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Foreword

With the help of big data, massive parallelization, and computational algorithms,
deep learning (DL) techniques have been developed rapidly during the recent years.
Complex artificial neural networks, trained by large amounts of data, have demon-
strated unprecedented performance in many tasks in artificial intelligence, such as
image and speech recognition. This success also leads DL into many other fields of
engineering. And electromagnetics (EM ) is one of them.

This book is intended to overview the recent research progresses in applying DL
techniques in EM engineering. Traditionally, research and development in this field
have been always based on EM theory. The EM field distribution in engineering
problems is modeled and solved by means of Maxwell’s equations. The results can
be very accurate, especially with the help of modern computational tools. However,
when the system gets more complex, it is tough to solve because the increase in the
degree-of-freedom exceeds the modeling and computational capabilities. Meanwhile,
the demand for real-time computing also poses a significant challenge in the current
EM modeling procedure.

DL can be used to alleviate some of the above challenges. First, it can “learn”
from measured data and master some information about the complex scenarios for the
solution procedure, which can improve the accuracy of modeling and data processing.
Second, it can reduce the computational complexity in EM modeling by building fast
surrogate models. Third, it can discover new designs and accelerate the design process
while combining with other design tools. More engineering applications are being
investigated with deep learning techniques, such as antenna design, circuit modeling,
EM sensing and imaging, etc. The contents of the book are as follows.

In Chapter 1, a brief introduction to machine learning with a focus on DL is
discussed. Basic concepts and taxonomy are presented. The classification of DL
techniques is summarized, including supervised learning, unsupervised learning, and
reinforcement learning. Moreover, popular DL architectures such as convolutional
neural networks, recurrent neural networks, generative adversarial networks, and
auto-encoders are presented.

Chapter 2 reviews the recent advances in DL techniques as applied to EM forward
modeling. Traditional EM modeling uses numerical algorithms to solve Maxwell’s
equations, such as the method of moments, the finite element method, and the finite
difference time domain method. In this context, DL can establish the mapping between
a physical model and the corresponding field distribution. In other words, it is possible
to predict the field distribution without solving partial differential equations, resulting
in a much faster computation speed. In addition to fully data-driven approaches,
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DL can be incorporated into traditional forward modeling algorithms to improve
efficiency. Physics inspired forward modeling includes physics into neural networks
to enhance their interpretability and generalization ability.

Chapter 3 discusses the application of DL to free-space inverse scattering. The
surveyed techniques can be classified into three broad categories. The “black-box”
approaches directly map measured far-field data to parametric values. Differently,
learning-augmented iterative methods apply a learning-based solution to an itera-
tive procedure, either by approximating the solution of the forward problem with a
learning-based surrogate model or by integrating deep artificial neural networks into
the entire iterative process. Finally, non-iterative learning approaches obtain the solu-
tion for the inverse problem directly. Still, they combine the prior knowledge of the
problem, and for such a reason they cannot be regarded as simple black-box solutions.

Chapter 4 describes the use of DL-based methods for non-destructive testing
and evaluation. The discussion is categorized based on the domain of application,
including energy, transportation and civil infrastructures, manufacturing and agri-
food sectors. The application to higher frequency methods is also reviewed, such
as infrared thermography testing, terahertz wave testing, and radiographic testing.
Moreover, the challenges and future trends of DL in non-destructive testing and
evaluation are carefully discussed.

Chapter 5 reviews recent DL research as applied to subsurface imaging with
a focus on EM methods. The state-of-the-art techniques, including purely data-
driven approaches, physics-embedded data-driven approaches, and learning-assisted
physics-driven approaches, are discussed. Several DL-based methods for seismic
data inversion are also included in the Chapter. Furthermore, different techniques
for constructing training datasets are discussed, which is essential for learning-based
procedures.

Chapter 6 focuses on the current state-of-the-art DL methods used in medical
imaging approaches. The physics of electromagnetic medical imaging techniques
and their related physical imaging methods are first reviewed. Then, the commonly
used deep neural networks with their applications in medical imaging are discussed.
Recent studies on synergizing learning-assisted and physics-based imaging methods
are presented, as well.

Chapter 7 presents an overview of how DL can be exploited for direction-of-
arrival (DoA) estimation. After introducing the mathematical formulation of this
problem under different conditions, the most common DL frameworks that have been
applied to DoA estimation are reviewed, including their neural network configurations
and the most widely used algorithmic implementations. Finally, a hierarchical deep
neural network framework is presented to solve the DoA estimation problem.

Chapter 8 reviews the application of DL to remote sensing. With the accumulation
of years of vast data, DL can effectively use these data in an automatic manner to
serve many practical applications. The fields of target recognition, land cover and
land use, weather forecasting, and forest monitoring are discussed, with a focus on
how various DL models are employed and fitted into these specific tasks.

Chapter 9 discusses DL-based methods to improve digital satellite communica-
tions. DL can be employed to automate resource allocation, noise characterization,
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and nonlinear distortion in digital satellite communication links. Both are essential
tasks in efficient digital satellite communications. Moreover, these strategies can be
extended to other domains, such as EM compatibility or signal integrity.

Chapter 10 focuses on applying DL in task-oriented sensing, such as imaging
and gesture recognition, based on metasurfaces. Three recent research progresses
are discussed: intelligent metasurface imagers, variational-auto-encoder-based intel-
ligent integrated metasurface sensors, and free-energy-based intelligent integrated
metasurface sensors.

Chapter 11 reviews the application of DL to the design of metamaterials and
metasurfaces. The design strategies are categorized into four groups: discriminative
learning approach, generative learning approach, reinforcement learning approach,
and optimization hybrid approach. With the help of DL, the inverse design of
metamaterials and metasurfaces can become more flexible, efficient, and feasible.

Chapter 12 describes DL as applied to microwave circuit modeling, an important
area of computer-aided design for fast and accurate microwave design and optimiza-
tion. The feed-forward deep neural network and the vanishing gradient problem during
its training process are introduced. Various recurrent neural networks for nonlinear
circuit modeling are presented. Several application examples are presented to demon-
strate the capabilities of deep neural network modeling techniques. As widely demon-
strated through the Chapter, the powerful learning ability of DL makes it a suitable
choice for modeling the complex input-output relationship of microwave circuits.

Based on these discussions, Chapter 13 summarizes the pros and cons of DL
when applied to EM engineering, envisaging challenges and future trends in this
area, and drawing some concluding remarks.

Despite the recent rapid progress in research, DL is still in its early stage in solving
EM problems. Compared with imaging and speech processing, its application to EM
engineering is more challenging considering the available data, the complexity of the
scenarios, the requirement of learning and generalization ability, etc. A hybridization
of physics and data may provide a way to address some long-term challenges.

Maokun Li
Marco Salucci



This page intentionally left blank 



Acknowledgment

We sincerely thank all the contributors to this book. Special thanks to Ms Olivia
Wilkins for her help in editing it. We sincerely hope this manuscript can help more
researchers to work in this promising field, and we look forward to your feedback.



This page intentionally left blank 



Chapter 1

An introduction to deep learning for
electromagnetics

Marco Salucci1,2, Maokun Li3,4, Xudong Chen5

and Andrea Massa1,2,4,6

1.1 Introduction

Nowadays, deep learning (DL) is arguably one of the hottest research topics in the
scientific community [1–4]. According to the Google Trends analytics [5], there has
been worldwide an exponential growth of interest in this topic during the last ten years
[Figure 1.1(a)], South Korea, Singapore, Ethiopia, and China being the five regions
with the highest occurrences of DL-related searches [Figure 1.1(b)]. Moreover, it
comes as no surprise that Machine Learning (ML), Artificial Intelligence (AI ), and
Convolutional Neural Networks (CNN s) are currently ranked at the 2nd, 3rd, and 21st
positions of the “top search terms” list of the IEEEXplore database [6], respectively.
In such a framework, we have witnessed an unprecedented development of DL
methods for solving complex problems in electromagnetics (EM ) with very high
computational efficiency [7–9]. For instance, DL is an extremely powerful paradigm
(whose capabilities have been yet widely unexplored) for addressing fully non-linear
imaging and inverse scattering problems on a pixel-wise basis with almost real-time
performance [10–16]. Otherwise, impressive and highly encouraging results have
been recently documented in fields including (but not limited to) remote sensing
[17], ground penetrating radar [18], wireless communications [19,20], EM forward
modeling [21,22], antenna synthesis [23–25], and metamaterial design [26–29].

Despite such a wide success, according to the well-known “no-free lunch” (NFL)
theorems [30,31], there is no ML/DL algorithm universally performing better than
others in any type of prediction problem. For instance, in a classification task, “the

1ELEDIA Research Center (ELEDIA@UniTN – University of Trento), DICAM – Department of Civil,
Environmental, and Mechanical Engineering, Italy
2CNIT – “University of Trento” ELEDIA Research Unit, Italy
3Institute of Microwave and Antenna, Department of Electronic Engineering, China
4ELEDIA Research Center (ELEDIA@TSINGHUA – Tsinghua University), China
5Department of Electrical and Computer Engineering, National University of Singapore, Singapore
6ELEDIA Research Center (ELEDIA@UESTC – UESTC), School of Electronic Science and Engineering,
University of Electronic Science and Technology of China, China
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Figure 1.1 Worldwide search interest on DL according to the Google Trends
website [5]: (a) popularity over time (“a value of 100 is the peak
popularity for the term” [5]) and (b) corresponding World map (“100 is
the location with the most popularity as a fraction of total searches in
that location” [5]).

most sophisticated algorithm we can conceive of has the same average performance
(over all possible tasks) as merely predicting that every point belongs to the same
class” [1]. Therefore, due to impossibility to define a “holy grail” technique, it is
paramount to understand the concepts, theory, and main features of each algorithm
to select (and properly customize) the most suitable one for the problem at hand.
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Following this line of reasoning, the goal of this chapter is to provide the reader with
a general overview of DL, describing its pillar concepts and taxonomy, as well as
providing a survey of the most widespread architectures found in the recent literature.
The chapter refers to EM applications of these architectures where necessary.

1.2 Basic concepts and taxonomy

Before entering the details of the most common DL techniques and architectures in
the recent EM literature, this section briefly recalls some basic concepts and provides
a taxonomy of the most used terms in this field that will be helpful to the reader
through this book.

1.2.1 What is deep learning?

With reference to Figure 1.2, DL techniques are commonly regarded as a small subset
of AI, which in turn comprises all “smart” algorithms (i.e., automated instructions)
enabling computers to perform tasks mimicking human intelligence by exploiting
logic, decision trees, if-then rules, optimization, and ML. As for this latter, ML
identifies a class of AI techniques allowing machines to learn from data and make

ALGORITHMS

ARTIFICIAL INTELLIGENCE (AI)

MACHINE LEARNING (ML)

ARTIFICIAL NEURAL
NETWORKS (ANNs)

DEEP LEARNING (DL)

Figure 1.2 Classification of algorithms showing the hierarchical structure of AI,
ML, ANNs, and DL techniques
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decisions based on the observed patterns/relationships/associations within it, with-
out being explicitly programmed and possibly improving at performed tasks with
experience. Finally, DL is a subset of ML exploiting brain-inspired Artificial Neu-
ral Networks (ANN s) composed by a large amount of hidden layers and neurons
(or units) adapting and learning from vast amounts of data. In other words, the fol-
lowing hierarchical structure exists within the large family of computer algorithms
(Figure 1.2)

DL ⊂ ANNs ⊂ ML ⊂ AI . (1.1)

Clearly, the following question immediately arises: how deep is “deep”? It is worth
pointing out that there is not a standardized definition of the term “deep.” However,
it is often said that ANN s with at least three hidden layers (i.e., layers that do not
coincide neither with the input nor the output of the network itself) are considered
deep, while ANN s with a lower number of hidden layers are generally referred to as
“shallow” architectures [7].

1.2.2 Classification of deep learning techniques

Although many nuances exist making impossible a unique classification, ML tech-
niques (and accordingly, DL ones) are generally categorized into three distinct macro
areas as follows (Figure 1.3):

Classification

Regression

Supervised
Learning (SL)

Dimensionality
Reduction

MACHINE
LEARNING (ML)

Reinforcement
Learning (RL)

Unsupervised
Learning (UL)

Clustering

Association

Figure 1.3 Subdivision of ML techniques into SL, UL, and RL branches
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1. Supervised learning (SL) – ML techniques belonging to this group are also
referred to as “Learning-by-Examples” (LBE) [32]. They rely on the off-line
generation of a training dataset D of N input/output (I/O) pairs

D = {(X (n), Y (n)) ; n = 1, ..., N
}

(1.2)

where X (n) ∈ R
K and Y (n) ∈ R

Q are the nth (n = 1, ..., N ) sample of the K-
dimensional input space,

X (n) =
{
X (n)

k ; k = 1, ..., K
}

, (1.3)

X (n)
k being the kth input variable or “feature,” and the corresponding Q-

dimensional output,

Y (n) = {Y (n)
q ; q = 1, ..., Q

}
(1.4)

being

Y (n) = F
{
X (n)} ; n = 1, ..., N (1.5)

where F { . } is the I/O relationship that must be learned from the exam-
ples/observations stored within D. The nature of Y (n) determines the specific
learning task at hand, i.e.,
(a) Classification task – Y (n) is generally an integer scalar (i.e., Q = 1 and

Y (n) ∈ Z) representing the class/label associated to X (n) [Figure 1.4(a)];
(b) Regression task – Y (n) is typically a vector of Q ≥ 1 continuous variables

(Y (n) ∈ R
Q) dependent on X (n) [Figure 1.4(b)].

Starting from the information collected within D, during the training phase SL
techniques build a computationally-fast surrogate model (SM ) of F { . } capa-
ble of making predictions of the (unknown) output associated to a new input
sample X ,

Ỹ = F̃
{
X
∣∣H opt}. (1.6)

Such a task is accomplished by determining the optimal setting of A hyper-
parameters H opt (H opt = {H opt

a ; a = 1, ..., A
})

best predicting the N exam-
ples inside D. Towards this end, a proper loss function L { . } quantifying the
mismatch between actual and estimated outputs is minimized by means of a
properly chosen optimization algorithm, yielding

H opt = arg
[

min
H

L

{(
Y (n), Ỹ

(n)
∣∣∣
H

)
; n = 1, ..., N

}]
(1.7)

where

Ỹ
(n)
∣∣∣
H
= F̃

{
X (n)

∣∣H
}

(1.8)

is the SM prediction for the nth (n = 1, ..., N ) training sample X (n). Clearly,
the goal of a SL model is to go beyond the training data and correctly pre-
dict the output associated to previously unseen inputs. For such a reason, SL
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X1

X2

Y~ = 1

Y~ = –1

(a)
X

X

Y~ (X )

(b)

Cluster 1

Cluster 2

X1

X2

(c)

Hidden Correlation

X1

X2

(d)

Figure 1.4 Pictorial representation of the most common (a) and (b) SL tasks [(a)
classification and (b) regression] and (c) and (d) UL tasks [(c)
clustering and (d) association]

methods are generally considered more powerful than traditional interpolation
techniques (e.g., linear interpolation, nearest neighbor interpolation) since they
exhibit remarkably higher generalization capabilities.

2. Unsupervised learning (UL) – Differently from SL, UL algorithms process unla-
beled data (i.e., without the corresponding output in the training data) and they
are often trained to find patterns within the K-dimensional input space [33].
Their training can rely on different definitions of the loss function, which is often
in the form of

L
{(

X (n), X̃
(n)
)

; n = 1, ..., N
}

(1.9)
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where X̃
(n)

is the reconstructed version of the input sample X (n) starting from
a lower-dimensionality and/or noisy representation of it (see Section 1.3.4). The
methods belonging to this group are generally classified into [33]

(a) Clustering techniques – Discover inherent groupings in the data, dividing
them by similarity [Figure 1.4(c)].

(b) Association techniques – Determine rules that describe large portions of
data, finding hidden dependencies/correlations within it [Figure 1.4(d)].

3. Reinforcement learning (RL) – This term refers to ML models (often called
“agents”) capable of performing autonomous decisions depending on their inter-
actions with the external environment, progressively learning how to achieve
a given goal [34–36] (Figure 1.5). Toward this end, a “game-like” situation is
faced by the agent, which employs a trial-and-error approach to find a solution
to the assigned problem, getting rewards or penalties for the performed actions.
Although the designer sets the reward policy (i.e., the “rules of the game”), no
hints/suggestions are given to the agent, which has to figure out how to perform
the task by maximizing the total reward. Often, such a process starts from totally
random trials and ends with sophisticated tactics and super-human skills. As
a matter of fact, differently from human beings, AI can gather experience from
thousands of parallel gameplays if a RL algorithm is run on a sufficiently powerful
computing infrastructure, and the recent advances in computational technologies
are opening the way to completely new applications in this field.

Autonomous driving is a common representative applicative scenario of deep
RL, where the programmer cannot predict everything that could happen on the
road [37]. Instead of building lengthy “if–then” instructions, he “prepares” the
agent to learn from rewards and penalties, with the goal of guaranteeing safety,
obeying the rules of law, minimizing costs and ride time, maximizing passengers
comfort, and minimizing pollution. Starting from the interactions with the sur-
rounding environment, the collected observations from it, the performed actions,
and the gained rewards, the training algorithm defines the internal decision policy
of the agent (Figure 1.5). After this training phase, the agent can autonomously
drive exploiting the readings from the on-board sensors and the learnt policy.

Agent

Policy

RL Algorithm

Reward/Penalty

Environment

Observation Action

Figure 1.5 Block scheme of a RL technique
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The term Dimensionality Reduction embraces both SL or UL methods [38,39]
(Figure 1.3) aimed at finding a mapping rule from the original K-dimensional vari-
ables to a smaller subset of J � K features carrying the same amount of information.
In this way, it is possible to reduce the complexity of a ML learning task at hand,
counteracting the so-called curse of dimensionality [40]. As for this latter, it refers to
the exponential growth of the required amount of training data when the input space
dimensionality increases. In other words, when K grows, the volume of the input
space increases much faster, making the available data samples sparse (i.e., very far
from each other) since the number of possible configurations of X is much larger
than N .

Finally, Transfer Learning refers to recently developed approaches that allow
to exploit a previously trained ANN for accelerating the training of a new ANN per-
forming a new (but similar) task with a lower computational (time/CPU) cost and a
smaller amount of training data [7,41].

1.3 Popular DL architectures

This section overviews the basic theory and fundamental concepts of some of the
most popular DL architectures, whose applications in several EM -related fields will
be revised in the next chapters.

1.3.1 Convolutional neural networks

CNN s are arguably one of the most popular DL architectures for prediction problems
dealing with (or referable to) images [1–4,7,9–11].

CNNs have recently attracted a lot of attention in the EM community, since they
proved to be very effective and computationally efficient in the solution of many com-
plex problems. For instance, they have been successfully exploited in EM forward
modeling, where they have been trained to solve ordinary/partial differential equa-
tions (e.g., 2D and 3D Poisson’s equations – see Chapter 2). In inverse scattering,
subsurface imaging, and biomedical imaging CNN s implemented as “U-Nets” are
probably the most popular DNN architectures capable of performing reconstructions
on a pixel basis almost in real-time (see Chapters 3, 5, and 6). CNN s have been
also widely employed in non-destructive testing and evaluation (NDT/NDE) applica-
tions including, for instance, the localization of casting defects in X-ray images (see
Chapter 4). Moreover, they have been extensively exploited in direction-of-arrival
(DoA) problems (see Chapter 7), remote sensing (e.g., to classify the Sentinel-1 SAR
time-series images – see Chapter 8), as well as in satellite communications (e.g.,
to estimate the characteristics of the channel and the transmitter directly from the
received signals – see Chapter 9). Successful applications of CNN s can be also found
in the field of gesture recognition (Chapter 10) and metamaterials analysis and design
(see Chapter 11).

Their main advantage is that they automatically detect and extract informa-
tive/meaningful features from the input without any supervision. As a matter of fact,
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Convolution Convolution

Pooling Pooling

Input Output
FCNN

D(1)= D

H (1)= H I(1)= X

W (1)= W

O(L)

Y~

Figure 1.6 Block scheme of a CNN composed by L convolutional/pooling layers

such a “feature learning” from training data with translational/rotational invariance
is the main difference of CNN s over standard ANN s [1,2]. Therefore, the focus of the
following discussion will be on how such a powerful capability is enabled.

In the most general case, the input of a CNN is arranged as a 3D tensor
X ∈ R

H×W×D [i.e., the input space dimensionality is K = (H ×W × D)], where
H , W , and D denote the height, width, and depth of X , respectively (Figure 1.6).
For instance, in image classification (H ×W ) is the number of pixels in the input
picture, while D is the number of “channels” (i.e., D = 3 for RGB images, where
each dth channel includes the values of the pixels associated to the red, green, or
blue components, respectively). Otherwise, in EM imaging and inverse scattering the
depth is often set to D = 2, the two input channels being respectively associated to
the real and imaginary parts of a complex-valued image such as, for instance, a coarse
guess of the unknown contrast function or the incident field distribution emitted by
the source [9–11,16].

A CNN architecture typically consists of a cascaded sequence of L layers alter-
nating convolution and pooling operations to progressively transform the input of
the first convolution layer, I (1) =X , to the final “feature map” outputted by the
Lth layer, O (L), which is then inputted to a standard fully connected NN (FCNN ) to
predict Ỹ (Figure 1.6).∗At each �th convolution layer, a set of F (�) ≥ 1 convolutional
filters (or “kernels”)

�(�,f ) ∈ R
C(�)×C(�)×D(�) ; f = 1, ..., F (�) (1.10)

being

�(�,f ) =
{
�
(�,f )
i,j,d ; i = 1, ..., C(�); j = 1, ..., C(�); d = 1, ..., D(�)

}
(1.11)

is applied to the input, I (�) ∈ R
H (�)×W (�)×D(�) , to compute the output, O (�) ∈

R
U (�)×V (�)×F(�) , as the combination of all performed convolutions, i.e.,

O (�) = {O (�,f ); f = 1, ..., F (�)
}
. (1.12)

∗Remembering that the output of each convolution and pooling layer is a 3D tensor, O (L) is first flattened
to a 1D vector in order to become the input layer of the FCNN.
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More in detail, the result of each f th (f = 1, ..., F (�)) convolution,

O (�,f ) = {O(�,f )
u,v ; u = 1, ..., U (�); v = 1, ..., V (�)

}

is computed as (Figure 1.7)

O (�,f ) = � {I (�) ��(�,f )
}

(1.13)

where � denotes the convolution operator and� { . } is a local non-linear “activation”
function.

More specifically, each (u, v)th entry (u = 1, ..., U (�), v = 1, ..., V (�)) of O (�,f ) is
computed as

O (�,f )
u,v = �

⎧
⎨

⎩

C(�)−1∑

i=1

C(�)−1∑

j=1

D(�)∑

d=1

�
(�,f )
i,j,d ×I (�)

(u−1+i),(v−1+j),d

⎫
⎬

⎭
(1.14)

where U (�) = (H (�) − C(�) + 1
)

and V (�) = (W (�) − C(�) + 1
)
. In case O (�,f ) must

preserve the width and height of the input (i.e., U (�) = W (�) and V (�) = H (�)), zero-
padding can be applied to I (�) before entering the convolution (i.e., surrounding I (�)

with zeros) [1].
As for the activation function, its purpose is to increase the degree of non-linearity

of the CNN in order to model complex non-linear I/O relationships. One of the most
adopted definitions of � { . } is the rectified linear unit (ReLU ) function, which is
defined for a generic scalar input ξ ∈ R as (Figure 1.8)

� {ξ} = max {0, ξ} . (1.15)

D(I)

H(I)

C(I)

C(I)

C(I)

C(I)

F (I)

V (I)

U (I)

O(I)= I (I+1)I (I)

Φ(I,2)

Φ(I,1)

W(I)

O(I,1)

O(I,2)

O I,F(I)( )

Figure 1.7 Pictorial description of the convolution operation performed at the �th
hidden layer of a CNN
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ψ{ξ}

ξ

Figure 1.8 The ReLU non-linear activation function

2

I (I)

Φ(I,f )

O(I,f )

1

1
1

9 7
7

14 0

0

10 2
3

3
3

3
6

6
5

4

4

5.5
7.6

8.2

2

2
1

1
1

9 7
7

14 0

0

10 2
3

3
3

3
6

6
5

4

4

5.5
7.6

8.2

2

2
1

1
1

9 7
7

14 0

0

10 2
3

3
3

3
6

6
5

4

4

5.5
7.6

8.2

2

1 –1
–1
–1

0
0
0

1
1

1 –1
–1
–1

0
0
0

1
1

1 –1
–1
–1

0
0
0

1
1

= ψ{2.8}= 2.8

= ψ{–6.1}= 0

= ψ{13.2}= 13.2

(2 ×1) + (3×0) + (4 ×(–1)) + ...

(3 ×1) + (4×0) + (5.5 ×(–1)) + ...

(8.2 ×1) + (6×0) + (5 ×(–1)) + ...

2.8

13.2

0

×

×

×

...

...

Figure 1.9 Numerical example of the convolution between an input feature map
I (�) ∈ R

5×5×1 and a kernel �(�,f ) ∈ R
3×3×1 without zero-padding,

yielding O (�,f ) ∈ R
3×3×1

To let the reader better understand the meaning of the previous expressions,
Figure 1.9 shows a numerical example concerned with the convolution between an
input feature map I (�) ∈ R

5×5×1 and a kernel �(�,f ) ∈ R
3×3×1, yielding (without

zero-padding) an output feature map O (�,f ) ∈ R
3×3×1. According to (1.14), at every

location of the kernel an element-wise multiplication between a portion of the input
I (�) (also called the “receptive field”) and the filter entries is performed, then the
result is summed and inputted to the ReLU function to derive the entries of the output
feature map (Figure 1.9).

The entries of the convolution filters constitute the set of CNN hyper-
parameters, i.e.,

H CNN =
{
�(�,f ); f = 1, ..., F (�); � = 1, ..., Lconv

}
(1.16)
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Lconv < L being the number of convolution layers, and they are automatically derived
from the training data during the training phase. In this regard, one evident benefit of
CNN s over other ANN architectures is the fact that all spatial locations of the input
to a given layer share the same convolution kernel, which is slided to compute (1.14),
greatly reducing the number of parameters that must be learnt for each layer of the
network, and making it independent on the dimensions of the input image [1].

Concerning the CNN pooling layers (Figure 1.6), their purpose is to reduce the
width and height of the input. More in detail, in a “max pooling” layer, the operator
maps a sub-region of (P(�) × P(�)) neighboring entries of I (�) belonging to the same
dth channel (d = 1, ..., D(�)) to its maximum value. Accordingly, indicating with
O (�) ∈ R

U (�)×V (�)×D(�) the output of the �th pooling layer, its (u, v, d)th (u = 1, ..., U (�),
v = 1, ..., V (�), d = 1, ..., D(�)) entry is computed as

O (�)

u,v,d = max
i,j=0,...,P(�)−1

{
I (�)

[(u−1)×s+i],[(v−1)×s+j],d

}
(1.17)

where s ≥ 1 is the so-called “stride” determining the interval between two consecutive
pooling windows. Otherwise, in a “average pooling” layer it turns out that

O (�)

u,v,d =
1

P(�) × P(�)

P(�)∑

i=1

P(�)∑

j=1

I (�)

[(u−1)×P(�)+i],[(v−1)×P(�)+j],d
(1.18)

Figure 1.10 reports an example of max-pooling operation performed on an input
feature map I (�) ∈ R

3×3×1 with P(�) = 2 and s = 1. It is worth highlighting that, dif-
ferently from convolutional layers, pooling ones do not have any weighting parameter
that must be learnt during the training phase.
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Figure 1.10 Numerical example of the max-pooling operation performed on an
input feature map I (�) ∈ R

3×3×1 with P(�) = 2 and s = 1
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1.3.2 Recurrent neural networks

Recurrent Neural Networks (RNNs) are a widespread ANN architecture that has
recently attracted significant research in the field of sequential data processing and
forecasting, being mainly used to detect patterns in temporal sequences [42–47].
As a matter of fact, RNN s and their variants (such as, for instance, Long Short-
Term Memory, LSTM networks [45]) are particularly suitable in those contexts
where the temporal dependency in the data is an important implicit feature. On the
one hand, they process sequential information, performing the same operations on
every element (time step) of the input sequence. On the other hand, their output at
each time step also depends on the previous inputs and past computations, allow-
ing the network to develop a sort of memory (encoded within in its “hidden state”)
of the previous events. Therefore, the main difference between RNN s and traditional
Feed-forward NN s (FFNN, or Multi-Layer Perceptrons, MLPs) relies in how the infor-
mation gets passed through the layers. More in detail, while FFNN s pass information
through the network from input to output layers without backward connections or
cycles, RNN s include cycles that allow the backward transmission of information into
itself [44–47].

RNN s are quite popular in the recent EM literature. For instance, they have been
exploited in forward modeling to process sequential EM data or model time-domain
EM phenomena (see Chapter 2), such as those arising in forward scattering problems
(see Chapter 3). In NDT/NDE, RNN s have been exploited – for instance – to analyze
temperature time series to classify different defects that typically affect carbon fiber
reinforced plastic material in assembled structures (see Chapter 4). Alternatively, they
proved to be effective in estimating source DoAs (e.g., by processing a sequence of
covariance matrices – see Chapter 7). Finally, RNN s have been successfully exploited
for non-linear microwave circuit modeling (see Chapter 12).

Figure 1.11(a) gives a schematic representation of a simple RNN architec-
ture, where z−1 { . } indicates the unit delay operator, while Figure 1.11(b) reports
the same network after being unfolded (or unrolled) to explicitly show the input
time series and the corresponding output predictions. Let us denote the input
sample and the hidden state at time step t (t = 1, ..., T , T being the number
of time instants) as I (t) =X (t) ∈ R

K and S (t) ∈ R
G, respectively, where G is

the number of hidden units/neurons. Accordingly, S (t) is computed as follows
(Figure 1.11) [53]

S (t) = �S

{
I (t) ×W

IS
+S (t−1) ×W

SS
+ BS

}
(1.19)

where W
IS
∈ R

K×G and W
SS
∈ R

G×G are the input and hidden layers weight
matrices, respectively, BS ∈ R

G is a bias parameter, and �S { . } is a non-linear
activation operator typically set to the logistic sigmoid or tanh function [44,45]. As
for the tth output O (t) = Y (t) ∈ R

Q, it is computed as (Figure 1.11)

O (t) = �O

{
S (t) ×W

SO
+ BO

}
(1.20)
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O(t)

I (t)

S(t)

ψS{.}

z–1{.}
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O(t)O(t–1) O(t+1)

I (t–1) I (t+1)I (t)

S(t)S(t–1) S(t+1)

ψS{.} ψS{.} ψS{.}

Wso
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(b)

(a)

Figure 1.11 Block scheme of a RNN (a) before and (b) after unfolding

where �O { . } and BO ∈ R
Q are the output activation function and bias, respectively,

while W
SO
∈ R

G×Q is the output weighting matrix. The entries of W
IS

, W
SS

,
BS , W

SO
, and BO are the hyper-parameters of the RNN and they are determined

during the training phase.
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To better highlight the differences between RNN s and traditional FFNN s, let us
recall that, using a similar notation but neglecting the time index t since it is not taken
into account, the output of this latter would be simply equal to

O = �O

{
S ×W

SO
+ BO

}
(1.21)

where the hidden variable is not dependent on previous computations, i.e.,

S = �S

{
I ×W

IS
+ BS

}
. (1.22)

As for deep RNN s (DRNN s) made of L > 1 hidden layers to address highly
non-linear forecasting problems, they are simply obtained by stacking shallow RNN s
(Figure 1.12). Mathematically, it means that the tth (t = 1, ..., T ) hidden state at the
�th (� = 1, ..., L) layer, S (t,�), is computed as [46]

S (t,�) =
{
�
(�)

S

{
I (t), S (t−1,�)} if � = 1

�
(�)

S

{
S (t,�−1), S (t−1,�)} otherwise

(1.23)

or, equivalently, as

S (t,�) = �(�)

S

{
S (t,�−1) ×W (�)

IS
+S (t−1,�) ×W (�)

SS
+ B(�)S

}
; � = 0, ..., L

(1.24)
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Figure 1.12 Block scheme of a DRNN composed by L hidden layers
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where S (t,�)
∣∣
�=0
= I (t), W (�)

IS
, W (�)

SS
, and B(�)S being the hyper-parameters of the

�th layer. Similarly, the tth DRNN output is derived from the hidden state of the last
(� = L) layer (Figure 1.12)

O (t) = �O

{
S (t,L) ×W

SO
+ BO

}
(1.25)

where W
SO

and BO are the learnt parameters of the output layer.

1.3.3 Generative adversarial networks

Generative Adversarial Networks (GANs) recently gained particular attention from
the scientific community starting from their introduction back in 2014 by Goodfellow
et al. [48].

They have recently attracted particular attention in the EM community. For
instance, GAN s have been exploited to model the induced currents in EM scattering
problems (see Chapter 2). Moreover, they have been widely employed in inverse scat-
tering (see Chapter 3), subsurface imaging (see Chapter 5), and biomedical imaging
(e.g., for segmentation of magnetic resonance imaging and computed tomography
images – see Chapter 6). Moreover, GAN s have been exploited in remote sensing
where, for instance, they have been exploited to to generate SAR-alike images to
substitute part of real images for training (see Chapter 8). GAN s are inspired by
the Game Theory and they exploit a pair of ANN s generally referred to as the Gen-
erator, G , and the Discriminator, D , networks (Figure 1.13) [49,50]. During the
training process, such networks compete with each other in order to achieve the Nash
equilibrium [51,52]. More specifically, the generator aims at generating “fake” data
mimicking as much as possible the real data distribution of a given dataset, while the
discriminator is a binary classifier that must correctly distinguish real samples from
fake ones outputted by the generator. A commonly used analogy in the real world is

Noise
Source

Noise
Vector

Generator

Fake Sample

Real or
Fake

Discriminator

Real Sample X

Database

G{.}

D{.}

N X̂

Figure 1.13 Block scheme of a GAN
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to think to the generator as an art forger and to the discriminator as an art expert [49].
On the one hand, the forger (G ) generates forgeries as much as possible similar to real
artworks. On the other hand, the expert (D ) aims at detecting whether the painting
at hand is authentic or not. Starting from the errors made by the discriminator, the
generator can progressively improve himself, by generating forgeries of increasing
quality.

In practice, differently from the discriminator, the generator has no direct access
to the real data and the unique way to learn how to create faithful fakes is through
its interactions with D , generally transforming an input random normally distributed
noise vector N into a fake sample,

X̂ = G
{
N
}

, (1.26)

and trying to progressively improve itself by maximizing the detection error made
by D (Figure 1.13). When the discriminator cannot determine whether the input is
real or fake, the optimal state is reached and the generator has correctly learned the
(unknown) distribution of the real data.

Mathematically, the output of the discriminator for a given input sample X
(either real or fake) can be expressed as the sigmoid probability function [25]

D
{
X
∣∣H D

} = 1

1+ exp
[−α (X ∣∣H D

)] (1.27)

where α
(
X
∣∣H D

) ∈ R is the discriminator prediction for a given setting of
its hyper-parameters H D . In the previous expression, D

{
X
∣∣H D

} = 1 and
D
{
X
∣∣H D

} = 0 indicate that X is considered by the discriminator as real or fake
with maximum probability, respectively, while D

{
X
∣∣H D

} = 0.5 indicates the
impossibility to determine the correct class for X . Accordingly, the discriminator
hyper-parameters are trained to minimize the cross-entropy loss

H D = arg
{

min
H D

[−Y log D
{
X
∣∣H D

}− (1− Y ) log
(
1−D

{
X
∣∣H D

})]}

(1.28)

where Y ∈ Z is the actual label corresponding to X (i.e., Y = 1 if X is real, Y = 0
otherwise).

On the other hand, the goal of the generator is to “fool” the discriminator to
classify X̂ as real, i.e., by letting it predict D

{
G
{
N
}} � 1. Toward this end, for

a fixed setting of the discriminator hyper-parameters H D , those of the generator,
H G , are updated such that

H G = arg
{

min
H G

[− log D
{
G
{
N
}∣∣H D

}]}
. (1.29)

The generator is optimal when D is maximally confused and cannot distinguish real
data from fake one, and the training phase is often performed by alternating the
training of the two networks until reaching the Nash equilibrium [49].

One of the most straightforward applications of GAN s is image synthesis, where
the generator is exploited to generate new images with specific attributes in order
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to – for instance – increase the number of samples within a given training set (i.e.,
data augmentation). Otherwise, GAN s proved excellent image-to-image translation
capabilities, that is, the task of transforming one image into another one [49,50].
GAN s applications include also super-resolution, allowing a high resolution image
to be generated from a low-resolution one, by inferring photo-realistic details while
performing the up-sampling [49]. As concerns EM applications, GAN s have been
recently exploited for solving both inverse scattering and antenna design problems.
For instance, GAN s have been exploited to enhance the resolution of coarse guesses
of unknown dielectric targets generated by means of fast inversion tools (e.g., back-
propagation) [54,55]. Differently, GAN s successfully learned to design log-periodic
folded dipole antennas (LPFDAs) with specific (user-defined) Q-factors in [56].

1.3.4 Autoencoders

Autoencoders (AEs) are a specific class of unsupervised FFNN s that are trained to
make an approximated copy, X̃ , of the input, X [57,58].

In electromagnetics, AE-based architectures have been studied in NDT/NDE
(e.g., to improve visibility of rear surface cracks during inductive thermography of
metal plates – see Chapter 4). Moreover, they have been successfully applied to
DoA estimation (see Chapter 7) and to signal-to-noise (SNR) estimation in satellite
communications (see Chapter 9), just to mention a few relevant examples.

They generally consist in (i) an Encoder � { . }, (ii) a Decoder �−1 { . }, and
(iii) a code, C (Figure 1.14). The goal of the encoding function � { . } is to
represent the input in terms of a compressed sequence/code (also called “latent space
representation”), i.e.,

C = � {X }
(1.30)

Input

Encoder

X

C

Decoder

Output

Code

X~

Г{.} Г–1{.}

Figure 1.14 Block scheme of an AE
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whereas the encoder aims at faithfully reconstructing X from C , i.e.,

X̃ = �−1
{
X
}
. (1.31)

Both encoder and decoder are typically implemented as FCNN s. Traditionally, AEs
have been used for dimensionality reduction thanks to their capability to encode into
C a lower-dimension set of features carrying the largest possible amount of infor-
mation to recover X (i.e., X ∈ R

K and C ∈ R
J , with J � K – Figure 1.14). Such

AE implementations are often called “under-complete”, and their training process is
aimed to instruct the decoder to capture the most salient features of the training data
by minimizing the loss function [1]

L
(
X , �−1

{
�
{
X
}})

(1.32)

which penalizes the mismatch between X̃ and X (e.g., L { . } is the L2-norm of
their difference). Clearly, the final interest is not in replicating the input, but rather
in yielding at the output of the decoder a code sequence C containing all relevant
information on the input in a remarkably lower number of features.

More recently, de-noising AEs (DAEs) gained particular attention given their
capability to subtract the noise corrupting blurred inputs. In this case, the loss function
is defined as [1]

L
(
X , �−1

{
�
{
X N

}})
(1.33)

where

X N =X +N (1.34)

is a noise-corrupted version of X , N being an additive noise vector (Figure 1.15).
Therefore, DAEs are not meant to exactly replicate the input, but rather to learn only
useful features that are necessary to recover a noise-free version of the input.

Actual Input

Noise

Noisy Input

X

XN X~

N

C

Encoder Code Decoder Denoised
Input

Г{.} Г–1{.}

+

Figure 1.15 Pictorial example of a DAE performing the de-noising of a
noisy-corrupted input image
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Recent applications of AEs in EM include the design of metasurfaces [28] and
direction of arrival (DoA) estimation [59]. The reader is referred to the following
chapters for a detailed overview of such applicative scenarios.

1.4 Conclusions

This chapter provided a gentle introduction to DL, recalling the most used terms in
this field as well as describing some of the most widespread architectures in the recent
literature and their applications in EM.
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Chapter 2

Deep learning techniques for electromagnetic
forward modeling

Tao Shan1 and Maokun Li1

2.1 Introduction

Electromagnetic forward modeling (EMFD) is a ubiquitous tool for theoretical
research and engineering applications in the field of electromagnetics [1–4], such
as scientific simulation, engineering design, information processing, etc. The com-
monly applied computational algorithms for EMFD include finite element method
(FEM) [5], finite difference method (FDM) [6], method of moments (MoM) [7,8].
All of them perform forward modeling by solving the governing equations formu-
lated in the form of differential and/or integral equations. The solving process usually
involves discretizing and converting the formulated governing equations into a linear
system of matrix equations, which leads to a large number of unknowns, heavy com-
putational cost, and immense memory load. This poses a long-standing challenge for
EMFD, especially in the context of increasingly complicated electromagnetic systems
and diverse electrical scales. Computational efficiency has long been a core issue in
electromagnetic forward modeling. Many efforts have been devoted to improving
the computational efficiency of EMFD. Reducing redundant calculations based on
the physical laws is one important acceleration approach, for example, conjugate
gradient-fast Fourier transform [9], adaptive integral method [10], fast multipole
method [11], domain decomposition method [12], etc. Another approach is to divide
the whole computation into online and offline parts where offline computation can
reduce the online computational burden and further accelerate online computing,
such as reduced basis method [13] and machine learning-based method [14]. With
the increase in computing performance of the central process unit (CPU), paral-
lel computing is widely applied to improve the computational efficiency of FDTD,
MoM, FMM, etc. However, the speed of parallel computing is further limited by
the communication speed between CPU nodes and between the computing cores and
memory in a single CPU node, which is far from real-time computing. Therefore, it
is still a big challenge to perform EMFD in real time.

1Beijing National Research Center for Information Science and Technology (BNRist), Department of
Electronic Engineering, Tsinghua University, China
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The rapid developments in the graphics processing unit (GPU) and high-
performance computing have led to an explosion of deep learning (DL) technologies
by enabling the optimization of large-scale deep neural networks (DNNs) [15]. Boast-
ing powerful learning capacity and approximation ability, DNNs can independently
extract, abstract, and nest hierarchical features from high dimensional data. DL
has achieved ground-breaking contributions to image, speech, and video process-
ing and led to dramatic improvements in the corresponding algorithms [15]. The
great success of DL also ignites the flare of applying DL into the fields of mathe-
matics, physics, and engineering [16–18]. In applied mathematics, the relationship
between DL and ordinary/partial differential equations (ODEs/PDEs) is widely inves-
tigated. DL can help reduce the curse of dimensionality when solving ODEs/PDEs,
and conversely, the theory of ODEs/PDEs can further help improve the robustness
and interpretability of DL [19]. In intuitive physics, DL can establish the physi-
cal relationship between different objects and further predict the future changes of
objects’ physical states [20]. Besides, DL can learn and capture the exact physical
laws to model the corresponding physical phenomena, such as the Hamiltonian neural
network motivated by Hamiltonian mechanics [21], the Symplectic recurrent neural
networks incorporated with Symplectic integration [22], the Lagrangian neural net-
works emulating Lagrangians [23], etc. Computational fluid dynamics usually need
to solve high-dimensional, nonlinear, nonconvex, and multiscale problems, which is
where DL excels. DL is devoted to solving problems hard to solve by traditional CFD
methods which can be categorized into three types [24]. The first is to apply DL to
solve closure terms for improved precision of CFD by exploiting the approximation
ability of DL [25]. Second, DL can directly solve the governing equations of fluid
dynamics, including Navier-Stokes equations or Euler equations, by avoiding the iter-
ative process of traditional CFD methods [26]. Third, DL can be incorporated with
traditional CFD methods to enhance computing efficiency and precision [27].

The successful applications of DL in image, video, and speech processing, espe-
cially in applied mathematics, physics, engineering, make DL a promising candidate
for fast and efficient EMFD. Before the emergence of DL, machine learning (ML)
techniques have been applied to accelerate EMFD by training offline and accelerating
online [14,28,29], for example, microwave circuit design, antenna design, microwave
detection, etc. Due to the small parameter sets, ML possesses limited learning capac-
ity and approximation ability which further restricts the applications and performance
of ML. DL boasts strong learning capacity and approximation ability compared to
traditional machine learning techniques, as DL usually has a massive parameter set
that can be fine-tuned with the help of stochastic optimization algorithms and massive
parallel computing platforms (GPUs). Recently, many works have been reported to
incorporate DL into traditional computational electromagnetic algorithms for accel-
eration, such as MoM [30], and FDTD [31]. Compared to traditional EMFD, which
builds and solves mathematical or physical models with Maxwell’s equation as a
starting point, DL learns to abstract the intrinsic physical laws from a large amount
of electromagnetic data. In fact, the ultimate goal of DL and EMFD is the same and
it can be summarized as computing precision, computing efficiency, and general-
ization (universality), as shown in Figure 2.1. Therefore, it poses the great potential
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Figure 2.1 Schematic of relationship between deep learning and electromagnetic
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to incorporate DL into EMFD for better computational precision, computational
efficiency, and universality by leveraging the power of both EM data and physics.

2.2 DL and ordinary/partial differential equations

Differential equations are important tools to model physical phenomena across vast
areas of physics and engineering, including ordinary and partial differential equations.
The link between DL and ODEs/PDEs has been widely investigated in many mature
fields founding on nonlinear ODEs/PDEs, which can be concluded in Figure 2.2. On
the one hand, DL can help overcome the dimensional curse and improve computational
efficiency when solving ODEs/PDEs; on another hand, many deep neural networks
(DNNs) can be interpreted within the theory of ODEs/PDEs which further guide
the design of effective DNN architectures. Maxwell’s equations are the basics of
electromagnetic engineering and they are also an important set of PDEs. Therefore,
it is thought-provoking to review the works contributing to the relationship between
DL and ODEs/PDEs, which further provides new insights into applications of DL in
EMFD.

Artificial neural networks (ANNs) have already been employed to solve
ODEs/PDEs numerically before the explosive development of DL [32,33]. The com-
mon approach of ANN-based methods is to learn the direct mappings between the
solutions and corresponding variables of ODEs/PDEs but the performance is limited
by the scale of ANN parameters and computing platforms. Recently, with the devel-
opment of DL, many works are devoted to applying DL to solve various ODEs/PDEs
in the fields of physics and engineering. Convolutional neural networks (CNNs)
are trained to solve Schrödinger equation to predict the ground-state energy of an
electron [34]. Variational quantum Monte Carlo is applied to train the DNN-based
wavefunction ansatz as the solution of electronic Schrödinger equation [35]. Navier–
Stokes equations are solved by deep learning techniques to model flow dynamics
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[36]. High-dimensional Burgers’ equations are solved by DNNs with the differen-
tial operator, initial condition, and boundary conditions as constraints [37]. The
heat equation is solved to predict the steady states by employing a weakly super-
vised training scheme [38]. The fast solver of Poisson’s equation is built based on
CNNs to provide reliable predictions of electric potentials [39]. Space–time fractional
advection–diffusion equations are solved by encoding PDEs into the loss function
of DNNs [40]. DL is also applied to solve Hamilton–Jacobi–Bellman equations
to calculate the optimal feedback control of nonlinear systems [41]. The empirical
risk is modeled by applying deep artificial neural networks to solve Black–Scholes
equations [42].

The approaches of solving ODEs/PDEs based on DL techniques can be tentatively
divided into two categories: fully data-driven and physics-driven approaches. The fully
data-driven approach directly trains DNNs to learn the inner laws between input and
output from massive data by leveraging the learning capacity of DNNs [36,43,44]. It
is noted that there is no physical prior information to constrain the training of DNNs
in the fully data-driven approach. It is usually time-consuming to generate sufficient
data samples for training DNNs. The performance of fully data-driven approaches
depends on the quality of training data and the generalization ability is also limited.
Physics-driven approaches incorporate the physics priori or mathematical models into
the DNNs that demonstrate better performance and improved generalization ability
after sufficient training. Traditional numerical methods of ODEs/PDEs inspire the
way DL techniques are applied. The Galerkin method motivates DNNs to introduce
the PDEs and the corresponding initial, boundary conditions into their objective
functions [37]. PDEs can also be converted into the variational form and solved by
the DNN in the context of the Ritz method [45]. The trial solution or weak formulation
can be combined with DNNs to learn the parametric solutions of PDEs [46,47]. The
DNN can be trained to learn the update rules of the fixed-point iteration method for
solving PDEs [48]. Physics-informed neural networks (PINNs) are another important
approach to solve ODEs/PDEs based on DL techniques. PINNs are first proposed
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in [49] as a deep learning framework of forward and inverse problems governed by
PDEs. The PDE parameterized by θ can be expressed as:

�
(
x, t, θ , u,∇u,∇2u, . . .

) = 0, x ∈ � , (2.1)

where � denotes the PDE, x is defined in �, t is the temporal domain and u denotes
the solution of �. u also satisfies the BCs:

�(u, x, t) = 0, x ∈ ∂� . (2.2)

PINNs regard the DNN as the surrogate of the ODE/PDE solutions:

u∗ = F (�, x, t) , (2.3)

where F and � denote the DNN and the corresponding parameter set. Due to that
the surrogate solution u∗ should satisfy the PDE and BCs, it is natural to incorporate
the weighted sum of the PDE and the corresponding BCs into the loss function:

L (F ,�) = w�‖�(F (�, x, t))‖2 + w�‖�(F (�, x, t))‖2 , (2.4)

Automatic differentiation of DL applies the chain rule to calculate the differentiations
of� to constrain the training of network F , which further enables PINNs mesh-free.
The gradient descent-based optimization method is employed to determine the optimal
parameter set� of the DNNs by minimizing the loss function L (F ,�) [50]. PINNs
are also extended to solve fractional PDEs [40] and stochastic PDEs [51], solve
PDEs based on multi-fidelity data [52], etc. The extreme learning machine is applied
to improve the computing efficiency instead of taking DNNs as surrogate solutions of
PDEs [53]. The library of PINNs is published for solving forward and inverse PDEs
numerically and it is named as DeepXDE [50].

ODEs, PDEs, and their corresponding numerical methods provide new insights
into the reasoning and design of effective DNN architectures for better robustness and
interpretability. The numerical stability of the residual neural network (ResNet) [54]
is analyzed by relating the exploding and vanishing gradient phenomenon within the
theory of ODEs [55,56], which further guide the design of stable DNN architectures.
A theoretical framework is built to analyze the reversibility of ResNet by interpreting
ResNet as ODEs [57]. The lesioning properties of ResNet are analyzed from the view
of dynamical systems to allow the acceleration of training [58]. The ResNet is also
related with the dynamical systems, such as recurrent neural network (RNN) [59],
characteristic lines of the transport equations [60], etc. The gap between DNN struc-
tures and numerical methods of ODEs/PDEs is bridged in [61] and DNNs are also
interpreted as the numerical schemes of ODEs in [61]. In [61], several effective DNN
models including ResNet, PolyNet [62], FractalNet [63], and RevNet [64] are inter-
preted as the forward Euler scheme, backward Euler scheme, Runge–Kutta scheme,
and forward Euler scheme of ODEs. Based on these observations, the linear multi-step
ResNet is designed by combining ResNet with the linear multi-step scheme of ODEs.
The similarity between the finite difference operator and the convolution operator is
investigated and the PDE-Net is built to uncover the underlying PDEs of dynamic sys-
tems [65]. Motivated by ODEs, the neural ODEs are proposed as the continuous-depth
DNN models and the adjoint sensitivity method is applied to compute gradients [66].
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The ResNet is interpreted as a discretization of the space–time differential equation
in [19], which further motivates new CNN models by incorporating parabolic and
hyperbolic PDEs. MgNet is designed based on the connections between the CNN and
multigrid methods for numerically solving PDEs [67]. The DNN is trained to learn
the mappings between the discretized diffusion PDEs and the prolongation operators
of the multi-grid method [68]. By regarding the CNN as a multi-period dynamical
system, RKNet is proposed by combining Runge–Kutta methods with the CNN for
better accuracy [69]. The multiscale ANN is designed to solve the nonlinear PDEs
derived from the Schrödinger equation and the Kohn–Sham density functional theory
by introducing the ANN in each spatial scale of hierarchical matrices [70].

2.3 Fully data-driven forward modeling

Fully data-driven forward modeling (FD) designs effective DNN architectures for
specific scenarios of EMFD and trains the designed DNN with a large amount of data
to learn the inner physical mappings by leveraging its powerful learning capacity.
The trained DNN can provide a real-time response with fair precisions in the online
computing of EMFD. The main disadvantage of a fully data-driven FD is that its
performance depends on the quality of the training data and its generalization ability
is limited. That means that the performance of a fully data-driven FD may deteriorate
sharply when the data has a different distribution from the training one.

The first approach of the fully data-driven FD is to consider the solution of
a matrix equation as an optimization problem of DNN parameters. In the EMFD,
Maxwell’s equations are solved by converting them into a system of matrix equations:

A · u = b , (2.5)

where A, u and b denote coefficient matrix, solution and right hand side. The
multiplication between u and the ith row of A can be expressed as:

∑

j

Ai, j · uj = bi . (2.6)

Similarly, the calculation of a single layer perceptron in the fully connected network
(FCN) can be written as:

y =
J∑

j=1

wj · xj + ξ , (2.7)

where wj and ξ denote the weight and bias of the perceptron. If ξ is neglected, the
matrix multiplication is the same as the calculation of a single layer perceptron. The
training of the FCN is to employ optimization algorithms to tune the weight parameters
wj. By regarding wj as the jth element of the solution uj, then solving a matrix equation
is transformed as the optimization of the FCN, as shown in Figure 2.3. The input of
the FCN is the ith row of the coefficient matrix A and the output of the FCN is the
i-th element of the right-hand side. It is noted that the bias item in the calculation of
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Figure 2.3 Schematic of solving a matrix equation based on the fully connected
layer

FCN must be avoided. The objective function of the FCN can be expressed as the
Euclidean distance for simplicity here:

obj = ‖b′ − b‖2 , (2.8)

where b′ and b denote the output of FCN and the ground truth. The optimization algo-
rithms for training DNNs are usually gradient-based methods, including stochastic
gradient descent (SGD) method [71], AdaGrad method [72], RMSProp method [73],
and adaptive moment estimation (Adam) [74]. In [75], the Adam optimizer of DL is
adopted to solve the matrix equations in the MoM. The rows of the coefficient matrix
in the matrix equations are randomly selected at a certain ratio to train the FCN. Then
the trained FCN can provide reliable solutions of the matrix equations with the same
level of precisions as the traditional methods, including conjugate gradient, general-
ized minimal residual algorithm. As only a portion of the rows in the coefficient matrix
are involved in the computation, the computational complexity is reduced compared
with the traditional methods. The computational efficiency is further improved by
parallel computation of the FCN based on the GPUs. The feasibility of solving matrix
equations in low-frequency EM problems based on the FCN is further verified in [76].
The matrix equations of low-frequency EM problems usually have worse condition
numbers especially in the cases of dielectric materials, and it is difficult for MoM to
solve such matrix equations [77]. The FCN-based approach demonstrates good com-
putational precisions and efficiency even for the cases of complicated structures [77].
A similar approach is adopted in [78] to accelerate the computation of MoM by
applying FCNs to solve matrix equations for parasitic capacitance extraction.

The second fully data-driven approach is to design and train a DNN to learn the
mappings between the desired physical quantities and the corresponding variables.
This approach regards the DNN as a “black-box” approximator to learn the parametric
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function between different physical quantities. As shown in Figure 2.4, it can be
expressed as:

y1, · · · , yj, · · · , yJ = F (�, x1, · · · , xi, · · · , xI ) , (2.9)

where F , � denote the DNN and its parameter set, y1, · · · , yj, · · · , yJ denote the J
physical quantities in the DNN output, and x1, · · · , xi, · · · , xI denote the I physical
quantities in the DNN input. The output and the input of the DNN should be chosen
according to their physical relationship and the output is usually related to or dependent
on the input. In the case where the DNN output is a single physical quantity, the
objective function can adopt a metric function to evaluate the discrepancy between
the DNN output and ground truth:

objsingle =M (y′1, y∗1) , (2.10)

where M , y′1, and y∗1 denote the metric function, DNN output, and ground truth,
respectively.

If the DNN is applied to model multiple physical quantities, its objective function
needs to measure the discrepancy of all physical quantities:

objmultiple = α1M1(y′1, y∗1)+ · · · + αjMj(y′j, y∗j )+ · · ·αJ MJ (y′J , y∗J ) , (2.11)

where y′j and y∗j denote the jth physical quantities output by the DNN and the jth
ground truth, Mj denotes the jth metric functions, and αj is the weight of the jth dis-
crepancy. The multi-task learning scheme can be adopted to train the DNN to model
multiple physical quantities by regarding each quantity as a task. It can improve the
learning efficiency and reduce the computational load compared to building different
models for different quantities. As the multiple physical quantities are usually related
to each other, the generalization ability and computational precisions of the DNN
model can be further improved by applying multiple objective functions to constrain
the training. Despite the great advantages, it is still a big challenge to balance dif-
ferent tasks in the objective function (2.11). The performance of multi-task learning
depends on the choice of the weights in (2.11). The multiple physical quantities may
be measured on independent scales and their magnitude may have a huge difference.
If the weights are simply uniform or manually tuned, it is usually far from optimal. It is
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prohibitively computationally expensive to search for the optimal weights of different
tasks. Here, we introduce two multi-task learning schemes including weighing based
on the uncertainty [79] and weighing based on the Pareto optimal solution [80].

The first multi-task learning scheme weighs different tasks based on homoscedas-
tic uncertainty. In Bayesian modeling, the homoscedastic uncertainty is dependent
on the tasks regardless of their input and it can capture the relative confidence of dif-
ferent tasks [79,81]. The Gaussian probability model can describe the homoscedastic
uncertainty of forward modeling and it can be expressed as [79,81]:

ρ(y∗j , x,�) = 1
√

2πσj
2

exp (−
∥∥y∗j −Fj(�, x)

∥∥2

2σj
2 ) , (2.12)

where σi denotes the uncertainty of jth task, x = [x1, · · · , xi, · · · , xI]T denotes the
DNN input, y∗j and F (�, x) are the ground truth and the jth DNN output. Then,
(2.12) can be re-written in the form of maximum likelihood [79,81]:

log ρ(y∗j , x,�) ∝ −
∥∥y∗j −Fj(�, x)

∥∥2

2σj
2 − log σj . (2.13)

The Gaussian probability model of J output can be formulated as [79,81]:

ρ(y∗1, · · · , y∗J , x,�) = ρ(y∗1, x,�) · · · ρ(y∗j , x,�) · · · ρ(y∗J , x,�) . (2.14)

The maximum likelihood of (2.14) can be expressed as [79,81]:

log ρ(y∗1, · · · , y∗J , x,�) ∝
∑

j

−
∥∥y∗j −Fj(�, x)

∥∥2

2σj
2 − log σj . (2.15)

It can be observed in (2.15) that the uncertainty σj is the coefficient of the discrepancy
between the ground truth and the jth DNN output. By regarding the uncertainty σj as
the weight of jth task, then (2.15) can be employed as the objective function of the
multi-task learning scheme.

The second scheme links the multi-task learning to the multi-objective optimiza-
tion problem [80]. In this scheme, the parameter set of � is divided into the shared
one �s and task-specific one �j. Then (2.11) can be re-written as [80]:

objmultiple =
J∑

j=1

αjMj(�s,�j) . (2.16)

The goal of multi-task learning is to find the optimal�s,�j that minimize the (2.16),
which can be described as a multi-objective optimization problem [80]:

min
�s , �1,··· ,�J

M(�s, �1, · · · ,�J ) = min
�s , �1,··· ,�J

J∑

j=1

αjMj(�s,�j) , (2.17)

where M(�s, �1, · · · ,�J ) = [M1(�s,�1), · · · , Mj(�s,�j), · · · , MJ (�s,�J )]T is
a vector of the calculated discrepancies. The Pareto optimality is the optimization
goal of (2.17) and it can be defined as [80]:
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Figure 2.5 Fully data-driven approaches for electrostatic and magnetostatic field
modeling, (a) the fully CNN for 2D and 3D Poisson’s equations
(source: [39]) and (b) modeling magnetic fields based on the DNN
(source: [83])

Definition 1. 1. A solution � dominates a solution �̄ if Mj(�s,�t) ≤Mj(�̄s, �̄t)
for all tasks j and M�s , �1,··· ,�J 	=M�̄s , �̄1,··· ,�̄J

; 2. A solution �∗ is called Pareto
optimal if there exists no solution � that dominates �∗.

The Pareto solutions can be obtained by the multiple gradient descent algorithm [82]
that founds on the Karush–Kuhn–Tucker (KKT) conditions of (2.17).

The fully data-driven approach has been widely applied to model the forward
scattering by solving different Maxwell’s equations, including the electrostatic and
magnetostatic field modeling, wave physics modeling, etc.

First, the full data-driven models are built based on DNNs to model the electro-
static and magnetostatic fields. The 1D Poisson’s equation of homogeneous media
with Dirichlet BCs is solved by building a multiple-input DNN model [84]. The acti-
vation function of the multiple-input DNN model is formulated based on the sinc- and
cosine-type trial functions to emulate the governing physical equations [84]. A fast
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solver based on the fully CNN model is built to solve 2D and 3D Poisson’s equa-
tion in [39], as shown in Figure 2.5(a). With the varying permittivity distributions
and excitation source locations, both 2D and 3D Poisson’s equations are solved by
FDM to generate training and testing data sets. The fully CNN models for 2D and 3D
Poisson’s equations share the same architecture and reduce the computational time
significantly compared to FDM. The magnetic fields at low frequencies are solved by
separately building two different DNN models, including the ANN-based model, the
modified U-Net model [83], as shown in Figure 2.5(b). In [83], a new pre-processing
method of the DNN input is derived based on the analytical formula of magnetic
potential for a more condensed and compact representation of the input matrix of
geometry, excitations, and boundaries. With the pre-processed data, the computa-
tional precisions and training time of the DNN models are improved. The data-driven
CNN is applied to model low-frequency electromagnetic devices by learning the map-
ping between the magnetic field distributions and the topologies of devices [85]. The
training data of the proposed CNN model is generated by the FEM, and the Monte
Carlo dropout is applied to improve the computational precisions and evaluate the
confidence of predictions. In [86], a reduced-order model based on the CNN is pre-
sented to model the magnetization dynamics of magnetic thin film elements that play
an important role in magnetic sensors. With the training data generated by solving
the Landau–Lifshitz–Gilbert equation, the CNN encodes the magnetic states into the
low-dimensional latent space to reduce the dimensionality for acceleration.

Second, wave physics can be modeled by the DNN models that are trained with
massive physical data. The EM scattering problem is solved to predict the mag-
netic fields by building a CNN model in [87], as shown in Figure 2.6(a). Based on
an encoder-decoder structure, the proposed CNN model combines the structures of
U-Net and ResNet with the introduction of the skip connections. The training data is
generated by applying 2D FDTD to solve the magnetic fields of random scatterers. The
input of the CNN model consists of two matrices representing the scatterers and exci-
tation sources and the output includes the real and imaginary parts of magnetic fields.
The EMFDs also need to process sequential data, such as time-domain modeling, and
wave propagation modeling. The recurrent neural networks (RNNs) are deep learn-
ing models for processing sequential data, including vanilla RNNs, long short-term
memory network, and their variants. Based on such observation, RNNs are modified
and trained to process sequential EM data or model time-domain EM phenomena. The
LSTM model is trained to model the acoustic-magnetic radiation caused by underwa-
ter pressure wave [89]. FEM is applied to solve magneto-hydrodynamics equations to
generate training and testing data samples. The proposed LSTM model demonstrates
good precisions and significantly improved computational efficiency compared to
the conventional numerical methods. An LSTM model is built to solve time-domain
electric fields of various scatterers in 2D and 3D cases [88], as shown in Figure 2.6(b).
Compared with the commercial software, the proposed LSTM model has good com-
putational precision and efficiency. The LSTM model can learn the short-range and
long-range dependencies between the temporal electrical fields and further perform
reliable simulations of time-harmonic propagation. In [90], a forward model is built
based on the ANN to accelerate the 3D EM simulations for the ground-penetrating
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Figure 2.6 Fully data-driven approach for modeling wave physics, (a) CNN model
for electromagnetic scattering (source: [87]) and (b) LSTM cell for
time domain electromagnetic scattering (source: [88])

radar. TheANN-based solver can provide the near-real-time response compared to the
traditional methods that have a high computational load, which can further improve
the full-waveform inversion. The synthetic and real data are both used to verify the
effectiveness of the ANN-based solver. The calculation of radar cross-section (RCS)
is accelerated by the ANN model in [91]. The effectiveness of the ANN model is
verified in the cases of both single target and multiple targets.

Third, the fully-data driven models can be trained to model the EM properties of
microwave devices which lays the foundation for the design and optimization process.
The parameter extraction of microwave filters is modeled in a high dimension by
building an ANN model [92]. As the commonly used rectified linear unit (ReLU) is a
switch function and not smooth for learning the continuous mapping, a modified and
smooth ReLU is presented based on the quadratic function. With the S parameters of
microwave filers as input, the ANN model can produce the corresponding coupling
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parameters. The effectiveness of the ANN model is verified by modeling a fourth-
order cavity filter and a sixth-order multicoupled cavity filter. In [93], an ANN model
consisting of two parts is presented for parametric modeling of passive microwave
filters. The first part encodes the geometrical properties of filters and the encoded
vectors along with the working frequency are taken as the input of the second part. The
numerical results of the three-pole H-plane filter and fifth-order waveguide bandpass
filter are demonstrated to validate the proposed ANN model. The modeling and
design workflows of the inductor are proposed based on the artificial neural network
(ANN) [94]. The training data of the ANN is generated by 3D FEM and all relevant
factors affecting the modeling and design of inductors are taken into account. The
channel simulation of Fin Field-Effect transistors is accelerated by building the ANN
models to learn the mapping between the FinFET transistors and the corresponding
EM properties [95]. The graph neural network (GNN) model is presented to compute
the S parameters of the resonator filters in the design of distributed circuits [96]. The
nodes and edges in the GNN model denote the resonators and their EM coupling effects
in the circuit respectively. The node attributes include the parameters of resonators
and the edge attributes contain the gap, shift, and the relative position between two
resonators. The GNN model encodes the whole circuit layout into a global high-level
representation and then a neural network performs predictions based on the encoded
representations.

Fourth, the forward modeling of nano-structures EM properties also benefits from
the fully data-driven approaches [98,99], including modeling photonic devices [100,
101], modeling scattering-spectra [102,103], predicting electric polarization [97],
etc. The recurrent U-Net with residual and shortcut connections is proposed to model
long-distance coupling effects by predicting the near field in a large neighborhood of
nanopillars [99]. The optical properties of the photonic crystal fibers can be predicted
by the ANN model, including effective index, effective mode area, dispersion loss,
etc. [100]. The CNN and FCN are combined as the response predictor to model
the responses of the target nanostructures and the response predictor is integrated
into the inverse design for acceleration [101]. The DL framework based on U-Net is
proposed to model the EM wave scattering of nano-structures by avoiding solving
Maxwell’s equations [102]. The proposed DL framework takes as input the incident
fields and the scatterer images, then outputs the corresponding real and imaginary
parts of magnetic fields. The light scattering of multilayer nanoparticles is modeled
based on the ANN with orders of magnitude speeding up of computation [103].
The 3D fully convolutional neural network is built to model the nano-optical effects
of nanostructures [97], and the workflow is shown in Figure 2.7. The proposed 3D
fully CNN predicts the real and imaginary parts of the electric fields (x−, y−, z−
components) with the volume discretization of nanostructures. Then multiple related
physical quantities can be derived based on the predicted electric fields, i.e. cross-
sections, far-field scattering pattern, near fields, etc.

Fifth, multi-task learning can help model different but related physical quantities
in the same physical or mathematical model. It also provides a new way to weigh
different parts in the objective function of DNN models. In [104], the multi-task
learning is applied in the 2D forward modeling of magnetotellurics (MT) to predict
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(Reprinted (adapted) with permission from [97]. Copyright 2022
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the apparent resistivity and impedance phase. The losses of sub-tasks in the objec-
tive function are weighed based on the homoscedastic uncertainty and the structural
similarity regularization is incorporated to improve the precisions of predictions. The
proposed CNN model has an identical encoder and two independent decoders for
two physical quantities, as shown in Figure 2.8. The dilated convolutions and atrous
spatial pyramid pooling are adopted due to the inner multi-scale characteristics of MT
problems. An end-to-end DNN model is presented to optimize and design the 3D chi-
ral metamaterials under the constraints of circular dichroism, right and left circularly
polarized spectra [105]. The multi-task joint learning is implemented to realize the
forward modeling and inverse design of chiral metamaterials in a bidirectional DNN
model by avoiding the auxiliary networks for different physical quantities. Although
the applications of multi-task learning have not yet been widely launched in EMFDs,
it poses a great potential for hybrid modeling in many fields, such as residual value
forward modeling in the business applications [106], spatial–temporal hydrological
modeling [107], etc.

2.4 DL-assisted forward modeling

The DL-assisted forward modeling aims to design DNN models to replace the parts
with high computational complexity in traditional EM modeling methods. With the
trained DNN models, the online computation of traditional EM modeling methods can
be speeded up. As shown in Figure 2.9, the computation of a traditional EM modeling
method can be divided into several parts, and the parts with high computational
complexity can be replaced by the trained DNN. Although the DNN is integrated into
the traditional EM modeling method, it is still regarded as a “black-box” approximator
to learn the inner mappings from the massive data.
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Figure 2.9 Schematic of DL-assisted forward modeling

First, the absorbing boundary conditions (ABCs) of the finite difference time
domain method can be modeled based on the DNN models to improve computational
efficiency. The hyperbolic tangent basis function neural network (HTBFNN) is built to
approximate the perfectly matched layer (PML) that is one of the important absorbing
boundary conditions (ABCs) for FDTD [31]. There are four components in the PML
with Yee cell, including Ex, Ey, Hzx, and Hzy, and their relationship can be expressed
as [31]:
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(2.18)

where δ is the thickness of PML, σ (ρ) is the conductivity at the distance ρ from the
interface and σmax denotes the conductivity at the outmost layer of PML. Trained with
the field data of the first cell layer in PML, the HTBFNN can replace PML in FDTD
and significantly reduce the computational complexity of PML. The configuration of
the PML based on HTBFNN is illustrated in Figure 2.10(a). The input of the HTBFNN
is chosen based on the configuration of the PML [31], as shown in Figure 2.10(a):
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Figure 2.10 Deep learning based perfectly matched layer in FDTD, (a) source:
[31] and (b) source: [109]

the output is the field on the interface between the target domain and the PML [31],
as shown in Figure 2.10(a):

yt
ij =

[
Ht+1

z,i+1, j, Et+1
x,i+1, j− 1

2
, Et+1

y,i+ 3
2 ,j

]
(2.20)

The HTBFNN-based PML demonstrates a similar error level to the conventional
5-cell PML. Furthermore, the enhanced LSTM-based PML is proposed to accelerate
the computation of FDTD in [108]. The LSTM-based PML is also trained by the field
data in the first cell layer of PML and demonstrates better computational precisions
than the HTBFNN-based PML. The learned perfectly matched monolayer is trained
based on the deep differentiable forest (DDF) to replace the conventional multilayer
PML of FDTD [109]. Deep differentiable forest combines the strengths of the clas-
sification trees and the learning functionality based on the DNNs [110]. The unsplit
field scheme is adopted to enable DDF-based PML good absorption performance
over a large time span, as shown in Figure 2.10(b).

Second, the evolution of the FDTD method in the time domain can be modeled
by the DNN models, especially the recurrent neural networks (RNNs). The temporal
evolution of fields is modeled by building a DNN model in transient electrodynamics
[111]. Adopting an encoder-decoder structure, the proposed DNN model consists of
an encoder, an LSTM, and a decoder. They are all built based on the convolutional
operations and residual blocks. The convolutional encoder extracts the features of
input data into the latent vectors, the convolutional LSTM stimulates the temporal
dynamics of wave physics with the encoded latent vectors as input, the decoder outputs
the desired electric and magnetic fields. The computational domain size of the DNN
model is extended based on the non-overlapping domain decomposition scheme. The
initial value problem in the time-domain simulation can be described as [111]:

u∗ = Du, u(t) = ut , (2.21)
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where D denotes the spatial discretization matrix. Then the solution of (2.21) at t time
step can be expressed as [111]:

ut+1 = eDtut = (I+ Dt + 1

2!A
2t2 + · · · + 1

n!A
ntn + · · · )ut (2.22)

The matrix exponential operator eDt can be evaluated by the Runge–Kutta 4 (RK4)
integration scheme. When the size of the computational domain grows larger, the
computational efficiency of RK4 could deteriorate due to the matrix–vector multi-
plications in the RK4 integration scheme. Therefore the preconditioning technique is
utilized to decompose the matrix D into a block-diagonal matrix B and a remainder
matrix R = D− B. Then the matrix exponential operator can be approximated in
block-wise fashion [111]:

eB = diag
(
eB1 , . . . , eBn

)
(2.23)

As the remainder matrix, R is highly sparse with the information of the coupling effect,
the computational load of matrix multiplications with R is acceptable. Motivated by
this integration scheme, the matrix exponential is replaced by the DNN model as the
basic building block in the RK4 scheme, and then the DNN model can extend its
size of the computational domain. In [111], the proposed DNN model is trained on a
128× 128 domain and its effectiveness is verified on the 256× 256 and 512× 512
domains.

Third, the DNN models are trained to replace the parts with high complexity
to speed up the computation of MoM. A forward-induced current learning method
(FICLM) is presented based on the pix2pix generative adversarial network (GAN)
to model the induced currents in the electromagnetic scattering problems, and then
the scattered fields can be calculated based on the predicted induced currents [112],
as shown in Figure 2.11. The FICLM regards the induced current predictions as the
image-to-image translations and the input and output of the GAN are selected based
on the physical relationship [112]:

J = (I− χdiag ·GD

)−1 · (χdiag · Einc
)

(2.24)

where I, J, GD, Einc, and χdiag denote the identity matrix, induced current, Green’s
function, incident field, and the diagonal contrast matrix. Three input scheme are
demonstrated in [112]: χdiag, χdiag · Einc, and their concatenations χdiag ⊕ χdiag · Einc,
as shown in Figure 2.11. The ANN is employed to accelerate the computation of
numerical Green’s function in the EM scattering of multiple dielectric cylinders [113].
The training data of the ANN is generated by extracting the numerical Green’s
function (NGF) based on the electric field integral equation with the free-space
Green’s function. With the extracted NGF, the ANN is trained to learn the map-
pings between the NGF matrix elements and their Cartesian coordinates. Then, the
NGF can be replaced by the trained ANN that has fewer parameters than the NGF in
the online computation. In [30], the multilevel fast multipole algorithm (MLFMA)
is accelerated by eliminating the EM interactions progressively and iteratively.
During the eliminations, the ANN is trained to determine which EM interactions
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Figure 2.11 Workflow of the forward-induced current learning method
(source: [112])

can be omitted in the far zone by predicting the error levels of the equivalent surface
currents.

In [114], the translator function of the MLFMA is learned based on the gener-
alized regression neural network (GRNN) to improve the computational efficiency.
The translator function of the MLFMA can be written as [114]:

Tp

(
k̂p, r̂

)
=

L∑

l=0

il(2l + 1)h(2)
l (kr)Pl

(
k̂p · r̂

)
. (2.25)

According to (2.25), the GRNN takes as input the k̂p, r̂, and the level label, and

produces the real and imaginary parts of Tp

(
k̂p, r̂

)
. The effectiveness of the GRNN

is verified in applying the two-level 2D MLFMA to solve the RCS of a perfect
electrically conductor. Furthermore, a hybrid method is presented to combine the
ANN and GRNN to model the translation phase of MLFMA to improve the com-
putational efficiency [115]. In the 2D MLFMA, the translator can be simplified
from (2.25) [114]:

α̃m′m(α) =
P∑

p=−P

H(1)
p (kρm′m) e−ip(φm′m−α+π/2) (2.26)

The ANN and GRNN approximate the translation function at the coarse levels and
fine levels respectively. Both of them take ρm′m and φm′m as input, then produce the
real and imaginary parts of α̃m′m(α). The effectiveness of the proposed hybrid method
is validated by calculating the bistatic RCS of different scatterers.

Fourth, the forward modeling and design of microwave devices can be assisted
and speeded up by deep learning techniques. The model-order reduction based on
the neuro-transfer function models is presented to calculate the frequency responses
of the microwave passive components [116,117]. With the FEM and model-order



44 Applications of deep learning in electromagnetics

Poles, Zeros and
Gain Coefficient of

the Transfer
Function

Proposed
Neuro-TF Model y ≈ d

MOR-Based Transfer
Functions

Neural Networks

Geometrical Variables
x L W H

Frequency

Full-wave EM
Simulations

d
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reduction, the transfer function of a microwave passive structure can be described
as [116,117]:

H(x,ω) = K(x)γ (ω)

∏q−1
i=1 (σ (ω)− zi(x))

∏q
i=1 (σ (ω)− pi(x))

+ c (2.27)

where K(x), pi(x), and zi(x) are the gain coefficient, poles, and zeros, respectively,
q denote the order of H(x,ω), ω is the frequency, c is a constant. In the neuro-
transfer function model, the DNNs are applied to approximate the gain coefficient,
poles and zeros as KNN (x,�K ) , PNN (x,�P) , ZNN (x,�Z) respectively, as shown in
Figure 2.12. Then the DNN approximations are input into the transfer function to
calculate the frequency responses. In [118], two CNNs are combined with the binary
particle swarm optimization to accelerate the topology optimization of a synchronous
reluctance motor. The first CNN is built to evaluate the torque properties of the motor,
and the second CNN helps accelerate the computation of the finite element method
by learning the mapping between the BCs and the magnetic fields.

2.5 Physics-inspired forward modeling

Physics-inspired forward modeling designs and trains the DNN models by drawing
on the physical or mathematical models and their numerical algorithms. By incor-
porating physics or mathematics, the DNN models boast improved robustness and
interpretability, which further enables the better inner reasonings of DNN models.

First, the physics-informed neural networks (PINNs) are applied to various
EMFD scenarios. The PINNs are constrained and guided by introducing the gov-
erning equations of EMFD scenarios into the objective functions. The WaveY-Net of
an encoder-decoder structure is proposed based on the U-Net as a fast EM simulator
of the periodic dielectric nanoridge array [120]. Similar to the PINNs, the objective
function of WaveY-Net not only includes the data loss between the ground truth and
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predictions but also incorporates the governing Maxwell’s equation with proper BCs,
which can be expressed as [120]:

M =Mdata + ωMphysics

Mdata = 1

N

N∑

n=1

‖Hn − Hn∗‖1

Mphysics = 1

N

N∑

n=1

∥∥∥∥∇ ×
(

1

εn
∇ × Hn∗

)
− ω2μ0Hn∗

∥∥∥∥
1

(2.28)

where ω balances the contributions of the governing Maxwell’s equation and it is
determined by trial and error, || · ||1 denotes the mean absolute error, Hn and Hn∗

denote the true and predicted fields. With the training data generated by FDTD, the
WaveY-Net takes the nanoridge array structure as input and outputs the correspond-
ing magnetic fields. Although the introduction of Mphysics demonstrates a modest
improvement in computational precisions, it enables the magnetic fields predicted by
the WaveY-Net self-consistent with the magnetic field wave equation. Furthermore,
the electric fields derived from the predicted magnetic fields are more accurate and
also consistent with the electric field wave equation. The beam dynamics of a particle
accelerator is studied by building a PINN to model the electromagnetic coupling of
a particle beam [121]. The PINN is trained to calculate the space charge fields of
particle beams in the accelerator vacuum chamber. Different from the one in [120],
the employed objective function is directly defined as the sum of mean squared error
(MSE) of the governing wave equation and the corresponding BCs, which can be
written as [121]:

M =MPDE +MBC

MPDE = 1

NPDE

NPDE∑

p=1

∣∣∣∣

(
∂2

∂x2
+ ∂2

∂y2

)
E∗z −

k2

γ 2
E∗z +

jk

ε0γ 2
ρ⊥

∣∣∣∣

2

MBC = 1

NBC

NBC∑

p=1

∣∣E∗z
∣∣2

(2.29)

where E∗z = E∗z
(
xp, yp;�

)
is the predicted fields of DNNs parameterized by�, NPDE

and NBC are numbers of sampling points. Equation (2.29) separately enforces the pre-
dicted fields to satisfy the governing wave equations and the corresponding BCs. In
(2.29), MPDE and MBC calculate MSE of the E∗z sampled inside the target domain and
on the boundary respectively. The effectiveness of the proposed PINN is validated
by calculating space charge fields in accelerator vacuum chambers and the PINN
predictions demonstrate good computational accuracy compared with the analytical
solutions. In [119], the PINN is trained by an unsupervised training scheme to solve
Maxwell’s equations in the time domain, with no need of label data. The PINN takes
the temporal and spatial variables as input and predicts the corresponding electric and
magnetic fields. According to the uniqueness theorem, the solutions of Maxwell’s
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equations can be determined by the BCs and ICs. Motivated by this, the objective
function of the PINN combines the governing wave equations with the correspond-
ing initial conditions (ICs) and BCs to constrain the training process, as shown in
Figure 2.13. The objective function can be described as [119]:

M =MPDE +MBC +MIC

MPDE = 1

NPDE

NPDE∑

i=1

(
1

μ

∣∣∣∣∇ × E∗i + μ
∂H∗i
∂t

∣∣∣∣

2

+1

ε

∣∣∣∣∇ × H∗i − ε
∂E∗i
∂t
− σE∗i − Ji

∣∣∣∣

2
)

MBC = 1

NBC

NBC∑

i=1

(∣∣E∗i
∣∣2 + ∣∣(∇ × H∗i

)∣∣2
)

MIC = 1

NIC

NIC∑

i=1

(∣∣E∗i − Ei

∣∣+ ∣∣H∗i − Hi

∣∣)

(2.30)

where E∗i and Ei, H∗i and Hi denote the predicted and true electric and magnetic fields,
NPDE , NBC , and NIC are numbers of sampling points. It is noted that MWavePDE, MBC ,
and MIC are defined on different temporal or spatial domains. The limited-memory
BFGS algorithm is used to tune the parameters of the PINN to minimize (2.30). The
homogeneous and inhomogeneous media are taken as numerical examples to verify
the efficacy of the proposed PINN.

The objective function of the PINNs usually comprises multiple components and
the multi-task learning scheme can be employed to weigh them for better performance.
In [122], the PDEs with point source are solved based on the PINNs, including 2D
time-domain wave equations, Poisson’s equation, the governing PDEs of the Barry
and Mercer’s source problem. The multi-task learning scheme applies lower bound-
constrained uncertainty to weigh different loss components in the objective function
of the PINN. The objective function in [122] adopts the weighted sum of the wave
equation, BCs, and ICs:

M =MPDE + ωBCMBC + ωICMIC (2.31)
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As the point source is approximated by the Dirac delta function, the MPDE tends to
be dominated by the sampling points around the origin of the Dirac delta function,
which further makes it hard to train and optimize the PINN. Therefore, the target
domain is divided into two subdomains, one containing the origin and one covering
the complementary regions [122]:

� = �0 ∪�1 �0 ∩�1 = ∅ (2.32)

Then MPDE can be evaluated separately on �0 and �1 [122]:

MPDE = ωPDE,0MPDE,0 + ωPDE,1MPDE,1 (2.33)

With such decomposition, (2.31) can be written as [122]:

M = ωPDE,0MPDE,0 + ωPDE,1MPDE,1 + ωBCMBC + ωICMIC (2.34)

The weights of different components in (2.34) play an important role in the perfor-
mance of the PINN. Based on the multi-task learning scheme in [79], the uncertainty
with lower bound is used to weigh the components of (2.34) [122] :

M =
m∑

i=1

1

2
(
ω′i
)Mi + log

(
ω′i
)

, (2.35)

where ω′i = w2
i + ε2 denotes the uncertainty, wi is trainable and the lower bound is

controlled by ε2.
Second, the connections between RNNs and dynamics of wave physics in the time

domain are investigated. The time-varying dynamics of wave physics is first linked to
the computation of RNN to build analog signal processors in [123]. Built by operating
the system of wave physics as an RNN, the wave-based RNN can be employed to
process signals in an analogue way by the standard RNN training techniques. The
standard RNN can be expressed as [123]:

ht = σh (Wh · ht−1 +Wx · xt)

yt = σy

(
Wy · ht

) (2.36)

where ht denotes the hidden states, σh( · ) and σy( · ) are nonlinear activation functions
for the hidden states and output, Wh, Wx, Wy are the weights of RNN. The scalar
wave dynamics governed by a second-order PDE is taken into account [123]:

∂2u(x, y, z, t)

∂t2
− c2∇2u(x, y, z, t) = f (x, y, z, t) , (2.37)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , c = c(x, y, z) is the wave speed, and f (x, y, z, t) is the
excitation source. With t denoting the time step, then (2.37) can be discretized
as [123]:

u(t + 1)− 2u(t)+ u(t − 1)

t2
− c2∇2u(t) = f (t) (2.38)

Then (2.38) can be written in the form of a matrix equation [123]:
[

u(t + 1)
u(t)

]
=
[

2+t2 · c2 · ∇2 −1
1 0

]
·
[

u(t)
u(t − 1)

]
+t2 ·

[
f (t)

0

]
(2.39)
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Defining ht =
[

u(t)
u(t − 1)

]
as the hidden state, (2.39) can operate as the update

equation of a standard RNN and it can be re-written as [123]:

ht = A (ht−1) · ht−1 + P
(i) · xt

yt =
∣∣P(o) · ht

∣∣2
(2.40)

where P
(o) and P

(i) are two linear projectors of input and output respectively. The
similarity between the Laplacian operator ∇2 and the convolution operation is also
applied in the update of ht [123]:

∇2u(t) = 1

s2

⎡

⎣
0 1 0
1 −4 1
0 1 0

⎤

⎦ ∗ u(t) (2.41)

wheres is the spacial step. The effectiveness of the wave-based RNN is verified by
classifying vowels based on the continuous speech recordings.

The theory-guided recurrent neural network (RNN) is built to emulate the com-
putation of the FDTD method for modeling the electromagnetic wave propagation
in [124], as shown in Figure 2.14. The 2D FDTD method for the transverse magnetic
mode is taken into account [124]:
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μ(m)
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2
μ(m)
t + σm(m)

2

, α2(m) = 1
μ(m)
t + σm(m)

2

α3(m) =
ε(m)
t − σ (m)

2
ε(m)
t + σ (m)

2

, α4(m) = 1
ε(m)
t + σ (m)

2

,

(2.42)

where n denotes the time step, and the Yee space lattice is used. It can be observed
from (2.5) that the Hn+1/2

x (i, j + 1
2 ), Hn+1/2

y (i + 1
2 , j), and En+1

z (i, j) of the present
time step can be calculated by the differentiating the ones of the previous time step.
The α1(m), α2(m), α3(m), and α4(m) are material-related and maintain unchanged
over time and they can be regarded as constants. This update scheme in the time
domain is consistent with the conventional RNNs but the specific update rule in
each time step is different. Therefore, the FDTD can be described in the form of
RNN by implementing (2.5) as the RNN update rule. In this way, the modified RNN
can emulate the computing process of FDTD and achieve improved computational
efficiency compared with the conventional FDTD. If the magnetic and electric fields
are known but the α1(m), α2(m), α3(m), and α4(m) are unknown, this RNN can be
easily extended to solve inverse modeling problem to retrieve the material-related
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parameters. The automatic differentiation in the field of DL can directly determine
the material-related parameters by avoiding the computation of forward modeling in
the conventional inverse modeling problems.

The recurrent convolution neural network (RCNN) is presented as an equivalent
of the traditional 2D FDTD method by investigating the mathematical similarities
between the RNN, CNN, and 2D FDTD [125]. The weights of the FDTD-RCNN do
not need to be optimized and they are determined based on the 2D FDTD formulations.
Therefore, the FDTD-RCNN avoids the standard training process of RNN and it can
perform full-wave EM modeling once its weights are formulated. The EM wave of
TM mode in an isotropic domain is considered in [125]:

∂Ez

∂y
= −μ∂Hx

∂t
− σmHx

∂Ez

∂x
= μ∂Hy

∂t
+ σmHy

∂Hy

∂x
− ∂Hx

∂y
= ε ∂Ez

∂t
+ σEz

(2.43)

By discretizing the x-axis, y-axis, and time step as x, y, and t, the update
equations of the 2D FDTD can be written as [125]:
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H
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H
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(2.44)

In order to operate the 2D FDTD in the form of RCNN, the computations in (2.44)
can be replaced by standard operations in DNNs [125]:

H
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2
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2

x,i, j )+ d1(Et
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t+ 1
2
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(2.45)

In (2.45), d1, d2, d3x, and d3y are differential operations and it can be replaced as
1D convolutions in CNNs, as shown in Figure 2.15(a). The coefficient matrices
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W1, · · · , W7 of c1, c2, c3 are invariant and can be regarded as the weight matrices
of the RNN, then the temporal update of (2.45) can operate as the calculation of a
RNN, as shown in Figure 2.15(b). Adopting PML as its ABC, the 2D-FDTD can be
expressed as [125]:

∂Ez
∂y = −κy

∂Bx
∂t − σy

ε0
Bx

∂Ez
∂x = κx

∂By

∂t + σx
ε0
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}

update Ez → Bx, By

κx
∂Bx
∂t + σx

ε0
Bx = μ1

∂Hx
∂t

κy
∂By

∂t + σy

ε0
By = μ1

∂Hy

∂t

}

update Bx, By → Hx, Hy

∂Hy

∂x − ∂Hx
∂y = ε1

∂Pz
∂t + σ1Pz

∂Pz
∂t = κx

∂Dz
∂t + σx

ε0
Dz

}

update Hx, Hy → Pz → Dz

∂Dz
∂t = κy

∂Ez
∂t + σy

ε0
Ez

}
update Dz → Ez

(2.46)

where Bx, By, Pz, Dz are the auxiliary variables in the PML, σx, σy, κx, κy, Bx, By are
the conductivity, relative permittivity, magnetic flux density along x−, y− axes in the
PML, respectively, ε1, μ1 denote the permittivity and permeability inside the PML.
The update of 2D-FDTD with PML is depicted in Figure 2.15(c). By implementing the
FDTD in the form of the RCNN, the FDTD can be accelerated significantly on the par-
allel computing platform, i.e. GPUs, by fully leveraging the parallel computing power.
The 1D and 2D FDTD-RCNN are implemented in [125] and they both demonstrate
a significant reduction in the computing time compared to the conventional FDTD,
especially in the cases that have a large amount number of unknowns.

Third, the iterative solvers of the matrix equations motivate the design of effective
DNN architectures of EMFDs, including the conjugate gradient (CG) and fixed-point
iteration method. The physics embedded DNN is presented to solve the 2D volume
integral equation (VIE) by combining the conjugate gradient method with the DNN in
[126]. The VIE is usually discretized as a linear system of matrix equations A · x = b
to solve in MoM. The CG method is a commonly-applied iterative solver of the matrix
equations and it is concluded in Algorithm 1. The proposed physics-embedded DNN
applies the DNNs to predict the pk+1 and αk+1pk+1 [126]:

pk+1 = F k
p

(
pk , rk , rk−1,�k

p

)

αk+1pk+1 = F k
dx

(
pk+1, Apk+1, rk ,�k

dx

) (2.47)

where F k
p and F k

dx are two independent DNNs parameterized by�k
p and�k

dx respec-
tively. It can be observed in (2.47) that the input of the DNN F k

p and F k
dx are

determined based on the relationship in the CG method. The matrix-vector mul-
tiplications in F k

p and F k
dx are computed numerically. The update learning of the

physics-embedded DNN is concluded in Algorithm 2. The architecture of an iterative
block in the physics-embedded DNN is depicted in Figure 2.16. It is designed to solve

volume integral equations that can be written as a matrix equation A · Etot = E
inc

. The
similar physics-embedded DNN is also applied to solve the combined field integral
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Algorithm 1: Conjugate gradient method

1: Input x0

2: r0 = b− Ax0, p1 = r0, α1 =
(
rT
0 r0

)
/pT

1 (Ap1)

3: x1 = x0 + α1p1

4: for k = 1, 2, . . ., until ‖rk‖ � ε do
5: rk = rk−1 − αk (Apk)

6: βk+1 =
(
rT
k rk

)
/
(
rT
k−1rk−1

)

7: pk+1 = rk + βk+1pk

8: αk+1 =
(
rT
k rk

)
/pT

k+1 (Apk+1)

9: xk+1 = xk + αk+1pk+1

10: end for

equation in [127], which further verify the efficacy of the proposed approach. The
physics-embedded DNN is further extended by replacing the ANN as the U-Net to
model EM scattering by solving the induced currents of the dielectric objects in [128].

Algorithm 2: Update learning of physics-embedded DNN

1: Input x0

2: r0 = b− Ax0, p1 = r0, x1 = x0

3: for k = 1, 2, . . . , N do
4: rk = b− Axk

5: pk+1 = F k
p

(
pk , rk , rk−1,�k

p

)

6: xk+1 = xk +F k
dx

(
pk+1, Apk+1, rk ,�k

dx

)

7: end for

The physics-informed supervised residual learning (PhiSRL) is designed as an
effective deep learning framework for EM forward modeling. It is based on the
mathematical connection between the ResNet and the fixed-point iteration method
[129,130]. The fixed-point iteration method is an iterative solver for the linear matrix
equations Ax = b and it can be described as:

xa
k+1 = xa

k + A
a−1(b− Axa

k ) , (2.48)

where A
a is an approximation of the A to reduce the computational complexity.

With the L denoting the matrix multiplication, the update equation of the stationary
iterative scheme can be written as:

xa
k+1 = xa

k +L (b− Axa
k , Aa−1) , (2.49)
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Figure 2.16 The architecture of an iterative block in the physics-embedded DNN
(source: [126])

If the approximated coefficient matrix is different at each iteration, then (2.49) can
be transformed into the nonstationary iterative scheme:

xa
k+1 = xa

k +L (b− Axa
k , Aa

k
−1) . (2.50)

As shown in Figure 2.17(a), the update equation of the typical ResNet can be written
as [129,130]:

yk = h̃(xk )+F (xk ,�k ) ,

xk+1 = Ñ(yk ) ,
(2.51)
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Figure 2.17 Schematics of (a) the general ResNet block, (b) the ResNet block with
identity mapping, and (c) the proposed PhiSRL block

where h̃, Ñ denote the linear projection and the nonlinear activation, F , �k denote
the CNN and the corresponding parameter set. The ResNet proves to achieve better
performance by introducing the identity mappings to replace the linear projection h̃
and the nonlinear activation Ñ. As shown in Figure 2.17(b), the update equation of
the ResNet with identity mappings can be formulated based on the (2.51) [129,130]:

xk+1 = xk +F (xk ,�k ) . (2.52)

Equations (2.49) and (2.50) have the similar update schemes with the (2.52). Based
on this connection, the physics-informed supervised residual learning is designed
by incorporating the fixed-point iteration method into the ResNet, as shown in
Figure 2.17(c). The stationary scheme of the physics-informed supervised residual
learning can be formulated as [129,130]:

xk+1 = xk +�Si(b− Axk ,�) , (2.53)

and the nonstationary one is [129,130]:

xk+1 = xk +�Ni(b− Axk ,�k ) , (2.54)

where � and � denote the CNNs and the corresponding parameter set. Two DNNs
are presented based on (2.53) and (2.54) including the stationary and non-stationary
iterative physics-informed residual neural network (SiPhiResNet and NiPhiResNet),
as shown in Figure 2.18. In both of them, the CNN is employed to learning mappings
between the residual Rk = b− Axk and the modification of the candidate solution
xk = �Si(b− Axk ,�) or �Ni(b− Axk ,�k ). In the SiPhiResNet, the CNN �Si

adopts the architecture of the U-Net because the U-Net has a strong learning capacity
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Figure 2.18 Schematics of non-stationary iterative physics-informed residual
neural network

for various mappings between xk and Rk at all iterative steps. In the NiPhiResNet,
the CNN is independent at each iterative step and it can adopt a simple CNN that
consists of five stacked layers of convolutional layer, batch normalization, and tanh
nonlinear activation functions, as shown in Figure 2.18.

2.6 Summary and outlook

In this chapter, we introduce the approaches of applying deep learning techniques to
electromagnetic forward modeling. These approaches are divided into three types:
fully data-driven forward modeling, deep learning-assisted forward modeling, and
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physics inspired forward modeling. In fully data-driven forward modeling, the deep
neural networks demonstrate powerful learning capacity and approximating ability
to learn and abstract the inner physical laws from the massive training data. In deep
learning-assisted forward modeling, the learning tasks of the deep neural networks are
simplified and made explicit based on the physical or mathematical models. Thus, the
performance of the deep neural networks is further improved and the forward modeling
assisted by deep learning boasts better computational efficiency and precision. The
physics-inspired forward modeling focuses on the inner reasoning of the deep neural
networks to enable effective deep learning models for electromagnetics. The design
and training of the deep neural networks are guided, motivated, or inspired by the
mathematical or physical models for better robustness and interpretability.
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Chapter 3

Deep learning techniques for free-space
inverse scattering

Julio L. Nicolini1 and Fernando L. Teixeira1

The problem of electromagnetic inverse scattering consists of detecting the unknown
properties of an object, the scatterer, from the information provided by the scat-
tered electromagnetic fields measured after interaction with said object [1–3]. The
sought-after properties can be material (unknown permittivity, permeability, conduc-
tivity), geometrical (unknown dimensions, shape), or a combination thereof. This is
the inverse problem of forward scattering, which consists of calculating the result-
ing (unknown) electromagnetic fields scattered by an object with known material
and geometrical properties. Electromagnetic inverse scattering is a subset of inverse
scattering problems, which also comprise problems pertaining to the scattering of
mechanical waves found in seismology and acoustics, the scattering of electrons in
scanning electron microscopes, the scattering of elementary particles in high energy
physics and quantum field theory, among others. In turn, these comprise a subset
of mathematical inverse problems in general, which consist of obtaining the set of
parameters in a model that lead to a given set of “outputs” (set of observations or
measurements) for a given set of inputs.

As expected, inverse problems in general, and inverse scattering in particular,
have myriad applications in the fields of radiology, archeology, biology, atmospheric
science, geophysics, oceanography, plasma physics, materials science, astrophysics,
quantum information, and other areas of science and engineering; whenever “direct”
observations are impossible or unfeasible and the nature of a physical phenomenon
must be indirectly determined, an inverse problem must be solved. While there are
many similarities between different types of inverse problems, there are also pecu-
liarities that arise from the specific equations that model the phenomenon of interest.
In the context of this work, we will refer to “scattering” and “inverse scattering” as
the forward and inverse problems of the electromagnetic case, unless explicitly stated
otherwise.

The focus of this chapter is mostly restricted to discussing, as the title sug-
gests, applications of deep learning techniques to free-space inverse scattering. The

1ElectroScience Laboratory, Department of Electrical and Computer Engineering, The Ohio State
University, USA
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qualifier free-space used here means that we focus on inverse scattering problems
where all transmitters and receivers are located in free space and the scattering
object has an unknown shape and/or inhomogeneous spatial distribution for the per-
mittivity, permeability, and/or conductivity material properties but it is otherwise
embedded in free-space. A few of the examples considered in this chapter deviate
from these scenarios but are also included because they serve to illustrate ideas that
can be promptly translated or adapted to the free-space inverse scattering scenario
as well.

This chapter is organized as follows: first, we introduce the general statements
of the forward and inverse scattering problems in Section 3.1. In Section 3.2, we
briefly describe traditional methods used to solve these problems, which include
approximate methods that simplify the forward problem to make it feasible to obtain
a direct solution of the inverse problem, and iterative procedures that obtain the
solution to the inverse problem through optimization-based techniques. A brief
general description of artificial neural networks and their applicability to inverse
problems is given in Section 3.3, followed by a description of the first forays into
using (shallow) artificial neural networks in Section 3.4, which due to the limita-
tions of shallow networks consist mostly of “black-box” approaches to obtaining
parametric values of simple problems instead of full-resolution inversion. Then, we
classify the current deep learning solutions to inverse scattering problems into three
broad categories. This classification is not sharp and is employed simply to facili-
tate the discussion. In Section 3.5, we describe the black-box type of solutions that
share similarities with the initial shallow artificial neural network approaches, but
which due to the increased power of deep networks can actually work with the high-
resolution “pixel base,” that is, obtain the reconstruction of the material distribution
directly; in Section 3.6, we describe the methodologies that apply a learning-based
solution to an otherwise iterative procedure, either by approximating the solution
of the forward problem with a learning-based surrogate model or by integrating
deep artificial neural networks into the entire iterative process; and in Section 3.7
we describe non-blackbox, non-iterative learning solutions, that is, algorithms that
obtain the solution for the inverse problem directly but that integrate knowledge of
the structure of the problem such that the surrogate learning model is not a direct
black-box solution.

We note that, thorough this chapter, we have attempted to make our notation
and definitions self-consistent. This means that the notation used in the text might
differ from that found in the various references. Because of this, care must be exercised
when trying to cross-reference the notation employed here with the different notations
adopted in the cited references.

The application of deep learning techniques for free-space inverse scattering is
a quickly evolving area of research, with a large body of very recent work and with
many research groups actively working on the topic. Because of this, we do not claim
that our coverage of the topic in this chapter is in any way complete. Nevertheless,
we hope this chapter can serve as a good pointer for some important works of interest
and as a way of (non-exhaustively) capturing some of the evolution and key trends of
the topic.
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3.1 Inverse scattering challenges

The fundamental equation for the forward scattering problem is given by

E(r) = Einc(r)+ Escat(r), (3.1)

where Einc is the incident field illuminating the (known) scattering object and Escat(r)
is the scattered field given by the volume integral

Escat(r) =
∫

V
G(r, r′) · O(r′)E(r′)dr′, (3.2)

where G is the dyadic (tensor) Green’s function of the problem and O(r) = k2(r)−
k2

0 = ω2μ0(ε(r)− ε0) is the contrast function describing the varying material prop-
erties of the scatterer [1]. Another common description for the distribution of the
material properties is given by the dielectric contrast defined as χ (r) = εr(r)− 1; the
two descriptions can be linked by the relation O(r) = ω2μ0ε0χ (r). For simplicity, we
assume a linear medium. We also assume a non-magnetic medium such that μ0 is
constant thorough the domain and an isotropic medium such that the permittivity εr(r)
is a scalar number. The above problem statement can be easily generalized to include
magnetic and/or anisotropic media as well. A typical set-up for a two-dimensional
scattering problem is shown in Figure 3.1, where the incident field is generated by a
set of transmitters set around the region of interest that contains the scatterer, and the
scattered field is measured by a set of receivers. This particular setup corresponds to
a “full-aspect angle” acquisition. Partial aspect angle acquisitions are also possible,
where the transmitters and receivers are located over a limited angular sector around
the scatterer.

While Maxwell’s equations are linear, the scattered field is a nonlinear functional
of O(r) since the total field E is also a function of O(r). This nonlinear dependence
can be understood as the effect from multiple scatterings inside the object, and it
can be clearly noticed in the following simple example: assume a fixed transmit-
ter that generates the incident field, a fixed receiver that measures the scattered
field, and two scattering cylinders S1 and S2, as shown in Figure 3.2. If the prob-
lem were linear, the scattered field measured from the system with the two cylinders
would be the sum of the scattered field from each cylinder by itself, but that is
clearly not the case due to the mutual scattering that occurs when both scatterers are
present.

This non-linearity compounds the challenges for solving an inverse prob-
lem [2]. The (interrelated) challenges for solving inverse scattering problems can
be summarized briefly as:

(i) Non-uniqueness: The inverse problem is non-unique (or ill-posed), that is,
different scattering objects can produce the same observed scattered field, espe-
cially in the far-field region where the information contained in evanescent
spectrum is lost.
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Figure 3.1 Schematic representation of a two-dimensional scattering problem. The
incident field Einc is generated by a set of transmitters Ti, denoted by
triangles, around the region of interest V . The scattered field is
measured at a set of receivers Ri, denoted by circles, located around the
scattering object. The forward problem consists of calculating the
scattered fields Escat from a known parameter distribution ε(r), while
the inverse problem consists of obtaining the unknown distribution ε(r)
from the measured fields Escat .

(ii) Ill-conditioning: Solving the inverse problem is generally an unstable proce-
dure, i.e., without some type of regularization procedure, small errors due to
the discretization of the problem or noise in the measurement data can lead to
large discrepancies in the obtained solutions.

(iii) Non-linearity: As noted, the inverse problem is nonlinear even if the forward
problem is linear (such as for Maxwell’s equations in linear media), which
prevents the use of inversion techniques tailored for linear problems.

(iv) Resolution limits: In general, if there is no a priori information available about
a given inverse problem, then there is a limited maximum spatial resolution that
any solution method can attain, which is related to the diffraction limit. Fac-
tors affecting the ultimate resolution are the frequency of operation, frequency
bandwidth, and the aspect angle that the transmitters and receivers comprise
with respect to the scattering object. Resolution limits are also closely related
to the three other challenges pointed out above.
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Figure 3.2 Schematic representation of the nonlinearity of the inverse scattering
problem. While the relationship between incident and scattered fields is
linear, the relationship between the material distribution and scattered
field clearly is not linear, as the scattered field in the presence of the
two cylinders S1 and S2 is not simply the sum of the scattered fields
from either cylinder by itself; due to mutual scattering effects arising
from the interaction between the two cylinders.

3.2 Traditional approaches

Before discussing the application of deep learning techniques to the problem of
inverse scattering, it is useful to briefly review in a cursory fashion some traditional
approaches used to solve this problem. Broadly speaking, many of the traditional
approaches can be classified into two main types: approximate linearized solutions
and iterative methods.

3.2.1 Traditional approximate solutions

One of the methodologies when trying to solve an inverse scattering problem is to make
an approximation to the forward problem, which in turn also simplifies the inverse
problem. One such approximation is to consider the incident field as propagating
according to geometrical optics, i.e., that it travels in straight rays across the scatterer.
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This is a good approximation when the incident wave frequency is high (or, in a
particle picture, when the incident photons are very energetic and hence only very
weakly affected by the scatterer). In this geometrical optics regime, a two-dimensional
scatterer s(x, y) can be reconstructed from its Radon transform [1]

p(r, θ ) =
∫∫

s(x, y)δ(r − x cos θ − y sin θ )dxdy, (3.3)

where s(r) = k(r)/ω, δ( · ) is the Dirac delta function, r is the perpendicular distance
from a line to the origin (usually assumed near the center of the object), and θ is
the angle formed by the distance vector [1]. The reconstruction of s(x, y) from its
projections p(r, θ ) is called back-projection and is of particular interest in medical
science for its application to X-ray tomography, but it has less applicability to more
general, nonlinear inverse scattering problems.

Other approximations can be achieved by substituting the total field E in the
integrand of (3.2) for an approximate field with specific characteristics that simplify
the problem. One such approximation, called the Born approximation [1], consists
of approximating the (unknown) field in the integrand (3.2) by the (known) incident
field such that

Escat(r) =
∫

V
G(r, r′) · O(r′)Einc(r′)dr′. (3.4)

This results in the scattered field being a linear functional of the material parameters,
thus simplifying the forward problem and consequently the inverse problem. It can be
shown that under the Born approximation the scattered field for a two-dimensional
problem can be written in the far-field as

Escat(ρ) ≈ i
eik0(ρT+ρR)

8πk0
√
ρTρR

Õ(k0(ρ̂R + ρ̂T )) (3.5)

where ρRρ̂R is the position vector associated with the receiver location, ρT ρ̂T is the
position vector associated with the transmitter location, and Õ is the Fourier transform
of the function O(r) = k2(r)− k2

0 , which is the contrast that we seek. Since in general
we typically have some control over both the transmitter and receiver in an inverse
problem, we are able to obtain the reconstruction of the object by calculating the
inverse Fourier transform of Õ. The limitation of this method is that the obtained
function Õ is only known in Fourier space over a circle of radius at most 2k0, since ρ̂R

and ρ̂T are unit vectors. Therefore the reconstructed O(r) obtained from this method
is band-limited to |k| < k0. Here we considered only a far-field solution. A more
general derivation can be performed that takes into account near-field effects on the
source and/or transmitter, but it does not change the fundamental conclusions; see [1]
for a more in-depth discussion of these aspects.
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Another useful approximation, called the Rytov approximation [1], consists of
making the assumption that the field in the integrand can be expressed via a phase
correction with respect to the incident field, such that

Escat(r) =
∫

V
G(r, r′) · O(r′)Einc(r′)eψ(r′)dr′. (3.6)

With this assumption, the forward problem can be solved via a series expansion of
the phase function ψ(r). When applied to the inverse problem, a similar procedure
can be applied to arrive at a similar result to (3.5), with the main difference being that
this approximation is valid for higher frequency cases than the Born approximation.

Both the Born and Rytov approximations are accurate for weak-contrast scat-
terers, that is, for cases where the variation in the permittivity values across the
scattering object is sufficiently small. Moreover, the Born approximation is more
accurate for lower frequencies (or, equivalently, for electrically small scatterers),
while the Rytov approximation is accurate at higher frequencies. Both methods are
somewhat restricted in solving more general types of inverse scattering problems;
nevertheless, both the Born and Rytov solutions are useful in many cases of practical
interest. In addition, the solutions provided by such approximations can serve as good
initial guesses for more general, iterative inverse scattering methods, described next,
and for the deep learning-based approaches described later in the chapter.

3.2.2 Traditional iterative methods

Iterative methods are a powerful traditional approach to solving inverse problems. In
general, an iterative method consists of an algorithm where we start with an initial
guess (e.g., generated by applying the Born approximation to the problem), and then
iteratively refine the guess through an optimization procedure that minimizes the error
between the computed and measured field results. To exemplify the procedure, we
will briefly describe the so-called Distorted Born Iterative Method [1]. For simplicity,
we will describe the algorithm in its basic form, although several other variants of the
basic algorithm exist. The method starts by invoking the Born approximation,

Escat(r) =
∫

V
G(r, r′) · O(r′)Einc(r′)dr′. (3.7)

Furthermore, the assumption is made that the incident field originates from a point
dipole source p at r′′ so that

Einc(r′) = G(r′, r′′) · p. (3.8)

Therefore

Escat(r) =
∫

V
M(r, r′, r′′)O(r′)dr′ (3.9)



74 Applications of deep learning in electromagnetics

where M(r, r′, r′′) = G(r, r′) ·G(r′, r′′) · p. Then, a functional can be defined as

I = δ
∫

V
|O(r′)|2dr′ +

∑

r,r′′

∣∣∣∣Escat(r)−
∫

V
M(r, r′, r′′)O(r′)dr′

∣∣∣∣

2

(3.10)

where the first term is the norm of k2(r)− k2
0 , the contrast we seek, the second term is

the L2 norm error between the measured scattered field and the approximate solution
of the linearized Born approximation, and δ is a tuning parameter. The sum runs over
all observation points (receiver positions) r and transmitter positions r′′. The solution
for the contrast is found by minimizing this functional. Note that the first term of
the functional is included as a regularization term to yield a unique solution and
mitigate the ill-conditioning of the underlying inverse scattering problem. To solve
this minimization problem numerically, the contrast function can next be expanded as

O(r) =
∑

n

anbn(r), (3.11)

where bn(r) is a suitable, known basis functions for the contrast and an are unknown
amplitudes. Then, by substituting (3.11) in (3.10),

I = δ
∑

n,m

ana∗mBmn +
∑

k

∣∣∣∣∣
Ek −

∑

n

anLkn

∣∣∣∣∣

2

, (3.12)

where

Bmn =
∫

V
bn(r′)b∗m(r′)dr′, (3.13a)

Ek = Escat(rk ), (3.13b)

Lkn =
∫

M(rk , r′, rn)bn(r′), (3.13c)

Minimization of the functional I gives

0 = δ
∑

n

anBmn −
∑

k

Ek · L∗km +
∑

k

∑

n

anLkn · L∗km, (3.14)

which can be rewritten in matrix form as

0 = δ[B] · a − [C]+ [P] · a, (3.15)

with solution

a = [P + δB]−1 · [C]. (3.16)
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Substituting these amplitudes back in (3.11) provides an approximate solution for the
contrast.

The iterative nature of the method comes from taking the newly calculated k(r)
as the updated “background medium” k1(r). Next, a forward problem for this new
background medium can be obtained, and the procedure described above can be
repeated to calculate a new value for the contrast given by O(r) = k2(r)− k2

1 (r). This
process is repeated until a configuration for k(r) is found that produces scattered
field data sufficiently close to the measurement data (following some residual error
requirement), at which stage the inverse problem has been solved.

In addition to the traditional methods to solve nonlinear inverse problems
discussed above, a myriad other types of methods also exist, such as Bayesian
approaches [4,5], compressive sensing strategies [6], level set methods [7,8], mul-
tiresolution methods [9], and domain derivatives [10] to mention just a few. We will
not delve into these other types of methods as they are beyond the scope of this chap-
ter. Rather, we shall focus next on free-space inverse scattering methods based on
artificial neural networks in general, and deep learning in particular.

3.3 Artificial neural networks applied to inverse scattering

The methods described in the preceding section provide solutions to the inverse scat-
tering problem, but they are not without disadvantages. Specifically, approximate
solutions suffer from having limited ranges of applicability, such as only being valid
for weak scatterers or certain frequency ranges, and are not suited for solving more
complex inverse scattering scenarios with strong nonlinearities. Iterative methods,
on the other hand, suffer from the large cost of having to repeatedly compute the
solution of the forward problem in each iteration before the solution to the inverse
problem can be obtained, which can be a burden for complicated scattering scenarios
and severely limits their applicability to problems that need to be solved “on-line,”
that is, applications where it is important to have rapid solutions.

Artificial neural networks are a natural fit to combat those disadvantages. Orig-
inally inspired by attempts to model how a biological brain works, artificial neural
networks have evolved to be powerful general tools for modeling non-linear processes
and find applications in several areas such as robotics, control systems, chemistry,
pattern recognition, and finances. We will not discuss in detail here the historical
development and the myriad strategies used to construct artificial neural networks,
since these topic are better treated in other chapters of this volume. For our purposes
here, it suffices to say that an artificial neural network is a collection of “neurons,”
which are connected computational units that mimic their biological namesake by
being able to receive and transmit signals to other neurons connected to it, and this
signal can be modified by the strength of the connection between neurons. Generi-
cally, the operation of an artificial neural network consists of introducing some sort
of input signal that travels through the layers of connected neurons until it results in
some sort of output at the end of the network. The strength of the connection between
individual neurons is determined during the “training” stage of the network with a
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set of known input–output pairs through which the network is able to reproduce the
known output results from the known input data. The specific function of a artificial
neural network depends on the structure, or architecture, of the neuron connections,
as well as how the network is trained. Determining the best architecture and training
strategies for solving a given problem are two of the main focuses of artificial neural
network research. In what follows, we refer to artificial neural networks simply as
neural networks for short.

Neural networks are particularly suitable to solve inverse scattering problems
because they can extract a suitable model for the nonlinear relationship between the
measured data and the underlying material and geometric properties of the scattering
object from a set of training data. These learned models can then solve new instances
of the inverse problem with high confidence and accuracy, and at much less cost than
iterative methods since the computational burden is shifted to the training process
instead. It is typical for neural networks to have a layered structure. This facilitates
the training and the optimization for the connection strengths. Deep learning refers
to the process of constructing neural networks with many hidden layers (in excess of
the input and output layers) and applying them in practice.

Though the history of neural networks in general, and deep learning in particu-
lar, is somewhat long and complex [11–13], there has been a recent major uptake of
interest in the application of neural networks and deep learning to electromagnetic
problems [14–20] and inverse problems in particular [21–24]. Some of these applica-
tions are discussed in other chapter of this book. This explosion of interest has been
fueled in part by the increased capacity of modern computers to store and process
large amounts of data. This enlarged capacity also allows for more complex neural
networks (with more complex architectures such as many hidden layers and larger
number of interactions), which are capable of solving increasingly more complex
problems, including nonlinear inverse scattering, at a feasible cost.

3.4 Shallow network architectures

The first attempts for incorporating neural networks to solve the inverse scattering
problem employed “shallow networks,” that is, networks with only one or very few
hidden layers. Since small networks are less capable of reconstructing the contrast
distribution in detail, these applications were concerned with parametric reconstruc-
tion instead, that is, recovering a small set of fixed parameters from the problem,
such as assuming the scattering objects are conducting cylinders and recovering their
position and radius. The limitations of small networks also restrict their application
to black-box approaches, that is, attempts that try to directly reconstruct the set of
parameters being studied from the measured data without taking into account any
underlying structure of the problem being solved. For the purpose of the discussion
in this chapter, these initial attempts can be succinctly described as implementing a
mapping of the form

q = N (ER), (3.17)
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where q represents the (small) set of parameters used to describe the scattering
object(s), N ( · ) is the nonlinear mapping corresponding to the shallow network
model implementation, and ER is the scattered field sampled at one or more receivers.
For example, a two-layer feed-forward network is used in [25] to detect the center
location, radius, and (homogeneous) dielectric permittivity of a cylinder embedded
in a domain of fixed size. This problem is a simplified version of the general inverse
scattering problems, since only cylindrical objects are assumed. As another example,
a feed-forward network based on radial basis functions is used in [26] to solve a
similar problem in the context of medical imaging, aimed at detecting proliferated
bone marrow inside the bone of the lower part of a leg. While constructing the model,
the problem is simplified by assuming both the leg and the proliferated marrow to
be perfectly cylindrical in shape; furthermore the permittivities of all tissues are
assumed known a priori. This allows for the parameter set q to simply correspond to
the unknown location and radius of the proliferated marrow. A similar problem is also
solved via a radial basis function architecture in [27], but now the scattering object is
a conducting cylinder embedded in free space; the network again extracts the loca-
tion and radius of the cylinder. Furthermore, a two-layer feed-forward architecture is
used in [28] to extract the conductivity of a cylinder embedded in lossy media from
16 samples of the scattered field. The cylinder is considered to be embedded in a
second, homogeneous cylinder of known material properties, so that the geometrical
parameters are known and the only unknown is the conductivity of the inner cylinder.

The similarities between these examples consist of the limitation that the shallow
network imposes on the model, restricting the sought-after output to be a small set of
parameters, which also requires several assumptions to be made about the problem
and therefore limits the versatility and generalization capabilities of the models. Deep
learning architectures, on the other hand, are less prone to such limitations, and models
can be created to directly retrieve the contrast distribution in its entirety.

3.5 Black-box approaches

Similar to shallow network architectures, black-box approaches based on deep
learning can be described in a generic form by the mapping

ε(r) = N (ER) (3.18)

where the main difference is that instead of a small output set of parameters q describ-
ing the scattering objects, the model now attempts to reconstruct the (discretized)
distribution ε(r) of the material parameters directly in the so-called pixel space or
“pixel base.” In this case, the spatial distribution of the permittivity and/or conductiv-
ity is discretized on a computational grid of pixels (or voxels in the three-dimensional
case), with each pixel being assigned a separate value. In this way, the material
distribution can be accurately reconstructed provided the computational pixel base
is discretized in a fine enough mesh to capture the spatial variations of the actual
material distribution at the appropriate spatial scale.
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A very popular convolutional network architecture is the U-net [29], particularly
in the field of image segmentation. Because the inverse scattering problem can be
interpreted as a visual recognition task for the “image” made by the distribution of
the material parameters, the U-net can be particularly effective at handling inverse
scattering problems. The basic structure of the U-net contains a contracting path that
consists of successive convolutions and down-sampling operations and an expansive
path that performs successive convolutions and up-sampling, as shown in Figure 3.3.
Skip connections between the contracting and expansive paths allow the network to
combine feature information learned during the down-sampling with high-resolution
spatial information. This enables the U-net to simultaneously learn both small-scale
and large-scale features.

A direct inversion scheme using a convolutional U-net architecture that models
(3.18) and extracts the values of the contrast defined as χ (r) = εr(r)− 1 as a dis-
cretized distribution on a two-dimensional domain is proposed in [30]. The authors
compare this direct inversion scheme with more robust alternatives, and show that
it is only able to reconstruct simple profiles that do not exhibit sharp boundaries. In
addition to this direct approach, the authors also explore the application of the U-net
for solving the inverse problem in conjunction with what they call the Backpropa-
gation Scheme (BPS) and the Dominant Current Scheme (DCS). For the BPS, an
approximated induced current is calculated from the measured scattered field instead
of the total field that appears in (3.2), i.e.

IBPS(r′) = O(r′)Escat(r′), (3.19)

Downsampling Upsampling

Output

Connection

Convolution

Input

Figure 3.3 Schematic representation of a generic U-net architecture. Each box
represents a distinct operation as labeled in the legend, and the custom
of depicting them in this U-shaped layout gives the architecture its
name.
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which can then be used to calculate the total field and then solve a least-squares
problem to obtain the approximate contrast

χ (n) =
∑

p Ip(n) · E∗p(n)
∑

p ‖Ep(n)‖2
, (3.20)

where the summation p is taken over possible multiple incidences and the index n
refers to the domain pixelization. This approximate contrast is then used as the input
for the U-net to recover the actual reconstruction of the contrast. For the DCS, a similar
approach of using an approximate contrast as input is used, but this contrast is obtained
from considering an induced current formed from combining dominant singular value
modes and low-frequency Fourier modes together to generate a “dominant induced
current” which is then used to obtain the contrast. These two methods are able to extract
the contrast distribution, even those with sharp boundaries, with better accuracy than
traditional iterative methods.

An application of the U-net in the context of scattering from nanostructures is
explored in [31], where the authors approach the problem in a similar manner as the
direct inversion scheme of [30] but use the scattered magnetic field instead of the
electric field. The construction of the network architecture and its application are
otherwise similar, and for the considered case the U-net-based architecture is able to
achieve high accuracy reconstructions at three times the speed of the traditional direct
solution method employed as a comparison.

A study on the effect of using only real-valued data as inputs to the U-net archi-
tecture or including complex-valued data is performed in [32]. The authors test two
architectures, the first separating the real and imaginary parts of the inputs and the sec-
ond using the full complex-valued input, and apply them to the same direct inversion,
backpropagation, and dominant current schemes presented in [30]. They show that the
complex-valued architectures have better generalization capabilities than their real-
valued counterparts, while having faster or similar convergence times during training.
Despite this result, several of the other works discussed thorough this chapter use the
method of separating the real and imaginary parts of inputs since this choice leads to
a simpler implementation.

A similar approach of using a U-net architecture to create an image of the material
distribution from the scattered field data collected at a limited number of receivers
appears in [33], but the authors add additional U-net blocks to refine the image and
obtain a higher-quality image reconstruction. The first refinement comes from using
an U-net structure to obtain the approximated contrast in (3.20); the same derivation
is performed, but instead of manually calculating the approximated contrast to use as
input, the first network block learns the relationship between measured fields and this
first approximation from the training data. The second refinement comes from using
several U-net blocks cascaded together to achieve image-to-image transformations
that gradually enhance the quality of the reconstruction. A similar two-step approach
has also been proposed in [34], where the authors additionally use complex-valued
networks directly.
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A U-net architecture is also used to extract the material distribution of the scatter-
ing object in [35]. Instead of using the measured scattered fields as inputs to the U-net,
the authors first calculate a backprojected approximation and use that as the input in
the same way as (3.19). One salient feature of this work is that the authors also apply
the network to experimental data while being trained only on a simulated training set,
and show that the network is still accurate; this is an important feature as it is much
easier and cost-effective to build a training set from simulation data (or some combi-
nation of simulation and experimental data) than from solely experimental results. It
should be noted that the approach of using a backprojected approximation as the input
to a U-net-based architecture is also used in [36], in the context of X-ray computed
tomography. The authors test their approach on both synthetic and real data and show
that their results have comparable accuracy to iterative reconstruction methods while
having much faster computation times.

The application of U-net inverse scattering is extended to the three-dimensional
case in [37]. Additionally, instead of using the scattered field as the input to their 3D
U-net, the authors first calculate the Born approximation for their scattering problem
to be used as the input, instead of the measured scattered fields. As a refinement to
the input, the authors also apply a Monte Carlo approach to refine the initial images
obtained by the Born approximation and sharpen the boundaries, so that the network
input is of higher quality. The authors test their proposed method on inhomogeneous
test scatterers and compare the reconstruction results with a state-of-the-art iterative
method, showing that the deep learning approach is more accurate and efficient than
the traditional alternative.

A similar approach of applying a convolutional network to extract the material
distribution from a first guess is proposed in [38]. To obtain the first guess, the authors
use what they call a “nonlinear mapping module” (NMM), which is an extreme learn-
ing machine [39] with one input layer, two hidden layers, and a preliminary imaging
layer. This network has low training costs and maps the measured scattered fields into
a preliminary distribution of the dielectric contrast. This preliminary distribution is
then used as the input to the second part of the network, which the authors call an
“image-enhancing module” (IEM) and is a convolutional network composed of an
encoder, decoder, and pixel classifier; the encoder contracts the input data while the
decoder synthesizes the previously encoded features, which then go through the pixel
classifier for full-resolution segmentation. The primary advantage of this approach
is that the first guesses provided by the extreme learning machine are more robust
than those provided by approximate solutions, therefore the overall accuracy and effi-
ciency of this approach is higher than those that depend on first guesses obtained by
backpropagation or Born approximation. The authors further extend their proposed
methodology to three-dimensional problems in [40]. For that, the authors first rec-
ognize that their original formulation is not suited for three-dimensional problems
due to the higher computational costs in training the so-called nonlinear mapping
module when shifting from a two-dimensional to a three-dimensional problem. To
counteract the increased dimensionality of the problem, the authors adopt a “semi-
join” approach, i.e., the extreme learning machine that encompasses the first module
of their network has the nodes in their hidden layer not fully connected to the output
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layer, which lessens the inner matrix dimensions of the network and thus lowers the
memory storage requirements and convergence rate of the training process.

3.5.1 Approaches for phaseless data

An important subset of inverse scattering problems are the so-called phaseless data
problems, where the inverse problem to be solved is similar as before but we only
have access to phaseless information of the scattered fields, i.e., from the generic
field expression

Escat = Eamp(r, t)e jφ(r,t) (3.21)

where Eamp(r, t) is a real-valued amplitude, the measurement has access only to
Eamp(r, t) measured at the receiver locations. This kind of limitation is relevant for
some practical applications where measuring the phase information is limited due to
hardware constraints in the measuring instruments.

A U-net-based architecture to solve two-dimensional phaseless inverse prob-
lems is proposed in [41]. Inspired by [30], the authors propose and compare three
approaches: a direct inversion scheme, a dominant induced current scheme, and a con-
trast source inversion scheme. In the direct inversion scheme, the measured amplitude
data is mapped directly to the contrast distribution through the U-net as a true black-
box operation. In the dominant induced current method, an induced current is first
calculated through an optimization procedure using only the few dominant modes
of the singular value decomposition of the Green’s function operator. This induced
current can be used to solve an optimization problem similar to (3.20) and obtain an
approximation for the contrast that is used as the input of the U-net. Finally, in the
contrast source inversion approach, the dominant current is calculated via a Fourier-
based expansion. Much like in [30], the authors find that the direct inversion scheme is
only able to reconstruct relatively simpler images (scatterers), while the two methods
that first generate a rough guess from the data through the dominant induced current
method and then refine the resulting image with the U-net are more robust and yield
good generalization properties.

An alternative solution using the U-net architecture is proposed in [42], where the
authors separate the inverse scattering problem into a two-step procedure were first the
phase information is extracted from the phaseless data and then the reconstruction
is carried out. Both steps are carried out by U-net modules; the first step takes as
input the square of the amplitude of the measured field and generates as output the
amplitude and phase of the scattered field, which is then used as input for the second
module to generate a reconstruction of the contrast distribution. Differently from most
other applications of the U-net to the inverse scattering problem, the network takes as
input the field values everywhere instead of a first guess of the contrast distribution.

A convolutional neural network architecture is also applied for phase recovery and
phaseless data reconstruction in [43]. In this work, the authors consider specifically
biomedical applications. The authors use a backpropagated intensity image separated
into real and imaginary parts as the input to the convolutional neural network, which
is then trained to provide the amplitude and phase reconstructions as its output. The
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authors apply their network to breast tissue, pap smear, and blood smear examples,
and show that the network is able to recover the phase information and to provide
image reconstruction with good accuracy and short computation time after training.

3.5.2 Application in electrical impedance and capacitance
tomography

In some applications, electromagnetic inverse problems result from capacitance mea-
surements rather than wave scattering measurements. In the former case, instead
of transmitter and receiver antennas, a set of capacitive electrodes is placed at the
boundary of a region of interest. The permittivity distribution in this region can
then be approximately reconstructed based on the mutual capacitance data measured
among all the electrode pair combinations. This particular sensing modality is typi-
cally denoted as electrical capacitance tomography. Electrical impedance tomography
is another similar type of electromagnetic inverse problem, where the conductivity
distribution in a region of interest is obtained from current-to-voltage (impedance)
measurements between electrodes placed at the boundary. Many typical electri-
cal capacitance tomography settings can be characterized as free-space. Electrical
impedance tomography, on the other hand, is invariably not a free-space technique as it
requires the presence of conduction currents from the transmitter to the receiver. Nev-
ertheless, since these two tomography techniques are closely related mathematically,
we discuss them together in this section.

The fundamental equations of the electrical impedance tomography problem are
given by

∇ · σ (r)∇u(r) = 0 in � (3.22a)

σ (r) n̂ · ∇u(r) = ϕ(r) on ∂� (3.22b)

where u is the electric potential inside the domain �, σ is the electric conductivity,
which are the unknown material parameters, n̂ is the unit normal vector to domain
boundary, and ϕ is the boundary voltage. Both electrical impedance tomography
problems and electrical capacitance tomography solutions are traditionally developed
in two-dimensional settings, with r = (x, y); however, it should be noted that interest
in three-dimensional tomography problems have increased in recent years due to
marked developments in sensor hardware [44,45].

A deep learning U-net architecture is applied as a post-processing step in [46]
to recover the sharpness in object boundaries obtained from the so-called D-bar, a
traditional non-iterative method to obtain images in electrical impedance tomography.
By identifying the spatial variables (x, y) with a corresponding point in the complex
plane z = x + iy, the D-bar method consists of transforming the conductivity equation
into a Schrödinger-like equation

(−∇2 + q(z)
)

ũ(z) = 0 (3.23)
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where ∇2 is the Laplace operator, q(z) = σ− 1
2 (z)∇2σ

1
2 (z) and ũ = σ 1

2 u. Then, a
nonphysical complex scattering variable k = k1 + ik2 can be introduced, and Complex
Geometric Optics (CGO) solutions of the form ũ(k , z) ≈ ψ(k , z)eikz can be sought by
solving the following D-bar equation

∂̄kψ(k , z) = 1

4π k̄
t(k)e−i(kz+k̄ z̄)ψ̄(k , z), (3.24)

where the overbar denotes complex conjugation and

t(k) =
∫

eik̄z̄q(z)ψ(k , z)dz (3.25)

is the (non-linear) scattering transform of ψ(k , z). By taking the asymptotic
approximation ψ(k , z) = 1, a “Born approximation” for the scattering transform is
obtained as

tBorn(k) =
∫

eik̄z̄q(z)dz = q̂(−2k1, 2k2), (3.26)

where the hat denotes the usual Fourier transform. It can also be written as

tBorn(k) =
∫

eik̄z̄(�σ −�1)eikzdz, (3.27)

where�γ is the voltage-to-current density map for the problem given a conductivity
distribution γ ; that is, �1 is the reference data and �σ is the measured data for
the unknown conductivity σ . The usual D-bar method consists of solving the D-bar
equation (3.24) with the Born approximation given by the measured data in (3.27),
and then recovering the conductivity via the inverse relation

σ (z) ≈ [ψ(z, 0)]2. (3.28)

The application of the U-net replaces the step of solving (3.24); the network is trained
with the input data in (3.27) and the ground truth as output. The authors show that the
U-net is able to reconstruct test images after training with marked improvement on
image quality. This is because the original D-bar method suffers from blurring effects
from the Born approximation that are not present in the U-net results. The network is
also effective when tested on experimental data even when trained on simulated data
only.

A dominant-current scheme is proposed in [47] to solve the electrical impedance
tomography problem, similar to that introduced in [30]. The authors examine both an
iterative-based method and a neural network method. For the latter, a U-net architec-
ture is used to extract the image reconstruction from the dominant currents calculated
from the impedance tomography data. In their study, the authors test the network with
both simulated and experimental data.
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As noted above, a closely related inverse problem is that of electrical capaci-
tance tomography, where instead of using the current-to-voltage measurements at the
boundary of the domain of interest, the material parameters are obtained from capac-
itance measurements between a number of electrodes arranged around the region of
interest. The fundamental equation of the electrical capacitance tomography problem
is given by

∇ · ε(r)∇u(r) = −ρ(r) (3.29)

where u is the electric potential, ε is the (unknown) permittivity distribution, and ρ
is the charge distribution in the domain. The mutual capacitance between a pair of
electrodes indexed as i and j is given by

Cij = 1

Vij

∮

�j

ε(r)∇u(r) · n̂dS (3.30)

where Vij is the potential difference between the electrodes and Sj is a closed surface
(or path in two-dimensions) encircling the sensing electrode.

The forward and inverse problems in electrical capacitance tomography are solved
in [48] using a feed-forward and in [49] using a Hopfield neural network architecture.
In particular, the feed-forward network is trained to solve the forward problem, and
the Hopfield network reconstructs the permittivity distribution from the output of the
feed-forward network. While the feed-forward network is an example of a black-box
implementation to solve the forward problem, the use of the Hopfield network to solve
the inverse problem has similarities to the application of an iterative method, which
provides a bridge into the next section where we discuss neural network architectures
that are more closely related to iterative solutions.

3.6 Learning-augmented iterative methods

In this section, we will showcase some methods that employ deep learning algorithms
to enhance or otherwise augment the capabilities of traditional iterative methods,
either by substituting parts of a traditional iterative algorithm, e.g. the forward solver,
with a surrogate learning-based model, or by applying learning-based algorithms to
the entire inversion process.

The relationship between deep neural networks and traditional iterative methods
to solve inverse scattering problems is elucidated in [50]. Specifically, the iterative
equation for updating the contrast χ (r) = εr(r)− 1 can be given in general form as

χ (k + 1) = arg min
χ

(
∑

n

‖δE(n)
scat − J(n)

(k)δχ‖2
2 +R(χ )

)

, (3.31)
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where δ denotes a difference between the quantity and its calculated value at the
current iteration step, J denotes the Jacobian matrix of Escat with respect to χ (k), the
superscript n denotes multiple incidences, and R(χ ) denotes a regularization term.
By considering a sparse transformation operator D and the regularization R(χ ) =
‖Dχ‖1, the authors show that the iterative equation can be rewritten as

Dχ (k + 1) = S (Pk · χ (k)+ bk) , (3.32)

where S ( · ) is an element-wise soft-threshold function and

Pk = D− D

[
∑

n

(J(n)
(k))

H J(n)
(k)

]† ∑

n

J(n)
(k)GdE(n)

(k), (3.33a)

bk = D

[
∑

n

(J(n)
(k))

H J(n)
(k)

]† ∑

n

J(n)
(k)E

(n)
scat (3.33b)

are terms related to the Jacobian J, the scattered and total fields Escat and E(k), and the
discretized Green’s function Gd . The important connection to be made is based on the
recognition of how (3.32) resembles the structure of a fully-connected deep neural
network where Pk and bk are the weight matrix and bias, respectively, k denotes the
layer index, and DH S ( · ) is the activation function. With this established connection
between a deep neural network architecture and iterative solutions for inverse scatter-
ing problems, the authors propose a complex-valued network named DeepNIS to solve
the inverse problem. Their proposed architecture consists of using cascaded convolu-
tional neural network modules to map the input given by taking the back-propagation
approximation to the real contrast distribution. Further studies on the performance
and stability properties of the proposed architecture are carried out in [51].

The connection between iterative methods and deep neural networks is also
directly exploited in [52], where the authors propose a convolutional network to
solve the inverse problem and make a correspondence between specific steps in the
optimization process used to solve the problem iteratively and associated layers in
the neural network. Specifically, the authors define a Lagrangian optimization func-
tion for the inverse problem and apply the alternating direction method of multipliers
(ADMM) as proposed in a previous related work [53]. In this context, the solution
of the inverse problem is split into four optimization problems to solve the induced
current Jind , the total field Etot in the domain of interest, the sought-after contrast
distribution χ , and an auxiliary variable y necessary for the Lagrangian method.
These four optimization problems are then solved by convolutional layers in sequence,
with knowledge from the optimization process used to guide the parameter choice
of the networks. The effectiveness of the network is illustrated via simulated and
experimental results.
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The equation used for updating the contrastχ (3.31) can be linearized through the
Born approximation as a means to simplify the problem. In this vein, a network-based
regularizer was proposed in [54]. Specifically, the proposed regularizer is given by

R(χk ) = χk −N (χk ), (3.34)

where N ( · ) is a denoising subnetwork implemented via a straightforward convolu-
tional network with successive convolution, batch normalization, and rectified linear
unit layers. The authors are able to establish a correspondence between the update rule
for the regularizer and a deep convolutional network where each iteration can be inter-
preted as a single layer of the network. To reduce the model complexity, the operator
N ( · ) is fixed for every layer, which simplifies the training procedure. The authors
compare their algorithm with the subspace optimization method and show that the
proposed network achieves comparable results in terms of accuracy in less computa-
tional time. The authors then refine the algorithm presented in [55] by changing the
network N ( · ) in the regularizer term to be implemented via a generative adversarial
network. The structure of N consists of two sub-networks: a generator network G and
a discriminator network D . The generator network G is similar to the one used in [54],
but its output is fed as an input to the discriminator network D that compares it to the
provided ground truth. The authors test their algorithm and evaluate its performance
against both traditional iterative methods and their previous algorithm, showing that
the integration of generator and discriminator networks allows the model to learn to
reconstruct challenging profiles with a modest number of training samples.

A large part of the computational burden when using iterative methods for the
solution of inverse scattering problems is due to the need for repeatedly solving the
forward problem during the optimization process; for this reason, methodologies that
quickly and efficiently solve the forward problem can be incorporated into an iterative
inverse problem solution to achieve better results than traditional methods. To that end,
a cascaded end-to-end convolutional network is proposed in [56] to solve the direct
problem by learning the mapping between the incident fields and/or material contrast
and the induced currents on the object, therefore allowing for the direct calculation
of the scattered fields in an efficient manner. Specifically, the forward problem can
be solved by discretizing (3.2) in a grid of M cells (or pixels) as

Escat = [Gs] · Jind , (3.35)

where Escat are the scattered fields measured at Nr different receiver positions, [Gs]
is a matrix representation for the discretization of the Green’s function operator on
the given grid, and the induced current Jind is given by

Jind = ([I ]− [χ ] · [Gd])−1 · [χ ] · Einc, (3.36)

where [χ ] is the matrix containing the contrast at each cell, [I ] denotes the identity
matrix, and [Gd] is another discretization of the Green’s function operator. The dif-
ference between [Gs] and [Gd] is that the former represents the discretized operator
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related to the scattered field at the receiver locations and thus is a Nr ×M matrix,
where Nr is the number of receivers, while [Gd] is the general, cell-based discretiza-
tion and has size M ×M . To avoid repeatedly solving (3.36), the authors first estimate
a “dominant current” J+ given by

J+ =
∑

j

ψH
j · Escat

σj
φj, (3.37)

where σj, ψj, and φj are the jth singular values, left-, and right-singular vectors of
[Gs], respectively, the H superscript denotes conjugate transpose, and j runs from 1 to
L, where L is a small number of dominant singular values. Then, a dominant electric
field can be defined as

E+ = Einc + [Gd] · J+, (3.38)

and the goal is to solve the network equation

Jind = N (J+, E+) (3.39)

instead of solving (3.36). To this end, a cascaded convolutional architecture based on
U-net blocks is used with skip connections between blocks, and all the subnetworks
are trained simultaneously such that all the weights are updated dynamically with
information from a combined loss function that takes into account all the stages of
reconstruction. This network is shown to provide good generalization properties with
simulated and experimental tests.

A generative adversarial network is proposed in [57] to achieve a similar result
as proposed in [56]. In this particular work, the authors aim at replacing the solution
of (3.36) by the application of a network model such that

Jind = N (χ , Einc) (3.40)

is solved instead. The structure ofN consists of two subnetworks: a generator network
G and a discriminator network D . The generator network G is a a convolutional U-
net network that generates predictions for Jin based on the pix2pix architecture [58].
Importantly, all the quantities in consideration (i.e. Jin, χ and Einc) have the same
support in the discretized computational domain. Consequently, the application of a
U-net like structure here is exactly the same procedure as described in Section 3.5.
However, the generative adversarial model in this case also includes the discriminator
network D , which takes as input the predicted output from G as well as its original
input, and evaluates the result with respect to the ground truth. The authors propose
three different variants for the algorithm, with consist of using χ , χ · Ein, or χ

⊕
χ ·

Ein as inputs to the generative network. The first variant consists of a direct inversion
from the contrast function to the induced currents, the second variant consists of a
Born-type approximation, and the third variant consists of providing the network with
both the contrast information and the Born approximation information. The authors
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show that all these three variants are able to produce accurate results, but the third
variant is the most robust and has the best generalization capacity, which is expected
since the network receives the most amount of information as input.

A similar approach, based on the use of a neural network surrogate for the forward
solver, is taken in [59]. In this case, however, the forward solver is embedded into
another network that solves the inverse problem as well. The forward solver surrogate
was originally proposed by the authors in [60] and can be described as establishing
the following functional dependency

Etot = N1(χ , Einc). (3.41)

The surrogate is composed of a set of cascaded convolutional blocks that update the
total field Etot iteratively. The first block takes as input the incident field Einc and the
contrast guess χ , and outputs a first guess E1

tot for the total field; subsequent blocks
take the guess from the previous block as an additional input. To solve the inverse
problem, the authors apply a supervised descent method solution where, starting from
a guess for the material distribution χk , a new guess χk+1 is calculated via a set of
descent directions learned from the training data by minimizing the residual between
the associated total field Ek

tot and the ground truth total field as

χk+1 = N2(χk , Eobs − Ek
tot), (3.42)

where χk and Eobs − Ek
tot denote the material distribution and the difference between

the observed field and the calculated total field, respectively, both evaluated at the
present iteration k . The architecture N2 consists of a set of fully-connected layers that
add nonlinearity to the data and then a set of convolutional layers to extract and refine
the material distribution features. The final combined network consists of a cascade of
forward solvers used to obtain the total field Ek

tot associated with the present material
distribution χk , and the update networks that generate the new distribution χk+1 from
the old one and its associated field data, as shown in Figure 3.4. It is important to note
that the forward solver network in this application is trained separately, which means
that its parameters remain fixed while the inverse network is being trained or tested.

An iterative inverse solver based on projected linear Landweber (PNLW) assisted
by three deep neural networks is proposed in [61]. The PNLW algorithm consists of
solving the optimization problem

arg min
χ

∑

f

‖Emeas − Escat(χ )‖2
2 such that ‖χ‖1 ≤ L, (3.43)

where Emeas is the measured scattered field, Escat(χ ) is the field calculated via (3.35),
L is a given hyperparameter that enforces sparsity in the material distribution being
sought and the sum is performed across multiple operating frequencies f under consid-
eration. Along with the hyperparameter L, the traditional PNLW algorithm also has a
step size γ , not necessarily uniform, that controls the update ofχ that must be selected.
To enhance the traditional PNLW algorithm and avoid the need for user-defined hyper-
parameters, the author introduces two neural networks that predict optimal values for
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X0 XfX1N1 N2 N1 N2 N1 N2
0Etot
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1Etot (...) fEtot
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Figure 3.4 Schematic representation of the cascaded set of networks that
comprises the total inverse problem network proposed in [59]. The
observed field Eobs is used as input for all instances of the N2

sub-network, and all instances of the N1 sub-network have their
parameters frozen while the network is being trained. The first guess
χ0 is obtained by applying the inverse of the Frechét derivative of the
forward problem to the observed data and is done offline prior to
training or testing, and χf denotes the final output of the network.

L and γ , as well as a third neural network that refines the output given by PNLW such
that

L = N1(Emeas), (3.44a)

γk = N2(χk−1), (3.44b)

χout = N3(χPNLW ). (3.44c)

In the above, N1 is a fully-connected network that takes as input the measured field and
outputs the prediction for the threshold L. N2 is a multilayer convolutional network
that takes as input the current material distribution guess χk−1 and outputs the step
γk for the next PNLW iteration. Finally, N3 is a U-net-based architecture that takes
the final material distribution given by PNWL, χPNLW , and refines it into the final
output χout . The networks N1 and N2 are trained with data from applications of the
traditional PNLW algorithm to a set of training cases, and the refining network N3

is trained with the output from these test cases and the ground truth associated with
them. When compared against the traditional PNLW, the machine-learning-assisted
PNLW algorithm shows comparable or better accuracy while having comparable or
better running times.

3.7 Non-iterative learning methods

In this section, we will showcase methods that develop a learning-based solution for
the inverse scattering problem that is neither iterative in nature nor a straight black-box
solution. These methods take advantage of the underlying structure of the problem in
some way to provide a direct solution.

The relationship between the training of a deep neural network and the iterative
process for solving an inverse problem was also discussed in [62] in the context
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of certain acoustic (as opposed to elastic) seismic inverse problems. The acoustic
setting differs from the electromagnetic in that acoustic waves can be treated as scalar
waves instead of vector waves. However, most of the challenges in solving the inverse
problem are similar in both scenarios and do not depend on the specific type of
wave being studied. Particularly, the author points out the similarity between the
process of updating the solution of the inverse problem iteratively and the process of
training a deep neural network, which is also in a sense an iterative process of update
based on optimizing some specific error measure. In the case of deep networks, the
error measure is the cost function with respect to the variables in the network model,
while in an iterative algorithm it is usually the 2-norm of the difference between the
measured data and the data that is iteratively passed through the forward model. By
describing the update equations for the forward model with a recurrent neural network
and defining the material properties as the trainable weights, the task of finding out
the unknown material parameters becomes equivalent to that of training the network
weights. The same approach was independently proposed in [63], also in the context
of seismic waveform inversion.

Inspired by these developments, a recurrent network architecture that models the
electromagnetic forward scattering problem is proposed in [64]. The recurrent cell has
the electromagnetic fields E and H as internal states and incorporates update equations
based on the finite-difference time-domain method [65], which are deterministic and
known a priori. The authors consider a 2D TM problem, for which the standard finite-
difference time-domain update equations in an heterogeneous medium are given by

H
n+ 1

2
x = Cp ·Hn− 1

2
x − Cq · ∇yEn

z , (3.45a)

H
n+ 1

2
y = Cp ·Hn− 1

2
y − Cq · ∇xEn

z , (3.45b)

En+1
z = Ca · En

z + Cb · (∇xH
n+ 1

2
y − ∇yH

n+ 1
2

x − J
n+ 1

2
source), (3.45c)
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2
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2
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2
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2
ε

�t
+ σ

2

, (3.46c)
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2
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are coefficients related to the (inhomogeneous) material distribution.∗ In addition,
∇x,∇y are discretized differential operators associated with the spatial increments
�x,�y on a rectangular computational grid,�t is the temporal discretization, and the
superscripts denote the time step index. The authors compare this with the structure
of a recurrent neural network, which can be written in a succinct generic form as

ht =H (xt , ht−1), (3.47a)

yt = F (ht), (3.47b)

where ht is the internal state of the network at time t, xt is the input at time t, yt

is the output, and H ( · ) and F ( · ) are the network structures. The input xt can be
associated with the sources Jsource, the internal state ht with the fields Hx, Hy and Ez

at a given time step, and the output yt with the measured field at a given point in the
computational domain. With this in mind, the structure of F ( · ) is simply a sampling
operator at the receiver locations, and H ( · ) is given by the update equations (3.45).
By introducing the material parameters in (3.46) as trainable weights, the inversion
problem is recast as the training problem, and the network completes the inversion
procedure once training is complete and the (reconstructed) material parameters that
produce fields with best match to the original data are found.

It should be pointed out that a similar relationship between wave dynamics and
recurrent neural networks is recognized in [66] but explored in a different application
context: to solve the problem of classifying vowels from audio samples. Instead of
traditional classification architectures, the authors implement the classification as an
artificial medium that routes the different vowel waveforms into different receivers.
The role of the neural network is to extract the material distribution for the routing
medium that allows for the correct classification of the training dataset. Of note, the
authors characterize the medium by its wave speed rather than by permittivity value
as done in most other works surveyed in this chapter.

Physics-informed neural network approaches have been successfully applied to
inverse scattering problems in the context of nano-optics and photonic metamate-
rial applications as well. For example, in reference [67], the authors use a simple
feed-forward architecture but incorporate constraints from the partial differential
equation under study and its boundary conditions into the loss function of the net-
work. Considering a forward problem given by a generic partial differential equation
such as

f
(

u(x);
∂

∂x
u(x); λ

)
= 0, (3.48)

whereλ is the parameter sought as the solution of the inverse problem, and considering
a feed-forward architecture given by

û = N (x), (3.49)

∗Note that, to simplify the notation, the spatial dependency of the material parameters μ, ε, σ , and σm is
suppressed. The symbol σm denotes magnetic conductivity.
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then a loss function used to train the network can be written as

L (θ , λ) = wf Lf + wiLi + wbLb, (3.50)

where θ are the network parameters, wf , wi, wb are weights that control the relative
importance of the various loss terms,

Lf ∼
∑
‖ f (x;

∂

∂x
û; λ)‖2

2 (3.51)

is the physical constraint that ensures the surrogate solution û obeys the original partial
differential equation,

Li ∼
∑
‖û(x)− u(x)‖2

2 (3.52)

is the matching constraint that ensures the difference between the surrogate solution
and the training dataset is small, and

Lb ∼
∑
‖B(û, x))‖2

2 (3.53)

is the boundary constraint that ensures the surrogate solution obeys the appropriate
boundary conditions given by B( · ) for the given problem. The authors showcase
the method in the homogenization problem of a finite-size metamaterial, which cor-
responds to finding the unknown effective permittivity εeff that produces the same
macroscopic field as the metamaterial under investigation. To generate the training
data, the authors use a finite-element simulation, and to validate their results they run
a new simulation with the εeff parameter extracted by the network. The authors show
that good agreement is found between the effective parameter description and the
original metamaterial structure. The authors also illustrate their method for inverse
Mie scattering and invisible cloak designs, showing that the network is capable of
retrieving the appropriate material distribution in the cases considered.

3.8 Closing remarks

This chapter surveyed applications of deep learning techniques to free-space inverse
scattering. We have divided some of the most popular deep learning approaches
to inverse scattering problems into three broad categories: black-box type of solu-
tions, learning-based approaches to augment otherwise (traditional) iterative inverse
scattering algorithms, and non-black-box, non-iterative learning approaches. This
classification is not very sharp and has been used here simply to facilitate the presen-
tation. Given the chapter length limitations and since the application of deep learning
techniques for free-space inverse scattering is a quickly evolving area of research,
this survey has been necessarily non-exhaustive. With the steady progress in compu-
tational hardware capabilities for processing of large amounts of data, it is expected
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that much progress will be made on this topic in the coming years to exploit the
increasing availability of large training data sets. In addition, the use of very large
numbers of hidden layers and unconventional neural network architecture is poised
to open new research vistas and capabilities.
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Chapter 4

Deep learning techniques for non-destructive
testing and evaluation

Roberto Miorelli1, Anastassios Skarlatos1,
Caroline Vienne1, Christophe Reboud1 and Pierre Calmon1

4.1 Introduction

The term of Non-Destructive Testing and Evaluation (NDT&E) gathers methods and
techniques aiming at assessing the material properties of media during the industrial
manufacturing process (i.e., quality control, zero-defects production, etc.) of speci-
men and during the exploitation cycle of the manufactured specimen (i.e., integrity
check, the ageing status, etc.). NDT&E is applied to test the integrity of the deployed
structures in industrial domains ranging from energy (e.g., nuclear, oil & gas, pow-
erline electric, etc.), transportation (e.g., automotive, railways, aeronautic), civil
structures (e.g., bridges, buildings, etc.), manufacturing (e.g., metallurgic, food,
chemical pharmaceutical, etc.) to cite the most prominent ones. The NDT&E methods
are often classified by their type of energy and the associated propagation mechanisms
in the investigated specimen under testing (SUT): electromagnetic- (i.e., magnetic flux
density testing, eddy current testing, microwave testing, terahertz testing), infrared
(i.e., infrared thermography testing), X-rays (i.e., radiography, tomography testing)
and ultrasonic (i.e., acoustic-, elasto-dynamic, guided-wave propagation regime test-
ing). This chapter focuses on problems dealing with electromagnetic-based methods
and techniques.

In the last decade, NDT&E research and development communities have been
trying to develop automatic inspection systems, aiming at assisting or replacing the
human involvement in data analysis and thus at enhancing productivity and reduc-
ing the risk of human errors. Indeed, in NDT&E the measurements are normally
composed of a large amount of data that can behave as (multimodal-) time-series
and/or (multispectral-) images. Solutions to automatize the diagnostic process or at
least to provide an assistance are currently under active research, as a consequence
of the digitization of manufacturing processes, called “Industry 4.0”. To this end, the
NDT&E community is studying Artificial Intelligence (AI)-based approaches and
machine learning (ML) based algorithms. Among the most promising ML algorithms,

1Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
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the growing family of Artificial Neural Network (ANN) and in particular the Deep
Neural Network (DNN) based algorithms are catching the attention of scholars and
engineers (see Figure 4.1).

Some constraints make the development and the application of ML algorithms
challenging in the NDT&E context. Indeed, large collections of datasets containing
close-to-reality experimental data are often not available. As a matter of fact, due to
industry confidentiality constraints, collaborative and open development frameworks
are quite rare and bounded on very specific cases. Another limitation is the lack of
normalization of the use of such algorithms. Documents of recommended practices
have been released only very recently and have not been yet applied in the various
sectors of industry. The proper way of comparing performance between such solutions
and actual inspection procedures still remains an open question in many sectors.

This book chapter describes the use of ML methods and techniques with a focus
on DL-based methods. It provides an analysis of recent contributions within the
research community. Current and future trends of the application of DL algorithms are
also mentioned. Moreover, even though our analysis is based on the electromagnetic
methods (see Figure 4.2), we think that this contribution may partially apply to the
study of other methods (i.e., ultrasound testing, structural health monitoring, acoustic
emission, visual inspection, etc.). Our review considers the most significant research
axes in representative industrial sectors: energy, transportation, the civil engineering,
and manufacturing.

This chapter is organized as follows. In Section 4.2, we provide the principle of
electromagnetic propagation and modeling with particular emphasis on applications
in the quasi-static regime for layered homogeneous conductive media. In addition,
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Figure 4.2 NDT&E methods as localized on the electromagnetic spectrum

some formal definitions about forward and inverse problems that are often recalled in
the chapter are detailed. In Section 4.3, we review the main categories and challenges
in applying deep learning methods to electromagnetic non-destructive testing sig-
nals analyzing the different kinds of signals commonly probed by the most common
electromagnetic methods and techniques. In Section 4.4, we analyze some important
contributions made in the field. The analysis performed has as a main purpose to
shed light on the application of deep learning in the main industrial sectors concerned
by electromagnetic inspection methods. In Section 4.5, we provide a brief overview
of two main complementary methods for assessing the integrity of the structures. In
Section 4.6, an analysis of future trends and open issues on the application of deep
learning algorithms is provided. The last section is devoted to the chapter conclusion
and remarks.

4.2 Principles of electromagnetic NDT&E modeling

A typical scenario for the electromagnetic inspection of a conducting and/or magnetic
piece is schematically depicted in Figure 4.3. The tested piece is interacting with an
incident electromagnetic field produced by a set of inducting coils, and the resulting
field is sensed via a number of probes scanning the piece at the region of interest. The
detection probe can be either an induction coil (with or without ferrite core), which
can be designed to adapt to the specific geometrical features of the piece [1], or a
magnetic field sensor, like a Hall-effect probe, a Giant Magneto-Resistance (GMR)
sensor or a flux-gate, to mention the most popular ones. The measured signal carries
information about the geometry and the material of the piece and it is the so-called
“measurement” that will be used in the inversion phase to retrieve information about
the piece.
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Figure 4.3 Electromagnetic inspection of (a) planar piece and (b) tube, in
driver-pickup mode. One can distinguish the piece, the driver (d) and
pick-up (p) coils and the defect (in red). The eddy-current head
comprising the coils is scanning the piece along the dashed line.

To remain simple with the problem formulation, we shall restrict ourselves in the
context of this article to inspection in the harmonic regime, which is the most wide-
spread, i.e. a harmonic time dependence of the ejωt , with ω being the angular fre-
quency and j = √−1, will be assumed from this point forward for all state variables.
Transient signal measurements are more suitable for particular applications [2–9].

It is convenient for both the mathematical analysis and signal interpretation
purposes to decompose the measured signal into a sum of contributions, each one
expressing a particular effect. Hence, the complete signal is composed of the probe
response in air, the variation owing to the presence of the piece nearby the probe and
finally the small signal variation sensed when scanning a flawed area of the piece. As
these contributions have very different amplitudes and spatial properties, it is often
much more efficient to compute them separately using perturbation approaches.

In the case of Figure 4.3 (single receiving coil), the measurement signal is pro-
portional to the mutual impedance �ZTR, where T stands for “transmitter” and R
for receiver. The total impedance can be split into three parts, namely the mutual
impedance in air �Z (a)

TR , the impedance change due to the piece �Z (p)
TR , referred to

usually as the “geometry signal,” and finally the impedance change owing to the
presence of material defects in the illuminated zone �Z (p)

TR . One can thus write

�ZTR(rs,ω) = jωM (a)
TR +�Z (p)

TR(rs,ω)+�Z (d)
TR (rs,ω) (4.1)

where M (a)
TR is the mutual inductance in air. Notice that both the geometry and the

defect signals depend on the probe position rs. In the case of a magnetic field sensor,
the previous splitting of the total signal in air, piece, and defect contributions also
holds, where this time the complex impedance should be replaced by the magnetic
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field component parallel to the sensitivity direction of the magnetic sensor. In the
following, we shall focus on the former case since coils are the preferred probes
in the majority of practical applications. The analysis is similar for magnetic field
measurements.

From the three parts in (4.1), M (a)
TR depends only upon the probe geometry and

does not carry any information on the piece. It is therefore not useful for the purposes
of signal processing. Besides, being constant for all scan positions, it can be easily
removed by calibration. Our primary concern will thus be the calculation of the
remaining two terms, namely the geometry and the defect perturbation signals.

4.2.1 Field solution for the flawless piece and calculation of the
signal geometry �Z (p)

TR

Referring to the above introduced air-piece-defect decomposition approach, the next
step in the analysis will be to calculate the response of the flawless piece, i.e. the
scattering field and the probe signal owing to the piece interaction with the coil field.

The treatment of the geometry signal �Z (p)
TR can provide information about the

piece material and global configuration parameters such as the piece thickness and
the probe lift-of. Since it depends only upon the geometry of the flawless piece, it can
be often calculated by semi-analytical approaches. There is a large number of articles
concerned with this calculation, all stemming in a greater of lesser extent from the
seminal work of Dodd and Deeds in the 1960s [10,11] and the Auld’s article on the
specialization of the Lorentz reciprocity theorem [12,13]. This approach has been
greatly enhanced and extended by Theodouldis and Bowler with the introduction of
the Truncated Region Eigenfunctions Expansion (TREE) [14–17]. The TREE method
has thus permitted the calculation of the geometry signal for canonical pieces with
discontinuities like edges [18] boreholes [19–22], tubes with eccentric walls [23], etc.
For more complicated pieces, one has to resort to either fully numerically techniques
like the finite element method (FEM) or hybrid analytical–numerical schemes [24].

In the case of a symmetric piece, the signal geometry is also constant, and can
be thus separated from the flaw signal by a simple baseline removal.

4.2.2 Defect response: calculation of the flaw signal �Z (d)
TR

We assume that the flawless piece is homogeneous and isotropic in the region of
interest with a “base” electrical conductivity σb and magnetic permeability μb. The
presence of material defects is translated to a local variation of the piece electric and
magnetic properties, δσ(r) and δμ(r), respectively. The material coefficients in the
piece with the flaw can be thus written in the following way:

σ(r) = σb + δσ(r) (4.2)

μ(r) = μb + δμ(r) . (4.3)

The interaction of the driving (primary) electric and magnetic field Ep, Hp with
the material inhomogeneities owing to the flaw can be seen as the effect of an
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equivalent electric and an equivalent magnetic source, which superposed to Ep, Hp

will yield the total field according the expressions [25–29]

E(r) = Ep(r)− jωμb

∫

Vf

G
ee(

r, r′
) · δσ(r′)E(r) dV ′

− jω
∫

Vf

G
em(

r, r′
) · δμ(r′)H

(
r′
)

dV ′ (4.4)

H(r) = Hp(r)+
∫

Vf

G
me(

r, r′
) · δσ(r′)E

(
r′
)

dV ′

− jωσb

∫

Vf

G
mm(

r, r′
) · δμb

(
r′
)

H
(
r′
)

dV ′, (4.5)

where G
ee

, G
me

, G
em

, G
mm

stand for the Green’s dyads of the host medium. The
integration is carried out over the defect(s) support Vf .

The G
ee

and G
me

dyads are defined as the electric and magnetic field response
with a unit Dirac electric current source satisfying the Helmholtz equation [25,29]

∇ × ∇ ×G
ee(

r, r′
)+ jωμσG

ee(
r, r′

) = Iδ
(
r − r′

)
(4.6)

∇ × ∇ ×G
me(

r, r′
)+ jωμσG

me(
r, r′

) = ∇ × [Iδ(r − r′
)]

(4.7)

where δ(r − r′) is the delta function, and I stands for the unit tensor. G
mm

and G
em

are
defined in a similar way, as the corresponding magnetic and electric field response
under magnetic current excitation, and they satisfy the same equations (4.6) and (4.7),
respectively.

Note that the two pairs are interrelated via the duality principle, i.e., they can be
interchanged in (4.6) and (4.7) using the following rule G

ee ↔ G
mm

and G
me ↔ G

em
,

which together with the interchanges E↔ H, σ ↔ −jωμ produce the same set of
equations. The duality transformation constitutes hence a symmetry of (4.6) and
(4.7). The detailed derivation of the Green’s dyads in planar and cylindrical stratified
media is given in [25,29].

The mutual impedance variation owing to the flaw is calculated using the above
solution in an elegant way by application of the reciprocity theorem

�Z (d)
TR (rs) = − 1

IT IR

∫

Vf

[
δσ
(
r′
)

ET

(
r′; rs

) · Ep
R

(
r′; rs

)

− jωδμ
(
r′
)

HT

(
r′; rs

) ·Hp
R

(
r′; rs

)]
dV ′ (4.8)

where Ep
R and Hp

R stand for the electric and the magnetic field in the flawless medium
that would be produced is the receiver coil that would be fed with current IR. ET , HT
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is the field solution obtained by (4.6) and (4.7) with the transmitting coil being active
and fed with current IT . Notice the functional dependence of the field terms from the
probe position rs denoting that one has to consider a different field solution per scan
point. The angular frequency dependence of all variables is implied.

In the case of direct magnetic field observations, (4.8) should be replaced by a
calculation of the magnetic field at the probe position, namely (4.7) using the suitable
expressions for the Green’s dyads G

em
and G

mm∗.

Conductive, non-magnetic medium with volumetric flaws
Equations (4.4)–(4.8) address the most general case of a defect inside a conducting
and magnetic medium. However, in practical applications this general case concerns
only ferritic steels since steel is the only ferromagnetic material of industrial interest.
For the rest of workpieces the magnetic contribution due to the permeability difference
is negligible, i.e., δμ = 0 and (4.4)–(4.8) specialize to the following relations for the
state equation

E(r) = Ep(r)− jωμb

∫

Vf

G
ee(

r, r′
) · δσ(r′)E

(
r′
)

dV ′ (4.9)

and the reciprocity theorem

�Z (d)
TR (rs) = − 1

IT IR

∫

Vf

δσ
(
r′
)

Ep
R

(
r′; rs

) · ET

(
r′; rs

)
dV ′. (4.10)

Magnetic medium with volumetric flaws
This case concerns magnetic pieces with a local variation of the permeability value,
the same time that its conductivity remains constant (i.e. δσ = 0, δμ �= 0, and the
problem reduces to (4.5) with solely magnetic contributions. Practically this case
is met in the inspection of ferromagnetic specimens using static magnetic fields, a
technique known as Magnetic Flux Leakage (MFL). Since ω→ 0 in this limiting
case (4.5) does not provide an adequate description any more. Indeed (4.5) is derived
using the Faraday induction law. To address the static problem, one must devise an
alternative integral equation derived by the magnetostatic equations.

A similar problem arises when calculating the magnetic flux concentration in
inductors with ferrite cores. This time is the base conductivity that goes to zero
σb → 0 since ferrites are electrical insulators, and the integral term in (4.5) vanishes
requiring again special formulation valid for the magnetostatic regime. A treatment of
the core problem using a dedicated integral equation formalism can be found in [27].
The case of a pure magnetic flaw will not be examined any further.

∗For a multilayer medium, like the ones considered in this class of problems, the Green’s dyads expressions
are different when source r′ and r are located in different layers. This is the case for the observation equation,
where the source (defect) lies in the medium whereas the observation is carried out in the air.
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Conductive, non-magnetic medium with thin flaws
In non-magnetic media, a further simplification is also possible, when the thickness
of the defect is negligible with respect to the other dimensions and with respect to the
skin-depth in the material. This is the case of thin cracks, which is a very common
category of material defects comprising the Stress-Corrosion Cracking (SCC) and
the Fatigue Crack (FC) mechanisms. The appropriate formalism for the modeling of
cracks in infinite medium has been introduced by Bowler et al. [30–34] and has been
extended in the recent literature by Theodoulidis and Miorelli et al. [35–37]. Further
developments have addressed the cases of finite media accounting end-effect such as
plate edges by Theodoulidis and Bowler [38], boreholes by Pipis et al., Skarlatos and
Theodoulidis [22,39], and tube edges [40].

Using the fact that the normal current component at the surface of the crack
must vanish, which in its turn is translated to vanishing normal electric field, (4.9)
reduces to

n · Ep(r) =jωμb

∫

Sf

n ·Gee(
r, r′

) · n p
(
r′
)

dS ′ (4.11)

where Sf is the crack surface and p expresses the electric dipole distribution over Sf ,
defined as

p(r) = lim
�x→0

δσ(r)n · E(r)�x (4.12)

with �x being the crack opening and n the unit normal to Sf .
Notice the simplification achieved when moving from (4.9), which is a vector

Fredholm integral equation of the second kind, to (4.11), a first-order scalar Fredholm
equation. The reciprocity relation is also simplified accordingly

�Z (d)
TR (rs) = − 1

IT IR

∫

Sf

n · Ep
R

(
r′; rs

)
pT

(
r′; rs

)
dS ′. (4.13)

The interpretation of the T, R indices remains the same as above.

4.2.3 Examples

The application of the integral method approach for the calculation of the defect
response will be illustrated via two examples.

The first example deals with the signature of a circumferential defect in a fer-
romagnetic tube obtained using a Remote-Field Eddy-Current (RFEC) probe. The
problem configuration is depicted in Figure 4.4a.

The probe consists of a 15 mm long transmitting coil and an axial gradiome-
ter with two coils connected in differential mode. Both receiving coils have 5 mm
thickness and are located in the remote field region. The considered defect is a 50%
thick (percentage with respect to the tube wall) and 5 mm wide inner groove. The
results of the integral method presented above are compared against FEM simula-
tions and measurements in Figure 4.4. The illustrated curves stand for the complex
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Figure 4.4 Eddy-current inspection of a ferromagnetic tube using a REFC probe.
(a) Piece geometry and probe. The red ring stands for the defect. (b)
Comparison of the simulation results obtained using the integral
method approach and the FEM method with measurements
(experimental data courtesy of Chen et al. [41,42]) (copyright IEEE).

plane representation of the gradiometer signal as function of the probe position. This
is a very common representation in Eddy Current Testing (ECT) applications since
the form and the angle of the curves provide direct information about the defect
features.

The second example concerns a fastener inspection affected by a narrow crack.
This case is met in the aeronautical industry, more precisely in the eddy-current
testing of fuselage fasteners. Notice that the riveted structures are regions prone
to the appearance of cracks owing to mechanical stress concentrations there. The
considered set-up is shown in Figure 4.5.

In this specific configuration, the fastener hole can be either considered as a
large defect which is addressed by means of the integral equation (4.9), a solution
proposed in [43], or alternatively as integrated part of the geometry, in which case one
needs to construct the appropriate Green’s dyad that takes into account all interfaces
of the piece (horizontal interfaces and hole surface) as done in [39]. In the former
case, the Green’s dyad calculation is more straightforward, however the discretization
of the defect has a negative impact to the computational burden. The latter approach
is computationally more efficient, yet one has to cope with the construction of the
appropriate Green’s function, which is a hard problem.

4.2.4 Inverse problems by means of optimization and machine
learning approaches

In the previous sections, we provided an overview of some computational methods that
can be used to address the direct problem, that is, to calculate the probe response for a
given configuration of inspection. This forward model will from now on correspond
to a function f (x|rs) that calculates the measured signals with respect to the probe
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Figure 4.5 ECT of fastener with a narrow crack. (a) Problem geometry. (b)
Simulation vs experimental results (real part). The signal asymmetry is
due to the presence of the crack (copyright IEEE).

position rs, with x being some set of parameters representing the features of the
geometry which we wish to estimate (conductivity, permeability, crack dimensions,
crack position, etc.).

In a typical optimization approach, the forward model f is evaluated in a loop and
compared with measurements y to recover an estimate of x by solving a minimization
problem [44],

f −1
obj := argmin

x
mis {f (x|rs) , y} + R(x) (4.14)

where mis: Y × Y → R+ is an appropriate measure of discrepancy in the data domain,
and R : X → R+ is a regularization functional that incorporates our prior knowledge
of x. For a nonlinear inverse problem, (4.14) is usually solved by iterative methods,
and in some cases it can be converted to an approximate direct inversion model.
The minimizer of (4.14) is the solution provided by the objective function approach.
Some typical implementations of the misfit function comprise the L2 norm of the
(normalized) difference between simulated and measured data or some kind of energy
functional.

Alternatively, machine learning algorithms can be used for solving inverse prob-
lems in NDT&E. The learning approach consists first in collecting a sufficiently large
amount of measured data y, or synthetic data f (x|rs) and the corresponding values of
parameters x, forming a so-called training set of N pairs

{(
xn,yn

)}
, n = 1, ..., N . This

training set is then used to fit an ML model Fθ (y) able to estimate x, with θ ∈ �
the specific parameters of the ML model. In case of deep learning methods, Fθ (y)
corresponds to the architecture employed for solving the problem parametrized by
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θ ∈ �. The deep learning architecture parameters are fitted to the training set dur-
ing the so-called training phase (or stage) that is performed off-line by solving the
optimization problems [44]

f −1 (y) := Fθ (y), with θ being argmin
θ∈�

N∑

n=1

mis
{
Fθ (yn) , xn

}+ R (θ) (4.15)

where mis: X × X → R+ is a suitable measure of the mismatch in the parameter
space and R : �→ R+ is used to regularize the solution and enhance the model
generalization capabilities (i.e., avoid overfitting). Different metrics can be used to
assess model mismatch depending on the learning task objective (e.g., classification
or regression tasks) and the architecture employed [45]. The minimization of (4.15)
is obtained through back-propagation algorithms by using a broad set of efficient
minimizers (e.g., Adam, AdaGrad, RMSProp, SGD) [45]. Therefore, prediction (also
called test phase) can be performed in almost real time just by evaluation of the
model on an unknown set of measurements ytest such that x̂test = Fθ (ytest). It is
worth mentioning that deep learning approaches can also be used to perform forward
modeling tasks: in this case the model learns to generate signals y from a set of
parameters x.

4.3 Applications of deep learning approaches for forward and
inverse problems in NDT&E

In NdT&E research and development community, numerical simulations have been
historically used to design probes, inspection set-ups and assess inspection perfor-
mance minimizing as much as possible time-consuming and expensive experiments.
More recently, simulations have been widely exploited in order to carry out very
computational demanding calculations involving statistical and sensitivity analysis
studies. In this framework, ML algorithms have been employed in order to build
surrogate models (also called metamodels) to speed-up otherwise computationally
infeasible studies. NDT&E scholars refer to such ML paradigm as model- or physics-
driven approach in contrast to the data-driven approach where ML algorithms are fit
directly to measured data.

In NDT&E, model-driven ML approaches exploit the knowledge on the problem
coming from simulations in order to design a suitable numerical experiment to be used
for training supervised classification and regression algorithms. Once the algorithm
is trained, then its performance is evaluated on a meaningful test set. Depending on
the situation, the test set can be purely numerical, experimental, or a mix of the two.
The performance of such a ML schema on the experimental test set can be affected
by the level of agreement between experimental acquisitions and simulated data.
Such an agreement depends on two main uncertainty factors, the epistemic and the
aleatoric uncertainties [46,47]. The epistemic uncertainty factor can be reduced by
designing a suitable ML schema or by increasing the number of simulated samples.
The aleatoric uncertainty cannot be reduced since it is intrinsic to the experimental set-
up. Among common sources of aleatoric uncertainty, one can mention experimental
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noise, probe ageing and misplacement, lack of knowledge on specimen characteristics
and defect(s) morphology, etc. These uncertainties may greatly impact the ability of
a trained ML model to be applied to real experimental data.

Data-driven approaches are widely employed by ML signal and image pro-
cessing communities as it has access to large of real (e.g., recorded audio signals,
images, etc.) open access datasets counting, very often, more than hundreds of thou-
sand of samples. Unfortunately, in developing model-based ML strategies tackling
NDT&E inspection problems for forward and inverse tasks, one needs to face two
main issues. First, very few open access experimental datasets are available, thus it is
difficult to establish common benchmarks to test and improve the state-of-the-art of
ML-based strategies developed. Second, probed data are very often inspection and
case dependent. Indeed, even in a pure data-driven approach, the aleatoric uncertain-
ties on a given inspection problem may lead to poor generalization capabilities of
the ML algorithms developed on unseen test samples (i.e., same inspection problem
but an unseen experimental set-ups). Furthermore, in NDT&E acquisitions, the large
majority of probed signals and/or images concerns healthy specimens, whereas to
detect flaws one needs to have a lot of signals coming from flawed specimen. In
classification tasks, imbalanced datasets between healthy and unhealthy specimens
or between flaw types are very common and must be properly handled in the train-
ing phase. In addition, training data are often partially labeled or not labeled at all
(we have the y data but not the corresponding values of x like the probe(s) position,
the defect(s) geometry, the specimen characteristics, etc.). This limits the options of
algorithms to so-called semi-supervised ones, which have lower performance than
their supervised counterparts.

The NDT&E research community has attempted to mitigate the drawbacks asso-
ciated to model-driven and data-driven ML schema by adopting different strategies.
The NDT&E researchers have tried to inject physics-based knowledge in order to tai-
lor a specific ML schema. Toward this end, specific features engineering techniques
have been applied on probed signals in order to promote descriptors minimizing the
aleatoric uncertainty contribution and thus enhancing the ML model generalizations
performance. Furthermore, the joint use of synthetic data (which are cheaper to gen-
erate and are always labeled) and experimental data (which are similar to the test data
that will be used in the end) in training sets is currently a hot research topic.

In electromagnetic NDT&E, one can distinguish two main categories of probed
data. The first category gathers signals that behave like time-series signals such as
scanning signal with respect to probe(s) displacement (e.g., eddy current testing
acquisitions in 2D symmetrical problems) or time (e.g., pulsed eddy current testing
signals for a given probe position). The second category collects all signals that can be
seen as 2D cartographies (e.g., eddy current testing acquisitions in 3D problems) or
1D probe(s) displacement and a succession of time steps (e.g., a pulsed eddy current
acquisition). For both categories, very often, probed signals are complex-valued and
both real and imaginary parts are analyzed as the informative contents. Furthermore,
multi-static probe arrays and multi-frequency acquisitions have to be considered to
fulfill the inspection protocols, so the images analysed can be seen as multi-spectral
ones. That is, typical electromagnetic NDT&E acquired signals behave as tensors
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with typical orders between 2 and 4. It is worth to be mentioned that, thanks to
the high flexibility in designing DL architecture, different sources and/or different
extractions (also called ways in the signal processing community) of the same data
can be merged, mixed, or exploited smoothly, making use of DL methods a very
convenient and flexible tool for the extraction of features and fusion in NDT&E.

4.3.1 Most relevant deep learning architecture in NDT&E

A deep learning architecture [45] consists in a chain of mathematical operations estab-
lished between inputs and outputs, the so-called layers. That is, the layers perform
transformation on inputs in order to extract the most meaningful features and per-
form the final tasks (e.g., regression, classification, etc.). Each layer is composed by
arithmetic units, called neurons, that enable the mathematical transformations. In the
most common deep learning architecture, the output of one layer is fed to the next
layer neuron through a linear combination of weights and biases θ (i.e., see (4.15)).
On these linear operations is applied an element-by-element non-linear transforma-
tion through the use the so-called activation functions (or layer) aiming at handling
non-linear behaviour in mapping two successive layers. The most common activation
functions are the sigmoid, Rectified Linear Unit (ReLU), Leaky-ReLU, softmax, etc.
The use of a particular activation function depends on the task associated to the layer
to which it is attached.

From a general point of view, the connections between two layers identify the
architecture type, e.g., Fully Connected Neural Network (FCNN), Multi-Layer Per-
ceptron (MLP), Convolutional Neural Network (CNN), Long Short Time Memory
Recurrent Neural Network (LSTM-RNN) just to cite the most prominent ones. Fur-
thermore, provided a given family of layers (e.g., CNN, FCNN, etc.), different
architecture topologies (e.g., encoder–decoder, U-Net, etc.) can be obtained by con-
necting the different layers together in order to solve the problem at hand. Furthermore,
the deep learning architecture can also be classified with respect to the machine
learning task to be handled. That is, one can divide the architectures by considering
supervised, semi-supervised, and unsupervised learning paradigms. The most used
DL architectures that we will study in this chapter belong to the supervised learning
framework aiming at solving regression and classification tasks based on labelled
datasets. Nevertheless, unsupervised learning (i.e., no labels are attached to the data)
based on the use of use generative models such as Variational AutoEncoder (VAE)
and Generative Adversarial Network (GAN) is becoming more and more common to
solve specific tasks in the NDT&E research community. The semi-supervised learn-
ing approach is also studied to enhance the DL model accuracy when a small amount
of labeled data is available.

4.4 Application of deep learning to electromagnetic NDT&E

One of the first attempts in using machine learning algorithms based on the shallow
neural network in the context of eddy current testing can go back to the middle of
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the 1990s [48–56]. Meanwhile, researchers in NDT&E studied the use of kernel
machines such as support vector machines, kernel ridge regression, and Gaussian
process regression, algorithms along with the use of feature extraction and feature
selection techniques such as principal component analysis, partial least square, and
locally linear embedding [57–61]. More recently, pushed by the large leap forward in
performance of deep learning methods obtained in image and signal processing, the
NDT&E community is actively developing and adapting deep learning architectures
to handle classification and regression problems based on NDT&E inspected signals
(see Figure 4.1).

The actual research of ML tools applied to electromagnetic NDT&E is trying
to propose solid and reliable solutions to support and automatize the decision pro-
cesses (i.e., defect(s) detection, localization, sizing, Remaining Useful Life (RUL),
etc.) during acquisitions. In NDT&E, different levels of automation are envisaged.
The integration of decisions between human supervision and machine learning algo-
rithms is performed based on different contributions on the final outcomes. Referring
to [62–65], the automation levels of NDT&E inspection systems can be divided
into five levels where the increasing contribution of ML algorithms impacts the
final decision ranging from a mild NDT&E operator assistance to a fully auto-
matic system (see Figure 4.6). The higher the level the most involved and complex
the ML algorithms are. The complexity of the algorithm developed should also be
accounted for, in view of deploying the algorithms on embedded measurements sys-
tems that need to fulfill CPU efficiency constraint and traceability of the deployed
algorithm, too. In the following, we provide a systematic analysis of deep learning
methods applied to industrial sectors where electromagnetic-based NDT&E is widely
employed.
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4.4.1 Deep learning in electromagnetic NDT&E applied to the
energy sector

The energy sector gathers a very broad set of industrial sectors ranging from nuclear
energy to renewable energies (e.g., eolian, solar, etc.) and oil & gas. For all these
industrial sectors, electromagnetic NDT&E is widely employed. In nuclear industry,
periodic inspection of Nuclear Power Plants (NPP) Steam Generation Tubes (SGTs) is
carried out with eddy current testing methods, by using of different probe(s) arrange-
ments, and inspection protocols depending on the inspected part under test (e.g.,
U-bended SGT part, straight part, transition zone, near support plate, etc.). The use
of AI and ML based analysis of inspection data is actually a very active research topic
aiming at speeding-up the analysis of the very large quantity data acquired (e.g., a
typical NPP is composed of hundreds of SGTs). The perspective, in the near future, of
deployment of new array probes for these applications will increase considerably the
amount of data to be analyzed, forcing the current organization, partly or exclusively
based on manual analysis by experts, to adapt. This makes this topic quite strategic.
In this context, the development of support tools for helping NDT&E engineers deci-
sions are under study for reducing as much as possible the human analyses errors
(e.g., the so-called human factor) when repetitive and long analysis are performed.

The use of deep convolutional neural network for defect detection has been pro-
posed by Zhu et al. [66] based on multi-frequency ECT acquisitions performed in
SGT. The data-driven schema developed involves the use of robust principal com-
ponent analysis to properly detect the regions of interest. Thus, the convolutional
neural network model proposed computes both the probability associated to the tested
samples along with the epistemic uncertainty associated to the detected class (see
Figure 4.7). Such an approach is supposed to be widely exploited by the NDT&E
community in the near future along with the possibility to embed the explainability
of a deep learning method. In [67], the authors studied the performance of a deep
neural network for defect classification based on the use of two different ECT probes
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(i.e., pancake coil and +Point probe) signals. The analysis performed showed that the
neural network schema adopted was able to classify, with good performance, the lon-
gitudinal, circumferential, and no-defect classes. Li et al. [68] proposed a first attempt
to crack profile reconstruction based on the use of multi-frequency ECT signals. In
particular, a C-scan ECT signal was used as input to a tailored encoder–decoder deep
neural network developed for this purpose loosely inspired by deep convolutional
generative adversarial network architectures developed by the image and signal pro-
cessing communities. The results obtained, based on numerical datasets only, were
quite promising in view of an extension to more challenging problems, e.g., involving
experimental signals. In [69], a set of deep residual convolutional neural networks
has been tested for crack depth classification based on massive set of acquisitions
performed on steel plate containing 20 machined slot defects. The study showed that
the considered architectures were capable to distinguish the different defects classes
with good accuracy.

In Oil and Gas (O&G) and petrochemical industries, the use of ECT method,
based on both time-harmonic excitation and Pulsed Eddy Current Testing (PECT), is
widely used for inspecting the presence of corrosion in pipelines. Detection, local-
ization, and sizing (mainly in term of corrosion thickness) are the main outcomes
expected by the analysis of the data acquired. The use of machine learning algorithms
is expected to provide many advantages in data analysis. For instance, in PECT
the interaction of a broadband signal (e.g., pulse wave form) with the SUT produces
specific signatures in time and space (i.e., probe position). Unlike more common time-
harmonic excitation ECT, the analysis of PECT signals needs to account for the time
dimension since a certain amount of information (e.g., material characteristics, defect
properties, etc.) is embedded in the SUT feedback when the PECT excitation decay.
However, a time dimension composed of hundred or even thousand of samples adds to
2D mechanical scan, making the problem computationally more demanding from the
learning perspective. In order to efficiently handle such large amount of data, a feature
extraction of probed signals has been performed by employing principal component
analysis [70]. Based on an experimental dataset, the extracted features were employed
as input to a deep neural network able to account for the variations due to different
acquisition temperatures. The outcomes of the architecture have been used to predict
both probe position and defect geometrical characteristics (see Figure 4.8). In [71],
a 1D convolutional neural network has been designed in order to perform defect
classification and regressions (i.e., defect height estimation) simultaneously based
on a set of A-scan PECT experimental acquisitions. The obtained results that have
been compared with the state-of-the-art machine learning algorithms (e.g., Gaussian
process, support vector machine, decision tree, etc.) showed a great improvements
obtained by the deep learning schema proposed. In the noteworthy work [72], Dang
et al. proposed a deep neural network + involving CNN and long-short time memory
architectures for characterizing the multiphase flow (e.g., oil and water percentage)
for industrial applications showing the capability to accurately measure the volume
fraction of water and the total flow velocity.

Deep neural network have also been applied to magnetic flux leakage (MFL)
acquisitions in large pipeline loop, where artificial natural corrosion defects were
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present in a pipe [73,74]. The dataset obtained from in situ measurements has been
augmented by simulations based on rectangular shaped artificial defects. After that,
both the datasets have been used for training a specific type of CNN, called visual
transformation convolutional neural network (VT-CNN), for the estimation of defect
length, width and depth. The results obtained by the VT-CNN showed an higher
accuracy compared to CNN withoutVT layer, provided a minor computational burden
in training and testing phases. Sun et al. [75] proposed a physics-informed deep
neural network architecture, called DfedResNet, to tackle the problem of estimation
of defect(s) size parameters based on MFL acquisitions. The main features of such a
deep CNN were the possibility of combining engineered features associated to MFL
acquisitions (i.e., the physics-informed part [46,47]) along with the spatial patterns
of MFL images. Furthermore, saliency maps analysis has also been investigated for
enhancing the interpretability of the deep learning schema proposed. The regression
results obtained by the DfedResNet showed large improvements compared to support
vector machine and VT-CNN schema. In [76], Le et al. proposed a convolutional
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neural network-based surrogate model aiming at speeding up the computational time
of magnetic field distribution based on the exploitation of finite-element simulations.
Toward this end, a U-Net like convolutional neural network was designed considering
as input two images represented by the permeability and current distributions versus
the magnetic field maps (x- and z-components). The results obtained showed the
capability of the deep neural network architecture to accurately predict the numerical
model test data in a wide set of scenarios (e.g., different flaw type, permeability
values, and current distributions).

4.4.2 Applications to the transportation and civil infrastructures
sectors

Eddy current testing methods and techniques have been widely used in the past for
detecting defects in aeronautic and aerospace industrial sectors, thanks to the pos-
sibility to inspect rapidly (i.e., without needing to remove coating and/or fasteners)
large airplane parts, fastener sites, and bolt holes. Typically, corrosion like defects and
micro cracks nearby fastener sites are the most critical defects to be detected in order to
extend the operational life of airplanes without harming the residual life of the struc-
ture. The application of deep neural network in such industrial domain started in the
beginning of this century. The use of two hidden layers feed forward neural network
applied to defect classification based on PECT signals exploiting different feature
engineering methods was studied in [50,77]. Further studies on the use of ML algo-
rithms for defect detection in multilayered metallic structures based on time domain
(pulsed) ECT have been presented in [78] for the detection of second-layer crack(s).
More specifically, C-scan PECT data have been acquired on a structure composed
by bolt hole with and without defect(s), bolt hole with counter sink with and without
defect(s), hole with titanium and ferrous fastener with and without defect(s). The
detection performance of established machine learning algorithms such as random
forest, gradient boosting, and support vector machine have been assessed against deep
learning methods based on long short-term memory (LSTM) recurrent neural net-
work (RNN) and multilayer perceptron (MLP) algorithms [45]. The results obtained
showed that random forest and gradient boosting have an edge in performance com-
pared to deep neural network methods once applied on raw PECT data. In [79], time
harmonic ECT has been used for defect classification based on experimental mea-
surements in titanium plate based on tailored CNN network architecture dealing with
the small amount experimental data available. The promising classification results
obtained by the CNN architecture have also been compared with more established
learning algorithms such as deep belief network, stacked autoencoder, and support
vector machine, showing that CNN was able to achieve the best results based on the
test data.

The use of ECT method coupled with deep learning has also been proposed for
detecting anomalies on railways in order to exploit the strength of ECT compared to
visual inspection methods (e.g., robustness with respect to environmental conditions,
high speed acquisitions, etc.). In [80], the alternating current field measuring tech-
nique has been used in order to perform experimental measurements on a calibration
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block containing clusters of cracks and two hidden layers of multilayer perceptron
neural network have been used along a Bayesian regularization method for back-
propagation schema. Simulations have been used to build the training set. The results
obtained showed a good generalization capability on the studied DL schema in retriev-
ing the equivalent length of the cluster of cracks on both simulated and experimental
test sets. In [81], a data-driven convolutional neural network architecture has been
developed in order to exploit the ECT acquisitions post-processed through wavelet-
based algorithms (i.e., continuous wavelet transform) and perform classification of
surface breaking and superficial anomalies in rails (i.e., weld, squat, and joint anoma-
lies). The CNN architecture has been trained with data processed by wavelet power
spectrum transform and the obtained classification results have been compared with
a large set of classification methods involving logistic regression, ensemble methods,
quadratic discriminant analysis, etc. The CNN results showed an edge in performance
compared to the other ML methods studied.

In [82], a Deep Belief Network (DBN) [45] composed by a set of stacked
restricted Boltzman machines trained in an unsupervised fashion (i.e., see Fig-
ure 4.9) has been applied in order to extract the most meaningful set of features
from ECT signals measured on titan plates where slots and holes machined defects
were embedded. The features extracted by DBN in an unsupervised way have been
fed to vector valued Least Square Support Vector Machine (LS-SVM) algorithm in
order to perform the defect characterization (i.e., defect(s) sizing) tasks. Thanks to
the use of the DBN, the proposed method does not require any feature engineer-
ing stage before providing data to LS-SVM algorithms. The results obtained by the
proposed learning schema have been compared with principal component analysis
and Boltzman machine feature extraction algorithms. These comparisons showed
that the higher accuracy was obtained by the DBN and LS-SVM approach. In [83],
the use of two chained artificial neural network architectures has been developed in
order to perform classification of defect depth and width based on MFL experimen-
tal measurements on steel wire ropes. The developed schema was based on the use
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of engineered features extracted from acquisitions. The obtained results showed the
capability of the developed methodology to diagnose defects in wire ropes with good
accuracy.

In civil infrastructures industrial sectors, Ground Penetrating Radar (GPR) is
widely applied to detect, classify, and possibly localize buried objects under the soils
or pavements, in reinforced concrete structures and masonry (e.g., landmines, pipes,
voids, cracks, rebars). Deep convolutional neural network for detecting buried explo-
sives based on GPR B-scans measurements has been proposed in [84]. The schema
proposed is based on a pre-processing step aiming at detecting and selecting a suit-
able region of interest from the original B-scan before performing the training phase.
The results obtained, compared with different state-of-the-art algorithms for anoma-
lies detection, showed that the CNN approach has the capability to outperform other
traditional post-processing algorithms. In [85], experimental B-scan images have
been decomposed into smaller patches containing buried landmine signatures (i.e.,
echos hyperbolas) and ground signatures before training a convolutional neural net-
work targeting landmines detection. High detection accuracy in detecting landmine
has been observed on the test set data for the three tested architectures compared to
histogram oriented gradients detection procedure. In [86–88], different 3D convolu-
tional neural network architectures have been developed in order to jointly use the
information contents of B-, C-, and D-scans GPR experimental acquisitions targeting
objects detection. The results obtained showed an enhanced accuracy in classification
results compared to classical approaches based on the use of B-scans only training
input data. Automatic GPR signatures detection have been studied by several scholars
for identify and classify echos hyperbolas in measured data. More into details, mask
and faster Region-based Convolutional Neural Network (R-CNN) based architectures
have been employed to detect hyperbolas performing semantic segmentation of echoes
in B-scan measurements [89–93]. In [94,95], different versions of YOLO architec-
tures have been studied to tackle the hyperbolas identification and defect localization
tasks based on B-scans acquisitions. A worthy mention on the use of deep learning
methods applied to GPR data is about the estimation of permittivity characteristics
and electromagnetic waves velocity estimations in complex soils. Researchers are
investigating the use of deep generative models in order to perform a pixel-wise
reconstruction of electromagnetic characteristic of soils based on encoder–decoder,
U-Net like and generative adversarial network architectures [96]. Furthermore, tai-
lored convolutional neural network architectures proposed in [97–100] showed high
capability in retrieving permittivity characteristics as well as velocity of electromag-
netic in complex soils (i.e., see Figure 4.10). It is worth to be mentioned that the
previously cited works rely on simulated results for 2D problems only and that the
performance of the DNN model developed is directly linked to the number of training
samples considered, i.e., a large or very large training set is needed. Furthermore, a
noteworthy result targeting forward and inverse modeling based on the use of deep
fully connected neural network has been shown in [101,102]. In these works Gian-
nakis et al. employed DL schemas to infer rebars positions and size in concrete based
on the use of fully numerical training sets.
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4.4.3 Applications to the manufacturing and agri-food sectors

The Industry 4.0 paradigm, roughly consisting in global digitization and exploitation
of data coming from manufacturing processes, for the next generation production and
manufacturing plants aims at bringing the third industrial revolution in our society.
This production paradigm is expected to extensively exploit the emerging technolo-
gies boosted by the most recent AI advances. In this regard, the wide use of robotics
and numerically controlled procedures will be used for enhancing the production out-
comes, lowering the production time and costs, and increasing the production quality
(i.e., the so-called zero-defects production). Toward this end, production chains are
becoming more and more connected through a broad variety of possibly heterogeneous
sensors aiming at collecting the largest set of information to control the productions
factors (e.g., quality of manufactured specimens, devices, etc.). The integration, con-
nection, and exploitation of such heterogeneous set of information are among the
highest challenges of AI-based algorithms for the next decade.

Microwave-based NDT&E method is applied in different manufacturing sectors
for checking the quality of products during the fabrication process for dielectric of
weakly conductive materials. In [103,104], a convolutional neural network approach
aims at retrieving the moisture density in porous foam inspected by a microwave
tomography system. Toward this end, numerical simulations have been used in order
to generate the training, validation, and test sets. The real and imaginary parts of
S-parameters have been fed to a CNN composed by two CNN blocks and a fully
connected layer that, once reshaped, provided a vertical slice of the moisture density
and/or the permittivity map(s). Microwave non-destructive testing and shallow neural
networks have been jointly applied more than 20 years ago in the agri-food industrial
sector [105] to establish the moisture content in wheat. More recently, Ref. [106] pro-
posed a deep neural network architecture aiming at handling multi-frequency sweep
microwave measurements in order to predict the moisture measurement of sweet
corn. A noteworthy end-to-end experimental set-up, exploiting both CPU or FPGA
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hardware, based on the use of microwaves and deep neural network learning schema
has been developed for detecting contaminant in food jars [107]. Microwave inver-
sion of dielectric rods in complex geometry in a fully data-driven approach exploiting
convolutional neural network and recurrent neural network have been recently pro-
posed by Ran et al. [108,109] successfully comparing the obtained results with the
state-of-the-art microwave imaging techniques. In [110], Wu et al. proposed a deep
convolutional neural network architecture, called VMFNet (i.e., see Section 4.11),
aiming at performing damage detection on curved RadarAbsorbing Materials (RAM).
The designed network exploits the inputs coming from visual and microwave images
of curved RAMs through two distinct backbone convolutional neural network, thus
the extracted features have concatenated in order to perform detection. The results
obtained by the proposed network showed large improvements in detecting cracks
compared to state-of-the art algorithms in computer vision (e.g., YOLOv4, Faster
R-CNN, EfficientNet). Rohkohl et al. [111] studied a deep learning schema aiming
at perform weld inspection of electric contact in battery cell manufacturing based on
eddy current testing. In particular, the authors proposed to train DNN model based on
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ECT signals in order to predict results from a reference method such as radiography
testing in order to enhance the interpretation of ECT acquisitions. A convolutional
neural network with U-Net like architectures has been developed in order to encode
ECT into RT tomography map. Generated results based on the ECT tests are converted
to cone beam tomography results that can be easily interpreted by humans without
performing any expensive and time consuming ionizing RT tomography acquisitions.

Automatic characterization of magnetic properties and the design of innovative
materials based on the used of machine learning are catching the interest of academic
researchers and development engineers in the manufacturing industry. In [113], Elman
neural network was used for the identification of non-linear hysteresis model parame-
ters. More recently, in [114], a recurrent neural network model was used to accurately
predict the behavior of the hysteresis loops in ferromagnetic materials under a lim-
ited amount of measurement data available. In Maciusowicz et al. [115], magnetic
Barkhausen noise measurements have been exploited in order to predict grain orien-
tation in a ferrosilicon alloy for electrical steel. More into details, short-time Fourier
transform has been applied on magnetic Barkhausen noise measurements, then the
obtained signal maps have been fed to a specifically designed convolutional neural
network. The obtained results showed the possibility to correctly classify the grains
orientation angles for the experimental set-up considered.

4.5 Applications to higher frequency NDT&E methods

Accordingly to the schema displayed in Figure 4.2, the highest frequencies of the
electromagnetic spectrum are taken by three widely used NDT&E methods: Infrared
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Thermography Testing (ITT), Terahertz waves Testing (TT), and Radiography Testing
(RT). Compared to lower-frequency methods, the interaction phenomena between
source and inspected media is very different from low-frequency electromagnetic-
based NDT&E method. ITT, TT, and RT measurements are used methods along with
electromagnetic NDT&E such as ECT or MFL testing. It is believed that this section
can provide some alternative point of views of deep learning in NDT&E and suggest
possible data hybridization and fusion across the different NDT&E methods treated
in this work. In the following, we provide an overview on how deep learning is applied
to ITT, TT, and RT.

4.5.1 Infrared thermography testing and terahertz wave testing

Infrared thermography testing is a NDT&E method that exploits thermal signatures
of the SUT interacting with a controllable external excitation thermal source (eddy
current induction, lamp flash, laser, etc.). In ITT, the interactions between thermal
source and SUT are ruled by the convection and conduction equations that make ITT
a complementary method to ECT and MFL. Indeed, ITT is one among the best suited
methods for fast inspection of composite material and surface breaking defects in
conducting media, masonry, and concrete structures [116].

The thermal signature emitted by the SUT is collected by infrared cameras and
lenses sensing rays within the infrared spectrum. Depending on the considered prob-
lem, ITT collected signals behaves as order-1 tensor if pixel-wise time-dependent
measurements are considered. Order-2 and order-3 tensors are considered when acqui-
sitions behave as images or video sequences, respectively. In this framework, deep
learning techniques issued from image and signal processing communities have been
adapted to ITT data. In particular, for order-1 tensor data are exploited when a limited
amount of data is available. In [117–119], temperature time series signals are ana-
lyzed employing recurrent neural networks, where the temperature signatures were
processed by employing a long-short memory recurrent neural network to classify
different defects that typically affect Carbon Fiber Reinforced Plastic (CFRP) mate-
rial in assembled structures. In [120,121], a data-drive approach has been used to
train a 1D CNN architecture in order to perform pixel-wise pristine versus dam-
age classification of CFRP material based on temperature signature with respect to
time. The prediction results were subsequently concatenated in order to obtain an
binarized image of the whole specimen under testing. The classification results have
been compared with classic ITT signal processing state-of-the-art techniques showing
promising improvements.

In Xie et al. [122], an AutoEncoder (AE) based architecture has been studied in
order to extract the meaningful set of hidden features associated to an experiment tem-
perature time-series back-wall cracks; the proposed methodology showed to be able to
enhance the quality of ITT images. Deep neural network architectures based on CNN
and/or LSTM-RNN have been developed based on order-2 and order-3 tensor ITT
inputs signals in order to gather and mix both spatial and temporal features [123–125]
(i.e., see Figure 4.13). Subsequently, the joint exploitation of both spatial and temporal
features information allowed to increase the classification and regression performance
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compared to state-of-the-art approaches. Deep neural network architecture has been
also used in ITT to provide fast and reliable image segmentation [126,127] to improve
the image analysis stage. In [126], authors proposed a DNN architecture based on
convolutional layers and inception modules chained for tackling the problem of auto-
matic segmentation of cracks profile in concrete structures. The inputs to the network
are composed by hyper-spectral image gathering both visible and infrared spectra
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information the classification outputs obtained can be also interpreted in terms of
probabilities being concrete or crack pixels.

The use of deep learning methods applied to ITT is also raising the interest of
the experimental physics research community historically involved in numerical sim-
ulations of highly complex problems in a vast set of research domains. Very recently,
the use of DL algorithms has been extensively used in order to model complex inter-
actions between plasma and confinement barriers in fusion reactors. That is, ITT is
used for in-service monitoring of plasma facing components to detect unexpected hot
points to be handled instantaneously in order to avoid fusion reactor damages. Sim-
ulated heat flux images have been used to predict plasma parameters based on a set
of six different deep neural networks involving feed-forward neural network to deep
Inception ResNet [128]. In [129], a generative adversarial network framework has
been developed for enhancing the defect detection capabilities based on ITT measure-
ments performed on composite fibre reinforced plastic plate. In [130], deep residual
network has been used for deblurring purposes based on ITT image acquisitions.

Terahertz wave testing is used in NDT&E to perform contactless measurements
of millimeter an submillimeter electromagnetic waves interacting with the SUT. The
use of TT is gaining particular attention in NDT&E research community for inspect-
ing dielectric materials such as glass fiber reinforced plastic, glass fiber composite,
ceramics, plastic materials, and in food industry. In [131], Wang et al. proposed
an experimental validation of two different deep learning architecture for pixel-wise
defect depth classification. That is, a bidirectional LSTM-RNN and a 1D-CNN were
fed with time-domain signals or spectral signals and the results obtained by the two dif-
ferent architectures as well as the different input signals have been compared showing
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Figure 4.14 Deep neural network architecture as applied to terahertz testing
acquisitions. On the left a bidirectional LSTM-RNN and 1D-CNN
architecture are sketched, respectively [131] (copyright Elsevier).
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an edge in performance by the 1D-CNN regarding the input signals considered. In
Zhang et al. [132], time domain TT measurements have been used in order to perform
air gap thickness measurements in insulation equipment. Different ML classification
methods have been trained and tested and compared on the experimental signals.
That is, the performance results have been studied based on a deep learning schema
composed by a chain of combination of CNN, residual shrinkage network and fully
connected blocks as backbone for terahertz waveform feature extraction purpose with
a classification block provided by a Bayes classifier, a softmax layer or a support vec-
tor machine. The best results were obtained by using the support vector machine layer.
Very recently, the use of deep learning for super-resolution purposes based on terahertz
imaging images is attracting the attention of many researchers in the NDT&E field. In
particular, in [131,133,134], tailored deep convolutional neural network architectures
have been proposed to enhance the resolution of terahertz images based on measure-
ments performed on different kind of structures. In [135,136], the super-resolution
task has been tackled by considering generative adversarial network adapted to a
dataset of experimental terahertz images.

4.5.2 Radiographic testing

X-rays are a form of electromagnetic radiation of extremely short wavelength, ranging
from 10−12 to 10−8 meter, that have the ability to penetrate the matter. The inspection
of the internal structure of an object through X-ray testing consists in passing an
X-ray beam through this object and recording its attenuation on a receptor. With
digital radiography, a 2D grey-level projection image is acquired from the transmitted
X-ray beam. Due to the similarities between the X-ray images and the visual ones, all
modern computer vision techniques have been naturally applied to X-ray testing [137].
In particular, DL approaches have been employed to target real-time detection and
automatic classification of encountered flaws, contaminants or threats for different
industrial applications such as quality control of welds, inspection of automotive and
aeronautics parts, and food products or baggage screening. In this section, we present
the most relevant applications of DL algorithms to RT data in different industrial
sectors (defect detection in welds and casting parts, contaminants in food industry,
threats in baggage screening).

Defects detection in weld inspection, casting and assembled parts
X-ray quality inspection of welds (e.g., pipes in NPP), casting light-alloy parts (e.g.,
wheel rims, steering knuckles, and steering gear boxes) and assembled (e.g., compos-
ite structures) parts is commonly used in the nuclear, naval, chemical, automotive, and
aeronautical industries for ensuring the safety and the quality of the parts. Tradition-
ally, radiographic images are manually inspected by human experts in order to detect
and characterize potential defects. However, this task requires experienced inspectors
and is time-consuming. In order to avoid the effect of human factors, to cope with the
throughput of the production and analysis pipeline and to improve detection accuracy,
fully automated inspection systems are deployed.

In the last decades, several works have focused on the automatic detection and
identification of the most common welding defects and deep learning approaches have
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recently been applied to this task. In [138], the implementation of the automatic defect
detection relies on three steps: the segmentation of the weld area, the application of a
classification model on patches of the image, and the detection of defects in the entire
weld area using a sliding window algorithm. The classification model is constructed
by stacking several sparse auto-encoders performing unsupervised learning and one
softmax classifier using supervised learning. The proposed algorithm is applied on
the public database GDXray [139] that includes a weld dataset of 88 images taken by
the BAM Federal Institute for Materials Research and Testing. Several experiments
are implemented including extracting the features using SAE and examining the
classification accuracy under different parameters of the model. The overall method
is illustrated in Figure 4.15. With this approach, defects can be accurately detected
but not classified.

Wang et al. [140] propose a method to identify three types of welding defects
(blowhole, underfill, or incomplete penetration) and their locations in X-ray images
by using a pre-trained RetinaNet-based CNN and develop a dataset constituted of
6,714 labeled images. Mean average precision (mAP) ratings are 0.76, 0.79, and 0.92
for the defect types. Yang et al. [141] proposed an improved CNN model based on
LeNet-5, whose architecture consists of 7 layers (excluding the input layer), in which
the layers 1, 3, and 5 are convolution layers, and the 2 and 4 are down-sampling
layers. The CNN X-ray input is fed with 60× 60 patches taken from the radiographic
images and is shown to outperform LeNet-5, ANN, and SVM methods in terms of
recognition accuracy.
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Figure 4.15 Illustration of the method proposed in [138] for defect detection in
weld images (CC-BY 3.0 license)
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Ferguson et al. [142] investigate the potential of different CNN architectures
to localize casting defects in X-ray image. By decoupling the feature extraction
layer from the object detection architecture, they studied three object detection
architectures, namely Faster R-CNN, R-FCN (Region-based Fully Convolutional
Networks [143]), and SSD (Single Shot Multibox Detector) with different feature
extractors (VGG-16 and ResNet-101). Using an adapted version of the Faster R-CNN
architecture, they achieve a mAP value of 0.921 on the GDXray dataset, constituted
of 2727 X-ray images. For a similar use case, Du et al. [144] proposed Feature Pyra-
mid Network (FPN) as the defect detection framework, which proved to be better
suited for detecting small defects than Faster R-CNN, with a 40.9% improvement of
the mAP. In the final regression and classification stage, RoIAlign (see Figure 4.16)
indicated apparent accuracy improvement in bounding boxes location compared with
RoI pooling, which could increase accuracy by 23.6% under Faster R-CNN.

In general the proposed detection techniques cannot classify a lot of defect
types with high accuracy and do not consider the scale variation among differ-
ent defect categories. Moreover, a lack of datasets, especially due to the lack of
defective radiographic images, is noted and justifies to investigate specific data
augmentation techniques, transfer learning approaches and generative adversarial
networks.

Contaminants and threats detection in food industry and baggages
Ensuring contaminant-free products is a major concern in food industry, especially
with the development of high-speed and fully automated production lines. X-ray
inspection offers today the most effective way to detect and eliminate products con-
taining foreign elements such as glass fragments, stones, metal pieces, or organic
external elements such as insects or wood chips. For the task of contaminants detec-
tion, unsupervised learning approaches could be preferred because they can learn
only with contaminant-free images, much easier to record in industrial environment.
However, because defective product images in the context of contaminant detection
are only slightly different from legitimate ones, they cannot be well separated through
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Figure 4.16 Faster R-CNN with RoIAlign applied to defect detection in X-ray
images of casting parts [144] (copyright Elsevier)
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one-class classification (OCC). For this reason, object class segmentation (OCS) is
more commonly used for industrial flaw detection.

Bergmann et al. [145] propose a multi-object, multi-defect dataset of RGB cam-
era images for anomaly detection and an evaluation of multiple OCS methods for
unsupervised anomaly detection. Based on their results, Kim et al. [146] found OCS
method not suitable for the contaminants detection in heterogeneous food items and
proposed a supervised learning approach with a reduced dataset of industrial abnor-
mal data. This database was augmented in a cut-paste manner using 500 images of
different food product to create various backgrounds and 50 images of three types of
contaminant without background (see Figure 4.17). The test data were constructed
from defective product X-ray images collected in the field. By predicting the test
data with the object detection network YOLOv4 (see Figure 4.18), trained on the
augmented data, normal and defective products were classified with at least 94%
accuracy for all foods.

Another use of industrial X-ray imaging concerns baggage screening, largely
deployed for maintaining security at airports and other public spaces. In this field,
screening is still very often realized by a human operator but due to the complexity
of the image, containing lots of items overlapping, and the limited decision time, the
performance of the control is not optimal. For this reason, several works have been
dedicated to automatic threat detection. A thorough survey of this literature is reported
in [147] based on 213 relevant references, among which 36 were identified as using
deep-learning algorithms and categorized as supervised (classification, detection and
segmentation) and unsupervised (anomaly detection) approaches.

The performances of different supervised approaches, applied on a same input
X-ray image, are illustrated in Figure 4.19. For more details on the algorithms pipelines
implemented in these different works, we refer the reader to [147].

Overall, despite promising results, the automated X-ray baggage screening
remains an open question with a main limitation due to the lack of large unbiased
datasets. There is also a lower detection accuracy in highly complex scenes and with

Figure 4.17 Augmentation of the dataset by merging contaminants alone images in
different backgrounds [146] (CC-BY 4.0 license)
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Figure 4.18 Basic architecture of YOLOv3 applied to food package analysis
in [146] (CC-BY 4.0 license)
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Figure 4.19 Results of DL tasks applied to X-ray baggage screening, the detection
is performed with YOLOv5 on the GDXray dataset

thin objects such as sharps or knives with a critical role played here by multi-view
X-ray systems, because there is a higher probability to have uninformative views of
the threat with such objects. However, modern X-ray detection systems provide two
orthogonal views or even four different angles of the same object, potentially offering
clearer perspectives of an object occluded in the first view. Here again, the datasets of
multi-view X-ray imagery are scarce. Unsupervised anomaly detection approaches
exhibit lower performances and could be improved.

4.6 Future trends and open issues for deep learning algorithms
as applied to electromagnetic NDT&E

The broad survey performed in this chapter shed some light on the future trends in the
application of DL algorithms in NDT&E. Active reach efforts are currently focused
on hybridization of numerical solvers and deep learning algorithms, on the possibility
to perform data fusion of NDT&E acquisitions for enhancing predictions accuracy,
in the assessment and propagation of uncertainties in predictions, the interpretability
and the explainability of deep learning decisions in the NDT&E.
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Embedding the physics knowledge in deep learning architecture for
electromagnetic NDT&E
The use of full data-driven approaches makes the deep learning methods behave like
black-box models. In the context of NDT&E, the possibility to add either physical
meaning or explainability to the DL model developed is an active field of study
and research. Toward this end, the use of numerical solvers is envisaged in order to
hybridize data-driven and physics-driven approaches or by conditioning the learning
process by injecting the physics knowledge directly into the DL architecture [93,148–
152]. In both cases, the main goal is to end up with gray-box DL models that allow to
better understand the (trained) models characteristics and discard unrealistic solutions
from the physical point of view. Furthermore, the use of numerical solvers can be
exploited to enhance the generalization capabilities of DL models when measurement
data are subject to uncertainties.

Embedding explainability and interpretability in deep learning decision
for electromagnetic NDT&E
The possibility to explain the ML models and the DL models specifically, also called
explainable artificial intelligence (XAI), is a very active topic within the deep learning
research community [153–155]. The XAI will be one of the most active research
fields in NDT&E. Indeed, the possibility to link the prediction performed by the DL
algorithms to the input features can lead, from the empirical point of view, to a better
understanding and interpretation of the DL model mechanisms. In this framework,
model-agnostic XAI algorithms are among the most suitable candidates [156,157].

Quantify and propagate the uncertainties in deep learning-based
model for electromagnetic NDT&E
The application of DL to NDT&E acquisitions needs to account requirements in terms
of prediction accuracy and robustness with respect to the test data provided in the
online phase. That is, the estimation of probabilities in predictions (e.g., classification
classes) as well as the uncertainties associated to the predictions need to be consid-
ered [46,47]. Bayesian inference applied to deep learning exploiting deep Bayesian
Neural Network (BNN) architectures can be used to estimate the DL model uncertain-
ties also called epistemic uncertainties [66,158]. The identification of the epistemic
uncertainties enables as a consequence to estimate the aleatoric uncertainties linked
to the intrinsic variability expressed by the measured data (e.g., measurement noise,
uncertainties on probe position, probe ageing, specimen characteristics).

Data fusion based on deep learning algorithms applied to electromagnetic
NDT&E
Deep learning methods are suitable to handle multiple structured input features during
the learning process (e.g., multi-spectral images). In the context of electromagnetic
NDT&E, such a feature allows, for instance, to handle directly complex valued signals
in ECT. In the same manner researchers in NDT&E are trying to improve the prediction
performances through the fusion of features coming from multiple channels data
(e.g., multi-static probe signals, multiple frequencies). In view of deployment of
DL algorithms in interconnected manufacturing systems, such a homogeneous data
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fusion process is supposed to be extended to non-electromagnetic NDT&E methods
targeting an heterogeneous data fusion process. In this sense, a noteworthy result has
been recently proposed in the biomedical context [159].

Open issues about the application of deep learning algorithms to
electromagnetic NDT&E
It is well known that, in order to achieve good performance in terms of accuracy and
robustness, DL algorithms need a suitable amount of data that is often larger than
the one needed for other ML-based algorithms e.g., kernel machines. In NDT&E
research community, due to secrecy and security issues, the availability of open
dataset containing close-to-reality labeled data for developing and benchmark DL
algorithms on a statistically meaningful set of samples is very scarce. In fact, most
of the available acquisitions have been performed on specimen that do not account
realistic inspection set-up or defect typologies, thus the direct use of these datasets
for training DL algorithms can be applied by the whole community on narrow and
case-dependent scenarios. Nevertheless, the joint use of numerical simulations and
a small amount of labeled experimental data is believed to mitigate such systematic
lack of realistic data through the use of semi-supervised and generative deep learning
models.

Certification of NDT&E algorithms
Another great challenge to tackle in order to largely deploy such solutions in industry
is the certification of DL-based algorithms and their inclusions in the norms ruling
its various sectors. Many aspects have indeed to be taken into considerations. First,
the metrics used to compare performance between such diagnostic algorithms and
existing procedures should be established, depending on the level of autonomy given
to the algorithm: assistance of the operator to highlight suspect regions of the analyzed
data, proposition of diagnostic based on classification or fully automatic diagnostic.
Then, when considering algorithms that update their learning with respect to incoming
data, the question of how to ensure that the performance level is at least the same
when adding some data should be answered to. Finally, another point is to manage the
robustness of such algorithms (and possibly their recertification) to changes in the
inspection conditions, like changes in environmental factors or replacement of parts
of the acquisition chain due to some failures.

4.7 Conclusion and remarks

In this chapter, we analyzed some applications of deep learning methods to electro-
magnetic NDT&E and tried to show how deep neural networks can be adapted to
different scenarios involving electromagnetic probing waves ranging from the quasi-
static regime to microwave. In particular, CNN have been deeply exploited when the
treated signals behave “as images” such as in the case of ECT and MFL inspections
where real and imaginary parts of the impedance variation as well as the magnetic
flux density are probed. Furthermore, time domain signals as in PECT or GPR mea-
surements have been addressed, too, by employing LSTM-RNN and/or through CNN
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explicitly adapted for the purpose (e.g., pixel-wise inversion). Our analysis underlined
that specifically tailored deep neural architectures have obtained a better prediction
performances than pre-trained networks based on state-of-the-art architectures. In
fact, the systematic lack of large shared datasets containing labeled measurements
of realistic acquisitions makes it difficult to properly benchmark and improve such
backbone architectures. Moreover, the difficulties in collecting labeled measurements
for defect parameters (e.g., the defect geometry) downsize the practical applications
of deep learning models mostly to classification problems.

The survey performed in this chapter has also highlighted that the application of
deep learning in NDT&E is also going toward the acceleration of numerical forward
solvers for NDT&E modeling and simulations in a fully model-driven approach. It is
believed that the ability of DL methods to handle problems having large cardinality
(e.g., NDT&E parameters such as large number of defect classes, and defect geometry
description) will boost the research and its application to time consuming statistical
studies (see, e.g., [160,161]). Moreover, our analysis showed that the use of numer-
ical solvers proves useful in designing the most suitable DL schemas as well as in
improving the prediction accuracy when a low amount of measurements is available.
Finally, a large amount of works in the literature showed that exploitation of deep
learning algorithms directly on embedded systems (e.g., FPGA hardware) is already
possible without an appreciable degradation in prediction performance.

4.8 Acknowledgments

The authors are grateful to Dominique Lesselier for all the wise advices, helpful
suggestions, and insightful comments concerning this manuscript. We deeply believe
that this chapter improved a lot thanks to him.

References

[1] Marchand B, Decitre JM, Sergeeva-Chollet N, et al. Development of flex-
ible array eddy current probes for complex geometries and inspection
of magnetic parts using magnetic sensors. AIP Conference Proceedings.
2013;1511(1):488–493.

[2] Xie S, Chen Z, Takagi T, et al. Efficient numerical solver for simulation
of pulsed eddy-current testing signals. IEEE Transactions on Magnetics.
2011;47(11):4582–4591.

[3] Xie S, Chen Z,TakagiT, et al. Development of a very fast simulator for pulsed
eddy current testing signals of local wall thinning. NDT & E International.
2012;51:45–50.

[4] Xie S, Chen Z, Chen HE, et al. Sizing of wall thinning defects using pulsed
eddy current testing signals based on a hybrid inverse analysis method. IEEE
Transactions on Magnetics. 2013;49(5):1653–1656.

[5] Bowler JR, Johnson M. Pulsed eddy-current response to a conducting half-
space. IEEE Transactions on Magnetics. 1997;33(3):2258–2264.



Deep learning techniques for non-destructive testing and evaluation 133

[6] Fu F, Bowler JR. Transient eddy-current driver pickup probe response
due to a conductive plate. IEEE Transactions on Magnetics. 2006;42(8):
2029–2037.

[7] Theodoulidis T. Developments in calculating the transient eddy-current
response from a conductive plate. IEEE Transactions on Magnetics.
2008;44(7):1894–1896.

[8] Theodoulidis T, Skarlatos A. Efficient calculation of transient eddy cur-
rent response from multilayer cylindrical conductive media. Philosophical
Transactions of the Royal Society A. 2020;378:20190588.

[9] Skarlatos A, Theodoulidis T, Poulakis N. A fast and robust semi-analytical
approach for the calculation of coil transient eddy-current response above
planar specimens. IEEE Transactions on Magnetics. 2022;58(9):1–9.

[10] Dodd CV, Deeds WE. Analytical solutions to eddy current probe coil
problems. Journal of Applied Physics. 1968;39(6):2829–2838.

[11] Dodd CV, Cheng CC, Deeds WE. Induction coils coaxial with an arbi-
trary number of cylindrical conductors. Journal of Applied Physics.
1974;45(2):638–647.

[12] Auld BA. Theoretical characterization and comparison of resonant-probe
microwave eddy-current testing with conventional low-frequency eddy-
current methods. In: G. Birnbaum and G. Free, American Society for
Testing and Materials, editors, Eddy-Current Characterization of Material
and Structures. vol. 12; 1981. p. 332–347.

[13] Auld BA, Muennemann F, Winslow DK. Eddy current probe response to open
and closed surface flaws. Journal of Nondestructive Evaluation. 1981;2(1):
1–21.

[14] Theodoulidis TP, Kriezis EE. Eddy Current Canonical Problems (with Appli-
cations to Nondestructive Evaluation). Forsyth, GA: Tech Science Press;
2006.

[15] Theodoulidis TP, Bowler JR. The truncated region eigenfunction expansion
method for the solution of boundary value problems in eddy current nonde-
structive evaluation. AIP Conference Proceedings. 2005;760(1):403–408.

[16] Burke SK, Bowler JR, Theodoulidis TP. An experimental and theoretical
study of eddy-current end effects in finite rods and finite length holes. AIP
Conference Proceedings. 2006;820(1):361–368.

[17] Bowler JR, Theodoulidis TP. Eddy currents induced in a conducting rod of
finite length by a coaxial encircling coil. Journal of Physics D: Applied
Physics. 2005;38(16):2861–2868.

[18] Theodoulidis TP, Bowler JR. Eddy current coil interaction with a right-angled
conductive wedge. Proceedings of the Royal Society A. 2005;461(2062):
3123–3139.

[19] Theodoulidis TP, Bowler JR. Impedance of an induction coil at the opening of
a borehole in a conductor. Journal of Applied Physics. 2008;103(2): 024905–
1–024905–9.

[20] Skarlatos A, Theodoulidis T. Solution to the eddy-current induction problem
in a conducting half-space with a vertical cylindrical borehole. Proceedings
of the Royal Society. 2012;468(2142):1758–1777.



134 Applications of deep learning in electromagnetics

[21] Skarlatos A, Theodoulidis T. Analytical treatment of eddy-current induction
in a conducting half-space with a cylindrical hole parallel to the surface. IEEE
Transactions on Magnetics. 2011;47(11):4592–4599.

[22] Skarlatos A, Theodoulidis T. Calculation of the eddy-current flow around a
cylindrical through-hole in a finite-thickness plate. IEEE Transactions on
Magnetics. 2015;51(9):6201507.

[23] Skarlatos A, Theodoulidis T. Impedance calculation of a bobbin coil in
a conductive tube with eccentric walls. IEEE Transactions on Magnetics.
2010;46(11):3885–3892.

[24] Skarlatos A. A mixed spatial-spectral eddy-current formulation for pieces
with one symmetry axis. IEEE Transactions on Magnetics. 2020;56(9):1–11.

[25] Chew WC. Waves and Fields in Inhomogeneous Media. New York, NY:
Wiley-IEEE Press; 1995.

[26] de Hoop AT. Handbook of Radiation and Scattering of Waves. Delft:
Academic Press; 1995.

[27] Sabbagh HA. A model of eddy-current probes with ferrite cores. IEEE
Transactions on Magnetics. 1987;23: 1888–1904.

[28] AbubakarA, van den Berg PM. Iterative forward and inverse algorithms based
on domain integral equations for three-dimensional electric and magnetic
objects. Journal of Computational Physics. 2004;195:236–262.

[29] Skarlatos A, Pichenot G, Lesselier D, et al. Electromagnetic modeling of a
damaged ferromagnetic metal tube by a volume integral equation formulation.
IEEE Transactions on Magnetics. 2008;44:623–632.

[30] Bowler JR. Eddy-current interaction with an ideal crack. I. The forward
problem. Journal of Computational Physics. 1994;75(12):8128–8137.

[31] Bowler JR. Eddy-current interaction with an ideal crack. II. The inverse
problem. Journal of Computational Physics. 1994;75(12):8138–8144.

[32] Bowler JR, Harfield N. Evaluation of probe impedance due to thin-skin eddy-
current interaction with surface cracks. IEEE Transactions on Magnetics.
1998;34(2):515–523.

[33] Yoshida Y, Bowler JR. Thin-skin eddy-current interaction with semielliptical
and epicyclic cracks. IEEE Transactions on Magnetics. 2000;36(1):281–291.

[34] Bowler JR, Harfield N. Vector potential integral formulation for eddy-current
probe response to cracks. IEEE Transactions on Magnetics. 2000;36(2):
461–469.

[35] Theodoulidis T. Developments in efficiently modelling eddy current testing
of narrow cracks. NDT & E International. 2010;43(7):591–598.

[36] Theodoulidis T, Poulakis N, Dragogias A. Rapid computation of eddy current
signals from narrow cracks. NDT & E International. 2010;43(1):13–19.

[37] Miorelli R, Reboud C, Theodoulidis T, et al. Efficient modeling of ECT
signals for realistic cracks in layered half-space. IEEE Transactions on
Magnetics. 2013;49(6):2886–2892.

[38] Bowler JR, Theodoulidis TP. Boundary element calculation of eddy currents
in cylindrical structures containing cracks. IEEE Transactions on Magnetics.
2009;45:1012–1015.



Deep learning techniques for non-destructive testing and evaluation 135

[39] Pipis K, SkarlatosA,TheodorosT, et al. ECT-signal calculation of cracks near
fastener holes using an integral equation formalism with dedicated Green’s
kernel. IEEE Transactions on Magnetics. 2016;52(4):6200608.

[40] Pipis K, Skarlatos A, Theodoulidis T, et al. Impedance of an induction coil
accounting for the end-effect in eddy-current inspection of steam generator
tubes. In: H. Kikuchi, N. Yusa, T. Uchimoto, editors. Electromagnetic Non-
destructive Evaluation (XIX), vol. 41 of Studies in Applied Electromagnetics
and Mechanics. Amsterdam: IOS Press; 2016. p. 237–244.

[41] Rebican M, Chen Z, Yusa N, et al. Investigation of numerical precision of
3-D RFECT signal simulations. IEEE Transactions on Magnetics. 2005;41:
1968–1971.

[42] Chen Z, Rebican M, Miya K, et al. Three-dimensional simulation of remote
field ECT using the Ar method and a new formula for signal calculation. Res
Nondestr Eval. 2005;16:35–53.

[43] Miorelli R, Reboud C, Theodoulidis T, et al. Coupled approach VIM–BEM
for efficient modeling of ECT signal due to narrow cracks and volumetric
flaws in planar layered media. NDT & E International. 2014;62:178–183.

[44] Chen X, Wei Z, Li M, et al. A review of deep learning approaches for inverse
scattering problems (invited review). Progress in Electromagnetics Research.
2020;167:67–81.

[45] Goodfellow I, Bengio Y, Courville A. Deep Learning. London: MIT Press;
2016.

[46] Hüllermeier E, Waegeman W. Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods. Machine Learning.
2021;110(3):457–506.

[47] Gawlikowski J, Tassi CRN, Ali M, et al. A survey of uncertainty in deep
neural networks. arXiv preprint arXiv:210703342. 2021.

[48] Coccorese E, Martone R, Morabito FC. A neural network approach for the
solution of electric and magnetic inverse problems. IEEE Transactions on
Magnetics. 1994;30(5):2829–2839.

[49] Elshafiey I, Udpa L, Udpa S. Application of neural networks to inverse
problems in electromagnetics. IEEE Transactions on Magnetics. 1994;30(5):
3629–3632.

[50] Lingvall F, Stepinski T. Automatic detecting and classifying defects dur-
ing eddy current inspection of riveted lap-joints. NDT & E International.
2000;33(1):47–55.

[51] Chady T, Enokizono M, Sikora R. Neural network models of eddy current
multi-frequency system for nondestructive testing. IEEE Transactions on
Magnetics. 2000;36(4):1724–1727.

[52] Chady T, Enokizono M, Sikora R, et al. Natural crack recognition using
inverse neural model and multi-frequency eddy current method. IEEE
Transactions on Magnetics. 2001;37(4):2797–2799.

[53] Yusa N, Cheng W, Chen Z, et al. Generalized neural network approach to
eddy current inversion for real cracks. NDT & E International. 2002;35(8):
609–614.



136 Applications of deep learning in electromagnetics

[54] Wrzuszczak M, Wrzuszczak J. Eddy current flaw detection with neural
network applications. Measurement. 2005;38(2):132–136.

[55] Chady T, Lopato P. Flaws identification using an approximation function
and artificial neural networks. IEEE Transactions on Magnetics. 2007;43(4):
1769–1772.

[56] Rosado LS, Janeiro FM, Ramos PM, et al. Defect characterization with eddy
current testing using nonlinear-regression feature extraction and artificial
neural networks. IEEE Transactions on Instrumentation and Measurement.
2013;62(5):1207–1214.

[57] Bilicz S, Lambert M, Gyimóthy S. Kriging-based generation of optimal
databases as forward and inverse surrogate models. Inverse Problems.
2010;26(7):074012.

[58] Douvenot R, Lambert M, Lesselier D. Adaptive metamodels for crack
characterization in eddy-current testing. IEEE Transactions on Magnetics.
2011;47(4):746–755.

[59] Bernieri A, Betta G, Ferrigno L, et al. Multifrequency excitation and support
vector machine regressor for ECT defect characterization. IEEETransactions
on Instrumentation and Measurement. 2013;63(5):1272–1280.

[60] Salucci M, Anselmi N, Oliveri G, et al. Real-time NDT-NDE through an
innovative adaptive partial least squares SVR inversion approach. IEEE
Transactions on Geoscience and Remote Sensing. 2016;54(11):6818–6832.

[61] Ahmed S, Reboud C, Lhuillier PE, et al. An adaptive sampling strategy for
quasi real time crack characterization on eddy current testing signals. NDT
& E International. 2019;103:154–165.

[62] Aldrin JC, Lindgren EA, Forsyth DS. Intelligence augmentation in non-
destructive evaluation. In: AIP Conference Proceedings. vol. 2102. AIP
Publishing LLC; 2019. p. 020028.

[63] EASA. Artificial Intelligence Roadmap – A Human-Centric Approach to AI
in Aviation. EASA; 2020.

[64] EASA. First Usable Guidance for Level 1 Machine Learning Applications.
EASA; 2021.

[65] Cantero-Chinchilla S, Wilcox PD, Croxford AJ. Deep learning in automated
ultrasonic NDE – developments, axioms and opportunities. NDT and E
International. 2022;131:102703.

[66] Zhu P, Cheng Y, Banerjee P, et al. A novel machine learning model for eddy
current testing with uncertainty. NDT & E International. 2019;101:104–112.

[67] Park J, Han SJ, Munir N, et al. MRPC eddy current flaw classification in
tubes using deep neural networks. Nuclear Engineering and Technology.
2019;51(7):1784–1790.

[68] Li S, Anees A, ZhongY, et al. Crack profile reconstruction from eddy current
signals with an encoder–decoder convolutional neural network. In: 2019 IEEE
Asia-Pacific Microwave Conference (APMC); 2019. p. 96–98.

[69] Meng T, Tao Y, Chen Z, et al. Depth evaluation for metal surface defects by
eddy current testing using deep residual convolutional neural networks. IEEE
Transactions on Instrumentation and Measurement. 2021;70:1–13.



Deep learning techniques for non-destructive testing and evaluation 137

[70] Buck JA, Underhill PR, Morelli JE, et al. Simultaneous multiparameter
measurement in pulsed eddy current steam generator data using artificial
neural networks. IEEE Transactions on Instrumentation and Measurement.
2016;65(3):672–679.

[71] Fu X, Zhang C, Peng X, et al. Towards end-to-end pulsed eddy current
classification and regression with CNN. In: 2019 IEEE International Instru-
mentation and Measurement Technology Conference (I2MTC); 2019. p. 1–5.
ISSN: 2642-2077.

[72] Dang W, Gao Z, Hou L, et al. A novel deep learning framework for
industrial multiphase flow characterization. IEEE Transactions on Industrial
Informatics. 2019;15(11):5954–5962.

[73] Feng J, Li F, Lu S, et al. Injurious or noninjurious defect identification from
MFL images in pipeline inspection using convolutional neural network. IEEE
Transactions on Instrumentation and Measurement. 2017;66(7):1883–1892.

[74] Lu S, Feng J, Zhang H, et al. An estimation method of defect size from
MFL image using visual transformation convolutional neural network. IEEE
Transactions on Industrial Informatics. 2018;15(1):213–224.

[75] Sun H, Peng L, Huang S, et al. Development of a physics-informed dou-
bly fed cross-residual deep neural network for high-precision magnetic flux
leakage defect size estimation. IEEE Transactions on Industrial Informatics.
2022;18(3):1629–1640.

[76] Le M, Pham CT, Lee J. Deep neural network for simulation of magnetic flux
leakage testing. Measurement. 2021 Jan;170:108726.

[77] Liu Z, Forsyth D, Lepine B, et al. Investigations on classifying pulsed eddy
current signals with a neural network. Insight-Non-Destructive Testing and
Condition Monitoring. 2003;45(9):608–614.

[78] Liu Y, Liu S, Liu H, et al. Pulsed eddy current data analysis for the char-
acterization of the second-layer discontinuities. Journal of Nondestructive
Evaluation. 2019;38(1):1–8.

[79] Deng W, Bao J, Ye B. Defect image recognition and classification for eddy
current testing of titanium plate based on convolutional neural network.
Complexity. 2020;2020:e8868190.

[80] Rowshandel H, Nicholson G, Shen J, et al. Characterisation of clustered
cracks using an ACFM sensor and application of an artificial neural network.
NDT & E International. 2018;98:80–88.

[81] Alvarenga TA, Carvalho AL, Honorio LM, et al. Detection and classi-
fication system for rail surface defects based on eddy current. Sensors.
2021;21(23):7937. Number: 23. Publisher: Multidisciplinary Digital Pub-
lishing Institute.

[82] Bao J, Ye B, Wang X, et al. A deep belief network and least squares support
vector machine method for quantitative evaluation of defects in titanium sheet
using eddy current scan image. Frontiers in Materials. 2020;7:322.

[83] Kim JW, Park S. Magnetic flux leakage sensing and artificial neural network
pattern recognition-based automated damage detection and quantification for
wire rope non-destructive evaluation. Sensors. 2018;18(1):109.



138 Applications of deep learning in electromagnetics

[84] Besaw LE, Stimac PJ. Deep convolutional neural networks for classify-
ing GPR B-scans. In: Detection and Sensing of Mines, Explosive Objects,
and Obscured Targets XX. vol. 9454. International Society for Optics and
Photonics; 2015. p. 945413.

[85] Lameri S, Lombardi F, Bestagini P, et al. Landmine detection from GPR
data using convolutional neural networks. In: 2017 25th European Signal
Processing Conference (EUSIPCO). NewYork, NY: IEEE; 2017. p. 508–512.

[86] Kim N, Kim S, An YK, et al. Triplanar imaging of 3-D GPR data
for deep-learning-based underground object detection. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing.
2019;12(11):4446–4456.

[87] Kang MS, Kim N, Lee JJ, et al. Deep learning-based automated underground
cavity detection using three-dimensional ground penetrating radar. Structural
Health Monitoring. 2020;19(1):173–185.

[88] Khudoyarov S, Kim N, Lee JJ. Three-dimensional convolutional
neural network-based underground object classification using three-
dimensional ground penetrating radar data. Structural Health Monitoring.
2020;19(6):1884–1893.

[89] Lei W, Hou F, Xi J, et al. Automatic hyperbola detection and fitting in GPR
B-scan image. Automation in Construction. 2019;106:102839.

[90] Gao J, Yuan D, Tong Z, et al. Autonomous pavement distress detection using
ground penetrating radar and region-based deep learning. Measurement.
2020;164:108077.

[91] Feng J, Yang L, Wang H, et al. GPR-based subsurface object detection and
reconstruction using random motion and depthnet. In: 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA). New York, NY:
IEEE; 2020. p. 7035–7041.

[92] Liu H, Lin C, Cui J, et al. Detection and localization of rebar in concrete by
deep learning using ground penetrating radar. Automation in Construction.
2020;118:103279.

[93] Hou F, Lei W, Li S, et al. Improved Mask R-CNN with distance guided inter-
section over union for GPR signature detection and segmentation. Automation
in Construction. 2021;121:103414.

[94] LiY, Zhao Z, LuoY, et al. Real-time pattern-recognition of GPR images with
YOLO v3 implemented by Tensorflow. Sensors. 2020;20(22):6476.

[95] Li S, Gu X, Xu X, et al. Detection of concealed cracks from ground pen-
etrating radar images based on deep learning algorithm. Construction and
Building Materials. 2021;273:121949.

[96] Alvarez JK, Kodagoda S. Application of deep learning image-to-image trans-
formation networks to GPR radargrams for sub-surface imaging in infrastruc-
ture monitoring. In: 2018 13th IEEE Conference on Industrial Electronics and
Applications (ICIEA). New York, NY: IEEE; 2018. p. 611–616.

[97] Liu B, Ren Y, Liu H, et al. GPRInvNet: deep learning-based ground-
penetrating radar data inversion for tunnel linings. IEEE Transactions on
Geoscience and Remote Sensing. 2021.



Deep learning techniques for non-destructive testing and evaluation 139

[98] Ji Y, Zhang F, Wang J, et al. Deep neural network-based permittivity
inversions for ground penetrating radar data. IEEE Sensors Journal.
2021;21(6):8172–8183.

[99] Leong ZX, Zhu T. Direct velocity inversion of ground penetrating radar
data using GPRNet. Journal of Geophysical Research: Solid Earth.
2021;e2020JB021047.

[100] Feng J, Yang L, Wang H, et al. Subsurface pipes detection using DNN-
based back projection on GPR data. In: 2021 IEEE Winter Conference
on Applications of Computer Vision (WACV). New York, NY: IEEE; 2021.
p. 266–275.

[101] Giannakis I, Giannopoulos A, Warren C. A machine learning-based
fast-forward solver for ground penetrating radar with application to full-
waveform inversion. IEEE Transactions on Geoscience and Remote Sensing.
2019;57(7):4417–4426.

[102] Giannakis I, Giannopoulos A, Warren C. A machine learning scheme for
estimating the diameter of reinforcing bars using ground penetrating radar.
IEEE Geoscience and Remote Sensing Letters. 2020;18(3):461–465.

[103] Lähivaara T, Yadav R, Link G, et al. Estimation of moisture content distri-
bution in porous foam using microwave tomography with neural networks.
IEEE Transactions on Computational Imaging. 2020;6:1351–1361.

[104] Yadav R, Omrani A, Link G, et al. Microwave tomography using neural
networks for its application in an industrial microwave drying system.
Sensors. 2021;21(20):6919.

[105] Bartley PG, Nelson SO, McClendon RW, et al. Determining moisture content
of wheat with an artificial neural network from microwave transmission
measurements. IEEE Transactions on Instrumentation and Measurement.
1998;47(1):123–126.

[106] Zhang J, Du D, BaoY, et al. Development of multifrequency-swept microwave
sensing system for moisture measurement of sweet corn with deep neu-
ral network. IEEE Transactions on Instrumentation and Measurement.
2020;69(9):6446–6454.
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Chapter 5

Deep learning techniques for subsurface imaging
Rui Guo1, Maokun Li1 and Aria Abubakar2

Geophysical subsurface imaging is an effective tool for understanding the Earth’s
internal structures. It is widely used in ecological and hydrological applications, oil
and gas industry, etc. The exploration is usually done with remote sensing tools. Sen-
sors record the secondary field induced by distant targets. One needs to see through
countless rocks with various properties to distinguish the buried targets. Many obsta-
cles exist in data collection. For example, the sources and receivers may be insufficient
to illuminate the region of interest. The energy of the scattered field may attenuate to
be undetectable, and the measuring environment can be very noisy.

Due to the imperfect measurement, subsurface data inversion has strong non-
uniqueness, i.e., multiple models may fit the same field data. To obtain a geologically
reasonable model, one needs to constrain the inversion with prior knowledge. Addi-
tionally, multi-physics measurements such as gravity, seismic, and electromagnetic
(EM) data can be jointly used for comprehensively understanding the domain of inves-
tigation. The large-volume data, large-scale survey domain, as well as the complex
numerical modeling process, make geophysical inversion computationally expensive.
It is also common to repeat multi-physics inversion many times to obtain a reliable
geological model, which aggravates the computational burden.

The past few years have witnessed a popularity of deep learning (DL) techniques
thanks to the development of modern computing hardware, big data storage and
efficient computing methods. Geophysical inversion can benefit from this progress.
The advanced computing power permits fast and high-quality imaging with large-
volume datasets. Besides, experience of interpretation can be trained into a DL model,
which enables the fusion of prior knowledge and inversion seamlessly.

This chapter aims to overview the frontiers of DL as applied to subsurface imag-
ing. The detailed implementations will not be introduced; instead, we hope to provide
readers with a broad view of DL as applied to geophysical inversion. We mainly
focus on EM methods, the depth of investigation ranging from hundreds to thousands
of meters. After briefly reviewing the history of learning-based inversion, we show
state-of-the-art techniques in applying DL in EM inversion, including purely data-
driven approaches, physics-embedded data-driven approaches and learning-assisted
physics-driven approaches. We also present several DL-based methods for seismic

1Department of Electronic Engineering, Tsinghua University, Beijing, China
2Schlumberger, Houston, TX, USA
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data inversion that may benefit the EM community. We further discuss different
approaches of constructing training datasets. At last, we conclude the state of DL in
EM subsurface imaging and show outlooks.

5.1 Introduction

Geophysical EM inversion recovers resistivity from the measured electric (E-) and
magnetic (H-) fields. The transmitters and receivers are generally placed on the Earth’s
surface or in boreholes. The skin depth of EM waves is [1]

δ ≈ 503
√
ρ/f , (5.1)

where ρ is the electrical resistivity and f is the frequency. To illuminate the region
inside Earth, low-frequency EM waves are adopted. In this case, the wave number,

k = 2π f
√
με, (5.2)

with μ and ε being the permeability and the permittivity, and are nearly zero. There-
fore, EM fields propagate in Earth mainly by diffusion. The lower frequency and
conductivity (reciprocal of resistivity), the deeper we can see. On the other hand, the
resolution decreases with the frequency since EM waves are insensitive to targets
much smaller than the wavelength. For high-quality imaging, prior information are
needed to reduce the non-uniqueness.

Classical physics-driven methods simulate the EM response to find the model
that fit the observed data. Bayesian and deterministic inversion are two mainstream
frameworks. In Bayesian inversion, the posterior distribution of the model parameter
m given the observed data dobs, i.e.,

π (m|dobs) ∝ π (dobs|m)π (m) (5.3)

needs to be computed, where π (dobs|m) is the likelihood function and π (m) is the
prior distribution of model parameters. By properly constructing π (m) and sampling
probability density function, Bayesian inversion can flexibly incorporate prior infor-
mation into the model reconstruction. However, this process involves a large number
of calls of forward modeling, which is prohibitively expensive for 2D or 3D inversion.

Deterministic approaches use gradient-based methods to seek a solution that
minimizes the cost function, for instance,

L(m) = ‖F(m)− dobs‖2 + λφ(m), (5.4)

where F( · ) is the forward modeling function and φ( · ) is the regularization function
weighted by λ. The prior knowledge of model parameters can be incorporated into the
inversion by regularizations. The deterministic inversion has been widely applied in
industry. However, the reconstructed models are in general locally optimal. Further-
more, it is difficult to integrate the experience from interpretation into inversion by
regularizations. In practice, the resistivity models are usually progressively refined
by repeating inversion and interpretation several times.

Machine learning (ML) provides an alternatives method for geophysical inver-
sion. The process is compelled by data, assuming that the inverse operator, �I , can
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be obtained through offline training. The models will be predicted with the trained
operator, i.e.,

m = �I (dobs). (5.5)

ML is not new in geoscience. In 1990, RaicheA overviewed the use of neural networks
(NNs) for geophysical inversion [2], indicating that the NN-based inversion should
learn from experience, be robust to noise, and be able to infer structures not contained
in the training set. In 1991, McCormack MD pointed out the limitations of NNs [3],
i.e., slow learning rates, nonoptimal training results, imprecise numerical answers,
and black-box property. Nevertheless, early work on the application of NNs in EM
inversion proved its feasibility [4,5].

Van der Baan M and Jutten C introduced most recent progress of the NN theory
and optimization to the geophysics community in 2000 [6]. They provided the strate-
gies of choosing NN structures, input parameters, and training algorithms. The NNs
at this stage can handle more parameters than in the 1990s, but the input and output
still need to be preprocessed for dimensionality reduction. The authors concluded
that NNs are too expensive to be of real value in geophysics, which is consistent with
the popular perception of ML in this decade [7]. Despite the criticisms, research on
this topic has not stopped. NN-based inversion of EM data for 1D, 2D or 3D models
was performed in [8–11]. Aside from NNs, the support vector machines also showed
effectiveness in localization of subsurface objects [12,13].

Current research frontiers extend to various DL-based inversion. Graphics pro-
cessing units (GPUs), stochastic gradient descent methods, advanced deep NN
structures, as well as user-friendly DL frameworks, allow us to train NNs with billions
of parameters at a reasonable cost. Advanced NNs such as the convolutional neural
networks (CNNs), recurrent neural networks (RNNs) and generative adversarial net-
works (GANs) have succeed in computer vision (CV) and natural language processing
(NLP). Some considered as limitation decades ago have been overcome. However,
the theory of DL-based inversion still needs to be studied. Different from CV or
NLP where NNs are used as the approximation of a process difficult to model, data
inversion is the reverse process of wave propagation that has a clear physical model.
Geophysicists are familiar with the governing equations of waves and fields and have
physics intuition. Such domain knowledge should be combined with DL to provide
faithful answers. Toward this goal, researchers have studied many ways of DL-based
data inversion, including end-to-end NNs, physics-embedded NNs and DL-assisted
cost function inversion. Various NN architectures as well as training methods are
explored. In the following, we provide an overview.

5.2 Purely data-driven approach

ML can be grouped into three types:

Supervised learning: Machine is expected to learn the input-output mapping from
a labeled training dataset. For each labeled sample, the answer of the input is also
given. It includes two types of problems: classification and regression.
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Unsupervised learning: No labeled data are given for training. The machine finds
optimal representations or unknown patterns in the dataset using self-organized
manners. It can be used for clustering and dimensionality reduction.

Reinforcement learning: The machine interacts with the environment by taking
actions that will, in turn, feed punishments or rewards back to the machine.
The machine maximizes the future rewards it receives during the lifetime of the
task. A well-known example is the AlphaGo [14].

In data inversion, the input of supervised learning can be the field data, such as
the measured E-field, H-field, or apparent resistivity, while the output is generally the
subsurface resistivity model. The unsupervised learning usually involves forward
modeling in the loss function of training. The study on reinforcement learning for
inversion is still under progress.

This section focuses on the methods without physics constraint where NNs are
expected to learn the data-to-model mapping through big data training. We call them
purely data-driven approaches. The architectures are mainly based on modified CNNs,
RNNs, or GANs.

5.2.1 Convolutional neural network

Compared with fully connected NNs, the CNN greatly reduces the number of trainable
parameters by shared weights and sparse connections [15,16] (Figure 5.1). It has
been widely used in image classification, segmentation, deblurring, etc. [17–20]. Its
ability of learning spatially local correlation in natural images shows potentials for
data inversion.

CNNs can be applied with the input being EM data and the output being the
resistivity. In [21], the author applies 1D CNN to invert frequency domain EM data.
The input is six response values received in two antenna modes with three offsets, while
the output is the discrete conductivity represented by twelve values. Both synthetic
and field data are tested on the trained CNN. In [22], the authors perform transient
EM (TEM) data inversion with 1D CNN, where the input is the time domain response
and the output is a 300-layer resistivity model. Synthetic and field data test show that
the CNN is more robust to noise, tends to generate higher resolution models and runs
much faster than the Gauss-Newton method.

Convolution

Pooling

Figure 5.1 Schematic of the CNN



Deep learning techniques for subsurface imaging 149

Similar conclusions are also drawn in [23–26] through inverting 1D audio-
magnetotelluric (AMT), airborne EM (AEM), TEM, marine controlled source EM
(CSEM), and borehole EM data. In addition, the authors find that increasing the
data volume improves the accuracy of prediction, such as improving the number of
frequencies [25] and transmitting–receiving configurations [26].

Uncertainty analyses of the inversion can be performed [22,25,27]. In [22,25], the
results are predicted with a series of CNNs selected at the consecutive epochs around
the epoch with the optimal trained parameters. For example, if the CNN is well trained
at the K th epoch, the CNNs trained at previous ten epochs can be selected to generate
several realizations of the output, see Figure 5.2. The approach significantly reduces
the risk of overfitting. In [27], Bayesian CNN is applied to predict the epistemic and
aleatoric uncertainty of 1D inversion. Both resistivity model and aleatoric uncertainty
are the outputs of the network. The CNN predicts many times with the random dropout
of network parameters. Statistical analysis can be made on these predictions. However,
the authors claim that this method cannot guarantee robustness when the test data are
beyond the scope of the training data.

Two- and three-dimensional (2D and 3D) inversions are also performed. CSEM
imaging for CO2 monitoring is achieved by fully CNN in [28]. It is shown that the
CNN is robust to normally distributed noise, and capable of predicting accurate results
even when the receiver grid in the test (32×32) is different from that in the training
(64×64), thanks to the CNN’s strong learning ability in spatial correlation. In [29],
resistive salt bodies are predicted from marine EM data. The CNN can reconstruct
salts buried in inhomogeneous medium although the background of training samples
is simple. In [30], the 2D and 3D resistivity distribution for reservoir monitoring is
recovered by 2D and 3D CNNs.

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

(b) (c) (d) (g) (h)

100 101 102

0.098 / 0.125 0.086 / 0.093 0.062 / 0.065 0.151 / 0.199 0.178 / 0.194

ρ (Ω.m)
100 101 102

ρ (Ω.m)
100 101 102

ρ (Ω.m)
100 101 102

ρ (Ω.m)
100 101 102

ρ (Ω.m)

z 
(m

)

True CNN 1 CNN 2
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Figure 5.3 Incorporating depth information into the CNN [31]. (a) The potential
ambiguity of CNNs during training. (b) The input data after
concatenating the tier feature map.

Modifying the NN architecture based on geophysical domain knowledge can
improve the prediction accuracy. In [31], the mapping from the apparent resistivity
(input) to the resistivity model (output) is built. The authors find that only using
the local spatial features of apparent resistivity as the input will cause ambiguity
in the depth domain, see Figure 5.3(a). Therefore, a tier feature map containing
depth information is provided to the CNN, see Figure 5.3(b). Furthermore, a depth
weighting function and a smooth constraint are introduced to the training loss for
obtaining reasonable resistivity models.

5.2.2 Recurrent neural network

RNNs are suitable for sequential data prediction such as speech, text, and video
[32,33]. As shown in Figure 5.4, the output at the current step is determined by not only
the current input but also the state of the previous step. Popular architectures include
bidirectional RNN [34], long short-term memory (LSTM) [35], and gated recurrent
units (GRUs) [36]. The RNN is attractive for inversion because it can describe the
dependence of resistivity in spatial domain. For example, the reconstruction of deep
earth resistivity using late-time EM response will be affected by the shallow resistivity
inferred from early-time response. Such characteristics can be captured by the RNN.

In [37], 1D inversion of airborne TEM data is achieved by a hybrid CNN-RNN.
As shown in Figure 5.5, the time domain response and the flight altitude are input
into four CNNs to extract features, and then the LSTMs use these features to predict
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Figure 5.5 The RNN structure proposed in [37]. Lm represents the resistivity of the
mth layer.

resistivity of different layers sequentially. In the field data test, the imaging results
are slightly different from the Occam inversion. However, inverting a test line with
1,500 stations takes 1 s, implying the feasibility of real-time data processing for large
TEM surveys.

RNNs can be used to increase the horizontal continuity in 2D inversion. The
EM data along the test line may be separated into segments, and sequentially used
as the input to predict part of the underground resistivity [38]. With a similar idea,
bidirectional LSTM is applied to enhance the spatial continuity in consecutive and
long survey line ground penetrating radar (GPR) imaging [39].

5.2.3 Generative adversarial network

The GAN contains a generator and a discriminator: the generator is trained to produce
an output that fools the discriminator, while the discriminator is trained to distinguish
the candidate produced by the generator, see Figure 5.6. The discriminator makes
sure that the generated output has the same statistics as the training set.

In [40], the loss function of the CNN for electrical resistivity inversion is com-
posed of the total variation loss, mean squared error loss and adversarial loss,
see Figure 5.7(a). The first term constrains the sharpness of the resistivity model.
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Figure 5.7 The adaptive CNN for electrical resistivity inversion [40]. (a) Training
of the CNN. (b) The adaptively learned convolution positions
represented by dots. (c) Ground truths and inversion results.

The second term minimizes the distance between predictions and labels. The adver-
sarial loss is added by a discriminator to constrain the statistics of the output, which
ensures that the inverted model looks realistic. To alleviate the ambiguity conventional
CNNs may face when targets are located at different depths, the authors apply active
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convolution units (ACUs) [41] to adaptively learn the features in depth. In anACU, the
convolution does not have a fixed shape of the receptive field, instead, the positions
for convolutions are learnable, see Figure 5.7(b). The combined use of above schemes
reduces the ill-posedness of inversion and produces models with high resolution, see
Figure 5.7(c).

5.3 Physics embedded data-driven approach

Although a NN can approximate any continuous function [42], many researchers have
realized its difficulty in high-dimensional data inversion. Due to the large uncertainties
of 2D or 3D models, the training dataset for optimizing the NN parameters is usually
incomplete. The trained NN may be unstable when facing new data, and it is difficult
to know the boundary of accurate prediction. To address these issues, strategies that
incorporate physics law into ML are proposed.

5.3.1 Supervised descent method

The supervised descent method (SDM) was first proposed by Xiong X and De laTorre
F for solving nonlinear least squares problems in computer vision [43]. Instead of
learning an end-to-end mapping, it iteratively learns a set of linear descent directions
for optimizing the least squares problem. In [44], SDM was first applied to data
inversion.

The data misfit function of inversion can be

L(m) = ‖dobs − F(m)‖2, (5.6)

where m is the unknown to be recovered, dobs is the observed field data and F( · ) is
the forward modeling function. In the Gauss–Newton method, the model update at
the kth step is computed by

	mk = (JT J)−1JT (dobs − F(mk−1)), (5.7)

where J is the Fréchet derivative of F at mk−1, and ·T represents the transpose of a
matrix. Notice that J only contains the local property of F and the computations of J
and F(m) are usually expensive.

SDM aims to learn the descent direction K rather than computing J and (JT J)−1JT

online. With an iterative manner, the loss function for training is

L(Kk ) =
N∑

i=1

‖	mi,k −Kk (F(mi,T )− F(mi,k ))‖2, (5.8)

where 	mi,k = mi,T −mi,k , with mi,k being the ith model in the kth step, and mi,T

represents the ith training model. In online data inversion, the model can be updated by

mk+1 = mk +Kk(dobs − F(mk )). (5.9)

Note that the model is updated by the production of the learned descent directions
and the computed data residual. Since the latter term contains forward modeling, the
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prediction can obey physical law. More details about training and prediction can be
found in [45].

In [44], both model- and pixel-based 1D TEM inversions are achieved by SDM.
In the model-based inversion, the unknowns include the thickness and resistivity,
while in the pixel-based inversion, the unknown is the discrete resistivity defined
on fixed layers. It is shown that SDM can interpolate new models that are not con-
tained in the training set. This work validate the feasibility of SDM in reconstructing
inhomogeneous medium.

The generalizability is further validated by 2D MT inversion [46]. With the online
regularization and restart scheme, SDM is able to predict inhomogeneous medium
while the training models are quite simple, see Figure 5.8. In addition, the trained
descent direction can be modified according to different prior knowledge, which
follows the concept of transfer learning.

In [47], the logging-while-drilling (LWD) inverse problem is solved by SDM.The
authors use the real-time feedback from the downhole to update the descent direction,
which achieves higher accuracy than traditional gradient inversion. Authors in [48]
develop SDM for inverting logging data in anisotropic formations. In addition, SDM
is applied in electrical-source airborne transient electromagnetic (GREATEM) data
inversion [49] and unexploded ordnance detection [50].

5.3.2 Physics embedded deep neural network

In this part, we first introduce a physics constrained deep neural network (DNN)
developed by Jin Y et al. for solving LWD problems [51]. The architecture of the
NN is inspired by the auto-encoder that widely applied in unsupervised learning. A
vanilla auto-encoder comprises an encoder and a decoder, the parameters in which are
all trainable. In [51], the encoder part maps data to model, which is considered as the
inverse function of forward modeling F−1. The decoder part, however, is explicitly
represented by numerical simulation F : m �→ d.

The loss function for training consists of model misfit and data misfit, i.e.,

L = αLmodel + βLdata, (5.10)

with

Lmodel = ‖m−mT‖2, (5.11)

Ldata = ‖F(m)− dT‖2, (5.12)

where mT and dT is the training model and the corresponding data, respectively. The
training of the NN requires backpropagating the gradients of the data misfit. The
first-order gradient of data misfit can be computed by

∇dl� = ∂L

∂�
= ∂L

∂d
∂d
∂m

∂m
∂�

(5.13)

with � representing the network parameters. The authors estimate the Jacobian
∂d/∂m via the finite difference method.
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Figure 5.8 MT inversion with SDM in [46]. (a) The resistivity models for training.
(b) The test model. (c) The reconstructed model.

The constraint in the data domain makes the training less prone to overfitting,
hence the NN can achieve higher accuracy than training with only model misfit.
However, the training process is more expensive since the Jacobian needs to be
backpropagated.
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Since the data residual indicates whether the simulated data fit the observed data,
utilizing the feedback of data residual can generate more accurate models. The same
research group rewrites SDM using an RNN in [52]. One-dimensional MT inversion
shows that the method can achieve fast reconstruction, and both model and data misfit
of the inverted models are lower than conventional deterministic methods.

The authors of [53] explain why forward modeling is necessary to constrain the
training process. For example, consider a forward process with analytical solutions:

m � F(p) = p2, (5.14)

where the inversion has two solutions: p = +√m and p = −√m, see Figure 5.9(a).
The authors construct the training set so that for each sample (m,

√
m), there exists

another one (m,−√m). For each pair of the samples in this form, the point that
simultaneously minimizes the distance between both solutions is zero. When the
training is supervised by the label ±√m, the output tends to be zero, shown in
Figure 5.9(b). The non-uniqueness in the training dataset renders incorrect predictions.
On the other hand, when the training is supervised by p2, correct solutions can be
predicted with some proper regularizations, see Figure 5.9(c). This mathematical
example illustrates that optimizing NN parameters with data constraint can alleviate
the ambiguity brought by the non-uniqueness of the inverse problem.

Computing the Jacobian of a numerical solver and backpropagating it in training
is expensive. Therefore, the authors propose to approximate the forward function
using a DNN�F . The training is to find the optimal forward solver�∗F and inversion
solver �∗I such that the data misfit is minimal:

(�∗F ,�∗I ) = arg min
�F ,�I

{‖(�F ◦�I ) (d)− d‖2 + ‖�F (m)− d‖2} , (5.15)
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Figure 5.9 Incorporating forward modeling in DNN can reduce the
non-uniqueness of the inverse problem [53]. (a) Inverse operator with
two branches. (b) Predictions of the DNN using the loss function based
on the model misfit. (c) Predictions of the DNN using the loss function
based on the data misfit.
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where �F ◦�I constitutes an auto-encoder. It is possible to decompose the above
training into two steps: (1) training the forward solver�∗F and (2) training the inverse
operator �∗I , which can be written as

�∗F = arg min
�F
‖�F (m)− d‖2 , (5.16)

�∗I = arg min
�I
‖(�F ◦�I ) (d)− d‖2 . (5.17)

With such scheme, the authors improve the accuracy of the DNN-based LWD inversion
presented in [26].

Based on the above insights, a 2.5D DL scheme for LWD data inversion is
achieved in [54]. The inversion workflow contains three DL modules: one fault detec-
tion module and two inversion modules trained with or without the existence of fault.
The fault detection module is first applied to determine the presence or absence of
fault planes. Then one of the inversion modules is selected to predict the parameters
describing the geometry and resistivity of the subsurface model. This work provides a
new view in data-driven inversion: the heavy task of reconstructing complex models
can be decomposed into several parts that are affordable to train in practice.

Deep reinforcement learning is first applied to EM inversion in [55], where a
trained agent predicts the actions of updating resistivity according to the fitness of
data. In the following, we first introduce deep Q-learning.

The “Q” in Q-learning stands for quality. Q-value refers to the expected total
reward in the future. The Q-value at state s, taking an action a, is the immediate
reward R(s, a) plus the highest Q-value possible from the next state s′:

Q(s, a) = R(s, a)+ γ max
a

Q′(s′, a) (5.18)

where γ is the discount rate. The optimal Q-values are found by trial-and-error
according to the following update scheme [56]:

New Q(s, a)← Q(s, a)+ α
[
R(s, a)+ γ max

a
Q′(s′, a)− Q(s, a)

]
, (5.19)

where α is the learning rate. Once a Q-value table is established, the optimal strategy
can be obtained by selecting a series of actions that have the highest Q-values.

In conventional approach, establishing a Q-value table is computationally inten-
sive. To reduce the computing burden, DNNs are applied to replace the process. The
neural network is called deep Q network (DQN), which is validated in [57]. The input
of a DQN is the state, while the output is the Q-value. The authors of [55] analogize
MT inversion to the deep Q-learning: (1) the set of resistivity and the index of layers
can be considered as states. (2) Adding or subtracting the resistivity can be consid-
ered as actions. (3) The environment is the fixed setting of layers. In the training, the
agent traverses from the first to the last layer, disturbing the resistivity of each layer
according to the policy that the maximal Q-value is selected at a probability of 90%.
The perturbation of each layer is called an update. In every update, the agent will
receive a positive reward when the data misfit decreases, otherwise be punished with
a negative reward. It will circularly loop over all layers until the data fitness reaches
a predefined level.
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The authors perform 300 times inversion, during which the Q-values keep updat-
ing. In each time of inversion, the initial model is the homogeneous background.
As the Q-value increases, the training loss decreases, and the agent updates models
more efficiently. After the 300 times of inversion are completed, statistical analysis
is performed over all inverted models, and the resistivity with the highest probability
in each layer is chosen as the final model. This method provides a new perspective in
evaluating uncertainty.

5.4 Learning-assisted physics-driven approach

Although physics can be incorporated in the training process, the learned inverse
operator is unavoidably biased towards the training samples. This is a good thing
when prior knowledge is reliable and can be represented by sufficient training data.
However, such ideal scenario seldom happens in industrial applications. Researchers
have found that data-driven approaches display larger data misfits than conventional
physics-driven methods [46,51,58]. Based on these concerns, another viewpoint is
that DL can help the reconstruction escape local minima, but the accuracy of inversion
should be controlled by physics-driven approaches.

In deterministic inversion, the cost function can be written as

L(m) = ‖Wd (dobs − F(m)) ‖2 + λ‖Wm (m−mref) ‖2, (5.20)

where the first term measures the data misfit, the second term is the regularization
weighted by coefficient λ, Wd , and Wm are weighting matrices, and mref is the prior
model. Conventionally, the prior model is determined based on the estimation of the
survey field. Gradient descent methods can be used to minimize the cost function,
but the solution is usually not globally optimal.

On the other hand, the DL-based inversion predicts the model mp from the
observed data dobs using a trained neural network �, i.e., mp = �(dobs). The pre-
diction does not rely on initial models and can generate the optimal solution when the
network is correctly trained. However, the statistics of the training data and real data
are hardly the same, which limits the generalizability of the DL approach.

Colombo et al. propose physics-driven deep learning inversion (PhyDLI), which
benefits from the pseudo-stochastic sampling of the model and data spaces through
training, the nonlinear mapping represented by DNNs, and the powerful local opti-
mization capability of gradient based L2 method [58]. Ideally, the DNN may help the
deterministic inversion avoid local minima, and the deterministic inversion in turn
expands the distribution of the model space in training.

The PhyDLI links the conventional L2 and DL inversion in the model space. Given
the observed data, the trained NN first predicts reference models for L2 inversion.
Note that the statistics of the training models is not required to be the same as the
real case. With the reference model, L2 inversion will be performed for the field
dataset. The resultant models and the corresponding simulated data is then added to
the training dataset for further retraining the NN. After several iterations, the two
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Figure 5.10 Different stages of the PhyDLI with the training data [58]. (a)
Distribution of the initial prediction. (b) Distribution of the first
inversion. (c) Distribution of the second prediction after retraining.
(d) Final distribution.

procedures tend to output a common model that satisfies both prior knowledge and
data fitness.

The method is demonstrated by 1D helicopter TEM inversion. Two sets of resis-
tivity models are generated with different Gaussian distributions. The set called
“Training” is used for training-validation-test, while the set called “Alien” represents
the field model with unknown distribution. The distributions of resistivity are shown
as blue and green histograms in Figure 5.10. Within two loops, the distribution of the
inverted resistivity gradually moves from the Training set to the Alien set, showing
the effectiveness of the method. It has also been adopted for 2D MT inversion [59].

Another work surrogates the computation of forward problem and Jacobian
matrix with DNN solvers [60]. The inversion is performed in the deterministic frame-
work, but the Jacobian matrix is predicted using a DNN call “jNet.” The input of the
DNN consists of the resistivity vector m, the offset of transmitter and receiver coils,
and the index t in m on which the partial derivative will be calculated. The output is
the partial derivative ∂d/∂mt .

During inversion, the EM response can be either computed by a surrogate net-
work “fNet,” or by a fullwave numerical solver “fFull.” The authors investigate four
schemes with different hybridization: fFull–jFull (jFull is numerically computing the
Jacobian), fFull–jNet/jFull, fFull–jNet, and fNet–jNet, where fFull–jNet/jFull means
changing to fFull–jFull after fFull–jNet reaches a certain misfit. The performance
is shown in Table 5.1. The fNet–jNet computes the fastest but with a higher misfit.
The fFull–jNet finds a good balance between speed and accuracy. After the jNet is
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Table 5.1 Comparison of the four schemes in [60].

Inversion Total inversion Total misfit
Method # of iterations time (minutes) φ (m)

fFull-jFull 6 357 0.2284
fFull-jNet/jFull 7 84 0.2289
fFull-jNet 6 27 0.2304
fNet-jNet 6 9 0.2322

The dataset is a 3D volume with 2,822 soundings
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Figure 5.11 Field data test with the predicted Jacobian [60]. (a) Inversion with the
smooth constraint. (b) Inversion with sharp boundary constraint.

trained, it can be flexibly used to inverted models with smooth or sharp boundary
constraint. The field tests in Figure 5.11 validate that the predicted Jacobian can be
readily employed in practice.

5.5 Deep learning in seismic data inversion

Aside from EM methods, seismic exploration is another effective method to identify
underground structures. Seismic waves can be excited by artificial sources, such as
exploding dynamite or air guns, and they propagate at different speeds in different
lithologies. For example, the velocity in the soil, clay and limestone is 200–800 m/s,
1,800–2,400 m/s, and 3,200–5,500 m/s, respectively. The seismic signals detected by
surface stations can be inverted to the distribution of subsurface velocity.

There are similarities between EM and seismic methods. Both inverse problems
are highly nonlinear and ill-posed, and the computations are time and memory con-
suming. Many DL techniques have been applied to address these challenges in seismic
inversion. In this section, we will introduce some works that may be instructive for
EM inversion.

5.5.1 Inversion with unsupervised RNN

Sun J et al. set up the forward modeling of the acoustic wave propagation in an RNN
architecture [61] and conclude that training such a network and updating its weights
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is equivalent to gradient-based seismic full waveform inversion (FWI). Specifically,
the time domain wave equation in 2D acoustic media with constant density is

∇2u(r, t) = 1

v2(r)

∂2u(r, t)

∂t2
+ s(r, t)δ(r − rs) (5.21)

where ∇2 is the spatial Laplacian operator, u is the pressure or displacement, v is the
velocity, s is the source function, r is the position, rs is the source location and t is
the time coordinate. Using the second-order finite difference in time, the wavefield
at time t +	t can be represented by

u(r, t +	t) = v2(r)	t2
[∇2u(r, t)− s(r, t)δ(r − rs)

]+ 2u(r, t)− u(r, t −	t).

(5.22)

Therefore, the wave propagation can be recurrently modeled given the source s and
the wavefield at two previous time steps. The authors unfold this process on an RNN,
the recurrent unit of which is shown in Figure 5.12.

Both forward modeling and inversion can be implemented with the RNN. In
the forward problem, the wavefield is obtained by forward propagating the source
s (in black) and velocity v (in purple) without training. In the inverse problem, the
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velocity is set as trainable parameters, and the loss function for training is the data
misfit. With the unsupervised approach, the velocity is recovered to honor seismic
data. Results show that training with adaptive moment (Adam) optimizer achieves
faster convergence and lower data misfit than the nonlinear conjugate gradient (CG)
and limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimizations
in conventional FWI.

EM fields can also be simulated by finite-difference time-domain (FDTD)
method. Efforts have been done in [62,63], where EM scattering and inverse scatter-
ing problems are solved by RNN. We have not found related research in subsurface
EM exploration. Rigorously speaking, this method is not a data-driven approach,
but rather a fast computation technique within the DL framework. The inversion can
be as reliable as conventional methods. The EM community will also benefit from
the computing resources powered by GPUs, advanced optimization algorithms and
user-friendly software packages.

5.5.2 Low-frequency data prediction

Inversion with only high-frequency (HF) data is easy to be trapped into local minima
(cycle-skipping). Low-frequency (LF) data play an important role in stabilizing the
process. However, low-frequency components less than 5 Hz are of poor quality in
most collected seismic dataset. To address this issue, efforts in extrapolation of LF data
were made in [64,65]. Predicting LF data from HF data was also performed in [66–68].
In the following, we introduce the progressive transfer learning strategy [67] for LF
data prediction.

The FWI with the LF data prediction strategy consists of two parts: DL and
physics-based inversion. First, an arbitrary velocity model is selected to generate LF
and HF data, which are taken as the training set. After training, the measured HF data
are input into the DNN to predict inaccurate initial LF data. Then FWI is performed
on the predicted LF data to generate an initial model for HF data inversion. Based
on this model, HF data inversion is performed to obtain a more accurate model. The
simulated data of the reconstructed model are then taken as the training set to further
refine the DNN. In each progressive iteration, HF data inversion will provide the DNN
with richer information about the subsurface. Furthermore, the DL module predicts
LF data more accurately as the training data update, so that the FWI can generate more
and more reliable models. Through this strategy, the DL module and the FWI module
interact and complement with each other to help FWI escape from local minima. In
experiments, it shows that the scheme can achieve the same level of accuracy as wide
band FWI , much better than inverting only with HF data.

The same strategy is exploited in the time domain FWI [68]. The authors use a
2D CNN to learn the patterns in shot gathers. The predicted LF data can progressively
converge to the ground truth. With this scheme, the authors reconstruct the Marmousi
model [69] and extend it to invert weak elastic data with acoustic FWI.

Compared with the sequential strategy that first predicting LF data and then
performing FWI, we tentatively think that the iterative method is more adaptable
in practice. Signals processed by DL cannot well honor wave propagation, hence
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may lead to implausible inversion results. The proposed strategy integrates signal
processing and data inversion together and improves the performance of both as a
whole system, which is illuminating for EM data inversion.

5.5.3 Physically realistic dataset construction

The training dataset plays an important role in data-driven inversion. Collecting real
geological models and the corresponding seismic data can be quite expensive. On the
other hand, synthetic models and data are usually too simple to represent real cases.
To improve the generalizability of data-driven inversion, Feng et al. propose a style
transform method for creating physically realistic subsurface velocity models from
natural images [70].

Generating realistic geologic images is similar to generating realistic images that
contain certain art styles in computer vision, if we consider the velocity model as an
image and geologic features as the styles of the image. Using image style transfer
one can find a composite image y whose style is similar to a style image ys and its
content is similar to a content image yc.

The styles of an image can be measured by Gram matrix Gj(x)mn [71]

Gj(x)mn =
∑

p

φj(x)mpφj(x)np, (5.23)

where φj(x) is the activations at the jth layer of the network φ for input x, m and n are
feature maps in layer j. The styles are similar if the style loss is low:

Lstyle =
∑

j∈S

1

Uj

∥∥Gj(y)− Gj (ys)
∥∥2

, (5.24)

where S is a set of NN layers used in style reconstruction, and Uj is the number of
units in layer j.

The contents of two images are similar if their high-level features extracted by a
DNN are close. The content loss is defined as

Lcontent =
∑

j∈C

1

Uj

∥∥φj(y)− φj (yc)
∥∥2

(5.25)

where C is a set of NN layers used in content reconstruction.
The illustration of the style-transform network is shown in Figure 5.13. The image

transform network (bottom) is an auto-encoder trained to transform natural images
to velocity models. The feature models are extracted from a pre-trained VGG-16
network (top) [20]. The style loss is defined as the Gram matrix difference between
the features of natural images and geology models in the top four layers, while the
content loss is the mean squared error between the features of natural images and
geology models in the second latent layer. The total loss is defined as

Ltrans = αstyleLstyle + αcontentLcontent (5.26)

where αstyle and αcontent are the coefficients for style and content reconstruction. The
effect of the style coefficient is shown in Figure 5.14.
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Figure 5.13 A schematic illustration of the style-transform network [70]

(a) (b)

(c)

Figure 5.14 The effect of the style coefficient [70]. (a) Content image. (b) Style
image. (c) The output images with the style weight increasing from left
to right.

With the proposed method, the authors use 67,000 natural images as the content
images and the Marmousi model as the style image to construct physically realistic
subsurface velocity models. Training on this dataset, data-driven FWI shows good
generalizability. The lack of reliable training set is also a problem in EM inversion. In
the future, we may apply the method to generate more reasonable resistivity models
for training.

5.5.4 Learning the optimization

Learning optimization algorithms is usually referred to “metalearning,” or “learning
to learn,” in the ML community. In [72], the authors make LSTM network take the
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gradient of the misfit function as the input, and output the model update, which is
called ML-descent. The purpose is to allow the machine to learn how to better update
models in FWI, thereby to accelerate the convergence.

With LSTM network, the model update 	xt+1 is predicted from the gradient gt ,
a state variable ct+1 and a hidden state variable ht+1:

(	xt , ct+1, ht+1) = �LSTM (gt , ct , ht). (5.27)

To reduce the complexity of the LSTM, the model is updated coordinate-wise. Differ-
ent coordinates (pixels) share the same RNN parameters for updating, but the unique
behavior is controlled by separate hidden stable variables.

In the training, it is computationally expensive if one uses the gradient of the loss
function in FWI as the input. Considering that any nonlinear inverse problems can be
locally linearized, the authors use a quadratic loss function f as

f = ‖Wx− b‖2, (5.28)

where the matrix W and vector b are randomly selected from a Gaussian distribution.
The training loss function is defined as

L =
∑

t

f (xt). (5.29)

For instance, each function f is optimized for 100 iterations, and every 20 iterations,
the summation of the misfit will be evaluated to update the LSTM parameters. The
authors run 100 epochs with each epoch containing 2,000 quadratic functions to train
the network. It is verified that the trained optimizer outperforms other state-of-the-art
algorithms.

To reduce the number of unknowns in FWI, the authors further use variational
auto-encoder (VAE) [73] to compress model parameters. Consequently, a velocity
model of size 40×40 is represented by 9 variables in the latent layer ofVAE. Compared
with the classic auto-encoder, VAE has a more continuous latent space and is more
stable when computing its Fréchet derivatives.

Supposing that the unknown (latent variables) to be recovered is zm, the gradient
of the loss function w.r.t. zm is computed by

∂L

∂zm
= ∂L

∂m
∂m
∂zm

(5.30)

where ∂m/∂zm can be obtained using the automatic differentiation. The use of VAE
largely reduces the computational burden and makes the ML-descent applicable in
FWI. The trained optimizer yields the best result compared with RMSprop [74],
Adam, stochastic gradient descent (SGD), and Nesterov accelerated-gradient (NAG)
methods.

This method and SDM have some similarities in both learning model update
directions. They provide us another perspective of applying DL in inversion: learning
the optimization process rather than learning an end-to-end mapping. By monitoring
the data misfit during inversion, they can be more reliable than purely data-driven
approaches, but at the expense of the computational cost.
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5.5.5 Deep learning constrained traveltime tomography

Traveltime tomography is another method that determines the subsurface velocity. It
only inverts the arrival times of seismic waves, and the most commonly used is the
first arrival time. It provides a smooth velocity model that can be further used as the
initial model of FWI. Traveltime tomography is also nonlinear and ill-posed, hence
prior information should be incorporated to stabilize the inversion.

In [75], the authors propose to constrain the traveltime tomography with the prior
model generated by GAN. The inversion is still in the deterministic framework, but
the inverted model is made to have structural similarities with the prior model.

The cost function for inversion is written as

L(m) = ‖dobs − F(m)‖2 + α‖∇2m‖2 + ‖u(m, mGAN)‖2, (5.31)

where u is the cross-gradient function [76] that adds structural similarity constraint
and mGAN is the output of the GAN. The cross-gradient regularization is a weak
constraint imposed on the gradient of the image rather than its values, which has been
widely adopted for multi-physics joint inversion:

u (mT , mG) = ∇mT (x, y)×∇mG(x, y), (5.32)

In the k-th iteration,

mk
GAN = �GAN (mk−1). (5.33)

The inverted model will obtain clear boundaries with the constraint.
Although both the input and output of the GAN are velocity models, this work is

instructive for DL-based joint inversion. For instance, when the training set contains
various geophysical attributes, one can utilize a DNN to learn implicit relationships
among them. In the following, we will introduce several works on DL-based joint
inversion.

5.6 Deep learning in multi-physics joint inversion

A subsurface model has a variety of geophysical properties. In order to characterize
underground structures, various exploration methods need to be used to estimate these
properties. However, these methods have different resolutions and sensitivities, and
the inverted models from different physical data in the same survey field may be differ-
ent. This brings challenges in geophysical data interpretation. Since the EM and seis-
mic data contain complementary information, jointly inverting the EM and seismic
data can highlight abnormalities through mutually constraining the model space.

In [77], the authors perform the joint inversion for audio-magnetotelluric (AMT)
and seismic first arrival traveltime data with deep learning. The resistivity–velocity
correlations and the structural similarity are learned by a DNN. Assuming that the
forward problem of AMT and seismic traveltime is d = F(ρ) and t = G(s), where ρ

and s is the resistivity and slowness (reciprocal of velocity), respectively, the objective
function of the joint inversion is

LJoint(ρ, s) = αρD‖F(ρ)− dobs‖2 + λρR‖ρ −�s2ρ(s)‖2 + λρ∇L∇(ρ)

+ αs
D‖G(s)− tobs‖2 + λs

R‖s−�ρ2s(ρ)‖2 + λs
∇L∇(s),

(5.34)
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where αρD and αs
D are the normalized coefficients, dobs and tobs are the observed AMT

and traveltime data, L∇ is the regularization function of the smoothness,�s2ρ or�ρ2s

is the DNN that projects slowness to resistivity or resistivity to slowness, respectively,
λ
ρ

R, λρ∇ , λs
R, and λs

∇ are regularization coefficients.
Using the iterative method to alternatingly update ρ and s, we have

LAMT (ρk ) = αρD‖F(ρk )− dobs‖2 + λρR‖ρk −�s2ρ(sk−1)‖2 + λρ∇L∇(ρk ), (5.35)

LTT (sk ) = αs
D‖G(sk )− tobs‖2 + λs

R‖sk −�ρ2s(ρk−1)‖2 + λs
∇L∇(sk ), (5.36)

The workflow of the joint inversion algorithm is shown in Figure 5.15.
Two DNNs are trained to learn the mappings from velocity to resistivity and

vice versa. The training models are generated according to the prior knowledge of
resistivity–velocity relationship. For example, the log data from two wells can be
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Figure 5.15 Workflow of the joint inversion with DL constraint [77]. The DRCNN
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used to derive resistivity and velocity, and their relationships can be grouped based
on their depth, see Figure 5.16. The DNNs simultaneously learn the mappings between
resistivity and velocity in different depths by designing the training set according to
Figure 5.16(b). On the contrary, conventional regression methods are difficult to
describe this relationship with mathematical equations. In Figure 5.17, we show the
true resistivity and velocity models and the recovered models with different inversion
schemes. The DL constrained joint inversion produces the most reasonable models,
and [77] shows that the prior joint distribution of resistivity and velocity can be well
preserved in the inverted models.

Based on the similar idea, DL-based attribute fusion schemes are applied to joint
inversion [78,79]. Instead of training two separate networks for attribute mapping, a
single DNN is trained to jointly interpret resistivity and velocity models. The inputs are
separately inverted resistivity and velocity models, while the labels are true resistivity
and velocity models. Given inverted models, the DNN can output reference models
taking into account the correlations between resistivity and velocity.

A more aggressive data-driven approach for seismic and CSEM joint inversion is
performed in [80]. The network is trained to predict the outlines of salts from seismic
gather shots and CSEM data. The authors investigate three NN architectures, namely
early fusion, middle fusion, and late fusion. In the early fusion, the seismic and CSEM
data are concatenated as the input. In the middle fusion, the features extracted from
seismic and CSEM data are concatenated in different levels. In the late fusion, the
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extracted features of seismic and CSEM data are concatenated near the end of the
NN. The authors find that the middle fusion architecture provides the best results.

The predictions from unseen CSEM data shows that jointly using the seismic and
EM data can improve the imaging accuracy. Top boundaries can be delineated with
the information contained in seismic data, and lower boundaries are well bounded by
EM data.

Compared with the DL constrained physics-driven approach, this method does
not require adjusting the weights of seismic and EM data. The imaging process is
governed by training data, thus less dependent on subjective judgements. In addition,
the online inversion is much faster. However, it is still an open question whether
the balance of multi-physics data should be made by interpreters or neural networks.
Concerns will be raised when the sensitivities or noise levels of two methods are quite
different. DL-based joint inversion is still at an early stage and more investigations
are needed in future work.

5.7 Construction of the training dataset

The training dataset plays a key role in data-driven methods. In computer science, there
are a number of public datasets that elaborately collected or designed for ML tasks.
Researchers can develop new algorithms, validate the performance of the algorithm
based on these datasets. Unfortunately, such datasets for geophysical inversion are
still quite rare mainly due to commercial copyrights, diverse scenarios and large
uncertainties of underground structures. Therefore, constructing a proper dataset is
also a concern when developing DL-based inversion algorithms.

The most straightforward way is randomly sampling the model space. This is
applicable in 1D inversion. For instance, the thickness of layers and the corresponding
resistivity can be sampled within a predefined range [23]. To generate geophysically
reasonable models, a pseudo-random method is applied [37]: the resistivity of the
next layer has a probability (40%) of being the same as the current layer; otherwise
it takes a random value within a predefined range. Furthermore, the labels can be
the inverted models from conventional methods [60], which ensures that the training
process is only supervised by resolvable resistivity structures and therefore eliminates
the non-uniqueness of the inversion.

Random sampling is inapplicable for high dimensional inversion due to the curse
of dimensionality. Prior knowledge is required to construct a reasonable dataset. In
reservoir monitoring [30], the reservoir saturation at a given time can be regularly
updated with data from production and new wells, hence various fluid flow realizations
through time can be performed by a dynamic fluid flow simulator. In [28,38,80,81], the
scenarios are inverting abnormalities in homogeneous or layered medium. Especially,
Bang et al. [38] generate training models according to the sensitivity of data, and eval-
uate the distribution of training and field data using t-distributed stochastic neighbor
embedding (t-SNE) algorithm [82]. Despite these datasets have validated the algo-
rithms, they are still simple to be widely applied in real-world applications. Techniques
in natural image generation may provide new ideas of constructing datasets [70].
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The requirement for training dataset in the physics embedded data-driven and
learning assisted physics-driven approaches are not as strict as in purely data-driven
approaches. For instance, after learning the descent directions of optimization through
simple models [46,83] or quadratic functions [72], complex models can be accurately
recovered. In [58,67,68,77], the probability distributions of training models are not
necessarily the same as test cases, since the DL process only provides assistance to
the deterministic inversion.

When constructing the training dataset, factors such as the prior knowledge, the
extent to which physical laws are incorporated, the completeness of training models
and the data sensitivity should all be evaluated. Besides, the time of generating a
dataset is a critical issue. We also look forward to more open-source datasets in this
community.

5.8 Conclusions and outlooks

Geophysical EM inversion has followed the developments of DL closely. Advanced
learning concepts and algorithms as well as NN structures have been exploited for
subsurface imaging. The prior knowledge extracted from big data can largely improve
the accuracy and speed of model reconstruction. Experience of joint interpretation
can be fused into joint inversion through DL. Literatures also show that hybridizations
of wave physics and DL can reduce the burdens in training and enhance the reliability
of inversion.

Despite the promising results, limitations still exist in real-world applications.
First, due to the diversity of underground structures and the diversity in the survey
design, training a global surrogate for inversion is difficult. The current applications
mainly focus on training local surrogates. There is still a long way to achieve the ideal
status, i.e., training once and predicting all. The price of setting up a DL procedure
should be carefully evaluated in practice. Second, the reliability of NNs will always
be a concern before its interpretability is solved. Simply using NNs for regression
may fail in predicting out-of-distribution data. This limits the industrial applications
especially when the cost of decision is expensive, e.g., whether to drill a well. Third,
datasets for training are not always available. A reliable geophysical model is not easy
to obtain, and the imaging often suffers from non-unique explanations of different
interpreters. Synthetic models and data, however, do not provide enough complexity
comparable to real-world scenarios. Fourth, DL techniques provide new perspectives
of multi-physics data integration for joint inversion, but it should be investigated more
in the future.

The last few decades have witnessed several winters of artificial intelligence.
However, it has never changed the way of our life and industry as much as it does
today. Applications of DL in subsurface imaging require not only developments in
hardwares and softwares but also the domain knowledge in geophysics and geology.
Current studies have validated the feasibility. In the future, we may explore the Earth
more deeply and accurately through the integration of data science, computer science
and geoscience.
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Chapter 6

Deep learning techniques for biomedical imaging
Yuan Fang1, Kazem Bakian-Dogaheh1 and

Mahta Moghaddam1

Electromagnetic phenomena are at the heart of the majority of medical imaging tech-
niques, such as computed tomography (CT) scan, magnetic resonance imaging (MRI),
microwave imaging (MWI), and electrical impedance tomography (EIT). These med-
ical imaging techniques provide a non-invasive approach that is capable of generating
images of complex biological structure for clinical diagnosis and follow-up treatment
procedures.

In the last decade, computational image reconstruction algorithms have bene-
fited from the rapid evolution of deep learning methods, particularly for high- and
super-resolution medical imaging studies. The vastly increasing medical imaging
databases, in turn, have accelerated the development of more advanced deep learning
neural networks. Synergizing data-driven deep learning neural networks with legacy
physics-based imaging algorithms in recent years shows promising enhancement in
the performance of medical imaging methods.

This chapter starts by reviewing the current state-of-art deep learning methods
used in medical imaging approaches. We then introduce the typical physics-based
medical imaging techniques with a brief comparison of these techniques, followed
by the progress of machine learning and deep learning methods in the next section
(Section 6.1). Then in Section 6.2, we will illustrate the physics of electromagnetic
medical imaging techniques and their related physical imaging methods (Section 6.2).
In Section 6.3, we discuss the commonly used deep learning neural networks with
their applications in medical imaging. The recent studies on synergizing learning-
assisted and physics-based imaging methods are discussed in Section 6.4, followed
by a summary in Section 6.5.

6.1 Introduction

Electromagnetic (EM) waves across the electromagnetic spectrum and with different
energy levels extensively in medical imaging applications [1]. For example, computed

1Microwave Systems, Sensors and Imaging Lab (MiXIL), Part of Ming Hsieh Department of Electrical
Engineering, University of Southern California, USA
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tomography (CT) scans measure the X-ray attenuation through the imaging area. At a
high energy level, X-rays are excited within the ionizing radiation range of 300 PHz–
30 EHz. In the frequency range between 0.3 GHz and 3 GHz, microwave imaging
(MWI) can be applied to reconstruct dielectric images from scattered EM signals due
to dielectric contrast between targets and background. At lower frequency bands, such
as within 3–300 MHz range, the magnetic resonance imaging (MRI) technique utilizes
a strong magnetic field to measure detailed longitudinal and spin-lattice relaxation
time data at each image pixel. Lastly, most electrical impedance tomography systems
provide an impedance distribution of the target area from measured electrical voltage
and current at frequencies lower than 3 MHz.

CT and MRI are relatively mature among the medical imaging techniques above,
and commercial imaging systems are widely used in most hospitals and clinics. The
physics of these imaging techniques determines the advantages of CT and MRI usage
in different medical imaging applications. CT scans show better image contrasts of
the bones and sclerotic lesions, and they are commonly used in initial staging and
re-evaluation after treatment. When detecting and treating soft-tissue diseases is of
interest, the image resolution of CT scans are not as good as those of MRI, which
makes MRI often used in stroke detection and cancer diagnosis.

However, there are shortcomings associated with CT and MRI. In order to obtain
high-resolution CT scan images, the equipment needs sufficient contrast agents, and
patients undergo through a certain amount of radiation exposure during the repeated
CT scans [2]. Although MRI does not impose radiation risk, high magnetic field
may create excessive SAR levels, also the magnetic field could react in patients with
artificial metallic implants [3]. Furthermore, and from a logistical stand point, MRI
equipment is usually more expensive than CT scan systems, which limits the resources
per capita [4]. In the last two decades, MWI and EIT have gained increasing attention
as alternative imaging modalities that can potentially overcome some of the CT and
MRI aforementioned challenges [2–7]. MWI and EIT systems provide portability
with less cost than most CT and MRI systems. Because of the low radiation risk,
the medical MWI and EIT systems are much safer than CT systems. Therefore,
multiple preclinical MWI systems have been successfully demonstrated in medical
imaging applications, including the brain, breast, and forearm imaging, or those of
for the diagnosis and treatment of stroke, cancer, and fractures [3,5–7]. Furthermore,
commercial EIT systems have also been utilized in applications such as detecting
pulmonary emboli, monitoring heart function and blood flow, lung monitoring, and
breast cancer detection [8–12].

The physics of CT or MR image reconstruction are fairly straight forward signal
processing based techniques and are well-established methods that date back to the
1990s. [2,13]. On the contrary, the MWI and EIT image formation is based on an
inverse-forward solver scheme with a cost function derived from Maxwell’s equa-
tions. Therefore, these physics-based imaging algorithms are often more complicated
than those of CT and MRI, particularly for 3D image reconstruction. Conventional
inverse solvers based on the Newton, Gauss-Newton, and conjugate gradient meth-
ods have been routinely applied for solving physics-based inverse problems. More
advanced inverse solvers, such as the contrast source inversion (CSI), Born iterative
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method (BIM), and distorted Born iterative method (DBIM), have been developed
and extensively analyzed for the MWI and EIT applications [8,13–20]. Nevertheless,
the achieved imaging resolution of the physics-based algorithms is limited by the
measurement configuration and system performance (details are in Section 6.2).

As a branch of artificial intelligence, machine learning (ML) algorithms have
attracted increasing attention in medical imaging due to their pattern recognition and
extraction capability for computer-aided detection (CADe) and diagnosis (CADx).
In the last decade, machine learning researchers have focused on developing new
algorithms such as K means, Bayesian learning, AdaBoost algorithms, and support
vector machine (SVM), to assist diagnosis through quantitatively distinguishing dif-
ferent tissues and segmenting the malignant area from healthy tissues in MRI and
CT images [21–24]. Besides the ML applications for CT scans and MRI, the data-
driven ML models are also introduced as the prior knowledge of physics-based inverse
solvers to improve the imaging quality of the MWI and EIT [25–28].

To increase the robustness of learning-assisted medical imaging, deep learn-
ing (DL) has received the bulk of research interest since the late 2010s. Unlike
machine learning methods that utilize manually designed features from input data,
deep learning artificial neural networks (ANN) uncover relationships between data
characteristics in a more intuitive way than human neural networks. As the ML area
emerged in the computer vision field, DL methods, including the fully connected neu-
ral network (FCN), convolutional neural network (CNN), recurrent neural network
(RNN), and generative adversarial network (GAN), have achieved great success in
both segmentation of MRI and CT images, and have shown great promise in assis-
tance with physics-based MWI and EIT inversion. More recently, the hybridization of
both physics-based and learning MWI and EIT models has shown promising potential
as an advanced EM imaging method in medical imaging [26–29].

6.2 Physics of medical imaging

In a CT scan, as X-rays propagate through the patient, their intensity decreases due to
the absorption of multiple tissues. This attenuation can be represented by Lambert–
Beer equation: −ln(I/I0) =∑i ρixi, where ρi, xi are the attenuation coefficient and
propagation length in ith material, respectively. The image reconstruction algorithms
include matrix inversion, iterative Radon transformation, and backprojection [30].

MRI systems utilize a fixed longitudinal magnetic field and an oscillating trans-
verse magnetic field to excite the nuclear magnetic resonances and measure the
magnitude and phase of magnetic signal experienced by the nuclei during its relax-
ation time, which can be described by the Bloch equations. Fourier transformations
are then applied to transfer the acquired signal from the frequency domain to k space
for displaying the corresponding intensity levels as gray-shade images. The imaging
is achieved due to different hydrogen nuclei relaxation times during the magnetiza-
tion in human tissues. Two types of relaxation time determine the most common MRI
sequences (1) the time when the longitudinal magnetization of the excited proton
has recovered to equilibrium (T1), and (2) the time when transverse magnetization
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has decayed to equilibrium (T2). By changing the repetition time between successive
pulse sequences (TR) and the time to echo between the excited magnetic pulse and
the receipt of the echo signal (TE), MRI systems can generate T1-weighted (short TR
and TE) images and T2-weighted (long TR and TE) images [31].

Although MRI and CT scans transmit and receive electromagnetic waves to form
their corresponding images, their imaging principles are not based on EM theory or
Maxwell’s equations. This section mainly focuses on explaining the medical imaging
techniques particularly for MWI and EIT, which are developed from the basics of
electromagnetic theory. MWI and EIT are relatively new compared with CT and MRI
techniques. Unlike commercial CT, MRI, and EIT systems, most MWI system pro-
totypes are still in laboratory test settings. Details of CT and MRI imaging principles
can be found in many textbooks such as [30,31].

6.2.1 Maxwell’s equations

Maxwell’s equations describe the relations between electromagnetic sources and the
fields generated by them in the presence of media. EM sources may be impressed and
conduction electric current density Ji and Jc (A/m2) and impressed magnetic current
density Mi (V/m2). The time-harmonic electric field E (V/m) and magnetic field H
(A/m) in Maxwell’s equations can be written as [32] (time-harmonic term e jωt):

∇ × E = −Mi − jωB (6.1)

∇ ×H = Ji + Jc + jωD (6.2)

∇ · D = qev (6.3)

∇ · B = qmv (6.4)

where electric and magnetic flux density D (C/m2) and B (W/m2) in isotropic media
are defined as: D = εE, B = μH. ε andμ are the media permittivity and permeability.
The quantities qev (C/m3) and qmv (W/m2) are electric and magnetic charge density,
respectively. Although magnetic charges qmv and impressed magnetic current densities
Mi have not been physically observed in the real world, they have been introduced to
balance Maxwell’s equations [32].

By introducing Ohm’s law, Jc = σE. Equation (6.2) can be rewritten as:

∇ ×H = Ji + jωε̃E (6.5)

where ε̃ = ε + σ/( jω).

6.2.2 Formulations of EIT

The EIT technique constructs the impedance profile of biological tissues, which
consists of the resistance and reactance. Fluids manifest the resistance characteristic,
while the cell membranes act as defective capacitors [14]. Since the EIT is operated
in a low-frequency regime, the effect of the impressed electric current source Ji is
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negligible. In the absence of magnetic source Mi, Maxwell’s equations (6.1) and (6.2)
within the EIT regime can be written as [14]:

∇ × E = 0 (6.6)

∇ ×H = Ji + σE (6.7)

For EIT, Ji can be set as zero since there is no current source inside the imaging
domain [13–15].

Defining the electric potential u through E = −∇u, we notice the left-hand term
of equation (6.7) is divergence free, and equation (6.7) can be written as Poisson’s
equation [33]:

∇ · [σ (r)∇u(r)] = 0, r ∈ � (6.8)

where � is the imaging domain.
The electric potential u satisfies the Neumann boundary condition (6.9) and

Dirichlet boundary condition (6.10):

−σ (r)
∂u(r)

∂n
= jn(r), r ∈ ∂� (6.9)

u(r) = 0, r ∈ Sref (6.10)

Sref is the surface of the reference (ground) electrode and ∂� is the boundary surface
of the imaging domain, where jn(r) is zero on ∂� except at the excited nth electrode
location [33].

A typical EIT system has Nt electrodes, in which one electrode is set as the
reference (ground) electrode. When a total electric current I flows in the source
electrode located at rtx, the current density jn(r, rtx) at rtx satisfies the equations
(6.11) and (6.12) due to the conservation of charge [16,33].

∫

St

jn(r, rtx)ds = −I (6.11)

∫

Sref

jn(r, rtx)ds = I (6.12)

Note that jn(r, rtx) = 0 when r is on the rest of ∂� and St is the source electrode surface.
A finite-element method (FEM) forward solver can be used to construct the stiff-
ness matrix (S(u, ν)), where ν is the unknown array of conductivity (σ ) distribution.
The image reconstruction can be achieved by using (6.8)–(6.12) equations to form a
least-square cost function for the minimization in the form of min(||S(u, ν)ν − β||),
where β is the forcing vector generated from the multiplication of testing (weighting
function) measured voltage or current signal array of the electrodes [8,13–16].

The minimization in these works is conducted through direct inverse solvers,
such as singular value decomposition (SVD) [14] or iterative inverse solvers, such as
the Gauss-Newton method [8,14,16]. Bayford has summarized common direct and
iterative inverse solvers in [14]. In [8], the L2-norm cost function with multiplicative
regularization was proposed for 3D EIT reconstruction. Results evaluation shows
an acceptable performance for edge-preserving and noise. Gupta recently used the
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combined L1 − L2-norm cost function to solve the current density impedance imaging
with a sparse reconstruction inverse problem [34]. The proposed method obtains
high-resolution images with sharp edges, even in the presence of noise.

As introduced in the previous section, MWI generates dielectric images through
the inverse scattering theory. Ybarra et al., proposes a method using the similar
“scattering” method to allow the Born-approximation based method to be used in
EIT [33]. The method starts by designating a the reference (background) conductivity
σb(r) and the electric potential ub(r, rtx) before the EIT operation on patient. By
multiplying ub(r, ra) (ra at another different location away from rtx) with equation
(6.8), we will have:

∫

�

ub(r, ra)∇ · [σ (r)∇u(r, rtx)] dv = 0 (6.13)

Notice that σb(r) and ub(r, rtx) still satisfy Poisson equation and two boundary
conditions:

∇ · [σb(r)∇ub(r, rtx)] = 0 (6.14)

−σb(r)
∂ub(r, rtx)

∂n
= jn(r, rtx), r ∈ ∂� (6.15)

ub(r) = 0, r ∈ Sref (6.16)

Integrating equation (6.13) by parts yields:

∫

∂�

ub(r, ra)σ (r)
∂u(r, rtx)

∂n
ds−

∫

�

σ (r)∇ub(r, ra)∇u(r, rtx)dv = 0 (6.17)

Similarly, when multiplying equation (6.14) with u(r, ra), we have:

∫

∂�

u(r, ra)σb(r)
∂ub(r, rtx)

∂n
ds−

∫

�

σb(r)∇u(r, ra)∇ub(r, rtx)dv = 0 (6.18)

From Neumman boundary conditions in (6.9) and (6.15), the terms
σb(r)∂ub(r, rtx)/∂n and σ (r)∂u(r, rtx)/∂n can be replaced by −jn(r, rtx). By subtract-
ing (6.18) from (6.17) the “scattering” potential can be written as follows:

u(rtx, ra)− ub(rtx, ra) = 1

I

∫

�

σ (r)∇ub(r, ra)∇u(r, rtx)− σb(r)∇u(r, ra)∇ub(r, rtx)dv

(6.19)

Since most EIT systems operate at low frequency and the imaging domain of
EIT is less than 1 m [8,13–16], the term kbL(σ − σb) is much less than 1. Hence, the
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first-order Born approximation validity satisfies and ub ≈ u. Equation (6.19) can be
written as:


u(rtx, ra) ≈ 1

I

∫

�


σ (r)∇ub(r, ra)∇u(r, rtx)dv (6.20)


u(rtx, ra) = u(rtx, ra)− ub(rtx, ra) (6.21)


σ (r) = σ (r)− σb(r) (6.22)

The integral term can be calculated through either the numerical method such as
FEM [33], or the Faddeev Green’s function [35,36]. Equation (6.21), can be used to
construct the cost function for the Born-approximation-based methods. We will intro-
duce these Born-approximation-based methods in the later subsection to demonstrate
the unity of these inverse methods in both EIT and MWI applications.

6.2.3 Formulations of MWI

In the absence of magnetic sources (i.e., Mi = 0, qmv = 0), we introduce the magnetic
vector potential A and define B = ∇ × A. The Maxwell’s equation (6.1) can be
rewritten as:

∇ × (E+ jωA) = 0 (6.23)

The E+ jωA is an irrotational vector, hence can be written as:

E = −∇u− jωA (6.24)

where u is the electric potential. By choosing the Lorenz gauge ∇ · A + jωμεu = 0,
(6.24) is [32]:

E = −∇u− jωA = −jω

[
A + 1

k2
∇(∇ · A)

]
(6.25)

For a point electric dipole J, the magnetic vector potential is defined as [32,37]:

A(r) = μ
∫

V
J(r′)g(r, r′)dr′ (6.26)

where g(r, r′) is the scalar Green’s function between source location r′ and receiver
location r. In homogeneous medium, g(r, r′) = e−jkb|r−r′|/(4π |r − r′|) .

Now we define the electric and magnetic fields without imaging objects as the
background fields Eb, Hb, and the electric and magnetic fields with imaging objects
as the total fields E, H. The fields satisfy the Maxwell’s equations:

∇ × Eb = −M− jωμbHb (6.27)

∇ ×Hb = J + jωε̃bEb (6.28)

∇ × E = −M− jωμH (6.29)

∇ ×H = J + jωε̃E (6.30)
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where material properties of the background are denoted as μb,ε̃b and properties of
background and objects areμ,ε̃. Subtracting (6.29) and (6.30) from (6.27) and (6.28)
results in scattered field:

∇ × Es = −jω(μH− μbHb) = −jω(μ− μb)H− jωμbHs (6.31)

∇ ×Hs = jω(ε̃E− ε̃bEb) = jω(ε̃ − ε̃b)E+ jωε̃bEs (6.32)

where Es = E− Eb and Hs = H−Hb.
By defining volume equivalent electric current Jeq = jω(ε̃ − ε̃b)E and magnetic

current source Meq = jω(μ− μb)H, (6.31) and (6.32) can be written as

∇ × Es = −Meq − jωμbHs (6.33)

∇ ×Hs = Jeq + jωε̃bEs (6.34)

In most MWI applications, both background and object materials are non-
magnetic (μ=μb=μ0 ≈ 4π × 10−7 H/m). Therefore, scattered electric field Es

and magnetic field Hs can be viewed as excited from equivalent volume electric
current Jeq.

Now replacing E in (6.25) with scattered electric field Es, and using volume
equivalent source Jeq to represent the magnetic vector potential A in (6.26). The
scattered electric field at any observation location r can be written as [32]:

Es(r) = k2
b

∫

V
χ (r′)

(
¯̄I+ 1

k2
b

∇∇·
)

g(r, r′)E(r′)dr′, r′ ∈ V (6.35)

where E(r′) is the total field at the object location r′. The electric contrast χ (r′)
between background and object material at location r′ is:

χ (r′) = ε̃(r′)
ε̃b
− 1 (6.36)

ε̃(r′) and ε̃b are the complex permittivity of the object at location r′ and the
background.

The operators with the scalar Green’s function inside the integral can be replaced
by the dyadic Green’s function ¯̄G, and (6.35) can be written as [32]:

Es(r) = k2
b

∫

V
χ (r′) ¯̄G(r, r′)E(r′)dr′, r′ ∈ V (6.37)

This is the scattered electric field volume integral equation (EFVIE) that is com-
monly used in microwave imaging. The key element of 6.37 is the background
electric dyadic Green’s function ¯̄G. When the background is a homogeneous or
planarly/cylindrically/spherically layered medium, the detailed expression of ¯̄G is
discussed in [37]. However, Green’s function can only be numerically calculated for
most inhomogeneous media.

In most MWI system prototypes, vector network analyzers (VNA) are integrated
with the antenna and array systems to measure the signal as a scalar quantity, known
as scattering parameters (S-parameter) [3,5,17–19], which are voltage ratios. It can
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be shown that the scattered S-parameter measurement Ss
n,m between transmitter (Tx)

port m and receiver (Rx) port n can be rewritten as the following:

Ss
n,m = k2

b

∫

V
χ (r′)Gn,m(r′) · E(r′)dv′, r′ ∈ V (6.38)

where the scattered S-parameter can be derived by Ss
n,m = St

n,m − Sb
n,m. Superscripts

t and b separately indicate the total and the background S-parameters, respectively.
The waveport vector Green’s function (WVGF) Gn,m(r′) is [17–19]:

Gn,m(r′) =
√

Zm√
Zn

jEb
n(r′)

ωμ0

∫ ∫
Am

et
m(r)× ht

m(r)I0 · dr
, r ∈ Am (6.39)

where Eb
n(r′) is the background field at location r′ in object domain V , which is

generated by the Rx port n. The quantities et
m and ht

m are the electric and magnetic
field mode templates (e.g., TEM mode with coaxial feeds) excited at Tx port m. I0 is
the source signal response in the frequency domain, μ0 is the vacuum permeability,
Zm and Zn are the Tx port m and Rx port n impedance. In the above equations, Eb

m
and E are calculated by numerical methods such as the finite difference time domain
(FDTD) method and FEM, and et

m and ht
m are calculated by the 2D versions of these

numerical methods.
Equation (6.38) is a nonlinear equation since the total field inside the imag-

ing domain V is a function of unknown χ . Similar to the EIT method, the Born
approximation can be applied in (6.38) with E ≈ Eb:

Ss
n,m ≈ k2

b

∫

V
χ (r′)Gn,m(r′) · Eb(r′)dv′, r′ ∈ V (6.40)

6.2.4 Inverse methods for EIT and MWI

Three-dimensional (3D) EIT or microwave imaging is a challenging task due to the ill-
posedness, nonlinearity, and underdeterminedness nature of the 3D inverse scattering
problems. As we mentioned before, various direct and iterative inverse scattering
methods such as the SVD, classical Newton, Gauss–Newton, and conjugate gradient
(CG) methods have been applied for 3D impedance image reconstruction in the past
few decades [8,13–16]. These methods are applicable in microwave imaging [38–44].
For 3D EIT and MWI imaging with a large number of unknowns, other nonlinear
iterative solvers such as the Born iterative method (BIM), distorted Born iterative
methods (DBIM), or contrast source inversion (CSI) have been developed with various
optimization solvers [2–7,17–20].

6.2.4.1 Cost function
Constructing the inversion scheme starts with discretizing the system equation. The
system equation in EIT is represented by (6.20), where the potential difference
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between mth Tx electrode and nth Rx electrode (m, n ∈ [1, Nt − 1]) is contributed
by a total number of Q voxels:


u(rm, rn) ≈
q=Q∑

q=1


σq

∫

�q

∇ub(rq, rn)∇u(rq, rm)

I
dvq (6.41)

where q indicates the voxel index number and q ∈ [1, Q], and the location of the
qth voxel is denoted by rq. Defining the total number of measurement is P, then
P = (Nt − 1)× (Nt − 1).

Similarly, after discretizing the MWI system equation (6.38):

Ss
n,m ≈

q=Q∑

q=1

χq

∫

Vq

k2
b Gn,m(rq) · E(rq)dvq (6.42)

For a MWI system with M Txs and N Rxs, the total number of measurement P is
M × N .

The above two equations can be represented as a unified equation with matrix
multiplication:

b = Ax (6.43)

where the length of the measurement vector b is P, length of the unknown vector x is
Q, and the size of matrix A is P × Q. The elements of b, x, and A in EIT applications
are as follows:

bp = 
u(rm, rn), xq = σq,

Ap,q =
∫

�q

∇ub(rq, rn)∇u(rq, rm)

I
dvq

(6.44)

where p indicates pth measurement, and can be found as p = (m− 1)× (Nt − 1)+ n.
In the MWI application:

bp = Ss
n,m, xq = χq,

Ap,q =
∫

Vq

k2
b Gn,m(rq) · E(rq)dvq

(6.45)

and similarly, p = m× N + n.
In (6.44) and (6.45), all elements in vector b are measured by EIT or MWI

systems, while all elements in matrix A are calculated through the forward solver. To
eliminate the possible discrepancy between the measurement and simulation caused
by the systematic errors, both sides of matrix function (6.2.4.1) can be normalized
by dividing both sides of the measured background voltage or S-parameters in case
of EIT or MWI, respectively [3].

For the Born iterative method (BIM), the dielectric constant and conductivity
images are reconstructed through minimizing the L2-norm cost function:

F(x, b) = 1

2
‖ b− Ax ‖2

2 +
1

2
γ 2 ‖ x ‖2

2 (6.46)
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where the second term of (6.46) is the Tikhonov regularization term to smooth the
reconstructed target. The regularization term (γ ) can be found through covariance
matrix multiplication, and L-curve optimization [18,19,45,46].

The gradient of cost function (6.46) with respect to x can be written as follows:

∂F(x, b)

∂x
= [AT A + γ 2I]x− AT b (6.47)

where superscript T represents the transpose operation.
For the distorted Born iterative method (DBIM), the cost function is updated at

each iterative step [47,48]. For instance, the DBIM cost function FD at ith iterative
step is (i ≥ 2):

FD(δxi, δbi) = 1

2

‖ δbi − A(xi−1)δxi ‖2
2

‖ b ‖2
2

+ 1

2
γ 2 ‖ δxi ‖2

2

‖ xi−1 ‖2
2

(6.48)

The gradient of the cost function (6.48) is:

∂FD(δxi, δbi)

∂δxi
=
[

AT (xi−1)A(xi−1)

‖ b ‖2
2

+ γ 2

‖ xi−1 ‖2
2

I
]
δxi − AT (xi−1)δbi

‖ b ‖2
2

(6.49)

where δbi at ith iterative step is the difference between the measured scattered data b
and the predicted data A(xi−1)xi−1 calculated from the (i − 1)th step. The difference
of reconstructed unknown parameters between ith and (i − 1)th steps is defined as
δxi = xi − xi−1.

6.2.4.2 Born approximation-based algorithms
The inverse solvers are designed to find the minimum value of the cost function (6.46)
through solving the matrix equation ∂F(x, b)/∂x == 0. As we mentioned before,
BIM and DBIM solvers are introduced when solving the nonlinear inverse problem
with a large number of unknowns. The BIM and DBIM flowchart for both EIT and
MWI applications is shown in Figures 6.1 and 6.2.

The constant θ in Figures 6.1 and 6.2 is the convergence threshold for the inverse
solvers. Reconstructed electric and magnetic fields of the object, object’s electric
potential, Green’s function, inverse system matrix, and model parameter at ith step
are separately denoted as Ei, Hi, ui, Gi, Ai, and xi. After conducting the initial Born
approximation with equations (6.46) and (6.47), the BIM starts with minimizing
(6.46) and solving ∂F(x, b)/∂x == 0 and the DBIM starts with minimizing (6.48)
and solving ∂FD(δxi, δb)/∂(δxi) == 0. In the center of the BIM and DBIM flowcharts
(shaded area), local optimization methods, such as the Newton method, the SVD
method, and the conjugate gradient method, are usually used for minimization [3,18].

In the flowcharts, both BIM and DBIM solvers need to update the reconstructed
electric field or transmitted electric potential inside the imaging domain at each itera-
tive step. However, the entire BIM workflow only requires one-time calculation of the
background Green’s function G or background receiving electric potential ub(:, rn) at
the initial step, while each DBIM step requires extra updates of G or ub(:, rn). This
additional calculation at each DBIM step increases the reconstruction accuracy but
costs more computational resources than the BIM method.
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Figure 6.1 The flowchart of the BIM solver for the MWI (left-half part) and EIT
(right-half part) applications

Ybarra et al. proposed a DBIM inverse solver for the EIT application [33].
The forward solver to update the electric potential and background electric potential
is the second-order FEM method, whose accuracy level is 2-times higher than the
first-order FEM. The robustness of this DBIM solver has been validated with the
2D experimental EIT system and successfully detects targets with both positive and
negative conductivity contrast.

Haynes et al. proposed a MWI system prototype for breast imaging [5]. The
system prototype is designed to work at a single frequency of 2.75 GHz. The imaging
is conducted using the BIM method and can sufficiently detect the target after four
iterative steps [5].

A follow-on system was designed by the same group to achieve the real-time
imaging for the thermal therapy monitoring, and the system exhibits successful track-
ing of the dielectric variance caused by the temperature change within 2.1 s [3]. The
system prototype in [3] is designed to work at 915 MHz, and the imaging is achieved
through the Born approximation inversion (1st step of BIM). As Figure 6.3(c) shows,
the system prototype can reconstruct the dielectric change distribution during the
cooling experiment in [3].
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Figure 6.2 The flowchart of the DBIM solver for the MWI (left-half part) and EIT
(right-half part) applications

The Green’s function in [3,5] is numerically calculated in HFSS, which is based
on a FEM solver. Chen et al. proposed the expression of a new waveport vector
Green’s function (WVGF), which is validated in the experimental measurement [17].
This work is further applied in the real-time DBIM inverse algorithm with GPU
accelerated FDTD method [18]. Figure 6.4 demonstrates the DBIM capability to
reconstruct the dielectric distribution during the simulated heating procedure with a
synthetic brain-tumor phantom model [18].

To further improve the imaging resolution, Shah et al. implemented a combined
L1 − L2 norm cost function with a level-set method in the BIM framework [19]. This
new method can recover shapes, locations, and sizes of objects accurately using a
small number of forward calculation steps with a significantly reduced computational
cost, even in scenarios where the number of measurements is relatively small. In [19],
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Figure 6.3 (a) The breast phantom to test the system prototype, where the cooling
water-ball target is shown in (b), and (c) is time series of dielectric
variance for the phantom in (a). Phantom and heated target are taken
as the background object at time zero. Cuts are through the peak
contrast (figure is referred from [3]).
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from [18]). The middle column is the true dielectric maps. The left and
right columns are the reconstructed dielectric using BA and DBIM,
respectively. Spatial units are centimeters.

two numerical breast phantoms were tested in a simulated MWI system prototype to
evaluate the performance of the inverse solver. Figure 6.5 shows the reconstructed
class 2 phantom with 4 mm image resolution, and the reconstructed image error
within the breast domain is less than 0.82% [19].
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Figure 6.5 Class 2 (scattered fibroglandular) phantom that derived from the
MRI [49]. Left column: actual geometry, right column: joint contrast
and shape recovery (figure is referred from [19]). The top two rows
show a 2D view in coronal cross section and bottom two rows show
sagittal 2D view.

The authors recently have designed a new multi-frequency MWI system prototype
for medical imaging and thermal therapy monitoring [50]. Figure 6.6 demonstrates the
configuration of our new system. Compared with the system prototypes in [3], the new
system is over four times larger. A newly designed antenna array can operate at four



Deep learning techniques for biomedical imaging 195

Figure 6.6 The new multi-frequency MWI preclinical system in [50]

resonant frequencies than span in the range of 0.5–3 GHz and the novel protein-based
emulsion shows low loss, dielectric controllable, long-term and wide-temperature sta-
bility [50]. New multi-frequency inverse algorithms and animal phantom experiments
are currently being designed for future medical imaging applications.

6.3 Deep-learning in medical imaging

We have explained the principles of common medical imaging techniques and the
electromagnetic inverse algorithms used for EIT and MWI systems in the last section.
The image reconstruction involves combining the physics of imaging, measured data,
and prior information [21–24]. For MRI and CT scans, the majority of research
interests in recent years has been concentrated on data processing and extraction of
image information. As for MWI and EIT, there have been several creative methods to
improve the performance of the physics-based imaging algorithms. Nonetheless, the
difficulties of the inverse scattering problem, such as ill-posedness, nonlinearity, and
non-uniqueness are still largely unsolvable.

The inverse scattering at the heart of physics-based imaging methods impose
inherent challenges on the entire imaging framework. To address some of these chal-
lenges, machine learning (ML) assisted methods have offered promising alternatives.
As the computational capabilities have increased over the years, the development of
learning-based methods has enabled breakthroughs in medical imaging applications.
In this section, the machine learning concepts and their most recent developments
are explained at first. Then the basic architectures of common deep learning neural
networks are introduced. The rest of this section will discuss recent studies of deep
learning neural networks in medical imaging applications.

From the evolution of pattern recognition and computational learning theory in
artificial intelligence, machine learning is aimed at constructing algorithms that can
learn from data and make predictions. According to Arthur Samuel, machine learning
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methods “give computers the ability to learn without being explicitly programmed”
[51]. The computational models generated from ML methods help researchers uncover
hidden insights through learning from previous input data and their patterns or
trends [52].

6.3.1 Machine learning

The critical element in ML methods is the data. Typically, the data set to construct an
ML method can be split into: training and testing data sets. The training data set is
further separated into estimating and validation data sets. Computational models are
selected and “trained” to obtain the optimized model parameters using the estimation
data set to match the target features from the validation data set as the input. This
estimation continues until the trained model with the optimized model parameters
can successfully predict the results.

Machine learning algorithms are usually categorized into two groups. The first
one is supervised learning, where elements in the training data set are labeled, which
implies each input data is related with a labeled target feature as the output. A trained
computational model or a function is generated from the training data set in this
learning approach. This model/function can predict the results from the new input data.
Supervised learning is usually used in regression analysis and categorizing statistical
characteristics. The other approach is unsupervised learning, in which no feature
or output value for a decision is in the data set. The unsupervised learning method
is commonly designed for clustering and anomaly detection. During unsupervised
learning, the ML method is developed to find the groups with similar features or
characteristics from the input data set.

In medical imaging, many ML algorithms have been developed to extract infor-
mation from the images and improve image resolution. Example of ML algorithms
in medical imaging [53–55]:

1. K-Nearest Neighbor (KNN): In a training sample set, each data point in the
sample set corresponds to a label. When entering new data without labels, each
feature of the new data is compared with features of all categories in the sample
set. Then the algorithm extracts the categorical label of the data with the most
similar (the nearest) features in the sample set. The KNN algorithm is suitable
for data with limited number of labels with overlaps [53].

2. Naive Bayes: The Naive Bayes classifier is designed to categorize the data based
on the Bayesian decision theory. The classifier is named “naive” because all
features in the dataset are mutually independent and equally important. Compared
with other ML algorithms, the Naive Bayes is effective even using small-size
datasets and can process multiple features in one problem [54].

3. SupportVector Machine (SVM):The SVM algorithm finds the (n−1)-hyperplane
of the n-dimensional vector that can separate two datasets with the maximum
margin. This method is commonly used in high-dimension data regression and
classification and can be applied in both supervised and unsupervised learning
approaches. Compared with the KNN and Naive Bayes methods, the SVM can
better handle the datasets in which elements have nonlinearity [54,55].
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4. Random Forest: Random Forest is the extension of bootstrap aggregation (also
called “bagging”). Based on the decision tree, the Random Forest randomly
chooses a feature subset first, then chooses the “best” feature from this subset
for splitting. If the size of the chosen subset is the same as the number of features
of the input data set, the base tree construction of the random forest will be the
same as the decision tree [53,54].

5. K-means: As an unsupervised learning algorithm, K-means clustering calcu-
lates the minimum square error of all K clusters in the sample set with a
size of n to find the optimum clusters, which classifies all data points to
the optimum clusters. Generally, this algorithm requires a sizeable compu-
tational cost, and neural networks are introduced to accelerate the learning
speed [54].

Other imaging methods, such as Boosting, support vector regression (SVR), C-
means, supervised descent method (SDM), and compressive sensing, are also used
in some medical imaging applications [24,56–58].

In medical imaging, ML methods are mainly applied in anomaly classification
(diagnosis) and imaging pattern regression (segmentation). Table 6.1 lists some of
the ML studies in the last decade applied in different medical imaging techniques
and their achievements. Note that we only list the machine learning methods that
are not solely utilized by the deep learning neural networks in Table 6.1. In recent
years, deep learning methods in medical imaging have been a frontier research area.
The deep learning neural networks will be reviewed and discussed in the following
subsection.

In Table 6.1, almost all applications of ML algorithms are to segment images
and disease diagnosis or detection. The majority of study interests are focused on
the SVM applications and improvements [59,71,82]. Most ML algorithms are used
for imaging in the brain and chest (including breast and lung) area for cancer or
lesion diagnosis [63,76]. Compared with a large amount of ML applications in MRI
and CT, ML applications in EIT and MWI have thrived in the recent half decade.
Unlike the EIT machine learning methods that combined physics-based models with
ML methods to generate conductivity images, most MWI ML methods are purely
data-driven methods that detect cancers or lesions from the electromagnetic field
distribution [82–84].

Deep learning developments are relatively new compared to other branches of
machine learning. Because of the ever-increasing evolution of computational capa-
bilities, the recent deep learning methods can solve more complicated problems by
building a more complex multi-layer artificial neural network (ANN) [86]. ANN
is designed to mimic the interaction between the human neural system and real-
world objects. Unlike most ML methods, the raw data input into the deep learning
neural networks (DNN) based on the multi-layer ANN are not manually labeled. Fea-
tures can be automatically extracted through the multiple hidden layers inside the
ANN. The following subsection will introduce the commonly used DNNs in medical
imaging.
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Table 6.1 Machine learning methods in medical imaging (excluded deep learning
method)

Imaging ML method Organs Clinical purpose

MRI SVM & CNN Brain Brain Tumor Segmentation [59]
SVM Brain Diagnosis (Alzheimer) [60]
SVM Carotid Diagnosis (Carotid Plaques) [61]
SVM Breast Diagnosis (Cancer) [62]
K-means & SVM Brain Brain Tissue Segmentation [63]
Random Forest Bone Diagnosis (bone chondrosarcoma) [64]
Random Forest Heart Heart Tumor Segmentation [65]
K-means & C-means Brain Brain Tumor Segmentation [58]
K-means Blood Diagnosis of Leukemia [66]
kNN Breast Mammographic Microcalcifications [67]
Naïve Bayes Brain Brain Tumor Segmentation [68]

PET/CT scan SVM breast Diagnosis (Cancer) [69]
SVM Brain Diagnosis (Alzheimer) [70]
SVM Liver Diagnosis (Liver Lesion) [71]
SVM Lung Diagnosis (Covid 19) [72]
SVM Lung Diagnosis (Cancer) [73]
K-means Lung Diagnosis (Cancer) [74]
Random Forest Brain CT synthesis [75]
Random Forest Chest Tissue Segmentation [76]
K-means Kidney Kidney Segmentation [77]
Naïve Bayes Heart Diagnosis (Coronary artery) [78]

EIT K-means & kNN Phantom Image reconstruction [79]
SVM Brain Diagnosis (Stroke) [80]
kNN Phantom Image reconstruction [81]
SDM Lung Image reconstruction [25]

MWI SVM Breast Cancer Detection [82]
SVM Brain Stroke Detection [83]
SVM & kNN Breast Lesion Detection [84]
K-means & C-means Brain Stroke Detection [85]

6.3.2 Deep learning neural networks

Deep learning is an area of machine learning that obtains featured representations
from raw data through multi-step feature transformation and further input to the
prediction function to get the final result. The idea behind “Deep” learning comes
from multiple linear and nonlinear perceptrons in the neural network layers that are
applied to automatically extract all unlabeled and hidden features from raw input
data. The critical problem that a deep learning method needs to solve is the Credit
Assignment Problem, which analyzes the effect of each component in the learning
method on the final output result and updates the weight and learning rate from the
feedback of analysis during the learning process [87].
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Each inner component (layer) cannot directly obtain the supervised informa-
tion, but rather from the final supervised information of the whole learning network.
Nowadays, neural networks are commonly used in deep learning since the error back-
propagation algorithm can be applied in this deep learning model to solve the credit
assignment problem [88]. Common DNN architectures are listed below.

6.3.2.1 Fully connected neural network (FCNN)
A fully connected neural network (FCNN) (Figure 6.7) is also known as a feedforward
neural network, since there is no feedback connection between the model function
input and output [89]. FCNN adopts a one-way multi-layer structure, to fit a model
function and is the simplest type of neural network. Signals received by each neuron
in the FCNN are from the neurons in the previous layer. After processing the received
signals, neurons will produce output signals to their following layer. Generally, the
initial and the last layers of an FCNN are separately defined as the input and output
layers. Other intermediate layers in the FCNN are the unified as “hidden layer,” which
can be a one-layer or a multi-layer structure.

The main algorithms used in the FCNN are the forward-propagation (FP) and
back-propagation (BP) algorithms. If we assume the function of ith layer is fi, the
input data X and output data Y can be written as a nested function Y = F(X) =
fN ( fN−1( · · · f2( f1(X)))). The BP algorithm passes the information of the loss to the
“back” layers by calculating the function derivative of X in each layer (∂fi/∂X),

Input Layer ��R12 Hidden Layer ��R14 Hidden Layer ��R12 Hidden Layer ��R8 Hidden Layer ��R3 Output Layer ��R1

Figure 6.7 Structure of a typical fully connected neural network
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which can be achieved through the chain rule calculation. The derivative is then used
to update the weight of each layer.

The function fi in each layer with its input Xi is usually written as fi(Xi) =
σi(WiXi + bi), where Wi and bi are the weight matrix and bias of each layer. The
activation function (σi) is generally taken as a nonlinear function (e.g., ReLU, Sigmoid,
Logistic) to mimic the neuron’s nonlinear perception behavior. A loss function (e.g.,
Softmax, Sigmoid cross-entropy, Euclidean) is used to evaluate the neural network’s
performance.

This section briefly introduces the structures and concepts of different neural
networks. Details can be found in multiple textbooks [90–92].

6.3.2.2 Convolutional neural network
The large number of parameters in FCNN lead to a few shortcomings that makes
training difficult and cause over-fitting. Because of these drawbacks and increasing
computational cost for image processing, the convolutional layer was introduced in the
neural network and evolved as the CNN [93]. A typical CNN contains the following
layers: Input layer, Convolutional layer, ReLU layer, Pooling layer, Fully connected
layer, and Loss layer.

The most crucial part in CNN is the convolutional layer. For two discretized
signals f and g in signal processing, the convolution is defined as ( f ∗ g)[i] =∑m=I

m=0 f [m]g[i − m] =∑m=I
m=0 f [m]g([i − m]mod(I )). However, the operation in the con-

volution layer of the CNN is “cross-correlation.” When a filter F with size K is applied
to a data vector x with length M , this operation will result in ym =∑K

k=1 Fkxm+k−1.
Similarly, for a 2D matrix data X (size: M × N ) with weighting matrix W (size:
J × K), the convolution is defined as Y =W ⊗ X, where each element of the
convoluted matrix Y can be written as follows:

ym,n =
J∑

j=1

K∑

k=1

wj,kxm+j−1,n+k−1 (6.50)

Visually, the weighting matrix W, or convolutional kernel, is sliding from left
to right and from top to bottom along with the input matrix X with step length 1. The
output element Y[m, n] is calculated with the window around on X[m, n] through the
cross-correlation operation using the input data and chosen convolution kernels. In
this circumstance, the output size is (M − J + 1)× (N − K + 1).

In general, parameters that define a convolutional layer are: number of convolu-
tional kernels P, size of each kernel (J , K), zero-padding size (M0, N0), stride length
(sh, sw). Once we have the output from the convolutional layer, the ReLU layer will
use it as the input and generate the nonlinear relation between the convolutional and
pooling layers.

Although the number of neuron connections is decreased by introducing the con-
volutional layer, the number of neurons for each feature is not changed significantly.
The pooling layer is presented in the CNN to shrink the size of neuron groups. The
pooling layer can also mitigate the sensitivity of convolutional layers to location and
spatially downsample representations.
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Figure 6.8 Structure of the LeNet-5 convolutional neural network (figure is
replotted from [93]). A convolutional NN, here used for digits
recognition. Each plane is a feature map, i.e., a set of units whose
weights are constrained to be identical [93].

Similar to the convolutional layer, a pooling function slides along the input matrix
Y from the convolutional layer. The pooling function is usually chosen to calculate
either the maximum or the average value of the elements in the pooling window. For
instance, if the pooling layer size is U × V , the mean-value pooling function value
at element index (α,β) of the pooling output matrix Z is:

zα,β =
∑J

j=1

∑K
k=1 yα+j−1,β+k−1

UV
(6.51)

The pooling function also needs zero padding and defining strides. Unlike the con-
volutional layer, the pooling layer pools each input channel separately instead of
summing the inputs up over media [94]. Therefore, the number of input channels is
the same as the output channels during the pooling operation.

After several convolutional and pooling layers, the neurons go through fully-
connected neural layers and finally output loss values to all possible features.
Figure 6.8 depicts the well-known LeNet-5 convolutional neural network for the
handwritten and machine-printed character recognition [93]. This network contains
two convolutional layers, two average pooling layers, two fully connected layers,
and a softmax classifier in the end. Details of the example network can be found
in [93,95]. This specific DNN structure has been widely used for image processing
since 1998, and it is the major deep learning method used in medical imaging applica-
tions. We will discuss the medical imaging applications using CNN in the following
subsection.

6.3.2.3 Recurrent neural network
Above DNNs are the feed-forward networks in which the input information begins
at the input layer, passes through hidden layers, and eventually reaches the output
layer. In recurrent neural networks, also known as RNNs, feedback signals are used
throughout the construction process to enable the creation of internal states or mem-
ories. These memories store important information that is connected to the stimuli
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Y1

X1 X2 X3 XT–1 XT

f1 f2 f3 fT–1 fT

Y2 Y3 YT–1 YT

Figure 6.9 Structure of a one-layer recurrent neural network, where subscripts
1, 2, 3, · · · , T − 1, T are the time steps

received before (recurrent). Since RNN takes into account both the most recent input
data and the feedback data from prior states, it is well suited for modeling sequential
data (inputs are dependent on one another in a streaming pattern), which may include
both temporal and spatial information [96].

The RNN is built based on the latent autoregressive model. This model uses the
hidden state to store the model state of the previous step and applies the stored hidden
state as the input of the model function with the input data to calculate the model state
at the following step. Starting from a one-layer FCNN as an example, we know the
output can be written as:

f = σ (Wxf X + bxf ) (6.52)

Here we rewrote the weighting matrix as Wxf and bias as bxf to show the relationship
between input data X and function f . The sequential data Xt are input at different time
steps 1, 2, · · · , t, · · · , T . Based on the definition of the latent autoregressive model,
the output of the model ft at time step t is generated from the input data at time step t
and the last output state of the model ft−1, which can be written as:

ft = σ (Wxf Xt +Wff ft−1 + bxf ) (6.53)

where Wff is the weighting matrix mapping model output from time step (t − 1) to t.
Bias bxf relates to both input data and the model output at time step (t − 1), and has
the same size as the model output f .

The basic RNN structure is shown in Figure 6.9. In [90–92,94], more advanced
RNN models are explained for different applications.

6.3.2.4 Generative Adversarial Network
The mathematical derivation and structure of GANs are complicated and beyond the
scope of this book chapter. Here we only briefly introduce the basics of GANs. The
detailed theory about the GAN can be found in [97] and [91].

The Generative Adversarial Network (GAN) is a relatively new deep learning
network compared with CNN and RNN. It was first proposed in 2014 [97]. Studies
about the GAN applications have grown substantially since 2018, particularly the
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medical imaging applications [98–100]. The GAN framework can be separated into
a generative network and a discriminative network. The word “adversarial” is used
because the generative and discriminative networks contest. The generative network
generates a group of “false” datasets with similar features as the true data distribution.
The discriminative network is designed to extract the true data from those “false”
datasets. Each network is trained and learns from the output of the other network until
the generative network can achieve acceptable accuracy. The discriminative network
cannot distinguish the generative “false” dataset and the true dataset. Deconvolutional
neural networks are usually used as generative networks, and CNNs are applied as
discriminative networks.

6.3.3 DNN in medical imaging

In recent years, compared with the conventional ML methods such as SVM, random
forest, and K-means clustering, more deep learning methods have been developed and
analyzed for imaging segmentation, diagnosis, and prediction [24,96]. We demon-
strate the applications of different DNNs in medical imaging in the rest of this
subsection. Since an overwhelming majority of studies of deep learning applications
in medical imaging are focused on MRI and CT scans, the majority of recent DNN
studies that are reviewed in this section are utilized with these two medical techniques.
We will briefly introduce some DNN studies in MWI and EIT, and comprehensive
example results of DNN applications in MWI and EIT are discussed in Section 6.4.

6.3.3.1 FCNN in medical imaging
As the basic structure of the ANN, the FCNN has been replaced by more advanced
ANNs (CNN, RNN, GAN) in modern medical imaging. However, there are still spe-
cific applications in which the FCNN exhibits a good performance. Sheikhjafari et al.
proposed an FCNN for unsupervised image registration with MRI training data that
suffer a certain level of deformation [101]. This application is helpful for realistic
medical imaging since many ANNs in imaging registration use synthetic medical
imaging data for training. In contrast, the clinical medical data could experience
unknown deformation generated from both fixed and moving images [101]. The pro-
posed method outperforms the GPU-accelerated mathematical imaging registration
algorithm in [102].

In [103], Feng et al. proposed an FCNN for virtual monochromatic imaging in
spectral CT. Although CNNs are more common for CT applications as it shown in
the next subsection, a spectral CT image could be distorted by the non-ideal detector
response. Meanwhile, it is challenging for CNN to construct a detector response func-
tion and accurate incident source spectrum [103]. This FCNN can provide accurate
virtual monochromatic linear attenuation coefficients to build proper system response
functions and shows outstanding performance on denoising and artifact suppression.

As for the EIT and MWI, the FCNN is more frequently applied with the physics-
based inversions [26,27,104]. For example, Dachena et al. proposed a FCNN to
calculate the inversion of MWI system matrix A−1. This method was used to recon-
struct the 2D neck dielectric images and successfully detected the tumor from
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surrounding tissues [104]. Moreover, the FCNN can help reduce the matrix calculation
time significantly [26] and provide preconditioned images for further reconstruc-
tion [27]. The detailed implementation of the FCNN in EIT and MWI will be explained
in Section 6.4.

6.3.3.2 CNN for diagnosis, imaging segmentation, and reconstruction
Compared with the FCNN, CNN can learn hierarchical feature representations of the
image and compute features from locally connected voxels, which helps the image
classification and segmentation [96,105]. The architecture of CNN is also suitable
for high-performance computing platforms, such as the graphics processing unit
(GPU) [24]. Because of these advantages, a significantly increasing number of studies
have been conducted on the topic in the last decade. In [96] and [106], dozens of CNN
research papers between 2015 and 2018 have been reviewed on multiple MRI and CT
imaging applications (diagnosis, detection, segmentation, registration, enhancement,
and reconstruction). Yang and Yu also summarized the CNN and its extended neural
networks in detection and segmentation in medical imaging [107]. In Table 6.2, we
show some of the latest developments of CNN in medical imaging published just in
2021 and 2022.

In [108], a 2D-CNN based on the Keras and Tensorflow libraries with ResNet-
101 was utilized to diagnose the multi-category Alzheimer’s disease. The proposed
CNN was trained using the Open Access Chain of Imaging Studies (OASIS) database
and SegNet features with the ADNI dataset. The validation accuracy of this CNN can
achieve 97% with less than 0.1 validation loss. Another new development of CNN was
conducted by joint research from the United Kingdom, China, and New Zealand [109].
Using the quantum principle of entanglement on the ReLU activation function in
Hilbert ReLU-based and Hilbert LReLU-based states, the authors constructed the
quantum ReLU. They modified quantum ReLU activation functions for the deep
CNN to diagnose Parkinson’s disease and COVID-19 [109]. Although more extended
computation is needed for this quantum deep learning CNN, the overall accuracy and
reliability of the proposed CNN are increased by over 50% compared with the CNNs
with traditional ReLU and leaky ReLU activation functions [109].

The development of CNNs benefits disease diagnosis and improves the accuracy
of image segmentation. In [110], Ahmad et al. proposed a 3D Gaussian-weight ini-
tialization of CNN (Ga-CNN) for liver segmentation in the CT scan. Three benchmark
databases (MICCAI SLiver’07, 3Dircadb01, and LiTS17) were utilized for training
and testing the proposed Ga-CNN to segment the anomalies from the liver tissues
with an average 96.6% segmentation accuracy [110]. The dice similarity coefficient
is 1%–5% higher than the other liver segmentation DNNs [110–112]. Recently, Nvidia
Corporation introduced a unified framework consisting of two architectures, UNet-
Former and UNetFormer+, to segment tumors from the surrounding tissues [113].
This method is constructed with a 3D Swin Transformer-based encoder, CNN, and
transformer-based decoders. These frameworks show a>90% segmentation accuracy
compared with traditional CNNs in validation using the Liver databases above and
the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) database from
BraTs 13 to BraTs 21 [113].
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The newly developed CNNs are also applicable in physics-based EIT and MWI.
In [114], Biasi built an EIT-based tactile sensor. The sensors incorporate the FEM
model and the CNN learning method through COMSOL and Matlab Deep Learning
Toolbox to reconstruct a conductivity map from measured data. Compared with the
L2 reconstructed results (physics-based inversion only), the proposed CNN-assisted
method shows a lower reconstructed RMSE value [114]. Capps et al. proposed a D-bar
method to build the EIT inversion framework and use a CNN to generate reference
results to fuse with the physical reconstructed results [115]. Qin et al. combined the
2D physics scattering EM inversion model with a multi-task CNN learning strategy
for microwave breast imaging [116]. This method shows better robustness and recon-
struction accuracy than the CSI-only reconstruction [116]. We will show more details
of hybrid physics-based and learning-assisted MWI/EIT reconstruction through some
example results provided in [26–29].

Apart from the papers introduced above, there are many papers on CNN devel-
opment and applications in medical imaging [128–138]. Newly developed CNNs
are applicable in a wide range of applications including image segmentation and dis-
ease diagnosis and prediction, such as COVID-19 and Alzheimer [119,120,123–126].
Refer to Table 6.2.

Even though CNNs have been primarily utilized to solve a wide range of medical
imaging problems, their further applications are still limited. Due to the hierarchical
feature learning, a high-dimension calculation is required in the CNN structure, which
causes a high computational cost. In addition, CNN training needs a large number
of training sets [144]. Recurrent Neural Network (RNN) and Generative Adversarial
Network (GAN) are used in medical imaging to overcome the limitations of CNN.

6.3.3.3 Medical RNN applications
In FCNN and CNN, all input data batches are independent sequentially, which
implies that the output of these neural networks depends on the input at the cur-
rent state only. However, in many medical imaging applications, an imaging system
with a state machine (i.e., finite state machine, FSM) to show the medical images
in both current and previous states is required. Under these circumstances, the
RNN is applied to explore the temporal information of the medical imaging data
sequences [96,145].

In [96], RNN applications reported between 2015 and 2018 in computer-aided
diagnosis (CADx), such as Detection, Prediction, Classification, and Image Recon-
struction, are summarized. Azizi et al. proposed a hybrid CNN (ResNet) and RNN
model to predict the lung cancer treatment response [146]. This method can monitor
the therapy follow-up response, track the radiographic changes of tumors over time,
and predict patients’ survival and other clinical endpoints. In [147], the Conditional
Random Field was implemented in the RNN and was in conjunction with the full
CNN (V-net) for imaging segmentation. This method successfully reduced the com-
putational complexity from O(N 2) to O(N ) and accelerated the computational speed
through hybrid CPU/GPU calculation. The algorithm was tested with both 3D MRI
datasets and 2D RGB data. For breast lesion classification, an RNN structure, long
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Table 6.2 CNN applications in medical imaging during 2021–2022

Purpose Organ Malignant CNN net Imaging Accuracy

DIAG Thyroid Cancer Xception
CT scan

US 98% [117]

Teeth Lesion YOLO-CNN X-ray 95% [118]
Brain Alzheimer Fully-CNN MRI >95% [119]

Brain Alzheimer

AlexNet
GoogLENet

VGG16
ResNet

MRI 94% [120]

Brain Cancer GA-CNN MRI 99% [121]

Spine
Ossification

(OPLL) VGG16 MRI 94% [122]

Lung COVID-19 SARS-Net X-ray 98% [123]

Lung COVID-19
VGG16

InceptionV3
Xception

X-ray 94% [124]

Lung COVID-19
DenseNet169

XGBoost X-ray 98% [125]

Lung COVID-19 EfficientNet X-ray 99% [126]
Pancreas Cancer MBU-Net CT scan 89% [127]

SEG Lung Parenchyma UNet++ CT scan 0.98 (DSC) [128]
Brain Tumor DeepMedic MRI 0.8 (DSC) [129]
Retinal Vessel T-Net OCT 0.83 (F1) [130]
Lung Cancer MA-Unet CT scan 0.97 (MDC) [131]
Cells Bacteria IRUnet Microscopy 0.93 (DSC) [132]

Brain
Liver

Tumor
Spleen UNETR

MRI
CT scan 0.84 (MDC) [133]

Liver Lesion CFCN CT scan 94% [134]
Heart Left ventricle U-Net MRI 0.93 (DSC) [135]
Brain Brain injury MU-Net-R MRI 0.9 (DSC) [136]
Brain Tumor U-Net MRI 0.88 (Dice) [137]
Breast Tumor MRFE-CNN CT scan 0.89 (Dice) [138]

RECON Breast Tumor
GaussNewton

+U-net
US

MWI 0.038 (MSE) [139]

Breast \
CSI

+CNN MWI 0.12 (RMSE) [140]

Brain Tumor YOLOv3 MWI 0.95 (F1-score) [141]

Brain Stroke
FEM

+Residual CNN EIT 97% [142]

Lung \
FEM

+VGG
CT
EIT 0.08 (RMSE) [143]

DIAG: Diagnosis
SEG: Segmentation
RECON: Reconstruction
US: Ultrasound
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short-term memory network (LSTM), was proposed to enable the integration of tem-
poral components of DCE-MRI with the features extracted from the CNN (VGGNet)
in cancer screening and staging [148].

Another application of RNN in medical imaging is to improve the image reso-
lution of other ML and DL methods. Between the input and the output of the ML
module (i.e., Gradient descent, Variable splitting, SVM) or DL network (i.e., FCNN,
CNN), the learning rate and weight coefficients are updated iteratively. Each iterative
step can be viewed as an internal state before the output. An RNN can be applied as an
optimization method to enhance the reconstruction quality or accelerate the learning
update speed by reducing the iterative steps [149].

Moreover, owing to the temporal processing ability of the RNN, there are some
specific applications where RNN shows its unique advantages. One example is the
functional MRI (fMRI), an imaging technique that can monitor the dynamic states
of the brain to measure the brain activity that associates with blood flow, in which
RNN is the natural DL choice for this application. Wang et al. proposed a 5-layer
deep sparse RNN (DSRNN) incorporated with the LSTM and Gated Recurrent Units
(GRU) for the brain state recognition with the fMRI [150]. This method shows at
least≥ 80% accuracy in recognizing multiple brain activities (working memory task,
gambling, motor, language, social, relational, emotional). Dvornek et al. also pro-
posed a learning-generalized RNN for the task-fMRI application [151]. Particularly,
this method has higher ASD classification performance with a collaborative learning
process with the FC-SVM [152]. The other suitable application for RNN is Angiog-
raphy, an X-ray-based technique to monitor blood flow in blood vessels. In [153], the
RNN is applied in the digital subtraction angiography (DSA) and validated that RNNs
can correct commonly occurring motion artifacts or incomplete DSA acquisitions to
extract accurate quantitative parameters.

Compared with the CNN applications in EIT and MWI, there are not many RNN
implementations in these two areas, owing to fact that the target tissues in EIT and
MWI are mostly static. But some certain situations in MWI can utilize the RNN. For
instance, Geng et al. proposed a hybrid deep learning network with both CNN and
RNN to achieve human activity recognition [154,155].

6.3.3.4 New GAN for medical imaging
Although GAN was initially proposed in 2014, it has been frequently applied in med-
ical imaging applications since 2018 [98]. In [98] and [99], a summary of GAN
utilization in medical imaging is provided. The majority of papers use GANs and
related medical datasets for GAN training in MRI and CT image synthesis, reconstruc-
tion, and segmentation after 2018. Xun et al. reviewed more than 120 GAN-based
architectures for medical imaging segmentation before September 2021 [100].

New GAN structures have been constructed to improve image resolution in
recent years. A Fused Attentive Generative Adversarial Networks (FA-GAN) is pro-
posed to achieve super-resolution in MRI [156]. Results show that the proposed
FA-GAN can reconstruct MR images better than other GAN structures proposed in
2017 and 2018 [156]. Recently, a Super-resolution Optimized Using Perceptual-tuned
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Generative Adversarial Network (SOUP-GAN) was constructed to improve the MRI
quality through anti-aliasing and deblurring [157].

Although GAN shows powerful capability in the medical imaging application, it
requires highly computational hardware to generate the training model [158], particu-
larly for 3D medical EIT and MWI reconstructions that contain limited measurements
but require dense meshes.

In this subsection, we have reviewed recent DNN developments in medical imag-
ing, where the majority of these studies were applied in MRI and CT scans. The main
reason for this situation is that most clinical and commercial medical imaging systems
are MRI and CT, and there are a large amount of open-access MR- and CT-datasets to
help with designing and developing the DNN. On the contrary, EIT and MWI systems
are mostly preclinical, and most training and testing datasets for DNN studies in EIT
and MWI are synthetically generated through simulation software [27,29]. However,
the new deep learning research goal in EIT and MWI applications targets to com-
bine the learning method within the physics-based inversion framework [26,27,29],
and to incorporate with other imaging techniques to improve the learning perfor-
mance [28]. The next section will explain some of the example studies to understand
this combination of physics-based and learning methods.

6.4 Hybrid physics-based learning-assisted medical imaging:
example studies

This section will introduce several combined physics- and learning-based imaging
algorithms in the medical imaging application that are developed from the basic
electromagnetic theory (Maxwell’s equations). Examples of studies of the algorithm
in EIT and MWI are adapted from recent publications.

6.4.1 Example 1: EIT-based SDL-assisted imaging

Zhang et al. suggested to use the supervised descent method (SDM) for the EIT
application in thorax model imaging [25]. With the SDM, prior information about
the thoracic structure can be easily integrated into the inversion through training
samples. Compared with the Gauss–Newton Inversion (GNI), the SDM integrated
inversion achieves better image reconstruction resolution. However, as a linear regres-
sion method, the SDM may slow down the convergence of the inversion [26]. To that
end, Lin et al. suggested the integration of fully connected neural network (FCNN)
with the SDM inversion framework [26].

The inversion scheme in [25] and [26] was based on GNI. The cost function with
generalized Tikhonov regularization for GNI could be written as follows:

L (σ ) =‖ F (σ )− u∗ ‖2
2 +α ‖ Gσ ‖2

2 (6.54)

where α is the regularization parameter, u∗ is the measured data, G is the discretized
operator for the spatial derivative, and F is the forward solver that is constructed by
the FEM method for (6.8)–(6.12).
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Assuming L is twice differentiable, the second-order Taylor expansion of the
cost function L can be expressed as follows:

L (σ0 + δσ ) ≈ L (σ0)+ JL (σ0)T
σ + 1

2
σ T

0 HL (σ0)
σ (6.55)

where JL (σ0) and HL (σ0) are the Jacobian and Hessian matrices of L evaluated at
σ0. The minimum of L is achieved when the gradient of (6.55) with respect to 
σ
is set to zero, which means:


σ = −HL (σ0)−1JL (σ0) (6.56)

where JL (σ0) = 2JT
F (F (σ0)− u∗)+ 2αGT Gσ0, and HL (σ0) = 2JT

F (σ0)JF (σ0)+
2αGT G. JF (σ0) are respectively the Jacobian and Hessian matrices of F evaluated
at σ0.

In the kth GNI step, σk = σk−1 +
σk though constructing JL (σ0) and HL (σ0),
which are computationally expensive. However, under SDM learning, calculation of
these matrices can be avoided since 
σk at kth learning step can be rewritten as:


σk =Mk (
uk ) (6.57)

where uk is the reconstructed electric potential co-related with the conductivity map
σk at kth learning step, and 
uk = F (σk−1)− u∗, 
σk = σk−1 − σ∗. The quantity
Mk is the descent mapping operation learned through the SDM at the kth step. Now
considering N -dimensional training datasets �∗ = [σ 1

∗ , σ 2
∗ , · · · , σN

∗ ]T and their cor-
responding measured data U = [u1

∗, u2
∗, · · · , uN

∗ ]T as 0th initial input of the SDM, the
cost function for the SDM at kth learning step can be reorganized as follows:

�(
σ i
k ) =

N∑

i=1

‖ 
σ i
k −Mk (
ui

k ) ‖2
2 (6.58)

where σk = σk−1 +Mk (
uk ). Cost function in (6.58) can be written in matrix form:

�(
�k ) =‖ 
�k −Mk (
Uk ) ‖2
F (6.59)

where �k = �k−1 +Mk (
Uk ).
Authors in [26] assumed that M is a linear function as M (
u) =M
u and

M (
U) = 
U ·MT , the minimization of cost function (6.59) will have a close form
solution for Mk at kth learning step for this linear SDM (LSDM):

MT
k = (
UT

k 
Uk )−1 · (
UT
k 
�k ) (6.60)

where the singular value decomposition (SVD) method can be applied to solve the
matrix inversion above [25,26].

For the nonlinear descent direction mappingM (
u), a FCNN was exploited Netk

to calculate the kth descent direction mapping, denoting as Mk (
ui
k ) = Netk (
ui

k ).
The formation of Netk (
ui

k ) can be written as:

Netk (
ui
k ) = ŷk =W[2]H

(
W[1]
uk + b[1]

)+ b[2] (6.61)

where ŷk is the output vector of Netk , W[1] and b[1] are the weight matrix and bias
vector of the hidden layer, W[2] and b[2] are those of the output layer, and H is the
non-linear activation function of the hidden layer (ReLU is chosen in [26]).
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Although only one hidden layer is chosen to build the FCNN in the SDM frame-
work (NN-SDM), authors in [26] shows that the performance of the chosen FCNN
can better reconstruct the conductivity profile than the end-to-end neural network
(E2E-NN) in the actual EIT measurement. As the results shown in Figure 6.10, the
LSDM, NN-SDM, and GNI can effectively reconstruct the conductivity maps, in
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Figure 6.10 The actual phantom model in the 2D EIT measurement (the 1st
column figures from left) and reconstructed conductivity images by
the LSDM, NN-SDM, E2E-NN and Gauss–Newton (GN) methods
(images in 2nd–5th columns) (figure is referred from [26])
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which NN-SDM shows its unique capability to distinguish multiple objects with neg-
ative conductivity contrast. When predicting the conductivity map, the NN-SDM
calculation is 6.5 times faster than GNI and 1.5 times faster than the LSDM.

6.4.2 Example 2: MWI(CSI)-based UNet-assisted imaging

Amer et al. presented a CSI cost function based on FEM construction derived from
the wave equation below [159]:

∇ × ∇ × Es
t (r)− k2

b (r)Es
t (r) = k2

b (r)wt(r) (6.62)

where subscript t is an arbitrary transmitter, Es
t is the scattered field due to the presence

of the object illustrated by the EM field generated from transmitter t. The contrast
source variable wt is defined as wt(r) = χ (r)E(r). Given the boundary conditions,
the FEM matrix equation of (6.62) can be reorganized as follows:

Hb[Es
t ] = Rbwt (6.63)

where Hb is the FEM discretization matrix. The matrix Rb depends on the background
medium properties and accounts for projecting the contrast source variables in the
imaging domain onto the mesh edges in the computational domain [159].

Along the mesh edges, the scattered field is calculated as Es
t = H−1

b [Rbwt] =
L [wt], where wt is the contrast source. With this “inverse” FEM operator L , the
cost function of the FEM-CSI is described as follows:

FCSI (χ , wt) = F S(wt)+FD(χ , wt) =
∑

t ‖ Es,meas
t −MS,tL [wt] ‖2

S∑
t ‖ Es,meas

t ‖2
S

+
∑

t ‖ χ � Eb
t − wt + χ �MDL [wt] ‖2

S∑
t ‖ χ � Eb

t ‖2
S

(6.64)

where operators MS,t and MD are interpolated matrix operators that transform field
values calculated along the mesh edges to spatial-vector field values at receivers on
surface S, and at the centers of volume meshes inside the imaging domain D. Operator
� is the Hadamard (i.e., element-wise) product [159].

At nth inversion step, the cost function is the multiplication of the MR and CSI
term:

Fn(χ , wt) = FMR
n (χ )×FCSI (χ , wt)

= 1

V

∫

D

|∇χ |2 +FD(χCSI
n , wt,n)A−1

|∇χn−1|2 +FD(χCSI
n , wt,n)A−1

dv (6.65)

where V is the volume value of D, A is the mean of the facets for meshes in D. Function
(6.65) can be minimized through the conjugate gradient method using Polak-Ribere
search directions [159].

In 2019, Asefi and LoVetri designed an air-based MWI system prototype for
breast imaging [6]. The system can detect tumors in the breast phantom using the
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multiplicatively regularized (MR) FEM with the contrast source inversion (FEM-CSI)
algorithm. Reconstructed tumor models’ size and dielectric value shows a relatively
high-accuracy level. However, the anomalies associated with reconstructed images
could cause misjudgment on the tumor detection. To eliminate the anomalies and
increase the reconstruction accuracy, two implementations of the DNN with the CSI
imaging are proposed [27,29].

Initially an implementation proposed in [29], where a CNN structure, UNet, is
used to improve the imaging accuracy after CSI reconstruction. The entire combined
CSI-CNN inversion framework is shown in Figure 6.11. The UNet is pre-trained
with 600 breast-tumor phantom dielectric data points corresponding to their scat-
tered field measurements. In each phantom model, tumor(s) is randomly placed at
a position and grow randomly until the maximum diameter threshold is reached.
The maximum diameter is also randomly chosen between 1.1 and 1.5 cm. After
the CSI reconstruction is completed, the reconstructed real and imaginary dielectric
images at five frequencies are input to the UNet and generate the final dielectric
images.

Another DNN implementation is proposed using a magnetic-based MWI system
prototype in [27]. Before the CSI reconstruction, a supervised FCNN is applied to
generate the dielectric map as a preconditioner for the physics-based inverse algo-
rithm. The FCNN is pre-trained with more than 50,000 synthetic data vectors with
their measured magnetic scattered field data with the existence of both tumor and
fibroglandular region H sct

fibro+tumor [160]. Each data vector contains four features of the
synthetic tumor and surrounding fibroglandular region: radius, height, and the real
and imaginary parts of the dielectric values. This FCNN-CSI framework is shown in
Figure 6.12. With the trained FCNN, the network can generate the predicted property
data vector p from its measured H sct

fibro+tumor as the pre-input for the CSI algorithm. Then
the CSI uses this dielectric map from FCNN with the measured scattered magnetic
field H sct

tumor with the tumor only to reconstruct the dielectric images of the tumor [27].

CSI images × 5 frequencies

CNN
reconstructed

Conv 3×3×3, stride 1, pad, ReLU
Max pooling 2×2, stride 2
Skip connection
Conv Transpose 3×3×3, stride2
Conv 1×1×1, stride 1, pad 0

ε''

ε' ε'

Figure 6.11 Schematic for the proposed U-Net to reconstruct the real part of
permittivity. The input to the network is the CSI reconstruction, and
the network is trained to output the corresponding true 3D permittivity
map (figure replotted from [29]).
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Figure 6.12 Inversion of scattered-field data to recover prior information (vector
of parameters p), followed by CSI reconstruction using neural network
recovered prior information (figure replotted from [27])

6.4.3 Example 3: MWI(BIM)-based CNN-assisted imaging

The incorporation of DNN to assist physics-based inverse algorithms can be
categorized into three classes:

1. During the physics-based inversion, using the DNN to help calculate model
parameter variance between every two iterative steps [26].

2. After the physics-based inversion, using pre-trained DNNs to improve the quality
of reconstructed images [29].

3. Before the physics-based inversion, using pre-trained DNNs to generate an initial
dielectric profile of both the target and surrounding environment as the pre-input
of the physics-based inverse solver [27].

In this section, we will review a new perspective of the inclusion of the DNN in
electromagnetic medical imaging, namely, a BIM-based and CNN-assisted imaging
method that was proposed by Chen et al. [28]. Instead of using the dielectric image
data to train a CNN as in [29], the CNN in [28] is designed with another approach by
mapping the more extensive and accurate MRI database to corresponding dielectric
images. Both of the geometric and biologic properties of tissues from other imag-
ing approaches (i.e., MRI, CT scans) can be reconstructed into the dielectric image
through this method in [28].

The method framework method shown in Figure 6.13 has three stages: first,
the mapping function is learned from a pre-trained CNN that can transfer input MR
images to dielectric images. After that, the trained CNN will be able to provide
predicted dielectric scans for each new patient by applying the trained CNN to the
MRI scan of that patient. In the final step of the process, the estimated dielectric maps
are utilized as a refined initial guess for the iterative dielectric image reconstruction
that is based on a physics model.

In comparison to the conventional initialization methods, the CNN-predicted
dielectric images are much more accurate representations of the true dielectric images.
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Figure 6.13 CNN assisted multi-modality dielectric imaging method description
(figure is referred from [28])

It is because CNN-predicted dielectric images contain an abundance of brain structure
and pixel-level tissue property information that was transferred from other imaging
modalities. The CEM forward model, FDTD, provides a substantially more accurate
first estimate of the total electric field by initializing with the CNN-predicted dielectric
image. This method achieves a considerable reduction in the nonlinearity and ill-
posedness of the MWI inverse scattering problem. Then, by performing BIM-based
microwave imaging, this physics-based method recovers additional information that
may have been absent from the training data and not learned by the CNN. Finally, the
BIM output results can update the training of the CNN by including a fresh set of image
pairings in the training database, which will include the reconstructed dielectric image
together with its associated MR image. The CNN model can enhance itself to generate
higher-resolution dielectric images from subsequent input MRI images. Therefore,
this method can be dynamically evolved through ingesting new information retrieved
from a physics-based model and incorporating that information into the CNN model.

The learning-inversion framework, significantly alleviates the nonlinearity and
ill-posedness of the physics-based inversion model by the CNN-predicted dielectric
images. Additionally, the physics-based inversion model will complement the CNN
by recovering information that was absent in the training data and was not learned by
the CNN, hence enhancing the performance of the CNN. Note that the CNN can also
be used to map and ultrasound images to the dielectric images and is not specific to
learning from MRI images.

6.4.3.1 Training data preparation: MR-dielectric data pairs
Before the CNN training process, the MR-dielectric data pairs need to be generated. In
[28], MR segmentation is initially conducted using MRT2 images from the BRATS-15
dataset through the Statistical Parametric Mapping (SPM) tool box. Four major tissue
types of the brain including soft tissues, white matter, grey matter, cerebrospinal fluid
(CSF), and glioma tumor, are obtained during the process. The unified segmentation
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approach integrates a smooth and nonlinear registration with tissue probability maps
and generates a model based on a combination of Gaussian distributions.

After the segmentation, authors assumed that both T2 pixel values and dielectric
values of the input and reconstructed images are clustered and with similar statistical
distribution for each tissue type [28]. Based on the assumption, they used a piecewise-
linear mapping method to map the T2 pixel intensity to the dielectric distributions
for different tissues. For single-frequency dielectric reconstruction where complex
permittivity value is written as ε̃ = ε + σ/( jω), the mapping functions to map the
permittivity and conductivity values to the T2 pixel intensity value at the ith image
pixel are shown in equations (6.66) and (6.67) below:

ε(i) = 1.1εm + (0.9εm − 1.1εm)× [VT2(i)− (μT2 + 2δT2)]

(μT2 − 2δT2)− (μT2 + 2δT2)
(6.66)

σ (i) = 1.1σm + (0.9σm − 1.1σm)× [VT2(i)− (μT2 + 2δT2)]

(μT2 − 2δT2)− (μT2 + 2δT2)
(6.67)

where VT2 is the T2 pixel value. The mean μT2 and the standard deviation δT2 of
Gaussian probability density functions ofT2 image pixel histogram related to different
brain tissue type are shown in Table 6.3.

For the multi-frequency reconstruction (0.5–2 GHz in [28]), a single-pole Debye
model (6.68) is used for the complex dielectric reconstruction:

ε̃(ω) = ε∞ + 
ε

1+ ( jωτd)
+ σd

jωε0
(6.68)

where ε∞, 
ε, and σd the parameters of this single-pole Debye model. The values of
these parameters of each brain tissues are listed in Table 6.4.

Table 6.3 T2 pixel intensity distribution and the measured dielectric value (at 1.2
GHz) of brain tissue [28]

μT2 δT2 εm σ m

White matter 108.82 20.68 38.07 0.69
Grey matter 145.64 39.41 51.56 1.08
CSF 244.62 72.72 68.09 2.55
Tumor 182.24 52.25 N/A N/A

Table 6.4 Brain tissue T2 voxel intensity distribution and 0.5–2 GHz Debye model
dielectric parameters (τd=13.27ps) [28]

μT2 δT2 ε∞ �ε σ d

White matter 108.82 20.68 5.04 33.57 0.45
Grey matter 145.64 39.41 5.72 46.63 0.75
CSF 244.62 72.72 18.73 50 2.22
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With the complex dielectric values of different types of tissues, these values gen-
erated from the patient training process are co-registered with the correlated MR T1
images and create the MR-dielectric image pairs. For single-frequency reconstruc-
tion, MR T1-ε and MR T1-σ data pairs are created, while the MR T1-ε∞, MR T1-
ε,
and MR T1-σd data pairs are created for the multi-frequency reconstruction.

6.4.3.2 CNN training
The CNN structure in [28] is shown in Figure 6.14, which has three convolution layers
(Conv) with parameterized ReLU (PReLU) in each layer, and a pooling layer at the
end. In each convolution layer, a computation is performed to learn the weights of
the kernel and determine the inner product of the local patch of the input image and
the kernel. Non-linearity relation between the output of each layer and the input xi is
provided through the PReLU as max(0, xi)+ αi min(0, xi), where αi is the parameter
that is to be learned by the CNN. After the convolution, the intermediate image is
downsampled through the pooling layer to an appropriate resolution for the BIM
solver, which will physically increase the resolution through the inversion process.
The loss function for the CNN is defined as:

L(�) = 1

N

N∑

i=1

‖F(ti,�)− di)‖2, (6.69)

where di is the synthesized dielectric image patch, ti is the MR T1 image patch,
N is the batch size, and � consists of all dielectric parameters to be learned. F the
mapping function to map the input MRT1 image to output its dielectric image. In [28],
authors used a gradient-based method with an adaptive moment estimation (adam)
using Caffe framework to achieve the minimization of the cost function. The training
process uses 80% patient data of the selected BRATS datasets while the other 20% is
used for testing.

6.4.3.3 MWI inversion: BIM
The synthetic MWI inversion in [28] used the same EFVIE function as that in equation
(6.37). Since the dielectric images generated by the pre-trained CNN are used as
the input, the background is inhomogeneous and the Green’s function needs to be
numerically calculated through the CEM forward solver, herein an in-house developed
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Figure 6.14 Block diagram of CNN for learning dielectric image from an MR T1
image (figure is referred from [28]). First two values within the
bracket on the arrow indicate the size of the image in the x and y
directions, respectively. The third value indicates number of
channels/filters for the layer on the left. K denotes the filter size.
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FDTD solver. Synthetic scattered electric field data are also simulated from the FDTD
method. For each new patient, with the a priori input dielectric function and the
scattered electric field, the BIM converges fast with a higher resolution than the
CNN-predicted dielectric results. The BIM-refined dielectric images are then co-
registered with the new patient’s MR T1 image and input into the training data set.
Details of the BIM is discussed in the previous Section 6.2.4.

6.4.3.4 Reconstructed results
Figure 6.15 presents the outcome of the inverse scattering image reconstruction per-
formed on a patient (AAB). In the FDTD simulation, 32 transmitters and 32 receivers
working at 1.2 GHz are placed around the brain phantom. The background medium
is a coupling fluid with εr = 20 and σ = 0.1 S/m. The physics model recovers some
of the contrast that is otherwise lost in the reconstructed dielectric image, which rep-
resents a substantial portion of the tumor. However, the physics model cannot recover
all of the details of contrast. The fact that there were not enough learning instances
of tumors included in the training data is a contributing factor in the CNN’s inability
to fully predict the details of the tumor area. When compared to those of the three
other kinds of tissue, the number of voxels in the chosen low-grade glioma (LGG)
MR datasets that correspond to tumors is considerably lower. Because of the high
dielectric heterogeneity that could be in glioma tumors and the fact that only a rough
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Figure 6.15 4 mm resolution single frequency reconstruction results of patient
AAB slice 90 (figure is referred from [28]). The first row is ε images
and the second row is σ images. First column is the true dielectric
images. Second column is CNN predicted dielectric images. Third
column is the recovered images starting from CNN predicted image.
Fourth column is the recovered images starting from brain phantom
filled with average tissue value.
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calculation of the tumor’s dielectric value can be done owing to a lack of measurement
data, the CNN has very little usable information to learn about the tumor. Neverthe-
less, the images that were reconstructed from the pre-trained CNN are visually close
to the true dielectric images. On the other hand, the images that were reconstructed
in the conventional way by starting from the phantom with an average tissue value
are quite unresolved and contain very little information of clinical use.

A multi-frequency reconstruction can demonstrate more information comparing
to a single-frequency method. As we can see in Figure 6.16 the reconstructed image
with synthetic scattered electric field data at 0.8 GHz, 1.2 GHz, 1.6 GHz, and 2 GHz
from 36 transmitters and 36 receivers, the Debye parameter
ε in (d), (e), and (f) can
show both tissue and the tumor area. The BIM reconstructed images in Figure 6.16(c),
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Figure 6.16 2 mm resolution 4 frequencies Debye model reconstruction results of
patient AAB slice 90 (figure is referred from [28]). The first, second,
and third rows are the ε∞, 
ε, and σd images, respectively. The first,
second, and third columns are the true, CNN predicted, and the
reconstructed dielectric images.
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(f), and (i) exhibit more details of the tumor and surrounding tissues using the
CNN-predicted ε∞, 
ε, and σd images compared with only CNN-predicted results
in Figure 6.16 (b), (e), and (h). The CNN-predicted and BIM-refined results in
Figure 6.16(c), (f), and (i) are closer to the ground truth images in Figure 6.16(a),
(d), and (g).

6.5 Summary

In this chapter, we have discussed the physics of the common medical imaging
techniques that are applied in the electromagnetic spectrum: electrical impedance
tomography (EIT), magnetic resonance imaging (MRI), microwave imaging (MWI),
and computed tomography (CT) scan. The EIT and MWI imaging techniques based
on the electromagnetic theory and Maxwell’s equations are specifically investigated
with detail physics and imaging algorithms (BIM and DBIM) flowcharts. Then we
explained the basic theories and structures of the machine learning and deep learn-
ing methods, and discussed their applications in medical imaging within the last
decade. Particularly, we discussed the most recent deep learning network applica-
tions in medical imaging diagnosis, segmentation, and reconstruction. Furthermore,
more advanced applications that combine the electromagnetic physics-based imag-
ing methods with deep learning networks for imaging improvements are discussed in
details through four recent EIT and MWI imaging studies published.
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Chapter 7

Deep learning techniques for direction of arrival
estimation

Zhang-Meng Liu1, Liuli Wu2 and Philip S. Yu3

This chapter presents an overview of how deep learning (DL) techniques can be
exploited to solve the problem of direction-of-arrival (DOA) estimation, and also pro-
vides a solution to this problem using a feasible and efficient hierarchical deep neural
network (DNN). The chapter begins with a general introduction to existing DOA
estimation and DL techniques in Section 1.1, then formulates the DOA estimation
problem mathematically under different conditions in Section 1.2, and summarizes
the most common DL frameworks that have been applied to DOA estimation in Sec-
tion 1.3, including mainly their neural network configurations and the most widely
used strategies for algorithm implementation. Section 1.4 presents a hierarchical
DNN framework to solve the DOA estimation problem, and carries out simulations
to demonstrate its predominance in generalization over previous machine learning
(ML)-based methods, and in array-imperfection adaptation over conventional para-
metric methods. Finally, this chapter ends in Section 1.5 by providing some clues on
several future research trends of this area.

7.1 Introduction

In the past several decades, direction-of-arrival (DOA) estimation has been a hot
topic in widespread areas, such as radar, sonar, acoustics, wireless communica-
tions and astronomy [1–20]. Most of the research in this area focus on improving
DOA estimation precision and super-resolution, and also enhancing adaptation to
complex scenarios with low signal-to-noise ratio (SNR), limited snapshots, etc. [3].
Following this guideline, many methods have been proposed, e.g., beam-forming
methods [4,6,7], subspace-based methods [8–10], maximum-likelihood methods
[18–20] and sparsity-inducing methods [11–17]. These methods share a common fea-
ture, i.e., they are parametric methods that formulate a forward mapping from signal
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directions to array outputs, and they also assume that the mapping is reversible.
After that, DOA estimators are proposed by matching the array outputs to pre-
formulated parametric mapping. Different methods differ from each other according
to their matching criteria, e.g., beam-forming methods use a manifold correlation
criterion [5–7], subspace-based methods use a superplane fitting criterion [8–10],
maximum-likelihood methods use a fitting criterion on the raw array output [18–20]
and sparsity-inducing methods reconstruct raw array outputs on overcomplete dic-
tionaries [11–17]. Performances of these parametric methods depend heavily on the
consistency between the two mappings, namely the forward mapping from signal
directions to array outputs that works during data collection, and the inverse mapping
from array outputs to signal directions that works during DOA estimation.

However, the forward mapping from signal directions to array outputs in prac-
tical systems is far more complicated than that used in parametric DOA estimation
methods [21,22]. That is because various imperfections may exist in array systems,
such as non-ideal sensor design, array installation, inter-sensor mutual interference,
background radiation, etc. [23]. Some of these imperfections are so complicated that
they can hardly be modelled precisely, and inaccurate modeling of them may signifi-
cantly deteriorate DOA estimation performance [24,25]. Nevertheless, the effects of
various imperfections are usually artificially simplified during array output formula-
tion, so as to facilitate the implementation of auto-calibration methods and improve
DOA estimation precision [26–32]. Most of the simplifications hold approximately
only under some additional assumptions, such as inter-sensor independence of gain
and phase errors [31,32], uniform linear or circular array geometries [26–28], and
constrained sensor location errors within a particular line or plane [29,30]. In pre-
vious literatures, simulations have been carried out to prove the effectiveness of the
auto-calibration DOA estimation methods [26–32]. However, in these simulations, the
array outputs are generated based on the artificially simplified models with respect
to some unknown variables only. These simplifications deviate actual array mod-
els with different degrees, and it is very difficult to clarify how the auto-calibration
methods will behave in practical systems, especially when additional assumptions,
such as linear/circular array geometries, do not hold. Moreover, if multiple kinds of
imperfections coexist in the same array, the array output is much more difficult to
formulate accurately, and high-precision DOA estimation becomes a very demanding
task [33–35].

Due to the difficulties caused by unknown or mathematically unformulable array
input–output mappings, researchers have resorted to Machine Learning (ML) tech-
niques to solve DOA estimation problems [36–46]. The earliest work, as far as we
known, dates back to the 1990s, when researchers considered the application of shal-
low artificial Neural Networks (NNs) to solve the DOA estimation problem [44,45].
After that, Support Vector Machine (SVM) is introduced in the 2000s to achieve
satisfactory results in many fields including DOA estimation [36,37].

ML-based DOA estimation methods generally consist of two phases: the training
phase and the testing phase. In the training phase, a function is learned from the
training dataset containing input–output pairs using an ML technique, such as Support
Vector Regression (SVR), SVM or Radial Basis Function (RBF). In the area of DOA
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estimation, the learned function stands for a surrogate mapping from array outputs to
signal directions. In the testing phase, the surrogate function is exploited to estimate
signal directions based on array outputs that are probably unseen in the training
dataset. No assumption on array geometry or calibration status is required for ML-
based DOA estimation methods, and they have been demonstrated via simulations
to exceed subspace-based methods in computational complexity [36,46], and also
perform comparably with them in DOA estimation precision in experiments [37].

Performances of most ML-based DOA estimation methods [36,37,46] rely heav-
ily on the generalization characteristic of the ML techniques. High DOA estimation
precision can be expected when the training data and test data have nearly identical
distributions [47,48]. However, as too many unknown parameters are contained in the
array observation model, such as signal number, signal directions, SNR, signal wave-
forms and noise samples, etc., it is very difficult to learn a surrogate DOA estimation
function based on the training dataset that generalizes well in various testing scenarios.

In the past few years, Deep Learning (DL) techniques have experienced a rapid
development and a widespread application in various areas, such as image classifi-
cation, speech recognition, etc. [49–53]. Compared with shallow NN and other ML
techniques, DNN has more layers and more units in each layer, and thus has a largely
enhanced modeling capability of complex functions [54–59]. Some DL techniques,
especially DNNs, have also been introduced to solve the DOA estimation problem.
The foremost work in this field was proposed for sound source localization with
microphone arrays [60–68]. After that, researchers considered more demanding sce-
narios with dynamic acoustic signals [60], wideband signals [64,66] and reverberant
environments [62,63]. In these scenarios, the signal propagation models are too com-
plicated to be formulated precisely, and the signal directions and locations are very
difficult to be estimated with parametric methods. However, DL-based methods are
data-driven and can learn the propagation models precisely based on a large train-
ing dataset, and they have been proved to perform satisfyingly in such direction and
location estimation problems.

When introducing DNN techniques to estimate directions of acoustic signals,
which generally last for seconds and contain redundant time–frequency features, the
collected signal samples are usually transformed to the time–frequency domain first,
and then inputted to DNNs to derive DOA estimates in a similar way as image recogni-
tion [60,64,66]. However, when general electro-magnetic (EM) signals are concerned,
the snapshot number for DOA estimation is usually on scales of tens or hundreds,
which is not large enough for time-frequency transformation as that used on acoustic
signals. Therefore, in spite of the success of applying DL techniques to the field of
acoustic signal processing [60,62–64,66], the methods can hardly be used directly
to solve general DOA estimation problems of EM signals. Moreover, the settings
of the DOA estimation problems for acoustic signals are quite simple, where only a
single signal is considered [62,63], or the direction estimates are obtained on very
coarse grids with inter-grid spacings of 5◦ [60,64] or even 10◦ [66]. Such simple
settings deviate largely from most DOA estimation scenarios of EM signals, where
super-resolution of temporally overlapped signals and high DOA estimation precisions
of each signal are usually expected.
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Table 7.1 Related notations

Notations Definitions

X matrix
x vector
x scalar
‖x‖2 l2-norm of vector x
|x| the dimension of vector x
�x� the smallest integer not smaller than x
IM M ×M identity matrix
0K×M K ×M zero matrix
j imaginary unit
C

M×N M × N dimensional complex matrix set
R

M×N M × N dimensional real matrix set
Re{α} the real part of a complex-valued variable α
Im{α} the imaginary part of a complex-valued variable α
∠α the phase of a complex-valued variable α
E{·} expectation operator
( · )H conjugate transpose operator
( · )T transpose operator
CN (m, C) the white circularly-symmetric Gaussian distribution

with mean m and covariance C

Recently, many attempts are being devoted to applying DL techniques to solve
the problem of DOA estimation of EM signals. They are believed to have potential
in super-resolution and noise robustness [58,59,69–82]. For instance, [58] introduces
a Deep Convolution Network (DCN) to learn the inverse transformation from array
outputs to the DOA spectrum with a large training dataset. In [73], a DNN scheme
for super-resolution DOA estimation in MIMO systems has been developed. In [75],
Xiang et al. utilize an autoencoder to extract DOA-related features from radar signals
in the presence of heavy multipath. In [76], a DNN with Fully Connected (FC)
layers is presented for DOA classification of two targets using the covariance matrix.
These works and the results therein show that DL is emerging as a powerful tool in
solving demanding DOA estimation problems in complex scenarios with coherent
signals [77,78], low SNR [79], near-field signals [80], etc.

The notations to be used in this chapter are listed in Table 7.1.

7.2 Problem formulation

7.2.1 Conventional observation model

Assume that K narrow-band uncorrelated far-field EM signals s(t)= [s1(t), · · ·, sK (t)]T

impinge onto an M -element array from directions φ = [φ1, · · · ,φK ]. A conventional
model of the array output can be written as

x(t) =
K∑

k=1

a(φk )sk (t)+ v(t) = A(φ)s(t)+ v(t) (7.1)
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where x(t) = [x1(t), · · · , xM (t)]T is the array output vector, A(φ) = [a(φ1), · · · , a(φK )]
is the array steering matrix and a(φk ) denotes the array steering vector correspond-
ing to φk , a(φk ) is assumed to be a unitary vector, i.e., ‖a(φk )‖2 = 1. φk and
sk (t) represent the incident direction and waveform of the kth signal, respectively.
v(t) = [v1(t), · · · , vM (t)]T is assumed to be additive zero-mean white Gaussian noise
and is uncorrelated with the source signals, i.e. v(t) ∼ CN (0, σ 2IM ) with σ 2 denoting
the power of white Gaussian noise, and E{s(t)vH(t)} = 0K×M .

The array output is usually sampled at N uniquely-spaced time instants t1, · · · , tN

to obtain snapshot matrix X ,

X = [x(t1), . . . , x(tN )] = A(φ) S + V (7.2)

where S = [s(t1), . . . , s(tN )] ∈ C
K×N and V = [v(t1), . . . , v(tN )] ∈ C

M×N denote the
signal waveform matrix and the noise matrix, respectively. Based on this observation
model, DOA estimators are designed to estimate the unknown DOA vector φ from
measurement matrix X .

7.2.2 Overcomplete formulation of array outputs

In some of the works, the DOA estimation problem is formulated as a classification
task, and the signal directions are elected from a candidate angular grid set. This
formulation also helps to highlight the spatial sparsity of the incident signals [11–14,
17,35,58,77]. Following this formulation, the array output x(t) can be presented in
the following overcomplete form,

x(t) =
I∑

i=1

a(ϕi)si(t)+ v(t) = A(ϕ)s(t)+ v(t) (7.3)

where ϕ = [ϕ1,ϕ2, . . . ,ϕI ] is a discrete direction set sampled from the potential space
of the incident signals, with�ϕ denoting the sampling interval. s(t) is the zero-padded
extension of s(t) from φ to ϕ , which satisfies

si(t) =
⎧
⎨

⎩
sk (t), if |ϕi − φk | < �ϕ

2
or ϕi − φk = �ϕ

2
0, otherwise

for i = 1, · · · , I (7.4)

Equation (7.3) is not an accurate extension of (7.1) due to the quantization errors
in ϕ. However, previous literatures have shown that the model error in (7.3) can be
overlooked given that �ϕ is adequately small. According to (7.4), s(t) only has K
nonzero elements at or around the true source locations, i.e., s(t) is a sparse vector
having much fewer nonzero elements than its dimension.

When N snapshots are collected, the observation matrix X in (7.2) can be
rewritten as follows,

X = A S + V (7.5)

where S = [s(t1), . . . , s(tN )] ∈ C
I×N denotes the sparse signal matrix. A = A(ϕ) ∈

C
M×I denotes the known over-complete dictionary. The problem of DOA estimation

can be solved by reconstructing S from x, and the locations of nonzero rows in the

reconstructed Ŝ indicate signal directions.
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7.2.3 Array imperfections

Various kinds of array imperfections exist in almost all practical array systems, but
they are usually overlooked in most academic works on array signal processing, and
the array responding function a(φ) corresponding to direction φ in (7.1) is often
supposed to be deterministic and known beforehand. Among the imperfections, gain
and phase inconsistences, sensor position errors and inter-sensor mutual coupling are
widely studied ones. These imperfections cause the actual array responding function
to deviate from its imperfection-free counterpart a(φ), and the mapping from signal
directions to array outputs in (7.1) does not hold any longer. Denote the imperfection
parameters by e, the array outputs should be modified accordingly as follows,

x(tn) =
K∑

k=1

a(φk , e)sk (tn)+ v(tn), for n = 1, · · · , N . (7.6)

Different kinds of array imperfections cast different influences on the array
responding function, and it is still an open problem to figure out a precise formula-
tion for a(φ, e) in practical arrays. Only after moderate simplifications can analytical
mappings between (φ, e) and a(φ, e) be formulated approximately. However, such
simplifications and approximations adapt only to particular array geometries and
applications, the model and the corresponding auto-calibration methods can hardly
be generalized to most practical arrays, where the simplifications and approximations
do not hold.

7.3 Deep learning framework for DOA estimation

This section summarizes the DL architectures that have been applied in DOA esti-
mation. Figure 7.1 presents a general framework of applying supervised learning
techniques to solve the direction finding problem, which epitomizes the ideas of
most existing research in the field of supervised DL-based DOA estimation.

Observation model in the figure refers to the mathematical formulation intro-
duced in Section 7.2, which contains all the basic settings and corresponding
parameters required in direction finding, such as array configuration, number of
array elements, application scenarios, and signal environment.

Dotted arrows in the figure represent the data processing flow in the train-
ing phase, while solid arrows represent the flow in the testing or DOA estimation
phase. The training phase learns a nonlinear function mapping the array out-
put to signal directions based on a dataset of Q input–output training pairs D ={[

Xq, φq

]
; q = 1, . . . , Q

}
, with Xq being the array measurement matrix of the qth

training sample and φq being the corresponding DOA vector. In general, the training
samples in D are obtained in scenarios with signals impinging from known directions.
Based on the mapping function learned in the training phase, the test phase estimates
the DOA vector φ̂ for a particular input X .
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Figure 7.1 An overall framework for DL-based DOA estimation

The big red box in the figure highlights the three core components of this frame-
work, including data pre-processing, DL-model building and post-processing. These
three parts will be introduced in detail in the following subsections.

7.3.1 Data pre-processing

Array measurement matrix X ∈ C
M×N contains necessary information for DOA esti-

mation, but its dimension is usually too high to be inputted to a DL framework directly.
Lots of redundant information irrelevant to the signal directions φ are also contained
in x to enlarge its dimension, such as the signal waveforms. Inputting the raw mea-
surements into a DL framework may cause significant negative effect on the DOA
estimation performance due to the curse of dimensionality.

The purpose of data pre-processing is to make a proper transformation r = F (X )
to reduce the dimension of the raw array output, while preserving the information
related to φ as much as possible. This procedure is important in DL-based direction
finding methods since the low dimension of r helps to reduce the training complexity
of DL frameworks, and speed up the learning convergence. Different pre-processing
schemes can be designed to adopt to different conditions, such as low SNR [79], near-
field signals [80,83], coherent signals [77,78,84], complicated array configurations
[83,85–87], and two-dimensional DOA estimation requirement [88,89], and also dif-
ferent purposes like reducing training complexity or improving estimation accuracy.

In some works, pre-processing is also called feature extraction. Commonly used
features or inputs in DL-based DOA estimation methods include: time difference [90–
92], phase difference [61,93,94], power measurements [81,95], Generalized Cross-
Correlation (GCC) matrix [62,63,67,96], Channel State Information (CSI) [97] and
covariance matrix [58,59,73,75,76,82,98], etc. Among them, the covariance matrix is
the most frequently used feature, which is given as

R = E{x(t)xH(t)} =A(φ)RsA
H(φ)+ σ 2IM (7.7)
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where Rs = E{s(t)sH(t)} is the covariance matrix of the incident signals, which is
diagonal when the signals are completely uncorrelated. It can be seen from (7.7) that
the array covariance matrix R ∈ C

M×M retains the information about signal directions
φ, but its dimension has reduced to M ×M from M × N of X , which is a very
significant reduction given that N is usually much greater than M .

Most DL-based DOA estimation methods taking R as input only use the upper
(or lower) triangle part of R by excluding the diagonal elements. The simplification
does not introduce information loss because R is a conjugate symmetric matrix and
its diagonal elements are independent with φ. The corresponding secondary array
measurement is

r̄ = [R1,2, R1,3, · · · , R1,M , · · · , R2,M , · · · , RM−1,M ]T (7.8)

where Ri,j stands for the element of R in the ith row and jth column. Then a real-valued
input vector is formulated as follows,

r = [Re{r̄}, Im{r̄}]
‖r‖2

(7.9)

References [79] and [99] adopt a different strategy by formulating an input r with
a dimension of M ×M × 3, whose third dimension relates to different channels. In
particular, the three channels represent the real part Re{R}, the imaginary part Im{R}
and the phases ∠R of R.

By considering the spatial sparsity of impinging signals, references [12,58,77,
86,87,100] preprocess the array outputs based on the over-complete formulation of
the covariance matrix R according to (7.3),

R = E{x(t)xH(t)} =
I∑

i=1

ηia(ϕi)aH(ϕi)+ σ 2IM (7.10)

where ηi = E{si(t)s
H
i (t)}. Then, a new measurement vector z ∈ C

M 2×1 can be obtained
by stacking the columns of R one-after-another, i.e.,

z = vec(R) = W̃η + σ 2̃ξ (7.11)

where W̃ = [W1; . . . ; WM ] ∈ C
M 2×I , Wm = [a(ϕ1)aH(ϕ1)ξm, . . . , a(ϕI )aH(ϕI )ξm],

η = [η1, η2, . . . , ηI ]T ∈ R
I×1, ξ̃ = [ξ 1; . . . ; ξM ] ∈ R

M 2×1, ξm is an M × 1 vector with
the mth element being 1 and others being 0. The operator [•; . . . ; •] stacks arrays or
vectors in sequence vertically, vec(•) vectorizes a matrix by stacking its columns
one by one. After these preprocessings, the input vector to the DL network in
[12,58,77,100] is formulated as

r = W̃ Hz (7.12)

In practical applications, the matrix R in (7.7) is usually not available, it should
be replaced by its estimate based on the raw array outputs, i.e.,

R̂ = 1

N

N∑

n=1

x(tn)xH(tn) (7.13)
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7.3.2 Deep learning model

In the context of DOA estimation in Figure 7.1, the DNN is used to build a surrogate
model y = G (r) from a set of input–output pairs to approximate the DOA estimator.
y represents the DNN output, which can be exploited to obtain DOA estimates φ̂

efficiently via a post-processing procedure.

7.3.2.1 Fundamentals of DL-based DOA estimation
So far, the problems addressed by DL techniques mainly divide into two categories:
classification and regression. Accordingly, there are two kinds of DL-based DOA
estimation methods.

(A) DOA estimation via classification. This kind of methods treats the DOA
estimation problem as a classification task, where the potential angle space of incident
signals is divided into I discrete classes by grid sampling. For example, the potential
incident space [−90◦, 90◦) can be divided into I = 180 directional intervals with a
resolution of 1◦, and directions falling in the scope of each interval is defined as a
class, as shown in Figure 7.2. Signals impinging from directions in the same angular
interval belong to the same class, while those in different intervals belong to different
classes. In this way, the DOA estimation problem is transformed to one of identifying
the class of an unlabelled input r.

DL techniques have made remarkable achievements in solving classification
problems, however, they may face some severe difficulties if used for DOA estimation
straightforwardly. First, DOA estimates obtained from the classification framework
are discrete and their precision relies heavily on the resolution of the angular grids, so
unbiased estimates can hardly be obtained. Second, when multiple signals impinge
onto the array simultaneously, the input r contains multiple components correspond-
ing to different classes, making the problem a demanding multi-label labelling one.
For example, if two signals arrive at the array from 20◦ and 40◦ respectively, the output
of the DNN should fall in the 20◦ class and the 40◦ class at the same time. Multi-label
labelling is quite different from the conventional classification problem, it is a fast-
developing research field and a lot of key techniques still require to be addressed. Due
to the above limits, the idea of solving the DOA estimation problem as a classifica-
tion one has only been used in limited areas, such as indoor sound positioning, where

2
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2 0 M
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Figure 7.2 Space grid sampling
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single-signal scenarios are usually considered and high DOA estimation precision is
not predominantly required.

Many research efforts have been devoted to mitigate the disadvantages of exist-
ing classification techniques when used for DOA estimation, and one of the most
widely adopted strategy is using a 0-1 vector to replace the class label as the output of
DNN. As is illustrated in Figure 7.3, each direction interval is represented by an out-
put node of DNN. During the model training stage, the value of the ith(i = 1, . . . , I )
output node yi is set to 1 if an incident signal is present in the corresponding angular
interval; otherwise, yi is set to 0. A well-trained DNN is expected to output an esti-
mated spatial spectrum ŷ, which indicates the directions of the incident signals. Once
the spatial spectrum ŷ is obtained, interpolation methods can be adopted to reduce
angular quantization errors of the spatial grids and get DOA estimates with improved
accuracies.

(B) DOA estimation via regression. In this kind of methods, the output of DNN,
i.e., y, is formulated directly to be an estimate of φ, as is shown in Figure 7.4. The
DNN is introduced to learn the nonlinear function φ = G (r) to represent the mapping
from r to φ.

When compared with classification-type DNN-based DOA estimation methods,
a major advantage of a regression-type method is that, continuous DOA estimates with
high precision can be achieved directly. While the disadvantage is also significant,

Input r

Output y
y1 y2 y1

Figure 7.3 A variant of classification method

Input r

Output y=θ

Figure 7.4 Regression method
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i.e., the nonlinear mapping φ = G (r) is usually very complicated and much difficult
to approximate with both high precision and good generalization, as it relies on many
factors such as signal number, signal directions, SNR, signal waveforms and noise
samples, etc. Moreover, in scenarios of coexisting multiple signals, the number of
signals should be estimated first to determine how many DNNs are needed, so that
the directions of all the incident signals can be obtained via regression [101].

7.3.2.2 DNNs used for DOA estimation
Different DNNs have diverse capabilities in model learning, and they perform differ-
ently in various classification and regression tasks. Many DNN architectures, such
as Recurrent Neural Network (RNN) [102], LeNet [103], Long Short-Term Memory
(LSTM) [104], AlexNet [105], Residual Network (ResNet) [106], have been proposed
to serve applications in various areas, and new DNN architectures are being proposed
to adapt particular learning purposes and requirements. However, several factors may
affect the performance of a certain DNN in a task, e.g., the number of hidden layers,
the number of neurons in each layer, the activation function of each neuron, etc., and
researchers in the area of DOA estimation have not agreed on the most appropriate
DNN architecture. In this part, we make a brief introduction to the DNN architectures
that have been applied to DOA estimation.

(A) Fully connected neural network. Fully Connected neural network (FCNN)
is a type of straight feedforward neural network where neurons in two adjacent layers
are fully connected, i.e., each neuron in one layer is connected to all the neurons in
the next layer. FCNNs have been introduced to solve the DOA estimation and some
other related problems in [59,73,75,77,81,95,107].

(B) Convolutional neural network. Convolutional Neural Network (CNN) is
one of the most comprehensive NN frameworks that have been used in various fields.
It employs a mathematical operation of convolution to replace general matrix mul-
tiplications in at least one of its layers. CNN is suitable for processing data that has
a grid-like format and has achieved great successes in many applications including
DOA estimation [58,79,84,97]. Advances in deep learning techniques can be invented
to enrich the family of CNN framework, e.g., residual blocks [80,87,108] help to
enhance the feasibility of CNNs having more layers.

(C) Recurrent neural network. Recurrent Neural Network (RNN) [102] is
another kind of comprehensive NN besides CNN, it is designed for processing sequen-
tial data. Its neurons receive information not just from neurons in the previous layer,
but also from the adjacent history state of themselves. Advances in RNN frame-
work design, e.g., Long Short-Term Memory (LSTM) [104] and Gated Recurrent
Unit (GRU) [109], have been made to overcome many shortcomings of the original
RNN, such as vanishing or exploding backward derivatives. Some of the advanced
RNNs have been successfully used to solve the DOA estimation problem. In [110],
a sequence of covariance matrixes R is inputted to an LSTM-based RNN to estimate
source directions.

(D) Convolutional recurrent neural network. Convolutional Recurrent Neural
Network (CRNN) combines more than one of the above three architectures, i.e.,
FCNN, CNN and RNN, to exploit and synthesize the superiority of each NN. In the
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area of array signal processing, researchers have proposed to combine CNN and RNN
to build different CRNNs to gain improved DOA estimation performance [78,101].

(E) Hybrid neural network. The mapping between array output X and source
directions φ is influenced by many variables, such as signal number, signal direc-
tions, SNR, signal waveforms, and noise samples, and a single DNN can hardly
generalize well in all conditions. Therefore, some researchers resort to hybrid neural
networks to divide the DOA estimation task to smaller ones, and adopt several cas-
caded [82,83,89,100,107,108] or parallel [88,99,101] DNNs to reduce the influence
of various variables on each individual subtask. More concretely, Ref.[100] presents
a two-stage cascaded neural network for DOA estimation, it estimates DOAs coarsely
with a CNN in the first stage, and refines the estimates by a tuning vector with an
FCNN in the second stage. Reference [101] proposes a DOA estimation method based
on a hybrid DNN, which consists of three parts: an autoencoder for noise filtering,
an FCNN for signal number detection, and a series of parallel directed acyclic graph
(DAG) networks for DOA estimation. Reference [107] first inputs array measure-
ments to a SNR grading network to evaluate the SNR of the array output, and then calls
a particular DOA estimation DNN module corresponding to this SNR from a series of
DNN candidates to address the DOA estimation problem. The cascaded DNN scheme
is specially designed to enhance the generality of the DL-based DOA estimation tech-
nique under different SNR conditions. Besides the cascaded and parallel DNNs, some
other schemes have also been designed to combine conventional DNNs to propose
new DOA estimation methods [84,86,111,112]. For example, Ref. [111] proposes to
solve the DOA estimation problem by combining a CNN-based initialization step and
a model-aware gradient step on the stochastic maximum-likelihood function.

(F) Complex-valued neural network. In most practical DOA estimation appli-
cations, receivers sample incident signals with I/Q channels in parallel, thus array
outputs in EM DOA estimation problems have both real and imaginary parts and
they form complex-valued inputs to DOA estimating RNNs. As a result, some
researchers have made great efforts to replace conventionally-used real-valued DNNs
with Complex-Valued Neural Networks (CVNN) to better serve the task of processing
complex-valued array outputs. Compared with real-valued DNNs, CVNNs con-
tain complex-valued weight parameters and performs complex arithmetics to extract
DOA-related information from array outputs, and have been demonstrated to improve
DOA estimation performance in some conditions [80,113].

(G)Transfer learning and unsupervised training. In practical direction finding
systems, it is usually very difficult to collect a large enough dataset with DOA labels.
If only a limited amount of labelled data is available, DNNs with satisfying preci-
sion can hardly be derived via supervised learning to approach the surrogate mapping
from array outputs to signal directions. As an alternative, other DL techniques such as
unsupervised pre-training [59,114] (such as autoencoders), Semi-Supervised Learn-
ing (SSL) [115–117] and Transfer Learning (TL) [89,118–120] have been employed
to improve the efficiency of unlabelled data and better solve various problems.

Unsupervised pre-training extracts underlying features from raw array outputs
in an unsupervised way, and provides initial weights for feature-extracting DNN
modules in practical classification and regression tasks. SSL exploits both labelled
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data and unlabelled data to improve model learning performance. TL reduces the
dependence of model learning on the amount of training data by transferring the
knowledge shared in different but related scenarios and datasets. These techniques
have been partially applied in the area of DOA estimation. Reference [115] proposes
an SSL-based localization approach via deep generative modeling with Variational
AutoEncoders (VAEs). Ref. [119] utilizes simulated data to train a basic CNN model
and then fine-tunes its parameters using TL techniques to better adapt practical appli-
cations. Similarly, Ref. [89] first trains a CNN model in imperfection-free scenarios,
and then transfers it to solve the DOA estimation problem in the presence of array
imperfections.

(H) Deep unfolded network. The above DNNs learn DOA estimation models
and solve DOA estimation problems in the form of black boxes, they do not exploit
prior knowledge about the signal structure and optimize the neural network parame-
ters by trial and error. Deep unfolded network [85,121] has recently been developed by
treating the arithmetics of DNNs as unfolded optimization iterations, it enhances the
interpretability of conventional DNNs. Related DOA estimation methods first unfold
a well-understood iterative recovery algorithm to obtain a signal-flow graph with train-
able variables, e.g., Ref. [85] unfolds Sparse Bayesian Learning (SBL) algorithm and
Ref. [121] unfolds Fixed Point Continuation (FPC) algorithm, then tune these vari-
ables with supervised learning techniques, such as stochastic gradient descent algo-
rithms based on back-propagation, to obtain more precise models for DOA estimation.

7.3.3 Post-processing for DOA refinement

DOA estimates gained from DNN outputs are generally discretized to predefined
angular grids. Therefore, a data post-processing procedure is necessary to reduce the
angular discretization errors and obtain high-precision DOA estimates φ̂ from the
DNN output y. Different post-processing strategies should be designed according to
the DNN type used for DOA estimation, and generally no post-processing is needed
for DNNs belonging to the regression category, as the DNNs output refined DOA
estimates directly.

DOA estimation DNNs belonging to the classification category outputs class
labels or spatial spectrum on prefined angular grids. In cases when class labels are
outputted, grid directions corresponding to the class labels are taken as DOA esti-
mates. Otherwise, if a spatial spectrum y is outputted, peak searching and linear
interpolation can be adopted to improve DOA estimation accuracy. In a DOA esti-
mation scenario with K incident signals, y may contain K peak clusters with each
containing several adjacent spectrum lines having significant magnitudes, and each
peak cluster corresponds to one of the K incident signals. Take the kth cluster as
an example, suppose that it contains two adjacent spectrum lines with significant
magnitudes of yk ,1 and yk ,2, and the corresponding directions are φk ,1 and φk ,2, then
a refined DOA estimate of the kth signal can be calculated via the following linear
interpolation,

φ̂k =
√

yk ,1√
yk ,1 +√yk ,2

φk ,1 +
√

yk ,2√
yk ,1 +√yk ,2

φk ,2; k = 1, . . . , K (7.14)
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7.4 A hybrid DNN architecture for DOA estimation

In this section, a hybrid DNN framework is presented to solve the DOA estimation
problem. This framework consists of a multi-task autoencoder and multiple paral-
lel multi-layer classifiers. First, we introduce the DNN structure and interpret how
it extracts DOA-related information from array outputs, and also how it fits DOA
estimation requirements in Section 7.4.1. Then we clarify the training strategies of
the DNN framework and highlight its behavior in array imperfection adaptation in
Section 7.4.2. Section 7.4.3 carries out simulations to show the predominance of this
DL-based method to its counterparts, which do not use DL techniques.

7.4.1 The hierarchical DNN structure

The hybrid DNN framework built in this subsection consists of two parts, a multi-task
autoencoder for spatial filtering and a group of parallel multi-layer classifiers for
spatial spectral reconstruction. A schematic diagram of the DNN structure is shown
in Figure 7.5.
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Parallel Classifiers
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Figure 7.5 Structure of the proposed hybrid DNN for DOA estimation. The neural
network consists of two parts, one is a multi-task autoencoder for
spatial filtering, the other is a group of fully-connected multi-layer
neural networks for spatial spectrum estimation.
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The multi-task autoencoder is added before the parallel classifiers to denoise
the input of DNN, and decompose it into multiple components in P different spatial
subregions. If the input of DNN contains a signal in the pth subregion (possibly
together with some other signals located in the other P − 1 subregions), the output of
the pth decoder is expected to be equal to the DNN input when the other signals are
absent. If there is no signal present in this subregion, the output of the pth decoder
should be equal to zero. That is to say, the autoencoders act as filters that help to
separate spatially apart but temporally overlapped signals.

Afterwards, a series of parallel fully-connected multi-layer neural networks are
designed for signals in each subregion. Each of them behaves as a multi-class classifier
that determines whether a signal impinges from the preset directional grids within
the corresponding subregion. The output of a DNN node will be nonzero if a signal
is located near the corresponding grid, and the output value indicates how much the
signal location departs from this direction grid.

By adding a spatial filtering module in front of the DNN classifiers, the signals
inputted to each classifier has a much smaller angular spread range and thus has
more concentrated distributions than the raw input data. The classifiers realize DOA
estimation in each subregion, and they do not need to consider the signal components
located in other subregions, which helps a lot to facilitate the DNN training and
strengthen its generalization to previously unseen scenarios.

7.4.1.1 Spatial filtering autoencoder
As shown in Figure 7.5, the autoencoder consists of an encoder and a group of
decoders, which first compresses the input vector into a lower-dimensional one to
extract the principal components in the original input through encoding, and then
restores it to the original dimension through multi-task decoding with the components
belonging to different subregions recovered by different decoders. The encoding-
decoding process helps to reduce the influence of noise and interference of other
signals in the DNN input [54].

It is assumed that each of the encoder and decoders has L1 layers respectively,
the vectors c in the (L1 − l1)th and the (L1 + l1)th layers have the same dimensions
for 0 < l1 ≤ L1, and generally |c(p)

l1
| < |c(p)

l1−1|, where |c| represents the dimension of
vector c. Neighbor layers of the autoencoder are fully-connected with feedforward
computations, i.e.,

o(p)
l1
= U (p)

l1,l1−1c(p)
l1−1 + b(p)

l1

c(p)
l1
= fl1 (o(p)

l1
),

p =
{

1 for l1 = 1, · · · , L1,

1, · · · , P for l1 = L1 + 1, · · · , 2L1.

(7.15)

In the above equations, P denotes the number of spatial subregions, subscripts
( • )l1 and ( • )l1−1 denote the indexes of autoencoder layer, superscript ( • )(p) denotes
variables corresponding to the pth subregion and the pth autoencoder task, and c(p)

l1
stands for the output of l1th layer in the pth autoencoder. The superscript ( • )(p) can be
ignored when l1 ≤ L1 as the P autoencoders share the same encoder. We also define
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c0 = r as the input of the autoencoder. U (p)
l1,l1−1 ∈ R

|c(p)
l1
|×|c(p)

l1−1| is the weight matrix

from the (l1 − 1)-th layer to the l1th layer of the pth task, and b(p)
l1
∈ R

|c(p)
l1
|×1 is the

additive bias vector in the l1th layer of the pth task. fl1 ( • ) represents the element-wise
activation function in the l1th layer.

The multi-task autoencoder aims at decomposing the inputs c0 = r into P
components with respect to incident signals belonging to P spatial subregions.
A straightforward strategy to define the subregions is choosing P + 1 particular
directions φ(0) < φ(1) < · · · < φ(P), which satisfy φ(1) − φ(0) = φ(2) − φ(1) = · · · =
φ(P) − φ(P−1) and the interval [φ(0),φ(P)) covers the potential scope of the incident
signals. If a signal impinge from the pth subregion to the autoencoder, the output of
the pth decoder, which is also denoted as up = c(p)

2L1
is expected to be equal to the

input r, while outputs of the other decoders equal to zero. A way of enhancing the
denoising ability of the autoencoder is using the noise-free counterpart of the input
as the decoder output. However, it can hardly be implemented as it is not an easy task
to collect noise-free counterparts of the training dataset in real systems.

The expected autoencoder outputs are F (p)(r) = r if the signal direction φ ∈
[φ(p−1),φ(p)), and F (p)(r) = 0 otherwise, where F (p)( • ) is the over-all function of the
pth autoencoder task. In addition, in DOA estimation applications, the autoencoder
should have a linearity characteristic, i.e.,

F (p)(r1 + r2) = F (p)(r1)+ F (p)(r2) (7.16)

The additive characteristic is required since the autoencoder is used to decompose
the input vector into different decoder outputs according to signals impinging from
different subregions. In order to satisfy (7.16), the activation functions f (p)

l1
[ • ] should

be linear, therefore, we use a unit function for activation, i.e., c(p)
l1
= o(p)

l . Then there
is no longer any nonlinear transformation in the hidden layers of the autoencoder, and
the encoding and decoding process of the multi-layer neural network can be simplified
to a single-layer implementation, i.e., L1 = 1, and the autoencoder can be rewritten as

c1 = U1,0r + b1,

up = U (p)
2,1 c1 + b(p)

2 , p = 1, · · · , P.
(7.17)

7.4.1.2 Spectrum estimation with parallel multi-layer classifiers
Existing ML methods based on RBF [46] and SVR [36,37] treat the DOA estimation
problem as a regression task, they assume the number of incident signals K is known
beforehand, and then fix the number of output nodes in the ML model accordingly.
If the number of incident signals changes, the trained model does not work anymore.
Therefore, in order to exploit these methods to well address the DOA estimation
problem, one need to train a series of models in case of different K’s. Even though, such
models can hardly be integrated effectively to deal with DOA estimation problems
when K is not known beforehand.

A more flexible way to enhance the generalization of ML models to situations
with unknown K is to use a series of one-vs-all classifiers instead. Each output node
of the classifier corresponds to a preset directional grid, and the final output value
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of the node represents the signal power locating on the corresponding grid. DOAs
of signals impinging from off-grid directions can be estimated through interpolation
between two adjacent grids.

As shown in Figure 7.5, there are P parallel multi-layer classifiers in total, with
the pth classifier taking the output of the pth decoder as input. Then, the pth classifier
analyzes the components of the input within the pth spatial subregion to reconstruct
the corresponding DOA spectrum. All the P classifiers have the same structure and
there are no mutual connections between them. Neighbor layers of each classifiers
are fully-connected according to feedforward computations, i.e.,

o(p)
l2
=W (p)

l2,l2−1h(p)
l2−1 + q(p)

l2

h(p)
l2
= gl2 [o(p)

l2
],

p = 1, · · · , P; l2 = 1, · · · , L2

(7.18)

where h(p)
l2

is the output vector in the l2th layer of the pth classifier, with h(p)
0 = up and

h(p)
L2
= yp; W (p)

l2,l2−1 ∈ R
|h(p)

l2
|×|h(p)

l2−1| is the fully-connected feed-forward weight matrix

between the (l2 − 1)th layer and the l2th layer, q(p)
l2

is the additive bias vector on the
l2th layer of the pth classifier; gl2 [ • ] is an element-wise activation function for the
inputs of the l2th layer.

After obtaining the outputs [y1, y2, · · · , yP] of the P parallel classifiers based
on the P decoder outputs, the spatial spectrum associated with DNN input r can be
reconstructed by concatenating the P outputs in order, i.e.,

y = [yT
1 , · · · , yT

P

]T
. (7.19)

There are totally |y| one-vs-all classifiers in this part of the DNN, and the output
vector y represents the discrete spatial spectrum estimate associated with DNN input
r. y only takes positive values on the grid nodes close to the true signal directions,
while all the others have zero values.

7.4.2 Training strategy of the hybrid DNN model

Besides the DNN framework, the design of the training dataset and the model training
strategy are two other factors that greatly affect the performance of DNN-based DOA
estimation methods. Since the autoencoder and parallel classifiers in the hybrid DNN
framework perform different functions during DOA estimation, and training the entire
network as a whole increases the risk of getting trapped in undesirable local minima
[122], we propose to train the two parts of the DNN in separate procedures.

In order to reduce the variability of the DNN input, which is influenced signif-
icantly by factors such as signal waveforms, we follow the pre-processing strategy
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in Section 7.3.1 to compute the array covariance matrix, and reformulate the off-
diagonal upper right matrix elements as the input vector to the DNN according to
(7.13), (7.8), and (7.9), i.e.,

r̄ = [R1,2, R1,3, · · · , R1,M , R2,3, · · · , R2,M , · · · , RM−1,M ]T,

r = [Re{r}, Im{r}]
‖r‖2

(7.20)

7.4.2.1 Training strategy for autoencoder
Since the autoencoder is designed to be linear and satisfy the linearity property,
its performance of spatial filtering can be guaranteed if it performs well in single-
signal scenarios. Therefore, we construct the training dataset for autoencoder using
r corresponding to a series of single-signal scenarios, where the signal direction φ
is sampled within the range [φ(0), φ(P)). One straightforward selection of the signal
directions is the equally spaced grids corresponding to the classifier outputs, which
are denoted as ϕ1,ϕ2, · · · ,ϕI . It is supposed that I is dividable by P with I

P = I0 being
an integer.

If the covariance vector r(ϕi) corresponding to a signal from direction ϕi is
inputted to the autoencoder, the output of the pith (pi = �i/I0�) decoder is expected
to be r(ϕi), while the outputs of the other P − 1 decoders expected to be 0β×1 where
β = |r|. By concatenating the outputs of all the P decoders, the expected output of
the whole autoencoder can be written as

u = [uT
1, · · · , uT

P

]T =
⎡

⎢
⎣0T

β×1, · · · , 0T
β×1︸ ︷︷ ︸

p−1

, rT(ϕi), 0T
β×1, · · · , 0T

β×1︸ ︷︷ ︸
P−p

⎤

⎥
⎦

T

. (7.21)

When ϕi varies from φ(0) to φ(P), the pi’s corresponding to i = 1, · · · , I are 1, · · · , 1︸ ︷︷ ︸
I0

,

2, · · · , 2︸ ︷︷ ︸
I0

, · · · , P, · · · , P︸ ︷︷ ︸
I0

.

Denote the autoencoder output corresponding to input vector r(ϕi) by u(ϕi), and
the input dataset for autoencoder training by

	(AE) = [r(ϕ1), · · · , r(ϕI )] . (7.22)

Moreover, the column-wise output label-set associated with the input dataset	(AE) is

ψ (AE) = [u(ϕ1), u(ϕ2), · · · , u(ϕI )] =

⎡

⎢⎢⎢
⎣

ϒ1 0β×I0 0β×I0 0β×I0

0β×I0 ϒ2 0β×I0 0β×I0

0β×I0 0β×I0

. . . 0β×I0

0β×I0 0β×I0 0β×I0 ϒP

⎤

⎥⎥⎥
⎦

(7.23)

where superscript ( • )(AE) is used for variables related to the autoencoder, and
superscript ( • )(CF) will be used for the classifiers, and

ϒp =
[
r(ϕ(p−1)I0+1), · · · , r(ϕpI0 )

]
, for p = 1, · · · , P. (7.24)
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The data-label pair of (	(AE),ψ (AE)) are then used as input and expected output
to train the autoencoder. The squared l2-norm distance between the expected output
and the actual one is used as the loss function, i.e.,

ε(AE)(ϕi) = 1

2
‖ũ(ϕi)‖2

2 , (7.25)

where ũ(ϕi) = u(ϕi)− û(ϕi) and û(ϕi) is the actual output of the autoencoder when
r(ϕi) is inputted.

The weight matrices U1,0 and U2,1, together with bias vectors b1 and b2, are
then updated based on the back-propagated gradients of the loss function ε(AE)(ϕi)
with respect to the variables. The gradients can be computed via straightforward
mathematical derivations and are listed below,

∂ε(AE)(ϕi)

∂[U2,1]i1,i2

= [ũ(ϕi)]i1 [U1,0r(ϕi)+ b1]i2 , (7.26)

∂ε(AE)(ϕi)

∂[U1,0]i1,i2

= ũT(ϕi)[U2,1]:,i1 [r(ϕi)]i2 , (7.27)

∂ε(AE)(ϕi)

∂[b1]l
= ũT(ϕi)[U2,1]:,l , (7.28)

∂ε(AE)(ϕi)

∂[b2]l
= [ũ(ϕi)]l , (7.29)

where [α]l represents the lth element of vector α, [A]i1,i2 represents the (i1, i2)th
element of matrix A. The variants are then updated iteratively as

αnew = αold + μ1
∂ε(AE)(ϕi)

∂α
, (7.30)

where α can be any element in matrices U1,0, U2,1 or vectors b1, b2, μ1 is the learning
rate, αold and αnew denote the values of the variables before and after the current
update, respectively.

Figure 7.6 shows the spatial responses when P = 6 spatial filtering decoders are
trained in the spatial scope of [− 60◦, 60◦) according to the above strategy. Detailed
descriptions of the simulation settings can be found in Section 7.4.3. Figure 7.6(a)
shows the spatial gains of the filters, which is defined as,

g(p)
a = |rH(ϕi)up|, for p = 1, · · · , P; i = 1, · · · , I , (7.31)

where up is the complex-valued variant of up by taking the first half of the vector as
the real part and the second half as imaginary part. Figure 7.6(b) shows the phase
responses of the filters, i.e.,

g(p)
b =

|rH(ϕi)up|
‖r(ϕi)‖2‖up‖2

, for p = 1, · · · , P; i = 1, · · · , I . (7.32)

g(p)
b describes how much the phase shifts between the elements of r(ϕi) are kept

unchanged after being filtered by the autoencoder, and g(p)
a combines the effect of
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Figure 7.6 Performance of the multi-task autoencoder for spatial filtering, (a) gain
responses; (b) phase responses; (c) filter outputs of two signals in the
same subregion (φ1 = −13◦, φ2 = −3◦); (d) filter outputs of two
signals in different subregions (φ1 = −24◦, φ2 = −4◦).

amplitude attenuation of different filters. Figure 7.6(a) and (b) show that the phase
consistency between the autoencoder input and its expected output is maintained
within the divided subregions, and the gain decays rapidly at the edge of each sub-
region. The outputs of the decoders other than the corresponding one have small
amplitudes and weak phase consistency.

In order to test the linearity property of the autoencoder, a vector r corresponding
to two-signal scenarios is inputted to the autoencoder. First, two signals located in the
same subregion of [− 20◦, 0◦) impinge onto the array from directions of φ1 = −13◦

and φ2 = −3◦, respectively. The gain response g(p)
a of the six decoder outputs are

shown in Figure 7.6(c). The spatial gain response of the corresponding decoder is
similar to that of the beamformers, while the gains of the decoders in the other
subregions are very small. Then repeat the simulation with two signals from directions
φ1 = −24◦ and φ2 = −4◦, which locate in two adjacent subregions. The g(p)

a of the
six decoder outputs in this scenario are shown in Figure 7.6(d). As can be seen from
the figure, the two signal components are well separated by the corresponding filters,
and the output amplitudes of the other filters are negligible.
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7.4.2.2 Training strategy for parallel classifiers
The P parallel classifiers take the output of the corresponding decoder as inputs,
and estimate the spatial spectrum in the corresponding subregions separately. When
compared with r, each of the autoencoder outputs up (p = 1, · · · , P) contains signals
impinging from a much smaller subregion. Since spatially closer signals generally
have more similar steering vectors, up’s should have much more concentrated distri-
butions than r. In the parallel classifiers, we use multiple hidden layers and nonlinear
activation functions to enhance expressivity of the network, so as to realize refined
DOA estimation. In order to retain the polarity of the inputs at each layer of the classi-
fiers, an element-wise hyperbolic tangent function is used as the activation function,
i.e.,

tanh(α) = [tanh(α1), tanh(α2), · · · , tanh(α−1)]T,

tanh(α) = eα − e−α

eα + e−α
(7.33)

where α−1 denotes the last element of α.
When the training of the autoencoder has been completed, its weights and biases

are kept fixed. Then a new end-to-end neural network framework is formed between
the input vector r and the reconstructed spectrum y. The weights and biases of the
classification neural networks should be trained to estimate the directions of inci-
dent signals in different subregions. To achieve this goal, another training dataset is
constructed in scenarios with two simultaneous signals.

We choose several inter-signal angle intervals � = {�j}Jj=1. For each interval,
form the input vectors r(φ,�j) corresponding to two incident signals from directions
φ and φ +�j, where φ(0) ≤ φ < φ(P) −�j and j = 1, · · · , J . The expected classifier
output corresponding to input r(φ,�j) is denoted by y(φ,�j) as follows,

[y(φ,�j)]l =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ − ϕl−1

ϕl − ϕl−1
, ϕl−1 ≤ φ < ϕl ,φ ∈ {φ,φ +�j},

ϕl+1 − φ
ϕl+1 − ϕl

, ϕl ≤ φ < ϕl+1,φ ∈ {φ,φ +�j},
0, otherwise.

(7.34)

The above equation shows that the reconstructed spatial spectrum is expected to
have non-zero positive values only on the grids adjacent to the true signal direction,
and the direction of each signal can be estimated accurately by linear amplitude
interpolation between the two adjacent grids. The training dataset of the classifiers
can be written as

	(CF) =
[
	

(CF)
1 , · · · ,	(CF)

J

]
, (7.35)

where 	(CF)
j = [r(ϕ1,�j), · · · , r(ϕI −�j,�j)

]
, and the associated label-set is

ψ (CF) =
[
ψ

(CF)
1 , · · · ,ψ (CF)

J

]
, (7.36)

where ψ (CF)
j = [y(ϕ1,�j), · · · , y(ϕI −�j,�j)

]
.
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During the training process, the reconstruction error of the spatial spectrum is
calculated and back-propagated to optimize the parameters of the parallel classifiers.
Denote the expected and actual classifier outputs corresponding to r(φ,�) as y(φ,�)
and ŷ(φ,�), respectively, and the reconstruction error can be expressed as

ỹ(φ,�) = ŷ(φ,�)− y(φ,�). (7.37)

The loss function of each classifier is the squared l2-norm of the spatial spectral
reconstruction error, i.e.

ε(CF)(φ,�) = 1

2
‖ỹ(φ,�)‖2

2 , (7.38)

The gradients of the loss function with respect to the variables of the classifier can
be derived by straightforward mathematical differentiation. Details of the derivation
are omitted here, and interested readers can refer to the previous relevant literature
such as [57]. Most deep learning platforms, such as TensorFlow [123], also provide
callable instructions for calculating the gradients automatically.

Subsequently, the elements of the weight matrices and bias vectors are then
optimized using their gradients as follows,

αnew = αold + μ2
∂ε(CF)(φ,�)

∂α
, (7.39)

where μ2 represents the learning rate.
After training the classifiers with settings that will be detailed in Section 7.4.3,

the corresponding array covariance vectors r(φ = −13◦,� = −3◦) and r(φ =
−24◦,� = −4◦) associated with Figure 7.6(c) and (d) are re-inputted to the entire
DNN to obtain reconstructed spatial spectra, and the results are shown in Figure 7.7(a)
and (b). The simulation results indicate that the established DNN framework can sepa-
rate two simultaneously incident signals satisfyingly, no matter they impinge from the
same or different spatial subregions, and there are only slight residuals on directions
without incident signals. Refined signal directions can finally be estimated via linear
interpolation within the spectrum peaks.

7.4.2.3 Adaptation to array imperfections
As has been discussed in Sections 7.2 and 7.3, ML-based DOA estimation methods
adopt a data-driven implementation and are expected to have built-in adaptability to
various array imperfections. In this subsection, we further analyze and validate such
a property of the presented method.

Suppose that the array responding function is perturbed by a specific type or
a combination of imperfections with parameters e, and the mapping from signal
direction to covariance vector is denoted as φ 
→e re(φ). It is also assumed that there is
no prior information about the array imperfections. When the perturbed vector re(ϕi)
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Figure 7.7 Reconstructed spatial spectrum of two signals, (a) φ1 = −13◦,
φ2 = −3◦; (b) φ1 = −24◦, φ2 = −4◦

with �i/I0� = p is inputted to the autoencoder, the corresponding label vector can be
represented as

u = [uT
1, · · · , uT

P

]T =
⎡

⎢
⎣0T

β×1, · · · , 0T
β×1︸ ︷︷ ︸

p−1

, rT
e (ϕi), 0T

β×1, · · · , 0T
β×1︸ ︷︷ ︸

P−p

⎤

⎥
⎦

T

. (7.40)

That is to say, the input vector rT
e (ϕi) will be filtered into the pth decoder even in the

presence of array imperfections.
Subsequently, the output of the decoder is fed into the parallel classifiers. Since

the signal component from direction ϕi is embedded in the output of the pth decoder,
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it will be processed by the pth classifier. The corresponding spatial spectrum con-
tains a spectral peak on one or two adjacent grids closest to ϕi, which can be further
interpolated to obtain a DOA estimate of ϕi. Thus, the well-trained hybrid DNN (the
autoencoder together with the parallel classifiers) actually reconstructs the inverse
mapping relationship of re(φ) 
→e φ, no matter which kinds of imperfections are
present and how they perturbs the array responding function. The reconstructed
inverse mapping embeds the influence of array imperfections in it, so it can also
adapt to any test data in case of the same imperfections, and is expected to obtain
unbiased DOA estimates in despite of array imperfections.

7.4.3 Simulations and analyses

This subsection carries out simulations to verify the advantages of the presented
DL-based DOA estimation method over some other ML-based methods [36,37] in
generalization, and also its predominance over the most widely cited parametric
method of MUSIC [8] in imperfection adaptation. The simulations are implemented
on the deep learning platform TensorFlow [123], and the gradients are calculated
using its embedded tools directly. The more recently proposed DL-based meth-
ods [60,62–64,66] are not chosen as baselines, because some of them adapt only
to single-source scenarios [62,63], while others take time-frequency representations
of incident signals as inputs [60,64,66]. Therefore, they do not adapt to the consid-
ered multi-signal direction finding scenarios with only a few hundreds of snapshots.
Auto-calibration techniques [26–32] are not considered, since no prior information
of the array imperfections is assumed to be known beforehand. Such settings help
to show the robustness of different methods to un-calibrated arrays and make fairer
performance comparisons.

7.4.3.1 Simulation settings
In the following simulations, we use a 10-element uniform linear array (ULA) to
estimate directions of signals impinging from the spatial scope of [−60◦, 60◦), i.e.,
M = 10, φ(0) = −60◦, φ(P) = 60◦. The inter-element spacing of the ULA is half-
wavelength, and the potential space is divided equally into P = 6 subregions and
sampled with a grid interval of 1◦, resulting in I = 120 grids in total with ϕ1 =
−60◦,ϕ2 = −59◦, · · · ,ϕI = 59◦, and each spatial subregion has I0 = 20 grids. The
covariance vectors r in the training datasets of both the autoencoder and the classifiers,
and also in the test datasets, are obtained with N = 256 snapshots.

During the training of the autoencoder, the [−60◦, 60◦) space is also sampled
with an interval of 1◦ to obtain a direction set with φ1 = −60◦,φ2 = −59◦, . . . ,φI =
59◦. The covariance vectors and associated labels are computed according to (7.22)
and (7.23). For each ϕi, i = 1, . . . , 120, only one group of snapshots is collected to
calculate the covariance vector r, with the signal-to-noise ratio (SNR) being 5dB. The
mini-batch training strategy [124] is used with a batch size of 32 and learning rate of
μ1 = 0.001, and 1,000 epochs are taken for the training with the dataset shuffled in
each epoch. The dimension of the input layer is β = M (M − 1)/2 = 45, and that of
the hidden and output layers are set to �45/2 = 22 and βP = 45× 6, respectively.
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The parameters of the autoencoder remain unchanged after the training process,
and another dataset according to two-signal scenarios is collected to train the parallel
classifiers. The covariance vectors and associated labels are computed according to
(7.35) and (7.36). The angle � between the two signals is sampled from the set
of {1◦, 2◦, . . . , 39◦, 40◦}, which covers scenarios from very close signals to signals
separated by twice the width of a subregion. Then the direction of the first signal
(denoted by φ) is traversed with an interval of 1◦ from −60◦ to 60◦ −�, and the
direction of the second signal is φ +�. The SNR of both signals is 5 dB, and 10
groups of snapshots are generated by adding different random noises to calculate r
in each direction setting. Finally, a total of (119+ 118+ · · · + 80)× 10 = 39, 800
covariance vectors are collected in the dataset.

The data-label pairs are used for training the classifiers with a mini-batch size
of 32 and a learning rate of μ2 = 0.001, and the order of the vectors is shuffled
during each of the 300 training epochs. The number of hidden layers is chosen to
be L2 − 1 = 2 as a trade-off between the expressivity power (which improves with
deeper networks [55]) and under-training risk (which aggravates with more network
parameters [122]) of the classifiers, and the sizes of the hidden and output layers in
each classifier are �2/3× β = 30, �4/9× β = 20 and I0 = 20, respectively. All
the weights and biases of the DNN are randomly initialized according to a uniform
distribution in the range [−0.1, 0.1].

Three typical kinds of array imperfections are considered in the simulations,
including gain and phase inconsistence, sensor position error and inter-sensor mutual
coupling. The imperfections in practical arrays may be very complicated to formulate
mathematically, so we use simplified models to facilitate simulations. However, the
simplification does not cause any loss of generality to the results.

The gain biases of the array sensors are set as

egain = ρ × [0, 0.2, . . . , 0.2︸ ︷︷ ︸
5

,−0.2, . . . ,−0.2︸ ︷︷ ︸
4

]T, (7.41)

where the parameter ρ ∈ [0, 1] is introduced to control the strength of the imperfec-
tions. The phase biases are

ephase = ρ × [0,−30◦, . . . ,−30◦︸ ︷︷ ︸
5

, 30◦, . . . , 30◦︸ ︷︷ ︸
4

]T. (7.42)

The position biases are

epos = ρ × [0,−0.2, . . . ,−0.2︸ ︷︷ ︸
5

, 0.2, . . . , 0.2︸ ︷︷ ︸
4

]T × d, (7.43)

where d is the inter-sensor spacing of the ULA. And the mutual coupling coefficient
vector is

emc = ρ × [0, γ 1, · · · , γM−1]T, (7.44)

where γ = 0.29ej58◦ is the mutual coupling coefficient between adjacent sensors.
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By specializing ρ, the array imperfections will be determined, and the perturbed
array responding function is rewritten as follows,

a(φ, e) = (IM + δmcEmc)× (IM + Diag(δgainegain))

×Diag( exp (jδphaseephase))× a(φ, δposepos),
(7.45)

where impulse function δ( • ) is used to indicate the existence of a certain kind of
imperfection, Diag( • ) forms diagonal matrices with the given vector on the diagonal,
Emc is a toeplitz matrix generated with the parameter vector emc [26], a(φ, δposepos)
indicates the actual array responding vector corresponding to the signal from direction
φ when position error epos is included in the array geometry.

The array responding function given in (7.45) has been greatly simplified when
compared with its counterpart in actual applications. Although the actual array
response function can be measured more precisely with computational electro-
magnetic methods, such as [125–127] and the array imperfection formulations in
(7.41)–(7.44) can also be modelled more accurately following previous existing lit-
eratures, such as [128–131] for mutual coupling, we use the simplified formulations
mainly to facilitate simulation, and we believe that these simplifications are reason-
able for performance comparison. That is because the proposed DL-based method
does not utilize any prior information about the array imperfections and steering
vectors, and the simplifications do not affect the adaptability of the direction finding
method to various kinds of array imperfections. The proposed end-to-end training and
testing strategies can be generalized straightforwardly to other array geometries and
imperfections, no matter how the antennas are fed and how much the array steering
vector has been perturbed by imperfections.

7.4.3.2 Generalization to unseen scenarios
In this subsection, we compare the performance of the presented DNN-based DOA
estimation method with the SVR-based DOA estimator [36,37] to show how they
generalize to scenarios not included in the training dataset. Array imperfections are
not considered in this subsection.

First, two signals with an angular distance of 13.5◦ and SNR=5dB are assumed
to impinge onto the array simultaneously, and the direction of the first signal varies
from −60◦ to 50◦. This angular distance is not contained in the training set �, and
the direction of the second signal deviates from the preset training directions and the
output spectrum grids. The final DOA estimates are obtained via amplitude interpo-
lation within the two most significant peaks of the reconstructed spectra according to
(7.14). When the direction of the first signal increases from −60◦ to 50◦ with a step
of 1◦, the estimated directions and the estimation errors of the two signals are shown
in Figure 7.8(a) and (b), respectively. The DOA estimates of the presented method
well match their true values, and most of the estimation errors are smaller than 2◦. In
Figure 7.8(c) and (d), we plot the results of the SVR-based DOA estimation results
in the same scenarios. In Figure 7.8(c) and (d), the SVR’s are trained with the same
training dataset as the DNN classifiers, except that the training dataset in Figure 7.8(c)
is noise-free. The results indicate that the SVR’s also perform well when the training
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Figure 7.8 DOA estimation performance of off-grid signals, (a) DNN-based DOA
estimates; (b) DNN-based DOA estimation errors; (c) SVR-based DOA
estimates with noise-free training data; (d) SVR-based DOA estimates
with training data of SNR=5dB

data are noise-free, but their performance aggravates significantly when there are
perturbations in the training data. As it is very difficult or even impossible to collect
noise-free training data, the presented method is believed to behave better than the
SVR-based method in practice.

We then keep the SNR of the two signals fixed at 5dB, and enlarge their angular
distance to 50.4◦, 60.1◦ and 70.7◦, respectively, which deviates from the �’s in the
training set largely. When the first signal direction varies from −60◦ to 60◦ −�, the
DOA estimates of the DNN-based method and the SVR-based method are shown
in Figure 7.9. The DNN-based method again shows much better adaptation to these
scenarios that are unseen in the training dataset, while the SVR-based method fails
to obtain valid DOA estimates for the signals.

Finally, we show how the DNN-based method behaves when the testing data con-
tains different numbers of signals as the training data. The DNN and SVR models are
trained with data in two-signal scenarios, but tested in two much different scenarios,
with one containing a single signal with a DOA of −14.7◦ and the other containing
three signals with DOA’s of −34.7◦, 5.3◦, and 20.3◦. The SVR-based method forms
two regression machines for processing test data and outputs two DOA estimates for
each given data [36,37]. If the input covariance vector contains more or fewer signal
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Figure 7.9 DOA estimation results of two signals separated by 50.4◦, 60.1◦, 70.7◦,
which are much larger than the separations in the training dataset, (a)
DNN-based DOA estimates; (b) DNN-based DOA estimation errors;(c)
SVR-based DOA estimates; (d) SVR-based DOA estimation errors

components, the SVR outputs make no sense. However, one can conclude from the
results in Figure 7.10 that the DNN-based method still performs satisfyingly in the
one-signal and three-signal scenarios.

7.4.3.3 Adaptation to array imperfections
In this subsection, we carry out simulations to verify the adaptability of DNN-
based DOA estimation method to various kinds of array imperfections, and compare
it with the most widely cited parametric DOA estimation method MUSIC [8] in
DOA estimation precision. Although many newly proposed parametric methods per-
form better than MUSIC in demanding scenarios, such as the sparsity-inducing
ones [11–15], the DOA estimation performance of different parametric methods is
similar in the presence of significant array imperfections. MUSIC is chosen as a
baseline since it is widely known among existing parametric DOA estimation meth-
ods. The SVR-based estimation method is also excluded here, because the results in
Figure 7.8 show that it lacks robustness to noisy training datasets, and SVR models
trained with noise-free datasets make the comparisons unfair.
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Figure 7.10 DOA estimation results in one-signal and three-signal scenarios with
DNN models trained in two-signal scenarios, (a) one-signal scenario;
(b) three-signal scenario

Assume that two signals with the same SNR of 10dB impinge onto the array
simultaneously from directions of 32.5◦ and 43.4◦, which both deviate from the direc-
tion grids of the training dataset and the reconstructed spatial spectrum, and different
types of array imperfections are considered by adjusting parameter ρ from 0 to 1
in (7.41)–(7.44). When ρ = 0, no imperfection is contained in the array responding
functions. Four cases with different array imperfections are considered by setting the
δ( • )’s in (7.45) to different values.

First, set δgain = δphase = 1 and δpos = δmc = 0, i.e., only gain and phase imperfec-
tions are added to the array. The estimation root-mean-square-errors (RMSE’s) of the
DNN-based method and the MUSIC method in 100 Monte-Carlo simulations with ρ
varying from 0 to 1 are shown in Figure 7.11(a). Then set δgain = δphase = δmc = 0 and
δpos = 1 to consider the sensor position error only, and the DOA estimation RMSE’s
are shown in Figure 7.11(b). After that, set δgain = δphase = δpos = 0 and δmc = 1 to
retain the mutual coupling effect only, and the corresponding DOA estimation RMSE’s
are shown in Figure 7.11(c). Finally, set δgain = δphase = δpos = δmc = 1 to consider a
combination of all the three kinds of array imperfections at the same time, and the
DOA estimation RMSE’s are shown in Figure 7.11(d).

When ρ = 0, the array responding function is unbiased and consistent with its
formulation in parametric methods, so MUSIC obtains DOA estimates with very
high precisions. However, as array imperfections become more and more significant,
the DOA estimation error of MUSIC increases almost linearly, indicating that the
method is weakly adaptable to unknown array imperfections, and it should be modified
with various auto-calibration methods to improve DOA estimation precisions. On
the contrary, the DNN-based method performs slightly worse than MUSIC when
no imperfections are present. But it is very robust to different or even combined
array imperfections, and its DOA estimation precision seldom deteriorates with the
increase of the imperfections strength. That is because it does not rely on any pre-
assumption about the array geometry or array responding function. When ρ is as small
as 0.1−0.3, the DNN-based method performs comparably as MUSIC, and when ρ
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Figure 7.11 DOA estimation RMSE’s of DNN-based and MUSIC methods when ρ
increases from 0 to 1 in the presence of different array imperfections,
(a) gain and phase inconsistence; (b) sensor position error; (c) mutual
coupling; (d) combination of three kinds of imperfections

becomes larger and the array responding function deviates more significantly away
its imperfection-free counterpart, the DNN-based method performs much better than
MUSIC.

In order to illustrate the contribution of the multi-task autoencoder in DOA esti-
mation, the next set of simulation experiments shows how the number of spatial filters
(or the decoders) affects the accuracy of DOA estimation.

The numbers of filters are set to be 3, 6 and 12, and the corresponding DNN
models are trained and tested in scenarios with different kinds of array imperfections
and different ρ’s. Parameters of the training and testing datasets are the same as that
in the simulations corresponding to Figure 7.11. The DOA estimation RMSE with
respect to ρ in the case of different numbers of spatial filters are shown in Figure
7.12. The results show that, when the number of filters is as small as 3, each of the
filter covers a wide spatial subregion and the output vector of the filter has a relatively
dispersed distribution. As a result, the trained DNN model does not work well in some
of the testing scenarios and the DOA estimation RMSE’s have very large variances.

When the number of filters is increased to 6, the DOA estimation RMSE reduces
significantly and keeps stable in different scenarios. If we further increase the number
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of filters to 12, the RMSE does not decrease largely anymore. It can be concluded
from this group of simulation results that, increasing the number of decoders leads to
improved DOA estimation performance in the presented DNN framework, but when
the number of decoders is greater than a certain threshold, significant performance
improvement can hardly be gained anymore. Therefore, we have empirically set the
number of decoders to be 6 in previous simulations. Another special value of the
decoder number is 1, which is equivalent to removing the autoencoder module from
the DNN framework shown in Figure 7.5. In this case, a single classifier will be
trained for DOA estimation directly. From the results in Figure 7.12, it is somewhat
straightforward to infer that, the DOA estimation performance of the DNN framework
with a single classifier will be much worse than that of the DNN containing an
additional 6-task autoencoder.

This group of simulation results provides a good illustration for the role of the
multi-task autoencoder in the DNN framework. It spatially filters the input of the
whole model to concentrate its distribution, and helps to significantly reduce the gen-
eralization burden of the subsequent classifiers, and finally improves DOA estimation
performance.
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Figure 7.12 DOA estimation RMSE of DNN-based method using different numbers
of spatial filters in the case of different array imperfections, (a) gain
and phase inconsistence; (b) sensor position error; (c) mutual
coupling; (d) combined imperfections
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7.5 Concluding remarks and future trends

In this chapter, we present an overview and a concrete example of state-of-the-art
DL-based DOA estimation research. We start with a brief introduction to existing
methods in this area, and then make a survey of the DL frameworks presented in
publications to summarize how different DL techniques have been exploited to solve
diverse DOA estimation problems. Finally, a hierarchical DNN framework is pre-
sented as an example to show the implementation of DL-based DOA estimation
methods, and demonstrate partially their predominance over existing methods not
using DL techniques.

DL-based methods provide a better solution to DOA estimation problems from
many perspectives, such as reducing computational complexity in the testing phase,
improving DOA estimation precision in demanding scenarios when analytic mod-
eling of array outputs is either impossible or very challenging. Despite the fruitful
research of DL-based DOA estimation methods in recent years, many issues should
be further clarified before these research results can be applied in comprehensive
DOA estimation applications.

1. DL-based methods require a big labelled dataset to train a DOA estimator with
satisfying performance. However, as the requirement is usually very difficult to
meet in practical applications, researchers should make efforts to optimize the
methods to relax the requirement on big dataset. Some attempts have been carried
out following ideas of unsupervised training and transfer learning, but there is
still a gap between the available results and practical demands.

2. In some DOA estimation systems, labelled data are accumulated gradually dur-
ing usage, and thus evolvable models should be built to improve with time.
Based on this goal, it might be necessary to introduce reinforcement and incre-
mental learning techniques to this area to propose new methods, which may
be quite different from the current predominant research on batch learning
methods.

3. Most of existing DL-based DOA estimation methods are purely data-driven, they
are unable to exploit prior knowledge about the array manifold or signal features,
such as completely or partially known array configuration, and cyclostationarity
or modulation information of incident signals, etc. Further investigations are
needed to work out a way to make better use of these information during the
pre-processing, post-processing or DNN building procedures, so as to improve
DOA estimation performance.

4. In the area of DOA estimation, many factors may affect the mapping from signal
directions to array outputs, e.g., number of incident signals, signal amplitudes
and waveforms, it is usually impossible to enumerate all scenarios and collect
enough data in each scenario to train a universal DNN model. Therefore, more
efforts should be devoted to enhance the generalization of the DL-based DOA
estimation methods, so that they will be able to perform satisfyingly in unseen
scenarios.
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Chapter 8

Deep learning techniques for remote sensing
Qian Song1 and Feng Xu2

Due to the wide swath and acceptable cost, remote sensing (RS) techniques have
been widely applied in extensive applications, such as land cover land use (LCLU),
flood detection, urbanization monitoring. A number of airborne and space-borne mis-
sions are conducted to acquire remote sensing data—ALOS,TerraSAR-X, Sentinel-1,
Sentinel-2, GEDI, UAVSAR, Landsat, to name a few. They carried different types of
sensors that differ from each other in terms of resolution, penetration ability, and imag-
ing mechanism, thus are suitable for different applications scenarios. Accordingly, it
calls for specifically designed models for different types of data.

With the accumulation of years of the vast amount of data, how to effectively use
them especially in an automatic manner to serve for practical applications becomes
a challenge. Deep learning (DL), which has achieved great success in other tasks in
the computer vision field, is employed as a powerful tool for dealing with remote
sensing data [1–6]. Previous studies reviewed the basic deep learning models and
their applications in remote sensing data regarding either the data types [2,4] or the
task types [1,3,5,6]. They mainly align the remote sensing tasks with the computer
vision tasks. In this chapter, however, we revisit several hot topics that come from
the fields of target recognition, land cover and land use (LCLU), weather forecasting,
and forest monitoring, introduce how various deep learning models are employed and
fitted into these specific tasks.

8.1 Target recognition

8.1.1 Ship detection

Traditionally, detection ships in synthetic aperture radar (SAR) images relies on con-
stant false alarm rate (CFAR) algorithms [7]. It assumes that ships are “brighter”
than the background clutter, and its main effort is paid to determine a threshold to
discriminate the current pixel. It uses the probability density function (PDF) of pixel
values in a guarding window to fit a statistical model. When sets a constant false
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alarm rate pf , the threshold is calculated as the point when the cumulative density
function equals 1− pf . But in practical scenarios, CFAR which ignores ships’ spatial
features, obtains either a low detection accuracy or a high false alarm rate, especially
in inshore ranges. Thus many deep learning models are developed in recent years for
ship detection.

In [8], Jiao et al. used a faster RCNN framework which consists of a region
proposal network and a detection network. Then detection network predicts whether
the input proposal contains a ship or not, and outputs the anchor box of the detected
ship. The focal loss is adopted to replace the original cross-entropy loss, which is
defined as

L = −(1− pt)γ log pt , (8.1)

pt =
{

p, y = 1,
1− p, y = 0

(8.2)

where p and y denote the network’s output and ground truth. It is known that small
ships are prone to be omitted by the deep networks trained with multi-scale samples.
In order to deal with this problem, a dense attention Pyramid network is proposed
in [9]. It stacks the feature maps extracted from different convolutional layers, which
allows for grasping the intrinsic features of multi-scale targets. A similar framework,
as shown in Figure 8.1, is applied in [10], where the backbone feature extractor
is redesigned and trained from scratch. Experiments demonstrate that the proposed
model outperforms those transfer learning-based baseline models in terms of metrics
such as F1-score, mAP.

detection subnetwork
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pooling
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regression
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512

classification
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Figure 8.1 Architecture of the Faster RCNN-based ship detector proposed in [8]
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(a) (b)

Figure 8.2 Comparison of horizontal bounding box (a) and rotated bounding box
(b) for ship localization

On the other hand, ships near the shores are docked near each other, thus their
horizontally placed bounding boxes overlap, as shown in Figure 8.2(a). When post-
processing the candidate bounding boxes with non-maximum suppression (NMS)
which merges the overlapped boxes into a big one, multiple small ships will be
wrongly detected as one big ship. To deal with that, rotated bounding boxes are used
accordingly, as shown in Figure 8.2(b). Then the location, size, and orientation need
to be estimated simultaneously.

In [11], Wang et al. modified the original Single Shot Detector (SSD) network to
allow for orientation angle prediction. Then the angle-related IoU (ArIoU) defined in
(8.3) is employed for quantitatively comparing the proposed bounding box with the
ground truth bounding box:

ArIoU (A, B) = A
⋂

B

A
⋃

B
| cos (θA − θB)| (8.3)

In [12], An et al. proposed an improved rotatable bounding box-based ship detector
named DRBox-v2 to boost the performance of DRBox-v1. It modifies the bounding
box encoding method and the backbone feature extraction network with a pyramid
network. Besides, the hard negative mining loss is combined with the focal loss in
(8.1). Yang et al. introduced a task-wise feature pyramid network that calibrates the
extracted feature maps with two separated channels for the two sub-tasks [13], as
shown in Figure 8.3. The threshold of IoU is adaptively set according to the averaged
IoU to incrementally increase the difficulty of the task.

8.1.2 Aircraft recognition

Aircraft recognition models can be categorized by the types of data used. In SAR
images, aircraft have higher intensities compared with ground, thus SAR data are
widely-used for aircraft detection. However, the aircraft in SAR images consists of
discrete scattering clusters, and it increases the difficulty of detecting the aircraft as
a whole, which becomes the main obstacle.
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Figure 8.3 Illustration of the task-wise attention module proposed in [10]

In [14], convolutional neural network is applied for high-resolution SAR aircraft
detection. A three-look network framework is proposed in [15] to detect the airport,
aircraft, and the runway respectively using ResFaster R-CNN. To deal with the dis-
continuity of the strong scattering points, Zhao et al. proposed pyramid attention
dilated network [16]. Its main building block, dilated attention block, is composed
of a dilated convolution module and an attention module. The dilated convolution, as
shown in Figure 8.4, skips several points according to the dilation rate in input images
while applying convolution operation, which can increase the receptive field with-
out introducing more parameters. Thus using dilated convolution helps integrate the
discrete parts of aircraft. The pyramid network is also adopted in [17], as shown in Fig-
ure 8.5. The proposed algorithm firstly extracts the airport area, and then detects and
integrates the strong scattering points, and the pyramid network extracts multi-scale
feature maps and makes predictions.

High-resolution optical images allow for higher detection accuracy and aircraft
recognition applications. In [18], Wu et al. use the binarized normed gradients algo-
rithm to extract region proposals, and then a convolutional neural network is adopted
to remove the false alarms. In [19], a classification framework that separately pre-
dicts the segmentation mask and the keypoints of aircraft, and then compares the
rotated aircraft mask with the templates is developed. Thus the classification task is
decomposed into two sub-tasks, segmentation and regression. Considering the size
differences of different types of aircrafts, the objective of the regression network is
defined as the normalized distances between predicted and labeled keypoints pi and
p′i by the aircraft length l, i.e.

L = 1

2

N∑

i=1

1

li
‖ pi − p′i ‖2

2 . (8.4)

In [20], Jia et al. also suggest rotating the aircraft slices to the same direction, and
the rotation parameters are automatically estimated from the convolutional neural
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Figure 8.4 Comparison of standard convolutional and dilated convolutional
operations, where the dilated convolution skips some points

network. A component-based discrimination strategy using the rotated images is
adopted to boost the classification results predicted by the front-stage rotatable
boundingbox-based pyramid network. Experiments with Gaofen dataset demonstrate
that the proposed network achieves over 70% accuracy in a ten-category recognition
task.

8.1.3 Footprint extraction

According to the output of the networks, the existing footprint generation methods
can be divided into three types: binary classification, classification, and regression.
The first two types assign each pixel in the region of interest (ROI) with one of the two
or more categories. In this regard, many segmentation-based deep learning models
were applied directly or indirectly for extraction building footprints. In [21], a fully
convolutional network was used to replace the patched-based architecture to make the
borders of different patches more continuous. In [22], the classical encoder-decoder
convolutional neural networks (CNN) was used to extract the multi-scale spatial fea-
tures from the input data for building boundary delineation (as shown in Figure 8.6),
and a follow-up CNN to classify these boundary images into footprint maps. Ji et
al. proposed a Siamese U-Net (SiU-Net) for building extraction from high-resolution
remote sensing images [23]. The original input and their down-sampled images are
fed into the network simultaneously, and the discrepancy between their outputs and
the corresponding ground truth as well as the down-sampled labels is calculated as the
loss function. In [24], a multi-task framework that uses two U-Net networks to predict
the building footprint and the road network respectively is proposed, as shown in
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Figure 8.6 The used class-boundary network module for footprint extraction
network in [22]

Figure 8.7. With the help of the vector data of OpenStreetMap, the networks are
able to yield sub-pixel levels (2.5 m resolution) of building and road detection results
using satellite images (10 m resolution). In [25], Li et al. proposed to concatenate two
sub-networks to predict the attraction field representation (AFM) from input images
and extract the footprint from AFM. AFM is calculated as the horizontal and vertical
distances between the current pixel with the nearest pixel on the boundaries. Results
showed that using AFM representation can yield sharper boundaries and reduce the
false-alarms.

In [26], Yuan et al. proposed a network to predict the signed distance between
the current pixel with the nearest boundary pixel, instead of a binary label. The
distance was further divided into 128 classes, and the first 63 classes correspond
to the non-building class. Thus, the building footprint generation task is regarded
as a multi-class classification problem. Furthermore, Yang et al. adopted the same
idea [27]. Two signed distance prediction networks are trained with different sources
of data (RGB images and near IR-G-B images) respectively, and the averaged output
from softmax layers is used as the final output.

In [28], the active contours model (ACM) was used to add geometric constraints,
such as continuity, smooth edges to the extracted boundaries. The model is trained to
learn the four parameters in the ACM, thus building footprint boundary generation
was treated as a regression task. Although the predicted boundaries were not highly
aligned with the ground truth, ACM did output more smooth and accurate edges
as compared with the baseline model. In [29], a network named PolyMapper which
combines convolutional neural networks with a recurrent neural network was proposed
to directly extract the building boundaries and the roads polygons. In [30], Girard
et al. proposed to use the deep learning models to predict the frame field and the
segmentation map in a multi-task framework. The frame field can be converted into
a polygon through a polygonization method, which allows the model to improve the
building extraction performance.
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8.1.4 Few-shot recognition of SAR targets

The back-scattering intensities of SAR signals over man-made targets such as ships,
buildings, vehicles are significantly stronger than that over other targets such as sea
surface, road, and trees. Besides, SAR signals can penetrate rain, cloud, snow, tree
canopy, and even the ground, thus are able to detect the targets under the cover. Thus
SAR is widely-used for target recognition. On the other hand, however, due to its
incoherent imaging mechanism, targets in synthetic aperture radar images vary with
observation angles, and the cost of acquiring SAR samples is expensive, which limits
the number of training samples. Thus few-shot learning (FSL) of target recognition
in SAR images is essential.

Existing methods can be divided into two types: using generative models to
augment the dataset and transfer learning from other data sources. The generative
models take several parameters (such as category label, observation angle) as input,
and output a pseudo-SAR image. In this case, a continuous vector corresponds to a
unique SAR image. By varying the input vector, a vast number of SAR images can
be generated. In [31], Song and Xu proposed a deep neural network for zero-shot
learning, as shown in Figure 8.8. The learned mapping relationship is then used to
inverse the feature representations from SAR images via the interpreter DNN. The
unseen targets without available training samples can be recognized by comparing

Target Labels

BTR60

T62

Constructor NN

Generator DNN

Target Feature Space

SAR Datasets

Initialize/

Regularize

Interpreter DNNNew SAR Image

Figure 8.8 The proposed generative neural network for zero-shot target
recognition in [31]
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the similarity/distances between the mapped features of the know targets and theirs.
Interestingly, Gui et al. [32] used the feature representations learned from Word2Vec
generative model [33] which is trained with texts. However, for more general classifi-
cation tasks, such as ship classification, aircraft classification, it is not always possible
to obtain reliable representations through such semantic embedding models. Since it
was proposed in 2014 [34], the generative adversarial nets (GAN) has gained great
popularity due to its novel design of adversarial structure which allows an increase of
the fidelity of generated images. Following this idea, an adversarial auto-encoder that
consists of a generator (decoder) and discriminator (encoder) as illustrated in Figure
8.9 is proposed to generate SAR-alike images with a few-shot training set in [35].
The generated images are then used to substitute part of real images for training, and
the results show that the generated images can boost the test accuracy by 5.77%.

Transfer learning either directly applies the simulated SAR images as training
data, or fine-tune the model that is trained with other data sources. In [36], Song
et al. proposed a three-step pre-processing method to reduce the gap between the
simulated and real data, and the processed images are used to train a truncated VGG16
network. The average margin index which calculates the averaged distance between
the classification boundaries and the extracted features of simulated data is proposed
to predict the test accuracy level, and determines when to stop the training process.
In [37], Huang et al. used nearly 50,000 TerraSAR-X patches as a source dataset to
train an auto-encoder which is then be used as a feature extractor of the target dataset.
To avoid training the entire network from scratch, transfer learning can effectively
reduce the risk of overfitting.

8.2 Land use and land classification

8.2.1 Local climate zone classification

The concept of local climate zone (LCZ) which was proposed for urban heat island
(UHI) studies, is now also used for classifying the urban areas, and for urbanization
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monitoring [38]. It is defined as different climate-relevant urban structures in terms
of the height, density, and type of the surface covers and anthropogenic parameters.
Figure 8.10 shows examples of the 17 types of local climate zones.

The World Urban Database and Portal Tool (WUDAPT), which was developed
by Bechtel et al., provided the LCZ community with a large dataset that covers nearly
100 cities with a resolution of 100 m [39]. In [38], Zhu et al. build a larger and finer
LCZ dataset named “So2Sat LCZ42,” which consists of 400,673 pairs of Sentinel-1,
Sentinel-2 patches with their corresponding LCZ maps and covers 42 + 10 cities
around the world.

LCZ classification is a challenging task, due to that: (1) imbalanced classes: the
numbers of different categories pixels are not equal. For example, there are much more
low plants zones than compact high-rise zones, open high-rise zones, or scattered trees
zones in Paris. Then if trained with Paris data, the model would pay more attention
to the low plants class, which decreases the classification accuracy of the others.
Besides, the distributions of the 17 categories vary with locations, which hinders
improving the model’s transferability. For example, the amount of samples of water
zones in Zurich is significantly more than that in Rome. (2) noise label: according
to [38], the overall confidence of the So2Sat LCZ42 dataset labels is 85%, and the
quality of WUDAPT is worse. The noise label not only influences the training of deep
models but also limits the maximum classification accuracy.

Existing deep learning models mainly focus on fusion methods of different types
of data for LCZ classification. In [40], Qiu et al. analyzed the importance of different
sources of data for LCZ classification using the residual convolutional neural network
(ResNet). The results showed that introduce of other data sources such as Open Street
Map (OSM) and Nighttime Light data (NTL) can boost the overall and weighted
accuracy. Then, they proposed to use the multi-spectra data acquired in four seasons
to further extract the temporal features [41]. The input Sentinel-2 data obtained in each
season are fed into four residual blocks to extract the spectral features respectively,
and the extracted features are the input for the follow-up long short-term memory
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(a) (b)

Figure 8.11 Illustration of concepts of regular segments (a) with segments by the
road network (b) of remote sensing images proposed in [44]

(LSTM) network for LCZ mapping. To reduce the gap between different sources of
data, Elshamli et al. proposed a domain adaption method [42]. Suppose there are N
sources of data, the loss is defined as the weighted average of the N losses calculated
when using different data, i.e.

L =
N∑

i=1

λiLi, λi = 1/ai, (8.5)

where ai is the validation accuracy tested on the ith source of data. In the LCZ
classification task, building areas are classified into several sub-classes according
to the density and height of the buildings. In [43], Yoo fused the building footprints,
building heights, and the number of stories with Sentinel-2 data to improve the overall
accuracy of the CNN model for urban LCZ classes. Due to the complicated urban
structures, the input patch may contain several LCZ types, as shown in Figure 8.11(a).
In [44], the road network data is used to segment the Sentinel-2 images, thus each
segment includes only a few similar patterns, as shown in Figure 8.11(b). Then the
segments are post-processed to have equal sizes, and fed into a CNN network for
classification.

Besides, other models put their attention on the design of network architectures.
In [45], Liu et al. proposed to treat the LCZ mapping as a scene classification task, and
the results show a patch size of 320× 320 m2–640× 640 m2 is suitable. A multitask
learning framework was proposed to make the LCZ maps and estimate the human
settlement extent (HSE) simultaneously in [46]. In [47], Ma et al. summarized the
state-of-the-art LCZ classification methods from different aspects, and proposed an
object-based image analysis method.

8.2.2 Crop-type classification

Previous studies showed that the agriculture industry has a significant effect on the
total gross domestic product. In Europe, there are nearly 10 million farms and over
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20 million people working in this industry [48]. Crop classification on a large scale
is of great potential in benefiting policymakers. With the launch of Sentinel-1 and
Sentinel-2 satellites, the number of available synthetic aperture radar (SAR) and
multi-spectral data is rising, which enables the automatic monitoring of crop growth.

Traditional methods often use handcrafted features, such as the normalized dif-
ference vegetation index (NVDI) and other spectral features, together with classifiers
such as random forest, support vector machine (SVM). Different crops have slight dif-
ferences in their spectral characteristic due to their structural diversities. In addition,
due to the different growth cycles of different crops, temporal features are also impor-
tant for crop classification. Thanks to the short revisit time (5 days with 2 satellites) of
Sentinel-2 and Sentinel-1 (6 days with the two-satellite constellation), analysis of the
time-series remote sensing data for crop classification becomes possible, and gained
a lot of attention in recent years. Usually, each sample is a M × N × C × T data
cube, also named by parcel, where M × N is the patch size, C denotes the numbers of
spectral bands, and T denotes the length in the temporal dimension. Thus the feature
representation learning for crops is a challenging but primary task, and using the
handcrafted features is not sufficient for mining the information from parcels.

With the development of deep learning, the essential features for crop type clas-
sification purpose are automatically extracted by the networks. More specifically,
CNN are used to extract the spatial and spectral features, and recurrent neural net-
works (RNN) are applied to learn the temporal attributes. Hybrid networks of CNN
and RNN are employed on the parcels to explore their hyper-dimensional features.

There are several typical network architectures for crop classification: (1) MLP:
use multi-layer perceptron (MLP) network to directly classify the input data; (2)
CNN: use CNN to extract the spatial features for each date, and concatenate the
extracted features, and these features are the inputs for a follow-up classifier; (3)
RNN: calculate a vector for each time date, and the time-series vectors are fed to a
standard RNN; (4) RCNN: the standard recurrent module in RNN is modified to a
CNN structure instead of MLP to handle tensor data; (5) 3D-CNN: take advantage of
three-dimensional convolutional operation instead of two-dimensional one to extract
the spatial and temporal features simultaneously.

In 2015, Kussul et al. proposed an MLP method to classify the multi-temporal
space-borne images for crop type classification [49]. The results showed that the
parcel-based approach is superior to the pixel-based approach, and verified the impor-
tance of taking both spatial and temporal features into consideration. And then the
convolutional neural network was used as a feature extractor with a reduced num-
ber of model parameters [50]. Current deep learning models are trained end-to-end,
so that the networks can yield the classification results directly. In [51], the effec-
tiveness of using RNN (long short-term memory networks, LSTM) is validated as
compared with the SVM classifier. In [52], Ji et al. proposed a 3D-CNN in which
a convolutional operation is applied to a 3D input instead of 2D data, as shown in
Figure 8.12. Thus, the convolutional layers extract not only the spatial features, but
also the temporal features. The classification results show that compared with 2D
CNN, spatio-temporal 3D CNN can obtain higher accuracy by 2%.
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Figure 8.12 Comparison of 3D-CNN (a) and 2D-CNN (b) for crop classification.
The figures are adopted from [52]

In 2018, Rußwurm et al. adopted a hybrid deep learning network architecture
that combines convolutional neural layers with recurrent networks [53]. One main
challenge in multi-spectral parcel data classification is the coverage of clouds that hide
the crops. The results showed a great potential of applying RCNN for cloud-induced
temporal noise.

In [54], Garnot et al. compared the classification performances of CNN, RNN,
RCNN models which extract spatial, temporal, and spatio-temporal features respec-
tively. The used data are obtained by Sentinel-2 over a region of 12,100 km2 in southern
France, and consists of 199,464 parcels of 32× 32× 10× 24. The best performance
was achieved by the RCNN model, when a majority of the parameters are related to
the temporal feature extraction. It implies that when using Sentinel-2 data for crop
type classification, temporal features are essential.

In [55], Rußwurm et al. compared the self-attention networks transformer with
LSTM-RNN, and CNNs in pixel-based crop type classification. The self-attention
layer can be formulated as

h = softmax( tan (�T
AX)�K )T X, (8.6)

where the X is the input, and �T
A and �K are the parameters to be determined. The

term of softmax( tan (�T
AX)�K ) is regarded as the attention scores (as visualized in

Figure 8.13) and each element is normalized to [0, 1]. As tested on a Sentinel-2 dataset
over a large area for over 10 category crop type classification using both the raw and
the preprocessed data, results show that all the models yield equally high accuracy on



Deep learning techniques for remote sensing 287

atten
tio

n
 sco

res

0.0

0.1

0.2

0.3

0.4

0.5

0

60

50

40

30

20

10

0

20 40

Tout

Tin

60

(a)

0.0

0 10 20 30 40 50 60 70

in
p
u
t 

ti
m

e 
se

ri
es

0.2

0.4

0.6

0.8

1.0

1.2

(b)

Figure 8.13 Visualization of the learned attention score matrix in [55]
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Figure 8.14 Encoder for extracting the spatial features proposed in [48]. The
randomly sampled pixels instead of the whole image are fed into the
network.

the preprocessed data, and the transformer and LSTM-RNN outperform other models
on the raw multi-spectral data.

In [48], unlike convolutional neural networks which explore the spatial structures
in the images, the proposed deep learning model takes the input coarser-resolution
images as unordered sets of pixels. For each data, several pixels are randomly sampled
from the input multi-spectral data several times, and are fed into an MLP layer, as
shown in Figure 8.14. Then the mean and standard deviation of the output vectors are
concatenated and fed into the follow-up modules. The proposed network was com-
pared with several classical deep learning models, yielding the highest classification
accuracy with less time and memory usage.

8.2.3 SAR-optical fusion for land segmentation

The fusion of cloud-free SAR data and high-resolution optical data is of great value
in rapid large-scale land monitoring. For example, floods are usually accompanied
by heavy rainfall, when a large area of the hyperspectral images is occupied by cloud
pixels. In this case, the fusion of SAR and optical images provides a solution for
high-accuracy disaster assessment.
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Figure 8.15 Architecture of proposed translator network in [57], where feature
maps from different layers in the decoder are cascaded by the
concatenate operation

In [56], a dataset that consists of 282,384 SAR and optical images pairs acquired
from space-borne Sentinel-1 and Sentinel-2 data are collected. The SAR and optical
images are co-registrated, and images with large cloud coverage (>1%) and distorted
colors are excluded. It has global geographic coverage and includes regions of various
climate types, which is of potential for fostering future SAR-optical fusion models
development.

An intuitive way of fusion SAR and optical images is to learn a mapping from
SAR and optical pairs. In [57], Fu et al. proposed a SAR-optical translation network
using cascaded-residual adversarial networks under the CycleGAN framework. It
comprises two translators (generators) and two discriminators: the translators, as
shown in Figure 8.15, are leveraged to translate SAR/optical images to optical/SAR
data; the discriminators are used to distinguish whether the input image is the real
image or the synthesized one. Experiments conducted with 12,854 pairs of images
demonstrate that the proposed network is applicable to the data obtained over various
terrain types.

A large land segmentation dataset is proposed in [58], which divides the image
into five categories: water, road, building, vegetation, and others. It includes 610
pairs of single polarimetric SAR images acquired by Gaofen-3 mission and optical
images, as well as the corresponding equal-size ground-truth labels. Each patch has
a size of 1, 024× 1, 024. A deep model based on encoder-decoder architecture, as
shown in Figure 8.16, is proposed for the land segmentation task. The results show
that the proposed network achieved an overall accuracy of 75.84%, and outperforms
the classical deep models such as U-Net, SegNet. Since it only uses SAR images as
inputs, fusion with optical images may further boost segmentation accuracy.
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Figure 8.16 An encoder–decoder network designed for land segmentation (the
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8.3 Disaster monitoring

According to the previous studies, with climate change, the frequency of extreme
weather events, such as storms, floods, typhoons, and droughts, increases. These
extreme weather events would have a significant influence on the electric power
supply, agricultural yield, and human activities, and threaten personal safety, and
social security. For example, a winter storm in North America in January 2022 left
thousands of homes without power. In this section, we focus on the application of
deep learning models to disaster monitoring, and briefly introduce the development
of flood detection, storms, and lighting nowcasting models.
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8.3.1 Flood detection

Severe floods not only damage buildings, infrastructures, crops but also cause deaths.
To reduce the losses caused by the lack of accurate and timely flood information, flood
detection has gained increasing popularity in recent years. A number of datasets and
deep learning models are proposed dedicated to this task. Here we list three public
datasets:

FloodNet [59]: It is collected between August 30 and September 04 (after the hurri-
cane) in 2017 over Ford Bend County inTexas and other areas directly impacted by
Hurricane Harvey with drones. It consists of 3,200 high-resolution images which
are annotated with 9 classes, and about 11,000 question-image pairs. The dataset
is collected for three levels of post-disaster damage assessment: image clas-
sification (Flooded/Non-Flooded), image segmentation (9 classes), and visual
question answering (VQA). Some examples of the annotated data are shown in
Figure 8.17 as in [59].

Water Segmentation Open Collection (WSOC) [60]: It is collected from Twitter
posts and the existing image segmentation datasets that contain water category,
such as COCO, the Microsoft Research in Cambridge v2 (MSRC v2). It includes
120,061 optical images as well as pixel-level segmentation annotations, which is
available at https://zenodo.org/record/3642406.

UNOSAT Flood Dataset [61]: The dataset consists of Sentinel-1 data with a reso-
lution of 10 m × 10 m, and their corresponding flood extent boundary maps. It

Real Image Ground Truth Segmented Image  QA Pair

Image Class: Non-Flooded

What is the overall condition of the

given image?  Non-Flooded

How many buildings are non flooded? 6

How many buildings are in this image? 6

Is the entire road flooded? No

What is the condition of the 

road in this image?  Non-Flooded

Image Class: Flooded

Image Class: Flooded

How many buildings are in this image? 19
Is the entire road flooded? No

What is the condition of the road 

in this image?  Flooded and Non-Flooded

How many buildings are flooded? 19

What is the condition of the road

in this image? Flooded

How many buildings are in the image? 5

How many non flooded buildings can be 

seen in this image?  3

Background

Building-flooded

Building-non-flooded

Road-flooded

Road-non-flooded

Water

Tree

Vehicle

Pool

Grass

Figure 8.17 Three tasks (i.e. image classification, semantic segmentation and
visual question answering (VQA)) included in the FloodNet dataset
in [59]



Deep learning techniques for remote sensing 291

includes 58,128 samples of 256× 256 pixels obtained over multiple regions (8
cities/countries) from 2015 to 2020.

Various sources of data and multiple deep learning networks that are used for
image segmentation tasks in the computer vision field are utilized for flood detection.
In 2017, Lopez-Fuentes et al. used social media posts (both images and text) for flood
classification [62]. The famous InceptionV3 network which was pre-trained on the
ImageNet dataset was used to extract the features in images, and the bidirectional
Long Short-Term Memory network was used for text mining. And it achieved an
81.6% average precision on the test set. In [59], the authors tested three networks
on the FloodNet dataset, and the results showed that PSPNet [63] yield significantly
higher accuracy than the other two. In [64], Akiva et al. proposed a self-supervised
learning method named as H2O-Net for flood detection in satellites images. It trains
a generative adversarial network (GAN) to generate SWIR images from input RGB
images, and used the synthetic SWIR and the RGB image for segmentation.

Due to its ability to work all-day and all-weather, space-borne SAR sensors are
able to acquire images through rain and cloud on a large scale, which is beneficial for
flood detection. In [65], a fully convolutional network was used to derive the binary
segmentation maps with equal size as the input images from PolSAR data. The gen-
eralization ability of the network is further explored by using a dataset obtained from
multiple countries and regions in [61]. In [66], Li et al. applied a convolutional neural
network on multi-temporal TerraSAR-X data, and used an active learning strategy
to make use of the unlabeled data during training. In SAR images, the scattering
intensities in both the flood and shadow areas are low. In [67], the proposed multi-
resolution dense encoder-decoder network (MRDED) segments the input SAR images
into three categories: background, flood, and shadow. As shown in Figure 8.18, the
network encodes and decodes the different scales of features from different convolu-
tion and deconvolution layers. Results showed lower accuracy of water (80.12%) and
shadow (88%) compared with background class ( 95.16%), which implies that water
pixels in SAR images may be confused with shadow class.

8.3.2 Storm nowcasting

Unlike forecasts, storm nowcasting means the short-term prediction of the storm
activity for up to 3 hours. Usually, the distribution map of hydrometeors in the atmo-
sphere can be plotted by the weather radars. Then the storm nowcasting is done by
using the radar echoes from a past period to predict the future radar echoes. Tradi-
tionally, it is taken as a task of extrapolation in the temporal dimension. It can also be
regarded as an image sequence to image sequence translation task, which is similar
to the video prediction task in the computer vision field [68].

Traditionally, storm nowcasting methods rely on optical flow, fuzzy logic, and/or
numerical models. The optical flow calculates the movement between two images at
different times. More specifically, to assume that

I (x +�x, y +�y, t +�t) = I (x, y, t)+ ∂I

∂x
�x + ∂I

∂y
�y + ∂I

∂t
�t + δ, (8.7)
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Figure 8.18 Flowchart of MRDED proposed in [67]

where the I (x, y, t) is the value at the location (x, y) at time t, and δ is the higher-order
terms of Taylor series. Some successful storm nowcasting systems are DARTS [69],
STEPS [70], CO-TREC [71], and SWIRLS [72].

The advance of deep learning models, especially those that come from the video
processing field, has motivated the application of deep learning to storm nowcasting.
Their ability to learn relevant latent features which is not capturable by classical
physical-based models has attracted a lot of attention [73]. A convolutional long short-
term memory network is proposed in [73], and the results show a better performance
of the proposed network over the optical flow based ROVER algorithms. And it also
has the advantage of coping with the cases in which a sudden appearance of cloud
agglomeration at the boundary. Figure 8.19 shows an example of a convolutional
long-term memory module. In [74], Sato et al. proposed a skip-connected PredNet
(SDPredNet) which has a different encoder-decoder architecture. After being trained
on a 3-year real dataset, the test results showed a comparable prediction accuracy of
SDPredNet as compared with the baseline model in terms of (CSI) and Heidke Skill
Score (HSS). In [75], the proposed deep learning model that combines CNN and
recurrent structure was verified to outperform the classical CO-TREC model [71].

Other classical deep learning models are also applied. In [76], the widely-used
segmentation network U-Net is used for short-term precipitation nowcasting. Chen et
al. proposed a GAN network to increase the resolution of the radar echo images [77].
In [78], Jing proposed an adversarial extrapolation neural network (AENN) for radar
echo extrapolation. The time-series radar echo maps from the last four hours are fed
to the generator as partial inputs, and there are two discriminators, i.e. echo-frame
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Figure 8.19 The proposed ConvLSTM module in [73]

discriminator and echo-sequence discriminator. The experiments were carried out
using the data from 2016 to 2017 that acquired over five cities in China. The results
showed that AENN outperforms the ConvLSTM [73], ROVER, and TREC for most
predictions. In [79], the convolutional gated recurrent unit (ConvGRU) are trained
with an adversarial strategy to increase the sharpness of extrapolated images.

In [80], Prudden et al. reviewed the current state-of-the-art precipitation predic-
tion methods. In [68], Cuomo et al. compared three different deep learning models
from several aspects: used multiple loss functions including the non-convex ones;
analyzed the results when making use of the different numbers of input radar echo
images; compared the models’performances when different outputs types are applied;
extensively compared different model using 12 years of data from 2005 to 2017 for
training, and data from 2018 and 2019 for validation and test.

8.3.3 Lightning nowcasting

Although lightning is a common natural phenomenon, it can also threaten human
safety and cause damage to man-made facilities. Every year, thousands of people
die from lightning. Thus, lighting monitoring is of great importance. For example,
the National Lightning Detection Network (NLDN) of China records the lightning
occurrence frequency from 394 ground-based sensors. And satellite data and radar
data have been explored for lightning nowcasting [81].

The lightning nowcasting can be formulated as

Yt = F(X ), Yt ∈ R
M×N , X ∈ R

M×N×C×T , (8.8)

where the input is T-hour data, and X (m, n, c, t) corresponds to the acquired data at
location (m, n) in the tth time interval, and the model outputs the lightning frequency in
the interested region at the T + t interval [82]. The input data can be the simulated data
by the weather research and forecasting (WRF) model, and/or accumulated number
of lightning occurrences per hour [82], the satellite data, and/or radar reflectivity
data [81].

Traditional lightning forecast methods are based on numerical weather predic-
tion (NMP) systems. The NWP systems calculate the meteorological parameters by
solving the partial differential equations derived by physical modeling. Although
the future lightning can not be directly forecasted in this way, the meteorological
parameters are related to it. Additional lightning parameterization schemes are used
to estimate the lightning density from the simulated meteorological parameters. Here



294 Applications of deep learning in electromagnetics

we list two models for example. The lightning parameterization scheme PR92 relates
the lightning flash rate to the vertical windspeed w [83] with a power law, which is
formulated as

F = 5.7× 10−6w4.5
max, (8.9)

Another widely-used lightning parameterization meteorology scheme is Threat F2
which takes the air densityρ, ice, snow, and graupel mixing ratios i, s, g as inputs [84].
It is formulated as

F2 = 0.02
∫
ρ(iz + sz + gz)dz, (8.10)

where the subscript z denotes the height.
The deep learning models are introduced to explore the potential value of comb-

ing the physical-aware numerical results and the actual historic lightning observations,
and/or the satellite and radar data [81,82,85,86]. It is natural since the history observa-
tions are equally important for lightning nowcasting, and the deep learning models’
ability in extracting spatio-temporal features is famous in other fields. In [82], an
attention-based dual-source spatio-temporal neural network (ADSNet) is proposed
to fuse the numerically simulated results and the historic lightning observations
acquired from ground-based stations. Its overall architecture is shown in Figure 8.20.
A channel-wise convolutional operation is adopted to learn the importance of differ-
ent input simulated data. The normal and channel-wise convolutional layers can be
formulated as follows:

Ym, n, c′ =
∑

k , l, c

X (m+ k , n+ l, c)×W (k , l, c, c′), (8.11)

Ym, n, c =
∑

k , l

X (m+ k , n+ l, c)×W (k , l, c). (8.12)

In (8.11) and (8.12), X , W , Y are the input multi-channel data (different simulated
meteorological parameters), the weights, and the layer output respectively. Addi-
tionally, the ConvLSTM module is applied as did in precipitation nowcasting [73].
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input: N × 400 × 400 × 8

ground truth: 400 × 400 Convolutional Encoder-Decoder

output: 400 × 400

Figure 8.21 Illustration of the architecture of LightningNet in [81]. It is a typical
auto-encoder with four groups of convolution layers in encoder and
decoder respectively.

As compared with numerical simulation methods, the deep learning models are
superior, and the proposed ADSNet performs best based on the experiments.

In [85], LightNet which consists of two encoder modules, one fusion module
and one decoder module was proposed. The two encoders extract the spatio-temporal
features for the past and simulated future meteorological data, and the lightning obser-
vations, respectively, and then the extracted are concatenated. Results suggested
that LightNet is capable of both short- (first-three-hour) and long-term (second-
three-hour) lightning forecasts. The follow-up network LightNet+ [86] has a similar
architecture as LightNet [85], and is introduced to connect lightning nowcasting with
automatic weather station (AWS) data as well. Although when using only AWS data,
the network performs worst, the results showed that when fuses the AWS data with
lightning observations and simulated data, the model yield higher accuracy compared
with LightNet.

On the other hand, the obtained data from meteorological satellites and radar
also are highly correlated with lightning prediction. For example, the received echos
reflected by large amounts of graupel and hail particles is large, and the study in [87]
showed that the high radar reflectivity and low temperature is a sign of lightning. In
[81], Zhou et al. proposed to use stacked 6-band spectral images, one radar reflectivity
image and one observation data to nowcast the lightning occurrence. The proposed
deep network LightningNet as shown in Figure 8.21, consists of one encoder and
decoder, which is a modified version of SegNet [88]. LightningNet was tested on
different types of data, and the results showed that fusing the lightning data with radar
and/or satellite data is essential, and significantly improved the prediction accuracy.

8.4 Forest applications

As shown in Figure 8.22, forests covered about one-third of the land on earth.
According to the Food and Agriculture Organization of the United Nations (FAO)’s
report, there are 4,058.93 million ha forests over the globe.∗ Tropical (dark green),

∗https://fra-data.fao.org/.
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Figure 8.22 The geographic distribution of forest covered on earth. The picture is
adapted from https://fra-data.fao.org/.

boreal(blue), temperate (green), and sub-tropical (yellow) forests contribute 45%,
27%, 16%, and 11% proportion of the world’s forests.

Forests, which stock carbon and produce oxygen, and are home to various ani-
mals, are essential for climate change and biodiversity preservation. Previous research
has shown the high cost of climate change if greenhouse gas emission keeps the same.
Thus regular monitoring of forests is necessary. Using remote sensing techniques and
deep learning models enables fast, automatic, large-scale forests applications. In this
section, we introduced the recent developments of deep learning models that applied
in tree species classification, deforestation mapping, and fire monitoring.

8.4.1 Tree species classification

Species classification in forests identifies the species of either an individual tree
or a forest stand, which can help improve the forest biomass calculation accuracy.
Currently, forest-stand-level species classification has been not addressed using deep
learning models yet. Thus, this section focuses only on individual-level methods.

In this regard, LiDAR data are able to facilitate the species classification a lot
[89–91] in (1) detecting the position of trees using the LiDAR-derived heights and
local maximum algorithms; (2) segmenting the remote sensing images for individual
trees according to the trees’ positions; (3) extracting the 3D structure information
from the LiDAR point cloud for discriminating different species. In [92], the listed
4× 6 LiDAR samples of four types of trees reveal that different species vary in the
canopy structures, leave types, etc., and the 3D features are one of the important
clues for species classification. Besides, high-resolution multi-spectral images are
also used for extracting spatial and spectral features.

In [92], Zou et al. isolated different trees, and constructed a voxel for each
tree using terrestrial LiDAR data. Then several projected 2D images from the voxel
data are fed into a deep belief network (DBN). Sun et al. segmented a number of
Worldview-2 patches according to the LiDAR-derived tree heights, and compared the
usage of AlexNet, VGG16, ResNet50, DenseNet, RF for classifying the segments
into species [89]. Results suggest that ResNet50 is superior to DenseNet and RF
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(a) (b)

Figure 8.23 Examples of LiDAR-derived relative height model (a) and LiDAR
intensity return image (b). The figures are adopted from paper [93].

on seven-type-species classification task, and VGG16 is better than ResNet50 and
AlexNet on the fine species classification task (18 tree species). A similar workflow
is adopted in [93], where DenseNet has achieved over 80% accuracy on the 8-species
tree classification task, while SVM and RF can only achieve about 60% overall
accuracy. And results also suggest that fusing VNIR, SWIR and LiDAR data (such as
relative height model and intensity return image as shown in Figure 8.23) can boost the
performances of the classifiers. In [90], a simple but effective convolutional neural
network that combines leaf-off and leaf-on remote sensing images is proposed to
classify the leaf type of the trees.

Schiefer et al. cast the species classification task as a segmentation problem that
learns a mapping that

f : X ∈ R
M×N×C ⇒ Y ∈ R

M×N . (8.13)

The classical segmentation network U-Net is utilized to process the very high-
resolution (<2 cm) RGB imagery, and obtained a high classification accuracy of
0.89 with an F1-score of 0.73.

In [94], the point cloud {(x, y, z)} acquired by LiDAR is directly used for tree
species classification. Two issues behind this are (1) how to handle the disordered
points set and (2) the numbers of points vary among species and trees. In dealing
with the first problem, the famous PointNet++ [95] which is good at set abstraction is
adopted. To solve the second problem, a threshold-based preprocessing step is applied
first: it randomly discards some points when the number of points n > θ1; and when
θ2 =< n < θ1, it randomly copies θ1 − n points.

To make the best of both the LiDAR data and multi-spectral images, a dual CNN
network named Silvi-Net that extracts features from two sources of data respectively
is proposed in [91]. As illustrated in Figure 8.24, the cropped multi-spectral images
and the projected LiDAR 2D images are fed into two ResNet-18, and the outputs
features are combined for final classification prediction. Besides, the explainability
analysis via class activation mapping (CAM) shows that the trained network can put



IMAGE GENERATION

masking

DATA

cropping

M
S

 o
rt

h
o
p
h
o
to

tr
ee

 p
o
ly

g
o
n
s

p
o
in

t 
cl

o
u
d
s

projection

pine birch alder dead tree

FEATURE EXTRACTION

ResNet–18

ResNet–18

512×1

512×1

fe
at

u
re

 v
ec

to
r

fe
at

u
re

 v
ec

to
r

CLASSIFICATION

MLP classifier

class
probabilities

Figure 8.24 Flowchart of the dual-CNN network Silvi-Net that designed for species classification which is proposed in [91]



Deep learning techniques for remote sensing 299

its attention on the image center (the tree), and the incorrect classification results are
captured when the network misplaced its attention.

In summary, various deep learning models have been developed for individual-
level tree species classification using LiDAR and multi-spectral data. These models
are able to extract effective features from disordered point cloud data. However,
existing methods are trained and tested with the data obtained over a small region
(a park, or a forest region), thus are only applicable to a small region. Furthermore,
temporal features which are useful in distinguishing conifers from deciduous trees
have not been explored yet.

8.4.2 Deforestation mapping

From 2000 to 2020, the forest area has decreased from 4,158 million ha to 4,059
million ha.† As a result, the total carbon stock has reduced by about 1.17 Gigaton.
The disturbance of forests, either caused by natural hazards or human activities, is
one of the main sources of greenhouse gas emissions. Thus, regularly monitoring and
mapping deforestation is crucial for forest and biodiversity preservation, and climate
change mitigation.

A convolutional neural network is used to extract the spatial features of each
of the time-series input images respectively, and the outputs after the first fully-
connection layer are fused by a max-pooling operation along the temporal domain
in [96]. Experiments reveal that the deep CNN model is significantly better than the
traditional SVM and RF algorithms.

U-Net and its variations have dominated the deep deforestation mapping meth-
ods [97–101]. In [97], a 93-layer ResUnet is used and compared with RF, MLP,
SharpMask, and U-Net models. The 7-band Landsat data acquired over two dates are
stacked and fed into the deep networks, which is also named as early fusion (EF)
method. Test results (as shown in Figure 8.25) over a different site show that deep
models are superior to the classical methods, among which the ResUnet achieved the
best accuracy in terms of F1 score, Kappa coefficient, mIoU, and recall metrics. The
EF U-Net is compared with Siamese Network (SN) and convolutional SVM in [102].
On the other hand, a late fusion (LF) U-net which concatenates the feature maps
of the input images at the same scale in U-Net is proposed in [98]. And the results
demonstrate a slight superiority of LF U-Net over the baseline U-Net and EF U-Net
models.

In [99], seven variations of U-Net are compared using Sentinel-2 data over
Ukraine, where the UNet-diff and UNet-CH which both include the difference images
in the inputs achieved higher F1-score over the others. In order to deal with the unbal-
anced classes, the weighted sum of binary cross-entropy loss and Dice loss are the
final objective of the deep network, which is defined as

L = wBCE ×LBCE + wdice ×Ldice, (8.14)

†https://fra-data.fao.org/WO/fra2020/home/.
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LBCE = − 1

m

m∑

i=1

(yi × log ŷi)+ (1− yi)× log (1− ŷi), (8.15)

Ldice = 1− 2×∑m
i=1 (yi × ŷi)+ ε

∑m
i=1 y2

i +
∑m

i=1 ŷi
2 + ε . (8.16)
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Attention modules are added into the U-Net model in [100]. The attention module
learns an attention score matrix from two neighboring scales of feature maps in the
encoder, and multiplies it with the decoded features before fused with feature maps
in the decoder. LSTM is the most commonly used model to handle time-series data.
A novel framework that uses the LSTM predicted deforestation probability map with
PRODES and slope data as the input of U-Net for deforestation type classification
is proposed in [101], as shown in Figure 8.26. As high as 99% overall accuracy and
over 0.7 of F1-score are obtained as tested with Landsat and Sentinel data over Mato
Grosso and Bahia.

8.4.3 Fire monitoring

Forest fire happens more frequently in recent years due to climate change and for-
est degradation, and its impact on the ecological environments is also getting worse.
According to the World Wild Fund’s report,‡ from 2019 to 2020, the Australian bush-
fire has killed about three billion animals, and burned up over 12 million hectares of

‡https://www.wwf.org.au/what-we-do/bushfires.
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forest and bushland. Automatic monitoring of forest fires serves as early alarms to
the decision-maker, which can reduce both economic and ecological loss.

In [103], Naderpour et al. applied a multilayer perceptron (MLP) to predict the
forest fire vulnerability based on 12 factors including wind rainfall, temperature,
normalized difference vegetation index (NDVI), etc. The outputs are then combined
with the calculated physical and social susceptibility indexes based on the analytic
hierarchy process (AHP) model, to generate the forest fire risk map.

Besides the effort of pre-event fire estimation, existing studies mainly focus on
locating the fire in the remote sensing images. It can be formulated as outputting
a binary matrix Y ∈ {0, 1}M×N given a C-channel images X ∈ R

M×N×C using the
trained models. The binary values in Y denote either fire or non-fire class. In [104], a
deep neural network is used to transfer the MODIS data into the fire map. Considering
that there are many more non-fire class pixels in the censused data, an early stopping
method is adopted to prevent the network from over-fitting. Equal numbers of fire
and non-fire classes data are spared for validation, and the training process will stop
when the validation is not further improved. A similar framework is proposed in [105]
to classify the MODIS data into five types (burned area, vegetation, cloud, bare soil,
and cloud shadow).

Convolutional neural networks are also used to extract the representative spatial
features from remote sensing images. In [106], Ban et al. use a CNN to classify the
Sentinel-1 SAR time-series images, as shown in Figure 8.27. The differences between
pre-fire and ongoing time-series images which represent the rapid change caused by
wildfire are beneficial. The time-series images are stacked and concatenated with
the digital elevation model (DEM) products, which are fed into the CNN model.
Experiments conducted with three wildfires demonstrate that the CNN-based method
can achieve at least 0.11 higher accuracy in Kappa than the log-ratio-based algorithm.
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Deep learning techniques for remote sensing 303

W
it

h
 s

in
g
le

 c
la

ss
 t

il
es

W
it

h
o
u
t 

si
n
g
le

 c
la

ss
 t

il
es

coastlinea

d e

agricultural fields

lake-

shore

coastline

airport

agricultural fields

lake-

shore

f

b c

low probability high probability

Figure 8.28 Comparison of U-Net’s predictions of probability of being burned
when trained with and without single class tiles. The image is adapted
from [107].

As a famous and successful image transformation network, U-Net is also adopted
for burned area mapping [107–109]. In [107], Knopp et al. applied the standard
U-Net for burned area segmentation in Sentinel-2 images. Results show that by adding
the single-class samples into the training set, U-Net can better handle the unburned
class, and cast fewer false alarms, as shown in Figure 8.28. In [108], Pinto et al. used
time-series images for large-scale burned area mapping with U-Net. Four sources of
satellite data, which are required from Sentinel-1, Sentinel-2, Sentinel-3, and MODIS,
are fused and compared using U-Net as a benchmark model in [109]. Since the dataset
is severely unbalanced with significantly more unburned pixels, the combination
of binary cross-entropy and dice losses that is defined in (8.14)–(8.16) are used in
this case. Results suggest fusing Sentinel-2 and Sentinel-3 images during the clear
conditions, and using Sentinel-1 data on cloudy days.

8.5 Conclusions

In this chapter, we summarized the state-of-the-art deep learning models that are
developed for remote sensing applications. Specifically, we introduced the models
which are designed for 13 tasks related to target recognition, LCLU, disaster nowcast-
ing, and forest monitoring. CNN, as a major feature extraction tool, is popular in nearly
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all tasks. Besides, since most tasks can be regarded as an image translation problem,
U-Net is widely used in these applications such as deforestation and wildfire mapping,
building footprint generation. When handling tasks where the outputs are related with
a time-series before current states, LSTM is often applied as one of the important
modules to extract temporal features. In addition, specifically tailored loss functions
are employed for dealing with problems such as unbalanced training sets, and target
bounding box estimation. In the future, to further boost the prediction accuracy,

● explainable artificial intelligence (XAI) tools can be explored to understand the
functional mechanisms of the applied deep models. For example, the gradient-
weighted class activation mapping (Grad-CAM) method can be used to analyze
the model’s “attention” paid to the inputs;

● future efforts need to increase the applicable scope of the models. Current models
are trained with and applicable to data acquired within a/several regions. To cope
with it, on the one hand, a large scale of benchmark datasets should be censused.
On the other hand, techniques that are developed for transfer learning and few-
shot learning can be transferred to remote sensing tasks to handle scenarios where
only limited annotated data is available;

● physical-aware models can be combined with current deep neural networks
to increase the models’ robustness and generalization ability. Current models
directly applied the networks which are proposed in the computer vision field,
and these models may not work well for microwave vision tasks. But, how to
combine them is still an open issue.
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Chapter 9

Deep learning techniques for digital satellite
communications

Federico Garbuglia1, Tom Dhaene1 and Domenico Spina1

9.1 Introduction

Satellite communication (SatCom) has been in rapid evolution during the last decades.
The rapid growth of space industry is making satellite technologies available to more
companies and private customers. However, despite the technology improvements,
the capacity of SatCom systems is still subject to the limitations presented by physical
communication channels. In fact, signals travelling from the earth surface to near-
space artificial satellites are strongly attenuated by long propagation distances, and
deteriorated by atmospheric and extraterrestrial noise.At the same time, compensating
for noise and attenuation is only possible at the cost of increasing the power consump-
tion or reducing the data rate of the transmitting devices. Hence, SatCom systems
need intelligent strategies for the allocation of power and bandwidth resources [1].

Thankfully, machine learning (ML) can be employed to automate resource allo-
cation, as described in Section 9.2. In particular, deep learning (DL) techniques,
which exploit artificial neural networks, are suitable to perform such complex tasks
in sophisticated SatCom systems. For a proper resource allocation, the receiver in a
communication system has to be informed about characteristics of the channel and
the operating conditions of transmitting devices, such as propagation losses and oper-
ating point of high-power amplifiers. However, carrying such information reduces
the serviceable capacity of the channel, as described in Section 9.2. Instead, a DL
model can be employed to directly extract this information from the signal samples
incoming at the SatCom receiver, thus preserving communication link capacity.

In particular, this chapter specifically focuses on the characterisation of noise and
nonlinear distortion in digital satellite communication links, which is of paramount
importance to ensure the desired performance of modern SatCom systems, as
described in Sections 9.3 and 9.4. The noise is due to the propagation of the transmitted
signals in the channel, while the distortion is mainly caused by nonlinear high-power
amplifiers used at the transmitter. The goal is to efficiently estimate these quantities

1IDLab, Ghent University – imec, Belgium
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directly at the receiver of a SatCom system via suitable DL techniques. Two inde-
pendent DL strategies are proposed for the estimation of noise and distortion from
received signals. First, a convolutional autoencoder is presented in Section 9.5 for
noise estimation. Next, a deep convolutional classifier is described in Section 9.6 to
evaluate the distortion introduced by high-power amplifiers. Both strategies achieve
high accuracy when tested on suitable application examples of SatCom systems. Fur-
thermore, results indicate that the trained DL models can be used simultaneously on
signals that are affected by channel noise and amplifier distortion.

More generally, this chapter illustrates how DL models can be used to extract
the value of system parameters or transmitting conditions from samples of an electric
signal. Hence, the use of these strategies can be extended to other domains, such
as electromagnetic compatibility or signal integrity, where it is valuable to estimate
unknown system conditions from detected signals.

9.2 Machine learning for SatCom

SatCom has become an omnipresent technology in contemporary times. Artificial
satellites are employed for every communication service that requires a world-
wide coverage, such as radio, video broadcasting, internet access, aeronautical and
maritime communications.

Recently, SatCom has become increasingly prominent in cellular communication
networks. In fact, the latest mobile communication standards like LTE and 5G put
heavy traffic loads on the cell backhaul systems. Thanks to the latest technological
improvements, such as high-throughput satellites, data prefetching, and high-order
adaptive modulation schemes, satellite communication provides a viable option to re-
design the cell backhauls [2]. In fact, these innovations allow to increase the available
bandwidth while reducing the delay introduced by SatCom systems. In addition,
SatCom has become essential to extend the cellular network and the internet access
to remote areas, where building the infrastructure for terrestrial communications is
infeasible. Moreover, the cost of deploying communication satellites is progressively
reduced by the advancements in orbital launch systems. Both governments and private
companies can now deploy large constellations of satellites and provide world-wide
broadband services [3].

A consequence of these innovations is that SatCom systems are getting more
complex, increasing the need for automated control strategies. In fact, it is desir-
able to make control strategies adjustable to numerous factors, including user traffic
and weather. From the software side, ML algorithms can help fulfil the need for
automation. Indeed, ML has natural application in the processing of the informa-
tion that is gathered from – or carried through – artificial satellites. For example,
it has been employed in weather prediction, earth observation, navigation and posi-
tioning systems [4–6]. Additionally, ML has been successfully used to solve issues
related to the design and implementation of communication systems. In fact, it can
be employed for typical SatCom problems such as interference mitigation, allocation
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of spectrum and power resources, optimisation of multi-input–multi-output (MIMO)
communications [7], or optimisation of network architecture [8].

Furthermore, the evolution of SatCom is headed towards the inclusion of
advanced functionalities like network virtualisation, active antennas and mega
constellations. Thankfully, ML techniques like digital twins enable the seamless
integration of these increasingly complex functionalities. In fact, digital twins can
virtually replicate the functioning of an entire SatCom system, from the physical
layer to the user application layer. New designs and functionalities can be tested on
digital twins, before the actual implementation. Moreover, a digital twin can be inter-
faced with the real system to automate monitoring and control policies. Thus, digital
twins can significantly reduce the cost of performance optimisation for complex
systems [9].

Within this framework, this chapter focuses on the use ML for the estimation of
power resources. In SatCom systems, the operating conditions of the transmitter and
the characteristics of the satellite channel are in continuous mutation, due to numerous
factor, such as weather, users traffic, or even the battery status of the transmitting
device. Thus, in order to limit the power consumption of a transmitter, it is necessary
to control the transmission power by taking variable factors into account.

The first step to design a power control strategy is to estimate the status of the
received signal. Specifically, the amount of noise and distortion on the received signal
has to be measured. Noise and distortion are commonly measured at the receiver by
checking a sequence of incoming known sequences, called pilot symbols. In fact,
noise and distortion affect the reconstruction of the received pilot symbols. However,
to implement this solution, part of the SatCom link capacity has to be reserved for
the transmission of pilot symbols. Instead, ML techniques can be applied to estimate
noise and distortion directly from any signal pulse arriving at the receiver, as described
in the following. Once this estimation is executed, the signal can be corrected at
the receiver using techniques like symbol-based equalisation. Furthermore, if the
transmitter is informed about the estimation, corrective actions such as predistortion
can be applied [10].

9.2.1 Deep learning

Depending on the available data and the interaction with the system, three main classes
of ML algorithms can be distinguished: supervised, unsupervised and reinforcement
learning. In supervised learning, a set of data samples are provided together with
labels. Such labels represent the target values for the ML model. Then, the task of
the ML model is to produce a mapping between the input data and the corresponding
labels. If the ML model is well trained, it will be able to predict the correct labels for
previously unseen data samples. However, labelled dataset are typically expensive to
collect, since they require an external ‘oracle’, such as a human or a simulator, to
provide the true label for each sample. A common example of supervised learning is
the classification of images: after collecting and labelling a wide collection of input
images, a ML model can be trained until it assigns the correct label to all the possible
inputs. The training process is usually driven by an error metric between the correct
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label and the model prediction: the model modifies its internal parameters such that
the output error is reduced.

In cases when only unlabelled data is available, unsupervised learning tech-
niques can be applied. In unsupervised learning, the task of the ML model is to
provide a mapping of the input data in which common patterns can be identified.
For example, unsupervised learning can be applied to image classification when the
image labels are missing. In this case, the model usually provides an internal repre-
sentation of the input images that are similar among inputs of the same class. Thus,
clusters of images with similar representation can be identified and labelled. Addi-
tionally, in unsupervised learning, the model typically provides an inverse mapping
from the internal representation to a reconstructed input data. Thus, the model train-
ing is driven by an error metric between original input and the reconstructed input:
the lower the error, the more accurate is the internal representation. Additionally,
the inverse mapping grants to the model the ability to generate new data, by choos-
ing an internal representation that does not correspond to any of the training data
samples.

The last class of ML algorithm is reinforcement learning. In reinforcement learn-
ing, the ML model is capable of extracting the data by performing an action in a
specific environment. In this case, data is typically extracted iteratively: the ML
model selects the data observation that maximises a specified reward function. Thus,
the ML model performs a decision based on the data collected from the environ-
ment during previous iterations. Differently from supervised learning, the model is
not trained on the desired output (i.e. the labels), but on a reward function built on
the response of the environment. For examples, in robot kinematics, a model can be
trained to move the robot to a specific position. Then, reward function can be com-
puted on one or multiple movements and used to progressively update the model. The
performance of reinforcement learning techniques strongly depends on the definition
of the reward function. In fact, the definition has still to be provided by a human
interpreter, who evaluates the actions performed by the model.

In this chapter, supervised ML techniques will be adopted: more specifically,
deep learning techniques based on artificial neural networks (ANN) [11]. The strength
of neural networks derives from their ability to model extremely complex functions,
due to their high number of learning parameters. Additionally, they possess a versatile
architecture: if higher complexity is needed, multiple layers of neurons can be stacked,
creating a deep structure. The downside of such modelling capability is that neural
networks need a large dataset of examples (i.e. large amount of training data) to learn
a specific task. Thus, high capacity storage and computation power are typically
required to train DL models. Another advantage of DL models is their ability to
operate on high-dimensional data vectors. Consequently, in the last decade, countless
DL techniques have been designed to operate on complex data such as text, images,
audio and telecommunication signals.

In this chapter, a specific use case of DL for satellite communication is pre-
sented. Section 9.3 gives an overview of the general architecture of digital satellite
communication systems, while the specific SatCom model studied is described in
Section 9.4.
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9.3 Digital satellite communication systems

In general, a SatCom system can be divided into two ground segments and one space
segment. The first ground segment is the uplink, which is responsible for transmitting
the user signal to a satellite in orbit around the earth. The radio components of the
artificial satellite constitute the space segment. Finally, the signal is relayed by the
satellite to the receiving ground segment, that recovers the original signal sent by
the user. This last segment is called downlink.

9.3.1 Uplink segment

Typically, the uplink segment consists of the components shown in Figure 9.1. Here,
the digital signal at the user terminal is encoded and modulated according to a suitable
digital modulation scheme. Typical schemes include Amplitude Phase-Shift Keying
(APSK), Quadrature Amplitude Modulation (QAM) or Quadrature Phase-Shift Key-
ing (QPSK). The choice of the modulation scheme is strongly dependent on the
bandwidth and power resources available in the radio channel. In fact, increasing the
order of the modulation, i.e. the number of encoding symbols, allows to carry more
information in the same bandwidth. However, high-order schemes are more sensitive
to noise and distortion, since they present a reduced separation among symbols.

After modulation, the resulting analog signal is allocated in the transmission band
by the upconverter. Depending on the type of the satellite service, several transmission
bands can be reserved, ranging from 1–2 GHz (L-band) to 26.5–40 GHz (KA-band).
Due to the high propagation loss in the atmosphere and in free space, the upconverted
signal needs to be amplified by a high-power amplifier, so that it can reach the
satellite transponder at a sufficient signal-to-noise ratio (SNR). The SNR is the ratio
between the signal power and the background noise power. If its values is too low,
the noise can compromise the reconstruction of the original message at the receiver.
Finally, the transmitter antenna, which is the last component of the uplink segment,
adapts the signal to the open space propagation. For earth station uplinks, wide
parabolic antennas are usually used, since they provide high gains. In fact, higher
gains correspond to higher signal power, thus reducing the amplification needed at
the satellite receiver.

User signal
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Encoded
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Figure 9.1 Schematic of the uplink ground station
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Figure 9.2 Schematic of the downlink ground station

9.3.2 Space segment

In a SatCom system, the function of an artificial satellite is to re-amplify and
re-transmit the signal from the user terminal to the receiving earth station that con-
stitutes the downlink segment. For this purpose, each artificial satellite incorporates
one or multiple transponders that operate at different carrier frequencies. The re-
amplification capability of artificial satellites is limited by the maximum power
consumption of the spacecraft bus, which include a power generator and an energy
storage system. Currently, the trend in the satellite industry is to deploy high num-
bers of small, energy-efficient satellites. Although this choice reduces the serviceable
power for each satellite, it allows for the creation of mega-constellations that can pro-
vide high connectivity services on a global scale. However, a high number of satellites
require a precise subdivision of the communication bandwidth and the adjustment
of the antennas towards the ground areas that need to be covered. Therefore, the
bandwidth and power resources are more and more stringent in modern SatCom
systems.

9.3.3 Downlink segment

This segment consists of components that are dual to the uplink system, as shown
in Figure 9.2. First, the signal reaches the receiving antenna at low power level, due
to the high channel losses and the low re-amplification at the satellite. Therefore, a
low-noise amplifier (LNA) subsequently restores the necessary signal power. Next,
the downconverter returns the baseband signal. Then, the demodulator converts the
incoming analog signal to the encoded signal. Finally, the decoder recovers the original
user signal.

9.4 SatCom systems modelling

A DL model necessitates of a dataset of examples in order to execute the requested
task. In fact, the dataset has to be sufficiently large to allow a proper training of the
ML model. The training can be considered successful if the model can operate accu-
rately on data that was not provided during training. In particular, for the estimation of
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noise and distortion in SatCom systems, many signal instances have to be measured
in different transmitting conditions and with different information content. However,
the cost of performing this operation on real, deployed systems or experimental setups
can be prohibitively high, due to the following reasons. First, signals at intermediate
stages of the SatCom segments can be hard to access, because of the high level of
integration between the physical components. Second, the collection signals at differ-
ent transmitting conditions may require multiple measurement runs, thus increasing
the time cost of the acquisition. Therefore, a preliminary investigation is conducted
in this chapter using simulated signals, in order to assess the applicability of DL
techniques and to estimate their performance. For this purpose, a simulation model of
the SatCom link described in Section 9.3 is introduced. This model is able to rapidly
generate communicated signals at any stage of the system and for any transmitting
condition desired.

The simulation model of the SatCom return link is implemented in MATLAB®∗

according to the simplified scheme in Figure 9.3. The return link is constituted by a
transmitter, corresponding to an uplink ground station, and a receiver, corresponding
to a downlink ground station. In its entirety, the return link represents the travelling
of a signal from the user terminal to the central gateway.

This MATLAB model is able to simulate signals that are affected by distortion
caused by the high-power amplifier in the transmitter and by the noise in the com-
munication channel [12]. Specifically, the signal message from the user terminal is
initiated as a sequence of random bits in the transmitter model. Then, the bit sequence
is modulated such that a baseband signal is obtained in the form of complex-valued
symbols. The modulation is executed according to a specific modulation scheme,

Modulator Up-sampling SRRC HPA

AWGN SRRC

Bit
sequence 

Signal
pulses

Symbol
sequence

Transmitter

Channel

Down-sampling

Receiver

Distorted
signal pulses

Distorted
symbol sequence 

Figure 9.3 MATLAB model for the SatCom return link. The high-power amplifier
is indicated with the acronym HPA.

∗The Mathworks Inc., Natick, MA, USA.
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which can be adapted to the channel characteristics and bandwidth resources. Next, the
signal is up-sampled and shaped into pulses by a square-root raised cosine (SRRC)
filter. The last two operations correspond to the upconverter in the uplink ground
station (Figure 9.1). Before transmission, the signal is sent to an high-power amplifier.
Note that such amplifier introduces a nonlinear distortion to the transmitted signal,
as discussed in detail in the next section.

An additive white Gaussian noise (AWGN) block simulates the noise introduced
by the communication channel. As the name indicates, this block adds a Gaussian
noise sequence to both the real and the imaginary part of the signal corresponding
to a specified SNR. Finally, the signal is provided to the receiver model, where it is
filtered via a second SRRC, that is matched to the one used in the transmitter, and
then down-sampled at the same rate.

9.4.1 High-power amplifier modelling

The ideal functioning of a high-power amplifier is to increase the amplitude of the
signal to prepare it for atmospheric and space transmission. In fact, the amplification
gain has to compensate for the attenuation and the noise introduced by the commu-
nication channel towards the satellite transponder and the receiving ground station.
If the amplification is not sufficient, then the low SNR at the receiver can cause
excessive errors that can not be corrected by the decoder.

However, the amplification can not be set arbitrarily high, but it is limited by
the maximum power consumption of the uplink device. Moreover, solid-state ampli-
fiers commonly operate near the saturation region, where their efficiency is higher.
However, the input–output characteristic of HPAs becomes highly non-linear near
saturation, thus introducing significant distortion in the output signal.

In order to balance the distortion and power efficiency, the operating point of the
HPA can be controlled by adjusting the input back-off (IBO). The IBO indicates the
ratio in dB scale between the saturation and input power of the HPA as:

IBO = 10 log10

Psat,in

Pin
(9.1)

where Psat,in and Pin are the saturation power and the average power of the input
signal, respectively. Figure 9.4 illustrates a typical input–output power characteristic
of a HPA. Note that the IBO is zero when the power of the input signal coincides with
the saturation power of the HPA. Conversely, increasing the IBO means to move the
operating point of the HPA towards its linear region, thus reducing the distortion.

As the HPA distortion is mainly amplitude-dependent, two other characteristics
are important: the Amplitude-to-Amplitude (AM–AM) and the Amplitude-to-Phase
(AM–PM) curves, which represent the magnitude and the phase, respectively, of the
complex gain for any operating point of the amplifier [13]. An example of measured
gain curves is shown in Figure 9.5. Thus, at any IBO, the behaviour of an HPA can be
simulated by simply multiplying the amplitude and phase of the input signal by the
corresponding gains on the AM–AM and AM–PM curves. Ultimately, the described
SatCom model allows one to collect a dataset of received complex symbols sequences,
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with SNR and IBO specified by the user. These two quantities respectively measure
the noise and the distortion on the signal.

The techniques discussed in the following sections aim at estimating the SNR and
IBO from the received signals. In particular, the SNR estimation strategy introduced
in [12] is explained in Section 9.5. This technique is designed to work on samples of
the analog signals, incoming at the input of the receiver. Subsequently, a new IBO esti-
mation strategy is developed in Section 9.6. Rather than working with analog signals,
this technique works on sequences of modulated symbols. Since modulated symbols
can be measured more easily, the IBO strategy is better suited to be implemented in
real receiver systems.
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Figure 9.4 Example of input–output power characteristics of a HPA
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9.5 SNR estimation

As anticipated in Section 9.2, informing the receiver about the channel characteris-
tics is crucial for the application of noise reduction techniques. However, acquiring
such information requires the transmission of known signal (pilot symbols), which
causes overhead and reduces the serviceable data rate [10]. Instead, a methodology
is introduced in [12] to estimate the SNR at the receiver directly from any incoming
signal, without the need of pilot symbols. This methodology is designed to operate in
a SatCom return link: the signal is transmitted by the user terminal to the ground sta-
tion through a satellite transponder. The core of the technique is a ML model called
autoencoder (AE), which is described in Section 9.5.1. Then, the SNR estimation
procedure is discussed in detail in Section 9.5.2.

9.5.1 Autoencoders

AEs are DL models able to encode input data into a lower-dimensional space, which
is known as latent space. At the same time, an AE can reconstruct the input data with
negligible loss of information starting from its latent space representation. Thanks to
these properties, AEs have been successfully employed for a wide variety of problems,
ranging from anomaly detection [14,15], design optimisation [16] and dimensionality
reduction [17].

More specifically, an AE is a particular type of ANN presenting the architecture
shown in Figure 9.6. Here, two main structures can be identified: the encoder and
the decoder. The task of the encoder is to convert the data in the input layer into the
latent space. Conversely, the decoder converts the latent space representation into the
output layer, thus recovering the information at the input layer. The key property of
this architecture is that input and output layers have the same dimensionality, while
the latent space is lower-dimensional. Note that encoder and decoder networks may
consist of one or multiple neural layers. Furthermore, due to the non-linear activation
function at the output of each neuron, both the latent space and the output layer are
non-linear representations of the input layer [18].

Input
Layer

Output
LayerEncoder Decoder

Latent
Space

Figure 9.6 General architecture of an autoencoder
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Similarly to other neural networks, AEs can be trained via back-propagation [11].
First, the output of the network is produced for one or multiple input instances. Second,
a suitable loss function is computed based on the AE’s output. Next, the parameters
of each node in the network are updated such that the loss function is minimised. This
process is repeated for all the available training instances until the loss function is
sufficiently low.

By defining the loss function as a suitable error metric between the output and
the input layer, an AE learns to reproduce the input instances that are used for training.
In particular, the decoder network is trained to exactly reconstruct the original data
instance from its latent space representation.

In order to increase theAE’s reconstruction accuracy, one or multiple neural layers
can be replaced with convolution operations. The resulting architecture is called con-
volutional autoencoder (CAE). Convolutional layers are useful to detect and extract
features of the input data that are shift-invariant, while keeping a low model complex-
ity [19]. Hence, the convolution is best suited for time sequences data like received
SatCom signals, which presents time-invariant characteristics, such as noise and HPA
distortion level. The architecture of the CAE used for SNR identification is described
in detail in Section 9.5.4.

9.5.2 SNR estimation methodology

The proposed noise estimation technique consists of two steps: the first is the training
phase, which follows the scheme illustrated in Figure 9.7. First, a dataset of signals is
generated via the SatCom model described in Section 9.4. For this phase, the signal
instances are generated by selecting a high value of SNR and IBO, so that low noise
and distortion is introduced. Next, incoming signals are pre-processed in order to be
analysed via anAE.The pre-processing comprises standardisation and frame splitting:
the signal samples are suitably scaled such that their mean is zero and their standard
deviation is equal to one; then, the signal is split in frames of constant size. Now, a
CAE can be trained to reproduce the signal frames. The goal of training is to estimate
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Figure 9.7 Training phase of the proposed approach for quantifying the SNR in
received signals
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the value of the CAE parameters producing the best input reconstruction. Note that
the size of the CAE input and output layer must match the number of samples in each
frame.

The second step is the testing phase, shown in Figure 9.8. Similar to the training
phase, new test signals are generated, pre-processed and then split in frames of suitable
length. However, variable values of SNR are now used when producing the signals.
Next, these signal frames are fed to the previously trained CAE, that tries to to
reconstruct the input from its latent space encoding. The idea behind this approach
is that noisy signals will produce a different latent space encoding than the training
instances. More specifically, signals with lower SNR will correspond to anomalous
points in the latent space. As a consequence, the reconstruction error at the CAE output
will be sensibly higher than during the training phase. Therefore, several metrics
are defined in [12] to estimate the SNR from the latent space or from the output
reconstruction of the CAE. These metrics are discussed in detail in Section 9.5.3.

However, noise is not the only cause of signal deterioration. As discussed in
Section 9.4.1, the HPA introduces distortion due to its non-ideal characteristics.
Hence, it is important to have an accurate SNR estimation even in presence of different
levels of distortion. Figure 9.9 shows the real and imaginary part of a signal containing
the same information content, but with different noise and distortion levels, simulated
at the input of the SatCom receiver. It is apparent that noise and distortion produce
different effects on the analog pulses. Hence, in order to make the proposed algorithm
independent from the HPA distortion, the CAE is trained on a dataset of signals with
high SNR, but varying IBO. In such manner, the encoding and the reconstruction
error in the testing phase will be robust to variations in the distortion level.
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Figure 9.8 Testing phase of the proposed approach for quantifying the SNR in
received signals
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Figure 9.9 Real and imaginary part of signals containing the same information
content, but with different distortion levels, simulated at the input
of a SatCom receiver

Hence, this SNR estimation technique can work on any received signal and
requires only a sufficient amount of ‘clean’signals that are transmitted by the SatCom
system to train the CAE.

9.5.3 Metrics

In this section, three different metrics to estimate the SNR via a suitable CAE archi-
tecture are presented. The first metric is the Local Outlier Factor (LOF). The LOF is
applied to the encoding of the signals in the latent space, where incoming signals are
represented as point vectors. The LOF provides a comparison between the density of
each point in the latent space and the local density of the k-nearest points [20] as:

LOFk (X ) =
∑

Y∈Nk (X )
rdk (Y )
rdk (X )

|Nk (X )| (9.2)
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where X represents a point in the latent space, and rd is called reachability distance
and is defined as:

rd(X ) =
(∑

Y∈Nk (X ) max{kd(X ), d(X , Y )}
|Nk (X )|

)−1

(9.3)

In (9.3), kd is the distance of X from its kth nearest point Y , d(X , Y ) is the absolute
distance between X and Y , while |Nk (X )| represents the number of nearest neighbours.
The term rd(Y ) in (9.2) can be defined in a similar way.

This metric is designed for anomaly detection via AEs [16]. An anomaly, or
outlier, is any data item that presents inconsistency with the rest of the data, which may
indicate a different origin. The LOF works under the assumption that the anomalies
occur in areas of the latent space with lower density of points, compared to normal
instances. Hence, points with high value of LOF corresponds to points that are outliers
in the latent space, and thus an anomaly in the input signal. However, our problem
setting is different than typical anomaly detection tasks: the noise is spread over the
entire duration of the signal, such that it does not constitute a sporadic anomaly, but
a continuous effect. Therefore, a single anomaly score has to be assigned to all the
CAE input frames that originate from the same signal at specific SNR and IBO. For
this purpose, the SNR is estimated using the standard deviation of the LOF computed
on all the available frames, rather than using directly the LOF score.

The sparsity is an alternative anomaly metric on the latent space. In fact, rather
than comparing local densities, it employs only the absolute distances between each
point and its k-nearest neighbours in the latent space. Then, the distances are averaged
over all the encoded points, in order to obtain a single value metric. The sparsity can
be defined by the following expression [12]:

Sparsity =
∑N

X=1

∑
Y |X−Y |
|HY |

∣∣∣
Y∈HY

N
, (9.4)

where X and Y are two points in the latent space, HY is the set of k-nearest neighbours
of Y and N is the total number of encoded points. As a result, high sparsity values
corresponds to greater average distances between points, which indicates high noise
level in the input signal.

Finally, the SNR can be estimated by computing the mean absolute error (MAE)
between the CAE’s input and output layers for each signal frame. The MAE can be
simply defined as:

MAE =
∑n

i=1 |g(xi)− xi|
n

(9.5)

where xi is the ith component of the input vector x and g(xi) is the corresponding
CAE output. Unlike the previous two metrics, the MAE considers only the CAE
reconstruction rather than the corresponding latent space.

Each one the presented metric can be employed for the SNR estimation, as it
is illustrated in Figure 9.8. A comparison of the performance of these metrics is
presented in the following.
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9.5.4 Application example

The proposed SNR estimation technique is applied on a SatCom system model fol-
lowing the scheme in Figure 9.3, featuring a 16-APSK modulation scheme. For the
HPA model described in Section 9.4.1, the AM-AM and AM-PM characteristics are
sampled and tabulated from a solid state HPA draining 3W and operating in the Ka-
band. Using the MATLAB model, signals at specific values of SNR and IBO are
generated starting from a random bit sequence. Next, the modulator encodes the ran-
dom bits in a sequence of analog samples. An oversampling rate of 16 is chosen for
the modulator, such that each modulation symbol corresponds to 16 samples in the
analog signal. Then, the signals arriving at the receiver are obtained by setting a spe-
cific value for the IBO, ranging from −20 dB to 15 dB. Conversely, the signals SNR
is fixed at 40 dB, which corresponds to a negligible amount of noise. The simulated
analog signals constitute the training set for the following CAE.

Next, the signals are pre-processed as indicated in Section 9.5.2. Thus, the sig-
nals are normalised and split into vectors of 216 input frames of 16 complex-valued
samples. The imaginary part of the samples is discarded, while the real part is kept
for training. In fact, the noise degrades equally the real and imaginary part, such that
their information about the SNR is redundant. The size of the input and the output
layer of the CAE can be halved by discarding the imaginary part, thus reducing the
complexity and the training time of the neural network, without compromising its
accuracy.

In the training phase, the CAE learns to reproduce the signals independently from
the distortion introduced by the HPA. Therefore, after training, the reconstruction
accuracy of the CAE will degrade if signals with lower SNR are provided at the input.
In order to obtain the best accuracy on the training set, the CAE is carefully tuned,
until the architecture in Figure 9.10 is obtained. It is formed by four convolutional
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Figure 9.10 Convolutional autoencoder architecture for the SNR quantification
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layers and one intermediate dense layer that represents the latent space. Note that
the size of the input and the output layers matches the duration of a single frame,
which corresponds to one modulation symbol. In each convolutional block, dropout
operations are added to improve regularisation [21], while batch normalization is
introduced to improve the training speed and stability [22].

The CAE model parameters are updated during the training phase by executing the
Gradient Descent algorithm [23] to minimise the loss function. For this purpose, the
contractive loss is chosen to increase the autoencoder robustness to small variations
in the training set. In fact, this function improves over the mean square error (MSE)
loss by adding a term for the contraction of the latent space representation [14].
Furthermore, the CAE is trained for 120 epochs, setting a learning rate of 8 · 10−4

and batch size of 64 for the Gradient Descent algorithm.
During the testing phase, new signals are simulated with the same procedure

discussed above. However, the simulation is performed with SNR ranging from 0 dB
to 40 dB, in steps of 5 dB. At the same time, the range for the IBO is kept from−20 dB
to 15 dB. Moreover, different signals are obtained for 10 different bit sequences, which
are generated by changing the seed of a random bit generator. This procedure allows
one to verify the robustness of the CAE to variations in the information content of
the signals. Thus, the complete test set for the CAE consists of 720 analog sample
sequences, one for each the possible combinations of 9 values of SNR, 8 values of
IBO and 10 different random generator seeds.

Next, the test sequences are pre-processed and fed to the trained CAE. The CAE
returns the latent space representation and its reconstruction at the output, for each
frame of all the sequences in the test set. Finally, the three SNR metrics discussed in
Section 9.5.3 are computed from the latent and the output space.

9.5.5 Metrics tuning and consistency analysis

When computing the LOF standard deviation and the sparsity metric, the number of
k-nearest neighbours has to be tuned for a better estimation of the SNR. Therefore, the
computation of both LOF and sparsity is repeated on the test set for different numbers
of k . In this section, an example of metrics tuning is presented, fixing the IBO value
at 20 dB for simplicity. After training the CAE, the metrics to be tuned are computed,
and then plotted in function of the chosen SNR values, as shown in Figure 9.11 for
the LOF and in Figure 9.12 for the sparsity.

Let us focus on the LOF first. From Figure 9.11, it can be seen that the relation
between SNR and the LOF standard deviation is roughly linear for SNR values lower
than 30 dB. It is apparent that k = 1, 600 is the best choice among the considered
numbers of neighbours. Indeed, for this value of k , the metric approximates a mono-
tonic function of the SNR. This property allows one to define a one-to-one mapping
from the LOF to the SNR, through linear interpolation.

Regarding the sparsity, Figure 9.12 shows that the relation between sparsity and
SNR is strongly linear. Therefore, the sparsity can effectively be used to estimate SNR
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Figure 9.13 LOF standard deviation metric as a function of the test signal SNR for
varying random seeds, for k = 1,600

values. However, a sufficient number of neighbours should be chosen: for k < 5, the
differentiation among the sparsity values is lower and the precision of the mapping is
reduced. Then, k = 5 is selected for the sparsity, since it higher values require higher
computational time (see (9.4)).

Furthermore, it is crucial to assess the generalisation capability of the CAE
network: the SNR estimation has to be consistent and independent from the infor-
mation content of the signal. For this purpose, the test phase is repeated with signals
generated from 10 different bit sequences, by varying the seed of a random bit
generator. The relation between metrics and SNR for different random seeds are
recorded in Figures 9.13–9.15, for the LOF standard deviation, the sparsity and
the MAE, respectively. Note that, the optimal value of k for the LOF and spar-
sity is chosen for this analysis. In these figures, it can be observed that the LOF
metric presents the highest variability across seeds. On the other hand, the spar-
sity and the MAE possess very low variability. It can be noticed in Figure 9.15 that
the relation between MAE and SNR is also highly linear, for any value of SNR.
Therefore, the sparsity and the MAE are more suitable metrics for the SNR. How-
ever, the MAE offers an important advantage: it does not require any parameter
tuning.
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9.5.6 Results and discussion

From the previous section, the MAE emerges as the best metric for the SNR quantifi-
cation when the signal distortion is negligible. Subsequently, the metrics are re-tested
on signals with different levels of IBO, to verify the robustness of the CAE to the
distortion introduced by the HPA. In this case, the test signals from one single random
seed are employed. Next, the metrics for each IBO value are computed in function of
the SNR. For example, the resulting MAE values are reported in Figure 9.16. Inter-
estingly, the variation of the MAE with respect to the SNR remains linear for any
value of IBO. Therefore, it is still possible to estimate intermediate values of SNR by
interpolating this curve at the corresponding MAE provided by the CAE. However,
for specific value of SNR, the different levels of IBO introduces a small variation of
the MAE. Similar plots can be produced for the LOF and the sparsity. For these two
metrics, the k parameter need to be re-tuned on test signals with different values of
IBO, as explained in the previous section. The resulting optimal value of k is 800 for
the LOF standard deviation and 200 for the sparsity.

Then, the variability of all the metrics with respect to the IBO is shown in
Table 9.1. For clarity, Table 9.1 shows the variability caused by the IBO across four
different ranges of SNR values, called SNR regions. It can be seen that the MAE
presents the lower variability from 10 to 40 dB all regions. On the other hand, the
sparsity is more accurate in the 0–10 dB region. Note that in the region between
30 dB and 40 dB, the behaviour of the LOF standard deviation is not monotonic with
respect to the SNR. Therefore, it is not possible to estimate the SNR values that fall
in this range by using the LOF. Looking at Table 9.1, the MAE appears to be the best
metric even for different levels of HPA distortion on the signal.

Finally, the results of the SNR estimation using MAE are summarised inTable 9.2.
In this table, the first column represents the ratio of the MAE deviation due to seeds
variability, for the considered SNR regions. The second column shows the error
caused by such MAE deviation on the SNR value. Lastly, the third column shows
the overall error in SNR estimation due to the seed variability and the variation in
distortion levels. Interestingly, the accuracy of the technique is higher in between 10

Table 9.1 Accuracy of SNR estimation for the considered metrics

Metric Robustness to
signal randomness IBO variability per SNR region

LOF (st.dev.) Average 2.6 dB 2.3 dB 2.3 dB N.A.
Sparsity Good 2.4 dB 1.8 dB 1.8 dB 3.1 dB
MAE Good 2.5 dB 1.1 dB 1.6 dB 2.7 dB

SNR region

0–10 dB 10–20 dB 20–30 dB 30–40 dB
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Table 9.2 Impact of varying seeds on the SNR estimation

SNR region Deviation in MAE SNR estimation error SNR estimation
across seeds across seeds error

0–10 dB 0.34 1.0 dB ±2.5 dB
10–20 dB 0.17 0.3 dB ±1.1 dB
20–30 dB 0.22 0.6 dB ±1.6 dB
30–40 dB 0.30 1.5 dB ±2.7 dB
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Figure 9.16 MAE as a function of the test signal’s SNR for varying IBOs

and 30 dB of SNR. In fact, the MAE curve in Figure 9.16 appears more flat in the
0–10 dB and the 30–40 dB SNR regions. A possible explanation for this result is that
the CAE is less able to distinguish among high levels or low levels of SNR. Thus,
the reconstruction error may be similar among signals with very low or very high
noise. These results are consistent for test signals generated with different random
seeds, indicating that the neural network model is able to provide an accurate SNR
estimation, independently from the information content at the input.
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9.6 Input back-off estimation

The propagation loss in the communication channel is one of the main causes of
performance degradation in a SatCom system: the signal power strongly decays while
propagating in the atmosphere and in near-earth space. Thus, the signal may reach
the receiver at a low signal-to-noise ratio, causing high error rates when decoding.
Therefore, in order to maintain high data-rates, the signal transmitted from a user
terminal has to reach the satellite and the ground receiver at a sufficient power level.
For this reason, channel fading and noise often need to be compensated by rising the
transmit power. However, the non-linearity of the HPA increases with transmit power
and can introduce excessive distortion of the signal. Thus, informing the receiver about
the operating point of the amplifier is essential to control the transmit power. Several
techniques have been proposed to estimate the HPA operating point using channel state
information (CSI) [13]. More recently, DL techniques have been successfully used to
both improve CSI acquisition [24,25] and implement efficient power control schemes
[26]. Nonetheless, both classical and recent DL approaches require pilot symbols to
be transmitted, causing overhead. In this chapter, a different DL strategy is proposed to
estimate the input back-off (IBO) of the amplifier: a neural network classifier predicts
the IBO given any distorted symbols sequence at the receiver. In fact, the predicted
IBO defines the operating point of the HPA on its input–output characteristic, as
illustrated in Figure 9.4. The advantages of this method are that no pilot symbols
are required and that the classifier can be trained for different modulation schemes
and different HPA models. Moreover, the classifier is designed to operate at a highly
variable level of signal-to-noise ratio at the receiver. Specifically, IBO estimation is
applied to the return link system described in Section 9.4. Here, the received signal
is corrupted by HPA distortion at the user terminal, while the noise in the link is
modelled as AWGN.

9.6.1 Deep learning model for IBO estimation

A DL model can be trained to estimate the IBO of an HPA from a limited portion
of the received symbol sequence. Indeed, the IBO estimation can be addressed as
a supervised learning problem, since the SatCom model described in Section 9.4
allows one to specify the desired value of IBO, which can be used as a training label.
For this purpose, a deep convolutional neural network (DCNN) is proposed as a
classifier [27]. The task of the DCNN classifier is to identify the amplifier’s IBO
among a set of discrete values. An alternative approach would be using a DCNN
regressor to select the IBO prediction from a continuous range of values. This would
yield a higher resolution for the measure of distortion. Nonetheless, classification
requires a simpler neural architecture and a significantly lower amount of training data,
compared to regression, thus representing a good trade-off between computational
complexity and accuracy. This is particularly useful when dealing with complex data,
where both the real and imaginary parts are informative for the learner, since they are
both affected by the distortion of the HPA.

The proposed DCNN classifier structure is represented in Figure 9.17. The input
layer of the network consists of 512 values. In fact, a sequence of 256 consecutive
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symbols are fed to the network by alternating the real and imaginary parts of each sym-
bol. Three convolutional blocks are sequentially applied to the input in order to detect
time-shift invariant features of the received signal. In each block, a 1D convolution
is followed by batch normalisation and a max pooling layer. These blocks performs
analogous functions in the CAE for the SNR estimation (Section 9.5.4). The convolu-
tional and max pooling operations enable an automatic extraction of the most relevant
features from raw symbols, without pre-processing. In addition, batch normalisation
improves the training speed and stability of the network. Moreover, a dropout opera-
tion is added at the end of each block to prevent overfitting via regularisation. Next,
a single fully connected layer is inserted. Finally, the network is terminated by a
fully connected layer with one-hot encoding for class selection. Hence, the final layer
is formed by a neuron for each possible value of IBO. The predicted class is then
selected by a softmax operation on the last layer. Once trained, the DCNN is able to
associate an IBO value to any sequence of 256 consecutive symbols collected from the
receiver. The network is trained by adopting the Adam Optimisation algorithm [28]
to minimise a suitable loss function. The categorical cross-entropy [29] is chosen,
which is the standard loss for multi-class classifiers. The training is performed for 50
epochs on batches of 1024 instances, using a learning rate of 5 · 10−4 for the Adam
Optimisation.

9.6.2 Performance metric

An estimation of the classifier accuracy is provided by the F1 score [30]. This metric
is defined as the harmonic mean between precision and recall for each class of IBO:

precision = true positives

true positives+ false positives
(9.6a)

recall = true positives

true positives+ false negatives
(9.6b)
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where ‘true positives’ are the instances in the class that are correctly classified, while
‘false’ are classification errors, which can be either ‘positives’ (if predicted in the
class) or ‘negatives’ (if predicted outside of the class).

9.6.3 Data generation

In this section, the performance of the proposed DL method is demonstrated on
symbols that are distorted by a real satellite power amplifier. The same AM–AM and
AM–PM characteristics of Section 9.4.1 are sampled from a real HPA drawing 3W
at 29 GHz . Received signals are then simulated with the MATLAB model described
in Section 9.4, starting from a sequence of 222 random bits. A 16 Amplitude-Phase-
Shift-Keying (APSK) modulation scheme and an oversampling rate of 16 are applied
in the return link system. The IBO and SNR values used to generate distorted symbols
are selected from the following discrete sets:

IBO = [−15, −10, −5, 0, 5, 10, 15 ] dB, (9.7a)

SNR = [5, 10, 15, 20, 25, 30] dB. (9.7b)

Hence, a total of seven classes is chosen for the IBO estimation, with constant step size
of 5 dB.This choice provides a good compromise between resolution and computation
cost. Indeed, resolution can be increased by generating a larger training dataset, which
requires extra computational time or resources.

For each possible combination of IBO and SNR, the binary sequence is trans-
formed into a distorted and noisy symbol sequence at the receiver. Next, all the
obtained sequences are split into frames of 256 complex symbols. Each frame con-
stitutes one input vector for the DCNN, i.e. one training instance. Consequently, a
dataset of about 7 million instances is collected and fed into the neural network for
training. Additionally, ten validation sets are produced by following the same pro-
cedure as described above, but starting from different sequences of 216 random bits.
The validation sets are used to test the capability of the network to classify previously
unseen symbol sequences.

Figure 9.18 illustrates four examples of training instances, plotted in the complex
plane. The instances are generated from the same symbol sequence with different
values of IBO and SNR. In particular, Figure 9.18(a) and (b) illustrates the effect
of a change in IBO value, while the SNR is kept constant: as the IBO decreases,
the instance values get farther from the original 16-APSK modulation symbols (red
circles). In fact, the distortion causes a dispersion and a slight rotation of the clusters
of symbols in the complex plane. On the other hand, increasing the noise in the
channel (i.e. decreasing the SNR) produces a spread of the received symbols in all
directions, until the clusters become indistinct, as indicated in Figures 9.18(a), (c),
and (d).

Compared to the SNR estimation technique proposed in Section 9.5, an additional
challenge must be solved: rather than estimating the IBO from the signal pulses at
the input of the receiver, the distorted sequence of modulated symbols is employed.
In fact, in a real implementation, estimating the IBO from analog signal pulses would
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Figure 9.18 Example of values of four training instances in the complex plane for
different IBO and SNR. All instances are generated from the same bit
sequence. Red circles indicate the original symbols of the 16-APSK
modulation scheme, corrected for the delays of the SRRC filters.

require measurements right after the receiving antenna and the low-noise amplifier.
On the contrary, the reconstructed symbols sequence is more easily accessible, since it
can be recorded at the input of the receiver demodulator. However, when the symbols
are used, the user’s message is encoded in a sequence of complex values which is
much shorter than the corresponding signal pulses. Indeed, due to the oversampling
rate, each symbol corresponds to 16 complex values in the sequence of signal pulses.
Therefore, assuming that the DCNN requires a minimum number of input values
for an accurate estimation, the length of training frames has to be increased by a
factor equal to the oversampling rate. Moreover, unlike the additive noise, the HPA
distortion unequally affects real and imaginary parts of the symbols: the imaginary
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part of the training sequence cannot be discarded, and the input size of the DCNN
is doubled. For example, a minimum input size of 16 values can be assumed for
the estimation from signal pulses. Note that this is the same size used for the SNR
estimation network (Section 9.5.4). Then, 512 values (16×16×2) is an adequate size
for the IBO estimation from modulated symbols.

The first consequence of the increased size of the input layer is a greater com-
plexity of the DCNN. Second, since each signal frame is longer, longer signals need
to be simulated in order to obtain the same number of training instances. Thus, esti-
mating the IBO from received symbols, rather than the less accessible signal pulses,
represents a harder task for the DL model.

9.6.4 Results and discussion

After training, the classifier reaches an average F1 score of 86% across all the vali-
dations sets. This demonstrates that the DCNN successfully predicts IBO values and
that is able to generalise to previously unseen symbol sequences. As an example, the
confusion matrix for a single validation set is presented in Figure 9.19. Note that one
validation set contains 10,710 sample sequences, 1,785 for each value of SNR. The
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Table 9.3 F1 score of the classifier for each value of IBO, averaged among
10 validation sets

IBO [dB] −15 −10 −5 0 5 10 15

F1 score 0.82 0.79 0.86 0.89 0.91 0.89 0.90

confusion matrix shows that the large majority of symbols sequences are correctly
classified, whereas most of the classification errors occur between adjacent values
of IBO. This suggests that the resolution of the DCNN can be further increased by
choosing more classes of IBO and providing additional training data. Additionally,
the F1 score, averaged over all SNR values, is computed separately for each class
of IBO and reported in Table 9.3. The obtained results indicate that the classifier
accuracy is not uniform, but it decreases for negative IBO values, corresponding to
higher values of distortion.

The impact of noise on the classification is analysed in Figure 9.20, where the
average number of classification errors is recorded for each value of SNR in the vali-
dation sets. What stands out is that the number of errors falls sharply for SNR≥15 dB.
This denotes that large noise powers are the main cause of misclassification: for suf-
ficiently high SNR, the DCNN is able to recognize any amount of distortion. In fact,
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Figure 9.20 Number of classification errors for different values of SNR, averaged
across 10 validation sets. Error bars represent the variation between
minimum and maximum number of errors among the sets and over all
SNR values.
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discerning the effect of noise and distortion on training instances is intuitively easier at
low noise powers (see Figure 9.18). Furthermore, high distortion levels, correspond-
ing to negative values of IBO, become soon indistinct when the noise is increased,
thus explaining the results in Table 9.3. Finally, there is only a small variation between
the minimum and the maximum number of errors due to the SNR among the different
validation sets: the results in Figure 9.20 prove that the DCNN performance is robust
to the transmitted symbol sequence.

9.7 Conclusion

In this contribution, deep learning (DL) is applied in a satellite communication (Sat-
Com) return link. The aim is to estimate the characteristics of the channel and the
transmitter directly from received signals. In particular, two techniques are presented:
one for the signal-to-noise ratio (SNR) estimation, and the other to evaluate the oper-
ating point of a transmitting high-power amplifier, measured via the input back-off
(IBO). Obtaining a measure of these quantities at the receiver is essential to operate
a transmit power control. Common approaches to measure SNR and IBO employ the
transmission of pilot symbols, which causes overhead and thus reduces the actual
data rate of SatCom links. Conversely, the presented DL techniques preserve the link
capacity by performing the estimation on any incoming signal at the receiver without
the need for pilot symbols.

In order to train DL architectures, a dataset of signals is collected by using a
simplified SatCom model. Such a model allows one to simulate received signals at
desired level of SNR and IBO, with any information content. Then, a convolutional
autoencoder is proposed to extract the SNR from analog signal samples. The autoen-
coder is able to encode signal frames in a lower dimensional space and then reconstruct
the input signal. After training on low noise signals, the SNR can be estimated for
any signal frame by computing a suitable metric on the encoded representation or on
the signal reconstruction.

Next, a deep convolutional classifier is employed to recognize the IBO of a
received signal frame among a finite set of values. Instead of using analog signal
samples, the classifier is designed to operate on a sequence of received modulation
symbols. This simplifies the future acquisition of real signals, by allowing the collec-
tion the symbols right at the input of the receiver demodulator, rather than measuring
the incoming analog pulses.

The two techniques here described are able to operate independently from each
other on signals that have variable levels of both SNR and IBO. Both the SNR and
IBO estimation reach high levels of accuracy on any received signal. Specifically, the
SNR estimation reaches the highest accuracy in the range between 10 and 30 dB of
SNR, for any considered level of amplifier distortion. Instead, the IBO technique is
more accurate from −5 to 15 dB of IBO, while it is especially robust to the signal
noise when the SNR is higher than 15 dB.

Moreover, the presented DL models can be trained on different modulation
schemes and amplifier characteristics. Results suggest that their usage can be extended
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to more complex models of satellite communication systems. In addition, a dataset of
real-world symbol sequences should be collected to re-train or optimise the networks
for practical usage.
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Chapter 10

Deep learning techniques for imaging and
gesture recognition

Hongrui Zhang1 and Lianlin Li1

10.1 Introduction

Nowadays, intelligent electromagnetic (EM) sensing, as a powerful all-weather all-
day examination technique [1–6], is ever-increasingly demanded to probe people
in daily lives in a way not to infringe on visual privacy, in particular, to recognize
where people are, how their physiological states, what they are doing, what they
want to express by their body signs, etc. We here mean by intelligence that sensing
systems can adaptively organize the task-oriented sensing pipeline (data acquisition
plus processing) without the human intervene. Although three kinds of EM sensing
schemes of real-aperture [10–13], synthetic-aperture [2], and coding-aperture [7–9]
have been proposed by now, they are hindered from many practical utilizations because
of trading-off many critical factors effecting the cost-performance-index, especially
when dealing with the so-called data crisis. To tackle this formidable challenge,
recently, we have proposed the concept of hybrid-computing-based intelligent sensing
by synergizing artificial materials (AMs; specifically, reprogrammable metasurfaces
[14–20]) for flexible wave manipulation thereby analogy data compression on physical
level with artificial intelligences (AMs; specifically, deep learning strategies [21–24])
for powerful data manipulation on digital level [25–29]. In this chapter, we discuss
three recent progress: intelligent metasurface imager [31], variational-autoencoder
(VAE)-based intelligent integrated metasurface sensor [32], and free-energy (FE)-
based intelligent integrated metasurface sensor [33]. We mean by the integration that
for a scene of interest and given hardware constraints, the settings of data acquisition
and processing are simultaneously learned as a unique whole entity.

10.2 Design of reprogrammable metasurface

The intelligent metasurface sensor, as explicitly implied by its name, relies heavily on
the utilization of the reprogrammable metasurface. The aforementioned three sens-
ing systems are all based on a reflection-type one-bit reprogrammable metasurface

1State Key Laboratory ofAdvanced Optical Communication Systems and Networks, School of Electronics,
Peking University, China
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working at around 2.4 GHz. The reprogrammable metasurface is composed of a two-
dimensional array of engineered structure elements (called meta-atoms), and each
meta-atom with the size of 54× 54 mm2 is optimized to a sandwich structure inte-
grated with a SMP1345-079LF PIN diode, as shown in Figure 10.1(a) and (b). Here,
the one-bit meta-atom has binary EM status: the reflection phases of 0◦ and 180◦,
denoted as the digits “0” and “1,” respectively. Figure 10.1(d) shows the numeri-
cal and experimental results of EM reflection responses of the meta-atom. Figure
10.1(c) reports the waveguide-based measurement setup, where a standard waveg-
uide to coaxial adapter A-INFO 430WCAS is used. As for the simulations, the CST
Microwave Transient Simulation Package 2017 was used. In our simulations, the PIN
diode has been modeled as a series lumped-parameter circuit: it is represented by
a 0.7-nH inductor in series with a 2� resistor when the PIN at ON, while a 1.8 pF
capacitor in series with a 0.7 nH inductor when the PIN at OFF. From above results,
one can see that when the state of the meta-atom is switched from “1” to “0” (or from
“0” to “1”), the reflection phases of meta-atom are flipped approximately by 180◦ in
the frequency range 2.41–2.48 GHz More details about the meta-atom are provided
as follows: the meta-atom is composed of two substrate layers: the bottom substrate
is FR4 and the top substrate is F4B with the relative permittivity of 2.55 and a loss
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tangent of 0.0019. The top square patch is embedded with a PIN diode, and a TDK
chip inductor (MLK1005S33NJT000) is used to suppress the AC coupling to ground.

Here, we take the metasurface adopted in [31] to illustrate the design and oper-
ational principle of one-bit reprogrammable metasurface, as shown in Figure 10.2(a)
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Figure 10.2 Designed large-aperture programmable metasurface and its
controlling scheme [31]. (a) and (b) The pictures of the designed
programmable metasurface with size of 1.3 × 1.7 m2. (c) The control
architecture of the FPGA-based MCU and zoomed version of logical
circuit on the metasurface panel.
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and b for its front and back views, respectively. Such reprogrammable metasurface
is composed of independently controllable 32× 24 meta-atoms, and has the size of
1.7× 1.3 m2 in total. For the sake of fabrication, the whole large-aperture metasur-
face was divided into 3× 4 identical panels, and each metasurface panel consists of
8× 8 meta-atoms. The whole metasurface is controlled with a FPGA-based Micro-
Control-Unit (MCU), as shown in the inset of Figure 10.2(b), where the FPGA chip
was used to distribute all commands to 768 PIN diodes. To achieve the real-time and
flexible controls of 768 PIN diodes, the MCU with a size of 90× 90 mm2 was assem-
bled on the upper rear of the metasurface. The MCU is responsible for dispatching all
commands sent from a master computer subject to one common clock (CLK) signal.
In this work, the adopted CLK is 50 MHz, and the switching time of PIN diode was
about 10 μs each cycle.

Each metasurface panel is equipped with eight 8-bit shift registers (SN74L
V595APW), and every 8 PIN diodes share the same shift register, as shown in Figure
10.2(c). With the use of shift registers, 8 PIN diodes are sequentially controlled. Then
MCU will send commands over 24 independent channels, leading to almost real-time
manipulations of all PIN diodes. In addition, 768 red-color LEDs are soldiered to indi-
cate the status of the associated PIN diodes, in particular, to indicate clearly whether
the PIN diode works well or not. It is remarked that the proposed control strategy
can be readily extended for accommodating more PIN diodes by concatenating more
metasurface panels, allowing adjustable rearrangement of metasurface panels to meet
various needs.

10.3 Intelligent metasurface imager

Considering the unprecedent successes of deep learning techniques in data min-
ing and knowledge discovery, Li et al. have proposed the concept of intelligent
metasurface EM imager based on the hybrid computing scheme: analogy data com-
pression with a one-bit reprogrammable metasurface on physical level, and digital
data postprocessing with deep artificial neural networks (ANNs) on digital level
[31]. A proof-of-principle demo system working at the frequency of around 2.4 GHz
(exactly commodity Wi-Fi frequency band) has been developed. Li et al. have exper-
imentally demonstrated that such imager is intelligent in sense that it is capable of
adaptively accomplishing a series of successive high-quality sensing tasks including
in situ imaging, body sign recognition and human respiration identification of mul-
tiple non-cooperative persons in real-world settings. In this chapter, we are restricted
ourselves into the imaging setting due to the limited space.

10.3.1 System configuration

The schematic configuration and concept of an intelligent metasurface system is
shown in Figure 10.3(a). As the hardware core of the whole system, a large-aperture
one-bit reprogrammable metasurface was designed to control EM wavefields adap-
tively by manipulating its control coding sequences. In principle, it acts as an analogy
wave computer for high-dimensional data compression on physical level. In addition,
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with the aid of deep ANNs on a digital electronic computer, the analogy wave com-
puter is capable of processing data flow in smart and real-time way. With reference
to Figure 10.3(a), the sensing system has two operational modes: active and passive
modes. We here are limited to the active mode due to the limited space. In the active
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Figure 10.3 (a) The configuration of intelligent metasurface system. (b) The
architectures of proposed IM-CNN [31].
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mode, the intelligent metasurface sensing system is composed of a reprogrammable
metasurface, ANNs [34], a transmitting antenna, a receiving antenna, and a vector
network analyzer. For the imaging purpose, a deep convolutional network (called
IM-CNN) has been developed, as shown in Figure 10.3(b). In order to train the meta-
surface sensing system in a supervised manner, a commercial 4-megapixel digital
optical camera has been deployed and synchronized with the whole system, which
was utilized to collect the labeled samples to train the deep ANNs.

The IM-CNN is an end-to-end nonlinear mapping from the complex-valued
microwave data to desired images. In order to improve the efficiency of network
optimization meanwhile avoid the gradient exploding and vanish, the IM-CNN was
designed to be composed of a cascade of residual CNNs, as shown in Figure 10.3(b).
In this figure, the BN denotes the batch normalization, Softmax denotes the soft-
max nonlinear activation function, k (a, b, c) denotes the convolutional kernel with
a size of a× b× c, and n (a) denotes the number of convolutional kernels to be
a. During the training stage of IM-CNN, the labeled human-body images captured
by the optical camera after background removal and binarization processing can be
approximately regarded as the microwave reflectivity images of the human body,
because the microwave reflection of the human body can be approximated to be
homogenous over the frequencies from 2.4 to 2.5 GHz. The training was done using
the ADAM optimization method, with mini-batches size of 32, and epoch setting
as 50. The complex-valued weights and biases were initialized by random weights
with zero-mean Gaussian distribution and standard deviation of 10−3, respectively.
The computations were performed with AMD Ryzen Threadripper 1950X 16-Core
processor, NVIDIA GeForce GTX 1080Ti, and 128 GB access memory.

10.3.2 Results

Here, we provide a set of experimental results selected from Ref. [31] to evaluate
the performance of the intelligent metasurface sensing system. In our experiments,
we collected more than 105 pairs of labeled data of two volunteers with different ges-
tures to train the intelligent metasurface; while three different persons were invited
to test it. The trained intelligent metasurface is able to produce the high-resolution
images of the test persons, from which their body gestures can be readily recognized.
A series of imaging results are presented in Figure 10.4. The first row shows the
optical images of specimen, which include single person with different gestures, two
persons with different gestures, and two persons behind a 5-cm-thick wooden wall.
The corresponding imaging results by the metasurface sensing system and amplitudes
of microwave data are, respectively, illustrated in the second and bottom row. Par-
ticularly, the “see-through-the-wall” ability is validated by clearly detecting notable
movements of the test persons behind a 5 cm-thick wooden wall. All the results show
that it is enough to achieve the high-quality images by using 53 coding patterns, where
101 frequency points from 2.4 to 2.5 GHz are utilized for each coding pattern. The
switch time of coding patterns is around 10 μs, implying that the time in data acqui-
sition is less than 0.7 ms in total even if 63 coding patterns are used. Consequently, it
can be safely concluded that the intelligent metasurface integrated with IM-CNN can
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Figure 10.4 In situ imaging results using the intelligent metasurface with active
microwave [31]

instantly produce high-quality images of multiple persons in real world, even when
they are behind obstacles.

10.4 VAE-based intelligent integrated metasurface sensor

Here, we remark that above sensing strategy remains not intelligent enough yet, in
the sense that it indiscriminately acquires all information, ignoring available knowl-
edge about scene, sensing task and hardware constraints. To fully reap the benefits
of intelligence, Li et al. [32] and Wang et al. [33] proposed two frameworks of
intelligent integrated sensing, which could enable us to joint learn the optimal mea-
surement and processing settings given the hardware and task in the frameworks
of variational-autoencoder (VAE) and free-energy (FE) framework, respectively, as
discussed in Sections 10.4 and 10.5. They experimentally demonstrated that using
the integrated sensing scheme, the performance improvements could be particularly
large especially when the number of measurements is limited. In this section, we here
discuss the hybrid-computing-based intelligent integrated sensing based on the vari-
ational autoencoder In particular a variational autoencoder (VAE) framework [35,36]
is explored to achieve data-driven learnable data acquisition by integrating it into a
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data-driven learnable data-processing pipeline. Thereby, a measurement strategy can
be learned jointly with a matching data post-processing scheme, optimally tailored to
the specific sensing hardware, task, and scene, allowing us to perform high-quality
imaging and high-accuracy recognition with a remarkably reduced number of mea-
surements. This strategy drastically helps us to improve many critical metrics, such
as speed, processing burden and energy consumption.

10.4.1 System configuration

Figure 10.5(a) shows the configuration of proposed integrated sensing system, which
consists of a transmitting (TX) horn antenna, a receiving (RX) horn antenna, a large-
aperture reprogrammable metasurface, and a vector network analyzer (VNA, Agilent
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two data-driven learnable modules. (b) Propagation and optimization
process. (c) Interpretation of the entire sensing process in the VAE
framework.
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E5071C). The two horn antennas are connected to two ports of the VNA via two
4 m-long 50-� coaxial cables, and the VNA is used to acquire the response data by
measuring transmission coefficients. With reference to Figure 10.5(a) and (b), the
sensing system consists of two data-driven learnable modules: the m-ANN-driven
data acquisition module and the r-ANN-driven data processing module, and the
m-ANN models the measurement process involving a pair of horn antennas and
a coding metasurface reprogrammed with the MCU. The operational procedure of
the sensing system is described as following. Antenna-1 connected to port-1 of
VNA is used to emit periodically radio signals, which are shaped by the m-ANN-
driven reprogrammable metasurface. After being scattered by the subject of interest,
the wavefields are received by Antenna-2 connected to port-2 of VNA. Finally,
the received microwave raw data are instantly processed by the r-ANN, producing
the desired imaging or recognition results.

10.4.2 Variational auto-encoder (VAE) principle

Intelligent integrated metasurface sensor integrates the reconfigurable measurement
process with data processing as a whole pipeline, enabling to jointly optimize the
learnable physical and digital weights. To this end, the whole sensing pipeline was
treated in the framework of VAE [35,36]. Figure 10.5(c) shows the interpretation
of the entire sensing process in the VAE framework: the latent variable space, x, is
encoded by the analog measurements in a measurement space, y and then the digital
reconstruction decodes the measurements to return to the latent variable space. In
a nutshell, we can view the entire sensing process (data acquisition and processing)
as a user-controlled end-to-end process. Given a scene x, a set of complex-valued
measurements y is generated by sampling from the C-controllable conditional dis-
tribution y ∼ qC(y|x, �). In other words, the latent scene variable of interest, x,
is encoded in a measurement space y via a distribution controlled by the metasur-
face configuration C. The goal of the processing is then to find an estimator that
retrieves the relevant scene information x from the measurements y. This estimator
inverts the action of the measurement process, in other words it decodes the infor-
mation of interest to return from the measurement space to the latent variable space.
Using the VAE framework, the digital decoder can be modeled as sampling the mea-
surement space with a conditional distribution x ∼ p�(x|y), controlled by its digital
weights �, to generate estimates of the latent variable of interest. The decoding is
implemented with a deep ANN, called r-ANN, whose trainable weights can hence be
identified as �.

To jointly learn optimal analog and digital weights, i.e. the metasurface control
coding pattern C and the r-ANN weights �, respectively, we minimize the following
objective function [34]:

L (C, �) = −EqC(y|x,�)[log p� (x|y)]+ KL(qC ( y|x, �) |p(y)). (10.1)

The term−EqC (y|x,�)[log p�(x|y)] can be interpreted as the “reconstruction error”
of the VAE function: it is the log-likelihood of the true latent data given the inferred
latent data. The term KL(qC (y|x, �) |p(y)) acts as a regularizer and encourages the
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distribution of the decoder to be close to a chosen prior distribution p(y). Both analog
encoder qC (y|x, �) and digital decoder p� (x|y) are treated with deep ANNs, namely
m-ANN and r-ANN.

Note that in minimizing (10.1), there are two sets of different optimization vari-
ables, i.e., the continuously adjustable weights � in the r-ANN and � in the m-ANN,
and the binary controllable variables C in the m-ANN. Starting with some initializa-
tions of C and �, we calculate C (resp. �) for � (resp. C) updated in the last iteration
step, followed by calculating � (resp. C) based on the obtained C (resp. �). This
procedure is repeated until a stopping criterion is fulfilled. Apparently, the optimiza-
tion with respect to � and � can be efficiently realized with the well-known back
propagation algorithm [38], which can be accomplished with well-developed optimiz-
ers in TensorFlow. However, it is really challenging to minimize (10.1) with respect
to the binary control coding sequences C since it involves a NP-hard combinatorial
optimization problem. To address this difficulty, the so-called randomized simultane-
ous perturbation stochastic approximation (r-SPSA) [39], originally developed for the
problem of optimal well place and control in petroleum engineering, was modified for
this problem. This heuristic optimization approach relies on two randomized descent
strategies. First, as done by stochastic gradient descent approach, at each iteration,
a fraction of training samples is randomly selected to determine a descent direction.
Consequently, the concept of batch size is also applicable. Second, at each iteration,
as done by the so-called randomized coordinate descent method, only a fraction of
optimization components chosen to be updated. Here, partial coding meta-atoms are
randomly selected, and their binary status is changed to their opposites correspond-
ingly. If the change leads to the improvement on the objective function defined over
randomly selected training samples, we save such change and go into next iteration.
Otherwise, we need to randomly re-select some of coding meta-atoms and perform
above operations. We repeat such procedure until some stop criterion is arrived and
finally the whole VAE network is effectively converged.

10.4.3 Results

The sensing system is applied to the task of in situ high-resolution imaging of a human
body in our laboratory environment. As outlined previously, m-ANN for data acqui-
sition and r-ANN for smart data processing are integrated into a unique data-driven
learnable sensing chain. To that end, we jointly optimized the coding patterns C of
the m-ANN together with the weights � of r-ANN for the specific task of human
body imaging. The integrated ANN is composed of a sequence of nonlinear convo-
lution layers, which can be trained with a standard supervised learning procedure in
TensorFlow. Following [37], in order to illustrate the significant improvement of the
proposed learned sensing strategy on the image quality over conventional learning-
based sensing methods, the training procedure is divided into two stages. During the
first stage, the coding patterns of the m-ANN and the digital weights of the r-ANN are
optimized separately as in [30]. The coding patterns of m-ANN are assigned following
the two most common state-of-the-art approaches that correspond to using random
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or PCA-based scene illuminations. During the second stage, m-ANN and r-ANN are
jointly trained to achieve the overall optimal sensing performance. In this two-stage
training, the benefit reaped by the proposed sensing strategy over the conventional
methods can be clearly demonstrated. Several people called as training person in
short are used to train this intelligent microwave sensing system, and different per-
sons called as test person are invited to test it. In addition, there are 1,000 random
codes and 1,000 PCA-based codes (200 standard PCA-based codes and their 800
perturbations) are used as raining samples for training �. The details of the training
people are provided by Li et al. [31]. In addition, the ground truth is defined as the
binarized optical images of the scene.

In general, according to the difficulty of the sensing task and the signal-to-
noise ratio [28], a measurement with a single coding pattern cannot be expected
to obtain sufficient relevant information. Figure 10.6 displays the cross-validation
errors over the course of the training iterations for different numbers M of coding
patterns of the metasurface (3, 9, 15, and 20), from which the two stages of the
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Figure 10.6 Training dynamics for learned EM sensing applied to an imaging task
[32]. The dependence of the training and test loss functions on the
progress of iterative epochs is shown for different numbers of coding
patterns M, i.e., M=3, 9, 15, and 20. The continuous lines indicate the
training loss, and the dashed lines indicate the test loss. The control
coding patterns of the metasurface are initialized randomly (top) or
PCA-based (bottom). During stage I, only the digital decoder weights
� are optimized. Then, during stage II, both the physical weights C
and the digital weights � are jointly optimized.
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aforementioned training protocol can be clearly distinguished. In this figure, the
continuous lines indicate the training loss and the dashed lines indicate the test loss
and the control coding patterns of the metasurface are initialized randomly (top) or
PCA-based (bottom). During stage I, only the digital decoder weights � are optimized.
Then, during stage II, both the physical weights C and the digital weights � are jointly
optimized. The presented results show a remarkable improvement of the image quality
achieved by using the joint optimization of C and � during stage II, compared to that
based on solely optimizing � (i.e. the end of stage I). The effect is especially striking
when the number of measurements is very limited. Since the trainable physical (C)
and digital (�) parameters are initialized randomly before training, except PCA-based
C, we can conduct about 500 realizations in order to remove any sensitivity to the
choices of random initializations made for m-ANN and r-ANN.

Figure 10.7 reports several selected image reconstruction results of the test person
with different body gestures using the proposed integrated metasurface sensor with
the corresponding coding patterns of the metasurface displayed in Figure 10.8. We
display images of three different poses reconstructed with different numbers of coding
patterns of the metasurface, M, for the case of only optimizing � (first row) or
jointly optimizing C and � (second row). In this set of experiments, the random
initialization is used. In line with [27], we observe that the sensing quality (here
image quality) achieved by jointly optimizing physical (C) and digital (�) parameters
is significantly better than that if only � is optimized. This may be intuitively expected
since more trainable parameters are available and all a priori knowledge is used in
the learned sensing scheme. These above experimental results demonstrate, in line
with [27], that simultaneous learning of measurement and reconstruction settings
is remarkably superior to the conventional sensing strategies in which measurement
and/or reconstruction are optimized separately (if optimized at all). The benefits of
integrated sensing are strong when the number of measurements is highly limited
such that learned sensing enables a remarkable dimensionality reduction. Ultimately,
these superior characteristics are enabled by training a unique integrated sensing
chain, making use of all available prior knowledge about the probed scene, task, and
constraints on measurement setting and processing pipeline.

10.5 Free-energy-based intelligent integrated
metasurface sensor

Here, we discuss the intelligent integrated metasurface sensor in context of free energy
minimization, developed by Wang et al. [33]. Guided by the free energy minimization
principle, the metasurface sensing system can work in an intelligence way, in the
sense that it can be trained such that the measurements can be adaptively collected
on physical level and that the target can be recognized on digital level, similar to
above. The system is the first effort with the reprogrammable metasurface to realize
the high-frame-rate imaging in real-world settings. We here mean by the real-world
setting that the target is in a really complicated indoor physical environment, and
acquired signals are seriously disturbed by unknown co-channel interferences.
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Figure 10.7 Experimental results for learned EM sensing applied to an imaging
task [32]. We display images of three different poses reconstructed
with different numbers of coding patterns of the metasurface, M, for
the case of only optimizing � (first row) or jointly optimizing C and �
(second row).
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Figure 10.8 Selected optimized coding patterns of the metasurface, corresponding
to that involved in Figure 10.7 [32]

10.5.1 System configuration

The intelligent integrated metasurface sensor is a software-defined system in favor of
the high-frame-rate EM sensing. The metasurface sensor, working at around 2.4 GHz,
was designed for monitoring human behaviors in indoor environment. As shown in
Figure 10.9(a), the metasurface sensor consists of a large-aperture reprogrammable
metasurface, a commercial software-defined radio device (Ettus USRP X310), a
transmitting antenna, a three-antenna receiver and a personal computer. Both the
USRP and metasurface are communicated with the host computer via the Ethernet
under the transmission control protocol (TCP) and the USRP has I/O series commu-
nication with the metasurface. Figure 10.9(b) shows its operational procedure of data
acquisition: The host computer is responsible of calculating the control patterns and
sending these patterns to the metasurface through FPGA module; at the same time, it
sends a command signal to the USRP for synchronizing its transmitting and receiving
channels. Note that this initialization process takes about 10 ms. To trade-off the imag-
ing quality with efficiency, 18 patterns for compressive microwave measurement per
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Figure 10.9 System configuration of the proposed intelligent integrated
metasurface sensor [33]. (a) The experimental setup in indoor
environment. (b) The operational procedure of data acquisition,
where a 10 ms-length system initialization procedure is marked before
data acquisition.

image are explored in this work. For each control pattern, the USRP under control of
the host computer generates the Chirp radio signal, radiating it into the investigation
domain through the transmitting antenna, and receive the echoes reflected from the
target. It took about 36 ms to produce a microwave image, implying the frame rate
achievable is about 27 Hz. As pointed out in Ref. [33], if the USRP is updated with
more specialized transceiver devices, the frame rate achievable could be optimized to
be in order of tens of kHz in principle, which means its performance has a lot of room



360 Applications of deep learning in electromagnetics

to improve in the future. Afterwards, the acquired echoes are processed by ANNs,
which is directly responsible for the object imaging and recognition. In this work, the
chip signal waveform transmitted by the USRP reads:

s (t) = exp
(
j
(
2π fct + πKt2

))
0 ≤ t ≤ T (10.2)

where j = √−1, fc = 2.424 GHz is the carrier frequency, K = B/T denotes the
sweep rate of the chirp, B = 50 MHz is the frequency bandwidth, and T = 10 μs is
the Chirp pulse duration.

The sketch map of the proposed intelligent metasurface sensor is shown in
Figure 10.10(a), which is composed of a large-aperture reprogrammable metasur-
face, a USRP X310, a transmitting antenna (TA), a three-antenna (RA1, RA2,
RA3) receiver and a personal computer (PC). Here, the programmable metasur-
face controlled with artificial neural networks is utilized for two major purposes:
(i) manipulating adaptively the EM wavefields towards the target, suppressing the
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Figure 10.10 System structure and network diagram [33]. (a) The sketch map of
proposed intelligent metasurface sensor. (b) The proposed U-net
network along with necessary parameters.
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unwanted disturbances from surrounding environment like walls, furnishings, and
so on; (ii) serving as an electronically controllable coding aperture in compressive-
sensing manner. Being different from the coding patterns explored in conventional
compressive sensing strategies, the deep-learning-driven metasurface considered here
is capable of generating the measurements which are consistent with those needed
by the digital reconstruction, as detailed next section. Owing to the large-view field
nature by the reprogrammable metasurface, the target’s information can be fully cap-
tured. Therefore, the reconstruction of target’s information can be easily achieved
from the compressed measurements by a deep ANN, i.e., a U-net network. As shown
in Figure 10.10(b), the designed U-net network has double-channel input: one chan-
nel is from the real-part of preprocessed microwave signal and another is from the
imaginary part. Features of microwave signals were extracted layer by layer, grad-
ually approaching to the labeled IUV three-channel images [46]. To improve the
network performance, the residual structure is adopted at each layer of the U-net.
Each residual network module is composed of three convolutional network layers,
where a SoftPlus nonlinear activation operation and batch normalization follow after
each convolutional layer. The training was performed over a GPU computer with a
single Nvidia GTX2080Ti, and the training setup was made as follows: the optimizer
was Adam [42], the learning rate was 10−3, the weight decay rate was 5× 10−5, and
the batch-size was 128. In order to speed-up the digital computation, Wang et al.
proposed window Adam: the values of the pixels outside the target are enforced to be
zero, each iteration during the training procedure. By using this simple scheme, the
training efficiency can be considerably improved.

10.5.2 Free-energy minimization principle

The Bayesian principle says that a self-organizing system that is at equilibrium with
its supporting environment must minimize its free energy [40]. For this problem,
assuming the target’s state st at time t, the metasurface sensor aims at organizing the
measurement strategy πt , collecting measurements ot , and retrieving the target. It is
noted that the measurements depend on the EM manipulation via the programmable
metasurface, so the efficient measurement strategy can be achieved by changing the
control coding pattern of the metasurface. To build a machine for this problem, we
explore the probabilistic generative model and its Bayesian inference solution. For
the target-sensor scenario with the generative distribution Pϕ(s≤t , o≤t|π≤t), the meta-
surface sensor has a picture of it, which is characterized with a posterior distribution
(i.e., recognition function) Qθ (s≤t|o≤t ,π≤t). Here, ϕ and θ encapsulate all trainable
parameters defining Pϕ and Qθ , respectively. Then, the generative network Pϕ and
inference network Qθ could be achieved by minimizing the following free energy
[19], i.e.,

F = EQθ (s≤t |o≤t ,π≤t )

[
ln
(

Qθ (s≤t|o≤t ,π≤t)

Pϕ(s≤t , o≤t|π≤t)

)]
(10.3)
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Under well-known Markov chain approximation, (10.3) can be expressed as:

F =
T∑

t=1

Jt (10.4)

where

Jt = Jt−1 − EQθ (s≤t−1|o≤t−1,π≤t−1)

[

EQθ (st |ot ,s≤t−1,πt) ln
(
Pϕ (ot|st ,πt)

)

Likelihood

]

− EQθ (s≤t−1|o≤t−1,π≤t−1)

⎡

⎢
⎣EQθ (st |ot ,s≤t−1,πt ) ln

(
Pϕ(st|s≤t−1)

Qθ (st|ot , s≤t−1,πt)

)

KLdivergence

⎤

⎥
⎦.

EQθ (st |ot ,s≤t−1,πt) ln
(
Pϕ (ot|st ,πt)

)
is the likelihood or observation accuracy at time

t, while EQθ (st |ot ,s≤t−1,πt ) ln
(

Pϕ (st |s≤t−1)
Qθ (st |ot ,s≤t−1,πt )

)
, Kullback–Leibler (KL) distance or rela-

tive entropy, characterizes the recognition complexity of Qθ (st|ot , s≤t−1,πt) at t. In
order to facilitate numerical implementations, several assumptions have made:

(i) Qθ

(
st|ot , s≤t−1,πt

) = N (st|fθ (ot ,πt),α2I )N (st|st−1,β2I ), where the nonlin-
ear function fθ is modeled with a U-net artificial neural network [41] in Figure
10.10(b), α2 and β2 are two trainable parameters.

(ii) Pϕ
(
st|s≤t−1

)
is modeled with the so-called Brown motion [6].

(iii) Pϕ (ot|st ,πt) is represented with a physical-model-based neural network, i.e.,
Pϕ (ot|st ,πt) = N (ot|Aπt st , γ 2I ), where Aπt is a linear operator defined in
[33], and γ 2 is a trainable parameter.

Now, one can determine the measurement strategy πt , and generative network Pϕ
and inference network Qθ by minimizing (10.4) by exploring variational autoencoder
method [32].

10.5.3 Results

The metasurface sensor was deployed in a real-world indoor environment, leading
to the seriously noisy measurements. In particular, such sensor works at around 2.4
GHz, thus the acquired signals are inevitably disturbed by unwanted but unknown in-
band wireless signals (like Wi-Fi, Bluetooth, etc.) everywhere. In addition, a plenty
of unwanted interferences exist, which arise from surrounding environment such as
walls, furniture, and so on. These disturbances were remarkably dominant over the
acquired signals carrying the target’s information, and more importantly, the in-band
inferences from commodity wireless signals were usually statistically non-stationary.
Therefore, in order to realize the acceptable sensing tasks, it is urgently demanded to
develop denoise methods.

To this end, the denoise model proposed by Wang et al. is discussed here. Assum-
ing that a transmitter at rT gives rise to a frequency-domain signal s(ω), and a point-like
object with reflection coefficient σ (ro) is situated at ro, where ω is the angular fre-
quency. Such point-like target model makes sense and following discussions can be
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readily extended for the case of extended objects in terms of linear supposition prin-
ciple in context of Born scattering approximation [1,6]. Then, the echo acquired by
the receiver at rR reads:

y (rR;ω, C) ≈ s(ω)σ (ro) g (rR, ro;ω) g (rT , ro;ω)

+ s(ω)σ (ro) g (rR, ro;ω)

(
∑

n

�C
n (ω)g (rT , rn;ω) g (ro, rn;ω)

)

(10.5)

+ s(ω)g (rR, rT ;ω)+ s(ω)
∑

n

�C
n (ω)g (rR, rn;ω) g (rT , rn;ω)

+ ε(ω)

Herein, g (rR, ro;ω) denotes the so-called Green’s function of considered phys-
ical environment that characterizes the system response at rR given a radio source
at ro. �C

n (ω) represents the reflection coefficient of the nth meta-atom at rn, when
the metasurface is configured with the control coding pattern C. Note that the sum-
mation is performed over the meta-atoms. Moreover, ε(ω) accounts for disturbances
from aforementioned in-band inferences, environment clutters, system noise, and
others. In (10.5), other possible multiple-scattering terms have been ignored due
to the deployment of the directional transmitting and receiving antennas. Note that
the first and second terms in the right hand of (10.5) carry the target’s information;
while other terms are usually target-independent. It is trivial to remove the third and
fourth terms by exploring a simple background removal operation; however, to fil-
ter out the last term is challenging due to its statistically non-stationary nature for
the real-time application demand, since conventional filter-based methods, such as
the time-frequency filtering, principal component filtering, and others, are typically
computationally prohibitive. To this end, we designed an end-to-end deep convo-
lutional network, termed as Filter-CNN, to map the noisy signal after background
removal to desired denoised signal. The training was performed in a GPU personal
computer with Nvidia GTX2080Ti and computation parameters: the optimizer was
ADAM, batch-size = 128, initial learning rate = 0.01, and iteration epochs = 100.
Such training costs 2 h. Once the Filter-CNN was trained well, the filtering time for
a group of 20× 1, 000 data was about 0.3 s.

Selected results of the denoised signals are presented in Figure 10.11(b) and
(e), where 18 random control coding patterns of reprogrammable metasurface are
used, and a human target stands quietly in indoor environment. For comparison, cor-
responding down-converted signals are also provided in Figure 10.11(a) and (d). It
can be clearly observed from Figure 10.11(a)(b) and (d)(e) that the overwhelming
unwanted inferences can be well filtered out using our Filter-CNN. Recall (10.5),
the first term characterizes the direct arrival from the source to receiver, and thus
is out of control of the programmable metasurface. To demonstrate the role of the
metasurface on the compressive measurements, the first term in (10.5) is removed
by mean-value filter with respect to the slow time (i.e., measurement index), and
corresponding results are plotted in Figure 10.11(c) and (f). From these figures, we
can see that the programmable metasurface can flexibly manipulate the acquisition
of the microwave signals carrying the target’s information, implying that the target’s
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Figure 10.11 Experimental results of the signal denoise [33]. (a) Real parts of
time-domain down-converted signals where 18 random control
patterns of metasurface are considered. This figure clearly shows
very serious in-band and out-of-band disturbances. (b) Real parts of
18 denoised time-domain signals through the proposed Filter-CNN.
(c) Real parts of mean-valued-filtered signals. (d and f) are the
spectrum amplitudes. (g) 18 random control patterns of the
metasurface used in this set of experiments.

information can be efficiently captured by a fixed receiver in a compressive way.
Additionally, 18 random control coding patterns of the metasurface involved in Fig-
ure 10.11(a)–(f) have been plotted in Figure 10.11(g). Recall (10.3), one interesting
conclusion can be observed, i.e., the good measurements imply the acquired signals
with good signal-to-noise (SNR), which can be achieved by controlling the coding
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patterns of the reprogrammable metasurface. Intuitively, such measurement strategy
can be conceived by designing the control pattern of the metasurface such that the
resultant radiation beams are focused towards the target, where the prior on the target’s
location can be estimated from the image obtained at last time. Results with focusing
measurement strategy corresponding to Figure 10.11 are presented in Figure 10.12,
from which above conclusions can be drawn again. Moreover, we can observe that
the SNRs of acquired radio signals can be remarkably improved by using the focusing
measurement strategy.

The performance of the developed metasurface sensor for the in situ imaging of
human freely moving in our lab was examined experimentally. To train the metasurface
sensor in a supervised manner, a commercial optical binocular camera ZED2 from
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Figure 10.12 Experimental results of the signal denoise [33]. The 18 focusing
control patterns of the programmable metasurface shown in Figure
10.12(g) are considered.
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Stereolabs [43] was embedded. Then, the optical videos by the ZED2 were utilized
as the labeled training samples, where a sequence of processes including background
removal, segmentation and IUV-transformation through Densepose [44] are involved.
The metasurface sensor was trained by inviting one person acting freely in the lab,
and tested by another person. In this work, 8× 104 pairs of labeled training videos
have been collected. The metasurface sensor, once being well trained, can produce
high-fidelity videos of the test person with the frame rate of about 20 Hz.

A series of IUV microwave images at several selected moments from a video
recorded by the metasurface sensor is shown in Figure 10.13(a), from which one can
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Figure 10.13 (a) Experimental in situ imaging results of the test person freely
acting in indoor environment as shown in Figure 10.9(a). (Top) The
optical RGB images at selected moments that are recorded by optical
ZED2 camera. (Middle) The IUV images recorded by the intelligent
metasurface sensor at selected moments corresponding to those in
top row. (Bottom) Time line. (b) An IUV image has three channels:
I-channel, U-channel, and V-channel. The UV channels provide the
result of mapping all human pixels from the RGB image to the 3D
surface of the human body [33].
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readily recognize the actions of the test person in indoor environment, for instance,
sitting down, standing up, making phone calls, walking, turning on the air conditioner,
waving hands, and so on. More details about the IUV microwave images can be found
in Figure 10.13(b), which shows that an IUV image has three channels: I-channel,
U-channel, and V-channel. The I-channel image is the classification of pixels belong-
ing to either background or different parts of body, which provides a coarse estimate
of surface coordinates. The UV channels indicate the results of mapping all human
pixels of an RGB image to the 3D surface of the human body. As discussed in Sec-
tion 10.5.2, the metasurface sensor has the intelligence enabled by the adaptive data
acquisition and processing.

The metasurface sensor has great performance of through-wall sensing. To show
this, a set of experimental results are shown here, where the target freely acts in
corridor outside the room with a 60-cm thickness load-bearing concrete wall. The
training and test procedures are the same as those in indoor case. Figure 10.14 reports
through-wall IUV images at selected moments recorded by the intelligent metasurface
sensor. It can be observed that the image quality in outdoor environment is comparable
to those in indoor environment and that the actions of the test person behind a 60 cm-
thickness concrete wall remains to be clearly identified. In a word, the intelligent
metasurface sensor developed by Wang et al. is capable of enabling us to see clearly
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Figure 10.14 Experimental in situ imaging results of the test person freely acting
in a corridor outside the lab with a 60-cm thickness load-bearing
concrete wall [33]. (Top) RGB images recorded by optical ZED2
camera at selected moments. (Middle) IUV images by the intelligent
metasurface sensor at selected moments corresponding to that in top
row. (Bottom) Time line.
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human behaviors behind a 60-cm thickness reinforced concrete wall with high frame
rate. Such sensing strategy could open up a promising route toward smart community
and beyond, and can be readily transposed to other frequencies and other types of
wave phenomena.
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Chapter 11

Deep learning techniques for metamaterials and
metasurfaces design

Tao Shan1, Maokun Li1, Fan Yang1 and Shenheng Xu1

11.1 Introduction

Metamaterials, artificially engineered composite structures, are rationally designed
for effective material parameters with exotic properties in a periodic or non-periodic
way [1–4]. The intriguing and unprecedented material properties and corresponding
applications have been already reported, such as negative refraction [5,6], invisibility
cloaking [7–9], perfect lensing [10], chirality [11,12], etc. Metasurfaces, the two-
dimensional equivalence of bulk metamaterials, consists of single-layer or few-layer
planar engineered structures that are periodically or quasi-periodically distributed
on an ultra-thin surface [13,14]. Metasurfaces demonstrate many novel photonic
and electromagnetic phenomena by manipulating the reflection or transmission on
a surface or interface, such as broadband diffusion [15], anomalous reflection or
refraction [16], arbitrary beamforming [17], polarization conversion [18,19], etc.

The principal driving force behind the dramatic developments of metamaterials
and metasurfaces lies in the continuous advancement of design techniques [20,21].
The design of a metamaterial or metasurface involves the forward modeling part and
the inverse design part, as shown in Figure 11.1. Here, we denote m as the data space
that contains the structural parameters to construct metamaterials/metasurfaces and
denote d as the model space that collects the user-defined properties of metamateri-
als/metasurfaces. The forward modeling is the mapping from m to d, and it can be
described by:

d = F(m), (11.1)

where F is the forward operator. Forward modeling is an essential tool to assist human
intuition-guided metamaterial designs by simulating iteratively to provide feedback.
The fundamental limitation here is the computational efficiency that results in a
trade-off between the computational time and the simulation accuracy. In an opposite
direction, the inverse design aims to find the optimal m given the desired d:

m = I (d), (11.2)

1Beijing National Research Center for Information Science and Technology (BNRist), Department of
Electronic Engineering, Tsinghua University, China
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where I denotes the inverse operator. The goal of inverse design is to directly deter-
mine the optimal design in m given the desired properties d by approximating the
inverse of F−1. The inverse design is usually an ill-posed problem that sets up barriers
to efficient design, including non-uniqueness and instability. The design complexity
grows sharply due to the exponential growth of candidate designs when the degrees
of freedom increase, as shown in Figure 11.2 [22]. The growing design complex-
ity is a long-standing challenge for the efficient design of both metamaterials and
metasurfaces.

The rapid development of deep learning (DL) has significantly accelerated the
pace in many fields [23], such as computer vision [24], speech recognition [25],
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machine translation [26], etc. Recently, many works have been reported to apply DL
to accelerate the design of metamaterials and metasurfaces [20,21]. On the one hand,
deep learning can abstract the inner law from massive data with powerful learning
capacity and approximating ability. This makes DL capable of efficiently approx-
imating a target function, which is advantageous for designing metamaterials and
metasurfaces. By building and training deep neural networks (DNNs) to replace the
parts with high complexity, DL can help mitigate the computational loads of forward
modeling and inverse design. On the other hand, DL is good at compactly extracting
features from a large amount of data. This can help build the compact representation
of geometrical or structural features of metamaterials and metasurfaces, which further
overcomes the “curse of dimensionality.”

In this chapter, we offer a brief review of recent advances on the applications
of DL into the design of metamaterials and metasurfaces. The design strategies are
categorized into four groups: discriminative learning approach, generative learning
approach, reinforcement learning approach, deep learning and optimization hybrid
approach.

11.2 Discriminative learning approach

The discriminative learning approach builds the DNN models to learn the inverse
mapping from the data space to the model space:

m = N (d, θ ), (11.3)

where N denotes the DNN model to approximate the inverse operators I in (11.2) and
θ is the parameter set of the DNN model. The DNN architectures, training strategies,
and data generating schemes diversify to accommodate different design goals and
address the intrinsic difficulties of the inverse design.

The first and straightforward approach for inverse design is to build a direct DNN
model to learn the inverse mapping directly, and it is categorized as the direct DNN
model in this chapter. By generating labeled pairs (m, d) as the training data set, the
built DNN model is trained in a supervised way to perform reliable predictions, as
described in (11.3).

Various architectures of DNNs are considered to perform different design tasks.
The adaptive artificial neural network (ANN) is presented for the inverse design of
the thin film metamaterials consisting of graphene and Si3N4 [27]. The adaptive ANN
introduces the adaptive batch normalization into a standard ANN structure to reduce
the output error. Taking the optical spectrum as input, the adaptive ANN can directly
predict the thickness of each layer in the graphene-based metamaterial with high
precision and fast computing speed. Inspired by applying ANNs to model the optical
spectra of metamaterials, the ANNs are applied to the inverse design of metamaterials
by switching the inputs and outputs of the forward modeling ANNs [28]. In [28], two
concentric multilayered cylinder metamaterials are designed by training the ANN
model to predict each core layer’s refractive index and radius regarding a given optical
response. The deep learning approach is presented to design the metasurfaces to
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Figure 11.3 Workflow of the inverse design of metamaterial or metasurface based
on a direct DNN

achieve single/multiple resonances at the desired working frequency in [29]. Eight
annular models are generated and numbered in digital codes as the basic unit cells
to construct the metasurface. The DNN models take the S-parameters of TE and
TM modes and output the digital codes of the eight annular models. The automatic
design approach is also applied to design the metasurface based on the eight pre-
defined ring-shaped patterns with the in [30]. The FCN model is trained to design
the bifocal metalens to achieve two independent foci of the orthogonally polarized
light [31]. The FCN model predicts two control parameters of unit cells in the metalens
by taking the transmission intensities of TE and TM polarized plane waves as input.
The optical illusion is customized by intelligently arranging the elements of form-free
metasurfaces based on deep learning techniques in [32], as shown in Figure 11.4. Two
neural networks are trained to predict a one-hot code representing the metasurface
configuration given the near-field or the far-field pattern. A conformal metasurface
with curved shapes is taken as a proof of concept to achieve a wide range of in situ
applications.

The convolutional neural networks (CNNs) have proven good at extracting hier-
archical features from the input geometries, which is suitable for the design task.
The weight sharing of CNNs can also reduce the number of parameters in the whole
design process. A CNN model is adopted for accurate and fast inverse design of
the plasmonic metasurfaces [33]. The input of the CNN model is the absorption
spectra, and the output is a vector of parameters to optimize. As the unit cell in
the plasmonic metasurface is symmetric, the absorption spectra do not change when
mirroring the unit cell along the symmetry axis, leading to the one-to-many prob-
lem in the inverse design. A single CNN model cannot learn such one-to-many
mapping, and its performance could deteriorate when the training data contains the
one-to-many. Therefore, the symmetry of unit cells is restricted when applying the
FDTD to generate training data in [33]. The performance of the CNN and ANN
models is further compared, and the CNN model demonstrates better computational



Deep learning techniques for metamaterials and metasurfaces design 375

(a)

(b)

(c)

Input Output
Convolution Convolution Dense

Pooling Pooling

Figure 11.4 A sketch of the global metasurface design for intelligent optical
illusion (source: [32])

precision and generalization ability. The convolutional autoencoder is connected with
the CNN to design the broadband metasurface absorber in [34]. The convolutional
autoencoder is trained to encode the spectra into the low-dimensional latent vec-
tors. Then the CNN takes the latent vectors as input and predicts the structural
parameters.

Autoencoder helps transform the data and model spaces into the reduced ones to
address the many-to-one problem. The dimensionality reduction is performed based
on the autoencoder to convert the many-to-one problem to the one-to-one problem
in the inverse design of reconfigurable metasurfaces based on the plasmonic phase-
change materials [35]. Due to the many-to-one mapping between the original model
and data space, the autoencoders are trained to compress the original data and model
spaces into the reduced latent ones. The mapping path between the reduced latent
data and the model spaces is one-to-one. In the inverse design process, the reduced
structural parameters can be inferred regarding the encoded optical responses, and
then the original structural parameters can be decoded based on the reduced ones.

The evolutionary algorithms and machine learning techniques are studied and
compared to design novel graphene metamaterials with wideband plasmon-induced
transparency effect as the design target in [36]. The machine learning techniques
applied in the forward modeling and inverse design include the K nearest neighbor,
random forest, decision tree, and ANN model with the FDTD and Monte Carlo
simulation for generating training data. The genetic algorithm (GA) is applied to tune
the hyper-parameters of the ANN model for better performance. Numerical results
show that all machine learning techniques are effective and random forest has minimal
computing time. Furthermore, the GA, PSO, quantum GA are compared in the design
task of broad bandwidth transmission spectrum, and the non-dominated sorting GA
is adopted for the optimization of multiple performance metrics.
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The transfer training scheme is also applied to reduce the computational load of
training a large-scale DNN model. The inverse design of functional metasurfaces is
performed based on the transfer learning in [37]. The metasurface is first encoded
as an array of meta-atoms where 1 represents the copper, and 0 denotes vacuum.
The transfer learning network (TLN) regards the predictions of reflection phases as a
classification problem. TheTLN is built to predict reflection phases given the encoded
meta-atom arrays based on the Inception V3 network pretrained on the ImageNet
data set. Only the fully connected layer of the pretrained Inception V3 network is
adjusted by freezing the convolutional and pooling layers. A full-phase-span library
of meta-atoms is established based on the TLN for metasurfaces’ fast and accurate
design.

Second, the bidirectional DNN is designed to address the one-to-many problem
in the inverse design of metamaterials and metasurfaces, which is also known as the
tandem model and first proposed in [38]. The training procedure of the bidirectional
DNN can be divided into two phases, as shown in Figure 11.5. Here we give a brief
introduction of the commonly-applied bidirectional DNN approach. First, a DNN
model is trained to learn the forward modeling from the model space m to the data
space d:

df = Nf (m, θf ), (11.4)

Data Space di

Model Space m

Deep Neural Networks
Inverse Design

Deep Neural Networks
Forward Modeling

Pretrained
and

Fixed

Data Space df

Loss

Figure 11.5 Workflow of the inverse design of metamaterial or metasurface based
on a bidirectional DNN
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Once the training is finished, the forward DNN model serves as the forward simulator
with its weights fixed. Then the inverse DNN model is trained to learn the inverse
mapping from the data space d to the model space m:

m = Ni(di, θi), (11.5)

The objective function of the inverse DNN model is to measure the discrepancy
between the desired spectra and the predicted spectra, and the predicted spectra are
generated by the forward DNN model regarding the model parameters produced by
the inverse DNN model. The objective function can be written as:

obj =M (di, Nf (Ni(di, θi), θf )), (11.6)

where M denotes the metric function to evaluate the error. It is noted that θi is to
train, and θf is fixed. The workflow of the bidirectional DNN model is depicted in
Figure 11.5. The bidirectional DNN model enforces the spectra of inverse design
to be the same as the desired ones instead of minimizing the difference between
the desired and predicted geometry parameters. Therefore, the one-to-many or the
non-uniqueness existing in the direct DNN model can be avoided.

The deep-learning-based approach stacks two bidirectional DNN models for the
inverse design of chiral metamaterials, including the primary network and the auxil-
iary network, in [39], as shown in Figure 11.6. The primary network focuses on the
mappings between the reflection spectra and the design parameters. The auxiliary
network is trained to model the mappings between the chiroptical response and the
design parameters. The forward and inverse combiners are created to post-process
the outputs of the primary and auxiliary networks. The proposed approach is fur-
ther verified to design chiral metamaterials regarding the on-demand requirements of
chiral performance, and it demonstrates high computational efficiency and accuracy.
The design of three-layered spherical core-shell nanoparticles is assisted by a bidirec-
tional DNN model comprising a design network and a spectrum network in [40]. The
spectrum and design networks establish the forward and inverse relationship between
the thickness and information of materials and the spectra of electric and magnetic
dipoles. Compared to (11.6), the objective function additionally introduces the error
between the desired and predicted design parameters in [40]:

obj = αM (di, Nf (Ni(di, θi), θf ))+ (1− α)Mm(mi, mt), (11.7)

where α is the weight, mi and mt are the predicted and the desired model parameters,
Mm is the metric function to evaluate the error. The proposed method is applied to
inversely design the core-shell nanoparticles to tune the electric dipole resonances at
various wavelengths, achieve the isolated magnetic dipole resonances, and produce
the electric and magnetic dipole resonances simultaneously. The metamaterials con-
sisting of split ring resonators are inversely designed by building a bidirectional DNN
model in [41]. The bidirectional DNN model consists of forward and reverse neural
networks trained separately to learn the forward and inverse mappings between the
structural parameters and the x-/y-polarized reflectance. The structural parameters to
design include the line width, open angle, and inner ring radius of the resonators. The
high-quality factor resonance is designed by building a bidirectional ANN model that
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Figure 11.6 Designing chiral metamaterials based on the deep-learning model
(Reprinted (adapted) with permission from [39]. Copyright 2022
American Chemical Society.)

consists of two independent ANNs for forward and inverse mappings in [42]. The pro-
posed DL-based approach is validated by designing a single optoacoustic metasurface
with the non-radiating toroidal dipoles as the building blocks. Inspired by [38], the
tandem model is built for the inverse design of mid-infrared graphene-based meta-
materials with the desired optical spectra [43], as shown in Figure 11.7. The forward
DNN has six hidden layers, and it is pre-trained to be combined with the inverse DNN
with only two hidden layers. All-dielectric metasurfaces with cylindrical meta-atoms
are designed by a bidirectional neural network model in [44]. Leveraging spectral
scalability, the proposed model can address the challenges of dimension mismatch
and spectral generalizability in the inverse design of metasurfaces. Instead of build-
ing one forward predictor, multiple DNN models can be built as different forward
predictors of different design targets. A tandem neural network is utilized to design
a focusing metamirror to achieve high reflectivity and a minimal phase mismatch
in [45]. Two forward predictors are trained to predict the phase and reflectivity given
the input geometries. Then the inverse generator is connected with the two trained
forward predictors and trained to produce designs that meet the requirements of phase
and reflectivity at the same time.
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The DNN architectures proven effective are also adopted in building the bidi-
rectional DNN model, such as autoencoders and residual networks. The bidirectional
autoencoder model is built for the fast design of the gap plasmon-based metasur-
faces that performs the polarization conversion of light in [46]. The encoder model
compresses the optical responses into the low dimensional structural parameters of
metasurfaces, and then the decoder is trained to output the optical responses regard-
ing the structural parameters. The discrepancies between the spectra and structural
parameters are combined to constrain the training of the bidirectional autoencoder.
The tandem autoencoder is built to overcome the non-uniqueness existing in the
inverse design of plasmonic metasurface structural color in [47]. The forward DNN
model is first trained to predict color given the geometry. The tandem autoencoder
is trained to minimize the discrepancy between the input and predicted color by cas-
cading the pre-trained forward DNN model to the inverse DNN model. A tandem
residual neural network is built to design the multiplexed supercells to construct
the metal-insulator-metal metasurface in [48], as shown in Figure 11.8. The 1D
CNNs are taken as basic modules of the residual neural network. The ability of a
tandem network is validated to address the non-uniqueness problem in the inverse
design. The alternative training strategy is implemented to improve the performance
of specific design task. The bidirectional neural network is trained to achieve both
forward characterization and inverse design of metasurfaces at the same time [49].
The geometry-predicting-network (GPN) and spectrum-predicting-network (SPN)
are introduced based on the FCNs. Training GPN and SPN simultaneously can
improve performance instead of training them alternatively, which is verified by the
numerical experiment.
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Unlike the bidirectional DNN model, two different deep learning models can
be first trained separately and then combined to finish the design task. The hybrid
approach based on the autoencoder (AE) and the multilayer perceptron (MLP) is
proposed in [50] for the automatic design of metasurfaces. Inspired by the similarity
between the S-parameters and the acoustic signal, the S-parameters are first smoothed
by a Gaussian filter, then transformed by Cestrum analysis. Taking the pre-processed
S-parameters as input, the AE functions to compress and extract the compact fea-
tures with reduced dimensionality. The MLP with sigmoid function is trained with
the L-2 regularization to match the extracted features and the metasurface structures.
The effectiveness of the proposed approach is validated by designing a triple-band
absorber with the desired absorption rate. The convolutional neural network-based
autoencoder (CNN-AE), support vector machine (SVM), and the artificial bee colony
(ABC) are combined for the inverse design of EM metasurfaces in [51], as shown in
Figure 11.9. The CNN-AE is trained to compress the input EM property as the repre-
sentative features. The ABC optimizes the SVM with the Gaussian kernels to match
the metasurface structures to the representative features produced by the CNN-AE.
Compared to the MLP applied in [50], the SVM model can overcome the dependence
on the nonlinear activation function.

11.3 Generative learning approach

The generative learning approach aims to learn the joint distribution of the input
and output [52]. In the context of the inverse design, the joint distribution can be
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defined as p(d, m). The discriminative learning approach establish the posterior distri-
bution p(m|d) directly [52]. The generative learning models have been widely applied
in the inverse design of metasurfaces/metamaterials [20]. Variational autoencoders
(VAEs) and generative adversarial networks (GANs) are two different and important
paradigms in the generative models. The VAEs and GANs can be unified and linked
to the wake-sleep algorithm by minimizing opposite Kullback–Leibler (KL) diver-
gence of posterior and inference distributions [53]. In [53], the close parallelisms
between GANs and VAEs are established by the fact that the generators of GANs
can be viewed as posterior inference, and the VAEs contain a degenerated adversarial
mechanism. This section introduces the generative learning models for the inverse
design of metasurfaces/metamaterials, including the GANs and VAEs.

The concept of variational autoencoders is first introduced in [54] to perform
a stochastic and efficient variational inference by minimizing the variational lower
bound. Figure 11.10 shows the workflow of the VAE model for the inverse design
of metasurfaces and metamaterials. As shown in Figure 11.10, VAE consists of an
encoder, a sampler, and a decoder. The encoder takes as input both model and data
space, then encodes them into the continuous Gaussian distributed latent variable
space with a reduced dimension. Conditioned by the data space, the decoder recon-
structs the desired model space regarding the latent variable z produced based on
the Gaussian distribution by the sampler. Let qθ (z|x) and pφ(x|z) denote the poste-
rior distribution and likelihood distribution of encoder and decoder respectively, the
Evidence Lower Bound (ELBO) can be written as [54]:

L (θ ,φ, xi) = −DKL (qθ (z | xi) ||p(z))+ Eqθ (z|xi)

[
log pφ (xi | z)

]
(11.8)

ELBO is the core of VAEs, which is the lower bound of the target that VAEs aims
to maximize. It can be observed that the KL divergence regularizes the form of the
posterior distribution in the ELBO.

Training Phase

Encoder

Generation Phase

μ σ

μ σ

Model Space

Sampler
Z ~ N ( μ, σ)

Sampler
Z ~ N ( μ, σ)

Model Space

Decoder
Data Space

Figure 11.10 Workflow of a variational autoencoder model for the inverse design
of metasurfaces and metamaterials
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The probabilistic representation of the metamaterial structure is established via a
VAE model to accelerate the inverse design of metamaterial in a semisupervised train-
ing manner [55]. The VAE model encodes the design geometry and optical response
into the latent space with the predefined Gaussian prior distribution. The optimal
structure is retrieved by the VAE model based on the sampled latent space and the
desired optical response. A self-supervised VAE model is built for the inverse design
of nanophotonic structures in the reflective metasurfaces [56]. The encoder of VAE
is allowed to simultaneously predict the latent vectors and the reflection spectra. The
decoder can reconstruct the desired metasurface layout regarding the sampled latent
vectors and the reflection spectra. The objective function of the VAE model is defined
as [56]:

L = Llatent + Lrecon + αLspec

= KL[Eφ(z|x)||P(z|x)]− EEφ (z|x)[ log (Dθ (x|y, z))]+ α(y − ŷ)2,
(11.9)

where Eφ and Dθ denote the encoder and the decoder parameterized by φ and φ, z
is the latent variable, P(z|x) is the standard Gaussian distribution of z, x, y and ŷ are
input layout, output spectra and labeled spectra respectively. The adversarial autoen-
coders (AAEs), consisting of an encoder, a decoder, and a discriminator, are adopted
for the topology optimization of metasurface for thermal emitter [57], as shown in
Figure 11.11. Similar to VAEs, the encoder tries to compress the given topology into
a compact latent space, the decoder is trained to perform a reliable reconstruction.
However, the learning of AAEs is adversarial by building a discriminator to differen-
tiate between the latent space and the predefined topology distribution. Compared to
the VAEs, the advantage of AAEs lies in that the distribution of latent space can be
defined precisely, not limited to the normal distribution.

Input

4096
(64×64)

4096
(64×64)15-D latent space

Decoder/Generator

Real/Fake

215
512

Discriminator

1
0.8
0.6
0.4
0.2

0

Generated set

Refinement of
generated set

Robust,
highly efficient designs

512 512
15

512 512
15

Encoder

Pre-defined
model distribution

Topology optimized
designs

Output

Figure 11.11 Adversarial autoencoder-assisted topology optimization of
metasurfaces (source: [57])
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Figure 11.12 Workflow of a generative adversarial network model for the inverse
design of metasurfaces and metamaterials

Generative adversarial networks are first proposed in [58]. GANs usually consist
of a generative model and a discriminative model. Figure 11.12 depicts the workflow
of applying GANs to the inverse design of metasurfaces and metamaterials. The
generator produces the structural parameters regarding the input noise or/and property
data. The discriminator is trained to differentiate the generated predictions from the
desired ground truth. The generator G and discriminator D try to solve the minmax
problems [58]:

min
G

max
D

V (D, G) = Ex∼pdata (x)[ log D(x)]+ Ez∼pz (z)[ log (1− D(G(z)))] (11.10)

where pdata and pz denote the probability distributions of data and noise. The generator
reaches optimal when the generator’s distribution pg equals pdata. Such an adversarial
training process can ultimately lead to mutual improvement of both the generator and
discriminator.

The plain GANs are first applied to solve the design task. The deep learning-based
approach is proposed as a candidate solution to address the challenge of designing
random and complex metasurfaces in [22], as shown in Figure 11.13. The purely
reflective metasurface is taken as an example, with the co-polarized reflectance (coPR)
as the design target. Drawing on bidirectional neural networks and GANs, the pro-
posed network consists of three parts: an inverse generator to generate the candidate
design, a pre-trained forward predictor to predict the coPR, and a discriminator to
differentiate the predicted design. The alternate training scheme is adopted to tune
the generator and discriminator.

Besides, the conditional generative adversarial networks (CGANs) and the con-
ditional deep convolutional generative adversarial networks (cDCGANs) are adopted
by introducing conditions to control the design process. The conditional deep convolu-
tional generative adversarial networks (cDCGANs) are first applied in the data-driven
design of nanophotonic antennae given the desired reflection spectra [59]. The cDC-
GAN, a GAN variant, can overcome the instability of vanilla GAN and generate a
stable Nash equilibrium solution. Conditioned by the reflection spectrum, the gener-
ator takes the noise as input and produces the corresponding probability distribution
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Figure 11.13 Generative adversarial network for the metasurface design
(source: [22])

function (PDF) of the antenna. The discriminator tries to differentiate between the
desired and generator-produced designs of metasurfaces. The cDCGAN is trained
to design the anisotropic metasurface to achieve full phase properties in ultrawide-
band [60]. The generator and discriminator are trained alternatively to minimize two
independent pre-defined loss functions. The pre-trained forward predictor constitutes
a loop with the cDCGAN to select the candidate designs. The design task can also
be viewed as an image processing problem to solve under the framework of image
processing techniques. The image-based deep learning framework is presented to
achieve the inverse design of materials and structures in the context of nanophoton-
ics [61]. The structure of the applied cDCGAN is shown in Figure 11.14. Two classes
of absorbing metasurfaces are considered: metal-insulator-metal and hybrid dielectric
metasurfaces. The information of metasurfaces is first encoded into an RGB image,
including the geometries, material properties, and thicknesses. The spectra are fed
into the generator along with a latent vector for generating the corresponding candi-
date design image. The discriminator attempts to differentiate the generated image
from the ground truth. The 3D metasurface models can be reconstructed based on the
generated image. The generative data-driven approach based on GAN is presented
for the high-throughput inverse design of photonic crystals (PhC) [62]. In GAN, the
generator is trained to produce the PhC unit cells that can deceive the discriminator
with the noise as input. The discriminator is tasked with differentiating the PhC unit
cells produced by the generator. The CGAN, widely applied in the image-to-image
translation, is also employed to the inverse design of PhC in [62]. Compared to the
GAN, CGAN adopts another conditional input to guide the inverse design. The condi-
tional input is the discretized inclusion outline of the PhC and the CGAN can translate
the conditioned outline to a permittivity profile hosting the desired properties. The
conditional GAN (CGAN) and Wasserstein GAN (WGAN) are combined to design
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multifunctional metasurfaces in [63], as shown in Figure 11.15. The proposed GAN
model is trained to produce a target design given the sampled Gaussian noise vec-
tor conditioned with the pre-defined auxiliary information. The Wasserstein distance
between the target design y and the generated design y′ is adopted to stabilize the
training [63]:

W (Pdata , PG) ≈ sup
‖D‖L≤1

{
Ey∼Pdat [D(y | x)]− Ey′∼PG

[
D
(
y′ | x)]} , (11.11)

where Pdata and PG are the true and generated EM response sets, D is the Wasserstein
distance produced by the discriminator.

The predictor or critic is introduced to add another spectra or property constrain
for the training of the generator in addition to the geometry constrain from a discrim-
inator. A generative model is presented based on the GAN for the inverse design of
unit cell patterns of metasurfaces [64]. The architecture of the generative model is
illustrated in Figure 11.16. The proposed generative model consists of a generator, a
critic, and a simulator. The simulator is a pre-trained neural network for estimating the
optical spectra given the specific metasurface pattern. The simulator can reduce the
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time-consuming electromagnetic full-wave simulation and control the accuracy of the
optical spectra of the generator-produced metasurfaces. The generator produces the
metasurface patterns in response to the desired optical spectra along with the noise.
The critic is trained to assess the distance between the distributions of the user-defined
and generator-produced geometric data sets. Such distance can guide the generator
to produce patterns that have similar features to the user-defined ones.

11.4 Reinforcement learning approach

Reinforcement learning (RL), a framework of experience-driven autonomous learn-
ing, plays a vital role in the field of artificial intelligence [65]. RL trains agents to
learn the optimal actions or make optimal decisions when interacting with the specific
environment via a trial-and-error process. As shown in Figure 11.17, the agent and
environment interact with each other, and they are two primary components in the
perception-action-learning system of the RL. In the interaction, the agent learns the
policy to take actions regarding the current state and the rewards returned by the envi-
ronment. The environment evaluates the reward and updates the state upon accepting
the action from the agent. Let st and at denote the state and action at time step t, the
policy π is the posterior probability distribution of at given st [65]:

π = p(at|st) (11.12)

The environment produces the reward rt when receiving the action at . Before the
terminal of actions at time step T , a series of at , st and rt is produced, and the rewards
are accumulated as the return R that can be written as [65]:

R =
t=T∑

t=0

γtrt , (11.13)

State
Reward

Action

Data Space di
Model Space m

Policy

Environment Agent

Figure 11.17 Workflow of the reinforcement learning approach for the inverse
design of metamaterials or metasurfaces
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where γt denotes the discount factor to weigh the rewards at different time steps. In
RL, the ultimate goal is to find an optimal policy that can produce the maximum
expected return R [65]:

πbest = arg max
π

E(R|π ) (11.14)

The Markov property is widely applied in RL by assuming that the next state is
only dependent on the current state. The traditional RL faces several long-standing
challenges, such as lack of scalability and limited dimensionalities of the state and
action spaces. The introduction of deep learning enables RL to solve high-dimensional
intractable decision-making problems [65]. The deep reinforcement learning (DL) has
been applied in a wide range of problems, such as video games [66], robotics [67], go
playing [68], and indoor navigation [69]. Various DRL algorithms have been reported,
such as the value functions-based method [70], policy search-based method [71], and
actor-critic method [72].

The plain DRL can make design process of metamaterials or metasurfaces more
efficient by carefully defining the roles of the agent, environment and reward in
DRL. DRL is applied to design the optical multilayer films by viewing the task
as a sequence generation problem [73]. Reinforcement learning is implemented by
applying proximal policy optimization to train the sequence generation network. The
sequence generation network is built by combining a gated recurrent unit (GRU) and
two multilayer perceptrons (MLPs). The GRU can predict the material and thickness of
each layer with the memory of the history sequence. Two MLPs are trained to predict
the logit vectors of materials and thicknesses corresponding to the pre-defined sets.
With the simulator named as TMM in [74], the cumulative reward of the RL process
is defined as:

G(S ) = 1− 1

K

∑

k=0

1

J

J−1∑

j=0

∣∣∣T S
(
λj, δk

)− T̃
(
λj, δk

)∣∣∣ (11.15)

where T S
(
λj, δk

)
is the spectrum of the generated structure S given the wavelength

λj and incident angle δk , T̃
(
λj, δk

)
is the ground truth. Let πθ (a|s) denote the policy

of agent parameterized by θ for generating the action a given the state s, the goal of
the RL process is to maximize the expected rewards [74]:

J (θ ) = ES∼πθ [G(S )] (11.16)

The parameters θ is optimized by the gradient descent method where the proximal
policy optimization (PPO) is applied to calculate the gradient with respect to θ [74]:

g = ∇θES∼πθ
[
min

(
r(θ )Aθv (S ), clip (r(θ ), 1− ε, 1+ ε)Aθv (S )

)]
, (11.17)

where r(θ ) = Pθ (S )
Pθold (S ) is to weigh the importance, clip disincentivizes the large update

steps, ε is a hyperparameter to affect the actual update size. The effectiveness of the
proposed approach is validated by two optical design tasks: ultra-wideband absorber
and incandescent light bulb filter. The structural design task of the 1D freeform
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(Reprinted (adapted) with permission from [75]. Copyright 2022
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metagrating is viewed as a DRL problem in [75], as summarized in Figure 11.18. The
1D metagrating is represented by a 1D array, of which cells filled with silicon are
denoted as+1 and ones filled with air denoted as−1. In the DRL, an action switches
the +1 and −1 of the 1D array. The environment simulates the deflection efficiency
and returns the rewards to the agent given the current metagrating structure.

The double deep Q learning (DDQL) is an important variant of DRL for better
stability and performance. The DDQL is applied to optimize the color generation
by designing the parameters of dielectric nanostructures [76]. The color generation
depends on the reflection or transmission spectra that are determined by the struc-
tural parameters of nanostructures. In the DDQL, the return formulated in (11.13) is
replaced by a value function Q(s, a). The Q(s, a) can be derived from the Bellman
equation [76]:

Q(s, a) = r(s, a)+ γ max
a

Q(s′, a) (11.18)

With Q(s, a) representing the maximum discounted future reward, the policy is learned
to choose the action with the highest Q at a specific state. The state in DRL contains
the dimensions of silicon-based nanostructures, including the nanodisk diameter and
thickness, the distance between nanodisks, Si3N4 layer thickness. The action guides
the geometrical parameters of the nanostructures. The reward is defined based on
the difference between the predicted and desired colors. Two similar fully connected
networks are built in DDQL. The first is the main network to map from the state space
to Q, and the second is the target network to estimate the Q value of the action. The
proposed approach is validated to design the nanostructures with purer red, green
and blue colors. The double deep Q-learning network (DDQN) is trained to learn the
optimal policy of designing the biomimetic ultra-broadband perfect absorbers [77].
The absorbers are made up of chromium and adopt the moth-eye structures. In DDQN,
two neural networks are built: the target network for predicting the Q value of the
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specific state and the policy network for choosing the action. The loss function of the
target network is defined as the Huber loss as [77]:

L =
{

1
2 (xi − yi)

2 for |xi − yi| ≤ 1

|xi − yi| − 1
2 , otherwise

(11.19)

The state consists of the geometrical parameters of absorbers to optimize, including
the periodicity of the unit cell, the diameter, height, curvature radius of the moth-eye
structure, the material and thickness of the spacer layer, the material of the metallic
substrate. The environment is the moth-eye structure absorber, and the reward is
defined by penalizing the low absorption [77]:

reward =

⎧
⎪⎪⎨

⎪⎪⎩

−10 if absorption < 85%
(

absorption
90

)9 − 1 if absorption > 85%

10, 000 (and end the episode) if absorption > 99%

(11.20)

The penalization on the low absorption can enforce the agent of RL to reach the
terminal state quickly. The absorptions are simulated by the commercially FDTD
solver with the perfectly matched layers. The DDQL is also applied to design the
metasurface holograms with the efficiency as the target in [78]. The main and auxiliary
networks are built, the former for predicting actions and the latter for updating the
weights of the main work. The action taken by the agent is defined as the changes of
geometries and materials.

The traditional RL algorithm can be coupled with DL to perform efficient search
of an optimum. The inverse design strategy for structural color is designed by com-
bining the supervised learning (SL) models and the reinforcement learning algorithm
in [79]. The proposed strategy comprises three steps: dataset establishment, SL
models, and RL algorithms. The dataset is established by applying the finite ele-
ment method to simulate the color properties of different geometries, as shown in
Figure 11.19(a). Three SL models are trained to learn the mappings between the
geometries and colors: the forward kernel ridge regression (KRR) model for for-
ward mapping from color properties to geometries, support vector classification
(SVC) model for classifying the color brightness, and the backward KRR model
for the inverse mapping from geometries to color properties. Due to the intrinsic non-
uniqueness of inverse design, the RL is implemented to find the optimal geometry
given the desired color. The backward KRR model is utilized to generate a reliable
and reasonable geometry as the initial guess of the RL algorithm regarding the desired
color property. Then the greedy algorithm is employed to search the geometry space
to find the current optimal value. The SVC model monitors whether the structural
color is qualified or not during the iterative process. The forward KRR model helps
guide the update of the geometry. The workflow of the RL algorithm is depicted in
Figure 11.19(b).
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11.5 Deep learning and optimization hybrid approach

The hybrid approach combines the advantages of both deep learning techniques and
optimization methods. Figure 11.20 shows the workflow of the hybrid approach. The
optimization method searches the model space m or the encoded latent space z via an
iterative process. The searching strategies of the model space m include the gradient
based strategy and the non-gradient based strategy. In the gradient-based strategy,
the neural adjoint (NA) method is adopted to calculate the required gradient based
on the DNN model. In the non-gradient-based strategy, the DNN is usually trained
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to predict the corresponding properties with significantly reduced computing time.
The latent space z is usually generated by the generative learning approach, such as
VAEs, GANs, and their variants. The latent space z can enable an efficient search by
reducing the dimensionality of the model space m. The trained generator of VAE or
GAN needs to be employed to perform the mapping from m to z for evaluating the
fitness to guide the optimization process.

The first non-gradient-based strategy to search the model space m is the direct
search method. The inverse design of all-dielectric metasurfaces is accelerated by
combining the fast forward dictionary search (FFDS) and deep learning techniques
[80]. The DNN model is built by combining the FCN and CNN to perform reliable
spectra predictions regarding the geometric data. The entire set of spectra is generated
regarding all geometric combinations with a total of 138 spectra. The FFDS can search
the entire spectra set to find the optimal metasurface structure given the desired
spectra. The forward ANN model is built to accelerate the design of subwavelength
grating (SWG) couplers in [81]. The FDTD is applied to perform the optical simulation
to generate training data. The brute-force parametric sweep is connected with the
trainedANN model by taking advantage of the ultrafast speed of theANN predictions,
which is further validated in the design task of the polarization-insensitive SWG
couplers. The direct search algorithm is combined with deep learning techniques
to design the broadband and wide-field-of-view metalenses consisting of free-form
meta-atoms in [82]. The DNN model is trained to produce meta-atom designs by
exploring a wide range of geometric degrees of freedom in an efficient way. This is
also suited for the direct search algorithm that is good at handling meta-atoms with
large varieties. The 3D all-dielectric metasurfaces are designed by the objective-driven
deep learning approach in [83]. The design loop is summarized in Figure 11.21. The
FCN model is trained for forward modeling to reduce the computing time of full-wave
electromagnetic simulation with reliable and accurate predictions of transmission
and phase spectra. The closed-loop design framework is proposed by connecting
the FCN model with the meta-atom model generator. The FCN model predicts the
EM properties of the current design, and the model generator tunes the structural
parameters based on the discrepancy between the predicted and desired EM properties.

Another non-gradient-based strategy to search the model space m is the evolution-
ary approach, such as particle swarm (PSO), differential evolution (DE), and genetic
algorithm (GA). The deep learning technique and binary particle swarm optimization
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(BPSO) are coupled for the design of the anisotropic metasurfaces [84]. The metasur-
faces are represented by meta-atoms in the digital coding manner. The CNN model
is trained to predict the phase responses given the coding patterns, which further
accelerates the calculation of fitness in the BPSO. Three metasurfaces are designed
and fabricated by the proposed strategy to achieve dual-beam forming, and these two
beams host different polarizations. The meta-atom is optimized based on the genetic
algorithm with the Inception V3 network as the forward simulator in [85]. The Incep-
tion V3 network can significantly improve efficiency by directly mapping the phase
and meta-atoms. The GA can search for the optimal meta-atoms with the desired
phase responses at orthogonal polarization. A hybrid approach combines the particle
swarm optimization and the DNN model for the inverse design of high-contrast-
index gratings, which is termed the metamodel-based optimization (MmBO) scheme
in [86]. The MmBO scheme is computationally faster than the metaheuristics ones
by applying the trained DNN model to evaluate the candidate designs. The MmBO
scheme is extended to design the 3D all-dielectric metasurfaces to reproduce the
desired colors in [87]. The hybrid approach for designing the metamolecules is pre-
sented by consolidating the compositional pattern-producing network (CPPN), and
cooperative coevolution (CC) in [88]. The CPPN is trained in a pixel-to-pixel manner
by encoding the pixel coordinates into a low-dimensional latent space. Then the CC
is combined with the CPPN to optimize an independent meta-atom via an iterative
process. The design of the whole metamolecules is finished by assembling all the opti-
mized independent meta-atoms. The surrogate-assisted DE algorithm is presented to
design the extended unit cell metagratings in [89], as shown in Figure 11.22. The
performances of ResNet, DenseNet-I, and DenseNet-II are compared for the forward
modeling between the geometrical parameters and the corresponding spectra. In the
iterative process of the DE algorithm, the trained DenseNet-II can provide fast and
reliable spectra predictions to accelerate the evaluation of fitness. The PSO is applied
to efficiently search the configurations of metamaterial absorbers with the pre-trained
DNN models predicting the reflection coefficients [90]. The absorption and diffusion
of the meta-atoms are considered in the optimization process of PSO.A deep learning-
based inverse strategy is presented for few-layer metasurfaces by combining the CNN
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Figure 11.22 Surrogate-assisted differential evolution optimization for
metagrating design (source: [89])

model, evolution algorithm, and matrix theory of multiple optics in [91]. The CNN
model is trained to predict the scattering matrix given the monolayer metasurface.
The scattering matrix of the few-layer metasurface is further calculated to evaluate
the fitness score for the evolution algorithm according to the matrix theory.

The DNN model can also help predict good initializations for the optimization
algorithm instead of accelerating the property evaluations. The surrogate-assisted
approach is presented for the inverse optics design, and a 16-layered thin-film is
designed to validate its effectiveness [92]. The forward DNN model is first trained to
learn the forward mapping from the geometries to the spectra. Then the forward DNN
is coupled with the DE methods to find or select good initial guesses of the layouts,
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which can further accelerate the computing of the differential evolution algorithm. A
similar approach is applied for the inverse design of multilayered thin-films in [93]
by pairing the DNN model with the DE method. The forward DNN model is trained
to perform good preselections or initializations for the DE methods. Active sampling
is also introduced to improve the performance of the DNN model by incorporating
an uncertainty estimation in the loss function [93]:

L(y, ŷ) =
∑B

i=1

(
(y−ŷ)2

2σ 2
i
+ 1

2 log σ 2
i

)

B
+ λ

K∑

j=1

|wk |2 , (11.21)

where B is the batch size, σi is hyperparameters learned by the DNN model, K is
the total number of weights, λ controls the strength of the regularizations. In (11.21),∑K

j=1 |wk |2 is the L2 regularization of the DNN weights, and 1
2 log σ 2

i forces the DNN
model to assign high variances for the undesired predictions.

The Bayesian framework is coupled with the DNN model to solve the design task.
A self-learning framework is presented to model and optimize the optical chirality
of metallic nanostructures in [94]. Consolidating the Bayesian optimization and the
CNN, the proposed framework is first trained to predict the optical properties given
the nanostructures, then applied to optimize the geometrical parameters of nanostruc-
tures. The Bayesian optimization, a derivative-free algorithm, is applied to sample
a set of optimized inputs based on the current CNN model in order to reinforce the
CNN model in the next iteration. The inverse design of VO2-based smart window is
accelerated by deep learning techniques in [95]. The Bayesian DNN model is trained
to learn the forward mapping between the structural parameters and the resultant mer-
its. Compared to the plain DNN model, the Bayesian DNN model can incorporate
the prior information to regularize the training process. The Markov Chain Monte
Carlo (MCMC) is employed to generate the weights and biases of the Bayesian DNN
according to the predefined posterior distribution. The trained Bayesian DNN model
is connected with the classical trust region algorithm to perform the inverse design.

Many other effective optimization methods are also connected with the DNN
models for the efficient design of metamaterials and metasurfaces. The interior-
point optimization algorithm is accelerated for the inverse design of metagratings
by training the fast forward DNN model [96]. The forward DNN model is trained
to establish the reliable mapping between the structural shape ri and the diffraction
efficiency of unit cells in the metagratings. The trained forward DNN model can sig-
nificantly reduce the computing time of interior-point optimization compared to the
full-wave simulation. The truncated Newtonian optimization algorithm is in conjunc-
tion with the DNN models to design the integrated Bragg grating devices in [97]. The
waveguide neural network is first trained to learn the forward mapping between the
effective index and waveguide geometry for the first two transverse electric (TE) and
transverse magnetic (TM) modes. Then the Bragg grating neural network is trained
for the forward modeling between the Bragg grating geometry and the correspond-
ing responses with the training data generated by the waveguide neural network.
Forward and inverse design strategies are proposed with the fast forward modeling
parameterized by the neural network. In the inverse design, the truncated Newtonian
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optimization algorithm applies the Bragg grating neural network to accelerate the cost
function calculation. The active learning is applied to replace the EM simulations in
the inverse design of photonic metamaterial in [98]. Compared to the plain DNN
model, active learning measures the uncertainty of DNN predictions, and the uncer-
tain points are selected and kept aside for another training in an iterative manner.
Active learning demonstrates the reduced training time and the improved perfor-
mance, which further accelerate the inverse design process. Instead of gradient-based
methods, the approach based on the conservative convex separable approximations is
connected with the active-learning model. The phase-modulating dielectric metasur-
face is designed by combining the transfer learning and genetic algorithms in [99].
The real FCN model is first trained to establish the forward mapping from the geome-
tries to the real parts of the complex transmission coefficients. The imaginary FCN
model shares the same architecture as the real one. Trained in a transfer manner, the
imaginary FCN model initializes its weights of the first three layers to be the same as
the ones of the real FCN model. The transfer learning scheme can significantly reduce
the training time with improved prediction accuracy. The GA is applied to perform the
inverse design process with the trained real and imaginary FCN models as the EM sim-
ulators. As a proof of concept, two deflectors and metalenses are designed based on the
proposed approach.

The gradient-based strategy for searching the model space is implemented based
on the commonly-applied NA method. NA method is inspired by the classical adjoint
method for inverse design [100]. An adjoint method is an essential approach for
inverse design in engineering. The forward modeling from m to d can be described
with a non-linear forward operator, as described in (11.1). In the inverse design, the
adjoint method can identify the local optimum guided by the descent directions based
on the gradient ∂F

∂m with respect to m. The NA method consists of two steps, as depicted
in Figure 11.23. The first step is to train the DNN FNN to learn the mapping from

Model Space m
Forward Modeling
Trainable Weights

Inverse Design

0

z

x

y

0

z

x

y

Fixed Weights

Deep Neural Networks
Data Space d

Figure 11.23 Workflow of the inverse design of metamaterial or metasurface based
on the neural adjoint method
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m to d by approximating the forward operator F . The second step is to optimize the
geometrical parameters by using the gradient calculated by the backpropagation [101]:

m̂i+1 = m̂i − α ∂L
(
FNN

(
m̂i
)

, d
)

∂m

∣∣∣∣∣
m=m̂i

, (11.22)

where m̂ and d denote the geometrical parameters to optimize and the desired property,
L is the loss function, and α is the learning rate. It is noted that the weight of FNN is
fixed in the second step. The initial guess m̂0 of the geometry is generated based on
the specific distribution.

The NA method can be utilized to solve the design task without the connections
with other optimization methods. The NA method is applied to design the metamate-
rial consisting of four cylinders given the desired electromagnetic spectrum in [101].
The geometrical parameters to optimize are the radii and heights of the cylinders. A
highly accurate forward simulator is then yielded based on the DNN model by gen-
erating 40,000 samples for training with a significant reduction in computing time.
With the trained forward simulator, the inverse design can be implemented accord-
ing to (11.22). Additional to (11.22), the boundary loss is introduced to improve the
performance of the NA method [101]:

Lb = ReLU (|m̂− μx| − 1

2
Rx), (11.23)

where μx and Rx are the mean and the range of the training data. Numerical experi-
ments demonstrate that the NA method needs more computational costs but achieves
better performances.

In fact, the NA method is usually combined with other effective optimizers to
efficiently calculate the required gradients. The efficient grating couplers on a Si-on-
insulator (SOI) platform are designed by the NA method given the specific operating
wavelength in [102]. The FCN model is trained to learn the forward mapping from the
design parameters to the corresponding coupling efficiency spectrum with the data set
generated by the 2D FDTD simulations. Once the FCN model is trained, the adaptive
moment estimation (Adam) optimizes the design parameters, where the gradients are
calculated based on the backpropagation. The loss function of the optimizer is defined
as [102]:

L = −CE + p · ||m− minit||2, (11.24)

where CE is the coupling efficiency, p is a penalty parameter, m is the design
parameters, ||m− minit||2 penalizes the large difference from the initial layout. The
NA method is also compared to the covariance matrix adaptation evolution strategy
(CMA-ES). The NA method can find the optimal structure by searching the model
space around the initial structure, while CMA-ES can produce the optimal structure
independent of the initial one. The NA method is proposed to optimize the layouts
of 2D photonic crystal nanocavities to achieve better Q factors in [103]. The rela-
tionship between the Q factors and the positions of air holes is first established by
a four-layer CNN model. The trained CNN model can calculate the gradient of Q
factor with respect to structural parameters at high speed, which further benefits the
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gradient-based structural optimization. With the Momentum method as an optimizer,
the loss function of the structural optimization is defined as [103]:

L = | log10 QCNN − log10 Qtarget|2 + 1

2
λ
∑

ij

|�di,j|2, (11.25)

where �di,j is the displacement vectors, QCNN and Qtarget are the predicted and desired Q
factors, λ weighs the regularization term,

∑
ij |�di,j|2 penalizes the large displacement

of air holes.
The first commonly used generative model is GANs, especially the CGANs

that can including different controlling conditions. The latent spaces generated by
the generative models can significantly reduce the computational load of searching
during the optimization process. The evolutionary search strategy has been widely
employed to find the optimal design within the latent space. The CGAN is combined
with iterative optimization for the inverse design of high-performance metagratings
with the desired deflection angles and operating wavelengths [104]. The sketch of
the CGAN assisted topology optimization is depicted in Figure 11.24. The input of
the generator includes the Gaussian random variables, operating wavelength, and the
output deflection angle, and the output is the binary image of the metasurface unit
cell. The discriminator tries to differentiate between ground truth and the metasurfaces
produced by the generator. The iterative topology optimization is applied to further
refine the metasurfaces designed by CGAN. The optimized metasurface structures
are fed back to train the CGAN for improved performance. Because the metasurface
structure designed by CGAN is near the local optimum, only a few iterations are
needed for the refinement. A cyclical framework combines the DNN models with
the GA to design nanophotonic metasurfaces to achieve the desired optical responses
[105]. The simulation neural network is built based on the CNN and FCN to predict the
optical responses given the geometries. The cGAN is trained to generate the candidate
structural designs by modeling the distribution of the design space. The pseudo GA
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400
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Figure 11.24 CGAN assisted topology optimization (Reprinted (adapted) with
permission from [104]. Copyright 2022 American Chemical
Society.)
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searches the design space to produce the optimal metasurface boasting the desired
optical response.

The second generative model is VAEs that can produce continuously distributed
latent vectors given different input. A hybrid strategy is proposed for the automated
design of the engineered photonic materials by combining the VAE model and the
evolution strategy [106]. The VAE is trained to encode all possible metasurface struc-
tures into the compact and continuous latent space. With the encoded latent space,
the evolution strategy is modified to search the optimal latent vector for the desired
metasurface design. The single-layered metasurfaces are designed by the proposed
strategy to validate the efficacy by predefining specific structural parameters. The
proposed strategy can be generalized to more complicated metasurfaces by including
more structural parameters in the latent space encoded by the VAE. The conditional
AAE (c-AAE) is coupled with the differential evolution (DE) optimizer to perform the
multiparametric global optimization of nanophotonic metadevices [107]. The archi-
tecture of c-AAE and the corresponding hybrid strategy are illustrated in Figure 11.25.
The conditional AAE is trained to build the compressed latent model space of metade-
vices design with a physics-driven regularization that contains a predefined model
space distribution and a binary vector. The conditional Visual Geometry Groupnet
(c-VGGnet) is built for the rapid efficiency estimation regarding the model gener-
ated by the trained c-AAE generator. With the trained c-VAE and c-VGGnet, the DE
optimizer is applied to search within the compressed latent model space. In the itera-
tive process of DE optimizer, the c-VAE generator produces the model regarding the
latent vector, and the c-VGGnet estimates the corresponding efficiency to help the
DE optimizer perform evolution. Dual-and triple-layer electromagnetic metasurfaces
are designed based on the VAE model to achieve the desired scattering coefficients
in [108]. Each layer of metasurfaces is viewed as an image where 0 denotes the non-
metallic part, and 1 denotes the metallic part. The VAE model is trained to encode
the metasurface structures into the latent vectors with the forward predictor as the
regularizer. The forward predictor is based on the FCN model and trained to predict
the scattering responses given the latent vectors. The training data of the FCN model is
generated by the generalized scattering matrix-based method, and the interlayer cou-
pling is included in this way. The PSO is implemented with the trained VAE to search
the latent space for the optimal metasurface design. The metasurface retroreflectors
are designed by combining the machine learning and the evolution optimization algo-
rithm for the incident waves of arbitrary directions in [109]. The metasurface is first
encoded into 2 bit digital codes representing four different elements. The conditional
VAE (cVAE) functions as a design generator to produce the coding matrix condi-
tioned by the target angle range. The FCN model is trained for the fast and accurate
prediction of monostatic radar cross section. The GA can search the design space to
efficiently locate the optimum with the cVAE generation initializations and the FCN
model to evaluate the fitness.

Besides, a single DNN generator can also be trained instead of adopting the
paradigm of a GAN or a VAE. A hybrid global optimization strategy is presented
in [110] to optimize the structures of metagratings to achieve better efficiencies.
Figure 11.26 summarizes the proposed hybrid global optimization strategy. The
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proposed strategy combines a conditional generator and adjoint electromagnetic sim-
ulations. The input of the conditional generator includes the operating wavelength λ,
the desired outgoing angle θ , and the sampled noise vector z. The output is the device
instances n. The objective function for the conditional generator is defined as [110]:

L = − 1

M

M∑

m=1

exp

(
Eff (m)−Eff max

(
λ(m), θ (m)

)

σ

)

n(m) · g(m) + βR, (11.26)

where m = 1, . . . , M is the index of device, Eff max

(
λ(m), θ (m)

)
denotes the maximum

efficiency at the specific pair of wavelength and angle, and Eff (m) denote the efficiency
of the generator-produced device instance, g(m) is the efficiency gradient with respect
to n(m) and it is calculated by the adjoint electromagnetic simulations, R = ∣∣n(m)

∣∣ ·(
2− ∣∣n(m)

∣∣) is the regularization term to force the binary device structures and α is
the weight of regularization term.

11.6 Summary

In this chapter, we have reviewed various approaches to apply deep learning tech-
niques into the inverse design of metamaterials and metasurfaces, including the
discriminative learning approach, generative learning approach, reinforcement learn-
ing approach, deep learning and optimization hybrid approach. The deep learning
techniques play an important role in two aspects of inverse designs. First, deep learn-
ing can provide an accurate and efficient approximation of a complicated function
costly to evaluate. Second, deep learning can extract and generate the high-level
features of geometries in a hierarchical and compact manner. These two important
characteristics of deep learning poses a great potential for the future design tools of
metamaterials and metasurfaces. Deep learning is bound to become a pivotal tool in
the inverse design of metamaterials and metasurfaces.
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Chapter 12

Deep learning techniques for microwave circuit
modeling

Jing Jin1, Sayed Alireza Sadrossadat2, Feng Feng3,
Weicong Na4 and Qi-Jun Zhang5

This chapter provides a description of deep learning as applied to microwave cir-
cuit modeling. Microwave circuit modeling is an important area of computer-aided
design for fast and accurate microwave design and optimization. In recent years,
rapid development of modern electronic devices/systems and wireless communica-
tions requires various customized microwave circuits. Subsequently, the modeling of
microwave circuits becomes more complex and more challenging due to the demand
for higher functionality, better reliability, and shorter design cycle. As a result, there
is a need for more accurate, more effective, and more efficient modeling techniques
for microwave circuits. To address this issue, deep learning has been introduced into
the area of microwave circuit modeling. Deep learning is a class of machine learning
that utilizes artificial neural networks with many layers to learn the complex input-
output relationships. It has been highly successful in solving complex and challenging
problems such as pattern recognition and classification. The powerful learning ability
also makes it a suitable choice for modeling the complex input–output relationship of
microwave circuits. Researchers have investigated a variety of important applications
utilizing the ability of deep learning to perform microwave circuit modeling.

12.1 Introduction

Microwave circuit modeling plays an important role in the area of computer-aided
design for fast and accurate microwave optimization and design. The developed
microwave circuit models allow fast simulation and optimization and subsequently can
be implemented in high-level circuit designs or computer-aided tuning of microwave
circuits. Different modeling techniques, such as artificial neural network technique
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[1,2], Kriging [3,4], support vector machine (SVM) [5], and polynomial-based sur-
rogate modeling [6], have been reported for modeling of microwave circuits. Kriging,
SVM, and polynomial models have good generalization capability when training data
are limited [6], while artificial neural network is well suited to the case when the
amount of training data is large.

Artificial neural network (ANN) has been recognized as a powerful technique
in the area of microwave modeling and design [7–15]. ANNs can be trained from
the simulated or measured data to learn the nonlinear input–output relationships of
microwave components/circuits. These trained ANN models can then be used to pro-
vide fast answers to the tasks they have learned [16]. This makes ANN an efficient
alternative to empirical model or electromagnetic simulation for microwave mod-
eling. Applications of ANNs have been reported in microwave filter modeling and
design [17–19], power amplifier modeling [20–22], nonlinear microwave device mod-
eling [23–27], parametric modeling of microwave components [28,29], multiphysics
parametric modeling and optimization [30–32], coplanar waveguide (CPW) circuit
modeling [33], and microwave component design [34]. These applications in the
area of microwave modeling and design are achieved mostly using shallow neural
networks, i.e., ANNs with one or two hidden layers.

In microwave modeling field, there are situations where the model input–output
relationship is highly nonlinear, which makes the modeling problem harder. To address
this kind of complicated microwave modeling problem using neural networks, there
are usually two possible solutions. One is to add more hidden neurons to the shallow
neural network, and the other is to add more hidden layers. It has been proved that
the neural network with many hidden layers can perform significantly better than the
shallow neural network when both neural networks have the same number of training
parameters [35,36].

In recent years, there has been growing interest in the neural network community
in neural networks with many hidden layers, known as deep neural network [37–41].
Typically, the numbers of network layers in a deep neural network range from five
to more than a thousand [42]. Deep neural networks have been recognized to be
very powerful at modeling intricate relationships in large data sets [37]. Outstanding
results have been produced by deep neural networks in a variety of challenging fields,
such as image recognition [43], speech recognition [44], language processing [45],
machine translation [46], and sentiment analysis [47]. Due to its powerful learning
ability, deep neural networks have also been reported in the field of microwave circuit
modeling to learn the highly nonlinear input–output relationships that are beyond the
capability of shallow neural networks [48–61].

As the rapid development of computing technology, researchers have devel-
oped various deep neural network structures, including feedforward deep neural
network [42], RNN [62], convolutional neural network (CNN) [63], and so on. A
basic type of deep neural network structure is the feedforward deep neural network
such as MLP with many hidden layers, where the number of hidden layers should
be three or more. The feedforward deep neural network can be used to learn the
relationship between a fixed-size input and a fixed-size output [37]. Recently, the
feedforward deep neural network technique has been reported to address modeling
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problems with high-dimensional inputs in the area of microwave modeling [48,49].
Batch normalization has been incorporated into the feedforward deep neural network
for automated modeling of microwave components [52]. The feedforward neural
networks such as MLP are mostly used for modeling of linear components. Due
to their architecture, feedforward neural networks can not capture time-dependency
very well. Therefore, exploring new techniques for modeling time-dependent sig-
nals is crucial in nonlinear modeling area. In order to model the dynamic behavior
of a nonlinear microwave device, time-dependent training signals should be gener-
ated and passed to the network structure. Due to this time-dependency of training
signals, RNN structures (a specific type of deep neural network that contains
feedback loops involving delay units) are exploited for nonlinear circuit modeling
[55–57].

In this chapter, an overview of deep learning as applied to microwave circuit
modeling is provided. The feedforward deep neural network and the vanishing gradient
problem during its training process are introduced. A hybrid feedforward deep neural
network that can be trained without the vanishing gradient problem is then presented
[48]. Also, the RNNs for nonlinear circuit modeling are presented, including the
global-feedback RNN [70], the adjoint recurrent neural network (ARNN) [71], the
global-feedback deep RNN (DRNN) [55], the local-feedback deep RNN (LFDRNN)
[56], and long short-term memory (LSTM) [57]. Following the overview of different
deep neural network methods for microwave circuit modeling, several application
examples are presented to demonstrate the deep neural network modeling techniques.
Subsequently, the proper usage of different methods in different practical situations
is discussed. Finally, a conclusion for the chapter is provided.

12.2 Feedforward deep neural network for microwave circuit
modeling

In this section, an overview of recent feedforward deep neural network-based methods
for microwave circuit modeling is presented. Feedforward artificial neural networks
have been reported for microwave circuit modeling for years [10–18]. These appli-
cations are achieved mostly using shallow neural networks. In recent years, as
the development of the microwave components and communication systems, the
microwave modeling problem becomes more and more complicated. To address this
kind of microwave circuit modeling problems that are beyond the capability of feedfor-
ward shallow neural networks, the feedforward deep neural networks were presented
for microwave modeling [48,52]. The feedforward deep neural network, such as MLP
with many hidden layers, is a basic type of deep neural network structure. The train-
ing of the feedforward deep neural network is not easy because of the vanishing
gradient problem [64,65]. This section provides an introduction to the vanishing gra-
dient problem in the feedforward deep neural network. A hybrid feedforward deep
neural network that can be trained without the vanishing gradient problem is also
reviewed [48].
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12.2.1 Feedforward deep neural network and the vanishing gradient
problem

12.2.1.1 Feedforward deep neural network structure
A neural network is an information processing system that is composed of two types
of basic components, namely, neurons and links. The neurons are the processing ele-
ments, and the links are the interconnections between neurons [7]. In a neural network,
each neuron (except for the neurons at the input layer) receives stimuli (inputs) from
the neighboring neurons connected to it, processes the information, and produces an
output. Neurons can process information in different ways, and the connections from
the neurons to one another can be different. Different information processing ele-
ments and different connection manners between the neurons can construct different
neural network structures.

A basic type of deep neural network structure is the feedforward deep neural
network such as MLP with many hidden layers. The structure of MLP with many
hidden layers is the same as the MLP structure shown in Figure 12.1, where the
number of hidden layers should be three or more [66]. Let x be a vector of size Nx × 1
containing the external inputs to the neural network model (e.g., design parameters
of a given microwave component). Let y be a vector of size Ny × 1 containing the
outputs from the neural network model (e.g., EM responses of the given microwave
component). The input–output relationship of the neural network model is given
by [67]

y = y(x, w). (12.1)

where w is a vector containing all the weight parameters representing various
interconnections in the neural network model.

12.2.1.2 Vanishing gradient problem in training of feedforward deep
neural network

In order to represent the input–output relationship of a microwave circuit, the feed-
forward deep neural network needs to be trained through a set of training data
generated from EM/physics simulation or measurement. Let sample pairs (xn, dn),
n = 1, 2, ..., Ntr , represent the training data, where dn is simulated/measured output
data (i.e., the desired outputs of the feedforward deep neural network) for the input
xn, and Ntr is the number of training samples. The objective of the training process is
to determine the weight vector w such that the difference between neural network out-
puts and the desired outputs is minimized. The difference, also known as the training
error, is formulated as [67]

E(w) = 1

2

Ntr∑

n=1

‖y(xn, w)− dn‖2. (12.2)
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Figure 12.1 Multilayer perceptrons (MLP) neural network structure containing
one input layer, one output layer, and one or more hidden layers [67]

The training of deep neural networks is affected by the selection of nonlinear
activation functions. In conventional (shallow) ANNs, the most commonly used acti-
vation functions are smooth switch functions such as the sigmoid function, formulated
as [67].

σ (γ ) = 1

(1+ e−γ )
(12.3)
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Figure 12.2 A simple deep neural network with one input and one output to
illustrate the vanishing gradient problem

The symbol γ represents the total input to the hidden neuron. Shallow neural net-
works with sigmoid functions usually can be trained successfully with gradient-based
learning methods, while deep neural networks with sigmoid functions cannot be
trained effectively using gradient-based method because of the vanishing gradient
problem [68]. A simple deep neural network with one input and one output, as shown
in Figure 12.2, is used to illustrate the vanishing gradient problem. Each hidden layer
in this simple deep neural network has one hidden neuron. All hidden neurons employ
the sigmoid function as the activation function. L is defined as the total number of
layers of the simple deep neural network. Let l be defined as the index of layers in
the neural network. Let x represent the input and y represent the output. Let E(y) be
defined as the error function representing the difference between deep neural network
outputs and the desired outputs from the training data. In the training process, the
derivatives of the error function E(y) with respect to the weight between the neuron
in the (l − 1)th and the lth layer can be calculated by [68]

∂E(y)

∂w(l−1)l
= ∂E(y)

∂y
σ (γl−1)

L−1∏

h=l

(
wh(h+1)σ

′(γh)
)

(12.4a)

σ ′(γ ) = σ (γ )(1− σ (γ )) (12.4b)

where w(l−1)l is the weight between the neuron in the (l − 1)th and the lth layer, γl

represents the input to the neuron in the lth layer. σ ′( · ) represents the gradient of the
sigmoid function formulated in (12.3).

According to (12.3) and (12.4b), σ ′( · ) is always in the range of

0 < σ ′(γ ) ≤ 0.25 (12.5)

Thus we can derive
∣∣∣∣
∂E(y)

∂w(l−1)l

∣∣∣∣ ≤
∣∣∣∣
∂E(y)

∂y

∣∣∣∣ 0.25(L−l) (12.6)

The absolute value of the derivative ∂E(y)
∂y is a constant for each training data. Equation

(12.6) shows that derivatives for the weights close to the input layer will be much
smaller than that close to the output layer. The gradient will decrease exponentially
and approach 0 gradually with the increase of L and the decrease of l, which means
that weights close to the input layer cannot be trained effectively. This is known as
the vanishing gradient problem for training deep neural networks [68].
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12.2.2 A hybrid feedforward deep neural network

Recently, researchers have presented a hybrid feedforward deep neural network in the
area of microwave circuit modeling to address the challenges due to high-dimensional
model inputs [48]. The hybrid feedforward deep neural network can be trained without
the vanishing gradient problem.

12.2.2.1 Structure of the hybrid feedforward deep neural network
The structure of the feedforward deep neural network model is shown in Figure 12.3
[48]. It is a fully connected neural network with many hidden layers. In order to reduce
the number of hidden neurons as well as avoid the vanishing gradient problem, both
sigmoid functions and smooth ReLUs are utilized as activation functions for the hybrid
feedforward deep neural network model. The sigmoid function is expressed in (12.3).
The smooth ReLU function is formulated as [48]

fs(γ ) =

⎧
⎪⎪⎨

⎪⎪⎩

γ if γ > α

1
4α γ

2 + 1
2γ + 1

4α if − α ≤ γ ≤ α
0 if γ < −α

(12.7)

The hidden layers close to the input layer employ sigmoid functions as activation
functions, while the rest of hidden layers utilize the smooth ReLUs as activation
functions. The external inputs to the hybrid feedforward deep neural network model
are defined as x = [x1 x2 x3 ... xn]T , where n represents the number of the model
inputs. The outputs of the feedforward deep neural network model are defined as
y = [y1 y2 y3 ... ym]T , where m represents the number of the model outputs. Let p
represent the number of hidden layers with sigmoid functions, and q represent the
number of hidden layers with smooth ReLUs. The total number of layers of the hybrid
deep neural network will be L = p+ q+ 2, including the input, output, and hidden
layers.

12.2.2.2 Training of the hybrid feedforward deep neural network
The hybrid feedforward deep neural network model needs to be trained with the
simulated or measured circuit data before it can be used in microwave design. Let
(xk , dk ), k = 1, 2, ..., Tr , represent the training data, where dk represents the desired
outputs of the deep neural network model for inputs xk , and Tr represents the total
number of training samples. The training process is a process to optimize the weight
vector w for the deep neural network so that the error function can be minimized. The
standard error function [67] is expressed as

E(w) =
Tr∑

k=1

⎛

⎝1

2

m∑

j=1

(yj(xk , w)− djk )2

⎞

⎠ (12.8)

where yj(xk , w) represents the jth output of the feedforward deep neural network model
for xk , and djk is the jth element of dk .

To train the hybrid deep neural network, the derivatives of the error function
formulated in (12.8) with respect to all the weight parameters in the deep neural
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Figure 12.3 Structure of the hybrid deep neural network model for microwave
components. The hidden layers in the hybrid deep neural network are
divided into two parts. p hidden layers close to the input layer employ
sigmoid functions as neuron activation functions, while the rest q
hidden layers utilize the smooth ReLUs as neuron activation
functions [48].
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network model need to be calculated. The details of deriving these derivatives can
be found in [48]. With the derivatives, the hybrid feedforward deep neural network
can be trained using a three-stage deep learning algorithm. The flow diagram of the
three-stage training for the feedforward hybrid deep neural network model is shown
in Figure 12.4.

During the three-stage training process, the same number of neurons are used in
each hidden layer. In Stage I, the deep neural network with only sigmoid hidden layers
is trained so that the number of sigmoid layers, i.e., the value of p, can be determined.
The training algorithm starts with p = 3. There usually be no vanishing gradient
problem in a deep neural network with three sigmoid hidden layers. The deep neural
network with p sigmoid hidden layers is trained to make the training error as small
as possible. After training, if the accuracy requirement is satisfied, the deep neural
network training is finished and there is no need for Stages II and III. Otherwise, a
new hidden layer with sigmoid functions is added again and again until the accuracy
requirement of the model is satisfied or until the vanishing gradient problem begins
to appear. Upon encountering the vanishing gradient problem, the last added sigmoid

Start

Data generation and initialization.

Train the deep neural network with

only sigmoid hidden layers. 

Add one sigmoid hidden layer or

add more training data.

Stop

No

Train the deep neural network with both

sigmoid layers and conventional ReLU layers.

No

Use the smooth ReLUs to replace all the conventional

ReLUs in the trained deep neural network.

Refine the model accuracy by further training.

Yes
Accuracy satisfied ?

Accuracy satisfied ?

Yes

Vanishing gradients?

Yes

No

Determine the number of sigmoid layers.

Add one hidden layer

with conventional ReLUs

or add more training data. 

Stage III

Stage II

Stage I

Figure 12.4 The flow diagram of the process for training the feedforward hybrid
deep neural network model [48]
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hidden layer needs to be deleted, the total number of sigmoid layers p can be fixed,
and the training is proceeded to Stage II.

In Stage II, instead of adding hidden layers with smooth ReLUs directly, hid-
den layers with conventional ReLUs (which will not lead to the vanishing gradient
problem) [37] are temporarily added above the trained sigmoid hidden layers. A new
hidden layer with conventional ReLUs is added again and again until the accuracy
requirement of the deep neural network model is satisfied. In this way, the number
of ReLU hidden layers, i.e., the value of q, can be determined. Then, the training is
proceeded to Stage III.

In Stage III, the conventional non-smooth ReLUs in the deep neural network
model trained from Stages I and II are replaced by the smooth ReLUs. The replace-
ment may slightly affect the output values of the deep neural network model. The
model accuracy is refined by further training the deep neural network with p sigomid
hidden layers and q smooth ReLU hidden layers. The deep neural network obtained
from Stage III will provide smooth input–output relationships required for microwave
modeling.

12.3 Recurrent neural networks for microwave circuit modeling

In this section, an overview of recent recurrent neural network (RNN)-based methods
for nonlinear device macromodeling is presented. RNN with global-feedback was the
early neural network-based method introduced for nonlinear device modeling [70].
After that, few works have been done to improve the performance of RNN in computer-
aided design area. Recently, some more advanced recurrent neural networks such as
adjoint recurrent neural network (ARNN) [71], global-feedback deep recurrent neural
network (DRNN) [55], local-feedback deep recurrent neural network (LFDRNN)
[56], and LSTM [57] have been introduced in nonlinear macromodeling area. Deep
structures gained lots of attention recently in machine learning area due to their
superior capability to catch the complex input–output relationship but their structures
suffer from modeling long-term dependencies and difficult training. Therefore, efforts
have been done to develop recurrent structures with higher performance such as LSTM
approach. LSTM can combat the vanishing gradient problem. It achieves this goal
with specific structure that can capture long-term dependencies in training signals
and will be explained later in this section.

12.3.1 Global-feedback recurrent neural network

The neural-network learning capability can be used to learn the input–output behavior
directly from measured or simulated input–output data of the original circuit, avoid-
ing otherwise manual effort of developing equivalent-circuit topology. The universal
approximation property of full RNN confirms that the model has a theoretical base
of representing the full analogue behavior of the circuit with good accuracy. Also,
the evaluation of the RNN from input to output is very fast, which makes it a great
candidate to be used as a strong tool for modeling of nonlinear devices. There are
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two major types of RNNs. One with global-feedback which connects output layer
to the input layer and has been used for nonlinear circuit macromodeling [70], and
the other one with local-feedback which connects each hidden neuron’s output to
its input internally and has been mostly used in machine learning area but recently
introduced in computer-aided design area [56]. RNNs are often used for data where
time is of the essence and the order of the data is important. In global-feedback
type of RNN, the output at any time depends on the history of inputs and outputs at
previous time steps. In local-feedback type of RNN, the output at any time depends
on the input and the state of the network at that moment as well as the previous
moments.

12.3.1.1 Global-feedback RNN structure
The global-feedback RNN was first used for modeling of nonlinear circuits [70]. This
structure is similar to feedforward multi-layer perceptron except there are feedbacks
from the outputs to the inputs. At any time of the network, in addition to the input
and some delays from the input, the outputs of the previous moments are involved to
calculate the outputs at current time according to the following formula [70]:

y(t) = fANN (u(t), ..., u(t − mτ ), y(t − τ ), ..., y(t − nτ ), W ) (12.9)

where W is the weight matrix connecting neurons of the RNN structure, u(t) is
the external input of the original circuit (could be voltages of nodes or currents
of branches), y(t) is the final output of the original circuit (could also be voltages
or currents), m is the number of delays for the input signal and n is the number of
delays for the output signal. The structure of a conventional 3-layer RNN is shown
in Figure 12.5. As it can be seen from the figure, there are global feedbacks which

y(t)

u(t) u(t–nτ) y(t–mτ)y(t–τ)

W

Figure 12.5 The structure of the global-feedback RNN [70]
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connects the output layer directly to the input layer. The error function for the global-
feedback RNN is defined as [70],

Em = 1

2

∫ t

0

∥∥ym(t)− ym
d (t)

∥∥2
dt (12.10)

where ym
d (t) and ym(t) are the desired training output signal obtained from simulation

or measurement and corresponding RNN output signal, respectively, and Em is the
error between these two signals. The total error E is defined as follows where S is the
number of training signals,

E =
S∑

m=1

Em (12.11)

12.3.1.2 Global-feedback RNN training
The training of neural networks is an optimization process where the objective function
is the error function and the design variables are the weights connecting neurons inside
the structure. The goal of this optimization problem is to adjust the weights such
that the error is minimized and the neural network can truly represent the behavior
of the original circuits. In order to solve this optimization problem using gradient-
based methods, gradients of the error function w.r.t. weights should be obtained.
As RNN structure computation is a recursive procedure through time, therefore the
gradients should also be calculated recursively through time which is much harder
than feedforward neural networks. It was shown in [70] that the gradients of global-
feedback RNN can be calculated as follows,

dym(t)

dW
= ∂ym(t)

∂W
+

n∑

D=1

∂ym(t)

∂ym(t − D ∗ τ )

∂ym(t − D ∗ τ )

∂W
(12.12)

where the first part, ∂ym(t)
∂W , is the backpropagation procedure through layers, and

the second part is the backpropagation procedure through time which is a recursive
formula.

12.3.2 Adjoint recurrent neural network

An advanced version of global-feedback RNN is developed recently [71]. This method
is called ARNN. Similar to RNN, ARNN can be trained by input–output training
waveforms obtained from the original nonlinear circuit without requiring knowledge
about internal details of the device. In ARNN method, the time derivative of the
original circuit outputs will be provided as additional training data to train the model.
In this way, the training process will be more efficient requiring less training data
(smaller number of time steps). This sensitivity-based training concept originally
was developed for feedforward neural networks in [72] and has also been applied
to stated-space dynamic neural network [73]. This concept has been extended to
global-feedback RNNs and will be explained here.

As mentioned earlier, the use of sensitivity information in training results in
better performance and more accurate model. In another way, using time sensitivity
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information leads to similar accurate model with a smaller number of training time
steps. The structure of the ARNN is demonstrated in Figure 12.6. In this figure, the
original weight matrix divided into several sub-matrices, where Wu is the weight
matrix connecting external input and its delays to the hidden layer, Wy is the weight
matrix connecting output delays to the hidden layer, Wo is the weight matrix between
hidden layer and RNN output, and Wub, Wyb, and Wob are their corresponding bias
matrices.

The total error for mth training waveform of the ARNN structure is defined
as [71],

Em
t =

1

2
k
∫ T

0

∥∥ym − ym
d

∥∥2
dt + 1

2
k ′
∫ T

0

∥∥ẏm − ẏm
d

∥∥2
dt (12.13)

y(t)

u(t) u(t–nτ) y(t–mτ)y(t–τ)

Wo

Wyb

Wy

Wob

Wub

Wu
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+

-
-y

y(t)
dy(t)
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Figure 12.6 (a) Structure of the original global-feedback recurrent neural network
with internal weights. (b) Adjoint global-feedback recurrent neural
network with sensitivity data [71].
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where the first part is the original error function (similar to the one already calculated
in (12.10)), and the second part is the adjoint error function. k and k ′ are scaling
factors. In order to train the ARNN model, the gradients should be computed. The
formulations to calculate the gradients are provided in [71]. The training process is
to adjust the weights in order to minimized the error which is the difference between
desired outputs and ARNN outputs.

12.3.3 Global-feedback deep recurrent neural network

12.3.3.1 DRNN structure and training
RNNs are naturally deep in time because the current state of the network is a function
of the state histories in all previous time steps due to the existing feedback connections
in RNN architectures. Global-feedback deep RNN (DRNN) structure was developed
in [55] for nonlinear macromodeling which benefits from depth in both space and
time dimensions. The structure of DRNN is shown in Figure 12.7.

The input–output relationship of DRNN follows the same equation as (12.9)
except that there are much more weights in several hidden layers involved in the
mathematical representation. Training of the DRNN is also similar to the conventional
RNN (12.12) but a longer gradient computation is required. This long derivation
makes this structure more exposed to vanishing or exploding gradient problem.

12.3.3.2 The advantage of deep structures
The growing complexity of training data motivated researches in speech recognition,
image processing, and many other areas to move toward deep neural networks [37].
As in deep structure, training data will be passed through both multiple time and
space layers and nonlinearities, deep structures are more powerful to capture com-
plex nonlinear relationships between inputs and outputs while shallow structures lack

y(t)
Wij

L

Wij
2

Wij
L–1

u(t) u(t–nτ) y(t–mτ)y(t–τ)

Figure 12.7 Global-feedback deep recurrent neural network (DRNN)
structure [55]
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hierarchical processing through space layers. In fact, each stacked space layer adds a
level of nonlinearity to the model that cannot be represented by single layer structures.
Also, for representing some functions, the deep model is exponentially more efficient
than the shallow counterpart [66]. Therefore, the deep networks can model nonlinear
relationships with considerably more accuracy and better generalization using similar
amount of training data.

12.3.4 Local-feedback deep recurrent neural network

The local-feedback deep recurrent neural network (LFDRNN) was first introduced
for modeling nonlinear circuits in [56]. The structure is similar to global-feedback
RNN but feedback exists on neurons themselves. It can remove the redundant inputs
generated by global-feedback RNN and capture more complex time-dependencies
compared to global-feedback RNN. Noteworthy to mention that, it can have more
weight parameters than original RNN used in microwave computer-aided design area.
The structure of the LFDRNN is shown in Figure 12.8. In this figure, u(k) and y(k)
are the input and output signals at time k , ŷ(k) is the desired output at time k , Nu,
Ny, and kp are the number of inputs, outputs and circuit parameters, respectively. V l

represents the weight vector connecting neurons of two adjacent vertical layers, and

...

Input Layer

Output Layer

Nonlinear Circuit

Training Error

Hidden Layers

Input signals

y(k)=[y1(k), …, yNy(k)]

Inputs

Output signals

ŷ(k)=[ŷ1(k), …, ŷNy(k)]

P1 Pkp

yNy–1(k) yNy(k)

u1(k) uNu(k)...

...

V2

VL
y1(k)

WL–1

W2

Figure 12.8 The LFDRNN-based macromodel structure according to [56]
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W l represents the weight vector connecting each neuron state at current time to its
previous state at previous time. Circuit parameters are represented by Pi, and L is the
number layers (including input and output layers).

The LFDRNN outputs can be formulated as [56],

y(k) = fLFDRNN (u(k), P) (12.14)

where fLFDRNN represents the nonlinear relationship between the inputs and outputs
of LFDRNN. The error function for mth training waveform can be defined as [56],

Em(W , V ) = 1

2

Ny∑

j=1

Nt∑

k=1

(yjm(k , W , V )− ŷjm(k))2 (12.15)

where Nt is the number of time steps, and Ny is the number of model outputs.
Subsequently, the total error for all training waveforms can be obtained by,

E =
S∑

m=1

Em(W , V ) (12.16)

where S is the total number of training signals obtained from circuit simulation or
measurement. Unlike the global-feedback RNN where the output of each neuron at
each vertical layer is a function of the neurons outputs at bottom layer, the output of
each neuron in LFDRNN will be computed as follows [56],

yl
t = �(W lyl

t−1 + V lyl−1
t ) 2 ≤ l ≤ L (12.17)

where yl
t−1 is the layer lth output at (t − 1)th time step, yl−1

t is the layer (l − 1)th
output at tth time step, and� is the neuron’s activation function (sigmoid or a hyper-
bolic tangent function). Similar to the conventional RNN with global feedback, the
gradients w.r.t. weights should be calculated recursively through time but for both
through time and through layer weight parameters [56].

12.3.5 Long short-term memory neural network

12.3.5.1 LSTM and vanishing gradient problem
Conventional recurrent neural networks suffer from vanishing gradient problem when
the structure becomes deep through time or layers. When the depth of the layers or
number of time steps increases, according to the chain rule, the gradients values
must be multiplied to reach the initial layer or time step. As maximum value of
the gradient of the sigmoid function is limited to 0.25, multiplying small numbers
causes the gradient value to tend to zero. Therefore, it makes training very difficult
and the weight updates become very slow. As a result, it leads to large training
time. LSTM by its special structure tries to alleviate this problem in an efficient
way. The LSTM is a recurrent type of neural network that was first introduced by
Hochreiter and Schmidhuber [74]. It can combat the gradient vanishing problem with
gating techniques and internal interactions. For the first time, it has been applied in
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computer-aided design area in [57] for modeling nonlinear components. The LSTM
neural network uses the sequence of input–output and histories of input data as well
as the network state in previous times to obtain each output in the current time frame.
It works like a memory cell with its internal architecture which can forget, remember
or pass the data to the next time step.

12.3.5.2 LSTM structure
The LSTM structure is shown in Figure 12.9 where N1 is the number of LSTM
blocks, hk

t and ck
t are the output and state of the kth LSTM block at the kth time step,

respectively. Each LSTM block contains d memory cells as shown in Figure 12.10.
The delays are passed to the block and the final cell output will be the main output
of the block. Each LSTM cell (as shown in Figure 12.11 according to [57]) includes
three gates: Input, Forget, and Output Gates, and another component called New
Memory Cell. These three modules determine what information to remember or to
forget. In each cell, hidden state (ht) and cell state (ct) will be passed to the next cell.

Training Error
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Output waveform

delay delay
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cell 1 cell d
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Figure 12.9 The LSTM structure according to [57]
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Figure 12.10 The LSTM block with d memory cells unrolled through time [57]
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Figure 12.11 The LSTM cell structure [57]

The cell state is responsible for keeping long-term dependencies, and the hidden state
is for short-term dependencies.

12.3.5.3 LSTM training
Similar to other recurrent neural network training algorithms, the total error function
which is defined as follows should be minimized [57],

ET = 1

2

S∑

m=1

Nt∑

t=1

Em
t (12.18)

where Em
t is the error for the mth training waveform at time step t, which is

formulated as

Em
t = (ym

t − ŷm
t )2 (12.19)

In order to proceed with training, the multivariate chain rule to calculate the gradients
is as follows [57],

∂Et

∂W
= ∂Et

∂ht

∂ht

∂ct

∂ct

∂ct−1
...
∂ct−(d−1)

∂ct−d

∂ct−d

∂W

= ∂Et

∂ht

∂ht

∂ct

(
d∏

k=1

∂ct−(k−1)

∂ct−k

)
∂ct−d

∂W

(12.20)
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In (12.20), the recursive term
∂ct−(k−1)

∂ct−k
can cause the gradients to be vanished. The cell

state gradient was computed as,

∂ct−(k−1)

∂ct−k
= Ak + Bk + Dk + Ek (12.21)

where the formulations of Ak , Bk , Dk , and Ek can be found in [57]. This summation
is almost equal to the forget gate output according to [57]. Therefore, in the back-
propagation through time process of LSTM training, the multiplication of several
terms of gradients can much better be prevented to be vanished and it makes LSTM
structure a much better candidate for deep recurrent network-based macromodeling
of microwave components.

12.4 Application examples of deep neural network for microwave
modeling

12.4.1 High-dimensional parameter-extraction modeling using the
hybrid feedforward deep neural network

In this application example, the hybrid feedforward deep neural network technique is
used to develop a parameter-extraction model for a fourth-order multicoupled cavity
filter with a 4-GHz center frequency and a 40-MHz bandwidth [69]. The objective of
the parameter-extraction model in this application example is to estimate the coupling
parameters from the given S-parameters. The ideal coupling matrix for this filter is

Mideal =

⎡

⎢⎢
⎣

−0.0157 0.8950 0 −0.2346
0.8950 −0.010 0.8080 0
0 0.8080 −0.010 0.8950
−0.2346 0 0.8950 −0.0157

⎤

⎥⎥
⎦ (12.22)

The outputs of the deep neural network model are the eight nonzero coupling param-
eters in the Mideal matrix, i.e., y = [M11 M22 M33 M44 M12 M23 M34 M14]T . The
inputs to the deep neural network model are S11 in dB at 35 frequency samples, i.e.,
x = [dB(S11(f1)) dB(S11(f2)) . . . dB(S11(f34)) dB(S11(f35))]T , where f1, f2, ..., f34, f35

are 35 frequency samples in the frequency range of 3,930–4,070 MHz. A tolerance
of ±0.3 for every nonzero coupling parameter is used to generate the training and
test data.

The hybrid feedforward deep neural network technique is utilized to develop the
parameter-extraction model for the fourth-order filter. The test error threshold for this
modeling example is set as 2%. The number of hidden neurons used in each hidden
layer is 100 for this example. After training with the three-stage training algorithm, the
final deep neural network obtained has eight hidden layers with sigmoid functions and
three hidden layers with smooth ReLUs. The training and test error of the trained deep
neural network model are 1.22% and 1.88%, respectively [48]. The corresponding
error between S-parameters from the test data and those calculated from extracted
coupling parameters is 0.87%.
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In order to examine the model accuracy, the parameter-extraction model devel-
oped using the hybrid feedforward deep neural network technique is used to extract the
coupling parameters for a slightly and a highly detuned filter. The S-parameters of a
slightly and a highly detuned filter are fed into the trained hybrid deep neural network
model, which will extract the coupling parameters for these two cases. The desired
and the extracted coupling parameters for both test cases are shown in Table 12.1.
Figure 12.12 shows the comparison between the S-parameters from the desired cou-
pling matrix and that from the extracted coupling matrix for both the slightly and
the highly detuned filters. According to the results in Table 12.1 and Figure 12.12,
a good match between the desired and extracted coupling parameters along with an
excellent match between the responses from desired and extracted coupling matri-
ces have been achieved for both the slightly and the highly detuned filters. The test
results reveal that the hybrid feedforward deep neural network technique is suitable
for the parameter-extraction modeling of microwave filters. Unlike the conventional
optimization method, the hybrid feedforward deep neural network model does not
need to simulate the filter circuit iteratively for each detuned case. Once the model
is developed, it can be used to provide parameter extraction solutions for both the
slightly and highly detuned filters instantly as long as the detuned filters are in the
range of the training data.

The hybrid feedforward deep neural network model is compared with the shallow
neural network for this example. A shallow neural network with two hidden layers and
253 hidden neurons in each hidden layer is trained with the training data. This shallow
neural network has the similar number of training parameters (i.e., weight parameters
and biases) as that of the deep neural network with eight hidden layers and 100 hidden
neurons in each layer from Stage I of the three-stage training. The comparison results
of the shallow and deep neural networks are summarized in Table 12.2 [48]. The test
error of the shallow neural network is 3.85% while that of the deep neural network is
2.62%. It shows that deep neural network is more effective for improving modeling
accuracy than shallow neural network when both neural networks have same type of
activation functions and similar number of training parameters.

Table 12.1 Comparison between the desired and the extracted coupling parameters
for the slightly and highly detuned filter [48]

Coupling Desired Extracted Desired Extracted
parameters (slightly) (slightly) (highly) highly

M11 −0.0607 −0.0677 −0.2657 −0.2703
M22 0.060 0.0588 −0.240 −0.2443
M33 −0.040 −0.0369 0.260 0.2545
M44 0.0343 0.0370 0.2343 0.2355
M12 0.7950 0.7912 1.1450 1.1348
M23 0.9080 0.9035 1.0580 1.0658
M34 0.7950 0.8025 0.6450 0.6421
M14 −0.1346 −0.1344 −0.4846 −0.4917
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Figure 12.12 The comparison of S-parameters from the desired (o) and the
extracted (–) coupling matrix for the slightly and the highly detuned
fourth-order filter [48]. (a) Return loss S11 for the slightly detuned
case. (b) Insertion loss S21 for the slightly detuned case. (c) Return
loss S11 for the highly detuned case. (d) Insertion loss S21 for the
highly detuned case.

Table 12.2 Comparison of shallow and deep neural networks with similar number
of training parameters for parameter-extraction modeling of the
fourth-order filter example [48]

Neural network Hidden Number of Training Test
structure neurons training error error

per layer parameters

Shallow neural network 253 75k 3.29% 3.85%
(2 sigmoid hidden layers)
Deep neural network 100 75k 2.04% 2.62%
(8 sigmoid hidden layers)

In order to illustrate the benefit of combining sigmoid function with ReLU,
the hybrid deep neural network is compared with deep neural networks with only
conventional ReLUs. In this chapter, the deep neural network with only conventional
ReLUs is named as pure ReLU deep neural network. Pure ReLU deep neural networks
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Table 12.3 Comparison of the hybrid feedforward deep neural network and pure
ReLU deep neural network for parameter-extraction modeling of the
fourth-order filter example [48]

Structure of deep neural networks Training error Test error

13-layer hybrid deep neural networka 1.22% 1.88%
13-layer pure ReLU network 2.73% 3.38%
16-layer pure ReLU network 2.23% 3.27%

aThe 13-layer hybrid deep neural network has eight hidden layers with sigmoid functions and three
hidden layers with smooth ReLUs

with same number of layers as or more number of layers than that of the final hybrid
deep neural network model are utilized to develop the parameter-extraction model for
the fourth-order filter example. The number of hidden neurons in each hidden layer is
100 for both the hybrid deep neural network and the pure ReLU deep neural networks.
The comparison of results is shown in Table 12.3 [48]. The hybrid feedforward deep
neural network can achieve a better test error than pure ReLU deep neural network
with same number of hidden neurons. Adding more hidden neurons in pure ReLU
deep neural network can reduce the test error. In other words, pure ReLU deep neural
network will need much more hidden neurons to achieve similar accuracy as the
hybrid deep neural network [48].

12.4.2 Macromodeling of audio amplifier using long short-term
memory neural network

In this example, the LSTM neural network is used for macromodeling of an audio
amplifier as shown in Figure 12.13. Training waveforms were generated with different
amplitudes (50 mV, 70 mV, 90 V) and different frequencies (1–2 kHz with step size
of 0.2 kHz). Also, three signals were generated as test waveforms that were not used
in training as follows,

– (Amplitude, frequency) = (90 mV, 1.5 kHz)
– (Amplitude, frequency) = (60 mV, 2.0 kHz)
– (Amplitude, frequency) = (80 mV, 1.3 kHz)

Table 12.4 shows the comparison between the LSTM neural network and conven-
tional global-feedback RNN methods. As it can be seen from the table, the LSTM
method outperforms RNN in both speed and accuracy. Also, Table 12.5 demonstrates
the speedup comparison between the transistor-level model and the LSTM-based
model. As it can be seen from this table, the obtained model from LSTM technique
is much faster than the existing transistor-level model of this device. Figure 12.14
demonstrates the comparison between outputs of the transistor-level model, RNN-
based model, and LSTM-based model. As shown in this figure, LSTM-based model
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Figure 12.13 The schematic of audio amplifier [57]

Table 12.4 Comparison of training and test errors and times of LSTM-based and
RNN-based models [57]

Model type Structure Training Test error Train time Test time
error

LSTM N1 = 3, d = 2 5.9 ∗ 10−5 14 ∗ 10−5 300.104 s 0.009 s
RNN Hidden neurons= 50 18 ∗ 10−5 15 ∗ 10−4 1957.430 s 0.013 s

No. of delays= 2

Table 12.5 Speedup comparison between the transistor-level model and
LSTM-based model of the audio amplifier [57]

Model Structure Speedup

Transistor-level – 1 (reference for comparison)
LSTM-based N1 = 3, d = 2 11.1

output matches the transistor-level model very well and better than RNN-based model
output.

The aforementioned RNN techniques for macromodeling of components and
circuits can be applied to any time scale and are not limited to the frequency range
shown in this example. As long as the time-dependent training waveforms are ready
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Figure 12.14 Comparison of the outputs of transistor-level, RNN-based and
LSTM-based models for audio amplifier [57]

or can be generated, all the RNN techniques reviewed in this chapter can be used for
nonlinear modeling of microwave circuits as well.

12.5 Discussion

This chapter has presented some recent advances in deep neural networks for
microwave circuit modeling. Here, we discuss the proper usage of different methods
in different practical situations. The powerful learning of deep neural networks makes
it a suitable tool for modeling the complex input–output relationship of microwave
circuits. For passive linear device modeling, the feedforward neural network is a
suitable choice. If the nonlinearity of the input-output relationship of the passive lin-
ear device is not very high, the feedforward shallow neural network such as three
or four-layer MLP can be used. If the nonlinearity of the input–output relationship
of the passive linear device is very high and consequently beyond the capability
of shallow neural networks, the feedforward deep neural network becomes a useful
method.

When modeling time-domain dynamic behavior of the nonlinear devices, the
recurrent neural network is more suitable. If the dynamic behavior has relatively
simple time-dependencies and input–output relationship, the global-feedback RNN
and the ARNN can be used to model the circuit behavior. With the exploration of the
time sensitivity information, the ARNN method could obtain similar accurate model
with a smaller number of training time steps. If the dynamic behavior of nonlinear



Deep learning techniques for microwave circuit modeling 433

circuit has more complex input–output relationship, the global-feedback DRNN are
more powerful to capture complex nonlinear behaviors. The local-feedback DRNN is
a further advance of the global-feedback DRNN, where the redundant inputs generated
by global-feedback RNN are removed. Compared to global-feedback RNN, the local-
feedback RNN can capture more complex time-dependencies. When the depth of the
layers or the number of time steps increases, the LSTM neural network can be used
to overcome the vanishing gradient problem.

12.6 Conclusion

An overview of recent advances in deep neural network techniques for microwave
circuit modeling has been provided in this chapter. We have first introduced the
feedforward deep neural network and the vanishing gradient problem in the training
process. Then, we have described the hybrid deep neural network technique which
can be trained without the vanishing gradient problem and can address the challenges
due to high-dimensional inputs. Following that, we have reviewed various recurrent
neural networks for nonlinear circuit modeling. Lastly, we have demonstrated two
application examples using the recently developed deep neural network techniques.
The deep neural networks can be used to learn the complex input–output relationship
for microwave circuit modeling, which could be beyond the capability of shallow
neural networks. The trained deep neural network models can provide fast solutions
to the tasks they have learned and can be subsequently used in the high-level circuit
and system design.
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Chapter 13

Concluding remarks, open challenges, and
future trends

Marco Salucci1,2 and Maokun Li3,4

13.1 Introduction

Throughout this book, we have seen how deep learning (DL) has recently become
a very active research field in many electromagnetic (EM ) engineering applications
[1–4].

DL algorithms are sophisticated machine learning (ML) techniques that try to
mimic human brains to learn how to accurately solve a given task with extraordinary
efficiency, robustness, and reliability [5–8]. However, their application to EM prob-
lems is nowadays in its very early stages and their development is significantly less
mature than in other fields (e.g., speech, image, and text recognition).

In this concluding chapter, we try to summarize the main pros and cons of DL,
together with the main challenges that still need to be solved in such an emerging
research field. Finally, some future trends are briefly discussed as well, hopefully
fostering future research in using this very powerful paradigm to address paramount
challenges in many EM -related areas.

13.2 Pros and cons of DL

13.2.1 High computational efficiency and accuracy

After being trained with properly-built training datasets, DL methods can perform
thousands of repetitive tasks with very high prediction accuracy and time saving with
respect to traditional algorithms (e.g., full-wave EM forward solvers). The overall
“quality” of the outputted results never decreases, subject to the availability of training
data that correctly represents the problem to be solved [5].

1ELEDIA Research Center (ELEDIA@UniTN – University of Trento), DICAM – Department of Civil,
Environmental, and Mechanical Engineering, Italy
2CNIT – “University of Trento” ELEDIA Research Unit, Italy
3Institute of Microwave and Antenna, Department of Electronic Engineering, China
4ELEDIA Research Center (ELEDIA@TSINGHUA – Tsinghua University), China
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13.2.2 Bypassing feature engineering

Feature engineering (FE) is often considered a fundamental task in ML and it
refers to the extraction of highly informative features from raw training data on the
underlying input–output relationship to learn. One of the main advantages of DL tech-
niques is their capability of automatically performing FE without the introduction of
domain/physical knowledge from the user. As a matter of fact, DL algorithms are
capable of analyzing the data in order to find features that humans could miss but that
enable a faster learning of the assigned task without being explicitly programmed [5].

13.2.3 Large amounts of training data

“In a world with infinite data, and infinite computational resources, there might be
little need for any other technique” [9]. Unfortunately, in the real-world current DL
algorithms need large amount of training data (much larger than in traditional ML
methods) to tune their parameters and learn a specific task starting from scratch.
The more powerful abstraction and generalization capabilities are needed, the more
parameters need to be trained. However, the amount of necessary training samples
exponentially increases with the number of parameters/the complexity of the network.

13.2.4 High computational burden

As already said, building a high-fidelity DL model requires a lot of training data. This
directly translates into the need for adequate processing power. As a matter of fact,
multi-core high-performance graphics processing units (GPU s) are often employed
to reduce the time consumption of the learning stage. However, such processing units
are generally quite expensive and energy-hungry.

13.2.5 Deep architectures, not learning

Another issue with current DL algorithms is that they perform well at predicting a
given input–output relationship but not at “understanding” the context and meaning
of the handled data. As a matter of fact, the term “deep” is more referred to the
underlying architecture (i.e., the large amount of hidden layers/neurons) rather than
the level of understanding of the performed tasks [5].

13.2.6 Lack of transparency

One of the most critical limitations of DL relies in the fact that we cannot clearly
understand how artificial neural networks (ANN s) find a particular solution to the
assigned problem. Indeed, their output is the result of the “reasoning” coming from
the interaction of thousands of artificial neurons arranged into a large number of
hidden layers. As a result, DL algorithms are often regarded as “black-boxes,” and
such a lack of transparency may cause (i) a hard detection/prediction of failures as
well as (ii) the impossibility for human users to understand or verify how a given
model made a particular decision [9].
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13.3 Open challenges

13.3.1 The need for less data and higher efficiency

As previously highlighted, one main drawback of DL is the need for large amounts
of training data to make accurate predictions. However, in many practical scenarios,
the available data may be insufficient as compared to the amount of parameters to
train. When data is synthetically generated (e.g., by means of full-wave simulations),
the time cost of generating many training samples could easily become unafford-
able/unfeasible. Transfer learning [10] is nowadays considered an effective recipe to
(at least partially) cope with this paramount issue. Differently, many “physics-driven”
approaches [11,12] have been recently explored to introduce some physical knowledge
about the underlying EM mechanisms within the network and therefore significantly
reduce the amount of necessary examples. However, paramount efforts are still needed
to make the DL training process more efficient and less time consuming, achieving
high prediction performance with significantly less data.

13.3.2 Handling data outside the training distribution

As ML techniques, also DL ones are trained using a specific set of training samples.
Therefore, they perform well as long as the new test samples to predict belong to the
same distribution that was learnt during the off-line phase. An important challenge
in DL is to make a trained model capable of making accurate predictions also when
data exhibiting non-negligible variations from the training data is fed to it.

13.3.3 Improving flexibility and enabling multi-tasking

Generally, a DL algorithm need to be trained with data properly describing the specific
task at hand, being ineffective to solve any other problems. In other words, exist-
ing algorithms are highly specialized and even solving a very similar problem often
requires a re-training to guarantee accurate solutions. One big challenge currently
unsolved is the development of “multi-task” DL methodologies capable of perform-
ing several problems with the same architecture and training. Pioneer attempts in this
directions have demonstrated that it is possible to build an ANN capable of simul-
taneously solving a number of problems including image/speech recognition and
translation [13].

13.3.4 Counteracting over-fitting

Another big challenge in DL (inherited from ML) is to avoid over-fitting, which refers
to the inability of a trained model to predict well on previously unseen data since it
has been too much customized to the training data. Often, such an issue is observed
in complex models where the number of parameters to tune is relatively larger than
the available training data.
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13.4 Future trends

13.4.1 Few shot, one shot, and zero shot learning

A very attractive recent trend in DL is aimed at solving one of its major drawbacks,
that is the need for extremely large training databases. Few shot (FSL), one shot
(OSL), and zero shot (ZSL) learning refer to a class of new techniques that enable
building effective and accurate predictors from very limited or even no training data.
Among them, ZSL is clearly the most exciting concept that probably will attract more
and more attention by the scientific community in the near future. In classification
problems, it is inspired by the ability of humans in recognising unseen objects by
exploiting the knowledge distilled from seen classes [14]. Guan et al. in [14] provide
this clear example of ZSL: “if a child has seen a horse before and learned from a
textbook that a zebra looks very similar to a horse but has black and white stripes,
s/he would then have no problem in recognising a zebra when seeing one.”

13.4.2 Foundation models

Another emerging and exciting research trend in DL is currently represented by the
so-called foundation models. A foundation model can be defined as “any model that is
trained on broad data (generally using self-supervision at scale) that can be adapted
(e.g., fine-tuned) to a wide range of downstream tasks” [15]. Such models, based
on existing DL techniques but comprising billions of parameters, exhibit surprising
capabilities such as generating novel text or even images/video from text, and are
attracting a lot of researchers in many scientific fields.

13.4.3 Attention schemes and transformers

Attention mechanisms and transformer architectures are rapidly emerging in many
research areas. They enable the generation of DL models that dynamically choose how
much significance/weight should be given to each portion of the input data, revolution-
izing the way machines cope with and understand text, speech, and images [16,17].
Pioneer applications of attention schemes can be found in the field of microwave
inverse scattering to improve the resolution in the retrieved images by highlighting
the unknown scatterers and inhibiting undesired artifacts within the background [18].
However, the application of such DL techniques to EM problems is currently at the
beginning.

13.4.4 Deep symbolic reinforcement learning

Current deep reinforcement learning (DRL) models lack the ability to “reason” on an
abstract level, and consequently it is hard to implement high-level cognitive functions
including hypothesis-based reasoning, transfer learning, and analogical reasoning
[19]. Current trends in this field are aimed at developing innovative DRL architectures
that are capable of learning “symbolic rules” that are easily comprehensible to humans,
differently from traditional techniques whose decision process is totally opaque and
almost impossible to verify.
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13.5 Conclusions

Nowadays, DL must be regarded as a highly efficient paradigm for solving many
prediction problems in EM, provided that the exploited model has been trained with
enough data and the test set closely resembles the training database. DL is not a “magic
wand” and it should not be merely employed as a black-box. Moreover, recalling the
no-free-lunch theorems [20,21], there is no ML/DL algorithm universally performing
better than others in any type of prediction problem.

A deeper understanding of the human brain could provide us with some sugges-
tions on how to develop better and better DL algorithms. However, the human mind
should be just an inspiration and not necessarily something we must copy.
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