18

The Maxwell Equations

18-1 Maxwell’s equations

In this chapter we come back to the complete set of the four Maxwell equations
that we took as our starting point in Chapter 1. Until now, we have been studying
Maxwell’s equations in bits and pieces; it is time to add one final piece, and to put
them all together. We will then have the complete and correct story for electro-
magnetic fields that may be changing with time in any way. Anything said in this
chapter that contradicts something said earlier is true and what was said earlier is
false—because what was said earlier applied to such special situations as, for
instance, steady currents or fixed charges. Although we have been very careful to
point out the restrictions whenever we wrote an equation, it is easy to forget all of
the qualifications and to learn too well the wrong equations. Now we are ready
to give the whole truth, with no qualifications (or almost none).

The complete Maxwell equations are written in Table 18-1, in words as well
as in mathematical symbols. The fact that the words are equivalent to the equations
should by this time be familiar—you should be able to translate back and forth
from one form to the other.

The first equation—that the divergence of E is the charge density over €,—is
true in general. In dynamic as well as in static fields, Gauss’ law is always valid.
The flux of E through any closed surface is proportional to the charge inside.
The third equation is the corresponding general law for magnetic fields. Since
there are no magnetic charges, the flux of B through any closed surface is always
zero. The second equation, that the curl of E is —dB/d¢, is Faraday’s law and was
discussed in the last two chapters. It also is generally true. The last equation has
something new. We have seen before only the part of it which holds for steady
currents. In that case we said that the curl of B is j/eoc?, but the correct general
equation has a new part that was discovered by Maxwell.

Until Maxwell’s work, the known laws of electricity and magnetism were
those we have studied in Chapters 3 through 17. In particular, the equation for
the magnetic field of steady currents was known only as

_ _J
VXB= P (18.1)
Maxwell began by considering these known laws and expressing them as differ-
ential equations, as we have done here. (Although the Vv notation was not yet
invented, it is mainly due to Maxwell that the importance of the combinations of
derivatives, which we today call the curl and the divergence, first became apparent.)
He then noticed that there was something strange about Eq. (18.1). If one takes the
divergence of this equation, the left-hand side will be zero, because the divergence
of a curl is always zero. So this equation requires that the divergence of j also be
zero. But if the divergence of j is zero, then the total flux of current out of any
closed surface is also zero.
The flux of current from a closed surface is the decrease of the charge inside
the surface. This certainly cannot in general be zero because we know that the
charges can be moved from one place to another. The equation

vij= -9 (18.2)

has, in fact, been almost our definition of j. This equation expresses the very funda-
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Table 18-1 Classical Physics

Maxwell's equations
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mental law that electric charge is conserved—any flow of charge must come from
some supply. Maxwell appreciated this difficulty and proposed that it could be
avoided by adding the term dE/at to the right-hand side of Eq. (18.1); he then got
the fourth equation in Table 18-1:
Iv. cvxB=L4%E.
€p at

It was not yet customary 1n Maxwell’s time to think in terms of abstract fields.
Maxwell discussed his ideas in terms of a model in which the vacuum was like an
elastic solid. He also tried to explain the meaning of his new equation in terms of
the mechanical model. There was much reluctance to accept his theory, first be-
cause of the model, and second because there was at first no experimental justi-
fication. Today, we understand better that what counts are the equations themselves
and not the model used to get them. We may only question whether the equations
are true or false. This is answered by doing experiments, and untold numbers of
experiments have confirmed Maxwell’s equations. If we take away the scaffolding
he used to build it, we find that Maxwell’s beautiful edifice stands on its own. He
brought together all of the laws of electricity and magnetism and made one complete
and beautiful theory.

Let us show that the extra term is just what is required to straighten out the
difficulty Maxwell discovered. Taking the divergence of his equation (IV in Table
18-1), we must have that the divergence of the right-hand side is zero:
oF

— = 0.

Jiv.
VoLtV (18.3)
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In the second term, the order of the derivatives with respect to coordinates and
time can be reversed, so the equation can be rewritten as

V-j+eoa%v'E=0. (18.4)

But the first of Maxwell’s equations says that the divergence of E is p/€¢. Inserting
this equality in Eq. (18.4), we get back Eq. (18.2), which we know is true. Con-
versely, if we accept Maxwell's equations—and we do because no one has ever
found an experiment that disagrees with them—we must conclude that charge is
always conserved.

The laws of physics have no answer to the question: ‘“What happens if a
charge is suddenly created at this point—what electromagnetic effects are pro-
duced?”” No answer can be given because our equations say it doesn’t happen.
If it were to happen, we would need new laws, but we cannot say what they would
be. We have not had the chance to observe how a world without charge con-
servation behaves. According to our equations, if you suddenly place a charge at
some point, you had to carry it there from somewhere else. In that case, we can
say what would happen.

When we added a new term to the equation for the curl of E, we found that a
whole new class of phenomena was described. We shall see that Maxwell’s little
addition to the equation for V X B also has far-reaching consequences. We can
touch on only a few of them in this chapter.

18-2 How the new term works

As our first example we consider what happens with a spherically symmetric
radial distribution of current. Suppose we imagine a little sphere with radioactive
material on it. This radioactive material is squirting out some charged particles.
(Or we could imagine a large block of jello with a small hole in the center into
which some charge had been injected with a hypodermic needle and from which
the charge is slowly leaking out.) In either case we would have a current that is
everywhere radially outward. We will assume that i1t has the same magnitude in
all directions.

Let the total charge inside any radius r be Q(r). If the radial current density
at the same radius 1s j(r), then Eq. (18.2) requires that Q decreases at the rate

) (18.5)

We now ask about the magnetic field produced by the currents in this situation.
Suppose we draw some loop T on a sphere of radius r, as shown in Fig. 18-1.
There is some current through this loop, so we might expect to find a magnetic
field circulating in the direction shown.

But we are already in difficulty. How can the B have any particular direction
on the sphere? A different choice of I' would allow us to conclude that its direction
is exactly opposite to that shown. So how can there be any circulation of B around
the currents?

We are saved by Maxwell’s equation. The circulation of B depends not only
on the total current through T' but also on the rate of change with time of the
electric flux through it. It must be that these two parts just cancel. Let’s see if that
works out.

The electric field at the radius r must be Q(r)/4meor2—so long as the charge
is symmetrically distributed, as we assume. It is radial, and its rate of change is then

oE 1 aQ
3 " Trea? ot (18.6)
Comparing this with Eq. (18.5), we see that at any radius
oF j
== - éio (18.7)
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Fig. 18-1. What is the magnetic
field of a spherically symmetric current?
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Fig. 18-2. The magnetic field near a charging capacitor.

In Eq. IV the two source terms cancel and the curl of B is always zero. There is
no magnetic field in our example.

As our second example, we consider the magnetic field of a wire used to
charge a parallel-plate condenser (see Fig. 18-2). If the charge Q on the plates is
changing with time (but not too fast), the current in the wires is equal to dQ/dt.
We would expect that this current will produce a magnetic field that encircles the
wire. Surely, the current close to the wire must produce the normal magnetic
field—it cannot depend on where the current is going.

Suppose we take a loop I’y which is a circle with radius 7, as shown in part (a)
of the figure. The line integral of the magnetic field should be equal to the current
I divided by e,c2. We have !

2mrB = Pl (18.8)
This is what we would get for a steady current, but it is also correct with Maxwell’s
addition, because if we consider the plane surface S inside the circle, there are no
electric fields on it (assuming the wire to be a very good conductor). The surface
integral of dE/at is zero.

Suppose, however, that we now slowly move the curve I' downward. We get
always the same result until we draw even with the plates of the condenser. Then
the current 7 goes to zero. Does the magnetic field disappear? That would be
quite strange. Let’s see what Maxwell’s equation says for the curve I', which is a
circle of radius r whose plane passes between the condenser plates [Fig. 18-2(b)].
The line integral of B around I'y is 27rB. This must equal the time derivative of
the flux of E through the plane circular surface S,. This flux of E, we know from
Gauss’ law, must be equal to 1/¢, times the charge Q on one of the condenser plates.
We have

2 _4d(0

That is very convenient. It is the same result we found in Eq. (18.8). Inte-
grating over the changing electric field gives the same magnetic field as does inte-
grating over the current in the wire. Of course, that is just what Maxwell’s equation
says. It is easy to see that this must always be so by applying our same arguments
to the two surfaces S, and S; that are bounded by the same circle T'; in Fig.
18-2(b). Through S, there is the current I, but no electric flux. Through S7 there
is no current, but an electric flux changing at the rate I/e;. The same B is obtained
if we use Eq. IV with either surface.

From our discussion so far of Maxwell’s new term, you may have the im-
pression that it doesn’t add much—that it just fixes up the equations to agree with
what we already expect. It is true that if we just consider Eq. IV by itself, nothing
particularly new comes out. The words “by itself”’ are, however, all-important.
Maxwell’s small change in Eq. IV, when combined with the other equations, does
indeed produce much that is new and important. Before we take up these matters,
however, we want to speak more about Table 18-1.
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18-3 All of classical physics

In Table 18-1 we have all that was known of fundamental classical physics,
that is, the physics that was known by 1905. Here it all is, in one table. With these
equations we can understand the complete realm of classical physics.

First we have the Maxwell equations—written in both the expanded form and
the short mathematical form. Then there is the conservation of charge, which is
even written in parentheses, because the moment we have the complete Maxwell
equations, we can deduce from them the conservation of charge. So the table is
even a little redundant. Next, we have written the force law, because having all
the electric and magnetic fields doesn’t tell us anything until we know what they
do to charges. Knowing E and B, however, we can find the force on an object with
the charge ¢ moving with velocity v. Finally, having the force doesn’t tell us any-
thing until we know what happens when a force pushes on something; we need the
law of motion, which is that the force is equal to the rate of change of the mo-
mentum. (Remember? We had that in Volume 1.) We even include relativity
effects by writing the momentum as p = mgv//1 — v2/c2.

If we really want to be complete, we should add one more law—Newton’s
law of gravitation—so we put that at the end.

Therefore in one small table we have all the fundamental laws of classical
physics—even with room to write them out in words and with some redundancy.
This is a great moment. We have climbed a great peak. We are on the top of
K-2—we are nearly ready for Mount Everest, which is quantum mechanics. We
have climbed the peak of a “Great Divide,” and now we can go down the other
side.

We have mainly been trying to learn how to understand the equations. Now
that we have the whole thing put together, we are going to study what the equations
mean—what new things they say that we haven'’t already seen. We’ve been working
hard to get up to this point. It has been a great effort, but now we are going to have
nice coasting downhill as we see all the consequences of our accomplishment.

184 A travelling field

Now for the new consequences. They come from putting together all of
Maxwell’s equations. First, let’s see what would happen in a circumstance which
we pick to be particularly simple. By assuming that all the quantities vary only in
one coordinate, we will have a one-dimensional problem. The situation is shown
in Fig. 18-3. We have a sheet of charge located on the yz-plane. The sheet is first
at rest, then instantaneously given a velocity u in the y-direction, and kept moving
with this constant velocity. You might worry about having such an “infinite”
acceleration, but it doesn’t really matter ; just imagine that the velocity is brought to
u very quickly. So we have suddenly a surface current J (J is the current per unit
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width in the z-direction). To keep the problem simple, we suppose that there is
also a stationary sheet of charge of opposite sign superposed on the yz-plane, so
that there are no electrostatic effects. Also, although in the figure we show only
what is happening in a finite region, we imagine that the sheet extends to infinity
in =y and =z, In other words, we have a situation where there is no current, and
then suddenly there is a uniform sheet of current. What will happen?

Well, when there is a sheet of current in the plus y-direction, there is, as we
know, a magnetic field generated which will be in the minus z-direction for x > 0
and in the opposite direction for x < 0. We could find the magnitude of B by
using the fact that the line integral of the magunetic field will be equal to the current
over €gc?. We would get that B = J/2¢,c? (since the current [ in a strip of width
w is Jw and the line integral of B is 2B8w).

This gives us the field next to the sheet—for small x—but since we are im-
agining an infinite sheet, we would expect the same argument to give the magnetic
field farther out for larger values of x. However, that would mean that the moment
we turn on the current, the magnetic field is suddenly changed from zero to a
finite value everywhere. But wait! If the magnetic field is suddenly changed, it
will produce tremendous electrical effects. (If it changes in any way, there are
electrical effects.) So because we moved the sheet of charge, we make a changing
magnetic field, and therefore electric fields must be generated. If there are electric
fields generated, they had to start from zero and change to something else. There
will be some dE/dt that will make a contribution, together with the current'J, to the
production of the magnetic field. So through the various equations there is a big
intermixing, and we have to try to solve for all the fields at once.

By looking at the Maxwell equations alone, it is not easy to see directly how
to get the solution. So we will first show you what the answer is and then verify
that it does indeed satisfy the equations. The answer is the following: The field B
that we computed is, in fact, generated right next to the current sheet (for small x).
It must be so, because if we make a tiny loop around the sheet, there is no room
for any electric flux to go through it. But the field B out farther—for larger x—is,
at first, zero. It stays zero for awhile, and then suddenly turns on. In short, we
turn on the current and the magnetic field immediately next to it turns on to a
constant value B; then the turning on of B spreads out from the source region.
After a certain time, there is a uniform magnetic field everywhere out to some
value x, and then zero beyond. Because of the symmetry, it spreads in both the
plus and minus x-directions.

The E-field does the same thing. Before 1 = 0 (when we turn on the current),
the field is zero everywhere. Then after the time ¢, both E and B are uniform out
to the distance x = vt, and zero beyond. The fields make their way forward like
a tidal wave, with a front moving at a uniform velocity which turns out to be c,
but for a while we will just call it v. A graph of the magnitude of E or B versus x,
as they appear at the time ¢, is shown in Fig. 18-4(a). Looking again at Fig. 18-3,
at the time 7, the region between x = =y is “filled” with the fields, but they have
not yet reached beyond. We emphasize again that we are assuming that the current
sheet and, therefore the fields E and B, extend infinitely far in both the y- and z-di-
rections. (We cannot draw an infinite sheet, so we have shown only what happens
in a finite area.)

We want now to analyze quantitatively what is happening. To do that, we
want to look at two cross-sectional views, a top view looking down along the y-axis,
as shown in Fig. 18-5, and a side view looking back along the z-axis, as shown in
Fig. 18-6. Suppose we start with the side view. We see the charged sheet moving
up; the magnetic field points into the page for +x, and out of the page for —x,
and the electric field is downward everywhere—out to x = =vt.

Let’s see if these fields are consistent with Maxwell’s equations. Let’s first
draw one of those loops that we use to calculate a line integral, say the rectangle
T’z shown in Fig. 18-6. You notice that one side of the rectangle is in the region
where there are fields, but one side is in the region the fields have still not reached.
There is some magnetic flux through this loop. If it is changing, there should be
an emf around it. If the wavefront is moving, we will have a changing magnetic
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Fig. 18-5. Top view of Fig. 18-3.

flux, because the area in which B exists is progressively increasing at the velocity v.
The flux inside ', is B times the part of the area inside I'; which has a magnetic
field. The rate of change of the flux, since the magnitude of B is constant, is the
magnitude times the rate of change of the area. The rate of change of the area is
easy. If the width of the rectangle I';, is L, the area in which B exists changes by
Ly At in the time Az. (See Fig. 18-6.) The rate of change of flux is then BLv.
According to Faraday’s law, this should equal the line integral of E around I',,
which is just EL. We have the equation

E = vB. (18.10)

So if the ratio of E to B is v, the fields we have assumed will satisfy Faraday’s
equation.
But that is not the only equation; we have the other equation relating E and B:

2 _J  9E
cVXB—E—0+37- (18.11)
To apply this equation, we look at the top view in Fig. 18-5. We have seen that
this equation will give us the value of B next to the current sheet. Also, for any
loop drawn outside the sheet but behind the wavefront, there is no curl of B nor
any j or changing E, so the equation is correct there. Now let’s look at what hap-
pens for the curve I'; that intersects the wavefront, as shown in Fig. 18-5. Here
- there are no currents, so Eq. (18.11) can be written—in integral form—as

czf B-ds =4 / E - nda. (18.12)
r, dt

inside Ty
The line integral of B is just B times L. The rate of change of the flux of E is due
only to the advancing wavefront. The area inside I';, where E is not zero, is in-
creasing at the rate vL. The right-hand side of Eq. (18.12) is then vLE. That equa-

tion becomes ¢2B = Eb. (18.13)

We have a solution in which we have a constant B and a constant E behind
the front, both at right angles to the direction in which the front is moving and at
right angles to each other. Maxwell’s equations specify the ratio of E to B. From

Egs. (18.10) and (18.13),

(.'2

E = vB, and E = > B.
But one moment! We have found two different conditions on the ratio E/B. Can
such a field as we describe really exist? There is, of course, only one velocity v for
which both of these equations can hold, namely v = ¢. The wavefront must
travel with the velocity ¢. We have an example in which the electrical influence
from a current propagates at a certain finite velocity c.

18-7

Fig. 18-6. Side view of Fig. 18-3.



Now let’s ask what happens if we suddenly stop the motion of the charged
sheet after it has been on for a short time 7. We can see what will happen by the
principle of superposition. We had a current that was zero and then was suddenly
turned on. We know the solution for that case. Now we are going to add another
set of fields. We take another charged sheet and suddenly start it moving, in the
opposite direction with the same speed, only at the time T after we started the first
current. The total current of the two added together is first zero, then on for a
time 7, then off again—because the two currents cancel. We have a square
“pulse” of current.

The new negative current produces the same fields as the positive one, only
with all the signs reversed and, of course, delayed in time by 7. A wavefront again
travels out at the velocity c¢. At the time ¢ it has reached the distance x =
=¢ (1 — T), as shown in Fig. 18-4(b). So we have two “blocks” of field marching
out at the speed ¢, as in parts (2) and (b) of Fig. 18—4. The combined fields are as
shown in part (c) of the figure. The fields are zero for x > ct, they are constant
(with the values we found above) between x = ¢(r — T) and x = ct, and again
zero for x < ¢(t — T).

In short, we have a little piece of field—a block of thickness ¢c7—which has
left the current sheet and is travelling through space all by itself. The fields have
“taken off”’; they are propagating freely through space, no longer connected in any
way with the source. The caterpillar has turned into a butterfly!

How can this bundle of electric and magnetic fields maintain itself? The an-
swer is: by the combined effects of the Faraday law, v X E = —aB/dt, and the
new term of Maxwell, c2v X B = 8E/dt. They cannot help maintaining them-
selves. Suppose the magnetic field were to disappear. There would be a changing
magnetic field which would produce an electric field. If this electric field tries to
go away, the changing electric field would create a magnetic field back again. So
by a perpetual interplay—by the swishing back and forth from one field to the
other—they must go on forever. It is impossible for them to disappear.* They
maintain themselves in a kind of a dance—one making the other, the second making
the first—propagating onward through space.

18-5 The speed of light

We have a wave which leaves the material source and goes outward at the
velocity ¢, which is the speed of light. But let’s go back a moment. From a his-
torical point of view, lit wasn’t known that the coefficient ¢ in Maxwell’s equations
was also the speed of light propagation. There was just a constant in the equations.
We have called it ¢ from the beginning, because we knew what it would turn out
to be. We didn’t think it would be sensible to make you learn the formulas with a
different constant and then go back to substitute ¢ wherever it belonged. From the
point of view of electricity and magnetism, however, we just start out with two
constants, €, and c?, that appear in the equations of electrostatics and magneto-
statics:

v-E=2L (18.14)
€p
and
- _J .
VXB=_; (18.15)

If we take any arbitrary definition of a unit of charge, we can determine experi-
mentally the constant €, required in Eq. (18.14)—say by measuring the force
between two unit charges at rest, using Coulomb’s law. We must also determine
experimentally the constant eqc? that appears in Eq. (18.15), which we can do, say,
by measuring the force between two unit currents. (A unit current means one unit
of charge per second.) The ratio of these two experimental constants is ¢2—just
another “electromagnetic constant.”

* Well, not quite. They can be “absorbed”’ if they get to a region where there are charges.
By which we mean that other fields can be produced somewhere which superpose on these
fields and “cancel” them by destructive interference (see Chapter 31, Vol. I).
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Notice now that this constant ¢? is the same no matter what we choose for
our unit of charge. If we put twice as much “charge”—say twice as many proton
charges—in our “unit” of charge, e, would need to be one-fourth as large. When
we pass two of these “unit” currents through two wires, there will be twice as much
‘“charge” per second in each wire, so the force between two wires is four times
larger. The constant €,c? must be reduced by one-fourth. But the ratio €oc?/eq
is unchanged.

So just by experiments with charges and currents we find a number ¢? which
turns out to be the square of the velocity of propagation of electromagnetic in-
fluences. From static measurements—by measuring the forces between two unit
charges and between two unit currents—we find that ¢ = 3.00 X 10® meters/sec.
When Maxwell first made this calculation with his equations, he said that bundles
of electric and magnetic fields should be propagated at this speed. He also re-
marked on the mysterious coincidence that this was the same as the speed of light.
“We can scarcely avoid the inference,” said Maxwell, “that light consists in the
transverse undulations of the same medium which is the cause of electric and
magnetic phenomena.”

Maxwell had made one of the great unifications of physics. Before his time,
there was light, and there was electricity and magnetism. The latter two had been
unified by the experimental work of Faraday, Oersted, and Ampere. Then, all
of a sudden, light was no longer “something else,” but was only electricity and
magnetism in this new form—little pieces of electric and magnetic fields which
propagate through space on their own.

We have called your attention to some characteristics of this special solution,
which turn out to be true, however, for any electromagnetic wave: that the mag-
netic field is perpendicular to the direction of motion of the wavefront; that the
electric field is likewise perpendicular to the direction of motion of the wavefront;
and that the two vectors E and B are perpendicular to each other. Furthermore,
the magnitude of the electric field E is equal to ¢ times the magnitude of the
magnetic field B. These three facts—that the two fields are transverse to the direc-
tion of propagation, that B is perpendicular to E, and that £ = cB—are generally
true for any electromagnetic wave. Qur special case is a good one—it shows all
the main features of electromagnetic waves.

18-6 Solving Maxwell’s equations; the potentials and the wave equation

Now we would like to do something mathematical; we want to write Maxwell’s
equations in a simpler form. You may consider that we are complicating them,
but if you will be patient a litile bit, they will suddenly come out simpler. Although
by this time you are thoroughly used to each of the Maxwell equations, there are
many pieces that must all be put together. That’s what we want to do.

We begin with V- B = O—the simplest of the equations. We know that it
implies that B is the curl of something. So, if we write

B=vV X A4, (18.16)

we have already solved one of Maxwell’s equations. (Incidentally, you appreciate
that it remains true that another vector 4’ would be just as good if A’ = 4 + V¢
—vwhere ¢ is any scalar field—because the curl of Vy is zero, and B is still the same.
We have talked about that before.)

We take next the Faraday law, V X E = —93B/dt, because it doesn’t involve
any currents or charges. If we write B as V X A and differentiate with respect to
t, we can write Faraday’s law in the form

)
VXE——EVXA.

Since we can differentiate either with respect to time or to space first, we can also
write this equation as

v X (E + %‘}) ~ 0. (18.17)
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We see that E + 3A/3t is a vector whose curl is equal to zero. Therefore that vec-
tor is the gradient of something. When we worked on electrostatics, we had
Vv X E = 0, and then we decided that E itself was the gradient of something.
We took it to be the gradient of —¢ (the minus for technical convenience). We
do the same thing for E + 04/3t; we set

E + %‘?‘ = —vs. (18.18)

We use the same symbol ¢ so that, in the electrostatic case where nothing changes
with time and the d4/3¢ term disappears, E will be our old —V¢. So Faraday’s
equation can be put in the form

a4

E=—v¢ — T (18.19)
We have solved two of Maxwell’s equations already, and we have found that
to describe the electromagnetic fields E and B, we need four potential functions:
a scalar potential ¢ and a vector potential A, which is, of course, three functions.
Now that 4 determines part of E, as well as B, what happens when we change
At A = A + v¢? In general, E would change if we didn’t take some special
precaution. We can, however, still allow 4 to be changed in this way without
affecting the fields E and B—that is, without changing the physics—if we always

change 4 and ¢ together by the rules

A=A+ Vv, o=o¢-— zl’t (18.20)

Then neither B nor E, obtained from Eq. (18.19), is changed.

Previously, we chose to make V-4 = 0, to make the equations of statics
somewhat simpler. We are not going to do that now; we are going to make a
different choice. But we’ll wait a bit before saying what the choice is, because
later it will be clear why the choice is made.

Now we return to the two remaining Maxwell equations which will give us
relations between the potentials and the sources p and j. Once we can determine 4
and ¢ from the currents and charges, we can always get E and B from Eqgs. (18.16)
and (18.19), so we will have another form of Maxwell’s equations.

We begin by substituting Eq. (18.19) into V - E = p/ey; we get

: _o4y _p
v (—v¢ 6t>_eo’

v _ w4 P.
V-5V A=12 (18.21)

which we can write also as

This is one equation relating ¢ and A4 to the sources.
Our final equation will be the most complicated. We start by rewriting the
fourth Maxwell equation as
2 _% _j
¢’V X B EY] = P s
and then substitute for B and E in terms of the potentials, using Eqs. (18.16)
and (18.19):
2 _ 9 (e _ I,
VX (VXA az( Vé 6t>—eo
The first term can be rewritten using the algebraic identity: v X (V X A) =
V(V A — V24; we get

—c%v24 2 - A i 9_2__“___}.. 22
c°v + c°v(V ) + a1 Vo + EYD c (18.22)
It’s not very simple!
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Fortunately, we can now make use of our freedom to choose arbitrarily the
divergence of 4. What we are going to do is to use our choice to fix things so that
the equations for 4 and for ¢ are separated but have the same form. We can do
this by taking*

Vid= - 2. (18.23)

When we do that, the two middle terms in 4 and ¢ in Eq. (18.22) cancel, and that
equation becomes much simpler:

2 1 8°4 j
V““ﬁ?ﬁ:“ﬁ' (18.24)

2
vig L3 _ _ o, (18.25)

What a beautiful set of equations! They are beautiful, first, because they are
nicely separated—with the charge density, goes ¢; with the current, goes 4. Further-
more, although the left side looks a little funny—a Laplacian together with a
(8/8¢)>—when we unfold it we see
3%

¥ 1% _ _p
tartm T e T e (1826)

%
dx2

It has a nice symmetry in x, y, z, t—the —1/c? is necessary because, of course,
time and space are different; they have different units.

Maxwell’s equations have led us to a new kind of equation for the potentials
¢ and A4 but to the same mathematical form for all four functions ¢, 4,, 4,, and
A,;. Once we learn how to solve these equations, we can get B and E from
Vv X Aand — V¢ — 04/91. We have another form of the electromagnetic laws
exactly equivalent to Maxwell’s equations, and in many situations they are much
simpler to handle.

We have, in fact, already solved an equation much like Eq. (18.26). When
we studied sound in Chapter 47 of Vol. I, we had an equation of the form

o 1o
axz 2o’

and we saw that it described the propagation of waves in the x-direction at the
speed ¢. Equation (18.26) is the corresponding wave equation for three dimensions.
So in regions where there are no longer any charges and currents, the solution of
these equations is #ot that ¢ and A are zero. (Although that is indeed one possible
solution.) There are solutions in which there is some set of ¢ and 4 which are
changing in time but always moving out at the speed c. The fields travel onward
through free space, as in our example at the beginning of the chapter.

With Maxwell’s new term in Eq. IV, we have been able to write the field equa-
tions in terms of 4 and ¢ in a form that is simple and that makes immediately
apparent that there are electromagnetic waves. For many practical purposes, it
will still be convenient to use the original equations in terms of E and B. But
they are on the other side of the mountain we have already climbed. Now we are
ready to cross over to the other side of the peak. Things will look different—we are
ready for some new and beautiful views.

* Choosing the V - A is called “choosing a gauge.” Changing 4 by adding Vy is called
a “gauge transformation.” Equation (18.23) is called “the Lorentz gauge.”
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