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What Are Quaternions?

Quaternions are numbers like the real numbers: they can be added, subtracted, multiplied, and 
divided.  There is something odd about them, hinted at by the Latin.  Quaternions are composed of 
four numbers that work together as one.  They were discovered by several people back in the 
eighteen hundreds.  Some enthusiasts thought quaternions would be able to express everything that 
could happen in our three dimensions of space and one for time because quaternions naturally had 
that form too.  Math accidents do not happen − they revel deep things about how Nature works.

Unfortunately, the big fans of quaternion mathematics claimed far more than they would deliver.  
Useful ideas born from initial quaternion work − for example the notion of scalars, vectors, div, 
grad, and curl − were stripped out of their initial context, and made more "general".  I use the 
quotes because from my viewpoint, there is nothing more general than a number that can be added, 
subtracted, multiplied, and divided.  I am trying to continue the project of applying four−dimen-
sional quaternions to the four−dimensional spacetime we live in.  
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Unifying Two Views of Events

An experimentalist collects events about a physical system. A theorists builds a model to describe 
what patterns of events within a system might generate the experimentalist’s data set. With hard 
work and luck, the two will  agree!

Events are handled mathematically as 4−vectors. They can be added or subtracted from another, or 
multiplied by a scalar. Nothing else can be done. A theorist can import very powerful tools to 
generate patterns, like metrics and group theory. Theorists in physics have been able to construct 
the most accurate models of Nature in all of science.

I hope to bring the full power of mathematics down to the level of the events themselves. This may 
be done by representing events as the mathematical field of quaternions. All  the standard tools for 
creating mathematical patterns − multiplication, trigonometric functions, transcendental functions, 
infinite series, the special functions of physics − should be available for quaternions. Now a theo-
rist can create patterns of events with events. This may lead to a better unification between the 
work of a theorist and the work of an experimentalist.

An Overview of Doing Physics with Quaternions

It has been said that one reason physics succeeds is because all the terms in an equation are tensors 
of the same rank.  This work challenges that assumption, proposing instead an integrated set of 
equations which are all based on the same 4−dimensional mathematical field of quaternions.  
Mostly this document shows in cookbook style how quaternion equations are equivalent to 
approaches already in use.  As Feynman pointed out, "whatever we are allowed to imagine in 
science must be consistent with everything else we know."   Fresh perspectives arise because, in 
essence, tensors of different rank can mix within the same equation.  The four Maxwell equations 
become one nonhomogeneous quaternion wave equation, and the Klein−Gordon equation is part of 
a quaternion simple harmonic oscillator.  Even gravity may be part of a simple quaternion wave 
equation, a research topic of much interest to me. Since all of the tools used are woven from the 
same mathematical fabric, the interrelationships become more clear.  Hope you enjoy.
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A Brief History of Quaternions

Complex numbers were a hot subject for research in the eighteen hundreds.  An obvious question 
was that if a rule for multiplying two numbers together was known, what about multiplying three 
numbers?  For over a decade, this simple question had bothered Hamilton, the big mathematician 
of his day.  The pressure to find a solution was not merely from within.  Hamilton wrote to his son:

"Every morning in the early part of the above−cited month [Oct. 1843] on my coming down to 
breakfast, your brother William Edwin and yourself used to ask me, ’Well, Papa, can you multiply 
triplets?’ Whereto I was always obliged to reply, with a sad shake of the head, ’No, I can only add 
and subtract them.’"

We can guess how Hollywood would handle the Brougham Bridge scene in Dublin.  Strolling 
along the Royal Canal with Mrs. H−, he realizes the solution to the problem, jots it down in a 
notebook.  So excited, he took out a knife and carved the answer in the stone of the bridge.

Hamilton had found a long sought−after solution, but it was weird, very weird, it was 4D.  One of 
the first things Hamilton did was get rid of the fourth dimension, setting it equal to zero, and call-
ing the result a "proper quaternion."  He spent the rest of his life trying to find a use for quater-
nions.  By the end of the nineteenth century, quaternions were viewed as an oversold novelty.

In the early years of this century, Prof. Gibbs of Yale found a use for proper quaternions by reduc-
ing the extra fluid surrounding Hamilton’s work and adding key ingredients from Rodrigues con-
cerning the application to the rotation of spheres.  He ended up with the vector dot product and 
cross product we know today.  This was a useful and potent brew.  Our investment in vectors is 
enormous, eclipsing their place of birth (Harvard had >1000 references under "vector", about 20 
under "quaternions", most of those written before the turn of the century).

In the early years of this century, Albert Einstein found a use for four dimensions.  In order to 
make the speed of light constant for all inertial observers, space and time had to be united.  Here 
was a topic tailor−made for a 4D tool, but Albert was not a math buff, and built a machine that 
worked from locally available parts.  We can say now that Einstein discovered Minkowski space-
time and the Lorentz transformation, the tools required to solve problems in special relativity.

Today, quaternions are of interest to historians of mathematics.  Vector analysis performs the daily 
mathematical routine that could also be done with quaternions.  I personally think that there may be 
4D roads in physics that can be efficiently traveled only by quaternions, and that is the path which 
is laid out in these web pages.

In a longer history, Gauss would get the credit for seeing quaternions first in one of his notebooks.  
Rodrigues developed 3D rotations all on his own also in the 1840’s.  The Pauli spin matrices and 
Penrose’s spinors are reinventions of the wheel that miss out on division.  Although I believe that is 
a major omission and cause of subtle flaws at the foundations of modern physics, spin matrices and 
spinors have many more adherents today than quaternions.
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Mathematics
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Multiplying  Quaternions the Easy Way

Multiplying two complex numbers a + b I and c + d I is straightforward.Ha, bL Hc, dL = Hac - bd, ad + bc L
For two quaternions, b I and d I become the 3−vectors B and D, where    B = x I + y J + z K and 
similarly for D.  Multiplication of quaternions is like complex numbers, but with the addition of the 
cross product.Ha, BÓL Hc, DÓL = Hac - BÓ. DÓ, a DÓ + BÓ c + BÓ x DÓL
A mnemonic: (firsts − lasts, outside + inside + the cross). Note that the cross product would change 
its sign if the order of multiplication were reversed, unlike the other terms.  That is why quater-
nions in general do not commute.

If  a is the operator d/dt, and B is the del operator, or d/dx I + d/dy J + d/dz K (all partial deriva-
tives), then these operators act on the scalar function c and the 3−vector function D in the follow-
ing manner:J d

�������
dt

, õ
ÓN Hc, DÓL =

ikjj dc
�������
dt

- õ
Ó. DÓ,

d DÓ
��������
dt

+ õ
Ó c + õ

Ó x DÓy{zz
This one quaternion contains the time derivatives of the scalar and 3−vector functions, along with 
the divergence, the gradient and the curl.  Dense notation :−)
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Scalars, Vectors, Tensors and All  That

According to my math dictionary, a tensor is ...

"An abstract object having a definitely specified system of components in every coordinate system 
under consideration and such that, under transformation of coordinates, the components of the 
object undergoes a transformation of a certain nature."

To make this introduction less abstract, I will  confine the discussion to the simplest tensors under 
rotational transformations.  A rank−0 tensor is known as a scalar.  It does not change at all under a 
rotation.  It contains exactly one number, never more or less.  There is a zero index for a scalar.  A 
rank−1 tensor is a vector.  A vector does change under rotation.  Vectors have one index which can 
run from 1 to the number of dimensions of the field, so there is no way to know a priori how many 
numbers (or operators, or ...) are in a vector.  n−rank tensors have n indices. The number of num-
bers needed is the number of dimensions in the vector space raised by the rank.  Symmetry can 
often simplify the number of numbers actually needed to describe a tensor.

There are a variety of important spin−offs of a standard vector.  Dual vectors, when multiplied by 
its corresponding vector, generate a real number, by systematically multiplying each component 
from the dual vector and the vector together and summing the total.  If the space a vector lives in is 
shrunk, a contravariant vector shrinks, but a covariant vector gets larger.  A tangent vector is, well, 
tangent to a vector function.

Physics equations involve tensors of the same rank.  There are scalar equations, polar vector equa-
tions, axial vector equations, and equations for higher rank tensors.  Since the same rank tensors 
are on both sides, the identity is preserved under a rotational transformation.  One could decide to 
arbitrarily combine tensor equations of different rank, and they would still be valid under the 
transformation.

There are ways to switch ranks.  If there are two vectors and one wants a result that is a scalar, that 
requires the intervention of a metric to broker the transaction.  This process in known as an inner 
tensor product or a contraction.  The vectors in question must have the same number of dimen-
sions.  The metric defines how to form a scalar as the indices are examined one−by−one.  Metrics 
in math can be anything, but nature imposes constraints on which ones are important in physics.  
An aside: mathematicians require the distance is non−negative, but physicists do not.  I will  be 
using the physics notion of a metric.  In looking at events in spacetime (a 4−dimensional vector), 
the axioms of special relativity require the Minkowski metric, which is a 4x4 real matrix which has 
down the diagonal 1, −1, −1, −1 and zeros elsewhere.  Some people prefer the signs to be flipped, 
but to be consistent with everything else on this site, I choose this convention.  Another popular 
choice is the Euclidean metric, which is the same as an identity matrix.  The result of general 
relativity for a spherically symmetric, non−rotating mass is the Schwarzschild metric, which has 
"non−one" terms down the diagonal, zeros elsewhere, and becomes the Minkowski metric in the 
limit  of the mass going to zero or the radius going to infinity.

An outer tensor product is a way to increase the rank of tensors.  The tensor product of two vectors 
will  be a 2−rank tensor.  A vector can be viewed as the tensor product of a set of basis vectors.
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à What Are Quaternions?

Quaternions could be viewed as the outer tensor product of a scalar and a 3−vector.  Under rotation 
for an event in spacetime represented by a quaternion, time is unchanged, but the 3−vector for 
space would be rotated.  The treatment of scalars is the same as above, but the notion of vectors is 
far more restrictive, as restrictive as the notion of scalars. Quaternions can only handle 3−vectors.  
To those familiar to playing with higher dimensions, this may appear too restrictive to be of inter-
est.  Yet physics on both the quantum and cosmological scales is confined to 3−spatial dimensions.  
Note that the infinite Hilbert spaces in quantum mechanics a function of the principle quantum 
number n, not the spatial dimensions.  An infinite collection of quaternions of the form (En, Pn) 
could represent a quantum state.  The Hilbert space is formed using the Euclidean product (q* q’).

A dual quaternion is formed by taking the conjugate, because q* q = (t^2 + X.X, 0).  A tangent 
quaternion is created by having an operator act on a quaternion−valued functionJ ¶

�������
¶ t

, ÑÓN Hf  HqL, FÓ HqLL =ikjj ¶ f
�������
¶ t

- ÑÓ . FÓ,
¶FÓ
�������
¶ t

+ ÑÓ f + ÑÓX FÓy{zz
What would happen to these five terms if space were shrunk?  The 3−vector F would get shrunk, as 
would the divisors in the Del operator, making functions acted on by Del get larger.  The scalar 
terms are completely unaffected by shrinking space, because df/dt has nothing to shrink, and the 
Del and F cancel each other.  The time derivative of the 3−vector is a contravariant vector, because 
F would get smaller.  The gradient of the scalar field is a covariant vector, because of the work of 
the Del operator in the divisor makes it larger.  The curl at first glance might appear as a draw, but 
it is a covariant vector capacity because of the right−angle nature of the cross product.  Note that if 
time where to shrink exactly as much as space, nothing in the tangent quaternion would change.

A quaternion equation must generate the same collection of tensors on both sides.  Consider the 
product of two events, q and q’:Ht , XÓL It ¢ , X¢ÓÖÖÖ M = It t ¢ - XÓ. X¢ÓÖÖÖ , t X¢ÓÖÖÖ + XÓ t ¢ + XÓ x  X¢ÓÖÖÖ M

scalars : t , t ¢ , tt ¢ - XÓ. X¢ÓÖÖÖ
polar vectors : XÓ, X¢ÓÖÖÖ , t X¢ÓÖÖÖ + XÓ t ¢

axial vectors : XÓ x  X¢ÓÖÖÖ
Where is the axial vector for the left hand side?  It is imbedded in the multiplication operation, 
honest :−)It ¢ , X¢ÓÖÖÖ M Ht , XÓL = It ¢  t - X¢ÓÖÖÖ . XÓ, t ¢ XÓ + X¢ÓÖÖÖ t + X¢ÓÖÖÖ  x  XÓM

= It t ¢ - XÓ. X¢ÓÖÖÖ , t X¢ÓÖÖÖ + XÓ t ¢ - XÓ x  X¢ÓÖÖÖ M
The axial vector is the one that flips signs if the order is reversed.

Terms can continue to get more complicated.  In a quaternion triple product, there will  be terms of 
the form (XxX’).X".   This is called a pseudo−scalar, because it does not change under a rotation, 
but it will  change signs under a reflection, due to the cross product.  You can convince yourself of 
this by noting that the cross product involves the sine of an angle and the dot product involves the 
cosine of an angle. Neither of these will  change under a rotation, and an even function times an odd 
function is odd.  If the order of quaternion triple product is changed, this scalar will  change signs 
for at each step in the permutation.
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Terms can continue to get more complicated.  In a quaternion triple product, there will  be terms of 
the form (XxX’).X".   This is called a pseudo−scalar, because it does not change under a rotation, 
but it will  change signs under a reflection, due to the cross product.  You can convince yourself of 
this by noting that the cross product involves the sine of an angle and the dot product involves the 
cosine of an angle. Neither of these will  change under a rotation, and an even function times an odd 
function is odd.  If the order of quaternion triple product is changed, this scalar will  change signs 
for at each step in the permutation.

It has been my experience that any tensor in physics can be expressed using quaternions.  Some-
times it takes a bit of effort, but it can be done.

Individual parts can be isolated if one chooses.  Combinations of conjugation operators which flip 
the sign of a vector, and symmetric and antisymmetric products can isolate any particular term.  
Here are all the terms of the example from aboveHt , XÓL It ¢ , X¢ÓÖÖÖ M = It t ¢ - XÓ. X¢ÓÖÖÖ , t X¢ÓÖÖÖ + XÓ t ¢ + XÓ x  X¢ÓÖÖÖ M

scalars : t =
q + q*
��������������

2
, t ¢ =

q ’ + q ’ *
���������������������

2
,

tt ¢ - XÓ. X¢ÓÖÖÖ =
qq ’ + Hqq ’ L*

�������������������������������
2

polar vectors : XÓ =
q - q*
��������������

2
, X¢ÓÖÖÖ =

q ’ - q ’ *
���������������������

2
,

t X¢ÓÖÖÖ + XÓ t ¢ =
Hqq ’ + Hq ’  qLL - Hqq ’ + Hq ’  qLL*

�����������������������������������������������������������������������������
4

axial vectors : XÓ x  X¢ÓÖÖÖ =
qq ’ - Hq ’  qL
������������������������������

2

The metric for quaternions is imbedded in Hamilton’s rule for the field. 

i
Ó2

= j
Ó2

= k
Ó2

= i
Ó

j
Ó

k
Ó

= -1

This looks like a way to generate scalars from vectors, but it is more than that.  It also says implic-
itly  that i j = k, j k = i, and i, j, k must have inverses.  This is an important observation, because it 
means that inner and outer tensor products can occur in the same operation. When two quaternions 
are multiplied together, a new scalar (inner tensor product) and vector (outer tensor product) are 
formed.

How can the metric be generalized for arbitrary transformations?  The traditional approach would 
involve playing with Hamilton’s rules for the field.  I think that would be a mistake, since that rule 
involves the fundamental definition of a quaternion.  Change the rule of what a quaternion is in one 
context and it will  not be possible to compare it to a quaternion in another context.  Instead, con-
sider an arbitrary transformation T  which takes q into q’

q � q ’ = T q

T is also a quaternion, in fact it is equal to q’ q^−1.  This is guaranteed to work locally, within 
neighborhoods of q and q’.  There is no promise that it will  work globally, that one T will  work for 
any q.  Under certain circumstances, T will  work for any q.  The important thing to know is that a 
transformation T necessarily exists because quaternions are a field. The two most important theo-
ries in physics, general relativity and the standard model, involve local transformations (but the 
technical definition of local transformation is different than the idea presented here because it 
involves groups).

This quaternion definition of a transformation creates an interesting relationship between the 
Minkowski and Euclidean metrics.

Let T = I , the identity matrix
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I q I q + HI q I qL*

���������������������������������������������
2

= Ht 2 - XÓ. XÓ, 0LHI qL*  I q = Ht 2 + XÓ. XÓ, 0L
In order to change from wrist watch time (the interval in spacetime) to the norm of a Hilbert space 
does not require any change in the transformation quaternion, only a change in the multiplication 
step. Therefore a transformation which generates the Schwarzschild interval of general relativity 
should be easily portable to a Hilbert space, and that might be the start of a quantum theory of 
gravity.

à So What Is the Difference?

I think it is subtle but significant.  It goes back to something I learned in a graduate level class on 
the foundations of calculus.  To make calculus rigorous requires that it is defined over a mathemati-
cal field. Physicists do this be saying that the scalars, vectors and tensors they work with are 
defined over the field of real or complex numbers.

What are the numbers used by nature?  There are events, which consist of the scalar time and the 
3−vector of space.  There is mass, which is defined by the scalar energy and the 3−vector of momen-
tum.  There is the electromagnetic potential, which has a scalar field phi and a 3−vector potential A.

To do calculus with only information contained in events requires that a scalar and a 3−vector form 
a field.  According to a theorem by Frobenius on finite dimensional fields, the only fields that fit 
are isomorphic to the quaternions (isomorphic is a sophisticated notion of equality, whose subtle-
ties are appreciated only by people with a deep understanding of mathematics).  To do calculus 
with a mass or an electromagnetic potential has an identical requirement and an identical solution.  
This is the logical foundation for doing physics with quaternions.

Can physics be done without quaternions?  Of course it can!  Events can be defined over the field 
of real numbers, and then the Minkowski metric and the Lorentz group can be deployed to get 
every result ever confirmed by experiment.  Quantum mechanics can be defined using a Hilbert 
space defined over the field of complex numbers and return with every result measured to date.

Doing physics with quaternions is unnecessary, unless physics runs into a compatibility issue.  
Constraining general relativity and quantum mechanics to work within the same topological alge-
braic field may be the way to unite these two separately successful areas.
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Inner and Outer Products of Quaternions

A good friend of mine has wondered what is means to multiply two quaternions together (this 
question was a hot topic in the nineteenth century).  I care more about what multiplying two quater-
nions together can accomplish.  There are two basic ways to do this: just multiply one quaternion 
by another, or first take the transpose of one then multiply it with the other.  Each of these products 
can be separated into two parts: a symmetric (inner product) and an antisymmetric (outer product) 
components.  The symmetric component will  remain unchanged by exchanging the places of the 
quaternions, while the antisymmetric component will  change its sign.  Together they add up to the 
product.  In this section, both types of inner and outer products will  be formed and then related to 
physics.

à The Grassman Inner and Outer Products

There are two basic ways to multiply quaternions together.  There is the direct approach.Ht , XÓL It ¢ , X¢ÓÖÖÖ M = It t ¢ - XÓ. X¢ÓÖÖÖ , t  X¢ÓÖÖÖ + XÓ t ¢ + XÓ x  X¢ÓÖÖÖ M
I call this the Grassman product (I don’t know if anyone else does, but I need a label).  The inner 
product can also be called the symmetric product, because it does not change signs if the terms are 
reversed.

even  IHt , XÓL, It ¢ , X¢ÓÖÖÖ MM º

º
Ht , XÓL Ht ¢ , X¢ÓÖÖÖ L + Ht ¢ , X¢ÓÖÖÖ L Ht , XÓL
����������������������������������������������������������������������������

2
=It t ¢ - XÓ. X¢ÓÖÖÖ , t  X¢ÓÖÖÖ + XÓ t ¢M

I have defined the anticommutator (the bold curly braces) in a non−standard way, including a 
factor of two so I do not have to keep remembering to write it.  The first term would be the Lorentz 
invariant interval if the two quaternions represented the same difference between two events in 
spacetime (i.e. t1=t2=delta t,...).  The invariant interval plays a central role in special relativity.  
The vector terms are a frame−dependent, symmetric product of space with time and does not 
appear on the stage of physics, but is still a valid measurement.

The Grassman outer product is antisymmetric and is formed with a commutator.

odd  IHt , XÓL, It ¢ , X¢ÓÖÖÖ MM º

º
Ht , XÓL Ht ¢ , X¢ÓÖÖÖ L - Ht ¢ , X¢ÓÖÖÖ L Ht , XÓL
����������������������������������������������������������������������������

2
= I0, XÓ x  X¢ÓÖÖÖ M

This is the cross product defined for two 3−vectors.  It is unchanged for quaternions.
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à The Euclidean Inner and Outer Products

Another important way to multiply a pair of quaternions involves first taking the transpose of one 
of the quaternions.  For a real−valued matrix representation, this is equivalent to multiplication by 
the conjugate which involves flipping the sign of the 3−vector.Ht , XÓL*

 It ¢ , X¢ÓÖÖÖ M = Ht , -XÓL It ¢ , X¢ÓÖÖÖ M
= It t ¢ + XÓ. X¢ÓÖÖÖ , t  X¢ÓÖÖÖ - XÓ t ¢ - XÓ x  X¢ÓÖÖÖ M

Form the Euclidean inner product.Ht , XÓL*
 Ht ¢ , X¢ÓÖÖÖ L + Ht ¢ , X¢ÓÖÖÖ L*

 Ht , XÓL
��������������������������������������������������������������������������������

2
= It t ¢ + XÓ. X¢ÓÖÖÖ , 0

ÓM
The first term is the Euclidean norm if the two quaternions are the same (this was the reason for 
using the adjective "Euclidean").  The Euclidean inner product is also the standard definition of a 
dot product.

Form the Euclidean outer product.Ht , XÓL*
 Ht ¢ , X¢ÓÖÖÖ L - Ht ¢ , X¢ÓÖÖÖ L*

 Ht , XÓL
��������������������������������������������������������������������������������

2
= I0, t  X¢ÓÖÖÖ - XÓ t ¢ - XÓ x  X¢ÓÖÖÖ M

The first term is zero.  The vector terms are an antisymmetric product of space with time and the 
negative of the cross product. 

The Euclidean product is non−associative:Ha bL*  c ¹ HaL*  bc

The norms of Euclidean products are associative because the norms are real valued:È Ha bL*  c È = È HaL*  bc È
The Euclidean product of quaternions might be a way t connect to the algebra of octonions,a non−
associative division algebra.

à Implications
When multiplying vectors in physics, one normally only considers the Euclidean inner product, or 
dot product, and the Grassman outer product, or cross product.  Yet, the Grassman inner product, 
because it naturally generates the invariant interval, appears to play a role in special relativity.  
What is interesting to speculate about is the role of the Euclidean product. The Euclidean product 
might be a direct connection to the algebraic structure of quantum mechanics via Hilbert spaces.
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Quaternion  Analysis

Complex numbers are a subfield of quaternions.  My hypothesis is that complex analysis should be 
self−evident within the structure of quaternion analysis.

The challenge is to define the derivative in a way so that a left derivative always equals a right 
derivative.  If quaternions would only commute...  Well, the scalar part of a quaternion does com-
mute.  If, in the limit, the differential element converged to a scalar, then it would commute.  This 
idea can be defined precisely.  All  that is required is that the magnitude of the 3−vector goes to 
zero faster than the scalar.  This might initially appears as an unreasonable constraint.  However, 
there is an important application in physics.  Consider a set of quaternions that represent events in 
spacetime.  If the magnitude of the 3−space vector is less than the time scalar, events are separated 
by a timelike interval.  It requires a speed less than the speed of light to connect the events.  This is 
true no matter what coordinate system is chosen.

à Defining  a Quaternion

A quaternion has 4 degrees of freedom, so it needs 4 real−valued variables to be defined:

q = Ha0 , a1 , a2 , a3 L
Imagine we want to do a simple binary operation such as subtraction, without having to specify the 
coordinate system chosen.  Subtraction will  only work if the coordinate systems are the same, 
whether it is Cartesian, spherical or otherwise.  Let e0, e1, e2, and e3 be the shared, but unspeci-
fied, basis.  Now we can define the difference between two quaternion q and q’ that is independent 
of the coordinate system used for the measurement.

dq = q ’ - q = HHa0 ’ - a0 L e0 ,Ha1 ’ - a1 L e1 � 3, Ha2 ’ - a2 L e2 � 3, Ha3 ’ - a3 L e3 � 3L
What is unusual about this definition are the factors of a third.  They will  be necessary in order to 
define a holonomic equation later in this section.  Hamilton gave each element parity with the 
others, a very reasonable approach.  I have found that it is important to give the scalar and the sum 
of the 3−vector parity.  Without this "scale" factor on the 3−vector, change in the scalar is not 
given its proper weight.

If  dq is squared, the scalar part of the resulting quaternion forms a metric.

dq ^ 2 = Jda0
2  e0

2 + da1
2  

e1
2

���������
9

+ da2
2  

e2
2

���������
9

+ da3
2  

e3
2

���������
9

,

2 da0  da1  e0  
e1�������
3

, 2 da0  da2  e0  
e2�������
3

, 2 da0  da3  e0  
e3�������
3

N
What should the connection be between the squares of the basis vectors?  The amount of intrinsic 
curvature should be equal, so that a transformation between two basis 3−vectors does not contain a 
hidden bump.  Should time be treated exactly like space?  The Schwarzschild metric of general 
relativity suggests otherwise.  Let e1, e2, and e3 form an independent, dimensionless, orthogonal 
basis for the 3−vector such that:
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-
1

���������
e1

2 = -
1

���������
e2

2 = -
1

���������
e3

2 = e0
2

This unusual relationship between the basis vectors is consistent with Hamilton’s choice of 1, i, j, k 
if  e0

2 = 1.  For that case, calculate the square of dq:

dq2 = ikjjda0
2  e0

2 -
da1

2

�������������
9 e0

2 -
da2

2

�������������
9 e0

2 -
da3

2

�������������
9 e0

2 ,

2 da0  
da1���������

3
, 2 da0  

da2���������
3

, 2 da0  
da3���������

3
y{zz

The scalar part is known in physics as the Minkowski interval between two events in flat space-
time.  If e0^2 does not equal one, then the metric would apply to a non−flat spacetime.  A metric 
that has been measured experimentally is the Schwarzschild metric of general relativity.  Set 
e0

2 = H1 - 2 = (1 − 2 GM/c^2 R), and calculate the square of dq:

dq2 =
ikjjjda0

2  J1 -
2 GM
������������
c2  R

N -
dA. dA

�������������������������������
9 H1 - 2 GM���������c2  R L ,

2 da0  
da1���������

3
, 2 da0  

da2���������
3

, 2 da0  
da3���������

3
y{zzz

This is the Schwarzschild metric of general relativity.  Notice that the 3−vector is unchanged (this 
may be a defining characteristic).  There are very few opportunities for freedom in basic mathemati-
cal definitions.  I have chosen this unusual relationships between the squares of the basis vectors to 
make a result from physics easy to express.  Physics guides my choices in mathematical definitions 
:−)

à An Automorphic  Basis  for  Quaternion  Analysis

A quaternion has 4 degrees of freedom.  To completely specify a quaternion function on the mani-
fold H1, it must also have four degrees of freedom.  Three other linearly−independent variables 
involving q can be defined using conjugates combined with rotations:

q* = Ha0  e0 , -a1 e1 � 3, -a2 e2 � 3, -a3 e3 � 3L
q*1 = H- a0  e0 , a1 e1 � 3, -a2 e2 � 3, -a3 e3 � 3L = He1 q e1 L*

q*2 º H- a0  e0 , -a1 e1 � 3, +a2 e2 � 3, -a3  e3 � 3L = He2 q e2 L*

The conjugate as it is usually defined (q*)  flips the sign of all but the scalar.  The q*1 flips the 
signs of all but the e1 term, and q*2 all but the e2 term.  The set q, q*, q*1, q*2 form the basis for 
quaternion analysis on the H1 manifold.  The conjugate of a conjugate should give back the origi-
nal quaternion.Hq *L* = q, Hq *1 L*1

= q, Hq *2 L*2
= q

Something subtle but perhaps directly related to spin happens looking at how the conjugates effect 
products:Hq q ’ L* = q ’ * q*
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Hq q ’ L*1 = - q ’ *1 q*1 , Hq q ’ L*2 = - q ’ *2 q*2Hq q ’  q q ’ L*1 = q ’ *1 q*1  q ’ *1 q*1

The conjugate applied to a product brings the result directly back to the reverse order of the ele-
ments.  The first and second conjugates point things in exactly the opposite way.  The property of 
going "half way around" is reminiscent of spin.  A tighter link is explored in the section on integral 
and half integral spin.

à Future  Timelike  Derivative
Instead of the standard approach to quaternion analysis which focuses on left versus right deriva-
tives, I concentrate on the ratio of scalars to 3−vectors.  This is natural when thinking about the 
structure of Minkowski spacetime, where the ratio of the change in time to the change in 3−space 
defines five separate regions: timelike past, timelike future, lightlike past, lightlike future, and 
spacelike.  There are no continuous Lorentz transformations to link these regions.  Each region will  
require a separate definition of the derivative, and they will  each have distinct properties.  I will  
start with the simplest case, and look at a series of examples in detail.

Definition: The future timelike derivative:

Consider a covariant quaternion function f with a domain of H and a range of H.  A future timelike 
derivative to be defined, the 3−vector must approach zero faster than the positive scalar.  If this is 
not the case, then this definition cannot be used.  Implementing these requirements involves two 
limit  processes applied sequentially to a differential quaternion D.  First the limit of the three 
vector is taken as it goes to zero, (D − D*)/2 −> 0.  Second, the limit of the scalar is taken, (D + 
D*)/2 −> +0 (the plus zero indicates that it must be approached with a time greater than zero, in 
other words, from the future).  The net effect of these two limit processes is that D−>0.

¶ f  Hq, q* , q*1 , q*2 L
��������������������������������������������������

¶ q
=

= limit as Id, 0
ÓM ®

+0 Ilimit as  Hd, DÓL ®Id, 0
ÓM Hf  Hq + Hd, DÓL, q* , q*1 , q*2 L -

f  Hq, q* , q*1 , q*2 LL Hd, DÓL-1 MM
The definition is invariant under a passive transformation of the basis.

The 4 real variables a0, a1, a2, a3 can be represented by functions using the conjugates as a basis.

f  Hq, q* , q*1 , q*2 L = a0 =
e0  Hq + q*L
��������������������������

2

f = a1 =
e1  Hq + q*1 L
����������������������������H- 2 � 3L =

Hq + q*1 L e1����������������������������H- 2 � 3L
f = a2 =

e2  Hq + q*2 L
����������������������������H- 2 � 3L =

Hq + q*2 L e2����������������������������H- 2 � 3L
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f = a3 =
e3  Hq + q* + q*1 + q*2 L
�������������������������������������������������H2 � 3L =

Hq + q* + q*1 + q*2 L e3�������������������������������������������������H2 � 3L
Begin with a simple example:

f  Hq, q* , q*1 , q*2 L = a0 =
e0  Hq + q*L
��������������������������

2

¶ a0�����������
¶ q

=
¶ a0�����������
¶ q* = lim  Ilim  IHe0  HHq + Hd, DÓL + q*L - Hq + q*LLL H2 Hd, DÓLL-1 MM =

e0�������
2

¶ a0�������������
¶ q*1 =

¶ a0�������������
¶ q*2 = 0

The definition gives the expected result.

A simple approach to a trickier example:

f = a1 =
e1  Hq + q*1 L
����������������������������H- 2 � 3L

¶ a1�����������
¶ q

=

¶ a1�������������
¶ q*1 = lim  Ilim  IHe1  HHq + Hd, DÓL + q*1 L - Hq + q*1 LLL HH-2 � 3L Hd, DÓLL-1 MM = -

3 e1�����������
2

¶ a1�����������
¶ q* =

¶ a1�������������
¶ q*2 = 0

So far, the fancy double limit process has been irrelevant for these identity functions, because the 
differential element has been eliminated.  That changes with the following example, where the e1 
is written on the right, but the result is the same.

f  Hq, q* , q*1 , q*2 L = a1 =
Hq + q*1 L e1����������������������������H- 2 � 3L

¶ a1�����������
¶ q

=
¶ a1�������������
¶ q*1 =

= lim  Ilim  IHHq + Hd, DÓL + q*1 L - Hq + q*1 LL 

e1  HH-2 � 3L Hd, DÓLL-1 MM =

= lim  Ilim  IHd, DÓL e1  HH-2 � 3L Hd, DÓLL-1 MM =
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= lim  IId, 0
ÓM e1  IH-2 � 3L Id, 0

ÓMM-1 M = -
3 e1�����������

2

Because the 3−vector goes to zero faster than the scalar for the differential element, after the first 
limit  process, the remaining differential is a scalar so it commutes with any quaternion.  This is 
what is required to dance around the e1 and lead to the cancellation.

The initial hypothesis was that complex analysis should be a self−evident subset of quaternion 
analysis.  So this quaternion derivative should match up with the complex case, which is:

z = a + b i , b = HZ - Z*L � 2 i

¶ b
���������
¶ z

= -
i
����
2

= -
¶ b

�����������
¶ z*

These are the same result up to a factor of three.  Quaternions have three imaginary axes.

The derivative of a quaternion applies equally well to polynomials.

let f = q2

¶ f
���������
¶ q

= lim  Ilim  IIHq + Hd, DÓLL2
- q2 M Hd, DÓL-1 MM =

= lim  Ilim  IIq2 + q Hd, DÓL + Hd, DÓL q + Hd, DÓL2
- q2 M Hd, DÓL-1 MM =

= lim  Ilim  Iq + Hd, DÓL q Hd, DÓL-1
+ Hd, DÓLMM =

= lim  I2 q + Id, 0
ÓMM = 2 q

This is the expected result for this polynomial.  It would be straightforward to show that all polyno-
mials gave the expected results.

Mathematicians might be concerned by this result, because if the 3−vector D goes to −D nothing 
will  change about the quaternion derivative.  This is actually consistent with principles of special 
relativity.  For timelike separated events, right and left depend on the inertial reference frame, so a 
timelike derivative should not depend on the direction of the 3−vector.

à Analytic  Functions

There are 4 types of quaternion derivatives and 4 component functions.  The following table 
describes the 16 derivatives for this set
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\ a0 a1 a2 a3
¶������¶ q

e0�����2
e1���������-2�3

e2���������-2�3
e3�������2�3

¶��������¶ q*
e0�����2 0 0 e3�������2�3

¶���������¶ q*1 0 e1���������-2�3 0 e3�������2�3

¶���������¶ q*2 0 0 e2���������-2�3
e3�������2�3

This table will  be used extensively to evaluate if a function is analytic using the chain rule.  Let’s 
see if the identity function w =  q  is analytic.

Let w = q = Ia0 e0 , a1  
e1�������
3

, a2  
e2�������
3

, a3  
e3�������
3

M
Use the chain rule to calculate the derivative will  respect to each term:

¶ w
�����������
¶ a0

 
¶ a0�����������
¶ q

= e0
e0�������
2

=
1
����
2

¶ w
�����������
¶ a1

 
¶ a1�����������
¶ q

=
e1�������
3

e1��������������������H-2 � 3L =
1
����
2

¶ w
�����������
¶ a2

 
¶ a2�����������
¶ q

=
e2�������
3

e2��������������������H-2 � 3L =
1
����
2

¶ w
�����������
¶ a3

 
¶ a3�����������
¶ q

=
e3�������
3

e3�����������������H2 � 3L = -
1
����
2

Use combinations of these terms to calculate the four quaternion derivatives using the chain rule.

¶ w
���������
¶ q

=
¶ w

�����������
¶ a0

 
¶ a0�����������
¶ q

+
¶ w

�����������
¶ a1

 
¶ a1�����������
¶ q

+
¶ w

�����������
¶ a2

 
¶ a2�����������
¶ q

+
¶ w

�����������
¶ a3

 
¶ a3�����������
¶ q

=

1
����
2

+
1
����
2

+
1
����
2

-
1
����
2

= 1

¶ w
�����������
¶ q* =

¶ w
�����������
¶ a0

 
¶ a0�����������
¶ q* +

¶ w
�����������
¶ a3

 
¶ a3�����������
¶ q* =

1
����
2

-
1
����
2

= 0

¶ w
�������������
¶ q*1 =

¶ w
�����������
¶ a1

 
¶ a1�������������
¶ q*1 +

¶ w
�����������
¶ a3

 
¶ a3�������������
¶ q*1 =

1
����
2

-
1
����
2

= 0

¶ w
�������������
¶ q*2 =

¶ w
�����������
¶ a2

 
¶ a2�������������
¶ q*2 +

¶ w
�����������
¶ a3

 
¶ a3�������������
¶ q*2 =

1
����
2

-
1
����
2

= 0

This has the derivatives expected if w=q is analytic in q.

Another test involves the Cauchy−Riemann equations.  The presence of the three basis vectors 
changes things slightly.
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Let u = Ha0  e0 , 0, 0, 0L, VÓ = I0, a1  
e1�������
3

, a2  
e2�������
3

, a3  
e3�������
3

M
¶ u

�����������
¶ a0

 
e1�������
3

=
¶ VÓ

�����������
¶ a1

 e0 ,

¶ u
�����������
¶ a0

 
e2�������
3

=
¶ VÓ

�����������
¶ a2

 e0 ,
¶ u

�����������
¶ a0

 
e3�������
3

=
¶ VÓ

�����������
¶ a3

 e0

This also solves a holonomic equation.

Scalar  
ikjjikjj ¶ u

�����������
¶ a0

,
¶ VÓ

�����������
¶ a1

,
¶ VÓ

�����������
¶ a2

,
¶ VÓ

�����������
¶ a3

y{zz He0 , e1 , e2 , e3 Ly{zz =

e0 e0 +
e1�������
3

 e1 +
e2�������
3

 e2 +
e3�������
3

 e3 = 0

There are no off diagonal terms to compare.

This exercise can be repeated for the other identity functions.  One noticeable change is in the role 
that the conjugate play for the basis vectors.  Consider the identity function w = q*1.  To show that 
this is analytic in q*1 requires that one always works with basis vectors of the q*1 variety.

Let u = H- a0  e0 , 0, 0, 0L,

VÓ = I0, a1  
e1�������
3

, - a2  
e2�������
3

, - a3  
e3�������
3

M
¶ u

�����������
¶ a0

 I-
e1�������
3

M =
¶ VÓ

�����������
¶ a1

 e0 ,

¶ u
�����������
¶ a0

 
e2�������
3

=
¶ VÓ

�����������
¶ a2

 e0 ,
¶ u

�����������
¶ a0

 
e3�������
3

=
¶ VÓ

�����������
¶ a3

 e0

This also solves a first conjugate holonomic equation.

Scalar  
ikjjikjj ¶ u

�����������
¶ a0

,
¶ VÓ

�����������
¶ a1

,
¶ VÓ

�����������
¶ a2

,
¶ VÓ

�����������
¶ a3

y{zz He0 , e1 , e2 , e3 L*1 y{zz =

-e0 H-e0 L +
e1�������
3

 e1 -
-e2����������

3
 e2 -

-e3����������
3

 e3 = 0

Power functions can be analyzed in exactly the same way:

Let w = q2 = Ja0
2  e0

2 + a1
2  

e1
2

���������
9

+ a2
2  

e2
2

���������
9

+ a3
2  

e3
2

���������
9

,

2 a0  a1  e0  
e1�������
3

, 2 a0  a2  e0  
e2�������
3

, 2 a0  a3  e0  
e3�������
3

N
u = Ja0

2  e0
2 + a1

2  
e1

2
���������

9
+ a2

2  
e2

2
���������

9
+ a3

2  
e3

2
���������

9
, 0, 0, 0N
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VÓ = I0, 2 a0  a1  e0  
e1�������
3

, 2 a0  a2  e0  
e2�������
3

, 2 a0  a3  e0  
e3�������
3

M
¶ u

�����������
¶ a0

 
e1�������
3

=
2 a0  e0

2  e1�������������������������
3

=
¶ VÓ

�����������
¶ a1

 e0

¶ u
�����������
¶ a0

 
e2�������
3

=
2 a0  e0

2  e2�������������������������
3

=
¶ VÓ

�����������
¶ a2

 e0

¶ u
�����������
¶ a0

 
e3�������
3

=
2 a0  e3

2
�������������������

3
=

¶ VÓ
�����������
¶ a3

This time there are cross terms involved.

¶ u
�����������
¶ a1

 e0 =
2 a1  e0  e1

2
�������������������������

9
=

¶ VÓ1�����������
¶ a0

 
e1�������
3

¶ u
�����������
¶ a2

 e0 =
2 a2  e0  e2

2
�������������������������

9
=

¶ VÓ2�����������
¶ a0

 
e2�������
3

¶ u
�����������
¶ a3

 e0 =
2 a3  e0  e3

2
�������������������������

9
=

¶ VÓ3�����������
¶ a0

 
e3�������
3

At first glance, one might think these are incorrect, since the signs of the derivatives are suppose to 
be opposite.  Actually they are, but it is hidden in an accounting trick :−)  For example, the deriva-
tive of u with respect to a1 has a factor of e1^2, which makes it negative.  The derivative of the 
first component of V with respect to a0 is positive.  Keeping all the information about signs in the 
e’s makes things look non−standard, but they are not.  

Note that these are three scalar equalities.  The other Cauchy−Riemann equations evaluate to a 
single 3−vector equation.  This represents four constraints on the four degrees of freedom found in 
quaternions to find out if a function happens to be analytic.

This also solves a holonomic equation.

Scalar  
ikjjikjj ¶ u

�����������
¶ a0

,
¶ VÓ

�����������
¶ a1

,
¶ VÓ

�����������
¶ a2

,
¶ VÓ

�����������
¶ a3

y{zz He0 , e1 , e2 , e3 Ly{zz =

= 2 a0  e0
3 +

2 a0  e0  e1�����������������������
3

 e1 +
2 a0  e0  e2�����������������������

3
 e2 +

2 a0  e0  e3�����������������������
3

 e3 = 0

Since power series can be analytic, this should open the door to all forms of analysis.  (I have done 
the case for the cube of q, and it too is analytic in q). 

à 4 Other  Derivatives
So far, this work has only involved future timelike derivatives.  There are five other regions of 
spacetime to cover.  The simplest next case is for past timelike derivatives.  The only change is in 
the limit, where the scalar approaches zero from below.  This will  make many derivatives look time 
symmetric, which is the case for most laws of physics.

A more complicated case involves spacelike derivatives.  In the spacelike region, changes in time 
go to zero faster than the absolute value of the 3−vector.  Therefore the order of the limit processes 
is reversed.  This time the scalar approaches zero, then the 3−vector.  This creates a problem, 
                  
most quaternions.  That will  lead to the differential element not cancelling.  The way around this is 
to take its norm, which is a scalar.
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A more complicated case involves spacelike derivatives.  In the spacelike region, changes in time 
go to zero faster than the absolute value of the 3−vector.  Therefore the order of the limit processes 
is reversed.  This time the scalar approaches zero, then the 3−vector.  This creates a problem, 
because after the first limit process, the differential element is (0, D), which will  not commute with 
most quaternions.  That will  lead to the differential element not cancelling.  The way around this is 
to take its norm, which is a scalar.

A spacelike differential element is defined by taking the ratio of a differential quaternion element 
D to its 3−vector, D − D*.  Let the norm of D approach zero.  To be defined, the three vector must 
approach zero faster than its corresponding scalar.  To make the definition non−singular every-
where, multiply by the conjugate.  In the limit D D*/((D − D*)(D − D*))*  approaches (1, 0), a 
scalar.

¶ f  Hq, q* , q*1 , q*2 L
��������������������������������������������������

¶ q
 

¶ f  Hq, q* , q*1 , q*2 L*

����������������������������������������������������
¶ q

=

= limit as H0, DÓL ® 0 Ilimit as Hd, DÓL ® H0, DÓLIHf  Hq + Hd, DÓL, q* , q*1 , q*2 L - f  Hq, q* , q*1 , q*2 LL Hd, DÓL-1
 Hf  Hq + Hd, DÓL, q* , q*1 , q*2 L -

f  Hq, q* , q*1 , q*2 LL*
 Hd, DÓL-1 *MM

To make this concrete, consider a simple example, f = q^2.  Apply the definition:

Norm J ¶ q2
�����������
¶ q

N = limit  HH0, DÓL ® 0 Hlimit as Hd, DÓL ® H0, DÓL
IIHHa, BÓL + Hd, DÓLL2

- Ha, BÓL2 M Hd, DÓL-1
 IHHa, BÓL + Hd, DÓLL2

- Ha, BÓL2 M*
 Hd, DÓL-1 *MM =

= lim  IHHa, BÓL +H0, DÓL Ha, BÓL H0, -DÓL � norm  HH0, DÓLL + H0, DÓLL HHa, BÓL + H0, DÓL Ha, BÓL H0, -DÓL � norm  HH0, DÓLL +H0, DÓLL*M =

The second and fifth terms are unitary rotations of the 3−vector B.  Since the differential element D 
could be pointed anywhere, this is an arbitrary rotation. Define:Ha, BÓ ’ L = H0, DÓL Ha, BÓL H0, -DÓL � norm  HH0, DÓLL
Substitute, and continue:

= lim  IHHa, BÓL + Ha, BÓ ’ L + H0, DÓLL HHa, BÓL + Ha, BÓ ’ L + H0, DÓLL*M =
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= lim  I4 a ^ 2 + 2 BÓ. BÓ + 2 BÓ. BÓ ’ + 2 DÓ. BÓ + 2 DÓ. BÓ ’ , 0
ÓM

= I4 a ^ 2 + 2 BÓ. BÓ + 2 BÓ. BÓ ’ , 0
ÓM £ È 2 q È2

Look at how wonderfully strange this is!  The arbitrary rotation of the 3−vector B means that this 
derivative is bound by an inequality.  If D is in direction of B, then it will  be an equality, but D 
could also be in the opposite direction, leading to a destruction of a contribution from the 3−vector.  
The spacelike derivative can therefore interfere with itself.  This is quite a natural thing to do in 
quantum mechanics.  The spacelike derivative is positive definite, and could be used to define a 
Banach space.

Defining the lightlike derivative, where the change in time is equal to the change in space, will  
require more study.  It may turn out that this derivative is singular everywhere, but it will  require 
some skill to find a technically viable compromise between the spacelike and timelike derivative to 
synthesis the lightlike derivative.

The timelike quaternion derivative on a quaternion manifold is effectively a directional derivative 
along the real axis  The spacelike derivative is a normed derivative  The dual limit definition estab-
lishes the link between these two well−known types of derivatives.
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Topological  Properties  of  Quaternions

à Topological  Space

If  we choose to work systematically through Wald’s "General Relativity", the starting point is 
"Appendix A, Topological Spaces".  Roughly, topology is the structure of relationships that do not 
change if a space is distorted.   Some of the results of topology are required to make calculus 
rigorous. 

In this section, I will  work consistently with the set of quaternions, H^1, or just H for short.  The 
difference between the real numbers R and H is that H is not a totally ordered set and multiplica-
tion is not commutative.  These differences are not important for basic topological properties, so 
statements and proofs involving H are often identical to those for R. 

First an open ball of quaternions needs to be defined to set the stage for an open set.  Define an 
open ball in H of radius (r, 0) centered around a point (y, Y) [note: small letters are scalars, capital 
letters are 3−vectors] consisting of points (x, X) such that �!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HHx - y, X - YL*  Hx - y, X - YLL < Hr , 0L
An open set in H is any set which can be expressed as a union of open balls. 

[p. 423 translated] A quaternion topological space (H,T) consists of the set H together with a collec-
tion T of subsets of H with these properties: 

1. The union of an arbitrary collection of subsets, each in T, is in T 

2. The intersection of a finite number of subsets of T is in T 

3. The entire set H and the empty set are in T 

T is the topology on H.  The subsets of H in T are open sets.  Quaternions form a topology because 
they are what mathematicians call a metric space, since q* q evaluates to a real positive number or 
equals zero only if q is zero.  Note: this is not the meaning of metric used by physicists.  For exam-
ple, the Minkowski metric can be negative or zero even if a point is not zero.  To keep the same 
word with two meanings distinct, I will  refer to one as the topological metric, the other as an inter-
val metric.  These descriptive labels are not used  in general since context usually determines 
which one is in play. 

An important component to standard approaches to general relativity is product spaces.  This is 
how a topology for R^n is created.  Events in spacetime require R^4, one place for time, three for 
space.  Mathematicians get to make choices: what would change if work was done in R^2, R^3, or 
R^5?  The precision of this notion, together with the freedom to make choices, makes exploring 
these decisions fun (for those few who can understand what is going on :−) 

By working with H, product spaces are unnecessary.  Events in spacetime can be members of an 
open set in H. Time is the scalar, space the 3−vector.  There is no choice to be made. 
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à Open Sets

The edges of sets will  be examined by defining boundaries, open and closed sets, and the interior 
and closure of a set. 

I am a practical guy who likes pragmatic definitions.  Let the real numbers L and U represent 
arbitrary lower and upper bounds respectively such that L < U. For the quaternion topological 
space (H, T), consider an arbitrary induced topology (A, t) where x and a are elements of A. Use 
inequalities to define: 

an open set : HL, 0L < Hx - aL*  Hx - aL < HU, 0L
a closed set : HL, 0L £ Hx - aL*  Hx - aL £ HU, 0L
a half open set : HL, 0L £ Hx - aL*  Hx - aL < HU, 0L
or HL, 0L < Hx - aL*  Hx - aL £ HU, 0L
a boundary : HL, 0L = Hx - aL*  Hx - aL

The union of an arbitrary collection of open sets is open. 

The intersection of a finite number of open sets is open. 

The union of a finite number of closed sets is closed. 

The intersection of an arbitrary number of closed sets is closed. 

Clearly there are connections between the above definitions 

open set union boundary -> closed set

This creates complementary ideas.  [Wald, p.424] 

The interior of A is the union of all open sets contained within A. 

The interior equals A if and only if A is open. 

The closure of A is the intersection of all closed sets containing A. 

The closure of A equals A if and only if A is closed. 

Define a point set as the set where the lower bound equals the upper bound.  The only open set that 
is a point set is the null set.  The closed point set is H.  A point set for the real numbers has only 
one element which is identical to the boundary.  A point set for quaternions has an infinite number 
of elements, one of them identical to the boundary. 

What are the implications for physics? 

With quaternions, the existence an open set of events has nothing to do with the causality of that 
collection of events. 

an open set : HL, 0L < Hx - aL*  Hx - aL < HU, 0L
timelike events : scalar  HHx - aL2 L > H0, 0L
lightlike events : scalar  HHx - aL2 L = H0, 0L
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spacelike events : scalar  HHx - aL2 L < H0, 0L
A proper time can have exactly the same absolute value as a pure spacelike separation, so these 
two will  be included in the same sets, whether open, closed or on a boundary. 

There is no correlation the reverse way either.  Take for example a collection of lightlike events.  
Even though they all share exactly the same interval − namely zero − their absolute value can vary 
all over the map, not staying within limits. 

Although independent, these two ideas can be combined synergistically. Consider an open set S of 
timelike intervals. 

S = 8x, a E H, a fixed ; U,
L E RÈ HL, 0L < Hx - aL*  Hx - aL < HU, 0L,
and scalar HHx - aL2 L > 0<

The set S could depict a classical world history since they are causally linked and have good topo-
logical properties.  A closed set of lightlike events could be a focus of quantum electrodynamics.  
Topology plus causality could be the key for subdividing different regions of physics. 

Hausdorff  Topology

This property is used to analyze compactness, something vital for rigorously establishing differentia-
tion and integration. 

[Wald p424] The quaternion topological space (H, T) is Hausdorff because for each pair of distinct 
points a, b E H, a not equal to b, one can find open sets Oa, Ob E T such that a E Oa, b I Ob and 
the intersection of Oa and Ob is the null set. 

For example, find the half−way point between a and b.  Let that be the radius of an open ball 
around the points a and b: 

let Hr , 0L = Ha - bL*  Ha - bL � 4

Oa = 8a, x E H, a is fixed , r E RÈ Ha - xL*  Ha - xL < r <
Ob = 8b, x E H, b is fixed , r E RÈ Hb - xL*  Hb - xL < r <

Neither set quite reaches the other, so their intersection is null. 

à Compact  Sets

In this section, I will  begin an investigation of compact sets of quaternions.  I hope to share some 
of my insights into this subtle but significant topic. 

First we need the definition of a compact set of quaternions. 

[Translation of Wald p. 424] Let A be a subset of the quaternions H. Set A could be opened, closed 
or neither.  An open cover of A is the union of open sets {Oa} that contains A.  A union of open 
sets is open and could have an infinite number of members.  A subset of {Oa} that still covers A is 
called a subcover.  If the subcover has a finite number of elements it is called a finite subcover.  
The set A subset of H is compact if every open cover of A has a finite subcover.

Let’s find an example of a compact set of quaternions.  Consider a set S composed of points with a 
finite number of absolute values: 
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S = 8x1 , x2 , ... , xn E H; a1, a2, ... ,
an E R, n is finite È Hx1 * x1 L^ .5 = Ha1, 0L,Hx2 * x2 L^ .5 = Ha2, 0L, ... <

The set S has an infinite number of members, since for any of the equalities, specifying the abso-
lute value still leaves three degrees of freedom (if the domain had been x E R, then S would have 
had a finite number of elements).  The set S can be covered by an open set {O}  which could have 
an infinite number of members.  There exists a subset {C}  of {O}  that is finite and still covers S.  
The subset {C}  would have one member for each absolute value.

C = 9y E 8O<, e E R, e > 0 É Ha1 - eL <
�!!!!!!!!!!y*  y < Ha1 + e, 0L,Ha2 - eL <

�!!!!!!!!!!y*  y < Ha2 + e, 0L, ... ,

one y exists for each inequality =
Every set of quaternions composed of a finite number of absolute values like the set S is compact. 

Notice that the set S is closed because it consists of a boundary without an interior.  The link 
between compact, closed and bound set is important, and will  be examined next 

A compact set is a statement about the ability to find a finite number of open sets that cover a set, 
given any open cover.  A closed set is the interior of a set plus the boundary of that set.  A set is 
bound if there exists a real number M such that the distance between a point and any member of 
the set is less than M.

For quaternions with the standard topology, in order to have a finite number of open sets that cover 
the set, the set must necessarily include its boundary and be bound.  In other words, to be compact 
is to be closed and bound, to be closed and bound is to be compact. 

[Wald p. 425] Theorem 1 (Heine−Borel). A closed interval of quaternions S: 

S = 9x E H, a, b E R, a < b É Ha, 0L £
�!!!!!!!!!!x*  x £ Hb, 0L=

with the standard topology on H is compact. 

Wald does not provide a proof since it appears in many books on analysis.  Invariably the Heine−
Borel Theorem employs the domain of the real numbers, x E R.  However, nothing in that proof 
changes by using quaternions as the domain.

[Wald p. 425] Theorem 2.  Let the topology (H, T) be Hausdorff and let the set A subset of H be 
compact.  Then A is closed. 

Theorem 3.  Let the topology (H, T) be compact and let the set A subset of H be closed.  Then A is 
compact. 

Combine these theorems to create a stronger statement on the compactness of subsets of quater-
nions H. 

Theorem 4.  A subset A of quaternions is compact if and only if it is closed and bounded. 

The property of compactness is easily proved to be preserved under continuous maps. 

Theorem 5.  Let (H, T) and (H’, T’) be topological spaces.  Suppose (H, T) is compact and the 
function f: H −> H’ is continuous.  The f[H]  = {h’  E H’ | h’ = f(h)}  is compact. This creates a 
corollary by theorem 4. 
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Theorem 6.  A continuous function from a compact topological space into H is bound and its 
absolute value attains a maximum and minimum values. 

[end translation of Wald]

à R1  versus  Rn

It is important to note that these theorems for quaternions are build directly on top of theorems for 
real numbers, R1.  Only the domain needs to be changed to H1.  Wald continues with theorems on 
product spaces, specifically Tychonoff’s Theorem, so that the above theorems can be extended to 
Rn .  In particular, the product space R4 should have the same topology as the quaternions. 

Hopefully, subtlety matters in the discussion of foundations.  R4 does not come equipped with a 
rule for multiplication, so it is qualitatively different from H1, even if topologically similar to the 
quaternions.  A similar issue arises for R2 and the complex number manifold C1.
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A Quaternion  Algebra  Tool  Set

Here is a compilation of basic algebra for quaternions.  It should look very similar to complex 
algebra, since it contains three sets of complex numbers, t + x i, t + y j, and t + z k.  To strengthen 
the link, and keep things looking simpler, all quaternions have been written as a pair of a scalar t 
and a 3−vector V, as in (t, V).  All  these relations have been tested in a C library and a Java quater-
nion calculator.

Technical note: every tool in this set can be expressed as working with a whole quaternion q.  This 
is to show how to work with automorphic functions on a quaternion manifold.

à Parts

scalar  HqL = Hq + q *L � 2 = Ht , 0L
vector  HqL = Hq - q *L � 2 = H0, VL

à Simple  AlgebraÈ q È = �!!!!!!!!!!!!!!!Hqq *L = I�!!!!!!!!!!!!!!!!!!!
t 2 + V. V, 0M

norm  HqL = qq *= Ht 2 + V. V, 0L
det  HqL = Hqq *L2 = IHt 2 + V. VL2

, 0M
sum Hq, q ’ L = q + q ’ = Ht + t ’ , V + V’ L
dif  Hq, q ’ L = q - q ’ = Ht - t ’ , V - V’ L
conj  HqL = q *= Ht , -VL
inv  HqL = q * � Hqq *L = Ht , -VL � Ht 2 + V. VL
adj  HqL = q * Hqq *L = Ht , -VL norm  HqL

à Multiplication

The Grassman product as defined here uses the same rule Hamilton developed.  The Euclidean 
product takes the conjugate of the first of the two elements (following a tradition from quantum 
mechanics).

Grassman_product  Hq, q ’ L =
qq ’ = Htt ’ - V. V’ , tV ’ + Vt ’ + V´ V’ L
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Grassman_even  _product  Hq, q ’ L =
qq ’ + q ’  q
�������������������������

2
= Htt ’ - V. V’ , tV ’ + Vt ’ L

Grassman_odd  _product  Hq, q ’ L =
qq ’ - q ’  q
�������������������������

2
= H0, V´ V’ L

Euclidean_product  Hq, q ’ L =
q * q ’ = Htt ’ + V. V’ , tV ’ - Vt ’ - V´ V’ L

Euclidean_even  _product  Hq, q ’ L =
q * q ’ + q ’  q *
���������������������������������

2
= Htt ’ + V. V’ , 0L

Euclidean_odd  _product  Hq, q ’ L =
q * q ’ - q ’  q *
���������������������������������

2
= H0, tV ’ - Vt ’ - V´ V’ L

à Trigonometry

sin  HqL =Hsin  Ht L cosh  H È V ÈL, cos  Ht L sinh  H È V ÈL V� È V ÈL
cos  HqL =Hcos  Ht L cosh  H È V ÈL, -sin  Ht L sinh  H È V ÈL V� È V ÈL
tan  HqL = sin  HqL � cos  HqL

Note: since the unit vectors of sine and cosine are the same, these two commute so the order is 
irrelevant.

asin  HqL = -V� È V È asinh  Hq V� È V ÈL
acos  HqL = -V� È V È acosh  HqL
atan  HqL = -V� È V È atanh  Hq V� È V ÈL
sinh  HqL =Hsinh  Ht L cos  H È V ÈL, cosh  Ht L sin  H È V ÈL V� È V ÈL
cosh  HqL =Hcosh  Ht L cos  H È V ÈL, sinh  Ht L sin  H È V ÈL V� È V ÈL
tanh  HqL = sinh  HqL � cosh  HqL
asinh  HqL = ln  Hq + Hq ^ 2 + 1L^ .5 L
acosh  HqL = ln  Hq + � -Hq ^ 2 - 1L^ .5 L
atanh  HqL = .5 ln  HH1 + qL � H1 - qLL
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à Powers

exp  HqL =Hexp  Ht L cos  H È V ÈL, exp  Ht L sin  H È V ÈL V� È V ÈL
q ^ q ’ = exp  Hln  HqL x q ’ L

à Logs

ln  HqL = H0.5 ln  Ht ^ 2 + V. VL, atan2  H È V È, t L V� È V ÈL
log  HqL = ln  HqL � ln  H10L

à Quaternion  Exponential  Multiplication

q q ’ = 8q, q ’ < + È @q, q ’ D È exp  Hpi @q, q ’ D � 2 È @q, q ’ D ÈL
q * q ’ = 8q *, q ’ < + È @q *, q ’ D È

exp  Hpi @q *, q ’ D � 2 È @q *, q ’ D ÈL
Andrew Millard suggested the result for the Grassman product.
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Classical Mechanics
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Newton’s  Second  Law

The form of Newton’s second law for three separate cases will  be generated using quaternion 
operators acting on position quaternions.  In classical mechanics, time and space are decoupled.  
One way that can be achieved algebraically is by having a time operator act only on space, or by 
space operator only act on a scalar function.  I call this the "2 zero" rule: if there are two zeros in 
the generator of a law in physics, the law is classical.

à Newton’s  2nd Law for  an Inertial  Reference  Frame in Cartesian  Coordinates

Define a position quaternion.

R = Ht , RÓL
Operate on this once with the differential operator to get the velocity quaternion.

V = J d
�������
dt

, 0
ÓN Ht , RÓL = I1, RÓ M

Operate on the velocity to get the classical inertial acceleration quaternion.

A = J d
�������
dt

, 0
ÓN I1, RÓ M = J0, RÓ|N

This is the standard form for acceleration in Newton’s second law in an inertial reference frame.  
Because the reference frame is inertial, the first term is zero.

à Newton’s  2nd Law in Polar  Coordinates  for  a Central  Force  in a Plane

Repeat this process, but this time start with polar coordinates.

R = Ht , r Cos@ΘD, r Sin @ΘD, 0L
The velocity in a plane.

V = J d
�������
dt

, 0
ÓN Ht , r Cos@ΘD, r Sin @ΘD, 0L =

= H1, r  Cos@ΘD - r Sin @ΘD Θ
 

, r  Sin @ΘD + r Cos@ΘD Θ
 

, 0L
Acceleration in a plane.

A = J d
�������
dt

, 0
ÓN H1, r  Cos@ΘD - r Sin @ΘD Θ

 
, r  Sin @ΘD + r Cos@ΘD Θ

 
, 0L =
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= I0, -2 r  Sin @ΘD Θ
 

- r Cos@ΘD Θ
 2

+ r
|

Cos@ΘD - r Sin @ΘD Θ
|
,

2 r  Cos@ΘD Θ
 

- r Sin @ΘD Θ
 2

+ r
|

Sin @ΘD + r Cos@ΘD Θ
|
, 0M

Not a pretty sight.  For a central force, Θ
 

 = L � mr2, and Θ
|
 = 0.  Make these substitution and rotate 

the quaternion to get rid of the theta dependence.

A = HCos@ΘD, 0, 0, -Sin @ΘDL J d
�������
dt

, 0
ÓN2

 Ht , r Cos@ΘD, RSin @ΘD, 0L =

= J0,
L2

�������������
m2  r 3 + r

|
,

2 L r 
������������
mr 2 , 0N

The second term is the acceleration in the radial direction, the third is acceleration in the theta 
direction for a central force in polar coordinates.

à Newton’s  2nd Law in a Noninertial,  Rotating  Frame

Consider a noninertial example, with the frame rotating at an angular speed omega.  The differen-
tial time operator is put into the first term of the quaternion, and the three directions for the angular 
speed are put in the next terms.  This quaternion is then multiplied by the position quaternion to get 
the velocity in a rotating reference frame. Unlike the previous examples where the time t did not 
interfere with the calculations, here the time t must be set explicitly to zero (I wonder what that 
means?).

V = J d
�������
dt

, ΩÓN H0, RÓL = I- ΩÓ. RÓ , RÓ  + ΩÓ x  RÓM
Operate on the velocity quaternion with the same operator.

A = J d
�������
dt

, ΩÓN I- ΩÓ. RÓ , RÓ  + ΩÓ x  RÓM =

= J- ΩÓ . RÓ , RÓ| + 2 ΩÓ x  RÓ  + ΩÓ  x  RÓ - ΩÓ. RÓ ΩÓN
The first three terms of the 3−vector are the translational, coriolis, and azimuthal alterations respec-
tively.  The last term of the 3−vector may not look like the centrifugal force, but using a vector 
identity it can be rewritten: 

- ΩÓ. RÓ ΩÓ = - ΩÓ x  HΩÓ x  RÓL + ΩÓ2
 RÓ

If  the angular velocity an the radius are orthogonal, then

ΩÓ x  HΩÓ x  RÓL = ΩÓ2
 RÓ iff ΩÓ. RÓ = 0

The scalar term is not zero.  What this implies is not yet clear, but it may be related to the fact that 
the frame is not inertial.

33

     



à Implications

Three forms of Newton’s second law were generated by choosing appropriate operator quaternions 
acting on position quaternions.  It is impressive that complicated expressions in Newtonian mechan-
ics can be encapsulated in quaternion one−line formulas.  The differential time operator was decou-
pled from any differential space operators.  This may be viewed as an operational definition of 
"classical" physics.
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Oscillators  and Waves

A professor of mine once said that everything in physics is a simple harmonic oscillator.  Therefore 
it is necessary to get a handle on everything.

à The Simple  Harmonic  Oscillator  (SHO)

The differential equation for a simple harmonic oscillator in one dimension can be express with 
quaternion operators.J d

�������
dt

, 0
ÓN2

 H0, x, 0, 0L + J0,
k
����
m

 x, 0, 0N =

J0,
d2 x
�����������
dt 2 +

k x
��������
m

, 0, 0N = 0

This equation can be solved directly.

x ® C@2D CosA �!!!!k t
��������������!!!!m

E + C@1D Sin A �!!!!k t
��������������!!!!m

E
Find the velocity by taking the derivative with respect to time.

x  ®

�!!!!k C@1D CosA �!!!!
k t�����������!!!!m

E
�����������������������������������������������!!!!m

-

�!!!!k C@2D Sin A �!!!!
k t�����������!!!!m

E
�����������������������������������������������!!!!m

à The Damped  Simple  Harmonic  Oscillator

Generate the differential equation for a damped simple harmonic oscillator as done above.J d
�������
dt

, 0
ÓN2

 H0, x, 0, 0L +J d
�������
dt

, 0
ÓN H0, b x, 0, 0L + J0,

k
����
m

 x, 0, 0N =

= J0,
d2 x
�����������
dt 2 +

b d x
������������

dt
+

k x
��������
m

, 0, 0N = 0

Solve the equation.

x ® C@1D E
I-b m-

�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-4 k m+b2 m2 M t

��������������������������������������������2 m + C@2D E
I-b m+

�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-4 k m+b2 m2 M t

��������������������������������������������2 m
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à The Wave Equation

Consider a wave traveling along the x direction.  The equation which governs its motion is given byJ d
�����������
v dt

,
d

�������
dx

, 0, 0N2

 H0, 0, f @t v + xD, 0L =

= J0, 0, J-
d2

���������
dx 2 +

d2
����������������
dt 2 v2

N f @t v + xD,
2 d2 f @t v + xD
����������������������������������

dt dx v
N

The third term is the one dimensional wave equation.  The forth term is the instantaneous power 
transmitted by the wave.

à Implications

Using the appropriate combinations of quaternion operators, the classical simple harmonic oscilla-
tor and wave equation were written out and solved.  The functional definition of classical physics 
employed here is that the time operator is decoupled from any space operator.  There is no reason 
why a similar combination of operators cannot be used when time and space operators are not 
decoupled.  In fact, the four Maxwell equations appear to be one nonhomogeneous quaternion 
wave equation, and the structure of the simple harmonic oscillator appears in the Klein−Gordon 
equation.
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Four  Tests  for  a Conservative  Force

There are four well−known, equivalent tests to determine if a force is conservative:  the curl is 
zero, a potential function whose gradient is the force exists, all closed path integrals are zero, and 
the path integral between any two points is the same no matter what the path chosen.  In this sec-
tion, quaternion operators perform these tests on quaternion−valued forces.

à 1.  The Curl  Is Zero

To make the discussion concrete, define a force quaternion F.

F = H0, -k x, -k y, 0L
The curl is the commutator of the differential operator and the force.  If this is zero, the force is 
conservative.AJ d

�������
dt

, ÑÓN, FÓE = 0

Let the differential operator quaternion act on the force, and test if the vector components equal 
zero. J d

�������
dt

, ÑN F = H2 k, 0, 0, 0L
à 2. There Exists  a Potential  Function  for  the Force

Operate on force quaternion using integration.  Take the negative of the gradient of the first compo-
nent.  If the field quaternion is the same, the force is conservative.

F = à F Hdt , dx , dy , dz L =

= à Hk x dx + k y dy ,

-k x dt + k y dz , -k y dt - k x dz , 0L =

= J k x2
����������

2
+

k y2
����������

2
,

-k t x + k y z, -k t y - k x z, 0N =
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J d
�������
dt

, ÑÓN J k x2
����������

2
+

k y2
����������

2
, 0

ÓN =H0, -k x, -k y, 0L
This is the same force as we started with, so the scalar inside the integral is the scalar potential of 
this vector field.  The vector terms inside the integral arise as constants of integration.  They are 
zero if t=z=0.  What role these vector terms in the potential quaternion may play, if any, is 
unknown to me.

à 3. The Line  Integral  of  Any  Closed  Loop  Is Zero

Use any parameterization in the line integral, making sure it comes back to go.

path = H0, r Cos Ht L, r Sin  Ht L, 0L
à

0

2 Π

F dt = 0

à 4. The Line  Integral  Along  Different  Paths  Is the Same

Choose any two parameterizations from A to B, and test that they are the same.  These paths are 
from (0, r, 0, 0) to (0, −r, 2 r, 0).

path1 = I0, r Cos Ht L, 2 r Sin  I t
����
2

M, 0M
à

0

2 Π

dt = -2 k r 2

path2 = H0, - t r + r , t r , 0L
à

0

2

F dt = -2 k r 2

The same!

à Implications

The four standard tests for a conservative force can be done with operator quaternions.  One new 
avenue opened up is for doing path integrals.  It would be interesting to attempt four dimensional 
path integrals to see where that might lead!
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Special Relativity
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Rotations  and Dilations  Create the Lorentz  Group

In 1905, Einstein proposed the principles of special relativity without a deep knowledge of the 
mathematical structure behind the work.  He had to rely on his old math teacher Minkowski to 
learn the theory of transformations (I do not know the details of Einstein’s education, but it could 
make an interesting discussion :−)  Eventually, Einstein understood general transformations, embod-
ied in the work of Riemann, well enough to formulate general relativity.

A. W. Conway and L. Silberstein proposed a different mathematical structure behind special relativ-
ity in 1911 and 1912 respectively (a copy of Silberstein’s work is available at quaternions.com).  
Cayley had observed back in 1854 that rotations in 3D could be achieved using a pair of unit quater-
nions having a norm of one:

q ’ = a q b where a* a = b*  b = 1

If  this works in 3D space, why not do the 4D transformations of special relativity?  It turns out that 
the unit quaternions must be complex−valued, or biquaternions.  Is this so bad?  Let me quote 
P.A.M. Dirac (Proc. Royal Irish Academy A, 1945, 50, p. 261):

"Quaternions themselves occupy a unique place in mathematics in that they are the most general 
quantities that satisfy the division axiom−−that the product of two factors cannot vanish without 
either factor vanishing.  Biquaternions do not satisfy this axiom, and do not have any fundamental 
property which distinguishes them from other hyper−complex numbers.  Also, they have eight 
components, which is rather too many for a simple scheme for describing quantities in space−time."

Just for the record: plenty of fine work has been done with biquaternions, and I do not deny the 
validity of any of it.  Much effort has been directed toward "other hyper−complex numbers", such 
as Clifford algebras.  I am making a choice to focus on quaternions for reasons outlined by Dirac.

Dirac took a Mobius transformation from complex analysis and tried to develop a quaternion 
analog.  The approach is too general, and must be restricted to graft the results to the Lorentz 
group.  I found his approach hard to follow.  I needed something simpler :−)

It was quite the wait, but De Leo finally figured out a real quaternion representation of the Lorentz 
group (S. De Leo, "Quaternions and special relativity," J. Math. Phys., 37(6):2955−2968, 1996).  
He defined an operator he called "bar" which multiplied a quaternion by two quaternions on either 
side.  He effectively did a commutator of this bar operation, which made for boosts without any 
terms from the cross product.  It definitely is an approach that works.

à Rotation  + Dilation

Multiplication of complex numbers can be thought of as a rotation and a dilation.  Conway and 
Silberstein’s proposals only have the rotation component albeit using a complex number.  An 
additional dilation term might allow quaternions to do the necessary work.

C. Möller wrote a general form for a Lorentz transformation using vectors ("The Theory of Relativ-
ity", QC6 F521, 1952, eq. 25). For fixed collinear coordinate systems:
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X¢ÓÖÖÖ = XÓ + HΓ - 1L HVÓ. XÓL 
VÓ

����������������È VÓ È2 - Γ t VÓ
t ¢ = Γ t - Γ HVÓ. XÓL
where c = 1, Γ =

1
����������������������������������"############################1 - Hv � cL2

If  V is only in the i direction, then

X¢ÓÖÖÖ = HΓ XÓ - Γ t VÓ L i
`

+ y j
`

+ z k
`

t ¢ = Γ t - Γ HVÓ. XÓL
The additional complication to the X’  equation handles velocities in different directions than i.

This has a vector equation and a scalar equation.  A quaternion equation that would generate these 
terms must be devoid of any terms involving cross products.  The symmetric product (anti−commu-
tator) lacks the cross product;

even  Hq, q ’ L =
q q ’ + q ’ q
����������������������������

2
= It t ¢ - XÓ. X¢ÓÖÖÖ , t XÓ + XÓ t ¢M

Möller’s equation looks like it should involve two terms, one of the form AqA (a rotation), the 
other Bq (a dilation).

q ’ =

q + HΓ - 1L 
even  Ieven  IVÓ*

, qM, VÓM
��������������������������������������������������������È VÓ È2 + Γ even  IVÓ*

, q*M =

= q + HΓ - 1L 
even  HHVÓ. XÓ, -t VL, H0, VÓLL
�������������������������������������������������������������������È VÓ È2 +

Γ even  HH0, -VÓL, Ht , -XÓLL =

= Ht , XÓL + HΓ - 1L 
ikjjjt , HVÓ. XÓL 

VÓ
����������������È VÓ È2

y{zzz - Γ HHVÓ. XÓL, t VÓL
This is the general form of the Lorentz transformation presented by Möller.  Real quaternions are 
used in a rotation and a dilation to perform the work of the Lorentz group.

à Implications

Is this result at all interesting?  A straight rewrite of Möller’s equation would have been dull.  What 
is interesting is the equation which generates the Lorentz transformation.  Notice how the Lorentz 
transformation depends linearly on q, but the generator depends on q and q*.  That may have 
interesting interpretations.  The generator involves only symmetric products.  There has been some 
question in the literature about whether special relativity handles rotations correctly.  This is proba-
bly one of the more confusing topics in physics, so I will  just let the observation stand by itself.
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Two ways exist to use quaternions to do Lorentz transformations (to be discussed in the next sec-
tion).  The other technique relies on the property of a division algebra.  There exists a quaternion L 
such that:

q ’ = L q such that

scalar  Hq ’ , q ’ L = scalar  Hq, qL = t 2 - XÓ. XÓ
For a boost along the i direction,

L =
q ’

���������
q

=HHΓ t - Γ v x, -Γ v t + Γ x, y, zL Ht , -x, -y, -zLL
����������������������������������������������������������������������������������������������������������������������������Ht 2 + x2 + y2 + z2 L =

= HΓ t 2 - 2 Γ t v x + Γ x2 + y2 + z2 , Γ v  H-t 2 + x2 L,
t y - x z - Γ t  Hy + v zL + Γ x  Hv y + zL,
t z + xy + Γ t  Hv y - zL + Γ x  H-y + v zLL �Ht 2 + x2 + y2 + z2 L

if x = y = z = 0, then L = HΓ, -Γ v, 0, 0L
if t = y = z = 0, then L = HΓ, Γ v, 0, 0L

The quaternion L depends on the velocity and can depend on location in spacetime (85% of the 
type of problems assigned undergraduates in special relativity use an L that does not depend on 
location in spacetime).  Some people view that as a bug, but I see it as a modern feature found in 
the standard model and general relativity as the demand that all symmetry is local.  The existence 
of two approaches may be of interest in itself.
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An Alternative  Algebra  for  Lorentz  Boosts:  Local  Transformations

Many problems in physics are expressed efficiently as differential equations whose solutions are 
dictated by calculus.  The foundations of calculus were shown in turn to rely on the properties of 
fields (the mathematical variety, not the ones in physics).  According to the theorem of Frobenius, 
there are only three finite dimensional fields: the real numbers (1D), the complex numbers (2D), 
and the quaternions (4D).  Special relativity stresses the importance of 4−dimensional Minkowski 
spaces: spacetime, energy−momentum, and the electromagnetic potential.  In this section, events in 
spacetime will  be treated as the 4−dimensional field of quaternions.  It will  be shown that problems 
involving boosts along an axis of a reference frame can be solved using local quaternion transforma-
tions as apposed to the global transformations of the Lorentz group.

à The Tools  of  Special  Relativity

Events are represented as 4−vectors, which can be add or subtracted, or multiplied by a scalar.  To 
form an inner product between two vectors requires the Minkowski metric, which can be repre-
sented by the following matrix (where c = 1).

gµΝ =

i
k
jjjjjjjjjj

1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 -1

y
{
zzzzzzzzzz

8t , x, y, z<. gµΝ . 8t , x, y, z< = t 2 - x2 - y2 - z2

The Lorentz group is defined as the set of matrices that preserves the inner product of two 4−vec-
tors.  A member of this group is for boosts along the x axis, which can be easily defined.

Γ =
1

����������������������!!!!!!!!!!!!!!!!
1 - Β2

Lx =

i
k
jjjjjjjjjj

Γ@ΒD -Β Γ@ΒD 0 0
-Β Γ@ΒD Γ@ΒD 0 0

0 0 1 0
0 0 0 1

y
{
zzzzzzzzzz

Τhe boosted 4−vector is

Lx . 8t , x, y, z< =9 t
��������������������!!!!!!!!!!!!!

1 - Β2
-

x Β
��������������������!!!!!!!!!!!!!

1 - Β2
,

x
��������������������!!!!!!!!!!!!!

1 - Β2
-

t Β
��������������������!!!!!!!!!!!!!

1 - Β2
, y, z=

To demonstrate that the interval has been preserved, calculate the inner product.
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Lx . 8t , x, y, z<. gµ
Ν . Lx . 8t , x, y, z< = t 2 - x2 - y2 - z2

Starting from a 4−vector, this is the only way to boost a reference frame along the x axis to another 
4−vector and preserve the inner product.  The transformation is classified as global because it 
depends only on the velocity and not on t, x, y, or z.

à Using  Quaternions  in Special  Relativity

Events will  be treated as quaternions, a skew field or division algebra that is 4 dimensional.  Any 
tool built to manipulate quaternions will  also be a quaternion.  In this way, although events play a 
different role from operators, they are made of identical mathematical fabric.

A squared quaternion is:Ht , XÓL2
= Ht 2 - XÓ. XÓ, 2 t XÓL

The first term of squaring a quaternion is the invariant interval squared.  There is implicitly, a form 
of the Minkowski metric that is part of the rules of quaternion multiplication.  The vector portion is 
frame−dependent.  If a set of quaternions can be found that do not alter the interval, then that set 
would serve the same role as the Lorentz group, acting on quaternions, not on 4−vectors.  If two 
4−vectors x and x’ are known to have the property that their intervals are identical, then the first 
term of squaring q[x] and q[x’]  will  be identical.  Because quaternions are a division ring, there 
must exist a quaternion L such that L q[x] = q[x’]  since L = q[x’]  q[x]^−1.   The inverse of a quater-
nion is its transpose over the square of the norm (which is the first term of transpose of a quater-
nion times itself).  Apply this approach to determine L for 4−vectors boosted along the x axis.

L º HΓ t - Β Γ x, - Β Γ t + Γ x, y, zL Ht , x, y, zL-1 =

= HΓ t 2 + Γ x2 - 2 Γ Βt x + Hy2 + z2 L, Γ Β H-t 2 + x2 L,
t HΒ Γ z + y H1 - ΓLL - x HΓ Β y + z H1 - ΓLL,
t HΓ Β y + z H1 - ΓLL + x HΓ Β z + y H1 - ΓLLL� Ht 2 + x2 + y2 + z2 L

Define the Lorentz boost quaternion L along x using this equations.  L depends on the relative 
velocity and position, making it a local, not global, transformation. See if  L q[x] = q[x’].

L@t , x, y, z, ΒD Ht , x, y, zL =HΓ t - Γ Β x , - Γ Β t + Γ x, y, zL
This is a quaternion composed of the boosted 4−vector.  At this point, it can be said that _any_ 
problem that can be solved using 4−vectors, the Minkowski metric and a Lorentz boost along the x 
axis can also be solved using the above quaternion for boosting the event quaternion.  This is 
because both techniques transform the same set of 4 numbers to the same new set of 4 numbers 
using the same variable beta.

Confirm the interval is unchanged.HL Ht , x, y, zLL2 =
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=
ikjjt 2 - x2 - y2 - z2 ,

2 Ht 2 Β + x2 Β - t x H1 + Β2LL
��������������������������������������������������������������

-1 + Β2 ,

2 y Ht - x ΒL
�����������������������������!!!!!!!!!!!!!

1 - Β2
,

2 z Ht - x ΒL
�����������������������������!!!!!!!!!!!!!

1 - Β2

y{zz
The first term is conserved as expected.  The vector portion of the square is frame dependent.

à Using  Quaternions  in Practice

The boost quaternion L is too complex for simple calculations.  Mathematica does the grunge 
work.  A great many problems in special relativity do not involve angular momentum, which in 
effect sets y = z = 0.  Further, it is often the case that t = 0, or x = 0, or for Doppler shift problems, 
x = t.  In these cases, the boost quaternion L becomes a very simple.

If  t = 0, then

L = Γ H1, Β, 0, 0L
q -> q ’ = LqH0, x, 0, 0L -> Ht ¢ , x ’ , 0, 0L = H-Γ Β x, Γ x, 0, 0L

If  x = 0, then

L = Γ H1, -Β, 0, 0L
q -> q ’ = LqIt , 0

ÓM -> Ht ¢ , x ’ , 0, 0L = HΓ t , -Γ Β t , 0, 0L
If  t = x, then

L = Γ H1 - Β, 0, 0, 0L
q -> q ’ = LqHt , x, 0, 0L -> Ht ¢ , x ’ , 0, 0L = Γ H1 - ΒL H t , x, 0, 0L

Note: this is for blueshifts.  Redshifts have a plus instead of the minus.

Over 50 problems in a sophomore−level relativistic mechanics class at MIT (8.033) have been 
solved using local quaternion transformations. 90% required one of these simple forms for the 
boost quaternion.
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à Implications

Problems in special relativity can be solved either using 4−vectors, the Minkowski metric and the 
Lorentz group, or using quaternions.  No experimental difference between the two methods has 
been presented.  At this point the difference is in the mathematical foundations.

An immense amount of work has gone into the study of metrics, particular in the field of general 
relativity.  A large effort has gone into group theory and its applications to particle physics.  Yet 
attempts to unite these two areas of study have failed.

There is no division between events, metrics and operators when solving problems using quater-
nions.  One must be judicious in choosing quaternions that will  be relevant to a particular problem 
in physics and therein lies the skill.  Yet this creates hope that by using quaternions, the long divi-
sion between metrics (the Grassman inner product) and groups of transformations (sets of quater-
nions that preserve the Grassman inner product) may be bridged.
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Electromagnetism

47

     



Classical Electrodynamics

Maxwell speculated that someday quaternions would be useful in the analysis of electromagnetism.  
Hopefully after a 130 year wait, in this section we can begin that process.  The Maxwell equations 
have been written with complex−valued quaternions back in Maxwell’s time. Peter Jack was the 
first person to write the Maxwell equations using only real−valued quaternions.  My own efforts 
arose a year later, independently.  The approach relies on a judicious use of commutators and 
anticommutators. 

à The Maxwell  Equations

The Maxwell equations are formed from a combinations of commutators and anticommutators of 
the differential operator and the electric and magnetic fields E and B respectively (for isolated 
charges in a vacuum.

even  JJ ¶
��������
¶ t

, õ
ÓN, H0, BÓLN + odd  JJ ¶

��������
¶ t

, õ
ÓN, H0, EÓLN =ikjj-õ

Ó × BÓ , õ
Ó X EÓ +

¶BÓ
��������
¶ t

y{zz = I0, 0
ÓM

odd  JJ ¶
��������
¶ t

, õ
ÓN, H0, BÓLN - even  JJ ¶

��������
¶ t

, õ
ÓN, H0, EÓLN =ikjj õ

Ó × EÓ , õ
Ó X BÓ -

¶EÓ
��������
¶ t

y{zz = 4 Π HΡ, JÓL
where even  HA, BL =

AB + BA
��������������������

2
, odd  HA, BL =

AB - BA
��������������������

2

The first quaternion equation embodies the homogeneous Maxwell equations.  The scalar term says 
that there are no magnetic monopoles.  The vector term is Faraday’s law.  The second quaternion 
equation is the source term.  The scalar equation is Gauss’ law.  The vector term is Ampere’s law, 
with Maxwell’s correction.

à The 4−Potential  A

The electric and magnetic fields are often viewed as arising from the same 4−potential A.  These 
can also be expressed using quaternions.

E = vector  Jeven  JJ ¶
��������
¶ t

, -õ
ÓN, HΦ, -AÓLNN =

ikjj0, -
¶AÓ
��������
¶ t

- õ
Ó Φ

y{zz
B = odd  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLN = H0, õ

Ó x AÓ L
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The electric field E is the vector part of the anticommutator of the conjugates of the differential 
operator and the 4−potential.  The magnetic field B involves the commutator.

These forms can be directly placed into the Maxwell equations.

even  JJ ¶
��������
¶ t

, õ
ÓN, odd  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNN +

odd  JJ ¶
��������
¶ t

, õ
ÓN, vector  Jeven  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNNN =

=
ikjj-õ

Ó × õ
Ó x AÓ ,

¶õ
Ó x AÓ

���������������
¶ t

- õ
Ó X 

¶ AÓ
���������
¶ t

- õ
Ó x õ

Ó Φ
y{zz =ikjj-õ

Ó × BÓ,
¶BÓ
��������
¶ t

+ õ
Ó x EÓy{zz = I0, 0

ÓM
odd  JJ ¶

��������
¶ t

, õ
ÓN, odd  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, AÓLNN -

even  JJ ¶
��������
¶ t

, õ
ÓN, vector  Jeven  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNNN =

=
ikjj-õ

Ó × õ
Ó Φ - õ

Ó ×
¶AÓ
��������
¶ t

, õ
Ó X õ

Ó X AÓ +
¶2 AÓ
����������
¶ t 2 +

¶õ
Ó Φ

�����������
¶ t

y{zz =ikjj õ
Ó × EÓ , õ

Ó X BÓ -
¶EÓ
��������
¶ t

y{zz = 4 Π HΡ, JÓL
The homogeneous terms are formed from the sum of both orders of the commutator and anticommu-
tator.  The source terms arise from the difference of two commutators and two anticommutators.  It 
is almost as if the even/odd operators destructively interfere to generate the homogeneous equa-
tions, while the even/even and odd/odd operators constructively interfere to describe a source.

à The Lorentz  Force

The Lorentz force is generated similarly to the source term of the Maxwell equations, but there a 
small game required to get the signs correct for the 4−force.

odd  IIΓ, Γ Β
ÓM, H0, BÓLM - even  II-Γ, Γ Β

ÓM, H0, EÓLM =IΓ Β
Ó

× EÓ , Γ EÓ + Γ Β
Ó

X BÓM
This is the covariant form of the Lorentz force.

à Conservation  Laws

The continuity equation − conservation of charge − is formed by applying the conjugate of the 
differential operator to the source terms of the Maxwell equations.
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scalar  
ikjjJ ¶

��������
¶ t

, -õ
ÓN 

ikjj õ
Ó × EÓ, õ

Ó X BÓ -
¶EÓ
��������
¶ t

y{zzy{zz =

¶
��������
¶ t

 õÓ × EÓ - õ
Ó ×

¶EÓ
��������
¶ t

+ õ
Ó × õ

Ó X BÓ =

= scalar  JJ ¶
��������
¶ t

, -õ
ÓN, 4 Π HΡ, JÓLN = 4 Π JÑÓ × JÓ +

¶Ρ
��������
¶ t

N
The dot product of the E field and the current density plus the rate of change of the charge density 
must equal zero.  That means that charge is conserved.

Poynting’s theorem for energy conservation is formed in a very similar way, except that the conju-
gate of electric field is used instead of the conjugate of the differential operator.

scalar  
ikjjH0, -EÓL 

ikjjõ
Ó × EÓ, õ

Ó X BÓ -
¶EÓ
��������
¶ t

y{zzy{zz = EÓ × õ
Ó X BÓ - EÓ ×

¶EÓ
��������
¶ t

= scalar  HH0, -EÓL, 4 Π HΡ, JÓLL = 4 Π EÓ × JÓ
Additional vector identities are required before the final form is reached.

EÓ × Hõ
Ó X BÓL = BÓ × Hõ

Ó X EÓL + õ
Ó × HBÓ X EÓL

õ
Ó X EÓ = -

¶BÓ
��������
¶ t

EÓ.
¶EÓ
��������
¶ t

=
1
����
2

 
ikjj ¶EÓ

��������
¶ t

y{zz2

BÓ ×
¶BÓ
��������
¶ t

=
1
����
2

 
ikjj ¶BÓ

��������
¶ t

y{zz2

Use these equations to simplify to the following.

4 Π HEÓ × JÓ, 0L =
ikjjjj- õ

Ó × HEÓ X BÓL -
1
����
2

 
ikjj ¶EÓ

��������
¶ t

y{zz2

-
1
����
2

 
ikjj ¶BÓ

��������
¶ t

y{zz2

, 0
y{zzzz

This is Poynting’s equation.

à Implications

The foundations of classical electrodynamics are the Maxwell equations, the Lorentz force, and the 
conservation laws.  In this section, these basic elements have been written as quaternion equations, 
exploiting the actions of commutators and anticommutators.  There is an interesting link between 
the E field and a differential operator for generating conservation laws.  More importantly, the 
means to generate these equations using quaternion operators has been displayed.  This approach 
looks independent from the usual method which relies on an antisymmetric 2−rank field tensor and 
a U(1) connection.
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Electromagnetic Field Gauges

A gauge is a measure of distance.  Gauges are often chosen to make solving a particu-
lar problem easier.  A few are well known: the Coulomb gauge for classical electro-
magnetism, the Lorenz gauge which makes electromagnetism look like a simple 
harmonic oscillator, and the gauge invariant form which is used in the Maxwell 
equations.  In all these cases, the E and B field is the same, only the way it is mea-
sured is different.  In this section, these are all generated using a differential quater-
nion operator and a quaternion electromagnetic potential.

à The Field Tensor F in Different Gauges

The anti−symmetric 2−rank electromagnetic field tensor F has 3 properties: its trace 
is zero, it is antisymmetric, and it contains all the components of the E and B fields.  
The field used in deriving the Maxwell equations had the same information written 
as a quaternion:J ¶

��������
¶ t

, -õ
ÓN HΦ, -AÓL - HΦ, AÓL J ¶

��������
¶ t

, õ
ÓN =ikjj0, -

¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
What makes this form gauge−invariant, so no matter what the choice of gauge (involving dphi/dt 
and Del.A), the resulting equation is identical?  It is the work of the zero!  Whatever the scalar field 
is in the first term of the generator gets subtracted away in the second term.  

Generating the field tensor F in the Lorenz gauge starting from the gauge−invariant from involves 
swapping the fields in the following way:J ¶

��������
¶ t

, -õ
ÓN 

ikjj HΦ, AÓL + HΦ, -AÓL
���������������������������������������

2
y{zz -ikjj HΦ, AÓL - HΦ, -AÓL

���������������������������������������
2

y{zz J ¶
��������
¶ t

, õ
ÓN =

=
ikjj ¶Φ

��������
¶ t

+ õ
Ó. AÓ, -

¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
The first term of the generator involves the scalar field only, (phi, 0), and the second term involves 
the 3−vector field only, (0, A).

The field tensor F in the Coulomb gauge is generated by subtracting away the divergence of A, 
which explains why the second and third terms involve only A, even though Del.A is zero :−)
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J ¶
��������
¶ t

, -õ
ÓN HΦ, -AÓL + J ¶

��������
¶ t

, -õ
ÓN 

ikjj HΦ, AÓL - HΦ, -AÓL
���������������������������������������

4
y{zz +ikjj HΦ, -AÓL - HΦ, AÓL

���������������������������������������
4

y{zz J ¶
��������
¶ t

, õ
ÓN =

=
ikjj ¶Φ

��������
¶ t

, -
¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
The field tensor F in the temporal gauge is quite similar to the Coulomb gauge, but some of the 
signs have changed to target the dphi/dt term.J ¶

��������
¶ t

, -õ
ÓN HΦ, -AÓL - J ¶

��������
¶ t

, -õ
ÓN 

ikjj HΦ, AÓL + HΦ, -AÓL
���������������������������������������

4
y{zz -ikjj HΦ, -AÓL + HΦ, AÓL

���������������������������������������
4

y{zz J ¶
��������
¶ t

, õ
ÓN =

=
ikjj-õ

Ó. AÓ, -
¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
What is the simplest expression that all of these generator share?  I call it the field tensor F in the 
light gauge:J ¶

��������
¶ t

, -õ
ÓN HΦ, -AÓL =

ikjj ¶Φ
��������
¶ t

- õ
Ó. AÓ, -

¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
The light gauge is one sign different from the Lorenz gauge, but its generator is a simple as it gets.

à Implications

In the quaternion representation, the gauge is a scalar generated in such a way as to not alter the 
3−vector.  In a lists of gauges in graduate−level quantum field theory written by Kaku, the light 
gauge did not make the list of the top 6 gauges.  There is a reason for this.  Gauges are presented as 
a choice for a physicist to make.  The most interesting gauges have to do with a long−running 
popularity contest.  The relationship between gauges is guessed, not written explicitly as was done 
here.  The term that did not make the cut stands out.  Perhaps some of the technical issues in quan-
tum field theory might be tackled in this gauge using quaternions.
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The Maxwell  Equations  in the Light  Gauge:  QED?

What makes a theory non−classical?  Use an operational definition: a classical approach neatly 
separates the scalar and vector terms of a quaternion.  Recall how the electric field was defined 
(where {A,  B}  is the even or symmetric product over 2, and [A, B] is the odd, antisymmetric 
product over two or cross product). 

E = vector  Jeven  JJ ¶
��������
¶ t

, õ
ÓN, HΦ, -AÓLNN =

ikjj0, -õ
Ó Φ -

¶AÓ
��������
¶ t

y{zz
B = odd  JJ ¶

��������
¶ t

, õ
ÓN, HΦ, AÓLN = H0, õ

Ó X AÓ L
The scalar information is explicitly discarded from the E field quaternion.  In this section, the 
scalar field that arises will  be examined and shown to be the field which gives rise to gauge 
symmetry.  The commutators and anticommutators of this scalar and vector field do not alter 
the homogeneous terms of the Maxwell equations, but may explain why light is a quantized, 
transverse wave. 

à The E and B Fields,  and the Gauge with  No Name

In the previous section, the electric field was generated differently from the magnetic field, 
since the scalar field was discard.  This time that will  not be done.

E = even  JJ ¶
��������
¶ t

, õ
ÓN, HΦ, -AÓLN =

ikjj ¶Φ
��������
¶ t

- õ
Ó × AÓ , -

¶AÓ
��������
¶ t

- õ
Ó Φ

y{zz
B = odd  JJ ¶

��������
¶ t

, õ
ÓN, HΦ, AÓLN = H0, õ

Ó X AÓL
What is the name of the scalar field, d phi/dt − Del.A which looks like some sort of gauge?  It 
is not the Lorenz or Landau gauge which has a plus sign between the two.  It is none of the 
popular gauges: Coulomb (Del.A = 0), axial (Az = 0), temporal (phi = 0), Feynman, unitary...

[special note: I am now testing the interpretation that this gauge constitutes the gravitational field.  
See the section on Einstein’s Vision]  

The standard definition of a gauge starts with an arbitrary scalar function psi.  The following 
substitutions do not effect the resulting equations.

Φ -> Φ ’ = Φ -
¶Ψ
��������
¶ t

AÓ -> AÓ ’ = AÓ + õ
Ó Ψ

This can be written as one quaternion transformation.
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HΦ, AÓL � HΦ ’ , AÓ ’ L = HΦ, AÓL + J-
¶Ψ
��������
¶ t

, õ
Ó ΨN

The goal here is to find an arbitrary scalar and a 3−vector that does the same work as the scalar 
function psi.  Let 

p = -
¶Ψ
��������
¶ t

and ΑÓ = õ
Ó Ψ

Look at how the gauge symmetry changes by taking its derivative.J ¶
��������
¶ t

, õ
ÓN J-

¶Ψ
��������
¶ t

, õ
Ó ΨN =J- õ

Ó × õ
Ó Ψ -

¶2 Ψ
����������
¶ t 2 , õ

Ó X õ
Ó Ψ - õ

Ó ¶Ψ
��������
¶ t

+ õ
Ó ¶Ψ

��������
¶ t

N =J ¶p
��������
¶ t

- õ
Ó × ΑÓ, 0N

This is the gauge with no name!  Call it the "light gauge".  That name was chosen because if 
the rate of change in the scalar potential phi is equal to the spatial change of the 3−vector 
potential A as should be the case for a photon, the distance is zero.

à The Maxwell  Equations  in the Light  Gauge

The homogeneous terms of the Maxwell equations are formed from the sum of both orders of 
the commutator and anticommutator.

even  JJ ¶
��������
¶ t

, õ
ÓN, odd  JJ ¶

��������
¶ t

, õ
ÓN, HΦ, AÓLNN +

odd  JJ ¶
��������
¶ t

, õ
ÓN, even  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNN =

= H-õ
Ó × õ

Ó X AÓ , -õ
Ó X õ

Ó ΦL = I0, 0
ÓM

The source terms arise from of two commutators and two anticommutators.  In the classical 
case discussed in the previous section, this involved a difference.  Here a sum will  be used 
because it generates a simpler differential equation.

odd  JJ ¶
��������
¶ t

, õ
ÓN, odd  JJ ¶

��������
¶ t

, õ
ÓN, HΦ, AÓLNN -

even  JJ ¶
��������
¶ t

, õ
ÓN, even  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNN =

=
ikjj ¶2 Φ

����������
¶ t 2 + õ

Ó × õ
Ó Φ , -

¶2 AÓ
����������
¶ t 2 + õ

Ó X Hõ
Ó X AÓL - õ

Ó
õ
Ó × AÓy{zz

=
ikjj ¶2 Φ

����������
¶ t 2 + õ

Ó2
Φ , -

¶2 AÓ
����������
¶ t 2 - õ

Ó2
AÓ y{zz = 4 Π HΡ, JÓL
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Notice how the scalar and vector parts have neatly partitioned themselves.  This is a wave 
equation, except that a sign is flipped.  Here is the equation for a longitudinal wave like sound.

¶2 wÓ
����������
¶ t 2 - õ

Ó2
wÓ = 0

The second time derivative of w must be the same as Del^2 w.  This has a solution which 
depends on sines and cosines (for simplicity, the details of initial and boundary conditions are 
skipped, and the infinite sum has been made finite).

wÓ = â
n=0

¥

Cos@n Π t D Sin @n Π RD
¶t ¶t wÓ - ¶R ¶R wÓ = 0

Hit w with two time derivatives, and out comes −n^2 pi^2 w.  Take Del^2, and that creates the 
same results.  Thus every value of n will  satisfy the longitudinal wave equation.

Now to find the solution for the sum of the second time derivative and Del^2.  One of the signs 
must be switched by doing some operation twice.  Sounds like a job for i!  With quaternions, 
the square of a  normalized 3−vector equals (−1, 0), and it is i if y = z = 0 .  The solution to 
Maxwell’s equations in the light gauge is

wÓ = â
n=0

¥

Cos@n Π t D Sin @n Π RVÓD
if VÓ2

= -1, then ¶t ¶t wÓ + ¶R ¶R wÓ = 0

Hit this two time derivatives yields −n^2 pi^2 w.  Del^2 w has all of this and the normalized 
phase factor V^2 = (−1, 0).  V acts like an imaginary phase factor that rotates the spatial compo-
nent.  The sum for any n is zero (the details of the solution depend on the initial and boundary 
conditions).

à Implications
The solution to the Maxwell equations in the light gauge is a superposition of waves − each 
with a separate value of n − where the spatial part gets rotated by the 3D analogue of i.  That is 
a quantized, transverse wave.  That’s fortunate, because light is a quantized transverse wave.  
The equations were generated by taking the classical Maxwell equations, and making them 
simpler.
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The Lorentz  Force

The Lorentz force acts on a moving charge.  The covariant form of this law is, where W is work 
and P is momentum:ikjj d W

��������
d Τ

,
d PÓ
��������
d Τ

y{zz = Γ e IΒ
Ó

. EÓ, EÓ + Β
Ó

X BÓM
In the classical case for a point charge, beta is zero and the E = k e/r^2, so the 
Lorentz force simplifies to Coulomb’s law.  Rewrite this in terms of the poten-
tials phi and A.ikjj d W

��������
d Τ

,
d PÓ
��������
d Τ

y{zz = Γ e 
ikjjΒ. ikjj-

¶AÓ
��������
¶ t

- ÑÓΦ
y{zz, -

¶AÓ
��������
¶ t

- ÑÓΦ + Β
Ó

X HÑÓX AÓLy{zz
In this section, I will  look for a quaternion equation that can generate this covari-
ant form of the Lorentz force in the Lorenz gauge.  By using potentials and 
operators, it may be possible to create other laws like the Lorentz force, in 
particular, one for gravity.

à A Quaternion  Equation  for  the Lorentz  Force

The Lorentz force is composed of two parts.  First, there is the E and B fields.  
Generate those just as was done for the Maxwell equationsJ ¶

��������
¶ t

, õ
ÓN HΦ, AÓL =

ikjj ¶Φ
��������
¶ t

- õ
Ó × AÓ,

¶AÓ
��������
¶ t

+ õ
Ó Φ + õ

Ó X AÓy{zz
Another component is the 4−velocity

V = IΓ, Γ Β
ÓM

Multiplying these two terms together creates thirteen terms, only 5 of whom 
belong to the Lorentz force.  That should not be surprising since a bit of algebra 
was needed to select only the covariant terms that appear in the Maxwell equa-
tions.  After some searching, I found the combination of terms required to 
generate the Lorentz force.J ¶

��������
¶ t

, -õ
ÓN HΦ, -AÓL IΓ, -Γ Β

ÓM - IΓ, -Γ Β
ÓM J ¶

��������
¶ t

, õ
ÓN HΦ, AÓL =

= Γ 
ikjjΒ

Ó
×

ikjj-
¶AÓ
��������
¶ t

- õ
ÓΦ

y{zz, -
¶AÓ
��������
¶ t

- õ
Ó Φ + Β

Ó
X Hõ

Ó X AÓLy{zz =

Γ e I Β
Ó

. EÓ, EÓ + Β
Ó

´ BÓM
This combination of differential quaternion operator, quaternion potential and 
quaternion 4−velocity generates the covariant form of the Lorentz operator in 
the Lorenz gauge, minus a factor of the charge e which operates as a scalar 
multiplier.
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This combination of differential quaternion operator, quaternion potential and 
quaternion 4−velocity generates the covariant form of the Lorentz operator in 
the Lorenz gauge, minus a factor of the charge e which operates as a scalar 
multiplier.

à Implications

By writing the covariant form of the Lorentz force as an operator acting on a 
potential, it may be possible to create other laws like the Lorentz force.  For 
point sources in the classical limit, these new laws must have the form of Cou-
lomb’s law, F = k e e’/r^2.  An obvious candidate is Newton’s law of gravity, F 
= − G m m’/r^2.
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The Stress  Tensor  of  the Electromagnetic  Field

I will  outline a way to generate the terms of the symmetric 2−rank stress−momentum tensor of an 
electromagnetic field using quaternions.  This method may provide some insight into what informa-
tion the stress tensor contains.

Any equation written with 4−vectors can be rewritten with quaternions.  A straight translation of 
terms could probably be automated with a computer program.  What is more interesting is when an 
equation is generated by the product of operators acting on quaternion fields.  I have found that 
generator equations often yield useful insights.

A tensor is a bookkeeping device designed to keep together elements that transform in a similar 
way.  People can choose alternative bookkeeping systems, so long as the tensor behaves the same 
way under transformations.  Using the terms as defined in "The classical theory of fields" by Lan-
dau and Life−sized, the antisymmetric 2−rank field tensor F is used to generate the stress tensor T

Tik =
1

��������
4 Π

 J- FiL  Fk
L +

1
����
4

 ∆ik  FLM FLMN
I have a practical sense of an E field (the stuff that makes my hair stand on end) and a B field (the 
invisible hand directing a compass), but have little sense of the field tensor F, a particular combina-
tion of the other two.  Therefore, express the stress tensor T in terms of the E and B fields only:

Tik =

i
k
jjjjjjjjjj

W Sx Sy Sz
Sx mxx mxy myz
Sy myx myy myz
Sz mzx mzy mzz

y
{
zzzzzzzzzz

W =
1

��������
8 Π

 IEÓ2
+ BÓ2 M

Sa =
1

��������
4 Π

 HEÓ x  BÓL
mab =

1
��������
4 Π

 I-Ea Eb - Ba Bb + 0.5 ∆ab  IEÓ2
+ BÓ2 MM

Together, the energy density(W), Poynting’s vector (Sa) and the Maxwell stress tensor (m_ab) are 
all the components of the stress tensor of the electromagnetic field.

à Generating  a Symmetric  2−Tensor  Using  Quaternions

How should one rationally go about to find a generator equation that creates these terms instead of 
using the month−long hunt−and−peck technique actually used?  Everything is symmetric, so use 
the symmetric product:
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even  Hq, q ’ L =
q q ’ + q ’ q

�������������������������������
2

= It t ¢ - XÓ. X¢ÓÖÖÖ , t X¢ÓÖÖÖ + XÓ t ¢M
The fields E and B are kept separate except for the cross product in the Poynting vector.  Individual 
directions of a field can be selected by using a unit vector Ua:

even  HEÓ, UxL = H-Ex, 0L where Ux = H0, 1, 0, 0L
The following double sum generates all the terms of the stress tensor:

Tik =

S
a=x

y, z
S

b=x

y, z 1
��������
4 Π

 ikjjJ even  HUa, UbL
����������������������������������

3
- 1N 

HH0, EL2 + H0, BL2 L
�����������������������������������������������

2
-

- even  HE, UaL even  HE, UbL - even  HB, UaL even  HB, UbL -

- even  Hodd  HE, BL, UaL - even  Hodd  HE, BL, UbL =

= H-Ex Ey - Ex Ez - Ey Ez - Bx By - Bx Bz - By Bz
+ Ey Bz - Ez By + Ez Bx - Ex Bz + Ex By - Ey Bx, 0L � 2

Π

The first line generates the energy density W, and part of the +0.5 delta(a, b)(E^2 + B^2) term of 
the Maxwell stress tensor.  The rest of that tensor is generated by the second line.  The third line 
creates the Poynting vector.  Using quaternions, the net sum of these terms ends up in the scalar.

Does the generator equation have the correct properties?  Switching the order of Ua and Ub leaves 
T unchanged, so it is symmetric.  Check the trace, when Ua = Ub

trace  HTik L =

= S
a=x

y, z 1
��������
4 Π

 ikjjJ even  HUa, UaL
����������������������������������

3
- 1N 

HH0, EL2 + H0, BL2 L
�����������������������������������������������

2
-

even  HE, UaL2 - even  HB, UaL2 y{zz = 0

The trace equals zero, as it should.

The generator is composed of three parts that have different dependencies on the unit vectors: those 
terms that involve Ua and Ub, those that involve Ua or Ub, and those that involve neither.  These 
are the Maxwell stress tensor, the Poynting vector and the energy density respectively.  Changing 
the basis vectors Ua and Ub will  effect these three components differently.

à Implications

So what does the stress tensor represent?  It looks like every combination of the 3−vectors E and B 
that avoids quadratics (like Ex^2) and over−counting cross terms.  I like what I will  call the "net" 
stress quaternion:

net  HTik L =
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= H-Ex Ey - Ex Ez - Ey Ez - Bx By - Bx Bz - By Bz
+ Ey Bz - Ez By + Ez Bx - Ex Bz + Ex By - Ey Bx, 0L � 2

Π

This has the same properties as an stress tensor.  Since the vector is zero, it commutes with any 
other quaternion (this may be a reason it is so useful).  Switching x terms for y terms would flip the 
signs of the terms produced by the Poynting vector as required, but not the others.  There are no 
terms of the form Ex^2, which is equivalent to the statement that the trace of the tensor is zero.

On a personal note, I never thought I would understand what a symmetric 2−rank tensor was, even 
though I listen in on a discussion of the topic.  Yes, I could nod along with the algebra, but without 
any sense of F, it felt hollow.  Now that I have a generator and a net quaternion expression, it looks 
quite elegant and straightforward to me.
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Quantum Mechanics
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A Complete  Inner  Product  Space with  Dirac’s  Bracket  Notation

A mathematical connection between the bracket notation of quantum mechanics and quaternions is 
detailed.  It will  be argued that quaternions have the properties of a complete inner−product space 
(a Banach space for the field of quaternions).  A central issue is the definition of the square of the 
norm.  In quantum mechanics:ÈÈ j ÈÈ2 = < j È j >

In this section, the following assertion will  be examined (* is the conjugate, so the vector flips 
signs):ÈÈ Ht , XÓL ÈÈ2 = Ht , XÓL*

 Ht , XÓL Ht , XÓL*
 Ht , XÓL

The inner−product of two quaternions is defined here as the transpose (or conjugate) of the first 
quaternion multiplied by the second.  The inner product of a function with itself is the norm.

à The Positive  Definite  Norm  of  a Quaternion

The square of the norm of a quaternion can only be zero if every element is zero, otherwise it must 
have a positive value.Ht , XÓL*

 Ht , XÓL = It 2 + XÓ. XÓ, 0
ÓM

This is the standard Euclidean norm for a real 4−dimensional vector space.

The Euclidean inner−product of two quaternions can take on any value, as is the case in quantum 
mechanics for <phi|theta>.  The adjective "Euclidean" is used to distinguish this product from the 
Grassman inner−product which plays a central role in special relativity (see alternative algebra for 
boosts).

à Completeness

With the topology of a Euclidean norm for a real 4−dimensional vector space, quaternions are 
complete.

Quaternions are complete in a manner required to form a Banach space if there exists a neighbor-
hood of any quaternion x such that there is a set of quaternions yÈÈ x - y ÈÈ2 < Ε4

for some fixed value of epsilon.

Construct such a neighborhood.
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IHt , XÓL -
Ε
����
4

 Ht , XÓLM*
 IHt , XÓL -

Ε
����
4

 Ht , XÓLM IHt , XÓL -
Ε
����
4

 Ht , XÓLM*
 IHt , XÓL -

Ε
����
4

 Ht , XÓLM =

= J Ε4
�������
16

, 0, 0, 0N < HΕ4 , 0, 0, 0L
An infinite number of quaternions exist in the neighborhood.

Any polynomial equation with quaternion coefficients has a quaternion solution in x (a proof done 
by Eilenberg and Niven in 1944, cited in Birkhoff and Mac Lane’s "A Survey of Modern Algebra.")

à Identities  and Inequalities

The following identities and inequalities emanate from the properties of a Euclidean norm.  They 
are worked out for quaternions here in detail to solidify the connection between the machinery of 
quantum mechanics and quaternions.

The conjugate of the square of the norm equals the square of the norm of the two terms reversed.

< Φ È j >* = < j È Φ >

For quaternions,IHt , XÓL*
 It ¢ , X¢ÓÖÖÖ MM*

= It t ¢ + XÓ. X¢ÓÖÖÖ , -t  X¢ÓÖÖÖ + XÓ t ¢ + XÓ x  X¢ÓÖÖÖ MIt ¢ , X¢ÓÖÖÖ M*
 Ht , XÓL = It ¢  t + X¢ÓÖÖÖ . XÓ, t ¢  XÓ - X¢ÓÖÖÖ t - X¢ÓÖÖÖ  x  XÓM

These are identical, because the terms involving the cross produce will  flip signs when their order 
changes.

For products of squares of norms in quantum mechanics,

< jΦ È jΦ > = < j È j > < Φ È Φ >

This is also the case for quaternions.

< Ht , XÓL It ¢ , X¢ÓÖÖÖ M É Ht , XÓL It ¢ , X¢ÓÖÖÖ M > =

= IHt , XÓL It ¢ , X¢ÓÖÖÖ MM* Ht , XÓL It ¢ , X¢ÓÖÖÖ M
= It ¢ , X¢ÓÖÖÖ M*

 Ht , XÓL* Ht , XÓL It ¢ , X¢ÓÖÖÖ M
= It ¢ , X¢ÓÖÖÖ M*

 Ht 2 + x2 + y2 + z2 , 0, 0, 0L It ¢ , X¢ÓÖÖÖ M
= Ht 2 + x2 + y2 + z2 , 0, 0, 0L It ¢ , X¢ÓÖÖÖ M*

 It ¢ , X¢ÓÖÖÖ M
= Ht , XÓL* Ht , XÓL It ¢ , X¢ÓÖÖÖ M*

 It ¢ , X¢ÓÖÖÖ M
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= < Ht , XÓL É Ht , XÓL > < It ¢ , X¢ÓÖÖÖ M É It ¢ , X¢ÓÖÖÖ M >

The triangle inequality in quantum mechanics:

< j + Φ È Φ + j >2 £ H < j È j > + < Φ È Φ >L2

For quaternions,

< Ht , XÓL + It ¢ , X¢ÓÖÖÖ M É Ht , XÓL + It ¢ , X¢ÓÖÖÖ M >2 =

= IIt + t ¢ , XÓ + X¢ÓÖÖÖ M*
 It + t ¢ , XÓ + X¢ÓÖÖÖ MM2

= Jt 2 + t ¢ 2 + XÓ2
+ X¢ÓÖÖÖ 2

+ 2 t t ¢ + 2 XÓ. X¢ÓÖÖÖ , 0N2

�Jt 2 + XÓ2
+ t ¢ 2 + X¢ÓÖÖÖ 2

+

2 "############################################################################Ht , XÓ L*
 Ht , XÓ L Ht ¢ , X¢ÓÖÖÖ L*

 Ht ¢ , X¢ÓÖÖÖ L , 0N^ 2 =

I < Ht , XÓL É Ht , XÓL > + < It ¢ , X¢ÓÖÖÖ M É It ¢ , X¢ÓÖÖÖ M >M2

If  the signs of each pair of component are the same, the two sides will  be equal.  If the signs are 
different, then the cross terms will  cancel on the left hand side of the inequality, making it smaller 
than the right hand side where terms never cancel because there are only squared terms.

The Schwarz inequality in quantum mechanics is analogous to dot products and cosines in Euclid-
ean space.È < j È Φ > È2 £ < j È j > < Φ È Φ >

Let a third wave function, chi, be the sum of these two with an arbitrary parameter lambda.

Χ º j + Λ Φ

The norm of chi will  necessarily be greater than zero.Hj + Λ ΦL*  Hj + Λ ΦL = j*  j + Λ j*  Φ + Λ*  Φ* j + Λ*  Λ Φ*  Φ ³ 0

Choose the value for lambda that helps combine all the terms containing lambda.

Λ ® -
Φ* j
������������
Φ*  Φ

j*  j -
Φ* j j*  Φ
����������������������

Φ*  Φ
³ 0

Multiply through by the denominator, separate the two resulting terms and do some minor 
rearranging.
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Hj*  ΦL* j*  Φ £ j*  j Φ* Φ

This is now the Schwarz inequality.

Another inequality:

2 Re < j È Φ > £ < j È j > + < Φ È Φ >

Examine the square of the norm of the difference between two quaternions which is necessarily 
equal to or greater than zero.

0 £ < Ht , XÓL - It ¢ , X¢ÓÖÖÖ M É Ht , XÓL - It ¢ , X¢ÓÖÖÖ M >

= IHt - t ¢L2 + IXÓ - X¢ÓÖÖÖ M. IXÓ - X¢ÓÖÖÖ M, 0
ÓM

The cross terms can be put on the other side of inequality, changing the sign, and leaving the sum 
of two norms behind. I2 It t ¢ + XÓ. X¢ÓÖÖÖ M, 0

ÓM £ Jt 2 + XÓ2
+ t ¢ 2 + X¢ÓÖÖÖ 2

, 0
ÓN

2 Re < Ht , XÓL É It ¢ , X¢ÓÖÖÖ M > £ < Ht , XÓL ÉHt , XÓL > + < It ¢ , X¢ÓÖÖÖ M É It ¢ , X¢ÓÖÖÖ M >

 The inequality holds.

The parallelogram law:

< j + Φ È Φ + j > + < j - Φ È Φ - j > = 2 < j È j > + 2 < Φ È Φ >

Test the quaternion norm

< Ht , XÓL + It ¢ , X¢ÓÖÖÖ M É Ht , XÓL + It ¢ , X¢ÓÖÖÖ M > + < Ht , XÓL - It ¢ , X¢ÓÖÖÖ M ÉHt , XÓL - It ¢ , X¢ÓÖÖÖ M > =

= IHt + t ¢L2 + IXÓ + X¢ÓÖÖÖ M. IXÓ + X¢ÓÖÖÖ M, 0
ÓM +IHt - t ¢L2 + IXÓ - X¢ÓÖÖÖ M. IXÓ - X¢ÓÖÖÖ M, 0

ÓM =

= 2 Jt 2 + XÓ2
+ t ¢ 2 + X¢ÓÖÖÖ 2

, 0
ÓN =

= 2 < Ht , XÓL É Ht , XÓL > + 2 < It ¢ , X¢ÓÖÖÖ M É It ¢ , X¢ÓÖÖÖ M >

This is twice the square of the norms of the two separate components.
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à Implications

In the case for special relativity, it was noticed that by simply squaring a quaternion, the resulting 
first term was the Lorentz invariant interval.  From that solitary observation, the power of a mathe-
matical field was harnessed to solve a wide range of problems in special relativity.

In a similar fashion, it is hoped that because the product of a transpose of a quaternion with a 
quaternion has the properties of a complete inner product space, the power of the mathematical 
field of quaternions can be used to solve a wide range of problems in quantum mechanics.  This is 
an important area for further research.

Note: this goal is different from the one Stephen Adler sets out in "Quaternionic Quantum Mechan-
ics and Quantum Fields."  He tries to substitute quaternions in the place of complex numbers in the 
standard Hilbert space formulation of quantum mechanics.  The analytical properties of quater-
nions do not play a critical role.  It is the properties of the Hilbert space over the field of quater-
nions that is harnessed to solve problems.  It is my opinion that since the product of a transpose of 
a quaternion with a quaternion already has the properties of a norm in a Hilbert space, there is no 
need to imbed quaternions again within another Hilbert space.  I like a close shave with Occam’s 
razor.
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Multiplying  Quaternions in Polar Coordinate Form

Any quaternion can be written in polar coordinate form, which involves a scalar magnitude and 
angle, and a 3−vector I (which in some cases can be the more familiar i).  

q = ÈÈ q ÈÈ exp @Θ IÓD = q*  q HCos@ΘD + IÓ Sin @ΘDL
This representation can be useful due to the properties of the exponential function, cosines and 
sines.

The absolute value of a quaternion is the square root of the norm, which is the transpose of a quater-
nion multiplied by itself.È q È =

�!!!!!!!!!!q* q

The angle is the arccosine of the ratio of the first component of a quaternion over the norm.

Θ = ArcCos  J q + q*
�����������������
2 È q È N

The vector component is generated by normalizing the pure quaternion (the final three terms) to the 
norm of the pure quaternion.

I =
q - q*

����������������������������
2 È q - q* È

I^2 equals −1 just like i^2.  Let (0, V) = (q − q*)/2.

I 2 =
H0, VL H0, VL

��������������������������������������������������È H0, VL ÈÈ H0, VL È =
H-V. V, VxVL
��������������������������������HV2 , 0L = -1

It should be possible to do Fourier analysis with quaternions, and to form a Dirac delta function (or 
distribution).  That is a project for the future.  Those tools are necessary for solving problems in 
quantum mechanics.

à New Method  for  Multiplying  Quaternion  Exponentials

Multiplying two exponentials is at the heart of modern analysis, whether one works with 
Fourier transforms or Lie groups.  Given a Lie algebra of a Lie group in a sufficiently small 
area the identity, the product of two exponentials can be defined using the Campbell−Haus-
dorff formula:

Exp@XD Exp@yD = HX + YL +
1
����
2

@X, YD HX + YL
+

1
�������
12

 H@@X, YD, YD - @@X, YD, XDL HX + YL + ...
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This formula is not easy to use, and is only applicable in a small area around unity. Quater-
nion analysis that relies on this formula would be very limited.

I have developed (perhaps for the first time) a simpler and general way to express the 
product of two quaternion exponentials as the sum of two components.  The product of two 
quaternions splits into a commuting and an anti−commuting part.  The rules for multiply-
ing commuting quaternions are identical to those for complex numbers.  The anticommut-
ing part needs to be purely imaginary.  The Grassman product (q q’) of two quaternion 
exponentials and the Euclidean product (q* q’) should both have these properties.  
Together these define the needs for the product of two quaternion exponentials.

Let q = Exp@XD q ’ = Exp@YD
q q ’ =8q, q ’ <* + Abs@q, q ’ D*  ExpA Π

����
2

@q, q ’ D*

�������������������������������
Abs@q, q ’ D* E

where 8q, q ’ <* º
q q ’ + q ’ * q*
�����������������������������������

2
and @q, q ’ D* º q q ’ - q ’ * q*

q*  q ’ = same as above
where 8q, q ’ < =

q* q ’ + q ’ * q and @q, q ’ D = q* q ’ - q ’ * q

I call these operators "conjugators" because they involve taking the conjugate of the two 
elements.  Andrew Millard made the suggestion for the Grassman product that unifies these 
approaches nicely.  What is happening here is that both commuting and anticommuting 
parts scale themselves appropriately.  By using an exponential that has pi/2 multiplied by a 
normalized quaternion, this always has a zero scalar, as it must to accurately represent an 
anticommuting part.
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Commutators  and the Uncertainty  Principle

Commutators and the uncertainty principle are central to quantum mechanics.  Using quaternions 
in these roles has already been established by others (Horwitz and Biedenharn, Annals of Physics, 
157:432, 1984).  The first proof of the uncertainty principle I saw relied solely on the properties of 
complex numbers, not on physics!  In this section, I will  repeat that analysis, showing how commu-
tators and an uncertainty principle arise from the properties of quaternions (or their subfield the 
complex numbers).

à Commutators

Any quaternion can be written in a polar form.

q = Hs, VL =
�!!!!!!!!!!q* q ExpA s

����������������!!!!!!!!!!q* q

V
����������������!!!!!!!!!!V* V

E
This is identical to Euler’s formula except that the imaginary unit vector i is replaced by the normal-
ized 3−vector.  The two are equivalent if j = k = 0.  Any quaternion could be the limit of the sum of 
an infinite number of other quaternions expressed in a polar form.  I hope to show that such a 
quaternion mathematically behaves like the wave function of quantum mechanics, even if the 
notation is different.

To simplify things, use a normalized quaternion, so that q* q = 1.  Collect the normalized 3−vector 
together with I = V/(V*  V)^.5.

The angle s/(q* q)^.5 is a real number.  Any real number can be viewed as the product of two other 
real numbers.  This seemingly irrelevant observation lends much of the flexibility  seen in quantum 
mechanics :−)  Here is the rewrite of q.

q = Exp@a b I D
where q* q = 1, a b =

s
����������������!!!!!!!!!!q* q

, I =
V

����������������!!!!!!!!!!V* V

The unit vector "I"  could also be viewed as the product of two quaternions. For classical quantum 
mechanics, this additional complication is unnecessary because all "i"’s  commute.

A point of clarification on notation: the same letter will  be used 4 distinct ways. There are opera-
tors, A hat, which act on a quaternion wave function by multiplying by a quaternion, capital A.  If 
the operator A hat is an observable, then it generates a real number, (a, 0), which commutes with 
all quaternions, whatever their form. There is also a variable with respect to a component of a 
quaternion, a_i, that can be used to form a differential operator.

Define a linear operator A hat that multiplies q by the quaternion A.

A
`

q = A q

If  the operator A hat is an observable, then the quaternion  A is a real number, (a, 0).  A real num-
ber will  commute with any quaternion.  This equation is functionally equivalent to an eigenvalue 
equation, with A hat as an eigenvector of q and (a, 0) as the eigenvalue.  However, all of the compo-
nents of this equation are quaternions, not separate structures such as an operator belonging to a 
group and a vector.  This might make a subtle but significant difference for the mathematical 
structure of the theory, a point that will  not be investigated here. 
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If  the operator A hat is an observable, then the quaternion  A is a real number, (a, 0).  A real num-
ber will  commute with any quaternion.  This equation is functionally equivalent to an eigenvalue 
equation, with A hat as an eigenvector of q and (a, 0) as the eigenvalue.  However, all of the compo-
nents of this equation are quaternions, not separate structures such as an operator belonging to a 
group and a vector.  This might make a subtle but significant difference for the mathematical 
structure of the theory, a point that will  not be investigated here. 

Define a linear operator B hat that multiplies q by the quaternion B.  If B hat is an observable,  then 
this operator can be defined in terms of the scalar variable a.

Let B
`

= -I
d

��������
d a

B
`

q = -I
d Exp@a b I D
�����������������������������

d a
= b q

Operators A and B are linear.HA
`

+ B
`L q = A

`
q + B

`
q = a q + b q = Ha + bL q

A
`

 Hq + q ’ L = A
`

q + A
`

q ’ = a q + a ’ q ’

Calculate the commutator [A, B], which involves the scalar a and the derivative with respect to a.@A
`

, B
`D q = HA

`
B
`

- B
`

A
`L q = -a I

d q
���������
d a

+ I
d a q
������������
d a

= -a I
d q
���������
d a

+ a I
d q
���������
d a

+ I q 
d a
���������
d a

= I q

The commutator acting on a quaternion is equivalent to multiplying that quaternion by the normal-
ized 3−vector I.

à The Uncertainty  Principle

Use these operators to construct things that behave like averages (expectation values) and standard 
deviations.

The scalar a−−generated by the observable operator A hat acting on the normalized q−−can be 
calculated using the Euclidean product.

q* HA qL = q* a q = a q* q = a

It is hard to shuffle quaternions or their operators around.  Real scalars commute with any quater-
nion and are their own conjugates.  Operators that generate such scalars can move around.  Look at 
ways to express the expectation value of A.

q* HA
`

qL = q* a q = a q* q = a*  q* q = HA
`

qL*
q = a

Define a new operator A’  based on A whose expectation value is always zero.

Let A’ = A - q* HA qL
q* HA’ qL = q* HA - q* HA qLL qL = a - a = 0

Define the square of the operator in a way designed to link up with the standard deviation.
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Let DA’ 2 = q* HA’  2 qL - Hq* HA’ qLL2
= q* HA’  2 qL

An identical set of tools can be defined for B.

In the section on bracket notation, the Schwarz inequality for quaternions was shown.

A’ * B’ + B’ *  A’
�����������������������������������

2
£ Ë A’ Ë Ë B’ Ë

The Schwarz inequality applies to quaternions, not quaternion operators.  If the operators A’  and 
B’  are surrounded on both sides by q and q*, then they will  behave like scalars.

The left−hand side of the Schwarz inequality can be rearranged to form a commutator.

q*  HA’ * B’ + B’ *  A’ L q =

q*  A’ * B’ q + q*  B’ *  A’ q = q* a’ * B’ q + q* H-I L*  
d

��������
d a

A’ q =

= q* a’ B’ q - q* H-I L 
d

��������
d a

A’ q =

q*  HA’ B’ - B’ A’ L q = q*@A’ , B’ D q

The right−hand side of the Schwarz inequality can be rearranged to form the square of the standard 
deviation operators.

q* È A’ È È B’ È q =
q*  A*’ A’  B*’  B’  q = q*  A’  2 B’  2  q = q* DA’ 2 DB’ 2 q

Plug both of these back into the Schwarz inequality, stripping the primes and the q’s which appear 
on both sides along the way.@A, BD

������������������
2

£ DA2 DB2

This is the uncertainty principle for complementary observable operators.
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à Connections  to Standard  Notation

This quaternion exercise can be mapped to the standard notation used in physics

bra : È Ψ > � q

ket : < Ψ È � q*

operator : A � A

imaginary : i � I

commutator : @A, BD � @A, BD
norm : < Ψ È Ψ > � q* q

expectation of A : < Ψ È A Ψ > maps to q* A q

Operator A is Hermitian �H0, AÓL is anti - Hermitian ,

q* HH0, AÓL qL = HH0, -AÓL qL*
q

The square of the standard
deviation : ∆A2 = < Ψ È A2 Ψ > - < Ψ È A Ψ >2 � DA2

One subtlety to note is that a quaternion operator is anti−Hermitian only if the scalar is zero.  This 
is probably the case for classical quantum mechanics, but quantum field theory may require full 
quaternion operators.  The proof of the uncertainty principle shown here is independent of this 
issue.  I do not yet understand the consequence of this point.

To get to the position−momentum uncertainty equation, make these specific maps

A � X

B � P = i Ñ
d

�������
dx

I = @A, BD � i Ñ @X, PD@A, BD
������������������

2
=

I
����
2

£ DA2 DB2 �
@X, PD
������������������

2
=

i Ñ
��������
2

£ ∆X2 ∆P2

The product of the squares of the standard deviation for position and momentum in the x−direction 
has a lower bound equal to half the expectation value of the commutator of those operators.  The 
proof is in the structure of quaternions.
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à Implications

There are many interpretations of the uncertainty principle.  Here, the uncertainty principle is about 
quaternions of the form q = Exp[a b I].  With this insight, one can see by inspection that a plane 
wave Exp[((Et − P.X)/hbar I], or wave packets that are superpositions of plane waves, will  have 
four uncertainty relations, one for the scalar Et and another three for the three−part scalar P.X.  
This perspective should be easy to generalize.
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Unifying  the Representations  of  Integral  and Half−Integral  Spin

I will  show how to represent both integral and half−integral spin within the same quaternion alge-
braic field.  This involves using quaternion automorphisms.  First a sketch of why this might work 
will  be provided.  Second, small rotations in a plane around two axes will  be used to show how the 
resulting vector points in an opposite way, depending on which involution is used to construct the 
infinitesimal rotation.  Finally, a general identity will  be used to look at what happens under 
exchange of two quaternions in a commutator.

à Automorphism,  Rotations,  and Commutators

Quaternions are formed from the direct product of a scalar and a 3−vector.  Rotational operators 
that act on each of the 3 components of the 3−vector act like integral angular momentum.  I will  
show that a rotation operator that acts differently on two of the three components of the 3−vector 
acts like half−integral spin.  What happens with the scalar is irrelevant to this dimensional count-
ing.  The same rotation matrix acting on the same quaternion behaves differently depending 
directly on what involutions are involved.

Quaternions have 4 degrees of freedom.  If we want to represent quaternions with automorphisms, 
4 are required:  They are the identity automorphism, the conjugate anti−automorphism, the first 
conjugate anti−automorphism, and the second conjugate anti−automorphism:

I : q ® q

* : q ® q*

*1 : q ® q*1

*2 : q ® q*2

 where

q*1 º He1 q e1 L*

q*2 º He2 q e2 L*

e1, e2, e3 are basis vectors

The most important automorphism is the identity.  Life is stable around small permutations of the 
identity:−) The conjugate flips the signs of the each component in the 3−vector.  These two automor-
phisms, the identity and the conjugate, treat the 3−vector as a unit.  The first and second conjugate 
flip the signs of all terms but the first and second terms, respectively.  Therefore these operators act 
on only the two of the three components in the 3−vector.  By acting on only two of three compo-
nents, a commutator will  behave differently.  This small difference in behavior inside a commuta-
tor is what creates the ability to represent integral and half−integral spins.
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à Small  Rotations

Small rotations about the origin will  now be calculated.  These will  then be expressed in terms of 
the four automorphisms discussed above.

I will  be following the approach used in J. J. Sakurai’s book "Modern Quantum Mechanics", chap-
ter 3, making modifications necessary to accommodate quaternions.  First, consider rotations about 
the origin in the z axis.  Define:

Re3 =0  HΘL º Icos  HΘL e0 , 0, 0, sin  HΘL e3�������
3

M
if q = I0, a1

e1�������
3

, a2
e2�������
3

, 0M
Re3 =0  HΘL q = q ’ = I0, Ha1 cos  HΘL - a2 sin  HΘLL e0

e1�������
3

,Ha2 cos  HΘL + a1 sin  HΘLL e0
e2�������
3

, 0M
Two technical points.  First, Sakurai considered rotations around any point along the z axis.  This 
analysis is confined to the z axis at the origin, a significant but not unreasonable constraint.  Sec-
ond, these rotations are written with generalized coordinates instead of the very familiar and com-
fortable x, y, z.  This extra effort will  be useful when considering how rotations are effected by 
curved spacetime.  This machinery is also necessary to do quaternion analysis (please see that 
section, it’s great :−)

There are similar rotations around the first and second axes at the origin;

Re1 =0  HΘL = Icos  HΘL e0 , sin  HΘL e1�������
3

, 0, 0M
Re2 =0  HΘL = Icos  HΘL e0 , 0, sin  HΘL e2�������

3
, 0M

Consider an infinitesimal rotation for these three rotation operators.  To second order in theta,

sin  HΘL = Θ + O HΘ3 L, cos  HΘL = J1 -
Θ2
�������
2

N + O HΘ3 L
Re1 =0  HΘ << 1L = JJ1 -

Θ2
�������
2

N e0 , Θ
e1�������
3

, 0, 0N + O HΘ3 L
Re2 =0  HΘ << 1L = JJ1 -

Θ2
�������
2

N e0 , 0, Θ
e2�������
3

, 0N + O HΘ3 L
Re3 =0  HΘ << 1L = JJ1 -

Θ2
�������
2

N e0 , 0, 0, Θ
e3�������
3

N + O HΘ3 L
Calculate the commutator of the first two infinitesimal rotation operators to second order in theta:
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@Re1 =0 , Re2 =0 D =JJ1 -
Θ2
�������
2

N e0 , Θ
e1�������
3

, 0, 0N JJ1 -
Θ2
�������
2

N e0 , 0, Θ
e2�������
3

, 0N -

-JJ1 -
Θ2
�������
2

N e0 , 0, Θ
e2�������
3

, 0N JJ1 -
Θ2
�������
2

N e0 , Θ
e1�������
3

, 0, 0N =

= IH1 - Θ2 L e0
2 , Θ

e0  e1�������������
3

, Θ
e0  e2�������������

3
, Θ2  

e1  e2�������������
9

M -IH1 - Θ2 L e0
2 , Θ

e0  e1�������������
3

, Θ
e0  e2�������������

3
, - Θ2  

e1  e2�������������
9

M =

= 2 I0, 0, 0, Θ2  
e1  e2�������������

9
M = 2 HRe3 =0  HΘ2 L - R H0LL

To second order, the commutator of infinitesimal rotations of rotations about the first two axes 
equals twice one rotation about the third axis given the squared angle minus a zero rotation about 
an arbitrary axis (a fancy way to say the identity). Now I want to write this result using anti−auto-
morphic involutions for the small rotation operators.@R*

e1 =0 , R*
e2 =0 D =JJ1 -

Θ2
�������
2

N e0 , - Θ
e1�������
3

, 0, 0N JJ1 -
Θ2
�������
2

N e0 , 0, - Θ
e2�������
3

, 0N -

-JJ1 -
Θ2
�������
2

N e0 , 0, - Θ
e2�������
3

, 0N JJ1 -
Θ2
�������
2

N e0 , - Θ
e1�������
3

, 0, 0N =

= IH1 - Θ2 L e0
2 , - Θ

e0  e1�������������
3

, - Θ
e0  e2�������������

3
, Θ2  

e1  e2�������������
9

M -IH1 - Θ2 L e0
2 , - Θ

e0  e1�������������
3

, - Θ
e0  e2�������������

3
, - Θ2  

e1  e2�������������
9

M =

= 2 I0, 0, 0, Θ2  
e1  e2�������������

9
M = 2 HRe3 =0  HΘ2 L - R H0LL

Nothing has changed.  Repeat this exercise one last time for the first conjugate:@R*1
e1 =0 , R*1

e2 =0 D = J-J1 -
Θ2
�������
2

N e0 , Θ
e1�������
3

, 0, 0N J-J1 -
Θ2
�������
2

N e0 , 0, - Θ
e2�������
3

, 0N -

-J-J1 -
Θ2
�������
2

N e0 , 0, - Θ
e2�������
3

, 0N J-J1 -
Θ2
�������
2

N e0 , Θ
e1�������
3

, 0, 0N =
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= IH1 - Θ2 L e0
2 , - Θ

e0  e1�������������
3

, - Θ
e0  e2�������������

3
, Θ2  

e1  e2�������������
9

M -IH1 - Θ2 L e0
2 , - Θ

e0  e1�������������
3

, - Θ
e0  e2�������������

3
, - Θ2  

e1  e2�������������
9

M =

= 2 I0, 0, 0, Θ2  
e1  e2�������������

9
M = - 2 HRe3 =0  HΘ2 L - R H0LL

This points exactly the opposite way, even for an infinitesimal angle! 

This is the kernel required to form a unified representation of integral and half integral spin. Imag-
ine adding up a series of these small rotations, say 2 pi of these.  No doubt the identity and conju-
gates will  bring you back exactly where you started.  The first and second conjugates in the commu-
tator will  point in the opposite direction.  To get back on course will  require another 2 pi, because 
the minus of a minus will  generate a plus.

à Automorphic  Commutator  Identities

This is a very specific example.  Is there a general identity behind this work?  Here it is:@q, q ’ D = @q* , q ’ *D = @q*1 , q ’ *1 D*1
= @q*2 , q ’ *2 D*2

It is usually a good sign if a proposal gets more subtle by generalization :−)  In this case, the nega-
tive sign seen on the z axis for the first conjugate commutator is due to the action of an additional 
first conjugate.  For the first conjugate, the first term will  have the correct sign after a 2 pi journey, 
but the scalar, third and forth terms will  point the opposite way.  A similar, but not identical story 
applies for the second conjugate.

With the identity, we can see exactly what happens if q changes places with q’ with a commutator.  
Notice, I stopped right at the commutator (not including any additional conjugator).  In that case:@q, q ’ D = -@q ’ , qD = @q* , q ’ *D = -@q ’ * , q*D =

= I0, a2  a3  
e2  e3�������������

9
+ a3  a2  

e3  e2�������������
9

,

a3  a1  
e3  e1�������������

9
+ a1  a3  

e1  e3�������������
9

, a1  a2  
e1  e2�������������

9
+ a2  a1  

e2  e1�������������
9

M@q*1 , q ’ *1 D = -@q ’ *1 , q*1 D =

= I0, a2  a3  
e2  e3�������������

9
+ a3  a2  

e3  e2�������������
9

,

- a3  a1  
e3  e1�������������

9
- a1  a3  

e1  e3�������������
9

, - a1  a2  
e1  e2�������������

9
- a2  a1  

e2  e1�������������
9

M@q*2 , q ’ *2 D = -@q ’ *2 , q*2 D =

= I0, - a2  a3  
e2  e3�������������

9
- a3  a2  

e3  e2�������������
9

,

a3  a1  
e3  e1�������������

9
+ a1  a3  

e1  e3�������������
9

, - a1  a2  
e1  e2�������������

9
- a2  a1  

e2  e1�������������
9

M
Under an exchange, the identity and conjugate commutators form a distinct group from the commu-
tators formed with the first and second conjugates.  The behavior in a commutator under exchange 
of the identity automorphism and the anti−automorphic conjugate are identical.  The first and 
second conjugates are similar, but not identical.
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Under an exchange, the identity and conjugate commutators form a distinct group from the commu-
tators formed with the first and second conjugates.  The behavior in a commutator under exchange 
of the identity automorphism and the anti−automorphic conjugate are identical.  The first and 
second conjugates are similar, but not identical.

There are also corresponding identities for the anti−commutator:8q, q ’ < = 8q* , q ’ *<* = -8q*1 , q ’ *1 <*1
= -8q*2 , q ’ *2 <*2

At this point, I don’t know how to use them, but again, the identity and first conjugates appear to 
behave differently that the first and second conjugates.

à Implications

Three different operators had to be blended together to perform this feat: commutators, conjugates 
and rotations.  These involve issue of even/oddness, mirrors, and rotations.  In a commutator under 
exchange of two quaternions, the identity and the conjugate behave in a united way, while the first 
and second conjugates form a similar, but not identical set.  Because this is a general quaternion 
identity of automorphisms, this should be very widely applicable.
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Deriving A Quaternion Analog to the Schrödinger Equation

The Schrödinger equation gives the kinetic energy plus the potential (a sum also known as the 
Hamiltonian H) of the wave function psi, which contains all the dynamical information about a 
system.  Psi is a scalar function with complex values.

HΨ = -i Ñ 
¶Ψ
��������
¶ t

=
-Ñ2
����������
2 m

Ñ2 Ψ + V H0, XL Ψ

For the time−independent case, energy is written at the operator −i hbar d/dt, and kinetic energy as 
the square of the momentum operator, i hbar Del, over 2m.  Given the potential V(0, X) and suit-
able boundary conditions, solving this differential equation generates a wave function psi which 
contains all the properties of the system.

In this section, the quaternion analog to the Schrödinger equation will  be derived from first princi-
ples.  What is interesting are the constraint that are required for the quaternion analog.  For exam-
ple, there is a factor which might serve to damp runaway terms.

à The Quaternion  Wave Function

The derivation starts from a curious place :−)  Write out classical angular momentum with 
quaternions.H0, LÓL = H0, RÓ x  PÓL = odd  HH0, RÓL H0, PÓLL
What makes this "classical" are the zeroes in the scalars.  Make these into complete quaternions by 
bringing in time to go along with the space 3−vector R, and E with the 3−vector P.Ht , RÓL HE, PÓL = HEt - RÓ. PÓ, E RÓ + PÓ t + RÓ x  PÓL
Define a dimensionless quaternion psi that is this product over h bar.

Ψ º
Ht , RÓL HE, PÓL
���������������������������������

Ñ
= HEt - RÓ. PÓ, E RÓ + PÓ t + RÓ x  PÓL � Ñ

 The scalar part of psi is also seen in plane wave solutions of quantum mechanics.  The compli-
cated 3−vector is a new animal, but notice it is composed of all the parts seen in the scalar, just 
different permutations that evaluate to 3−vectors.  One might argue that for completeness, all 
combinations of E, t, R and P should be involved in psi, as is the case here. 

Any quaternion can be expressed in polar form:

q = Ë q Ë e
arccos  H s��������ÈqÈ L V

Ó
��������ÈV

ÓÈ
Express psi in polar form.  To make things simpler, assume that psi is normalized, so |psi| = 1.  The 
3−vector of psi is quite complicated, so define one symbol to capture it:
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I º
E RÓ + PÓ t + RÓ x  PÓ

�������������������������������������������È E RÓ + PÓ t + RÓ x  PÓ È
 Now rewrite psi in polar form with these simplifications:

Ψ = eHEt -R
Ó

. P
ÓL I �Ñ

This is what I call the quaternion wave function.  Unlike previous work with quaternionic quantum 
mechanics (see S. Adler’s book "Quaternionic Quantum Mechanics"), I see no need to define a 
vector space with right−hand operator multiplication.  As was shown in the section on bracket 
notation, the Euclidean product of psi (psi* psi) will  have all the properties required to form a 
Hilbert space.  The advantage of keeping both operators and the wave function as quaternions is 
that it will  make sense to form an interacting field directly using a product such as psi psi’.  That 
will  not be done here.  Another advantage is that all the equations will  necessarily be invertible.

à Changes  in the Quaternion  Wave Function

We cannot derive the Schrödinger equation per se, since that involves Hermitian operators that 
acting on a complex vector space.  Instead, the operators here will  be anti−Hermitian quaternions 
acting on quaternions.  Still it will  look very similar, down to the last h bar :−)  All  that needs to be 
done is to study how the quaternion wave function psi changes.  Make the following assumptions.

1. Energy and Momentum are conserved.

¶E
��������
¶ t

= 0 and  
¶PÓ
��������
¶ t

= 0

2.  Energy is evenly distributed in space

ÑÓE = 0

3. The system is isolated

ÑÓx  PÓ = 0

4. The position 3−vector X is in the same direction as the momentum 3−vector P

X. P
�����������������������È X ÈÈ P È = 1 which implies

de I
Ó

���������
dt

= 0 and ÑÓxe I
Ó

= 0

The implications of this last assumption are not obvious but can be computed directly by taking the 
appropriate derivative.  Here is a verbal explanation.  If energy and momentum are conserved, they 
will  not change in time.  If the position 3−vector which does change is always in the same direction 
as the momentum 3−vector, then I will  remain constant in time.  Since I is in the direction of X, its 
curl will  be zero.

This last constraint may initially appear too confining.  Contrast this with the typical classical 
quantum mechanics.  In that case, there is an imaginary factor i which contains no information 
about the system.  It is a mathematical tool tossed in so that the equation has the correct properties.  
With quaternions, I is determined directly from E, t, P and X.  It must be richer in information 
content.  This particular constraint is a reflection of that.

Now take the time derivative of psi.
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¶Ψ
��������
¶ t

=
E I
��������

Ñ
 

Ψ
��������������������������������������$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 + I Et -R

Ó
. P

Ó
��������������Ñ M2

The denominator must be at least 1, and can be greater than that.  It can serve as a damper, a good 
thing to tame runaway terms.  Unfortunately, it also makes solving explicitly for energy impossible 
unless Et − P.X equals zero.  Since the goal is to make a direct connection to the Schrödinger 
equation, make one final assumption:

5. Et − R.P = 0

Et - RÓ. PÓ = 0

There are several important cases when this will  be true.  In a vacuum, E and P are zero.  If this is 
used to study photons, then t = |R| and E = |P|.  If this number happens to be constant in time, then 
this equation will  apply to the wave front.

if
¶Et - RÓ. PÓ
������������������������

¶ t
= 0, E =

¶RÓ
��������
¶ t

. PÓ or
¶RÓ
��������
¶ t

=
E
����
PÓ

Now with these 5 assumptions in hand, energy can be defined with an operator.

¶Ψ
��������
¶ t

=
E I
��������

Ñ
 Ψ

-I Ñ 
¶Ψ
��������
¶ t

= E Ψ or E = -I Ñ 
¶

��������
¶ t

The equivalence of the energy E and this operator is called the first quantization.

Take the spatial derivative of psi using the under the same assumptions:

ÑÓΨ = -
PÓ I
��������

Ñ
 

Ψ
��������������������������������������$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 + I Et -R

Ó
. P

Ó
��������������Ñ M2

IÓ Ñ ÑÓΨ = PÓ Ψ or PÓ = I Ñ ÑÓ
Square this operator.

PÓ2
= HmvL2 = 2 m

mv2
���������

2
= 2 mKE = -Ñ2  ÑÓ2

The Hamiltonian equals the kinetic energy plus the potential energy.

HÓ Ψ = -IÓ Ñ 
¶Ψ
��������
¶ t

= -Ñ2  ÑÓ2
Ψ + V Ψ

Typographically, this looks very similar to the Schrödinger equation.  Capital I is a normalized 
3−vector, and a very complicated one at that if you review the assumptions that got us here.  Phi is 
not a vector, but is a quaternion.  This give the equation more, not less, analytical power.  With all 
of the constraints in place, I expect that this equation will  behave exactly like the Schrodinger 
equation.  As the constraints are removed, this proposal becomes richer.  There is a damper to 
quench runaway terms.  The 3−vector I becomes quite the nightmare to deal with, but it should be 
possible, given we are dealing with a topological algebraic field.
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Typographically, this looks very similar to the Schrödinger equation.  Capital I is a normalized 
3−vector, and a very complicated one at that if you review the assumptions that got us here.  Phi is 
not a vector, but is a quaternion.  This give the equation more, not less, analytical power.  With all 
of the constraints in place, I expect that this equation will  behave exactly like the Schrodinger 
equation.  As the constraints are removed, this proposal becomes richer.  There is a damper to 
quench runaway terms.  The 3−vector I becomes quite the nightmare to deal with, but it should be 
possible, given we are dealing with a topological algebraic field.

à Implications

Any attempt to shift the meaning of an equation as central to modern physics had first be able to 
regenerate all of its results.  I believe that the quaternion analog to Schrödinger equation under the 
listed constraints will  do the task.  These is an immense amount of work needed to see as the con-
straints are relaxed, whether the quaternion differential equations will  behave better.  My sense at 
this time is that first quaternion analysis as discussed earlier must be made as mathematically solid 
as complex analysis.  At that point, it will  be worth pushing the envelope with this quaternion 
equation.  If it stands on a foundation as robust as complex analysis, the profound problems seen in 
quantum field theory stand a chance of fading away into the background.
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Introduction  to Relativistic  Quantum  Mechanics

The relativistic quantum mechanic equation for a free particle is the Klein−Gordon equation 
(h=c=1) J ¶2

����������
¶ t 2 - Ñ2 + m2 N Y = 0

The Schrödinger equation results from the non−relativistic limit of this equation. In this section, 
the machinery of the Klein−Gordon equation will  be ported to quaternions. 

à The Wave Function

The wave function is the superposition of all possible states of a system. The product of the conju-
gate of a wave function with another wave function forms a complete inner product space. In the 
energy/momentum representation, this would involve all possible energy levels and momenta.

Y º the sum from n = 0 to infinity of HEn , PÓn L
This infinite sum of quaternions should contain all the information about a system.  The quaternion 
wave function can be normalized.â

n=0

¥ HEn , PÓn L*
 HEn , PÓn L = â

n=0

¥ IEn
2 + PÓn

2
, 0M = 1

The first quaternion is the conjugate or transpose of the second.  Since the transpose of a quater-
nion wave function times a wave function creates a Euclidean norm, this representation of wave 
functions as an infinite sum of quaternions can form a complete, normed product space.

à The Klein−Gordon  Equation

The Klein−Gordon equation can be divided into two operators that act on the wave function:  the 
D’Alembertian and the scalar m^2.  The quaternion operator required to create the D’Alembertian, 
along with vector identities, has already been worked out for the Maxwell equations in the Lorenz 
gauge. â

n=0

¥ ikjjJ ¶
��������
¶ t

, õ
ÓN2

+ J ¶
��������
¶ t

, -õ
ÓN2 y{zz HEn , PÓn L � 2 =
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= â
n=0

¥ ikjj ¶2 En������������
¶ t 2 - õ

Ó × õ
Ó En - õ

Ó × õ
Ó X PÓn ,

¶2 PÓn������������
¶ t 2 - õ

Ó õÓ × PÓn + õ
Ó X õÓ X PÓn + õ

Ó X õÓ En
y{zz

The first term of the scalar, and the second term of the vector, are both equal to zero.  What is left 
is the D’Alembertian operator acting on the quaternion wave function.

To generate the scalar multiplier m^2, substitute En and Pn for the operators d/dt and del respec-
tively, and repeat.  Since the structure of the operator is identical to the previous one, instead of the 
D’Alembertian times the wave function, there is En^2−Pn^2.  The sum of all these terms becomes 
m^2.

Set the sum of these two operators equal to zero to form the Klein−Gordon equation.â
n=0

¥ ikjjJ ¶
��������
¶ t

, õ
ÓN2

+ J ¶
��������
¶ t

, -õ
ÓN2

+ HEn , PÓn L2
+ HEn , -PÓn L2 y{zz 

HEn , PÓn L � 2 =

= â
n=0

¥ J-õ
Ó × Hõ

Ó X PÓn L - õ
Ó × õ

Ó En -

PÓn × HPÓn  X PÓn L - HPÓn × PÓn L En + En
3 +

¶2 En������������
¶ t 2 ,

õ
Ó X Hõ

Ó X PÓn L + õ
Ó X Hõ

Ó En L + PÓn  X HPÓn  X PÓn L + HPÓn  X PÓn L En - õ
Ó

Hõ
Ó × PÓn L +PÓn  En

2 - PÓn HPÓn × PÓn L +
¶2 PÓn������������
¶ t 2

y{zz
It takes some skilled staring to assure that this equation contains the Klein−Gordon equation along 
with vector identities.

à Connection  to the Maxwell  Equations

If  m=0, the quaternion operators of the Klein−Gordon equation simplifies to the operators used to 
generate the Maxwell equations in the Lorenz gauge.  In the homogeneous case, the same operator 
acting on two different quaternions equals the same result.  This implies thatHj, AÓL = â

n=0

¥ HEn , PÓn L
Under this interpretation, a nonzero mass changes the wave equation into a simple harmonic oscilla-
tor.  The simple relationship between the quaternion potential and the wave function may hold for 
the nonhomogeneous case as well.
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à Implications

The Klein−Gordon equation is customarily viewed as a scalar equation (due to the scalar D’Alem-
bertian operator) and the Maxwell equations are a vector equation (due to the potential four vector).  
In this section, the quaternion operator that generated the Maxwell equations was used to generate 
the Klein−Gordon equation.  This also created several vector identities which are usually not men-
tioned in this context.  A quaternion differential equation is needed to perform the work of the 
Dirac equation, but since quaternion operators are a field, an operator that does the task must exist.
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Time Reversal  Transformations  for  Intervals

The following operator R for quaternions reverses time difference between two events:Hdt , d XÓL -> H-dt , d XÓL = RHdt , d XÓL
The quaternion R exist because quaternions are a field.   

The operator R will  equal  (−dt, dX )(dt, dXL-1.  The inverse of quaternion is the transpose over the 
square of the norm, which is the scalar term of the transpose of a quaternion times itself.

R = H-dt , d XÓL Hdt , d XÓL-1
=H-dt 2 + d XÓ. d XÓ, 2 dt d XÓL � Hdt 2 + d XÓ. d XÓL

For any given event, the time−reversal operator R can be defined based on the above.

A criticism of this operator is that it is local, meaning it depends explicitly on spacetime.  The two 
most important theories in physics, the standard model and general relativity, are also local, so this 
quality is consistent with those theories.

à Classical  Time Reversal

Examine the form of the quaternion which reverses time under two conditions.  In the classical 
region, the change in time dt is much greater than space, dX.  Calculate R in this limit to one order 
of magnitude in the ratio of dX/dt.

R = H-dt , d XÓL Hdt , d XÓL-1
=H-dt 2 + d XÓ. d XÓ, 2 dt d XÓL � Hdt 2 + d XÓ. d XÓ, 0L

if dt >> É dX É then R » I-1, 2 Β
ÓM

The operator R is almost the negative identity, but the vector is non−zero, so it would not com-
mute.  In the classical limit, time reversal now depends on velocity, not the local position in space-
time, so classical time reversal is a global, not local operator.

à Relativistic  Time Reversal

For a relativistic interval involving one axis, the interval could be characterized by the following: HT + Ε, T, 0, 0L
Find out what quaternion is required to reverse time for this relativistic interval to first order in 
epsilon�.

86

     



R = ikjj T2 - HT + ΕL2

�����������������������������
T2 + HT + ΕL2 ,

2 T HT + ΕL
�����������������������������
T2 + HT + ΕL2 , 0, 0y{zz =I-

Ε
����
T

+ O@ΕD2 , 1 + O@ΕD2 , 0, 0M
This approaches q[−e/T, 1, 0, 0], almost a pure vector, a result distinct from the classical case.  
Again, in this limit, the transformation approaches a global transformation.

à Implications

In special relativity, the interval between events is considered to be 4 vector are operated on by 
elements of the Lorentz group.  The element of this group that reverses time has along its diagonal 
{−1, 1, 1, 1}, zeroes elsewhere.  There is no dependence on relative velocity or any local informa-
tion.  Therefore special relativity predicts the operation of time reversal should be indistinguishable 
for classical and relativistic intervals.  Yet classically, the boundary condition of time reversal 
appears to involve entropy.  For relativistic interactions, time reversal involves antiparticles.

In this section, a time reversal quaternion operator has been derived and shown to work.  Time 
reversal for classical and relativistic intervals have distinct limits, but these transformations have 
not yet been tied explicitly to laws of physics. 
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Gravity
This is a current area of active research for me.  I have two distinct approaches.  The first uses 
scalars, vectors, tensors, and the Christoffel symbol to characterize a dynamic metric.  The work 
attempts to unify gravity and EM in a rank 1 field theory using an asymmetric field strength tensor 
in the Lagrange density.  It has three testable predictions.  Light should be bent more at second 
order parameterized post−Newtonian accuracy. In a gravity wave, the mode of emission will  not be 
transverse (that mode of emission is done by light). There is also an new constant velocity solution 
for gravity that may eliminate the need for dark matter for the velocity profile of thin disk galaxies.

The approach to gravity that uses quaternions makes the same three experimental predictions.  The 
difference is that the Christoffel symbol is not used.  It will  require the efforts of someone with 
more technical math skills than I possess to determine if this approach is valid.  There are aspects 
of the quaternion approach I prefer, but at this time I am promoting the form that uses the Christof-
fel since the odds of it being accepted are higher.
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Gravity  by Analogy  to EM

à Abstract

A Lagrange density for gravity is proposed based on a strict analogy to the classical Lagrangian for 
electromagnetism.  The field equations are a four−dimensional wave equation.  The classic field 
equations contain both the Maxwell equations and Newton’s field equations under certain condi-
tions.  The four−dimensional wave equation has been quantized before. The scalar and longitudinal 
modes of emission are interpreted as spin 2 gravitons, so they can do the work of gravity. If gravita-
tional waves are detected, this proposal predicts scalar or longitudinal polarization. How the pro-
posal integrates with the standard model Lagrangian is worked out.

A force equation is written based on the same strict analogy to the relativistic Lorentz force of 
electromagnetism. For geodesic motion, the cause of the curvature is due entirely to the gravita-
tional and electric potentials. This is a new type of statement about curvature. A specific, normal-
ized, weak−field potential is investigated. Analysis of small perturbations yields changes in the 
potential that depend on an inverse distance squared. By breaking spacetime symmetry, Newton’s 
law of gravity results. By using the chain rule, a stable, constant−velocity solution is apparent, 
which may yield insight to the rotation profile of galaxies and early big bang cosmology, since 
both require stable, constant−velocity solutions. If spacetime symmetry is preserved, the second−or-
der differential equations can be solved exactly. Eliminating the constants and rearrange terms 
generates an equation that has the form of a metric equation. The Taylor series expansion of the 
metric equation is identical to the Schwarzschild metric to parameterized−post−Newtonian accu-
racy. The Taylor series for the two metrics differ for higher order terms and may be tested 
experimentally.

à Introduction

The goal of this paper is to create one mathematical structure for gravity and electromagnetism that 
can be quantized. The difference between gravity and electromagnetism is the oldest core problem 
facing physics, going back to the first studies of electromagnetism in the seventeenth century. 
Gravity was the first inverse square law, discovered by Isaac Newton. After twenty years of effort, 
he was able to show that inside a hollow massive shell, the gravitational field would be zero. Ben 
Franklin, in his studies of electricity, demonstrated a similar property using a conducting cup. 
Joseph Priestly realized this meant that the electrostatic force was governed by an inverse square 
law just like gravity. Coulomb got the credit for the electrostatic force law modeled on Newton’s 
law of gravity.

Over a hundred years later, Einstein started from the tensor formalism of electromagnetism on the 
road to general relativity. Instead of an antisymmetric field strength tensor, Einstein used a symmet-
ric tensor because the metric tensor is symmetric. There is a precedence for transforming mathemati-
cal structures between gravity and electromagnetism.

The process of transforming mathematical structures from electromagnetism to gravity will  be 
continued. Specifically, the gravitational analog to the classic electromagnetic Lagrange density 
will  be written. There are several consequence of this simple procedure. The Lagrangian contains 
both terms with a connection and the Fermi Lagrangian of electromagnetism. This makes it reason-
able to suppose the Lagrangian can describe both a dynamic geometry required for gravity and the 
Maxwell equations for electrodynamics. The gravitational field equations are analogues to Gauss’ 
and Ampere’s laws, and contain the Newton’s gravitational field equation. These field equations 
are not second rank like those used in general relativity. It must be stressed that the field strength 
tensor is a second order symmetric tensor, so this does not conflict with proofs that at least a sym-
metric second rank tensor is required to completely describe spacetime curvature. The Maxwell 
equations result if the mass current and gravitational field are zero. The field equations have been 
quantized before, but new interpretations will  flow from the unification effort. A link to the 
Lagrangian of the standard model will  be detailed.
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The process of transforming mathematical structures from electromagnetism to gravity will  be 
continued. Specifically, the gravitational analog to the classic electromagnetic Lagrange density 
will  be written. There are several consequence of this simple procedure. The Lagrangian contains 
both terms with a connection and the Fermi Lagrangian of electromagnetism. This makes it reason-
able to suppose the Lagrangian can describe both a dynamic geometry required for gravity and the 
Maxwell equations for electrodynamics. The gravitational field equations are analogues to Gauss’ 
and Ampere’s laws, and contain the Newton’s gravitational field equation. These field equations 
are not second rank like those used in general relativity. It must be stressed that the field strength 
tensor is a second order symmetric tensor, so this does not conflict with proofs that at least a sym-
metric second rank tensor is required to completely describe spacetime curvature. The Maxwell 
equations result if the mass current and gravitational field are zero. The field equations have been 
quantized before, but new interpretations will  flow from the unification effort. A link to the 
Lagrangian of the standard model will  be detailed.

A weak static gravitational field in a vacuum will  be studied using standard modern methods: 
normalizing the potential and looking at perturbations. The potential will  be plugged into a gravita-
tional force equation analogous to the Lorentz force equation of electromagnetism. The force 
equation leads to a geodesic equation where the potential causes the curvature, something which is 
missing from general relativity. Newton’s law of gravity is apparent if spacetime symmetry is 
broken. A new class of solutions emerges for the gravitational source where velocity is constant, 
but the distribution of mass varies with distance. This may provide new ways to look at problems 
with the rotation profiles of disk galaxies and big bang cosmology. If spacetime symmetry is pre-
served, solving the force equation and eliminating the constants creates a metric equation similar to 
the Schwarzschild metric. The metrics are equivalent to first−order parameterized post−Newtonian 
accuracy. Therefore the metric will  past all weak field tests. The coefficients are different to sec-
ond−order, so the proposal can be verify or rejected experimentally.

à Lagrangians

The classic electromagnetic Lagrangian density has three terms: one for kinetic energy, one for a 
moving change, and a third for the antisymmetric second rank field strength tensor:

LEM = -
Ρ
����
Γ

-
1
����
c

 JΜ  AΜ -
1

�����������
4 c2  H¶Μ AΝ - ¶Ν AΜL H¶Μ AΝ - ¶Ν AΜL

An analogous Lagrangian for gravity would also contain these three components, but three changes 
are required. First, gravity depends on mass, not electric charge, so where there is an electrical 
charge −q, an inertial mass +m will  be substituted. The change in sign is required so that like 
charges attract for gravity. Mass does not have the same units as electric charge, so mass will  have 
to be multiplied by the square root of Newton’s gravitational constant G to keep the units identical. 
Second, because gravity effects metrics which are symmetric, the source of gravity must also be 
symmetric. The minus sign that makes the electromagnetic field strength tensor antisymmetric will  
be made positive. Third, in order that symmetric object transforms like a tensor requires a replace-
ment of the exterior derivative with a covariant derivative:

LG = -
Ρ
����
Γ

+
1
����
c

 Jm
Μ  AΜ -

1
�����������
4 c2  HÑΜ AΝ + ÑΝ AΜL HÑΜ AΝ + ÑΝ AΜL

The total Lagrangian will  be a merger of these two which only apply if the other force is not in 
effect. The kinetic energy term is the same as either Lagrangian separately. The moving charge 
term is a sum. Without loss of generality, the regular derivatives in the electromagnetic Lagrangian 
(Eq. L_EM) can be written as covariant derivatives. This leads to the unified Lagrangian for grav-
ity and electromagnetism:

LGEM= -
Ρ
����
Γ

- HJq
Μ - Jm

ΜL AΜ -
1

�����������
2 c2  ÑΜ AΝ  ÑΜ AΝ
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= -
Ρ
����
Γ

-
q -

�!!!!G m
��������������������

c2  V
 HΦ - AÓ × vÓL -

1
�����������
2 c2  ¶Μ AΝ  ¶Μ AΝ -

1
�����������
2 c2  G Ν

Ω Μ  HGΡΜ
Ν  AΡ  AΩ + 2 ¶Μ AΝ  AΩL

The kinetic energy term is for one particle experiencing both gravity and electromagnetism. The 
Fermi Lagrangian of electromagnetism is a subset. This establishes a link to electromagnetism. The 
Christoffel symbols (or connection coefficients) represent derivatives of metrics. Because a 
dynamic metric is part of the Lagrangian, this Lagrangian could describe the dynamics of the 
metric, which is a central accomplishment of general relativity. The potential to do both gravity 
and electromagnetism is here. 

In local covariant coordinates, the connect is zero, which leads to a simpler expression of the 
Lagrangian:

LGEM= -
m
����
V

 $%%%%%%%%%%%%%%%%%%%%%%%%1 -
ikjj ¶RÓ

��������
¶ t

y{zz2

-
q -

�!!!!G m
��������������������

c2  V
 HΦ - AÓ × vÓL -

1
�����������
2 c2  

ikjjjjJ ¶Φ
��������
¶ t

N2

- HÑÓΦL2
-

ikjj ¶AÓ
��������
¶ t

y{zz2

+ HÑAÓL2 y{zzzz
This is almost identical to working with the classical electromagnetic field equation by choosing 
the Lorenz gauge, the difference being the inclusion of a mass term. Because the gauge was not 
fixed, there is more freedom for this Lagrangian, which is required if this field equation does more 
than just electromagnetism.

à Classical  Field  Equations

The field equations can be found by applying the Euler−Lagrange equations to the Lagrange den-
sity (assuming the connection is zero for simplicity):

�2 AΜ = Jq
Μ - Jm

Μ

The fields are expressed in terms of the potential. The symmetric and antisymmetric field strength 
tensors are very similar, differing only in the sign of A^v;u.  The classical fields required to repre-
sent the field strength tensors should also be similar.  There is a symmetric analog to the electric E 
and B fields: To make a connection to the classical fields of gravity and electromagnetism, use the 
following substitutions:

EÓ = -
¶AÓ
��������
¶ t

+ c  ÑÓΦ

eÓ =
¶AÓ
��������
¶ t

+ c  ÑÓΦ

BÓ = -c  J ¶
��������
¶y

-
¶

��������
¶z

,
¶

��������
¶x

-
¶

��������
¶z

,
¶

��������
¶x

-
¶

��������
¶y

N AÓ = -c  ÑÓ ´ AÓ
b
Ó

= c  J-
¶

��������
¶y

-
¶

��������
¶z

, -
¶

��������
¶x

-
¶

��������
¶z

, -
¶

��������
¶x

-
¶

��������
¶y

N AÓ º ÑÓ  ´ AÓ
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The symmetric curl as defined above has all the same differential operators, but all the signs are 
negative, so it is easier to remember.  The symmetric field strength tensor has four more compo-
nents that lie along the diagonal.  Define a field g to represent the diagonal elements:

g = J ¶Φ
��������
¶ t

, c  
¶Ax����������
¶x

, c  
¶Ay����������
¶y

, c  
¶Az����������
¶z

N = ÑΜ AΜ

The diagonal of the field strength tensor ÑΜ An  is g. The first row and column of the asymmetric 
field strength tensor is the sum of the electric field E and its symmetric analog e. The rest of the 
off−diagonal terms are the sum of the magnetic field B and its symmetric analog b. If the trace of 
field strength tensor is zero, then the equations are in the Lorentz gauge.

Substitute the classical fields into the field equations, starting with the scalar field equation. Impor-
tant technical note: all the Ñ operators used for the divergences and curls are contravariant, that 
means they bring in an extra minus sign to these expressions for the field equations of the form 
ÑΜ HÑΜ AΝ L = JΝ :

Ρq - Ρm =
1
����
c

 
¶2 Φ
����������
¶ t 2 - c  ÑÓ2

Φ

=
c
����
2

 HÑÓ × EÓ + ÑÓ × eÓL +
¶g0
����������
¶ t

This equation combines Gauss’ law and analogous equation for gravity.  The two equations are 
unified, but under certain physical conditions, can be isolated. A relativistic form of the Newtonian 
gravitational field equation can be seen with the following constraints:

-Ρm = -c  �Ó2
Φ

iff Ρq = 0, and
¶AÓ
��������
¶ t

= -c  ÑÓΦ

This equation should be consistent with special relativity without modification.  The classical 
Newtonian field equation arises from these physical constraints:

Ρm = c2  ÑÓ2
Φ

iff Ρq = 0,
¶AÓ
��������
¶ t

= -c  ÑÓΦ and
¶g0
����������
¶ t

= 0

Every aspect of classical Newtonian gravity can be represented by this proposal under these 
constraints.

Gauss’ law appears under the following conditions:

Ρq =
1
����
c

 
¶2 Φ
����������
¶ t 2 - c  ÑÓ2

Φ

iff Ρm = 0, and
¶AÓ
��������
¶ t

= c  ÑÓΦ

Repeat the exercise for the vector equation.
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JÓq - JÓm =
1
����
c

 
¶2 A
����������
¶ t 2 - c  Ñ2 AÓ

=
1
����
2

 
ikjj-

¶EÓ
��������
¶ t

+ c  ÑÓ ´ BÓ +
¶eÓ
��������
¶ t

- c  ÑÓ  ´ b
Óy{zz + 2 c  ÑÓgu

This has Ampere’s law and a symmetric analog for Ampere’s law for gravity.

This proposal for classical gravitational and electromagnetic field equations is expressed with 
tensors of rank one (vectors). Einstein’s field equations are second rank. Therefore the two 
approaches are fundamentally different. One must remember that although the field equations are 
rank one, the field strength tensor is second rank.

With no gravitational field, the Maxwell source equations result. The homogeneous Maxwell 
equations are vector identities with these choices of maps to the potentials, and are unaffected by 
the proposal.

à Canonical  Quantization

The classical electromagnetic Lagrangian cannot be quantized. One way to realize this is to con-
sider the generalized 4−momentum:

ΠΜ = h 
�!!!!G 

¶LEM��������������������
¶H ¶AΜ

��������c  ¶t L = -FΜ0

Unfortunately, the energy component of the moment operator is zero. The commutator @A0, Π0] 
will  equal zero, and cannot be quantized. The momentum for the unified Lagrangian of gravity and 
electromagnetism does not suffer from this problem: 

ΠΜ = h 
�!!!!G 

¶AΜ
�����������
c  ¶ t

When expressed with operators, the commutator @A0, Π0] will  not be zero, so the field can be 
quantized. If the connection is zero, L_GEM generates the same field equations as the classical 
electromagnetic Lagrangian with the choice of the Lorenz gauge. That field has been quantized 
before, first by Gupta and Bleuler (S. N. Gupta, Proc. Phys. Soc. London, 63:681−691, 1950). 
They determined that there were four modes of transmission: two transverse, one scalar, and one 
transverse mode. The interpretation of these modes appears internally inconsistent to this author. 
They discuss "scalar photons", but photons as the quanta of electric and magnetic fields must 
transform as a vector, not a scalar. They introduce a supplemental condition solely to make the 
scalar and longitudinal modes virtual. Yet there is no need to make a nonsense particle virtual.

The field in this proposal must represent both gravity and electromagnetism. The two transverse 
modes are photons that do all the work of electromagnetism. The symmetric second−rank field 
strength tensor cannot be represented by a photon because photons transform differently than a 
symmetric tensor. Whatever particle does the work must travel at the speed of light like the trans-
verse modes of transmissions of the field. These constraints dictate that the scalar and transverse 
modes of transmission for this proposal are gravitons.

There are efforts underway to detect the transverse gravitational waves predicted by general relativ-
ity. This proposal predicts the polarity of a gravitational wave will  be either scalar or longitudinal, 
not transverse, because those are the modes of transmission. The detection of the first gravitational 
wave polarization will  mark either success or failure of this unified field theory. 
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à Integration  with  the Standard  Model

The standard model does not in an obvious way deal with curved spacetime. A more explicit con-
nection will  be attempted by condensing the unitary aspects of the symmetries U(1), SU(2), and 
SU(3) with the 4−vectors and a curved metric. Start with the standard model Lagrangian:

LSM = Y� ΓΜ  DΜ  Y

where

DΜ = ¶Μ -ig EM YAΜ - ig weak  
Τa
�������
2

 WΜ
a - ig strong  

Λb
�������
2

 GΜ
b

The electromagnetic potential A_mu is a complex−valued 4−vector. The only way to form a scalar 
with a 4−vector is to use a metric. Since it is complex−valued, use the conjugate like so:

AΜ  AΝ*  gΜΝ = È A0 È2 - È A1 È2 - È A2 È2 - È A3 È2

Use the parity operator to flip the sign of the spatial part of a 4−vector:

AΜ  AΝ*p  gΜΝ = È A0 È2 + È A1 È2 + È A2 È2 + È A3 È2

Normalize the potential:

AΜ
�������������È A È  

AΝ*p
�������������È A È  gΜΝ = 1

From this, it can be concluded that the normalized 4−vector is an element of the symmetry group 
U(1) if the multiplication operator is the metric combined with the parity and conjugate operators. 
One does not need the Y in standard model Lagrangian, so this simplifies things. The same logic 
applies to the 4−vector potentials for the weak and the strong forces which happen to have internal 
symmetries.

In curved spacetime, the previous equation will  not equal one. Mass breaks U(1), SU(2), and SU(3) 
symmetry, but does so in a precise way (meaning one can calculate what the previous equation 
should equal). There is no need for the Higgs mechanism to give particles mass while preserving 
U(1)xSU(2)xSU(3) symmetry, so this proposal predicts no Higgs particle will  be found.

à Forces

The Lorentz Force of electromagnetism involves charge, velocity and the anti−symmetric field 
strength tensor:

FEM
Μ = q

UΝ�������
c

 H¶Μ AΝ - ¶Ν AΜL
Form an analogous force for gravity using the same substitutions as before:

FGΜ = -
�!!!!G m

UΝ�������
c

 HÑΜ AΝ + ÑΝ AΜL
The gravitational force and the electromagnetic force behave differently under charge inversion. If 
the mass changes signs, then both side flip signs, so nothing has really changed. If electric change 
changes signs, the change in momentum will  not change signs. The different behavior under charge 
inversion may explain why gravitational force is unidirectional, but electrical forces can attract or 
repulse.
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The gravitational force and the electromagnetic force behave differently under charge inversion. If 
the mass changes signs, then both side flip signs, so nothing has really changed. If electric change 
changes signs, the change in momentum will  not change signs. The different behavior under charge 
inversion may explain why gravitational force is unidirectional, but electrical forces can attract or 
repulse.

The total force is a combination of the two:

FGEMΜ = HJq Ν - JmΝL ÑΜ AΝ - HJq Ν + JmΝL ÑΝ AΜ

If  q >> 
�!!!!!

G m, the equation approaches the form of the Lorentz force law of electromagnetism. If 
the force is zero, the equation has the form of a Killing’s  equation, which is used to determine the 
isometries of a metric. Geodesics are defined by examining the left−hand side of F_GEM:

¶mUΜ
��������������

¶Τ
= m 

¶UΜ
����������
¶Τ

+ UΜ  
¶m
��������
¶Τ

= 0

Assume dm/dtau = 0. Apply the chain rule, and then the definition of a covariant derivative to form 
a geodesic equation:

0 = m 
¶2 xΜ
������������
¶Τ2 +

m
����
c

 G ΝΩ
Μ  UΝ  UΩ

This equation says that if there is no force, all the acceleration seen in spacetime is due to space-
time curvature, the Christoffel symbol. The covariant derivatives on the right side of F_gEM can 
also be expanded:

0 = Iq -
�!!!!G mM 

¶xΝ�����������
c  ¶Τ

 ¶Μ AΝ -Iq +
�!!!!G mM 

¶xΝ�����������
c  ¶Τ

 ¶Ν AΜ -
2
����
c

 mGΩ
ΜΝ  UΝ  UΩ

This equation says that spacetime curvature is caused by the change in the potential if there is no 
external force. This is a novel statement. In general relativity, one compares two geodesics, and 
based on an analysis of the tidal forces between the geodesics, determines the curvature. The uni-
fied geodesic equation asserts that the curvature can be calculated directly from the potential. 
Notice that this equation contains terms linked to a mass m and a charge q, so the geodesic equa-
tion applies to electromagnetism as well as gravity.

à Gravitational  Force  for  a Weak Field

The total unified force law is relevant to physics because it contains the Lorentz force law of electro-
magnetism. It must be established that the terms coupled to the mass m are connected to what is 
known about gravity.

The next task is to find a solution to the unified field equations, and then put the solutions into the 
force equation. The Poisson field equation of classical Newtonian gravity can be solved by a 1/R 
potential. The potential has a point singularity where R = 0. The unified field equations are relativis-
tic, so time must also be incorporated. A 1/distance potential does not solve the field equations in 
four dimensions. In local covariant coordinates where the connection is zero, the potential A_mu = 
(1/sigma^2, 0) solves the field equations, where sigma squared is the Lorentz invariant distance, or 
the negative of the square of the Lorentz invariant interval tau. Distance is used instead of the 
interval because classical gravity depends on distance, not time.  The idea is to consider the time 
contribution to be very small relative to the distance.  Such a potential has as a singularity that is 
the entire lightcone, where sigma ^2 = 0. This singularity may not be problematic because massless 
particles are described by the Maxwell equations, but that hope will  required a detailed study.

Gravity is a weak effect. It is common in quantum mechanics to normalize to one and study pertur-
bations of weak fields, an approach that will  be followed here. Normalizing means there are small 
steps will  be away from one. Only first order terms will  be kept. Here is the normalized potential 
with a linear perturbation:
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Gravity is a weak effect. It is common in quantum mechanics to normalize to one and study pertur-
bations of weak fields, an approach that will  be followed here. Normalizing means there are small 
steps will  be away from one. Only first order terms will  be kept. Here is the normalized potential 
with a linear perturbation:

AΜ =
ikjjj �!!!!G h

�������������
c2  Σ2 , 0

Óy{zzz�ikjjjjc � ikjjjj�!!!!G 
ikjjjjikjj 1

����������!!!!2
+

k
�������
Σ2  x

y{zz2

+
ikjj 1

����������!!!!2
+

k
�������
Σ2  y

y{zz2

+

ikjj 1
����������!!!!2

+
k

�������
Σ2  z

y{zz2

-
ikjj 1

����������!!!!2
+

k
�������
Σ2  t

y{zz2 y{zzzzy{zzzz, 0
Óy{zzzz

This potential solves the 4D wave equation because the shift by the one over root two factor and 
the rescaling by the spring constant k over sigma square do not effect the differential equation.  
One interesting aspect is the shift of units from one that depends on h − suggesting quantum 
mechanics − to the normalized perturbation which appears to be classical because there is no h.

Take the derivative with respect to t, x, y, and z:

¶Φ
��������
¶ t

=
c2  k

����������������!!!!G Σ2
+ O Hk2 L

c  
¶Φ
��������
¶x

= -
c2  k

����������������!!!!G Σ2
+ O Hk2 L

c  
¶Φ
��������
¶y

= -
c2  k

����������������!!!!G Σ2
+ O Hk2 L

c  
¶Φ
��������
¶z

= -
c2  k

����������������!!!!G Σ2
+ O Hk2 L

The change in the potential is a function of a spring constant k over sigma squared.  The classical 
Newtonian dependence on distance is an inverse square, so this is promising.  One problem is that 
a potential that applies exclusively to gravity is sought, yet the non−zero gradient of Φ indicates an 
electric field. The sign of the spring constant k does not effect the solution to the 4D wave field 
equations but does change the derivative of the potential.  A potential that only has derivatives 
along the diagonal of the field strength tensor can be constructed from two potentials that differ by 
spring constants that either constructively interfere to create non−zero derivatives, or destructively 
interfere to eliminate derivatives.

diagonal SHOAΜ =

c
����������!!!!G

 
ikjjjj1 � ikjjjjikjj 1

����������!!!!2
+

k
�������
Σ2  x

y{zz2

+
ikjj 1

����������!!!!2
+

k
�������
Σ2  y

y{zz2

+

ikjj 1
����������!!!!2

+
k

�������
Σ2  z

y{zz2

-
ikjj 1

����������!!!!2
+

k
�������
Σ2  t

y{zz2 y{zzzz +
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1 � ikjjjjikjj 1
����������!!!!2

-
k

�������
Σ2  x

y{zz2
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ikjj 1

����������!!!!2
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k
�������
Σ2  y
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k

�������
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ikjj 1

����������!!!!2
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ikjj 1
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�������
Σ2  y

y{zz2

+

ikjj 1
����������!!!!2

+
k

�������
Σ2  z

y{zz2

-
ikjj 1

����������!!!!2
+

k
�������
Σ2  t

y{zz2 y{zzzz +

1 � ikjjjjikjj 1
����������!!!!2

+
k

�������
Σ2  x

y{zz2

+
ikjj 1

����������!!!!2
-

k
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�������
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����������!!!!2
+

k
�������
Σ2  y

y{zz2

+

ikjj 1
����������!!!!2

+
k

�������
Σ2  z

y{zz2

-
ikjj 1

����������!!!!2
+

k
�������
Σ2  t

y{zz2 y{zzzz +

1 � ikjjjjikjj 1
����������!!!!2

-
k

�������
Σ2  x

y{zz2

+
ikjj 1

����������!!!!2
+

k
�������
Σ2  y

y{zz2

+

ikjj 1
����������!!!!2

-
k

�������
Σ2  z

y{zz2

-
ikjj 1

����������!!!!2
-

k
�������
Σ2  t

y{zz2 y{zzzz � ,

1 � ikjjjjikjj 1
����������!!!!2

+
k

�������
Σ2  x

y{zz2

+
ikjj 1

����������!!!!2
+

k
�������
Σ2  y

y{zz2

+

ikjj 1
����������!!!!2

+
k

�������
Σ2  z

y{zz2

-
ikjj 1

����������!!!!2
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Take the contravariant derivative of this potential, keeping only the terms to first order in the 
spring constant k.

ÑΜ AΝ =
c2

����������!!!!G
 

k
�������
Σ2  

i
k
jjjjjjjjjj

1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 -1

y
{
zzzzzzzzzz

All  this work to get a multiple of the identity matrix! Plug this into the gravitational force equation:

Fg
Μ = mc  

ikjj-
k

�������
Σ2  

¶ t
��������
¶Τ

,
k

�������
Σ2  

¶RÓ
��������
¶Τ

y{zz
This is a relativistic force law for a weak gravitational field for the inverse interval squared diago-
nal potential. When spacetime symmetry is broken, this equation will  lead to Newton’s law of 
gravity in the next section. If spacetime symmetry is maintained, then solving the force equation 
and eliminating the constants yields a metric equation for gravity.

à Newton’s  Law of  Gravity  and More

Several assumptions need to be made to apply the weak gravitational force equation to a classical 
gravitational system. First, assume that the spring constant is due to the source mass, k = GM. 
Second, assume that the field is static, so that Σ2 = R2 - c2  t2 > R2. In the approximation, it does 
not depend on time.

Newtonian spacetime is different from Minkowski spacetime because the speed of light is infinite. 
Spacetime symmetry must be broken. A question arises about how to do this in a formal mathemati-
cal sense. The Minkowski interval tau is a consequence of the relationship between time t and 
space R. The functional relationship between time and space must be severed. By the static field 
approximation, there is a distance R which is the same magnitude as the interval tau. If the interval 
tau is replaced by the scalar distance R, then that will  sever the functional relationship between 
time and space:ikjj ¶ t

��������
¶Τ

,
¶RÓ

�����������
c  ¶Τ

y{zz�
ikjj c ¶ t

����������������
¶ È RÈ ,

¶RÓ
����������������
¶ È RÈ y{zz = H0, R

`L
Plug these three assumptions into force equation:

Fg
Μ = I0, -

GMm
������������

R2  R
`M

This is not quite Newton’s gravitational force law. The reason is that one must consider the left−
hand side of the force equation carefully. According to the chain rule:

¶mUΜ
��������������

¶Τ
= m 

¶UΜ
����������
¶Τ

+ UΜ  
¶m
��������
¶Τ

An open question is how should spacetime symmetry be broken for the derivatives with respect to 
the interval tau? An interval is composed of both changes in time and space. For the acceleration 
term, if the interval is only about time, then one gets back Newtonian acceleration. For logical 
consistency, one might be tempted to also substitute time in the dm/dtau term. However, the sys-
tem is presumed to be static, so this would necessarily be zero. If this derivative is to have any 
chance at being non−zero, it would have to be with respect to the absolute value of R as has been 
done earlier in the derivation. So the classical force law should look like so:
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m 
¶2 RÓ
����������
¶ t 2 + c  

¶RÓ
��������
¶ t

 
¶m

����������������
¶ È RÈ = -

GMm
������������

R2  HR
`

+ V
`L

This is Newton’s law of gravity working along a new direction, that for the velocity vector. This 
new effect will  necessarily be small due to the constant c in the term.

For a point source, the dm/d|R| term will  not make a contribution, and one gets Newton’s law of 
gravity. It is only if the inertial mass is distributed over space like for the big bang or galaxies will  
the term come into play. If the velocity is constant, then the acceleration is zero. The equation 
describes the distribution of the inertial mass m that makes up the total gravitational source mass 
M. The solution to the force equation when there is no acceleration is a stable exponential. Big 
bang cosmology has two problems: all matter is traveling at exactly the same speed even though it 
is not possible for them to communicate (the horizon problem), and the model require high levels 
of precision on initial conditions to avoid collapse (the flatness problem). [A. H. Guth, Phys. Rev. 
D., 23:347−356, 1981]  The force equation has a stable, constant velocity solution which may 
resolve both problems of the big bang without the inflation hypothesis. Their is also a problem with 
the rotation profile of thin disk galaxies.[S. M. Kent, Astron. J., 91:1301−1327, 1986; S. M. Kent, 
Astron. J., 93:816−832, 1987]  Once the maximum velocity is reached, the velocity stays constant. 
It has been shown that galaxies should not be stable at all.[A. Toomre, Astrophys. J., 139:1217, 
1964] Both problems may again be resolved with stable constant velocity solutions. Numerical 
approaches on the above equation should be conducted.

à A Metric  Equation

The weak gravitational force equation is two second−order differential equations. The equation can 
be simplified to a set of first−order differential equations by substituting (U^0, U) = (c dt/dtau, 
dR/dtau)

¶U0
����������
¶Τ

-
k

�������
Τ2  U0 = 0

¶UÓ
��������
¶Τ

+
k

�������
Τ2  UÓ = 0

The solution involves exponentials:

UΜ = Ive - k����Τ , VÓ e
k����Τ M

For flat spacetime, U^mu = (v, V). The constraint on relativistic velocities in flat spacetime is:

UΜ  UΜ =
c2  dt 2 - dR2

����������������������������
dΤ2 = c2 = v2 - VÓ × VÓ

Solve for the constants, and plug back into the constraint, multiplying through by dtau ^2.

dΤ2 = e-2 k����Τ  dt 2 - e2 k����Τ  
dR2

���������
c2

Make the same two assumptions as before: the spring constant is due to the gravitational source, k 
= GM/c^2, and the field is static, so Τ2 = R2 � c2 - t2 > R2 � c2. There is one more degree of free-
dom, because the radius R could either be positive or negative. To make the metric consistent with 
experiment, choose the negative root:
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Make the same two assumptions as before: the spring constant is due to the gravitational source, k 
= GM/c^2, and the field is static, so Τ2 = R2 � c2 - t2 > R2 � c2. There is one more degree of free-
dom, because the radius R could either be positive or negative. To make the metric consistent with 
experiment, choose the negative root:

dΤ2 = e-2 GM���������c2  R  dt 2 - e2 GM���������c2  R  dR2

This equation has the form of a metric equation. Perform a Taylor series expansion to second order 
in GM/c^2R:

dΤ2 =J1 - 2 
GM

�����������
c2  R

+ 2 I GM
�����������
c2  R

M2 N dt 2 - J1 + 2 
GM

�����������
c2  R

+ 2 I GM
�����������
c2  R

M2 N dR2

If  one compares this metric to the Schwarzschild metric in isotropic coordinates to parameterized 
post−Newtonian accuracy, the coefficients are identical. For that reason, this metric is consistent 
with all experimental tests weak field tests of general relativity. [C. M. Will,  "Theory and experi-
ment in gravitational physics: Revised edition", Cambridge University Press, 1993.]

For higher order terms of the Taylor series expansion, the two metric will  predict different coeffi-
cients. The validity of this proposal can thus be tested experimentally. It will  require a great deal of 
effort and skill to conduct such experiments, since many physical phenomena will  have to be 
accounted for (an example: the quadrupole moment of the Sun for solar tests). According to per-
sonal communication with Prof. Clifford Will  − a leading authority in experimental tests of gravity 
theories − no experiments are being planned to monitor second order PPN coefficients at this time.

à Conclusion

Using a nineteenth century approach, an effort to unify physics from the twentieth century has been 
attempted. The description of geodesics by general relativity is not complete because it does not 
explicitly show how the potential source causes curvature. A dynamic metric equation is found but 
it uses a simpler set of field equations (a rank one tensor instead of two). In the standard model as 
elsewhere, combining two 4−vectors requires a metric. By normalizing the 4−vectors, the unitary 
aspect of the standard model can be self−evident.

This theory makes three testable predictions, two subtle, one not. First, the polarity of gravitational 
waves will  be scalar or longitudinal, not transverse as predicted by general relativity. Second, if 
gravitation effects are measured to secondary parameterized post−Newtonian accuracy, the coeffi-
cients for the metric derived here are different from the Schwarzschild metric in isotropic coordi-
nates. Such an experiment will  be quite difficult to do. The third test is to see if the complete relativ-
istic force equation matches all the data for a thin spiral galaxy. It is this test which should be 
investigated first.
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Einstein’s  Vision  I: Classical  Unified  Field  Equations

à Abstract

The equations governing gravity and electromagnetism show both profound similarities and unam-
biguous differences.  Albert Einstein worked to unify gravity and electromagnetism, mainly by 
trying to generalize Riemannian geometry.  Hamilton’s quaternions are a 4−dimensional topologi-
cal algebraic field related to the real and complex numbers equipped with a static Euclidean 4−ba-
sis.  Riemannian quaternions as defined herein explicitly allow for dynamic changes in the basis 
vectors.  The equivalence principle of general relativity which applies only to mass is generalized 
because for any Riemannian quaternion differential equation, the chain rule means a change could 
be caused by the potential and/or the basis vectors.  The Maxwell equations are generated using 
quaternion potentials and operators.  Unfortunately, the algebra is complicated.  The unified force 
field proposed is modeled on a simplification of the electromagnetic field strength tensor, being 
formed by a quaternion differential operator acting on a potential, Box* A*.   This generates an 
even, antisymmetric−matrix field strength quaternion for electricity and an odd, antisymmetric−ma-
trix field strength quaternion for magnetism, where the even field conserves its sign if the order of 
the differential and the potential are reversed unlike the odd field.  Gauge symmetry is broken for 
massive particles by the even, symmetric−matrix term, which is interpreted as being due to gravity.  
In tensor analysis, a differential operator acting on the field strength tensor creates the Maxwell 
equations.  The unified field equations for an isolated source are generated by acting on the unified 
force field with an additional differential operator, Box* Box* A*  = 4 pi J*.  This contains a quater-
nion representation of the Maxwell equations, a classical link to the quantum Aharonov−Bohm 
effect, and dynamic field equations for gravity.  Vacuum and zero net current solutions to the 
unified field equations are discussed.  The field equations conserve both electric charge density and 
mass density.  Under a Lorentz transformation, the gravitational and electromagnetic fields are 
Lorentz invariant and Lorentz covariant respectively, but there are residual terms whose meaning is 
not clear presently.  An additional constraint is required for gauge transformations of a massive 
field.  (PACS:12.10.−g)

à Einstein’s  Vision  Using  Quaternions

Three of the four known forces in physics have been unified via the standard model: the electromag-
netic, the weak, and the strong forces.  The holdout remains gravity, the first force characterized 
mathematically by Isaac Newton.  The parallels between gravity and electromagnetism are evident.  
Newton’s law of gravity and Coulomb’s law are inverse square laws.  Both forces can be attractive, 
but Coulomb’s law can also be a repulsive force.  A long−standing goal of modern physics is to 
explain the similarities and differences between gravity and electromagnetism.  

Albert Einstein had a specific idea for how to formulate an acceptable unified field theory (see Fig. 
1, taken from A. Pais, "Subtle is the Lord..." the science and life of Albert Einstein", Claredon Pres, 
1982). 
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One unusual aspect of Einstein’s view was that he believed the unified field would lead to a new 
foundation for quantum mechanics, an idea which is not shared by most of today’s thinkers (S. 
Weinberg, "Dreams of a final theory," Pantheon Books, New York, 1992).  Most of Einstein’s 
efforts over 40 years were directed in a search to generalize Riemannian differential geometry in 
four dimensions.  

To a degree which has pleasantly surprised the author, Einstein’s vision to unify gravity and electro-
magnetism has been followed.  The construction of a new 4−dimensional geometry is dictated by 
insights garnered from physics.  Events in spacetime are composed of a scalar for time and a 3−vec-
tor for space.  The four−dimensional topological algebraic field of quaternions has the same struc-
ture, so quaternions will  be the starting point of this effort.  

Laws of physics are expressed in a coordinate−independent way.  The sum or difference of two 
quaternions can only be defined if the two quaternions in question share the same 4−basis.  Rieman-
nian quaternions make coordinate−independence explicit.  In special relativity, regions in space-
time are delimited by the light cone, where the net change in 3−space is equal to the net change in 
time.  The parity between changes in 3−space and time is constructed into the definition of a Rie-
mannian quaternion.  In general relativity, the field equations make the metric a dynamic variable.  
The basis vectors of Riemannian quaternions can be dynamic, so the metric can be dynamic.  The 
dynamic nature of the basis vectors leads to the general equivalence principle, whereby any law, 
even those in electromagnetism, can be the result of a change in reference frame.  

Physical laws are the result of simple Riemannian quaternion differential equations.  First−order 
Riemannian quaternion differential equations create force fields for gravity, electricity, and magne-
tism.  Second−order differential equations create dynamic field equations for gravity, the Maxwell 
equations for electromagnetism, and a classical counterpart to the Aharanov−Bohm effect of quan-
tum mechanics.  Third−order differential equations create conservation laws.  Homogeneous solu-
tions to the second order differential equations are related to gauge symmetry.  

The second paper in this series of three investigates a unified force law, with a focus on a particular 
solution which may eliminate the need for dark matter to explain the mass distribution and velocity 
profile for spiral galaxies.  The third paper develops a new approach to quaternion analysis.  The 
equations of the first two papers are recast with the new definition of a quaternion derivative, 
resulting in a quantum unified field and force theory.  

à Events  in Spacetime  and Quaternions

An event in spacetime is considered by the author as the fundamental form of information in phys-
ics.  Events have structure.  There are four degrees of freedom divided into two dissimilar parts: 
time is a scalar, and space is a 3−vector.  This structure should be reflected in all the mathematics 
used to describe patterns of events.  For this reason, this paper focuses exclusively on quaternions, 
the 4−dimensional number where the terms scalar and vector where first used.  

Hamilton’s quaternions, along with the far better know real and complex numbers, can be added, 
subtracted, multiplied, and divided.  Technically, these three numbers are the only finite−dimen-
sional, associative, topological, algebraic fields, up to an isomorphism (L. S. Pontryagin, "Topologi-
cal groups", translated from the Russian by Emma Lehmer, Princeton University Press, 1939).  
Properties of these numbers are summarized in the table below by dimension, if totally ordered, 
and if multiplication commutes:
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Hamilton’s quaternions, along with the far better know real and complex numbers, can be added, 
subtracted, multiplied, and divided.  Technically, these three numbers are the only finite−dimen-
sional, associative, topological, algebraic fields, up to an isomorphism (L. S. Pontryagin, "Topologi-
cal groups", translated from the Russian by Emma Lehmer, Princeton University Press, 1939).  
Properties of these numbers are summarized in the table below by dimension, if totally ordered, 
and if multiplication commutes:

Number Dimensions Totally Ordered Commutative
Real 1 Yes Yes

Complex 2 No Yes
Quaternions 4 No No

Hamilton’s quaternions have a Euclidean 4−basis composed of 1, i, j, and k.  The rules of multiplica-
tion were inspired by those for complex numbers: 1^2=1, i^2=j^2=k^2=ijk=−1.  Quaternions also 
have a real 4x4 matrix representation:

q Ht , x, y, zL =

i
k
jjjjjjjjjj

t -x -y -z
x t -z y
y z t -x
z -y x t

y
{
zzzzzzzzzz

Although written in Cartesian coordinates, quaternions can be written in any linearly−independent 
4−basis because matrix algebra provides the necessary techniques for changing the basis.  There-
fore, like tensors, a quaternion equation is independent of the chosen basis.  One could view quater-
nions as tensors restricted to a 4−dimensional algebraic field.  For the sake of consistency, all 
transformations are also constrained to the same division algebra.  This constraint might first 
appear too restrictive since for example it eliminates simple matrices for row permutations.  Since 
quaternions are an algebraic field, there necessarily exists a combination of quaternions that 
achieves the action of a permutation.  The need for consistency will  overrule convenience.  

Laws in physics are independent of coordinate systems.  To make the coordinate independence 
explicit, amplitudes and basis vectors will  be separated using a new notation.  Consider a quater-
nion 4−function, A_n=(a_0, a_1, a_2, a_3), and an arbitrary 4−basis, Ihat_n=(ihat_0, ihat_1, 
ihat_2, ihat_3).  In spacetime, the line that divides causality is define by the light cone.  On the 
light cone, the total change in 3−space over the change in time is equal to one.  Physics therefore 
indicates parity between the total 3−vector and the scalar, instead of weighing all four equally.  A 
coordinate−independent Riemannian quaternion is defined to be A_0 Ihat_n=(a_0 ihat_0, a_1 
ihat_1/3, a_2 ihat_2/3, a_3 ihat_3/3).

The equivalence principle of general relativity asserts, with experiments to back it up, that the 
inertial mass equals the gravitational mass.  An accelerated reference frame can be indistinguish-
able from the effect of a mass density.  No corresponding principle applies to electromagnetism, 
which depends only on the electromagnetic field tensor built from the potential.  With Riemannian 
quaternions, the 4−unit vector does not have to be static, as illustrated by taking the time derivative 
of the first term and using the chain rule:

¶a0  i
`

0����������������
¶ i 0

= i
`

0  
¶a0����������
¶ i 0

+ a0  
¶ i

`
0����������

¶ i 0

The unit vector for time, ihat_0, can change over an infinitely small amount of time, i_0.  Any 
change in a quaternion potential function could be due to contributions from a change in potential, 
the ihat_0 da_0/di_0 term, and/or a change in the basis, the a_0 dihat_0/di_0 term.  Is this mathemat-
ical property related to physics? Consider Gauss’ law written with Riemannian quaternions:
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i
`

n
2

���������
9

 
¶En����������
¶ i n

-
i
`

n  En�������������
9

 
¶ i

`
n����������

¶ i n
= 4 ΠΡ, n = 1, 2, 3

The divergence of the electric field might equal the source, or equivalently, the divergence of the 
basis vectors.  The "general equivalence principle" as defined here means that any measurement 
can be due to a change in the potential and/or a change in the basis vectors.  The general equiva-
lence principle is applicable to both gravity and electromagnetism.  

à Metrics  and Quaternion  Products

The theories of special and general relativity dictate the distance between events in spacetime.  
Although fundamentally different in their mathematical structure, inertia is a link between the two.  
Special relativity dictates the transformation rules for observers who change their inertia, assuming 
the system observed does not change.  The field equations of general relativity detail the changes in 
distance due to a system changing its inertia from the vacuum to a non−zero energy density.  A 
quaternion product necessarily contains information about the metric, but also has information in 
the 3−vector.  This additional information about quaternion products will  suggest a provocative 
link between metrics and inertia consistent with both special and general relativity.  

Most structures in Nature do not transform like a scalar and a 3−vector.  Quaternion products 
multiply two 4−basis vectors, and those products will  transform differently.  The rules of quater-
nion multiplication mirror those of complex numbers.  Instead of the imaginary number i, there is a 
unit 3−vector for each quaternion playing an analogous role.  The difference is that unit 3−vectors 
do not all have to point in the same direction.  Based on the angle between them, two different unit 
3−vectors have both a dot and cross product.  The dot and cross products completely characterize 
the relationship between the two unit vectors.  Compare the product of multiplying two complex 
numbers (a, bi) and (c, di):Ha, bi L Hc, di L = Hac - bd, ad + bc L,

with two quaternions, (a, B I
Ó
) and (c, D I

Ó
),Ha, B I

`L Hc, D I
`

’ L = Hac - BD I
`

× I
`

’ , aD I
`

’ + Bc I
`

+ BD I
`

´ I
`

’ L
Complex numbers commute because they do not have a cross product in the result.  If the order of 
quaternion multiplication is reversed, then only the cross product would change its sign.  Quater-
nion multiplication does not commute due to the behavior of the cross product.  If the cross product 
is zero, then quaternion multiplication has all of the properties of complex numbers.  If, on the 
other hand, the only value of a quaternion product is equal to the cross product, then multiplication 
is anti−commutative.  Individually, the mathematical properties of commuting and anti−commut-
ing algebras are well known.  A quaternion product is the superposition of these two types of 
algebras that forms a division algebra.  

Several steps are required to square of the difference of two Riemannian quaternions to form a 
measure of distance.  First, the basis of the two quaternions must be shared.  It makes no sense to 
subtract something in spherical coordinates from something in Cartesian coordinates.  The basis 
does not have to be constant, only shared.  Every quaternion commutes with itself, so the cross 
product is zero.  There are seven unique pairs of basis vectors in a square:ikjjda0  i

`
0 , dAn

I
`

n�������
3

y{zz2

=
ikjjjjda0

2  i
`

0
2

- dAn
2 I

`
n

2

���������
9

, 2 da0  dAn  
i
`

0  I
`

n�������������
3

y{zzzz
The signs were chosen to be consistent with Hamilton’s quaternion algebra.  The four square basis 
vectors i_mu^2 define the metric.  If the basis vectors are not constant, then the metric is dynamic.  
Define a "3−rope" to be the three other terms, which have the form i_0 I_n.  Notice that the 3−rope 
starts in one time−space location and will  have a non−zero length if it ends up at a different loca-
tion and time.  With quaternion products, the 3−rope is a natural companion to a metric for informa-
tion about distance.  
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The signs were chosen to be consistent with Hamilton’s quaternion algebra.  The four square basis 
vectors i_mu^2 define the metric.  If the basis vectors are not constant, then the metric is dynamic.  
Define a "3−rope" to be the three other terms, which have the form i_0 I_n.  Notice that the 3−rope 
starts in one time−space location and will  have a non−zero length if it ends up at a different loca-
tion and time.  With quaternion products, the 3−rope is a natural companion to a metric for informa-
tion about distance.  

In special relativity, if the inertia of the observer but not the system is changed, the metric is invari-
ant.  The 3−rope is covariant, because it is known how it changes.  A complementary hypothesis to 
the invariant metric of special relativity would propose the if the inertia of the system but not the 
observer is changed, there exists a choice of basis vectors such that the 3−rope is invariant but the 
metric changes in a known way.  This could be written in algebraically using the following rule:

i
`

0
2

=
-1

���������
I
`

n
2 , É i

`
0  I

`
n É = 1

If  the magnitude of the time and 3−space basis vectors are inversely related, the magnitude of the 
product of the time basis vector with each 3−space basis vector will  be constant even if the basis 
vectors themselves are dynamic.  This hypothesis asserts there exists such a basis, but that particu-
lar basis does not have to be used.  

Hamilton had the freedom to use the rule found in the above equation, but made the more obvious 
choice of i_0^2 = −I_n^2.  The existence of a basis where the 3−rope is constant despite a change 
in the inertia of the system will  have to be treated as provisional in this paper.  In the second paper 
of this series, a metric with this property will  be found and discussed.  

à Physically  Relevant  Differential  Equations

Is there a rational way to construct physically relevant quaternion equations? The method used here 
will  be to mimic the tensor equations of electromagnetism.  The electromagnetic field strength 
tensor is formed by a differential operator acting on a potential.  The Maxwell equations are 
formed by acting on the field with another differential operator.  The Lorentz 4−force is created by 
the product of a electric charge, the electromagnetic field strength tensor, and a 4−velocity.  This 
pattern will  be repeated starting from an asymmetric field to create the same field and force equa-
tions using quaternion differentials and potentials.  The challenge in this exercise is in the interpreta-
tion, to see how every term connects to established laws of physics.  

As a first step to constructing differential equations, examine how the differential operator (d/dt, 
Del) acts on a potential function (phi, A):J ¶

��������
¶ t

, õ
ÓN HΦ, AÓL =

ikjj ¶Φ
��������
¶ t

- õ
Ó. AÓ,

¶AÓ
��������
¶ t

+ õ
Ó Φ + õ

Ó x  AÓy{zz
For the sake of clarity, the notation introduced for Riemann quaternions has been suppress, so the 
reader is encouraged to recognize that there are also a parallel set of terms for changes in the basis 
vectors.  The previous equation is a complete assessment of the change in the 4−dimensional 
potential/basis, involving two time derivatives, the divergence, the gradient and the curl all in one.  
A unified field theory should account for all conceivable forms of change in a 4−dimensional 
potential/basis, as is the case here.

Quaternion operators and potentials have not been used to express the Maxwell equations.  The 
reason can be found in the previous equation, where the sign of the divergence of A is opposite of 
the curl of A.  In the Maxwell equations, the divergence and the curl involving the electric and 
magnetic field are all positive.  Many others, even in Maxwell’s time, have used complex−valued 
quaternions for the task because the extra imaginary number can be used to get the signs correct.  
However, complex−valued quaternions are not an algebraic field.  The norm, t^2+x^2+y^2+z^2, 
for a non−zero quaternion could equal zero if the values of t, x, y, and z were complex.  This paper 
involves the constraint of working exclusively with 4−dimensional algebraic fields.  Therefore, no 
matter how salutary the work with complex−valued quaternions, it is not relevant to this paper.
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Quaternion operators and potentials have not been used to express the Maxwell equations.  The 
reason can be found in the previous equation, where the sign of the divergence of A is opposite of 
the curl of A.  In the Maxwell equations, the divergence and the curl involving the electric and 
magnetic field are all positive.  Many others, even in Maxwell’s time, have used complex−valued 
quaternions for the task because the extra imaginary number can be used to get the signs correct.  
However, complex−valued quaternions are not an algebraic field.  The norm, t^2+x^2+y^2+z^2, 
for a non−zero quaternion could equal zero if the values of t, x, y, and z were complex.  This paper 
involves the constraint of working exclusively with 4−dimensional algebraic fields.  Therefore, no 
matter how salutary the work with complex−valued quaternions, it is not relevant to this paper.

The reason to hope for unification using quaternions can be found in an analysis of symmetry 
provided by Albert Einstein: 

"The physical world is represented as a four−dimensional continuum.  If in this I adopt a Rieman-
nian metric, and look for the simplest laws which such a metric can satisfy, I arrive at the relativis-
tic gravitation theory of empty space.  If I adopt in this space a vector field, or the antisymmetric 
tensor field derived from it, and if I look for the simplest laws which such a field can satisfy, I 
arrive at the Maxwell equations for free space." [einstein1934]

The "four−dimensional continuum" could be viewed as a technical constraint involving topology.  
Fortunately, quaternions do have a topological structure since they have a norm.  Nature is asymmet-
ric, containing both a symmetric metric for gravity and an antisymmetric tensor for electromagne-
tism.  With this in mind, rewrite out the real 4x4 matrix representation of a quaternion:

q Ht , x, y, zL =

i
k
jjjjjjjjjj

t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

y
{
zzzzzzzzzz +

i
k
jjjjjjjjjj

0 -x -y -z
x 0 -z y
y z 0 -x
z -y x 0

y
{
zzzzzzzzzz

The scalar component (t in representation above) can be represented by a symmetric 4x4 matrix, 
invariant under transposition and conjugation (these are the same operations for quaternions).  The 
3−vector component (x, y and z in the representation above) is off−diagonal and can be represented 
by an antisymmetric 4x4 matrix, because taking the transpose will  flip the signs of the 3−vector.  
Quaternions are asymmetric in their matrix representation, a property which is critical to using 
them for unifying gravity and electromagnetism.

à Recreating  the Maxwell  Equations

Maxwell speculated that his set of equations might be expressed with quaternions someday (J. C. 
Maxwell, "Treatise on Electricity and Magnetism," Dover reprint, third edition, 1954).  The diver-
gence, gradient, and curl were initially developed by Hamilton during his investigation of quater-
nions.  For the sake of logical consistency, any system of differential equations, such as the Max-
well equations, that depends on these tools must have a quaternion representation.

The Maxwell equations are gauge invariant.  How can this property be built into a quaternion 
expression? Consider a common gauge such as the Lorenz gauge, dphi/dt + div A = 0.  In quater-
nion parlance, this is a quaternion−scalar formed from a differential quaternion acting on a poten-
tial.  To be invariant under an arbitrary gauge transformation, the quaternion−scalar must be set to 
zero.  This can be done with the vector operator, (q−q*)/2.  Search for a combination of quaternion 
operators and potentials that generate the Maxwell equations:H�* Vector  H�* A*L - �Vector  H�ALL*

�������������������������������������������������������������������������������������
2

=

=
ikjjÑÓ × HÑÓ ´ AÓL,

¶
��������
¶ t

 
ikjj ¶AÓ

��������
¶ t

+ ÑÓΦ
y{zz + ÑÓ ´ HÑÓ ´ AÓLy{zz =

=
ikjjÑÓ × BÓ, -

¶EÓ
��������
¶ t

+ ÑÓ ´ BÓy{zz =
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= H0, 4 Π JÓL.

This is Ampere’s law and the no monopoles vector identity (assuming a simply−connected topol-
ogy).  Any choice of gauge will  not make a contribution due to the vector operator.  If the vector 
operator was not used, then the gradient of the symmetric−matrix force field would be linked to the 
electromagnetic source equation, Ampere’s law.

Generate the other two Maxwell equations:

-H�Vector  H�* A*L + �* Vector  H�ALL*

����������������������������������������������������������������������������������������
2

=

=
ikjjÑÓ ×

ikjj-
¶AÓ
��������
¶ t

- ÑÓΦ
y{zz,

¶ÑÓ ´ AÓ
���������������

¶ t
+ ÑÓ ´

ikjj-
¶AÓ
��������
¶ t

- ÑÓΦ
y{zzy{zz =

=
ikjjÑÓ × EÓ,

¶BÓ
��������
¶ t

+ ÑÓ ´ EÓy{zz =

= I4 ΠΡ, 0
ÓM.

This is Gauss’ and Faraday’s law.  Again, if the vector operator had not been used, the time deriva-
tive of the symmetric−matrix force field would be associated with the electromagnetic source 
equation, Gauss’ law.  To specify the Maxwell equations completely, two quaternion equations are 
required, just like the 4−vector approach.

Although successful, the quaternion expression is unappealing for reasons of simplicity, consis-
tency and completeness.  A complicated collection of sums or differences of differential operators 
acting on potentials − along with their conjugates − is required.  There is no obvious reason this 
combination of terms should be central to the nature of light.  One motivation for the search for a 
unified potential field involves simplifying the above expressions.

When a quaternion differential acts on a function, the divergence always has a sign opposite the 
curl.  The opposite situation applies to the Maxwell equations.  Of course the signs of the Maxwell 
equations cannot be changed.  However, it may be worth the effort to explore equations with sign 
conventions consistent with the quaternion algebra, where the operators for divergence and curl 
were conceived.

Information about the change in the potential is explicitly discarded by the vector operator.  Justifi-
cation comes from the plea for gauge symmetry, essential for the Maxwell equations.  The Max-
well equations apply to massless particles.  Gauge symmetry is broken for massive fields.  More 
information about the potential might be used in unification of electromagnetism with gravity.  A 
gauge is also matrix symmetric, so it could provide a complete picture concerning symmetry.

à One Unified  Force  Field  from  One Potential  Field

For massless particles, the Maxwell equations are sufficient to explain classical and quantum 
electrodynamic phenomena in a gauge−invariant way.  To unify electromagnetism with gravity, the 
gauge symmetry must be broken, opening the door to massive particles.  Because of the constraints 
imposed by quaternion algebra, there is little freedom to choose the gauge with a simple quaternion 
expression.  In the standard approach to the electromagnetic field, a differential 4−vector acts on a 
4−vector potential in such a way as to create an antisymmetric second−rank tensor.  The unified 
field hypothesis proposed involves a quaternion differential operator acting on a quaternion 
potential:
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�* A* =
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��������
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Ó Φ + õ

Ó x  AÓy{zz
This is a natural suggestion with this algebra.  The antisymmetric−matrix component of the unified 
field has the same elements as the standard electromagnetic field tensor.  Define the electric field E 
as the even terms, the ones that will  not change signs if the order of the differential operator and the 
potential are reversed.  The magnetic field B is the curl of A, the odd term.  The justification for 
proposing the unified force field hypothesis rests on the presence of the electric and magnetic fields.

In some ways, the above equation looks just like the old idea of combining a scalar gauge field 
with the electromagnetic field strength tensor, as Gupta did in 1950 in order to quantize the Max-
well equations.  He concluded that although useful because it is written in manifestly relativistic 
form, no new results beyond the Maxwell equation are obtained.  Examine just the gauge contribu-
tion to the Lagrangian for this unified field:

L = -
1
����
2

 J ¶Æ
��������
¶ t

, -
1
����
3

 
¶Ax����������
¶x

, -
1
����
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¶Ay����������
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3

 
¶Az����������
¶z

N2

Take the derivative of the Lagrangian with respect to the gauge variables:

¶L
�������������
¶ ¶AΜ�������¶xΜ

= 0

By Noether’s theorem, this conserved current indicates a symmetry of the Lagrangian.  This is why 
the proposal involves new physics.  The gauge is a dynamic variable constrained by the 
Lagrangian.  

A quaternion potential function has four degrees of freedom represented by the scalar function phi 
and the 3−vector function A.  Acting on this with one[or more] differential operators does not 
change the degrees of freedom.  Instead, the tangent spaces of the potential will  offer more subtle 
views on the rules for how potentials change.  

The three classical force fields, g, E, and B, depend on the same quaternion potential, so there are 
only four degrees of freedom.  With seven components to the three classical force fields, there must 
be three constraints between the fields.  Two constraints are already familiar.  The electric and 
magnetic field form a vector identity via Faraday’s law.  Assuming spacetime is simply connected, 
the no monopoles equation is another identity.  A new constraint arises because both the force 
fields for gravity and electricity are even.  It will  be shown subsequently how the even force fields 
can partially constructively or destructively interfere with each other.  

à Unified  Field  Equations

In the standard approach to generating the Maxwell equations, a differential operator acts on the 
electromagnetic field strength tensor.  A unified field hypothesis for an isolated source is proposed 
which involves a differential quaternion operator acting on the unified field:

4 Π HΡ, JÓL*
= J ¶

��������
¶ t

, õ
ÓN*

 J ¶
��������
¶ t

, õ
ÓN*

 HΦ, AÓL*
=

=
ikjj ¶2 Φ

����������
¶ t 2 - 2 ÑÓ ×

¶AÓ
��������
¶ t

- ÑÓ × ÑÓΦ + ÑÓ × HÑÓ ´ AÓL,
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-2 ÑÓ ¶Φ
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����������
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+2 ÑÓ ´
¶AÓ
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¶ t

+ ÑÓ ´ ÑÓΦ
y{zz.

This second order set of four partial differential equations has four unknowns so this is a complete 
set of field equations.  Rewrite the equations above in terms of the classical force fields:

4 Π HΡ, JÓL*
= J ¶g

��������
¶ t

+ õ
Ó. EÓ + õ

Ó. BÓ,

-ÑÓg +
¶EÓ
��������
¶ t

- õ
Ó x  BÓ +

¶BÓ
��������
¶ t

- õ
Ó x  EÓy{zz.

The unified field equations contain three of the four Maxwell equations explicitly: Gauss’ law, the 
no magnetic monopoles law, and Ampere’s law.  Faraday’s law is a vector identity, so it is still true 
implicitly.  Therefore, a subset of the unified field equations contains a quaternion representation of 
the Maxwell equations.  The presence of the Maxwell equations justifies the investigation of the 
unified field equations.  

There is a simple relationship between Faraday’s law and the equation above.  All  that needs to be 
done is to subtract twice the time derivative of the magnetic field from both sides.  What does this 
do to the 4−vector current density J? Now there is a current that transforms like a pseudo−current 
density. The inclusion of a pseudo−current along with a current making the proposal more com-
plete.  The volume integral of this pseudo−current density is the total magnetic flux:

k  à à à ¶B
��������
¶ t

 dV =
e

�������
Ñc

 FB

The unified field equation postulates a pseudo 3−vector current composed of the difference 
between the time derivative of the magnetic field and the curl of the electric field.  The Aharonov−
Bohm effect (Y Aharonov and D. Bohm, "Significance of electromagnetic potentials in the quan-
tum theory," Phys. Rev, 115:485−491, 1959) depends on the total magnetic flux to create changes 
seen in the energy spectrum.  The volume integral of the time derivative of the magnetic field is a 
measure of the total magnetic flux.  The pseudo−current density is quite unusual, transforming 
differently under space inversion than the electric current density.  One might imagine that a 
Lorentz transformation would shift this pseudo−current density into a pseudo−charge density.  This 
does not happen however, because the vector identity involving the divergence of a curl still 
applies.  The Aharonov−Bohm phenomenon, first viewed as a purely quantum effect, may have a 
classical analogue in the unified field equations.

The field equations involving the gravitational force field are dynamic and depend on four dimen-
sions.  This makes them likely to be consistent with special relativity.  Since they are generated 
alongside the Maxwell equations, one can reasonably expect the differential equations will  share 
many properties, with the ones involving the symmetric−matrix gravitational force field being 
more symmetric than those of the electromagnetic counterpart.  

The unified source can be defined in terms of more familiar charge and current densities by sepa-
rately setting the gravity or electromagnetic field equal to zero.  In these cases, the source is due 
only to electricity or mass respectively.  This leads to connections between the unified source, 
mass, and charge:

J = Jm iff EÓ = BÓ = 0
Ó
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J = Je + JÓAB iff g = 0.

It would be incorrect − but almost true − to say that the unified charge and current are simply the 
sum of the three: mass, electric charge, and the Aharanov−Bohm pseudo−current (or total magnetic 
flux over the volume).  These terms constructively interfere with each other, so they may not be 
viewed as being linearly independent.

Up to four linearly independent unified field equations can be formulated.  A different set could be 
created by using the differential operator without taking its conjugate:

4 ΠJ* = ��* A* =

=
ikjj ¶2 Φ

����������
¶ t 2 + ÑÓ × ÑÓΦ - ÑÓ × HÑÓ ´ AÓL, -

¶2 AÓ
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y{zz
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¶ t
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Ó x  BÓ +
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��������
¶ t

+ õ
Ó x  EÓy{zz.

This is an elliptic equation.  Since the goal of this work is a complete system of field equations, this 
may turn out to be an advantage.  An elliptic equation combined with a hyperbolic one might more 
fully  describe gravitational and electromagnetic waves from sources.  Unlike the first set of field 
equations, the cross terms destructively interfere with each other.

The elliptic field equation again contains three of four Maxwell equations explicitly:Gauss’ law, 
the no magnetic monopoles vector identity and Faraday’s law.  This time, Ampere’s law looks 
different.  To be consistent with Ampere’s law, again a pseudo−current must be included.  This 
may be the differential form of a classical Aharonov−Bohm effect.  

The only term that does not change between the two field equations is the one involving the 
dynamic gravitational force.  This might be a clue for why this force is only attractive.

à Solutions  to the Unified  Field  Equations

All  the solutions that have been worked out for the Maxwell equations will  work with the unified 
field equations.  For example, if the potential is static, the scalar equation for hyperbolic field 
equation is the Poisson equation.  The unified equations are more informative, since any potential 
which is a solution to the scalar Poisson equation will  also characterize the corresponding current.  

The field equations of general relativity and the Maxwell equations both have vacuum solutions, 
such as plane wave solutions. The unified field equations do not have such a solution, other than a 
constant.  Given historical tradition, this may seem like a deadly flaw.  However, it may be some-
thing that is required for a final and complete theory.  In a unified field theory, the gravitational 
part may be zero while the electrical part is not, and visa versa.  Non−zero solutions are worth 
exploring

An inverse square potential plays an important role in both gravity and electromagnetism. Examine 
the scalar field involving the inverse interval squared:

��* J 1
������������������������������������
t 2 - x2 - y2 - z2 , 0

ÓN =
ikjj 4 H3 t 2 + x2 + y2 + z2 L

�������������������������������������������������Ht 2 - x2 - y2 - z2 L3 , 0
Óy{zz
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This potential solves the Maxwell equations in the Lorentz gauge: 

�2 J 1
������������������������������������
t 2 - x2 - y2 - z2 , 0

ÓN = 0

The non−zero part may have everything to do with gravity.

A plane wave solution does exist, but not for a pure vacuum. Instead, a plane wave solution exists 
with the constrain that the net current is zero for the elliptical field equations

The field equations of general relativity and the Maxwell equations both have vacuum solutions.  A 
vacuum solution for the unified field equation is apparent for the elliptical field equations:

A = IΦ0  eK
Ó

×R
Ó

-Ωt , AÓ0  eK
Ó

×R
Ó

-Ωt M
The unified field equation will  evaluate to zero if

Scalar  JI Ω
����
c

, KÓM2 N = 0

The dispersion relation is an inverted distance, so it will  depend on the metric.  The same potential 
can also solve the hyperbolic field equations under different constraints and resulting dispersion 
equation (not shown).  There were two reasons for not including the customary imaginary number 
"i"  in the exponential of the potential.  First, it was not necessary.  Second, it would have created a 
complex−valued quaternion, and therefore is outside the domain of my work.  The important thing 
to realize is that vacuum solutions to the unified field equations exist whose dispersion equations 
depend on the metric.  This is an indication that unifying gravity and electromagnetism is an appro-
priate goal.

à Conservation  Laws

Conservation of electric charge is implicit in the Maxwell equations.  Is there also a conserved 
quantity for the gravitational field? Examine how the differential operator acts on the unified field 
equation:

��* �* A* =
ikjj ¶2 g

����������
¶ t 2 + ÑÓ × ÑÓg,

¶2 EÓ
����������
¶ t 2 + ÑÓ2

EÓ +
¶2 BÓ
����������
¶ t 2 + ÑÓ2

BÓy{zz
Notice that the gravitational force field only appears in the quaternion scalar.  The electromagnetic 
fields only appear in the 3−vector.  This generates two types of constraints on the sources.  No 
change in the electric source applies to the quaternion scalar.  No change in the gravitational source 
applies to the 3−vector.

Scalar  H�Je
*L =

¶Ρe����������
¶ t

+ ÑÓ × JÓe = 0

Scalar  I�JÓAB
*M = Ñ × JÓAB

*
= 0

Vector  H�Jm
*L = -

¶JÓm����������
¶ t

+ ÑÓΡm - ÑÓ ´ JÓm = 0
Ó

The first equation is known as the continuity equation, and is the reason that electric charge is 
conserved.  For a different inertial observer, this will  appear as a conservation of electric current 
density.  There is no source term for the Aharanov−Bohm current, and subsequently no conserva-
tion law.  The 3−vector equation is a constraint on the mass current density, and is the reason mass 
current density is conserved.  For a different inertial observer, the mass density is conserved.
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The first equation is known as the continuity equation, and is the reason that electric charge is 
conserved.  For a different inertial observer, this will  appear as a conservation of electric current 
density.  There is no source term for the Aharanov−Bohm current, and subsequently no conserva-
tion law.  The 3−vector equation is a constraint on the mass current density, and is the reason mass 
current density is conserved.  For a different inertial observer, the mass density is conserved.

à Transformations  of  the Unified  Force  Field

The transformation properties of the unified field promise to be more intricate than either gravity or 
electromagnetism separately.  What might be expected to happen under a Lorentz transformation? 
Gravity involves mass that is Lorentz invariant, so the field that generates it should be Lorentz 
invariant.  The electromagnetic field is Lorentz covariant.  However, a transformation cannot do 
both perfectly.  The reason is that a Lorentz transformation mixes a quaternion scalar with a 3−vec-
tor.  If a transformation left the quaternion scalar invariant and the 3−vector covariant, the two 
would effectively not mix.  The effect of unification must be subtle, since the transformation proper-
ties are well known experimentally.

Consider a boost along the x−axis.  The gravitational force field is Lorentz invariant.  All  the terms 
required to make the electromagnetic field covariant under a Lorentz transformation are present, 
but covariance of the electromagnetic fields requires the following residual terms:H�’ * A’ *LResidual = J0, HΓ2  Β2 - 1L 

¶Ax����������
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+ HΓ2 - 1L 
¶Φ
��������
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,
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+
¶Ay����������
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-
¶Az����������
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NN.

At this time, the correct interpretation of the residual term is unclear.  Most importantly, it was 
shown earlier that charge is conserved.  These terms could be a velocity−dependent phase factor.  
If  so, it might provide a test for the theory.

The mechanics of the Lorentz transformation itself might require careful re−examination when so 
strictly confined to quaternion algebra.  For a boost along the x−axis, if only the differential transfor-
mation is in the opposite direction, then the electromagnetic field is Lorentz covariant with the 
residual term residing with the gravitational field.  The meaning of this observation is even less 
clear.  Only relatively recently has DeLeo been able to represent the Lorentz group using real 
quaternions (S. De Leo, "Quaternions and special relativity," J. Math. Phys., 37(6):2955−2968, 
1996).  The delay appears odd since the interval of special relativity is the scalar of the square of 
the difference between two events.  In the real 4x4 matrix representation, the interval is a quarter of 
the trace of the square.  Therefore, any matrix with a trace of one that does not distort the length of 
the scalar and 3−vector can multiply a quaternion without effecting the interval.  One such class is 
3−dimensional, spatial rotations.  An operator that adds nothing to the trace but distorts the lengths 
of the scalar and 3−vector with the constraint that the difference in lengths is constant will  also 
suffice.  These are boosts in an inertial reference frame.  Boosts plus rotations form the Lorentz 
group.

Three types of gauge transformations will  be investigated: a scalar, a 3−vector, and a quaternion 
gauge field.  Consider an arbitrary scalar field transformation of the potential:

A ® A’ = A - �* Λ.

The electromagnetic fields are invariant under this transformation.  An additional constraint on the 
gauge field is required to leave the gravitational force field invariant, namely that the scalar gauge 
field solves a homogeneous elliptical equation.  From the perspective of this proposal, the freedom 
to choose a scalar gauge field for the Maxwell equations is due to the omission of the gravitational 
force field.

Transform the potential with an arbitrary 3−vector field:
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A ® A’ = A - �* L
Ó.

This time the gravitational force field is invariant under a 3−vector gauge field transformation.  
Additional constraints can be placed on the 3−vector gauge field to preserve a chosen electromag-
netic invariant.  For example, if the difference between the two electromagnetic fields is to remain 
invariant, then the 3−vector gauge field must be the solution to an elliptical equation.  Other classes 
of invariants could be examined.

The scalar and 3−vector gauge fields could be combined to form a quaternion gauge field.  This 
gauge transformation would have the same constraints as those above to leave the fields invariant.  
Is there any such gauge field? The quaternion gauge field can be represented the following way:

A ® A’ = A - �* L.

If  a force field is created by hitting this gauge transformation with a differential operator, then the 
gauge field becomes a unified field equation.  Since vacuum solutions have been found for those 
equations, a quaternion gauge transformation can leave the field invariant.

à Future  Directions

The fields of gravity and electromagnetism were unified in a way consistent with Einstein’s vision, 
not his technique.  The guiding principles were simple but unusual: generate expressions familiar 
from electromagnetism using quaternions, striving to interpret any extra terms as being due to 
gravity.  The first hypothesis about the unified field involved only a quaternion differential opera-
tor acting on a potential, no extra terms added by hand.  It contained the typical potential representa-
tion of the electromagnetic field, along with a symmetric−matrix force field for gravity.  The sec-
ond hypothesis concerned a unified field equation formed by acting on the unified field with one 
more differential operator.  All  the Maxwell equations are included explicitly or implicitly.  Addi-
tional terms suggested the inclusion of a classical representation of the Aharanov−Bohm effect.  
Four linearly independent unified field equations exist, but only the hyperbolic and elliptic cases 
were discussed.  A large family of vacuum solutions exists, and will  require future analysis to 
appreciate.

Why did this approach work? The hypothesis that initiated this line of research was that all events 
in spacetime could be represented by quaternions, no matter how the events were generated.  This 
is a broad hypothesis, attempting to reach all areas covered by physics.  Based on the equations 
presented in this paper, a logical structure can be constructed, starting from events (see figure 
below). A set of events forms a pattern that can be described by a potential. The change in a poten-
tial creates a field. The change in field creates a field equation.  The terms that do not change under 
differentiation of a field equation form conservation laws.  
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Einstein’s  Vision  II: A Unified  Force  Equation  with  Constant  Velocity  
Solutions

à Abstract

In quantum electrodynamics, photons have four modes of transmission, at least mathematically: 
two transverse modes for electrodynamics, a longitudinal, and a scalar mode. The probabilities of 
the last two modes cancel each other out for a spin 1 field, but that does not have to be the case for 
a field with spin 1 and spin 2 particles. One potential solution to the field equations is found which 
depend on the inverse of an interval between two events squared. The force field created by the 
potential is constructed by comparison with the classical Newtonian gravitational field. The 
Lagrange density L= scalar(−(J A*)  − 1/2 Box* A Box A*)  can contribute to a scalar mode, but 
still has the field equations of Maxwell with the choice of the Lorenz gauge. A relativistic force 
equation is proposed, created by the product of charge, normalized force field, and 4−velocity: 
dmU/dtau = kq Box* A/|A| U*. The solution to the force equation using the inverse square interval 
potential is found. Eliminating the constants generates a metric equation, 
dΤ2 = e-2 G M�������������c2  Τ - e2 G M�������������c2  Τ  d R2 � c2, where tau  is a lightlike interval with almost the same magnitude as 
the radius R of separation between source and test masses. For a weak gravitational field, the 
metric will  pass the same tests as the Schwarzschild metric of general relativity. The two metrics 
differ for higher order terms, which makes the proposed metric distinct and testable experimen-
tally. A constant−velocity solution exists for the gravitational force equation for a system with an 
exponentially−decaying mass distribution. The dark matter hypothesis is not needed to explain the 
constant−velocity profiles seen for some galaxies. Gravity is a metric theory, electromagnetism is 
not.  By using Riemannian quaternions which can have dynamic basis vectors, it becomes possible 
to merge metric theory with the linear Maxwell equations.  The proposal may also have implica-
tions for classical big bang theory.

à An Opportunity  for  Classical  Gravity?

The electrodynamic field can be quantized in a manifestly covariant form by fixing the gauge (K. 
Bleuler, Helv. Phys. Acta, 23:567, 1950, and S. N. Gupta, "Theory of longitudinal photons in 
quantum electrodynamics", Proc. Phys. Soc., 63:681−691). The starting point is the 4−potential 
A^mu. There are four modes of transmission for photons corresponding to the four degrees of 
freedom: two transverse, one scalar, and one longitudinal. Gupta calculated that "the probability of 
the emission of a real longitudinal photon is canceled by the ’negative probability’ of the emission 
of a corresponding scalar photon." He notes that this does not always have to be the case for the 
nonhomogeneous Maxwell equations, which is the focus of this work. A scalar photon would not 
change signs under a space or time reversal, so its symmetry is different from the electric 3−vector 
field and the magnetic 3−pseudo−vector field, and thus does not have an obvious role to play in 
electrodynamics.

My hypothesis is that the scalar and longitudinal photons for the electromagnetic field constitute 
gravity. The hypothesis makes several predictions even at this preliminary stage. First, the math of 
gravity and electromagnetism should be similar but not identical. The inverse square form of New-
ton’s law of gravity was a direct inspiration for Coulomb’s law. Gravity should be more symmetric 
than electromagnetism because the mode is scalar, instead of transverse. The second rank field 
strength tensor in general relativity is symmetric while the analogous tensor for the electromagnetic 
field is antisymmetric. Since the mode of gravity is orthogonal to electromagnetism, the charges 
can be likewise, so there will  be no simple relationship between gravitational charge (mass) and 
electric charge. Gravitational waves in general relativity are transverse, so this proposal is distinct 
from general relativity. Nature exploits all the math available, so it is unreasonable to suppose that 
scalar and longitudinal photons are never used for anything. Whatever phenomenon exploits the 
scalar and longitudinal photons must be similar, but just as important as electromagnetism. Gravity 
is a natural candidate.
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scalar and longitudinal photons are never used for anything. Whatever phenomenon exploits the 
scalar and longitudinal photons must be similar, but just as important as electromagnetism. Gravity 
is a natural candidate.

à A Gravitational  Field  Inside  Maxwell

Newton’s classical gravitational law arises from a scalar potential. Here is the scalar field equation:

Ñ2 Φ = 4 ΠGΡ

For the case of a vacuum, when rho = 0, this is known as the Laplace equation. For a spherically 
symmetric source, one solution is:

Φ = -
GM

��������������������������������!!!!!!!!!!!!!!!!!!!!!!!!!
x2 + y2 + z2

The problem with the field equation is that the Laplace operator does not have a time differential 
operator. Any change in the mass density propagates at infinite speed, in conflict with special 
relativity (MTW, chapter 7).  One way to derive the field equations of general relativity involves 
making Newton’s law of gravity consistent with the finite speed of light.

A way to repair the field equations is to use the D’Alembertian operator, which is four dimen-
sional. That expression is identical to the A^0 component of the Maxwell equations with the choice 
of the Lorenz gauge.  The sources are of course different.  Yet the argument being made here is 
that there are degrees of freedom which have yet to be exploited.  For the two degrees of freedom, 
we can have a different source term, mass:

�2 A = 4 Π HJq - JmL
If  one is studying scalar or longitudinal modes, the source is J_mass, the mass current density.  If 
one is working with transverse modes, the source is J_charge^mu , the electric charge density. 
Since the modes are orthogonal, the sources can be also.

To be consistent with the classic scalar potential yet still be relativistic, the potential must have 
x^2, y^2, z^2, and t^2. This suggests a particular solution to the field equations:

A = J 1
�������������������������������������������
c2  t 2 - x2 - y2 - z2 , 0

ÓN = J 1
�������
Τ2 , 0

ÓN
This potential is interesting for several reasons. It is the inverse of the Lorentz−invariant interval 
squared. Like mass, the 4−potential will  not be altered by a change in an inertial reference frame. 
The interval between any two events will  contribute to the potential. General relativity applies to 
any form of energy, including gravitational field energy. A potential that embraces every interval 
may have a broad enough scope to do the work of gravity.

The potential also has serious problems. Classical gravity depends on an inverse square force field, 
not an inverse square potential. Taking the derivative of the potential puts a forth power of the 
interval in the denominator. At this point, I could stop and say that this potential has nothing to do 
with gravity because it has the wrong dependence on distance. An alternative is to look for an 
algebraic way to repair the problem. This is the type of approach used by the early workers in 
quantum mechanics like de Broglie, and will  be adopted here. The equations of motion can be 
normalized to the magnitude of the 4−potential:
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�2 A
�������������È A È = 4 Π HkJ charge + GJmassL

Since the magnitude of the potential is the inverse interval squared, the resulting equation has only 
an interval squared in the denominator. An interval is not necessarily the same as the distance R 
between the source and test mass used in the classical theory. However, I can impose a selection 
rule that in the classical limit, the only events that contribute to the potential are those that are 
timelike separated between the source and the test masses. It takes a timelike interval to know that 
the source is a distance R away. Action−at−a−distance respects the speed of light as it must.

à Search  for  the Source  Mass

Where is the source mass in the potential? All  that has been discussed so far is an interval, a dis-
tance, nothing about mass. An idea from general relativity will  be borrowed, that mass can be 
treated geometrically if multiplied by the constants G/c^2. The distance between the Earth and the 
Sun is approximately 1.5x10^11 m, while the Sun’s mass expressed in units of distance, GM_-
Sun/c^2, is 1.5x10^3 m, eight orders of magnitude smaller. The overall length of the interval will  
not be changed noticeably if the spatial separation and the Sun’s mass expressed as a distance are 
summed. However, the force field is the derivative of the potential, and any change in position in 
spacetime will  have a far greater effect proportionally on the smaller geometric mass than the 
spatial separation. Make the following change of variables:

t ® t ’ = A +
GM

��������������
2 c2  A

 t

RÓ ® RÓ ’ = BÓ +
GM

����������������������
2 c2 È BÓ È  RÓ

where A and B are locally constants such that tau^2 ~= A^2 − B^2. The change of variables is 
valid locally, but not globally, since it breaks down for arbitrarily long time or distance away. 
General relativity is also valid locally and not globally.

What is the physical interpretation of the inverse square potential and the above substitution? 
Newton observed that motion in an ellipse could be caused by either a linear central force or an 
inverse square law.  With the above substitution, there is a linear displacement equation inside an 
inverse square potential. It is like a simple harmonic oscillator inside a simple harmonic oscillator! 
This oscillator works with four dimensions. Although it is confusing to confront the idea of oscilla-
tions in time, there is no need worry about it, since the equations are quite simple and their mathe-
matical consequences can be worked out.   If all the terms where included, the equation would be 
nonlinear. 

The field is the derivative of the potential.  To be correct technically, it is the contravariant deriva-
tive.  This requires both a metric and a connection.  In effect, all the work presented with quater-
nions uses the Minkowski metric with Cartesian coordinates.  For such a choice of metric and 
coordinates, the contravariant derivative equals the normal derivative.  The derivative of the poten-
tial under study, a normalized interval squared with the linear displacement substitution, is 
approximately:

1
�����������������È 1�����Τ2 È  

¶ 1�����Τ2
�����������

¶ t
= -

GM
�������������
c2  Τ2
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1
�����������������È 1�����Τ2 È  

¶ 1�����Τ2
�����������

¶RÓ =
GM

�������������
c2  Τ2

This should look familiar, remembering that employing the event selection rule from above, the 
magnitude of tau ^2 is almost the same as R^2, differing only by the geometric mass of the source.

à A Lagrangian  for  Four  Modes

Despite its formulation using quaternions, this unification proposal is strikingly similar to earlier 
work.  Gupta wanted to quantize the radiation field using a form that was manifestly covariant in 
its explicit treatment of time and space. He fixed the gauge with this Lagrange density:

L = -JΜ  AΜ -
1
����
2

 H¶Μ AΜL2 -
1
����
4

 H¶Μ AΝ - ¶Ν AΜL H¶Μ AΝ - ¶Ν AΜL
The equations of motion for this Lagrangian are the same as choosing the Lorenz gauge:

�2 AΜ = JΜ

The problem with the Lagrangian is that the field strength tensor is antisymmetric. Due to the zeros 
along the diagonal, it cannot contribute directly to a scalar mode. What is needed is a Lagrange 
density that could contribute directly to the scalar mode but still have the same field equations. 
Here is such a Lagrangian: 

L = scalar  J-HJq - JmL A* -
1
����
2

 �* A �A*N
This is not as miraculous as it might first appear. It is the first of four terms generated in the contrac-
tion of the electromagnetic field strength tensor. In essence, information is not discarded, which is 
what happens in making the field strength tensor antisymmetric. The one remaining modification is 
to normalize both the Lagrangian and equations of motion to the size of the potential.

à From  a Relativistic  4−force  to a Metric

A relativistic 4−force is the change in momentum with respect to the interval. The covariant force 
law is similar in form to the one for electromagnetism except that the second rank tensor is asym-
metric and normalized:

F =
¶p
��������
¶Τ

= mc 
¶Β
��������
¶Τ

+ Βc  
¶m
��������
¶Τ

= k q 
�* A*
�������������È A È  Β*

If  this equation is to transform like the Lorentz 4−force of electromagnetism, the normalized poten-
tial must be invariant under a Lorentz transformation.  That is the case of the potential under study.

In the first application of the force law, assume the derivative of the mass with respect to the inter-
val is zero. For the scalar photons, assume the charge q is the gravitational test mass. Experiments 
have demonstrated that gravitational and inertial masses are equal. Assuming spherical symmetry, 
the inverse interval squared potential leads to the following equations of motion:ikjj ¶2 t

����������
¶Τ2 +

GM
�������������
c2  Τ2  

¶ t
��������
¶Τ

,
¶2 RÓ
����������
¶Τ2 -

GM
�������������
c2  Τ2  

¶RÓ
��������
¶Τ

y{zz = I0, 0
ÓM

Solve these second−order differential equations for the spacetime position:
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t = c1  IΤe
GM���������c2  Τ -

GM
�������
c2  Ei  I GM

�����������
c2  Τ

MM + C2

RÓ = C
Ó

1  IΤe- GM���������c2  Τ +
GM
�������
c2  Ei  I-

GM
�����������
c2  Τ

MM + C
Ó

2

where Ei is the exponential integral, Ei(t)=the integral from negative infinity to t of e^t/t dt.  The 
exponential integral plays other roles in quantum mechanics, so its presence is interesting.  

Eight constants need to be eliminated:(c_1, C_1) and (c_2, C_2).  Take the derivative of the space-
time position with respect to tau.  This eliminates four constants, (c_2, C_2).  The result is a 
4−velocity:

¶ t
��������
¶Τ

= c1 e
GM������������

c2  Τ �

¶RÓ
��������
¶Τ

= C
Ó

1 e- GM������������
c2  Τ �

In flat spacetime, beta _mu beta^mu=1, providing four more constraints.  Spacetime is flat if M 
goes to 0 or tau goes to infinity, leading to e^(GM/c^2|tau |) goes to 1:  J ¶ t

��������
¶Τ

N2

-
ikjj ¶RÓ

��������
¶Τ

y{zz ×
ikjj ¶RÓ

��������
¶Τ

y{zz = c1
2 - C

Ó
1 × C

Ó
1 = 1

Solve for c_1^2 and C_1.C_1:

c1
2 = e- GM������������

c2  Τ �  
¶ t
��������
¶Τ

C
Ó

1 × C
Ó

1 = e
GM������������

c2  Τ �  
¶RÓ
��������
¶Τ

Substitute back into the flat spacetime constraint.  Rearrange into a metric:

¶Τ2 = e-2 GM������������
c3  Τ �  ¶ t 2 - e2 GM������������

c3  Τ �  ¶RÓ2

If  the gravitational field is zero, this generates the Minkowski metric of flat spacetime.  Con-
versely, if the gravitational field is non−zero, spacetime is curved

As expected, this become the Minkowski metric for flat spacetime if M goes to 0 or tau goes to 
infinity.

No formal connection between this proposal and curvature has been established.  Instead a path 
between a proposed gravitational force equation and a metric function was sketched.  There is a 
historical precedence for the line of logic followed.  Sir Isaac Newton in the Principia showed an 
important link between forces linear in position and inverse square force laws.  More modern 
efforts have shown that the reason for the connection is due to the conformal mapping of z goes to 
z^2 (T. Needham, "Newton and the transmutation of force," Amer. Math. Mon., 100:119−137, 
1993).  This method was adapted to a quaternion force law linear in the relativistic velocity to 
generate a metric.  

For a weak field, write the Taylor series expansion in terms of the total mass over the interval to 
second−order in M/|tau|: 
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¶Τ2 = J1 - 2 
GM

�����������
c2  Τ

+ 2 I GM
�����������
c2  Τ

M2 N ¶ t 2 -

-J1 + 2 
GM

�����������
c2  Τ

+ 2 I GM
�����������
c2  Τ

M2 N ¶RÓ2
+ O JI GM

�����������
c2  Τ

M3 N
Contrast this with the Schwarzschild solution in isotropic coordinates expanded to second order in 
M/R (MTW, eq. 31.22):

¶Τ2 = J1 - 2 
GM

�����������
c2  R

+ 2 I GM
�����������
c2  R

M2 N ¶ t 2 -

-J1 + 2 
GM

�����������
c2  R

+ 2.5  I GM
�����������
c2  R

M2 N ¶RÓ2
+ O JI GM

�����������
c2  R

M3 N
The magnitude of the lightlike interval tau in the unified field metric is nearly identical to the 
radius R in the Schwarzschild metric, the difference being the geometric mass of the source 
included in the interval tau . The metric for the scalar potential will  pass the same weak field tests 
of general relativity as the Schwarzschild metric to post−Newtonian accuracy, which does not use 
the second order spatial term. The difference in the higher order terms can be the basis of an experi-
mental test to distinguish this proposal from general relativity. Since the effect is second order in 
the field strength, such a test will  challenge experimental techniques.

The two metrics are numerically very similar for weak fields, but mathematically distinct.  For 
example, the Schwarzschild metric is static, but the unified metric contains a dependence on time 
so is dynamic.  The Schwarzschild metric has a singularity at R=0.  The unified gravitational force 
metric becomes undefined for lightlike intervals.  This might pose less of a conceptual problem, 
since light has no rest mass.  

à The Constant  Velocity  Profile  Solution

In the previous section, the system had a constant point−source mass with a velocity profile that 
decayed with distance.  Here the opposite situation is examined, where the velocity profile is a 
constant, but the mass distribution decays with distance.  Expand the definition of the relativistic 
force using the chain rule:

c  
¶mΒ
�����������

¶Τ
= mc  

¶Β
��������
¶Τ

+ Β c  
¶m
��������
¶Τ

The first term of the force is the one that leads to an approximation of the Schwarzschild metric, 
and by extension, Newton’s law of gravity.  For a region of spacetime where the velocity is con-
stant, this term is zero.  In that region, gravity’s effect is on the distribution of mass over spacetime.  
This new gravitational term is not due to the unified field proposal per se.  It is more in keeping 
with the principles underlying relativity, looking for changes in all components, in this case mass 
distribution with respect to spacetime.

Start with the gravitational force in a region of spacetime with no velocity change: 

Β c  
¶mi����������
¶Τ

= k mg Scalar  H�* A*L Β*

Make the same assumptions as before: the gravitational mass is equal to the inertial mass and the 
gravitational field employs the interval between the worldlines of the test and gravitational masses.  
This generates an equation for the distribution of mass:
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ikjjjΓ 
¶m
��������
¶Τ

+
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��������������������
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¶m
��������
¶Τ

-
Γ Β

Ó
 GM

��������������������
c2 È Τ È2  m
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 Solve for the mass flow:IΓ m, Γ Β
Ó

mM = Ic e
GM���������������

c2 ÈΤÈ� , C
Ó

e- GM���������������
c2 ÈΤÈ� M

As in the previous example for a classical weak field, assume the magnitude of the interval is an 
excellent approximation to the radius divided by the speed of light.  The velocity is a constant, so it 
is the mass distribution that shows an exponential decay with respect to the interval, which is 
numerically no different from the radius over the speed of light.  This is a stable solution.  If the 
mass keeps dropping of exponentially, the velocity profile will  remain constant 

Look at the problem in reverse.  The distribution of matter has an exponential decay with distance 
from the center.  It must solve a differential equation with the velocity constant over that region of 
spacetime like the one proposed.

The exponential decay of the mass of a disk galaxy is only one solution to this expanded gravita-
tional force equation.  The behavior of larger systems, such as gravitational lensing caused by 
clusters, cannot be explained by the Newtonian term (A. G. Bergmann, V. Petrosian, and R. Lynds, 
"Gravitational lens images of arcs in clusters," Astrophys. J., 350:23, 1990. S. A. Grossman and R. 
Narayan, "Gravitationally lensed images in abell 370," Astrophys. J., 344−637−644, 1989. J. A. 
Tyson, F. Valdes, and R. A. Wenk, "Detection of systematic gravitational lens galaxy image align-
ments: Mapping dark matter in galaxy clusters," Astrophys. J. Let., 349:L1, 1990).  It will  remain 
to be seen if this proposal is sufficient to work on that scale.

à  Metrics  and Forces

Gravity was first described as a force by Isaac Newton.  In general relativity, Albert Einstein 
argued that gravity was not a force at all.  Rather, gravity was Riemannian geometry, curvature of 
spacetime caused by the presence of a mass−energy density.  Electromagnetism was first described 
as a force, modeled on gravity.  That remains a valid choice today.  However, electromagnetism 
cannot be depicted in purely geometric terms.  A conceptual gap exists between purely geometrical 
and force laws.  

The general equivalence principle, introduced in the first paper of this series, places geometry and 
force potentials on equal footing.  Riemannian quaternions, (a_0 i_0, a_1 i_1/3, a_2 i_2/3, a_3 
i_3/3), has pairs of (possibly) dynamic terms for the 4−potential A and the 4−basis I.  Gauss’ law 
written with Riemannian quaternion potentials and operators leads to this expression:
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���������
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¶En����������
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¶ i

`
n����������

¶ i n
= 4 ΠΡ, n = 1, 2, 3

If  the divergence of the electric field E was zero, then Gauss’ law would be due entirely to the 
divergence of the basis vectors.  The reverse case could also hold.  Any law of electrodynamics 
written with Riemannian quaternions is a combination of changes in potentials and/or basis vectors.

121

     



à  Future  Directions

An algebraic path between a solution to the Maxwell equations and a classical metric gravitational 
theory has been shown. No effort has been extended yet to quantize the unification proposal. Like 
the early work in quantum mechanics, a collection of hunches is used to connect equations. One is 
left with the question of why this might work? The action of a gauge invariant theory cannot be 
inverted to generate the propagator needed for quantum mechanics. Fixing the gauge makes the 
action invertible, but the additional constraint decreases the degrees of freedom. By using quater-
nions, a division algebra, the equation is necessarily invertible without imposing a constraint. If the 
operation of multiplication surpasses what can be done with division, then Nature cannot harness 
the most robust mathematical structure, a topological algebraic field, the foundation for doing 
calculus. Nature does calculus in four dimensions, and it is this requirement that fixes the gauge. In 
the future, when we understand how to do calculus with four−dimensional automorphic functions, 
we may have a deep appreciation of Nature’s methods.

There is a physical explanation for gravity − it is a local, nonlinear, four−dimensional simple 
harmonic oscillator.  Gravity is all about oscillations.  The Earth returns to approximately the same 
place after one year of travel.  If there were no interfering matter in the way, an apple dropped 
would fall to the center of the Earth, reach the other side, and return in a little over eighty minutes.  
The metric equation that results from this analysis is within the experimental constraints of current 
tests of general relativity.  That makes the proposal reasonable.  For higher order terms of a weak 
field, the proposal is different than the Schwarzschild metric of general relativity.  That makes it 
testable.  There are very few reasonable, testable classical unified field theories in physics, so this 
alone should spark interest in this line of work.

For a spiral galaxy with an exponential mass distribution, dark matter is no longer needed to 
explain the flat velocity profile observed or the long term stability of the disk.  Mass distributed 
over large distances of space has an effect on the mass distribution itself.  This raises an interesting 
question: is there also an effect of mass distributed over large amounts of time? If the answer is 
yes, then this might solve two analogous riddles involving large time scales, flat velocity profiles 
and the stability of solutions.  Classical big bang cosmology theory spans the largest time frame 
possible and faces two such issues.  The horizon problem involves the extremely consistent veloc-
ity profile across parts of the Universe that are not casually linked (MTW, p. 815).  The flatness 
problem indicates how unstable the classical big bang theory is, requiring exceptional fine tuning 
to avoid collapse.  Considerable effort will  be required to substantiate this tenuous hypothesis.  
Any insight into the origin of the unified engine driving the Universe of gravity and light is 
worthwhile.
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Strings  and Quantum  Gravity

In this section, a quaternion 3−string will  be defined.  By making this quantity dimensionless, I will  
argue that it my be involved in a relativistic quantum gravity theory, at least one consistent with 
current experimental tests.  At the current time, this is an idea in progress, not a theory, since the 
equations of motion have not been determined.  It is hoped that the work in the previous section on 
unified fields will  provide that someday. 

à Strings

Let us revisit the difference between two quaternions squared, as worked out in the section of 
analysis.  A quaternion has 4 degrees of freedom, so it can be represented by 4 real numbers:

q = Ha0 , a1 , a2 , a3 L
Taking the difference between two quaternions is only a valid operation if they share the same 
basis.  Work with defining the derivative with respect to a quaternion has required that a change in 
the scalar be equal in magnitude to the sum of changes in the 3−vector (instead of the usual parity 
with components).  These concerns lead to the definition of the difference between two quaternions:

dq = Ida0 e0 , da1  
e1�������
3

, da2  
e2�������
3

, da3  
e3�������
3

M
What type of information must e0, e1, e2, and e3 share in order to make subtraction a valid opera-
tion?  There is only one basis, so the two events that make up the difference must necessarily be 
expressed in the same basis.  If not, then the standard coordinate transformation needs to be done 
first.  A more subtle issue is that the difference must have the same amount of intrinsic curvature 
for all three spatial basis vectors.  If this is not the case, then it would not longer be possible to do a 
coordinate transformation using the typical methods.  There would be a hidden bump in an other-
wise smooth transformation!  At this point, I do not yet understand the technical link between basis 
vectors and intrinsic curvature.  I will  propose the following relationship between basis vectors 
because its form suggests a link to intrinsic curvature:

-
1

���������
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2 = -
1

���������
e2

2 = -
1

���������
e3

2 = e0
2

If  e0 = 1, this is consistent with Hamilton’s system for 1, i, j, and k.  The dimensions for the spatial 
part are 1/distance^2, the same as intrinsic curvature.  This is a flat space, so −1/e1^2 is something 
like 1 + k.  In effect, I am trying to merge the basis vectors of quaternions with tools from topol-
ogy.  In math, I am free to define things as I choose, and if lucky, it will  prove useful later on :−)

Form the square of the difference between two quaternion events as defined above:

dq2 = Jda0
2  e0

2 + da1
2  

e1
2

���������
9

+ da2
2  

e2
2

���������
9

+ da3
2  

e3
2

���������
9

,

2 da0  da1  e0  
e1�������
3

, 2 da0  da2  e0  
e2�������
3

, 2 da0  da3  e0  
e3�������
3

N =
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= Hinterval 2 , 3 - string L
The scalar is the Lorentz invariant interval of special relativity if e0 = 1.  

Why use a work with a powerful meaning in the current physics lexicon for the vector dt dX?  A 
string transforms differently than a spatial 3−vector, the former flipping signs with time, the latter 
inert.  A string will  also transform differently under a Lorentz transformation.  

The units for a string are time*distance.  For a string between two events that have the same spatial 
location, dX = 0, so the string dt dX is zero.  For a string between two events that are simultaneous, 
dt = 0 so the string is again of zero length.  Only if two events happen at different times in different 
locations will  the string be non−zero.  Since a string is not invariant under a Lorentz transforma-
tion, the value of a string is 

We all appreciate the critical role played by the 3−velocity, which is the ratio of dX by dt.  Hope-
fully  we can imagine another role as important for the product of these same two numbers.  

à Dimensionless  Strings

Imagine some system that happens to create a periodic pattern of intervals and strings (a series of 
events that when you took the difference between neighboring events and squared them, the results 
had a periodic pattern).  It could happen :−)  One might be able to use a collection of sines and 
cosines to regenerate the pattern, since sines and cosines can do that sort of work.  However, the 
differences would have to first be made dimensionless, since the infinite series expansion for such 
transcendental functions would not make sense.  The first step is to get all the units to be the same, 
using c.  Let a0 have units of time, and a1, a2, a3 have units of space.  Make all components have 
units of time:

dq2 = Jda0
2  e0

2 + da1
2  

e1
2

�����������
9 c2 + da2

2  
e2

2
�����������
9 c2 + da3

2  
e3

2
�����������
9 c2 ,

2 da0  da1  e0  
e1��������
3 c

, 2 da0  da2  e0  
e2��������
3 c

, 2 da0  da3  e0  
e3��������
3 c

N
Now the units are time squared.  Use a combination of 3 constants to do the work of making this 
dimensionless.

1����G ® mass time 2

��������������������
distance 3

1����h ® time���������������������������
mass distance 2 c5 ® distance 5

�������������������
time 5

The units for the product of these three numbers are the reciprocal of time squared.  This is the 
same as the reciprocal of the Planck time squared, and in units of seconds is 5.5x10^85s^−2.  The 
symbols needed to make the difference between two events dimensionless are simple:

dq2 =
c5

��������
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 Jda0
2  e0

2 + da1
2  

e1
2

�����������
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�����������
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2 da0  da1  e0  
e1��������
3 c

, 2 da0  da2  e0  
e2��������
3 c

, 2 da0  da3  e0  
e3��������
3 c

N
As far as the units are concerned, this is relativistic (c) quantum (h) gravity (G).   Take this con-
stants to zero or infinity, and the difference of a quaternion blows up or disappears.
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à Behaving  Like  a Relativistic  Quantum  Gravity  Theory

Although the units suggest a possible relativistic quantum gravity, it is more important to see that it 
behaves like one.  Since this unicorn of physics has never been seen I will  present 4 cases which 
will  show that this equation behaves like that mysterious beast!

Consider a general transformation T that brings the difference between two events dq into dq’.  
There are four cases for what can happen to the interval and the string between these two events 
under this general transformation.

Case 1:  Constant  Intervals  and Strings

T : dq ® dq ’ such that scalar  Hdq2 L =
scalar  Hdq ’ 2 L and vector Hdq2 L = vector Hdq ’ 2 L

This looks simple, but there is no handle on the overall sign of the 4−dimensional quaternion, a 
smoke signal of O(4).  Quantum mechanics is constructed around dealing with phase ambiguity in 
a rigorous way.  This issue of ambiguous phases is true for all four of these cases.

Case 2:  Constant  Intervals

T : dq ® dq ’ such that scalar  Hdq2 L =
scalar  Hdq ’ 2 L and vector Hdq2 L ¹ vector Hdq ’ 2 L

Case 2 involves conserving the Lorentz invariant interval, or special relativity.  Strings change 
under such a transformation, and this can be used as a measure of the amount of change between 
inertial reference frames.

Case 3:  Constant  Strings

T : dq ® dq ’ such that scalar  Hdq2 L ¹
scalar  Hdq ’ 2 L and vector Hdq2 L = vector Hdq ’ 2 L

Case 3 involves conserving the quaternion string, or general relativity.  Intervals change under such 
a transformation, and this can be used as a measure of the amount of change between non−inertial 
reference frames.  All  that is required to make this simple but radical proposal consistent with 
experimental tests of general relativity is the following:

1 - 2
GM

�����������
c2  R

= -
1

���������
e1

2 = -
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���������
e2

2 = -
1

���������
e3

2 = e0
2

The string, because it is the product of e0 e1, e0 e2, and e0 e3, will  not be changed by this.  The 
phase of the string may change here, since this involves the root of the squared basis vectors.  The 
interval depends directly on the squares of the basis vectors (I think of this as being 1+/− the intrin-
sic curvature, but do not know if that is an accurate technical assessment).  This particular value 
regenerates the Schwarzschild solution of general relativity.
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Case 4:  No Constants

T : dq ® dq ’ such that scalar  Hdq2 L ¹
scalar  Hdq ’ 2 L and vector Hdq2 L ¹ vector Hdq ’ 2 L

In this proposal, changes in the reference frame of an inertial observer are logically independent 
from changing the mass density.  The two effects can be measured separately.  The change in the 
length−time of the string will  involve the inertial reference frame, and the change in the interval 
will  involve changes in the mass density.

à The Missing  Link

At this time I do not know how to use the proposed unified field equations discussed earlier to 
generate the basis vectors shown.  This will  involve determining the precise relationship between 
intrinsic curvature and the quaternion basis vectors.  
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Answering  Prima  Facie Questions  in Quantum  Gravity  Using  
Quaternions

(Note: this was a post sent to the newsgroup sci.physics.research June 28, 1998)

Chris Isham’s paper "Prima Facie Questions in Quantum Gravity" (gr−qc/9310031,  October, 
1993) details the structure required of any approach to quantum gravity.  I will  use that paper as a 
template for this section, noting the highlights (but please refer to this well−written paper for 
details).  Wherever appropriate, I will  point out how using quaternions in quantum gravity fits 
within this superstructure.  I will  argue that all the technical parts required are all ready part of 
quaternion mathematics.  These tools are required to calculate the smallest norm between two 
worldlines, which may form a new road to quantum gravity.

à What Is Quantum  Gravity?

Isham sorts the approaches to quantum gravity into four groups.  First, there is the classical 
approach.  This begins with Einstein’s general relativity.  Systematically substitute self−adjoint 
operators for classical terms like energy and momentum.  This gets further subdivided into the 
’canonical’ scheme where spacetime is split into time and space−−Ashtekar’s work−−and a covari-
ant formulation, which is believed to be perturbatively non−renormalizable.  

The second approach takes quantum mechanics and transforms it into general relativity.  Much less 
effort has gone in this direction, but there has been work done by Haag.

The third angle has general relativity as the low energy limit of ideas based in conventional quan-
tum mechanics.  Quantum gravity dominates the world on the scale of Plank time, length, or 
energy, a place where only calculations can go.  This is where superstring theory lives.

The fourth possibility involves a radical new perspective, where general relativity and quantum 
mechanics are only different applications of the same mathematical structure.  This would require a 
major "retooling".  People with the patience to have read many of my posts (even if not followed 
:−) know this is the task facing work with quaternions.  Replace the tools for doing special relativi-
ty−−4−vectors, metrics, tensors, and groups−−with quaternions that preserve the scalar of a 
squared quaternion.  Replace the tools for deriving the Maxwell equations−−4−potentials, metrics, 
tensors, and groups−−by quaternion operators acting on quaternion potentials using combinations 
of commutators and anticommutators.  It remains to be shown whether quaternions also have the 
structure required for a quantum gravity theory.

à Why Do We Study  Quantum  Gravity?

Isham gives six reasons: the inability to calculate using perturbation theory a correction for general 
relativity, singularities, quantum cosmology (particularly the Big Bang), Hawking radiation, unifica-
tion of particles, and the possibility of radical change.  This last reason could be a lot of fun, and it 
is the reason to read this post :−)
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à What Are Prima  Facie Questions?

The first question raised by Isham is the relation between classical and quantum physics.  Physics 
with quaternions has a general guide.  Consider two arbitrary quaternions, q and q’.  The classical 
distance between them is the interval. IHt , XÓL - It ¢ , X¢ÓÖÖÖ MM2

= Hdt 2 - d XÓ. d XÓ, 2 dt d XÓL
This involves retooling, because the distance also includes a 3−vector.  There is nothing inherently 
wrong with this vector, and it certainly could be computed with standard tools.  To be complete, 
measure the difference between two quaternions with a quaternion containing the usual invariant 
scalar interval and a covariant 3−vector.  To distinguishing collections of events that are lightlike 
separated where the interval is zero, use the 3−vector which can be unique.  Never discard useful 
information!

Quantum mechanics involves a Hilbert space.  Quaternions can be used to form an inner−product 
space.  The norm of the difference between q and q’ isIHt , XÓL - It ¢ , X¢ÓÖÖÖ MM*

 IHt , XÓL - It ¢ , X¢ÓÖÖÖ MM =Idt 2 + d XÓ. d XÓ, 0
ÓM

The norm can be used to build all the equipment expected of a Hilbert space, including the 
Schwarz and triangle inequalities.  The uncertainty principle can be derived in the same way as is 
done with the complex−valued wave function.

I call q q’ a Grassman product (it has the cross product in it) and q* q’ the Euclidean product (it is a 
Euclidean norm if q = q’).  In general, classical physics involves Grassman products and quantum 
mechanics involves Euclidean products of quaternions.

Isham moves from big questions to ones focused on quantum gravity. Which classical spacetime 
concepts are needed?  Which standard parts of quantum mechanics are needed?  Should particles 
be united?  With quaternions, all these concepts are required, but the tools used to build them 
morph and become unified under one algebraic umbrella.

Isham points out the difficulty of clearly marking a boundary between theories and fact.  He writes:

"...what we call a ’fact’ does not exist without some theoretical schema for organizing experimental 
and experiential data; and, conversely, in constructing a theory we inevitably impose some prior 
idea of what we mean by a fact."

My structure is this:  the description of events in spacetime using the topological algebraic field of 
quaternions is physics.

à Current  Research  Programs  in Quantum  Gravity

There is a list of current approaches to quantum gravity.  This is solid a description of the family of 
approaches being used, circa 1993.  See the text for details.

à Prima  Facie Questions  in Quantum  Gravity

Isham is concerned with the form of these approaches.  He writes:

 "I mean (by background structure) the entire conceptual and structural framework within whose 
language any particular approach is couched. Different approaches to quantum gravity differ signifi-
cantly in the frameworks they adopt, which causes no harm−−indeed the selection of such a frame-
work is an essential pre−requisite for theoretical research−−provided the choice is made 
consciously."
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 "I mean (by background structure) the entire conceptual and structural framework within whose 
language any particular approach is couched. Different approaches to quantum gravity differ signifi-
cantly in the frameworks they adopt, which causes no harm−−indeed the selection of such a frame-
work is an essential pre−requisite for theoretical research−−provided the choice is made 
consciously."

My framework was stated explicitly above, but it literally does not appear on the radar screen of 
this discussion of quantum gravity.  Moments later comes this comment:

"In using real or complex numbers in quantum theory we are arguably making a prior assumption 
about the continuum nature of space."

This statement makes a hidden assumption, that quaternions do not belong on a list that includes 
real and complex numbers.  Quaternions have the same continuum properties as the real and com-
plex numbers.  The important distinction is that quaternions do not commute.  This property is 
shared by quantum mechanics so it should not banish quaternions from the list.  The omission 
reflects the history of work in the field, not the logic of the mathematical statement.

General relativity may force non−linearity into quantum theory, which require a change in the 
formalism.  It is easy to write non−linear quaternion functions.  Near the end of this section I will  
do that in an attempt to find the shortest norm in spacetime which happens to be non−linear.

Now we come to the part of the paper that got me really excited!  Isham described all the machin-
ery needed for classical general relativity.  The properties of quaternions dovetail the needs per-
fectly.  I will  quote at length, since this is helpful for anyone trying to get a handle on the nature of 
general relativity.

"The mathematical model of spacetime used in classical general relativity is a differentiable mani-
fold equipped with a Lorentzian  metric.  Some of the most important pieces of substructure underly-
ing this picture are illustrated in Figure 1.

The bottom level is a set M whose elements are to be identified with spacetime ’points’ or ’events’. 
This set is formless with its only general mathematical property being the cardinal number.  In 
particular, there are no relations between the elements of M and no special way of labeling any 
such element.  

The next step is to impose a topology on M so that each point acquires a family of neighborhoods.  
It now becomes possible to talk about relationships between point, albeit in a rather non−physical 
way.  This defect is overcome by adding the key of all standard views of spacetime: the topology 
of M must be compatible with that of a differentiable manifold.  A point can then be labeled 
uniquely in M (at least locally) by giving the values of four real numbers.  Such a coordinate sys-
tem also provides a more specific way of describing relationships between points of M, albeit not 
intrinsically in so far as these depend on which coordinate systems are chosen to cover M.

In the final step a Lorentzian metric g is placed on M, thereby introducing the ideas of the length of 
a path joining two spacetime points, parallel transport with respect to a Riemannian connection, 
causal relations between pairs of points etc.  There are also a variety of possible intermediate steps 
between the manifold and Lorentzian pictures; for example, as signified in Figure 1, the idea of  
causal structure is more primitive than that of a Lorentzian metric."

My hypothesis to treat events as quaternions lends more structure than is found in the set M.  Specif-
ically, Pontryagin proved that quaternions are a topological algebraic field.  Each point has a neigh-
borhood, and limit processes required for a differentiable manifold make sense.  Label every quater-
nion event with four real numbers, using whichever coordinate system one chooses.  Earlier in this 
section I showed how to calculate the Lorentz interval, so the notion of length of a path joining two 
events is always there.  As described by Isham, spacetime structure is built up with care from four 
unrelated real numbers.  With quaternions as events, spacetime structure is the observed properties 
of the mathematics, inherited by all quaternion functions.

Much work in quantum gravity has gone into viewing how flexible the spacetime structure might 
be.  The most common example involves how quantum fluctuations might effect the Lorentzian 
metric.  Physicists have tried to investigate how such fluctuation would effect every level of space-
time structure, from causality, to the manifold to the topology, even the set M somehow.
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Much work in quantum gravity has gone into viewing how flexible the spacetime structure might 
be.  The most common example involves how quantum fluctuations might effect the Lorentzian 
metric.  Physicists have tried to investigate how such fluctuation would effect every level of space-
time structure, from causality, to the manifold to the topology, even the set M somehow.

None of these avenues are open for quaternion work.  Every quaternion equation inherits this 
wealth of spacetime structure.  It is the family quaternion functions are born in.  There is nothing to 
stop combining Grassman and Euclidean products, which at an abstract level, is the way to merge 
classical and quantum descriptions of collections of events.  If a non−linear quaternion function 
can be defined that is related to the shortest path through spacetime, the cast required for quantum 
gravity would be complete.

According to Isham, causal structure is particularly important.  With quaternions, that issue is 
particularly straightforward.  Could event q have caused q’?  Take the difference and square it.  If 
the scalar is positive, then the relationship is timelike, so it is possible.  Is it probable?  That might 
depend on the 3−vector, which could be more likely if the vector is small (I don’t understand the 
details of this suggestion yet).  If the scalar is zero, the two have a lightlike relationship.  If the 
scalar is negative, then it is spacelike, and one could not have caused the other.

This causal structure also applies to quaternion potential functions.  For concreteness, let q(t) = 
cos(pi t (2i + 3j + 4k)) and q’(t) = sin( pi t (5i − .1j + 2k).  Calculate the square of the difference 
between q and q’.  Depending on the particular value of t, this will  be positive, negative or zero.  
The distance vectors could be anywhere on the map.  Even though I don’t know what these particu-
lar potential functions represent, the causal relationship is easy to calculate, but is complex and not 
trivial.

à The Role of  the Spacetime  Diffeomorphism  Group  Diff(M)

Isham lets me off the hook, saying "...[for type 3 and 4 theories]  there is no strong reason to sup-
pose that Diff(M)  will  play any  fundamental role in [such] quantum theory."  He is right and 
wrong.  My simple tool collection does not include this group.  Yet the concept that requires this 
idea is essential.  This group is part of the machinery that makes possible causal measurements of 
lengths in various topologies.  Metrics change due to local conditions.  The concept of a flexible, 
causal metric must be preserved.

With quaternions, causality is always found in the scalar of the square of the difference.  For two 
events in flat spacetime, that is the interval.  In curved spacetime, the scalar of the square is differ-
ent, but it still is either positive, negative or zero.

à The Problem  of  Time

Time plays a different role in quantum theory and in general relativity.  In quantum, time is treated 
as a background parameter since it is not represented by an operator.  Measurements are made at a 
particular time.  In classical general relativity in curved spacetime, there are many possible metrics 
which might work, but no way to pick the appropriate one.  Without a clear definition of measure-
ment, the definition is non−physical.  Fixing the metric cannot be done if the metric is subject to 
quantum fluctuations.

Isham raises three questions:

"How is the notion of time to be incorporated in a quantum theory of gravity?

Does it play a fundamental role in the construction of the theory or is it a ’phenomenological’ 
concept that applies, for example, only in some coarse−grained, semi−classical sense?

In the latter case, how reliable is the use at a basic level of techniques drawn from standard quan-
tum theory?"

Three solutions are noted: fix the background causal structure, locate events within functionals of 
fields, or make no reference to time.

With quaternions, time plays a central role, and is in fact the center of the matrix representation.  
Time is isomorphic to the real numbers, so it forms a totally ordered sub−field of the quaternions.  
It is not time per se, but the location of time within the event quaternion (t, x i, y j, z k) that gives 
time its significance.  The scalar slot can be held by energy (E, px i, py j, pz k), the tangent of 
spacetime, by the interval of classical physics (t^2 − x^2 − y^2 − z^2, 2 tx i, 2 ty j, 2 tz k) or the 
norm of quantum mechanics (t^2 + x^2 + y^2 + z^2, 0, 0, 0).  Time, energy, intervals, 
norms,...they all can take the same throne isomorphic to the real numbers, taking on the properties 
of a totally ordered set within a larger, unordered framework.  Events are not totally ordered, but 
time is.  Energy/momenta are not totally ordered, but energy is.  Squares of events are not totally 
ordered, but intervals are.  Norms are totally ordered and bounded below by zero. 
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With quaternions, time plays a central role, and is in fact the center of the matrix representation.  
Time is isomorphic to the real numbers, so it forms a totally ordered sub−field of the quaternions.  
It is not time per se, but the location of time within the event quaternion (t, x i, y j, z k) that gives 
time its significance.  The scalar slot can be held by energy (E, px i, py j, pz k), the tangent of 
spacetime, by the interval of classical physics (t^2 − x^2 − y^2 − z^2, 2 tx i, 2 ty j, 2 tz k) or the 
norm of quantum mechanics (t^2 + x^2 + y^2 + z^2, 0, 0, 0).  Time, energy, intervals, 
norms,...they all can take the same throne isomorphic to the real numbers, taking on the properties 
of a totally ordered set within a larger, unordered framework.  Events are not totally ordered, but 
time is.  Energy/momenta are not totally ordered, but energy is.  Squares of events are not totally 
ordered, but intervals are.  Norms are totally ordered and bounded below by zero. 

Time is the only element in the scalar of an event.  Time appears in different guises for the scalars 
of energy, intervals and norms.  The richness of time is in the way it weaves through these other 
scalars, sharing the center in different ways with space.

à Approaches  to Quantum  Gravity

Isham surveys the field.  At this point I think I’ll  just explain my approach.  It is based on a concept 
from general relativity.  A painter falling from a ladder travels along the shortest path through 
spacetime.  How does one go about finding the shortest path?  In Euclidean 3−space, that involves 
the triangle inequality.  A proof can be done using quaternions if the scalar is set to zero.  That 
proof can be repeated with the scalar set free.  The result is the shortest distance through spacetime, 
or gravity, according to general relativity.

What is the shortest distance between two points A and B in Euclidean 3−space?

A = H0, ax , ay , az L
B = H0, bx , by , bz L

What is the shortest distance between two worldlines A(t) and B(t) in spacetime?

A Ht L = Ht , ax  Ht L, ay  Ht L, az  Ht LL
B Ht L = Ht , bx  Ht L, by  Ht L, bz  Ht LL

The Euclidean 3−space question is a special case of the worldline question.  The same proof of the 
triangle inequality answers both questions.  Parameterize the norm N(k) of the sum of A(t) and B(t).

N HkL = HA + k BL* HA + k BL
= A*  A + k  HA* B + B* AL + k ^ 2 B* B

Find the extremum of the parameterized norm.

dN
�������
dk

= 0 = A* B + B* A + 2 k B* B

The extremum is a minimum

d2 N
�����������
dk 2 = 2 B* B ³ 0

The minimum of a quaternion norm is zero.  Plug the extremum back into the first equation.
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0 £ A*  A -
HA* B + B* AL2

����������������������������������
2 B* B

+
HA* B + B* AL2

����������������������������������
4 B* B

Rearrange.HA* B + B* AL2 £ 4 A*  A B* B

Take the square root.

A* B + B* A £ 2 
�!!!!!!!!!!!!!!!!!!!!A*  A B* B

Add the norm of A and B to both sides.

A* A + A* B + B* A + B* B £ A*  A + 2 �!!!!!!!!!!!!!!!!!!!!A*  A B* B + B* B

Factor.

N HA + BL = HA + BL* HA + BL £ I�!!!!!!!!!!A*  A +
�!!!!!!!!!!B* BM2

The norm of the worldline of A plus B is less than the norm of A plus the norm of B.

List the mathematical structures required.  To move the triangle inequality from Euclidean 3−space 
to worldlines required the inclusion of the scalar time component of quaternions.  The proof 
required differentiation to find the minimum.  The norm is a Euclidean product, which plays a 
central role in quaternion quantum mechanics.  Doubling A or B does not double the norm of the 
sum due to cross terms, so the minimal function is not linear. 

To address a question raised by general relativity with quaternions required all the structure Isham 
suggested except causality using the Grassman product.  The above proof could be repeated using 
Grassman products.  The only difference would be that the extremum would be an interval which 
can be positive, negative or zero (a minimum, a maximum or an inflection point).  

à Certainty  Is Seven for  Seven 

I thought I’d end this long section with a personal story.  At the end of my college days, I started 
drinking heavily.  Not alcohol, soda.  I’d buy a Mellow Yellow and suck it down in under ten 
seconds.  See, I was thirsty.  Guzzle that much soda, and, well, I also had to go to the bathroom, 
even in the middle of the night.  I was trapped in a strange cycle.  Then I noticed my tongue was 
kind of foamy.  Bizarre.  I asked a friend with diabetes what the symptoms of that disease were.  
She rattled off six: excessive thirst, excessive urination, foamy tongue, bad breath, weight loss, and 
low energy.  I concluded on the spot I had diabetes.  She said that I couldn’t be certain.  Six for six 
is too stringent a match, and I felt very confident I had this chronic illness.  I got the seventh later 
when she tested my blood glucose on her meter and it was off−scale.  She gave me sympathy, but I 
didn’t feel at all sorry for myself.  I wanted facts: how does this disease work and how do I cope?

Nothing was made official until I visited the doctor and he ran some tests.  The doctor’s prescrip-
tion got me access to the insulin I could no longer produce.  It was, and still is today, a lot of work 
to manage the disease.

When I look at Isham’s paper, I see six constraints on the structure of any approach to quantum 
gravity: events are sets of 4 numbers, events have topological neighborhoods, they live on differen-
tial manifolds, there is one of the three types of causal relationships between all events, the distance 
between events is the interval whose form can vary and a Hilbert space is required for quantum 
mechanics.  Quaternions are six for six.  The seventh match is the non−linear shortest norm of 
spacetime.  I have no doubt in the diagnosis that the questions in quantum gravity will  be answered 
with quaternions.  Nothing here is official.  There are many test that must be passed.  I don’t know 
when the doctor will  show up and make it official.  It will  take a lot of work to manage this 
solution.
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When I look at Isham’s paper, I see six constraints on the structure of any approach to quantum 
gravity: events are sets of 4 numbers, events have topological neighborhoods, they live on differen-
tial manifolds, there is one of the three types of causal relationships between all events, the distance 
between events is the interval whose form can vary and a Hilbert space is required for quantum 
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spacetime.  I have no doubt in the diagnosis that the questions in quantum gravity will  be answered 
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solution.
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Length  in Curved  Spacetime

à The Affine  Parameter  of  General  Relativity

The affine parameter is defined in Misner, Thorne and Wheeler as a multiple of the proper time 
plus a displacement.

Λ = a Τ + b

The affine parameter is used to determine length in curved spacetime.  In this section, the length of 
a quaternion in curved spacetime will  be analyzed.  Under certain approximations, this length will  
depend on the square of the affine parameter, but the two measures are slightly different.

à Length  in Flat  Spacetime

Calculating the square of the interval between two events in flat spacetime was straightforward: 
take the difference between two quaternions and square it.

Lflat = Hq - q¢L2 = Idt 2 - d XÓ2
, 2 dt d XÓM

The first term is the square of the interval.  Spacetime is flat in the sense that the first term is 
exactly like the Minkowski metric in spacetime. There are quaternions which preserve the interval, 
and those quaternions were used to solve problems in special relativity. 

Although not important in this context, it is significant that the value of the vector portion depends 
upon the observer.  This gives a way to distinguish between various frequencies of light for 
example.

à Length  in Curved  Spacetime

Consider if the origin  is located at two different locations in spacetime.  Characterize each origin 
as a quaternion, calling the o and o’.  In flat spacetime, the two origins would be identical.  Calcu-
late the interval as done above, but account for the change in the origin.

Lcurved = HHq + oL - Hq¢ + o¢LL2

= Id Ht + t o L2 - d HXÓ + XÓo L2
, 2 d Ht + t o L d HXÓ + XÓo LM

Examine the first term more closely by expanding it.Idt 2 - d XÓ2 M + Idt o
2 - d XÓo

2 M + 2 dt dt o - 2 d XÓ d XÓo

The length in curved spacetime is the square of the interval (invariant under a boost) between the 
two origins, plus the square of the interval between the two events, plus a cross term, which will  
not be invariant under a boost.  The length is symmetric under exchange of the event with the 
origin translation.
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The length in curved spacetime is the square of the interval (invariant under a boost) between the 
two origins, plus the square of the interval between the two events, plus a cross term, which will  
not be invariant under a boost.  The length is symmetric under exchange of the event with the 
origin translation.

L curved looks similar to the square of the affine parameter:

Λ2 = b2 + 2 a b Τ + a2 Τ2

In this case, b^2 is the origin interval squared and a = 1.  There is a difference in the cross terms.  
However, in the small curvature limit, delta to >> delta Xo, so tau ~ delta to.  Under this approxima-
tion, the square of the affine parameter and L curved are the same.

For a strong gravitational field, L curved will  be different than the square of the affine parameter.  
The difference will  be solely in the nature of the cross term.  In general relativity, b and tau are 
invariant under a boost.  For L curved, the cross term should be covariant.  Whether this has any 
effects that can be measured needs to be explored.

There exist quaternions which preserve L curved because quaternions are a field (I haven’t found 
them yet because the math is getting tough at this point!)  It is my hope that those quaternions will  
help solve problems in general relativity, as was the case in special relativity.

à Implications

A connection to the curved geometry of general relativity was sketched.  It should be possible to 
solve problems with this "curved" measure.  As always, all the objects employed were quaternions.  
Therefore any of the previously outline techniques should be applicable.  In particular, it will  be 
fun in the future to think about things likeHHq + oL - Hq¢ + o¢LL*  HHq + oL - Hq¢ + o¢LL

= Id Ht + t o L2 + d HXÓ + XÓo L2
, 2 d Ht + t o L d HXÓ + XÓo LM

= IIdt 2 - d XÓ2 M + Idt o
2 - d XÓo

2 M + 2 dt dt o + 2 d XÓ d XÓo , ... M
which could open the door to a quantum approach to curvature.
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A New Idea for  Metrics

In special relativity, the Minkowski metric is used to calculate the  interval between two spacetime 
intervals for inertial observers.  Einstein  recognized that inertial observes were "special", a unique 
class.  Therefore he set out to understand what was the most general notion for  transformations 
and metrics.  This lead to his study of Riemannian geometry, and eventually to general relativity.  
In this section I shall start from the Lorentz invariant interval using quaternions, then try to general-
ize this approach using a different way which might prove compatible with quantum mechanics.

For the physics of gravity, general relativity (GR) makes the right  predictions of all experimental 
tests conducted to date.  For the physics  of atoms, quantum mechanics (QM) makes the right 
predictions to an even  high degree of precision.  The problem of building a quantum theory of  
gravity (QG) hides between general relativity and quantum mechanics.  General relativity deals 
with the measurements of intervals in curved  spacetime, special relativity (SR)  being adapted to 
work in flat space.  Quantum mechanics is used to calculate the norms of wave functions in  a flat 
linear space.  A quantum gravity theory will  be used to calculate  norms of wave functions in 
curved space.

                   Measurement

                 interval  norm

  diff.  flat       SR      QM

  geo.   curved     GR      QG

This chart suggests that the form of measurement (interval/norm) should   be  independent of 
differential geometry (flat/curved).  That will   be the explicit goal of this section.

Quaternions come with a metric, a means of taking 4 numbers and returning a scalar.  Hamilton 
defined the roles like so:

i
Ó2

= j
Ó2

= k
Ó2

= -1 i
Ó

j
Ó

k
Ó

= -1

The scalar result of squaring a differential quaternion in the interval of special relativity:

scalar  IHdt , d XÓL2 M = dt 2 - d XÓ. d XÓ
How can this be generalized?  It might seem natural to explore variations  on Hamilton’s rules 
shown above.  Riemannian geometry uses that strategy.  When working with a field like quater-
nions, that approach bothers me  because Hamilton’s rules are fundamental to the very definition of 
a  quaternion.  Change these rules and it may not be valid to compare physics  done with different 
metrics.  It may cause a compatibility problem.

Here is a different approach which generalizes the scalar of the square while being consistent with 
Hamilton’s rules.

interval 2 = scalar  Hg dq g dqL

136

     



if g = I1, 0
ÓM,

then interval 2 = dt 2 - d XÓ. d XÓ
If  g is the identity matrix.  Then then result is the flat Minkowski  interval.  The quaternion g could 
be anything.  What if g = i?  (what  would you guess, I was surprised :−)

scalar  HHH0, 1, 0, 0L Ht , x, y, zLL2 L =

= I-t 2 + x2 - y2 - z2 , 0
ÓM

Now the special direction x plays the same role as time!  Does this make  sense physically?  Here is 
one interpretation.  When g=1, a time−like  interval is being measured with a wristwatch.  When 
g=i, a space−like  interval along the x axis is being measured with a meter stick along the  x axis.

Examine the most general case, where small letters are scalar, and capital letters are 3−vectors:

interval 2 = scalar  HHg, G
ÓL Hdt , d XÓL Hg, G

ÓL Hdt , d XÓLL =

= g2  Hdt 2 - d XÓ. d XÓL - 4 g dt G
Ó

. d XÓ +HG
Ó

. d XÓL2
- dt 2  d G

Ó
. d G

Ó
- HG

Ó
 xd  XÓL. HG

Ó
 xd  XÓL =

In component form...

= H+ g2 - Gx2 - Gy2 - Gz2 L dt 2 +

+ H- g2 + Gx2 - Gy2 - Gz2 L dx 2 +

+ H- g2 - Gx2 + Gy2 - Gz2 L dy 2

+ H- g2 - Gx2 - Gy2 + Gz2 L dz 2 +

- 4 g Gx dt dx - 4 g Gy dt dy - 4 g Gz dt dz

+ 4 Gx Gy ds dy + 4 Gx Gz dx dz + 4 Gy Gz dy dz

This has the same combination of ten differential terms found in the  Riemannian approach.  The 
difference is that Hamilton’s rule impose an  additional structure.

I have not yet figured out how to represent the stress tensor, so  there are no field equations to be 
solved.  We can figure out some of the  properties of a static, spherically−symmetric metric.  Since 
it is static,  there will  be no terms with the deferential element dt dx, dt dy, or dt  dz.  Since it is 
spherically symmetric, there will  be no terms of the  form dx dy, dx dz, or dy dz.  These constraints 
can both be achieved if Gx  = Gy = Gz = 0.  This leaves four differential equations.

Here I will  have to stop.  In time, I should be able to figure out  quaternion field equations that do 
the same work as Einstein’s field  equations. I bet it will  contain the Schwarzschild solution too :−)  
Then it will  be easy to create a Hilbert space with a non−Euclidean norm,  a norm that is deter-
mined by the distribution of mass−energy.  What sort  of calculation to do is a mystery to me, but 
someone will  get to that  bridge...
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The Gravitational  Redshift

Gravitational redshift experiments are tests of conservation of energy in a gravitational potential.  
A photon lower in a gravitational potential expends energy to climb out, and this energy cost is 
seen as a redshift.  In this section, the difference between weak gravitational potentials will  be 
calculated and shown to be consistent with experiment.  Quaternions are not of much use here 
because energy is a scalar, the first term of a quaternion that is a scalar multiple of the identity 
matrix.

à The Pound  and Rebka Experiment

The Pound and Rebka experiment used the Mossbauer effect to measure a redshift between the 
base and the top of a tower at Harvard University.  The relevant potentials are

Φtower =
GM

��������������
r + h

;

Φbase =
GM
��������
r

;

The equivalence principle is used to transform the gravitational potential to a speed (this only 
involves dividing phi by the constant c^2). 

Βtower =
GM

��������������������������
c2  Hr + hL ;

Βbase =
GM

�����������
c2  r

;

Now the problem can be viewed as a relativistic Doppler effect problem.  A redshift in a frequency 
is given by

Ν ’ == HΓ@ΒD + Β Γ@ΒDL Νo

For small velocities, the Doppler effect is

Series @Γ@ΒD + Β Γ@ΒD, 8Β, 0, 1<D
= 1 + Β + O@ΒD2

The experiment measured the difference between the two Doppler shifts.

Series @HH1 + Βtower L - H1 + Βbase LL Νo , 8h, 0, 1<D
= -

GMΝo h
������������������

c2 r 2 + O@hD2

Or equivalently, 
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Ν ’ = g h Νo

This was the measured effect.

à Escape  From  a Gravitational  Potential

A photon can escape from a star and travel to infinity ( or to us, which is a good approximation).  
The only part of the previous calculation that changes is the limit in the final step.

Limit @HH1 + Βtower L - H1 + Βbase LL Νo , h -> Infinity D
= -

GMΝo��������������
c2 r

This shift has been observed in the spectral lines of stars.

à Clocks  at different  heights  in  a gravitational  field

C. O. Alley conducted an experiment which involved flying an atomic clock at high altitude and 
comparing it with an atomic clock on the ground.  This is like integrating the redshift over the time 
of the flight.

à
0

t

-
GMh
�������������
c2 r 2  â t = -

Gh Mt
����������������
c2 r 2

This was the measured effect.

à Implications

Conservation of energy involves the conservation of a scalar.  Consequently, nothing new will  
happen by treating it as a quaternion.  The approach used here was not the standard one employed.  
The equivalence principle was used to transform the problem into a relativistic Doppler shift effect.  
Yet the results are no different.  This is just part of the work to connect quaternions to measurable 
effects of gravity.

à References

For the Pound and Rebka experiment, and escape:

Misner, Thorne, and Wheeler, Gravitation, 1970.

For the clocks at different heights:

Quantum optics, experimental gravitation and measurement theory, Ed. P. Meystre, 1983 (also 
mentioned in Taylor and Wheeler, Spacetime Physics, section 4.10)
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A Brief Summary of Important Laws in

Physics Written as Quaternions

Summary

Classical Mechanics

    Newton’s 2nd Law in an Inertial Reference Frame, Cartesian Coordinates

    Newton’s 2nd law in an Inertial Reference Frame, Polar Coordinates, for a Central Force

    Newton’s 2nd Law in a Noninertial Rotating Reference Frame

    The Simple Harmonic Oscillator

    The Damped SHO

    The Wave Equation

 

Special Relativity

    Rotations and Dilations Create a Representation of the Lorentz Group

    An Alternative Algebra for the Lorentz Group

    

Electromagnetism

    The Maxwell Equations

    Maxwell Written With Potentials

    The Lorentz Force

    Conservation Laws

    The Field Tensor F in Different Gauges

    The Maxwell Equations in the Light Gauge (QED?)

    The Stress Tensor of the Electromagnetic Field

    

Quantum Mechanics

    Quaternions in Polar Coordinate Form

    Multiplying Quaternion Exponentials

    Commutators of Observable Operators

    The Uncertainty Principle

    Automorphic Commutator Identities

    The Schrödinger Equation

    The Klein−Gordon Equation

    Time Reversal Transformations for Intervals

    

Gravity

    The 3 Fields: g, E & B

    Field Equations

    Recreating Maxwell

    Unified Field Equations

    Conservation Laws

    Gauge Transformations

    Equations of Motion

    Unified Equations of Motion

    Strings

    Dimensionless Strings

    Behaving Like a Relativistic Quantum Gravity Theory
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Classical Mechanics

    Newton’s 2nd Law in an Inertial Reference Frame, Cartesian Coordinates

    Newton’s 2nd law in an Inertial Reference Frame, Polar Coordinates, for a Central Force

    Newton’s 2nd Law in a Noninertial Rotating Reference Frame

    The Simple Harmonic Oscillator

    The Damped SHO

    The Wave Equation

 

Special Relativity

    Rotations and Dilations Create a Representation of the Lorentz Group

    An Alternative Algebra for the Lorentz Group

    

Electromagnetism

    The Maxwell Equations

    Maxwell Written With Potentials

    The Lorentz Force

    Conservation Laws

    The Field Tensor F in Different Gauges

    The Maxwell Equations in the Light Gauge (QED?)

    The Stress Tensor of the Electromagnetic Field

    

Quantum Mechanics

    Quaternions in Polar Coordinate Form

    Multiplying Quaternion Exponentials

    Commutators of Observable Operators

    The Uncertainty Principle

    Automorphic Commutator Identities

    The Schrödinger Equation

    The Klein−Gordon Equation

    Time Reversal Transformations for Intervals

    

Gravity

    The 3 Fields: g, E & B

    Field Equations

    Recreating Maxwell

    Unified Field Equations

    Conservation Laws

    Gauge Transformations

    Equations of Motion

    Unified Equations of Motion

    Strings

    Dimensionless Strings

    Behaving Like a Relativistic Quantum Gravity Theory

Each of the following laws of physics are generated by quaternion operators acting on the appropri-
ate quaternion−valued functions.  The generators of these common laws often provide insight.

à Classical  Mechanics

Newton’s  2nd Law for  an Inertial  Reference  Frame in Cartesian  Coordinates

A = J d
�������
dt

, 0
ÓN I1, RÓ M = J0, RÓ|N

Newton’s  2nd Law in Polar  Coordinates  for  a Central  Force  in a Plane

A = HCos@ΘD, 0, 0, -Sin @ΘDL J d
�������
dt

, 0
ÓN2

 Ht , RCos@ΘD, RSin @ΘD, 0L =
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= ikjj0,
L2

�������������
m2  R3 + R

|
,

2 L R
 

������������
mR2 , 0y{zz

Newton’s  2nd Law in a Noninertial,  Rotating  Frame

A = J d
�������
dt

, ΩÓN I- ΩÓ. RÓ , RÓ  + ΩÓ x  RÓM =

= J- ΩÓ . RÓ , RÓ| + 2 ΩÓ x  RÓ  + ΩÓ  x  RÓ - ΩÓ. RÓ ΩÓN
The Simple  Harmonic  Oscillator  (SHO)

J d
�������
dt

, 0
ÓN2

 H0, x, 0, 0L + J0,
k
����
m

 x, 0, 0N =

J0,
d2 x
�����������
dt 2 +

k x
��������
m

, 0, 0N = 0

The Damped  Simple  Harmonic  Oscillator

J d
�������
dt

, 0
ÓN2

 H0, x, 0, 0L +J d
�������
dt

, 0
ÓN H0, b x, 0, 0L + J0,

k
����
m

 x, 0, 0N =

= J0,
d2 x
�����������
dt 2 +

b d x
������������

dt
+

k x
��������
m

, 0, 0N = 0

The Wave Equation

J d
�����������
v dt

,
d

�������
dx

, 0, 0N2

 H0, 0, f @t v + xD, 0L =

= J0, 0, J-
d2

���������
dx 2 +

d2
����������������
dt 2 v2

N f @t v + xD,
2 d2 f @t v + xD
����������������������������������

dt dx v
N

The third term is the one dimensional wave equation.  The forth term is the instantaneous power 
transmitted by the wave.

A Force  Is Conservative  If The Curl  Is Zero

odd  JJ d
�������
dt

, ÑÓN, FÓN = 0
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A Force  Is Conservative  If There Exists  a Potential  Function  for  the Force

F = J d
�������
dt

, ÑÓN HΦ, 0
ÓL

A Force  Is Conservative  If the Line  Integral  of  Any  Closed  Loop  Is Zero

« F dt = 0

A Force  Is Conservative  If the Line  Integral  Along  Different  Paths  Is the SameH «
path 1

L  F dt = H «
path 2

L  F dt

à Special  Relativity

Rotations  and Dilations  Create the Lorentz  Group

q ’ =

q + HΓ - 1L 
even  Ieven  IVÓ*

, qM, VÓM
��������������������������������������������������������È VÓ È2 + Γ even  IVÓ*

, q*M
An Alternative  Algebra  for  Lorentz  Boosts

scalar  HHt , x, y, zL2 L = scalar  HHL Ht , x, y, zLL2 L
For boosts along the x axis...

If  t = 0, then

L = Γ H1, Β, 0, 0L
If  x = 0, then

L = Γ H1, -Β, 0, 0L
If  t = x, then for blueshifts

L = Γ H1 - Β, 0, 0, 0L
For general boosts along the x axis
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L = HΓ t 2 + Γ x2 - 2 Γ Βt x + Hy2 + z2 L, Γ Β H-t 2 + x2 L,
t HΒ Γ z + y H1 - ΓLL - x HΓ Β y + z H1 - ΓLL,
t HΓ Β y + z H1 - ΓLL + x HΓ Β z + y H1 - ΓLLL �Ht 2 + x2 + y2 + z2 L

à Electromagnetism

The Maxwell  Equations

even  JJ ¶
��������
¶ t

, õ
ÓN, H0, BÓLN + odd  JJ ¶

��������
¶ t

, õ
ÓN, H0, EÓLN =ikjj-õ

Ó × BÓ , õ
Ó X EÓ +

¶BÓ
��������
¶ t

y{zz = I0, 0
ÓM

odd  JJ ¶
��������
¶ t

, õ
ÓN, H0, BÓLN - even  JJ ¶

��������
¶ t

, õ
ÓN, H0, EÓLN =ikjj õ

Ó × EÓ , õ
Ó X BÓ -

¶EÓ
��������
¶ t

y{zz = 4 Π HΡ, JÓL
à Maxwell  Written  with  Potentials

The fields

E = vector  Jeven  JJ ¶
��������
¶ t

, -õ
ÓN, HΦ, -AÓLNN =

ikjj0, -
¶AÓ
��������
¶ t

- õ
Ó Φ

y{zz
B = odd  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLN = H0, õ

Ó x AÓ L
The field equations

even  JJ ¶
��������
¶ t

, õ
ÓN, odd  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNN +

odd  JJ ¶
��������
¶ t

, õ
ÓN, vector  Jeven  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNNN =

=
ikjj-õ

Ó × õ
Ó x AÓ ,

¶õ
Ó x AÓ

���������������
¶ t

- õ
Ó X

¶AÓ
��������
¶ t

- õ
Ó x õ

Ó Φ
y{zz =ikjj-õ

Ó × BÓ,
¶BÓ
��������
¶ t

+ õ
Ó x EÓy{zz = I0, 0

ÓM
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odd  JJ ¶
��������
¶ t

, õ
ÓN, odd  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, AÓLNN -

even  JJ ¶
��������
¶ t

, õ
ÓN, vector  Jeven  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNNN =

=
ikjj-õ

Ó × õ
Ó Φ - õ

Ó ×
¶AÓ
��������
¶ t

, õ
Ó X õ

Ó X AÓ +
¶2 AÓ
����������
¶ t 2 +

¶õ
Ó Φ

�����������
¶ t

y{zz =ikjj õ
Ó × EÓ , õ

Ó X BÓ -
¶EÓ
��������
¶ t

y{zz = 4 Π HΡ, JÓL
The Lorentz  Force

odd  IIΓ, Γ Β
ÓM, H0, BÓLM - even  II-Γ, Γ Β

ÓM, H0, EÓLM =IΓ Β
Ó

× EÓ , Γ EÓ + Γ Β
Ó

X BÓM
Conservation  Laws

The continuity equation

scalar  
ikjjJ ¶

��������
¶ t

, -õ
ÓN 

ikjj õ
Ó × EÓ, õ

Ó X BÓ -
¶EÓ
��������
¶ t

y{zzy{zz =ikjj ¶
��������
¶ t

 õÓ × EÓ - õ
Ó ×

¶EÓ
��������
¶ t

+ õ
Ó × õ

Ó X BÓ, 0y{zz =

= scalar  JJ ¶
��������
¶ t

, -õ
ÓN, 4 Π HΡ, JÓLN = 4 Π JEÓ × JÓ +

¶Ρ
��������
¶ t

, 0N
Poynting’s theorem for energy conservation.

scalar  
ikjjH0, -EÓL 

ikjjõ
Ó × EÓ, õ

Ó X BÓ -
¶EÓ
��������
¶ t

y{zzy{zz =ikjjEÓ × õ
Ó X BÓ - EÓ ×

¶EÓ
��������
¶ t

, 0y{zz =ikjjjj- õ
Ó × HEÓ X BÓL -

1
����
2

 
ikjj ¶EÓ

��������
¶ t

y{zz2

-
1
����
2

 
ikjj ¶BÓ

��������
¶ t

y{zz2

, 0
y{zzzz

= scalar  HH0, -EÓL, 4 Π HΡ, JÓLL = 4 Π HEÓ × JÓ, 0L
The Field Tensor F in Different Gauges

The anti−symmetric 2−rank electromagnetic field tensor F
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J ¶
��������
¶ t

, -õ
ÓN HΦ, -AÓL - HΦ, AÓL J ¶

��������
¶ t

, õ
ÓN =ikjj0, -

¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
F in the Lorenz gauge.J ¶

��������
¶ t

, -õ
ÓN 

ikjj HΦ, AÓL + HΦ, -AÓL
���������������������������������������

2
y{zz -ikjj HΦ, AÓL - HΦ, -AÓL

���������������������������������������
2

y{zz J ¶
��������
¶ t

, õ
ÓN =

=
ikjj ¶Φ

��������
¶ t

+ õ
Ó. AÓ, -

¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
F in the Coulomb gaugeJ ¶

��������
¶ t

, -õ
ÓN HΦ, -AÓL + J ¶

��������
¶ t

, -õ
ÓN 

ikjj HΦ, AÓL - HΦ, -AÓL
���������������������������������������

4
y{zz +ikjj HΦ, -AÓL - HΦ, AÓL

���������������������������������������
4

y{zz J ¶
��������
¶ t

, õ
ÓN =

=
ikjj ¶Φ

��������
¶ t

, -
¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
F in the temporal gauge.J ¶

��������
¶ t

, -õ
ÓN HΦ, -AÓL - J ¶

��������
¶ t

, -õ
ÓN 

ikjj HΦ, AÓL + HΦ, -AÓL
���������������������������������������

4
y{zz -ikjj HΦ, -AÓL + HΦ, AÓL

���������������������������������������
4

y{zz J ¶
��������
¶ t

, õ
ÓN =

=
ikjj-õ

Ó. AÓ, -
¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
F in the light gauge.J ¶

��������
¶ t

, -õ
ÓN HΦ, -AÓL =

ikjj ¶Φ
��������
¶ t

- õ
Ó. AÓ, -

¶AÓ
��������
¶ t

- õ
Ó Φ + õ

Ó X AÓ y{zz
The light gauge is one sign different from the Lorenz gauge, but its generator is a simple as it gets.
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The Maxwell  Equations  in the Light  Gauge

Note: subsequent work has suggested that the scalar in these equations is part of a unified field 
theory.

even  JJ ¶
��������
¶ t

, õ
ÓN, odd  JJ ¶

��������
¶ t

, õ
ÓN, HΦ, AÓLNN +

odd  JJ ¶
��������
¶ t

, õ
ÓN, even  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNN =

= H-õ
Ó × õ

Ó X AÓ , -õ
Ó X õ

Ó ΦL = I0, 0
ÓM

odd  JJ ¶
��������
¶ t

, õ
ÓN, odd  JJ ¶

��������
¶ t

, õ
ÓN, HΦ, AÓLNN -

even  JJ ¶
��������
¶ t

, õ
ÓN, even  JJ ¶

��������
¶ t

, -õ
ÓN, HΦ, -AÓLNN =

=
ikjj ¶2 Φ

����������
¶ t 2 + õ

Ó × õ
Ó Φ , -

¶2 AÓ
����������
¶ t 2 + õ

Ó X Hõ
Ó X AÓL - õ

Ó
õ
Ó × AÓy{zz =ikjj ¶2 Φ

����������
¶ t 2 + õ

Ó2
Φ , -

¶2 AÓ
����������
¶ t 2 - õ

Ó2
AÓ y{zz = 4 Π HΡ, JÓL

The Stress  Tensor  of  the Electromagnetic  Field

Tik =

S
a=x

y, z
S

b=x

y, z 1
��������
4 Π

 ikjjJ even  HUa, UbL
����������������������������������

3
- 1N 

HH0, EL2 + H0, BL2 L
�����������������������������������������������

2
-

- even  HE, UaL even  HE, UbL - even  HB, UaL even  HB, UbL -

- even  Hodd  HE, BL, UaL - even  Hodd  HE, BL, UbL =

= H-Ex Ey - Ex Ez - Ey Ez - Bx By - Bx Bz - By Bz
+ Ey Bz - Ez By + Ez Bx - Ex Bz + Ex By - Ey Bx, 0L � 2

Π

à Quantum  Mechanics

Quaternions  in Polar  Coordinate  Form

q = ÈÈ q ÈÈ exp @Θ IÓD = q*  q HCos@ΘD + IÓ Sin @ΘDL
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Multiplying  Quaternion  Exponentials

q q ’ =8q, q ’ <* + Abs@q, q ’ D*  ExpA Π
����
2

@q, q ’ D*

�������������������������������
Abs@q, q ’ D* E

Commutators  of  Observable  Operators@A
`

, B
`D q = HA

`
B
`

- B
`

A
`L q = -a I

d q
���������
d a

+ I
d a q
������������
d a

= -a I
d q
���������
d a

+ a I
d q
���������
d a

+ I q 
d a
���������
d a

= I q

The Uncertainty  Principle@A, BD
������������������

2
=

I
����
2

£ ∆A2 ∆B2

Unifying  the Representation  of  Spin  and Angular  Momentum

For small rotations:@Re1 =0 , Re2 =0 D = 2 HRe3 =0  HΘ2 L - R H0LL
Automorphic  Commutator  Identities@q, q ’ D = @q* , q ’ *D = @q*1 , q ’ *1 D*1

= @q*2 , q ’ *2 D*2

8q, q ’ < = 8q* , q ’ *<* = -8q*1 , q ’ *1 <*1
= -8q*2 , q ’ *2 <*2

The Schrödinger Equation

Y = Exp 
ikjj VÓ

���������������!!!!!!!!!
VÓ. VÓ  HΩ t - KÓ. XÓLy{zz

HΨ = -i Ñ 
¶Ψ
��������
¶ t

=
-Ñ2
����������
2 m

Ñ2 Ψ + V H0, XL Ψ

The Klein−Gordon  Equation

â
n=0

¥ ikjjJ ¶
��������
¶ t

, õ
ÓN2

+ J ¶
��������
¶ t

, -õ
ÓN2

+ HEn , PÓn L2
+ HEn , -PÓn L2 y{zz 

HEn , PÓn L � 2 =
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= â
n=0

¥ J-õ
Ó × Hõ

Ó X PÓn L - õ
Ó × õ

Ó En -

PÓn × HPÓn  X PÓn L - HPÓn × PÓn L En + En
3 +

¶2 En������������
¶ t 2 ,

õ
Ó X Hõ

Ó X PÓn L + õ
Ó X Hõ

Ó En L + PÓn  X HPÓn  X PÓn L + HPÓn  X PÓn L En - õ
Ó

Hõ
Ó × PÓn L +PÓn  En

2 - PÓn HPÓn × PÓn L +
¶2 PÓn������������
¶ t 2

y{zz
It takes some skilled staring to assure that this equation contains the Klein−Gordon equation along 
with vector identities.

Time Reversal  Transformations  for  IntervalsHt , XÓL -> H-t , XÓL = RHt , XÓL
R = H-t , XÓL Ht , XÓL-1

= H-t 2 + XÓ. XÓ, 2 t XÓL � Ht 2 + XÓ. XÓL
Classically

if Β << 1 then R » I-1, 2 t Β
ÓM

R = I-
Ε
����
T

, 1, 0, 0M
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à Gravity

The 3 Fields:  g, E & BJ ¶
��������
¶ t

, -õ
ÓN HΦ, -AÓL =IΦ

 
- õ

Ó. AÓ, - AÓ  - õ
Ó Φ + õ

Ó x  AÓM = Hg, EÓ + BÓL
Field  Equations:  Almost  Maxwell  and a Dynamic  gJ ¶

��������
¶ t

, õ
ÓN Hg, EÓ + BÓL =Ig  - õ
Ó. EÓ - õ

Ó. BÓ, EÓ  + õ
Ó x  BÓ + BÓ  + õ

Ó x  EÓ + õ
Ó g M =

4 Π HΡg + Ρe , JÓg + JÓe LJ ¶
��������
¶ t

, -õ
ÓN Hg, EÓ + BÓL =Ig  + õ

Ó. EÓ + õ
Ó. BÓ, EÓ  - õ

Ó x  BÓ + BÓ  - õ
Ó x  EÓ - õ

Ó g M =

4 Π HΡg + Ρe , JÓg + JÓe L
Recreating  Maxwell

Let U = I- õ
Ó. EÓ - õ

Ó. BÓ + g  , EÓ  + õ
Ó x  BÓ + BÓ  + õ

Ó x  EÓ + õ
Ó gM

W = I õ
Ó. EÓ + õ

Ó. BÓ + g  , EÓ  - õ
Ó x  BÓ + BÓ  - õ

Ó x  EÓ - õ
Ó gM

Mirror  HHW + UL � 2L + HW- UL* � 2 =I õ
Ó. EÓ + õ

Ó. BÓ + g  , -EÓ  + õ
Ó x  BÓ + BÓ  + õ

Ó x  EÓ + õ
Ó gM

Unified  Field  EquationsJ ¶
��������
¶ t

, õ
ÓN J ¶

��������
¶ t

, -õ
ÓN HΦ, -AÓL =

= IΦ
Ð

- õ
Ó. AÓ  + õ

Ó. AÓ  + õ
Ó. õ

Ó Φ - õ
Ó. õ

Ó x  AÓ, - AÓÐ - õ
Ó Φ

 
+

õ
Ó x  AÓ  + õ

Ó Φ
 

- õ
Ó õÓ. AÓ  - õ

Ó x  AÓ  - õ
Ó x  õÓ Φ + õ

Ó x  õÓ x  AÓ M =

= IΦ
Ð

+ õ
Ó2
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Conservation  LawsJ ¶
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If  the differential operator acts on the hyperbolic equation,  analogous results are obtained:J ¶
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There are two conservation laws here, charge conservation for electromagnetism in the scalar, and 
a vector conservation for gravity.

Ρ e - õ
Ó. JÓe = 0
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Gauge TransformationsHΦ, AÓL � HΦ ’ , AÓ ’ L = IΦ - Λ
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Equations  of  MotionIΓ, Γ Β

ÓM Hg, EÓ + BÓL =
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à Unified  Equations  of  Motion

Repeat the exercise from above, but this time, look to the potentials.IΓ, Γ Β
ÓM J ¶
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Ó

 x õ
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That is pretty complicated!  The key to simplifying this equation is to see what happens for light, 
where dt/dx = dx/dt.  Gamma blows up, but if the equation is over gamma, that problem becomes a 
scaling factor.  With beta equal to one, a number of terms cancel, which can be seen more clearly if 
the terms are written out explicitly.
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It would take a real mathematician to state the proper constraints on the three pairs of cancellations 
that happen when velocities get flipped.  There are also a pair of vector identities, presuming sim-
ple connectedness.  This leads to the following equation:

=
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��������
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+
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The scalar change in energy depends only on the scalar potential, and the 3−vector change in 
momentum only depends on the 3−vector A.

Strings
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Dimensionless  Strings
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e3��������
3 c

N
As far as the units are concerned, this is relativistic (c) quantum (h) gravity (G).   Take this con-
stants to zero or infinity, and the difference of a quaternion blows up or disappears.

Behaving  Like  a Relativistic  Quantum  Gravity  Theory

Case 1:  Constant  Intervals  and Strings

T : dq ® dq ’ such that scalar  Hdq2 L =
scalar  Hdq ’ 2 L and vector Hdq2 L = vector Hdq ’ 2 L
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Case 2:  Constant  Intervals

T : dq ® dq ’ such that scalar  Hdq2 L =
scalar  Hdq ’ 2 L and vector Hdq2 L ¹ vector Hdq ’ 2 L

Case 3:  Constant  Strings

T : dq ® dq ’ such that scalar  Hdq2 L ¹
scalar  Hdq ’ 2 L and vector Hdq2 L = vector Hdq ’ 2 L

Case 4:  No Constants

T : dq ® dq ’ such that scalar  Hdq2 L ¹
scalar  Hdq ’ 2 L and vector Hdq2 L ¹ vector Hdq ’ 2 L

In this proposal, changes in the reference frame of an inertial observer are logically independent 
from changing the mass density.  The two effects can be measured separately.  The change in the 
length−time of the string will  involve the inertial reference frame, and the change in the interval 
will  involve changes in the mass density.
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Conclusions

à What’s  been done

It is an old dream (or perhaps more accurately,  a recurring nightmare) to express laws of physics 
using quaternions.  In these web pages, quaternion operators were employed to express central 
laws of physics:  Newton’s second law, the Maxwell equations, and the Klein−Gordon equation 
for relativistic quantum mechanics.  Applications of quaternions to special relativity were done in 
detail, with over 50 problems worked out explicitly.  Quaternions do not make problem solving 
easy.  Rather, they help unite the laws themselves.  Significantly, an analysis of the length of a 
quaternion interval if the origin is moved establishes a connection to the machinery of general 
relativity, the affine parameter.

à  What’s  new

One might suspect that the reason for the success claimed above is that nothing proposed is new.  
After all, quaternions are a linear combination of tensors of rank zero and one, and while used in 
a new way here, does anything genuinely novel appear?

I believe that a new very powerful idea drives this work, namely, that events represented as quater-
nion are a topological algebraic field.  This implies that any collection of events  can be generated  
by an appropriate  quaternion function.  Scalars and vectors mix under multiplication, so quater-
nions are a mixed representation.

A new view of relativistic quantum mechanics was outlined.  The Klein−Gordon equation is a 
scalar equation.  When quaternion operators are employed, the Klein−Gordon equation is part of 
a larger set, including a scalar and vector identity analogous to the Maxwell equations.  These 
additional identities are also valid by the conventional analysis, but they do not naturally arise, so 
the parallel to the Maxwell equations is less clear.

A new link to general relativity has been proposed which is slightly different.  The invariant 
interval in special relativity was the first term of the difference between two events quaternions 
squared.  If the origin changes, then the first term of the difference between the two event quater-
nions and the origin quaternions squared is similar to the square of the affine parameter of general 
relativity.  The only difference lies in the cross term.

Every event, every function, every operator used was a member of the field of quaternions.  This 
might strike some as a comic reliance on a solitary tool.  I prefer to think of it as a great demo-
cratic principle.  Physics is impressively democratic, with each photon or electron obeying the 
same collection of laws interchangeably.  The mathematics underlying the laws of physics should 
reflect this interchangeability.
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à What needs  to be done

Nothing presented was proven rigorously.  There were few references to the literature.  This body 
of work is more like a skeleton of work, a reflection of the author’s semi−formal training and 
isolation from the professional physics community.  There is a need to flesh these ideas out only 
if  there is the potential for new insights.  Although I appreciate the standard approach, I feel like I 
have gained new insight into why Maxwell’s equations are necessary, have a new way to view 
relativistic quantum mechanics, and cling to a novel toehold on general relativity.  And since each 
of these is a quaternion, it becomes possible to mix and match them to create new areas of study.  
I hope this work generates interest in the physics community.

More problems need to be solved.  My upcoming focus will  be the Dirac function and Fourier 
analysis using quaternions.  If I can build these functions, it should be possible to approach prob-
lems in electromagnetism and quantum mechanics.  I won’t be easy, it never is, but it might be 
elegant.  And maybe I’ll  dabble a little with curves...
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