. By Lemma 20, 𝔹T̂ is the sum of a coercive and a compact operators. By Fredholm

alternative, it is invertible if and only if it is injective. Again by Lemma 20, we have
that there exists T̂min such that for T̂ ≥ T̂min, 𝔹T̂ is injective.

2. From 𝔹Φ̃ = 𝔻G and 𝔹T̂Φ̃T̂ = 𝔻IΠT̂G, we deduce:𝔹T̂ (Φ̃ − Φ̃T̂ ) = 𝔹Φ̃ − (𝔹 − 𝔹T̂ )Φ̃ − 𝔹T̂Φ̃T̂= 𝔻(𝕀 − IΠT̂ )(Φ̃ + G)= 𝔻(𝕀 − IΠT̂ )Φ
which tends to 0 when T̂ tends to +∞ by (60). Lemma 20 then implies that‖Φ̃ − Φ̃T̂‖ ≤ 1γ 󵄩󵄩󵄩󵄩𝔹T̂ (Φ̃ − Φ̃T̂ )󵄩󵄩󵄩󵄩,
which proves that Φ̃T̂ tends to Φ̃ when T̂ tends to +∞.

3. The previous step provides also the following inequality:‖Φ̃ − Φ̃T̂‖ ≤ 1γ 󵄩󵄩󵄩󵄩𝔻(𝕀 − IΠT̂ )Φ󵄩󵄩󵄩󵄩. (73)

Combined with Lemma 21, we get the estimate (61).

4.3 Error estimate for the discrete problem

The main result of this section is given in the following theorem.

Theorem 22.
1. There exist T̂min, Tmin and hmax such that the discrete problem (54) is well posed for

T̂ ≥ T̂min, T ≥ Tmin, and h ≤ hmax.
2. The solution Φ̃T̂ ,h of the discrete problem (54) tends to the exact solution Φ̃ of (49)

when T̂ → +∞ and h = (T , h) → (+∞,0).
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130 | A.-S. Bonnet-Ben Dhia et al.

3. IfΦ = Φ̃+G is such that φj ∈ Hs(Σj) for j ∈ ℤ/nℤwith s > 0, there exists C > 0 such
that ‖Φ̃ − Φ̃T̂ ,h‖ ≤ C

T̂s
+ Ce−εT + Chmin(s,l+1) (74)

where ε is given by (3).

To show this theorem, we will use the following lemma (which is the discrete
equivalent of Lemma 20).

Lemma 23. There exists γ󸀠 > 0, T̂min, Tmin, and hmax such that for T̂ ≥ T̂min, T ≥ Tmin,
and h ≤ hmax, ∀Φ̃h ∈ Ṽh sup

Ψ̃h∈Ṽh ,Ψ̃h≠0

|(𝔹T̂Φ̃h, Ψ̃h)|‖Ψ̃h‖ ≥ γ󸀠‖Φ̃h‖.
Proof. We proceed as in the proof of Lemma 20 and prove the result by contradiction.
We consider a sequence hn, hn → 0, a sequence Tn,Tn → +∞, a sequence T̂n, T̂n →+∞, and a sequence Φ̃T̂n ,hn

∈ ṼT̂n ,hn , hn = (hn,Tn) such that‖Φ̃T̂n ,hn
‖ = 1 and ∀Ψ̃hn ∈ Ṽhn , 󵄨󵄨󵄨󵄨(𝔹T̂nΦ̃T̂n ,hn

, Ψ̃hn )󵄨󵄨󵄨󵄨 ≤ 1n ‖Ψ̃hn‖.
Since Φ̃T̂n ,hn

is bounded in Ṽ , it admits a weakly convergent subsequence that we de-
note also by Φ̃T̂n ,hn

: Φ̃T̂n ,hn
⇀ Φ̃. Moreover, for all Ψ̃ ∈ Ṽ and all Ψ̃hn ∈ Ṽhn we have󵄨󵄨󵄨󵄨(𝔹T̂nΦ̃T̂n ,hn
, Ψ̃)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨(𝔹T̂nΦ̃T̂n ,hn

, Ψ̃hn )󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨(𝔹T̂nΦ̃T̂n ,hn
, Ψ̃ − Ψ̃hn )󵄨󵄨󵄨󵄨≤ 1

n
‖Ψ̃hn‖ + ‖𝔹T̂n‖‖Ψ̃ − Ψ̃hn‖.

Since ‖𝔹T̂n‖ is bounded by a constant independent of n, we deduce from (48) that𝔹T̂nΦ̃T̂n ,hn
⇀ 0 in Ṽ .

Wecan then continue the proof as in Lemma 20which results in the contradiction.

Proof of Theorem 22.
1. This is a direct consequence of Lemma 23.
2. Let Φ̃ be the solution of the original problem (49), Φ̃T̂ the solution of the semi

discrete problem (51) and Φ̃T̂ ,h the solution of the discrete problem (54). We have
that ∀ϒ̃h ∈ Ṽh, ‖Φ̃ − Φ̃T̂ ,h‖ ≤ ‖Φ̃ − ϒ̃h‖ + ‖ϒ̃h − Φ̃T̂ ,h‖ (75)

For all ϒ̃h ∈ Ṽh and all Ψ̃h ∈ Ṽh, we have(𝔹T̂ (ϒ̃h − Φ̃T̂ ,h), Ψ̃h) = (𝔹T̂ (ϒ̃h − Φ̃T̂ ), Ψ̃h) + (𝔻T̂ (G − Gh), Ψ̃h).
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4 Numerical analysis of the half-space matching method | 131

By Lemma 23 and by the continuity of𝔻T̂ and 𝔹T̂ , we get
γ󸀠‖ϒ̃h − Φ̃T̂ ,h‖ ≤ C(‖G − Gh‖V + ‖Φ̃T̂ − ϒ̃h‖). (76)

Gathering (75)–(76), we deduce that there exists C > 0, such that‖Φ̃ − Φ̃T̂ ,h‖ ≤ C(‖Φ̃ − Φ̃T̂‖ + ‖G − Gh‖V + inf
ϒ̃h∈Ṽh , ϒ̃h ̸=0

‖Φ̃ − ϒ̃h‖). (77)

By Theorem 16, the first term of the right-hand side tends to 0. Gh being the inter-
polant ofG in Ṽh, (48) ensures that the two last terms tend to 0whenh→ (+∞,0).

3. Let now suppose that Φ = Φ̃ + G = (φ0, . . . ,φn−1) the solution of (49) is such that
for all j ∈ ℤ/nℤ, φj ∈ Hs(Σj) for a certain s > 0. Then we deduce from Theorem 16
an estimation of the first term of the right-hand side of (77). For the second term, it
suffices to use classical results of the interpolation error for Lagrange FE of order l:∃C > 0, ‖G − Gh‖V ≤ Chmin(s,l+1).
Finally, for the last term, let us introduce the function Φ̃T ∈ Ṽ defined by

Φ̃T = ΦT − G where ΦT = (χ(−T0 ,T0)φ0, . . . , χ(−Tn−1 ,Tn−1)φn−1).
We get

inf
ϒ̃h∈Ṽh , ϒ̃h ̸=0

‖Φ̃ − ϒ̃h‖ ≤ ‖Φ̃ − Φ̃T‖ + inf
ϒ̃h∈Ṽh , ϒ̃h ̸=0

‖Φ̃T − ϒ̃h‖
where using (3), we can show that‖Φ̃ − Φ̃T‖ ≤ Ce−εT
and using again the results on interpolation error of Lagrange FE

inf
ϒ̃h∈Ṽh , ϒ̃h ̸=0

‖Φ̃T − ϒ̃h‖ ≤ Chmin(s,l+1).
This ends the proof of the theorem.

Remark 24. This error estimate has been obtained for simple regular mesh. A more
sophisticated discretization method could be used as done in [11] for scattering prob-
lems.
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132 | A.-S. Bonnet-Ben Dhia et al.

5 Numerical results
The numerical results presented in this section are obtained using the Finite Element
library XLiFE++ [16].

5.1 Qualitative validation of the method

In order to validate the method, we consider a particular data on a triangle given by

g = 1
4𝚤 (αH(ω√x2 + y2) + β𝜕H𝜕xj (ω√x2 + y2))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σj𝒪

with ω = 1 + 0.1𝚤, α = 2, β = −0.5 and H(⋅) denotes the zeroth Hankel function of the
first kind [2]. The exact solution of this problem is

p = 1
4𝚤H(ω√x2 + y2).

On Figure 4.4, we represent on the interval (−T ,T) the real and imaginary parts of the
exact solution φ0 (blue line) and of the solution φ0

T̂ ,h (red dots) computed by using P1
finite elements with h = 0.1, T = 20, T̂ = 10, and a third-order Gauss quadrature with
1000 intervals. We get a L2 relative error:‖φ0 − φ0

T̂ ,h‖L2(Σ0T )‖φ0‖L2(Σ0T )
of 0.090%. On Figure 4.5 (left), we represent the Fourier transform of the computed
solution. Remark that the behavior of this Fourier transform justifies the truncation of
the Fourier integral and requires a precise quadrature especially near ξ = ω.

Once we obtained theφj
T̂ ,h

’s, we can reconstruct an approximation of the solution
p of (1) in eachΩj by Formula (12). Here,we compute the solution in the domainΩ󸀠 rep-
resented in Figure 4.5 (right), where the white lines represent the position of the Σj. In
the overlapping zones, we can choose indifferently one of the available half-plane rep-
resentations, since they coincide up to the discretization error. Remark that although
the solutionsφj are not close to zero at yj = ±T, the reconstructed solution is accurate,
with an L2(Ω󸀠) relative error equal to 0.030%.

The same results can also be obtained when the obstacle is a rectangle or a pen-
tagon. The reconstruction results are shown in Figure 4.6. For a rectangle obstacle,
the L2 relative error for the lines is 0.042% and the L2 error on the reconstructed do-
main is 0.043%,while for a pentagon, we get 0.074% L2 relative error on the lines and
0.054% L2 relative error on the reconstructed domain.
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4 Numerical analysis of the half-space matching method | 133

Figure 4.4: Real (left) and imaginary (right) part of the computed solution φ0
̂T ,h (red points) and the

exact solution (blue line) on Σ0.

Figure 4.5: On the left: real part of the Fourier transform φ̂0
̂T ,h. On the right: reconstruction of the

solution in Ω󸀠.

Figure 4.6: Reconstruction of the solution in Ω with rectangle and pentagon.
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5.2 Quantitative validation of the error estimation

After this qualitative validation, we validate the error estimation derived in Section 4
by studying the influence of the different parameters. Since the triangle is regular, it
suffices, by symmetry, to only consider the error onΣ0.We still considerα = 2,β = −0.5,
and except in Section 5.2.1, ω = 1 + 0.1𝚤.
5.2.1 Influence of the length of the lines (parameter T )

From (74), we expect that the error will decay like e−εT , where ε is the imaginary part
of the frequency. That is why, in this section (and only in this section), we consider
different values of ε ∈ {0.05,0.1,0.2}. We fix the other parameters to h = 0.025, T̂ = 10,
and use a third-order Gauss quadrature with 1000 intervals.

In Figure 4.7, we represent log(φ0 −φ0
T̂ ,h) as a function of T. The errors (φ0 −φ0

T̂ ,h)
decrease exponentially, depending on ε with the following behavior:

err := 󵄩󵄩󵄩󵄩φ0 − φ0
T ,h
󵄩󵄩󵄩󵄩L2(Σ0T ) ∼ e−εT ,

before finally becoming constant, which is due to the other discretization parameters.

5.2.2 Influence of the discretization in space (parameter h)

We plot the error log(φ0 − φ0
T̂ ,h) as a function of log h. We use the P1 and P2 finite

elements and the following parameters:

T = 40, T̂ = 10,
and a third-order quadrature with 1000 intervals.

Figure 4.7: Influence of the length of the lines T for various values of ε = Im(ω).
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4 Numerical analysis of the half-space matching method | 135

Figure 4.8: Influence of the space discretization h.

Figure 4.8 shows that the error decreases following:

err ∼ hl+1,
before becoming constant because of the other discretization parameters.

5.2.3 Influence of the truncation of the Fourier integrals (parameter ̂T )
Finally, we plot the error log(φ0 − φ0

T̂ ,h) with respect to T̂ and we use T = 40, h = 0.1,
and a third-order quadrature with 100 × T̂ intervals.

From Figure 4.9, we see that the error decreases exponentially due to the 𝒞∞ reg-
ularity of the Hankel function.

Figure 4.9: Influence of the length of the Fourier integral ̂T .
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136 | A.-S. Bonnet-Ben Dhia et al.

Figure 4.10: Reconstruction of the solution in Ω with triangles that becomes more and more flat.

5.2.4 The influence of the angles of the polygon

Referring to the Theorem 12, we investigate the influence of the angles of the polygon
on the computation of the solution. Remember that the coercivity constant tends to
zero when one of the angles tends to zero (see (45)).

We represent in Figure 4.10 the reconstruction of the solution around three differ-
ent triangles with one angle becoming smaller and smaller (min(θj,j+1) = 0.33π,0.16π,
0.03π). Qualitatively, the results look similar and the L2 relative error are of the same
order (resp., 1.01%, 0.88%, and 1.23%). The condition number of the finite element
matrices are 1617.27, 2482.05, and 4647.19, respectively, meaning that it is only slightly
affected by the smallness of one of the angles.

5.3 Extension cases

5.3.1 Non-regular Dirichlet data

In this section, we consider the Dirichlet case, namely (1) with α = 1, β = 0 and we use
the half-space matching formulation (22) where the φj’s correspond to the Dirichlet
traces of p on the Σj’s. As mentioned in Section 1.2, our formulation allows to consider
a data g ∈ L2(𝜕𝒪) but g ∉ H1/2(𝜕𝒪). In the following test, we take

g = {1 if x0 = 0, y0 > 0 or x1 = 0, y1 < 0,
0 otherwise.

(78)

We use P1 discontinuous finite elements since we have a discontinuous boundary
condition on 𝜕𝒪. The real part of the φ0

T ,h and the Fourier transform are given in Fig-
ure 4.11. As the data is less regular than the previous example, the Fourier transform
φ̂0
T ,h decays more slowly than in the previous example (pay attention to the scale).

The reconstruction in Ω is shown in Figure 4.12. The result is good as there is no
visible jump on different reconstructions from different φj.
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4 Numerical analysis of the half-space matching method | 137

Figure 4.11: On the left: real part of the computed solution φ0
h (red points) on Σ

0. On the right: the
Fourier transform φ̂0 for g defined in (78).

Figure 4.12: Real part of p with α = 1, β = 0, ω = 1, with g given defined in (78).

5.3.2 Non-dissipative case

Finally, remark that our theoretical results are established only for Im(ω) > 0. How-
ever, the numerical method works for the case without dissipation, provided that
we use the representation of the outgoing solution in (12) for each half-space, which
means that √ω2 − ξ 2 = {{{√|ω2 − ξ 2| for ξ 2 < ω2,𝚤√|ξ 2 − ω2| for ξ 2 > ω2.
To illustrate this, we once again validate the method by using the Hankel function on
the boundary of the polygon with ω = 1.

In Figure 4.13 on the left, as expected, we see that the solution decreases more
slowly compared to the case with dissipation. The computed solution matches the
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Figure 4.13: On the left: real part of the computed solution φ0
h (red points) on Σ

0. On the right: the
reconstruction of the solution with ω = 1.

exact solutionwell and the L2 relative error on the lines is 1.50%, which is higher than
the case with dissipation (Imω > 0). The reconstructed solution on the domain has
an L2 relative error of 0.79%.

We also show here the solution of a scattering problem with an incident wave

pinc = e𝚤ω(x cos γ+y sin γ),
with γ = 3π/4. The scattered field is solution of (1) with the boundary data is

g = −αpinc − β𝜕pinc𝜕n on 𝜕𝒪.
We consider the solution obtained with the parameters T = 40, h = 0.05, and

T̂ = 10 as the “exact solution” (represented on Figure 4.14 (right)) andwe plot the error
for different value of T̂ between 1 and 8. According to error estimate (74), we expect a
behavior like

err ∼ 1
T̂s0
,

where s0 is the supremum of s values such that all tracesφj belong toHs(Σj). Here, the
theoryof singularities [14] shows thatp ∈ H8/5(Ω), so that, taking its normalderivative,
we get s0 = 1/10. In fact, we observe on Figure 4.14 (left) that the error decreases more
rapidly like

err ∼ 1
T̂2
.

It is probably due to the discretization in space that cannot capture the singularity at
the corner.
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4 Numerical analysis of the half-space matching method | 139

Figure 4.14: On the left: Influence of the length of the Fourier integral ̂T in the scattering problem. On
the right: real part of the scattered field with ̂T = 10.

Appendix A. Proof of Lemma 10

Let us remind the definition of the operator LN . For all ψ ∈ L2(Σ0), we consider the
problem 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 −Δv = 0 in Ω0,

β 𝜕v𝜕x = ψ on Σ0. (79)

This problem has a unique solution v in the following weighted Sobolev space (see,
for instance, [17, Chapter 6]):{u ∈ L2loc(Ω0) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1r3/2 u ∈ L2(Ω0), 1√r∇u ∈ L2(Ω0)}.
The operator LN is defined as

LN : L2(Σ0) → L2(Σ1 ∩ Ω0),
LNψ := β 𝜕𝜕x1 v(ψ)󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ1∩Ω0

.
We want to show in this Appendix that:

1. The operator LN is continuous from L2(Σ0) in L2(Σ1 ∩Ω0) and its norm is bounded
by 1;

2. ∃C ∈ (0, 1), ∀ψ ∈ L2(Σ0), ‖LNχ(a+0 ,+∞)ψ‖ ≤ C‖χ(a+0 ,+∞)ψ‖;
3. LNχ(−∞,a−0 ) is a compact operator from L2(Σ0) in L2(Σ1 ∩ Ω0).
Let us begin the proof which is based on Mellin techniques.
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1. Denoting (r, θ) the polar coordinates (the center is the intersection point between
Σ0 and (Σ1 ∩ Ω0)) defined by

r = √(x − l0)2 + (y − a+0)2 ∈ (0, +∞),
θ = π

2
− arctan(y − a+0

x − l0 ) ∈ (0,π). (80)

We introduce the function w defined for almost everywhere (t, θ) ∈ ℬ ≡ ℝ × (0,π)
by w(t, θ) = v(x, y) where t = ln r and (r, θ) is defined in (80). It is the solution of−Δt,θw = 0 in ℬ,

β𝜕w𝜕θ (t,0) = ψ0(t) := etψ(et + a+0),−β𝜕w𝜕θ (t,π) = ψπ(t) := etψ(−et + a+0). (81)

We can show by a simple change of variable that

ψ ∈ L2(Σ0) ⇒ t 󳨃→ e−t/2ψ0 ∈ L2(ℝ) and t 󳨃→ e−t/2ψπ ∈ L2(ℝ), (82)

and 󵄩󵄩󵄩󵄩e−t/2ψ0
󵄩󵄩󵄩󵄩L2(ℝ) = ‖ψ‖L2(a+0 ,+∞) and 󵄩󵄩󵄩󵄩e−t/2ψπ

󵄩󵄩󵄩󵄩L2(ℝ) = ‖ψ‖L2(−∞,a+0 ). (83)

It is possible to compute explicitly w by applying the Fourier–Laplace transform
which is defined as

ǔ(λ) ≡ [ℳt→λ](λ) := ∫
ℝ

e−λtu(t)dt. (84)

It is an isomorphism between {u, eγtu ∈ L2(ℝ)} and L2(l−γ) where l−γ = {λ = −γ +
is, s ∈ ℝ}, for all γ ∈ ℝ and we have the Plancherel formula∫

ℝ

e2γt |u(t)|2dt = 1
2πi
∫
l−γ

|ǔ(λ)|2dλ := ‖ǔ‖2L2(l−γ). (85)

We have in particular thanks to (82–83)

λ 󳨃→ ψ̌0(λ) ∈ L2(l1/2), ‖ψ̌0‖L2(l1/2) = ‖ψ‖L2(a+0 ,+∞),
λ 󳨃→ ψ̌π(λ) ∈ L2(l1/2), ‖ψ̌π‖L2(l1/2) = ‖ψ‖L2(−∞,a+0 ). (86)

Applying the Fourier–Laplace transform to w, we have w̌(∙, θ) = ℳt 󳨃→λw(∙, θ)
which satisfies 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−λ2w̌(λ, θ) − 𝜕2w̌𝜕θ2 (λ, θ) = 0, ∀λ ∈ ℂ
β𝜕w̌𝜕θ (λ,0) = ψ̌0(λ),−β𝜕w̌𝜕θ (λ,π) = ψ̌π(λ),
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4 Numerical analysis of the half-space matching method | 141

and we can easily find the solution of this equation. We obtain for λ ∉ ℤ
w̌(λ, θ) = cos(λ(π − θ))

βλ sin(λπ) ψ̌0(λ) + cos(λθ)
βλ sin(λπ) ψ̌π(λ),

which, for λ ∉ ℤ, leads to
β𝜕w̌𝜕θ (λ, θ) = A(λ,π − θ)ψ̌0(λ) − A(λ, θ)ψ̌π(λ),

where

A(λ, θ) = sin(λθ)
sin(λπ) .

Moreover, we can show that for all θ ∈ (0,π), s 󳨃→ |A(1/2 + 𝚤s, θ)| is in L∞(ℝ) and
its supremum is attained at s = 0 and it is equal to sin(θ/2). Using the Cauchy–
Schwarz inequality (ab + cd)2 ≤ (a2 + c2)(b2 + d2), we have then, for all θ ∈ (0,π)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩β𝜕w̌𝜕θ (λ, θ)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2L2(l1/2) ≤ (cos(θ/2)‖ψ̌0‖L2(l1/2) − sin(θ/2)‖ψ̌π‖L2(l1/2))2≤ (‖ψ̌0‖2L2(l1/2) + ‖ψ̌π‖2L2(l1/2)) = ‖ψ‖2L2(Σ0).
The last inequality for θ = θ0,1, after the change of variable r = et, yields to

β 𝜕v𝜕x1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ1∩Ω0
∈ L2(Σ1 ∩ Ω0)

and 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩β 𝜕v𝜕x1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ1∩Ω0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Σ1∩Ω0)
≤ ‖ψ‖L2(Σ0). (87)

We have shown that the operator LN is continuous from L2(Σ0) to L2(Σ1 ∩ Ω0) and
its norm is bounded by 1.

2. The norm of LNχ(a0 ,+∞) can be deduced from the previous computation by taking
ψ(−∞,a+0 ) = 0 or equivalently ψ̌π = 0. We get for all θ ∈ (0,π):󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩β𝜕w̌𝜕θ (λ, θ)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(l1/2) ≤ cos(θ/2)󵄩󵄩󵄩󵄩ψ̌0(λ)󵄩󵄩󵄩󵄩L2(l1/2) = cos(θ/2)‖ψ‖L2(a+0 ,+∞), (88)

from where we conclude that the norm of the operator LNχ(a0 ,+∞) is bounded by
cos(θ0,1/2).

3. Finally, let us consider the previous computation with ψ = 0 on (a−0 , +∞). This
corresponds to takeψ0 = 0 andψπ = etψ(−et +a+0). Sinceψ vanishes on (a−0 , +∞),
we have e−γtψπ is in L2(ℝ) for any γ > 1 and so, by (85), ψ̌π is in L2(lγ) for all γ > 1.
The previous computation yields to∀λ ∉ ℤ, β𝜕w̌𝜕θ (λ, θ0,1) = −A(λ, θ0,1)ψ̌π(λ).
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We can show that ∀γ > 1, γ ∉ ℕ, sup
λ∈lγ

λA(λ, θ0,1) < +∞,
which enables us to deduce that∀γ > 1, γ ∉ ℕ, λ𝜕w̌𝜕θ (λ, θ0,1) ∈ L2(lγ).
By applying the inverse Laplace–Fourier transform, we have then∀γ > 1, γ ∉ ℕ, e−γt 𝜕2w̌𝜕t𝜕θ (t, θ0,1) ∈ L2(ℝ),
and by change of variable,∀γ > 1, γ ∉ ℕ, r−γ+3/2𝜕r( 1r 𝜕w̌𝜕θ (r, θ0,1)) ∈ L2(ℝ+).
If we choose γ = 3/2, the operator LNχ(−∞,a−0 ) ∈ H1(0, +∞). By compact embed-
ding of H1(0, b) in L2(0, b) for any b > 0, we show that χ(0,b)LNχ(−∞,a−0 ) is com-
pact. It suffices to use similar argument as in the proof of Lemma 8 to show that
χ(b,+∞)LNχ(−∞,a−0 ) is a Hilbert–Schmidt operator.

Let us now give other properties of LN which will be useful for the numerical anal-
ysis (see Section 4). We remind the definition of the symmetric and anti-symmetric
operators, defined in the proof of Lemma 17, S and A ∈ ℒ(L2(ℝ))∀ψ ∈ L2(ℝ), Sψ(y) = 1

2
(ψ(y) + ψ(2a+0 − y)), and Aψ(y) = 1

2
(ψ(y) − ψ(2a+0 − y))

We remind that S + A = Id., S2 = S, A2 = A, ‖S‖ ≤ 1, ‖A‖ ≤ 1 and for any ψ ∈ L2(ℝ) such
that ψ(−∞,a+0 ) = 0, we have‖Sψ‖L2(ℝ) = ‖Aψ‖L2(ℝ) = 1√2 ‖ψ‖L2(ℝ). (89)

Let us now study the norm of LNSψ and LNAψ for any ψ ∈ L2(ℝ). By reproducing the
previous calculations, we have easily that, writing ­(Sψ)0 =­(Sψ)π ,‖LNSψ‖L2(Σ1∩Ω0) ≤ sup

λ∈l1/2

󵄨󵄨󵄨󵄨A(λ,π − θ0,1) − A(λ, θ0,1)󵄨󵄨󵄨󵄨‖Sψ‖L2(a,+∞)
where we remind that ∀θ ∈ (0,π), ∀λ ∉ ℤ, A(λ, θ) = sin(λθ)

sin(λπ) .
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We can show that the supremum is attained at λ = 1/2 and then
sup
λ∈l1/2

󵄨󵄨󵄨󵄨A(λ,π − θ0,1) − A(λ, θ0,1)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨cos(θ0,1/2) − sin(θ0,1/2)󵄨󵄨󵄨󵄨.
Using that√2‖Sψ‖L2(a,+∞) = ‖Sψ‖L2(ℝ) ≤ ‖ψ‖L2(ℝ), we obtain‖LNSψ‖L2(Σ1∩Ω0) ≤ | cos(θ0,1/2) − sin(θ0,1/2)|√2 ‖ψ‖L2(ℝ). (90)

Similarly, we get ‖LNAψ‖L2(Σ1∩Ω0) ≤ cos(θ0,1/2) + sin(θ0,1/2)√2 ‖ψ‖L2(ℝ). (91)

Moreover, let us remark, that gathering these inequalities, we obtain an inequality
which comparing to (87), is not optimal:‖LNψ‖L2(Σ1∩Ω0) ≤ ‖LNSψ‖L2(Σ1∩Ω0) + ‖LNAψ‖L2(Σ1∩Ω0)≤ √2max(cos(θ0,1/2), sin(θ0,1/2))‖ψ‖L2(ℝ). (92)

Moreover, for ψ ∈ L2(ℝ) such that ψ(−∞,a+0 ) = 0, using (89), we obtain‖LNψ‖L2(Σ1∩Ω0) ≤ ‖LNS‖‖Sψ‖L2(ℝ) + ‖LNA‖‖Aψ‖L2(ℝ) ≤ C󸀠‖ψ‖L2(ℝ)
where

C󸀠 = max(cos(θ0,1/2), sin(θ0,1/2)) ∈ (0, 1).
This result is then not optimal for θ0,1 ∈ (0,π/2) (compared to (88)) but the constantC󸀠,
obtained that way, is still in (0, 1).
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Samuel Cogar, David Colton, and Peter Monk
5 Eigenvalue problems in inverse
electromagnetic scattering theory

Abstract: The inverse electromagnetic scattering problem for anisotropic media in
general does not have a unique solution. A possible approach to this problem is
through the use of appropriate “target signatures,” i. e., eigenvalues associated with
the direct scattering problem that are accessible to measurement from a knowledge of
the scattering data. In this paper, we shall consider three different sets of eigenvalues
that can be used as target signatures: (1) eigenvalues of the electric far field operator,
(2) transmission eigenvalues, and (3) Stekloff eigenvalues.

Keywords: Inverse scattering, nondestructive testing, transmission eigenvalues, Stek-
loff eigenvalues, eigenvalues of the far field operator

MSC 2010: 35J25, 35P05, 35P25, 35R30

1 Introduction
An important unresolved problem in electromagnetic inverse scattering theory is
how to detect flaws or changes in the constitutive parameters in an inhomogeneous
anisotropic medium. Such a problem presents itself, for example, in efforts to detect
structural changes in airplane canopies due to prolonged exposure to ultraviolet radi-
ation and is currently resolved by simply discarding canopies every few months and
replacing them with new ones. The difficulties in using electromagnetic waves to in-
terrogate anisotropicmedia is due to the fact that the corresponding inverse scattering
problem no longer has a unique solution even if multiples frequencies and multiple
sources are used [11]. Hence alternate approaches to the nondestructive testing of
anisotropic materials need to be developed.

A possible approach to the target identification problem for anisotropic materi-
als is through the use of appropriate “target signatures,” i. e., eigenvalues associated
with the direct scattering problem that are accessible to measurement from a knowl-
edge of the scattering data. The earliest attempt to do this was based on the use of
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146 | S. Cogar et al.

so-called “scattering resonances” corresponding to the complex poles of the scatter-
ing operator. Such an approach appeared particularly fruitful since there is a deep and
well-developed theory of such resonances that is readily available to the practitioner
[16]. However, the use of scattering resonances as target signatures ultimately proved
unsuccessful in electromagnetic interrogation due to the difficulty in determining the
location of the complex resonances from measured scattering data which is known
only for real values of the wave number.

A second attempt to determine target signatures from the far field data was to use
the eigenvalues of either the electric ormagnetic far field operator for this purpose.We
will present this approach in Section 3 with numerical examples given in Section 6.1.
A major drawback of this approach is the lack of any theory relating changes in the
eigenvalues to changes in the material properties of the scatterer.

Amore recent effort to determine appropriate target signatures for anisotropicma-
terials is based on the use of transmission eigenvalues [2, 4]. As opposed to scattering
resonances, for dielectrics these eigenvalues are real and can be readily determined
from the scattering data. In view of their potential in the nondestructive testing of di-
electric materials, we will present the basic theory of transmission eigenvalues in the
next two sections of our paper and refer the reader to the two monographs [2] and
[4] for further details. In contrast to the theory of scattering resonances, the theory of
transmission eigenvalues is of more recent origin with many questions unanswered.
In particular, it has been shown in special cases that complex transmission eigenval-
ues exist for dielectric materials but whether such eigenvalues exist in general and
what their physical meaning is remains an open question.

There are twomain problemswith using transmission eigenvalues as target signa-
tures. The first of these is that such an approach is only applicable to dielectric mate-
rials. The second is that one must interrogate the material over a range of frequencies
centered at a transmission eigenvalue, i. e., one is forced to use multi-frequency data
over a predetermined range of frequencies. A method to overcome both of these diffi-
culties has recently been proposed that is based on using amodified far field operator
instead of the standard far field operator that is used to determine both scattering res-
onances and transmission eigenvalues. In this new approach, the frequency is held
fixed and a new artificial eigenparameter is introducedwhich can be determined from
measured scattering data. In one version of this approach, the new artificial eigenpa-
rameter turns out to be an electromagnetic version of the classical Stekloff eigenvalue
problem for elliptic equations and we will discuss this specific class of target signa-
tures in Section 3 of this paper [3, 7].

The plan of our paper is as follows. In the next section (Section 2), we shall present
the basic theory of transmission eigenvalues forMaxwell’s equations in an anisotropic
medium and their use as target signatures. This is followed, in Section 3, by a dis-
cussion of the eigenvalues of the electric and magnetic far field operators. Next, in
Section 4, we summarize two methods for determining transmission eigenvalues us-
ing the magnetic far field equation (one could also use the electric far field equation).

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:04 PM



5 Eigenvalue problems in inverse electromagnetic scattering theory | 147

Then, in Section 5, we will show that, through the use of a modified far field operator,
Stekloff eigenvalues corresponding to the anisotropic index of refraction can be deter-
mined from the measured scattering data. In Section 6, we present some numerical
examples illustrating our results. Finally, in Section 7, we draw some conclusions and
suggest some future directions of research.

2 Transmission eigenvalues
We begin by formulating the direct electromagnetic scattering problem that we will
refer to throughout this paper. Let Ei, H i be an incident field that is scattered by an
inhomogeneous object occupying the domain D, where we assume that D has smooth
boundary 𝜕D. The corresponding scattered field is denoted by Es, Hs and E = Ei + Es,
H = H i + Hs is the total field. Then the (normalized) Maxwell’s equations are

curlE − ikH = 0

curlH + ikN(x)E = 0

}}
}}
}

in ℝ3 (2.1)

where k > 0 is the wave number, x ∈ ℝ3, N(x) is the symmetric matrix index of refrac-
tion with entries in C1(D) and Es, Hs satisfy the Silver–Müller radiation condition

lim
r→∞
(Hs × x − rEs) = 0 (2.2)

where r = |x|. We will assume that the incident field Ei, H i is given by

Ei(x) = Ei(x; d, p) = i
k
curl curl peikx⋅d

H i(x) = H i(x; d, p) = curl peikx⋅d
(2.3)

where d ∈ ℝ3, |d| = 1, is the direction of the incident wave and p ∈ ℝ3 is the polariza-
tion. Under the assumption that

ξ ⋅ ReN(x)ξ ≥ α|ξ |2

ξ ⋅ ImN(x)ξ ≥ 0
(2.4)

for x ∈ D, ξ ∈ ℂ3 and some constant α > 0 it can be shown that there exists a unique
solution E,H ∈ Hloc(curl, ℝ3) of (2.1)–(2.3) [14].

From (2.1)–(2.3), it is easy to show [10] that the scattered electric field Es(x) =
Es(x; d, p) has the asymptotic behavior

Es(x; d, p) = e
ik|x|

|x|
{E∞(x̂; d, p) + O(

1
|x|
)} (2.5)
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as |x| → ∞ where x̂ = x
|x| and E∞ is the electric far field pattern of the scattered wave.

If we define

L2t (𝕊
2) := {g: 𝕊2 → ℂ3 : g ∈ L2(𝕊2), g ⋅ ν = 0},

where 𝕊2 is the unit sphere with unit outward normal ν, the electric far field operator
Fe: L2t (𝕊

2) → L2t (𝕊
2) is given by

(Feg)(x̂) := ∫
𝕊2

E∞(x̂; d, g(d)) ds(d). (2.6)

It can easily be seen that Fe is compact [10].
Of central importance to the inverse scattering problem is the characterization of

the null space of the electric far field operator. To this end, we define an electromag-
netic Herglotz pair (E,H) to be a solution of Maxwell’s equations

curlE − ikH = 0,

curlH + ikE = 0,
(2.7)

of the form

E(x) := ∫
𝕊2

Ei(x; d, g(d)) ds(d),

H(x) := ∫
𝕊2

H i(x; d, g(d)) ds(d),
(2.8)

with kernel g ∈ L2t (𝕊
2). The proof of the following theorem can be found in [4].

Theorem 2.1. The electric far field operator Fe: L2t (𝕊
2) → L2t (𝕊

2) corresponding to the
scattering problem (2.1)–(2.3) is injective with dense range if and only if there does not
exist a nontrivial solution to the transmission eigenvalue problem

curl curlE − k2N(x)E = 0
curl curlE0 − k2E0 = 0

} in D

ν × E = ν × E0
ν × curlE = ν × curlE0

} on 𝜕D

(2.9)

where ν is the outward unit normal to 𝜕D and E0 := Eg , H0 := Hg are an electromagnetic
Herglotz pair with kernel ikg.

Values of k for which there exist nontrivial solutions to (2.9) are called transmis-
sion eigenvalues. Transmission eigenvalues play an important role in the theory of in-
verse scattering. In particular, as we shall see, these eigenvalues can be determined
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5 Eigenvalue problems in inverse electromagnetic scattering theory | 149

from the far field data and give qualitative information on the anisotropic index of re-
fraction. As noted in the Introduction, this is of particular importance in the inverse
scattering problem for anisotropic media since the anisotropic material parameters
are not uniquely determined from the far field data. Themathematical theory of trans-
mission eigenvalues is based on the following two fundamental results due to Cakoni,
Gintides, and Haddar [6] (see also [4]), where for real N(x) we define

n∗ := infx∈D
inf
‖ξ‖=1

ξ ⋅ N(x)ξ , n∗ := sup
x∈D

sup
‖ξ‖=1

ξ ⋅ N(x)ξ .

Theorem 2.2. Assume that for every ξ ∈ ℂ3, |ξ | = 1, and some constants α > 0, β > 0
one of the following inequalities is valid:
1) 1 + α ≤ n∗ ≤ ξ ⋅ N(x)ξ ≤ n∗ < ∞, x ∈ D;
2) 0 < n∗ ≤ ξ ⋅ N(x)ξ ≤ n∗ ≤ 1 − β, x ∈ D.

Then there exists an infinite countable set of positive transmission eigenvalues corre-
sponding to (2.9) with +∞ as the only accumulation point.

Note that, in contrast to scattering resonances, the above theorem says that for
realN(x) there exist positive transmission eigenvalues and, as we shall see in the next
section, these can be determined from measured far field data and thus can be used
as target signatures. It can be shown (cf. Theorem 8.12 of [10]) that if N(x) is not real-
valued then positive transmission eigenvalues do not exist.

Theorem 2.3. Let k1,D,N(x) be the first positive transmission eigenvalue for (2.9) and let
α and β be positive constants. Denote by k1,D,n∗ and k1,D,n∗ the first positive transmis-
sion eigenvalue of (2.9) for N = n∗I and N = n∗I, respectively, and let ‖⋅‖2 denote the
Euclidean operator norm.
1) If ‖N(x)‖2 ≥ α > 1, then 0 < k1,D,n∗ ≤ k1,D,N(x) ≤ k1,D,n∗ .
2) If 0 < ‖N(x)‖2 ≤ 1 − β, then 0 < k1,D,n∗ ≤ k1,D,N(x) ≤ k1,D,n∗ .

Assuming that k1,D,N(x) can be computed from the far field measurements, Theo-
rem 2.3 provides an approach to obtaining qualitative information onN(x) by comput-
ing a constant n such that k1,D,N(x) is the first positive transmission eigenvalue corre-
sponding to (2.9) withN := nI for this n. The above theorem then implies that n∗ ≤ n ≤
n∗. Since N(x) is positive definite, n∗ = λ1 and n∗ = λ3 where λ1 is the smallest and λ3
is the largest eigenvalue of N(x).

As an example, consider an orthotropic medium that is translation invarient in
the x3 direction where x = (x1, x2, x3)T [5] with

N = (
n1,1 n1,2 0
n2,1 n2,2 0
0 0 n3,3

).
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It is then possible to reduce the problem to twodimensions. In this exampleD = (0, 1)×
(0, 1) and the 2 × 2 block of the matrix N is given by

(
n1,1 n1,2
n2,1 n2,2

) = (
1/6 0
0 1/8

) .

Then λ1 = 0.125, λ2 = 0.166, and the computed n = 0.135. For details, see [5].

3 Eigenvalues of the far field operator
We shall now show that the electric (or magnetic) far field operators possess discrete
eigenvalues which can then be approximated directly using scattering data. To this
end, we need the following theorem from [9] (the result in [9] assumed thatN(x)was a
scalar but the same proof is valid for N(x) a symmetric matrix satisfying the assump-
tion (2.4)).

Theorem 3.1. Let Eig , H
i
g , and Eih, H

i
h be electromagnetic Herglotz pairs with kernels

g, h ∈ L2t (𝕊
2), respectively, and let Eg and Eh be the solutions of (2.1)–(2.3) with Ei, H i

replaced by Eig , H
i
g and E

i
h, H

i
h, respectively. Then

k∬
D

ImN(x)Eg ⋅ Eh dx = −2π(Feg, h) − 2π(g, Feh) − (Feg, Feh) (3.1)

where (⋅, ⋅) denotes the inner product on L2t (𝕊
2).

If ImN(x) = 0, then it is an easy consequence of this theorem that the compact
operator Fe is normal, and hence has an infinite number of eigenvalues [9]. In this
case, it can also easily be seen from (3.1) that if Feg = λg then

0 = −2π(λg, g) − 2π(g, λg) − |λ|2(g, g)

which implies that

|λ + 2π| = 2π (3.2)

i. e., the eigenvalues of the electric far field operator all lie on the circle (3.2). A similar
calculation can be done if, instead of using the electric far field operator, we use the
magnetic far field operator, i. e., if

Hs(x; d, p) = e
ik|x|

|x|
{H∞(x̂; d, p) + O(

1
|x|
)} (3.3)

and the magnetic far field operator Fm: L2t (𝕊
2) → L2t (𝕊

2) is defined by

(Fmg)(x̂) := ∫
𝕊2

H∞(x̂; d, g(d)) ds(d). (3.4)
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5 Eigenvalue problems in inverse electromagnetic scattering theory | 151

It is again easily seen that Fm is compact. In a similar manner to the electric far field
operator, it can be shown that Fm is injective with dense range provided k is not an
eigenvalue of the interior transmission problem

curl(N(x)−1 curlH) − k2H = 0
curl curlH0 − k2H0 = 0

in D

ν × E = ν × E0
N(x)−1(ν × curlE) = ν × curlE0

on 𝜕D
(3.5)

and that if N(x) is real then the compact operator Fm is normal, and hence has an
infinite number of eigenvalues. An identity analogous to (3.1) can also be established
for the magnetic far field operator Fm [12] and used to show that the eigenvalues of Fm
all lie on the circle

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
λ − 2πi

k

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 2π

k
. (3.6)

If N(x) is not real, then we may still establish the existence of infinitely many eigen-
values of Fe and Fm using Lidski’s theorem [10], as we show in the following theorem.
We first remark that both Fe and Fm are trace-class operators, as can be seen by con-
sidering truncated spherical harmonic expansions of the kernel of each operator.

Theorem 3.2. If ImN(x) is positive on a nonempty open set in D, then Fe has infinitely
many eigenvalues.

Proof. Since Fe is a trace-class operator, by Lidski’s theorem it remains to show that Fe
has a finite-dimensional nullspace and an imaginary part which is nonnegative. Un-
fortunately, the formula (3.1) does not provide the second requirement, andwe instead
show it for a slightlymodified operator F̃e. In order to prove the first part, we show that
under our assumption on N no real transmission eigenvalues can exist, from which
Theorem 2.6 implies that Fe is injective. Indeed, if E, E0 satisfies the homogeneous in-
terior transmission problem (2.9), then we see from the equation for E0 in D and the
integration by parts formula for the curl operator that

∫
𝜕D

[(curlE0 × E0) ⋅ ν − (curlE0 × E0) ⋅ ν]ds = 0.

Applying the vector identity (a ×b) ⋅ c = −a ⋅ (c ×b), the boundary conditions, and the
same vector identity again yields

∫
𝜕D

[(curlE × E) ⋅ ν − (curlE × E) ⋅ ν]ds = 0,

and it follows from another application of the integration by parts formula that

0 = ∬
D

(curl curlE ⋅ E − E ⋅ curl curlE)dx
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152 | S. Cogar et al.

= 2ik2∬
D

ImN(x)|E|2dx.

Thus, we observe that E = 0 on the open set D0 := {x ∈ D : ImN(x) = 0}, and by the
unique continuation principle it follows that E = 0 in all of D. This result implies that
E0 = 0 as well, and we conclude that k is not a transmission eigenvalue.

In order to prove the second part, we rewrite (3.1) in terms of F̃e := −ikFe as

ik2∬
D

ImN(x)Eg ⋅ Eh dx = 2π(F̃eg, h) − 2π(g, F̃eh) −
i
k
(F̃eg, F̃eh), (3.7)

from which it follows that for all g ∈ L2t (𝕊
2) we have

Im(F̃eg, g) =
1
2i
[(F̃eg, g) − (g, F̃eg)]

= 1
4πi
[ik2∬

D

ImN(x)|Eg |
2dx + i

k
‖F̃eg‖

2]

≥ 0.

Therefore, the assumptions of Lidski’s theorem are satisfied for the operator F̃e :=
−ikFe, and we conclude that F̃e, and hence Fe has infinitely many eigenvalues.

A similar computation establishes the result for themagnetic far field operator Fm.
Note that the definition of the electric and magnetic far field operators in [12] differ by
a factor of 4π from the ones that we are using.

4 Measurement of transmission eigenvalues
We will now consider the problem of determining transmission eigenvalues from the
measured scattering data. In particular, we will assume that the index of refraction is
real-valued andmake use of Theorems 2.1 and 2.2. In particular, we present twometh-
ods for determining transmission eigenvalues from the measured scattering data. We
first note that the transmission eigenvalueproblems (2.9) and (3.5) are seen tobe equiv-
alent by a simple change of dependent variables, and hence have the same eigenval-
ues. Hence there is no ambiguity in simply referring to the eigenvalues of (2.9) and (3.5)
as transmission eigenvalues. We will restrict our attention to considering H∞(x̂; d, p).
We always assume that ImN = 0 and that D is known (D can be determined by using
the linear sampling method; cf. [4]).

Wefirst showhow transmission eigenvalues can be determined from themagnetic
far field operator Fm.

Definition 4.1. If the solution E0 of (2.9) is the electric field of an electromagnetic Her-
glotz pair then we call the transmission eigenvalue k a nonscattering wave number.

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:04 PM



5 Eigenvalue problems in inverse electromagnetic scattering theory | 153

It is clear that the concept of nonscattering wave numbers is far more restrictive
than the concept of transmission eigenvalues. Indeed, the only case known to date
when a transmission eigenvalue is a nonscattering wave number is the case when D
is a ball and N(x) = n(|x|)I. We define

He,∞(x̂; z, p) :=
ik
4π
(x̂ × p)e−ikx̂⋅z (4.1)

where z ∈ ℝ3 and note that the right-hand side of (4.1) is the far field pattern of the
magnetic field of an electric dipole.Wenow let gαz ∈ L

2
t (𝕊

2)be the Tikhonov regularized
solution of the magnetic far field equation

(Fmg)(x̂) = He,∞(x̂; z, p) (4.2)

i. e., gαz is the solution to

(αI + F∗mFm)g
α
z = F
∗
mHe,∞. (4.3)

We then have the following result (cf. Theorem 4.44 of [2] for the scalar case; the proof
in the vector case proceeds in the same manner).

Theorem 4.2. Assume that D is simply connected and that N(x) satisfies one of the two
conditions stated in Theorem 2.2. Assume further that k is not a nonscatteringwave num-
ber and let Hgαz denote the magnetic field of the electromagnetic field defined by (2.8).
Then for any ball B ⊂ D, ‖Hgαz ‖L2(D) is bounded as α → 0 for almost every z ∈ B if and
only if k is not a transmission eigenvalue.

In particular, if one plots k versus ‖gαz ‖L2(𝕊2) for several choices of points z, then
the location of transmission eigenvalues will appear as sharp peaks in the graph (for
the scalar case, see Figure 4.2 of [2]).

We now turn our attention to a second method for determining transmission
eigenvalues from the magnetic far field operator Fm which is based on the behavior of
the phase of the eigenvalues of the compact normal operator Fm. To this end, we recall
that if k > 0 is not a transmission eigenvalue then Fm = Fm,k is injective where we
have explicitly noted the dependence of Fm on k. Hence if k > 0 is not a transmission
eigenvalue, we have the existence of a complete orthonormal basis (gj(k))∞j=1 of L

2(𝕊2)
such that

Fm,kgj(k) = λj(k)gj(k) (4.4)

where λj(k) ̸= 0 forms a sequence of complex numbers that goes to zero as j → ∞.
Define

λ̂j(k) :=
λj(k)
|λj(k)|
. (4.5)

We then have the following theorem due to Lechleiter and Rennoch [13].
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Theorem 4.3. Assume that Condition 1 (resp., Condition 2) of Theorem 2.2 is valid. Let
k0 > 0 and let (kℓ) be a sequence of positive numbers converging to k0 as ℓ → ∞.
Assume there exists a sequence (λ̂ℓ) = λ̂jℓ (kℓ) for some index jℓ such that λ̂ℓ → −1 (resp.,
λ̂ℓ → +1) as ℓ → ∞. Then k0 is a transmission eigenvalue.

Note that since Fm,k is compact and all the eigenvalues lie on the circle (3.6), the
only possible accumulation points of the sequence λ̂ℓ are −1 and +1.

The criterion of Theorem 4.3 can be used as an indicator of transmission eigenval-
ues.However, the hardpart is to prove that it occurs for every transmission eigenvalue.
We refer the reader to [13] for a further discussion on this issue.

5 Stekloff eigenvalues
So farwe have seen two families of eigenvalues that can be determined from scattering
data:
Eigenvalues of the electric far field operator: These can be computed directly

from the far field pattern using single frequency data. However, it is not easy
to determine how changes in the material properties of the object (i. e., N(x))
perturb the eigenvalues.

Transmission eigenvalues: These have a direct relation to N(x) as shown in Theo-
rem 2.3. However, they have to be computed using multi-frequency data and can
only be determined for dielectric scatterers.

We shall now introduce a family of eigenvalues from [7] that can be computed from
the far field pattern at a single frequency, and for which a simple perturbation the-
ory is known. This is achieved by constructing a modified far field operator using an
auxiliary problem which includes an appropriate eigenparameter.

To define this problem choose a domain B such that either (1) B = D or (2) B is a
ball containing D in its interior. We also need an operator S : L2t (𝜕B) → L2t (𝜕B) such
that S is self-adjoint, bounded, and

⟨Su, u⟩ ≥ 0 for all u ∈ L2t (𝜕B),

where ⟨⋅, ⋅⟩ is the L2 inner product on 𝜕B. Next we define, for any sufficiently smooth
vector field w, the tangential component of w on 𝜕B by

wT = (ν × w) × ν on 𝜕B.

Finally, we need to choose an impedance parameter λ ∈ ℝ with λ > 0 (note that a
standard impedance parameter would typically be complex). Now we can define the
solution ES of the following generalized impedance problem:

curl curlES − k
2ES = 0 in ℝ3 \ B, (5.1)
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5 Eigenvalue problems in inverse electromagnetic scattering theory | 155

ν × curlES = λSES,T on 𝜕B, (5.2)
Ei + EsS = ES in ℝ3 \ B, (5.3)

lim
r→∞
(curlEsS × x − ikrE

s
S) = 0. (5.4)

This scattering problem has a unique solution for any k > 0 as shown in [7] (for any λ,
any solution is always unique).

Then, as usual for a scattering problem, the scattered field EsS has the asymptotic
expansion

EsS(x) =
exp(ikr)

r
ES,∞(x̂, d; p) + O(

1
r2
) as r →∞,

and we can then define the impedance far field operator by

(FSg)(x̂) = ∫
𝕊2

ES,∞(x̂; d, g(d)) ds(d).

The modified far field operator is then defined by

FM = Fm − FS .

We can see a link between the modified far field operator and the interior Stekloff
eigenvalue problem as argued in [7]. There it is shown that FM is injective with dense
range provided λ is not a generalized Stekloff eigenvalue of the problem

curl curlw − k2Nw = 0 in B, (5.5)
ν × curlw − λSwT = 0 on 𝜕B. (5.6)

It is then necessary to analyze the existence of generalized Stekloff eigenvalues, and
this analysis depends on the choice of S. Themost obvious choice corresponding to the
standard impedance boundary condition is S = I. Unfortunately, direct calculation of
the eigenvalues in the casewhenN = 1 andB is a ball shows that there are two families
of eigenvalues having different accumulation points (one at infinity and one at zero).
Indeed in this case, assuming N = 1, if λ is an eigenvalue then so is −k2/λ. Thus they
cannot be analyzed as the eigenvalues of a compact operator.

Instead, in [7] we make the choice of S as follows. Let u ∈ L2t (𝜕B) and define q ∈
H1(𝜕B)/ℝ by solving

Δ𝜕Bq = curl𝜕B u.

Note that this assumes that if B = D then 𝜕D has just one connected component. Then
Su = ⃗curl𝜕Bu. Here Δ𝜕B is the Laplace–Beltrami operator on 𝜕B, and curl𝜕B and ⃗curl𝜕B
are the scalar and vector surface curls, respectively.
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Using S, we can now write the generalized Stekloff eigenvalue problem as an op-
erator equation. We introduce the operator T : H(div0𝜕B, 𝜕B) → H(div0𝜕B, 𝜕B) where

H(div0𝜕B, 𝜕B) = {u ∈ L
2
t (𝜕B) | ∇𝜕B ⋅ u = 0 on 𝜕B}

defined as follows. For given f ∈ H(div0𝜕B, 𝜕B), we define w to be the weak solution of

curl curlw − k2ϵrw = 0 in B
ν × curlw = −f on 𝜕B.

This is awell-posed problemprovided k2 is not an interior Neumann eigenvalue for the
curl-curl operator. These eigenvalues form a discrete set and from now on we assume
k2 > 0 is not such an eigenvalue. Then

Tf = SwT on 𝜕B.

The fact that SwT is surface divergence-free can be used to show that Tf is actually in
(H1/2(𝜕B))3, and hence the operator T is compact. Furthermore, it is self-adjoint, and
consequently there exist infinitely many eigenvalues μwith associated eigenfunction
u ̸= 0 for the problem

Tu = μu.

Considering the definition of T, we see that if μ is an eigenvalue for T then λ = −1/μ is
a generalized Stekloff eigenvalue. Thus we conclude the following.

Theorem 5.1 (Theorem 3.6 of [7]). When ϵr is real, and k2 is not an interior Neumann
eigenvalue for the curl-curl operator, there exists a countable set of real generalized
Stekloff eigenvalues that accumulate at infinity.

Supposing now that we can measure generalized Stekloff eigenvalues, we can as-
sume that changes in these eigenvalues can give information about changes in N(x)
as is the case for the Helmholtz equation [3]. To see this, suppose (w, λ),w ̸= 0 is a gen-
eralized Stekloff eigenpair for permittivity N(x) and that (wδ, λδ) is the corresponding
eigenpair for N(x) + δN(x) where ‖δN‖L∞ is small. Then assuming that w ≈ wδ (e. g.,
when the eigenvalue is simple and the perturbation δN is small), we have, neglecting
quadratic terms, that

λ − λδ ≈ −k
2 (δNw,w)
⟨SwT , SwT⟩

(5.7)

where ⟨⋅, ⋅⟩ is the L2 inner product on 𝜕B and (⋅, ⋅) is the L2 inner product on B.
The main question now is how to determine generalized Stekloff eigenvalues (or

at least a few of them) from far field scattering data. As in the case of transmission
eigenvalues, this involves the far field equation, and this time we use the electric far
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5 Eigenvalue problems in inverse electromagnetic scattering theory | 157

field equation. The outgoing electric field due to a point dipole at position z with po-
larization q in free space is [10]

Ee =
i
k
curlx curlx(qΦ(x, z))

where curlx denotes the curl with respect to x and Φ is the fundamental solution of
the Helmholtz equation

Φ(x, y) = exp(ik|x − y|)
4π|x − y|

, x ̸= y.

The far field pattern due to the dipole source is then given by

Ee,∞(x̂, z; q) =
ik
4π
(x̂ × q) × x̂ exp(−ikx̂ ⋅ z)

where x̂ ∈ 𝕊2 is the observation direction (for comparison, see (3.3) for the definition
of the magnetic far field pattern, and (4.1) for the magnetic far field pattern of a dipole
source).

For generalized Stekloff eigenvalues, the far field equation corresponding to (4.2)
is then to seek gz,q ∈ L2t (𝕊

2) such that

(FMgz,q)(x̂) = Ee,∞(x̂, z; q) for all x̂ ∈ 𝕊2. (5.8)

As in the case of transmission eigenvalues, we actually solve a Tikhonov regularized
version of this problem by choosing a regularization parameter α > 0 and solving

(αI + F∗MFM)gz,q,α = F
∗
MEe,∞

where F∗M is the L2 adjoint of FM . Note that FM depends on the Stekloff parameter λ,
so gz,q,α is also dependent on λ. As λ varies, we can use ‖gz,q,α‖L2t (𝕊2) as an indicator
function for Stekloff eigenvalues. Although we cannot prove that this is an appropri-
ate indicator function, we can prove that there is an approximate solution of (5.8) that
does have this property. All numerical tests suggest that the solution of the above reg-
ularized problem can indeed serve as an indicator function.

In a similar way to the proof of Theorem 4.2, we can now prove the analogous
result for Stekloff eigenvalues. To do this, we need to recall the definition of the electric
Herglotz wave function

vg(x) = −ik ∫
𝕊2

g(d) exp(−ikx ⋅ d) dsd.

Theorem 5.2 (Theorem 4.2 of [7]). Assume λ is not a Stekloff eigenvalue and k2 is not
an interior Neumann eigenvalue for the curl-curl problem. Let z ∈ D and q be fixed. Then
for every ϵ > 0 there exists a function gϵ ∈ L2t (𝕊

2) that satisfies

lim
ϵ→0
‖FMgϵ − Ee,∞(⋅, z; q)‖L2t (𝕊2) = 0

and such that ‖vgϵ‖L2t (B) is bounded as ϵ → 0.
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Conversely, we can show that if λ is a Stekloff eigenvalue, ‖vgϵ‖L2t (B) cannot re-
main bounded as ϵ → 0 for almost every z ∈ D. These results suggest that a graph
of ‖vgϵ‖L2t (𝕊2) against λ will show peaks at the Stekloff eigenvalues (provided we sam-
ple several points z ∈ D). In practice, we do not use ‖vgϵ‖L2t (𝕊2) to detect eigenvalues
because it is somewhat expensive to compute (we would replace gϵ by gz,q,α). Instead
we use as a surrogate ‖gz,q,α‖L2t (𝕊2).

6 Numerical examples

Numerous examples of the computation of transmission eigenvalues exist in the lit-
erature (cf. [4]) and so we will not present more here. Instead we will focus on the
two sets of eigenvalues discussed in this paper that can be computed at a single fre-
quency: (1) eigenvalues of the electric far field operator and (2) generalized Stekloff
eigenvalues.

Our numerical examples are all computed using synthetic far field data. This data
is computed using the Netgen [15] finite element library using second-order edge ele-
ments and a fifth-order approximation to curved surfaces.We use a spherical perfectly
matched layer, at a distance of half a wavelength from the circumscribing sphere for
B, of thickness one quarter of a wavelength. The PML parameter is chosen to give ap-
proximately 0.6% relative error in the computed far field pattern for scattering by a
penetrable sphere of unit radius (measured in the L2 norm). In all of the calculations,
the wave number is chosen to be k = 1 so the wavelength in free space is 2π.

The far field pattern FS of the generalized Stekloff scattering problem needed for
the solution of (5.8) is computed by the same code with the addition of the calculation
of an approximation to the operator S computed using third-order finite elements in
H1(𝜕B). Generalized Stekloff eigenvalues for arbitrary structures are computed using
the same finite elements but now on a bounded domain as described in [7].

The far field operators are discretized by quadrature on the unit sphere. We use
a finite element grid on the unit sphere having 99 nodes (made by Netgen) and use
vertex basedquadrature on each element to calculate theweights for each vertex value
of the far field pattern.

Two domains are considered for the scatterer. The first is the unit cube, and the
second is the (hockey) puck which is a circular cylinder of radius 3/2 and unit height
centered at the origin. The latter scatterer has been suggested as a good experimental
model, being dielectric and which can easily be damaged by drilling out portions.
Experimental results are not considered here.
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6.1 Eigenvalues of the far field operator

In this section, we investigate the use of eigenvalues of the electric far field operator
as a target signature. Due to the ease of computing such eigenvalues, they seem to be
a natural choice for this purpose, but a significant drawback is the lack of theory con-
cerning their response to changes in the material parameters of an inhomogeneous
medium. Thus, our study is confined to a collection of numerical examples, and to
facilitate a direct comparison we perform the same numerical experiments as we will
for Stekloff eigenvalues. In order to compute the eigenvalues of the electric far field
operator Fe, we first discretize the operator using quadrature to obtain a matrix A.
When we investigate the effect of noisy data, we obtain a noisy far field matrix Aε by
multiplying each component of the far field data by 1+ε ζ+iμ√2 , where ε > 0 is a fixed pa-
rameter and ζ , μ are both uniformly distributed random numbers in [−1, 1] computed
using the rand command in MATLAB. The eigenvalues of Aε are then computed using
the eig command in MATLAB. In Figure 5.1, we see that the eigenvalues of the far field
operator for both the unit cube and the puck lie on the circle |λ + 2π| = 2π as implied
by Theorem 3.1.

Figure 5.1: The computed eigenvalues of the electric far field operator with ϵD = 2 and no noise. The
eigenvalues lie on the circle |λ + 2π| = 2π and appear to converge to zero as predicted.

An important property of a target signature is that it is stable in the presence of noise.
In Figure 5.2, we plot the eigenvalues of the far field operator for both the unit cube
and puck with ϵD = 2 for different amounts of noise, and in Figure 5.3 we perform the
same test with ϵD = 2+ 2i. In the presence of absorption (complex ϵD), the eigenvalues
move inside the circle |λ + 2π| = 2π.

We remark that although the eigenvalues near the origin are highly sensitive to
noise, the eigenvalues with larger magnitude tend to remain localized. This stability
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Figure 5.2: The computed eigenvalues of the electric far field operator with ϵD = 2 and various levels
of noise. The eigenvalues of larger magnitude remain stable in the presence of noise, whereas those
near the origin are highly unstable.

Figure 5.3: The computed eigenvalues of the electric far field operator with ϵD = 2 + 2i and various
levels of noise. The eigenvalues of larger magnitude remain stable in the presence of noise, whereas
those near the origin are highly unstable.

is promising, and the distribution of the eigenvalues near the originmay even provide
some measure of the noise level.

Of course, our primary point of inquiry is whether the eigenvalues of the far field
operator reliably shift due to a change in an inhomogeneous medium. In Figure 5.4,
we plot the eigenvalues corresponding to ϵD = 2 and ϵD = 2.5 for both the unit cube
and puck. We remark that the eigenvalues with larger magnitude exhibit a noticeable
shift due to this change, which are precisely the eigenvalues that remained stable in
the presence of noise in our previous test.
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Figure 5.4: The computed eigenvalues of the electric far field operator with ϵD = 2 and ϵD = 2.5,
where no noise has been added. The eigenvalues shift due to the overall change in ϵD, and a greater
shift is exhibited by eigenvalues of larger magnitude.

6.2 Stekloff eigenvalues

We now perform numerical tests for generalized Stekloff eigenvalues. In order to com-
pute an approximate solution to the electric far field equation (5.8), we use the same
matrixA described for the computation of eigenvalues of the electric far field operator,
and we add noise in the same manner. We first comment on the choice of the domain
B for both the unit cube and puck. The only requirement is that each scatterer is con-
tained in B, but a natural choice is to choose B to be a ball centered at the origin. We
remark that when we solve the far field equation for each sampled value of λ, we do
so for 10 randomly chosen z in a ball (of radius 1/4 for the cube and 1/3 for the puck)
contained inside D and average the norms of the solutions to serve as our indicator
function. In Figures 5.5 and 5.6, we plot the average norm of g, the solution obtained
from applying Tikhonov regularization to (5.8), against the Stekloff parameter λ for
the cases in which B = D and B is a ball, respectively. We see that the peaks in the plot
approximate the first couple of eigenvalues well for both the unit cube and the puck
when B is chosen to be a ball, but it is difficult to detect any eigenvalues reliably when
B = D.

In Figures 5.7 and 5.8, we provide the same plots as in Figures 5.5 and 5.6, respec-
tively, for various levels of noise. For the case B = D, the plot for the cube exhibits a
peak in the presence of noisewhich does not coincidewith any of the eigenvalues, and
a similar peak appears in the plot for the puck near the eigenvalue of smallest mag-
nitude. For the case B ̸= D, we observe that only a couple of the smallest eigenvalues
in magnitude remain detectable in the presence of noise for both the unit cube and
the puck, and the noise seems to reduce the prominence of the peaks rather than shift
them.
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Figure 5.5: A plot of the average norm of g against the Stekloff parameter λ with ϵD = 2.0 and no
noise, where B = D. The stars represent the exact eigenvalues computed using finite elements. We
observe the difficulty in reliably detecting any eigenvalues.

Figure 5.6: A plot of the average norm of g against the Stekloff parameter λ with ϵD = 2.0 and no
noise, where B is chosen to be a ball centered at the origin. The stars represent the exact eigenval-
ues computed using finite elements. We observe that the first couple of eigenvalues are detected in
each case.

In Figures 5.9 and 5.10, we investigate the shift of generalized Stekloff eigenvalues due
to an overall change in ϵD from 2 to 2.5. For the case B = D, we see that the exact
eigenvalues shift and that there is some difference in the plot of the average norm
of g, but since these two do not correspond well, it is difficult to make any definite
conclusions about their usefulness in detecting changes in ϵD. The caseB ̸= D displays
a reduced sensitivity in the eigenvalues, with only the smallest eigenvalues for the
puck exhibiting any noticeable shift. However, this choice of B improves the ability to
detect eigenvalues, and consequently this shift may be seen in the peaks of the plot of
the average norm of g.
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Figure 5.7: A plot of the average norm of g against the Stekloff parameter λ with ϵD = 2.0 and B = D
for various levels of noise. The stars represent the exact eigenvalues computed using finite ele-
ments. Though some prominent peaks appear in the presence of noise for both scatterers, they do
not correspond reliably to any of the eigenvalues.

Figure 5.8: A plot of the average norm of g against the Stekloff parameter λ with ϵD = 2.0 and B ̸= D
for various levels of noise. The stars represent the exact eigenvalues computed using finite ele-
ments. Only a couple of eigenvalues remain detectable in the presence of noise.

The perturbation estimate (5.7) suggests that the shift of a Stekloff eigenvalue due to a
change in ϵD is related to the magnitude of a corresponding eigenfunction in a neigh-
borhood of the change, and in Figures 5.11 and 5.12 we plot a cross-section of an eigen-
function corresponding to the cube and puck, respectively. In Figure 5.11b, we see that
D is disjoint from the regions in which the eigenfunctionw is greatest, which suggests
that an overall change in ϵD for the unit cube will not result in a large shift in the
corresponding eigenvalue, as we observed. In contrast, we see in Figure 5.12b that D
intersects with the regions of large magnitude of w and explains the observed shift of
the corresponding eigenvalue for the puck in Figure 5.10. Though precise knowledge
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Figure 5.9: A plot of the average norm of g against the Stekloff parameter λ with ϵD = 2.0, 2.5, and no
noise. The symbols “+” and “×” represent the exact eigenvalues computed using finite elements for
ϵD = 2.0 and ϵD = 2.5, respectively. The exact eigenvalues clearly shift and there is some difference
in the plot of the indicator function due to the overall change in ϵD.

Figure 5.10: A plot of the average norm of g against the Stekloff parameter λ with ϵD = 2.0, 2.5, and
no noise. The symbols “+” and “×” represent the exact eigenvalues computed using finite elements
for ϵD = 2.0 and ϵD = 2.5, respectively. We observe no noticeable shift in the eigenvalues for the unit
cube, but we do observe a shift in the smallest eigenvalues for the puck.

of the geometry and material properties of the scatterer must be known in order to
take advantage of this information, this relationship between the eigenfunctions and
the material properties may be highly useful in nondestructive testing of materials. In
particular, it might allow for the localization of flaws in amaterial by observing which
eigenvalues shift and which do not.

An important advantage of Stekloff eigenvalues over transmission eigenvalues
is that Stekloff eigenvalues may in principle be computed for absorbing media, i. e.,
when ϵD has a nonzero imaginary part. Though the present theory does not include a
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Figure 5.11: A cross-section of the unit cube surrounded by a ball and the corresponding cross-
section of an eigenfunction.

Figure 5.12: A cross-section of the puck surrounded by a ball and the corresponding cross-section of
an eigenfunction.

proof of existence of electromagnetic Stekloff eigenvalues in this case, in Figures 5.13
and 5.14 we present an example of their computation for the unit cube and the puck
when ϵD = 2+2i andB is chosen to be a ball. In these examples, we have paired the plot
for each scatterer with its noisy counterpart in order to obtain a more direct measure
of the effect of noise.We observe that all of the eigenvalues in this sampling region are
detected when no noise is present, and one remains detectable to a reasonable degree
of accuracy in the presence of 7%noise. It should be noted that the computational ex-
pense is greatly increased by the necessity to sample in a region of the complex plane
rather than in an interval on the real line. However, as in the previous examples for
real ϵD, the computation of the modified Stekloff problems may be performed ahead
of time for a given region B and applied to any case in which D ⊆ B.
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Figure 5.13: A base 10 contour plot of the average norm of g against the Stekloff parameter λ in the
complex plane for the unit cube with ϵD = 2 + 2i and two different noise levels. Here, we choose B
to be the unit ball. The white stars represent the exact eigenvalues computed using finite elements.
We observe that all of the eigenvalues in this region are detected when no noise is present, and one
remains detectable with 7% noise.

Figure 5.14: A base 10 contour plot of the average norm of g against the Stekloff parameter λ in the
complex plane for the puck with ϵD = 2 + 2i and two different noise levels. Here, we choose B to
be the unit ball. The white stars represent the exact eigenvalues computed using finite elements.
We observe that all of the eigenvalues in this region are detected when no noise is present, and one
remains detectable with 7% noise.

7 Conclusion and open problems

The fact that the electric far field data does not uniquely determine the material prop-
erties of an anisotropic medium presents many difficulties in the detection of changes
in the material properties of a medium, and we have seen that various approaches us-
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ing the idea of a target signature are available. An important question iswhich of these
target signatures should be chosen for a given application, and unfortunately the an-
swer is not entirely straightforward. Although the theory of transmission eigenvalues
is applicable to dielectric media, the use of target signatures for absorbing media at
this time rests with either the eigenvalues of the electric far field operator or general-
ized Stekloff eigenvalues, a pair with complementary strengths and weaknesses. On
onehand,wehave observed anoticeable shift in the eigenvalues of the electric far field
operator due to an overall change in ϵD, whereas Stekloff eigenvalues do not appear
to shift as reliably. On the other hand, the relationship between Stekloff eigenvalues
and the permittivity ϵD is apparent in the variational formulation and lends itself to
investigation by standard techniques in the theory of partial differential equations,
whereas little is known about the eigenvalues of the electric far field operator beyond
their distribution in the complex plane. In addition, the use of Stekloff eigenvalues
requires some decision-making on the choice of B: choosing B = D often improves
sensitivity at the expense of reliable detection of eigenvalues, and choosing B ̸= D im-
proves the detection of eigenvalues while reducing their sensitivity to changes in the
medium. Thus, any attempt to use these methods would require some experimenta-
tion to determine the best choice, and there are multiple trade-offs to consider.

However, the story likely does not endwith this rather disappointing observation,
as these are not the only target signatures under current study. In particular, there are
a number of possible ways in which the electric far field operator can be modified. An
example in acoustic scattering modifies the far field operator with that correspond-
ing to scattering by an auxiliary homogeneous medium, and the eigenparameter of
interest η is the index of refraction of the auxiliary medium [1, 8]. An important ad-
vantage of this method is that the auxiliary scattering problem also depends on an
additional parameter γ which may be tuned to improve the sensitivity of the eigen-
values to changes in the material properties, thus overcoming the loss of sensitivity
resulting from the choice B ̸= D.

In Figure 5.15, we show a direct comparison between Stekloff eigenvalues and
these so-called modified transmission eigenvalues for acoustic scattering of a L-
shaped domain, where we have used the recently developed generalized linear sam-
plingmethod (cf. [1]) in order to detect the eigenvalues from far field data. This domain
has been used for numerical testing of Stekloff eigenvalues andmodified transmission
eigenvalues previously (cf. [3] and [8], resp.), and we see that the shift in the eigen-
values due to a circular flaw located at (xc, yc) = (0.1,0.4) of radius rc = 0.05 is much
more pronounced for modified transmission eigenvalues than Stekloff eigenvalues.
It should be noted that for the case of Stekloff eigenvalues there exist peaks in the
GLSM indicator corresponding to some of the other exact eigenvalues shown, but the
height of these peaks is considerably less than the one visible. We remark that the
modified transmission eigenvalues correspond to the choice γ = 0.5 in [8] and that
instead using γ = 2 produces poor results.
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Figure 5.15: A direct comparison of Stekloff eigenvalues and modified transmission eigenvalues
(with γ = 0.5) for acoustic scattering by a L-shaped domain. The shift in the eigenvalues due to a
circular flaw located at (xc , yc) = (0.1,0.4) of radius rc = 0.05 is much more pronounced for modi-
fied transmission eigenvalues than Stekloff eigenvalues. The red “+” symbol represents the exact
eigenvalues for the unflawed domain, and the red “×” symbol represents the exact eigenvalues for
the domain with a circular flaw.

This example indicates that, at least for acoustic scattering and with a proper choice
of γ, modified transmission eigenvalues provide more information about the material
properties of the scatterer than Stekloff eigenvalues. This observation is not too sur-
prising, as can be seen from the fact that for spherically stratified media there exists
a single Stekloff eigenvalue corresponding to a spherically symmetric eigenfunction,
whereas there exist infinitely many such modified transmission eigenvalues. Extend-
ing this approach to Maxwell’s equations is the focus of our current research.
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Martin Costabel and Monique Dauge
6 Maxwell eigenmodes in product domains
Abstract: This paper is devoted toMaxwellmodes in three-dimensional bounded elec-
tromagnetic cavities that have the form of a product of lower dimensional domains
in some systems of coordinates. The boundary conditions are those of the perfectly
conducting or perfectly insulating body. Themain case of interest is products in Carte-
sian variables. Cylindrical and spherical variables are also addressed.We exhibit com-
mon structures of polarization type for eigenmodes. In the Cartesian case, the cavity
eigenvalues can be obtained as sums of Dirichlet or Neumann eigenvalues of positive
Laplace operators and the corresponding eigenvectors have a tensor product form.
We compare these descriptions with the spherical wave function Ansatz for a ball and
show why the cavity eigenvalue of the ball are also Dirichlet or Neumann eigenval-
ues of some scalar operators. As application of our general formulas, we find explicit
eigenpairs in a cuboid, in a circular cylinder, and in a cylinder with a coaxial circu-
lar hole. This latter example exhibits interesting “TEM” eigenmodes that have a one-
dimensional vibrating string structure, and contribute to the least energymodes if the
cylinder is long enough.

Keywords: Electromagnetic cavity, perfectly conducting cavity, Maxwell equations,
short-circuit electric or magnetic eigenfunctions, TE or TM polarization, Debye poten-
tial

MSC 2010: 78A25, 35Q60, 35J05

1 Introduction
A domain Ω of ℝn is called a product domain if for a choice of Cartesian coordinates
x = (y, z) in ℝn, the domain Ω coincides with the product 𝒴 × 𝒵 in the sense that

x ∈ Ω ⇐⇒ y ∈ 𝒴 and z ∈ 𝒵 .

In the three-dimensional space (n = 3), we may assume without restriction that 𝒴 has
the dimension 2, and 𝒵, dimension 1, hence is an interval. Such a domain may also
be called a cylinder. Themainmotivation of this work is to exhibit for electromagnetic
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cavity problems in a cylinder with arbitrary cross-section similar properties as those,
well known, for acoustic modal problems.

Most of the results we present are not new and have their roots in the pioneer-
ing works by Mie (1908) and Debye (1909). Expressions for cavity modes in cylinders
can be found in [10] and in balls in [9]. Our aim is to adopt a synthetic presentation
that clearly links Laplace or Laplace-like eigenvectors to electromagnetic eigenmodes
via TE (transverse electric) and TM (transverse magnetic) vector wave functions: The
Laplace eigenvectors appear as Debye potentials. In particular, we carefully address
the case when the cross-sectionω of Ω contains holes (modelling, for instance, metal-
lic wires) and prove the completeness of a system of TE, TM, and TEM modes. The
TEM eigenmodes that enjoy both features of transverse electric and magnetic polar-
izations, often contribute the lowest frequencies, and this can be precisely quantified.
This case was the first motivation for the present investigation.

The knowledge of Maxwell eigenmodes to an applied mathematics audience has
some importance. Our results can be used as benchmarks for numerical methods for
the computation of cavity modes. Also for transmission problems, our description of
the interior eigenmodes may be useful, since there exist standard numerical methods
that fail if the frequency coincides with an interior eigenfrequency.

1.1 The case of acoustics: The Dirichlet–Laplacian

The Laplace operator Δ inℝn is expressed in variables x = (x1, . . . , xn) as Δ = ∑1≤j≤n 𝜕
2
xj

and it is the sum of the two Laplace operators in variables y and z

Δ = Δy + Δz .

The Sobolev space H1(Ω) on the product domain Ω = 𝒴 × 𝒵 can be written as

H1(Ω) = L2(𝒴 ,H1(𝒵)) ∩ H1(𝒴 , L2(𝒵)).

Likewise, the closure H1
0(Ω) in H

1(Ω) of smooth functions with compact support in Ω
satisfies

H1
0(Ω) = L

2(𝒴 ,H1
0(𝒵)) ∩ H

1
0(𝒴 , L

2(𝒵)).

As a direct consequence we find, for any bounded product domain Ω, the full spectral
description of the Dirichlet–Laplacian.

Theorem 1.1. Let (λj, vj)j≥1 and (μm,wm)m≥1 be the spectral sequences of −Δy on H1
0(𝒴)

and of −Δz on H1
0(𝒵), respectively. This means that

λ1 < λ2 ≤ ⋅ ⋅ ⋅
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is the eigenvalue sequence of −Δy and (vj)j≥1 is an associated orthonormal basis, and
the same for −Δz .

Then the set of eigenvalues of −Δ on H1
0(𝒴 × 𝒵) is

{λj + μm, j ≥ 1, m ≥ 1}

and the tensor functions uj,m := vj ⊗ wm, i. e., defined as

uj,m(x) = vj(y)wm(z),

are orthonormal associated eigenvectors, and they form a basis of H1
0(Ω).

Of course, a similar result holds for Neumann boundary conditions. This holds
also for mixed Dirichlet–Neumann problems of the type

(Dirichlet on 𝜕𝒴 × 𝒵) and (Neumann on 𝒴 × 𝜕𝒵)

for which the (λj, vj) are still the Dirichlet eigenpairs on 𝒴, but the (μm,wm) have to be
taken as theNeumanneigenpairs on𝒵. Finally, theDirichlet andNeumann conditions
can be also be swapped between 𝒴 and 𝒵.

1.2 The case of electromagnetism: The Maxwell system

From now on, the space dimension is n = 3. Let Ω be a domain in ℝ3, representing
a cavity filled by an homogeneous dielectric medium. We assume that the boundary
of Ω represents perfectly conducting walls. After normalization, the cavity resonator
problem is to find the frequencies k ∈ ℝ and the nonzero electromagnetic fields (E,H)
in L2(Ω)6 such that

{{{{
{{{{
{

curl E − ikH = 0 in Ω,
curlH + ikE = 0 in Ω,
div E = 0 and divH = 0 in Ω,
E × n = 0 and H ⋅ n = 0, on 𝜕Ω.

(1.1)

Here, n denotes the outward unit normal to 𝜕Ω. The gauge conditions on the diver-
gence are a consequence of the first two equations if k ̸= 0. Nevertheless, we look for
solutions of (1.1) including k = 0. The occurrence of k = 0 happens if and only if the
domain Ω is topologically nontrivial, i. e., if Ω is not simply connected, or if 𝜕Ω is not
connected; see Propositions 3.14 and 3.18 in [1].

Definition 1.2. The triples (k, E,H) solution of (1.1) with (E,H) ̸= 0 are called Maxwell
eigenmodes, k is called eigenfrequency, k2 eigenvalue, and E, H electric and magnetic
eigenvectors.
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Let Ω be a bounded product domain in ℝ3. This means that

Ω = ω × I , ω ⊂ ℝ2, I interval in ℝ. (1.2)

We denote correspondingly Cartesian coordinates in Ω by

x = (x1, x2, x3) = (x⊥, x3), x⊥ ∈ ω and x3 ∈ I .

We assume that ω is a bounded Lipschitz domain. We note that the boundary of Ω is
connected but, if ω is not simply connected, the same holds for Ω.

Notation 1.3.
1. Denote by Δ⊥ = 𝜕21 + 𝜕

2
2 the Laplace operator in the variables x⊥.

2. Let (λdirj , v
dir
j )j≥1 be the eigenpair sequence of the Dirichlet problem in ω for the

operator −Δ⊥.
3. Let (λneuj , v

neu
j )j≥0 be the eigenpair sequence of the Neumann problem in ω for the

operator −Δ⊥, with λneu0 = 0 and v
neu
0 = 1.

4. Let (μdirm ,w
dir
m )m≥1 be the eigenpair sequence of the Dirichlet problem in I for the

operator −𝜕23.
5. Let (μneum ,w

neu
m )m≥0 be the eigenpair sequence of the Neumann problem in I for the

operator −𝜕23, with μ
neu
0 = 0 and w

neu
0 = 1.

One of the results of this paper is (see Theorem 3.6) the following.

Theorem 1.4. Assume thatω is simply connected. Then theMaxwell eigenvalues k2 span
the set

{λdirj + μ
neu
m , j ≥ 1, m ≥ 0} ∪ {λ

neu
j + μ

dir
m , j ≥ 1, m ≥ 1}. (1.3)

(including repetition according to multiplicities).

In the sequel, we describe a corresponding basis of eigenvectors, constructed on
the model of vector wave functions, according to the widely usedM and N ansatz (De-
bye potentials). We include the case when ω is multiply connected: In this case, the
relevant parameter is the number D of connected components of 𝜕ω and to the set
(1.3), we have to add all the μdirm , each of them with multiplicity D − 1, corresponding
to the number of holes contained in ω. The corresponding modes are the TEM modes
that have no component in the direction x3.

This paper is organized as follows. In Section 2, we introduce general principles
for the description of the Maxwell cavity modes. In Section 3, we give formulas for the
electric eigenmodes (κ2, E) in the case when Ω has the cylindric formω× I withω ⊂ ℝ2

and I ⊂ ℝ, separating the modes according to their polarization in TE, TM, and TEM
types. In Section 4, we deduce the structure of magnetic cavity modes and synthesize
results in Table 6.1. In Section 5, we mention generalizations to special combinations
of conducting and insulating boundary conditions.
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As an application of our formulas, we consider in Section 6 the case when Ω is a
cube (or, more generally, a cuboid), and in Section 7 the case whenΩ is axisymmetric:
Then Ω is a circular cylinder, or a circular cylinder with a coaxial cylindrical hole. We
bring special attention to the latter case. Then the TEM modes appear in the explicit
form (7.8).

We address the situation when Ω is a ball of radius R in Section 8. The analysis is
in the same spirit and exhibits a close relation with a scalar Laplace-like operator in
the “cylinder” 𝕊2 × (0,R).

Finally, in Section 9, again for product domains, we investigate the variable coef-
ficient case, namely when ε is varying transversally, i. e., independently of the axial
variable x3. Then the TE and TM structures are no longer a valid Ansatz, in general.
In replacement, we obtain wave guide formulations with separation of variables and
tensor product form for eigenmodes.

2 Preliminaries

2.1 Electric and magnetic formulations for the Maxwell spectrum

Wefirst recall the definition of the standard functional spaces associatedwithMaxwell
equations on a domain Ω ⊂ ℝ3. The curl in 3D is defined as

curl u = (
𝜕2u3 − 𝜕3u2
𝜕3u1 − 𝜕1u3
𝜕1u2 − 𝜕2u1

) for u = (u1, u2, u3)

and H(curl,Ω) is the space of L2(Ω) fields with curl in L2(Ω), while H0(curl,Ω) is the
subspace ofH(curl,Ω)with perfectly conducting electric boundary condition u×n = 0.

The divergence in 3D is defined as

div u = 𝜕1u1 + 𝜕2u2 + 𝜕3u3 for u = (u1, u2, u3)

and H(div,Ω) is the space of L2(Ω) fields with divergence in L2(Ω), and H0(div,Ω)
the subspace of H(div,Ω) with perfectly conducting magnetic boundary conditions
u ⋅ n = 0.

It is well known that the system of equations (1.1) can be formulated with E only
(electric formulation) or H only (magnetic formulation). Each time a vector Helmholtz
equation is found. Convenient functional spaces for the electric and magnetic varia-
tional formulations are

XN(Ω) := H0(curl,Ω) ∩ H(div,Ω) and XT(Ω) := H(curl,Ω) ∩ H0(div,Ω) .
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In these spaces, regularized formulations make sense. This means that, introducing a
parameter

s ≥ 0

we introduce the electric variational formulations:
Find the eigenpairs (Λ = κ2, u) with u ̸= 0 in XN(Ω) such that

∫
Ω

curl u curl v + sdiv udiv v dx = Λ∫
Ω

u ⋅ v dx, ∀v ∈ XN(Ω), (2.1)

while magnetic formulations are the following.
Find the eigenpairs (Λ = κ2, u) with u ̸= 0 in XT(Ω) such that

∫
Ω

curl u curl v + sdiv udiv v dx = Λ∫
Ω

u ⋅ v dx, ∀v ∈ XT(Ω). (2.2)

Relying on [4, Theorem 1.1], we know that the eigenpairs of (2.1) split in two fami-
lies:
a) the Maxwell eigenvalues, independent of s, for which the eigenvectors are diver-

gence-free;
b) the gradients of the Dirichlet eigenvectors for −Δ on Ω, associated with eigenval-

ues sλdirΩ .

Thus the regularization by sdiv udiv v makes the problem elliptic as soon as s > 0
and gives a description of the infinite dimensional kernel of the curl curl operator. The
gauge conditions div E = 0 and divH = 0 in (1.1) ensure that we are always in case a).
We can state the following.

Lemma 2.1.
1. Let (k, E,H) be a Maxwell eigenmode solution of (1.1). Set Λ = k2. Then, if E ̸= 0, it is

solution of (2.1) for any s ≥ 0, and if H ̸= 0, it is solution of (2.2) for any s ≥ 0.
2. Let s ≥ 0. If Λ ̸= 0 and u is solution of (2.1) with div u = 0, then setting k = ±√Λ,

E = u, and H = 1
ik curl E, we obtain an eigenmode of (1.1).

3. Let s ≥ 0. If Λ ̸= 0 and u is solution of (2.2) with div u = 0, then setting k = ±√Λ,
H = u, and E = − 1ik curlH, we obtain an eigenmode of (1.1).

2.2 Product domain

Let Ω ⊂ ℝ3 be of product formω×I, withω ⊂ ℝ2 and an interval I.We denote Cartesian
coordinates and component of vectors as

x = (x1, x2, x3) = (x⊥, x3) and u = (u1, u2, u3) = (u⊥, u3).
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6 Maxwell eigenmodes in product domains | 177

Likewise, the exterior unit normal n to 𝜕Ω is written (n⊥, n3). The boundary of Ω is

𝜕Ω = (𝜕ω × I) ∪ (ω × 𝜕I).

On ω × 𝜕I, n⊥ = 0 and n3 = ±1. On 𝜕ω × I, n⊥ is the exterior unit normal to 𝜕ω, n3 = 0,
and the tangential component of u⊥ is u⊥ × n⊥ = u1n2 − u2n1. The electric boundary
conditions u × n = 0 on 𝜕Ω are equivalent to

u⊥ × n⊥ = 0 and u3 = 0 on 𝜕ω × I ,
u⊥ = 0 on ω × 𝜕I . (2.3)

The gradient and the Laplacian in the transverse plane containing ω are denoted
by ∇⊥ and Δ⊥:

∇⊥v = (
𝜕1v
𝜕2v
) and Δ⊥v = 𝜕

2
1v + 𝜕

2
2v.

The vector and scalar curls in 2D are given by

curl⊥ v = (
𝜕2v
−𝜕1v
) and curl⊥ v = 𝜕1v2 − 𝜕2v1.

We have the formula

curl u = (curl⊥ u3
curl⊥ u⊥

) + 𝜕3(
−u2
u1
0
). (2.4)

2.3 The M, N ansatz and the TE or TM polarizations

The interior partial differential equation satisfied by eigenpairs is the system:

curl curl u = k2 u and div u = 0 in Ω. (2.5)

There is a well-known ansatz to solve these equations, called vector wave functions
M and N. They depend on the choice of a unit piloting vector ĉ, and thenM and N are
generated by scalar potentials q = q(x) according to

M[q] = curl(q ĉ) and N[q] = curlM[q] = curl curl(q ĉ). (2.6)

In a slightly modified form where one takes ĉ = x
|x| , the ansatzM and N are the corner

stone for the construction of spherical wave functions; cf. Section 8.
For our study, we choose

ĉ = e3 = (
0
0
1
). (2.7)

Direct calculations yield the following.

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:05 PM



178 | M. Costabel and M. Dauge

Lemma 2.2. Let q ∈ H1(Ω) and setM[q] = curl(q e3). Then

M[q] = (curl⊥ q
0
) and curlM[q] = ∇(𝜕3q) − Δq e3. (2.8)

With N[q] = curlM[q], we have

N[q] = ∇(𝜕3q) − Δq e3 and curlN[q] = −M[Δq]. (2.9)

The form ofM and curlN with their third component zero explains whyM, when
describing an electric field, represents the TE (transverse electric) polarization, andN,
the TM (transverse magnetic) polarization. For the description of a magnetic field, the
converse happens:M is TM and N is TE.

As a consequence, we find that

(curl curl−k2)M[q] = −M[Δq + k2q],

(curl curl−k2)N[q] = −N[Δq + k2q].
(2.10)

Thus, looking for solutions of (2.5) amounts to consideringM[q] and N[q]with q solu-
tion of the Helmholtz equation Δq + κ2q = 0.

3 Electric eigenmodes in a product domain
In this section, we look for solutions (k2, E) of the electric problem (2.1) with the gauge
constraint div E = 0. For this, we use theM, N ansatz, we find sufficient conditions on
the potentials q, construct families of eigenpairs, and prove that this system is com-
plete.

3.1 TE modes

Let E = M[q] be a TE mode. By construction, div E = 0. By (2.10), q has to satisfy

Δq + κ2q = 0. (3.1)

It remains to verify the electric boundary conditions E × n = 0 on 𝜕Ω. Combining (2.3)
and (2.8), we find

curl⊥ q × n⊥ = 0 on 𝜕ω × I ,
curl⊥ q = 0 on ω × 𝜕I ,

which is equivalent to

𝜕nq = 0 on 𝜕ω × I ,
∇⊥q = 0 on ω × 𝜕I . (3.2)
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6 Maxwell eigenmodes in product domains | 179

Sufficient conditions for this are Dirichlet conditions on ω × 𝜕I combined with Neu-
mann conditions on 𝜕ω× I. This is a tensor product of a Neumann problem onω and a
Dirichlet problem on I. Along the same principle than for pure Dirichlet problem (cf.
Theorem 1.1), we find a spectral basis for q in the form

qjm = v
neu
j ⊗ w

dir
m , k2 = λneuj + μ

dir
m , j ≥ 1, m ≥ 1. (3.3)

Here, j = 0 (corresponding to vneu0 = 1) is discarded because functions q independent
of x⊥ giveM[q] = 0.

Thus we have found the following families of TE modes.

Lemma 3.1. For all j ≥ 1, m ≥ 1, the field ETEjm := M[v
neu
j ⊗ w

dir
m ], i. e.,

ETEjm(x⊥, x3) = (
curl⊥ vneuj (x⊥)

0
)wdir

m (x3), (3.4)

is a TE mode for problem (2.1) associated with the eigenvalue ΛTE
jm = λ

neu
j + μ

dir
m .

3.2 TM modes

Let E = N[q] be a TM mode. Again, div E = 0, q has to satisfy (3.1), and it remains to
verify the electric boundary conditions E × n = 0 on 𝜕Ω: Using (2.8), we find that

E⊥ = ∇⊥(𝜕3q) and E3 = −Δ⊥q

Hence, with (2.3)

∇⊥(𝜕3q) × n⊥ = 0 and Δ⊥q = 0 on 𝜕ω × I ,
∇⊥(𝜕3q) = 0 on ω × 𝜕I .

We obtain sufficient conditions through the separation of variable ansatz

q(x) = v(x⊥)w(x3)

with

− Δ⊥v = λv in ω and − 𝜕23w = μw in I with λ + μ = k2 = Λ, (3.5)

and the boundary conditions become

{{
{{
{

(n⊥ × ∇⊥)v(x⊥) 𝜕3w(x3) = 0 ∀x⊥ ∈ 𝜕ω, ∀x3 ∈ I ,
Δ⊥v(x⊥) w(x3) = 0 ∀x⊥ ∈ 𝜕ω, ∀x3 ∈ I ,
∇⊥v(x⊥)𝜕3w(x3) = 0 ∀x⊥ ∈ ω, ∀x3 ∈ 𝜕I ,
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180 | M. Costabel and M. Dauge

which yields, with 𝜕dω, d = 1, . . . ,D, the connected components of 𝜕ω,

{{
{{
{

v = const. on each 𝜕dω or 𝜕3w ≡ 0 in I ,
Δ⊥v = 0 on 𝜕ω or w ≡ 0 in I ,
∇⊥v ≡ 0 in ω or 𝜕3w = 0 on 𝜕I .

(3.6)

The conditions ∇⊥v ≡ 0 and w ≡ 0 have to be discarded since they imply E ≡ 0.
Therefore we should have 𝜕3w = 0 on 𝜕I and Δ⊥v = 0 on 𝜕ω. The latter condition
implies that v = 0 on 𝜕ω in the case when λ ̸= 0. When λ = 0, the condition v = const.
on each 𝜕dω is sufficient. Thus we have shown that (3.5)–(3.6) can be summarized as
follows: Either

{
−Δ⊥v = λv in ω and v = 0 on 𝜕ω

−𝜕23w = μw in I and 𝜕3w = 0 on 𝜕I
with λ ̸= 0, λ + μ = Λ, (3.7)

or

{
−Δ⊥v = 0 in ω and v = const on each 𝜕dω

−𝜕23w = μw in I and 𝜕3w = 0 on 𝜕I
with μ = Λ. (3.8)

Hence we have found the following two families of TMmodes. First, we have the stan-
dard one.

Lemma 3.2. For all j ≥ 1, m ≥ 0, the field ETMjm := N[v
dir
j ⊗ w

neu
m ], i. e.,

ETMjm (x⊥, x3) = (
∇⊥vdirj (x⊥)

0
)𝜕3w

neu
m (x3) − (

0
Δ⊥vdirj (x⊥)

)wneu
m (x3), (3.9)

is a TM mode for problem (2.1) associated with the eigenvalue ΛTM
jm = λ

dir
j + μ

neu
m .

The second family appears ifωhas a nontrivial topology (i. e., ifD ≥ 2), and shares
the features of TE and TM polarization (vanishing third component of the electric and
magnetic fields).

Lemma 3.3. There exist D linearly independent harmonic potentials vtopd that have con-
stant traces on each connected component 𝜕dω of 𝜕ω. They can be chosen such that
vtopD is constant in ω. If 𝜕ω has more than one connected component, then the vtopd ,
d = 1, . . . ,D − 1, have linearly independent gradients, and they generate the family of
TEM modes defined for all d = 1, . . . ,D − 1 and m ≥ 1 as the fields ETEMdm := N[v

top
d ⊗ w

neu
m ]

which can also be written as

ETEMdm (x⊥, x3) = (
∇⊥v

top
d (x⊥)
0
)wdir

m (x3), (3.10)

and is associated with the eigenvalue ΛTEM
dm = μ

dir
m .
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6 Maxwell eigenmodes in product domains | 181

Note that to obtain (3.10) we have used that the derivatives 𝜕3wneu
k for k ≥ 1 are an

eigenvector basis for the Dirichlet problem on the interval I.

Remark 3.4. Let us borrow the following objects from [1]: Let ω∘ be ω \ Σ, where Σ =
⋃D−1d=1Σd is a minimal set of cuts so thatω∘ is simply connected. Then we can define the
space Θ(ω) as

Θ(ω) = {φ ∈ H1(ω∘) | [φ]Σd = const(d), d = 1, . . . ,D − 1}.

For φ ∈ Θ(ω), its extended curl⊥ denoted by c̃url⊥ φ is defined as its curl⊥ in ω∘,
considered as an element of L2(ω). Then there exist “conjugate” potentials ṽtopd ∈ Θ(ω)
such that for any d ≤ D − 1, there holds

c̃url⊥ ṽ
top
d = ∇⊥v

top
d . (3.11)

Therefore, for all m ≥ 1, the mode ETEMdm is also an extended TE mode. This is why it is
called a TEMmode.

3.3 Completeness

The aim of this section is to prove the following.

Lemma 3.5. Let u ∈ XN(Ω) such that div u = 0. We assume that for all integers j ≥ 1 and
d ∈ [1,D − 1]:

⟨u, ETEjm⟩ = 0 (∀m ≥ 1), ⟨u, E
TM
jm ⟩ = 0 (∀m ≥ 0) and ⟨u, ETEMdm ⟩ = 0 (∀m ≥ 1).

Here, ⟨⋅, ⋅⟩ is the L2 scalar product on Ω. Then u = 0.

Proof. We first draw consequences from the orthogonality properties against the TM
modes: We fix j andm and set v = vdirj , w = wneu

m and integrate by parts:

0 = ∫
I

∫
ω

u⊥(x⊥, x3) ∇⊥v(x⊥)𝜕3w(x3) − u3(x⊥, x3)Δ⊥v(x⊥)w(x3) dx⊥dx3

= ∫
I

∫
ω

−div⊥ u⊥(x⊥, x3) v(x⊥)𝜕3w(x3) − u3(x⊥, x3)Δ⊥v(x⊥)w(x3) dx⊥dx3

= ∫
I

∫
ω

𝜕3u3(x⊥, x3) v(x⊥)𝜕3w(x3) − u3(x⊥, x3)Δ⊥v(x⊥)w(x3) dx⊥dx3

= ∫
I

∫
ω

−u3(x⊥, x3) v(x⊥)𝜕
2
3w(x3) − u3(x⊥, x3)Δ⊥v(x⊥)w(x3) dx⊥dx3.

Here, we have used that div u = 0, replacing div⊥ u⊥ by −𝜕3u3. Coming back to the
properties of v = vdirj and w = wneu

m , we find for all j ≥ 1 andm ≥ 0:

∫
I

∫
ω

u3(x⊥, x3) (λ
dir
j + μ

neu
m )v

dir
j (x⊥)w

neu
m (x3) dx⊥dx3 = 0.
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182 | M. Costabel and M. Dauge

Since λdirj + μ
neu
m is never 0, we deduce that for all j ≥ 1 andm ≥ 0:

∫
I

∫
ω

u3(x⊥, x3) v
dir
j (x⊥)w

neu
m (x3) dx⊥dx3 = 0.

The set vdirj (x⊥)w
neu
m (x3) being a complete basis in L2(Ω), we deduce that u3 = 0.

Next, we use the orthogonality against the TEmodes: for all j ≥ 1 andm ≥ 1, there
holds:

∫
I

wdir
m (x3) ∫

ω

u⊥(x⊥, x3) ⋅ curl⊥ v
neu
j (x⊥) dx⊥dx3 = 0.

Therefore, for all j ≥ 1:

∫
ω

u⊥(x⊥, x3) ⋅ curl⊥ v
neu
j (x⊥) dx⊥ = 0, for a. e. x3 ∈ I .

We deduce that curl⊥ u⊥(⋅, x3) is orthogonal to all vneuj for j ≥ 1, which means that
curl⊥ u⊥(⋅, x3) is constant with respect to x⊥. There exists a function z = z(x3) such that

(∗) curl⊥ u⊥(x⊥, x3) = z(x3).

Since div u = 0 and u3 = 0, we have div⊥ u⊥ = 0, which implies that locally u⊥ is a
curl⊥ of a scalar potential and that

∫
𝜕ω

u⊥ ⋅ n⊥ dσ = 0.

Additionally, the orthogonality relations against the TEM modes yield for all m ≥ 1
and d ≤ D − 1:

∫
I

wdir
m (x3) ∫

ω

u⊥(x⊥, x3) ⋅ ∇⊥v
top
d (x⊥) dx⊥dx3 = 0.

We deduce that

∫
ω

u⊥(x⊥, x3) ⋅ ∇⊥v
top
d (x⊥) dx⊥ = 0, for a. e. x3 ∈ I ,

from which we find that (we recall that 𝜕dω are the connected components of 𝜕ω)

∫
𝜕dω

u⊥ ⋅ n⊥ dσ = 0, d = 1, . . . ,D.

These are the flux conditions that provide the existence of a global scalar potential
y ∈ L2(I ,H1(ω)) such that

u⊥(x⊥, x3) = curl⊥ y(x⊥, x3).

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:05 PM



6 Maxwell eigenmodes in product domains | 183

As u⊥(⋅, x3) satisfies the tangential boundary condition on 𝜕ω for a. e. x3 ∈ I, then
y(⋅, x3) satisfies in turn the Neumann boundary condition on 𝜕ω for a. e. x3 ∈ I. With
(∗), we find

−Δ⊥y(x⊥, x3) = z(x3).

Since y satisfies the homogeneous Neumann conditionwith respect to x⊥, this implies
that z(x3) = 0 for all x3. Finally we have obtained that u⊥ = 0.

3.4 Eigenmodes

Summarizing, we have proved the following.

Theorem 3.6. LetΩ = ω× I. The eigenpairs with zero divergence of the electric Maxwell
operator (2.1) can be organized in the three families:

(i) ETEjm = (
curl⊥ vneuj (x⊥)

0
)wdir

m (x3) with Λ
TE
jm = λ

neu
j + μ

dir
m , j ≥ 1, m ≥ 1;

(ii) ETMjm = (
∇⊥vdirj (x⊥)

0
)𝜕3wneu

m (x3) − (
0

Δ⊥vdirj (x⊥)
)wneu

m (x3)

with ΛTM
jm = λ

dir
j + μ

neu
m , j ≥ 1, m ≥ 0;

(iii) and, if ω is not simply connected (i. e., D ≥ 2)

ETEMdm = (
∇⊥v

top
d (x⊥)
0
)wdir

m (x3) with Λ
TEM
dm = μ

dir
m , 1 ≤ d ≤ D − 1, m ≥ 1.

See Notation 1.3, Lemmas 3.2 and 3.3 for the notation of the 2D and 1D quantities. All the
associated eigenvalues ΛTE

jm, Λ
TM
jm and ΛTEM

dm are nonzero.

4 Magnetic eigenmodes in a product domain
Since the magnetic field H associated with the electric field E is given by

H = 1
ik

curl E, for k = ±√Λ

for any nonzero eigenvalue Λ, we deduce the following.

Corollary 4.1. Under the conditions of Theorem 3.6, we set k = ±√Λ. The associated
magnetic fields are given by

HTEjm =
1

ikTEjm
{(
∇⊥vneuj (x⊥)

0
) 𝜕3w

dir
m (x3) − (

0
Δ⊥vneuj (x⊥)

)wdir
m (x3)} j,m ≥ 1,

HTMjm = −ik
TM
jm (

curl⊥ vdirj (x⊥)
0
)wneu

m (x3) j ≥ 1, m ≥ 0,
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184 | M. Costabel and M. Dauge

HTEMdm =
i

kTEMdm
(
curl⊥ v

top
d (x⊥)
0

) 𝜕3w
dir
m (x3) 1 ≤ d ≤ D − 1, m ≥ 1,

and the triples (k, E,H) are Maxwell eigenmodes.

Remark 4.2.
(i) The electric fields in the pairs (ETE,HTE) are transverse to the axis x3, while in the

pairs (ETM,HTM) the magnetic fields are transverse to the axis x3, which justifies
the labels of the polarizations.

(ii) We notice that for allm ≥ 1, HTEMdm can also be written as

HTEMdm = i(
curl⊥ v

top
d (x⊥)

0
)wneu

m (x3).

The expression above also makes sense for m = 0. The associated eigenvalue is
0 and the corresponding electric field is 0. These magnetostatic Maxwell eigen-
modes (0,0,HTEMd 0 ) are those produced by the 3D topological nontriviality of Ω.

Remark 4.3. Ifω contains holes, i. e., if TEMmodes are present, they often contribute
the smallest positive eigenvalues. Let us make formulas for eigenvalues more explicit:
Let ℓ be the length of the interval I and let us assume that ω has one hole. Besides the
magnetostatic zero eigenvalue, we find

ΛTE
jm = λ

neu
j + (

mπ
ℓ
)
2
(∀j,m ≥ 1), ΛTM

jm = λ
dir
j + (

mπ
ℓ
)
2
(∀j ≥ 1,m ≥ 0),

and

ΛTEM
m = (

mπ
ℓ
)
2
(∀m ≥ 1).

Then the smallest positive eigenvalue is either ΛTM
1,0 or ΛTEM

1 . If ω is fixed and ℓ large
enough, ΛTEM

1 is smaller than ΛTM
1,0 .

We summarize the results of Sections 3 and 4 in Table 6.1.

Table 6.1: Synthetic description of Maxwell eigenmodes, usingM and N (2.6).

Polarization k2 E H

TE λneuj + (
mπ
ℓ )

2 M[vneuj ⊗ sin(
mπ
ℓ ⋅)]

1
ik N[v

neu
j ⊗ sin(

mπ
ℓ ⋅)]

TM λdirj + (
mπ
ℓ )

2 N[vdirj ⊗ cos(
mπ
ℓ ⋅)] ikM[vdirj ⊗ cos(

mπ
ℓ ⋅)]

TEM (mπℓ )
2 N[v topd ⊗ cos(

mπ
ℓ ⋅)] ikM[v topd ⊗ cos(

mπ
ℓ ⋅)]

Magnetostatic 0 0 M[v topd ⊗ 1]
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5 Mixed perfectly conducting or insulating
conditions

Consider now the situationwhere a part 𝜕Ωcd of the boundary of Ω represents perfectly
conductingwallswhereas another part 𝜕Ωins represents perfectly insulatingwalls, with

𝜕Ω = 𝜕Ωcd ∪ 𝜕Ωins, 𝜕Ωcd ∩ 𝜕Ωins = 0. (5.1)

Boundary conditions are then

{
E × n = 0 and H ⋅ n = 0, on 𝜕Ωcd, (perfect conductor b. c.)
E ⋅ n = 0 and H × n = 0, on 𝜕Ωins, (perfect insulator b. c.)

Similar results as above hold for mixed boundary conditions when the perfectly
conducting or insulating parts 𝜕Ωcd and 𝜕Ωins are chosen to be either 𝜕ω × I or ω × 𝜕I.
Let us give two examples.

Example 5.1. Let us consider the case when

𝜕Ωcd = 𝜕ω × I and 𝜕Ωins = ω × 𝜕I .

Then the essential boundary condition for the electric field E on ω × 𝜕I is E3 = 0 and
the natural boundary condition is curl E × n = 0, reducing to 𝜕3E⊥ = 0. Thus we find
the three families of electric eigenfunctions:

ETEjm = (
curl⊥ vneuj (x⊥)

0
)wneu

m (x3) with j ≥ 1, m ≥ 0,

ETMjm = (
∇⊥vdirj (x⊥)

0
)𝜕3w

dir
m (x3) − (

0
Δ⊥vdirj (x⊥)

)wdir
m (x3), with j ≥ 1, m ≥ 1,

ETEMdm = (
∇⊥v

top
d (x⊥)
0
)wneu

m (x3) with 1 ≤ d ≤ D − 1, m ≥ 0,

associated with the eigenvalues ΛTE
jm = λ

neu
j + μ

neu
m , ΛTM

jm = λ
dir
j + μ

dir
m , and ΛTEM

dm = μ
neu
m .

Example 5.2. We set I = (0, ℓ). Let us consider the case when

𝜕Ωcd = (𝜕ω × I) ∪ (ω × {0}) and 𝜕Ωins = ω × {ℓ}.

The axial generators wm can be described thanks to the eigenvectors wmix
m , m ≥ 1, of

themixed problem in ω:

−𝜕23w = μw, w(0) = 0, 𝜕3w(ℓ) = 0.
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We find

ETEjm = (
curl⊥ vneuj (x⊥)

0
)wmix

m (x3) with j ≥ 1, m ≥ 1,

ETMjm = (
∇⊥vdirj (x⊥)

0
)𝜕23w

mix
m (x3) − (

0
Δ⊥vdirj (x⊥)

) 𝜕3w
mix
m (x3), with j ≥ 1, m ≥ 1,

ETEMdm = (
∇⊥v

top
d (x⊥)
0
)wmix

m (x3) with 1 ≤ d ≤ D − 1, m ≥ 1.

Ifω contains holes, TEMmodes are present and contribute the smallest positive eigen-
value ( π2ℓ )

2.

6 Application 1: Maxwell eigenvalues of cuboids

6.1 Cube

Let Ω be the cube (0,π)3. We can apply Theorem 3.6 with ω = (0,π)2 and I = (0,π).
Since ω is simply connected, we have TE and TM modes only. Therefore, the normal-
ized Maxwell eigenvalues are

λneuj + μ
dir
m , j ≥ 1, m ≥ 1 and λdirj + μ

neu
m , j ≥ 1, m ≥ 0.

We have

μdirm = m
2, m ≥ 1 and μneum = m

2, m ≥ 0.

The Dirichlet eigenvalues on ω are

k21 + k
2
2 , k1, k2 ≥ 1.

The nonzero Neumann eigenvalues are

k21 + k
2
2 , k1, k2 ≥ 0, k1 or k2 ̸= 0.

Therefore, the TE eigenvalues are

k21 + k
2
2 + k

2
3, k1, k2 ≥ 0, k1 or k2 ̸= 0, k3 ≥ 1.

The TM eigenvalues are

k21 + k
2
2 + k

2
3, k1, k2 ≥ 1, k3 ≥ 0.

Therefore, we have once

k21 + k
2
2 + k

2
3, k1, k2, k3 ≥ 0 with exactly one index ν ∈ {1, 2, 3} such that kν = 0,
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and twice

k21 + k
2
2 + k

2
3, k1, k2, k3 ≥ 1.

The first eigenvalues are

2 (mult. 3), 3 (mult. 2), 5 (mult. 6), 6 (mult. 6), 8 (mult. 3), . . .

A larger multiplicity of 12 is attained for example for 14 = 1 + 4 + 9. But 12 is not the
maximal multiplicity (e. g., the multiplicity of 26 = 25 + 1 + 0 = 16 + 9 + 1 is 18).

The Dirichlet eigenvectors on (0,π) are ζ 󳨃→ sin kζ , k ≥ 1, and the Neumann eigen-
vectors are cos kζ , k ≥ 0. The components of the electric eigenvectors in the cube are
(sums of) products of two sin terms by one cos term.

6.2 Cuboids

For a rectangular parallelepiped,

Ω = (0, ℓ1) × (0, ℓ2) × (0, ℓ3),

we find the eigenvalues: Once

(
k1π
ℓ1
)
2
+ (

k2π
ℓ2
)
2
+ (

k3π
ℓ3
)
2
,

∀k1, k2, k3 ≥ 0 with exactly one index ν ∈ {1, 2, 3} such that kν = 0,

and twice

(
k1π
ℓ1
)
2
+ (

k2π
ℓ2
)
2
+ (

k3π
ℓ3
)
2
, ∀k1, k2, k3 ≥ 1.

7 Application 2: Maxwell eigenvalues in
axisymmetric product domains

We assume now, besides the assumption that Ω = ω × I, that the domain Ω is axisym-
metric. In this case, the separation of variables method can be used oncemore, giving
explicit formulas for the Laplace eigenvectors and eigenfunctions, and hencemore ex-
plicit formulas for the Maxwell eigenmodes. Now Ω axisymmetric implies thatω is an
axisymmetric domain in dimension 2. Hence ω is either a disc or an annulus (i. e., a
disc with a concentric hole). We investigate both situations.
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7.1 Axisymmetric domains

Let R be the external radius of ω and r0 be its internal radius, with the convention
that r0 = 0 corresponds to the case when ω is a disc. Let us denote by 𝕋 the one-
dimensional torus

𝕋 = ℝ/(2πℤ).

We use cylindrical coordinates (r,φ, x3) ∈ (r0,R) × 𝕋 × I. Setting

ǔ(r,φ, x3) = u(x),

we introduce cylindrical components (ur , uφ, u3) of the field u = (u1, u2, u3),

ur = ǔ1 cosφ + ǔ2 sinφ and uφ = −ǔ1 sinφ + ǔ2 cosφ.

In particular, for a scalar function q, the radial and angular components of∇⊥q are 𝜕rq
and 1

r 𝜕φq, and those of curl⊥ q are
1
r 𝜕φq and−𝜕rq.With this, we find the representation

in cylindrical coordinates of the ansatzM[q] andN[q]when q has the tensor form v⊗w:

{{{{
{{{{
{

Mr[v ⊗ w] =
1
r
𝜕φv(r,φ)w(x3),

Mφ[v ⊗ w] = −𝜕rv(r,φ)w(x3),

M3[v ⊗ w] = 0,

(7.1)

and

{{{{{{
{{{{{{
{

Nr[v ⊗ w] = 𝜕rv(r,φ) 𝜕3w(x3),

Nφ[v ⊗ w] =
1
r
𝜕φv(r,φ) 𝜕3w(x3),

N3[v ⊗ w] = −
1
r2
((r𝜕r)

2 + 𝜕2φ)v(r,φ)w(x3).

(7.2)

To describe the Maxwell eigenmodes in the axisymmetric case, we use Table 6.1 and
make explicit the Dirichlet andNeumann eigenvectors vdir and vneu onω, and also vtop

when there is a hole (r0 > 0).
It is a classical technique to use the invariance under rotation of the Laplace op-

erator Δ⊥ for diagonalizing it by Fourier series with respect to φ ∈ 𝕋. This leads to the
following representations:

vdir = hdirnp (r) e
inφ and vneu = hneunp (r) e

inφ, n ∈ ℤ, p ≥ 1, (7.3)

where for each n ∈ ℤ, the functions (hdirnp )p and (h
neu
np )p are bases of eigenfunctions for

the operator

h 󳨃󳨀→ (−𝜕2r −
1
r
𝜕r +

n2

r2
)h, r ∈ (r0,R) (7.4)

with appropriate boundary conditions.
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7.2 The cylinder (ω is a disc)

For hdir, the boundary condition at R is hdir(R) = 0, for hneu this is 𝜕rhneu(R) = 0.
At the other end, r = 0 of the interval (0,R), the boundary conditions are driven by
integrability properties (cf. [3]): For hdir and hneu, they are

𝜕rh(0) = 0 if n = 0, and h(0) = 0 if n ̸= 0. (7.5)

As a consequence, both hdir and hneu are given by the Bessel functions of the first kind
Jn that satisfy (7.5) and the equation (−𝜕2r −

1
r 𝜕r + n

2)Jn = Jn; cf (7.4). One finds the
following.

Lemma 7.1 ([6]).
(i) Let (znp)p≥1 be the increasing sequence of the positive zeros of Jn. Then a spectral

sequence for the Dirichlet problem for −Δ⊥ on ω is

λdirnp = (
znp
R
)
2

and vdirnp = Jn(
znp r
R
) einφ, n ∈ ℤ, p ≥ 1 (7.6)

(ii) Let (z󸀠np)p≥1 be the increasing sequence of the positive zeros of J
󸀠
n. Then a spectral se-

quence for the Neumann problem for −Δ⊥ on ω is, in addition to the constant eigen-
function,

λneunp = (
z󸀠np
R
)
2

and vneunp = Jn(
z󸀠np r
R
) einφ, n ∈ ℤ, p ≥ 1 (7.7)

We summarize results in Table 6.2.

Table 6.2:Maxwell eigenmodes in a cylinder of radius R and length ℓ, usingM (7.1)–N (7.2), and vdirnp
(7.6)–vneunp (7.7).

Polarization k2 E H

TE (
z󸀠np
R )

2 + (mπℓ )
2 M[vneunp ⊗ sin(

mπ
ℓ ⋅)]

1
ik N[v

neu
np ⊗ sin(

mπ
ℓ ⋅)]

TM ( znpR )
2 + (mπℓ )

2 N[vdirnp ⊗ cos(
mπ
ℓ ⋅)] ikM[vdirnp ⊗ cos(

mπ
ℓ ⋅)]

Table 6.3: The first three zeros of J0, J1, J2, J󸀠0, J
󸀠
1, J
󸀠
2.

z0,j z1,j z2,j z󸀠0,j z󸀠1,j z󸀠2,j

2.4048 3.8317 5.1356 3.8317 1.8412 3.0542
5.5201 7.0156 8.4172 7.0156 5.3314 6.7061
8.6537 10.173 11.620 10.173 8.5363 9.9695
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190 | M. Costabel and M. Dauge

We give in Table 6.3 values for the first three zeros zn,j and z󸀠n,j for n = 0, 1, 2. We use the
relation Jν−1 − Jν+1 = 2J󸀠ν to compute z󸀠n,j. Since J−1 = −J1, we note that there holds

z󸀠0,j = z1,j, ∀j ≥ 1.

7.3 The coaxial cylindrical hole (ω is an annulus)

In this case again, there exist explicit formulas for the Laplace eigenvectors and eigen-
functions. This is classical knowledge; see, e. g., [7, 8]. The boundary conditions on
hdir and hneu are now the standard ones at r0 and R. We have to find the associated
eigenpairs of the operator (7.4) for any n ∈ ℕ. We find that the radial eigenvectors hdir

and hneu are linear combinations of the Bessel functions Jn and Yn of first and second
kind:

hdirnp (r) = αnpJn(knp r) + βnpYn(knp r)

with eigenvalues λdirnp = (knp)
2, where knp are the positive zeros of the determinant

function
k 󳨃󳨀→ Jn(kr0)Yn(kR) − Yn(kr0) Jn(kR).

Analogous formulas exist for hneu.
Since ω has one hole, the number L of the connected components of its bound-

ary is 2. There exists a nonconstant harmonic potential vtop that takes two distinct
constant values on the two connected components of 𝜕ω. This generator vtop can be
defined as

vtop(x⊥) = log r.

In connectionwithRemark 3.4,wenote that the conjugate potential ṽtop is the function
x⊥ 󳨃→ φ. In cylindrical components, there holds

(
c̃url⊥ ṽtop

0
) = (
∇⊥vtop

0
) = (

1
r
0
0
) and (curl⊥ v

top

0
) = −(

0
1
r
0
).

We summarize the results concerning TEMmodes for Ω = ω × I with the annulus ω.

Corollary 7.2. Let ℓ be the length of the cylinder Ω with coaxial hole. Its family of TEM
modes is axisymmetric and has the form (mπℓ , E

TEM,HTEM) with:
(a) for m ≥ 1,

{{{{
{{{{
{

ETEMr =
1
r
sin(mπ
ℓ
x3),

ETEMφ = 0,
ETEM3 = 0,

and
{{{{
{{{{
{

HTEM
r = 0,

HTEM
φ = −i

mπ
ℓ

1
r
cos(

mπx3
ℓ
),

HTEM
3 = 0

(7.8)

(b) for m = 0, E = 0 and H = (0 1 0)⊤.

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:05 PM



6 Maxwell eigenmodes in product domains | 191

Remark 7.3. As r0 tends to 0, the Dirichlet and Neumann eigenmodes of the annulus
tend to the Dirichlet andNeumann eigenvalues of the disc of same radiusR. Hence the
TE andTMmodes of the cylinderwith hole tend to the TE andTMmodes of the cylinder
without hole. In contrast, the TEM modes do not depend on r0 as long as r0 ̸= 0, but
disappear at the limit when r0 = 0. This fact has a practical importance when thin
conductor wires are present.

8 Maxwell eigenmodes in a ball
For the sake of comparison, we revisit known results about Maxwell eigenmodes in
a ball; see [9, Chapter 10]. Let Ω ⊂ ℝ3 be the ball of center 0 and radius R. Here, we
use spherical coordinates (θ,φ, ρ) ∈ [0,π] ×𝕋× [0,R], associate with the orthonormal
basis

(θ̂, φ̂, ρ̂).

Formulas for Maxwell eigenmodes are based on Debye potentials. This is the M, N
ansatz, in a form slightly different from (2.6): The piloting vector is replaced by the
unit field

x̂ = x
|x|

i. e. x̂ = ρ̂.

TheM, N ansatz takes the form

M[q] = curl(q x̂) and N[q] = curlM[q] = curl curl(q x̂). (8.1)

Using for instance identities (cf. [5, Section 6.2]),

curl(px) = ∇p × x and curl(a × x) = (ρ𝜕ρ + 2)a − x diva

we find the following formulas where we express vectors in spherical components on
the basis (θ̂, φ̂, ρ̂):

M[q] = ∇(q
ρ
) × x = ∇q × x̂ = (

1
ρ𝜕θq
− 1
ρ sin θ𝜕φq

0
) (8.2)

and

N[q] = curlM[q] = ∇(𝜕ρq) − x̂ ρΔ(
q
ρ
) . (8.3)

Therefore,

curlN[q] = curl curlM[q] = −M[ρΔ(q
ρ
)] . (8.4)
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192 | M. Costabel and M. Dauge

Introduce the operator

L : q 󳨃󳨀→ Lq = −ρΔ(q
ρ
) .

Then the equations curl curl u − k2u = 0 forM[q] and N[q] are equivalent to

M[(L − k2)q] = 0 and N[(L − k2)q] = 0.

Thus we are interested in scalar solutions q of the equation

Lq = k2q in [0,π] × 𝕋 × [0,R]. (8.5)

We note that

L = −𝜕2ρ −
1
ρ2

Δ𝕊2 (8.6)

with the Laplace–Beltrami operator Δ𝕊2 on the unit sphere 𝕊
2,

Δ𝕊2 =
1

sin θ
𝜕θ sin θ𝜕θ +

1
sin2 θ
𝜕2φ .

The equation (8.5) is satisfied by all functions in tensor form

q(θ,φ, ρ) = Ym
n (θ,φ) h(kρ) ,

where Ym
n are the spherical harmonics and h is a linear combination of the Riccati–

Bessel functionsψn and χn (sometimes written as Sn and Cn). Following Debye’s nota-
tion, we use the definition

ψn(x) = xjn(x) = √
πx
2
Jn+ 12 (x) and χn(x) = −xyn(x) = −√

πx
2
Yn+ 12 (x),

where Jν, Yν are the Bessel functions and jn, yn the spherical Bessel functions of first,
second kind, respectively. Because of integrability conditions in 0, χn has to be dis-
carded. It remains to look for potentials q of type Ym

n ⊗ ψn(k ⋅) so that either M[q] or
N[q] satisfy the electric boundary condition on the boundary of the ball, i. e.,

E × n = 0 if ρ = R.

Using formulas (8.2) and (8.3), we find that this boundary condition is satisfied by
M[Ym

n ⊗ψn(k ⋅)] ifψn(kR) = 0andbyN[Ym
n ⊗ψn(k ⋅ )] ifψ󸀠n(kR) = 0. The remarkable fact is

that the related potentials are then eigenvectors of the operator Lwith the eigenvalue
k2 for Dirichlet or Neumann conditions. Note that the operatorL is associatedwith the
coercive bilinear form

a(q, q̃) =
R

∫
0

[∫

𝕊2

(𝜕ρq 𝜕ρq̃ +
1
ρ2
𝜕θq 𝜕θq̃ +

1
ρ2 sin2 θ

𝜕φq 𝜕φq̃) sin θ dθ dφ]dρ
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6 Maxwell eigenmodes in product domains | 193

on the space

V = {q ∈ L2(𝕊2 × (0,R)), 𝜕ρq,
1
ρ
∇⊥q ∈ L

2(𝕊2 × (0,R))}.

Completed with either Dirichlet or Neumann boundary conditions on ρ = R, L is self-
adjoint. We have obtained the following.

Theorem 8.1.
(i) The Dirichlet eigenpairs of L have the form (k2np, q

dir
nmp), n ≥ 0, |m| ≤ n, p ≥ 1 with

(knp)p≥1 the enumeration of the positive zeros of the function k 󳨃→ ψn(kR) and qnmp =
Ym
n ⊗ψn(knp ⋅ ) . All triples (knp,M[qdirnmp],

1
ikN[q

dir
nmp]) are Maxwell eigenmodes on the

ball of radius R.
(ii) The nonconstant Neumann eigenpairs ofL have the form ((k󸀠np)

2, qneunmp), n ≥ 0, |m| ≤
n, p ≥ 1 with (k󸀠np)p≥1 the enumeration of the positive zeros of the function k 󳨃→
ψ󸀠n(kR) and qnmp = Y

m
n ⊗ψn(k󸀠np ⋅ ) . All triples (k

󸀠
np,N[q

neu
nmp], ikM[q

neu
nmp]) are Maxwell

eigenmodes on the ball of radius R.

Remark 8.2. In the literature, theM ansatz is frequently written in a slightly different
way which we distinguish with an asterisk:

M⋆[q⋆] = curl(q⋆x)

instead of M[q] = curl(qx̂). As usual, N⋆ = curlM⋆. The outcome for the Maxwell
eigenmodes is the same of course. Nevertheless, the interpretation of the potentials is
different. We have

q⋆ = q
ρ
.

1. Concerning Dirichlet modes, the functions q⋆nmp defined as qdirnmp/ρ are the eigen-
functionsof theDirichlet problem for the standardpositive Laplaceoperator−Δon
the ball. In other words, the eigenvalues k2np are also the standard Laplace eigen-
values.

2. But, when Neumann modes are concerned, the functions q⋆nmp defined as q
neu
nmp/ρ

are not Neumann eigenfunctions for −Δ.

Remark 8.3. The tensor product potentials Ym
n ⊗h(k ⋅ )with h being any of the Riccati–

Bessel functions have been used more than a century ago to describe scattering of
plane waves by a dielectric sphere (Mie series). Scattering resonances (with negative
imaginary part) have also been investigated at that time. More recently, whispering
gallery modes have been analytically calculated by a similar method [2]. All of these
problems are transmission problems between the ball and its exterior. Inside the ball
h has the formψn(noptk ⋅ )where nopt is the refractive (or optical) index of the ball. Out-
side the ball, h is either ζ (1)n (k ⋅ ) for scattering, or χn(k ⋅ ) for whispering gallery modes.
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194 | M. Costabel and M. Dauge

We end this section by a completeness result that can be seen as a consequence
of Theorem 8.1.

Corollary 8.4. The union of the two families

(knp,M[q
dir
nmp],

1
ik
N[qdirnmp])

nmp
and (k󸀠np,N[q

neu
nmp], ikM[q

neu
nmp])nmp

described in Theorem 8.1 form a complete set of Maxwell eigenmodes.

Proof. Let u ∈ XN(Ω) such that div u = 0. We assume that u is orthogonal to all electric
eigenvectors M[qdirnmp] and N[qneunmp]. We prove that u = 0 by contradiction. Assuming
that u ̸= 0 and relying on the fact that the Maxwell problem possesses an orthonormal
basis of eigenfunctions, we may suppose that u is an eigenvector itself, associated
with an eigenvalue k2. Since the ball Ω is topologically trivial, the condition div u =
0 implies that k ̸= 0, whence u = 1

k2 curl curl u. The orthogonality of u against all
eigenvectorsM[qdirnmp] implies through integration by parts that curl u is orthogonal to
allqdirnmp x̂, hence curl uhasa zero radial component. In a similarway, theorthogonality
of against all eigenvectors N[qneunmp] implies that curl curl u, hence u, has a zero radial
component. Finally, the implication

u ⋅ x̂ = 0, curl u ⋅ x̂ = 0, and div u = 0 󳨐⇒ u = 0

can be found in [11] and leads to a contradiction, which proves the completeness.

9 Extension to nonconstant electric permittivity

Let us consider the original Maxwell system (A.4). We still assume that the magnetic
permeability μ is equal to μ0 in thewhole domainΩ. Butwe allownow that the electric
permittivity εmay vary in Ω. We set

ε = εrelε0, εrel ≥ 1.

We consider domains Ω in the product form ω × I. We assume that

εrel(x) = εrel(x⊥), εrel ∈ L
∞(ω), (9.1)

like in wave guides or optic fibers. The Maxwell system takes now the form (A.6) in-
stead of (1.1). Then the classification of eigenvectors into TE, TM, and TEM does not
hold any more (at least not in the form given by Theorem 3.6 and Corollary 4.1). Nev-
ertheless, the splitting of the spectrum according to frequencies with respect to the
axial variable x3 remains possible, as well as a tensor product form. We are going to
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6 Maxwell eigenmodes in product domains | 195

investigate the magnetic field H, taking advantage of its local regularity even if εrel is
not continuous. The magnetic variational formulation becomes, instead of (2.2):

Find the eigenpairs (Λ = κ2, u) with u ̸= 0 in XT(Ω) and div u = 0 such that

∫
Ω

1
εrel

curl u curl u󸀠 + sdiv udiv v dx = Λ∫
Ω

u ⋅ u󸀠 dx, ∀u󸀠 ∈ XT(Ω). (9.2)

Here, s is nonnegative. The choice s > 0 corresponds to an elliptic regularization of
the system. To simplify notation, let us assume that

I = (0,π) (9.3)

In the constantmaterial case, considering theMaxwell eigenmodes from themagnetic
point of view,we note that themagnetic part of eigenmodes given in Corollary 4.1 have
the following form:

HTE = (k ∇⊥v(x⊥) cos(mx3)
−Δ⊥v(x⊥) sin(mx3)

) and HTM = (curl⊥ v(x⊥) cos(mx3)
0

) (9.4)

We are going to prove that we still have a similar structure with respect to the axial
variable x3.

Theorem 9.1. With the assumptions (9.1) and (9.3), the magnetic eigenmodes solution
of (9.2) can be organized in a sequence of independent familiesHm with index m ∈ ℕ in
which each eigenvector has the tensor product form

H = (v⊥(x⊥) cos(mx3)
v3(x⊥) sin(mx3)

) . (9.5)

For any m ∈ ℕ, let Λm
j and vmj := (v

m
⊥,j, v

m
3,j) be the eigenpairs of the problem:

Find Λ ∈ ℝ, v = (v⊥, v3) ̸= 0 in XT(ω) × H1(ω) with div⊥ v⊥ +mv3 = 0 such that

∫
ω

1
εrel
{curl⊥ v⊥ curl⊥ v

󸀠
⊥ + (∇⊥v3 +mv⊥) ⋅ (∇⊥v

󸀠
3 +mv

󸀠
⊥)}dx

= Λ∫
ω

v ⋅ v󸀠 dx, ∀v󸀠 ∈ XT(ω) × H
1(ω). (9.6)

Denote by Hmj the vector of form (9.5) with v = vmj . Then the eigenpairs (Λ
m
j ,H

m
j )j≥1 span

the family Hm.

Proof. Solutions of (9.2) satisfy onω×{0} the essential boundary condition u3 = 0, and
the natural boundary condition 1

εrel
curl u×e3 = 0. Since u3 = 0 onω×{0}, 𝜕1u3 and 𝜕2u3

are also 0 onω × {0}, and the natural boundary condition implies that 𝜕3u1 = 𝜕3u2 = 0
on ω × {0}. Therefore, defining the extension

ũ⊥(x⊥, −x3) = u⊥(x⊥, x3) and ũ3(x⊥, −x3) = −u3(x⊥, x3), ∀x3 ∈ (0,π)
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we obtain an element ũ ∈ XT(ω × (−π,π)) which satisfies div ũ = 0 and is a solu-
tion of (9.2) on the extended domain ω × (−π,π). Moreover, u(x⊥, −π) = u(x⊥,π) and
𝜕3u(x⊥, −π) = 𝜕3u(x⊥,π) for all x⊥ ∈ ω. We deduce that ũ is a solution of (9.2) on the
domain XT(ω × 𝕋)where 𝕋 = ℝ/2πℤ. Since the coefficient εrel does not depend on x3,
the underlying Maxwell operator commutes with 𝜕3. Therefore, the spectrum of prob-
lem (9.2) can be decomposed according to the eigenvectors of 𝜕3 on 𝕋, which are the
functions x3 󳨃→ eimx3 ,m ∈ ℤ.

For any positive integer m, we notice that if (v⊥(x⊥), v3(x⊥))eimx3 is a solution of
(9.2) on the domainXT(ω×𝕋), then (v⊥(x⊥), −v3(x⊥))e−imx3 is also a solution of the same
problem. Therefore, their sum is also a solution of the same problem. Moreover, this
sum has the form (9.5) and satisfies the boundary conditions (perfectly conducting
walls)1 of the space XT(Ω). Conversely, this sum is, up to a multiplicative constant,
the only linear combination of (v⊥(x⊥), v3(x⊥))eimx3 and (v⊥(x⊥), −v3(x⊥))e−imx3 which
satisfies the boundary conditions of the space XT(Ω).

Calculating

∫
Ω

1
εrel

curl u curl u󸀠 dx

for

u = (v(x⊥) cos(mx3)
v3(x⊥) sin(mx3)

) and u󸀠 = (v
󸀠(x⊥) cos(mx3)
v󸀠3(x⊥) sin(mx3)

) ,

we find

∫
ω

1
εrel
{curl⊥ v⊥ curl⊥ v

󸀠
⊥ + (curl⊥ v3 +mv⊥ × e3) ⋅ (curl⊥ v

󸀠
3 +mv

󸀠
⊥ × e3)}dx

which coincides with the bilinear form in problem (9.6).

Remark 9.2. The bilinear form of problem (9.6) can be regularized by

∫
ω

1
εrel
{(div⊥ v⊥ +mv3)(div⊥ v

󸀠
⊥ +mv

󸀠
3)}dx.

We can check that if εrel is constant, the resulting bilinear form is equal to

1
εrel
∫
ω

curl⊥ v⊥ curl⊥ v
󸀠
⊥ + ∇⊥v3 ⋅ ∇⊥v

󸀠
3 + div⊥ v⊥ div⊥ v

󸀠
⊥ +m

2(v⊥ ⋅ v
󸀠
⊥ + v3v

󸀠
3) dx.

1 Considering the difference instead the sum, we would find the perfectly insulating boundary condi-
tions on ω × 𝜕I.
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Remark 9.3. For m = 0, problem (9.6) reduces to two uncoupled problems: The mag-
netic 2D Maxwell eigenvalue problem in ω for v⊥ and the Neumann eigenvalue prob-
lem for −Δ⊥ inω for v3. This last problem does not yield any nontrivial solution of (9.6)
since form = 0, the third component in theAnsatz (9.5) is zero.Moreover, we can show
that the solutions of the magnetic 2D Maxwell eigenvalue problem in ω are the pairs
(curl⊥ vdirj , λ

dir
j ), j ≥ 1, with the eigenpairs (v

dir
j , λ

dir
j ) of the problem

− Δ⊥v = λ εv in ω, v ∈ H1
0(ω). (9.7)

Thus we have found form = 0 the family of TM modes:

HTMj = (
curl⊥ vdirj (x⊥)

0
) j ≥ 1.

Appendix A. Normalizing Maxwell equations
Let ε and μ are the electric permittivity and the magnetic permeability of the mate-
rial inside Ω. We assume that the boundary of Ω represents perfectly conducting or
perfectly insulating walls:

𝜕Ω = 𝜕Ωcd ∪ 𝜕Ωins, 𝜕Ωcd ∩ 𝜕Ωins = 0, (A.1)

where 𝜕cdΩ is the perfectly conducting part and 𝜕insΩ the perfectly insulating part.
The cavity resonator problem is to find the frequencies ϖ ∈ ℝ+ and the nonzero

electromagnetic fields (Ê, Ĥ) ∈ L2(Ω)6 such that

{{
{{
{

curl Ê − iϖμĤ = 0 in Ω, (Faraday law)
curl Ĥ + iϖεÊ = 0 in Ω, (Ampère law)
div εÊ = 0 and div μĤ = 0 in Ω, (gauge conditions).

(A.2a)

with boundary conditions

{
Ê × n = 0 and Ĥ ⋅ n = 0, on 𝜕Ωcd, (perfect conductor b. c.)
Ê ⋅ n = 0 and Ĥ × n = 0, on 𝜕Ωins, (perfect insulator b. c.)

(A.2b)

In this paper, we consider the nonmagnetic case, i. e., when μ ≡ μ0 in Ω. We can
set

ε = n2optε0 = εrel ε0 (A.3)

where nopt is the refractive index of thematerial and εrel the relative permittivity. Then
(A.2a) reduces to

{{
{{
{

curl Ê − iϖμ0Ĥ = 0 in Ω, (Faraday law)
curl Ĥ + iϖεrel ε0Ê = 0 in Ω, (Ampère law)
div εrel ε0Ê = 0 and div μ0Ĥ = 0 in Ω, (gauge conditions).

(A.4)
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198 | M. Costabel and M. Dauge

With the normalization,

k = ϖ√ε0μ0 (wave number), E = √ε0 Ê and H = √μ0 Ĥ, (A.5)

system (A.4) is transformed into

{{
{{
{

curl E − ikH = 0 in Ω,
curlH + ikεrelE = 0 in Ω,
div εrelE = 0 and divH = 0 in Ω.

(A.6)
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Ralf Hiptmair and Clemens Pechstein
7 Discrete regular decompositions
of tetrahedral discrete 1-forms

Abstract: For a piecewise polynomial finite element space 𝒲1
p,ΓD (𝒯 ) ⊂ HΓD (curl,Ω)

built on amesh 𝒯 of a Lipschitz domainΩ ⊂ ℝ3 andwith vanishing tangential trace on
ΓD ⊂ 𝜕Ω, a discrete regular decomposition is a stable splitting of elements of𝒲1

p,ΓD (𝒯 )
into (i) piecewise polynomial continuous vector fields on Ω, vanishing on ΓD, (ii) gra-
dients of piecewise polynomial continuous scalar finite element functions, and (iii) a
“small” remainder. Suchdecompositionshave turnedout to be akey tool in thenumer-
ical analysis of “edge” finite elementmethods for variational problems inHΓD (curl,Ω)
that commonly occur in computational electromagnetics.

We show the existence of such decompositions for Nédélec’s tetrahedral edge ele-
ment spaces of any polynomial degree with stability depending only onΩ, ΓD, and the
shape regularity of the mesh. Our decompositions also respect homogeneous bound-
ary conditions on apart of the boundary ofΩ. Key tools for our construction are contin-
uous regular decompositions, boundary-aware local co-chain projections, projection-
based interpolation, and quasi-interpolation with low regularity requirements.

Keywords: Regular decomposition, edge elements, hp-FEM, polynomial extension,
projection-based interpolation, quasi-interpolation

MSC 2010: 65N30

1 Introduction
We study an important aspect of the theory of finite element subspaces ofH(curl,Ω),
Ω ⊂ ℝ3 a bounded domain whose properties will be specified below. We restrict our-
selves to spaces introduced as spaces of discrete 1-forms on simplicial meshes in finite
element exterior calculus (FEEC). They are also known as edge elements and their piv-
otal role in the Galerkin discretization of electromagnetic boundary value problem is
no longer a moot point.

The starting point are stable decompositions of H(curl,Ω) into vector fields with
components in H1(Ω) and gradients, which have been developed as powerful tools in
the theory of function spaces [8, 11, 17, 18]. We refer to them as regular decomposi-
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200 | R. Hiptmair and C. Pechstein

tions. In Section 2, we are going to present a particular instance. It later turned out
that discrete counterparts of regular decompositions of H(curl,Ω) are similarly use-
ful in the numerical analysis of edge element schemes. We are going to survey a few
applications and give references in Section 1.5.

Section 3 will be devoted to proving a discrete regular decomposition theorem for
lowest order tetrahedral edge elements, also known as Whitney-1-forms. Compared to
what was known previously, we establish enhanced stability properties also in L2(Ω).
We owe these stronger results to the use of so-called local commuting co-chain pro-
jections pioneered by Falk and Winther [27, 28]. A tailored version of those will be
introduced and examined in Section 3.2.

Subsequently, in Section 4, we tackle tetrahedral discrete 1-forms of higher (uni-
form) polynomial degree p. For them,we can establish p-uniformly stable discrete reg-
ular decompositions, with weaker stability properties than those achievable for Whit-
ney 1-forms, though. The key tool are commuting local projection based interpolation
operators presented in Section 4.1 combined with a p-stable quasi-interpolation bor-
rowed from [47].

The focus of this work is on numerical analysis techniques required to establish
existence and properties of discrete regular decompositions. In detail, we gather, re-
view, assemble, and, sometimes, extend theoretical results from the finite element
literature, with the intention of conveying the guiding ideas and tricks underlying the
proofs. The actual use of regular decompositions will be addressed only briefly in Sec-
tion 1.5.

1.1 Geometric setting

Since subtle geometric arguments will play a major role for parts of the theory, we
have to give a precise characterization of the geometric setting: We let Ω ⊂ ℝ3 be an
open, bounded, connected Lipschitz polyhedron. Its boundary Γ := 𝜕Ω, is partitioned
according to Γ = ΓD ∪ Σ ∪ ΓN , with relatively open sets ΓD and ΓN . We assume that
this provides a piecewise C1 dissection of Γ in the sense of [31, Definition 2.2]. Sloppily
speaking, this means that Σ is the union of closed curves that are piecewise C1. This
is the proper setting for the continuous regular decomposition studied in Section 2.
When we look at discrete regular decompositions we further restrict the shape of Ω
and ΓD: In this case, we demand that Σ consists of disjoint closed polygons.

We triangulate Ω with a simplicial mesh 𝒯 , which will be identified with its set of
tetrahedral elements: 𝒯 = {T}. We assume that the partitioning of the boundary Γ is
resolved by the mesh. We endow edges and faces of 𝒯 with intrinsic orientations; see
Section 3.2.1.

Assumption 1.1. Both ΓD and ΓN are unions of closed faces of elements of 𝒯 .
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7 Discrete regular decompositions of tetrahedral discrete 1-forms | 201

We write hT for the local mesh size, that is, the diameter of T ∈ 𝒯 , and rT for
the radius of the largest ball contained in T. These numbers enter the global shape
regularity measure ρ(𝒯 ) of the mesh defined as [15], [49, Section II.4],

ρ(𝒯 ) := max{hT/rT , T ∈ 𝒯 } . (1.1)

The symbol h will also denote a function h ∈ L∞(Ω) with h(x) := hT for x ∈ T, T ∈ 𝒯 .

1.2 Notation and function spaces

Weadhere to the de-facto standard notation for function spaces in the numerical anal-
ysis literature [36, Section 2.4]. In particular, we write Hs(D), s ∈ ℝ, for the Sobolev
(Hilbert) space of order s on the domain D, see [50, Chapter 3]. It is endowed with the
usual norm ‖⋅‖s,D, and the semi-norm |⋅|s,D.WewriteHs

Σ(D), s >
1
2 , for the subspacewith

zero boundary conditions imposed on Σ ⊂ 𝜕D. Bold typeface distinguishes (spaces of)
vector valued functions, e. g., Hs

Σ(D). The notation HΣ(curl,D) and HΣ(div,D) stand
for spaces of vector fields with rotation and divergence, respectively, in L2(D), and
zero tangential/normal trace on Σ ⊂ 𝜕D. The associated norms read ‖⋅‖H(curl,D) and
‖⋅‖H(div,D).

1.3 Tetrahedral discrete differential forms

Discrete differential forms provide finite element spaces of differential forms. They are
studied in the newfield of Finite Element Exterior Calculus (FEEC) using tools from the
calculus of differential forms [34, 4, 5]. In this article, we stick to the classical calculus
of vector analysis, because all developments are set in 3D Euclidean space. Yet, the
differential forms background has inspired our notation: integer superscripts label
spaces and operators related to differential forms of a particular degree.

We restrict ourselves to the so-called first family of simplicial discrete differential
forms. It comprises the following 𝒯 -piecewise polynomial finite element spaces.

1○ Discrete 0-forms, continuous Lagrangian finite elements:

𝒲0
p,ΓD (𝒯 ) := {v ∈ H

1
ΓD (Ω), v |T ∈𝒲

0
p (T) ∀T ∈ 𝒯 } ,

𝒲0
p (T) := 𝒫p+1(ℝ

3) ,

2○ Discrete 1-forms, Nedéléc’s first family of curl-conforming elements
(“edge elements”):

𝒲1
p,ΓD (𝒯 ) := {v ∈ HΓD (curl,Ω), v |T ∈𝒲

1
p(T) ∀T ∈ 𝒯 } ,

𝒲1
p(T) := {x 󳨃→ p(x) + q(x) × x, p,q ∈ 𝒫p(ℝ

3)} ,

Brought to you by | University of Michigan-Flint
Authenticated

Download Date | 8/31/19 4:06 PM



202 | R. Hiptmair and C. Pechstein

3○Discrete 2-forms, div-conformingRaviart–Thomasfinite elements (“face elements”):

𝒲2
p,ΓD (𝒯 ) := {v ∈ HΓD (div,Ω), v |T ∈𝒲

2
p(T) ∀T ∈ 𝒯 } ,

𝒲2
p(T) := {x 󳨃→ p(x) + q(x)x, p ∈ 𝒫p(ℝ

3), q ∈ 𝒫p(ℝ
3)} ,

4○ Discrete 3-forms, discontinuous piecewise polynomials:

𝒲3
p(𝒯 ) := {v ∈ L

2(Ω), v |T ∈𝒲
3
p(T) ∀T ∈ 𝒯 } ,

𝒲3
p(T) := 𝒫p(ℝ

3) .

Here, p ∈ ℕ stands for the polynomial degree and 𝒫p(ℝ
3)/𝒫p(ℝ

3) for the spaces of
polynomials/polynomials vector fields of degree ≤ p in three variables. Dropping the
ΓD subscript indicates that no boundary conditions are enforced. Notice that our no-
tation above differ from what is adopted in the seminal work [4] on FEEC, where the
authors write 𝒫−pΛ

ℓ(𝒯 ) instead of𝒲ℓp(𝒯 ).
First-order differential operators related to the exterior derivative connect these

spaces to a discrete de Rham complex:

𝒦ΓD (Ω)
Id
󳨀→𝒲0

p,ΓD (𝒯 )
grad
󳨀→ 𝒲1

p,ΓD (𝒯 )
curl
󳨀→𝒲2

p,ΓD (𝒯 )
div
󳨀→𝒲3

p(𝒯 )
0
󳨀→ {0}. (1.2)

Here, the space of constants is given by

𝒦ΓD (Ω) := {v ∈ H
1
ΓD (Ω): v |Ω = const} = {

span{1} if ΓD = 0,
{0} otherwise.

(1.3)

In the complex (1.2), the range of an operator is contained in the kernel of the subse-
quent operator.

In the lowest-order case (p = 0), the elements of 𝒲ℓ0,ΓD (𝒯 ) are called Whitney
forms. In the sections devoted to these spaces, we are going to replace the subscript
p = 0 with h and write𝒲ℓh,ΓD (𝒯 ) :=𝒲

ℓ
0,ΓD (𝒯 ).

Finally, we need spaces of vectorial continuous Lagrangian finite element func-
tions,

𝒱0
p,ΓD (𝒯 ) := [𝒲

0
p,ΓD (𝒯 )]

3
, 𝒱0

h,ΓD (𝒯 ) := [𝒲
0
h,ΓD (𝒯 )]

3
. (1.4)

1.4 Main results

Our main theorem about the discrete regular decomposition of the spaces of Whit-
ney 1-forms (“edge elements”) involves a local projection operator R1

D:HΓD (curl,Ω) →
𝒲1

h,ΓD (𝒯 ) that respects the homogeneous boundary conditions. This operator and a
related one will be constructed in Section 3.2.6 below, together with several stability
estimates.

Brought to you by | University of Michigan-Flint
Authenticated

Download Date | 8/31/19 4:06 PM



7 Discrete regular decompositions of tetrahedral discrete 1-forms | 203

Theorem 1.2 (Stable discrete regular decomposition for Whitney-1-forms in 3D). For
every discrete 1-form of the lowest-order first family vh ∈𝒲1

h,ΓD (𝒯 ), there exists a con-
tinuous and piecewise linear vector field zh ∈ 𝒱0

h,ΓD (𝒯 ) = [𝒲
0
h,ΓD (𝒯 )]

3, a continuous and
piecewise linear scalar function φh ∈ 𝒲

0
h,ΓD (𝒯 ), and a remainder ṽh ∈ 𝒲1

h,ΓD (𝒯 ), all
depending linearly on vh, providing the discrete regular decomposition

vh = R
1
Dzh + ṽh + gradφh ,

and satisfying the norm estimates

‖zh‖0,Ω ≤ C ‖vh‖0,Ω , |zh|1,Ω ≤ C(
1
d ‖

vh‖0,Ω + ‖curl vh‖0,Ω) , (1.5)

|φh|1,Ω ≤ C ‖vh‖0,Ω , (1.6)

‖ṽh‖0,Ω ≤ C ‖vh‖0,Ω ,
󵄩󵄩󵄩󵄩󵄩h
−1ṽh
󵄩󵄩󵄩󵄩󵄩0,Ω ≤ C(

1
d ‖

vh‖0,Ω + ‖curl vh‖0,Ω) , (1.7)

with d = diam(Ω) and constants C > 0 depending only on the shape of Ω, ΓD, and the
shape regularity measure ρ(𝒯 ).

Similar but weaker results are stated in [39, Lemma 5.1] and [41, Lemma 5.1]. These
estimates did not bound the L2(Ω)-norm of zh by the L2(Ω)-norm of vh. The proof of
Theorem 1.2 is given in Section 3 and it will demonstrate the substantial additional
effort required to establish stability in L2(Ω).

The next result presents a “p-version” counterpart of Theorem 1.2, because it tar-
gets spaces of discrete 1-forms with arbitrary polynomial degree p with a focus on
p-uniform stability estimates.

Theorem 1.3 (Discrete regular decomposition for discrete 1-forms). For every discrete
1-form of the first family vp ∈ 𝒲1

p,ΓD (𝒯 ), p ∈ ℕ0, there exists a continuous vector
field zp ∈ 𝒱0

p,ΓD (𝒯 ) ⊂ H1
ΓD (Ω), 𝒯 -piecewise polynomial of degree ≤ p + 1, a contin-

uous, 𝒯 -piecewise polynomial scalar function φp ∈ 𝒲0
p,ΓD (𝒯 ), and a remainder ṽp ∈

𝒲1
p,ΓD (𝒯 ),

(I) all depending linearly on vp;
(II) satisfying the norm estimates

󵄩󵄩󵄩󵄩zp
󵄩󵄩󵄩󵄩0,Ω ≤ C

󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩0,Ω ,

󵄨󵄨󵄨󵄨zp
󵄨󵄨󵄨󵄨1,Ω ≤ C(

1
d ‖

vh‖0,Ω +
󵄩󵄩󵄩󵄩curl vp

󵄩󵄩󵄩󵄩0,Ω) , (1.8)

󵄨󵄨󵄨󵄨φp
󵄨󵄨󵄨󵄨1,Ω ≤ C(

󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩0,Ω +max

T∈𝒯
{(1 + log(p + 1))

3/2 hT
p
} 󵄩󵄩󵄩󵄩curl vp

󵄩󵄩󵄩󵄩0,Ω) , (1.9)

( ∑
T∈𝒯

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
p + 1
hT

ṽp
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

0,T
)

1/2

≤ C(1 + log(p + 1))
3/2
(
1
d
󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩0,Ω +
󵄩󵄩󵄩󵄩curl vp

󵄩󵄩󵄩󵄩0,Ω) , (1.10)

with d := diam(Ω) and constants C > 0 depending only on the shape of Ω, ΓD, and
the shape regularity measure ρ(𝒯 );
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204 | R. Hiptmair and C. Pechstein

(III)and providing the discrete regular decomposition

vp = Π
1
pzp + ṽp + gradφp ,

where Π1
p : 𝒱

0
p,ΓD (𝒯 ) →𝒲1

p,ΓD (𝒯 ) is a strictly local linear interpolation operator.

This result hasnoprecursor in the literature. Its obvious shortcoming is the restric-
tion to a uniform polynomial degree p. More desirable would be a version admitting
variable polynomial degree, and thus, encompassing finite element spaces created by
hp-refinement; see [2]. However, there is a single technical obstacle that has prevented
us from admitting variable p; refer to Remark 4.17.

Another class of results on discrete regular decompositions beyond the scope
of the above two theorems addresses stability estimates with non-constant positive
weight functions entering the norms. Currently (2017), this is an area of active research
and first results for piecewise constant weight functions are reported in [46, 44, 45].

1.5 Applications

The discrete regular decompositions of the kind provided by Theorem 1.2 have turned
out to be a powerful tool for the numerical analysis of various aspects of edge finite
element methods. We emphasize their role as theoretical tool, because there is not a
single algorithm, which relies on the actual computation of the finite element func-
tions comprising a discrete regular decomposition. The following, probably incom-
plete, list mentions a few pieces of research in numerical analysis, where h-version
discrete regular decompositions played a pivotal role:
– Analysis of geometricmultigridmethods forHΓD (curl,Ω)-elliptic variational prob-

lems discretized by means of edge elements [41, 35, 62]: Here, discrete regular de-
compositions allow to harness results on the stability of multilevel nodal decom-
positions of 𝒱0

1 (𝒯 ).
– Convergence theory of domain decomposition methods for discrete HΓD (curl,Ω)-

elliptic variational problems [55, 25, 24, 46, 42, 43, 45]: In the same vein as multi-
grid theory, these approaches manage to exploit results for Lagrangian finite ele-
ments and H1(Ω)-elliptic variational problems.

– Foundation of nodal auxiliary space preconditioners [40, 39, 48]: the stable dis-
crete regular decomposition directly spawns a subspace correction method for
discreteHΓD (curl,Ω)-elliptic variational problems whose key step amounts to the
solution of scalar elliptic boundary value problems.

– Analysis of geometric auxiliary space methods for edge elements [38].
– Reliability estimates for residual based local error estimators for HΓD (curl,Ω)-

elliptic variational problems [23, 13, 58].
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7 Discrete regular decompositions of tetrahedral discrete 1-forms | 205

2 Continuous regular decomposition

It goes without saying that all results about discrete regular decompositions have
their roots in stability properties of continuous regular decompositions of the func-
tion spaceHΓD (curl,Ω). Nowwe state and prove the corresponding key estimates. For
ease of presentation,we set diam(Ω) = 1 throughout the remainder of thismanuscript.
Simple scaling argumentswill thenproduce themore general estimates of Theorem 1.2
and Theorem 1.3.

The following result can essentially be found in [41, 32], except that we also assert
extra L2-stability. Note that there are neither restrictions on the topology of Ω nor on
the connectedness of the Dirichlet boundary ΓD. A more general version of the theory
can be found in [56].

Theorem 2.1 (Boundary aware regular decomposition). For each v ∈ HΓD (curl,Ω)
there exists a vector field z ∈ H1

ΓD (Ω) and a scalar function φ ∈ H1
ΓD (Ω) depending

linearly on v such that

v = z + gradφ,

and

‖z‖0,Ω ≤ C ‖v‖0,Ω , |z|1,Ω ≤ C ‖v‖H(curl,Ω) , (2.1)

‖φ‖1,Ω ≤ C ‖v‖0,Ω , (2.2)

with constants independent of v.

For the proof, we need a few auxiliary results that will be provided in the next
three sections.

2.1 Collars and bulges

Under the assumptions on Ω made in Section 1.1, [31, Lemma 4.4] guarantees the ex-
istence of an open Lipschitz neighborhood ΩΓ (“Lipschitz collar”) of Γ := 𝜕Ω and of a
smooth vector field ñ ∈ C∞(ℝ3, ℝ3) with ‖ñ‖ ≡ 1 on ΩΓ that is transversal to Γ:

∃κ > 0 : ñ(x) ⋅ n(x) ≥ κ for almost all x ∈ Γ . (2.3)

Extrusion of ΓD by the local flow induced by ñ spawns the “bulge” ϒD ⊂ ΩΓ \ Ω; see
Figure 7.1. We recall the properties of bulge domains from [31, Section 2].

Theorem 2.2 (Bulge-augmented domain). There exists aLipschitz domainϒD ⊂ ℝ3\Ω,
such that ϒD ∩ Ω = ΓD, Ωe := ϒD ∪ ΓD ∪ Ω is Lipschitz, diam(Ωe) ≤ 2, and ϒD ⊂ ΩΓ.
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206 | R. Hiptmair and C. Pechstein

Figure 7.1: Collar domain ΩΓ (pink) and bulge domain ϒD (gold).

Remark 2.3. If ΓD has several components Γk, k = 1, . . . ,N, then each of them gives
rise to a separate bulge ϒk with ϒk ∩ Ω = Γk, and the individual bulges have positive
distance from each other. This is a consequence of our assumptions on Γ and has to
be kept in mind though we are not going to mention this fact explicitly in the sequel.

2.2 Extension operators

Lemma 2.4 ([60]). Let 𝒟 be a bounded Lipschitz domain with diam(𝒟) = 1. Then there
exists a bounded linear extension operator E𝒟 : L2(𝒟) → L2(ℝ3) such that for k ∈ ℕ0,

‖E𝒟v‖k,𝒟 ≤ C‖v‖k,𝒟 ∀v ∈ Hk(𝒟), (2.4)

with C depending only on𝒟 and k. Moreover, E𝒟v has compact support in ℝ3.

Weapply this fundamental result to thebulgedomainϒD introduced inSection 2.1.

Corollary 2.5. There exists an extension operator E(2)ϒD : L
2(ϒD) → L2(ℝ3) such that for

k ∈ ℕ0,
󵄩󵄩󵄩󵄩E
(2)
ϒD
v󵄩󵄩󵄩󵄩k,ℝ3 ≤ C‖v‖k,ϒD ∀v ∈ Hk(ϒD), (2.5)

where the constant C depends on Ω, ϒD, and k.

Lemma 2.6. For a Lipschitz domain 𝒟 with diam(𝒟) = 1 there exists a bounded lin-
ear extension operator Ecurl𝒟 :L

2(𝒟) → L2(ℝ3) such that, with constants depending only
on𝒟,

󵄩󵄩󵄩󵄩E
curl
𝒟 v󵄩󵄩󵄩󵄩0,ℝ3 ≤ C‖v‖0,𝒟 ∀v ∈ L2(𝒟),

󵄩󵄩󵄩󵄩E
curl
𝒟 v󵄩󵄩󵄩󵄩H(curl,ℝ3) ≤ C‖v‖H(curl,𝒟) ∀v ∈ H(curl,𝒟).

Moreover, Ecurl𝒟 v has compact support in ℝ3.
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7 Discrete regular decompositions of tetrahedral discrete 1-forms | 207

Proof. Since𝒟 is (strong) Lipschitz, it is alsoweak Lipschitz, and so the Lipschitz col-
lar is locally the image of the unit cube under a bi-Lipschitz mapping such that the
exterior is mapped to the upper half-space [49, Section VII.1]. On the cube, we define
the extension of w(x1, x2, x3) as diag(1, 1, −1)w(x1, x2, −x3). Mapping back to the collar
and using a partition of unity, one obtains the desired result, since the bi-Lipschitz
mapping preserves the curl-operator.

We note that a similar result with higher order curl-derivatives (but not with the
pure L2-stability) has been shown in [37].

2.3 A Fourier-based projection

The next lemma builds on similar results from [3, Lemma 3.5], [36, Lemma 2.5], and
[37, Lemma 5.1].

Lemma 2.7. There exists a bounded linear operator Lcurl:H(curl, ℝ3) → H1(ℝ3) such
that for all v ∈ H(curl,Ω)
(L1) curl Lcurlv = curl v;
(L2) div Lcurlv = 0;
(L3) ‖Lcurlv‖0,ℝ3 ≤ ‖v‖0,ℝ3 and ‖(I − Lcurl)v‖0,ℝ3 ≤ ‖v‖0,ℝ3 ;
(L4) ‖∇Lcurlv‖0,ℝ3 ≤ ‖ curl v‖0,ℝ3 ;
(L5) L2curlv = Lcurlv, i. e., Lcurl is a projection.

In the statement (L4), ∇ applied to a vector field yields the Jacobian.

Proof. Theproof is classical; see, e. g., [29, Chapter I, Theorem3.4] and [55, Lemma2.1].
Let v̂(ξ ) := (ℱv)(ξ ) := ∫ℝ3 e

−2πix⋅ξv(x) dx denote the (component-wise) Fourier trans-
form of v ∈ L2(ℝ3). Recall that 𝜕kv, curl v, div v correspond to 2πiξ kv̂, 2πiξ × v̂, and
2πiξ ⋅ v̂, respectively. We set

Lcurlv := ℱ
−1ŵ, with ŵ(ξ ) := −|ξ |−2(ξ × ξ × v̂(ξ )).

Elementary properties of ŵ ∈ L2(ℝ3) yield most of the assertions: (L1) from 2πξ × ŵ =
2πξ × v̂. (L2) from 2πξ ⋅ŵ = 0. (L3) from |ŵ| ≤ |v̂|, because due to Plancherel’s theorem,

‖Lcurlv‖0,ℝ3 = ‖ŵ‖0,ℝ3

‖(I − Lcurl)v‖0,ℝ3 = ‖ v̂ + |ξ |
−2ξ × ξ × v̂⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=|ξ |−2(v̂⋅ξ )ξ

‖0,ℝ3
}}
}}
}

≤ ‖v̂‖0,ℝ3 = ‖v‖0,ℝ3 .

(L4) is obtained as follows:

‖∇Lcurlv‖
2
0,ℝ3 =

3
∑
k=1
‖2πiξkŵ‖

2
0,ℝ3 ≤

3
∑
k=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

|ξk |2

|ξ |2
2πiξ × v̂

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

0,ℝ3
≤ ‖curl v‖20,ℝ3 .

The last estimate shows that indeed Lcurlv ∈ H1(ℝ3). (L5) is checked easily.
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208 | R. Hiptmair and C. Pechstein

2.4 Proof of Theorem 2.1

We follow the proof as in [41, Theorem 5.9] and establish the L2-stability using the
ideas from [55, Lemma 2.2]. Let v ∈ HΓD (curl,Ω) be arbitrary but fixed.

Step 1:We extend v by zero to a function inH(curl,Ωe), where Ωe is the extended
domain from Section 2.1 and then to ṽ ∈ H(curl, ℝ3) using EcurlΩe . We observe ṽ |ϒD ≡ 0
and that Lemma 2.6 implies

‖ṽ‖0,ℝ3 ≤ C‖v‖0,Ω , ‖ curl ṽ‖0,ℝ3 ≤ C ‖v‖H(curl,Ω) . (2.6)

Step 2: Let B ⊇ Ωe be a ball such that 1 ≤ diam(B) ≤ 2 and define

w := (Lcurlṽ)|B.

Due to (L1) of Lemma 2.7, curlw = curl ṽ inB. SinceB is simply connected, there exists
a scalar potential ψ ∈ H1(B) with zero average ∫B ψdx = 0 such that

ṽ = w + gradψ.

Lemma 2.7 together with (2.6) implies

‖w‖0,B = ‖Lcurlṽ‖0,B ≤ ‖ṽ‖0,ℝ3 ≤ C‖v‖0,Ω ,
‖gradψ‖0,B = ‖(I − Lcurl)ṽ‖0,B ≤ ‖ṽ‖0,ℝ3 ≤ C‖v‖0,Ω ,
‖∇w‖0,B ≤ ‖curl ṽ‖0,ℝ3 ≤ C‖v‖H(curl,Ω) ,
‖ψ‖0,B ≤ C‖gradψ‖0,B ≤ C‖v‖0,Ω ,

(2.7)

where in the last estimate we have used Poincaré’s inequality on the convex ball B [6].
Step 3: Since

0 = w + gradψ in ϒD ,

we conclude that ψ|ϒD ∈ H
2(ϒD). We define ψ̃ := (E(2)ϒDψ)|B ∈ H

2(B). From Corollary 2.5,
we obtain

‖ψ̃‖0,B ≤ C‖ψ‖0,ϒD ≤ C‖v‖0,Ω ,

‖grad ψ̃‖0,B ≤ C‖ψ‖1,ϒD ≤ C‖gradψ‖0,B ≤ C‖v‖0,Ω ,

‖∇ grad ψ̃‖0,B ≤ C(‖∇ gradψ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=−∇w
‖20,ϒD + ‖ψ‖

2
1,ϒD)

1/2
≤ C‖v‖H(curl,Ω) ,

(2.8)

where ∇ grad indicates the Hessian.
Step 4: In B, it holds that

ṽ = w + gradψ = w + grad ψ̃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=:z∈H1

+ grad(ψ − ψ̃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=:φ∈H1

).

It is easy to see that φ = 0 in ϒD and so φ ∈ H1
ΓD (Ω). Correspondingly, gradφ = 0 and

ṽ = 0 in ϒD, and so z ∈ H1
ΓD (Ω). Combining (2.7) and (2.8) yields the desired estimates

for z and p.
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7 Discrete regular decompositions of tetrahedral discrete 1-forms | 209

3 Discrete regular decomposition: lowest-order case
Now we tackle the proof of Theorem 1.2. We employ an extended version of the local
projectors invented by Falk and Winther in [27]; see also [28]. Our extension is aimed
at enforcing compliance with the boundary conditions on ΓD and the sophisticated
technical details will be elaborated in Section 3.2. With this tool at our disposal, the
proof of Theorem 1.2 can be done in a few simple steps as we are going to demonstrate
in Section 3.3.

3.1 Outline: proof by projection

As a little preview, we give a sketch of the proof, in order to motivate the need for
the operators we construct step by step in the sequel. Let R1

D:L
2(Ω) →𝒲1

h,ΓD (𝒯 ) be a
projector onto the finite element space. Given vh ∈𝒲1

h,ΓD (𝒯 ), we apply the projector
property as well as the continuous regular decomposition from Theorem 2.1:

vh = R
1
Dvh = R

1
Dz + R

1
D gradφ. (3.1)

In the following,wealso construct a companionoperatorR0D:H
1(Ω) →𝒲0

h,ΓD (𝒯 )which
commutes with R1

D under the gradient operator, such that we obtain

vh = R
1
Dz + gradR

0
Dφ⏟⏟⏟⏟⏟⏟⏟
=:φh

. (3.2)

As regards Theorem 1.2, it will be essential that R0D and R
1
D respect the homogeneous

Dirichlet boundary conditions on ΓD.
The function z above is inH1(Ω) but not in the finite element space. This is whywe

have to introduce a third term into the splitting by means of a Clèment-type operator
M0

D:L
2(Ω) → 𝒱0

h,ΓD (𝒯 ) = (𝒲
0
h,ΓD (𝒯 ))

3 (defined component-wise), that, again, respects
homogeneous boundary conditions. We then obtain

vh = R
1
DM

0
Dz⏟⏟⏟⏟⏟⏟⏟
=:zh

+R1
D(I −M

0
D)z⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:ṽh

+ gradR0Dφ⏟⏟⏟⏟⏟⏟⏟
=:φh

. (3.3)

The norm estimates from Theorem 1.2 require a series of stability properties of the
operators R0D, R

1
D, andM

0
D, in particular L

2-stability.
Instead of the operator R1

D above, a simple interpolation operator Π1
h mapping to

the Nèdèlec space 𝒲1
h(𝒯 ) can be used. Clearly, Π1

h is a projector too, but its domain
of definition is a genuine subspace ofH(curl,Ω), and its stability properties are fairly
different from those of R1

D. Nevertheless, when applying the projection property and
the continuous regular decomposition vh = z + gradφ, one obtains

vh = Π
1
hz + Π

1
h gradφ = Π

1
hz + gradΠ

0
hφ, (3.4)

Brought to you by | University of Michigan-Flint
Authenticated

Download Date | 8/31/19 4:06 PM



210 | R. Hiptmair and C. Pechstein

using the commuting propertywith the nodal interpolation operatorΠ0
h . However, one

must make sure that all the terms are well-defined. Firstly, since curl z = curl vh and
curl gradφ = 0, the terms Π1

hz and Π1
h gradφ are well-defined; cf. [36, Lemma 4.6].

Secondly, since gradφ = vh − z is in H1, piecewise on each element of the mesh, we
can conclude that φ is piecewise in H2. Therefore, its point evaluation at the nodes
of the mesh is well-defined and so is Π0

hφ. Finally, using the Clément-type quasi-
interpolation operatorM0

D, we obtain

vh = Π
1
hM

0
Dz⏟⏟⏟⏟⏟⏟⏟
=:zh

+Π1
h(z − Π

1
hz)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:ṽh

+ gradΠ0
hφ⏟⏟⏟⏟⏟⏟⏟
=:φh

. (3.5)

The above alternative strategy will be used in Section 4 to tackle the proof of Theo-
rem 1.3 for the p-version. However, due to poorer stability propertiesΠ1

h, the resulting
stability estimates will be weaker. In particular, we cannot prove pure L2 estimates.

Remark 3.1. The first such three-term splitting in the literature can be found in [38].
Shortly later, improved versions were given in [39, Lemma 5.1] and [41, Lemma 5.1].
The arguments therein are slightly different. Instead of using that φ is piecewise in
H2, it is shown that curl(z − Π1

hz) = 0. From the additional property that the integral
of z − Π1

hz over each edge of the mesh vanishes, one can conclude that there exists
q ∈ H1(Ω) with z − Π1

hz = grad q, cf. [41, Lemma 2.3]. Summarizing,

vh = Π
1
hz + (z − Π

1
hz)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=grad q

+ gradφ = Π1
hz + grad(φ + q).

Since grad(φ + q) ∈𝒲1
p,ΓD (𝒯 ), we conclude from the discrete de Rham complex that

φ+q ∈𝒲0
p,ΓD (𝒯 ) andwe can setφh = φ+q. Indeed, comparing with the splitting (3.4),

we see that

grad(φ + q) = gradφ + z − Π1
hz = vh − Π

1
hz

(3.4)
= gradφh .

3.2 Local bounded boundary-aware co-chain projections

In this section, we construct two sets of operators parallel to developments in [27],
from where we have also borrowed a good deal of the notation. The first one are mod-
ified Clément-type operators M0

D: L
2(Ω) → 𝒲0

h,ΓD (𝒯 ) andM1
D:L

2(Ω) → 𝒲1
h,ΓD (𝒯 ) that

commute with the gradient on H1
ΓD (Ω):

H1
ΓD (Ω)

grad
󳨀→ HΓD (curl,Ω)

↓ M0
D ↓ M1

D

𝒲0
h,ΓD (𝒯 )

grad
󳨀→ 𝒲1

h,ΓD (𝒯 )

(3.6)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms | 211

The operators feature also some of the local stability and approximation properties
of the classical Clément quasi-interpolant [16]; see below. The second class of oper-
ators are so-called bounded co-chain projections, originally introduced by Falk and
Winther [27]. The operators are defined on the spaces of the de Rham complex, they
are projections onto spaces of discrete differential forms, commute with the exterior
derivative, and are locally defined. Here, we modify two of these operators, in the se-
quel called R0D and R1

D such that they additionally respect homogeneous boundary
conditions. We have the commuting diagram

H1
ΓD (Ω)

grad
󳨀→ HΓD (curl,Ω)

↓ R0D ↓ R1
D

𝒲0
h,ΓD (𝒯 )

grad
󳨀→ 𝒲1

h,ΓD (𝒯 ),

(3.7)

where opposed to (3.6), the operators are projectors.

3.2.1 Notation and assumptions

Weneed a littlemore notation for the subsequent construction. Let𝒱, ℰ, andℱ denote
the set of vertices, edges, and faces (resp.) of the mesh 𝒯 . We also introduce the sets
𝒱f := {v ∈ 𝒱 : v ̸∈ ΓD}, ℰf := {e ∈ ℰ : e ̸⊂ ΓD}, and ℱf := {f ∈ ℱ : f ̸⊂ ΓD} of “free”
vertices, edges, and faces, respectively. Let φv denote the nodal vertex basis function
fulfilling φv(v󸀠) = δvv󸀠 for v, v󸀠 ∈ 𝒱. Edges and faces have to be oriented: For an edge
e = [e1, e2] with endpoints e1, e2 ∈ 𝒱, the orientation is given by the unit tangent
τe := (e2−e1)/|e2−e1|. The orientation of a face f ∈ ℱ is provided by the unit normalnf.
Byψe ∈𝒲

1
h(𝒯 ) and ζ f ∈𝒲

2,
h (𝒯 )wedenote theNédélec edge and face basis functions,

fulfilling ∫e󸀠 ψe ⋅ τe ds = δee󸀠 for e, e
󸀠 ∈ ℰ and ∫f󸀠 ζ f ⋅ nf󸀠 ds = δff󸀠 for f, f

󸀠 ∈ ℱ . We find
that

𝒲0
h,ΓD (𝒯 ) = span{φv}v∈𝒱f

,

𝒲1
h,ΓD (𝒯 ) = span{ψe}e∈ℰf ,

𝒲2
h,ΓD (𝒯 ) = span{ζ f}f∈ℱf

.

Finally, for a vertex v ∈ 𝒱, its node patch ωv is defined by

ωv := ⋃
T∈𝒯 :v∈T

T .

For an edge e = [e1, e2] ∈ ℰ and a triangular face f = [f1, f2, f2] ∈ ℱ , the corresponding
patches are given by

ωe = ωe1 ∪ ωe2 , ωf = ωf1 ∪ ωf2 ∪ ωf3 .
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212 | R. Hiptmair and C. Pechstein

Figure 7.2: Sketch of edge patches.

See Figure 7.2 for a sketch of two edge patches. Finally, the element patch correspond-
ing to an element T ∈ 𝒯 is given by

ωT = ⋃
v∈𝒱∩T

ωv .

For a patch ω ⊂ Ω of elements of 𝒯 , we will frequently use the space H1
ΓD (ω) := {u ∈

H1(ω): u |ΓD = 0}. If meas2(𝜕ω ∩ ΓD) = 0 the functions in this space fulfill no boundary
condition.

The following, technical assumption is fulfilled for standard meshes.

Assumption 3.2. For each vertex v ∈ 𝒱, edge e ∈ ℰ, and face f ∈ ℱ , the vertex patchωv,
edge patch ωe, and face patch ωf, respectively, is simply connected and has a simply
connected boundary.

The following results will be helpful in the development of our theory later on.

Lemma 3.3. Let e = [e1, e2] ∈ ℰf with e1 ∈ ΓD (or e2 ∈ ΓD). Then there exists a face
f ⊂ 𝜕ωe ∩ ΓD with e1 ∈ f (or e2 ∈ f, resp.).

Proof. Suppose that e1 ∈ ΓD. Then there exists a face f ⊂ ΓD with e1 ⊂ f. Sinceωe ⊃ ωe1 ,
there is an element T ⊂ ωe such that f is a face of T, and moreover, f ⊂ 𝜕ωe.

We will use a couple of times that

diam(ωv) ≤ ChT , diam(ωv)
−1 ≤ Ch−1T ∀v ∈ 𝒱 ∩ T ,

diam(ωe) ≤ ChT , diam(ωe)
−1 ≤ Ch−1T ∀e ∈ ℰ ∩ T ,

he := diam(e) ≤ ChT , h−1e ≤ Ch
−1
T ∀e ∈ ℰ ∩ T ,

with a (generic) constant C only depending on the shape regularity of 𝒯 . Furthermore,
we need the following discrete estimates:
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7 Discrete regular decompositions of tetrahedral discrete 1-forms | 213

Lemma 3.4. For any element T ∈ 𝒯 and any vertex v ⊂ T,

|uh(v)| ≤ Ch
−3/2
T ‖uh‖0,T ∀uh ∈𝒲

0
h (T),

‖gradφv‖0,T ≤ Ch
1/2
T .

Moreover, for every edge e ⊂ T,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

wh ⋅ τe ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Ch−1/2T ‖wh‖0,T ∀wh ∈𝒲

1
h(T),

‖ψe‖0,T ≤ Ch
1/2
T .

Proof. The proof is carried out using standard techniques from finite elements, trans-
formation to the reference element, and an eigenvalue analysis of the reference ele-
ment mass matrix.

3.2.2 Locally exact sequences and Poincaré–Friedrichs-type inequalities

Letω be a patch of elements which is simply connectedwith simply connected bound-
ary, and let γ ⊂ 𝜕ω be a simply connected surface that is a union of faces of elements;
the cases γ = 0 and γ = 𝜕ω are admitted. Then the local sequence

𝒦γ(ω)
id
󳨀→𝒲0

h,γ(ω)
grad
󳨀→ 𝒲1

h,γ(ω)
curl
󳨀→𝒲2

h,γ(ω)
div
󳨀→𝒲3

h,γ(ω)
0
󳨀→ {0} (3.8)

is exact, i. e., the range of an operator is equal to the kernel of the subsequent operator
[4, 5]. Above, 𝒦γ(ω) is the space of constants if γ = 0 and 𝒦γ(ω) = {0} otherwise, and

𝒲3
h,γ(ω) = {

{v ∈𝒲3
h(ω): ∫ω v dx = 0} if γ = 𝜕ω

𝒲3
h(ω) otherwise.

We have the classical Poincaré inequality

‖u − uω‖0,ω ≤ Chω‖grad u‖0,ω ∀u ∈ H1(ω), (3.9)

where uω := |ω|−1 ∫ω u dx and hω := diam(ω), and the Friedrichs inequality

‖u‖0,ω ≤ Chω‖grad u‖0,ω ∀u ∈ H1
γ(ω), if meas2(γ) > 0. (3.10)

Above, the constants C depend only on the shape regularity of the mesh 𝒯 ; for a proof
see, e. g., [57]. We can write these inequalities in a more abstract way by introducing
the L2(ω)-orthogonal projector Π0

ω,γ :H
1
γ(ω) → 𝒦γ(ω) = ker(grad|H1

γ(ω)):

‖u − Π0
ω,γu‖0,ω ≤ Chω‖grad u‖0,ω ∀u ∈ H

1
γ(ω) . (3.11)
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214 | R. Hiptmair and C. Pechstein

For the other spaces in (3.8), let

Π1
h,ω,γ :H(curl,ω) → grad𝒲0

h,γ(ω), Π2
h,ω,γ :H(div,ω) → curl 𝒲1

h,γ(ω)

denote the L2(ω)-orthogonal projectors onto grad𝒲0
h,γ(ω) = ker(curl|𝒲1

h,γ(ω)
) and

curl 𝒲1
h,γ(ω) = ker(div|𝒲2

h,γ(ω)
), respectively. Then the following discrete Poincaré–

Friedrichs-type inequalities hold:

‖w − Π1
h,ω,γw‖0,ω ≤ Chω‖curl w‖0,ω ∀w ∈𝒲1

h,γ(ω), (3.12)

‖q − Π2
h,ω,γq‖0,ω ≤ Chω‖div q‖0,ω ∀q ∈𝒲2

h,γ(ω), (3.13)

where the constant C depends only on the shape regularity of 𝒯 . These important re-
sults can be shown by transformation to a few number of reference patches. From the
L2-projection property, we obtain that

‖Π1
h,ω,γw‖0,ω ≤ ‖w‖0,ω ∀w ∈ H(curl,ω), (3.14)

‖Π2
h,ω,γq‖0,ω ≤ ‖q‖0,ω ∀q ∈ H(div,ω). (3.15)

3.2.3 Modified Clément operators

We defineM0
D: L

2(Ω) →𝒲0
h,ΓD (𝒯 ) by

M0
Du := ∑

v∈𝒱f

uωv φv . (3.16)

Recall again that uωv := 1
|ωv|
∫ωv

u dx is the mean value of u over ωv. As a simple but
useful property,

(M0
Du)(v) = {

uωv if v ∈ 𝒱f
0 otherwise,

(3.17)

i. e., the operator respects the homogeneous boundary conditions. Next, we define
M1

D:L
2(Ω) →𝒲1

h,ΓD (𝒯 ) by

M1
Dw := ∑

e∈ℰf
∫
ωe

w ⋅ z1e dxψe , (3.18)

where the weight function z1e ∈ H(div,ωe) is yet to be constructed. Beforehand, we
define for e = [e1, e2] the piecewise constant function

y0e := ∑
v∈e∩𝒱f

σve
1
|ωv|

χωv
=

{{{{
{{{{
{

1
|ωe2 |

χωe2
− 1
|ωe1 |

χωe1
if e1 ̸∈ ΓD, e2 ̸∈ ΓD ,

1
|ωe2 |

χωe2
if e1 ∈ ΓD ,

− 1
|ωe1 |

χωe1
if e2 ∈ ΓD .

(3.19)
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Above, χωv
is the characteristic function, σve = −1 if v is the starting point of e and

σve = +1 if v is its endpoint (i. e., σ
v
e is an entry of the edge-vertex incidence matrix). It

is seen easily that y0e ∈𝒲
3
h(ωe) and that

e1 ̸∈ ΓD and e2 ̸∈ ΓD 󳨐⇒ ∫
ωe

y0e dx = 0. (3.20)

We require that

−div z1e = y
0
e in ωe , (3.21)

z1e ⋅ n = 0 on 𝜕ωe \ γe , (3.22)

where γe is constructed as follows:
(i) If e1 ̸∈ ΓD and e2 ̸∈ ΓD, we set γe := 0.
(ii) If one of the endpoints of e, say e1, lies on ΓD, then we set γe := f, where f is the

triangular face from Lemma 3.3 such that f ⊂ 𝜕ωe ∩ ΓD and e1 ⊂ f. See Figure 7.3
for an illustration.

Figure 7.3: Sketch of an edge patch ωe and the surface γe for the case that one of the endpoints of
the edge lies on the Dirichlet boundary ΓD. The weight function z1e has vanishing normal component
on γce (dotted line).

From the construction of γe and from (3.20) we can conclude that

y0e ∈𝒲
3
h,γce (ωe), (3.23)

where γce := 𝜕ωe \ γe. In particular, for the case γe = 0, (3.20) serves as a compatibility
condition for (3.21)–(3.22) due toGauss’ theorem. In order to fix z1e uniquely,we require
two additional properties:

z1e ∈𝒲
2
h,γce (ωe), (3.24)
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216 | R. Hiptmair and C. Pechstein

∫
ωe

z1e ⋅ curl wh dx = 0 ∀wh ∈𝒲
1
h,γce (ωe). (3.25)

Recall that due to Assumption 3.2, ωe is simply connected with simply connected
boundary. Therefore, since γe is either empty or a triangular face, the complementary
surface γce is simply connected. Therefore, the sequence (3.8) withω 󳨃→ ωe and γ 󳨃→ γce
is exact, and it follows that the weight function z1e indeed exists and is unique.

From (3.21)–(3.22), we can conclude that

∫
ωe

grad q ⋅ z1e dx = ∫
ωe

q y0e dx ∀q ∈ {
H1(ωe) if e1 ̸∈ ΓD and e2 ̸∈ ΓD ,
H1
γe (ωe) if e1 ∈ ΓD or e2 ∈ ΓD .

(3.26)

Lemma 3.5. For all u ∈ H1
ΓD (Ω), we have the commuting property:

M1
D grad u = gradM

0
Du.

Moreover, for an edge e ∈ ℰf with e1 ∈ ΓD or e2 ∈ ΓD and for uh ∈𝒲0
h,γe (ωe),

∫
e

(M1
D grad uh) ⋅ τe ds = ∫

e

(gradM0
Duh) ⋅ τe ds,

where the two expressions are well-defined.

Proof. For the first part of the proof, we just consider u ∈ H1(Ω). By construction, both
M1

D grad u and gradM
0u belong to𝒲1

h,ΓD (𝒯 ), even for a non-trivial topology of Ω, ΓD.
Therefore, in order to show the first identity, it suffices to check all the edge integrals
on e = [e1, e2] ∈ ℰf :

∫
e

(gradM0u) ⋅ τe ds

= ∑
v∈𝒱 f

uωv ∫
e

gradφv ⋅ τe ds =
{{{
{{{
{

uωe2 − uωe1 if e1 ̸∈ ΓD, e2 ̸∈ ΓD ,
uωe2 if e1 ∈ ΓD,
−uωe1 if e2 ∈ ΓD .

Since

uωei = ∫
ωe

u χωei
dx,

we can conclude from (3.19) that

∫
e

(gradM0
Du) ⋅ τe ds = ∫

ωe

u y0e dx ∀u ∈ H1(Ω). (3.27)

Brought to you by | University of Michigan-Flint
Authenticated

Download Date | 8/31/19 4:06 PM



7 Discrete regular decompositions of tetrahedral discrete 1-forms | 217

We now show the first identity and assume that u ∈ H1
ΓD (Ω). Consequently, u|ωe

∈
H1
ΓD (ωe), in particular u|ωe

∈ H1
γe (ωe), and so (3.26) and the definition (3.18) of M1

D
imply

∫
e

(gradM0
Du) ⋅ τe ds = ∫

ωe

grad u ⋅ z1e dx

= ∫
e

∫
ωe

grad u ⋅ z1e dxψe ⋅ τe ds = ∫
e

(M1
D grad u) ⋅ τe ds.

The second identity follows by the same arguments and the locality ofM0
D,M

1
D.

Lemma 3.6. For all u ∈ L2(Ω) and T ∈ 𝒯 ,

‖M0
Du‖0,T ≤ C‖u‖0,ωT

.

Proof. From the definition ofM0
D, we derive

‖M0
Du‖0,T ≤ ∑

v∈𝒱f∩T

|uωv | ‖φv‖0,T .

Cauchy’s inequality yields |uωv | ≤ |ωv|
−1/2‖u‖0,ωv

and standard FE arguments show
that |ωv| ≥ ch3T and ‖φv‖0,ωT

≤ Ch3/2T .

For the approximation property of M0
D, we need another construction. For ele-

ments T where

𝜕ωT ∩ ΓD ̸= 0 but meas2(𝜕ωT ∩ ΓD) = 0,

we define a slightly enlarged element patch ω̃T ⊃ ωT such that

meas2(𝜕ω̃T ∩ ΓD) > 0 and diam(ω̃T ) ≤ ChT , (3.28)

with a uniform constant C depending only on the shape regularity of 𝒯 ; see Figure 7.4
for an illustration. For all other elements, we simply set ω̃T = ωT .

Lemma 3.7. For all u ∈ H1
ΓD (Ω) and T ∈ 𝒯 ,

󵄩󵄩󵄩󵄩u −M
0
Du
󵄩󵄩󵄩󵄩0,T ≤ ChT‖grad u‖0,ω̃T

Proof. Let T be such that meas2(𝜕ω̃T ∩ ΓD) = 0, which implies that 𝜕ωT ∩ ΓD = 0, and
so all vertices onωT are in 𝒱f . Due to the partition of unity property of the vertex basis
functions,

(M0
Dc)|ωT
= c for any constant c.
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218 | R. Hiptmair and C. Pechstein

Figure 7.4: Sketch of construction of enlarged element patch ω̃T . Light grey area: original patch ωT .
Dark grey area: element that is added in order to obtain ω̃T .

Hence,

u −M0
Du = u − u

ωe −M0
D(u − u

ωe ).

From the triangle inequality and the L2-estimate from Lemma 3.6, we obtain

󵄩󵄩󵄩󵄩u −M
0
Du
󵄩󵄩󵄩󵄩0,T ≤ C

󵄩󵄩󵄩󵄩u − u
ωe󵄩󵄩󵄩󵄩0,ωT
≤ ChT‖grad u‖0,ωT

,

where in the last step, we have used Poincaré’s inequality (3.9). Finally, let T be such
that meas2(𝜕ω̃T ∩ ΓD) > 0. We apply Lemma 3.6 directly, leading to

󵄩󵄩󵄩󵄩u −M
0
Du
󵄩󵄩󵄩󵄩0,T ≤ C‖u‖0,ωT

≤ C‖u‖0,ω̃T
.

Since u vanishes on 𝜕ω̃T ∩ ΓD by assumption, Friedrichs’ inequality (3.10) yields the
desired bound.

The stability ofM0
D in theH

1-semi normwill be a consequence of Lemma3.9 below.
The L2-stability of M1

D involves the particular choice of the weight function z1e and
needs the following auxiliary estimate.

Lemma 3.8. Let the weight function z1e be defined by (3.21), (3.22), (3.24), and (3.25).
Then

󵄩󵄩󵄩󵄩z
1
e
󵄩󵄩󵄩󵄩0,ωe
≤ Ch−1/2e .

Proof. The orthogonality condition (3.25) implies that Π2
h,ωe ,γez

1
e = 0, and so the dis-

crete Poincaré–Friedrichs-type inequality (3.13) implies

󵄩󵄩󵄩󵄩z
1
e
󵄩󵄩󵄩󵄩0,ωe
≤ Che
󵄩󵄩󵄩󵄩div z1e
󵄩󵄩󵄩󵄩0,ωe
= Che‖y

0
e‖0,ωe
,

where we have used (3.21). From the definition (3.19) of y0e , we see that ‖y0e‖0,ωe
≤

Ch3/2e h−3e = Ch
−3/2
e .
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Lemma 3.9. For allw ∈ L2(Ω) and T ∈ 𝒯 ,

󵄩󵄩󵄩󵄩M
1
Dw
󵄩󵄩󵄩󵄩0,T ≤ C‖w‖0,ωT

.

Proof.

󵄩󵄩󵄩󵄩M
1
Dw
󵄩󵄩󵄩󵄩0,T ≤ ∑

e∈ℰf∩T

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ωe

w ⋅ z1e dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
‖ψe‖0,ωe

≤ ∑
e∈ℰf∩T

‖w‖0,ωe

󵄩󵄩󵄩󵄩z
1
e
󵄩󵄩󵄩󵄩0,ωe
‖ψe‖0,ωe

.

From Lemma 3.4, ‖ψe‖0,ωe
≤ Ch−1e h3/2e . The proof is concluded by applying Lemma 3.8.

Corollary 3.10. For all u ∈ H1
ΓD (Ω) and T ∈ 𝒯 ,

󵄩󵄩󵄩󵄩gradM
0
Du
󵄩󵄩󵄩󵄩0,T ≤ C‖grad u‖0,ωT

.

Proof. Due to Lemma 3.5, gradM0
Du = M

1
D grad u for all u ∈ H

1
ΓD (Ω), so the statement

follows from Lemma 3.9.

3.2.4 Auxiliary projectors on local patches

Letω be a simply connected patch of a few elements with simply connected boundary
and γ ⊂ 𝜕ω a simply connected union of faces such that the exact sequence property
(3.8) holds; the cases γ = 0, γ = 𝜕ω are admitted. We define Q0

ω,γ :H
1(ω) →𝒲0

h,γ(ω) by

∫
ω

Q0
ω,γu dx = ∫

ω

u dx if γ = 0, (3.29)

∫
ω

grad(Q0
ω,γu) ⋅ grad ph dx = ∫

ω

grad u ⋅ grad ph dx ∀ph ∈𝒲
0
h,γ(ω), (3.30)

and Q1
ω,γ :H(curl,ω) →𝒲1

h,γ(ω) by

∫
ω

Q1
ω,γw ⋅ grad ph dx = ∫

ω

w ⋅ grad ph dx ∀ph ∈𝒲
0
h,γ(ω), (3.31)

∫
ω

curl(Q1
ω,γw) ⋅ curl qh dx = ∫

ω

curl w ⋅ curl qh dx ∀qh ∈𝒲
1
h,γ(ω). (3.32)

Obviously,

Q1
ω,γ grad u = gradQ

0
ω,γu ∀u ∈ H1(ω), (3.33)

Q0
ω,γuh = uh ∀uh ∈𝒲

0
h,γ(ω), (3.34)

Q1
ω,γwh = wh ∀wh ∈𝒲

1
h,γ(ω). (3.35)
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Finally, we define a lifting operator Q1
ω,γ,−:H(curl,ω) →𝒲0

h,γ(ω) by

∫
ω

Q1
ω,γ,−w dx = 0 if γ = 0, (3.36)

∫
ω

grad(Q1
ω,γ,−w) ⋅ grad ph dx = ∫

ω

w ⋅ grad ph dx ∀ph ∈𝒲
0
h,γ(ω). (3.37)

Summarizing, we have

Q0
ω,γu = {

uω + Q1
ω,γ,− grad u if γ = 0,

Q1
ω,γ,− grad u otherwise.

(3.38)

Lemma 3.11. For u ∈ H1(ω),
󵄩󵄩󵄩󵄩gradQ

0
ω,γu
󵄩󵄩󵄩󵄩0,ω ≤ ‖grad u‖0,ω

󵄩󵄩󵄩󵄩Q
0
ω,γu
󵄩󵄩󵄩󵄩0,ω ≤ ‖u‖0,ω + C diam(ω)‖grad u‖0,ω .

Proof. The first estimate follows immediately from (3.30) by setting ph = Q0
ω,γu and

applying Cauchy’s inequality. For the second estimate, we treat two cases:
– If meas2(γ) = 0 then the mean value property (3.29) implies

Q0
ω,γu = Q

0
ω,γ(u − u

ω) + uω

and the first term has vanishing mean over ω. From the triangle inequality,
Cauchy–Schwarz, and Poincaré’s inequality (3.9), we obtain

󵄩󵄩󵄩󵄩Q
0
ω,γu
󵄩󵄩󵄩󵄩0,ω ≤
󵄩󵄩󵄩󵄩Q

0
ω,γ(u − u

ω)󵄩󵄩󵄩󵄩0,ω +
󵄩󵄩󵄩󵄩u

ω󵄩󵄩󵄩󵄩0,ω
≤ C diam(ω)󵄩󵄩󵄩󵄩gradQ

0
ω,γu
󵄩󵄩󵄩󵄩0,ω + ‖u‖0,ω .

– If meas2(γ) > 0, we obtain from Friedrichs’ inequality (3.10) that
󵄩󵄩󵄩󵄩Q

0
ω,γu
󵄩󵄩󵄩󵄩0,ω ≤ C diam(ω)

󵄩󵄩󵄩󵄩gradQ
0
ω,γu
󵄩󵄩󵄩󵄩0,ω .

In both cases, employing the first estimate concludes the proof.

Lemma 3.12. Forw ∈ H(curl,ω),
󵄩󵄩󵄩󵄩curl Q

1
ω,γw
󵄩󵄩󵄩󵄩0,ω ≤ ‖curl w‖0,ω

󵄩󵄩󵄩󵄩Q
1
ω,γw
󵄩󵄩󵄩󵄩0,ω ≤ ‖w‖0,ω + C diam(ω)‖curl w‖0,ω .

Proof. The first estimate follows immediately from (3.32) by setting qh = Q1
ω,γw and

applying Cauchy’s inequality. For the second estimate, recall the projection operator
Π1
h,ω,γ :H(curl,ω) → grad𝒲0

h,γ(ω), from Section 3.2.2, which has the property

∫
ω

Π1
h,ω,γw ⋅ grad ph dx = ∫

ω

w ⋅ grad ph dx ∀ph ∈𝒲
0
h,γ(ω). (3.39)
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Since Π1
h,ω,γ, Q

1
ω,γΠ

1
h,ω,γ, and Π1

h,ω,γQ
1
ω,γ have the same range, we can conclude from

(3.31) and (3.39) that

Q1
ω,γΠ

1
h,ω,γw = Π

1
h,ω,γQ

1
ω,γw = Π

1
h,ω,γw.

Therefore,

Q1
ω,γw = Q

1
ω,γ(w − Π

1
h,ω,γw) + Π

1
h,ω,γw

and

Π1
h,ω,γQ

1
ω,γ(w − Π

1
h,ω,γw) = 0.

Hence, the discrete Poincaré–Friedrichs-type inequality (3.12) togetherwith the L2-sta-
bility (3.14) of Π1

h,ω,γ yields

󵄩󵄩󵄩󵄩Q
1
ω,γw
󵄩󵄩󵄩󵄩0,ω ≤
󵄩󵄩󵄩󵄩Q

1
ω,γ(w − Π

1
h,ω,γw)
󵄩󵄩󵄩󵄩0,ω +
󵄩󵄩󵄩󵄩Π

1
h,ω,γw
󵄩󵄩󵄩󵄩0,ω

≤ C diam(ω)󵄩󵄩󵄩󵄩 curl Q
1
ω,γ(w − Π

1
h,ω,γw)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

curl Q1
ω,γw

󵄩󵄩󵄩󵄩0,ω + ‖w‖0,ω .

Employing the first estimate once again concludes the proof.

Finally, we need stability estimates for the lifting operator Q1
ω,γ,−:

Lemma 3.13. For anyw ∈ H(curl,ω),

󵄩󵄩󵄩󵄩gradQ
1
ω,γ,−w
󵄩󵄩󵄩󵄩0,ω ≤ ‖w‖0,ω ,

󵄩󵄩󵄩󵄩Q
1
ω,γ,−w
󵄩󵄩󵄩󵄩0,ω ≤ C diam(ω)‖w‖0,ω .

Proof. Choosing ph := Q1
ω,γ,−w in (3.37) applying Cauchy–Schwarz, we find that

󵄩󵄩󵄩󵄩gradQ
1
ω,γ,−w
󵄩󵄩󵄩󵄩
2
0,ω = ∫

ω

w ⋅ grad(Q1
ω,γ,−w) dx ≤ ‖w‖0,ω

󵄩󵄩󵄩󵄩Q
1
ω,γ,−w
󵄩󵄩󵄩󵄩0,ω ,

which implies the first inequality. For γ = 0, the second inequality follows from the
first one by Poincaré’s inequality (3.9) because Q1

ω,0,−w has vanishing mean over ω. If
meas2(γ) > 0, then we can use Friedrichs’ inequality (3.10) to obtain the same result.

3.2.5 The auxiliary operators S0
D and S

1
D

For v ∈ 𝒱f , we set

Q0
v := Q

0
ωv ,0
, Q1

v := Q
1
ωv ,0
, Q1

v,− := Q
1
ωv ,0,−
. (3.40)
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We define S0D:H
1(Ω) →𝒲0

h,ΓD (𝒯 ) by

S0Du := M
0
Du, (3.41)

and S1D:H(curl,Ω) →𝒲1
h,ΓD (𝒯 ) by

S1Dw := M
1
Dw + ∑

v∈𝒱f

(Q1
v,−w)(v) gradφv . (3.42)

Remark 3.14. Following the original paper by Falk and Winther [27], the operator S1D
should be defined by

S1Dw := M
1
Dw + ∑

v∈𝒱f

[(I − S0D)Q
1
v,−w](v) gradφv (3.43)

and one needs to argue firstly that the expression [(I − S0D)Q
1
v,−w](v) is well-defined.

Indeed, for v ∈ 𝒱f ,

[(I − S0D⏟⏟⏟⏟⏟⏟⏟
M0

D

)Q1
v,−w](v) = (Q

1
ωv ,0,−

w)(v) − Q1
ωv ,0,−

w
ωv

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

,

which is also the reason for the simplified definition (3.42) compared to (3.43).

UnlikeM0
D,M

1
D, the operators S

0
D and S

1
D do not commute and they are not projec-

tions either. The key property of S1D is the following one.

Lemma 3.15. For all e = [e1, e2] ∈ ℰ and for all uh ∈𝒲0
h,ΓD (𝒯 ),

∫
e

(S1D grad uh) ⋅ τe ds = ∫
e

grad uh ⋅ τe ds.

The same identity holds for a particular edge e if uh is only given in𝒲0
h,γe (ωe).

Proof. For edges e on the Dirichlet boundary ΓD, both integrals evaluate to zero. Let
us therefore consider e ∈ ℰf and uh ∈ 𝒲0

h (ωe). We will specify boundary conditions
for uh later on. Insertion of the definition of S1D into the left-hand side yields

∫
e

(S1D grad uh) ⋅ τe ds

= ∫
e

(M1
D grad uh) ⋅ τe ds + ∫

e

∑
v∈𝒱f

(Q1
v,− grad uh)(v) gradφv ⋅ τe ds

= ∫
e

(M1
D grad uh) ⋅ τe ds + ∑

v∈e∩𝒱f

σev (Q
1
v,− grad uh)(v),
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where σee2 = +1 and σ
e
e1 = −1. Apparently, these expressions are well-defined although

uh is only given in𝒲0
h (ωe). Identity (3.38) and the projection property (3.34) ofQ0

v yield

Q1
v,− grad uh = Q

0
vuh − uh

ωv = uh − uh
ωv .

Therefore,

(Q1
v,− grad uh)(v) = uh(v) − uh

ωv .

Substitution in the earlier formula yields (still for arbitrary uh ∈𝒲0
h (ωe))

∫
e

(S1D grad uh) ⋅ τe ds

= ∫
e

(M1
D grad uh) ⋅ τe ds + ∑

v∈e∩𝒱f

σev (uh(v) − uh
ωv)

= ∫
e

(M1
D grad uh) ⋅ τe ds

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(I)

− ∑
v∈e∩𝒱f

σevuh
ωv

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(II)

+ ∑
v∈e∩𝒱f

σevuh(v)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∫e grad uh ⋅τe ds

.

For the remainder of the proof, we treat two cases:
– If uh ∈ 𝒲0

h,ΓD (𝒯 ), then we obtain from the first commuting property of Lemma 3.5
and Identity (3.27) in its proof that

(I) = ∫
e

(M1
D grad uh) ⋅ τe ds = ∫

e

grad(M0
Duh) ⋅ τe ds = ∫

ωe

uh y
0
e dx = (II).

– If uh ∈ 𝒲0
h,γe (ωe), then the second commuting property of Lemma 3.5 and Iden-

tity (3.27) in its proof imply the same formula.

Next, we provide a stability estimate for S1D.

Lemma 3.16. For allw ∈ HΓD (curl,Ω) and T ∈ 𝒯 ,

󵄩󵄩󵄩󵄩S
1
Dw
󵄩󵄩󵄩󵄩0,T ≤ C‖w‖0,ωT

Proof. The definition of S1D and the triangle inequality imply

󵄩󵄩󵄩󵄩S
1
Dw
󵄩󵄩󵄩󵄩0,T ≤
󵄩󵄩󵄩󵄩M

1
Dw
󵄩󵄩󵄩󵄩0,T + ∑

v∈𝒱f∩T

󵄨󵄨󵄨󵄨(Q
1
v,−w)(v)

󵄨󵄨󵄨󵄨 ‖gradφv‖0,T .

The first term can be estimated from above by C‖w‖0,ωT
; cf. Lemma 3.9. Using Lem-

ma 3.4, we can now estimate the second term:

∑
v∈𝒱f∩T

󵄨󵄨󵄨󵄨(Q
1
v,−w)(v)

󵄨󵄨󵄨󵄨 ‖gradφv‖0,T ≤ C ∑
v∈𝒱f∩T

h−1T ‖Q
1
v,−w‖0,T .
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Recall that Q1
v,−w

ωv
= 0, so Poincaré’s inequality (3.9) implies

h−1T
󵄩󵄩󵄩󵄩Q

1
v,−w
󵄩󵄩󵄩󵄩0,T ≤ C

󵄩󵄩󵄩󵄩gradQ
1
v,−w
󵄩󵄩󵄩󵄩0,ωv
≤ C‖w‖0,ωv

,

where in the last step, we have used Lemma 3.13. Combination of the above yields

∑
v∈𝒱f∩T

󵄨󵄨󵄨󵄨(Q
1
v,−w)(v)

󵄨󵄨󵄨󵄨 ‖gradφv‖0,T ≤ C‖w‖0,ωT
.

Combination of the estimates for the first and second term concludes the proof.

In addition to the previous lemma, we need another local estimate for S1D:

Lemma 3.17. For allw ∈ H(curl,ωe),

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

(S1Dw) ⋅ τe ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Ch−1/2e ‖w‖0,ωe

.

Proof. From the definition of S1D, we see that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

(S1Dw) ⋅ τe ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

(M1
Dw) ⋅ τe ds

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ ∑
v∈𝒱f∩e

󵄨󵄨󵄨󵄨(Q
1
v,−w)(v)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

gradφv ⋅ τe ds
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=±1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

From the definition ofM1
D, we easily conclude from Lemma 3.8 that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

(M1
Dw) ⋅ τe ds

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ωe

w ⋅ z1e dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Ch−1/2e ‖w‖0,ωe

.

Due to Lemma 3.4 and Lemma 3.13,

󵄨󵄨󵄨󵄨(Q
1
v,−w)(v)

󵄨󵄨󵄨󵄨 ≤ Ch
−3/2
T ‖Q

1
v,−w‖0,T ≤ Ch

−1/2
T ‖w‖0,ωv

.

Summation over the above estimates yields the desired result.

3.2.6 The bounded co-chain projectors

Recall that we defined, for v ∈ 𝒱f ,

Q0
v := Q

0
ωv ,0
, Q1

v := Q
1
ωv ,0
, Q0

v,− := Q
0
ωv ,0,−
.

In addition, for e ∈ ℰf , we set

Q0
e := Q

0
ωe ,γe , Q1

e := Q
1
ωe ,γe , Q1

e,− := Q
1
ωe ,γe ,− , (3.44)
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where γe is constructed as in Sect. 3.2.3 when specifying theweight function z1e. Recall
that γe = 0 for the case that e1 ̸∈ ΓD and e2 ̸∈ ΓD.

Based on these operators, we define R0D:H
1(Ω) →𝒲0

h,ΓD (𝒯 ) by

R0Du = S
0
Du + ∑

v∈𝒱f

[(I − S0D)Q
0
vu](v)φv

and R1
D:H(curl,Ω) →𝒲1

h,ΓD (𝒯 ) by

R1
Dw = S

1
Dw + ∑

e∈ℰf
∫
e

[(I − S1D)Q
1
ew] ⋅ τe dsψe .

Before we continue, we have to argue that the two operators are well-defined. For R0D,
observe that

[(I − S0D)Q
0
vu](v) = [(I −M

0
D)Q

0
vu](v).

Since for anyp ∈ H1(Ω), the value (M0
Dp)(v)depends only onp|ωv

, the expression above
is valid. For R1

D, recall that for w̄ ∈ H(curl,Ω),

S1Dw̄ = M
1
Dw̄ + ∑

v∈𝒱f

(Q1
v,−w̄)(v) gradφv .

From the definition of M1
D, we see that ∫e(M

1
Dw̄) ⋅ τe ds depends only on w̄|ωe

. Since
(Q1

v,−w̄)(v) depends only on w̄|ωv
, we can conclude altogether that ∫e(S

1
Dw̄) ⋅ τe ds only

depends on w̄|ωe
. Setting (formally) w̄ = Q1

ew shows that R1
D is well-defined.

As a next step, we show the projection property of R0D and R
1
D.

Lemma 3.18. For all uh ∈𝒲0
h,ΓD (𝒯 ),

R0Duh = uh .

Proof. Since both expressions are in 𝒲0
h,ΓD (𝒯 ), it suffices to check the values at each

free vertex v ∈ 𝒱f :

(R0Duh)(v) = (S
0
Duh)(v) + [(I − S

0
D)Q

0
vuh⏟⏟⏟⏟⏟⏟⏟⏟⏟
=uh|ωv

](v) = uh(v),

where we have used (3.34).

Lemma 3.19. For allwh ∈𝒲1
h,ΓD (𝒯 ),

R1
Dwh = wh .
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226 | R. Hiptmair and C. Pechstein

Proof. Since both expressions are in𝒲1
h,ΓD (𝒯 ), it suffices to check the integrals over

each free edge e ∈ ℰf :

∫
e

(R1
Dwh) ⋅ τe ds = ∫

e

(S1Dwh) ⋅ τe ds + ∫
e

[(I − S1D)Q
1
ewh⏟⏟⏟⏟⏟⏟⏟⏟⏟
=wh|ωe

] ⋅ τe ds = ∫
e

wh ⋅ τe ds,

where we have used (3.35).

The following lemma shows the commuting property of R0D, R
1
D.

Lemma 3.20. For all u ∈ H1
ΓD (Ω),

R1
D grad u = gradR

0
Du.

Proof. Let u ∈ H1
ΓD (Ω). Firstly, using the definition of R

0
D, S

0
D = M

0
D, and Lemma 3.5 we

obtain

gradR0Du = gradM
0
Du⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=M1
D grad u

+ ∑
v∈𝒱f

[(I −M0
D)Q

0
vu](v)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=[(I−M0
D)Q

1
v,− grad u](v)

gradφv = S
1
D grad u,

where in the last steps we have used that M0
D preserves constants on each of the

patches ωv, v ∈ 𝒱f as well as representation (3.43) of S1D. Secondly, by the commuting
property (3.33) of the operators Q0

e , Q
1
e,

R1
D grad u − S

1
D grad u = ∑

e∈ℰf
∫
e

[(I − S1D)Q
1
e grad u⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gradQ0

eu

] ⋅ τe dsψe .

Recall, for any e ∈ ℰf , that Q0
eu ∈ 𝒲0

h,γe (ωe), see (3.44). Therefore, we can apply
Lemma 3.15 and obtain that

R1
D grad u − S

1
D grad u = 0.

To summarize,

gradR0Du = S
1
D grad u = R

1
D grad u.

In the following, we show stability estimates for R0D, R
1
D.

Lemma 3.21. For all u ∈ H1(Ω) and T ∈ 𝒯 ,

󵄩󵄩󵄩󵄩R
0
Du
󵄩󵄩󵄩󵄩0,T ≤ C(‖u‖0,ωT

+ hT‖ grad u‖0,ωT
).

Proof. Following the definition of R0D, we obtain from the triangle inequality that

󵄩󵄩󵄩󵄩R
0
Du
󵄩󵄩󵄩󵄩0,T ≤
󵄩󵄩󵄩󵄩M

0
Du
󵄩󵄩󵄩󵄩0,T + ∑

v∈𝒱f∩T

󵄨󵄨󵄨󵄨[(I −M
0
D)Q

0
vu](v)
󵄨󵄨󵄨󵄨 ‖φv‖0,T .
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The first term is bounded by C‖u‖0,ωT
; cf. Lemma 3.6. We bound the second term step

by step. Let v ∈ 𝒱f ∩ T. Using the definitions ofM0
D and Q

0
v , we find that

(M0
DQ

0
vu)(v) = Q0

vu
ωv
= uωv ,

and so, together with Lemma 3.4, we obtain

󵄨󵄨󵄨󵄨[(I −M
0
D)Q

0
vu](v)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨(Q

0
vu)(v)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(M

0
DQ

0
vu)(v)
󵄨󵄨󵄨󵄨

≤ Ch−3/2T
󵄩󵄩󵄩󵄩Q

0
vu
󵄩󵄩󵄩󵄩0,T + |u

ωv |.

Due to Lemma 3.11,

‖Q0
vu‖0,T ≤ ‖u‖0,ωv

+ ChT‖grad u‖0,ωv
,

and with the Cauchy–Schwarz inequality,

|uωv | =
1
|ωv|

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ωv

u dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1
|ωv|1/2
‖u‖ωv
≤ Ch−3/2T ‖u‖ωv

.

Combining all the estimate from above, we can conclude that

󵄨󵄨󵄨󵄨[(I −M
0
D)Q

0
vu](v)
󵄨󵄨󵄨󵄨 ≤ Ch

−3/2
T (‖u‖0,ωv

+ hT‖grad u‖0,ωv
).

Since ‖φv‖0,T ≤ Ch
3/2
T , we obtain the following bound for the second term:

∑
v∈𝒱f∩T

󵄨󵄨󵄨󵄨[(I −M
0
D)Q

0
vu](v)
󵄨󵄨󵄨󵄨 ‖φv‖0,T ≤ C(‖u‖0,ωT

+ hT‖grad u‖0,ωT
),

which concludes the proof.

Lemma 3.22. For allw ∈ H(curl,Ω) and T ∈ 𝒯 ,

󵄩󵄩󵄩󵄩R
1
Dw
󵄩󵄩󵄩󵄩0,T ≤ C(‖w‖0,ωT

+ hT‖curl w‖0,ωT
).

Proof. Following the definition of R1
D, we find that

󵄩󵄩󵄩󵄩R
1
Dw
󵄩󵄩󵄩󵄩0,T ≤
󵄩󵄩󵄩󵄩S

1
Dw
󵄩󵄩󵄩󵄩0,T + ∑

e∈ℰf∩T

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

[(I − S1D)Q
1
ew] ⋅ τe ds

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
‖ψe‖0,T

The first term can be bounded by C‖w‖0,ωT
; cf. Lemma 3.16. The second term is

bounded step by step. Let e ∈ ℰf ∩ T. Then due to Lemma 3.4, Lemma 3.17, and
Lemma 3.12,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

[(I − S1D)Q
1
ew] ⋅ τe ds

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

(Q1
ew) ⋅ τe ds

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

(S1DQ
1
ew) ⋅ τe ds

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤ Ch−1/2T
󵄩󵄩󵄩󵄩Q

1
ew
󵄩󵄩󵄩󵄩0,T + Ch

−1/2
T
󵄩󵄩󵄩󵄩Q

1
ew
󵄩󵄩󵄩󵄩0,T

≤ Ch−1/2T (
󵄩󵄩󵄩󵄩w
󵄩󵄩󵄩󵄩0,ωe
+ hT
󵄩󵄩󵄩󵄩curl w

󵄩󵄩󵄩󵄩0,ωe
).

Since ‖ψe‖ ≤ Ch
1/2
T (Lemma 3.4), summation over the free edges of T and incorporating

the estimate for S1Dw yields

󵄩󵄩󵄩󵄩R
1
Dw
󵄩󵄩󵄩󵄩0,T ≤ C‖w‖0,ωT

+ ∑
e∈ℰf∩T

C(‖w‖0,ωe
+ hT‖curl w‖0,ωe

)

≤ C(‖w‖0,ωT
+ hT‖curl w‖0,ωT

),

which concludes the proof.

Corollary 3.23. For all u ∈ H1
ΓD (Ω) and T ∈ 𝒯 ,

󵄨󵄨󵄨󵄨R
0
Du
󵄨󵄨󵄨󵄨1,T ≤ C|u|1,ωT

.

Proof. The statement follows immediately from Lemma 3.20 and Lemma 3.22.

3.3 Proof of Theorem 1.2

Throughout the proof, we assume that diam(Ω) = 1, because the general case then
follows by a simple scaling argument. Given vh ∈𝒲1

h,ΓD (𝒯 ), we apply the continuous
regular decomposition from Theorem 2.1, so

vh = z + gradφ

with z ∈ H1
ΓD (Ω), φ ∈ H

1
ΓD (Ω) depending linearly on vh, and

‖φ‖1,Ω ≤ C‖vh‖0,Ω, (3.45)
‖z‖0,Ω ≤ C‖vh‖0,Ω, (3.46)
‖z‖1,Ω ≤ C‖vh‖H(curl,Ω) . (3.47)

Recall the projection operatorsR0D andR
D
1 fromSection 3.2.6 and themodified Clément

operator M0
D from Section 3.2.3. Let M0

D:L
2(Ω) → 𝒱0

h,ΓD (𝒯 ) = (𝒲
0
h,ΓD (𝒯 ))

3 denote the
corresponding vector-valued operator (defined component-wise). Due to the projec-
tion property Lemma 3.19, R1

Dvh = vh, and so

vh = R
1
Dz + R

1
D gradφ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=gradR0Dφ

= R1
DM

0
Dz⏟⏟⏟⏟⏟⏟⏟
=:zh

+R1
D(I −M

0
D)z⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:ṽh

+ gradR0Dφ⏟⏟⏟⏟⏟⏟⏟
=:φh

. (3.48)

From Lemma 3.6, Lemma 3.7, and Corollary 3.10, we obtain

󵄩󵄩󵄩󵄩M
0
Dz
󵄩󵄩󵄩󵄩0,T ≤ C‖z‖0,ωT

, (3.49)
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|M0
Dz
󵄨󵄨󵄨󵄨1,T ≤ C|z|1,ωT

, (3.50)
󵄩󵄩󵄩󵄩(I −M

0
D)z
󵄩󵄩󵄩󵄩0,T ≤ ChT |z|1,ω̃T

, (3.51)

where ω̃T is the possibly enlarged element patch; see (3.28).
Due to the mapping properties of R0D and R

1
D, we obtain that

vh = R
1
Dzh + ṽh + gradφh

with

zh ∈ 𝒱
0
h,ΓD (𝒯 ), ṽh ∈𝒲

1
h,ΓD (𝒯 ), φh ∈𝒲

0
h,ΓD (𝒯 ).

Combining (3.46), (3.47), (3.49), and (3.50) imply the following estimates for zh:

‖zh‖0,Ω =
󵄩󵄩󵄩󵄩M

0
Dz
󵄩󵄩󵄩󵄩0,Ω ≤ C‖z‖0,Ω ≤ C‖vh‖0,Ω ,

|zh|1,Ω =
󵄨󵄨󵄨󵄨M

0
Dz
󵄨󵄨󵄨󵄨1,Ω ≤ C|z|1,Ω ≤ C‖vh‖H(curl,Ω) .

From Lemma 3.22 and an inverse inequality, we conclude

󵄩󵄩󵄩󵄩R
1
Dzh
󵄩󵄩󵄩󵄩
2
0,Ω = ∑

T∈𝒯

󵄩󵄩󵄩󵄩R
1
Dzh
󵄩󵄩󵄩󵄩
2
0,T

≤ C ∑
T∈𝒯
(‖zh‖

2
0,ωT
+ h2T ‖curl zh‖

2
0,ωT⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤|zh|21,ωT

) ≤ C‖zh‖
2
0,Ω .

Our next term to be considered is ṽh. Lemma 3.22, (3.51), and (3.50) yield

󵄩󵄩󵄩󵄩h
−1ṽh
󵄩󵄩󵄩󵄩
2
0,Ω = ∑

T∈𝒯
h−2T
󵄩󵄩󵄩󵄩R

1
D(I −M

0
D)z
󵄩󵄩󵄩󵄩
2
0,T

≤ C ∑
T∈𝒯

h−2T (
󵄩󵄩󵄩󵄩(I −M

0
D)z
󵄩󵄩󵄩󵄩
2
0,ωT⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤Ch2T |z|
2
1,ω̃T

+h2T
󵄨󵄨󵄨󵄨(I −M

0
D)z
󵄨󵄨󵄨󵄨
2
1,ωT⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤C|z|21,ωT

)

≤ C|z|21,Ω ≤ C‖vh‖H(curl,Ω) .

For the same vector field without the scaling factor, we obtain from Lemma 3.22

‖ṽh‖0,Ω ≤ C ∑
T∈𝒯
(󵄩󵄩󵄩󵄩(I −M

0
D)z
󵄩󵄩󵄩󵄩0,ωT
+ hT
󵄩󵄩󵄩󵄩curl (I −M

0
Dz)
󵄩󵄩󵄩󵄩0,ωT
)

≤ C ∑
T∈𝒯
(‖z‖0,ωT

+ 󵄩󵄩󵄩󵄩M
0
Dz
󵄩󵄩󵄩󵄩0,ωT
+ hT‖curl z‖0,ωT

+ hT
󵄩󵄩󵄩󵄩curl M

0
Dz
󵄩󵄩󵄩󵄩0,ωT
).

Since curl z = curl vh, local inverse inequalities imply

hT‖curl z‖0,ωT
≤ C‖vh‖0,ωT

,

hT
󵄩󵄩󵄩󵄩curlM

0
Dz
󵄩󵄩󵄩󵄩0,ωT
≤ C󵄩󵄩󵄩󵄩M

0
Dz
󵄩󵄩󵄩󵄩0,ωT
.
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230 | R. Hiptmair and C. Pechstein

Together with (3.49) and (3.46), we find that

‖ṽh‖0,T ≤ C(‖z‖0,Ω + ‖vh‖0,Ω) ≤ C‖vh‖0,Ω .

Finally, we consider the scalar potential. From Corollary 3.23 and (3.45), we obtain

|φh|1,Ω =
󵄨󵄨󵄨󵄨R

0
Dφ
󵄨󵄨󵄨󵄨1,Ω ≤ C|φ|1,Ω ≤ C‖vh‖0,Ω .

For an estimate in the L2-norm, we use the (global) Friedrichs (for ΓD ̸= 0) or Poincaré
inequality

‖φh‖0,Ω ≤ C|φh|1,Ω ≤ C‖vh‖0,Ω ,

(recall that diam(Ω) = 1). This implies an overall estimate in the full H1-norm and
concludes the proof of Theorem 1.2.

4 Discrete regular decomposition: p-version
Now we aim to establish existence and stability of discrete regular decompositions
of the finite element space 𝒲1

ΓD (𝒯 ) ⊂ HΓD (curl,Ω) for arbitrary polynomial degree
p ∈ ℕ0. The final result has already been stated in Theorem 1.3. The key objective is
to ensure that stability holds uniformly in p, in addition to independence of the local
mesh width of 𝒯 , of course. Thus, in this section, we use the symbols ≲, ≳, and ≂ to
express one- and two-sided inequalities up to constants that may depend only on Ω,
ΓD, and the shape regularitymeasure ρ(𝒯 )of themesh as defined in (1.1); the constants
must not depend on p!

The proof of Theorem 1.3 given in this section runs structurally parallel to that of
Theorem 1.2 as presented in Section 3.3. There are substantial differences in the two
main ingredients, the commuting projector and quasi-interpolation operator:
(I) For want of p-stable local commuting co-chain projections generalizing the

construction of Section 3.2, we have to resort to an alternative tool: commut-
ing projection-based interpolation operators, whose details will be explained in
Section 4.1.

(II) Themodified Clement operatorM0
D will be replaced with smoothed interpolation,

which will be elaborated in Section 4.2.

4.1 Projection-based interpolation

Projection based interpolation supplies perfectly local projectors onto the local spaces
of discrete differential form that commute with the differential operators grad, curl,
div, respectively. Locality also extends to the values on the facets (vertices, edges,
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7 Discrete regular decompositions of tetrahedral discrete 1-forms | 231

faces) of tetrahedra, which makes it possible to assemble the local operators into pro-
jectors onto𝒲 l

ΓD (𝒯 ).
The design of these operators is an intricate multi-stage procedure and we fol-

low [36, Section 3.5]. Their main algebraic properties are stated in Lemmata 4.5, 4.6,
and 4.7. Even more demanding is the proof of p-uniform approximation properties,
which was accomplished in [20]. We recall the result only for 0-forms, that is, scalar
functions, in Theorem4.10, since itwill be instrumental for getting the special interpo-
lation error estimate of Lemma 4.16. Its proof will also hinge on a special stable lifting
operator from [19] that we recall in the next section.

All considerations in this section are purely local. Therefore, in the beginning we
single out an arbitrary tetrahedron T ∈ 𝒯 . All constants in estimatesmay only depend
on its shape regularity measure ρ(T) := hT/rT .

4.1.1 Tool: smoothed Poincaré lifting

Let D ⊂ ℝ3 stand for a bounded domain that is star-shaped with respect to a subdo-
main B ⊂ D, that is,

∀a ∈ B, x ∈ D : {ta + (1 − t)x, 0 < t < 1} ⊂ D . (4.1)

Definition 4.1. The Poincaré lifting Ra : C0(Ω) 󳨃→ C0(Ω), a ∈ B, is defined as

Ra(u)(x) := ∫
1

0
tu(x + t(x − a))dt × (x − a) , x ∈ D , (4.2)

where × designates the cross product of two vectors in ℝ3.

This is a special case of the generalized path integral formula for differential
forms, which is instrumental in proving the exactness of closed forms on star-shaped
domains, the so-called “Poincaré lemma”; see [12, Section 2.13].

The linearmapping Ra provides a right inverse of the curl-operator on divergence-
free vector fields, see [30, Proposition 2.1] for the simple proof, and [12, Section 2.13]
for a general proof based on differential forms.

Lemma 4.2. If divu = 0, then for any a ∈ B, curlRau = u for all u ∈ C1(D).

Unfortunately, the mapping Ra cannot be extended to a continuous mapping
L2(D) 󳨃→ H1(D), cf. [30, Theorem 2.1]. As discovered in the breakthrough paper [19]
based on earlier work of Bogovskiǐ [10], it takes a smoothed version to accomplish
this: we introduce the smoothed Poincaré lifting1

R(u) := ∫
B
Φ(a)Ra(u)da , (4.3)

1 The dependence of R on Φ is dropped from the notation.
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232 | R. Hiptmair and C. Pechstein

where

Φ ∈ C∞(ℝ3) , suppΦ ⊂ B , ∫
B
Φ(a)da = 1 . (4.4)

The substitution

y := a + t(x − a), τ := 1
1 − t
, (4.5)

transforms the integral (4.4) into

R(u)(x) = ∫
ℝ3

∞

∫
1

τ(1 − τ)u(y) × (x − y)Φ(y + τ(y − x))dτdy

= ∫
ℝ3
k(x, y − x) × u(y)dy ,

(4.6)

that is, R is a convolution-type integral operator with kernel

k(x, z) = ∫
∞

1
τ(1 + τ)Φ(x + τz)z dτ

=
z
|z|2
∫
∞

1
ζΦ(x + ζ z

|z|
)dζ + z
|z|3
∫
∞

1
ζ 2Φ(x + ζ z

|z|
)dζ .

(4.7)

The kernel can be bounded by |k(x, z)| ≤ K(x)|z|−2, where K ∈ C∞(ℝ3) depends only
on Φ and is locally uniformly bounded. As a consequence, (4.6) exists as an improper
integral.

The intricate but elementary analysis of [19, Section 3.3] further shows, that k be-
longs to the Hörmander symbol class S−11,0(ℝ

3); see [61, Chapter 7]. Invoking the theory
of pseudo-differential operators [61, Proposition 5.5], we obtain the following conti-
nuity result, which is a special case of [19, Corollary 3.4].

Theorem 4.3. Themapping R can be extended to a continuous linear operator L2(D) 󳨃→
H1(D), which is still denoted by R. It satisfies

curlRu = u ∀u ∈ H(div,D), divu = 0 . (4.8)

The smoothed Poincaré lifting shares this continuity property with many other
mappings; see [36, Section 2.4]. Yet, it enjoys another essential feature, which is im-
mediate from its definition (4.2): Rmaps polynomials of degree p to other polynomials
of degree ≤ p + 1. The next section will highlight the significance of this observation.

4.1.2 𝒲1
p(𝒯 ): a local view

According to [34, Section 3], for any T ∈ 𝒯 , a ∈ T, we can obtain the local space of
discrete 1-forms of the first family as

𝒲1
p(T) = 𝒫p(ℝ

3) + Ra({q ∈ 𝒫p(ℝ
3), divq = 0}) . (4.9)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms | 233

Independence of a is discussed in [34, Section 3]. The representation (4.9) can be es-
tablished by dimensional arguments: from the formula (4.2) for the Poincaré liftingwe
immediately see that𝒫p(ℝ

3) + Ra(𝒫p(ℝ
3)) ⊂𝒲1

p(T). In addition, from [54, Lemma 4]
and [34, Theorem 6, case l = 1, n = 3] we learn that the dimensions of both spaces
agree and are equal to

dim𝒲1
p(T) =

1
2 (1 + p)(3 + p)(4 + p) . (4.10)

As a consequence, the two finite dimensional spaces must agree.
For the remainder of this section, which focuses on local spaces, we single out a

tetrahedron T ∈ 𝒯 . On T we can introduce a smoothed Poincaré lifting RT according
to (4.3) with B = T and a suitable Φ ∈ C∞0 (T) complying with (4.4). An immediate
consequence of (4.9) is that

RT({v ∈ 𝒫p(ℝ
3) : div v = 0}) ⊂𝒲1

p(T) . (4.11)

We introduce the notation ℱm(T) for the set of allm-dimensional facets of T,m =
0, 1, 2, 3. Hence,ℱ0(T) contains the vertices of T,ℱ1(T) the edges,ℱ2(T) the faces, and
ℱ3(T) = {T}. Moreover, for some F ∈ ℱm(T), m = 1, 2, 3, 𝒫p(F) denotes the space of
m-variate polynomials of total degree ≤ p in a local coordinate system of the facet F,
and𝒫p(F) will designate corresponding tangential polynomial vector fields. Further,
we write

𝒲1
p(e) =𝒲

1
p(T) ⋅ te , te the unit tangent vector of e, e ∈ ℱ1(T) , (4.12)

𝒲1
p(f ) =𝒲

1
p(T) × nf , nf the unit normal vector of f , f ∈ ℱ2(T) , (4.13)

for the tangential traces of local edge element vector fields onto edges and faces. Sim-
ple vector analytic manipulations permit us to deduce from (4.9) that

𝒲1
p(e) = 𝒫p(e) , e ∈ ℱ1(T) , (4.14)

𝒲1
p(f ) = 𝒫p(f ) + R

2D
a (𝒫p(f )) , a ∈ f , f ∈ ℱ2(T) , (4.15)

where the projection R2Da of the Poincaré lifting in the plane reads

R2Da (u)(x) := ∫
1

0
tu(a + t(x − a)](x − a)dt , a ∈ ℝ2 . (4.16)

It satisfies divΓR2Da (u) = u for all u ∈ C
∞(ℝ2). We point out that, along with (4.9), the

formulas (4.14) and (4.15) are special versions of the general representation formula
for discrete 1-forms; see [34, Formula (16)] and [4, Section 3.2]. Special facet tangential
trace spaces with “zero boundary conditions” will also be needed:

∘
𝒲1

p(e) := {u ∈𝒲
1
p(e) : ∫

e
udl = 0} , e ∈ ℱ1(T) , (4.17)
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234 | R. Hiptmair and C. Pechstein

∘
𝒲1

p(f ) := {u ∈𝒲
1
p(f ) : u ⋅ ne,f ≡ 0 ∀e ∈ ℱ1(T), e ⊂ 𝜕f } , f ∈ ℱ2(T) , (4.18)

∘
𝒲1

p(T) := {u ∈𝒲
1
p(T) : u × nf ≡ 0 ∀f ∈ ℱ2(T)} . (4.19)

Here, nf represents an exterior face unit normal of T, ne,f the in-plane normal of a face
w. r. t. an edge e ⊂ 𝜕f .

According to [54, Section 1.2], [34, Section 4], and [4, Section 4.3], the local degrees
of freedom for𝒲1

p(T) are given by the first p − 2 vectorial moments on the cells of 𝒯 ,
the first p − 1 vectorial moments of the tangential components on the faces of 𝒯 and
the first p tangential moments along the edges of T; see (4.21) for concrete formulas.
Then the set dof1p(T) of local degrees of freedom can be partitioned as [49, Chapter 3],
[4, Section 4.5],

dof1p(T) = ⋃
e∈ℱ1(T)

ldf1p(e) ∪ ⋃
f∈ℱ2(T)

ldf1p(f ) ∪ ldf
1
p(T) , (4.20)

where the functionals in ldf1p(e), ldf
1
p(f ), and ldf1p(T) are supported on an edge, face,

and T, respectively, and read

κ ∈ ldf1p(e) ⇒ κ(u) = ∫e qξ ⋅ te dl for e ∈ ℱ1(T), suitable q ∈ 𝒫p(e) ,

κ ∈ ldf1p(f ) ⇒ κ(u) = ∫f q ⋅ (ξ × n)dS for f ∈ ℱ2(T), suitable q ∈ 𝒫p−1(f ) ,

κ ∈ ldf1p(T) ⇒ κ(u) := ∫T q ⋅ ξ dx for certain q ∈ 𝒫p−2(T) .
(4.21)

These functionals are unisolvent on𝒲1
p(T) and locally fix the tangential trace of u ∈

𝒲1
p(T). There is a splitting of𝒲

1
p(T) dual to (4.20): Defining

𝒴1
p(F) := {v ∈𝒲

1(T) : κ(v) = 0 ∀κ ∈ dof1p(T) \ ldf
1
p(F)} (4.22)

for F ∈ ℱm(T),m = 1, 2, 3, we find the direct sum decomposition

𝒲1
p(T) =

3
∑
m=1
∑

F∈ℱm(T)
𝒴1
p(F) . (4.23)

In addition, note that the tangential trace of u ∈ 𝒴1
p(F) vanishes on all facets ̸= F,

whosedimension is smaller or equal thedimensionofF. By theunisolvenceof dof1p(T),
there are bijective linear extension operators

E1e,p :𝒲
1
p(e) 󳨃→ 𝒴1

p(e) , e ∈ ℱ1(T) , (4.24)

E1f ,p :
∘
𝒲1

p(f ) 󳨃→ 𝒴1
p(f ) , f ∈ ℱ2(T) . (4.25)

Similar relationships hold for discrete 2-forms, for which we have the following
alternative representation of the local space [34, formula (16) for l = 2, n = 3]:

𝒲2
p(T) = 𝒫p(T) + Da(𝒫p(T)) , (4.26)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms | 235

where the appropriate version of the Poincaré lifting reads

(Dau)(x) := ∫
1

0
t2u(a + t(x − a))(x − a)dt , a ∈ T . (4.27)

Like (4.9) this is a special incarnation of the general formula (16) in [34]. Again, di-
mensional arguments based on [54, Section 1.3] and [34, Theorem 6] confirm the rep-
resentation (4.27). We remark that divDau = u, see [30, Proposition 1.2].

The normal trace space of𝒲2
p(T) onto a face is

𝒲2
p(f ) :=𝒲

2
p(T) ⋅ nf = 𝒫p(f ) , f ∈ ℱ2(T) , (4.28)

and as relevant space “with zero trace” we are going to need
∘
𝒲2

p(f ) := {u ∈𝒲
2
p(f ) : ∫

f
udS = 0} , f ∈ ℱ2(T) , (4.29)

∘
𝒲2

p(T) := {u ∈𝒲
2
p(T) : u ⋅ n𝜕T = 0} . (4.30)

The connection between the local spaces 𝒲1
p(T), 𝒲

2
p(T) and full polynomial

spaces is established through a local exact sequence [34, Section 5]. To elucidate the
relationship between differential operators and various traces onto faces and edges,
we also include those in the statement of the following theorem. There nf stands for
an exterior face unit normal of T, ne,f for the in-plane normal of a face w. r. t. an edge
e ⊂ 𝜕f , and d

ds is the differentiation w. r. t. arc length on an edge.

Theorem 4.4 (Local exact sequences). For f ∈ ℱ2(T), e ∈ ℱ1(T), e ⊂ 𝜕f , all the se-
quences in

const Id
󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒫p+1(T)

grad
󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒲1

p(T)
curl
󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒲2

p(T)
div
󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒫p(T)

0
󳨀󳨀󳨀󳨀󳨀󳨀→ {0}

.|f
↑↑↑↑↓

.×nf |f
↑↑↑↑↓

↑↑↑↑↓
.⋅nf |f

const Id
󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒫p+1(f )

curlΓ󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒲1
p(f )

divΓ󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒫p(f )
0
󳨀󳨀󳨀󳨀󳨀󳨀→ {0}

.|e
↑↑↑↑↓

.⋅ne,f |e
↑↑↑↑↓

const Id
󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒫p+1(e)

d
ds󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒫p(e)

0
󳨀󳨀󳨀󳨀󳨀󳨀→ {0}

are exact and the diagram commutes.

4.1.3 Projections, liftings, and extensions

Following the developments of [36, Section 3.5], projection based interpolation re-
quires building blocks in the form of local orthogonal projections Pl∗ and liftings L

l
∗.
2

2 The parameter l in the notation for the extension operators El∗, the projections P
l
∗, and the liftings

Ll∗ refers to the degree of the discrete differential form they operate on. This is explained inmore detail
in [36, Section 3.5].
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Some operators will depend on a regularity parameter 0 < ϵ < 1
2 , which is considered

fixed below and will be specified in Section 4.1.5. To begin with, we define for every
e ∈ ℱ1(T)

P1e,p : H
−1+ϵ(e) 󳨃→ d

ds
∘
𝒫p+1(e) =

∘
𝒲1

p(e) (4.31)

as theH−1+ϵ(e)-orthogonal projection. Here,
∘
𝒫p(F) denotes the space of degree p poly-

nomials on a facet F that vanish on 𝜕F.
Similarly, for every face f ∈ ℱ2(T) introduce

P1f ,p :H
− 12+ϵ(f ) 󳨃→ curlΓ

∘
𝒫p+1(f ) = {v ∈

∘
𝒲1

p(f ) : divΓv = 0} , (4.32)

P2f ,p :H
− 12+ϵ(f ) 󳨃→ divΓ

∘
𝒲1

p(f ) =
∘
𝒲2

p(f ) , (4.33)

as the correspondingH−
1
2+ϵ(f )-orthogonal projections. Eventually, let

P1T ,p :L
2(T) 󳨃→ grad

∘
𝒫p+1(T) = {v ∈

∘
𝒲1

p(T) : curl v = 0} , (4.34)

P2T ,p :L
2(T) 󳨃→ curl

∘
𝒲1

p(T) = {v ∈
∘
𝒲2

p(T) : div v = 0} , (4.35)

P3T ,p :L
2(T) 󳨃→ div

∘
𝒲2

p(T) = {v ∈ 𝒫p(T) : ∫
T
v(x)dx = 0} , (4.36)

stand for the respective L2(T)-orthogonal projections. Local exact sequences have tac-
itly been used in these statements; see (4.46) below.

The lifting operators

L1e,p :
∘
𝒲1

p(e) 󳨃→
∘
𝒫p+1(e) , e ∈ ℱ1(T) , (4.37)

L1f ,p :{v ∈
∘
𝒲1

p(f ) : divΓv = 0} 󳨃→
∘
𝒫p+1(f ) , f ∈ ℱ2(T) , (4.38)

L1T ,p :{v ∈
∘
𝒲1

p(T) : curl v = 0} 󳨃→
∘
𝒫p+1(T) , (4.39)

are uniquely defined by requiring

d
ds
L1e,pu = u ∀u ∈

∘
𝒲1

p(e) , (4.40)

curlΓL
1
f ,pu = u ∀u ∈ {

∘
𝒲1

p(f ) : divΓv = 0} , (4.41)

grad L1T ,pu = u ∀u ∈ {v ∈
∘
𝒲1

p(T) : curl v = 0} . (4.42)

Another class of liftings provides right inverses for curl and divΓ: Pick a face f ∈ ℱ2(T),
and, without loss of generality, assume the vertex opposite to the edge ẽ to coincide
with 0. Then define

L2f ,p : {
divΓ
∘
𝒲1

p(f ) 󳨃→
∘
𝒲1

p(f )
u 󳨃→ R2D0 u − curlΓE0ẽ,pL

1
ẽ,p(R

2D
0 u ⋅ nẽ,f ) .

(4.43)
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This is a validdefinition, since, by virtue of definition (4.16), thenormal components of
R2D0 uwill vanish on 𝜕f \ ẽ. Moreover, divΓR2D0 u = u ensures that the normal component
of R2D0 u has zero average on ẽ. We infer

(curlΓE
0
ẽ,pL

1
ẽ,p((R

2D
0 u ⋅ nẽ,f )|ẽ) ⋅ nẽ,f )|ẽ =

d
ds
L1ẽ,p((R

2D
0 u) ⋅ nẽ,f )|ẽ = R

2D
0 u ⋅ nẽ,f on ẽ ,

and see that the zero trace condition on 𝜕f is satisfied. The same idea underlies the
definition of

L2T ,p : {
curl

∘
𝒲1

p(T) 󳨃→
∘
𝒲1

p(T)
u 󳨃→ R0u − grad E0f̃ ,pL

1
f̃ ,p(((R0u) × nf̃ )|f̃ ) ,

(4.44)

where f̃ is the face opposite to vertex 0, and the definition of

L3T ,p : {
div
∘
𝒲2

p(T) 󳨃→
∘
𝒲2

p(T)
u 󳨃→ D0u − curl E1f̃ ,pL

2
f̃ ,p((D0u ⋅ nf̃ )|f̃ ) .

(4.45)

The relationships between the various facet function spaceswith vanishing traces can
be summarized in the following exact sequences:

{0} Id
󳨀󳨀󳨀󳨀󳨀󳨀→

∘
𝒫p+1(T)

grad
󳨀󳨀󳨀󳨀󳨀󳨀→

∘
𝒲1

p(T)
curl
󳨀󳨀󳨀󳨀󳨀󳨀→

∘
𝒲2

p(T)
div
󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒫p(T)

0
󳨀󳨀󳨀󳨀󳨀󳨀→ {0},

{0} Id
󳨀󳨀󳨀󳨀󳨀󳨀→

∘
𝒫p+1(f )

curlΓ󳨀󳨀󳨀󳨀󳨀󳨀→
∘
𝒲1

p(f )
divΓ󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒫p(f )

0
󳨀󳨀󳨀󳨀󳨀󳨀→ {0},

{0} Id
󳨀󳨀󳨀󳨀󳨀󳨀→

∘
𝒫p+1(e)

d
ds󳨀󳨀󳨀󳨀󳨀󳨀→ 𝒫p(e)

0
󳨀󳨀󳨀󳨀󳨀󳨀→ {0} ,

(4.46)

where𝒫p(F) designates degree p polynomial spaces on F with vanishingmean. These
relationships and the lifting mappings Ll∗,p are studied in [36, Section 3.4].

Finally, we need polynomial extension operators

E0e,p :
∘
𝒫p+1(e) 󳨃→ 𝒫p+1(T) , (4.47)

E0f ,p :
∘
𝒫p+1(f ) 󳨃→ 𝒫p+1(T) (4.48)

that satisfy

E0e,pu|e󸀠 = 0 ∀e
󸀠 ∈ ℱ1(T) \ {e} , (4.49)

E0f ,pu|f 󸀠 = 0 ∀f
󸀠 ∈ ℱ2(T) \ {f } . (4.50)

Such extension operators can be constructed relying on a representation of a poly-
nomial on F, F ∈ ℱm(T), m = 1, 2, as a homogeneous polynomial in the barycentric
coordinates of F; see [36, Lemma 3.4] of [49, Section IV.3]. As an alternative, one may
use the polynomial preserving extension operators proposed in [53, 21] and [1]. We
stress that continuity properties of these extensions do not matter for our purpose.
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4.1.4 Interpolation operators

Nowwe are in a position to define the projection based interpolation operators locally
on a generic tetrahedron T with vertices ai, i = 1, 2, 3, 4.

First, we devise a suitable projection (depending on the regularity parameter 0 <
ϵ < 1

2 , which is usually suppressed to keep notation manageable)

Π0
T ,p(= Π

0
T ,p(ϵ)) : C

∞(T) 󳨃→ 𝒫p+1(T) (4.51)

for degree p LagrangianH1(Ω)-conforming finite elements. For u ∈ C∞(T) define (λi is
the barycentric coordinate function belonging to vertex ai of T)

u(0) := u −
4
∑
i=1

u(ai)λi
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
:=w(0)

, (4.52)

u(1) := u(0) − ∑
e∈ℱ1(T)

E0e,pL
1
e,pP

1
e,p

d
ds
u(0)|e

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
:=w(1)

, (4.53)

u(2) := u(1) − ∑
f∈ℱ1(T)

E0f ,pL
1
f ,pP

1
f ,pcurlΓ(u

(1)
|f )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
:=w(2)

, (4.54)

Π0
T ,pu := L

1
T ,pP

1
T ,p grad u

(2) + w(2) + w(1) + w(0) . (4.55)

Observe that w(i)|F = 0 for all F ∈ ℱm(T), 0 ≤ m < i ≤ 3. We point out that w(0) is the
standard linear interpolant of u.

Lemma 4.5. The linear mapping Π0
T ,p, p ∈ ℕ0, is a projection onto 𝒫p+1(T).

Proof. Assume u ∈ 𝒫p+1(T), which will carry over to all intermediate functions.
Since u(0)(ai) = 0, i = 1, . . . , 4, we conclude from the projection property of P1e,p
that L1eP

1
e
d
dsu
(0)
|e = u(0)|e for any edge e ∈ ℱ1(T). As a consequence,

u(1) = u(0) − ∑
e∈ℱ1(T)

E0e,pu
(0)
|e ⇒ u(1)|e = 0 ∀e ∈ ℱ1(T) . (4.56)

We infer L1f ,pP
1
f curlΓ(u

(1)
|f ) = u(1)|f on each face f ∈ ℱ2(T), which implies

u(2) = u(1) − ∑
f∈ℱ1(T)

E0f ,p(u
(1)
|f ) ⇒ u(2)|f = 0 ∀f ∈ ℱ2(T) . (4.57)

This means that L1T ,pP
1
T ,p grad u

(2) = u(2) and a telescopic sum argument completes the
proof.
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A similar stage by stage construction applies to edge elements and gives a projec-
tion

Π1
T ,p(= Π

1
T ,p(ϵ)) : C

∞(T) 󳨃→𝒲1(T) : (4.58)

for a directed edge e := [ai, aj] we introduce the Whitney-1-form basis function

be = λi grad λj − λj grad λi . (4.59)

These functions span𝒲1
0(T). Next, for u ∈ C

∞(T) define

u(0) := u − ( ∑
e∈ℱ1(T)
∫
e
u ⋅ d ⃗s) be

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
:=w(0)

, (4.60)

u(1) := u(0) − ∑
e∈ℱ1(T)

grad E0e,pL
1
e,pP

1
e,p((u

(0) ⋅ te)|e)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=w(1)

, (4.61)

u(2) := u(1) − ∑
f∈ℱ2(T)

E1f ,pL
2
f ,pP

2
f ,pdivΓ((u

(1) × nf )|f )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=w(2)

, (4.62)

u(3) := u(2) − ∑
f∈ℱ2(T)

grad E0f ,pL
1
f ,pP

1
f ,p((u
(2) × nf )|f )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
:=w(3)

, (4.63)

u(4) := u(3) − L2T ,pP
2
T ,p curl u

(3)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=w(4)
, (4.64)

Π1
T ,pu := grad L

1
T ,pP

1
T ,pu
(4) +w(4) +w(3) +w(2) +w(1) +w(0) . (4.65)

The contribution w(0) is the standard interpolant Π1
T ,0 of u onto the local space of

Whitney-1-forms (lowest order edge elements). The extension operators were chosen
in a way that guarantees thatw(2) ⋅ te = 0 andw(3) ⋅ te = 0 for all e ∈ ℱ1(T).

Lemma 4.6. The linear mapping Π1
T ,p, p ∈ ℕ0, is a projection onto𝒲1

p(T) and satisfies
the commuting diagram property

Π1
T ,p ∘ grad = grad ∘Π

0
T ,p on C∞(T) . (4.66)

Proof. The proof of the projection property runs parallel to that of Lemma 4.5. As-
suming u ∈ 𝒲1

p(T), it is obvious that the same will hold for all u(i) and w(i) from
(4.60)–(4.65). In order to confirm that all projections can be discarded, we have to
check that their arguments satisfy conditions of zero trace on the facet boundaries
and, in some cases, belong to the kernel of differential operators.

First, recalling theproperties of the interpolation operatorΠ1
0 forWhitney-1-forms,

we find (u(0) ⋅ te)|e ∈
∘
𝒲1

p(e). This implies

grad E0e,pL
1
e,pP

1
e,p((u

(0) ⋅ te)|e) = (u
(0) ⋅ te)|e ∀e ∈ ℱ1(T) , (4.67)
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240 | R. Hiptmair and C. Pechstein

and

(u(1) ⋅ te)|e ≡ 0 ∀e ∈ ℱ1(T) . (4.68)

We see that (u(1) × nf )|f ∈
∘
𝒲1

p(f ) for any f ∈ ℱ2(T), so that

P2f ,pdivΓ((u
(1) × nf )|f ) = divΓ((u

(1) × nf )|f ) (4.69)

⇒ divΓL
2
f ,pP

2
f ,pdivΓ((u

(1) × nf )|f ) = divΓ((u
(1) × nf )|f ) (4.70)

⇒ divΓ((u
(2) × nf )|f ) = 0 ∀f ∈ ℱ2(T) , (u

(2) ⋅ te)|e ≡ 0 ∀e ∈ ℱ1(T) (4.71)

⇒ P1f ,p((u
(2) × nf )|f ) = (u

(2) × nf )|f ∀f ∈ ℱ2(T) (4.72)

⇒ grad E0f ,pL
1
f ,pP

1
f ,p((u
(2) × nf )|f ) × nf = (u

(2) × nf )|f ∀f ∈ ℱ2(T) (4.73)

⇒ (u(3) × nf )|f = 0 ∀f ∈ ℱ2(T) (4.74)

⇒ P2T ,p curl u
(3) = curl u(3) (4.75)

⇒ curl L2T ,pP
2
T ,p curl u

(3) = curl u(3) (4.76)

⇒ curl u(4) = 0 ⇒ P1Tu
(4) = u(4) (4.77)

⇒ grad L1TP
1
Tu
(4) = u(4) , (4.78)

which confirms the projector property.
Now assume u = grad u for some u ∈ C∞(T). The commuting diagram property

will follow, if we manage to show grad u(0) = u(0), grad u(1) = u(1), grad u(2) = u(3),
etc., for the intermediate functions in (4.52)–(4.55) and (4.60)–(4.65), respectively.

By the commuting diagram property for the standard local interpolation opera-
tors onto the spaces of Whitney-0-forms (linear polynomials) and Whitney-1-forms,
we conclude

grad u(0) = u(0) ⇒ d
ds
u(0)|e = (u

(0) ⋅ te)|e ∀e ∈ ℱ1(T) (4.79)

⇒ u(1) = grad u(1) ⇒ divΓ((u
(1) × nf )|f ) = 0 ∀f ∈ ℱ2(T) (4.80)

⇒ u(2) = u(1) (4.81)

⇒ (u(2) × nf )|f = curlΓu
(1)

f ∀f ∈ ℱ2(T) ⇒ u(3) = grad u(2) (4.82)

⇒ u(4) = u(3) . (4.83)

Of course, analogous relationships for the functions w(i) and w(i) hold, which yields
Π1
T ,pu = gradΠ

0
T ,pu.

Following [36, Section 3.5], a projection based interpolation onto𝒲2
p(T), the op-

erator Π2
T ,p(= Π

2
T ,p(ϵ)) : C

∞(T) 󳨃→𝒲2
p(T), involves the stages

u(0) := u − ( ∑
f∈ℱ2(T)
∫
f
u ⋅ nf dS)bf

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
:=w(0)

, (4.84)
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u(1) := u(0) − ∑
f∈ℱ2(T)

curl E1f ,pL
2
f ,pP

2
f ,p((u
(0) ⋅ nf )|f )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
:=w(1)

(4.85)

u(2) := u(1) − L3T ,pP
3
T ,p divu

(1)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
:=w(2)

(4.86)

Π2
T ,pu := curl L

2
T ,pPT ,pu

(2) +w(0) +w(1) +w(2) . (4.87)

Here, bf refers to the local basis functions for Whitney-2-forms [36, Section 3.2]:

bf = λi grad λj × grad λk + λj grad λk × λi + λk grad λi × λj . (4.88)

Analogous to Lemma 4.6, one proves the following result.

Lemma 4.7. The linear operator Π2
T ,p, p ∈ ℕ0, is a projection onto𝒲2

p(T) and satisfies
the commuting diagram property

Π2
T ,p ∘ curl = curl ∘Π

1
T ,p on C∞(T) . (4.89)

The next lemma makes it possible to patch together the local projection based
interpolation operator to obtain global interpolation operators

Πl
p : C
∞(Ω) 󳨃→𝒲 l

p(𝒯 ) , l = 1, 2 . (4.90)

Lemma 4.8. For any F ∈ ℱm(T), m = 0, 1, 2, and u ∈ C∞(T) the restriction Π0
T ,pu|F

depends only on u|F .
For any F ∈ ℱm(T), m = 1, 2, and u ∈ C∞(T) the tangential trace of Π1

T ,pu onto F
depends only on the tangential trace of u on F.

For any face f ∈ ℱ2(T) and u ∈ C∞(T) the normal trace of Π2
T ,pu onto f depends

only on the normal component of u on f .

Proof. The assertion is immediate from the construction, in particular, the properties
of the extension operators used therein.

It goes without saying that density arguments permit us to extend Πl
p, l = 0, 1, 2,

to Sobolev spaces, as long as they are continuous in the respective norms. (Repeated)
application of trace theorems [33, Section 1.5] reveals that it is possible to obtain con-
tinuous projectors

Π0
p : H

1+s(Ω) 󳨃→𝒲0
p (𝒯 ) , (4.91)

Π1
p : H

1
2+s(Ω) 󳨃→𝒲1

p(𝒯 ) , (4.92)

Π2
p : H

s(Ω) 󳨃→𝒲2
p(𝒯 ) , (4.93)

for any s > 1
2 . In addition, by virtue of Lemma 4.8 and the resolution of ΓD by 𝒯 , zero

pointwise/tangential/normal trace on ΓD of the argument function will be preserved
by Πl

p, l = 0, 1, 2, for instance,

Π1
p(H

1
2+s(Ω) ∩HΓD (curl,Ω)) =𝒲

1
p,ΓD (𝒯 ) ∩HΓD (curl,Ω) . (4.94)
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4.1.5 Local interpolation error estimates

Closely following [20, Section 6], we first examine the interpolation error for Π0
T ,p.

Please notice that Π0
T ,p still depends on the fixed regularity parameter 0 < ϵ < 1

2 .
The argument function of Π0

T ,p is assumed to lie in H2(T). The continuous embedding
H2(T) 󳨅→ C0(T) plus trace theorems for Sobolev spaces render all operators well-
defined in this case.

We start with an observation related to the local best approximation properties of
the projection based interpolant.

Lemma 4.9. For any u ∈ H2(T) holds true

(grad(u − Π0
T ,pu), grad v)L2(T) = 0 ∀v ∈

∘
𝒫p+1(T) , (4.95)

(curlΓ(u − Π
0
T ,pu)|f , curlΓv)H− 12 +ϵ(f ) = 0 ∀v ∈

∘
𝒫p+1(f ), f ∈ ℱ2(T) , (4.96)

(
d
ds
(u − Π0

T ,pu)|e,
d
ds
v)

H−1+ϵ(e)
= 0 ∀v ∈

∘
𝒫p+1(e), e ∈ ℱ1(T) . (4.97)

Proof. We use the notation of (4.52)–(4.55). Setting w := w(0) + w(1) + w(2), we find

Π0
T ,pu = L

1
T ,pP

1
T ,p grad(u − w) + w , (4.98)

which implies, because L1T ,p is a right inverse of grad,

gradΠ0
T ,pu = P

1
T ,p grad u + (Id − P

1
T ,p) gradw . (4.99)

This means that grad u − gradΠ0
T ,pu belongs to the range of Id − P

1
T ,p and (4.95) fol-

lows from (4.34) and the properties of orthogonal projections. Similar manipulations
establish (4.96):

curlΓΠ
0
T ,pu|f = curlΓw|f

= curlΓL
1
f ,p⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=Id

P1f ,pcurlΓu
(1) + curlΓ(w

(0) + w(1))|f

= P1f ,pcurlΓu|f + (Id − P
1
f ,p)curlΓ(w

(0) + w(1)) ∀f ∈ ℱ2(T) .

The same arguments as above verify (4.97).

From this, we can conclude the result of [20, Section 6, Corollary 1]. To state it, we
now assume a dependence

0 < ϵ = ϵ(p) := 1
10 log(p + 2)

<
1
4
, p ∈ ℕ , (4.100)

of the parameter ϵ in the definition of the local projection based interpolation opera-
tors. Below, all parameters ϵ are linked to p via (4.100). Please note that we retain the
notation (Πl

T ,p)p∈ℕ, l = 0, 1, 2, for these new families of operators.
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Theorem 4.10 (Spectral interpolation error estimate for Π0
T ,p). With a constant merely

depending on the shape-regularity of T

󵄨󵄨󵄨󵄨(Id − Π
0
T ,p)v
󵄨󵄨󵄨󵄨1,T ≲ (1 + log

3/2(p + 1)) hT
p + 1
󵄨󵄨󵄨󵄨v
󵄨󵄨󵄨󵄨2,T ∀v ∈ H

2(T) . (4.101)

Stable polynomial extensions are instrumental for the proof, which will be post-
poned until page 245. First, we recall the results of [53, Theorem 1] and [1, Theorem 1].

Theorem 4.11 (Stable polynomial extension for tetrahedra). For a tetrahedron T, there
is linear operator ST : H

1
2 (𝜕T) 󳨃→ H1(T) such that

STu|𝜕T = u ∀u ∈ H
1
2 (𝜕T) , (4.102)

󵄨󵄨󵄨󵄨STu
󵄨󵄨󵄨󵄨1,T ≲
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨 12 ,𝜕T
∀u ∈ H

1
2 (𝜕T) , (4.103)

STw ∈ 𝒫p+1(T) ∀w ∈ 𝒫p+1(T)|𝜕T . (4.104)

Theorem 4.12 (Stable polynomial extension for triangles). Given a triangle F, there is
a linear mapping SF : L2(𝜕F) 󳨃→ H

1
2 (F) such that

󵄨󵄨󵄨󵄨SFu
󵄨󵄨󵄨󵄨 12 ,F
≲ 󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩0,𝜕F ∀u ∈ L

2(𝜕F) , (4.105)
󵄨󵄨󵄨󵄨SFu
󵄨󵄨󵄨󵄨1,F ≲
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨 12 ,𝜕F
∀u ∈ H

1
2 (𝜕F) , (4.106)

SFw ∈ 𝒫p+1(F) ∀w ∈ 𝒫p+1(F)|𝜕F , (4.107)

where the constants depend only on the shape regularity measure of T.

By interpolation in Sobolev scale from the last theorem, we can conclude

󵄨󵄨󵄨󵄨SFu
󵄨󵄨󵄨󵄨s,F ≲
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨s− 12 ,𝜕F

∀u ∈ Hs− 12 (𝜕F), 1
2
≤ s ≤ 1 . (4.108)

We also need to deal with the awkward property of theH
1
2 (𝜕T)-norm that it cannot

be split into face contributions. To that end, we resort to a result from [50, Proof of
Lemma 3.31]; see also [20, Lemma 13].

Lemma 4.13 (Splitting of H
1
2 (𝜕T)-norm). With a constants depending only on the shape

regularity of the tetrahedron T, there holds

󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨s,𝜕T ≲

1
s − 1

2
∑

f∈ℱ2(T)

󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨s,f ∀u ∈ H

1
2+s(𝜕T), 1

2
< s ≤ 1 . (4.109)

Another natural ingredient for the proof are polynomial best approximation esti-
mates; see [59] or [53, Section 3].

Lemma 4.14. Let 0 ≤ r ≤ 1, 0 ≤ s ≤ 2, and F be either a tetrahedron or a triangle. Then

inf
vp∈𝒫p+1(F)

󵄨󵄨󵄨󵄨u − vp
󵄨󵄨󵄨󵄨r,F ≲ (

hF
p
)
s+1−r
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨s+1,F ∀u ∈ H

s+1(F) . (4.110)

Brought to you by | University of Michigan-Flint
Authenticated

Download Date | 8/31/19 4:06 PM



244 | R. Hiptmair and C. Pechstein

Define a semi-norm projection QT ,p : H1(T) 󳨃→ 𝒫p+1(T) on the tetrahedron T by

∫
T
grad(u − QT ,pu) ⋅ grad vp dx = 0 ∀vp ∈ 𝒫p+1(T) ,

∫
T
u − QT ,pudx = 0 ,

(4.111)

and, for 1
2 ≤ s ≤ 1, semi-norm projections Qf ,p : Hs− 12 (f ) 󳨃→ 𝒫p+1(f ), f ∈ ℱ2(T), by

(curlΓ(u − Qf ,pu), curlΓvp)Hs− 12 (f )
= 0 ∀vp ∈ 𝒫p+1(T) ,

∫
f
u − Qf ,pudx = 0 .

(4.112)

These definitions involve best approximation properties of QT ,pu and Qf ,pu. Thus, we
learn from Lemma 4.14 that with constants independent of 0 < ϵ < 1

2 < s ≤ 1,

󵄨󵄨󵄨󵄨u − QT ,pu
󵄨󵄨󵄨󵄨1,T ≲ (

hT
p + 1
)
s
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨1+s,T ∀u ∈ H

s(T) , (4.113)

󵄨󵄨󵄨󵄨u − Qf ,pu
󵄨󵄨󵄨󵄨 1
2+ϵ,f
≲ (

hT
p + 1
)
s−ϵ
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨 12+s,T

∀u ∈ H
1
2+s(f ) . (4.114)

The latter estimate follows from the fact that 󵄨󵄨󵄨󵄨⋅
󵄨󵄨󵄨󵄨 12+ϵ,f

and 󵄩󵄩󵄩󵄩curlΓ⋅
󵄩󵄩󵄩󵄩− 12+ϵ,f

are equivalent
semi-norms, uniformly in ϵ.

We also need error estimates for the L2(e)-orthogonal projections,

Q∗e,p : L
2(e) 󳨃→

∘
𝒫p+1(e) , e ∈ ℱ1(T) . (4.115)

Lemma 4.15 (see [20, Lemma 18]). With a constant independent of p, 0 ≤ ϵ ≤ 1
2 , and

2ϵ ≤ r ≤ 1 + ϵ,

󵄨󵄨󵄨󵄨u − Q
∗
e,pu
󵄨󵄨󵄨󵄨ϵ,e ≲ (

he
p + 1
)
r−2ϵ
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨r,e ∀u ∈ H

r(e) ∩ H1
0(e) .

Proof. By scaling arguments, we may assume he = 1. Write Ie,p : H1
0(e) 󳨃→

∘
𝒫p+1 for the

interpolation operator

(Ie,pu)(ξ ) = u(0) + ∫
ξ

0
(Qe,p

du
dξ
)(τ)dτ , 0 ≤ ξ ≤ |e| ,

where ξ is the arc length parameter for the edge e and Qe,p : L2(Ω) 󳨃→ 𝒫p(e) is the
L2(e)-orthogonal projection. From [59, Section 3.3.1, Theorem 3.17], we learn that

󵄨󵄨󵄨󵄨u − Ie,pu
󵄨󵄨󵄨󵄨1,e ≲ (p + 1)

−1󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨2,e ∀u ∈ H

2(e) , (4.116)
󵄩󵄩󵄩󵄩u − Ie,pu

󵄩󵄩󵄩󵄩0,e ≲ (p + 1)
−m󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨m,e ∀u ∈ H

m(e) , m = 1, 2 . (4.117)
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As Ie,pu ∈
∘
𝒫p+1(e) for u ∈ H1

0(e), this permits us to conclude

󵄩󵄩󵄩󵄩u − Q
∗
e,pu
󵄩󵄩󵄩󵄩0,e ≤
󵄩󵄩󵄩󵄩u − Ie,pu

󵄩󵄩󵄩󵄩0,e ≲ (p + 1)
−1󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩1,e , (4.118)

which yields, by interpolation between H1(e) and L2(e),

󵄩󵄩󵄩󵄩u − Q
∗
e,pu
󵄩󵄩󵄩󵄩0,e ≲ (p + 1)

−q󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩q,e , 0 ≤ q ≤ 1 , (4.119)

where the constant is independent of q. On the other hand, using the inverse inequal-
ity [7, Lemma 1]

󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩1,e ≲ (p + 1)

2󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩0,e ∀u ∈ 𝒫p+1(e) (4.120)

and (4.116), (4.117), we find the estimate
󵄨󵄨󵄨󵄨u − Q

∗
e,pu
󵄨󵄨󵄨󵄨1,e ≤
󵄨󵄨󵄨󵄨u − Ie,pu

󵄨󵄨󵄨󵄨1,e +
󵄨󵄨󵄨󵄨Q
∗
e,pu − Ie,pu

󵄨󵄨󵄨󵄨1,e
≤ 󵄨󵄨󵄨󵄨u − Ie,pu

󵄨󵄨󵄨󵄨1,e + (p + 1)
2󵄩󵄩󵄩󵄩Q
∗
e,pu − Ie,pu

󵄩󵄩󵄩󵄩0,e

≲ 󵄨󵄨󵄨󵄨u − Ie,pu
󵄨󵄨󵄨󵄨1,e + (p + 1)

2󵄩󵄩󵄩󵄩u − Ie,pu
󵄩󵄩󵄩󵄩0,e ≲
󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩2,e .

(4.121)

Interpolation between (4.119) with q = r−2ϵ
1−ϵ and (4.121) completes the proof.

Proof of Theorem 4.10, cf. [20, Section 6]. Orthogonality (4.95) of Lemma 4.9 com-
bined with the definition of QT ,p involves

∫
T

grad((Π0
T ,p − QT ,p)u) ⋅ grad vp dx = 0 ∀vp ∈

∘
𝒫p+1(T) . (4.122)

Hence, (Π0
T ,p−QT ,p)u turns out to be the

󵄨󵄨󵄨󵄨⋅
󵄨󵄨󵄨󵄨1,T -minimal degreep+1 polynomial extension

of (Π0
T ,p − QT ,p)u|𝜕T , which, thanks to Theorem 4.11, implies

󵄨󵄨󵄨󵄨(Π
0
T ,p − QT ,p)u

󵄨󵄨󵄨󵄨1,T ≤
󵄨󵄨󵄨󵄨ST((Π

0
T ,pu − QT ,pu)|𝜕T)

󵄨󵄨󵄨󵄨1,T
≲ 󵄨󵄨󵄨󵄨(Π

0
T ,pu − QT ,pu)|𝜕T

󵄨󵄨󵄨󵄨 12 ,𝜕T
.

(4.123)

Thus, by the continuity of the trace operator H1(T) 󳨃→ H
1
2 (𝜕T),

󵄨󵄨󵄨󵄨u − Π
0
T ,pu
󵄨󵄨󵄨󵄨1,T ≲
󵄨󵄨󵄨󵄨u − QT ,pu

󵄨󵄨󵄨󵄨1,T +
󵄨󵄨󵄨󵄨(u − Π

0
T ,pu)|𝜕T
󵄨󵄨󵄨󵄨 12 ,𝜕T
+ 󵄨󵄨󵄨󵄨(u − QT ,pu)|𝜕T

󵄨󵄨󵄨󵄨 12 ,𝜕T

≲ (󵄨󵄨󵄨󵄨u − QT ,pu
󵄨󵄨󵄨󵄨1,T +
󵄨󵄨󵄨󵄨(u − Π

0
T ,pu)|𝜕T
󵄨󵄨󵄨󵄨 12 ,𝜕T
) . (4.124)

To estimate 󵄨󵄨󵄨󵄨(u − Π
0
T ,pu)|𝜕T
󵄨󵄨󵄨󵄨 12 ,𝜕T

, we appeal to Lemma 4.13 and get

󵄨󵄨󵄨󵄨(u − Π
0
T ,pu)|𝜕T
󵄨󵄨󵄨󵄨 12 ,𝜕T
≤ 󵄨󵄨󵄨󵄨(u − Π

0
T ,pu)|𝜕T
󵄨󵄨󵄨󵄨 1
2+ϵ,𝜕T

≲
1
ϵ
∑

f∈ℱ2(T)

󵄨󵄨󵄨󵄨(u − Π
0
T ,pu)|f
󵄨󵄨󵄨󵄨 1
2+ϵ,f
.

(4.125)
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Next, we use (4.96) from Lemma 4.9 together with (4.112), which confirms that
(Π0

T ,pu)|f −Qf ,pu is theminimum 󵄨󵄨󵄨󵄨⋅
󵄨󵄨󵄨󵄨 12+ϵ,f

-semi-normpolynomial extension of (Π0
T ,pu)|𝜕f −

Qf ,p(u)|𝜕f . Hence, based on arguments parallel to the derivation of (4.124), this time
using Theorem 4.12, we can bound

󵄨󵄨󵄨󵄨(u − Π
0
T ,pu)|f
󵄨󵄨󵄨󵄨 1
2+ϵ,f
≲ 󵄨󵄨󵄨󵄨u|f − Qf ,pu

󵄨󵄨󵄨󵄨 1
2+ϵ,f
+ 󵄨󵄨󵄨󵄨(Π

0
T ,pu − Qf ,pu)|𝜕f

󵄨󵄨󵄨󵄨ϵ,𝜕f
, (4.126)

where the (ϵ-independent!) continuity constant of the trace mapping Sf enters the
constant. Also recall the continuity of the trace mapping H

1
2+ϵ(f ) 󳨃→ Hϵ(𝜕f ) [50, Proof

of Lemma 3.35]: with a constant independent of ϵ,

󵄩󵄩󵄩󵄩u|𝜕f
󵄩󵄩󵄩󵄩ϵ,𝜕f ≲

1
√ϵ
󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩 12+ϵ,f

∀u ∈ H
1
2+ϵ(f ) . (4.127)

Use this to continue the estimate (4.126)

󵄨󵄨󵄨󵄨(u − Π
0
T ,pu)|f
󵄨󵄨󵄨󵄨 1
2+ϵ,f
≲

1
√ϵ
󵄨󵄨󵄨󵄨u|f − Qf ,pu

󵄨󵄨󵄨󵄨 1
2+ϵ,f
+ 󵄨󵄨󵄨󵄨(u − Π

0
T ,pu)|𝜕f
󵄨󵄨󵄨󵄨ϵ,𝜕f
. (4.128)

As ϵ < 1
2 , we can localize the norm 󵄨󵄨󵄨󵄨(u − Π

0
T ,pu)|𝜕f
󵄨󵄨󵄨󵄨ϵ,𝜕f

to the edges of f , similarly to
Lemma 4.13,

󵄨󵄨󵄨󵄨(u − Π
0
T ,pu)|𝜕f
󵄨󵄨󵄨󵄨ϵ,𝜕f
≲

1
1
2 − ϵ

∑
e∈ℱ1(T),e⊂𝜕f

󵄨󵄨󵄨󵄨(u − Π
0
T ,pu)|e
󵄨󵄨󵄨󵄨ϵ,e
. (4.129)

Recall the ϵ-uniform equivalence of the norms 󵄨󵄨󵄨󵄨⋅
󵄨󵄨󵄨󵄨ϵ,e and

󵄩󵄩󵄩󵄩
d
ds ⋅
󵄩󵄩󵄩󵄩−1+ϵ,e. Hence, owing to

(4.97), we have from Lemma 4.15 with r = 1:
󵄨󵄨󵄨󵄨(u − Π

0
T ,pu)|e
󵄨󵄨󵄨󵄨ϵ,e
≲ inf

vp∈
∘
𝒫p+1

󵄨󵄨󵄨󵄨(u − Π
0
T ,0u)|e − vp

󵄨󵄨󵄨󵄨ϵ,e

≲ 󵄨󵄨󵄨󵄨(u − Π
0
T ,0u)|e − Q

∗
e,p((u − Π

0
T ,0u)|e)
󵄨󵄨󵄨󵄨ϵ,e

≲ (
hT
p + 1
)
1−2ϵ
󵄨󵄨󵄨󵄨(u − Π

0
T ,0u)|e
󵄨󵄨󵄨󵄨s,e .

(4.130)

Moreover, H2(T) is continuously embedded into C0(T). Consequently, applying trace
theorems twice and appealing to the equivalence of all norms on the finite dimen-
sional space 𝒫1(T),

󵄨󵄨󵄨󵄨(u − Π
0
T ,0u)|e
󵄨󵄨󵄨󵄨s,e ≤
󵄨󵄨󵄨󵄨u|e
󵄨󵄨󵄨󵄨s,e +
󵄨󵄨󵄨󵄨(Π

0
T ,0u)|e
󵄨󵄨󵄨󵄨s,e ≲
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨1+s,T , (4.131)

where the constantmay depend on s. Combining the estimates (4.124), (4.125), (4.128),
and (4.129), (4.130) with (4.131), we find

󵄨󵄨󵄨󵄨u − Π
0
T ,pu
󵄨󵄨󵄨󵄨1,T ≲
󵄨󵄨󵄨󵄨u − QT ,pu

󵄨󵄨󵄨󵄨1,T +
1

ϵ3/2
∑

f∈ℱ2(T)

󵄨󵄨󵄨󵄨u|f − Qf ,p(u|f )
󵄨󵄨󵄨󵄨 1
2+ϵ,f

+ (
hT
p + 1
)
s−2ϵ 1

ϵ( 12 − ϵ)
∑

e∈ℱ1(T)

󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨2,T .

(4.132)
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Finally, we plug in the projection error estimates (4.113), (4.114), and arrive at

󵄨󵄨󵄨󵄨u − Π
0
T ,p(ϵ)u
󵄨󵄨󵄨󵄨1,T ≲

hT
p + 1
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨2,T + (

hT
p + 1
)
1−+ϵ 1

ϵ3/2
∑

f∈ℱ2(T)

󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨3/2,f

+ (
hT
p + 1
)
1−2ϵ 1

ϵ( 12 − ϵ)
∑

e∈ℱ1(T)

󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨1,e ,

(4.133)

with constants also independent of ϵ. The choice (4.100) of ϵ together with an appli-
cation of trace theorems then completes the proof.

The next lemma plays the role of [9, Lemma 9] and makes it possible to adapt the
approach of [9, Section 4.4] to 3D edge elements.

Lemma 4.16. If u ∈ H1(T) ∩ H(curl,T) possesses a polynomial curl in the sense that
curl u ∈ 𝒫p(T), then

󵄩󵄩󵄩󵄩(Id − Π
1
p)u
󵄩󵄩󵄩󵄩0,Ω ≲ (1 + log

3/2(p + 1))hT
p
󵄨󵄨󵄨󵄨u
󵄨󵄨󵄨󵄨1,T . (4.134)

Proof. Pick any u complying with the assumptions of the lemma and split

u = (u − RT curl u) + RT curl u . (4.135)

Note that the properties of the smoothed Poincaré lifting RT stated in Theorem 4.3
imply:
(i) curl(u − RT curl u) = 0 on T, as a consequence of (4.8), and
(ii) RT curl u ∈ H1(T) and the bound

󵄩󵄩󵄩󵄩RT curl u
󵄩󵄩󵄩󵄩1,T ≲
󵄩󵄩󵄩󵄩curl u
󵄩󵄩󵄩󵄩0,Ω , (4.136)

where here and below no constant may depend on u or p.

Hence, as u ∈ H1(T), there exists v ∈ H2(T) such that

u = grad v + RT curl u . (4.137)

The continuity of RT reveals that

󵄨󵄨󵄨󵄨v
󵄨󵄨󵄨󵄨2,T ≤
󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩1,T +
󵄨󵄨󵄨󵄨RT curl u

󵄨󵄨󵄨󵄨1,T ≲
󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩1,T +
󵄩󵄩󵄩󵄩curl u
󵄩󵄩󵄩󵄩0,T . (4.138)

By the assumptions of the lemma and (4.11), we know that

RT curl u ∈𝒲
1
p(T) . (4.139)
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By the commuting diagram property from Lemma 4.6 and the projector property of
Π1
T ,p, the task is reduced to an interpolation estimate for Π0

T ,p:

(Id − Π1
T ,p)u

(4.137)
= grad(Id − Π0

T ,p)v + (Id − Π
1
T ,p)RT curl u⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

. (4.140)

As a consequence, invoking Theorem 4.10,

󵄩󵄩󵄩󵄩(Id − Π
1
T ,p)u
󵄩󵄩󵄩󵄩0,T

(4.140)
= 󵄨󵄨󵄨󵄨(Id − Π

0
T ,p)v
󵄨󵄨󵄨󵄨1,T ≲ (1 + log

2/3(p + 1))hT
p
󵄨󵄨󵄨󵄨v
󵄨󵄨󵄨󵄨2,T

(4.138)
≲ (1 + log3/2(p + 1))hT

p
(󵄩󵄩󵄩󵄩u
󵄩󵄩󵄩󵄩1,T +
󵄩󵄩󵄩󵄩curl u
󵄩󵄩󵄩󵄩0,T) , (4.141)

which gives the assertion of the lemma.

Remark 4.17. In principle, the very construction of projection based interpolation op-
erators well fits spaces of discrete differential forms with variable polynomial degree
(“hp-spaces) as long as the so-called minimum rule for the degrees; see [49, Re-
mark IV.3.2] or [22], is fulfilled. Unfortunately, it is not clear how to adapt the splitting
(4.135) to the hp setting and our proof of the key Lemma 4.16 cannot be extended.

4.2 Boundary-aware p-stable quasi-interpolation for Lagrangian
finite elements

In this section, we sketch the construction of a local quasi-interpolation operator into
𝒲0

ΓD (𝒯 ) following the policy of smoothing projections by local regularization that as
developed in [14, 26], [49, Chapter VII] and [47]. The latter fundamental work is our
main source and [47, Corollary 3.7] already asserts the existence of suitable quasi-
interpolation operator in the case ΓD = 𝜕Ω.We extend this to zero boundary conditions
on parts of 𝜕Ω, borrowing a distortion technique from [49, Section VII.2]. We point out
that [51, Theorem 3.3] provides exactly the kind of quasi-interpolationwe need, unfor-
tunately only in two dimensions. The extension to 3D looks formidably technical.

According to [14, Section 4.1], the flow induced by the vector field ñ introduced in
Section 2.1 can be used to define a “reflection at the boundary Γ”, a map RΓ : ΩΓ → ΩΓ
satisfying
(R1) RΓ(Ω ∩ ΩΓ) = (ℝ

3 \ Ω) ∩ ΩΓ;
(R2) RΓ(x) = x ∀x ∈ Γ;
(R3) RΓ is bi-Lipschitz with Lipschitz constants depending only on Γ.

We introduce the p-scaled mesh width function εh ∈ L∞(Ω), εh(x) = hT/p+1 on T ∈ 𝒯 :
εh := h/p+1. We can extend it to a function εh ∈ L∞(Ω) on the expanded domain Ω̃ :=
Ω ∪ ΩΓ by reflection:

εh(x) := εh(R
−1
Γ (x)) for almost all x ∈ ΩΓ \ Ω .
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From [47, Lemma3.1] or [49, LemmaVII.8.2],we learn that convolutionof εhwith a sim-
ple mollifier yields a smoothed extended mesh width function with bounded deriva-
tives.

Lemma 4.18 (Smooth extended mesh width function). The exists a smooth function
ε ∈ C∞(Ω̃) such that
(E1) ε ≂ εh almost everywhere in Ω̃;
(E2) |Drε| ≲ |ε|1−|r| for all r ∈ ℕ30 pointwise in Ω̃.

Thus, ε qualifies as an admissible length scale function in the parlance of [47,
Def. 2.1]. In particular, ε is uniformly positive and Lipschitz continuous; we write Lε >
0 for its Lipschitz constant that depends on Ω and ρ(𝒯 ) alone.

To handle zero boundary conditions on ΓD, we take the cue from [49, SectionVII.2]
and consider a blow-up map for the bulge domain ϒD introduced in Section 2.1, Theo-
rem 2.2.

Lemma 4.19 (Shrinkage mapping for bulge domain [49, Theorem VII.2.1]). We can
find constants δD > 0 and LD > 0 depending only on Ω̃ and ϒD such that for any
function ξ : Ω̃→ ℝ+ with
– |ξ (x) − ξ (y)| ≤ δD ‖x − y‖ , for all x, y ∈ Ω̃;
– |ξ (x)| ≤ δD for all x ∈ Ω̃,

there exists a bi-Lipschitzmapping Tξ : Ω̃→ Ω̃ with3

(T1)
󵄩󵄩󵄩󵄩Tξ (x) − Tξ (y)

󵄩󵄩󵄩󵄩 ≤ LD(1 + δD) ‖x − y‖ for all x, y ∈ Ω̃;
(T2)
󵄩󵄩󵄩󵄩󵄩T
−1
ξ (x) − T

−1
ξ (y)
󵄩󵄩󵄩󵄩󵄩 ≤ LD(1 + δD) ‖x − y‖ for all x, y ∈ Ω̃;

(T3)
󵄩󵄩󵄩󵄩Tξ (x) − x

󵄩󵄩󵄩󵄩 ≤ LDξ (x) , x ∈ Ω̃;
(T4) Tξ (x) = x for all x ∈ Ω̃ with dist(x, 𝜕ϒD) ≥ LDξ (x);
(T5) for all x ∈ ϒD there holds Tξ (Bξ (x)/LD (x) ∩ Ω̃) ⊂ ϒD;
(T6) detDTξ (x) ≂ 1 for all x ∈ Ω̃.

Casually speaking, by (T5) Tξ is a mapping that pulls a neighborhood of ϒD into
ϒD. The property (T3) ensures that the amount of local distortion effected by Tξ can be
controlled by ξ . The next result is borrowed from [47, Lemma 5.1 and 5.7] and paves
the way for localization arguments.

Lemma 4.20 (Finite cover). We can find “small constants”

α, β > 0 , α < β , β < min{1, dist(Ω
e, 𝜕Ω̃)
‖ε‖∞,Ω̃

,
1
2Lε
}, (4.142)

and a finite set of points 𝒵 ⊂ Ω̃ such that

3 The symbol Br(z) designates the open ball around z ∈ ℝ3 with radius r > 0.
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250 | R. Hiptmair and C. Pechstein

(C1) Ω̃ ⊂ ⋃{Bαε(z)(z), z ∈ 𝒵} (covering property)
(C2) card{z ∈ 𝒵 : x ∈ Bβε(z)(z)} ≲ 1 for all x ∈ Ω̃ (uniform finite overlap).

From now, we fix α, β according to Lemma 4.20. From the covering and finite over-
lap property, we conclude for anym ∈ ℕ0,

∑
z∈𝒵
‖v‖2m,Bαε(z)(z) ≂ ∑

z∈𝒵
‖v‖2m,Bβε(z)(z) ≂ ‖v‖

2
m,Ω̃ ∀v ∈ H

m(Ω̃) . (4.143)

In addition, by the triangle inequality the bound on β ensures that for any z ∈ Ωe

Bβε(z)(z) ⊂ Ω̃ and 1
2ε(z) ≤ ε(x) ≤

3
2 ε(z) ∀x ∈ Bβε(z)(z) . (4.144)

Next, set τ := 1
2 (α + β) and choose a small number δ > 0 satisfying the following

inequalities:
(δ1) 2L2Dδ ≤ β − τ, with LD from Lemma 4.19;
(δ2) δLε ≤ 1 for the Lipschitz constant Lε of ε;
(δ3) δLDLε < δD, and δLD ‖ε‖∞,Ω̃ ≤ δD;
(δ4) 2δ + α < τ and 2δ + τ < β.

Now, recall Lemma 4.19 and define a concrete distortion map Tε by setting Tε := Tξ
with the particular control function ξ (x) := LDδε(x), x ∈ Ω̃. Owing to (δ3), this choice
of ξ : Ω̃ → ℝ+ satisfies the assumptions of Lemma 4.19. Thanks to Lemma 4.19, (T5)
we infer

Tε(Bδε(z)(z)) ⊂ ϒD ∀z ∈ ΓD . (4.145)

As a consequence of (4.144), (δ1), and Theorem 4.19, (T3) we note

∀z ∈ Ω̃ :
Tε(Bαε(z)(z) ∩ Ω̃) ⊂ Bτε(z)(z) ,
Tε(Bτε(z)(z) ∩ Ω̃) ⊂ Bβε(z)(z) .

(4.146)

We now study the pullback of functions under the distortion Tε : Ω̃→ Ω̃,

(T∗ε v)(x) := v(Tε(x)) x ∈ Ω̃ for v : Ω̃→ ℝ . (4.147)

Lemma 4.21 (Estimates for pullback). With constants depending only onΩ and the Lip-
schitz constant Lε of ε the following estimates hold true:
(PB1)
󵄩󵄩󵄩󵄩T
∗
ε v
󵄩󵄩󵄩󵄩0,Bτε(z)(z)∩Ω̃ ≂ ‖v‖0,Bβε(z)(z)∩Ω̃ for all z ∈ Ω̃, v ∈ L2(Ω̃),

(PB2)
󵄨󵄨󵄨󵄨T
∗
ε v
󵄨󵄨󵄨󵄨1,Bτε(z)(z)∩Ω̃ ≲ |v|1,Bβε(z)(z)∩Ω̃ for all z ∈ Ω̃, v ∈ H1(Ω̃),

(PB3)
󵄩󵄩󵄩󵄩(Id − T

∗
ε )v
󵄩󵄩󵄩󵄩0,Bτε(z)(z) ≲ ε(z) |v|1,Bβε(z)(z) for all z ∈ Ωe and v ∈ H1(Ω̃).

Proof. The assertions (PB1) and (PB2) follow from (4.146), ‖DTε‖∞,Ω̃ ,
󵄩󵄩󵄩󵄩DT
−1
ε
󵄩󵄩󵄩󵄩∞,Ω̃ ≲ 1,

Theorem 4.19, (T6), the chain rule and the transformation formula for integrals.
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To show (PB3), we resort to convolution with a mollifier ρ ∈ C∞(ℝ3) that satisfies
ρ ≥ 0, supp(ρ) ⊂ B1(0), and ∫ℝ3 ρ(x)dx = 1. Writing ρν(x) := ν−3ρ(x/ν), ν > 0, we define
for some function ξ : Ω̃→ ℝ+,

(Mξ v)(x) := ∫
ℝ3
v(x − y)ρξ (x) dy , v ∈ L1(ℝ3) . (4.148)

Since ‖ρν‖20,ℝ3 = ν
−3 ‖ρ‖20,ℝ3 , the Cauchy–Schwarz inequality yields

|(Mξ v)(x)| ≤
󵄩󵄩󵄩󵄩ρξ (x)
󵄩󵄩󵄩󵄩0,ℝ3 ‖v‖0,Bξ (x)(x) ≲ ξ (x)

−3/2 ‖v‖0,Bξ (x)(x) . (4.149)

From now on, we set ξ (x) := LDδε(x) and, by (4.144), (4.149), and (δ1), conclude for
every z ∈ Ωe

󵄩󵄩󵄩󵄩Mξ (x)
󵄩󵄩󵄩󵄩
2
0,Bτε(z)(z)

≤ (τε(z))3 max
z∈Bτε(z)(z)

LDδε(x)
−3 ≲ ‖v‖20,Bβε(z)(z) . (4.150)

The properties of ρ ensure thatMξ preserves constants, so that we obtain by a scaling
argument and the Bramble–Hilbert lemma [47, Lemma 4.3]:

󵄩󵄩󵄩󵄩v −Mξ v
󵄩󵄩󵄩󵄩0,Bτε(z)(z)

= inf
c∈ℝ
󵄩󵄩󵄩󵄩(v − c) −Mξ (v − c)

󵄩󵄩󵄩󵄩0,Bτε(z)(z)

≲ inf
c∈ℝ
‖v − c‖0,Bβε(z)(z) ≲ βε(z) |v|1,Bβε(z)(z) ,

(4.151)

for any v ∈ H1(Ω̃). Fixing v ∈ H1(Ω̃) and z ∈ Ωe we continue with the triangle inequal-
ity:

󵄩󵄩󵄩󵄩v − T
∗
ε v
󵄩󵄩󵄩󵄩0,Bαε(z)(z) ≤

󵄩󵄩󵄩󵄩v −Mξ v
󵄩󵄩󵄩󵄩0,Bαε(z)(z)

+ 󵄩󵄩󵄩󵄩(Id − T
∗
ε )Mξ v
󵄩󵄩󵄩󵄩0,Bαε(z)(z)

+ 󵄩󵄩󵄩󵄩T
∗
ε (Mξ − Id)v

󵄩󵄩󵄩󵄩0,Bαε(z)(z)
. (4.152)

Bymeans of (4.151) and Theorem 4.21, (PB1) the first and last term can be estimated by
≲ ε(z) |v|1,Bβε(z)(z). Concerning the middle term, we appeal to the mean value theorem
applied to w := Mξ v and, by Theorem 4.19, (T3), (4.146), get for x ∈ Bαε(z)(z)

󵄨󵄨󵄨󵄨w(x) − w(Tε(x))
󵄨󵄨󵄨󵄨 ≤ ‖gradw‖∞,Bτε(z)(z) ‖x − Tε(x)‖ ≲

󵄩󵄩󵄩󵄩gradMξ v
󵄩󵄩󵄩󵄩∞,Bτε(z)(z)

.

Since grad commutes with convolution, the maximum norm of gradMξ v can be esti-
mated as in (4.149) above:

󵄩󵄩󵄩󵄩gradMξ v
󵄩󵄩󵄩󵄩∞,Bτε(z)(z)

≲ ε(z)−3/2 ‖grad v‖0,Bβε(z)(z) .

Ultimately, this yields

󵄩󵄩󵄩󵄩(Id − T
∗
ε )Mξ v
󵄩󵄩󵄩󵄩
2
0,Bαε(z)(z)

≲ ε(z)3 󵄩󵄩󵄩󵄩gradMξ v
󵄩󵄩󵄩󵄩
2
∞,Bτε(z)(z)

≲ ‖grad v‖20,Bβε(z)(z) ,

and the assertion (PB3) when plugged into (4.152).
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Following [47, Section 5.2], we now outline the key idea of regularization bymolli-
fication. We employ a mollifier of order 6 =: kmax ∈ ℕ0, that is, a function ρ ∈ C∞(ℝ3)
with supp(ρ) ⊂ B1(0), and [47, equation (4.1)],

∫
ℝ3
yrρ(y)dy = {

1 if r = 0 ,
0 else,

(4.153)

for every multi-index r ∈ ℕ30 with |r| ≤ kmax. This property leads to the preservation of
polynomials of degree up to kmax under convolution with ρν. Analogously to (4.148),
we define the mollification

(Ev)(x) := ∫
ℝ3
v(y)ρδε(x)(x − y)dy , x ∈ Ωe , v ∈ L1(Ω̃) . (4.154)

From [47, Lemma 5.3], we learn that for every z ∈ Ωe and integers 0 ≤ m ≤ ℓ, with
ℓ,m ≤ kmax + 1,

|Ev|ℓ,Bαε(z)(z) ≲ ε(z)
m−ℓ |v|m,Bτε(z)(z) ∀v ∈ H

ℓ(Ω̃) , (4.155)

|(Id − E)v|m,Bαε(z)(z) ≲ ε(z)
ℓ−m |v|ℓ,Bτε(z)(z) ∀v ∈ H

ℓ(Ω̃) . (4.156)

The composition of mollification and distortion pullback yields the regularizing
operator

J := E ∘ T∗ε : L
1(Ω̃) → C∞(Ωe) . (4.157)

In light of (4.145), it is immediate that

v |ϒD = 0 ⇒ Jv |ΓD = 0 . (4.158)

Using (4.155) for m = ℓ = 0, (4.156) for m = 0, ℓ = 1, and Theorem 4.21, (PB3), for
any z ∈ Ωe we find the bound

‖(Id − J)v‖0,Bαε(z)(z) ≤ ‖(Id − E)v‖0,Bαε(z)(z) +
󵄩󵄩󵄩󵄩E(Id − T

∗
ε )v
󵄩󵄩󵄩󵄩0,Bαε(z)(z)

≲ ε(z) |v|1,Bτε(z)(z) +
󵄩󵄩󵄩󵄩(Id − T

∗
ε )v
󵄩󵄩󵄩󵄩0,Bτε(z)(z) ≲ ε(z) |v|1,Bβε(z)(z) . (4.159)

By means of (4.155) form = 0, 1 we get for any 1 ≤ ℓ ≤ kmax + 1,

|Jv|ℓ,Bαε(z)(z) ≲ ε(z)
−ℓ 󵄩󵄩󵄩󵄩T
∗
ε v
󵄩󵄩󵄩󵄩0,Bβε(z)(z) , ∀v ∈ H

1(Ω̃) , (4.160)

|Jv|ℓ,Bαε(z)(z) ≲ ε(z)
1−ℓ 󵄨󵄨󵄨󵄨T
∗
ε v
󵄨󵄨󵄨󵄨1,Bβε(z)(z) , ∀v ∈ H

1(Ω̃) . (4.161)

Further, (4.155) form = ℓ = 1 and Theorem 4.21, (PB3) lead to

|Jv|1,Bαε(z)(z) ≲ |v|1,Bβε(z)(z) ∀v ∈ H
1(Ω̃) . (4.162)
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The final step is inspired by [47, Section 3.1]. To build the desired quasi-inter-
polation operator, we apply the perfectly local projection-based interpolation oper-
ators Ip : H6(Ω) →𝒲0

p (𝒯 ) from [52, Corollary 7.4] to the regularized function:

Qp := Ip ∘ J : L
1(Ω̃) →𝒲0

p (𝒯 ) . (4.163)

We recall properties of Ip from [52, Section 7]. Firstly, it enjoys locality in the sense that
– (Ipv)(a) = v(a) for every vertex a of the mesh 𝒯 ;
– (Ipv) |e is uniquely determined by v |e for every edge e;
– (Ipv) |F depends only on v |F for every face F;
– and (Ipv) |T exclusively relies on v |T for all tetrahedra T ∈ 𝒯 .

Obviously, if v |F = 0, then (Ipv) |F = 0. As 𝒯 was supposed to resolve ΓD, applying
Ip to a smooth function vanishing on ΓD will result in an interpolant with the same
property. This accounts for the range of Qp stated in (4.163).

The locality of Ip comes at the price of poor stability. In [52, Corollary 7.4], the au-
thors showed p-uniform local continuity of

Ip |T : H
6(T) → 𝒫p(ℝ

3) , (4.164)

and an estimate of the form

hT/p 󵄨󵄨󵄨󵄨(Id − Ip)v
󵄨󵄨󵄨󵄨1,T +
󵄩󵄩󵄩󵄩(Id − Ip)v

󵄩󵄩󵄩󵄩0,T ≲ (hT/p)
6 ‖v‖6,T ∀v ∈ H

6(T) , (4.165)

where the constants depends merely on the shape regularity measure of the tetrahe-
dron T ∈ 𝒯 . Since Jv ∈ C∞(Ωe), the tight smoothness requirements of Ip can be accom-
modated. This is the main rationale behind using the regularizer J.

H1-Stability of Qp is straightforward from (4.165), (4.161), and the finite overlap
property from Lemma 4.20. To begin with, we get

󵄩󵄩󵄩󵄩Qpu
󵄩󵄩󵄩󵄩0,T =
󵄩󵄩󵄩󵄩Ip(Ju)
󵄩󵄩󵄩󵄩0,T ≲ ‖Ju‖0,T + (hY/p)

6 ‖Ju‖6,T ≲ ‖u‖0,UT
,

󵄨󵄨󵄨󵄨Qpu
󵄨󵄨󵄨󵄨1,T =
󵄨󵄨󵄨󵄨Ip(Ju)
󵄨󵄨󵄨󵄨1,T ≲ |Ju|1,T + (hY/p)

5 ‖Ju‖6,T ≲ |u|1,UT
,

(4.166)

where UT := ⋃{Bβε(x)(x), x ∈ T} is a local neighborhood of T. Local approximation
estimates can be deduced from (4.159), (4.161), and (4.165):

󵄩󵄩󵄩󵄩(Id − Qp)u
󵄩󵄩󵄩󵄩0,T ≤ ‖(Id − J)u‖0,T +

󵄩󵄩󵄩󵄩(Id − Ip)Ju
󵄩󵄩󵄩󵄩0,T

≲ hT/p |u|1,UT
+ (hT/p)6 ‖Ju‖6,T ≲ hT/p |u|1,UT

.
(4.167)

Squaring and adding both (4.166) and (4.167) establishes global stability and approx-
imation properties of our quasi-interpolation Qp.

Theorem 4.22 (Quasi-Interpolation operator). The operators Qp : L1(Ω̃) → 𝒲0
p (𝒯 ) ⊂

H1(Ω) satisfy:
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(Q1)
󵄩󵄩󵄩󵄩Qpu
󵄩󵄩󵄩󵄩0,Ω ≲ ‖u‖0,Ω̃ for all u ∈ L2(Ω̃);

(Q2)
󵄨󵄨󵄨󵄨Qpu
󵄨󵄨󵄨󵄨1,Ω ≲ |u|1,Ω̃ for all u ∈ H1(Ω̃);

(Q3)
󵄩󵄩󵄩󵄩ε
−1(Id − Qp)u

󵄩󵄩󵄩󵄩0,Ω ≲ |u|1,Ω̃ for all u ∈ H1(Ω̃),

with constants depending only on Ω, ΓD, and the shape regularity measure ρ(𝒯 ).
Further, Qpv ∈𝒲0

p,ΓD (𝒯 ) ⊂ H
1
ΓD (Ω), if v |ϒD = 0.

The last assertion of the theorem follows from (4.158) and the locality of Ip dis-
cussed above.

4.3 Proof of Theorem 1.3

With local commuting projectors Π1
p from Section 4.1 and stable quasi-interpolation

operator Qp from Section 4.2 at our disposal, the construction and analysis of p-uni-
formly stable discrete regular decompositions of 𝒲1

ΓD (𝒯 ) runs rather parallel to the
lowest-order case presented in Section 3.3.

We fix vp ∈𝒲1
p,ΓD (𝒯 ) ⊂ HΓD (curl,Ω) and consider its regular decomposition sup-

plied by Theorem 2.1 and its proof:

vp = z |Ω + gradφ , z ∈ H1(ℝ3), z |ϒD ≡ 0 , φ ∈ H1
ΓD (Ω) , (4.168)

with norm bounds

‖z‖0,ℝ3 ≲
󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩0,Ω , |z|1,ℝ3 ≲

󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩H(curl,Ω) , ‖φ‖1,Ω ≲

󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩0,Ω . (4.169)

None of the constants depends on vp. Since curl z = curl vp, that is, z has a piecewise
polynomial curl, Lemma 4.16 ensures that Π1

pz is well-defined. In addition, for every
T ∈ 𝒯 we have gradφ |T = vp |T − z |T ∈ H

1(T), which implies φ |T ∈ H
2(T). Hence, φ

possesses enough local regularity to render also Π0
pφ well-defined. This permits us to

rely on the commuting diagram property of Lemma 4.6 when letting Π1
p act on vp:

vp = Π
1
pvp = Π

1
pz + gradΠ

0
pφ .

In order to obtain a contribution in H1
ΓD (Ω), we insert a boundary-aware quasi-

interpolant to generate the regular part zp of the decomposition (III):

vp = Π
1
p Qpz⏟⏟⏟⏟⏟⏟⏟
=:zp

+Π1
p(Id − Qp)z + gradΠ

0
pφ⏟⏟⏟⏟⏟⏟⏟
=:φp

,
zp ∈ 𝒱0

p,ΓD (𝒯 ) ,
φp ∈𝒲

0
ΓD (𝒯 ) .

(4.170)

Writing ṽp := Π1
p(Id − Qp)z ∈𝒲1

ΓD (𝒯 ), we have split vp ∈𝒲
1
ΓD (𝒯 ) as

vp = Π
1
pzp + ṽp + gradφp . (III)
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Next, we investigate the stability of this splitting, bounding norms of its terms by
norms of vp.

1○ Estimating norms of zp = Qpz based on Theorem 4.22 is straightforward

Theorem 4.22, (Q1) ⇒
󵄩󵄩󵄩󵄩zp
󵄩󵄩󵄩󵄩0,Ω ≲ ‖z‖0,Ω ≲

󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩0,Ω , (4.171)

Theorem 4.22, (Q2) ⇒
󵄨󵄨󵄨󵄨zp
󵄨󵄨󵄨󵄨1,Ω ≲ |z|1,Ω ≲

󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩H(curl,Ω) . (4.172)

2○ Interpolation error estimates from Lemma 4.16 for Π1
p and Theorem 4.22, (Q3) give

bounds for ṽp, local ones first: for any tetrahedron T ∈ 𝒯

󵄩󵄩󵄩󵄩ṽp
󵄩󵄩󵄩󵄩0,T ≲
󵄩󵄩󵄩󵄩󵄩(Id − Π

1
p)(Id − Qp)z

󵄩󵄩󵄩󵄩󵄩0,T +
󵄩󵄩󵄩󵄩(Id − Qp)z

󵄩󵄩󵄩󵄩0,T

≲ (1 + log(p + 1))
3/2 hT
p + 1
󵄨󵄨󵄨󵄨(Id − Qp)z

󵄨󵄨󵄨󵄨1,T +
hT
p + 1 |

z|1,T

≲ (1 + log(p + 1))
3/2 hT
p + 1
󵄨󵄨󵄨󵄨(Id − Qp)z

󵄨󵄨󵄨󵄨1,T ,

(4.173)

which implies after squaring and summing that

( ∑
T∈𝒯

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
p + 1
hT

ṽp
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

0,T
)

1/2

≲ (1 + log(p + 1))
3/2 󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩H(curl,Ω) . (4.174)

3○Norm estimates forφp rely on those for zp and the local interpolation error estimate
of Lemma 4.16:

󵄨󵄨󵄨󵄨φp
󵄨󵄨󵄨󵄨1,T ≤
󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩0,T +
󵄩󵄩󵄩󵄩󵄩Π

1
pz
󵄩󵄩󵄩󵄩󵄩0,T

≲ 󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩0,T + ‖z‖0,T + (1 + log(p + 1))

3/2 hT
p |

z|1,T .
(4.175)

As a consequence of (4.169), we end up with

󵄨󵄨󵄨󵄨φp
󵄨󵄨󵄨󵄨1,Ω ≲
󵄩󵄩󵄩󵄩vp
󵄩󵄩󵄩󵄩0,Ω +max

T∈𝒯
{(1 + log(p + 1))

3/2 hT
p + 1
} 󵄩󵄩󵄩󵄩curl vp

󵄩󵄩󵄩󵄩0,Ω . (4.176)

Thus we are done, because Theorem 1.3 merely collects the estimates (4.171), (4.172),
(4.174), and (4.176).
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Rainer Kress
8 Some old and some new results in inverse
obstacle scattering

Abstract:We will survey on uniqueness, that is, identifiability and on reconstruction
issues for inverse obstacle scattering for time-harmonic acoustic and electromagnetic
waves. In the first part, we begin by presenting two classical uniqueness proofs and
after that proceed with two recent uniqueness results for inverse obstacle scattering
subject to a generalized impedance boundary condition. Thenweproceedwith an iter-
ative reconstruction algorithm via nonlinear boundary integral equations for the case
of the generalized impedance boundary condition. In the final part, we present new
integral equation formulations for transmission eigenvalues that play an important
role through their connections with the linear sampling method and the factorization
method for inverse scattering problems for penetrable objects.

Keywords: Uniqueness, generalized impedance boundary condition, transmission
eigenvalues, boundary integral equations

MSC 2010: 35P25, 35P30, 35R30, 45A05

1 Uniqueness in inverse obstacle scattering
Scattering theory is concerned with the effects that obstacles and inhomogeneities
have on the propagation of waves and in particular time-harmonic waves. For simplic-
ity, we focus our attention on acoustic waves and only give passing references to elec-
tromagnetic waves. Throughout the paper, we will consider scattering objects within
a homogeneous background that are described by a bounded domain D ⊂ ℝm for
m = 2, 3 with a connected C2 smooth boundary 𝜕D and can be either impenetrable or
penetrable. We note that the smoothness assumption, in principle, can be weakened
and Lipschitz boundaries can also be allowed.

Given as incident field a plane wave ui(x) = eikx⋅d propagating in the direction
d ∈ 𝕊m−1 := {x ∈ ℝm : |x| = 1}, the simplest obstacle scattering problem is to find the
total field u ∈ H1

loc(ℝ
m \ D̄) as superposition u = ui + us of the incident field and the

scattered field us such that the Helmholtz equation

Δu + k2u = 0 in ℝm \ D̄ (1.1)

with positive wave number k and the boundary condition

u = 0 on 𝜕D (1.2)

Rainer Kress, Institut für Numerische und Angewandte Mathematik, Universität Göttingen,
Göttingen, Germany, e-mail: kress@math.uni-goettingen.de
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are satisfied together with the Sommerfeld radiation condition

lim
r→∞

r
m−1
2 (
𝜕us

𝜕r
− ikus) = 0, r = |x|, (1.3)

uniformly for all directions. The homogeneous Dirichlet boundary condition (1.2)
corresponds to a sound-soft obstacle. Boundary conditions other than (1.2) to be con-
sidered are the homogeneous Neumann or sound-hard boundary condition or the
impedance boundary condition, also known as Leontovich boundary condition,

𝜕u
𝜕ν
+ ikλu = 0 on 𝜕D (1.4)

where ν is the unit outward normal to 𝜕D and λ is a given continuous complex valued
function with nonnegative real part. In addition to plane waves, other incident fields
can be considered.

The radiation condition (1.3) was introduced by Sommerfeld in 1912 to character-
ize an outward energy flux. It is equivalent to the asymptotic behavior

us(x) = eik|x|

|x|
m−1
2
[u∞(x̂) + O(

1
|x|
)], |x| → ∞,

uniformly for all directions x̂ = x/|x| andwhere u∞ is defined on 𝕊m−1 and is called the
far field pattern of us. Solutions to the Helmholtz equation satisfying (1.3) are called
radiating. For plane wave incidence, we will indicate the dependence of the far field
pattern on the incident direction d by writing u∞(x̂, d).

Uniqueness of a solution to the obstacle scattering problem is a consequence of
the following fundamental lemma which is due to Rellich (1943) and Vekua (1943)
and is known as Rellich’s lemma. This lemma later on also plays an essential role in
connection with uniqueness for the inverse scattering problems. For a proof, we refer
to [16]. Existence of a solution was first established by Vekua, Weyl and Müller in the
1950s by a boundary integral equation approach.

Lemma 1.1. Any radiating solution us ∈ H1
loc(ℝ

m \ D̄) to the Helmholtz equation with far
field pattern u∞ = 0 vanishes identically in ℝm \ D̄.

Given the incident field ui(x) = eikx⋅d, the basic inverse obstacle scattering problem
is to determine D from a knowledge of the far field pattern u∞(x̂, d) for all observa-
tion directions x̂ ∈ 𝕊m−1 and one or a few incident directions d ∈ 𝕊m−1 and a fixed
wave number k. This inverse problem serves as amodel problem for analyzing inverse
scattering techniques in nondestructive evaluation such as radar, sonar, ultrasound
imaging, seismic imaging, etc. However, we note that in practical applications the in-
verse scattering problem will never occur in the above idealized form. In particular,
the far field pattern or some other measured quantity of the scattered wave will be
available only for observation directions within a limited aperture either in the near
or in the far field region.
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We begin by noting that the inverse obstacle scattering problem is non-linear in
the sense that the scattered wave depends nonlinearly on the scattererD. More impor-
tantly, it is ill-posed since the determination of D does not depend continuously on
the far field pattern in any reasonable norm.

We illustrate the nonlinearity and ill-posedness of the inverse obstacle scattering
problem by looking at a simple example. For this, we consider as incident field the
entire solution vi to the Helmholtz equation given by

vi(x) = sin k|x|
|x|
, x ∈ ℝ3. (1.5)

Because of
sin k|x|
|x|
=

k
4π
∫

𝕊2

eikx⋅d ds(d), x ∈ ℝ3,

the field vi is a superposition of plane waves. For D, a sound-soft ball of radius R cen-
tered at the origin the scattered wave is given by

vs(x) = −sin kR
eikR

eik|x|

|x|
, |x| ≥ R. (1.6)

This leads to the total wave

v(x) = 1
|x|eikR

sin k(|x| − R), |x| ≥ R, (1.7)

and the constant far field pattern

v∞(x̂) = −
sin kR
eikR
, x̂ ∈ 𝕊2. (1.8)

Therefore, assuming the a priori information that the scatterer is a ball centered at the
origin, (1.8) provides a nonlinear equation for determining the radius R.

Concerning the ill-posedness, we consider a perturbed far field pattern

vδ∞(x̂) = −
sin kR
eikR
+ δYn(x̂)

with some δ ∈ ℝ and a spherical harmonic Yn of degree n. Then, in view of the asymp-
totic behavior of the spherical Hankel functions for large argument, the corresponding
total field is given in terms of an outgoing spherical wave function

vδ(x) = sin k(|x| − R)
eikR|x|

+ δkin+1h(1)n (k|x|)Yn(
x
|x|
)

with the spherical Hankel function h(1)n of order n and of the first kind (see in [16, The-
orem 2.16]). This implies

vδ(x) = δkin+1h(1)n (kR)Yn(
x
|x|
), |x| = R,
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andconsequently, by the asymptotics of the sphericalHankel functions for large order,
it follows that

|vδ(x)| ≈ δk( 2n
ekR
)
n
Yn(

x
|x|
), |x| = R.

This illustrates that small changes in the data v∞ can cause large errors in the solution
of the inverse problem, or a solution even may not exist anymore since vδ may fail to
have a closed surface as zero level surface.

From a functional analytic point of view, the ill-posedness is a consequence of the
compactness property of the mapping 𝜕D 󳨃→ u∞ (see [16, Theorem 5.7]).

The following classical uniqueness result is due to Schiffer.

Theorem 1.2. Assume that D1 and D2 are two sound-soft scatterers such that their far
field patterns coincide for all x̂, d ∈ 𝕊m−1 and one fixed wave number k. Then D1 = D2.

Proof. Assume that D1 ̸= D2. By Rellich’s lemma, for each incident wave ui the scat-
tered waves us1 and us2 for the obstacles D1 and D2 coincide in the unbounded com-
ponent G of the complement of D1 ∪ D2. Without loss of generality, one can assume
that D∗ := (ℝm \ G) \ D̄2 is nonempty. Then us2 is defined in D∗, and the total wave
u = ui + us2 satisfies the Helmholtz equation in D∗ and the homogeneous boundary
condition u = 0 on 𝜕D∗. Hence, u is a Dirichlet eigenfunction of −Δ in the domain D∗

with eigenvalue k2. The proof is now completed by showing that the total fields for
distinct incident plane waves are linearly independent, since this contradicts the fact
that for a fixed eigenvalue the Dirichlet eigenspace of −Δ in H1

0(D
∗) has finite dimen-

sion.

Schiffer’s uniqueness result was obtained around 1960 and appeared as a pri-
vate communication in the monograph by Lax and Philipps [33]. This is notable since
nowadays in a timeof permanent evaluationandcompetition for grants nobodywould
want to give away such a valuable result as a private communication. Noting that the
proof presented in [33] contains a slight technical fault since the fact that the comple-
ment ofD1∪D2might be disconnectedwas overlooked, it is comforting to observe that
even eminent authors can have errors in their books.

Using the strongmonotonicity property of the Dirichlet eigenvalues of−Δ, extend-
ing Schiffer’s ideas in 1983 Colton and Sleeman [17] showed that a sound-soft scat-
terer is uniquely determined by the far field pattern for one incident wave under the
a priori assumption that it is contained in a ball of radius R such that kR < cm,0.
Here, c2,0 and c3,0 = π are the smallest zeros of the Bessel function J0 and the spher-
ical Bessel function j0, respectively, representing the smallest eigenvalue for the unit
ball which is a simple eigenvalue. Hence, exploiting the fact that the wave functions
are complex valued with linearly independent real and imaginary parts, in 2005 Gin-
tides [21] improved this bound to kR < cm,1 in terms of the smallest positive zeros c2,1
and c3,1 = 4.49 . . . of the Bessel function J1 and the spherical Bessel function j1, re-
spectively. For other than the Dirichlet boundary condition, there is no analogue to
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8 Some old and some new results in inverse obstacle scattering | 263

the results in [17, 21] since there is no monotonicity property for the eigenvalues of −Δ
for other boundary conditions.

Although there is widespread belief that the far field pattern for one single inci-
dent direction and one single wave number determines the scatterer without any ad-
ditional a priori information, establishing this result still remains a challenging open
problem. To illustrate the difficulty of a proof, we consider scattering of the entire
solution vi given by (1.5) from a sound-soft ball D of radius R centered at the origin.
Then from (1.7) we observe that the total field v vanishes on the spheres with radius
Rn := R + nπ/k centered at the origin for all integers n for which Rn > 0. This indicates
that proving uniqueness for the inverse obstacle scattering problem with one single
incident plane wave needs to incorporate special features of the incident field.

Starting in 2003 in a series of papers by Alessandrini, Cheng, Liu, Rondi and Ya-
mamoto [1, 13, 34, 35], it was established that one incident plane wave is sufficient
to uniquely determine a sound-soft polyhedron. Assuming that there exist two poly-
hedral scatterers producing the same far field pattern for one incident plane wave,
the main idea of their proofs is to use the reflexion principle to construct a zero field
line extending to infinity. However, in view of the fact that the scattered wave tends to
zero uniformly at infinity, this contradicts the property that the incident plane wave
has modulus one everywhere. These results for the polyhedron have analogs for other
boundary conditions and also for electromagnetic waves.

The finiteness of the dimension of the eigenspaces for eigenvalues of −Δ for the
Neumann or impedance boundary condition requires the boundary of the intersection
D∗ from the proof of Theorem 1.2 to be sufficiently smoothwhich, in general, is not the
case. Therefore, there does not exist an immediate extension of Schiffer’s approach to
other boundary conditions.

Assuming that two different scatterers have the same far field patterns for all in-
cident directions, in 1990 Isakov [23] obtained a contradiction by considering a se-
quence of solutions with a singularity moving towards a boundary point of one scat-
terer that is not contained in the other scatterer. Heusedweak solutions and the proofs
are technically involved. During a hike in the Dolomites, on a long downhill walk in
1993 Kirsch and Kress [29] realized that these proofs can be simplified by using clas-
sical solutions rather than weak solutions and by obtaining the contradiction by con-
sidering point wise limits of the singular solutions rather than limits of L2 norms. For
boundary conditions of the form Bu = 0 on 𝜕D, where Bu = u for a sound-soft scatterer
and Bu = 𝜕u/𝜕ν+ ikλu for the impedance boundary condition one can state the follow-
ing theorem. For its proof and for later use throughout the remainder of the paper, we
introduce the notation

Φk(x, y) :=
{
{
{

1
4π

eik|x−y|
|x−y| , m = 3,

i
4H
(1)
0 (k|x − y|) , m = 2,

(1.9)

for the fundamental solution of the Helmholtz equation, where H(1)0 denotes the Han-
kel function of order zero of the first kind.
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264 | R. Kress

Theorem 1.3. Let two scatterers D1 and D2 with boundary conditions B1 and B2 have the
same far field patterns for all x̂, d ∈ 𝕊m−1 and one fixed wave number k. Then D1 = D2
and B1 = B2.

Proof. In addition to scattering of plane waves, we also consider scattering of point
sources Φk(⋅, z) with source location z in ℝm \ D̄. We will make use of the mixed reci-
procity relation

ws
∞(−d, z) = γmu

s(z, d), z ∈ ℝm \ D̄, d ∈ 𝕊2, (1.10)

which, for scattering of a point source located in z, connects the far field pattern w∞
of the scattered wave in observation direction −d with the scattered wave us for plane
wave incidence in direction d evaluated at z and where

γ2 =
ei

π
4

√8πk
and γ3 =

1
4π

(1.11)

(see [16, Theorem 3.16], [18]). Using Rellich’s lemma and (1.10) from the assumption of
the theorem one can deduce that ws

1(x, z) = w
s
2(x, z) for all x, z ∈ G. Here, we assume

again thatD1 ̸= D2 and thatG is definedas in theproof of Theorem1.2 andw1 andw2 are
the scatteredwaves for point source incidence for the obstaclesD1 andD2, respectively.
Now a contradiction can be obtained choosing x ∈ 𝜕G such that x ∈ 𝜕D1 and x ̸∈ 𝜕D2
and a sequence zn ∈ G such that zn → x as n → ∞. Hence D1 = D2 and then B1 = B2
follows from u1 = u2.

The idea of the proof for Theorem 1.3 has been applied to a number of other
boundary conditions such as for example a generalized impedance boundary condi-
tion by Bourgeois, Chaulet andHaddar [4] and other differential equations such as the
Maxwell equations for electromagnetic waves. The generalized impedance boundary
condition will be the subject of the next section.

2 Generalized impedance boundary condition

Given the plane wave ui(x) = eikx⋅d as incident field, the obstacle scattering problem
with the generalized impedance boundary condition (GIBC) consists in finding the
total field u ∈ H2

loc(ℝ
m \ D̄) as superposition u = ui + us of the incident field and the

scattered field us such that u satisfies the Helmholtz equation (1.1) and the boundary
condition

𝜕u
𝜕ν
+ ik(λu − Div μGrad u) = 0 on 𝜕D (2.1)

together with the Sommerfeld radiation condition (1.3). Here, Grad andDiv denote the
surface gradient and surface divergence on 𝜕D and μ ∈ C2(𝜕D) and λ ∈ C1(𝜕D) are given
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8 Some old and some new results in inverse obstacle scattering | 265

complex valued functions with nonnegative real parts. In the two-dimensional case
both Grad and Div correspond to the tangential derivative d/ds. Recall that the unit
normal vector ν to 𝜕D is directed towards the exterior of D. The boundary condition
(2.1) requires u ∈ H2

loc(ℝ
m \ D̄) and, in view of u|𝜕D ∈ H

3
2 (𝜕D) has to be understood in

the weak sense, that is,

∫
𝜕D

(η𝜕u
𝜕ν
+ ikληu + ikμGrad η ⋅ Grad u)ds = 0 (2.2)

for all η ∈ H
3
2 (𝜕D).

Wenote that the classical Leontovich boundary condition (1.4) is contained in (2.1)
as the special casewhere μ = 0. As comparedwith the Leontovich condition, thewider
class of impedance conditions (2.1) provides more accurate models, for example, for
imperfectly conducting obstacles (see [20, 22, 39]). For further interpretation of the
generalized impedance boundary condition, we refer to [3, 4, 5] where the direct and
the inverse scatteringproblemare analyzedby variationalmethods.Here,wewill base
our analysis on boundary integral equations.

2.1 The direct problem

Extending the analysis in [32] from the two-dimensional to the three-dimensional
case, we briefly sketch an existence analysis via boundary integral equations.

Theorem 2.1. Any solution u ∈ H2
loc(ℝ

m \ D̄) to (1.1) and (2.1) satisfying the Sommerfeld
radiation condition vanishes identically.

Proof. Inserting η = ū|𝜕D in the weak form (2.2) of the boundary condition we obtain
that

∫
𝜕D

ū𝜕u
𝜕ν

ds = −ik ∫
𝜕D

{λ|u|2 + μ|Grad u|2}ds.

Hence in view of our assumption Re λ ≥ 0 and Re μ ≥ 0 we can conclude that

Im ∫
𝜕D

ū𝜕u
𝜕ν

ds ≤ 0

and from this and the radiation condition the statement of the theorem follows from
Theorem 2.13 in [16].

Corollary 2.2. The obstacle scattering problem with generalized impedance boundary
condition has at most one solution.
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266 | R. Kress

For the existence analysis, following [16, Section 3.1] we introduce the classical
boundary integral operators in scattering theory given by the single- and double-layer
operators

(Skφ)(x) := 2 ∫
𝜕D

Φk(x, y)φ(y) ds(y) (2.3)

and

(Kkφ)(x) := 2 ∫
𝜕D

𝜕Φk(x, y)
𝜕ν(y)

φ(y) ds(y) (2.4)

and the corresponding normal derivative operators

(K󸀠kφ)(x) := 2 ∫
𝜕D

𝜕Φk(x, y)
𝜕ν(x)

φ(y) ds(y) (2.5)

and

(Tkφ)(x) := 2
𝜕
𝜕ν(x)
∫
𝜕D

𝜕Φk(x, y)
𝜕ν(y)

φ(y) ds(y) (2.6)

for x ∈ 𝜕D. We note that for 𝜕D ∈ C4,α the operators Sk : H
1
2 (𝜕D) → H

3
2 (𝜕D), and

K󸀠k : H
1
2 (𝜕D) → H

1
2 (𝜕D) are bounded (see [26, 36]). (The subscript k for the operators

will be needed in the next section.)
We seek the solution in the form of a single-layer potential for the scattered wave

us(x) = ∫
𝜕D

Φk(x, y)φ(y) ds(y), x ∈ ℝm \ D, (2.7)

with density φ ∈ H
1
2 (𝜕D) and note that the regularity φ ∈ H

1
2 (𝜕D) guarantees that

u ∈ H2
loc(ℝ

m \ D) (see [36]). From the jump relations for single-layer potentials (see [16,
Theorem 3.1]) we observe that the boundary condition (2.1) is satisfied provided φ
solves the integro-differential equation

φ − K󸀠kφ − ik(λ − Div μGrad)Skφ = g (2.8)

where we set

g := 2 𝜕u
i

𝜕ν

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕D
+ 2ik(λ − Div μGrad)ui|𝜕D (2.9)

in terms of the incident wave ui. After defining a bounded linear operator Ak :
H

1
2 (𝜕D) → H−

1
2 (𝜕D) by

Akφ := φ − K
󸀠
kφ − ik(λ − Div μGrad)Skφ (2.10)

we summarize the above into the following theorem.
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8 Some old and some new results in inverse obstacle scattering | 267

Theorem 2.3. The single-layer potential (2.7) solves the scattering problem (1.1), (2.1)
and (1.3) provided the density φ satisfies the equation

Akφ = g. (2.11)

Lemma 2.4. The modified Laplace–Beltrami operator given by

Lφ := −DivGradφ + φ (2.12)

is an isomorphism from H
3
2 (𝜕D) onto H−

1
2 (𝜕D).

Proof. In view of the Gauss surface divergence theorem, the surface divergence of a
vector field w ∈ L2(𝜕D) is given by the duality pairing

(Divw,ψ) = −(w,Gradψ), ψ ∈ H1(𝜕D).

This in turn implies

(Lφ,ψ) = (Gradφ,Gradψ) + (φ,ψ)

for φ,ψ ∈ H1(𝜕D) and consequently

‖Lφ‖H−1(𝜕D) = sup
‖ψ‖H1(𝜕D)=1

|(Lφ,ψ)| ≤ C1‖φ‖H1(𝜕D) (2.13)

and

|(Lφ,φ)| ≥ C2‖φ‖
2
H1(𝜕D) (2.14)

for all φ ∈ H1(𝜕D) and some positive constants C1 and C2. From (2.13), we have that
L : H1(𝜕D) → H−1(𝜕D) is bounded and from (2.14) we can conclude that it is injective
and has closed range. Assuming that it is not surjective implies the existence of some
χ ̸= 0 in the dual space (H−1(𝜕D))∗ = H1(𝜕D) that vanishes on L(H1(𝜕D)), that is,

(Lφ, χ) = 0

for all φ ∈ H1(𝜕D). Choosing φ = χ yields (Lχ, χ) = 0 and from (2.14), we obtain the
contradiction χ = 0. Hence L : H1(𝜕D) → H−1(𝜕D) is bijective, and consequently by
Banach’s open mapping theorem it is an isomorphism.

Clearly, the operator L : H2(𝜕D) → L2(𝜕D) is bounded and proceeding as in the
proof of Theorem 1.3 in [41] using elliptic regularity analysis it can be shown that its
inverse is also bounded (see also Lemma 3.2 below). Now the statement of the lemma
follows by Sobolev space interpolation.

Lemma 2.5. The operator

Ak + ikμLSk : H
1
2 (𝜕D) → H−

1
2 (𝜕D)

is compact.
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268 | R. Kress

Proof. The boundedness of the operators Sk : H
1
2 (𝜕D) → H

3
2 (𝜕D) and K󸀠k : H

1
2 (𝜕D) →

H
1
2 (𝜕D) mentioned above and our assumption λ ∈ C1(𝜕D) imply that all terms in the

sum (2.10) defining the operator Ak are bounded from H
1
2 (𝜕D) into H

1
2 (𝜕D) except the

term

φ 󳨃→ ik Div μGrad Skφ.

Therefore, after splitting

Div μGrad Skφ = μDivGrad Skφ + Grad μ ⋅ Grad Skφ

we observe that the operator Ak + ikμLSk : H
1
2 (𝜕D) → H

1
2 (𝜕D) is bounded since we

assumed μ ∈ C2(𝜕D). Hence the statement of the lemma follows from the compact
embedding of H

1
2 (𝜕D) into H−

1
2 (𝜕D).

Theorem 2.6. Assume that |μ| > 0 and that k2 is not a Dirichlet eigenvalue for −Δ in D.
Then for each g ∈ H−

1
2 (𝜕D) the equation (2.11) has a unique solution φ ∈ H

1
2 (𝜕D) and

this solution depends continuously on g.

Proof. Since under our assumption on k the operator Sk : H
1
2 (𝜕D) → H

3
2 (𝜕D) is an iso-

morphism, by Lemma 2.4 and our assumptions on μ the operator ikμLSk : H
1
2 (𝜕D) →

H−
1
2 (𝜕D) also is an isomorphism. Therefore, in view of Lemma 2.5, by the Riesz theory

it suffices to show that the operator Ak is injective. Assume that φ ∈ H
1
2 (𝜕D) satisfies

Akφ = 0. Then, by Theorem 2.3 the single-layer potential u defined by (2.7) solves the
scattering problem for the incidentwave ui = 0. Hence, by the uniqueness Theorem 2.1
we have u = 0 in ℝm \ D. Taking the boundary trace of u, it follows that Skφ = 0, and
consequently φ = 0.

To remedy the failure of the single-layer potential approach at the interior Dirich-
let eigenvalues, as in the case of the classical impedance condition, we modify it into
the form of a combined single- and double-layer potential for the scattered wave

us(x) = ∫
𝜕D

{Φk(x, y) + i
𝜕Φk(x, y)
𝜕ν(y)
}φ(y)ds(y), x ∈ ℝm \ D, (2.15)

with density φ ∈ H
3
2 (𝜕D). The boundary condition (2.1) is satisfied provided φ solves

the integro-differential equation

φ − K󸀠kφ − iTkφ − ik(λ − Div μGrad)(Skφ + iφ + iKkφ) = g (2.16)

with g givenby (2.9). Thenwith the same ideas as applied in the analysis of the integro-
differential equation (2.8) the following existence result can be established. For the
two-dimensional case, we refer to [32].

Theorem 2.7. Under the assumption |μ| > 0, the direct scattering problem with gener-
alized impedance boundary condition has a unique solution.
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8 Some old and some new results in inverse obstacle scattering | 269

For the numerical solution in two dimensions, collocation methods based on nu-
merical quadratures using trigonometric polynomial approximations are themost effi-
cient methods for solving boundary integral equations for scattering problems in pla-
nar domains with smooth boundaries (see [16, Section 3.5]). Here, additionally an ap-
proximation is required for the operator φ 󳨃→ d/ds μ dφ/ds as the new feature in the
integro-differential equations for the generalized impedance boundary condition. For
this, we recommend trigonometric differentiation. It can be shown that this approach
leads to spectral convergence for infinitely smooth boundaries and impedance coeffi-
cients. Details on this, including numerical examples, are presented in [32].

In three dimensions for smooth boundaries that are homeomorphic to the unit
sphere numerical methods with spectral convergence for the boundary integral equa-
tions for scattering problems can be obtained via approximations by spherical har-
monics by means of a hyperinterpolation operator on the unit sphere (see [16, Sec-
tion 3.6]). This operator, in principle, can also be employed to approximate the sur-
face gradient and the surface divergence. However, a numerical implementation of
this idea at the time of this writing has not yet been done.

2.2 The inverse problem

Themost general inverse scattering problem is the inverse shape and impedance prob-
lem to determine 𝜕D, μ and λ from a knowledge of a number of far field patterns u∞
of solutions u to (1.1), (2.1) and (1.3). Here, we will be only concerned with two less
general cases, namely the inverse shape problem and the inverse impedance problem.
The inverse shape problem consists in determining 𝜕D knowing the impedance coef-
ficients μ and λ. With the roles reversed, the inverse impedance problem requires to
determine the impedance functions μ and λ for a known shape 𝜕D.

We briefly discuss the uniqueness issue and begin with the inverse impedance
problem. In two dimensions, Cakoni and Kress [11] have shown that for a given shape
𝜕D three far field patterns corresponding to the scattering of three plane waves with
different incident directions uniquely determine the impedance functions μ and λ. For
two cylindrical wave functions as incident fields in [32], a counterexample is given
where different impedance coefficients lead to the same two far field patterns. The
uniqueness proof is sort of constructive and can be employed for an algorithm for the
solutionof the inverse impedanceproblem.Fordetails andnumerical reconstructions,
we refer to [32].

The followinguniqueness result for the full inverse shapeand impedanceproblem
(in two and three dimensions) was obtained by Bourgeois, Chaulet and Haddar [4] by
using the method presented in Theorem 1.3.
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270 | R. Kress

Theorem 2.8. Let two scatterers D1 and D2 with impedance functions λ1, μ1 and λ2, μ2
have the same far field patterns for all x̂, d ∈ 𝕊m−1 and one fixed wave number. Then
D1 = D2, λ1 = λ2 and μ1 = μ2.

Wenowoutline an iterative algorithm for approximately solving the inverse shape
problem which extends the method proposed by Johansson and Sleeman [24] for
sound-soft or perfectly conducting obstacles. For this, we introduce the operator

S∞ : H
1
2 (𝜕D) → L2(𝕊m−1)

by

(S∞φ)(x̂) := γm ∫
𝜕D

e−ikx̂⋅yφ(y) ds(y), x̂ ∈ 𝕊m−1, (2.17)

where γm is given by (1.11). Then, in view of the asymptotic for the Hankel functions,
the far field pattern for the solution to the scattering problem (1.1), (2.1) and (1.3) is
given by

u∞ = S∞φ (2.18)

in terms of the solution φ to (2.8). Hence we can state the following theorem as theo-
retical basis of the inverse algorithm.

Theorem 2.9. For a given incident field ui and a given far field pattern u∞, assume that
𝜕D and the density φ satisfy the system

φ − K󸀠kφ − ik(λ − Div μGrad)Skφ = g (2.19)

and

S∞φ = u∞ (2.20)

where g is given in terms of the incident field by (2.9). Then 𝜕D solves the inverse shape
problem. (Note that the operators Sk , K󸀠k and S∞ and the right hand side g depend on 𝜕D.)

The operator S∞ is compact with exponentially decreasing singular values and
therefore the linear equation (2.20) is severely ill-posed reflecting the ill-posedness of
the inverse shape problem. We denote this equation as the data equation. Note that
the system (2.19)–(2.20) is linear with respect to the density φ and nonlinear with re-
spect to the boundary 𝜕D. This opens up a variety of approaches to solve (2.19)–(2.20)
by linearization and iteration. Here, we are going to proceed as follows. Given an ap-
proximation for the unknown 𝜕D, we solve the equation (2.19) that we denote as the
field equation for the unknown densityφ, that is, we solve the forward problem for the
approximate boundary. Then, keeping φ fixed we linearize the data equation (2.20)
with respect to the boundary to update the approximation.
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8 Some old and some new results in inverse obstacle scattering | 271

To describe this in more detail, for simplicity, we assume 𝜕D to be star-like with
respect to the origin, i. e., 𝜕D is represented in the parametric form

𝜕D := {r(z)z : z ∈ 𝕊m−1} (2.21)

with a positive function r ∈ C2(𝕊m−1). Then, indicating its dependence on the bound-
ary 𝜕D, the parametrized form

S̃∞ : H
1
2 (𝕊m−1) × C2+(𝕊

m−1) → L2(𝕊m−1)

of the operator S∞ is given by

(S̃∞(ψ, r))(x̂) = γm ∫
𝕊m−1

e−ikr(ŷ)x̂⋅ŷJr(ŷ)ψ(ŷ) ds(ŷ), x̂ ∈ 𝕊m−1. (2.22)

Here, Jr is the Jacobian of the mapping (2.21) given by Jr = √r2 + [dr/ds]2 ifm = 2 and
Jr = r√r2 + |Grad r|2 if m = 3. For notational convenience, we introduce the mapping
p taking the scalar function r onto the vector function (p(r))(z) := r(z)z for z ∈ 𝕊m−1.
Then the parameterized form of (2.20) is given by

S̃∞(ψ, r) = u∞ (2.23)

where ψ = φ ∘ p(r). Its linearization with respect to r in direction q becomes

S̃∞(ψ, r) + S̃
󸀠
∞(ψ, r; q) = u∞ (2.24)

and is an ill-posed linear equation for the perturbation q to obtain the update r + q.
Here, the Fréchet derivative S̃󸀠∞ of the operator S̃∞ with respect to the boundary r in
the direction q is given by

S̃󸀠∞(ψ, r; q)(x̂) := γm ∫
Sm−1

e−ikr(ŷ)x̂⋅ŷ[−ikq(ŷ)x̂ ⋅ ŷJr(ŷ) + (J
󸀠
rq)(ŷ)]ψ(ŷ) ds(ŷ)

for x̂ ∈ 𝕊m−1 where J󸀠rq denotes the Fréchet derivative of Jr in direction q. We have

J󸀠rq =
rq + r󸀠q󸀠

√r2 + [dr/ds]2

ifm = 2 and

J󸀠rq = q√r2 + |Grad r|2 + r
rq + Grad r ⋅ Grad q
√r2 + |Grad r|2

ifm = 3.
Now, given an approximation for 𝜕D with parameterization r, each iteration step

of the proposed inverse algorithm consists of two parts:
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1. We solve the parameterized well-posed field equation (2.19) for ψ. In two dimen-
sions, this can be done through the numerical method described at the end of the
previous subsection.

2. Thenwe solve the ill-posed linearized equation (2.24) for q and obtain an updated
approximation for 𝜕D with the parameterization r + q. Since the kernels of the
integral operators in (2.24) are smooth, for its numerical approximation the com-
posite trapezoidal rule in two dimensions or the Gauss trapezoidal rule in three
dimensions can be employed. Because of the ill-posedness, the solution of (2.24)
requires stabilization, for example, by Tikhonov regularization.

This algorithm has a straightforward extension for the case of more than one incident
wave. Assume that ui1, . . . , u

i
N are N incident waves with different incident directions

and u∞,1, . . . , u∞,N the corresponding far field patterns for scattering from 𝜕D. Given
an approximation r for the boundary, we first solve the field equations (2.19) for the N
different incident fields to obtain N densities ψ1, . . . ,ψN . Then we solve the linearized
equations

S̃∞(ψn, r) + S̃
󸀠
∞(ψn, r; q) = u∞,n, n = 1, . . . ,N , (2.25)

for the update r + q by interpreting them as one ill-posed equation with an operator
from L2(𝕊m−1) into (L2(𝕊m−1))N and applying Tikhonov regularization.

Formoredetails on thenumerical implementationandnumerical examples in two
dimensions,we refer to [32]. Numerical examples in threedimensions arenot available
for the time being. Further research is required for the solution of the full inverse prob-
lem by simultaneous linearization of both equations (2.19) and (2.20) with respect to
the shape 𝜕D, the impedance functions λ and μ and the density φ analogous to [9].

3 Transmission eigenvalues
Roughly speaking, for the solution of inverse scattering problems one can distinguish
between two main groups of methods, namely iterative methods and sampling meth-
ods. Iterative methods reformulate the inverse problem as a nonlinear ill-posed oper-
ator equation and solve it by iteration schemes such as regularized Newton methods,
Landweber iterations or conjugate gradient methods. Sampling methods develop cri-
teria in terms of the behavior of appropriately chosen ill-posed linear integral equa-
tions that decide onwhether a point lies inside or outside the scatterer. In the previous
section, we met the approach by Johansson and Sleeman as an example for an itera-
tion method and two of the prominent examples for a sampling method are the linear
sampling method and the factorization method. They are based on the far field oper-
ator

F : L2(𝕊m−1) → L2(𝕊m−1)
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defined by

Fg(x̂) := ∫
𝕊m−1

u∞(x̂, d)g(d) ds(d), x̂ ∈ 𝕊m−1,

that is, the integral operator with the far field pattern as the kernel. Further for the far
field w∞(⋅, z) of the point source γ−1m Φ(⋅, z) located at z (where γm is given by (1.11)) we
note that

w∞(x̂, z) = e
−ikx̂⋅z , x̂ ∈ 𝕊m−1, z ∈ ℝm.

Now, the following theoremdue toKirsch [27] provides a short and concise description
of the factorizationmethod. Its proof relies on deep functional analytic tools, together
with a factorization of the far field operator that explains the name of the method.

Theorem 3.1. Assume that k2 is not a Dirichlet eigenvalue of−Δ for D. Then the equation

(F∗F)1/4g(⋅, z) = w∞(⋅, z),

where F∗ is the adjoint operator of F, is solvable in L2(𝕊m−1) if and only if z ∈ D.

Picard’s theorem (see [16, Theorem 4.8]) on the solution of equations of the first
kind with compact operators can be employed for the numerical implementation of
this criterion.

The linear sampling method introduced by Colton and Kirsch [14] is based on the
far field equation

Fg(⋅, z) = w∞(⋅, z)

and decides on the behavior of its Tikhonov solution whether z belongs to the scat-
terer D. We refrain from the concise formulation since it is more involved as compared
with Theorem 3.1 and only note that the linear sampling method also requires that k2

is not a Dirichlet eigenvalue of −Δ for D.
An important feature of the factorizationmethod and the linear samplingmethod

is that they both work independently on the nature of the scatterer and also for scat-
tering from inhomogeneous media.

Deviating for a couple of paragraphs from the theme of obstacle scattering, we
consider the case of an isotropic medium with refractive index n. We assume that n
is real valued and nonnegative and that the contrast m := 1 − n has support given
by our obstacle domain D̄ and is continuous in D̄. Then, for an incident plane wave
ui(x) = eikx⋅d, the simplest inhomogeneous medium scattering problem is to find the
total field u ∈ H1

loc(ℝ
m) such that u = ui + us satisfies

Δu + k2nu = 0 in ℝm (3.1)

and us satisfies the Sommerfeld radiation condition (1.3).
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As shown by Kirsch [28], Theorem 3.1 remains valid for the inhomogeneous
medium scattering problem, and also the linear sampling method has been extended
to this case. Only the assumption on the wave number has to be modified, for the
medium problem k is required not to be an interior transmission eigenvalue. A com-
plex number k is called a transmission eigenvalue it there exist nontrivial functions
v,w ∈ L2(D) with Δv,Δw ∈ L2(D) and w − v ∈ H2(D) such that

Δv + k2v = 0, Δw + k2nw = 0 in D (3.2)

and

v = w, 𝜕v
𝜕ν
=
𝜕w
𝜕ν

on 𝜕D (3.3)

In view of the transmission condition (3.3), the spaceH2(D) of functions uwith vanish-
ing trace u|𝜕D and normal trace 𝜕νu|𝜕D is the natural solution space for the difference
v − w. Then from

Δv − Δw = k2(w − v) − k2mw

we observe that we must demand v,w ∈ L2(D) and Δv,Δw ∈ L2(D).
This eigenvalue problem was first introduced by Kirsch [25] in 1986 in connection

with the denseness and injectivity of the far field operator. The transmission eigenval-
ues can be seen as the extension of the idea of resonant frequencies for impenetrable
obstacles to the case of penetrable media and related to nonscattering frequencies.
As shown in [8], if k is a real transmission eigenvalue and v can be extended outside
D as a solution to the Helmholtz equation, then if the extended field is used as in-
cident field the corresponding scattered wave is identically zero, i. e., this field does
not scatter at the wave number k. The transmission eigenvalue problem is a nonself-
adjoint eigenvalue problem that is not covered by the standard theory of eigenvalue
problems for elliptic equations. With respect to the factorization method and the lin-
ear sampling method, for a long time transmission eigenvalues were viewed as some-
thing to avoid, and only in 2008, Päivärinta and Sylvester [37] proved the existence
of real transmission eigenvalues. Discreteness of the set of transmission eigenvalues
was shown much earlier by Colton, Kirsch and Päivärinta [15] and Rynne and Slee-
man [40]. More recently, it has been indicated that monotonicity properties of trans-
mission eigenvalues in terms of the refractive index [6, 7] might open the possibility
to use transmission eigenvalues as target signature for inverse media problems.

Here, following the recentwork of Cakoni andKress [12], wewant to illustrate how
boundary integral equations can be used to characterize and compute transmission
eigenvalues in the case were n is constant in D. The main idea is to derive an inte-
gral equation from a characterization of the transmission eigenvalues in terms of the
Robin-to-Neumann operator as defined by

Nk : f 󳨃→
𝜕u
𝜕ν

(3.4)
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where u ∈ H1(D) is the unique solution to

Δu + k2u = 0 in D (3.5)

satisfying the nonlocal impedance boundary condition

u + iηP3 𝜕u
𝜕ν
= f on 𝜕D (3.6)

for f ∈ H
1
2 (𝜕D). Here, η is a positive constant and P is a positive definite pseudo-

differential operator of order −1. For example, we may choose P = S0 where S0 is the
single-layer boundary integral operator (2.3) for the Laplace case k = 0 which needs
to be modified in the two-dimensional case as in Theorem 7.41 in [31]. Our approach
differs slightly from that in [12] through the use of the nonlocal impedance boundary
condition rather than the classical Leontovich impedance condition (1.4). Using the
smoothing operator P slightly simplifies the analysis.

For any solution of (3.5) and (3.6) for f = 0 from Green’s integral theorem we have
that

∫
D

[| grad u|2 − k2|u|2]dx = iη ∫
𝜕D

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
P

3
2
𝜕u
𝜕ν

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
ds

which implies uniqueness of the solution for all k with Re k > 0 and Im k ≥ 0. Exis-
tence of a solution can be shown analogous to Theorem 2.6. The single-layer potential
with density φ ∈ H−

1
2 (𝜕D) solves (3.5) and (3.6) provided φ satisfies the equation

Akφ = f (3.7)

where we redefined

Ak := Sk + iηP
3(I + K󸀠k). (3.8)

From uniqueness both for the interior impedance problem (3.5) and (3.6) in D and for
the exterior Dirichlet problem inℝm \D̄ together with the jump relations for the single-
layer potential, it can be checked that Ak has a trivial kernel in H−

1
2 (𝜕D) for all k with

positive real part and nonnegative imaginary part. After picking a wave number k0
such that k20 is not a Dirichlet eigenvalue for −Δ in D, we write Ak = Sk0 + Bk where

Bk := Sk − Sk0 + iηP
3(I + K󸀠k).

Then Sk0 : H
− 12 (𝜕D) → H

1
2 (𝜕D) is an isomorphism and Bk : H−

1
2 (𝜕D) → H

1
2 (𝜕D) is

compact since the difference Sk − Sk0 is bounded from H−
1
2 (𝜕D) into H

3
2 (𝜕D) (see [16,

Lemma 5.37]) and P3(I + K󸀠k) is bounded from H−
1
2 (𝜕D) into H

5
2 (𝜕D) because of our
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assumption on P. Therefore, by the Riesz theory Ak : H−
1
2 (𝜕D) → H

1
2 (𝜕D) is an isomor-

phism and we can write

Nk = (I + K
󸀠
k)A
−1
k . (3.9)

Now, setting

kn := k√n,

we have that k is a transmission eigenvalue if and only if the kernel of the operator

M(k; η) := Nk − Nkn (3.10)

in nontrivial.
We need to adjust the spaces in which we have to investigate the kernel ofM(k; η)

since wemust search for the eigenfunctions v,w in L2(D). This implies that their trace
and their normal derivative on the boundary belong to H−

1
2 (𝜕D) and H−

3
2 (𝜕D), respec-

tively. Indeed if u ∈ L2Δ(D) := {u ∈ L
2(D) : Δu ∈ L2(D)} then its trace u ∈ H−

1
2 (𝜕D) is

defined by duality using the identity

⟨u, τ⟩
H−

1
2 (𝜕D),H

1
2 (𝜕D)
= ∫

D

(uΔw − wΔu)dx

where w ∈ H2(D) is such that w = 0 and 𝜕νw = τ on 𝜕D. Similarly, the trace of 𝜕νu ∈
H−

3
2 (𝜕D) is defined by duality using the identity

⟨
𝜕u
𝜕ν
, τ⟩

H−
3
2 (𝜕D),H

3
2 (𝜕D)
= −∫

D

(uΔw − wΔu)dx

where w ∈ H2(D) is such that w = τ and 𝜕νw = 0 on 𝜕D.
Therefore, when we represent v and w by single-layer potentials we must work

with densities in H−
3
2 (𝜕D). For convenience, we introduce

(𝒮kφ)(x) := 2 ∫
𝜕D

φ(y)Φk(x, y) ds(y), x ∈ D.

Obviously, 𝒮kφ satisfies the Helmholtz equation, hence we can conclude that 𝒮k :
H−

3
2 (𝜕D) → L2Δ(D) is bounded. Further, by a duality argument it is possible to ex-

tend the jump relations for single-layer potentials across 𝜕D to the case of densities
inH−

3
2 (𝜕D). The standard theory of single-layer potentials implies that both operators

Sk0 : H
− 12 (𝜕D) → H

1
2 (𝜕D) and Sk0 : H

1
2 (𝜕D) → H

3
2 (𝜕D) are isomorphisms under our as-

sumption on k20 not to be a Dirichlet eigenvalue. From this, again by duality it follows
that Sk0 : H

− 32 (𝜕D) → H−
1
2 (𝜕D) is an isomorphism. Consequently, from the above we

have that Ak also is an isomorphism from H−
3
2 (𝜕D) onto H−

1
2 (𝜕D).
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We note that the above statements remain valid in the case when k = i and η = i
because of the uniqueness for the Robin problem Δu − u = 0 in D with u + P3𝜕νu = 0
on 𝜕D.

To analyze the kernel ofM(k), we now want to show that

M(k; η) = (I + K󸀠k)A
−1
k − (I + K

󸀠
kn)A
−1
kn : H

− 12 (𝜕D) → H
1
2 (𝜕D)

is a Fredholm operator of index zero and to this end we begin with a regularity result.

Lemma 3.2. Let F ∈ Hm(D) and g ∈ Hm+ 32 (𝜕D). Then the unique solution v ∈ L2(D) of
Δv = F in D and v = g on 𝜕D belongs to Hm+2(D) and the mapping taking (F, g) into v is
bounded from Hm(D) × Hm+ 32 (𝜕D) into Hm+2(D) for m = 0, 1, . . .

Proof. Wemakeuse of a regularity theoremon the Poisson equationwhich guarantees
that the unique solution v ∈ H1

0(D) of Δv = F forF ∈ H
m(D)belongs toHm+2(D) and that

the linearmapping taking F into v is bounded fromHm(D) intoHm+2(D) form = 0, 1, . . .
(see Theorem 1.3 in [41, p. 305]).

First, we show that this property can be extended to solutions v ∈ L2(D) that van-
ish on 𝜕D in the sense of the H−

1
2 (𝜕D) trace. For this, we observe from the definition of

the H−
1
2 (𝜕D) trace that for any harmonic function v ∈ L2(D) vanishing on the bound-

ary 𝜕D we have that ∫D vΔwdx = 0 for all w ∈ H2(D) with w = 0 on 𝜕D. Inserting the
solution w ∈ H1

0(D) of Δw = v which automatically belongs to H2(D) by the above the-
orem yields v = 0 in D. For a solution v ∈ L2(D) of Δv = F for F ∈ L2(D) with vanishing
H−

1
2 (𝜕D) trace on 𝜕D, we denote by ṽ the solution of Δṽ = F in H1

0(D) and apply the
uniqueness result for the difference v − ṽ to obtain that v = ṽ ∈ H1

0(D).
The statement of the lemma now follows from the observation that the unique

solution w ∈ H1(D) of the Laplace equation Δw = 0 with boundary condition w = g
on 𝜕D is in Hm+2(D) and that the mapping taking g into w is bounded from Hm+ 32 (𝜕D)
intoHm+2(D) as can be observed from the single-layer boundary integral equation ap-
proach.

Lemma 3.3. The linear operators

φ 󳨃→ 𝒮kA
−1
k φ − 𝒮knA

−1
knφ (3.11)

from H−
1
2 (𝜕D) into H2(D) and M(k; η) : H−

1
2 (𝜕D) → H

1
2 (𝜕D) are bounded.

Proof. By definition,M(k)φ is the normal derivative trace on the boundary 𝜕D of

u := 𝒮kA
−1
k φ − 𝒮knA

−1
knφ, φ ∈ H−

1
2 (𝜕D).

Then,

Δu = −k2𝒮kA
−1
k φ + k2n𝒮knA

−1
knφ
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is in L2(D) and themappingφ→ Δu is bounded fromH−
1
2 (𝜕D) into L2(D). Furthermore,

from

[𝒮kA
−1
k φ]|𝜕D + iηP

3 𝜕
𝜕ν

𝒮kA
−1
k φ = [Sk + iηP

3(I + K󸀠k)]A
−1
k φ = φ

we have that

u = g on 𝜕D

with

g = −iηP3 𝜕u
𝜕ν
.

Since φ 󳨃→ u is bounded from H−
1
2 (𝜕D) into L2(D), we have that φ 󳨃→ 𝜕νu is bounded

from H−
1
2 (𝜕D) to H−

3
2 (𝜕D) and our assumption on the operator P finally ensures that

the mapping φ→ g is bounded from H−
1
2 (𝜕D) into H

3
2 (𝜕D).

From this, Lemma 3.2 form = 0 implies the first statement and the second follows
by taking the normal trace.

Theorem 3.4. Let κ > 0 and κn := κ√n. Then

(κ2 − κ2n)M(iκ; i) : H
− 12 (𝜕D) → H

1
2 (𝜕D)

is coercive.

Proof. For u, v ∈ H2(D), we can transform

∫
D

v(Δ − κ2)(Δ − κ2n)u dx

− ∫
D

[ΔuΔv + (κ2 + κ2n) grad u ⋅ grad v + κ
2κ2nuv]dx

= ∫
D

(vΔΔu − ΔvΔu) dx − (κ2 + κ2n) ∫
D

(vΔu + grad u ⋅ grad v) dx

From this, by Green’s theorem we obtain

∫
D

v(Δ − κ2)(Δ − κ2n)u dx

− ∫
D

[ΔuΔv + (κ2 + κ2n) grad u ⋅ grad v + κ
2κ2nuv]dx

= ∫
𝜕D

(v 𝜕Δu
𝜕ν
− Δu𝜕v
𝜕ν
) ds − (κ2 + κ2n) ∫

𝜕D

v 𝜕u
𝜕ν

ds.

(3.12)
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For v = ū, the second domain integral is equivalent to the ‖ ⋅ ‖H2 norm as can be seen
with the aid of Green’s representation formula, that is,

∫
D

[|Δu|2 + (κ2 + κ2n)|grad u|
2 + κ2κ2n|u|

2] dx ≥ c‖u‖2H2(D) (3.13)

for all u ∈ H2(D) and some constant c > 0.
Now, for φ ∈ H−

1
2 (𝜕D) as above we define

u := 𝒮iκA
−1
iκ φ − 𝒮iκnA

−1
iκnφ

which belongs to H2(D) by Lemma 3.3. Then

(Δ − κ2)(Δ − κ2n)u = 0 (3.14)

and

Δu = κ2𝒮iκA
−1
iκ φ − κ

2
n𝒮iκnA

−1
iκnφ.

From this, as in the proof of Lemma 3.3, we obtain the boundary conditions

u + P3 𝜕u
𝜕ν
= 0 and Δu + P3 𝜕Δu

𝜕ν
= (κ2 − κ2n)φ on 𝜕D. (3.15)

We set v = ū in (3.12) and use (3.15) and the self-adjointness of P to find that

∫
D

[|Δu|2 + (κ2 + κ2n)|grad u|
2 + κ2κ2n|u|

2]dx

= (κ2 − κ2n) ∫
𝜕D

φ𝜕ū
𝜕ν

ds − (κ2 + κ2n) ∫
𝜕D

P
3
2
𝜕u
𝜕ν

P
3
2
𝜕ū
𝜕ν

ds.

Inserting 𝜕νu = M(iκ, i)φ and using the positive definiteness of P and (3.13), we get the
coercivity estimate

(κ2 − κ2n) ∫
𝜕D

φM(iκ)φds ≥ C̃‖u‖2H2(D) ≥ C‖φ‖
2
H−

1
2 (𝜕D)

(3.16)

for φ ∈ H−
1
2 (𝜕D) and some constants C̃, C > 0, where for the latter inequality we used

(3.15) and the definition of the trace of φ by duality.

Theorem 3.5. The operator

M(k; η) +
k2 − k2n
|k|2 − |kn|2

M(i|k|; i) : H−
1
2 (𝜕D) → H

1
2 (𝜕D)

is compact.
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Proof. For φ ∈ H−
1
2 (𝜕D), we define

u := 𝒮kA
−1
k φ − 𝒮knA

−1
knφ and ui := 𝒮i|k|A

−1
i|k|φ − 𝒮i|kn|A

−1
i|kn|φ

and let

U := u +
k2 − k2n
|k|2 − |kn|2

ui. (3.17)

Then, by Lemma 3.3 we have u,U ∈ H2(D) with the mappings φ 󳨃→ U and φ 󳨃→ u
bounded from H−

1
2 (𝜕D) into H2(D). Further, U satisfies the boundary conditions (see

(3.15))

U = −P3 𝜕U
𝜕ν
+ (1 − iη)P3 𝜕u

𝜕ν
(3.18)

and

ΔU = −P3 𝜕ΔU
𝜕ν
+ (1 − iη)P3 𝜕Δu

𝜕ν
(3.19)

on 𝜕D. (We note that the coefficient in the definition of U in (3.17) is chosen such that
we obtain (3.19).) By Lemma 3.3, the mappings φ 󳨃→ U and φ 󳨃→ u are bounded from
H−

1
2 (𝜕D) into H2(D). Therefore, in view of our assumption on P, the right-hand side g1

of (3.18) is in H
7
2 (𝜕D) with the mapping φ 󳨃→ g1 bounded from H−

1
2 (𝜕D) into H

7
2 (𝜕D).

The right-hand side g2 of (3.19) is in H
3
2 (𝜕D) with the mapping φ 󳨃→ g1 bounded from

H−
1
2 (𝜕D) into H

3
2 (𝜕D).

Furthermore, it is straightforward to check that

ΔΔU = F(u, ui) (3.20)

where
F(u, ui) := − k

2k2nu − (k
2 + k2n)Δu

−
k2 − k2n
|k|2 − |kn|2

[|k|2|kn|
2ui − (|k|

2 + |kn|
2)Δui]

(3.21)

belongs to L2(D) with the mapping φ→ F bounded from H−
1
2 (𝜕D) to L2(D).

Now, we can use Lemma 3.2 again. Applying it first for ΔU we obtain that ΔU ∈
H2(D) with the mapping φ 󳨃→ ΔU bounded from H−

1
2 (𝜕D) into H2(D). Applying the

lemma then for U shows that U ∈ H4(D) with the mapping φ 󳨃→ U bounded from
H−

1
2 (𝜕D) into H4(D). Therefore, the mapping φ 󳨃→ 𝜕νU is bounded from H−

1
2 (𝜕D) into

H
5
2 (𝜕D). Now, in view of

𝜕U
𝜕ν
= M(k; η) +

k2 − k2n
|k|2 − |kn|2

M(i|k|; i)

the statement of the theorem follows from the compact embedding of H
5
2 (𝜕D) into

H
1
2 (𝜕D).
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Noting that M(k; η) is analytic in k since the kernels of Sk and K󸀠k are analytic in
k, now Theorems 3.4 and 3.5 imply the following final result. From this, in particular,
we can reestablish the discreteness of the set of transmission eigenvalues for the spe-
cial case of a constant refractive index and the finite multiplicity of the transmission
eigenvalues.

Theorem 3.6. M(k; η) : H−
1
2 (𝜕D) → H

1
2 (𝜕D) is a Fredholm operator with index zero and

analytic in {k ∈ ℂ : Re k > 0 and Im k ≥ 0}.

Cakoni and Kress [12] also used their boundary integral formulations for actual
computations of transmission eigenvalueswith the aid of the attractive new algorithm
for solving nonlinear eigenvalue problems for large sized matrices A that are analytic
with respect to the eigenvalue parameter as proposed by Beyn [2]. So far, in the litera-
ture, themajority of numericalmethodswere based onfinite elementmethods applied
after a transformation of the homogeneous interior transmission problem to a gener-
alized eigenvalue problem for a fourth-order partial differential equation. Boundary
integral equations had been employed for the computation of transmission eigenval-
ues only by Cossonnière [18] and Kleefeld [30] using a two-by-two system of boundary
integral equations proposed by Cossonnière and Haddar [19]. Comparing the compu-
tational costs for Beyn’s algorithmas applied to Cossonnière andHaddar’s two-by-two
system, it can be shown that the approach presented here reduces the costs in the ap-
plication of Beyn’s algorithm by a about 50 percent. For details of the implementation
and numerical results, we refer to [12] and for a very recent extension of this approach
to theMaxwell equations including numerical results for transmission eigenvalueswe
refer to [10].
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9 The time-harmonic Maxwell equations
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in polyhedral domains

Abstract: In this paper,wefirst develop a variational formulation of the time-harmonic
Maxwell equations with impedance boundary conditions in polyhedral domains sim-
ilar to the one for domains with smooth boundary proposed in Section 4.5.d of Costa-
bel et al., Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I:
Smooth Domains, 2010. It turns out that the variational space is embedded in H1 as
soon as the domain is convex. In such a case, the existence of a weak solution follows
by a compact perturbation argument. As the associated boundary value problem is an
elliptic system, standard shift theorem from Dauge, Elliptic Boundary Value Problems
on Corner Domains – Smoothness and Asymptotics of Solutions, Springer, 1988 can be
applied if the corner and edge singularities are explicitly known.We therefore describe
such singularities, by adapting the general strategy from Costabel and Dauge, Arch.
Ration. Mech. Anal., 151 (2000), 221–276. Finally in order to perform a wavenumber
explicit error analysis of our problem, a stability estimate is mandatory (see Melenk
and Sauter, Math. Comput., 79 (2010), 1871–1914 and Melenk and Sauter, SIAM J. Nu-
mer. Anal., 49 (2011), 1210–1243 for the Helmholtz equation). We then prove such an
estimate for some particular configurations. We end up with the study of a Galerkin
(h-version) finite element method using Lagrange elements and give wave number ex-
plicit error bounds in the asymptotic ranges. Some numerical tests that illustrate our
theoretical results are also presented.
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1 Introduction
In this paper, we are interested in the time-harmonic Maxwell equations for electro-
magnetic waves in a bounded, simply connected polyhedral domain Ω of ℝ3 with a
Lipschitz boundary (simply called polyhedron later on) filled by an isotropic homoge-
neous material with an absorbing boundary condition (also called Leontovich condi-
tion) that takes the form

{
curlE − ikH = 0 and curlH + ikE = J in Ω,

H × n − λimpEt = 0 on 𝜕Ω.
(1.1)

Here, E is the electric part andH is the magnetic part of the electromagnetic field, and
the constant k corresponds to the wave number or frequency and is, for the moment,
supposed to be non-negative. The right-hand side J is the current density which – in
the absence of free electric charges – is divergence-free, namely

div J = 0 in Ω.

As usual, n is the unit vector normal to 𝜕Ω pointing outside Ω and Et = E − (E ⋅ n)n is
the tangential component of E. The impedance λimp is a smooth function1 defined on
𝜕Ω satisfying

λimp : 𝜕Ω→ ℝ, such that ∀x ∈ 𝜕Ω, λimp(x) > 0; (1.2)

see, for instance, [35, 34]. The case λimp ≡ 1 is also called the Silver–Müller boundary
condition [3].

In practice, absorbing boundary conditions are used to reduce an unbounded do-
main of calculations into a bounded one; see [35, 34].

As variational formulation, a first attempt is to eliminate H by the relation H =
1
ik curlE, that transforms the impedance condition in the form

(curlE) × n − ikλimpEt = 0 on 𝜕Ω.

Unfortunately, such a boundary condition has no meaning in H(curl,Ω), hence a so-
lution is to introduce the subspace

Himp(Ω) = {u ∈ H(curl;Ω) : γ0ut ∈ L
2(𝜕Ω)}.

Then eliminating H in the second identity of (1.1), and multiplying by a test function,
we arrive at

∫
Ω

(curlE ⋅ curl Ē󸀠 − k2E ⋅ Ē󸀠) dx − ik ∫
𝜕Ω

λimpEt ⋅ Ē
󸀠
t dσ (1.3)

= ik ∫
Ω

J ⋅ Ē󸀠 dx, ∀E󸀠 ∈ Himp(Ω).

1 λimp ∈ C0,1(𝜕Ω) is sufficient.
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Error analyses of (1.3) using Nédélec elements are available in [34, 19], but no ex-
plicit dependence with respect to k is proved. Moreover, there is no hope to get eas-
ily regularity results of the solution by applying the theory of elliptic boundary value
problems to the system associated with (1.3) because it is not elliptic (see [14, Sec-
tion 4.5.d]).

A second attempt, proposed in [14, Section 4.5.d] for smooth boundaries and in-
spired from [35, Section 5.4.3], is to keep the full electromagnetic field and use the
variational space

V = {(E,H) ∈ (H(curl,Ω) ∩H(div,Ω))2 : H × n = λimpEt on 𝜕Ω}, (1.4)

considering the impedance condition in (1.1) as an essential boundary condition.
Hence the proposed variational formulation is: Find (E,H) ∈ V such that

ak,s((E,H), (E
󸀠,H󸀠)) = ∫

Ω

(ikJ ⋅ Ē󸀠 + J ⋅ curl H̄󸀠) dx, ∀(E󸀠,H󸀠) ∈ V, (1.5)

with the choice

ak,s((E,H), (E
󸀠,H󸀠)) = ak,s(E,E

󸀠) + ak,s(H,H
󸀠) − ik ∫

𝜕Ω

(λimpEt ⋅ Ē
󸀠
t +

1
λimp

Ht ⋅ H̄
󸀠
t) dσ,

with a positive real parameter s that may depend on k but is assumed to be in a fixed
interval [s0, s1] with 0 < s0 ≤ s1 < ∞ independent of k (see Section 5 below for more
details) and

ak,s(u, v) = ∫
Ω

(curlu ⋅ curl v̄ + sdivudiv v̄ − k2u ⋅ v̄) dx.

The natural norm ‖⋅‖k of V associated with problem (1.5) is defined by

󵄩󵄩󵄩󵄩(E,H)
󵄩󵄩󵄩󵄩
2
k = ‖curlE‖

2
L2(Ω) + ‖divE‖

2
L2(Ω) + k

2‖E‖2L2(Ω)
+ ‖curlH‖2L2(Ω) + ‖divH‖

2
L2(Ω) + k

2‖H‖2L2(Ω).

This new formulation (1.5) has the advantage that its associated boundary value
problem is an elliptic system (see [14, Section 4.5.d]), hence standard shift regularity
results can be used. Nevertheless, this problem is still difficult to solve numerically
as the wave number k is large, because oscillatory solutions exist and because of the
so-calledpollution effect [26, 27]:when thenumber ofwavelengths inside the propaga-
tion domain is important, the numerical solution is only meaningful under restrictive
conditions on the mesh size. This effect is manifested by a gap between the error of
the best approximation the finite element scheme and the error of the numerical so-
lution that is actually produced. This gap becomes more important as the frequency
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increases, unless additional discretization points per wavelength or higher order ele-
ments are employed. This problem, typical for wave-type equations, is also related to
a lack of stability of the finite element scheme, since the associated sesquilinear forms
are not coercive. Consequently, the quasi-optimality of the finite element solution in
the energy norm is not guaranteed for arbitrary meshes, but is achieved only in an
asymptotic range, i. e., for small enough mesh sizes, that depends on the frequency
and the discretization order.

The behaviour of the asymptotic range with respect to the frequency, the mesh
size, and the discretization order is the key to understand the efficiency of a finite el-
ement method. For the Helmholtz equation in domain with analytic boundaries, the
asymptotic range for hp-finite element methods has been characterized in a sequence
of papers by J.M. Melenk and collaborators [17, 32, 33]. For less regular boundaries,
similar asymptotic ranges can be achieved using an expansion of the solution in pow-
ers of k [10].

The goal of the present paper is therefore to perform a similar analysis for the
second variational problem of the time-harmonic Maxwell equations with impedance
boundary conditions set on polyhedral domains. In such a situation, several difficul-
ties appear: The first one is to show the well-posedness of the problem that requires to
show that the variational space V is compactly embedded into L2(Ω)6. In the smooth
case (see [3, 14]), this is based on the hidden regularity of V, namely on the embed-
ding of V into H1(Ω)6, hence we show that a similar embedding is valid for the largest
possible class of polyhedra, namely this embedding holds if and only if Ω is convex.
Secondly, error estimates are usually based on regularity results of the solution of the
analyzedproblem. Since our domain is not smooth,we thenneed to determine the cor-
ner and edge singularities of our system. This is here done by adapting the techniques
from [16, 13]. The third obstacle is to prove the stability estimate for problem (1.5) and
its adjoint one. For problem (1.3), the difficulty comes from the lack of stability esti-
mate of the adjoint problem with a non-divergence-free right-hand side; but here by
an appropriate choice of the parameter s, this difficulty can be avoided, at least for
some particular domains.With these key results in hand, we are finally able to study a
Galerkin h-finite element method using Lagrange elements and to give wave number
explicit error bounds in an asymptotic range, characterized by the stability estimate
and the minimal regularity of the solution of the adjoint problem. Since this minimal
regularity could be quite poor, this asymptotic range could be quite strong for quasi-
uniform meshes, hence in the absence of edge singularities, we improve it by using
adapted meshes, namely meshes refined near the corners of the domain.

Our paper is organized as follows: The hidden regularity of the variational space
is proved in Section 2. In Section 3, the well-posedness of our variational problem
is proved and some useful properties are given. In Section 4, we describe the edge
and corner singularities of our problem. The next Section 5 is devoted to the proof of
the stability estimate. Finally, in Section 6 some h-finite element approximations are
studied and some numerical tests that confirm our theoretical analysis are presented.
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Let us finish this section with some notation used in the remainder of the paper.
For a bounded domain D, the usual norm and semi-norm of H t(D) (t ≥ 0) are denoted
by ‖ ⋅ ‖t,D and | ⋅ |t,D, respectively. For t = 0, we will drop the index t. For shortness,
we further writeHt(D) = H t(D)3. Here and below, γ0 is a generic notation for the trace
operator fromH t(𝒪) toH t− 12 (𝜕𝒪), for all t > 1

2 . Furthermore, the notation A ≲ B (resp.,
A ≳ B) means the existence of a positive constant C1 (resp. C2), which is independent
of A, B, the wave number k, the parameter s and any mesh size h such that A ≤ C1B
(resp., A ≥ C2B). The notation A ∼ Bmeans that A ≲ B and A ≳ B hold simultaneously.

2 Hidden regularity of the variational space
If 𝜕Ω is of class 𝒞2, it is well known that the continuous embedding

V 󳨅→ (H1(Ω))2 (2.1)

holds, which means that V ⊂ (H1(Ω))2 with the estimate

󵄩󵄩󵄩󵄩(E,H)
󵄩󵄩󵄩󵄩H1(Ω)2 ≲ ‖curlE‖L2(Ω) + ‖divE‖L2(Ω) + ‖E‖L2(Ω) (2.2)

+ ‖curlH‖L2(Ω) + ‖divH‖L2(Ω) + ‖H‖L2(Ω), ∀(E,H) ∈ V.

A proof of this result is available in [3] for a smooth boundary and in Lemma 4.5.5
of [14] for a 𝒞2 boundary. In both cases, the three main steps of the proof are:
1. The continuity of the trace operator

H(curl,Ω) → H−1/2(div; 𝜕Ω) : U→ U × n,

proved in [38] (see also [35, Theorem 5.4.2]).
2. The elliptic regularity of the Laplace–Beltrami operator ΔLB = divt ∇t on a smooth

manifoldwithout boundary that implies that ΔLB−I is an isomorphism fromH
3
2 (Γ)

into H−
1
2 (Γ); see, for instance, [29].

3. The operator

H2(Ω) → L2(Ω) × H
3
2 (Γ) : u→ (−Δu, γ0u),

is an isomorphism; see again [29].

If we want to extend this result to polyhedra, we then need to check if the three main
points before are available. This is indeed the case, since point 1 can be found in [6],
point 2 is proved in [8, Theorem 8] under a geometrical assumption (see (2.3) below),
while point 3 is a consequence of [16].

To be more precise, let us first introduce the following notation (see [6] or [36,
Chapter 2]): as Ω is a polyhedron, its boundary Γ is a finite union of (open and disjoint)
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faces Γj, j = 1, . . . ,N such that Γ = ⋃Nj=1Γ̄j. As usual, n is the unit outward normal vector
to Ω andwewill set ni = n|Γi its restriction to Γi. When Γi and Γj are two adjacent faces,
we denote by eij their common (open) edge and by τij a unit vector parallel to eij. By
convention, we assume that τij = τji. We further set nij = τij × ni. Note that the pair
(nij, τij) is an orthonormal basis of the plane generated by Γi and consequently nij is a
normal vector to Γi along eij. For shortness, we introduce the set

ℰ = {(i, j) : i < j and such that Γ̄i ∩ Γ̄j = ēij}.

We denote by 𝒞 the set of vertices of Γ (that are the vertices of Ω). Furthermore, for any
c ∈ 𝒞, we denote by Gc the intersection between the infinite three-dimensional cone
Ξc that coincides with Ω in a neighbourhood of c and the unit sphere centred at c and
by ωc the length of (in radians) of the boundary of Gc.

We first introduce the set

L2t (Γ) = {w ∈ L
2(Γ) : w ⋅ n = 0 on Γ}.

For a function v ∈ L2(Γ), we denote by vj its restriction to Γj. As Γ is Lipschitz, we
can define H1(Γ) via local charts, but we can notice that

H1(Γ) = {u ∈ L2(Γ) : uj ∈ H
1(Γj), ∀j = 1, . . . ,N satisfying

γ0ui = γ0uj on eij, ∀(i, j) ∈ ℰ}.

As Γ is only Lipschitz, we cannot directly define H t(Γ) for t > 1, but following [6]
(or [8]), we define

H
3
2 (Γ) = {γ0u : u ∈ H

2(Ω)},

with

‖w‖ 3
2 ,Γ
= inf

u∈H2(Ω):γ0u=w
‖u‖2,Ω.

Let us notice that according to Theorem 3.4 of [6], we have

H
3
2 (Γ) = {w ∈ H1(Γ) : ∇tw ∈ H

1
2
‖ (Γ)},

with

‖w‖ 3
2 ,Γ
∼ ‖w‖1,Γ + ‖∇tw‖‖, 12 ,Γ, ∀w ∈ H

3
2 (Γ),

where ∇tu is the tangential gradient of u and H
1
2
‖ (Γ) is defined by

H
1
2
‖ (Γ) = {u ∈ L

2
t (Γ) : ui ∈ (H

1
2 (Γi))

3, ∀i = 1, . . . ,N , and𝒩 ‖ij (u) < ∞, ∀(i, j) ∈ ℰ},
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where

𝒩 ‖ij (u) = ∫
Γi

∫
Γj

|ui(x) ⋅ τij − uj(y) ⋅ τij|2

|x − y|3
dσ(x)dσ(y),

and finally

‖u‖2‖, 12 ,Γ
=

N
∑
i=1
‖ui‖

2
1
2 ,Γi
+ ∑
(i,j)∈ℰ

𝒩 ‖ij (u), ∀u ∈ H
1
2
‖ (Γ).

For further uses, we also introduce

H
1
2
⊥(Γ) = {u ∈ L

2
t (Γ) : ui ∈ (H

1
2 (Γi))

3, ∀i = 1, . . . ,N , and𝒩⊥ij (u) < ∞, ∀(i, j) ∈ ℰ},

where

𝒩⊥ij (u) = ∫
Γi

∫
Γj

|ui(x) ⋅ nij − uj(y) ⋅ nji|2

|x − y|3
dσ(x)dσ(y),

and finally

‖u‖2⊥, 12 ,Γ
=

N
∑
i=1
‖ui‖

2
1
2 ,Γi
+ ∑
(i,j)∈ℰ

𝒩⊥ij (u), ∀u ∈ H
1
2
⊥(Γ).

Let us also define (cf. [6])H−
1
2
‖ (Γ) as the dual ofH

1
2
‖ (Γ) (with pivot space L

2
t (Γ)) and

introduce the tangential divergence divt : H
− 12
‖ (Γ) → H−

3
2 (Γ) as the adjoint of −∇t,

namely

⟨divt u,φ⟩H− 32 (Γ)−H 3
2 (Γ)
= −⟨u, ∇tφ⟩

H
− 12
‖ (Γ)−H

1
2
‖ (Γ)
, ∀u ∈ H−

1
2
‖ (Γ),φ ∈ H

3
2 (Γ).

Finally, let us define

H−1/2‖ (div; Γ) = {w ∈ H
−1/2
‖ (Γ) : divt w ∈ H

−1/2(Γ)},

and recall the next result proved in [6, Theorem 3.9]:

Theorem 2.1. [[9, Theorem 4.1]] The trace mapping

H(curl,Ω) → H−1/2‖ (div; Γ) : U→ U × n,

is linear, continuous and surjective.

Theorem 2.2. If Ω is a polyhedron satisfying

ωc < 4π, ∀c ∈ 𝒞, (2.3)
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then for any h ∈ H−
1
2 (Γ), there exists a unique u ∈ H

3
2 (Γ) such that

u − divt ∇tu = h in H
− 12 (Γ), (2.4)

with

‖u‖ 3
2 ,Γ
≲ ‖h‖− 12 ,Γ. (2.5)

Proof. Fix h ∈ H−
1
2 (Γ). Then there exists a unique solution u ∈ H1(Γ) of

∫
Γ

(∇tu ⋅ ∇t v̄ + uv̄) dσ(x) = ⟨h, v⟩, ∀v ∈ H
1(Γ).

This solution clearly satisfies (2.4). Furthermore, owing to our assumption (2.3), The-
orem 8 from [8] (with t = 1

2 , valid since 2π
ωc
> 1

2 for all corners c) guarantees that

u ∈ H
3
2 (Γ) since h − u belongs to H−

1
2 (Γ).

To obtain the estimate (2.5), we take advantage of the closed graph theorem. In-
deed introduce the mapping

T : {v ∈ H
3
2 (Γ) : divt ∇tv ∈ H

− 12 (Γ)} → H−
1
2 (Γ) : u→ u − divt ∇tu,

that is well-defined and continuous. Since the above arguments show that it is bijec-
tive, its inverse is also continuous, which yields

‖u‖ 3
2 ,Γ
≲ ‖u − divt ∇tu‖− 12 ,Γ,

and is exactly (2.5).

Remark 2.3. Any convex polyhedron satisfies (2.3), since by [43, problem 1.10.1], one
always have ωc < 2π, for all c ∈ 𝒞. But the class of polyhedra satisfying (2.3) is quite
larger since the Fichera corner and any prism D × I, where D is any polygon with a
Lipschitz boundary and I is an interval that satisfies (2.3).

Theorem 2.4. IfΩ is a convex polyhedron, then the continuous embedding (2.1) remains
valid.

Proof. The proof follows the one of Lemma 4.5.5 of [14] with the necessary adaptation.
Let (E,H) ∈ V. Let us prove that E ∈ H1(Ω). The proof for H is similar.

By Theorems 2.17 and 3.12 of [1], there exists a vector potentialw ∈ HT (Ω) = {w ∈
H1(Ω)3 : w ⋅ n = 0 on Γ} such that divw = 0 and

curlw = curlE in Ω,

and satisfying

‖w‖1,Ω ≲ ‖curlE‖Ω. (2.6)
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 293

Thus, there exists a potential φ ∈ H1(Ω) such that

∇φ = E −w, (2.7)

with (by assuming that ∫Ω φdx = 0)

‖φ‖1,Ω ≲ ‖E‖Ω + ‖w‖Ω ≲ ‖E‖H(curl,Ω).

Therefore, as a consequence of divE ∈ L2(Ω) we find that

div∇φ ∈ L2(Ω), (2.8)

with

‖div∇φ‖Ω ≲ ‖divE‖Ω. (2.9)

By (2.7), the trace Et coincides withwt + ∇tφ, i. e.,

Et = wt + ∇tφ on Γ.

AsHbelongs toH(curl,Ω), by Theorem2.1 its traceH×nbelongs toH−1/2‖ (div; Γ). By the
impedance conditionH×n = λimpEt,wededuce that λimpEt alsobelongs toH

−1/2
‖ (div; Γ)

with

‖λimpEt‖H−1/2‖ (div;Γ) ≲ ‖H‖H(curl,Ω). (2.10)

Likewise, asw ⋅n = 0 andw ∈ H
1
2 (Γ), let us show thatwt also belongsH

−1/2
‖ (div; Γ)

with

‖wt‖H−1/2‖ (div;Γ) ≲ ‖curlE‖Ω. (2.11)

Indeed the above properties imply that

wt = w ∈ H
1/2
⊥ (Γ). (2.12)

Namely to show that property we simply need to show that for any (i, j) ∈ ℰ, one has

∫
Γi

∫
Γj

|wi(x) ⋅ nij −wj(y) ⋅ nji|2

|x − y|3
dσ(x)dσ(y) ≲ ‖w‖2

H
1
2 (Γ)
. (2.13)

But for such a pair, nij is a linear combination of ni and nj, and consequently,

∫
Γi

∫
Γj

|wi(x)| ⋅ n2ij
|x − y|3

dσ(x)dσ(y) ≲ ∫
Γi

∫
Γj

|wi(x) ⋅ nj|2

|x − y|3
dσ(x)dσ(y)
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294 | S. Nicaise and J. Tomezyk

= ∫
Γi

∫
Γj

|wi(x) ⋅ nj −wj(y) ⋅ nj|2

|x − y|3
dσ(x)dσ(y)

sincewi ⋅ ni = 0 on Γi andwj ⋅ nj = 0 on Γj. This shows that

∫
Γi

∫
Γj

|wi(x) ⋅ nij|2

|x − y|3
dσ(x)dσ(y) ≲ ∫

Γi

∫
Γj

|wi(x) −wj(y)|2

|x − y|3
dσ(x)dσ(y) ≲ ‖w‖2

H
1
2 (Γ)
,

as well as (by exchanging the role of Γi and Γj)

∫
Γi

∫
Γj

|wj ⋅ nji(y)|2

|x − y|3
dσ(x)dσ(y) ≲ ‖w‖2

H
1
2 (Γ)
.

Hence (2.13) holds. As mentioned in [7, p. 39], Theorem 2.1, a density argument and a
duality argument lead to the continuity of divt fromH

1
2
⊥(Γ) to H

− 12 (Γ), and by (2.12) we
deduce that

divt wt = divt w ∈ H
− 12 (Γ).

Altogether, we finally obtain that λimp∇tφ belongs toH−1/2‖ (div; Γ) and since λimp is
smooth and never 0 on Γ, we conclude that

divt ∇tφ ∈ H
− 12 (Γ),

and since φ is in H−
1
2 (Γ),

φ − divt ∇tφ ∈ H
− 12 (Γ),

with

‖φ − divt ∇tφ‖− 12 ,Γ ≲ ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω). (2.14)

By Theorem 2.2, we deduce that

φ|Γ ∈ H
3
2 (Γ), (2.15)

with

‖φ‖ 3
2 ,Γ
≲ ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω). (2.16)

Now, using the elliptic regularity for φ solution of the Dirichlet problem (2.8)–(2.15) in
Ω (see [16, Corollary 18.19]), we find φ ∈ H2(Ω) with

‖φ‖2,Ω ≲ ‖div∇φ‖Ω + ‖φ‖ 3
2 ,Γ

(2.17)
≲ ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω) + ‖divE‖Ω.
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 295

Coming back to (2.7), we have obtained that E ∈ H1(Ω) with

‖E‖1,Ω ≤ ‖w‖1,Ω + ‖∇φ‖1,Ω.

Hence taking into account (2.6) and (2.17), we arrive at the estimate

‖E‖1,Ω ≲ ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω) + ‖divE‖Ω.

As said before, exchanging the role of E and H we can show that H ∈ H1(Ω) with

‖H‖1,Ω ≲ ‖H‖H(curl;Ω) + ‖E‖H(curl;Ω) + ‖divH‖Ω.

The proof is then completed.

It turns out that the convexity condition is a necessary and sufficient condition
that guarantees the continuous embedding (2.1), namely we have the following.

Corollary 2.5. If Ω is a polyhedron. Then Ω is convex if and only if the continuous em-
bedding (2.1) is valid.

Proof. It suffices to prove that the convexity condition is a necessary condition. For
that purpose, we use a contradiction argument. Assume that Ω is not convex, then by
[16] (see also [13, Section 1]), there exists a (singular) function φ ∈ H1

0(Ω) \H
2(Ω) such

that

Δφ ∈ L2(Ω).

In that way, the pair (∇φ, ∇φ) belongs to V, but that cannot be in H1(Ω)2 since φ ̸∈
H2(Ω). This proves that (2.1) is not valid.

3 Well-posedness
Let us start with a coerciveness result for the sesquilinear form a.

Theorem 3.1. If Ω is a convex polyhedron, then the sesquilinear form ak,s(⋅, ⋅) is weakly
coercive on V, in the sense that there exists c > 0 independent of k and s such that

ℜak,s((E,H), (E,H)) ≥ c(‖E‖
2
1,Ω + ‖H‖

2
1,Ω) − (k

2 + 1)(‖E‖2Ω + ‖H‖
2
Ω), ∀(E,H) ∈ V. (3.1)

Proof. Direct consequence of Theorem 2.4, recalling our assumption on λimp to be real
valued.

Remark 3.2. Under the assumptions of the previous Theorem, for k ≥ 1, we have

󵄩󵄩󵄩󵄩(E,H)
󵄩󵄩󵄩󵄩k ≳
󵄩󵄩󵄩󵄩(E,H)
󵄩󵄩󵄩󵄩H1(Ω)2 .
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296 | S. Nicaise and J. Tomezyk

The existence of a weak solution to (1.5) for k > 0 directly follows from this coer-
civeness and the next uniqueness result for problem (1.1).

Lemma 3.3. Let (E,H) ∈ V be a solution of

{
curlE − ikH = 0 and curlH + ikE = 0 in Ω,

H × n − λimpEt = 0 on 𝜕Ω.
(3.2)

Assume that E and H are divergence-free. Then (E,H) = (0,0).

Proof. By Green’s formula (see [20, Theorem I.2.11]), we have

∫
Ω

(|curlE|2 + |curlH|2) dx = ik ∫
Ω

(curlH ⋅ Ē − curlE ⋅ H̄) dx

= ik ∫
Ω

(H ⋅ curl Ē − curlE ⋅ H̄) dx − ik ∫
𝜕Ω

(H × n ⋅ Ē) dσ(x).

Hence using the impedance boundary condition in (3.2), we find that

∫
Ω

(|curlE|2 + |curlH|2) dx = ik ∫
Ω

(H ⋅ curl Ē − curlE ⋅ H̄) dx − ik ∫
𝜕Ω

λimp|Et |
2 dσ(x).

Taking the imaginary part of this identity, we find that

k ∫
𝜕Ω

λimp|Et |
2 dσ(x) = 0.

Hence if k > 0, we deduce that

Et = 0 on 𝜕Ω,

as λimp is positive on 𝜕Ω. Again by the impedance boundary condition,H also satisfies

H × n = 0 on 𝜕Ω.

This means that we can extend E and H by zero outside Ω and that these extensions
belong to H(curl, ℝ3). Owing to Theorem 4.13 of [34], we conclude that (E,H) = (0,0).

For k = 0, we notice that (3.2) implies that E and H are curl-free, hence as Ω is
supposed to be simply connected, by Theorem I.2.6 of [20], there exist ΦE ,ΦH ∈ H1(Ω)
such that

E = ∇ΦE , H = ∇ΦH .

Due to the H1 regularity of E and H, ΦE and ΦH both belong to H2(Ω). Now using the
impedance boundary condition, we have

divt(λimp∇tΦE) = divt(∇ΦH × n) on 𝜕Ω,
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 297

and by the standard property

divt(v × n) = curl v ⋅ n,

valid for all v ∈ H(curl,Ω) (see [6, p. 23]), we deduce that

divt(λimp∇tΦE) = 0 on 𝜕Ω.

By its definition (see [6, Definition 3.3]), this property implies that

∫
𝜕Ω

|λimp∇tΦE |
2 dσ(x) = 0.

Consequently, ΦE is constant on the whole boundary. As E is divergence-free, ΦE is
harmonic in Ω and consequently it is constant on the whole Ω, which guarantees that
E = 0.With this property and recalling the impedance boundary condition,wededuce
that ∇tΦH = 0 on the whole boundary. As H is also divergence-free, ΦH is harmonic
in Ω and we conclude that H = 0.

Our next goal is to prove an existence and uniqueness result to problem (1.5), that
can be formulated in the more general form

ak,s((E,H); (E
󸀠,H󸀠)) = ⟨F; (E󸀠,H󸀠)⟩, ∀(E󸀠,H󸀠) ∈ V, (3.3)

with F ∈ V󸀠. First, we need to show extra regularities of the divergence of any solution
(E,H) of this problemunder the assumption thatFbelongs toL2(Ω)×L2(Ω) in the sense
that

⟨F; (E󸀠,H󸀠)⟩ = ∫
Ω

(f1 ⋅ Ē
󸀠 + f2 ⋅ H̄

󸀠) dx, (3.4)

with f1, f2 ∈ L2(Ω).

Lemma 3.4. If the impedance function λimp satisfies (1.2) and −k2/s is not an eigenvalue
of the Laplace operator Δ with Dirichlet boundary conditions in Ω, then for all f1, f2 ∈
L2(Ω), any solution (E,H) ∈ V to the problem

ak,s((E,H); (E
󸀠,H󸀠)) = ∫

Ω

(f1 ⋅ Ē
󸀠 + f2 ⋅ H̄

󸀠) dx, ∀(E󸀠,H󸀠) ∈ V, (3.5)

satisfies

divE,divH ∈ H1
0(Ω),

with

divE = −(sΔ + k2)−1 div f1, divH = −(sΔ + k2)−1 div f2.
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Proof. We basically follow the proof of Lemma 4.5.8 of [14] with a slight adaptation
due to the change of right-hand side in (3.5) with respect to [14]. In (3.5), we first take
test functions in the form (∇φ,0) with an arbitrary φ ∈ H2(Ω) ∩ H1

0(Ω). This directly
implies that (∇φ,0) belongs to V and, therefore, we get

s∫
Ω

divE div∇φ̄ dx − k2 ∫
Ω

E ⋅ ∇φ̄ dx = ∫
Ω

f1 ⋅ ∇φ̄ dx.

Consequently, one deduces that

∫
Ω

divE (sΔ + k2)φdx = −⟨div f1;φ⟩, ∀φ ∈ H
2(Ω) ∩ H1

0(Ω). (3.6)

On the other hand, as −k2/s is not an eigenvalue of the Laplace operator Δ with Dirich-
let boundary conditions in H2(Ω), there exists a unique solution q ∈ H1

0(Ω) to

(sΔ + k2)q = −div f1.

Taking the duality with φ ∈ H2(Ω) ∩ H1
0(Ω), after an integration by parts, we obtain

equivalently that

∫
Ω

q (sΔ + k2)φdx = −⟨div f1;φ⟩, ∀φ ∈ H
2(Ω) ∩ H1

0(Ω).

Comparing this identity with (3.6), we find that

∫
Ω

(divE − q) (sΔ + k2)φdx = 0, ∀φ ∈ H2(Ω) ∩ H1
0(Ω),

and since the range of (sΔ + ω2) is the whole L2(Ω), one gets that divE = q, as an-
nounced.

The result for H follows in the same way by choosing test functions in the form
(0, ∇φ̄).

We are now ready to prove an existence and uniqueness result to (3.3).

Theorem 3.5. If Ω is a convex polyhedron, the impedance function λimp satisfies (1.2)
and −k2/s is not an eigenvalue of the Laplace operator Δwith Dirichlet boundary condi-
tions in Ω, then for any F ∈ V󸀠, the problem (3.3) has a unique solution (E,H) ∈ V.

Proof. We associate to problem (3.3) the continuous operator Ak,s from V into its
dual by

(Ak,su)(v) = ak,s(u, v), ∀u, v ∈ V.

Now according to Theorem 3.1, the sesquilinear form

ak,s((E,H), (E,H)) + (k
2 + 1)(‖E‖2L2(Ω) + ‖H‖

2
L2(Ω)),
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 299

is strongly coercive in V and by Lax-Milgram lemma, the operator Ak,s + (k2 + 1)𝕀 is an
isomorphism V into its dual. As V is compactly embedded into L2(Ω)6, the operator
Ak,s is a Fredholm operator of index zero. Hence uniqueness implies existence and
uniqueness.

So let us fix (E,H) ∈ V be a solution of (3.3) with F = 0. Then by Lemma 4.5.9 of
[14] (valid due to Lemma 3.3), we find that (E,H) is solution of the original problem
(1.1) with J = 0, namely (3.2). We further notice that Lemma 3.4 guarantees that E and
H are divergence-free (only useful for k = 0). As Lemma 3.3 yields that (E,H) = (0,0),
we conclude an existence and uniqueness result.

As already mentioned, for the particular choice

⟨F; (E󸀠,H󸀠)⟩ = ∫
Ω

(iωJ ⋅ Ē󸀠 + J ⋅ curl H̄󸀠) dx,

with J ∈ L2(Ω), problem (3.3) reduces to (1.5). Hence under the assumptions of The-
orem 3.5 and if J ∈ L2(Ω), this last problem has a unique solution (E,H) ∈ V, that
owing to Lemma 4.5.9 of [14] is moreover solution of the original problem (1.1) under
the additional assumption that J ∈ H(div;Ω).

Now under the assumptions of Theorem 3.5, given two functions f1, f2 ∈ L2(Ω), we
denote by (E,H) = 𝕊k,s(f1, f2), the unique solution of (3.3) with F given by (3.4) or equiv-
alently solution of (3.5). Note that the general considerations from [14, Section 4.5.d]
implies that (E,H) is actually the solution of the boundary value elliptic system

{{{{{{{{{{{{
{{{{{{{{{{{{
{

Lk,s(E) = f1
Lk,s(H) = f2

} in Ω

divE= 0
divH= 0

T(E,H) = 0
Bk(E,H) = 0

}}}}}}
}}}}}}
}

on 𝜕Ω,
(3.7)

where

Lk,s(u) = curl curlu − s∇divu − k
2u,

T(E,H) = H × n − λimpEt ,

Bk(E,H) = (curlH) × n +
1

λimp
(curlE)t −

ik
λimp

Ht + ikE × n.

Remark 3.6. As suggested by its definition, under the assumptions of Theorem 3.5,
𝕊k,s(f1, f2) depends on s, but if the data f1 and f2 are divergence-free, then as Lemma 3.4
guarantees that each component of 𝕊k,s(f1, f2) is divergence-free, we deduce that

𝕊k,s(f1, f2) = 𝕊k,s󸀠 (f1, f2),
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for all s󸀠 > 0 such that −k2/s󸀠 is not an eigenvalue of the Laplace operator Δ with
Dirichlet boundary conditions in Ω. In other words, in that case 𝕊k,s(f1, f2) does not
depend on s and hence the parameter s can be chosen independent of k. This is of
particular interest for practical applications (see problem (1.5)), since the data f1 and
f2 are divergence-free. The interest of considering non-divergence-free right-hand side
will appear in the error analysis of our numerical schemes; see Remark 6.6.

Let us end up this section with an extra regularity result of the curl of each com-
ponent of 𝕊k,s(f1, f2) if f1, f2 ∈ L2(Ω) are divergence-free.

Lemma 3.7. Under the assumptions of Theorem 3.5, let (E,H) = 𝕊k,s(f1, f2), with f1, f2 ∈
L2(Ω) such that

div f1 = div f1 = 0.

Then (U,W) = (curlE− ikH, curlH+ ikE) belongs toV and satisfies the Maxwell system

curlU + ikW = f1 and curlW − ikU = f2 in Ω. (3.8)

Proof. According to Lemma 3.4, E and H are divergence-free, hence U andW as well.
Hence the identities (3.8) directly follows from the two first identities of (3.7). This di-
rectly furnishes the regularities

curlU, curlW ∈ L2(Ω).

Finally, the boundary conditions

W × n − λimpUt = 0 on 𝜕Ω,

directly follows from the last boundary conditions in (3.7).

4 Corner/edge singularities
Here, for the sake of simplicity we assume that λimp = 1 and want to describe the
regularity/singularity of 𝕊k,s(f1, f2) with f1, f2 ∈ Ht(Ω), for t ≥ 0. As said before, as the
system (3.7) is an elliptic system, the shift property will be valid far from the corners
and edges of Ω, in other words, 𝕊k,s(f1, f2) belongs toHt+2(Ω \ 𝒱) ×Ht+2(Ω \ 𝒱), for any
neighborhood 𝒱 of the corners and edges.

We therefore need to determine the corner and edge singularities of system (3.7).

4.1 Corner singularities

For c be a corner of Ω, we recall that Ξc is the three-dimensional cone that coincides
with Ω in a neighbourhood of c and that Gc is its section with the unit sphere. For
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 301

shortness, if no confusion is possible, we will drop the index c. As usual denote by
(r, ϑ) the spherical coordinates centred at c. The standard antsatz [16, 21, 28] is to look
for the corner singularities (E,H) of problem (3.7) in the form

(E,H) = rλ(U(ϑ),V(ϑ)), (4.1)

with λ ∈ ℂ such that ℜλ > − 12 and U,V ∈ H1(G) that is solution of (as our system is
invariant by translation)

{{{{
{{{{
{

curl curlE − s∇divE = 0 in Ξ,
curl curlH − s∇divH = 0 in Ξ,
divE = divH = 0 on 𝜕Ξ,
H × n − Et = (curlH) × n + (curlE)t = 0 on 𝜕Ξ.

(4.2)

Remark 4.1. For the sake of simplicity, we consider here the spectral condition that is
stronger than the notion of injectivitymodulo the polynomials (from [16]) that consists
in replacing the right-hand side in the two first identities of (4.2) by a polynomial of
degree λ−2. As a consequence, we eventually add some integer ≥ 2 in the set of corner
singular exponent, that at least do not affect the regularity results up to 7

2 .

Inspired from [13], we introduce the auxiliary variables

qE = divE, qH = divH, ψE = curlE, ψH = curlH,

and re-write the above system in the equivalent form

{
ΔqE = 0 in Ξ,
qE = 0 on 𝜕Ξ,

{
ΔqH = 0 in Ξ,
qH = 0 on 𝜕Ξ,

(4.3a)

{{{{
{{{{
{

curlψE = s∇qE in Ξ,
curlψH = s∇qH in Ξ,
divψE = divψH = 0 on 𝜕Ξ,
ψH × n = −(ψE)t on 𝜕Ξ,

(4.3b)

{{
{{
{

curlE = ψE , divE = qE in Ξ,
curlH = ψH , divH = qH in Ξ,
H × n = Et on 𝜕Ξ.

(4.3c)

Then three types of singularities appear:
Type 1: (qE , qH ) = (0,0), (ψE ,ψH ) = (0,0) and (E,H) general non-zero solution of

(4.3c).
Type 2: (qE , qH ) = (0,0), (ψE ,ψH ) general non-zero solution of (4.3b) and (E,H) par-

ticular solution of (4.3c).
Type 3: (qE , qH ) general non-zero solution of (4.3a), (ψE ,ψH ) particular solution of

(4.3b) and (E,H) particular solution of (4.3c).
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These singularities are different from those from [13] essentially due to the boundary
conditions

H × n − Et = (curlH) × n + (curlE)t = 0 on 𝜕Ξ.

Some singularities from [13] will be also singularities of our problem but not the con-
verse; see below. To describe them, we recall the corner singularities of the Laplace
operator with Dirichlet boundary conditions in Ξ; see [21, 16, 13] for instance. We first
denote by LDirG the positive Laplace–Beltrami operator with Dirichlet boundary condi-
tions onG. Recall that LDirG is a self-adjoint operatorswith a compact resolvent in L2(G),
hence we denote its spectrum by σ(LDirG ). Then we make the following definition.

Definition 4.2. The set ΛDir(Γ) of corner singular exponents of the Laplace operator
with Dirichlet boundary conditions in Ξ is defined as the set of λ ∈ ℂ such that there
exists a non-trivial solution φ ∈ H1

0(G) of

Δ(rλφ(ϑ)) = 0. (4.4)

We denote by ZλDir the set of such solutions.

Due to the relation

r2Δ = (r𝜕r)
2 + (r𝜕r) + ΔG,

for any λ ∈ ℂ and φ ∈ H1(G), we have

Δ(rλφ) = rλ−2ℒ(λ)φ, (4.5)

where

ℒ(λ)φ = ΔGφ + λ(λ + 1)φ, (4.6)

with ΔG the Laplace–Beltrami operator on G. Consequently, the set ΛDir(Γ) is related
to the spectrum σ(LDirG ) of L

Dir
G as follows (see [13, Lemma 2.4]):

ΛDir(Γ) = {−
1
2
± √μ + 1

4
: μ ∈ σ(LDirG )}.

For λ ∈ ΛDir(Γ), the elements of ZλDir are related to the set VDir(λ) of eigenvectors of L
Dir
G

associated with μ = λ(λ + 1) via the relation

ZλDir = {r
λφ : φ ∈ VDir(λ)}.

Recalling from the previous section that ωc is the length of the network ℛc, we
finally set

ϒc = {
2kπ
ωc
: k ∈ ℤ},

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:07 PM
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as well as

ϒ∗c = {
2kπ
ωc
: k ∈ ℤ \ {0}}.

We are ready to consider our different types of singularities. We start with singu-
larities of type 1.

Lemma 4.3. Let λ ∈ ℂ be different from −1. Then (E,H) in the form (4.1) is a singularity
of type 1 if and only if λ + 1 ∈ ΛDir(Γ) ∪ ϒ∗c .

Proof. (E,H) in the form (4.1) is a singularity of type 1 if and only if it satisfies

{{
{{
{

curlE = 0, divE = 0 in Ξ,
curlH = 0, divH = 0 in Ξ,
H × n = Et on 𝜕Ξ.

(4.7)

(i) Since a singularity of type 1 from [13] is a vector field ECD that satisfies

{
curlECD = 0, divECD = 0 in Ξ,
ECD × n = 0 on 𝜕Ξ,

by Lemma 6.4 of [13], we deduce that any λ ∈ ℂ such that λ + 1 ∈ ΛDir(Γ) induces a
singularity of type 1 for our problem (pairs like (ECD,0) for instance).

(ii) We now show that other singular exponents appear. As λ ̸= −1, by Lemma 6.1
of [13], the scalar fields

ΦE =
1

λ + 1
E ⋅ x, ΦH =

1
λ + 1

H ⋅ x,

are scalar potentials of E and H, namely

E = ∇ΦE , H = ∇ΦH in Ξ. (4.8)

Consequently, by the divergence-free property of E and H, we deduce that

ΔΦE = ΔΦH = 0 in Ξ. (4.9)

Hence if we set

uE(ϑ) =
1

λ + 1
E(ϑ) ⋅ ϑ, uH (ϑ) =

1
λ + 1

H(ϑ) ⋅ ϑ,

we have

ΦE = r
λ+1uE(ϑ), ΦH = r

λ+1uH (ϑ), (4.10)

and by the identity (4.5), we get

ℒ(λ + 1)uE = ℒ(λ + 1)uH = 0 in G. (4.11)
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Nowwe come back to the boundary condition in (4.7) that can be written in polar
coordinates (r, θ) in the form

{{
{{
{

𝜕rϕH = −
1
r
𝜕θϕE ,

1
r
𝜕θϕH = 𝜕rϕE .

Due to (4.10), in term of uE and uH , this is equivalent to

{
{
{

uH = −
1

λ + 1
𝜕θuE ,

𝜕θuH = (λ + 1)uE .

These two identities imply that uH is known if uE is (or the converse) and then uE has
to satisfy

𝜕2θuE + (λ + 1)
2uE = 0 onℛc. (4.12)

In other words, uE is an eigenvector of the positive Laplace operator on ℛc of eigen-
value (λ + 1)2. As the set of such eigenvalue is precisely made of μ2, with μ ∈ ϒc, two
alternatives occur:
a. λ + 1 does not belong to ϒc, hence in that case uE = uH = 0 and, therefore,

ΦE = ΦH = 0 on 𝜕Ξ,

and we conclude as in Lemma 6.4 of [13] that λ + 1 ∈ ΛDir(Γ).
b. λ + 1 belongs to ϒc, hence a non-trivial solution uE of (4.12) exists (it is a multiple

of an associated eigenvector) and then uH = −
1
λ+1𝜕θuE . This means that the trace

of uE and uH are prescribed on 𝜕G (i. e.,ℛc), and call them φE and φH . Recalling
(4.11), thismeans that uE and uH are respective solution of the following boundary
value problems on G:

{
ℒ(λ + 1)uE = 0 in G,
uE = φE on 𝜕G.

{
ℒ(λ + 1)uH = 0 in G,
uH = φH on 𝜕G.

For both problems, either λ + 1 ̸∈ ΛDir(Γ) and a solution exists, or λ + 1 ∈ ΛDir(Γ) and no
matter that a solution exists or not, because, by point i), this case already gives rise to
a singular exponent.

We go on with singularities of type 2.

Lemma 4.4. Let λ ∈ ℂ. If (E,H) in the form (4.1) is a singularity of type 2, then λ ∈
ΛDir(Γ) ∪ ϒ∗c .

Proof. If (E,H) in the form (4.1) is a singularity of type 2, then (see (4.3b)) (ψE ,ψH )
satisfies
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{{{{
{{{{
{

curlψE = 0 in Ξ,
curlψH = 0 in Ξ,
divψE = divψH = 0 on 𝜕Ξ,
ψH × n = −(ψE)t on 𝜕Ξ.

If we compare this systemwith (4.7), we deduce equivalently that λ belongs to ΛDir(Γ)∪
ϒ∗c , recalling that (ψE ,ψH ) behaves like r

λ−1. Hencewe have found that λ ∈ ΛDir(Γ)∪ϒ∗c
is a necessary condition.

We end up with singularities of type 3.

Lemma 4.5. Let λ ∈ ℂ. If (E,H) in the form (4.1) is a singularity of type 3, then λ − 1 ∈
ΛDir(Γ).

Proof. If (E,H) in the form (4.1) is a singularity of type 3, then (qE , qH ) is a solution of
(4.3a), which means equivalently that λ − 1 ∈ ΛDir(Γ) is a necessary condition.

Among the corner singular exponents exhibited in the previous lemmas, accord-
ing to Lemma 3.4, we have to remove the ones for which

divE ̸∈ H1
loc(Ξ) or divH ̸∈ H1

loc(Ξ).

Nomore constraint appears for singularities of type 1 or 2 sinceE andH are divergence-
free. On the contrary for singularities of type 3 as divE = qE (resp., divH = qH ), we get
the restriction

λ − 1 > − 1
2
.

As Lemma 4.5 also says that λ − 1 ∈ ΛDir(Γ) and as the set ΛDir(Γ) ∩ [−1,0] is always
empty, we get the final constraint

λ − 1 > 0.

In summary, if we denote by Λc the set of corner singular exponents of the varia-
tional problem (3.7) (in H1), we have shown that

Λc,1 ⊂ Λc ⊂ Λc,1 ∪ Λc,2 ∪ Λc,3, (4.13)

where we have set

Λc,1 = {λ ∈ ℝ : λ > −
1
2
and λ + 1 ∈ ΛDir(Γ) ∪ ϒ

∗
c}

Λc,2 = {λ ∈ ℝ : λ > −
1
2
and λ ∈ ΛDir(Γ) ∪ ϒ

∗
c},

Λc,3 = {λ ∈ ℝ : λ > 1 and λ − 1 ∈ ΛDir(Γ)}.
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Note that in the particular case of a cuboid, for all corners we haveωc =
3π
2 , while

Proposition 18.8 of [16] yields

ΛDir(Γ) = {3 + 2d : d ∈ ℕ} ∪ {−(4 + 2d) : d ∈ ℕ}.

Consequently, one easily checks that

Λc,1 = {2 + 2d : d ∈ ℕ} ∪ {
4k
3
− 1 : k ∈ ℕ∗},

Λc,2 = {3 + 2d : d ∈ ℕ
∗} ∪ {4k

3
: k ∈ ℕ∗},

Λc,3 = {4 + 2d : d ∈ ℕ}.

Hence the smallest corner singular exponent is equal to 1
3 .

Similarly, with the help of Lemma 18.7 of [16], the sets Λc,i, i = 1, 2, 3 can be char-
acterized for any prism D × I, where D is any polygon with a Lipschitz boundary and I
is an interval.

4.2 Edge singularities

Our goal is to describe the edge singularities of problem (3.7). Let us then fix an edge e
of Ω, then near an interior point of e, as our system (3.7) is invariant by translation and
rotation (using a Piola transformation, that in this case corresponds to the covariant
transformation), we may suppose that Ω behaves likeWe = Ce × ℝ where Ce is a two-
dimensional cone centred at (0,0) of opening ωe ∈ (0, 2π), with ωe ̸= π. Here, for the
sake of generality, we do not assume that ωe < π. Below we will also use the polar
coordinates (r, θ) in Ce centred at (0,0). Let us recall that the set ΛDir(Ce) of singular
exponents of the Laplace operator with Dirichlet boundary conditions in Ce is defined
by

ΛDir(Ce) = {
kπ
ωe
: k ∈ ℤ \ {0}}.

Similarly, we recall that the set of singular exponents of the Laplace operator with
Neumann boundary conditions in Ce is defined by

ΛNeu(C) = {
kπ
ωe
: k ∈ ℤ}.

For convenience, when no confusion is possible, we will drop the index e. As
usual, for λ ∈ ℂ, the edge singularities are obtained by looking for a non-polynomial
solution (E,H) (independent of the x3 variable) in the form of

(E,H) = rλ
Q
∑
q=0
(ln r)q(Uq(ϑ),Vq(ϑ)), (4.14)
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of

{{{{
{{{{
{

curl curlE − s∇divE = FE inW ,
curl curlH − s∇divH = FH inW ,
divE = divH = 0 on 𝜕W ,
H × n − Et = (curlH) × n + (curlE)t = 0 on 𝜕W ,

(4.15)

FE, FH being a polynomial in the x1, x2 variables. In that way, we see that the pair
E = (E1,E2)made of the two first components of E and the third component h := H3 of
H satisfy

{{{{
{{{{
{

curl curl E − s∇div E = FE in C,
Δh = g in C,
div E = 0 on 𝜕C,
h + Et = 𝜕nh − curl E = 0 on 𝜕C,

(4.16)

F, g being a polynomial (in the x1, x2 variables) and as usual

curl E = 𝜕1E2 − 𝜕2E1,

and

Et = n1E2 − n2E1 on 𝜕C,

if n = (n1, n2) on 𝜕C, further for a scalar field φ we have

curlφ = ( 𝜕2φ
−𝜕1φ
) .

The pair (H1,H2) made of the two first components of H and −E3, where E3 is the
third component of E that satisfy the same system, hencewe only need to characterize
the singularities of (4.16).

Inspired from [13], the singularities of system (4.16) are obtained by introducing
the scalar variables q = div E and ψ = curl E. In this way, if λ ̸∈ ℕ2 := {n ∈ ℕ : n ≥ 2}
(or equivalently λ is not an integer or is an integer ≤ 1), we find the equivalent system

{
Δq = 0 in C,
q = 0 on 𝜕C,

(4.17a)

{{
{{
{

curlψ = s∇q in C,
Δh = 0 in C,
𝜕nh −ψ = 0 on 𝜕C,

(4.17b)

{
curl E = ψ, div E = q in C,
Et = −h on 𝜕C.

(4.17c)

As before three types of singularities appear:
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Type 1: q = 0,ψ = 0 and E general non-zero solution of (4.17c).
Type 2: q = 0, ψ general non-zero solution of (4.17b) and E particular solution of

(4.17c).
Type 3: q general non-zero solution of (4.17a), ψ particular solution of (4.17b) and E

particular solution of (4.17c).

The singularities of type 1were treated in [13, Section 5c], where it is shown that λ ̸∈ ℕ2
is such that λ + 1 ∈ ΛDir(C) \ {2}.

Let us now look at singularities of type 2.

Lemma 4.6. Let λ ̸∈ ℕ2 be such thatℜλ > 0. Then λ is a singularity of type 2 if and only
if λ ∈ ΛNeu(C).

Proof. If (E, h) in the form

E = rλ
Q
∑
q=0
(ln r)qU(ϑ), h = rλ

Q
∑
q=0
(ln r)qvq(ϑ), (4.18)

is a singularity of type 2, then ψ = curl E satisfies (see (4.17b))

{{
{{
{

curlψ = 0 in C,
Δh = 0 in C,
𝜕nh −ψ = 0 on 𝜕C.

In this case, ψ is constant in the whole C. Hence we distinguish the case λ = 1 or not:
1. If λ ̸= 1, then ψ = 0 and consequently h satisfies

{
Δh = 0 in C,
𝜕nh = 0 on 𝜕C,

(4.19)

which means that λ belongs to ΛNeu(C) and h is in the form

h = rλ cos(λθ).

2. If λ = 1, then there exists a constant c such thatψ = c, and consequently h satisfies

{
Δh = 0 in C,
𝜕nh = c on 𝜕C.

(4.20)

For two parameters c1 and c2, denote by

h0 = c1x1 + c2x2 = r(c1 cos θ + c2 sin θ).

Clearly, h0 is harmonic and satisfies

𝜕nh0(θ = 0) = −c2,
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𝜕nh0(θ = ω) = −c1 sinω + c2 cosω,

hence it fulfils (4.20) if and only if (c1, c2) satisfies the 2 × 2 linear system

c2 = −c, −c1 sinω + c2 cosω = c.

Since sinω is different from zero, such a solution exists and therefore d = h − h0
satisfies (4.19). This would mean that 1 belongs to ΛNeu(C), which is not possible.

Once ψ and h are found, we look for a particular solution E of (4.17c) with q = 0. From
its curl-free property, we look for E in the form

E = ∇Φ,

with

Φ = rλ+1φ(θ),

where φ has to satisfy

{
φ󸀠󸀠 + (λ + 1)2φ = 0 in (0,ω),
(λ + 1)φ(0) = −1, (λ + 1)φ(ω) = − cos(λω).

As λ + 1 does not belong to ΛDir(C) and is different from zero, such a solution φ always
exists.

Lemma 4.7. Let λ ̸∈ ℕ2 be such thatℜλ > 0. Then λ is a singularity of type 3 if and only
if λ − 1 ∈ ΛDir(C).

Proof. If (E, h) in the form (4.18) is a singularity of type 3, then q = div E satisfies (4.17a)
and consequently λ − 1 belongs to ΛDir(C) and q is equal to

q = rλ−1 sin((λ − 1)θ),

up to a non-zero multiplicative factor (that we then fix to be 1).
Nowwe look for (ψ, h) a particular solution of (4.17b). As simple calculations yield

curl(rλ−1 cos((λ − 1)θ)) = −∇rλ−1 sin((λ − 1)θ),

we deduce that

ψ = −srλ−1 cos((λ − 1)θ) + k,

for some constant k, that we can fix to be zero since we look for particular solutions.
Hence it remains to find h solution of

{
Δh = 0 in C,
𝜕nh = −srλ−1 cos((λ − 1)θ) on 𝜕C.
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Such a h exists in the form

h = rλη(θ),

since the previous problem is equivalent to

{
η󸀠󸀠 + λ2η = 0 in (0,ω),
η󸀠(0) = s, η󸀠(ω) = ±s(−1)k ,

when λ = kπ
ω and this system has a unique solution since λ ̸∈ ΛNeu(C).

Now we look for E a particular solution of (4.17c) with the functions q, ψ and h
found before, which then takes the form

{{
{{
{

curl E = −srλ−1 cos((λ − 1)θ) in C,
div E = rλ−1 sin((λ − 1)θ) in C,
Et = −rλη(θ) on 𝜕C.

Hence we look for E in the form

E = − s
4λ

curl(rλ+1 cos((λ − 1)θ)) + ∇Φ.

As simple calculations yield

curl curl(rλ+1 cos((λ − 1)θ)) = 4λ cos((λ − 1)θ),

we deduce that the previous system in E is equivalent to

{
ΔΦ = rλ−1 sin((λ − 1)θ) in C,
𝜕rΦ(r,0) = c0rλ, 𝜕rΦ(r,ω) = cωrλ,

(4.21)

for two constants c0 and cω. If λ+ 1 ̸∈ ΛDir(C), then a solution Φ of this problem always
exists in the form

rλ+1φ(θ),

since it is then equivalent to

{
{
{

φ󸀠󸀠 + (λ + 1)2φ = sin((λ − 1)θ) in C,

φ(0) = c0
λ + 1
, 𝜕rΦ(r,ω) =

cω
λ + 1
.

On the contrary if λ + 1 ∈ ΛDir(C) (that only occurs when ω =
3π
2 ), then we look for Φ

in the form

rλ+1(φ0(θ) + log rφ1(θ)). (4.22)
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Since, in this particular choice, problem (4.21) is equivalent to

{
{
{

ΔΦ = rλ−1 sin((λ − 1)θ) in C,

Φ(r,0) = c0
λ + 1

rλ+1, Φ(r,ω) = cω
λ + 1

rλ+1,

by Theorem 4.22 of [36], we deduce that a solution Φ in the form (4.22) exists.
In both cases, a solution Φ exists, hence the existence of E.

As before among the edge singular exponents, we have to remove the ones for
which

divE ̸∈ H1
loc(W) or divH ̸∈ H1

loc(W).

Nomore constraint appears for singularities of type 1 or 2 sinceE andH are divergence-
free. On the contrary for singularities of type 3, we get the restriction

λ > 1.

In summary, if we denote by Λe the set of edge singular exponents ̸∈ ℕ2 of the
variational problem (3.7) (in H1, i. e., withℜλ > 0), we have shown that

Λe = Λe,1 ∪ Λe,2 ∪ Λe,3, (4.23)

where we have set

Λe,1 = {λ ∈ ℝ : λ > 0 and λ + 1 ∈ ΛDir(C) \ {2}}
Λe,2 = {λ ∈ ℝ : λ > 0 and λ ∈ ΛNeu(C)},

Λc,3 = {λ ∈ ℝ : λ > 1 and λ − 1 ∈ ΛDir(C)}.

Note that in the particular case of a cuboid, for all edges we have ωe =
π
2 , and

consequently Λe = 0 (recalling that the natural number inℕ2 are excluded from this
set). Since one can show that λ = 2 is a singular exponent, the maximal regularity
along the edge is H3−ε, for any ε > 0.

In conclusion, for any convex polyhedral domain, there exists tΩ ∈ (1, 2] such that
for any f1, f2 ∈ L2(Ω), 𝕊k,s(f1, f2) belongs to Ht(Ω)2, for all t < tΩ. For instance for a
cuboid, we have tΩ =

11
6 .

5 Wavenumber explicit stability analysis
The basic block for a wavenumber explicit error analysis of problem (3.7) (or (3.5))
is a so-called stability estimate at the energy level; for the Helmholtz equation, see
[15, 17, 22], while for problem (1.3), see [23]. Hence we make the following definition.

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:07 PM



312 | S. Nicaise and J. Tomezyk

Definition 5.1. We will say that system (3.7) satisfies the k-stability property with ex-
ponent α ≥ 0 (independent of k and s) if there exists k0 > 0 such that for all k ≥ k0
and all f1, f2 ∈ L2(Ω), the solution (E,H) ∈ V of (3.5) satisfies

‖(E,H)‖k ≲ k
α(‖f1‖0,Ω + ‖f2‖0,Ω). (5.1)

Before going on, let us show that this property is valid for some particular do-
mains, in particular it will be valid for rectangular cuboids of rational lengths, some
tetrahedra and some prisms. To prove such a result, we first start with a similar prop-
erty with divergence-free data. In this case, our proof is a simple consequence of a
result obtained in [37] for the time-dependentMaxwell systemwith impedance bound-
ary conditions combined with the next result of functional analysis [40, 25].

Lemma 5.2. A C0 semigroup (et𝒜)t≥0 of contractions on a Hilbert space H is exponen-
tially stable, i. e., satisfies

‖et𝒜U0‖H ≤ Ce
−ωt‖U0‖H , ∀U0 ∈ H , ∀t ≥ 0,

for some positive constants C and ω if and only if

ρ(𝒜) ⊃ {iβ 󵄨󵄨󵄨󵄨 β ∈ ℝ} ≡ iℝ, (5.2)

and

sup
β∈ℝ
‖(iβ𝕀 −𝒜)−1‖ℒ(H) < ∞, (5.3)

where ρ(𝒜) denotes the resolvent set of the operator𝒜.

Theorem 5.3. In addition to the assumptions of Theorem 3.5, assume that Ω is star-
shaped with respect to a point. Then for all k ≥ 0 and all f1, f2 ∈ L2(Ω) such that
div f1 = div f2 = 0, the solution (E,H) ∈ V of (3.5) satisfies (5.1) with α = 1.

Proof. As the data are divergence-free, by Lemma 3.7, the auxiliary unknown (U,W) =
(curlE − ikH, curlH + ikE) belongs to V, is divergence-free and satisfies the Maxwell
system (3.8).

Now we notice that Theorem 4.1 of [37] (valid for star-shaped domain with a Lips-
chitz boundary) shows that the time-dependent Maxwell system

{
𝜕tE + curlH = 0 and 𝜕tH − curlE = 0 in Ω,
H × n − λimpEt = 0 on Ξ,

is exponentially stable in ℋ = {(E,H) ∈ L2(Ω) × L2(Ω) : divE = divH = 0}. This
equivalently means that the operator𝒜 defined by

𝒜(E,H) = (− curlH, curlE), ∀(E,H) ∈ D(𝒜),
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with domain

D(𝒜) = {(E,H) ∈ V : divE = divH = 0},

generates an exponentially stable C0 semigroup inℋ. Hence by Lemma 5.2, we deduce
that its resolvent is bounded on the imaginary axis. This precisely implies that

‖U‖Ω + ‖W‖Ω ≲ ‖f1‖Ω + ‖f2‖Ω, (5.4)

for all k ≥ 0. But coming back to the definition of U andW, we can look at (E,H) as a
solution in D(𝒜) of the Maxwell system

curlE − ikH = U, curlH + ikE =W.

Hence the previous arguments show that

‖E‖Ω + ‖H‖Ω ≲ ‖U‖Ω + ‖W‖Ω.

By the estimate (5.4), we deduce that

‖E‖Ω + ‖H‖Ω ≲ ‖f1‖Ω + ‖f2‖Ω. (5.5)

Finally, as

‖(E,H)‖k ∼ ‖curlE‖Ω + ‖ curlH‖Ω + k(‖E‖Ω + ‖H‖Ω),

by the triangular inequality, we get that

‖(E,H)‖k ≲ ‖curlE − ikH‖Ω + ‖curlH + ikE‖Ω + k(‖E‖Ω + ‖H‖Ω)
≲ ‖U‖Ω + ‖V‖Ω + k(‖E‖Ω + ‖H‖Ω).

By the estimates (5.4) and (5.5), we conclude that

‖(E,H)‖k ≲ k(‖f1‖Ω + ‖f2‖Ω),

as announced.

Now we leave out the divergence-free constraint on the data. Before let us de-
note by {λn}n∈ℕ∗ , the set of eigenvalues enumerated in increasing order (and not re-
peated according to their multiplicity) of the positive Laplace operator −Δwith Dirich-
let boundary conditions in Ω. For each n ∈ ℕ∗, we also denote by φn,ℓ, ℓ = 1, . . . ,m(n),
the orthonormal eigenvectors associated with λn. For all k > 0 and each s ∈ [1, 2], let
us define the unique integer n(k, s) such that

λn(k,s) ≤
k2

s
< λn(k,s)+1, (5.6)
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and denote by

gn(k,s) = λn(k,s)+1 − λn(k,s),

the gap between these consecutive eigenvalues. Now we show that if gn(k,s) satisfies
some uniform lower bound, then the k-stability property holds.

Lemma 5.4. In addition to the assumptions of Theorem 5.3, assume that there exists a
non-negative real number β and two positive real number γ0 and k1 such that

∀k ≥ k1 ∃s ∈ [1, 2] : gn(k,s) ≥ γ0k
−2β. (5.7)

Then there exist two positive real numbers s0, s1 such that s0 < s1 (depending on β, γ0
and k1) and for an appropriate choice of s ∈ [s0, s1] (but such that −k2/s is not an eigen-
value of the Laplace operator Δ with Dirichlet boundary conditions in Ω), the k-stability
property with exponent α = 2β + 1 holds.

Proof. The first step is to reduce the problem to divergence-free right-hand sides. For
that purpose, for i = 1 or 2, we consider ui,φi ∈ H1

0(Ω) variational solutions of

Δui = div fi in Ω,

(Δφi +
k2

s
φi) = −s

−1ui in Ω.

Then simple calculations show that (Ẽ, H̃) = (E − ∇φ1,H − ∇φ2) belongs to V and is
solution of (3.7) with divergence-free right-hand side, namely

{{{{{{{{{{{{
{{{{{{{{{{{{
{

Lk,s(Ẽ) = ̃f1 = f1 − ∇u1,
Lk,s(H̃) = ̃f2 = f2 − ∇u2,

} in Ω,

div Ẽ= 0
div H̃= 0

T(Ẽ, H̃) = 0
B(Ẽ, H̃) = 0

}}}}}}
}}}}}}
}

on 𝜕Ω.
(5.8)

In a first step, we estimate the H1-norm of φi. Since we assume that k2
s does not en-

counter the spectrum of the Laplace operator, by the spectral theorem, we can write

φi = −s
−1 ∑

n∈ℕ∗
(k

2

s
− λn)
−1 m(n)
∑
ℓ=1
(ui,φn,ℓ)Ωφn,ℓ.

Consequently, we have

‖φi‖
2
1,Ω ∼ s

−2 ∑
n∈ℕ∗
(k

2

s
− λn)
−2 m(n)
∑
ℓ=1
|(ui,φn,ℓ)Ω|

2λn. (5.9)
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 315

Hence our goal is to choose s in an interval [s0, s1] with s0 and s1 independent of k
satisfying 0 < s0 ≤ s1 < ∞ and such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
k2

s
− λn
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≳ k−2β, ∀n ∈ ℕ∗, k ≥ k0, (5.10)

with k0 large enough. Indeed if this estimate is valid, then (5.9) can be transformed
into

‖φi‖
2
1,Ω ≲ k

4β ∑
n∈ℕ∗

m(n)
∑
ℓ=1
|(ui,φn,ℓ)Ω|

2λn

and, therefore,

‖φi‖1,Ω ≲ k
2β‖ui‖1,Ω.

As clearly

‖ui‖1,Ω ≲ ‖fi‖Ω, (5.11)

we conclude that

‖φi‖1,Ω ≲ k
2β‖fi‖Ω. (5.12)

As

‖(∇φ1, ∇φ2)‖k ∼ √s(‖Δφ1‖Ω + ‖Δφ2‖Ω) + k(‖φ1‖1,Ω + ‖φ2‖1,Ω), (5.13)

we need to estimate the L2-norm of Δφ1. But from its definition, we have

Δφi +
k2

s
φi = −s

−1ui,

and taking the L2-inner product with φi, we get

(Δφi,φi)Ω +
k2

s
‖φi‖

2
Ω = −s

−1(ui,φi)Ω.

Using Cauchy–Schwarz’s inequality, we get

k2

s
‖φi‖

2
Ω ≤ s
−1‖ui‖Ω‖φi‖Ω + |φi|

2
1,Ω.

With the help of (5.11) and (5.12), we obtain

k2‖φi‖
2
Ω ≲ ‖fi‖Ω‖φi‖Ω + k

4β‖fi‖
2
Ω.

Hence by Young’s inequality, we get

k2‖φi‖
2
Ω ≲ k

4β‖fi‖
2
Ω,
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316 | S. Nicaise and J. Tomezyk

which proves that

‖φi‖Ω ≲ k
2β−1‖fi‖Ω. (5.14)

This directly implies that

‖Δφi‖Ω ≤
k2

s
‖φi‖Ω + s

−1‖ui‖Ω ≲ k
2β+1‖fi‖Ω.

Using this estimate and (5.12) in (5.13) leads to

‖(∇φ1, ∇φ2)‖k ≲ k
2β+1(‖f1‖Ω + ‖f2‖Ω). (5.15)

At this stage, we use Theorem 5.3 that yields

‖(Ẽ, H̃)‖k ≲ k(‖ ̃f1‖Ω + ‖ ̃f2‖Ω).

Hence by the definition of ̃fi and (5.11), we deduce that

‖(Ẽ, H̃)‖k ≲ k(‖f1‖Ω + ‖f2‖Ω).

As (E,H) = (Ẽ, H̃) + (∇φ1, ∇φ2), the combination of this last estimate with (5.15) leads
to

‖(E,H)‖k ≲ k
2β+1(‖f1‖Ω + ‖f2‖Ω), (5.16)

which proves the stability estimate with α = 2β + 1.
It remains to prove that (5.10) holds for an appropriate choice of s. This is done

with the help of our assumption (5.7), by an eventual slight modification of s from this
assumption. To bemore precise, for all k ≥ k1, we fix one s ∈ [1, 2] such that (5.7) holds
and denote it by s(k). We now distinguish between three cases:

a) If λn(k,s(k)) ≤
k2
s(k) ≤ λn(k,s(k)) +

γ0
3k2β , then we fix s such that

k2

s
= λn(k,s(k)) +

γ0
3k2β
. (5.17)

With this choice, we clearly have

k2

s
− λn(k,s(k)) =

γ0
3k2β
,

while

λn(k,s(k))+1 −
k2

s
= λn(k,s(k))+1 − λn(k,s(k)) −

γ0
3k2β
≥

2γ0
3k2β
,
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 317

which proves that (5.10) holds. Let us now show that s remains in a (uniformly)
bounded interval. Indeed (5.17) is equivalent to

s = k2

λn(k,s(k)) +
γ0
3k2β
.

As by assumption k2 ≤ s(k)(λn(k,s(k)) +
γ0
3k2β ), we directly deduce that s ≤ s(k) ≤ 2.

Conversely, from (5.6), we deduce that

k2

λn(k,s(k)) +
γ0
3k2β
≥ k2

k2
s(k) +

γ0
3k2β

≥ s(k)
1 + γ0s(k)

3k2(β+1)

≥ 1
1 + 2γ0

3k2(β+1)1

.

b) If λn(k,s(k))+1 −
γ0
3k2β ≤

k2
s(k) ≤ λn(k,s(k))+1, then we fix s such that

k2

s
= λn(k,s(k))+1 −

γ0
3k2β
.

We check exactly as in the first case that (5.10) holds. Furthermore, by assumption
s ≥ 1, while for the lower bound we see that

s = k2

λn(k,s(k))+1 −
γ0
3k2β
≤ k2

k2
s(k) −

γ0
3k2β
≤ s(k)
1 − s(k)γ0

3k2β
≤ 2
1 − 2γ0

3k2β
.

Hence s ≤ 3 for k ≥ k0 with k0 large enough.
c) If λn(k,s(k)) +

γ0
3k2β <

k2
s(k) < λn(k,s(k))+1 −

γ0
3k2β , then we fix s = s(k). In such a case, we

directly see that (5.10) holds since

k2 − λn(k,s(k)) ≥
γ0
3k2β
, and λn(k,s(k))+1 − k

2 ≥
γ0
3k2β
.

The proof is then complete.

Remark 5.5. The parameter s fixed in the previous lemma clearly depends on k. Fur-
thermore, if β is positive, the quantity k2

s approaches the spectrum of −Δ, and hence
the norm of the resolvent operator Δ+ k

2

s blows up, but the estimate (5.16) controls this
blow up since it yields

‖divE‖Ω + ‖divH‖Ω ≲ k
2β+1(‖f1‖Ω + ‖f2‖Ω).

Let us now show that (5.7) always holds with β = 1
2 .
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318 | S. Nicaise and J. Tomezyk

Lemma 5.6. For all bounded domain Ω (of ℝ3), the assumption (5.7) holds with β = 1
2 .

Proof. Assume that (5.7) does not hold with β = 1
2 , in other words

∀γ0 > 0, k1 > 0 ∃k ≥ k1 ∀s ∈ [1, 2] : gn(k,s) < γ0k
−1. (5.18)

We first fix γ0 such that

γ0 <
1

48√2c|Ω|
, (5.19)

where |Ω| is the measure of Ω and c = 1
6π2 is the universal constant such that Weyl’s

formula

lim
t→∞

N(t)
c|Ω|t

3
2
= 1, (5.20)

holds, whereN(t) is the eigenvalue counting function of the positive Laplace operator
−Δwith Dirichlet boundary conditions in Ω, i. e., the number of its eigenvalues, which
are less than t. Then we fix k1 large enough, namely k31 ≥ 12γ0. Then for all k ≥ k1, we
define the real numbers

si = 1 +
3γ0i
k3
, ∀i = 1, . . . ,Nk ,

where Nk = ⌊
k3
6γ0
⌋ − 1 (where ⌊x⌋ is the integral part of any real number x, namely the

unique integer such that x ≤ ⌊x⌋ < x + 1). By our assumption Nk is larger than 1 and
for k large it behaves like k3. It is easy to see that all si belongs to [1,

3
2 ]. Now we look

at the intervals

Ii = [
k2

si
−
γ0
2k
, k

2

si
+
γ0
2k
], ∀i = 1, . . . ,Nk ,

and show that they are disjoint, i. e.,

Ii ∩ Ij = 0, ∀i ̸= j, (5.21)

and included into the closed interval [ k
2

2 , 2k
2]:

Ii ⊂ [
k2

2
, 2k2], ∀i = 1, . . . ,Nk . (5.22)

Indeed for the second assertion it suffices to show that

k2

si
−
γ0
2k
≥ k

2

2
, (5.23)
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 319

and that
k2

si
+
γ0
2k
≥ 2k2. (5.24)

This second estimate holds if and only if

k2

s1
+
γ0
2k
≥ 2k2,

or equivalently
1
s1
≤ 2 − γ0

2k3
.

Since s1 = 1 +
3γ0
k3 , this holds if and only if

(2 − γ0
2k3
)(1 + 3γ0

k3
) ≥ 1,

which means that γ0
k3 has to satisfy

11 − √145
6
≤
γ0
k3
≤ 11 +
√145
6
,

that is valid owing to our assumption on k1 (and the fact that k ≥ k1).
In the same spirit, the estimate (5.23) holds if and only if

sNk
≤ 2
1 + γ0

k3
,

which holds because our assumption on k1 implies that

3
2
≤ 2
1 + 2γ0

k3
.

Now to prove (5.21), it suffices to show that

Ii ∩ Ii+1 = 0, ∀i = 1, . . . ,Nk − 1,

or
k2

si+1
+
γ0
2k
< k

2

si
−
γ0
2k
, ∀i = 1, . . . ,Nk − 1.

By the definition of the si, this holds if and only if

sisi+1 < 3.

Since sisi+1 ≤
9
4 , we deduce that (5.21) is valid.
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320 | S. Nicaise and J. Tomezyk

Since the length of Ii is exactly equal to
γ0
k and due to our assumption (5.18), λn(k,si)

or λn(k,si)+1 belongs to Ii. Due to (5.21) and (5.22), for all k ≥ k1, wehave foundNk distinct
eigenvalues in the interval [ k

2

2 , 2k
2]. This implies that

N(2k2) ≥ Nk ≥
k3

6γ0
− 1 ≥ k3

12γ0
, ∀k ≥ k1.

But Weyl’s formula (5.20) implies that there exists k2 > 0 large enough such that

N(2k2) ≤ 2c|Ω|(2k2)
3
2 , ∀k ≥ k2.

These two estimates yield

γ0 ≥
1

48√2c|Ω|
,

which contradicts (5.19).

We now notice that (5.7) may hold for β ≤ 1
2 , in particular it holds with β = 0 once

the next gap condition

∃g0 > 0 : λn+1 − λn ≥ g0, ∀n ∈ ℕ
∗, (5.25)

holds.

Lemma 5.7. Assume that (5.25) holds, then the assumption (5.7) is valid with β = 0 and
γ0 = g0.

Proof. If k2
2 is different from λn(k,2), then we take s = 2 and find

gn(k,2) ≥ g0,

hence the result. On the contrary if k2
2 = λn(k,2), then we choose s = 2 − ε with ε ∈ (0, 1)

small enough such that

k2

2 − ε
< λn(k,2)+1.

Since k2 = 2λn(k,2), this means that we additionally require that

ε < 2(1 −
λn(k,2)
λn(k,2)+1

),

which is always possible since this right-hand side is positive. With this choice, we
have that n(k, s) = n(k, 2) and we conclude that gn(k,s) ≥ g0.

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:07 PM



9 The time-harmonic Maxwell equations with impedance boundary conditions | 321

Corollary 5.8. Assume thatΩ = (0, √a1)×(0, √a2)×(0, √a3), with positive real numbers
ai, i = 1, 2, 3 such that

ai
a1
is a rational number, i = 2, 3. Then the gap condition (5.25)

holds with β = 0, and hence for an appropriate choice of s, the k-stability property with
exponent α = 1 holds.

Proof. For such a cuboid, it is well known that the spectrum of the Laplace operator
−Δ with Dirichlet boundary condition is given by

π2(
k21
a1
+
k22
a2
+
k23
a3
),

for any ki ∈ ℕ∗, i = 1, 2, 3. Hence writing
ai
a1
= ni

d , with ni, d ∈ ℕ∗, the spectrum is
equivalently characterized by the set of

π2

a1n2n3
(k21n2n3 + k

2
2n1n3 + k

2
3n1n2),

for any ki ∈ ℕ∗, i = 1, 2, 3. Since, in our situation, k21n2n3 + k
2
2n1n3 + k

2
3n1n2 is a natural

number, the spectrum is a subset of

g0ℕ
∗,

where g0 =
π2

a1n2n3
. Hence the distance between two consecutive different eigenvalues

is at most larger than g0.

Remark 5.9. If the cuboidΩ = (0, √a1)×(0, √a2)×(0, √a3), with positive real numbers
ai, i = 1, 2, 3 such that a2

a1
= a3

a1
is an irrational number badly approximable. Then by

the same arguments than before and the use of Proposition 2.1 of [5], the gap condi-
tion (5.25) holds with β = 1, and hence for an appropriate choice of s, the k-stability
property with exponent α = 3 holds.

Corollary 5.10. Assume that Ω is a prism in the form Ω = Ta × (0, √h), with positive
real numbers a and h such that h

a is a rational number and Ta is an equilateral triangle
of side of length √a. Then the gap condition (5.25) holds with β = 0, and hence for an
appropriate choice of s, the k-stability property with exponent α = 1 holds.

Proof. For such a prism, using a separation of variables, a scaling argument and Theo-
rem 1 of [39] (see also Theorem3.2 of [24], case of typeA2), wededuce that the spectrum
of the Laplace operator −Δ with Dirichlet boundary condition is given by

16π2

27a
(k21 + k

2
2 + k1k2) +

k23π
2

h
,

for any k3 ∈ ℕ∗ and k1 ∈ ℤ∗, k2 ∈ ℤ such that k1 + k2 ̸= 0. Hence writing
h
a =

n
d with

n, d ∈ ℕ∗, the eigenvalues can be written as

π2

27an
((k21 + k2 + k1k2)n + 27dk

2
3),
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322 | S. Nicaise and J. Tomezyk

for the previous parameters ki. As in the previous corollary, this means that the dis-
tance between two consecutive different eigenvalues is at most larger than g0 =

π2
27an .

Remark 5.11. By Theorem 3.2 of [24] (case of type C2 or D2, see also [4, Proposition 9]),
Corollary 5.10 remains valid is Ta is an isosceles right triangle with two sides of length
√a, with a positive number a.

Corollary 5.12. Assume that Ω is a tetrahedron with vertices (0,0,0), (√a,0,0),
(√a/2, √a/2, −√a/2), (√a/2, √a/2, √a/2), with a positive number a. Then the gap con-
dition (5.25) holds with β = 0, and hence for appropriate choice of s, the k-stability
property with exponent α = 1 holds.

Proof. For such a tetrahedron, by a scaling argument and Theorem 3.2 of [24] (case of
type A3 = D3, see also [4, Proposition 9]) we deduce that the spectrum of the Laplace
operator −Δ with Dirichlet boundary condition is given by

4π2

a
(k21 +

3
4
(k22 + k

2
3) + k1k2 + k1k3 +

1
2
k2k3),

for any ki ∈ ℕ∗, i = 1, 2, 3. This means that the distance between two consecutive
different eigenvalues is at most larger than g0 =

π2
a .

Remark 5.13. By Theorem 3.2 of [24] (see also [4, Proposition 9]), Corollary 5.12 re-
mains valid for a tetrahedron Ta with vertices (0,0,0), (√a,0,0), (√a/2, √a/2,0),
(√a/2, √a/2, √a/2) (case of type B3) and for a tetrahedron Ta with vertices (0,0,0),
(√a/2,0,0), (√a/2, √a/2,0), (√a/2, √a/2, √a/2) (case of type C3), with a positive num-
ber a.

6 h-finite element approximations
For the sake of simplicity, we here perform some error analyses when λimp = 1, but for
convex polyhedral domains and forwhich the stability estimate is valid. Before stating
some convergence results for different finite element approximations, we state some
regularity results and a priori bounds.

6.1 Some regularity results and a priori bounds

Theorem 6.1. Assume that λimp = 1, and that Ω is a convex polyhedron and that the
k-stability property with exponent α holds. Then for any f1, f2 ∈ L2(Ω), 𝕊k,s(f1, f2) belongs
to Ht(Ω)2, for all t < tΩ with

‖𝕊k,s(f1, f2)‖t,Ω ≲ (1 + k
1+α)‖(f1, f2)‖Ω. (6.1)
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 323

Proof. Since the regularity of 𝕊k,s(f1, f2) was already stated in Section 4, we only con-
centrate on the estimate (6.1). It indeed holds by looking at 𝕊k,s(f1, f2) as solution of
(3.3) with k = 0 and a right-hand side defined by

⟨F, (E󸀠,H󸀠)⟩ = ∫
Ω

((f1 + k
2E) ⋅ Ē󸀠 + (f2 + k

2H) ⋅ H̄󸀠) dx

+ ik ∫
𝜕Ω

(Et ⋅ Ē
󸀠
t +Ht ⋅ H̄

󸀠
t) dσ.

By elliptic regularity and the stability estimate (5.1), we obtain

‖𝕊k,s(f1, f2)‖t,Ω ≲ ‖(f1, f2)‖Ω + k
2‖𝕊k,s(f1, f2)‖Ω + k‖𝕊k,s(f1, f2)‖ 1

2 ,𝜕Ω

≲ (1 + k1+α)‖(f1, f2)‖Ω,

which proves (6.1).

Now we show similar results in weighted Sobolev spaces (in the absence of edge
singularities), namely for all ℓ ∈ ℕ, ℓ ≥ 2, and all non-negative real numbers ν, if r(x)
is the distance from x to the corners of Ω, then we introduce the weighted space

Hℓ,ν(Ω) := {v ∈ H1(Ω) : rαDβv ∈ L2(Ω), ∀β ∈ ℕ3 : 2 ≤ |β| ≤ ℓ},

which is a Hilbert space with its natural norm ‖ ⋅ ‖ℓ,ν;Ω.

Theorem 6.2. In addition to the assumptions of Theorem6.1, assume thatωe ≤
π
2 , for all

edge e ofΩ and that λ ̸= 1
2 , for all λ ∈ Λc and all corners c ofΩ. Then for any f1, f2 ∈ L2(Ω),

𝕊k,s(f1, f2) can be decomposed as follows:

𝕊k,s(f1, f2) = (ER,HR) + ∑
c∈𝒞
∑

λ∈Λc∩(−
1
2 ,

1
2 )

κc,λr
λ
c (φE,c,λ(ϑc),φH ,c,λ(ϑc)), (6.2)

with (ER,HR) ∈ H2(Ω)2, 𝒞 is the set of corners of Ω, (rc, ϑc) are the spherical coordinates
centred at c, κc,λ is a constant and φE,c,λ, φH ,c,λ belongs to H2(Gc). Furthermore, we will
have

‖(ER,HR)‖2,Ω + ∑
c∈𝒞
∑

λ∈Λc :0<λ<
1
2

|κc,λ| ≲ (1 + k
1+α)‖(f1, f2)‖Ω. (6.3)

In particular it holds 𝕊k,s(f1, f2) ∈ H2,ν(Ω)6, for all ν > 2 − tΩ with

‖𝕊k,s(f1, f2)‖2,ν;Ω ≲ (1 + k
1+α)‖(f1, f2)‖Ω. (6.4)

Proof. Since there is no edge singular exponent in the interval [0, 1], the results of Sec-
tion 4 and of Section 8.2 of [28] (global regularity results in weighted Sobolev spaces
for elliptic systems on domains with point singularities) allow to show that the split-
ting (6.2) and the estimate (6.3) hold. The regularity 𝕊k,s(f1, f2) ∈ H2,ν(Ω)6, for all ν >
2 − tΩ and the estimate (6.4) directly follow from the fact that rλc (φE,c,λ(ϑc),φH ,c,λ(ϑc))
belongs to H2,ν(Ω)6, for all ν > 2 − tΩ.
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Finally, still in the absence of edge singularities, we want to improve the previous
result for a regular part almost in H3, namely we prove the next result.

Theorem 6.3. Under the assumptions of Theorem 6.2, for any f1, f2 ∈ L2(Ω), 𝕊k,s(f1, f2)
can be decomposed as follows:

𝕊k,s(f1, f2) = 𝕊0,s(f1, f2) + (RE,reg,RH ,reg) + (RE,sing,RH ,sing), (6.5)

with 𝕊0,s(f1, f2) ∈ H2,ν(Ω)6, for any ν > 2 − tΩ, satisfying

‖𝕊0,s(f1, f2)‖2,ν;Ω ≲ ‖(f1, f2)‖Ω, (6.6)

(RE,reg,RH ,reg) ∈ H3−ε(Ω)2 and (RE,sing,RH ,sing) ∈ H3,ν0 (Ω)6 (for shortness their depen-
dence in s is skipped), for any ε > 0 and any ν0 > 3 − tΩ, such that

‖(RE,reg,RH ,reg)‖3−ε,Ω + ‖(RE,sing,RH ,sing)‖3,ν0 ;Ω ≲ (1 + k
2+α)‖(f1, f2)‖Ω. (6.7)

Proof. In a first step, we split up (E,H) := 𝕊k,s(f1, f2) (see [10] for a similar approach in
domains with a smooth boundary) as follows:

𝕊k,s(f1, f2) = 𝕊0,s(f1, f2) + (RE ,RH ), (6.8)

where the remainder (RE ,RH ) ∈ V (for shortness it dependence in s is skipped) satis-
fies

a0,s((RE ,RH ), (E
󸀠,H󸀠)) = k2 ∫

Ω

(E ⋅ Ē󸀠 +H ⋅ H̄󸀠) dx (6.9)

− ik ∫
𝜕Ω

(Et ⋅ Ē
󸀠
t +Ht ⋅ H̄

󸀠
t) dσ, ∀(E

󸀠,H󸀠) ∈ V.

By Theorem 3.5, the existence and uniqueness of 𝕊0,s(f1, f2) and of (RE ,RH ) are guar-
anteed. Moreover from the estimate (6.4) (with k = 0), we see that 𝕊0,s(f1, f2) belongs
toH2,ν(Ω)6, for any ν > 2− tΩ and that the estimate (6.6) holds. A similar result is valid
for (RE ,RH ), but we are interested in an improved regularity. More precisely, we want
to show that

(RE ,RH ) = (RE,reg,RH ,reg) + (RE,sing,RH ,sing), (6.10)

with (RE,reg,RH ,reg) and (RE,sing,RH ,sing) as stated in theTheorem. Indeedwefirst notice
that the volumic term in the right-hand side of (6.9) has the appropriate regularity
to obtain a decomposition of (RE ,RH ) into a regular part in H3−ε(Ω)2 and a singular
(corner) part. Unfortunately, this is not the case for the boundary term, because (E,H)
is not in H2(Ω)2, but due to its splitting (6.2), we can use a lifting of the singular part.
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 325

More precisely by using Lemma 6.1.13 of [28], for all corners c, and all λ ∈ ⋂(− 12 ,
1
2 ),

there exists a field (Ec,λ,Hc,λ) in the form

(Ec,λ,Hc,λ) = r
1+λ
c

κ(λ)
∑
ℓ=0

φc,λ,ℓ(ϑc)(ln rc)
ℓ,

with κ(λ) ∈ ℕ and φc,λ,ℓ ∈ H3−ε(Gc) such that

{{{{{{{{{{{{
{{{{{{{{{{{{
{

Lk,s(Ec,λ) = 0
Lk,s(Hc,λ) = 0

} in Ξc

divEc,λ = 0
divHc,λ = 0

T(Ec,λ,Hc,λ) = 0
B0(Ec,λ,Hc,λ) = 2φE,c,λ,t

}}}}}}
}}}}}}
}

on 𝜕Ξc.

Hence for any corner c by fixing a smooth cut-off function ηc equal to 1 near c and
equal to 0 near the other corners, we introduce

(R̃E , R̃H ) = (RE ,RH ) − ik ∑
c∈𝒞
∑

λ∈Λc∩(−
1
2 ,

1
2 )

κc,ληc(Ec,λ,Hc,λ), (6.11)

that still belongs to V and is solution of

a0,s((R̃E , R̃H ), (E
󸀠,H󸀠)) = k2 ∫

Ω

(E ⋅ Ē󸀠 +H ⋅ H̄󸀠) dx (6.12)

− ikF(E󸀠,H󸀠), ∀(E󸀠,H󸀠) ∈ V,

where

F(E󸀠,H󸀠) = ∫
𝜕Ω

(Et ⋅ Ē
󸀠
t +Ht ⋅ H̄

󸀠
t) dσ − ∑

c∈𝒞
∑

λ∈Λc∩(−
1
2 ,

1
2 )

κc,λa0,s(ηc(Ec,Hc), (E
󸀠,H󸀠))

= ∫
𝜕Ω

(ER,t ⋅ Ē
󸀠
t +HR,t ⋅ H̄

󸀠
t) dσ

+ ∑
c∈𝒞
∑

λ∈Λc∩(−
1
2 ,

1
2 )

κc,λ ∫
𝜕Ω

rλc (1 − ηc)(φE,c,λ,t ⋅ Ē
󸀠
t + φH ,c,λ,t ⋅ H̄

󸀠
t) dσ

− ∑
c∈𝒞
∑

λ∈Λc∩(−
1
2 ,

1
2 )

κc,λ ∫
Ω

(Lk,s(ηcEc,λ) ⋅ Ē
󸀠 + Lk,s(ηcHc,λ) ⋅ H̄

󸀠) dx.

Since (1 − ηc)φE,c,λ,t, (1 − ηc)φH ,c,λ,t, Lk,s(ηcEc,λ), Lk,s(ηcHc,λ) are sufficiently regular, by
the shift theorem, we deduce that (R̃E , R̃H ) admits a decomposition into a regular part
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in H3−ε(Ω)2 for any ε > 0 and a singular part that corresponds to corner singularities,
namely

(R̃E , R̃H ) = (RE,reg,RH ,reg) + ∑
c∈𝒞

∑
λ∈Λc∩(−

1
2 ,

3
2−ε)

κ󸀠λ,cS
λ
c , (6.13)

where (RE,reg,RH ,reg) ∈ H3−ε(Ω)2, Sλc is the singular function associated with λ, and
κ󸀠λ,c ∈ ℂ. Furthermore, we have the estimate

‖(RE,reg,RH ,reg)‖3−ε,Ω + ∑
c∈𝒞

∑
λ∈Λc∩(−

1
2 ,

3
2−ε)

|κ󸀠λ,c| ≲ k
2‖𝕊k,s(f1, f2)‖Ω

+ k‖(ER,HR)‖2,Ω + k ∑
c∈𝒞
∑

λ∈Λc∩(−
1
2 ,

1
2 )

|κc,λ|.

Hence by the stability estimate (5.1) and the estimate (6.3), we get

‖(RE,reg,RH ,reg)‖3−ε,Ω + ∑
c∈𝒞

∑
λ∈Λc∩(−

1
2 ,

3
2−ε)

|κ󸀠λ,c| ≲ (1 + k
2+α)‖(f1, f2)‖0,Ω. (6.14)

Coming back to the definition (6.11) of (R̃E , R̃H ) and using its splitting (6.13), we find
the decomposition (6.10) of (RE ,RH ) with

(RE,sing,RH ,sing) = ik ∑
c∈𝒞
∑

λ∈Λc∩(−
1
2 ,

1
2 )

κc,ληc(Ec,λ,Hc,λ) + ∑
c∈𝒞

∑
λ∈Λc∩(−

1
2 ,

3
2−ε)

κ󸀠λ,cS
λ
c ,

that clearly belongs to H3,ν0 (Ω)6 for any ν0 > 3 − tΩ, with the estimate

‖(RE,sing,RH ,sing)‖3,nu0 ;Ω ≲ k ∑
λ∈Λc∩(−

1
2 ,

1
2 )

|κc,λ| + ∑
c∈𝒞

∑
λ∈Λc∩(−

1
2 ,

3
2−ε)

|κ󸀠λ,c|.

Using the estimates (6.3) and (6.14), we conclude that (6.7) is valid.

Obviously, the same regularity results are valid for the solution (E∗,H∗) = 𝕊∗k,s(F,G)
of the adjoint problem

ak,s((E
󸀠,H󸀠), (E∗,H∗)) = ∫

Ω

(F̄ ⋅ E󸀠 + Ḡ ⋅H󸀠), ∀(E󸀠,H󸀠) ∈ V. (6.15)

Indeed as

ak,s((E
󸀠,H󸀠), (E∗,H∗)) = ak,s(Ē

∗, Ē󸀠) + ak,s(H̄
∗, H̄󸀠) + ik ∫

𝜕Ω

(Ē∗t ⋅ E
󸀠
t + H̄
∗
t ⋅H
󸀠
t) dσ,

we deduce that

(Ē∗, H̄∗) = 𝕊k,s(F̄, Ḡ).
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6.2 Wavenumber explicit error analyses

With the above regularity results from Theorems 6.1 or 6.2 in hands, we can perform
some error analyses following a standard approach (see [31, Chapter 8] and [32, Sec-
tion 4]), the differences with these references are the loss of regularity and/or the use
of refined meshes. The situation from Theorem 6.3 is different and uses similar ideas
than in [10].

6.2.1 ℙ1-elements with regular meshes

We start with the simplest case where we approximateV by a subspacemade of piece-
wise polynomials of degree 1 on a regular (in the Ciarlet sense) mesh 𝒯h of Ω made of
tetrahedra, namely we take

Vh := V ∩ ℙ1,h,

where

ℙ1,h := {(Eh,Hh) ∈ L
2(Ω)2 : Eh|T ,Hh|T ∈ (ℙ1(T))

3, ∀T ∈ 𝒯h}.

At this stage, a finite element approximation of (E,H) = 𝕊k,s(f1, f2) ∈ Vwith f1, f2 ∈
L2(Ω) consists in looking for (Eh,Hh) = 𝕊k,s,h(f1, f2) ∈ Vh solution of

ak,s((Eh,Hh); (E
󸀠,H󸀠)) = ∫

Ω

(f1 ⋅ Ē
󸀠
h + f1 ⋅ H̄

󸀠
h), ∀(E

󸀠
h,H
󸀠
h) ∈ Vh. (6.16)

To analyse the existence of such a solution 𝕊k,s,h(f1, f2) and the error between this ap-
proximated solution and 𝕊k,s(f1, f2), according to a general principle (see, for instance,
[32, 33] for the Helmholtz equation), we introduce the adjoint approximability

η(Vh) = sup
(F,G)∈L2(Ω)2\{(0,0)}

inf
(Uh ,Vh)∈Vh

‖𝕊∗k,s(F,G) − (Uh,Vh)‖k
‖(F,G)‖Ω

.

By Theorem 4.2 of [32] (that directly extends to our setting), the existence and unique-
ness of a solution to (6.16) is guaranteed if kη(Vh) is small enough (stated precisely
below).

To show such a result, we will use the standard Lagrange interpolant. Namely,
for any (E,H) ∈ Ht(Ω)2, with t > 3

2 , by the Sobolev embedding theorem, its Lagrange
interpolant Ih(E,H) (defined as the unique element of ℙ1,h that coincides with (E,H)
at the nodes of the triangulation) has a meaning. If furthermore (E,H) belongs to V,
then Ih(E,H) will be also in V, hence in Vh, since the normal vector is constant along
the faces of Ω.

Recall that for any t > 3
2 , we also have the error estimate

‖(E,H) − Ih(E,H)‖ℓ,Ω ≲ h
t−ℓ‖(E,H)‖t,Ω, (6.17)
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for ℓ = 0 or 1, see [12, Theorem 3.2.1] in the case t ∈ ℕ and easily extended to non-
integer t.

These estimates directly allow to bound η(Vh).

Lemma 6.4. In addition to the assumptions of Theorem 6.1, assume that tΩ >
3
2 . Then

for all t ∈ ( 32 , tΩ) and all k ≥ k0, we have

η(Vh) ≲ k
1+αht−1(1 + kh). (6.18)

Proof. Fix an arbitrary datum (F,G) ∈ L2(Ω)2 and denote (E∗,H∗) = 𝕊∗k,s(F,G). Then
owing to (6.17), we have
󵄩󵄩󵄩󵄩(E
∗,H∗) − Ih(E

∗,H∗)󵄩󵄩󵄩󵄩k ≲ k
󵄩󵄩󵄩󵄩(E
∗,H∗) − Ih(E

∗,H∗)󵄩󵄩󵄩󵄩0,Ω +
󵄩󵄩󵄩󵄩(E
∗,H∗) − Ih(E

∗,H∗)󵄩󵄩󵄩󵄩1,Ω
≲ (kht + ht−1)󵄩󵄩󵄩󵄩(E

∗,H∗)󵄩󵄩󵄩󵄩t,Ω.

The estimate (6.1) allows to obtain the result.

Corollary 6.5. Under the assumptions of Lemma 6.4, for any fixed t ∈ ( 32 , tΩ), there exists
C > 0 (small enough and depending only on Ω and t) such that if

k
2+α
t−1 h ≤ C, (6.19)

then for all k ≥ k0 and all f1, f2 ∈ L2(Ω), problem (6.16) has a unique solution 𝕊k,s,h(f1, f2)
and the following error estimate holds:

‖𝕊k,s(f1, f2) − 𝕊k,s,h(f1, f2)‖k ≲ k
1+αht−1. (6.20)

Proof. We first notice that the assumption (6.19) is equivalent to

k2+αht−1 ≤ Ct−1

and also implies that

kh ≤ C,

since t ≤ 2. As (6.18) means that there exists C0 > 0 (independent of k, s, and h) such
that

kη(Vh) ≤ C0k
2+αht−1(1 + kh),

we deduce that

kη(Vh) ≤ C0k
2+αht−1(1 + kh) ≤ C0C

t−1(1 + C).

Asmentioned before, the existence of 𝕊k,s,h(f1, f2) then follows fromTheorem4.2 of [32]
if

C0C
t−1(1 + C) ≤ 1

4Cc
,

where Cc is the continuity constant of ak,s (that here is equal to max{1, s1}).
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 329

Now, we use the arguments from Theorem 4.2 of [32]. Namely, we notice that

ℜak,s((U,W), (U,W)) ≥ min{1, s0}‖(U,W)‖
2
k − 2k

2(‖U‖2Ω + ‖W‖
2
Ω),

where for shortness wewrite (U,W) = 𝕊k,s(f1, f2)−𝕊k,s,h(f1, f2). Therefore, by (6.15), one
has

ℜak,s((U,W), (U,W) + 2k
2𝕊∗k,s(U,W)) = ℜak,s((U,W), (U,W))

+ 2k2ℜak,s((U,W), 𝕊
∗
k,s(U,W))

= ℜak,s((U,W), (U,W)) + 2k
2(‖U‖2Ω + ‖W‖

2
Ω),

and by the previous estimate we deduce that

min{1, s0}‖(U,W)‖
2
k ≤ ℜak,s((U,W), (U,W) + 2k

2𝕊∗k,s(U,W)).

By Galerkin orthogonality, we can transform the right-hand side of this estimate as
follows:

ℜak,s((U,W), (U,W) + 2k
2𝕊∗k,s(U,W)) = ℜak,s((U,W), 𝕊k,s(f1, f2) − (Yh,Zh))

+ 2k2ℜak,s((U,W), 𝕊
∗
k,s(U,W) − (Uh,Wh)),

for any (Uh,Wh), (Yh,Zh) ∈ Vh. By the continuity of the sesquilinear formawith respect
to the norm ‖ ⋅ ‖k, the previous estimate and identity yield

‖(U,W)‖2k ≲ ‖(U,W)‖k(‖𝕊k,s(f1, f2) − (Yh,Zh)‖k + k
2‖𝕊∗k,s(U,W) − (Uh,Wh)‖k).

As (Uh,Wh) and (Yh,Zh) are arbitrary in Vh, by taking the infimum, we deduce that

‖(U,W)‖k ≲ inf
(Yh ,Zh)∈Vh

‖𝕊k,s(f1, f2) − (Yh,Zh)‖k + k
2η(Vh)‖(U,W)‖Ω

≲ inf
(Yh ,Zh)∈Vh

‖𝕊k,s(f1, f2) − (Yh,Zh)‖k + kη(Vh)‖(U,W)‖k .

Hence for kη(Vh) small enough, we deduce that

‖(U,W)‖k ≲ inf
(Yh ,Zh)∈Vh

‖𝕊k,s(f1, f2) − (Yh,Zh)‖k . (6.21)

By the estimates (6.1) and (6.17), we conclude that

‖(U,W)‖k ≲ (kh
t + ht−1)k1+α = k1+αht−1(1 + kh) ≲ k1+αht−1.

Remark 6.6. The interest of considering non-divergence-free right-hand side in prob-
lem (3.5) appears in the definition of η(Vh) (and its estimate) and in the above
proof. In both cases, the problem comes from the fact that even for divergence-free
fields f1, f2, each component of 𝕊k,s,h(f1, f2) is not divergence-free. As a consequence,
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𝕊∗k,s(𝕊k,s(f1, f2) −𝕊k,s,h(f1, f2)) depends on s, but this plays no role in the estimate (6.20),
except that s has to be fixed so that the stability estimate holds. Consequently, at
least theoretically 𝕊k,s,h(f1, f2) has to be computed with such an s, even if 𝕊k,h(f1, f2) is
independent of s in case of divergence-free fields f1, f2, while practically (see below) it
is fixed by comparing k2 with the spectrum of the Laplace operator −Δ with Dirichlet
boundary condition in Ω (or an approximation of it).

Remark 6.7. For the unit cuboid, as α = 1 (see Corollary 5.8) and t can be as close as
we want to 11

6 , the condition (6.19) is mostly k
18
5 h small enough.

Remark 6.8. Let us notice that the estimate (6.21) is valid under the above assump-
tions, but if 𝕊k,s(f1, f2) belongs toHp+1(Ω)2 and polynomials of degree pwill be used to
define Vh, then the rate of convergence in h in the estimate (6.20) will be improved,
passing from ht−1 to hp.

6.2.2 ℙ1-elements with refined meshes

Here,weassume that the assumptions of Theorem6.2hold andwant to take advantage
of the regularity of 𝕊k,s(f1, f2) in H2,ν(Ω)6, for any ν > 2 − tΩ (see estimate (6.4)). More
precisely following the arguments from [30, Theorem 3.3] (see also [2]) using a family
of refined meshes 𝒯h satisfying the refined rules

hT ≲ h infx∈T
r(x)ν if T is far away from the corners of Ω, (6.22)

hT ≲ h
1

1−ν if T has a corners of Ω as vertex, (6.23)

with a fixed but arbitrary ν ∈ (2 − tΩ, 1) (as close as we want from 2 − tΩ), we have that

‖(E,H) − Ih(E,H)‖ℓ,Ω ≲ h
2−ℓ‖(E,H)‖2,ν;Ω,

for ℓ = 0 or 1. Consequently, as in the previous subsection, for Vh build on such
meshes, there exists a positive constant C (independent of k, s and h) such that if

k2+αh ≤ C,

then for all k ≥ k0 andall f1, f2 ∈ L2(Ω), problem (6.16) has aunique solution𝕊k,s,h(f1, f2)
and the following error estimate holds:

‖𝕊k,s(f1, f2) − 𝕊k,s,h(f1, f2)‖k ≲ k
1+αh. (6.24)

6.2.3 ℙ2-elements with refined meshes

Under the assumptions of Theorem 6.2, we can improve the previous orders of con-
vergence and reduce the constraint between k and h. For those purposes, we use the
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splitting (6.8) of 𝕊k,s(f1, f2) and the estimates (6.6) and (6.7) (recalling (6.10)). Then as
in the previous subsection, we need to use a family of refinedmeshes 𝒯h satisfying the
refined rules:

hT ≲ h infx∈T
r(x)

ν0
2 if T is far away from the corners of Ω, (6.25)

hT ≲ h
2

2−ν0 if T has a corners of Ω as vertex, (6.26)

with a fixed but arbitrary ν0 ∈ (3− tΩ, 2). In such a situation, again by (6.17) and by [30,
Theorem 3.3], we have

‖(RE,reg,RH ,reg) − Ih(RE,reg,RH ,reg)‖ℓ,Ω ≲ h
3−ε−ℓ‖(RE,reg,RH ,reg)‖3−ε,Ω, (6.27)

‖(RE,sing,RH ,sing) − Ih(RE,sing,RH ,sing)‖ℓ,Ω ≲ h
3−ℓ‖(RE,sing,RH ,sing)‖3,ν0 ;Ω, (6.28)

for ℓ = 0 or 1.
Let us now show that (6.25) (resp., (6.26)) guarantees that (6.22) (resp., (6.23))

holds with ν = ν0 − 1. In the first case, we simply notice that

r(x)
ν0
2 = r(x)

ν+1
2

and, therefore,

r(x)
ν+1
2 ≲ r(x)ν

if and only if

r(x)ν+1 ≲ r(x)2ν .

This last estimate is valid for any x ∈ T because ν belongs to (0, 1) and r(x) is bounded.
The second implication is a simple consequence of the fact that

h
2

2−ν0 = h
2
1−ν ≲ h

1
1−ν .

Since our family of meshes then satisfies (6.22) and (6.23) with ν = ν0 − 1 > 2 − tΩ, we
deduce that

‖𝕊0(f1, f2) − Ih𝕊0(f1, f2)‖ℓ,Ω ≲ h
2−ℓ‖𝕊0(f1, f2)‖2,ν;Ω, (6.29)

for ℓ = 0 or 1. With such estimates in hand, we can estimate the adjoint approximabil-
ity.

Lemma 6.9. For Vh build on meshes satisfying (6.25) and (6.26), we have

η(Vh) ≲ (1 + kh)(h + k
3h2−ε). (6.30)
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Proof. Fix an arbitrary datum (F,G) ∈ L2(Ω)2, we denote (E∗,H∗) = 𝕊∗k,s(F,G). Then
we use its splitting

(E∗,H∗) = 𝕊∗0(F,G) + (R
∗
E,reg,R

∗
H ,reg) + (R

∗
E,sing,R

∗
H ,sing).

Owing to (6.27), (6.28) and (6.29), we have

󵄩󵄩󵄩󵄩(E
∗,H∗) − Ih(E

∗,H∗)󵄩󵄩󵄩󵄩k ≲ (1 + kh)h‖𝕊0(f1, f2)‖2,ν;Ω
+ (1 + kh)h2−ε󵄩󵄩󵄩󵄩(R

∗
E,reg,R

∗
H ,reg)
󵄩󵄩󵄩󵄩3−ε,Ω

+ (1 + kh)h2󵄩󵄩󵄩󵄩(RE,sing,RH ,sing)
󵄩󵄩󵄩󵄩3,ν0 ;Ω.

The estimates (6.6) and (6.7) allow to obtain the result.

Consequently, as in the previous subsection, for Vh build on such meshes, there
exists a positive constant C (independent of k, s and h) such that if

k4h2−ε ≤ C,

then for all k ≥ k0 andall f1, f2 ∈ L2(Ω), problem (6.16) has aunique solution𝕊k,s,h(f1, f2)
with the error estimate

‖𝕊k,s(f1, f2) − 𝕊k,s,h(f1, f2)‖k ≲ k
3h2−ε.

Remark 6.10. Note that the impedance boundary conditions are imposed as essential
boundary conditions. As we are dealing with polyhedral domains, Lagrange elements
can be used to construct conforming subspaces Vh. The extension to curved domains
seems to be difficult, but a penalisation technique can be used [42].

6.3 Some numerical tests

For the sake of simplicity, we restrict ourselves to the TE/TH polarization of the prob-
lem (3.7). In other words, we take

Ω = D × ℝ,

where D is a two-dimensional polygon and assume that the solution of our problem is
independent of the third variable. In such a case, the original problem splits up into
a TE polarization problem in (E1,E2,H3) in D, and a TH polarization one in (H1,H2,E3)
in D, whose variational formulations are fully similar to (3.3). Furthermore, the singu-
larities of such problems correspond to the edge singularities of the original one.

We first use a toy experiment in the unit square D = (0, 1)2 to illustrate our results.
In such a case, as exact solution, we take

E1(x1, x2) = −ℓπ cos(ℓπx1) sin(ℓπx2),
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E2(x1, x2) = ℓπ sin(ℓπx1) cos(ℓπx2),
H3(x1, x2) = sin(ℓπx1) sin(ℓπx2),

where ℓ ∈ ℕ∗. With such a choice, we notice that (E1,E2) is divergence-free, that

ΔE1 + k
2E1 = ΔE1 + k

2E2 = ΔH3 + k
2H3 = 0,

with k2 = 2ℓ2π2 and that they satisfy the impedance boundary condition. We then
compute the right-hand side of (3.3) accordingly (where only a boundary term occurs).
In our numerical experiments, we have chosen either ℓ = 2, 5, 8, 10, 15 or 29 and
s = 14.3. This choice of s is made because it yields satisfactory numerical results, but
it is also in accordance with the condition that − k

2

s is different from the eigenvalues
of the Laplace operator Δ with Dirichlet boundary conditions in D, which in this case
means that

k2

s
̸= (ℓ21 + ℓ

2
2)π

2, (6.31)

for all positive integers ℓ1, ℓ2. Indeed, in the first case ℓ = 2, the ratio k2
s is smaller

than the smallest eigenvalue 2π2, while in the other cases, it is strictly between two
eigenvalues.

In Figures 9.1–9.3, we have depicted the different orders of convergence for differ-
ent values of h, k and p = 1, 2, and 4. From these figures, we see that if polynomials of
order p are used, then in the asymptotic regime, the convergence rate is p for h small
enough as theoretically expected, since the solution is smooth (see Remark 6.8).

Figure 9.1: Rates of convergence for p = 1, k = 2√2π or 8√2π (U = 𝕊k,s(f1, f2), Uh,p = 𝕊k,s,h(f1, f2),
Wh,p = ℙh𝕊k,s(f1, f2)).
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Figure 9.2: Rates of convergence for p = 2, k = 5√2π or 10√2π.

Figure 9.3: Rates of convergence for p = 4, k = 15√2π or 29√2π.

The secondmain result from Sections 6.2.2 and 6.2.3 states that if kp+2hp ≲ 1 with p = 1
or 2 (up to ε for p = 2), then

‖𝕊k,s(f1, f2) − 𝕊k,s,h(f1, f2)‖k ≲ ‖𝕊k,s(f1, f2) − ℙh𝕊k,s(f1, f2)‖k , (6.32)

where ℙh is the orthogonal projection on Vh for the inner product associated with the
norm ‖ ⋅ ‖k, namely for (U,V) ∈ V, ℙh(U,V) is the unique solution of

(ℙh(U,V), (U
󸀠
h,V
󸀠
h))k = ((U,V), (U

󸀠
h,V
󸀠
h))k , ∀(U

󸀠
h,V
󸀠
h) ∈ Vh,
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 335

where

((U,V), (U󸀠,V󸀠))k = ∫
Ω

(curlU ⋅ curl Ū󸀠 + sdivUdiv Ū󸀠 + k2U ⋅ Ū󸀠) dx

+ ∫
Ω

(curlV ⋅ curl V̄󸀠 + sdivVdiv V̄󸀠 + k2V ⋅ V̄󸀠) dx.

In order to see if this bound is sharpornot,we compute𝕊k,s,h(f1, f2)andℙh𝕊k,s(f1, f2)
for different values of h, p and k. For each k and p, we denote by h⋆(k) the greatest
value h0 such that

‖𝕊k,s(f1, f2) − 𝕊k,s,h(f1, f2)‖k ≤ 2‖𝕊k,s(f1, f2) − ℙh𝕊k,s(f1, f2)‖k , ∀h ≤ h0. (6.33)

The value of h⋆(k) for a given k is obtained by inspecting the ratio

‖𝕊k,s(f1, f2) − 𝕊k,s,h(f1, f2)‖k
‖𝕊k,s(f1, f2) − ℙh𝕊k,s(f1, f2)‖k

.

Condition (6.33) states that the finite element solution must be quasi optimal in the
‖ ⋅ ‖k norm, uniformly in k (with the arbitrary constant 2).

The graph of h⋆(k) is represented in Figure 9.4(a), 9.4(b) and 9.4(c) for ℙ1, ℙ2 and
ℙ4 elements, respectively.Weobserve that in both casesh⋆(k) ∼ k−1−1/p,which is better
than the condition kp+2hp ≲ 1 that would furnish h⋆(k) ∼ k−1−2/p. Indeed, it means that
quasi-optimality in the sense of (6.33) is achieved under the condition that h ≤ h⋆(k) ∼
k−1−1/p, which is equivalent to kp+1hp ≤ kp+1[h⋆(k)]p ≲ 1, that is better than kp+2hp ≲ 1.
We thus conclude that our stability condition seems to be not sharp and can probably
be improved. Note that our experiments indicate that this stability condition remains
valid for values of p larger than the theoretical one, that is, here equal to 2.

As a second example, we take on the square (−1, 1)2 the exact solution given by

E1(x1, x2) = x2e
ikx1 ,

E2(x1, x2) = −x1e
ikx1 ,

H3(x1, x2) = λimpe
ikx1 ,

that satisfies the homogeneous impedance boundary condition

H3 − λimpEt = 0 on 𝜕D.

We have computed the numerical approximation of this solution for k = 30, the
choice s = 14.3 (again with this choice, k

2

s is smaller than the smallest eigenvalue 2π2),
and for different values of λimp, namely we have chosen λimp = 1, 10, 50 and 100. In
Figure 9.5, we have depicted the different orders of convergence for p = 1, 2 and 4 and
different values of h. Again since the solution is regular, the rate of convergence p is
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Figure 9.4: Asymptotic range of h∗(k) for p = 1, 2,4.

observed in the asymptotic regime and seems not to be affected by the variation of
λimp.

Finally, we have tested the casewhen a corner singularity appears. Namely, on the
L-shaped domain L = (−1, 1)2 \ ((0, 1) × (−1,0)), we take as exact solution (written in
polar coordinates (r, θ) centred at (0,0))

E(r, θ) = ∇(r
4
3 sin(4θ

3
)eikr),

H3(r, θ) = 0.

This solution exhibits the typical edge singularity of our Maxwell system described in
Section 4.2.

This solution does not satisfies the homogeneous impedance boundary condition
(with λimp = 1), hence we have imposed to our numerical solutions (Eh,H3h) to satisfy

H3h(v) − Eh,t(v) = −Et(v),
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9 The time-harmonic Maxwell equations with impedance boundary conditions | 337

Figure 9.5: Rates of convergence for λimp = 1, 10, 50, 100 with p = 1, 2,4.

at all nodes of the boundary of L. The convergence rates for k = 1, 50 and 100 are
presented in Figures 9.6 and 9.7 for different values of h and p. There we observe, in
the asymptotic regime, that for k = 1, the use of quasi-uniformmeshes affects the rate
of convergence since for p = 1 it is equal to 1

3 , while the use of refined meshes restores
the optimal rate of convergence 1 (as theoretically expected). On the contrary for k = 50
or 100, we see, again in the asymptotic range, that the rate of convergence is p. This
observation is in accordancewith a recent result proved in [11] for Helmholtz problems
in polygonal domains, which shows that in high frequency the dominant part of the
solution is the regular part of the solution (which in our case is zero). Note that we
have also chosen s = 14.3. Indeed for k = 1, the spectral condition on k2

s holds since
the smallest eigenvalue of the Laplace operator with Dirichlet boundary conditions in
L is approximatively equal to 9.6387; see [18, 41].Wearenot able to check if the spectral
condition is valid for k = 50 or 100 since the approximated values of the eigenvalues of
the Laplace operatorwithDirichlet boundary conditions in L seem to be only available
up to 97 (see [41, Table 1]), but since our numerical results are satisfactory, we suppose
that it is satisfied.
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338 | S. Nicaise and J. Tomezyk

Figure 9.6: Rates of convergence for the singular solution in the L-shaped domain for k = 1 with
uniform and refined meshes for p = 1.

Figure 9.7: Rates of convergence for the singular solution in the L-shaped domain for k = 50 or 100
with p = 1 (left) and p = 2 (right).

Note that our numerical tests are performed with the help of XLife++, a FEM library
developed in C++ by P. O. E.M. S. (Ensta) and I. R.M. A. R. (Rennes) laboratories.
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Frank Osterbrink and Dirk Pauly
10 Time-harmonic electro-magnetic scattering

in exterior weak Lipschitz domains with
mixed boundary conditions

Abstract: This paper treats the time-harmonic electro-magnetic scattering or radiation
problem governed by Maxwell’s equations, i. e.,

− rotH + iωεE = F in Ω, E × ν = 0 on Γ1,
rotE + iωμH = G in Ω, H × ν = 0 on Γ2,

where ω ∈ ℂ \ (0) and Ω ⊂ ℝ3 is an exterior weak Lipschitz domain with boundary Γ
divided into two disjoint parts Γ1 and Γ2. We will present a solution theory using the
framework of polynomially weighted Sobolev spaces for the rotation and divergence.
For the physically interesting case ω ∈ ℝ \ (0), we will show a Fredholm alternative
type result to hold using the principle of limiting absorption introduced by Eidus in
the 1960s. The necessary a priori estimate and polynomial decay of eigenfunctions
for the Maxwell equations will be obtained by transferring well-known results for the
Helmholtz equation using a suitable decomposition of the fields E and H. The crucial
point for existence is a local version of Weck’s selection theorem, also called Maxwell
compactness property.

Keywords:Maxwell equations, radiating solutions, exterior boundary valueproblems,
polynomial decay, mixed boundary conditions, weighted Sobolev spaces, Hodge–
Helmholtz decompositions

MSC 2010: 35Q60, 78A25, 78A30

1 Introduction
The equations that describe the behavior of electro-magnetic vector fields in some
space-time domain I × Ω ⊂ ℝ × ℝ3, first completely formulated by J. C. Maxwell in
1864, are

− rotH + 𝜕t D = J, rotE + 𝜕t B = 0, in I × Ω,
divD = ρ, divB = 0, in I × Ω,
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342 | F. Osterbrink and D. Pauly

where E, H are the electric, respectively, magnetic field, D, B represent the displace-
ment current and magnetic induction and J, ρ describe the current density, respec-
tively, the charge density. Excluding, e. g., ferromagnetic, respectively, ferroelectric
materials, the parameters linking E andH withD and B are often assumed to be of the
linear form D = εE and B = μH, where ε and μ are matrix-valued functions describing
the permittivity and permeability of the medium filling Ω. Here, we are especially in-
terested in the case of an exterior domain Ω ⊂ ℝ3, i. e., a connected open subset with
compact complement. Applying the divergence to the first two equations, we see that
the latter two equations are implicitly included in the first two and may be omitted.
Hence, neglecting the static case, Maxwell’s equations reduce to

− rotH + 𝜕t (εE) = F, rotE + 𝜕t (μH) = G, in I × Ω,

with arbitrary right-hand sides F, G. Among the wide range of phenomena described
by these equations one important case is the discussion of “time-harmonic” electro-
magnetic fields where all fields vary sinusoidally in time with frequency ω ∈ ℂ \ (0),
i. e.,

E(t, x) = eiωtE(x), H(t, x) = eiωtH(x), G(t, x) = eiωtG(x), F(t, x) = eiωtF(x) .

Substituting this ansatz into the equations (or using Fourier transformation in time)
and assuming that ε and μ are time-independent we are lead to what is called “time-
harmonic Maxwell’s equations”:

rotE + iωμH = G, − rotH + iωεE = F, in Ω . (1.1)

This system equipped with suitable boundary conditions describes, e. g., the scatter-
ing of time-harmonic electro-magnetic waves which is of high interest in many appli-
cations like geophysics, medicine, electrical engineering, biology and many others.

First existence results concerningboundary valueproblems for the time-harmonic
Maxwell system in bounded and exterior domains have been given by Müller [13, 12].
He studied isotropic and homogeneous media and used integral equation methods.
Using alternating differential forms, Weyl [29] investigated these equations on Rie-
mannian manifolds of arbitrary dimension, while Werner [28] was able to transfer
Müller’s results to the case of inhomogeneous but isotropic media. However, for gen-
eral inhomogeneous anisotropic media and arbitrary exterior domains, boundary
integral methods are less useful since they heavily depend on the explicit knowledge
of the fundamental solution and strong assumptions on boundary regularity. That is
why Hilbert space methods are a promising alternative. Unfortunately, Maxwell’s
equations are nonelliptic, hence it is in general not possible to estimate all first
derivatives of a solution. In [9], Leis could overcome this problem by transforming
the boundary value problem for Maxwell’s system into a boundary value problem for
the Helmholtz equation, assuming that the medium filling Ω, is inhomogeneous and
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anisotropic within a bounded subset of Ω. Nevertheless, he still needed boundary
regularity to gain equivalence of both problems. But also for nonsmooth boundaries
Hilbert space methods are expedient. In fact, as shown by Leis [10], it is sufficient
that Ω satisfies a certain selection theorem, later called Weck’s selection theorem or
Maxwell compactness property, which holds for a class of boundaries much larger
than those accessible by the detour over H1 (cf. Weck [24], Costabel [2] and Picard,
Weck,Witsch [20]). See [11] for a detailedmonograph and [1] for themost recent result
and an overview. The most recent result regarding a solution theory is due to Pauly
[16] (see also [14]) and in its structure comparable to the results of Picard [18] and
Picard, Weck and Witsch [20]. While all these results above have been obtained for
full boundary conditions, in the present paper we study the case of mixed boundary
conditions. More precisely, we are interested in solving the system (1.1) for ω ∈ ℂ \ (0)
in an exterior domain Ω ⊂ ℝ3, where we assume that Γ := 𝜕Ω is decomposed into two
relatively open subsets Γ1 and its complement Γ2 := Γ \ Γ1 and impose homogeneous
boundary conditions, which in classical terms can be written as

ν × E = 0 on Γ1, ν × H = 0 on Γ2, (ν : outward unit normal). (1.2)

Conveniently, we can apply the same methods as in [15] (see also Picard, Weck and
Witsch [20], Weck and Witsch [27, 25]) to construct a solution. Indeed, most of the
proofs carry over practically verbatim. For ω ∈ ℂ \ ℝ, the solution theory is obtained
by standardHilbert spacemethods asω belongs to the resolvent set of theMaxwell op-
erator. In the case of ω ∈ ℝ \ (0), i. e., ω is in the continuous spectrum of the Maxwell
operator, we use the limiting absorption principle introduced by Eidus [4] and approx-
imate solutions toω ∈ ℝ\(0) by solutions corresponding toω ∈ ℂ\ℝ. This will be suf-
ficient to show a generalized Fredholm alternative (cf. our main result, Theorem 3.10)
to hold. The essential ingredients needed for the limit process are
– the polynomial decay of eigensolutions;
– an a priori estimate for solutions corresponding to nonreal frequencies;
– a Helmholtz-type decomposition;
– andWeck’s local selection theorem (WLST), that is,

RΓ1 (Ω) ∩ ε
−1DΓ2 (Ω) 󳨅󳨀󳨀󳨀→ L2loc(Ω) is compact.

While the first two are obtained by transferring well-known results for the scalar
Helmholtz equation to the time-harmonic Maxwell equations using a suitable de-
composition of the fields E and H, Lemma 4.1, the last one is an assumption on the
quality of the boundary. As we will see, WLST is an immediate consequence ofWeck’s
selection theorem (WST), i. e.,

RΓ1 (Θ) ∩ ε
−1DΓ2 (Θ) 󳨅󳨀󳨀󳨀→ L2(Θ) is compact,
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which holds in boundedweak Lipschitz domains Θ ⊂ ℝ3, but fails in unbounded such
as exterior domains (cf. Bauer, Pauly, Schomburg [1] and the references therein). For
strong Lipschitz-domains, see Jochmann [7] and Fernandes, Gilardis [5].

2 Preliminaries and notation
Let ℤ,ℕ, ℝ and ℂ be the usual sets of integers, natural, real and complex numbers,
respectively. Furthermore, let i be the imaginary unit, Re z, Im z and z real part, imag-
inary part and complex conjugate of z ∈ ℂ, as well as

ℝ+ := {s ∈ ℝ | s > 0}, ℂ+ := {z ∈ ℂ | Im z ≥ 0}, 𝕀 := {(2m + 1)/2 󵄨󵄨󵄨󵄨m ∈ ℤ \ (0)} .

For x ∈ ℝn with x ̸= 0 we set r(x) := |x| and ξ (x) := x/|x| (| ⋅ | :Euclidean norm in ℝn).
Moreover, U( ̃r), respectively, B( ̃r) indicate the open, respectively, closed ball of radius
̃r in ℝn centered in the origin and we define

S( ̃r) := B( ̃r) \ U( ̃r), qU( ̃r) := ℝ3 \ B( ̃r), G( ̃r, ̂r) := qU( ̃r) ∩ U( ̂r)

with ̂r > ̃r. If f : X 󳨀→ Y is a function mapping X to Y the restriction of f to a subset
U ⊂ X will be marked with f |U and 𝒟(f ), 𝒩 (f ), ℛ(f ), and supp f denote domain of
definition, kernel, range, and support of f , respectively. For Banach or Hilbert spaces
X and Y we denote by L(X, Y) and B(X, Y) the sets of linear respectively bounded linear
operators mapping X to Y. For X, Y subspaces of a normed vector space V, X+Y, X∔Y,
and X⊕Y indicate the sum, the direct sum, and the orthogonal sum of X and Y, where
in the last case we presume the existence of a scalar product ⟨ ⋅ , ⋅ ⟩V on V. Moreover,
⟨ ⋅ , ⋅ ⟩X×Y, respectively, ‖ ⋅ ‖X×Y denote the natural scalar product resp. induced norm
on X × Y. If X = Y, we often simply use the index X instead of X × X.

2.1 General assumptions and weighted Sobolev spaces

Unless stated otherwise, from now on and throughout this paper, it is assumed that
Ω ⊂ ℝ3 is an exteriorweak Lipschitz domainwithweak Lipschitz interface in the sense
of [1, Definition 2.3, Definition 2.5], which in principlemeans that Γ = 𝜕Ω is a Lipschitz-
manifold and Γ1 respectively Γ2 are Lipschitz-submanifolds of Γ. For later purposes, we
fix r0 > 0 such that ℝ3 \ Ω ⋐ U(r0) and define for arbitrary ̃r ≥ r0,

Ω( ̃r) := Ω ∩ U( ̃r) .

With rk := 2kr0, k ∈ ℕ and η̃ ∈ C
∞(ℝ) such that

0 ≤ η̃ ≤ 1, supp η̃ ⊂ (−∞, 2 − δ), η̃|(−∞,1+δ) = 1, (2.1)
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for some 0 < δ < 1, we define functions η, η̌, ηk , η̌k ∈ C
∞(ℝ3) by

η(x) := η̃(r(x)/r0) , η̌(x) := 1 − η(x) , ηk(x) := η̃(r(x)/rk) , respectively η̌k(x) := 1 − ηk(x) ,

meaning

supp η ⊂ B(r1) with η = 1 on U(r0) , supp ηk ⊂ U(rk+1) with ηk = 1 on U(rk) ,
respectively

supp η̌ ⊂ qU(r0) with η̌ = 1 on qU(r1) , supp η̌k ⊂ qU(rk) with η̌k = 1 on qU(rk+1) .

These functions will later be utilized for particular cut-off procedures.
Next, we introduce our notation for Lebesgue and Sobolev spaces needed in the

following discussion. Note that we will not indicate whether the elements of these
spaces are scalar functions or vector fields. This will be always clear from the context.
The example1

E := ∇ ln(r) ∈ H1loc(qU(1)), rotE = 0 ∈ L2(qU(1)),

ν × E|S(1) = 0, divE = r−2 ∈ L2(qU(1))

shows that a standard L2-setting is not appropriate for exterior domains. Even for
square-integrable right-hand sides, we cannot expect to find square-integrable solu-
tions. Indeed, it turns out that we have to work in weighted Lebesgue and Sobolev
spaces to develop a solution theory. With ρ := (1 + r2)1/2, we introduce for an arbitrary
domain Ω ⊂ ℝ3, t ∈ ℝ, andm ∈ ℕ

L2t (Ω) := {w ∈ L
2
loc(Ω)
󵄨󵄨󵄨󵄨 ρ

tw ∈ L2(Ω)},

Hmt (Ω) := {w ∈ L
2
t (Ω)
󵄨󵄨󵄨󵄨 ∀ |α| ≤ m : 𝜕

α w ∈ L2t (Ω)},

Hmt (Ω) := {w ∈ L
2
t (Ω)
󵄨󵄨󵄨󵄨 ∀ |α| ≤ m : 𝜕

α w ∈ L2t+|α|(Ω)},

Rt(Ω) := {E ∈ L
2
t (Ω)
󵄨󵄨󵄨󵄨 rotE ∈ L

2
t (Ω)}, Rt(Ω) := {E ∈ L

2
t (Ω)
󵄨󵄨󵄨󵄨 rotE ∈ L

2
t+1(Ω)},

Dt(Ω) := {H ∈ L
2
t (Ω)
󵄨󵄨󵄨󵄨 divH ∈ L

2
t (Ω)}, Dt(Ω) := {H ∈ L

2
t (Ω)
󵄨󵄨󵄨󵄨 divH ∈ L

2
t+1(Ω)},

where α = (α1, α2, α3) ∈ ℕ3 is a multi-index and 𝜕α w := 𝜕α11 𝜕
α2
2 𝜕

α3
3 w, rotE, and divH

are the usual distributional or weak derivatives. Equipped with the induced norms,

‖w‖2L2t (Ω) :=
󵄩󵄩󵄩󵄩󵄩ρ

tw󵄩󵄩󵄩󵄩󵄩
2
L2(Ω) ,

‖w‖2Hmt (Ω) := ∑|α|≤m
󵄩󵄩󵄩󵄩𝜕

α w󵄩󵄩󵄩󵄩
2
L2t (Ω)
,

‖w‖2Hm
t (Ω)
:= ∑
|α|≤m

󵄩󵄩󵄩󵄩𝜕
α w󵄩󵄩󵄩󵄩

2
L2t+|α|(Ω)
,

1 Although the right-hand sides 0 and r−2 are L2(qU(1))-functions, we have E = ξ/r ∉ L2(qU(1)), but
E ∈ L2−1(qU(1)).
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346 | F. Osterbrink and D. Pauly

‖E‖2Rt(Ω) := ‖E‖
2
L2t (Ω)
+ ‖rotE‖2L2t (Ω) , ‖E‖2Rt(Ω) := ‖E‖

2
L2t (Ω)
+ ‖rotE‖2L2t+1(Ω)

,

‖H‖2Dt(Ω) := ‖H‖
2
L2t (Ω)
+ ‖divH‖2L2t (Ω) , ‖H‖

2
Dt(Ω)
:= ‖H‖2L2t (Ω) + ‖divH‖

2
L2t+1(Ω)
,

they becomeHilbert spaces. As usual, the subscript “loc” respectively “vox” indicates
local square-integrability respectively bounded support. Please note, that the bold
spaces with weight t = 0 correspond to the classical Lebesque and Sobolev spaces
and for bounded domains “nonweighted” and weighted spaces even coincide:

Ω ⊂ ℝ3 bounded 󳨐⇒ ∀ t ∈ ℝ :
{{{
{{{
{

H1t (Ω) = H
1
t (Ω) = H

1
0(Ω) = H

1(Ω)

Rt(Ω) = Rt(Ω) = R0(Ω) = H(rot,Ω)

Dt(Ω) = Dt(Ω) = D0(Ω) = H(div,Ω)

Besides the usual set C̊∞(Ω) of test fields (resp., test functions), we introduce

C∞Γi (Ω) := { φ|Ω
󵄨󵄨󵄨󵄨φ ∈ C̊

∞(ℝ3) and dist(suppφ, Γi) > 0 } , i = 1, 2

to formulate boundary conditions in the weak sense:

Hmt,Γi (Ω) := C
∞
Γi (Ω)
‖⋅‖Hmt (Ω) , Rt,Γi (Ω) := C

∞
Γi (Ω)
‖⋅‖Rt(Ω) , Dt,Γi (Ω) := C

∞
Γi (Ω)
‖⋅‖Dt(Ω) ,

(2.2)
Hmt,Γi (Ω) := C

∞
Γi (Ω)
‖⋅‖Hmt (Ω) , Rt,Γi (Ω) := C

∞
Γi (Ω)
‖⋅‖Rt(Ω) , Dt,Γi (Ω) := C

∞
Γi (Ω)
‖⋅‖Dt(Ω) .

These spaces indeed generalize vanishing scalar, tangential and normal Dirichlet
boundary conditions even and in particular to boundaries for which the notion of a
normal vector may not make any sense. Moreover, 0 at the lower left corner denotes
vanishing rotation respectively divergence, e. g.,

0Rt(Ω) := {E ∈ Rt(Ω)
󵄨󵄨󵄨󵄨 rotE = 0} , 0Dt,Γ1 (Ω) := {H ∈ Dt,Γ1 (Ω)

󵄨󵄨󵄨󵄨 divH = 0} , . . . ,

and if t = 0 in any of the definitions given above, we will skip the weight, e. g.,

Hm(Ω) = Hm0 (Ω) , RΓ1 (Ω) = R0,Γ1 (Ω) , DΓ1 (Ω) = D0,Γ1 (Ω) , . . . .

Finally we set

X<s := ⋂
t<s

Xt and X>s := ⋃
t>s

Xt (s ∈ ℝ) ,

for Xt being any of the spaces above. If Ω = ℝ3 we omit the space reference, e.g.,

Hmt := H
m
t (ℝ

3) , Rt,Γ1 := Rt,Γ1 (ℝ
3) , Dt := Dt(ℝ

3) , Hmt,Γ2 := H
m
t,Γ2 (ℝ

3) , . . . .

The material parameters ε and μ are assumed to be κ-admissible in the following
sense.
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Definition 2.1. Let κ ≥ 0. We call a transformation γ κ-admissible, if
– γ : Ω 󳨀→ ℝ3×3 is an L∞-matrix field,
– γ is symmetric, i. e.,

∀E,H ∈ L2(Ω) : ⟨E , γH ⟩L2(Ω) = ⟨ γE ,H ⟩L2(Ω) ,

– γ is uniformly positive definite, i. e.,

∃ c > 0 ∀E ∈ L2(Ω) : ⟨E , γE ⟩L2(Ω) ≥ c ⋅ ‖E‖
2
L2(Ω) ,

– γ is asymptotically a multiple of the identity, i. e.,

γ = γ0 ⋅ 1 + γ̂ with γ0 ∈ ℝ+ and γ̂ = 𝒪(r−κ) as r 󳨀→ ∞.

Then ε, μ are pointwise invertible and ε−1, μ−1 defined by

ε−1(x) := (ε(x))−1 and μ−1(x) := (μ(x))−1, x ∈ Ω ,

are also κ-admissible. Moreover,

⟨ ⋅ , ⋅ ⟩ε := ⟨ ε ⋅ , ⋅ ⟩L2(Ω) and ⟨ ⋅ , ⋅ ⟩μ := ⟨ μ ⋅ , ⋅ ⟩L2(Ω)

define scalar products on L2(Ω) inducing norms equivalent to the standard ones. Con-
sequently,

L2ε(Ω) := (L
2(Ω), ⟨ ⋅ , ⋅ ⟩ε), L2μ(Ω) := (L

2(Ω), ⟨ ⋅ , ⋅ ⟩μ), and L2Λ(Ω) := L
2
ε(Ω) × L

2
μ(Ω)

are Hilbert spaces and we denote by

‖ ⋅ ‖ε , ‖ ⋅ ‖μ ‖ ⋅ ‖Λ , ⊕ε, ⊕μ, ⊕Λ, and ⊥ε, ⊥μ, ⊥Λ

the norm, the orthogonal sum and the orthogonal complement in these spaces. For
further simplification and to shorten notation, we also introduce for ε = ε0 ⋅ 1 + ε̂ and
μ = μ0 ⋅ 1 + μ̂ (recalling ξ (x) = x/r(x)) the formal matrix operators

Λ := [ε 0
0 μ
] , Λ−1 := [ε

−1 0
0 μ−1

] , Λ̂ := [ε̂ 0
0 μ̂
] ,

Λ (E,H) = (εE, μH), Λ−1 (E,H) = (ε−1E, μ−1H), Λ̂ (E,H) = (ε̂E, μ̂H),

Λ0 := [
ε0 0
0 μ0
] , Λ̃0 := [

μ0 0
0 ε0
] , Ξ := [ 0 −ξ×

ξ× 0
] ,

Λ0 (E,H) = (ε0E, μ0H), Λ̃0 (E,H) = (μ0E, ε0H), Ξ (E,H) = (−ξ × H , ξ × E),

Rot := [ 0 − rot
rot 0

] , M := iΛ−1 Rot = [ 0 −iε−1 rot
iμ−1 rot 0

] ,
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348 | F. Osterbrink and D. Pauly

Rot (E,H) = (− rotH , rotE), M (E,H) = (−iε−1 rotH , iμ−1 rotE).

We end this section with a lemma, showing that the spaces defined in (2.2) indeed
generalize vanishing scalar, tangential and normal boundary conditions.

Lemma 2.2. For t ∈ ℝ and i ∈ (1, 2), the following inclusions hold:
(a) Hmt,Γi (Ω) ⊂ H

m
t,Γi (Ω), Rt,Γi (Ω) ⊂ Rt,Γi (Ω), Dt,Γi (Ω) ⊂ Dt,Γi (Ω)

(b) ∇H1t,Γi (Ω) ⊂ 0Rt,Γi (Ω), ∇H
1
t,Γi (Ω) ⊂ 0Rt+1,Γi (Ω)

(c) rotRt,Γi (Ω) ⊂ 0Dt,Γi (Ω), rotRt,Γi (Ω) ⊂ 0Dt+1,Γi (Ω)

Additionally, we have for i, j ∈ (1, 2), i ̸= j:

H1t,Γi (Ω) =ℋ
1
t,Γi (Ω) := {w ∈ H

1
t (Ω)
󵄨󵄨󵄨󵄨 ∀Φ ∈ C

∞
Γj (Ω) : ⟨w ,divΦ ⟩L2(Ω) = −⟨∇w ,Φ ⟩L2(Ω) } ,

Rt,Γi (Ω) =ℛt,Γi (Ω) := {E ∈ Rt(Ω)
󵄨󵄨󵄨󵄨 ∀Φ ∈ C

∞
Γj (Ω) : ⟨E , rotΦ ⟩L2(Ω) = ⟨ rotE ,Φ ⟩L2(Ω) } ,

Dt,Γi (Ω) = 𝒟t,Γi (Ω) := {H ∈ Dt(Ω)
󵄨󵄨󵄨󵄨 ∀ϕ ∈ C

∞
Γj (Ω) : ⟨H , ∇ϕ ⟩L2(Ω) = −⟨divH ,ϕ ⟩L2(Ω) } ,

and

H1t,Γi (Ω) = ℋ
1
t,Γi (Ω) := {w ∈ H

1
t (Ω)
󵄨󵄨󵄨󵄨 ∀Φ ∈ C

∞
Γj (Ω) : ⟨w ,divΦ ⟩L2(Ω) = −⟨∇w ,Φ ⟩L2(Ω) } ,

Rt,Γi (Ω) = ℛt,Γi (Ω) := {E ∈ Rt(Ω)
󵄨󵄨󵄨󵄨 ∀Φ ∈ C

∞
Γj (Ω) : ⟨E , rotΦ ⟩L2(Ω) = ⟨ rotE ,Φ ⟩L2(Ω) } ,

Dt,Γi (Ω) = 𝒟t,Γi (Ω) := {H ∈ Dt(Ω)
󵄨󵄨󵄨󵄨 ∀ϕ ∈ C

∞
Γj (Ω) : ⟨H , ∇ϕ ⟩L2(Ω) = −⟨divH ,ϕ ⟩L2(Ω) } ,

where (by continuity of the L2-scalar product) we may also replace C∞Γj (Ω) by

H1s,Γj (Ω) , Rs,Γj (Ω) , Ds,Γj (Ω) resp. H1s,Γj (Ω) , Rs,Γj (Ω) , Ds,Γj (Ω) ,

with s + t ≥ 0 resp. s + t ≥ −1.

Proof. As representatives of the arguments, we show

(i) rotRt,Γ2 (Ω) ⊂ 0Dt,Γ2 (Ω) and (ii) Rt,Γ1 (Ω) =ℛt,Γ1 (Ω) .

For E ∈ rotRt,Γ2 (Ω), there exists a sequence (ℰn)n∈ℕ ⊂ C
∞
Γ2 (Ω) such that rot ℰn 󳨀→ E in

L2t (Ω). Then
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∀ϕ ∈ C̊∞(Ω) : ⟨E , ∇ϕ ⟩L2(Ω) = lim
n→∞
⟨ rot ℰn , ∇ϕ ⟩L2(Ω)

= − lim
n→∞
⟨div ( rot ℰn) ,ϕ ⟩L2(Ω) = 0 ,

hence E has vanishing divergence and (En)n∈ℕ defined by En := rot ℰn satisfies

(En)n∈ℕ ⊂ C
∞
Γ2 (Ω), En

L2t (Ω)󳨀󳨀󳨀󳨀󳨀󳨀→ E and divEn = div ( rot ℰn) = 0
L2t+1(Ω)󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 0 .

Thus E ∈ 0Dt,Γ2 (Ω), showing (i). Let us show (ii). We have Rt,Γ1 (Ω) ⊂ ℛt,Γ1 (Ω). For the
other direction, let E ∈ ℛt,Γ1 (Ω) and δ > 0. Using the cut-off function from above
we define (Ek)k∈ℕ by Ek := ηkE. Then Ek ∈ ℛ ̃Γ1(Ω(2rk)),

̃Γ1 := Γ1 ∪ S(2rk), since for
Φ ∈ C∞Γ2 (Ω(2rk)) it holds by ηkΦ ∈ C

∞
Γ2 (Ω)

⟨Ek , rotΦ ⟩L2(Ω(2rk)) = ⟨ ηkE , rotΦ ⟩L2(Ω)
= ⟨E , rot(ηkΦ) ⟩L2(Ω) − ⟨E , ∇ηk ×Φ ⟩L2(Ω)
= ⟨ ηk rotE + ∇ηk × E ,Φ ⟩L2(Ω(2rk)) = ⟨ rotEk ,Φ ⟩L2(Ω(2rk)) .

By means of monotone convergence, we have2

‖E − Ek‖Rt(Ω) = ‖η̌kE‖Rt(Ω) ≤ c ⋅ ( ‖E‖Rt(qU(rk)) +
1
2k
⋅ ‖E‖L2t (Ω) ) 󳨀→ 0 ,

hence we can choose k̂ > 0 such that 󵄩󵄩󵄩󵄩E − Ek̂
󵄩󵄩󵄩󵄩Rt(Ω)
< δ/2. As Ω(2rk̂) = Ω ∩ U(2rk̂) is a

bounded weak Lipschitz domain, we obtain ℛ ̃Γ1(Ω(2rk̂)) = R ̃Γ1(Ω(2rk̂)) by [1, Section
3.3], yielding the existence of some Ψ ∈ C∞̃Γ1 (Ω(2rk̂)) such that

󵄩󵄩󵄩󵄩Ek̂ −Ψ
󵄩󵄩󵄩󵄩Rt(Ω(2r ̂k))

≤ c ⋅ 󵄩󵄩󵄩󵄩Ek̂ −Ψ
󵄩󵄩󵄩󵄩R(Ω(2r ̂k))

< δ/2 .

Extending Ψ by zero to Ω, we obtain (by abuse of notation) Ψ ∈ C∞Γ1 (Ω) with

‖E −Ψ‖Rt(Ω) ≤
󵄩󵄩󵄩󵄩E − Ek̂
󵄩󵄩󵄩󵄩Rt(Ω)
+ 󵄩󵄩󵄩󵄩Ek̂ −Ψ

󵄩󵄩󵄩󵄩Rt(Ω(2r ̂k))
<
δ
2
+
δ
2
= δ ,

which completes the proof.

2.2 Some functional analysis

Let H1 and H2 be Hilbert spaces and let A : 𝒟(A) ⊂ H1 󳨀→ H2 be a linear, densely
defined, and closed linear operator with the adjoint A∗ : 𝒟(A∗) ⊂ H2 󳨀→ H1, which
is then linear, densely defined, and closed as well. Note that A∗ is characterized by

⟨A x , y ⟩H2
= ⟨ x ,A∗ y ⟩H1

∀ x ∈ 𝒟(A), y ∈ 𝒟(A∗) .

2 Here and hereafter, c > 0 denotes some generic constant.

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:08 PM



350 | F. Osterbrink and D. Pauly

By the projection theorem, we have the following Helmholtz-type decompositions:

H1 = ℛ(A
∗) ⊕𝒩 (A), and H2 = ℛ(A) ⊕𝒩 (A

∗) ,

which propose the corresponding reduced operators 𝒜 := A|𝒩 (A)⊥ , 𝒜∗ := A∗|𝒩 (A∗)⊥ ,
i. e.,

𝒜 : 𝒟(𝒜) ⊂ ℛ(A∗) 󳨀→ ℛ(A), 𝒜∗ : 𝒟(𝒜∗) ⊂ ℛ(A) 󳨀→ ℛ(A∗),
resp.

𝒟(𝒜) = 𝒟(A) ∩ℛ(A∗), 𝒟(𝒜∗) = 𝒟(A∗) ∩ℛ(A) .

These operators are also closed, densely defined and indeed adjoint to each other.
Moreover, by definition𝒜 and𝒜∗ are injective and, therefore, the inverse operators

𝒜−1 : ℛ(A) 󳨀→ 𝒟(𝒜) and (𝒜∗)−1 : ℛ(A∗) 󳨀→ 𝒟(𝒜∗)

exist. The pair (𝒜,𝒜∗) satisfies the following result of the so-calledFunctional Analysis
Toolbox (see, e. g., [17, Section 2]), from which we will derive some Poincaré-type esti-
mates for the time-harmonic Maxwell operator (ℳ − ω) (cf. Remark 3.11 and Remark
3.7).

Lemma 2.3. The following assertions are equivalent:
(1) ∃ cA ∈ (0,∞) ∀ x ∈ 𝒟(𝒜): ‖x‖H1

≤ cA ‖A x‖H2
.

(1∗) ∃ cA∗ ∈ (0,∞) ∀ y ∈ 𝒟(𝒜∗): ‖y‖H2
≤ cA∗ ‖A∗ y‖H1

.
(2) ℛ(A) = ℛ(𝒜) is closed in H2.
(2∗) ℛ(A∗) = ℛ(𝒜∗) ist closed in H1.
(3) 𝒜−1 : ℛ(A) 󳨀→ 𝒟(𝒜) is continuous.
(3∗) (𝒜∗)−1 : ℛ(A∗) 󳨀→ 𝒟(𝒜∗) is continuous.

Note that for the “best” constants cA and cA∗ it holds

󵄩󵄩󵄩󵄩󵄩𝒜
−1󵄩󵄩󵄩󵄩󵄩ℛ(A),ℛ(A∗) = cA = cA∗ =

󵄩󵄩󵄩󵄩󵄩(𝒜
∗)−1
󵄩󵄩󵄩󵄩󵄩ℛ(A∗),ℛ(A) .

3 Solution theory for time-harmonic Maxwell
equations

Asmentioned above, we shall treat the time-harmonic Maxwell equations with mixed
boundary conditions

− rotH + iωεE = F in Ω, E × ν = 0 on Γ1,
(3.1)

rotE + iωμH = G in Ω, H × ν = 0 on Γ2,
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in an exteriorweak Lipschitz domainΩ ⊂ ℝ3 and for frequenciesω ∈ ℂ\(0). Moreover,
we suppose that the material parameters ε and μ are κ-admissible with κ ≥ 0. Using
the abbreviations from above and rewriting

u := (E,H), f := iΛ−1(−F,G) ,

the weak formulation of these boundary value problem reads:

For f ∈ L2loc(Ω) find u ∈ Rloc,Γ1 (Ω) × Rloc,Γ2 (Ω) such that (M − ω) u = f . (3.2)

We shall solve this problem using polynomially weighted Hilbert spaces. In doing
so, we avoid additional assumptions on boundary regularity for Ω, since only a com-
pactness result comparable to Rellich’s selection theorem is needed. More precisely,
we will show that Ω satisfies “Weck’s (local) selection theorem”, also called “(local)
Maxwell compactness property”, which in fact is also an assumption on the quality of
the boundary and in some sense supersedes assumptions on boundary regularity.

Definition 3.1. Let γ be κ-admissible with κ ≥ 0 and let Ω ⊂ ℝ3 be open. Ω satis-
fies “Weck’s local selection theorem” (WLST) (or has the “local Maxwell compactness
property”), if the embedding

RΓ1 (Ω) ∩ γ
−1DΓ2 (Ω) 󳨅󳨀󳨀󳨀→ L2loc(Ω) (3.3)

is compact. Ω satisfies ”Weck’s selection theorem” (WST) (or has the “Maxwell com-
pactness property”) if the embedding

RΓ1 (Ω) ∩ γ
−1DΓ2 (Ω) 󳨅󳨀󳨀󳨀→ L2(Ω) (3.4)

is compact.

Remark 3.2. Note that Weck’s (local) selection theorem is essentially independent of
γ meaning that a domain Ω ⊂ ℝ3 satisfies WST respectively WLST, if and only if the
imbedding

RΓ1 (Ω) ∩ DΓ2 (Ω) 󳨅󳨀󳨀󳨀→ L2(Ω) resp. RΓ1 (Ω) ∩ DΓ2 (Ω) 󳨅󳨀󳨀󳨀→ L2loc(Ω)

is compact. The proof is practically identical with the one of [19, Lemma 2] (see also
[24, 22]).

Lemma 3.3. Let γ be κ-admissible with κ ≥ 0 and let Ω ⊂ ℝ3 be an exterior domain.
Then the following statements are equivalent:
(a) Ω satisfies WLST.
(b) For all ̃r > r0, the imbedding

R ̃Γ1 (Ω( ̃r)) ∩ γ
−1DΓ2 (Ω( ̃r)) 󳨅󳨀󳨀󳨀→ L2(Ω( ̃r))

with ̃Γ1 := Γ1 ∪ S( ̃r) is compact, i.e., Ω( ̃r) satisfies WST.
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(c) For all ̃r > r0, the imbedding

RΓ1 (Ω( ̃r)) ∩ γ
−1D ̃Γ2 (Ω( ̃r)) 󳨅󳨀󳨀󳨀→ L2(Ω( ̃r))

with ̃Γ2 := Γ2 ∪ S( ̃r) is compact, i.e., Ω( ̃r) satisfies WST.
(d) For all s, t ∈ ℝ with t < s, the imbedding

Rs,Γ1 (Ω) ∩ γ
−1Ds,Γ2 (Ω) 󳨅󳨀󳨀󳨀→ L2t (Ω)

is compact.

Proof. (a)⇒(b): Let ̃r > r0. By Remark 3.2, it is sufficient to show the compactness of

R ̃Γ1 (Ω( ̃r)) ∩ DΓ2 (Ω( ̃r)) 󳨅󳨀󳨀󳨀→ L2(Ω( ̃r)) .

Therefore, let (En)n∈ℕ ⊂ R ̃Γ1 (Ω( ̃r)) ∩ DΓ2 (Ω( ̃r)) be bounded, choose r0 < ̂r < ̃r and a
cut-off function χ ∈ C̊∞(ℝ3) with supp χ ⊂ U( ̃r) and χ|B( ̂r) = 1. Then, for every n ∈ ℕ
we have

En = Ěn + Ên := χEn + (1 − χ)En , supp Ěn ⊂ Ω( ̃r) , supp Ên ⊂ G( ̂r, ̃r) ,

splitting (En)n∈ℕ into (Ěn)n∈ℕ and (Ên)n∈ℕ. Extending Ěn respectively Ên by zero, we
obtain (by abuse of notation) sequences

(Ěn)n∈ℕ ⊂ RΓ1 (Ω) ∩ DΓ2 (Ω) and (Ên)n∈ℕ ⊂ RS( ̃r)(U( ̃r)) ∩ D(U( ̃r))

which are bounded in the respective spaces. Thus, using Weck’s local selection the-
orem and Remark 3.2, we can choose a subsequence (Ěπ(n))n∈ℕ of (Ěn)n∈ℕ converg-
ing in L2loc(Ω). The corresponding subsequence (Êπ(n))n∈ℕ is of course also bounded in
RS( ̃r)(U( ̃r)) ∩ D(U( ̃r)) and by [23, Theorem 2.2], even in H1(U( ̃r)), hence (Rellich’s selec-
tion theorem) has a subsequence (Êπ̃(n))n∈ℕ converging in L2(U( ̃r)). Thus

󵄩󵄩󵄩󵄩Eπ̃(n) − Eπ̃(m)
󵄩󵄩󵄩󵄩L2(Ω( ̃r))

≤ c ⋅ ( 󵄩󵄩󵄩󵄩χ(Eπ̃(n) − Eπ̃(m))
󵄩󵄩󵄩󵄩L2(Ω( ̃r)) +

󵄩󵄩󵄩󵄩(1 − χ)(Eπ̃(n) − Eπ̃(m))
󵄩󵄩󵄩󵄩L2(Ω( ̃r)) )

≤ c ⋅ (󵄩󵄩󵄩󵄩Ěπ̃(n) − Ěπ̃(m)
󵄩󵄩󵄩󵄩L2(Ω( ̃r)) +

󵄩󵄩󵄩󵄩Êπ̃(n) − Êπ̃(m)
󵄩󵄩󵄩󵄩L2(U( ̃r)))

m,n→∞
󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 0 ,

meaning that (Eπ̃(n))n∈ℕ ⊂ (En)n∈ℕ is a Cauchy sequence in L2(Ω( ̃r)).
(b)⇒(d): Let s, t ∈ ℝwith s > t and let (En)n∈ℕ ⊂ Rs,Γ1 (Ω) ∩ γ

−1Ds,Γ2 (Ω) be bounded.
Then there exists a subsequence (Eπ(n))n∈ℕ ⊂ (En)n∈ℕ which converges weakly in
Rs,Γ1 (Ω) ∩ γ

−1Ds,Γ2 (Ω) to some vector field E ∈ Rs,Γ1 (Ω) ∩ γ
−1Ds,Γ2 (Ω). We now construct

a subsequence (Eπ̃(n))n∈ℕ of (Eπ(n))n∈ℕ converging in L2loc(Ω) to the same limit E. For
this, observe that

(Eπ(n),1)n∈ℕ with Eπ(n),1 := η1Eπ(n)
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is bounded in R ̃Γ1 (Ω(r2)) ∩ γ
−1DΓ2 (Ω(r2)),

̃Γ1 := Γ1 ∪ S(r2) such that by assumption there
exists a subsequence (Eπ1(n),1)n∈ℕ converging in L

2(Ω(r2)). Then (Eπ1(n))n∈ℕ ⊂ (Eπ(n))n∈ℕ
is converging in L2(Ω(r1)), and, as (Eπ1(n))n∈ℕ is also weakly convergent in L

2(Ω(r1)), we
have

Eπ1(n) 󳨀→ E in L2(Ω(r1)) .

Multiplying (Eπ1(n))n∈ℕ with η2, we obtain a sequence (Eπ1(n),2)n∈ℕ, Eπ1(n),2 := η2Eπ1(n)
bounded inR ̃Γ1 (Ω(r3))∩γ

−1DΓ2 (Ω(r3)),
̃Γ1 := Γ1∪ S(r3), and, as before,we construct a sub-

sequence (Eπ2(n),2)n∈ℕ converging in L
2(Ω(r3)), giving again a converging subsequence

(Eπ2(n))n∈ℕ ⊂ (Eπ1(n))n∈ℕ with

Eπ2(n) 󳨀→ E in L2(Ω(r2)) .

Continuing like this, we successively construct converging subsequences (Eπk(n))n∈ℕ
with Eπk(n) 󳨀→ E in L2(Ω(rk)) and switching to the diagonal sequence we indeed end
up with a sequence (Eπ̃(n))n∈ℕ, π̃(n) := πn(n), with Eπ̃(n) 󳨀→ E in L2loc(Ω). Now Lemma
A.1 implies for arbitrary θ > 0

󵄩󵄩󵄩󵄩Eπ̃(n) − E
󵄩󵄩󵄩󵄩L2t (Ω)
≤ c ⋅ 󵄩󵄩󵄩󵄩Eπ̃(n) − E

󵄩󵄩󵄩󵄩L2(Ω(δ)) + θ ,

with c, δ ∈ (0,∞) independent of Eπ̃(n). Hence

lim sup
n→∞
󵄩󵄩󵄩󵄩Eπ̃(n) − E

󵄩󵄩󵄩󵄩L2t (Ω)
≤ θ ,

and we obtain Eπ̃(n) 󳨀→ E in L2t (Ω).
(d)⇒(a): For (En)n∈ℕ bounded in RΓ1 (Ω) ∩ γ

−1DΓ2 (Ω), assertion (c) implies the ex-
istence of a subsequence (Eπ(n))n∈ℕ converging in L2−1(Ω) to some E ∈ L2−1(Ω). Then
E ∈ L2loc(Ω) and as

∀ ̃r > 0 : 󵄩󵄩󵄩󵄩Eπ(n) − E
󵄩󵄩󵄩󵄩L2(Ω( ̃r)) ≤ (1 + ̃r)

1/2 ⋅ 󵄩󵄩󵄩󵄩Eπ(n) − E
󵄩󵄩󵄩󵄩L2−1(Ω)
,

we obtain (Eπ(n))n∈ℕ 󳨀→ E in L2loc(Ω).
Similar arguments to those corresponding to (b) show the assertion for (c).

As shown by Bauer, Pauly, and Schomburg [1, Theorem 4.7], bounded weak Lip-
schitz domains satisfy Weck’s selection theorem and by Lemma 3.3 (a) this directly
implies the following.

Theorem 3.4. Exterior weak Lipschitz domains satisfy Weck’s local selection theorem.

Returning to our initial question, a first step to a solution theory for (3.2) is the
following observation.
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Theorem 3.5. TheMaxwell operator

ℳ : RΓ1 (Ω) × RΓ2 (Ω) ⊂ L
2
Λ(Ω) 󳨀→ L2Λ(Ω), u 󳨃󳨀→ M u ,

is self-adjoint and reduced by the closure of its range

ℛ(ℳ) = ε−1rotRΓ2 (Ω) × μ
−1rotRΓ1 (Ω) .

We note that here, in the case of an exterior domain Ω, the respective ranges are
not closed.

Proof. The proof is straightforward using Lemma 2.2, i. e., the equivalence of the def-
inition of weak and strong boundary conditions.

Thus σ(ℳ) ⊂ ℝ, meaning that every ω ∈ ℂ \ ℝ is contained in the resolvent set of
ℳ and for given f ∈ L2Λ(Ω) we obtain a unique solution of (3.2) by

u := (ℳ − ω)−1f ∈ RΓ1 (Ω) × RΓ2 (Ω).

Moreover, using the resolvent estimate 󵄩󵄩󵄩󵄩(ℳ − ω)
−1󵄩󵄩󵄩󵄩 ≤ |Imω|−1 and the differential

equation, we get

‖u‖R(Ω) ≤ c ⋅ ( ‖u‖L2Λ(Ω) + ‖f ‖L2Λ(Ω) + |ω| ‖u‖L2Λ(Ω) ) ≤ c ⋅
1 + |ω|
|Imω|
⋅ ‖f ‖L2Λ(Ω) .

Theorem 3.6. For ω ∈ ℂ \ ℝ, the solution operator

ℒω := (ℳ − ω)
−1
: L2Λ(Ω) 󳨀→ RΓ1 (Ω) × RΓ2 (Ω)

is continuous with ‖ℒω‖L2Λ(Ω),R(Ω)
≤ c ⋅ 1+|ω||Imω| , where c is independent of ω and f .

Remark 3.7. Let ω ∈ ℂ \ ℝ. By Lemma 2.3, the following statements are equivalent to
the boundedness of ℒω:
– (Friedrichs/Poincaré-type estimate) There exists c > 0 such that

‖u‖R(Ω) ≤ c ⋅
󵄩󵄩󵄩󵄩(M − ω)u

󵄩󵄩󵄩󵄩L2Λ(Ω)
∀ u ∈ RΓ1 (Ω) × RΓ2 (Ω) .

– (Closed range) The range

ℛ(ℳ − ω) = (ℳ − ω)(RΓ1 (Ω) × RΓ2 (Ω))

is closed in L2Λ(Ω).

The case ω ∈ ℝ \ (0) is much more challenging, since we want to solve in the
continuous spectrum of the Maxwell operator. Clearly, this cannot be done for every
f ∈ L2Λ(Ω), since otherwise wewould haveℛ(ℳ−ω) = L

2
Λ(Ω) and, therefore, (ℳ−ω)

−1

would be continuous (cf. Lemma 2.3) or in other wordsω ̸∈ σ(ℳ). Thus we have to re-
strict ourselves to certain subspaces of L2Λ or generalize our solution concept. Actually,
we will do both and show existence as well as uniqueness of weaker, so-called “radi-
ating solutions,” by switching to data f ∈ L2s(Ω) for some s > 1/2.

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:08 PM



Time-harmonic Maxwell equations | 355

Definition 3.8. Letω ∈ ℝ \ (0) and f ∈ L2loc(Ω). We call u (radiating) solution of (3.2), if

u ∈ R<− 12 ,Γ1
(Ω) × R<− 12 ,Γ2

(Ω)

and

(M − ω)u = f , (3.5)

(Λ0 + √ε0μ0 Ξ)u ∈ L
2
>− 12
(Ω) . (3.6)

Remark 3.9. Since

(Λ0 + √ε0μ0 Ξ)u = Λ0(E − √
μ0
ε0

ξ × H , H + √
ε0
μ0

ξ × E) ,

the last condition is just the classical Silver–Müller radiation condition which de-
scribes the behavior of the electro-magnetic field at infinity and is needed to dis-
tinguish outgoing from incoming waves (interchanging signs would yield incoming
waves).

In order to construct such a radiating solution u, we use the “limiting absorption
principle” introducedbyEidus andapproximateuby solutions (un)n∈ℕ associatedwith
frequencies (ωn)n∈ℕ ⊂ ℂ \ ℝ converging to ω ∈ ℝ \ (0). This leads to statement (4) of
our main result Theorem 3.10, where the following abbreviations are used:

𝒩gen(ℳ − ω ) := {u
󵄨󵄨󵄨󵄨 u is a radiating solution of (M − ω)u = 0}

(generalized kernel ofℳ − ω) ,
σgen(ℳ) := {ω ∈ ℂ \ (0)

󵄨󵄨󵄨󵄨 𝒩gen(ℳ − ω) ̸= (0)}
(generalized point spectrum ofℳ) .

Theorem 3.10 (Fredholm alternative). LetΩ ⊂ ℝ3 be an exterior weak Lipschitz domain
with boundary Γ and weak Lipschitz boundary parts Γ1 and Γ2 = Γ \ Γ1. Furthermore, let
ω ∈ ℝ \ (0) and ε, μ be κ-admissible with κ > 1. Then:
(1) 𝒩gen(ℳ − ω ) ⊂ ⋂

t∈ℝ
(Rt,Γ1 (Ω) ∩ ε

−1
0Dt,Γ2 (Ω)) × (Rt,Γ2 (Ω) ∩ μ

−1
0Dt,Γ1 (Ω)).

3

(2) dim𝒩gen(ℳ − ω ) < ∞.
(3) σgen(ℳ) ⊂ ℝ \ (0) and σgen(ℳ) has no accumulation point in ℝ \ (0).
(4) For all f ∈ L2> 12

(Ω) there exists a radiating solution u of (3.2), if and only if

∀ v ∈ 𝒩gen(ℳ − ω ) : ⟨ f , v ⟩L2Λ(Ω) = 0 . (3.7)

3 We even have

𝒩gen(ℳ − ω ) ⊂ ⋂
t∈ℝ
(Rt,Γ1 (Ω) ∩ ε

−1 rotRt,Γ2 (Ω)) × (Rt,Γ2 (Ω) ∩ μ
−1 rotRt,Γ1 (Ω)) .
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Moreover, we can choose u such that

∀ v ∈ 𝒩gen(ℳ − ω ) : ⟨ u , v ⟩L2Λ(Ω) = 0 . (3.8)

Then u is uniquely determined.
(5) For all s, −t > 1/2, the solution operator

ℒω : L
2
s(Ω) ∩ 𝒩gen(ℳ − ω )

⊥Λ 󳨀→ (Rt,Γ1 (Ω) × Rt,Γ2 (Ω)) ∩ 𝒩gen(ℳ − ω )
⊥Λ

defined by (4) is continuous.

Remark 3.11. Under the conditions of Theorem 3.10, the following statements are
equivalent to the boundedness of ℒω (cf. Lemma 2.3 and Remark 3.7):
– (Friedrichs/Poincaré-type estimate) For all s,−t > 1/2, there exists c > 0 such that

‖u‖Rt(Ω) ≤ c ⋅
󵄩󵄩󵄩󵄩(M − ω)u

󵄩󵄩󵄩󵄩L2s(Ω)

holds for all u ∈ (Rt,Γ1 (Ω) × Rt,Γ2 (Ω)) ∩ 𝒩gen(ℳ − ω)⊥Λ satisfying the radiation
condition.

– (Closed range) For all s, −t > 1/2, the range

ℛ(ℳ − ω) = (ℳ − ω)(Rt,Γ1 (Ω) × Rt,Γ2 (Ω))

is closed in L2s(Ω).

By the same indirect arguments as in [15, Corollary 3.9] (see also [14, Section 4.9]),
we get even stronger estimates for the solution operator ℒω.

Corollary 3.12. Let Ω ⊂ ℝ3 be an exterior weak Lipschitz domain with boundary Γ and
weak Lipschitz boundary parts Γ1 and Γ2 := Γ \ Γ1. Furthermore, let s, −t > 1/2, ε, μ be
κ-admissible with κ > 1 and K ⋐ ℂ+ \ (0) with K ∩ σgen(ℳ) = 0. Then:
(1) There exist constants c > 0 and ̂t > −1/2 such that for all ω ∈ K and f ∈ L2s(Ω)

‖ℒωf ‖Rt(Ω) +
󵄩󵄩󵄩󵄩(Λ0 + √ε0μ0 Ξ)ℒωf

󵄩󵄩󵄩󵄩L2 ̂t(Ω)
≤ c ⋅ ‖f ‖L2s(Ω)

holds, implying that ℒω : L2s(Ω) 󳨀→ Rt,Γ1 (Ω) × Rt,Γ2 (Ω) is equicontinuous w. r. t.
ω ∈ K.

(2) The mapping

ℒ : K 󳨀→ B(L2s(Ω) ,Rt,Γ1 (Ω) × Rt,Γ2 (Ω))

ω 󳨃󳨀→ ℒω

is uniformly continuous.
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4 Polynomial decay and a priori estimate
As stated before, we will construct a solution u in the case of ω ∈ ℝ \ (0) by solving
(3.2) forωn = ω+ iσn ∈ ℂ+\ℝ and sending σn 󳨀→ 0 (using (ωn)n∈ℕ ∈ ℂ− \ℝ insteadwill
lead to “incoming” solutions). The essential ingredients to generate convergence are
the polynomial decay of eigensolutions, an a priori estimate for solutions correspond-
ing to nonreal frequencies and Weck’s local selection theorem. While the latter one is
already satisfied (cf. Theorem 3.4), we obtain the first two in the spirit of [27] using the
following decomposition Lemma introduced in [14] (see also [15, 16]).

Lemma 4.1. Let ω ∈ K ⋐ ℂ \ (0), ε, μ be κ-admissible with κ ≥ 0 and s, t ∈ ℝ such that
0 ≤ s ∈ ℝ \ 𝕀 and t ≤ s ≤ t + κ. Moreover, assume that u ∈ Rt(Ω) satisfies the equation
(M − ω) u = f ∈ L2s(Ω). Then

f1 := (CRot,η̌ − iωη̌Λ̂)u − iη̌Λf ∈ L
2
s

and, by decomposing

f1 = fR + fD + f𝒮 ∈ 0Rs ∔ 0Ds ∔ 𝒮s

according to [26, Theorem 4], it holds

f2 := fD +
i
ω
Λ̃0
−1

Rot f𝒮 ∈ 0Ds .

Additionally, u may be decomposed into

u = ηu + u1 + u2 + u3 ,

where
(1) ηu ∈ Rvox(Ω) and for all ̂t ∈ ℝ

‖ηu‖R ̂t(Ω)
≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) ) ;

(2) u1 := −
i
ωΛ
−1
0 (fR + f𝒮) ∈ Rs and

‖u1‖Rs ≤ c ⋅ ‖f1‖L2s ;

(3) u2 := ℱ
−1(ρ−2(1 − irΞ)ℱ(f2)) ∈ H

1
s ∩ 0Ds and

‖u2‖H1s ≤ c ⋅ ‖f2‖L2s ;

(4) u3 := ũ − u2 ∈ H2t ∩ 0Dt and for all ̂t ≤ t

‖u3‖H2̂t
≤ c ⋅ ( ‖u3‖L2 ̂t

+ ‖u2‖H1
̂t
) ,

where ũ := iω−1Λ−10 (Rot η̌u − fD) ∈ H
1
t ∩ 0Dt
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with constants c ∈ (0,∞) independent of u, f or ω. These fields solve the following equa-
tions:

(Rot + iωΛ0)η̌u = f1 , (Rot + iωΛ0)ũ = f2 , (Rot + iωΛ0)u3 = (1 − ωΛ0)u2 ,

(Δ + ω2ε0μ0)u3 = (1 − iωΛ̃0)f2 − (1 + ω
2ε0μ0)u2 .

Moreover, the following estimates hold for all ̂t ≤ t and uniformly w. r. t. λ ∈ K, u and f :
– ‖f2‖L2s ≤ c ⋅ ‖f1‖L2s ≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) )
– ‖u‖R ̂t(Ω)

≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) + ‖u3‖L2 ̂t
)

– 󵄩󵄩󵄩󵄩󵄩(Δ + ω
2ε0μ0)u3

󵄩󵄩󵄩󵄩󵄩L2s
≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) )

– 󵄩󵄩󵄩󵄩(Rot − iλ√ε0μ0 Ξ)u
󵄩󵄩󵄩󵄩L2 ̂t
≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) +

󵄩󵄩󵄩󵄩(Rot − iλ√ε0μ0 Ξ)u3
󵄩󵄩󵄩󵄩L2 ̂t
)

Here, 𝒮s is a finite dimensional subspace of C̊
∞(ℝ3), ℱ the Fourier transformation and

CA,B := AB − BA

the commutator of A and B.

Basically, this lemma allows us to split u into two parts. One part (consisting of
ηu, u1 and u2) has better integrability properties and the other part (consisting of u3)
ismore regular and satisfies a Helmholtz equation in thewhole ofℝ3. Thuswe can use
well-known results from the theory forHelmholtz equation (cf. Appendix, SectionB) to
establish corresponding results for Maxwell’s equations.We start with the polynomial
decay of solutions, especially of eigensolutions, which will lead to assertions (1)–(3)
of our main theorem. Moreover, this will also show, that the solution u we are going
to construct, can be chosen to be perpendicular to the generalized kernel of the time-
harmonic Maxwell operator. As in the proof of [16, Theorem 4.2], we obtain (see also
Appendix, Section C) the following.

Lemma 4.2 (Polynomial decay of solutions). Let J ⊂ ℝ \ (0) be some interval, ω ∈ J, ε,
μ be κ-admissible with κ > 1, and s ∈ ℝ \ 𝕀 with s > 1/2. If

u ∈ R>− 12
(Ω) satisfies (M − ω)u =: f ∈ L2s(Ω) ,

then
u ∈ Rs−1(Ω) and ‖u‖Rs−1(Ω) ≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2(Ω(δ)) ) ,

with c, δ ∈ (0,∞) independent of ω, u and f .

In short: If a solution u satisfies u ∈ Rt(Ω) for some t > −1/2 and the right-hand side
f = (M − ω)u has better integrability properties, meaning f ∈ L2s(Ω) for some s > 1/2,
then also u is better integrable, i. e., u ∈ Rs−1(Ω). Especially, if

u ∈ R>− 12
(Ω) and f ∈ L2s(Ω) ∀ s ∈ ℝ ,

then u ∈ Rs(Ω) for all s ∈ ℝ, which is called “polynomial decay.”

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:08 PM



Time-harmonic Maxwell equations | 359

Corollary 4.3. Let ω ∈ ℝ \ (0) and assume ε, μ to be κ-admissible with κ > 1 and

u ∈ R<− 12 ,Γ1
(Ω) × R<− 12 ,Γ2

(Ω)

to be a radiating solution (cf. Definition 3.8) of (ℳ − ω)u = 0. Then:

u ∈ ⋂
t∈ℝ
(Rt,Γ1 (Ω) × Rt,Γ2 (Ω)) .

Proof. According to Lemma 4.2, it suffices to show u ∈ Rt(Ω) for some t > −1/2. There-
fore, remember that u is a radiating solution, the radiation condition (3.6) holds and
there exists ̂t > −1/2 such that

(Λ0 + √ε0μ0 Ξ)u ∈ L
2
̂t(Ω) . (4.1)

On the other hand, we have

󵄩󵄩󵄩󵄩(Λ0 + √ε0μ0 Ξ)u
󵄩󵄩󵄩󵄩
2
L2 ̂t(G(r0 , ̃r))

= ‖Λ0u‖
2
L2 ̂t(G(r0 , ̃r))

+ 2√ε0μ0 Re ⟨Ξ u ,Λ0u ⟩L2 ̂t(G(r0 , ̃r))
+ ε0μ0 ‖Ξ u‖

2
L2 ̂t(G(r0 , ̃r))

and using Lemma A.3 (cf. Appendix, Section A) with

ϕ(s) := (1 + s2) ̂t , Φ := ϕ ∘ r, ψ(σ) =
̃r

∫
max{r0 ,σ}

ϕ(τ) dτ, Ψ = ψ ∘ r ,

as well as the differential equation, we conclude

Re ⟨Ξ u ,Λ0u ⟩L2 ̂t(G(r0 , ̃r))
= Re ⟨ΦΞ u ,Λ0u ⟩L2(G(r0 , ̃r))

= Re (⟨ΨRot u ,Λ0u ⟩L2(Ω( ̃r)) + ⟨Ψu , Λ̃0 Rot u ⟩L2(Ω( ̃r)))

= Re (⟨ −iωΨΛu ,Λ0u ⟩L2(Ω( ̃r)) + ⟨Ψu , −iωΛ̃0Λu ⟩L2(Ω( ̃r)))

= Re iω⟨ΨΛu , (Λ̃0 − Λ0)u ⟩L2(Ω( ̃r))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈iℝ

= 0 ,

hence

‖u‖L2 ̂t(G(r0 , ̃r))
≤ c ⋅ 󵄩󵄩󵄩󵄩(Λ0 + √ε0μ0 Ξ)u

󵄩󵄩󵄩󵄩L2 ̂t(G(r0 , ̃r))

with c ∈ (0,∞) independent of ̃r. Now the monotone convergence theorem and (4.1)
show

‖u‖L2 ̂t(qU(r0))
≤ c ⋅ 󵄩󵄩󵄩󵄩(Λ0 + √ε0μ0 Ξ)u

󵄩󵄩󵄩󵄩L2 ̂t(qU(r0))
< ∞ ,

which already implies u ∈ L2 ̂t(Ω) and completes the proof.
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360 | F. Osterbrink and D. Pauly

The next step is an a priori estimate for solutions corresponding to nonreal fre-
quencies, whichwill later guarantee that our solution satisfies the radiation condition
(3.6) and has the proper integrability. The proof of it is practically identical with the
proof of [16, Lemma 6.3] (cf. Appendix, Section C).

Lemma 4.4 (A priori estimate for Maxwell’s equations). Let J ⋐ ℝ \ (0) be some in-
terval, −t, s > 1/2 and ε, μ be κ-admissible with κ > 1. Then there exist constants
c, δ ∈ (0,∞) and some ̂t > −1/2, such that for all ω ∈ ℂ+ with ω2 = λ2 + iλσ, λ ∈ J,
σ ∈ (0, √ε0μ0−1 ] and f ∈ L2s(Ω)

‖ℒωf ‖Rt(Ω) +
󵄩󵄩󵄩󵄩(Λ0 + √ε0μ0 Ξ)ℒωf

󵄩󵄩󵄩󵄩L2 ̂t(Ω)
≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖ℒωf ‖L2(Ω(δ)) ) .

5 Proof of the main result

Before we start with the proof of Theorem 3.10, we provide some Helmholtz-type
decompositions, which will be useful in the following. These are immediate conse-
quences of the projection theorem and Lemma 2.2.

Lemma 5.1. It holds

L2ε(Ω) = ∇H
1
Γ1 (Ω) ⊕ε ε

−1
0DΓ2 (Ω) ,

L2μ(Ω) = ∇H
1
Γ2 (Ω) ⊕μ μ

−1
0DΓ1 (Ω) ,

RΓ1 (Ω) = ∇H
1
Γ1 (Ω) ⊕ε (RΓ1 (Ω) ∩ ε

−1
0DΓ2 (Ω)) ,

RΓ2 (Ω) = ∇H
1
Γ2 (Ω) ⊕μ (RΓ2 (Ω) ∩ μ

−1
0DΓ1 (Ω)) ,

where the closures are taken in L2(Ω).

Proof. Let γ ∈ {ε, μ} and i, j ∈ {1, 2} with i ̸= j. The linear operator

∇i : H
1
Γi (Ω) ⊂ L

2(Ω) 󳨀→ L2γ(Ω)

is densely defined and closed with adjoint (cf. Lemma 2.2)

−divj γ : γ
−1DΓj (Ω) ⊂ L

2
γ(Ω) 󳨀→ L2(Ω) .

The projection theorem yields

L2γ(Ω) = ℛ(∇i) ⊕γ 𝒩 (divj γ) .

The remaining assertion follows by ∇H1Γi (Ω) ⊂ RΓi (Ω).
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Proof of Theorem 3.10. Let ω ∈ ℝ \ (0) and ε, μ be κ-admissible for some κ > 1.
(1): The assertion follows by Corollary 4.3 and the differential equation

(M − ω) u = 0 ⇐⇒ u = iω−1Λ−1 Rot u ,

using the fact that (cf. Lemma 2.2)

rotRt,Γ1 (Ω) ⊂ 0Dt,Γ1 (Ω) resp. rotRt,Γ2 (Ω) ⊂ 0Dt,Γ2 (Ω) .

(2): Assume dim𝒩gen(ℳ − ω ) = ∞. Using (1) there exists a L2Λ-orthonormal se-
quence (un)n∈ℕ ⊂ 𝒩gen(ℳ − ω ) converging weakly in L2(Ω) to 0. By the differential
equation this sequence is bounded in

(RΓ1 (Ω) ∩ ε
−1
0DΓ2 (Ω)) × (RΓ2 (Ω) ∩ μ

−1
0DΓ1 (Ω)).

Hence, due toWeck’s local selection theorem,wecanchoosea subsequence, (uπ(n))n∈ℕ
converging to 0 in L2loc(Ω) ((uπ(n))n∈ℕ also converges weakly on every bounded sub-
set). Now let 1 < s ∈ ℝ \ 𝕀. Then Lemma 4.2 guarantees the existence of c, δ ∈ (0,∞)
independent of (uπ(n))n∈ℕ such that

1 = 󵄩󵄩󵄩󵄩uπ(n)
󵄩󵄩󵄩󵄩L2Λ(Ω)
≤ c ⋅ 󵄩󵄩󵄩󵄩uπ(n)

󵄩󵄩󵄩󵄩Rs−1(Ω)
≤ c ⋅ 󵄩󵄩󵄩󵄩uπ(n)

󵄩󵄩󵄩󵄩L2(Ω(δ))
n→∞
󳨀󳨀󳨀󳨀󳨀󳨀→ 0

holds; a contradiction.
(3):ℳ is a self-adjoint operator, hence we clearly have σgen(ℳ) ⊂ ℝ\(0). Now as-

sume ω̃ ∈ ℝ\(0) is an accumulation point of σgen(ℳ). Thenwe can choose a sequence
(ωn)n∈ℕ ⊂ ℝ \ (0) with ωn ̸= ωm for n ̸= m, ωn 󳨀→ ω̃ and a corresponding sequence
(un)n∈ℕ with un ∈ 𝒩gen(ℳ−ωn ) \ (0). Asℳ is self-adjoint, eigenvectors associated to
different eigenvalues are orthogonal provided they are well enough integrable (which
is given by (1)), and thus by normalizing (un)n∈ℕ we end up with an L2Λ-orthonormal
sequence. Continuing as in (2), we again obtain a contradiction.
(4): First of all, if a solution u satisfies (3.8), it is uniquely determined as for the

homogeneous problem u ∈ 𝒩gen(ℳ − ω ) together with (1) and (3.8) implies u = 0.
Moreover, using Lemma 2.2 and (1), we obtain

⟨ f , v ⟩L2Λ(Ω) = ⟨ (M − ω) u , v ⟩L2Λ(Ω) = ⟨ u , (M − ω) v ⟩L2Λ(Ω) = 0 ∀ v ∈ 𝒩gen(ℳ − ω ) ,

meaning (3.7) is necessary. In order to show, that (3.7) is also sufficient, we use Eidus’
principle of limiting absorption. Therefore, let s > 1/2 and f ∈ L2s(Ω) satisfy (3.7). We
take a sequence (σn)n∈ℕ ⊂ ℝ+ with σn 󳨀→ 0 and construct a sequence of frequencies

(ωn)n∈ℕ, ωn := √ω2 + iσnω ∈ ℂ+ \ ℝ ,

converging to ω. Since ℳ is a self-adjoint operator we obtain (cf. Section 3) a cor-
responding sequence of solutions (un)n∈ℕ, un := ℒωn

f ∈ RΓ1 (Ω) × RΓ2 (Ω) satisfying

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:08 PM



362 | F. Osterbrink and D. Pauly

(M − ωn) un = f . Now our aim is to show that this sequence or at least a subsequence
is converging to a solution u. By Lemma 5.1, we decompose

un = ûn + ũn and f = ̂f + ̃f ,

with

ûn, ̂f ∈ ∇H
1
Γ1 (Ω) × ∇H

1
Γ2 (Ω) ⊂ 0RΓ1 (Ω) × 0RΓ2 (Ω) ,

ũn, ̃f ∈ (RΓ1 (Ω) ∩ ε
−1
0DΓ2 (Ω)) × (RΓ2 (Ω) ∩ μ

−1
0DΓ1 (Ω)) .

(5.1)

Inserting these (orthogonal) decompositions in the differential equation, we end up
with two equations

−ωnûn = ̂f and (M − ωn) ũn = ̃f ,

noting that the first one is trivial and implies L2-convergence of (ûn)n∈ℕ. For dealing
with the second equation, we need the following additional assumption on (un)n∈ℕ,
which we will prove in the end:

∀ t < −1/2 ∃ c ∈ (0,∞) ∀ n ∈ ℕ : ‖un‖L2t (Ω) ≤ c (5.2)

Let ̂t < −1/2 and c ∈ (0,∞) such that (5.2) holds. Then, by construction and (5.1)2,
the sequence (ũn)n∈ℕ is bounded in (R ̂t,Γ1 (Ω) ∩ ε

−1
0D ̂t,Γ2 (Ω)) × (R ̂t,Γ2 (Ω) ∩ μ

−1
0D ̂t,Γ1 (Ω)).

Hence (Theorem 3.4 and Lemma 3.3), (ũn)n∈ℕ has a subsequence (ũπ(n))n∈ℕ converging
in L2̃t (Ω) for some ̃t < ̂t and by the equation even in R ̃t,Γ1 (Ω) × R ̃t,Γ2 (Ω). Consequently,
the entire sequence (uπ(n))n∈ℕ converges in R ̃t(Ω) to some u satisfying

u ∈ R ̃t,Γ1 (Ω) × R ̃t,Γ2 (Ω) and (M − ω) u = f .

Additionally, with Corollary 4.3 and Lemma 2.2 we obtain for n ∈ ℕ and arbitrary
v ∈ 𝒩gen(ℳ − ω ),

0 = ⟨ f , v ⟩L2Λ(Ω) = ⟨ (M − ωπ(n)) uπ(n) , v ⟩L2Λ(Ω)
= ⟨ uπ(n) , (M − ωπ(n)) v ⟩L2Λ(Ω) = (ω − ωπ(n)) ⋅ ⟨ uπ(n) , v ⟩L2Λ(Ω) .

Hence ⟨ uπ(n) , v ⟩L2Λ(Ω) = 0 and as ⟨ ⋅ , v ⟩L2Λ(Ω) is continuous on L2̃t (Ω) × L
2
̃t (Ω) by (1), we

obtain

⟨ u , v ⟩L2Λ(Ω) = lim
n→∞
⟨ uπ(n) , v ⟩L2Λ(Ω) = 0 .

Thus, up to now, we have constructed a vector field u ∈ 𝒩gen(ℳ − ω )⊥Λ , which has
the right boundary conditions and satisfies the differential equation. But for being a
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radiating solution, it still remains to show, that u ∈ R<− 12
(Ω) and enjoys the radiation

condition (3.6). For that, let t < −1/2. Then, by Lemma 4.4, there exist c, δ ∈ (0,∞) and
some ̌t > −1/2, such that for n ∈ ℕ large enough we obtain uniformly in σπ(n), uπ(n),
f and ̃r > 0:

󵄩󵄩󵄩󵄩uπ(n)
󵄩󵄩󵄩󵄩Rt(Ω( ̃r))

+ 󵄩󵄩󵄩󵄩(Λ0 + √ε0μ0 Ξ)uπ(n)
󵄩󵄩󵄩󵄩L2̌t (Ω( ̃r))

≤ c ⋅ ( ‖f ‖L2s(Ω) +
󵄩󵄩󵄩󵄩uπ(n)
󵄩󵄩󵄩󵄩L2(Ω(δ)) ) .

Sending n 󳨀→ ∞ and afterwards ̃r 󳨀→ ∞ (monotone convergence), we obtain

‖u‖Rt(Ω) +
󵄩󵄩󵄩󵄩(Λ0 + √ε0μ0 Ξ)u

󵄩󵄩󵄩󵄩L2̌t (Ω)
≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2(Ω(δ)) ) < ∞ , (5.3)

yielding

u ∈ R<− 12
(Ω) and (Λ0 + √ε0μ0 Ξ)u ∈ L

2
>− 12
(Ω) .

This completes the proof of existence, if we can show (5.2). To this end, we assume it
to be wrong, i. e., there exists t < −1/2 and a sequence (un)n∈ℕ ⊂ Rt,Γ1 (Ω) × Rt,Γ2 (Ω),
un := ℒωn

f with ‖un‖L2t (Ω) 󳨀→ ∞ for n 󳨀→ ∞. Defining

ǔn := ‖un‖
−1
L2t (Ω)
⋅ un and ̌fn := ‖un‖

−1
L2t (Ω)
⋅ f ,

we have

‖ǔn‖L2t (Ω) = 1 ,
̌f 󳨀→ 0 in L2s(Ω) and (M − ωn) ǔn = ̌fn .

Then, repeating the arguments from above, we obtain some ̌t < t and a subsequence
(ǔπ(n))n∈ℕ converging in L2̌t (Ω) to some ǔ ∈ 𝒩gen(ℳ − ω ) ∩ 𝒩gen(ℳ − ω )⊥Λ , hence
ǔ = 0. But Lemma 4.4 ensures the existence of c, δ ∈ (0,∞) (independent of σπ(n),
ǔπ(n) and ̌fπ(n)) such that

1 = 󵄩󵄩󵄩󵄩ǔπ(n)
󵄩󵄩󵄩󵄩L2t (Ω)
≤ c ⋅ (󵄩󵄩󵄩󵄩 ̌fπ(n)

󵄩󵄩󵄩󵄩L2s(Ω) +
󵄩󵄩󵄩󵄩ǔπ(n)
󵄩󵄩󵄩󵄩L2(Ω(δ)) )

n→∞
󳨀󳨀󳨀󳨀󳨀󳨀→ 0

holds; a contradiction.
(5): Let −t, s > 1/2. By (4) the solution operator

ℒω : L
2
s(Ω) ∩𝒩gen(ℳ − ω )

⊥Λ
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:𝒟(ℒω)

󳨀→ (Rt,Γ1 (Ω) × Rt,Γ2 (Ω)) ∩𝒩gen(ℳ − ω )
⊥Λ

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=:ℛ(ℒω)

is well defined. Furthermore, due to the polynomial decay of eigensolutions,𝒟(ℒω) is
closed in L2s(Ω). Thus, the assertion follows from the closed graph theorem, if we can
show that ℒω is closed. Therefore, take (fn)n∈ℕ ⊂ 𝒟(ℒω) with

fn 󳨀→ f in L2s(Ω) and un := ℒωfn 󳨀→ u in Rt,Γ1 (Ω) × Rt,Γ2 (Ω) .
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Then clearly f ∈ 𝒟(ℒω), u ∈ ℛ(ℒω) and as (M − ω) un = fn, we obtain (M − ω) u = f .
Now estimate (5.3) (along with monotone convergence) shows as before

u ∈ R<− 12
(Ω) and (Λ0 + √ε0μ0 Ξ)u ∈ L

2
>− 12
(Ω) ,

meaning u is a radiating solution, i. e., u = ℒωf , which completes the proof.

Remark 5.2. During the discussion at AANMPDE10 (10th Workshop on Analysis and
Advanced Numerical Methods for Partial Differential Equations), M. Waurick and
S. Trostorff pointed out that it is sufficient to use weakly convergent subsequences for
the construction of the (radiating) solution. This is in fact true (the radiation condition
and regularity properties follow from Lemma 4.4 by the boundedness of the sequence
and the weak lower semicontinuity of the norms), but it should be noted, that Weck’s
local selection theorem is still needed to prove (5.2), since here norm convergence is
indispensable in order to generate a contradiction. Anyway, we thank both for the
vivid discussion and constructive criticism.

Appendix A. Technical tools
Lemma A.1. Let Ω ⊂ ℝ3 be an arbitrary exterior domain and s, t, θ ∈ ℝ with t < s and
θ > 0. Then there exist constants c, δ ∈ (0,∞) such that

‖w‖L2t (Ω) ≤ c ⋅ ‖w‖L2(Ω(δ)) + θ ⋅ ‖w‖L2s(Ω)

holds for all w ∈ L2s(Ω).

Proof. Let ℝ3 \ Ω ⊂ U(r0). For ̃r ≥ r0, we obtain

‖w‖2L2t (Ω) = ‖w‖
2
L2t (Ω( ̃r))
+ ‖w‖2L2t (qU( ̃r))

≤ (1 + ̃r2)max{0,t}
⋅ ‖w‖2L2(Ω( ̃r)) + (1 + ̃r

2)
t−s
⋅ ‖w‖2L2s(qU( ̃r))

≤ (1 + ̃r2)max{0,t}
⋅ ‖w‖2L2(Ω( ̃r)) + (1 + ̃r

2)
t−s
⋅ ‖w‖L2s(Ω) .

Since t < s, we can choose ̃r such that (1 + ̃r2)t−s ≤ θ2, which completes the proof.

Lemma A.2. For ̃r > 0 and f ∈ L1(ℝn), it holds

lim inf
r→∞

r ∫
S(r)

|f | dλn−1s = 0 .

Proof. Otherwise, there exists ̂r > 0 and c > 0 such that

∫
S(r)

|f | dλn−1s ≥
c
r
∀ r ≥ ̂r
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and using Fubini’s theorem, we obtain

‖f ‖2L1(ℝn) ≥ ∫
qU( ̂r)

|f | dλn =
∞

∫
̂r

∫
S(r)

|f | dλn−1s dr ≥ c ⋅
∞

∫
̂r

1
r
dr = ∞ ,

a contradiction.

Lemma A.3. Let Ω ⊂ ℝ3 be an exterior weak Lipschitz domain with boundary Γ and
weak Lipschitz boundary parts Γ1 and Γ2 = Γ \ Γ1. Furthermore, let ̂r, ̃r ∈ ℝ+ with ̃r > ̂r
and ℝ3 \ Ω ⊂ U( ̂r) as well as ϕ ∈ C0([ ̂r, ̃r] ,ℂ). If u ∈ Rt,Γ1 (Ω) × Rt,Γ2 (Ω) for some t ∈ ℝ, it
holds

⟨ΦΞu ,Λ0u ⟩L2(G( ̂r, ̃r)) = ⟨ΨRot u ,Λ0u ⟩L2(Ω( ̃r)) + ⟨Ψu ,Rot Λ0u ⟩L2(Ω( ̃r)) , (A.1)

whereΦ := ϕ ∘ r,Ψ := ψ ∘ r, and

ψ : [0, ̃r] 󳨀→ ℂ, σ 󳨃󳨀→
̃r

∫
max{ ̂r,σ}

ϕ(τ) dτ.

Proof. As C∞Γ1 (Ω) respectively C
∞
Γ2 (Ω) is dense in Rt,Γ1 (Ω) respectively Rt,Γ2 (Ω) by defini-

tion it is enough to show equation (A.1) for u = (u1, u2) ∈ C
∞
Γ1 (Ω) × C

∞
Γ2 (Ω) ⊂ C̊

∞(ℝ3).
Observing that the support of products of u1 and u2 is compactly supported in some
Θ ⊂ Θ ⊂ Ω, we may choose a cut-off function φ ∈ C̊∞(Ω) ⊂ C̊∞(ℝ3) with φ|Θ = 1 and
replace u by φu =: v =: (E,H). Without loss of generality we assume ℝ3 \ Θ ⊂ U( ̂r).
Using Gauss’s divergence theorem we compute

⟨ΦΞu ,Λ0u ⟩L2(G( ̂r, ̃r)) =
̃r

∫
̂r

ϕ(r) ⟨Ξu ,Λ0u ⟩L2(S(r)) dr =
̃r

∫
̂r

ϕ(r) ⟨Ξv ,Λ0v ⟩L2(S(r)) dr

=

̃r

∫
̂r

ϕ(r)(μ0⟨ ξ × E ,H ⟩L2(S(r)) − ε0⟨ ξ × H ,E ⟩L2(S(r)) ) dr

=

̃r

∫
̂r

ϕ(r) ∫
S(r)

(μ0ξ ⋅ (E × H) − ε0ξ ⋅ (H × E)) dλ
2
s dr

=

̃r

∫
̂r

ϕ(r) ∫
U(r)

(μ0 div (E × H) − ε0 div (H × E)) dλ
3 dr .

Note, that

μ0 div (E × H) − ε0 div (H × E)
= μ0(H rotE − E rotH) − ε0(E rotH − H rotE)
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366 | F. Osterbrink and D. Pauly

= ((μ0H) rotE − (ε0E) rotH) + (H rot (ε0E) − E rot (μ0H))
= Λ0v ⋅ Rot v + v ⋅ Rot Λ0v.

Hence, by Fubini’s theorem, we see

⟨ΦΞu ,Λ0u ⟩L2(G( ̂r, ̃r)) =
̃r

∫
̂r

ϕ(r) (⟨Rot v ,Λ0v ⟩L2(U(r)) + ⟨ v ,Rot Λ0v ⟩L2(U(r))) dr

=

̃r

∫
̂r

ϕ(r)
r

∫
0

(⟨Rot v ,Λ0v ⟩L2(S(σ)) + ⟨ v ,Rot Λ0v ⟩L2(S(σ))) dσ dr

=

̃r

∫
0

̃r

∫
max{ ̂r,σ}

ϕ(r) (⟨Rot v ,Λ0v ⟩L2(S(σ)) + ⟨ v ,Rot Λ0v ⟩L2(S(σ))) dr dσ

=

̃r

∫
0

ψ(σ) (⟨Rot v ,Λ0v ⟩L2(S(σ)) + ⟨ v ,Rot Λ0v ⟩L2(S(σ))) dσ

= ⟨ΨRot v ,Λ0v ⟩L2(U( ̃r)) + ⟨Ψv ,Rot Λ0v ⟩L2(U( ̃r))
= ⟨ΨRot v ,Λ0v ⟩L2(Ω( ̃r)) + ⟨Ψv ,Rot Λ0v ⟩L2(Ω( ̃r))
= ⟨ΨRot u ,Λ0u ⟩L2(Ω( ̃r)) + ⟨Ψu ,Rot Λ0u ⟩L2(Ω( ̃r)) ,

where the last line follows by construction of v.

We end this section with a lemma, which will be needed to prove the polynomial
decay and a priori estimate for the Helmholtz equation and can be shown by elemen-
tary partial integration.

Lemma A.4. Let w ∈ H2loc(ℝ
n), 0 ∉ suppw, m ∈ ℝ and ̃r > 0. Then with 𝜕r := ξ ⋅ ∇:

(1) Re ∫
U( ̃r)

rm+1Δw𝜕rw

=
1
2
∫

U( ̃r)

rm((n +m − 2)|∇w|2 − 2m|𝜕rw|
2) + ∫

S( ̃r)

rm+1 (|𝜕rw|
2 −

1
2
|∇w|2 )

(2) Re ∫
U( ̃r)

rmΔww

= − ∫
U( ̃r)

rm(|∇w|2 − m
2
(n +m − 2) r−2|w|2) + ∫

S( ̃r)

rm(Re (𝜕rww) −
m
2
r−1|w|2)

(3) Im ∫
U( ̃r)

rmΔww = −m ∫
U( ̃r)

rm−1Im (𝜕rww) +
1
2
∫
S( ̃r)

rm+1|w|2

(4) Re ∫
U( ̃r)

rm+1w 𝜕r w = −
1
2
∫

U( ̃r)

rm (n +m)|w|2 + 1
2
∫
S( ̃r)

rm+1|w|2
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Appendix B. Polynomial decay and a-priori estimate
for the Helmholtz equation
In this section we present well-known results for the Helmholtz equation, which we
will use to achieve similar results for Maxwell’s equations. We start with a regularity
result (cf. [27, Lemma 4]) and the polynomial decay (cf. [27, Lemma 5]).

Lemma B.1. Let t ∈ ℝ. If w ∈ L2t (ℝ
n) and Δw ∈ L2t (ℝ

n), it holds w ∈ H2t (ℝ
n) and

‖w‖H2t (ℝn) ≤ c ⋅ ( ‖Δw‖L2t (ℝn) + ‖w‖L2t (ℝn) )

with c ∈ (0,∞) independent of w and Δw.

Proof. For t = 0, we have w,Δw ∈ L2(ℝn) and using Fourier transformation, we obtain

‖Δw‖2L2(ℝn) + ‖w‖
2
L2(ℝn) =

󵄩󵄩󵄩󵄩󵄩r
2ℱ(w)󵄩󵄩󵄩󵄩󵄩

2
L2(ℝn) + ‖ℱ(w)‖

2
L2(ℝn)

= ∫
ℝn
(r4 + 1)|ℱ(w)|2 ≥ 1

2
⋅
󵄩󵄩󵄩󵄩󵄩(1 + r

2)ℱ(w)󵄩󵄩󵄩󵄩󵄩
2
L2(ℝn) , (B.1)

yielding w ∈ H2(ℝn) and the desired estimate. So let us switch to t ̸= 0. Then, using a
well-known result concerning inner regularity (e. g., [3, Chapter VII, Section 3.2, The-
orem 1]), we already have w ∈ H2loc(ℝ

n). Now let ̃r > 1 and define η ̃r ∈ C̊
∞(ℝn) by

η ̃r(x) := ρtη(r(x)/ ̃r). Then η ̃rw ∈ H2(ℝn),

|∇η ̃r | ≤ c ⋅ ρ
t−1 with c = c(t) > 0 ,

and

⟨ ∇(η ̃rw) , ∇(η ̃rw) ⟩L2(ℝn) = Re ⟨ ∇w , ∇(η
2
̃rw) ⟩L2(ℝn) +

󵄩󵄩󵄩󵄩(∇η ̃r)w
󵄩󵄩󵄩󵄩
2
L2(ℝn)

≤ c ⋅ ( ‖η ̃rΔw‖L2(ℝn) ‖η ̃rw‖L2(ℝn) + ‖w‖
2
L2t−1(ℝn)
)

≤ c ⋅ ( ‖Δw‖2L2t (ℝn) + ‖w‖
2
L2t (ℝn)
),

with c = c(n, t) ∈ (0,∞), hence

‖∇w‖L2t (B( ̃r)) ≤ ‖∇(η ̃rw) − (∇η ̃r)w‖L2(ℝn) ≤ c(n, t) ⋅ ( ‖Δw‖L2t (ℝn) + ‖w‖L2t (ℝn) ) .

Sending ̃r 󳨀→ ∞ (monotone convergence) shows w ∈ H1t (ℝ
n) and

‖w‖H1t (ℝn) ≤ c(n, t) ⋅ ( ‖Δw‖L2t (ℝn) + ‖w‖L2t (ℝn) ) . (B.2)

Moreover,

Δ(ρtw) = t(n + (t − 2) r2

1 + r2
)ρt−2w + 2rρt−2𝜕rw + ρ

tΔw ,
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368 | F. Osterbrink and D. Pauly

such that with (B.2) we obtain

󵄩󵄩󵄩󵄩󵄩Δ(ρ
tw)󵄩󵄩󵄩󵄩󵄩L2(ℝn) ≤ c ⋅ ( ‖Δw‖L2t (ℝn) + ‖w‖L2t (ℝn) ) , (B.3)

with c ∈ (0,∞) independent of w and Δw. Hence Δ(ρtw) ∈ L2(ℝn) and we may apply
the first case. This shows ρtw ∈ H2(ℝn) and using (B.1), (B.2) and (B.3), we obtain
(uniformly w. r. t. w and Δw)

‖w‖H2t (ℝn) ≤ c ⋅ (
󵄩󵄩󵄩󵄩󵄩ρ

tw󵄩󵄩󵄩󵄩󵄩H2(ℝn) +
󵄩󵄩󵄩󵄩󵄩(∇ρ

t)∇w󵄩󵄩󵄩󵄩󵄩L2(ℝn) +
󵄩󵄩󵄩󵄩󵄩(∇ρ

t)w󵄩󵄩󵄩󵄩󵄩L2(ℝn) + ∑
|α|=2

󵄩󵄩󵄩󵄩󵄩( 𝜕
α ρt)w󵄩󵄩󵄩󵄩󵄩L2(ℝn) )

≤ c ⋅ ( 󵄩󵄩󵄩󵄩󵄩Δ(ρ
tw)󵄩󵄩󵄩󵄩󵄩L2(ℝn) +

󵄩󵄩󵄩󵄩󵄩ρ
tw󵄩󵄩󵄩󵄩󵄩L2(ℝn) + ‖∇w‖L2t−1(ℝn) + ‖w‖L2t−1(ℝn) )

≤ c ⋅ ( ‖Δw‖L2t (ℝn) + ‖w‖L2t (ℝn) )

yielding w ∈ H2t (ℝ
n) and the required estimate.

Lemma B.2 (Polynomial decay). Let J ⋐ ℝ \ (0) be some interval, γ ∈ J and s, t ∈ ℝwith
t > −1/2 and t ≤ s. If w ∈ L2t (ℝ

n) and g := (Δ + γ2)w ∈ L2s+1(ℝ
n), it holds

w ∈ H2s(ℝ
n) and ‖w‖H2s(ℝn) ≤ c ⋅ ( ‖g‖L2s+1(ℝn) + ‖w‖L2s−1(ℝn) )

with c = c(n, s, J) ∈ (0,∞) not depending on γ, g or w.

Proof. The assertion follows directly from Lemma B.1, if we can show

w ∈ L2s(ℝ
n) with ‖w‖L2s(ℝn) ≤ c ⋅ ( ‖g‖L2s+1(ℝn) + ‖w‖L2s−1(ℝn) ) .

Therefore, let v := ̌χw, where ̌χ ∈ C∞(ℝn) with ̌χ = 1 on qU(1) and vanishing in a neigh-
borhood of the origin. By assumption, we already have w ∈ H2t (ℝ

n) (cf. Lemma B.1),
hence v ∈ H2loc(ℝ

n) and we may apply the partial integration rules from Lemma A.4 to

Re ∫
G( ̂r, ̃r)

(Δw + γ2w)(r2t+1𝜕rw + βr
2tw) = Re ∫

G( ̂r, ̃r)

(Δv + γ2v)(r2t+1𝜕rv̄ + βr
2t v̄) = ⋅ ⋅ ⋅ ,

with ̃r > ̂r ≥ 1 and

β := max {(n − 1)/2 , t + (n − 1)/2 } .

After some rearrangements, this leads to

∫
G( ̂r, ̃r)

r2t((β − (n + 2t − 2)/2)|∇w|2 + ((n + 2t)/2 − β)γ2|w|2)

+ 2t ∫
G( ̂r, ̃r)

r2t |𝜕rw|
2 + ∫

S( ̃r)

̃r2t+1|∇w|2
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= −Re ∫
G( ̂r, ̃r)

(Δw + γ2w)(r2t+1𝜕rw + βr
2tw) + t(n + 2t − 2)β ∫

G( ̂r, ̃r)

r2t−2|w|2

+ ∫
S( ̂r)

̂r2t+1(βt ̂r−2|w|2 − β ̂r−1Re (𝜕rww) − |𝜕rw|
2) (B.4)

+ ∫
S( ̃r)

̃r2t+1(|𝜕rw|
2 + β ̃r−1Re (𝜕rww) − βt ̃r

−2|w|2)

+
1
2
∫
S( ̃r)

̃r2t+1(|∇w|2 + γ2|w|2) + 1
2
∫
S( ̂r)

̂r2t+1(|∇w|2 − γ2|w|2) .

Let us first have a look on the left-hand side. For t ≥ 0 (i. e., β = t + (n − 1)/2), we skip
the second and third integral to obtain

∫
G( ̂r, ̃r)

r2t((β − (n + 2t − 2)/2)|∇w|2 + ((n + 2t)/2 − β)γ2|w|2)

+ 2t ∫
G( ̂r, ̃r)

r2t |𝜕rw|
2 + ∫

S( ̃r)

̃r2t+1|∇w|2

≥
1
2
∫

G( ̂r, ̃r)

r2t((2β − (n + 2t − 2))|∇w|2 + ((n + 2t) − 2β)γ2|w|2)

=
1
2
∫

G( ̂r, ̃r)

r2t(|∇w|2 + γ2|w|2) ,

while in the case of t < 0 (i. e., β = (n − 1)/2) we just skip the third integral and end up
with

∫
G( ̂r, ̃r)

r2t((β − (n + 2t − 2)/2)|∇w|2 + ((n + 2t)/2 − β)γ2|w|2)

+ 2t ∫
G( ̂r, ̃r)

r2t |𝜕rw|
2 + ∫

S( ̃r)

̃r2t+1|∇w|2

≥ ∫
G( ̂r, ̃r)

r2t((β − (n + 2t − 2)/2 + 2t)|∇w|2 + ((n + 2t)/2 − β)γ2|w|2)

= (
1
2
+ t) ∫

G( ̂r, ̃r)

r2t(|∇w|2 + γ2|w|2) ,

since |𝜕rw| ≤ |∇w|. Thus for arbitrary t ∈ ℝ the left-hand side of (B.4) can be estimated
from below by

min { 1
2
,
1
2
+ t} ∫

G( ̂r, ̃r)

r2t(|∇w|2 + γ2|w|2) .

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:08 PM



370 | F. Osterbrink and D. Pauly

For the right-hand side, we have ( ̃r > 1)

∫
S( ̃r)

̃r2t+1(|𝜕rw|
2 + β ̃r−1Re (𝜕rww) − βt ̃r

−2|w|2)

≤ ∫
S( ̃r)

̃r2t+1(|𝜕rw|
2 + β|𝜕rww| + β|t||w|

2) ≤ c ⋅ ∫
S( ̃r)

̃r2t+1(|∇w|2 + |w|2) ,

as well as

∫
S( ̂r)

̂r2t+1(βt ̂r−2|w|2 − β ̂r−1Re (𝜕rww ) − |𝜕rw|
2)

≤ ∫
S( ̃r)

̃r2t+1(β|t| ̂r−2|w|2 + β ̂r−1|𝜕rww|) ≤ c ⋅ ∫
S( ̃r)

̃r2t+1( ̂r−2|w|2 + |∇w|2) ,

such that equation (B.4) becomes

min { 1
2
,
1
2
+ t} ∫

G( ̂r, ̃r)

r2t(|∇w|2 + γ2|w|2)

≤ ∫
G( ̂r, ̃r)

rt+1|g|(rt |∇w| + βrt−1|w|) + β󵄨󵄨󵄨󵄨t(n + 2t − 2)
󵄨󵄨󵄨󵄨 ∫
G( ̂r, ̃r)

r2t−2|w|2

+ c(n, t) ⋅ ( ∫
S( ̂r)

̂r2t+1( ̂r−2|w|2 + |∇w|2 − γ2|w|2) + ∫
S( ̃r)

̃r2t+1(|∇w|2 + |w|2)) .

By assumption, we havew ∈ H2t (ℝ
n), such that according to LemmaA.2 the lower limit

for ̃r 󳨀→ ∞ of the last boundary integral vanishes. Hence we may replace G( ̂r, ̃r) by
qU( ̂r) and in addition use Young’s inequality to obtain

󵄩󵄩󵄩󵄩󵄩r
t∇w󵄩󵄩󵄩󵄩󵄩

2
L2(qU( ̂r)) + γ

2 󵄩󵄩󵄩󵄩󵄩r
tw󵄩󵄩󵄩󵄩󵄩

2
L2(qU( ̂r))

≤ c(n, t) ⋅ ( 󵄩󵄩󵄩󵄩󵄩r
t+1g󵄩󵄩󵄩󵄩󵄩

2
L2(qU( ̂r)) +

󵄩󵄩󵄩󵄩󵄩r
t−1w󵄩󵄩󵄩󵄩󵄩

2
L2(qU( ̂r)) + ∫

S( ̂r)

̂r2t+1(|∇w|2 − γ2|w|2 + ̂r−2|w|2)) (B.5)

≤ c(n, t) ⋅ ( ‖g‖2L2t+1(ℝn)
+ ‖w‖2L2t−1(ℝn)

+ ∫
S( ̂r)

̂r2t+1(|∇w|2 − γ2|w|2 + ̂r−2|w|2)) .

Now suppose that s = t. Then the assertion simply follows by choosing ̂r := 1 as the
trace theorem bounds the surface integral by ‖w‖2H2(U(1)) and with Lemma B.1

‖w‖H1t (ℝn) ≤ c(n, s, J) ⋅ ( ‖g‖L2t+1(ℝn) + ‖w‖L2t−1(ℝn) + ‖w‖H2(U(2)) )

≤ c(n, s, J) ⋅ ( ‖g‖L2t+1(ℝn) + ‖w‖L2t−1(ℝn) + ‖w‖H2t−1(ℝn) )
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≤ c(n, s, J) ⋅ ( ‖g‖L2t+1(ℝn) + ‖w‖L2t−1(ℝn) + ‖Δw‖L2−1(ℝn) )

≤ c(n, s, J) ⋅ ( ‖g‖L2t+1(ℝn) + ‖w‖L2t−1(ℝn) )

holds. For the case w ̸∈ L2s(ℝ
n), let ̂s := sup {m ∈ ℝ 󵄨󵄨󵄨󵄨 u ∈ L

2
m(ℝ

n)}. Then, w. l. o. g.,4 we
may assume

̂s − 1/2 < t < ̂s < s ≤ t + 1/2 ,

hence δ := 1− 2(s− t) ∈ (0, 1). Multiplying (B.5) with ̂r−δ and integrating from 1 to some
̌r > 1 leads to:
̌r

∫
1

̂r−δ ∫
qU( ̂r)

r2t(|∇w|2 + γ2|w|2) d ̂r ≤ c(n, t) ⋅ (
̌r

∫
1

̂r−δ ∫
qU( ̂r)

r2t+2|g|2 + r2t−2|w|2 d ̂r

+ ∫
G(1, ̌r)

r2t+1−δ(|∇w|2 − γ2|w|2 + r−2|w|2)) (B.6)

By Fubini’s theorem, we have for arbitrary h ∈ L1(ℝn)

̌r

∫
1

̂r−δ ∫
qU( ̂r)

h d ̂r =
̌r

∫
1

∞

∫
̂r

∫
S(σ)

̂r−δ h dσ d ̂r =
∞

∫
1

min{σ, ̌r}

∫
1

̂r−δ ∫
S(σ)

h d ̂r dσ

=
∞

∫
1

(1 − δ)−1min {σ1−δ − 1, ̌r1−δ − 1} ∫
S(σ)

h dσ

=
∞

∫
1

∫
S(σ)

(1 − δ)−1min {r1−δ − 1, ̌r1−δ − 1}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=:θ ̌r

h dσ = ∫
qU(1)

θ ̌r h,

such that (B.6) becomes (note that θ ̌r ≤ (1 − δ)−1 ⋅ r1−δ and 1 − δ = 2(s − t))

∫
qU(1)

θ ̌r r
2t(|∇w|2 + γ2|w|2) (B.7)

≤ c(n, t) ⋅ ( ∫
qU(1)

θ ̌r(r
2t+2|g|2 + r2t−2|w|2) + ∫

G(1, ̌r)

r2t+1−δ(|∇w|2 − γ2|w|2 + r−2|w|2))

≤ c(n, s) ⋅ ( ‖g‖2L2s+1(ℝn)
+ ‖w‖2L2s−1(ℝn)

+ ∫
G(1, ̌r)

r2s(|∇w|2 − γ2|w|2)) .

4 Otherwise, we replace s and t by tk := t + k/4 respectively sk := tk+1, k = 0, 1, 2, . . . and obtain the
assertion after finitely many steps of the type tk < sk ≤ tk + 1/2 (cf. Appendix, Section C, Proof of
Lemma 4.1).
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Finally, look at

Re ∫
G(1, ̌r)

r2sgw = Re ∫
G(1, ̌r)

r2sgv̄ .

Applying Lemma A.4, we obtain (after some rearrangements)

∫
G(1, ̌r)

r2s(|∇w|2 − γ2|w|2)

= −Re ∫
G(1, ̌r)

r2sgw + s(n + 2s − 2) ∫
G(1, ̌r)

r2s−2|w|2

+ ∫
S( ̌r)

̌r2s(Re (𝜕rww) − s ̌r
−1|w|2) − ∫

S(1)

(Re (𝜕rww) − s|w|
2)

≤ c(n, s) ⋅ ( ∫
G(1, ̌r)

(r2s+2|g|2 + r2s−2|w|2) + ∫
S(1)

(|∇w|2 + |w|2) + ∫
S( ̌r)

̌r2s(|∇w|2 + |w|2)) ,

hence (using the trace theorem and Lemma B.1)

∫
G(1, ̌r)

r2s(|∇w|2 − γ2|w|2)

≤ c(n, s) ⋅ ( ‖g‖2L2s+1(ℝn)
+ ‖w‖2L2s−1(ℝn)

+ ‖w‖2H2(U(1)) + ∫
S( ̌r)

̌r2s(|∇w|2 + |w|2))

≤ c(n, s, J) ⋅ ( ‖g‖2L2s+1(ℝn)
+ ‖w‖2L2s−1(ℝn)

+ ∫
S( ̌r)

̌r2s(|∇w|2 + |w|2))

(B.8)

and inserting (B.8) into (B.7) we end up with

∫
qU(1)

θ ̌r r
2t(|∇w|2 + γ2|w|2) ≤ c(n, s, J) ⋅ ( ‖g‖2L2s+1(ℝn)

+ ‖w‖2L2s−1(ℝn)
+ ∫
S( ̌r)

̌r2s(|∇w|2 + |w|2)).

Again the lower limit for ̌r 󳨀→ ∞ of the boundary integral vanishes (cf. Lemma A.2
and observe thatw ∈ H2s− 12

(ℝn), since 0 < s− t ≤ 1/2 by assumption), such that passing
to the limit on a suitable subsequence, we obtain

‖w‖2L2s(ℝn) ≤ c(n, s, J) ⋅ ( ∫
qU(1)

(1 − δ)−1r2t+1−δ(|∇w|2 + γ2|w|2) + ‖w‖2L2s(U(1)) )

≤ c(n, s, J) ⋅ ( lim
̌r→∞
∫

qU(1)

θ ̌rr
2t(|∇w|2 + γ2|w|2) + ‖w‖2L2s−1(U(1))

)

≤ c(n, s, J) ⋅ ( ‖g‖2L2s+1(ℝn)
+ ‖w‖2L2s−1(ℝn)

) ,

showing w ∈ L2s(ℝ
n) and the required estimate.
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Lemma B.3 (A priori estimate). Let n ∈ ℕ, t < −1/2, 1/2 < s < 1, and let J ⋐ ℝ\(0) be an
interval. Then there exist c, δ ∈ (0,∞), such that for all β ∈ ℂ+ with β2 = ν2 + iντ, ν ∈ J,
τ ∈ (0, 1] and g ∈ L2s(ℝ

n)

󵄩󵄩󵄩󵄩󵄩(Δ + β)
−1g󵄩󵄩󵄩󵄩󵄩L2t (ℝn)

+
󵄩󵄩󵄩󵄩󵄩exp(−iνr)(Δ + β)

−1g󵄩󵄩󵄩󵄩󵄩H1
s−2(ℝ

n)

≤ c ⋅ ( ‖g‖L2s(ℝn) +
󵄩󵄩󵄩󵄩󵄩(Δ + β)

−1g󵄩󵄩󵄩󵄩󵄩L2(Ω(δ)) )
(B.9)

holds.

Ikebe and Saito [6] proved this estimate for the space dimension n = 3 and with
t = −s, which already shows the result also for any t < −1/2 as the norms depend
monotonic on the parameters s and t. For arbitrary space dimensions, we follow the
proof of Vogelsang [21, Satz 4].

Proof. First of all, observe that

Δ : H2(ℝn) ⊂ L2(ℝn) 󳨀→ L2(ℝn), w 󳨃󳨀→ Δw

is self-adjoint and, therefore, w := (Δ + β)−1g ∈ H2(ℝn) is well-defined. Moreover, due
to the monotone dependence of the norms on the parameters s and t, it is enough to
concentrate on the case t = −s. With we := exp(−iνr)w and ge := exp(−iνr)g, we have
we ∈ H2(Ω) and

Δwe + iν(τwe +
n − 1
r

we + 2𝜕rwe) = ge .

Applying Lemma A.4 to

Re ∫
G(1, ̃r)

ge(r
2s−1𝜕rwe +

n − 1
2

r2s−2we +
τ
2
r2s−1we) = ⋅ ⋅ ⋅ ,

with ̃r > 1 and using the same techniques as in the proof of Lemma B.2 we obtain

1
2
∫

G(1, ̃r)

r2s−2((4s − 4)|𝜕rwe|
2 − (2s − 3)|∇we|

2) +
1
2
∫

G(1, ̃r)

r2s−1τ|∇we|
2

= −Re ∫
G(1, ̃r)

ge(r
2s−1𝜕rwe +

n − 1
2

r2s−2we +
τ
2
r2s−1we)

+
n − 1
2
(s − 1)(n + 2s − 4) ∫

G(1, ̃r)

r2s−4|we|
2 +

τ
4
(2s − 1)(n + 2s − 3) ∫

G(1, ̃r)

r2s−3|we|
2

+
1
2
∫
S( ̃r)

̃r2s−1 (2|𝜕rwe|
2 + τRe (𝜕rwewe) − |∇we|

2 −
(2s − 1)
̃r

τ|we|
2 )

+
(n − 1)

2
∫
S( ̃r)

̃r2s−2 (Re (𝜕rwewe) −
s − 1
̃r
|we|

2)
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−
1
2
∫
S(1)

(2|𝜕rwe|
2 + τRe (𝜕rwewe) − |∇we|

2 − (2s − 1) τ|we|
2)

−
(n − 1)

2
∫
S(1)

(Re (𝜕rwewe) − (s − 1)|we|
2) .

Since 4s − 4 < 0 and |𝜕rwe| ≤ |∇we|, the left-hand side can be estimated from below

1
2
∫

G(1, ̃r)

r2s−2((4s − 4)|𝜕rwe|
2 − (2s − 3)|∇we|

2) +
1
2
∫

G(1, ̃r)

r2s−1τ|∇we|
2

≥
1
2
∫

G(1, ̃r)

r2s−2((4s − 4) − (2s − 3))|∇we|
2 = (s − 1

2
) ∫
G(1, ̃r)

r2s−2|∇we|
2 ,

while for the right-hand side we obtain

− Re ∫
G(1, ̃r)

ge(r
2s−1𝜕rwe +

n − 1
2

r2s−2we +
τ
2
r2s−1we) + ⋅ ⋅ ⋅

≤ ∫
G(1, ̃r)

rs|ge|(r
s−1|∇we| +

n − 1
2

rs−2|we| +
τ
2
rs−1|we|)

+ c ⋅ ( ∫
G(1, ̃r)

r2s−4|we|
2 + τ ∫

G(1, ̃r)

rs−2|we|r
s−1|we|

+ ∫
S(1)

(|∇we|
2 + |𝜕rwewe| + |we|

2) + ∫
S( ̃r)

̃r2s−1(|∇we|
2 + |𝜕rwewe| + |we|

2)) ,

yielding

(s − 1
2
) ∫
G(1, ̃r)

r2s−2|∇we|
2

≤ ∫
G(1, ̃r)

rs|ge|(r
s−1|∇we| +

n − 1
2

rs−2|we| +
τ
2
rs−1|we|) + c ⋅ ( ∫

G(1, ̃r)

r2s−4|we|
2

+ τ ∫
G(1, ̃r)

r2s−2|we| + ∫
S(1)

(|∇we|
2 + |we|

2) + ∫
S( ̃r)

̃r2s−1(|∇we|
2 + |we|

2)) .

Here, as well as in the sequel, c ∈ (0,∞) denotes a generic constant independent of ν,
τ, w and g. According to Lemma A.2, the lower limit for ̃r 󳨀→ ∞ of the last boundary
integral vanishes. Thus we may omit it and replace G(1, ̃r) by qU(1), such that using
Young’s inequality we end up with

󵄩󵄩󵄩󵄩󵄩r
s−1 ∇we
󵄩󵄩󵄩󵄩󵄩
2
L2(qU(1))
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≤ c ⋅ ( 󵄩󵄩󵄩󵄩r
sge
󵄩󵄩󵄩󵄩
2
L2(qU(1)) + τ

󵄩󵄩󵄩󵄩󵄩r
s−1we
󵄩󵄩󵄩󵄩󵄩
2
L2(qU(1)) +

󵄩󵄩󵄩󵄩󵄩r
s−2we
󵄩󵄩󵄩󵄩󵄩
2
L2(qU(1)) + ∫

S(1)

(|∇we|
2 + |we|

2))

≤ c ⋅ ( ‖ge‖
2
L2(ℝn) + τ ‖we‖

2
L2s−1(ℝn)
+ ‖we‖

2
L2s−2(ℝn)
+ ∫
S(1)

(|∇we|
2 + |we|

2)) .

In addition, the surface integral is bounded by ‖we‖
2
H2(U(1)) (trace theorem) and

Lemma B.1 yields

‖we‖H2(U(2)) ≤ c ⋅ ‖we‖H2−s(ℝn) ≤ c ⋅ (‖ge‖L2s(ℝn) + ‖we‖L2−s(ℝn) ) ,

showing

‖∇we‖
2
L2s−1(ℝn)
≤ c ⋅ ( ‖g‖2L2(ℝn) + τ ‖we‖

2
L2s−1(ℝn)
+ ‖we‖

2
L2s−2(ℝn)
+ ‖we‖

2
H2(U(1))

≤ c ⋅ ( ‖g‖2L2(ℝn) + τ ‖w‖
2
L2s−1(ℝn)
+ ‖w‖2L2s−2(ℝn)

+ ‖w‖2L2−s(ℝn) ) .

By the differential equation we see

‖g‖L2(ℝn) ‖w‖L2(ℝn) ≥
󵄨󵄨󵄨󵄨Im ⟨ g ,w ⟩L2(ℝn)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨iντ ⟨w ,w ⟩L2(ℝn)

󵄨󵄨󵄨󵄨 = τ|ν| ‖w‖
2
L2(ℝn) ,

hence (−s > s − 2)

‖exp(−iνr)w‖H1
s−2(ℝ

n) ≤ c ⋅ ( ‖we‖L2s−2(ℝn)
+ ‖∇we‖L2s−1(ℝn)

)

≤ c ⋅ ( ‖g‖2L2s(ℝn) + τ ‖w‖
2
L2s−1(ℝn)
+ ‖w‖2L2−s(ℝn) )

≤ c ⋅ ( ‖g‖L2s(ℝn) + ‖w‖L2−s(ℝn) ) ,

(B.10)

and it remains to estimate ‖w‖L2−s(ℝn). For that, we calculate

Im ∫
G(1, ̃r)

gewe = Im ∫
G(1, ̃r)

Δwewe + ∫
G(1, ̃r)

ν (τwe +
n − 1
r

we ) we + 2ν Re ∫
G(1, ̃r)

𝜕rwewe = ⋅ ⋅ ⋅ ,

using Lemma A.4 and obtain

ν ∫
G(1, ̃r)

r−2s((2s − 1)|we|
2 + τr|we|

2)

= Im ∫
G(1, ̃r)

r1−2sgewe − (2s − 1) ∫
G(1, ̃r)

r−2s Im (𝜕rwewe)

+ ∫
S( ̃r)

r1−2s(τ|we|
2 + Im (𝜕rwewe)) − ∫

S(1)

(τ|we|
2 + Im (𝜕rwewe))

≤ ∫
G(1, ̃r)

rs|ge|r
1−3s|we| + (2s − 1) ∫

G(1, ̃r)

rs−1|𝜕rwe|r
1−3s|we|
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+ c ⋅ ( ∫
S( ̃r)

r1−2s(|we|
2 + |𝜕rwewe|) + ∫

S(1)

(|we|
2 + |𝜕rwewe|))

≤ ( 󵄩󵄩󵄩󵄩r
sge
󵄩󵄩󵄩󵄩L2(G(1, ̃r)) + (2s − 1)

󵄩󵄩󵄩󵄩󵄩r
s−1 ∇we
󵄩󵄩󵄩󵄩󵄩L2(G(1, ̃r)) ) ⋅

󵄩󵄩󵄩󵄩󵄩r
1−3swe
󵄩󵄩󵄩󵄩󵄩L2(G(1, ̃r))

+ c ⋅ ( ∫
S(1)

(|we|
2 + |∇we|

2) + ∫
S( ̃r)

̃r1−2s(|we|
2 + |∇we|

2)) .

As before, the lower limit for ̃r 󳨀→ ∞ of the last boundary integral vanishes (cf.
Lemma A.2 and observe that we ∈ H2(Ω), s > 0), such that we may omit it and replace
G(1, ̃r) by qU(1), yielding (with (B.10))
󵄩󵄩󵄩󵄩r
−swe
󵄩󵄩󵄩󵄩
2
L2(qU(1))

≤ c ⋅ (( 󵄩󵄩󵄩󵄩r
sge
󵄩󵄩󵄩󵄩L2(qU(1)) +

󵄩󵄩󵄩󵄩󵄩r
s−1∇we
󵄩󵄩󵄩󵄩󵄩L2(qU(1)) ) ⋅

󵄩󵄩󵄩󵄩󵄩r
1−3swe
󵄩󵄩󵄩󵄩󵄩L2(qU(1)) + ∫

S(1)

(|we|
2 + |∇we|

2))

≤ c ⋅ (( ‖ge‖L2s(ℝn) + ‖∇we‖L2s−1(ℝn)
) ⋅ ‖we‖L21−3s(ℝn)

+ ∫
S(1)

(|we|
2 + |∇we|

2)) .

As the surface integral is bounded by ‖we‖
2
H2(U(1)) (trace theorem) and with (B.10) we

obtain

‖we‖
2
L2−s(ℝn)
≤ c ⋅ (( ‖ge‖L2s(ℝn) + ‖∇we‖L2s−1(ℝn)

) ⋅ ‖we‖L21−3s(ℝn)
+ ‖we‖

2
H2(U(2)) )

≤ c ⋅ (( ‖ge‖L2s(ℝn) + ‖we‖L2−s(ℝn) ) ⋅ ‖we‖L21−3s(ℝn)
+ ‖we‖

2
H2(U(2)) ) ,

hence (Young’s inequality)

‖we‖
2
L2−s(ℝn)
≤ c ⋅ (‖ge‖L2s(ℝn) + ‖we‖L21−3s(ℝn)

+ ‖we‖
2
H2(U(2)) ) ,

Finally, using once again Lemma B.1 we arrive at

‖we‖
2
L2−s(ℝn)
≤ c ⋅ ( ‖ge‖L2s(ℝn) + ‖we‖L21−3s(ℝn)

) ,

which together with (B.10) and Lemma A.1 implies

‖w‖L2−s(ℝn) + ‖exp(−iνr)w‖H1
s−2(ℝ

n) ≤ c ⋅ ( ‖g‖L2s(ℝn) + ‖w‖L2(Ω(δ)) ) (B.11)

with c, δ > 0 independent of ν, τ, w and g.

Appendix C. Proofs in the case of the time-harmonic
Maxwell equations
This section deals with the proofs of the decomposition lemma, the polynomial decay,
and the a priori estimate, which we skipped in the main part.
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Proof of Lemma 4.1. We start with u = ηu + η̌u, noting that η̌u ∈ Rt. Moreover,

Rot η̌u = CRot,η̌u + η̌Rot u = CRot,η̌u − iη̌Λf − iωη̌Λu

and we have

(Rot+ iωΛ0)η̌u = (CRot,η̌ − iωη̌Λ̂)u − iη̌Λf = f1 ∈ L
2
s ,

since supp∇η̌ is compact and t + κ ≥ s. According to [26, Theorem 4],

f1 = fR + fD + f𝒮 ∈ 0Rs ∔ 0Ds ∔ 𝒮s

holds and we obtain

iωη̌Λ0u = f1 − Rot η̌u = fD − Rot η̌u + fR + f𝒮 .

Defining
– u1 := −

i
ω
Λ−10 (fR + f𝒮) ∈ Rs;

– ũ := η̌u − u1 =
i
ω
Λ−10 (Rot η̌u − fD) ∈ Rt ∩ 0Dt,

[8, Lemma 4.2] shows ũ ∈ H1t and we have

(Rot+ iωΛ0)ũ = Rot (η̌u − u1) + iωΛ0ũ = fD +
i
ω
Λ̃0
−1

Rot f𝒮 = f2 ∈ 0Ds .

Next, we solve (Rot+ 1)u2 = f2. Using Fourier transformation, we look at

û2 := (1 + r
2)
−1
(1 − ir Ξ)ℱ(f2)

Since s > 1/2 and f2 ∈ L2s, we obtain û ∈ L21, hence u2 := ℱ−1(û2) ∈ H1. Moreover,
ℱ(ℱ(f2)) = 𝒫(f2) ∈ L2s (𝒫: parity operator) yielding ℱ(f2) ∈ Hs and as product of an
Hs-field with bounded C∞-functions, û ∈ Hs (cf. [30, Lemma 3.2]), hence u2 ∈ L2s. In
addition a straight forward calculation shows ℱ((Rot+ 1)u2) = ℱ(f2), which by [8,
Lemma 4.2] implies

(Rot+ 1)u2 = f2 and u2 ∈ H
1
s ∩ 0Ds .

Then (t ≤ s)

u3 := ũ − u2 ∈ H
1
t ∩ 0Dt

satisfies

(Rot+ iωΛ0)u3 = (Rot+ iωΛ0)ũ − (Rot+ iωΛ0)u2

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:08 PM



378 | F. Osterbrink and D. Pauly

= f2 − (Rot+ 1)u2 + (1 − iωΛ0)u2 = (1 − iωΛ0)u2 ∈ H
1
s ∩ 0Ds

and using once more [8, Lemma 4.2] we get

u3 ∈ H
2
t ∩ 0Dt .

Finally

Δu3 = Rot (Rot u3) = (1 − iωΛ̃0)Rot u2 − iωΛ̃0 Rot u3
= (1 − iωΛ̃0)(f2 − u2) − iωΛ̃0((1 − iωΛ0)u2 − iωΛ0u3)

= (1 − iωΛ̃0) f2 − (1 + ω
2ε0μ0)u2 − ω

2ε0μ0u3

holds, and hence

(Δ + ω2ε0μ0)u3 = (1 − iωΛ̃0) f2 − (1 + ω
2ε0μ0)u2.

The asserted estimates follow by straightforward calculations using [8, Lemma 4.2]
and the continuity of the projections from L2s into 0Rs, 0Ds and 𝒮s.

Proof of Lemma 4.2. As for t ≥ s − 1 there is nothing to prove, we concentrate on

u ∈ Rt(Ω) with − 1/2 < t < s − 1 .

Therefore, assume first that in addition

s − κ < t 󳨐⇒ t < s < t + κ .

Then we may apply Lemma 4.1 and decompose the field u in

u = ηu + u1 + u2 + u3 ,

withηu+u1+u2 ∈ Rs(Ω) andu3 ∈ H
2
t satisfying (Δ+ω

2ε0μ0 )u3 ∈ L2s. Thus thepolynomial
decay for the Helmholtz equation (cf. Lemma B.2) shows

u3 ∈ H
2
s−1 and ‖u3‖H2s−1 ≤ c ⋅ (

󵄩󵄩󵄩󵄩󵄩(Δ + ω
2ε0μ0)u3

󵄩󵄩󵄩󵄩󵄩L2s
+ ‖u3‖L2s−2 ) ,

c = c(s, J) > 0, yielding u = ηu + u1 + u2 + u3 ∈ Rs−1(Ω). Moreover, using the estimates
of Lemma 4.1 we obtain uniformly with respect to ω, u, and f

‖u‖Rs−1(Ω) ≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) + ‖u3‖L2s−1 )

≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) +
󵄩󵄩󵄩󵄩󵄩(Δ + ω

2ε0μ0)u3
󵄩󵄩󵄩󵄩󵄩L2s
+ ‖u3‖L2s−2 )

≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−m(Ω) ) ,
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wherem := min{κ, 2} and applying Lemma A.1 we end up with

‖u‖Rs−1(Ω) ≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2(Ω(δ)) ) ,

for c, δ ∈ (0,∞) independent of ω, u and f . So let us switch to the case

t ≤ s − κ 󳨐⇒ t + κ ≤ s .

Here, the idea is to approach s by overlapping intervals to which the first case is ap-
plicable. For that, we choose some k̂ ∈ ℕ, such that with γ := (κ − 1)/2 > 0 we have

t + κ + (k̂ − 1) ⋅ γ ≤ s ≤ t + κ + k̂ ⋅ γ ,

and for k = 0, 1, . . . , k̂ we define

tk := t + k ⋅ γ as well as sk := tk+1 + 1 = tk + (κ + 1)/2 .

Then (as κ > 1)

tk+1 < sk = tk+1 + 1 = t + κ + (k − 1) ⋅ γ ≤ s,
tk < tk+1 + 1 = sk = tk + (κ + 1)/2 < tk + κ,

such that we can successively apply the first case, ending up with u ∈ Rsk̂−1(Ω). If
s = sk̂, we are done. Otherwise, we choose tk̂+1 := sk̂ − 1 and apply the first case once
more, since

tk̂+1 < sk̂ < s ≤ t + κ + k̂ ⋅ γ = tk̂+1 + κ .

Either way, we obtain u ∈ Rs−1(Ω) and now the estimate follows as in the first case.

Proof of Lemma 4.4. Without loss of generality, we may assume s ∈ (1/2, 1). Then we
have s ∈ ℝ \ 𝕀 with 0 < s < κ and we can apply Lemma 4.1 (with t = 0) to decompose
u := ℒωf ∈ RΓ1 (Ω) into

u = ηu + u1 + u2 + u3

with u3 ∈ H2 solving

(Δ + ω2ε0μ0)u3 = (1 − iωΛ̃0) f2 − (1 + ω
2ε0μ0)u2 =: f3 ∈ L

2
s ,

where f2 is defined as in Lemma 4.1. Moreover, the estimates from Lemma 4.1 along
with

(Rot − iω√ε0μ0 Ξ)u = −iΛf − iω(Λ0 + √ε0μ0 Ξ)u − iωΛ̂u

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:08 PM



380 | F. Osterbrink and D. Pauly

yield

‖u‖Rt(Ω) +
󵄩󵄩󵄩󵄩(Λ0 + √ε0μ0 Ξ)u

󵄩󵄩󵄩󵄩L2s−1(Ω)

≤ c ⋅ ( ‖u‖Rt(Ω) +
󵄩󵄩󵄩󵄩(Rot − iω√ε0μ0 Ξ)u

󵄩󵄩󵄩󵄩L2s−1(Ω)
+ ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) )

≤ c ⋅ ( ‖u3‖L2t +
󵄩󵄩󵄩󵄩(Rot − iω√ε0μ0 Ξ)u3

󵄩󵄩󵄩󵄩L2s−1
+ ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) ) ,

(C.1)

with c = c(s, t, J) > 0. Due to the monotonicity of the norms with respect to t and s, we
may assume t and s to be close enough to −1/2 respectively 1/2 such that 1 < s − t < κ
holds. Hence, the assertion follows by (C.1) and Lemma A.1, if we can show

‖u3‖L2t +
󵄩󵄩󵄩󵄩(Rot − iω√ε0μ0 Ξ)u3

󵄩󵄩󵄩󵄩L2s−1
≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) ) ,

with c ∈ (0,∞) independent of ω, u and f . Therefore, note that the self-adjointness of
the Laplacian Δ : H2 ⊂ L2 󳨀→ L2 yields (Δ+ω2ε0μ0)

−1f3 = u3 and applying Lemma B.3
componentwise, we obtain

‖u3‖L2t +
󵄩󵄩󵄩󵄩exp(−iλ√ε0μ0r)u3

󵄩󵄩󵄩󵄩H1
s−2
≤ c ⋅ ( ‖f3‖L2s + ‖u3‖L2(Ω(δ)) ) .

With Rot(exp(−iλ√ε0μ0r)u3) = exp(−iλ√ε0μ0r)(Rot − iλ√ε0μ0 Ξ)u3 this leads to

‖u3‖L2t +
󵄩󵄩󵄩󵄩(Rot − iλ√ε0μ0 Ξ)u3

󵄩󵄩󵄩󵄩L2s−1
≤ ‖u3‖L2t +

󵄩󵄩󵄩󵄩Rot ( exp(−iλ√ε0μ0r)u3)
󵄩󵄩󵄩󵄩L2s−1

≤ ‖u3‖L2t +
󵄩󵄩󵄩󵄩exp(−iλ√ε0μ0r)u3

󵄩󵄩󵄩󵄩H1
s−2
≤ c ⋅ ( ‖f3‖L2s + ‖u3‖L2(Ω(δ)) ) ,

(C.2)

where c > 0 is not depending on ω, u3 and f3. But, actually, we would like to estimate
(Rot − iω√ε0μ0 Ξ)u3. For that, we need some additional arguments, starting with the
observation that

ω = |λ|(1 + (σ/λ)2)1/4 ⋅ (
exp(iφ/2) for λ > 0

exp(i(φ/2 + π)) for λ < 0

with φ := arctan(σ/λ) ∈ ( − π
2
,
π
2
) ,

hence |Re (ω)| ≥ √2/2 ⋅ |λ|. Then |ω + λ| ≥ √3/2 ⋅ |λ| and we have

|ω − λ|2 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ω2 − λ2

ω + λ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
iσλ
ω + λ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
≤
2
3
⋅ σ2.

From this and the resolvent estimate,

‖f3‖L2 =
󵄩󵄩󵄩󵄩󵄩(Δ + ω

2ε0μ0) u3
󵄩󵄩󵄩󵄩󵄩L2 ≥ |Im (ω

2ε0μ0)| ⋅ ‖u3‖L2 = ε0μ0σ|λ| ⋅ ‖u3‖L2 ,
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we obtain (s > 1/2)

󵄩󵄩󵄩󵄩(Rot − iω√ε0μ0 Ξ)u3
󵄩󵄩󵄩󵄩L2s−1
≤ 󵄩󵄩󵄩󵄩(Rot − iλ√ε0μ0 Ξ)u3

󵄩󵄩󵄩󵄩L2s−1
+ 󵄩󵄩󵄩󵄩(ω − λ)√ε0μ0 Ξu3

󵄩󵄩󵄩󵄩L2s−1
≤ 󵄩󵄩󵄩󵄩(Rot − iλ√ε0μ0 Ξ)u3

󵄩󵄩󵄩󵄩L2s−1
+ c ⋅ |λ|−1 ‖f3‖L2s ,

such that with (C.2) and the estimates from Lemma 4.1 uniformly with respect to ω, u
and f

‖u3‖L2t +
󵄩󵄩󵄩󵄩(Rot − iω√ε0μ0 Ξ)u3

󵄩󵄩󵄩󵄩L2s−1
≤ c ⋅ ( ‖f ‖L2s(Ω) + ‖u‖L2s−κ(Ω) ) .

Bibliography
[1] S. Bauer, D. Pauly, and M. Schomburg, The Maxwell compactness property in bounded

weak Lipschitz domains with mixed boundary conditions, SIAM J. Math. Anal., 48(4) (2016),
2912–2943.

[2] M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz
domains,Math. Methods Appl. Sci., 12(4) (1990), 365–368.

[3] R. Dautray and J.-L. Lions,Mathematical Analysis and Numerical Methods for Science and
Technology: Volume 2 – Functional and Variational Methods, Springer-Verlag, 2000.

[4] D.M. Eidus, The principle of limiting absorption, Transl. Am. Math. Soc. (2), 47 (1965), 157–191.
[5] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous

anisotropic media with irregular boundary and mixed boundary conditions,Math. Models
Methods Appl. Sci., 07(7) (1997), 957–991.

[6] T. Ikebe and Y. Saito, Limiting absorption method and absolute continuity for the Schrödinger
operator, J. Math. Kyoto Univ., 12(3) (1972), 513–542.

[7] F. Jochmann, A compactness result for vector fields with divergence and curl in L2(Ω) involving
mixed boundary conditions, Appl. Anal., 66(1) (1997), 189–203.

[8] P. Kuhn and D. Pauly, Regularity results for generalized electro-magnetic problems, Analysis,
30(3) (2010), 225–252.

[9] R. Leis, Zur Theorie elektromagnetischer Schwingungen in anisotropen inhom. Medien,Math.
Z., 106 (1968), 213–224.

[10] R. Leis, Aussenraumaufgaben in der Theorie der Maxwellschen Gleichungen, in Topics in
Analysis, pp. 237–247, Springer, Berlin, Heidelberg, 1974.

[11] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Courier Corporation, 2013.
[12] C. Müller, Randwertprobleme der Theorie elektromagnetischer Schwingungen,Math. Z., 56(3)

(1952), 261–270.
[13] C. Müller, On the behavior of the solutions of the differential equation Δu = f (x, u) in the

neighborhood of a point, Commun. Pure Appl. Math., 7(3) (1954), 505–515.
[14] D. Pauly, Niederfrequenzasymptotik der Maxwell-Gleichung im inhomogenen und anisotropen

Außengebiet, Dissertation, Universität Duisburg-Essen, Fakultät für Mathematik, 2003.
[15] D. Pauly, Low frequency asymptotics for time-harmonic generalized Maxwell equations in

nonsmooth exterior domains, Adv. Math. Sci. Appl., 16(2) (2006), 591–622.
[16] D. Pauly, On polynomial and exponential decay of eigen-solutions to exterior boundary value

problems for the generalized time-harmonic Maxwell system, Asymptot. Anal., 79(1) (2012),
133–160.

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:08 PM



382 | F. Osterbrink and D. Pauly

[17] D. Pauly, Solution theory, variational formulations, and functional a posteriori error estimates
for general first order systems with applications to electro-magneto statics and more, Numer.
Funct. Anal. Optim. (2019), https://arxiv.org/abs/1611.02993.

[18] R. Picard, Ein vereinheitlichter Zugang für eine Klasse linearer Wellenausbreitungsphänomene,
Technical Report 489, SFB 72, Universität Bonn, 1982.

[19] R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic
theory,Math. Z., 187 (1984), 151–164.

[20] R. Picard, N. Weck, and K. J. Witsch, Time-harmonic Maxwell equations in the exterior of
perfectly conducting, irregular obstacles, Analysis (Munich), 21(3) (2001), 231–264.

[21] V. Vogelsang, Die absolute Stetigkeit des positiven Spektrums der Schwingungsgleichungen
mit oszillierendem Hauptteil,Math. Z., 181 (1982), 201–214.

[22] C. Weber, A local compactness theorem for Maxwell’s equations,Math. Methods Appl. Sci., 2(1)
(1980), 12–25.

[23] C. Weber, Regularity theorems for Maxwell’s equations,Math. Methods Appl. Sci., 3(1) (1981),
523–536.

[24] N. Weck, Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth
boundaries, J. Math. Anal. Appl., 46(2) (1974), 410–437.

[25] N. Weck and K. J. Witsch, Complete low frequency analysis for the reduced wave equation
with variable coefficients in three dimensions, Commun. Partial Differ. Equ., 17(9) (1992),
1619–1663.

[26] N. Weck and K. J. Witsch, Generalized spherical harmonics and exterior differentiation in
weighted Sobolev spaces,Math. Methods Appl. Sci., 17(13) (1994), 1017–1043.

[27] N. Weck and K. J. Witsch, Generalized linear elasticity in exterior domains. I: Radiation
problems,Math. Methods Appl. Sci., 20(17) (1997), 1469–1500.

[28] P. Werner, Randwertprobleme für die zeitunabhängigen Maxwellschen Gleichungen mit
variablen Koeffizienten, Arch. Ration. Mech. Anal., 18(3) (1965), 167–195.

[29] H. Weyl, Die natürlichen Randwertaufgaben im Außenraum für Strahlungsfelder beliebiger
Dimension und beliebigen Ranges,Math. Z., 56(2) (1952), 105–119.

[30] J. Wloka, Partial Differential Equations, Cambridge University Press, 1987.

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:08 PM



Rainer Picard
11 On an electro-magneto-elasto-dynamic

transmission problem
Abstract:We consider a coupled system of Maxwell’s equations and the equations of
elasticity, where the coupling occurs not via material properties but through an in-
teraction on an interface separating the two regimes. Evolutionary well-posedness in
the sense of Hadamardwell-posedness supplemented by causal dependence is shown
for a natural choice of generalized interface conditions. The results are obtained in a
Hilbert space setting incurring no regularity constraints on the boundary and the in-
terface of the underlying regions.

Keywords: Elasticity equations, Maxwell equations, transmission problem, boundary
interaction, mother/descendant mechanism

MSC 2010: 35Q60, 74F15, 74B05, 46N20

1 Introduction
Similarities between various initial boundary value problems ofmathematical physics
have been noted as general observations throughout the literature. Indeed, the work
by K. O. Friedrichs [2, 3] already showed that the classical linear phenomena of math-
ematical physics belong – in the static case – to his class of symmetric positive hyper-
bolic partial differential equations, later referred to as Friedrichs systems, which are of
the abstract form

(M1 + A)u = f , (1)

with A at least formally, i. e., on C∞-vector fields with compact support in the un-
derlying region Ω, a skew-symmetric differential operator and the L∞-matrix-valued
multiplication-operatorM1 satisfying the condition

sym(M1) :=
1
2
(M1 +M

∗
1 ) ≥ c > 0

for some real number c. Indeed, a typical choice for the domain of A is to incorporate
a boundary condition into D(A), so that A is skew self-adjoint (A quasi-m-accretive
would be sufficient). Problem (1) can be considered as the static problem associated

Rainer Picard, TU Dresden, Dresden, Germany, e-mail: rainer.picard@tu-dresden.de
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384 | R. Picard

with the dynamic problem (𝜕0 denotes the time-derivative)

𝜕0M0 +M1 + A (2)

with M0 a self-adjoint L∞-multiplication-operator and M0 ≥ 0, which were also ad-
dressed in [3]. It is noteworthy that even the temporal exponentialweight factor,which
plays a central role in our approach, is introduced as an ad hoc formal trick to produce
a suitable M1 for a well-posed static problem. For the so-called time-harmonic case,
where 𝜕0 is replaced by iω,ω ∈ ℝ, we replaceA simply by iωM0+A to arrive at a system
of the form (1).

Operators of the Friedrichs type (2), can be generalized to obtain a fully time-
dependent theory allowing for operator-valued coefficients, indeed, in the time-shift
invariant case, for systems of the general form

(𝜕0M(𝜕
−1
0 ) + A)U = F (Evo-Sys)

where A is – for simplicity – skew self-adjoint andM an operator-valued – say – ratio-
nal function as an abstract coefficient. The meaning ofM(𝜕−10 ) is in terms of a suitable
function calculus associated with the (normal) operator 𝜕0, [13, Chapter 6]. We shall
refer to such systems as evolutionary equations, evo-systems for short, to distinguish
them from the special subclass of classical (explicit) evolution equations.

In this paper, we intend to study a particular transmission problem between two
physical regimes, electro-magneto-dynamics and elasto-dynamics, within this gen-
eral framework and establish its well-posedness, which for evo-systems entails not
only Hadamard well-posedness, i. e., uniqueness, existence and continuous depen-
dence, but also the crucial property of causality.

The peculiarity of the problemwe shall investigate is that the interaction between
the two regimes is solely via the interface, not via material interactions as in piezo-
electrics; compare, e. g., [7] for the latter type of effects.

After properly introducing evo-systems in the next section, we shall establish the
equations of electro-magneto-dynamics and elasto-dynamics, respectively, as such
systems in Section 3. Finally, in Section 4 we establish a particular interface coupling
problem between the two regimes in adjacent regions via amother-descendant mech-
anism; see the survey [15]. We emphasize that our setup allows for arbitrary open sets
as underlying domains with no additional constraints on boundary regularity.
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11 On an electro-magneto-elasto-dynamic transmission problem | 385

2 A short introduction to a class of evo-systems

2.1 Basic ideas

We shall approach solving (Evo-Sys) by looking at the equation as a space-time oper-
ator equation in a suitable Hilbert space setting. Without loss of generality, we may1

and will assume that all Hilbert spaces are real.
Solutions will be discussed in a weighted L2-space Hν(ℝ,H), constructed by com-

pletion of the space C̊1(ℝ,H) of differentiable H-valued functions with compact sup-
port w. r. t. ⟨ ⋅ | ⋅ ⟩ν,H (norm: | ⋅ |ν,H )

(φ,ψ) 󳨃→ ∫
ℝ

⟨φ(t)󵄨󵄨󵄨󵄨ψ(t)⟩H exp(−2νt)dt.

Here, H denotes a generic real Hilbert space. We introduce time differentiation 𝜕0
as a closed operator in Hν(ℝ,H) defined as the closure of

C̊1(ℝ,H) ⊆ Hν(ℝ,H) → Hν(ℝ,H),
φ 󳨃→ φ󸀠.

The operator 𝜕0 is normal in Hν(ℝ,H). For ν0 ∈ ]0,∞[, ν ∈ ]ν0,∞[, we have

sym(𝜕0) :=
1
2
(𝜕0 + 𝜕∗0 ) = ν ≥ ν0 > 0, (3)

i. e.

𝜕0 is a strictly (and uniformly w. r. t. ν ∈ ]ν0,∞[) positive definite
(i. e., m-accretive) operator.

1 Every complex Hilbert space X is a real Hilbert space choosing only real numbers as multipliers and

(ϕ,ψ) 󳨃→Re⟨ϕ|ψ⟩X

as new inner product. Note that with this choice ϕ and iϕ are always orthogonal. Moreover, for any
skew-symmetric operator A we have

x ⊥ Ax
for all x ∈ D(A).
Indeed, since ⟨x|y⟩ − ⟨y|x⟩ = 0 (symmetry) we have

⟨x|Ax⟩ − ⟨Ax|x⟩ = 0

or by skew-symmetry

0 = ⟨x|Ax⟩ − ⟨Ax|x⟩

= 2⟨x|Ax⟩

for all x ∈ D(A).
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This core observation can be lifted to a larger class of more complex problems
involving operator-valued coefficients and systems of the general form

(𝜕0M(𝜕
−1
0 ) + A)U = F (Evo-Sys)

where A is – for simplicity – skew self-adjoint andM an operator-valued – say – ratio-
nal function as abstract coefficient.

In many practical cases, skew self-adjointness of A is evident from its structure as
a block operator matrix of the form

A = (0 −C
∗

C 0
) ,

with H = H0 ⊕ H1 and C : D(C) ⊆ H0 → H1 a densely defined, closed linear operator.

2.2 Well-posedness for evo-systems

Since reasonable well-posedness requires closed operators, we describe our problem
class more rigorously as of the form

(𝜕0M(𝜕−10 ) + A)U = F. (Evo-Sys)

For a convenient special class, more than sufficient for our purposes here, we record
the following general well-posedness result; see [10, 11, 15].

Theorem 2.1. Let z 󳨃→ M(z) be a rational ℒ(H ,H)-valued function in a neighborhood of
0 such that M(0) is self-adjoint and2

νM(0) + sym(M󸀠(0)) ≥ η0 > 0 (4)

for some η0 ∈ ℝ and all ν ∈ ]ν0,∞[, ν0 ∈ ]0,∞[ sufficiently large, and let A be skew
self-adjoint. Then well-posedness of (Evo-Sys) follows for all ν ∈ ]ν0,∞[. Moreover, the
solution operator (𝜕0M(𝜕−10 ) + A)

−1
is causal in the sense that

χ]−∞,0](𝜕0M(𝜕−10 ) + A)
−1
= χ]−∞,0](𝜕0M(𝜕−10 ) + A)

−1
χ]−∞,0].

2 Here, we use sym in an analogous meaning to (3), i. e.,

sym(B) := 1
2
(B + B∗),

which is equal to 1
2 (B + B

∗) since B is continuous..
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11 On an electro-magneto-elasto-dynamic transmission problem | 387

Indeed, apart from occasional side remarks we will simply have

M(𝜕−10 ) = M0 + 𝜕
−1
0 M1

and since 𝜕0, A can be continuously extended to suitable extrapolation spaces, it is
justified3 to drop the closure bar, which we shall do henceforth.

3 Maxwell’s equations and the equations of linear
elasticity as evo-systems

3.1 Maxwell’s equations as an evo-system

James ClerkMaxwell developed his new ideas on electro-magnetic waves in 1861–1864
resulting in his famous two volume publication: A Treatise on Electricity and Mag-
netism, [6]. His ingenious contribution towhat we nowadays call Maxwell’s equations
is to amend Ampere’s law with a so-called displacement current term. Heaviside and
Gibbs have given the system in its now familiar form as

𝜕0D + σE − curlH = −jext , (Ampere’s law)
𝜕0B + curlE = 0, (Faraday’s law of induction)

D = εE,
B = μH .

The usually included divergence conditions are redundant, since the two equations
together with the material relations can be seen to be leading already to a well-posed
initial boundary value problem. The so-called six-vector block matrix form:

(𝜕0 (
ε 0
0 μ
) + (

σ 0
0 0
) + (

0 − curl
̊curl 0

))(
E
H
) = (
−jext
0
)

brings us already close to our initial goal to formulate the equations as an evo-system.
Here, ̊curl denotes the L2-closure of the classical curl defined on C1(ℝ3)-vector fields
vanishing outside closed, bounded subsets of ℝ3. Moreover, curl := ̊curl

∗
and so the

spatial Maxwell operator is skew self-adjoint in L2(ℝ3, ℝ6). In case of a domain Ωwith

3 Albeit this being sometimes confusing andmisleading, it is a common practice in the field of partial
differential equations. For example, one frequently writes

Δ = 𝜕21 + 𝜕
2
2

althoughϕ ∈ D(Δ)does in general not – as thenotation appears to suggest – allow forϕ ∈ D(𝜕21 )∩D(𝜕
2
2).
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388 | R. Picard

boundary, we take ̊curl constructed analogously with C1(Ω)-vector fields vanishing
outside closed, bounded sets contained in Ω, where Ω is a non-empty open set in ℝ3

(strong definition of ̊curl) and define

curl := ̊curl
∗

(5)

(weak4 definition of curl). Thus we arrive indeed at the evo-system5

(𝜕0M(𝜕
−1
0 ) + A) (

E
H
) = (
−jext
kext
)

withM(𝜕−10 ) = M(0) + 𝜕
−1
0 M󸀠(0) and here specifically

M(0) = (ε 0
0 μ
) , M󸀠(0) = (σ 0

0 0
) , A = (

0 − curl
̊curl 0

) , (6)

which satisfies the well-posedness constraint if we assume ε, μ selfadjoint and (com-
pare (3) and (2))

νε + sym(σ), μ ≥ η0 > 0, (7)

for all sufficiently large ν ∈ ]0,∞[. Note that with this assumption also ε having a non-
trivial null space, the so-called eddy current problem, can be handled without further
adjustments. Of course, in the spirit of Theorem 2.1 we could consider more general
media. More recently, so-called electro-magneticmetamaterials have come into focus,
which aremedia, whereM󸀠󸀠 ̸= 0 orM(z) is not block-diagonal. To classify some promi-
nent cases, there are for example:
– Bi-anisotropic media, characterized by

M(0) = (ε κ∗

κ μ
) , κ ̸= 0.

Since, due to (4), we must haveM(0) ≥ 0, we get ε ≥ 0 and
󵄨󵄨󵄨󵄨μ
−1/2κε−1/2󵄨󵄨󵄨󵄨 ≤ 1.

Note that this is a strong smallness constraint on the off-diagonal entry κ. For ex-
ample in homogeneous, isotropic media c0 = ε−1/2μ−1/2 is the speed of light and
the above condition yields

|κ| ≤ 1
c0
.

4 Of course, “weak equals strong.” It is C1(Ω) ∩D(curl) dense in D(curl) by T. Kasuga’s argument (see
[4], [5, Section 2.1]), the strong definition of curl as the closure curl |C1(Ω)∩D(curl) equals its weak defini-
tion. Consequently, also ̊curl = curl∗ = (curl |C1(Ω)∩D(curl))

∗, which confirms “weak equals strong” for
̊curl as well.

5 Here, we have thrown in an extra magnetic external source term, since mathematically it is no ob-
stacle to treat kext ̸= 0.
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11 On an electro-magneto-elasto-dynamic transmission problem | 389

– Chiral media:

M󸀠(0) = (0 −χ
χ 0
) , χ ̸= 0 selfadjoint.

– Omega media:

M󸀠(0) = (0 χ
χ 0
) , χ ̸= 0 skew-selfadjoint.

3.2 The equations of linear elasto-dynamics as an evo-system

Linear elasto-dynamics is usually discussed in a symmetric tensor-valued L2-setting
for the stress T, i. e., T ∈ L2(Ω, sym[ℝ3×3]), and a vector L2-setting for the displacement
u ∈ L2(Ω, ℝ3). Here, sym is the (orthogonal) projector onto real-symmetric-matrix-
valued L2-functions. More precisely, we extend sym to the matrix-valued case by let-
ting

sym : L2(Ω, ℝ3×3) → L2(Ω, ℝ3×3),

W 󳨃→ 1
2
(W +W∗),

where the adjointW∗ is taken pointwise by the standard Frobenius inner product

(T , S) 󳨃→ trace(T⊤S)

for 3 × 3-matrices, such that

ℝ3×3 →ℝ6

(
T00 T01 T02
T10 T11 T12
T20 T21 T22

) 󳨃→

((((((((((

(

T00
T11
T22
T12
T20
T01
T21
T02
T10

))))))))))

)

is unitary. Then with

ιsym : L
2(Ω, sym[ℝ3×3]) → L2(Ω, ℝ3×3)

T 󳨃→ T ,
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denoting the canonical embedding of the subspace L2(Ω, sym[ℝ3×3]) in L2(Ω, ℝ3×3)we
have

ι∗sym : L
2(Ω, ℝ3×3) → L2(Ω, sym[ℝ3×3])

W 󳨃→ symW

and so we have the useful factorization

sym = ιsymι
∗
sym.

With this observation, we can now approach the standard equations of elasticity the-
ory. The dynamics of elastic processes is commonly captured in a second-order formu-
lation for the displacement u by

ϱ∗𝜕
2
0u − DivC Grad u = f ,

where

Grad u := ι∗sym(∇u)

DivT := (∇⊤T)⊤

for symmetric T, i. e., T ∈ L2(Ω, sym[ℝ3×3]). The elasticity “tensor,” i. e., rather the
mapping

C : L2(Ω, sym[ℝ3×3]) → L2(Ω, sym[ℝ3×3])

and the mass density operator

ϱ∗ : L
2(Ω, ℝ3) → L2(Ω, ℝ3)

are assumed to be self-adjoint and strictly positive definite.
The origin, from which the above second-order system is derived, is naturally a

system of algebraic and first-order differential equations. The original system can be
easily reconstructed by reintroducing the relevant physical quantities velocity v := 𝜕0u
and stress T := C Grad u. Thus, we arrive at the system

ϱ∗𝜕0v − DivT = f ,
T = C Grad 𝜕−10 v,

in the unknowns v and T. Differentiating the second equationwith respect to time, we
end up with a system of the block operator matrix form

(𝜕0 (
ϱ∗ 0
0 C−1

) + (
0 −Div
−Grad 0

))(
v
T
) = (

f
0
) .
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11 On an electro-magneto-elasto-dynamic transmission problem | 391

Choosing now, for example, a homogeneous Dirichlet boundary condition, i. e., we
replace Grad by6

̊Grad := ι∗sym ̊grad,

where ̊grad is the closure of differentiation for vector fields (the Jacobian matrix) with
compact support in Ω as a mapping from L2(Ω, ℝ3) to L2(Ω, ℝ3×3), and

Div := div ιsym

so that
̊Grad = −Div∗,

we are led to consider an evo-system of the form

(𝜕0 (
ϱ∗ 0
0 C−1

) + (
0 −Div
− ̊Grad 0

))(
v
T
) = (

f
g
) . (8)

Remark 3.1. We note that also here we have “weak equals strong” following the same
rationale as in the electro-magneto-dynamics case; compare Footnote 4.

In the light of (4), the well-posedness results from assuming that

ϱ∗,C ≥ η0 > 0 (9)

for some real constant η0.

4 An interface coupling mechanism
After the above preliminary considerations, we are now ready to consider the situa-
tion, where the electro-magnetic field in one region interacts with elastic media in
another region via some common interface. Rather than basing our choice of trans-
mission constraints on the interface by physical arguments, we shall explore a deep
connection between electro-magneto-dynamics and elasto-dynamics to arrive at nat-
ural transmission conditions built into the construction of the evo-system. This con-
struction will utilize the idea of amother-descendant construction introduced in [12];
see [14] for a more viable version, which we will briefly recall.

6 Korn’s inequality shows that the closure bar is superfluous

̊Grad = ι∗sym ̊grad.
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4.1 Mother operators and their descendants

We recall from [12] the following simple but crucial lemma.

Lemma 4.1. Let C : D(C) ⊆ H → Y be a closed densely-defined linear operator be-
tween Hilbert spaces H, Y. Moreover, let B : Y → X be a continuous linear operator into
another Hilbert space X. If C∗B∗ is densely defined, then

BC = (C∗B∗)∗.

Proof. It is

C∗B∗ ⊆ (BC)∗.

If ϕ ∈ D((BC)∗), then

⟨BCu|ϕ⟩X = ⟨u|(BC)
∗ϕ⟩H

for all u ∈ D(C). Thus, we have

⟨Cu|B∗ϕ⟩Y = ⟨BCu|ϕ⟩X = ⟨u|(BC)
∗ϕ⟩H

for all u ∈ D(C) and we read off that B∗ϕ ∈ D(C∗) and

C∗B∗ϕ = (BC)∗ϕ.

Thus we have

(BC)∗ = C∗B∗.

If now C∗B∗ is densely defined, we have for its adjoint operator

(C∗B∗)∗ = BC.

As a consequence, we have that the descendant

(
1 0
0 B
)(

0 −C∗

C 0
)(

1 0
0 B∗
) = (

0 −C∗B∗

BC 0
)

indeed inherits its skew self-adjointness from its mother ( 0 −C∗C 0 ) (with C replaced by
BC). Moreover, we record the following result on the stability of well-posedness in the
mother-descendant process.

Theorem 4.2. Let C : D(C) ⊆ H → Y be a closed densely-defined linear operator be-
tween Hilbert spaces H, Y. Moreover, let B : Y → X be a continuous linear operator
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11 On an electro-magneto-elasto-dynamic transmission problem | 393

into another Hilbert space X with a closed range B[Y] such that C∗B∗ is densely defined.
Then, if

(𝜕0M(𝜕
−1
0 ) + (

0 −C∗

C 0
))(

U0
U1
) = (

F0
F1
)

with data ( F0F1 ) ∈ Hν(ℝ,H ⊕ X) and a solution ( U0
U1
) ∈ Hν(ℝ,H ⊕ X) is a well-posed

evo-system (satisfying in particular (4)), so is the descendant problem

(𝜕0M̃(𝜕
−1
0 ) + Ã)U = (

F0
G1
) ∈ Hν(ℝ,H ⊕ B[Y]),

where

M̃(𝜕−10 ) = (
1 0
0 B
)M(𝜕−10 ) (

1 0
0 B∗
) ,

Ã = (1 0
0 B
)(

0 −C∗

C 0
)(

1 0
0 B∗
) .

Proof. The positive-definiteness condition (4) carries over to the newmaterial law op-
erator in the following way. If

νM(0) + sym(M󸀠(0)) ≥ c∗ > 0

for all ν ∈ [ν0,∞[ and some ν0 ∈ ]0,∞[, then

νM̃(0) + sym(M̃󸀠(0)) = ν (1 0
0 B
)M(0) (1 0

0 B∗
)

+ sym((1 0
0 B
)M󸀠(0) (1 0

0 B∗
))

and we estimate for (V0,V1) ∈ H ⊕ B[Y]

ν⟨(V0
V1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
1 0
0 B
)M(0) (1 0

0 B∗
)(

V0
V1
)⟩

H⊕B[Y]

+ ⟨(
V0
V1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
1 0
0 B
) sym(M󸀠(0)) (1 0

0 B∗
)(

V0
V1
)⟩

H⊕B[Y]

= ν⟨(1 0
0 B∗
)(

V0
V1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
M(0) (1 0

0 B∗
)(

V0
V1
)⟩

H⊕Y

+ ⟨(
1 0
0 B∗
)(

V0
V1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
sym(M󸀠(0)) (1 0

0 B∗
)(

V0
V1
)⟩

H⊕Y
,

≥ c∗⟨(
1 0
0 B∗
)(

V0
V1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
1 0
0 B∗
)(

V0
V1
)⟩

H⊕Y
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≥ c̃∗⟨(
V0
V1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
V0
V1
)⟩

H⊕B[Y]

Indeed, since by the closed range assumption B[Y] and B∗[X] are Hilbert spaces and
by the closed graph theorem the operator

(
1 0
0 B∗ιB[Y]

) : H ⊕ B[Y] → H ⊕ B∗[X]

(
V0
V1
) 󳨃→ (

V0
B∗V1
)

has a continuous inverse, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
V0
V1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨H⊕B[Y]
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
1 0
0 B∗ιB[Y]

)
−1

(
1 0
0 B∗
)(

V0
V1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨H⊕B[Y]

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(
1 0
0 B∗ιB[Y]

)
−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
1 0
0 B∗
)(

V0
V1
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨H⊕Y

and so we may choose

c̃∗ = c∗
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(
1 0
0 B∗ιB[Y]

)
−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−2

to confirm that

νM̃(0) + sym(M̃󸀠(0)) ≥ c̃∗ > 0

for all ν ∈ [ν0,∞[ and some ν0 ∈ ]0,∞[.

As aparticular instance of this construction,we can takeB specifically as ι∗S ,where
ιS : S → H, x 󳨃→ x, is the canonical embedding of the closed subspace S in H. Then

(
1 0
0 ι∗S
)(

0 −C
C∗ 0

)(
1 0
0 ιS
) = (

0 −CιS
ι∗SC∗ 0

)

is skew self-adjoint if CιS : D(C) ∩ S ⊆ S → Y , the restriction of C : D(C) ⊆ H → Y to
the closed subspace S ⊆ H is densely defined in S. This is the construction we shall
employ to approach our specific problem. First, we observe that both physical regimes
do indeed have the samemother.

4.2 Two descendants of non-symmetric elasticity

As a convenient mother to start from, we take the theory of non-symmetric elasticity,
W. Nowacki, [8, 9], leading to an evo-system of the form

(𝜕0M0 +M1 + (
0 −div
− ̊grad 0

))(
v
T
) = (

f
g
) .
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11 On an electro-magneto-elasto-dynamic transmission problem | 395

We shall now discuss two particular descendants:
1. Classical symmetric elasticity theory can be considered as a descendant of the

form

(𝜕0 (
1 0
0 ι∗sym

)M0 (
1 0
0 ιsym

) + (
1 0
0 ι∗sym

)M1 (
1 0
0 ιsym

)

+ (
0 −Div
− ̊Grad 0

))(
v

Tsym
) = (

f
gsym
) ,

where

̊Grad := ι∗sym ̊grad

and

Div := div ιsym.

Note that the assumptions of Theorem 4.2 are clearly satisfied since smooth ele-
ments with compact support are already a dense sub-domain of div ιsym. In the
classical situation, which we shall assume for simplicity, we haveM1 = 0 and

M0 = (
ϱ∗ 0
0 C−1

) .

2. Maxwell’s equation are obtained in a sense by the opposite construction.
If we denote analogously

skew : L2(Ω, ℝ3×3) → L2(Ω, ℝ3×3),

W 󳨃→ 1
2
(W −W∗),

then with

ιskew : L
2(Ω, skew[ℝ3×3]) → L2(Ω, ℝ3×3)

T 󳨃→ T ,

denoting the canonical embedding of L2(Ω, skew[ℝ3×3]) in L2(Ω, ℝ3×3) we find

ι∗skew : L
2(Ω, ℝ3×3) → L2(Ω, skew[ℝ3×3])

W 󳨃→ skewW .

With this, we may now construct the Maxwell evo-system as

(𝜕0 (
1 0
0 −√2I∗ι∗skew

)M0 (
1 0
0 −√2ιskewI

)
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+ (
1 0
0 −√2I∗ι∗skew

)M1 (
1 0
0 −√2ιskewI

)

+ (
0 −curl
̊curl 0

))(
E
H
) = (

f
−I∗gskew

) ,

where

I : (
α1
α2
α3
) 󳨃→ 1
√2
(

0 −α3 α2
α3 0 −α1
−α2 α1 0

)

is a unitary transformation and so is its inverse

I∗ : (
0 −α3 α2
α3 0 −α1
−α2 α1 0

) 󳨃→ √2(
α1
α2
α3
).

Again, for simplicity we focus on the classical choice of (6). We calculate

I∗ι∗skew grad v =
1
2
I∗(

0 𝜕2v1 − 𝜕1v2 𝜕3v1 − 𝜕1v3
𝜕1v2 − 𝜕2v1 0 𝜕3v2 − 𝜕2v3
𝜕1v3 − 𝜕3v1 𝜕2v3 − 𝜕3v2 0

)

= − 1
√2
(
𝜕3v2 − 𝜕2v3
𝜕1v3 − 𝜕3v1
𝜕2v1 − 𝜕1v2

) = 1
√2
(
𝜕2v3 − 𝜕3v2
𝜕3v1 − 𝜕1v3
𝜕1v2 − 𝜕2v1

)

=: 1
√2

curl v

and also confirm that
div ιskewI = −

1
√2

curl .

In other terms, we have the congruence to a descendant

(
0 − curl
̊curl 0

)

= (
1 0
0 −√2I∗

)(
0 −div ιskew

−ι∗skew ̊grad 0
)(

1 0
0 −√2I

) ,

where we have used that

̊curl = √2I∗ι∗skew ̊grad.

Note that again smooth elements with compact support are a dense sub-domain of
div ιskew and so the assumptions of Theorem 4.2 are clearly satisfied. Motivated by the
observation that Maxwell’s equations and the (symmetric) elasto-dynamic equations
are both descendants from the asymmetric elasto-dynamics equations of Nowacki,
[8, 9], we will now discuss boundary interactions between both systems.
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4.3 An application to interface coupling

Motivated by a paper of F. Cakoni and G. C. Hsiao, [1], where the time-harmonic
isotropic homogeneous case of electro-dynamics and elasticity, respectively, is stud-
ied via transmission conditions across a separating interface, we consider the corre-
sponding time-dependent case. We assume Ω0 ∪ Ω1 ⊆ Ω, such that the orthogonal
decompositions

L2(Ω, ℝ3×3) = L2(Ω0, ℝ
3×3) ⊕ L2(Ω1, ℝ

3×3)

L2(Ω, ℝ3) = L2(Ω0, ℝ
3) ⊕ L2(Ω1, ℝ

3) (10)

hold, and let I0 := (ιL2(Ω0 ,sym[ℝ3×3]) −ιL2(Ω1 ,skew[ℝ3×3])√2I), i. e.,
I0 (

S
v
) = ιL2(Ω0 ,sym[ℝ3×3])S − ιL2(Ω1 ,skew[ℝ3×3])√2Iv

with the respective canonical embeddings into L2(Ω, ℝ3×3). Then

I∗0 : L
2(Ω, ℝ3×3) → L2(Ω0, sym[ℝ

3×3]) ⊕ L2(Ω1, ℝ
3),

T 󳨃→ (
ι∗L2(Ω0 ,sym[ℝ3×3])T
−√2I∗ι∗L2(Ω1 ,skew[ℝ3×3])T) ,

and so

I∗0 = (
ι∗L2(Ω0 ,sym[ℝ3×3])
−√2I∗ι∗L2(Ω1 ,skew[ℝ3×3])) .

With this, we get a congruence to a descendant construction as

A = (1 0
0 I∗0
)(

0 −div
− ̊grad 0

)(
1 0
0 I0
) (11)

⊆ (
0 (−DivΩ0

− curlΩ1
)

(
−GradΩ0

curlΩ1

) (
0 0
0 0
)
) (12)

and

M(0) = (
ϱ∗,Ω0
+ εΩ1

(0 0)

(
0
0
) (

C−1Ω0
0

0 μΩ1

)
) (13)

M󸀠(0) = (
σΩ1
(0 0)

(
0
0
) (

0 0
0 0
)
) . (14)

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:10 PM



398 | R. Picard

The indexes Ωk, k = 0, 1, are used to denote the respective supports of the quantities.
The coefficients are – as a matter of simplification labeled in the same meaning as in
(6) and (8), just with the support information added.7 The unknowns are now

(
vΩ0
+ EΩ1

(
TΩ0

HΩ1

)
) ∈ H = L2(Ω, ℝ3) ⊕ (L2(Ω0, sym[ℝ

3×3]) ⊕ L2(Ω1, ℝ
3)),

where the first component is to be understood in the sense of (10). Note that the as-
sumptions of Theorem 4.2 are clearly satisfied since smooth elements with compact
support in Ω0 and Ω1, respectively, are already a dense sub-domain as in the sepa-
rate cases of Subsection 4.2. From the inclusion (11), (12), we read off that the resulting
evo-system

(𝜕0M(0) +M
󸀠(0) + A)(

vΩ0
+ EΩ1

(
TΩ0

HΩ1

)
) = (

fΩ0
− jext,Ω1

(
gsym,Ω0

kext,Ω1

)
) (15)

indeed yields

𝜕0(ϱ∗,Ω0
+ εΩ1
)(vΩ0
+ EΩ1
) − DivΩ0

TΩ0
− curlΩ1

HΩ1
= fΩ0
− jext,Ω1
,

which in turn splits into

𝜕0ϱ∗,Ω0
vΩ0
− DivΩ0

TΩ0
= fΩ0
,

𝜕0εΩ1
EΩ1
− curlΩ1

HΩ1
= −jext,Ω1

.

The second block row yields another pair of equations

𝜕0C
−1TΩ0
− Grad vΩ0

= gsym,Ω0
,

𝜕0μΩ1
HΩ1
+ curlEΩ1

= kext,Ω1
.

The actual system models now natural transmission conditions on the common
boundary part Ω̇0 ∩ Ω̇1 and the homogeneous Dirichlet boundary condition on Ω̇0 \ Ω̇1

7 Although we consider for convenience and physical relevance this evo-system in its own right, a
formal mother material law – without physical meaning – could be easily given:

(
ϱ∗,Ω0 + εΩ1 + 𝜕

−1
0 σΩ1 0

0 m11
)

with, for example,

m11 = ι
∗
sym,Ω0C

−1
Ω0 ιsym,Ω0 + ι

∗
skew,Ω0 ιskew,Ω0 + ι

∗
skew,Ω1μΩ1 ιskew,Ω1 + ι

∗
sym,Ω1 ιsym,Ω1 .

Then the described mother-descendant mechanism would lead to a descendant, which in turn would
be congruent to the described interface system.
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and the standard homogeneous electric boundary condition on Ω̇1 \ Ω̇0 without as-
suming any smoothness of the boundary.

On the contrary, assuming sufficient regularity of the boundary, one can see that
the model yields a generalization of the classical transmission conditions on Ω̇0 ∩ Ω̇1:

TΩ0
n = n × HΩ1

,

n × vΩ0
= n × EΩ1

,
(16)

where n is a smooth unit normal field on Ω̇0 ∩ Ω̇1. Indeed, with

(
vΩ0
+ EΩ1

(
TΩ0

HΩ1

)
) ∈ D(A)

we have (noting for the smooth exterior unit normal vector fields nΩ̇0
, nΩ̇1

on the
boundaries of Ω0 and Ω1, respectively, that nΩ̇0

= −nΩ̇1
on Ω̇0 ∩ Ω̇1) with

Ã = (
0 (−DivΩ0

− curlΩ1
)

(
−GradΩ0

curlΩ1

) (
0 0
0 0
)
) ,

that

0 =⟨(
vΩ0
+ EΩ1

(
TΩ0

HΩ1

)
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
A(

vΩ0
+ EΩ1

(
TΩ0

HΩ1

)
)⟩

H

=⟨(
vΩ0
+ EΩ1

(
TΩ0

HΩ1

)
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Ã(

vΩ0
+ EΩ1

(
TΩ0

HΩ1

)
)⟩

H

= −⟨vΩ0
|DivTΩ0

⟩L2(Ω0 ,ℝ3) − ⟨TΩ0
|GradΩ0

vΩ0
⟩L2(Ω0 ,ℝ3×3)

+ ⟨HΩ1
| curlΩ1

EΩ1
⟩L2(Ω1 ,ℝ3)

− ⟨EΩ1
| curlΩ1

HΩ1
⟩L2(Ω1 ,ℝ3)

= − ∫
Ω̇0∩Ω̇1

v⊤Ω0
TΩ0

nΩ̇0
do + ∫

Ω̇0∩Ω̇1

n⊤Ω̇1
(EΩ1
× HΩ1
)do

= − ∫
Ω̇0∩Ω̇1

v⊤Ω0
TΩ0

nΩ̇0
do + ∫

Ω̇0∩Ω̇1

E⊤Ω1
(nΩ̇0
× HΩ1
)do.

Since (vΩ0
+EΩ1
) ∈ D( ̊grad) is by construction admissible, wemay choose vΩ0

= EΩ1
on

the interface and conclude that

TΩ0
nΩ̇0
= nΩ̇0
× HΩ1

(17)
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is a needed transmission condition. In particular, we see

n⊤Ω̇0
TΩ0

nΩ̇0
= 0.

Inserting the explicit transmission condition (17) now yields

− ∫
Ω̇0∩Ω̇1

(nΩ̇0
× (nΩ̇0
× (vΩ0
− EΩ1
)))⊤(nΩ̇0

× HΩ1
)do

= ∫
Ω̇0∩Ω̇1

(vΩ0
− EΩ1
)⊤(nΩ̇0
× HΩ1
)do = 0,

which, with nΩ̇0
× HΩ1

for HΩ1
∈ D(curlΩ1

) being sufficiently arbitrary, now implies

nΩ̇0
× vΩ0
= nΩ̇0
× EΩ1

i. e., the continuity of the tangential components

vΩ0 ,t = EΩ1 ,t,

as a complementing transmission condition. These more or less heuristic considera-
tionsmotivate to take the above evo-system as an appropriate generalization to cases,
where the boundary does not have a reasonable normal vector field.

All in all, we summarize our findings in the following well-posedness result.

Theorem 4.3. The evo-system (15) iswell-posed if ϱ∗,Ω0
, CΩ0

and εΩ1
, μΩ1

are self-adjoint,
non-negative, continuous operators on L2(Ω0, ℝ

3), L2(Ω0, sym[ℝ3×3]) and on L2(Ω1, ℝ
3),

respectively, σΩ1
is continuous and linear on L2(Ω1, ℝ

3) and such that

ϱ∗,Ω0
,CΩ0
, μΩ1
≥ η0 > 0,

as well as

νεΩ1
+ sym(σΩ1

) ≥ η0 > 0

for some real number η0 and all sufficiently large ν.

Remark 4.4.
1. If we formally transcribe the time-harmonic case into its time dependent form, the

transmission conditions of [1] are actually

TΩ0
n = n × 𝜕−10 HΩ1

,

n × 𝜕−10 vΩ0
= n × EΩ1

.
(18)

Although these obviously differ from (16), we give preference to our choice above
for several reasons. For one, the energy balance requirement of [1, formula (5)],
which reads as

v⊤Ω0
TΩ0

n = n⊤(HΩ1
× EΩ1
), (19)
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11 On an electro-magneto-elasto-dynamic transmission problem | 401

is satisfied by (16) but not by (18). With the latter transmission conditions, we
obtain instead

v⊤Ω0
TΩ0

n = (𝜕0EΩ1
)⊤(n × (𝜕−10 HΩ1

)) = n⊤((𝜕−10 HΩ1
) × (𝜕0EΩ1

)).

The problem seems to be that the difference to (19) becomes unnoticeable in the
formal time-harmonic transcription of [1], since there 𝜕0 is formally replaced by
iω√ε0μ0 and so algebraic cancellation essentially makes the product rule for dif-
ferentiation disappear, erroneously suggesting that the energy balance8 is satis-
fied.

2. In the notation above, (11), (13), (14), ifM(0) is already strictly positive definite, we
can construct a fundamental solution as a small perturbation of the fundamental
solution of 𝜕0 + √M(0)

−1A√M(0)−1, which in turn is obtained from the unitary
group

(exp(−t√M(0)
−1
A√M(0)

−1
))t∈ℝ

by cut-off as

(χ[0,∞[(t) exp(−t√M(0)
−1
A√M(0)

−1
))t∈ℝ.

The restriction of the fundamental solution to [0,∞[ yields the family

(exp(−t√M(0)
−1
A√M(0)

−1
))t∈[0,∞[

commonly referred to as the associated one-parameter semi-group. In general,
however, a fundamental solution may be complicated or impossible to construct.

3. We note that beyond eddy current type behavior, which is actually a change of
type situation from hyperbolic to parabolic, and beyond the possibility of includ-
ing, for example, piezo-electric effects via a more complex material law, we may
actually allow for completely general rational material laws as long as condition
(4) is warranted.
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12 Continuous dependence on the coefficients

for a class of non-autonomous evolutionary
equations

Abstract: The continuous dependence of solutions to certain equations on the coeffi-
cients is addressed. The class of equations under consideration has only recently be
shown to be well posed. We give criteria that guarantee that convergence of the co-
efficients in the weak operator topology implies weak convergence of the respective
solutions. We discuss three examples: A homogenization problem for a Kelvin–Voigt
model for elasticity, the discussion of continuous dependence of the coefficients for
acousticwaveswith impedance type boundary conditions and a singular perturbation
problem for amixed type equation. Bymeans of counterexamples,we showoptimality
of the results obtained.
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1 Introduction
In this article, we discuss the continuous dependence of solutions to evolutionary
equations on the coefficients. In particular, we provide a hands-on approach to some
results that can be deduced from the more elaborate exposition in [42]. Moreover, in
comparison to [42] we shall present more involved applications.
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The usual method of choice to discuss issues of evolution equations is the semi-
group approach. In fact, many evolutionary problems inmathematical physics can be
described by the abstract Cauchy problem

u󸀠 = Au u(0) = u0

with A being a generator of a strongly continuous semi-group in a certain Banach
space X, u0 ∈ X. Thus, in the semi-group language, we are led to consider

u󸀠n = Anun un(0) = u0

for a suitable sequence of generators (An)n in a common Banach space X. Now, we
address whether the sequence (un)n of solutions converges in a particular sense. If
the sequence of solutions converge to some u, we further ask whether there exists an
operator A such that the following holds:

u󸀠 = Au u(0) = u0.

Within the semi-group perspective, there are several issues to be taken care of: Vari-
able domains of the generators An, non-reflexivity of the space in which the solutions
(un)n are obtained and the generator property for A. To illustrate the latter, we dis-
cuss a simple example with bounded generators: Take a bounded measurable func-
tion a: ℝ → ℝ and consider the sequence (un)n of solutions to the equation

d
dt
un(t, x) + a(nx)un(t, x) = 0 u(0, x) = u0(x) ((t, x) ∈ (0,∞) × ℝ),

for some given u0 ∈ L2(ℝ). The Cauchy problem can be formulated in the state space
X = L2(ℝ). It can be shown—assuming for instance the periodicity of a—that the
limit equation is not of the type discussed above. Indeed, the resulting equation is
of integro-differential type; see, for instance, [30, Chapter 23]. In particular, we can-
not expect the limit equation to be of the form of the abstract Cauchy problem de-
scribed above. Hence, the semi-group perspective to this kind of equation cannot be
utilized. The very reason for this shortcoming is that the convergence of (a(n⋅))n is too
weak, [35]. In fact, it can be shown that (a(n⋅))n converges in the weak star topology of
L∞(ℝ) to the integral mean over the period, or, equivalently, the sequence of associ-
ated multiplication operators in L2(ℝ) converges in the weak operator topology to the
identity times the integral mean over the period of a. We refer to [8], where subtleties
with regards to the Trotter product formula and the weak operator topology are high-
lighted. Due to the non-closedness of abstract Cauchy problems with regards to the
convergences under consideration, we shall use semi-group theory here.

To the best of the author’s knowledge, besides the author’s work [35, 34, 40, 36,
37, 41, 42], there are very few studies (if any) of continuous dependence on the coef-
ficients of a general problem class under the weak operator topology. However, there
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are some results for particular equations and/or with stronger topologies with respect
to which the convergence of the coefficients is considered in: In [45], a particular non-
linear equation is considered and the continuous dependence of the solution on some
scalar factors is addressed. Similarly, in [6, 10, 32, 17, 16], the so-called Brinkman–
Forchheimer equation is discussed with regards to continuous dependence on some
bounded functions under the sup-norm. The local sup-norm has been considered in
[5], where the continuous dependence on the (non-linear) constitutive relations for
particular equations of fluid flow in porous media is discussed. A weak topology for
the coefficients is considered in [12]. However, the partial differential equations con-
sidered are of a specific form and the underlying spatial domain is the real line. Deal-
ing with time-dependent coefficients in a boundary value problem of parabolic type,
the author of [18] shows continuous dependence of the associated evolution families
on the coefficients. In [18], the coefficients are certain functions considered with the
C1-norm. The author of [33] studies the continuous dependence of diffusion processes
under the C0-norm of the coefficients. Also with regards to strong topologies, the au-
thors of [13, 14] studied continuous dependence results for a class of stochastic partial
differential equations.

We also refer to [30, 7, 4], where the continuous dependence of the coefficients
has been addressed in the particular situation of homogenization problems. See also
the references in [37]. Due to the specific structure of the problem semi-group theory
could be applied for a homogenization problem for thermo-elasticity [9].

As indicated above, the main observation for discussing homogenization prob-
lems is that the coefficients might only converge in a rather weak topology. A pos-
sible choice modeling this is the weak operator topology [36, 35]. Thus, motivated by
the problems in homogenization theory, we investigate the continuous dependence of
solutions of evolutionary problems on the coefficients, where the latter are endowed
with theweak operator topology. Aiming at an abstract result and having sketched the
drawbacks of semi-group theory in this line of problems, we need to consider a differ-
ent class of evolutionary equations. We focus on a certain class of integro-differential
algebraic partial differential equations. Recently, a well-posedness result could be ob-
tained for this class [38, 42]. Moreover, generalizations of the results in [36, 40, 37]
need the development of other techniques.

The class of equations under consideration is roughly described as follows. Con-
sider

(ℳu)󸀠 +𝒜u = f , (1.1)

whereℳ is a bounded linear operator acting in space-time, (ℳu)󸀠 denotes the time-
derivative of ℳu and 𝒜 is a (unbounded, linear) maximal monotone operator (see,
e. g., [27]) in space-time, which is invariant under time-translations, f is a given forc-
ing term and u is to be determined. The underlying Hilbert space setting will be de-
scribed in Section 2. Though (1.1) seems to be an evolution equation in any case, it is

Brought to you by | Columbia University Libraries
Authenticated

Download Date | 8/31/19 4:10 PM



406 | M.Waurick

possible to chooseℳ in the way that (1.1) does not contain any time-derivative at all.
Indeed, in the Hilbert space framework developed below the time-derivative becomes
a continuously invertible operator. Thus, asℳ acts in space-time, we can chooseℳ
as the inverse of the time-derivative times some bounded linear operatorM, such that
(1.1) amounts to be Mu + 𝒜u = f . In view of the latter observation and in order not
to exclude the algebraic type equation Mu + 𝒜u = f , we are led to consider (1.1) with
no initial data. However, imposing sufficient regularity for the initial conditions, one
can formulate initial value problems equivalently into problems of the type (1.1); see,
e. g., [22, Section 6.2.5].

There are many standard equations from mathematical physics fitting in the ab-
stract form described by (1.1). These are, for instance, the heat equation ([22, Section
6.3.1], [36, Theorem 4.5]), the wave equation ([21, Section 3], [31, Section 4.2]), Pois-
son’s equation (see Section4), the equations for elasticity [31, Section4.2] orMaxwell’s
equations ([20, Section 4.1], [40, Section 5]). Coupled phenomena such as the equa-
tion for thermo-elasticity ([22, Section 6.3.2], [36, Theorem 4.10]) or the equations
for thermo-piezo-electro-magnetism [22, Section 6.3.3], or equations with fractional
derivatives like subdiffusion or superdiffusion problems ([36, Section 4], [25, Section
4]) can be dealt with in the general framework of (1.1). We note here that the operator
ℳ in (1.1) needs not to be time-translation invariant. Thus, the coefficients may not
only contain memory terms, but they may also explicitly depend on time; see [26,
Section 3].

In order to have an idea of the form of the operatorsℳ and𝒜, we give three more
concrete examples. All these three examples are considered in a three-dimensional
spatial domain Ω. Written in block operator matrix form with certain source term f , a
first-order formulation of the heat equation reads as

(
𝜕
𝜕t
(
1 0
0 0
) + (

0 0
0 κ(t, x)−1

) + (
0 div

grad 0
))(

θ(t, x)
q(t, x)
) = (

f (t, x)
0
) ,

where θ is the temperature, q is the heat flux and κ is the conductivity matrix, which
is assumed to be continuously invertible. Note that the second line of the system is
Fourier’s law. Hence, in this case

ℳ = (
1 0
0 0
) + (
𝜕
𝜕t
)
−1
(
0 0
0 κ−1
)

and

𝒜 = (
0 div

grad 0
) ,

which is skew self-adjoint if suitable boundary conditions are imposed.
Similarly, we find for the wave equation

(
𝜕
𝜕t
(
1 0
0 κ(t, x)−1

) + (
0 div

grad 0
))(

u(t, x)
v(t, x)
) = (

f (t, x)
0
) ,
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for some suitable coefficient matrix κ, the relations

ℳ = (
1 0
0 κ−1
)

and

𝒜 = (
0 div

grad 0
) .

Maxwell’s equations read as

(
𝜕
𝜕t
(
ε(t, x) 0
0 μ(t, x)

) + (
σ(t, x) 0
0 0
) + (

0 curl
− curl 0

))(
E(t, x)
H(t, x)
) = (

J(t, x)
0
) ,

where ε, μ and σ are the material coefficients electric permittivity, magnetic perme-
ability and the electric conductivity, respectively. J is a given source term and (E,H) is
the electro-magnetic field. We have

ℳ = (
ε 0
0 μ
) + (
𝜕
𝜕t
)
−1
(
σ 0
0 0
)

and

𝒜 = (
0 curl
− curl 0

) ,

which is skew self-adjoint for instance under the electric boundary condition. Well-
posedness conditions for the above equations are suitable strict positive definiteness
conditions for ε, μ and κ. Moreover, the derivative with respect to time needs to be
uniformly bounded. The precise conditions can be found in [26, Condition (2.3)].

Now, we turn to discuss the main contribution, Theorem 3.1, of the present arti-
cle. Take a sequence of bounded linear operators (ℳn)n∈ℕ in space-time converging in
the weak operator topology τw to some bounded linear operatorℳ. Theℳn’s are as-
sumed to satisfy suitable conditions (see Theorem 2.3 or [38, 42]) such that the respec-
tive equations as in (1.1) are well posed in the sense that the (closure of the) operator
u 󳨃→ (ℳu)󸀠 + 𝒜u is continuously invertible in space-time. Let f be a given right-hand
side. For n ∈ ℕ, let un solve

(ℳnun)
󸀠 +𝒜un = f . (1.2)

The main result now states that if the sequence of the commutator of the ℳn’s with
time-differentiation is a bounded sequence of bounded linear operators1 and if the

1 Ifℳn is given by multiplication by some function κn depending on both the temporal and spatial
variables, the commutator with time-differentiation is given by the operator of multiplying with the
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resolvent of 𝒜 satisfies a certain compactness condition, we have un ⇀ u, i. e., (un)n
weakly converges to u, where u satisfies

(ℳu)󸀠 +𝒜u = f .

It should be noted that the operator𝒜may only be skew self-adjoint. In particular, the
equations under consideration may not have maximal regularity. Moreover, the free-
dom in the choice of the sequence (ℳn)n also allows for the treatment of differential-
algebraic equations, which have applications in control theory, [24, 23]. Since we only
assume convergence in the weak operator topology for the operator sequence, the re-
sult particularly applies to norm-convergent sequences or sequences converging in
the strong operator topology (see also Section 4). However, for the latter two cases
the results are certainly not optimal. For the case of convergence in the weak operator
topology, we give two examples (Examples 3.5 and 3.4) that the assumptions in our
main theorem cannot be dropped.

In order to proceed in equation (1.2) to the limit as n → ∞, the main difficulty to
overcome is to find conditions such that (ℳnun)n converges to the product of the lim-
its. This is where a compactness condition for the resolvent of𝒜 comes into play. With
this, it is then possible to apply the compact embedding theorem of Aubin–Lions (see
Theorem 5.1 below) in order to gain a slightly better convergence of (a subsequence of)
the un’s.

As it will be demonstrated in Section 4, the results have applications to homoge-
nization theory. In a different situation, where certain time-translation invariant op-
erators were treated, the latter has also been observed and exemplified in [36, 40]. We
shall also mention applications to problems of mixed type; see [41].

We build up the Hilbert space setting mentioned above in Section 2. Section 3 is
devoted to state and briefly discuss themain result of the paper, which will be applied
in Section 4 to a homogenization problem in visco-elasticity, a wave equation with
impedance type boundary conditions and a singular perturbation problem. The con-
cluding section is devoted to the proof of Theorem 3.1. Any Hilbert space treated here
is a complex Hilbert space.

derivative of κn with respect to time. Thus, the boundedness of the sequence of commutators under
consideration iswarranted if, for instance, (κn)n is aC1-bounded sequence considered as the sequence
of mappings

(ℝ ∋ t 󳨃→ κn(t, ⋅) ∈ L
∞)n.
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2 Preliminaries

We summarize some findings of [22, 39, 38, 42]. In the whole section, letH be a Hilbert
space. We introduce the time-derivative operator 𝜕0 as an operator in

L2ν(ℝ;H) := L
2(ℝ, exp(−2ν(⋅))λ;H),

λ denoting the 1-dimensional Lebesgue measure, for some ν > 0 as follows:

𝜕0:Hν,1(ℝ;H) ⫅ L
2
ν(ℝ;H) → L2ν(ℝ;H), ϕ 󳨃→ ϕ󸀠,

where Hν,1(ℝ;H) is the space of weakly differentiable L2ν(ℝ;H)-functions with weak
derivative also lying in the exponentially weighted L2-space. For the scalar product in
the latter space, we occasionally write ⟨⋅, ⋅⟩ν. One can show that 𝜕0 is one-to-one and
that for f ∈ L2ν(ℝ;H) we have for all t ∈ ℝ the Bochner-integral representation

𝜕−10 f (t) =
t

∫
−∞

f (τ)dτ.

The latter formula particularly implies ‖𝜕−10 ‖ ≦
1
ν , and thus, 0 ∈ ρ(𝜕0); see, e. g., [11,

Theorem 2.2 and Corollary 2.5] for the elementary proofs. From the integral represen-
tation for 𝜕−10 , we also read off that 𝜕−10 f vanishes up to some time a ∈ ℝ, if so does f .
This fact may roughly be described as causality. A possible definition is the following.

Definition ([39]). LetM:D(M) ⫅ L2ν(ℝ;H) → L2ν(ℝ;H). We say thatM is causal if for all
R > 0, a ∈ ℝ, ϕ ∈ L2ν(ℝ;H) the mapping

(BM(0,R),
󵄨󵄨󵄨󵄨1ℝ≦a (m0)(⋅ − ⋅)

󵄨󵄨󵄨󵄨) → (L
2
ν(ℝ;H),

󵄨󵄨󵄨󵄨⟨1ℝ≦a (m0)(⋅ − ⋅),ϕ⟩
󵄨󵄨󵄨󵄨)

f 󳨃→ Mf ,

is uniformly continuous, where BM(0,R) := {f ∈ D(M); |f | + |Mf | < R}.

Remarks 2.1.
(a) For closed linear operatorsM, we have shown in [39, Theorem 1.6] thatM is causal

if and only if for all a ∈ ℝ and ϕ ∈ D(M) the implication

1ℝ<a (m0)ϕ = 0⇒ 1ℝ<a (m0)Mϕ = 0

holds. The latter, in turn, is equivalent to

1ℝ<a (m0)M 1ℝ<a (m0) = 1ℝ<a (m0)M (a ∈ ℝ)

provided that 1ℝ<a (m0)[D(M)] ⫅ D(M) for all a ∈ ℝ.
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(b) Assume that M:D(M) ⫅ L2ν(ℝ;H) → L2ν(ℝ;H) is continuous and for all a ∈ ℝ the
set

D(M 1ℝ≦a (m0)) ∩ D(M) ⫅ L
2
ν(ℝ;H)

is dense.2 If for all a ∈ ℝ, we have

1ℝ<a (m0)M 1ℝ<a (m0) = 1ℝ<a (m0)M

on D(M 1ℝ<a (m0)) ∩ D(M), then both M and M are causal. Indeed, by continuity,
the latter equality implies that

1ℝ<a (m0)M 1ℝ<a (m0) = 1ℝ<a (m0)M 1ℝ<a (m0)

= 1ℝ<a (m0)M = 1ℝ<a (m0)M (a ∈ ℝ).

Hence, by (a)M is causal, implying causality forM.

Remarks 2.2. Aprototype of causal operators are particular functions of 𝜕−10 .3 Though
being of independent interest, we need this class of operators to properly formulate
the examples in Section 4. We use the explicit spectral theorem for 𝜕−10 given by the
Fourier–Laplace transformation ℒν. Here, ℒν is the unitary transformation from L2ν(ℝ)
onto L2(ℝ) such that

ℒνf = (x 󳨃→
1
√2π
∫
ℝ

e−ixy−νyf (y)dy)

for continuous functions f with compact support. Then one can show that

𝜕−10 = ℒ
∗
ν

1
im0 + ν

ℒν ,

where ( 1
im0+ν

ϕ)(x) := 1
ix+νϕ(x) forϕ ∈ L

2(ℝ), x ∈ ℝ. Now, anyM belonging to the Hardy
spaceℋ∞(B(r, r)) of bounded and analytic functions B(r, r) → ℂ for some r > 1

2ν leads
to a causal, time-translation invariant operatorM(𝜕−10 ) in the way that

M(𝜕−10 ) := ℒ
∗
νM(

1
im0 + ν
)ℒν .

2 The latter happens to be the case if, for instance, D(M) ⫆ C∞,c(ℝ;H), the space of indefinitely dif-
ferentiable functions with compact support.
3 In [37, Section 4], [35, 25] examples for this kind of operators are given. Some of these are convolu-
tions with suitable L1-functions or the time-shift.
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We endow ℋ∞(B(r, r)) with the supremum norm. Moreover, note that the definitions
made can readily be extended to the vector-valued case, i. e., if ℋ∞(B(r, r); L(H)) de-
notes the Hardy space of bounded analytic functions with values in the space of
bounded linear operators, we can define forM ∈ ℋ∞(B(r, r); L(H)) the operator

M(𝜕−10 ) := ℒ
∗
νM(

1
im0 + ν
)ℒν , (2.1)

acting in theHilbert spaceL2ν(ℝ;H), wherewe re-usedℒν to denote the extension of the
scalar-valued Fourier–Laplace transformation to theH-valued one. Thus, (2.1) should
be read in the strong sense. With the help of the Paley–Wiener theorem, it is possible
to show causality forM(𝜕−10 ); see, e. g., [20].

In [38, 42], we have shown the following well-posedness result, which comprises
a large class of linear partial integro-differential algebraic equations of mathematical
physics as it has been demonstrated in [22, 26] (see also Section 1); it does, however,
not quite supersede the stochastic variant of evolutionary equations; see [29]. Before
we state the well-posedness theorem, we introduce the notion of a bounded commu-
tator.

Definition (Bounded commutator). Let B ∈ L(H) and letA:D(A) ⫅ H → H be a densely
defined linear operator. Then B is said to have a bounded commutator with A, if there
exist C ∈ L(H) such that BA ⫅ AB + C. In the latter case, we shall write [B,A] :=
−[A,B] := C. A sequence (Bn)n of bounded linear operators is said to have bounded
commutators with A, if for all n ∈ ℕ the operator Bn has a bounded commutator with
A and the sequence ([Bn,A])n is bounded.

Theorem 2.3 ([38, Theorem 2.7 and 2.4]). Let H Hilbert space, ℳ ∈ L(L2ν(ℝ;H)). As-
sume that ℳ has a bounded commutator with 𝜕0. Let 𝒜:D(𝒜) ⫅ L2ν(ℝ;H) → L2ν(ℝ;H)
be linear, maximal monotone and such that 𝜕0(𝒜 + 1) = (𝒜 + 1)𝜕0, i. e., 𝒜 commutes
with 𝜕0. Moreover, assume the positive definiteness conditions

ℜ⟨𝜕0ℳu, 1ℝ≦a (m0)u⟩ ≧ c⟨u, 1ℝ≦a (m0)u⟩, ℜ⟨𝒜u, 1ℝ≦0 (m0)u⟩ ≧ 0 (2.2)

for all u ∈ D(𝜕0) ∩ D(𝒜), a ∈ ℝ, and some c > 0.
Then 0 ∈ ρ(𝜕0ℳ +𝒜) and the operator (𝜕0ℳ +𝒜)−1 is causal.

Remarks 2.4.
(a) The operator𝒜 in the latter theorem is assumed to bemaximalmonotone. By this,

we mean that 𝒜 is maximal monotone as a relation and still being an operator.
This implies closedness of the operator𝒜, as well as that𝒜 is densely defined; see
[19, Lemma 1.1.3].Moreover,𝒜∗ is alsomaximalmonotone; see [19, Theorem 1.1.2].

(b) The fact that𝒜 commutes with 𝜕0 implies in particular that 𝜕−10 𝒜 ⫅ 𝒜𝜕−10 . So, with
[42, Proposition 3.2.8], we deduce that𝒜 commuteswith time-translation, so that,
in particular,ℜ⟨𝒜u, 1ℝ≦0 (m0)u⟩ ≧ 0 impliesℜ⟨𝒜u, 1ℝ≦a (m0)u⟩ ≧ 0 forall a ∈ ℝ and
u ∈ D(𝒜).
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412 | M.Waurick

For the following, we need to record some continuity estimates. In order to do so,
we briefly recall the concept of Sobolev lattices discussed in [22, Chapter 2].

Definition ((Short) Sobolev lattice). LetC1,C2 be twodensely defined closed linear op-
erators in H with 0 ∈ ρ(C1) ∩ ρ(C2) and C1C2 = C2C1. Then, for k, ℓ ∈ {−1,0, 1}we define
Hk,ℓ(C1,C2) as the completion of D(C1C2) with respect to the norm ϕ 󳨃→ |Ck1 C

ℓ
2ϕ|. The

family (Hk,ℓ(C1,C2))k,ℓ∈{−1,0,1} is called (short) Sobolev lattice.

Remarks 2.5.
(a) We have continuous embeddings Hk,ℓ(C1,C2) 󳨅→ Hk󸀠 ,ℓ󸀠 (C1,C2) provided that k ≧ k󸀠

and ℓ ≧ ℓ󸀠. Moreover, Hk,ℓ(C1,C2) = Hℓ,k(C2,C1) for all k, k󸀠, ℓ, ℓ󸀠 ∈ {−1,0, 1}.
(b) The operators C±11 can be established as unitary operators from Hk,ℓ(C1,C2) into

Hk∓1,ℓ(C1,C2) for all k, ℓ ∈ {−1,0, 1} such that k ∓ 1 ∈ {−1,0, 1} and similarly for C2.
(c) In the special case of C2 = 1, we write Hk(C1) := Hk,1(C1, 1) for all k ∈ {−1,0, 1}.
(d) In the special case of C1 = 𝜕0 and C2 = 1, we write Hν,k(ℝ;H) := Hk(𝜕0) for all

k ∈ {−1,0, 1}.

Remark 2.6. With the help of the Sobolev lattice construction stated, we can drop the
closure bar in 𝜕0ℳ +𝒜 and compute in the Sobolev lattice associated with (𝜕0,𝒜+ 1).
In order to make this more precise, we denote here the extensions of 𝜕0 and 𝒜 to the
Sobolev lattice (with the common domain H0,0(𝜕0,𝒜 + 1) = L2ν(ℝ;H)) by 𝜕

e
0 and 𝒜e,

respectively. Now, let u ∈ D(𝜕0ℳ +𝒜) ⫅ L2ν(ℝ;H). Then, by definition, there exists
a sequence (un)n in D(𝜕0ℳ) ∩ D(𝒜) such that un → u and vn := (𝜕0ℳ + 𝒜)un →
(𝜕0ℳ +𝒜)u =: v in L2ν(ℝ;H) as n → ∞. On the other hand, the continuity of 𝜕e0 and
𝒜e implies 𝜕e0ℳun → 𝜕e0ℳu and 𝒜eun → 𝒜eu in H−1,0(𝜕0,𝒜 + 1) and H0,−1(𝜕0,𝒜 + 1),
respectively, as n→∞. From L2ν(ℝ;H) 󳨅→ H−1,−1(𝜕0,𝒜 + 1) and

vn = 𝜕
e
0ℳun +𝒜

eun
n→∞
→ 𝜕e0ℳu +𝒜eu ∈ H−1,−1(𝜕0,𝒜 + 1)

it follows that v = 𝜕e0ℳu +𝒜eu. Thus,

D(𝜕0ℳ +𝒜) ⫅ {u ∈ L
2
ν(ℝ;H); 𝜕

e
0ℳu +𝒜eu ∈ L2ν(ℝ;H)} =: D

and (𝜕0ℳ +𝒜)u = 𝜕e0ℳu +𝒜eu for u ∈ D(𝜕0ℳ +𝒜).
On the other hand, if u ∈ D then one can show that (1 + ε𝜕−10 )u ∈ D(𝜕0) ∩ D(𝒜) ⫅

D(𝜕0ℳ+𝒜) for every ε > 0; see [38, Lemma 4.2] or [26, Lemma 2.9]. Moreover, from the
lemmas stated, it also follows that ((𝜕0ℳ + 𝒜)(1 + ε𝜕−10 )u)ε>0 is weakly convergent in
L2ν(ℝ;H) as ε → 0+. As the strong closure of linear operators coincides with the weak
closure, we deduce that u ∈ D(𝜕0ℳ +𝒜).

With the observations made in the latter remark, we henceforth omit the closure
bar in 𝜕0ℳ +𝒜, use the continuous extensions of 𝜕0 and 𝒜 to the Sobolev lattice, re-
use the respective notation and agree that D(𝜕0ℳ +𝒜) = {u ∈ L2ν(ℝ;H); 𝜕0ℳu +𝒜u ∈
L2ν(ℝ;H)}. Now, we are in the position to state the continuity estimates.
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12 Continuous dependence on coefficients | 413

Corollary 2.7. In the situation of Theorem 2.3, let f ∈ L2ν(ℝ;H) and u ∈ L2ν(ℝ;H) with
(𝜕0ℳ +𝒜)u = f . Then u ∈ H−1,1(𝜕0,𝒜 + 1) and

|u|H−1,1(𝜕0 ,𝒜+1) ≦ (
1
ν
+ ‖ℳ‖L(L2ν(ℝ;H))

1
c
+

1
cν
)|f |L2ν(ℝ;H)

Proof. In the Sobolev lattice associated to (𝜕0,𝒜 + 1), we compute that

(𝒜 + 1)u = f − 𝜕0ℳu + u ∈ H−1,0(𝜕0,𝒜 + 1).

Thus,

u = (𝒜 + 1)−1(f − 𝜕0ℳu + u) ∈ H−1,1(𝜕0,𝒜 + 1)

and

|u|−1,1 =
󵄨󵄨󵄨󵄨𝜕
−1
0 (𝒜 + 1)u

󵄨󵄨󵄨󵄨0,0
= 󵄨󵄨󵄨󵄨𝜕
−1
0 (𝒜 + 1)(𝒜 + 1)

−1(f − 𝜕0ℳu + u)󵄨󵄨󵄨󵄨0,0
≦ 󵄨󵄨󵄨󵄨𝜕
−1
0 f 󵄨󵄨󵄨󵄨0,0 + |ℳu|0,0 +

󵄨󵄨󵄨󵄨𝜕
−1
0 u󵄨󵄨󵄨󵄨0,0

≦
1
ν
|f |0,0 + ‖ℳ‖

1
c
|f |0,0 +

1
cν
|f |0,0

≦ (
1
ν
+ ‖ℳ‖

1
c
+

1
cν
)|f |0,0

3 The basic convergence theorem

We recall the concept of G-convergence.

Definition (G-convergence, [46, p. 74], [40]). Let H be a Hilbert space. Let (An :
D(An) ⫅ H → H)n be a sequence of continuously invertible linear operators onto
H and let B : D(B) ⫅ H → H be linear and one-to-one. We say that (An)n G-converges
to B if (A−1n )n converges in the weak operator topology to B−1, i. e., for all f ∈ H the
sequence (A−1n (f ))n converges weakly to some u, which satisfies u ∈ D(B) and B(u) = f .
B is called the4 G-limit of (An)n and we write An

G
󳨀→ B.

Our main theorem reads as follows.

Theorem 3.1. Let H be a Hilbert space, ν > 0. Let (ℳn)n be a bounded sequence in
L(L2ν(ℝ;H)) with bounded commutators with 𝜕0. Moreover, let 𝒜:D(𝒜) ⫅ L2ν(ℝ;H) →

4 Note that the G-limit is uniquely determined; cf. [40, Proposition 4.1].
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414 | M.Waurick

L2ν(ℝ;H) linear and maximal monotone commuting with 𝜕0 and assume that ℳn is
causal, n ∈ ℕ. Moreover, assume the positive definiteness conditions

ℜ⟨𝜕0ℳnu, 1ℝ<a (m0)u⟩ ≧ c⟨u, 1ℝ<a (m0)u⟩, ℜ⟨𝒜u, 1ℝ<0 (m0)u⟩ ≧ 0

for all u ∈ D(𝜕0) ∩ D(𝒜), a ∈ ℝ, n ∈ ℕ and some c > 0.
Assume that there exists a Hilbert space K such that K 󳨅→󳨅→ H, i. e., K is compactly

embedded into H, H1(𝒜+ 1) 󳨅→ L2ν(ℝ;K) and that (ℳn)n converges in the weak operator
topology to someℳ.

Then 𝜕0ℳ +𝒜 is continuously invertible in L2ν(ℝ;H) and

(𝜕0ℳn +𝒜)
G
→ (𝜕0ℳ +𝒜) as n→∞.

Remarks 3.2. It should be noted that it is possible to show another continuity prop-
erty. Namely, if (fn)n in L2ν(ℝ;H) is a weakly convergent sequence with

5 infn inf spt fn >
−∞ and (un)n is the sequence of solutions to

(𝜕0ℳn +𝒜)un = fn,

then (un)n weakly converges to the solution u of

(𝜕0ℳ +𝒜)u = w- limn→∞
f .

In view of the well-posedness theorems [26, Theorem 2.13] and [38, Theorem 2.4],
there is a more adapted version of Theorem 3.1:

Corollary 3.3. Let H be a Hilbert space, ν > 0. Let (ℳn)n, (𝒩n)n be bounded sequences
of causal operators in L(L2ν(ℝ;H)) having bounded commutators with 𝜕0 and𝒜:D(𝒜) ⫅
L2ν(ℝ;H) → L2ν(ℝ;H) linear, maximal monotone commuting with 𝜕0. Assume the positive
definiteness conditions

ℜ⟨(𝜕0ℳn +𝒩n)u, 1ℝ<a (m0)u⟩ ≧ c⟨u, 1ℝ<a (m0)u⟩ (a ∈ ℝ)

ℜ⟨𝒜u, 1ℝ<0 (m0)u⟩ ≧ 0

for all u ∈ D(𝜕0) ∩ D(𝒜), n ∈ ℕ and some c > 0.
Assume that there exists a Hilbert space K such that K 󳨅→󳨅→ H and H1(𝒜 + 1) 󳨅→

L2ν(ℝ;K) and that (ℳn)n, (𝒩n)n converges in the weak operator topology to some ℳ
and𝒩 , respectively.

Then 𝜕0ℳ +𝒩 +𝒜 is continuously invertible in L2ν(ℝ;H) and

(𝜕0ℳn +𝒩n +𝒜)
G
→ (𝜕0ℳ +𝒩 +𝒜) as n→∞.

5 We denote the support of a function v: ℝ → X with values in some topological vector space X by
spt v.
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12 Continuous dependence on coefficients | 415

Proof. It suffices to verify the assumptions in Theorem 3.1 on (ℳn)n for the operator
sequence (ℳn + 𝜕

−1
0 𝒩n)n. This, however, is easy to see.

We remark here that in order to prove well-posedness for equations of the form

(𝜕0ℳ +𝒩 +𝒜)u = f

for suitableℳ, 𝒩 , 𝒜 in [26, Theorem 2.13] or [38, Theorem 2.4], we did not need any
assumptions on the commutator of 𝒩 and 𝜕0. Thus, one might wonder, whether the
boundedness for the commutators of (𝒩n)n with 𝜕0 is needed in Corollary 3.3. The
next example shows that this boundedness assumption is needed to compute the limit
equation in the way it is done in Corollary 3.3.

Example 3.4 (On the boundedness of ([𝒩n, 𝜕0])n). Let ν > 0. Consider for n ∈ ℕ the
operator

sin(nm0): L
2
ν(ℝ) → L2ν(ℝ), f 󳨃→ (sin(n⋅)f (⋅)).

Define for n ∈ ℕ the operatorsℳn = 0,𝒩n := sin(nm0)+2 and𝒜: ℂ → ℂ, x 󳨃→ x. Then,
clearly, the (uniform) positive definiteness condition is satisfied and 𝒜 has compact
resolvent. For f ∈ C∞,c(ℝ), consider the problem of finding un ∈ L2ν(ℝ) such that

(𝜕0ℳn +𝒩n +𝒜)un = f ,

which is the same as to say that

((sin(nm0) + 2) + 1)un = f .

We get that un =
1

sin(nm0)+3
f . By periodicity of sin we get with the help of [7, Theo-

rem 2.6], that

un ⇀
π

∫
−π

1
sin(t) + 3

dtf = π
√2

f =: u,

as n→∞. Moreover, it is easy to see that

𝒩n
τw→

π

∫
−π

sin(t) + 2 dt = 4π =: 𝒩 .

Thus, if the representation formulas for the limit equation remain true also in this
case, we would obtain that u satisfies the equation

4π π
√2

f + 1 π
√2

f = 𝒩u +𝒜u = f ,
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416 | M.Waurick

which is not true, since 4π+ 1 ̸= √2π . A reason for this is that we cannot deduce that the
weak limit of the sequence (𝒩nun)n equals the product of the respective limits. Indeed,
we have

𝒩u = 4π π
√2

f ̸= w- lim
n→∞

𝒩nun = (
π

∫
−π

sin(t) + 2
sin(t) + 3

dt)f = π(2 − 1
√2
)f .

Though the latter example does not fit into the scheme developed above, it fits
well into the theory established in [37], where we did not need the assumptions on the
sequence having bounded commutator with 𝜕0.

We recall [40, Example 4.9] to show that the compactness condition on 𝒜 is also
needed to compute the limit in the way it is done in Corollary 3.3.

Example 3.5 (Compactness assumption does not hold). Let ν, ε > 0. Consider the
mapping a : ℝ → ℝ given by

a(x) := 1[0, 12 )(x − k) + 2 1[ 12 ,1](x − k)

for all x ∈ [k, k + 1), where k ∈ ℤ. Define the corresponding multiplication operator in
L2(ℝ), i. e. for ϕ ∈ C∞,c(ℝ), a(n ⋅ m)ϕ := (x 󳨃→ a(nx)ϕ(x)) for n ∈ ℕ. Note that a(x +
k) = a(x) for all x ∈ ℝ and k ∈ ℤ. Let f ∈ L2ν(ℝ; L

2(ℝ)). We consider the evolutionary
equation with (ℳn)n := (0)n, (𝒩n)n := (a(n ⋅m))n and𝒜 = i : L2(ℝ) → L2(ℝ) : ϕ 󳨃→ iϕ.
By [7, Theorem 2.6], we deduce that

𝒩n →
3
2

as n → ∞. If the assertion of Theorem 3.1 remains true in this case, then (𝒩n + 𝒜)n
G-converges to 3

2 + i. For n ∈ ℕ, let un ∈ L
2
ν(ℝ; L

2(ℝ)) be the unique solution of the
equation

(𝒩n +𝒜)un = (a(nm) + i)un = f . (3.1)

Observe that by [7, Theorem 2.6]

un = (a(nm) + i)
−1f ⇀ (

1

∫
0

(a(x) + i)−1 dx)f =: u,

as n→∞. We integrate
1

∫
0

(a(x) + i)−1 dx = 1
2
(1 + i)−1 + 1

2
(2 + i)−1.

Inverting the latter equation yields

(
1

∫
0

(a(x) + i)−1 dx)
−1

= (
1
2
(1 + i)−1 + 1

2
(2 + i)−1)

−1
=
18
13
+
14
13
i.
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Hence, u satisfies

(
3
2
+ i)u = f and ( 18

13
+
14
13
i)u = f ,

which of course is a contradiction.

4 Examples

4.1 A time-dependent Kelvin–Voigt model

We discuss an example from [1] (we also refer to [3]), where some convergence es-
timates have been established. For showing that this example fits into our abstract
scheme, we introduce some operators first. Let Ω ⫅ ℝ3 be open and bounded. De-
note theweak symmetrizedgradient actingon square-integrable vector fields inL2(Ω)3

with (generalized) Dirichlet boundary condition by ̊Grad. Korn’s inequality implies
D( ̊Grad) = H1,0(Ω)3. By definition, for v ∈ D( ̊Grad) the mapping ̊Gradv is an element of
Hsym(Ω), the space of square-integrable symmetric 3×3-matrices. Endowing the latter
space with the inner product

(Φ,Ψ) 󳨃→ ∫
Ω

trace(Φ(x)∗Ψ(x))dx,

we realize that ̊Grad = −Div,where the latter operator is theweak row-wise divergence
withmaximal domain. Note that by Korn’s inequality and Rellich’s selection theorem,
we have that D( ̊Grad) 󳨅→󳨅→ L2(Ω), where the first space is endowed with the graph-
norm of ̊Grad. From Poincare’s inequality, we see that ̊Grad has closed range. Denote
by ιR:R( ̊Grad) → Hsym(Ω) the canonical injection. As a consequence, the operator ι∗R
is the orthogonal projection onto the range of ̊Grad; see, e. g., [25, Lemma 3.2].

In order to treat the problem class properly, we need to recall some notions from
[38] and [37].

Definition (Evolutionary mappings, [37, Definition 2.1]). Let ν1 > 0. For Hilbert spaces
H0, H1, we call a linear mapping

M:D(M) ⫅ ⋂
ν≧ν1

L2ν(ℝ;H0) → ⋂
ν≧ν1

L2ν(ℝ;H1) (4.1)

evolutionary (at ν1) if D(M) ⫅ L2ν(ℝ;H0) is dense andM:D(M) ⊆ L2ν(ℝ;H0) → L2ν(ℝ;H1)
is closable for all ν ≧ ν1. We sayM is bounded, if, in addition,Mν := M ∈ L(L2ν(ℝ;H0),
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418 | M.Waurick

L2ν(ℝ;H1)) for all ν ≧ ν1 such that6

lim sup
ν→∞
‖M‖L(L2ν) < ∞.

We define

Lev,ν1 (H0,H1) := {M;M is as in (4.1), is evolutionary at ν1 and bounded}

and abbreviate Lev,ν1 (H0) := Lev,ν1 (H0,H0). We call M ⫅ Lev,ν1 (H0,H1) bounded if
lim supν→∞ supM∈M ‖M‖L(L2ν) < ∞. A family (Mι)ι∈I in Lev,ν1 (H0,H1) is called bounded
if {Mι; ι ∈ I} is bounded.

In [37, 38], we gave several examples for evolutionary mappings. Multiplication
operators are a particular subclass of these. Moreover, the operator

𝒜 := (
0 Div ιR

ι∗R ̊Grad 0
)

(defined in space-time) is also evolutionary for every ν > 0 and even bounded evo-
lutionary in Lev,ν(D(ι∗R ̊Grad) ⊕ D(Div ιR); L2(Ω)3 ⊕ R( ̊Grad)). Trivially, 𝒜 is causal. For
bounded evolutionary mappings, we recall the following result.

Lemma 4.1 ([38, Lemma 3.3]). Let ν ≧ ν1 ≧ ν0, H0, H1 Hilbert spaces. Let M ∈
Lev,ν0 (H0,H1) be causal. Then Mν and Mν1 coincide on L

2
ν1 (ℝ;H0) ∩ L2ν(ℝ;H0).

In viewof the latter lemma,weomit the subscript in thenotationof the closures for
causal, evolutionarymappings for different values of ν, if there is no risk of confusion.

Now, take ν > 0 and let ρ ∈ Lev,ν(L2(Ω)3), A,B ∈ Lev,ν(L2(Ω)3×3). The model treated
in [1], can be written as

𝜕0ρ𝜕0u − DivB ̊Grad𝜕0u − DivA ̊Gradu = f .

Abbreviating v := 𝜕0u and using DivB ̊Grad = Div ιRι∗RBιRι
∗
R
̊Grad (see, e. g., [36]), we

arrive at

𝜕0ρv − Div ιR(ι
∗
R(B + A𝜕

−1
0 )ιR)ι

∗
R
̊Gradv = f .

Now, if Bν is strictly positive definite (uniformly for all large ν) in the sense that

ℜ⟨Bνu, 1ℝ<a (m0)u⟩ ≧ c⟨u, 1ℝ<a (m0)u⟩

6 For a bounded linear operator A from L2ν(ℝ;H0) to L2ν(ℝ;H1), we denote its operator norm by
‖A‖L(L2ν(ℝ;H0),L2ν(ℝ;H1)). If the spaces H0 and H1 are clear from the context, we shortly write ‖A‖L(L2ν).
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for some c > 0andall sufficiently large ν,u ∈ D(B),a ∈ ℝ and ν is chosen large enough,
we end up with (q := (ι∗R(B + A𝜕

−1
0 )ιR)ι

∗
R
̊Gradv):

(𝜕0 (
ρ 0
0 0
) + (

0 0
0 (ι∗R(B + A𝜕

−1
0 )ιR)
−1) − (

0 Div ιR
ι∗R ̊Grad 0

))(
v
q
) = (

f
0
) .

Assuming that ρ,A,Bhavebounded commutatorswith 𝜕0 in the sense of Theorem2.3.7

If, in addition, 𝜕0ρν is strictly positive definite (uniformly for all large ν), then it is easy
to see that the aforementioned Kelvin–Voigt model for visco-elasticity is well posed in
the sense of Theorem 2.3. Moreover, it is easy to see that if A, B and ρ are thought of as
being multiplication operators, the assumption on the boundedness of the commuta-
tor follows if one assumes that the respective functions are Lipschitz continuous and
almost every where strongly differentiable (with respect to the temporal variable). For
the latter, see [26, 38]. Thus,

(𝜕0 (
ρ 0
0 0
) + (

0 0
0 (ι∗R(B + A𝜕

−1
0 )ιR)
−1) − (

0 Div ιR
ι∗R ̊Grad 0

))

is continuously invertible in the underlying Hilbert space L2ν(ℝ; L
2(Ω)3 ⊕ R( ̊Grad)). As

well-posedness issues are not the focus of the present article, we now apply our ab-
stract homogenization theorem:

Theorem 4.2. Let ν > 0, (ρn)n, (Bn)n, (An)n be bounded sequences of causal operators
in Lev,ν(L2(Ω)3), Lev,ν(Hsym(Ω)), and Lev,ν(Hsym(Ω)), respectively. Assume that the respec-
tive sequences have bounded commutators with 𝜕0. Moreover, assume there exists c > 0
such that

ℜ⟨Bnu, 1ℝ≦a (m0)u⟩ν󸀠 ≧ c⟨ϕ, 1ℝ≦a (m0)ϕ⟩ν󸀠 ,

ℜ⟨𝜕0ρnu, 1ℝ≦a (m0)u⟩ν󸀠 ≧ c⟨u, 1ℝ≦a (m0)u⟩ν󸀠

for all ν󸀠 ≧ ν and ϕ ∈ L2ν(ℝ;Hsym(Ω)) and u ∈ Hν,1(ℝ; L2(Ω)3), a ∈ ℝ.
Then there exists a subsequence (nk)k such that

(𝜕0 (
ρnk 0
0 0
) + (

0 0
0 (ι∗R(Bnk + Ank𝜕

−1
0 )ιR)
−1) − (

0 Div ιR
ι∗R ̊Grad 0

))

G
→ (𝜕0 (

ρ 0
0 0
) + (

0 0
0 ∑∞ℓ=0ℳℓ

) − (
0 Div ιR

ι∗R ̊Grad 0
)) ,

7 Note that the boundedness of the commutator ofA and 𝜕0 is not needed to ensure thewell-posedness
of the respective equation. For general well-posedness conditions for this particular equation, we refer
to the concluding section in [26].
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420 | M.Waurick

where the latter operator is continuously invertible and

ℳℓ = τw- limk→∞
(−(ι∗RBnk ιR)

−1ι∗RAnk ιR𝜕
−1
0 )
ℓ
(ι∗RBnk ιR)

−1

and ρ = τw- limk→∞ ρnk .

Proof. The proof follows with a Neumann series expansion of

(ι∗R(Bnk + Ank𝜕
−1
0 )ιR)

−1
,

the fact that for a sequence (Tn)n converging in the weak operator topology in some
Hilbert space H, we have ‖τw- limn→∞ Tn‖ ≦ lim infn→∞‖Tn‖, that for a separable
Hilbert space H norm-bounded subsets of L(H) are relatively compact and metrizable
with respect to the weak operator topology and Theorem 3.1.

Remarks 4.3.
(a) We give some more explicit formulae forℳℓ for particular situations:

(i) In theparticular case,whereAn = 0andBn is time-independent, i. e., for every
n ∈ ℕ there exists bn ∈ L(Hsym(Ω)) such that Bn is the (canonical) extension
of bn to L2ν(ℝ;Hsym(Ω)), thenℳℓ = 0 (ℓ ∈ ℕ>0) andℳ0 = limk→∞(ι∗Rbnk ιR)

−1.
One can show that in the special case of bn = d(n⋅), where d is a matrix of
suitable sizewith entries in the space of [0, 1]3-periodic L∞(ℝ3)-functions, the
result coincides with the classical limit; see also [42, Theorem 5.5.3] or [43,
Theorem 1.2].

(ii) Assume that (Bn)n = (bn)n, where (bn)n is a bounded sequence of causal op-
erators in Lev,ν(ℂ) such that (bn)ν ≧ c for all n ∈ ℕ and some c > 0 and such
that the sequence of respective commutators with 𝜕0 is bounded as well. Fur-
thermore, assume that (An)n = (an)n, where an = d(n⋅) for a function d as in
the previous part. Now, if bn → b strongly8 for some b ∈ Lev,ν(ℂ), then

ℳℓ = τw- limk→∞
(−ι∗RAnk ιR)

ℓ
(b−1𝜕−10 )

ℓb−1 (ℓ ∈ ℕ).

(iii) Assume that both (An)n and (Bn)n satisfy the structural assumption onBn as in
(ii) being representable as operators only acting in time. Assume, in addition,
that Bn is uniformly strictly positive (as in (ii)) and that ((An)n, (B−1n )n, (𝜕

−1
0 )n)

has the product convergence property (see [37, Definition 5.1]), then

ℳℓ = ι
∗
R(τw- limn→∞

(−B−1n An𝜕
−1
0 )
ℓ
(Bn)
−1)ιR (ℓ ∈ ℕ).

8 Here, strong convergence means that there exists b ∈ Lev,ν(ℂ) such that for any ν󸀠 ≧ ν we have that
(bn)ν󸀠 → (b)ν󸀠 as n→∞ in the strong operator topology.
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12 Continuous dependence on coefficients | 421

(b) We shall note here that the considerations above can be done similarly for the
case of Bn = 0 and An self-adjoint and (uniformly) strictly positive definite. The
homogenization result then coincides with the classical one in the sense of part
(a)(i).

(c) There is also a possibility to treat the cases (a)(i) and (b) in a unified way. The
resulting formulas, however, become more involved. We refer to the concluding
section in [26] for a unified treatment of the cases (a)(i) and (b) with regards to
well-posedness issues.

4.2 The wave equation with impedance type boundary conditions

We recall the setting in [21, Section 3] or [31, Section 4]. We let Ω ⫅ ℝn be a bounded
open set such that H1(Ω) 󳨅→󳨅→ L2(Ω),9 i. e., the maximal domain of the distributional
gradient grad defined on L2(Ω) endowedwith the graphnormof grad is compactly em-
bedded into L2(Ω). Analogously let div be the distributional divergence on L2(Ω)n with
maximal domain. The respective skew-adjoints will be denoted by ̊div and ̊grad, as
these operators encode homogeneous Neumann and Dirichlet boundary conditions,
respectively.

Formally, the equations treated in [21, Section 3] (or in [31, Section 4]) read as

(𝜕0ℳ + (
0 div

grad 0
))U = F,

for some given F and ℳ. We address the continuous dependence on the coefficient
ℳ. Imposing additional structure onℳ and the right-hand side F, wemay rewrite the
latter system into a more common form. Indeed, if F = (f ,0) andℳ = diag(ℳ1,ℳ2)
with respect to the block structure of ( 0 div

grad 0 ) we obtain with U = (u1, u2):

𝜕0ℳ1u1 + div u2 = f and 𝜕0ℳ2u2 + grad u1 = 0,

which leads to

𝜕0ℳ1u1 − divℳ
−1
2 𝜕
−1
0 grad u1 = f . (4.2)

Choosing an appropriate domain for ( 0 div
grad 0 ) in space-time, which will be done

below, it is possible to show that 𝜕−10 grad u = grad 𝜕−10 u for suitable u. Thus, equation
(4.2) reads

𝜕0ℳ1u1 − divℳ
−1
2 grad 𝜕−10 u1 = f .

9 There is a vast literature on compact embedding theorems for the space of weakly differentiable
L2(Ω)-functions into L2(Ω). In order to maintain such compact embedding, one has to assume some
’regularity’ property of the boundary of Ω; see, e. g., [2, 44].
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422 | M.Waurick

Substituting u := 𝜕−10 u1, we arrive at

𝜕0ℳ1𝜕0u − divℳ
−1
2 grad u = f , (4.3)

which may be regarded as the wave equation in a more familiar form.
Before we address continuous dependence of the solution on the coefficients, we

comment on the choice of the domain for ( 0 div
grad 0 ).

Let ν > 0. As in [21, Section 3], we take a time-translation-invariant subspace of
the maximal domain of

(
0 div

grad 0
) ⫅ (L2ν(ℝ; L

2(Ω) ⊕ L2(Ω)n))2,

such that the respective operator satisfies the conditions imposedon𝒜 in Theorem2.3.
For this,we let r > 1

2ν anda:B(r, r) → L∞(Ω)n bounded, analytic. Similar toRemark 2.2,
a gives rise to an operator in L(L2ν(ℝ; L

2(Ω)), L2ν(ℝ; L
2(Ω)n)) in the way that if

a(z) =
∞

∑
k=0

ak,r(m)(z − r)
k (z ∈ B(r, r)) (4.4)

is the power series expression for a in r for suitable L∞(Ω)n-elements ak,r, we define

a(𝜕−10 )ϕ :=
∞

∑
k=0

ak,r(m)(𝜕
−1
0 − r)

kϕ

:=
∞

∑
k=0
((x, t) 󳨃→ ak,r(x))((𝜕

−1
0 − r)

kϕ)(t, x)

for ϕ ∈ C∞,c(ℝ × Ω).
Throughout, we assume the following smoothness conditions on the coefficients

in (4.4): The mappings

z 󳨃→div a(z) :=
∞

∑
k=0
(div ak,r)(m)(z − r)

k

z 󳨃→ curl a(z) :=
∞

∑
k=0
(curl ak,r)(m)(z − r)

k

are bounded, analytic with div ak,r and curl ak,r being measurable and bounded func-
tions (the latter condition of course only in the case n = 3).

Now, we are in the position to define the domain mentioned above:10

D(𝒜) := {(ϕ,ψ) ∈ D(( 0 div
grad 0

)) ; a(𝜕−10 )ϕ − ψ ∈ L
2
ν(ℝ;D( ̊div))} ,

10 We shall note here that in [21, p. 541] the condition a(𝜕−10 )ϕ − ψ ∈ L2ν(ℝ;D( ̊div)) is replaced by
a(𝜕−10 )ϕ − 𝜕

−1
0 ψ ∈ L2ν(ℝ;D( ̊div)).
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12 Continuous dependence on coefficients | 423

with 𝒜 = ( 0 div
grad 0 ) on D(𝒜). We shall note here that the boundary conditions intro-

duced include the Robin boundary conditions or boundary conditions with temporal
convolutions at the boundary; cf. [21, p. 542]. By the definition, we see that 𝒜 is time-
translation invariant. Henceforth, wewill also impose the sign-constraint [21, formula
(3.3)] on a(𝜕−10 ):

ℜ
0

∫
−∞

(⟨grad p, a(𝜕−10 )p⟩(t) + ⟨p,div a(𝜕
−1
0 )p⟩(t))e

−2νt dt ≧ 0 (4.5)

for all p ∈ L2ν(ℝ;D(grad)). We have the following.

Theorem 4.4. The operator𝒜 is maximal monotone. Moreover, we have

ℜ⟨𝒜u, 1ℝ<0 (m0)u⟩ ≧ 0 (u ∈ D(𝒜)).

If, in addition, we have that

ℜ∫
ℝ

(⟨grad p, a(𝜕−10 )p⟩(t) + ⟨p,div a(𝜕
−1
0 )p⟩(t))e

−2νt dt = 0 (4.6)

for all p ∈ L2ν(ℝ;D(grad)), then𝒜 is skew self-adjoint.

Before the proof, we record the following fact communicated by Sascha Trostorff.

Proposition 4.5. Let H be a Hilbert space, A:D(A) ⫅ H → H linear. Assume that both A
and −A are maximal monotone. Then A is skew self-adjoint.

Proof. From ℜ⟨Au, u⟩ ≧ 0 and ℜ⟨−Au, u⟩ ≧ 0, it follows that ℜ⟨Au, u⟩ = 0 for all
u ∈ D(A). Thus, by polarization, −A ⫅ A∗. The maximal monotonicity of A implies the
(maximal) monotonicity for A∗. The maximality of −A yields −A = A∗.

Proof of Theorem 4.4. [21, Proposition 3.2] shows the inequality stated and the closed-
ness of 𝒜. Time-translation invariance together with [21, Proposition 3.3], which for
u ∈ D(A∗) asserts that

ℜ⟨𝒜∗u, 1ℝ<0 (m0)u⟩ ≧ 0,

yields

ℜ⟨𝒜u, u⟩, ℜ⟨𝒜∗v, v⟩ ≧ 0 (u ∈ D(𝒜), v ∈ D(𝒜∗)).

The latter together with the closedness of𝒜 implies the maximal monotonicity for𝒜.
Now, assume the validity of (4.6). Then the above reasoning shows that both 𝒜

and −𝒜 are maximal monotone. The assertion follows from Proposition 4.5.

In view of Theorem 2.3, we also need the following result.
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Proposition 4.6. Let H be a Hilbert space, ν > 0 and ℬ:D(ℬ) ⫅ L2ν(ℝ;H) → L2ν(ℝ;H)
densely defined, closed, linear with 0 ∈ ρ(ℬ). Assume that τhℬ = ℬτh for all h ∈ ℝ on
D(ℬ), where τh ∈ L(L2ν(ℝ;H)) with τhf := f (⋅ + h). Then 𝜕

−1
0 (ℬ)
−1 = (ℬ)−1𝜕−10 .

Proof. For h ∈ ℝ \ {0} and u ∈ L2ν(ℝ;H), we have

1
h
(τh − 1)(ℬ)

−1𝜕−10 u = (ℬ)−1 1
h
(τh − 1)𝜕

−1
0 u.

Now, since 𝜕−10 u ∈ D(𝜕0) and (ℬ)−1 is continuous the right-hand side converges to (ℬ)−1u
as h → 0. Thus, the left-hand side is bounded, weak compactness of L2ν now implies
that the left-hand side converges weakly, the limit equals 𝜕0(ℬ)−1𝜕−10 u. The assertion
follows.

Now, from 𝜕−10 (𝒜 + 1)
−1 = (𝒜 + 1)−1𝜕−10 and 0 ∈ ρ(𝜕0) ∩ ρ(𝒜 + 1) it follows that

𝜕0(𝒜 + 1) = (𝒜 + 1)𝜕0; see, e. g., [22, p. 56], [34, Lemma 1.1.1].
In order to show a continuous dependence result on the coefficients, we need

to warrant the compactness condition for the operator 𝒜 in Theorem 3.1. For higher
dimensions, the null space of the operator 𝒜 discussed in this section is infinite-
dimensional. Thus, if we want to apply Theorem 3.1, we have to consider the reduced
operator ι∗N𝒜ιN , where ιN :N(𝒜)

⊥ → L2ν(ℝ; L
2(Ω) ⊕ L2(Ω)n) is the canonical embedding

from the orthogonal complement of the null space of𝒜 into L2ν(ℝ; L
2(Ω) ⊕ L2(Ω)n). The

latter procedure of course is not needed if we restrict ourselves to the one-dimensional
case.

Theorem 4.7. Let ν > 0. Assume that Ω is a bounded, open interval, and let (ℳk)k be
a sequence of causal operators in L2ν(ℝ; L

2(Ω) ⊕ L2(Ω)) converging in the weak operator
topology such that the sequence has bounded commutators with 𝜕0. If, in addition, there
exists c > 0 such that

ℜ⟨𝜕0ℳnu, 1ℝ<a (m0)u⟩ ≧ c⟨u, 1ℝ<a (m0)u⟩ (n ∈ ℕ, a ∈ ℝ, u ∈ D(𝜕0))

then

𝜕0ℳn +𝒜
G
→ 𝜕0ℳ +𝒜

in L2ν(ℝ; L
2(Ω)2).

Proof. For the proof, note that the Hilbert space D(𝜕1) ⊕ D(𝜕1) = D(grad) ⊕ D(div) =
H1(Ω)2 is compactly embedded into L2(Ω)2. Moreover, the validity of the conditions
in Theorem 3.1 are easily checked with the help of Theorem 4.4 and Proposition 4.6.
Thus, Theorem 3.1 applies.

Remarks 4.8. With the second-order formulation of equation (4.3), we consider

𝜕0ℳ1,n𝜕0un − divℳ
−1
2,n grad un = f ,
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12 Continuous dependence on coefficients | 425

for (ℳ1,n)n, (ℳ2,n)n being such thatℳn := diag(ℳ1,n,ℳ2,n) satisfies the assumptions
of Theorem 4.7. It follows thatℳj,n

τw→ℳj for someℳj, j ∈ {1, 2}. The limit equation
would then be the following:

𝜕0ℳ1𝜕0u − divℳ
−1
2 grad u = f .

We note here that at first one computes the limit of (ℳ2,n)n and after that one inverts
the limit to get the latter equation. In classical terms, i. e., under certain structural and
periodicity assumptions,ℳ−12 is the harmonic mean of theℳ−12,n’s.

Next, we discuss whether the compactness property assumed in Theorem 3.1 for
𝒜 holds in the case of dimension n = 3, which will be assumed in the remainder of
this section. Recall that our strategy relies on considering the reduced operator ι∗N𝒜ιN .
We state a first important consequence.

Proposition 4.9. The operator ι∗N𝒜ιN is maximal monotone. If 𝒜 is skew self-adjoint,
then so is ι∗N𝒜ιN .

Proof. It is plain that the operator is monotone. Thus, by Minty’s theorem, it suffices
to show that 1 + ι∗N𝒜ιN is onto. For this let y ∈ N(𝒜)⊥. By the maximal monotonicity of
𝒜, there exists x ∈ D(𝒜) such that x + 𝒜x = y. We multiply the latter equality by ι∗N ,
which gives ι∗Nx + ι

∗
N𝒜x = ι

∗
Ny = y. Decomposing x = x1 + x2 for some x1 ∈ N(𝒜)⊥ and

x2 ∈ N(𝒜), we get that ι∗Nx = x1 and 𝒜x = 𝒜(x1 + x2) = 𝒜x1 = 𝒜ιN ι∗Nx. Hence, ι
∗
Nx is

the desired element in the domain of 1 + ι∗N𝒜ιN mapped to y. The last assertion of the
proposition, follows from Proposition 4.5.

As a next step, we need to verify that ι∗N𝒜ιN satisfies the assumptions in our main
homogenization theorem. For this, however, we need to impose additional regularity
of the boundary of Ω. With additional effort, these regularity requirements can cer-
tainly be relaxed. Since we are only interested in providing a class of examples rich
enough, we do not follow the way of presenting a streamlined version of a particular
compactness result.

Theorem 4.10. Assume, in addition, that Ω is of class C5. Then we have that

H1(1 + ι
∗
N𝒜ιN) 󳨅→ L2ν(ℝ;H1(Ω)

4),

Beforewe go into the proof of the theorem,we state themain ingredient: Gaffney’s
inequality. For the latter, recall the operator curl being the distributional curl defined
on L2(Ω)3 with values in L2(Ω)3 with maximal domain. We also use the canonical ex-
tension of curl to space-time and re-use the notation. It will become clear from the
context which operator is used.

Theorem 4.11 (Gaffney’s inequality; see, e. g., [15, below Theorem 8.6, p. 157]). Let Ω
belong to the class C5. Then there exists c > 0 such that for all u ∈ D(curl) ∩ D( ̊div) we
have

|u|H1(Ω) ≦ c(|u|L2(Ω) + |div u|L2(Ω) + |curl u|L2(Ω)).
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Proof of Theorem 4.10. At first, we observe that

(
0 div |C∞,c(Ω)n

grad |C∞,c(Ω) 0
) ⫅ 𝒜 ⫅ (

0 div
grad 0

) .

Now,𝒜 is maximal monotone. Thus,𝒜 is closed and we get that

(
0 ̊div
̊grad 0
) ⫅ 𝒜 ⫅ (

0 div
grad 0

) .

The latter implies

ι∗N (
0 ̊div
̊grad 0
) ιN ⫅ ι

∗
N𝒜ιN ⫅ ι

∗
N (

0 div
grad 0

) ιN .

From ( 0 ̊div
̊grad 0 ) ⫅ 𝒜, it follows that

N(𝒜)⊥ ⫅ N( ̊grad)⊥ ⊕ N( ̊div)⊥.

Thus,

ι∗N𝒜ιN ⫅ ι
∗
N (

0 div |N( ̊div)⊥
grad|N( ̊grad)⊥ 0

) ⫅ (
0 div |N( ̊div)⊥

grad 0
) .

Now, let (ϕ,ψ) ∈ D(ιN𝒜ι∗N ). The latter inclusion shows that it suffices to estimate the
norm of ψ in the space L2ν(ℝ;H1(Ω)). Moreover, we also read off that ψ⊥N( ̊div). Thus,
ψ ∈ R(grad), which implies that ψ takes almost everywhere values in the domain of
curl and that curlψ = 0. Recall

a(𝜕−10 )ϕ − ψ ∈ L
2
ν(ℝ;D( ̊div)).

Using the smoothness assumptions on a, we compute

curl(a(𝜕−10 )ϕ − ψ) = curl(a(𝜕
−1
0 )ϕ)

= curl(a(𝜕−10 ))ϕ + a(𝜕
−1
0 ) × gradϕ

and

div(a(𝜕−10 )ϕ) = (div a(𝜕
−1
0 ))ϕ + a(𝜕

−1
0 ) gradϕ.

Hence, with Theorem 4.11, we estimate pointwise almost everywhere

|ψ|H1
− 󵄨󵄨󵄨󵄨a(𝜕

−1
0 )ϕ
󵄨󵄨󵄨󵄨H1

≦ 󵄨󵄨󵄨󵄨ψ − a(𝜕
−1
0 )ϕ
󵄨󵄨󵄨󵄨H1
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≦ c(󵄨󵄨󵄨󵄨ψ − a(𝜕
−1
0 )ϕ
󵄨󵄨󵄨󵄨L2 +
󵄨󵄨󵄨󵄨div(ψ − a(𝜕

−1
0 )ϕ)
󵄨󵄨󵄨󵄨L2 +
󵄨󵄨󵄨󵄨curl(ψ − a(𝜕

−1
0 )ϕ)
󵄨󵄨󵄨󵄨L2)

≦ c (|ψ|L2 +
󵄨󵄨󵄨󵄨a(𝜕
−1
0 )ϕ
󵄨󵄨󵄨󵄨L2

+ |divψ|L2 +
󵄨󵄨󵄨󵄨(div a(𝜕

−1
0 ))ϕ
󵄨󵄨󵄨󵄨L2 +
󵄨󵄨󵄨󵄨a(𝜕
−1
0 ) gradϕ

󵄨󵄨󵄨󵄨L2

+ 󵄨󵄨󵄨󵄨curl(a(𝜕
−1
0 ))ϕ
󵄨󵄨󵄨󵄨L2 +
󵄨󵄨󵄨󵄨a(𝜕
−1
0 ) × gradϕ

󵄨󵄨󵄨󵄨L2) .

Thus, we get for some constant c󸀠 > 0 that

|ψ|L2ν(ℝ;H1(Ω)) ≦ c
󸀠 (󵄨󵄨󵄨󵄨a(𝜕

−1
0 )ϕ
󵄨󵄨󵄨󵄨L2ν(ℝ;H1(Ω)) + |ψ|L2ν(ℝ;L2(Ω))

+ 󵄨󵄨󵄨󵄨a(𝜕
−1
0 )ϕ
󵄨󵄨󵄨󵄨L2ν(ℝ;L2(Ω)) + |divψ|L2ν(ℝ;L2(Ω)) +

󵄨󵄨󵄨󵄨(div a(𝜕
−1
0 ))ϕ
󵄨󵄨󵄨󵄨L2ν(ℝ;L2(Ω))

+ 󵄨󵄨󵄨󵄨a(𝜕
−1
0 ) gradϕ

󵄨󵄨󵄨󵄨L2ν(ℝ;L2(Ω)) +
󵄨󵄨󵄨󵄨curl(a(𝜕

−1
0 ))ϕ
󵄨󵄨󵄨󵄨L2ν(ℝ;L2(Ω))

+ 󵄨󵄨󵄨󵄨a(𝜕
−1
0 ) × gradϕ

󵄨󵄨󵄨󵄨L2ν(ℝ;L2(Ω))) .

The smoothness assumptions on a yield the assertion.

Now, we are in the position to formulate the continuous dependence result. For
simplicity, we only treat the case, where the operators in the material law do not de-
pend on the spatial variables. The full homogenization problem will be discussed in
future work. We adopt the strategy described in [40, Section 1]. More specifically, we
will treat the case of the particular class of operators being functions of 𝜕−10 as dis-
cussed in Remark 2.2.

Theorem 4.12. Let ν > 0, r > 1
2ν . Assume that Ω ⫅ ℝ

3 is of class C5 and such that
H1(Ω) 󳨅→󳨅→ L2(Ω). Let (Mk)k be a bounded sequence inℋ∞(B(r, r)) and denoteℳk :=
Mk(𝜕
−1
0 ), k ∈ ℕ. If the conditions (4.6) and (4.5) hold and, in addition, there exists c > 0

such that

ℜ⟨z−1Mk(z)u, u⟩ ≧ c⟨u, u⟩ (k ∈ ℕ, z ∈ B(r, r), u ∈ L
2(Ω)4),

then there is a subsequence (nk)k of (n)n such that

𝜕0ℳnk +𝒜
G
→ 𝜕0ℳ +𝒜

in L2ν(ℝ; L
2(Ω)4), where

ℳ = (
τw- limk→∞ ι∗Nℳnk ιN 0

0 𝜕−10 (τw- limk→∞(𝜕0κ∗NℳnkκN )
−1)−1
) ,

with κN :N(𝒜) → L2ν(ℝ; L
2(Ω) ⊕ L2(Ω)3) being the canonical injection.

Proof. At first, we use Theorem [20, Lemma3.5] to deduce that (𝜕0ℳk(𝜕
−1
0 ))
−1 is causal.

Thus, from [31, Lemma3.8],weget thatℳk satisfies thepositive definiteness condition
imposed in Theorem 3.1, k ∈ ℕ.
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Let f ∈ L2ν(ℝ; L
2(Ω)⊕L2(Ω)3)andconsider the sequence (un)n inL2ν(ℝ; L

2(Ω)⊕L2(Ω)3)
satisfying

(𝜕0ℳn +𝒜)un = f .

The latter equation then reads as (note that being functions of 𝒜 the operators κN , ιN
commute with 𝜕0):

(𝜕0 (
ι∗NℳnιN ι∗NℳnκN
κ∗NℳnιN κ∗NℳnκN

) + (
ι∗N𝒜ιN ι∗N𝒜κN
κ∗N𝒜ιN κ∗N𝒜κN

))(
ι∗Nun
κ∗Nun
) = (

ι∗N f
κ∗N f
) .

Now, since 𝜕−10 commutes with 𝒜, the ℳn’s commute with κN and ιN . Moreover, the
skew self-adjointness of𝒜 implies that𝒜 reduces N(𝒜)⊥. Thus, the latter systemmay
be written as

(𝜕0 (
ι∗NℳnιN 0

0 κ∗NℳnκN
) + (

ι∗N𝒜ιN 0
0 0
))(

ι∗Nun
κ∗Nun
) = (

ι∗N f
κ∗N f
) .

The latter gives the two (decoupled) equations:

(𝜕0ι
∗
NℳnιN + ι

∗
N𝒜ιN)ι

∗
Nun = ι

∗
N f

and

𝜕0κ
∗
NℳnκNκ

∗
Nun = κ

∗
N f

For the first equation, we use Theorem 3.1, the convergence of the equation in the
stated manner follows from sequential compactness of bounded subsets of bounded
linear operators in the weak operator topology.

Remarks 4.13. If, in the latter theorem, we restrict ourselves to the Hilbert space
N(𝒜)⊥, i. e., using right-hand sides, which are in N(𝒜)⊥, then the term involving κ
vanishes.

4.3 Applications to a singular perturbation problem

To illustrate the applicability of Theorem2.3,wegive the following example of an ellip-
tic/parabolic type equation, which is adopted from an example given in [26]. For this,
let Ω ⫅ ℝn be open, bounded and connected and let −Δ be the Dirichlet–Laplacian in
L2(Ω). Then −Δ is continuously invertible with compact resolvent. Let λ ∈ (0, λ1) for λ1
being the smallest eigenvalue of−Δ. Then, in particular, the operator−Δ−λ ismaximal
monotone. Now, let Ωp, Ωe ⫅ Ω be disjoint, measurable and such that Ωp ∪Ωe = Ω.We
let ϕ: ℝ → ℝ be such that ϕ|(−∞,0] = 0, ϕ|(0,1) = id(0,1) and ϕ|[1,∞) = 1. In L2ν(ℝ; L

2(Ω)),
we consider for ε > 0 and given f ∈ L2ν(ℝ; L

2(Ω)) the problem of finding uε such that

(ε𝜕0ϕ(m0) 1Ωp
(m) + 1Ωe

(m)(1 − ϕ(m0))τ−ε − Δ)uε = f , (4.7)
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where τ−ε denotes the time-shift operator τ−εg := g(⋅ − ε) for suitable g. At first, note
that the latter problem is clearly well posed. Indeed, this follows from

ℜ⟨(ε𝜕0ϕ(m0) 1Ωp
(m) + 1Ωe

(m)(1 − ϕ(m0))τ−ε + λ)u, 1ℝ≦a (m0)u⟩

≧ λ󸀠⟨u, 1ℝ≦a (m0)u⟩ (a ∈ ℝ)

for u ∈ D(𝜕0), ν large enough and some λ󸀠 ∈ (0, λ). On Ωp the equation (4.7) is of
parabolic type and on Ωe it is of elliptic type with an additional temporal variable.
With

ℳε := εϕ(m0) 1Ωp
(m) + 𝜕−10 1Ωe

(m)(1 − ϕ(m0))τ−ε + 𝜕
−1
0 λ,

weget thatℳε
τs→ℳ0 = 𝜕

−1
0 1Ωe
(m)(1−ϕ(m0))+𝜕

−1
0 λ,wherewedenotedby τs the strong

operator topology. As strong convergence implies convergence in the weak operator
topology, we infer with the help of Theorem 3.1 that (uε)ε>0 weakly converges as ε → 0
to the solution u0 of the problem

(1Ωe
(m)(1 − ϕ(m0)) − Δ)u0 = f ,

which itself is of pure elliptic type.

5 Proof of Theorem 3.1
For the proof, we need several preparations.

Theorem 5.1 (Theorem of Aubin–Lions, [28, p. 67, 2∘]). Let H, K be Hilbert spaces,
I ⫅ ℝ bounded, open interval. Assume that K 󳨅→󳨅→ H. Then

H1(I ;H) ∩ L
2(I ;K) 󳨅→󳨅→ L2(I ;H).

Lemma 5.2. Let H be a Hilbert space, ν > 0. Let (ℳn)n be τw-convergent sequence in
L(L2ν(ℝ;H)) with limitℳ. Ifℳn is causal for all n ∈ ℕ then so isℳ.

Proof. It suffices to observe that 1ℝ<a (m0) ∈ L(L2ν(ℝ;H)) for all a ∈ ℝ. Thus, the equa-
tion

1ℝ<a (m0)ℳn = 1ℝ<a (m0)ℳn 1ℝ<a (m0)

carries over to the limit as n→∞.

Theorem 5.3 (Weak-strong principle). Let H, K be Hilbert spaces and with K 󳨅→󳨅→ H.
Let ν > 0 and (vn)n be a weakly convergent sequence in L2ν(ℝ;K) ∩ Hν,1(ℝ;H). Assume
further that infn∈ℕ inf spt vn > −∞. If (ℳn)n is a τw-convergent sequence of causal op-
erators in L(L2ν(ℝ;H)), then

w- lim
n→∞

ℳnvn = (τw- limn→∞
ℳn)( w- limn→∞

vn) ∈ L
2
ν(ℝ;H).
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Proof. The uniform boundedness principle implies that both (vn)n and (ℳn)n are
bounded sequences in L2ν(ℝ;K) ∩ Hν,1(ℝ;H) and L(L2ν(ℝ;H)), respectively. Thus,
there exists a subsequence (ℳnkvnk )k of (ℳnvn)n which weakly converges to some
w ∈ L2ν(ℝ;H). It suffices to identify w. For this, let ϕ ∈ C∞,c(ℝ;H) and define
a := sup sptϕ. Choose ψ ∈ C∞(ℝ) such that 0 ≦ ψ ≦ 1, ψ = 1 on ℝ<a+1 and ψ = 0 on
ℝ>a+2. We denote v := w- limn→∞ vn andℳ := τw- limn→∞ℳn. Now, by Theorem 5.1,
we deduce that (ψ(m0)vn)n converges to ψ(m0)v in L2ν(ℝ;H). For n ∈ ℕ, we compute

⟨ℳnvn,ϕ⟩ν,0 = ⟨ℳnvn, 1ℝ<a+1 (m0)ϕ⟩ν,0
= ⟨1ℝ<a+1 (m0)ℳnvn,ϕ⟩ν,0
= ⟨1ℝ<a+1 (m0)ℳn 1ℝ<a+1 (m0)vn,ϕ⟩ν,0
= ⟨1ℝ<a+1 (m0)ℳn 1ℝ<a+1 (m0)ψ(m0)vn,ϕ⟩ν,0
= ⟨1ℝ<a+1 (m0)ℳnψ(m0)vn,ϕ⟩ν,0
= ⟨ℳnψ(m0)vn, 1ℝ<a+1 (m0)ϕ⟩ν,0
→ ⟨ℳψ(m0)v, 1ℝ<a+1 (m0)ϕ⟩ν,0
= ⟨ℳv,ϕ⟩ν,0,

where we have used that theℳn’s andℳ are causal; see also Lemma 5.2. Hence,

⟨w,ϕ⟩ν,0 = ⟨ℳv,ϕ⟩ν,0

for all ϕ ∈ C∞,c(ℝ;H). Thus, w =ℳv.

Remark 5.4. The support condition for the vn’s is needed to make Theorem 5.1 appli-
cable.

Lemma 5.5. Let H be a Hilbert space, 𝒟 densely defined, closed, linear operator in H
with 0 ∈ ρ(𝒟). Let (Mn)n be a sequence in L(H) converging in the weak operator topology
to some M and having bounded commutators with𝒟. Then

[Mn,𝒟] → M𝒟 −𝒟M (n→∞)

in the weak operator topology. In particular, M𝒟 − 𝒟M extends to a bounded linear
operator, M has a bounded commutator with𝒟 and

𝒟Mnu⇀ 𝒟Mu (n→∞, u ∈ D(𝒟)).

Proof. For x, y ∈ H, n ∈ ℕ, we compute

⟨[Mn,𝒟]𝒟
−1x, (𝒟−1)∗y⟩ = ⟨(Mn𝒟 −𝒟Mn)𝒟

−1x, (𝒟−1)∗y⟩

= ⟨𝒟−1(Mn𝒟 −𝒟Mn)𝒟
−1x, y⟩

= ⟨(𝒟−1Mn −Mn𝒟
−1)x, y⟩
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= ⟨𝒟−1Mnx, y⟩ − ⟨Mn𝒟
−1x, y⟩

→ ⟨𝒟−1Mx, y⟩ − ⟨M𝒟−1x, y⟩

= ⟨[M,𝒟]𝒟−1x, (𝒟−1)∗y⟩.

By the boundedness of ([Mn,𝒟])n and the density of both D(𝒟) and D(𝒟∗), we get the
first convergence result. In order to see the last convergence result, we compute for
n ∈ ℕ and u ∈ 𝒟:

𝒟Mnu = [𝒟,Mn]u +Mn𝒟u⇀ [𝒟,M]u +M𝒟u = 𝒟Mu.

Lemma 5.6. Let H be Hilbert space, ν > 0. Let M ∈ L(L2ν(ℝ;H)) be causal and such that
M has a bounded commutator with 𝜕0. Then [M, 𝜕0] is causal.

Proof. Let a ∈ ℝ and ϕ ∈ C∞,c(ℝ;H) be such that sptϕ ≧ a. Thus, sptMϕ ≧ a and
sptϕ󸀠 ≧ a. Now, sinceMϕ ∈ D(𝜕0) sinceM[D(𝜕0)] ⫅ D(𝜕0)we further get spt 𝜕0Mϕ ≧ a.
Hence, we arrive at spt[M, 𝜕0]ϕ = spt(M𝜕0 − 𝜕0M)ϕ ≧ a. The continuity of [M, 𝜕0]
together with Remark 2.1 imply the assertion.

Corollary 5.7. Let K, H be Hilbert spaces, ν > 0. Let (ℳn)n be a bounded sequence
of causal mappings in L(L2ν(ℝ;H)) converging in the weak operator topology to some
ℳ and having bounded commutators with 𝜕0. Assume that K 󳨅→󳨅→ H. Let (un)n be
a weakly convergent sequence in Hν,−1(ℝ;K) ∩ L2ν(ℝ;H) with limit u and such that
infn∈ℕ inf spt un > −∞. Thenℳnun ⇀ℳu in L2ν(ℝ;H) as n→∞.

Proof. At first, note that (𝜕−10 un)n is weakly convergent in L2ν(ℝ;K) ∩ Hν,1(ℝ;H). More-
over, [ℳn, 𝜕0] is causal by Lemma 5.6 for all n ∈ ℕ. Furthermore, [ℳn, 𝜕0]

τw→ [ℳ, 𝜕0],
by Lemma 5.5. Thus, for n ∈ ℕ we deduce with the help of Theorem 5.3 that

ℳnun =ℳn𝜕0𝜕
−1
0 un = [ℳn, 𝜕0]𝜕

−1
0 un + 𝜕0ℳn𝜕

−1
0 un

⇀ [ℳ, 𝜕0]𝜕
−1
0 u + 𝜕0ℳ𝜕

−1
0 u =ℳu ∈ L2ν(ℝ;H),

where we have used that 𝜕−10 is weakly continuous and causal.

Lemma 5.8. Let H be a Hilbert space, ν > 0. Let 𝒜 be a densely defined, closed, linear
operator in L2ν(ℝ;H)with0 ∈ ρ(𝒜). Assume that 𝜕

−1
0 𝒜−1 = 𝒜−1𝜕−10 . Let (un)n beabounded

sequence in H−1,1(𝜕0,𝒜) ∩ L2ν(ℝ;H), which weakly converges in L
2
ν(ℝ;H) to u ∈ L

2
ν(ℝ;H).

Then u ∈ H−1,1(𝜕0,𝒜) and

𝒜un ⇀ 𝒜u ∈ H−1,0(𝜕0,𝒜).

Proof. Let (unk )k be a weakly convergent subsequence of (un)n in H−1,1(𝜕0,𝒜). Denote
its limit by w. Note that 𝜕−10 un ⇀ 𝜕−10 u ∈ Hν,1(ℝ;H) 󳨅→ L2ν(ℝ;H), by unitarity of 𝜕

−1
0 .

Moreover, by Remark 2.5, 𝜕−10 :H−1,1(𝜕0,𝒜) → H0,1(𝜕0,𝒜) is unitary. Hence, we get that
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𝜕−10 unk ⇀ 𝜕
−1
0 w ∈ H0,1(𝜕0,𝒜) 󳨅→ L2ν(ℝ;H). Hence, 𝜕

−1
0 w = 𝜕−10 u. Thus, u = w and (un)n

weakly converges in H−1,1(𝜕,𝒜). Now, by Remark 2.5, the operator 𝒜:H−1,1(𝜕0,𝒜) →
H−1,0(𝜕0,𝒜) is continuous. Thus, we deduce the asserted convergence.

Proof of Theorem 3.1. Thewell-posedness of the limiting equation, i. e., continuous in-
vertibility and causality of (𝜕0ℳ+𝒜) in L2ν(ℝ;H) follows fromLemma 5.5 togetherwith
Theorem 2.3.

Now, we prove the version, which is asserted in Remark 3.2. Let (fn)n in L2ν(ℝ;H)
be a weakly convergent sequence with infn inf spt fn > −∞; we denote its limit by f .
For n ∈ ℕ, we define

un := (𝜕0ℳn +𝒜)
−1fn.

By causality (see Theorem 2.3 and Remark 2.1), we get that

inf
n∈ℕ

inf spt un ≧ infn inf spt fn > −∞.

Moreover, (un)n is bounded in L2ν(ℝ;H) ∩ H−1,1(𝜕0,𝒜 + 1) by Corollary 2.7 and the uni-
form boundedness principle applied to (fn)n. Now, let (unk )k be a L

2
ν(ℝ;H)-weakly con-

vergent subsequence of (un)n. We denote the respective limit by u. Now, for k ∈ ℕ we
have

𝜕0ℳnkunk +𝒜unk = fnk (5.1)

inH−1,0(𝜕0,𝒜+1). Now, by Corollary 5.7 for the first term and Lemma 5.8 for the second
term on the left side of equation (5.1), we may let k →∞ in (5.1). We arrive at

𝜕0ℳu +𝒜u = f

in H−1,0(ℝ;H). Moreover, by construction, u ∈ L2ν(ℝ;H) and (𝜕0ℳ + 𝒜)u = f ∈
H0,0(𝜕0,𝒜 + 1). Thus, u ∈ D(𝜕0ℳ + 𝒜), by Remark 2.6. Now, since (𝜕0ℳ + 𝒜) is
continuously invertible in L2ν(ℝ;H) the sequence (un)n itself weakly converges.

In order to see that Theorem 3.1 holds, apply the previous part to constant se-
quences (fn)n = (f )n for some f ∈ C∞,c(ℝ;H). It remains to observe that C∞,c(ℝ;H) is
dense in L2ν(ℝ;H) and that ((𝜕0ℳn +𝒜)

−1)n is bounded.
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