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PREFACE TO THE THIRD EDITION.

In preparing the third edition of Kelland and Tait's

Introduction to Quaternions I have been guided mainly by
two considerations. In the first place, the average mathe-

• matical student of to-day attains either at school or in his

early college courses a much higher standard than was

possible in 1873 when Kelland wrote, or even in 1881, the

date of the second edition. It seemed, therefore, desirable

to delete many of the very simple geometrical illustrations

which formed a large part of the text, indicating their

nature by a word, or transferring them as exercises to the

end of the appropriate chapter. In this way valuable space

has been gained for the discussion of problems more fitted

to bring out the power and beauty of the quaternion

calculus.

It is right to mention, however, that Chapter I. has been

left exactly as Kelland wrote it ; and the greater part of

Chapter II. is simply reproduced.

The second consideration was the necessity for presenting

the main features of Hamilton's great calculus in a brief but

yet logically complete form. This has led to the recasting of

Chapters III. and IX. In the new Chapters III. and IV. the

calculus in its essential features is developed systematically

from the definition of a quaternion as the complex number

which measures the ratio of two vectors, with the further

assumption that the associative law holds in product combina-
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tions. Prom these two root principles the whole of Hamilton's

powerful vector algebra evolves itself simply and naturally.

It is hoped that the mode of presentation will remove

the difficulty which some have experienced in accepting

Hamilton's identification of vector and quadrantal versor.

O'Brien, Hamilton's brilliant contemporary, confessed that

the difficulty was to him insurmountable. But the difficulty

is really created by the sceptic himself, who fails to see

that, so far as the mathematical definition goes, a vector

quantity in quaternions has a much wider significance than

the step or displacement or velocity by means of which the

simple summation principles are first illustrated. The law

of vector addition, which is common to all kinds of vectors,

including the Hamiltonian, determines nothing as to the

laws of product combinations. These may be anything we

please among vectors, so long as the law of vector addition

is satisfied. Now it is proved in Chapter HI., § 18, that

quadrantal versors obey the vector law of addition. They

are therefore true vectors ; and hence follows, from the geo-

metrical point of view, the analytical identification of vector

and quadrantal versor. The identification, no doubt, requires

every vector (whatever physical quantity it may symbolise)

to be subject analytically to the quadrantal versor laws in

product combinations ; but this, as Hamilton himself proved,

is tantamount to requiring that three or more vectors in

product combinations obey the associative law. There is

thus perfect consistency throughout.

From the point of view of pure analysis the difficulty

mentioned above cannot, of course, present itself. The

quaternion is then a quantity involving four units, which are

defined as reproducing themselves in product coinbinations

and as satisfying certain general laws. The mathematical

properties of the quaternion being thus established, the

utility of the calculus will depend simply upon the mode of

interpretation. Thus Professor C. J. Joly, by a new inter-
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pretation of the quaternion, has recently developed an

interesting treatment of projective geometry.

In Chapter IX. a completely new section has been intro-

duced on dynamical applications. This seemed to be

specially called for, inasmuch as vector ideas and notations

are now a familiar feature of some of our best modern

books on mathematical physics. It is to be hoped that

they will become so more and more, and that the powerful

Hamiltonian method which develops the ideas and under-

lies the notation will become equally familiar.

The last four articles of Chapter IX. have to do with

the chief properties of the remarkable differential operator y.

Differentiation in the ordinary sense was excluded from the

earlier editions, although the method was implicitly used in

the treatment of tangents. It was impossible, however, to

give any true idea of the power of quaternions in dynamics

without the explicit introduction of differentiation ; and this

consideration seemed to me to outweigh all considera-

tions based on artificial distinctions as to what is or is

not suitable in an elementary book. The mathematical

student who is able to appreciate the exquisite beauties

of the linear vector function as expounded in Chapter X.

will have no difficulty in appreciating the significance of

Nabla.

Tait's very instructive Chapter X. has been left

practically untouched. It is the work of a recognised

master, and has been a source of inspiration to many

students of the subject. As a pupil of both Kelland and

Tait, and as a colleague and friend of the latter, I have

had peculiar pleasure in preparing this third edition of

their joint work, and trust that it may draw the mathematical

student into an attractive and largely unexplored field of

mathematics. Analytically the quaternion is now known to

take its place in the general theory of complex numbers

and continuous groups ; it is remarkable that it should have
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provided for the geometry and dynamics of our visible

universe a calculus of great power and simplicity.

My thanks are due to Mr. Peter Eoss, M.A., for his careful

proof-reading of all but the very earliest Chapters.

C. G. KNOTT.
Edinbuegh University,

October, 1903.



PREFACE TO SECOND EDITION.

In preparing this second edition for press I have altered as

slightly as possible those portions of the work which were

written entirely by Prof Kelland. The mode of presenta-

tion which he employed must always be of great interest,

if only from the fact that he was an exceptionally able

teacher ; but the success of the work, as an introduction

to a method which is now rapidly advancing in general

estimation, would of itself have been a sufficient motive for

my refraining from any serious alteration.

A third reason, had such been necessary, would have

presented itself in the fact that I have never considered

with the necessary care those metaphysical questions con-

nected with the growth and development of mathematical

ideas, to which my late venerated teacher paid such

particular attention.

My own part of the book (including mainly Chapter X.

and worked out Examples 10—24 in Chapter IX.) was

written hurriedly, and while I was deeply engaged with

work of a very different kind ; so that 1 had no hesitation

in determining to re-cast it where I fancied I could improve it.

P. G. TAIT.
University of Edinburgh,

November, 1881.





PREFACE TO THE FIRST EDITION.

The present Treatise is, as the title-page indicates, the joint

production of Prof. Tait and myself. The preface I write

in the first person, as this enables me to offer some personal

explanations.

For many years past I have been accustomed, no doubt

very imperfectly, to introduce to my class the subject of

Quaternions as part of elementary Algebra, more with the

view of establishing principles than of applying processes.

Experience has taught me that to induce a student to think

for himself there is nothing so effectual as to lay before him

the different stages of the development of a science in some-

thing like the historical order. And justice alike to the

student and the subject forbade that I should stop short at

that point where, more simply and more effectually than at

any other, the intimate connexion between principles and

processes is made manifest. Moreover, in lecturing on the

groundwork on which the mathematical sciences are based,

I could not but bring before my class the names of great

men who spoke in other tongues and belonged to other

nationalities than their own—Diophantus, Des Cartes, La-

grange, for instance—and it was not just to omit the name

of one as great as any of them. Sir William Rowan Hamilton,

who spoke their own tongue and claimed their own nation-

ality. It is true the name of Hamilton has not had the

impress of time to stamp it with the seal of immortality.

And it must be admitted that a cautious policy which forbids
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to wander from the beaten paths, and encourages converse

with the past rather than interference with the present, is

the true policy of a teacher. But in the case before us,

quite irrespective of the nationality of the inventor, there

is ample ground for introducing this subject of Quaternions

into an elementary course of mathematics. It belongs to

first principles and is their crowning and completion. • It

brings those principles face to face with operations, and thus

not only satisfies the student of the mutual dependence of

the two, but tends to carry him back to a clear apprehension

of what he had probably failed to appreciate in the sub-

ordinate sciences.

Besides, there is no branch of mathematics in which results

of such wide variety are deduced by one uniform process

;

there is no territory like this to be attacked and subjugated

by a single weapon. And what is of the utmost importance

in an educational point of view, the reader of this subject

does not require to encumber his memory with a host of

conclusions already arrived at in order to advance. Every

problem is more or less self-contained. This is my apology

for the present treatise.

The work is, as I have said, the joint production of

Prof. Tait and myself. The preface I have written without

consulting my colleague, as I am thus enabled to say what

could not otherwise have been said, that mathematicians owe

a lasting debt of gratitude to Prof. Tait for the singleness

of purpose and the selfdenying zeal with which he has worked

out the designs of his friend Sir Wm. Hamilton, preferring

always the claims of the science and of its founder to the

assertion of his own power and originality in its development.

For my own part I must confess that my knowledge of

Quaternions is due exclusively to him. The first work of

Sir Wm. Hamilton, Lectures on Quaternions, was very dimly

and imperfectly understood by me and I dare say by others,

until Prof. Tait published his papers on the subject in the
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Messenger of Mathematics. Then, and not till then, did the

science in all its simplicity develop itself to me. Subsequently

Prof. Tait has published a work of great value and originality.

An Elementary Treatise on Quaternions.

The literature of the subject is completed in all but what

relates to its physical applications, when I mention in addition

Hamilton's second great work, Elements of Quaternions, a

posthumous work so far as publication is concerned, but one

of which the sheets had been corrected by the author, and

which bears all the impress of his genius. But it is far

from elementary, whatever its title may seem to imply

;

nor is the work of Prof. Tait altogether free from difficulties.

Hamilton and Tait write for mathematicians, and they do

well, but the time has come when it behoves some one to

write for those who desire to become mathematicians, friends

and pupils have urged me to undertake this duty, and after

consultation with Prof. Tait, who from being my pupil in

youth is my teacher in riper years, I have, in conjunction

with him, and drawing unreservedly from his writings,

endeavoured in the first nine chapters of this treatise to

illustrate and enforce the principles of this beautiful science.

The last chapter, which may be regarded as an introduction

to the application of Quaternions to the region beyond that

of pure geometry, is due to Prof Tait alone. Sir W. Hamilton,

on nearly the last completed page of his last work, indicated

Prof. Tait as eminently fitted to carry on happily and usefully

the applications, mathematical and physical, of Quaternions,

and as likely to become in the science one of the chief

successors of its inventor. With how great justice, the reader

of this chapter and of Prof Tait's other writings on the

subject will judge.

PHILIP KELLAND.

University of Edinburgh,

October, 1873.
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INTRODUCTION TO QUATERNIONS.

CHAPTEE I,

INTRODUCTORY.

The science named Quaternions by its illustrious founder, Sir

William Eowan Hamilton, is the last and the most beautiful

example of extension by the removal of limitations.

The Algebraic sciences are based on ordinary arithmetic,

starting at first with all its restrictions, but gradually freeing

themselves from one and another, until the parent science

scarce recognises itself in its offspring. A student will best

get an idea of the thing by considering one case of extension

within the science of Arithmetic itself. There are two

distinct bases of operation in that science—addition and

multiplication. In the infancy of the science the latter was

a mere repetition of the former. Multiplication was, in fact,

an abbreviated form of equal additions. It is in this form

that it occurs in the earliest writer on arithmetic whose works

have come down to us—Euclid. Within the limits to which

his principles extended, the reasonings and conclusions of

Euclid in his seventh and following Books are absolutely

perfect. The demonstration of the rule for finding the

greatest common measure of two numbers in Prop. 2,

Book VIII., is identically the same as that which is given

in all modern treatises. But Euclid dares not venture on

fractions. Their properties were probably all but unknown
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to Mm. Accordingly we look in vain for any demonstration

of the properties of fractions in the writings of the Greek

arithmeticians. For that we must come lower down. On the

revival of science in the West, we are presented with cate-

gorical treatises on arithmetic. The first printed treatise is

that of Lucas de Burgo in 1494. The author considers a

fraction to be a quotient, and thus, as he expressly states, the

order of operations becomes the reverse of that for whole

numbers—multiplication precedes addition, etc. In our own

country we have a tolerably early writer on arithmetic,

Eobert Record, who dedicated his work to King Edward

the Sixth. The ingenious author exhibits his treatise in the

form of a dialogue between master and scholar. The scholar

battles long with this difficulty—that multiplying a thing

should miake it less. At first, the master attempts to explain

the anomaly by reference to proportion, thus : that the

product by a fraction bears the same proportion to the thing

multiplied that the multiplying fraction does to unity. The

scholar is not satisfied ; and accordingly the master goes on to

say :
" If I multiply by more than one, the thing is increased

;

if I take it but once, it is not changed ; and if I take it less

than once, it cannot be so much as it was before. Then,

seeing that a fraction is less than one, if I multiply by a

fraction, it follows that I do take it less than once," etc. The

scholar thereupon replies, " Sir, I do thank you much for this

reason ; and I trust that I do perceive the thing."

Need we add that the same difficulty which the scholar in

the time of King Edward experienced, is experienced by every

thinking boy of our own times ; and the explanation afibrded

him is precisely the same admixture of multiplication, propor-

tion, and division which suggested itself to old Eobert Record.

Every schoolboy feels that to multiply by a fraction is not to

multiply at all in the sense in which multiplication was

originally presented to him, viz. as an abbreviation of equal

additions, or of repetitions of the thing multiplied. A totally
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new view of the process of multiplication has insensibly crept

in by the advance from whole numbers to fractions. So new,

so different is it, that we are satisfied Euclid in his logical and

unbending march could never have attained to it. It is only

by standing loose for a time to logical accuracy that exten-

sions in the abstract sciences—extensions at any rate which

stretch from one science to another—are effected. Thus

Diophantus in his Treatise on Arithmetic (i.e. Arithmetic

extended to Algebra) boldly lays it down as a definition or

first principle of his science that 'minus into minus makes

plus.' The science he is founding is subject to this condition,

and the results must be interpreted consistently with it. So

far as this condition does not belong to ordinary arithmetic,

so far the science extends beyond ordinary arithmetic : and

this is the distance to which it extends—It makes subtraction

to stand by itself, apart from addition ; or, at any rate, not

dependent on it.

We trust, then, it begins to be seen that sciences are ex-

tended by the removal of barriers, of limitations, of conditions,

on which sometimes their very existence appears to depend.

Fractional arithmetic was an impossibility so long as multipli-

cation was regarded as abbreviated addition : the moment an

extended idea was entertained, ever so illogically, that moment

fractional arithmetic started into existence. Algebra, except

as mere symbolized arithmetic, was an impossibility so long

as the thought of subtraction was chained to the requirement

of something adequate to subtract 'from. The moment

Diophantus gave it a separate existence—boldly and logically

as it happened—by exhibiting the law of minus in the fore-

front as the primary definition of his science, that moment

algebra in its highest form became a possibility ; and indeed

the foundation-stone was no sooner laid than a goodly

building arose on it.

The examples we have given, perhaps from their very

simplicity, escape notice, but they are not less really
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examples of extension from science to science by the removal

of a restriction. We have selected them in preference to the

more familiar one of the extension of the meaning of an

index, whereby it becomes a logarithm, because they prepare

the way for a further extension in the same direction to

which we are presently to advance. Observe, then, that in

fractions and in the rule of signs, addition (or subtraction) is

very slenderly connected with multiplication (or division).

Arithmetic as Euclid left it stands on one support, addition

only, inasmuch as with him multiplication is but abbreviated

addition. Arithmetic in its extended form rests on two

supports, addition and multiplication, the one different from

the other. This is the first idea we want our reader to get a

firm hold of; that multiplication is not necessarily addition,

but an operation self-contained, self-interpretable—springing

originally out of addition ; but, when full-grown, existing

apart from its parent.

The second idea we want our reader to fix his mind on is

this, that when a science has been extended into a new form,

certain limitations, which appeared to be of the nature of

essential truths in the old science, are found to be utterly

untenable ; that it is, in fact, by throwing these limitations

aside that room is made for the growth of the new science.

We have instanced Algebra as a growth out of Arithmetic by

the removal of the restriction that subtraction shall require

something to subtract from. The word 'subtraction' may
indeed be inappropriate, as the word multiplication appeared

to be to Eecord's scholar, who failed to see how the multipli-

cation of a thing could make it less. In the advance of the

sciences the old terminology often becomes inappropriate;

but if the mind can extract the right idea from the sound or

sight of a word, it is the part of wisdom to retain it. And
so all the old words have been retained in the science of

Quaternions to which we are now to advance.

The fundamental idea on which the science is based is that
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of motion—of transference. Real motion is indeed not

needed, any more than real superposition is needed in

Euclid's Geometry. An appeal is made to mental trans-

ference in the one science, to mental superposition in the

other.

We are then to consider how it is possible to frame a new

science which shall spring out of Arithmetic, Algebra, and

Geometry, and shall add to them the idea of motion—of

transference. It must be confessed the project we entertain

is not a project due to the nineteenth century. The

Geometry of Des Cartes was based on something very much

resembling the idea of motion, and so far the mere introduc-

tion of the idea of transference was not of much value. The

real advance was due to the thought of severing multiplication

from addition, so that the one might be the representative of

a kind of motion absolutely different from that which was

represented by the other, yet capable of being combined with

it. What the nineteenth century has done, then, is to divorce

addition from multiplication in the new form in which the

two are presented, and to cause the one, in this new character,

to signify motion forwards and backwards, the other motion

round and round.

We do not purpose to give a history of the science, and

shall accordingly content ourselves with saying, that the

notion of separating addition from multiplication—attributing

to the one, motion from a point, to the other motion about a

point—had been floating in the minds of mathematicians for

half a century, without producing many results worth recording,

when the subject fell into the hands of a giant, Sir William

Rowan Hamilton, who early found that his road was

obstructed—he knew not by what obstacle—so that many

points which seemed within his reach were really inacces-

sible. He had done a considerable amount of good work,

obstructed as he was, when, about the year 1843, he per-

ceived clearly the obstruction to his progress in the shape
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of an old law which prior to that time, had appeared like

a law of common sense. The law in question is known as

the commutative law of multiplication. Presented in its

simplest form it is nothing more than this, 'five times three

is the same as three times five
'

; more generally, it appears

under the form of 'ah = la whatever a and h may represent.'

When it came distinctly into the mind of Hamilton that this

law is not a necessity, with the extended signification of

multiplication, he saw his way clear, and gave up the law.

The barrier being removed, he entered on the new science as

a warrior enters a besieged city through a practicable breach.

The reader will find it easy to enter after him.



CHAPTER II.

VECTOR ADDITION AND SUBTRACTION.

1. Direction as a Fundamental Geometrical Con-

ception. The explicit recognition of direction as a funda-

mental geometrical conception is the distinguishing mark

of quaternionic and other vectorial methods. A little

consideration will soon convince us that the comparison

of directions is more intuitive than the comparison of

lengths. The eye has no difficulty in judging as to the

parallelism of two lines, but has considerable difficulty in

judging as to the equality of their lengths especially if

the lines are not parallel. The similarity of two

triangles of different size when set with their corresponding

sides parallel is apparent at a glance ; not so the equality of

two triangles equal in all respects when they are set with

their corresponding sides not parallel. These and other like

illustrations show that the conception of direction is of a

fundamental character.

When we wish to determine the position of one point with

regard to another we must know not only their distance

apart, but also the direction of the line joining them. In like

manner the displacement of a point cannot be completely

known unless both the direction and the amount of the

displacement are given. .We may obviously fully represent

this relative position or this displacement by drawing from
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any starting point or origin a line having the required direc-

tion and having a length (drawn to a convenient scale)

numerically equal to the required distance apart or to the

required amount. Such a representative line is called a

Veotok.

2. Vectors and Scalaes. The simplest example of a

vector quantity is a directed line, the whole conception

involving both length and direction. But it should be

clearly understood from the outset that the word is

descriptive of any quantity which may be represented by

means of a directed line. Thus a vector quantity is one

which possesses both direction and magnitude. As examples

we may mention position, displacement, velocity, acceleration,

momentum, force, moment of force, rotation, and so on.

On the other hand, there are quantities which possess no

direction but only magnitude. Such for example are time,

temperature, volume, mass, work, energy ; and these are

distinguished as ScALAK quantities. The magnitude of a

vector is evidently a scalar quantity, and may be assigned

quite independently of the direction. In ordinary algebra

and analytical geometry the symbols used are all scalars,

being indeed essentially numbers or ratios. In co-ordinate

geometry certain fixed directions are assigned once for all,

and the co-ordinates of a point referred to these directions are

simply the number of units contained in the distances of the

point measured parallel to these directions. They are

essentially ratios of parallel vectors.

The importance of distinguishing clearly between vectors

and scalars will appear as we proceed.

We shall first take the simplest conception of a vector as

represented by transference through a given distance in

a given direction. Thus if AB be a straight line, the idea to

be attached to 'vector AB' is that of transference or

"step "from J to B.
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For the sake of definiteness we shall almost invariably

represent vectors by Greek letters, retaining in the mean-

time the English letters to denote ordinary numerical

or scalar quantities.

- If we now start from B and advance to C in the same

direction, BG being equal to AB, we may, as in ordinary

geometry, designate ' vector BG ' by the same symbol, which

_we adopted to designate ' vector AB.'

[ Further, if we start from any other point in space, and

^ advance from that point by the distance OX equal to and in

the same direction as AB, we are at liberty to designate

'vector OX' by the same symbol as that which represents AB.
Other circumstances will determine the starting point, and

individualize the Hne to which a specific vector corresponds.

Our definition is therefore subject to the following condi-

tion :

—

All lines which are equal and dravm in the same direction

are represented by the same vector symbol.

We have purposely employed the phrase 'drawn in the

same direction' instead of 'parallel,' because we wish to

guard the student against confounding 'vector AB' with

'vector BA.'

In order to apply algebra to geometry it is necessary to

impose on geometry the condition that when a line measured

in one direction is represented by a positive symbol, the same

line measured in the opposite direction must be represented

by the corresponding negative symbol.

)In the science before us the same condition is equally

requisite, and indeed the reason for it is even more manifest.

For if a transference from ^ to 5 be represented by +a,

the transference which neutralizes this, and brings us back

again to A, cannot be conceived to be represented by

anything but - a, provided the symbols + and - are to retain

any of their old algebraic meaning. The vector AB, then,

being represented by + a, the vector BA will be represented

by -a.
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3. Parallel Vectors. Further it is abundantly-

evident that so far as addition and subtraction of parallel

vectors are concerned, all the laws of Algebra must be

applicable. Thus in last paragraph AB + BO or a + a pro-

duces the same result as AC which is twice as great as AB,
and is therefore properly represented by IJa ; and so on

for all the rest. The distributive law of addition may then

be assumed to hold in all its integrity so long at least as we
deal with vectors which are parallel to one another. In fact

there is no reason whatever, so far, why •j. should not be

treated in every respect as if it were an ordinary algebraic

quantity. It need scarcely be added that vectors in the same

direction have the same proportion as the lines which corre-

spond to them.

We have then advanced to the following

—

Lemma. All lines drawn in the same direction are, as'vectors,

to he represented hy numerical multiples of one and the same

symbol, to which the ordinary laws of Algebra, so far as their

addition, subtraction, and numerical multiplication are concerned,

may be unreservedly applied.

The converse is of course true, that if lines as vectors

are represented by numerical or ^scalar multiples of the same

vector symbol, they are parallel.

4. Non-Parallel Vectors. It is only necessary to add

to what has preceded, that if BG be a line not in the same

direction with AB, then the vector BG cannot be repre-

sented by a or by any scalar multiple of a. The vector

symbol «. must be limited to express transference in a

certain direction, and cannot, at the same time, express

transference in any other direction. To express 'vector BG'

then, another and quite independent symbol ^ must be intro-

duced. This symbol, being united to a by the signs -i- and -

,

the laws of algebra will, of course, apply to the combination.
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5. Vector Addition. If we now join AG, and tlms form

a triangle ABC, and if we denote vector AB by a, BC by P,

AC hy y, it is clear that we shall

be presented with the equation

a + /3 = y, or, strictly speaking,

with the identity a + f3
= y.

This equation appears at first

sight to be a violation of Euclid I. 20 :
" Any two sides

of a triangle are together greater than the third sido." But

it is not really so. The anomalous appearance aiiises from

the fact that whilst we have extended the meaning of the

symbol + beyond its arithmetical signification, we have said

nothing about that of a symbol =. It is clearly necessary

that the signification of this symbol shall be extended along

with that of the other. It must now be held to designate,

as it does perpetually in algebra, ' equivalent to.' This being

premised, the equation above is freed from its anomalous

appearance, and is perfectly consistent with everything in

ordinary geometry. Expressed in words it reads thus :
'A

transference from A to B followed by a transference from

.8 to C is equivalent to a transference from A to G.'

6. Axiom. If two vectors have not the same direction, it is

impossible that the one can neutralize the other.

This is quite obvious, for when a transference has been

efiected from A to B, it is impossible to conceive that any

amount of transference whatever along BG can bring the

moving point back to A.

It follows as a consequence of this axiom, that if a, /3 be

different actual vectors, i.e. finite vectors not in the same

direction, and if 7)ia + nyS = 0, where m and n are numerical

quantities ; then must m = and n = 0.

Another form of this consequence may be thus stated.

If [still with the above assumption as to a and ;S]

ma + nl3=pa + qP, then must m=p, and n = q.
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7. Elementary Illustrations. The properties of

vectors must be based on the fundamental principles of

geometry, and it may be well to show by a few elementary

illustrating how these are involved.

Thus let AB, CD be equal and parallel lines and represented

by the same vector a. Then, if f3 represents the vector CA,

we have the vector equation

vector DB = -a + P + a = fi.

In words, "the straight lines which join the extremities

^ o( fi
of equal and parallel straight lines

are themselves equal and parallel."

Again, M AB and CD are given

parallel, and CA, DB given

Fig. 2. parallel, we may represent them by

the vector a, ma, ^S, n^ where m and n are scalar multiples.

Then
li + a = vector CB = na. + mf3,

whence by the last article n=l, m= 1 ; and consequently the

opposite sides of the parallelogram are equal.

Again as vectors AB = AO+ OB,

CD = CO + OD,

where is the meeting point of the diagonals. But

AB = CD;henceAO + OB = OD + CO;AO = OD, CO^OB.
A few simple examples will show with what directness

vector methods may be applied to plane geometry.

1. The bisectors of the sides of a triangle meet in a point

which trisects each of them.

Let the sides of the triangle ABC be

bisected in D, E, F; and let AD, BE
meet in G.

Let vector BD or DC be a, CE or

EA P, then, as vectors,

BA = BC+CA = 2a + 2l3 = 2{a + l3),

DE = DC+CE = a + /3,

hence (§3) BA is parallel to DE, and equal to 2DE.
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Again, BG + GA =BA =WE
= 2(DG + GE).

Now vector BG is along GE, and vector GA along Dff.

.-. {^6) BG = 2GE,

GA = 2DG,

whence the same is true of the lines.

Lastly, BG =\bE = \{BC+ GE)

=|(2<x + ^);

.-. CG = BG-BC=^{2a.^p)-2a

= |(/3-«),

GF=BF-BG

=\ba-bg,

= a + y8-|(2a + /})

hence GG is in the same straight line with GF, and equal

to IGF.

2. When, instead of D, E, F being points taken within BG,

CA, AB at distances equal to half those lines respectively, they

E

Fig. 4.
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are points taken in BO, CA, AB produced, at the same distances

respectively from C, A, and B ; to find the intersections.

Let the points of intersection be respectively Gj, G2, Gg-

Eetaining the notation of the last example, we have

BD = 3a, CE = 3I3;

and.-. BO^^xBE
= x(2a + 3l3) (1),

and BG^ = BD + DG^
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But CF= CE + EF= - EC+EF= -qP + y{pa + l3);

.-. equating, we have x{l +p) = yp, x{\ + 2) = -i + y,

whence x = {l+ x)pq,

GF_BF AD CE_,
^®'

BO~BG' BD' AE'
.: AD.BF.CE = AE.CF.BD.

4. The points of bisection of the three diagonals of a complete

quadrilateral are in a straight line.

P, Q, R, the middle points of the

diagonals of the complete quadrila-

teral ABGD, are in a straight line.

Let AB= a,AD = l3,

AE = ma, AF=nfi;
.-. BF=n/3-a and BC= x{nl3-a),

ED = ^-maa,ndCB = y(l3-ma).

-Row BC+ CD =BD =AD-AB ^

gives x{nj3 ~a) + y{P-ma) = j3-a,

whence xn + y = l, x + my=l,

_ ™-l
•' X =-,

mn- 1

and jp =lAO=Ua + ^^^(np-a)]

_lm(n-l)a + n(m- 1)^
~2 mn- 1

'

AQ= l(a + ^),

AB= -x{ma. + nP),

or vector PR is a multiple of vector PQ, and therefore they

are in the same straight line.
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Cor. Line PQ: PB wl : mn
AB.AD-.AE.AF
triangle ABD : triangle AEF.

We shall presently exemplify a very elegant method due

to Sir W. Hamilton of proving three points to be in the

same straight line.

8. Unit Vector and Tensor. It is often convenient

to take a vector of the length of the unit, and to express

the vector under consideration as a numerical multiple of

this unit. Of course it is not necessary that the unit should

have any specified value ; all that is required is that when

once assumed for any given problem, it must remain

unchanged throughout the discussion of that problem.

If the line AB he supposed to be a units in length, and

the unit vector along AB be designated by a, then will vector

AB be aa (§ 3).

Sir William Hamilton has termed the length of the line

in such cases, the Tensor of the vector; so that the vector

AB is the product of the tensor AB and the unit vector

along AB. Thus if, as in the examples worked under the

last article, we designate the vector AB hy a, we may write

a=TaUa, where To, is an abbreviation for 'Tensor of the

vectpr a'; Ua, for 'unit vector along a'.

Take the following example :

The three bisectors of the angles of a triangle meet in a point.

Let AD, BE bisect A, B and meet in G ; CG bisects G.

Let unit vectors along BC, CA, AB be a, (3, y, and let

a, b, e be the lengths of the corresponding sides.

Then aa + 6/3 + cy = (see below, § 9).

AG = x{y-l3), BG= y{a-y),

GG=CA+AG = bp + xy-xp,
and also CG = GB + BG = -aa + ya-yy.

Hence {y-a)a + {x-b)P = {x + y)y
= -{x + y){aa + bl3)/c.
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Equating coefficients of the a's and ^'s, and solving, we find

x = bc/{a + b + c), y= cal{a + b + c),

and finally CG = f (3 - a),
a + b + c^'^ "

and OG bisects the angle between the unit vectors ^ and - a.

9. CoPLANAE Vectors. If a, /3, y are non-parallel

vectors in the same plane, it is always possible to find

numerical values of a, b, c so that oa + 6/8 + cy shall = 0.

For a triangle can be constructed whose sides shall be

parallel respectively to a, fi, y.

Now if the vectors corresponding to those sides taken in

order be aa, bp, cy respectively, we shall have, by going round

the triangle,

aa + bji + cy = 0.

If we multiply this equation by any quantity the right

hand still remains zero, and the left hand represents a triangle

similar and similarly situated to the original triangle but

,with its sides increased (or diminished) in a given ratio.

Thus, though there is an infinity of values assignable to a, b, c,

any one set is simply a multiple of any other. This may
be proved directly as follows :

Let aa + hfi + cy = 0,

and also pa. + qli + ry = 0.

By eliminating y we get

{ar - cp)a-^(br - cq)P = ;

.•. (§6)ar = cp, br= cq,

OT a : b : c :: p : q : r,

so that the second equation is simply a multiple of the first.

10. CoLLiNEAE Points. If a,
f3, y are coinitial, coplanar

vectors terminating in a straight line, then the same values

of a, b, c which render aa + 6/3 + cy = will also render

a + b + c = 0.

B
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Let vector OA=a., OB = p, 00 =y, ABO being a straight

line
J
then

JB= /3-a,

yB AO= y-a.

But ^C is a multiple of AB,

OTy-a =p{P-a),
^s-''-

i.e. (j>-l)a-p^ + y = 0.

But (ji)-l)-p + l = 0;

and as ^-1, -p, +1 correspond to a, b, c and satisfy the

condition required, the proposition is proved generally.

Conversely, if a, /?, y are coinitial coplanar vectors, and

if both aa + b/3 + cy = 0, and a + b + c = 0, then do a, /?, y
terminate in a straight line.

For ay + by + cy = 0;

therefore by subtraction

a(y-a) + J(y-^) = 0,

i.e. y-a is a multiple of y-fi, and therefore (§4) in the

same straight line with it : i.e. AO is in the same straight line

with BO.

This criterion for the collinearity of the extremities of

three vectors drawn from the same origin has many elegant

applications.

If p be any vector drawn from the same origin as a and /3

and terminating on the straight line passing through the

extremities of a and /3 we may write

a + mB aa + bB
'^ 1+m a + b

where m=6/a. For, clearing of fractions, we have

a{p-a) = b(/3-p),

so that p-a and P - p are eollinear, being parallel with a point

in common. Also the end of p divides (/3 - a) in the ratio

bja ( = m).
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11. NON-COPLANAR VECTORS. If a, jB, y are three

vectors neither parallel nor in the same plane, it is impos-

sible to find numerical values of a, h, c, not equal to zero,

which shall render aa + bl3 + cy = 0.

For (§5) aa + b/3 can be represented by a third vector

in the plane which contains two lines parallel respectively

to a, /3. Now cy is not in that plane, therefore ' (§ 6) their

sum cannot equal 0.

Or we may reason in this way. The equation may be

written in the form
— Cy = aa + J|8,

so that, if a, b, c have finite values and if a and ^ are difierent

vectors, y must lie in the same plane with « and ;S. Hence

with y not coplanar with a and /3, the above equation can

hold only if a, b, and c all vanish.

Thus with a, b, c unrestricted, the equation aa + bfi + cy

= 0, means that a, |8, y are either parallel to one another or

are in the same plane.

These theorems find illustration in the following examples

:

1. If two triangles are so situated that the lines which join

corresponding angles meet in a point, then pairs of corresponding

sides being produced mil meet in a straight line.

ABC, A'B'C are the triangles
;

the point in which A'A, B'B,

CO meet; P, Q, R the points in

which BC, B'C, etc., meet : PQR
is a straight line.

Let(?^ = a, OB = p, OC=y,

OA' = ma, OB' = np, OC =py,

then BA = a-/3,

and BR= x(a-l3);

B'A' = wia - n./3,

9,nd B'B= y{ma.- njS). Fig. §,
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Now BE =BB- B'B gives

{n~l)(3 = x(a - /8) - y{ma - n/S)

;

.'. n-l=-x + ni/, Q = x-my,

and
m(n — 1)

x= ^^ '-;

m-n

0Q= -

whenee OB = OB + BB = p- ^^'' ^\<^-P)
' m-n ^ '

'

__
n{m- I) 13 - m(n - l)a~

m-n

Similarly,
^p^p(n-l)y -n{p-l)l3

m(p- l)a -p(m- 1)7.

p-m '

(m-n){p-l)OB + {n-p){m-l)OP
+ {p-m){n-l)OQ = 0.

And also identically

(m - m)(^ - 1) + (n -p){m - 1) + (^ - «i)(m - 1) = 0,

whence (§ 10) P, Q, B are in the same straight line.

2. If AD, BE, OF be dravm cutting one another at any point

G within a triangle, then FD, DE, EF shall meet the third sides

N

Fig. 9.

of the triangle produced in points which lie in a straight line.

Also the produced sides of the triangle shall be cut harmonically.
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Take G as origin, and let «., fi, y bo the vectors to the

angles A, B, C; then the vectors to D, E, F may be

represented by aa, bjS, cy. Let p, <r, r be the vectors from G
to the points L, M, N, the meeting points referred to in

the enunciation.

The vector equations

GL=G£ + BL =GE + EL,

GM=GC+CM =GF+FM,
GN= GA +AN= GD +DN

take the form

p^P + x {y-ji)^hp + y {cy -bl3),\

a- = y +x'{a-y) = cy + y' (aa-cy), Y

T = a + x"{/3 -a) = aa, + y" {bfi - aa.),]

whence we find from the first pair

P{l-x-h + 'by) + y{x-cy) = 0,

so that x = cy, {c-b)y = l -b, {c-b)x = c(\.-b),

with similar expressions for y'y", x'a^'.

Substituting we get

p{c-b) = b{c-l)(3-c{b-l)y,)

IT {a - c) = c(a - l)y -a{c- l)a, Y

r{b - a) = alb -l)a- b{a - l)/3. J

Multiplying by (a-1), (b-l), (c-1) respectively, and

adding we find

(a-l){c-b)p + {b-l){a-c)(r + {c-l){b-a)r = 0.

But evidently

(a - 1 )
(c - 6) + (6 - 1) (a - c) + (c - 1 ) (&

- a) = 0,

hence p, o-, x terminate on the same straight line.

Now aa may be written in the form ((3 + my) /{I +m) (§ 10),

where m is to be found ; and in like manner bfS and cy may

be expressed, using n, p instead of m.

Thus we have the three equations

(1 + m)aa - /3 - my = 0,"]

- na + {I + n)bp - y = 0,\-

-a-pl3 + {l+p)cy = 0,}

and these (§9) must be simply multiples of one another.
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Hence «=--
{l+n)b '

{l+n)b _ 1
**-

p -c(i+py
from which m, n, p may be found. Thus

c-cb a-ac b-bam = ,—=-, n = •, p = r-
b — bc c- ca a — ao

-KT c-cb -, , b-bc
JNow x = r and x-l= t-

c-b c-b

Hence m =—

r

x-l
DO BL BL
BD'BL-BC CL'

and BL is cut harmonically.

Again, since mnp = 1, we find

DC EA FB_
BD' GE' AF~

12. The Mean Point of a group of points is that point

whose vector position referred to any chosen origin is equal

to the sum of the vector positions of the individual points

divided by the number of points.

Thus for two points a, ^S, the mean point is

or ji* — a= /? — /i,

so that the point at the extremity of jn bisects the line /3 - a.

For three points forming the triangle ABC,

/i=3(a + /3 + r).

This point is the point G of Example 1, § 7 ; for it

is the meeting point of the lines, which pass through A, D,

and B, E. Let p be the vector of this meeting point. Then

^
1 + m 1+71 '

where a, p, y are vectors not necessarily in the same plane.
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Hence rearranging we have

\l+m 2(1 +«)/""' {2(1 +m) 1+njP

and the factors must vanish (§11). Hence

and pJJi^=l(a + p^y).

For four points ^, B, C, D, with vector positions a, ^, y, S,

ft = j(a + ^ + 7 + 6).

These four points are the corners of a quadrilateral not

necessarily plane.

The middle point of the line joining the middle points of

any pair of opposite sides is

the mean point. Hence the lines joining the points of

bisection of the opposite sides of a quadrilateral in space

meet and bisect each other.

Again the point of bisection of the line which joins the

middle points of the diagonals is the same mean point ; for

lfa + 7 iS +Sla+^+T + S

and so on for any number of points.

13. Centre of Mass. The properties of the centre of

mass or centre of inertia of a system of particles are con-

veniently discussed here.

If we have a number of equal masses placed in given

positions, then the centre of mass is simply the mean point.
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To extend the discussion to the more general case, we
shall first define what Maxwell has called the mass-vector. The

mass-vector of the particle of mass m whose position is assigned

by the vector p is the vector mp, that is the vector whose

tensor is m times the tensor of the vector p.

Let there be two masses wij, m^ in positions p^, p^ ; then

the vector ^^^xPi+^^P2

is (§ 10) the vector of the point in the line joining m-^ and m^

and dividing it in the ratio of m^ to m^. For

™i('^-/'i)=™2(/'2-<^).

so that the product of each mass and its distance from the

centre of mass is the same.

Add to the system a third mass m^ in position p^. "We may
suppose mj + wij to be condensed at their centre of mass.

Hence the centre of mass of (wij + m^ and m^ got by the same

process will be

m,/D, + m^p^
,

.

m^p^+m^p^ + m^p^

m^ + m^ + m^

Generalizing we arrive at the definition of the centre of

mass of a system of particles as that point whose vector

position is the sum of the mass-vectors divided by the sum
of the masses. Thus, generally

(r{m^ + m^ + m^+ ...+ m„)

= m^pi -I- m^^ + TOgPg +...+ m„p„,

giving in every case a perfectly definite vector a-. This
relation may be written briefly

<r2wi = 2(?Mp),

wiere 2 means the summation of terms of the type indicated.
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Eearranging we find, since o- may be put under the summa-

tion symbol,

2m((r-jo) = 0,

or, the mass vectors referred to the centre of mass would

it put end to end form a closed polygon.

14. Velocity a Vector Quantity. As already explained,

the simplest conception of a vector is that of a transference

or step in a definite direction, through a definite distance.

When a moving particle changes position from, say, position

jO to position p, the displacement is measured by the vector

(P'-P)-

In the very simplest case imagine the particle to be moving

with constant speed along this vector line {p - p). This

vector will represent by its direction the direction of motion

and by its length the distance travelled through. Suppose

the transference to be efieeted in t seconds of time. Then

the vector
. , which is the fth part in length of the
b

vector p - p, will clearly represent in direction and magnitude

the velocity of the moving particle. Velocity is therefore

completely represented by a vector whose direction gives the

direction of motion and whose tensor measures the speed or

rate at which space is being described.

Velocity is defined quite generally as the rate of change

of position, and is clearly a vector quantity. For when a

particle moves it must move in a definite direction with a

definite speed. The velocity is therefore fully symbolized

by a vector line drawn in this direction and of a length

measuring the speed on a convenient scale.

The relative velocity of two moving bodies is obtained at

once by taking the vector difference of the vectors representing

their velocities. If a, ^ represent the velocities of two

particles A, B, we get their relative velocity by superposing

on both such a velocity as will reduce one to rest. Thus,
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Hg. 10.

for example, let - a be superposed. This will annul the + a

in the one case and

produce with jS a resul-

tant velocity represented

hy /3-a in the other

case. The vector dififer-

ence j8 - a is the velocity

of B relatively to A.

Any given velocity may be decomposed into any number

of components, the sole condition being that the components

drawn end to end form with the original velocity reversed

a closed polygon.

If two directions be assigned coplanar with the given

velocity, the components along these directions have deter-

minate values. Thus in the figure on page 11, letAC he the

given velocity and AB, BG parallel to the given directions.

Then it is clear that when lines parallel to these directions

are drawn through the extremities A and C, they will meet

in a determinate point B, and the components AB, BG have

determinate values.

Again, if any three norircoplanar directions are assigned,

there is one way only in which a given velocity can be

decomposed into components parallel to these directions.

Thus let OA, OB, OG he the required directions in space and

OP the given velocity, and let OB, 00
he in the plane of the paper. Through

P draw a line parallel to OA till

it meets the plane containing OB
and OG. Let PM he this line.

Through M draw a line parallel to

OG till it meets OB in N. Then

the velocity OP is decomposed into

the components ON, NM, MP, which

are all determinate in direction and magnitude.

Long before the calculus of quaternions or any system

Fig. 11.
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of vector analysis was invented these vector properties of

velocities were known ; and they still form some of the most

eifective illustrations of the method.

EXAMPLES TO CHAPTER II

1. If P, Q, B, S be points taken in the sides AB, BG, GD, DA
of a parallelogram, so that AP : AB :: BQ : BG, etc., PQRS will form

a parallelogram.

2. If the points be taken so that AP=CE, BQ—DS, the same

is true.

3. The mean point of PQRS is in both cases the same as that

of ABGD.

i. The quadrilateral formed by bisecting the sides of a quadri-

lateral and joining the successive points of bisection is a parallelogram,

with the same mean point.

5. If the same be true of any other equable division such as

triseotion, the original quadrilateral is a parallelogram.

6. If any line pass through the mean point of a number of points,

the sura of the perpendiculars on this line from the diflferent points,

measured in the same direction, is zero.

7. From a point E in the common base AB oi the two triangles

ABG, ABD, straight lines are drawn parallel to AG, AD, meeting

BG, BD a.tF,G; show that FG is parallel to GD.

8. From any point in the base of a triangle, straight lines are

drawn parallel to the sides : show that the intersections of the diagonals

of every parallelogram so formed lie in a straight line.

9 If the sides of a triangle be produced, the bisectors of the

external angles meet the opposite sides in three points which lie in

a straight line.

10. If straight lines bisect the interior and exterior angles at A
of the triangle ABG in D and M respectively

;
prove that BD, BG, BE

form an harmonical progression.

11. The mean point of a tetrahedron is the mean point of the

tetrahedron formed by joining the mean points of the triangular faces ;

and also that of the mean points of the edges.
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12. If through any point within the triangle ABG, three straight

lines MN, PQ, SS be drawn respectively parallel to the sides AB, AC,
EC; then will

MN PQ RS_„
AB'^AG^BG'

13. ABCD is a parallelogram ; PQ any line parallel to CD; PD,
QG meet in 8, PA, QB in B

;
prove that AZ> is parallel to SS.

14. If the vertical angle of a triangle be bisected by a straight line

which cuts the base, the segments of the base shall have the same ratio

that the other sides of the triangle have to one another.

15. Find the expression for the centre of mass of a uniform wire

bent into the form of a triangle, the lengths of whose sides are a, 6, c.

16. The mean point of a triangle trisects the line joining the

point of intersection of the perpendiculars on the sides from the

opposite angles, and the point of intersection of perpendiculars on the

sides from their middle points.



CHAPTER III,

quaternions and versors or quotients and
products op vectors.

15. The Quaternion as a Geometrical Operator

In the preceding chapter the laws of addition and subtrac-

tion of vectors have been discussed; and broadly speaking

these laws are common to all vectorial systems such as

are met with in the Barycentrische Calcul of Mobius and-

the Ausdehnungslehre of Grassmann.

We now pass on to the discussion of products and quotients

of vectors ; and it is well at the outset to state distinctly

what are the peculiar features of Hamilton's Quaternions as

compared with other systems of vector analysis. It lies in

this, that, whereas the commutative law in multiplication

no longer holds, the distributive and associative laws are

still retained. In symbols, a^ is not the same as fia; but

tt (j8 + 7) js the same as a(3 + a-y, and a/Jy has the same value

whether it is regarded as a multiplied by j8y or as a/3

multiplied by y. The whole system may be developed

analytically from these fundamental restrictions.

Here, however, we shall develop the system geometrically,

bearing in mind that the distributive and associative laws

are to hold, and adopting the usuat notations familiar to us

in ordinary algebra, in so far as these are not inconsistent

with the restrictions laid down.
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Given any two vectors a, /3 there must be some multiplier

or operator which changes /3 into a. Writing q for this

operator we have symbolically

.

2/3= a.

If yS and a were two scalar quantities of the same kind,

q would be their ratio. When they are vector quantities of

the same kind, we may still by analogy regard g' as a

ratio, and we may express it in the form aj/i or a/i~\ The

relation

is obviously self-consistent, if we assume the associative

law to hold, and if /3-i/8 = l.

This involves the definition of the reciprocal of a vector.

Thus if 7/3=1, J is the reciprocal of /3 and simply undoes

whatever effect may be produced by /?. Evidently their

tensors must be reciprocal in the ordinary arithmetical

sense. Moreover, since the effect of a vector must depend

in some way upon its direction it is reasonable to expect that

the reciprocal vector will undo this effect in virtue of its

having the opposite direction. That is to say, the most

obvious interpretation of the reciprocal of a vector is a

vector whose tensor is the reciprocal of the tensor of the

original vector and whose direction is the reverse of that

of the original vector. This we shall find to be its meaning

in quaternion vector analysis.

Since a vector possesses both direction and magnitude,

the process by which it is changed into another vector

must involve the two distinct operations of change of

direction and change of magnitude. When, for example,

/3 is to be changed into a, it must first be rotated through

a definite angle in a definite plane ilntil it is parallel to

a, and then its tensor or length must be altered in the

proper ratio so as to make it equal to the tensor or length

of a. Or, we may first effect the alteration in length, and
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then effect the rotation. The result is the same, so that

these operations are commutative.

A further consideration shows that this process of changing

one vector into another involves four numbers. (1) There

is the change of tensor—one number
; (2) there is the angle

of rotation—one number
; (3) there is the aspect of tht- plane

in which the rotation takes place or the direction of the

axis about which rotation takes place, and this requires two

numbers for its determination. In all, four numbers. For this

reason Hamilton called the multiplier q or afi'^ a quaternion.

16. The Constituents of a Quaternion. As already

pointed out, the process of changing one vector into another

consists in general of two separable operations—the one

effecting the necessary change of length, the other the

change of direction. These are distinguished as the Tensor

and Versor parts of the quaternion, and are written Tq and

Uq respectively,! Thus

ql3 = TqUql3==UqTql3,

or symbolically, q = TqUq= UqTq.

The operation represented by Tq is simply that of

multiplying by a numerical factor, and requires no further

discussion. Tq is in fact a scalar multiplier. When the

value of Tq is unity, the quaternion is reduced to the

expression Uq and is called a Versor, since its effect is

simply one of turning.

A Versor involves an angle and a plane or direction of

axis—three numbers. A Vector involves a length and a

direction—also three numbers. Any two vectors, a and /8,

involve six numbers. But the quaternion, a.^~^, as has

been shown above, involves only four numbers. Hence,

although 2( = a/S~i) is completely determined when a and

/3 are given, u, and /3 are not completely determined when

^ The use of the selective symbol (J in two senses as the unit of a vector

and the versor of a quaternion will be found to lead to no confusion,
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q is given. All we know, in this case, about a and jS, are

the aspect of the plane in which they lie, the angle between

them, and the ratio of their tensors—in short, just the four

constituents of the quaternion. Any other pair of vectors

having these same relations will give the same quaternion.

Thus a given quaternion can be expressed as the ratio of

two vectors in an infinite number of ways, the conditions

attaching to these vectors being, that they are perpendicular

to a given direction known as the axis of the quaternion,

that they contain an angle known as the angle of the

quaternion, and that their tensors have a ratio equal to

the tensor of the quaternion.

It should be mentioned that the axis of a quaternion is

drawn in that direction which bears to the versor effect of

the quaternion the same relation which the translational

motion of a right-handed screw bears to its rotation.

17. The Quateknion and its Conjugate. To each

quaternion q there corresponds another quaternion Kq, called

the conjugate, whose effect upon a vector operand is the same

except that the angle of rotation is taken in the opposite

direction. In other words, the axes of a quaternion q and its

conjugate Kq are oppositely directed, the tensors and angles

being the same.

\Thus, if q/3 = a,

then Kql3 = a,

where a' has the same tensor as

"^ a but lies on the opposite side of

/3, making the same angle A
with it (see Figure 12).

Evidently if we operate on a

^'^- ^^- by Kq, or on a by q, we shall

obtain a vector /3' parallel to /3, such that

TI3'/Ta = Ta/T/3,

or TP'IT/3 = (Ta/T/if = {Tq)\
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Hence, Kqqfi= Zga =
( Tqfl3,

and qKqli = qa'- = {Tqyp,

or symbolically, qKq = Kqq={Tq)^, a scalar quantity.

From the fundamental equations given above we get by

addition and subtraction

{q + Kq)li = a + a',

(q-Kq)/3 = a-a'.

But a + a is a vector parallel to ;8 and having a length

equal to 2Ta cos A ; and a - a' is a vector perpendicular to /3,

and having a length equal to 2Ta sin J.. Let Uy be unit

vector perpendicular to ^ in the plane a^S. Then we may write

(q + Kq)l3=2Ta cos A. U/S,

{q - Kq) 13 =2Ta sin A. Uy,

or (q + Kq)UI3 = 2 —cos A. UI3 = 2Tq cos A. UP,

{q-Kq) UI3 = 2~sinA . Uy=2Tq sinA. Uy.

Thus q + Kq is a scalar multiplier, while q-Kq is a

quaternion which rotates ;S through a right angle about the

axis of the quaternion q and changes its tensor in the ratio

of 2TqsinA to unity.

A quaternion which rotates the vector operand through a

right angle is called a quadranfal quaternion; and a versor

which does the same is called a quadrantal versor.

18. Quadrantal Quaternions and Versors. From the

last paragraph we learn that any quaternion may be expressed

as the sum of a scalar quantity and a quadrantal quaternion
;

and that when this is done the conjugate of the quaternion is

then expressible as the difference of the same two quantities.

In symbols q= S+Q,
Kq = S-Q,

where S is the appropriate scalar, and Q the appropriate

quadrantal quaternion, whose meanings are given in the last

paragraph.
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If the scalar vanishes, q becomes the quadrantal quaternion

Q, and we see that the conjugate of a quadrantal quaternion

is simply the quadrantal quaternion with its sign changed.

This is obvious from the geometry of the operation, for Q
and KQ rotate the vector operand in the same plane through

right angles measured in opposite directions.

In this case also

QKQ = Q{-Q)=-Q\
But QKQ^{TQf.
Hence the square of a quadrantal quaternion is equal to

minus the square of its tensor.

The same conclusion may be readily established by^ireet

consideration of the geometry of the operation, for UQ
operating twice in succession simply reverses.

For simplicity of discussion let TQ=1, so that Q becomes

a quadrantal versor. The properties of the quadrantal versor

being once established, those of the quadrantal quaternion are

immediately obtained by introducing any scalar factor. Follow-

ing Hamilton we shall symbolize quadrantal versors by one or

other of the letters i, j, h ; and these we shall represent

geometrically by their axes, distinguishing them meanwhile

from vectors by using

two arrow heads instead

of one.

Let i, V be two given

quadrantal versors as

shown in the figure, and

let each act on the unit,

vector /3 perpendicular

to both. Then

a unit vector perpen-

dicular to yS and to i,

the direction of rotation

Pig. 13. being right-handed with
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reference to the direction of the axis of i. Similarly,

a unit vector perpendicular to j8 and to i'. By the dis-

tributive law
a + a' = i'IS + i'P = {i + i')/3.

Hence (* + »') is the operator which changes /? into (a + a').

This operator is evidently a quadrantal quaternion, turning ^
through a right angle and changing its length to the value

T{a.-\-a'). This quadrantal quaternion will have its axis

along the diagonal of the parallelogram formed by i and i',

and its tensor will be equal to T(i + i'). It may therefore

be completely symbolized by (* + «'), in which the versors

i and i' are added like vectors to produce the quadrantal

quaternion (i + i'). In other words, quadrantal versors, and

(it is easy to show) quadrantal quaternions also, are com-

pounded like vectors. Now, so far as our definitions go, any

quantities which obey the vector law of addition may be

regarded as vectors ; and if no inconsistency results we may
extend to vectors any analytical properties which these new
quantities may possess. The explicit identification, so far

as regards their properties in analytical combinations, of

quadrantal quaternion and vector is one of the outstanding

features of quaternions. It has been taken exception to by
theorists ; but there is no practical system of vector analysis

in use in which the versorial character of a vector in product

combinations is not either implicitly involved or explicitly

assumed. The identification of versor and vector leads to

no confusion and greatly facilitates transformations.

19. Multiplication of Quadrantal Quaternions.

And now let us consider the result of operating with two
quadrantal versors in succession. Let i, i' be these versors

drawn from as in Figure 14. Through draw planes

perpendicular to them and let y be the unit vector along
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Fig. 14.

the line of intersection in the direction which is positive

with regard Ijp right-handed

rotation from i' to i.

Take /3 perpendicular to y
and i, so that ip = y, and

take a perpendicular to y and

i' so that i'y = a. Then

«'«/3= i'y = a,

or i'i = a//3.

Hence, i'i is the quaternion

(in this case, versor) which

changes /3 into a. This

versor i'i has its axis perpen-

dicular to the plane containing

a and y8, that is, to the plane containing the axes of the

quadrantal versors i' and i ; and its angle is equal to the

complement of the angle between i' and i.

By introducing scalar multipliers we may pass from

versors to quaternions ; and thus any quaternion can be

represented as the product of two quadrantal quaternions,

the tensor of the product being the product of the tensors

of the factors, the axis being perpendicular to the axes of

the constituents, and the angle the complement of the angle

between these axes.

By the original definition,

q = a/fi = a/3~l = a^',

where /S' is the reciprocal of (3. Hence a quaternion may

be expressed as the product of two vectors. Thus we find

that in their multiplication as well as in their addition,

quadrantal quaternions and vectors obey the same laws.

The identification of vectors and quadrantal quaternions

leads at once to the following conclusions.

The conjugate of a vector is its inverse. Thus

or the square of a vector is mimis the square of its tensor.
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If the vector is a unit vector,

aKa. = 1 = aa~^ •

a~^ = Ka= —a,

or the reciprocal of a unit vector is equal to its inverse.

Consequently, for any vector /3 we have

ri = (r/3)-i(?7^)-i=-^=-^.

20. The Scalar and Vector Parts oe a Quaternion.

It has been shown (§ 18) that any quaternion may be

represented as the sum of an appropriate scalar and an

appropriate quadrantal quaternion. For quadrantal qua-

ternion we may now substitute the word vector, and write

q= Sq+Fq,
Kq = Sq-Fq,

when iS' and V are selective symbols separating out the

scalar and vector parts of the quaternion. These parts

have definite meanings, which have already been given.

When 2 is a versor {Tq = l), Sq is the cosine of the angle

through which q turns a vector perpendicular to its axis,

or it is minus the cosine of the angle between the axes of

two quadrantal versors or unit vectors whose product gives

q ; and Vq is the vector (or quadrantal quaternion) measured

along the axis of q and of length equal to the sine of the

same angle.

The extension to quaternions is easily given. Let a and

h be the lengths of the vectors a and (i. Then

2 = ^ = '^^+'^'

where S^ =
^ cos A,

>^7j = e T sm A,
fJ

in which A is the angle between a and (3, and e is the

unit vector or quadrantal versor perpendicular to a and p.
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Again, -when q^a/3, where a and /? may be regarded as

quadrantal quaternions or as vectors, we have

a/3 = &/? + Vap, K{aP) = Saji - Va^,

where Safi = -ab cos A,

Fa/3 = e . aJ sin A,

£ being unit vector perpendicular to a and p, and A the

angle between a and j3.

K(ap} . ali=^{T{a.p)Y = {Taf{Tlif = o?^.

Hence, K(al3) . a = a^/S = ^a? = /3aa,

because a^ is essentially a scalar quantity and fulfils the

commutative law. Thus, finally, multiplying into a'\

K{aP) = l3a = S(3a+FI3a.

But K{a/3) =Sa/3-Fal3,

from which we conclude that SafS^S^a, but V/3a= - Fa/3.

Altering the order of the factors in the product a^S reverses

the sign of the vector part but does not affect the scalar part.

We also find

2SaP = al3 + j3a,

2Fa^ = a^-/3a.

When Sa/3 vanishes, the quaternion a/3 becomes reduced

to its vector part ; and this occurs when ^ is a right angle.

The equation Safi = means that a is perpendicular to p.

If we suppose a to be given, and p to be any vector

satisfying the equation Sap = 0, we see at once that p may
be any vector passing through the origin perpendicular to a.

The equation therefore represents the plane passing through

the origin and having its normal parallel to a.

When Fa/3 vanishes, the quaternion becomes reduced to

its scalar part ; and this occurs when A is zero or equal

to two right angles. Hence, Fa/3 = means that u. and /3

are parallel. Conversely, when u. and j3 are parallel, Va^ = 0.

If we suppose a to be given, and p to be a vector satisfying

the equation Fap = 0, then the sole condition is that /o
||
a.
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There is no limit to the length of p. Consequently, the

equation Vap = represents a straight line through the origin

parallel to a.

21. Unit Vectors perpendicular to one another.

When a, /3 are two mutually perpendicular unit vectors, the

product a^ has no scalar part, but is wholly a vector. Hence

we may write a/S = y, where y is the unit vector perpendicular

to a and jS. Taking the conjugates of both sides, we have

'Pa= -y. Multiplying by /3, we get

I3^a= - fiy, or a = /3y, since {3^= -1.

Or, multiplying into a, we get

j3a^ = — ya, or /3 = ya.

These relations a/3 = y, /8y = a, ya =
f3, necessarily hold

among three rectangular unit vectors.

It has become customary to use for such a system of rect-

angular unit vectors or quadrantal versors the letters i, j, h

;

and, as Hamilton showed, from the properties of these space

units the whole calculus may be analytically developed. The

properties of i, j, k, as usually given, are

ij=k = -ji,

jh=i== -kj,

ki= j = - ik,

i'^=i^ = k^= ijk=-l.

It is instructive to see what relations among these quantities

are necessary and sufficient for the purpose. Assume, to begin

with, that

ij = k= -ji,

jk=i= ~kj

ki=j = -ik,

and assume in addition that the associative law is to hold.

That is to say, any combination, such as iij, is to have the
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same value whether it is regarded as made up of {ii)j or i (ij).

On this assumption we have

iy = iij = i . ij= ik= -j ; .. i^= -I.

Similarly, y^= -1> ^^= -1-

Again, ijk= ii= - 1, and similarly for the products jJci, kij,

in which the same cyclical order is preserved. But

^kj = {-j)j= +1,

so that a change in the cyclical order changes the sign of

the product.

It should be noted that the triple product ijk is a scalar

quantity. Let us take vectors xi, yj, zk, where xyz are the

tensors of the vectors parallel respectively to i, j, k. Then

the product

xiyjzk= -xyz.

22. Comparison with Cartesian Methods. Let ijk be

unit vectors measured along a system of mutually perpendicular

axes in space. Any other vector jO may be expressed in the

form

p = ix +jy + he,

where xyz are the coordinates of the extremity of the vector p

measured along the directions i, j, k.

Any other vector o- will have the corresponding form

o- = ix' +jy' + kz'.

Applying the distributive and associative laws we find for

the product the form

per = (ix +jy + kz) {ix! +jy' + k^)

= i^xx' +j^yy' + kh^

+ ijxy' +jiyx! + . .

.

= - xx' - yy' - z^

+ h{xi/ - a^y) + i{y^ - ^z) +j{zx' - ^x).

But pa- = Spa- + Vpa-.
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Thus the analytical expressions for the scalar and vector

parts of the product of the two vectors are

Sp(7- = - (xx' + yy' + 2^'),

Vpa = i{y^ - y'z) +j (zx' - sfx) + k {xy' - x'y).

From these expressions we may easily verify that

Sp(r = S(Tp, Vp<T= - Va-p.

If p and cr are unit vectors, xyz, a!y'^ are direction cosines,

and we infer at once that the common perpendicular to p and o-,

being UVpcr, has its direction cosines proportional to the

quantities (ys' - y'z), (zx' - z'x), {xy' - a'y).

Again, p^ = (\x -\-jy + hz) {ix +jy + Jcz)

= -x^-y^- z^

+ ij{xy-xy) + ...

the vector part of the product pp vanishing of necessity.

23. Important Geometrical and Dynamical Inter-

pretations. The quantities Spa-, Vpa- have iiiterpretations

of great importance in geometry and dynamics. Some of

these have been already given, but their importance demands

a further discussion. As proved above (§ 20)

-Spu- = TpTa-c,osA,

where A is the angle contained by p and <t. Hence, - Spo- is the

product of the tensor of either vector into the component

of the other along its direction.

Let T be a given constant vector. What is the locus of

the extremity of p when Spa- is constant, equal (say) to Cfr'^'i

Since Spir = ccr^ = Scrccr, we have Su- (p - or) = 0. Hence, jO - co-

is perpendicular to o-, and therefore p is the vector of any

point in the plane which passes through the point ca and

which is perpendicular to o-.

If /o is a force and n- a displacement the quantity - Spu- is

the work done by the force during the displacement.
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The geometrical meaning of Vpcr is the area of the parallelo-

gram contained by p and a-, regarded as a vector quantity

with direction perpendicular to the area. Just as a plane

has an aspect in the direction of its normal, so any plane

area has an aspect and may therefore be regarded as vectorial.

The magnitude of the area is symbolized by the expression

TVpa-, its direction by UKpcr.

Let T be a constant vector, and let Vpcr = y, also a

constant vector.

What is the interpretation of this equation? It means

that the area contained by p and n- has a constant value

and a constant aspect. Since y is constant we may write

it in the form V^cr, ^ being

an appropriate constant

vector. Then, since

Vp<T=VP<T,

we have

V{p-P). = Q

or p - ;8 is parallel to o-.

Hence the equation is

that of a straight line

'^' passing through /8 and

parallel to " (see Fig. 15). The direct interpretation of the

equation Vpa-= y is that all triangles with vertex at the origin

and with base To- taken anywhere in the line have the same

area—in fact, they are all on equal bases and between

the same parallels.

The equation TVpa- = constant, a- as before being a constant

vector, means that the area is constant in magnitude only,

its aspect being undetermined. Hence it is the equation

of a right cylinder with axis parallel to cr, the origin being

on the axis ; for if any triangle be formed with vertex at

the origin and with base o- in any generating line of the

cylinder, the area of this triangle will be always the same.

If <T be the momentum of a particle at the extremity of p,



Art. 24.] QUATERNIONS AND VERSORS. 43

Vpcr measures the moment of momentum about the origin.

Or if o- be a force acting at the extremity of p, Vpa- is the

moment of the force about the origin. Application of the

distributive law at once gives us Varignon's Theorem of

moments. Thus
Vpa- + Vptr' =Fp{(T + a-'),

or the sum of the moments of two concurrent forces is equal

to the moment of their resultant.

24. We proceed to give a few simple examples in geometry

and trigonometry, partly to show how directly quaternions

supply us with well-known formulae, partly to illustrate the

directness with which the quaternion method attacks any

problem.

For the sake of reference we give the important relations

already established together with others which are of frequent

use.

1.
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It is well to note that the symbols S, F, K are distributive

so that for example K{p + q) = Kp + Kq. This is easily estab-

lished. On the other hand, T and U are not distributive,

except for coaxial quaternions and parallel vectors.

Illustrative Examples.

1. To express the cosine of an angle of a triangle in terms of

the sides.

Let ABC be a triangle ; and retaining the usual notation

of Trigonometry, let

GB= a, CA=I3;
then (vector AB)^ = (a - /3)2

= a2-25'a^ + /32,

or, changing all the signs to pass from vectors to lines we

get (§§ 19, 20),

c^ = a^-2ab cos + b\

2. To express the relations between the sides and opposite angles

of a triangle.

Let CB = a, CA=/3, BA=y.
Then OB +BA = CA gives

o + 7 = /3,

.•. a^ = a(j3 — y) = a/3 — ay.

Take the vectors of each side.

Now Va^ = 0, for a^ = -a^ has no vector part,

.-. Faj3=Vay;
i.e. abe sin C= ace sin B,

or b sin C=c sinB.

3. On the sides AB, AC of a triangle are constructed any two

parallelograms ABBE, AGFG : the sides DE, FG are produced

to meet in H. Prove that the sum of the areas of the parallelo-

grams ABDE, AGFG is equal to the area of the parallelogram

whose adjacent sides are respectively equal and parallel to BG
and AH.
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Let BA = a, AI! = I3, AG=y, GJ = 8,

then AH = p + xa, and AH= -S-yy;

.-. FaAH= Vafi and VyAE= - F78

hence V{a + y)AH== Fa/S + FSy,

i.e. the parallelogram whose sides are parallel and equal to

BC, AH, equals the two parallelograms whose sides are parallel

and equal to BA, AE ; GA, .^ C respectively.

[The reader is requested to notice that the order GA, AO is

the same as the order BA, AE, and BA, AH: so that the

vector e is common to all.]

4. If he any point whatever either in the plane of the triangle

ABC or out of that plane, the squares of the sides of the triangle

fall short of three times the squares of the distances of the angular

points from 0, by the square of three times the distance of the

mean point from 0.

Let OA = a, OB = 13, OC=^y,

then (§12), 0G = l(a + l3 + y),

or a^ + P^ + y^ + 2S{al3 + l3y + ya) = dOG^.

Now AB= /3-a, BC=y-l3, CA = a.-y,

.-. ^52 + .BC2 + C^2 = 2(a2 + /32 + y2)-2^(a/3 + /37 + 7a)

= 3{ai + 13^ + y^)-WG^
and the lines

AB^ + BG^ + CA^ = 3(0A^+ OB^ + OC^) - {30Gf.

5. The squares of the sides of any quadrilateral exceed the

squares of the diagonals by four times the square of the line which

joins the middle points of the diagonals.

Let a/3y be the vectors to three of the corners drawn from

the fourth corner. Then the vector sides are a, fi-a, 7-/8,

and y ; and the vector diagonals are /? and y-a. The vector
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line joining the middle points of the diagonals is ^^-yr^ - ^

;

four times the square of this is

4
1 4 4

"^4
j

= a2 + /32 + y2 _ 2Sa/3 - 2S^y - 28ay.

But the sum of the squares of the vector sides is

= 2 (a2 + /32 + y2) _ 2^(a^ - /3y),

and the sum of the squares of the vector diagonals is

/32 + (y-a)2

= a2 + /32 + y2-2&7;
and the former sum exceeds the latter by

a2 + /S2 + y2 _ 2SaP - 2SPy + iSay.

The theorem is thus proved, for by changing the signs

throughout we pass from the vectors to the lines.

Note. The quadrilateral need not be in one plane.

6. The lines which join the mean points of three equilateral

triangles described outwards on the three sides of any triangle form
an equilateral triangle whose mean point is the same as that of the

given triangle.

Let P, Q, R be the mean points of the equilateral triangles

on BC, GA, AB; PD = a, DC=/3, CE = y, EQ = S; and let

the sides of the triangle ABC be 2a, 2b, 2c.

A
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Then FQ^ = {a + /3 + y + Sy

= a2 + /32 + y2 + 82 + 2Sal3 + 2Say + 2SaS

+ 2SPy + 2SI3S + 2SyS.

Changing all the signs and observing that

2
Sa/3 = 0, Say = —j^ab sin C, etc.

we have (writing the results in the same order),

linePQ2 =^ + a2 + 62 + |' +

2 2 2
+ ~7^ db sin C + ^ ah cos C - 2ab cos C + —r^absinC +

4 4= ^ (ffi2 + 62 _ (j5 (jQg (7) + -^ a5 sin C

= I (a^ + S2 + c2) + -^ area of ^5C,

which being symmetrical in a, b, c proves that FQR is

equilateral.

Again, G being the mean point of ABC,

PG = PD + DG=a + ^ + ^,

«2 Ayi 2 4 4
.-. PG^ = a^ + '^ +^- + ^Saft + ^Say + ^SI3y,

and line PG'^ = -^ + Q- + -n- + 2"-^ a& sin C-^aS cos C

= g(a2 + 62 + c2) +^area^5C;

.-. PG = QG = RG;

and G' is the mean point of the equilateral triangle PQB.

7. In any quadrilateral prism, the sum of the squares of

the edges exceeds the sum of the squares of the diagonals by
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eight times the square of the straight line which joins the points

of intersection of the two pairs of diagonals.

Let 0J = a,0B =l3,0C=y,0D = S;

sum of squares of edges

= 2 {a2 + y82 + (y - a)2 + (y - /?)2 + 282}

= 2 { 2a2 + 2/32 + 272 + 2fi2 _ 2^7 - 2SI3y},

sum of squares of diagonals

= (S + v)2 + (8-7)2 + (S + a-/3)2 + (S + ;8-a)2

= 2 {a2 + /32 + 72 + 282 - 2Sa/3}.

Also ^OG = l{S + y)

= vector to tlie point of bisection

of CD, and therefore to the point of intersection of OG, CD,

and vector from to the point of bisection of AF, as also

to that of BE, and therefore to the intersection of AF, BE

= i(8 + a + ^),

hence vector which joins the points of intersection of diagonals

=^(«+/3-r),

eight times the square of this vector

= 2 (a2 + ^2 + y2 + 2;Sa/3 - 2Say - ^S/Sy),

which, added to the sum of the squares of the diagonals,

makes up the sum of the squares of the edges.
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EXAMPLES TO CHAPTER m.

1. If in the figure of Euclid i. 47 DF, OH, KE be joined, the sum
of the squares of the joining lines is three times the sum of the squares

of the sides of the triangle.

The same is true whatever be the angle A.

2. If P, Q, R, S be points in the sides AB, BO, OB, DA of a

rectangle, such that PQ=:ItS, prove that

AIP + OS^=AQ'+OP^.

3. The sum of the squares of the three sides of a triangle is equal

to three times the sum of the squares of the lines drawn from the

angles to the mean point of the triangle.

4. In any quadrilateral, the product of the two diagonals and the

cosine of their contained angle is equal to the sum or difference of the

two corresponding products for the pairs of opposite sides.

5. If a, b, c be three conterminous edges of a rectangular parallele-

piped ; prove that four times the square of the area of the triangle

which joins their extremities is

6. If two pairs of opposite edges of a tetrahedron be respectively

at right angles, the third pair will be also at right angles.

7. Given that each edge of a tetrahedron is equal to the edge

opposite to it. Prove that the lines which join the points of bisection

of opposite edges are at right angles to those edges.

8. If from the vertex O of a tetrahedron OA BO the straight line

CD be drawn to the base making equal angles with the faces GAB,

GAG, DBG; prove that the triangles OAB, OAG, OBO are to one

another as the triangles BAB, BAO, BBG.

9. The sum of the squares of the distances of any point from the

angular points of a triangle exceeds the sum of the squares of the

distances from the middle points of the sides by the sum of the squares

of half the sides.

10. Four times the sum of the squares of the distances of any point

whatever from the angular points of a quadrilateral are equal to the

sum of the squares of the sides, the squares of the diagonals, and the

D
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square of four times the distance of the point from the mean point

of the figure.

11. Interpret geometrically the following equations in which a^ are

given vectors

:

8pa,=S^a, Vpa=Vl3a,

Kpa= K^a, Upa= U^a,

T{pa)=T{pa), TV{pa) = TV{^a.),

TVU{pa) = TVU i^a], SU{pa.) = SU^a,

VU{pa)=VD(l3a).

12. What vector is represented by the symbol a/3a"^ ?

13. Show by general reasoning without analytical transformations

that Va V§y is necessarily a vector in the plane §y, and that F( Va^ V§y)

is parallel to /3.

14. Starting with the identity p=a+ ^, where ;8 is perpendicular to a,

and assuming that ^ may be expressed in the form ea, where e is a

quadrantal versor, deduce the parts of the quaternion which changes

a into p.

15. Assuming that the vector of the product of two parallel vectors

is zero, prove by expansion of V(a + ji) (a + P) that Va-P + Vfia= 0.



CHAPTER rV.

QUATERNION PRODUCTS AND RELATED DEVELOPMENTS.

25. The Versor as the Power of a Vector. If afSy

are unit vectors in the same plane, and e the unit vector

perpendicular to that plane, we may write

(§ 20)
lSa~i = cos ^ + 1 sin A,

yP'^ = cos 5 + e sin B,

where A is the angle between ^ and a,

and B the angle between y and y8. Fig. 18.

But clearly y/?
" i

. ;Sa-i = ya

= cos{A+B) + es,m{A + B).

Hence, substituting, we have

(cos ^ + e sin A) (cos 5 + e sin 5) = cos {A+B) + i sm{A + B),

which is Demoivre's Theorem, in which the unit vector e takes

the place of the imaginary J -\.

On the left hand side we have the product of two expressions

involving the arguments A and B ; on the right hand side we

have the same kind of expression involving the argument

A + B. The effect of each of these expressions regarded as

operators acting on a vector perpendicular to e is to turn the

vector through the corresponding angle. Now the effect of e

is to turn the vector through one right angle ; the effect
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of e^ is to turn it through two right angles; and generally

the effect of <r' is to turn the vector operand through x right

angles. Also, the effect of the successive operations e", i' is

to turn the vector through x + y right angles. Consequently

the ordinary law of indices holds, namely,

^. e' = €'*"-

These conclusions hold when x and y are integers; let us

assume them to hold for all values of x and y, integral or

fractional, positive or negative. Let the angle corresponding

to X be A=x.-^, or x = ^^. Similarly, let y = 2Bl7r. The

expression e^^l'^ will then represent the versor which rotates

the vector operand through the angle A, and will be a symbol

for the expression cos ^ + e sin ^. Evidently

Hence we conclude that a versor may be represented by the

power of the unit vector parallel to its axis, the power being

the ratio of the angle of the versor to a right angle. A
quaternion may similarly be represented by a power of the

vector, whose tensor raised to that power is the tensor of

the quaternion. Thus a'- represents a quaternion with axis

parallel to a, tensor equal to (Ta)', and angle equal to X7r/2.

26. Trigonometrical Applications. The identity

7a-i = 7^-i.^a-i,

leads with great ease to well-known trigonometrical formulae.

For example, we have immediately

cos(^ +B) + e sin {A + B) = (cos ^ + e sin A) (cos B + e sin B)

= cos A cos 5 - sin ^ sin B
+ e(sin A cos B + cos A sin B),

in which the scalar parts must be equal, and also the vector

parts. Hence

cos (A + B) = cos A cos B - sin A sin B,

sin (A + B) = sin A cos B -t- cos A sin B.
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If the actions of the versors be in opposite directions,

P lying beyond y, we obtain similarly the expressions for

s\n{A-B), cos{A-B).

As another example let us find the cosine of the angle

of a spherical triangle in terms of the

sides.

Let a/3y be unit vectors, OJ, OB, 00,

not on the same plane. The identity

•ya-i = y^-i
.
^a-i is still true, and this

may be expanded in the form

H'l*'^^{4-'i)

Fig. 19.

p a p a a p jS a

Taking the scalar part of both sides, we find

a pa \ p a/

In the usual notation S- = cos b, SX, = cos a, S- = cos c,
a P a

and s(fIF^-)^TFItF^SUFIuF^
\ p aj pa p a

= sin a sin c cos B,

B being the angle between the planes OBA, OBO.

Hence cos h = cos a cos c 4- sin a sin c cos B.

Again, let e be the unit vector perpendicular to the plane

of the triangle whose sides are parallel to the unit vectors

a/3y; and let A, B, C be the angles opposite sides. Then
^iAInj^ = _ y,

^iBI^y = - a, e^^l'^a = -13,

whence - /? = eVC^a = - e^C/'^ . e^^^y = + t2(.C+B+A)l^p^

and e2(^+5+0/ir= _l,

or A-\-B+G=Tr.

The angles of a triangle are together equal to two right

angles.
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27. Versors represented by Arcs on a Sphere. If

") A 7) etc., be unit vectors drawn from a given origin, their

extremities A, B, G, etc., lie on a

sphere. The operation a/3~^ which

changes /? into u. may be represented

by the arc of the great circle passing

through BA. An equal arc taken

anywhere on this great circle will

represent the same versor. Let this

versor be symbolized by p. Similarly,

let q be the versor /Sy"^ represented by the arc CB. Then

pq = a;S~i . Py~^ = ay~i = CA = r, say

The conjugates of p, q, r sue p"'^, q~\ r~^ (§ 17). From the

equation pq = r, we get by successive multiplications

pqr'^= 1,

r~i = q~^p~\

so that Kr = K(pq) = KqKp.

It is easy to see that this relation holds for quaternions

as well as for versors ; and that generally the conjugate of

the product of any number of quaternions, versors, or vectors,

is equal to the product of the individual conjugates taken in

the reverse order.

Let us now find how the combination qp is to be represented.

The versor arcs must be so arranged that the operation p
is completed at the point where q begins. Hence p must end

at B, and q must begin at B. p is therefore to be represented

by A'B (Fig. 21), an arc equal to BA and on the same

great circle. Similarly, q is to be represented by BC'( = CB).

Then qp is represented by the arc A'C, which is evidently

equal in magnitvde to the arc CA, but in general lies on

quite a different great circle, that is in a different plane.

It is therefore not the same versor. Let this versor qp
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be symbolized by s, which, it must be remembered, may
be represented by any arc equal to A'C in the same great

circle, such for example

as CD.
Since the. associative

law holds, we have

s = qp = qpqq~'^ = qrq~'^.

Thus the complex

operator q(
)q~''-

changes the versor r

into the versor s, the

great circle containing

r being moved into the

position of the great

circle containing s.

It is obvious also ^'^- ^^

because of the equality of the angles of the curvilinear

triangles ACB, A'OB that the great circles containing s and r

cut the great circle containing q at the same angle. Hence

the motion by which r is changed into s may be effected by

a rotation, G moving into the position C, and AC moving into

the position DC Moreover any other great-circle arc drawn

through G will be simultaneously rotated into a corresponding-

position with reference to C". The particular great circle which

meets q &t G orthogonally will remain perpendicular to it at C"

after the rotation ; and the meeting point Q of these two great

circles will be the pole of q, and will be the extremity of the

axis about which all rotations are effected. Any given network

of great circles, and therefore the corresponding vector lines

drawn from the centre 0, will, when operated onhy q{ )i~\

be rotated about the axis of q through an angle equal to twice

the angle of q.

Since 2 = ^3 t^?j

and Kq = Tq{Uq)-\

we find q{ )Kq={TqYUq{ ){Uq)'\
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Hence the operator q{ )Kq acting on any vector or

collocation of vectors will have the same rotational effect as

qi )2~^, but will increase the length of every vector in

the ratio (Tq)^ : 1. The operator q{ )Kq therefore repre-

sents a simple rotation about the axis of q, accompanied by

a uniform expansion (or contraction) of the system. It is a

particular form of strain.

28. The Eotatfonal Operator otherwise deduced.

The operator q{
)q~'^ may be built up directly from

the original definition of a quaternion. The problem is

to find the quaternion operator which will rotate any

vector about a given axis through a definite angle. The
versor Q, acting on a vector perpendicular to its axis, turns

that vector through the appropriate angle. But we may
represent any vector p as composed of two parts, CT parallel

to the axis of Q and v perpendicular to it. Hence the vector

is what the vector p becomes when it is rotated conically

about the axis of Q through the angle of Q. Taking con-

jugates of both sides we get

Kp' = Kvs + KvKQ,
or - p' = -ts- vQ-i,

or p =TS+ i/Q-i.

Now when p is rotated about the axis of Q through the

angle of Q, it becomes
p" = CT + Qi/g-i

= Q(p+v)Q~^ = QpQ-\

because Q and CT having parallel axes are commutative. Hence

Q{ )
Q~i rotates /o through tozce the angle of §.

Another way of considering the efi'ect of 2( )Kq &5 an
operator is to write

2' = a-t-a, Kq = a-a., T^q^a^-a?,
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and expand the expression qpKq. It becomes

P = qpKq = {a + a)p(a-a)

= a^p + a(ap- pa) - apa

= o?p + la Vap - 2aSap + pa?

= (a^ + a^)p- 2aSap + 2,aFap.

Now in all cases we may write

p = a~lap = a~l;Sap + a~l Vap,

giving the components of p parallel to and perpendicular

to a. But evidently

a'-^Sap' = a-l
{
(a2 + a^)Sap - 2a'^Sap}

= a-1 (a2 _ a2) Sap = T^qa'^Sap,

SO that this component is increased in the ratio of fq or

qKq to unity. The other component is

a-l Fap' = a-l
{ (a^ + a^) Vap + laV . aVap]

= {a? + a^) a~l Vap + 2«aa"l Vap.

Put a-^Vap = /3 and a-Wap=p,

then ^' = (a2 + a2) /3 + 2aa/3,

/3'/3-i = a2 + a,2 + 2«a=Q, say.

Hence Q = (a + a)^ = j^^

and /3 is turned into direction fi' through twice the angle of

q, and its tensor is increased in the ratio of T\ or qKq to 1.

Thus the effect of g'( )Kq on p is to change it into

the vector p\ whose projections along and perpendicular to

the axis of q are greater than the projections of p in the

ratio of qKq or T'^q to unity, so that the angle which p

makes with the axis of q is unchanged, while at the same

time the projection perpendicular to the axis of q is

rotated through twice the angle of q.

The same result may be obtained with ease by use of

the versor in the form a'" or by use of the expanded

binomial form for a versor, namely, cos^+asin^. All

give interesting exercises in quaternion transformations.
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The strain symbolized by g( )Kq was noticed by

Gauss, who saw that it involved four numbers. These

are given by the scalar coefficients in the expanded qua-

ternion form,

{w + xi + yj + zh){ )(w-xi-yj-zk),

where i, j, k form a set of rectangular unit vectors.

29. Composition of Finite Eotations. Let a rigid body

be acted upon by a rotation q( )q~^ and then by a rotation

pi )l'~\ ^^^ resultant effect is

pq( )q-^p-^ = r{ )r'^ (§27).

But r is a definite versor represented by the great-circle

arc drawn from the beginning of the representative arc q

to the end of the representative arc p, as shown in Fig. 20.

Hence, when a rigid body with one point fixed is subjected

to a series of rotations about various axes, the final position

can be arrived at by a single resultant rotation from the

initial position about a definite axis through a definite angle.

The consideration of the spherical triangle gives the position

of the resultant rotation at a glance.

The resultant angle of rotation and the direction of the

axis of rotation are determinate, and may easily be calcu-

lated. For example, let p = cos A + asm A, q = cos i? -)- ^ sin B,

r= cos C -t- 7 sin G. Then the problem is to find C and y from

the equation

cos C + ysmO
= (cos .^ -f a sin A) (cos B + ^sm B)

= cosA GosB + a sin A cos B + 13 cos AsinB + a^ sin A sin B.

Equating the scalar parts of both sides, we find

cos = cos A cos B + sinA sin B Safi

— cos A cos 5 - sin ^ sin B cos c,

where c is the angle between the axes of p and q. Thus

is determined.
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Then equating the vector parts of both sides, we get

7 sin (7= a sin ^ cos .B + ^ cos ^ sin5+ Fa/SsinA sinB,

so that the components of the vector y along the directions

a, /3, and the directions perpendicular to these, are determined,

and the position of y is known.

Finite rotations are not in general commutative, for, as

shown above, qp is not the same as pq. Hence the rotation

qp{ )p~\~^ is not in general the same as pq{ )q~^p~^-

They are the same when the rotations are coaxial, so that^ and

q may be represented by arcs along the same great circle ; also

when each component rotates through fom" right angles.

30. Composition of infinitely small Rotations. If

we write q in the form a + a, Kq is a — a, and

{TqY = qKq= a^ + {Tay.

We pass to the case of infinitely small rotations by taking Ta

very small, so that its square may be neglected in comparison

with a", which in the present case may be taken as equal to

unity. Hence, if we write q in the form l+^et, where e

is a very small quantity and £ is a unit vector, the rotation

is symbolized by

6 being unit vector along the axis of rotation, and e the

measure of the (small) angle of rotation.

Any vector p becomes

p' = (l+|«£)p(l-|e6)

^p + ie{€p-pe)-le^epe

= p + eVep, the term in e^ being negligible.

Thus p - p = eVip is the displacement of the extremity of p.

It is in a direction perpendicular to both p and e, and its

value is eTVep = eTp sin A, where A is the angle between

e and p.
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If there are two simultaneous small rotations ««' about

axes € e, the vector p becomes

p' = (l+|€.)(l+ieV)/,(l-|.V)(l-ie.)

= {l+i(«e + ee')}p{l-^(«e + «e')},

neglecting products of the small quantities e, e'.

Hence p = p+ V. {ee + e'e)p,

so that the resultant rotation is obtained by the same process

of vector addition as resultant displacements and velocities

are obtained.

Generally for any number of simultaneous small rotations

e^e^e^ . . . about axes Cj^e^Cg . . . the displacement of any point p is

p-p=F. {e^€^ + e^e^ + ege^+ ...)p=F.^{ee)p.

There is no displacement when p is parallel to 2(ee).

This vector is therefore parallel to the axis of rotation, and

the resultant angular displacement about this axis has the value

^(«i^i + «2^2 + «s^3+) = 2^ («4

The quantity pV(p is evidently a vector, being the product

of two perpendicular vectors ; and the summation (SmpVep) of

quantities of this kind in which 6 is any vector, and p is one

of a number of given vectors, is an example of what is called

a linear vector function of the vector e. In the present case

its value depends upon the distribution of matter in the body.

The linear vector function is one of the most beautiful of

Hamilton's discoveries. Some of its properties are discussed

in Chapters VI., VII., and X.

31. Quaternion Products. The product of any number

of quaternions is a quaternion. This follows at once from

the representation of versors on a sphere ; for the passage

from versors to quaternions requires simply the introduction

of the scalar factors known as the tensors. Thus, in the

equation pq — r, where p and q are given quaternions, r also

is a quaternion whose tensor is equal to the product of the
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tensors of f and g, and whose versor is the resultant of the

versors of -p and q, as discussed in § 27.

The product 'pqs of three given quaternions is at once

by the foregoing reduced to rs, a product of two quaternions,

and this is a quaternion ; and so on for any number.

Again, since T{jiq) = TpTq,

we have pqK(pq) ='P{pq) = TPpPq.

Multiply by Kf, and then by Kq, and divide out the scalar

factors. This gives

Kq{Tp)\K{pq) = KqKpPpPq,

and finally ^(Pi) = KqKp.

And generally the conjugate of the product of any number

of quaternions is the product of the conjugates of the con-

stituents taken in the reverse order ; in symbols

K{pqrst) = KtKsKrKqKp.

32. Products of Vectoes. What is true of quaternion

products in general will be true of particular types, such

as quadrantal quaternions or vectors. Thus the continuous

product of three or more vectors is in general a quaternion,

degenerating in special cases to a vector or a scalar.

Consider the quaternion g'=a/3y, with its conjugate

K{a(iy) = KyKfiKa= (
_

y) (
_ ^) (

_ a)

= -y/3a.

From the general relations 2Vq = q- Kq, 2Sq = q + Kq, we have

2F.a^y = a^7 + y/3a,

26* . afSy = a/Sy - yfia.

Saj3y and Fa^y are the scalar and vector parts of the

product a^y.

The geometrical meaning of S . a/3y is easily deduced. For

S.al3y = S. a{S/3y + Vjiy) = S . aVjiy,

because aSfiy being a vector can have no scalar part. But

S. aF/Sy may be ^\Titten in the form TF/3yS . aUF/3y. Now
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TVPy is the area of the parallelogram contained by j3

and 7, i.e. twice the area of the triangle OBG (fig. 22).

Then - ,S^. aUVjiy is the resolved part of OA
perpendicular to OBC, i.e. the perpendicular

from A upon the plane OBC. But the pro-

duct of twice the area OBC and the height

to A is evidently the volume of the

parallelepiped whose base is the parallelo-

gram contained by OB and OG and whose

opposite face passes through A. In short,

volume of the parallelepiped whose edges are

S.o.^y = SaF/Sy = S{ V^y) a = Sjiya

= -S.aVyli= -Sayl3,

and so on, we see that so long as the cyclical order is

unchanged the scalar of the product has the same value

;

but that if the order is changed the sign is changed.

If we express a, ^, y in terms of a set i, j, k of rect-

angular unit vectors, namely,

a= ffiji -H a^j + ajc,

I3=b.^i + bj + bjc,

and form the scalar of the product a^y, we notice that

all terms of the form iij or jjk, being vectors, must vanish.

Hence, only terms in ijk can exist. But since ijk = - 1, we

find

- S . a/3-y = a^,

K K K
"l' "2' %'

the well-known determinant expression for six times the

volume of the tetrahedron whose corners have the coordinates

000, a^a^a^, b-^b^bg, c-fi^c^.

The vector V . ajBy may, like any vector, be expressed
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linearly in terms of the non-coplanar vectors a, fi, y. This

is most simply effected as follows:

+ ay/3 - ayP

+ ya^ - yafi,

adding and subtracting the quaternions ay/3 and yaji^

Combining in pairs, we get

2Vajiy = a{liy + yji) + y{pa + aP)-{ay + ya)P
= laS^y + ^ySafi - 2/3Sa.y,

or F.al3y = aS/3y - pSya + ySajS.

From this form we see at once that a and y may be inter-

changed without affecting the value of the quantity. Or

F.a/3y=V.yPa.
Again, since F . aj8y = oB^y + F" . aV^y,

we obtain the further identity

F.aFI3y = ySal3-f3Sya,

an extremely important formula of frequent use in trans-

formations.

When (Sa/Sy = 0, the volume of the parallelepiped becomes

zero, which means that a, jS, y cannot form a parallelepiped.

If they have different directions they must be in one plane.

In fact, any one, say a, must be perpendicular to the common

perpendicular to the other two, namely, F/3y. In other

words, all three are perpendicular to the same line, and must

therefore be coplanar when drawn from one point.

Under these circumstances the product a/3y must be a

vector. Call it S. Then S = a^y, or Sy~i = a/3. Hence Sy~i

and a/3 represent equal quaternions, showing that the operation

which changes y into S will also change ;S~i into a. In other

words, a;Sy8 when drawn from one point or continuously

end to end are coplanar vectors, and the angle between 8

and y is the same as that between a and /3"i (or - /3). Thus

we can draw the direction of S at once, the vectors a^Sy being

given ; and then the tensor of S is equal to the product of

the tensors of a, /3, y.
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If aj3yB form the sides of a closed quadrilateral, then the

interior angle between i* and /3 is equal to the exterior angle

between y and S ; and the quadrilateral is inscribable in a circle.

If a/3y form the sides of a triangle, then S( = aliy) is drawn

in the direction of the tangent at the point (a, y) to the circle

circumscribing the triangle.

33. Transformations of Scalar and Vector Parts

OF Products. The formulae of transformation for V. a/3y

and S . afiy are of great importance in applications to

geometry and dynamics. We shall give a few of these.

In expressions of the form S . afiy, it is evident that the

vector part only of the product of any pair is of importance,

for aSfiy is necessarily a vector, and can have no scalar part.

Thus the expression S . VafiVfiyVya may be written

SFaj3F{FI3yFya) = SFal3( - ySa/Sy + aSy/Sy)

= -Sal3ySa/3y + 0;

.: S . Fal3FI3yFya= - (Sa/Syf.

This formula may be readily transformed into Cartesian

coordinates ; and occasionally practice of this kind is useful,

if only to show how much more concise and expressjve the

quaternion notation is. Thus, with i, j, k as rectangular

unit vectors, we have

a = flSji + a^j + ajc,

y = Cji + c^' + cjc,

Fafi = (aj)^ - ajj^i + {a^^ - a-fi^j + {a-fi^
- a^^ h,

Fj3y = etc., F7a = etc.

By forming the products and taking the scalar parts, we
readily find as the analytical equivalent of the formula given

above the determinantal identity

«2^3
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When a, /?, y are unit vectors, the formula

V. Fal3VI3y= -l3Sa(3y

has an immediate application in

spherical trigonometry. Let A, B,

C be the extremities of the vectors

a, p, y on the unit sphere; and let

a, h, c be the arcs subtending the

angles A, B, respectively. Then
throwing the above formula into the

form

TVa^TV^yV. UFapUFI3y= ~ jiTVyaS . fiUVya,
we deduce the relation

sin c sin asmB = sin b sin p^,

where p^ is the perpendicular arc from B, upon the arc AC,
being the supplement of the arc whose cosine is -SfSUFya.

If, on the right hand, we write - jiTFjiyS . allF^y, TFj3y

divides out, and we get

sin c sin B = sinp^,

where pj is the perpendicular arc from A on CB. Similar

expressions for p^, p^ msLj be written down at sight.

The transformation

S. FapFI3y = S. aF/3FI3y

^ l3^Say - Sa/SSPy,

when interpreted in the same way with a/3y as unit vectors,

leads to the formula

sin a sin c cos B= - cos a cos c + cos b.

Again,

j^_sm B_ TF. Fal3Fj3y Sa/Sy

C0SB~ S. Fa^F^y ~ Say + ^al3Sfiy

giving tan B(- cos b + cos c cos a) = sin a sinp^

= sin 6 sin^2

= sine sin ^3.
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These examples show with what peculiar readiness the calcu-

lus of quaternions attacks problems of spherical trigonometry.

The most immediate geometric interpretation of the formula

V. Fal3FPy= -l3Sal3y

is that the line of intersection of two planes is perpendicular

to the normals of these planes. For Fa/3 is perpendicular to

the plane containing u, and /S, and F^y is perpendicular

to the plane containing /3 and y. But these planes have

the line /? in common, and yS is by the above formula per-

pendicular to its constituents Fa/B, Ffiy.

34. Eelation connecting Four Vectors. The expan-

sion of Fajiy as a linear function of the three non-coplanar

vectors a, fi, y (§ 32) is a particular case of the general truth

that any vector may be so represented.

Let p = xa + yl3 + zy,

where xyz are the coordinates of the extremity of p referred to

axes parallel to a, j3, y.

To express x in terms of the vectors, operate hy S. FPy,

that is, multiply by Ffiy and take the scalar part. Then

since SfiF/iy and SyFfiy both vanish, we get at once

Sliyp = xSaPy.

Similarly, Syap = ySajSy,

Sci.l3p = zSaPy.
Hence, generally,

pSal3y = aSPyp + l3Syap + ySal3p (1)

Now the vectors Fa/3, F/3y, Fya will be non-coplanar

if a^y are, for each is perpendicular to the plane containing

its constituents. Hence p must be expressible in the form

p = x' Fa/3 + 1/ F/3y + ^ Fya.

Operating hj S . a, we find Sap = y'Sa/3y.

Similarly, SI3p = ifSa/3y, Syp = x'Sal3y

;

and consequently,

pSaPy = Fa/3Syp + F/3ySap + FyaSPp (2)
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The vector whose components are Va/3, Vfiy, Fya has an

important property. Calling it S, we have, operating by
S{a-I3),

S{a-l3)S = S{a-/3) V{ap + jSy + 7a)

^So.lBy-SPya

= 0,

the other products vanishing because they are of the form

SpVpcr.

Similarly, 6^(/3- 7)8 = 0, S(y-a)S = 0.

Hence S is perpendicular to the plane passing through

the extremities of a-fiy.

In like manner it may be shown that the vector a + /? + y is

perpendicular to the plane passing through the extremities

of Vap, VI3y, Fya.

The condition that these two planes should meet at right

angles to each other is

S(a + /3 + y)F{al3 + l3y + ya) = 0,

or 3yS'a/3y = 0.

Hence o,/3y are coplanar, and so are the vectors Fafi,

F^y, Fya.

The vector lines a, /?, y drawn from a point form in general

three of the edges of a tetrahedron ; and the perpendiculars

on the faces from the opposite angles are parallel to the

vectors

Fa/3, Fpy, Fya, F{af3 + Py + ya).

What is the condition that these perpendiculars meet in

a point ?

Evidently the edge u, and the perpendicular F/Sy must

lie in the same plane with F(a/3 + /iy + ya) ; and similarly

for /? and Fya, and for y and Fa/3. Hence,

S.aF^yF{aji + ^y + ya) = 0,

or S{ySal3-l3Say)F{aP + l3y + ya) = 0.
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This reduces at once to

Sa/3y{Sal3-Say) = 0,

or Sa.PySa{l3-y) = 0.

Hence, since a, jS, y are not coplanar, Sal3y has a finite

value, and the other factor Sa((3-y) must vanish, or a is

perpendicular to (/3 - y). Similarly, (3 is perpendicular to

(7 - ")) s-nd y perpendicular to (a - /3).

Thus the six edges form three groups of perpendicular

pairs. This also implies that the sum of the squares of

any two opposite edges is the same for the three sets of

pairs. For
a2 + (/3 - y)2 = a2 + /32 + 72 _ 2Sj3y,

and P^ + {y-ay==a^ + /3^ + y^-2Sya,

y'^ + {a.- Pf = a? + P^ + y^ -2Sa.p,

and these have the same values because, as proved above,

SPy = Sya = Sap.

Having shown that 8 = F(a/3 + /3y + ya) is perpendicular

to the plane passing through the extremities of a, /3, and 7,

let us next find the value of the perpendicular from the

origin. It will be some scalar multiple, x, of 8, such that

xS - a, a- /3, /8 - 7
will all lie in one plane, or

S(xS-a){a-l3}{l3-y) = 0.

This reduces to

xSS r(a/3 + ^7 + ya) = Sa(3y,

or xS^ = Sa/3y

;

hence x5 = S~''^Sa/3y

Thus the vector perpendicular from the vertex of the

tetrahedron a, /3, 7 upon the opposite face is

Sa/iy

F{al3 + f3y + ya)'

and its length is
~

"f'^ -,
*=

TF{al3 + l3y + ya}
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This suggests one form of the equation of a plane passing

through the extremities of the coinitial vectors a, jS, y,

namely, if p is the vector to any point on the plane,

S{p-a){a-fi){l3-y) = 0,

or Sp F(ajS + jSy + ya) = Saj3y.

And generally, if e is a given vector,

Spe:= -1

represents a plane perpendicular to e.

Throwing it into the form

&
(2'£)V"^'

we see at once that the plane must pass through the point

EXAMPLES TO CHAPTER IV.

1. Prove that <S. {a + p){p + y){y+ a)=28 . a^y.

2. S . Ko/S V^y Vya= - [Sally f.

3. S. V( Fa/3 KjSy) V{ V^y Fva) F( Vya. Fo/3) =-(8. a^yf.

4. S(VPyVya) = ymafi-S§ySya.

5. a=^V= ( Vafiyf - {Sa.^yf

6. = oi(S^yf+ ^^(5'7a)'' + T'C-Sa/S)' - (Sa/S-yj^ - ISa^SfiySya.

7. 5'(7F.a/37) =72&^.

8. (a,g7)2= a^/JV+ 2a^7^ . a^y.

9. ;S ( Fa|87 Fj37a Vya.^) = iSa^S^ySyaS . a|37.

10. The expression

Va^ Vyd + Vay VSp + Vad V^y

denotes a vector. What vector ?

(Tait's Quaternions. Miscellaneous Ex. 1.)

1 1

.

SapS .pyS- S^pS .yda. + SypS .Sap- SSpS . 0(87= 0.

12. (a|37)2= 2a2^V + a^ (^7)^ + jS^ (07)"+ y^{ap)'- iaySafiS^y.

(Hamilton, Elements, p. 346.)
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13. When A, B, C, D are in the same plane,

a.BOD-p. ODA+y . DAB-S . ABG=0,

where BCD, etc., are the areas of the triangles and a^yS the vectors

to ABOD from any origin.

, 14. SV. a^y + aV . ^S +pV . yda + yV. 50/3= 45". 0^78.

15. FajS VyS+ Vpy VSa + VyS Va^ + V5a V^y is a scalar. What is its

geometrical meaning ?

16. K P be any point within the tetrahedron ABOD, and if a, b, c, d

be the points in which the produced lines AP, BP, OP, DP meet the

opposite faces, then

Pa\Aa+ BhjBh + PclOc + PdjDd=\.

17. Expand S . a^yS and V . a§yS in terms of scalars and vectors of

the products of a^yS in pairs.

18. Show that V.aV^y, F./3F7a, V.yVap are coplanar, and that

their mutual perpendicular is

Fg)3 Vpy Fyg
Sa^'^ S^y* 8ya

19. Expand q^ and cp in terms of the scalar and vector parts oi q;
and thence find 8 . q\ V . q\ 8 . q\ V . (f.

Give trigonometrical interpretations of the identities established.

20. Find a solution of the equation Q^=g^ in the form

Q=±-J^\(Sq. UVq-TVq).

(Hamilton, Lectures, p. 673.)

21. Show that the equation

p( )Kp+ q( )Kq + r{ )Kr= 0,

where p, q, r are quaternions, is impossible except under very limited

conditions. Find these conditions.

22. Show that for any three vectors a, /S, 7, we have

{Uap)^ + {Upyf + (Uya.)^+{UaPyf + iUay.SUa^SUpy= -2.

(Hamilton, Elements, p. 388.)

23. If a/37=(a — 7)/3(a-7)"', showthata/37are coplanar unit vectors.

Interpret the equation geometrically.



CHAPTER V.

SIMPLE GEOMETRICAL APPLICATIONS.

35. Equations of Stkaight Line and Plane. Let A.

be a vector (unit or otherwise) parallel, to or along the

straight line ; a the vector to a given

point A in the line, p that to any point

whatever P in the line, starting from the

same origin ; then ^P is a vector° '
Fig. 24.

parallel to A
— xX, say,

and OP^OA+AP
gives p = a + xX

as the equation of the line.

Another form in which the equation of a straight line

may be expressed is this : let OA = a, OB = j3 he the vectors

to two given points in the line; then

AB==l3-a and AP = x{(i-a);

.-. p = a + x{^-a).

The first form of the equation supposes the direction of

the line and the position of one point in it to be given,

the second form supposes two points in it to be given.

Operating on the first equation by FA, we get the equation

VX(p-a) = which means that p-a is parallel to A. Also

p = a is one value which p may have. Hence the equation

is that of a straight line passing through « and parallel to A.
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A straight line may also be exhibited as the intersection

of two planes (see below).

The equation of a plane is found thus :

Let p be the vector to any point in the plane, and v

the perpendicular to the plane, from any chosen origin.

Then p- v is perpendicular to v. Hence

Sy(p-v) = 0,

or Svp = v^= -a?

if a is the length of the perpendicular. Another form is

Spv--^ = \.

CoK. 1. If Svp= -a be the equation of a plane, « is

a vector in the direction perpendicular to the plane.

Cor. 2. If the plane pass through 0, p can have the

value zero

;

.•. Svp = is the equation.

CoK. 3. If /8 be any vector in or parallel to the plane,

36. We proceed to exhibit certain modifications of the

equations of a straight line and plane, and one or two

results immediately deducible from the forms of those

equations.

1. To find the equation of a straight line which is

perpendicular to each of two given straight lines.

Let 7, y', be vectors parallel respectively to the given lines.

Then the vector A of last paragraph is parallel to Fy/, and

the equation of the line becomes

V. pVyy = V . aFyy',

or p = a.-^xV-^-)'.

2. To find the length of the perpendicular from a given

point on a given line.

Let 7 be the given point, and v the perpendicular from

it on the line pai'allel to A.
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If P is the vector to a point in the line, then for any other

point, vector p,

r(p-/3)A = 0.

Hence for the particular value p = y + v,

F(y + v-l3)X = 0,

or VXv=V{y-P)X.

But SXv = 0, so that we may write

VXv=Xv.

Thus X.v=F{y-fi)X,

v = \-W{y-l3)X.

3. To find the length of the perpendicular from a given

point on a given plane.

Let Svp = - a be the equation of the plane, y the vector

to the given point.

Then if the vector perpendicular be represented by xv,

p = y + xv

gives iS'i'7 +xv^= - a,

and the vector perpendicular is

sv = v~i( - ffi - Svy)

;

the square of which with change of sign is the square of the

perpendicular.

4. To find the length of the common perpendicular to

each of two given straight lines.

Let /3, ;Sj be unit vectors along the lines ; a, a^ vectors to

given points in the lines

;

p = a + x/3,

the vectors to the extremities of the common perpendicular v.

Then F/313^, being perpendicular to both lines, must be

parallel to the common perpendicular v ; hence

v=yF/3{i,.
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But v= p-pj = a + a;j8-aj- X^^^,

hence 8 . vP/S^ = S' . (a - Oj) /3^i

;

i.e. S{yVI3l3,.l3IB,) = S.(a-a^)PP„
or y(FI3l3,Y = S.(a-a,)PI3,;

5. To find the equation of a plane which passes through

three given points, and the condition that four points lie in a

plane. (See last chapter, § 34.)

Let a, p, y be the vectors of the points.

Then p-a, a — fi, P -y are in the same plane
;

.-. ^.(p-a)(a-/3)(/3-7) = 0,

or SpiVaji + Vj3y + Fya) -S.al3y=

is the equation required. It may be written in the form

Spafi + SypP + Syap = Sajiy,

and may be regarded as the condition that the four points

a/3yp lie in one plane.

We may always express any vector p linearly in terms of

the three non-coplanar vector a/By, namely,

xp + aa + b^ + cy = ;

whence
'

xSpa^ + cSa/By = 0,

xSpfiy + aSa^y = 0,

xSpya. + bSa/3y = ;

whence, adding, we find

x + a + b + c = 0.

Fa/3 + F/Sy + Fya is a vector in the direction perpendicular

to the plane; and the perpendicular vector from the origin

= Sa/Sy .{Faji+ F/Sy + Fya)-!.

6. To find the equation of a plane which shall pass through

a given point and be parallel to each of two given straight lines.

Let y be the vector to the given point, and /3/8j the vectors

parallel to the given straight lines. Then F/?/3j is the normal

to the plane, the equation of which is accordingly

S. l3/3,ip -y)-^0.
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7. Given the two planes Sap = -a, S/3p = -b, then

^ =^, or Sp{ba-al3) = 0.

This is the equation of a plane which passes through the

origin and which is perpendicular to the vector {ba-a/3).

Also when Sap = -a, then must Sfip = -b ; hence the plane

must contain the line common to the two original planes.

Let it be required to find the equation of this line of

intersection of the two planes. This line must be parallel to

Vafi ; hence its equation must be of the form p = y + xVap,

where y may for simplicity be taken on the plane a, /S.

Hence we may write

p = ma + nP + zVal3,

where m, n are to be found.

Then Sap = ma^ + nSa/S = -a,

since Fa/B is perpendicular to a, and similarly

SPp = mSaj3 + nj3^= -b;

_-a^ + hSa^_ -hSafJ + a^'^
' '^~

a'^P^-iSa^f ~ (VaPf '

- aSa/i + ba^_- ggg/S + ba^
n-

{Sa/3y-a^l3^ (Vaisy,2

37. We offer a few simple examples of loci.

1. Planes cut off, from the three co-ordinate axes, pyramids of

equal volume, to find the locus of the feet of perpendiculars on them

from the origin.

Let a/8y be unit vectors along the axes ; and let aa, hfi, cy

be the vectors to the points of section of the axes with the

planes in any position. The volume of the pyramid is

- SaabjBcy

;

6

so that since Sa^y has always the same value, the condition
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requires that abc is constant. But the vector perpendicular

to the plane is (§ 35)

p = ahcSajiyj F(aba/3 + bc/Sy + caya)

Operate hy S .a, S
.
p, S .y, and we get

l
= Sap-\ l=^Spp-\ -^=Syp-^;

whence abcSap-^Spp~''-Syp~''-=l,

or CSapSI3pSyp=p%

the equation of the surface. If a/3y are perpendicular unit

vectors, the Cartesian equation of this surface is easily seen

to be {x^ + y^ + zy = Cxyz.

2. To find the locus of a point such that the ratio of its distances

from a given point and a given straight line is constant—all in

one plane.

Let S be the given point, DQ the given

straight line, 8P= ePQ the given relation.

Let vector SD = a, SP= p, DQ = yy,

y being the unit vector along DQ,

PQ = xa;

then Tp = eT{PQ),

p2 ^ e^PQ^, where PQ is a vector,

= e^(xa.y

= eVa^.

p + xa = SQ = SD + DQ
= a + yy;

Sap + xa? = a?, for Say = ;

gives

But

and

hence

X^a'^ = (o^ — SapY

ay = e^(a^-Sapy,

a surface of the second order, whose intersection with the

plane S . ayp = is the required locus.
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3. The same problem when the points and line are not in the

same plane.

Retaining the same figure and notation, we see that PQ is

no longer a multiple of a ; but

PQ =SQ-SP
= o. + yy~p;

••• p^=e^{<^+yy-p)\

and because PQ is perpendicular to BQ
Sy{a + yy-p) = 0;

.-. {yy%i.e.)-y^Syp,

and p'^ = e^{a-ySyp-p)\

a surface of the second order.

Cor. If e=l, and the surface be cut by a plane perpen-

dicular to DQ whose equation is Syp = c, .the equation of the

section is

a^ + c^-2Sap = 0,

another plane, so that the section is a straight line.

4. To find the locus of the middle points of lines of given length

terminated by each of two given straight lines.

Let AP, BQ be the given lines, AB the common perpen-

dicular, and its middle point. Let /3, y be unit vectors

along AP, BQ, and let OA = a= -OB. Then the vector p
to the middle point E of PQ is given by the equation

2p = x/3 + a + yy-a = xl3 + ijy (1)

and 2BP=EP-EQ=2a + xl3-yy (2)

From equation (1), we have, since a±^ and y
Sap = 0, (22. 7)

and also 2S/3p = -x + ySfiy, p
2Syp = xSpy-y, ^^

because /?, y are unit vectors.

The first of these three equations shows "r

that p lies in a plane through per-

pendicular to AB. Fig. 26.
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The second and third equations give

"=-
{SI3yy-l '

2{Syp + SI3ySI3p)
y- (s^yf-i

•

Now (2) gives, by squaring, if c = length QRF.

- 4c2 = ia? + a;2^2 + 2,2^2 _ 2xijSI3y,

in which, if the values of x and y just obtained be substituted,

there results an equation of the second order in p.

Hence the locus required is a plane curve of the second

order, or a conic section, which by the very nature of the

problem must be finite in extent, and therefore an ellipse.

38. Equations of the Sphere and Circle. • The

simplest equation of the sphere is T{p - a) = a, a constant,

where u, is the vector of the centre of the sphere. This

expresses the property of the radius of constant length.

Squaring both sides, we get

-ip-a)^ = T^p-a.) = a%

or p2_2Sap + a2 + a2 = 0,

which is the general scalar equation of the sphere.

When the origin lies on the surface, Ta= a, and

hence the equation becomes

p^-2Sap = 0,

or Sp{p-2a) = 0.

The immediate interpretation of the last form is that the

vector p is perpendicular to the vector p - 2a. But p-2a is

the vector joining the extremity of the diameter 2a with

the point p. Consequently, every diameter subtends a right

angle from every point on the sphere. In plane geometry,

the angle in a semicircle is a right angle.
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If we associate with the equation of the sphere the equation

of any intersecting plane, we obtain the equations of the

circle of intersection ; and many properties established for

the sphere will be true for the circle. From the general form

of equation many of the ordinary properties are deduced

with ease, such, for example, as the constancy of the product

of the segments of a chord or secant drawn through a point,

the perpendicularity of the plane (or line) of section of two

intersecting spheres (or circles) to the line joining their

centres, and so on. Some of these will be found in the

examples at the end of the chapter.

39. Tangent Planes to the Sphere, Tangents to the

CiECLE. The equation of the tangent plane at any point of

a sphere is obtained at once if we assume that the tangent

plane is perpendicular to the radius drawn to the point of

contact. For this radius {p - a) is the normal to the plane,

and therefore perpendicular to every line lying in the plane.

If CT be the vector to any point in the plane, CT - /> must be

perpendicular to p - a. Hence

S{m-p){p-a) = 0,

which with the condition T(p - a) = constant, represents the

tangent plane.

Let us, however, derive the equation of the tangent plane

directly from the definition that it is the plane determined by

three contiguous points on the surface. That is, if we move

along the surface through an infinitely short distance in any

direction we move along the tangent plane.

Let T be any such infinitely small arc on the surface drawn

from the extremity of the vector p. Then p and p + t both

satisfy the equation of the sphere : in symbols

p2-2Sap= -a^-a%\

(p + t)2 - 2Sa(p + t) = - a2 _ a2.J
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Subtracting, we find

or, since ^ -y^ = S(/3 -y){l3 + y),

S{p + T-p){p + T + p) -2SaT = 0,

ST{2p-2a + T) = 0.

But in the limit, as t is taken indefinitely small, squares

of T may be neglected. Hence

Sr{p-a) = 0;

SO that every tangent line is perpendicular to the radius

at the points, and the tangent plane which contains all the

tangent lines has the same property. The vector t is a

multiple of ST - p, where CT is vector to any point in t produced.

Hence the equation of the tangent plane at the point p is

S{r;^-p)(p-a) = 0,

or S'!S{p-a) = Sp(p-a.)

= Sap-a?~o?
by the equation of the sphere.

When the origin is taken at the centre of the sphere, a= 0,

and the equations of the sphere and of the tangent plane

become
p2= -a\

Szsp = p^= -a?.

When the origin is on the surface of the sphere, the

equations of sphere and tangent plane are

/32-2-Sap = 0,

SvS{p- a) = Sap.

The perpendicular from the origin in the tangent plane

must be parallel to p- a. Let its value he x{p- a). Substi-

tuting this expression for xs, we find (§ 36)

XS = x{p — a) = (p — a)~^Sap,

or p — a= TS~^Sap.

If between this equation and the equation of the sphere

we eliminate p, we get an equation in ST and a, which
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is the equation of the locus of the extremities of the per-

pendiculars from the origin upon tangent planes. The

eliminations may be effected as follows

:

Squaring the last equation, we have

or - a^CT^ = S'^a.p, since p^ - 2»S'ap = 0.

Operating by S .o., we find

Sap — a? = SaZS'^Sap,

«-- ^'-H^^T
This is a surface of revolution the section of which by a

plane containing o. has the polar equation

(r^ - ar cos dy =aV
and the Cartesian equation

{x^^ + y^-axy = a^(x^ + y^).

40. Poles and Polar Planes. Eeferring to C the

centre of the sphere, we have for the equations of the sphere

and of the tangent plane at the point p,

Srsp = - w^.

If this tangent plane is to pass

through a given point (vector

CO = y), then

Syp=-a\ ^'K-^'-

Now this is the equation of a plane perpendicular to y;

and the intersection of this plane with the sphere will give

the circular line of contact of all tangent planes passing

through 0. The vector perpendicular on this plane is

(§34) -tt2y"^. But 7x(-aV"^)= -a^ or CI).CO = a^.

The points and D are what are called inverse points

F
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with regard to the sphere, the product of their distances

from the centre being equal to the square of the radius.

The plane Syp = -a^ is called the polar plane of the point

7 with reference to the sphere Tp = a; and the point y is

the corresponding pole.

It is only when the point y is outside the sphere that

the polar plane is determined by the points of contact of

all tangent planes passing through the point y. When the

point y is inside the sphere, the plane Syp= -a^ has still

a definite position, although that position can no longer be

determined by drawing real tangent planes.

If we take any point 8 on the polar plane of y, the

condition must be satisfied that SyS= -a\ But this may
be written SSy = —a^ and 8 regarded as constant. Then y
appears as a point on the polar plane of 8. The relation

is a reciprocal one. If ^ is a point on the polar of B, B
is a point on the polar of A.

Similar theorems hold for the circle if we substitute line

or chord of contact for plane.

Again, let any point be chosen within the sphere, say G,

vector 8, and let any plane GD be drawn through this point.

If V is the vector perpendicular CD, the equation of the plane

is Sv {p-v) = 0. Hence, since 8 is a point on the plane,

,S'v8 = v2, or ;Sfv-iS = l.

But the pole of this plane is at 0, where

= vector C0= -a'^v~'^.

Hence, substituting, we find

the equation of the polar plane of 8.

Thus the poles of all planes drawn through a given

point lie on the polar plane of that point. Otherwise

expressed, the vertices of all tangent cones whose lines

of contact with the sphere lie in planes passing through

a fixed point lie on a plane which is the polar of the given

point.



Art. 41.] SIMPLE GEOMETRICAL APPLICATIONS. 83

41. Inversion with Eefeeencb to the Unit Sphere.

If in any equation representing some curve or surface we

substitute for p, the variable vector position, its reciprocal

p'^, we obtain the equation of the inverse curve or

surface.
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or

or

Let us now invert the sphere

p^-'2.Sap= -a? -a?.

The result is

o--2-2>S'a(r-l= -a2_a2,

1
'-1S-

d' + d'' a^ + a'
2'

the equation of a sphere the centre of which 0' is at the

extremity of a/(a^ + a^), and the radius of which is a/{a^ + a^).

Fig. 28.

Let the origin be 0, the centre of the original sphere C,

the inversion of this centre C, and the centre of the inverted

sphere 0'.

The centre C of the original sphere inverts into position

The vector distance O'C is

0'0-C'0 = OC'-Oa = ^--
a^ d' + a'

1
^'

.

Hence 0'C .
0' =

-r^-,—0-^ = square of radius of inverted

sphere.
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With reference to the inverted sphere, the origin and the

inversion of the centre of the original sphere are inverse

points.

42. Equation of the Cone of Contact. If tangent

lines be drawn from the surface of a sphere so as to pass

through any point, these lines will lie on a right cone. It is

required to find the equation of this cone.

With origin at the centre of the sphere, the two equations

and Syp = - a^

determine the circle of contact of all tangent planes which can

be drawn through the point y. The cone with vertex at y

must pass through this circle. Shifting the origin to this

point, the equations take the form

Sy{y + p)= -ft^f

where p now means the radius vector from the vertex of the

tangent cone. Subtracting, we get

Sp(y + p) = 0,

or Spy = - p^.

But also Spy = -a^- y^.

Hence, multiplying these last two equations together, we find

S'^py = p\a^ + y'^).

Here Tp may be divided out, so that any length of p in the

proper direction satisfies the equation. It is therefore the

equation of a cone referred to its vertex as origin. But when

Spy = - p2, Spy also = - a^ _ yS.

Hence this cone must pass through the intersection of the

sphere and plane represented by these equations. But we

know that these equations determine the line of contact of all

tangent planes through the origin. He^.ce the cone is the

required tangent cone.
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bince p^y^ = pyyp

= (Spy+Fpy)(Spy-Fpy)

= S^py - V^py,

we may put the equation in the more concise form

aY-V^py = Q.

Eeturning to the equations p^= - a?, Syp = - a^, we obtain,

by squaring the latter, and combining so as to have

aY + S^yp = 0,

the equation of the cone which has its vertex at the centre

of the sphere, and which cuts the sphere in the same circle.

This cone is evidently at every point of section perpendicular

to the tangent cone already found.

It is instructive to use this condition of orthogonality so as

to obtain the equation of the one cone from that of the other.

The immediate interpretation of the first equation is

obtained from the form
Tl''yUp = a,

which means that the sine of the angle between the axis

and any straight line drawn on the surface is equal to a a

constant. For the cone which has the same axis and which

cuts the surface of the first cone at right angles, the condition

is evidently that the cosine of the angle between the axis

and any straight line on its surface is equal to the same

quantity a. Hence for its equation

-SyUp = a,

- Syp = aTp,

and S^yp == - a'p^, the required equation.

The equation of the right cone might also be expressed in

the form

angle - = constant.
y

The equation of the right cylinder is written down at once

from the condition that any triangle with its vertex on the
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surface and its base a definite length measured along the axis

has the same area—in symbols

TVpy = h,

which may be readily transformed into

F"Vy + &-2 = 0,

S.pyVpy-^h^ = Q,

or SV7-pV + &^ = 0-

Since the square of p is involved in the scalar equation, we
recognize that we are dealing with a surface of the second

degree.

EXAMPLES TO CHAPTER V.

1. Straight lines are drawn terminated by two given straight lines,

to find the locus of a point in them whose distances from the extremities

have a given ratio.

2. Two lines and a point iS are given, not in one plane ; find the

locus of a point P such that a perpendicular from it on one of the given

lines intersects the other, and the portion of the perpendicular between

the point of section and P bears to 8P a constant ratio. Prove that

the locus of P is a surface of the second order.

3. Prove that the section of this surface by a plane perpendicular

to the line to which the generating lines are drawn perpendicular is a

circle.

4. Prove that the locus of a point whose distances from two given

straight lines have a constant ratio is a surface of the second order.

5. A straight line moves parallel to a fixed plane and is terminated

by two given straight lines not in one plane ; find the locus of the point

which divides the line into parts which have a constant ratio.

6. Required the locus of a point P such that the sum of the projec-

tions of OP on OA and OB is constant.

7. If the sum of the perpendiculars on two given planes from the

point A is the same as the sum of the perpendiculars from B, this sum

is the same for every point in the line A B.

8. If the sum of the perpendiculars on two given planes from each of

three points A, B, C (not in the same straight line) be the same, this

sum will remain the same for every point in the plane ABC.
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9. A solid angle is contained by four plane angles. Through a given

point in one of the edges to draw =>. plane so that the section shall be

a parallelogram. ,

10. • Through each of the edges of a tetrahedron a plane is drawn

perpendicular to the opposite face. Prove that these planes pass

through the same straight line.

11. ABO is a triangle formed by joining points in the rectangular

coordinates OA, OB, OC ; OD is perpendicular to ABC. Prove that

the triangle AOBis a mean proportional beween the triangles .45C,

ABD.

12. VapVpp + (Va^)'^=0 is the equation of a hyperbola in p, the

asymptotes being parallel to a, p.

13. If a plane be drawn through the points of bisection of two

opposite edges of a tetrahedron it will bisect the tetrahedron.

14. Find the equation of the sphere circumscribing a given tetra-

hedron.

15. A straight line intersects a fixed line at right angles and turns

uniformly about it while it slides uniformly along it. Find the equation

of the surface described ( 1 ) when the fixed line is straight, (2) when it

is a circle.

16. If two circles cut one another, and from one of the points of

section diameters be drawn to both circles, their other extremities and

the other point of section will be in a straight line.

17. If a chord be drawn parallel to the diameter of a circle, the

radii to the points where it meets the circle jnake equal angles with the

diameter.

18. The locus of a point from which two unequal circles subtend

equal angles is a circle.

19. A line moves so that the sum of the perpendiculars on it from

two given points in its plane is constant. Show that the locus of the

middle point between the feet of the perpendiculars is a circle.

20. If 0, 0' be the centres of two circles, the circumference of the

latter of which passes through O ; then the point of intersection A of

the circles being joined with 0' and produced to meet the circles in G,

D, we shall have
AC . AD^^AOK
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21. If two circles touch one another in 0, and two common chords

be drawn through at right angles to one another, the sum of their

squares is equal to the square of the sum of the diameters of the circles.

22. A, B, C, are three points in the circumference of a circle
;
prove

that if tangents at B and G meet in D, those at and A in E, and

those at A and B va F ; then AD, BE, OF will meet in a point.

23. If ^, B, O are three points in the circumference of a circle,

prove that V{AB . BO . CA) is a vector parallel to the tangent at A.

24. A straight line is drawn from a given point to a point P on a

given sphere : a point Q is taken in OF so that

OP . OQ= k\

Prove that the locus of Q is a sphere.

25. A point moves so that the ratio of its distances from two given

points is constant. Prove that its locus is either a plane or a sphere.

26. A point moves so that the sum of the squares of its distances from

a number of given points is constant. Prove that its locus is a sphere.

27. A sphere touches each of two given straight lines which do not

meet ; find the locus of its centre.

28. Any chord drawn from the point of intersection of two tangents

to a circle are cut harmonically by the circle and the chord of contact.

29. If tangents be drawn at the angular points of a triangle in-

scribed in a circle, the intersections of these tangents with the opposite

sides of the triangle lie in a straight line.

30. A fixed circle is cut by a number of circles, all of which pass

through two given points, to prove that the lines of section of the fixed

circle with each circle of the series all pass through a point whose dis-

tances from the two given points are proportional to the squares of the

tangents drawn from these points to the fixed circle.



CHAPTER VI.

cones and their sections.

43. The Cone and Cylinder of the Second Oeder.

In the preceding chapter the equation of the right cone was

obtained, that is, the cone which is cut in a circle by a plane

perpendicular to the axis. A more general case is when the

perpendicular a to the plane of circular section is not parallel

to the axis. Let the axis (y) be cut by a plane perpendicular

to a at a point xy from the vertex. The radius of the circle

of section will be proportional to x. Let it be ax. Let p be

the vector from the vertex of the cone to any point of the

circumference of the circle.

Then the conditions are evidently

T(p - xy) = ax, the circle of section

;

Sa(p - xy) = 0, the plane of section.

These give

p2 - 2xSyp + x^y^ = - a^x\

Sap = xSay.

Eliminating x, we find

p'^S^ay - 2SapSypSay + (a^ + y^) S'ap = 0,

the equation of a cone referred to the vertex, since any value

of Tp satisfies the equation.

The equation of the cylinder is obtained in exactly the same

way by using a instead of ax on the right-hand side of the first

equation ; for in the case of the cylinder the same size of circle
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is obtained at whatever distance from the chosen origin the

plane of section is drawn. That is

T{p-xy) = a,

Sa {p - xy) = 0,

giving p^ - 2xSpy + x^y'^ = - a^,

that is, substituting Sap /Say for x,

p-^S^ay - 2SpaSpySay + y^-S^ap + a^S^ay = 0,

in which Tp^ cannot be divided out.

By choice of appropriate vectors of reference these equations

may be expressed in much simpler forms.

For instance, let a circular section of the cone be given

by the intersection of the plane SI3p= -1, with the sphere

Sap'''- = 1 passing through the origin. The product

SI3pSap-T-= -1,

or p^ + S/3pSap --

represents a cone, since Tp may have any value, and this cone

meets the plane S^p = - 1 in the circle Sp {p-a) = 0.

But Equation (1) may be also thrown into the form

SapS/3p--^=-l,

so that the section with the plane Sap = - 1 is the circle

Sp(p-I3) = 0.

Hence a and /? are normals to two sets of planes which cut

the cone in circles. These circular or cyclic sections are

known as the subcontrary sections ; and the equation (1)

above may be distinguished as the cyclic equation of the cone.

44. Sphero-Conics. The equation of the cone just given

enables us to discuss with great elegance certain properties of

the sphero-conics, that is, the curves of section of the cone

with a sphere whose centre is at the vertex of the cone.

The condition is that Tp is constant. For simplicity, we

may treat p as a unit vector ; and the equation of the sphero-

conic may be written in the various forms

l=SapSI3p= -Sap~-^SPp= -SapS/3p-l= + Sap--^SI3p-\
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The equations Sap = 0, Spp = represent the so-called

cyclic planes. They pass through the vertex of the cone,

are parallel to the planes giving the subcontrary sections,

intersect the unit sphere in two great circles or cyclic arcs

which enclose the sphero-conic, and intersect each other along

the line Fa^. Ua, Uji are vectors to the poles A, B oi

these cyclic arcs ; and the arcs meet at the extremities of the

diameter of the sphere which is parallel to Fa/3.

Let P be the extremity of p on the sphere. Then - SpUa
is the cosine of the arc AP, or the sine of PM, where PM

is the perpendicular drawn from P on the sphero-conic to

the cyclic arc (a). Similarlj^, -SpU^ is the sine of the

arc PN, the perpendicular on the other cyclic arc {/3). But

from the equation SapSI3p = l, we have

So UaSp UB = „ „,o = constant.
lo-lp

Hence sin PM . sin P7V= constant, wherever P may be on the

sphero-conic.

Let now the cyclic arcs and sphero-conic be intersected by

any plane Syp = passing through the origin. UVay, UF/3y
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will be vectors to the points of intersection of this plane with

the cyclic ares, say C, D, in the figure; and let P, Q be the

intersection of the same plane with the sphero-conic. Let p

represent either of these points. We wish to compare the

segments into which DC is divided by the sphero-conic. Now

V. pVay = ySap — aSyp = ySap (for Syp = 0),

and F.pFI3y=ySlip-l3Syp^ySI3p.

Hence VpVay . rpVliy = y''SapSPp= - 1,

VpUVay.VpUVIiy=-
^,^J^,^^^

.

This gives

sin DP sin PC= BmDQ sin Q0=-
sin PCM. sin PDN

But if sin L sin {M + N) = sin {L + M) sin N,

of necessity L = N. Hence the intercepts DP and QC are

equal.

As a corollary, if DD' be the points where the cyclic arcs

are met by a tangent arc to the sphero-conic, that is, by the

section of the sphere by a tangent plane to the cone, the point

of contact T bisects the arc DU.

45. Tangent Plane to Cone or Cylinder; The

Linear Vector Function. To find the equation of the

tangent plane to a cone, we proceed as in the case of the

sphere. That is, we pass to a contiguous point p + r, and

consider what the final form of the equation is as t is taken

indefinitely small. We have

p'^ + SapS^p = 0,

and {p + Tf + Sa{p + T)Sp{p + T) = 0.

Expanding, subtracting, and neglecting terms involving t

twice, we find

ISpr + SarS/Sp -f- S/SrSap = 0.
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If we put ZS - p = XT, CT is a vector to a point in the tangent

plane.

This gives S(v; - p) (2p + aS^p + ^Sap) = 0,

or S7;y{2p + aSI3p + /3Sap) = 0,

since by the equation of the surface

Sp{2p+aSf3p + pSap) = 0.

Half the expression in the bracket, namely,

aS^P + l3Sap

involves p once in every term. It is a special case of what
is known as the linear vector function of p. It is usual to

represent it by the notation 4>p, where <^ is a linear operator.

In the present case
aS/Sp + BSap

<pp =F-^—^—
and for another vector cr,

<kp = P + -

2

aSBa+BSaa-
(po- = a- + —!--^

By addition we find

ci.p + i..
= p + . + ^^^iBjt^l±^MP±^

= <^(p + cr),

so that ^ is distributive. In particular, <^{zp) = X'^p.

If we form the expressions <T^p and pt^^r, and take the scalar

parts, we find

„ , „ SacrSBp -h SBa-Sap
b . a-fp = ba-p H

' '

= S . /0</>cr,

so that in this case p and cr may be interchanged without

affecting the value of the expression. When this can be done

for any linear vector function <j>, ^ is said to be self-conjugate.

That this self-conjugate character is not a necessary property

of the linear vector function may be seen at once ' by con-

sidering the very simple case (t>p
= aSfSp, in which

S(T<f>p = SaaS^p = Sp (fiSaa-) = Sptfi'a, say.

Evidently (f/cr = fiScur is not in general the same as (jxr = aS/3a:

(See Chapter X.)
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With ^p = p + ''l^P±§§^P^

we have for the equation of the cone

Sp<j>p = 0,

and for the equation of the tangent plane at any point

Svy4,p = 0.

Since S(v! - p)<l,p = 0, we learn that 4>p is perpendicular to
the tangent plane. Thus <^p is the normal to the cone at

the point p.

If we take the equation of the cylinder obtained in § 43,

namely. p^-'-i^^l!^ ,a^^o,

and put i.p=p-
"^yp+y^-p + y^f"p.bay b^ay

we see that \('p is like (j>p, a self-conjugate linear vectoi

function of p, and that the equation of the surface is

Spxf'p + a^ = 0.

Passing to a contiguous point p + r, we have

S{p + T)^{p + T)+a^ = 0.

Expanding, subtracting, and neglecting squares of t, we find

St^P^O.

Hence, for the equation of the tangents,

or Srsi/zp = Spif'p = -a^.

Here also, then, the equation of the tangent plane is obtained

from the equation of the surface by substituting ST for one

of the p's.

The sole conditions attached to 4" and xf/ are that they are

linear vector functions of the variables and that they are

self-conjugate. When we meet with any equation of the form

Sp4>p = — a^,

which, being a scalar equation of the second degree in Tp, must
represent a surface of the second order; and if we know
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that 4> is self-conjugate *—then we may at once write down

the equation of the tangent plane at the point p by simply

changing one p into CT, the vector to the tangent plane, namely,

S'!^4'P = Spiers= - a^.

Also <f>p must be a vector perpendicular to this plane, that

is the vector normal to the surface at the point p.

46. The Conic Sections. If we intersect the cone

p^ + SapSf3p =

by any plane Syp = —e, we get one of the so-called conic

sections, the circle, ellipse, parabola, or hyperbola, as the

case may be.

It is usually more convenient, however, to develop the

properties of each of these plane curves from some particular

simple property which has no explicit relation to a cone,

and which is then regarded as the definition of the curve.

A few examples of this mode of treatment will suffice to

shew how simply and directly quaternion analysis may be

applied to the geometry of the conic sections.

Thus, if we define a conic section as " the locus of a point

which moves so that its distance from a fixed point bears

a constant ratio to its distance from a fixed straight line,"

we find the equation to be (§37, Ex. 2)

ci.y = e^aP-SapY, (1)

where SP= ePQ, vector SD = a, SP = p

The nature of the curve depends upon the value of e, being

and ellipse, parabola, or hyperbola, according as e is less than

unity, equal to unity, or greater than unity.

Confining our attention to the ellipse (e < 1 ), let us find

the values of p parallel to the axis a. Let SA be the required

*It may be mentioned, however, that even if we begin with a form

•which is not self-conjugate, it is its self conjugate part only which

appears in the expression Sp<pp (see Chapter X. ).



Art. 46.] CONES AND THEIR SECTIONS. 97

value equal to xa; then, by equation (1), putting xa for p,

we get x^ = e'{l-xy;

Fig. so.

a;= = , or a; =
e

There are two values of x, one positive and the other

negative. Therefore in addition to the point A, there is

another point A' satisfying the same condition.

Thus SA=^SD, SA' =^SD;

AA'-
2e

1
SD=2a,

the major axis of the ellipse.

If C be the centre of the ellipse

OS: ..SA'-CA'={^^-^:)SD^^,SD = ae.

The vector CS has the value
l-(

a=a'. To transfer the

origin to the centre C, we must substitute for p in (1) the

value p = p' - vector CS=p - a, and there results

ay + (Sapy= -a*(l-e2),

which we may now write, CS being a and CP p,

ay + (Sap)^= -a*{l-e^) (2)
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This equation might have been obtained at once by referring

the ellipse to the two foci, namely,

SP + JSP = 2a,

or in vectors, if

CP= p, CS=a,

T(p + a) + T{p-a) = 2a;

i.e. sj -{p + af + sl -{p-a.f = 2a;

hence, squaring,

aij - {p- a,y = a^ + Sap
;

i.e. aY + (Sap)^ = - a2 ( 1 - «2)

If now we write d>p for + —fr^; jf, where (bp is a vector

which coincides with p only in the cases in which either u,

coincides with p or when Sap = 0, i.e. in the cases of the

principal axes ; the equation of the ellipse becomes

Sp<t>p=-1 (3)

The same equation is, of course, applicable to the hyperbola,

e being greater than 1.

It is evident that (^ is of the same type of function as

that already discussed in last section. It is distributive and

self-conjugate ; and many of the properties of the ellipse

and hyperbola can be deduced with ease by its means.

The method is identical with that which will be used in

the discussion of the more general properties of the

ellipsoid and hyperboloid; and a few examples will suffice

to show its power.

47. Tangents and Normals. From demonstrations

already given, we may at once write the equation of the

tangent line to the ellipse (or hyperbola)

Spclyp= -1

in the form Svy<f>p = - 1,

where we must remember that p, <^p, vy are for the present

restricted class of problem all in one plane.

4>p is perpendicular to the tangent at p, that is, it is

parallel to the normal at the point p.
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The equation Vp4>p = means that p is parallel to 4>p, or

the radius vector and normal are coincident. Given the

function <^, we may set before us the problem to find

the value or values of p which satisfy this equation. In

the case of the ellipse and hyperbola there are four

points but only two distances at which this condition is

satisfied, namely, the extremities of the major and minor

axes.

48. Cartesian Equivalents of the Scalar Equations

IN ^. It is important at times to translate quaternion

equations into their Cartesian equivalents ; let us form

from the equations just given the ordinary Cartesian

equations of the ellipse and its tangent.

Let CM=x, MP = y as usual (see Fig. 30, p. 97); then,

taking i, j as unit vectors parallel and perpendicular respec-

tively to GA, we have,

vector CM = xi, MP = yj, CS^aei;

.-. p = xi + yj,

,
a^p + aiS'ap

'f'P^ + a^il-e^)

a2(l - e'^)xi + a^yj
""•"

a*(l-e2)

where V'' = a^ (1 - «^) = square of semi-minor axis.

Hence Sp<j>p=+S [xi + yj)Q + 1) = -
^2
- p

'

1? y^

the Cartesian form of Sp4>p = — 1-

Again, if x', y' be the coordinates of T, a point in the

tangent,

CT= a;'i-i-2/';,
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and -Sr,.kP= ' S{^'^ + y'J){i + t)='$ + W'

the equation of the tangent.

49. Powers of the Linear Vector Function. The

values of p and ^p exhibited in the last article, viz. :

P = xi + yj, 4,p= +(5+p), (1)

enable us to write

,,._(!*.*) ,.,

Applying the operation a second time, we have

= -(t-'f) <^)

Also it is easily verified that the inverse function
^-ip= -aHSip-bySjp (4)

For, if so, P= - (i^4>iSip - b'^i'jSjp

= -iSip-jSjp = xi + yj.

If, further, we write

^^=-(^'+'¥) (^)

we shall have

= i'P ^6)

Thus the operator <p may be regarded as the square-root

of the operator <j>.

Also,

'/'~V= -{aiSip + bjSjp),

= -{aiSi^Pp + hjSj^p) (7)

It is evident that the properties of 4>p (p. 95) are pos-

sessed by all these functions.
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Now Sptjip = - 1

gives Spi^ii^p) = - 1.

But since Sp\po-= Sa-\j/p,

this becomes ^4'P^P = (fjo)^ = - Ij

or Tfp = l;

which shows (1) that i^-p is a unit vector; (2) that the equation

of the ellipse may be expressed in the form of the equation of

a circle, the vector which represents the radius being itself

of variable length, deformed by the function tj/.

Lastly, when a j3 are such as to make

we have Sa^^lS = Sif'ai// = ;

therefore ^a, \j/P are vectors at right angles to one another.

This may be exhibited without use of the i/-, thus

50. Conjugate Diameters: Parallel Chords. The
equation S . a<^^ = in the case of the ellipse or hyperbola

means that u. (or jS) is perpendicular to the normal at the

point on the curve whose vector is parallel to fi (or a). In

short, a is parallel to the tangent line at the point where jS

meets the curve ; and /3 is parallel to the tangent line at

the point where a meets the curve. Two diameters which

have this property that either is parallel to the tangents at

the extremities of the other are called conjugate diameters.

Let a j8 be two conjugate radii, so that

Any vector to the ellipse (or hyperbola) may be represented

by p = xa. + yP,

hence 4'P = ^^" + y^/^j

and - 1 = Sp4>p

-f = ^-^- (Kg 31, p. 103)
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For each value of x, there correspond two equal and opposite

values of y; and for each value of y there correspond two

equal and opposite values of x.

Hence each diameter bisects chords parallel to its conjugate.

The converse that the locus of the middle points of parallel

chords is the diameter conjugate to the diameter parallel to

these chords is easily proved.

Let CP, CD be the conjugate semi-diameters a, /3 ; and let

DO be produced to meet the ellipse again in D' ; then vector

DP = a-l3, vector UP = a + P; and

S(a + ^) <^ (a - /3) = 5(a + /3) (.^a - <^/3)

= Sa.4,a - SP<i>B - Sa<i>f3 + 5/3^a

= 0,

because Sarjja and SI3<I>(3 are equal quantities.

Therefore a. + /3, a-/3 are parallel to conjugate diameters.

This is the property of Supplemental Chords.

51. Poles and Polars. From any one point two
tangents can be drawn to the curve.

Let 7S be the vector CT, and pj p^ vectors to the points

of contact Q, R of the two tangents.

Then by the equation of the tangent

Hence Sct^ (Pi' Pi)
= Q = S{p^- p^) ^w,

or the chord of contact p-^ - p^ is perpendicular to the normal
at the point where CT meets the curve. In the figure CT, QB
are parallel to conjugate diameters.

The equation Sp(f>T:y= -1,

CT being constant, is (under present limitations) the equation

of a straight line, p^ p^ are two values of p satisfying the

equation. Hence the equation is that of the straight line

passing through the points of contact.
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The point N where this straight line cuts CT is found

by putting p = xTS,

whence xSvs^W= -\.

If CP= yvs, the equation of the curve gives

y^Svs4>s= -1,

whence x= y^,

or GN.CT=CP^

Pig. SI.

Suppose now that any chord such as QR is drawn through

a fixed point E, vector cr, and that in all positions of this chord

the meeting point T of the tangents at Q and B is found.

Then since »Su-<^(7T= — 1,

we have also S'S<f>tr= — 1.

Hence with o- a fixed vector CT describes a straight line.

The point cr and the straight line SrScfxr= - 1 are pole and

polar; and reciprocally the points ct and the straight line

S(r(j)'Cy= - 1 are pole and polar. Thus, if ^ is a point in

the polar of B, B is a, point in the polar of A.

52. All parallelograms circumscribing an ellipse are equal

in area.

These parallelograms are evidently bounded by lines parallel

to conjugate diameters.



104 QUATERNIONS. [Chap. vi.

Let, as before, a ^S be two conjugate vector radii, and let us

estimate the vector-area VajS of the parallelogram contained

by them. This will evidently be one-fourth of the area of the

circumscribing parallelogram.

One measure of the area TVa/3 will be the product of the

length of 01 into the perpendicular from the centre on the

tangent parallel to a. This perpendicular is parallel to ^/8,

since Sa4>^= 0. Let its value be a;<^/3. Then by the equation

of the tangent we have

Sx<l>p<fi/3 = - 1, or x4>l3 = -
-j-jy.

Consequently the length of the perpendicular on the tangent

at the extremity of j3 is 1/T<t>l3.

Hence
J^'^^^^^'^W

and since UVafi= U-^ =-U$-
<pp (pa

all being in one plane, we have finally

To show that Fa/3 is the same whatever pair of conjugate

vector radii be chosen, let us express any other pair a', /3' in

terms of a, ;8.

We have already shown (§ 50) that if

a —xa + yP,

we must have x'^ + y^ = \.

Hence we may write

a'^xa + Jl-x^fi.

Similarly, (3' = x^a±.^l -x^^/3.

But SP'<t>a' = 0,

or xx^Sa4>a ±Jl-x^.l- x-^^SIi4>(i = 0,

or xx^= ±J].-x''.l- x^,

or = 1 - a;^ - x^.

Hence x-.= ±Jl - x^.
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Bearing in mind the positions of any two self-conjugate

diameters relatively to any other pair, we see that

a =xa + s/T

1 - x^a + xfS, j
13'= -Jl

represent a pair of self-conjugate radii. Hence

Fa 13' = -{l-x^)Fl3a. + a;2 FafS

= {l-x^)Fal3 + x^Fal3

= Fai(3.

CP, CD are conjugate semi-diameters of an ellipse, as also

OF, CD' ; PF, DU are joined; to prove that the area of the

triangle PCF equals that of the triangle DCU.

Let a, 13, a', /3' be the vectors CP, CD, CF, CD' ; k a, unit

vector perpendicular to the plane of the ellipse,

Since

a= ^-i^a = - (aiSi^'o. + bjSjipa), etc., etc., (§ 49. 7)

therefore Faa = F{aiSi\j/a+ bjSj^a) (aiSi^pa + bjSj^a)

= ahk {SiipaSj'^a! - SjxpaSixpa)

= abkSi{-^aSj'j/a - xpaSjxj/o)

= abkS.ijF>pa'\j/a

= -abkS.kF{i^a<l,a').

Similarly, F/S/S' = - abkS . kF{xj^/3xjyl3').

Now \pa, xpfi are unit vectors at right angles to one another
;

as are also \pa', tpjS' ; therefore the angle between \j/a and \//a' is

the same as that between ^^ and ^/3'.

Hence S . kF{^pa^a') = S . kF(f134^13'),

and Faa'=F^I3',

i.e. area of i'C'P' = that of triangle DCD'.

We end this section with a few examples

:

1. The product of the perpendiculars from the foci on the tangent

is equal to the square of the semi-axis minor.
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We have SY the vector perpendicular = x<jip, and as F is a

point in the tangent, and

CY=CS +SY=a + x4>p,

S{a + x4>p)<f>p= -1,

x(<f>pY = - 1 - Sa<l>p,

-SY= -X4>p = ;—^•

Similarly, the perpendicular from the other focus H is the

parallel vector

1 - Sa4>p
.

SY. HZ=

4>P

1 - S^a<^p

(i>pr

Now (§ 46) ay = - S^ap - a* ( 1 - e^),

a^p + aSap
_

4>P= +

{<i>pf
=

a*(l-«2)

S^ap - a*

1-S^acj>p--
ft* - SV .

.-. SY.HZ=a'(\-ei) = h\

2. The perpendicular from the focus on the tangent intersects the

tangent in the circumference of the circle described about the axis

major.

Retaining the notation of the last example, we have

4'p{^ — Sa(f>p)
^"~

{4>P? '

and the square of this is easily found to be equal to - a^.

3. To find the locus of T when the perpendicular from the centre

on the chord of contact is constant.
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If CT be TT, the equation of QR, the chord of contact, is

S(T(j>Tr= — 1,

and the vector perpendicular is -—
;

or SffiTT . <f>Tr = — c^,

or S7r<i>4yTr= -c^;

the equation of an ellipse whose Cartesian equation is

53. The Parabola. Cer-

tain properties of the parabola

may be discussed by the

method employed for the

ellipse.

Thus if S be the focus of a

parabola, DQ the directrix, we
have SP = PQ, SA =^AD = a.

If SP = p, SD = a, we have

(§ 37, Ex. 2)

Q
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From the same equation

(ip9P= ^

a?

= o.\4>P? (7)

From (4) the normal vector is

4'P + '>.-^; (8)

therefore the equation of the normal is

o- = p + a;(<^/) + a-i) (9)

Equation (2) when exhibited as

o?(l>p = p — oT^Sa-p,

reads by (6), 'vector along iVP= .S'/'— vector along AN,'

which requires that

NP = a?4>p, (10)

SN=a--^Sap;

i.e. =aSa~^p (11)

For the subtangent AT, put xa for ^ in (5), and there

results by (6)

x + Sa-'^p='[,

whence Ix--^] a = ~a.- aSa'^p

;

i.e. vector AT= - vector AN (by 11);

.-. line^r=^i\^;

By similar processes we may easily prove that ST=SP,

NG = SD, vector 5'Z> = vector GP, vector AY^^ vector iV^P.

The following examples may also be worked out by means

of Equation (3), namely :

(ffl) Find the locus of the middle points of parallel chords.

(b) Find the locus of the point which divides a system

of parallel chords into segments whose product is constant.

(c) Find the locus of the point in which the perpendicular

from A on the tangent at P meets th^ line PQ produced.
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(d) Find the locus of the intersection with the tangent

of the perpendicular on it from the vertex.

To solve this last problem let tt be the vector perpendicular

on the tangent from A, then by (8)

Tr = x{4>p + a''^),

and the equation of the tangent gives, putting ir + - in place

of TT in (5) and multiplying by 2,

2S7r4>p + 2Sa.-^7r + 2Sa-^p = 1,

we have also

Sp{4>p + 2a-^) = l.

From these three equations we have to eliminate x and p.

The first gives

SaTT = x,

which gives x,

and Sirrjip = X {4>p)'^,

which substituted in the second gives

2x{4>py + 2&-i7r + 2Sa-^p = 1.

Also, substituting a%<l>py for Sp<f>p (equation 7), the third

equation gives

a%4>pY + 2Sa-^p=l;

therefore by subtraction

(2a;-a2)(<^/))2 + 25a-l7r = 0,

i.e. (25a^-a2)(<^/3)2 + Sa-l7r = 0.

Multiplying by S^air or x^ and substituting for (<^jo)^ we

^^
{2Sa7r - a)2(,r - a'^Sairf )- 2S^a7rSa--^Tr = 0.

This equation at once reduces to

27r2^a7r-ffV + S2a7r = 0,

an equation which represents the cissoid. We leave the

verification to the reader, the usual definition of the cissoid

being as follows : On AD as diameter a circle is described.

Any chord ^C is drawn, and CM drawn perpendicular to

AD. AM' is taken equal to MD, and M'U is drawn

perpendicular to AD to meet AC m U. U describes the

cissoid.
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54- It will probably have suggested itself to the reader,

that there exists a large class of problems to which the

processes we have illustrated are scarcely if at all applicable.

Hence there may have arisen a contrast between the

Cartesian Geometry and Quaternions unfavourable to the

latter. To remove this unfavourable impression, all that

is required in a reader familiar with the older Geometry

is a little experience in combining the logic of the new

analysis with the forms of the old. He will then see how
simple and direct are the arguments which he can bring

to bear on any individual problem, and consequently how
little the memory is taxed. As a general rule, however,

plane geometry is not fitted to bring out the peculiar

power of the quaternion calculus.

We propose now to put the reader in the track of employ-

ing his old forms in conjunction with quaternion reasonings.

Thus, in general, we may represent any plane curve by

the formula p = xa + yfi,

where a and ji are constant vectors, and x and y are variable

scalars, between which some relation is assigned.

If x + y=\, p = l3 + x{a- 13), a straight line passing through

the extremities of a and /?.

If x'^ + y'^=l, the curve traced out by p is a circle; if

aV + J2«/^ = l, the curve is an ellipse, and so on.

55. The Parabola. If y'' = ia'x, the curve is a parabola

passing through the origin, a being unit vector parallel to the

diameter and /3 unit vector along the tangent at the origin.

We then have V^ r,

p^h^^yi^ (1)

For the particular case in which the diameter in question

is the axis, and the tangent at its extremity parallel to the

directrix, tp n
P = f^« + #. (2)

where a is the distance between the focus and the vertex.
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This is the most convenient form when the focus is

referred to.

In other cases a somewhat simpler form may be obtained

by supposing a, or if necessary both a and j3, of equation

(1) to be other than unit vectors.

The equation may then be written under the form

/' = ^cc + </3 (3)

For the tangent, pass to the contiguous point

(t + eY
+ T= -—s"^" + {t + «)A « very small.P'-- 2

Hence T={et + ^e^) a + e^

= (ta + /?) e in the limit.

The equation to the tangent line is therefore

vy = p + x{ta + l3)

= *la + l3 + x{ta + l3), (4)

or retaining the form (2)

^=£«+^^+<£"^^) ('^

If p p' are vectors to the extremity of a focal chord, aa

being che vector to the focus,

F{p - aa) (p - aa) = 0,

or Vpp +aVp'a-a Vpa = 0,

or, by (2), ('g' - y£) Fa/3 + ay'Va/i - ayVaji = ;

Hence P^ta""^'^^'

, ia^ ia?r,

P=lfl''"^P'
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are vectors to the extremities of a focal chord. The tangents

at these points are parallel to

T = a + p.

y

Hence Stt'= -a2 + /32= +1 - 1 =0,

that is the tangents are perpendicular to each other.

If CT is the meeting point of those two tangents, it is

easily shown by the methods of Chapter II. that its value is

vs--

the equation of the directrix. Closely connected with this

result is the theorem that the circle described on a focal

chord as diameter touches the directrix; and the circle

described on any other chord does not reach the directrix.

We leave this as an exercise to the reader.

If a triangle he inscribed in a parabola, the three points in

which the sides are met by the tangents at the angles lie in a

straight line.

Let OPQ be the triangle.

Take as the origin, then

p.

t'^
p' =ja + t'/i,

f
7r = ^a + il3 + x{ta + l3),

f2
Tr' = -^a + t'l3-^x' {t'a + /3),

are the vectors OP, OQ, and the equations of the tangents at

P and Q.
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If QO meet in A the tangent at P,

OJ=*^a + tl3 + x(ta + l3)=yOQ= y(^^a.+ f/3y,

whence « = l ,

Similarly if the tangent at Q meets PO in B,

If the tangent at meets PQ in 0,

OG=OP + z{PQ)
]!2 (f'i _f2 \

But OG=vP;
W

whence

and oC^-^3-

Now ?tloA~^^OB-*^OC=0,
t t tt

, 1 2t-t' 2f~t t^-t'^ ^
and also -7-—7 ^= 0;

therefore (§ 10) A, B, C are in a straight line.

56. The Hyperbola. If in the equation

the product xy is constant, we get the equation of a hyperbola

referred to its asymptotes. The equation is

p = xa+-l3,

or, if a, /3 be not both units we may write the equation under

the simpler form

P = <a + f (1)
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To find the equation of the tangent, we have as usual

=
(«-f)«.

neglecting higher powers of e, and a vector parallel to the

tangent may be written

^
.(2)

Fig. S3.

Hence the equation of the tangent is

CT = <a + ^ + .-: (3)K'-f)
It is evident that

ia + /3/t and ta-jSjt

are conjugate semi-diameters, and the usual theorems regard-

ing these and their parallel chords may be very easily worked

out. For example,

Vpa- = V{ia -H |Vi!a -
I')

= - 2 Vo.j3,
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a constant area. Also if p <t' be another pair of conjugate radii

Vp<T = Vp'ar'.

It is easily shown that, if PO is the tangent at P, and QQ a

parallel chord, (7PF bisects it in F; also that if CN, NQ be

the coordinates of the point Q measured parallel to the

asymptotes, they will form a parallelogram whose one diagonal

is CQ = ta + l3/t, and whose other diagonal is ta- fS/t, and is

therefore parallel to the tangent at Q.

If TQ, T'Q he two tangents to the hyperbola intersecting in R
and terminated at T, T, Q, Q by the asymptotes ; then (1) TQ is

parallel to TQ ; (2) area of triangle TFt,T = area of triangle QRQ,

and (3) CB bisects TQ and T'Q.

When the tangent

CT = fo +f"('-f).
meets the asymptote a in T, the coefficient of /3 must vanish.

Hence a; =1, and CT=2ta.

.2/3
Similarly, CQ='-,

2^.
In like manner CT' = 2t'a, CQ =

^,

Q'T=^2at-^ = j,{att'-l3),

2
and QT = j{att'-^);

therefore QTis parallel to QT.

Again, CB = CQ+QR =^ + x2(^at-fj.

Also CR =^ + x'2fat'-^^;

whence, in the usual way,
t' t

and xx' = {l-x)(l-x'),

i.e. QR.QR^RT.RT,
and the triangles TRT, QRQ' are equal.
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or CB is in the direction of the diagonal of the parallelogram

of which the sides are CT, GQ ; and therefore CR bisects

TQ' and TQ.

EXAMPLES TO CHAPTER VI.

1. Show that the locus of the points of bisection of chords to an

ellipse, all of which pass through a given point, is an ellipse.

2. The locus of the middle points of all straight lines of constant

length terminated by two fixed straight lines, is an ellipse whose centre

bisects the shortest distance between the fixed lines ; and whose axes

are equally inclined to them.

3. If chords to an ellipse intersect one another in a given point, the

rectangles by their segments are to one another as the squares of semi-

diameters parallel to them.

4. If POP', DGD' are conjugate diameters, then PD, PD' are pro-

portional to the diameters parallel to them.

5. If Q be a point in the focal distance SP of an ellipse, such that

SQ is to SP in a constant ratio, the locus of Q is a similar ellipse.

6. Diameters which coincide with the diagonals of the parallelogram

on the axes are equal and conjugate.

7. Also diameters which coincide with the diagonals of any paral-

lelogram formed by tangents at the extremities of conjugate diameters

are conjugate.

8. The angular points of these parallelograms lie on an ellipse

similar to the given ellipse and of twice its area.

9. If from the extremities of the axes of an ellipse four parallel lines

be drawn, the points in which they cut the curve are the extremities of

conjugate diameters.

10. If from the extremity of each of two semi-diameters ordinates be

drawn to the other, the two triangles so formed will be equal in area.

11. Also if tangents be drawn from the extremity of each to meet

the other produced, the two triangles so formed will be equal in area.
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12. If on the semi-axes a parallelogram be described, and about it an
ellipse similar and similarly situated to the given ellipse be constructed,
any chord PQR of the larger ellipse, drawn from the further extremity
of the diameter CD of the smaller ellipse, is bisected by the smaller
ellipse at Q.

13. If TP, TQ be tangents to an ellipse, and PCP' be the diameter
through P, then P'Q is parallel to CT.

14. The sides of a parallelogram inscribed in an ellipse are parallel

to conjugate diameters.

15. In the parabola ST'^SP.SA.

16. If the tangent to a parabola cut the directrix in R, SE is per-

pendicular to SP.

17. A circle has its centre at the vertex ^ of a parabola whose focus

is S, and the diameter of the circle is 3A 8. Prove that the common
chord bisects A S.

18. The tangent at any point of a parabola meets the directrix and

latus rectum in two points equally distant from the focus.

19. The circle described on SP as diameter is touched by the

tangent at the vertex.

20. Parabolas have their axes parallel and all pass through two

given points. Prove that their foci lie in a conic section.

21. Two parabolas have a common directrix. Prove that their

common chord bisects at right angles the line joining their foci.

22. The portion of any tangent to the parabola between tangents

which meet in the directrix subtends a right angle at the focus.

23. If from the point of contact of a tangent to a parabola a chord

be drawn, and another line be drawn parallel to the axis meeting the

chord, tangent and curve ; this line will be divided by them in the

same ratio as it divides the chord.

24. The middle points of focal chords describe a parabola whose

latus rectum is half that of the given parabola.

25. PSQ is a focal chord of a parabola : PA
,
QA meet the directrix

in y, z. Prove that Pz, Qy are parallel to the axis.

26. The tangent at D to the conjugate hyperbola is parallel to OP.

27. The portion of the tangent to a hyperbola which is intercepted

by the asymptotes is bisected at the point of contact.
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28. The locus of a point which divides in a given ratio lines which

out off equal areas from the space enclosed by two given straight lines

is a hyperbola of which these lines are the asymptotes.

29. The tangent to a hyperbola at P meets an asymptote in T, and

TQ is drawn to the curve parallel to the other asymptote. PQ pro-

duced both ways meets the asymptotes in if, R : RR' is trisected in

P,Q-

30. From any point R of an asymptote, RN, RM are drawn parallel

to conjugate diameters intersecting the hyperbola and its conjugate in

P and D. Prove that CP and CD are conjugate.

31. The intercepts on any straight line between the hyperbola and

its asymptotes are equal.

32. If QQ' meet the asymptotes in if, r,

RQ.Qr = P0\

33. If the tangent at any point meet the asymptotes in X and T,

the area of the triangle XGY is constant.

34. If a chord of a hyperbola be one diagonal of a parallelogram whose

sides are parallel to the asymptotes, the other diagonal passes through

the centre.

35. If the tangents at the extremities Q, Q' of a diameter of a

hyperbola meet the tangent at a point P in the points T, T' ; and if^

GD, CD' are the semi-diameters conjugate to OP, CQ ; then

(1) PTIQT=PT'IQ'T'= GDIOD'

;

(2) PT. PT'^CD'^

36. Straight lines move so that the triangular area which they cut

ofif from two given straight lines which meet one another is constant

:

to find the locus of their ultimate intersections.

37. Eliminate t from the equations of the parabola and hyperbola

as given in §§ 55, 56, and find their equations in terms of o, /3 only.



CHAPTER VII.

CENTRAL SURFACES OF THE SECOND ORDER.

57. The general scalar equation of the surface of the

second order will contain terms involving the square of

Tp, terms involving Tp to the first power, and a term

not involving Tp at all. If we limit ourselves to the

central surfaces, namely, those which have a centre bisecting

all diameters drawn through it, the equation must be satisfied

by both ¥ p and - p, and hence no term of the form ASap

can exist. A little consideration of the forms of scalar

functions of Tp"^ will show that the required equation is

ap2 + hS^ap + 2cSapSI3p +...= - 1.

Now if we put

(f>p
= ap + baSap + c {aS/3p + fiSap) + ...

we shall have

Sp(t>p = ap^ + bS^ap + 2cSapS(3p + ...

= -1,

the equation required.

We easily see that <^ is a linear vector function, distributive

and self-conjugate, and fulfilling all the conditions given

in § 45.

58. The Tangent Plane. By reasoning identical with

that employed several times already, it is easily shown that

if T be a vector in the tangent plane,



120 QUATERNIONS. [Chap. vii.

or, if CT is a vector to a point on the tangent plane,

S'^fjjp = Sp<f>p = - 1,

which is the equation of the tangent plane.

The vector 4>p is perpendicular to the tangent plane at

the extremity of the vector p.

59. Perpendicular on the Tangent. If 07 be the

perpendicular from the centre on the tangent plane ; then,

since <^/o is a vector perpendicular to that plane, 0Y=x4>p

and Sx{4>py= - 1^ giving

vector 0Y= x4>p = - -7-= - (4'P)~^-

Sir W. E. Hamilton terms <j>p the vector ofproxknity.

60. Polar Planes. If tangent planes all pass through

a fixed point, the curve of contact is a plane curve.

Let T be the fixed point, vector a
; p the vector to a point

of contact.

Then (§58) Sacj>p=-1;

i.e. Sp<l>a= - 1,

which is the equation in /o of a plane perpendicular to <^a.

Now (f>a is the normal vector of the point where OT cuts

the ellipsoid ; consequently the curve of contact lies in a

plane parallel to the tangent plane at the extremity of the

diameter drawn to the given point.

When u. is vector to a point inside the ellipsoid, there can

of course be no real tangent planes drawn; but in all cases

the equation Sp4>a = - 1 represents a real plane, which is called

the polar plane to the point.

61. Tangent planes are all parallel to a given straight

line, to find the curve of contact.
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Let a be a vector parallel to the given line ; then

is a point in the tangent plane

;

.'. S(ZS + xa)(j)p= - 1
;

and Sacj)p = 0,

or Sp(jia = 0,

the equation of a plane through the origin perpendicular

to <f>a : that is, the curve of contact lies in a plane through

the centre parallel to the tangent plane at the extreroity

of the diameter which is parallel to the given line.

62. Conjugate Diameters. Let us first find the locus

of the middle points of parallel chords.

Let each of the chords be parallel to a, m the vector to

the middle point of one of them; then zs + xa, V5-xa are

points in the ellipsoid.

From the first,

S{vi + xa) (^ (ct + xa) = -
1

J

i. e. SZS<I>TS + 2xS'Uycl>a + x^Sacj^a = - 1

.

From the second,

SxS<pUS - ^xST^S^ia + x^Sa(t>a= - 1

;

.'. subtracting, (S'S7^a = 0,

i.e. the locus is a plane through the centre perpendicular to

<^a, or parallel to the tangent plane at the extremity A of

the diameter which is drawn parallel to u..

Let ;S be any vector in this plane ScT<^a = 0, then

and therefore <Sa^/3 = 0,

or a satisfies the equation SrScji/S =

of the plane which bisects all chords parallel to /?.

These two planes, bisecting chords parallel to a and /3

respectively, will intersect along a line through the centre.

Let y represent this line ; then, since y is a vector in both

the planes S^4>a = 0, and iScT<^^ = 0, we must have

Sy^a.= 0, Sy4>l3^0.
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Hence -S'a<^7 = 0, SI3<t>y = 0,

so that a and j8 are both vectors in the plane bisecting chords

parallel to y.

Let OA, OB, OC he the vector radii parallel to a, /?, y
respectively ; then these lines are such that all chords parallel

to any one of them are bisected by the diametral plane

which passes through the other two.

We may term these lines conjugate semi-diameters, and the

corresponding diametral planes conjugate diametral planes.

It is evident that the number of sets of conjugate diameters

is unlimited.

We have then the following equations :

Sa<j>y = = Sy4>a.

They show that y is perpendicular to both <^a and
<j>f3,

and is therefore a vector perpendicular to their plane ; hence

y = a;F<^a<^/3.

In the same way, since <^y is perpendicular to both <* and (3,

we have

<j>y = yVaP;

or we have the following pairs of parallel vectors

:

y\\F4>a4,l3, li\\V4>o.^y, a||F<^^c^y,

0y||ra/3, <^/3||Fay, .^a
||
FySy.

Note also

upon which Hamilton founded his solution of linear equations.

63. Square Root of the Function <^. If we write yp\pp

for <^/o, \pp being still a vector, the equation of the ellipsoid

assumes the form

SpH^p)=-i,
i.e. S^P'pP = - 1

{^l.pf=-T{^Ppy=-\, (1)

which, if we put o-=^p, becomes Ta-=l, the equation of

a sphere.
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Hence the ellipsoid can be changed into the sphere, and

vice versd, by a linear deformation of each vector, the operator

being the function ^p (or 4>^) or its inverse.

The equations

Sa<f>p = 0, etc.,

now become Sa.tl'^/3 = 0,

i.e. Sipa.\j/I3 = 0, etc., etc (2)

(1) and (2) show that \j/a, ^/3, xj/y are unit vectors at right

angles to one another.

Calling the sphere 2V = 1 the unitrsphere, we may enunciate

this result by saying that any three vectors of the unitsphere

which correspond to a set of semi-conjugate diameters in the

connected ellipsoid form a rectangular system.

64. Cartesian Equivalents. Let us now take i, j, k

unit vectors along the principal axes of x, y, z; then we

have

p = xi + yj + zh, (1)

.•. Sip= -X, etc.,

so that for the sake of transformations in which it is desirable

that the form of p should be retained, we may write

p= -{iSip+jSjp + kSkp); (2)

and as 4>p is a linear and vector function of p, its vector

projections along the principal axes will be multiples of

iSip, jSjp, kSkp

;

we may therefore write

(iSip JSjp kSkp\ ,os

the particular multipliers having been chosen in order to

make the equation Sp<i>p = - 1

coincide with the Cartesian equation

x^ ip' z^
TU^ -I = 1
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As <i>P = -^i'P, (4)

we require to take \pp so that ^ operating twice in suc-

cession on p shall give the same result as ^ operating

once.

Now a comparison of equations (2) and (3) will show that

the latter operation introduces -^, etc., into /> ; it is evident

therefore that the former operation (i/') is to introduce -, etc.,

^p^-(^+i3l +^^\ (5)
\ flJ- C /

It may perhaps be worth while to verify this result. We

a h c )

a\ a b c ) '"

.v'Sip

_ /iSip jSjp kSkp\

\a^ ^ b^ ^ c^ )

= i>P-

fiSip jSjp kSkp\ ,„.

~~\r^^~b^^'~^)' ^
'

<j,-ip = - (aHSip + bySjp + c^kSkp), (7)

because 4"k'^p produces p.

1/-"^= -(aiSip + bjSjp + ckSkp), (8)

p = \p-'^\j/p= - (aiSi\pp + bjSjxpp + ckSkxpp) (9)

It is evident that the properties of Art. 44 apply to all

these functions.

65. This section contains a series of examples, chiefly

on the ellipsoid, chosen with a view to variety of treatment.

Other examples will be found at the end of the chapter. The
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student will find it a very good exercise to work through

by quaternionic method the theorems and problems given in

any recognised treatise on solid geometry— such as Salmon's

or Smith's.

1. Find the point on an ellipsoid, the tangent plane at which

cuts off equal 'portions from each of a given set of conjugate axes.

Let aa, 6/3, cy be the set of conjugate vector radii, a, fS, y
unit vectors. Then the vector to the required point may
be written

p = Xa + y/3 + zy.

Let p be the length cut off from each axis ; so that pa.,

pfi, py will be vectors to the tangent plane. Hence

Spa<f>p= - 1,

or Spa. (x4>a + y(f>fi + z4>y) = - 1,

1 a' „

or px=-^--j-= ^ = a\
^ oa<pa — 1

Similarly, py = b^,

pz= c^.

and p = -{a^a + h^^ + c'-y),

and - 1 = SiKpp

= —j.S{aaa + bb/3 + ccy) (a4>aa. + b<j>bf3 + c<f>cy)

a2 + J2 + c2
_=

9 >

.-. p = sJ^F+W+?.

Let X, y, z be the coordinates of the point, p the portion

cut off, then

p = xi + yj + zk.

Now pi, pj, pk are points on the tangent plane

;

.•. Spi(f>p=l,

which gives

,<?....)=.,
px_
a^
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Similarly, ff=l.

X _y ^

gi J2 c2 p Ja^ + b^ + c^

2. To find the locus of a point when the perpendicular from the

centre on its polar plane is of constant length.

Let CT be the vector to the point, then

Sp4>'^= - 1 is the equation of the polar plane,

and - 7— is the vector perpendicular on it

;

.••. (<^itr)2= -C^, by the question.

But {4>^)^ = S . 4)ZS<f>r;s = Sv^4>4i!Z = Szs^i'^-a

;

hence Sz:y<j>^TS= - C%
the equation of an ellipsoid whose Cartesian equation is

3. To find the surface enveloped by the polar planes with respect

to one ellipsoid ofpoints which lie on another ellipsoid.

Lot Sp<l>p = - 1, Sp<pp = - 1 be the two ellipsoids.

If a is a point on the latter, Saij/a = - 1, and the polar plane

to a has the equation

— 1 = Sprjia= Sp<f»l'~^\l'a = Sip~^<f>pyl/a.

Hence a=tf/''^(f>p,

and - 1 =Sp4>a' = Sp4)f-'''-(j>p, an ellipsoid.

4. The sum of the squares of three conjugate semi-diameters

is constant.

Let a, p, y be the semi-diameters; ^a, \pfij \py are rect-

angular unit vectors (§ 63).

Now a= -{aiSi\jja. + hjSj\pa + ckSk\jja); (64.9)

.-. {Taf= -a'^ = a'^{Si^aY + V^{Sj^Paf + c'^{Sk4>af,

{Tfif = a^Sixl^/if + ¥ {SJ4'lif + c2 {Smi)\

{Tyf = a' {Si4>yf + 6^ {Sj^yf + c^ {Sl^yf :
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adding, and observing that

we get

(Ta)2 + (3-/3)2 + (y^)2 = «2 + J2 + c%

i.e. a'2 + i'2 + c'2 = a2 + j2 + g2_

5. The sum of the squares of the projections of three conjugate

diameters on any of the principal axes is equal to the square of that

axis.

Let a, /3, y be conjugate semi-diameters ; then, since

a= -{aiSitpa + bjSjfa + ckSkil^a), (63.9)

Sia = aSiipa.

Similarly, Si/3 = aSixj/ji,

Siy = aSixpy

;

.-. (Siaf + (Si/S)'' + (Siyy = a'^{{Si^af + {Sixj^fiY + {Si4>yf

}

= a\ (31. Cor.)

because ^a, xpfi, \j/y are at right angles to on another (62)

But - Sia is the projection of To, along the axis of x ; and

similarly of the others. Hence the proposition.

6. The sum of the reciprocals of the squares of the three per-

pendiculars from the centre on tangent planes at the extremities

of conjugate diameters is constant.

Let Oi/j, Oy^, Oy^ be the perpendiculars.

oJp=-W^ (58)

{Siaf (Sjaf (Sko.)\
=^^+~F" +^^' ^^^- ^'

1 (Si/3)^ (Sjl3y {Si/3r
.

Oy^^ a* '^ h* (^ '

1 {Siyf {SjyY (Skyf

Oyi a^ '^ b* '^ c* '

-i44 (^^-^^
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7. A, B, and C are three similar and similarly situated

ellipsoids; A and B are concentric, and C has its centre on the

surface ofB To show that the tangent plane to B at this point

is parallel to the plane of intersection of A and 0.

Let a be the vector to the centre of C.

Spiip = -a the equation of A,

Sp4>p= —h B,

S{p-a)cf>(p-ci)= -c C
Now at the intersection of A and C, p is the same for both

;

therefore the equation of the plane of intersection is to be

found by subtracting the one from the other.

It is therefore 2Sp<^a = Sa<j>a - a + c

;

and the equation of the tangent plane to B at the centre

of C is Sir(pa = -h;

.•. both planes are perpendicular to <^a, and are con-

sequently parallel.

8. Two similar and similarly situated ellipsoids are cut by

a series of ellipsoids similar and similarly situated to the two given

ones ; and in such a manner that the planes of intersection are

at right angles to one another. Shoiv that the centres of the

cutting ellipsoids lie on another ellipsoid.

Let Sp<i>p= -1, (1)

S{p-a)4,{p-a)=-G, (2)

be the given ellipsoids

;

S{p-7r)4>{p-7r)=-x, (3)

one of the cutting ellipsoids.

1^ is the same for all because the ellipsoids are similar.

The plane of intersection of (1) and (3) is found by sub-

tracting the equations ; and is therefore

2Sp4>7r = Sir4>7r -l+Z.

The plane of intersection of (2) and (3) is

2Sp (4>Tr - <^a) = Stc^tt - Saij^a - C + X.
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The former of these planes is perpendicular to 4>Tr and the

latter to <;/>7r - 0a ; and, since by the question, the former is

perpendicular to the latter, c^tt is perpendicular to cjiTr - 4>a,

.'. iS^<^7r((^5r - <^a) = 0,

or S(jr-a)<^V = 0,

the equation of the locus of the centres of the cutting

ellipsoids.

It represents an ellipsoid of which the semi-axes are pro-

portional to the squares of the semi-axes of (1).

The Cartesian equation is

6* c* \,a*^6« ?)=<

9. Find the equation of the curve described by a given point

in a line of given length whose extremities move in fixed straight

lines.

This is a good example of the ease with which the

quaternion method attacks the most general case.

Suppose the lines not to meet, and take the origin half

way along the line perpendicular to both. Let y, -y be

the vectors perpendicular to the lines, and let a, (i be unit

vectors along the lines. Then the extremities of the line

of given length are determined by the vectors

7+a;a, -7+yA
and the vector of the point which divides this line in the

ratio of m to 1 is

{y + xa) + m{-y + yli)

or (\ +m)p = xa + my/3 + (l -m)y.

Also constancy of length gives

T{^y + xa-yl3) = l.

From the first of these two equations, we get

so that the extremity of p lies in a plane perpendicular to y.
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We also get, by operating by S . FfSy, S . Vya the values

of X and y, namely

xSa.liy = {\+m)SIByp,

ySa^y = (1 + m)Syap,

and finally

{2ySaf3y + {l +m)aS^yp-(l +m)l3Syap}^= -PS^a/Sy,

or, if 4y^ = - c'^,

S^^yp + S^yap + 2Sal3SI3ypSyap =-~~S^al3y.

Since y occurs in the second degree in every term, we may

multiply it throughout by any number. We may therefore

put in its place Fa/3, and so obtain an equation involving

only a, p, I, c, and m as constants.

If we write

<t>pS^a.Py = PySp (Py + yaSa(3) + yaSp (ya + /SySafi),

the equation becomes

5p<^p = (Z2-c2)/(l+m).

But (f>p is always perpendicular to V. /Syya, that is to Fa/3

or y. Hence the above equation is the equation of a cylinder

whose axis is parallel to y ; and the intersection of this

cylinder with the plane

gives the required elliptic locus. The dimensions of the

ellipse will depend upon I, c, and m. When c = 0, the path

is still an ellipse in the plane a^.

10. Tangent planes are drawn to an ellipsoid, from a given

external point, to find the cone which has its vertex at the origin

[the centre of the ellipsoid], and which passes through all the points

of contact of the tangent planes with the ellipsoid.

Let a be the vector to the external point, p a point in

the ellipsoid where a tangent plane through a touches it.
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Then the equation of the ellipsoid is

and the equation of the tangent plane

Sa(j)p= - 1, i.e. Sp(j>a= - 1.

The equation Spcjip = {Sp<j>a)%

.2

represents a surface passing through the points of contact;

and is the cone required. [For it is homogeneous in Tp.^

11. The equation p = Pa + u'^j3+(t + ufy is that of a cone

of the second order touched by each of the three planes through

OAB, OBO, OCA , and tlie section ABC through the extremities

of S A 7 *5 om. ellipse touched at their middle points by AB,
BC, CA.

(1) If the surface be referred to oblique co-ordinates parallel

to a, /3, y respectively, we shall have

p = xa + yl3 + zy,

therefore x=t-, y = u^, z=(t + u^,

or z = {Jx + Jyf = x + y+2jzy,
which gives (z-x-y)^ = ixy,

a cone of the second order.

(2) li t= -u, the equation becomes

P = <2(a + /3),

the equation of a straight line bisecting the base AB, which,

since it satisfies the equation relative to t, shows that this

line coincides with the cone in all its length; i.e. the cone

is touched in this line by the plane OAB.

Similarly, by putting < = 0, m = respectively, we can show

that the cone is touched by the plane BOC, COA in the lines

which bisect AG, CA.

(3) Restricting ourselves to the plane ABC, we have the

section of a cone of the second order enclosed by the triangle
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ABO, which triangle is itself the section of three planes each

of which touches the cone.

12. The equation p = aa + b/3 + cy with the condition

ab + bc + ca =

is a cone of the second order, and the lines OA, OB, OC coincide

throughout their length with the surface.

(!) It is evident that the equation gives

xy + yz + zx — 0.

(2) That if 6 = 0, c = 0, the question is satisfied by

p = aa,

whatever be a, therefore, etc.

13. The lines which divide proportionally the pairs of opposite

sides of a gauche quadrilateral, are the generating lines of a

hyperbolic paraboloid.

Let ABCD be the quadrilateral.

Ip AD, BC are divided proportionally in

P and R.

Let C^ = a, GB = ji, CD = y;
CB = ml3, DP^mDA;

i.e. CP -y = m{a-y);
therefore RP = CP -GB = y + m{a-y)-mji,

p=CQ = CIi+pBP
= m(i +p{y + m{a-y)- m/S}

= xa. + y^ + zy, say;

therefore x=pm, y — m~pm, z=p{\ -m);

therefore m = x-{-y, p-

Pig. 34.

X

x + y
X

z = X,
x + y

or {x + z){x + y) = x,

the equation referred to oblique co-ordinates parallel to a, /8, y.
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EXAMPLES TO CHAPTER VII.

1. Find the locus of a point, the ratio of whose distances from two
given straight lines is constant.

2. Find the locus of a point the square of whose distance from a
give^ line is proportional to its distance from a given plane.

3. Prove that the locus of the foot of the perpendicular from the

centre on the tangent plane of an ellipsoid is

4. The sum of the squares of the reciprocals of any three radii at

right angles to oue another is constant.

5. If Oy^, Oy^, Oy^ be perpendiculars from the centre on tangent

planes at the extremities of conjugate diameters, and if d, Q2, Qs be

the points where they meet the ellipsoid ; then

1 11 1 1.1

6. If tangent planes to an ellipsoid be drawn from points in a plane

parallel to that of xy, the curves which contain all the points of contact

will lie in planes which all cut the axis of z in the same point.

7. Two similar and similarly situated ellipsoids intersect in a plane

curve whose plane is conjugate to the line which joins the centres of

the ellipsoids.

8. If points be taken in conjugate semi-diameters produced, at

distances from the centre equal to p times those semi-diameters respec-

tively ; the sum of the squares of the reciprocals of the perpendiculars

from the centre on their polar planes is equal to p^ times the sum of

the squares of the perpendiculars from the centre on tangent planes

at the extremities of those diameters.

9. If P be a point on the surface of an ellipsoid, PA, PB, PC
any three chords at right angles to each other, the plane ABC will

pass through a fixed point, which is the normal to the ellipsoid at P

;

and distant from P by

-1(1. i lA

where p is the perpendicular from the centre on the tangent plane

at P.
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10. Find the equation of the cone which has its vertex in a given

point, and which touches and envelopes a given ellipsoid.

11. Find the locus of the points of contact of tangent planes to

an ellipsoid, when the tangent planes make a given angle with one

of the principal axes.

12. The sum of the squares of the three perpendiculars from the

centre on three tangent planes at right angles to one another is

constant.

13. If through a fixed point within an ellipsoid three chords be

drawn mutually at right angles, the sum of the reciprocals of the

products of their segments will be constant.

14. Establish for the central surface of the second order the theorems

of Poles and Polars corresponding to those established for the sphere

(§ 39).

15. If through a given point chords be drawn to an ellipsoid, the

intersection of pairs of tangent planes at their extremities all lie in

a plane parallel to the tangent plane at the extremity of the diameter

which passes through the point.

16. If a tangent plane be drawn to the inner of two similar con-

centric and similarly situated ellipsoids, the point of contact is the

centre of the elliptic section of the outer ellipsoid.

17. If two of a system of three rectangular vectors are confined

to given planes, show that the third lies in a cone of the second order

whose circular sections are parallel to the given planes.

18. Find the locus of a point, the sum of the squares of whose
distances from a number of given planes is constant.



CHAPTER VIII.

MISCELLANEOUS GEOMETRICAL APPLICATIONS.

66. Pascal's Hexagram. Let be the origin, OA, OB,

OC, OD, OE five given vectors lying on the surface of a

cone, and terminated in a plane section of the cone ABCDEF,
not passing through ; OX any vector lying on the same

surface.

LetO^ = a, 05 =A OC= y, OD=^S, OE = e, OX=p.

The equation

S. F{Fal3VSe)V{VI3yF€p)F(FySVpa) = (1)

is the equation of a cone of the second order whose vertex

is and vector p along the surface. For

1. It is a cone whose vertex is because it is not altered

by writing xp for p. Also it is of the second order in p,

since p occurs in it twice and twice only.

2. All the vectors OA, OB, OC, OD, OE lie on its surface.

This we shall prove by showing that if p coincide with

any one of them the equation (1) is satisfied.

If p coincide with a, the last term of the left-hand side of

the equation viz. Fpa, becomes Faa = Fa? — 0, and the equation

is satisfied.

If p coincide with /S, the left-hand side of the equation

S. F(Fal3FSe)F(FPyFel3)F{FySF/3a) (2)
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Now F{FI3yFef3) = - V( Fe^F(3y), (§ 30), is a vector parallel

to yS (§ 33), call it m/3 ; and

F.{F{ Fa/i FSe) F{ FyS FjSa)

}

= F . {F(Fal3F&^)F{FaPFyS)}

= a multiple of Fa.j3

= ?iFa/3, say.

Fig. 36.

Hence the product of the first and third vectors in ex-

pression (2) becomes
scalar + n Fa/B,

and the second is m/3 ; therefore expression (2) becomes

(§ 32) -S . (scalar + nFa/3)mlB

= mnS/3Fal3

= 0,

because Fa^ is a vector perpendicular to /8.

Equation (1) is therefore satisfied when p coincides with /?.

If p coincide with y both the second and third vectors are
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parallel to ^ (§ 33) ; therefore their product is a scalar,

and equation (1) is satisfied.

The other cases are but repetitions of these.

Hence equation (1) is satisfied if p coincide with any one
of the five vectors a, /3, y, 6, «; i.e. OA, OB, OC, OD, OE are

vectors on the surface of the cone.

3. Let F be the point in which OX cuts the plane

ABODE ; then ABGDEF are the angular points of a hexagon
inscribed in a conic section.

4. Let the plartes OAB, ODE intersect in OP ; OBC, OEF
in OQ OCD, OFA in OR ; then

V.VapV8e = mOP,

F.F/3yF^p = nOQ,

F.FySVpa=pOB;
therefore

S. F{Fal3FSi)F{FI3yFep)F{FySFpa)=mnpS{OP. OQ. OB)

;

hence the equation (1) gives

S{OP.OQ.OB) = Q,

or (§ 32) OP, OQ, OR are in the same plane.

Hence PQB, the intersection of this plane with the plane

ABCDEF, is a straight line. But P is the point of intersection

of AB, ED, etc.

Therefore, the opposite sides (1st and 4th, 2nd and 5th, 3rd

and 6th) of a hexagon inscribed in a conic section being

produced meet in the same straight line.

Cob. It is evident that the demonstration applies to any

six points in the conic, whether the lines which join them

form a hexagon or not.

67. CoNFOCAL Surfaces of the Second Order. Two
surfaces are said to be confocal when their principal axes

have the same directions, and when the squares of the lengths

of the corresponding axes differ by the same quantity. Thus,



138 QUATERNIONS. [Chap. viii.

if a^, b\ (? are the squares of the semi-axes of one surface,

then a^ + A, 5^ + ^, <?-\-h are the squares of the semi-axes

of another confocal with it. Here h may be positive or

negative.

Let o), CT be the appropriate linear vector functions, so that

iSip jSjp kSkp

a^ W' (?

iSip jSjp kSkp

a^Th~¥+h~J+h'

'"/'=-^2 - p

VSp= —

We have (ui= +_?_ ay-= + ^ a,i= + --

i
CTi= -t-^—r, etc., etc.,

a^ + h

or oi~H~a% (ii~'^j = by, (D~'^k = c"k,

zs-H = {a^ + h)i, m-^j={¥ + h)j, z^-^k = (c^ + h)k;

and, by subtraction,

and generally (ct"1 - a)"i)(0 = Ap.

Let a)~i = </), then to = 4>~^,

and CT = (<^ + /i)"^

Hence Sp4>~^p= -1 and iSp(<^ + A)~V= -1

represent two confocal quadric surfaces. Or generally

Sp{<j> + h)-''p=-l

represents a series of confocal quadric surfaces with para-

meter h.

From the expanded semi-Cartesian form or from the theory

of Chapter X., we see that, if a point p be chosen, there are

three distinct surfaces passing through it corresponding to

the three roots of the cubic in h.

Certain other properties of confocal surfaces may be

established with great ease by means of the quaternion form

of the equation.
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1. Let Sp<t>-^p + 1=0,

be two confocals having a common tangent joining the point p
on the one to the point o- on the other. The vector p-a- is

perpendicular to the two normals ^~V> ("^ + A)~^o-. Hence

S(p-cr)i>'^p = 0, S{p-a-){cl. + h)-^p = 0,

or 6><^-io- = -\=Sp{<t> + hy^a-,

and consequently

= hS<t>-'^p(4> + h)-'^a:

Hence the normals are perpendicular to one another, and

forni with the common tangent a rectangular system of

vectors.

The theorem will hold however close the two points are,

and will still hold when the points coalesce. Consequently

any two confocals which meet at a point intersect at right

angles ; and generally the three confocals which meet at a

point form a set of orthogonal surfaces.

This theorem also follows at once from the identity

si^+hrpi4.+hr^p=sp^^^P

_j_„ /_i i_)

2. Let (5/3</)"ip + 1=0 be the equation to one of three

confocals meeting at a point a. The central section by a

plane parallel to the tangent plane at a is given by the

two equations Sts4>~^o.= OA /,%

ScT<^-iCT=-l.J ^ '

Let S7 be one of the principal axes of the section, and

therefore perpendicular to the tangent line t, drawn from

its extremity. This same tangent line being in the plane
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conjugate to a is perpendicular to ^"^a, and being in the

tangent plane to the surface is also perpendicular to <^"iCT.

Hence CTc^'^ct and ^"^a lie in one plane, and we may write

CT + A^-lCT = ?/(^-la, (2)

where h and y are arbitrary constants. This gives at once

<^CT + to = ya, '

or 7S = y(<ji + h)~'^a.

To find h, operate on (2) by S . CT. The result is

ct2= +A, or A= -(rCT)2.

Now (4> -If h)'''-a is the normal to the confocal passing

through a. Hence the principal axis CT of the central section

conjugate to u. in the surface <^"' is parallel to the normal

to the confocal {4> - (TvsY)''^ which meets the surface ^'^

at the point a. The other principal axis of the same

central section will be parallel in like manner to the normal

to the other confocal.

Let p be the vector to any point common to the surfaces

4>'^, {4' + h)~^, and let <r be a vector radius to the surface 4'~\

parallel to {^i + hy^p, and therefore perpendicular to ^'^p.

That is (^ + A)cr|]/3,

or cr + ^<^ "V
II

<^
"

1/3.

Hence, operating \)j S .a, we find

o-2 + A,S'o-<^-ia- = 0, QV h= +0-2.

In words, a diameter (20-) in the quadric <^"i drawn parallel

to the normal to the confocal ((j> + h)''^ at any common point

of the two is of constant length.

If {(j) + h')~'^ represent the other confocal, then -h and -h'

are the squares of the semi-axes of the section of 4>~^ conjugate

to the vector to the point common to the three confocals.

Hence if p is the perpendicular on the tangent plane to ^"^

at the point p,

pjhh' = Q area of circumscribing parallelepiped, or
o

= abc.
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The quantity pjh' is the product of the perpendicular to

the tangent plane to ^~i and the semi-diameter of (/)~i parallel

to the tangent to the line of intersection of <^~i and (<^ + A)~i

at the point common to the three surfaces. Its value is

abc/Jh and depends only on the two confocals <^~i and

(^ + A)-i. Hence it is the same for all points in the line of

section of these two surfaces.

3. Given the confocal system (4> + hy^. The equation

Sp{4>+h)~''-T:i + 1=0 is the equation of the polar plane with

reference to the point CT.

Let this plane be given in position, and let its equation be

given in the form Spa +1=0. Then

{<f> + h)~'^r:y = a or m = (4> + h)a.

Hence Facr = Fa<^a = y,

a constant vector.

That is, the poles with reference to a series of confocals of

a given plane lie on a straight line parallel to a.

Thus, when a particular plane is regarded as the polar

plane with reference to a series of confocals, the corresponding

poles lie on a straight line which is perpendicular to the plane,

and which is therefore the normal at the point of contact to

the particular surface which touches the plane.

4. The equation Spcf>~''^p = - 1 may be written in the form

Sp<f^<f^p = S4,p-^'^p = {<f^pf = - 1,

so that T4>'^p= 1.

For a confocal surface,

Let us consider the relation between the points on these

two surfaces for which

4r^p = {<j> + h)-^p^ = a,

a constant unit vector.
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When this relation is satisfied, the points p, pj on the two

confocal surfaces are called corresponding points.

Let cr, o-j be another pair of corresponding points on the

same two surfaces, so that
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which in the limit will give the direction of the tangent to the

curve traced out by p. We have

neglecting higher powers of e.

Hence T = ^e(4> + hy^a = ^e{(ji + h)~'^p.

Thus T is parallel to the normal to the surface

^p(<^ + A)-i7= -1.

In other words the locus of corresponding points on a series of

confocal ellipsoids cuts the ellipsoids orthogonally, and is

therefore the line of intersection of two of the confocal

hyperboloids.

68. Veesor Equation of the Ellipse. We shall

indicate briefly another quaternion mode of discussing the

ellipse, leaving the student to fill in the steps.

As shown in Chapter III., § 25, the operator a* where

Ta=l, is a versor which acts on any vector perpendicular

to a so as to turn it through the angle -irx. When it

operates on any vector /3, the product a'^ is a quaternion

whose vector part, p=F. o."^, will trace out an ellipse.

Since a' is of the form Sa' + Fa", p is of the form

m^ + nVafi,

and lies in the plane whose normal is parallel to

Fj8F"a/3 = /35a/3-a/32.

Expanding a"' in the form

ttX . ttX
cos -y + a Sin

Y'

we find p = eos-2-. jS + siDyFa/i,

an ellipse referred to conjugate vector radii.
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From last section we may at once write down—or we may
deduce from the equation of the tangent—the expression

for the vector radius conjugate to p, namely

o- = - sin^ . ^ + cos ^ra/3 = F. a'+'IS.

The vectors /8 and Va.^ are perpendicular to each other;

no value of Tp can be greater than T/S ; hence /3 and Fix/J are

the major and minor semi-axes.

Evidently Fa,*||a=j9a, say.

Then So.Vo.^= -p = Sa.'+\

and Fa'^ -aSa'+\

By use of this equality it is easily shown that

Fpo-=F./3yal3,
as in § 52.

69. 1. The sum of the squares of ths areas of the faces of

all parallelepipeds, constructed on the semi-conjugate diameters of

an ellipsoid, is constant.

By § 64. 9, a = - (aiSiil'a + bjSj\jja + ckSkifa)

13= - {aiSii'/S + bjSji^lS + ckSkfjS)
;

therefore Fa^ = abk {Si^paSj4'fi - SiilyliSjr^a)

+ acj (Si>paSk^/3 - Si^^Sk^a)

+ bciiSJi^aSkip/S - SJi^lSSki'a).

Now Si^j^aSJ4'/3 - SiippSj^pa = SFijFi^^ij^a

= -Ski.y; (§63)

therefore Fa^ = - (abkSktj/y + acjSjipy + bciSixpy),

Fya = - {abkSk^pji + acjSj^^ + bciSixPJi),

F)8y = - {abkSk^a + acjSjxpa. + bciSixpa).

If now we square and add these expressions, observing that

because ^a, ^fi, 1/7 are unit vectors at right angles to one

another,

{Si^paf + {Sixj^lif + {Si^^yf = 1,

we shall have

{Fapf + {Fayf + (FI3yf=-{{aAf + {acf + {bcf},

which is the proposition to be proved.
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2. To find the locus of the intersections of tangent planes at the

extremities of conjugate diameters of an ellipsoid.

Let TT be the vector to the point of intersection of tangent

planes at the extremities of a, /?, y : then

TT = a + /? + y,

<jiir = (l:>a + <j)fi + (f>y,

and consequently

Sirtjiir = S{a + fi + y)(<f,a+(jif3 + 4>y)

= 5'a<^a + 5'/3<^^ + 5y<^7

= -3,

for all terms of the form Sa(f>fi vanish. This is an ellipsoid

similar to the given ellipsoid.

3. If 0, A, B, C, D, E are any six points in space, OX any

given direction, OA', OB, 00', OB', OE' the projections of OA, OB,

00, OD, OE on OX; BODE, ODEA, DEAB, EABC, ABCD
the volumes of the pyramids lohose vertices are B, C, D, E, A, with

a positive or negative sign according as the order of the letters

naming the angles at the base is right-handed or left-handed as

seen from the vertex ; then

OA' . BCDE + OB' . ODEA + OC . DEAB + OD' . EABC
+ 0E' .ABCD = 0.

Let OA, OB, OC, OD, OE be u, /3, y, S, e respectively.

Write for ^^(y - ,6) (8 - ^)(e - ji) its value

a{S .y8i- S .Scji + 8 . (fiy - S . jiy^),

and similar expressions for j3S{a. -y){8-y){i~y), etc., and

there will result, by addition,

aS(y-;8)(8-^)(.-^) + ^^(a-y)(8-y)(.-y)

+ yS(a-8)(/3-6)(6-8) + 85(a-e)(^-e)(y-£)

+ £5'(y8-a)(y-a)(S-a) = 0,

or, using the notation explained above,

OA . BCDE + OB . CDEA + OC . DEAB + OD . EABC
+ OE.ABCD = Q.

Now let TT be a vector along OX ; then the operation by

5 . ir on the above expression gives the result required.
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70. In some of the examples which follow, we will en

deavour to show how a problem should not, as well as how
it should, be attacked.

1. Given any three planes, and the direction of the vector

perpendicular to a fourth, to find its length so that they may meet

in one point.

Let Sap = a, Sfip = h, Syp = c be the three planes, and let 8

be the vector perpendicular to the new plane. Then, if its

equation be SSp = d,

we must find the value of d that these four equations may all

be satisfied by one value of p.

Formula (2), § 34, gives

pS . aPy = Fa/SSyp + F/3ySap + FyaS/ip

= cFa/3 + aFPy + bFya.,

by the equations of the first three. Operate by S .S, and use

the fourth equation, and we have the required value

dS .a.py = aS . /3yS + bS .yaS + cS . al3S.

2. The sum of the (vector) areas of the faces of any tetra-

hedron, and therefore of any polyhedron, is zero.

Take one corner as origin, and let a, fi, y be the vectors of

the other three. Then the vector areas of the three faces

meeting in the origin are

^f^afi, ^F/3y, 2^7"i respectively.

That of the fourth may be expressed in any of the forms

lF{y-a)(/3~a), 1 ^(a - ^) (y - /?), If(P - y)(^a - y).

But all of these have the common value

^F{y(3 + 13a + ay),

which is obviously the sum of the three other vector-areas

taken negatively. Hence the proposition, which is an

elementary one in Hydrostatics.
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Now any polyhedron may be cut up by planes into tetra-

hedra, and the faces exposed by such treatment have vector-

areas equal and opposite in sign. Hence the extension.

3. If the pressure, he uniform throughout a fluid mass, an

immersed tetrahedron (and therefwe any polyhedron) experiences

no couple tending to make it rotate.

This is supplementary to the last example. The pressures

on the faces are fully expressed by the vector-areas above

given, and their points of application are the centres of inertia

of the areas of the faces. The co-ordinates of these points are

|(« + /3), ^(^ + 7), |(y + «), ^{" + /3 + 7),

and the sum of the couples is

g r. ( Fa^S. (a + ^) + r^7 . (^ + y) + F-ya. (y + a)

+ V{yli + lio. + ay).{a + p + y)}

= -\V{ Fa/3. y+FPy.a+ Fya./S) = 0.

4. What are the conditions that the three planes

Sap = a, Sfip = b, Syp = c,

shall intersect in a straight line ?

There are many ways of attacking such a question, so we

will give a few for practice.

(a) pS . a^y = Fal3Syp + F/3ySap + FyaS/Sp

= cFal3 + aFI3y + bFya

by the given equations. But this gives a single definite value

of p unless both sides vanish, so that the conditions are

S.afty^O,

and cFa/3 + aFf3y + bFya = 0,

which includes the preceding.

(J) S{la-mP)p = al-bm

is the equation of any plane passing through the intersection
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of the first two given planes. Hence, if the three intersect in

a straight line there must be values of I, m such that

la. - m/S = y,

la-mb = c.

The first of these gives, as before,

S.a/Sy^O,

and it also gives

Fya= TO Faj3, F/3y= -I VajB,

so that if we multiply the second by Vafi,

laFa/i-mbFal3 = cFal3

becomes - a Ffiy - b Fya = c Fa^ ;

the second condition of (a).

(c) Again, suppose p to be given by the first two in the

form p =pa. + q/3 + x FajS,

we find a =po.'^ + qSafi, because SaFa.fi = 0,

b=pSali + qji^;

therefore

{p-xFa^)
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Similarly, S . a{yj^ - jiSjiy) = Sia/SF/Sy),

and S.a{aSI3y-ySa/3) = S.a{F.I3Vya)

= 5(a/3Fya).

The equation now becomes

S. a/3(cFa^ + aVfSy + hVya) = 0.

Now since S . aj3y = 0, a, /3, y are vectors in the same plane

;

therefore y may be written ma + n/S,

and c Fa/3 + aVPy + hVya.

assumes the form eVafi, which, unless e = 0, gives

S{a.liVaji) = 0,

or Vafi is in the same plane with a, fi ; but it is also perpen-

dicular to the plane, which is absurd ; therefore e = 0, or

cVafi + aVI5y + hVya=Q;

thus the third and prolix method leads to the same conclusion

as the first.

5. Find the surface traced out by a straight line which remains

always perpendicular to a given line while intersecting each of two

^ixed lines.

Let the equations of the fixed lines be

CT = a + xfi, CTj = aj + Xj^j.

Then if p be the vector of the new line in any position,

/j = CT + y(nTj-CT)

= {\~y){<x + x!3)+y{a^ + x^P^).

This is not, as yet, the equation required. For it involves

essentially three independent constants, x, Xj, y; and may

therefore in general be made to represent any point whatever

of infinite space. The reader may easily see this if he reflects

that two lines which are not parallel must appear, from every

point of space, to intersect one another. We have still to

introduce the condition that the new line is perpendicular to a

fixed vector, y suppose, which gives

S . y (CTj - CT) = = -S . y [(aj - a) + Xj/?! - a;/3].
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Ttis gives Xj in terms of x, so that there are now but two

indeterminates in the equation for p, which therefore represents

a surface, which, it is not difficult to see, is one of the second

order.

6. Find the condition that the equation

S.p4>p= -1

may rep'esent a nurface of revolution.

The expression <^p here stands for something more general

than that employed in Chap. VII. above, in fact it may
be written

4,p = aSa^p + ^S/3-^p + ySy-^p,

where a, a^, /?, fi^, y, y^ are any six vectors whatever. This

will be more carefully examined in the next chapter.

If the surface be one of revolution then, since it is central

and of the second degree, it is obvious that any sphere whose

centre is at the origin will cut it in two equal circles in planes

perpendicular to thefraxis, and that these will be equidistant

from the origin. Henbe, if r be the radius of one of these

circles, t the vector to its centre, p the vector to any point

in its circumference, it is evident that we have the following

equation,

Spcj^p + 1 - C{p^ + r2) = (&p)2 - e^

where and e are constants. This, being an identity, gives

l+g2_C,.2 =
\

Sp<l.p-Cp^ = {Seprr

The form of these equations shows that C is an absolute

constant, while r and e are related to one another by the

first ; and the second gives

4>p = Cp + tSep.

This shows simply that <S^ . iprj>p = 0,

i.e. e, p, and <t>p are coplanar, i.e. all the normals pass through

a given straight line ; or that the expression

Fp<l>p,

whatever be p, expresses always a vector parallel to a par-

ticular plane.
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7. If three mutually perpendicular vectors he drawn from a

point to a plane, the sum of the reciprocals of the squares of their

lengths is independent of their directions.

Let 5ep=-l

be the equation of the plane, and let a, fi, y be any set of

mutually perpendicular unit-vectors. Then, if xa, yJ3, zy be

points in the plane, we have

xSa.f.= - 1, yS/3£= - 1, zSye= - 1,

whence e = - {aSae + [iSjit + ySye) (64.2) = - + ^ + ^.
X y .z

Taking the tensor, we have

x^ y' z-'

8. Find the equation of the straight line which meets, at right

angles, two given straight lines. •, -^

Let zs = a + xj3, CT = ttj -FXj^j,

be the two lines ; then the equation of the required line must
be of the form

CT=ci2 + a;2r/3/3j,

where a^ only needs to be determined.

Since the first and third equations denote lines having one

point in common, we have

S.ji V/3/3^{a -a^) = 0.

Similarly S . /S^ Vfi^^{a^ - ^2) = 0-

Let a^ = y/3 + y^Pi^

(it is obviously superfluous to add a term in V/Sfi^), then

S.al3F(3fi,=yJ^FfBI3„

S.a,^,Fpp,= -yT^ri3l3„

and, finally,
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9. IfTp=Ta=TI3=l, and S.a/3p = 0, show that

S.U{p-a)U{p-fi) = ^l{l-Sa/i).

Interpret this theorem geometrically.

We have, from the given equations, the following, which

are equivalent to them,

P'-
= a2 = /32= _n
p= xa. + yl3

/

Hence -x^-y^ + 2xySaf3 = -1,

u{p - a) = ,

(^-i)"+y^
^ ' J{x-iy-2{xy-y)Sal3 + y^

u{p - 13) = ^-+(y-^)P

S.U{p-a)U{p-li)

-x(x -l) + [xy + (x- l){y-l)]Saf3-y{y-l)

^a;2 +2/2- 2a;+ 1 - 2{xy-y)Sa^sJx'^+y'^-2y+\ - ^{xy - x)Sa^

x + y-{x + y-l)Saf3-l
^

n/2 - 2a; + 2ySa/3 j2-2y + 2xSa(3

{x + y-l){l-Sa/3)

2J{1 -x-y){\- Sa(i) +xy{l- {Safif

)

x + y- 1 / 1 - Saj3 ~
2 yl\-x~y + xy{l+Sal3)

X + V-\ I
1 -Sa/3

X - y + ^{2xy + x^ + y^ - 1)

x + y-1
I

l-Sa/S

•J2 y l-2(x + y)+x'^ + y^ + 2xy

= ±^Jl(l-Sa/i).

Of course there are far simpler solutions. Thus, for instance,

the given equations show that p, a, fi are radii of some unit
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circle. Hence the expression is the cosine of the supplement

of the angle between two chords of a circle drawn from the

same point in the circumference. This is obviously half the

angle subtended at the centre by radii drawn to the other

ends of the chords. The cosine of this angle is

and therefore the cosine of its half is

4l{l-Sa(3).

10. Find the relative position, at any instant, of two points,

which are moving uniformly in straight lines.

If a, P' be their velocities, t the time elapsed since their

vector positions were a, /3, their relative vector is

p~a + ta'-/3-t/3'

= {a-l3) + t(a'-f3'),

so that relatively to one another the motion is rectilinear, and

the relative velocity is

a - /3'.

To find the time at which the mutual distance is least.

Here we may write

p = y + t&,

Tp^= _ y2 _ 2i!5'yS - <2S2

As the last term is positive, this expression is least when

it vanishes, i.e. when
t= -S.yS-\

This gives P = y- ^Sy& ' ^

= yFS-iy,

the vector perpendicular drawn to the relative path ; as is, of

course, self-evident.
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11. Find the locus of a given point in a line of given length,

when the extremities of the line move in circles in one plane.

(Watt's Parallel Motion.)

Let o- and t be the vectors of the ends of the line, drawn

from the centres a, (i of the circles. Then if p be the vector

of the required point

p = (a + o-)(l-e) + e(/3 + T),

subject to the conditions

Sytr^Q, SyT= 0,

0-2= -a^ t2= -J2.

From these equations a- and t must be eliminated. We
leave the work to the reader. There is obviously an equation

of condition

S.y(/3-a) = 0.

12. Classify the curves represented by an equation of the form

_ a + a;/3 + a;2y

a + hx + cx'''

where a, (3, y are given vectors, and a, b, c given scalars.

In the first place we remark that x- in the numerator merely

adds a constant vector to the value of p, unless c = 0.

Thus, if c do not vanish, the equation may be written, with

a change of a and /i and in general a change of origin,

_ a + xfi .

a + bx + cx^'

and this again, by change of x and of a. and /3, as

a + co^'

It is obvious that this represents a plane curve.

.

,

Sap _o? + xSo.fi

S^p^Sa/S + x/S^'
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Hence both numerator and denominator of x are of the first

degree in Sap, SjBp ; and therefore

a? + xSaP
bap =

a + cx^

gives an equation of the third degree in p by the elimination

of X.

When we have iS'a/3 = 0,

Sap

S/Bp-

whence

a + cx^

xl3^

a + cx"^'

a?S^p

and a{Sapy- + c^^{SI3py- = a^Sap,

a conic section.

If c = 0, then with a change of x, a, (3, y, the equation may

be written

P = l
+ l3 + ^7,

ft

a hyperbola—so long at least as b does not also vanish.

If b and c both vanish, the equation is obviously that of a

parabola.

If a and b both vanish, whilst c has a real value, we have

again a parabola.

If a vanish while b and c have real values, we have again a

hyperbola.

13. Find the locus of a point at which a given finite straight

line subtends a given angle.

Take the middle point of the line as origin, and let ± a be

the vectors of its ends. At p it subtends an angle whose

cosine is

-SU{p-a)U(p + a).
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This, equated to a constant, gives the locus required. We
may write the equation

a?-p^ = cT{p-a)T{p + a).

This is, obviously, a surface of the fourth order ; a ring or

tore formed by the rotation of a circle about a chord. When
c = 0, i.e. when the angle is a right angle, the two sheets of

this surface close up into the sphere

A plane section (in the plane a, /3 (suppose) where Tji = Ta

and Safi = 0) gives

p = xa + yl3,

or {l-{x^ + y^)Y = c^{(x^ + y^+lf-4:X^},

or, finally, 1 -{x^ + y^) = ±
2cy

s/r

which, of course, denotes two equal circles intersecting at the

ends of the fixed line.

14. A ray of light falls on a thin reflecting cylinder, show that

it is spread over a right cone.

Let a be the ray, t a normal to the cylinder, p a reflected

ray, /? the axis of the cylinder.

Then t is perpendicular to ji, or

SI3t = (1)

Again p and a make equal angles with t, on opposite sides

of it, in one plane ; therefore

p II
TaT

or F.TaT/D = (2)

Eliminating t between (1) and (2) we have

a2 \SafiJ
'

the equation of the right cone of which /3 is the axis, and a a

side.
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EXAMPLES TO CHAPTER VIII.

1. Find the equation of the surface described by a straight line

which rotates about a fixed axis, the axis and straight line not being

in the same plane.

2. Find the locus of a point whose shortest distances from two
straight lines have a constant ratio.

3. Find the equation of a sphere circumscribing a given tetrahedron.

4. A straight line intersects a iixed line at right angles and turns

uniformly about it while it slides uniformly along it. Find the equation

of the surface described (1) when the fixed line is straight, (2) when it is

circular.

5. Find the equation of the surface described by a circle which is

made to rotate about any chosen axis in its plane.

6. Show that the equation Sp(t>p= -1 may be expressed in the

following forms :

Sp[gp+V}^p/i)=-l,

X and /J, being normals to the circular sections, and g a scalar constant

;

a(Fap)2+ 6(S^p)2=-l,

where a and b are constant scalars, and a, /3 constant vectors ; and

I, K being two vector constants, which are real only when the equation

is that of the ellipsoid.

7. Show that the equation of the surface generated by lines drawn

through the origin parallel to the normals to 8prt>~'^p= -I along its

lines of intersection with the confocal surface {0 + /i)"' is

7ff^-hSv;{^ + h)-^7n=0.

8. Show that the equation

P{e'^-l){e + Saa') = {Sapf-2eSa.pSa'p + {Sa'pf + {l-e^)p\

where e is a variable scalar parameter, a a' unit vectors, and I a given

scalar, represents a system of confocal surfaces.

9. Find the positions of the generating lines through any point of

the hyperboloid Sp<pp= - I.

10. Find the locus of all points on Sp<f>p= -1 where the normals

meet the normal at the point a.



CHAPTER IX.

DYNAMICAL APPLICATIONS.

71. Differentiation of Quaternions. In the follow-

ing dynamical applications we shall assume the simpler

processes of differentiation and integration as in ordinary

analysis. In general, time will be the independent variable

flowing continuously ; and in terms of it the rates of

change of other varying quantities are expressed. When a

scalar quantity, such as x, is varying continuously its rate of

variation at any instant will have a definite value, and this we

shall, following Newton, represent by the notation x. The

more usual notation dx will also be used when necessary.

There is no difiiculty in extending the methods of the

Differential Calculus to quaternions and functions of quater-

nions if we bear in mind the non-commutative character of

quaternion products.

For example, if ^ = «/?, then the rate of change is

q = al3 + a$= F{a^ + a$) + S{k/3 + a/3).

Hence it follows that the symbol of differentiation is com-

mutative with the selective symbols ?^and S. Thus

dFp<T=F{dp.,T)+Vpda.

Again the rate of change of the product ^j is pq+pq.
An interesting case is the rate of change of q^ or qq. Its

value is
, no

qq + qq==2Sqq.
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d
i(p^)-2^,A

Similarly

But since p^ = - {Tpf,

its rate of change may also be expressed in the form

-2Tpj^{Tp)=-2TpTp.

Hence Tp-
Tp

Spp = - Sp Up.

This symbolizes the obvious geometrical truth that the rate

at which the length of p changes is the resolved part in the

direction of p of its

complete vectorial ^~

rate of change (see

Fig.36).

We may also

derive geometrically

the value of
dt
(Up) Fig. 36.

or Up. For by comparison of two different expressions for

the vector area of the triangle shown in the figure, we
obtain in the limit

F.pUpTp^F.pp.

But Up being tangential to the sphere traced by Up is

obviously perpendicular to p ; hence we may drop the symbol

V on the left hand side, and the result is

pUp=-F.pUp,

Up=-p~W.pUp =~^-
This result {Tp being assumed) may also be obtained from

the identity

f>
= J^(TpUp) = fpUp + TpUp.

These examples will suffice to indicate the precautions that

must be taken in differentiating quaternion quantities.
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72. Dynamics of the Centre of Mass. li A, B are

successive positions of a moving particle, the change of

position is the vector AB, and the velocity will be the limit-

ing ratio of this vector to the time taken as the distance

AB is made smaller and smaller. Hence if p represents

the vector position of a particle, its velocity p will be a

tangent to the path.

Draw from any origin the quantities p in every position p.

Then as the particle describes its path, the end of the velocity

p will describe a curve. This curve is called the Hodograph,

and its radius vector cr is equal to p.

Now just as p represents the rate of change of p, so will 6-

or p represent the rate of change of p. The same process

which gives p from p gives p from p. The quantity p is the

acceleration.

Introducing the mass of the particle, we have

mp, the mass vector,

mp, the mass velocity or momentum,

mp, the mass acceleration or the force.

When there are a number of particles forming a system,

free or connected in any way, the vector position of the

centre of mass is given by the equation (§ 13)

a-2M = S(m/3), (1)

and its velocity and acceleration are

Ump .. _ ^mp
" ini

'

2m
'

Each particle may be supposed to be acted upon by an

externally-applied force y, and to be subject to an internal

force y due to the stresses between it and the other particles

of the system. For each particle

mp = y + y'
(2)

Hence for the whole system

o-Sm = 2(m/)) = 2(y + y').
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But since between any two particles the mutual action
consists of equal and opposite forces (Newton's Lex III), it

follows that when the whole system is taken into account

2y' = 0.

Hence , ifS?n = 2y, (3)

or the centre of mass moves as if the whole mass were con-
densed there and acted upon by the vector sum (or resultant)
of all the external forces acting on the system.

Again, if we operate on (2) by F. p, we get

mFpp=F.p(y + Y),

and summing for the whole system

2mFpp=^-2.Fpy,

^Fpy' vanishing if we suppose that the forces between the
particles are in the lines joining them. Putting p = a--|-CT,

where CT is the position referred to the centre of mass, we find

27n F((r + CT) (6^ + ST) = 2 . F{<t + 57)7.

Since a-, a- refer to a definite point they may be taken outside

the summation symbol, and since the quantities Stoct, Smcr
vanish by (1), we find

F(T'&lm + 'SmFnjis= Fa^y + SFSTy,

whence by (3) 'SmFrsib = '2,Fv;y (4)

But ^ FcJCT = F. CTcJ + r. CT& = Fv5m,
at

since iXJCT or ct^ is essentially scalar. Hence we may write

(4) in the form ^ImFxsTis = l,Fv;y (4)
(It

In words, the moment of the applied forces about the

centre of mass is equal to the rate of change of the moment
of momentum of the system about the same centre.

73. EiGiD Body with one Point fixed. Let the system

be a rigid body with one point fixed. Then (§ 30) the dis-
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placement of any point due to the resultant (small) angular

displacement e about axis e is

p — p= Veep.

Dividing by the short interval of time and passing to the

limit, we find for the velocity of the point p the expression

p = Fap,

where to represents the angular velocity, that is the angular

speed T(a about the axis parallel to Uui.

The momentum of the mass m at this point is mV<i>p, and

the moment of momentum is V.mpViap, or simply mpVap,

since identically S . p Vmp = 0. Thus the moment of momentum
of the whole mass is

p. — ^Ip Vuip = 4>li>, ( 1

)

where
<f>

is evidently a self-conjugate linear vector function

depending on the distribution of matter in the body (see

§§ 45, .57, 64, but especially next chapter).

To find its significance, operate by S . <o, and we find

Sox^o) = 2m ( ra)/))2 = 2m
(
FUoipfl'^oi.

Now y:m{TFUiop)'^ is the moment of inertia about the

axis (1) and T(u is the angular speed. Hence - Soi(f>uj represents

twice the kinetic energy of rotation.

If no couples act on the body, the kinetic energy and

moment of momentum are each constant ; hence

,S'a.<^2^= p? /'
^'''

and the intersection of these two ellipsoids gives the cone in

space described by the axis of spin. Its equation is

The second equation of (2) may also be written, Tp.= T4><o

;

so that the perpendicular on the tangent plane at the

extremity of (o to the ellipsoid <^ is constant. Hence this

ellipsoid rolls on a fixed plane perpendicular to p..
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74. The Spinning Top. In the case of the ordinary

spinning top the couple acting on the body may be written

FySa, where /? is a unit vector drawn along the axis which
passes through the centre of mass, and a the vector drawn
vertically downwards with tensor equal to the product of

the weight of the body and the distance of the centre of

gravity from the origin.

Since ji is the vector position of a point in the body

$=V>.li (1)

The dynamic equation is

Vfia = (L = -r-'2,m Fpp = 2m Vpp.

Hence, since p = V(op, p = Vil>p + Vio'p,

we find, after a slight transformation,

V^a = "EmpVwp + ImV. <aVpV<>sp

= <jia)+ V<ii(j)<ii (2)

Operating by iS". <u, and using (1), we get

S/3a = Sot/ia = Soiffxi} = ^-jrSw<f>ca,
(It

because the term Voxjuo in 3-(<^u) vanishes when operated

onhy S. (o. Thus we get the energy equation in the form

- ^Soi(t>o> + (SySa= h\ a constant (3)

This of course could have been written down at once.

Since <^ is a self-conjugate linear vector function, we

may put

(f>(o— - AiSioi - BjSjui - CkSko),

where ijk are unit vectors fixed in the body ; and from the

meaning of Suxjxj} we readily deduce that these unit vectors

are parallel to the principal axes of inertia and that ABO
are the corresponding moments of inertia.

For simplicity, as in the case of the ordinary symmetrical

spinning top, let A=B ; then since

(0 = - iSi(i> -jSjo) - kSka>,
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we get, multiplying by A and subtracting from the former

expression, the particular form for <^cd, namely,

4>(a = A(o-{C- A)kShiii

= A^-(C-A)l3Slio>,

if we take k = /3.

Equation (2) becomes, by differentiation of 4>(ii, and by

use of (1),

FI3a = Ai>-{C-A)l3SI3ii>-{C-A)F<ol3S/3w (2)

Operate hy S . P, and there results

= ^Si8<i + (C - A)SI3^ = CS/i<L.

But by (1) S$(.> = 0, hence

and (SySo), which measures the angular speed about the axis

of figure, is constant.

Equation (2) takes the simplified form,

F/3a = A(^ - (C- A) Fi^lSSfiu,

= A<1> + {C-A)j3.c, (4)

where c (= - Sfiio) is the constant angular speed about the

axis of figure.

Byuseof <o/3 = Fio/J + SwyS = /J - c, (5)

we may eliminate either fi or <o, and find the equation

satisfied by w or /3. The w equation is somewhat complex

(see Tait's Scientific Papers, Vol. I., p. 126); but that in jS is

comparatively simple and is easily obtained. For, multiply-

ing into /3 and taking the vector part, we find

and w=-Ffil3 + $c.

Hence substituting in (4), we get

AFI3/3 + Ccl3=FPa (6)



Art. 74.] DYNAMICAL APPLICATIONS. 165

If the second term be omitted, the equation becomes

identical in form with the equation of motion of the conical

pendulum.

Operate on (6) in succession by S. F)8/5, S .a, and S. Fa/3,

and integrate the first two. There result

^AF^I3$ = Sa(3 + H\ (7)

ASal3j3 = H'-CcSal3 (8)

JSa{ -P- /SS/S^) + CcSa^^ + V^Pa. = (9)

Eliminating »S^a^ between (7) and (8), we find that the

vector Vfifi describes a curve on a spherical surface whose

centre lies in the vertical line <j..

Equation (7) is one form of the energy equation (3), and

may be written

+ ^A^ = Sali + H\ since S/3i8 = 0.

Also, differentiating 8(3^ = 0, we find

Hence substituting in (9) from (7) and (8), and making

a few transformations, we get

ASa$ = 3S^a/3 + 2Sa.p(H^ -^\ +^ + a\

and finally, multiplying by Sa.(i and integrating,

^AS^aP = S^a/3 + S^a/3(m -^) + SafSf^+aA + K.

If we put Sa^ = 0, we get the usual cubic for determining

the limiting positions of the top.

Returning to the fundamental equation (6), let us study

the simple case in which the precessional motion is steady,

the axis /3 describing a right cone about i^.

Evidently ^WF^a; and if a is the precessional angular

speed,

T$ = aTF/BUa=~TFI3a.
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Hence fi^^V^a,
X fit

and FP^=-^^F(BaSal3.

Hence equation (6) becomes in this case

-J-^Sal3+Cc-^ = l,
I 'a. la

or - ^a^cos d+Cca-Ta = 0,

where 6 is the inclination between ft and - a. Writing

Ta= mgh, we get the usual quadratic equation expressing

the precessional angular speed a in terms of the rate of

rotation c about the principal axis, namely,

^a^cos 6 - Cca + mgh = 0.

75. Mutual Action of Magnets. When a magnet

with pole-strength m and vector length /t/m is placed in

any position in a uniform field of force /8, the couple acting

on it is

' m '

"^

tending to bring /x parallel to /3.

The quantity /x, the product of the pole strength into

the distance between the poles, is called the magnetic moment

of the magnet.

The work done in moving the magnet so that the positive

pole moves against /3, and the negative pole with ji, is

But the work done in bringing from infinity the positive

and negative poles to such positions that the vector /x lies

perpendicular to /3 is evidently zero. Hence the integral

of SfSd/i, namely, S^f-i, measures the potential energy of
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the magnet /x in the field (3, being equal to the minimum
value - TfiTfj- when /i is co-directional with P, to the maxi-

mum value +T^Tii, when /i is turned the other way, and

to zero when /x is perpendicular to /3.

Let the field /? be due to a second magnet A. with its

centre at the origin ; and let p be the vector position of

the centre /x. Both magnets are supposed to be short

compared to their distance apart. Considering the action

of the individual positive and negative poles at the extremities

of the short vector \/n, n being the strength of the positive

pole, and assuming the law of the inverse square, we have

for the force at the point p,

JU{p-^l2r^_U(p+XI2ri)\
^ \T^{p-X/2n) r(p + \l-2n))

-'{
p-XjIn p + )^/2n

{-p^ + Sp\/nf (p^ + SpX/nf

neglecting {\/2nf in comparison with p^. Expanding each

denominator by the binomial theorem, we find

= ±-{-X + SpSXp-^) (1)

Hence the couple acting on p. because of A is

VPp. = ^(Fia+3VppSXp-^) (2)

Similarly, the couple acting on A because of p- is

±-^{Fkp. + 3FpXSpp-^) (3)

The mutual potential energy of the two magnets is

Sfip = jj^(
- SXp + SSp^pSkp-^)

= ^{-SXp-3Sp.UpS\Up)

_ SXp SSppSkp
" T^p T^p
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To find the translation force acting on either magnet,

calculate the increment of this expression when p becomes

p + dp. This is equivalent to differentiating the expression,

p being the only variable. We find for the work done

in effecting this displacement against the force, the ex-

pression

SdTpSXp. 1 5SiJ.pSXp . dTp SS/idpSXp + SSfipSXdp
+ fip + j'dp fip

^ f
-iUpSXp. l5UpSp.UpSkUp ip.SXUp 3\Sp-Up

]
''{ T*p T^p T*p Tip

j

_ j
3Up(-SXp-5Sp. UpSX Up) Sp.SXUp 3XSp.Up]

-^"^Pl T^p fTp fif-j-

The part in the brackets represents the total force against

which work is done during the small displacement dp. It

consists of three parts, one parallel to p, and the others

parallel to the axes of the two magnets—all varying inversely

as the fourth power of the distance. The couples acting

on the magnets vary inversely as the cube of the distance.

As a particular case, let X be set parallel to p, and p.

perpendicular to p, and the two magnets to be in the same

plane. Then the couples are

on A, -^^Xp. = -^,
so that the couple acting on the one is twice the value of

the couple acting on the other. If we suppose the two

rigidly fixed together, the system seems to be acted upon

by a couple equal to -3p,X/T^p. But then the translational

force acting on either is equal to +-~— ; and these two equal

and opposite forces give rise to a couple +3p.X/T^p acting

on the system. Thus the system is held in equilibrium.
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The general proposition may be easily established that,

if the magnets are fixed relatively to each other by a rigid

framework, the sum of the couples acting on the two magnets
is balanced by the moment of the translational forces acting

on them.

76. Field of Force and Potential ; Properties of

Nabla (v). In a field of force, gravitational, electric, or

magnetic, the force /3 at any point has a definite magnitude

and direction. The work done by the force /? acting through

distance dp is - Sfidp ; and the integral of this along any

path connecting two points is defined as measuring the

difference of potential between the points. If dp is perpen-

dicular to yS, this expression vanishes and no work is done,

dp is then an element in an equipotential surface.

The field may be imagined as mapped out by a series of

surfaces u = c, where « is a scalar function of the position p

and c a parameter which is constant for any one surface and

varies as we pass from one surface to another. Let c be

chosen so as to measure the work done against the forces in

bringing up from infinity unit mass of the matter acted upon.

Then if we pass from one surface to another near it the change

du = dc will measure the difference of potential between the

two surfaces, that is, the work done in passing from one to the

other.

Since « is a scalar function of p, its differential will consist

of terms, each of which contains dp once. We may write du

in the form Svdp, where v is a vector function of p. If dp lies

in the equipotential surface, du = 0, and therefore Sfdp = 0, so

that V is a vector parallel to the normal to the equipotential

surface at the point p. Hence we may write

du--=dc= -S/3dp (1)

where /S ( = - v) is the force associated with the equipotential

system of surfaces u = c.



170 QUATERNIONS. [Chap. ix.

It is clear that /S the force is derived from u the potential

by a definite analytical process involving differentiation. Let

V be the operator which derives /? from u, so that /3 = ^u. It

is defined by the equation

du=-SdpVu (2)

The vector quantity Vm is such that when resolved in

direction dp and multiplied by the length of dp it gives a

quantity which measures the work done in passing from the

one to the other equipotential surface passing through the

extremities of dp. It is in fact the force due to the potential

u and acts in the direction of u diminishing.

Let dp be written in the form idx where i is unit vector

parallel to dp and dx is the tensor of dp. Then (2) may be

written

du= - SidxVu,

or -=-= -SiVu,
ax

giving the rate of change of u per unit distance in any assigned

direction i.

For three perpendicular directions i, j, h, we have

^=-SzV«, ^=-^iV«, **=-SW«.
dx dy •'

dz

But the vector

Vm = - iSi^jU -jSjVu - kSkyu

/ d . d
J
d\ ,.,.

=(*^+^5:v+^e)"'
(-^^

which assigns the analytical expression for V in terms of the

rates of change along any three perpendicular directions. It

was in this form that Hamilton first defined the operator V.

From (3) we can at once verify that SiVu = — du/dx, and so

on ; and we see that we may form the operator SiV first and

then operate on the scalar function u, or we may form Vm first

and then operate hy S .i; symbolically

SiVu = SiV.u (4)
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Since any vector o- may be written in the form

(r = ui + vj + wk

where u, v, w, are scalar functions of p, we find

d(T = du.i + dv.j + dw.k

= - SdpV . [ui + vj + wk)

= -SdpV.cr, (5)

a vector quantity which is necessarily different from the

scalar quantity - SdpVa-. Thus the identity (4) does not hold

when a vector is the operand.

Returning now to the discussion of the potential let us take

the equipotential surfaces to be parallel planes, or

M = - Sap = C,

then du= -Sadp= -SVudp,

or VSdp = -a,

giving a a constant force perpendicular to the planes.

Let M be a function of the distance {Tp=r) from the origin,

siiy,u=f{Tp). Then

du=f'(Tp) . dTp= -f\Tp) SUpdp= - SVudp.

Hence '^f(r)= Upf'(r).

For example let f{Tr) = ar= aTp. We find f'{r) = a, and

f=aUp, so that the force is radial and constant in magni-

tude throughout all space.

Again let u =f{r) = ar-\ f'(r) = - ar'^, so that

V«=-^-^^ (6)

the important law of the inverse square, including the

dynamic theories of gravitation, electricity, and magnetism.

Again let u depend upon the distance from a given axis.

If a is unit vector along this axis, TVap is the distance of
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any point from the axis, and

u=f{TVap),

du= -SUVapVadp.firVap)

= - Sdpa--^ UFap ./' (TFap).

The force will have the value aa-^UVaplTVap if f(TFap)

= a\og pTVap, the potential for cylindrical distributions.

77. Potential due to Distributions of Matter. The

potential of a continuous distribution of matter may be

written in the form
' mdv

Tp'

where m is the mass in unit volume, dv is the element of

volume, and the integration is taken through the region

occupied by the attracting matter. Tp is the distance between

the element dv and the point P at which u is the potential.

The force acting at F is

Vu = V

since V may be taken inside the integral or summation

symbol and act on each term separately. Hence

Up
Tp^'

Then

3

Vu =

Apply V a second time.

-I
mdv- rrdv^^

V% = mdv (

mdv i

I

Tp^ Tpi

mdv I -—+^-,

VTp.p

3Up.p\

(7)

This vanishes for all finite values of p. Hence if P is wholly

outside the attracting matter V^u = 0. If P is a point occupied
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by attracting matter V^m may have a value, which must
depend solely upon the matter at P. For we may draw a
small closed surface round P and consider the potential at P
to consist of two parts Mj and u^, the former being due to

matter within the small closed surface, the latter to matter

without it. But, since u = u-^ + u^we have Vhi = V^v^ + V%2, of

which the latter necessarily vanishes. Hence Vhi = V^Mj.

The value of Vhi^ is most easily found by considering the

value of V/3, where /8 is any vector function of p. Let ji be

the value at p the centre of the small parallelepiped,

whose edges are idx, jdy, kdz. At the face p + 1 idx, the value

of p changes to /? - ^ dxSiV . fS, and multiplying by + idydz,

the vector area, we get the whole value over the surface

element. Similarly, on the opposite end, looking the other

way, the value of the corresponding quantity is

(/3 + ^ dxSiV . /3) X -id

Hence adding we obtain - iSiSJ . ^dxdydz. Similar expres-

sions are obtained for the surface integrals on the other

faces ; and adding all three together we find for the surface

integral over the parallelepiped the value

Pdv = - {iSiV +jSjV + kSkV) . jidxdydz

= +vpdv,

where dv is the vector area of the surface looking outwards

and dv is the enclosed volume. This may be at once extended

to finite volumes and enclosing surfaces in the form

I
V^dv-- lidv (8)

Now if there is matter at the point P the force /3 is

outwards over the surface of any small enclosing sphere of

radius Tdp ; and so far as it depends on the matter at P
its value is jj.
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Let the area be divided into n equal parts, where n is very

large ; then

V/3*; = {l3dv = 2-- '"'''mdv.Udp.'^^'

But

Hence

= iirmdv.

V^u = iTrm (9)

This includes (7), for when there is no attracting matter

at P, m vanishes and V^m = 0.

78. Convergence and Curl. From (8) we may derive

very simply the important physical meanings of SVft and

FV/?. Take first the scalar part of (8), namely :

{{sVI3dv= Is/Sdv.

Let /8 be the flow of fluid. Then the surface integral

Sfidv
I

represents the amount of fluid which has entered the region

;

and thus SV/3 represents the convergence or increase of

density of the flowing fluid. If the fluid be incompressible

SV/3 = 0.

Secondly, take the vector part of (8). This gives

JJrv^..=JJ F/idv.

Draw from any origin the vector areas dv for all points

of the surface, and from their extremities draw the corre-

sponding /3's. Then if we consider /3 to be a force the

surface integral will represent a couple or moment of force.

Hence W^ is the measure of this moment per unit volume.

Maxwell has called it the curl of the vector /3. If FV/3 = 0,

there is no curl, there is no molecular couple, or there is

no vorticity in fluid of which /3 is the displacement.
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When ^ is a force derived from a potential

and V/3 = V%,

essentially a scalar quantity. Hence FV^ = 0, or there is

no curl when the vector quantity can be derived by differ-

entiation from a scalar function.

79. Electrical Distributions. An electrically charged

conductor is at the same potential throughout. There is no

electric force within it, and the charge is wholly on the

surface. Let us apply theorem (8) to a region enclosing a

small part of the charged surface and bounded in the field

outside the conductor laterally by lines of force which of

course spring normally from the charged surface, and terminally

by a small area parallel and very close to the element of the

surface. Since in this case F\/3 = 0, equation (8), becomes

{spdu= r f^^udv.

On the sides of the region considered Sfidv vanishes

because f3 is perpendicular to dv. Within the conductor p
has no value. On the end of the region /3 is parallel to

dv, which in this case is ultimately equal to the vector area

element on the surface. But

V^u = 4:77 X volume density.

Hence

V^udv = 47r X volume density x area of element

X thickness of electrified layer

= 47r X surface density x area of element.

Hence we obtain at once for the electric force just outside

the surface the expression

TfS = 477 X surface density.

This in fact is the dynamical definition of the surface

density of the charge.
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As a final example consider the distribution on an ellip-

soidal conductor.

Let M = - Spcfip = c

represent the ellipsoidal equipotential surface. Then

du= - 2Sdp4>p = - SdpVu.

Hence the force at the point p of the surface is

But (§ 59) the perpendicular (p) on the tangent at the

point p is equal to cjT4>p; hence

TVu=2cIp,

and the surface density is cj2-!rp, that is inversely as the

perpendicular from the centre on the tangent plane at the

point.

These are some of the simple applications of the important

differential operator V, the theory of which was developed

by Tait. For further discussion the reader is referred to

the works of Tait and M'Aulay, and to Joly's Appendix

to the second edition of Hamilton's Elements.

EXAMPLES TO CHAPTER IX.

1. A particle is moving under the action of a constant force. Prove

that the hodograph is a straight line and that the path is a parabola.

2. Two equal and opposite magnetic poles are placed at A and A'

(vector AA' =2a). Show that the equation giving the direction of

the line of force at any point P (vector distance p from the middle

point of AA') leads to the result

Sa{ U {p + a) ^U(p- a)}= const.

3. Show that in uniplanar motion, the motion of any rigid figure

may in general be represented by a rotation about a determinate point

;

and that if the motion is continuous, the velocity of any point is given

by ii= cHp — (r), where o- is the vector of the instantaneous centre of

rotation. Find the acceleration of the point in the body which

momentarily coincides with the instantaneous centre, and interpret

the result. Find the position of the point of zero configuration, and

the locus of points having the same acceleration.
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4. Let q{ )g'^ be the rotation which changes the rectangular

system ij k into a ^ y. If we write

q =w+ xi + yj+ zk, and q~'-= w-xi-yj -zh

(an assumption which determines Tq), find expressions for a ^ 7 in terms
otijk and the scalar quantities w x y z.

5. A particle moves so that its radius vector describes equal areas

in equal times. Prove that the force is directed towards the origin.

6. A particle describes an ellipse (1) about the centre, (2) about

a focus as a centre of force. Find the law of the force in each case.

7. The equation p= Fa"'/3, where a is not of unit length, represents

a. spiral. Find the linear differential equation in p, p, p, the constant

vectors Ua and /3 being eliminated. Interpret the equation dynami-

cally.

8. Given a system of forces ft/Sj^j . . . acting at the points PiP^p^ ...

,

show that if we write the quaternion S(pj3) = (c + ET)S(3, the vector OT is

a point on the line of action of the resultant force when the resultant

couple has its axis parallel to this line, and that c is the ratio of the

resultant couple to the resultant force.

9. The resultant angular velocity CT has a component angular

velocity p'^S'^p about the axis parallel to p. Prove that the angular

acceleration about the instantaneous axis of rotation is the same

whether we regard that axis as fixed or as moving with the body.

10. The instantaneous position of any vector p of a rigid body can

be expressed in terms of its original position a in the form p= qaq-^.

By differentiation find expressions for the instantaneous angular

velocity and acceleration.

11. By reasoning similar to that on p. 173 establish the identity

jdpq= jjvdvV.q,

where the line integral is taken round the curve (p) which bounds the

surface of which the vector surface element is dv and over which the

surface integral is taken, and where q is any continuous quaternion

function of the position.

M



CHAPTER X.

VECTOR EQUATIONS OF THE FIRST DEGREE.

With the object of giving tlie student an idea of one of

the physical applications of Quaternions, we will treat the

solution of linear and vector equations from an elementary

kinematical point of view. For this purpose we choose the

problem of the deformation of a solid or fluid body, when

all its parts are similarly and equally deformed.

Def. Homogeneous Strain is such that portions of a body,

originally equal, similar, and similarly placed, remain after

the strain equal, similar, and similarly placed.

Thus straight lines remain straight lines, parallel lines

remain parallel, equal parallel lines remain equal, planes re-

main planes, parallel planes remain parallel, and equal areas

on parallel planes remain equal. Also the volumes of all

portions of the body are increased or diminished in the same

proportion, as is easily seen by supposing the body originally

divided into small equal cubes by series of planes per-

pendicular to each other. After the strain, these cubes

are all changed into similar, similarly placed, and equal

parallelepipeds.

It is thus obvious that a homogeneous strain is entirely

determined if we know into what vectors three given (non-

coplanar) vectors are changed by it. Thus if a, /3, y become
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a', fi', y' respectively : any other vector, which may of

course be expressed as

is changed to

p =^7^ ("''^' ^yp + ^'^
•
y'p + y'^ "^p^-

No needful generality is lost, while much simplification

is gained, by taking a, fi, y as unit vectors at right angles

to one another. This is, in fact, the method already spoken

of, i.e. the imaginary division of the body into small equal

cubes, by three mutually perpendicular series of equidistant

planes. We thus have

p= - {aSap + fSSfip + ySyp),

P = - (a Sap + l3'Spp + y'Syp).

Comparing these expressions we see that Homogeneous Strain

alters a vector into a definite linear and vector fun tion of

its original value.

In abbreviated notation, we may write (as in § 57, though

our symbol, as will soon be seen, is more general than that

there employed)

(jbp = - {a Sap + ji'Sfip + y'Syp),

where <^ itself depends upon nine independent constants in-

volved in the three equations

<l>a = a'
^

f ^

For a', fi', y may of course be expressed in terms of a, /?, y

:

and, as they are quite independent of one another, the nine

coefScients in the following equations may have absolutely

any values whatever

;

<^a = a' = Aa + c/3 + h'y "j

<j>l3
= (3' = c'a +B^ + ay \ (a)

4>y =y' = ba + a'fi + CyJ

4>li = li'

<t>y
= y'.
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In discussing the particular form of 4> which occurs in

the treatment of surfaces of the second order we found,

§ 45, that it possessed the property

S . <T<j>p = S . p<lxr, (b)

whatever vectors are represented by p and a-. Remembering

that a, fi, y form a rectangular unit system, we find from (a)

S.li4>a^ -c\

with other similar pairs ; so that our new value of 4> satisfies

(J) if, and only if, we have in {a)

h = v\ (c)

c = c']

The physical meaning of this condition, as will be seen

immediately, is that the distortion expressed by <^ takes

place without rotation. In this case the nine constants are

reduced to six.

But, although (J) is not generally true, we have

S.a-<l>p= - (Sa'a-Sap + S/JVS/Jp + Sy'oSyp)

^ -S. p(aSa'a- + /3S/3'a- + ySy'a),

where the expression in brackets is a linear and vector function

of tr, depending upon the same nine scalars as those in <^;

and which we may therefore express by
(f>',

so that

<j>'cr= -{aSa'<r + pSP'<T + ySy'a-) (d)

And with this we have obviously

S . <T<f>p = S . p<j>'o; (e)

which is the general relation, of which (b) is a mere particular

case.

By putting a, /3, y in succession for o- in (d) and referring to

(a), we have
<l>'a = Aa + c'/3+ by

]

<i^'/3= ca +BI3 + a'yy (/)

<j>'y=b'a +a^ +CyJ
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Comparing (/) with (a), we see that

4'P = i>'p,

whatever be p, provided the conditions (c) be fulfilled. This

agrees with the result already obtained.

Either of the functions (j> and i^', thus defined together, is

called the Conjugate of the other : and when they are equal

{i.e. when (c) is satisfied) <^ is called a Self-Conjugate function.

As we employed it in Chap. VI.,
(f>

was self-conjugate ; and,

even had it not been so, it was involved (as we shall presently

see) in such a manner that its non-conjugate part was

necessarily absent.

We may now write, as before,

(j)p= ~{a'Sap + l3'SI3p + y'Syp),

and, by (d),

<j)'p = - (aSa'p + l3SI3'p -h ySy'p).

From these we have by subtraction,

{(j>-<j)')p = 4ip-(t>'p

= aSa'p - a'Sap + /SS^'p - ft'S/Sp + ySy'p - y'Syp

= - FpFaa' - VpV^ji' - VpVyy'

= -2F.ep; (g)

if we agree to write

2e=F(aa'+ 1313' + yy') (h)

We may now express that <j) is self-conjugate by writing

c = 0,

the physical interpretation of which equation is of the highest

importance, as will soon appear.

If we form by means of (a) the value of e as in (h), we get

2e = (cy - b'f3) + {aa - c'y) + (bft - a'a)

= (a-a')a + {b-b')/3 + {c-c')y,

which obviously cannot vanish unless (as before) the three

conditions (c) are satisfied.
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By adding the values of <^p and cji'p above, we obtain

= - (aSa'p + a'Sap + (SSji'p + fi'Sfip + ySy'p + y'Syp).

Operating by S .cr we see at once that this new function

of p is self-conjugate.

Hence we may write

{<j> + 4>')p = 2^p, (i)

where the bar over W signifies that it is self-conjugate, and

the factor 2 is introduced for convenience.

From (g) and (i), we have

cl>p = Wp+F€p\
^^

4>P = zsp - Vip)

If instead of 4>P in any of the above investigations we write

{<i> + g)p, it is obvious that 4''p becomes {4>' + g)p: and the

only change in the coefficients in (a) and (/) is the addition

of g to each of the main series A, B, C.

We now come to Hamilton's grand proposition with regard

to linear and vector functions. If
<f>
be such that, in general,

the vectors
p^ (^p^ ^2p

(where <^^p is an abbreviation for (f>(<f>p)) are not in one plane,

then any fourth vector such as 4>^p (a contraction for (l>(4>{4>p)))

can be expressed in terms of them as in 31. 5.

Thus (ji^p = m2<^V " '"I'^P + ™ft (^)

where m, TOj, m^ are scalars whose values will be found

immediately. That they are independent of p is obvious,

for we may put a, jS, y in succession for p, and thus obtain

three equations of the form

<^^a = m2<^^a - m-^<^a + ma., (l)

from which their values can be found. For by repeated

applications of (a) we can express {I) in the form

Jla + l/3-F(Ey = 0.

This gives ^=0, ^ = 0, d-O.
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These are three equations connecting m, ??ij, m^, with the

nine coefficients in (a). The other two groups of three equa-

tions, furnished by the other two equations of the form (/),

are merely consistent with these; and involve no farther

limitations. This method, however, is very inferior to one

which will shortly be given.

Conversely, if quantities m, wij, jMj can be found which

satisfy (T), we may reproduce (k) by putting

and adding together the three expressions (Z) multiplied

by a;, y, z respectively. For it is obvious from the expression

''*

ae^jo = <^ (ap), X(^'^p = ^2 (xp), etc.,

whatever scalar be represented by x.

If p, <^/!), and <^^/3 are in the same plane, then applying the

strain ^ again, we find <\>p, <pp, <f>^p in one plane ; and thus

equation (k) holds for this case also. And it of course holds

if (f'P is parallel to p, for then 4>^p and cj>^p are also

parallel to p.

We will prove that scalars can be found which satisfy

the three equations (l) (equivalent to nine scalar equations,

of which, however, as we have seen, six depend upon the

other three) by actually determining their values.

The volume of the parallelepiped whose three conterminous

edges are A,, /i, v is (§ 32)

-S.Xfiv.

After the strain its volume is

- iS' . <f>X<t>ii4>v,

, ,. S . 4>Xd>iid>v

so that the ratio —„ ,

"^

o . Ap-V

is the same whatever vectors A, p., v may be ; and depends

therefore on the constants of <j) alone. We may therefore

assume ^^^^ ,

p. = 4>p, Y

v = cl>^p,J
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and by inspection of (A), we find

S.X.P.V ^S.p4>p4>'^p
"™'

which gives the physical meaning of this constant in (k).

we may put if we please

we see by (a) that

S.a.j3y ^

As

^,
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and we have for the unknown vector

(r =— Fci'u'^'i'im
which can be calculated, as 4> is given.]

If in (m) we put 4> + g for
<f>,

we must do so for the value

of m in (m). Calling the latter if,, we have

„ _ S.(<i> + g)X{<j> + g)ix(<j> + g)v

S.Xfx.^

S . X(j>fj.(j)v + S . iJ,<f}V(j)\ + S . v(j)X<j>fji,

S . A,/xv

^S . X/McfiV + S . vX(f)/Jh + S . fJLVcfiX

+ f, (o)

andby(») {<i> + g)F(4>' +g)iJ,{<l>' + g)v = M^.FiJ.v, (p)

or M, = m + ii.^g + /x.^g^ + g3

{<j} + g)[m<f>-'^Ffiv + g(F<f>'fJi.v + Ffji.<l>'v) + g^FiJ,v] = M^F/j-vj

From the latter of these equations it is obvious that

F<f>'fji.v+ Ffj,(f>v

must be a linear and vector function of Fyitv, since all the

other terms of the equation are such functions.

As practice in the use of these functions we will solve a

problem of a little greater generality. The vectors

Ffj.v, F4>'fi,v, and FiJ,<f>'v

are not generally coplanar. In terms of these (§ 34), let

us express ^F/iv.

Let 4'FiJ.v = xFfj.v + i/F'j>'iJ.v + zFiJ.4>'v.

Operate by S . X, S . /j., S .v successively, then

S . /xv(l>'X — xS . Xfj,v + yS . vX<j>'t^ + sS . Ayui^V,

S . fJtvcft'fi = yS . Vfjirf/fi,

S. ixv<f>'v =zS . Vficf>'v.

\....{q)



186 QUATERNIONS. [Chap. x.

The two last equations give (§ 32)

y= -1, «= -1,

and therefore the first gives

S . jXV(f>'X + S . v\<^'fl + S . Xfx,<^'v

S . A/iv

= /^3. by (o) and {q).

Hence, finally,

tl>Vf).v = fi^Vp-v - V4>'ixv - Vfi4>'v (r)

Substituting this in {q), and putting cr for V^v, which is

any vector whatever, we have

or, multiplying out,

(m - (7<^2 + ij,^^
_ gi^ + gm.4>--^ + g^ + 5-^>2 + gr3)o-

that is (
- (^2 + ^^(^ + flj(^

-
1) o- = /ijcr,

or (<^3 _ ^^^2 + ^^(^ - m) 0- = 0.

Comparing this with {k), we see that

S .Xfi^v + S .vXcl>ii + S . iJ.v(j>X

»»2 = ^2
=

/S' . X<ji[j.<j>v + S . fji<j}v<f>X + S . v(j)X(j>iJi
is)

^1 = ^1= s.Xf^v

and thus the determination is complete.

We may write (k), if we please, in the form

m4>'^p = m-^p - m.24>p + 4>^p, {k')

which gives another, and more direct, solution of the equation

(above mentioned) , _^

Physically, the result we have arrived at is the solution

of the problem, "By adding together scalar multiples of

any vector of a body, of the corresponding vector of the

same strained homogeneously, and of that of the same twice

over strained, to represent the state of the body which
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would be produced by supposing the strain to be reversed

or inverted."

These properties of the function ^ are sufficient for many
applications, of which we proceed to give a few.

(i.) Homogeneous strain converts an originally spherical

portion of a body into an ellipsoid.

For if p be a radius of the sphere, o- the vector into which

it is changed by the strain, we have

and Tp = G,

from which we obtain

or S . 4>'^(r<f>'^(T= - C,

or, finally, S .<t4,'-^^-^(t= - C\

This is the equation of a central surface of the second

degree ; and, therefore, of course, from the nature of the

problem, an ellipsoid.

(ii.) To find the vectors whose direction is unchanged by

the strain.

Here (^p must be parallel to p or

4>P = gp.

This gives <pp = g^p, etc.,

so that by (k), we have

g^ - m^^ + m-^g - m = 0.

This must have one real root, and may have three. Suppose

^j to be a root, then

and therefore, whatever be A,

SHp-giS\p = 0,

or S.p(<t>'^-g^^) = 0.

Thus it appears that the operator (/>' - g^ cuts off from any
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vector X the part which is parallel to the required value

of p, and therefore that we have

p\\MF.{<t>'-g{)X{<f>'-g,)i^

||{m^-i-g'i(TO2-<^) + 9'i2}f,

where f is absolutely any vector whatever. This may be

written as

't>-9i
"^"

The same result may more easily be obtained thus

:

The expression

(</>' - m^cp + m-^(j) -m)p = 0,

being true for all vectors whatever, may be written

{'i'-gi)(.<i>-go}{4'-gi)p = ^,

and it is obvious that each of these factors deprives p of

the portion corresponding to it : i.e. 4>~
ffi

applied to p cuts

off the part parallel to the root of

(<^-g'j)o-= 0, etc., etc.,

so that the operator {<(> - g^) (<^ - g^) when applied to a vector

leaves only that part of it which is parallel to o- where

(<j>-g,)<T = Q.

(ill.) Thus it appears that there is always one vector, and

that there may be three vectors, whose direction is unchanged

by the strain.

Def. Pure, or norirroiational, strain consists in altering the

lengths of three lines at right angles to one another, toithmtt

altering their directions.

Hence, if <^Pi
=

^iPj,
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the strain </> is pure if, and not unless, pj, p^, p^ form a rect-

angular system. [There is a qualification if two or more
of

.9i 92 93 be equal.]

Hence, for a pure strain, we have

and Sp^4>P2 = 92^PiP2 = ^>

or Sp^<l>P2 = Sp^4.p^.

But we have, generally,

SPl4'P2 = ^P2't''Pl-

As we have two other pairs of equations like these, we
see that 4> = <i>'

when the strain is pure.

Conversely, if 4' = 4''i

the three unchanging directions p^ p.^, p^ are perpendicular

to one another.

For, in this case, the roots of

are real. Let them be such that

('t>-9i)Pi = (^\

{'t>-92)p2 = ^\'

i<t>-93)P3 = 0J

then 9\92^P\P2 = ^^Pi'PPi

= Sp^4><j>P2

(because, by hypothesis, the strain is pure)

= 92''SplP2'

for 4>P2 = 92P2 and <I>% = 92^P2-

Hence, except in the particular case of

9i = 92'

we must have Sp-^P2 = 0,

whence the proposition.
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When ^j and q^ are equal, p^ and p^ are each perpendicular

to pg, but any vector in their plane satisfies

<^O--(/jO-=0.

When all three roots are equal, every vector satisfies

(iv.) Thus we see that when the strain is unaccompanied

by rotation the three values of g are real. [But we must

take care to notice that the converse does not hold. This

will be discussed later.] If these values be real and different,

there are three vectors at right angles to one another which

are the only lines in the body whose directions remain un-

changed. When two are equal, every vector parallel to a

given plane, and all vectors perpendicular to it, are unchanged

in direction. When all three are equal no vector has its

direction changed.

(v.) There is, however, a peculiarity to be noticed, which

distinguishes true physical strain from the results of our

mathematical analysis. When one or more of the values

of g has a negative sign, we cannot interpret physically the

result without introducing the idea of a pure strain which

shall, as it were, pull the parts of an originally spherical

portion of the body through the centre of the sphere,

and so form an ellipsoid by turning a part of the body

outside in. When two, only, are negative we can represent

physically the result by introducing the conception of a

rotation through two right angles about the third axis.

But we began by assuming that there is no rotation ! Hence,

for the case considered, all three roots must be positive.

See end of next section (vi.).

(VI.) This will appear more clearly if we take the case

of a rigid body, for here we must have, whatever vectors

be represented by p and o-.

T<l>p=Tp

Spa- = S . <j>p<l».}
(')
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i.e. the lengths of vectors, and their inclinations to one

another, are unaltered. In this case, therefore, the strain

can be nothing but a rotation. It is easy to see that the

second of these equations includes the first; so that if, for

variety, we take </> as represented in equations (a), and

write p = xa + 'yP + zy,

we have, for all values of the six sealars x, y, z, ^, -q, f, the

following identity :

- (a^ + yq + zi) = 8. (aa' + y/3' + zy') (£«' + n^' + H)
= a'^X^ + l3'^yr] + y"^zC

+ (^V + yO -S^'iS' + («/C+ zri) S/3'y + {z^ + xO Sy'a.

This necessitates
„. = ;j. = y2=_l .

^^^

Saj3' = Sj3'y' = Sy'a' = 0}

i.e. the vectors a', fi', y form, like a, /3, y, a rectangular

unit system. And it is evident that any and every such

system satisfies the given conditions. But the system a', /?', y

must be similar to a, /?, y, i.e. if a quadrant of 'positive rotation

round a changes /S to y, etc., a quadrant of 'positive rotation

about a' must change /i' to y, etc.

When this is not the case, the system a', /?', y is the

perversion of a, ^, y, i.«. its image in a plane mirror; and

the strain is impossible from a physical point of view.

This is easily seen from another point of view. The

volume of the parallelepiped whose edges are rectangular

unit vectors a, fi, y is

-S.o.^y

if a positive quadrant of rotation round a brings /3 to coincide

with y, etc. But, in the perverted system, the volume has

changed sign and is expressed by

S . aj3y.
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(vii.) It may be interesting to form, for this particular

case, the equation giving the values of g. We have

S.a^y

_ S.{a' + ga){fi'+gl3){y + gy)
S.a/3y

= 1 - gS{a/3'y' + afSy + a'/3'y)

- g^S{aPy' + a/B'y + a'/Sy) + g\

Eecollecting that u, /3, y ; a', fi', y are systems of rect-

angular unit vectors, we find that this may be written

M,= \-{g + g^)S{aa' + 13/i' + yy') + g^

= {g+l)[g^-g{l+S{aa' + /3p' + yy)} + l].

Hence the roots of M^ =

are in this case; first and always,

5-1 = -
1,

which refers to the axis about which the rotation takes

place : secondly, the roots of

g^-g{l+ S{aa' + PI3' + yy')} + 1 = 0.

Now the roots of this equation are imaginary so long as

the coefficient of the first power of g lies between the limits

±2.

Also the values of the several quantities Saa, iSfSfS', Syy'

can never exceed the limits ± 1. When the system a, ^, y
coincides with a', /?', y', the value of each of the scalars is

- 1, and the coefiicient of the first power of y is + 2. When
two of them are equal to + 1 and the third to - 1 we have

the coefiicient of the first power of g= - 2. These are the

only two cases in which the three values of g are all real.

In the first, all three values of g are equal to - 1, i.e.

<i>P = P

for all values of p, and there is no rotation whatever. In

the second case there is a rotation through two right angles

about the axis of the - 1 value of g.
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VIII. It is an exceedinglj; remarkable fact that, however

a body may be homogeneously strained, there is always at

least one vector whose direction remains unchanged. The

proof is simply based on the fact that the strain-function

depends on a cubic equation (with real coefficients) which

must have at least one real root.

IX. As an illustration of what precedes (though one which

must be approached cautiously), suppose a body to be strained

so that three vectors, a", ^", y" (not coplanar, and not

necessarily at right angles to one another), preserve their

direction, becoming e-^a!', e^H", e^y". Then we have

4>pS . aj3"y" = e^a"^ . P"y"p + e^li"S . y"a"p + e^i'S . a"/3"p.

By the formulae (m, s) we have

_ S.4>a"(l>/3"<l>y" _™~
S.a"l3"y"

"^l'2*3.

«ij = s~ayWV

S{a"l3"<l>y"+ld'Y4>a" + y"a"4>n _, ,.,,.^2 =
S.a:'li"y'

-«i + «2 + «3.

so that we have by {h)

Though the values of g are here all real, we must not

rashly adopt the conclusions of (iv.), for we must remember

that a", /3", y" do not, like a, /3, y, necessarily form a rect-

angular system.

In this ease we have

4>'pS . a"l3"y" = «! FP"y"Sa"p + e^ Fy"a"Sli"p + «3 ra"l3"Sy"p.

So that, by (g) and (h),

2eS. a"^"y' = F. (e,a"F^"y" + e,l3"Fy"a" +e,y"Fa"n

= («j - e^a"SI3"y" -)- «3 - e^P"Sy"a" + e^- e^Sol'^").

N
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This vanishes, or the strain is pure, if either

1. Sa"/3" = SI3"y"=Sy"a" = 0,

i.e. if a", /3", y" are rectangular, in which case gj, e.2, e^ may
have any values ; or

2. «i = «2 = %! i'l which case

</>>^ . a"/3'Y = ei{ FI3"y"Sa"p + Vy"a"SP"p + Fa"P"Sy"p}

^

=e,pS.a"(3'Yhy (§34.2),

so that 4)'p = e-yp = 4>p

for every vector • a general uniform dilatation unaccompanied

by change of direction.

3. gj = e^, and a" and /?" both perpendicular to y".

From what precedes it is evident that for the complete

study of a strain we must endeavour to distinguish in each

case between the pure strain and the merely rotational part.

If a strain be capable of being decomposed into, first, a pure

strain, second, a rotation, it is obvious that the vectors which

in the altered state of the body become the axes of the

strain-ellipsoid (l.) must have been originally at right angles

to one another.

The equation of the strain-ellipsoid is

Sp<f>~^p = - c\

and in this it is obvious that </)~^ is self-conjugate, or at

least is to be treated as such : for a non-conjugate term in

<fi~'^p would be (g) of the form

Fep,

and would therefore not appear in the equation.

For the proper treatment of rotations, the following simple

but excessively important proposition, due to Hamilton,

forms the best starting-point.

If q be any quaternion, the operator q( )q~^ turns the vector,

quaternion, or body operated on round an axis perpendicular to

the plane of q and through an angle equal to double that of q.

For the proof we refer the reader to Hamilton's Lectures,

§ 282, Elements, § 179 (1), or Tait, § 353. It is obvious that
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the tensor of q may be taken to be unity, i.e. q may be

considered as a mere versor, because the value of its tensor

does not affect that of the operator.*

[A very simple but important example of this proposition

is given by supposing q and r to be both vectors, a and ^
let us say. Then afia~i

is the result of turning fi conically through tvi^o right angles

about u, i.e. if a be the normal to a reflecting surface and

/3 the incident ray, - a/3a"i is the reflected ray.]

Now let the strain </> be effected by (1), a pure strain ^
(self-conjugate of course) followed by the rotation q{

)q~'^.

We have, for all values of p,

4>p==q{^p)q-\ (v)

whence <^'p = ct (q'^pq)-

The interpretation is that, under the above definition, the

conjugate to any strain consists of the reversed rotation, followed

by the pure strain.

We may of course put, as in Chap. VII.,

tS/o = e-^aSap + e^SfSp + e^ySyp,

where u, jS, y form a rectangular system. Hence

(fyp
= Cj^qaq^'^Sap + e^q/Sq^'^S^p + e^qyq^'^Syp.

Here the axes are parallel to

qaq-\ q/3q-\ qyq-\

and we have

S . qaq-^q/3q-^ = S . qajiq-^ = Saji = 0, etc.

So far the matter is nearly self-evident, but we now come

to the important question of the separation of the pure strain

from the rotation. By the formulae above we see that

<^'<^/3 = ^q~''-<f>pq

= ^q-'^(qppq-^)q

* The proof is now given above, Chap. IV.
, § 27.
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so that we have in symbols, for the determination of ra, the

equation

That is, as we see at once from the statements above, any

strain, foUoived by Us conjugate, gives a pure strain, which is the

square (or the result of two applications) of the pure part of

either.

To solve this equation we employ expressions like (k).
(t>'4>

being a known function, let us call it u, and form its

equation as

(D^ - mgiu^ + MjO) - m = 0.

Here the coefficients are perfectly determinate.

Also suppose that the corresponding equation in ra is

S^-g^W^ + g^^-g = 0,

where g, g^, g^ are unknown scalars. By the help of the

given relation & = tu,

we may modify this last equation as follows

:

T:3ia-g^ta +gp-g = Q,

whence rs= -—^^-

;

9i + <^

i.e. w is given definitely in terms of the known function, w,

as soon as the quantities g are found. But our given

equation ct^ = w

may now be written

V ^1 + <" /

As this is an equation between w and constants it must

be equivalent to that already given ; so that, comparing

coefficients, we have

9i-'^99i = 'mT^,

9^ =m;
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from which, by elimination of g and g^, we have

The solution of the problem is therefore reduced to that

of this biquadratic equation; for, when g^ is found, g^ is

given linearly in terms of it.

[A neat way of arriving at the same result is to throw

the equation in zs into the form

square both sides and multiply up. The result is

CT6 - (^/ _ 2^i)CT* + {g^^ - 2gg^)vs^ - ^^ = 0,

or 0,3 - (^^2 _ 2^^)u,2 + (^g2 _ 2gg^) o, - ^^ = Q].

It is to be observed that in the operations above we have

not been particular as to the arrangement of factors. This

is due to the fact that any functions of the same operator

are commutative in their application.

Having thus found the pure part of the strain we have

at once the rotation, for («) gives

or, as it may more expressively be written.

If instead of {v) we write

<l,p
= ^rpT~^), (v')

we assume that the rotation takes place first, and is succeeded

by the pure strain. This form gives

<)!)> = r-i(CTp)r,

and <^'^'p = t^V.

whence CT is found as above. And then (if) gives
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Thus, to recapitulate, a strain </> is equivalent to the pure

strain J6''b followed by the rotational strain
(f>

-—-
, or to

the rotational strain ,-— (^ followed by the pure strain J^<i>'.

This leads us, as an example, to find the condition that a

given strain is rotational only, i.e. that a quaternion q can be

found such that

Here we have (t>=q~'^{ )q,

or (^' = (^-1 (w)

But m<^~i = Wj - m^tji + <j>%

or

whose conjugate is m<l> = Wj - m^(^' + 4>"'

and the elimination of (^' between these two equations gives

Tfl 1

TO

I.e.

- (m^ - TOWij^ + 2mjm2 - m) </>

+ (2mj + m^ - mm^ - m^) ^^

(m^TOj - mm^m^ + m-^)

- (rrfi - mm^ + imjTn^) </>

- (wTOj - 2mj - TOj^) </)^

- 2m2^3

by using the expression for <^* from the cubic in <^.

Now this last expression can be nothing else than the cubic

in
<l>

itself, else cf> would have two different sets of constants in

the form (k), which is absurd, as these constants, from the

mode in which they are determined, can have but single

values. Thus we have, by comparing coefficients,

m^^ = 2m^ + m^ - mm^ - ^il

m^TOj = m' - mm^^ + 2mjm2 -m\.
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The first gives m^ = mm^,

by the help of which the second and third each become

m? - m = 0.

The value in = Q

is to be rejected, as otherwise we should have been working
with non-existent terms ; and wi, as the ratio of the volumes
of two tetrahedra, is positive, so that finally

m= 1,

and the cubic for a rotational strain is, therefore,

4? - m^<f>^ + m^4> -1=0,

or (<^-l){</>2 + (i_„g^ + l} = 0,

where m^_^ is left undetermined.

By comparison with the result of (vii.) we see that in

the notation there employed

m^= - S{aa + /3/3' + yy').

The student will perhaps here require to be reminded that

in the section just referred to we employed the positive sign

in operators such as 4> + g. In the one case the coefScients in

the cubic are all positive, in the other they are alternately

positive and negative. The example we have given is a

particularly valuable one, as it gives a glimpse of the extent

to which the separation of symbols can be safely carried in

dealing with these questions.

Def. a simple shear is a homogeneous strain in which all

planes parallel to a fixed plane are displaced in the same

direction parallel to that plane, and therefore through spaces

proportional to their distances from that plane.

Let a be normal to the plane, /3 the direction of displacement,

the former being considered as an unit-vector, and the tensor

of the latter being, the djsplagejm^ot QjE points 5it„uTijt,4isJ;aji)9e,

from the plane.
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We obviously have, by the definition,

Sa/3 = 0.

Now if p be the vector of any point, drawn from an origin

in the fixed plane, the distance of the point from the plane

is — Sap.

Hence, if o- be the vector of the point after the shear,

cr = <j)p = p - jSSap.

This gives (j>p = p- aS^p,

which may be written as

= p-T/3.aS. UjSp,

so that the conjugate of a simple shear is another simple

shear equal to the former. But the direction of displacement

in each shear is perpendicular to the unaltered planes in the

other.

The equation for <^ is easily found (by calculating m, m-^, m^

from (m), (s)) to be*
<^3 _ 3,^2 4. 3<^ _ 1 = 0.

Putting ^'(^ = \p, we easily find (with h = TjS)

Solving by the process lately described, we find

(?£zl:i^y = 3.j^+2,.

If 6 = 2, this gives
g'i
= l, and the farther equation

^j3 + ^j2_i3^^_21=0,

* In many cases the most expeditious way of finding the cubic in ip

is to find the (same) cubic in g, where g corresponds to the roots

defined by the relation gp= (pp. In the case discussed gp=p- pSap,

or {g-l)p + pSap= 0. Operate in succession by jSa, <S/3, 8Va§; then

since Sa^= we find

{g-l]Sap =o,-j

^Sap + (g-l)Spp =0,
(gf-l)&/3p=0.J

• 'MimiKatiirg Saj, jS/Sp; ^fy), tye find(^- l)' = G,whtch gives (<^- 1)»=0

for thje dnliic iii''^; '
".J'-' !: ^ ,-'' T'' T T
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of which gTj = - 3 is a root, so that

and g^ = \±2j2.

We leave to the student the selection (by trial) of the

proper root, and the formation of the complete expressions

for the pure and rotational parts of the strain in this simple

and yet very interesting case.

As a simple example of the case in which two of the roots

of the cubic are unreal, take the vector function when the

strain is equivalent to a rotation 6 about the unit vector a

;

the others of the rectangular system being /8, y.

Here we have, obviously,

<^a= a,

'f>fi = f3 cos ^ + y sin 6,

4>y = y cos 6 - fism 6,

whence at once

-4>p = aSap + (/S cos ^ + 7 sin 6)SPp + {y cos 6- f3 sin 6)Syp

= (1 - cos 6) aSap - p cos 6 - Vap sin 9.

Forming the quantities m, wij, m^ as usual, we have *

<^3 _ (1 + 2 cos 6l)<^2 + (i + 2 cos e)<^ - 1 =0,

or (.^-l)(<^2-2cos^<^ + l) = 0,

or (<^ - 1)(<^ - cos - s/^sin 9) {4> - cos ^ +sT^ sin 9) = 0.

* Solving for g as in the preceding example we have

(gr-oosff)p + {l - cos 6)aSap - sm d Vap=

whence operating by Sa, S^, SVa^,

we find {g-\)Sap =0,

{g - cos e)Spp+ sin 9 Sa^p =0,

sin e S^p + (<7 - cos 9) Sa^p = 0,

and finally g-1
g- cos 6 sin 8

sin 9 g- cos 8

= as in the text.
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Now - (<^ - l)p = (1 - cos 6) (aSap + p) - sin 6 Fap,

-(4>-cos6-J^ sind)p = {l- cos 6) aSap + sin 6(pj^ - Fap),

-i'l>-cosd + J-lsind)p = {l - cos6)aSap - sin d{pj^ + Fap).

To detect the components which are destroyed by each

of these factors separately, we have, by (II.), for ((fi-l),

the vector

(<^2 _ 2 cos 6i</) + 1) p = - 2aSap(l - cos 6)

;

so that (<^-l)a = 0,

which is, of course, true. Again

(0 - 1)(^ - cos e -J^ sin e)p

= - sin (9(1 - £-«^^)(v/^ a + 1) Fap,

which we leave to the student to verify. The imaginary

directions which correspond to the unreal roots are thus,

in this case, parallel to the Bivedors

{a±J~)Fap.
Here, however, we reach notions which, though by no means

difficult, cannot well be called elementary.

A very curious case, whose special interest however is

rather mathematical than physical, is presented by the

assumptions a' = /3 4- y,

/3' = y + a,

y' = a+/3,

for then <j)p = {li + y)Sap + {y + a)Slip + {a + f3)Syp

= (a + f3 + y)S{a + l3 + y)p- (aSap + fSSfip + ySyp)

= 3SSSp + p,

where 6 is a known unit vector. This function is obviously

self-conjugate. Its cubic is
*

<^3-3<^ + 2 = = (<^-l)2(<^ + 2),

Operating on gp= {a. + p + y)S(a + p + y)p + p by 8a, (S/3, Sy, we find

the cubic
= (9-1)^3 + 2)..9
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which might easily have been seen from the facts that

1st, <f>8=-2S,

2nd, </)a = a, if SaS = 0.

The case is but slightly altered when the signs of a, fi',
y'

are changed. Then

<^jO = — SSSSp — p,

and the cubic is

<^=*-3<^-2 = (^+l)2(^-2)=0.

These are mere particular cases of extension parallel to the

single axis S. The general expression for such extension is

obviously
<l>p

= p - eSSSp,

and we have for its cubic

(<^-l)2{0-(l+6)j=O.

We will conclude our treatment of strains by solving the

following problem : Firid the conditions which must he satisfied by

a simple shear which is capable of reducing a given strain to a pure

strain.

Let (^ be the given strain, and let the shear be, as above,

then the resultant strain is

ij/cf) = <j) + ^S . a(j>

= <^ + /3S.4>'a.

Taking the conjugate and subtracting, we must have

= i^(t>-
4>'4'' = <i>-4>' + liS.<i>a- 4>'aS.I3

so that the requisite conditions are contained in the sole

equation 2e = F4>'a^.

This gives (1) S. 13^ = 0,

(2) S<^'ae = = <S'a^e.

But (3) Sa^ = (by the conditions of a shear),

so that xa= F./3(j>e.
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Again, (4) 2e^ = S. <i>'a.f3e = S . a.^(/3e),

or -mo=2F. ;8"^0e.

Hence we may assume any vector perpendicular to « for /S,

and a is immediately determined.

When two of the roots of the cubic in 4> are imaginary let

us suppose the three roots to be

«!, e^±e^J - 1.

Let yS and y be such that

<^(^ + ys/^) = (., + e3srn:)(/3 + ys/^).

Then it is obvious that, by changing throughout the sign of

the imaginary quantity, we have

These two equations, when expanded, unite in giving by

equating the real and imaginary parts the values

To find the values of a, fS, y we must, as before, operate on

any vector by two of the factors of the cubic.

As an example, take the very simple case

<f>p
= e Vip.

Here it is easily seen by (m), (s), that m = Q),m^= + e"^, m^ = 0,

so that* 4fi + 6^4> = Q,

that is <^{<f> + eJ'^){<i>-eJ'^) = Q.

* Operating on gp= e Vip by Si, Sj, Sk, we find

0= g =g{g'' + e)

g e

-e g
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As operand take p = ix+jy + kz,

then a
II
r(^ + «/^)(</>-«7^p

II
eF.{<l^ + eJ~\){ky-jz-pJ~l)

II
(-jy-kz + p)

\\i

Again

j3 -yj~l
II ^{^ + ej—i)p

II
e4>{hy-jz + J -\p)

II
-7>-/« + V-i(%-i2)

II yy + fe-^/- !(;«-%).

With a change of sign in the imaginary part, this will

represent

so that I3=jy + kz,

y=jz-ky.

Thus, as the student will easily find by trial, /3 and y

form with a a rectangular system. But for all that the

system of principal vectors of
<f),

viz.

a,/3±yj^l

does not satisfy the conditions of rectangularity. In fact we

see by the above values of /3 and y that

S.{^ + yJ~l){l3-yJ^l) = l3' + f=-2(f + z^).

It may be well to call the student's attention at this

point to the fact that the tensors of these imaginary vectors

vanish, for

Tm3±yJ^l)=-S{l3±yJ^l)i/3±yJ^l) = y'- 13^ = 0.

This gives a simple example of the new and very curious

modifications which our results undergo when we pass to

BivecUrrs ; or, more generally, to Biquaternions.
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As a pendant to the last problem we may investigate

the relation of two vector-functions whose successive appli-

cation produces rotation merely.

Here <^ = i/^x~^

is such that by (w)

i.e. x'~'^f = x4'~\

or ^y^ = f^ = v5^^

since each of these functions is evidently self-conjugate.

This shows that the pure parts of the strains ^ and x ^'I'e

the same, which is the sole condition.

One solution is, obviously,

i.e. each of the two is itself a rotation ; and a new proof

that any number of successive rotations can be compounded

into a single one may easily be given from this.

But we may also suppose either of rp, x, suppose the

latter, to be self-conjugate, so that

X' = X = X>

or ^'i' = X^

which leads to previous results.

EXAMPLES TO CHAPTER X.

1. If a, /3, 7 be a rectangular unit system

S. Fa0aF/30^F707= -mS . p^'-'^aS . p{<p - <p')a,

and therefore vanishes if be self-conjugate. State in words the

theorem expressed by its vanishing.

2. With the same supposition find the values of

SI'. Vatpa. r/30;8 and of 1,8. ra0a r/30;3.

Also of S . aSa(pa.

3. When are two simple shears commutative ?
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4. Expand in powers of 0, and reduce the result to three

terms by the cubic in 0.

5. Show that ^'V.<^p4>-'p= '^i^£^-£^ V.pAp
o . p<l}p(p p

=m Vp<t>p.

6. Why cannot we expand 0' in terms of 0°, 0, 0^*?

7. Express F(O0/) in terms of p, 0p, 0^/3, and from the result find

the conditions that tpp shall be parallel to p.

8. Given the coefficients of the cubic in 0, find those of the

cubics in 0^, 0^, etc. 0".

9. Prove 0^. a0'a - luF. o0'"'a = O,

(<j> + m,^)V .a<l>'a= Va4>"'a.

10. If m= .4, 6, c show that iV^= may be written asA
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17. Show that in general any self-conjugate linear and vector function

may be expressed in terms of two given ones, the expression involving

terms of the second order.

Show also that we may write

<f> + z= a{r:S + xf + b{m + x)(oi + y) + c{a + y)'',

where a, b, c, x, y, z are scalars, and Cj, a? the given functions. What
character of generality is necessary in C7 and w? How is the solution

affected by non-self-conjugation in one or both?

18. Solve the equations :

(a) r.a/)/3= r.o7j3,

(6) ap + pl3
= y,

(c) p + ap^ = a^,

(d) apa-^+Pp^-^ = ypy-K,

(e) ap^p=papp.

19. By throwing the cubic in into the form

(0^ - mf= (m20^ - mi0)*

deduce the corresponding equation in <p^, and so show how to extract

the cube root of the linear vector function.

Do the same for the fourth and higher powers.

20. Show that, if be a linear vector function with three real

roots, it may be expressed in an infinite number of ways as the

product of two pure strains. (Tait.)

21. Find the directions which are most altered by a homogeneous

strain. (Tait.

)

22. If is the strain which converts the ellipsoid SpT^p = -

1

into the ellipsoid Spfp=-1,0 must satisfy the equation

0'i/.0= CT.

Show that this is satisfied by

when x is a rotation satisfying the equation x'x = l- Interpret the

result. (Joly
.

)

23. Show that Scpff-'- and have identical roots.

GLASGOW: PRINTED AT THE UNIVERSITY PRESS BY ROBERT MACLEHOSE AND CO.










