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Introduction

F you are like many of us, you take an instinctive attitude of flight
when you hear the word “mathematics”. There doesn’t seem to
be any reason why this suspect term should be coupled in any way
with the profession of an electronic technician. As many service
technicians have told me, they don’t use mathematics—not beyond
Ohm’s Law anyway—since the equipment manufacturers provide
them with all the necessary information. Or at least they think so.
Of course, they ignore the many times they use mathematics in
daily practice without being aware of it. Even the usual application
of Ohm’s Law requires a whole host of mathematical operations.
To convert microvolts and milliamperes to volts and amperes,
respectively, you may have to use powers of 10, substitute in an
algebraic formula, divide or multiply, possibly use a slide rule, and
“round off” the arithmetical result to the number of significant
figures consistent with the accuracy of the equipment and its com-
ponents. If you have mastered this kind of essential “test-bench
mathematics,” you do it instinctively without awareness of the
number of mathematical operations involved. It is just like walking
or swimming, once you know how. What we are trying to get across,
of course, is that learning the language of mathematics—as far as it
applies to electronic shop practice—can be not only fairly pleasant
and painless, but also highly useful.

The statement that the manufacturers of electronic equipment
provide all the information necessary is a half-truth, at best. They
publish a variety of specifications, graphs, curves and instructions
which they believe will make your work easier and make their
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equipment operate best. Many times, however, you will have to
perform supplementary calculations to utilize the published data
and to put together differently formulated specifications for various
components. For example, did you recently have to connect a stereo
cartridge with an output per coil of 1.5 millivolts to a stereo pre-
amplifier with 70-db gain, which in turn drove another manufac-
turer’s pair of power amplifiers, each of which required 2 volts
input for full rated power output? Looking at the specifications
alone, you could not possibly tell whether the cartridge had suffi-
cient output to drive the power amplifiers. You may have resolved
the problem by trying the equipment out in your client’s home,
though this might lead to considerable embarrassment if things
didn’t work out properly. Making several calculations in advance
might have spared you this kind of situation. You undoubtedly
can add a number of similar examples from your own experience.

What we shall try to do here is to discuss a number of highly
useful mathematical tools and techniques as informally as possible.
Many times we won’t bother to introduce all the formal stipula-
tions, terms, conditions and other verbiage, though the mathe-
matical purists may howl. In brief, we shall learn to manipulate a
little arithmetic, algebra, vectors and complex numbers, logarithms
and decibels with a minimum of formality.

HENRY JAcoBOWITZ



CHAPTER 1

Ohm'’s Law Arithmetic

ET us begin our electromathematical excursions with Ohm’s
Law, since this is the most widely known relationship and around

it are centered many everyday practical computations. In its most
general form, this law— first formulated by Georg Simon Ohm in
1827 —simply states that the current flowing in a dc circuit, or por-
tion thereof, is directly proportional to the applied voltage (emf)
and inversely proportional to the resistance of the circuit or portion
of it. In its mathematical form, Ohm’s Law is usually stated thus:

_ Voltage (E)
Current (I) = g—=">— (R)
E

or briefly, I = R (1)

Note that we have inserted an equal (=) sign between the pro-
portional quantities, rather than a proportional («) sign. As we
shall see later, this can be done only if a proportionality constant is
inserted after the equal sign. In the case of Ohm’s Law, the units
of current, voltage and resistance have been defined to make the
proportionality constant equal to unity (1) and, hence, it dis-
appears altogether. Thus, by definition, a current of 1 ampere is
said to flow through a circuit of 1 ohm resistance, if an electro-
motive force (emf) of 1 volt is applied. Hence,

volts
ohms

1 __lvolt
ampere = T

and in general amperes =

Regardless of the units in which the voltage and resistance are
stated in a given problem, you will always have to convert to these
or equivalent units, when using Ohm’s Law.



Equivalent forms of Ohm's Law

Simple common-sense reasoning shows—if Ohm’s Law is true—
that the applied voltage E acting in a circuit of resistance R,
through which a current I flows, must be equal to the product of
the current and the resistance, or

E=IxXR @)

This relation applies not only to a complete circuit but also to any
portion of it, such as a resistor. Thus, the voltage drop (E) devel-
oped by a current (I) flowing through a resistor (R) is equal to the
product of the current and the resistance value, or again E = IR
(the multiplication sign “X” is understood).

You can also obtain Equation 2 by a simple algebraic manipula-
tion of the originally stated form of Ohm’s Law (Equation 1). It is
a fundamental rule that you can perform any mathematical opera-
tion on an equation, as long as you do it to both sides. Hence, let
us multiply both sides of Equation 1 (Ohm’s Law) by the resist-
ance, R:

E EXR 3 .
I=E IXR= R (multiplying by R) (1)
and since §-= , IXR=E
or E=IXR @)

which is the relation (Equation 2) we stated before.

From Equation 2 we can easily derive a third, commonly used
form of Ohm’s Law. Dividing both sides by the current, I:

E_IXR

. 1 E
T I =R (Since, — = 1) or == (3)

1 I

Equation 3 states that the resistance (R) of a circuit, or portion
thereof, is equal to the voltage (E) applied to the circuit (or por-
tion of it) divided by the current (I) flowing through it.

Using Ohm's Law

Although we have stated the three forms of Ohm’s Law in alge-
braic form, as soon as you start to use it by substituting numbers in



the appropriate equation, your calculations become pure arith-
metic. This is usually true for most of the simple formulas used
in electricity and electronics. To make them generally valid, the

Fig. 101. Electronic formulas and arith-
metic or algebraic operations are closely
120V (DC) OUTLET related, as in these two examples of the

use of Ohwn’s Law.

E
4 . E _120 VOLTS _
. 1= & =S5 0onns - 24 AMPS

(@
-
50 OHM RESISTOR
- E _12 VOLTS _
1= &= S omgs = 0:24 AMP
)

formulas are stated in symbol form, such as f for frequency, C for
capacitance, L for inductance, etc. but, in any particular case, you
will be using specific numerical values in place of the symbols and,
hence, the calculations become arithmetical. Your mastery of sim-
ple arithmetic, therefore, is the key to solving the majority of
ordinary electronics and electrical problems. We shall use Ohm’s
Law problems to illustrate elementary arithmetical operations,
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but the examples will apply to any formula, where only simple
multiplication and division is indicated.

ExampLE 1: (a) A 50-ohm resistor is connected across a 120-volt
(dc) line. What is the value of the current flowing through the
resistor? (b) What is the current if the same resistor is connected
across a 12-volt battery? (See Fig. 101).

Solution: Since the value of the current is desired, we substitute
the known quantities in equation 1 (Ohm’s Law). Hence for

part (a),
E 120 volts

P& R 50 ohns

= ? amperes

The expression % is what is known as an improper fraction,

since the number above the fraction bar (the numerator) is greater
than the number below the bar (the denominator). (In a proper
fraction the opposite is true.) The fundamental rule you need to
remember when dealing with fractions is that both the numerator
and the denominator may be multiplied or divided by the same
number without changing the value of the fraction. Hence, we

120 . o 00
can change <0 to its lowest terms by dividing both numerator

! 120 = 10 = 12 !
and denominator by 10: thus, ———=7——%, or converting to a
50 - 10=5
mixed number (a whole number plus a proper fraction),% = 2—2—.
The answer to part (a), therefore, is 23*) amperes.

You are well aware, of course, that the answers to all problems
are usually expressed in decimals, which is a special way of writing
a proper fraction whose denominators end with zero (0). By in-

A . 4 .
spection we can write the answer above as 2%—2 21—0, which be-

comes 2.4 since —i% = 0.4. (You'll recall that the first place after

the decimal point are the tenths, the second place are hundredths,
the third place are thousandths, and so on.) Knowing that the
answer is to be expressed as a decimal, you could have obtained

the result more directly by carrying out the division indicated by
120 12

1 —_—— =12 = § =
the fraction bar. Thus, 0 R R0 5a=024
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Finally, if you are the proud possessor of a slide rule, you can
solve the problem quickly by setting 5 on the C scale above 12
on the D scale. Then set the hairline of the runner (indicator) to
1 on the C scale and read the answer (2.4) immediately below on
the D scale (Fig. 102).

RUNNER (INDICATOR)

& —x

L TS T Aoy TR N N JOPR L 1 2 SO JEFY: m‘r"xl l'u"‘
A I TR P
OF JER. L 40K IS JFE T WS S ererues | W
olf‘ra : rrr'ua.“ 2 PSR AN e 2T

\HAIRLINE
MANNHEIM SLIDE RULE (COURTESY KEUFFEL & ESSER CO.)

cL )

| 5 |
1
I

T
12 2.4 (Ans)
EXAMPLE |t 120 =50 =12 +5= 24

Fig. 102. The slide rule represents an easy and quick way to solve
many problems in electronics.

We have taken up much time with part (a) of Example 1 to
illustrate different ways of solving the problem and the various
mathematical operations involved. Now, let us do part (b) in a
jiffy.

(b) What is the current if the 50-ohm resistor is connected
across a 12-volt battery?

I_E_l2volts_? )
~ R B0ohms ‘AP
Mentally multiplying both numerator and denominator by 2, you
127 2%

can see by inspection that — = 0.24 ampere.

50 100
You could have gotten the same result, of course, by carrying out
the indicated division 12 = 50 = 0.24. The slide rule calculation
is the same as in (a), since the numbers are unchanged and the
decimal point must be determined by inspection.

ExAampLE 2: A microammeter inserted into a circuit (Fig. 103)
reads a current of 3.5 microamperes (na) when 7 volts are applied
to the circuit. What is the circuit resistance?

1



Solution: Let’s do this problem first in a clumsy way to see
how much time we can save by learning a new method. The unit
for current in Ohm’s Law is the ampere and, hence, we need to
convert microamperes to amperes before we can substitute in the
formula. We know that 1 microampere equals a millionth of an
ampere, or

1 microampere = ampere = .000001 ampere

1
1,000,000

In general, then, we have to move the decimal point six places to
the left, when converting microamperes to amperes. Therefore,

ampere = .0000035 ampere

e __ 85
-5 microamperes = 7555000

R E _ 7 VOLTS

1~ 3.5uA CIRCUIT IN BOX

MICROAMMETER

=2 MEGOHMS

) et

Fig. 103. Since we know the value of the voltage and the amount of current, we can
use Ohm’s Law to learn the resistance of the circuit in the box.

Now we can substitute in the Ohm’s Law formula for the
resistance,

g_ T 7 volts

I = .0000035 ampere

To get rid of the decimal point, let’s multiply both numerator
and denominator by 10,000,000, thus obtaining

70,000,000 (volts)
35 (amperes)

RI= = ? ohms

= 2,000,000 ohms

Since the megohm is the same as 1 million (1,000,000) ohms, we can
write the answer in conventionally used units:

2,000,000 ohms = 2 megohms

12



The power of powers of 10

Now we can tell you that there is a better way of dealing with
problems of this kind. This method of notation—called powers of
ten—is extremely useful whenever you work with very large or
very small numbers, where many zeros are involved. The powers-
of-10 notation is a short-hand way for indicating the decimal
point by raising the number 10 to the appropriate (positive or
negative) power. The method is made clear by the following ex-
amples for expressing large or small numbers in powers of 10.

One number just looks larger than
the other. They both have the same
“weight".

For large numbers

1 =10°
10=10x1=10
100 =10 X 10 = 102
1,000 =10 X 10 X 10 =10
10,000 = 10 X 10 X 10 X 10 = 10*
100,000 = 10°

1,000,000 = 10¢
10,000,000 = 107 and so forth
230,000 = 2.3 x 108
12,600,000 = 12.6 X 10® or 1.26 X 107
1 megohm = 1,000,000 ohms = 10¢ ohms
22.5 megohms = 22.5 X 10 ohms or 2.25 X 107 ohms
Speed of light, ¢ = 29,979,000,000 cm/sec. = 2.9979 X 10 cm/sec.

Evidently, for large numbers, the notation indicates how many
times 10 should be multiplied by itself to obtain the required
number. For example, 10° indicates that 10 should be multiplied
5 times by itself (that is, raised to the fifth power), thus:
10 X 10 X 10 X 10 X 10 = 100,000.

Small numbers are expressed by taking the reciprocals of powers
of 10. This is indicated by placing a small, negative number (ex-
ponent) next to 10.

Thus, 10- is the reciprocal of 10* or e A 0.01.

102 100

13



For small numbers

1

A= W = 10“1
1
01 = 100 10-2
1 y
001 = 1000 — 10
1
.0001 = m = 10~
.00001 = 10-°
.000001 = 10-¢
.0000001 = 10-" and so forth
.0036 = 3.6 X 103
.000000769 = 7.69 X 107
1 milliampere (1 ma) = —1-6%6 ampere = 10-* ampere
1 microampere (1 ua) = l_()()-(l—)_(ﬁ(-)— ampere = 10-°* ampere

1 millivolt (1 mV) = 10-3 volt
I microvolt (1 wV) = 10-¢volt
Wavelength of sodium light, A = .00005983 cm = 5.983 X 10-°* cm

Operations with powers of 10

It is very simple to use numbers expressed in powers of 10 in your
calculations. You can add and subtract these numbers just like any
others provided they are expressed in the same powers of 10. Obvi-
ously, you can’t add cats and dogs, milliamperes and microamperes,
or 10% and 10-%, without expressing them first in the same units. For
example, let’s add 2.345 X 10° 4+ 10.56 X 10* + 8.65 X 10-*. Re-
expressing the numbers in powers of 10%:

2.345 X 10® = 23.45 X 102
10.56 X 10* = 10.56 X 102
8.656 X 10-*= .0000865 x 102

Adding  34.0100865 X 102 = 3,401.00865

As another example, subtract 565 pa from 3.42 milliamperes (ma):

3.42ma = 342 X 10-* ampere
565 ua = 565 X 10-* ampere = 0.565 X 10-* ampere
Subtracting 2.855 X 10-*ampere = 2.855 ma.

14



To multiply or divide numbers expressed in powers of 10, you
have to use the law of exponents for powers of the same base (10 in
this case). This law states that you simply add the exponents when
multiplying powers to the same base (10), and you subtract the
exponent of the divisor from that of the dividend when dividing by
powers of the same base. For example,

(3 X 105 X (7 X 10°) = 3 X 7% 10° X 102= 21 X 1052 = 21 X 107
(4 X 107 X (6 X 10-%) =24 X 107 + - =24 X 10*

15 X 10° o 4
(15 X 10°) = (5 X 10°) =m=3>(10 = =5 35 52 I

12 X 10°
(12 X 10°) + (2 X 10) =%ﬁ= 6 X 100091 = 6 x 1012

Now that we have mastered operations with powers of 10, let us
return to Example 2 and solve it in a much easier way.

SOLUTION OF EXAMPLE 2 (NEW METHOD): 3.5 ua=3.5 X 10-* ampere;

E _ 7 volts
I 3.5 X 10-* ampere

hence, R = = 2 X 10° ohms = 2 megohms

ExaMPLE 3: A pair of push-pull power output tubes have a com-
mon 700-ohm cathode resistor?, through which a total plate current

Fig. 104. Bias voltage can be
measured with a voltmeter or,
as in this case, it can be calcu-
lated using Ohm'’s Law. Direct
measurement is possible only if
the equipment exists and is in
working order. Calculation is al-
ways possible if the required in-
formation is available.

B1AS VOLTAGE E=.08A X 70002:=56V

of 80 ma flows (See Fig. 104). What (bias) voltage is developed
across the cathode resistor?

Solution: The plate current of 80 ma = 80 X 10-* ampere = .08
ampere. Hence, the voltage E developed across the resistor

E = IR = .08 ampere X 700 ohms = 56 volts
Or E = IR = (80 X 10-?) X (0.7 X 10%) = 56 volts.

1A value of 700 ohms is used here to make the problem easicr. In actual practice we
would use a 680-ohm resistor. The differcnce in the final answer is about a volt and
a half.

15



PRACTICE EXERCISE 1

1. Change 5 microvolts into volts; 15 ma into amperes, and 2.5
megohms into ohms. (Answers: .000005 volt; .015 ampere; 2,500,-
000 ohms)

2. A tube filament draws a current of 0.45 ampere when 122 volts
is applied. What is the “hot” filament resistance? Answer: (271
ohms)

3. What is the current drawn by a 20,000-ohm bleeder resistor
connected across a B-plus supply of 375 volts? (Answer: 18.75 ma)

4. Compute the dc voltage drop across a 200-ohm choke coil rated
at 125-ma current flow. (Answer: 25 volts)

5. Express in powers of 10 and as whole numbers or decimals the
following prefixes to units: mega, kilo, milli, micro, micromicro.

(Answers: mega = 10¢ = 1,000,000; kilo = 10* = 1,000; milli =
10-2 = .001; micro = 10-¢ = .000001; micromicro =
10-2 = .000000000001)

6. Convert 250 micromicrofarads (uuf) into microfarads (uf);
.00005 farad into uf; 250,000 ohms into kilohms and megohms; 435
millivolts (mv) into volts and microvolts (uv); 896 microamperes
(ra) into milliamperes (ma) and amperes. Answers: 250 uuf =
00025 uf; 00005 farad = 50 uf; 250,000 ohms = 250 kilohms =
0.25 megohms; 435 mv = 0.435 volt = 435,000 uv; 896 pna = 0.896
ma = .000896 ampere)

Resistor arithmetic

Fig. 105 is a typical textbook problem in electricity. Five resistors
of various values have been hooked in series across a 250-volt supply
and you are asked to compute the total series resistance of the cir-
cuit and the current flowing in it. To solve this problem in the

CIMEG 47K 27K 8208 108

= +
0 E=250V0

Fig. 105. Before using Ohm’s Law in this
circuit, we would need to calculatg the
total value of the resistors in series.
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conventional manner, you would first use the fact that the total
resistance (R:) in a series circuit is the sum of the individual re-
sistances. This is usually expressed by the formula:

Ri=R;+R.+R; + R, + R; +...R,
You would then apply Ohm’s Law to compute the current:
= E/R.
Let’s go through with it to see what we’re up against.
R. = 0.1 megohm + 47K + 2.7K + 820 + 10

Converting to common units (ohms) and adding

100,000
47,000
2,700
820

10

150,530
we obtain a total resistance R. of 150,530 ohms. Hence, the current

E 250 volts . e
¥ = R = 150530 ohms — ? amperes. Carrying out the indicatéd

division 250 + 150,530 = .00166
.00166

150,530) 250.00000
150 530
7994700
90 3180
915200
903180
12020

Thus, the final answer is .00166 ampere or 1.66 ma.

Now let’s look at the problem from a practical viewpoint. Say
you are using 109, commercial resistors to make up the combina-
tion. Since “percent” literally means “from hundred,” this means
that each resistor may differ from its indicated value by as much

i 10 o 3
as 10 parts in 100, or 100 = 0.1. This is also true for the entire
resistor aggregate, which may be as much as 109, above or below

the total computed resistance.

17



Roughly, therefore, the tolerance in the total resistance is 0.1 X
150,000 = 15,000 ohms, so that the actual total resistance may vary
anywhere from 135,000 ohms (15,000 ohms below the computed
value) to about 165,000 ohms (15,000 ohms above the computed
value).

It would be the height of folly, therefore, to consider the 10-ohm
or even the 820-ohm resistor in the total result. The remaining
resistance values should be rounded off to the nearest 1,000 okms,

0.1 MEG 41K 21K S0 10N
L. 3K
7

(=%

- 4.
o g=250V o—
R4 and RS aren’t such important members of this series group.

which is well within the 15,000-ohm total tolerance. Doing this, we
can determine by inspection that R1 = 100,000 ohms, R2 = 47,000
ohms and R3 = 3,000 ohms (approximately), while R4 and R5 may
be neglected. Mentally adding these three resistance values, we ob-
tain 100,000 + 47,000 + 3,000 = 150,000 ohms total resistance.

Hence the current

250 250 5
R ~ 150000 ~ 150 X 10° — 3 X 10-* ampere = 1.67 ma
Note how close the answer is to our earlier result.

If you used 1% precision resistors, the total resistance might
differ by as much as .01 X 150,000 = 1,500 ohms from the com-
puted value. Again the 10-ohm resistor may be neglected entirely,
while the remaining resistance values can be rounded off to the
nearest 100 ohms. Doing this, you obtain for the total resistance,

R. = 100,000 + 47,000 + 2,700 + 800 (approximately)
= 150,500 ohms

=

250 volts
150,500 ohms

Here the division may be performed long-hand or with a slide
rule of at least 1% accuracy.

Hence, current I = = .00166 ampere or [.66 ma.

18



Significant figures and required degree of accuracy

The resistance problem we've just discussed illustrates that in
electronics—as anywhere else in real life—we necessarily deal with
approximations and never achieve 100% accuracy, in contrast to
pure mathematics. An appreciation of the degree of precision of
measurement possible in practice and the required accuracy of
your calculations can save you countless hours of needless drudg-
ery. For instance, in determining the reactance of a coil by the
formula 27fL, you won’t be tempted to use 3.14159 for 7, if the
inductance (L) of the coil is only within 10% of its nominal value.

250
23
Before working with numbers, ex- 253 \\’

amine them carefully. Whether you

wish to tamper with the numbers

depends on how precise your answer
must be.

The numbers used in expressing a measured value, called signi-
ficant figures, generally indicate the precision of measurement.
For example, a current value of 25 ma, containing two significant
figures, indicates a precision of measurement to the nearest
(whole) milliampere. If the value is stated as 25.0 ma, it indicates
that the measurement has been carried out to the nearest tenth
of a milliampere (i.e, the current is 25 ma, not 25.3 ma or some
other value.)

The zero after the decimal point, in this case, is significant and,
hence, the number has three significant figures. Similarly, a cur-
rent value of 100.000 ma has six significant figures, the three zeros
after the decimal point mdlcatmOr that the measurement is pre-
cise to the nearest thousandth of a nnllmmpme. As a final illustra-
tion, a resistance value of 859.7 ohms has four significant figures,
but if the number is rounded off to 860 ohms, it will have only
three significant figures.

Rounding Off: When a number is expressed to a greater de-
gree of accuracy than is necessary, it is usually rounded off by drop-
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ping one or more digits at the right. The rule for rounding off a
number is very simple: if the last digit (at the right) is less than 5,
simply drop it; if the last digit is 5 or more, drop it and increase
the preceding digit by 1. For example, in successively rounding
off the value for = = 3.1415926536, the values obtained are
3.141592654, 3.14159265, 3.1415927, 3.141593, 3.14159, 3.1416,
3.142, 3.14, 3.1, and finally 3.

Absolute and Relative Error: If you approximate a value from
a more exact known value, then the difference between the two
values is known as the absolute error. Thus, if you use an approxi-
mate value of 3.7 volts for the exact value of 3.667 volts, the
absolute error is 3.7 — 3.667 = 0.033 volt. Similarly, using an ap-
proximate value of 0.5 ampere for the exact one of 0.54 ampere
results in an absolute error of 0.5 — 0.54 = —0.04 ampere. Note
that the absolute error is negative when the approximate value is
smaller than the exact value, and positive when the approximate
value is greater than the exact one.

The ratio of the absolute error to the exact value is known as
the relative error. Using the previous examples, the relative error

in the first case is g—gg%?— = 0.009 (approximately), and in the sec-

ond case it is :((;—(5)—3— = -0.074 (approximately).

Note that the relative error is a pure number (without units),
since the units on top and bottom of the ratio cancel. It is most
frequently expressed as percentage error, which is the relative er-
ror multiplied by 100. Using the previous examples again, a rela-
tive error of 0.009 is equivalent to 0.009 X 100 = 0.9% and an er-
ror of -0.074 is equivalent to 0.074 X 100 = 7.4%. (Usually only |
the magnitude of the percent error is of interest and the sign is
dropped.)

In most practical calculations a one percent (1%) error—the
usual slide-rule accuracy—is permissible, since the precision of
measurement in electronics rarely equals or exceeds this value. |
Except for critical circuits, electrical and electronic components,
such as resistors, capacitors and coils, have a tolerance of +£10%, |
which means that they may be up to 10% higher or lower than |
the indicated (nominal) value. ;

Tubes and transistors usually have an even greater margin of {
error, and the performance of most electronic circuits appears to |
be unaffected by as much as 20% tolerance from the stated speci- [

"
|
|

fications. In a few sensitive circuits, where such factors as fre-

M
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quency stability or bias voltage may be critical, precision com-
ponents with 1% or even ==0.1% tolerance may be used.

Approximating Numbers: Now we have a basis for approximat-
ing or rounding off numbers to a required degree of accuracy.
You can use the following rule of thumb. To approximate a num-
ber within a given relative error (expressed as a decimal), round off
the number so that the number of digits retained which are not
zero is one greater than the number of decimal places in the rela-
tive error. Lest this should sound complicated, let’s try a few
examples.

ExaMmpLE 1: The exact value of a resistance, as determined on a
Wheatstone bridge, is 29,735.4 ohms. Round off this value to
successive relative errors of .01%, 0.1%, 1% and 10%.

This is the basic circuit of the Wheatstone
bridge. The resistances (A, B, C and D) have
a specicl relationship when meter M reads
zero. The relationship is:

A A_C

M 5 8 D
@ by If B, C and D are 10, 20 and 30 ohms,
e respectively, and A is unknown, it can be
determined by solving the formula for A
¢ and substituting the known values. Thus,
D multiplying both sides of the equation by B:
A et _B_E
D
__ 10X 20
30
= 6.67 ohms

Solution: An error of .01% = .0001. Since there are four deci-
mal places in the error, by the rule above we should round off to
five digits. Hence 29,7354 ohms becomes 29,735 ohms within
01%.

Let’s check this answer: the absolute error is 29,735 — 29,735.4

-0.4
30,000 (approximately)
-.000013 or -.0013%. This is much less than the required accuracy
of .01%.

An error of 0.1% = .001. Since there are three decimal places,
we retain four digits, and the value is rounded off to 29,740 ohms
(not counting the zero). Again checking, the absolute error is
29,740 — 29,735.4 = 4.6; hence, the relative error is approximately

5
30,000 — 000167, or 0.0167% (i.e, less than 0.1%).

= -0.4; hence, the relative error is
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For an error of 1% or .01 we retain three digits (not counting
zeros), and accordingly we round off the exact value to 29,700
ohms. Since the error incurred is about 35 (i.e., 29,735 — 29,700),
and 1% of the exact value is approximately 300 (i.e.,.01 X 29,735),
we are clearly within the required accuracy.

Finally, for a permissible error of 10% or 0.1, we need retain
only two digits (ignoring zeros) and, thus, we round off to 30,000
ohms. Again, the error of 265 (approximately) is evidently less
than 10% of 29,735, which is approximately 2,974.

ExaAMPLE 2: A precision galvanometer reads a current of
.0013275 ampere. If a precision (relative error) of 0.1% is re-
quired, what value should be used? What is the value for a 1%

relative error?

— 1
[F—wWv—y

Even with the use of a precision meter, we can round
off our reading, depending on the precision we want
in our answer.

Solution: For a precision of 0.1% or .001 (three decimal places),
we retain four digits. The exact value is then rounded off to
.001328 ampere, or 1.328 ma. For a 1% or .01 relative error, we
need retain only three digits, hence the value becomes .00133

ampere, or 1.33 ma.
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ErrOR IN ADDING NuMBERS: We have seen in the earlier re-
sistance example that there is little point in adding numbers to
a greater degree of accuracy than the precision of measurement or
tolerance of the separate values warrants. In rounding off num-
bers for addition, we would like to have some idea of the total
error incurred, both the absolute value and the percentage. The
absolute error in addition is determined very easily: it is simply
the sum (with proper regard to + or - signs) of the absolute errors
of the individual numbers. If you round off to three decimal
places, for example, the absolute error of each number cannot be
more than one-half of .001, or .0005. Hence, when adding up to
20 numbers, each rounded off to three decimals, the absolute error
is less than 20 X .0005 = .01. Thus, if the addition of up to 20
numbers is to be correct to two decimal places, round off each
number to three decimal places. If more than 20 numbers are in-
volved, round off to four decimal places. In general, when adding
up to 20 numbers, retain one more decimal place than the re-
quired accuracy of the result.

ExaMmprLE: Resistances that have measured values of 4.3416,
9.8164, 0.7295, 21.684, .0037, 762.123 and 1.2845 ohms are con-
nected in series. Find the total resistance correct to one decimal
place.

%_-_7724; 21.6%% 00031

By first considering the accuracy we want, we can
round off numbers, simplifying our work. In this case
one resistor can be eliminated from any considera-
tion since it contributes so little to the final result.

Solution: The total resistance is the sum of the individual
resistances. Since the answer is to be correct to one decimal place,
we must retain two decimal places for each number during
addition.
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Hence, 4.34 ohms
9.82 ohms

0.73 ohms

21.68 ohms

0.00 ohms

762.12 ohms

1.28 ohms

799.97 ohms

Rounding this result off to one decimal place, we obtain 800.0
ohms for the total resistance. Note that the answer has four (not
three) significant figures.

How would we find the relative or percentage error incurred
in addition. Following the same definition as before, the

Absolute error of sum
Sum

Relative error of a sum =

What we really would like to know, however, is how much
each value can be off (that is, its absolute error) for a given per-
missible percentage or relative error in the sum. This is easily
obtained from the definition equation above. Multiplying both
sides by the sum, we obtain

Absolute error of sum = Relative error of sum X Sum

As we have already seen, the absolute error of the sum is also
the product of the absolute error of each value times the number
of values:

Absolute error of sum = Absolute error of each
value X Number of values

We can equate the right sides of these two equations, since their
left sides are equal. Hence,

Absolute error of each value X Number of
values = Relative error of sum X Sum

From this equation we obtain the desired result, by dividing both
sides by the “Number of values”:

Absolute (permissible) error of each value
__ Relative error of sum X Sum
- Number of values

The only trouble with this formula is that we have to know the
sum in advance to estimate the permissible error of each value.
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For this purpose, however, a very rough mental estimate of the
sum will do. An example will clarify the procedure.

ExampLE: Find the total series resistance of the resistors listed
in the previous example, first to 1% and then to 0.1% accuracy.

Solution: A very rough estimate of only the large numbers
shows that the sum is close to 800. Hence, for a permissible error
in the sum of 1% or .01 and for seven values,

Absolute (permissible) error per value = w =1.14
Since each value can be off by more than 1, we can round off to
the units column, thus dropping all decimal places:

4
10
1
22
0
762
1

800 ohms

The answer, accurate within 1%, therefore is 800 ohms (which is
not the same as 800.0 ohms obtained in the previous example).
For a permissible error in the sum of 0.1% or .001, the

Absolute error per value = —0—01——?;—899- =0.114

To stay within an absolute error per value of less than 0.114, we
must retain at least one decimal place in each number. Adding
again,

21.

SO0k
o9 w

762.
1.3

799.9 ohms

we obtain an answer of 799.9 ohms, accurate within .001 or 0.1%.
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Resistors in parallel

After this digression into error (relative or absolute), let us re-
turn to electricity. You will recall that the equivalent resistance
(R) of two resistors (R1 and R2) in parallel is the product of the
two resistance values divided by their sum. This is expressed by
the familiar mathematical formula:

R1 X R2
Rl + R2

Incidentally, this equation also holds for two inductors (L1 and
L2) in parallel or for two capacitors (Cl1 and C2) in series, if you
substitute the appropriate symbols.

Although the formula is relatively simple to handle, a lot of
time is wasted by some people to get accurate answers, when an
approximation will do equally well.

R

ExaMPLE 1: A phono pickup is connected to the input of an
amplifier with a 56,000-ohm input resistance. If the cartridge is
shunted by a 0.229-megohm resistor, what is the total load into
which the pickup is working? (See Fig. 106.)

—_————
| AMPL

PICKUP |

-
%2291( ; 56K%
L

L

Fig. 106. Problems in electronics often

turn out to be nothing more compli-

cated than calculating the total value
of resistors in parallel.

Solution: Since the cartridge shunt resistor and the amplifier
input resistance are in parallel, we can substitute in the formula
for two parallel resistors:

56 X 10° X 229 X 103
56 X 10° + 229 X 10°
56 % 229 X 10°
- 285

Working this out laboriously by long-hand, we obtain a load re-
sistance of 45,000 ohms, the recommended value for this cartridge.

Load Resistance R =

(Cancelling 10%)
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If we wanted to get an approximate estimate, we might have written

R_56><230>< 10° __ 230 X 10°
e 285 " 5

since 56 goes approximately 5 times into 285. The absolute error

incurred by this approximation is 46,000 - 45,000 = 1,000 ohms,

1,000 ot
75000 = 022, or 2.2%, which is well

within the tolerance of the usual 109% resistors.

= 46,000 ohms*

and the relative error is

RELATIVE ERROR IN MULTIPLICATION: Qur intuitive estimate in
the last example was good since we were well within the permis-
sible error. We would, however, like to have some rule to deter-
mine the relative error in advance, so that our estimates will have
the required accuracy. The rule for approximating factors in mul-
tiplication is simple: Retain one more digit in each factor than
there are decimal places in the permissible relative error.

ExampLE: Multiply 3.1415927 (w) by 2.7182818 (¢) to an ac-
curacy of 1%.

Percentage of permissible error

depends on the application.

Sometimes a small error can be
a catastrophe.

Solution: For an error of 1% or .01 we should retain three digits
(one more than in .01) in each factor. Hence,

3.14 X 27.2 = 85.408

Compare this to the more exact product of 85.39734.

When several factors are present in combined multiplication
and division, the relative error of the result is approximately the
difference between the (algebraic) sum of the relative errors of

L .
== represents ‘‘approximately equal to”
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the factors in the numerator and the sum of the factors in the
denominator. Again, retaining one more digit in each factor than
decimal places in the permissible relative error is a safe procedure.
You can use fewer digits, if you judiciously balance the errors in
the factors. Returning to the example of the pickup load re-
sistance:

R_56><229>< 10°

[ - 285

Assume we want the result within 10% or 0.1. Retaining alter-
nately one and two digits,

60 X 230 X 10 230 X 10°

R 300 o
a 2.2% error.

= 46,000 ohms, as before, with

SoME MuLrTtipLICATION TRIcks: Here are a few tricks, based on
algebraic formulas, that come in handy when multiplying:

l. a(b-x) =ab-ax

This formula is useful when one of the two factors to be multi-
plied is a little less than an easily multiplied whole number.

ExampLE: Multiply 945 X 998.
945 X (1,000 — 2) = 945,000 — 1,890 = 943,110
2.(a+x)(a-x) =a’-x?

This result is very handy, when one of the factors is greater and
the other is less by the same amount than an easily squared number.

ExAMPLE 1: Multiply mentally 53 X 47.
Comparing with Formula 2, above,

(50 + 3) (50 - 3) = 50232 = 2,500 -9 = 2,491 ‘

ExampLE 2: Multiply 195 X 205.

Since the order of multiplication doesn’t matter, 195 X 205 =
205 X 195,0r (200 + 5) (200-5) = 200°- 5% = 40,000-25 = 39,975.

More THAN Two REsISTORs IN PARALLEL: The equivalent re-
sistance (R) of a number of resistors (R1, R2, R3 ... R.) connected
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in parallel is equal to the reciprocal of the sum of the reciprocals
of the individual resistance values. This is expressed mathemati-
cally by:

1
e ] S G T ik K
R TRTRT TR

The proper use of this formula requires skillful and judicious
handling of reciprocals, ordinary fractions, decimal fractions, and
approximations, wherever possible.

ExampLE 1: Resistors of 4, 7 and 14 ohms are connected in
parallel across a 6-volt battery. What is the equivalent resistance
of the combination and the total current drawn by it? (See
Fig. 107.)

Fig. 107. When resistors are connected [
in parallel, the totdl resistance is always
less than the resistor having the small- —¢

est value. The total current is the sum = gy 49 270 2144

of the currents flowing through the =—[ ..
individual reststors. | L2,

Solution: Substituting in the formula for the equivalent re-

! 1
sistance, R = T Tl e ? ohms.

THTtH

There are three common proper fractions (under the large frac-
tion bar) which have to be added. To do this, the fractions first
have to be converted to equivalent fractions that have the same
common denominator. We can find the lowest common denomi-
nator (or LCD) by looking for the smallest number that can be
divided by all three denominators. In this case, by inspection, the
LCD is 28. (In more complicated cases, you'll have to split the
denominators into their factors and then find the least common
multiple of all numbers.)

Hence,

1 1 28
R—L_*_.i_ 5 =713 —-—1—3——2.154ohms.

BT T 2W® W

.+ E  6volts
The current, therefore, is I = R = 21540bms — 2.786 amperes.
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It isn’t always convenient to solve this type of problem using
common fractions, as is shown in the next example.

ExampLE 2: A 150-volt plate-voltage supply feeds three electron
tubes that have equivalent plate-circuit resistances of 850, 3,900
and 4,700 ohms, respectively, as shown in Fig. 108. Compute the
total load resistance and the current drawn.

R=? Fig. 108. This problem can be solved
e in two ways. You can find the combined
|__> value of the resistors and then use
I Ohm’s Law to find the total current
< Or, you can find the current through
150v ::850‘0' SElrS g each resistor and then add the ingi-
+T 1=2 vidual currents to get the iotal. You
= could then use Ohm’s Law to find the

total resistance.

Solution: Treating this again as a simple parallel circuit, the
total load resistance,

1
Re— I ] I = ? ohms.

850 * 3,900 T 4700

Obviously, there is no simple way of combining these fractions.
We'll therefore have to compute the value of the three reciprocals
by changing the common fractions into decimals. This can always
be done by dividing the numerator by the denominator. You have
several choices in going about this. You can do the division long-
hand, which is accurate to as many decimal places as you wish,
though very time-consuming. You can use a slide rule, obtaining
an accuracy of about 1% for a 10-inch rule.

As we shall see in a later chapter, the reciprocals may also be
computed rapidly and very accurately by means of a table of five-
place logarithms. If you have mathematical tables handy, which
you should, you will probably find a table of reciprocals, where
you can look up the reciprocal values directly.

Doing it long-hand or by means of mathematical tables, you |
should have:

1

R= 0011765 + .0002564 + .0002128
. 1 .
Adding, R = 0016457 — 607.64, or 608 ohms, approximately.
E 150 volts
Therefore, the total current I = R R 0.247 ampere.
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If you have neither tables nor a slide rule and want to save
time in computation, you might estimate the result as follows:

=1 1 » 1
| 1 s 1 1

850 T 3.900 T 2,700 900 T 3.600 T 4.500

rounding off judiciously, with both positive and negative errors
The LCD of the three fractions is 18,000. Hence,

g = 1 1 18,000
T 204544 29 T 29

18,000 18,000

= 600 ohms.

The absolute error in this approximation is roughly 600 — 608 =

-8 ohms and the magnitude of the relative error is 6_—08—85= -.013, or

-1.3%. With the usual 10% resistors, this answer would be quite
acceptable.

PRACTICE EXERCISE 2

1. How many significant figures are there in 3.14159; 345,000;
1,000,000; 1.000000; 0.000001; 0.0327850. (Answers: 6,6, 7,7, 1, 6).

2. Round off e = 2.7182818285 successively to one decimal
place. (Answers: 2.718281829; 2.71828183; 2.7182818; 2.718282;
2.71828; 2.7183; 2.718; 2.72; 2.7).

3. What is the absolute error incurred when a value for e = 2.72
instead of 2.71828 is used in the previous problem? What is the
relative and the percentage error? (Answers: .00172, .0006327, or
06327%).

4. A resistance measured with a Wheatstone bridge turns out to
be 212,667 ohms. (a) If a value of 212,700 ohms is used for compu-
tation, what are the absolute, relative and percentage errors? (b)
Will the error be within 1% if a value of 213,000 ohms is used?
(Answers: (a) 33; .00011 approximately; .011%. (b) Yes)

5. A Geiger tube and associated counter register 6,789,274
counts per minute (cpm). Round this value off to an accuracy of
019%, 0.1%, 19, and 109,. (Answers: 6,789,300 cpm; 6,789,000
cpm; 6,790,000 cpm; 6,800,000 cpm)
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6. Precision resistors with values of 2868.15, 3380.43, 845.31,
27.84 and 343.50 ohms are put in series. What is the total resistance
within 1% accuracy? (Answer: 7,470 ohms)

7. (a) What resistance must be placed in parallel with an 8-ohm
resistor to make the equivalent resistance of the combination equal
to 7 ohms? (b) If an available resistor of 60 ohms is used, what is
the approximate relative error of the combination compared to
7 ohms? (Answers: (a) 56 ohms. (b) Less than 19,—actually 0.84%,)

8. In an electrical problem the following expression is to be
3.1416 X 8 X 24.44

10.94 X 5.22 X 54.682"
result and the approximate relative error if, instead, the expression

32X 8Xx24
10.9 X 5.2 X 55

9. Multiply the following numbers rapidly, using the appro-
priate algebraic formula as shortcut: 1,225 X 99; 198 X 202;
25 X 98 X 35. (Answers: 121,275; 39,996; 85,750)

10. Resistors of 2,500, 10,000 and 50,000 ohms and 100 kilohms
are connected in parallel. What is the equivalent resistance?
(Answer: 1,886.8 ohms)

computed: What is the approximate

is used? (Answers: 0.197; .002 or 0.2% error)

1=?
49 : 1680
i > Fig. 109. With some adjustment, num-
0oV R=? 208 259 3809 bers that are awkward to handle be-
G come fairly easy. The resulting error

is often within limits that can be
tolerated.

11. A 100-volt source is connected into a series-parallel circuit
consisting of five resistors, as shown in Fig. 109. What single equiv-
alent resistance can replace the series-parallel combination and
what is the total line current flow? (Answers: 20 ohms, 5 amperes)
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CHAPTER 2

Network Algebra

RITHMETIC deals with the rules and laws of manipulating

numbers. Algebra has essentially the same rules, but the manip-
ulations are with symbols. By using symbols, such as a, b, ¢, x, y, z,
A, C, L, Z, etc., the rules and operations of algebra assume a univer-
sal validity, which is well suited to the problems and formulas of
electronics and engineering in general. Of course, in any specific
problem you must substitute particular numbers and values in the
algebraic formulas and all computations then become purely arith-
metical, as you will recall from our “experiments” with Ohm’s
Law. Thus, perhaps the main advantage of using algebra in elec-
tronics is that it allows us to solve most types and classes of problems
in advance by manipulating generalized symbols which can stand
for the particular values of any specific practical problem.

The symbols, or literal numbers, of algebra may be almost any
letter in any alphabet of any language you can think of. Usually,
the first few lower-case letters of the alphabet—a, b, c, d, etc.—stand
for known numbers (5, 3.14, 659, etc.), while the last few letters—
u, v, w, X, y, z—stand for unknown quantities. The following table
lists some of the most frequently encountered symbols in electrical
work and electronics. A few commonly used Greek symbols and
their meaning are also listed.

There just aren’t enough letters in the various alphabets to cover
all applications of letters as symbols, and so identical letters are
often used for several functions. The problem is helped through
the use of upper and lower case letters, and also by having super-
script and subscript notation. A superscript is a number or letter
written slightly above and adjacent to a symbol, such as 10? or
(@ + b)% In these two examples, the number 2 is a superscript. A
subscript is written adjacent to and slightly below the symbol,
such as X; or Xe.
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SymBoLS FREQUENTLY USED IN ELECTRONICS

Symbol Meaning
A Amplifier gain
C Capacitance (farads)
E Emf or voltage (volts)
e Charge on electron (1.6 X 10-*° coulomb)
Forf Frequency (cycles per second = cps)
G Conductance (mhos)
Iori Current (amperes)
j Imaginary number or j-operator = v/ -1
k Dielectric constant, coefficient of coupling
L Inductance (henrys)
M Mutual inductance (henrys)
N Number of turns
Q Quality factor = L. %, Transistor
R Resistance (ohms)
T Transformer
A% Electron tube (valve)
X Reactance (ohms)
X. Inductive reactance (ohms) = 27fL
Xe Capacitive reactance (ohms) = 1/27fC
4 Admittance (mhos) = 1/Z
Y/ Impedance (ohms) = R + j(X. - Xc)
4 Impedance magnitude = v/ R? + (Xi - Xc)?

« (alpha) Current gain in transistors = %l V.constant (change
in collector current produced by change in emitter
current with collector voltage held constant)

« (alpha) Attenuation constant of rf line

B (beta) Phase constant of rf line, or feedback factor

€ (epsilon) Natural base of logarithms = 2.71828 (in engineering)
dielectric constant

6 (theta) Angle (degrees)

A (lambda) Wavelength = vel;>c1ty B b

requency

p (mu) Tube amplification factor

= (pi) Ratio of circumference to diameter = 3.14159

Q, o (omega) Symbol for ohms

o (omega) Angular velocity = 2nf
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SIGNED QUANTITIES AND GRAPHS: Another distinguishing char-
acteristic of algebra is that all quantities have either plus or
minus signs, indicating that they are either greater (+) or less (-)
than zero, respectively. Dealing with negative symbols or num-
bers should be familiar to you from your daily experience with
the thermometer or, for that matter, from handling positive (+)
or negative (-) errors in the last chapter.

A simple way of looking at signed quantities is to portray them
graphically. Fig. 201 illustrates the familiar rectangular coordinate

IEQUATION: y = 4+2x

' TABLE OF VALUES
uh || BV, (-7,+5)0
-5 | -6
-4 | -4
-3 | -2
-2 | o et
7 2 e Tl e
0| 4 -10-9-8-76-5
+ 6 —(-6,-2)@
2| 8
+3 | 10
+4 | 12
+5 | 14

Fig. 201. The straight line drawn
on this graph represents the
equation y = 4 4 2x.

system, consisting of a horizontal X-axis and a vertical Y-axis and
a series of squares on graph paper. The perpendicular intersection
of the two axes marks the zero point (0). Values of x to the right
of the Y-axis are considered positive, those to the left are negative.
Values of y above the X-axis are considered positive, those below
the X-axis are negative. It thus becomes possible to assign a
unique point on the graph paper for each pair of values, +x or
-x and +y or -y. This is written (%X, =y). For example, the point
{0, 0) is the intersection of the X and Y axis; the point (45, +3)
is five squares (units) to the right of zero along the X-axis and
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three units above zero along the Y-axis. The point (-7, +5) is
seven units to the left of zero along the X-axis and five units up
along the Y-axis. The point (-6, -2) is six units to left along X
and two units down along Y. Finally, the point (+3, -8) is three
units to the right along X and eight units down along Y.

Since every pair of values (%, y) defines a point, an algebraic
equation expressing a relation between the independent variable x
and the dependent variable y may be plotted by assuming various
values for x and computing the value of y in each case. For ex-
ample, in the illustration (Fig. 201) we have plotted the algebraic
equation

y=4+2x

by assuming various arbitrary values for the independent variable
X, substituting them in the equation and computing the resultant
value of the dependent variable y. Thus, when x =0,

y=4+20) =4

and we have the pair of values (0, +4). This value of y (+4) is
called the y-intercept, since it marks the intersection of the graph
with the Y-axis (x = 0). When x = -1, weobtainy =4 + 2 (-1) =
4 + (-2) = 2, resulting in the point (-1, 2) and when x =-2,y =
4 + 2 (-2) =4 + (-4) = 0, resulting in the point (-2, 0). This point
(x =-2, y=0) is called the x-intercept, since it marks the inter-
section of the graph with the X-axis (y = 0).

You can always obtain the y-intercept directly by setting x = 0;
that is, for x =0, y = 4 + 2(0) = 4, as above. You can obtain the
x-intercept directly by setting y = 0 in the given equation. Thus,
for y =0, we obtain 0 =4 4+ 2x, and solving for x:

2x = -4 (transposing) }
x = -4/2 = -2 (dividing by 2) :

Hence, the x-intercept is -2, as was obtained previously. ‘

By continuing the process of assuming values for x and com- |
puting y from the equation, you can make up a table of values,
listing pairs of corresponding x and y values that signify points
of the graph. Thus, in the present example (Fig. 201), the table of
values looks like this:

X...5-4-3-2 -1 0+1 42 +3 +4 +5...
Y...64-2 042 +4 46 +8 +10 +12 +14...

Since the graph of the equation y = 4 + 2x is obviously a straight
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line, it would have been sufficient in this case to compute the
x- and y-intercepts and possibly one additional pair of values, to
make sure the graph is a straight line.

After obtaining three pairs of values and marking three points
of the graph, we can easily draw a straight line of indefinite length
through the points, as shown in Fig. 201. This line represents
the equation y = 4 + 2x at every point and is indefinite in length,

When we plot the graph of an equation,
we begin to see that the equation has
meaning and isn‘t just o group of symbols.

since there are an infinite number of positive and negative values
for x and y. It is apparent from the example that any algebraic
equation can be represented by a graph or curve and, moreover,
any curve or line you can draw represents some sort of algebraic
equation. The branch of analytic geometry is exclusively devoted
to exploring the relations between curves and equations.

RuLes oF SiGns: If you had any difficulties in following the
previous example, you have probably forgotten the rules govern-
ing signs and other elementary algebraic operations. Let us, there-
fore, briefly review these before getting into electronic applications.

RuLE 1: To add numbers of like signs, assign the common sign
to the result.
ExampLES: +5 +7 +12 +3 = 427, or 27 (the 4 sign may be
omitted)
bx + 7x + 12x + 3x = 27x
-3 -8-12-5 -4 =-32

RULE 2: To add numbers of unlike signs, first add all positive and
negative quantities, subtract the smaller from the larger, and
place in front of your answer the sign of the larger combination.
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ExaMmpLE 1: Find the algebraic sum of 4, -8, +2, +6 and +10
Solution: -4+ (-8)=-12;2+6+10=18;18-12=6

ExAaMPLE 2: Add 3y + 19y + 4y - 45y
Solution: 3y + 19y + 4y = 26y;
26y — 45y = —(45y - 26y) = -19y

ExampLE 3: Find the algebraic sum of
18a + 23b-12a + 6b + 4a-16a-39b + 3b |
Solution: (18a + 4a) + (-12a-16a) = 22a - 28a = —(28a - 22a)
= -6a;(23b + 6b + 3b) - 39b = 32b - 39b =
-(39b - 32b) = -7b; -6a + (-7b) = -6a -7b

RuLE 3: To subtract signed quantities (i.e., find the algebraic dif-
ference) change the sign of the quantity to be subtracted and add

Learn the algebraic rules and you won't
have a “problem”.

EXaMPLE 1: 12 - (-16) = 12 + (+16) =12 + 16 = 28 |
ExAMPLE 2: 4¢c - (-bc) = 4¢c + (+5¢c) = 4c + 5c = 9c
ExampLE 3: Find the algebraic difference between

(12x -22x + 3x - 2x) and (—44x + 23x - 8x + 13x)
Solution: 12x + 3x-22x-2x = 15x-24x = -9x

23x + 13x-44x - 8x = 36x - 52x = -16x

-9x - (-16x) = -9x + (+16x) = 16x-9x = 7x

OR: (12x - 22x + 3x - 2x) — (-44x + 23x - 8x + 13x)
= (-9x) - (-16x) = -9x + 16x = 7x

RuULE 4: The product of any two numbers that have like signs i
(either “+"” or “~") is positive (+), and the product of a positive ‘
and a negative quantity is negative (-). |
|
|
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ExampLEs: (-7) X (-3) = +21; (-8y) X (-92) = +27yz
(4u) X (6v) X (9w) = 216uvw
(-8y) X (6z) = -48yz; (-3) X (8) X (6) = -144
(5u)(3v)(-4w)(6x)(-2y)(10z) = +7,2000uvwxyz

RuLE 5: The quotient of two quantities of like sign (“+" or “-”)
is positive, while the quotient of a positive and a negative quantity
is negative.

32 _

32, =89 _ .. 44x 12
16 N

+2 —3=-15% 7%

These are the basic rules for manipulating signed quantities.
There are some additional fundamental algebraic operations
which you should review at this time if you are not sure you can
do them without difficulty. You will be reviewing arithmetic at
the same time, since a substitution of numbers in the formulas
results in purely arithmetical operations.

EXAMPLES: =412

Fundamental operations

Algebraic symbols can be
written in different ways—
all having the same value. Q. \\
- %

RULE 6: Quantities may be added in any order or grouping.
X+y+z=y+x+z=z+y+x
x+yt+tz=x+(y+2)=x+y+z

RULE 7: Quantities may be multiplied in any order or grouping.
XyZ = yXZ = zyX = XZy = yZX = IXy
x(yz) = (xy)z = xyz

RULE 8: A coefficient (known quantity) outside a parenthesis means
that all terms within the parenthesis are to be multiplied by it;
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conversely, a factor common to all terms may be placed outside a
parenthesis.

a(x +y) = ax + ay

ax +ay+az=a(x+y+z

RULE 9: A minus (-) sign preceding a parenthesis applies to all
terms within the parenthesis.

~(x-y+zg)=x-(y)-(+2) =-x +y-z
“Cx+ty-g=x~(+y) +tz=x-y+z

RuLE 10: You may remove sets of parentheses or brackets “from the
inside out” or “from the outside in.”

x-b [(y-2)] = x-[by-bz] =x-by + bz
or x-b[(y-z)] =x-b(y-z) =x-by + bz

Operations with fractions

The following rules review operations with fractions, irrespec-
tive of whether they are algebraic (literal numbers) or arithmetic
(ordinary numbers).

RuLE 11: Dividing by x is the same as multiplying by 1/x, provided
X is not equal to zero (written x £ 0).

L-y(x) «=0

RuULE 12: You can multiply the numerator and denominator of a
fraction by the same quantity (k) without changing the value of the
fraction, provided k £0.

L
y _ky__k
k

RuLE 13: Dividing by a fraction is equivalent to multiplying by
the reciprocal of the fraction.

a ax

w I
~<|
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RuULE 14: Fractions with different denominators must be reduced
to their lowest common denominator (LCD) before they can be
added or subtracted.

X,y ,z _bex acy  abz _ bex + acy + abz
atbt T abc Tabc Tabe abc

RuLE 15: The product of two fractions is the product of their
numerators divided by the product of their denominators.

BG)-5
)6 -5

Operations with exponents (powers and roots)

The power of a quantity is the product obtained by multiplying
the quantity by itself a given number of times. The exponent indi-
cates the power to which the quantity is to be raised. Thus, x* means
that x is to be raised to the fifth power, or x ¢« x ¢« X ¢ x ¢ x = X°
The quantity that is to be raised to a power is called the base. Thus,
y" means that the base, y, is to be raised to the nth power. The
following rules review operations with exponents.

RuULE 16: An exponent outside a product within a parenthesis
applies to each of the factors within the parenthesis.
(xyzy™ = xmymzm

RuLE 17: The product of two powers with the same base is the base
raised to a power equal to the sum of the exponents.

ymyn — ym+n
RuLE 18: The quotient of two powers with the same base is the base

raised to a power equal to the exponent of the numerator minus the
exponent of the denominator.

_y_m — ym-n
y ’

RULE 19: Any quantity, except 0, with the exponent 0 is equal to 1.

y=1 (y+0)
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RuLE 20: A base raised to a negative power is equal to the reciprocal
of the base raised to the same positive power (that is, take the
reciprocal and change the sign of the exponent).

1

7= —
zn

RuLE 21: The nth power of the mth power of a quantity is the same
as the mth power of the nth power of that quantity, or the mnth
power of that quantity.

(g = )=

RuLE 22: The numerator of a fractional exponent indicates a power
and the denominator a root, of the base quantity.

v =y =</y (ie.,themthrootofy).
(Note: The exponent 1 is understood and hence may be omitted.)
7 =) = e
or y=(y)" =Yy (hence: (V/3)" =¥

Special factors and expansions

The following special factors and their expansions (when multi-
plied) are frequently used in algebraic processes and you might do
well to memorize them.

To manipulate an algebraic quantity
you may need to expand it.
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RuLE 23: (a + b)? = a% + 2ab + b?

RULE 24: (a-Db)? = a®’-2ab + b?

RuLE 25: (a + b)®* = a® + 3a’b + 3ab® + b®
RuULE 26: (a-b)® = a®- 3a®b + 3ab®*-b®
RuLE 27: a’-b* = (a-Db) (a + b)

RuLk 28: a®-b® = (a-b) (a* 4+ ab + b?)
RuLE 29: a® + b® = (a + b) (a®*-ab + b?)

Mathematics is like o game; you must know
the rules before you can play.

Operations with equations (axioms of equality)

The rules listed below govern operations with equations and are
used in their solution.

RuLE 30: Equal quantities may be added to, subtracted from, multi-
plied by or divided into both sides of an equation without destroy-
ing the equality. Division by zero (0) is not possible.

Ify=zand a = b, then:
l: y+ a=1z+ b (addingequal quantities)

2:y-a=z-b (subtracting equal quantities)

3:ay = bz (multiplying by equal quantities)
4: gl— = % (dividing by equal quantities)
(a =b 50)

RuLe 31: Raising both sides of an equation to the same power, or
taking the same root, does not affect the equality.

y" =2" (raisingto the same power)
vy = v/z (taking the same root)

43

-,



PRACTICE EXERCISE 3

1. Compute the value of each side of the equation in Rules 6
through 18 and in Rule 21, whenx =2,y =3,z=4,a=5,b =6,
c=8n=2m=3,andK=17.

(Answers: Rule 6: 9. Rule 7: 24. Rule 8: 25 and 45. Rule 9: -3.

Rule 10: 8. Rule 11: 3/2 = 1.5. Rule 12: 3/2 = 21/14 = 1.5.
5 bx2 10 1
Rule 13: ?/—2-— 3 ——3*—3-?:

2 3 4 _48+60+60 14

Rule 14: —5—+ 5 +_8_—T To = 1.4.
Rule 15: ??0— = -;— Rule 16: 13,824. Rule 17: 243. Rule 18: 3.
Rule 21: 729.

2. Derive Rule 19 by letting n = m in Rule 18.

3. Derive Rule 20 by letting m = 0 and y = z in Rule 18, and
applying Rule 19.
4. Find the value of each side of the equation in Rule 22 when
y=4,m = 8and n = 2. [Answer: 412 = /4 = 1.587
2 = (Vi = 8)]
5. Continue problem 1, above for Rules 23 through 29.

(Answers: Rule 23: 121. Rule 24: 1. Rule 25: 1,331. Rule 26:
-1. Rule 27: -11. Rule 28: -91. Rule 29: 341).

6. What s wrong with this demonstration: Let a = b; hence
a2 = ab (multiplying by a).
-b* = ab-b? (subtracting b?).

(a + b)(a-b) = b(a-b) (factoring).
a + b = b (dividingbya-b).
2b = b (substituting a = b).
2 =1 (dividing by b).
[Answer dividing by (a-b) = 0]

7. Ifa =2andb = 3, what is the value of (a + b)*?
[Answer: 25]

8. Ifa = 2 and b = 3, what is the value of a? + b??
[Answer: 13]
9. Multiply (a + b) (a* - ab + b?) to show that it is equal to
a® + b
10. What is the algebraic sum of (4a - 5b) - (-3a - 4b)?
[Answer: 7a-b]

cnmy}oom—-
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Using algebra in electronics

Knowing a little algebra can be a very useful tool for daily work
in electronics. Though the rules and operations of the “dismal
science”’—as mathematics has been called—may be dry as dust, solv-
ing problems arising in practice or deriving your own formulas for
specific situations can be enjoyable.

What to put in parallel: In Chapter 1 we gave the formula for
the resistance of two resistors in parallel:

R1 X R2
R=RT+R?
and we cited as example (Fig. 106) a phono pickup, shunted by a
0.229-megohm resistor, which was connected to the 56,000-ohm
input termination of an amplifier. The question was to determine
the value of the total load resistance. This (by an application of the
formula) turned out to be 45,000 ohms. It would be more likely, in
practice, that you would have to determine what value resistor you
should place in parallel with the pickup and amplifier input to
obtain a recommended load of 45,000 ohms, for example. Of course,
you could do this easily for this particular case by letting R =
45,000, R1 = 56,000 and solving for R2 (the value of the shunt
resistor) in the formula above. But if this problem occurs frequently
in your work, you’ll want a general formula for the shunt resistor,
R2, which applies to any particular case. We can derive this easily.

Servicing television sets? Finding the
value of resistors in series or parallel
can be o problem,
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Rl X R

I RS =R

2: RI1 R2=R(R1 + R2) Multiplying by (R1 + R2)

3: RIR2=RRI + RR2 Multiplying

4: R1 R2 - R R2= R RI. Subtracting R RZ; also called “trans-
posing”’

5: R2(R1-R)=RRI Factoring R2

6: R2 = Rl?_ili Dividing by R1 -R

Step 6 is, of course, the desired formula for the shunt resistance,
R2, to be placed across the pickup. We can now substitute the spe-
cific values of our example (R = 45,000 ohms and R1 = 56,000
ohms) and obtain

=1 RIRI (45 X 10%) X (56 X 10°)
T RI-R (56 X 10°) - (45 X 10°)
45 X 56 X 10® X 10°
= 56-45 X 10° = 229 X 10® = 229,000 ohms
Hence, the shunt resistor should be 229,000 ohms, or 0.229 meg-
ohm. As another example of the use of the formula we just derived,
let us solve problem 7a of Practice Exercise 2:

Solution: Let R1 = 8 ohmsand R = 7 ohms. Hence,

_ RRlI 7X8 7x%X8
T RI-R™ 8-7 " 1
Doing this or most other problems by “trial and error”, is obviously
more inefficient and time-consuming.

R2 = b6 ohms

How to Determine Ammeter Shunts

A problem that frequently comes up in practice is to extend the
range of a sensitive milliammeter to ‘measure larger currents, pos-
sibly up to several amperes. You know, of course, that you can do
this readily by placing a shunt resistor across the meter movement,
through which the excess current—beyond the full-scale meter cur-
rent—is made to flow. Such a current-divider arrangement works
very well, provided the shunt resistor is a precision component of
exactly the required value, so that the accuracy of your meter will
be maintained. Let us derive a general formula for the required
shunt resistance, which will apply to all cases of this type.

In Fig. 202, the schematic circuit of such an ammeter shunt ar-
rangement, the symbols stand for:
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ExampLE: Extend the range of a 0-1-ma (full-scale) milliam-
meter with 75 ohms internal resistance to 10 ma, 0.1 ampere and
1 ampere. What should be the values of the three shunt resistors?

Solution: Letting Rm = 75, I. = .001 and substituting in the
formula, we obtain:

I: ForI.= 10 ma, or.01 ampere
75 75 75

R.='.Ol—;=———10_l =T=8.330hms
001
2: For I, = 0.1 ampere
75 75 75
R, = 01 1 =T00-1_ 09 = (.758 ohm
.001 ~

In this case we might have been tempted to ignore the number 1 in
the denominator, since it is only 1/100 or 1% of the entire denomi-

nator. The answer (1—70% = 0.75 ohm) would have been within 1%,

roughly, of the correct value, but adding to this the tolerance of a
1% precision resistor might have seriously affected the accuracy
of measurements.

3: For I, = 1 ampere

% 1% 75
4 1 ~ 1,000-1 7 1,000
001
Since the number 1 is only 1/1000 or 0.1% of the entire denom-
inator, it is clearly permissible to ignore it and obtain the answer
(.075 ohm) to within 0.1% accuracy.

= 0.075 ohm

R. =

Kirchhoff's Laws

The bland assumption we made in the computation of the am-
meter shunts—that the sum of the meter and shunt currents equals
the total current—is actually not as self-evident as it may appear at
first. The example illustrates one of two network laws, first formu-
lated by the German physicist Gustav Robert Kirchhoff (1824
1887). Kirchhoff’s Laws, rather than Ohm’s Law (on which they
are based), are used constantly for determining the currents in the
intricate combinations of resistances and voltages called networks.
In brief, Kirchhoff’s Laws state:

-
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1. The sum of the currents flowing into a junction of a circuit
equals the sum of the currents flowing out of the junction.

2. The sum of the electromotive forces (emf) (battery or gen-
erator voltages) around any closed loop of a circuit equals the sum
of the voltage drops across the resistances (or impedances) in that
loop.

You can see from Fig. 203 how you would go about using Kirch-
hoff’s first law in a practical case. Here two branch currents (I, and

\ 4

\ 4

KIRCHHOFF’S FIRST LAW:

Ll Sl3*l, 1

OR I1+I2‘I3"I4'15 =0

/ l \

Fig. 203. The algebraic sum of the currents flowing toward a junction
must be equal to the algebraic sum of the currents flowing away from it.

I.) are flowing into the junction J of a circuit, and three currents
(I, I, and I;) are flowing out of the junction. By Kirchhoff’s first
law, the sum of the currents flowing into junction ] must equal the
sum of the currents flowing out of it:

L+L=L4+L+1I

By subtracting (I, + I, + I;) from both sides (i.e., transposing), we
may also write this equation:

Il+Ig—Ia_I.‘—15:O

This suggests that we can simplify Kirchhoff's first law somewhat
by assigning a plus (+) sign to all currents flowing toward a junc-
tion and a minus (-) sign to currents flowing away from the
junction. We may then rephrase the first law:

The algebraic sum of the currents at a junction is zero, or in
concise mathematical form:

Sy =0
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(This is sometimes written % I = 0, where the symbol X (sigma)
stands for “the sum of.”")

We can similarly simplify Kirchhoff’s second law:

Sum of the emf’s = sum of the voltage drops (around a closed
loop) or sum E = sum of the IR drops (around a closed loop)
(Recall that a voltage drop = I X resistance, or IR.) And, finally, in
concise mathematical form:

2E - ZIR = 0 (around closed loop)

This version of Kirchhoff’s second law may be worded: the alge-
braic sum of the potential differences (voltages) around a closed
loop of a circuit is zero. When using this form of the law, you must
remember to assign a plus (+) sign to a rise in potential (an emf)
and a minus (-) sign to a drop in potential (voltage drop).

Figuring Voltage Dividers: The design of a voltage divider-bleeder
to supply required vacuum-tube operating potentials at certain
currents is a good illustration of the use of Kirchhoff’s laws. Let us
derive the general equations for a typical voltage divider (Fig. 204),

= (r
A
Ep|
TOFILTER @
RECTIFIER
E,
b2 o2
R3 1[3
X
O—

Fig. 204. This is a series voltage

divider of the type found across

the output of power supplies. It

is sometimes also called a bleeder

since it puts a constant load on
the filter capacitors.

though in a particular case you would, of course, substitute the
values called for in the problem. Assume, an output voltage, E, is
available from the rectifier-filter of the power supply, and plate
voltages E.,, with a plate current I.,, and E.,, with a plate current
Iz, are to be supplied by the voltage divider. In addition, a mini-
mum bleeder current, I, is to flow at all times for adequate voltage
regulation. What are the values needed for resistors R1, R2 and R3
to provide these voltages and currents, and what is the required
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total current, I. We can find the required current easily by an appli-
cation of Kirchhoff’s first law:

At the junction of R1 and R2:
I=1+ 1, (1)

At the junction of R2 and R3:
L =1 + L (2)

Substituting for I, in Equation 1, the total current:

I=L+1, + I (3)

Since I;, I.; and 1., are known, the required current, I, can be found
from Equation 3.

The values of resistors R1, R2 and R3 may be determined by
applying Ohm’s Law, in conjunction with Equations 1, 2 and 3.
At the junction of R2 and R3,

E.. = I,R3; hence R3 = 1‘; (4)
3

also, E.; — E.. = I,R2. But from Equation 2, I, = I, + I, hence,
Ebl- Ebg = (Ig + Ibz)Rz and diViding by (13 + Ibg):

Ebl =z Eb2

vy (%)

Finally, E - E,, = IR1 = (I; + L; + L.) Rl (from Equation 3).
Solving for R, by dividing through by I = I + L + I,

S
ST ih+in - 1 6)

R1

Equations 3, 6, 5 and 4 determine the required values of I, R1, R2
and R3 for the given voltages and currents. If you have to design
a voltage divider with two taps, therefore, you can determine the
settings of the resistance taps either by substituting the given values
directly in these equations, or by working out the problem fresh
from start with specific values.
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Wheatstone bridge

As another application of Kirchhoff’s laws, let us analyze the
Wheatstone bridge (Fig. 205), which, as you know, is used for
precision resistance measurements. In practice, resistors R, and R,
are given suitable, fixed values and a standard resistance, R., is ad-
justed in value until a sensitive galvanometer, connected across the
resistance junction, shows zero current deflection. The bridge is

R
AT BALANCE-R,=T.‘,% Rs

Fig. 205. The Wheatstone
bridge can be analyzed by
using Kirchhoff’s laws.

then said to be balanced and the value of the unknown resistance,
R,, can be determined very accurately from a knowledge of re-
sistors R, R,, and R.. (There are many types of bridges, but this is
one of the most common.)

Let us derive the equation for the galvanometer current, I, in
terms of the known voltage, E, and the resistances. We can then
determine the condition for bridge balance and the relations re-
sulting between the four resistance arms.

In analyzing such a circuit using Kirchhoff’s laws, we assume an
arbitrary current direction in each branch and write the laws in
as many independent equations as there are unknown currents.
(Independent equations will not reduce to identical forms by alge-
braic substitution.) We then solve the equations simultaneously
to obtain the unknown currents. If any current values come out
negative (-), this simply means that we have assumed the wrong
current direction in the particular branch and that it should be
reversed. Applying Kirchhoff’s first law, for the assumed current
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In Equation 3: +E - (I, - I;)R. - LR, = 0, and simplifying
+E + LR:-L(R:s + R,) =0 (6)

In Equation4: +E - (I; + L)R. - LR« = 0, and again
simplifying: +E-LR.-L(R. + R) =0 (7)

In Equation 5: (I, + L)R.= LR, + (L.-I)R, = 0
simplifying:  -I(R. + Ry + R) + LRy~ LR, =0 ®)

By solving Equation 6 for I. and Equation 7 for I,, and substi-
tuting the results in Equation 8, we obtain from Equation 6:

Sometimes, as in manufacturing and
in mathematics, changing the original
form is both helpful and necessary.

_E+ILR:s ) ‘ _ E-LR.
"R TR’ from Equation 7: I, = i
and, hence, Equation 8 becomes

E + ILR)R, (E-IRJ)R,
_II(R|+RI+Rb)+( Rb+R). —( R._*_)I{x =O (9) !

L

Transposing the first term to the right and placing the fractions |
over the common denominator (R, + R.)(R. +R,):

(E + LLR)Ry(R. + R,) - (E-LR)R.,(R:s +R,)
(Rb + Rl)(Rl + Rx) T
Multiplying by (R, + R.)(R. + R,) to get rid of the fractions:

(E Sie I|Rb)Rb(R| + Rx) g (E"' IIRI)Rl(R" Sl R') —
I(R. + R + R)(Rs +R.)(R, + R.).

|

L(R.+ R, + Ry |
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Finally, multiplying the parentheses, cancelling equal terms on
both sides of the equation and collecting all terms with I,:

E R,R.- E R.R, = I,(R.R.R; + R.R(R, + R.R:R, +
RthRx + RbRng + RnR:Rx + RgRst + RbRst)

Solving for I, by dividing through by the parenthesis at the right
and simplifying, we obtain the desired galvanometer current:

R.R:-R.R.

_ 10
L=E R TR)RR FRR T RR) TR+ Ry (0

Although this expression looks very complex, substitution of
actual values results in a relatively simple computation. We see at
once that the numerator of Equation 10 must equal zero (0) for
bridge balance, since by definition the galvanometer current must
be zero. Hence, for I, = 0, we let

R.R.-R.R, =0 (11)

and, thus, obtain the desired condition for bridge balance.
Dividing Equation 11 through by R.R, and transposing, we may
write

RX R.

R - &, (12)

This shows that the ratio of the unknown resistance, R,, to the
standard resistance, R,, equals the ratio of the bridge arm resist-
ances, R. to R.. The statement that two ratios are equal is called
a proportion, and all kinds of interesting things can be proved

If the equation doesn’t balance, it isnt
an equation.
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about proportions. For instance, you can see (by multiplying) that
for R.: Ri = R.: R, or%’f:%—:, we get ll{lxxtli' = 1;'.1‘11{? which
may come in handy occasionally during numerical computation.

Proportions are particularly easy to handle on a slide rule. For
example, if a Wheatstone bridge is balanced with R, = 3,000 ohms,
R, = 2,000 ohms and R, = 6,445 ohms, you can find unknown

resistance R, easily by setting up the proportion:
R.: R, =R,: R,;0r 3,000: 2,000 = R,: 6,445

To do this on any slide rule, simply set the C and D scales to the
same proportions; (Fig. 206):

Fig. 206. The slide rule is ideal for providing quick answers to problems
in proportion.

CD C D
3:2= x :6445
(9,660)
As shown in the illustration, opposite 2 on D set 3 on C. Then,
opposite 6,445 (approximately) on D read the answer 966 (approxi-
mately). Since C (3) is greater than D (2), the result must be
9,660 ohms.
Of course, you can also solve Equation 12 directly for R, by
multiplying by R.:
= R‘
"R
Substituting in Equation 13 R. = 3,000 ohms, R, = 2,000 ohms
and R, = 6,445 ohms from the previous example, we obtain:

3,000 X 6,445
2,000

(The arithmetical answer, naturally, is more exact than the slide
rule answer.)

R R, (13)

R, =

ohms = 1.5 x 6,445 ohms = 9,668 ohms
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PRACTICE EXERCISE 4

1. Derive a formula for the equivalent parallel resistance of n
equal resistors, of value R each. (Answer: % )

2. Resistance R1 is inserted in paraliel with two equal parallel
resistors of value R2 each. (a) What is the general formula for the
total combined resistance, and (b) what is its value, if R1 = 3,000
ohms and R2 = 4,000 ohms (each).

[Answer: (a) %; (b) 1,200 ohms]

3. An amplifier input termination of 100,000 ohms is in parallel
with an input tube grid resistor of 0.5 megohm. (a) What value of
resistance should be placed in shunt with a phono pickup con-
nected to the input to comply with the manufacturer’s recom-
mended input load resistance of 20,000 ohms? (b) If the shunt
resistor = R1, the grid resistor = R2, the input termination = R3
and the recommended load resistance = R, find a formula for R1.

RR2R3 ]

[Answer: (a) 26,300 ohms; (b) R1 = R2R3 - RR3 - RR2

4. A 0-1-ma meter with an internal resistance of 100 ohms is to
be extended to a range of (a) 0.1 ampere and (b) 1 ampere. Deter-
mine the value of the shunt resistor within 0.19, for each case.

[Answer: (a) 1.010 ohms; (b) 0.100 ohm]

5. The voltage divider of Fig. 204 is to deliver a plate voltage
E., = 300 volts, at a current I, = 100 ma, and a plate voltage
E.. = 150 volts, at a current I,. = 30 ma. If the filter output volt-
age E = 450 volts, and the bleeder curent I3 = 20 ma, determine
total current I and the values of resistors R1, R2 and R3, using the
relations developed in the text. (Answer: I = 150 ma; R1 = 1,000
ohms; R2 = 3,000 ohms; R3 = 7,500 ohms.)

6. A known resistance R, = 50 ohms is inserted into the Wheat-
stone-bridge network of Fig. 205. If the battery voltage E = 100
volts, R, = 30 ohms, R, = 60 ohms, R, =40 ohms, and the galvan-
ometer resistance R, = 20 ohms, determine the unbalanced gal-
vanometer current I,, the currents through each of the resistance
arms and the voltage drop across each, and also total current I and
equivalent resistance R of the network.

57






CHAPTER 3

From AC to Complex Numbers

HE signals of electronics are alternating currents and voltages,

which continuously rise and fall in magnitude and periodically
reverse their polarity. Some circuit components slow down alter-
nating currents, while others speed them up, so that the current
and applied voltage do not always rise and fall together. Because
of these added complexities, alternating currents are not success-
fully handled by the limited mathematical tools we have developed
for direct currents, and hence, we must expand our mathematical
horizon somewhat. An understanding of vectors and phase rela-
tions, and the correct mathematical manipulation of these by
elementary trigonometry and complex numbers, will enable us to
solve most ac problems rapidly and efficiently. Moreover, the
mastery of these relatively simple methods will lend your calcula-
tions an aura of elegance, which other, more clumsy methods can-
not attain.

Elementary ac generator

Let us investigate briefly the generation of an ac voltage by an
armature coil rotating in a uniform magnetic field (Fig. 301). A
coil (or conductors) cutting lines of magnetic flux will have an
electromotive force (emf) induced in it proportional to the flux
density of the field, the length of the conductor and the velocity of
rotation. As the coil rotates between the poles of a magnet, its long
sides cut the flux first in one direction, then in the other, thus
producing an emf (and current) that alternates continuously in
polarity (plus during one half-cycle, minus during the other).

When the coil is in approximately the position illustrated (Fig.
301), its sides cut a maximum number of lines of force at right
angles (perpendicularly) to the field. In this position, the emf in-

- duced in the coil reaches a maximum value. A quarter revolution
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or 90° later, the two long conductors of the coil move parallel to
the lines of force and do not cut any of them. The voltage induced
in the coil, consequently, is zero. As the coil continues to rotate
(counterclockwise in the illustration), the direction of the induced
emf and current reverses and the voltage begins to build up in the
opposite direction. As the armature coil completes one-half revolu-
tior: (180°), its sides move once again perpendicularly to the field

DIRECTION OF
l R(?;I'ATION

BRUSHES

Fig. 301. This is the basic arrangement of an alternating-current generator. When

the coil rotates, a voltage is induced across those portions of the coil that move

at angles to the magnetic field. One of these is marked L. With the help of slip

rings and carbon brushes, this induced voltage is impressed across the resistive
load, causing a current to flow through it.

and the induced voltage is again at a maximum, though in the
opposite direction. If the coil voltage is connected to an external
load circuit through two continuously contacting slip rings, an
alternating current will flow through the load circuit. Fig. 301
shows the direction of (electron) current flow for the field direction
and coil position illustrated. The current direction reverses during
each half-revolution.

What is a sine wave?

Now let us investigate how the induced emf or current varies
from moment to moment, between its maximum and zero values.
Fig. 302 illustrates the magnetic field and coil in cross-section, with
one of the long coil sides facing the reader. For simplicity, assume
that the radius of the circle of rotation represents one side of the
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armature coil and that this same length also represents the max-
imum value, E., of the induced alternating voltage. We want to
find out how this induced voltage varies in magnitude (with time
or angle of rotation, 6) as the radius turns counterclockwise in the
magnetic field to simulate the actual rotation of the armature in
a generator.

Let us start the rotation with the radius in the horizontal posi-
tion and its end point, A, moving parallel with the field lines (point
I). At this instant (0° rotation), the induced voltage is zero, as
shown by point 1 at 0° for the plot of the voltage at right. As the
radius rotates, only the portion perpendicular to the flux (i.e., cuts
it at right angles) will have a voltage induced in it. We can obtain
the effective perpendicular portion at any time by drawing a line
from the end of the radius perpendicular to the horizontal diameter

: ROTATION
I Em
II'lns,.xs“kl 4 16
I5,17 3,15 ¥ 3 5 15, 7
5/\ /N\2.14 M) 6 14 18
X
L6\ i3 1 i 13 19 25
PN S \
AR “Em 8 2 20 24
. ] 1 94 215223
Ly et o 2
{ Ly 11 ~Em
30° 90° 1507 . W
o° 60° 120° 180° 270° 360° 90° 180° 270° 2360°
/ Z l—— oNE CYCLE —»ke——— ONE CYCLE

DEGREES OF ROTATION OR TIME —»

Fig. 302. Generation of a sine wave by a rotating coil in a magnetic field.

of the circle. The length of this perpendicular line at any instant
will then represent the magnitude of the voltage induced in the
armature coil at that instant. Hence, by dropping perpendiculars
from the end point of the radius to the horizontal at regular inter-
vals, we can determine the variation of the instantaneous induced
voltage with the amount of angular rotation or with time, if the
speed of rotation is uniform.

To the right of the rotating radius in Fig. 302 we have plotted
the length of the perpendicular (also called vertical projection of
the radius) against the counterclockwise angle that the radius forms
with the horizontal diameter. For example, when the rotating
radius makes an angle of 30° with the horizontal (point 2), a hori-
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zontal line drawn from the end point of the radius to the 30°
ordinate of the waveform plot at the right determines the height
of the perpendicular at 30° rotation and, hence, the magnitude of
the voltage induced at that instant.

Similarly, when the radius makes an angle of 90° (point 4), the
horizontal line drawn to the 90° ordinate of the voltage waveform
determines the value of the induced voltage at that instant. This
turns out to be the maximum value, E... As we continue to plot the
length of the perpendicular (or vertical projection) against the
angular rotation, or time, we obtain the voltage waveform shown
at the right of Fig. 302. Evidently, as the radius rotates, its vertical
projection varies between maximum values of +E. and -E., and
generates the smoothly varying waveform shown. After one com-
plete rotation cycle, the waveform repeats itself. This type of
periodic or recurrent waveform is known as a sine wave.

A working knowledge of mathe-
matics is an indispensable tool
in the laboratory.
[Spectran Electronics Corp.]
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While these three are the most frequently used trigonometric
functions, the following reciprocal functions also hold:

cotangent of § (cot ) = talll 7 i;-
cosecant of 0 (cosec §) = sixl1 g =§
1 r

secant of @ (sec§) = od = %

You can see at once that the relationship sin 6 =—Z— in Fig. 303 is

90°
2ND QUADRANT Y
(90°< 9 < 180°)
P
+y &)
(¢] (e]
180°~ — O
+
SINg= 2 =+
S o
cos§ == =
& =
TAN 6 == =
-y
270°

Fig. 304. Trigonometric functions in the second quadrant. The

angle, theta, is greater than 90° but less than 180°.
identical with the relationship between the rotating radius and its
vertical projection in Fig. 302. If we let the radius r =1 (unit
length), then sin § = y/1 =y, and hence, the vertical projection (y)
of the radius in Fig. 302 at any instant equals the sine of the angle
of rotation. Therefore, the voltage induced in the armature coil
(represented by the radius) varies as the sine of the angle of rota-
tion (6).
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Moreover, the plot of the vertical projection of the radius against
the angle of rotation (at the right in Fig. 302) is the graph of the
sine function against 6, and is known as a sine wave. The ordinary
ac generator, thus, automatically generates a sine wave. Let us see
how such a sine wave varies in magnitude and sign (“+" or ‘")
with increasing angle 6.

Variation of functions with angle
If the angle 6 in Fig. 303 were 0° (point P on the X-axis), y =0,

and hence sin 6 = % = 0. In contrast, if # =90° (point P on the

90°
Y

(180°< 9 < 270°)

6 1
-X [ -\‘ o°

0
180°%~ =
= =W = —
-y SINg = —& =
<
D=
cosg==% =
P TANO=:—§l=+

3RO QUADRANT

-y
270°

Fig. 305. Trigonometric functions in the third quadrant. The sine and
cosine are both negative, the tangent positive.

Y-axis), y = r, and hence sin 6 = LI Thus, for angles ()
r x

between 0° and 90° (called the first quadrant) the sine of 6 varies
between 0 and 1. Moreover, since the length r is always taken as
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positive and the y-coordinate is positive in the entire first quadrant,
DA
r
reasoning shows that the cosine of 8 varies between 1 (for § = 0°)
and 0 (for 8 = 90°) and is also positive (4) in the first quadrant.

To determine the limits of the tangent function, first let § = 0°

the ratio == =sin @ is positive (+) in the first quadrant. Similar

and then set # = 90°. For § = 0°,y =0, and tan 6 =% =% = 0.
90°
Y

(270°< 6 < 360°)

-8 _ _
SING = =% =
cose=% =+
TANg = = -
9/\
180° & S 0%, 360°
-y
Ve
P

4TH QUADRANT

-Y
2702

Fig. 306. Trigonometric functions in the fourth quadrant. The angle, -
theta, is between 270° and 360°.

For § = 90°, x = 0, and hence, tan § = —)1; = % = oo (infinity).

Thus, the tangent function is positive and varies between 0 and e
in the first quadrant.

By referring to Fig. 304, you can easily determine the variation
of the sine, cosine and tangent functions in the second quadrant
for values of 6 between 90° and 180°. Since r and y are both positive,
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the sine function is ““+” and declines in value from +1 at § = 90°
to 0 at & = 180°. The cosine function is negative (=), since the
x-coordinate is negative throughout the second quadrant. The
function varies from 0 for § = 90° (when x = 0) to -1 for 6 = 180°
(when -x = r). Since y is positive and x is negative (=) in the second

quadrant, the ratio Y = tan 6 is also negative (-) throughout
X
the quadrant. The tangent function varies in magnitude from oo at

90° to 0 at 180°.

You can verify for yourself the variation of the three main func-
tions in the third quadrant (Fig. 305) for angles from 180° to 270°,
and in the fourth quadrant (Fig. 306) for angles from 270° to 360°
(which is, of course, the same as 0°). The table (on page 68) briefly
summarizes the variation in the value of the sine, cosine and tan-
gent functions in the four quadrants (from 0° to 360°). You don’t
need to memorize this, since you can derive the sign and limits of
each function quickly by drawing diagrams similar to Figs. 303
through 306.

r 45°
r 30°
i i oot m o
r r i
o pe
r
8
o v

Any circle can be divided into four 90°-angle portions, each ot which is known os a

quadrant. As you can see in the upper drawing, rotation of the hypotenuse, r, increases

the size of the angle theta. This angle con have any value from 0 to 360 degrees. The

applicable quadrant depends on the final angular position of radius R. [The ordinate y
has been omitted in these drawings for simplification. ]
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Variation in Value and Sign of Main Functions

Sin ® Cos 0 Tan ©
Quadrant Sign  Value Sign  Value Sign  Value
I (0°-90°) 4F Oto1l + 1to0 aF Oto
11 (90°-180°) 4= 1to0 - Oto1l - o to0
Il (180°-270°) - Otol - 1to0 + Oto

IV (270°-360°) l1to0 i Otol o to0

Although you can look up the value of the functions for any
angle @ in the tables of natural trigonometric functions, you should
commit to memory a few standard values for angles of 0°, 30°,
45°, 60° and 90°. You can verify each of the values listed in the
table following by drawing the appropriate right triangle and

xZ+gz= rz

1 i =
Bl e =
s
y _ /2 1
0= = =1 = — =
SIN 45°= | = === += = 0.707
Lile
o_i_ﬁ_#_
COS45°= + == = = 0.707
L
TaN 48° = == 1,000
'

Fig. 307. Values of the functions when the phase angle is 45°.

recalling the Pythagorean law: the square on the hypotenuse of a
right triangle equals the sum of the squares of the other two sides;
or, referring to Fig. 303,

X® 4+ y* = 1% hence: r = VX* + y*

For example, when § = 45° in the right triangle, the remaining
angle must also equal 45°, since the three angles must add up to
180° (that is, 45° + 45° + 90° = 180°). The angles being equal, the
two sides adjacent to the hypotenuse must also be equal (Fig. 307).
Letting the length of the hypotenuse equal unity (r = 1), we can
write: x2 + y? = r* butr=1l,andx =y
hence x? + x> = 120r2x* =1 (substituting)

1
and solving for x: x? = 1 and x = e ;alsoy = ——.

2 V2 V2
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1 1
We, therefore, haver =1, x = o andy = 77 for the three

sides of the triangle, and compute the three functions for § = 45°,

as follows:
. T T e . ve, = .
B S === I —\/_2_,cos45 1 —\/2_,

T
Yy _IANT
and tan 45° = = I\/T
Value of Functions for Frequently Used Angles
Angle 6: 0° 30° 45° 60° 90°
sin§ 0 Y% =05 1/4/2=0.707 %3 =0866 1
cosf 1 %+/3=0866 1/4/2=0.707 Y% =05 0
tan6 0 1/4/3 =0.5774 1 V3 =1.732

X
"

= 1, asshown in the table.

)

I

sin 30° = 0.5

-

cos 30° = ——

=1/24/3=0.866

tan 30° = =0.5774 yisll

i -
wll |§1~l

X|~<ﬂ

90°

These are the values of the functions when
the phase ongle is 30° [see drawing
above] and when the phase angle is 60°
[see drawing below]. in examining the tri-
angles you will see some apparent relation-
ships. The sin of 30° is the same as the cos
of 60°. Similarly, the cos of 30° is equiva-
ent to the sin of 60°. However, tan 30° and
tan 60° are reciprocals.

3
r 2
=172V 3=0.866

<

sin 60° = —=

y=V3

1
cos 60° = = ———

r 2
=0.5

tan 60° = ——=
X

=S/ 5/ 782

-5
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Instantaneous value of ac voltage and current

Now let us get back to the sine wave generated by a rotating
armature (Fig. 302). Since we now know that the instantaneous
voltage, e, generated by the armature (or rotating radius) varies as
the sine of the angle of rotation, 6, and that its maximum value is
E., we may write for the voltage generated at any instant:

e =E,sin @ (1)

We further know that, for a uniformly rotating armature, the angu-
lar velocity (symbol w) must equal the angle (8) “‘swept out” per
unit time (t), or o = 6/t, where 6 is the angle measured in radians
(360° = 2 7 or 6.283 radians) and t is the time in seconds. Substi-
tuting for € in (1) above, we obtain for the instantaneous ac voltage:

e = E.sin wt (2)

Moreover, since each 360° revolution of the armature corresponds
to 2 radians, the angular velocity (w) in radians is simply 27 times
the number of revolutions per second, or 27 times the frequency, f.
Expressed in symbols, the angular velocity,

o = 2mf = 6.283F (since 7 = 3.1416) (3)

If such an alternating voltage, e, is applied to a resistive load
circuit, the instantaneous current, i, will, of course, undergo simi-
lar variations as the voltage and will be related to the maximum
value of the current, I, in the same way. Hence, we can write the
instantaneous value of the current,

i = l.sin ot = I, sin 2xft 4)

ExAaMPLE: A coil of an elementary ac generator rotates between
two poles of a magnet at a rate of 3,600 revolutions per minute
(rpm). If the maximum (peak) value of the induced voltage is 170
and the peak value of the current through a load is 20 amperes,
(a) write the expressions for the instantaneous values of the voltage
and current at any time, and (b) compute the instantaneous values
of the voltage at .004167, .00833, .0125 and .0167 seconds after the
generator is turned on. (Assume that the generator starts with zero
voltage at zero time.)

! ) i 3,600
Solution: (a) A speed of 3,600 rpm is equivalent to 0 = 60

revolutions per second (rps). The frequency, f, therefore is 60
cycles per second (cps). Hence, the angular velocity (in radians),
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w = 27f = 6.283 x 60 = 377 radians/sec
Hence, e = E.sinwt = 170sin 377t volts
and i = I.sin wt = 20sin 377t amperes
(b) Notk: Since 27 radians = 360°, 7 rad = 180°, lzr—rad = 90°,
etc. We can write e = E,, sin 27ft = 170 sin 120#xt.
Hence, after .004167 second,

e =170sin 1207 X .004167 = 170 sin 0.5 = 170 sin %

= 170sin 90° = 170 X 1 = 170 volts
After .00833 second:
e = 170sin 1207 X .00833 = 170 sin 7 = 170 sin 180°
=170 X 0 = 0 volts
After .0125 second:
e = 170sin 1207 X .0125 = 170 sin 1.57 = 170 sin 270°
= 170(-1) = -170 volts
And after .0167 second:
e =170 sin 1207 X .0167 = 170 sin 2 = 170 sin 360°
=170 X 0 = 0 volts
It is evident from the example that the instants of time have been
chosen equal to 14, 1%, 34 and 1 cycle of the ac voltage, where the

Mathematics loses its mystery

and becomes less difficult, once

you know the rules and have
learned how to apply them.

wave goes through its maximum and zero values. You can see that
the voltage oscillates between values of 0, +170 and -170.
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Effective (root-mean-square) value of ac

Since the instantaneous value of an alternating current varies
continuously as a sine wave between zero, positive and negative
maximum values, some way had to be found to define a value of the
current and voltage that could be said to be effective in a circuit.
The effective value of an alternating current is that value which
produces heat at exactly the same rate as an equal quantity of direct
current flowing through the same resistance. In other words, an
effective alternating current of 1 ampere produces the same heat
in a given resistance and given time as 1 ampere dc.

From the manner in which the effective ac value is determined,
by taking the root of the mean (or average) squared current value,
the term root-mean-square (rms) value arises; it means exactly the
same as the effective ac value. Without going into the computations,
it turns out that the effective (or rms) value of an alternating cur-

rent or voltage is equal to 1/4/2 or 0.707 times the maximum
(or peak) value of the current or voltage. Hence, the effective value
of an alternating current, I = 0.707 I., and the effective value of
an ac voltage, E = 0.707 E.. Similarly, the peak or maximum ac
current, I, = 1.4141, and the peak or maximum ac voltage, E. =
1.414E, where I and E stand for the effective values.

ExAMPLE: An ac voltage with a peak value of 162.8 causes an rms
current of 20 amperes to flow. What is the effective value of the
voltage and the peak value of the current?

Solution: E =0.707 E. = 0.707 X 162.8 = 115 volts (rms)
I. = 1.4141 = 1.414 X 20 = 28.3 amperes (peak)

Phase, phase angle and phase difference

The terms phase, phase angle and phase difference are constantly
and often interchangeably, used in connection with ac, with con-
siderable confusion as to just what they mean. To get these con-
cepts straight, you have to make a few simple distinctions.

1. When phase or phase angle is used in connection with a single
alternating current or voltage, it refers to the fraction of a cycle
that has elapsed since the current or voltage has passed a given
reference point (usually the starting point). For example, at the
start of the ac voltage in Fig. 302 (point 1), the phase is said to be
zero. At point 2, the phase or phase angle is 30°, at point 3 it is 60°,
at point 4 it is 90°, or a quarter cycle; at point 7 it is 180°, or a half-
cycle; at point 10 it is 270°, or three-quarter cycle, and so forth.
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When used in this way, the phase is significant only for a fraction
of a cycle, since it repeats during each successive cycle.

2. The terms phase or phase difference are more frequently used
to compare two or more alternating currents or voltages of the same
frequency that pass through their zero and maximum values at dif-
ferent instants of time. For example, you know that the current
in a coil or capacitor does not rise and fall together with the ac
voltage applied across these components, and hence, the current
is said to be out of phase with the voltage, or to have a phase angle
or phase difference. When the frequency is the same, each cycle of
an alternating current or voltage takes exactly the same amount of
time (T = 1/f), and hence, the phase difference between two such
alternating voltages, currents, or a voltage and a current, is con-
veniently expressed in degrees or fractions of a cycle, a measure of
time being implied in either case.

e
|

90° |1ao° 270°  360° }90° 180° %27o° 360°

o]
74
- TIME —» | TIME —»

a b

Fig. 308. Voltages and currents can be in phase or out of phase in varying degrees.

Sine waves out of phase

Sine waves 1 and 2 in Fig. 308 may represent two ac voltages,
currents or a voltage and a current of the same frequency which
we would like to compare. Evidently, waveform 1 has a larger peak
value (also called amplitude) than waveform 2. Moreover, the
waves do not rise and fall in unison and, hence, are out of phase
with each other. We would like to know by how much.

In Fig. 308-a, sine wave 1 has a value of zero at the 0° reference
point, while sine wave 2 is at its negative maximum value at the
same instant. Only when sine wave 1 reaches its positive maximum
value at the 90° point along the time axis does sine wave 2 finally
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pass through zero. Again, when sine wave | returns to zero at the
180° marker, sine wave 2 just reaches its positive maximum value
and, when wave 1 reaches its negative maximum value, wave 2 just
passes downward through zero. Clearly, sine waves 1 and 2 are
out of phase with each other by one-quarter cycle or 90°. More-
over, since sine wave 1 reaches corresponding points of the cycle
earlier than sine wave 2, wave 1 is said to lead wave 2 by 90° in
phase. Equivalently, sine wave 2 lags sine wave 1 by 90°, or a
quarter cycle. It doesn’t matter at which points of the cycle you
measure, the phase difference between the two sine waves will
always be 90°, or a quarter-cycle.

Fig. 308-b shows two sine waves of the same frequency 180°, or
one-half cycle out of phase with each other. When wave 1 rises in
the positive direction from the 0° starting point, wave 2 rises in the
negative direction. When wave 1 starts to go negative at the 180°
marker, wave 2 just starts to go positive. Again, we can measure
the phase difference at any two corresponding points of the cycle.
For example, measuring at the positive maximum points of the sine
waves, wave 2 is seen to reach its positive maximum at 270° along
the time axis, while wave 1 reaches its maximum at 90°. Conse-
quently, the phase difference between the waves is 270° - 90° =
180°. Measuring at any other two points would have given the same
result. Moreover, for a 180° phase difference, either sine wave may
be considered leading or lagging in phase. Sine wave 1 is always
positive when wave 2 is negative, and vice versa.

Vector representation

The successive vertical projections of a counterclockwise rotat-
ing radius generate a sine waveform. Conversely, it is also true
that a sine wave can be represented at any instant of time by the
position, at that instant, of a rotating radius. All we need to do is
to make the length of the radius equal to the peak value (amplitude)
of the sine wave and position the radius at such an angle that its
projection upon the vertical (that is, the sine of the angle) equals
the value of the sine wave at the particular instant.

In Fig. 309 we have drawn the rotating radii (usually called
rotating vectors) that would be required to generate sine waves 1
and 2 of Fig. 308-a. At the top left of the figure, a counterclockwise
rotating radius, R, equal in length to the amplitude of sine wave 1,
is illustrated in five positions, corresponding to five successive in-
stants of time. As in Fig. 302, the vertical projections of the radius
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at these successive instants yield the corresponding ordinates of
the sine wave shown at the right. Thus, at zero time or 0° rotation
(point 1) the vertical projection of R is zero and, hence, the ordinate
of the sine wave at the right also is zero.

A moment later, after R has reached the 45° position (point 2),
the vertical projection of R, transferred to the 45° position of the
sine-wave plot at the right, gives the height of the ordinate at this

| 5 X 360°
0% 45° 90° 135° \180° 270°

I
\ I TIME -»

Fig. 309. Sine waves can be produced by rotating vectors.

instant. This is equal, of course, to R sin 45°, or 0.707R. When R
has reached the 90° angular position (point 3), its vertical projec-
tion equals the full length of the radius (since R sin 90° = R) and,
hence, the sine-wave ordinate at 90° (point 3) reaches its peak value
equal to R.

As the radius continues to rotate, its vertical projections grow
smaller again, reaching zero at 180° rotation (point 5), whereupon
they rise in the negative direction. By plotting the vertical projec-
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tions of the rotating radius at a sufficient number of successive in-
stants, the smooth sine-wave trace shown at top right of Fig. 309
is obtained.

At the bottom of Fig. 309 we have again drawn a counterclock-
wise rotating vector, R, but of a length equal to the amplitude of
sine wave 2 in Fig. 308-a. Moreover, at zero time or 0° rotation
(point 1), this vector points vertically downward so that its vertical
projection is a maximum in the negative direction. Accordingly,
the sine wave at the right commences its cycle at 0° or (point 1) with
an ordinate equal to the negative peak value (-R).

The remainder of the plot is obtained in the same way as above,
except that the amplitudes of the sine wave at the right now cor-
respond to the smaller length of the radius (or vector) R, at the left.
It is evident that this sine wave lags 90° in phase behind the wave
on top. This represents sine wave 2 of Fig. 308-a. Moreover, as you
will have realized, such a rotating radius or vector is capable of
generating the graph of a sine wave solely by its mathematical
properties (i.e., the successive vertical projections), quite apart from
the electrical properties of the simple ac generator we started with.

While a rotating vector is necessary to generate the graph of a
sine wave, a stationary vector is sufficient to represent a sine wave
at any particular instant of time. Thus, at the top left of Fig. 310
we have again drawn the two sine waves of Fig. 308-a on a common
time axis for comparison. The top right of the illustration shows
an equivalent vector diagram which represents the two sine waves
at the instant they pass through 0°. To obtain this diagram we have
simply drawn (from a common point of origin, 0) the two rotating
vectors (R) of Fig. 309 top and bottom, at the instant they pass
through 0°. In effect, therefore, we have “frozen” the two rotating
vectors of the previous illustration in time.

Note that the length of vectors 1 and 2 equals the amplitudes of
sine waves 1 and 2, respectively, and that the 90° angle between
them clearly shows the 90° phase difference between the two sine
waves. Note further that neither the length of the vectors nor the
angle between them would have been affected if we had drawn the
vectors for some other instant of time. As you can verify, we would
have simply turned the entire diagram about its origin (zero point).
Since in most ac problems we are interested only in comparing the
amplitudes and relative phase of two or more sine waves, the in-
stant of time chosen does not matter.

The bottom left of Fig. 310 reproduces the 180° out-of-phase
sine waves of Fig. 308-b, while the bottom right shows the equiva-
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lent vector diagram at 0°. Note again that the vectors are equal in
length to the sine-wave amplitudes and that they are 180° apart.

What are vectors?

We have been talking very glibly about rotating and stationary
vectors without having identified them. As you may have gathered
from our examples, a vector is simply a straight line of a certain
length pointed in a specific direction. Such a directed line segment,
or vector, is used to represent physical quantities that have both
magnitude and direction (called vector quantities). The length
of the line denotes the magnitude of the vector quantity, and its
direction, with respect to some base or reference line, denotes the
direction of the vector quantity.

There are many such quantities besides alternating currents
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SINE WAVES 1 AND 2 OF FIG. 308-a EQUIVALENT VECTOR DIAGRAM (AT 0°)
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SINE WAVES 1 AND 2 OF FIG. 308-8 EQUIVALENT VECTOR DIAGRAM (AT 0°)

Fig. 310. 4 pair of rotating vectors produces a pair of sine waves whose phase
angle is the saine as the phase angle of the vectors.

and voltages. Velocity, for example, is a vector quantity, since you
must specify both the speed of a vehicle (such as mph) as well as the
direction in which it is going (north, east, etc.) to determine where
it will be at any time. Force is another vector quantity having both
magnitude and direction. If two people pull a load with the same
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amount of force but in opposite directions, they are not helping
each other much, since the force vectors will cancel. If they pull in
the same direction, however, the force vectors add, and the load is
pulled easily.

In contrast, quantities that have magnitude only are known as
scalar quantities. Length, width, height, time and potential are such
quantities, since a single number suffices to specify them completely.
All the numerical quantities we have dealt with in arithmetic and
algebra thus far have been of the scalar variety.

Vector addition

There are certain rules for combining (adding or subtracting)
vectors, which differ from those for ordinary numbers that have
magnitude only. As an example, let us assume that sine waves 1 and
2 of our previous example (see Fig. 308-a and 310 top) represent
the output voltages of two ac generators which are to be connected
in series to a load. We would like to know the combined amplitude
and relative phase of the total voltage applied to the load. At the
left of Fig. 311 we have again reproduced two sine waves of the
same frequency, originally illustrated in Fig. 308-a. To obtain the
combined or resultant waveform, we simply add the ordinates of
the two waves, point for point, with proper regard to the sign
(+ or -). In other words, the algebraic addition of sine waves 1
and 2 at every point will yield the resultant wave. You can verify
this easily at a few key points. Thus at 0°, where sine wave 1 passes
through zero, the ordinate of the resultant equals the (negative)
amplitude of sine wave 2. At about 38° along the time axis, the
positive ordinate of wave 1 equals the negative ordinate of wave 2
and, hence, their sum or the resultant equals zero. At 90°, when
wave 2 passes through zero, the ordinate of the resultant equals the
(positive) ordinate of wave 1 (that is, they intersect). At the positive
point of intersection of sine waves 1 and 2 their ordinates are equal
and, hence, the resultant ordinate equals their sum or twice the
value of each.

If you continue in this manner, the resultant waveform will
emerge. This is seen to be another sine wave, greater in amplitude
than either wave 1 or 2 (but not equal to their sum), and lagging
wave 1 in phase by about 38°, or equivalently leading wave 2 in
phase by about 52°. (Since wave 1 leads wave 2 by 90° and the
resultant lags wave 1 by 38°, it must lead wave 2 by the difference,
or by 90° - 38° = 52°))

Now compare the cumbersome algebraic addition of the two
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sine waves with the extremely simple vector addition of the two
waveforms shown at the right in Fig. 311. Here we have again re-
produced the vector diagram of sine waves 1 and 2 from the top
right of Fig. 310. To “add” the two vectors and find the resultant,
we simply complete the parallelogram and draw in the diagonal
0-R. This diagonal is the resultant vector, representing the vector
sum of sine waves 1 and 2. The length of the resultant 0-R repre-
sents the amplitude of the resultant sine wave, as you can verify by
measuring. The direction of the resultant vector indicates the phase
difference of the resultant waveform with respect to sine waves 1
and 2. By measuring the angles with a protractor, you can easily
determine that the resultant vector lags behind sine wave 1 by

+ RESULTANT

1

2

ok 3 1359 Y 70° 360°

[45° 900118 ; ’ T—>

2
1

- RESULTANT
ADDITION OF SINE WAVES 1 AND 2 OF EQUIVALENT VECTOR ADDITION
FIG. 308 @ TO GIVE RESULTANT WAVEFORM OF SINE WAVES 1 AND 2

Fig. 311. The algebraic addition of a pair of vectors produces a resultant.
The resultant can be considered as a rotating vector.

about 38° and leads sine wave 2 by 52°, as before. Moreover, since
the resultant vector can be looked upon as the hypotenuse of a
right triangle whose sides are made up by vectors 1 and 2, the
magnitude and angle of the resultant can be determined precisely
by calculation without resort to ruler and protractor. More about
this presently.

The simple parallelogram method of adding two vectors can
replace the laborious step-by-step method of algebraically adding
two waveforms to determine the resultant. You might object that
the resultant vector (at the right in Fig. 311) does not actually show
the waveform of the resultant voltage (left, Fig. 311) but gives only
its amplitude and relative phase. This is not really necessary,
however. We know in advance, from theoretical considerations,
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that the resultant of sine waves with the same frequency must
always be another sine wave. Hence, the vector resultant 0-R repre-
sents a sine wave, which you could easily sketch by making the
amplitude equal to the length of the vector and by drawing it with
the proper phase angle with respect to sine waves 1 and 2. When
two or more sine waves differ in frequency, the resultant is not a
sine wave and it must be obtained by the step-by-step addition of
the individual waveforms. Vector addition is possible only for
waves of the same frequency.

Two methods of adding vectors
Assume that the output of one of the generators in the last ex-

PARALLELOGRAM "TOE-TO-TIP"
METHOD METHOD
B Ej =64V 0 Ey =64V
/% . 73
m ! m
> | >
' (@]
?: 6:? D - 6:9 N ‘I‘I’
) ! 7
e oD | <L -
‘ ------------------------- ')

Er = VE{2+Ex2 = V642 +502 = V6596 = 81.2V

Ez 50
= = = 0.781
TAN G =g =55 =0

S, 8§ =ARC TAN 0.781 = 38°
Fig. 312. Two methods of adding vectors.

ample (Fig. 311) is sine-wave voltage E, = 64 volts, while the out-
put sine wave of the other generator E, = 50 volts. E. lags E, by 90°
in phase, as before. At the left of Fig. 312 we have again laid out the
two voltage vectors (to an arbltrary scale) at rlght angles to each
other from the common origin (0). Completing the parallelogram
and drawing the diagonal, as before, you will find by measuring
the length of the diagonal (to the same scale as E, and E.) it repre-
sents a resultant voltage, Ex = 81.2 volts. With a protractor you
can ascertain that Eg lags behind E, by 38° or, equivalently, leads
E. by 52°,

Since opposite sides of a parallelogram are equal, it is evident
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that the dotted lines of the parallelogram are equal in length to
vectors E; and E,, respectively. We could, therefore, have obtained
the resultant, Eg, quickly by laying out vector E. at the end of and
at right angles to vector E,, as is shown at the right of Fig. 312. The
resultant, Eq, then is simply the hypotenuse of the right triangle
thus formed. If the vectors are not at right angles to each other,
you can still use this “toe-to-tip” method of adding vectors, and
find the resultant by drawing a line from the origin (0) to the tip

Sometimes you can do faster

servicing by reaching for your

math book instead of a screw-
driver.

of the second (or last) vector. The toe-to-tip method of vector addi-
tion is considerably faster than the parallelogram method when
more than two vectors are involved.

In the example of a right triangle, you can again measure the
resultant (hypotenuse) and the included angle and find that
E: = 81.2 volts and 6 = 38°, as before. However, in the case of a
right triangle, it is much more precise to use the Pythagorean
theorem (¢ = a? + b?) to find the length of the hypotenuse (or
resultant), and a little elementary trigonometry to find the angle 6.
Thus the length of the hypotenuse, or magnitude of the resultant,

Er = VE? + E;? =V 64 + 50 =4,096 + 2,500

= 1/6,596 = 81.2 volts

To find the phase angle 6, you need only realize that the ratio of the
opposite side (E,) to the adjacent side (E,) defines the tangent of 6.
%: 2—2 = 0.781. In a table of trigonometric func-
1
tions the angle (6) corresponding to this tangent value is 38° (ap-
proximately) , as before.
You could also have solved the problem by trigonometry alone,

Hence, tan 6 =
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without resort to the Pythagorean theorem. First find the tangent
of 6 and the phase angle, 6, as above. Then, realizing that the ratio
of the opposite side (E.) to the hypotenuse (E.) defines the sine of 6,

. . E., E. L
you can write: sin § =+, and hence, Ex = m Substituting,
R

50 volts 50 volts _
Ex =088 ~ 0616 (from tables) _ 012 volts

Since in most ac impedance problems you are required to find the
resultant of two vectors at right angles, you will find this method
of solving a right vector triangle extremely useful. We shall discuss
various methods for solving ac impedance problems later on.

PARALLELOGRAM METHOD

o 1oov

RESULTANT Vi23
OF Vi+Vj RESULTANT = 272V Va
Vi O e Via 3
> | 2
04 Q i 2
AV Q E /
o200V Y, O“mov N, 0 zov %0
45° 1 1 1
RE) & Vi+vs d) Vy+vatvy

RESULTANT OF
Via+ Vo =272V

~

"TOE-TO-TIP" METHOD

(€C) Vy+Vo+V3

Fig. 318. Methods of adding vectors where mnore than two vectors are involved.

Adding more than two vectors

Both the parallelogram and toe-to-tip method can be used for
adding more than two vectors. Using the parallelogram method,
solve the problem step by step. First, obtain the resultant of any
two vectors, then add this resultant vector to a third vector by com-
pleting the parallelogram, and so on. Naturally, this method can
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become quite cumbersome when a number of vectors are to be
added. With the toe-to-tip method, in contrast, you can add a
number of vectors almost in one step.

As an example, consider the vector addition of three ac voltages
45° out of phase with each other (Fig. 313). VI = 200 volts and is
represented by the horizontal vector 0-V1 in Fig. 313-a. V2, 50 volts
in magnitude, is represented by vector 0-V2 and leads V1 by 45° in
phase. V3 (100 volts) is represented by the vertical vector 0-V3 in
Fig. 313-a. Let us find the resultant voltage acting when these three
voltages are applied to an ac circuit.

First, using the parallelogram method, we find the resultant of
V1 and V3, as shown in Fig. 313-b. The resultant, V13, is repre-
sented by the diagonal. Next, we add vector V2 to V13, as illus-
trated in Fig. 313-c. Completing the parallelogram of these two
vectors and drawing the diagonal, we obtain the resultant, V123,
which represents the vector sum of V1, V2 and V3. Measuring the
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- b
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N )
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N, N\
0 \ N N > (¢}
\ N 'Y e
~ N A) rd
AN \ b 4
N C -8
\ -
N\ ’
Nzl
=A
a b

Fig. 314. Techniques for the subtraction of vectors.

length of this resultant to the scale of the diagram, we find the
magnitude of V123 to be about 272 volts. With a protractor we
determine the angle between V123 and V1 (the horizontal reference
line) to be about 30°. Thus, the resultant V123 is 272 volts in
magnitude and it leads V1 in phase by 30°; it also lags V2 by 45° -
30°, or 15°, and V3 by 90° - 30°, or 60°.

The toe-to-tip method of adding the vectors yields the same
result much quicker, as shown in Fig. 313-d. Here we have laid
off vector V2 toe-to-tip to vector V1, and vector V3 to the tip
(arrow point) of V2. You have to take care, of course, that the

83



length of the vectors and their directions are preserved when you
do this. You can obtain the resultant by drawing a line from the
origin (0) to the arrow point of V3. This resultant again measures
272 volts in length and leads vector V1 30° in phase.

Vector subtraction

Two vectors may be “subtracted” from each other by reversing
the vector to be subtracted and then adding this reversed vector
to the first. This process is very similar to algebraic subtraction,
except that you have to reverse an entire line segment. For example,
in Fig. 314-a, vector A is to be subtracted from vector B. To do
this, simply reverse vector A and then add -A to B by the parallelo-
gram method. The resultant vector, C, represents the vector dif-
ference, or C = B - A.

If, in contrast, vector B is to be subtracted from vector A, B is
reversed and -B is added to A (see Fig. 314-b). The diagonal of the

-1 + E
E,1 I
< 90° \180° 270° 360°
E ’\D éR 1= -g- [o) N L 1 0_____.1_’5
E.I
= E
CIRCUIT WAVEFORMS VECTOR DIAGRAM

Fig. 315. In a purely resistive circuit, the voltage and current are in phase. Note
that the vectors are superimposed since there is no phase difference between them.

new parallelogram, C’, is the resultant and represents the vector
difference, C’ = A - B. If more than two vectors are to be subtracted
from each other, take the vector difference of two vectors at a time
and continue step by step until the problem is completed. You
probably will find the toe-to-tip method of adding the reversed
vectors more convenient in this case.

Vector applications: reactance and impedance calculations

We are now ready to use our knowledge of vectors in practical
ac reactance and impedance calculations. But before we get into
this, let us quickly review the fundamental facts of alternating-
current flow in resistive, inductive and capacitive circuits.

Case I—Pure Resistance: A resistance behaves in exactly the same
way with an applied ac voltage as for dc. As shown in Fig. 315, the
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amount of current flow is determined by Ohm’s Law and the volt-
age and current waveforms are in phase. The vector diagram also
shows that the current, though smaller, is in line (or in phase) with
the voltage. To obtain the effective (rms) values of E and I, which
are the values indicated by most voltmeters and ammeters, multiply
the peak values by a factor of .707.

Case 2—Pure Inductance (Fig. 316): A pure inductance doesn’t
exist, of course, since every coil has some winding resistance. How-
ever, the case is of interest whenever the inductance is large com-
pared to the winding resistance, so that the latter may be neglected.
The effect of a pure inductance is to make the current lag 90° be-
hind the applied voltage and also choke down its magnitude to a
value smaller than in the absence of the inductance. This property
of an inductance is known as inductive reactance (X.). The induc-

- | E:

Bl 1

1=£-E- o o o

Xy emfL 180 70" 360
Q) L ¥ 0 - ..
L 900 §=90°

(X =2mfL)

E,I ¥
CIRCUIT WAVEFORMS VECTOR DIAGRAM

Fig. 316. In a purely inductive circuit, the current lags the voltage by 90°. You can
see the phase displacement by examining the vectors or the sine waves.

tive reactance, X, = 27fL. = 6.283fL. (approximately), where f is
the frequency (in cycles) of the applied voltage and L is the value
of the inductance in henries.

To find the current in a pure inductance, we must modify Ohm'’s
Law and divide the applied voltage by the (inductive) reactance
rather than the resistance.

- S T
X. 2afL 6.283fL

You can see in the waveforms and vector diagram of Fig. 316 that
the current through an inductance coil lags the applied voltage
90° in phase

Hencesicurrentdi=

ExampLE: Determine the magnitude of the rms current flowing
through a 5-henry choke of negligible resistance, which is con-
nected across the 115-volt 60-cycle ac line.
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Solution: X, = 2#fL. = 6.283 X 60 X 5 = 1,885 ohms

E 115 volts

I = X = 1385 ohms

= .061 ampere

(You could, of course, have performed the entire calculation in one
step by using the formula I = E /27fL.)

Case 3—Pure Capacitance (see Fig. 317): Though a capacitor
completely blocks the flow of direct current, it permits a certain

-T + E

E,I 1

1=£ X

2L “Xe - \ieo® 300 [(9=90°
E 9 p=—=g o} 0 ! ] I}

gloa le-90°

c~2wfc
E,!

CIRCUIT WAVEFORMS VECTOR DIAGRAM

Fig. 317. In a purely capacitive circuit, the current leads the voltage by 90°. Com-
pare the arrangement here with that shown.in Fig. 316.

amount of ac flow because it is alternately charged in opposite
directions. The opposition presented by a capacitor to the flow of
alternating current is called capacitive reactance (Xc) and its mag-
nitude is given by the formula:

1 1 0.1592

Xe=55C = 6.283(C — fC

where C is in farads. The current in a purely capacitive circuit,
therefore, is given by the ratio of the applied voltage (E) to the

capacitive reactance (X.), or I = —-)]%—
]

The effect of the capacitive reactance is to make the current
through the capacitor lead the applied voltage by 90° in phase.
This is clearly shown by the waveforms and the vector diagram
of Fig. 317. To indicate the phase opposition of capacitive react-
ance to inductive reactance, a minus sign (-) is sometimes placed
in front of the capacitive reactance value.

ExampLE: What is the magnitude of the current when a 220-
volt 60-cycle ac voltage is applied across a 25-uf capacitor?
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Solution: 25uf = 25 X 10-¢ farads. Hence, the capacitive

1 1
reactance X. = 503t = 6983 % 60 X 25 X 10° —

C g _E _ 220 volts
urrent 1 =< = 106 ohms

Note: When the frequency is given in megacycles = (10° cycles)
and the capacitance is in microfarads = (10-¢ farad) then the factors
10¢ and 10-¢ in the denominator cancel and, may be omitted.

IMPEDANCE: The alternating current in a pure resistance is in
phase with the applied voltage, while the current in a pure in-
ductance lags the impressed voltage by 90° and the current in a
pure capacitance leads the applied voltage by 90°. When both
inductance and capacitance are present, the current will either lag
or lead the impressed voltage by 90°, depending upon whether the
inductive or the capacitive reactance is larger in magnitude. The

106 ohms

= 2.075 amperes.

XL =+6N
X=X -Xc=40 ) Xz=40n
(90'
%
o
0 90°
90 R=30
Xc='2ﬂ\

Fig. 318. The presence of resistance, inductance and capacitance in a circuit is
really a problem in vectors and can be solved as such.

total opposition to current flow is then presented by the net re-
actance (X), which is equal to the vector or algebraic sum of the
inductive reactance (X.), and the capacitive reactance (Xc). Since
X. is considered positive (+) and Xc is taken as negative (-), the
net reactance, X, also is simply equal to the arithmetic difference
between the numerical values of X, and Xe:

1
Net Reactance X = X, - X¢ = 27fL ~ =G

When all three—resistance, inductance and capacitance—are
combined in series, the total opposition to current flow, called the
impedance (Z), is equal to the vector sum of the resistance and net
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reactance. The current, which is the same throughout the R-L-C
series circuit, can either lead or lag the impressed voltage, depend-
ing upon the impedance. Moreover, the vector sum of the voltage
drops across R, L and C must equal the value of the impressed
voltage (emf). (The arithmetic sum of the voltage drops may well
exceed the applied voltage.)

Assume, for example, that an R-L-C series circuit has a resistance
of 3 ohms,an inductive reactance, X., of 6 ohms, and a capacitive
reactance, Xc, of -2 ohms. A vector diagram of this situation is
shown at the left in Fig. 318. The resistance is arbitrarily drawn
as a horizontal vector with a length of 3 units (equal to 3 ohms).
The inductive reactance, X, is a vector of 6 units in length, drawn
vertically upward, since it is positive (+) and forms an angle of
90° with the resistance. The capacitive reactance, Xc, is 2 units
long and drawn vertically downward, since it is negative or in

5 _ r 2
2= /R2+x2 = V/R2+(X|_-Xc)2 = /F?z+(2WfL——2;¢c)

1
xu-xe_ _(2mfL- 5 )

K,
TAN § =& = " "

NET REACTANCE (X)

OR § = ARC TAN T’;-

RESISTANCE (R)

Fig. 319. Impedance, or the total opposition to current flow in an ac circuit, can
be calculated through the algebraic addition of vectors.

phase opposition with the inductive reactance. The vector sum
of X, and X is the net reactance.

X =6+ (-2) =6-2 = +4ohms,

which is seen to be the same as the arithmetic difference X, - Xe.
Since net reactance X is positive, it is drawn vertically upward and
is 4 units in length (corresponding to 4 ohms).

The impedance, Z, of the circuit is the vector sum of the net
reactance and resistance. It is easily obtained by completing the
parallelogram of R and X and drawing in the diagonal, as shown
at the right in Fig. 318.

Alternatively, you can use the toe-to-tip method, placing reac-
tance X at the end of the resistance vector, R, and drawing the
hypotenuse, Z. In either case, the magnitude of impedance vector Z
turns out to be 5 units long or 5 ohms in value, while its phase
angle 6 = 53.2° with respect to the resistance.
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The triangle (at the right in Fig. 318) is a standard configuration
known as a 3-4-5 triangle. Whenever two sides of a triangle are in
proportion as 3 to 4 (or 6 to 8, 15 to 20, etc.), the hypotenuse will
always be in the proportion of 5 units in length (that is, 6 to 8 to 10
or 15 to 20 to 25, etc.). Another such standard triangle is in the
proportion of 5 to 12 to 13.

While you could easily compute the impedance by drawing a
vector diagram for any particular case, the fact that the resistance
and net reactance always form a right triangle permits us to formu-
late a simple mathematical solution for all cases. Fig. 319 illus-
trates a general impedance triangle, with the resistance vector, R,
forming the horizontal side; the net reactance, X, the vertical side,
and the impedance, Z, the hypotenuse of the triangle. The mathe-
matical relations are evident from the figure and, hence, we can
write immediately:

Impedance Magnitude, Z = v/R? + X* = v/ R? + (X. - X¢)?

_1
27fC

zZ = \/Rz + (2nL-52)’

X 71,
Phase Angle, 6 = arc tan ] (1.e. the angle whose tangent is -;%)

also, since X, = 2nfL and X =

1
X Xo-Xe (2rtL-55)
ortanf = — = =

R R-ra R

Applying these relations to the previous example, for R = 3 ohms,
v = 6 ohms and X¢ = 2 ohms, we obtain

Magnitude Z = v/R? + (X - Xc)? = V3 + (6-2)?

= 49 + 16 = 5 ohms
and tan § = —E = -% = 1.333. Hence, from the tables, 8 = 53°8’

Ohm'’s Law for ac

Now that we have such a convenient formula for the total op-
position (Z) to the flow of alternating current, we can readily write
down a modified form of Ohm’s Law for ac:
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Fig. 820. Series circuit and its equivalent impedance and voltage vector diagrams.

Applied Voltage

Current =

Impedance

E

Z

TVE + (K- X

Of course, you can always find the magnitude of the impedance, Z,
simply by taking the ratio of the voltage over the current, or

magnitude Z = ?

Finally, the voltage drop across an impedance,

90

E=1Z=1vR + (Xo-Xof

The phase angle by which the current leads or lags the applied
voltage is, of course, equal to the angle 6 between the resistance




and the impedance in the impedance triangle (Fig. 319) and, hence,
is again given by:
X Xu-Xe T X
tanB—i— R or()-—arctan—ﬁ-
(“the angle whose tangent is” may be written either “arc tan” or
“tan".)
As a check on your impedance computations, you have the fact
that, in an R-L-C series circuit, the vector sum of the voltage drops

The triangle is on important figure.
It shows up when we work with
phase or impedance.

across the resistance (Ez), the inductance (E.), and the capacitance
(Ec) must add up to the applied voltage (E). That is,

E = \/En2 Gt (EL—EC)2
Moreover, since the voltage drops across the circuit components
are proportional to their resistance or reactance, respectively, the
angle between the current and voltage is also given by
E. - Ec
Ex
By drawing a vector diagram of the separate voltage drops and tak-

ing their vector sum, you can always make this check on your
calculations.

Phase angle 6 = arc tan

ExampLE: In the R-L-C series circuit shown in Fig. 320-a find
the impedance and phase angle, the line current and the equivalent
R-C or R-L combination that will replace the circuit at a frequency
of 10 kc. Check your calculations by drawing a vector diagram of
the separate voltage drops across the resistors, capacitor and coil.

Solution (Fig. 320): The total series resistance,

R =RI + R2 = 20,000 ohms + 30,000 ohms = 50,000 ohms.

The inductive reactance of the 1-henry choke (L) at 10,000 cycles,
X, = 27fL = 6.283 X 10,000 X 1 = 62,800 ohms (approximately).
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The capacitive reactance of the .001-uf capacitor (C) at 10,000 cycles,

1 1
¢ 7 2#fC ™ 6.283 X 10,000 X .001 X 10-¢
= 15,900 ohms (approximately).

X

The net reactance, X, is the difference between X. and X, or
X = X, - Xc = 62,800 ohms - 15,900 ohms = 46,900 ohms.

Whether current or voltage leads

depends on the relative amounts

of inductance and capacitance in a
circuit,

Since the net reactance comes out positjve (+), the circuit is pri-
marily inductive at a frequency of 10 kc. To find the impedance
(Fig. 320-b), we use the formula

Z =+vR? + X* = /(50,000 + (46,900)?
=4/(25 X 10°) + (22 X 10°)
= /47 X 10° = 6.86 X 10* = 68,600 ohms

46,900
The phase angle, 8 = arc tan _{RS = arc tan 50,000 = arc tan 0.938,

which turns out to be 43°10” or 43.2° (from the tables).

Finally, the line current in the series circuit,
I— E 100 volts
~ Z 68,600 ohms

= 1.46 X 10-* ampere, or 1.46 ma.

This current lags the applied voltage by 43.2° (the phase angle), but
is in phase with the voltage drop across the resistors. If you measure
the impedance vector, Z, and the phase angle, 6, in Fig. 320-b, you
will find that the graphical results check these calculations.

Let us find the equivalent circuit at 10 ke (Fig. 320-d). We know
the equivalent resistance R, = 50,000 ohmus. Since the circuit is in-
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ductive (X is +), we can use the formula X, = 2#fL to obtain the
equivalent inductance, L.. Hence,

X 46,900
2af — 6.28 X 10,000

Thus, a combination of a 50,000-ohm resistor and 0.75-henry choke
would have the same reactance (46,900 ohms) and impedance
(68,600 ohms) at a frequency of 10 kc as the actual circuit.

As a final check, let us obtain the separate voltage drops and see
whether their vector sum adds up to the generator voltage (100 v).

L.= = 0.75 henry (See Fig. 320-d.)

PN
\\\\\“ ”////,,

S

2,

”4%
-
2
H
S
S,
Y

7

InavoLTs

The algebraic sum of the voltage drops
in a closed network is equal to the voltage
at the generator.

The voltage across R1, Er, = I R1 = 1.46 X 10-* X 20,000 = 29.2
volts. The drop across R2, Ex, = I R2 = 1.46 X 10-* X 30,000 =
43.8 volts. Hence the total resistance drop = Egr; + Es, = 29.2 4
43.8 = 73 volts, as is shown in the voltage vector diagram (Fig.
320-c).

The voltage drop across the coil (L),

E, = IX. = 1.46 X 10-* X 62,800 = 91.6 volts. This drop leads
the current by 90° and, hence, E. is vertical (upward) in (c).

The voltage drop across the capacitor (C),

Ec = IXc = 1.46 X 10-* X 15,900 = 23.2 volts. This voltage
drop lags behind the current by 90° and, hence, is downward. The
net reactive voltage drop in the circuit is:

E. - Ec = 91.6 - 23.2 = 68.4 volts. Since this voltage is posi-
tive (+), the vector is drawn vertically upward in Fig. 320-c.
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PRACTICE EXERCISE 5

1. Using the definitions of the trigonometric functions and Fig.

; Wl _sinf . T
303, prove the following relations: tan § = o5 g Sim 6 + cos*0 = 1;

tan § = \/sec?0-1; cosec & = +/cot 26 + 1; sin 6 = cos (90 - 6)
= sin (180 - 6); cos 6 = sin (90 - ) = —cos (180 - 6); tan 6 = cot
(90-6) = —tan (180 - 6).

2. Using a diagram similar to Fig. 307, verify that: sin 30° = cos
60° = V4; cos 30° = sin 60° = 144/3; tan 30° = 1/4/3; tan 60 =+/3.

3. A 400-cycle sine-wave voltage has a peak value of 100. Write
the expression for the instantaneous value of the voltage (e) and
compute its values at .000625, .00125, .001875 and .0025 seconds
after the generator is turned on. [Answer: e = 100 sin 800 = t; 100,
0,-100 and 0 volts.]

4. A 25-cycle alternating-current sine wave has an amplitude of
30 amperes. (a) Compute the effective (rms) value and (b) the
instantaneous value of the current .002 second after it passes
through zero in the positive direction.

[Answer: (a) 21.2 amperes; (b) 9.27 amperes.]

5. An ac voltmeter reads 385 volts (rms) drop across a load and
an ammeter indicates 22 amperes load current. What are the peak
values of E and I? [Answer: 545 volts, 31.1 amperes.]

6. Sine wave 1 leads sine wave 2 by 60° and lags wave 3 by
130°. Find the phase angle between waves 2 and 3, and determine
which is leading. [Answer: Sine wave 2 leads wave 3 by 170°.]

7. Vector X is 200 units long and at right angles with vector Y,
which is 150 units long. (a) Find the vector sum X + Y and the
angle between the resultant and Y. (b) Find the vector difference
X -Y and Y - X, and compare the magnitude of the resultants
with that in (a). [Answer: (a) 250 units, 53.2°; (b) same length.]

8. A vector is 13 units long and forms an angle of 22.6° with
the horizontal. Resolve this vector into two rectangular component
vectors, whose vector resultant will equal the original vector.
(Hint: the vertical component is the resultant times sin 6, and
the horizontal component is the resultant times cosine 6.)

[Answer: 12 units horizontal; 5 units vertical.]
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9. A 20-volt signal from a 5-mc oscillator is applied to a 100-uuf
capacitor. Find the capacitive reactance and the current.
[Answer: X¢ = 318 ohms; I = 63 ma.]

10. A 60-ohm resistor, a 33.2-uf capacitor and a 0.53-henry coil
with a 30-ohm winding resistance are connected in series across
a 300 volt, 60-cycle ac source. Find the inductive and capacitive
reactances, the impedance, the line current, and the phase angle
by which the current leads or lags the applied voltage.

[Answer: X, = 200 ohms; X¢ = 80 ohms; Z = 150 ohms;
I = 2 amps; I lags E by 53.2°.]

11. A circuit contains inductive and capacitive reactances of 50
ohms each and a resistive component of 25 ohms. However, the
vector diagram shows the resistive component only. Is this correct?

[Answer: The vector diagram is correct. The algebraic sum
of the reactances is zero, hence need not be drawn. The
circuit is in a condition of resonance.]

12. If the length of the resistance vector is 30 units, the reactive
vector 40 units, what is the length of the impedance vector?
[Answer: 50 units.]
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CHAPTER 4 \

Complex Numbers

HE man who first put downy/=Twas undoubtedlyshocked by his
Town audacity. For what was the meaning of this strange-looking
quantity? What number multiplied by itself could possibly yield
-1? As he kept experimenting, this adventurer discovered a whole

new world of such numbers, v/-4, v/-12.59, v/-x, v/-by, etc.,
which all looked equally mysterious. Since he couldn’t find any
numbers whose square would come out negative, he called them
imaginary numbers and he gave the symbol i to v/~1. Thus, by
factoring 4/-1 from his quantities, he obtained V4 xXA/-1=2i,
V1259/=1 = 3.551, 6 v/-1’= iV/x, and V' By - /=T =224y i.
The letter i looked much better than /-1 and it sort of covered up
the whole unthinkable mess. Moreover, as he kept fooling with
these quantities, he found out that there was nothing imaginary
about them. On the contrary, they rounded out the whole number
system and could be given various interesting interpretations. As
the utility of the so-called “imaginaries” became obvious in engi-
neering and electrical calculations, the symbol j came into use for

the imaginary quantity (v/~1), to avoid confusion with the current

symbol i. Thus, in all electrical work the imaginary number V-1
is known as the j-operator and, as we shall see, it comes in very
handy for the solution of alternating-current problems.

J-operator rotates a vector through 90°

One interesting interpretation of the j-operator is that it rotates
any quantity multiplied by it by a counterclockwise angle of 90°
(i.e., a right angle). Consider a vector, +a, laid out to the right of
the origin (0) along the horizontal axis, in accordance with the
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usual rectangular notation (Fig. 401). If you multiply a by -1, the
result, —a, will be a vector of length a, extending to the left of the
origin, as shown in the figure.

You might say, geometrically speaking, that multiplying a vector
by -1 has rotated it through 180°, or two right angles. Multiplying
-a by -1 once more results again in 4a, or the original vector.
Hence, multiplying twice by -1 results in rotating a vector through

=)
"IMAGINARY" AXIS
+ Ja A
T
%00 900
N
! \ REAL AXIS
- -a \ 0 f +a +
N o
=
Oo ,bbo )
\),_,./ J = ﬁ
12 = -
J 1
. 3 - .
. J3=-]
Fig. 401. Fundamental -Jay J“: +1
operations using the
j-operator.
-J

360°, or four right angles. Now, multiplying by a factor of -1 is
equivalent to multiplying by j%, since j? = j * j = /21 + /-1 = -1,
and multiplying twice by -1 is equivalent to multiplying by j*,
since j* = j2 » j* = (-1)(-1) = + 1.

Thus, multiplying twice by j, or by j2 = -1, results in rotation
by two right angles or 180°, while multiplying four times by j, or
by j* = +1, results in rotation by four right angles, or 360°. Con-
sistent with this geometrical interpretation, it follows without

further ado that multiplying a quantity once by j or v/-1 is equiva-
lent to rotating it by one right angle, or 90°, and multiplying a

quantity three times by j, or # = (V-I)(V-I)(V/-1) = j, is
equivalent to rotating it by three right angles or 270°.
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In Fig. 401, the vector +ja is vertically upward, rotated 90°
counterclockwise from its original (horizontal) position, and the
vector j'a = -ja is shown vertically downward and rotated 270°
counterclockwise from its original position.

In other words, multiplying a vector four times in succession
by the j-operator rotates it through four right angles, or 360°. Thus,

original vector, +a (0° rotation)
multiplying by j: j(4+a) = +ja (vertically up, 90° rotation)
multiplying again by j: j(ja) = j’a = -a (horizontal, 180° rotation)
and again: j(j’a) = j°a = —ja (vertically down, 270° rotation)
and for the fourth time: j(j*a) = j'a = +a (360° rotation)

The horizontal axis in Fig. 401, along which the real quantities +a
and -a are located, is called the axis of reals, while the vertical axis,
along which the “imaginary” quantities +ja and -ja are located,
is known as the axis of imaginaries. You can see that any real or
imaginary quantity can easily be located along one of these two
rectangular axes.

What are “complex numbers''?

Let us extend this graphical representation of imaginary num-
bers a little further. The real and imaginary axes, apparently,
define a plane in which any point has a specific numerical designa-
tion, just as in the conventional rectangular coordinate plane. Let
us designate the horizontal (real) axis as the R or resistance axis

|+J% (REACTANCE)
(12, js)

L I

Jx :

,
©
&,

+3 1

-R R : | +R
I T T T T T T T T

-8 -6 5-4-3-2-10 1 2 3 4 5 6 10 12

= (RESISTANCE)

[0 28

_5-.

_Jx

Fig. 402. The use of complex numbers is a convenient way to represent
impedances.
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(Fig.402) and the vertical (imaginary) axis as the jX or reactance axis.
(We could have equally well chosen an X-axis and jY-axis but,
since we are going to deal with impedance later on, the R and jX
axes will be more useful.) Thus, any point in the R-jX plane will
have a horizontal or real abscissa along R and a vertical or im-
aginary ordinate along jX. A line drawn to such a point will repre-
sent a vector R + ]X where R and X may represent any values
at all.

The quantity R + jX is called a complex number, though there
is nothing complex about it. It is simply a rectangular vector presen-
tation. Thus, the complex number 3 + j4 in Flg 402 represents a
vector that is made up of a horizontal (real) component of 3 ohms
resistance and a vertical (imacrinary) component of 4 ohms react-
ance. The line drawn to the point 3 + j4 is 5 units long, since
it is the hypotenuse of a triangle with sides 3 and 4 units long

(V3 + 42 = +/25 = 5). Similarly, a line drawn to the point
12 + 5 represents a vector made up of a horizontal (resistance)
component of 12 ohms and a vertical (reactance) component of

5 ohms. This vector is /122 + 52 = /144 + 25 = /169 =
units in length.

In general, a line drawn to any complex number (or point)
R + jX is a vector that is v/R* + X? units in length, and hence,
can represent an impedance, Z, in accordance with our previous
definition. Moreover, the angle # which the impedance vector
makes with the resistance (real or horizontal) axis is given by

X Ly :
tan 6 = S before. This is, apparently, a very convenient way

to represent impedances.

Addition and subtraction of complex numbers

All the fundamental operations of algebra apply to complex
numbers, with the proviso that the real and imaginary portions
must be handled separately. Thus two complex numbers are equal
only if both their real and imaginary parts, r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>