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Preface

This volume contains 12 chapters that provide some recent developments in the analy-
sis and numerics of Maxwell’s equations. The contributions result from Workshop 1 on
“Analysis and Numerics of Acoustic and Electromagnetic Problems” held at the Radon
Institute for Computational and Applied Mathematics (RICAM) in Linz, Austria, Octo-
ber 17-22, 2016. This workshop was the first workshop within the Special Semester
on “Computational Methods in Science and Engineering,” which took place in Linz,
October 10—December 16, 2016; see also the website:

https://www.ricam.oeaw.ac.at/specsem/specsem2016/

Maxwell’s equations of electro-dynamics are of huge importance in mathematical
physics, engineering, and especially in mathematics, leading since their discovery to
interesting mathematical problems and even to new fields of mathematical research,
particularly in the analysis and numerics of partial differential equations and applied
functional analysis. The impact to science in general has been formulated by the
famous physicist, RICHARD FEYNMAN:

From a long view of the history of mankind — seen from, say, ten thousand years from now — there
can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s
discovery of the laws of electrodynamics. The American Civil War will pale into provincial insignifi-
cance in comparison with this important scientific event of the same decade.

The deep understanding of Maxwell’s equations and the possibility of their numer-
ical solution in complex geometries and different settings have led to very efficient
and robust simulation methods in Computational Electromagnetics. Moreover, effi-
cient simulation methods pave the way for optimizing electromagnetic devices and
processes. Digital communication and e-mobility are two fields where simulation
and optimization techniques that are based on Maxwell’s equations play a deciding
role.

More than 70 scientists from 14 countries participated in the workshop; see Fig-
ure 1. The workshop brought together different communities, namely people work-
ing in analysis of Maxwell’s equations with those working in numerical analysis of
Maxwell’s equations and computational electromagnetics and acoustics. This collec-
tion of selected contributions contains original papers that are arranged in an alpha-
betical order. We are now going to give short description of these contributions.

In Chapter 1, Alonso Rodriguez, Bertolazzi, and Valli proposed and analyzed
two variational saddle-point formulations of the curl-div system. Moreover, suitable
Hilbert spaces and curl-free and divergence-free finite elements are employed. Finally,
numerical tests illustrate the performance of the proposed approximation methods.

https://doi.org/10.1515/9783110543612-201
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Figure 1: Participants of the first workshop of the special semester 2016 at RICAM.

In Chapter 2, Bauer gives an asymptotic expansion of time dependent Maxwell’s equa-
tions in terms of iterated div-curl systems in case that charge velocities are small in
comparison with the speed of light.

In Chapter 3, Bauer, Pauly, and Schomburg prove that the space of differential
forms with weak exterior- and co-derivative is compactly embedded into the space of
square integrable forms. Mixed boundary conditions and weak Lipschitz domains
are considered. Furthermore, canonical applications such as Maxwell estimates,
Helmholtz decompositions, and static solution theories are shown.

In Chapter 4, Bonnet-Ben Dhia, Fliss, and Tjandrawidjaja considered the 2D
Helmholtz equation with a complex wavenumber in the exterior of a convex polygonal
obstacle with a Robin-type boundary condition using the principle of the half-space
matching method. It is proved that this system is of Fredholm type and the theoretical
results are supported by numerical experiments.

In Chapter 5, Cogar, Colton, and Monk present an approach to the problem of the
possible non-uniqueness of solutions to inverse electromagnetic scattering problems
in anisotropic media through the use of appropriate “target signatures,” i. e., eigenval-
ues associated with the direct scattering problem that are accessible to measurement
from a knowledge of the scattering data. In this contribution, three different sets of
eigenvalues are utilized as target signatures.

In Chapter 6, Costabel and Dauge investigate Maxwell eigenmodes in three-
dimensional bounded electromagnetic cavities that have the form of a product of
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lower dimensional domains in some system of coordinates such as Cartesian, cylin-
drical, and spherical variables. As application of their general formulas, explicit
eigenpairs in a cuboid, in a circular cylinder, and in a cylinder with a coaxial circular
hole are found.

In Chapter 7, Hiptmair and Pechstein show stable discrete regular decompositions
for Nédélec’s tetrahedral edge element spaces of any polynomial degree on a bounded
Lipschitz domain. Such decompositions have turned out to be crucial in the numerical
analysis of “edge” finite element methods for variational problems in computational
electromagnetics. Key tools for these constructions are continuous regular decompo-
sitions, boundary-aware local co-chain projections, projection-based interpolations,
and quasi-interpolations with low regularity requirements.

In Chapter 8, Kress presents a survey on uniqueness, that is, identifiability and on
reconstruction issues for inverse obstacle scattering for time-harmonic acoustic and
electromagnetic waves. New integral equation formulations for transmission eigen-
values that play an important role through their connections with the linear sampling
method and the factorization method for inverse scattering problems for penetrable
objects are given as well.

In Chapter 9, Nicaise and Tomezyk suggest a variational formulation of the time-
harmonic Maxwell equation with impedance boundary conditions in polyhedral do-
mains, and show existence and uniqueness of weak solutions by a compact pertur-
bation argument. Corner and edge singularities are investigated and a wavenumber
explicit error analysis is performed.

In Chapter 10, Osterbrink and Pauly investigate time-harmonic electro-magnetic
scattering or radiation problems governed by Maxwell’s equations in an exterior weak
Lipschitz domain with mixed boundary conditions. A solution theory in terms of a
Fredholm-type alternative using the framework of polynomially weighted Sobolev
spaces, Eidus’ principle of limiting absorption, and local compact embeddings is
presented.

In Chapter 11, Picard considers a coupled system of Maxwell’s equations and
the equations of elasticity, where the coupling occurs not via material properties
but through an interaction on an interface separating the two regimes. Evolutionary
well-posedness in the sense of Hadamard well-posedness supplemented by causal
dependence is shown for a natural choice of generalized interface conditions. The
results are obtained in a Hilbert space setting (Picard’s approach) incurring no regu-
larity constraints on the boundary and the interface of the underlying regions.

In Chapter 12, Waurick addresses the continuous dependence of solutions to cer-
tain equations on the coefficients. Three examples are discussed: A homogenization
problem for a Kelvin—Voigt model for elasticity, the discussion of continuous depen-
dence of the coefficients for acoustic waves with impedance-type boundary condi-
tions, and a singular perturbation problem for a mixed-type equation. By means of
counterexamples optimality of these results are obtained.



VIII —— Preface

The careful reviewing process was only possible with the help of the anonymous
referees who did an invaluable work that helped the authors to improve their contri-
butions. Furthermore, we would like to thank the administrative and technical staff
of RICAM for their support during the special semester. Last but not least, we express
our thanks to Apostolos Damialis and Nadja Schedensack from the Walter de Gruyter
GmbH, Berlin/Boston, for continuing support and patience while preparing this vol-
ume.

Linz, Essen, St. Petersburg Ulrich Langer
December 2018 Dirk Pauly
Sergey Repin
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Ana Alonso Rodriguez, Enrico Bertolazzi, and Alberto Valli
1 The curl-div system: theory and finite
element approximation

Abstract: We first propose and analyze two variational formulations of the curl-div
system that rewrite it as a saddle-point problem. Existence and uniqueness results are
then an easy consequence of this approach. Second, introducing suitable constrained
Hilbert spaces, we devise other variational formulations that turn out to be useful for
numerical approximation. Curl-free and divergence-free finite elements are employed
for discretizing the problem, and the corresponding finite element solutions are shown
to converge to the exact solution. Several numerical tests are also included, illustrating
the performance of the proposed approximation methods.

Keywords: Curl-div system, well-posedness, finite element approximation

MSC 2010: 65N30, 35)56, 35Q35, 35Q60

1 Introduction

The curl-div system often appears in electromagnetism (electrostatics, magnetostat-
ics) and in fluid dynamics (rotational incompressible flows, velocity—vorticity formu-
lations). Let Q ¢ R> be a bounded domain (i. e., a bounded, open and connected set):
depending on the boundary condition, in its most basic form it reads

curlu=J inQ
divu=f inQ (1.1)
uxn=a onodQ,

or

curlu=J inQ
divu=f inQ (1.2)
u-n=» onoQ,

with in addition some topological conditions assuring uniqueness.
The aim of this paper is two-fold: first, at the theoretical level, we present a couple
of saddle-point variational formulations of the curl-div system and show that they are

Ana Alonso Rodriguez, Alberto Valli, Department of Mathematics, University of Trento, Povo (Trento),
Italy, e-mails: ana.alonso@unitn.it, alberto.valli@unitn.it
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2 =—— A.Alonso Rodriguez et al.

well-posed; second, focusing on discretization, we devise other non-standard varia-
tional formulations of this problem which lead to simple and efficient finite element
schemes for its numerical approximation.

Concerning the second issue, the main novelty resides in the functional frame-
work we adopt: we look for the solution in the spaces of curl-free or divergence-free
vector fields. For the sake of implementation, we also describe in detail how to con-
struct a simple finite element basis for these vector spaces; convergence of the finite
element approximations is then shown easily. A key point of our approach is a suit-
able tree—cotree decomposition of the graph given by the nodes and the edges of the
mesh.

The paper is organized as follows. In Section 2, after having recalled some clas-
sical results, by means of a saddle-point approach we show that the curl-div system
has a unique solution, for both types of boundary condition. Sections 3 and 4 are de-
voted to devising two other new variational formulations, that will be used for numer-
ical approximation, and to prove that they are well-posed. In Section 5, we give an
overview of some previous results related to the discretization of the curl-div system.
In Sections 6 and 7, the finite element numerical approximation of the curl-div sys-
tem based on the new variational formulations is described and analyzed. In the last
section, we finally present several numerical results that illustrate the performance of
the proposed approximation methods.

2 Theoretical results

Let us start with some notation. Let Q be a bounded domain of R*> with Lipschitz
boundary 0Q and let (0Q),, ..., (BQ)p be the connected components of 0Q, (0Q), being
the external one. From the topological point of view, p is the rank of the second ho-
mology group of Q, namely, the second Betti number f,(Q). The unit outward normal
vector on 0Q is indicated by n.

The space of infinitely differentiable functions with compact support in Q is de-
noted by C3°(Q). The classical Sobolev spaces are denoted by H*(Q) or H*(0Q), for
s € R; for s = 0, we write H2(Q) = L%(Q). The space of (essentially) bounded and
measurable functions defined in Q is denoted by L*(Q). Moreover, we define

H(curl; Q) = {v e (L*(Q))?| curlv € (L*(Q))*},
H(curl’; Q) = {v e (L*(Q))*| curlv = 0in Q},
H(div; Q) = {§ € (L2(Q))?| div§ € LX(Q)},
H(div% Q) = {& € LX)’ | divé =0in Q}.

The space of traces on 9Q of functions ¢ belonging to H'(Q) is the space H 12(50)
(whose dual space is the space H -1/ 2(3Q)); the space of normal traces & - n on 0Q of

Brought to you by | Columbia University Libraries
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1 The curl-div system: theory and finite element approximation =—— 3

vector fields & belonging to H(div; Q) is H -1/ 2(3Q); the space of tangential traces v x n
on 0Q of vector fields v belonging to H(curl; Q) is denoted by H - 2(divT; 0Q) (for the
interested reader, an intrinsic characterization of this space can be found in Buffa and
Ciarlet [24, 25]; see also Alonso Rodriguez and Valli [8, Section Al]).

In the following, we also need to consider a set closed curves in Q, denoted by
{an}izl, that are representatives of a basis of the first homology group (whose rank is
therefore equal to g, the first Betti number 3,(Q)): in other words, this set is a maxi-
mal set of non-bounding closed curves in Q. Let us recall that an explicit and efficient
construction of the closed curves {o, }ﬁzl is given by Hiptmair and Ostrowski [39]. For
a more detailed presentation of the homological concepts that are useful in this con-
text, see, e. g., Bossavit [20, Chap. 5], Hiptmair [37, Section 2 and Section 3], Gross and
Kotiuga [35, Chapter 1 and Chapter 3]; see also Benedetti et al. [13], Alonso Rodriguez
etal. [4].

2.1 The curl-div system with assigned tangential component on
the boundary

Let p be a symmetric matrix, uniformly positive definite in Q, with entries belonging
to L®(Q). Given J € (L%(Q))>, f € L*(Q), a ¢ H Y?(div,;0Q), @ € RP, we look for
u € (L*(Q))? such that

curllpu) =] inQ
diva=f in Q
(quyxn=a onoQ (2.1

u-n=a, foreachr=1,...,p.
(09),

The data must satisfy the necessary conditions div] = 0in Q, jQI P+ Jau a-p=0for
each p € H(m), where #(m) is the space of Neumann harmonic fields, namely,

H(m) = 1{p € (LZ(Q))3 | curlp=0inQ,divp=0in Q,p-n = 0onoQ}, 2.2)

whose dimension is known to be equal to g, the rank of the first homology group of
Q, and finally J - n = div, a on dQ (for a summary of the properties of the spaces of
harmonic fields and for a definition of the tangential divergence operator div,; see,
e. g., Alonso Rodriguez and Valli [8, Section Al and Section A4]).

By means of a variational approach Saranen [59, 60] has shown that this problem
has a unique solution (see also the results proved in Alonso Rodriguez and Valli [8,
Section A3], and the more abstract approach by Picard [52, 53]). Let us briefly sum-
marize the principal points of this procedure. The method is based on the Helmholtz
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4 —— A Alonso Rodriguez et al.

decomposition, namely, a splitting of the solution in three terms, orthogonal with re-
spect to the scalar product jQ 1 'v - w, that reads

nu=ncurlq +grady + gh.

Here, the vector field q satisfies curl(n curlq) = Jin Q and (pcurlq) x n = aon 0Q;
is the solution to div(tf1 grady) = f in Q and y = 0 on 0Q; h is a generalized Dirichlet
harmonic field, namely, it is an element of the finite dimensional vector space

Hyle) = e (Lz(Q))3 | curl(nm) =0in Q,divwr = 0in Q, 23)
() xn = 0 on 0Q}, '

whose dimension is known to be equal to p (precisely, h is the unique element of #, (e)
satisfying I(BQ), h-n=q,- I(ao), n'grady -nforeachr=1,...,p).

Since a solution q to curl(ypcurlq) = Jin Q and (gcurlq) x n = a on 0Q is not
unique (q + grad ¢ is still a solution), other equations have to be added. Typically, one
imposes the gauge conditions divq = 0in Q, g - n = 0 on 0Q and q_L#(m).

The approach we have just described has thus led to two variational problems:
a standard Dirichlet boundary value problem for y, and a constrained problem for q
(the determination of the harmonic field h also needs some additional work, but it is
an easy finite dimensional problem).

Numerical approaches for approximating these two problems are easily devised.
In fact, the first one is a standard elliptic problem. Numerical approximation can be
performed by scalar nodal elements in H'(Q), looking for the unknown x and then
computing its gradient, or by means of a mixed method in H(div; Q) x L%(Q), in which
grady € H(div; Q) is directly computed as an auxiliary unknown.

Concerning the problem related to the vector field q, a first choice is to work in
H(curl; Q) n H(div; Q), hence with globally-continuous nodal finite elements for each
component of q; the drawback is that, in the presence of re-entrant corners, the solu-
tion is singular (it does not belong to (H!(Q))?) and (H*(Q))? is a closed subspace of
H(curl; Q)nH(div; Q), hence in this case a finite element scheme cannot be convergent
(see, e. g., Costabel etal. [29]).

An alternative method is to formulate the problem as a saddle-point problem for
the vector field q in H(curl; Q), in which the divergence constraint is imposed in a week
sense, introducing a scalar Lagrange multiplier; in this way the number of degrees of
freedom is rather high, as, besides an edge approximation of the vector field q, one has
also to consider a nodal approximation of the scalar Lagrange multiplier. The result-
ing algebraic problem is associated to an indefinite matrix; however, for its resolution
efficient regularization techniques are known (see Hiptmair [37, Section 6.1]).

A way for avoiding the introduction of a Lagrange multiplier is to solve the equa-
tion curl(curlq) = J in Q by using edge elements without any gauge. Though the
matrix to deal with is singular, the conjugate gradient method is known to be a viable

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 3:59 PM



1 The curl-div system: theory and finite element approximation =—— 5

tool for solving the associated algebraic problem (see the theoretical result by Kaass-
chieter [40]; see also Bossavit [20, Section 6.2], Bir6 [16]); however, the computation of
the right-hand side should be done with particular care (see Fujiwara et al. [33], Bird
etal. [17], Ren [56]), and, for problems with a large number of unknowns, it is not easy
to devise an efficient preconditioner.

Summing up, the most classical variational formulations of the curl-div system
are not completely satisfactory when numerical approximation has to be performed.
We will present in Section 3 a new variational formulation of problem (2.1) that looks
much more suitable for finite element discretization.

However, before coming to this point, we want to put the problem on a solid foun-
dation, providing in this and in the following section a proof of the well-posedness of
the curl-div system. Instead of reporting the classical result obtained by Saranen [59,
60], we propose a saddle-point formulation that to our knowledge has not been con-
sidered yet. With this approach, one does not introduce the potentials q and y, keeps
the original unknown u and imposes the curl constraint by means of a Lagrange mul-
tiplier: it could be seen as a least-squares formulation with a constraint on the curl of
u, or similarly, a Lagrangian method for a constrained optimization problem.

Let us derive step by step the variational problem we are interested in. Taking the
gradient of the second equation in (2.1) we obtain grad divu = grad f. Multiplying for
a test vector field &, integrating in Q and integrating by parts we obtain

_ J(divu—f) dive + J(divu—f)f ‘n=o0.

Q 0Q

The integral on the boundary will be omitted in the variational formulation, in order
to impose in a suitable weak sense the condition divu — f = 0 on 0Q.

Multiplying the first equation in (2.1) by v, integrating in Q and integrating by
parts we find

Il~v:J‘curl(nu)~v:J‘nuocurlv+J’nxnuov,
Q 0 0 aQ

hence

jnu~curlv:J]~v+Ja-v.
Q

Q 0Q

Then, introducing a Lagrange multiplier p, we are led to consider the problem

idivudiv{ +£nf ccurlp = deiv{

Q

Jnu-curlv:J]~v+Ja~v.
Q Q 0
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6 —— A.Alonso Rodriguez et al.

Now the natural question is: which are the variational spaces for u, &, p and v? Define
the Hilbert spaces

W = «{{eH(diV;QH J {-n:Oforeachr:I,...,p}

Q= {v € H(curl; Q) | Jv-w = 0 for eachw ¢ H(curlO;Q)}
Q

We choose u,& € W and p, v € Q. It is worth noting that the space H (curl®; Q) can be
described as

H(curlo; Q) = grad HI(Q)éH(m) (2.5)

(see, e.g., Alonso Rodriguez and Valli [8, Section A3]). Therefore, by integration by
parts, an element v € Q can be characterized as an element in H(curl; Q) such that
divv=0inQ, v-n = 0 on 0Q and vLH(m).

Summing up, our variational problem is

findue W,pe Q :

b[divudivf+£n§~curlp = ifdivf 06
inu~curlv:(J;]~v+a£a-v

foreaché& e W,ve Q.

Before analyzing this problem, we need an additional tool. It is known that it is
possible to select a basis {rr? }le of the space of harmonic fields #,(e) defined in (2.3)
with the properties

77;1 ‘n= 5rs
(09,

(see, e. g., Alonso Rodriguez and Valli [8, Section A4]; for p = Id we simply write 7).
Then, if u is a solution to problem (2.1) with @, = 0, r = 1,..., p, we check easily that
u+ Zle a,m! is a solution to problem (2.1) with given a, .

This also says that a solution u of problem (2.1), if it exists, is unique. In fact,
taking vanishing data, it follows from the first three equations that u € #,(e), and
consequently it can be writtenasu = }¥_ u !, Then, foreachr = 1,...,p,

p
0= J un=>yu | nl-n=u,

s=1

(0Q), (0Q),

and in conclusion u = 0.
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1 The curl-div system: theory and finite element approximation =—— 7

Theorem 1. If (u,p) is a solution to problem (2.6) then p = 0 and u is a solution to
problem (2.1) fora, = 0,r=1,...,p.

Proof. By the Stokes theorem for closed surfaces, we know that curlv € W for each
v € Q. Therefore, taking & = curl p in the first equation we find

jncurlprurlpzo,
Q

hence curl p = 0; since the elements in Q are orthogonal to H(curl®; Q) (with respect
to the L?(Q)-scalar product), it follows p = 0.

Choosing & € (Cy° (Q))® we find that grad(divu - f) = 0 in Q in the distributional
sense, hence (divu - f) is constant in Q. Take E’ € H(div; Q) and define Er = j o), 2' -n.

Then& =& - & ! belongs to W and satisfies div & = div €. Hence the first equation
in problem (2.6) is satisfied for each E’ € H(div; Q), and by integration by parts we find
divu-f = 0onoQ, hencedivu = f in Q.

Let us prove that the second equation is indeed satisfied for each v € H(curl; Q).
Let PV be the Lz(Q)-orthogonal projection of vV on H (curlo; Q). Then PV = grad  + p,
with @ € HI(Q) and p € H(m), v= (V- PV) € Q, and curl v = curl V. Moreover,

j]-v+[a-v=j]-w7+ Ja-V—J]-PTI— Ja-PV

Q oQ Q 0Q Q 0Q

and, by integrating by parts in Q and on 0Q,

J]-PV+ J a-Pv= J]~(grad@+f))+ Ja-(grad@ﬂi)
Q o0 Q o0
:—Jdiv]@+ j]-n@+J]~f)— j div, a@ + j a-p=0,
Q o0 Q o0 o0
having used the compatibility conditions on the data J and a.
Hence the second equation is satisfied for each v € H(curl; Q), and taking v €

cy (Q))? it follows curl(qu) = J in Q in the distributional sense. Repeating the same
procedure for V € H(curl; Q), integration by parts gives qu x n = a on 0Q. O

The existence of a solution to problem (2.1) is therefore reduced to the proof of the
existence of a solution to problem (2.6). This is a consequence of well-known results
for saddle-point problems (see, e. g., Boffi et al. [19, Section 4.2]). In fact, the following
two propositions permit us to apply the general well-posedness theory.

Proposition 1. The bilinear form a(yp,§) = jQ divy divé is coercive in the space
By x By, where

By = {{ewl Jn{~curlv:0forallve Q}.
Q
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8 = A.Alonso Rodriguez et al.

Proof. Indeed, we have already seen that, if & € B, then it follows that jQ né-curlv =
0 for all v € H(curl; Q). Therefore, by integration by parts we deduce at once that
curl(n&) = 0 in Q and n¢ x n = 0 on 0Q. Coercivity follows from the Friedrichs in-
equality: there exists a constant C > 0 such that for any vector field & belonging to
H(div; Q), with curl(é) € (L*(Q)), né x n = 0 on 9Q and satisfying | oa, § -m=0for
eachr =1,...,p, it holds

1€l20) < CUleurlm®)llzqy + I1div &ll2qy) -

This result can be shown by adapting in a straightforward way the proof presented,
e. g., in Fernandes and Gilardi [32], using the fact that the space

(£ e H(div; Q) | curl(d) € (LXQ))’,n& x n = 0 on 0Q}

is compactly imbedded in (L*(Q))* (see, e. g., Weber [64], Picard [54]). O

Proposition 2. The bilinear form b(§,v) = fo né - curlv satisfies an inf-sup condition,
namely, there exists 8 > O such that for each v € Q there exists & € W, & + 0, satisfying

Jn{ ~curlv 2 Bl§lwylvilg -

Q

Proof. If curlv = 0 in Q, nothing has to be proved. Then suppose that curlv # 0. We
have already seen that curlv € W for each v € Q, and that any vector field v € Q
satisfies divv = 0in Q, v-n = 0 on 0Q and v.LH(m). The thesis follows by choosing
¢ = curlv, as divé = 0 in Q and the Friedrichs inequality

is valid for v € H(curl; Q) n H (divO; Q) satisfying v - n = 0 on 0Q and v.LH(m) (see,
e. g., Girault and Raviart [34, Section 3.5] if #(m) = @, or Fernandes and Gilardi [32] if
H(m) + 0). O

In conclusion, by means of these two propositions we have proved that the saddle-
point problem (2.6) has a unique solution, and thus the same is true for problem (2.1).

2.2 The curl-div system with assigned normal component on
the boundary

Let u be a symmetric matrix, uniformly positive definite in Q, with entries belonging
to L°(Q). Given J € (L2(Q))%, f € L%(Q), b ¢ H'Y2(3Q), B € RS, we look for u € (L*(Q))°
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1 The curl-div system: theory and finite element approximation =—— 9

such that
curlu=] inQ
divjuu)=f inQ
pHu-n = b on 0Q (2.7)

C'l‘)u~ds:ﬁn foreachn=1,...,g,

On

where the data satisfy the necessary conditions div] = 0in Q, [ f = [, b; moreover,
since we need to give a meaning to the line integral of u on o,,, we follow the arguments
in Alonso Rodriguez et al. [7, Section 2] and we also assume thatJ-n = 0 on 0Q (which
is more restrictive than the necessary condition J(BO), J-n=0foreachr=1,...,p).

The variational approach proposed by Saranen [59, 60] shows that this problem
has a unique solution (see also Alonso Rodriguez and Valli [8, Section A3], and the
results obtained by Picard [52, 53]). Again, the method is based on a orthogonal de-
composition result, through which the solution is split as

u=p"curlq+grady +h,

where the vector field q is a solution to curl(}f1 curlq) =Jin Qand g x n = 0 on 0Q;
x is the solution to div(u grady) = f in Q and pgrad y - n = b on 0Q; h is a generalized
Neumann harmonic field, namely, it is an element of the finite dimensional vector
space

H,(m) = {pe (LZ(Q))3 | curlp = 0in Q,div(up) = 0in Q,
Hp-n =0onoQ},

(2.8)

whose dimension is known to be equal to g (precisely, h is the unique element of
H,(m) satisfying g[)on h-ds=8,- g[ian p'curlq-dsforeachn=1,...,8).

Since a solution q to curl(ncurlq) = Jin Q and q x n = 0 on 0Q is not unique
(q + grad ¢, with ¢ = 0 on 9Q, is still a solution), other equations have to be added.
The standard gauge conditions are divq = 0 in Q and q.L H(e), where #(e) is the space
of Dirichlet harmonic vector fields, namely,

H(e) = {m e (L*(Q))’| curlr = 0in Q,divr = 0in Q,

29
xn=00n0Q}. 29)

We do not specify the details of the proof of the existence of a solution q because here,
as in the previous case, we base the theoretical analysis of the curl-div system (2.7)
on a saddle-point variational formulation, quite close to that proposed by Kikuchi [42]
(the limitations in that paper are that the domain has a simple topological shape, the
boundary conditions are homogeneous and the coefficient p is a constant scalar pa-
rameter). With this approach, the introduction of the potentials g and y is not needed,
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10 —— A.Alonso Rodriguez et al.

the original unknown u is kept and the equation related to the divergence is imposed
by a means of Lagrange multiplier; more precisely, what we propose looks like a least-
squares formulation with a constraint on the divergence of u. Let us also point out that
another variational formulation, more suitable for numerical approximation, will be
introduced in Section 4.

We proceed as follows. Taking the curl of the first equation in (2.7) we obtain
curl curlu = curlJ. Multiplying for a test vector field v, integrating in Q and integrating
by parts we obtain

J(curlu—])~curlv+ J nx(curlu-J)-v=0.
Q 20

The integral on the boundary will be omitted in the variational formulation, in order
to impose in a suitable weak sense the condition n x (curlu - J) = 0 on 0Q.

Multiplying the second equation in (2.7) by ¢, integrating in Q and integrating by
parts we find

J-f(p: Jdiv(uu)<p=—jyu~grad<p+ Jyu~n<p,
Q Q Q 0Q

hence

Jyu~gradgo:—Jf<p+ Jyu-n(p.
) 0 aQ

Then, introducing a Lagrange multiplier A, we are led to consider the problem

qurlu'curlv+ Jpv~grad/l = Jl~curlv
Q

)
Jyu-grad<p=—lf<p+lb<p.
Q o) 20

The variational spaces are

V= {V € H(curl; Q) | curlv-n = 0 on 0Q,

(J)v-ds:Oforeachnzl,...,g}

On

R={¢eH1<Q>|jgo=0},
Q

(2.10)

and the variational problem is
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1 The curl-div system: theory and finite element approximation = 11

findueV,AeR :

J curlu- curlv + Jyv gradA = J] -curlv
Q Q (2.11)
Jﬂu gradp = Jf J

Q

)
foreachveV,peR.

Let us select a basis {p’,‘n}fn=l of the space of harmonic fields Hy(m) defined in (2.8)
with the properties

éplr; -ds = by
Oy

(see, e. g., Alonso Rodriguez and Valli [8, Section A4]; for u = Id we simply write p,,).
Then, if u is a solution to problem (2.7) with 8, = 0, n = 1,...,g, the vector field u +
P B.p4 is a solution to problem (2.7) with assigned S,,.

A consequence of this remark is that a solution u of problem (2.7), if it exists, is
unique. Taking in fact vanishing data, it follows from the first three equations that
u € 7, (m), and thus it can be written as u = }%_, u,p}. Then, foreachn=1,....g,

g
0:4)u~ds: Zum{)p’,‘nds:un,
O, m=1 g

and in conclusion u = 0.

Theorem 2. If (u,A) is a solution to problem (2.11), then A = 0 and u is a solution to
problem (2.7) for, =0,n=1,...,8.

Proof. For ¢ € R it holds <f> gradgp-ds =0foreachn=1,...,g, hence grad ¢ € V for
each ¢ € R. Therefore, taklng v = grad A in the first equation we find

Jpgrad/\ -grad1 =0,
Q
hence grad A = 0 and A = const in Q; since the elements in R have zero mean, it follows
A=0.
Choosing v € (Cy° (Q))® we find that curl(curlu - J) = 0 in Q in the distributional
sense. Moreover, integrating by parts we also find

J(curlu—])~n><v:0
20

for each v € V. Since (curlu - J) is curl-free, from (2.5) we know that it can be written
as

g
curlu-J =grady + ) {p,

n=1
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12 — A.Alonso Rodriguez et al.

for y € H'(Q) and {, € R. Thus we have

g
0= J(curlu—])-nxv: Jgradx-nxv+Z(n Jpn~nxv.
a0 30 =l 50

In addition, we recall from Buffa [23], Hiptmair et al. [38] that the tangential trace of
Vv € V can be written on 0Q as

g
nxv=nxgradd+ ) n,nxp,,
m=1

where 9 € H'(Q), 11, € R and the vector fields p,, satisfy the relations

Jpn-nxp;nzénm
0Q

(see Hiptmair et al. [38], Alonso Rodriguez et al. [7, Lemmas 4 and 5]). By integration
by parts on 0Q, we find

Jgrad)(~n><v:— jxdivr(nxv):o,
aQ aQ

as div,(n x v) = — curl v-n on 0Q; similarly, Jao p,-nxgradd=0foreachn=1,...,8.
In conclusion, we have obtained

g g
0=J(curlu—])-n><v= z (nnmjpn'nxp;nzzglrln-
30 n,m=1 20 n=1

Since n,, are arbitrary, it follows {;, = O foreachn =1,..., g, and consequently curl u -
J = grady in Q. On the other hand, from the assumptions on the data, div(curlu-J) = 0
in Q and (curlu -J)-n = 0 on 0Q, hence grady = 0 in Q.

Let us prove now that the second equation is indeed satisfied for each ¢ € H'(Q).
Letpqg = ¢.Then ¢ = (¢ — Pg) € R and grad ¢ = grad ¢. Moreover,

—if@j} bp = _ifwa!) be - a - jf+a£ b)

Q
=—jf(p+[b(p,
Q

0Q

meastd o

having used the compatibility conditions on the data f and b.

Hence the second equation is satisfied for each ¢ € H'(Q), and taking ¢ € Q)
it follows div(pu) = f in Q in the distributional sense. Repeating the same procedure
forpeH 1(Q), integration by parts gives Hu-n = bonoQ. O
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1 The curl-div system: theory and finite element approximation =—— 13

As in the previous section, the existence of a solution to problem (2.7) is therefore
reduced to the proof of the existence of a solution to a variational saddle-point prob-
lem, in this case problem (2.11). Applying the general theory reported, e. g., in Boffi
etal. [19, Section 4.2], we prove that problem (2.11) has a unique solution. In fact, the
following results hold true.

Proposition 3. The bilinear form a(w,v) = fQ curlw - curl v is coercive in the space
Dy x Dy, where

Doz{VEV| Jyv-grad¢:0forall¢eR}.
Q

Proof. Indeed, we already know that, if v € D, then it holds JQ pv - grad ¢ = 0 for all
@ € H'(Q). Therefore, by integration by parts we deduce at once that div(uv) = 0 in Q
and pv - n = 0 on 0Q. Coercivity follows from the Friedrichs inequality

||V||L2(Q) S C(”Cuer”LZ(Q) + ||le(llv)||L2(Q)) .

This inequality is valid for a vector field v belonging to H(curl; Q), with div(uv) €
LZ(Q), pv - n = 0 on 0Q, and satisfying curlv-n = 0 on 0Q and 450,, v-ds = O for
eachn = 1,...,g. This result can be shown by adapting in a straightforward way the
proof presented, e. g., in Fernandes and Gilardi [32] (see also Alonso Rodriguez et al. [7,
Lemma 9]), using the fact that the space

{v e H(curl; Q) | div(uv) € (LZ(Q))B,}IV -n = 0 on 0Q}

is compactly imbedded in (L*(Q))? (see, e. g., Weber [64], Picard [54]). O

Proposition 4. The bilinear form b(v, @) = fQ MV - grad g satisfies an inf-sup condition,

namely, there exists B > 0 such that for each ¢ € R there exists v € V, v # 0, satisfying
| wo-grad o > Bivi ol

Q

Proof. We can suppose grad ¢ # 0. The thesis follows by choosing v = grad ¢, as
curlv = 0 in Q and the Poincaré inequality

||(P||L2(Q) < (|l grad (P||L2(Q)
is valid for ¢ € R (see, e. g., Dautray and Lions [31, p. 127]). O

In conclusion, we have proved that the saddle-point problem (2.11) has a unique
solution, and thus the same is true for problem (2.7).
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14 — A.Alonso Rodriguez et al.

Remark 1. The same existence result can be proved for the problem

curlu=] inQ
div(pu) = f inQ
pu-n= b on 0Q (2.12)

Jyu-pﬁ:ﬁn foreachn=1,...,g,
o

where the field J is only required to satisfy the necessary compatibility conditions
div] = 0in Q and J(BQ),] -n = 0 foreachr = 1,...,p (namely, the more restrictive
assumption J - n = 0 on 0Q has been dropped).

In the variational formulation, one has only to replace the space V by

Vy = {veH(curl;Q)l Jyv-p‘,f :Oforallnzl,...,g]»,
Q

keeping the other space R (that still satisfies grad R ¢ V).

The proofs can be easily adapted: the only point that deserves some explanation
is that now the variational solution u is shown to satisfy curl(curlu-J) = 0 in Q, and
moreover, (curlu-J)xn = 0 on 0Q. This latter result follows from the fact that the first
variational equation is indeed satisfied for all V € H(curl; Q), and not only for v € Vy.
In fact, let P,V be the orthogonal projection of ¥ on 7, (m) with respect to the scalar
product jQ puv-w.Thenv = (V-P,V) € V; and curl v = curl v, as the elements in #,,(m)
are curl-free.

Thus (curlu - J) € H(e), and the conditions j(ag)r(curlu -J)-n=0foreachr =
1,...,p permit to conclude that curlu-J = curl ® in Q (see, e. g., Cantarella et al. [26]).
Therefore,

J(curlu—]) -(curlu-J) = J(curlu—]) -curl @
Q Q
= qurl(curlu—])-d>+ J(curlu—])-nde =0,
Q 20

namely, curlu = J in Q.

3 A new variational formulation for problem (2.1)

The discussion at the beginning of Section 2.1 should have explained why our aim here
is to find a different variational formulation for problem (2.1), a formulation that turns
out to be more suitable for numerical approximation.
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1 The curl-div system: theory and finite element approximation = 15

In our procedure, the first step is to find a vector field u* ¢ (L2(Q)° satisfying
divu* =f inQ

u" -n=a, foreachr=1,...,p. 3.1
(o),

Such a vector field does exist: for instance, one can think to takeJ = 0 and a = 0 in
(2.1), or any choice of J and a satisfying the compatibility conditions (indeed, we will
not assume in the sequel that curl(nu*) = 0 or (qu*) x n = 0).

The vector field W = u — u” satisfies

curlpW) =J - curl(qu*) inQ

diviW =0 inQ

MW)xn=a-(qu*)xn onoQ (3.2)
J W-n=0 foreachr=1,...,p,

(0,

and the second step of the procedure is finding a simple variational formulation of
this problem.

Multiplying the first equation by a test function v € H(curl; Q), integrating in Q
and integrating by parts, we find:

JI~V = ICuﬂ[n(Wm*)J v

)

Jn(W+u*)~curlv— J[q(W+u*) xn]-v
) 20

J ) 20

Let us introduce the space

Wy = {{ € H(div; Q)| divé =0in Q,
(33)
é-n=0foreachr= 1,...,p}.
(0Q),

Note that this space can be written as W, = curl[H(curl; Q)]: in fact, the inclusion
curl[H(curl; Q)] c W, is obvious, while the inclusion W, ¢ curl[H(curl; Q)] is a clas-
sical result concerning vector potentials (see, e. g., Cantarella et al. [26]). The vector
field W is thus a solution to

WeWw, : JnW~curlv:JI~V—Jnu*~curlv
Q Q Q

(34)
+ J a-v VveH(cur;Q).
oQ
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16 —— A.Alonso Rodriguez et al.

More precisely, W is the unique solution of that problem: in fact, assuming J = u* =
a = 0, and taking v such that curl v = W, it follows at this point IQ nW W = 0, hence
W=0.

Let us remark at once that, due to the identity W, = curl[H(curl; Q)], an edge finite
element scheme related to this variational formulation leads to a well-structured stiff-
ness matrix: the one of the curl curl operator (for a suitable set of the basis functions,
see (6.9) and Proposition 6).

Remark 2. Let us consider the electrostatic problem in a domain with simple topo-
logical shape, namely, problem (2.1) with] = 0in Q, a = 0 on 0Q, and p = 0. We
have already seen in Section 2.1 that nu = grad y in Q, where the potential y satisfies
div(n* grady) = f in Q and y = 0 on dQ. In this situation, the simplest way for de-
termining the approximate solution is clearly to solve this Dirichlet boundary value
problem by using nodal finite elements.

4 A new variational formulation for problem (2.7)

The variational formulation of the curl-div system with assigned normal component
on the boundary that we present here is similar to the one we have proposed in Alonso
Rodriguez et al. [4] for the problem of magnetostatics. However, we think it can be
interesting for its particular simplicity, as here we will formulate the problem in the
space V, = grad[H'(Q)], while in [4] it was set in the space H (curl®; Q), which in the
general topological case is more complicated to discretize.

Also in this case, we need a preliminary step: to find a vector field u* e (L*(Q))*
satisfying

curlu* =J inQ
(J;u*-ds:ﬂn foreachn=1,...,g. (“.1)
Un

This vector field does exist: for instance, one can choose f = 0 and b = 0 in (2.7), or
any choice of f and b satisfying the compatibility condition (indeed, we do not need
to assume in the sequel that div(uu*) = 0 or (uu*) - n = 0).

The vector field V = u — u” satisfies

curlV=0 inQ

divuV) = f - div(uu*) inQ

(V) - n=b-(uu*)-n onoQ (4.2)
ch)V'ds:O foreachn=1,...,g,

On

and now we only have to find a variational formulation of this problem.
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1 The curl-div system: theory and finite element approximation =—— 17

Multiplying the second equation by a test function ¢ ¢ H'(Q), integrating in Q
and integrating by parts we find:

[ 76 = [ diviuev +wig

Q Q

—jy(V+u*)-grad¢>+ J[y(V+u*)~n]¢
30

)
(!],N grad ¢ — qu* -grad ¢ + J bo.

0Q

Let us introduce the space

Vo = {v € H(curl; Q)| curlv=0in Q,

(4.3)
4>v-ds=0foreachn=1,...,g]».
Un
Note that this space can be written as V, = grad[H'(Q)]: in fact, the inclusion

grad[Hl(Q)] c V), is obvious, while the inclusion V, ¢ grad[Hl(Q)] is a classical
result concerning scalar potentials (see, e. g., Cantarella et al. [26]). The vector field V
is thus a solution to

Ve, : Jyv-grad¢:—Jf¢—Jyu*-gradq,')
Q Q

¢ (4.4)
+ j bp V¢eH(Q).
0Q

It is easy to see that V is indeed the unique solution of that problem: in fact, assuming
f=b=0,u" =0, and taking ¢ such that grad ¢ = V, it follows at once IQ HV-V =0,
henceV =0.

Also in this case we remark that, due to the identity V, = grad[H 1(Q)], a nodal
finite element scheme related to this variational formulation leads to a very simple
and nice stiffness matrix: the one of the Laplace operator —A (for all the basis functions
except one, see (7.7)).

5 Finite element approximation: generalities

Without pretending to be exhaustive, in this section we give a general overview of the
methods that have been proposed for the finite element numerical approximation of
the curl-div problem (mainly for the magnetostatic case given by (2.7) with f = 0 and
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18 —— A.Alonso Rodriguez et al.

b = 0); our aim is simply to show here the advantage of the finite element methods we
are going to introduce.

The magnetostatic problem has been considered since a long time, though very
often in a simple topological situation, as it is probably the “most frequently encoun-
tered field problem in electrical engineering design” (see Chari et al. [28]).

A formulation in terms of a vector potential A such that curl A = pu is quite clas-
sical, and has been analyzed by Coulomb [30], Barton and Cendes [12], Preis et al. [55]
(see also the more recent point of view involving mimetic finite differences presented
in Brezzi and Buffa [22], Lipnikov et al. [43]). Since the unknown is a vector field, the
computational cost is higher than that needed to solve problem (2.7), that, as we will
see in (7.7), in our formulation is essentially a scalar problem. Moreover, the magnetic
vector potential approach presents two additional disadvantages: firstly, the right-
hand sides f and b must be vanishing, or, if this not the case, one has the additional
step given by the identification of a scalar function ¥ such that div(ugrad ¥) = f in Q
and pugrad ¥ - n = b on 0Q; secondly, the vector potential A needs a gauge condition,
thus another scalar equation (and unknown) has to be introduced. The method we
devise in Section 6 for solving problem (2.1) has two steps: the first one has the aim of
simply reducing the problem to the search of a suitable magnetic vector potential, and
the second step can be performed without introducing a differential gauge, so that the
overall scheme is cheap and efficient.

The remark concerning the computational cost also holds for many methods
formulated in terms of the field u: let us mention the mixed methods proposed by
Kikuchi [42], Kanayama etal. [41], the least-squares approaches by Chang and Gun-
zburger [27], Bensow and Larson [14], Bochev etal. [18], the negative-norm least-
squares schemes by Bramble and Pasciak [21], the weak Galerkin formulations by
Wang and Wang [63], and the even more expensive two field-based methods by Rikabi
etal. [58], Perugia [49] and Alotto and Perugia [10].

The co-volume method proposed by Nicolaides and Wu [48] is based on a system
of two orthogonal grids like the classical Voronoi—Delaunay mesh pair, and for this
reason this approach is not completely general, as some restrictions on the primal
mesh and on the topological properties of the computational domain are needed.

Finally, the methods based on a magnetic scalar “potential” (the so-called re-
duced scalar potential) require the preliminary determination of a source field H,.
Doing this by means of the Biot—Savart formula is not cheap from the computational
point of view, and sometimes it induces cancellation errors (see Simkin and Trow-
bridge [62], Balac and Caloz [11]). In Mayergoyz et al. [45], it was suggested how to
avoid this drawback by introducing an additional scalar potential, thus proposing a
more expensive scheme (a complete analysis of this more complex formulation is in
Bermudez et al. [15]). The method we propose in Section 7 for solving problem (2.7)
presents two steps: the first one leads to a problem where the unknown is essentially
a magnetic scalar “potential,” but this is done without using the Biot—Savart formula,
and in the end it turns out to be cheap and reliable.
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1 The curl-div system: theory and finite element approximation =——— 19

Our methods in Section 6 and Section 7 are related to the so-called tree—cotree
gauge used for the numerical approximation of magnetostatic and eddy current prob-
lems (see, e. g., Albanese and Rubinacci [1, 2], Ren and Razek [57], Manges and Cen-
des [44]); it could be seen as a rigorous mathematical version of that approach.

Before going on, a few remarks are in order. The techniques based on a tree—cotree
decomposition of the nodes and the edges of the mesh can have some drawbacks,
both for the construction of scalar or vector potentials and for the determination of
a finite element basis. In fact, the stability of the methods depends on the choice of
the tree (see Hiptmair [36]), and a clear theoretical result concerning the best selec-
tion for numerical approximation is not known. In this paper, as well as in our previ-
ous experience (see Alonso Rodriguez et al. [4], Alonso Rodriguez et al. [5]), choosing
a breadth-first spanning tree has shown to be suitable and has lead to efficient nu-
merical schemes. However, there are no rigorous results on this subject, and a deeper
analysis, that would be quite interesting, could be the topic of a future research.

Let us introduce now some notation. In the following sections, we assume that
Q ¢ R? is a polyhedral bounded domain with Lipschitz boundary 9Q. We consider a
tetrahedral triangulation 7, = (V,E,F, T) of Q, denoting by V the set of vertices, E the
set of edges, F the set of faces and T the set of tetrahedra of 7.

We will use these spaces of finite elements (see Monk [46, Section 5.6, Section 5.5,
Section 5.4 and Section 5.7] for a complete presentation): the space L, of continuous
piecewise-linear elements, with dimension n,, the number of vertices in 7y,; the space
N, of Nédélec edge elements of degree 1, with dimension n,, the number of edges in 7y;
the space RT), of Raviart-Thomas elements of degree 1, with dimension ny, the number
of faces in 7y; the space PC;, of piecewise-constant elements, with dimension n;, the
number of tetrahedra in 7;,.

The following inclusions are well known:

L,cHY(Q) , N,cH(curQ) , RT,cH(div;Q) PC,cL*(Q).

Moreover, grad L, ¢ N, curl N, ¢ RT, and divRT,, c PC,. The basis of L, is denoted

by {Yp1s - Wpp, b With y(v;) = §;; for 1 < i,j < n,; the basis of N, is denoted by

{Wh> ..o, Wy}, With je, Wy - T = §;; for 1 < i,j < n,; the basis of RTj, is denoted by
)

{th1 . Ty, with me Iy V=0, forl<lm<ny.

Fixing a total ordering v;,..., v, of the elements of V, an orientation on the el-
ements of E and F is induced: if the end points of e; are v, and v, for some a,b ¢
{1,...,n,} with a < b, then the oriented edge e will be denoted by [v,, v,], with unit
tangent vector T = IZZ:\‘:ZI ; if the face f,, has vertices v,, v, and v. witha < b < c, the ori-
ented face f,, will be denoted by [v,, v}, v.] and its unit normal vectorv = %m
is obtained by the right-hand rule.

We have already introduced the set of closed curves {0,}5_,. We recall here that
indeed they can be constructed as 1-cycles in 73, therefore, they are suitable for being

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 3:59 PM



20 —— A.Alonso Rodriguez et al.

employed in finite element approximation (see Hiptmair and Ostrowski [39]; see also
Alonso Rodriguez et al. [4]).

6 Finite element approximation of problem (3.4)

We are ready now for the presentation of our finite element approximation procedure
of problem (2.1). It can be performed in two steps. The first one, that is quite cheap, is
finding a finite element potential u; € RT} such that

divu, =f;, inQ

u,-n=aqa, foreachr=1,...,p, ©D

(0),

where f;, € PC;, is the piecewise-constant interpolant I}: Cf of f. This can be done by
means of a simple and efficient algorithm as shown in Alonso Rodriguez and Valli [9].

The second step concerns the numerical approximation of problem (3.4). Here,
the main issue is to determine a finite element subspace of V,, and a suitable finite
element basis. The natural choice is clearly

Won = {fh € RT, | divE, =0inQ,
(6.2)
I fh-nzoforeachrzl,...,p}.
(0Q),

For the ease of notation, let us set ny = n, — (n, — 1). As proved in Alonso Rodriguez
etal. [6], the dimension of W ;, is equal to n, — g, and a basis is given by the curls of
suitable Nédélec elements belonging to Nj,.

To make clear this point, following Alonso Rodriguez etal. [6], some notation
are necessary. As shown in Hiptmair and Ostrowski [39] (see also Alonso Rodriguez
etal. [4]), it is possible to construct a set of 1-cycles {an}ﬁ:p representing a basis of the
first homology group H,(Q, Z), as a formal sum of edges in T;, with integer coefficients.
More precisely, let us consider the graph given by the vertices and the edges of 7, on
0Q. The number of connected components of this graph coincides with the number of
connected components of 0Q. For each r = 0,1,...,p, let S}, = (V},, M}) be a span-
ning tree of the corresponding connected component of the graph. Then consider the
graph (V, E), given by all the vertices and edges of 7;, and a spanning tree S = (V, M)
of this graph such that M}, c M foreachr = 0,1,...,p. Let us order the edges in such
a way that the edge e belongs to the cotree of Sfor I = 1,...,nq and the edge e,, ,; be-
longs to the tree S fori = 1,...,n, - 1. In particular, denote by e, g = 1,...,2g, the set
of edges of 0Q, constructed by Hiptmair and Ostrowski [39], that have the following
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1 The curl-div system: theory and finite element approximation = 21

properties: they all belong to the cotree, and each one of them “closes” a 1-cycle y,
that is a representative of a basis of the first homology group #,(0Q, Z) (whose rank is
indeed equal to 2g). With this notation, we recall that the 1-cycles o,, can be expressed
as the formal sum

2g 2g n,
On = ZAn,qu = ZAn,qeq + Z ni€;» (6.3)
q=1 gq=1 i=ng+1

for suitable and explicitly computable integers A, .
The idea that leads to the construction of the basis of W, ;, is now the following:
first, consider the set

Mo
{curlwy, ;} I=2g+1°
Then look for g functions z; , € RT,,A=1,...,g, of the form
28
Zyy =y ¢’ curlwy,,
v=1
where the linearly independent vectors ¢ ¢ R* are chosen in such a way that
2g
cﬁ( Y cf,")wh,u) ds=0
o, v=1

forn = 1,...,g. This can be done since o, is formed by the “closing” edges e;, g =
1,...,2g, and by edges belonging to the spanning tree, so that

2 @ 2 28 Y 28 »
(JB(Z cy )w,w> -ds=Y Ay, J(Z c’ wh,u> T=) A,
o, v=1 g=1 é v=1 q=1

and the matrix A € Z5*% with entries A, ,hasrank g (see Hiptmair and Ostrowski [39],
Alonso Rodriguez et al. [4, Section 6]). Thus we only have to determine a basis c® e
R* of the kernel of 4, A = 1,...,g. An easy way for determining these vectors W is
presented in Alonso Rodriguez et al. [6].

Proposition 5. The vector fields

28 A g
n
{eurlwy, )2, 4 U {curl( Y )Wh,U> } < Won
v=1 A=1

are linearly independent and in particular they are a basis of W .

Proof. The proof that these vector fields are linearly independent is in Alonso Ro-
driguez et al. [6, Proposition 2]. The second statement is then straightforward, as their
number is ng, - g, the dimension of W, ;.. O
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22 —— A.Alonso Rodriguez et al.

Let us denote this basis by {curl wh’l};'fg 1> With

Wy forl=2g+1,...,n9

wh)l = (64)

2
Z C,(,l_g)wh,v forl=g+1,...,2g.

Proposition 6. The vector fields {wy, 1}1 are linearly independent.

=g+1

Proof. Suppose we have Z;’fgﬂ 0,wy,; = 0 for some ;. This can be rewritten as

S G Y 61(26(1 o )

1=2g+1 I=g+1 v=1
(1-8)
z 61Wh1+ Z( z GIC )Whu’
1=2g+1 =1\l=g+1

thus 6, = 0 forl = 2g +1,...,np and leng 0,c"® = 0 forv = 1,...2g, as {Wh,l};lfl
are linearly independent. Since the vectors c® e RrE | = g +1,...,2g, are linearly
independent, we also obtain 6; = 0 forl = g + 1,...,2g, and the result follows. O

We are now in a position to formulate the finite element approximation of (3.4),
that reads as follows:

Wy, € Wy, - anh~curlvh = J]-vh —Jnu; -curl vy,
Q Q Q

(6.5)
+ ja~vh Vv, €Ny,
a0
where
Ny = span{wh,}l (6.6)

=g+1 "

The corresponding algebraic problem is a square linear system of dimension n;, - g,
and it is uniquely solvable. In fact, we note that W, ;, = curl N,f , hence we can choose
v, € Ny such that curlv, = Wy; from (6.5) we find at once W), = 0, provided that
J=u,=a=0.

The convergence of this finite element scheme is easily shown by standard argu-
ments. For the ease of reading, let us present the proof.

Theorem 3. Let W € W, and Wy € W, be the solutions of problem (3.4) and (6.5),
respectively. Set u = W + u* and u, = Wy, + u;, where u* € H(div; Q) and u;, € RT),
are solutions to problem (3.1) and (6.1), respectively. Assume that u is regular enough, so
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1 The curl-div system: theory and finite element approximation =— 23

that the mterpolant Tu is defined. Then the following error estimate holds:

RT PC
I — wyllgaivi) < colu Iy ullp2q) + If - I f”LZ(Q))- (6.7)

Proof. Since N ¢ H(curl; Q), we can choose v = v;, € Ny in (3.4). By subtracting (6.5)
from (3.4), we end up with

Jn[(W+u*)—(Wh+u;)]~curlvh:0 Vv, €Ny,

)

namely,

jn(u —uy)-curlvy, =0 Vv, eNy. (6.8)
Q

Then, recalling that W), , = curl Ny, so that W), = curl v}, for a suitable v, € Ny, using
(6.8) we find

Cl”“ uh||L2(Q 'I(ll uh) (ll uh)

nua-u,)-(u- Wh—uh)

nu-uy) - (u- curlvh—uh)

‘|
g
Jn(u w,) - (u-curlvy, —uy)
Q
g
<6

= wpll2gylu— &, —uplg) V&R € Won-

We can choose &, (I,lfTu -uy) € Wo s in fact, div( u) = Ihc(dlv u) = I,}:Cf fn
and |0 Fu-n = Jom, @M = a foreachr = 1,...,p. Then it follows at once
lu—uyll2q) < i—juu—l}fTuuLz(g). Moreover, div(u—uy) = f - f, = f ~I;f, and the thesis
is proved. O

A sufficient condition for defining the interpolant of u is thatu € (H %+5(Q))3 ,60>0
(see Monk [46, Lemma 5.15]). This is satisfied if, e. g.,  is a scalar Lipschitz function
in Qand a € (H’(0Q))*, y > 0 (see Alonso and Valli [3]). Moreover, if u € (H'(Q))? and
f € H'(Q) we have [u - uyllggiv.0) = O(h).

6.1 The algebraic problem

The solution Wy, € W, ;, is given by W), = Z?fgﬂ W, curl wy, ;. Hence the finite dimen-
sional problem (6.5) can be rewritten as
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24 — A.Alonso Rodriguez et al.

)

Y w J neurl wy,; - curl @y, = J] W~ Jqu; ~curl wy,
Berl g Q 0 (6.9)
+ j a- wh)m s
a0

foreachm=g+1,...,nq.
Theorem 4. The matrix K* with entries

K, = Jn curl wy; - curl wy, ,
Q

is symmetric and positive definite.

Proof. It is enough to recall that the vector fields {curl wh,l}7£g+1 are linearly indepen-

dent (see Proposition 5). More precisely, they are a basis of W, 5, hence K* is the mass
matrix in W, , with weight n. O

7 Finite element approximation of problem (4.4)

Similar to the previous case, also the finite element approximation of problem (2.7)
involves two steps. The first one is finding a finite element potential u,, € Nj, such that

curlu, =J, inQ

éu}'}ds:ﬁn foreachn=1,...,g, 1)
Oy

where J,, € RT}, is the Raviart-Thomas interpolant I,lfT] of J (we therefore assume that

J is so regular that its interpolant I,IfT] is defined; for instance, as already recalled, it
is enough to assume J € (H %+5(Q))3 , 8 > 0: see Monk [46, Lemma 5.15]). An efficient
algorithm for computing u,,, based on a tree—cotree decomposition of the mesh, is
described in Alonso Rodriguez and Valli [9].

The second step is related to the numerical approximation of problem (4.4). It is
quite easy to find a finite element subspace of V,, and a suitable finite element basis.
The natural choice is clearly

Vo = {Vh € N, | curlv, =0in Q,
(7.2)
¢Vh~ds:Oforeachn:l,...,g},

On

which can be rewritten as V, , = grad L. Since the dimension of this space is n, — 1,
a finite element basis is determined by taking grad i ;, i = 1,...,n, — 1, {,; being the
basis functions of the finite element space L;,.
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1 The curl-div system: theory and finite element approximation = 25

The finite element approximation of (4.4) is easily obtained:

VieVon s | mVy-gradgy = - [ 19, - [ nu; - grad g,

Q Q Q
(7.3)
+ J b¢h A (l)h € L; 5
oQ
where
Ly = span{yhy 37" = {¢y € Ly | Pn(vy,) = O} (74)

The corresponding algebraic problem is a square linear system of dimension n, — 1,
and it is uniquely solvable. In fact, since V, ; = grad Ly, we can choose ¢, € L, such
that grad ¢, = Vy; from (7.3) we find at once V), = 0, provided thatf = b = 0, u; = 0.

The convergence of this finite element scheme is easily proved by following the
arguments previously presented.

Theorem 5. LetV € V, and V), € V, j, be the solutions of problem (4.4) and (7.3), respec-
tively. Setu = V+u”* and uy, = V, +u;,, whereu* € H(curl; Q) and u;, € N, are solutions
to problem (4.1) and (7.1), respectively. Assume that u and J are regular enough, so that
the interpolants I,IIV u and I,lfTI are defined. Then the following error estimate holds:

N RT
lu- uh”H(curl;Q) < co(lu- I u||L2(Q) +1J -1 ]"LZ(Q)) . (7.5)

Proof. Since L, c H 1(Q), we can choose ¢ = ¢, € Ly in (4.4). By subtracting (7.3) from
(4.4), we end up with

[ BV ) - (Vs w)] grad gy =0 vy el
Q

namely,

Jy(u—uh)~grad¢h =0 V¢pel;. (7.6)
o

Then, since V, j, = grad L, and thus V,, = grad ¢, for a suitable ¢;, € L, from (7.6) we
find

il - wl gy < [ pu-w) - @-w)
pu-uy) - (u-V,-up)
pu(u-uy) - (u-grad ¢, —uy)

)
)
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26 —— A.Alonso Rodriguez et al.

- [ M- (- grad ¢y - uj)
Q

< Gllu—-wyllpglla - vy —uylzg) ¥V, € V.

We can choose v;, = (I u - u;;) € Vy; in fact, curl(Il'u) = I} (curlu) = )] = J;, and
g[)gn u-ds = g[)an u-ds = B, foreachn = 1,...,g. Then we find at once [[u - u|2q) <
‘C:—jllu—l,ﬁv ul|;2 ). Moreover, curllu-uy) =J-J, = ]—IET], and the assertion follows. [

Sufficient conditions for defining the interpolants of u and J = curl u are that they
both belong to (H %+5(Q))3, 6 > 0 (see Monk [46, Lemma 5.15 and Theorem 5.41]). This
is for instance satisfied if p is a scalar Lipschitz function in Q and b € H'(9Q),y > 0
(see Alonso and Valli [3]). Moreover, if u € (H'(Q))®> and J € (H'(Q))> we have |u -
Wyl gcun) = OCh).

7.1 The algebraic problem

The solution Vj, € V,  is given by V), = Z;’:Vl_ ! V; grad iy, ;. Hence the finite dimensional
problem (7.3) can be rewritten as

n,~1

> Vi [ merad - grad iy = - [ Ay - [ ;- grad

Eg ol Q 77)
+ J blph,}' N

0Q

foreachj=1,...,n, -1
We have at once the following.

Theorem 6. The matrix K* with entries

Kj; = J ngrad yy; - grad Y
a

is symmetric and positive definite.

8 Numerical results

In this section, we present some numerical experiments with the aim of illustrating the
effectiveness of the two proposed formulations and the behavior of their finite element
approximation.

All the numerical computations have been performed by means of a MacBook Pro,
with a processor 2.9 GHz Intel Core i7, 16 GB 2133 MHz RAM. We have used Netgen (see
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1 The curl-div system: theory and finite element approximation =—— 27

[61]) to construct the meshes, and the package Pardiso (see [51, 50]) to solve the lin-
ear systems by means of a direct method (thus circumventing possible conditioning
problems).

A peculiar point of our procedure is the choice of a suitable spanning tree of the
graph given by the nodes and the edges of the mesh. As we have already noted, the
stability of the method depends on this choice, in a way that is not completely clar-
ified at the theoretical level. In our computations, we have systematically chosen a
breadth-first spanning tree; this, together with the use of direct solvers for the alge-
braic systems, has always provided good numerical results. Breadth-first spanning
trees have also shown to be an efficient choice in Alonso Rodriguez etal. [4], Alonso
Rodriguez et al. [5].

We consider different test cases for each one of the two proposed formulations.
For both formulations, the first test case is a problem with a known analytical solu-
tion. In this way, we can validate the code and illustrate the convergence properties
of the finite element discretization. In the second test case, the data are very similar
to those of the first test case, the difference only being a concentrated perturbation of
the datum at the right-hand side of the divergence equation. We expect a solution that
mainly differs from the solution of the first test case in a neighborhood of the support
of the perturbation. For the problem in which the tangential component of the velocity
is assigned, we present the computations for two different topological situations, in
order to show that the approximation method is insensitive to the shape of the com-
putational domain. In the third test case, the computational domain is similar to that
of problem number 13 in the TEAM workshop (see [47]). The aim of this test case is to
check the behaviour of the methods in a more realistic setting.

8.1 Numerical results for the problem with assigned tangential
component on the boundary

Let us recall the system of equations that we consider:

curl(qu) =] inQ
diva=f inQ
(quyxn=a onoQ

u-n=a, foreachr=1,...,p.
(0Q),

For the sake of simplicity, in the sequel we will take i equal to the identity.

The data of the first test are such that the vector field u = [-x;x,, X;X,,0]7 is the
exact solution, hence in particular we have J = [0,0,x, + x;]7 and f = x; — x.

The computational domain Q is a cylinder with a cavity. The cylinder has a vertical
axis, height equal to H = 100, and the cross section given by the circle centered at the
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28 —— A.Alonso Rodriguez et al.

origin and of radius R = 60. The cavity is a similar cylinder but with height h = 60
and cross section of radius r = 30. The boundary of Q has therefore two connected
components. We include the Netgen file describing the geometry.

algebraic3d

solid cyll = cylinder(0,0,0;0,0,1; 60.)
and plane( @, 0, 50 ; 0, @, 1)
and plane( 0, 0,-50 ; 0, 0, -1 );

solid cyl2 = cylinder(0,0,0;0,0,1; 30.)
and plane( @, 0, 30 ; 0, 0, 1)
and plane( 0, 0,-30 ; 0, 0, -1 );

solid cyl_in_cyl = cyl1l and not cyl2;

tlo cyl_in_cyl;

To check that the convergence rate is linear as expected, we solve the problem with
five different meshes, described in Table 1.1.

Table 1.1: Description of the five meshes for the problem with assigned tangential component on the
boundary (first test case, simply-connected domain).

Elements Faces Edges Vertices DOF
Mesh 1 538 1246 886 180 707
Mesh 2 4304 9288 6048 1066 4983

Mesh 3 34432 71584 44264 7114 37151
Mesh 4 275456 561792 337712 51378 286335
Mesh5 2203648 4450816 2636256 389090 2247167

The relative error is computed in the following way:

VX cer 81 — tye)?

\2ter lt1(u)?

being T the set of tetrahedra of the mesh and |¢| the volume of the tetrahedron t¢.
The convergence rate is estimated comparing the error for two different meshes:

RE(h) = (8.1)

log[RE(h,)/RE(h,)]

Estimated Rate =
log(h,/h,)

(8.2)
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1 The curl-div system: theory and finite element approximation =—— 29

Table 1.2: Relative error, mesh size, convergence rate and computational cost for the problem with
assigned tangential component on the boundary (first test case, simply-connected domain).

Relative error h Rate  CPU[ms]
Mesh 1 0.216 41.99 =14
Mesh 2 0.131 31.68 1.657 =~ 62
Mesh 3 0.068 16.30 0.969 =707
Mesh 4 0.034 8.16 0.998 ~11161
Mesh 5 0.017 4.09 1.009 =407829

The results are reported in Table 1.2.

In the second test case, we consider a perturbed problem, namely, a problem with
the same values of ], a, and @, for each r = 1,.. ., p, but with a new value for the diver-
gence, given by f, = f + €, where € = 1000 in the ball of radius 10 centered at the point
(45,0,0] and € = 0 otherwise. In Figure 1.1, one can compare the solutions of the first
test case and of the second test case (namely, of the problem with a known analytical
solution and of the perturbed problem). We are not showing the whole computational
domain but only a cut along the plane x, = 10.

.- . f

GEG sD OB 1N A0 250
x i 3841,
Mo QRO

Figure 1.1: The solution u of the test problem in a simply-connected domain with a known analytical
solution (left) and with a perturbed value for the divergence (right). In the figures, the domain is cut
along the plane x, = 10.

In order to show the proposed method is also working for a domain with a more gen-
eral topological shape, we have solved the problem for a toroidal domain with a con-
centric toroidal cavity. The connected components of the boundary are two and also
the first Betti number of the computational domain is equal to two. More precisely, the
computational domain Q is the subtraction two domains: the larger one is the cylinder
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of height 2 with circular cross section of radius 1.2 minus the cylinder with the same

height and cross section of radius 0.4; the cavity is the cylinder of height 1.6 with cir-

cular cross section of radius 1 minus the cylinder of the same height and cross section

of radius 0.6. All the mentioned cylinders have their axis coincident with the x;-axis.
For completeness, we include the Netgen file describing the geometry:

algebraic3d

solid cylla = cylinder(0,0,0;0,0,1; 1.2)
and plane( @, 0, 1 ; 0, @, 1)
and plane( @, 0,-1 ; 0, @0, -1 );

solid cyllb = cylinder(e,0,0;0,0,1; 0.4)
and plane( @, @, 1 ; 0, @0, 1)
and plane( @, 0,-1 ; 0, @, -1 );

solid cyl2a = cylinder(0,0,0;0,0,1; 1.)
and plane( @, 0, 0.8 ; 9, @, 1)
and plane( 0, 0,-0.8 ; 0, 0, -1 );

solid cyl2b = cylinder(0,0,0;0,0,1; 0.6)
and plane( @, 9, 0.8 ; 0, @, 1)
and plane( 0, 0,-0.8 ; 0, 0, -1 );

solid cyl1 cylla and not cylib;
solid cyl2 = cyl2a and not cyl2b;

solid cyl_in_cyl = cyl1l and not cyl?;

tlo cyl_in_cyl;

The data of this test are such that the exact solution is u = [x3x1,x3x2,x§]T, hence in
particular we have J = [-x,,x;,0]” and f = 4x;.

Again we have solved the problem with five different meshes, described in Ta-
ble 1.3. The results are reported in Table 1.4.

In this case, the related perturbed problem has this form: we have kept the same
values of ], a and a, for each r = 1,...,p, just modifying the datum at the right-hand
side of the divergence equation, now given by fe = f + €, with € = -15 in the ball
centered at the point [-0.8,0,0.9]7 and radius 0.1, € = 15 in the ball centered at the
point [0.8,0,0.9]7 and radius 0.1 and € = 0 otherwise.

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 3:59 PM



1 The curl-div system: theory and finite element approximation = 31

Table 1.3: Description of the five meshes for the problem with assigned tangential component on the
boundary (first test case, non-simply connected domain).

Elements Faces Edges Vertices DOF
Mesh 1 1358 3169 2264 453 1810
Mesh 2 10864 23540 15393 2717 12675

Mesh 3 86912 181072 112270 18110 94159
Mesh 4 695296 1419584 854668 130380 724287
Mesh5 5562368 11240704 6663384 985048 5678335

Table 1.4: Relative error, mesh size, convergence rate and computational cost for the problem with
assigned tangential component on the boundary (first test case, non-simply connected domain).

Relative error h Rate CPU [ms]
Mesh 1 0.685 0.101 =80
Mesh 2 0.498 0.060 1.634 =170
Mesh 3 0.250 0.031 0.956 =1931
Mesh 4 0.125 0.015 1.008 =~34779
Mesh 5 0.063 0.008 1.012 =2481110

z

G0 028 08 075 100 125 1R
s
¥ % b ¥

Figure 1.2: The solution u of the test problem in a non-simply connected domain with a known ana-
lytical solution (left) and with a perturbed value for the divergence (right). In the figures, only half of
the domain is drawn.

In Figure 1.2, one can compare the solutions of the problem with a known analytical
solution and of the perturbed problem. We are showing only half of the computational
domain.

Let us note that we have not indeed constructed the basis described in Proposi-
tion 5, as we have used the set of generators {curl wh)l}ffl, that in the case of a non-
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simply connected domain, are not linearly independent (the dimension of W, is
ng — g). In this case, the associated linear system is singular, but it is possible to find
a solution in an efficient way (for instance, using the package Pardiso).

In the third test problem, the domain is the box (-300300) x (-300300) x
(-250250) (in mm), with three cavities corresponding to two channels and a plate
(see Figure 1.3). The geometry is inspired to the problem number 13 in the TEAM
workshop (see [47]). The thickness of the channels and the plate is § = 3.2mm,
the width w = 50 mm and the height | = 126.4 mm (so the plate is the hexaedron
(-1.6,1.6) x (=25,25) x (-63.2,63.2)). The distance between the plate and the channels
is 0.5 mm, while the distance between the channels and the plane x, = 0 is 15 mm.
The datum J is supported in a coil placed between the channels and the plate. More
precisely, its support is the cylinder of height 100 mm with circular cross section cen-
tered at the origin and of radius 120 mm minus the analogous cylinder of the same
height and cross section of radius 30 mm. Within the coil, we have J = [-x,,x,,0]7,
while J is zero outside the coil. All the other data, namely, f,aand a, forr = 1,...,p,
are equal to zero.

The Netgen description of the geometry is the following.

algebraic3d

solid m1 = orthobrick(4.2,15,60;122.2,65,63.2);
solid m2 = orthobrick(4.2,15,-63.2;122.2,65,-60);
solid m3 = orthobrick(122.2,15,-63.2;125.4,65,63.2);

solid n1 = orthobrick(-122.2,-65,60;-4.2,-15,63.2);
solid n2 = orthobrick(-122.2,-65,-63.2;-4.2,-15,-60);
solid n3 = orthobrick(-125.4,-65,-63.2;-122.2,-15,63.2);
solid s = orthobrick(-1.6,-25,-63.2;1.6,25,63.2);

solid m =ml or m2 or m3;

solid n = nl or n2 or n3;

solid hole = m or n or s;

solid box = orthobrick(-300,-300,-250;300\,300\,250);

solid cyla = cylinder(0,0,0;0,0,1; 120.)
and plane( @, 0, 50 ; 9, @, 1)
and plane( @, 0,-50 ; 0, 0, -1 );

solid cylb = cylinder(0,0,0;0,0,1; 30.)
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and plane( 0, @, 50 ; 0, 0, 1)
and plane( @, 0,-50 ; 0, 0, -1 );
solid cyl = cyla and not cylb;
solid mat1l = box and not (hole or cyl);

tlo cyl;
tlo mati;

In Figure 1.3, we show the computational domain and the datum J. A description of
the used mesh is in Table 1.5. Figure 1.4 shows the solution u of the third test problem.

We also show in Figure 1.5 four level sets of the solution and in Figure 1.6 ten dif-
ferent level sets from |u| = 1000 to |u| = 3000.

Figure 1.3: The computational domain and the datum of the third test problem.

Table 1.5: Description of the mesh for the third test problem.

Elements Faces Edges Vertices DOF

2070592 4171728 2461752 360620 2101133
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Figure 1.4: The solution u of the third test problem.
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Figure 1.5: Four level sets of the solution u of the third test problem: |u| = 300 (top-left), |u| = 1200
(top-right), |u| = 2500 (bottom-left), |u| = 5000 (bottom-right).
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Figure 1.6: A single figure with ten level sets of the solution u, from |u| = 1000 to |u| = 6000.

8.2 Numerical results for the problem with assigned normal
component on the boundary

We recall the system of equations:

curlu=]J inQ
div(uu) =f inQ
pu-n=>b on 0Q

4>u~ds=ﬂ,, foreachn=1,...,g,
Uﬂ

and, for the sake of simplicity, in the sequel we will take p equal to the identity.

In the first and second test case, the computational domain is the toroidal domain
with a concentric toroidal cavity that we have considered in the previous section. The
data of the first test are again such that the exact solution is u = [x3x1,x3x2,x§]T. In
Table 1.6, we report the data of the meshes used for estimating the convergence rate,
already presented in Table 1.3 but now including the number of degrees of freedom of
this specific formulation.

Table 1.6: Description of the five meshes for the problem with assigned normal component on the
boundary.

Elements Faces Edges Vertices DOF
Mesh 1 1358 3169 2264 453 452
Mesh 2 10864 23540 15393 2717 2716

Mesh 3 86912 181072 112270 18110 18109
Mesh 4 695296 1419584 854668 130380 130379
Mesh5 5562368 11240704 6663384 985048 985047
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Table 1.7: Relative error, mesh size, convergence rate and computational cost for the problem with
assigned normal component on the boundary.

Relative error h Rate CPU[ms]
Mesh 1 0.126 0.685 =25
Mesh 2 0.084 0.498 1.234 ~59
Mesh 3 0.050 0.250 0.748 ~506
Mesh 4 0.027 0.125 0.881 ~5188
Mesh 5 0.014 0.063 0.952 =113083

The relative error and the convergence rate are computed as in (8.1) and (8.2), respec-
tively. The results are reported in Table 1.7.

In the second test problem, we consider a perturbed problem with the same val-
uesof], b, and 3, foreachn =1,..., g, just modifying the datum at the right-hand side
of the divergence equation, settingf€ = f + €, with € = —15 in the ball centered at the
point [-0.8,0,0.9]" and radius 0.1, € = 15 in the ball centered at the point [0.8,0,0.9]7
and radius 0.1 and € = 0 otherwise. (Note that jQ € = 0, hence the compatibility con-
dition ije = fag b is satisfied.) In Figure 1.7, one can compare the solutions of the
problem with a known analytical solution and of the perturbed problem. Only half of
the computational domain is shown.

Figure 1.7: The solution u of the test problem with a known analytical solution (left) and with a per-
turbed value for the divergence (right). In the figures, only half of the domain is drawn.

In the third test case, the geometry of the problem is again inspired to that of problem
number 13 in the TEAM workshop. However, in order to have a non-simply connected
computational domain, we have slightly modified it, as the plate now has thickness
equal to 4.2 mm (instead of 3.2 mm), and thus touches the channels. From the topolog-
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ical point of view now, we have only one cavity, precisely,
computational domain Q is a 2-torus.
We include the Netgen file describing the geometry:

a 2-torus, and thus also the

algebraic3d

solid m3 = orthobrick(122.2, 15,-63.2; 125.4, 65,
solid n1 = orthobrick( -122.2, -65, 60; 1.6,
solid n2 = orthobrick( -122.2, -65,-63.2; 1.6,
solid n3 = orthobrick( -125.4, -65,-63.2; -122.2,

solid s = orthobrick(-1.6,-25,-63.2;1.6,25,63.2);

solid m ml or m2 or m3;
n1 or n2 or n3;

solid hole = m or n or s;

solid n

solid box
solid cyla = cylinder(0,0,0;0,0,1; 120.)
and plane( @, @, 50 ; 0, 0, 1)
and plane( 0, 0,-50 ; 0, @, -1 );
solid cylb = cylinder(0,0,0;0,0,1; 30.)
and plane( 0, @, 50 ; 0, 0, 1)
and plane( @, 0,-50 ; @, @, -1 );
solid cyl = cyla and not cylb;

solid mat1l = box and not (hole or cyl);

tlo cyl;
tlo matl;

solid m1 = orthobrick( -1.6, 15, 60; 122.2, 65, 63.2);
solid m2 = orthobrick( -1.6, 15,-63.2; 122.2, 65, -60);

orthobrick(-300,-300,-250;300\,300\,250);

63.2);

-15,63.2);
-15,-60);
-15,63.2);

The structure of the computational mesh is reported in Table 1.8.

As before, the datum J is supported in the cylinder of height 100 mm and circular

cross section of radius 120 mm minus the cylinder of the same height and cross section
of radius 30 mm (both cylinders have their axis coincident with the x;-axis). In this
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Table 1.8: Description of the mesh for the third test problem (one 2-torus cavity).

Elements Faces Edges Vertices DOF

2075264 4181824 2468392 361832 361831

Figure 1.8: The computational domain and the datum of the third test problem (one 2-torus cavity).

Figure 1.9: The solution u of the third test problem (one 2-torus cavity).
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X x

Figure 1.10: Four level sets of the solution u of the third test problem (one 2-torus cavity): |u| = 1500
(top-left), |u| = 2500 (top-right), |u| = 3500 (bottom-left), |u| = 4000 (bottom-right).

Figure 1.11: A single figure with ten level sets of the solution u, from |u| = 1000 to |u| = 6000 (third
test problem with one 2-torus cavity).

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 3:59 PM



40 — A.Alonso Rodriguezetal.

Figure 1.12: The solution (left) and the level set |[u| = 3500 (right) of the third test problem. The
computational domain is simply-connected and has three cavities as in problem number 13 of the
TEAM workshop.

coil, we have J = [-x,,x;, O]T, while J is zero outside. All the other data, namely, f,
band B, forn =1,...,g, are equal to zero. In Figure 1.8, we show the computational
domain and the datum J.

Figure 1.9 shows the solution u of the third test problem. We also show in Fig-
ure 1.10 four level sets of the solution and in Figure 1.11 ten different level sets from
|ul = 1000 to |u| = 6000.

For permitting a comparison, we also present some results for the problem with
the same data but with three cavities, namely, for the computational domain of the
problem number 13 of the TEAM workshop (in particular, this computational domain
Q is simply-connected). The mesh is the same than in Table 1.5, except for the number
of degrees of freedom, that now is coincident with the number of vertices less one,
namely, 360 619.

In Figure 1.12, we report the solution and just one level set, the one corresponding
to |u| = 3500, because the results are very similar to those in Figures 1.9 and 1.10.
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Sebastian Bauer
2 Darwin and higher order approximations
to Maxwell’s equations in R>

Abstract: This contribution is concerned with an asymptotic expansion of Maxwell’s
equations in case that charge velocities are small in comparison with the speed of
light. In every order of expansion, two curl-div systems have to be solved in which
solutions of the previous order enter on the right-hand side. It is proved that in case
of a bounded underlying domain Q in every order k of expansion solutions are well-
defined and give an approximation of solutions of Maxwell’s equations with a L? error
bound O((v/c)**1) if initial values of the electromagnetic fields are suitably adapted.
In case of Q = R?, weighted L? spaces are used for solving curl-div systems. It is shown
that solutions of the approximation are only L, if certain derivatives of the multipole
expansion of the sources vanish. For that reason, a careful analysis of mapping prop-
erties of vector differential operators in weighted L? spaces is given which might be of
interest in its own right.

Keywords: Asymptotic expansion, Maxwell’s equations, Darwin approximation,
weighted L? spaces, exterior domain, spherical vector harmonics

MSC 2010: 35C20, 35)46, 35Q60, 41A60, 78A25, 78A30

1 Introduction

Roughly speaking, Maxwell’s equations were the classical culmination point of a
number of earlier systems of equations systems attempting to describe electromag-
netic phenomena. Here, we shall mention three historical milestones on the way to
Maxwell’s equations. The first is given by the equations of electro and magnetostatics

divE = g, curl B = pyj,
€ M
curlE =0, divB=0,

established by Coulomb, Lagrange and Gauss. The second set of equations involves
Faraday’s law of induction and is sometimes referred to as the eddy current model:

divE = g, curl B = p,j,
€o @
curlE = -9,B, divB=0.
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Finally, Maxwell added the so-called displacement-current and ended with a Lorentz-
invariant set of equations which contains two dynamic and two constraint equations:
divE=2 curl B = '+l8E
- £ > = Mo Cz t >
curlE = -0,B, divB=0.

®)

Here, all equations are written in SI units, p and j are given source distributions, &, is
the dielectric constant, y, the magnetic permeability and c the light velocity, where all
three constants relate to vacuum and we have c’qp, = 1. Local charge conservation,
i.e., 0;0+divj = 0, is built-in in (3), but not in (2). For another set of equations, known
as Darwin equations, the electric field E = EL + ET is formally split into a curl-free
part EL, curl E = 0 and a divergence-free part ET, divE” = 0. In contrast to Maxwell’s
equations, the time derivative of the transversal part is neglected:

divE* = sg curl B = pyj + lzatEL, curlE" = -0;B,
0 c

curlEL=O, divB=0, divET = 0.

(4)

While (3) is a hyperbolic system, the equation systems (1), (2) and (4) are of elliptic
type. In (1), two independent curl-div systems have to be solved, in (2) two curl-div
systems have to be solved successively and the solution of the first system enters as
source term into the second system. Finally, in (4) we have three curl-div systems, the
solution of the first enters as source into the second and the solution of the second
enters as source into the third system.

It is well known (see, e. g., [10, 28, 4]) that systems (1), (2) and (4) can formally be
derived from Maxwell’s equations as zeroth-, first- and second-order approximations,
respectively, in an asymptotic limit of small charge velocities if compared to speed of
light. We shall give the corresponding scaling in Section 2 and the formal asymptotic
expansion of Maxwell’s equations is given in (8), (9). This formal expansion leads to
two main questions: First, are the equations of the asymptotic expansion well-posed?
Secondly, do the solutions of the asymptotic expansion give a good approximation of
solutions of Maxwell’s equations with a suitable error bound?

With regard to initial boundary value problems of Maxwell’s equations in bounded
domains of R®, both questions have been tackled successfully, in [10] for natural
boundary conditions and in [24, 25] for Silver-Miiller absorbing boundary condi-
tions on an artificial outer part of the boundary. For numerical implementations, see
[8, 7]. We give a self-contained presentation of the bounded domain case with natural
boundary conditions using a simple solution theory of curl-div systems going back
to [23] and [26, 27] in Section 5. For the convenience of the reader, the usual proof of
the approximation property is given before in Section 4.

However, our main interest here is to understand the case of unbounded domains
in R?, particularly exterior domains. Some results on Darwin systems and asymptotic
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expansions in exterior domains of R3, which we have occasion to return to in Sec-
tion 11, are given in [17, 11, 18]. For sake of simplicity and in order to focus on the
effects of the unboundedness of the domains and to be able to ignore the influence of
boundary effects, we shall restrict our attention to the free space case, Q = R3.

From studies of the asymptotic expansion of coupled systems of charged matter
and electromagnetic fields in [16, 15, 14, 3, 5, 1, 2], we are used to the fact that well-
posedness and the approximation property of the asymptotic expansion break down
in order (%)3 due to effects of so-called “radiation damping,” which have to be taken
into account by means of some extra radiation terms. Coupled systems here means
that charged matter, which enters Maxwell’s equations by means of source terms, is
also a degree of freedom governed, e. g., by Newton’s equation of motion if matter
is modeled by point particles or governed by a Vlasov equation if matter is modeled
by a kinetic approach. The electromagnetic field enters as force term the equations de-
scribing the matter. In both cases, particle and kinetic, the extra radiation term is built
using the third time derivative of the dipole moment of the zeroth-order contribution
0, of the charge distribution, i. e., IIR3 X0, (t, x) dx; see [16] for a particle model and [1]
for a kinetic model.

The studies mentioned above rely on classical solutions and pointwise estimates
and investigate coupled systems. Nevertheless, we shall show in this paper that effects
due to radiation of multipoles also enter asymptotic expansions of Maxwell’s equa-
tions with prescribed sources in an L? setting; see Section 10. The occurring mathe-
matical difficulties in unbounded domains mostly rely on the fact that for those do-
mains differential operators acting on suitable L? spaces do not have closed ranges.
This problem is often remedied by using polynomially weighted L* spaces. With w(x) =
(1+x1)"? and for s € R, wesay f € L2 ifand only if f € L} - and w’f e L?; the L2 norm
of f is given by the L>-norm of w’f. We use weighted Sobolev spaces with growing
weights, e. g., E € H(curl) if and only if E € L2 and curl E € L?,,. With the correspond-
ing scalar products, all of these spaces are Hilbert spaces. For precise definitions, see
Section 9. The key ingredient of this paper is a careful analysis of the usual vector
differential operators grad, div and curl acting on weighted Sobolev spaces of R>. Ac-
tually, this analysis has already been done in [31] in R" and has been generalized to
exterior domains of R" with inhomogeneous and anisotropic media in [20] using dif-
ferential forms and exterior derivatives. Furthermore, results of [20], relevant for this
paper, have been translated into the language of vector calculus in [21, Appendix B].
For the convenience of the reader, we shall give a self-contained presentation of the
reasoning and results of [31] for R using vector calculus instead of calculus of differen-
tial forms from the beginning, thereby reproving some results from [21]; see Sections 7,
8 and 9. For this purpose, we first give a representation of vector differential operators
in spherical coordinates; see Section 7. Secondly, harmonic homogeneous polynomi-
als play a major role in characterizing kernels and defects of differential operators in
weighted Sobolev spaces. For the Laplacian, this has been shown in [19]. We establish
a fine-structure of harmonic homogeneous vector polynomials using vector spherical
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harmonics (see Section 8), which we thirdly use in Section 9 to exactly characterize
defects and kernels of vector differential operators in weighted Sobolev spaces; see
Theorem 4. In Section 10, we use this result to analyze the well-posedness of the itera-
tion scheme used in the asymptotic expansion. In short, we shall show that assuming
smooth charge and current distributions in Lﬁ for sufficiently large s the solution of
the Darwin approximation is in (unweighted) L? if and only if the second time deriva-
tive of the dipole moment of the charge distribution vanishes, i. e., fx@(x, t)dx = 0.
Otherwise, the solutions are only in Li for all s < -1/2 and in particular not in L2
see Subsection 10.3. The usual proof of the approximation property (see [10] or Sec-
tion 4) gives L2-error bounds and essentially relies on L? approximations. In order to
get this proof working, we also need the third-order approximation in (unweighted)
L?, which is the case if and only if the third time derivative of the quadrupole moment
of the charge distribution and the third time derivative of some moment of the current
distribution vanishes; see Subsection 10.4.

2 Scalings

We are looking for physical situations in which the equation systems (1), (2) and (4)
might be good approximations of Maxwell’s equations. To this end, we introduce char-
acteristic values for the physical quantities and derive dimensionless Maxwell’s equa-
tions. From given sources p and j, we take a typical length [, e. g., the diameter of sup-
port of the source distribution, and a typical time ¢, e. g., the time a typical charged
particle needs to travel the distance I. From this, we have the typical velocity v =

~il—

and we assume that ) := ¥/c < 1. With scales E, B, j of the electromagnetic fields and
the current density, unspecified until now, we define dimensionless quantities x = Ix’,
t=t',E=EE',B=BB',p=p0,j=jj’, E'(t') = %ﬂ) .... A simple computation gives
dimensionless Maxwell’s equations

VE | . jla &F . i
—0pE —curl' B = —uy=j', —divE =9,
25t HOBJ 7 4
%BNB' +curl E' =0, div'B'=0

and dimensionless charge conservation
oV .
&0 +div'j = 0.
]

In the literature, there are two different scalings leading to slightly different asymp-
totic expansion. In this contribution, we use the scales from [10]:

E-2 3

, , j=cb. 5
Z j=co 5)

o
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2 Darwin and higher order approximations to Maxwell’s equations in R — 49

This choice leads to the following set of equations (for simplicity, we shall suppress
all primes):

noE —curl B = —j, divE =,
no;B+curlE =0, divB=0,

together with the charge conservation equation
noe +divj =0.

In connection with the Vlasov—Maxwell system, the scaling is not made explicit, but
some computations show that the scalings in, e. g., [28, 3] differ from the scaling above
by the definition of j. In the latter two publication j = ¥p is used, leading to

noE — curl B = -nj, divE =p,
no;B+curlE =0, divB=0,

and charge conservation equation
o0 +divj=0.

Of course, this leads to slightly different asymptotic expansions.

3 Formal asymptotic expansions

We now formally expand the resulting dimensionless Maxwell’s equations with nat-
ural boundary conditions in powers of 1, where v is the outward unit normal on the
boundary of the underlying domain. For the scaling (5), we have

no,E" —curl B" = -,  divE" =", E"Av=0, E%0,)=E], ©
no,B" + curlE" = 0, divB" =0, oB"-v=0, B'0,)=B].
We make the formal Ansatz
E'"=E° +nE' +’E*+---, B'=B°+nB' +n’B*+---, )
Q"= +n' v+, =t
equate in every order of  and find the resulting equations
curlE° = 0, dionng, E°Av=0,
0_ 0 . 0 . _ ®8)
curlB” =j°, divB" =0, 0B -v=0
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50 — S.Bauer

for k = 0 and
curl E* = —a,B"‘l, divE" = Qk, Eav=0,
k _ k-1, ok — k o _ ©)
curl B =,E" " +j", divB" =0, B -v=0

for k > 1. In the k-th step approximation, we have to solve curl-div systems, where the
given sources and the solutions of the k — 1 step enter as right-hand sides. While this
is rather simple for a bounded domain (see Section 6), it is rather involved for exterior
domains, since in that case solutions of a curl-div systems with right-hand sides in
L? are generally not in L? but only in some weighted L? spaces. Therefore, iterating
becomes difficult; see Section 10.

4 Proof of the approximation property

In this section, we repeat the proof that if the iteration scheme (8), (9) is well-defined
with solutions in L?, these solutions give an approximation of solutions of Maxwell’s
equations (6) with a suitable error bound provided suitably adapted initial values of
(6). We shall use the classical Sobolev spaces of vector analysis H(grad, Q), H(curl, Q),

H(div, Q) as well as H (gr(::ld, Q),H (c&rl, Q),H (d;v, Q), the latter generalizing the asso-
ciated natural boundary conditions in a weak sense; see, e. g., Section 5. For sake of
brevity, we set, e. g., H(curl, div, Q) = H(curl, Q) n H(div, Q) and so on. For a function
or field f = f(t, x), we set f(t) = f(t,-) and | - || denotes the usual L*> norm over Q

We start with a classical result on solutions of (6) which might be obtained by
using for instance semi-group theory.

Proposition 1. For a given domain Q c R3, n > 0, T > 0 and given source distributions
0" and j" with

0" € C'([0, T L*(Q))
j1 e C'([0, T; L* (% R?)) n €°([0, T); H(div; Q) (10)
0 = no,0" +divj" charge conservation
and given initial fields
EleH (curl,div,Q) and Bl € H(curl, div, Q)
satisfying the constraints
divE! = 0"(0) and divBl =0,
the Maxwell initial boundary value problem (6) (boundary conditions in weak sense)
admits a unique solution (E", B") with
E" e C\([0, T}; L2(Q R3)) n €°([0, T); H(curl, div, Q) and
B" € C'([0, T}; LA(; R?)) n €°([0, T]; H(curl, div, Q)) .
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2 Darwin and higher order approximations to Maxwell’s equations in R> —— 51

The following a priori estimate is also classical; a sketch of the proof can be found
in [10].

Proposition 2. For a domain Q c R>, T > 0 and fields

e € CY([0, T); LX(Q: R®)) n €°([0, T}; H(curl, Q)) and
b € C'([0, T}; L(Q; R?)) n €°([0, T; H(curl, Q))

define

k =nose —curlb, l=n0o;b + curle,

1/2
£=<Je2+b2dx> , m=<Jk2+lzdx>
Q Q

Thenwe have forall0 <t < T

12

t
E() < E0) + Jm(s) ds.
0

SN

Now we can give the approximation property theorem.
Theorem 1. Letk € N, T > 0 and
k+1 _k+1

0"=0" +no' +--- + ",

jn:j0+ﬂj1+"'+7]k+1jk+l,

such that " and j" satisfy (10) for all n > 0. Assume that there are fields E°, ..., E*!
and B®, ..., B\, such that
E' e ¢'([0, T}; LA R®)) n €°([0, T); H(cutl, div, Q) and
B' e c!([0, T L*(; R?)) n €°([0, T]; H(curl, div, Q)),
forl=0,...,k+1, satisfying the iteration equations (8) and (9), respectively. Let (E", B")
be the solution of (6) according to Proposition 1 subject to initial values
E!l = E°(0) + nE"(0) + --- + n*EX(0) + n*'E™®®
Bl = B°(0) + nB'(0) + --- + n*B(0) + f**'B™*®

with

E™ ¢ H(curl, div,Q),  divE™® = ¢!,
B ¢ H(curl,div,Q),  divB™ =0.
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52 — S.Bauer

Then the following estimate holds for all0 <t < T and all0 < n:

k
E"()- Y EX(0)
i=0

< rlk+l<'|E(f)ree _ Ek+1(0)|| + "Bgee _ Bk+l(0)H

t
+[E< @] + 2J [0E* 9)] + [0 B 9| ds)
0

k
B'(t)- Y B“()
i=0

< rlk+l<'|E(f)ree _ Ek+1(0)|| + "Bgee _ Bk+l(0)H

t
+[[B @) + 2J loE o) + |2 B s)| ds)
0

Proof. Setting

k+1 k+1
e=E’1—ZE‘ b:B”—ZB’
i=0 i=0

we only have to compute

no.e — curl b = —p**%9,E*1

>

no;b + curle = —n*+%,B*!

apply Proposition 2 and are done. O

Remark 1. In contrast to [10], we allow for higher order contributions to the initial
electromagnetic fields. For this reason, we can also admit for current densities varying
fast in a neighborhood of ¢t = 0, compare [10, (3.29)]. For a discussion of non-adapted
initial electromagnetic fields, see [10, pp. 41-42].

5 Curl-div systems in bounded domains

First, we give a well-known and very simple solution theory of curl-div systems using

L*-decompositions. For an arbitrary domain Q ¢ R>, let C*°(Q) denote the space of
smooth functions or fields with compact support. We denote the curl operator acting

on test-fields by curl : E‘X’(Q) c L2(Q) — L*(Q). Then H(curl; Q), as set, is the domain
of the adjoint operator curl”. In this section, we denote with curl the usual curl oper-
ator acting as unbounded operator in L?, i. e., curl : H(curl) ¢ L*(Q) — L*(Q). Finally,

we define carl as the adjoint of curl and H (cﬁrl, Q) as domain of cﬁrl. It is well known
that for sufficiently smooth domains Q, such that a tangential trace may be defined,
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2 Darwin and higher order approximations to Maxwell’s equations in R> —— 53

H (c&rl, Q) is just the kernel of the tangential trace operator. Thus, E € H (cﬁrl,Q) is
a generalization of the boundary condition E A v = 0 on 0Q. We immediately get the
following orthogonal L2-decomposition (the bar denotes closure in L?):

LZ(Q; R’ ) = curl H (c&rl, Q) @ Hy(curl, Q) = curl H(curl, Q) @Ho(c&rl, Q),
where E € Hy(curl, Q) if and only if E € H(curl, Q) and curl E = 0 and so on. In the
same manner, we define grad, div := —grad”, grc:ad:: -div* and div, grad := —div"

and finally d(i’v:: —grad” leading to the following decompositions:

LZ(Q; ]R3) = gr?id H(gr%d,Q) ® Hy(div, Q) = grad H(grad, Q) GBHO(d(iJV, Q),

1X(Q) = divH(div, Q) = div H(div, Q) @ Lin{1}.

Note that E € H (d;v,Q) is just the generalization of vanishing normal trace. If the
underlying domain is bounded and sufficiently smooth (e. g., weakly Lipschitz is
enough), then the embeddings

H(curl, Q) n H(div, Q) — I2Q) and H(curl, Q) n H(div, Q) — I2(Q) (1)

are compact (the spaces on the left-hand side are equipped with their graph norms);
see [30, 29, 22, 32] and [13, 6] for results with mixed boundary conditions. If these
embeddings are compact, it is easy to see that Poincaré-type estimates hold and the
ranges are already closed. We define so-called Dirichlet and Neumann fields:

Hp = Ho(cﬁrl, Q) N Hy(div,Q) and Hy =Hy(cur,Q)n Ho(d;v, Q).

Using compactness, it is easy to see that both spaces are finite dimensional. Actually,
also in rather non-smooth settings the dimensions of 7 and Hy are given by the first
and second Betti number of the underlying domain; see [23]. Using compactness, the

inclusions curl H (c&rl, Q) ¢ HO(d(iv,Q) and grzd H (gr?ad, Q) ¢ Ho(gr?ad, Q) as well as
the decompositions itself we get refined decompositions:

[2(Q; R?) = Hy(div, Q) ® grad H(grad, Q)

c&rl H (cﬁrl, Q) ® Hy ® grad H(grad, Q)

curl (H(cutl, Q) n Hy(div, Q) ® Hy ® grad H(grad, Q)

c1c1)r1 H (cfirl, Q) @ Hy(curl, Q) (12)

LA R?) = curl H(curl, Q) & Hy(curl, Q)

= curl H(curl, Q) & Hpo gr(éld H (grad, Q)
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54 — S.Bauer

= curl(H(curl, Q) n Ho(dtiv, Q)) ® Hpo gr%td H (gr?ad, Q)
- Hy(div, Q)@ grad H(grad, Q)

[2(Q) = div(H(div, Q) n Hy(cutl, Q)
- div (H(div, Q) n Hy(curl, Q)) ® Span{1}

From (12), one can easily conclude the following proposition (with boundary condi-
tions in a generalized sense).

Proposition 3. Let Q ¢ R? be a domain with compactness property (11). For F ¢
LA R, f € L*(Q) and G € L*(; R?), g € LX(Q) the curl-div systems

curlE=F curlB=G
divE=f divB=g
d 1
EAv=0 an B-v=0 (13)
E1Hp B1Hy

are uniquely solvable in H(curl; Q) n H(div, Q) if and only if F € Hy(div,Q), F 1 Hy and
G € Hy(div, Q), G L Hp, jg g dx = 0, respectively. In these cases, the solution operators
are continuous.

6 Well-posedness of the iteration scheme in
bounded domains

For F ¢ Hy(div,Q), f € L2(Q) with F 1 #y and G € Hy(div, Q), g € L*(Q) with G L Hp,
jQ g dx = 0, we denote the solutions of the curl-div systems (13) according to Proposi-
tion 3 by I'y(F, f) and I'y(G, 8), respectively. With I1;, and I, , we denote the orthog-
onal projectors on Hp and Hy, respectively. By straightforward computations using
the decompositions (12), we get the following result on well-defined iterations in 2

Theorem 2. Let Q c R? be a bounded domain with compactness property (11), k € Ny,
T > 0and

QU=QO+rlgl+_“+nk+lgk+l’

jn =j0+7]j1 +"‘+)’lk+1jk+1,
such that g" and j" satisfy (10) for alln > 0.

Then the iteration scheme (8), (9) has solutions

E' e ¢'([0, T]; LA R*)) n €°([0, T); H(cutl, div, Q) and
B' e C'([0, T); L*(@; R)) n €°([0, T}; H(curl, div, Q))
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2 Darwin and higher order approximations to Maxwell’s equations in R®®> —— 55

forl = 0,...,k + 1if and only if j° L #y. In this case, all solutions are given by (I =
1,...,k

t

E°(t) = Tp(0,0°(t)) + 93 - J My, j'(s) ds
0

BO(t) = Ty(1°(£), 0) + y§
t

E\(t) = Tp(-3,B"(t),0' (1)) + ¢}, - J My, (s) ds
0

B\(t) = Ty('(t) + 0,E"\(t),0) + Y},
Ek+1(t) _ FD(—atBk(l‘),Qk+l(t)) + §0k+l(t)
B (t) = Ty (t) + 3,EX(£),0) + ygus (O)

with time-independent fields (pg, (pf) € Hp and yg , yg) € Hy(curl, Q) n Hy(div, Q) and
possibly time-depending fields

@ (t) € C([0, T, Hp) and  y¥*i(¢) € CY([0, T]; Hy(curl, Q) N Hy(div, Q)

to be chosen freely.

Remark 2. Combining Theorem 1 and Theorem 2, we notice that in order to have the
approximation property we need additional constraint equations on the initial elec-
tromagnetic fields: Decomposing Eg according to the seventh line of (12) in Eg = Eg’1 +
Eg’z + Eg’3 with

Eg’l € curl(H(curl, Q)), Eg’z € Hp, Eg’3 ¢ grad H(grad, Q)

we see that Eg’3 is fixed by the usual constraint equation div E] = 0"(0), Eg’l is deter-
mined up to relevant order by adaption to the asymptotic expansion and Eg’z remains
to be chosen freely.

With regard to the initial magnetic field, we consider a non-standard decomposi-
tion of B}, according to

(R = curl (H(curl, Q) ® Hy(curl, Q) n Hy(div, Q)@ grad H(grad, Q)
with
Bl e curl (H(cutl, Q)), Bl € Hy(curl, Q) n Hy(div,Q), B!’ e grad H(grad, Q).

38’3 is fixed by the usual constraint equation divB{ = 0, Bg’l is determined up to rel-
. . . 1,2 .

evant order by adaption to the asymptotic expansion and By~ remains to be chosen

freely.
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7 Spherical vector calculus

We introduce the usual orthonormal basis vector fields of spherical coordinates e,, eg
and ey. A vector field E may be decomposed in its three parts:

E=Ee +E’ey+E%,

and we call E, := E"e, the radial part of E and E; := E'9e3 + E¢e¢ the spherical part
of E. Furthermore, we make use of the following operator notation: D is the deriva-
tive w.r. t. r and M is multiplication with r. The usual differential operators grad, curl
and div have the following representation in spherical coordinates, where we use the
usual convention for matrix multiplication and A is the usual vector product in R?,
particularly e, Aeg = e;, 69N ey = e, and ey N e, = ey:

gradu = (e,, 1)( Du )

M Grad u
0 M Curl \ (E"
1E = (e,,1 '
cur (e 1) (—M‘ler A Grad M‘IDMe,/\> <Es> "

r
divE = (M°DM?, M Div) (E >

S

where the spherical differential operators Grad, Div and Curl in spherical coordinates
are given by

_ agu )
Gradu = (es,e¢) <(sin 8*1)a¢u
curl E, = (sin 9) ' (3y(sin 9E?) - 8¢E‘9)
Div E; = (sin 9) ™' (3y(sin 9E”) + 94E?);

see, e. g., [12]. In this notation, the operator D does not act on the basis vector-fields e,,
€5, €y but only on the vector component functions, e. g., D(E¢e¢) = (8,E¢)e¢,. Now we
can represent the higher order differential operators (using, e. g., that Curl Grad = 0
and e, A (e, AE) = —E):

-M2Curle, A Grad M™?DM Curl e, A ) <E ’>
M™'D Grad ~-M%e, A Grad Curl -M'D°M/ \ E;

DM 2DM? DM Div ) (E’)

SDM?Grad M2 GradDiv/ \ E

curlcurlE = (e,, 1)(
graddivE = (e,, 1) (M

For later purposes, we need some commutators with radial functions. Let iy = (r)
smooth. For a differential operator D, we define the commutator with multiplication
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2 Darwin and higher order approximations to Maxwell’s equations in R> —— 57

with by Cp , = DY — YD. Elementary computations yield

Cgrad,zpu = l/),uer
Ccurl,lpE = l/),er NEs (15)
CawyE = W'E".

Combining these formulas and employing A = curl curl - grad div for vector fields and
A = div grad for functions, we find

Cayk = (-9’ MDM* - " )E (16)

8 Spherical harmonics and spherical vector
harmonics
We introduce the well-known spherical harmonics Y,’[’, n € Ny, -n < m < nas the

complete set of L>-orthonormal eigenfunctions of the scalar Laplace—Beltrami opera-
tor Div Grad on the unit sphere S%; see, e. g., [9]. We have

DivGradY,' + n(n+1)Y,' =0 and J Y, rr:}’ = 8 O > (17)
SZ

where 6j; is Kronecker’s symbol. Then with

Um= — L Grad Yy and V)':=e AU (18)

T Jnin+1)

the set {U™,Vf : nle N, -n<m<n, -l < k < I} is a complete L>-orthonormal set
of eigenvector functions of the vector Laplace—Beltrami operator

Grad Div +e, A Grad Curl  on L*(S?).
In particular, we have

CurlUy' =0, DivU,' =-vn(n+1Y,", Grad DivU,' = -n(n+1)U,",

(19)
DivV,'=0, CurlV, =-vn(n+1)Y,', e, AGradCurlV,'=-n(n+1)V,".

For every smooth vector field E on R> or 1f{3 = R%\ {0}, there are unique expansions

o) 0 [e)
E=D 2 yum¥u'ert D D unnUp'+ D D vamVi's (20)

n=0 |m|<n n=1|m|<n n=1|m|<n
o (e8] o
=~ m ~ m ~ m
AE = z z VoY € + Z z ity Uy + Z z VnmVy » (21)
n=0 |m|<n n=1|m|<n n=1|m|<n
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where ¥, i, Yimns Unns Unms Vam @nd v, ,, are smooth functions of r alone. Now let us

assume that E is a smooth harmonic vector-field on R? or R> ,1.e., AE = 0. We expand
E and AE according to (20) and (21). Using AE = 0 and the convergence properties of
the expansion, we get the following set of differential equations for y,, ,,, u,, , and v, ,:

For n = 0, we have
0 =Jo,0 = -DM ?DM?yq 0

For n € N, we use the abbreviation A,, = n(n + 1) and compute

0= Vypm = (M4, - M 'D*M)v,,,,

- -2 ~2 2 -2

0=Ynm= (4M™* - DM DM )Yn,m - 2\//1_nN[ Unm

0 = g = 2\ AM D + (M2 = M'D* M)ty
Equations (22) and (23) have each two fundamental solutions:

-2
Yoo=r and y,o=r

n -n-1
Vam =1 and v, =r

The equations (24) and (25) are coupled and have four fundamental solutions:

Upm = Vnr 2 Yom=-Vn+ r 2
Upm = YN+ 1t Yom = VL,
Upm = Vn+1r'™" Yom = Var™",

1 1
Uy = Vr'™" Yam = -Vn+1r'".

(22)

(23)
(24)

(25)

From these fundamental solutions, we obtain the well-known family of homogeneous

harmonic functions in R> and R>, respectively: For n € N, and —n < m < n, we define

m nym m —-2n-1_m
p, =rY,, q, =" "D, .

Now we create a suitable system of harmonic homogeneous vector fields. Two single

homogeneous harmonics needs an extra place in this system:
1 _ 0 1 _ -2y0, _ _-3pl
Py =r1Yoe, Qo =1"Yoe, =1 "Pp
In Cartesian coordinates, these fields are simply

1 x

1
Pio(x) = i and Qjo(x) = yrai

Forn € N and —n < m < n, we define

2 _ _ny/m
P =rV
2 _ _nym _ -2n-1p2
Qn,m_r Vn =T Pn,m
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2 Darwin and higher order approximations to Maxwell’s equations in R> =—— 59

P?Hlm_ n+1( vn+1 Yme +\/_Um)
Qi+1m— ( Vn+1Y"e, + vnUM) = n- 3P3+lm 6
P: 1m—rn 1(\/n+ Yner"'\/ﬁUn)

Q:—l,m = r‘n(\/n + 1Y,Ter + \/ﬁUrfl") — —2n+1P4

n-1m-
Therefore, p;,, P;,. are harmonic on R® and homogeneous of degree n, while qy> Q.

are harmonic on ]1.{3 and homogeneous of degree —n — 1. For notational convenience,
foro € No,m € Zandl=1,....4wesetpr = g =0and P, = Q. = 0ifstill
undefined. Every field E on R? with AE = 0 can be written as

MJ_\

!
E= pn,m,an,m

=1 n,m

Il
—_

with e, ,,; € C while a field E on IR? with AE can be written as

M-L\

1 1
E= pn,m,an,m + qn,m,lQn,m)

n,m

I
—_

with p, 1 1, @nm, € C. By direct computations, the following equations can be verified:

gradp) = 0 gradp)' = VnP,_,,, n=1

divPll,0 =3poo curl Pll0 =0

divP.,, =0 curl P, = -Vn+1P,_, . (27)
divP), = -2n+3)Vn+1p)  curlP), . =2(n+3)VnP;,
dian_Lm =0 curl Pﬁ_l’m =0

The analogue relations for the gs and Qs are

gradqg = -Qj gradq) = Vn+1Q,,,,,, n=>1

div Qi,o =0 curl Qi,o =0

divQ,, =0 curl Q%,, = VnQy,, (28)
d1in+1m—0 curlQn+1m—O

divQy_ 1m = (1= 2m)Vngy! curl Q% wm = (1-2n) \/ﬁthm
For 0 € Ny and I = 1,2, 3,4, we define
P(l, = Lin{Pfr,m :me Z}
Q! = Lin{d},, :mez)
p, = Lin{p,,, : meZz}
q, :=Lin{g,,, : me 2z}
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and

P=Jr, d=U9% p=Ups a=U a

0€N, 0€N, 0€N, 0€N,

and

1 1 1 1
P:UPO" Q:UQU’ p:Upm q:qu
0€N, 0€lN, 0€lN, 0€lN,
Note that the spaces Py, P, Pg, P; and Qp, @3, O3, O; and P, Q. forall ¢ > 2 are
trivial. In the following diagram — indicates a bijection. Using (27) and (28), foro > 1
we conclude the first four lines and for o = 0 we find the four last lines:

3 curl > 4 curl
Pa+1 - Pa - Po—l - {0}
div grad div

Pan = Py — Piy > {0}
%, & 2% g,
o, &g T g, Y o 09)
Pl Y o)
8 op B
ol 4 o
grad L div

do = Q1 - {0}

Therefore, the vector field P}’O is special: Itis rotation-free, and thus a gradient, namely
in Cartesian coordinates Pio x) = grad(x2 /81), but not a gradient of a harmonic func-

tion. On the other hand, Q{O is special, as it has vanishing divergence in ]f{3, but is
not a rotation of a harmonic vector field. Note that qg is just Green’s function for the
Laplace operator, and in Cartesian coordinates, we have g O(x) =

4n|x|

9 Vector differential operators in weighted Sobolev
spaces

We use the following radial weight function:
wx) = (1+ lez)l/2

and for s € R we define the following Hilbert spaces:

L3 = Li(R%) := {f € Lipo(R°) : w'f € L*(R%))

L} = LX(R5R) = {E e [} (RS RP) : W'E € (R R)}
H" = H'(R’) := {f e Hp(R’) : 3% e L}, (R’) forall |a| < m}
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2 Darwin and higher order approximations to Maxwell’s equations in R} — 61

H' = H'(R;R’) = {E € Hip (RS RY) : 0°E € L2,
Hy(curl) := {E € L} : curlE € L7,}}
Hyo(curl) := {E € L2 : curlE = 0}
Hy(div) = {E € L : divE ¢ L
{

(R’) forall |a <m}

s+1}
H,o(div) := {E € L? : divE = 0}

together with natural scalar-products, e. g.,
(. = [ Wiz
]R3
Note that the usual L?-scalar-product
(&)= [ fg and (F.G)= [F-G
R3 R3

gives dualities between L2 and L? . We consider the following operators:

curly : Hy,(cur) — L2
E — curlE

divy : Hyq(div) — I (30)
E — divE

gradg : HL, — L2
u +— gradu
Remark 3. Lets € R.
(i) By astandard approximation argument, we have
0 = (E,curlF) — (curlE,F) forall E € Hy ,(curl),F € H_,(curl)
0 = (f,divE) + (gradf,E) forall feH! ,EeH (div)

s-1°

(ii) For later reference, we note that for all m € N the following three statements are

equivalent:
Pil,m C Lgs’
Pibm ¢ H_g(curl) n H_g(div) n H™,,
n<-3/2+s.
Similarly,
prc I’
py cH™,
n<-3/2+s
are equivalent.
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62 —— S.Bauer

The starting point is a result by McOwen about the Laplace operator in weighted
L? spaces, here specialized to L2

Lemma1(McOwen [19]). Let] := R\ {1/2+m : m € Z}.

A H, — I

u —  Au

S

defines a Fredholm operator if and only if s € ]. In that case, its kernel and range are
given by

ker(As) = | pn
n<1/2-s

im(Ag) = {feLﬁ :{f,p)=0 forall pe U pn}

n<s-3/2

If the operator A = curl curl - grad div on vector fields is represented in Cartesian
coordinates, it is just the scalar A-operator on the Cartesian coefficients. Therefore,
this result is immediately generalized to vector fields.

Lemma 2.

Ay 2 HZ, — L2
u +— (curl curl - grad div)E

defines a Fredholm operator if and only if s € ]. In that case, its kernel and range are
given by

4
kerd) = |J J7h

n<1/2-sI=1

4
im(A) = {F €L:(F,P)=0 forall Pe |J UP},}
n<s-3/2 I=1
In particular, for s € J we have that A, is injective for s > —1/2 and surjective
for s < 3/2, and thus bijective in (-1/2,3/2) n J. In the next step, we characterize the
harmonic vector-fields by means of certain harmonics.

Lemma 3. Fors € J, we have

Ho(curl) nHyo(div) = ] P} (1)
0<-3/2-s
Proof. ItE € Uye_3/5-s Pf,‘, then E € H;g(curl) N Hyo(div). On the other hand, if E €
H; o(curl) n Hy 5(div) then E € ker(Ag,,); therefore, E € (J, 3,55 Ui 73(1, and we can
write

E= Y ipf,.

0<-3/2-s =1
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2 Darwin and higher order approximations to Maxwell’s equations in R® — 63

Using diagram (29) and orthogonality on sphere, w denoting the integration variable
on S, we find

J Pil,m(l’ w)PZ,)m, (1, (,U) = 5nn’6mm’6l,l’ and Jp;n(l, (,l))pﬁ, (1, (1)) = 5nn/5mm/ ,
s? s?
and conclude P = P2 = P2 = 0 forallo < -3/2 -s. O

We introduce finite dimensional subspaces to complete im(A,_,) in Li. To this end,
we define dual bases to the homogeneous harmonic functions and vector fields: We
chose a smooth function 1 in R? such that 0 < ¢ < 1, % = 0 on B;(0) and i) = 1 0n
R3\ B,(0). Then some elementary computations using the introduced calculus (see
(16)), and recall C,y, = A — A as well as the orthonormality of {Y;"} and {Uy", V;"}
on $%:

<CA,1/qur1n’prr:£’> = =360 Oy

o (32
<CA,¢Qn,m’Pn’,m’> = 6nn’ 6mm’ sklc(n)

with constants c(n) # 0. In the following, the notation € indicates an algebraical and
topological direct sum. From (32) and Lemma 2, we conclude the next result.

Lemma 4. Fors € J, we have in the vector case

Lg =im(A,_,) @ CA,lp Qa<s—3/2 4

where
4

Qpcs-32 = EB @ fo >

=1 o<s-3/2

and in the scalar case

L2 = im(Ay_y) P Caylo<s-372-
where

Uocs-3/2 = @ q4; -

0<s-3/2
Remark 4. We have
- 1
CapQocs32= P CaypQs and CpyQy =P CayQy
0<s-3/2 =1
and

CA,lp Qo<g c Cgo(]R3)'
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64 —— S.Bauer

We define the annihilator of the —s integrable harmonic polynomials:

Ad = {FeL§ . (F,Py=0forallPe | 7»3}

0<s-3/2
and for s > 3/2
Lo =1{f € L3 : (f,1) =0}
Note that Lin{1} = p,—¢.
Lemmab5. Lets € ]. Then
divH, ;(div) = L2 if s<3/2 @)
divH, ((div) =L, if s>3/2 (ii)
L =L P Caylomo ifs>3/2 (iii)
curl H_;(curl) + grad H, | = A¢ (iv)
L= A% @ Cay Qis—3/2 v)

€9

Proof. Lets € J. We start with the scalar case and equation (iii): The inclusion “>” is
obvious. In order to show the inclusion “c” let f ¢ Lg. According to Lemma 4, we have

f=divgradu+ ) Cpyq,

0<3/2-s

with u € HS{Z and g, € q,. Now we have to show that for ¢ > 0 functions C, ,q,, are
divergences of some H;_,(div) vector-fields. A simple computation yields

CA,I/JQO = div(cgrad,zpqo) + Cdiv,xp grad g, .
Clearly, the first term is in div Hy_(div) as it is smooth and has compact support. Using
(28), we have grad g, = Vo + 10(37+1,m for o > 1. (For ¢ = 0, we recall grad q) = —Qio.)
Employing (15), (19) and (26), we find

Cdiv,l/JQ;—l,m =-Vo+ 1’70/”70721131 = diV< ot U(T) >

1
%ll)
being divergence of a smooth field with compact support. Therefore, equations (iii)
and (i) are shown.

Since p,-o = Lin{1} partial integration yields div Hy_;(div) ¢ Lio fors > 3/2and
according to (iii) the spaces div H,_;(div) and Lg)o have same co-dimension in Lg and
are thus the same, which is equation (ii).

Next, we turn to the vector case and equation (v). Again the inclusion “>” is obvi-
ous. For the other inclusion, let F € Lﬁ. According to Lemma 4, we may decompose F
into

4
F = curlcurl H - graddivH + z Z CM,Q(I7

1=1 0<s-3/2
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2 Darwin and higher order approximations to Maxwell’s equations in R> —— 65

with some H € H2 , and Q) € Q.. We now show that for = 1,2, 3,
CM,Qf7 € 2 := curl C(R?) + grad CP(R?) .
A simple computation gives
CA,!/,QL = curl Ccuﬂ,pog + Ceyn,y curl QL —grad Cdiv,poir = Crad,y div QL . (33)

The first and the third term are fine, being curl or gradient of a smooth compactly sup-
ported field or function, respectively. Now we consider the second term Cc y, curl Qf,.
Forl=1and ! = 3, we have curl Qi, = 0; see (28). In the remaining case | = 2, we have
using in this order (28), (26), (15), (18), (14) and (18):

Ccurl,l,b curl Q<27,m = Ccurl,t/) \/EQ?Hl,m
= Ceurly Vor 2 (-vo + 1Y;'e, + VoU,")
=y'e, Aor 7 2U"

o
! —0-2y/m
=yor °V;

o -0-1
= curl(—\ ml[)’r ? Yfe,)

being curl of a smooth compactly supported vector-field. Now we consider the fourth
term Cgpaq y div QL in (33). Since div Qf, = 0 forl = 1,2,3 (see (28)), here is nothing
to do. All together equation (v) is shown. In order to prove equation (iv) using partial
integration, we have curl H,_;(curl) + grad H. ; ¢ A% and according to equation (v)
both spaces have same co-dimension in Lg and are, therefore, the same. O

As an easy consequence of Lemma 5, we obtain decompositions of Helmholtz-
Weyl type of weighted L?-vector-spaces.

Theorem 3. Fors € ], we have:
(i) fors<-3/2

L§ = H; o(curl) + Hg o (div)

J Py = Hyo(curl) n Hy o (div)
0<-3/2-s

(ii) for-3/2<s < 3/2,
L} = H,y(curl) @ Hy o (div)
(iii) fors > 3/2,
L3 = Hyg(curl) @ H o(div) © Cy 5, Q% 5
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66 —— S.Bauer

Proof. Notice that curl Hy_;(curl) ¢ H;,(div) and grad Hslf1 C H(curl). The second
line of (i) is just a repetition of Lemma 3. Therefore, using Lemma 5, the only things
which remain to prove are the inclusions H y(curl) ¢ Aé‘ and H, y(div) ¢ .Aé‘. These
inclusions are a direct consequence of the first and second line in (29). O

Now we consider restrictions of the curly and div, operators defined in (30) to
spaces with vanishing divergence and rotation, respectively, which leads to Fredholm
operators. In a slight abuse of notation, these restricted operators are called curl and
div, again.

Theorem 4. Lets € J.Then

(@
grad, : Hslf1 —  Hgg(curl)
u +— grad u
is a surjective Fredholm operator with
_ [{0} for s <3/2
ker(grad;) = {Pa:o =Lin{1} for s> 3/2
(ii)
curly : Hy(cur) nHy_o(div) — LZnHo(div)
E — curlE
is a Fredholm operator with
ker(curly) = U Pf,'
0<-1/2-s
and
im(curl) = {F € Hyo(div) : (F,P)=0 forall P« U Pg]»
0<s-3/2
(iii)

divy : Hg(div)nHs jo(cur) — L
E — divE

is a Fredholm operator with

ker(divy) = | J Py

0<-1/2-s
and

im(div) = {f € Li,o :{f,p)=0 forall pe U pa}

0<s-3/2
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2 Darwin and higher order approximations to Maxwell’s equations in R> —— 67

We shall prove the second and third statement of Theorem 4 together with the
following theorem, which states that we can enforce surjectivity by augmenting the
operators curl; and div; in a suitable way.

Theorem 5. Lets € J and s > 3/2. Then

@
curly : Hy(curl) nHy o(div) @ Chy Qo s sy — L2 N0 Hyo(div)
E — curlE
is a topological isomorphism
(ii)
divy : Hgy(div)nHyjolcut) @ CyyQt o s, — L
E — divE

is a topological isomorphism

Proof. First, we prove (i) of Theorem 4. The statement on the kernel is obvious. In
order to prove surjectivity, let F € Hgqy(curl). According to Lemma 5 and Theorem 3,
we have F = curl E + grad u with some E € H,_;(curl) and u ¢ Hsl_l. Using O = curl F =
curl curl E+curl grad u, we find curl curl E = 0; therefore, curl E € H o(curl)nH o (div).
Employing Lemma 3 curl E can be represented by certain vector harmonics

curlE = z P with some P} € Py .
0<-3/2-s

Utilizing the second line of (29), there are p,,; € p,,; such that gradp,,; = Pz‘,. Since
Py C Hsl_l for 0 < -3/2 - s, this yields curl E € grastl_l. Hence, (i) is proved.

Now we proceed to Theorem 4 (ii) which we shall prove together with Theo-
rem 5 (i). The statement on the kernel follows by Lemma 3. For the statement on the
range, let F € H;(div). We decompose F according to Lemma 5. Since (F, P* =0 for
all P* € Ug<s-3/2 P we have F = curl E + grad u with some E € H,_;(curl)and u € H_ ,.
Using div F = 0, we conclude div grad u = 0 and using Lemma 3 grad u € (Jy<;-3/ Pé .
With the first line of (29), we have grad u = curl P? with some P € | J;.,_s P Picl?,.
Summarizing, we have F = curl E with some E € H,_;(curl). The next step is to show
whether we can replace this potential E by some potential with vanishing divergence.
To this end, we again decompose E according to Lemma 5 into

E =curlE; + Z CA,,/,Qﬁ with E; € H,_,(curl) and Qﬁ € Q;‘.
0<5-5/2

(The gradient-term in the decomposition can be dropped since we are only interested
in curl E.) Clearly, div curl E; = 0 but div Y 5.5/, Cay Q% # 0 in general. We shall look
for some projectors that indicates the contribution to F coming from Y, ¢ 5/, CM,Qg.
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68 —— S.Bauer

To this end, we define P = r*7*1Q% e P2, P2, = curl ' P} ¢ 27?§ +1 an;i Doi1 = graczl’1 P
s~ee the first two lines of (29). For o0 < s — 3/2, we have P € L2, pyq € L7 Let
E € Hg_j(curl) n Hy_; o(div), we compute

(curlE,P2.,) = (E,P%) = (E,grad py,;) = ~(divE, py.;) = O
(Ul Cyy Qo P2.y) = (Cay P #0.

Therefore, Theorem 4(ii) and Theorem 5(i) are proven.

Now we turn to Theorem 4(iii) and Theorem 5(ii). Again the statement on the ker-
nel follows with Lemma 3. For the statement on the range, let f € Lg,o- Using Lemma 5,
we have f = divE with some E € H_;(div). Using Lemma 5 again, we decompose E
into

E =gradh+ z CA,pog‘ with € H. ; and Q} ¢ O
0<5-5/2

(here we can drop the rotation term) and define p,,; as above. Then we have for all
E € Hy_y(div) N H_; o(curl)

(divE,py.,1) = —(E, P2y = —(E,curl P2,)) = 0
(div CA,poé,poH) = _<CA,IIJP3’P3> # 0.

Hence, everything is proved. O

10 Well-posedness of the iteration scheme in R?

Now we use the mapping properties of divand curl in weighted L-spaces to investigate
the well-posedness of our iteration scheme defined in (8), (9). For sake of simplicity,
we assume

0" =0, (34)
1= +nj (35)

with divj® = 0 and 0:0¢ + div j! = 0, but the analysis can be easily generalized to the
case of general asymptotic expansion like in (7). Furthermore, we shall assume that
all sources are sufficiently smooth, say C*°, and decay sufficiently fast at infinity, such
that the sources together with all time derivatives are in Lﬁ for sufficiently large s.

For convenience, we introduce some additional notation: For s € R and a function
or a vector-field u, we say u € Lié ifand only ifu Lﬁ foralls < S; wesayu € Lig ifand
onlyifu € Lg for some s > S. In addition for t € R and some set V ¢ Lf, let V* denote

the annihilator of V in L?, with regard to the L?, — L? duality (-,-), i.e.,

Vt={welL?, | (w,v) =0forallve V}.
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2 Darwin and higher order approximations to Maxwell’s equations in R — 69

For s € R, we set

P§<s = U 73(3 and P, = U Py -

0<s 0<s

10.1 Zeroth order: Electro and magneto statics

In this order, we have to solve the following curl-div systems:

curl E° = 0, divE® = °,

(36)
curl B® = jO, divB® = 0.

Using Theorem 4, we have for s € J:

0 12 0 12 0
Ereli o0 €Ly N 0 G(pa<s—3/2)l

BO € Li—l < jO € Hs,O(diV) A ]-0 € (P<zr<s—3/2)l

The solutions E° and B® are uniquely defined in L§_3 2 by (36). Without any further
assumptions on the source distributions, we have E® € L%, s2- 1f the monopole con-
tribution (%, py o) vanishes, we conclude E° ¢ L2;,. Since Pj_ is trivial, we have
B e 2, /2- Hence, the zeroth-order approximation is well-defined in 12

10.2 First order: eddy-current approximation

With (E°, B°), the unique solutions of (36) in L2, , x L2, we have to solve the following
curl-div systems:

curl E' = —atBO, divE' = 0,

1 0 1 37)
curl B =j; + 6;E", divB =0.

Using that 9,B° is the unique solution in L%, 2 of the problem curl 0,B° = 9,4°,
divo,B° = 0 we have

E'el?, & 9B° cHyo(div) A 9B° € (P )
=:(1)
2

o o 1
0’ e L§+1 Ao e (Pocs-12) A (D

With regard to B!, we notice that 3,E° € L2, /2 is the unique solution of curl oE° =0,
divo,E® = 9,0°. Using 9,0° + div;', we compute
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70 — S.Bauer

B' Ly &' +E° € Hyo(div) A + 0E® € (P2 5)"
:=(2)
o0’ €Ly, and 90’ ¢ (Pocs-12)" A (2)

Due to our general assumption d,0 + div j' = 0, we have local, and thus global charge
conservation, that is, <atg°, Poo) = 0. Thus, without further assumptions on the
sources E' € L2, /> and B' € I2, /2 and the first-order approximation is well-defined
inL?

10.3 Second order, Darwin approximation

With (E°,B%) € L2, , xL2; , and (E', B") € L%, , x L2, , the unique solutions of (36) and
(37), respectively, we have to solve the following curl-div systems:

curl E? = —atBl, divE? = 0,

2 1 2 (38)
curl B° = 9,E", divB° = 0.

Utilizing that 3,B' € L2, , is the unique solution of curl 3B = 9,j' + 97E°, divo,B' = 0
and 97E° € L2, , is the unique solution of curl 5E = 0, divd7E® = 3;¢° we find for
se]

E’ e}, & 9B € im(curly)
& 0B' € Hyo(div) AOB' € (Phes5)
e
.1 2 -0 .
© 0 +0;E” eim(curlg, 1) A (1)
& 0" + OFE® € Hy,10(div) A3 + OFE € (P2s_110)" A
(2)

o 970° € im(divy,,) A (2) A (1)

© 970° € (Pyesia) AN A QD)

— Since, without further assumptions on the sources, only the second time deriva-
tive of the monopole moment has to vanish, i.e., <a§g°, Doo) = 0, we can only
conclude E* € LZ_, .

— If the second time derivative of the dipole moment does not vanish, i. e., if there
is any i{+1,0} with (37¢°,p;;) # O, then E* ¢ L2 _, .

— If the second time derivative of the dipole moment vanishes, we conclude E? ¢
Lil /2> Note that conditions (2) and (1) are void for s < 3/2.

Hence, E? € %, /2> and thus in I?, if and only if the second time derivative of the dipole
moment of the charge distribution vanishes.
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2 Darwin and higher order approximations to Maxwell’s equations in R — 71

Now we turn to B: Using that 3,E" € L2, /2 is the unique solution of curl OE' =
~9?B%, divo,E' = 0 and 9/B° « Lﬁm is the unique solution of curl 7B = 3}°,
div afBO = 0 we conclude for s € J:

B eI, & ,E" ¢ im(curly)
& 0" € Hyo(div) NOE' € (Pl 5)
3)
=3 BfBO € im(curlg,4) A (3)

& 0jB° € Hy,10(div) AO7B° € (P2 1) AG)

(4)
o 97j° e im(curly,,) A (4) A (3)

& 3% € Hypo(div) A OF° € (P2og10) A AG)

—  Without further assumptions on the current distribution, we can only conclude
B el?_ ),

— If the second time derivative of the “first current moment” does not vanish, i.e.,
if there is any i{+1,0} with (37j%, P ;) # O, then B* ¢ L2_, ,.

— If the second time derivative of the first current moment vanishes, we conclude
B’ € L%, ,, note that conditions (4) and (3) are void for s < 3/2.

Hence, B ¢ Lil 2 and thus in L?, if and only if the second time derivative of the first
current moment of the zeroth-order current distribution vanishes.

10.4 Third order, radiation order

With (E%, B) € L2, ,xL2; 5, (E',B') € L3, xL%, , and (E*, B*) € L2_, ,xL2, , the unique
solutions of (36), (37) and (38), respectively, we have to solve the following curl-div
systems:

curl E> = —ath, divE? = 0,

(39)
curl B = ath, divB’ = 0.

In the same manner as in the previous orders, we find

Ec Li_l o ath € im(curly)
& 0B € Hyo(div) A9 B € (P2 5)"
(¢Y]

s 6t2E1 € im(curlg,;) A (1)
21 . 2.1 2 1
& 0;E" € Hg, 1 o(div) AG{E" € (P0<S_1/2) A1)

@
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72 — S.Bauer

o 9B ¢ im(curly,,) A (2) A (1)

& 0;B° € Hy,50(div) AOJBC € (Prgy)) A A (D)

(3)
o 971° e im(curlg,3) A ) A (2) A (1)

R0 € (Plgi3pn) NAOAQRAQ

o

- Ingeneral, we only have E? € L2 /2> and thus the solution E? is only determined
by (39) modulo a time-dependent spatially constant vector.

— If, in addition to our general assumptions, afj" € (PIZ)L, since conditions (3), (2),
(1) are void for s < 1/2, we have E> € L2_, , and E’ is unique.

- If, in addition to our general assumptions, 3;j° € (P{ UP;)" then E’ € L2, ,. Note
that in this case for s < 3/2 conditions (2) and (1) are void and for 1/2 < s < 3/2
condition (3) is satisfied: Since now a? jO € im(curly, ;) we have a?B0 € Lis 2 and
have to show 9;B® € (P})*. We already know that E' € L2, /2> and thus OE' e L2, /2
Because of curl9/E' = 9/B® € L%;, we conclude o{E' ¢ Hjj(curl) and using
Remark 3 as well as (27) we compute for i € {+1,0}

(9;B°, P};) = (curl GE', P;;) = (0;E", curl ;)
201 ph
= _\/i<atE >P0,i>

Now we utilize 97E' = curl9,B € L2, 2 and 0,B® € I J2» thus 0,B> € Hy(curl) for
all s < 1/2 and we continue using Remark 3 and (27) again

(9{E", Py;) = (curl3,B*, Py ;) = (curl 3, B curl Py;) = 0.

Summarizing, we have E> € L? if and only if 7% € (P{ u P7)*.
Now we shall proceed with B>:

B’ eI, & 9,E*im(curly)
=3 ath € Hyo(div) A ath € (P§<s—3/2)l
(4)
s afBl € im(curlg,q) A (4)

& 0fB" € H,10(div) AOZB' € (P2 1)) A (4)
(5)
2.1 | 370 _ -
& 0] +0/E" eim(curlg,,) A(5) A (4)
© RE° € L2, N + GE° € (Pl ogy)n) AG)A(4)
(6)
s afgo € im(curlg,3) A (6) A (5) A (4)

< atBQO € (p0<s+3/2)l A(6)AB)NA(4)
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2 Darwin and higher order approximations to Maxwell’s equations in RE — 73

— If the third time derivate of the dipole moment of the charge distribution does not
vanish, then we only have B’ € L?_, ,, and thus the solution B* is only determined
by (39) modulo a time-dependent spatially constant vector.

—  Ifthe third time derivate of the dipole moment vanishes, we have B> € L2_, ,, and
thus B is uniquely defined by (39), note that conditions (6), (5), (4) are void for
s<1/2.

—  If the third time derivate of the dipole moment vanishes, we have B> € L2_, ,. If
in addition, the third time derivative of the quadrupole moment vanishes, i.e.,
(©@20° py;) = Oforalli e {£2,+1,0}, then B> ¢ L2, ,. Note that in this case for
1/2 < s < 3/2 conditions (5) and(4) are void and condition (6) is satisfied: Since
oyj' + {E° € L2, in this case, using Remark 3 and (27), we can compute for all
i e{+1,0}:

(05" +0{E%, P ;) = —(curl 9;B", P};) = (9;B', curl P} )
= —V2(3/B', P} ;) = V2(curl 3,E*, Py ;)
= -V2(3,B’, curl Pg;) = 0.

Summarizing, we have B> € L? if and only if the third time derivatives of the dipole
and of the quadrupole moment vanish.

11 Discussion

In this contribution, we proved that the asymptotic expansion of electromagnetic
fields up to order two (Darwin order) gives approximation fields in L? if and only if
the first time derivative of the monopole moment and the second time derivative of
the dipole moment of the charge distribution as well as the second time derivative of
the first current moment (]'O,Pii), i = -1,0,1 of the zeroth-order contribution to the
current density vanish.

The third-order approximation is in L? if and only if in addition the third time
derivative of the quadrupole moment of the charge distribution and the third time
derivative of the second current moment (jO,Pﬁ,i), i =-2,...,2, of the zeroth-order
contribution to the current distribution vanish. In all other cases, approximations of
second and third order are only given in weighted L? spaces and the approximation
property can only be expected with respect to weighted L? norms. In particular, with-
out these assumptions on the sources, it is not possible to use initial values of the
approximation fields as initial data for the Maxwell fields and to solve Maxwell’s equa-
tions by usual L?-theory at the same time.

The results obtained here are in good accordance with usual multipole expansion
of radiation fields in physics textbooks (see, e. g., [12]) but are in contradiction to [18],
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74 =—— S.Bauer

where for the second-order approximation both L?-fields and the approximation prop-
erty are claimed without assumptions on the multipole contributions to the sources.

In [11], Darwin systems are studied for exterior domains of R> with boundary (see
also [17] for the two-dimensional case) proving well-posedness in L2 1 (in our notation).
We expect that these results can be sharpened by generalizing the approach of the
paper at hand to exterior domains with boundaries using results from [20, 21] and
their vector calculus equivalents.
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3 Weck’s selection theorem: The Maxwell
compactness property for bounded weak
Lipschitz domains with mixed boundary
conditions in arbitrary dimensions

Abstract: It is proved that the space of differential forms with weak exterior and
co-derivative, is compactly embedded into the space of square integrable differen-
tial forms. Mixed boundary conditions on weak Lipschitz domains are considered.
Furthermore, canonical applications such as Maxwell estimates, Helmholtz decom-
positions and a static solution theory are proved. As a side product and crucial tool for
our proofs, we show the existence of regular potentials and regular decompositions
as well.

Keywords: Maxwell compactness property, weak Lipschitz domain, Maxwell estimate,
Helmholtz decomposition, electro-magneto statics, mixed boundary conditions, vec-
tor potentials

MSC 2010: 35A23, 35Q61

1 Introduction

The aim of this contribution is to prove a compact embedding, so called “Weck’s selec-
tion theorem” or (generalized) Maxwell compactness property [28, 29, 24], of differen-
tial g-forms with weak exterior and co-derivative into the space of square integrable
g-forms subject to mixed boundary conditions on bounded weak Lipschitz domains
QcRrY ie,

DI (Q) ne 'A% (Q) — L*(Q)

is compact. The main result is given by Theorem 4.8. Here, N > 2and 0 < g < N
are natural numbers, the dimension of the domain Q and the rank of the differential
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78 =—— S.Baueretal.

forms, respectively. This generalises the results from [1], where bounded weak Lips-
chitz domains in the classical setting of R3 were considered. In fact, the results from
[1] can be recovered by setting N =3and g =1orq = 2.

Similar results for strong Lipschitz domains in three dimensions can be found in
[11, 8]. For a historical overview of the mathematical treatment of Weck’s selection the-
orem (Maxwell compactness property), see [1, 13, 25] and the literature cited therein.
In particular, let us mention the important papers [28, 27, 24, 3, 32, 11, 25]. We empha-
sise that in [32] Witsch was able to go even beyond Lipschitz regularity (p-cusps). In
[30], Weck applied Witsch’s ideas to the theory of elasticity.

The central role of compact embeddings of this type can, for example, be seen in
connection with Hilbert space complexes, where the compact embeddings immedi-
ately provide closed ranges, solution theories by continuous inverses, Friedrichs/Po-
incaré-type estimates, and access to Hodge—Helmholtz-type decompositions, Fred-
holm theory, div—curl-type lemmas, and a posteriori error estimation; see [21, 20, 22].
In exterior domains, where local versions of the compact embeddings hold, one ob-
tains radiation solutions (scattering theory) with the help of Eidus’ limiting absorption
principle [5-7]; see [14-16, 18, 17, 19]. We elaborate on some of these applications in
our Section 5.

Finally, we note that by the same arguments as in [24] our results extend to Rie-
mannian manifolds.

2 Notation, preliminaries and outline of the proof

Let O ¢ RY be a bounded weak Lipschitz domain. For a precise definition of weak
Lipschitz domains, see Definitions 2.3 and 2.5. In short, Q is an N-dimensional
C%!.submanifold of RY with boundary, i.e., a manifold with Lipschitz atlas. Let
I' := 0Q, which is itself an (N — 1)-dimensional Lipschitz-manifold without boundary,
consist of two relatively open subsets I'; and T, such that T, uT, =T and T, nT, = 0.
The separating set T, N T, (interface) will be assumed to be a, not necessarily con-
nected, (N — 2)-dimensional Lipschitz-submanifold of I'. We shall call (Q,T,) a weak
Lipschitz pair.

We will be working in the framework of alternating differential forms; see, for ex-
ample, [10]. The vector space €°>9(Q) is defined as the subset of C°%(Q), the set of
smooth alternating differential forms of rank g, having compact support in Q. Together
with the inner product,

(E,H) 20 = j EAH
Q
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3 Weck’s selection theorem =——— 79

it is an inner product space.! We may then define L>%(Q) as the completion of ¢*%(Q)
with respect to the corresponding norm. L>9(Q) can be identified with those q-forms
having L%-coefficients with respect to any coordinate system. Using the weak version
of Stokes’ theorem,

(AE,H) 2gnq) = ~(E,8H) 20, E € C4Q), H e C7(Q), 1

weak versions of the exterior derivative and co-derivative can be defined. Here, d is the
exterior derivative, § = (~1)V4 D d « the co-derivative and » the Hodge-star-operator
on Q. We thus introduce the Sobolev (Hilbert) spaces (equipped with their natural
graph norms)

DI(Q) := {E € L*(Q) : dE € L*7"(Q)}, AYQ) := {E € L*%(Q) : 6E € 1> /(Q)}
in the distributional sense. It holds
«D7(Q) =AN1(Q),  «A%(Q) = DVI(Q).
We further define the test forms
C‘r’:”q(Q) = {plg : @ € CURY), dist(supp p,T;) > 0}

and note that ﬁgo’q(Q) = C*9(Q). We now take care of boundary conditions. First, we
introduce strong boundary conditions as closures of test forms by

. P DY(Q) . s A1(Q)
I (@) =) , AL@Q=C9Q) . )

For the full boundary case I, =T (resp., [, = T), we set
DY(Q) := DL (@), A%Q) =A% (Q).
Furthermore, we define weak boundary conditions in the spaces

DY (Q) := {E € DY(Q) : (E,89) 20 = ~(dE, @) 201, forall g ),
AI‘ZV(Q) = {H e A(Q) : (H,d @) 20y = ~(8H, 9) 241, forall g € é?‘:ﬂ‘l(g)},

and again for I'; =T (resp., [, = I), we set
DY(Q) := B (Q), AY(Q):= Al (Q).

We note that in Definitions (1) and (2), the smooth test forms can by mollification be
replaced by their respective Lipschitz continuous counterparts, e. g., f;o’q(ﬂ) can be

1 For simplicity, we work in a real Hilbert space setting.
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80 —— S.Baueretal.

replaced by é?;l’q(Q). Similarly, in Definition (3) the smooth test forms can by com-
pletion be replaced by their respective closures, i. e., é‘r’f”“l(Q) and ("Z?‘:’q*l(Q) can be
replaced by AI’ZVH(Q) and IoJl‘Z;l(Q), respectively. In (2) and (3), homogeneous tangential
and normal traces on I';, respectively I',, are generalised. Clearly,

bf (@ < Bf (@), A (@ cAl(©Q)

and it will later be shown that in fact equality holds under our regularity assumptions
on the boundary. In case of full boundary conditions, the equality even holds without
any assumptions on the regularity of the boundary, as can be seen by a short func-
tional analytic argument (see [1]) but which is unavailable for the mixed boundary
case.

We define the closed subspaces

D4(Q) = {E € DUQ) : dE =0}, AY(Q):={E cA%Q) : 8E =0}

as well as Iﬁl‘lpo(Q) = bl‘lr(g) n DJ(Q) and AI‘ZV’O(Q) = AI‘ZV(Q) n AZ(Q). Analogously, for
the weak spaces,

BY ,(©@) =B (@) nDI(Q), AL (@) = Al (@) nad(Q).

In addition to the latter canonical Sobolev spaces, we will also need the classi-
cal Sobolev spaces for the Euclidean components of g-forms. Note that Q, together
with the global identity chart, is a N-dimensional Riemannian manifold. In particu-
lar, g-forms E € L>9(Q) can be represented globally in Cartesian coordinates by their
components Ej, i.e., E = ); Eldxl . Here, we use the ordered multi-index notation
dx! = dx A AdXl for I = (i>...»1g) € {1,...,N}?. The inner product for E, H € L29(Q)
is given by

(E,H) 20, = JE A+H =Y jE,H, = Y (EpHp gy = (EH) 2
I I
Q Q

where we introduce the vector proxy notation:

E=(E] e (QRY), N,:= (1;’)

For k € IN, we can now define the Sobolev space Hk’q(Q) as the subset of L2(Q) having
each component E; in Hk(Q). In these cases, we have for |a| < k,

FE=Y0Edx' and (E,H)yggq = . (3"E,0"H)
1 0o<|al<k

and we use the vector proxy notation also for the gradient, i. e.,

VE = [0,E 1y = ... VE;.. ]y € (s RV M),
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3 Weck’s selection theorem =— 81

In particular, for E, H € H*(Q),

N
<E>H)H1,q(Q) = (ExH)LZq(Q) + z<anE’ anH>L2’q(Q) = Z<JEIHI + Z J anEIanI—II>
n=1 I Q n Q

= Z((EI’HI>|_2(Q) + (VEI) VHI>|_2(Q))
I

= (B, H)2(q) + (VE, VH) 2 = (B, H)yp -

Boundary conditions for H-9(Q)-forms can again be defined strongly and weakly, i. e.,
by closure

HM(Q)

HE7(@) = (@)
and by integration by parts
HE7(Q) = {E € HY(Q) : (Ep,0, ) 2q) = —(9n Ep h)y2(q) for all I and all ¢ € CX(Q)},
respectively. Let us also introduce the following Sobolev type spaces:

D*(Q) : = {E € H*9(Q) : dE ¢ " (Q)},

A(Q) : = {E e H9(Q) : 8E e HY' ()}
Remark 2.1. We emphasise that by switching I'; and I', we can define the respective
boundary conditions on the other part of the boundary as well. Moreover, all defini-

tions of our spaces extend literally to any open subset Q ¢ R" and any relatively open
complementary boundary pairs I'; and I,.

Finally, we introduce our transformations €.

Definition 2.2. A transformation ¢ : L>4(Q) — L?>9(Q) will be called admissible, if ¢ is
bounded, symmetric, and uniformly positive definite. More precisely, € is a self-adjoint
operator on L*9(Q) and there exists €, > 0 such that for all E € L>9(Q)

ngElLZ,q(Q) < |E|L2’q(Q) < Ew <€E,E>L2,q(Q>.

2.1 Lipschitz domains

Let O ¢ RY be a bounded domain with boundary I' := 3 Q. We introduce the setting
we will be working in. Define (cf. Figure 3.2)

I:=(-11, B=I"cR", B,:={xeB:xy>0}, By:={xeB:xy=0}

By, :=1{x€By: +x; >0}, Byg:={x€By: x; =0}
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82 —— S.Baueretal.

Definition 2.3 (Weak Lipschitz domain). Q is called weak Lipschitz, if the boundary T
is a Lipschitz submanifold of the manifold Q, i. e., there exist a finite open covering
Uy,...,Ug ¢ RN of T and vector fields ¢ : U, — B, such thatfork = 1,...,K

(i) ¢ € C®'(Uy, B) is bijective and ¢y, := ;' € C>'(B, Uy);

(i) ¢y(UxnQ)=B_

hold.
Remark 2.4. Fork =1,...,K, we have ¢ (U, \ Q) = B, and ¢ (U, NT) = By,

Definition 2.5 (Weak Lipschitz domain and weak Lipschitz interface). Let Q be weak
Lipschitz. A relatively open subset I'; of I is called weak Lipschitz, if I'; is a Lipschitz
submanifold of T, i. e., there are an open covering U,, ... ., Uy ¢ RY of I'and vector fields
¢y := Uy — B, such that fork = 1,...,K and in addition to (i), (ii) in Definition 2.3 one
of

(iii) U, nT; =0;

(iii') Uy nT, = U, NT = ¢ (U, NT;) = By;

(iii")0 # Uy nT, # U NT = ¢ (U, nT,) =B, _

holds. We define T, := T'\ T, to be the relatively open complement of T,.

Definition 2.6 (Weak Lipschitz pair). A pair (Q,T;) conforming to Definitions 2.3
and 2.5 will be called weak Lipschitz.

Remark 2.7. If (Q,T,) is weak Lipschitz, so is (Q, T, ). Moreover, for the cases (iii), (iii’)

and (iii"’) in Definition 2.5 we further have

(i) UnT;=0 = UnT, =U,nT = ¢(U,nT,) =By;

(i') U, NI, =U,nT = U,nT, =0;

(ii")0 # U nT, # G nT = 0+ U,nTl, # U nT = ¢ (U nT,) = By, and
¢I<(Uk n f'r n fv) = BO,O'

In the literature, the notion of a Lipschitz domain Q ¢ RY is often used for a strong
Lipschitz domain. For this, let us define for x € RY,

X = (XX Xyg)s X = (X Xy ).

Definition 2.8 (Strong Lipschitz domain). Q is called strong Lipschitz, if there are an
open covering U,, ..., Ux ¢ RN of T, rigid body motions R, = A + a;, 4; € RV
orthogonal, g, € RN and & € Co’l(IN‘l,I), such thatfork=1,...,K

() R(UpnQ)={xeB:xy<&x)}

Remark 2.9. Fork =1,...,K, we have

R(UN\Q) ={xeB:xy>&X)}, R(UnT)={xeB:xy=&x).
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3 Weck’s selection theorem =— 83

Definition 2.10 (Strong Lipschitz domain and strong Lipschitz interface). Let Q be
strong Lipschitz. A relatively open subset I, of I' is called strong Lipschitz, if there ex-
ist an open covering Uj, ..., Ug ¢ RN of T, rigid body motions R, and &, € C>'(IN71, 1),
G € Co’l(IN 20 ), such that for k = 1, ..., K and in addition to (i) in Definition 2.8 one of
(i) UnT;=0;

(i) UnT,=U,NnT = R(U,NT,)={x€eB : xy =&}

(") 0+ U nT, 2U,NT = R(U,NT,) ={x € B : xy = &), x; < &'}

holds. We define T, := I'\ T, to be the relatively open complement of ;.

Definition 2.11 (Strong Lipschitz pair). A pair (Q,T;) conforming to Definitions 2.8
and 2.10 will be called strong Lipschitz.

Remark 2.12. If(Q,T,)is strong Lipschitz, so is (Q, ). Moreover, for the cases (ii), (ii')
and (ii"") in Definition 2.10 we further have

(i) Uynl,=0 = U,nl,=U,NT = R(U,NT,) ={xeB: xy=&0")}

(i') U NI, =U,NT = U,nT, =0;

(i") 0 Unl, # U, nT = 0+ U NT, 2 U NT =

Ri(UgnT,) = {x € B : xy = &(x"), x; > §(x")},
Re(UunT;NT,) = {x € B : xy = &(X'), xg = G(x")}.
Remark 2.13. The following holds:
(i) Qstrong Lipschitz = Q weak Lipschitz
(i) (Q,T,) strong Lipschitz pair = (Q,T,) weak Lipschitz pair

For a proof just define ¢, := ¢ o Ry with ¢ : U, — B given by

X1 - (k(X”)
Ox) = x"
Xy — & (")

Note that the contrary does not hold as the implicit function theorem is not available
for Lipschitz maps.

For later purposes, we introduce special notation for the half-cube domain
E:=B., y:=0E (4)

and its relatively open boundary parts y, and y, := y \ y;. We will only consider the
cases

YWw=9, ¥w=By ¥ = BO,+ (5)

and we note that = and y, y;, y, are strong Lipschitz, see Figure 3.1.
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84 —— S.Baueretal.

Figure 3.1: Mappings ¢, and ¢, between a ball Uy and the cube B.

2.2 Outline of the proof

Let (Q,T';) be a weak Lipschitz pair for a bounded domain Q ¢ RV,

As a first step, we observe H q(Q) 1q(Q) i. e., for the H4(Q)- -spaces the strong
and weak definitions of the boundary conditions coincide; see Lemma 2.14.

In the second and essential step, we construct various regular H"¢-potentials on
simple domains, mainly for the half-cube Z from (4) with the special boundary
constellations (5), i. e.,

Bf o(8) = D} o) = AR, (@), Af (&) = Af ((®) = 8,1 (E);

see Section 3. Potentials of this type are called regular potentials.

In the third step, Section 3.3, it is shown that the strong and weak definitions of
the boundary conditions coincide on the half-cube E from (4) with the special
boundary constellation (5), i. e.,

i ® =D} ®), Al@® =Al@®. (6)

The fourth step proves the compact embedding on the half-cube E from (4) with
the special boundary constellations (5), i. e.,

bf @) ne Al @) — L*E) )

is compact; see Section 4.1.
In the fifth step, Theorem 4.7, (6) is established for weak Lipschitz domains, i. e.,

bf (@) =Df (@), Al (@) =4} (.

In the last step, we finally prove the compact embedding (7) for weak Lipschitz
pairs, i. e.,

D (@) ne'A (Q) — L*(Q)
is compact; see our main result Theorem 4.8.
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3 Weck’s selection theorem =—— 85

2.3 Some important results

Within our proofs, we need a few important technical lemmas. First, the strong and
weak definitions of the boundary conditions coincide for H9(Q)-forms, which is a
density result for H*?(Q)-forms. This is an immediate consequence of the correspond-
ing scalar result, whose proof can be found in [11, Lemma 2, Lemma 3] and with a
simplified proof in [1, Lemma 3.1].

Lemma 2.14 (Weak and strong boundary conditions coincide for HY(Q)). LetQ ¢ RN
be a bounded domain and let (Q,T;) be a weak Lipschitz pair as well as

HE9(Q) = fu e HY(Q) : ulp, =0}

in the sense of traces. Then H:?(Q) = H3(Q) = HE(Q).

Another crucial tool in our arguments is a universal extension operator for the
Sobolev spaces D¥(Q) and A*9(Q) given in [9], which is based on the universal exten-
sion operator for standard Sobolev spaces H*(Q) introduced by Stein in [26]. “Univer-
sality” in this context means that the operator, which is given by a single formula, is
able to extend all orders of Sobolev spaces simultaneously. More precisely, the follow-
ing theorem, which is taken from [9, Theorem 3.6], holds.

Lemma 2.15 (Stein’s extension operator). Let @ ¢ RN be a bounded strong Lipschitz
domain. Then for k € N, and O < g < N there exists a (universal) linear and continuous
extension operator

£ : DP(Q) - DRI(RY).

More precisely, € satisfies EE = E a.e. in Q and there exists ¢ > 0 such that for all
E ¢ D*(Q)

|5E|Dk,q(]RN) < C|E|Dk,q(Q)~

Furthermore, € can be chosen such that EE has a fixed compact support in RN for all
E ¢ DRI(Q).

Our third lemma summarises well-known and fundamental results for the theory
of Maxwell’s equations from [23, 24]. For this, we denote orthogonality and the orthog-
onal sum in L>?(Q) by L and &, respectively, and introduce the harmonic Dirichlet and
Neumann forms

HI(Q) = DI(Q) nAL(Q),  HL(Q) :=DLQ) nAL(Q),

respectively.
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86 —— S.Baueretal.

Lemma 2.16 (Picard’s generalisation of Weck’s selection theorem, Helmholtz decom-
positions and Maxwell estimates). Let Q ¢ RN be a bounded weak Lipschitz domain.
Then the embeddings

BUQ)NA%(Q) — 129Q),  DUQ) NAL(Q) — L29(Q)

are compact and ’H,‘_’)(Q), H%(Q) are finite-dimensional. Moreover, the Helmholtz decom-
positions

L>(Q) = dD9(Q) & AL(Q) 129(Q) = d D471(Q) @ AL(Q)
= D3(Q) @ 8477 () - DY(Q) 0 54771 (Q)
=dD7(Q) e HL(Q) #8507 (Q), = dD7(Q) & #%(Q) @ 8AT(Q)

are valid. In particular, all ranges are closed subspaces of L>4(Q) and
Ag—1 o -1 1
d D7 (Q) = DI (Q) n HI (), dD?(Q) = DI(Q) N HE ()",
8A7H(Q) = ALQ) N HL Q) 8 AT (Q) = AL(Q) N HL Q) .
Furthermore, there exists ¢ > 0 such that

C|E|Lz,q(g) < |dE|Lz,q+1<Q) +16 ElLZ"H(Q)
holds for all E € DY(Q) n A9(Q) N 12 (Q) and allE € DY(Q) nA%(Q) n Hq Q) i.e., the
Maxwell (or Friedrichs—Poincaré- type) estimates are valid.

Corollary 2.17 (Refined Helmholtz decompositions). Let Q ¢ RY be a bounded weak
Lipschitz domain. Then

DY(Q) = DI(Q) @ (DY(Q) N 82T (Q)), d B9(Q) = d(b¥(Q) N 8 AT (),
DY(Q) = D(Q) @ (D1(Q) N 8 AT (Q)), dD?(Q) = d(D%(Q) N 8 AT (Q)),
A%(Q) = (dDT7(Q) nA%Q)) @ AL(Q), 8A1(Q) = 8(dDTH(Q) N A(Q)),
A%(Q) = (D71 (Q) N A1(Q)) @ AL (), 8A7(Q) = 8(d DT H(Q) n AY(Q)).

Let m,q : L29(Q) — 8AY(Q) be the orthonormal Helmholtz projector onto
8 A?*1(Q). By the latter corollary, 77, o maps D4(Q) to
q,Q

DY(Q) N8 AT (Q) = DY(Q) N AL(Q) n HL Q)"

Corollary 2.18 (Maxwell estimate for d and Neumann boundary condition). Assume
Q ¢ RY to be a bounded weak Lipschitz domain. Then for all E € DY(Q) it holds
n,0F € DY(Q) N8 AT (Q) and d i, oE = A E as well as

Clﬂq’QEle,q(Q) < |dE|L2,q+1(Q),

with ¢ from Lemma 2.16.
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3 Weck’s selection theorem =— 87

If O = RY, a similar theory holds true utilising polynomially weighted Sobolev
spaces; see [23] for details. Let TgRN L29RY) — Ag(]RN ) be the orthonormal

Helmholtz projector onto Ag(lRN )-
Lemma 2.19 (Helmholtz decompositions and Maxwell estimate for d in the whole
space). It holds ’HZ](IRN) = H%(]RN) = {0} and

1>9(RY) = DI(RY) @ AY(RY), DI(R") = DL(RY) @ (DU(RY) n AZ(RY)).

Moreover, for all E € DY(RY) it holds My rvE € DYRN) n Ag(IRN) and dn, pvE = dE as
well as

|nq,]RNE|Dq(]RN) < |E|Dq(]RN)-

Regularity in the whole space (see, e. g., [12, (4.7) or Lemma 4.2(i)]) shows the fol-
lowing result.

Lemma 2.20 (Regularity in the whole space). DY(RY) n AY(RY) = HY(RN) with equal
norms. More precisely, E € DYRY) n AYRY) if and only if E € H*(R") and
RY) +18 E|i2,qfl(]RN

IE oy = 1Elzauny + 14 Elzg .

HY (RN

3 Regular potentials

As one of our main steps (step 4), in Section 4.1 the compact embedding is proved
on the half-cube £ ¢ RY. This will be achieved (in step 2) by constructing regular
Hl(E)-potentials for d-free and 8-free L>4(2)-forms, which will then enable us to use
Rellich’s selection theorem. This section is devoted to the construction and existence
of these regular potentials, i. e., to step 2.

3.1 Regular potentials without boundary conditions
Let us recall
dp?'(Q) = D@ NHLQ", 8ATHQ) = ALQ) nHL(Q)*

from Lemma 2.16. The next two lemmas ensure the existence of Hl’q(Q)-potentials
without boundary conditions for strong Lipschitz domains.

Lemma 3.1 (Regular potential for d without boundary condition). Let @ ¢ R be a
bounded strong Lipschitz domain. Then there exists a continuous linear operator

1,9-1/pN -1/mpN
T : DHQ) n 1L Q)" - HMH(RY) n AT (RY)
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88 —— S.Baueretal.

such that for all E € D(Q) n HE(Q)*
dTE=E inQ.
Especially,
DZ(Q) nHE(@Q" = dH" Q) = d(H* Q) n AL ()

and the regular potential depends continuously on the data. Particularly, these are
closed subspaces of L>4(Q) and T4 is a right inverse to d. By a simple cut-off technique
T4 may be modified to

Ta : DA(@Q) nHI (@) — HYH(RY)

such that T4E has a fixed compact support in RY forallE € Dg(Q) n ’HZ,(Q)L.

Proof. Suppose E € DZ(Q) n #{(Q)". By Lemma 2.16, there exists H € D?7(Q) with
dH = E in Q. Applying Corollary 2.18, we get m, ;oH € D71(Q) n §AY(Q) with
dm,_1oH =dH =Eand

|7Tq—1,QH|Dq—1(Q) < C|E||_2,II(Q)~

Note that 7, ;oH is uniquely determined. By the Stein extension operator

& D¥NQ) — D*'(RY) from Lemma 2.15, we have m, 1oH € D*'(RY)
with compact support. Projecting again, now with Lemma 2.19 onto Ag_l(lRN ), we
obtain nq,l,]RNSHq_LQH € D‘H(IRN ) N Ag_l(lRN ) (again uniquely determined) with
dmy_jvEmgoH = d&my_oH and

|7Tq—l,]RN ganl’QH|Dq_1 (]RN) < |5ﬂq,1,QH|Dq_1(]RN) < C|anl,QH|[)q—1 (Q)'

Lemma 2.20 shows 7,_y gnEmy_; oH € HM (RN 0 Ag’l(]RN ) with

|7Tq_1,]RN gﬂqfl,QHlHl,q—l(]RN) = |7Tq—1,]RN ganl,QH|D¢I-l(]RN)'
Finally, T4E = m;_y pvE€my_qoH € HYY(RN) 0 Agfl(lRN ) meets our needs as
|7:;1E|Hl,q—l(]RN) < C|E|L2’q(Q)

andd 74E = dmy_ygvémy 1 oH =démy_1oH =dmg_ 1 oH=dH =EinQ. O
By Hodge- x-duality, we get a corresponding result for the §-operator.

Lemma 3.2 (Regular potential for § without boundary condition). Let @ ¢ RN be a
bounded strong Lipschitz domain. Then there exists a continuous linear operator,

Ts : AL Q) n 1@ — M (RY) n DIT(RY),
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3 Weck’s selection theorem — 89

such that for all E € A}(Q) n 1 (Q)*
8TeE=E inQ.
Especially,
AL(Q) nHEQ)" = 8H" Q) = 8(H""'(Q) n DI (Q))

and the regular potential depends continuously on the data. In particular, these are
closed subspaces of L>4(Q) and Ts is a right inverse to 8. By a simple cut-off technique
Ts may be modified to

Ts : A3(Q) nHI(@Q)* — HH(RY)

such that T;E has a fixed compact supportin R" for all E € A (Q) n HI(Q)*.

3.2 Regular potentials with boundary conditions for the half-cube

Now we start constructing H"9(E)-potentials on £ with boundary conditions. Let us
recall our special setting on the half-cube

E=B_ and y,=0, y,=By, or y,=Bg,.

Furthermore (cf. Figure 3.2), we extend = over y, by

|

[
[

= int(EuUE),

{xeB: xy>0}=8B,, ify, = By,
{xeB:xyx>0}={xe€B, : x;>0}=B,,, ify,=Bg,.

Lemma 3.3 (Regular potential for d with partial boundary condition on the half-cube).
There exists a continuous linear operator

Sq: DI ((E) - HH(RY) n (@),
such that for all H ¢ Iu))‘fwo(E)
dS;H=H in&.
Especially,
D () = D! (&) =dHT(E) =dDi (@) = dbBf(®)

and the regular I:I;;q"l(E)-potential depends continuously on the data. In particular, these
spaces are closed subspaces of L>4(Z) and S, is a right inverse to d. Without loss of
generality, Sy maps to forms with a fixed compact support in RY.
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90 —— S.Baueretal.

Figure 3.2: The half-cube = = B_, extended by = to the polygonal domain =, and the rectangles
Vv =Bgandy, = Bo+-

Proof. The case y, = 0 is done in Lemma 3.1. Hence let y, = By or y, = By ;. Suppose
H e ID);’, o(®) and define H ¢ L*>(E) as extension of H by zero to & by

- (8)

0 inkE.

_ {H inE,
H

By definition of f);’, 0 (E) (definition of the weak boundary condition), it follows d H=0
in&,i.e., H € D{(E). Because £ is strong Lipschitz and topologically trivial, especially
#%(E) = {0}, Lemma 3.1 yields a regular potential E = T;H € H*(RY) n DI'(RY)
withdE = Hin E and

|E|H1,q—1(IRN) < C|H||_2,q(§) < C|H||_2,q(5>-

In particular, E € H""(E) and dE = 0in &, i.e, E € HY'(E) n DI'(E). Using
Lemma 3.1 again, this time in &, we obtain F = TgE € HY2(RN) ¢ HY2(E) with
dF =EinZand

|F|H1,q—2(]RN) S C|E|L2‘q(§)’

Since E € H*""!(E), we have F € D*1%(8). Let £ : D"%(E) — D"*(R") be the Stein
extension operator from Lemma 2.15. Then

Sq ¢ D@ — HYTRY)
H — E—-d(EF)
is linear and continuous as
|SdH|H1,q71(]RN) < |E|H1,q71(]RN) + |8F|D1,q72(]RN)

S |E|H1,q71(]RN) + |F|D1,q72(é) S |E|H1,q71(]RN) < ClHlLZﬂ(E)-
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3 Weck’s selection theorem =—— 91

Since S4H = 0in £, we have SqH va = 0, which means S4H ¢ B;’V‘I*I(E). Therefore, by

Lemma 2.14 we see S4H € I-Dii;vq‘l(E) C If)‘ylv‘l(E) C Iﬁ‘y];l(E). Moreover, d(SqH) = dE = H
in &, especially d(SyH) = H in E. Finally, we note

dHNE) cdb](®) < DY ((8), dD](E) ¢ DY ((8) c dHTT (@),
completing the proof. O

Again by Hodge- x-duality, we obtain the following.

Lemma 3.4 (Regular potential for § with partial boundary condition on the half-cube).
There exists a continuous linear operator

S B 5@ — HHIRY) N FITE),

such that for all H ¢ 5;{ o®

8SsH=H in&.

Especially
AT (@ =AT ((® =8H,T(E) = 8A1(E) = 5ATT(®)
and the regular I:I;’Vq“(E)-potential depends continuously on the data. In particular, these

spaces are closed subspaces of L*1(E) and S is a right inverse to 8. Without loss of
generality, S; maps to forms with a fixed compact support in RY.

3.3 Weak and strong boundary conditions coincide for
the half-cube

Now the two main density results immediately follow. We note that this has already
been proved for the H*?(Q)-spaces in Lemma 2.14, i. e., Fllr’q(Q) = I:I}’q(Q).

Lemma 3.5 (Weak and strong boundary conditions coincide for the half-cube).
N9 (=) = DI (= A (=) = A9 (=
D, (8)=D, (E) and A, (E)=A4, (E).

Proof. Suppose E € I.g))‘fv(E), and therefore dE ¢ Ic)‘y’f(l)(E). By Lemma 3.3, there exists
H = S4dE € H}7(E) with d H = d E. By Lemma 3.3, we get E - H € B! (8) = DY (8),
and hence E € D! (). O
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4 Weck’s selection theorem

4.1 The compact embedding for the half-cube

First, we show the main result on the half-cube £ = B_ with the special boundary
patches

Yy =0, YV:BO or yV:B0,+

from the latter section. To this end, let € be an admissible transformation on L>?(5)
and let us consider the densely defined and closed (unbounded) linear operator

d?:DINE) c L27'(8) - 129(E); EwdE
together with its (Hilbert space) adjoint
—80e:=(al") 7'M (B) < 129(B) - LX7N(E); H o -8eH.

oq:‘_oq:‘ Z,LI:‘ Z,L]: 1
Note that by Lemma 3.5 we have Ayv () = Ayv (E). Here, L2(E) denotes L>4(5) equipped
with the inner product (-, ~)|_z,q(5) = (-, ')Lz,q(E). Let @, denote the orthogonal sum
with respect to the Lg’q-scalar product. The projection theorem yields immediately.

Lemma 4.1 (Regular Helmholtz decompositions for the half-cube). The Helmholtz de-
compositions

198 = 0! (@ e e Al (@), DI (®=dH @), Al (E)=8HT@E
hold. Moreover, the refined Helmholtz decompositions

b2 ® = diA () e, (DL (®) ne AN (D)),
,1oq = "1,!1*1 = 71uq = 1 "1,q+1 o
e Al (B)=(dHIT @) ne Al (B) @& §H,TT (),

DI (B)ne Al (E) = (AW, (E) ne Al (B)) @, (B (B) ne 8H, T (E))

are valid, and the respective regular potentials, given by the operators Sy and Sg from
Lemma 3.3 and Lemma 3.4, respectively, depend continuously on the data.

Proof. The projection theorem yields L2>9() = d Io);?:l(E) @, e’lﬁzv)o(i). Furthermore,
Ad-1=y _ AR 1=y Apla-lmy - RN (=
dby(8) = dbf (@) = dHT(E) = BY (@)
by Lemma 3.3 and
A (=) A4 (=) - s pbatlig
A, o) =4 (E) =8H,"(E)
by Lemma 3.4. The other assertions follow immediately. O
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3 Weck’s selection theorem =—— 93

Lemma 4.2 (Weck’s selection theorem for the half-cube). The embedding
N (= -134 (= 24
Dy (B)ne A, (B) — L(B)

is compact.

Proof. Let (H,),cn be a bounded sequence in Io))‘fr () ﬂeilﬁgv(E). By Lemma 4.1, we can
decompose

H,=H +Hy =dE, +¢ '8E) e (A (®) ne Al (8)) &, (D (B) ne ' SHT(®)),
with E9 = S;HY and E? = SsHS. Then d HY = d H,, and 8 eHY = 8 eH,, as well as

d d
|En |H1’q71(5) S C |Hn |L2,q(5) S C |Hn||_z,q(5),

S 8
|En|H1,q+1(E) <cC |Hn|L2'q(E) <cC |H"|L§‘q(E)'

By Rellich’s selection theorem and without loss of generality, (ES) and (ES ) converge
in L>971(8) and L>7*1(E), respectively. Moreover,

|HS - HY|?

|L§’q(5

d d d d
y < (Hy — Hyp, d(Ey _Em)>L§"?(

g)

= —(8e(H-HY),EY - Ef‘n)Lz,qfl(E) < C|E] - Egli2a1(z),

n
IHS _Hrsnﬁgﬂ(g) = <HS _Hr?vgil S(ES _Ersn)>|_§4(5)

= —(d(Hpy - Hp,), ES — Ep) 2012y < CEpy — Ep 2005

Thus (HS) and (HS ) converge in Lf;q(E) and altogether (H,) converges in Lﬁ’q(E) as well.
O

Remark 4.3. The use of Helmholtz decompositions and regular potentials in the proof
of Lemma 4.2 demonstrates the main idea behind an elegant proof of a compact em-
bedding. This general idea carries over to proofs of compact embeddings related to
other kinds of Hilbert complexes as well, arising, e. g., in elasticity, general relativity
or biharmonic problems; see, for example, [22].

4.2 The compact embedding for weak Lipschitz domains

The aim of this section is to transfer Lemma 4.2 to arbitrary weak Lipschitz pairs
(Q,T,). To this end, we will employ a technical lemma, whose proof is sketched in [24,
Section 3] and [31, Remark 2]. We give a detailed proof in the Appendix. Let us con-
sider the following situation: Let ©, © be two bounded domains in R" with boundaries
Y :=00,Y := 00 andlet Y, c Y be relatively open. Moreover, let

$:0 -0, Yp=¢p':0-50
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94 —— S.Baueretal.

be Lipschitz diffeomorphisms, this is, ¢ € C*(0,8) and ¢ = ¢* ¢ C*'(8,0). Then
0 = ¢(0), Y = ¢(Y) and we define Y, := ¢(Y,).

Lemma 4.4 (Pull-back lemma for Lipschitz transformations). Let E ¢ f)%o (®), respec-
tively, E ¢ ﬁ@o(@)) and H ¢ 871&% (©), respectively, H ¢ eilﬁio(e) for an admissible
transformation € on L29(®). Then

YE € 6;1{ (©), resp., f)g ®) and dy*E=1y*dE,
0 0
Y'H e y‘lﬂé (©), resp., y"lﬁg ©) and Sup*H=+xdyp* «eH =+« p* x 8eH,
0 0

where p == (-1)™1 x * « e¢p* is an admissible transformation. Moreover, there exists
¢ > 0, independent of E and H, such that

I'}b*EIDq(@) < C|E|Dq(@)’ |¢*H|H—1Aq(@) < C|H|571Aq(@)'

Let (Q,I';) be a bounded weak Lipschitz pair as introduced in Definitions 2.3
and 2.5. We adjust Lemma 4.4 to our situation: Let U, ..., Uy be an open covering
of I' according to Definitions 2.3 and 2.5 and set U, := Q. Therefore, U, ..., Uy is an
open covering of Q. Moreover, let Xk € fZ°°(Uk), k € {0,...,K}, be a partition of unity
subordinate to the open covering U,, ..., Ugx. Now suppose k € {1,...,K}. We define

Qk = Uk n Q, Fk = Uk n F, FT,k = Uk n FT’ Fv)k = Uk n FV,
T, :=0Q, Le=0A\L T=intT, uZ),  Toc=int@, U,
o :=y\B,, ¥, = int(y, U D), 7, := int(y, U G).

Lemma 4.4 will from now on be used with
0:=0Q, 0:=E ¢=¢:Q—E Y= :E->0
and with one of the following cases:
Yo:=Trp Yoi= l:'r,k’ Yo:=Typ Yo:= fv,k-
ThenY =T} and Y = ¢, (T},) = y as well as (depending on the respective case)

?O = ¢k(rr,k) =V Y0 = ¢k(fr,k) = Vr’ Vi € {0’B0>B0,—}> Ww=Y \ Vr’
Y0 = ¢k(rv,k) =Y Y0 = ¢k(fv,k) = yv’ Yy € {ﬁrBO>BO,+}) Ve =Y \ )_/V'

Remark 4.5. Lemmas 3.3, 3.4, 3.5, 4.1, 4.2 hold for y, = B, _ without any (substantial)
modification as well.

It is straightforward to show the following.
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3 Weck’s selection theorem = 95

Lemma 4.6 (Localisation). Let (Q,T,) be a bounded weak Lipschitz pair and let k be in
{1,...,K}. Then for E € [o)? (Q), respectively, E € [o)? (Q)and H € 5‘; (Q), respectively,
H e Al (Q) it holds
Eebl (@)  wmEeb? (@)  Hedl (@)  xHeAl @),
rr,k rr,k l—‘l/,k rv,k
EeDI (@), XeE € DL (Qp), HeAl (Qp), XieH € A (@)
rr,k r‘r,k 1-‘v,k < l“l,’k <
Theorem 4.7 (Weak and strong boundary conditions coincide). Let the pair (Q,T;) be
bounded and weak Lipschitz. Then D (Q) = BZ (Q) and Al (Q) = A? (Q).

Proof. Suppose E € [o)? (Q). Then we see xoE € f)q(Q) C f)l‘i (Q) by mollification. Let

ke{l,...,K}.Theny,E ¢ 612 (Q;) by Lemma 4.6. Lemma 4.4, Lemma 3.5 (with y,, := y,)
.k

and Remark 4.5 yield

YeuE) € B8 ® =07 (), ¥r=¢urp). e €10,Bo.Bo, )
Then xE = 3 Pi WiE € I°DIZ (@) < D (Q) follows by Lemma 4.4. Therefore, we obtain
T,k T

E = ¥, xcE € DL (Q). AL (Q) = A? (Q) follows analogously or by Hodge-*-duality. O

Now the compact embedding for bounded weak Lipschitz pairs (Q,I';) can be
proved.

Theorem 4.8 (Weck’s selection theorem). Let (Q,T,) be a bounded weak Lipschitz pair
and let € be an admissible transformation on L>9(Q). Then the embedding

D (@) ne'AL (Q) — L29(Q)
is compact.
Proof. Suppose (E,)is abounded sequence in IS? (Q)ns’lﬁg (Q). Then by mollification
Eop = XoEn € D1(Q) ne'AT(Q)

and E, , even has compact support in Q. By classical results (see [28, 29, 24]), (E, )
contains a subsequence, which is again denoted by (E, ,), converging in Lﬁ’q(Q). Let
k €{1,...,K}. By Lemma 4.6,

Epp = XiEn € 6; (),  €Exn € Ag Q)
T,k v,k

and the sequence (Ej ,) is bounded in In)g QN 8‘1512 (Qy) by the product rule. By
T,k v,k

Lemma 4.4, we have Y} E; , € Ing (E) and

W’;Ek,nlm@) < C|Ek,n | DY(Qy)’
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showing that (Y E;,) is bounded in If); (). Analogously, (Y;E;,) < y;lﬁg (B) is

bounded in y;lﬁ%(E) with the admissible transformation  := (-1)™! « Y « egpy.
Thus (i E ) is bounded in

Ic)g/T (E) n FIZWVIV(E) C Dgr (E) n }4];15;2(5)’ Vv € {0> BO’BO,+}’ Vr =Y \ )_/V’

Thus, by Lemma 4.2 and without loss of generality, (1 Ey ,) is a Cauchy sequence in
L>(E). Now

Ejen = DiPicEin € L1(Q)
and Lemma 4.4 yields
|Ejn — Ek,m||_2v‘1(gk) < Cll/’ltEk,n - l/)ltEk,mh_Z-‘I(a)-

Hence (Ey ,) is a Cauchy sequence in Lz’q(Qk) and so in Lﬁ’q(Q) for their extensions by
zero to Q. Finally, extracting convergent subsequences for k = 1,..., K, we see that

K K
(En) = <ZXkEn> = (Z Ek,n)
k=0 k=0

is a Cauchy sequence in Lg’q(Q). O

Remark 4.9 (Independence of the transformation). By standard techniques, it can be
shown that Weck’s selection theorem is independent of the transformation ¢, i. e., the
compactness of the embedding in Theorem 4.8 does not depend on €. For details,
see [2].

5 Applications

From now on, let O ¢ RY be a bounded domain and let (Q, T,) be a weak Lipschitz pair
aswell as & : L29(Q) — L%9(Q) be admissible. Then by Theorem 4.8, the embedding
D¢ (@) ne'A (Q) — L*(Q) )

is compact. The results of this section immediately follow in the framework of a gen-
eral functional analytic toolbox; see [21, 20, 22]. For details, see also the proofs in [1]
for the classical case of vector analysis.

5.1 The Maxwell estimate

A first consequence of (9) is that the space of so-called “harmonic” Dirichlet-Neumann
forms

HI(Q) =D (@ ne A (@)
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3 Weck’s selection theorem =—— 97

is finite-dimensional, as the unit ball in HE(Q) is compact by (9). Using the Helmholtz
projections of Theorem 5.2, we see that the dimension of #J(Q) does not depend on
g, in particular dim #Z(Q) = #%(Q). By a standard indirect argument, (9) immediately
implies the so-called Maxwell estimate.

Theorem 5.1 (Maxwell estimate). There exists a positive constant c.,, such that for all
E e DY (Q) ne'AL (Q) n HI(Q)*

1/2
)

2 2
|E||_Z::‘1(Q) < Cm (l dEley‘Hl + | 8£E||_2,11*1(Q)

Q)

Here, we denote by L, orthogonality with respect to the Lﬁ’q(Q)-inner product.

5.2 Helmholtz decompositions

Applying the projection theorem to the densely defined and closed (unbounded) linear
operators,

a0 @) < L) - Q) E~dE
with (Hilbert space) adjoint (see Theorem 4.7)
-8 := (A1) 1AL (@) < L29(Q) - L7N(Q); H - -8eH

and

—e7 8 AT Q) < LNQ) - PUQ); H e -7 8H
with adjoint (see Theorem 4.7)

df = (-7 8]")": Df (@) c 1P9(Q) - L' (Q); E > dE
we obtain the Helmholtz decompositions

179(Q) = dBI (@) e, AL (@), (10)

L79(Q) = D} (@) @ e 8ATT (@), 1)

Therefore, lo)lq ,o(Q) =d 51‘571(0) &, HZ(Q) and, altogether, we get the refined Helmholtz
decomposition

L79(Q) = dBT(Q) @, H(Q) & e 18 ATT(Q). (12)
Theorem 5.2 (Helmholtz decompositions). The orthonormal decompositions
L29(Q) =d 6?;1(9) @, e*lﬁl’iv’o(m
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B -1 g Ag+1
=D (@ e, BAI(Q)
= db{ Q) &, HI(Q) @ 7 BATT(Q)

hold. Furthermore,

dbf (@) = d(bf (@) ne ' 8AIT (@) = d(DF (@ neTAT (@) nHIQ)™),
847 (@) =8(Af (@ nedDI (@) = 8(A] (@ ne(df (@) nHI(Q)™))

and

dD{ (@) = Df (@) nHI(Q)*, 8AT(@) = Al [(@ nHIQ)",
bf 4(@) =d DI (Q) e, HI(Q), Al 5(Q) = 8AT(Q) @1 e HI(Q).

The ranges d [O)gfl(Q) and 85?*1(9) are closed subspaces of L2(Q). Moreover, the d-,
respectively, 6-potentials are uniquely determined in 6? Q)n e‘lﬁ‘r] ,o(Q) NHI(Q)* and
A?V(Q) ne(f)?po(Q) nHZ(Q)LE), respectively, and depend continuously on their respective
images.

Proof. For ¢ = id, (10) and (11) yield
Al (@) = (dBf (@) n Al (@) @ AT (@),
bf (@ =D} (@ e (Bf (@) n8AT"(Q)
and thus with (10), (11) and (12)

SAI‘ZV Q) = S(AI‘ZV(Q) nd 61‘2:1(0)) = 6(!31‘11’0(0) n AI‘ZV(Q) nHIQ)"),

dbf (@) = d(bf (@) n8AL (@) = d(Df (@ nAL (@) nHIQ)").
Now Theorem 5.1 implies the closedness of the ranges and the continuity of the poten-
tials. The other assertions follow immediately. O

Corollary 5.3 (Refined Helmholtz decompositions). It holds

bf (@ = dD{ (@) e, (Bf (@) ne Al (@)
= b (@ e, (OF (@) ne 8AT (@)
= db{ (@) &, HI(Q) & (D] (@ ne™ BAT (),
e Al (@) = (dBf (@ ne AL (@) @ £AL (@)
= (B J@ne Al (@) e e 8AT Q)
= (@b @ ne Al () @, HAQ) & £ BATT(Q).
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3 Weck’s selection theorem =— 99

5.3 Static solution theory

As a further application, we turn to the boundary value problem of generalized elec-
tro and magnetostatics with mixed boundary values: Let F € L>7"1(Q), G € L>771(Q),
E,E, € Lﬁ’q(Q) and let € be admissible. The problem is to find E € D4(Q) n e 'A%(Q)
such that
dE=F,
S¢E =G,
E-E, € D{ (),

e(E-E,) € Al Q).

(13)

For uniqueness, we require the additional conditions
(€E,Dp)2aqy = e €R, £=1,....d, (14)

where d is the dimension and {D,} an €-orthonormal basis of Hg(Q). The boundary
values on I'; and I, respectively, are realised by the given volume forms E; and E,,
respectively.

Theorem 5.4 (Static solution theory). (13) admits a solution, if and only if
E, €DYQ), E,ce'A(Q),
and
F-dE, 1 Al'((Q), G-8¢E, 1 DI (). (15)

The solution E € DY(Q) n £ 'A%(Q) can be chosen in a way such that condition (14)
with a € R? is fulfilled, which then uniquely determines the solution. Furthermore, the
solution depends linearly and continuously on the data.

Note that (15) is equivalent to
F-dE, edDl (Q), G-8¢E, e8Al (Q).

For homogeneous boundary data, i.e., E; = E, = 0, the latter theorem immediately
follows from a functional analytic toolbox (see [21, 20, 22]), which even states a sharper
result: The linear static Maxwell-operator

M o BI@ne'A (@@ —  dD?(Q) x8A% (Q) xR
E +—  (dE,8€E, ((¢E, D) 200))iy)

is a topological isomorphism. Its inverse M~ maps not only continuously onto its do-
main of definition D (Q)ne™'A (Q), but also compactly into L29(Q) by (9). For homo-
geneous kernel data, i. e., for

M, : 61‘11(9) n s—lﬂ‘gv Q@ nHIQ*> — d |")1‘£T(Q) X SA‘r’V(Q)
E — (dE,8¢€E)
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we have |M61| < (cfn + 1)1/ 2, For details and a proof of Theorem 5.4 in the classical

setting of vector analysis, see [1].

5.4 General regular potentials and decompositions

A closer inspection of the proof of Lemma 3.3 shows that Lemma 3.3 and Lemma 3.4
hold for more general situations. Using the partition of unity from Section 4.2 and the
concept of extendable strong Lipschitz pairs, we can even generalise Lemma 3.3 and
Lemma 3.4 to general strong Lipschitz pairs. Note that by Theorem 5.2

dbf (@ =DIL@ nHI @', DBI'i(Q) =dDf (@) e HITQ.  (16)

Theorem 5.5 (Regular potentials and decompositions for strong Lipschitz domains).
Let Q c RN and let (Q, I',) be a bounded strong Lipschitz pair.
(i) There exists a continuous linear operator

S3: DI @) - H (@),
such that d S = id | br-' (@) Especially,

dDi(@ = dH" (@)

and the regular Izllr’q_l(Q)-potential depends continuously on the data. In particular,

these spaces are closed subspaces of L>4(Q) and Sg is a right inverse to d.
(ii) The regular decompositions

f)‘gr(g) = Fl}’f(g) +d Fl#f‘l(g) '5?,,0(9) =d Fl}ff‘l(g) + (Fl}’f(g) n 61‘{,0(9))
= 53 dDE (@) + D] (@), = dH (@ e HI(Q)
= dHp? Q) e, HAQ)
hold with linear and continuous regular decomposition, respectively, potential op-
erators, which can be defined explicitly by the orthonormal Helmholtz projectors

and the operators Sg. Note that H?(Q) is a subspace of smooth forms, i. e., it holds
HUQ) =D} (@ AL [(Q)nC>Q).

Hodge-*-duality yields the corresponding results for the co-derivative 8.

For details, see [2]. In the case of no or full boundary conditions, related results
on regular potentials and regular decompositions are presented in [4].
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3 Weck’s selection theorem =— 101

Appendix A. Proof of Lemma 4.4 (pull-back lemma
for Lipschitz transformations)

We start out by proving the assertions for the exterior derivative.

A.1 Without boundary conditions

LetE = ¥, E;dx' € DY(®). We have to show y*E € D/(®) with d p*E = p* dE.
(i) Let us first consider ® = ¥, ®;dx! € C®*9(@), i.e., ®; € C*}(®) for all I. In the
following, we denote by~ the composition with . We have

Ay =Y oy dx, P O=Y Oy’ dx =Y D) A A
i I I

do =Y 9,0,(dx) A (dx).
Lj
By Rademacher’s theorem, ®; = ®; -1 and i; belong to C*'(6) ¢ H'(6) and the
chain rule holds, i. e., 3;®; = ¥; ;P01 As 1; € H'(®) we get d; € DY (©) by

<d 1,[)j,8§0>|_z,1(c:)) = —<§bj,88§0>|_2,0(é) =0
for all ¢ € €°%(®). Thus by definition, we see
dy @ =Y D) A ) A A ;) =Y dD(dx) A(d i) A Adiy)
i i

- ¥ 5B (dx) A @) A A Ay

Iij

= Y DY) A[dP) A Ad ).
7

On the other hand, it holds

P A0 =) (%" dx) A" dx') = Y GO Ady) A+ A Ay ).
Lj

Lj

Therefore, )*® € D4(©) and d p* @ = p* d D.

(ii) For general E ¢ DY(0), we pick @ ¢ €°*91(8). Note supp® cc © = ¢(©). Re-
placing ¥ by ¢ in (i) we have ¢* + ® € DY 97(0) with d¢* « ® = ¢* d «® and,
since ¢p* » @ = Y (/*?(DTI(].')* dx! holds, supp ¢* « ® cc ©. By standard mollifica-
tion, we obtain a sequence (¥,) c C°N-9"(@) with ¥,, — ¢* » ® in DY 971(@).
Furthermore, «¥,, € €°>9*1(@). Then

<¢*E,5CD>L2,(I(©) = J’IIJ*E/\*S(Dz iJ-l/J*EAlp*qb*d*cD: ijlp*(E/\(p*d*(D)

0 ¢} 0
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102 — S.Baueretal.

=+ E/\¢*d*cD:J_rJE/\d¢**cD<—ijE/\d‘}’n
0 6

=+

EAnxxd**Y¥, =+(Eb *\I’n)Lz,q(e)
= (B, w20 g = +(AE, 4" % D paguag) = j dEAG" *
©

-+ j Y (AEAG" + D) =+ J(w* dE) A #® = ~(§" dE, @) 20 g

[¢] [¢]

and hence *E e DY(0) with d*E = y* dE.
(iii) Let E € DY(®). By (ii), we know y*E € D4(0©) with d *E = 1)* d E. Hence

W By = [ WEAWE= [ @'Y Eng” «p'E
i 0

=+ JE/\ *(*(p* % 'I)*)E < C|E|iz,q<®)
(€]

and

|d l/)*E|L2,q+1(@) = |l/)* dE||_2)'1+1((S)) < C|dE|L2,q+1(®).

A.2 With strong boundary condition

LetE € 630(@)) and (E,) ¢ C?;’q (@) with E, — E in DY(@). By Appendix A.1(ii), we know

Y*E,,Y*E € DY(©) with dy*E, = * dE, as well as dp*E = ¢* d E. Furthermore,
Y*E, has compact support away from Y,. Using standard mollification, we obtain
Y'E, € f)go (©). Moreover, by A.(iii), Y*E, — *E in DY(8). Therefore, )*E ¢ 6%0 ©)
with dy*E = ¢* dE.

A.3 With weak boundary condition

LetE € Iﬂ)?(0 (©) and @ € C%‘l”q“(@), where Y; = Y\ Y,. By Appendix A.1(ii), we

again know *E ¢ DY(®) with d*E = y* d E. Moreover, by Appendix A.2, we have
P« D ¢ f){’q*l(@), and hence x¢* x @ ¢ Agfgl(@). We repeat the calculation from
Appendix A.1(ii) to arrive at

(Y"E, 8 (D>|_z,q(@) =

—

YEA*BD = £(E, x$" dx®) g
e]
+

= +(E,xd " * @) 209, = (E, 8 %" * @) 24,
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3 Weck’s selection theorem =— 103

= i(dE, *(l)* * (D>L2,q+1(®) = —<l/)* dE,q3>Lz,q+1(@) = —(d l/)*E, @)Lz,qn(é)

and, therefore, Y*E € 6:17 ©).
0

A.4 Assertions for the co-derivative
It holds by Appendix A.1(ii),

eH e N(©) & eH e DV1(0) & P* xep*P*H ¢ DV I(®O) o up*H e A1(®).
Moreover, using Appendix A.1(iii) u is admissible since for all H € L>9(8),

<],lH,H)Lz,q(@) = i(*l/)* * £¢*H,H>Lz,q(@) = i(l,[}* * S(l)*H, *H)Lz,qu@)

=1J1/)**e¢*H/\H=1J*e¢*H/\**¢:*H

2] C]
2 2
= +(e"H, ¢ H) 200 = €l Hloa g = ClH 205,

Furthermore,

Sup*H=+xdy" xeH =+ x " » deH.

The remaining assertions now follow by Appendix A.1-A.3 and Hodge-+-duality.
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Yohanes Tjandrawidjaja

4 Numerical analysis of the half-space
matching method with Robin traces
on a convex polygonal scatterer

Abstract: We consider the 2D Helmholtz equation with a complex wavenumber in the
exterior of a convex polygonal obstacle, with a Robin-type boundary condition. Using
the principle of the half-space matching method, the problem is formulated as a sys-
tem of coupled Fourier-integral equations, the unknowns being the Robin traces on
the infinite straight lines supported by the edges of the polygon. We prove that this
system is a Fredholm equation of the second kind, in a L? functional framework. The
truncation of the Fourier integrals and the finite element approximation of the corre-
sponding numerical method are also analyzed. The theoretical results are supported
by various numerical experiments.

Keywords: Helmholtz equation, Fourier-integral operators, Fredholm equation, Mellin
transform, error estimates

MSC 2010: 35J05, 31A10, 65N12, 65R20, 35530

1 Introduction

1.1 Motivation

This study takes place in the general framework of the development of numerical
methods for the simulation and the optimization of ultrasonic Non-Destructive Testing
(NDT) experiments. NDT consists of detecting defects in an elastic structure by mea-
suring the ultrasonic echoes produced by these defects, when they are illuminated by
some incident ultrasonic wave. In particular, one needs to simulate the interaction of a
given incident wave with a compactly supported defect in an infinite medium. When
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this medium is homogeneous and isotropic, there exist several efficient methods to
solve this problem, like perfectly matched layers or integral equations. However, dif-
ficulties arise in more complex configurations [5, 7, 21]. Among them, one important
case which remains unsolved is the case where the infinite medium is an infinite elas-
tic plate made of an anisotropic homogeneous material.

A new method called the Half-Space Matching (HSM) method (inspired by [13])
has been introduced recently (see [20]) in view of tackling this problem. As a first step,
the method has been applied in [8] to the acoustic scalar problem in R?, showing that
anisotropy can be taken into account easily, without any additional cost. The method
mainly relies on a decomposition of the infinite domain, exterior to the obstacle, into
the union of several overlapping half-spaces, where a Fourier-integral representation
of the solution is available.

In this first version of the method, the unknowns of the Fourier-integral equations
are the Dirichlet traces of the field on the boundaries of the different half-spaces. But
with this choice, the method cannot be extended to the case of the elastic plate, where
both the traces of the displacement and of the normal stress are required to derive the
half-plate representations. This is a first motivation of the present paper where we
consider still a scalar problem but with different types of traces, including Neumann,
Dirichlet, and Robin traces.

The content of the present paper is the following. We first derive the HSM formu-
lation for general types of traces. Then we prove the well-posedness of the continuous
problem by adapting the arguments used in [8]. More importantly, the main contribu-
tion of this paper is the numerical analysis of the discretized formulation which is not
straightforward and has never been addressed in previous works.

The model problem that we consider is presented in the next subsection. The cor-
responding HSM formulation is the object of Section 2. Section 3 is devoted to the the-
oretical analysis of the formulation: we use Fredholm theory, the main tools being the
Mellin transform [12, 17] and Hilbert-Schmidt operators [19, p. 210]. The discretization
aspects are detailed in Section 4 and error estimates are derived for an appropriate
Fourier discretization. Some numerical results are finally presented in Section 5.

1.2 The model problem

The problem that we consider is the 2D Helmholtz equation in the exterior of a compact
convex polygonal obstacle O, with a boundary condition of Robin type. More precisely,
the problem takes the following form where w, a, and 8 are some complex constants
whose characteristics are specified below, v denotes the outgoing normal to © and the
data is a given function g defined on the boundary of the obstacle 00:

Ap+w2p =0 inQ=R\0,

ey
ap+ﬁg—€ =g onoao.
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4 Numerical analysis of the half-space matching method =— 107

In the sequel, we will use the following assumptions:
Imw>0, B+0, Im(%) >0, and ge L*(00), (@)

which lead to several results as follows:

1. Since Imw > O (which can be justified in a dissipative medium), we will look for
a solution p which belongs to H(Q). More precisely, p is exponentially decaying
at infinity and satisfies

Ve < Im), () — p(oy)e V™ ¢ HY(Q). 3)

However, we emphasize that the numerical method also works in the non-
dissipative case, that is when w ¢ R*. In this latter case, p is chosen as the
outgoing solution of (1) (defined as the unique solution satisfying the Sommer-
feld condition).

2. As B # 0, the problem (1) admits the following variational formulation:

Findp € HI(Q) such that forall g € HI(Q)

JVp~V_q—w2£pq—%a£pq:%a£gq. “)

Using the fact that for p € HY(Q):

Im(%(i 1Vl - w?lpl? - %BL |p|2))

_ Im(w) 2 2 <i> 2
el JIVpI +Im(w)ilp| +Im Bw BL Ipl%,

one deduces, due to the assumption that Im( ﬁiw) > 0, that the bilinear form is
coercive. Then the problem is well-posed by the Lax—Milgram theorem.

Remark 1. For the data g on the boundary, we make the assumption g € L*(d0), which
is convenient for our approach, and which differs from the natural one (g € H -3 (00))
that would be used in a variational approach. In particular, since g € L>(90), we know
from classical regularity results [15] that p € H>/%(Q).

Remark 2 (The Dirichlet case). Taking 8 = 0 and a # 0 in (1), one simply recovers a
Dirichlet boundary condition (a case which has been already treated in [8]). In that
case, the natural hypothesis in a variational approach would be g € H : (00). We point
out that our approach allows to consider more general Dirichlet data which are only
in L?(00). As a consequence, the solution may not be in H' up to the boundary (see
[3] for a similar problem). Note that the numerical analysis performed in Section 4 is
also valid in the Dirichlet case, which is illustrated numerically in Section 5.3.1.
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108 —— A.-S.Bonnet-Ben Dhia etal.

2 The half-space matching formulation

The half-space matching method consists in coupling several analytical representa-
tions of the solution in half-planes surrounding the obstacle.

2.1 Geometry and notation

Let us consider a convex polygon O with n edges v, j=0,...,n-1. For convenience,
we introduce Z/nZ. the ring of integers modulo n. For j € Z/nZ, the angle between Z’O
and 2151 is denoted as 8! or equivalently ¢'*Y, Because of the convexity, one has

0< & <n. (5)

To define the half-spaces, we introduce several local coordinate systems (x’,y’). The
origin of all of them is the centroid O of the polygon O. We choose the reference Carte-
sian coordinate system (O, 2, e}(f) such that e is orthogonal to £, and oriented to the
exterior of the polygon, while the axis eg is 1/2 counter clockwise to eg. The other local
coordinate systems (O, €}, ei,) are defined recursively as follows:

e = —cos0*'e) +sin 67",

Vjezmz, | L o
! = —sin6’*'e] - cos"e),.

(6)
If we defme P as the distance of the centroid of the polygop to the edge %), each half-
plane (0’ is defined in the local coordinate system (O, €}, €),) as
Vjez/nz,, O ={:>V}x{y eR},
and its boundary denoted by ¥ is given by
Y= =V} x{y eR}.

All these notations are summarized in Figure 4.1 for three examples of polygon.

7
21
EO

Figure 4.1: Examples of polygons O for n = 3, 4, and 6 and associated notation.
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4 Numerical analysis of the half-space matching method =—— 109

2.2 Half-space problems

The jth half-space problem is defined as follows: given i € L2(¥), P (1) is the unique
solution in H((Y) of

AP + w’P = 0, in Qj,
j ‘ @
aP’ +Ba—P. =y onY.
ox

This problem is well-posed under assumptions (2) for the same reasons than the ones
detailed in Section 1.2. Remark again that in the usual framework, we would take {/ ¢
HY2()), but here we take ¢/ € L2(¥/). Applying the Fourier transform in y’ defined as

v e (), W) - v% JW(V)e""yidﬂ, ®

we obtain the following ordinary differential equation in X/, parametrized by the
Fourier variable ¢:

(gjf; =+ (0 - 52)13" =0, x>0, o
b B -,
whose unique L? solution is given by
P(d,£) = el £, (10)
where Im \w? — £2 > 0 and
(a+ 1B\w? — £2)AE) = D). (1)

One can check that, thanks to assumptions (2), the quantity a + 181/w? — £2 never van-

ishes for ¢ € R. Finally, by taking the inverse Fourier transform, the solution )2 W) of
(7) is given by

Pj(Xj,yi)— 1 J- n/w 820 -1) zg’yd{ (12)

2 R a+zﬁ\/w2 &

2.3 Half-space matching integral equations

For the solution p of problem (1), let us define the Robin traces

VjezZ/nz, ¢ = <ap ﬁav) (13)

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:03 PM



110 —— A.-S.Bonnet-Ben Dhia et al.

Figure 4.2: Compatibility conditions on 3! n Q° and 22 n Q°.

Note that <p’ e L2(¥) since p € H*'*(Q). Our objective is to derive integral equations
linking the <p’ by using half-space representations of Section 2.2 and the fact that the
half-spaces (Y overlap. First, the restriction of p in (¥ is the solution of (7) for Y= (p’ .
By uniqueness,

plo = P(¢). (14)

Then the quantity
op
<ap +h axii1> PHnQ )
is equal both to
gajillz,-ﬂmj (by definition of ¢/*')
and to
. oPl (&
aP'(¢) + B (ipl) (by (14)).
aX]_l zjtanj

This provides the compatibility relations (see Figure 4.2)

oP/(¢)

e on¥'nQ, Vjez/nz. (16)
ot

¢ = aP(¢)) +B

Remark 3.
—  Such compatibility relations have been firstly introduced in [6, 13] for Dirichlet
traces in the case of periodic media.
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4 Numerical analysis of the half-space matching method =—— 111

—  Here, we have used the overlap of two consecutive half-spaces & and *'. This
will be sufficient for our formulation, even for polygons with more than four edges
where non-consecutive half-spaces may overlap (see Figure 4.1 on the right).

This leads to introducing the following Fourier integral operator:

D 12(P) - (9 0 ) (17)

oP' ()
Y — aPh) + B

(18)

TN
which can be expressed, using (12), as a kernel operator acting on the Fourier trans-
form

(D] (r) = jk”*%r OPE)E, 120 (19)

\/_
R
with the following kernel:

_ £l 2 _ 22 4 sin(@Vt! y -
a + (- cos(@*)iw? - &2 + sin(¢ )z{)el (= sin@) i (af+r cos(@)

a+1f\w? - &2

K, §) =

(20)
Here, a;—' denotes the ordinate of the intersection point of ¥ and ¥*! in (¥, y’) local
coordinates and r is the radial variable of the polar coordinates centered at this inter-
section point. If @/*! = 71/2 (which holds for instance for all j when O is a rectangle),
the previous operator has the simpler form

(D7) (r) = J B et g, 1)

a+1ﬁ\/w2—{2

It is not so difficult to see that the operator D'’*! is continuous from L*(¥) to L*(Q n
Zjﬂ). Indeed, ify) € Lz(Zj ), we can show that p (1), the solution of the half-space prob-
lem (7) in o, isin HY Z(Qi ). It suffices then to use the continuity of the trace operators.
Let us remark that it is less obvious when using directly the expression (19)—(20) of
D"*! but this will be a by-product of the next section.

Summing up, we have finally the following system of coupled equations satisfied
by the go’ ’s:

D Ypt onYn@!
¢ =g ong, Vj € Z/nZ 22)
Dj+1,jq)j+l on Zj n Qj+1’
where we have used the boundary condition satisfied by p on 00. The system of equa-
tions (22) can be written in a matricial form as

(I-D)D =¢G, (23)
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112 — A.-S.Bonnet-Ben Dhia et al.

where
n-1 .
DeV:= {(¢°,¢1,...,¢"‘1) € HLZ(Z’)}, (24)
j=
I corresponds to the identity operator and D is given by
[0 DY o 0 DO T
p* o Dp?* 0 0
o DY o0 0 0
D .= s (25)
0 0 o0 0 prin=2
DO,n—l 0 0 Dn—2,n—1 0

where for all j € Z/nZ we have identified a function of LZ(Zi n jSl) to a function of
L*(¥) by extending it by 0. Remark then that for all ® in V, D® is in V where

V={d=(¢%¢"...." ") eV, § =00n3, Vj e Z/nz}. (26)

Remark 4. If we want to make the extension by 0 explicit, we have to replace in D,
DVE py PP DAL where

E (P n @) - L2

l/) — Ej’jﬂl/) @27)

with
Ej’jill/) _ l/) on Z].il n Q} .
0 on¥*\ (Fn).
All the properties of D"/*! also hold trivially for E¥*'D//*!, In order to enhance read-
ability, we have chosen to drop these extension operators.

Lemma 5 (Equivalence). Let g € L*(00). If p € HY(Q) is solution of (1), then ® =

(@°,¢,..., 0" ") where ¢/ is defined by (13) belongs to V and is a solution of (23).
Conversely, if ® € V is a solution of (23), then p satisfying (14) for allj € Z/nZ.is a

function defined “unequivocally” in Q. Moreover, p € H'(Q) and is solution of (1).

Proof. The first assertion is true by construction. Conversely, suppose that ® =
@°,...,@" ") € V is a solution of (23). This implies that the ¢’’s satisfy the system
of coupled equations (22). Now, let us introduce P’ ((pi ) € H(QY) for all j € Z/nZ, the
solution of the half-space problem (7) with ¢ = <p’ . By definition,

o =a(g)) g2

- . 28
ox! i ( )

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:03 PM



4 Numerical analysis of the half-space matching method =— 113

Because the (p’ ’s satisfy the first set of equations of (22), we have by definition of D/*'/
that

JESWPNES . .
@ = aP* () + BaP (<pl) on¥ nO*, vjez/nz. (29)
From (28) and (29), we have that
i iy 20P (@) sy gy L a0P(0)
() +p | —api g

In particular, the previous relations for j = 0 and + = + and forj = 1and + = - yield to

oP°(¢°) 1, 1y . ,0P' (")
P(g° =aP
G R e v T DR e ve e
and
oP'(p") 0/ 0 oP°(¢°)

P (o} =aP .

P+ B3| @)+ B30 Lo
Let

Q=P°(¢°)-P'(p") inQ°nQ.

Because P0(<p0) and Pl((pl) satisfy the same Helmholtz equation and because of the
previous relations, Q satisfies the problem

AQ+w?*Q=0 inQ°nqQ}

aQ +‘B?)_8 =0 ona(Q°nQl,

where v is the interior normal to Q°nQ!. This problem is well-posed under assumptions
(2) for the same reasons as the ones detailed in Section 1.2. So Q = 0 in Q° n Q! which
means that P0(<p0) and Pl((pl) coincide in the overlapping zone Q°naql.

Similar arguments enable us to show that for all j € Z/nZ, p (<pi ) and Pj+l((pi+1)
coincide in the overlapping zone Q’nQ*!. We can then define unequivocally a function
phy

Vj e Z/nZ, ply =P (¢).

Because the half-space solutions coincide two by two in the overlapping zones, the
function p is in H'(Q) and is solution of the Helmholtz equation in Q. Moreover, by

definition
A oP :
- (a5~ -

. 0
Vj e Z/nZ, <ap +Ba—f}.> g
O

where the last equality is obtained by using the second set of equations of (22). Hence,
the function p is then solution of (1). O
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Finally,
0,1 n-1 j_ |8 on s
G=(g.g8,....8" )eV whereg = (30)
0 otherwise.
Writing

O=G+d (1

where @ is in V, we obtain an equivalent system
(I - D)® = DG. (32)

This system constitutes the half-space matching formulation which will be analyzed
in Section 3.

3 Analysis of the continuous formulation
In this section, we consider the general problem
Find® eV, (I-D)®-=F, (33)

where V is defined in (26), D is defined in (25), and F € V. Denoting £(A) as the set
of bounded linear operators of a vector space A, we show in this section the following
main results.

Theorem 6. The operator (I-D) € £(V) is the sum of a coercive operator and a compact
one. Moreover, Problem (33) is well-posed.

A naive idea would be that D € £(V) is compact, but it is not. However, it can be
decomposed as the sum of an operator of norm strictly less than 1 and a compact op-
erator. This decomposition is linked to a similar decomposition of the operators D'/*!.
Inspired by the proofs for the Dirichlet case shown in [8], we prove the properties of the
operators for the Robin case in Section 3.1 and finally show the theorem in Section 3.2.

3.1 Properties of the operators D//*!

Let us concentrate first on the operator D*! and similar properties will be given, with-
out proof, for all the operators D’*! at the end of this section. To simplify the notation,
we denote in this section, D®! = D, x° = x, y° = y. We will identify, when necessary,
° to R, its upper part 2° n Q' to (aj, +00), its lower part £° N Q" to (-0, ay) and
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4 Numerical analysis of the half-space matching method =— 115

finally ! n Q° to R*. Let us also introduce for any open interval I included in J, an
open interval of R, the restriction operator x;

XL’y — L)
Xi¢=¢ponl

$ 7 lye=oonJ\I

In the sequel, we are going to decompose the operator D progressively in order to iso-
late a compact part and a part for which we get the norm explicitly.
First, from the definition (17), we can decompose simply D as

D=Dp+Dy (34)
where
Dy I’ - I’&'nQY)

Dp: I’ — I*E'nQ0)
d 0
b oo P Wlgg p o W (35)

ox! ZanO'
Lemma 7. The operator Dy, : L*(£°) — L*(2' n Q°) is compact.

Proof. By definition of D), we have

i e (%), Dppp(r) = jkD@, (&) dg

R
with

44 2_ 22y gin 01 + 0,1
kD({s r) _ en/w &?rsin 0 et{(a0+rc059 )'
a+1Bw? - &2

Using Fubini’s theorem, we obtain

2 7 A
||kD(§» r)";(IRxIR*) = J J Le—zIm(\jm2—£2)r51n901drd€

Ry la+1pw? - &2

- j la? a
R ZIm(\/a;Z — &2)sin Bla + 1B w? — £2)2

< +00.

This proves that Dj, is the composition of the Fourier operator i - 1) and of a Hilbert—
Schmidt operator. The lemma follows. O

Let us focus now on Dy. For all i, Dyip is, up to the parameter 3, the normal trace
on ' n Q° of the half-space solution P°(1)) in Q° with a Robin data 1 on the bound-
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116 —— A.-S.Bonnet-Ben Dhia et al.

ary 2°. Because the half-line &' n Q° touches 2°, the operator Dy is not compact. The
lack of compactness is precisely due to the intersection point. So let us isolate the in-
tersection point by decomposing Dy thanks to restriction operators (see Figure 4.3):

DN :X(O,b)DN +X(b,+OO)DN’ with b > 0. (36)

20

Figure 4.3: Decomposition of the operator Dy into (o 5)Dx and X(p,+c0) D -

Lemma 8. Forany b > 0, the operator Xy ..)Dy : L*(2°) - L4(Q° n %) is compact.

Proof. By definition of Dy, we have

Ve L), Daplr) = [ (i) dg
R

with

~ ) 0,1 . 0,1
B 1\/ﬁcos 6™ +1&'sin6 )e,\/(,,ngr sin 6% (g +r cos 0') (37)

a+1B\w? - &2

kN(f’r) =

Again by Fubini’s theorem, we get for b > 0

2
||kN ¢, r)"LZ(]Rx(b,wO))

+00 102 [ 5 ) 0.1 i 00,112
~ IBI°] — 1\w? — &% cos 0" +1&sind Ie_z( Tz‘f””in""’ldrdg

R b ot + 1BJw? — £2|2
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4 Numerical analysis of the half-space matching method =— 117

2 0,1 . 0,1,2

B J IBI°] = 1\Jw? — £2 cos 67 + 1€ sin 67| S Im(\w?E2)bsin 60

= e dé
& 2Im(\Jw? - £2) sin 0%t + 1| w? — £2)2

< +00.

We conclude as in the proof of Lemma 7. O

As you can notice, this proof requires that b > 0. To analyse the non-compact part
X(0,»)Dn inspired by the Dirichlet case [8] and more generally by the singularity theory
[17], we decompose finally x(q 5Dy as
XDy = XonLy +Xop Dy — Ly)
where Ly is obtained by taking w = 0 in the expression (37) of ky(¢,7)
1

Lyy(r) = o

J PE)(= cos 8! — 1 sgn(&) sin §1)e kI sin 6! g (a7 cos go’l)df, r>0.

R
(38)

The operator Ly is similar to Dy, but it is associated with the Laplace operator.
Indeed, it can also be defined as

Ly : (%) > I*(' n Q°),

Ly :=pB %v(ll») (39)

$1nQ0
where, for all i € L2(2%), v(1)) is the solution (at least in the distributional sense) to
—-Av=0 inQ°
ov 0
— = Pl
I3 o Y on
We refer to the Appendix for the precise definition of the appropriate functional
framework for this problem.
Lemma 9. The operator ¥ o ;) (Dy — Ly) is compact.

Proof. It is a kernel operator whose kernel is given by
k(1) = (Cl (‘f)enlwz—fzr sin6™' Cz(é—)e—lflr sin 6% )ezf(a*+r cos 6%

where from (37) and (38), we have that

(&)
(&)

€€y 1/cy € L°(R), and —1 whené¢ — +oo

Consequently,

G & e—q(.{)r sin™ 1

_ ~|&|r sin 6%
k(@& n| =l (§)le c2(é)

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:03 PM



118 = A.-S.Bonnet-Ben Dhia et al.

where
R Y (%)
VE-wieg M
We deduce that
k(. n)| < Clg(&))e irsme™
which enables us to conclude as in the proof of Lemma 7. O

Finally, let us focus on the properties of Ly which are summarized in this funda-
mental lemma.

Lemma 10. The operator Ly is continuous from Lz(ZO) to LZ(Z1 n QO) and its norm is
bounded by 1. Moreover, we have:

- 3Ce(0,1),Y9 € LAZ%), ILyX(as o0 Pl < ClX(ag o)l

- LNX(—oo,ag) is a compact operator.

We give the proof which is quite technical in Appendix A. As we will see in the
proof of Theorem 6, it is not sufficient to know that the norm of Ly is bounded by 1.
This is the second part of the lemma which will enable us to conclude that I — D is
a sum of a coercive operator and a compact one. As indicated in the Appendix, the
constant C is linked to the angle 6%! between £° and =!' n Q°:

C = cos(6'/2).

When 6% tends to 0, this constant tends to 1.
Gathering all the results of this section, we can show the following properties of D.

Proposition 11. The operator D is such that D — L is a compact operator from L*(£°) to
L2(2' n Q%) where L is a continuous operator from L2(£°) to L*(=! n Q°) which satisfies:
- 3Ce(0,1),Y9 e LAE%), ILX(gs 1oy @l < CllX(as 100y P15

= LX(-co.a;) IS @ compact operator.

Proof. The operator L is nothing else but yo 5)Ly. Indeed, using all the operators in-
troduced in this section, we write

D - x0.5Ln = X0,5)(Pn — L) + X(b,4+00)Pn + Dp-

From Lemmas 7, 8, and 9, we have that the operator D — Xo,pyLy is compact. As Ly
satisfies Lemma 10, the operator xq )Ly inherits similar properties. O

Finally, we have obviously similar results for all the operators D' forj e Z/nZ.
Again, we will identify, when necessary, ¥ to R, its upper part ¥ n @’*! to (a]-+, +00),
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4 Numerical analysis of the half-space matching method = 119

its lower part ¥ n ! to (—co, a; ). Finally, in order to give a short statement of the
following theorem, we use the notation

Vj, (aj,-00) = (~00,a;).
Theorem 12. The operator D'’*! is such that D’*' — D*! is a compact operator from
LX) to L2(F*! n ) where D’ is a continuous operator from LX) to L2(F* n OY)
which satisfies:
- 307 € (0,1), Y € LX), I X (@t 100y @ll < C7 N (a2 0Pl

DY 4 500) 1S @ compact operator from LA(¥)) to L(F*' n @Y).
]

Remark 13. The constant C#*! is linked to the angle §/*! between ¥ and ¥*! n Q.
More precisely, we can show, as in Appendix A, that

7 = cos(071)2).

Remark 14. Theorem 12 has links with classical analysis for second kind boundary
equations on non-smooth domains. Indeed, using the notation ¥’ = (x,y’), D’*! can
be written in layer-potential form as

Di’jilll)i(x) _ _% J((XG(X, Xj) +B oG

P (%, xj)>1/)i(xj)dxj, xe ¥ ng, (40)
)

where G is the Green’s function for the Helmholtz equation satisfying the Robin con-
dition on ¥’ (see for instance [10] for a characterization of G). Formula (19) is nothing
else but the Plancherel equality applied to (40). As G is a smooth perturbation of the
Green’s function of the Laplace equation with Neumann boundary condition on ¥/,
and as Im(w) > 0, the properties of D*! can be deduced from those of the double
layer potential operator defined by

J aa(].;fl (xx ) (¥)d¥, xe¥'nd,
W

by
where
Go(x,x') = L log(|x - x'|).
2
This operator, as an operator acting on L2 functions on the sides of a bounded polygon

has been discussed and analyzed in [4, 9]. Let us mention that in [9, Lemma 1], the
same bound for the norm of the operator [*! has been found.
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3.2 Proof of Theorem 6

Let us prove now that the operator I-ID is the sum of a coercive operator and a compact
one in V. Using Theorem 12, and the following obvious decomposition

VO = (9°.9"....0" ) eV, Vi € ZMZ @ =X coa)? + Xt o

we can decompose the operator ID as follows:

vd € f/’ DO =1Ld + ]K(i)’ (41)
where
L:=
[ 0 LY ooar) 0 o 0 LK ap 000 |
L0’1X(a(§,+oo) " 0 Lz,lX(foo,a{) 0 0
0 L~ X(a;',+oo) 0 e 0 0
0 0 0 .. 0 Ln_l’n_ZX(—oo,a;,l)
_ LOﬂilX(—oo,ag) 0 0 o pnanl (at vo0 0 )
(42)
and
o K* o o K]
KO 0o K2 0 0
o K“* o .. 0 0
K:= . . . . : ’ (43)
0 0 0 0 Kn—l,n—z
gon-1 0 0 g2l 0
with
Vjeznz, K= (D - ) e DYy (44)

From Theorem 12, we get easily that the operator K is compact in V.
Moreover, by Theorem 12, for all j € Z/nZ, we have that for all ¢ ¢ L*(¥) such
that @’|; =0
(@]

i ~in2 i ~in2 ~in2 ~in2
”L” 1X(—oo,a17)(pln + ||L]’]+1X(a].+,+oo)(P]|| < C]'Z[”X(—oo,a]?)(pl” + "X(a;’,+oo)(p]" ]
= CIP 17
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4 Numerical analysis of the half-space matching method =— 121

where G = max(cos(G"”;l /2),cos(9’.’j+1 /2)). Consequently, the norm of the operator I
is strictly less than 1. This implies that the operator I - L is coercive in ¥/, its coercivity
constant being given by

jj+1

a=1- max cos . (45)
jez/nz 2

Let us now show that Problem (33) is well posed. Since it is Fredholm of index 0, it
is sufficient to show the uniqueness. We will suppose that F = 0 and show that the
corresponding solution ® € V necessarily vanishes. By Lemma 5, we can define un-
equivocally a function p satisfying (14) for all j € Z/nZ. Moreover, p € H(Q) and is
solution of (1) with g = 0. Problem (1) being well posed, p = 0 and then P ((pi ) = 0 for
all j. Consequently, go’ =0forallj € Z/nZ.

4 Discretization

4.1 The discrete problem

To get a discrete problem that we can solve numerically, we use three main ingredients:

1. We truncate the integrals which appear in the definition of the integral operators
D'*1; the integral for ¢ € Risreplaced by an integral for |¢] < T for some T € R™.

2. Then we introduce finite dimensional subspaces V;, of V on which a Galerkin ap-
proximation is computed. To define the space V},, we truncate the infinite lines s
as follows:

T = {0 =0Y) Ty <y < T} (“6)

and we mesh these truncated lines into segments [M{,Mﬁ abie{l... ,Nj} whose
maximum length is h;. Let T = min; T; and h = max; h;. Finally, the space Vy, with

h = (T, h) built with Lagrange finite elements of degree I (I € IN*) is given by

((ps... . ) € V, ), lp’h is polynomial of degree [on [M, M), ], i € {L,...,N}}},
(47)
and V}, = V},, n V. Let us emphasize that of course
VeV, inf |¥- ¥l —— 0. 48)
YpeVy h—(+00,0)

3. Finally, quadrature formulae have to be used to evaluate the Fourier integrals
which appear in the variational formulation.

In what follows, we will study the error due to points 1 and 2 but not the quadrature
formulae.
For this purpose, we consider the three following variational problems:
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122 — A.-S.Bonnet-Ben Dhia et al.

0. The exact problem:
Find @ € V such that

(BO,¥) = (DG, ¥), vW¥eV, (49)

where B = I — D, D is defined by (25), V by (26), G by (30), and (-,-) denotes the
L? scalar product in V. We have the expression

vower, ow- ¥ ([ Py [ DY) 60

JEZINZ gy Tnoi
with
Viezmz, wpelXD), [Dy]) = \/% [ e s o,
& R
and K*Y(r, &) is given by (20).

1. The semi-discrete problem (truncation of the integrals):
Find ®; € ¥ such that

(B;®;,¥) = (D;G,¥), V¥eV, (51)

where B; = I - D; and D; is defined by

V@) eV, (D;0¥)= Y ( J [D’;’l’jgoi+l]1/)i+ J [D"T‘l”'d‘l]zp’), (52)

jeZ/nZ

nott Tn!
where
LT
(0} ) = [ e obeas 1o (53)
7

2. The discrete problem (truncation of the infinite lines ¥ and meshing):
Find ®; ;, € ¥y, such that

(B35, W) = (D7 Gy, Vy), VW € Ty, (54)
where Gy, € V4, is the interpolate of G.

Our first objective is to prove that for T and T large enough, and for h small enough, the
above discrete problem is well posed. The second objective is to prove that the error
I® - @, Il (Where ;. = ®;., + Gy) tends to 0 when T — +00, T — +00, and h — 0.
And finally if the ¢/’s are regular enough (whose precise definition will be given later),
we will also estimate the convergence rate.
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4 Numerical analysis of the half-space matching method =— 123

Remark 15. Asin [18], the difficulty of the numerical analysis comes from the fact that
the operator appearing in the discrete problem is the sum of a coercive part and a
compact part, which both depend on T.

As a first step, we will derive the same type of result but only for the semi-discrete
problem.

4.2 Numerical analysis of the semi-discrete problem

For T > 0, we denote by I1; the projection operator on L*(R) defined by

T
1 “ .
Vi € XR), TL(y) = —— j PV dz. (55)
mi
In other words,
Vi e P(R), (@) = X35/ OPE). (56)

Then we denote by IIl; the projection operator on V defined by

=(¢°....9" eV, IL®=(;¢°... 0:9""). (57)

Using Plancherel and Lebesgue theorems, one can easily check the following proper-
ties that will be used in the sequel:

I @lly < IPlly (58)
VO,¥ eV, (IL;®,V¥) = (D,11;¥) (59)
VO eV, |M;®-®|y >0 whenT — +co (60)

Using this definition, we have D; = DII;, where D; is defined by (52). The main
results of this section are given in the followmg theorem.

Theorem 16.

1. [Stability] There exists Ty, such that the semi-discrete problem (51) is well posed
for T = Tpin-

2. [Convergence] The solution dDT of the semi-discrete problem (51) tends to the exact
solution ® of (49) when T tends to infinity.

3. [Error estimates] Let ® = & + G = (¢°, ..., "), where ® is the solution of (49).
If there exists s > O such that for allj € Z./nZ, <p’ e H5(Y), we have

C

Ts zeZ/nZ< \/sin(@ii+1)

&3l < = 16 iy + el i )- (6D

\/sm( gii-1)
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124 — A.-S.Bonnet-Ben Dhia etal.

The rest of this section is dedicated to the proof of this theorem. To do so, we will
need several lemmas:

—  the two first lemmas give properties of the operators L'*"/ I1; for the U*Y appear-
ing in (42). These results are the equivalent of the two properties stated in Theo-
rem 12, but they are not a straightforward consequence of this theorem. The dif-
ficulty comes from the fact that, in general, for a function i, the support of HTIIJ
is not the same than the one of 1. These lemmas enable us to deduce properties
of the operator DII;, used in Lemma 20 as a basic tool for the stability and the
convergence result.

— To establish the error estimates, we will use finally Lemma 21.

Lemma 17. For allj € Z/nZ, the operator Uty appearing in Theorem 12 satisfies
aéjﬂj € (07 1)) VQD € Lz(zjil)’ "Ljil)jHTX(a;l,ioo)(p" < Cjil’j“)((a;l,ioo)gmk
where C*Y = max(sin(6/*')2), cos(6*1)2)).

Proof. As explained in the proof of Lemma 11, L*! = X(o,»Ly where Ly is defined by
(39). It suffices then to show that

VT >0, Vi € L*(2°)  ILyTgK(gs o0 Pl < Cl(ag ool (62)
with
C = max(sin(6*'/2), cos(6*'/2))

to obtain the result for L%'. A similar proof can be applied to other I'*"J,

We stress again that (62) is not a direct consequence of Lemma 10 since 15X (4t +00) Y
is not supported in (ag, +00).

We introduce the linear operators S and A of L(LA(R)) defined by

Ve L), SPO) = S(0) + $(2a; -y)) and Ap() = 5(b0) - h(2a - )

We have obviously S + A = Id.
The key point is that I1; commutes with S and A. Indeed, from

Sp(&)e? 8 = (=),

we deduce that I1; St is symmetric with respect to a:

1;Sp(2ay - y) = SP(&)e PV dg

—_
)
—_—

|
IECEN

Sp(-&)e Vo ds

N —
gl
Ly —

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:03 PM



4 Numerical analysis of the half-space matching method =— 125

T
1 J Sy (&) eYe
=—— | SY(&e’*d
Vo ) P(§)e™dg
-T
=I1;:S59(y).
Similarly, we prove that I1;Ai is anti-symmetric with respect to aj:

I AY(2ay - y) = - Ap(y).

Finally, gathering all these properties, we get

Sp) = S(Mphy) + yp(2a; - )
= J(ESP0) + TAYQ) + ;SYRa; -y) + T ApRa; - )
=;:Sp(y),
and the same result can be obtained for A. To summarize, we have
I1;Sy = SIl; and [1; Ay = All; 4. (63)

Now let us apply all these properties to our purpose. Since S + A = Id, $? = S, and
A% = A:

LyIl; = LyTI:(S + A)
= LyI1;(S* + A°)
= LySIL;:S + LyAIl; A

so that

Vi e LX), INTTiX(qg 0Pl < ILNSHITLENISY (a5, 400yl + ILNANITLE NI (g5 400l

(64)

Moreover, since for any ¥ € L*(R),
[T+ <1 and (65)

T
1
||SX(a5,+oo)l/1||L2(R) = ||AX(ag,+oo)¢||L2(1R) = ﬁ”X(ag,Jroo)l/J”LZ(Ry (66)
we get
1

ILNTIEX (g5 400y PN < E(“LNS” + ILNADIX (g5 +00) P (67)

Finally, the estimates (90) and (91) proven in the Appendix enables us to show (62).
O
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126 —— A.-S.Bonnet-Ben Dhia et al.

Remark 18. Let us emphasize that the key property (63) is true because in the defini-
tion of I1;, the Fourier integral has been truncated to a symmetric interval [-T, ).

Lemma 19. For all T, the operator /*J 3X (a2 +00) is compact.
JET

Moreover, let i, be a sequence of LX(J*Y), for Tn — +o0o and for j € Z/nZ such that
i, converges weakly to 0 in L*(¥*!), then

UM X e voobn = O in IX(Z n @),
n JE= S

Proof. As explained in the proof of the previous lemma, it suffices to show the result
replacing I*V by Ly to deduce the one for L°! and in a similar way the one for the
other I/*,

Again, the difficulty is that, in general, for a function i, HTX(_OO,%)I’D is not sup-
ported in (—co, ag), so that the results cannot be deduced from the second point of
Lemma 10.

We decompose

LyII3X(-co,a5) = LNX(-co.a5) + N3 = DX (~co,05)

From Lemma 10, we know that LNX(-c0,q;) 1s compact. We show in the rest of the proof
that Ly (I3 — 1 X(-co,ap) IS @ Hilbert-Schmidt operator and that Ly (IT; — I X(-co,az) = O
when T — +c0, and the results of the lemma follow.

Using the expression of Ly in (38), we get

Ly(T = DX(Ccoar) = Ry +Rze™",

where, for i € L*(2°),

o

T T
o
E<-T ™

By Fubini’s theorem, we deduce that
a
1
Rip(r) =5 | o ay
with

e—T(r sin 0% +1(ag ~y+r cos 6°1))

kz(r.y)

~ rsin@%! T u(ay —y +rcos0O1)
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4 Numerical analysis of the half-space matching method =— 127

Since the denominator never vanishes forr > 0 and y < a; < ag, one can easily check
that

+00 dp

J J|k§(r,y)|2dydr

0 —o0o
is finite and tends to 0 when T — +oo. O
From these two lemmas, we deduce the following result.

Lemma 20. Forall T > 0, the operator B is the sum of a coercive operator and a com-
pact operatorin V.
Moreover, there exists y > 0 and Ty, such that for T > Ty,

VO eV B; Dl >yl (68)

Proof. Let T > 0. Let us remind that B; = I - DII;. By the definitions (25) of D and
(57) of I3, the operator IDI; is nothing else but (25) with the terms D'*Y replaced by
DY I1;. Finally, as in (41-42-43), we have the decomposition

B; = I-DII; where DI; = L; + K

with

- L; having the form of (42) where the terms e X(a,700) ATE replaced by
e HTX(a]?ﬂ;oo)- Using Lemma 17 and the same arguments as in Section 3.2, we
can show that the norm of IL; is strictly less than 1, the norm being independent
of T. Therefore I - 1L; is coercive in V with a coercive constant y independent of T

- Kj has the form of (43) where the terms K'*Y are replaced by K’;Lj with

1y WIRRY 1

I<]T+ b= (DY - U + DF ]HTX(a}.iil,iOO)' (69)
By using Theorem 12 and Lemma 19, K"Tﬂ’j is compact. The operator K; is then
also compactin V.

We have then proven the first part of the theorem. We show the second part of the theo-
rem by contradiction. We suppose the existence of a sequence ®,, ¢ ¥ and a sequence
T, — +oo such that |®,[l, = 1and ]BTnd)n — 0in V. Using the first part of the proof,
we have

By =(-L;)-K;,
where the operator (I - IL; ) is coercive with a coercivity constant y independent of n
and K; is compact. Rearranging the terms and taking the scalar product, we have

(B}, @y, D) + (Kj, Oy, Bp) = (- L YD, Dy) 27 > 0, (70)

n
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128 — A.-S.Bonnet-Ben Dhia etal.

and we will show that the left-hand side tends to O with n to establish the contradic-
tion.

Since @, is bounded in the Hilbert space V, it admits a weakly convergent subse-
quence that we denote also by ®,: ®, — ® in V. By (59) and (60),

VeV, (I &,V = (@, I; ¥-¥) + (@, ) - @),

n

which means that IT; @, — ®. As a consequence,

B; &, = d, - DII; &, — & - D = BD.
Since by hypothesis, B; &, — 0, we conclude that B® = 0 which implies ® = 0
because B is invertible (see Theorem 6).

jE1,j

On the other hand, as written in (69), each operator KT involved in the definition
of K is the sum of two operators such that: !
- (D*Y - Liil’f)HT @, — 0 when ¢, — 0 since Il; ¢, — 0 because of (60) and
(D*Y — [J*Y) is compact because of Theorem 12;
- Yo, X(a%, +o0)Pn — O When @, — 0 because of Lemma 19.
n j+1°—

Consequently, as @, — 0, we have K; ®, — 0in V when n tends to +co.

Gathering all these results, we have (B; ®,,®,) + (K; ®,, ®,) tends to 0 with n.
This contradiction completes the proof. O

To establish the error estimates of Theorem 16, we need the following lemma.
Lemma 21. Lets > 0 and Y € H5(¥). There exists a constant C > 0 independent of
and T such that

e C
|07 - e < -

Ts+/sin(@/7*1)

Proof. By definition (19)-(20) of D’’*!, we have, by Cauchy-Schwarz inequality, Fu-
bini’s theorem, and by the Fourier definition of the Sobolev spaces [1]:

"'I)"HS(ZI')- (71)

+00

D - Ty < (7 j J

lg>7 0

K7 (r, &)

Ryt 72)

Moreover, an easy calculation gives

+00 |kj’ji1(r, {)'2 _

-7 0 &>
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4 Numerical analysis of the half-space matching method =——— 129

where

lat + B(~ cos(@7)iyw? — &2 + sin(61)i&)|?
2la+ ifyJw? — E22Im(y|w? ~ £2) sin(@1)(1 + £2)5

Fé) =

is such that

¢
{25+1 Sin(ej’jil)

F(§) <

for some constant C depending only on a, 8, w, and s. The result follows. O

Proof of Theorem 16.

1.

By Lemma 20, 1B; is the sum of a coercive and a compact operators. By Fredholm
alternative, it is invertible if and only if it is injective. Again by Lemma 20, we have
that there exists T, such that for T > Ty, Bj is injective.

From B® = DG and B;®; = DII;G, we deduce:

B;(® - ®;) = B - (B - B;)® - B;d;
= D(I - I;)(® + G)
- D(I - ;)@

which tends to 0 when T tends to +co by (60). Lemma 20 then implies that
. . 1 ..
1D - D; < )—/||]BT(CD -dy),

which proves that ®; tends to ® when T tends to +co.
The previous step provides also the following inequality:

ué—éﬂsamm—MﬁﬁL (73)

Combined with Lemma 21, we get the estimate (61). N

4.3 Error estimate for the discrete problem

The main result of this section is given in the following theorem.

Theorem 22.

1.

There exist Ty, Tonin and Ry, such that the discrete problem (54) is well posed for
T > Toin, T = Toyin» and h < hy.

The solution d)T,h of the discrete problem (54) tends to the exact solution ®@ of (49)
when T — +oo andh = (T, h) — (+00,0).
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3. If®=d+Gissuch that<pj € Hs(Zj)forj € Z/nZ with s > 0, there exists C > 0 such
that

I® - @l < % + Ce T 4 cpmineHD (74)
where ¢ is given by (3).

To show this theorem, we will use the following lemma (which is the discrete
equivalent of Lemma 20).

Lemma 23. There exists y' > 0, Toin» Trnin» aNd My Such that for T > Toin, T > Togins
andh<h

max?

. D, ¥, N
Wby e Ty sup LB by,
ety ¥z0  Pnl

Proof. We proceed as in the proof of Lemma 20 and prove the result by contradiction.
We consider a sequence h,, h, — 0, a sequence T,, T, — +0o, a sequence T,, T, —

+00, and a sequence ®;. , € V;  , h, = (h,, T,) such that

. . . . . 1 .
”(DT,,,hn =1 and V‘I’hn € th, |(]BT,[(DT,,,hn’\th)| < H”\Ilhn Il

Since ®;. , is bounded in V, it admits a weakly convergent subsequence that we de-
note also by ®; | : ®; , — ®. Moreover, forall ¥ € V and all ¥, € V, we have

|(Bg, sy, > O)] < (B, D7, p > Ph,)| + By Dg py ¥ =Py,
1 . L
< E”\Phn I+ B I =¥y, I

Since [ B; || is bounded by a constant independent of n, we deduce from (48) that

B @

7, Pt o, — 0 inV.

We can then continue the proof as in Lemma 20 which results in the contradiction. [

Proof of Theorem 22.

1. Thisis a direct consequence of Lemma 23.

2. Let ® be the solution of the original problem (49), (i)T the solution of the semi
discrete problem (51) and d)T,h the solution of the discrete problem (54). We have
that

Vh € Uy, D - Dyl < D = Yyll + Yy - Dy (75)
For all Y, € V;, and all ¥, € },, we have
(B (Yp — D7), Wh) = (B3 (Yp — D7), W) + (D7(G — Gp), Pp).
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4 Numerical analysis of the half-space matching method =— 131

By Lemma 23 and by the continuity of D; and B;, we get
Y'Yy = @51l < C(IG - Gylly + 1D — Ypll). (76)
Gathering (75)-(76), we deduce that there exists C > 0, such that

| - ®;pl < C(ID - Dl +1G - Gylly +_ inf  [d-Yyl).  (77)
YneV, Yu#0

By Theorem 16, the first term of the right-hand side tends to 0. Gy, being the inter-
polant of G in V,, (48) ensures that the two last terms tend to 0 when h — (+c0, 0).
Let now suppose that ® = ® + G = (¢°,..., ") the solution of (49) is such that
forallj € Z/nZ, (p’ ;N (Zj ) for a certain s > 0. Then we deduce from Theorem 16
an estimation of the first term of the right-hand side of (77). For the second term, it
suffices to use classical results of the interpolation error for Lagrange FE of order I:

3C>0, |G- Gyly < CR™MEHD,
Finally, for the last term, let us introduce the function d)T ¢ V defined by
- 0 _
CDT = (DT - G Whel’e (DT = (X(_TO’TO)(p e ’X(—Tn,l,Tn,l)(pn 1).
We get

_oinf [ O-Ypl <@ -Dp+  inf  [Dp - Yyl
Ve, Yu0 VeV, Yn#0

where using (3), we can show that
I - drll < Ce™"
and using again the results on interpolation error of Lagrange FE

) ;nﬁ ”d)T _Yh” < Chmm(s,l+1).
Yn€Vy, Yp#0

This ends the proof of the theorem. O

Remark 24. This error estimate has been obtained for simple regular mesh. A more
sophisticated discretization method could be used as done in [11] for scattering prob-
lems.
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5 Numerical results

The numerical results presented in this section are obtained using the Finite Element
library XLiFE++ [16].

5.1 Qualitative validation of the method

In order to validate the method, we consider a particular data on a triangle given by

o= L (a2 o)

1 )
Zo

withw =1+ 0.13, a = 2, B = —0.5 and H(-) denotes the zeroth Hankel function of the
first kind [2]. The exact solution of this problem is

1
— 2 H(wnx2 +12).
P 4lH(a) X2 +y?)

On Figure 4.4, we represent on the interval (-T, T) the real and imaginary parts of the
exact solution (pO (blue line) and of the solution (p(T) n (red dots) computed by using P1

finite elements with h = 0.1, T = 20, T = 10, and a third-order Gauss quadrature with
1000 intervals. We get a L? relative error:

0 0
lp® - 92 lr2(so)

"‘PO ”LZ(Z‘})

of 0.090 %. On Figure 4.5 (left), we represent the Fourier transform of the computed
solution. Remark that the behavior of this Fourier transform justifies the truncation of
the Fourier integral and requires a precise quadrature especially near ¢ = w.

Once we obtained the (p’T h’s, we can reconstruct an approximation of the solution

pof (1) in each ¢/ by Formula (12). Here, we compute the solution in the domain Q' rep-
resented in Figure 4.5 (right), where the white lines represent the position of the ¥.In
the overlapping zones, we can choose indifferently one of the available half-plane rep-
resentations, since they coincide up to the discretization error. Remark that although
the solutions <p’ are not close to zero at yj = +T, the reconstructed solution is accurate,
with an L*(Q") relative error equal to 0.030 %.

The same results can also be obtained when the obstacle is a rectangle or a pen-
tagon. The reconstruction results are shown in Figure 4.6. For a rectangle obstacle,
the L? relative error for the lines is 0.042% and the L? error on the reconstructed do-
main is 0.043 %, while for a pentagon, we get 0.074 % L? relative error on the lines and
0.054 % L? relative error on the reconstructed domain.
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Real part Imag part
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Figure 4.4: Real (left) and imaginary (right) part of the computed solution (pg n (red points) and the

exact solution (blue line) on 2°.

]

10

Figure 4.5: On the left: real part of the Fourier transform gb‘;h. On the right: reconstruction of the

solution in Q'.

Figure 4.6: Reconstruction of the solution in Q with rectangle and pentagon.
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5.2 Quantitative validation of the error estimation

After this qualitative validation, we validate the error estimation derived in Section 4
by studying the influence of the different parameters. Since the triangle is regular, it
suffices, by symmetry, to only consider the error on ¥0. Westill consider a = 2, B =-0.5,
and except in Section 5.2.1, w = 1+ 0.11.

5.2.1 Influence of the length of the lines (parameter T)

From (74), we expect that the error will decay like e“¢7, where ¢ is the imaginary part
of the frequency. That is why, in this section (and only in this section), we consider
different values of € € {0.05, 0.1, 0.2}. We fix the other parameters to h = 0.025, T = 10,
and use a third-order Gauss quadrature with 1000 intervals.

In Figure 4.7, we represent log(p° (p ) as a function of T. The errors (@° q)T »)
decrease exponentially, depending on € w1th the following behavior:

err = ||‘PO - ‘P(T),h"Lz(zg) ~e

before finally becoming constant, which is due to the other discretization parameters.

5.2.2 Influence of the discretization in space (parameter h)

We plot the error log(go0 - go(T)h) as a function of log h. We use the P1 and P2 finite
elements and the following parameters:

T =40, T =10,

and a third-order quadrature with 1000 intervals.

- w=1+0.052
= w=1+0.1z
= w=1+4+0.2

logyy err

Figure 4.7: Influence of the length of the lines T for various values of € = Im(w).
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—4
—4.5
=5

—5.5
—-14-1.2 -1 -0.8-0.6-0.4-0.2 0 0.2 0.4

logg h

Figure 4.8: Influence of the space discretization h.

Figure 4.8 shows that the error decreases following:
err ~ K'Y,

before becoming constant because of the other discretization parameters.

5.2.3 Influence of the truncation of the Fourier integrals (parameter T)

Finally, we plot the error log(¢° — (p(T’ 1) With respect to Tandweuse T =40, h = 0.1,

and a third-order quadrature with 100 x T intervals.
From Figure 4.9, we see that the error decreases exponentially due to the C* reg-
ularity of the Hankel function.

—0.5

|
| N
13

logyy err
|
w
(2

Figure 4.9: Influence of the length of the Fourier integral 7.
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Figure 4.10: Reconstruction of the solution in Q with triangles that becomes more and more flat.

5.2.4 The influence of the angles of the polygon

Referring to the Theorem 12, we investigate the influence of the angles of the polygon
on the computation of the solution. Remember that the coercivity constant tends to
zero when one of the angles tends to zero (see (45)).

We represent in Figure 4.10 the reconstruction of the solution around three differ-
ent triangles with one angle becoming smaller and smaller (min(¢”/*!) = 0337, 0.167,
0.037). Qualitatively, the results look similar and the L relative error are of the same
order (resp., 1.01%, 0.88 %, and 1.23 %). The condition number of the finite element
matrices are 1617.27, 2482.05, and 4647.19, respectively, meaning that it is only slightly
affected by the smallness of one of the angles.

5.3 Extension cases

5.3.1 Non-regular Dirichlet data

In this section, we consider the Dirichlet case, namely (1) with a = 1, 8 = 0 and we use
the half-space matching formulation (22) where the ¢’’s correspond to the Dirichlet
traces of p on the ¥’s. As mentioned in Section 1.2, our formulation allows to consider
adatag € L*(00)butg ¢ H 12(30). In the following test, we take
1 ifx°=0,5°>00rx'=0,y' <0,

g={ (78)

0 otherwise.

We use P1 discontinuous finite elements since we have a discontinuous boundary
condition on 00. The real part of the (p(})h and the Fourier transform are given in Fig-
ure 4.11. As the data is less regular than the previous example, the Fourier transform
(i)‘}’h decays more slowly than in the previous example (pay attention to the scale).

The reconstruction in Q is shown in Figure 4.12. The result is good as there is no
visible jump on different reconstructions from different ¢/'.
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Figure 4.11: On the left: real part of the computed solution (pg (red points) on 2°. On the right: the
Fourier transform ¢° for g defined in (78).

Figure 4.12: Real part of p with a = 1, B = 0, w = 1, with g given defined in (78).
5.3.2 Non-dissipative case

Finally, remark that our theoretical results are established only for Im(w) > 0. How-
ever, the numerical method works for the case without dissipation, provided that

we use the representation of the outgoing solution in (12) for each half-space, which
means that

\/wz—g'z— Vw2 -&2|  foré&? < w?,
82 -w?|  for&? > w?

To illustrate this, we once again validate the method by using the Hankel function on
the boundary of the polygon with w = 1.

In Figure 4.13 on the left, as expected, we see that the solution decreases more
slowly compared to the case with dissipation. The computed solution matches the
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Real part
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Figure 4.13: On the left: real part of the computed solution (pﬂ (red points) on £°. On the right: the
reconstruction of the solution with w = 1.

exact solution well and the L? relative error on the lines is 1.50 %, which is higher than
the case with dissipation (Imw > 0). The reconstructed solution on the domain has
an L’ relative error of 0.79 %.

We also show here the solution of a scattering problem with an incident wave

_ w(xcosy+ysiny)
=e )

Dinc
with y = 37m/4. The scattered field is solution of (1) with the boundary data is

o
8 = —UPinc —ﬁ% on 00.

We consider the solution obtained with the parameters T = 40, h = 0.05, and
T = 10 as the “exact solution” (represented on Figure 4.14 (right)) and we plot the error
for different value of T between 1 and 8. According to error estimate (74), we expect a

behavior like

err ~ —,
TSo

where s is the supremum of s values such that all traces go’ belong to H*(¥). Here, the
theory of singularities [14] shows thatp € H 8/5(Q), so that, taking its normal derivative,
we get s = 1/10. In fact, we observe on Figure 4.14 (left) that the error decreases more

rapidly like
1
err ~ —.
T2

It is probably due to the discretization in space that cannot capture the singularity at
the corner.
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Figure 4.14: On the left: Influence of the length of the Fourier integral T in the scattering problem. On
the right: real part of the scattered field with 7 = 10.

Appendix A. Proof of Lemma 10

Let us remind the definition of the operator Ly. For all ¢ € L%(=°), we consider the
problem

-Av=0 in QO,
ov 0 (79)
— = .

B e Y on

This problem has a unique solution v in the following weighted Sobolev space (see,

for instance, [17, Chapter 6]):

1 1
{u e Ly (Q°) | Sl € L*(Q°), WVu € L*(Q%) }

The operator Ly is defined as
Ly : (%) - I*(2' n Q°),

0
Ly = B =3v()

Q0

We want to show in this Appendix that:
1. The operator Ly is continuous from L*(£°) in L*(£! n Q°) and its norm is bounded
by 1;
3C € (0,1), VP € L(Z%), ILX(agv00) P < Cl(a v ¥
LyX(-co.a;) 15 @ compact operator from L2 in L2(2' n Q°).

Let us begin the proof which is based on Mellin techniques.
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1. Denoting (r, 0) the polar coordinates (the center is the intersection point between
2% and (2! n Q%)) defined by

r= \/(x - 192+ (y - a})? € (0, +00),

y +

m a; (80)
0= 5" arctan< " ) € (0,m).

We introduce the function w defined for almost everywhere (¢t,0) € B = R x (0,7)
by w(t,0) = v(x,y) where t = Inr and (r, 0) is defined in (80). It is the solution of

—At’eW = O il’l B,
ﬁa—w(t, 0) = Yo (t) := e'h(e’ + a}), (81)

it _t +
—ﬁ 30 W it,m) = Pa(t) = e'P(-€' +ayp).

We can show by a simple change of variable that
Pel’(®) = toePyel’ ) and te P, e XR), (82

and

||e_t/2¢0”L2(]R) = "‘/’"Lz(as,wo) and "e_t/zl/)ﬂ"Lz(]R) = ”ll’”LZ(foo,ag)' (83)

It is possible to compute explicitly w by applying the Fourier-Laplace transform
which is defined as

1) = (M) () = Je*’“u(t)dt. (84)
R
It is an isomorphism between {u, e"'u € L*(R)} and Lz(l_y) wherel , = {d =-y+

is,s € R}, for all y € R and we have the Plancherel formula

[ e morac= o [ apar = i, . (85)
R L,
We have in particular thanks to (82-83)
Ao o) € L), Iollizg,,) = 1923 oo
Ao ) € ), Iallizg, ) = 19l cos)-

Applying the Fourier-Laplace transform to w, we have w(e,0) = M;_,w(s,0)
which satisfies

(86)

az‘
()l 6)=0, YAeC

-2w(A, 6) -
ﬁ—(/l, 0) = ho(A),
ﬁ (/\ 1) = P (A),
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and we can easily find the solution of this equation. We obtain for A ¢ Z

cos()l@)
BAs

cos(A(m - 6)) ~

wia.0) = BAsin(Ar)

Po) + l/)n A,

which, for A ¢ Z, leads to

B 0.6) = A7~ o) ~ AL O (N,

where
sin(A@)

AR.0) = sin(An)”

Moreover, we can show that for all 0 € (0,7), s — |A(1/2 +1s,0)| is in L°(R) and
its supremum is attained at s = 0 and it is equal to sin(6/2). Using the Cauchy-
Schwarz inequality (ab + cd)? < (@ + ) (b? + d?), we have then, for all § € (0, 7)

&

< (cos(/2)Iolzzq, ) — SINO/DIbrlizg, )’

L2(L)5)

7012 72 2
< (Hl’bolle(ll/z) + ||l/)n||Lz(11/2)) = ||lP||Lz(zo)-

The last inequality for 8 = 6%, after the change of variable r = €', yields to

ov 1 o
51 L(ZnQ
ﬁaxl 1nQ0 ( )
and
“ﬁaxl $1nQ0 200 < "lp”LZ(ZO). (87)

We have shown that the operator Ly is continuous from L?(£°) to L*(Z! n Q°) and
its norm is bounded by 1.
The norm of Ly g0 40y can be deduced from the previous computation by taking

l/)(,oo,ag) = 0 or equivalently 1, = 0. We get for all 6 € (0, 71):

ow .
Hﬁﬁ(/l, G)HW | < c0s(0/2)[1hoM) 2, ) = COSO/ DIl 2000 (88)
1/2

from where we conclude that the norm of the operator Lyy 0 ;) is bounded by
cos(6°'/2).

Finally, let us consider the previous computation with i) = 0 on (ag, +c0). This
corresponds to take y, = 0 and 1, = e‘th(—e’ + af). Since ¥ vanishes on (a,, +00),
we have e‘yfz/;,, is in L*(R) for any y > 1and so, by (85), l];,, isin Lz(ly) forally > 1.
The previous computation yields to

ow -
A¢Z, poo (A 6% = —A(A, 6%, (A).
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142 — A.-S.Bonnet-Ben Dhia etal.

We can show that

Vy>1,y¢N, supAd(A,6°) < +oo,

/\ely
which enables us to deduce that
oW . o1 2
Vy>1, y¢N, A%(A,e ) € L°(L,).

By applying the inverse Laplace—Fourier transform, we have then

¢ O°W
e yt_

atae (t’ 90’1) € Lz(]R))

Vy>1y¢N,

and by change of variable,

10

Vy>1, y¢N, r""+3/28,<r =5

r, 90’1)> ¢ 2(R"),

If we choose y = 3/2, the operator LyX(-coay) € H 1(0, +00). By compact embed-
ding of H'(0,b) in L*(0,b) for any b > 0, we show that x4 LxX(-co.;) 15 com-
pact. It suffices to use similar argument as in the proof of Lemma 8 to show that
X(b,+00)LNX(~c0,a;) 1 @ Hilbert-Schmidt operator.

Let us now give other properties of Ly which will be useful for the numerical anal-
ysis (see Section 4). We remind the definition of the symmetric and anti-symmetric
operators, defined in the proof of Lemma 17, Sand A € L(LA(R))

Ve LR, Sp) = S(H0) +p2ay -y)), and AP) = S(H0) - e - )

We remind that S+ A = 1d., S = S, A2 = A, ||S| < 1, ||A|| < 1and for any ¥ € L*(R) such
that 1/)(,00,,13) = 0, we have

1

"Sl/)”LZ(IR) = ||Al/)||L2(]R) = 2

Il (89)

Let us now study the norm of Ly Sy and LyA for any i € L*(R). By reproducing the
previous calculations, we have easily that, writing (Sy), = (SY),,

ILySPll2inge) < sup|AA, - 6%1) = A4, 0°N)|ISYl 2(q.000)

€l
where we remind that

sin(A9)

v e (0,m), VA ¢ Z, A(A0) = S’
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We can show that the supremum is attained at A = 1/2 and then

sup |A(A, - 6%1) - A(A,6%")| = |cos(6”'/2) - sin(6%'/2).

Aely),

Using that \/§||Sl/)|| (@ +00) = ISyl 2R < ||l/)||Lz(]R), we obtain

| cos(6%'/2) — sin(6*'/2)]
V2

ILySYl 251000y < 1Pl 2 w)- (90)

Similarly, we get

cos(6%1/2) + sin(6%/2)
V2

||LNAl/)||L2(zanO) < ||l/1||L2(]R)~ 91)

Moreover, let us remark, that gathering these inequalities, we obtain an inequality
which comparing to (87), is not optimal:

"LN'I)"LZ(ZIHQO) < ||LNS¢’||LZ(Zan°) + ||LNA'~I’||L2(zanO)
< V2max(cos(6%'/2), sin(90’1/2))||1/)||Lz(]R). (92)

Moreover, for Y € L*(R) such that 'P(—oo,ag) = 0, using (89), we obtain

||LN1/’||LZ(Zan°) < ||LNS||||S¢||L2(1R) + ||LNA|| ||A1/J||L2(1R) < C,"l/)”LZ(]R)

where

C' = max(cos(6*!/2),sin(6%!/2)) € (0,1).

This result is then not optimal for %! € (0,7/2) (compared to (88)) but the constantC’,
obtained that way, is still in (0, 1).
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Samuel Cogar, David Colton, and Peter Monk
5 Eigenvalue problems in inverse
electromagnetic scattering theory

Abstract: The inverse electromagnetic scattering problem for anisotropic media in
general does not have a unique solution. A possible approach to this problem is
through the use of appropriate “target signatures,” i. e., eigenvalues associated with
the direct scattering problem that are accessible to measurement from a knowledge of
the scattering data. In this paper, we shall consider three different sets of eigenvalues
that can be used as target signatures: (1) eigenvalues of the electric far field operator,
(2) transmission eigenvalues, and (3) Stekloff eigenvalues.

Keywords: Inverse scattering, nondestructive testing, transmission eigenvalues, Stek-
loff eigenvalues, eigenvalues of the far field operator

MSC 2010: 35)25, 35P05, 35P25, 35R30

1 Introduction

An important unresolved problem in electromagnetic inverse scattering theory is
how to detect flaws or changes in the constitutive parameters in an inhomogeneous
anisotropic medium. Such a problem presents itself, for example, in efforts to detect
structural changes in airplane canopies due to prolonged exposure to ultraviolet radi-
ation and is currently resolved by simply discarding canopies every few months and
replacing them with new ones. The difficulties in using electromagnetic waves to in-
terrogate anisotropic media is due to the fact that the corresponding inverse scattering
problem no longer has a unique solution even if multiples frequencies and multiple
sources are used [11]. Hence alternate approaches to the nondestructive testing of
anisotropic materials need to be developed.

A possible approach to the target identification problem for anisotropic materi-
als is through the use of appropriate “target signatures,” i. e., eigenvalues associated
with the direct scattering problem that are accessible to measurement from a knowl-
edge of the scattering data. The earliest attempt to do this was based on the use of
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146 —— S.Cogaretal.

so-called “scattering resonances” corresponding to the complex poles of the scatter-
ing operator. Such an approach appeared particularly fruitful since there is a deep and
well-developed theory of such resonances that is readily available to the practitioner
[16]. However, the use of scattering resonances as target signatures ultimately proved
unsuccessful in electromagnetic interrogation due to the difficulty in determining the
location of the complex resonances from measured scattering data which is known
only for real values of the wave number.

A second attempt to determine target signatures from the far field data was to use
the eigenvalues of either the electric or magnetic far field operator for this purpose. We
will present this approach in Section 3 with numerical examples given in Section 6.1.
A major drawback of this approach is the lack of any theory relating changes in the
eigenvalues to changes in the material properties of the scatterer.

A more recent effort to determine appropriate target signatures for anisotropic ma-
terials is based on the use of transmission eigenvalues [2, 4]. As opposed to scattering
resonances, for dielectrics these eigenvalues are real and can be readily determined
from the scattering data. In view of their potential in the nondestructive testing of di-
electric materials, we will present the basic theory of transmission eigenvalues in the
next two sections of our paper and refer the reader to the two monographs [2] and
[4] for further details. In contrast to the theory of scattering resonances, the theory of
transmission eigenvalues is of more recent origin with many questions unanswered.
In particular, it has been shown in special cases that complex transmission eigenval-
ues exist for dielectric materials but whether such eigenvalues exist in general and
what their physical meaning is remains an open question.

There are two main problems with using transmission eigenvalues as target signa-
tures. The first of these is that such an approach is only applicable to dielectric mate-
rials. The second is that one must interrogate the material over a range of frequencies
centered at a transmission eigenvalue, i. e., one is forced to use multi-frequency data
over a predetermined range of frequencies. A method to overcome both of these diffi-
culties has recently been proposed that is based on using a modified far field operator
instead of the standard far field operator that is used to determine both scattering res-
onances and transmission eigenvalues. In this new approach, the frequency is held
fixed and a new artificial eigenparameter is introduced which can be determined from
measured scattering data. In one version of this approach, the new artificial eigenpa-
rameter turns out to be an electromagnetic version of the classical Stekloff eigenvalue
problem for elliptic equations and we will discuss this specific class of target signa-
tures in Section 3 of this paper [3, 7].

The plan of our paper is as follows. In the next section (Section 2), we shall present
the basic theory of transmission eigenvalues for Maxwell’s equations in an anisotropic
medium and their use as target signatures. This is followed, in Section 3, by a dis-
cussion of the eigenvalues of the electric and magnetic far field operators. Next, in
Section 4, we summarize two methods for determining transmission eigenvalues us-
ing the magnetic far field equation (one could also use the electric far field equation).
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5 Eigenvalue problems in inverse electromagnetic scattering theory =— 147

Then, in Section 5, we will show that, through the use of a modified far field operator,
Stekloff eigenvalues corresponding to the anisotropic index of refraction can be deter-
mined from the measured scattering data. In Section 6, we present some numerical
examples illustrating our results. Finally, in Section 7, we draw some conclusions and
suggest some future directions of research.

2 Transmission eigenvalues

We begin by formulating the direct electromagnetic scattering problem that we will
refer to throughout this paper. Let E!, H! be an incident field that is scattered by an
inhomogeneous object occupying the domain D, where we assume that D has smooth
boundary dD. The corresponding scattered field is denoted by ES, H® and E = E' + E°,
H = H' + H is the total field. Then the (normalized) Maxwell’s equations are

curlE -ikH =0 3
inR 2.1)

curl H + ikN(x)E = O

where k > 0 is the wave number, x € R>, N (x) is the symmetric matrix index of refrac-
tion with entries in C'(D) and E®, H® satisfy the Silver—Miiller radiation condition

lim (H® xx - rE°) = 0 (2.2)
r—oo

where r = |x|. We will assume that the incident field E', H' is given by

E'(x) = E'(cd,p) = icurl curl pel4

. . . (2.3)
Hi(x) = H\(x;d, p) = curl pe*4

where d € R3, |d| =1, is the direction of the incident wave and p € R3 is the polariza-
tion. Under the assumption that

Z.ReN(X)¢ > alé|? Q.4)

£.ImN(x)¢ >0

for x € D, ¢ € C* and some constant a > 0 it can be shown that there exists a unique
solution E, H € Hy.(curl, R%) of (2.1)-(2.3) [14].

From (2.1)-(2.3), it is easy to show [10] that the scattered electric field E(x) =
E*(x; d, p) has the asymptotic behavior

ik|x|

E’(x;d,p) = e—{EOO(k; d,p) + O<i>} (2.5)
x| |x
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as |x| —» oo where x = Ii_l and E is the electric far field pattern of the scattered wave.
If we define

L}(S%) = {g:$* - C : g e L*($?),g-v =0},

where $? is the unit sphere with unit outward normal v, the electric far field operator
Fe:Lf(Sz) - Lf(SZ) is given by

(Fg)®) = ono(fc d,g(d)) ds(d). 26)
SZ

It can easily be seen that F, is compact [10].

Of central importance to the inverse scattering problem is the characterization of
the null space of the electric far field operator. To this end, we define an electromag-
netic Herglotz pair (E, H) to be a solution of Maxwell’s equations

curlE - ikH = 0,
27)
curl H + ikE = O,
of the form
E(x) = j E'(x;d,g(d) ds(d),
§? (2.8)
H(x) = j H'(x;d, g(d)) ds(d),
$2

with kernel g € L?($?). The proof of the following theorem can be found in [4].

Theorem 2.1. The electric far field operator Fe:Lf(Sz) - Lf(Sz) corresponding to the
scattering problem (2.1)-(2.3) is injective with dense range if and only if there does not
exist a nontrivial solution to the transmission eigenvalue problem

curl curlE - k’N(X)E = 0} .

5 D
curlcurlEy - k“E; = 0

(2.9)

vxE=vxE,

oD
vxcurlE = v x curlEo} on

where v is the outward unit normal to 0D and E,, := Eg, H,, := H, are an electromagnetic
Herglotz pair with kernel ikg.

Values of k for which there exist nontrivial solutions to (2.9) are called transmis-
sion eigenvalues. Transmission eigenvalues play an important role in the theory of in-
verse scattering. In particular, as we shall see, these eigenvalues can be determined
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5 Eigenvalue problems in inverse electromagnetic scattering theory =— 149

from the far field data and give qualitative information on the anisotropic index of re-
fraction. As noted in the Introduction, this is of particular importance in the inverse
scattering problem for anisotropic media since the anisotropic material parameters
are not uniquely determined from the far field data. The mathematical theory of trans-
mission eigenvalues is based on the following two fundamental results due to Cakoni,
Gintides, and Haddar [6] (see also [4]), where for real N(x) we define

n, == inf inf &-N(O)& n* :=sup sup & - NX)¢.
x<D [¢l=1 xeD [€]=1

Theorem 2.2. Assume that for every & € c?, |€] = 1, and some constants a > 0, § > 0
one of the following inequalities is valid:

1) 1+as<n, <& -NX§E<n®<oo,xeD;

2) 0<n,<&-Nx)¢<n"<1-B,xeD.

Then there exists an infinite countable set of positive transmission eigenvalues corre-
sponding to (2.9) with +co as the only accumulation point.

Note that, in contrast to scattering resonances, the above theorem says that for
real N(x) there exist positive transmission eigenvalues and, as we shall see in the next
section, these can be determined from measured far field data and thus can be used
as target signatures. It can be shown (cf. Theorem 8.12 of [10]) that if N(x) is not real-
valued then positive transmission eigenvalues do not exist.

Theorem 2.3. Let k; p y(x) be the first positive transmission eigenvalue for (2.9) and let
a and B be positive constants. Denote by kyp, and kyp,- the first positive transmis-
sion eigenvalue of (2.9) for N = n,I and N = n*I, respectively, and let |-||, denote the
Euclidean operator norm.

1) IfFINOI, =2 a>1,then0 < kypp <kipne < Kipn, -

2) IfO<|[NX)l,<1-B,thenO<kip, <kpnw <kipn-

Assuming that k;  y(,, can be computed from the far field measurements, Theo-
rem 2.3 provides an approach to obtaining qualitative information on N(x) by comput-
ing a constant n such that k; , v is the first positive transmission eigenvalue corre-
sponding to (2.9) with N := nI for this n. The above theorem then implies thatn, <n <
n*. Since N(x) is positive definite, n, = A; and n* = A; where A, is the smallest and A,
is the largest eigenvalue of N(x).

As an example, consider an orthotropic medium that is translation invarient in
the x5 direction where x = (xl,xz,x3)T [5] with

ng np O
N = n, N, O
0 0 ng;
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150 — S.Cogaretal.

It is then possible to reduce the problem to two dimensions. In this example D = (0, 1)x
(0,1) and the 2 x 2 block of the matrix N is given by

<n1,1 n1’2)2<1/6 O)
Ny Ny, 0 1/8)°

Then A; = 0.125, A, = 0.166, and the computed n = 0.135. For details, see [5].

3 Eigenvalues of the far field operator

We shall now show that the electric (or magnetic) far field operators possess discrete
eigenvalues which can then be approximated directly using scattering data. To this
end, we need the following theorem from [9] (the result in [9] assumed that N(x) was a
scalar but the same proof is valid for N(x) a symmetric matrix satisfying the assump-
tion (2.4)).

Theorem 3.1. Let Eé, Hg‘;, and E;l, H,l; be electromagnetic Herglotz pairs with kernels
g, h e Lf(SZ), respectively, and let E, and Ej, be the solutions of (2.1)-(2.3) with E., H!
replaced by E,,, Hé and E}, H,, respectively. Then

k ” Im N(OE, - By dx = ~271(F g, h) - 271(g, F,h)  (F..g, F,h) (3.1)
D
where (-, -) denotes the inner product on Lf(Sz).

If ImN(x) = 0O, then it is an easy consequence of this theorem that the compact
operator F, is normal, and hence has an infinite number of eigenvalues [9]. In this
case, it can also easily be seen from (3.1) that if F,g = Ag then

0 = -211(Ag, 8) - 21(g,Ag) - IAI*(g, 8)
which implies that
A +2n| =21 (3.2
i. e., the eigenvalues of the electric far field operator all lie on the circle (3.2). A similar

calculation can be done if, instead of using the electric far field operator, we use the
magnetic far field operator, i. e., if

iklx|

H(d,p) = {HOO(S(; d,p) + 0<i>} 33)

x| x|

and the magnetic far field operator F,: L3($*) — L}($?) is defined by

(Fng)(®) = jHoo(fc; d,g(d)) ds(d). (3.4)
SZ
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5 Eigenvalue problems in inverse electromagnetic scattering theory = 151

It is again easily seen that F,, is compact. In a similar manner to the electric far field
operator, it can be shown that F,, is injective with dense range provided k is not an
eigenvalue of the interior transmission problem

curl N(x) tcurl H) - k*H = 0
curl curl Hy - k°H, = 0

VXE=VxE,
NGx) Y (v x curlE) = v x curl E,

inD
(3.5)
on oD

and that if N(x) is real then the compact operator F,, is normal, and hence has an
infinite number of eigenvalues. An identity analogous to (3.1) can also be established
for the magnetic far field operator F,, [12] and used to show that the eigenvalues of F,,
all lie on the circle

I)l _2m)_ 2 (3.6)

If N(x) is not real, then we may still establish the existence of infinitely many eigen-
values of F, and F,, using Lidski’s theorem [10], as we show in the following theorem.
We first remark that both F, and F,, are trace-class operators, as can be seen by con-
sidering truncated spherical harmonic expansions of the kernel of each operator.

Theorem 3.2. IfIm N(x) is positive on a nonempty open set in D, then F, has infinitely
many eigenvalues.

Proof. SinceF, is a trace-class operator, by Lidski’s theorem it remains to show that F,
has a finite-dimensional nullspace and an imaginary part which is nonnegative. Un-
fortunately, the formula (3.1) does not provide the second requirement, and we instead
show it for a slightly modified operator F,. In order to prove the first part, we show that
under our assumption on N no real transmission eigenvalues can exist, from which
Theorem 2.6 implies that F, is injective. Indeed, if E, E, satisfies the homogeneous in-
terior transmission problem (2.9), then we see from the equation for E, in D and the
integration by parts formula for the curl operator that

j[(curlEO x Ey) - v — (curl Ey x Eg) - v]ds = 0.
aD

Applying the vector identity (axb) - ¢ = —a- (c x b), the boundary conditions, and the
same vector identity again yields

J[(CurlE xE)-v - (curlE xE) -v]ds = 0,
aD

and it follows from another application of the integration by parts formula that

0= ”(curl curlE -E - E - curl curl E)dx
D
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152 — S.Cogaretal.

= 2ik? ” Im N(x)|E|dx.
D

Thus, we observe that E = 0 on the open set D, := {x € D : ImN(x) = 0}, and by the
unique continuation principle it follows that E = 0 in all of D. This result implies that
E, = 0 as well, and we conclude that k is not a transmission eigenvalue.

In order to prove the second part, we rewrite (3.1) in terms of Fe := —ikF, as

i j J Im N(OE, - By, dx = 21(F g, h) - 2n1(g, F,h) - i(l:"eg, E,h), 3.7)
D

from which it follows that forall g € Lf(Sz) we have

Im(F,g,8) = %[(Feg,g) - (g, F.2)]

1.2 2 Iz 2
- ﬁ[zk ” Im NGOV Pdx + ¢ IFg]
D
> 0.

Therefore, the assumptions of Lidski’s theorem are satisfied for the operator F, :=
—ikF,, and we conclude that F,, and hence F, has infinitely many eigenvalues. O

A similar computation establishes the result for the magnetic far field operator F,,,.
Note that the definition of the electric and magnetic far field operators in [12] differ by
a factor of 4 from the ones that we are using.

4 Measurement of transmission eigenvalues

We will now consider the problem of determining transmission eigenvalues from the
measured scattering data. In particular, we will assume that the index of refraction is
real-valued and make use of Theorems 2.1 and 2.2. In particular, we present two meth-
ods for determining transmission eigenvalues from the measured scattering data. We
first note that the transmission eigenvalue problems (2.9) and (3.5) are seen to be equiv-
alent by a simple change of dependent variables, and hence have the same eigenval-
ues. Hence there is no ambiguity in simply referring to the eigenvalues of (2.9) and (3.5)
as transmission eigenvalues. We will restrict our attention to considering H, (X; d, p).
We always assume that Im N = 0 and that D is known (D can be determined by using
the linear sampling method; cf. [4]).

We first show how transmission eigenvalues can be determined from the magnetic
far field operator F,,.

Definition 4.1. If the solution E, of (2.9) is the electric field of an electromagnetic Her-
glotz pair then we call the transmission eigenvalue k a nonscattering wave number.
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5 Eigenvalue problems in inverse electromagnetic scattering theory =—— 153

It is clear that the concept of nonscattering wave numbers is far more restrictive
than the concept of transmission eigenvalues. Indeed, the only case known to date
when a transmission eigenvalue is a nonscattering wave number is the case when D
is a ball and N(x) = n(|x|)I. We define

H, o (%:2,p) = Z—’:T(X x p)e”kxz (4.1)

where z € R® and note that the right-hand side of (4.1) is the far field pattern of the
magnetic field of an electric dipole. We now let g ¢ Lf(Sz) be the Tikhonov regularized
solution of the magnetic far field equation

(Fing)(X) = H, oy (X; 2, D) (4.2)

i.e., g7 is the solution to

(ol + FpFp)gs = FpHe o (4.3)

We then have the following result (cf. Theorem 4.44 of [2] for the scalar case; the proof
in the vector case proceeds in the same manner).

Theorem 4.2. Assume that D is simply connected and that N(x) satisfies one of the two
conditions stated in Theorem 2.2. Assume further that k is not a nonscattering wave num-
ber and let Hg; denote the magnetic field of the electromagnetic field defined by (2.8).
Then for any ball B c D, |HgZ | 12(p) is bounded as a — 0 for almost every z € Bif and
only if k is not a transmission eigenvalue.

In particular, if one plots k versus |gZ| 12(s?) for several choices of points z, then
the location of transmission eigenvalues will appear as sharp peaks in the graph (for
the scalar case, see Figure 4.2 of [2]).

We now turn our attention to a second method for determining transmission
eigenvalues from the magnetic far field operator F,, which is based on the behavior of
the phase of the eigenvalues of the compact normal operator F,,. To this end, we recall
that if k > O is not a transmission eigenvalue then F,, = F,, is injective where we
have explicitly noted the dependence of F,, on k. Hence if k > 0 is not a transmission
eigenvalue, we have the existence of a complete orthonormal basis (gl-(k))]‘?f1 of L*($?)
such that

Fon8 () = A;(0)g; (k) (4.4)

where A;(k) # 0 forms a sequence of complex numbers that goes to zero asj — oo.
Define
R A;(k)

Ai(k) = .
0=

(4.5)

We then have the following theorem due to Lechleiter and Rennoch [13].
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154 — S.Cogaretal.

Theorem 4.3. Assume that Condition 1 (resp., Condition 2) of Theorem 2.2 is valid. Let
ko > 0 and let (k,) be a sequence of positive numbers converging to ky as ¢ — ©o.
Assume there exists a sequence (A,) = A; (k) for some index j, such that A, — -1 (resp.,

A, — +1) as € — oo. Then k, is a transmission eigenvalue.

Note that since F,, ; is compact and all the eigenvalues lie on the circle (3.6), the
only possible accumulation points of the sequence ;Ig are —-1and +1.

The criterion of Theorem 4.3 can be used as an indicator of transmission eigenval-
ues. However, the hard part is to prove that it occurs for every transmission eigenvalue.
We refer the reader to [13] for a further discussion on this issue.

5 Stekloff eigenvalues

So far we have seen two families of eigenvalues that can be determined from scattering

data:

Eigenvalues of the electric far field operator: These can be computed directly
from the far field pattern using single frequency data. However, it is not easy
to determine how changes in the material properties of the object (i.e., N(x))
perturb the eigenvalues.

Transmission eigenvalues: These have a direct relation to N(x) as shown in Theo-
rem 2.3. However, they have to be computed using multi-frequency data and can
only be determined for dielectric scatterers.

We shall now introduce a family of eigenvalues from [7] that can be computed from
the far field pattern at a single frequency, and for which a simple perturbation the-
ory is known. This is achieved by constructing a modified far field operator using an
auxiliary problem which includes an appropriate eigenparameter.

To define this problem choose a domain B such that either (1) B = Dor (2) Bis a
ball containing D in its interior. We also need an operator S : L}(dB) — LZ(3B) such
that S is self-adjoint, bounded, and

(Su,uy >0 forallue Lf(aB),

where (-,-) is the L? inner product on 0B. Next we define, for any sufficiently smooth
vector field w, the tangential component of w on 0B by

wr=(Vxw)xv onodB.

Finally, we need to choose an impedance parameter A € R with A > 0 (note that a
standard impedance parameter would typically be complex). Now we can define the
solution Es of the following generalized impedance problem:

curlcurlEs - kK’Es =0 inR®\ B, (5.1)
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5 Eigenvalue problems in inverse electromagnetic scattering theory = 155

vxcurlEg = ASEsr  on 0B, (5.2)
E'+Ei=E; inR’\B, (53)

. S . S\ _
lim (curl Eg x x — ikrEg) = 0. (54)

This scattering problem has a unique solution for any k > 0 as shown in [7] (for any A,
any solution is always unique).

Then, as usual for a scattering problem, the scattered field E¢ has the asymptotic
expansion

exp(ikr)
r

Ei(x) = Eg (X, d;p) + O(%) asr — oo,

and we can then define the impedance far field operator by

(Fsg)(x) = J Eg oo (%:d, g(d)) ds(d).
SZ

The modified far field operator is then defined by
Fy =F, - Fs.

We can see a link between the modified far field operator and the interior Stekloff
eigenvalue problem as argued in [7]. There it is shown that Fy; is injective with dense
range provided A is not a generalized Stekloff eigenvalue of the problem

curlcurlw - kK’Nw=0 inB, (5.5)
vxcurlw-ASwy =0 onodB. (5.6)

It is then necessary to analyze the existence of generalized Stekloff eigenvalues, and
this analysis depends on the choice of S. The most obvious choice corresponding to the
standard impedance boundary condition is S = I. Unfortunately, direct calculation of
the eigenvalues in the case when N = 1and B is a ball shows that there are two families
of eigenvalues having different accumulation points (one at infinity and one at zero).
Indeed in this case, assuming N = 1, if A is an eigenvalue then so is —kz/}t. Thus they
cannot be analyzed as the eigenvalues of a compact operator.

Instead, in [7] we make the choice of S as follows. Let u ¢ Lf(aB) and define q ¢
H'(dB)/R by solving

Aypq = curlypu.

Note that this assumes that if B = D then 0D has just one connected component. Then
Su = cﬁrlaBu. Here Ayp is the Laplace-Beltrami operator on 0B, and curlyz and cﬁrlaB
are the scalar and vector surface curls, respectively.
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Using S, we can now write the generalized Stekloff eigenvalue problem as an op-
erator equation. We introduce the operator T : H(divys, dB) — H(divys, dB) where

H(div3y,dB) = {u € L(dB) | V4 - u = 0 on 3B}
defined as follows. For given f € H (divgB, 0B), we define w to be the weak solution of

curlcurlw — kzerw =0 inB

vxcurlw=-f onoB.

This is a well-posed problem provided k? is not an interior Neumann eigenvalue for the
curl-curl operator. These eigenvalues form a discrete set and from now on we assume
k? > 0 is not such an eigenvalue. Then

If =Swy onoB.

The fact that Swy is surface divergence-free can be used to show that Tf is actually in
(H"2(B))*, and hence the operator T is compact. Furthermore, it is self-adjoint, and
consequently there exist infinitely many eigenvalues p with associated eigenfunction
u # 0 for the problem

Tu = pu.

Considering the definition of T, we see that if u is an eigenvalue for T then A = -1/pu is
a generalized Stekloff eigenvalue. Thus we conclude the following.

Theorem 5.1 (Theorem 3.6 of [7]). When €, is real, and k? is not an interior Neumann
eigenvalue for the curl-curl operator, there exists a countable set of real generalized
Stekloff eigenvalues that accumulate at infinity.

Supposing now that we can measure generalized Stekloff eigenvalues, we can as-
sume that changes in these eigenvalues can give information about changes in N(x)
as is the case for the Helmholtz equation [3]. To see this, suppose (w, 1), w # 0 is a gen-
eralized Stekloff eigenpair for permittivity N(x) and that (wg, As) is the corresponding
eigenpair for N(x) + 8N (x) where [|6N|;~ is small. Then assuming that w = wy (e. g.,
when the eigenvalue is simple and the perturbation 8N is small), we have, neglecting
quadratic terms, that

2 (6Nw, w)

A=As = (Swr, Swr)

(5.7)

where (-, -) is the L? inner product on dB and (-, -) is the L? inner product on B.

The main question now is how to determine generalized Stekloff eigenvalues (or
at least a few of them) from far field scattering data. As in the case of transmission
eigenvalues, this involves the far field equation, and this time we use the electric far
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5 Eigenvalue problems in inverse electromagnetic scattering theory =—— 157

field equation. The outgoing electric field due to a point dipole at position z with po-
larization q in free space is [10]

E, = i curl, curl, (q®(x, z))

where curl, denotes the curl with respect to x and @ is the fundamental solution of
the Helmholtz equation

_exp(ik|x - y|)

D(x,y) = , X .
y) P +y

The far field pattern due to the dipole source is then given by
E, (X,z:q) = i—’;(fc X q) X X exp(-ikx - z)

where x € §? is the observation direction (for comparison, see (3.3) for the definition
of the magnetic far field pattern, and (4.1) for the magnetic far field pattern of a dipole
source).

For generalized Stekloff eigenvalues, the far field equation corresponding to (4.2)
is then to seek g, , € Lf(SZ) such that

(Fu8zg)(X) = Eo oo (%,2:q)  forall % € §°. (5.8)

As in the case of transmission eigenvalues, we actually solve a Tikhonov regularized
version of this problem by choosing a regularization parameter @ > 0 and solving

(a + F;,FM)gz,q’a = FyEe oo

where Fj; is the L? adjoint of F, - Note that F;; depends on the Stekloff parameter A,
SO &4, is also dependent on A. As A varies, we can use ||g; 4 ,[l;2(s2) as an indicator
function for Stekloff eigenvalues. Although we cannot prove that this is an appropri-
ate indicator function, we can prove that there is an approximate solution of (5.8) that
does have this property. All numerical tests suggest that the solution of the above reg-
ularized problem can indeed serve as an indicator function.

In a similar way to the proof of Theorem 4.2, we can now prove the analogous
result for Stekloff eigenvalues. To do this, we need to recall the definition of the electric
Herglotz wave function

Vg(x) = —ik J g(d) exp(-ikx - d) dsg.
SZ

Theorem 5.2 (Theorem 4.2 of [7]). Assume A is not a Stekloff eigenvalue and k? is not
an interior Neumann eigenvalue for the curl-curl problem. Let z € D and q be fixed. Then
for every € > O there exists a function g, € Lf(Sz) that satisfies

li_{% Fy8e — Ee,oo(',Z;Q)"L[?(sZ) =0

and such that ||vg€ I 12(B) is bounded as € — 0.
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Conversely, we can show that if A is a Stekloff eigenvalue, ”Vge” 12(B) cannot re-
main bounded as € — O for almost every z € D. These results suggest that a graph
of |v : I 12(s?) against A will show peaks at the Stekloff eigenvalues (provided we sam-
ple several points z € D). In practice, we do not use |vg_| 12(s?) to detect eigenvalues
because it is somewhat expensive to compute (we would replace g, by gz)q,a). Instead
we use as a surrogate g, , |l L2(s?)

6 Numerical examples

Numerous examples of the computation of transmission eigenvalues exist in the lit-
erature (cf. [4]) and so we will not present more here. Instead we will focus on the
two sets of eigenvalues discussed in this paper that can be computed at a single fre-
quency: (1) eigenvalues of the electric far field operator and (2) generalized Stekloff
eigenvalues.

Our numerical examples are all computed using synthetic far field data. This data
is computed using the Netgen [15] finite element library using second-order edge ele-
ments and a fifth-order approximation to curved surfaces. We use a spherical perfectly
matched layer, at a distance of half a wavelength from the circumscribing sphere for
B, of thickness one quarter of a wavelength. The PML parameter is chosen to give ap-
proximately 0.6 % relative error in the computed far field pattern for scattering by a
penetrable sphere of unit radius (measured in the L% norm). In all of the calculations,
the wave number is chosen to be k = 1 so the wavelength in free space is 27.

The far field pattern Fg of the generalized Stekloff scattering problem needed for
the solution of (5.8) is computed by the same code with the addition of the calculation
of an approximation to the operator S computed using third-order finite elements in
H'(dB). Generalized Stekloff eigenvalues for arbitrary structures are computed using
the same finite elements but now on a bounded domain as described in [7].

The far field operators are discretized by quadrature on the unit sphere. We use
a finite element grid on the unit sphere having 99 nodes (made by Netgen) and use
vertex based quadrature on each element to calculate the weights for each vertex value
of the far field pattern.

Two domains are considered for the scatterer. The first is the unit cube, and the
second is the (hockey) puck which is a circular cylinder of radius 3/2 and unit height
centered at the origin. The latter scatterer has been suggested as a good experimental
model, being dielectric and which can easily be damaged by drilling out portions.
Experimental results are not considered here.
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5 Eigenvalue problems in inverse electromagnetic scattering theory =—— 159

6.1 Eigenvalues of the far field operator

In this section, we investigate the use of eigenvalues of the electric far field operator
as a target signature. Due to the ease of computing such eigenvalues, they seem to be
a natural choice for this purpose, but a significant drawback is the lack of theory con-
cerning their response to changes in the material parameters of an inhomogeneous
medium. Thus, our study is confined to a collection of numerical examples, and to
facilitate a direct comparison we perform the same numerical experiments as we will
for Stekloff eigenvalues. In order to compute the eigenvalues of the electric far field
operator F,, we first discretize the operator using quadrature to obtain a matrix A.
When we investigate the effect of noisy data, we obtain a noisy far field matrix A* by
multiplying each component of the far field data by 1+ e%, where € > 0is a fixed pa-
rameter and {, u are both uniformly distributed random numbers in [-1, 1] computed
using the rand command in MATLAB. The eigenvalues of A® are then computed using
the eig command in MATLAB. In Figure 5.1, we see that the eigenvalues of the far field
operator for both the unit cube and the puck lie on the circle |A + 27| = 27 as implied
by Theorem 3.1.

05 "‘x“ - ¢D=E-N0%whe] 3 HH&"‘-.,
% 2Ty o ~
|Ae2e| = 2% ~
nas N o - ~ B 7= -
e Gt 25 Sw
T S
i -
035 o 1 e
% | 7 LIS
- 03 i - ~
g > z *
~ b

=025 N =15 “

a2 » \ \‘\

“ 1t kS
018 \ “
X 1
0.1
i 05 »
A
0.05
0,02 -0.018 0,016 -0.014 0.012 -0.01 0 008 -0.006 0004 -0.002 0B 07 06 05 04 03 02 01
Re(A) Re(A)
(b) puck

(a) unit cube

Figure 5.1: The computed eigenvalues of the electric far field operator with €, = 2 and no noise. The
eigenvalues lie on the circle |A + 2| = 2 and appear to converge to zero as predicted.

An important property of a target signature is that it is stable in the presence of noise.
In Figure 5.2, we plot the eigenvalues of the far field operator for both the unit cube
and puck with e}, = 2 for different amounts of noise, and in Figure 5.3 we perform the
same test with €, = 2+ 2i. In the presence of absorption (complex €p), the eigenvalues
move inside the circle |A + 27| = 271,

We remark that although the eigenvalues near the origin are highly sensitive to
noise, the eigenvalues with larger magnitude tend to remain localized. This stability
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Figure 5.2: The computed eigenvalues of the electric far field operator with €5 = 2 and various levels

of noise. The eigenvalues of larger magnitude remain stable in the presence of noise, whereas those
near the origin are highly unstable.
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Figure 5.3: The computed eigenvalues of the electric far field operator with €, = 2 + 2i and various

levels of noise. The eigenvalues of larger magnitude remain stable in the presence of noise, whereas
those near the origin are highly unstable.

(a) unit cube

is promising, and the distribution of the eigenvalues near the origin may even provide
some measure of the noise level.

Of course, our primary point of inquiry is whether the eigenvalues of the far field
operator reliably shift due to a change in an inhomogeneous medium. In Figure 5.4,
we plot the eigenvalues corresponding to €5 = 2 and €, = 2.5 for both the unit cube
and puck. We remark that the eigenvalues with larger magnitude exhibit a noticeable

shift due to this change, which are precisely the eigenvalues that remained stable in
the presence of noise in our previous test.
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Figure 5.4: The computed eigenvalues of the electric far field operator with e; = 2and ey = 2.5,
where no noise has been added. The eigenvalues shift due to the overall change in €p, and a greater
shift is exhibited by eigenvalues of larger magnitude.

6.2 Stekloff eigenvalues

We now perform numerical tests for generalized Stekloff eigenvalues. In order to com-
pute an approximate solution to the electric far field equation (5.8), we use the same
matrix A described for the computation of eigenvalues of the electric far field operator,
and we add noise in the same manner. We first comment on the choice of the domain
B for both the unit cube and puck. The only requirement is that each scatterer is con-
tained in B, but a natural choice is to choose B to be a ball centered at the origin. We
remark that when we solve the far field equation for each sampled value of A, we do
so for 10 randomly chosen z in a ball (of radius 1/4 for the cube and 1/3 for the puck)
contained inside D and average the norms of the solutions to serve as our indicator
function. In Figures 5.5 and 5.6, we plot the average norm of g, the solution obtained
from applying Tikhonov regularization to (5.8), against the Stekloff parameter A for
the cases in which B = D and B is a ball, respectively. We see that the peaks in the plot
approximate the first couple of eigenvalues well for both the unit cube and the puck
when B is chosen to be a ball, but it is difficult to detect any eigenvalues reliably when
B=D.

In Figures 5.7 and 5.8, we provide the same plots as in Figures 5.5 and 5.6, respec-
tively, for various levels of noise. For the case B = D, the plot for the cube exhibits a
peakin the presence of noise which does not coincide with any of the eigenvalues, and
a similar peak appears in the plot for the puck near the eigenvalue of smallest mag-
nitude. For the case B # D, we observe that only a couple of the smallest eigenvalues
in magnitude remain detectable in the presence of noise for both the unit cube and
the puck, and the noise seems to reduce the prominence of the peaks rather than shift
them.
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Figure 5.5: A plot of the average norm of g against the Stekloff parameter A with e, = 2.0 and no
noise, where B = D. The stars represent the exact eigenvalues computed using finite elements. We
observe the difficulty in reliably detecting any eigenvalues.
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Figure 5.6: A plot of the average norm of g against the Stekloff parameter A with €, = 2.0 and no
noise, where B is chosen to be a ball centered at the origin. The stars represent the exact eigenval-
ues computed using finite elements. We observe that the first couple of eigenvalues are detected in
each case.

In Figures 5.9 and 5.10, we investigate the shift of generalized Stekloff eigenvalues due
to an overall change in €, from 2 to 2.5. For the case B = D, we see that the exact
eigenvalues shift and that there is some difference in the plot of the average norm
of g, but since these two do not correspond well, it is difficult to make any definite
conclusions about their usefulness in detecting changes in €. The case B # D displays
a reduced sensitivity in the eigenvalues, with only the smallest eigenvalues for the
puck exhibiting any noticeable shift. However, this choice of B improves the ability to
detect eigenvalues, and consequently this shift may be seen in the peaks of the plot of
the average norm of g.
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Figure 5.7: A plot of the average norm of g against the Stekloff parameter A with ey, = 2.0and B = D
for various levels of noise. The stars represent the exact eigenvalues computed using finite ele-
ments. Though some prominent peaks appear in the presence of noise for both scatterers, they do
not correspond reliably to any of the eigenvalues.
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Figure 5.8: A plot of the average norm of g against the Stekloff parameter A with e, = 2.0and B + D
for various levels of noise. The stars represent the exact eigenvalues computed using finite ele-
ments. Only a couple of eigenvalues remain detectable in the presence of noise.

The perturbation estimate (5.7) suggests that the shift of a Stekloff eigenvalue due to a
change in €y, is related to the magnitude of a corresponding eigenfunction in a neigh-
borhood of the change, and in Figures 5.11 and 5.12 we plot a cross-section of an eigen-
function corresponding to the cube and puck, respectively. In Figure 5.11b, we see that
D is disjoint from the regions in which the eigenfunction w is greatest, which suggests
that an overall change in €, for the unit cube will not result in a large shift in the
corresponding eigenvalue, as we observed. In contrast, we see in Figure 5.12b that D
intersects with the regions of large magnitude of w and explains the observed shift of
the corresponding eigenvalue for the puck in Figure 5.10. Though precise knowledge
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Figure 5.9: A plot of the average norm of g against the Stekloff parameter A with €, = 2.0, 2.5, and no
noise. The symbols “+” and “x” represent the exact eigenvalues computed using finite elements for
€p = 2.0 and €p = 2.5, respectively. The exact eigenvalues clearly shift and there is some difference

in the plot of the indicator function due to the overall change in €p.
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Figure 5.10: A plot of the average norm of g against the Stekloff parameter A with €5 = 2.0, 2.5, and
no noise. The symbols “+” and “x” represent the exact eigenvalues computed using finite elements
forep = 2.0 and €p = 2.5, respectively. We observe no noticeable shift in the eigenvalues for the unit
cube, but we do observe a shift in the smallest eigenvalues for the puck.

of the geometry and material properties of the scatterer must be known in order to
take advantage of this information, this relationship between the eigenfunctions and
the material properties may be highly useful in nondestructive testing of materials. In
particular, it might allow for the localization of flaws in a material by observing which
eigenvalues shift and which do not.

An important advantage of Stekloff eigenvalues over transmission eigenvalues
is that Stekloff eigenvalues may in principle be computed for absorbing media, i. e.,
when €p has a nonzero imaginary part. Though the present theory does not include a
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Figure 5.11: A cross-section of the unit cube surrounded by a ball and the corresponding cross-
section of an eigenfunction.

1.238e-21

(a) Cross section of puck (b) Cross section of eigenfunction

Figure 5.12: A cross-section of the puck surrounded by a ball and the corresponding cross-section of
an eigenfunction.

proof of existence of electromagnetic Stekloff eigenvalues in this case, in Figures 5.13
and 5.14 we present an example of their computation for the unit cube and the puck
when €j, = 2+2i and Bis chosen to be a ball. In these examples, we have paired the plot
for each scatterer with its noisy counterpart in order to obtain a more direct measure
of the effect of noise. We observe that all of the eigenvalues in this sampling region are
detected when no noise is present, and one remains detectable to a reasonable degree
of accuracy in the presence of 7 % noise. It should be noted that the computational ex-
pense is greatly increased by the necessity to sample in a region of the complex plane
rather than in an interval on the real line. However, as in the previous examples for
real €p, the computation of the modified Stekloff problems may be performed ahead
of time for a given region B and applied to any case in which D ¢ B.
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Figure 5.13: A base 10 contour plot of the average norm of g against the Stekloff parameter A in the
complex plane for the unit cube with €p = 2 + 2/ and two different noise levels. Here, we choose B
to be the unit ball. The white stars represent the exact eigenvalues computed using finite elements.
We observe that all of the eigenvalues in this region are detected when no noise is present, and one
remains detectable with 7% noise.
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Figure 5.14: A base 10 contour plot of the average norm of g against the Stekloff parameter A in the
complex plane for the puck with 5 = 2 + 2i and two different noise levels. Here, we choose B to
be the unit ball. The white stars represent the exact eigenvalues computed using finite elements.
We observe that all of the eigenvalues in this region are detected when no noise is present, and one
remains detectable with 7% noise.

7 Conclusion and open problems

The fact that the electric far field data does not uniquely determine the material prop-
erties of an anisotropic medium presents many difficulties in the detection of changes
in the material properties of a medium, and we have seen that various approaches us-
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ing the idea of a target signature are available. An important question is which of these
target signatures should be chosen for a given application, and unfortunately the an-
swer is not entirely straightforward. Although the theory of transmission eigenvalues
is applicable to dielectric media, the use of target signatures for absorbing media at
this time rests with either the eigenvalues of the electric far field operator or general-
ized Stekloff eigenvalues, a pair with complementary strengths and weaknesses. On
one hand, we have observed a noticeable shift in the eigenvalues of the electric far field
operator due to an overall change in €, whereas Stekloff eigenvalues do not appear
to shift as reliably. On the other hand, the relationship between Stekloff eigenvalues
and the permittivity ep is apparent in the variational formulation and lends itself to
investigation by standard techniques in the theory of partial differential equations,
whereas little is known about the eigenvalues of the electric far field operator beyond
their distribution in the complex plane. In addition, the use of Stekloff eigenvalues
requires some decision-making on the choice of B: choosing B = D often improves
sensitivity at the expense of reliable detection of eigenvalues, and choosing B # D im-
proves the detection of eigenvalues while reducing their sensitivity to changes in the
medium. Thus, any attempt to use these methods would require some experimenta-
tion to determine the best choice, and there are multiple trade-offs to consider.

However, the story likely does not end with this rather disappointing observation,
as these are not the only target signatures under current study. In particular, there are
a number of possible ways in which the electric far field operator can be modified. An
example in acoustic scattering modifies the far field operator with that correspond-
ing to scattering by an auxiliary homogeneous medium, and the eigenparameter of
interest n is the index of refraction of the auxiliary medium [1, 8]. An important ad-
vantage of this method is that the auxiliary scattering problem also depends on an
additional parameter y which may be tuned to improve the sensitivity of the eigen-
values to changes in the material properties, thus overcoming the loss of sensitivity
resulting from the choice B # D.

In Figure 5.15, we show a direct comparison between Stekloff eigenvalues and
these so-called modified transmission eigenvalues for acoustic scattering of a L-
shaped domain, where we have used the recently developed generalized linear sam-
pling method (cf. [1]) in order to detect the eigenvalues from far field data. This domain
has been used for numerical testing of Stekloff eigenvalues and modified transmission
eigenvalues previously (cf. [3] and [8], resp.), and we see that the shift in the eigen-
values due to a circular flaw located at (x.,y.) = (0.1,0.4) of radius r, = 0.05 is much
more pronounced for modified transmission eigenvalues than Stekloff eigenvalues.
It should be noted that for the case of Stekloff eigenvalues there exist peaks in the
GLSM indicator corresponding to some of the other exact eigenvalues shown, but the
height of these peaks is considerably less than the one visible. We remark that the
modified transmission eigenvalues correspond to the choice y = 0.5 in [8] and that
instead using y = 2 produces poor results.

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:04 PM



168 —— S.Cogaretal.

— 1 T :
= = —n 4 it il | 184 == —n =4 with decular Aaw i I {

GLSM indicator
-
GLEM indicator

2 .!'| ozl ff ‘}.' |
* 5 . + * Al

6 &5 & 45 4 35 A 25 2 A5 45 4 35 43 425 a2 15 M
Stekloff parameter A Parameter
(a) Stekloff eigenvalues (b) Modified transmission eigenvalues

Figure 5.15: A direct comparison of Stekloff eigenvalues and modified transmission eigenvalues
(with y = 0.5) for acoustic scattering by a L-shaped domain. The shift in the eigenvalues due to a
circular flaw located at (x.,y,) = (0.1,0.4) of radius r. = 0.05 is much more pronounced for modi-
fied transmission eigenvalues than Stekloff eigenvalues. The red “+” symbol represents the exact
eigenvalues for the unflawed domain, and the red “x” symbol represents the exact eigenvalues for
the domain with a circular flaw.

This example indicates that, at least for acoustic scattering and with a proper choice
of y, modified transmission eigenvalues provide more information about the material
properties of the scatterer than Stekloff eigenvalues. This observation is not too sur-
prising, as can be seen from the fact that for spherically stratified media there exists
a single Stekloff eigenvalue corresponding to a spherically symmetric eigenfunction,
whereas there exist infinitely many such modified transmission eigenvalues. Extend-
ing this approach to Maxwell’s equations is the focus of our current research.
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Martin Costabel and Monique Dauge
6 Maxwell eigenmodes in product domains

Abstract: This paper is devoted to Maxwell modes in three-dimensional bounded elec-
tromagnetic cavities that have the form of a product of lower dimensional domains
in some systems of coordinates. The boundary conditions are those of the perfectly
conducting or perfectly insulating body. The main case of interest is products in Carte-
sian variables. Cylindrical and spherical variables are also addressed. We exhibit com-
mon structures of polarization type for eigenmodes. In the Cartesian case, the cavity
eigenvalues can be obtained as sums of Dirichlet or Neumann eigenvalues of positive
Laplace operators and the corresponding eigenvectors have a tensor product form.
We compare these descriptions with the spherical wave function Ansatz for a ball and
show why the cavity eigenvalue of the ball are also Dirichlet or Neumann eigenval-
ues of some scalar operators. As application of our general formulas, we find explicit
eigenpairs in a cuboid, in a circular cylinder, and in a cylinder with a coaxial circu-
lar hole. This latter example exhibits interesting “TEM” eigenmodes that have a one-
dimensional vibrating string structure, and contribute to the least energy modes if the
cylinder is long enough.

Keywords: Electromagnetic cavity, perfectly conducting cavity, Maxwell equations,
short-circuit electric or magnetic eigenfunctions, TE or TM polarization, Debye poten-
tial

MSC 2010: 78A25, 35Q60, 35J05

1 Introduction

A domain Q of R" is called a product domain if for a choice of Cartesian coordinates
x = (¥,2) in R", the domain Q coincides with the product ) x Z in the sense that

XxXeQ & ye)Y and ze€Z.

In the three-dimensional space (n = 3), we may assume without restriction that ) has
the dimension 2, and Z, dimension 1, hence is an interval. Such a domain may also
be called a cylinder. The main motivation of this work is to exhibit for electromagnetic
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172 —— M. Costabel and M. Dauge

cavity problems in a cylinder with arbitrary cross-section similar properties as those,
well known, for acoustic modal problems.

Most of the results we present are not new and have their roots in the pioneer-
ing works by Mie (1908) and Debye (1909). Expressions for cavity modes in cylinders
can be found in [10] and in balls in [9]. Our aim is to adopt a synthetic presentation
that clearly links Laplace or Laplace-like eigenvectors to electromagnetic eigenmodes
via TE (transverse electric) and TM (transverse magnetic) vector wave functions: The
Laplace eigenvectors appear as Debye potentials. In particular, we carefully address
the case when the cross-section w of Q contains holes (modelling, for instance, metal-
lic wires) and prove the completeness of a system of TE, TM, and TEM modes. The
TEM eigenmodes that enjoy both features of transverse electric and magnetic polar-
izations, often contribute the lowest frequencies, and this can be precisely quantified.
This case was the first motivation for the present investigation.

The knowledge of Maxwell eigenmodes to an applied mathematics audience has
some importance. Our results can be used as benchmarks for numerical methods for
the computation of cavity modes. Also for transmission problems, our description of
the interior eigenmodes may be useful, since there exist standard numerical methods
that fail if the frequency coincides with an interior eigenfrequency.

1.1 The case of acoustics: The Dirichlet-Laplacian

The Laplace operator A in R" is expressed in variables x = (x;,...,x,) as A = Yisjen aﬁi
and it is the sum of the two Laplace operators in variables y and 2z

A=Ay +A,.
The Sobolev space H'(Q) on the product domain Q = )’ x Z can be written as
H'(Q) = IV, H'(2)) n H'(,L*(2)).

Likewise, the closure Hy(Q) in H'(Q) of smooth functions with compact support in Q
satisfies

Hy(Q) = I*(V, Hy(2)) n Hy (Y, L*(2)).

As a direct consequence we find, for any bounded product domain Q, the full spectral
description of the Dirichlet-Laplacian.

Theorem 1.1. Let (/1]-, Vj)js1 and (U, Wp,)ms1 be the spectral sequences of -A, on H(l)(y)
and of -A, on H(l)(Z), respectively. This means that

A <A<
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6 Maxwell eigenmodes in product domains =— 173

is the eigenvalue sequence of -A, and (vj);»; is an associated orthonormal basis, and
the same for -A,.
Then the set of eigenvalues of —A on H(l)(y x Z)is

N+ s =1, m > 1}

and the tensor functions Uj i 2= Vj ® Wpy, i.e., defined as

Uj i (X) = V(Y)W (2),

are orthonormal associated eigenvectors, and they form a basis of H(l)(Q).

Of course, a similar result holds for Neumann boundary conditions. This holds
also for mixed Dirichlet—-Neumann problems of the type

(Dirichleton 9y x 2) and (Neumannon) x0Z)

for which the (4;, v;) are still the Dirichlet eigenpairs on ), but the (u,,, w,,,) have to be
taken as the Neumann eigenpairs on Z. Finally, the Dirichlet and Neumann conditions
can be also be swapped between ) and Z.

1.2 The case of electromagnetism: The Maxwell system

From now on, the space dimension is n = 3. Let Q be a domain in R?, representing
a cavity filled by an homogeneous dielectric medium. We assume that the boundary
of Q represents perfectly conducting walls. After normalization, the cavity resonator
problem is to find the frequencies k € R and the nonzero electromagnetic fields (E, H)
in L*(Q)® such that

curlE-ikH=0 in Q,
curlH +ikE=0 in Q,
divE=0 and divH=0 inQ,
Exn=0 and H-n=0, onoQ.

(1.1)

Here, n denotes the outward unit normal to 0Q. The gauge conditions on the diver-
gence are a consequence of the first two equations if k # 0. Nevertheless, we look for
solutions of (1.1) including k = 0. The occurrence of k = 0 happens if and only if the
domain Q is topologically nontrivial, i. e., if Q is not simply connected, or if 0Q is not
connected; see Propositions 3.14 and 3.18 in [1].

Definition 1.2. The triples (k, E, H) solution of (1.1) with (E, H) # O are called Maxwell
eigenmodes, k is called eigenfrequency, K2 eigenvalue, and E, H electric and magnetic
eigenvectors.
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Let Q be a bounded product domain in R>. This means that
Q=wxI, wcR? IintervalinR. (1.2)
We denote correspondingly Cartesian coordinates in Q by
X=X,XXx3) =(X,x3), x, ew and x3el.

We assume that w is a bounded Lipschitz domain. We note that the boundary of Q is
connected but, if w is not simply connected, the same holds for Q.

Notation 1.3.

1. DenotebyA, = d; + 03 the Laplace operator in the variables x .

2. Let ()lf“r,v]fﬁr)j21 be the eigenpair sequence of the Dirichlet problem in w for the
operator -A, .

3. Let (A'®",v]"®");, be the eigenpair sequence of the Neumann problem in w for the
operator -A , with A3® = 0 and vg™ = 1.

4, Let (}lf,,", an")mzl be the eigenpair sequence of the Dirichlet problem in I for the
operator —05.

5. Let (up Y, wi") mso be the eigenpair sequence of the Neumann problem in I for the
operator —93, with u{®" = 0 and w)®" = 1.

One of the results of this paper is (see Theorem 3.6) the following.

Theorem 1.4. Assume that w is simply connected. Then the Maxwell eigenvalues k? span
the set

dir

{/1]‘-jir s j 2L, m2 0} u A 21, m= 1) (1.3)

m bl
(including repetition according to multiplicities).

In the sequel, we describe a corresponding basis of eigenvectors, constructed on
the model of vector wave functions, according to the widely used M and N ansatz (De-
bye potentials). We include the case when w is multiply connected: In this case, the
relevant parameter is the number D of connected components of dw and to the set
(1.3), we have to add all the yfn", each of them with multiplicity D - 1, corresponding
to the number of holes contained in w. The corresponding modes are the TEM modes
that have no component in the direction x;.

This paper is organized as follows. In Section 2, we introduce general principles
for the description of the Maxwell cavity modes. In Section 3, we give formulas for the
electric eigenmodes (¥, E) in the case when Q has the cylindric form w x I with w ¢ R?
and I ¢ R, separating the modes according to their polarization in TE, TM, and TEM
types. In Section 4, we deduce the structure of magnetic cavity modes and synthesize
results in Table 6.1. In Section 5, we mention generalizations to special combinations
of conducting and insulating boundary conditions.
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As an application of our formulas, we consider in Section 6 the case when Q is a
cube (or, more generally, a cuboid), and in Section 7 the case when Q is axisymmetric:
Then Q is a circular cylinder, or a circular cylinder with a coaxial cylindrical hole. We
bring special attention to the latter case. Then the TEM modes appear in the explicit
form (7.8).

We address the situation when Q is a ball of radius R in Section 8. The analysis is
in the same spirit and exhibits a close relation with a scalar Laplace-like operator in
the “cylinder” % x (O, R).

Finally, in Section 9, again for product domains, we investigate the variable coef-
ficient case, namely when ¢ is varying transversally, i. e., independently of the axial
variable x;. Then the TE and TM structures are no longer a valid Ansatz, in general.
In replacement, we obtain wave guide formulations with separation of variables and
tensor product form for eigenmodes.

2 Preliminaries

2.1 Electric and magnetic formulations for the Maxwell spectrum

We first recall the definition of the standard functional spaces associated with Maxwell
equations on a domain Q ¢ R>. The curl in 3D is defined as

O3 — O3y
curlu = | o5u; — o3 foru = (u;, uy, u3)
o01u; — Uy

and H(curl, Q) is the space of L*(Q) fields with curl in L?(Q), while Hy(curl, Q) is the
subspace of H(curl, Q) with perfectly conducting electric boundary condition uxn = 0.
The divergence in 3D is defined as

divu = oju; + ou, + 05u3  for u = (uy, uy, us)

and H(div, Q) is the space of L%(Q) fields with divergence in L*(Q), and Hy(div, Q)
the subspace of H(div, Q) with perfectly conducting magnetic boundary conditions
u-n=0.

It is well known that the system of equations (1.1) can be formulated with E only
(electric formulation) or H only (magnetic formulation). Each time a vector Helmholtz
equation is found. Convenient functional spaces for the electric and magnetic varia-
tional formulations are

Xn(Q) == Hg(curl, Q) nH(div,Q) and X;(Q) := H(curl, Q) n Hy(div, Q) .
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176 —— M. Costabel and M. Dauge

In these spaces, regularized formulations make sense. This means that, introducing a
parameter

s>0

we introduce the electric variational formulations:
Find the eigenpairs (\ = K2, u) withu # 0 in Xn(Q) such that

J curlu curlv + sdivudivvdx = A J u-vdx, WwveXy(Q), (2.1)
Q Q

while magnetic formulations are the following.
Find the eigenpairs (\ = K2, u) withu # 0 in X;(Q) such that

j curlu curlv + sdivudivvdx = A J u-vdx, WveX(Q). 2.2
Q Q

Relying on [4, Theorem 1.1], we know that the eigenpairs of (2.1) split in two fami-

lies:

a) the Maxwell eigenvalues, independent of s, for which the eigenvectors are diver-
gence-free;

b) the gradients of the Dirichlet eigenvectors for —-A on Q, associated with eigenval-
ues sAJ".

Thus the regularization by sdiv udivv makes the problem elliptic as soon as s > 0
and gives a description of the infinite dimensional kernel of the curl curl operator. The
gauge conditions divE = 0 and div H = 0 in (1.1) ensure that we are always in case a).
We can state the following.

Lemma 2.1.

1. Let (k,E, H) be a Maxwell eigenmode solution of (1.1). Set A = k?. Then, if E # 0, it is
solution of (2.1) for any s > 0, and if H # 0, it is solution of (2.2) for any s > O.

2. Lets > 0.IfA # 0 and u is solution of (2.1) with divu = 0, then setting k = +VA,
E=u,andH = % curl E, we obtain an eigenmode of (1.1).

3. Lets > 0.IfA # 0 and u is solution of (2.2) with divu = 0, then setting k = VA,
H=u,andE = —% curl H, we obtain an eigenmode of (1.1).

2.2 Product domain

Let Q ¢ R? be of product form wxI, with w ¢ R? and an interval I. We denote Cartesian
coordinates and component of vectors as

X = (X, X0, X3) = (X,,X3) and  u = (ug, Uy, u3) = (U, u3).
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6 Maxwell eigenmodes in product domains =— 177

Likewise, the exterior unit normal n to 0Q is written (n , n3). The boundary of Q is
0Q = wx1) U (wxal.

Onw xdl,n, =0andn; = +1. On 0w x I, n, is the exterior unit normal to dw, n; = 0,
and the tangential component of u, isu;, x n, = wn, — u,n,. The electric boundary
conditions u x n = 0 on 0Q) are equivalent to

u, xn, =0 and u3=0 on JwxlI,
u, =0 on wxoal (2.3)

The gradient and the Laplacian in the transverse plane containing w are denoted
by V, andA,:

V,v= <81v> and A,v=0lv+dv.
o0V
The vector and scalar curls in 2D are given by
0,V
curl, v = and curl, v=0,v, - 0,v;.
-0V

We have the formula

curl, u 2
curlu = ( + 3) +o3| u |. (2.4)
curl, u, o

2.3 The M, N ansatz and the TE or TM polarizations

The interior partial differential equation satisfied by eigenpairs is the system:
cutlcurlu=k*u and divu=0 inQ. (2.5)

There is a well-known ansatz to solve these equations, called vector wave functions
M and N. They depend on the choice of a unit piloting vector ¢, and then M and N are
generated by scalar potentials g = g(x) according to
M[q] = curl(g¢) and N[g] = curl M[g] = curl curl(qg ¢). (2.6)
In a slightly modified form where one takes ¢ = If(_l’ the ansatz M and N are the corner
stone for the construction of spherical wave functions; cf. Section 8.
For our study, we choose

0
c=e;=(0|. @7)
1

Direct calculations yield the following.
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178 —— M. Costabel and M. Dauge

Lemma 2.2. Letq ¢ HY(Q) and set M[q] = curl(g e;3). Then
M[q] = (culgl q) and curlM[g] = V(359) - Aq e;. (2.8)

With N[q] = curl M[q], we have
N[g] = V(3;9) ~Ag e; and curlN[g] = -M[Aq]. (2.9)

The form of M and curl N with their third component zero explains why M, when
describing an electric field, represents the TE (transverse electric) polarization, and N,
the TM (transverse magnetic) polarization. For the description of a magnetic field, the
converse happens: M is TM and N is TE.

As a consequence, we find that

(curl curl -k*)M[q] = -M[Aq + K*q],

2.10
(curl curl -k*)N[g] = -N[Aq + K*q]. 10

Thus, looking for solutions of (2.5) amounts to considering M[g] and N[q] with g solu-
tion of the Helmholtz equation Ag + k*q = 0.

3 Electric eigenmodes in a product domain

In this section, we look for solutions (k?, E) of the electric problem (2.1) with the gauge
constraint div E = 0. For this, we use the M, N ansatz, we find sufficient conditions on
the potentials g, construct families of eigenpairs, and prove that this system is com-
plete.

3.1 TE modes
Let E = M[q] be a TE mode. By construction, div E = 0. By (2.10), g has to satisfy
Ag +K°q =0. (€A))

It remains to verify the electric boundary conditions E x n = 0 on 0Q. Combining (2.3)
and (2.8), we find

curl, gxn, =0 onowxI,

curl, g=0 onwxal,
which is equivalent to

0,g=0 onowxlI,
V,gq=0 onwxoal. (3.2
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6 Maxwell eigenmodes in product domains =— 179

Sufficient conditions for this are Dirichlet conditions on w x oI combined with Neu-
mann conditions on ow x I. This is a tensor product of a Neumann problem on w and a
Dirichlet problem on I. Along the same principle than for pure Dirichlet problem (cf.
Theorem 1.1), we find a spectral basis for g in the form

G =V oWl K=, j21m>1. (33)

Here, j = 0 (corresponding to v{™ = 1) is discarded because functions g independent

of x, give M[q] = 0.
Thus we have found the following families of TE modes.

Lemma 3.1. Forallj > 1, m > 1, the field EIT,,EI = M[v]f‘eu ® wfn”], ie.,

ETE(X X)_(Cul‘lJ_V]peu(xJ_)> dir
jm\t 1> A3 —

0 Wy, (63), (3.4)

is a TE mode for problem (2.1) associated with the eigenvalue Ay, = A" + udr,

3.2 TM modes

Let E = N[g] be a TM mode. Again, divE = 0, g has to satisfy (3.1), and it remains to
verify the electric boundary conditions E x n = 0 on 9Q: Using (2.8), we find that

E, =V,(0;q) and E;=-Aq
Hence, with (2.3)

Vi(03g)xn, =0 and A, g=0 on JwxlI,
V,(039) =0 on wxadl.

We obtain sufficient conditions through the separation of variable ansatz
q(x) = v(x ) w(x3)
with
-Av=Avin w and —a§w=yw inI withd+u=k*=A, (3.5)
and the boundary conditions become
(n, xV)v(x,)o3w(x3) =0 Vx, € 0w, Vx3 €1,

A vix)wxs) =0 VX, € 0w, Vx3 €1,
V,v(x,)o3w(x3) =0 VX, € w, Vx5 €0I,
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180 —— M. Costabel and M. Dauge

which yields, with o,w, d = 1,..., D, the connected components of dw,

v=const. oneachd,w or ow=0 inl,
Av=0 onow or w=0 inl, (3.6)
Viv=0 inw or ;w=0 onol

The conditions V,v = 0 and w = 0 have to be discarded since they imply E = 0.
Therefore we should have o;w = O on dl and A, v = 0 on Jow. The latter condition
implies that v = 0 on ow in the case when A # 0. When A = 0, the condition v = const.
on each o w is sufficient. Thus we have shown that (3.5)-(3.6) can be summarized as
follows: Either

-Ajv=A inw and v=0 onodw
withA £ 0, A+pu = A, 3.7

~%w=pw inl and d;w=0 ondl

or

-A\v=0 inw and v=const oneachdw )
withu = A (3.8)

~%w=pw inl and dw=0 ondl

Hence we have found the following two families of TM modes. First, we have the stan-
dard one.

Lemma 3.2. Forallj > 1, m > 0, the field E]T,',‘{‘ = N[v}1ir ew,t], ie.,

™ _ Vivdir(xi) neu 0 neu
Ej (X1x3) = < }O >a3wm (x3) - (ALV}W(XQ) Wy, (), (3.9)

is a TM mode for problem (2.1) associated with the eigenvalue Aj = /\f" + U

The second family appears if w has a nontrivial topology (i. e., if D > 2), and shares
the features of TE and TM polarization (vanishing third component of the electric and
magnetic fields).

Lemma 3.3. There exist D linearly independent harmonic potentials v(t;’p that have con-
stant traces on each connected component dw of dw. They can be chosen such that
v;)op is constant in w. If ow has more than one connected component, then the v;(’p,
d = 1,...,D -1, have linearly independent gradients, and they generate the family of
TEM modes defined foralld = 1,...,D - 1and m > 1as the fields E}f"" := N[v}ilOp ®wp!
which can also be written as

top .
Ein (X1,5) = (Vlvdo (Xl)> wa (x3), (3.10)

and is associated with the eigenvalue AJE™ = pdr".
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6 Maxwell eigenmodes in product domains = 181

Note that to obtain (3.10) we have used that the derivatives o;w;®" for k > 1 are an
eigenvector basis for the Dirichlet problem on the interval I.

Remark 3.4. Let us borrow the following objects from [1]: Let w® be w \ X, where X =
3;11 Z;is aminimal set of cuts so that w" is simply connected. Then we can define the
space O(w) as

Ow) = {p e H'(") | [ply, = const(d), d =1,...,D -1}.

For ¢ € O(w), its extended curl, denoted by curl, ¢ is defined as its curl, in w’,
considered as an element of L?(w). Then there exist “conjugate” potentials 17;°p € O(w)
such that for any d < D - 1, there holds

o -t t
curl, v,* = v, v;*. (3.11)

Therefore, for all m > 1, the mode Ej;" is also an extended TE mode. This is why it is
called a TEM mode.

3.3 Completeness

The aim of this section is to prove the following.

Lemma 3.5. Let u € Xy(Q) such that divu = 0. We assume that for all integersj > 1 and
de[1,D-1]:

(WER)=0(Ym=1), (uE,)=0(W¥m=20) and (uEp") =0 (Vm=1).
Here, (-,-) is the L? scalar product on Q. Then u = 0.

Proof. We first draw consequences from the orthogonality properties against the TM

modes: We fix jand m and setv = vf", w = wpe" and integrate by parts:

0= J J U, (X, X5) V, VX, )05w(xs) — U3 (X, X3) A, V(X Iw(xs) dx, dx

—div, u, (x,,x3) v(x,)o3w(x3) — us(x,, x3) A, v(x, )w(x3) dx, dxz

O3u3(x |, x3) v(x )o3w(x3) — u3(x,, x3) A, v(x  )w(xs) dx, dxz

—u3(x,,x3) v(xL)agw(x3) —u3(x,x3) A vix )w(xs) dx, dxs.

Il
[ F S ST S ) S
e e 8 &

Here, we have used that divu = 0, replacing div, u, by —d;u3. Coming back to the

properties of v = vf" and w = w,", we find for all j > 1and m > O:

J Ju3(xl,x3) (/1]5jir +yfne”)vf"(xl)w;‘ne”(x3) dx,dx; = 0.
1

w
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182 —— M. Costabel and M. Dauge

Since )lf” + unet is never 0, we deduce that for allj > 1and m > 0:

J Ju3(xl,x3)v]f“r(xl)w;‘neu(xg dx,dx; = 0.

] w

The set vf"(x Owpt(x3) being a complete basis in L*(Q), we deduce that u; = 0.
Next, we use the orthogonality against the TE modes: for allj > 1and m > 1, there
holds:

jwdir(x3) J u, (x,,x3) - curl, v (x,) dx, dx; = 0.

m ]
I w

Therefore, for allj > 1:
J u, (x;,x) -curl, vi®(x,) dx, =0, fora.e.xzel.
w

We deduce that curl, u, (- x3) is orthogonal to all v} for j > 1, which means that
curl, u, (-, x3) is constant with respect to x , . There exists a function z = z(x3) such that

(%) curl, u, (x,,x3) = z(x3).
Since divu = 0 and u3 = 0, we have div, u, = 0, which implies that locally u, is a
curl, of a scalar potential and that

J u,-n, do=0.

ow

Additionally, the orthogonality relations against the TEM modes yield for all m > 1
andd<D-1:

[ [[ustei) - w5 e, des =

I w

We deduce that

Jul(xl,)@) -V P(x) dx, =0, fora.e.x;sel,
w

from which we find that (we recall that d;w are the connected components of dw)
j u,-n,do=0, d=1,...,D.
Qw
These are the flux conditions that provide the existence of a global scalar potential

y € L*(I, H'(w)) such that
u, (x,,x3) = curl, y(x,,x3).
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6 Maxwell eigenmodes in product domains =— 183

As u, (-, x3) satisfies the tangential boundary condition on dw for a.e. x3 € I, then
y(, x3) satisfies in turn the Neumann boundary condition on dw for a. e. x5 € I. With
(%), we find

=N y(x,,x3) = z(x3).

Since y satisfies the homogeneous Neumann condition with respect to x| , this implies
that z(x3) = O for all x3. Finally we have obtained thatu, = 0. O

3.4 Eigenmodes

Summarizing, we have proved the following.

Theorem 3.6. Let Q = w xI. The eigenpairs with zero divergence of the electric Maxwell

operator (2.1) can be organized in the three families:
neu

. curl, vi*"(x,) : . _—
@) E= < + (’) + )wfn”(x3) with AJE = A"+ pd' j>1,m > 1;

dir
.. V,vit(x,) 0
ii E]'M — 1Y L7 o,wheu _ - neu
( ) m ( 0 ) 3Wm (X3) AJ_V]F‘”(XJ_) Wm (X3)
with Aj)) = Ajd" + Uy, j>1,m>0;
(iii) and, if w is not simply connected (i.e., D > 2)
top ) i
ELEM — (Vl"dO (Xl)) war ) with Al =y 1<d<D-1,m=>1.

See Notation 1.3, Lemmas 3.2 and 3.3 for the notation of the 2D and 1D quantities. All the

TEM

: : TE ATM
associated eigenvalues A;,, A, and Ay, are nonzero.

4 Magnetic eigenmodes in a product domain
Since the magnetic field H associated with the electric field E is given by
H= % curlE, fork=+VA

for any nonzero eigenvalue A, we deduce the following.

Corollary 4.1. Under the conditions of Theorem 3.6, we set k = +VA. The associated
magnetic fields are given by

TE _ L VLVPeu(XL)> dir _ < 0 > dir } :
Hjm - lk]TrE {( 0 a3Wm (X3) ALV]I_WEU(XL) Wm (X3) ]’m 2 1’

curl, var
Hﬁﬁ“=—ikﬁﬂ”< 0D i) e 1m0,
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184 — M. Costabel and M. Dauge

TEM 1 <curl v (XL)> dir

dn' = TTEw 5 m(X3) 1<d<D-1,mz=1,

and the triples (k, E, H) are Maxwell eigenmodes.

Remark 4.2.

(i) The electric fields in the pairs (E'®, H'®) are transverse to the axis x3, while in the
pairs (E™, H™) the magnetic fields are transverse to the axis X3, which justifies
the labels of the polarizations.

(ii) We notice that forallm > 1, HTEM can also be written as

curl, v (x,)
HLTiEnM _ i( Od neu(XB)

The expression above also makes sense for m = 0. The associated eigenvalue is
0 and the corresponding electric field is 0. These magnetostatic Maxwell eigen-
modes (0, 0, HTEM) are those produced by the 3D topological nontriviality of Q.

Remark 4.3. If w contains holes, i. e., if TEM modes are present, they often contribute
the smallest positive eigenvalues. Let us make formulas for eigenvalues more explicit:
Let ¢ be the length of the interval I and let us assume that w has one hole. Besides the
magnetostatic zero eigenvalue, we find

2 2
A};:A]Pe“+<$> Vm=1), AM=Adry < ’ ) (Vj=1m=0),
and
m

ATEM _ <rr;r[> (v s 1)

Then the smallest positive eigenvalue is either AIO or AI*™, If w is fixed and ¢ large
enough, ATEM is smaller than AT’M.

We summarize the results of Sections 3 and 4 in Table 6.1.

Table 6.1: Synthetic description of Maxwell eigenmodes, using M and N (2.6).

Polarization K? E H

TE A+ (o) My ® sin(7 )] [v,”e“ ®sin(7r)]
™ AI‘-’" +(0)? N[vd”®cos( ) lkM[vd ®cos("’” I
TEM (2 N[ ;°" ® cos(2 )] ik M[v,P ® cos(’"; )]
Magnetostatic 0 0 M[vtOp ®1]
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6 Maxwell eigenmodes in product domains =— 185

5 Mixed perfectly conducting or insulating
conditions

Consider now the situation where a part 0Q 4 of the boundary of Q represents perfectly
conducting walls whereas another part 0Q;,,; represents perfectly insulating walls, with

0Q = 0Q.q U0Qins, 0Qcq NOQns = 0. (5.1)
Boundary conditions are then

{E xn=0 and H-n=0, onodQ.,, (perfectconductorh.c.)
E-n=0 and Hxn=0, onoQ, (perfectinsulatorb.c.)

Similar results as above hold for mixed boundary conditions when the perfectly
conducting or insulating parts 0Q.4 and 0€;,,s are chosen to be either ow x I or w x oI.
Let us give two examples.

Example 5.1. Let us consider the case when
0Q =0wxI and 0Q;,s =w %0l

Then the essential boundary condition for the electric field E on w x 0I is E; = 0 and
the natural boundary condition is curl E x n = 0, reducing to d;E, = 0. Thus we find
the three families of electric eigenfunctions:

curl, v (x .
E)Trfl = ( L 6 ( L)>W;‘ne“(x3) withj>1, m=>0,

v, v i 0 ;
Epy = ( LVJO(X¢)> 05Win' () - <A vaT(x )> wi(), withj>1, m>1,
1Y 1

top
Ep = (vadO (Xl)> wil(x;) withl1<d<D-1,m=>0,

associated with the eigenvalues Aj; = A7 + 0, AT = )l}-d" + 8" and ATEM = iy,

Example 5.2. We set I = (0, £). Let us consider the case when

0Qg = QwxI)u(wx{0}) and 0Q;,s =w x {&}.

mix

m > m =1, of

The axial generators w,, can be described thanks to the eigenvectors w
the mixed problem in w:

—8§w =uw, w(0)=0, Jw(£)=0.
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We find
EFE — <Cul'1J_ aneu(XJ_)) wmix
jm 0 m

g _ (Va0
jm 0

(x3) withj>1 m=>1,

mix 0 mix el s
>E)§Wm () - <Alvf"(xl)> 03w, (x3), withj>1, m=>1,
top X
EIEM _ (Vlvdo (Xl)> W™ (x;) withl<d<D-1,m>1.
If w contains holes, TEM modes are present and contribute the smallest positive eigen-
value (%)2.
6 Application 1: Maxwell eigenvalues of cuboids

6.1 Cube

Let Q be the cube (0,7)>. We can apply Theorem 3.6 with w = (0,m)? and I = (0, 7).
Since w is simply connected, we have TE and TM modes only. Therefore, the normal-
ized Maxwell eigenvalues are

A +u8 j>1,m>1 and Af" +uyY, j=1,m>0.
We have
p —m: m>1 and P =m’, m=o0.

The Dirichlet eigenvalues on w are
KG+lo, k1

The nonzero Neumann eigenvalues are

I +13, kyk; >0, kork,#0.
Therefore, the TE eigenvalues are

G +16+13, kuky 20, kork,#0, k31

The TM eigenvalues are

K+lo+k, kk=1 k=0
Therefore, we have once

ki +15+K5, ki kpks 20 with exactly one index v € {1,2,3} such that k, =0,
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6 Maxwell eigenmodes in product domains =— 187

and twice

K+ig+k5, Kk ks 21
The first eigenvalues are
2 (mult.3), 3 (mult.2), 5 (mult.6), 6 (mult.6), 8 (mult.3),...

A larger multiplicity of 12 is attained for example for 14 = 1+ 4 + 9. But 12 is not the
maximal multiplicity (e. g., the multiplicity of 26 =25 +1+ 0 =16 + 9 + 1is 18).

The Dirichlet eigenvectors on (0, r) are { — sin k{, k > 1, and the Neumann eigen-
vectors are cos k{, k > 0. The components of the electric eigenvectors in the cube are
(sums of) products of two sin terms by one cos term.

6.2 Cuboids

For a rectangular parallelepiped,
Q = (0,41) x (0,4,) x (0, £3),

we find the eigenvalues: Once

2 2 2
(kl_”> N <’<ﬂ> ; ("3_”> ,
4 & &
Vky, ky, k3 > 0 with exactly one index v € {1,2,3} such that k, =0,

and twice

2 2 2

k
<k1n> +<k2ﬂ> +<3_”> vk, ko, kg > 1.
El €2 €3

7 Application 2: Maxwell eigenvalues in
axisymmetric product domains

We assume now, besides the assumption that Q = w x I, that the domain Q is axisym-
metric. In this case, the separation of variables method can be used once more, giving
explicit formulas for the Laplace eigenvectors and eigenfunctions, and hence more ex-
plicit formulas for the Maxwell eigenmodes. Now Q axisymmetric implies that w is an
axisymmetric domain in dimension 2. Hence w is either a disc or an annulus (i.e., a
disc with a concentric hole). We investigate both situations.
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7.1 Axisymmetric domains

Let R be the external radius of w and r, be its internal radius, with the convention
that r, = O corresponds to the case when w is a disc. Let us denote by T the one-
dimensional torus

T = R/2nZ).
We use cylindrical coordinates (r, @,x3) € (ry,R) x T x I. Setting
u(r, @, x3) = u(x),
we introduce cylindrical components (u,, Up> u3) of the field u = (uy, uy, u3),
= -y Sin @ + U, CoS @.

U = cosg +u,sing and u,

In particular, for a scalar function g, the radial and angular components of V, g are 0,gq
and %a¢,q, and those of curl, g are %aq,q and —d,q. With this, we find the representation
in cylindrical coordinates of the ansatz M[g] and N[g] when g has the tensor form vew:
1
M, [vew] = ;aq,v(r, Q) w(x3),
M, [v @ w] = -0,v(r, ) w(X3), (71)
M;[vew] =0,
and

N,[vew] = d,v(r, p) o3w(x3),
N[V W] = -0,V @) daw(xy), (72)
Nslv & w] = = ((19)° + V(. ) w(xy).

To describe the Maxwell eigenmodes in the axisymmetric case, we use Table 6.1 and
make explicit the Dirichlet and Neumann eigenvectors v¢" and v"®" on w, and also v°P
when there is a hole (r, > 0).

It is a classical technique to use the invariance under rotation of the Laplace op-
erator A, for diagonalizing it by Fourier series with respect to ¢ € T. This leads to the
following representations:

vair = hﬂg(r) e™ and V"= hap (1) e nez, p>1, (7.3)

where for each n € Z, the functions (hg;,’ )p

the operator

and (hﬂ;”)p are bases of eigenfunctions for

n2

1
h— <—a$ - ;Br + r—z)h, re(ry,R) (7.4)
with appropriate boundary conditions.
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6 Maxwell eigenmodes in product domains —— 189

7.2 The cylinder (w is a disc)

For h?", the boundary condition at R is h%"(R) = 0, for A" this is o,h""(R) = 0.
At the other end, r = 0 of the interval (0, R), the boundary conditions are driven by
integrability properties (cf. [3]): For k%" and h"Y, they are

0,h(0)=0 ifn=0, and h(0)=0 ifn+0. (7.5)

As a consequence, both hd" and " are given by the Bessel functions of the first kind
J,, that satisfy (7.5) and the equation (-9? — ;a, + 1], = Ju; cf (74). One finds the
following.

Lemma 7.1 ([6]).
(i) Let (znp)ps1 be the increasing sequence of the positive zeros of J,. Then a spectral
sequence for the Dirichlet problem for A, on w is

2

di Znp di Znp\ i
/\,,I',’=<7> and vn,g:]n(T)em‘”, nez p=x1 (7.6)

(ii) Let (z,’lp)pzl be the increasing sequence of the positive zeros of ],. Then a spectral se-
quence for the Neumann problem for -A | on w is, in addition to the constant eigen-

function,
zl\? zhry .
W= () e v en(F)em mezpara

We summarize results in Table 6.2.

Table 6.2: Maxwell eigenmodes in a cylinder of radius R and length ¢, using M (7.1)-N (7.2), and vair

np
(7.6)=Vp," (7).

Polarization K? E H
- (Z%)z +(¥)2 M[v,':;“®sin(%')] %N[vr’,‘;“@sin(%-)]
™ P+ (5 NIy @cos(T)] ik Mlvyy © cos("7")]

Table 6.3: The first three zeros of Jy, J1, /2, /g, /1, J5-

Zo)i zl)i Zz)i ZOJ zl’i Zz,i
2.4048 3.8317 5.1356 3.8317 1.8412 3.0542
5.5201 7.0156 8.4172 7.0156 5.3314 6.7061
8.6537 10.173 11.620 10.173 8.5363 9.9695
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190 — M. Costabel and M. Dauge

We give in Table 6.3 values for the first three zeros z, ; and z,'”- forn = 0,1, 2. We use the
relation J,_; - J,,; = 2J, to compute z,’u-. Since J_; = -J;, we note that there holds

!

2o

,]- = Zl,j’ V] > 1

7.3 The coaxial cylindrical hole (w is an annulus)

In this case again, there exist explicit formulas for the Laplace eigenvectors and eigen-
functions. This is classical knowledge; see, e. g., [7, 8]. The boundary conditions on
h9" and h"™ are now the standard ones at r, and R. We have to find the associated
eigenpairs of the operator (74) for any n € N. We find that the radial eigenvectors h%"
and h"®" are linear combinations of the Bessel functions J, and Y,, of first and second
kind:
hﬂg(r) = )y (K 1) + B Y (K 7)
with eigenvalues Ag;,r = (knp)z, where k,, are the positive zeros of the determinant
function
k — J,(krg) Y, (kR) — Y, (kry) J,(kR).

Analogous formulas exist for "¢,

Since w has one hole, the number L of the connected components of its bound-
ary is 2. There exists a nonconstant harmonic potential v'°P that takes two distinct

constant values on the two connected components of dw. This generator v can be
defined as

vP(x,) = logr.

In connection with Remark 3.4, we note that the conjugate potential #'°" is the function
X, + ¢. In cylindrical components, there holds

<(:P1H16 f/t°p> _ <Vlgt°p> _ and (curll vt°"> -

0
We summarize the results concerning TEM modes for Q = w x I with the annulus w.

O~
O =~1~ O

o

Corollary 7.2. Let ¢ be the length of the cylinder Q with coaxial hole. Its family of TEM
modes is axisymmetric and has the form (%, E"EM H™EM) with:

(@) form=>1,
1 TEM _
E™ - ;sin<%x3>, B =0,
ETEM _ ¢ and {H'EM _ _I-EE cos<%>, (7.8)
¢ ’ ¢ er ¢
ET™ o, HI™ — 0

(b) form=0,E=0andH=(010)".
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6 Maxwell eigenmodes in product domains =—— 191

Remark 7.3. As r, tends to 0, the Dirichlet and Neumann eigenmodes of the annulus
tend to the Dirichlet and Neumann eigenvalues of the disc of same radius R. Hence the
TE and TM modes of the cylinder with hole tend to the TE and TM modes of the cylinder
without hole. In contrast, the TEM modes do not depend on r,, as long as r, # 0, but
disappear at the limit when r, = 0. This fact has a practical importance when thin
conductor wires are present.

8 Maxwell eigenmodes in a ball

For the sake of comparison, we revisit known results about Maxwell eigenmodes in
a ball; see [9, Chapter 10]. Let Q ¢ R> be the ball of center 0 and radius R. Here, we
use spherical coordinates (6, ¢, p) € [0, 7] x T x [0, R], associate with the orthonormal
basis

6, 9.p).
Formulas for Maxwell eigenmodes are based on Debye potentials. This is the M, N
ansatz, in a form slightly different from (2.6): The piloting vector is replaced by the

unit field
X R

X=— 1ie Xx=p.
ix] P
The M, N ansatz takes the form
M[q] = curl(gx) and N[q] = curl M[q] = curl curl(g x). (8.1)
Using for instance identities (cf. [5, Section 6.2]),

curl(px) =Vpxx and curl(axx)= (pa,, +2)a-xdiva

we find the following formulas where we express vectors in spherical components on
the basis (6, ¢, p):

139q
q - A
M[q] :V<—>xx:Vq XX = -maq)q (8.2
p
0
and
Nig] = curl Mq] = V(3,q) - XpA(%) . (8.3)
Therefore,

curl N[g] = curl curl M[q] = —M[p A(

I

)] (8.4)
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192 — M. Costabel and M. Dauge

Introduce the operator
. _ q
£.q»—>2q-—pA<—>.
p
Then the equations curl curl u — k?u = 0 for M[g] and N[q] are equivalent to
M[(£-k*)g] =0 and N[(£-Kk%)q]=0.

Thus we are interested in scalar solutions g of the equation

£q=Kkq in[0,7] x T x [O,R]. (8.5)
We note that
, 1
»Q« = _ap - ; A$2 (8.6)

with the Laplace-Beltrami operator Ag. on the unit sphere $?,

1 . 1 5
A2 = —— 0y sin 0oy + —— 0., .
7 sing 6% sin20

The equation (8.5) is satisfied by all functions in tensor form

q(6,9,p) = Y,'(6,9) h(kp) ,

where Y," are the spherical harmonics and h is a linear combination of the Riccati-
Bessel functions i, and y,, (sometimes written as S, and C,,). Following Debye’s nota-
tion, we use the definition

Pp(x) = xj,(x) = \/ZZXI,H%(X) and  y,(x) = —xy,(x) = —\/”;X Y,H%(X),

where ], Y, are the Bessel functions and j,, y,, the spherical Bessel functions of first,
second kind, respectively. Because of integrability conditions in O, x, has to be dis-
carded. It remains to look for potentials g of type Y' ® ,,(k ) so that either M[g] or
N[q] satisfy the electric boundary condition on the boundary of the ball, i. e.,

Exn=0 ifp=R

Using formulas (8.2) and (8.3), we find that this boundary condition is satisfied by
MYy, (k)] if i, (kR) = 0and by N[Y'®y,(k - )] if ] (kR) = 0. The remarkable fact is
that the related potentials are then eigenvectors of the operator £ with the eigenvalue
k? for Dirichlet or Neumann conditions. Note that the operator £ is associated with the
coercive bilinear form

R
1 1
alq,q) = 0,4 0,4 + — 0pq 0p@ + ———— 0, a~>sin9d9d ]d
(9:9) ﬂs[( »q 9,9 7 od 9pq 5?6 04 Opd @ |dp
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6 Maxwell eigenmodes in product domains = 193

on the space
V= {q € L*($* x (0,R)), 9,4, %qu € L*($? x (O,R))}.

Completed with either Dirichlet or Neumann boundary conditions on p = R, £ is self-
adjoint. We have obtained the following.

Theorem 8.1.

(i) The Dirichlet eigenpairs of £ have the form (kip, qﬂ;{lp), n>0,|m|<n p>1with
(Knp)p=1 the enumeration of the positive zeros of the function k — 1, (kR) and gy, =
Yy @, (kyy, ) . Al triples (k. M[qg;,’lp], %N[qg;;p]) are Maxwell eigenmodes on the
ball of radius R.

(ii) The nonconstant Neumann eigenpairs of £ have the form ((k,’lp)z, qgfn‘;,), n=>0,|m<
n,p > 1with (k,’w)p21 the enumeration of the positive zeros of the function k +—
Yy (kR) and Gy, = Yy' ® P (ky, - ) - All triples (g, N[qpo, 1, ikM[gpm, 1) are Maxwell

eigenmodes on the ball of radius R.

Remark 8.2. In the literature, the M ansatz is frequently written in a slightly different
way which we distinguish with an asterisk:

M*[g"] = curl(¢"x)

instead of M[g] = curl(gx). As usual, N* = curl M*. The outcome for the Maxwell
eigenmodes is the same of course. Nevertheless, the interpretation of the potentials is
different. We have

1. Concerning Dirichlet modes, the functions q;mp defined as q,‘ﬂ,’w /p are the eigen-
functions of the Dirichlet problem for the standard positive Laplace operator —-A on
the ball. In other words, the eigenvalues kﬁp are also the standard Laplace eigen-
values.

2. But, when Neumann modes are concerned, the functions g,,,,, defined as gp,,,/p

are not Neumann eigenfunctions for —A.

Remark 8.3. The tensor product potentials ¥, ® h(k - ) with h being any of the Riccati—
Bessel functions have been used more than a century ago to describe scattering of
plane waves by a dielectric sphere (Mie series). Scattering resonances (with negative
imaginary part) have also been investigated at that time. More recently, whispering
gallery modes have been analytically calculated by a similar method [2]. All of these
problems are transmission problems between the ball and its exterior. Inside the ball
hhas the form i, (n, ¢k - ) where ng, is the refractive (or optical) index of the ball. Out-
side the ball, h is either (él)(k -) for scattering, or y,,(k - ) for whispering gallery modes.
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194 — M. Costabel and M. Dauge

We end this section by a completeness result that can be seen as a consequence
of Theorem 8.1.

Corollary 8.4. The union of the two families

dir 1 1 g7 di .

described in Theorem 8.1 form a complete set of Maxwell eigenmodes.

Proof. Letu € Xy(Q) such that divu = 0. We assume that u is orthogonal to all electric

eigenvectors M[qg;,rlp] and N[gy,,,]. We prove that u = 0 by contradiction. Assuming

that u # 0 and relying on the fact that the Maxwell problem possesses an orthonormal
basis of eigenfunctions, we may suppose that u is an eigenvector itself, associated
with an eigenvalue k2. Since the ball Q is topologically trivial, the condition divu =
0 implies that k # O, whence u = % curl curl u. The orthogonality of u against all
o
all qg;;p X, hence curl uhas a zero radial component. In a similar way, the orthogonality
of against all eigenvectors N[gy,,,] implies that curl curl u, hence u, has a zero radial
component. Finally, the implication

eigenvectors M[q,, ] implies through integration by parts that curl u is orthogonal to

u-x=0, curlu-x=0, and divu=0 = u=0

can be found in [11] and leads to a contradiction, which proves the completeness. [J

9 Extension to nonconstant electric permittivity

Let us consider the original Maxwell system (A.4). We still assume that the magnetic
permeability u is equal to y in the whole domain Q. But we allow now that the electric
permittivity € may vary in Q. We set

€=¢Erl€0r el 21
We consider domains Q in the product form w x I. We assume that
Srel(x) = Srel(XL)’ Erel € Loo(w)> (9-1)

like in wave guides or optic fibers. The Maxwell system takes now the form (A.6) in-
stead of (1.1). Then the classification of eigenvectors into TE, TM, and TEM does not
hold any more (at least not in the form given by Theorem 3.6 and Corollary 4.1). Nev-
ertheless, the splitting of the spectrum according to frequencies with respect to the
axial variable x; remains possible, as well as a tensor product form. We are going to
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6 Maxwell eigenmodes in product domains =—— 195

investigate the magnetic field H, taking advantage of its local regularity even if ¢ is
not continuous. The magnetic variational formulation becomes, instead of (2.2):
Find the eigenpairs (A = k*,u) withu # 0 in X;(Q) and divu = 0 such that

J % curlu curlu’ + sdivudivv dx = A J u-u' dx, vu' e X Q). (9.2)
a rel )

Here, s is nonnegative. The choice s > 0 corresponds to an elliptic regularization of
the system. To simplify notation, let us assume that

03

In the constant material case, considering the Maxwell eigenmodes from the magnetic
point of view, we note that the magnetic part of eigenmodes given in Corollary 4.1 have
the following form:

e (kV,ovix) cos(mx3)> ™ <curlL v(x,) cos(mx3)>
H™ = (—Alv(xL) sin(mx;) and H™ = 0 04)

We are going to prove that we still have a similar structure with respect to the axial
variable x;.

Theorem 9.1. With the assumptions (9.1) and (9.3), the magnetic eigenmodes solution
of (9.2) can be organized in a sequence of independent families $,, with index m € N in
which each eigenvector has the tensor product form

H o (vL(xl) cos(mx3)>. (9.5)

v3(x,) sin(mxs)

Foranym € N, let A" and vj" := (v';, v3}) be the eigenpairs of the problem:
Find A € R,v = (v,v3) # 0 in X;(w) x H'(w) with div, v, + mv; = O such that

1
J —{curl, v, curl v\ + (Vv +mv,)- (Vv +mv)}dx

&
o rel

:AJV-V’ dx, W e Xp(w)xH(w). (9.6)

w

Denote by H]" the vector of form (9.5) with v = V}". Then the eigenpairs (A", H;");5; span
the family $,y,.

Proof. Solutions of (9.2) satisfy on wx{0} the essential boundary condition u; = 0, and
the natural boundary condition % curl uxe; = 0. Since uz = 0 on wx{0}, d,u3 and d,u;
are also 0 on w x {0}, and the natural boundary condition implies that d;u; = d;u, = 0
on w x {0}. Therefore, defining the extension

u,(x,,—x3)=u,(x;,x3) and i3(x,,-x3) = -uz(x,,x3), Vx3e€ (0,m)
Brought to you by | Columbia University Libraries

Authenticated
Download Date | 8/31/19 4:05 PM



196 —— M. Costabel and M. Dauge

we obtain an element U € X;(w x (-m,m)) which satisfies divd = 0 and is a solu-
tion of (9.2) on the extended domain w x (-7, 7). Moreover, u(x,,-m) = u(x,,7) and
osu(x,,-m) = d;u(x,,m) forall x, € w. We deduce that U is a solution of (9.2) on the
domain X;(w x T) where T = R/21Z. Since the coefficient €, does not depend on x3,
the underlying Maxwell operator commutes with 0;. Therefore, the spectrum of prob-
lem (9.2) can be decomposed according to the eigenvectors of 0; on T, which are the
functions x; — €™, m € Z.

For any positive integer m, we notice that if (v, (x,), v3(x l))ei’""3 is a solution of
(9.2) on the domain X{(wxT), then (v, (x, ), —v5(x L))e"'m"3 is also a solution of the same
problem. Therefore, their sum is also a solution of the same problem. Moreover, this
sum has the form (9.5) and satisfies the boundary conditions (perfectly conducting
walls)! of the space X;(Q). Conversely, this sum is, up to a multiplicative constant,
the only linear combination of (v, (x, ), v5(x 1))e™s and (v, (x,), -vs3(x ))e” ™5 which
satisfies the boundary conditions of the space X;(Q).

Calculating
J 1 curlu curlu’ dx
Erel

Q

for
_ <v(xL)cos(mx3)> and o - <v/(xi)cos(mx3)>
v3(x,) sin(mx;) vi(x, ) sin(mxs) )’

we find

1

J — {curl, v, curl, V', + (curl, v; + mv, x e;) - (curl, v} + mv’ x e;)}dx
Erel

w

which coincides with the bilinear form in problem (9.6). O

Remark 9.2. The bilinear form of problem (9.6) can be regularized by

J gi {(div, v, + mv3)(div, V|, + mv})} dx.
A rel

We can check that if €, is constant, the resulting bilinear form is equal to

1 . .
— qurlle curl, V| +V,v;-V Vi +div, v, div, v\ + m’(v, -V, +v3v}) dx.

&
rel o

1 Considering the difference instead the sum, we would find the perfectly insulating boundary condi-
tions on w x dI.
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6 Maxwell eigenmodes in product domains =—— 197

Remark 9.3. For m = 0, problem (9.6) reduces to two uncoupled problems: The mag-
netic 2D Maxwell eigenvalue problem in w for v, and the Neumann eigenvalue prob-
lem for -A, in w for v5. This last problem does not yield any nontrivial solution of (9.6)
since for m = 0, the third component in the Ansatz (9.5) is zero. Moreover, we can show
that the solutions of the magnetic 2D Maxwell eigenvalue problem in w are the pairs

(curl vf”,)lf”), j = 1, with the eigenpairs (vf",}l]f“r) of the problem

-Av=Aev inw,ve H(l)(a)). 9.7)
Thus we have found for m = 0 the family of TM modes:

HM _ (curli V]qir(XL)>
- 0

<

Appendix A. Normalizing Maxwell equations

Let € and u are the electric permittivity and the magnetic permeability of the mate-
rial inside Q. We assume that the boundary of Q represents perfectly conducting or
perfectly insulating walls:

90 = 0Qq UdQjss  9Qcq N Qs = 0, (A1)

where 0.4Q is the perfectly conducting part and 0;,sQ the perfectly insulating part.
The cavity resonator problem is to find the frequencies @ € R, and the nonzero
electromagnetic fields (E, H) € L*(Q)° such that

curl E - impH = 0 inQ, (Faradaylaw)
curlH + imeE = 0 inQ, (Ampére law) (A.2a)
diveE=0 and divuH=0 inQ, (gauge conditions).

with boundary conditions

{E xn=0 and H-n=0, ondQ., (perfectconductorb.c.) (A2b)

E-n=0 and Hxn=0, ondQ, (perfectinsulatorb.c.)

In this paper, we consider the nonmagnetic case, i. e., when y = y, in Q. We can
set

2
€ = Nypi€o = Erel €0 (A.3)

where n,, is the refractive index of the material and ¢, the relative permittivity. Then
(A.2a) reduces to

curl E - imp H = 0 inQ, (Faraday law)
curl H + ime, o £4E = 0 inQ, (Ampére law) (A4)
dive,egE=0 and divupH=0 inQ, (gauge conditions).
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198 —— M. Costabel and M. Dauge

With the normalization,

k = m+\/egy (wave number), E= gy E and H=j,H, (A.5)

system (A.4) is transformed into

curlE-ikH =0 in Q,
curlH + ike o E = 0 in Q, (A.6)
divg,qE=0 and divH=0 inQ.
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Ralf Hiptmair and Clemens Pechstein
7 Discrete regular decompositions
of tetrahedral discrete 1-forms

Abstract: For a piecewise polynomial finite element space Wzla,l"D(T ) ¢ Hp (curl, Q)
built on a mesh 7 of a Lipschitz domain Q ¢ R and with vanishing tangential trace on
I'p c 0Q, a discrete regular decomposition is a stable splitting of elements of W};,ru D)
into (i) piecewise polynomial continuous vector fields on Q, vanishing on I, (ii) gra-
dients of piecewise polynomial continuous scalar finite element functions, and (iii) a
“small” remainder. Such decompositions have turned out to be a key tool in the numer-
ical analysis of “edge” finite element methods for variational problems in Hy (curl, Q)
that commonly occur in computational electromagnetics.

We show the existence of such decompositions for Nédélec’s tetrahedral edge ele-
ment spaces of any polynomial degree with stability depending only on Q, ', and the
shape regularity of the mesh. Our decompositions also respect homogeneous bound-
ary conditions on a part of the boundary of Q. Key tools for our construction are contin-
uous regular decompositions, boundary-aware local co-chain projections, projection-
based interpolation, and quasi-interpolation with low regularity requirements.

Keywords: Regular decomposition, edge elements, hp-FEM, polynomial extension,
projection-based interpolation, quasi-interpolation

MSC 2010: 65N30

1 Introduction

We study an important aspect of the theory of finite element subspaces of H(curl, Q),
Q ¢ R? a bounded domain whose properties will be specified below. We restrict our-
selves to spaces introduced as spaces of discrete 1-forms on simplicial meshes in finite
element exterior calculus (FEEC). They are also known as edge elements and their piv-
otal role in the Galerkin discretization of electromagnetic boundary value problem is
no longer a moot point.

The starting point are stable decompositions of H(curl, Q) into vector fields with
components in H(Q) and gradients, which have been developed as powerful tools in
the theory of function spaces [8, 11, 17, 18]. We refer to them as regular decomposi-
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tions. In Section 2, we are going to present a particular instance. It later turned out
that discrete counterparts of regular decompositions of H(curl, Q) are similarly use-
ful in the numerical analysis of edge element schemes. We are going to survey a few
applications and give references in Section 1.5.

Section 3 will be devoted to proving a discrete regular decomposition theorem for
lowest order tetrahedral edge elements, also known as Whitney-1-forms. Compared to
what was known previously, we establish enhanced stability properties also in L*(Q).
We owe these stronger results to the use of so-called local commuting co-chain pro-
jections pioneered by Falk and Winther [27, 28]. A tailored version of those will be
introduced and examined in Section 3.2.

Subsequently, in Section 4, we tackle tetrahedral discrete 1-forms of higher (uni-
form) polynomial degree p. For them, we can establish p-uniformly stable discrete reg-
ular decompositions, with weaker stability properties than those achievable for Whit-
ney 1-forms, though. The key tool are commuting local projection based interpolation
operators presented in Section 4.1 combined with a p-stable quasi-interpolation bor-
rowed from [47].

The focus of this work is on numerical analysis techniques required to establish
existence and properties of discrete regular decompositions. In detail, we gather, re-
view, assemble, and, sometimes, extend theoretical results from the finite element
literature, with the intention of conveying the guiding ideas and tricks underlying the
proofs. The actual use of regular decompositions will be addressed only briefly in Sec-
tion 1.5.

1.1 Geometric setting

Since subtle geometric arguments will play a major role for parts of the theory, we
have to give a precise characterization of the geometric setting: We let Q ¢ R be an
open, bounded, connected Lipschitz polyhedron. Its boundary I’ := 0Q, is partitioned
according to I' = Ty U £ U I'y, with relatively open sets I'y and I'y. We assume that
this provides a piecewise C' dissection of T in the sense of [31, Definition 2.2]. Sloppily
speaking, this means that £ is the union of closed curves that are piecewise C'. This
is the proper setting for the continuous regular decomposition studied in Section 2.
When we look at discrete regular decompositions we further restrict the shape of Q
and I'p: In this case, we demand that X consists of disjoint closed polygons.

We triangulate Q with a simplicial mesh 7, which will be identified with its set of
tetrahedral elements: 7 = {T}. We assume that the partitioning of the boundary I' is
resolved by the mesh. We endow edges and faces of 7 with intrinsic orientations; see
Section 3.2.1.

Assumption 1.1. Both T, and Ty are unions of closed faces of elements of 7.
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 201

We write hy for the local mesh size, that is, the diameter of T € 7, and r; for
the radius of the largest ball contained in T. These numbers enter the global shape
regularity measure p(T) of the mesh defined as [15], [49, Section I1.4],

p(T) .= maxfhr/r,, T € T}. (1.1)

The symbol h will also denote a function h € L*°(Q) with h(x) := hy forx e T, T € T.

1.2 Notation and function spaces

We adhere to the de-facto standard notation for function spaces in the numerical anal-
ysis literature [36, Section 2.4]. In particular, we write H°(D), s € R, for the Sobolev
(Hilbert) space of order s on the domain D, see [50, Chapter 3]. It is endowed with the
usual norm ||| p, and the semi-norm |-|s ,. We write H3(D), s > %, for the subspace with
zero boundary conditions imposed on X ¢ oD. Bold typeface distinguishes (spaces of)
vector valued functions, e. g., H;(D). The notation Hs(curl, D) and Hs(div, D) stand
for spaces of vector fields with rotation and divergence, respectively, in LZ(D), and
zero tangential/normal trace on £ c 9D. The associated norms read |-||g(cyn,py and

Il e (diiv, Dy -

1.3 Tetrahedral discrete differential forms

Discrete differential forms provide finite element spaces of differential forms. They are
studied in the new field of Finite Element Exterior Calculus (FEEC) using tools from the
calculus of differential forms [34, 4, 5]. In this article, we stick to the classical calculus
of vector analysis, because all developments are set in 3D Euclidean space. Yet, the
differential forms background has inspired our notation: integer superscripts label
spaces and operators related to differential forms of a particular degree.

We restrict ourselves to the so-called first family of simplicial discrete differential
forms. It comprises the following 7-piecewise polynomial finite element spaces.

(@ Discrete 0-forms, continuous Lagrangian finite elements:

Wor, (T) = {v € H (Q), vir e WX(T) VT €T},
Wy(T) = Pyt (R,

@ Discrete 1-forms, Nedéléc’s first family of curl-conforming elements
(“edge elements”):

Wl

or,(T) = {v € Hp (curl, Q), vr € W;(T) VT €T},

Wi(T) = {x - p(x) + q(X) x X, p,q € P,(R')}
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202 —— R.Hiptmairand C. Pechstein

3 Discrete 2-forms, div-conforming Raviart-Thomas finite elements (“face elements™):

Wi, (T) = {v € Hy, (div, Q), vir e W(T) VT €T},
W;(T) ={xHpXx) +qx)x,pe ’Pp(]R3), qge Pp(lR3)} ,

@ Discrete 3-forms, discontinuous piecewise polynomials:

WAT) = {v € LX(Q), vy e WXT) VT €T},
WH(T) = P,(R’) .

Here, p € N stands for the polynomial degree and 731!,(]R3)/’PID(IR3 ) for the spaces of
polynomials/polynomials vector fields of degree < p in three variables. Dropping the
I'p subscript indicates that no boundary conditions are enforced. Notice that our no-
tation above differ from what is adopted in the seminal work [4] on FEEC, where the
authors write Py AS(T) instead of Wlf(T ).

First-order differential operators related to the exterior derivative connect these
spaces to a discrete de Rham complex:

Id d 1 di 0
Kr, (@) = Wor (1) 55 Wit (T) S W2 (1) S W) =5 (0. (12)

Here, the space of constants is given by

span{l} ifI'p =40,

Kr,(Q) = {v € Hy, (Q): v|q = const} = { 1.3)

{0} otherwise.

In the complex (1.2), the range of an operator is contained in the kernel of the subse-
quent operator.

In the lowest-order case (p = 0), the elements of WSID (7) are called Whitney
forms. In the sections devoted to these spaces, we are going to replace the subscript
p = 0 with h and write W,f)rD(T ) = Wg,rD(T).

Finally, we need spaces of vectorial continuous Lagrangian finite element func-
tions,

VoL (T =W (NP VoL (T = e (T) . (14)

1.4 Main results

Our main theorem about the discrete regular decomposition of the spaces of Whit-
ney 1-forms (“edge elements”) involves a local projection operator R},: Hp (curl, Q) —
W}LFD(T ) that respects the homogeneous boundary conditions. This operator and a
related one will be constructed in Section 3.2.6 below, together with several stability
estimates.
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7 Discrete regular decompositions of tetrahedral discrete 1-forms =—— 203

Theorem 1.2 (Stable discrete regular decomposition for Whitney-1-forms in 3D). For
every discrete 1-form of the lowest-order first family v, € W},)FD(T), there exists a con-

tinuous and piecewise linear vector field z; € vg)rD(T ) = [W,?) r, ()13, a continuous and
piecewise linear scalar function ¢, € W,?) r, (T), and a remainder V;, € W}IID(T ), all
depending linearly on vy, providing the discrete regular decomposition

v, = Rpz, + ¥, + grad @, ,

and satisfying the norm estimates

1
Iznllog < ClVhllogq » |zl < C(a Valloq + ||cur1vh||o,Q), (1.5)
[onliq < Clivhlloq > (1.6)
~ 1 1
I¥nloq < Clvalog » [H¥]yq < C<3 Valloq + ||cur1vh||0,g) , (1.7)

with d = diam(Q) and constants C > 0 depending only on the shape of Q, T'p, and the
shape regularity measure p(T).

Similar but weaker results are stated in [39, Lemma 5.1] and [41, Lemma 5.1]. These
estimates did not bound the L%(Q)-norm of z, by the L*(Q)-norm of Vj,. The proof of
Theorem 1.2 is given in Section 3 and it will demonstrate the substantial additional
effort required to establish stability in L*(Q).

The next result presents a “p-version” counterpart of Theorem 1.2, because it tar-
gets spaces of discrete 1-forms with arbitrary polynomial degree p with a focus on
p-uniform stability estimates.

Theorem 1.3 (Discrete regular decomposition for discrete 1-forms). For every discrete
I-form of the first family v,, € W},,FD(T ), p € N, there exists a continuous vector
field z, € V;,’ID(T ) C H%D(Q), T -piecewise polynomial of degree < p + 1, a contin-
uous, T-piecewise polynomial scalar function ¢, € WI?ID(T), and a remainder V,, €
Wy (T),

(I) all depending linearly on v, ;

(I) satisfying the norm estimates

ol < CNollog [zl < € 5 Wil + eutl vyl ). 19

10yl < c<|| Vyloo * max{(l +log(p +1)” : } curlv ||OQ> (1.9)

12
<Z|p+l ” ) < C(1+1og(p + 1)) < 9l + leurlv ||OQ> (110)
ferl hr Tlor

with d := diam(Q) and constants C > 0 depending only on the shape of Q, I'p, and
the shape regularity measure p(T);
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204 —— R.Hiptmairand C. Pechstein

(I1I) and providing the discrete regular decomposition
v, = H;zp +V, +grad g, ,
where H}a : VS,FD(T ) — 110,FD (T) is a strictly local linear interpolation operator.

This result has no precursor in the literature. Its obvious shortcoming is the restric-
tion to a uniform polynomial degree p. More desirable would be a version admitting
variable polynomial degree, and thus, encompassing finite element spaces created by
hp-refinement; see [2]. However, there is a single technical obstacle that has prevented
us from admitting variable p; refer to Remark 4.17.

Another class of results on discrete regular decompositions beyond the scope
of the above two theorems addresses stability estimates with non-constant positive
weight functions entering the norms. Currently (2017), this is an area of active research
and first results for piecewise constant weight functions are reported in [46, 44, 45].

1.5 Applications

The discrete regular decompositions of the kind provided by Theorem 1.2 have turned
out to be a powerful tool for the numerical analysis of various aspects of edge finite
element methods. We emphasize their role as theoretical tool, because there is not a
single algorithm, which relies on the actual computation of the finite element func-
tions comprising a discrete regular decomposition. The following, probably incom-
plete, list mentions a few pieces of research in numerical analysis, where h-version
discrete regular decompositions played a pivotal role:

- Analysis of geometric multigrid methods for Hr, (curl, Q)-elliptic variational prob-
lems discretized by means of edge elements [41, 35, 62]: Here, discrete regular de-
compositions allow to harness results on the stability of multilevel nodal decom-
positions of V?(T ).

- Convergence theory of domain decomposition methods for discrete Hr, (curl, Q)-
elliptic variational problems [55, 25, 24, 46, 42, 43, 45]: In the same vein as multi-
grid theory, these approaches manage to exploit results for Lagrangian finite ele-
ments and H'(Q)-elliptic variational problems.

— Foundation of nodal auxiliary space preconditioners [40, 39, 48]: the stable dis-
crete regular decomposition directly spawns a subspace correction method for
discrete Hy (curl, Q)-elliptic variational problems whose key step amounts to the
solution of scalar elliptic boundary value problems.

- Analysis of geometric auxiliary space methods for edge elements [38].

— Reliability estimates for residual based local error estimators for HrD (curl, Q)-
elliptic variational problems [23, 13, 58].
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 205

2 Continuous regular decomposition

It goes without saying that all results about discrete regular decompositions have
their roots in stability properties of continuous regular decompositions of the func-
tion space Hr (curl, Q). Now we state and prove the corresponding key estimates. For
ease of presentation, we set diam(Q) = 1throughout the remainder of this manuscript.
Simple scaling arguments will then produce the more general estimates of Theorem 1.2
and Theorem 1.3.

The following result can essentially be found in [41, 32], except that we also assert
extra L-stability. Note that there are neither restrictions on the topology of Q nor on
the connectedness of the Dirichlet boundary I'y. A more general version of the theory
can be found in [56].

Theorem 2.1 (Boundary aware regular decomposition). For each v ¢ HFD(curl, Q)
there exists a vector field z € H}D(Q) and a scalar function ¢ € Hll-D (Q) depending
linearly on v such that

v=2z+gradg,

and

Izlloo < Clvloa >  1Zla < ClVIHcung) > (@A)
lelg < Clvllog (2.2)
with constants independent of v.

For the proof, we need a few auxiliary results that will be provided in the next
three sections.

2.1 Collars and bulges

Under the assumptions on Q made in Section 1.1, [31, Lemma 4.4] guarantees the ex-
istence of an open Lipschitz neighborhood Qr (“Lipschitz collar”) of T := 0Q and of a
smooth vector field 1 € C*°(R?, R?) with |#] = 1 0n Qr that is transversal to T:

Ik >0: nx)-n(x)>x foralmostallx eT. (2.3)

Extrusion of T’y by the local flow induced by n spawns the “bulge” Y, c Qr \ Q; see
Figure 7.1. We recall the properties of bulge domains from [31, Section 2].

Theorem 2.2 (Bulge-augmented domain). There exists a Lipschitzdomain Yp, ¢ ]R3\§,
such that Y, n Q =T, Q° := Y, uTp U Q is Lipschitz, diam(Q°) < 2, and Y, € Qr.
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Tp
Qr r

Figure 7.1: Collar domain Q; (pink) and bulge domain Y, (gold).

Remark 2.3. If T’ has several components I}, k = 1,..., N, then each of them gives
rise to a separate bulge Y; with Y, n Q = I, and the individual bulges have positive
distance from each other. This is a consequence of our assumptions on I' and has to
be kept in mind though we are not going to mention this fact explicitly in the sequel.

2.2 Extension operators

Lemma 2.4 ([60]). Let D be a bounded Lipschitz domain with diam(D) = 1. Then there
exists a bounded linear extension operator ED:Lz(D) — L% (R?) such that for k € Ny,

IEpvip < ClVikp Vv € HY(D), (2.4)
with C depending only on D and k. Moreover, Epv has compact support in R>.
We apply this fundamental result to the bulge domain Y}, introduced in Section 2.1.

Corollary 2.5. There exists an extension operator E%:LZ(YD) — L*(R?) such that for
k € N,

JEPV] g < ClVly, v e H(Yp), (2.5)
where the constant C depends on Q, Y, and k.

Lemma 2.6. For a Lipschitz domain D with diam(D) = 1 there exists a bounded lin-
ear extension operator E%‘ﬂ:Lz(D) — L*(R®) such that, with constants depending only
onD,

IES™ Vo < ClIVIop W € IX(D),
IED' ﬂv”H(curl,]R3) < ClVllgr(cun,p) vv € H(curl, D).

Moreover, EX™'y has compact support in R>.
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7 Discrete regular decompositions of tetrahedral discrete 1-forms =—— 207

Proof. Since D is (strong) Lipschitz, it is also weak Lipschitz, and so the Lipschitz col-
lar is locally the image of the unit cube under a bi-Lipschitz mapping such that the
exterior is mapped to the upper half-space [49, Section VIL1]. On the cube, we define
the extension of w(xy, x,, x3) as diag(1, 1, -1)w(x;, x,, —x3). Mapping back to the collar
and using a partition of unity, one obtains the desired result, since the bi-Lipschitz
mapping preserves the curl-operator. O

We note that a similar result with higher order curl-derivatives (but not with the
pure L2-stability) has been shown in [37].

2.3 AFourier-based projection

The next lemma builds on similar results from [3, Lemma 3.5], [36, Lemma 2.5], and
[37, Lemma 5.1].

Lemma 2.7. There exists a bounded linear operator L,,: H(curl, R?) — HYR?) such
that for all v € H(curl, Q)

(L)) curlleyyv = curl v;

(Ly) divLleynv = 0;

(L) IleunVlioge < Vloms and I~ Legs)Vlioge < IVllo s

(Ly) IVLieynVllors < llcurlvilg ps;

(Ls) Lﬁurlv = LeanVs L. €., Leyn 1S a projection.

In the statement (L,), V applied to a vector field yields the Jacobian.

Proof. The proofis classical; see, e. g.,[29, Chapter I, Theorem 3.4] and [55, Lemma 2.1].
Let V(&) = (FV)(&) = j]R3 e 2% $y(x) dx denote the (component-wise) Fourier trans-
form of v € LZ(IR3 ). Recall that o v, curl v, div v correspond to 2mi&,; v, 27i§ x v, and
2mi¢ - v, respectively. We set

LeanV = F W, with W(&) = —|&]74(§ x & x ¥(§)).

Elementary properties of W € L*(IR>) yield most of the assertions: (L,) from 271§ x W =
2nE xV. (L) from 27&€ -w = 0. (L;) from |W| < ||, because due to Plancherel’s theorem,

ILeunVlore = IWlo k3

- -2 - v =
I = L)Vl = 19+ 181728 x & x Vg go [ < Vlogs = IVloge-
I THE

(L,) is obtained as follows:

3 3 2 2
fr o 16"
IVLeunVlg o = . I27&WIG s < > %Zm‘f xV| < leurl v[j .
k=1 k=1 O,R
The last estimate shows that indeed Lq,qv € H'(R?). (Ls) is checked easily. O
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208 =—— R.Hiptmairand C. Pechstein

2.4 Proof of Theorem 2.1

We follow the proof as in [41, Theorem 5.9] and establish the L2-stability using the
ideas from [55, Lemma 2.2]. Let v € H r, (curl, Q) be arbitrary but fixed.

Step 1: We extend v by zero to a function in H(curl, Q°), where QF is the extended
domain from Section 2.1 and then to ¥ € H(curl, R®) using Ef)‘éﬂ. We observe Vy =0
and that Lemma 2.6 implies

IVllors < Clvlgq, lcurl¥iggs < ClVigcun,o) - (26
Step 2: Let B 2 Q° be a ball such that 1 < diam(B) < 2 and define
W = (Lcurlv)IB-

Dueto (L;) of Lemma 2.7, cuarl w = curl vin B. Since Bis simply connected, there exists
a scalar potential i € H'(B) with zero average jB Y dx = 0 such that

vV =w+grady.
Lemma 2.7 together with (2.6) implies
IWllos = ILcunVllog < IVllgrs < Clivlloq >

Igrad Yliop = II = Leurt)Vllop < [Vllo 2 < CliVloq >

VWllo 5 < llcurl Vg ps < CliVIg(curi,o) »
[Yllo,s < Cligrad lig g < Clivllpq

where in the last estimate we have used Poincaré’s inequality on the convex ball B [6].
Step 3: Since

(2.7)

O=w+grady inYp,

we conclude that Yy € H*(Y)). We define i := (E%)v,b)w € H%(B). From Corollary 2.5,
we obtain

¥llop < CliYlloy, < Clvloa>

lgrad Pllo 5 < Clily, < Clgrad Plloz < Clivigg (2.8)
~ 1/2
IVgrad Pl < C(I Vgrad g ldy, + Pl2y,)" < ClVlnun)
=-Vw

where V grad indicates the Hessian.
Step 4: In B, it holds that

V=w+grady = w+ grad i + grad(y) — 1)).
—.zeH! ::(pEH1
It is easy to see that ¢ = 0in Ypand so ¢ € H%D(Q). Correspondingly, grad ¢ = 0 and
Vv=0inYp,andsoz € H }D (Q). Combining (2.7) and (2.8) yields the desired estimates
for z and p.
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 209

3 Discrete regular decomposition: lowest-order case

Now we tackle the proof of Theorem 1.2. We employ an extended version of the local
projectors invented by Falk and Winther in [27]; see also [28]. Our extension is aimed
at enforcing compliance with the boundary conditions on I', and the sophisticated
technical details will be elaborated in Section 3.2. With this tool at our disposal, the
proof of Theorem 1.2 can be done in a few simple steps as we are going to demonstrate
in Section 3.3.

3.1 Outline: proof by projection

As a little preview, we give a sketch of the proof, in order to motivate the need for
the operators we construct step by step in the sequel. Let R}): L*(Q) —» W}z,ru (T)bea
projector onto the finite element space. Given v;, € W}LFD (7), we apply the projector
property as well as the continuous regular decomposition from Theorem 2.1:

vj, = Rpv, = Rpz + R} grad o. (31

In the following, we also construct a companion operator Rg: HYQ) - W,g r, (7)which
commutes with R}J under the gradient operator, such that we obtain

v, =Rpz+gradR)p. (3.2
=Py

As regards Theorem 1.2, it will be essential that R% and R% respect the homogeneous
Dirichlet boundary conditions on I'j,.

The function z above is in H'(Q) but not in the finite element space. This is why we
have to introduce a third term into the splitting by means of a Clément-type operator
M):L*(Q) — VS)FD (7) = (W,grD(T )? (defined component-wise), that, again, respects
homogeneous boundary conditions. We then obtain

v, = RyM>z+ R} (I —Mg)z+gradzig£. 3.3)
=Zn = =Pn

The norm estimates from Theorem 1.2 require a series of stability properties of the
operators Rg, R}), and Mg, in particular Lz-stability.

Instead of the operator R}, above, a simple interpolation operator II; mapping to
the Nedélec space W}I(T ) can be used. Cleatly, l'[}1 is a projector too, but its domain
of definition is a genuine subspace of H(curl, Q), and its stability properties are fairly
different from those of R}). Nevertheless, when applying the projection property and
the continuous regular decomposition v, = z + grad ¢, one obtains

vy, = Iz + I} grad ¢ = Iz + grad [T, (3.4)
Brought to you by | University of Michigan-Flint

Authenticated
Download Date | 8/31/19 4:06 PM



210 —— R.Hiptmairand C. Pechstein

using the commuting property with the nodal interpolation operator Hg. However, one
must make sure that all the terms are well-defined. Firstly, since curl z = curl v, and
curlgrad ¢ = 0, the terms l'[}lz and l'[,l1 grad ¢ are well-defined; cf. [36, Lemma 4.6].
Secondly, since grad ¢ = v;, — zis in H, piecewise on each element of the mesh, we
can conclude that ¢ is piecewise in H2. Therefore, its point evaluation at the nodes
of the mesh is well-defined and so is ng). Finally, using the Clément-type quasi-
interpolation operator M2, we obtain

vy, = I, Mpz + I (z - [T} z) + grad [T . (3.5
=Zp =V, =Pn

The above alternative strategy will be used in Section 4 to tackle the proof of Theo-
rem 1.3 for the p-version. However, due to poorer stability properties H}I, the resulting
stability estimates will be weaker. In particular, we cannot prove pure L? estimates.

Remark 3.1. The first such three-term splitting in the literature can be found in [38].
Shortly later, improved versions were given in [39, Lemma 5.1] and [41, Lemma 5.1].
The arguments therein are slightly different. Instead of using that ¢ is piecewise in
H?, it is shown that curl(z - H}lz) = 0. From the additional property that the integral
of z — Iz over each edge of the mesh vanishes, one can conclude that there exists
q € H'(Q) with z - I} z = grad g, cf. [41, Lemma 2.3]. Summarizing,

v, =z + (z-I;z) + grad @ = [T,z + grad(p + q).
=gradq

Since grad(¢p + q) € W},)FD(T ), we conclude from the discrete de Rham complex that
Q+q¢€ WI?)FD (7) and we can set ¢, = ¢ +¢. Indeed, comparing with the splitting (3.4),
we see that

(3.4)

grad(p +q) =gradp+z-Iz=v, -z = gradg,.

3.2 Local bounded boundary-aware co-chain projections

In this section, we construct two sets of operators parallel to developments in [27],
from where we have also borrowed a good deal of the notation. The first one are mod-
ified Clément-type operators Mg:LZ(Q) - W}?ID(T) and M},:LZ(Q) — W}I,FD (7) that
commute with the gradient on H}D (Q):

1 grad
HFD Q — H T, (curl, Q)
LMy 1 My, (3.6)

grad
WER (T 55 Wi (T)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 211

The operators feature also some of the local stability and approximation properties
of the classical Clément quasi-interpolant [16]; see below. The second class of oper-
ators are so-called bounded co-chain projections, originally introduced by Falk and
Winther [27]. The operators are defined on the spaces of the de Rham complex, they
are projections onto spaces of discrete differential forms, commute with the exterior
derivative, and are locally defined. Here, we modify two of these operators, in the se-
quel called Rg and R}, such that they additionally respect homogeneous boundary
conditions. We have the commuting diagram

1 grad

Hp () =— Hp (curlQ)

LR) LR} (3.7)
d
W (T 55 Wi (D),

where opposed to (3.6), the operators are projectors.

3.2.1 Notation and assumptions

We need a little more notation for the subsequent construction. Let V, £, and F denote
the set of vertices, edges, and faces (resp.) of the mesh 7. We also introduce the sets
Vi = {veViveTp), & = {e € &e ¢ Tp},and F = {f € F:f ¢ Tp} of “free”
vertices, edges, and faces, respectively. Let ¢, denote the nodal vertex basis function
fulfilling ¢, (v') = 8, for v, v/ € V. Edges and faces have to be oriented: For an edge
e = [e;,e,] with endpoints e;, e, € V, the orientation is given by the unit tangent
T, = (e,—e;)/|e,—e|. The orientation of a face f € F is provided by the unit normal n;.
Byy, € W},(T Yand §; € Wﬁ’(T ) we denote the Nédélec edge and face basis functions,
fulfilling |, ¥, - Te ds = 8ee fore, e’ € £and [, §-np ds = 6 for f, f € F. We find
that

Wi?,l"D (T) = Span{(pv}vevf >
W}I,FD (T) = Span{lpe}eeff >
Wf,,rD(T) = span{¢} 7 -

Finally, for a vertex v € V, its node patch w, is defined by

w= |J T
TeT el
For an edge e = [e;, e,] € £ and a triangular face f = [f;,f,,f,] € F, the corresponding

patches are given by
(ue:weluwez, a)fzwflua)fzucufa.
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Figure 7.2: Sketch of edge patches.

See Figure 7.2 for a sketch of two edge patches. Finally, the element patch correspond-
ing to an element T € 7T is given by

(.UT: U (UV.

vevnT

For a patch w c Q of elements of 7, we will frequently use the space Hll-D (W) ={u e
H'(w): u Ir, = 0}. If meas,(dw N Tp) = 0 the functions in this space fulfill no boundary
condition.

The following, technical assumption is fulfilled for standard meshes.

Assumption 3.2. Foreachvertexv e V,edgee ¢ £,and facef € F, the vertex patch w,,
edge patch w,, and face patch wy, respectively, is simply connected and has a simply
connected boundary.

The following results will be helpful in the development of our theory later on.

Lemma3.3. Let e = [e),e,] € & withe; € T}, (or e, € T}p). Then there exists a face
fc dw, NTp with e, € f (ore, ¢ f, resp.).
Proof. Suppose that e, € Tp,. Then there exists a face f c T with e, c f. Since w, > We,»

there is an element T ¢ w, such that fis a face of T, and moreover, f ¢ dw,. O

We will use a couple of times that

diam(wy) < Chy,  diam(w,)”" <Ch;' WeVnT,
diam(w,) < Chy,  diam(w,)" <Ch;' Veeé&nT,

h := diam(e) < Chy, h,'<Chy' Vveeé&nT,

with a (generic) constant C only depending on the shape regularity of 7. Furthermore,
we need the following discrete estimates:
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 213

Lemma 3.4. For any element T € T and any vertexv c T,
lup )| < Ch Pllugllor Yy, € WD),
lgrad g, llo.r < Chy?.

Moreover, for every edgee c T,

Hw” Teds| < CR P IWyllor YWy, € Wi(T),

e

1/2
Iellor < CRY.

Proof. The proofis carried out using standard techniques from finite elements, trans-
formation to the reference element, and an eigenvalue analysis of the reference ele-
ment mass matrix. O

3.2.2 Locally exact sequences and Poincaré-Friedrichs-type inequalities

Let w be a patch of elements which is simply connected with simply connected bound-
ary, and let y ¢ dw be a simply connected surface that is a union of faces of elements;
the cases y = ¢ and y = ow are admitted. Then the local sequence

id grad curl div
Ky (@) — Wy, (@) = Wy, (@) — W, (@) — W,

@ >0 (38

is exact, i. e., the range of an operator is equal to the kernel of the subsequent operator
[4, 5]. Above, K,(w) is the space of constants if y = 0 and K, (w) = {0} otherwise, and

v e W (w): |, vax=0} ify=ow

W,iy(a)) B {Wﬁ (w) otherwise.
We have the classical Poincaré inequality

lu—ullo < Chylgradully,  Vu € H'(w), 3.9)
where 7 := |w|™ jw udx and h,, := diam(w), and the Friedrichs inequality

lullo,, < Chyligrad ullg, Yu € H;(w), if meas,(y) > 0. (3.10)

Above, the constants C depend only on the shape regularity of the mesh 77; for a proof
see, e. g., [57]. We can write these inequalities in a more abstract way by introducing
the L?(w)-orthogonal projector Hg,y:H;(w) - Ky(w) = ker(gradm;(w)):

0 1
lu —T0g, ullo,,, < Chyligradullo,, Vu € Hy(w) . (.11)
Brought to you by | University of Michigan-Flint

Authenticated
Download Date | 8/31/19 4:06 PM



214 — R.Hiptmairand C. Pechstein

For the other spaces in (3.8), let
m,,,:H(curl,w) - grad W, (), T, :H(div,w) - curl W, ()

denote the L?(w)-orthogonal projectors onto grad W,?y(w) = ker(curl,,: () and
> LY
curl W,lw(w) = ker(divlwi ( w)), respectively. Then the following discrete Poincaré-
> LY
Friedrichs-type inequalities hold:

Iw -1, Wi, < Chyllcurl wilp,, YW € W, (w), (3.12)

la-10;, dlo, < Chy,lldivalo, — VqeW; (), (3.13)

where the constant C depends only on the shape regularity of 7. These important re-
sults can be shown by transformation to a few number of reference patches. From the
L?-projection property, we obtain that

I, Wilo < IWlo,, VYW € H(curl, w), (3.14)

IM,,,alow < lalo, Vo € H(@iV, w). (3.15)

3.2.3 Modified Clément operators
We define Mp: L*(Q) — Wy (T) by

Mpu:=Y up,. (3.16)
VeV

Recall again that u* := ﬁ fw u dx is the mean value of u over w,. As a simple but
useful property,

—w,
u ifveVy

(Mpu)(v) = { (3.17)

0 otherwise,
i. e., the operator respects the homogeneous boundary conditions. Next, we define
Mp:LX(Q) - Wi (T) by

Mpw =y Jw~zé dx,, (3.18)

ec&r g,

where the weight function zle € H(div,w,) is yet to be constructed. Beforehand, we
define for e = [ey, e,] the piecewise constant function

1 1 : T_ T_
|“’e2|X(”ez - |we1|X“'E1 if e ¢ l—‘D) e ¢ l—‘D ’

1 . =
)/S = Z O‘V _|X(JJ\, = wxwez lf el € FD > (3.19)
veeny, . —
4 __leellxwel ife, eTp.
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 215

Above, Xo, is the characteristic function, a‘é = —1if v is the starting point of e and
oz = +1if vis its endpoint (i. e., O‘Z is an entry of the edge-vertex incidence matrix). It
is seen easily that yg € Wﬁ (we) and that

e, ¢Tpande, ¢ T = J y2dx = 0. (3.20)
We
We require that
.1 0 .
—div z, =y, inw,, (3.21)
zZ.-n=0 on dw, \ Ve » (3.22)

where y, is constructed as follows:

(i) Ife, ¢Tpande, ¢ Tp, wesety, := 0.

(i) If one of the endpoints of e, say e;, lies on E, then we set y, := f, where f is the
triangular face from Lemma 3.3 such that f ¢ dw, N T and e, c f. See Figure 7.3
for an illustration.

Figure 7.3: Sketch of an edge patch w, and the surface y, for the case that one of the endpoints of
the edge lies on the Dirichlet boundary 'p. The weight function zl has vanishing normal component
on y¢ (dotted line).

From the construction of y, and from (3.20) we can conclude that
¥ e wﬁl,yg(we), (3.23)

where yﬁ_ := 0w, \ V. In particular, for the case y, = 0, (3.20) serves as a compatibility
condition for (3.21)-(3.22) due to Gauss’ theorem. In order to fix zé uniquely, we require
two additional properties:

1 2
Z, € Wh,c(we), (3.24)
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216 —— R.Hiptmairand C. Pechstein

J zle ~curl w, dx =0 YWy, € W}l’yc(we). (3.25)
we

Recall that due to Assumption 3.2, w, is simply connected with simply connected
boundary. Therefore, since y, is either empty or a triangular face, the complementary
surface y; is simply connected. Therefore, the sequence (3.8) with w — w, and y — y;
is exact, and it follows that the weight function zi indeed exists and is unique.

From (3.21)-(3.22), we can conclude that

H'(w,) ife ¢Tpande,¢Tp,

J gradgq - zé dx = J qyg dx vq € { (3.26)

1 . O
o, o, H, (we) ife elpore,elp.

Lemma 3.5. Forallu ¢ H%D (Q), we have the commuting property:
M}, gradu = grad Mu.

Moreover, for an edge e € & with e, € Tpore, e Tpandforuy, € Wﬁ)ye(we),

J(MB gradu,) - T.ds = J(gradMguh) T ds,

e e

where the two expressions are well-defined.

Proof. For the first part of the proof, we just consider u € H(Q). By construction, both
M}) grad u and grad M°u belong to W},,FD(T ), even for a non-trivial topology of Q, I'j,.
Therefore, in order to show the first identity, it suffices to check all the edge integrals
one =[e;,e,)] €&

j(gradMOu) - Tods
e

u”e —us  ife, ¢Tp,e, ¢ Iy,
= ZﬂwVJgrad¢v-reds: u®e ife; € Tp,

of — . -
veV e g% ife, eI'p.

Since

we
we can conclude from (3.19) that
J(gradMgu) ‘Tods = J uyg dx Yu € H(Q). (3.27)
e [OR
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 217

We now show the first identity and assume that u € H%D(Q). Consequently, y,, €
H%D(a)e), in particular uy, e H;e (w,), and so (3.26) and the definition (3.18) of M},
imply

J(grad Mu) - T ds = j gradu - z, dx
we

e

= J J gradu -z, dx, - T ds = J'(M}Jgradu)-re ds.
e

e w,

The second identity follows by the same arguments and the locality of M9, M }). O

Lemma 3.6. Forallu € L*>(Q) and T € T,
IMpullor < Cliullg.y, -
Proof. From the definition of Mg, we derive

0 —w,
IMpullor < D" @1 lylor-
veynT

Cauchy’s inequality yields |[u*| < val‘l/ 2||u||0)wv and standard FE arguments show
that |w,| > ch} and llpyllo,, < Chy”. O

For the approximation property of Mg, we need another construction. For ele-
ments T where

owrNTp#0 but meas,(dwrNIp) =0,
we define a slightly enlarged element patch wy > wy such that
meas,(0wr NTp) > 0 and diam(@wr) < Chr, (3.28)

with a uniform constant C depending only on the shape regularity of 7'; see Figure 7.4
for an illustration. For all other elements, we simply set W = wy.

Lemma3.7. Forallu € H}D(Q) and T € T,

|lu - Mpul, r < Chrligradullyg,

Proof. Let T be such that meas,(dwy N I'p) = 0, which implies that dwy NT'p = 6, and
so all vertices on wr are in V. Due to the partition of unity property of the vertex basis
functions,

(Mgc)| w, =€  forany constantc.
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218 —— R.Hiptmairand C. Pechstein

Figure 7.4: Sketch of construction of enlarged element patch @r. Light grey area: original patch wr.
Dark grey area: element that is added in order to obtain @r.

Hence,
u-Mpu = u—-u" - Mp(u - u®).
From the triangle inequality and the L-estimate from Lemma 3.6, we obtain
0
Ju—Mpuloy < Clu-u"[o,,, <Chrlgradulo,, .

where in the last step, we have used Poincaré’s inequality (3.9). Finally, let T be such
that meas, (0w NI'p) > 0. We apply Lemma 3.6 directly, leading to

lu = Mpulo 7 < Cliullg o, < Clullog, -

Since u vanishes on dwy N 'y by assumption, Friedrichs’ inequality (3.10) yields the
desired bound. O

The stability of Mj) in the H'-semi norm will be a consequence of Lemma 3.9 below.
The L?-stability of M}, involves the particular choice of the weight function z. and
needs the following auxiliary estimate.

Lemma 3.8. Let the weight function zé be defined by (3.21), (3.22), (3.24), and (3.25).
Then

|z < Ch'2.

l_”O,a)e

2

1 _ fa
hw,y Ze = 0, and so the dis

Proof. The orthogonality condition (3.25) implies that IT
crete Poincaré—-Friedrichs-type inequality (3.13) implies

12800, < Cheldiv 24, = Chely2loa, -

1
ellow,
where we have used (3.21). From the definition (3.19) of yg, we see that IIyS low, <
Ch’h? = ch . O
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 219

Lemma 3.9. Forallw € L*(Q) and T € T,
IMpwl, 7 < Clwllow, -

Proof.

Mwlor < Y | [weziax
ee&nT W,

Wellow, < Y. 1Wlow, 1Zello, 1Wellow,

ee&nT

From Lemma 3.4, |9, llo,, < Ch;lhg/ 2, The proof is concluded by applying Lemma 3.8.
O

Corollary 3.10. Forallu € Hy (Q)and T € T,
|lgrad Mpul, ; < Cligradully,, .

Proof. Due to Lemma 3.5, grad Mpu = M}, grad u for all u ¢ H%D(Q), so the statement
follows from Lemma 3.9. O

3.2.4 Auxiliary projectors on local patches
Let w be a simply connected patch of a few elements with simply connected boundary

and y ¢ dw a simply connected union of faces such that the exact sequence property
(3.8) holds; the cases y = 0, y = ow are admitted. We define Qg)y:H Yw) - W,(i y(a)) by

J Qg)yu dx = J udx ify =0, (3.29)
w w
J grad(Qg)yu) -grad p,, dx = J gradu - grad p;, dx Vpy € W,(iy(a)), (3.30)
w w

and Q, : H(curl, w) —» W} _ () by

J Q}u,yw -grad p, dx = Jw - grad py, dx Vpy, € W,(,),y(w), (3.31)

w

w
j curl(Q}u)yw) -curl q; dx = J curl w-curl gq,dx Vg€ W}l)y(w). (3.32)
w w

Obviously,
Q,,gradu=gradQ), u  VueH'(w), (3.33)
Qg,yuh = uy Yuy, € W}?,y(w), (3.34)
Q,,, Wy, = Wy YWy, € W (). (3.35)
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220 —— R.Hiptmairand C. Pechstein

Finally, we define a lifting operator Q.. _: H(curl, w) — Wﬁ)y(w) by

w,y,—
J Q,, wWdx =0 ify =0, (3.36)
w
J grad(Qtlu,yFw) -gradp, dx = J w-gradp,dx  Vp, € W,?)y(w). (3.37)
w w

Summarizing, we have

—w 1 :
rad fy=o0,
o {u +Quy,- gradu ity (3.38)

Quy=1q .
Q,,,- gradu otherwise.

Lemma 3.11. Foru € H'(w),

lgrad @), ull, , < lIgradul,,,

10,10 < lllg,, + C diam(w)ligrad ully,, -

Proof. The first estimate follows immediately from (3.30) by setting p;, = Qg,yu and
applying Cauchy’s inequality. For the second estimate, we treat two cases:
- If meas,(y) = O then the mean value property (3.29) implies

(0] (0] —w —w
Qw)yu = Qw,y(u -u)+u

and the first term has vanishing mean over w. From the triangle inequality,
Cauchy-Schwarz, and Poincaré’s inequality (3.9), we obtain

15y tlow < 10y (=700 + 7o
< C diam(w)|grad Q) ull, , + lullo,, -

- Ifmeas,(y) > 0, we obtain from Friedrichs’ inequality (3.10) that

105, ullo, < € diam(w)|grad Q7 ull,,, -

In both cases, employing the first estimate concludes the proof. O

Lemma 3.12. For w € H(curl, w),

|curl Q;,,w|,,, < lcurl wi,,

15, Wlo., < Wl + C diam(w)lcurl Wiy, .

Proof. The first estimate follows immediately from (3.32) by setting q;, = Qi,)yw and
applying Cauchy’s inequality. For the second estimate, recall the projection operator
H}W,y: H(curl, w) — grad Wﬁ)y(w), from Section 3.2.2, which has the property

J l'[}l)w’yw -gradp,, dx = J w - grad p;, dx Vpy, € W}?)y(w). (3.39)

w w
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 221

Since l'[},,w)y, Q}U’yﬂ}l)w,y, and H%,w)lelu,y have the same range, we can conclude from
(3.31) and (3.39) that

Q(lu,yrl}l,w,yw = H}l,a},yQ:«),yw = H}l,w,yw'
Therefore,

Q}U’yw = Ql,,y (W - H}w)yw) + H}w,yw
and

1 1 1
Hh’w,wa,y(W - Hh,w’yw) = O

Hence, the discrete Poincaré-Friedrichs-type inequality (3.12) together with the L?-sta-

bility (3.14) of H}l,w,y yields

”Qi),ywllo,w < "Q:uy(w - H}l,w,yw)no,w + "H}l,w,yW”O,w

< Cdiam(w)| curl Q}u)y(w - H}W)yw) low + Wlo -

curl @}, W

Employing the first estimate once again concludes the proof. O

1,

Finally, we need stability estimates for the lifting operator Q,,y,-:

Lemma 3.13. For any w € H(curl, w),

lgrad Q;,, wl,, < Wl

1., Wl < C diam(w)wllo, -

Proof. Choosing p;, := Q. _w in (3.37) applying Cauchy-Schwarz, we find that

w,y,—
|grad @), wig,, = [ - grad(@),, wdx < [Wlo, Q) Wl
w

which implies the first inequality. For y = @, the second inequality follows from the
first one by Poincaré’s inequality (3.9) because Q}U’@rw has vanishing mean over w. If
meas,(y) > 0, then we can use Friedrichs’ inequality (3.10) to obtain the same result.

O

3.2.5 The auxiliary operators Sg and S,l,

Forv e Vr, we set

Q=Q s Q=Q,, Q_=0Q,, - (340)
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222 — R.Hiptmairand C. Pechstein

We define S3: H'(Q) — Wy, (T) by

Spu := Mpu, (3.41)
and Sp: H(curl, Q) — W 1. (7) by
Spw = Mpw + > (Q\l,)fw)(v) grad o, . (3.42)
veVy

Remark 3.14. Following the original paper by Falk and Winther [27], the operator S})
should be defined by

Spw = Myw + Y [(I-Sp)Q,_w](v) grad o, (343)
veVy

and one needs to argue firstly that the expression [(I — S%)QLW](V) is well-defined.
Indeed, forv € Vr,

v

[ - $9)Q}, W) = (@l 0 WV -, , W
o —

which is also the reason for the simplified definition (3.42) compared to (3.43).

Unlike Mj, M}, the operators Sp and S}, do not commute and they are not projec-
tions either. The key property of S}, is the following one.

Lemma 3.15. Foralle = [e;, e,] € € and for alluy, € Wf?,ru ),

J(S}) graduy) - T.ds = J gradu, - 7. ds.

e e

The same identity holds for a particular edge e if uy, is only given in W,g Ve (we)-

Proof. For edges e on the Dirichlet boundary I'j, both integrals evaluate to zero. Let
us therefore consider e € & and u;, € W}? (we). We will specify boundary conditions
for uy, later on. Insertion of the definition of S}, into the left-hand side yields

J(S}) graduy,) - 7. ds

e

J’(MllJ graduy) - 1. ds + I > (Q,_gradu,)(v)grad ¢, - T, ds
e

e V€V,

J(M})graduh)ﬂre ds+ Y o5(Q,_gradu,)(v),
e

veenVy
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 223

where 022 =+land 0:1 = —1. Apparently, these expressions are well-defined although
uy, is only given in W,? (w,). Identity (3.38) and the projection property (3.34) of Qf,’ yield

Q- graduy, = Quy, - ;™ = wy, — ;™.
Therefore,
(QL_ grad u,)(v) = uy(v) - u™

Substitution in the earlier formula yields (still for arbitrary u;, € W}? (W)

J(S}) gradu,) - T, ds

e

|t graduy) - weds+ Y ot - )

e veenVy
= j(M}, gradu,) - Tods — ) oy + ) opuy(v) .
e veenVy veenVy
) (I =[, gradu, T ds

For the remainder of the proof, we treat two cases:
- Ifuye W,(: rD(T ), then we obtain from the first commuting property of Lemma 3.5
and Identity (3.27) in its proof that

M= J(M}) graduy) - T.ds = Jgrad(Mguh) ‘T ds = J uy yo dx = (10).

e e We

- Ifu, € Wf?,ye (we), then the second commuting property of Lemma 3.5 and Iden-
tity (3.27) in its proof imply the same formula. N

Next, we provide a stability estimate for Sj,.

Lemma 3.16. Forallw ¢ Hp (cur,Q)and T € T,
Ispwlor < Clwllo,,
Proof. The definition of S}) and the triangle inequality imply

ISpwllor < IMpwlor+ Y [(Q,_W)W)| Igrad ¢,llo 7 -
veynT

The first term can be estimated from above by C|wll,, ; cf. Lemma 3.9. Using Lem-
ma 3.4, we can now estimate the second term:

Y (@ w)W)|lgradpyllor <C Y hIQ,_wilor-

veynT veynT
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224 =— R.Hiptmairand C. Pechstein

_(UV 2 . . . .
Recall that Q) _w ~ = 0, so Poincaré’s inequality (3.9) implies
hy' “Q\l/,fW"o,T < C|grad Q\1/,7W||0,wv < Clwlog, »
where in the last step, we have used Lemma 3.13. Combination of the above yields

Y (@, w)w)| lgrad ¢, llo,r < ClIWllo,g, -
veVnT

Combination of the estimates for the first and second term concludes the proof. [
In addition to the previous lemma, we need another local estimate for S}J:

Lemma 3.17. For allw € H(curl, w,),

l j(s},w) T ds| < Ch 2 |Wilg, -

e

Proof. From the definition of S}), we see that

1 J(Séw) To ds

e

<

+ ) Q@ ww) Jgradqov-fe ds

veVrne e

j(M},w) “Tods
e

=+1

From the definition of M}), we easily conclude from Lemma 3.8 that

-1/2
< < Ch; 1wl y, -

jw~zidx

e

l J(M})w) -To ds
e

Due to Lemma 3.4 and Lemma 3.13,
(@, _W))| < Ch?IQ, _Wllo r < Ch; Wl -

Summation over the above estimates yields the desired result. O

3.2.6 The bounded co-chain projectors

Recall that we defined, for v € Vr,
0 0 1 1 0 0
Q, = Qwv,@ > Q, = Qwv,ﬂ > Qv,— = Qwv,ﬂ,— :
In addition, for e € &, we set

0 0 1 1 1 1
Qe = Qﬂ}e))’e > Qe = QwexYe > Qeﬁ = Q“)e’yef > (3.44)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 225

where y, is constructed as in Sect. 3.2.3 when specifying the weight function zi. Recall
that y, = 0 for the case that e; ¢ I and e, ¢ Tp.
Based on these operators, we define R): H'(Q) — Wj, r,(7) by

Rpu =Spu+ ) [(I-Sp)Qul(v) ¢,
veVy

and R},: H(curl, Q) — W},,FD(T) by

Ryw = S;w + z J[(I - Sp)QLw] - T ds i, .

ee& o

Before we continue, we have to argue that the two operators are well-defined. For RB,
observe that

[(T - $5)Q0u]v) = [(I - Mp)QYu] ().

Since forany p € H'(Q), the value (Mgp)(v) depends only onp,,, , the expression above
is valid. For R}J, recall that for w € H(curl, Q),

SpW =Mpw + ) (Q,_W)(v)grad ¢, .
VeV

From the definition of M}, we see that fe(M})v'v) - T ds depends only on Wy, . Since
(Q, _W)(v) depends only on W,, , we can conclude altogether that Je (SpW) - T, ds only
depends on Wiy, - Setting (formally) w = Qéw shows that R}) is well-defined.

As a next step, we show the projection property of R% and R}).

Lemma 3.18. Forallu,, ¢ W,?ID (7)),
Rguh =Up.

Proof. Since both expressions are in W,(z rD(T ), it suffices to check the values at each
free vertex v € Vy:

(Rpup)(v) = (Spin) (V) + [(I = Sp) Quup] (V) = up(V),

=Up|w,

where we have used (3.34). O

Lemma 3.19. Forallwy, € W}IID(T )s

1
RDWh =Wy.
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226 —— R.Hiptmairand C. Pechstein

Proof. Since both expressions are in W}IID(T ), it suffices to check the integrals over
each free edge e € &:

J(R})wh) T ds = J(S},wh) “Tods + J[(I -S})Qiwy] - T ds = th ‘T ds,
e e e =Whjwe e

where we have used (3.35). O
The following lemma shows the commuting property of R), R},.

Lemma 3.20. Forallu € Hy, (Q),
R} gradu = grad ROu.

Proof. Letu € Hll-D (Q). Firstly, using the definition of R, S = M}, and Lemma 3.5 we
obtain

gradR)u = gradMpu+ Y [(I-M))QUu](v) grad ¢, = S}, gradu,
~Mygradu VE€VF =[(I-M$)Q}_ gradu](v)

where in the last steps we have used that M} preserves constants on each of the
patches w,, v € Vs as well as representation (3.43) of S}). Secondly, by the commuting
property (3.33) of the operators Q2, Q;,

Rygradu-Spgradu = ) J[(I—S},)Qlegradu] Teds,.
ecsr o grad Q0u

Recall, for any e € &, that qu € Wf?,ye (w,), see (3.44). Therefore, we can apply
Lemma 3.15 and obtain that

R gradu - S gradu = 0.
To summarize,
gradROu = S} gradu = R}, grad u. O
In the following, we show stability estimates for RB, R}).
Lemma 3.21. Forallu e H(Q)and T € T,
IRDullo.7 < C(lullo, +hrllgraduly,, ).
Proof. Following the definition of R%, we obtain from the triangle inequality that

IRpullo.r < IMpullor+ Y. |1 - MRQUIW)| @ llo.7 -
vevfnf
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 227

The first term is bounded by C ||u||0,wr; cf. Lemma 3.6. We bound the second term step
by step. Letv € Vi N T. Using the definitions of Mg and Qe, we find that

— o,
(M3Q%u)(v) = Qu " =u™,
and so, together with Lemma 3.4, we obtain

|[(T - Mp)QPu] ()| < [(QQu)(W)] + [(MpQu)()|

-3/2| A0 —w,
< Chy” | Quullo p + ™.
Due to Lemma 3.11,
0
1QVullo,r < lullg, + Chrlligradullq,, ,

and with the Cauchy-Schwarz inequality,

Judx

Wy

1 _

—W, 3/2

[u™| = < ———ull, < ChT/ lully, -
v v

|wy 12

|
Combining all the estimate from above, we can conclude that

[T - Mp)Q2u](v)| < Ch7*(Ilullg,y, + hrligradulyy, )-
Since [l llo 1 < Ch2?, we obtain the following bound for the second term:

YU - M) QuIW)| l@llor < Cllullo,y, +hrligradully, ),
vernT

which concludes the proof. O
Lemma 3.22. Forallw € H(curl,Q) and T € T,
IRpwllo 7 < C(IWllo,o, + hrlicurd Wi, ).
Proof. Following the definition of R}, we find that
IRywlo < IShwlor + ¥ | [0~ Shoiw] -7, ds| el
ee&nT e

The first term can be bounded by Cllwl,, ; cf. Lemma 3.16. The second term is
bounded step by step. Let e € & n T. Then due to Lemma 3.4, Lemma 3.17, and
Lemma 3.12,

< +

|[1-shaiw) r.ds| < [(@iw) 7. ds| + | [(shaiw) . ds
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228 =— R.Hiptmairand C. Pechstein

< Chy | Qewlly 7 + Chiy | Qewll p

< Chy™([Wlo , + hrllcurl wly ).

Since ||| < Cth/2 (Lemma 3.4), summation over the free edges of T and incorporating
the estimate for S;,w yields

IRLW]lo 7 < ClWlow, + Y. C(IWlo, +hrllcurl wily,, )
ee&nT

< C(IWllo,, + hrllcurl wiig, ),

which concludes the proof. O

Corollary 3.23. Forallu ¢ H%D(Q) andT €T,
IRDu|, 7 < Cluly, -

Proof. The statement follows immediately from Lemma 3.20 and Lemma 3.22. O

3.3 Proof of Theorem 1.2

Throughout the proof, we assume that diam(Q) = 1, because the general case then
follows by a simple scaling argument. Given v, € W}z,ru (7), we apply the continuous
regular decomposition from Theorem 2.1, so

v, =z+gradg

with z € H}D(Q), Qe H}D(Q) depending linearly on v,,, and

lelq < Clivplloqs (3.45)
Izlpq < Clvylioqs (3.46)
I1Zll,0 < ClIVhll prcurt,o) - (3.47)

Recall the projection operators R and RY from Section 3.2.6 and the modified Clément
operator Mg from Section 3.2.3. Let M%:LZ(Q) - Vg)rD(T ) = (W}?) rD(T ))? denote the
corresponding vector-valued operator (defined component-wise). Due to the projec-
tion property Lemma 3.19, R},vh = vy, and so

v, =Ryz + Ry gradp = R, M)z + R (I - M)z +grad R)p . (3.48)
=grad Rg(p =iZy =V, =QPp

From Lemma 3.6, Lemma 3.7, and Corollary 3.10, we obtain
0
||MDz||0)T < C”z”O,wT , (3.49)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 229

|Mgz|1,r < Clzlyp, » (3.50)
I _MB)ZHO,T < Chylzlg, (3.51)

where @y is the possibly enlarged element patch; see (3.28).
Due to the mapping properties of R) and R},, we obtain that

v), = Ryz, + ¥, + grad ¢,
with
Z € Var, (T, Ve Wi (T), @y € Wap, (T).
Combining (3.46), (3.47), (3.49), and (3.50) imply the following estimates for z:

Iznlloq = [M32]oq < Clizlog < Clvhlog .

0
|Zyl1,0 = [Mpz|, o < Clzlig < CIVhllgcuno) -

From Lemma 3.22 and an inverse inequality, we conclude

2 2
IRbZ1loq = X IRbZalor

TeT
2 2 2 2
<C Y (Iz4lg,, +hr lcurlzylg, ) < Clizyligq -
TeT s re—

SEAT

Our next term to be considered is ¥,. Lemma 3.22, (3.51), and (3.50) yield

e 2 _ 2
L 1Vh"o,Q = Z hTZHR})(I_Mg)z“o,T

TeT
— 2 2
<C Y hr (|0 - Mp)zfo,, +h7 |(I - Mp)al,.,,)
TeT <chlal, <Clzf,,,

2
<Clzlig < Clvalla(cun,) -

For the same vector field without the scaling factor, we obtain from Lemma 3.22

Wnlog < € Y (|(I - Mp)z,,, +hrlcurl (I - Mpz)|o,)
TeT

<C Y (Izlow, + |Mpz|,,, +hrlcurl zlo,, +h|curl Mpz], ,, ).
TeT

Since curl z = curl v, local inverse inequalities imply

hrllcurlzly, < Clvylow, .

hy|curl Myz], ,, < C|Mpz],,, -
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230 —— R.Hiptmairand C. Pechstein

Together with (3.49) and (3.46), we find that

I¥hllo,r < C(lIzllo.q + IVhlloq) < Clivhllog -

Finally, we consider the scalar potential. From Corollary 3.23 and (3.45), we obtain

0
lonlo = [Rp@liq < Clolig < Clivgllog -

For an estimate in the L2-norm, we use the (global) Friedrichs (for T, # 9) or Poincaré
inequality

l@nlloa < Clonlia < Clvploq

(recall that diam(Q) = 1). This implies an overall estimate in the full H!-norm and
concludes the proof of Theorem 1.2.

4 Discrete regular decomposition: p-version

Now we aim to establish existence and stability of discrete regular decompositions

of the finite element space W}D (T) < Hry,(curl, Q) for arbitrary polynomial degree

p € Ny. The final result has already been stated in Theorem 1.3. The key objective is

to ensure that stability holds uniformly in p, in addition to independence of the local

mesh width of 7, of course. Thus, in this section, we use the symbols <, >, and = to

express one- and two-sided inequalities up to constants that may depend only on Q,

I'p, and the shape regularity measure p(7) of the mesh as defined in (1.1); the constants

must not depend on p!

The proof of Theorem 1.3 given in this section runs structurally parallel to that of
Theorem 1.2 as presented in Section 3.3. There are substantial differences in the two
main ingredients, the commuting projector and quasi-interpolation operator:

() For want of p-stable local commuting co-chain projections generalizing the
construction of Section 3.2, we have to resort to an alternative tool: commut-
ing projection-based interpolation operators, whose details will be explained in
Section 4.1.

(II) The modified Clement operator M% will be replaced with smoothed interpolation,
which will be elaborated in Section 4.2.

4.1 Projection-based interpolation

Projection based interpolation supplies perfectly local projectors onto the local spaces
of discrete differential form that commute with the differential operators grad, curl,
div, respectively. Locality also extends to the values on the facets (vertices, edges,
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 231

faces) of tetrahedra, which makes it possible to assemble the local operators into pro-
jectors onto WII-D ).

The design of these operators is an intricate multi-stage procedure and we fol-
low [36, Section 3.5]. Their main algebraic properties are stated in Lemmata 4.5, 4.6,
and 4.7. Even more demanding is the proof of p-uniform approximation properties,
which was accomplished in [20]. We recall the result only for 0-forms, that is, scalar
functions, in Theorem 4.10, since it will be instrumental for getting the special interpo-
lation error estimate of Lemma 4.16. Its proof will also hinge on a special stable lifting
operator from [19] that we recall in the next section.

All considerations in this section are purely local. Therefore, in the beginning we
single out an arbitrary tetrahedron T € 7. All constants in estimates may only depend
on its shape regularity measure p(T) := hr/r;.

4.1.1 Tool: smoothed Poincaré lifting
Let D ¢ R® stand for a bounded domain that is star-shaped with respect to a subdo-
main B ¢ D, that is,

VaeB,xeD: f{ta+(1-t)x,0<t<1}cD. (4.2)

Definition 4.1. The Poincaré lifting R, : C°(Q) — C°(Q), a ¢ B, is defined as
1
Ry(w)(x) = J tu(x +t(x-a))dtx(x—a), xeD, 4.2
0

where x designates the cross product of two vectors in R>.

This is a special case of the generalized path integral formula for differential
forms, which is instrumental in proving the exactness of closed forms on star-shaped
domains, the so-called “Poincaré lemma”; see [12, Section 2.13].

The linear mapping R, provides a right inverse of the curl-operator on divergence-
free vector fields, see [30, Proposition 2.1] for the simple proof, and [12, Section 2.13]
for a general proof based on differential forms.

Lemma 4.2. Ifdivu = 0, then for any a € B, cuarlR,u = u for allu ¢ c'(D).

Unfortunately, the mapping R, cannot be extended to a continuous mapping
L?’(D) — H(D), cf. [30, Theorem 2.1]. As discovered in the breakthrough paper [19]
based on earlier work of Bogovskii [10], it takes a smoothed version to accomplish
this: we introduce the smoothed Poincaré lifting’

R(u) := JB O(a)R,(u)da, (4.3)

1 The dependence of R on @ is dropped from the notation.
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232 — R.Hiptmairand C. Pechstein

where
® e C®(R?), supp®cB, J Oa)da=1. (4.4)
B
The substitution

1
y:=a+tix - a), T:= T (4.5)
transforms the integral (4.4) into
RE) = [ [ 71 - Duw) x (- y)0ly + 70y - x)) drdy
R31 (46)

= J 3k(x,y—x) xu(y)dy,
R
that is, R is a convolution-type integral operator with kernel

k(x,2z) = LOO T1+17)D(X + 12)zdT

_ é LOO (®<x+(%>d(+ % LOO (2<D<x+(|§—|>d( .

The kernel can be bounded by |k(x, z)| < K(x)|z|™, where K € C*(R>) depends only
on @ and is locally uniformly bounded. As a consequence, (4.6) exists as an improper
integral.

The intricate but elementary analysis of [19, Section 3.3] further shows, that k be-
longs to the Hérmander symbol class Sy %)(]R3); see [61, Chapter 7]. Invoking the theory
of pseudo-differential operators [61, Proposition 5.5], we obtain the following conti-
nuity result, which is a special case of [19, Corollary 3.4].

(4.7)

Theorem 4.3. The mapping R can be extended to a continuous linear operator L>(D) —
H(D), which is still denoted by R. It satisfies

curlRu=u Vvu € H(div,D), divu=0. (4.8)

The smoothed Poincaré lifting shares this continuity property with many other
mappings; see [36, Section 2.4]. Yet, it enjoys another essential feature, which is im-
mediate from its definition (4.2): R maps polynomials of degree p to other polynomials
of degree < p + 1. The next section will highlight the significance of this observation.

4.1.2 W;(T): a local view
According to [34, Section 3], forany T € T, a € T, we can obtain the local space of

discrete 1-forms of the first family as

W,(T) = P,(R’) + Ry({g € P,(R), divg = 0}) . (4.9)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 233

Independence of a is discussed in [34, Section 3]. The representation (4.9) can be es-
tablished by dimensional arguments: from the formula (4.2) for the Poincaré lifting we
immediately see that ’Pp(1R3) + Ra(Pp(]RB)) C WIIJ(T). In addition, from [54, Lemma 4]
and [34, Theorem 6, case Il = 1, n = 3] we learn that the dimensions of both spaces
agree and are equal to

dimW,(T) = 11+ p)3+p)4+p). (4.10)

As a consequence, the two finite dimensional spaces must agree.

For the remainder of this section, which focuses on local spaces, we single out a
tetrahedron T € 7. On T we can introduce a smoothed Poincaré lifting Ry according
to (4.3) with B = T and a suitable ® e C;°(T) complying with (4.4). An immediate
consequence of (4.9) is that

Rr(fv e ’Pp(IR3) :divv=0}) c W;(T) . (4.11)

We introduce the notation F,,(T) for the set of all m-dimensional facets of T, m =
0,1,2,3. Hence, 7, (T) contains the vertices of T, 7;(T) the edges, F,(T) the faces, and
F3(T) = {T}. Moreover, for some F € F,(T), m = 1,2,3, Py (F) denotes the space of
m-variate polynomials of total degree < p in a local coordinate system of the facet F,
and P, (F) will designate corresponding tangential polynomial vector fields. Further,
we write

Wll,(e) = W;,(T) -t,, t,theunittangent vectorofe, e € 7(T), (4.12)
Wll,(f) = W:,(T) x Ny, ngthe unit normal vector of f, f € F»(T) , (4.13)

for the tangential traces of local edge element vector fields onto edges and faces. Sim-
ple vector analytic manipulations permit us to deduce from (4.9) that

Wy(e) =Pyle), eeFK(T), (4.14)
Wy(F) =P,(f) +RE(Py(F), acf, feFT), (4.15)

where the projection Rle of the Poincaré lifting in the plane reads
1
2D 2
R, (w)(x) := L tu@+tx-a)lx-a)dt, acR". (4.16)

It satisfies dierf,D (u) = uforallu € C*(R?). We point out that, along with (4.9), the
formulas (4.14) and (4.15) are special versions of the general representation formula
for discrete 1-forms; see [34, Formula (16)] and [4, Section 3.2]. Special facet tangential
trace spaces with “zero boundary conditions” will also be needed:

Wie) := {u cWhe: j udl = o} . ee AT, (4.17)
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WL = {ue W) : u-ngy=0Vee Fi(T), ecof}, feFRT),  (418)
WT) i= {u e WI(T) : uxny = 0Vf € Fy(T)} . (4.19)

Here, n; represents an exterior face unit normal of T, n,s the in-plane normal of a face
w.r.t. an edge e c of.

According to [54, Section 1.2], [34, Section 4], and [4, Section 4.3], the local degrees
of freedom for W:,(T) are given by the first p — 2 vectorial moments on the cells of 7,
the first p — 1 vectorial moments of the tangential components on the faces of 7 and
the first p tangential moments along the edges of T; see (4.21) for concrete formulas.
Then the set dof},(T) of local degrees of freedom can be partitioned as [49, Chapter 3],
[4, Section 4.5],

dofy(T)= | Mdfi(e) u |J 1df,(f) u WdE(T), (4.20)
eeFy(T) feFy(T)

where the functionals in ldf;(e), ldf:, (f), and ldf;(T) are supported on an edge, face,
and T, respectively, and read

K€ ldf;(e) = k()= je qé - t,dl for e € 7,(T), suitable g € Py(e),
K€ ldf;,(f) = x(u)= jf q-(§xn)dS forf € F,(T), suitableq € P,_;(f),
K€ ldf;(T) = Ku):= [ q-&dx for certain q € P, ,(T) .

(4.21)

These functionals are unisolvent on W;(T ) and locally fix the tangential trace of u €
W,(T). There is a splitting of W,(T) dual to (4.20): Defining

Vy(F) = {v e WHT) : k(v) = 0 Vx € dofy(T) \ 1df, (F)} (4.22)

for F € F,(T), m = 1,2,3, we find the direct sum decomposition

3
Wo(M=Y > YF). (4.23)

m=1FeFp,(T)
In addition, note that the tangential trace of u € y;(F ) vanishes on all facets + F,

whose dimension is smaller or equal the dimension of F. By the unisolvence of dof; (T),
there are bijective linear extension operators

Eep i Wple) = Vple), ec A(T), (4.24)
By Wh(F) = D)), f e Fy(T). (4.25)

Similar relationships hold for discrete 2-forms, for which we have the following
alternative representation of the local space [34, formula (16) for I = 2, n = 3]:

Wi(T) = Py(T) + Da(Py(T)) , (4.26)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 235

where the appropriate version of the Poincaré lifting reads
1
(Dau)(X) := j tu(a+tx-a)x-a)dt, acT. (4.27)
0

Like (4.9) this is a special incarnation of the general formula (16) in [34]. Again, di-
mensional arguments based on [54, Section 1.3] and [34, Theorem 6] confirm the rep-
resentation (4.27). We remark that div D,u = u, see [30, Proposition 1.2].

The normal trace space of W;(T) onto a face is

W) = Wy(T) - g =Py, f e Fy(T), (4.28)

and as relevant space “with zero trace” we are going to need
W2(f) = {u €W, (f): Jf uds = o} , feRT), (4.29)
WA(T) = {u e WAT) : u-nmyp = 0} . (4.30)

The connection between the local spaces W;(T), Wj(T) and full polynomial
spaces is established through a local exact sequence [34, Section 5]. To elucidate the
relationship between differential operators and various traces onto faces and edges,
we also include those in the statement of the following theorem. There n; stands for
an exterior face unit normal of T, n, for the in-plane normal of a face w. r. t. an edge
e c of, and % is the differentiation w. r. t. arc length on an edge.

Theorem 4.4 (Local exact sequences). For f € F,(T), e € F(T), e c of, all the se-
quences in

grad curl

const —2—, P pi1(T) ——— Wi(T) ——— WI(T) v, Pp(T) — (o)

o | oy

Id 1 di
const ——— Py (f) ——s W) —— Pyf) —— {0}

o

d
d ds
const ——— Pp,(e) —m Pyle) —— {0}

are exact and the diagram commutes.

4.1.3 Projections, liftings, and extensions

Following the developments of [36, Section 3.5], projection based interpolation re-
quires building blocks in the form of local orthogonal projections Pl* and liftings Ll* 2

2 The parameter [ in the notation for the extension operators El*, the projections Pl*, and the liftings
LI* refers to the degree of the discrete differential form they operate on. This is explained in more detail
in [36, Section 3.5].

Brought to you by | University of Michigan-Flint
Authenticated
Download Date | 8/31/19 4:06 PM



236 —— R.Hiptmairand C. Pechstein

Some operators will depend on a regularity parameter O < € < %, which is considered
fixed below and will be specified in Section 4.1.5. To begin with, we define for every
e e F(T)

Pl .H—1+e(e) —

d e °
ep —Ppu(€) = W(e) (4.31)

ds
as the H'*¢(e)-orthogonal projection. Here, 7031[J (F) denotes the space of degree p poly-
nomials on a facet F that vanish on oF.

Similarly, for every face f € F,(T) introduce

PL, :H () > curl Py () = v e Wh(f) : divpv = 0}, (4.32)
P2 H () > divp WL () = WA(F) (4.33)

as the corresponding H *%”(f )-orthogonal projections. Eventually, let

P}, :LA(T) - grad P, (T) = {v € Wi(T) : curlv =0}, (4.34)

P7, LA(T) > curl Wy (T) = {v e Wi(T) : divv =0}, (4.35)

Py, :L3(T) > div WA(T) = {v € Py(T) : J v(x) dx = o} , (4.36)
T

stand for the respective L*(T)-orthogonal projections. Local exact sequences have tac-
itly been used in these statements; see (4.46) below.

The lifting operators
Lep Wy(e) > Ppale), ee F(T), (4.37)
L, AV e Wy () : divpv =0} = P, 1(f), f e F(T), (4.38)
Lz, {V e Wy(T) : curlv =0} — P, ((T), (4.39)

are uniquely defined by requiring

d 1 o1

ELe,pu =u Yuewye), (4.40)
curlrL})pu =u Vue {W;(f ) : divpv =0}, (4.41)
gradl; u=u Vue{veWy(T): curlv=0}. (4.42)

Another class of liftings provides right inverses for curl and divy: Pick a face f € F,(T),
and, without loss of generality, assume the vertex opposite to the edge e to coincide

with 0. Then define
di i1 21
2. { W, ()~ W) 43)

u Ry u—curliEg L (Ru - ngyp) .
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Thisis a valid definition, since, by virtue of definition (4.16), the normal components of
R u will vanish on of \ . Moreover, divyR3’u = u ensures that the normal component
of R%u has zero average on &. We infer

d

0 1 (/p2D
(curlrEs )Lz, (Ry u - ng g )|§) : n’é,f)lé =%

2D 2D _
L-lé)p((Ro u)- "‘é,f)|§ =Ryu-ngs oné,

and see that the zero trace condition on of is satisfied. The same idea underlies the
definition of

, {curlw;,(T) - Wh(T)

Tp: B 0 |1 g (4.44)
u — Ryu-grad Ef’po)p(((ROu) X nf)lf) ,
where f is the face opposite to vertex 0, and the definition of
, [divWAT) - WAD)
Lrp - u — Dou-cutlEl 12 ((Dou-ns)-) (4.45)
0 Fp fp 00 TFF

The relationships between the various facet function spaces with vanishing traces can
be summarized in the following exact sequences:
Id ° grad ° curl ° div — 0
{0} —— Pp(T) —— Wi(T) —— Wi(T) —— P,(T) —— {0},

o s P 2 Wl - B —2 ol

0} — s Poae) —E Poe) —— {0},
(4.46)

where fp(F ) designates degree p polynomial spaces on F with vanishing mean. These
relationships and the lifting mappings Ll* p are studied in [36, Section 3.4].
Finally, we need polynomial extension operators

Eg,p i Ppii(€) = Ppu(T) (4.47)
E?,p : Ppia(F) = Ppa(T) (4.48)
that satisfy
E2>p”|ef =0 ve' e F(T)\fe}, (4.49)
Byl =0 Vf' € F(D\{f} (4.50)

Such extension operators can be constructed relying on a representation of a poly-
nomial on F, F € F,,(T), m = 1,2, as a homogeneous polynomial in the barycentric
coordinates of F; see [36, Lemma 3.4] of [49, Section IV.3]. As an alternative, one may
use the polynomial preserving extension operators proposed in [53, 21] and [1]. We
stress that continuity properties of these extensions do not matter for our purpose.
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4.1.4 Interpolation operators

Now we are in a position to define the projection based interpolation operators locally
on a generic tetrahedron T with vertices a;,i = 1,2,3,4.

First, we devise a suitable projection (depending on the regularity parameter O <
€< %, which is usually suppressed to keep notation manageable)

M9 ,(=3,,(6)) : C(T) = Ppyy(T) (4.51)

for degree p Lagrangian H'(Q)-conforming finite elements. For u € C®°(T) define (A is
the barycentric coordinate function belonging to vertex a; of T)

4
u® =y - Y uah; (4.52)
i=1
=w®
d

u=u® - 3 Bl Pep e (4.53)

eeF(T)

=w
2 1 0 (1 pl 1

u( ) = u( ) - Z Ef)po’pr’pCurlr(u( )If) 5 (4.54)

feR(T)

=w

H%pu = LlT,pPlT,p gradu® + w® + w® + w© (4.55)

Observe that w(i)|F =O0forall F € 7,(T), 0 < m < i < 3. We point out that w® is the
standard linear interpolant of u.

Lemma 4.5. The linear mapping H(T’)p, p € Ny, is a projection onto Py, (T).

Proof. Assume u € 7P,,4(T), which will carry over to all intermediate functions.
Since u(O)(a) = 0, i = 1,...,4, we conclude from the projection property of Pé)p

that LéPé;s (0)| =u | for any edge e € F;(T). As a consequence,

=@ ¥ Bu9 = ul=0 veer( . (4.56)

ecF(T)

u

We infer L})p P}curlr(u(l)lf) = u(l)v on each face f € F,(T), which implies

Z E?,p(u(l)lf) = u(z)|f=0 Vf € Fy(T) . (4.57)
FeFA(T)

This means that L1 Pl grad u® = u®@ and a telescopic sum argument completes the
proof. O
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7 Discrete regular decompositions of tetrahedral discrete 1-forms =—— 239

A similar stage by stage construction applies to edge elements and gives a projec-
tion

M7, (= 7 ,(€)) + C¥(T) — WX(T) (4.58)
for a directed edge e := [a;, a;] we introduce the Whitney-1-form basis function
be = Ai grad A] = A] grad Ai . (4.59)

These functions span W(l)(T). Next, for u € C*(T) define

u® —u- ( Z j u- d§> b, , (4.60)
ecF(T) ¢
=w®
u?=u@- Y grad€) L P (0 t,),), (4.61)
eeF(T)
=wih
2 1 12 p2 g 1
u® =u® -y g 17 7 dive((u® x ), (4.62)
feFy(T)
=wl
u® = u? - Z grad E?,pL})pP}’p((u(z) X "f)lf) , (4.63)
feFy(T)
=wi®
u® = u® - LZT’p PzT,p curlu® (4.64)
=w®
HlT)pu := grad LIT)p PlT’pu(") +w® s w? s w? w® L w@ (4.65)

The contribution w'® is the standard interpolant I}, of u onto the local space of
Whitney-1-forms (lowest order edge elements). The extension operators were chosen
in a way that guarantees that w® - t, = 0 and w® - t, = O forall e € F,(T).

Lemma 4.6. The linear mapping HlT’p, p € Ny, is a projection onto WII,(T) and satisfies
the commuting diagram property

I}, - grad = gradIly , on C*(T). (4.66)

Proof. The proof of the projection property runs parallel to that of Lemma 4.5. As-
suming u € W;(T), it is obvious that the same will hold for all u® and w® from
(4.60)—(4.65). In order to confirm that all projections can be discarded, we have to
check that their arguments satisfy conditions of zero trace on the facet boundaries
and, in some cases, belong to the kernel of differential operators.

First, recalling the properties of the interpolation operator H(l) for Whitney-1-forms,
we find (u® - t,),, € W (e). This implies

gradEp L} P, (09 -t,),) = t,), Veer (D), (4.67)
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240 — R.Hiptmairand C. Pechstein

and

(u®. t.),=0 Vee F(T).

We see that (u(l) X nf)lf € 1/0\/;,(]‘) for any f € F,(T), so that

L

=

Pf,pdivr((u(l) x nf)lf) = divp((u® x nf)lf)

divpl},P7dive((u? x ng) ) = divp((0 x ng) )

divp((u® x n),) =0 Vf e FoD), w?t,),=0 YeeF(T)
P}’p((u(z) X nf)lf) = (u? x nf)lf Vf € F(T)

gradEp L P (0 xmy) ) xme = () . Vf € Fy(T)
(u® x nf)lf =0 Vfe R

PzT,p curlu® = curlu®

3) 3)

2 p2 _
curl L7 Pr, curlu™ = curlu

curlu? =0 = PlTu(4) =u®

grad LlTPlTu(4) =u?,

which confirms the projector property.
Now assume u = grad u for some u € C®(T). The commuting diagram property
will follow, if we manage to show grad u® = u®, gradu® = u?, gradu®® = u®,
etc., for the intermediate functions in (4.52)—(4.55) and (4.60)—(4.65), respectively.
By the commuting diagram property for the standard local interpolation opera-
tors onto the spaces of Whitney-0-forms (linear polynomials) and Whitney-1-forms,
we conclude

0 0 d_ o 0
gradu® =u? = Eu( )|e = (u )'te)|e ve € F(T)

u® =gradu® = dive((u” xnp),) =0 Vf € Fy(T)

u® = q®

=u
(u® x nf)lf = curlru(l)f Vfe 7(T) = u® =gradu®

@) _ 4O

L

u

(4.68)

(4.69)
(4.70)
(4.711)
(4.72)
(4.73)
(4.74)
(4.75)
(4.76)
(4.77)
(4.78)

(4.79)
(4.80)

(4.81)
(4.82)

(4.83)

Of course, analogous relationships for the functions w? and w® hold, which yields

T
HT,pu -

grad H(},pu.

O

Following [36, Section 3.5], a projection based interpolation onto W;(T), the op-
erator HzT,p(: HZT’p(e)) 1 C®(T) > Wg(T ), involves the stages

u® ::u—< z Ju-nfd8>bf,

ferm f

=w©®
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 241

u? =@ - z curl E},pL%)pr)p((u(O) 'nf)lf) (4.85)
feF(T)
=wh
u® =u® - 13 P} diva®” (4.86)
=w®

2) (0)

HZT)pu .= curl LzT)pPT,pu( +w O w4 w® | (4.87)

Here, bf refers to the local basis functions for Whitney-2-forms [36, Section 3.2]:
bf = Ai gl'ad /11 X grad Ak + /1] grad Ak X Ai + Ak grad Ai X A.] . (4.88)
Analogous to Lemma 4.6, one proves the following result.

Lemma 4.7. The linear operator HzT)p, p € Ny, is a projection onto W;(T) and satisfies
the commuting diagram property

HZT,p o curl = curl oHlT)p on C®(T) . (4.89)

The next lemma makes it possible to patch together the local projection based
interpolation operator to obtain global interpolation operators

I, : C°(Q) - Wi(T), 1=1,2. (4.90)

Lemma 4.8. Forany F € F,(T),m = 0,1,2, andu € C®(T) the restriction H%puuv
depends only on ug.

Forany F € F,(T),m = 1,2, and u ¢ C®(T) the tangential trace of HIT,pu onto F
depends only on the tangential trace of u on F.

For any face f € F,(T) andu € C®(T) the normal trace of HZT’pu onto f depends
only on the normal component of uon f.

Proof. The assertion is immediate from the construction, in particular, the properties
of the extension operators used therein. O

It goes without saying that density arguments permit us to extend H;,, 1=0,1,2,
to Sobolev spaces, as long as they are continuous in the respective norms. (Repeated)
application of trace theorems [33, Section 1.5] reveals that it is possible to obtain con-
tinuous projectors

I : H'**(Q) » W(T) , (491
I : Hi"(Q) » WL(T) (4.92)
I : H(Q) = Wi(T) (4.93)

for any s > % In addition, by virtue of Lemma 4.8 and the resolution of I'y by 7, zero
pointwise/tangential/normal trace on I of the argument function will be preserved
by H;,, 1=0,1,2, for instance,

1
I, (H>*(Q) n Hy, (curl, Q) ) = W, (T) 0 Hy, (curl, ) . (4.94)
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242 —— R.Hiptmairand C. Pechstein

4.1.5 Local interpolation error estimates

Closely following [20, Section 6], we first examine the interpolation error for H%p.
Please notice that H(%,p still depends on the fixed regularity parameter 0 < € < %
The argument function of H(},p is assumed to lie in H*(T). The continuous embedding
H*(T) — C%T) plus trace theorems for Sobolev spaces render all operators well-
defined in this case.

We start with an observation related to the local best approximation properties of

the projection based interpolant.

Lemma 4.9. Foranyu € H(T) holds true

(grad(u - T12 u). grad v) . ;) =0 Vv e P, (1), (4.95)
(curly(u - H(},pu)lf,curlrv)H_%%(f) =0 Wve 703p+1(f), feFRT, (4.96)
d( ~ 7 ,u) d =0 W e Py ecF(T) (4.97)

% U T’pu |e’ %V H*He‘(e) - Y pH ¢ e ! ’ '

Proof. We use the notation of (4.52)-(4.55). Setting w := w® + w® + w® we find
9 u = L,Pr , grad(u-w) +w, (4.98)
which implies, because LlT)p is a right inverse of grad,
grad 11} u = Py gradu+ (Id - P} ) gradw . (4.99)

This means that grad u — grad H(T)’pu belongs to the range of Id - PlT,p and (4.95) fol-
lows from (4.34) and the properties of orthogonal projections. Similar manipulations
establish (4.96):

0
curerT’puv = curlyw

= curlrL})p P})pcurlru(l) +curlp (w® + w(l))v
=Id
= P},pcurlru[f +(1d - P}’p)curlr(w(o) + w(l)) Vf € F(T) .

The same arguments as above verify (4.97). O

From this, we can conclude the result of [20, Section 6, Corollary 1]. To state it, we
now assume a dependence

1

1
0<€—€(p).—m<z,

pPeEN, (4.100)
of the parameter € in the definition of the local projection based interpolation opera-
tors. Below, all parameters € are linked to p via (4.100). Please note that we retain the
notation (HIT,p)pdN, 1 =0,1,2, for these new families of operators.
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 243

Theorem 4.10 (Spectral interpolation error estimate for H(},p). With a constant merely
depending on the shape-regularity of T

h
0 3/2 T 2
|(1d =TIz, )v], . < (1+log™"(p + 1))}m|v|2j vv e H(T) . (4.101)

Stable polynomial extensions are instrumental for the proof, which will be post-
poned until page 245. First, we recall the results of [53, Theorem 1] and [1, Theorem 1].

Theorem 4.11 (Stable polynomial extension for tetrahedra). Fora tetrahedron T, there
1
is linear operator Sy : H2(0T) — H'(T) such that

Srupr=u Vue H%(aT) , (4.102)

|Srul, 7 < [u)s oy VueH2@T), (4.103)
: L

STW € Pyua(T) YW € Py (T) - (4.104)

Theorem 4.12 (Stable polynomial extension for triangles). Given a triangle F, there is
a linear mapping Sg. - L*(9F) — H1(F) such that

2
|Spuls p < luloor  Vu € L7(3F), (4.105)
|Spulyp < [ulsop  Yu € H2(3F), (4.106)
SEW € Ppy(F) YW € Py (F) o (4.107)

where the constants depend only on the shape regularity measure of T.

By interpolation in Sobolev scale from the last theorem, we can conclude

[Seulyr < July s p Vue HTIOF), S ss<1. (4.108)

NI =

We also need to deal with the awkward property of the H : (0T)-norm that it cannot
be split into face contributions. To that end, we resort to a result from [50, Proof of
Lemma 3.31]; see also [20, Lemma 13].

Lemma 4.13 (Splitting of H : (0T)-norm). With a constants depending only on the shape
regularity of the tetrahedron T, there holds

ugrs — Y fuly, vueHIF@D), % <s<1. (4.109)

573 feFRM

Another natural ingredient for the proof are polynomial best approximation esti-
mates; see [59] or [53, Section 3].

Lemma 4.14. Let0 <r <1,0 < s <2, and F be either a tetrahedron or a triangle. Then

S+1-r

inf fu-vpl, < | Vu € H\(F) . 4110
Vpggsﬂ(p)lu vplr,F <p > |u|s+1,F uc ( ) ( )
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244 — R.Hiptmairand C. Pechstein

Define a semi-norm projection Qr,:H YT - Pp1(T) on the tetrahedron T by

JT grad(u - Qrpu) - gradv,dx =0 Vv, € P, 4(T),
(4.4111)

J u-Qrudx=0,

T

. L _1
and, for % < s <1, semi-norm projections Qy,, CH 3 (f) wi1(F), f € Fo(T), by

(curlp(u - Qf,pu),curlrvp)Hsf%(f) =0 WYv, € Pp(T),
(4.112)
J u-Qspudx=0.
f

These definitions involve best approximation properties of Qr ,u and Qg ,u. Thus, we
learn from Lemma 4.14 that with constants independent of 0 < € < % <s<l1,

hr \° .
lu-Qrpul ;< <p—+ 1) |ul,or VueH(T), (4.113)
hy \° .
|u - Qf’pul%%,f s <ITT1> |u|%+s,T Vu e H(f) . (4.114)

The latter estimate follows from the fact that || and |eard-|_: .. ; are equivalent
2 k 2 k
semi-norms, uniformly in €.
We also need error estimates for the L?(e)-orthogonal projections,

Q, LX)~ Ppale), eeF(T). (4.115)
Lemma 4.15 (see [20, Lemma 18]). With a constant independent of p, 0 < € < %, and
2c<r<l+e,
r-2e

. h
lu-QZul,, < (p :1> lu|,, YueH (e)nHy(e).

Proof. By scaling arguments, we may assume h, = 1. Write I, , : H(l)(e) — 7031[,+1 for the
interpolation operator

4
Uep) =1+ [ (0 G Jrdr, 02 <l

where ¢ is the arc length parameter for the edge e and Q) : L’(Q) — Pyle) is the

L?(e)-orthogonal projection. From [59, Section 3.3.1, Theorem 3.17], we learn that
lu=lopul , < @+1)7'ul,, VueHe), (4.116)
lu—tepuloe < @+ 1) "ul,, YueH"(€), m=12. (4.117)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 245

Asl, u € 7o?p+1(e) foru e H(l)(e), this permits us to conclude

=gl < Ju=tepuloe s @+ D7 full » (4.118)
which yields, by interpolation between H(e) and L*(e),

Ju-Qz,ullo. < 0+ 1)"q||u||q’e , 0<qg<1, (4.119)

where the constant is independent of g. On the other hand, using the inverse inequal-
ity [7, Lemma 1]

lule s @+D%ulo, Vi€ Pye) (4.120)
and (4.116), (4.117), we find the estimate

|u - Q:,pull,e = |u - Ie,pu|1,e + |Q:,pu - Ie,pull,e

<u—lepul, +®+ D?[Qppu — lepulloe (4.121)
<u- Ie,pull,e + P+ fu- leptlloe < ulle -

Interpolation between (4.119) with g = % and (4.121) completes the proof. O

Proof of Theorem 4.10, cf. [20, Section 6]. Orthogonality (4.95) of Lemma 4.9 com-
bined with the definition of QT,I, involves

J grad((l‘[(})p -Qr,)u)-gradv,dx =0 Vv, € P, (T). (4.122)
T
Hence, (H%p—QT,p)u turns out to be the |-|, ;-minimal degree p+1 polynomial extension
of (H(})p - QT’P)u|aT’ which, thanks to Theorem 4.11, implies
0 0
|(HT,p - QT,p)u|1,T < IST((HT,pu - QT,pu)|aT)l1’T

o (4.123)
S I(HT,pu - QT,Pu)|aT|%,BT .

Thus, by the continuity of the trace operator H YT)—H : (oT),

|u - H(T),pull,T = |u - QT,pull,T + |(u - H(YJ’,pu)le%,aT + |(u - QT,Pu)|aT|%,BT

< (Ju-Qrpul 4+ |(u- H%pu)|aT|§,aT) . (4124)

To estimate |(u - H(} pu) 1 57> We appeal to Lemma 4.13 and get
5 L,

IaT|

0 0
l(u - HT,pu)wTI%,aT < |(u - HT)Pu)|BT|%+e,aT

(4.125)

N

1 0
- l(” -y, u) | .
€f€gm P e
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246 —— R.Hiptmairand C. Pechstein

Next, we use (4.96) from Lemma 4.9 together with (4.112), which confirms that
(H(%’pu)| ;o Qs puis the minimum || 1 e,f-semi-norm polynomial extension of (I'I(%J,u)k,)}c -
Qg () 5. Hence, based on arguments parallel to the derivation of (4.124), this time
using Theorem 4.12, we can bound

l u- HO u) | lulf prul +€f |(H(7)“,pu_Qf,pu)|af|€’af > (4.126)

where the (e-independent!) continuity constant of the trace mapping Sy enters the

constant. Also recall the continuity of the trace mapping H %“(f ) — H(of) [50, Proof
of Lemma 3.35]: with a constant independent of €,

”“laf"e 0f s \/_“u" +ef Vu e H2+e(f) (4'127)
Use this to continue the estimate (4.126)
0 1
|(u - HT,pu)vl%+€’f S %lulf - Qf,pul%“;f |(u H |af| (4.128)

1
2 b
Lemma 4.13,

As € < 3, we can localize the norm |(u - H(T’,pu) to the edges of f, similarly to

Ibfle,af
1 0
-1 u) | <+— Y  |u-Tpu) | . (4.129)
P eof % = € ecF (T),ecof P lelee

Recall the e-uniform equivalence of the norms |, , and ||%|| . Hence, owing to

-1+e,e
(4.97), we have from Lemma 4.15 with r = 1:
0 . 0
|(u- HT)Pu)IeL,e < inf |(u-Tzou), - vp|€’e
Vp€Pps
S |(u - H(%,Ou)k? - er((u H(%Ou)k?)le,e (4.130)
1-2¢
hr 0

< <p+1> |(u_HT,Ou)|e|s’e

Moreover, H*(T) is continuously embedded into C°(T). Consequently, applying trace
theorems twice and appealing to the equivalence of all norms on the finite dimen-
sional space P;(T),

|(u I-IT Ou)|el = lulelse | HO Ou)lels)e S |u|1+s,T > (4'131)

where the constant may depend on s. Combining the estimates (4.124), (4.125), (4.128),
and (4.129), (4.130) with (4.131), we find

1
fu-Tgul, < - Qrpulyp+ 55 Xy - Qrppls, (4.132)
FeFm

s-2¢€

hy ) 1
+ ul, . .
<P+1 e(%—e) ee;ﬂ)l lZ’T
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 247

Finally, we plug in the projection error estimates (4.113), (4.114), and arrive at

h h 1-+€ 1
|u- H(},p(e)u| < —T|u|2)T + <—T> — Z |u|3/ )f (4.133)
I p+1 p+1 e

1-2¢

hy ) 1
+ ul,
(p+1 e(%—e) eeleml he

with constants also independent of €. The choice (4.100) of € together with an appli-
cation of trace theorems then completes the proof. O

The next lemma plays the role of [9, Lemma 9] and makes it possible to adapt the
approach of [9, Section 4.4] to 3D edge elements.

Lemma 4.16. Ifu € HYT) n H(curl, T) possesses a polynomial curl in the sense that
curlu ¢ Pp(T), then

(d - )] o < (1+ log?(p + 1))% jul, ;- (4.134)
Proof. Pick any u complying with the assumptions of the lemma and split
u=(u-Rycurlu) + Ry curlu . (4.135)
Note that the properties of the smoothed Poincaré lifting Ry stated in Theorem 4.3
imply:
(i) curl(u-Rycurlu) = 0on T, as a consequence of (4.8), and
(ii) Ry curlu € H'(T) and the bound
[R7 curlul, ; < |curlyl,, , (4.136)
where here and below no constant may depend on u or p.
Hence, as u € H(T), there exists v € H*(T) such that
u=gradv +Rycurlu. (4.137)
The continuity of Ry reveals that
Vi <l + Ry curlul, 1 < o + feurlul, (4139
By the assumptions of the lemma and (4.11), we know that

Ry curlu € Wy(T) . (4.139)
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248 — R.Hiptmairand C. Pechstein

By the commuting diagram property from Lemma 4.6 and the projector property of
HIT,p, the task is reduced to an interpolation estimate for H%p:

(4.137)

(Id -7 )u "=" grad(ld - 117 v + (Id - I}, )Ry curlu . (4.140)

=0

As a consequence, invoking Theorem 4.10,
(4.140) 0 2 h
I(1d - 1_IlT,p)uHO,T =" |(1d - l_IT,p)V|1,T < (1+log /3(17 + D)f |Vl2,T
(4.138) h

< (1+10g®(p + 1))?T (Juy7 + |curlul, ), (4.141)
which gives the assertion of the lemma. O

Remark 4.17. In principle, the very construction of projection based interpolation op-
erators well fits spaces of discrete differential forms with variable polynomial degree
(“hp-spaces) as long as the so-called minimum rule for the degrees; see [49, Re-
mark IV.3.2] or [22], is fulfilled. Unfortunately, it is not clear how to adapt the splitting
(4.135) to the hp setting and our proof of the key Lemma 4.16 cannot be extended.

4.2 Boundary-aware p-stable quasi-interpolation for Lagrangian
finite elements

In this section, we sketch the construction of a local quasi-interpolation operator into
W?D(T ) following the policy of smoothing projections by local regularization that as
developed in [14, 26], [49, Chapter VII] and [47]. The latter fundamental work is our
main source and [47, Corollary 3.7] already asserts the existence of suitable quasi-
interpolation operator in the case I'y = 0Q. We extend this to zero boundary conditions
on parts of 0Q, borrowing a distortion technique from [49, Section VII.2]. We point out
that [51, Theorem 3.3] provides exactly the kind of quasi-interpolation we need, unfor-
tunately only in two dimensions. The extension to 3D looks formidably technical.
According to [14, Section 4.1], the flow induced by the vector field i1 introduced in
Section 2.1 can be used to define a “reflection at the boundary I'”, a map Ry : Qr — Qr
satisfying
(R) Rp(QnQp)=R\Q)nQr;
(R)) Rp(x)=x VxeT;
(R3) Ry is bi-Lipschitz with Lipschitz constants depending only onT.

We introduce the p-scaled mesh width function g, € L*°(Q), &,(x) = hr/p+s1ion T € T:
&y, := Mp+1. We can extend it to a function g, € L(Q) on the expanded domain Q=
Q u Qr by reflection:

ep(x) = eh(Rfl(x)) for almostallx € Qr\ Q.
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From [47, Lemma 3.1] or [49, Lemma VII.8.2], we learn that convolution of &, with a sim-
ple mollifier yields a smoothed extended mesh width function with bounded deriva-
tives.

Lemma 4.18 (Smooth extended mesh width function). The exists a smooth function
€ € C*®(Q) such that

(E,) € = g, almost everywhere in Q;

(Ey) ID%| < lel'™™ for all ¥ € N} pointwise in Q.

Thus, € qualifies as an admissible length scale function in the parlance of [47,
Def. 2.1]. In particular, € is uniformly positive and Lipschitz continuous; we write L, >
0 for its Lipschitz constant that depends on Q and p(7") alone.

To handle zero boundary conditions on '), we take the cue from [49, Section VII.2]
and consider a blow-up map for the bulge domain Y}, introduced in Section 2.1, Theo-
rem 2.2.

Lemma 4.19 (Shrinkage mapping for bulge domain [49, Theorem VII.2.1]). We  can
find constants 8§, > 0 and Ly, > 0 depending only on Q and Y, such that for any
function & : Q — R* with

- 1§ -§wI<bplx -Vl ,forallx,y € 0;

- |Ex)| < épforallx € Q,

there exists a bi-Lipschitz mapping T : Q — Q with’

(Ty) ”T.g(x) - T{()’)" < Lp(1+6p) Ix ~yll forallx,y € Q;
(Ty) Te'00 - T @) < Lp(1 + 8p) Ix — yI| forallx,y € O;
(T3) Te00 x| < Lp§ (), x € ;

(T,) T:(x) = x for all x € Q with dist(x,0Yp) > Lp§(x);
(Ts) forallx € Y there holds Ty (B, (X) N Q) € Yp;
(Tg) det DT¢(x) = 1forallx € Q.

ip

Casually speaking, by (Ts) T, is a mapping that pulls a neighborhood of Y}, into
Y. The property (T5) ensures that the amount of local distortion effected by T, can be
controlled by &. The next result is borrowed from [47, Lemma 5.1 and 5.7] and paves
the way for localization arguments.

Lemma 4.20 (Finite cover). We can find “small constants”

. e N
dist(Q%,0Q) 1 } (4.142)

a,Bf>0, a<fB, < min41, s T
p B. p<min S

N

and a finite set of points Z c Q such that

3 The symbol B,(z) designates the open ball around z € R> with radius r > 0.
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250 —— R.Hiptmairand C. Pechstein

(c) Qc U{Bue(z) (2), 2 € Z} (covering property)
(C,) cardize Z: x ¢ Bpe)(2)} s 1forallx € Q (uniform finite overlap).

From now, we fix @, § according to Lemma 4.20. From the covering and finite over-
lap property, we conclude for any m € Ny,

2 2 2 =
> Wi = 2 Winp,oe = Vg W e H'@). (4.143)
zeZ zeZ

In addition, by the triangle inequality the bound on f ensures that for any z € Q°
Bpez)(2) € Q and %e(z) <elx) < %s(z) VX € Bpe(r)(2) - (4.144)

Next, set 7 := %(a + B) and choose a small number § > 0 satisfying the following
inequalities:
(8;) 2L36 < B -, with L from Lemma 4.19;
(6,) 6L, < 1for the Lipschitz constant L, of &;
(65) OLpL, < bp, and 8Ly llell g < 6ps
(6,) 26+a<tand26+1<p.

Now, recall Lemma 4.19 and define a concrete distortion map T, by setting T, := T,
with the particular control function &(x) := Lpbe(x), x € Q. Owing to (65), this choice
of £ : Q — R satisfies the assumptions of Lemma 4.19. Thanks to Lemma 4.19, (Ts)
we infer

Te(Bsew(2)) € Yp ¥z eTy. (4.145)
As a consequence of (4.144), (6,), and Theorem 4.19, (T3) we note

Ts(Bae(z) (Z) n ﬁ) C BTs(z) (Z) >

VzeQ: _ (4.146)
Ts(Brs(z)(z) n Q) C Bﬁs(z)(z) .
We now study the pullback of functions under the distortion T, : Q — Q,
Tv)x) =v(T,(x)) xeQ for v:Q—R. (4.147)

Lemma 4.21 (Estimates for pullback). With constants depending only on Q and the Lip-
schitz constant L, of € the following estimates hold true:

(PB)) "T;VHO,BTS(Z)(Z)OQ =~ WVllo5,.., oy forallz € Q,v € L2(Q),

(PBY)[Tov]1 5, o S Vg, @ forallz e Q,veH(Q),

(PB;)|(1d - T;)V"QBma(Z) <€) Vg, @ foralze Q¢ andv € H\(Q).

Proof. The assertions (PB,) and (PB,) follow from (4.146), [DT,| 5> lDT;l“oo,ﬁ <1,
Theorem 4.19, (T¢), the chain rule and the transformation formula for integrals.
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 251

To show (PB;), we resort to convolution with a mollifier p € C®(R?) that satisfies
p = 0, supp(p) ¢ B;(0), and I]R3p(x) dx = 1. Writing p, (x) := V_3p(x/v), v > 0, we define
for some function & : Q — R*,

(Mgv)(x) := L@ VX -Y)pg dy, veL(R). (4.148)
Since "Pv”é,w =v3 ||p||f))]R3, the Cauchy-Schwarz inequality yields

[(MA)OO! < [|og ) "0,1113 Vllo,B, 00 < & x) " Vllo By ) - (4.149)

From now on, we set &(x) := Lp6e(x) and, by (4.144), (4.149), and (6,), conclude for
every z € Q°

2 3 -3 2

[Me )| 0.8 (2) < (1e(2)) nTli))( Lpbe(x)™ < ||V||o,Bﬁ€(,>(z) . (4.150)

The properties of p ensure that M, preserves constants, so that we obtain by a scaling
argument and the Bramble—Hilbert lemma [47, Lemma 4.3]:

[v—Mv] = inf |(v - ¢) - Mg (v - o)

0.Br2)(2)  ceR

s églg ”V - C”O’BﬂE(z)(Z) = ﬂe(Z) |V|1’Bﬁe(z)(z) >

0Bre @) (4.151)

foranyv e H 1Q). Fixingv e H 1@) and z € Q° we continue with the triangle inequal-
ity:

v =Tevlopme < IV =Mevlop.
+[(d - To)M,v|| 0B T [Tz (M = 1d)v]| 0B (4.152)
By means of (4.151) and Theorem 4.21, (PB;) the first and last term can be estimated by

< &(2) |v); By ()" Concerning the middle term, we appeal to the mean value theorem
applied to w := M;v and, by Theorem 4.19, (T3), (4.146), get for x € By (,)(2)

W) - w(Te(x))| < Igradwilyp_ ) X~ Te(X)| < [grad Mgv|

OO>BTs(z) (2) ’

Since grad commutes with convolution, the maximum norm of grad M ¢V can be esti-
mated as in (4.149) above:

-3/
|grad Mgv||00)Bmz> @ S€@ T lgradviop, ) -
Ultimately, this yields

* 2
l0d - ToMevlg,

3 2 2
y(2) <€) ||grad M§V||00»Bre(z)(z) S "gradV”O’B/idz)(z) ’

and the assertion (PB;) when plugged into (4.152). O
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252 — R.Hiptmairand C. Pechstein

Following [47, Section 5.2], we now outline the key idea of regularization by molli-
fication. We employ a mollifier of order 6 =: ky,, € Ny, that is, a function p € C*(R>)
with supp(p) c B;(0), and [47, equation (4.1)],

‘ |1 ifr=0,
ypy)dy = (4.153)
R? 0 else,

for every multi-index r € ]Ng with |r| < k.. This property leads to the preservation of
polynomials of degree up to k,,, under convolution with p,. Analogously to (4.148),
we define the mollification

(Ev)(x) := J;RB V)PseoX -y dy, xeQf, ve LNQ) . (4.154)

From [47, Lemma 5.3], we learn that for every z ¢ Qf and integers 0 < m < ¢, with
&,m < kpax + 1,

EVleg,, @) S €@ Winp, @ Y eHQ@), (4.155)

|(1d = EVlp,, 0) < €@ Mo, W EH@) (4.156)

The composition of mollification and distortion pullback yields the regularizing
operator

Ji=EoT: : LY(Q) — C(Q°). (4.157)

In light of (4.145), it is immediate that

Vi, =0 = v, =0]. (4.158)

Using (4.155) for m = ¢ = 0, (4.156) for m = 0, ¢ = 1, and Theorem 4.21, (PB5), for
any z € Q° we find the bound

I(d = )Vllo B, z) < I(0d = EWVlop, , ) + [E(d - T:)VHO,BW)(Z)
<@ Whp, @+ [1d=TWVlos, o) S €@ Mgy @ - (4159
By means of (4.155) form = 0,1we get forany 1 < € < kq, + 1,

WVIep, ) S €@ ITeVlo, @ » YV e H'(Q), (4.160)

WV, . @ < €@)'° Tevhpy e » V€ H'©). (4.161)
Further, (4.155) for m = ¢ = 1 and Theorem 4.21, (PB5) lead to

WVl < Vhipeo@ WV € H'Q). (4.162)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 253

The final step is inspired by [47, Section 3.1]. To build the desired quasi-inter-
polation operator, we apply the perfectly local projection-based interpolation oper-
ators |, : H %Q) — Wg (7) from [52, Corollary 7.4] to the regularized function:

Q, =1y : '@ > W) |. (4.163)

We recall properties of |, from [52, Section 7]. Firstly, it enjoys locality in the sense that
- (pv)(a) =v(a) for every vertex a of the mesh T;

(1,v) e is uniquely determined by v, for every edge e;

(1,v) \F depends only on v for every face F;
- and (1,v) i exclusively relies on v,y for all tetrahedra T € 7.

Obviously, if vz = 0, then (I,v) F = 0. As T was supposed to resolve I'p, applying
I, to a smooth function vanishing on I'; will result in an interpolant with the same
property. This accounts for the range of Q, stated in (4.163).

The locality of |, comes at the price of poor stability. In [52, Corollary 74], the au-
thors showed p-uniform local continuity of

Iy g HY(T) = Pp(R%), (4.164)
and an estimate of the form
hafp [(1d = 1)), + [(0d = )V < (afp) IVIlgr WV € HA(T) (4.165)

where the constants depends merely on the shape regularity measure of the tetrahe-
dron T e T.Since Jv € C*®(Q°), the tight smoothness requirements of Ip can be accom-
modated. This is the main rationale behind using the regularizer J.

H'-Stability of Q,, is straightforward from (4.165), (4.161), and the finite overlap
property from Lemma 4.20. To begin with, we get

1Qpullo 7 = M0l 7 < Watlor + (wfp)® Wl 1 < o g, (4.166)
1Quul, 7 = 0wl 7 < Dulyr + Cofp)” il < Tl '

where Uy := [J{Bggx)(x), x € T} is a local neighborhood of T. Local approximation
estimates can be deduced from (4.159), (4.161), and (4.165):

Id - Q < |l(d _] Id -1 ]
ld - Qpully < (1 =Dullo,r + "(6 p o r (4.167)
< hafp ulyy, + (hefp)° Nullg 7 < hafp luly g, -

Squaring and adding both (4.166) and (4.167) establishes global stability and approx-
imation properties of our quasi-interpolation Q,,.

Theorem 4.22 (Quasi-Interpolation operator). The operators Q, : NQ) - WI(,’(T) C
HYQ) satisfy:
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254 —— R.Hiptmairand C. Pechstein

Q) [Qullyq < lullyg  forallu e L(Q);
Q) |Quul, < lulyg  forallu e H'(Q);
Q) e (d - Qul,q, < lulyg forallu e H'(Q),

with constants depending only on Q, I',, and the shape regularity measure p(T).
Further, Q,v € WSID(T) C H%D(Q), if viy, = 0.

The last assertion of the theorem follows from (4.158) and the locality of 1, dis-
cussed above.

4.3 Proof of Theorem 1.3

With local commuting projectors H; from Section 4.1 and stable quasi-interpolation
operator Q, from Section 4.2 at our disposal, the construction and analysis of p-uni-
formly stable discrete regular decompositions of erD (7) runs rather parallel to the
lowest-order case presented in Section 3.3.

We fix v, € W},)FD(T )CH rD(curl, Q) and consider its regular decomposition sup-
plied by Theorem 2.1 and its proof:

V,=zg+gradg, ze¢ H\(R?), zZy,=0, @c¢ H%D(Q) , (4.168)
with norm bounds

Izllors < “Vp"o,g szl < ||Vp||H(cur1,Q) el < "vp”o,g . (4.169)

None of the constants depends on V- Since curl z = curl \/ that is, z has a piecewise
polynomial curl, Lemma 4.16 ensures that H;,z is well-defined. In addition, for every
T € T we have grad ¢ 1 = Vor ~ Zir € H'(T), which implies O € H?(T). Hence, ¢
possesses enough local regularity to render also H2<p well-defined. This permits us to

rely on the commuting diagram property of Lemma 4.6 when letting H}, acton vy:
1 1 0
v, =ILv, =1,z +gradIl, @ .

In order to obtain a contribution in H}D(Q), we insert a boundary-aware quasi-
interpolant to generate the regular part z, of the decomposition (III):

z, € Vo (T),

=1 I (d - die, 4.170
KA AT
1z, =,
Writing v, := Hll,(ld -Qy)ze W}D(T), we have splitv, € erD (T) as
v, = Hll,zp + T/p + grad ®p - (I1)
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7 Discrete regular decompositions of tetrahedral discrete 1-forms = 255

Next, we investigate the stability of this splitting, bounding norms of its terms by
norms of v,.

@ Estimating norms of z, = Q,z based on Theorem 4.22 is straightforward

Theorem 4.22, (Q;)) = |z ||OQ Izlloq < ||V ||0Q , (4.171)

Theorem 4.22,(Q,) = (4.172)

| |1Q <zl < “ p"H(curlQ>

@ Interpolation error estimates from Lemma 4.16 for l'I1 and Theorem 4.22, (Qs) give
bounds for v,, local ones first: for any tetrahedron T € 7'

v ||OT~|| (1d - n )(id - Q)z||0T+||(Id Q)7

/2 hT

hy
<(L+logp+1) " == [(1d - Qz|, p + == lzlr (4.173)

/Z hT

<(1+logp+1)) |(Id Qp)z|lT ,

which implies after squaring and summing that

(SIf ) <0800 Wby 6170
TeT

@ Norm estimates for ¢, rely on those for z, and the local interpolation error estimate
of Lemma 4.16:

1
0plr < IVpllor + "sz"o,r
h (4.175)
< [Vollgz + Izl + (1 + log(p + 1))3”? Zlr .
As a consequence of (4.169), we end up with
, hp
(Poh = Wollog + max{ 1+ Tog(p + )" feurl v, (4.176)

Thus we are done, because Theorem 1.3 merely collects the estimates (4.171), (4.172),
(4.174), and (4.176).
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Rainer Kress
8 Some old and some new results in inverse
obstacle scattering

Abstract: We will survey on uniqueness, that is, identifiability and on reconstruction
issues for inverse obstacle scattering for time-harmonic acoustic and electromagnetic
waves. In the first part, we begin by presenting two classical uniqueness proofs and
after that proceed with two recent uniqueness results for inverse obstacle scattering
subject to a generalized impedance boundary condition. Then we proceed with an iter-
ative reconstruction algorithm via nonlinear boundary integral equations for the case
of the generalized impedance boundary condition. In the final part, we present new
integral equation formulations for transmission eigenvalues that play an important
role through their connections with the linear sampling method and the factorization
method for inverse scattering problems for penetrable objects.

Keywords: Uniqueness, generalized impedance boundary condition, transmission
eigenvalues, boundary integral equations

MSC 2010: 35P25, 35P30, 35R30, 45A05

1 Uniqueness in inverse obstacle scattering

Scattering theory is concerned with the effects that obstacles and inhomogeneities
have on the propagation of waves and in particular time-harmonic waves. For simplic-
ity, we focus our attention on acoustic waves and only give passing references to elec-
tromagnetic waves. Throughout the paper, we will consider scattering objects within
a homogeneous background that are described by a bounded domain D ¢ R™ for
m = 2,3 with a connected C? smooth boundary dD and can be either impenetrable or
penetrable. We note that the smoothness assumption, in principle, can be weakened
and Lipschitz boundaries can also be allowed.

Given as incident field a plane wave u'(x) = e propagating in the direction
desS™ = {x e R™: x| = 1}, the simplest obstacle scattering problem is to find the
total field u € H .(R™ \ D) as superposition u = u' + u° of the incident field and the
scattered field u® such that the Helmholtz equation

ikx-d

Au+kKu=0 inR™\D (1.1
with positive wave number k and the boundary condition

u=0 onoD (1.2)
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are satisfied together with the Sommerfeld radiation condition
m— S
lim r71<aair - ikus> =0, r=|[x|, (1.3)

uniformly for all directions. The homogeneous Dirichlet boundary condition (1.2)
corresponds to a sound-soft obstacle. Boundary conditions other than (1.2) to be con-
sidered are the homogeneous Neumann or sound-hard boundary condition or the
impedance boundary condition, also known as Leontovich boundary condition,

a_u +ikAu=0 onoD (1.4)
ov

where v is the unit outward normal to 0D and A is a given continuous complex valued
function with nonnegative real part. In addition to plane waves, other incident fields
can be considered.

The radiation condition (1.3) was introduced by Sommerfeld in 1912 to character-
ize an outward energy flux. It is equivalent to the asymptotic behavior

ik|x|
W) = S [uoo()z)+o<i>], x| = oo,
x|z x|

uniformly for all directions X = x/|x| and where u,, is defined on $™ ! and is called the
far field pattern of u®. Solutions to the Helmholtz equation satisfying (1.3) are called
radiating. For plane wave incidence, we will indicate the dependence of the far field
pattern on the incident direction d by writing u. (X, d).

Uniqueness of a solution to the obstacle scattering problem is a consequence of
the following fundamental lemma which is due to Rellich (1943) and Vekua (1943)
and is known as Rellich’s lemma. This lemma later on also plays an essential role in
connection with uniqueness for the inverse scattering problems. For a proof, we refer
to [16]. Existence of a solution was first established by Vekua, Weyl and Miiller in the
1950s by a boundary integral equation approach.

Lemma 1.1. Any radiating solution u® € Hlloc(]Rm \ D) to the Helmholtz equation with far
field pattern u,, = 0 vanishes identically in R™ \ D.

Given the incident field ul(x) = €4, the basic inverse obstacle scattering problem

is to determine D from a knowledge of the far field pattern u (x, d) for all observa-
tion directions X € $™ ! and one or a few incident directions d € $™ ! and a fixed
wave number k. This inverse problem serves as a model problem for analyzing inverse
scattering techniques in nondestructive evaluation such as radar, sonar, ultrasound
imaging, seismic imaging, etc. However, we note that in practical applications the in-
verse scattering problem will never occur in the above idealized form. In particular,
the far field pattern or some other measured quantity of the scattered wave will be
available only for observation directions within a limited aperture either in the near
or in the far field region.
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8 Some old and some new results in inverse obstacle scattering =—— 261

We begin by noting that the inverse obstacle scattering problem is non-linear in
the sense that the scattered wave depends nonlinearly on the scatterer D. More impor-
tantly, it is ill-posed since the determination of D does not depend continuously on
the far field pattern in any reasonable norm.

We illustrate the nonlinearity and ill-posedness of the inverse obstacle scattering
problem by looking at a simple example. For this, we consider as incident field the
entire solution v' to the Helmholtz equation given by

Vi) = S“|1 ;‘ll’q . XeR. (1.5)
Because of
31r|1;<||x| = 4£n Jeikx'd ds(d), x¢e R,

§2

the field v! is a superposition of plane waves. For D, a sound-soft ball of radius R cen-
tered at the origin the scattered wave is given by

S(x) = _Si;k’;R elii‘(';" . IXI=R (1.6)
This leads to the total wave
v(x) = W sink(]x| -R), |x| >R, 1.7)
and the constant far field pattern
Vo (R) = —%, x e $% (1.8)

Therefore, assuming the a priori information that the scatterer is a ball centered at the
origin, (1.8) provides a nonlinear equation for determining the radius R.
Concerning the ill-posedness, we consider a perturbed far field pattern

_ sin kR

V2 (%) = i+ 5

with some § € R and a spherical harmonic Y,, of degree n. Then, in view of the asymp-
totic behavior of the spherical Hankel functions for large argument, the corresponding
total field is given in terms of an outgoing spherical wave function

_ sink(lx| - R)
eikR|X|

V(%) + 5ki"“h§}>(k|x|)yn< i)

|x|
with the spherical Hankel function hf}) of order n and of the first kind (see in [16, The-
orem 2.16]). This implies

Vo) = 6ki”+1h§})(kR)Yn< I);_|> X| = R,
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and consequently, by the asymptotics of the spherical Hankel functions for large order,

it follows that
n
5001 ~ sk 2L X -
v'(x)| = 6k< ekR) Yn< X >, |x| = R.

This illustrates that small changes in the data v, can cause large errors in the solution
of the inverse problem, or a solution even may not exist anymore since Vo may fail to
have a closed surface as zero level surface.

From a functional analytic point of view, the ill-posedness is a consequence of the
compactness property of the mapping 0D — u,, (see [16, Theorem 5.7]).

The following classical uniqueness result is due to Schiffer.

Theorem 1.2. Assume that D, and D, are two sound-soft scatterers such that their far
field patterns coincide for all x,d € $™ ! and one fixed wave number k. Then D, =D,.

Proof. Assume that D; # D,. By Rellich’s lemma, for each incident wave u' the scat-
tered waves u; and uj for the obstacles D; and D, coincide in the unbounded com-
ponent G of the complement of D; U D,. Without loss of generality, one can assume
that D* := (R™\ G) \ D, is nonempty. Then v is defined in D*, and the total wave
u=u+ u5 satisfies the Helmholtz equation in D* and the homogeneous boundary
condition u = 0 on 0D*. Hence, u is a Dirichlet eigenfunction of —A in the domain D*
with eigenvalue k%. The proof is now completed by showing that the total fields for
distinct incident plane waves are linearly independent, since this contradicts the fact
that for a fixed eigenvalue the Dirichlet eigenspace of —A in H(l, (D*) has finite dimen-
sion. O

Schiffer’s uniqueness result was obtained around 1960 and appeared as a pri-
vate communication in the monograph by Lax and Philipps [33]. This is notable since
nowadays in a time of permanent evaluation and competition for grants nobody would
want to give away such a valuable result as a private communication. Noting that the
proof presented in [33] contains a slight technical fault since the fact that the comple-
ment of D; uD, might be disconnected was overlooked, it is comforting to observe that
even eminent authors can have errors in their books.

Using the strong monotonicity property of the Dirichlet eigenvalues of —A, extend-
ing Schiffer’s ideas in 1983 Colton and Sleeman [17] showed that a sound-soft scat-
terer is uniquely determined by the far field pattern for one incident wave under the
a priori assumption that it is contained in a ball of radius R such that kR < c,.
Here, ¢, and c3, = m are the smallest zeros of the Bessel function J, and the spher-
ical Bessel function j,, respectively, representing the smallest eigenvalue for the unit
ball which is a simple eigenvalue. Hence, exploiting the fact that the wave functions
are complex valued with linearly independent real and imaginary parts, in 2005 Gin-
tides [21] improved this bound to kR < c,,; in terms of the smallest positive zeros ¢,
and c3; = 4.49... of the Bessel function J; and the spherical Bessel function j;, re-
spectively. For other than the Dirichlet boundary condition, there is no analogue to
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8 Some old and some new results in inverse obstacle scattering —— 263

the results in [17, 21] since there is no monotonicity property for the eigenvalues of -A
for other boundary conditions.

Although there is widespread belief that the far field pattern for one single inci-
dent direction and one single wave number determines the scatterer without any ad-
ditional a priori information, establishing this result still remains a challenging open
problem. To illustrate the difficulty of a proof, we consider scattering of the entire
solution V' given by (1.5) from a sound-soft ball D of radius R centered at the origin.
Then from (1.7) we observe that the total field v vanishes on the spheres with radius
R, := R+ nni/k centered at the origin for all integers n for which R,, > 0. This indicates
that proving uniqueness for the inverse obstacle scattering problem with one single
incident plane wave needs to incorporate special features of the incident field.

Starting in 2003 in a series of papers by Alessandrini, Cheng, Liu, Rondi and Ya-
mamoto [1, 13, 34, 35], it was established that one incident plane wave is sufficient
to uniquely determine a sound-soft polyhedron. Assuming that there exist two poly-
hedral scatterers producing the same far field pattern for one incident plane wave,
the main idea of their proofs is to use the reflexion principle to construct a zero field
line extending to infinity. However, in view of the fact that the scattered wave tends to
zero uniformly at infinity, this contradicts the property that the incident plane wave
has modulus one everywhere. These results for the polyhedron have analogs for other
boundary conditions and also for electromagnetic waves.

The finiteness of the dimension of the eigenspaces for eigenvalues of —A for the
Neumann or impedance boundary condition requires the boundary of the intersection
D* from the proof of Theorem 1.2 to be sufficiently smooth which, in general, is not the
case. Therefore, there does not exist an immediate extension of Schiffer’s approach to
other boundary conditions.

Assuming that two different scatterers have the same far field patterns for all in-
cident directions, in 1990 Isakov [23] obtained a contradiction by considering a se-
quence of solutions with a singularity moving towards a boundary point of one scat-
terer that is not contained in the other scatterer. He used weak solutions and the proofs
are technically involved. During a hike in the Dolomites, on a long downhill walk in
1993 Kirsch and Kress [29] realized that these proofs can be simplified by using clas-
sical solutions rather than weak solutions and by obtaining the contradiction by con-
sidering point wise limits of the singular solutions rather than limits of L> norms. For
boundary conditions of the form Bu = 0 on 0D, where Bu = u for a sound-soft scatterer
and Bu = ou/ov +ikAu for the impedance boundary condition one can state the follow-
ing theorem. For its proof and for later use throughout the remainder of the paper, we
introduce the notation

1 eikleyl
= , m=3,

Dy y) = 1 7 ! (1.9)
Hy (kix =y, m=2,

for the fundamental solution of the Helmholtz equation, where H(()l) denotes the Han-
kel function of order zero of the first kind.
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Theorem 1.3. Let two scatterers D, and D, with boundary conditions B; and B, have the
same far field patterns for all x,d € S™ ' and one fixed wave number k. Then D, =D,
and B, = B,.

Proof. In addition to scattering of plane waves, we also consider scattering of point
sources @, (-, z) with source location z in R™ \ D. We will make use of the mixed reci-
procity relation

W (~d,2) = yi(z,d), zeR™\D, deS$? (1.10)

which, for scattering of a point source located in z, connects the far field pattern w,
of the scattered wave in observation direction —d with the scattered wave u° for plane
wave incidence in direction d evaluated at z and where

el d 1
= —— an = —
V2= Jgmk 537 4n

(see [16, Theorem 3.16], [18]). Using Rellich’s lemma and (1.10) from the assumption of
the theorem one can deduce that wf (x,z) = wg(x,z) for all x,z € G. Here, we assume
again thatD; # D, and that Gis defined as in the proof of Theorem 1.2 and w; and w, are
the scattered waves for point source incidence for the obstacles D, and D,, respectively.
Now a contradiction can be obtained choosing x € 0G such that x € oD; and x ¢ oD,
and a sequence z,, € G such thatz, — xasn — co. Hence D; = D, and then B; = B,
follows from u; = u,. O

(1.11)

The idea of the proof for Theorem 1.3 has been applied to a number of other
boundary conditions such as for example a generalized impedance boundary condi-
tion by Bourgeois, Chaulet and Haddar [4] and other differential equations such as the
Maxwell equations for electromagnetic waves. The generalized impedance boundary
condition will be the subject of the next section.

2 Generalized impedance boundary condition
Given the plane wave u'(x) = ™4 as incident field, the obstacle scattering problem
with the generalized impedance boundary condition (GIBC) consists in finding the
total field u ¢ HIZOC(IR’" \ D) as superposition u = u' + u® of the incident field and the
scattered field u° such that u satisfies the Helmholtz equation (1.1) and the boundary
condition

ou

> + ik(Au — DivuGradu) =0 onoD (2.1)

together with the Sommerfeld radiation condition (1.3). Here, Grad and Div denote the
surface gradient and surface divergenceonodDand y € C 2(dD) and A € C(dD) are given
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8 Some old and some new results in inverse obstacle scattering —— 265

complex valued functions with nonnegative real parts. In the two-dimensional case
both Grad and Div correspond to the tangential derivative d/ds. Recall that the unit
normal vector v to oD is directed towards the exterior of D. The boundary condition
(2.1) requires u € leoc(]R’" \ D) and, in view of ul;p € H : (oD) has to be understood in
the weak sense, that is,

J (ng—l‘j + ikAnu + iku Grad n - Grad u)ds =0 (2.2)
aD

foralln e H% (oD).

We note that the classical Leontovich boundary condition (1.4) is contained in (2.1)
as the special case where u = 0. As compared with the Leontovich condition, the wider
class of impedance conditions (2.1) provides more accurate models, for example, for
imperfectly conducting obstacles (see [20, 22, 39]). For further interpretation of the
generalized impedance boundary condition, we refer to [3, 4, 5] where the direct and
the inverse scattering problem are analyzed by variational methods. Here, we will base
our analysis on boundary integral equations.

2.1 The direct problem

Extending the analysis in [32] from the two-dimensional to the three-dimensional
case, we briefly sketch an existence analysis via boundary integral equations.

Theorem 2.1. Any solutionu € leoc(IRm \ D) to (1.1) and (2.1) satisfying the Sommerfeld
radiation condition vanishes identically.

Proof. Inserting n = ut|5p in the weak form (2.2) of the boundary condition we obtain
that

J L—,Z_: ds = —ik J’{)l|u|2 + | Grad ulz}ds.

Hence in view of our assumption Re A > 0 and Re u > 0 we can conclude that

Im J ﬂa—u ds<0
ov
oD

and from this and the radiation condition the statement of the theorem follows from
Theorem 2.13 in [16]. O

Corollary 2.2. The obstacle scattering problem with generalized impedance boundary
condition has at most one solution.
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For the existence analysis, following [16, Section 3.1] we introduce the classical
boundary integral operators in scattering theory given by the single- and double-layer
operators

(Sp)(x) =2 j D6 Y)PY) ds(y) 2.3)
oD
and
oD, (x,
i) =2 [ S5 0ty dsty (4)
oD

and the corresponding normal derivative operators

! aq) >
(k)00 =2 | Z2 () dsty @25)
oD
and
5 0 [ 9D(%Y)
(Te@) () .—zav(X)J) Toe o) ds) 2.6)

for x € aD. We note that for 8D € C** the operators S, : H %(BD) — H §(aD), and
K, :H 3 D) - H ; (oD) are bounded (see [26, 36]). (The subscript k for the operators
will be needed in the next section.)

We seek the solution in the form of a single-layer potential for the scattered wave

W) = j<bk<x,y)<p<y> dsy), xeR™\D, 2.7)
oD

with density ¢ € H : (oD) and note that the regularity ¢ € H %(aD) guarantees that
uce leoc(]Rm \ D) (see [36]). From the jump relations for single-layer potentials (see [16,
Theorem 3.1]) we observe that the boundary condition (2.1) is satisfied provided ¢
solves the integro-differential equation

@ - K g — ik(A - Divpu Grad)S,p = g (2.8)
where we set
o' . . i
g:=2—| +2ik(A - DivuGrad)u'|;p (2.9)
ov oD

in terms of the incident wave u'. After defining a bounded linear operator Ay
1 1
H:(0D) — H 2(oD) by

Ao = ¢ - Ki — ik(A - Div p Grad)Sy @ (2.10)

we summarize the above into the following theorem.
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8 Some old and some new results in inverse obstacle scattering —— 267

Theorem 2.3. The single-layer potential (2.7) solves the scattering problem (1.1), (2.1)
and (1.3) provided the density @ satisfies the equation

A =g. (211)
Lemma 2.4. The modified Laplace—Beltrami operator given by
Ly :=-DivGrad ¢ + ¢ (212)
is an isomorphism from H 3 (oD) onto H -3 (oD).

Proof. In view of the Gauss surface divergence theorem, the surface divergence of a
vector field w € L?(0D) is given by the duality pairing

(Divw, ) = —(w,Grad ), 1 € H'(@D).
This in turn implies
(Lo, Y) = (Grad ¢, Grad ) + (. ¥)

for ¢, € H'(dD) and consequently

ILolg-1op) = sup [(Lo,P)| < Cillolly, @) (2.13)
Pl o) =1
and
(L, )| = Collpl; opy (2.14)

forallp € H (D) and some positive constants C; and C,. From (2.13), we have that
L : H'(8D) — H'(dD) is bounded and from (2.14) we can conclude that it is injective
and has closed range. Assuming that it is not surjective implies the existence of some
X # 0in the dual space (H'(dD))* = H'(dD) that vanishes on L(H!(dD)), that is,

(Lo,x) =0

for all @ € H'(dD). Choosing ¢ = x yields (Ly,x) = 0 and from (2.14), we obtain the
contradiction y = 0. Hence L : H 1©@D) — H(aD) is bijective, and consequently by
Banach’s open mapping theorem it is an isomorphism.

Clearly, the operator L : H?(D) — L%(dD) is bounded and proceeding as in the
proof of Theorem 1.3 in [41] using elliptic regularity analysis it can be shown that its
inverse is also bounded (see also Lemma 3.2 below). Now the statement of the lemma
follows by Sobolev space interpolation. O

Lemma 2.5. The operator
1 1
Ay +1kulLS, : H2(0D) — H 2(9D)
is compact.
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Proof. The boundedness of the operators Sy : H 5 (D) - H 3 (oD) and K,Q :H : (0D) —
H: (0D) mentioned above and our assumption A € cl(aq) imply ’that1 all terms in the
sum (2.10) defining the operator 4, are bounded from H2(dD) into Hz2 (dD) except the
term

¢ +— ik Div u Grad S, ¢.
Therefore, after splitting
Div u Grad S ¢ = uDiv Grad S;¢ + Grad u - Grad Sy

we observe that the operator Ay + ikuLS; : H %(aD) — H %(aD) is bounded since we

assumed p € C%(dD). Hence the statement of the lemma follows from the compact
1 1

embedding of H2 (oD) into H 2 (oD). O

Theorem 2.6. Assume that |u| > 0 and that k? is not a Dirichlet eigenvalue for —A in D.
1 1

Then for each g € H 2(dD) the equation (2.11) has a unique solution ¢ € Hz(oD) and

this solution depends continuously on g.

Proof. Since under our assumption on k the operator S; : H : (oD) - H 3 (oD) is an iso-
morphism, by Lemma 2.4 and our assumptions on u the operator ikuLS; : H : (0D) —
H: (oD) also is an isomorphism. Therefore, in view of Lemma 2.5, by the Riesz theory
it suffices to show that the operator A, is injective. Assume that ¢ € H : (oD) satisfies
Ay = 0. Then, by Theorem 2.3 the single-layer potential u defined by (2.7) solves the
scattering problem for the incident wave u' = 0. Hence, by the uniqueness Theorem 2.1
we have u = 0in R™\ D. Taking the boundary trace of u, it follows that S;¢ = 0, and
consequently ¢ = 0. O

To remedy the failure of the single-layer potential approach at the interior Dirich-
let eigenvalues, as in the case of the classical impedance condition, we modify it into
the form of a combined single- and double-layer potential for the scattered wave

aq)k(XJ’)

w00 = [ {ouy) +i e

oD

}¢(y)d5(y), x € R™\D, (2.15)

with density ¢ € H 3 (0D). The boundary condition (2.1) is satisfied provided ¢ solves
the integro-differential equation

© - K o - iTip — ik(A - Div p Grad)(S, ¢ + ip + iKip) = g (2.16)

with g given by (2.9). Then with the same ideas as applied in the analysis of the integro-
differential equation (2.8) the following existence result can be established. For the
two-dimensional case, we refer to [32].

Theorem 2.7. Under the assumption |u| > 0, the direct scattering problem with gener-
alized impedance boundary condition has a unique solution.
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8 Some old and some new results in inverse obstacle scattering =—— 269

For the numerical solution in two dimensions, collocation methods based on nu-
merical quadratures using trigonometric polynomial approximations are the most effi-
cient methods for solving boundary integral equations for scattering problems in pla-
nar domains with smooth boundaries (see [16, Section 3.5]). Here, additionally an ap-
proximation is required for the operator ¢ — d/dspudep/ds as the new feature in the
integro-differential equations for the generalized impedance boundary condition. For
this, we recommend trigonometric differentiation. It can be shown that this approach
leads to spectral convergence for infinitely smooth boundaries and impedance coeffi-
cients. Details on this, including numerical examples, are presented in [32].

In three dimensions for smooth boundaries that are homeomorphic to the unit
sphere numerical methods with spectral convergence for the boundary integral equa-
tions for scattering problems can be obtained via approximations by spherical har-
monics by means of a hyperinterpolation operator on the unit sphere (see [16, Sec-
tion 3.6]). This operator, in principle, can also be employed to approximate the sur-
face gradient and the surface divergence. However, a numerical implementation of
this idea at the time of this writing has not yet been done.

2.2 Theinverse problem

The most general inverse scattering problem is the inverse shape and impedance prob-
lem to determine 0D, u and A from a knowledge of a number of far field patterns u,
of solutions u to (1.1), (2.1) and (1.3). Here, we will be only concerned with two less
general cases, namely the inverse shape problem and the inverse impedance problem.
The inverse shape problem consists in determining 0D knowing the impedance coef-
ficients u and A. With the roles reversed, the inverse impedance problem requires to
determine the impedance functions y and A for a known shape oD.

We briefly discuss the uniqueness issue and begin with the inverse impedance
problem. In two dimensions, Cakoni and Kress [11] have shown that for a given shape
oD three far field patterns corresponding to the scattering of three plane waves with
different incident directions uniquely determine the impedance functions p and A. For
two cylindrical wave functions as incident fields in [32], a counterexample is given
where different impedance coefficients lead to the same two far field patterns. The
uniqueness proof is sort of constructive and can be employed for an algorithm for the
solution of the inverse impedance problem. For details and numerical reconstructions,
we refer to [32].

The following uniqueness result for the full inverse shape and impedance problem
(in two and three dimensions) was obtained by Bourgeois, Chaulet and Haddar [4] by
using the method presented in Theorem 1.3.
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Theorem 2.8. Let two scatterers D; and D, with impedance functions A;, y; and A,, u,
have the same far field patterns for all x,d € $™ ! and one fixed wave number. Then
Dy =Dy, Ay = Ay and py = .

We now outline an iterative algorithm for approximately solving the inverse shape
problem which extends the method proposed by Johansson and Sleeman [24] for
sound-soft or perfectly conducting obstacles. For this, we introduce the operator

Se : H2(@D) — LX(S™ )

(Seo®)X) ==Y J e o) dsy), xeS™, (2.17)
aD

where y,, is given by (1.11). Then, in view of the asymptotic for the Hankel functions,
the far field pattern for the solution to the scattering problem (1.1), (2.1) and (1.3) is
given by

Uoy = Seop (2.18)

in terms of the solution ¢ to (2.8). Hence we can state the following theorem as theo-
retical basis of the inverse algorithm.

Theorem 2.9. For a given incident field u' and a given far field pattern U, assume that
oD and the density @ satisfy the system

@ - Kio — ik(A - Divpu Grad)S,p = g (2.19)

and

Seo® = Uso (2.20)

where g is given in terms of the incident field by (2.9). Then oD solves the inverse shape
problem. (Note that the operators Sy, K;, and S, and the right hand side g depend on oD.)

The operator S, is compact with exponentially decreasing singular values and
therefore the linear equation (2.20) is severely ill-posed reflecting the ill-posedness of
the inverse shape problem. We denote this equation as the data equation. Note that
the system (2.19)-(2.20) is linear with respect to the density ¢ and nonlinear with re-
spect to the boundary oD. This opens up a variety of approaches to solve (2.19)—(2.20)
by linearization and iteration. Here, we are going to proceed as follows. Given an ap-
proximation for the unknown oD, we solve the equation (2.19) that we denote as the
field equation for the unknown density ¢, that is, we solve the forward problem for the
approximate boundary. Then, keeping ¢ fixed we linearize the data equation (2.20)
with respect to the boundary to update the approximation.
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To describe this in more detail, for simplicity, we assume oD to be star-like with
respect to the origin, i. e., dD is represented in the parametric form

oD = {r2)z:z e S™ "} (2.21)

with a positive function r € C2($™!). Then, indicating its dependence on the bound-
ary oD, the parametrized form

Seo t H(S™ 1) x C2(S™ ) — L2(s™Y)
of the operator S, is given by

Goo)® =ym | OG0 s, K e s (2.22)
Sm—l

Here, J, is the Jacobian of the mapping (2.21) given by J, = vr? + [dr/ds]?if m = 2 and
J, = rVr? +|Grad r|? if m = 3. For notational convenience, we introduce the mapping
p taking the scalar function r onto the vector function (p(r))(z) := r(z)z for z € s
Then the parameterized form of (2.20) is given by

Seo (1) = Uy, (2.23)

where Y = @ o p(r). Its linearization with respect to r in direction g becomes

SeoW, 1) +SL (W, 159) = ug, (2.24)

and is an ill-posed linear equation for the perturbation g to obtain the update r + q.
Here, the Fréchet derivative S!  of the operator S., with respect to the boundary r in
the direction q is given by

$me@:mje%@”Hmmxmm+wwmw®$m
Smfl

for ¥ € $™ ! where ],’ q denotes the Fréchet derivative of J, in direction g. We have

v rq+r'q
’ r2 + [dr/ds)?
ifm=2and
rq + Gradr - Grad g
J'g=q\r?+|Gradr?+r
' \r? +|Gradr|?
ifm=3.

Now, given an approximation for 0D with parameterization r, each iteration step
of the proposed inverse algorithm consists of two parts:
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1. We solve the parameterized well-posed field equation (2.19) for ¥. In two dimen-
sions, this can be done through the numerical method described at the end of the
previous subsection.

2. Then we solve the ill-posed linearized equation (2.24) for g and obtain an updated
approximation for oD with the parameterization r + g. Since the kernels of the
integral operators in (2.24) are smooth, for its numerical approximation the com-
posite trapezoidal rule in two dimensions or the Gauss trapezoidal rule in three
dimensions can be employed. Because of the ill-posedness, the solution of (2.24)
requires stabilization, for example, by Tikhonov regularization.

This algorithm has a straightforward extension for the case of more than one incident
wave. Assume that u!, ..., u}; are N incident waves with different incident directions
and Ug, 1s. .., Uy v the corresponding far field patterns for scattering from oD. Given
an approximation r for the boundary, we first solve the field equations (2.19) for the N
different incident fields to obtain N densities i, ..., y. Then we solve the linearized
equations

SeoWm?) + St 15@) = Ugyy N =1,...,N, (2.25)

for the update r + g by interpreting them as one ill-posed equation with an operator
from L>(S™ 1) into (LZ(S’"‘I))N and applying Tikhonov regularization.

For more details on the numerical implementation and numerical examples in two
dimensions, we refer to [32]. Numerical examples in three dimensions are not available
for the time being. Further research is required for the solution of the full inverse prob-
lem by simultaneous linearization of both equations (2.19) and (2.20) with respect to
the shape oD, the impedance functions A and y and the density ¢ analogous to [9].

3 Transmission eigenvalues

Roughly speaking, for the solution of inverse scattering problems one can distinguish
between two main groups of methods, namely iterative methods and sampling meth-
ods. Iterative methods reformulate the inverse problem as a nonlinear ill-posed oper-
ator equation and solve it by iteration schemes such as regularized Newton methods,
Landweber iterations or conjugate gradient methods. Sampling methods develop cri-
teria in terms of the behavior of appropriately chosen ill-posed linear integral equa-
tions that decide on whether a point lies inside or outside the scatterer. In the previous
section, we met the approach by Johansson and Sleeman as an example for an itera-
tion method and two of the prominent examples for a sampling method are the linear
sampling method and the factorization method. They are based on the far field oper-
ator

F:LX(s™Y) - L(s™1)
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8 Some old and some new results in inverse obstacle scattering = 273

defined by

Fe@®) = j u (%, dg(d) ds(d), % es"™,

gm-1

that is, the integral operator with the far field pattern as the kernel. Further for the far
field w, (-, z) of the point source y;n1q3(~,z) located at z (where y,,, is given by (1.11)) we
note that

W (%,2) = e 7 g es™ z e R™
Now, the following theorem due to Kirsch [27] provides a short and concise description
of the factorization method. Its proof relies on deep functional analytic tools, together
with a factorization of the far field operator that explains the name of the method.

Theorem 3.1. Assume that k* is not a Dirichlet eigenvalue of —A for D. Then the equation

(F*F)*g(2) = wey (- 2),

where F* is the adjoint operator of F, is solvable in L*(S™™") if and only if z < D.

Picard’s theorem (see [16, Theorem 4.8]) on the solution of equations of the first
kind with compact operators can be employed for the numerical implementation of
this criterion.

The linear sampling method introduced by Colton and Kirsch [14] is based on the
far field equation

Fg(-,Z) = Woo("Z)

and decides on the behavior of its Tikhonov solution whether z belongs to the scat-
terer D. We refrain from the concise formulation since it is more involved as compared
with Theorem 3.1 and only note that the linear sampling method also requires that k*
is not a Dirichlet eigenvalue of —A for D.

An important feature of the factorization method and the linear sampling method
is that they both work independently on the nature of the scatterer and also for scat-
tering from inhomogeneous media.

Deviating for a couple of paragraphs from the theme of obstacle scattering, we
consider the case of an isotropic medium with refractive index n. We assume that n
is real valued and nonnegative and that the contrast m := 1 — n has support given
by our obstacle domain D and is continuous in D. Then, for an incident plane wave
ul(x) = "4, the simplest inhomogeneous medium scattering problem is to find the
total field u € H},.(R™) such that u = u' + u° satisfies

Au+knu=0 inR™ 3.1)
and u® satisfies the Sommerfeld radiation condition (1.3).
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As shown by Kirsch [28], Theorem 3.1 remains valid for the inhomogeneous
medium scattering problem, and also the linear sampling method has been extended
to this case. Only the assumption on the wave number has to be modified, for the
medium problem k is required not to be an interior transmission eigenvalue. A com-
plex number k is called a transmission eigenvalue it there exist nontrivial functions
v,w € L*(D) with Av,Aw € L*(D) and w - v € H*(D) such that

Av+k*v=0, Aw+k’nw=0 inD (3.2)
and
o ow
v=w, > 3y on oD (3.3)

In view of the transmission condition (3.3), the space H 2 (D) of functions u with vanish-
ing trace ul;p and normal trace 0,ulyp is the natural solution space for the difference
v —w. Then from

Av — Aw = I<2(w -V) - Kmw

we observe that we must demand v, w € L?(D) and Av, Aw € L*(D).

This eigenvalue problem was first introduced by Kirsch [25] in 1986 in connection
with the denseness and injectivity of the far field operator. The transmission eigenval-
ues can be seen as the extension of the idea of resonant frequencies for impenetrable
obstacles to the case of penetrable media and related to nonscattering frequencies.
As shown in [8], if k is a real transmission eigenvalue and v can be extended outside
D as a solution to the Helmholtz equation, then if the extended field is used as in-
cident field the corresponding scattered wave is identically zero, i. e., this field does
not scatter at the wave number k. The transmission eigenvalue problem is a nonself-
adjoint eigenvalue problem that is not covered by the standard theory of eigenvalue
problems for elliptic equations. With respect to the factorization method and the lin-
ear sampling method, for a long time transmission eigenvalues were viewed as some-
thing to avoid, and only in 2008, Pdivdrinta and Sylvester [37] proved the existence
of real transmission eigenvalues. Discreteness of the set of transmission eigenvalues
was shown much earlier by Colton, Kirsch and Piivérinta [15] and Rynne and Slee-
man [40]. More recently, it has been indicated that monotonicity properties of trans-
mission eigenvalues in terms of the refractive index [6, 7] might open the possibility
to use transmission eigenvalues as target signature for inverse media problems.

Here, following the recent work of Cakoni and Kress [12], we want to illustrate how
boundary integral equations can be used to characterize and compute transmission
eigenvalues in the case were n is constant in D. The main idea is to derive an inte-
gral equation from a characterization of the transmission eigenvalues in terms of the
Robin-to-Neumann operator as defined by

ou
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8 Some old and some new results in inverse obstacle scattering = 275

where u € HY(D) is the unique solution to
Au+ku=0 inD (3.5)

satisfying the nonlocal impedance boundary condition
. ou
u+inP > =f onoD (3.6)

forf €e H %(BD). Here, 1 is a positive constant and P is a positive definite pseudo-
differential operator of order —1. For example, we may choose P = S, where S, is the
single-layer boundary integral operator (2.3) for the Laplace case k = 0 which needs
to be modified in the two-dimensional case as in Theorem 741 in [31]. Our approach
differs slightly from that in [12] through the use of the nonlocal impedance boundary
condition rather than the classical Leontovich impedance condition (1.4). Using the
smoothing operator P slightly simplifies the analysis.

For any solution of (3.5) and (3.6) for f = 0 from Green’s integral theorem we have
that

2
J[I gradul® - kzlulz]dx =in J p: g—ul ds

D aD Y

which implies uniqueness of the solution for all k with Rek > 0 and Imk > 0. Exis-
tence of a solution can be shown analogous to Theorem 2.6. The single-layer potential

1

with density ¢ € H 2 (D) solves (3.5) and (3.6) provided ¢ satisfies the equation

Ap=f (3.7)
where we redefined

Ay =S, +inP* (I + KJ). (3.8)

From uniqueness both for the interior impedance problem (3.5) and (3.6) in D and for
the exterior Dirichlet problem in R™\ D together with the jump relations for the single-
layer potential, it can be checked that A; has a trivial kernel in H = (oD) for all k with
positive real part and nonnegative imaginary part. After picking a wave number k
such that k(z) is not a Dirichlet eigenvalue for -A in D, we write A, = S; + B, where

By = S; - Sy, +inP’(I + Ky).

Then S, : H™2(3D) — H2(3D) is an isomorphism and By : H™2(dD) — H2(3D) is
compact since the difference S; - Sk, is bounded from H™> (oD) into H 3 (D) (see [16,
Lemma 5.37]) and P(I + K}) is bounded from H2(aD) into H2(3D) because of our
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assumption on P. Therefore, by the Riesz theory 4; : H -3 (oD) - H : (oD) is an isomor-
phism and we can write

N = (I+ KA (3.9
Now, setting
k, =k Vn,
we have that k is a transmission eigenvalue if and only if the kernel of the operator
M(k;n) == Ny — Ny (3.10)

in nontrivial.

We need to adjust the spaces in which we have to investigate the kernel of M(k; )
since we must search for the eigenfunctions v, w in L*(D). ThlS implies that their trace
and their normal derivative on the boundary belong to H™ 2 (aD) and H- 3 (oD), respec-
tively. Indeed if u € 12 AaD) = {u ¢ L’(D) : Au € L2(D)} then its trace u € H- } (oD) is
defined by duality using the identity

T ooy = | W~ Wt

D
where w € H(D) is such that w = 0 and d,w = 7 on oD. Similarly, the trace of d,u €
H (oD) is defined by duality using the identity

a—u,T> s , == J(qu - whAu)dx
ov H™2(dD),H?2 (dD)

where w € H(D) is such that w = 7 and o,w = 0 on dD.
Therefore, when we represent v and w by single-layer potentials we must work
3
with densities in H™ 2 (D). For convenience, we introduce

(Se)(x) =2 j PP (x,y) ds(), x € D.
oD

Obviously, S;¢ satisfies the Helmholtz equation, hence we can conclude that S; :
H‘%(aD) — Li(D) is bounded. Further, by a duality argument it is possible to ex-
tend the jump relations for single-layer potentials across oD to the case of densities
inH (aD) The standard theory of smgle layer potentlals implies that both operators
Sk, : H2(aD) — H> (oD) and Sig . H? (oD) — H> (oD) are isomorphisms under our as-
sumption on k0 not to be a Dirichlet eigenvalue. From this, again by duality it follows
that Sk, H -3 (oD) - H = (oD) is an isomorphism. Consequently, from the above we

have that A; also is an isomorphism from H -3 (oD) onto H -3 (oD).
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We note that the above statements remain valid in the case when k = iandn =i
because of the uniqueness for the Robin problem Au — u = 0 in D with u + P>9,u = 0
on oD.

To analyze the kernel of M(k), we now want to show that

M(kin) = (I + K})AL — (I + Ky, A : H™3(3D) — H: (@D)

is a Fredholm operator of index zero and to this end we begin with a regularity result.

Lemma3.2. LetF ¢ H"(D)and g ¢ H’"+%(6D). Then the unique solution v € L*(D) of

Av = FinD andv = g on D belongs to H""*(D) and the mapping taking (F,g) into v is
3

bounded from H™(D) x H™"2(9D) into H™*(D) form = 0,1, ...

Proof. We make use of a regularity theorem on the Poisson equation which guarantees
that the unique solutionv ¢ Hé (D) of Av = F for F € H™(D) belongs to H™*?(D) and that
the linear mapping taking F into v is bounded from H™(D) into H™"*(D) form = 0,1, . ..
(see Theorem 1.3 in [41, p. 305]).

First, we show that this property can be extended to solutions v € L?(D) that van-
ish on oD in the sense of the H -3 (oD) trace. For this, we observe from the definition of
the H -3 (0D) trace that for any harmonic function v € L*(D) vanishing on the bound-
ary oD we have that jD vAwdx = 0 for all w € H*(D) with w = 0 on aD. Inserting the
solution w € Hé (D) of Aw = v which automatically belongs to H 2(D) by the above the-
orem yields v = 0 in D. For a solution v € L%(D) of Av = F for F € L*(D) with vanishing
H -3 (oD) trace on oD, we denote by ¥ the solution of AV = F in H(l)(D) and apply the
uniqueness result for the difference v — ¥ to obtain that v =7 € H(l) (D).

The statement of the lemma now follows from the observation that the unique
solution w € H'(D) of the Laplace equation Aw = 0 with boundary condition w = g
on D is in H™%(D) and that the mapping taking g into w is bounded from H m3 (oD)
into H™(D) as can be observed from the single-layer boundary integral equation ap-
proach. O

Lemma 3.3. The linear operators
9 - SAP - Sy AL g (3.11)

from H™2(3D) into HX(D) and M(k; 7)) : H™2(3D) — H?(3D) are bounded.

Proof. By definition, M (k)¢ is the normal derivative trace on the boundary oD of
U= S Al - S Alp, ¢ € H3(2D).

Then,

Au = —kZSkA,;l(p + kgsknA,;:qJ
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isin L*(D) and the mapping ¢ — Auis bounded from H -3 (dD) into L*(D). Furthermore,
from

_ . 0 _ . _
[StA @llap + "1P3$Sk‘4k1(p = [Sp+inPP(I+ KAl 9 = ¢

we have that

u=g onoD
with
ou
= -inP>=.
g=-n v

Since ¢ +— u is bounded from H = (9D) into L?(D), we have that ¢ — o,u is bounded
from H -3 (oD) to H -3 (oD) and our assumption on the operator P finally ensures that
the mapping ¢ — g is bounded from H -3 (oD) into H 3 (oD).

From this, Lemma 3.2 for m = 0 implies the first statement and the second follows
by taking the normal trace. O

Theorem 3.4. Let k > 0 and k,, := k/n. Then
(€ - K2)M(ix; i) : H™2(dD) — H?(3D)

is coercive.

Proof. Foru,v e H?(D), we can transform
J V(B - k) (A - 1 )udx
D

- J[AuAv + (1 +12) grad u - grad v + K*iuv]dx
D

= J(vAAu — AvAu) dx - (K2 + K,zl) J(vAu +gradu - grad v) dx
D D

From this, by Green’s theorem we obtain

J V(A - 1®)(A - kX udx

D
- J[A“Av + (K2 + xfl) gradu - gradv + K2K31MV]dX (3.12)
D
o [ P e
- J(v = Auav>ds (x +Kn)aDVav ds.
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8 Some old and some new results in inverse obstacle scattering =—— 279

For v = i, the second domain integral is equivalent to the | - |2 norm as can be seen
with the aid of Green’s representation formula, that is,

J[|Au|2 + (x2 + Kf,)lgrad ul® + szfllu|2] dx > CIIuIIiIz(D) (3.13)
D

for all u € H(D) and some constant ¢ > 0.
1
Now, for ¢ € H 2(dD) as above we define

U= SpAilp - Sian&i(P
which belongs to H 2(D) by Lemma 3.3. Then
(A1) (A-1C)u=0 (3.14)
and
Au = 1Sy Ay P = KnSie Ai, -

From this, as in the proof of Lemma 3.3, we obtain the boundary conditions

u+ P3g—: =0 and Au+ P3% = (K -x2)p onaD. (3.15)
We set v = &1in (3.12) and use (3.15) and the self-adjointness of P to find that

J[IAuI2 + (K2 + K,zl)lgrad ul® + szrzllulz]dx
D

o 30u_30u
= (1 -13) J 9=, ds — (iK* + 1) JPZ a—VP2 > ds.
aD aD

Inserting d,u = M(ix, i)¢ and using the positive definiteness of P and (3.13), we get the
coercivity estimate
2 2 T P 2
(k" -x3) j eM(ix)p ds > Cllulliypy > C"(p"H’%(aD) (3.16)
aD
forp e H -3 (0D) and some constants C, C > 0, where for the latter inequality we used
(3.15) and the definition of the trace of ¢ by duality. O

Theorem 3.5. The operator

2 2

Mm) + 0 _priikgsiy - B4 @D) — HE@D)
Ikl* = Ikl

is compact.
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Proof. Forgp e H -3 (oD), we define
U= SALY - S A and U = SygAug® - Si A, P

and let
U= K-k (3.17)
TR k2 '
Then, by Lemma ?.3 we have u, U ¢ H*(D) with the mappings ¢ — Uand ¢ — u
bounded from H2(3D) into H*(D). Further, U satisfies the boundary conditions (see
(3.15)
3BU

v +(1- ’l)P

3au

U=-P (3.18)

and
3 oAU 3 oAu

v

on oD. (We note that the coefficient in the definition of U in (3.17) is chosen such that
we obtam (3.19).) By Lemma 3.3, the mappings ¢ — U and ¢ — u are bounded from
-3 (dD) into H? (D) Therefore, in view of our assumption on P, the right-hand 51de 8
of (3.18)is in HS (0D) with the mapping ¢ — g; bounded from H -3 (oD) into H: (oD).
The right-hand side g, of (3.19) is in H 3 (oD) with the mapping ¢ — g; bounded from
H™3(3D) into H2 (D).
Furthermore, it is straightforward to check that

AU =-PP——+(1-in)P"— (3.19)

MAU = F(u,u;) (3.20)

where
Fu,u) = - kzk2 — (¥ + K2)Au

k2 5 5 (3.21)
—W[Ikl Ik lPu; — (1K1 + [k |*) M)

belongs to L?(D) with the mapping ¢ — F bounded from H -3 (3D) to L*(D).

Now, we can use Lemma 3.2 again. Applying it first for AU we obtain that AU €
H*(D) with the mapping ¢ — AU bounded from H -3 (aD) into H(D). Applying the
lemma then for U shows that U € H*(D) with the mapping ¢ — U bounded from
H: (0D) into H*(D). Therefore, the mapping ¢ — 9, U is bounded from H -3 (oD) into
H:(aD). Now, in view of

oU K-k

— =M(kn) + ——>M(ilk
( 71)+|k|2 e, P (ilkl; 1)

ov

thle statement of the theorem follows from the compact embedding of H %(aD) into
Hz(oD). O
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Noting that M(k; n) is analytic in k since the kernels of S; and K}, are analytic in
k, now Theorems 3.4 and 3.5 imply the following final result. From this, in particular,
we can reestablish the discreteness of the set of transmission eigenvalues for the spe-
cial case of a constant refractive index and the finite multiplicity of the transmission
eigenvalues.

Theorem 3.6. M(k;n) : H*% (D) — H% (0D) is a Fredholm operator with index zero and
analyticin{k € C: Rek > 0 and Imk > 0}.

Cakoni and Kress [12] also used their boundary integral formulations for actual
computations of transmission eigenvalues with the aid of the attractive new algorithm
for solving nonlinear eigenvalue problems for large sized matrices A that are analytic
with respect to the eigenvalue parameter as proposed by Beyn [2]. So far, in the litera-
ture, the majority of numerical methods were based on finite element methods applied
after a transformation of the homogeneous interior transmission problem to a gener-
alized eigenvalue problem for a fourth-order partial differential equation. Boundary
integral equations had been employed for the computation of transmission eigenval-
ues only by Cossonniére [18] and Kleefeld [30] using a two-by-two system of boundary
integral equations proposed by Cossonniére and Haddar [19]. Comparing the compu-
tational costs for Beyn’s algorithm as applied to Cossonniére and Haddar’s two-by-two
system, it can be shown that the approach presented here reduces the costs in the ap-
plication of Beyn’s algorithm by a about 50 percent. For details of the implementation
and numerical results, we refer to [12] and for a very recent extension of this approach
to the Maxwell equations including numerical results for transmission eigenvalues we
refer to [10].
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9 The time-harmonic Maxwell equations
with impedance boundary conditions
in polyhedral domains

Abstract: In this paper, we first develop a variational formulation of the time-harmonic
Maxwell equations with impedance boundary conditions in polyhedral domains sim-
ilar to the one for domains with smooth boundary proposed in Section 4.5.d of Costa-
bel et al., Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I:
Smooth Domains, 2010. It turns out that the variational space is embedded in H' as
soon as the domain is convex. In such a case, the existence of a weak solution follows
by a compact perturbation argument. As the associated boundary value problem is an
elliptic system, standard shift theorem from Dauge, Elliptic Boundary Value Problems
on Corner Domains — Smoothness and Asymptotics of Solutions, Springer, 1988 can be
applied if the corner and edge singularities are explicitly known. We therefore describe
such singularities, by adapting the general strategy from Costabel and Dauge, Arch.
Ration. Mech. Anal., 151 (2000), 221-276. Finally in order to perform a wavenumber
explicit error analysis of our problem, a stability estimate is mandatory (see Melenk
and Sauter, Math. Comput., 79 (2010), 1871-1914 and Melenk and Sauter, SIAM J. Nu-
mer. Anal., 49 (2011), 1210-1243 for the Helmholtz equation). We then prove such an
estimate for some particular configurations. We end up with the study of a Galerkin
(h-version) finite element method using Lagrange elements and give wave number ex-
plicit error bounds in the asymptotic ranges. Some numerical tests that illustrate our
theoretical results are also presented.
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1 Introduction

In this paper, we are interested in the time-harmonic Maxwell equations for electro-
magnetic waves in a bounded, simply connected polyhedral domain Q of R® with a
Lipschitz boundary (simply called polyhedron later on) filled by an isotropic homoge-
neous material with an absorbing boundary condition (also called Leontovich condi-
tion) that takes the form

{curlE—ikH:O and curlH+ikE=J in Q,

(1.1)
Hxn-2A,,E, =0 on 0Q.

Here, E is the electric part and H is the magnetic part of the electromagnetic field, and
the constant k corresponds to the wave number or frequency and is, for the moment,
supposed to be non-negative. The right-hand side J is the current density which — in
the absence of free electric charges — is divergence-free, namely

div]=0 in Q.

As usual, n is the unit vector normal to 0Q pointing outside Q and E; = E - (E - n)n is
the tangential component of E. The impedance A, is a smooth function' defined on
0Q satisfying

Aimp : 0Q — R, suchthat Vx €0Q, Aj,,(x)>0; 1.2)

see, for instance, [35, 34]. The case Aimp = 1is also called the Silver—Miiller boundary
condition [3].
In practice, absorbing boundary conditions are used to reduce an unbounded do-
main of calculations into a bounded one; see [35, 34].
As variational formulation, a first attempt is to eliminate H by the relation H =
% curl E, that transforms the impedance condition in the form
(curlE) x n — ikAj, . E, =0 on 0Q.

Unfortunately, such a boundary condition has no meaning in H(curl, Q), hence a so-
lution is to introduce the subspace

Hipp(Q) = {u € H(cur; Q) : you, € L’QQ)}.

Then eliminating H in the second identity of (1.1), and multiplying by a test function,
we arrive at

J(Curl E.curlE' - KE - E')dx - ik J AinpEy - B do 13)
Q oQ
- ikJ JE'dx, VE €Hyp,(Q).
Q

1 Ay € C*'(3Q) is sufficient.
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 287

Error analyses of (1.3) using Nédélec elements are available in [34, 19], but no ex-
plicit dependence with respect to k is proved. Moreover, there is no hope to get eas-
ily regularity results of the solution by applying the theory of elliptic boundary value
problems to the system associated with (1.3) because it is not elliptic (see [14, Sec-
tion 4.5.d]).

A second attempt, proposed in [14, Section 4.5.d] for smooth boundaries and in-
spired from [35, Section 5.4.3], is to keep the full electromagnetic field and use the
variational space

V = {(E.H) € (H(curl, Q) n H(div, 0))’ : Hxn = A, E, on 20}, (1.4)

considering the impedance condition in (1.1) as an essential boundary condition.
Hence the proposed variational formulation is: Find (E, H) € V such that

a,,((E H), (E/, H')) = j(ik} E'+)-cul®)dx, V(E.H)eV,  (15)
Q

with the choice

(B ), (B 1) = (B E) + (L H) - ik | <AimpEt B+ H,- H;) do,
50 imp

with a positive real parameter s that may depend on k but is assumed to be in a fixed
interval [s,s;] with 0 < 53 < s; < co independent of k (see Section 5 below for more
details) and

a,s(u,v) = J(Curl u-curl v + sdivudivv - k*u - v) dx.
Q

The natural norm |||, of V associated with problem (1.5) is defined by

2 .
|CE, H) [ = llcurl Elf> g, + IdivEl> g + K*IEli{2q

2 2 267112
+[lcurl Hlipz o) + lldiv Hli2 ) + k7 IHI72 .-

This new formulation (1.5) has the advantage that its associated boundary value
problem is an elliptic system (see [14, Section 4.5.d]), hence standard shift regularity
results can be used. Nevertheless, this problem is still difficult to solve numerically
as the wave number k is large, because oscillatory solutions exist and because of the
so-called pollution effect [26, 27]: when the number of wavelengths inside the propaga-
tion domain is important, the numerical solution is only meaningful under restrictive
conditions on the mesh size. This effect is manifested by a gap between the error of
the best approximation the finite element scheme and the error of the numerical so-
lution that is actually produced. This gap becomes more important as the frequency
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increases, unless additional discretization points per wavelength or higher order ele-
ments are employed. This problem, typical for wave-type equations, is also related to
a lack of stability of the finite element scheme, since the associated sesquilinear forms
are not coercive. Consequently, the quasi-optimality of the finite element solution in
the energy norm is not guaranteed for arbitrary meshes, but is achieved only in an
asymptotic range, i. e., for small enough mesh sizes, that depends on the frequency
and the discretization order.

The behaviour of the asymptotic range with respect to the frequency, the mesh
size, and the discretization order is the key to understand the efficiency of a finite el-
ement method. For the Helmholtz equation in domain with analytic boundaries, the
asymptotic range for hp-finite element methods has been characterized in a sequence
of papers by J. M. Melenk and collaborators [17, 32, 33]. For less regular boundaries,
similar asymptotic ranges can be achieved using an expansion of the solution in pow-
ers of k [10].

The goal of the present paper is therefore to perform a similar analysis for the
second variational problem of the time-harmonic Maxwell equations with impedance
boundary conditions set on polyhedral domains. In such a situation, several difficul-
ties appear: The first one is to show the well-posedness of the problem that requires to
show that the variational space V is compactly embedded into L*(Q)°. In the smooth
case (see [3, 14]), this is based on the hidden regularity of V, namely on the embed-
ding of Vinto H 1(Q)®, hence we show that a similar embedding is valid for the largest
possible class of polyhedra, namely this embedding holds if and only if Q is convex.
Secondly, error estimates are usually based on regularity results of the solution of the
analyzed problem. Since our domain is not smooth, we then need to determine the cor-
ner and edge singularities of our system. This is here done by adapting the techniques
from [16, 13]. The third obstacle is to prove the stability estimate for problem (1.5) and
its adjoint one. For problem (1.3), the difficulty comes from the lack of stability esti-
mate of the adjoint problem with a non-divergence-free right-hand side; but here by
an appropriate choice of the parameter s, this difficulty can be avoided, at least for
some particular domains. With these key results in hand, we are finally able to study a
Galerkin h-finite element method using Lagrange elements and to give wave number
explicit error bounds in an asymptotic range, characterized by the stability estimate
and the minimal regularity of the solution of the adjoint problem. Since this minimal
regularity could be quite poor, this asymptotic range could be quite strong for quasi-
uniform meshes, hence in the absence of edge singularities, we improve it by using
adapted meshes, namely meshes refined near the corners of the domain.

Our paper is organized as follows: The hidden regularity of the variational space
is proved in Section 2. In Section 3, the well-posedness of our variational problem
is proved and some useful properties are given. In Section 4, we describe the edge
and corner singularities of our problem. The next Section 5 is devoted to the proof of
the stability estimate. Finally, in Section 6 some h-finite element approximations are
studied and some numerical tests that confirm our theoretical analysis are presented.
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9 The time-harmonic Maxwell equations with impedance boundary conditions = 289

Let us finish this section with some notation used in the remainder of the paper.
For a bounded domain D, the usual norm and semi-norm of H (D) (¢t > 0) are denoted
by ||l - ll.p and | - |; p, respectively. For t = 0, we will drop the index ¢. For shortness,
we further write H/(D) = H'(D)>. Here and below, y, is a generic notation for the trace
operator from H {o)to H =3 (00), forall t > % Furthermore, the notation A < B (resp.,
A > B) means the existence of a positive constant C, (resp. C,), which is independent
of A, B, the wave number k, the parameter s and any mesh size h such that A < C;B
(resp., A > C,B). The notation A ~ Bmeans that A < Band A > B hold simultaneously.

2 Hidden regularity of the variational space

If 8Q is of class C?, it is well known that the continuous embedding
vV (H'(Q) 1)
holds, which means that V ¢ (H'(Q))? with the estimate

I, )|l 2 < llcur Ellgz g + ldiv Elly2(q) + IEl (g (2.2)

A proof of this result is available in [3] for a smooth boundary and in Lemma 4.5.5
of [14] for a C? boundary. In both cases, the three main steps of the proof are:
1. The continuity of the trace operator

H(curl, Q) — H Y?(div;0Q) : U — U x n,

proved in [38] (see also [35, Theorem 5.4.2]).

2. The elliptic regularity of the Laplace—Beltrami operator A; 5 = div; V; on a smooth
manifold without boundary that implies that A; 3 —I is an isomorphism from H 2 )]
into H™> (I); see, for instance, [29].

3. The operator

HX(Q) — L2(Q) x HI () : u — (~Au, you),

is an isomorphism; see again [29].

If we want to extend this result to polyhedra, we then need to check if the three main
points before are available. This is indeed the case, since point 1 can be found in [6],
point 2 is proved in [8, Theorem 8] under a geometrical assumption (see (2.3) below),
while point 3 is a consequence of [16].

To be more precise, let us first introduce the following notation (see [6] or [36,
Chapter 2]): as Q is a polyhedron, its boundary I is a finite union of (open and disjoint)
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faces 1“]-, j=1,...,NsuchthatT = Ujl\ilf‘]-. As usual, n is the unit outward normal vector
to Q and we will set n; = nyp, its restriction to I;. When I'; and I; are two adjacent faces,
we denote by e; their common (open) edge and by 7; a unit vector parallel to e;. By
convention, we assume that 7; = 7;;. We further set n; = 7;; x n;. Note that the pair
(ny, T) is an orthonormal basis of the plane generated by I'; and consequently n;; is a
normal vector to I; along e;;. For shortness, we introduce the set

& ={(i,j) :1<jand such thatT; nT; = &;}.

We denote by C the set of vertices of I (that are the vertices of Q). Furthermore, for any
c € C, we denote by G, the intersection between the infinite three-dimensional cone
E. that coincides with Q in a neighbourhood of ¢ and the unit sphere centred at c and
by w,. the length of (in radians) of the boundary of G...

We first introduce the set

L)) ={weL*T):w-n=0onT}.

For a function v € Lz(l“), we denote by vj its restriction to Fj. As T is Lipschitz, we
can define H(T) via local charts, but we can notice that

H'\T) = {u e I*(N) :w; € H'(T)), Vj=1,...,N satisfying

Yol = Yol on ey,  V(i,j) € £}.

As T is only Lipschitz, we cannot directly define H YI) for t > 1, but following [6]
(or [8]), we define

H2(D) = {you: u e HAQ)},
with
||W||§,r = ueHz(iQI}:fyouzw llull,q-
Let us notice that according to Theorem 3.4 of [6], we have
H:D)={weHT):Vwe H"%(F)},
with
Wl g~ Wl + IVl g Yw € H2 (D),

1
where V;u is the tangential gradient of u and H”E ([) is defined by

H”%(F) ={ue Lf(l") ‘€ (H%(Fi))g, Vi=1,...,N, and/\/’ig(u) <oo, VY(ij) e€é&}
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 291

where

. s — . . ..2
M= | | 00T 99 T ox)dory)
I T

Ix-yP

[

and finally

N 1
2 _ 2 | 2
Il = ;uu,-n%,ri + (;gN,-,xu), vu € H; (D).
1= i,j)e

For further uses, we also introduce
1
H:(D) = fuel(D):u e (H:T)), Vi=1,...,N, and Nj (w) < oo, V(i,j) € £},
where

do(x)do(y),

j [u;(0) - 1y - W) - oyl

A = |
A J x-yP

Y

and finally

N 1
2 2 2
Il s p = D Il + > Ny, Vue HID).
i=1 (ij)eE

_1 1
Let us also define (cf. [6]) H|| 2(T) as the dual of H"2 (T') (with pivot space Lf(l‘)) and

_1
introduce the tangential divergence div; : H|| 2T) - H *%(I‘) as the adjoint of -V;,
namely

_1 3
=—(u,V, , YueH 2(T),p e H2(I).
H'%(F)—H%(F) ( t(p)Hﬁ(r)—H”%(r) I .9 ©

(div; u, @)
Finally, let us define
H,(div;T) = {w € H;VA(T) : div, w € H (D)},

and recall the next result proved in [6, Theorem 3.9]:
Theorem 2.1. [[9, Theorem 4.1]] The trace mapping

H(curl, Q) — H;"*(div;T) : U - Uxn,
is linear, continuous and surjective.

Theorem 2.2. If Q is a polyhedron satisfying
w. < 4m, VceC, (2.3)
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then forany h ¢ H -3 (T), there exists a unique u € H 3 (T') such that
u—div, Vu = hin H 2(D), Q.4)

with

IIHII;,F < IIhII,%,r. (2.5)
Proof. Fixhe H -3 (T). Then there exists a unique solution u € H LD) of

J(Vtu -Viv +uv)do(x) = (h,v), VYve HYD).
r

This solution clearly satisfies (2.4). Furthermore, owing to our assumption (2.3), The-
orem 8 from [8] (with ¢t = %, valid since i—” > % for all corners c) guarantees that

ueH? (T) since h — u belongs to H @O).
To obtain the estimate (2.5), we take advantage of the closed graph theorem. In-
deed introduce the mapping

T:{ve H (D) : div, Vv e H3 (D)} — H (D) : u — u - div, Vyu,

that is well-defined and continuous. Since the above arguments show that it is bijec-
tive, its inverse is also continuous, which yields

s - < flu = div, Veull s ps

and is exactly (2.5). O

Remark 2.3. Any convex polyhedron satisfies (2.3), since by [43, problem 1.10.1], one
always have w, < 27, for all ¢ € C. But the class of polyhedra satisfying (2.3) is quite
larger since the Fichera corner and any prism D x I, where D is any polygon with a
Lipschitz boundary and I is an interval that satisfies (2.3).

Theorem 2.4. IfQis a convex polyhedron, then the continuous embedding (2.1) remains
valid.

Proof. The proof follows the one of Lemma 4.5.5 of [14] with the necessary adaptation.
Let (E,H) € V. Let us prove that E € HY(Q). The proof for H is similar.

By Theorems 2.17 and 3.12 of [1], there exists a vector potential w € Hy(Q) = {w €
H!(Q)>:w-n=0o0n I'} such that divw = 0 and

curlw=curlE inQ,

and satisfying

Iwlyq < llcurl Efo. (2.6)
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Thus, there exists a potential ¢ € H 1(Q) such that
Vo =E-w, 2.7
with (by assuming that |, ¢ dx = 0)
lollo < IElq + 1Wla < IElgcun,q)-
Therefore, as a consequence of divE € L?(Q) we find that
div Ve € L*(Q), (2.8)

with

IdivVellq < IdivE(q. (2.9)
By (2.7), the trace E; coincides with w; + V¢, i.e.,
Ei=w;+V,p onT.

As Hbelongs to H(curl, Q), by Theorem 2.1 its trace Hxn belongs to Hﬁl/ 2(div; I'). By the
impedance condition Hxn = A;;, E;, we deduce that A;,,E; also belongs to Hr/ 2(div;T)
with

”AimPEf"Hr/Z(div;F) < "H"H(curl,Q)- (2.10)

Likewise,asw-n = 0andw ¢ H% (I'), let us show that w; also belongs Hr/ 2(div; I
with

"wt||Hr/2(div;l") < |lcurl Elg. (2.11)
Indeed the above properties imply that
W; =W € HlL/Z(F). (2.12)

Namely to show that property we simply need to show that for any (i,j) € £, one has

I J [w;(x) - ny; — w;(y) - nyl

2
2
TYE do(x)do(y) < ||w||H% o (2.13)

LT

But for such a pair, n;; is a linear combination of n; and n;, and consequently,

[w; (0l 11,2, [w;(x) - n}_|2
J J T da(x)do(y) < j J T do(x)do(y)

il it
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. . . —_— . . . 2
_ J j lw;(x) - n; W;(y) n;| do00do(y)
Ix -yl

it

since w; - n; = O on [; and w; - n; = 0 on T;. This shows that

i 0 - wy(y)?
=== (X " dotraon) < [ [ O SON dordot < 1w,

x-yP
T; F} ilj

as well as (by exchanging the role of T; and I;)

H'Wl’ﬂd ()do) < WP,

x-yl? HI (D)
ity

Hence (2.13) holds. As mentioned in [7, p. 39], Theorem 2.1,a den51ty argument and a

duality argument lead to the continuity of div,; from Hi M toH -3 (T, and by (2.12) we

deduce that

div, w; = div, w € H2(I).

Altogether, we finally obtain that Aj,, V¢ belongs to Hr/ ?(div;T) and since Aimp 18

smooth and never O on T, we conclude that
div, V,p € H3 (D),
and since ¢ is in H‘% @),
@ —div, V;p € H_%(l"),

with

By Theorem 2.2, we deduce that

with

||(P dlvt Vt(p”_l r= ”H”H(curlQ + "E"H(curl ;Q) (2-14)
3

(p|F € H? (F)) (2.15)

||<P||%’1~ < ”H"H(Cul’];Q) + "E”H(Cuﬂ;Q)' (216)

Now, using the elliptic regularity for ¢ solution of the Dirichlet problem (2.8)-(2.15) in

Q (see [16, Corollary 18.19]), we find ¢ € H*(Q) with

loloq < 1divVelg + i@l

< Hlgcurso) + IElg(curyo) + 11 divE(q.

(2.17)
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Coming back to (2.7), we have obtained that E € H'(Q) with

IEll 0 < Wl + IVell,0-

Hence taking into account (2.6) and (2.17), we arrive at the estimate

IElq < IHlgcuro) + IElgcun.q) + 1divElg.

As said before, exchanging the role of E and H we can show that H € H'(Q) with

Hll10 < Hlgeuro) + 1Elgcuno) + 1divHig.

The proof is then completed. O

It turns out that the convexity condition is a necessary and sufficient condition
that guarantees the continuous embedding (2.1), namely we have the following.

Corollary 2.5. If Q is a polyhedron. Then Q is convex if and only if the continuous em-
bedding (2.1) is valid.

Proof. 1t suffices to prove that the convexity condition is a necessary condition. For
that purpose, we use a contradiction argument. Assume that Q is not convex, then by
[16] (see also [13, Section 1]), there exists a (singular) function ¢ ¢ Hé(Q) \ H%(Q) such
that

Ap € LX(Q).

In that way, the pair (V¢, V¢) belongs to V, but that cannot be in H'(Q)? since ¢ ¢
H?(Q). This proves that (2.1) is not valid. O

3 Well-posedness

Let us start with a coerciveness result for the sesquilinear form a.

Theorem 3.1. If Q is a convex polyhedron, then the sesquilinear form ay (-, ) is weakly
coercive on V, in the sense that there exists ¢ > 0 independent of k and s such that

Ray ;((E, H), (E.H) > c(IEl; o + [HI; o) - (K* + D(IEIG + IHIY), V(EH) eV. 31)

Proof. Direct consequence of Theorem 2.4, recalling our assumption on A, to be real
valued. -

Remark 3.2. Under the assumptions of the previous Theorem, for k > 1, we have

B ), = | (B 1D g -
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The existence of a weak solution to (1.5) for k > 0 directly follows from this coer-
civeness and the next uniqueness result for problem (1.1).

Lemma 3.3. Let (E,H) € V be a solution of

curlE-ikH=0 and curlH+ikE=0 in Q,
3.2

Hxn-2A,,E, =0 on 0Q.
Assume that E and H are divergence-free. Then (E,H) = (0, 0).
Proof. By Green’s formula (see [20, Theorem 1.2.11]), we have

J(lcurlEl2 + |curl HI?) dx = ik J(curlH -E—-curlE-H)dx
Q

= ikI(H~curlE—curlE-I:l)dx—ik J(H xn - E) do(x).
Q 30

Hence using the impedance boundary condition in (3.2), we find that
J(IcurlEI2 + |curl HI?) dx = ik J(H -curlE - curlE - H) dx - ik J /1imp|Et|2 do(x).
Q Q o0
Taking the imaginary part of this identity, we find that
k J AumplEc > do(x) = 0.
20

Hence if k > 0, we deduce that
E;=0 o0noQ,
as Ay, is positive on 0Q. Again by the impedance boundary condition, H also satisfies
Hxn=0 onoQ.

This means that we can extend E and H by zero outside Q and that these extensions
belong to H(curl, R%). Owing to Theorem 4.13 of [34], we conclude that (E, H) = (0, 0).

For k = 0, we notice that (3.2) implies that E and H are curl-free, hence as Q is
supposed to be simply connected, by Theorem I1.2.6 of [20], there exist ®g, @y € H(Q)
such that

E = V(DE, H = V@H

Due to the H' regularity of E and H, ® and @y both belong to H*(Q). Now using the
impedance boundary condition, we have

div; (A Vi Pp) = div,(V@yz xn)  on oQ,
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9 The time-harmonic Maxwell equations with impedance boundary conditions = 297

and by the standard property
div,(vxn) =curlv-n,
valid for all v € H(curl, Q) (see [6, p. 23]), we deduce that
div;(Ajmp Vi Pg) =0 on oQ.
By its definition (see [6, Definition 3.3]), this property implies that
j iy V@5 do(x) = 0.
a0

Consequently, @ is constant on the whole boundary. As E is divergence-free, @y, is
harmonic in Q and consequently it is constant on the whole Q, which guarantees that
E = 0. With this property and recalling the impedance boundary condition, we deduce
that V,®y = 0 on the whole boundary. As H is also divergence-free, ®y is harmonic
in Q and we conclude that H = 0. O

Our next goal is to prove an existence and uniqueness result to problem (1.5), that
can be formulated in the more general form

a, (B, H); (E,H')) = (F;(E,H')), V(E,H')eV, (3.3)

with F ¢ V'. First, we need to show extra regularities of the divergence of any solution
(E, H) of this problem under the assumption that F belongs to L>(Q)xL?(Q) in the sense
that

(F; (B, H')) = J(f1 B+ fy - H)dx, (34)
Q
with f,, £, € L(Q).

Lemma 3.4. Ifthe impedance function A, satisfies (1.2) and —k?/s is not an eigenvalue
of the Laplace operator A with Dirichlet boundary conditions in Q, then for all f,f, €
L%(Q), any solution (E,H) € V to the problem

a;((E,H); (E,H')) = J(f1 ‘E'+f,-H)dx, V(E H)eV, (3.5)
Q
satisfies
divE, divH € Hy(Q),
with

divE = —(sA+ k%) ' divf, divH = —(sA+ k%) divE,.
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298 —— S. Nicaise and ). Tomezyk

Proof. We basically follow the proof of Lemma 4.5.8 of [14] with a slight adaptation
due to the change of right-hand side in (3.5) with respect to [14]. In (3.5), we first take
test functions in the form (V¢, 0) with an arbitrary ¢ € H*(Q)n H(l)(Q). This directly
implies that (V¢, 0) belongs to V and, therefore, we get

stivE divV@dx—ksz-V¢dx: Jfl-Vq)dx.
Q Q Q

Consequently, one deduces that

J divE (sA+ K)pdx = —(divEsp), Ve ¢ HX(Q) n HY(Q). (36)
Q

On the other hand, as —k?/s is not an eigenvalue of the Laplace operator A with Dirich-
let boundary conditions in H 2(Q), there exists a unique solution g € H(l)(Q) to

(sA + k*)q = — divf,.
Taking the duality with ¢ € H*(Q) n Hy(Q), after an integration by parts, we obtain
equivalently that
J q (sh+ K)o dx = —(divE; ), Vo € H(Q) N Hy(Q).
Q
Comparing this identity with (3.6), we find that

J(divE —q) (sA+KP)pdx =0, Vo eH(Q) nH\Q),
Q

and since the range of (sA + w?) is the whole L%(Q), one gets that divE = ¢, as an-
nounced.

The result for H follows in the same way by choosing test functions in the form
(0,VQ). O

We are now ready to prove an existence and uniqueness result to (3.3).

Theorem 3.5. If Q is a convex polyhedron, the impedance function Ay, satisfies (1.2)
and —k?/s is not an eigenvalue of the Laplace operator A with Dirichlet boundary condi-
tions in Q, then for any F € V', the problem (3.3) has a unique solution (E,H) ¢ V.

Proof. We associate to problem (3.3) the continuous operator A; s from V into its
dual by

(Asw)(V) = as(w,v), vVu,veV.
Now according to Theorem 3.1, the sesquilinear form

ay5((E, H), (E,H)) + (K + 1)(IEl> ) + Hli{2(q)),
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9 The time-harmonic Maxwell equations with impedance boundary conditions =—— 299

is strongly coercive in V and by Lax-Milgram lemma, the operator A; 5 + (kK* + DIis an
isomorphism V into its dual. As V is compactly embedded into L?(Q)°, the operator
Ay s is a Fredholm operator of index zero. Hence uniqueness implies existence and
uniqueness.

So let us fix (E,H) € V be a solution of (3.3) with F = 0. Then by Lemma 4.5.9 of
[14] (valid due to Lemma 3.3), we find that (E, H) is solution of the original problem
(1.1) with J = 0, namely (3.2). We further notice that Lemma 3.4 guarantees that E and
H are divergence-free (only useful for k = 0). As Lemma 3.3 yields that (E, H) = (0, 0),
we conclude an existence and uniqueness result. O

As already mentioned, for the particular choice

(B (£ ) = (0] +7 - curl ),
Q

with J € L?(Q), problem (3.3) reduces to (1.5). Hence under the assumptions of The-
orem 3.5 and if J € L?(Q), this last problem has a unique solution (E,H) € V, that
owing to Lemma 4.5.9 of [14] is moreover solution of the original problem (1.1) under
the additional assumption that J € H(div; Q).

Now under the assumptions of Theorem 3.5, given two functions f;, f, € L?(Q), we
denote by (E,H) = S, ;(f;, f,), the unique solution of (3.3) with F given by (3.4) or equiv-
alently solution of (3.5). Note that the general considerations from [14, Section 4.5.d]
implies that (E, H) is actually the solution of the boundary value elliptic system

L, .(E)=f
k,s( ) 1 } inQ
Lk,s(H)= f2
divE=0 (3.7)
divH=0 ’
on 0Q,
T(E,H)=0
By (E,H)=0

where

Ly s(u) = curlcurlu - sVdivu - Iu,
T(E,H) = Hxn - A, Ey,
1

By(E,H) = (curlH) x n + (curlE); - Alth +ikE x n.

imp imp
Remark 3.6. As suggested by its definition, under the assumptions of Theorem 3.5,
Sy s(f;, f5) depends on s, but if the data f; and £, are divergence-free, then as Lemma 3.4
guarantees that each component of S ;(f;, f,) is divergence-free, we deduce that

Sk,s(fl» fz) = Sk,s' (fl» f2)>
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for all s' > 0 such that —k%/s’ is not an eigenvalue of the Laplace operator A with
Dirichlet boundary conditions in Q. In other words, in that case S ;(f;,f,) does not
depend on s and hence the parameter s can be chosen independent of k. This is of
particular interest for practical applications (see problem (1.5)), since the data f; and
f, are divergence-free. The interest of considering non-divergence-free right-hand side
will appear in the error analysis of our numerical schemes; see Remark 6.6.

Let us end up this section with an extra regularity result of the curl of each com-
ponent of §; ((f;, ) if f}, £, ¢ L?(Q) are divergence-free.

Lemma 3.7. Under the assumptions of Theorem 3.5, let (E,H) = S ((f, ), with f,f, €
L%(Q) such that

divf, = divf, = 0.
Then (U, W) = (curl E — ikH, curl H + ikE) belongs to V and satisfies the Maxwell system
curlU+ikW=f, and cwlW-ikU=£f, in Q. (3.8)

Proof. According to Lemma 3.4, E and H are divergence-free, hence U and W as well.
Hence the identities (3.8) directly follows from the two first identities of (3.7). This di-
rectly furnishes the regularities

curlU,curl W ¢ Lz(Q).
Finally, the boundary conditions
Wxn-24,,U =0 on 0Q,

directly follows from the last boundary conditions in (3.7). O

4 Corner/edge singularities

Here, for the sake of simplicity we assume that A;,,, = 1 and want to describe the
regularity/singularity of $ (£, f,) with f;, £, € H'(Q), for ¢ > 0. As said before, as the
system (3.7) is an elliptic system, the shift property will be valid far from the corners
and edges of Q, in other words, S; (f;, f;) belongs to H2(Q\ V) x H2(Q\ V), for any
neighborhood V of the corners and edges.

We therefore need to determine the corner and edge singularities of system (3.7).

4.1 Corner singularities

For c be a corner of Q, we recall that Z. is the three-dimensional cone that coincides
with Q in a neighbourhood of ¢ and that G. is its section with the unit sphere. For
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9 The time-harmonic Maxwell equations with impedance boundary conditions =—— 301

shortness, if no confusion is possible, we will drop the index c. As usual denote by
(r, 9) the spherical coordinates centred at c. The standard antsatz [16, 21, 28] is to look
for the corner singularities (E, H) of problem (3.7) in the form

(E,H) = (U(9),V(9)), (4.1)

with A € C such that RA > —% and U,V € H'(G) that is solution of (as our system is
invariant by translation)

curlcurlE - sVdivE = 0 inZ,
curlcurlH-svVdivH =0 inZ, 4.2)
divE = divH = 0 on &, ’

Hxn-E; = (curlH) xn + (curlE); =0 ondE.

Remark 4.1. For the sake of simplicity, we consider here the spectral condition that is
stronger than the notion of injectivity modulo the polynomials (from [16]) that consists
in replacing the right-hand side in the two first identities of (4.2) by a polynomial of
degree A -2. As a consequence, we eventually add some integer > 2 in the set of corner
singular exponent, that at least do not affect the regularity results up to %

Inspired from [13], we introduce the auxiliary variables
qg =divE, gy =divH, ¢yp=curlE, 3y =curlH,

and re-write the above system in the equivalent form

{AqE =0 in E,H {AqH =0 in E,H (4.3a)
qgg =0  onoE, qg =0 ondE
curl P = sVgg inZ,
01'1r1 Py = s.VqH in :,H (4.3b)
divyp, =divpy; =0 onoE,
Py xn=—-(hg), on 0%,
curlE =y, divE=qr inZ,
curlH=9p,, divH=gy inE, (4.3c)
Hxn=E, on JE.

Then three types of singularities appear:

Type 1: (gg.qy) = (0,0), (Y, Py) = (0,0) and (E, H) general non-zero solution of
(4.3¢).

Type 2: (qg,qy) = (0,0), (g, Py) general non-zero solution of (4.3b) and (E, H) par-
ticular solution of (4.3c).

Type 3: (gg,qy) general non-zero solution of (4.3a), (Y, Py) particular solution of
(4.3b) and (E, H) particular solution of (4.3c).
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These singularities are different from those from [13] essentially due to the boundary
conditions

Hxn-E; = (curlH) xn+ (curlE); =0 ono=.

Some singularities from [13] will be also singularities of our problem but not the con-
verse; see below. To describe them, we recall the corner singularities of the Laplace
operator with Dirichlet boundary conditions in Z; see [21, 16, 13] for instance. We first
denote by Lgir the positive Laplace—Beltrami operator with Dirichlet boundary condi-
tions on G. Recall that Lgir is a self-adjoint operators with a compact resolvent in L*(G),
hence we denote its spectrum by o(Lgir). Then we make the following definition.

Definition 4.2. The set Ap;(I') of corner singular exponents of the Laplace operator
with Dirichlet boundary conditions in E is defined as the set of A € C such that there
exists a non-trivial solution ¢ € Hj(G) of

AP p(9)) = 0. (4.4)
We denote by Z. the set of such solutions.
Due to the relation
A= (r3,)* + (rd,) + Ag,
forany A € C and ¢ € H'(G), we have
Arp) = 2Ly, (4.5)
where
LA =0z +AA+ 1o, (4.6)

with A; the Laplace—Beltrami operator on G. Consequently, the set Ap;, (T) is related
to the spectrum U(Lg“) of LE“ as follows (see [13, Lemma 2.4]):

1 1 i
Apy () = {—5 M+ HE U(Lglr)}-

For A € Ap;(T), the elements of Zﬁir are related to the set V. (A) of eigenvectors of Lgir
associated with u = A(A + 1) via the relation

Z]/;ir = {’)‘P 1 € Vpi (M}

Recalling from the previous section that w, is the length of the network R, we
finally set
Y -{2 .k ez,

W
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 303

as well as
" 2k
¢ :{w—kEZ\{O}}

c

We are ready to consider our different types of singularities. We start with singu-
larities of type 1.

Lemma 4.3. Let A € C be different from 1. Then (E, H) in the form (4.1) is a singularity
of typelifand only if A +1 € Ap(T) VY.

Proof. (E,H) in the form (4.1) is a singularity of type 1 if and only if it satisfies

curlE=0, divE=0 inZ,
curlH=0, divH=0 1inE, 4.7)
Hxn=E on oE.

(i) Since a singularity of type 1 from [13] is a vector field E., that satisfies

{curl Ecp =0, divEsp=0 inE,
Ecpxn=0 on oz,

by Lemma 6.4 of [13], we deduce that any A € C such that A + 1 € Ap;(T) induces a
singularity of type 1 for our problem (pairs like (E¢p, 0) for instance).

(if) We now show that other singular exponents appear. As A # —1, by Lemma 6.1
of [13], the scalar fields

1 1
Op=—-E-X, Oy=—-H" X,
E=a+1 x =1+ X
are scalar potentials of E and H, namely
E=V®;, H=V®dy ink. (4.8)

Consequently, by the divergence-free property of E and H, we deduce that

AP =ADy =0 inE. (4.9)
Hence if we set
up(®) = T EO) - ,u5(9) = T HE) 5,
we have
@ = Mup9), Dy =M 9), (4.10)

and by the identity (4.5), we get

LA+ Nug=LA+Duy =0 inG. (4.11)
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Now we come back to the boundary condition in (4.7) that can be written in polar
coordinates (r, 6) in the form

1
ar(l)H = _;69¢E’

1
~0pby = O,

Due to (4.10), in term of u; and u, this is equivalent to

1
Ug = —magllE,
Ogugy = A+ Dug.

These two identities imply that uy is known if ug is (or the converse) and then uj has
to satisfy

aguE + A+ l)zuE =0onR,. (4.12)

In other words, uy, is an eigenvector of the positive Laplace operator on R, of eigen-
value (A + 1). As the set of such eigenvalue is precisely made of y?, with u € Y, two
alternatives occur:

a. A+1doesnotbelongto Y., hence in that case uy = ug = 0 and, therefore,

qDEz(DH:OOHaE,

and we conclude as in Lemma 6.4 of [13] that A + 1 € Ap;(T).

b. A+ 1belongs to Y., hence a non-trivial solution ug of (4.12) exists (it is a multiple
of an associated eigenvector) and then uy = —ﬁagu r. This means that the trace
of ug and uy are prescribed on oG (i. e., R.), and call them ¢y and ¢y. Recalling
(4.11), this means that u and uy are respective solution of the following boundary

value problems on G:

{E(/\ +1Nup =0 ingG, {E(/t +Duy =0 ingG,
Up = Qg on oG. Uy = Py on oG.

For both problems, either A +1 ¢ Ap;,(I') and a solution exists, or A +1 € Ap;(I') and no
matter that a solution exists or not, because, by point i), this case already gives rise to
a singular exponent. O

We go on with singularities of type 2.

Lemma 4.4. Let A € C. If (E,H) in the form (4.1) is a singularity of type 2, then A €
AppT)UY,.

Proof. If (E,H) in the form (4.1) is a singularity of type 2, then (see (4.3b)) (W, Py)
satisfies
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 305

curlp, =0 inE&,
curlp, =0 in &,
divyp, =divpy; =0 onoE,
Py xn=-(Pg); on o=.

If we compare this system with (4.7), we deduce equivalently that A belongs to Ap;, (T)U
Y?, recalling that (b, P;;) behaves like 1. Hence we have found that A € Ap; (D)UY
is a necessary condition. O

We end up with singularities of type 3.

Lemma 4.5. Let A € C. If (E,H) in the form (4.1) is a singularity of type 3, then A — 1 ¢
Ap; (D).

Proof. If (E, H) in the form (4.1) is a singularity of type 3, then (g, qy) is a solution of
(4.3a), which means equivalently that A — 1 € Ap;, () is a necessary condition. O

Among the corner singular exponents exhibited in the previous lemmas, accord-
ing to Lemma 3.4, we have to remove the ones for which

divE ¢ H.(E) or divH ¢ Hp. ().

No more constraint appears for singularities of type 1 or 2 since E and H are divergence-
free. On the contrary for singularities of type 3 as divE = g (resp., divH = g5), we get
the restriction

A—1>—1.
2

As Lemma 4.5 also says that A — 1 € Ap; (') and as the set Ap;,(I') N [-1,0] is always
empty, we get the final constraint

A-1>0.

In summary, if we denote by A, the set of corner singular exponents of the varia-
tional problem (3.7) (in H'), we have shown that

Ay €A CAUALUAS, (4.13)
where we have set
Ay = {A eR:A> —% and A +1 eADir(F)UY:}

A, = {/\ eR:A> —% and A € Ap;(T) UYZ}’

Agz={AeR:A>1andA-1¢€ Ap (D}
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Note that in the particular case of a cuboid, for all corners we have w, = 37", while
Proposition 18.8 of [16] yields

Apiy(M) ={3+2d:d e N}u{-(4+2d):d € N}.
Consequently, one easily checks that

Ac)l:{2+2d:d€N}U{%k—l:k€IN*},

AC’2:{3+2d:delN*}U{43—k:kelN*},
Aez={4+2d:deN}.

Hence the smallest corner singular exponent is equal to %

Similarly, with the help of Lemma 18.7 of [16], the sets A ;, i = 1,2, 3 can be char-
acterized for any prism D x I, where D is any polygon with a Lipschitz boundary and I
is an interval.

4.2 Edge singularities

Our goal is to describe the edge singularities of problem (3.7). Let us then fix an edge e
of Q, then near an interior point of e, as our system (3.7) is invariant by translation and
rotation (using a Piola transformation, that in this case corresponds to the covariant
transformation), we may suppose that Q behaves like W, = C, x R where C, is a two-
dimensional cone centred at (0, 0) of opening w, € (0,2m), with w, # r. Here, for the
sake of generality, we do not assume that w, < 7. Below we will also use the polar
coordinates (r,0) in C, centred at (0, 0). Let us recall that the set Ap;,(C,) of singular
exponents of the Laplace operator with Dirichlet boundary conditions in C, is defined
by

kn

Apir(Ce) = {— ke Z\{0}}-
we

Similarly, we recall that the set of singular exponents of the Laplace operator with

Neumann boundary conditions in C, is defined by

km
Aneu(C) = {w—e ke Z}.
For convenience, when no confusion is possible, we will drop the index e. As
usual, for A € C, the edge singularities are obtained by looking for a non-polynomial
solution (E, H) (independent of the x; variable) in the form of

Q
(E.H) =7 ) (Inn)7(U,4(9), V,(9)), (4.14)
q=0
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of

curlcurlE - sVdivE = Fg
curlcurlH - sVdivH = Fy
divE=divH=0

— 307

inW,
inW,
on oW,
on oW,

(4.15)

Hxn-E; = (curlH) xn+ (curlE); =0

Fg, Fy being a polynomial in the x;, x, variables. In that way, we see that the pair
E = (E,, E;) made of the two first components of E and the third component h := H; of

H satisfy

curlcurlE -svdivE=F inC,

Ah=g inC,

divE=0 on aC, (4.16)
h+E =0,h—curlE=0 onoC,

F, g being a polynomial (in the x;, x, variables) and as usual
Cuﬂ E = alEz - azEl,

and

E; =mE, -nE; onoC,

if n = (ny, n,) on oC, further for a scalar field ¢ we have

09
curlp = < 2 )
—0,¢

The pair (H;, H,) made of the two first components of H and —E;, where Ej is the
third component of E that satisfy the same system, hence we only need to characterize
the singularities of (4.16).

Inspired from [13], the singularities of system (4.16) are obtained by introducing
the scalar variables g = divE and i = curl E. In thisway, if A ¢ N, :={ne N:n > 2}
(or equivalently A is not an integer or is an integer < 1), we find the equivalent system

Ag=0 inC,
1
{q =0 on oC, (4.172)
curlp =sVg inC,
Ah=0 inC, (4.17p)
oyh—yP=0 ondC,
curlE=y, divE=gq inC,
1
{Et =-h on daC. (4170

As before three types of singularities appear:
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Type 1: g = 0, 3 = 0 and E general non-zero solution of (4.17c).

Type2: g = 0, Y general non-zero solution of (4.17b) and E particular solution of
(4.17¢).

Type 3: g general non-zero solution of (4.17a),  particular solution of (4.17b) and E
particular solution of (4.17c).

The singularities of type 1 were treated in [13, Section 5c], where it is shown that A ¢ IN,
issuchthat A +1 € Ap;(C) \ {2}.
Let us now look at singularities of type 2.

Lemma 4.6. Let A ¢ N, be such that RA > 0. Then A is a singularity of type 2 if and only
if A € Ayey(O).

Proof. If (E, h) in the form
Q Q
E=r ) (nn'U©®), h=r') (nnh,©), (4.18)
q=0 q=0
is a singularity of type 2, then y = curl E satisfies (see (4.17b))

curlp =0 inC,
Ah=0 inC,
oh—yP=0 onoC.

In this case, ¥ is constant in the whole C. Hence we distinguish the case A = 1 or not:
1. IfA#1, theny = 0 and consequently h satisfies

{Ah =0 inC,
o,h=0 onoaC,

(4.19)
which means that A belongs to Ay, (C) and h is in the form
h="r" cos(AQ).
2. IfA =1, then there exists a constant c such that ¢ = ¢, and consequently h satisfies

{Ahzo inC, (4.20)

oyh=c onoC.
For two parameters c; and c,, denote by
hy = ¢1x1 + ¢3x5 = 1(cy cOs O + ¢, sin O).
Clearly, h is harmonic and satisfies
0pho(0 = 0) = —c5,
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0,ho(0 = w) = —c; sinw + ¢, cos w,
hence it fulfils (4.20) if and only if (c;, ¢,) satisfies the 2 x 2 linear system
¢, =—C,—CySinw + ¢, COSw = C.

Since sin w is different from zero, such a solution exists and therefore d = h - hy,
satisfies (4.19). This would mean that 1 belongs to Ay, (C), which is not possible.

Once  and h are found, we look for a particular solution E of (4.17c) with g = 0. From
its curl-free property, we look for E in the form

E=VQ,
with
@ =g (0),
where ¢ has to satisfy

{(p” +(A+1)% =0 in(0,w),
A+Dp0)=-1, A+1e(w)=-cos(Aw).

As A +1does not belong to Ap;(C) and is different from zero, such a solution ¢ always
exists. O

Lemma 4.7. Let A ¢ IN, be such that RA > 0. Then A is a singularity of type 3 if and only
ifA—1¢e Ap;(C).

Proof. If (E, h) in the form (4.18) is a singularity of type 3, then g = div E satisfies (4.17a)
and consequently A — 1 belongs to Ap;,(C) and g is equal to

g =r"sin((A - 1)6),

up to a non-zero multiplicative factor (that we then fix to be 1).
Now we look for (), h) a particular solution of (4.17b). As simple calculations yield

curl(r* ™ cos((A - 1)8)) = -vr ! sin((A - 1)),
we deduce that
P =-s”" 1 cos((A- 1)) + k,

for some constant k, that we can fix to be zero since we look for particular solutions.
Hence it remains to find h solution of

{Ah =0 inC,
oph = —sr* 1 cos((A-1)8) onoaC.
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Such a h exists in the form
h=r"n(0),
since the previous problem is equivalent to

{n” +A' =0 in(0,w),
n'0)=s, 1@ =zs(-1

when A = ’% and this system has a unique solution since A ¢ Ay, (C).
Now we look for E a particular solution of (4.17c) with the functions g, i and h
found before, which then takes the form

curl E = —s* ' cos(A-1)0) inC,
divE = M'sin((A - 1)6) inC,
E, = —'n(0) on aC.

Hence we look for E in the form
E= _48_/1 curl (™ cos((A - 1)6)) + V.
As simple calculations yield
curl curl(r**! cos((A - 1)6)) = 44 cos((A - 1)9),
we deduce that the previous system in E is equivalent to

_ oA i
{A(D =sin(A-1)9) inC, (4.21)

0,d(r,0) = ¢!,  0,D(r,w) = ¢,

for two constants ¢y and c,,. If A +1 ¢ Ap;,(C), then a solution @ of this problem always
exists in the form

" p(0),
since it is then equivalent to
Co

- _0 — Co
(p(o) - /\ > arq)(r, w) A " 1 .

{(p" +(A+1)%p =sin((A-1)0) inC,

+1

On the contrary if A + 1 € Ap;,(C) (that only occurs when w = 37”), then we look for @
in the form

7 (o(8) +log rpy (6)). (4.22)
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 311

Since, in this particular choice, problem (4.21) is equivalent to

@(r,0) = %/‘“, O(r, w) = —0_ M1

{A(D =r"1sin(A-16) inC,
A+1

+

by Theorem 4.22 of [36], we deduce that a solution @ in the form (4.22) exists.
In both cases, a solution @ exists, hence the existence of E. O

As before among the edge singular exponents, we have to remove the ones for
which

divE ¢ H, (W) or divH ¢ HL (W).

No more constraint appears for singularities of type 1 or 2 since E and H are divergence-
free. On the contrary for singularities of type 3, we get the restriction

A>1.

In summary, if we denote by A, the set of edge singular exponents ¢ N, of the
variational problem (3.7) (in H, i. e., with RA > 0), we have shown that

Ae = Ae,l U Ae‘z U A€,3’ (4.23)
where we have set

Moy ={A e R:A>0andA+1 e Ap(C)\ {2}
Agy={AeR:A>0andA € Ay, (0)},
Acz={AeR:A>1andA-1¢€ Ap,(O)}.

Note that in the particular case of a cuboid, for all edges we have w, = %, and
consequently A, = 0 (recalling that the natural number in N, are excluded from this
set). Since one can show that A = 2 is a singular exponent, the maximal regularity
along the edge is H>~¢, for any & > 0.

In conclusion, for any convex polyhedral domain, there exists ¢, € (1, 2] such that
for any f,,f, € L*(Q), Sy 4(f;, f,) belongs to H/(Q)?, for all t < ¢,. For instance for a

cuboid, we have t, = %1.

5 Wavenumber explicit stability analysis

The basic block for a wavenumber explicit error analysis of problem (3.7) (or (3.5))
is a so-called stability estimate at the energy level; for the Helmholtz equation, see
[15, 17, 22], while for problem (1.3), see [23]. Hence we make the following definition.
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Definition 5.1. We will say that system (3.7) satisfies the k-stability property with ex-
ponent a > O (independent of k and s) if there exists k, > O such that for all k > k,
and all f;, f, € L?(Q), the solution (E, H) € V of (3.5) satisfies

IE, )l < k“(Ifillo.q + Ifll0.0)- (5.1)

Before going on, let us show that this property is valid for some particular do-
mains, in particular it will be valid for rectangular cuboids of rational lengths, some
tetrahedra and some prisms. To prove such a result, we first start with a similar prop-
erty with divergence-free data. In this case, our proof is a simple consequence of a
result obtained in [37] for the time-dependent Maxwell system with impedance bound-
ary conditions combined with the next result of functional analysis [40, 25].

Lemma5.2. A C, semigroup (e[A)tzo of contractions on a Hilbert space H is exponen-
tially stable, i. e., satisfies

e Uolly < Ce ™ IUplly, VU, € H, ¥t >0,
for some positive constants C and w if and only if
p(A) > {iB|BeR} =R, (5.2)

and

sup 1GBT — A) Ml zy < 00, (5.3)
BeR

where p(A) denotes the resolvent set of the operator A.

Theorem 5.3. In addition to the assumptions of Theorem 3.5, assume that Q is star-
shaped with respect to a point. Then for all k > 0 and all f,,f, € L%(Q) such that
divf, = divf, = 0, the solution (E,H) € V of (3.5) satisfies (5.1) with a = 1.

Proof. Asthe data are divergence-free, by Lemma 3.7, the auxiliary unknown (U, W) =
(curl E - ikH, curl H + ikE) belongs to V, is divergence-free and satisfies the Maxwell
system (3.8).

Now we notice that Theorem 4.1 of [37] (valid for star-shaped domain with a Lips-
chitz boundary) shows that the time-dependent Maxwell system

{atE +curlH=0 and oH-curlE=0 1inQ,
Hxn - A, E =0 on &,

is exponentially stable in % = {(E,H) € L%(Q) x L(Q) : divE = divH = 0}. This
equivalently means that the operator A defined by

A(E,H) = (-curlH, curlE), V(E,H) € D(A),
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 313

with domain

D(A) = {(E,H) € V: divE = divH = 0},

generates an exponentially stable C, semigroup in . Hence by Lemma 5.2, we deduce
that its resolvent is bounded on the imaginary axis. This precisely implies that

Ullg + 1Wllg < Ifllg + 110, (5.4)

for all k > 0. But coming back to the definition of U and W, we can look at (E,H) as a
solution in D(.A) of the Maxwell system

curlE-ikH=U, curlH+ikE=W.

Hence the previous arguments show that

lElg + Hllg < IUllg + IWllg-
By the estimate (5.4), we deduce that

IElq + IHlg < Ifillq + I£lq. (5.5)
Finally, as

ICE, D)l ~ llcurlEllg + Il curl Hllg + k(IEllq + [Hll),

by the triangular inequality, we get that

|(E. H); < llcurl E — ikHllq + lcurl H + iKEllq + k([Ellg + [Hlg)
<[[Ullg + IVlg + k(IEl + IHllg).

By the estimates (5.4) and (5.5), we conclude that

ICE, Bl < k(Ifyllg + If>ll0),

as announced. O

Now we leave out the divergence-free constraint on the data. Before let us de-
note by {A,},en+» the set of eigenvalues enumerated in increasing order (and not re-
peated according to their multiplicity) of the positive Laplace operator —A with Dirich-
let boundary conditions in Q. For each n € IN*, we also denote by Pner€=1,....,m(n),
the orthonormal eigenvectors associated with A,,. For all k > 0 and each s € [1,2], let
us define the unique integer n(k, s) such that

k2
An(k,s) < ? < An(k,s)+l’ (5-6)
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and denote by

Sn(k,s) = An(k,s)n - /‘n(k,s)’

the gap between these consecutive eigenvalues. Now we show that if g, ) satisfies
some uniform lower bound, then the k-stability property holds.

Lemma 5.4. In addition to the assumptions of Theorem 5.3, assume that there exists a
non-negative real number J and two positive real number y, and k; such that

Vk >k 3s € [1,2] : gppes) 2 yok . (5.7)

Then there exist two positive real numbers s, s, such that s, < s, (depending on B, y,
and k;) and for an appropriate choice of s € [sy, s;] (but such that —k?/s is not an eigen-
value of the Laplace operator A with Dirichlet boundary conditions in Q), the k-stability
property with exponent a = 2f3 + 1 holds.

Proof. The first step is to reduce the problem to divergence-free right-hand sides. For
that purpose, fori = 1 or 2, we consider u;, @; € Hcl,(Q) variational solutions of

Au; =divf; inQ,
I .
A(pi + ?(Pl =-S5 U; in Q.

Then simple calculations show that (E,H) = (E - V¢,,H — V¢,) belongs to V and is
solution of (3.7) with divergence-free right-hand side, namely

L. (E)=f, =f - Vu,
k,s(~) h=h U } in Q,

Lk,S(H) = fz = fz - VuZ,
divE=0 (5.8)
divA=0 '
.~ on 0Q.

T(E,H)=0

BEH)=0

2
In a first step, we estimate the H!-norm of ¢,. Since we assume that k? does not en-
counter the spectrum of the Laplace operator, by the spectral theorem, we can write

o K2 -1 m(n)
$i=-5 Z <? - An) Z (u; (pn,é’)Q(pn,L"

nelN* =1
Consequently, we have

2 2 K i 2
lotia~s? ¥ (S-h) Yl ol 69)
neN* £=1
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9 The time-harmonic Maxwell equations with impedance boundary conditions = 315

Hence our goal is to choose s in an interval [sy,s;] with s, and s; independent of k
satisfying O < s < s; < oo and such that
k2

5 M2 kK, WneN*, k>k, (5.10)

with k, large enough. Indeed if this estimate is valid, then (5.9) can be transformed
into
m(n)
ledia <k ) Y I ondaldy
nelN* ¢=1
and, therefore,

2
loilg < kK lugllq.

As clearly
luill g < IElq (5.11)
we conclude that
Iilla < K71 lo. (5.12)
As
(V1 Vo)l ~ Vs(IA@yllg + 1A@llq) + k(@110 + I92ll1.0)s (5.13)

we need to estimate the L?-norm of Ag,. But from its definition, we have

2
-1
Api+ i =-s w;

and taking the L?-inner product with @;, we get

K _
(Ap;, @) + ;ugoiué = s (u; 9)g-

Using Cauchy-Schwarz’s inequality, we get

gngo,-né <5 lllallpilla + 1gili o
With the help of (5.11) and (5.12), we obtain
Klpilg, < IEloleillg + KPIELS,
Hence by Young’s inequality, we get
Kllgily, < KPIEIS,
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which proves that
lpillg < K2 (5.14)

This directly implies that

'S _
lAp;llq < ?"(Piug +S 1||ui||Q < k2ﬁ+1||fi||g~

Using this estimate and (5.12) in (5.13) leads to
1(V1, Vo)l < K Iyl + Ifsllg)- (5.15)
At this stage, we use Theorem 5.3 that yields
IE )l < k(i llg + 1E5ll0)-
Hence by the definition of f',- and (5.11), we deduce that
ICE, H)llx < k(lIfyllq + If;l0).

As (E,H) = (E,H) + (Vo,, Vg,), the combination of this last estimate with (5.15) leads
to

IE Bl < K271 llg + 16 ll0), (5.16)

which proves the stability estimate with a = 2 + 1.

It remains to prove that (5.10) holds for an appropriate choice of s. This is done
with the help of our assumption (5.7), by an eventual slight modification of s from this
assumption. To be more precise, for all k > k;, we fix one s € [1, 2] such that (5.7) holds
and denote it by s(k). We now distinguish between three cases:

kZ
) If Angestioy < 5 < Anihostioy + 3308 then we fix s such that
S Yo
? = An(k,s(k)) + BkZB . (517)

With this choice, we clearly have

K A Yo
S " Malkso) = _BkZB’
while
2
Yo _ o
An(k,s(k))+1 - ; = An(k,s(k))+1 - An(k,s(k)) - 3k2ﬁ 2 _3k2ﬁ >
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 317

which proves that (5.10) holds. Let us now show that s remains in a (uniformly)
bounded interval. Indeed (5.17) is equivalent to

k2
S =

Y
Anis(iy) + 5108

As by assumption K < S Angie sy + 3’]'<—°2ﬁ), we directly deduce that s < s(k) < 2.
Conversely, from (5.6), we deduce that

i K
Y TR
Aihsion 38 55+ 5o
s(k)

- Yos(k)
1+ 3]?2(ﬁ+1)

1

2y,
3 kf(ﬁ”)

1+

b) If Ay sryy+1 — k25 < S(k) < An(i sy +1» then we fix s such that

K Y Yo
n(k,s(k))+1 3k2ﬂ.

We check exactly as in the first case that (5.10) holds. Furthermore, by assumption
s > 1, while for the lower bound we see that

o S K s(k) 2
B — Yo T K - stkye — 2o *
st =58 -y 1 5at 1o

Hence s < 3 for k > k, with k; large enough
kZ
) I Arsion + 5198 < 50 < Anthostion+1 — 307> then we fix s = s(k). In such a case, we
directly see that (5.10) holds since

Yo 2 Yo
I = Aygisi 35 and Ay sy — k2 328
The proof is then complete. O

Remark 5.5. The parameter s fixed in the previous lemma clearly depends on k. Fur-
2
thermore, if f is positive, the quantity k? approaches the spectrum of —A, and hence

the norm of the resolvent operator A+ k?z blows up, but the estimate (5.16) controls this
blow up since it yields

|div Ellg + IdivHllq < K" (Ifyllq + I1fla).

Let us now show that (5.7) always holds with § = 5
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Lemma 5.6. For all bounded domain Q (of R>), the assumption (5.7) holds with 8 = %

Proof. Assume that (5.7) does not hold with 8 = 3, in other words

1
2
VYo > 0, ky > 03k > Ky Vs € [1,2] : 8pes) < Yok - (5.18)

We first fix y, such that

1
< — (5.19)
Yo Levacial
where |Q]| is the measure of Q and ¢ = # is the universal constant such that Weyl’s
formula
lim YO _4, (5.20)
t—oo C|Q|t§

holds, where N(t) is the eigenvalue counting function of the positive Laplace operator
—A with Dirichlet boundary conditions in Q, i. e., the number of its eigenvalues, which
are less than t. Then we fix k; large enough, namely k2 > 12y,. Then for all k > k;, we
define the real numbers

3yl
S;:=1+ Yo

i F, Vi=1,...,Nk,

where N = [%J -1 (where |x] is the integral part of any real number x, namely the
unique integer such that x < [x]| < x + 1). By our assumption N, is larger than 1 and
for k large it behaves like k>. It is easy to see that all s; belongs to [1, %]. Now we look
at the intervals

K vo K ¥ .
L=|—-=,—+3| Vi=1...,Np,
! S; 2k S; * 2k ! k
and show that they are disjoint, i. e.,
LnL=0, Vi#], (5.21)

and included into the closed interval [k;, 2]
kZ
I c [?,218], Vi=1,...,N. (5.22)
Indeed for the second assertion it suffices to show that

=_b, X (5.23)
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(-

and that
K Yo 2
—+ = >2k". 5.24
S; * 2k ( )
This second estimate holds if and only if
2
k Yo > 212,
S T2k
or equivalently
1_, Yo
S 2i3
Sinces; =1+ k3 , this holds if and only if
Yo 3Yo
2k3)<1+ ¥ ) 21,
which means that % has to satisfy
11—\/14 yo 11+ \/14
6 k3 S 6
that is valid owing to our assumption on k; (and the fact that k > k;)
In the same spirit, the estimate (5.23) holds if and only if
Sy < 2
M=y %
which holds because our assumption on k; implies that
3 2
- < TR
2 1+2%
Now to prove (5.21), it suffices to show that
IinIiJrl:@, Vizl,...,Nk—l,
or
Kove Kove
—+ < —-=, Vi=1...,N. -1
TSy k

Sit1

By the definition of the s;, this holds if and only if
SiSiy1 < 3.

Since s;5;,1 < 4, we deduce that (5.21) is valid.
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Since the length of I; is exactly equal to "7" and due to our assumption (5.18), Ay,
O Apics)+1 Pelongs to I;. Due to (5.21) and (5.22), for all k > k;, we have found N distinct

eigenvalues in the interval [k;, 2k2]. This implies that
k3 k3

N2K) >Ny > — 1> —, Vk>k.

But Weyl’s formula (5.20) implies that there exists k, > 0 large enough such that

3
2

N(2Kk%) < 2¢|Q|(2k*)2,  Vk = k,.

These two estimates yield

1

> - =
Yo = evacql

which contradicts (5.19). O

We now notice that (5.7) may hold for 8 < %,

the next gap condition

in particular it holds with 8 = 0 once

g5 >0: Ay - Ay 280, Vne N, (5.25)

holds.

Lemma 5.7. Assume that (5.25) holds, then the assumption (5.7) is valid with = 0 and
Yo = 8o-

Proof. 1If "; is different from A, ,), then we take s = 2 and find
8n(k,2) = 80>

hence the result. On the contrary if k; = Ayk.2)» then we choose s = 2 - e with e € (0,1)
small enough such that

k2
>_¢ <Ak

Since k? = 2k 2)» this means that we additionally require that

A
€< 2<1— nkd )
An(k,2)+1
which is always possible since this right-hand side is positive. With this choice, we
have that n(k, s) = n(k, 2) and we conclude that g, s) > 8- O
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Corollary 5.8. Assume thatQ = (0, v/a;) x (0, v/a;) x (0, /az), with positive real numbers

a;, i =1,2,3 such that is a rational number, i = 2,3. Then the gap condition (5.25)
holds with = 0, and hence for an appropriate choice of s, the k-stability property with
exponent a = 1 holds.

Proof. For such a cuboid, it is well known that the spectrum of the Laplace operator
—A with Dirichlet boundary condition is given by

k2 k2 k2
,,2<_1 L _3>,
a a as
for any k; € N*, i = 1,2,3. Hence writing Z—‘ = %, with n;,d € N*, the spectrum is
1
equivalently characterized by the set of

7.[2

2 2 2
—(k;n,n; + kynins + kxnqn,),
a1n2n3(123 SN + kynyny)

for any k; e N*, i = 1,2, 3. Since, in our situation, kfn2n3 + k§n1n3 + k§n1r12 is a natural
number, the spectrum is a subset of

gN",

2
where g, = an”—n Hence the distance between two consecutive different eigenvalues
1102753
is at most larger than g. O

Remark 5.9. If the cuboid Q (0, vay) % (0, v/a,) x (0, \/a3), with positive real numbers

a;, 1 = 1,2,3 such that “2 = -2 is an irrational number badly approximable. Then by
the same arguments than before and the use of Proposition 2.1 of [5], the gap condi-
tion (5.25) holds with B = 1, and hence for an appropriate choice of s, the k-stability
property with exponent a = 3 holds.

Corollary 5.10. Assume that Q is a prism in the form Q = T, x (0, Vh), with positive
real numbers a and h such that g is a rational number and T, is an equilateral triangle
of side of length /a. Then the gap condition (5.25) holds with 8 = 0, and hence for an
appropriate choice of s, the k-stability property with exponent a = 1 holds.

Proof. For such a prism, using a separation of variables, a scaling argument and Theo-
rem 1 0f [39] (see also Theorem 3.2 of [24], case of type A,), we deduce that the spectrum
of the Laplace operator —A with Dirichlet boundary condition is given by

2.2

16m° (g + 15 + kky) + BT’

27a

forany k; € N* and k; € Z*, k, € Z such that k; + k, # 0. Hence writing g = 5 with
n,d € N*, the eigenvalues can be written as

2

2;’ (I + ky + kyky)n + 27dI2),
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for the previous parameters k;. As in the previous corollary, this means that the dis-

i
27an*

O

tance between two consecutive different eigenvalues is at most larger than g, =

Remark 5.11. By Theorem 3.2 of [24] (case of type C, or D,, see also [4, Proposition 9]),
Corollary 5.10 remains valid is T, is an isosceles right triangle with two sides of length
v/a, with a positive number a.

Corollary 5.12. Assume that Q is a tetrahedron with vertices (0,0,0), (+/a,0,0),
(vVaj2, vaj2,-+a/2), (va/2,Va/2, va/2), with a positive number a. Then the gap con-
dition (5.25) holds with B = 0, and hence for appropriate choice of s, the k-stability
property with exponent a = 1 holds.

Proof. For such a tetrahedron, by a scaling argument and Theorem 3.2 of [24] (case of
type A; = D3, see also [4, Proposition 9]) we deduce that the spectrum of the Laplace
operator —A with Dirichlet boundary condition is given by

2
1
4i<kf £ 202 +12) + kky + Kk + —k2k3>,
a 4 2
for any k; € IN*, i = 1,2,3. This means that the distance between two consecutive
2
different eigenvalues is at most larger than g, = % O

Remark 5.13. By Theorem 3.2 of [24] (see also [4, Proposition 9]), Corollary 5.12 re-
mains valid for a tetrahedron T, with vertices (0,0,0), (+/a,0,0), (va/2,va/2,0),
(vVa/2,v/a/2,+/a/2) (case of type B;) and for a tetrahedron T, with vertices (0, 0,0),
(va/2,0,0), (Va/2,+/a/2,0), (va/2, v/a/2, \/a/2) (case of type C;), with a positive num-
ber a.

6 h-finite element approximations

For the sake of simplicity, we here perform some error analyses when A, = 1, but for
convex polyhedral domains and for which the stability estimate is valid. Before stating
some convergence results for different finite element approximations, we state some
regularity results and a priori bounds.

6.1 Some regularity results and a priori bounds

Theorem 6.1. Assume that Ay, = 1, and that Q is a convex polyhedron and that the
k-stability property with exponent a holds. Then for any f,,f, € L3(Q), Sy s(fy, £5) belongs
to H'(Q)?, for all t < to with

1
ISks(E Bl < (1+ K IE )l (6.1)
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Proof. Since the regularity of S ((f;, f,) was already stated in Section 4, we only con-
centrate on the estimate (6.1). It indeed holds by looking at Sys(fy, £) as solution of
(3.3) with k = 0 and a right-hand side defined by

(F,(EH')) = J((f1 +IPE)-E' + (£, + KH) - H') dx
Q
+ ik J(Et~E£+Ht~I:I£)d0.
0Q

By elliptic regularity and the stability estimate (5.1), we obtain
ISks(E B)lleq < 16, E)llg + KISk s (B E)llg + kl1Srs(E1, )11 50
< (1+ KL B,
which proves (6.1). O

Now we show similar results in weighted Sobolev spaces (in the absence of edge
singularities), namely for all £ € IN, ¢ > 2, and all non-negative real numbers v, if r(x)
is the distance from x to the corners of Q, then we introduce the weighted space

H™(Q) = {ve H(Q) : "*DPv € 1(Q), VB e N> : 2 < |B| < ¢},
which is a Hilbert space with its natural norm | - [|,,.q.

Theorem 6.2. Inaddition to the assumptions of Theorem 6.1, assume that w, < % forall
edgeeof Qandthat A + %, forallA € A, and all corners c of Q. Then for any £, £, € L’(Q),
Sy s(f1, £5) can be decomposed as follows:

Sis(f. ) = (Bg, Hp) + Y ) KAl 2 (P90 P ca(90), (6.2)

ceCreA.n(-3,0)

with (Eg, Hg) € H?(Q)?, C is the set of corners of Q, (r.,9.) are the spherical coordinates
centred at c, k., is a constant and Qg . 5, Py .1 belongs to H%(G,). Furthermore, we will
have

IERHplba+ Y Y Ikeal < (1+ KL Bl (6.3)
C€C Aeh:0<A<}

In particular it holds S s(f, £,) € H?>Y(Q), for allv > 2 - to with

ISk s B0 < (1+ KFIEL ). (6.4)

Proof. Since there is no edge singular exponent in the interval [0, 1], the results of Sec-
tion 4 and of Section 8.2 of [28] (global regularity results in weighted Sobolev spaces
for elliptic systems on domains with point singularities) allow to show that the split-
ting (6.2) and the estimate (6.3) hold. The regularity S, ,(f, £,) € H*'(Q)°, forallv >
2 -ty and the estimate (6.4) directly follow from the fact that ré‘(goE)C)A(SC), ©r.c29:)
belongs to H*V(Q)®, forallv > 2 - t,. O

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:07 PM



324 — S.Nicaise and ). Tomezyk

Finally, still in the absence of edge singularities, we want to improve the previous
result for a regular part almost in H>, namely we prove the next result.

Theorem 6.3. Under the assumptions of Theorem 6.2, for any f,,f, € L*(Q), Sis(f, £)
can be decomposed as follows:

Sk,s(fb fz) = SO,s(fl’ f2) + (RE,reg> RH,reg) + (RE,sing> RH,sing)’ (6'5)
with Sy s(f},£)) € H?>Y(Q)®, for any v > 2 — t, satisfying
150,51, B l20:0 < I1(E, £)l0 (6.6)

(RE reg> Rirreg) € H5(Q)” and (Rg ging: Ry sing) € H>'°(Q)° (for shortness their depen-
dence in s is skipped), for any € > 0 and any v, > 3 — tg, such that

"(RE,reg’ RH,reg)"st,Q + "(RE,sing’ RH,sing)HB,vO;Q < (1 + k2+a)”(fl’ fZ)”Q (67)

Proof. In a first step, we split up (E, H) := S ;(f;,£,) (see [10] for a similar approach in
domains with a smooth boundary) as follows:

Sk,s(flr fz) = SO,S(fl’ fz) + (RE, RH), (6.8)

where the remainder (Rg, Ry) € V (for shortness it dependence in s is skipped) satis-
fies

ays((Rg, Ry), (B, H')) = K2 J(E B+ H-H)dx 69)
Q
ik j(Et 'E!+H,-H)do, V(E.H)cV.
0Q

By Theorem 3.5, the existence and uniqueness of S ;(f;, f,) and of (Rg, Ry) are guar-
anteed. Moreover from the estimate (6.4) (with k = 0), we see that S, ;(f;, f,) belongs
to H>V(Q)®, foranyv > 2— to and that the estimate (6.6) holds. A similar result is valid
for (Rg, Ry), but we are interested in an improved regularity. More precisely, we want
to show that

(RE’ RH) = (RE,reg’ RH,reg) + (RE,sing’ RH,sing)) (6.10)

with (Rg eq: R reg) aNd (R ging Ry sing) as stated in the Theorem. Indeed we first notice
that the volumic term in the right-hand side of (6.9) has the appropriate regularity
to obtain a decomposition of (Rg, Ry) into a regular part in H>¥(Q)? and a singular
(corner) part. Unfortunately, this is not the case for the boundary term, because (E, H)
is not in H*(Q)?, but due to its splitting (6.2), we can use a lifting of the singular part.
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 325

More precisely by using Lemma 6.1.13 of [28], for all corners ¢, and all A € ﬂ(—%, %),
there exists a field (E.;,H, ;) in the form

x(A)
(EcpHop) =10 Y 90,9 (AnT)f,
£=0

with k(1) € N and ¢, € H*(G,) such that

Lk,s(Ec,A) =0 } -

in g,
Lk,s(Hc,A) =0
div EC,A =0
div HC,A =0

on o=,
T(E.,H.0)=0

BO (Ec,/b Hc,}l) = 2(pE,c,}l,t

Hence for any corner c by fixing a smooth cut-off function 77, equal to 1 near c and
equal to O near the other corners, we introduce

Rp.Ry) = R, Ry) ik Y Y ke anc(Ecp Hep), (6.11)

ceCren.n(-3,0)

that still belongs to V and is solution of

ao,((Ry, Ry), (B, H')) = K2 J(E B+ H-H)dx (6.12)
Q
—ikF(E H'), V(E.H)eV,

where

F(E”H’) = j (Et : E; +H,- H;) do - Z Z KC,AaO,S(nc(Ec’ H,), (E”H’))

20 CECAGACO(—%,%)
= J(ER,t -E; +Hg, -Hy)do
0Q

+ z Z Kea J /cl(l - rlc)(qu,c/l,t : E; T PHcAL ﬁ;) do
ceC AEACO(—%,%) 20

- Z Z Kea J(Lk,s(ncEcJt) E'+ Lk,s(nch,/l) ’ ﬁ/) dx.
c€C Qe N(-3,3) Q

Since (1-1c)@gcpe 1= N)PH AL ~Lk,sEr1cEc,/1)’ Ly s(ncHe,) are sufficiently regular, by
the shift theorem, we deduce that (Rg, Ry) admits a decomposition into a regular part
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in H>7¥(Q)? for any € > 0 and a singular part that corresponds to corner singularities,
namely

(REa RH) = (RE,rega RH,reg) + Z Z K/’\’ng, (6.13)

c€C peAn(-3,2-¢)

where (Rgyeq: Ry reg) € H>(Q)% 8! is the singular function associated with A, and
K).c € C. Furthermore, we have the estimate

IRe e Rirreg)lsca+ D Y Kl < KISk B)lg

ceC AeAEn(—%,%—s)

+kl(Eg, Hp)loo +k > Y Ikl

ceCren.n(-3,1)
Hence by the stability estimate (5.1) and the estimate (6.3), we get

"(RE,reg’ RH,reg)"3—£,Q + Z z |K/,1,c| s (1 + k2+a)”(f1’ f2)”0,0~ (6'14)

c€C Qe n(-3,2-¢)

Coming back to the definition (6.11) of (Rg, Ry) and using its splitting (6.13), we find
the decomposition (6.10) of (Rg, Ry) with

(RE,sing’ RH,sing) =ik z z Kc,Anc(Ec,A>Hc,A) + Z z K/,t,cs/cl’

ceCAen.n(-3.3) ceC pehn(-1,2-¢)
that clearly belongs to H>"°(Q)® for any v, > 3 — t,, with the estimate

!
I(Resing: Rirsing) o Sk Y Ikeal+ Y > Ikl
Aenn(-3,0) ceC reA.n(-3,2-¢)

Using the estimates (6.3) and (6.14), we conclude that (6.7) is valid. O

Obviously, the same regularity results are valid for the solution (E*, H") = S; ((F, G)
of the adjoint problem

a((E,H'),(E", H")) = j(F E'+G-H), V(E.H)cV. (6.15)
Q

Indeed as

a (B H'), (B H")) = ay  (B*, E') + ag (A" H') + ik J (E -E +H -H)do,
oQ

we deduce that
(E",H") = $; 4(F,G).
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 327

6.2 Wavenumber explicit error analyses

With the above regularity results from Theorems 6.1 or 6.2 in hands, we can perform
some error analyses following a standard approach (see [31, Chapter 8] and [32, Sec-
tion 4]), the differences with these references are the loss of regularity and/or the use
of refined meshes. The situation from Theorem 6.3 is different and uses similar ideas
than in [10].

6.2.1 P,-elements with regular meshes

We start with the simplest case where we approximate V by a subspace made of piece-
wise polynomials of degree 1 on a regular (in the Ciarlet sense) mesh 7, of Q made of
tetrahedra, namely we take

Vh = V n Ipl,h’
where
3
Py = {(Ep Hy) € LA(Q) : Eyyp, Hyyp € (PU(T)), VT € Ty

At this stage, a finite element approximation of (E,H) = S (f, ;) € Vwith f,f, ¢
L?(Q) consists in looking for (Ej, Hy,) = Sisn(f, £5) € Vy solution of

as(Er s (BLH) = [(6 B+ 6 B, VELH) Vi (616)
Q
To analyse the existence of such a solution S; ; ,(f;, f,) and the error between this ap-

proximated solution and S, ;(f;, ), according to a general principle (see, for instance,
[32, 33] for the Helmholtz equation), we introduce the adjoint approximability

n(v,) = sup ISk s(F, G) — (Up, Vi)l
h (F,G)eLZ(Q)Z\{(O,O)} (Up,VieVy ”(F: G)“Q

By Theorem 4.2 of [32] (that directly extends to our setting), the existence and unique-
ness of a solution to (6.16) is guaranteed if kn(V;) is small enough (stated precisely
below).

To show such a result, we will use the standard Lagrange interpolant. Namely,
for any (E,H) € H'(Q), with t > 2, by the Sobolev embedding theorem, its Lagrange
interpolant I,(E, H) (defined as the unique element of P, ;, that coincides with (E, H)
at the nodes of the triangulation) has a meaning. If furthermore (E, H) belongs to V,
then I,(E, H) will be also in V, hence in V, since the normal vector is constant along
the faces of Q.

Recall that for any ¢t > %, we also have the error estimate

I(E, H) - L(E,H)ll,q < h' “I(E. Bl 0, (6.17)
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for £ = 0 or 1, see [12, Theorem 3.2.1] in the case t € N and easily extended to non-
integer t.
These estimates directly allow to bound n(Vy,).

Lemma 6.4. In addition to the assumptions of Theorem 6.1, assume that ty > % Then
forallt € (3,ty) and all k > k,, we have

n(Vy) < K171+ kh). (6.18)

Proof. Fix an arbitrary datum (F,G) € L?(Q)’ and denote (E*,H*) = S; (F,G). Then
owing to (6.17), we have

||(E*,H*) —Ih(E*,H*)”k < k"(E*,H*) —Ih(E*,H*)“QQ + ||(E*,H*) - Ih(]:".>l‘,H*)||l,Q
< (kh' + KB, H)|| 0.
The estimate (6.1) allows to obtain the result. O

Corollary 6.5. Under the assumptions of Lemma 6.4, for any fixed t € (%, to), there exists
C > 0 (small enough and depending only on Q and t) such that if

Kiih<c, (6.19)

then for all k > k, and all f,,f, € L?(Q), problem (6.16) has a unique solution Sisn(f )
and the following error estimate holds:

[Sk,s(F1, £5) = i n (B, Bl < KRt (6.20)
Proof. We first notice that the assumption (6.19) is equivalent to
k2+aht71 < Ct71
and also implies that
kh<C,

since t < 2. As (6.18) means that there exists C, > O (independent of k, s, and h) such
that

kn(Vy) < Cok* '~} (1 + kh),
we deduce that
kn(Vy) < Cok® R (1 + kh) < C,C™'(1 + ©).
As mentioned before, the existence of S  ,(f, f;) then follows from Theorem 4.2 of [32]
if
CoCt i1+ C) <
0 < ac

Cc

where C, is the continuity constant of a ; (that here is equal to max{1,s;}).
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9 The time-harmonic Maxwell equations with impedance boundary conditions =—— 329

Now, we use the arguments from Theorem 4.2 of [32]. Namely, we notice that
Ray (U, W), (U, W)) > min{1, so}(U, W)z - 2(IUJ3, + IWI5),

where for shortness we write (U, W) = S ((f, £,) - S; ; ,(f;, £,). Therefore, by (6.15), one
has

Ray (U, W), (U, W) + 2k°S; (U, W)) = Ray (U, W), (U, W))
+ 2k Ray (U, W), S; (U, W)
= Ra (U, W), (U, W) + 2K%(IUIIG, + IWIIR),

and by the previous estimate we deduce that
min{1, so}|(U, W[l < Ray ;((U, W), (U, W) + 2k°S; (U, W)).

By Galerkin orthogonality, we can transform the right-hand side of this estimate as
follows:

Ray o((U, W), (U, W) + 2k°S;, (U, W) = Ray o((U, W), S (£, ) - (Y}, Zp))
+ 2k Ray (U, W), S; (U, W) = (Up,, W),

forany (U, Wp,), (Y, Z;) € V},. By the continuity of the sesquilinear form a with respect
to the norm || - ||, the previous estimate and identity yield

10U, W)U < 1CU, W)l ISy 5 (B £5) = (Yo Zp) g + K2 1S5 (U, W) = (Upp, W)l
As (U, Wy) and (Y}, Z;) are arbitrary in V},, by taking the infimum, we deduce that

IUW)l < inf  1Sg (6 B) = (Y Zp)llx + K2n(V)I(U, W)l
(Yi,Zp)€Vy,

< _inf 1S, (F, ) — (i, Zp)li + kn(VR)I (U, W)l

f
(Yp,Zp)€V),
Hence for kn(V;) small enough, we deduce that

(G, Wl < ISk,s (1 £2) = (Yo Zp) g (6.21)

inf
(YpZp)eVy,
By the estimates (6.1) and (6.17), we conclude that

10U, W)l < (kh + h" )k = kKRN + kh) < KR O

Remark 6.6. The interest of considering non-divergence-free right-hand side in prob-
lem (3.5) appears in the definition of n(V},) (and its estimate) and in the above
proof. In both cases, the problem comes from the fact that even for divergence-free
fields fi, f,, each component of S ; ,(f;,f,) is not divergence-free. As a consequence,
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St s(Sks(f1 £) — Sy s n(£1, 1)) depends on s, but this plays no role in the estimate (6.20),
except that s has to be fixed so that the stability estimate holds. Consequently, at
least theoretically S ¢ ,(f;,f,) has to be computed with such an s, even if Sy ,(f}, f,) is
independent of s in case of divergence-free fields f;, f,, while practically (see below) it
is fixed by comparing k? with the spectrum of the Laplace operator —A with Dirichlet
boundary condition in Q (or an approximation of it).

Remark 6.7. For the unit cuboid, as @ = 1 (see Corollary 5.8) and ¢ can be as close as

we want to %, the condition (6.19) is mostly k% h small enough.

Remark 6.8. Let us notice that the estimate (6.21) is valid under the above assump-
tions, but if §; ;(f;, f,) belongs to HP'(Q)? and polynomials of degree p will be used to
define V), then the rate of convergence in h in the estimate (6.20) will be improved,
passing from h'™! to h?.

6.2.2 P;-elements with refined meshes

Here, we assume that the assumptions of Theorem 6.2 hold and want to take advantage
of the regularity of $ (£, £,) in H*"(Q)°, for any v > 2 - t,, (see estimate (6.4)). More
precisely following the arguments from [30, Theorem 3.3] (see also [2]) using a family
of refined meshes 7}, satisfying the refined rules

hr<h irelg r(x)” if T is far away from the corners of Q, (6.22)

hr < hﬁ if T has a corners of Q as vertex, (6.23)

with a fixed but arbitrary v € (2 - ty, 1) (as close as we want from 2 - t;), we have that
I(E, H) ~ Io(E. H)l,0 < B* (B, H)l,0,

for ¢ = 0 or 1. Consequently, as in the previous subsection, for V; build on such
meshes, there exists a positive constant C (independent of k, s and h) such that if

K*h < C,

then forall k > kyand allf;, f, € L(Q), problem (6.16) has a unique solution Sy ,(f;, f,)
and the following error estimate holds:

1) s (1, £5) — Sicsn(Fr £l < KA. (6.24)

6.2.3 IP,-elements with refined meshes

Under the assumptions of Theorem 6.2, we can improve the previous orders of con-
vergence and reduce the constraint between k and h. For those purposes, we use the
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9 The time-harmonic Maxwell equations with impedance boundary conditions = 331

splitting (6.8) of S (f;,f,) and the estimates (6.6) and (6.7) (recalling (6.10)). Then as
in the previous subsection, we need to use a family of refined meshes 7, satisfying the
refined rules:

hr <h in¥ r(x) 7 if T is far away from the corners of Q, (6.25)
Xe
2

hy <h*v if T has a corners of Q as vertex, (6.26)

with a fixed but arbitrary v, € (3—tg,2). In such a situation, again by (6.17) and by [30,
Theorem 3.3], we have

3-e-¢
"(RE,reg’ RH,reg) - Ih(RE,reg’ RH,reg)"&Q <h ¢ "(RE,reg’ RH,reg)HB—e,Q’ (6'27)

3-¢
||(RE,sing> RH,sing) - Ih (RE,sing’ RH,sing)||€,Q <h ”(RE,sing> RH,sing)||3,v0;Q> (6-28)

fore=0orl.
Let us now show that (6.25) (resp., (6.26)) guarantees that (6.22) (resp., (6.23))
holds with v = v, — 1. In the first case, we simply notice that

r(x)v70 = r(x)vTﬂ
and, therefore,
v+l
rx)z <rx)’
if and only if

)v+1

rx)"! < rx)?.

This last estimate is valid for any x € T because v belongs to (0, 1) and r(x) is bounded.
The second implication is a simple consequence of the fact that

Since our family of meshes then satisfies (6.22) and (6.23) withv = v, -1 > 2 — ty, we
deduce that

IS0 (£, £5) = I1So (1 Bl e.0 < B2 E1S0 (£ Bl (6.29)

for £ = 0 or 1. With such estimates in hand, we can estimate the adjoint approximabil-
ity.
Lemma 6.9. For V,, build on meshes satisfying (6.25) and (6.26), we have

n(Vy) < (1+kh)(h+ K°h*%). (6.30)
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Proof. Fix an arbitrary datum (F,G) € L?(Q)?, we denote (E*,H*) = Sis(F,G). Then
we use its splitting

(E*’ H*) = S; (F’ G) + (Rz,reg’ R;I,reg) + (Rg,sing’ R;I,sing)'
Owing to (6.27), (6.28) and (6.29), we have

”(E*, H*) _ Ih(E*’ H*)uk < (1+ kh)h|Sq(f;, fz)"z,v;Q
+ (1 + kh)hz_gll(RE,reg RE,reg)llB—s,O
+(1+ kh)hzn(RE,sing) RH,Sing)||3,v0;Q'

The estimates (6.6) and (6.7) allow to obtain the result. O

Consequently, as in the previous subsection, for V;, build on such meshes, there
exists a positive constant C (independent of k, s and h) such that if

KWt <,

then forall k > kyandallf;, £, € L(Q), problem (6.16) has a unique solution Sy, ,(f;, f,)
with the error estimate

1S).s (B, £5) = S sn (Bl < KR~

Remark 6.10. Note that the impedance boundary conditions are imposed as essential
boundary conditions. As we are dealing with polyhedral domains, Lagrange elements
can be used to construct conforming subspaces V},. The extension to curved domains
seems to be difficult, but a penalisation technique can be used [42].

6.3 Some numerical tests

For the sake of simplicity, we restrict ourselves to the TE/TH polarization of the prob-
lem (3.7). In other words, we take

QO=DxR,

where D is a two-dimensional polygon and assume that the solution of our problem is
independent of the third variable. In such a case, the original problem splits up into
a TE polarization problem in (E}, E,, H;) in D, and a TH polarization one in (H;, H,, E3)
in D, whose variational formulations are fully similar to (3.3). Furthermore, the singu-
larities of such problems correspond to the edge singularities of the original one.

We first use a toy experiment in the unit square D = (0, 1)? to illustrate our results.
In such a case, as exact solution, we take

E,(x1,xp) = —€m cos(€mxy) sin(€mx,),
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9 The time-harmonic Maxwell equations with impedance boundary conditions =— 333

E5(x1, x3) = €m sin(€mx;) cos(€mx,),

H;(xy, x5) = sin(€mx,) sin(€mnx;,),
where ¢ ¢ N*. With such a choice, we notice that (E;, E,) is divergence-free, that
AE,; + K’E; = AE, + K°E, = AH; + k*H; = 0,

with k> = 2¢*7% and that they satisfy the impedance boundary condition. We then
compute the right-hand side of (3.3) accordingly (where only a boundary term occurs).
In our numerical experiments, we have chosen either £ = 2, 5, 8, 10, 15 or 29 and
s = 14.3. This choice of s is made because it yields satisfactory numerical results, but
it is also in accordance with the condition that —k?z is different from the eigenvalues
of the Laplace operator A with Dirichlet boundary conditions in D, which in this case
means that

k—2 + (&2 + O’ (6.31)
S 1+ &) .

for all positive integers ¢;, ¢,. Indeed, in the first case £ = 2, the ratio k?z is smaller
than the smallest eigenvalue 272, while in the other cases, it is strictly between two
eigenvalues.

In Figures 9.1-9.3, we have depicted the different orders of convergence for differ-
ent values of h, k and p = 1,2, and 4. From these figures, we see that if polynomials of
order p are used, then in the asymptotic regime, the convergence rate is p for h small
enough as theoretically expected, since the solution is smooth (see Remark 6.8).

log(error)

@ ||U — Up 1 ||s, with k = 8v/2m
ith k = 8v2m
s with k= 2v/2r
vl with & = 2/27

'
[\

3 3.5 4 4.5 5 5.5 6
log()

—c
o
[¥1 3
[N
S

Figure 9.1: Rates of convergence for p = 1, k = 2vV2mor8vV2m (U = Sy 5(f1,5,), Upp, = Sgsp(fin ),
Wh,p = Phsk,s(fl’fZ))'
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8
=@ ||U — U2, with k = 10v27
—— ||U vith k = 10v/2m
T 5van

et (| U — W[, with & = 5v/27

log(error)
o

1.5 2 2.5 3 3.5 4 4.5
log(j;)

Figure 9.2: Rates of convergence for p = 2, k = 5v2m or 10V2.

Qe (U — U s, with k = 2927

e [U — Wi, o]|e, with k = 29v/27
== U = Unalls,
— U = W]l with k = 15v/27
2k
-4 N N N N N
3 3.5 4 4.5 5 5.5 6

log(3)

Figure 9.3: Rates of convergence for p = 4, k = 15v2m or 29 V2.

The second main result from Sections 6.2.2 and 6.2.3 states that if k’**h? < 1withp = 1
or 2 (up to £ for p = 2), then

[1Sg,s(F1, ) — S s n (B )i < 1855 (£, ) — PS5 (£, ) [l (6.32)

where Py, is the orthogonal projection on V), for the inner product associated with the
norm || - ||, namely for (U, V) € V, P, (U, V) is the unique solution of

(P4(U, V), (U}, V1)), = ((U,V), (U, VR)e V(U V) €V,
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where

(U, V), (U, V")), = j(curlU ccurl 0 +sdivUdivD’ + KU-T') dx
Q

+ J(cuer ccurl V! + sdivVdivV' + KV - V') dx.
Q

In order to seeif this bound is sharp or not, we compute S ; (£}, £,) and P, S ((f}, £5)
for different values of h, p and k. For each k and p, we denote by h* (k) the greatest
value h, such that

ISk s(£1, £5) — Sy s n (B By < 2118y 5 (£, £5) — PySy s (L B, Yh < by (6.33)

The value of h* (k) for a given k is obtained by inspecting the ratio

1Sk s (£, £5) = S s n (B, B)lIx
ISks(Er ) — PpSpc s (F1, )i

Condition (6.33) states that the finite element solution must be quasi optimal in the
| - Il norm, uniformly in k (with the arbitrary constant 2).
The graph of h* (k) is represented in Figure 9.4(a), 9.4(b) and 9.4(c) for P,, P, and
P, elements, respectively. We observe that in both cases h* (k) ~ k™YP which is better
than the condition k**?h? < 1that would furnish h* (k) ~ k""*. Indeed, it means that
quasi-optimality in the sense of (6.33) is achieved under the condition that h < h* (k) ~
k7Y which is equivalent to kPR < kP*'[h* (k)P < 1, that is better than kP*?HP < 1.
We thus conclude that our stability condition seems to be not sharp and can probably
be improved. Note that our experiments indicate that this stability condition remains
valid for values of p larger than the theoretical one, that is, here equal to 2.
As a second example, we take on the square (-1, 1) the exact solution given by
E (X, %) = xzeikxl,
E)(x1,x,) = —xleikxl,
H;(x1, %) = Aimpeikxl,
that satisfies the homogeneous impedance boundary condition
H; - AjpE¢ =0 onaD.

We have computed the numerical approximation of this solution for k = 30, the
choice s = 14.3 (again with this choice, g is smaller than the smallest eigenvalue 277%),
and for different values of A;,,, namely we have chosen A;,, = 1,10,50 and 100. In
Figure 9.5, we have depicted the different orders of convergence for p = 1,2 and 4 and
different values of h. Again since the solution is regular, the rate of convergence p is
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Figure 9.4: Asymptotic range of h* (k) for p = 1,2, 4.

observed in the asymptotic regime and seems not to be affected by the variation of
Aimp-

Finally, we have tested the case when a corner singularity appears. Namely, on the
L-shaped domain L = (-1, )%\ ((0,1) x (-1,0)), we take as exact solution (written in
polar coordinates (r, 8) centred at (0, 0))

E(r,6) = v<r§ sin(l;—9>eik’>,

Hy(r,0) = 0.

This solution exhibits the typical edge singularity of our Maxwell system described in
Section 4.2.

This solution does not satisfies the homogeneous impedance boundary condition
(with Aimp = 1), hence we have imposed to our numerical solutions (E, Hs) to satisfy

H3p(v) - Epg(v) = —E¢(v),
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log(4)

(c)p=4

Figure 9.5: Rates of convergence for Aj,, = 1,10,50,100 with p = 1,2, 4.

at all nodes of the boundary of L. The convergence rates for k = 1,50 and 100 are
presented in Figures 9.6 and 9.7 for different values of h and p. There we observe, in
the asymptotic regime, that for k = 1, the use of quasi-uniform meshes affects the rate
of convergence since for p = 1it is equal to %, while the use of refined meshes restores
the optimal rate of convergence 1 (as theoretically expected). On the contrary for k = 50
or 100, we see, again in the asymptotic range, that the rate of convergence is p. This
observation is in accordance with a recent result proved in [11] for Helmholtz problems
in polygonal domains, which shows that in high frequency the dominant part of the
solution is the regular part of the solution (which in our case is zero). Note that we
have also chosen s = 14.3. Indeed for k = 1, the spectral condition on k?z holds since
the smallest eigenvalue of the Laplace operator with Dirichlet boundary conditions in
L is approximatively equal to 9.6387; see [18, 41]. We are not able to check if the spectral
condition is valid for k = 50 or 100 since the approximated values of the eigenvalues of
the Laplace operator with Dirichlet boundary conditions in L seem to be only available
up to 97 (see [41, Table 1]), but since our numerical results are satisfactory, we suppose
that it is satisfied.
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Figure 9.6: Rates of convergence for the singular solution in the L-shaped domain for k = 1with
uniform and refined meshes for p = 1.
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Figure 9.7: Rates of convergence for the singular solution in the L-shaped domain for k = 50 or 100
with p = 1 (left) and p = 2 (right).

Note that our numerical tests are performed with the help of XLife++, a FEM library
developed in C++ by P. 0. E. M. S. (Ensta) and I. R. M. A. R. (Rennes) laboratories.
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Frank Osterbrink and Dirk Pauly

10 Time-harmonic electro-magnetic scattering
in exterior weak Lipschitz domains with
mixed boundary conditions

Abstract: This paper treats the time-harmonic electro-magnetic scattering or radiation
problem governed by Maxwell’s equations, i. e.,

-1otH +iweE=F inQ, Exv=0 onfl,

rotE +iwpH =G inQ, Hxv=0 onl,

where w € C\ (0) and Q ¢ R’ is an exterior weak Lipschitz domain with boundary I
divided into two disjoint parts I; and I',. We will present a solution theory using the
framework of polynomially weighted Sobolev spaces for the rotation and divergence.
For the physically interesting case w € R\ (0), we will show a Fredholm alternative
type result to hold using the principle of limiting absorption introduced by Eidus in
the 1960s. The necessary a priori estimate and polynomial decay of eigenfunctions
for the Maxwell equations will be obtained by transferring well-known results for the
Helmholtz equation using a suitable decomposition of the fields E and H. The crucial
point for existence is a local version of Weck’s selection theorem, also called Maxwell
compactness property.

Keywords: Maxwell equations, radiating solutions, exterior boundary value problems,
polynomial decay, mixed boundary conditions, weighted Sobolev spaces, Hodge—
Helmholtz decompositions

MSC 2010: 35Q60, 78A25, 78A30

1 Introduction

The equations that describe the behavior of electro-magnetic vector fields in some
space-time domain I x Q ¢ R x R3, first completely formulated by J. C. Maxwell in
1864, are

-totH+0;D=], rotE+0;B=0, inlIxQ,
divD = p, divB=0, inIxQ,
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where E, H are the electric, respectively, magnetic field, D, B represent the displace-
ment current and magnetic induction and J, p describe the current density, respec-
tively, the charge density. Excluding, e. g., ferromagnetic, respectively, ferroelectric
materials, the parameters linking E and H with D and B are often assumed to be of the
linear form D = ¢E and B = uH, where € and u are matrix-valued functions describing
the permittivity and permeability of the medium filling Q. Here, we are especially in-
terested in the case of an exterior domain Q ¢ R3, i. e., a connected open subset with
compact complement. Applying the divergence to the first two equations, we see that
the latter two equations are implicitly included in the first two and may be omitted.
Hence, neglecting the static case, Maxwell’s equations reduce to

—rotH +0,(¢E)=F, rotE+0;(uH)=G, inIxQ,

with arbitrary right-hand sides F, G. Among the wide range of phenomena described
by these equations one important case is the discussion of “time-harmonic” electro-
magnetic fields where all fields vary sinusoidally in time with frequency w € C \ (0),
i.e.,

Et,x) = e“'Ex), H(tx) =e“Hx), Gtx) =e“Gx), F(tx) =e“Fix).

Substituting this ansatz into the equations (or using Fourier transformation in time)
and assuming that € and u are time-independent we are lead to what is called “time-
harmonic Maxwell’s equations”:

rotE +iwpyH = G, -rotH +iweE=F, inQ. (1.1)

This system equipped with suitable boundary conditions describes, e. g., the scatter-
ing of time-harmonic electro-magnetic waves which is of high interest in many appli-
cations like geophysics, medicine, electrical engineering, biology and many others.
First existence results concerning boundary value problems for the time-harmonic
Maxwell system in bounded and exterior domains have been given by Miiller [13, 12].
He studied isotropic and homogeneous media and used integral equation methods.
Using alternating differential forms, Weyl [29] investigated these equations on Rie-
mannian manifolds of arbitrary dimension, while Werner [28] was able to transfer
Miiller’s results to the case of inhomogeneous but isotropic media. However, for gen-
eral inhomogeneous anisotropic media and arbitrary exterior domains, boundary
integral methods are less useful since they heavily depend on the explicit knowledge
of the fundamental solution and strong assumptions on boundary regularity. That is
why Hilbert space methods are a promising alternative. Unfortunately, Maxwell’s
equations are nonelliptic, hence it is in general not possible to estimate all first
derivatives of a solution. In [9], Leis could overcome this problem by transforming
the boundary value problem for Maxwell’s system into a boundary value problem for
the Helmholtz equation, assuming that the medium filling Q, is inhomogeneous and
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anisotropic within a bounded subset of Q. Nevertheless, he still needed boundary
regularity to gain equivalence of both problems. But also for nonsmooth boundaries
Hilbert space methods are expedient. In fact, as shown by Leis [10], it is sufficient
that Q satisfies a certain selection theorem, later called Weck’s selection theorem or
Maxwell compactness property, which holds for a class of boundaries much larger
than those accessible by the detour over H' (cf. Weck [24], Costabel [2] and Picard,
Weck, Witsch [20]). See [11] for a detailed monograph and [1] for the most recent result
and an overview. The most recent result regarding a solution theory is due to Pauly
[16] (see also [14]) and in its structure comparable to the results of Picard [18] and
Picard, Weck and Witsch [20]. While all these results above have been obtained for
full boundary conditions, in the present paper we study the case of mixed boundary
conditions. More precisely, we are interested in solving the system (1.1) for w € C\ (0)
in an exterior domain Q ¢ R3, where we assume that I := 9Q is decomposed into two
relatively open subsets I'; and its complement [, := I'\ T, and impose homogeneous
boundary conditions, which in classical terms can be written as

vxE=0onT, vxH=0onT, (v : outward unit normal). (1.2)

Conveniently, we can apply the same methods as in [15] (see also Picard, Weck and
Witsch [20], Weck and Witsch [27, 25]) to construct a solution. Indeed, most of the
proofs carry over practically verbatim. For w € C \ R, the solution theory is obtained
by standard Hilbert space methods as w belongs to the resolvent set of the Maxwell op-
erator. In the case of w € R\ (0), i. e., w is in the continuous spectrum of the Maxwell
operator, we use the limiting absorption principle introduced by Eidus [4] and approx-
imate solutions to w € R\ (0) by solutions corresponding to w € C\R. This will be suf-
ficient to show a generalized Fredholm alternative (cf. our main result, Theorem 3.10)
to hold. The essential ingredients needed for the limit process are

— the polynomial decay of eigensolutions;

— ana priori estimate for solutions corresponding to nonreal frequencies;

— a Helmholtz-type decomposition;

— and Weck’s local selection theorem (WLST), that is,

Rr,(Q) n & 'Dp (Q) > L}, (Q) is compact.

While the first two are obtained by transferring well-known results for the scalar
Helmholtz equation to the time-harmonic Maxwell equations using a suitable de-
composition of the fields E and H, Lemma 4.1, the last one is an assumption on the
quality of the boundary. As we will see, WLST is an immediate consequence of Weck’s
selection theorem (WST), i. e.,

er(G)) n e‘lDrz(G) — Lz(G)) is compact,
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which holds in bounded weak Lipschitz domains © c R3, but fails in unbounded such
as exterior domains (cf. Bauer, Pauly, Schomburg [1] and the references therein). For
strong Lipschitz-domains, see Jochmann [7] and Fernandes, Gilardis [5].

2 Preliminaries and notation

Let Z, N, R and C be the usual sets of integers, natural, real and complex numbers,
respectively. Furthermore, let i be the imaginary unit, Re z, Im z and z real part, imag-
inary part and complex conjugate of z € C, as well as

R,:={se€R|s>0}, C,:={zeC|lmz>0}, I:={2m+1)/2|meZ\(0)}.

For x € R" with x # 0 we set r(x) := |x| and &£(x) := x/|x| (| - | :Euclidean norm in R").
Moreover, U(F), respectively, B(¥) indicate the open, respectively, closed ball of radius
7in R" centered in the origin and we define

S(F) := B \U(F), U®F) :=R>\B(F), G(F#):=U®F) nU®F)

with7 > 7. If f : X — Y is a function mapping X to Y the restriction of f to a subset
U c X will be marked with f|; and D(f), N(f), R(f), and suppf denote domain of
definition, kernel, range, and support of f, respectively. For Banach or Hilbert spaces
X and Y we denote by L(X,Y) and B(X, Y) the sets of linear respectively bounded linear
operators mapping X to Y. For X, Y subspaces of a normed vector space V, X+ Y, X +Y,
and X @Y indicate the sum, the direct sum, and the orthogonal sum of X and Y, where
in the last case we presume the existence of a scalar product -, )y on V. Moreover,
(-, Yxxy> respectively, | -[x.y denote the natural scalar product resp. induced norm
on X x Y. If X = Y, we often simply use the index X instead of X x X.

2.1 General assumptions and weighted Sobolev spaces

Unless stated otherwise, from now on and throughout this paper, it is assumed that
Q c R® is an exterior weak Lipschitz domain with weak Lipschitz interface in the sense
of [1, Definition 2.3, Definition 2.5], which in principle means that I' = 0Q is a Lipschitz-
manifold and I'; respectively I, are Lipschitz-submanifolds of I'. For later purposes, we
fix ry > 0 such that R> \ Q € U(r,) and define for arbitrary 7 > r,,

Q) =QnU®).
With r, := 21y, k € Nand 77 € C*°(R) such that
0<f<1, Suppf c(-00,2=6), Tl i) =1 2.1)
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for some 0 < 6 < 1, we define functions 1, 7, ., 1 € C*(®R%) by

nx) :=nrx)/ry), nx):=1-nkx), nx):= ﬁ(r(x)/rk), respectively 1, (x) :=1-n(x),

meaning
suppn € B(ry) withnp =10onU(ry), supp i € U(rg,1) with n=1onU(ry),
_ _ respectively _ -
suppf € U(ry) withi7=10nU(ry), suppfy ¢ U(r,)  with i =1onU(r,,).

These functions will later be utilized for particular cut-off procedures.

Next, we introduce our notation for Lebesgue and Sobolev spaces needed in the
following discussion. Note that we will not indicate whether the elements of these
spaces are scalar functions or vector fields. This will be always clear from the context.
The example'

E = VIn(r) € H,.(T(1)), rot E = 0 € L*(UQ1)),

vxElsq =0, divE =% e L*(U(D)
shows that a standard L%-setting is not appropriate for exterior domains. Even for
square-integrable right-hand sides, we cannot expect to find square-integrable solu-
tions. Indeed, it turns out that we have to work in weighted Lebesgue and Sobolev
spaces to develop a solution theory. Withp := (1 + )2 we introduce for an arbitrary
domainQ c R*,t e R,andm e N
LA(Q) = {w € Lj,.(Q) | p'w € L*(Q)},
HM(Q) == {we LJ(Q)| Vel <m: 0w e LF(Q)},
HE'(Q) = fw € Q) |Val < m: 0w e Lf, (),

R(Q) = {E e LA(Q)| otE e LAQ)},  R(Q) :={E € L}(Q)| 1ot E € L, (Q)},

D,(Q):= {H e L}(Q)| divH e L}(Q)}, D(Q):={H € L}(Q)| divH € L{,(Q)},

where a = (a;, a5, a3) € N° is a multi-index and 9" w := 97" 852 85’ w, rot E, and divH
are the usual distributional or weak derivatives. Equipped with the induced norms,

2 o NAtl?
"W"LZ(Q) T "p W"B @’

IWIIHm(Q) > "aaW"LZ(Q)’
|lalsm
2
Wy = X 1wl @ -
lal<m

1 Although the right-hand sides 0 and r2 are Lz(ﬁ(l))-functions, we have E = ¢&/r ¢ Lz(ﬁ(l)), but
E € 12,(0Q)).
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IEIE, o = IEIS, o + It EJ} IEIZ o = IEI%, o + IOt E[?

(Q) L2(Q) L)’ R (Q) L2(Q) L2,,(Q)

IHIP o = IH II )+ IdivH I IHIP o = IH II )+ IdivH I

(Q) L@’ D (Q) (E(0))

they become Hilbert spaces. As usual, the subscript “loc” respectively “vox” indicates
local square-integrability respectively bounded support. Please note, that the bold
spaces with weight t = 0 correspond to the classical Lebesque and Sobolev spaces
and for bounded domains “nonweighted” and weighted spaces even coincide:

H{(Q) = H{(Q) = H{(Q) = H'(Q)
QcR’bounded = VteR: {R/(Q)=R(Q)=R,(Q) = H(rot, Q)
D,(Q) = D,(Q) = Dy (Q) = H(div, Q)

Besides the usual set ém(Q) of test fields (resp., test functions), we introduce
CEO(Q) ={ plg | € C°(R%) and dist(suppo,[}) >0}, i=12

to formulate boundary conditions in the weak sense:

1 |H m(Q) ([ R (Q) |D(Q

HL Q= CRQ) 1, Rp(@:=C0Q ., Dy (@:=CR@) 7,
2.2)

o

Il- |H m () — 1 R,(Q)

HEE(Q) = C(Q) s Re(@=CP@ 7, D (Q) = Q)

These spaces indeed generalize vanishing scalar, tangential and normal Dirichlet
boundary conditions even and in particular to boundaries for which the notion of a
normal vector may not make any sense. Moreover, O at the lower left corner denotes
vanishing rotation respectively divergence, e. g.,

oR(Q) := {E € R(Q)| rot E = 0}, oDyr, (@) :={H € Dt,rl(Q)| divH =0}, ...,
and if t = 0 in any of the definitions given above, we will skip the weight, e. g.,
H™(Q) = H3'(Q), R (Q) =Ry, (Q), D (Q) =Dy (Q),
Finally we set

s =[ X and X, :=[JX (seR),

t<s t>s
for X; being any of the spaces above. If Q = R® we omit the space reference, e.g.,
HY = HP(R%), Ry =R (R’), Dy :=D(R’), Hf :=HT (R,

The material parameters € and y are assumed to be xk-admissible in the following
sense.
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Time-harmonic Maxwell equations = 347

Definition 2.1. Let x > 0. We call a transformation y k-admissible, if
- y:Q — R¥isan L®-matrix field,
— yis symmetric, i. e.,

VEH el*(Q): (E,yH)pq = (YE.H) s
-y is uniformly positive definite, i. e.,
3c>0VEelX(Q:  (E.VE)pg 2 ¢ IElGy, -

- yis asymptotically a multiple of the identity, i. e.,
Y=VYo-1+y with yoeR, and y=0(r") as r— co.
Then &, u are pointwise invertible and el y‘l defined by
e x) = (e(x))_1 and p'(x):= (y(x))_l, xeQ,
are also xk-admissible. Moreover,
(5 )e=(€ D and ()= (M)

define scalar products on L?(Q) inducing norms equivalent to the standard ones. Con-
sequently,

Lo(Q) = (L(Q), (5-),), (@) = (LAQ),(+,-),),  and  L{(Q) = L2(Q) x L3(Q)
are Hilbert spaces and we denote by
lles Wl Hlla s @ @, @, and 1, 1, 1,

the norm, the orthogonal sum and the orthogonal complement in these spaces. For
further simplification and to shorten notation, we also introduce fore = ¢, - 1 + £ and
M =g - 1+ ji (recalling &(x) = x/r(x)) the formal matrix operators

-1 ~
A= [S O], A= [8 (31], A= [S 9],
0 u 0 u 0 nu
A(E,H) = (¢E,uH), AN (E,H) = (¢ 'E,u'H), A(E,H) = (¢E,jiH),
S
AO'_[O Hol’ o=y gl T lex o I

No(E.H) = (eoE.MoH), Ao (E.H) = (UoE.eoH),  E(E.H) = (& x H,§ xE),

0 -rot - 0  —ie'rot
Rot::[ ro], M::iAlRot:[, b € ro],
rot 0 iy~ rot 0
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348 —— F. Osterbrinkand D. Pauly

Rot (E,H) = (- rotH,rotE), M (E,H) = (-ig ' rot H, iy rot E).

We end this section with a lemma, showing that the spaces defined in (2.2) indeed
generalize vanishing scalar, tangential and normal boundary conditions.

Lemma 2.2. Fort € Randi € (1,2), the following inclusions hold:
(a) Hg‘ri (Q) c Hg‘ri(Q), Rer,(Q) € Ry (Q), Dyp (Q) € Dy (Q)

(b) VHip (Q) € oRf(Q), VH{;(Q) C Ry 1 (Q)

(c) rot Rer (Q) € oD (Q), 10tR [ (Q) C D,y (Q)

Additionally, we have fori,j € (1,2), 1 + j:

Her, (@) = Hyp (@) = {w e HU(Q) | VO € CE(Q): (W, divD) ) = ~(VW, @),

@ = @ e

R, (Q) = R (Q) = {E € R(Q) | VO € C(Q) 1 (E,10t®) 5 = (10tE,®) 0 },

Dy (Q) =Dy (Q):={HeD(Q) | Vo € CEO(Q) D (H, V) g = —(divH, )5
and

Hip (Q) = H;p (Q) = {w e Hi(Q) | VD € CC@: (w,divd), —~(Vw, D),

Ok @ e

Ryr,(Q) = Ry, (Q) = {E € R(Q) | YO € CP(Q): (E,10t®) ) = (1ot E, @)}

(®)
Dy, (Q) = Dy, (@) = {H € D(Q) | Y € CP(Q): (H,V)oq) = ~(divH, ) o0

where (by continuity of the L2-scalar product) we may also replace CEO(Q) by
Hyp (@), Ry (Q), Dy (Q) resp. Hip(Q), Ryp(Q), Dyp(Q),

withs+t>0resp.s+t > —1.

Proof. As representatives of the arguments, we show
(i) ot R (Q) € oDy, (Q) and (ii) Rer (Q) =Ry, (Q).

For E € rot Rt,FZ(Q)’ there exists a sequence (€,)pen C C?S(Q) such thatrot&,, — E in
L}(Q). Then
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Time-harmonic Maxwell equations =—— 349

Vo eCPQ: (E,V) g = im (10t&,, V)
= —r}Lr£10(div(r0t5n),¢)Lz(Q) =0,
hence E has vanishing divergence and (E,) ¢\ defined by E,, := rot &, satisfies

o0 L@ . . 121(@)
(Enen € C(Q), E,——E and divE, =div(rot§,) =0 —— 0.

ThusE € ODt,Fz (Q), showing (i). Let us show (ii). We have Rt,rl Q) c Rt,rl(Q)- For the
other direction, let E ¢ 'Rt,rl(Q) and § > 0. Using the cut-off function from above
we define (Ep)ien by Ex = miE. Then E € R; (Q@2n), I, := I USQry), since for
@ e C7(Q(2rp)) it holds by n @ € CF(Q)

(Ei» 10t @) 205y 3y = (MiE, 1OLD ) 5 0
= (E,rot(rlkq)) >L2(Q) - <E’ Vrlk X (D >L2(Q)

:(11,<1'0tE+Vnk><E,CI))L2 =(r0tEk,(ID)L2

Q@) Q@)

By means of monotone convergence, we have?
E - E = |n.E < E ! E 0
IE ~ Eell ) = WikEll, @) < € (1Ellg i, + 55 Wl ) = O

hence we can choose k > 0 such that |E - Ei<||R @ < 8/2.AsQ(2rp) = QNnUQRry) isa
bounded weak Lipschitz domain, we obtain ’er(Q(er()) = Ry, (Q(2r;)) by [1, Section

3.3], vielding the existence of some ¥ ¢ C??(Q(er()) such that

1B~ ¥l iy < € 1Ei ~ Plagaary < 672

Extending ¥ by zero to Q, we obtain (by abuse of notation) ¥ ¢ C‘r’f’(Q) with

5+§=6,

IE = ¥llg (o, < IE - E; 2w <3%5

k"Rt(Q) + |IEz - \y"Rt(Q(

which completes the proof. O

2.2 Some functional analysis

Let H; and H, be Hilbert spaces and let A : D(A) ¢ H; — H, be a linear, densely
defined, and closed linear operator with the adjoint A* : D(A*) ¢ H, — H;, which
is then linear, densely defined, and closed as well. Note that A* is characterized by

(AX,y)y, = (x,A*y)H1 Vx € D(A), y € D(A™).

2 Here and hereafter, ¢ > 0 denotes some generic constant.
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350 — F. Osterbrink and D. Pauly

By the projection theorem, we have the following Helmholtz-type decompositions:
Hi=RA")eN(A), and H,=RA)eN(A"),

which propose the corresponding reduced operators A := Al ay, A" = A" pras)es
i.e.,

A:D(A) c R(A*) — R(A), A* :D(AY) c R(A) — R(A"),
- resp.
D(A) = D(A) NR(A"), D(A*) = D(A*) N R(A).

These operators are also closed, densely defined and indeed adjoint to each other.
Moreover, by definition .4 and .A* are injective and, therefore, the inverse operators

AT R(A) — D(A) and (A)TT:R(A*) — D(AY)

exist. The pair (A4, A") satisfies the following result of the so-called Functional Analysis
Toolbox (see, e. g., [17, Section 2]), from which we will derive some Poincaré-type esti-
mates for the time-harmonic Maxwell operator (M — w) (cf. Remark 3.11 and Remark
3.7).

Lemma 2.3. The following assertions are equivalent:

(1) 3epe(0,00) VxeDA):  Ixlly, < calAxy,
(1) 3cpr €(0,00) Vy € D(A™): IVl < Ca- 1A Vily,.
(2 R(A) = R(A) is closed in H,.

(2*) R(A*) = R(A")ist closed in H;.

(3) A1:RA) — D(A) is continuous.

(3% (A"‘)*l : R(A*) — D(A")is continuous.

Note that for the “best” constants c, and c,- it holds

|4 cp = cpe = (A"

-1 -1
"R(A),R(A*) = ) HR(A*),R(A) :

3 Solution theory for time-harmonic Maxwell
equations

As mentioned above, we shall treat the time-harmonic Maxwell equations with mixed
boundary conditions

—rotH +iweE = F in Q, Exv=0 onlj,
(1)
rotE + iwpH = G in Q, Hxv=0 onl,
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Time-harmonic Maxwell equations = 351

in an exterior weak Lipschitz domain Q ¢ R? and for frequencies w € C\(0). Moreover,
we suppose that the material parameters € and y are k-admissible with k¥ > 0. Using
the abbreviations from above and rewriting

u:=(EH), f:=iA'(-F,0G),
the weak formulation of these boundary value problem reads:
For f € L, .(Q) find u e Rioer, Q) x Riocr, (Q) suchthat M- w)u = f. (3.2)

We shall solve this problem using polynomially weighted Hilbert spaces. In doing
so, we avoid additional assumptions on boundary regularity for Q, since only a com-
pactness result comparable to Rellich’s selection theorem is needed. More precisely,
we will show that Q satisfies “Weck’s (local) selection theorem”, also called “(local)
Maxwell compactness property”, which in fact is also an assumption on the quality of
the boundary and in some sense supersedes assumptions on boundary regularity.

Definition 3.1. Let y be x-admissible with ¥ > 0 and let O ¢ R® be open. Q satis-
fies “Weck’s local selection theorem” (WLST) (or has the “local Maxwell compactness
property”), if the embedding

Rr,(Q) Ny "D (Q) — L}, (Q) (3.3)

is compact. Q satisfies "Weck’s selection theorem” (WST) (or has the “Maxwell com-
pactness property”) if the embedding

Rr,(Q) ny™'D(Q) — LX(Q) (34)
is compact.

Remark 3.2. Note that Weck’s (local) selection theorem is essentially independent of
y meaning that a domain Q ¢ R> satisfies WST respectively WLST, if and only if the
imbedding

Rr () N D (Q) — L’(Q) resp. Rp(Q)ND(Q) — L}, (Q)
is compact. The proof is practically identical with the one of [19, Lemma 2] (see also
[24, 22)).

Lemma 3.3. Let y be k-admissible with k > 0 and let Q ¢ R? be an exterior domain.
Then the following statements are equivalent:

(a) Qsatisfies WLST.

(b) Forall¥ > ry the imbedding

R; (Q() Ny "D, (QF) — LA(Q(7)
1 2
with fl := [, US(F) is compact, i.e., Q(F) satisfies WST.
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352 — F.Osterbrink and D. Pauly

(c) Forall¥ > r, theimbedding
R (Q(F) N Y_lsz(Q(f)) — L2(Q(P)

with T, := T, U S(F) is compact, i.e., Q(F) satisfies WST.
(d) Foralls,t € Rwitht < s, the imbedding

Ry, (Q) Ny "Dy (Q) — L{(Q)

is compact.

Proof. (a)=(b): Let ¥ > r,. By Remark 3.2, it is sufficient to show the compactness of
R|~.1 Q) n Drz(Q(i‘)) — LZ(Q(?)).

Therefore, let (E,)pen C Rf Q@) n DrZ(Q(?)) be bounded, chooser, < ¥ < ¥ and a

cut-off function y € € (R3?) with suppy ¢ U(F) and x| = 1. Then, for every n € N
we have

E,=E,+E,:=xE,+ 1-x)E,, suppE,cQ®), suppkE,cG(#7),

splitting (E,,),cn into (E,)pen and (E,),cn- Extending E, respectively E, by zero, we
obtain (by abuse of notation) sequences

(Eppen € Rr (@) nDr(Q) and (Eppen € Rs (U(M) N D(U(F))

which are bounded in the respective spaces. Thus, using Weck’s local selection the-
orem and Remark 3.2, we can choose a subsequence (En(n))ne]N of (Ep)pen cONVerg-
ing in L}, .(Q). The corresponding subsequence (Eyz(n))nen i of course also bounded in

R (U() N D(U(7)) and by [23, Theorem 2.2], even in H'(U(#)), hence (Rellich’s selec-
tion theorem) has a subsequence (Ej () e converging in L*(U(F)). Thus

1Ez () = Enomll 2

sc- ( X (Ezmy = Ezem)l 2y + 11 = 0 Emy = Ezem)li2aqryy )

m,n—oo

sC- (”Eﬁ(n) - JrEﬂr‘r(m) "L?(Q(;)) + By - Ef'r(m) "LZ(U(?))) —0,

meaning that (Ez ) )nen € (Ep)nen is @ Cauchy sequence in L2(Q(F)).

(b)=(d): Lets, t € Rwiths > t and let (E,,)en € Ryr (Q) ny"lDS)rz(Q) be bounded.
Then there exists a subsequence (En))nen € (En)nen Which converges weakly in
Ry, (Q) ny™'Dy[ (Q) to some vector field E € Ry (Q) Ny~ 'Dg; (Q). We now construct
a subsequence (Ezn))new Of (Eq(n))nen cONVerging in Lfoc(ﬁ) to the same limit E. For
this, observe that

(Err(n),l)ne]N with En(n),l = rllEn(n)
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is bounded in R: (Q(r;)) N y’lDrz (Q(ry)), T := I, U S(r,) such that by assumption there
1
exists a subsequence (Ey, () 1)nen CONVerging in L2(Q(r,)). Then (Er,(mp)nen € Enmynen

is converging in LZ(Q(Tl)), and, as (Ey, () )new is also weakly convergent in LZ(Q(rl)), we
have

Enm — E  inL3(Qr).

Multiplying (Ej, (5))new With 1,, we obtain a sequence (E; ;) 2)nens Er, ()2 = MoEn,m)
bounded in Rrl (Q(r3))ny‘1Dr2(Q(r3)), I, := [;US(r;), and, as before, we construct a sub-
sequence (E; () 2)nen CONVerging in LZ(Q(r3)), giving again a converging subsequence
(Ery(mnen € (Ex,(n))nen With

Erm — E inl2(Qry).

Continuing like this, we successively construct converging subsequences (E; ())nen
with E; () — Ein L%(Q(r;.)) and switching to the diagonal sequence we indeed end
up with a sequence (Ej ) )nen» 71(n) := m,(n), with E(,y — E in L}, (Q). Now Lemma

loc
A.1implies for arbitrary 6 > 0

"Eﬁ(n) - EuLf(Q) sc: ”Efr(n) - E"LZ(Q([)‘)) +0,
with ¢, 8 € (0, co) independent of Ej,,,. Hence

lim Sup | 5y — Ef 2, < 6

and we obtain E;,, — E in Lf(Q).

(d)=(a): For (E,),n bounded in er(Q) n y‘IDrz(Q), assertion (c) implies the ex-
istence of a subsequence (E )N CONverging in LEI(Q) to some E ¢ Lfl(Q). Then
E €2 (Q)and as

loc
- ] 172
vr>0: ”En(n) - E“LZ(Q(i)) <@+n7- ”En(n) - E”Lgl(g) ’
we obtain (E;(y)peny — E in L (Q).
Similar arguments to those corresponding to (b) show the assertion for (c). O

As shown by Bauer, Pauly, and Schomburg [1, Theorem 4.7], bounded weak Lip-
schitz domains satisfy Weck’s selection theorem and by Lemma 3.3 (a) this directly
implies the following.

Theorem 3.4. Exterior weak Lipschitz domains satisfy Weck’s local selection theorem.

Returning to our initial question, a first step to a solution theory for (3.2) is the
following observation.
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354 —— F. Osterbrinkand D. Pauly

Theorem 3.5. The Maxwell operator
M : R (Q) xR (Q) € L{(Q) — L{(Q), ur— Mu,

is self-adjoint and reduced by the closure of its range

R(M) = "' 10t R, (Q) x 4”10t R (Q).

We note that here, in the case of an exterior domain Q, the respective ranges are
not closed.

Proof. The proof is straightforward using Lemma 2.2, i. e., the equivalence of the def-
inition of weak and strong boundary conditions. O

Thus (M) ¢ R, meaning that every w € C \ R is contained in the resolvent set of
M and for given f € Lf\(Q) we obtain a unique solution of (3.2) by
-1
u=M-w) fe Ry (Q) xR, (Q).
Moreover, using the resolvent estimate (M - w)™'| < [Imw|™ and the differential
equation, we get

1+ |w|
|Im w|

Iullgqqy < € (Ml g+ Wl oy + 101 Il g ) < © Wz ) -

Theorem 3.6. For w € C\ R, the solution operator
1

Ly=(M-w) :13(Q) — R (Q) xR (Q)
. . . 1+|w| ..
is continuous with ||£“’||Li @QR@ <€ Tmal’ where c is independent of w and f.

Remark 3.7. Let w € C\ R. By Lemma 2.3, the following statements are equivalent to
the boundedness of £
—  (Friedrichs/Poincaré-type estimate) There exists ¢ > 0 such that

<c (M- a))u||Li(Q Vu e Rp (Q) xR (Q).

”u"R(Q) )

— (Closed range) The range
RM - w) = (M - w)(Rr, (Q) xR (Q))

is closed in L3 (Q).

The case w € R\ (0) is much more challenging, since we want to solve in the
continuous spectrum of the Maxwell operator. Clearly, this cannot be done for every
fe Li(Q), since otherwise we would have R(M -w) = Li(Q) and, therefore, (M -w)™
would be continuous (cf. Lemma 2.3) or in other words w ¢ o(M). Thus we have to re-
strict ourselves to certain subspaces of Lf\ or generalize our solution concept. Actually,
we will do both and show existence as well as uniqueness of weaker, so-called “radi-
ating solutions,” by switching to data f € Lg(Q) for some s > 1/2.
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Definition 3.8. Letw € R\ (0) and f € L2 (Q). We call u (radiating) solution of (3.2), if

loc
UER (@ xR (@)
and
M-wu=f, (3.5
(Ao + EoHo E)u € Li_%(Q). (3.6)

Remark 3.9. Since

(Ao + w/_eoyOE)u:A()(E— ’;—Z.fo,H+ ,’;—‘(’)ng),

the last condition is just the classical Silver—Miiller radiation condition which de-
scribes the behavior of the electro-magnetic field at infinity and is needed to dis-
tinguish outgoing from incoming waves (interchanging signs would yield incoming
waves).

In order to construct such a radiating solution u, we use the “limiting absorption
principle” introduced by Eidus and approximate u by solutions (u,,) .y @ssociated with
frequencies (wy),en € €\ R converging to w € R\ (0). This leads to statement (4) of
our main result Theorem 3.10, where the following abbreviations are used:

Negen(M - w) := {u|uis a radiating solution of (M — w)u = 0}
(generalized kernel of M — w),
Ogen(M) == {w € C\ (0)| Ngen(M - w) # (0)}
(generalized point spectrum of M) .

Theorem 3.10 (Fredholm alternative). Let Q ¢ R be an exterior weak Lipschitz domain
with boundary T and weak Lipschitz boundary parts T, and T, = T \ T,. Furthermore, let
w € R\ (0) and ¢, u be x-admissible with x > 1. Then:

(1) Ngen(M =) ¢ (] Ry, (Q) ne™'oDyr (@) x (Ryr (Q) N oDy (@)

teR
(2) dimNgen(M - (U) < 0.
3) Ogen(M) C R\ (0) and Ogen(M) has no accumulation point in R \ (0).

(4) Forallf ¢ Liz (Q) there exists a radiating solution u of (3.2), if and only if
2

YV € Ngen(M-w): <f’v>Lf\(Q)=0' 3.7

3 We even have

Negen(M =) < [) (R, (@) ne 1ot Ry, (@) x (Ryp, (Q) i 1ot Ry, ().
teR
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356 —— F. Osterbrinkand D. Pauly

Moreover, we can choose u such that
VvV e Ngen(M-w): <u’V>L§\(Q>=0‘ (3.8)

Then u is uniquely determined.
(5) Foralls,~t > 1/2, the solution operator

Ly, : Lﬁ(Q) N Ngen(M - w)h — (Rt,rl(Q) X Rt,FZ(Q)) N Ngen(M - w)*t
defined by (4) is continuous.

Remark 3.11. Under the conditions of Theorem 3.10, the following statements are
equivalent to the boundedness of £, (cf. Lemma 2.3 and Remark 3.7):
—  (Friedrichs/Poincaré-type estimate) For all s,—t > 1/2, there exists ¢ > 0 such that

"u”R'(Q) <c- "(M - w)u"Lg(Q)

holds for all u € (Rt,rl(Q) x R (Q)) N Ngen(M - w)™ satisfying the radiation
condition.
— (Closed range) For all s, -t > 1/2, the range

RM - ) = (M- 0)(Ryr, (Q) x Rf ()
is closed in L2(Q).
By the same indirect arguments as in [15, Corollary 3.9] (see also [14, Section 4.9]),

we get even stronger estimates for the solution operator £,,.

Corollary 3.12. Let Q c R> be an exterior weak Lipschitz domain with boundary T and
weak Lipschitz boundary parts T, and T, = T\ T,. Furthermore, let s,~t > 1/2, &, u be
x-admissible withx > 1and K € C, \ (0) withK n Ogen(M) = 0. Then:

(1) There exist constants ¢ > 0 and t > —1/2 such that for all w € K and f € Lg(Q)

"[’a}f”Rt(Q) +[|(Ao + vEoko E)‘wa“in(Q) sc: IUC"L@(Q)

holds, implying that L, : Lg(Q) — Rt,rl (Q) x Rt,FZ(Q) is equicontinuous w.r.t.
weK.
(2) The mapping
L : K — B(Lg(Q),Rt)rl(Q) x Ryp (Q))

w — L,
is uniformly continuous.
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4 Polynomial decay and a priori estimate

As stated before, we will construct a solution u in the case of w € R\ (0) by solving
(3.2) for w, = w+io, € C,\Rand sending g,, — 0 (using (w,)en € C_\Rinstead will
lead to “incoming” solutions). The essential ingredients to generate convergence are
the polynomial decay of eigensolutions, an a priori estimate for solutions correspond-
ing to nonreal frequencies and Weck’s local selection theorem. While the latter one is
already satisfied (cf. Theorem 3.4), we obtain the first two in the spirit of [27] using the
following decomposition Lemma introduced in [14] (see also [15, 16]).

Lemma4.1. Letw € K € C)\ (0), &, u be x-admissible with x > 0 and s, t € R such that
0<seR\Iandt <s < t+ k. Moreover, assume that u € R.(Q) satisfies the equation
(M- w)u = f €LiQ). Then

fi = (Croty — iwitA)u — ifAf € L]
and, by decomposing
fi=fr+fo+fs € oRs+ oD +Ss
according to [26, Theorem 4], it holds
f=fo+ %7\0‘1 Rotfs € oD, .
Additionally, u may be decomposed into
U=nu+u +u+Uus,

where

(1) nueR,, (Q) andforallt € R

VOX
It ) < € (Wl + Ml ) )
2 uy = —jA;(fR +fs) € Rgand
||u1||RS =cC- |If1|||_§ ;
B) w, = F (p?(1-irg)F(f,)) € H. n oD, and
||u2|||.|; <c- ||f2|||_§ ;
(4) uy:=tt—u, e H} n oD, andforallt < t
sl < ¢ (sl + ezl )
t t t
where it := iw ™ A;'(Rot fju - fp) € Hi n oD,
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with constants c € (0, o) independent of u, f or w. These fields solve the following equa-
tions:

(Rot +iwAp)qu =f;, (Rot+iwhy)it=f,, (Rot+iwhy)uz=(1-why)uy,
(8 + w’eopo)us = (1 - iwho)f - (1+ W’eoho )i -
Moreover, the following estimates hold for all t < t and uniformly w.r.t.A € K, u and f:
~ Mol < eIl < - (Il + Il )
IIMIIRE(Q) <c-( IlfIILg(Q) +lulle o)+ ||113||LzE )
- o+ a;zgo,uo)u3|'Lg < (Iflgq + ullz o))
~ I(Rot — idEgho E)ul < ¢ (Wil + Il o + [(Rot ~ idEoHo Eus] )

Here, S; is a finite dimensional subspace of C®(R?), F the Fourier transformation and
CA,B = AB - BA
the commutator of A and B.

Basically, this lemma allows us to split u into two parts. One part (consisting of
nu, u; and u,) has better integrability properties and the other part (consisting of u;)
is more regular and satisfies a Helmholtz equation in the whole of R>. Thus we can use
well-known results from the theory for Helmholtz equation (cf. Appendix, Section B) to
establish corresponding results for Maxwell’s equations. We start with the polynomial
decay of solutions, especially of eigensolutions, which will lead to assertions (1)-(3)
of our main theorem. Moreover, this will also show, that the solution u we are going
to construct, can be chosen to be perpendicular to the generalized kernel of the time-
harmonic Maxwell operator. As in the proof of [16, Theorem 4.2], we obtain (see also
Appendix, Section C) the following.

Lemma 4.2 (Polynomial decay of solutions). LetJ c R\ (0) be some interval, w € ], €,
U be k-admissible withk > 1, and s € R\ I withs > 1/2. If

ueR, _.(Q) satisfies (M-w)u=felL2Q),
then
weR,(Q) and Nl g <c (Wl + Il )
with ¢, 6 € (0, co) independent of w, u and f.
In short: If a solution u satisfies u € R,(Q) for somet > -1/2and the right-hand side

f = (M - w)u has better integrability properties, meaning f ¢ Lg(Q) for some s > 1/2,
then also u is better integrable, i. e., u € R,_;(Q). Especially, if

ueR _,(Q and fellQ VseR,
2
then u € R (Q) for all s € R, which is called “polynomial decay.”
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Corollary 4.3. Let w € R\ (0) and assume &, y to be x-admissible with k > 1 and
uce R<_%’r1 (Q) X R<_%’rz (Q)

to be a radiating solution (cf. Definition 3.8) of (M — w)u = 0. Then:

we [ (R, (@ xRy, (@)
teR

Proof. According to Lemma 4.2, it suffices to show u € R,(Q) for some t > -1/2. There-
fore, remember that u is a radiating solution, the radiation condition (3.6) holds and
there exists ¢ > —1/2 such that

(Mg + Egho E)u € LZE(Q). (4.1)

On the other hand, we have

—_ 2
(Ao + VEoko ‘:)u“LZE(G(rO,?))
- 2 = 2 ull?
= IBotliiz g, 1) * 2 VEOMo RE (EU, Aold 2 g, 1) + €0 IE Ul 6, 1)

and using Lemma A.3 (cf. Appendix, Section A) with

r

bis)= A+, D=dor, Po)= J by dr, ¥=or,

max{ry,o}

as well as the differential equation, we conclude

=Re(QEu,Agu),;

(G(ro,7))

Re(Zu,Aqu )in (G(ro,))

:Re((‘PRotu,AOu)LZ +(Yu, Ay Rotu ),

(9(7)))
+(Yu,-iwhoAu)

Q@)

= Re ((~w¥u Aot) o)
= Re iw(WAu, (Ay - Ao)u),.

€iR

@@ =0

hence
”u"LZ{(G(rO,?)) < ¢+ ||(Ao + Veoho E)“"LZ{(G(rO,?))

with ¢ € (0, 0o) independent of 7. Now the monotone convergence theorem and (4.1)
show

which already implies u € LZE(Q) and completes the proof. O
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360 —— F.Osterbrinkand D. Pauly

The next step is an a priori estimate for solutions corresponding to nonreal fre-
quencies, which will later guarantee that our solution satisfies the radiation condition
(3.6) and has the proper integrability. The proof of it is practically identical with the
proof of [16, Lemma 6.3] (cf. Appendix, Section C).

Lemma 4.4 (A priori estimate for Maxwell’s equations). Let ] € R\ (0) be some in-
terval, —-t, s > 1/2 and &, u be x-admissible with x > 1. Then there exist constants
¢,6 € (0,00) and some t > —1/2, such that for all w € C, with @ =N +ilo, A €],
0 € (0, vEoHy ' | and f € L2(Q)

I1£0flg oy * 1o + VEoko ) Cuf gy < € (Wl *+ 120 li2iaey )

5 Proof of the main result

Before we start with the proof of Theorem 3.10, we provide some Helmholtz-type
decompositions, which will be useful in the following. These are immediate conse-
quences of the projection theorem and Lemma 2.2.

Lemma 5.1. It holds
L2(Q) = VHL (Q) @, £ ,D}. (Q)
€ [ € o™, >
Lh(Q) = VHL (Q) &, 1Dy, (Q),
R, (Q) = VHI (Q) @, (R, (@) ne4Dr (),
Rr,(Q) = VH () ®, (er(m n y*lonn(ﬂ)),
where the closures are taken in L2(Q).
Proof. Lety € {e,u} and i,j € {1,2} with i # j. The linear operator
Vit HL@Q) c (@) — L)
is densely defined and closed with adjoint (cf. Lemma 2.2)
—div;y: y*lnri(g) c Lﬁ(g) — LX(Q).
The projection theorem yields
L2(Q) = R(V) ®, N (div; ).
The remaining assertion follows by VHE(Q) C Rri (Q). O
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Proof of Theorem 3.10. Let w € R\ (0) and &, u be k-admissible for some x > 1.
(1): The assertion follows by Corollary 4.3 and the differential equation

(M-w)u=0 e u=iw'A"Rotu,
using the fact that (cf. Lemma 2.2)
10t R (Q) C oD () resp.  rotRr (Q) oDy, ().

(2): Assume dim Ngep (M — w) = co. Using (1) there exists a Li-orthonormal se-
quence (Uy)pen € Ngen(M — w) converging weakly in L%(Q) to 0. By the differential
equation this sequence is bounded in

(R, (@) N e*IODrZ(Q)) x (Rr,(Q) N y*lonrl(g)).

Hence, due to Weck’s local selection theorem, we can choose a subsequence, (U n))nen
converging to 0 in Lfoc(ﬁ) ((Un(n))nen also converges weakly on every bounded sub-
set). Now let 1 < s € R\ I. Then Lemma 4.2 guarantees the existence of ¢, € (0, co0)
independent of (u,)) e such that

n—
1= [urn) ”L}\(Q) < Jurm "RH(Q) < € uren nL?(Q(&)) 0

holds; a contradiction.

(3): M is a self-adjoint operator, hence we clearly have 0ge, (M) ¢ R\ (0). Now as-
sume w € R\ (0) is an accumulation point of Ogen(M). Then we can choose a sequence
(Wnen € R\ (0) with w, # w,, forn # m, w, — @ and a corresponding sequence
(Up)nen With U, € Ngen( M —w),)\ (0). As M is self-adjoint, eigenvectors associated to
different eigenvalues are orthogonal provided they are well enough integrable (which
is given by (1)), and thus by normalizing (u,,),c We end up with an Lf\-orthonormal
sequence. Continuing as in (2), we again obtain a contradiction.

(4): First of all, if a solution u satisfies (3.8), it is uniquely determined as for the
homogeneous problem u ¢ Ngen( M - w) together with (1) and (3.8) implies u = 0.
Moreover, using Lemma 2.2 and (1), we obtain

<f’V>Lf\(Q) = <(M_"’)“’V>L§\(Q) = (u,(M—w)v)Li(Q) =0 VveNegp(M-w),

meaning (3.7) is necessary. In order to show, that (3.7) is also sufficient, we use Eidus’
principle of limiting absorption. Therefore, lets > 1/2and f € Li(Q) satisfy (3.7). We
take a sequence (0,),en € R, with 0, — 0 and construct a sequence of frequencies

(Wpnen> Wy = Jw? +i0,w € C, \ R,

converging to w. Since M is a self-adjoint operator we obtain (cf. Section 3) a cor-
responding sequence of solutions (Up)pens Un == Ly f € Ry (Q) x Rp (Q) satisfying
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362 —— F.Osterbrinkand D. Pauly

(M - w,) u, = f. Now our aim is to show that this sequence or at least a subsequence
is converging to a solution u. By Lemma 5.1, we decompose

u, =i, +it, and f=f+f,

with

iy, f € VHE (Q) x VHL (Q) € R (Q) x oRr (Q),

. (5.1)
ity f € (R, (@) neoDr, (@) x (Rr, (@ n oDy, ().

Inserting these (orthogonal) decompositions in the differential equation, we end up
with two equations

—wyil, =f and (M-w,) i, =f,

noting that the first one is trivial and implies L*>-convergence of (it,),cy- For dealing
with the second equation, we need the following additional assumption on (u,),en>
which we will prove in the end:

Vt<-1/2 Jce(0,00) VneN: Iunll 2y < € (5.2)
t

Let f < —1/2 and c € (0,00) such that (5.2) holds. Then, by construction and (5.1),,
the sequence (il,,),¢y is bounded in (Rf,rl(Q) n S_IODUZ(Q)) X (Rf,rz Qn V_IODE,rl (Q)).
Hence (Theorem 3.4 and Lemma 3.3), (it,,) <)y has a subsequence (it ) ey COnverging
in L%(Q) for some f < f and by the equation even in RE rl(Q) X RE r2(Q). Consequently,

the entire sequence (Uy(y))nen CONVerges in Ry(Q) to some u satisfying
ue Rf,rl(Q) X RE,rZ(Q) and (M-w)u=f.

Additionally, with Corollary 4.3 and Lemma 2.2 we obtain for n € N and arbitrary
V € Ngen(M - w),

0=(f vy = (M= W) Unry sV )2 g

= (Upn(y) > (M _Eﬂ(m)‘/)L}\(Q) = (W — Wagny) * (Upn) ’V>L§,(Q) .

Hence (@), v >'—3\ =0andas (-,v >L§(Q) is continuous on L%(Q) X L%(Q) by (1), we

Q)
obtain

<u’V>L§\(Q) = Him (uyn) ’V>Lf\(Q) =0.

Thus, up to now, we have constructed a vector field u ¢ /\/'gen( M — w)**, which has
the right boundary conditions and satisfies the differential equation. But for being a
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radiating solution, it still remains to show, that u € R<_l (Q) and enjoys the radiation
2

condition (3.6). For that, let t < —1/2. Then, by Lemma 4.4, there exist ¢, § € (0, co0) and
some { > —1/2, such that for n € N large enough we obtain uniformly in o), Uz
fand¥ > 0:

”un(n) ”R‘(Q(?)) +[|(Ao + Veoko E)n(n) ”Lg(g(;)) <cC- ( |lf|||_§(g) + ”un(n) ||Lz(9(5)) ) .

Sending n — oo and afterwards 7 — oo (monotone convergence), we obtain

Il ) + 1(Bo + VEoHo Bl < € (W lizy + Mgy ) < 000 (53)
yielding
ueR_1(Q) and (Ao + ey Bu € Li_%(Q).
This completes the proof of existence, if we can show (5.2). To this end, we assume it

to be wrong, i.e., there exists t < —1/2 and a sequence (U,)pen C Rer, () x Ry (Q),
Uy = Ly, f with [yl 5 q) — oo for n — oo. Defining
n t

- -1 7 -1
ly = gl -t and fo o= tglllg oS

we have

Il =1, f—0in j(@ and (M-w,)i, =f,.
Then, repeating the arguments from above, we obtain some t<tanda subsequence
() )nen CONVerging in L%(Q) to some it € Ngep(M — @) N Ngen(M — w)™, hence

i = 0. But Lemma 4.4 ensures the existence of ¢,§ ¢ (0, 00) (independent of d,,),
aﬂ(n) and fﬂ(n)) such that

n—oo

1= ”ﬂn(n) ”Lg(g) sC- (an(n) "Lg(g) + ”ﬂn(n) N 12(Q(8)) ) —0

holds; a contradiction.
(5): Let —t,s > 1/2. By (4) the solution operator

Ly: '—5(9) n Ngen( M-w )LA — (Rt,rl(Q) X Rt,I'Z(Q)) n Ngen( M-w )lA
=D(Ly) =R(L,)

is well defined. Furthermore, due to the polynomial decay of eigensolutions, D(£,) is
closed in Lg(Q). Thus, the assertion follows from the closed graph theorem, if we can
show that £, is closed. Therefore, take (f,,),ene € D(L,,) With

fo— fin L2(Q) and u,:=L,f, — uin Rer, (Q) xRy (Q).
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364 =—— F.Osterbrinkand D. Pauly

Then clearly f € D(L,), u € R(L,) and as (M — w) u,, = f,,, we obtain (M — w)u = f.
Now estimate (5.3) (along with monotone convergence) shows as before

ueR_1(Q) and (Ag+ ey E)u € Li_%(Q),
meaning u is a radiating solution, i. e., u = £, f, which completes the proof. O

Remark 5.2. During the discussion at AANMPDE10 (10th Workshop on Analysis and
Advanced Numerical Methods for Partial Differential Equations), M. Waurick and
S. Trostorff pointed out that it is sufficient to use weakly convergent subsequences for
the construction of the (radiating) solution. This is in fact true (the radiation condition
and regularity properties follow from Lemma 4.4 by the boundedness of the sequence
and the weak lower semicontinuity of the norms), but it should be noted, that Weck’s
local selection theorem is still needed to prove (5.2), since here norm convergence is
indispensable in order to generate a contradiction. Anyway, we thank both for the
vivid discussion and constructive criticism.

Appendix A. Technical tools

LemmaA.l. Let Q c R be an arbitrary exterior domain and s,t,0 € R with t < s and
6 > 0. Then there exist constants c, § € (0,00) such that

”W”Lf(Q) <C- ||W|||_2(Q(5)) +6- ”W”Lg(ﬂ)

holds for all w € LA(Q).

Proof. Let R\ Qc U(ry). For 7 = r,, we obtain

2
+ v

LZ(Q) LZ(Q )

~ {o,t} N
< (1+7)™ Wy + (1) .

2 \max{0,t} 2 NS
<(1+7) Wl gy + 1+ F) T Wl

Since t < s, we can choose 7 such that (1+72)"° < 62, which completes the proof. [J
LemmaA.2. For# > 0andf € L\(R"), it holds
liminf r j fla =0
r—00
S(r)

Proof. Otherwise, there exists # > 0 and ¢ > O such that

J[ﬂd/l;”lz Vrs 7

S(r)

C
r
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and using Fubini’s theorem, we obtain

dr = oo,

=X | =

o0 o0
g > | 10 = | [ 1an"dr>c- |
U() F S(r) 7
a contradiction. O

LemmaA.3. Let Q c R’ be an exterior weak Lipschitz domain with boundary I and
weak Lipschitz boundary parts T) and T, = T\ T,. Furthermore, let #,7 € R, with ¥ > 7
and R?\ Q c U(#) as well as ¢ e CO([f, 71,C). Ifu € Rt,rl(Q) X Rt’rz(Q)for somet € R, it
holds

(DEu ’A0u>L2(G(?,i)) = (¥Rotu,Agu )LZ(Q(?)) + (‘Pu,RotAOu)LZ(Q(i)) , (A1)

where @ :=¢por,¥:=1por,and
$:[0,7] — C, 0 j (1) dr.

max{#,0}

Proof. As C{°(Q) respectively C(Q) is dense in Ry . (Q) respectively R (Q) by defini-
tion it is enough to show equation (A.1) for u = (uy, u,) € C‘r’l"(Q) X C‘FZO(Q) c CR).
Observing that the support of products of u; and u, is compactly supported in some
0 cOcQ, we may choose a cut-off function ¢ € (°Z°°(Q) C &°°(1R3) with ¢|g = 1and
replace u by pu =: v =: (E, H). Without loss of generality we assume R*\ © c U®).
Using Gauss’s divergence theorem we compute

r

r
(CDEu,AOu)LZ(GW)) = J(;b(r) (Eu,Ayu >L2(S(r)) dr = J(j)(r) ( EV’A0V>L2(S(r)) dr

r r

= J(f’(r)(ﬂo(f XE’H>L2(S(r)) —&(¢ ><H’E>L2(S(r)) )dr

~ [#0) [ Guot - Ex ) - o - (HxE) akldr
7 S(r)

r
= J o) J (o div (E x H) — g, div (H x E)) d\> dr .
7 u(r)
Note, that

Uo div (E x H) — g, div (H x E)
= Uo(HrotE —ErotH) - go(Erot H — HrotE)
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= ((uoH) 10t E — (¢oE) rot H) + (H rot (¢oE) — E rot (uoH))
= AoV -Rotv +v-Rot Ayv.

Hence, by Fubini’s theorem, we see

7
(DZu, Agu )LZ(GW)) = Jd)(r) (« ROtv’A0V>L2(U(r)) +{v,Rot on)L2 U )dr

7

r r
= J(j)(r) J (<R0tV’A0V>L2(S(o)) + <V’ROtA0V>L2(S(o))) dodr
0

.

7 1
:j J B(r) ((ROLV, MgV ) gy + (V2 ROLAQY ) 2)) dF dO

0 max{7,0}
7

= J lp(O’) (( Rotv, A()V >L2(S(U) + (V Rot AOV >|_2(S(g) ) do
0

= (¥Rotv, on)LZ +(WPv, Roton)LZ

U@) u)

:(‘I’Rotv,on)LZ +(‘I’v,R0tA0v)L2

Q)
= (WRotu, Agu ),

Q)

+(Wu,RotAgu )|,

Q) (Q(F)

where the last line follows by construction of v. O

We end this section with a lemma, which will be needed to prove the polynomial
decay and a priori estimate for the Helmholtz equation and can be shown by elemen-
tary partial integration.

LemmaA.4. Letw € H2 (R™), 0 ¢ suppw, m € Rand # > 0. Then with 9, := £ - V:
(1) Re j r™ 1 Awo,w

U
= % j rm((n +m—-2)|Vw)? - 2m|6,w|2) n j i+l (Ia,w|2 B %lez )
vo s
(2) Re J rmAww
u(r)
T J rm(wwlz - % (n+m-2) r_ZIWI2) + J r’"(Re (0,ww) — g r‘1|w|2)
vo S0
B) Im | r"Aww =-m J ™ Im (0,ww) + % P 2
um U®) S(7)
(4) Re J wo, w = —% J ™ (n+m)wl® + % J ™ wl?
oo ue) ()
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Appendix B. Polynomial decay and a-priori estimate
for the Helmholtz equation
In this section we present well-known results for the Helmholtz equation, which we

will use to achieve similar results for Maxwell’s equations. We start with a regularity
result (cf. [27, Lemma 4]) and the polynomial decay (cf. [27, Lemma 5]).

LemmaB.1. Lett e R.Ifw ¢ Lf(IR”) and Aw € Lf(]R”), it holds w € Hf(lR") and

Wl gy < € (1AWlz gy + W12 g )
with ¢ € (0, co) independent of w and Aw.

Proof. Fort = 0, we have w, Aw € L>(R") and using Fourier transformation, we obtain

1AW, gy + W7 \lrzf(w>||fz( +IFwI

L2(R") L2(R") LZ(R™)

- J(r4+1)|]-"(w)| Ja+sAFW g, BD
i

yielding w € HA(R") and the desired estimate. So let us switch to ¢t # 0. Then, using a
well-known result concerning inner regularity (e. g., [3, Chapter VII, Section 3.2, The-
orem 1]), we already have w ¢ HIZOC(IR"). Now let # > 1 and define n; € Cm(]R") by
;) = p'n(r(x)/7). Then n;w € HA(R"),

\Visl < c-p'™ with ¢ =c(t) >0,
and
2 2
(V(nzw), V(W) )2gny = Re(Vw, V() egn + ”(vn?)W"LZ(]R")

< ¢ (AWl oy 1MWy + IWIE: )

< ¢ (1AW, gy + W gy )
with ¢ = ¢(n, t) € (0, 00), hence

”vw"Lf(B(f’)) < ||V(rZ;W) - (VUP)W"LZ(]Rn) < C(n: t) ! ( ||AW"|_12 + ||W|||_2(]Rn >
Sending ¥ — oo (monotone convergence) shows w € H%(]R") and
"W"H}(]R") < C(nx t) : ( ”AW"LE(]RII) + ”W”Lf(]R") ) . (B-z)

Moreover,

2
4 2 )pt‘zw + 2rpt"zarw +p'Aw,

A(p'w) = t(n +(t-2)
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such that with (B.2) we obtain
t
“A(p W)HLZ(]R") <C- ( "AW”Lf(]R") + ||W||Lf(]R”) ) > (B-3)
with ¢ € (0, 00) independent of w and Aw. Hence A(p'w) € L?(R") and we may apply

the first case. This shows ptw € H?*(R") and using (B.1), (B.2) and (B.3), we obtain
(uniformly w. r. t. w and Aw)

"W"Hf(lk") ¢ ( HptW"HZ(]R") + H(th)VWHLZ(IR") + "(th)W“LZ(IR") + |;2 "(aapt)W"Lz(]R") )
al=

IA

¢ (A6 W)oxgury * I Wiz + 19WHi oy + Wl )

< ¢ (1AWl g + Wl )

yielding w € HZ(R") and the required estimate. O
Lemma B.2 (Polynomial decay). Let] € R\ (0) be some interval,y € ] and s, t € R with
t>-12andt<s.Ifwe LX(R") and g := (A +y*)w € L2, (R"), it holds
2/ N
w e Hs(]R ) and ”W”Hﬁ(]R") <C- ( "g"|_§+1(]Rn> + ||W||L§_1(]R") )
with ¢ = c¢(n,s,]) € (0, c0) not depending on 'y, g or w.

Proof. The assertion follows directly from Lemma B.1, if we can show
2 n .
w e LS(]R ) WIth "W"Lg(]R") <cC- ( "glngﬂ(]Rn) + ”W”L;I(IR") ) .

Therefore, let v := yw, where y € C*°(R") withy = 1on IvJ(l) and vanishing in a neigh-
borhood of the origin. By assumption, we already have w ¢ Hf(]R”) (cf. Lemma B.1),

hencev ¢ HIZOC(IR") and we may apply the partial integration rules from Lemma A.4 to

Re J (Aw + y*w)(r**10,w + Br*w) = Re J (A +y) (o v + priv) = - -,
G(F) G
with7 > 7 >1and

B:=max{(n-1)/2,t+(n-1)/2}.

After some rearrangements, this leads to

j (8- (n+2t = 22)IVwl’ + ((n +20/2- B)y’ wl’)
G(7,7)
+2t J r|o,wl’ + J P vw)?
G(7,7) S(¥)
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= -Re .[ (Aw + y*w)(r**10,w + Briw) + t(n + 2t - 2)B J rw)?

G(7,F) G(#,F)
N j P (Bt 2w - B Re (3,ww) — [o,wl?) (B4)
S(7)
+ j P (lopwl’ + BF'Re (0,ww) - tF > wl’)
S(®)
1 (. 1.
+3 J r2t+l(|Vw|2+y2|w|2) ‘3 J’ r2t+1(|VW|2—y2|W|2).
S(¥) S(7)

Let us first have a look on the left-hand side. For t > 0 (i.e., B = t + (n — 1)/2), we skip
the second and third integral to obtain

j (8- (n+2t = 2)2)IVwl + ((n +20/2- )y’ wl’)
G(7,F)
+2t J r’1o,w)? + J # yw)?
G(7,7) S(¥)
1

> 5 .[ th((ZB —(n+2t- 2))|Vw|2 +((n+2t) - 2B)y2|W|2>

GG,

1 2t 2. .2, 12
3 | P(ow ),
GG,

while in the case of t < 0 (i. e., B = (n —1)/2) we just skip the third integral and end up
with

J P((B- (n+2t=2)2)IVwl + ((n +20/2- By’ Iwl’)
G(7,F)
+2t J r*1o,w? + J P  yw)?
G(7,F) S(7)
> J P((B - (n+ 2t = 2)/2+ 2)[VwP + ((n+20)/2 - By 1wl )
G(#,7)
1
= (5 +1) J (vwl + A wl?),
G(7,7)

since |0,w| < |[Vw|. Thus for arbitrary t € R the left-hand side of (B.4) can be estimated
from below by

11 2t 2. .22
m1n{§,§+t} r (IVWI +y wl )
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370 —— F.Osterbrinkand D. Pauly

For the right-hand side, we have (7 > 1)
J P (1ol + BF'Re (8,wiw) - tF > wl’)
S(7)

< J P (10w + Blo,wiwl + BlelwP) < c- j P (jowp + wh),
S(7) S(F)

as well as

j P (BeE 2w - B ' Re (0,w) — 19,wl’)
S(7)

B J P (Biewl + B o, wiw ) < c - j P (W + 1vwp),

S(7) S(7)

such that equation (B.4) becomes

.11 2t 2. 2.2
m1n{§,§+t} J r (IVWI +y|w|)

G(7,7)
< J gl 1vwl + B wl) + Blen + 2t - 2)| J 2w
G(7,7) G(7.F)
+c(n,t)-< J PO Wl + 19wl - ) + j P (1wl + 1wl ))
S(7) S(7)

By assumption, we have w ¢ Hf(]R"), such that according to Lemma A.2 the lower limit
for ¥ — oo of the last boundary integral vanishes. Hence we may replace G(#, ¥) by
U(#) and in addition use Young’s inequality to obtain

2 2
LA R L] s

<c(nt)- ( Hrmguiz(ﬁ(?)) + ||rt_lw'|i2(ﬁ(;)) + J 2tJ'l(IVWI —VIwl + 7w )) (B.5)
S(7)
< cn0)- (181, oy + W gy + | P (1900 =20l 4 72w ?) ).

S(7)

Now suppose that s = t. Then the assertion simply follows by choosing 7 := 1 as the

trace theorem bounds the surface integral by ||w|||_I2 ) and with Lemma B.1

”W”H%(]R") < C(n’ S)]) . ( ”g”LfH(]R") + "W"Ltz—l(]Rn) + ”W”HZ(U(Z)) )

<c(ns, ( m T (W n T |W ,,)
( ]) ”g”LfH(IR ) " ||Lt2—1(]R ) ” ”Hf—l(]R )
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Time-harmonic Maxwell equations =—— 371

< C(n, S:]) : ( "g”Ltzﬂ(]Rn) + ||W|||_§71(]Rn) + I|AW”L31(]RH) )
< C(n: S,]) : ( "g”Lfﬂ(lR”) + "W"Lél(]Rn) )

holds. For the case w ¢ Lg(lR”), lets:=sup{me R|u e LIZH(]R”)}. Then, w.1.0.g.,* we
may assume

§S-1/2<t<s<s<t+1/2,

hence 6 := 1-2(s—t) € (0,1). Multiplying (B.5) with 7% and integrating from 1 to some
¥ > 1leads to:

s
jf—ﬁ J th(Ilez+y2|w|2)d?sc(n,t)-(J?"é j P 1 22w df
1

U%)

+J 2l 5(|VW| |w|2+r‘2|w|2)> (B.6)
G(L,F)

1 U(F)

By Fubini’s theorem, we have for arbitrary h € L'(R")

j j r:ljcjoj 78 hdo di = T J r"sjhd?da

uw)

1
=J J (1—6)_1min{r1_6—1,f15 1} hdo = J 0; h,
1 S(0) =:6; )

such that (B.6) becomes (note that 6; < (1 - 8. rand1-6=2s— t))

j 0; r2t<|Vw|2 +y2|w|2) (B.7)
)
<cnb) < J ( P2g 2 4 2t 2|W|2) N J (21 6(|VW| y2|W|2+r72|w|2)>
I[6)) G(1,7)
2 2 2s 2 2. 2
<) (181 oy + W oy + | (19w - ) ).
G

4 Otherwise, we replace s and t by t; := t + k/4 respectively s; := t;,1, k = 0,1,2,... and obtain the
assertion after finitely many steps of the type ¢, < s; < t; + 1/2 (cf. Appendix, Section C, Proof of
Lemma 4.1).
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372 —— F.Osterbrinkand D. Pauly

Finally, look at
Re J r®gw = Re J rBgv.
G(1,7) G(L,7)

Applying Lemma A.4, we obtain (after some rearrangements)

j rPo(1vwl’ -y’ wP?)

G(1L7)
= -Re J r®gw + s(n+2s - 2) J = |wf?
G(1L,7) G(LF)
+ J i’25<Re (B,WW)—si'_llwlz) - J (Re (B,WW)—S|W|2)
S S(1)
< c(n,s)-( J ( =gl 4 r 2|w|2)+ J (lVW|2+ |w|2)+ J '25(|Vw| +[wl ))
G(1,F) S(1) S

hence (using the trace theorem and Lemma B.1)

| (v - y2wr?)

64,7
2 2 2 VZS
< cn5)- (1812 gy + V1L oy + W0+ [ P(VWE 4 107) ) g
S(¥)
2 2 ~2 2 2
< cnsil)- (181 gy + IV oy + | (90 + %) )

S(F)

and inserting (B.8) into (B.7) we end up with

[ 6P Qvw + ) < clns. - ( I I A I (e |w|2)).
U S(%)
Again the lower limit for ¥ — oo of the boundary integral vanishes (cf. Lemma A.2
and observe that w € H2 1 (R"), since 0 < s—t < 1/2 by assumption), such that passing

to the limit on a sultable subsequence we obtain

8 gy < ) ([ (=0 PO 4 ) i )

()
. 212 o o2
< c(n,s,])~<;lgglo j O5r (|VW| A )+ "W"L2 Q) )
()

2 2
S C T’l, S, * ( n + ||[W n )’
(5.0~ (1815 oy + IWIEs gy
showing w € Lﬁ(]R") and the required estimate. O
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Lemma B.3 (A priori estimate). Letn € N,t < -1/2,1/2 < s < 1,andlet] € R\ (0) be an
interval. Then there exist ¢, 8 € (0, 00), such that for all f € C, with ﬁz =V +ivr,ve ],
T€(0,1]andg ¢ Lﬁ(]R")

[ +B)" 8 sqeey + lexp-ama + A7l g

(B.9)
<C- ( ”g“Lg(]R") + "(A +B)71g'|L2(Q(5)) )

holds.

Ikebe and Saito [6] proved this estimate for the space dimension n = 3 and with
t = —s, which already shows the result also for any ¢ < -1/2 as the norms depend
monotonic on the parameters s and ¢t. For arbitrary space dimensions, we follow the
proof of Vogelsang [21, Satz 4].

Proof. First of all, observe that
A:H*(RY c P(RY) — L*(RY), w— Aw

is self-adjoint and, therefore, w := (A + B)*lg € HX(R") is well-defined. Moreover, due
to the monotone dependence of the norms on the parameters s and t, it is enough to
concentrate on the case t = —s. With w, := exp(-ivr)w and g, := exp(-ivr)g, we have
w, € H*(Q) and

. n-1
Aw, + zv(Twéz + Twe + Za,we) =g

Applying Lemma A.4 to
251 n-1, 20 T s
Re Jge( 0,W, +Trs Wet ST We): .
G(LF)

with 7 > 1 and using the same techniques as in the proof of Lemma B.2 we obtain

1 _ 1
1 J P25 - 410wl - (25 - IIVw ) + 3 j v, 2

2
6L G(L7)
21—  N=1 55 T 53
=-Re j ge(rS arwe+TrS we+§rS we)
G(L,7)
1 _
”T(s 1)(n+2s - 4) J i (2s—1)(n+2s—3) J 3w,

G(1L,7) G(1L,7)

=04, 0)
r

725 1<z|aw| + TRe (0,w,,) — [Vw, [ -

+(n;1) J—Zs Z(Re(a We)_¥| e|)
()
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374 —— F.Osterbrinkand D. Pauly

_ % J’ (2|arWe|2 +TRe (0,w,W,) — |Vwe|2 —(@2s-1) TlWe|2>
S(1)
n-1 _
- ( ) J (Re (arwewe) —-(s- 1)|We|2).
s(1)

Since 4s - 4 < 0 and [0,w,| < |[Vw,|, the left-hand side can be estimated from below

1 : 1 :
> J P72 ((as = )l wel” ~ (25 - 3)IVwe ) + 2 j 17|V,
G(1,7) G(L,7)
1 ] 1 §
2 s 2((43—4) - (28—3))|Vwe|2 - (s— E) J 2lvw,|?,
G(1,7) G(1,7)

while for the right-hand side we obtain

Aa—  h=1 5,5 _ T > q_
—Re J ge(rzs 0,w, + Trzs W, + 5,,25 lwe) 4o

G(L,7)
s s-1 n-1 s, T s-1
< | Pl (rlvwel + T R S 1 )
G(L7)
+C- J 5w+ T J 2w, w,|
G(1,7) G(1,7)

2 — 2 2251 2 — 2
+ J (IVweI + |0, W W, | + (W, )+ J r (IVweI + |0, W W, | + (W, ) ,

S(1) S(7)
yielding
1 25-2 2
(S_E) J re 0 Vw,|
G(1,7)
_ n-1 g T o _
< [ Pleal(r el + TR e+ S el e ([ P
G(1,7) G(L,F)
25-2 2 2 2251 2 2
+T j e wl + J (IVwel + (W, )+ j F (IVwel + Wl )
G(1,7) S(1) S(7)

Here, as well as in the sequel, ¢ € (0, co) denotes a generic constant independent of v,
T, w and g. According to Lemma A.2, the lower limit for # — oo of the last boundary
integral vanishes. Thus we may omit it and replace G(1,7) by fJ(l), such that using
Young’s inequality we end up with

_ 2
“rs ' vwe“LZ(ﬁ(n)
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< ¢ (Irge iy ”Hrs_l""e“izmu [ 2We|'L2(U<1 J (19wl + |We|2))
S(1)

2 2 2 2 2
< ¢ (18l + Tl gy + Wl oy + [ (170l + I ).
S(1)

In addition, the surface integral is bounded by |w, 12 (trace theorem) and

H(U(1)
Lemma B.1 yields

”W ”HZ(U(Z)) <cC- "W ||H2 (]R") <c-: (”ge"Lf;(IR") + ||We||LES(]Rn)) >

showing
I9WelZ ry < € (18 gy + T IWely gy + W2 o + el
e L2 (]R" = Lz(IR") e Lg_l(]Rn) e Lﬁ,z(IR") e HZ(U(l))
2 2 2 2
By the differential equation we see
. 2
||g"|_2(]R") "W"LZ(]Rn) = |Im <g7W >L2(]R")| = |lVT < w,w >L2(]R")| = T|V| ”W”LZ(]R") >
hence (-s > s -2)
||eXp(—ivr)W||H;72(]R") <c: ( ||We|||_27 (R") + "Vwe”|_27 (R") )
< ¢ (18I + TIWEs oy + IWI gy ) (BO)
< c- (el * Wl g )

and it remains to estimate [|w|, . For that, we calculate

2s(RM)
_ —_ n- —_ —_
Im j W, =Im J Aw,w, + J v(rwe + —we> W, +2vRe J O W W, = -+,
G(L7) G(L7) G(L7) G(L7)
using Lemma A.4 and obtain
v J r"zs((ZS - l)Iwel2 + Tr|We|2)
G(L7)
=Im J " gw, - (2s-1) J ™% Im (3,w,W,)
G(L7) G(L7)
+ J ' ZS(le * + Im (3,w, W )) J (T|we|2+lm (a,weWe))
S(7) S()
< J rIgelr Wl + (25 - 1) j 0, wlr' > Iw, |
G(L7) G(LF)
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376 —— F. Osterbrinkand D. Pauly

1-2s 2 — 2 —
v [ P (el + el ) + [ (wel” + el
S(¥) S(1)

173SW‘-’||L2(G(1,?))

+cC- J (|we|2 + |Vwe|2) + J )"'l_zs(lwel2 + IVwelz)
S(1) S(¥)

< ( ||rsge||L2(G(1,?)) +(2s-1) HrH VW, N L2(G(L7) ) ' ||r

As before, the lower limit for 7 — oo of the last boundary integral vanishes (cf.
Lemma A.2 and observe that w, ¢ H?(Q), s > 0), such that we may omit it and replace
G(1,7) by U(1), yielding (with (B.10))

s 2
Ir sWe"L?(ﬁ(l))

=¢ (( I gellzqiy) + ”rs_lvwe"Lz(ﬁ(n) ) ' ||r1_3swe||L2(ﬁ(1)) * j (lwelz * |Vwe|2) )
S(1)

2 2
< ¢ ((ehzqery + Vel gy ) IWellz gy + j (Iwel® + 19w, [)).
S(1)

2

H2U) (trace theorem) and with (B.10) we

As the surface integral is bounded by ||w,||
obtain

2 2
el gy = € ((I8elizgmny + 1VWelliz oy ) - IWelliz_ oy + el )
2
< ¢ ((I8elzguy + 1Weli g ) - IWella oy + Wl )
hence (Young’s inequality)
2 2
IWells oy < € (UBeliaguey + IWelis gy + el ) -
Finally, using once again Lemma B.1 we arrive at
2
”welngs(]R") <cC- ( ”ge”Lg(]R") + "We"LiBS(]Rn) ) 5
which together with (B.10) and Lemma A.1 implies
”W”LES(]RH) + "exp(_lvr) W"HLZ(]RH) <cC- ( ||g”L§(]R") + ||W|||_2(Q(5)) ) (B-ll)

with ¢, § > 0 independent of v, T, w and g. O

Appendix C. Proofs in the case of the time-harmonic
Maxwell equations

This section deals with the proofs of the decomposition lemma, the polynomial decay,
and the a priori estimate, which we skipped in the main part.
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Proof of Lemma 4.1. We start with u = nu + nu, noting that qu € R,. Moreover,
Rotfu = Crezu + ROt u = Cyopu — iNAf — iwnAu
and we have
(Rot +iwho)iu = (Crotj — iwRA)u — iAf = f; € L3,
since supp V7 is compact and ¢ + x > s. According to [26, Theorem 4],
fi=fr+fo+fs € oRs+ oD + s
holds and we obtain
iwnAgu = f; —Rotnu = fy —Rotnu + fr + fs .

Defining
i,
- U= _aAo (fr +fs) € R
W= Ru-u - iAal(Rotﬁu ~fo) €R.NyD,,
[8, Lemma 4.2] shows i € H! and we have
[ ~ -1
(Rot +iwhgy)it = Rot (Au — uy) +iwhoit = fp + iAO Rotfs =f, € oDs.
Next, we solve (Rot + 1)u, = f,. Using Fourier transformation, we look at
iy =1+ (1-irg) 7(f)
Since s > 1/2and f, € L2, we obtain &t € L%, hence u, := F '(it,) € H'. Moreover,
F(F(f)) = P(f,) € L2 (P: parity operator) yielding F(f,) € H® and as product of an
H®-field with bounded C®-functions, it € H® (cf. [30, Lemma 3.2]), hence u, € L. In

addition a straight forward calculation shows F(( Rot+1)u,) = F(f,), which by [8,
Lemma 4.2] implies

(Rot+1)u, =f, and u, € HinD,.
Then (¢t < s)
Uy = it — Uy € H N D,
satisfies
(Rot +iwhg)us = (Rot +iwAy)it — (Rot + iwhg)u,
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378 —— F.Osterbrinkand D. Pauly

=f, - (Rot+ 1), + (1 - iwhg)u, = (1 - iwhy)u, € HL N oDy
and using once more [8, Lemma 4.2] we get
2
us € H (D, .

Finally

Au3 = ROt ( ROt u3) = (1 - iwi\o) ROt u2 - i(l)[\’o ROt u3
= (1 - lwz&o)(fz - uz) - l(l)Ao((l - i(UAo)uz - iCUAOu3)

= (1-iwh) f, — (1+ w’eoo)u; — weopolts
holds, and hence
A+ wzeoyo)u3 = (1-iwho)fo - (1+ wz“?oﬂo)uz-

The asserted estimates follow by straightforward calculations using [8, Lemma 4.2]
and the continuity of the projections from L{ into 4Ry, oD, and S. O

Proof of Lemma 4.2. As for t > s — 1 there is nothing to prove, we concentrate on
ueR((Q) with -1/2<t<s-1.
Therefore, assume first that in addition
S—-K<t = t<s<t+k.
Then we may apply Lemma 4.1 and decompose the field u in
U=nu+u +U,+us,

with nu+u; +u, € Ry(Q) and u; € HY satisfying (A+w?eopo Juz € L2. Thus the polynomial
decay for the Helmholtz equation (cf. Lemma B.2) shows

u; €H2, and Il <c ( |(a+ 6025:0;10)113NLg sz )

¢ =c(s,J) > 0, yielding u = nu + u; + u, + u3 € R,_;(Q). Moreover, using the estimates
of Lemma 4.1 we obtain uniformly with respect to w, u, and f

g, (@) < € (Il + Il g+ sl )
2
c- ( ||f||L§(Q) +lullz )+ "(A +w 50110)“3||Lz + ||u3||L;2 )

(Wl + Mgy )

IN

AN
(o)
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Time-harmonic Maxwell equations =— 379

where m := min{k, 2} and applying Lemma A.1 we end up with

Il 0y <€ (Il + lzaey )
for ¢, 6 € (0, c0) independent of w, u and f. So let us switch to the case

t<s-x = t+kx<s.

Here, the idea is to approach s by overlapping intervals to which the first case is ap-
plicable. For that, we choose some k € N, such that with y == (k- 1)/2 > 0 we have

t+x+(k-1)-y<s<t+x+k-y,
and for k = 0,1,..., k we define
te=t+k-y aswellas sy =t +1="8+x+1)/2.
Then (as x > 1)

i1 <Sk=tm+tl=t+x+(k-1)-y<s,

<t +tl=sy=t+x+1)/2<t +x,

such that we can successively apply the first case, ending up with u € Rsl_(_l(Q). If
S = s}, we are done. Otherwise, we choose i =Sp—1 and apply the first case once
more, since

t <S£l’+K+’A<-y=l’i<+1+K.

k+1 < Sl}
Either way, we obtain u € R,_;(Q) and now the estimate follows as in the first case. [

Proof of Lemma 4.4. Without loss of generality, we may assume s € (1/2,1). Then we
have s € R\ I with O < s < x and we can apply Lemma 4.1 (with t = 0) to decompose
u==L,fe€ er(Q) into

U=NU+U + Uy + U
with u; € H solving
(A + weopo)u; = (1-iwho) f, — (1+ weopo)uy =: f5 € L5,

where f, is defined as in Lemma 4.1. Moreover, the estimates from Lemma 4.1 along
with

(Rot — iw+/Egtg E)u = —iAf — iw(Ag + \EoHo E)u — iwAu
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yield

"u”R((Q) + "(AO + VSOFO E‘)u”Lg_l(Q)
< ¢+ (Nullg gy + | (Rot — iwEoko Bl g+ Wz * Il () ) €y
<c lusl + [(Rot — iewEako Bz + Iy + Il (q) ),

with ¢ = ¢(s,t,]) > 0. Due to the monotonicity of the norms with respect to ¢t and s, we
may assume t and s to be close enough to —1/2 respectively 1/2 such that1 < s -t < k
holds. Hence, the assertion follows by (C.1) and Lemma A.1, if we can show

=)

lusll> + ||(ROt — iw+/gghg -—-)u3|||_2 <c: ||f|||_2 o Tlulz o )
t s—1 s( ) sfx( )

with ¢ € (0, co) independent of w, u and f. Therefore, note that the self-adjointness of
the Laplacian A : H? c I? — L?yields (A + w2£0y0)71f3 = u3 and applying Lemma B.3
componentwise, we obtain

lsll; + ||€Xp(—i/\\/follor)uauH;2 sc ( W0z + lusllz s, )
With Rot(exp(—iA+/EgHor)us) = exp(—id+/Eytipr)(Rot — iA\/Eoly £)us this leads to

sz + I(Rot — id+/eopo E)us ”L;1
< Jusllz + |Rot ( exp(—i/\w/soyor)u3)||L§_1 (C2)
< sl + lexp(-iAEoroNUslly < ¢+ (Wl + Islaagsy )

where ¢ > 0 is not depending on w, u3 and f;. But, actually, we would like to estimate
(Rot - iw+/EoH, E)us. For that, we need some additional arguments, starting with the
observation that

N1/4 exp(ip/2) for A>0
w= A1+ (@A) -
exp(i(p/2+m)) for A<0

. mom
with ¢ := arctan(o/A) € ( 5 5)
hence |Re (w)| = v2/2- |Al. Then |w + A| > +/3/2 - |]A| and we have
W’ -2 2
w+A

<2.2
3

_| iod |*

2 _
= A"= w+A

From this and the resolvent estimate,

2 2
Wf5ll2 = || (A + weopo) us| , = Tm (@’eomo)! - luslyz = EopoolAl - sl - »
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we obtain (s > 1/2)

[(Rot — iw+/eomq E)u3||Li1 < ||(Rot — id/eomo E)u3||Lé1 + |[(w = D)oo Eu3|||_§71
< |(Rot - iAeoko E)us 2 +c-IAIT Il »

such that with (C.2) and the estimates from Lemma 4.1 uniformly with respect to w, u
and f

||u3”|_2 + “(ROt - iw EoMo E)u}"LZ <cC- "f"LZ Q + ”u"LZ Q) /- O
t s-1 s( ) s—x( )
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Rainer Picard
11 On an electro-magneto-elasto-dynamic
transmission problem

Abstract: We consider a coupled system of Maxwell’s equations and the equations of
elasticity, where the coupling occurs not via material properties but through an in-
teraction on an interface separating the two regimes. Evolutionary well-posedness in
the sense of Hadamard well-posedness supplemented by causal dependence is shown
for a natural choice of generalized interface conditions. The results are obtained in a
Hilbert space setting incurring no regularity constraints on the boundary and the in-
terface of the underlying regions.

Keywords: Elasticity equations, Maxwell equations, transmission problem, boundary
interaction, mother/descendant mechanism

MSC 2010: 35Q60, 74F15, 74B05, 46N20

1 Introduction

Similarities between various initial boundary value problems of mathematical physics
have been noted as general observations throughout the literature. Indeed, the work
by K. O. Friedrichs [2, 3] already showed that the classical linear phenomena of math-
ematical physics belong — in the static case — to his class of symmetric positive hyper-
bolic partial differential equations, later referred to as Friedrichs systems, which are of
the abstract form

My +Au=f, »

with A at least formally, i.e., on C.,-vector fields with compact support in the un-
derlying region Q, a skew-symmetric differential operator and the L*°-matrix-valued
multiplication-operator M; satisfying the condition

1 x
sym(M,) = E(Ml +M{)>c>0
for some real number c. Indeed, a typical choice for the domain of A is to incorporate

a boundary condition into D(A), so that A is skew self-adjoint (4 quasi-m-accretive
would be sufficient). Problem (1) can be considered as the static problem associated
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384 =— R.Picard

with the dynamic problem (9, denotes the time-derivative)
ooMy + M; + A 2

with M, a self-adjoint L*°-multiplication-operator and M, > 0, which were also ad-
dressed in [3]. It is noteworthy that even the temporal exponential weight factor, which
plays a central role in our approach, is introduced as an ad hoc formal trick to produce
a suitable M; for a well-posed static problem. For the so-called time-harmonic case,
where 9, is replaced by iw, w € R, we replace A simply by iwM,, +A to arrive at a system
of the form (1).

Operators of the Friedrichs type (2), can be generalized to obtain a fully time-
dependent theory allowing for operator-valued coefficients, indeed, in the time-shift
invariant case, for systems of the general form

(9M(3,") + A)U = F (Evo-Sys)

where A is — for simplicity — skew self-adjoint and M an operator-valued — say - ratio-
nal function as an abstract coefficient. The meaning of M (0, 1Y is in terms of a suitable
function calculus associated with the (normal) operator 9, [13, Chapter 6]. We shall
refer to such systems as evolutionary equations, evo-systems for short, to distinguish
them from the special subclass of classical (explicit) evolution equations.

In this paper, we intend to study a particular transmission problem between two
physical regimes, electro-magneto-dynamics and elasto-dynamics, within this gen-
eral framework and establish its well-posedness, which for evo-systems entails not
only Hadamard well-posedness, i.e., uniqueness, existence and continuous depen-
dence, but also the crucial property of causality.

The peculiarity of the problem we shall investigate is that the interaction between
the two regimes is solely via the interface, not via material interactions as in piezo-
electrics; compare, e. g., [7] for the latter type of effects.

After properly introducing evo-systems in the next section, we shall establish the
equations of electro-magneto-dynamics and elasto-dynamics, respectively, as such
systems in Section 3. Finally, in Section 4 we establish a particular interface coupling
problem between the two regimes in adjacent regions via a mother-descendant mech-
anism; see the survey [15]. We emphasize that our setup allows for arbitrary open sets
as underlying domains with no additional constraints on boundary regularity.
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11 On an electro-magneto-elasto-dynamic transmission problem =— 385

2 Ashort introduction to a class of evo-systems

2.1 Basicideas

We shall approach solving (Evo-Sys) by looking at the equation as a space-time oper-
ator equation in a suitable Hilbert space setting. Without loss of generality, we may’
and will assume that all Hilbert spaces are real.

Solutions will be discussed in a weighted L-space H,(R, H), constructed by com-
pletion of the space C‘l(]R, H) of differentiable H-valued functions with compact sup-
portw.r.t. (-|-), 5 (norm: |- |, g)

() j<<p<t>|w<t)>H exp(-2vt)dt.

R

Here, H denotes a generic real Hilbert space. We introduce time differentiation 9,
as a closed operator in H,(RR, H) defined as the closure of

C,(R,H) < H,(R,H) — H,(R, H),
P9
The operator 9, is normal in H, (R, H). For v, € ]0, o[, v € Jv,, co[, we have
sym(dy) = %(60 +05)=v=vy>0, 3)
i.e.

0y is a strictly (and uniformly w. . t. v € ]v,, oo[) positive definite

(i. e., m-accretive) operator.

1 Every complex Hilbert space X is a real Hilbert space choosing only real numbers as multipliers and

(P, ) — RelPlP)x

as new inner product. Note that with this choice ¢ and i¢ are always orthogonal. Moreover, for any
skew-symmetric operator A we have
x 1 Ax

for all x € D(A).
Indeed, since (x|y) — (y|x) = O (symmetry) we have

(x|Ax) — (Ax|x) =0
or by skew-symmetry

0 = (x]Ax) — (Ax|x)
= 2(x]Ax)

for all x € D(A).
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This core observation can be lifted to a larger class of more complex problems
involving operator-valued coefficients and systems of the general form

(9M(3;") + A)U = F (Evo-Sys)

where A is — for simplicity — skew self-adjoint and M an operator-valued - say - ratio-
nal function as abstract coefficient.

In many practical cases, skew self-adjointness of A is evident from its structure as
a block operator matrix of the form

0 -C*
A= ,
<C 0 >

with H = Hy @ H; and C : D(C) € H, — H; a densely defined, closed linear operator.

2.2 Well-posedness for evo-systems

Since reasonable well-posedness requires closed operators, we describe our problem
class more rigorously as of the form

(0oM(0;') + A)U = F. (Evo-Sys)
For a convenient special class, more than sufficient for our purposes here, we record

the following general well-posedness result; see [10, 11, 15].

Theorem 2.1. Letz — M(z) be a rational L(H, H)-valued function in a neighborhood of
0 such that M(0) is self-adjoint and?

vM(0) + sym(M'(0)) = 1o > O (4)

for somen, € Rand allv € vy, [, vy € ]0, 0o sufficiently large, and let A be skew
self-adjoint. Then well-posedness of (Evo-Sys) follows for all v € v, oo[. Moreover, the

_—1
solution operator (o,M (651) +A) is causalin the sense that

—1 _—1
X1-00,01@oM(1) + A) = X}-c0,01 (@M (") + A)  Xj-co01-

2 Here, we use sym in an analogous meaning to (3), i. e.,

sym(B) = %(B +B*),

which is equal to %(B + B*) since B is continuous..
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11 On an electro-magneto-elasto-dynamic transmission problem =— 387

Indeed, apart from occasional side remarks we will simply have
M(2y') = Mo + 3 M,

and since d,, A can be continuously extended to suitable extrapolation spaces, it is
justified’ to drop the closure bar, which we shall do henceforth.

3 Maxwell’s equations and the equations of linear
elasticity as evo-systems

3.1 Maxwell’s equations as an evo-system

James Clerk Maxwell developed his new ideas on electro-magnetic waves in 1861-1864
resulting in his famous two volume publication: A Treatise on Electricity and Mag-
netism, [6]. His ingenious contribution to what we nowadays call Maxwell’s equations
is to amend Ampere’s law with a so-called displacement current term. Heaviside and
Gibbs have given the system in its now familiar form as

0oD + 0E — cutl H = —jo,, (Ampere’s law)
0yB + curl E = 0, (Faraday’s law of induction)
D =¢E,
B =puH.

The usually included divergence conditions are redundant, since the two equations
together with the material relations can be seen to be leading already to a well-posed
initial boundary value problem. The so-called six-vector block matrix form:

(@6 W@ o)l 57)G)-(5Y)

0 u 0 0 curl 0 H 0
brings us already close to our initial goal to formulate the equations as an evo-system.
Here, curl denotes the L-closure of the classical curl defined on C,(R>)-vector fields

vanishing outside closed, bounded subsets of R3. Moreover, curl = cfirl* and so the
spatial Maxwell operator is skew self-adjoint in L2(R?, R®). In case of a domain Q with

3 Albeit this being sometimes confusing and misleading, it is a common practice in the field of partial
differential equations. For example, one frequently writes

A=03]+3;

although ¢ € D(A) does in general not — as the notation appears to suggest — allow for ¢p € D(af)nD(ag).
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boundary, we take curl constructed analogously with C;(Q)-vector fields vanishing
outside closed, bounded sets contained in Q, where Q is a non-empty open set in R>
(strong definition of cﬁrl) and define

curl = curl” 5)

(weak” definition of curl). Thus we arrive indeed at the evo-system®

(0,M(35") + A) <§> - (;{jext)

ext

with M(3;") = M(0) + 3;"M’(0) and here specifically

0 -—curl
o= (5 L) wo=(g o) a-(an o) ©

which satisfies the well-posedness constraint if we assume &, y selfadjoint and (com-
pare (3) and (2))

ve + sym(c), u=1n,>0, @)

for all sufficiently large v € ]0, co[. Note that with this assumption also € having a non-
trivial null space, the so-called eddy current problem, can be handled without further
adjustments. Of course, in the spirit of Theorem 2.1 we could consider more general
media. More recently, so-called electro-magnetic metamaterials have come into focus,
which are media, where M" + 0 or M(z) is not block-diagonal. To classify some promi-
nent cases, there are for example:

— Bi-anisotropic media, characterized by

M(0)=<€ "*>, X#0.
X u

Since, due to (4), we must have M(0) > 0, we get £ > 0 and
ke < 1.

Note that this is a strong smallness constraint on the off-diagonal entry k. For ex-

ample in homogeneous, isotropic media ¢, = eV Zy‘l/ 2 is the speed of light and

the above condition yields

1
k] < —.
Co

4 Of course, “weak equals strong.” It is C;(Q) N D(curl) dense in D(curl) by T. Kasuga’s argument (see
[4], [5, Section 2.1]), the strong definition of curl as the closure curl ¢, (@nD(curt) €quals its weak defini-
tion. Consequently, also curl = curl* = (curl ¢, @nD(curty)” s Which confirms “weak equals strong” for
curl as well.

5 Here, we have thrown in an extra magnetic external source term, since mathematically it is no ob-
stacle to treat key # O.

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:10 PM



11 On an electro-magneto-elasto-dynamic transmission problem = 389

—  Chiral media:

X

M'(0) = <; 0 > X # O selfadjoint.

— Omega media:

X

o (0

>, X # 0 skew-selfadjoint.

3.2 The equations of linear elasto-dynamics as an evo-system

Linear elasto-dynamics is usually discussed in a symmetric tensor-valued L?-setting
forthe stress T, i.e., T € L*(Q, sym[]R3X3]), and a vector L2-setting for the displacement
u € L*(Q,R%). Here, sym is the (orthogonal) projector onto real-symmetric-matrix-
valued L2-functions. More precisely, we extend sym to the matrix-valued case by let-
ting

sym : L2(Q, R¥3) - L*(Q, R*3),

W %(W +W"),
where the adjoint W™ is taken pointwise by the standard Frobenius inner product
(T,S) ~ trace(T'S)
for 3 x 3-matrices, such that

]R3><3 N ]R6

Too Tor Top T,
Ty Ty Ty |+ T
Ty Ty Tn Ty

is unitary. Then with

: IX(Q, sym[R*3]) - LX(Q, R*)

lsym *
T—T,
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denoting the canonical embedding of the subspace L2(Q, sym[lR3X3]) inL2(Q, R¥3) we
have

l:ym L(Q,RC) - L*(Q, sym[R¥))
W — symW

and so we have the useful factorization

*
SYM = lsym lgym-

With this observation, we can now approach the standard equations of elasticity the-
ory. The dynamics of elastic processes is commonly captured in a second-order formu-
lation for the displacement u by

g*agu - DivCGradu =f,

where

Gradu =1}, (Vu)

sym

DivT:=(V'T)"

for symmetric T, i.e., T € L*(Q, sym[R>?]). The elasticity “tensor,” i.e., rather the
mapping

C : L*(Q,sym[R*?]) — L*(Q, sym[R*>?])
and the mass density operator
0. :L*(Q,R%) - [*(Q,R%)

are assumed to be self-adjoint and strictly positive definite.

The origin, from which the above second-order system is derived, is naturally a
system of algebraic and first-order differential equations. The original system can be
easily reconstructed by reintroducing the relevant physical quantities velocity v := dyu
and stress T := C Grad u. Thus, we arrive at the system

Q*aov - DIVT Zf,
T = CGradd,'v,

in the unknowns v and T. Differentiating the second equation with respect to time, we
end up with a system of the block operator matrix form

(5 ) Lo 0 )G)-(0)
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11 On an electro-magneto-elasto-dynamic transmission problem =— 391

Choosing now, for example, a homogeneous Dirichlet boundary condition, i.e., we
replace Grad by®

Grad = r* gri’;ld,

sym

where grnad is the closure of differentiation for vector fields (the Jacobian matrix) with
compact support in Q as a mapping from L*(Q, R?) to L*(Q, R*?), and

Div := div (g,
so that
Grad = - Div",

we are led to consider an evo-system of the form

o ) (om0 () ()
a + o = . 8
( °<O c! —Grad 0 T g ®)
Remark 3.1. We note that also here we have “weak equals strong” following the same
rationale as in the electro-magneto-dynamics case; compare Footnote 4.

In the light of (4), the well-posedness results from assuming that
0..C>1n9>0 )

for some real constant .

4 An interface coupling mechanism

After the above preliminary considerations, we are now ready to consider the situa-
tion, where the electro-magnetic field in one region interacts with elastic media in
another region via some common interface. Rather than basing our choice of trans-
mission constraints on the interface by physical arguments, we shall explore a deep
connection between electro-magneto-dynamics and elasto-dynamics to arrive at nat-
ural transmission conditions built into the construction of the evo-system. This con-
struction will utilize the idea of a mother-descendant construction introduced in [12];
see [14] for a more viable version, which we will briefly recall.

6 Korn’s inequality shows that the closure bar is superfluous

Grad = 1}, grad.
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4.1 Mother operators and their descendants

We recall from [12] the following simple but crucial lemma.

Lemma4.1. Let C : D(C) € H — Y be a closed densely-defined linear operator be-
tween Hilbert spaces H, Y. Moreover, let B : Y — X be a continuous linear operator into
another Hilbert space X. If C*B* is densely defined, then

BC=(C*B*)".
Proof. Ttis

C*B* ¢ (BC)".
If ¢ € D((BC)*), then

(BCul)x = (ul(BO) d)y
for all u € D(C). Thus, we have
(CulB"¢)y = (BCulg)x = (ul(BC)" )y
for all u € D(C) and we read off that B*¢ € D(C*) and
C*B*¢ = (BC)" .

Thus we have

(BC)* =C*B".
If now C*B* is densely defined, we have for its adjoint operator

(C*B*)" = BC. O
As a consequence, we have that the descendant
<1 O)(O —C*><1 0)_(0 —C*B*>
o B/\c o0 /\o B/ \BC 0
indeed inherits its skew self-adjointness from its mother (2 -§" ) (with C replaced by

BC). Moreover, we record the following result on the stability of well-posedness in the
mother-descendant process.

Theorem 4.2. Let C : D(C) < H — Y be a closed densely-defined linear operator be-
tween Hilbert spaces H, Y. Moreover, let B : Y — X be a continuous linear operator
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into another Hilbert space X with a closed range B[Y] such that C*B* is densely defined.

Then, if
(o (¢ 7)) (1) -(5)

with data () € H,(R,H & X) and a solution () € H,(R,H & X) is a well-posed
evo-system (satisfying in particular (4)), so is the descendant problem

Fo

(9M(3,") + A)U = (G ) € H,(R,H & B[Y]),

1

where

M) =(y )M (g )

i-(o 5)(e 0 )6 #)

Proof. The positive-definiteness condition (4) carries over to the new material law op-
erator in the following way. If

vM(0) + sym(M'(0)) > c, >0

forall v € [vy, co[ and some v, € ]0, o[, then

vﬂ(O)+sym(1\7['(O))=V<(1) g)M(0)<1 ;)

and we estimate for (V,, V;) € H @ B[Y]

V, 1 0 1 0\/[V

()] 8)m0 (e #)(%))
v,/|\o B 0 B V1> HoB[Y]

Vo\|/1 O ) 1 0\/(V,

+<<Vl> <o B)Sym(M “’”(0 B*>(V1>>H$B[Y]
~ 1 0\/(V, 1 0\/[(V,
(o 2ol 5) (),

sym(M'(O))G 1;)*><1‘£(1)>>H®Y)
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2 (D),

Indeed, since by the closed range assumption B[Y] and B*[X] are Hilbert spaces and
by the closed graph theorem the operator

\Y

(1 0 >:H@B[y]—>H€BB*[X]

O B* lB[Y]
()~ (s0,)
Vi B*V;
has a continuous inverse, we have

’( O) - <1 . >_1<1 0)( O>

[/1 0 B*IB[Y] 0 B* [/1 HeB[Y]

- <l 0 >_1 (l 0 > <V0>
0 B*lB[Y] 0 B* [/1

(0 )
0 B*lB[Y]

vM(0) + sym(M'(0)) > ¢, >0

HeB[Y]

HoY
and so we may choose
142

c,=c,

to confirm that

for all v € [vy, co[ and some v, € 0O, col. O

Asaparticular instance of this construction, we can take B specifically as i5, where
s : S — H, x — x, is the canonical embedding of the closed subspace S in H. Then

<l 0)(0 —C)(l O> _( 0 —Czs>

0 /\c* 0/\0o /) \gC* o

is skew self-adjoint if Cig : D(C) NS € S — Y, the restriction of C : D(C) c H — Y to
the closed subspace S ¢ H is densely defined in S. This is the construction we shall

employ to approach our specific problem. First, we observe that both physical regimes
do indeed have the same mother.

4.2 Two descendants of non-symmetric elasticity

As a convenient mother to start from, we take the theory of non-symmetric elasticity,
W. Nowacki, [8, 9], leading to an evo-system of the form

(oo 25+ (g "0)) ()= )
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11 On an electro-magneto-elasto-dynamic transmission problem = 395

We shall now discuss two particular descendants:
Classical symmetric elasticity theory can be considered as a descendant of the

form
1 0 1 1 0 1
(@0 g )lo o) (o o)lo o)
0 lsym 0 lym 0 lsym 0 loym
(a0 )en)(arn)
—Grad 0 Tym/ \8sym/’
where
Grad = l;‘ymgr;::ld
and
Div := div tgyp,.

Note that the assumptions of Theorem 4.2 are clearly satisfied since smooth ele-
ments with compact support are already a dense sub-domain of div igyy,. In the
classical situation, which we shall assume for simplicity, we have M; = 0 and

e. O
M0:<0 C71>.

Maxwell’s equation are obtained in a sense by the opposite construction.
If we denote analogously

skew : L*(Q, R*?) — L2(Q, R¥?),
W %(W -w),
then with

lskew * Lz(Q, SkeW[IRBX3]) N LZ(Q) ]R3><3)
T—T,

denoting the canonical embedding of L*(Q, skew[R>*®]) in L2(Q, R*?) we find

L*(Q, R¥®) - L}(Q, skew[R>?])
W — skewW.

l:kew :
With this, we may now construct the Maxwell evo-system as

1 0 1 0
oo —varge) )
( 0 0 _\/EI Lskew 0 0 _\/Zskewl
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+<1 0 >M <1 0 )
0 V') \O V2l

(im0 D)~ (rgn)

where
a 1 0 -a3 a
I:| o E as 0 o
as -, o 0

0 -a3 o
'l aa 0 -a |~V2|aq
-0 o 0 o3

Again, for simplicity we focus on the classical choice of (6). We calculate

0 azvl - aIVZ a3V1 - 81\/3
I'igeywgradv = SI" [ 0v; - 0,1 0 03V, — 0yV3
0v3 — 03V, Ov3 — 031, 0
03V, — 0,3 1 0,V3 — 03V,
=——| 0v3-0v; |=—4| KV, -oVv
\/5 al 3 371 \/5 3Y1 1V3
HVi = 01Va 01v2 — 0V
- L curlv
V2
and also confirm that
1
div tgew! = ——=curl.
V2

In other terms, we have the congruence to a descendant

( 0 —curl)
curl 0

_<1 0 ) 0 —diV lgey <1 0 >
~\o —\/EI* grnad 0 0 —\/EI ’

_*
lskew

where we have used that

curl = V2I* %, grad.

skew

Note that again smooth elements with compact support are a dense sub-domain of
div 15y, and so the assumptions of Theorem 4.2 are clearly satisfied. Motivated by the
observation that Maxwell’s equations and the (symmetric) elasto-dynamic equations
are both descendants from the asymmetric elasto-dynamics equations of Nowacki,
[8, 9], we will now discuss boundary interactions between both systems.
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11 On an electro-magneto-elasto-dynamic transmission problem = 397

4.3 An application to interface coupling

Motivated by a paper of F. Cakoni and G.C. Hsiao, [1], where the time-harmonic
isotropic homogeneous case of electro-dynamics and elasticity, respectively, is stud-
ied via transmission conditions across a separating interface, we consider the corre-
sponding time-dependent case. We assume Q, U Q; < Q, such that the orthogonal
decompositions

L(Q,R¥) = [X(Qo, R¥%) 0 L2(Q,, R¥O)
L(Q,R) = L*(Qy, R®) @ LX(Q, R%) (10)

hOld, and let IO = (ILZ(QO,sym[IR3X3]) _le(Ql,SkEW[]R3X3]) \/ZI), i. e.,

S
Iy <v> = (20 sym{R)S ~ 120, skewir>)) V2V

with the respective canonical embeddings into L2(Q, R¥3). Then
I; : LA(Q,RP) - L2(Qg, sym[R*?]) @ L*(Q;, R?),

I T
T L2(Qq,sym[R>3])
-2 ¢ T)’
L2(Q,,skew[R>3])

and so

*
I - ( 12(Qg.sym[R>)) )
* ok .
-V 12, skew[R>3))

With this, we get a congruence to a descendant construction as

1 0 0 -divy/1 O
A= . 11
<O I{;) <—grad 0 ) <0 Io> a
0 (-Divg, —curly)
C <— Gradg, ) <O 0) (12)
curlg, 0 0

and

0.0, * €q, (0 0)

M(0) = <g) (cgi ”(;l) (13)
/ oo, (0 0)
M'(0) = <8> <8 8) : (14)
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The indexes Q;, k = 0,1, are used to denote the respective supports of the quantities.
The coefficients are — as a matter of simplification labeled in the same meaning as in
(6) and (8), just with the support information added.” The unknowns are now

VQO + EQl
<T90> € H = I(Q,R%) @ (L*(Q, sym[R*?]) @ L*(Q;, R?)),
Hy,

where the first component is to be understood in the sense of (10). Note that the as-
sumptions of Theorem 4.2 are clearly satisfied since smooth elements with compact
support in Q, and Q,, respectively, are already a dense sub-domain as in the sepa-
rate cases of Subsection 4.2. From the inclusion (11), (12), we read off that the resulting
evo-system

/ Vg, +Eq, fay —Jextq,
(3oM(0) + M'(0) + A) ( To, > = <gsym,go ) (15)
HQ1 kext,Q1

indeed yields
(0.0, +€q,)(Vo, + Eq,) — Divg Tq —curly Hq = fo, —Jjext,0,>
which in turn splits into

900+,0,vq, — Divg, T, =fa,»

do€q,Eq, —curly Hq = —jextq,-
The second block row yields another pair of equations

80 C_l TQO - Gl’ad VQO = gSYm,QO 5

aonIHQI + curl EQ] = kext,Ql .

The actual system models now natural transmission conditions on the common
boundary part Q, N Q; and the homogeneous Dirichlet boundary condition on Q, \ Q,

7 Although we consider for convenience and physical relevance this evo-system in its own right, a
formal mother material law — without physical meaning — could be easily given:

(g*,go +&g, +05'0g, O )
0 my

with, for example,
_ % C—l * * *
my = lsym,Oo Oolsym,Qo + lskew,Qo lskew,Qq + ‘skew,Qlyﬂllskew,Ql + ’sym,Ql lsym,Q; -

Then the described mother-descendant mechanism would lead to a descendant, which in turn would
be congruent to the described interface system.
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11 On an electro-magneto-elasto-dynamic transmission problem =— 399

and the standard homogeneous electric boundary condition on Q,; \ Q, without as-
suming any smoothness of the boundary.

On the contrary, assuming sufficient regularity of the boundary, one can see that
the model yields a generalization of the classical transmission conditions on QN Q;:

TQOYI =nx HQI’ (16)
nxvg =nxEg,

where n is a smooth unit normal field on Q, N Q. Indeed, with
v, + Egl
<TQO> e D(A)
HQ1

we have (noting for the smooth exterior unit normal vector fields ng , ng on the
boundaries of Q and Q;, respectively, that n;, = -n, on Qg N Qy) with

0 (-Divg, —curlg )
A= (—Grad%) <o o> ;
curlg, 0 0
that
VQO + EQ] VQO + EQl
0= <TQ0 ) ’A (TQO >
H91 HQl H
VQO + EQ] VQO + EQl

() )1\ ()
Hq, Hq, H
— (VQO | Div TQO >L2(QO,IR3) - <TQO | Gradgo VQO >L2(QO,]R3X3)

+ (Hgll curly E91>Lz(gl,]R3) —(Eq,| curly Hg )12q, 13

_ J vg, Ta, N, 40 + J ngl(EleHQI)do

QN [ONToN
=- ve T ng do + El (ns x Hg )do
- Qo7 Q0" Qy QM0 & :
Qo QN

Since (v, +Eq,) € D(grad) is by construction admissible, we may choose Vg, = Eq, on
the interface and conclude that

TQO nQO = nQO X HQl (17)
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is a needed transmission condition. In particular, we see
T
gy, TQ0 ny = 0.
Inserting the explicit transmission condition (17) now yields
T
_ J (ng, * (ng, % Vo, ~ Eq))) ' (ng, x Hy,)do
Qo
.
= | 0, ~ ) (ng, xHg )do =0,
QonQy

which, with ny xHy for Hy € D(curlg ) being sufficiently arbitrary, now implies

Ny, XV, =N X Eq,
i. e, the continuity of the tangential components

Voot = Eq 0

as a complementing transmission condition. These more or less heuristic considera-
tions motivate to take the above evo-system as an appropriate generalization to cases,
where the boundary does not have a reasonable normal vector field.

All in all, we summarize our findings in the following well-posedness result.

Theorem 4.3. Theevo-system (15)is well-posedifp, q , Co, andeq , po, areself-adjoint,
non-negative, continuous operators on Lz(QO, IR3), LZ(QO, sym[IR3X3]) and on Lz(Ql, ]R3),
respectively, o, is continuous and linear on L*(Qy, R?) and such that

0:,0,>Cop Mo, 210 > 0,
as well as

VEq, +sym(og, ) =1y > 0
for some real number n, and all sufficiently large v.

Remark 4.4.
1. Ifwe formally transcribe the time-harmonic case into its time dependent form, the
transmission conditions of [1] are actually
Ton=nxd, Hy,
_100 o Ho, (18)
nxoy vo, =nxEq.

Although these obviously differ from (16), we give preference to our choice above

for several reasons. For one, the energy balance requirement of [1, formula (5)],

which reads as

v, To,n = n' (Hg, x Eg ), 19)
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11 On an electro-magneto-elasto-dynamic transmission problem =— 401

is satisfied by (16) but not by (18). With the latter transmission conditions, we
obtain instead

v, To,n = (8Eq,) " (n x (861H91)) = ”T((a(;lHQl) x (0pEq,))-

The problem seems to be that the difference to (19) becomes unnoticeable in the
formal time-harmonic transcription of [1], since there 9, is formally replaced by
iw+/Eoly and so algebraic cancellation essentially makes the product rule for dif-
ferentiation disappear, erroneously suggesting that the energy balance® is satis-
fied.

In the notation above, (11), (13), (14), if M(0) is already strictly positive definite, we
can construct a fundamental solution as a small perturbation of the fundamental
solution of 9, + VM (O)_lA VM (O)_l, which in turn is obtained from the unitary
group

(exp(~t VM(0) AVM©0) ));eq

by cut-off as

Xo.co((t) exp(~t VM(0) AVM(O) )),eq-

The restriction of the fundamental solution to [0, co[ yields the family

(exp(~t \/W_IA \/M(O)_l))te[o,oo[

commonly referred to as the associated one-parameter semi-group. In general,
however, a fundamental solution may be complicated or impossible to construct.
We note that beyond eddy current type behavior, which is actually a change of
type situation from hyperbolic to parabolic, and beyond the possibility of includ-
ing, for example, piezo-electric effects via a more complex material law, we may
actually allow for completely general rational material laws as long as condition
(4) is warranted.
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12 Continuous dependence on the coefficients
for a class of non-autonomous evolutionary
equations

Abstract: The continuous dependence of solutions to certain equations on the coeffi-
cients is addressed. The class of equations under consideration has only recently be
shown to be well posed. We give criteria that guarantee that convergence of the co-
efficients in the weak operator topology implies weak convergence of the respective
solutions. We discuss three examples: A homogenization problem for a Kelvin—-Voigt
model for elasticity, the discussion of continuous dependence of the coefficients for
acoustic waves with impedance type boundary conditions and a singular perturbation
problem for a mixed type equation. By means of counterexamples, we show optimality
of the results obtained.

Keywords: Homogenization, G-convergence, non-autonomous, evolutionary prob-
lems, integro-differential algebraic equations, singular perturbations, continuous
dependence on the coefficients
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1 Introduction

In this article, we discuss the continuous dependence of solutions to evolutionary
equations on the coefficients. In particular, we provide a hands-on approach to some
results that can be deduced from the more elaborate exposition in [42]. Moreover, in
comparison to [42] we shall present more involved applications.
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The usual method of choice to discuss issues of evolution equations is the semi-
group approach. In fact, many evolutionary problems in mathematical physics can be
described by the abstract Cauchy problem

u' =Au u(0) =y,

with A being a generator of a strongly continuous semi-group in a certain Banach
space X, u, € X. Thus, in the semi-group language, we are led to consider

w, = A, u,(0) =1y,

for a suitable sequence of generators (4,), in a common Banach space X. Now, we
address whether the sequence (u,,), of solutions converges in a particular sense. If
the sequence of solutions converge to some u, we further ask whether there exists an
operator A such that the following holds:

u' =Au u(0) = uy.

Within the semi-group perspective, there are several issues to be taken care of: Vari-
able domains of the generators A,,, non-reflexivity of the space in which the solutions
(uy), are obtained and the generator property for A. To illustrate the latter, we dis-
cuss a simple example with bounded generators: Take a bounded measurable func-
tion a: R — R and consider the sequence (u,), of solutions to the equation

%un(t, x) + a(m)u,(t,x) =0  u(0,x) = uy(x) ((t,x) € (0,00) xR),
for some given u, € L*(R). The Cauchy problem can be formulated in the state space
X = L*R). It can be shown—assuming for instance the periodicity of a—that the
limit equation is not of the type discussed above. Indeed, the resulting equation is
of integro-differential type; see, for instance, [30, Chapter 23]. In particular, we can-
not expect the limit equation to be of the form of the abstract Cauchy problem de-
scribed above. Hence, the semi-group perspective to this kind of equation cannot be
utilized. The very reason for this shortcoming is that the convergence of (a(n-)), is too
weak, [35]. In fact, it can be shown that (a(n-)),, converges in the weak star topology of
L (R) to the integral mean over the period, or, equivalently, the sequence of associ-
ated multiplication operators in L2(R) converges in the weak operator topology to the
identity times the integral mean over the period of a. We refer to [8], where subtleties
with regards to the Trotter product formula and the weak operator topology are high-
lighted. Due to the non-closedness of abstract Cauchy problems with regards to the
convergences under consideration, we shall use semi-group theory here.

To the best of the author’s knowledge, besides the author’s work [35, 34, 40, 36,
37, 41, 42], there are very few studies (if any) of continuous dependence on the coef-
ficients of a general problem class under the weak operator topology. However, there

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:10 PM



12 Continuous dependence on coefficients = 405

are some results for particular equations and/or with stronger topologies with respect
to which the convergence of the coefficients is considered in: In [45], a particular non-
linear equation is considered and the continuous dependence of the solution on some
scalar factors is addressed. Similarly, in [6, 10, 32, 17, 16], the so-called Brinkman—
Forchheimer equation is discussed with regards to continuous dependence on some
bounded functions under the sup-norm. The local sup-norm has been considered in
[5], where the continuous dependence on the (non-linear) constitutive relations for
particular equations of fluid flow in porous media is discussed. A weak topology for
the coefficients is considered in [12]. However, the partial differential equations con-
sidered are of a specific form and the underlying spatial domain is the real line. Deal-
ing with time-dependent coefficients in a boundary value problem of parabolic type,
the author of [18] shows continuous dependence of the associated evolution families
on the coefficients. In [18], the coefficients are certain functions considered with the
C'-norm. The author of [33] studies the continuous dependence of diffusion processes
under the C°-norm of the coefficients. Also with regards to strong topologies, the au-
thors of [13, 14] studied continuous dependence results for a class of stochastic partial
differential equations.

We also refer to [30, 7, 4], where the continuous dependence of the coefficients
has been addressed in the particular situation of homogenization problems. See also
the references in [37]. Due to the specific structure of the problem semi-group theory
could be applied for a homogenization problem for thermo-elasticity [9].

As indicated above, the main observation for discussing homogenization prob-
lems is that the coefficients might only converge in a rather weak topology. A pos-
sible choice modeling this is the weak operator topology [36, 35]. Thus, motivated by
the problems in homogenization theory, we investigate the continuous dependence of
solutions of evolutionary problems on the coefficients, where the latter are endowed
with the weak operator topology. Aiming at an abstract result and having sketched the
drawbacks of semi-group theory in this line of problems, we need to consider a differ-
ent class of evolutionary equations. We focus on a certain class of integro-differential
algebraic partial differential equations. Recently, a well-posedness result could be ob-
tained for this class [38, 42]. Moreover, generalizations of the results in [36, 40, 37]
need the development of other techniques.

The class of equations under consideration is roughly described as follows. Con-
sider

Mu) + Au =f, (1.1)

where M is a bounded linear operator acting in space-time, (Mu)’ denotes the time-
derivative of Mu and A is a (unbounded, linear) maximal monotone operator (see,
e.g., [27]) in space-time, which is invariant under time-translations, f is a given forc-
ing term and u is to be determined. The underlying Hilbert space setting will be de-
scribed in Section 2. Though (1.1) seems to be an evolution equation in any case, it is
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possible to choose M in the way that (1.1) does not contain any time-derivative at all.
Indeed, in the Hilbert space framework developed below the time-derivative becomes
a continuously invertible operator. Thus, as M acts in space-time, we can choose M
as the inverse of the time-derivative times some bounded linear operator M, such that
(1.1) amounts to be Mu + Au = f. In view of the latter observation and in order not
to exclude the algebraic type equation Mu + Au = f, we are led to consider (1.1) with
no initial data. However, imposing sufficient regularity for the initial conditions, one
can formulate initial value problems equivalently into problems of the type (1.1); see,
e. g., [22, Section 6.2.5].

There are many standard equations from mathematical physics fitting in the ab-
stract form described by (1.1). These are, for instance, the heat equation ([22, Section
6.3.1], [36, Theorem 4.5]), the wave equation ([21, Section 3], [31, Section 4.2]), Pois-
son’s equation (see Section 4), the equations for elasticity [31, Section 4.2] or Maxwell’s
equations ([20, Section 4.1], [40, Section 5]). Coupled phenomena such as the equa-
tion for thermo-elasticity ([22, Section 6.3.2], [36, Theorem 4.10]) or the equations
for thermo-piezo-electro-magnetism [22, Section 6.3.3], or equations with fractional
derivatives like subdiffusion or superdiffusion problems ([36, Section 4], [25, Section
4)]) can be dealt with in the general framework of (1.1). We note here that the operator
M in (1.1) needs not to be time-translation invariant. Thus, the coefficients may not
only contain memory terms, but they may also explicitly depend on time; see [26,
Section 3].

In order to have an idea of the form of the operators M and A, we give three more
concrete examples. All these three examples are considered in a three-dimensional
spatial domain Q. Written in block operator matrix form with certain source term f, a
first-order formulation of the heat equation reads as

<2<1 O>+<0 0 >+< 0 div>>(9(t,x)>_(f(t,x)>
ot\0 0 0 x(t,x)! grad O qt.x)) \ o )’
where 0 is the temperature, g is the heat flux and « is the conductivity matrix, which

is assumed to be continuously invertible. Note that the second line of the system is
Fourier’s law. Hence, in this case

(o o) () (6 )

0 div
A= (grad 0 )

which is skew self-adjoint if suitable boundary conditions are imposed.
Similarly, we find for the wave equation

(@0 wenrt)*(ama o)) (i) =(57)
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for some suitable coefficient matrix x, the relations

1 0
M_<O K'l)

0 div
A= <grad 0 )

and

Maxwell’s equations read as

<2 <£(t,x) 0 >+ <o(t,x) 0) . < 0 curl)) <E(t,x)> _ <](t,x)>
ot\ 0  u(tx) 0 o0 —curl 0 Htx)) \ o )’
where ¢, y and ¢ are the material coefficients electric permittivity, magnetic perme-

ability and the electric conductivity, respectively. J is a given source term and (E, H) is
the electro-magnetic field. We have

m=(5 0+ (3) (o)

0 curl
A= <—curl 0 )

which is skew self-adjoint for instance under the electric boundary condition. Well-
posedness conditions for the above equations are suitable strict positive definiteness
conditions for &, y and k. Moreover, the derivative with respect to time needs to be
uniformly bounded. The precise conditions can be found in [26, Condition (2.3)].

Now, we turn to discuss the main contribution, Theorem 3.1, of the present arti-
cle. Take a sequence of bounded linear operators (M,,) ,en in Space-time converging in
the weak operator topology 7, to some bounded linear operator M. The M,’s are as-
sumed to satisfy suitable conditions (see Theorem 2.3 or [38, 42]) such that the respec-
tive equations as in (1.1) are well posed in the sense that the (closure of the) operator
u — (Mu)' + Auis continuously invertible in space-time. Let f be a given right-hand
side. For n € N, let u,, solve

and

(Myuuy)' + Auy, = f. 1.2)

The main result now states that if the sequence of the commutator of the M,,’s with
time-differentiation is a bounded sequence of bounded linear operators® and if the

1 If M,, is given by multiplication by some function k,, depending on both the temporal and spatial
variables, the commutator with time-differentiation is given by the operator of multiplying with the
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resolvent of A satisfies a certain compactness condition, we have u,, — u, i.e., (u,),
weakly converges to u, where u satisfies

Muw) + Au=f.

It should be noted that the operator .4 may only be skew self-adjoint. In particular, the
equations under consideration may not have maximal regularity. Moreover, the free-
dom in the choice of the sequence (M,,), also allows for the treatment of differential-
algebraic equations, which have applications in control theory, [24, 23]. Since we only
assume convergence in the weak operator topology for the operator sequence, the re-
sult particularly applies to norm-convergent sequences or sequences converging in
the strong operator topology (see also Section 4). However, for the latter two cases
the results are certainly not optimal. For the case of convergence in the weak operator
topology, we give two examples (Examples 3.5 and 3.4) that the assumptions in our
main theorem cannot be dropped.

In order to proceed in equation (1.2) to the limit as n — oo, the main difficulty to
overcome is to find conditions such that (M,u,),, converges to the product of the lim-
its. This is where a compactness condition for the resolvent of .4 comes into play. With
this, it is then possible to apply the compact embedding theorem of Aubin-Lions (see
Theorem 5.1 below) in order to gain a slightly better convergence of (a subsequence of)
theu,’s.

As it will be demonstrated in Section 4, the results have applications to homoge-
nization theory. In a different situation, where certain time-translation invariant op-
erators were treated, the latter has also been observed and exemplified in [36, 40]. We
shall also mention applications to problems of mixed type; see [41].

We build up the Hilbert space setting mentioned above in Section 2. Section 3 is
devoted to state and briefly discuss the main result of the paper, which will be applied
in Section 4 to a homogenization problem in visco-elasticity, a wave equation with
impedance type boundary conditions and a singular perturbation problem. The con-
cluding section is devoted to the proof of Theorem 3.1. Any Hilbert space treated here
is a complex Hilbert space.

derivative of k,, with respect to time. Thus, the boundedness of the sequence of commutators under
consideration is warranted if, for instance, (x,),isa C 1 _bounded sequence considered as the sequence
of mappings

(Rt K(t,-) € L)

n
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2 Preliminaries

We summarize some findings of [22, 39, 38, 42]. In the whole section, let H be a Hilbert
space. We introduce the time-derivative operator g, as an operator in

2 2
L, (R; H) = L(R, exp(-2v())A; H),
A denoting the 1-dimensional Lebesgue measure, for some v > 0 as follows:
do: H,1 (R H) € Ly(R; H) — Ly(R;H), ¢ ¢,

where H, ;(R; H) is the space of weakly differentiable Lﬁ(lR; H)-functions with weak
derivative also lying in the exponentially weighted L*-space. For the scalar product in
the latter space, we occasionally write (-,-),. One can show that 9, is one-to-one and
that for f € Lﬁ(IR; H) we have for all t € R the Bochner-integral representation

t
%'fe = | farar.

The latter formula particularly implies ||851|| < %, and thus, 0 € p(d,); see, e. g., [11,
Theorem 2.2 and Corollary 2.5] for the elementary proofs. From the integral represen-
tation for 651, we also read off that a(;lf vanishes up to some time a € R, if so does f.
This fact may roughly be described as causality. A possible definition is the following.

Definition ([39]). Let M: D(M) < L2(R; H) — L2(R; H). We say that M is causal if for all
R>0,aeR, e Lﬁ(]R;H) the mapping

(By(0.R), [1g_ (mo)(- —)]) = (LZ(Rs H), |(1g._ (mo)(- ~ ). h))
f ~ Mf,

is uniformly continuous, where By (0, R) = {f € D(M); |f| + |Mf| < R}.

Remarks 2.1.
(a) For closed linear operators M, we have shown in [39, Theorem 1.6] that M is causal
if and only if for all a € R and ¢ € D(M) the implication

1z  (my)$p = 0 = 1p_ (my)M¢p = 0
holds. The latter, in turn, is equivalent to
1]R<a(m0)M 1]R<a(m0) = 1]R<a(mO)M (a eR)
provided that I]Rm(mo)[D(M )] S D(M) forall a € RR.
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410 — M. Waurick
(b) Assume that M:D(M) < Lﬁ(IR; H) — Lﬁ(IR; H) is continuous and for all a € R the
set
D(M1g_ (mg)) n D(M) € L (R; H)
is dense.? If for all a € R, we have
1g_ (Mmo)M1g_ (mg) = 1g_ (mo)M

on D(M 1y _ (mg)) N D(M), then both M and M are causal. Indeed, by continuity,
the latter equality implies that

1]R<a(mo)]\_/1 1g_(mg) = 1g_ (mo)M1y_(mg)

=1g_(me)M =1z_(me)M (a € R).
Hence, by (a) M is causal, implying causality for M.

Remarks 2.2. A prototype of causal operators are particular functions of o5 13 Though
being of independent interest, we need this class of operators to properly formulate
the examples in Section 4. We use the explicit spectral theorem for a(;l given by the
Fourier-Laplace transformation L,. Here, L, is the unitary transformation from Lﬁ(]R)
onto L2(R) such that

of = (x = n_([ ) dy)

for continuous functions f with compact support. Then one can show that

_ 1
t=rr—r,
0 Vimg+v "’

where (ﬁcp)(x) = ix%qb(x) for¢ € L% (R), x € R. Now, any M belonging to the Hardy
space H°(B(r, r)) of bounded and analytic functions B(r,r) — C for some r > % leads

to a causal, time-translation invariant operator M (651) in the way that

-1 % 1
M@ = EVM<im0 . v)cv.

2 The latter happens to be the case if, for instance, D(M) 2 C, (RR; H), the space of indefinitely dif-
ferentiable functions with compact support.

3 In [37, Section 4], [35, 25] examples for this kind of operators are given. Some of these are convolu-
tions with suitable L!-functions or the time-shift.
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12 Continuous dependence on coefficients = 411

We endow H*(B(r,r)) with the supremum norm. Moreover, note that the definitions
made can readily be extended to the vector-valued case, i. e., if H°(B(r,r); L(H)) de-
notes the Hardy space of bounded analytic functions with values in the space of
bounded linear operators, we can define for M € H°°(B(r,r); L(H)) the operator

_ 1
M(og") = c*M(. )c, 2.1
( 0 ) v lmo +v v ( )
acting in the Hilbert space Lﬁ(]R; H), where we re-used £, to denote the extension of the
scalar-valued Fourier-Laplace transformation to the H-valued one. Thus, (2.1) should
be read in the strong sense. With the help of the Paley—-Wiener theorem, it is possible
to show causality for M (9, b); see, e. g., [20].

In [38, 42], we have shown the following well-posedness result, which comprises
a large class of linear partial integro-differential algebraic equations of mathematical
physics as it has been demonstrated in [22, 26] (see also Section 1); it does, however,
not quite supersede the stochastic variant of evolutionary equations; see [29]. Before
we state the well-posedness theorem, we introduce the notion of a bounded commu-
tator.

Definition (Bounded commutator). Let B € L(H) and let A: D(A) € H — H be a densely
defined linear operator. Then B is said to have a bounded commutator with A, if there
exist C € L(H) such that BA < AB + C. In the latter case, we shall write [B,A] =
-[A,B] = C. A sequence (B,),, of bounded linear operators is said to have bounded
commutators with A, if for all n € IN the operator B, has a bounded commutator with
A and the sequence ([B,, A]), is bounded.

Theorem 2.3 ([38, Theorem 2.7 and 2.4]). Let H Hilbert space, M € L(L‘z,(lR; H)). As-
sume that M has a bounded commutator with d,. Let A: D(A) € L2(R;H) — LA(R; H)
be linear, maximal monotone and such that d,(A + 1) = (A + 1)0,, i.e., A commutes
with d,. Moreover, assume the positive definiteness conditions

R{OpMu, 1g_ (mo)u) 2 c(u, 1x_ (mou),  R{Au,1x_ (mo)u) 2 0 (2.2

for allu € D(0y) N D(A), a € R, and some ¢ > 0.
Then 0 € p(dyM + A) and the operator (0y M + A)is causal.

Remarks 2.4.

(a) The operator A in the latter theorem is assumed to be maximal monotone. By this,
we mean that 4 is maximal monotone as a relation and still being an operator.
This implies closedness of the operator A, as well as that .4 is densely defined; see
[19, Lemma 1.1.3]. Moreover, A* is also maximal monotone; see [19, Theorem 1.1.2].

(b) The fact that .A commutes with 3, implies in particular that 9;'A < .A3;". So, with
[42, Proposition 3.2.8], we deduce that .4 commutes with time-translation, so that,
in particular, R (Au, 1p_ (mp)u) 2 Oimplies R { Au, Ig_ (mo)u) 2 Oforalla € Rand
u € D(A).
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412 — M. Waurick

For the following, we need to record some continuity estimates. In order to do so,
we briefly recall the concept of Sobolev lattices discussed in [22, Chapter 2].

Definition ((Short) Sobolev lattice). Let C;, C, be two densely defined closed linear op-
erators in H with 0 € p(C;) n p(C,) and C,C, = C,C;. Then, for k, ¢ € {-1,0, 1} we define
H, ,(Cy, Gy) as the completion of D(C;C,) with respect to the norm ¢ — |Ci‘C§¢|. The
family (Hy ,(Cy, C3))y pef-1,0,1; is called (short) Sobolev lattice.

Remarks 2.5.

(@) We have continuous embeddings H ¢(C;, C;) — Hys »(C;, C;) provided that k 2 k'
and ¢ 2 ¢'. Moreover, Hy ,(Cy, C,) = Hy 1 (C,, Cy) forall k, k', ¢,¢' € {~1,0,1}.

(b) The operators C;' can be established as unitary operators from Hy ,(C;, C,) into
Hyz10(Cy, G) forall k, € € {-1,0,1} such that k ¥ 1 € {~1,0,1} and similarly for C,.

(c) Inthe special case of C, = 1, we write H(C,) = Hy;(C;, 1) for all k € {-1,0,1}.

(d) In the special case of C; = 0y and C, = 1, we write H, ;(R; H) = H;(0,) for all
k € {-1,0,1}.

Remark 2.6. With the help of the Sobolev lattice construction stated, we can drop the
closure bar in 05,M + A and compute in the Sobolev lattice associated with (9, .4 +1).
In order to make this more precise, we denote here the extensions of 9, and A to the
Sobolev lattice (with the common domain Hy ((dg, A + 1) = Lﬁ(]R; H)) by 05 and A°,
respectively. Now, let u € D(ao/\/l—+A) c le,(]R;H ). Then, by definition, there exists
a sequence (u,), in D(6,M) N D(A) such that u, — uandv, = (M + Au, —
(OpM + Au = vin LE(IR; H) as n — co. On the other hand, the continuity of 95 and
A® implies ogMu,, — dgMu and A%u, — A%uin H_;4(9y, A + 1) and Hy _1(0, A + 1),
respectively, as n — co. From Lﬁ(IR; H) — H_;_4(0y, A+1)and

Vy = O Muy + A%u, = O Mu + A%u € Hy (09, A +1)
it follows that v = 95 Mu + A%u. Thus,
D@uM + A) € {u € LA(R; H); 9 Mu + A°u € LX(R;H)} = D

and (9gM + A)u = 35 Mu + A%u for u € DO M + A).

On the other hand, if u € D then one can show that (1 + sa{,l)u € D(0y) N D(A) <
D(0y M+ A) for every € > 0; see [38, Lemma 4.2] or [26, Lemma 2.9]. Moreover, from the
lemmas stated, it also follows that ((dgM + A)(1 + €0, 1)u)8>0 is weakly convergent in
Lﬁ(]R; H) as € — 0+. As the strong closure of linear operators coincides with the weak
closure, we deduce that u € D(dyM + A).

With the observations made in the latter remark, we henceforth omit the closure
bar in 9,M + A, use the continuous extensions of 9, and A to the Sobolev lattice, re-
use the respective notation and agree that D(d, M + A) = {u € Lﬁ(IR; H); 0gMu + Au €
Lﬁ(]R; H)}. Now, we are in the position to state the continuity estimates.
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12 Continuous dependence on coefficients = 413

Corollary 2.7. In the situation of Theorem 2.3, let f € L2(R;H) and u € LX(R; H) with
(OpM + A)u = f. Thenu € H_y1(dy, A + 1) and

1 11
Ul @041 = <; * Mz i  + 5>V|L5(1R;H>

Proof. In the Sobolev lattice associated to (d,, .4 + 1), we compute that
(A+Du=f-0dgMu+ueH_ (9 A+1).
Thus,
u=(A+1)7(f - dgMu+u) € H (35, A+1)

and
Jul_11 = 05" (A + Dy
= 05" (A + DA+ 1) (f = dpMu + )|

|aalf|0,o + [Mulgo + |aalu|o,o

1 1 1
- + M|l = + —
> Iflo,o + IMIl p [flo,0 o [flo,0

I

IA

IA

1 1 1
<—+||M||—+—>|f|o,o H
1% C cv

3 The basic convergence theorem

We recall the concept of G-convergence.

Definition (G-convergence, [46, p.74], [40]). Let H be a Hilbert space. Let (4,

D(A,) € H — H), be a sequence of continuously invertible linear operators onto
H andletB: D(B) € H — H be linear and one-to-one. We say that (4,),, G-converges
to B if (A;l)n converges in the weak operator topology to B, i.e., for all f € H the
sequence (A;l(f )),, converges weakly to some u, which satisfies u € D(B) and B(u) = f.

Bis called the* G-limit of (A,), and we write A, S, B.
Our main theorem reads as follows.

Theorem 3.1. Let H be a Hilbert space, v > 0. Let (M,), be a bounded sequence in
L(Lﬁ(lR; H)) with bounded commutators with d,. Moreover, let A: D(A) < Lﬁ(]R; H) —

4 Note that the G-limit is uniquely determined; cf. [40, Proposition 4.1].
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414 — M. Waurick

Lﬁ(IR; H) linear and maximal monotone commuting with o, and assume that M, is
causal, n € N. Moreover, assume the positive definiteness conditions

RO M, 1g_ (mou) 2 c{u, 1y (mo)u), R{Au, 1y _(mgou) 20

for allu € D(0y) N D(A), a € R,n € N and some c > 0.

Assume that there exists a Hilbert space K such that K —<— H, i.e., K is compactly
embeddedinto H, H|(A+1) — Lﬁ(IR; K) and that (M,,),, converges in the weak operator
topology to some M.

Then 0, M + A is continuously invertible in Lﬁ(]R; H) and

©@oM, +A) S @M +A) asn— oco.

Remarks 3.2. It should be noted that it is possible to show another continuity prop-
erty. Namely, if (f,), in Lﬁ(]R; H) is a weakly convergent sequence with’ inf, inf spt f,, >
—oo and (u,,),, is the sequence of solutions to

(OoM, + Ay, = fr
then (u,), weakly converges to the solution u of
(OpM + A)u = w- nllngof.

In view of the well-posedness theorems [26, Theorem 2.13] and [38, Theorem 2.4],
there is a more adapted version of Theorem 3.1:

Corollary 3.3. Let H be a Hilbert space, v > 0. Let (M,,),,, (N,,), be bounded sequences
of causal operators in L(le,(lR;H )) having bounded commutators with 0, and A: D(A) <€
Lﬁ(]R; H) — Lﬁ(]R; H) linear, maximal monotone commuting with d,. Assume the positive
definiteness conditions

R{ (g M, + Nu, 1]R<a(m0)u) 2 c(u, 1]R<a(m0)u> (a e R)
R{Au, 1]R<0(m0)u) >0

for allu € D(0,) N D(A), n € N and some c > 0.

Assume that there exists a Hilbert space K such that K —<— H and H{(A + 1) —
Lﬁ(]R; K) and that (M,),, (N,), converges in the weak operator topology to some M
and N, respectively.

Then 0y M + N + A'is continuously invertible in Lﬁ(]R; H) and

©@oMy + Ny + A) S @M+ N +A) asn— oo

5 We denote the support of a function v: R — X with values in some topological vector space X by
sptv.
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Proof. Tt suffices to verify the assumptions in Theorem 3.1 on (M,,),, for the operator
sequence (M,, + 9, !N, This, however, is easy to see. O

We remark here that in order to prove well-posedness for equations of the form
OoM+N + ADu=f

for suitable M, N, A in [26, Theorem 2.13] or [38, Theorem 2.4], we did not need any
assumptions on the commutator of A and d,. Thus, one might wonder, whether the
boundedness for the commutators of (N,), with 9, is needed in Corollary 3.3. The
next example shows that this boundedness assumption is needed to compute the limit
equation in the way it is done in Corollary 3.3.

Example 3.4 (On the boundedness of ([N, 0,1),). Let v > 0. Consider for n € N the
operator

sin(nmg): Ly(R) — LY(R),f + (sin(n)f ().

Define for n € N the operators M,, = 0, N, := sin(nm,)+2and A: C — C, x — x. Then,
clearly, the (uniform) positive definiteness condition is satisfied and .A has compact
resolvent. For f € C., .(R), consider the problem of finding u,, € Lﬁ(lR) such that

(OgMpy + Ny + Auy, =,
which is the same as to say that

((sin(nmg) +2) + Du, = f.

1
sin(nmg)+3

We get that u,, =
rem 2.6], that

f. By periodicity of sin we get with the help of [7, Theo-

n

1 T
tn = J sin(t) + 3 def = ﬁf =

-

as n — oo. Moreover, it is easy to see that
n
N, o j sin(t) + 2dt = 41 = N.
=
Thus, if the representation formulas for the limit equation remain true also in this

case, we would obtain that u satisfies the equation

b1 m
4nﬁf+l$f—/\/u+,4u—f,

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:10 PM



416 —— M. Waurick

which is not true, since 4 +1 # ‘/72 A reason for this is that we cannot deduce that the
weak limit of the sequence (NV,u,,),, equals the product of the respective limits. Indeed,
we have

n
Nu= 471%}” #w- Tim N, = ( J % dt)f - rr<2 - %)f
-7
Though the latter example does not fit into the scheme developed above, it fits
well into the theory established in [37], where we did not need the assumptions on the
sequence having bounded commutator with 9.
We recall [40, Example 4.9] to show that the compactness condition on A is also
needed to compute the limit in the way it is done in Corollary 3.3.

Example 3.5 (Compactness assumption does not hold). Let v,e > 0. Consider the
mapping a : R — R given by

a(x) = 1[0’%)()( - k) + 21[%)1](x - k)

for all x € [k, k + 1), where k € Z. Define the corresponding multiplication operator in
Ly(R), i.e. for ¢ € C,(R), a(n-m)¢ = (x — a(nx)p(x)) for n € N. Note that a(x +
k) =a(x)forallx e Rand k € Z. Letf ¢ Lﬁ(IR; L%(R)). We consider the evolutionary
equation with (M), = (0),,, (Ny), = (a(n-m)),and A =1i: L’(R) » L’(R) : ¢ — i.
By [7, Theorem 2.6], we deduce that

3
Nn—>§

asn — oo. If the assertion of Theorem 3.1 remains true in this case, then (V, + A),
G-converges to 3 +i. Forn € N, letu, € L2(R;L*(R)) be the unique solution of the
equation

(N, + A, = (a(nm) +i)u, = f. 3.1

Observe that by [7, Theorem 2.6]

1

u, = (a(nm) +1)"'f — (J(a(x) +1)! dx)f =u,

0

as n — oo. We integrate
‘ 1 1
j(a(x) +1) dx = Sa+ e S@en
0

Inverting the latter equation yields

1 -1 1

a1 _ 1 o1 1 ._1__§ E
((J)'(a(x)ﬂ) dx) —<2(1+1) +2(2+1) ) =3+ 3t
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Hence, u satisfies

3 . 18 14,
<§+1>u—f and <E+El>u_f’

which of course is a contradiction.

4 Examples

4.1 Atime-dependent Kelvin-Voigt model

We discuss an example from [1] (we also refer to [3]), where some convergence es-
timates have been established. For showing that this example fits into our abstract
scheme, we introduce some operators first. Let @ € R> be open and bounded. De-
note the weak symmetrized gradient acting on square-integrable vector fields in L*(Q)*
with (generalized) Dirichlet boundary condition by Grad. Korn’s inequality implies
D(Gfad) = HLO(Q)3. By definition, for v € D(Gruad) the mapping Gradv is an element of
Hgyr (Q), the space of square-integrable symmetric 3 x 3-matrices. Endowing the latter
space with the inner product

(D,¥) — Jtrace(CD(x)*‘P(x)) dx,
Q

we realize that Grad = — Div, where the latter operator is the weak row-wise divergence
with maximal domain. Note that by Korn’s inequality and Rellich’s selection theorem,
we have that D(Groad) —< L%(Q), where the first space is endowed with the graph-
norm of Grad. From Poincare’s inequality, we see that Grad has closed range. Denote
by tg: R(Grad) — sym(Q) the canonical injection. As a consequence, the operator g
is the orthogonal projection onto the range of Grnad; see, e. g., [25, Lemma 3.2].

In order to treat the problem class properly, we need to recall some notions from
[38] and [37].

Definition (Evolutionary mappings, [37, Definition 2.1]). Letv; > 0. For Hilbert spaces
H,, H,, we call a linear mapping

M:D(M) € () Ly(R; Hy) — () Ly(R; Hy) (4.1)

v2v; Vv,

evolutionary (at v;) if D(M) € LA(R; H,) is dense and M: D(M) < LX(R; Hy) — L2(R; H,)
is closable for all v > v;. We say M is bounded, if, in addition, M, = M e L(Lﬁ(]R; Hy),
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418 =— M. Waurick

Lﬁ(IR; H,))forallv = v, such that®
li‘r/llst)gp 1Ml 2y < oo.
We define
Ley,, (Hy, Hy) = {M; M is as in (4.1), is evolutionary at v; and bounded}

and abbreviate Ley), (Hy) = Ley,, (Ho,Hy). We call 9 < L, (Hy, H;) bounded if
limsup, o, SUPyeon M2y < co. A family (M) ¢y in Leyy, (Ho, Hy) is called bounded
if {M,; ( € I} is bounded.

In [37, 38], we gave several examples for evolutionary mappings. Multiplication
operators are a particular subclass of these. Moreover, the operator

0 Di
A < 0 1V1R>
1zGrad 0

(defined in space-time) is also evolutionary for every v > 0 and even bounded evo-
lutionary in LeV’V(D(tl’QGr‘éd) & D(Div IR);LZ(Q)3 ® R(Groad)). Trivially, A is causal. For
bounded evolutionary mappings, we recall the following result.

Lemma 4.1([38,Lemma3.3]). Let v = v; 2 v,, H,, H, Hilbert spaces. Let M ¢
Ley, (Ho, Hy) be causal. Then M, and M, coincide on L} (R; Hy) N Ly (IR; H).

Inview of the latter lemma, we omit the subscript in the notation of the closures for
causal, evolutionary mappings for different values of v, if there is no risk of confusion.

Now, take v > 0 and let p € Lg, ,(L*(Q)?), A, B € Lq,,(L*(Q)**%). The model treated
in [1], can be written as

doPdoU — Div BGradoyu — Div AGradu = f.

Abbreviating v = dyu and using Div BGrad = Div 1R11’§BlR1;§Gr°ad (see, e.g., [36]), we
arrive at

dopV — Div ix(t5(B + A3, )ig)ixGrady = f.
Now, if B, is strictly positive definite (uniformly for all large v) in the sense that

R(B,u, 1g_ (mou) 2 c{u, 1g_ (mo)u)

6 For a bounded linear operator A from Lﬁ(]R; Hy) to Lﬁ(]R; H,), we denote its operator norm by
[IA] L2 (RsHo ) L2 (RHy) If the spaces H, and H, are clear from the context, we shortly write || A L2
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forsome ¢ > 0 and all sufficiently large v, u € D(B), a € Rand vis chosen large enough,
we end up with (g = (B + Aa(‘,l)tR)l}*;Gr%ldv):

(6 0)* (6 Gosapno) (ona o)) ()
%00 0o/ \o B+AxNHR)™") \gGrad 0 q 0/

Assuming that p, A, Bhave bounded commutators with 9, in the sense of Theorem 2.3.”
If, in addition, dyp, is strictly positive definite (uniformly for all large v), then it is easy
to see that the aforementioned Kelvin-Voigt model for visco-elasticity is well posed in
the sense of Theorem 2.3. Moreover, it is easy to see that if A, B and p are thought of as
being multiplication operators, the assumption on the boundedness of the commuta-
tor follows if one assumes that the respective functions are Lipschitz continuous and
almost every where strongly differentiable (with respect to the temporal variable). For
the latter, see [26, 38]. Thus,

(505 0 o) aas ")
°\Vo 0o/ "\o (pB+AxRYRY) \iiGrad 0

is continuously invertible in the underlying Hilbert space Lﬁ(]R; LXQ’ e R(Graad)). As
well-posedness issues are not the focus of the present article, we now apply our ab-
stract homogenization theorem:

Theorem 4.2. Letv > 0, (p,),, (By)ns (Ay), be bounded sequences of causal operators
inLyy, (L2(Q)%), Loy, (Hgym (Q)), and L, (Hgym (Q)), respectively. Assume that the respec-
tive sequences have bounded commutators with d,. Moreover, assume there exists c > 0
such that

R<Bnu’ I]Rga (mo)u>v’ z C<¢’ lea(m0)¢>v’ >

R(Qppnths Ir_, (Mo}, 2 cu, 1g_ (Mo)u),,

forallv' zvand ¢ ¢ Lﬁ(IR; HSYm(Q)) andu € H,;(R; LZ(Q)3), ack.
Then there exists a subsequence (ny ) such that

(05 0 ) (i ™5
0 O 0 (tg(By, +Ap 0y )g)” (zGrad 0

G < <p 0) (O 0 ) ( 0 Div 1R>>
- aO + 0 TN okl >
0 0 0 YoM, igGrad 0

7 Note that the boundedness of the commutator of A and 9 is not needed to ensure the well-posedness
of the respective equation. For general well-posedness conditions for this particular equation, we refer
to the concluding section in [26].
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where the latter operator is continuously invertible and

. * -1 4 I\, « -1
M =Ty~ ]}LIEO(_(IRBHI(IR) lRAnklRaol) (lRBnklR)

and p = T~ limy_,q, py, -

Proof. The proof follows with a Neumann series expansion of

. _ -1
(‘R(Bnk +Ank801)1R) >

the fact that for a sequence (T,),, converging in the weak operator topology in some
Hilbert space H, we have |1,-lim,_, Tl £ liminf,_ |T,l, that for a separable
Hilbert space H norm-bounded subsets of L(H) are relatively compact and metrizable
with respect to the weak operator topology and Theorem 3.1. O

Remarks 4.3.
(@) We give some more explicit formulae for M, for particular situations:

(i)

(ii)

In the particular case, where A,, = O and B,, is time-independent, i. e., for every
n € N there exists b, € L(Hgy,(Q)) such that B, is the (canonical) extension
of by, to L (R; Hyyp (Q)), then M, = 0 (€ € N,) and Mo = limy_o, (t3by, 1) ™
One can show that in the special case of b,, = d(n-), where d is a matrix of
suitable size with entries in the space of [0, 1]>-periodic L™ (R?)-functions, the
result coincides with the classical limit; see also [42, Theorem 5.5.3] or [43,
Theorem 1.2].

Assume that (B,)), = (b,),, where (b,,), is a bounded sequence of causal op-
erators in L, ,(C) such that (by,), = c forall n € N and some ¢ > 0 and such
that the sequence of respective commutators with d,, is bounded as well. Fur-
thermore, assume that (4,),, = (a,),, where a,, = d(n-) for a function d as in
the previous part. Now, if b, — b strongly® for some b ¢ Ley,(C), then

M, =7 lim (~txAn tr) (') B (€ €N,

(iii) Assume thatboth (4,,), and (B,), satisfy the structural assumption on B, as in

(ii) being representable as operators only acting in time. Assume, in addition,
that B,, is uniformly strictly positive (as in (ii)) and that ((4,), (B;l)n, (0, 1),,)
has the product convergence property (see [37, Definition 5.1]), then

* . — _1\¢ _
Mg = (- lim (-B,'4,3,") (B )i (€ € N).

8 Here, strong convergence means that there exists b € Ly, (C) such that for any v > v we have that
(by),s — (b),, as n — oo in the strong operator topology.
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12 Continuous dependence on coefficients =— 421

(b) We shall note here that the considerations above can be done similarly for the
case of B, = 0 and A,, self-adjoint and (uniformly) strictly positive definite. The
homogenization result then coincides with the classical one in the sense of part
(@)().

(c) There is also a possibility to treat the cases (a)(i) and (b) in a unified way. The
resulting formulas, however, become more involved. We refer to the concluding
section in [26] for a unified treatment of the cases (a)(i) and (b) with regards to
well-posedness issues.

4.2 The wave equation with impedance type boundary conditions

We recall the setting in [21, Section 3] or [31, Section 4]. We let Q € R" be a bounded
open set such that H;(Q) —— LZ(Q),9 i. e., the maximal domain of the distributional
gradient grad defined on L%(Q) endowed with the graph norm of grad is compactly em-
bedded into L2(Q). Analogously let div be the distributional divergence on L*(Q)" with
maximal domain. The respective skew-adjoints will be denoted by div and grad, as
these operators encode homogeneous Neumann and Dirichlet boundary conditions,
respectively.
Formally, the equations treated in [21, Section 3] (or in [31, Section 4]) read as

0 div
=F,
<80M * <grad 0 )) u

for some given F and M. We address the continuous dependence on the coefficient
M. Imposing additional structure on M and the right-hand side F, we may rewrite the
latter system into a more common form. Indeed, if F = (f,0) and M = diag(M;, M,)

with respect to the block structure of (24 div) we obtain with U = (u;, u,):

OgMquy +divu, =f  and  JyM,u, + gradu; =0,
which leads to
doMyu; — div M9, gradu; = f. (4.2)
Choosing an appropriate domain for (grgd 4v) in space-time, which will be done

below, it is possible to show that d; lgradu = grad ag,lu for suitable u. Thus, equation
(4.2) reads

Og MUy — div./\/l;1 grad aalu1 =f.

9 There is a vast literature on compact embedding theorems for the space of weakly differentiable
L2(Q)-functions into L%(Q). In order to maintain such compact embedding, one has to assume some
’regularity’ property of the boundary of Q; see, e. g., [2, 44].
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Substituting u := 9, 1u1, we arrive at
9o My0pu — div M, gradu = f, (4.3)

which may be regarded as the wave equation in a more familiar form.

Before we address continuous dependence of the solution on the coefficients, we
comment on the choice of the domain for ( grgd div)
Let v > 0. As in [21, Section 3], we take a time-translation-invariant subspace of

the maximal domain of
0 div 2 2 2 2
S (LI(R; L7(Q) o L°(Q ,
(g o) € BRL@oL@")
such that the respective operator satisfies the conditions imposed on .4 in Theorem 2.3.

For this, weletr > % and a: B(r,r) — L*(Q)" bounded, analytic. Similar to Remark 2.2,
a gives rise to an operator in L(Ls(]R; L2(Q)), Lﬁ(]R; L*(Q)")) in the way that if

a(z) = i a, (mz-nk (zeBw,n) (4.4)
k=0

is the power series expression for a in r for suitable L°(Q)"-elements a; ,, we define
1 o 1 k
a(d, )¢ = Z A, (m)(3y — 1) ¢
k=0

(o0}
_ k
= ) (60 = @, (0)(0' - 1) )t )

k=0

forg € C, (R x Q).
Throughout, we assume the following smoothness conditions on the coefficients
in (4.4): The mappings
(o]

z-divae) = Y (diva,)(m)z -n*
k=0

o0
z—curla(z) = Z (curl @) (m)(z - )k
k=0
are bounded, analytic with div a; , and curl g , being measurable and bounded func-
tions (the latter condition of course only in the case n = 3).
Now, we are in the position to define the domain mentioned above:'°

0 div

grad 0 )>;a(561)¢ ~pe Li(lR;D(d"iv))} ,

D(A) = {(¢,¢> en((

10 We shall note here that in [21, p.541] the condition a(aal)qb - € Lﬁ(lR;D(div)) is replaced by
a@;)p - 35"y € L2(R; D(div)).
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with A = ( gf;d dv) on D(A). We shall note here that the boundary conditions intro-
duced include the Robin boundary conditions or boundary conditions with temporal
convolutions at the boundary; cf. [21, p. 542]. By the definition, we see that A is time-
translation invariant. Henceforth, we will also impose the sign-constraint [21, formula
(3.3)]on a(a(;l):

0
& [ (aradp.a(@,)p)(®) + (p.diva@ p))e *drz0 @)

forallp € Lﬁ(]R; D(grad)). We have the following.

Theorem 4.4. The operator A is maximal monotone. Moreover, we have
R{Au1g_(mo)u) 20 (u € D(A)).

If, in addition, we have that

R J((grad p.a(@;")p)(®) + {p. diva(d;)p)(6)e 2 dt = 0 (4.6)
R

forallp € Lﬁ(IR; D(grad)), then A is skew self-adjoint.
Before the proof, we record the following fact communicated by Sascha Trostorff.

Proposition 4.5. Let H be a Hilbert space, A: D(A) € H — H linear. Assume that both A
and —A are maximal monotone. Then A is skew self-adjoint.

Proof. From R{Au,u) = 0 and R{-Au,u) = 0, it follows that R(Au,u) = O for all
u € D(A). Thus, by polarization, -A € A*. The maximal monotonicity of A implies the
(maximal) monotonicity for A*. The maximality of —A yields -4 = A*. O

Proof of Theorem 4.4. [21, Proposition 3.2] shows the inequality stated and the closed-
ness of A. Time-translation invariance together with [21, Proposition 3.3], which for
u € D(A™) asserts that

R{A™u, 1 _ (mp)u) 2 O,

yields
R{Auu), R{A"v,v) 20 (u € D(A),v e D(A")).
The latter together with the closedness of .4 implies the maximal monotonicity for .A.

Now, assume the validity of (4.6). Then the above reasoning shows that both A
and -4 are maximal monotone. The assertion follows from Proposition 4.5. O

In view of Theorem 2.3, we also need the following result.
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Proposition 4.6. Let H be a Hilbert space, v > 0 and B: D(B) < Lﬁ(]R; H) — Lﬁ(]R; H)
densely defined, closed, linear with 0 € p(B). Assume that T,8 = Bty, forallh € R on
D(B), where Ty, € L(L2(R; H)) with T,,f = f(- + h). Then 9;*(B)™" = (B)™'9;".

Proof. Forhe R\ {0} and u € Lﬁ(IR;H), we have
1 P | -1
E(Th - 1)(8) E)O u= (B) E(Th - 1)80 u.

Now, since 65111 € D(9y) and (B)"!is continuous the right-hand side converges to (B)u
as h — 0. Thus, the left-hand side is bounded, weak compactness of Lﬁ now implies
that the left-hand side converges weakly, the limit equals aO(B)—laglu. The assertion
follows. O

Now, from 9 (A4 + 1) = (A +1)7'9;" and 0 € p(d,) N p(A + 1) it follows that
0p(A +1) = (A +1)dy; see, e. g., [22, p. 56], [34, Lemma 1.1.1].

In order to show a continuous dependence result on the coefficients, we need
to warrant the compactness condition for the operator A in Theorem 3.1. For higher
dimensions, the null space of the operator A discussed in this section is infinite-
dimensional. Thus, if we want to apply Theorem 3.1, we have to consider the reduced
operator i, Aty, where 1y: N(A)* — L2(R; L*(Q) ® L*(Q)") is the canonical embedding
from the orthogonal complement of the null space of A into Lﬁ(]R; L2(Q)® L*(Q)™). The
latter procedure of course is not needed if we restrict ourselves to the one-dimensional
case.

Theorem 4.7. Letv > 0. Assume that Q is a bounded, open interval, and let (My); be
a sequence of causal operators in Lﬁ(]R; L2(Q) ® L*(Q)) converging in the weak operator
topology such that the sequence has bounded commutators with o,. If, in addition, there
exists ¢ > 0 such that

R{Oo Mt 1g_ (mo)u) 2 c(u,1g_ (Mo)u) (n € N,a € R,u € D(dy))
then
M, + AL M+ A
in L2(R; L*(Q)?).

Proof. For the proof, note that the Hilbert space D(0;) @ D(9;) = D(grad) & D(div) =
HI(Q)2 is compactly embedded into LZ(Q)Z. Moreover, the validity of the conditions
in Theorem 3.1 are easily checked with the help of Theorem 4.4 and Proposition 4.6.
Thus, Theorem 3.1 applies. O

Remarks 4.8. With the second-order formulation of equation (4.3), we consider
oMoty — div M5, grad u,, = f,
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for (M p)n, (Ms,), being such that M,, == diag(M, ,, M, ) satisfies the assumptions

of Theorem 4.7. It follows that M;, o M,; for some M;, j € {1,2}. The limit equation
would then be the following:

0o M 0pu — div M, gradu = f.

We note here that at first one computes the limit of (M, ), and after that one inverts
the limit to get the latter equation. In classical terms, i. e., under certain structural and
periodicity assumptions, M;l is the harmonic mean of the M5 ’s.

Next, we discuss whether the compactness property assumed in Theorem 3.1 for
A holds in the case of dimension n = 3, which will be assumed in the remainder of
this section. Recall that our strategy relies on considering the reduced operator ty.Aty.
We state a first important consequence.

Proposition 4.9. The operator 1y Aty is maximal monotone. If A is skew self-adjoint,
then so is iy Aty.

Proof. 1t is plain that the operator is monotone. Thus, by Minty’s theorem, it suffices
to show that 1+ 3. Aty is onto. For this let y € N(A)*. By the maximal monotonicity of
A, there exists x € D(A) such that x + Ax = y. We multiply the latter equality by 1y,
which gives (yx + (yAx = 1y = y. Decomposing x = x; + x, for some x; € N(A)* and
X, € N(A), we get that (yx = x; and Ax = A(x; + x;) = Ax; = Aiytyx. Hence, (yx is
the desired element in the domain of 1 + ty.Aty mapped to y. The last assertion of the
proposition, follows from Proposition 4.5. O

As a next step, we need to verify that (y.Aty satisfies the assumptions in our main
homogenization theorem. For this, however, we need to impose additional regularity
of the boundary of Q. With additional effort, these regularity requirements can cer-
tainly be relaxed. Since we are only interested in providing a class of examples rich
enough, we do not follow the way of presenting a streamlined version of a particular
compactness result.

Theorem 4.10. Assume, in addition, that Q is of class Cs. Then we have that
Hy(1+ 5 Aty) — L2(R; Hy(Q)),

Before we go into the proof of the theorem, we state the main ingredient: Gaffney’s
inequality. For the latter, recall the operator curl being the distributional curl defined
on L*(Q)* with values in L?(Q)> with maximal domain. We also use the canonical ex-
tension of curl to space-time and re-use the notation. It will become clear from the
context which operator is used.

Theorem 4.11 (Gaffney’s inequality; see, e. g., [15, below Theorem 8.6, p. 157]). Let Q
belong to the class Cs. Then there exists ¢ > 0 such that for all u € D(curl) N D(div) we
have

|u|H1(Q) é C(|u|L2(Q) + |diVu|L2(Q) + |Curlu|L2<Q)).
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Proof of Theorem 4.10. At first, we observe that

0 divic_ (qy cAC( 0 div)
gradlc_ () 0 =" T\grad 0/

Now, A is maximal monotone. Thus, A is closed and we get that

0 div ( 0 div)
. CAC .
grad 0/  ~\grad O

The latter implies

e dOiVlCl*Al c,*<0 div)l
N\grad o ) N=N"N=Wlgrad o)V

0 div .
From ( aad 0 ) C A, it follows that

N(A)* € N(grad)* @ N(div)™*.

Thus,

(Al € 1;‘,< 0 div |N(d‘iv)L> c ( 0 div |N(d“iv)¢>_
gradly aa): 0 grad 0

Now, let (¢, 1) € D(1y.Aty). The latter inclusion shows that it suffices to estimate the
norm of ¥ in the space Lﬁ(lR; H,(Q)). Moreover, we also read off that ) LN (dciv). Thus,
Y € R(grad), which implies that 1) takes almost everywhere values in the domain of
curl and that curl i = 0. Recall

a(9y")¢ - P € LA(R; D(div)).
Using the smoothness assumptions on a, we compute

curl(a(@;') - ¥) = curl(a(3;")¢)
= curl(a(d;"))¢ + a(dy") x grad ¢
and
div(a(3;")¢) = (diva(@,'))¢p + a(3;') grad ¢.
Hence, with Theorem 4.11, we estimate pointwise almost everywhere

1, — |a(@5" )bl
< | - a(@,)dly,

Brought to you by | Columbia University Libraries
Authenticated
Download Date | 8/31/19 4:10 PM



12 Continuous dependence on coefficients =— 427

< c(j9 - a(3")ply + [div(y - a(@,")9)] 2 + leurl(y — a(3")p) )
< ¢ (plpz +|a(% )¢l

+|diveplp + |(diva(d")) gl +|a(d,") grad ¢,

+ |curl(a(3,"))@|,» + |a(d;") x grad ) ) .

Thus, we get for some constant ¢’ > 0 that

W2 ) < c (|a(aal)¢|L5(R;Hl(Q)) + Wlimazon
+1a(05 )Pl 1a mrz(yy + 19V Wiz rzcoy + |(diva(@5 )bz 2oy
+a(9p") 8rad Bz g0y + lcurl(@(@))lizmzcon
+ |a(dy") x grad ¢|L5(1R;L2<o>)) :

The smoothness assumptions on a yield the assertion. O

Now, we are in the position to formulate the continuous dependence result. For
simplicity, we only treat the case, where the operators in the material law do not de-
pend on the spatial variables. The full homogenization problem will be discussed in
future work. We adopt the strategy described in [40, Section 1]. More specifically, we
will treat the case of the particular class of operators being functions of 851 as dis-
cussed in Remark 2.2.

Theorem 4.12. Letv > O, r > % Assume that Q < R’ is of class C5 and such that
H,(Q) > L*(Q). Let (My)x be a bounded sequence in H*°(B(r, r)) and denote M. =
Mk(a(;l), k € . If the conditions (4.6) and (4.5) hold and, in addition, there exists ¢ > 0
such that

R{z'M@uu) 2 cuu) (keN, zeB(rr), ue LZ(Q)4),

then there is a subsequence (ny);, of (n),, such that

My, + A S 3M + A
in L2(R; L*(Q)*), where

M= (TW- limy_, o, (y My, Iy 0 )
0 95 (T~ 1imy_ o (QpKy My, k) ™)™

with ky: N(A) — LA(R; L*(Q) ® L*(Q)?) being the canonical injection.

Proof. Atfirst, we use Theorem [20, Lemma 3.5] to deduce that (0y.M; (d; 1)1is causal.
Thus, from [31, Lemma 3.8], we get that M, satisfies the positive definiteness condition
imposed in Theorem 3.1, k € IN.
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Letf € L2(R; L(Q)@L?*(Q)*) and consider the sequence (u,), in L2(R; L*(Q)&L*(Q)°)
satisfying

(OpMpy + Auy, =f.

The latter equation then reads as (note that being functions of .A the operators ky, ty
commute with d;):

(a <1X,Mn1N lj'{,MnKN> . <l;,A1N Iy Axy >> <1f{,un> B <1;‘,f>
O\ Mty K5 My KyAly  KnyAky KyUp knf/)'
Now, since d;' commutes with .4, the M,’s commute with xy and ty. Moreover, the

skew self-adjointness of .4 implies that A reduces N(A)*. Thus, the latter system may
be written as

(N My 0 Ay 0 U\ (f
a0 * + * = % .
0 Ky MKy 0 0 KyUy knf

The latter gives the two (decoupled) equations:
(Qoty Mty + ty Aty )iyUty = (nf
and
aOK;IMnKNKEun = K;\‘If

For the first equation, we use Theorem 3.1, the convergence of the equation in the
stated manner follows from sequential compactness of bounded subsets of bounded
linear operators in the weak operator topology. O

Remarks 4.13. If, in the latter theorem, we restrict ourselves to the Hilbert space
N(A)*, i.e., using right-hand sides, which are in N(A)*, then the term involving x
vanishes.

4.3 Applications to a singular perturbation problem

Toillustrate the applicability of Theorem 2.3, we give the following example of an ellip-
tic/parabolic type equation, which is adopted from an example given in [26]. For this,
let Q € R" be open, bounded and connected and let —A be the Dirichlet-Laplacian in
L*(Q). Then —A is continuously invertible with compact resolvent. Let A € (0, Ay) for Ay
being the smallest eigenvalue of —A. Then, in particular, the operator —A-A is maximal
monotone. Now, let Qp, Q. € Qbe disjoint, measurable and such that Qp uQ, = Q. We
let ¢: R — R be such that ¢l(_q, o) = 0, P01 = id(,y) and @l o) = 1. In L (R; L*(Q)),
we consider for € > 0 and given f ¢ Lﬁ(IR; L2(Q)) the problem of finding u, such that

(€99p(mo) 1g, (M) +1q, (M)(1 = P(mo))T_¢ — Mu, =, (@.7)
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where 7_, denotes the time-shift operator 7_.g = g(- — ¢) for suitable g. At first, note
that the latter problem is clearly well posed. Indeed, this follows from
R{(€0yp(my) 1o (m) +1q, (m)(1 - p(mg))T_, + D, Ig_ (Mo)u)
2 A (u1g_(mo)u) (a€R)

for u € D(d,), v large enough and some A’ € (0,4). On Q, the equation (4.7) is of
parabolic type and on Q, it is of elliptic type with an additional temporal variable.
With

Mg = ep(mg) 1g (m) + 3" 1o, (M)(1 - p(my))T_¢ +35'A,
we getthat M, — M, = d5' 1o (m)(1-¢(my))+3;'A, where we denoted by 7, the strong
operator topology. As strong convergence implies convergence in the weak operator

topology, we infer with the help of Theorem 3.1 that (u,),., weakly converges as & — 0
to the solution u, of the problem

(1, (M)(1 - $(my)) - D)ug = f,
which itself is of pure elliptic type.

5 Proof of Theorem 3.1

For the proof, we need several preparations.

Theorem 5.1 (Theorem of Aubin-Lions, [28, p. 67,2°]). Let H, K be Hilbert spaces,
I € R bounded, open interval. Assume that K —<— H. Then

H,(I; H) N L*(I;K) —< L*(I; H).

Lemma5.2. Let H be a Hilbert space, v > 0. Let (M,,), be t,,-convergent sequence in
L(Lﬁ(IR; H)) with limit M. If M, is causal for alln € N then so is M.

Proof. It suffices to observe that I, (mg) € L(Lﬁ(]R; H)) for all a € R. Thus, the equa-
tion

Iy  (mo) M, =1g_ (mo) My 1g_ (mg)
carries over to the limit as n — oo. O

Theorem 5.3 (Weak-strong principle). Let H, K be Hilbert spaces and with K —< H.
Letv > 0 and (v,), be a weakly convergent sequence in Lﬁ(IR; K)nH,;(R; H). Assume
further that inf, . inf sptv,, > —co. If (M,,),, is a T,-convergent sequence of causal op-
erators in L(L2(R; H)), then

w- lim M,v, = (Tw- lim M,,)( w- '}Lrgovn) € Lﬁ(]R;H).

n—oo n—oo
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Proof. The uniform boundedness principle implies that both (v,), and (M,), are
bounded sequences in Lﬁ(]R;K) N H,;(R;H) and L(Lﬁ(]R;H)), respectively. Thus,
there exists a subsequence (M, v, ) of (Myv,), which weakly converges to some
w € Lﬁ(lR;H). It suffices to identify w. For this, let ¢ ¢ C,,(R;H) and define
a = supspt¢. Choose i € C.,(R)suchthat0 <y <1, =1onR_,,; andy = Oon
R, 442- We denote v == w-lim,,_,, v, and M = 1-1lim,_, , M,,. Now, by Theorem 5.1,
we deduce that ((mg)v,,),, converges to P(imgy)v in Lﬁ(IR; H). For n € N, we compute

(MpVp, )y 0 = <ann’11R<a+l(m0)¢>v,0
= <1]R<a+1(m0)ann’¢>v,0
= <1]R<a+1 (mo)Mp1g_, (my)vy, ¢>v,o
= (g, (MM 1 (mo)h(mo)vp, §),
= (Ig_,,, (Mo)Myp(mo)vy,, ).,
= (Myp(mg)vy, 1]R<a+1(m0)¢>v,0
— (Mp(mo)v, 1y (mo)d), o
= (Mv, ), 0,

where we have used that the M,,’s and M are causal; see also Lemma 5.2. Hence,

W, )0 = (Mv, ),
forall ¢ € C, ((R; H). Thus, w = Mv. O

Remark 5.4. The support condition for the v,;’s is needed to make Theorem 5.1 appli-
cable.

Lemma5.5. Let H be a Hilbert space, D densely defined, closed, linear operator in H
with O € p(D). Let (M},),, be a sequence in L(H) converging in the weak operator topology
to some M and having bounded commutators with D. Then

M,,D] - MD-DM (n— o0)

in the weak operator topology. In particular, MD — DM extends to a bounded linear
operator, M has a bounded commutator with D and

DM,u — DMu (n— oo, u € D(D)).
Proof. Forx,y € H, n € N, we compute

(M, DID'x, (D)y) = (M, D - DM,)D'x,(D)"y)
= (DY (M, D - DM,)D 'x,y)
= <(D_1Mn - MnD_l)X> Y>
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= <D_1MnX>Y> - <MnD_1X’y>
N <D_1MX, y) - (MD"lx,y)
= (M, DD 'x,(DH)"y).

By the boundedness of ([M,,, D]),, and the density of both D(D) and D(D*), we get the
first convergence result. In order to see the last convergence result, we compute for
neNandue D:

DM,u = [D,M,]u + M, Du — [D, M]u + MDu = DMu. O

Lemma5.6. Let H be Hilbert space,v > 0. Let M € L(Lﬁ(IR; H)) be causal and such that
M has a bounded commutator with d,. Then [M, 0] is causal.

Proof. Leta € Rand ¢ € C, (R;H) be such that spt¢ = a. Thus, sptM¢ =z a and
spt@’ = a. Now, since M¢ € D(9,) since M[D(d,)] € D(d,) we further get spt ,M¢ = a.
Hence, we arrive at spt[M, 0yl = spt(MJ, — 0pM)¢ = a. The continuity of [M, dy]
together with Remark 2.1 imply the assertion. O

Corollary 5.7. Let K, H be Hilbert spaces, v > 0. Let (M,,), be a bounded sequence
of causal mappings in L(Lﬁ(IR; H)) converging in the weak operator topology to some
M and having bounded commutators with o,. Assume that K —<— H. Let (u,), be
a weakly convergent sequence in H, (R;K) n L‘z,(]R; H) with limit u and such that
inf,c infsptu, > —co. Then Myu, — Muin L2(R; H) as n — oo.

Proof. At first, note that (aglu,,),, is weakly convergent in Lﬁ(]R; K) nH,;(R; H). More-

over, [M,, 0y] is causal by Lemma 5.6 for all n € N. Furthermore, [M,,, dy] it [M, 0],
by Lemma 5.5. Thus, for n € IN we deduce with the help of Theorem 5.3 that

Moy = Myu8695 "ty = [Miy, 39105ty + 3o My35 thy
— [M, 3,105 't + By M3y u = Mu € L(R; H),

where we have used that 9, is weakly continuous and causal. O

Lemma 5.8. Let H be a Hilbert space, v > 0. Let A be a densely defined, closed, linear
operatorin le,(lR; H)with0 € p(A). Assume thata(}lA*1 = A’laa L Let (u,), be a bounded
sequence in H_; (9, A) N Lﬁ(IR; H), which weakly converges in Lﬁ(IR; H)tou e Lﬁ(IR; H).
Thenu € H_1,(0y, A) and

Au, — Au € H_; 5(9p, A).

Proof. Let (unk)k be a weakly convergent subsequence of (u,), in H_;(dy, .A). Denote
its limit by w. Note that 9;'u, — 9;'u € H,;(R;H) — L2(R; H), by unitarity of 3;".
Moreover, by Remark 2.5, 9, L H_;1(dy,A) — Hy;(0g,.A) is unitary. Hence, we get that
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a(;lunk — a(;lw € Hy (09, A) — Lﬁ(]R;H). Hence, a(;lw = a(;lu. Thus, u = w and (u,),
weakly converges in H_;;(d,.A). Now, by Remark 2.5, the operator A:H_;;(0p, A) —
H_; (0, A) is continuous. Thus, we deduce the asserted convergence. O

Proof of Theorem 3.1. The well-posedness of the limiting equation, i. e., continuous in-
vertibility and causality of (0, M +.4) in Lﬁ (R; H) follows from Lemma 5.5 together with
Theorem 2.3.

Now, we prove the version, which is asserted in Remark 3.2. Let (f,,), in Lﬁ(]R; H)
be a weakly convergent sequence with inf, infsptf, > —co; we denote its limit by f.
For n ¢ N, we define

U, = @M, + A7,
By causality (see Theorem 2.3 and Remark 2.1), we get that

rglﬂg infsptu, 2 ur}f infsptf, > —co.

Moreover, (u,), is bounded in Lﬁ(]R; H) n H_;,(9p, A + 1) by Corollary 2.7 and the uni-
form boundedness principle applied to (f,),,. Now, let (uy, ), be a Lﬁ(]R; H)-weakly con-
vergent subsequence of (u,),. We denote the respective limit by u. Now, for k € IN we
have

oMy, U, + Ay, = fr, (5.1)

inH_; 4(dy, A+1). Now, by Corollary 5.7 for the first term and Lemma 5.8 for the second
term on the left side of equation (5.1), we may let k — oo in (5.1). We arrive at

OoMu + Au = f

in H_; 4(IR; H). Moreovet, by construction, u € Lﬁ(]R;H) and (OpM + Au = f €
Hy (09, A + 1). Thus, u € D(0gM + A), by Remark 2.6. Now, since (dypM + A) is
continuously invertible in Lﬁ(]R; H) the sequence (u,), itself weakly converges.

In order to see that Theorem 3.1 holds, apply the previous part to constant se-
quences (f,)), = (f), for some f € C,, .(R; H). It remains to observe that C, .(R; H) is
dense in Lﬁ(]R; H) and that ((6,M,, + A)_l)n is bounded. O
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