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Introduction

IF
you are like many of us, you take an instinctive attitude of flight

when you hear the word "mathematics". There doesn't seem to

be any reason why this suspect term should be coupled in any way
with the profession of an electronic technician. As many service

technicians have told me, they don't use mathematics—not beyond

Ohm's Law anyway—since the equipment manufacturers provide

them with all the necessary information. Or at least they think so.

Of course, they ignore the mar>y times they use mathematics in

daily practice without being aware of it. Even the usual application

of Ohm's Law requires a whole host of mathematical operations.

To convert microvolts and milliamperes to volts and amperes,

respectively, you may have to use powers of 10, substitute in an

algebraic formula, divide or multiply, possibly use a slide rule, and
"round off" the arithmetical result to the number of significant

figures consistent with the accuracy of the equipment and its com-

ponents. If you have mastered this kind of essential "test-bench

mathematics," you do it instinctively without awareness of the

number of mathematical operations involved. It is just like walking

or swimming, once you know how. What we are trying to get across,

of course, is that learning the language of mathematics—as far as it

applies to electronic shop practice—can be not only fairly pleasant

and painless, but also highly useful.

The statement that the manufacturers of electronic equipment
provide all the information necessary is a half-truth, at best. They
publish a variety of specifications, graphs, curves and instructions

which they believe will make your work easier and make their



equipment operate best. Many times, however, you will have to

perform supplementary calculations to utilize the published data

and to put together differently formulated specifications for various

components. For example, did you recently have to connect a stereo

cartridge with an output per coil of 1.5 millivolts to a stereo pre-

amplifier with 70-db gain, which in turn drove another manufac-

turer's pair of power amplifiers, each of which required 2 volts

input for full rated power output? Looking at the specifications

alone, you could not possibly tell whether the cartridge had suffi-

cient output to drive the power amplifiers. You may have resolved

the problem by trying the equipment out in your client's home,
though this might lead to considerable embarrassment if things

didn't work out properly. Making several calculations in advance

might have spared you this kind of situation. You undoubtedly
can add a number of similar examples from your own experience.

What we shall try to do here is to discuss a number of highly

useful mathematical tools and techniques as informally as possible.

Many times we won't bother to introduce all the formal stipula-

tions, terms, conditions and other verbiage, though the mathe-

matical purists may howl. In brief, we shall learn to manipulate a

little arithmetic, algebra, vectors and complex numbers, logarithms

and decibels with a minimum of formality.

Henry Jacobowitz



CHAPTER 1

Ohm's Law Arithmetic

LET us begin our electromathematical excursions with Ohm's
Law, since this is the most widely known relationship and around

it are centered many everyday practical computations. In its most

general form, this law— first formulated by Georg Simon Ohm in

1827 — simply states that the current flowing in a dc circuit, or por-

tion thereof, is directly proportional to the applied voltage (emf)

and inversely proportional to the resistance of the circuit or portion

of it. In its mathematical form, Ohm's Law is usually stated thus:

Current (I)
Voltage (E)

Resistance (R)

or briefly, I = | (1)

Note that we have inserted an equal (=) sign between the pro-

portional quantities, rather than a proportional (a) sign. As we
shall see later, this can be done only if a proportionality constant is

inserted after the equal sign. In the case of Ohm's Law, the units

of current, voltage and resistance have been defined to make the

proportionality constant equal to unity (1) and, hence, it dis-

appears altogether. Thus, by definition, a current of 1 ampere is

said to flow through a circuit of 1 ohm resistance, if an electro-

motive force (emf) of 1 volt is applied. Hence,

1 volt , .
,

volts
1 ampere — -—

:
— and m sreneral amperes = —.

^
1 ohm ° ^ ohms

Regardless of the units in which the voltage and resistance are

stated in a given problem, you will always have to convert to these

or equivalent units, when using Ohm's Law.



Equivalent forms of Ohm's Law

Simple common-sense reasoning shows—if Ohm's Law is true-

that the applied voltage E acting in a circuit of resistance R,

through which a current I flows, must be equal to the product of

the current and the resistance, or

E = I X R (2)

This relation applies not only to a complete circuit but also to any

portion of it, such as a resistor. Thus, the voltage drop (E) devel-

oped by a current (I) flowing through a resistor (R) is equal to the

product of the current and the resistance value, or again E = IR
(the multiplication sign **X" is understood).

You can also obtain Equation 2 by a simple algebraic manipula-

tion of the originally stated form of Ohm's Law (Equation 1). It is

a fundamental rule that you can perform any mathematical opera-

tion on an equation, as long as you do it to both sides. Hence, let

us multiply both sides of Equation 1 (Ohm's Law) by the resist-

ance, R:

1=1 IXR = ^|^ (multiplying by R) (1)

I>

and since ^=L IXR = E

or E = I X R (2)

which is the relation (Equation 2) we stated before.

From Equation 2 we can easily derive a third, commonly used

form of Ohm's Law. Dividing both sides by the current, I:

| = ^^ = R (Since,-! = 1) or R =
| (3)

Equation 3 states that the resistance (R) of a circuit, or portion

thereof, is equal to the voltage (E) applied to the circuit (or por-

tion of it) divided by the current (I) flowing through it.

Using Ohm's Law

Although we have stated the three forms of Ohm's Law in alge-

braic form, as soon as you start to use it by substituting numbers in



the appropriate equation, your calculations become pure arith-

metic. This is usually true for most of the simple formulas used

in electricity and electronics. To make them generally valid, the

120 V (DC) OUTLET

Fig. 101. Electronic forynulas and arith-

metic or algebraic operations are closely

related, as in these two examples of the

use of Ohm's Law.

^ 120 VOLTS
50 OHMS 2.4 AMPS

(a)

0.24 AMP

Ci)

formulas are stated in symbol form, such as f for frequency, C for

capacitance, L for inductance, etc. but, in any particular case, you
will be using specific numerical values in place of the symbols and,

hence, the calculations become arithmetical. Your mastery of sim-

ple arithmetic, therefore, is the key to solving the majority of

ordinary electronics and electrical problems. We shall use Ohm's
Law problems to illustrate elementary arithmetical operations.



but the examples will apply to any formula, where only simple

multiplication and division is indicated.

Example 1: (a) A 50-()hm resistor is connected across a 120-volt

(dc) line. What is the value of the current flowing through the

resistor? (b) What is the current if the same resistor is connected

across a 12-volt battery? (See Fig. 101).

Solution: Since the value of the current is desired, we substitute

the known quantities in equation 1 (Ohm's Law). Hence for

part (a),

E 120 volts ^

120
The expression -—- is what is known as an improper fraction,

since the number above the fraction bar (the numerator) is greater

than the number below the bar (the denominator). (In a proper

fraction the opposite is true.) The fundamental rule you need to

remember when dealing with fractions is that both the numerator

and the denominator may be multiplied or divided by the same
number without chans:in2: the value of the fraction. Hence, we

1^
50

120 -=- 10 = 12
and denominator by 10: thus, r^ ^ in _ p:

» or converting to a

12 2
mixed number (a whole number plus a proper fraction), -r- = 2-r.

9
The answer to part (a), therefore, is 2-=- amperes.

You are well aware, of course, that the answers to all problems

are usually expressed in decimals, which is a special way of writing

a proper fraction whose denominators end with zero (0). By in-

2 4
spection we can write the answer above as 2—= 2—, which be-

4
comes 2.4 since — = 0.4. (You'll recall that the first place after

the decimal point are the tenths, the second place are hundredths,

the third place are thousandths, and so on.) Knowing that the

answer is to be expressed as a decimal, you could have obtained

the result more directly by carrying out the division indicated by

190 12
the fraction bar. Thus, —^ = —- = 12 -^ 5 = 2.4

50 5

10

can change -^ to its lowest terms by dividing both numerator



Finally, if you are the proud possessor of a slide rule, you can

solve the problem quickly by setting 5 on the C scale above 12

on the D scale. Then set the hairline of the runner (indicator) to

1 on the C scale and read the answer (2.4) immediately below on

the D scale (Fig. 102).

RUNNER (INDICATOR)

'^' ^^
»i#

^

^ f.^ .
'| !

;4
ii'^U'>iHi

^'U''V
'
.

'^^

t

'^V'

j ,'|^ I ^n

HAIRLINE

MANNHEIM SLIDE RULE (COURTESY KEUFFEL 8 ESSER CO.)

I 5 I

CI I I

.

Dl
1

1 I

I 12 2.4 (Ant.)

EXAMPLE l: 120 t 50 • 12 t 5 • 2.4

Fig. 102. The slide rule represents an easy and quick way to solve

many problems in electronics.

We have taken up much time with part (a) of Example 1 to

illustrate different ways of solving the problem and the various

mathematical operations involved. Now, let us do part (b) in a

jiffy.

(b) What is the current if the 50-ohm resistor is connected

across a 12-volt battery?

^ E 12 volts

Mentally multiplying both numerator and denominator by 2, you

12 24
can see by inspection that -— = -— = 0.24 ampere.

You could have gotten the same result, of course, by carrying out

the indicated division 12 -^ 50 = 0.24. The slide rule calculation

is the same as in (a), since the numbers are unchanged and the

decimal point must be determined by inspection.

Example 2: A microammetcr inserted into a circuit (Fig. 103)

reads a current of 3.5 microamperes (/xa) when 7 volts are applied

to the circuit. What is the circuit resistance?

11



Solution: Let's do this problem first in a clumsy way to see

how much time we can save by learning a new method. The unit

for current in Ohm's Law is the ampere and, hence, we need to

convert microamperes to amperes before we can substitute in the

formula. We know that 1 microampere equals a millionth of an

ampere, or

1 microampere = ,

^^^ ^^^
ampere = .000001 ampere

In general, then, we have to move the decimal point six places to

the left, when converting microamperes to amperes. Therefore,

3.5
3.5 microamperes =

i aqa nnn ampere = .0000035 ampere

MICROAMMETER R - E _ 7 VOLTS
I
~ 3.5AtA

=2 MEGOHMS

CIRCUIT IN BOX

-^I = 3.5aA

Fig. 103. Since we know the value of the voltage and the amount of current, we can

use Ohm's Law to learn the resistance of the circuit in the box.

Now we can substitute in the Ohm's Law formula for the

resistance,

7 volts

I .0000035 ampere
?ohms

To get rid of the decimal point, let's multiply both numerator

and denominator by 10,000,000, thus obtaining

70,000,000 (volts) ^^^^^.. ,—jrr-7 ^^—r-^ = 2,000,000 ohms
35 (amperes)

Since the megohm is the same as 1 million (1,000,000) ohms, we can

write the answer in conventionally used units:

2,000,000 ohms = 2 megohms

12



The power of powers of 1

Now we can tell you that there is a better way of dealing with

problems of this kind. This method of notation—called powers of

ten—IS extremely useful whenever you work with very large or

very small numbers, w^here many zeros are involved. The powers-

of-IO notation is a short-hand w^ay for indicating the decimal

point by raising the number 10 to the appropriate (positive or

negative) power. The method is made clear by the following ex-

amples for expressing large or small numbers in powers of 10.

One number just looks larger than

the other. They both have the same
"weight".

For large numbers

1 = 10'^

10 = 10 X 1 = 10^

100 = 10 X 10 = 10^

1,000 = 10 X 10 X 10 = 10^

10,000 = 10 X 10 X 10 X 10 = 10^

100,000 = 10^

1,000,000 = 10«

10,000,000 = 10^ and so forth

230,000 = 2.3 X 10^

12,600,000 = 12.6 X 10« or 1.26 X 10^

1 megohm = 1,000,000 ohms = 10^ ohms
22.5 megohms = 22.5 X 10^ ohms or 2.25 X 10' ohms

Speed of light, c = 29,979,000,000 cm/sec. = 2.9979 X 10^° cm/sec.

Evidently, for large numbers, the notation indicates how many
times 10 should be multiplied by itself to obtain the required

number. For example, 10^ indicates that 10 should be multiplied

5 times by itself (that is, raised to the fifth power), thus:

10 X 10 X 10 X 10 X 10= 100,000.

Small numbers are expressed by taking the reciprocals of powers

of 10. This is indicated by placing a small, negative number (ex-

ponent) next to 10.

Thus, 10 - is the reciprocal of 10' or —— = -—— = 0.01.

13



For small numbers

.1= ^ ^10-^

.01= ^ =10-^

.00001 = 10-^

.000001 = 10-^

.000000

1

= 10-^ and so forth

.0036 = 3.6 X 10-3

.000000769 = 7.69 X 10"^

1 milliampere (1 ma) = TTwT ampere = 10"^ ampere

1 microampere (1 /xa) =
i ooo 000 ^"^P^^^ ~ ^^"^ ampere

1 millivolt (1 mV) = lO'^ volt

1 microvolt (1 fiV) = 10"^ volt

Wavelength of sodium light, A = .00005983 cm = 5.983 X 10-^ cm

Operations with powers of 1

It is very simple to use numbers expressed in powers of 10 in your

calculations. You can add and subtract these numbers just like any

others provided they are expressed in the same powers of 10. Obvi-

ously, you can't add cats and dogs, milliamperes and microamperes,

or 10^ and 10"^, without expressing them first in the same units. For

example, let's add 2.345 X 10^ + 10.56 X 10^ + 8.65 X 10-^ Re-

expressing the numbers in powers of 10^:

2.345 X 10^ = 23.45 X 10^

10.56 X W = 10.56 X 10^

8.65 X 10-3 = .0000865 X 10^

Adding 34.0100865 X 10^ = 3,401.00865

As another example, subtract 565 fid, from 3.42 milliamperes (ma):

3.42 ma = 3.42 X 10-^ ampere
565 jjLa. = 565 X 10-® ampere = 0.565 X 10-^ ampere

Subtracting 2.855 X 10-^ ampere = 2.855 ma.

14



I To multiply or divide numbers expressed in powers of 10, you

have to use the law of exponents for powers of the same base (10 in

this case). This law states that you simply add the exponents when
multiplying powers to the same base (10), and you subtract the

exponent of the divisor from that of the dividend when dividing by
powers of the same base. For example,

(3 X 10=*) X (7 X 10^) = 3 X 7 X 10^ X 10^= 21 X 10^^^^^ = 21 X 10^

(4 X 100 X (6 X 10-^ = 24 X 10^^ * ^-''' = 24 X 10*

(15 X 10^ -f- (5 X 10^ = ^! j^ ]Z = 3 X 10^*^-^^ = 3X10*

(12 X 10^ - (2 X 10-«)

5 X 10^

12 X 10^

2 X 10-^
= 6 X W-^-'^' = 6 X 10^2

Now that we have mastered operations with powers of 10, let us

return to Example 2 and solve it in a much easier way.

Solution of Example 2 (new method): 3.5/xa = 3.5 X 10"® ampere;

= 2 X 10^ ohms = 2 megohms
E _ 7 volts

hence, K -
^
_
^^ ^ ^^^ ampere

Example 3: A pair of push-pull power output tubes have a com-

mon 700-ohm cathode resistors through which a total plate current

Fig. 104. Bias voltage can be

measured with a voltmeter or,

as in this case, it can be calcu-

lated using Ohm's Law. Direct

measureme7it is possible only if

the equipment exists and is in

working order. Calculation is al-

ways possible if the required in-

formation is available.

I R=700n I=80MA

]]

BIAS VOLTAGE E=.08A X 700n = 56V

of 80 ma flows (See Fig. 104). What (bias) voltage is developed

across the cathode resistor?

Solution: The plate current of 80 ma = 80 X 10"^ ampere = .08

ampere. Hence, the voltage E developed across the resistor

E = IR = .08 ampere X 700 ohms = 56 volts

Or E = IR = (80 X 10"^) X (0.7 X 10^) = 56 volts.

lA value of 700 ohms is used here to make the problem easier. In actual practice we
would use a 680-ohm resistor. The difference in the final answer is about a volt and
a half.

15



PRACTICE EXERCISE 1

1. Change 5 microvolts into volts; 15 ma into amperes, and 2.5

megohms into ohms. (Answers: .000005 volt; .015 ampere; 2,500,-

000 ohms)

2. A tube filament draws a current of 0.45 ampere when 122 volts

is applied. What is the "hot" filament resistance? Answer: (271

ohms)

3. What is the current drawn by a 20,000-ohm bleeder resistor

connected across a B-plus supply of 375 volts? (Answer: 18.75 ma)
4. Compute the dc voltage drop across a 200-ohm choke coil rated

at 125-ma current flow. (Answer: 25 volts)

5. Express in powers of 10 and as whole numbers or decimals the

following prefixes to units: mega, kilo, milli, micro, micromicro.

(Answers: mega = 10^ = 1,000,000; kilo = 10^ = 1,000; milli =
10-3 = .001; micro = 10-« = .000001; micromicro =
10-12 = .000000000001)

6. Convert 250 micromicrofarads (/x/xf) into microfarads (/if)

;

.00005 farad into fxi; 250,000 ohms into kilohms and megohms; 435

millivolts (mv) into volts and microvolts (/-tv); 896 microamperes

(fjid) into milliamperes (ma) and amperes. Answers: 250 /x/xf =
.00025 /xf; .00005 farad = 50 /xf; 250,000 ohms = 250 kilohms =
0.25 megohms; 435 mv = 0.435 volt = 435,000 /xv; 896 /xa = 0.896

ma = .000896 ampere)

Resistor arithmetic

Fig. 105 is a typical textbook problem in electricity. Five resistors

of various values have been hooked in series across a 250-volt supply

and you are asked to compute the total series resistance of the cir-

cuit and the current flowing in it. To solve this problem in the

Rl R2
.AAA

R3 R4 R5
A_AA_

O.I MEG 47K 2.7K 820il lOil

l = p ^

-3 E=250VO

Fig. 105. Before using Ohm's Law in this

circuit, we would need to calculate the

total value of the resistors in series.

16



conventional manner, you would first use the fact that the total

resistance (Rt) in a series circuit is the sum of the individual re-

sistances. This is usually expressed by the formula:

Rt = Ri + R2 + R3 + R4 + R5 + . . . Rn

You would then apply Ohm's Law to compute the current:

I = E/R.

Let's go through with it to see what we're up against.

Rt = 0.1 megohm + 47K -f 2.7K -h 820 + 10

Converting to common units (ohms) and adding

100,000

47,000

2,700

820
10

150,530

we obtain a total resistance Rt of 150,530 ohms. Hence, the current

E 250 volts
^ ^ . ...••.

I = —-=
, ^- ^--—-— = ? amperes. Carrymeout the mdicatedR 150,530 ohms ^ ^ ^

division 250 - 150,530 - .00166

.00166

150,530) 250.00000
150 530

99 4700
90 3180

9 15200
9 03180

12020

Thus, the final answer is .00 1 66 ampere or 1 .66 ma.

Now let's look at the problem from a practical viewpoint. Say

you are using 10% commercial resistors to make up the combina-
tion. Since "percent" literally means "from hundred," this means
that each resistor may differ from its indicated value by as much

as 10 parts in 100, or yr— = 0.1. This is also true for the entire

resistor aggregate, which may be as much as 10% above or below
the total computed resistance.

17



Roughly, therefore, the tolerance in the total resistance is 0.1 X
150,000 = 15,000 ohms, so that the actual total resistance may vary

anywhere from 135,000 ohms (15,000 ohms below the computed
value) to about 165,000 ohms (15,000 ohms above the computed
value).

It would be the height of folly, therefore, to consider the 10-ohm
or even the 820-ohm resistor in the total result. The remaining

resistance values should be rounded off to the nearest 1,000 ohms,

Ri RO.

0.//V\E6 ^7K

R3 %i a^

tXPS^ fOJt-

l«? — 4-

R4 and R5 aren't such important members of this series group.

which is well within the 15,000-ohm total tolerance. Doing this, we
can determine by inspection that Rl = 100,000 ohms, R2 = 47,000

ohms and R3 — 3,000 ohms (approximately), while R4 and R5 may
be neglected. Mentally adding these three resistance values, we ob-

tain 100,000 -f 47,000 + 3,000 == 150,000 ohms total resistance.

Hence the current

E _ 250

R ~ 150,000

250 5

150X103 =T^ 10- ampere = 1.67 ma

Note how close the answer is to our earlier result.

If you used 1% precision resistors, the total resistance might

differ by as much as .01 X 150,000 = 1,500 ohms from the com-

puted value. Again the 10-ohm resistor may be neglected entirely,

while the remaining resistance values can be rounded off to the

nearest 100 ohms. Doing this, you obtain for the total resistance,

Rt = 100,000 + 47,000 + 2,700 + 800 (approximately)

= 150,500 ohms

TT T 250 volts f.r..nc 1 ^^Hence, current I =T77m^—; =" .00166 ampere or 1.66 ma.
150,500 ohms ^

Here the division may be performed long-hand or with a slide

rule of at least 1% accuracy.

18



Significant figures and required degree of accuracy

The resistance problem we've just discussed illustrates that in

electronics—as anywhere else in real life—we necessarily deal with

approximations and never achieve 100% accuracy, in contrast to

pure mathematics. An appreciation of the degree of precision of

measurement possible in practice and the required accuracy of

your calculations can save you countless hours of needless drudg-

ery. For instance, in determining the reactance of a coil by the

formula 27rfL, you won't be tempted to use 8.14159 for tt, if the

inductance (L) of the coil is only within 10% of its nominal value.

Before working with numbers, ex-

amine them carefully. Whether you

wish to tamper with the numbers
depends on how precise youranswer

must be.

The numbers used in expressing a measured value, called signi-

ficant figures, generally indicate the precision of measurement.

For example, a current value of 25 ma, containing two significant

figures, indicates a precision of measurement to the nearest

(whole) milliampere. If the value is stated as 25.0 ma, it indicates

that the measurement has been carried out to the nearest terith

of a milliampere (i.e, the current is 25 ma, not 25.3 ma or some
other value.)

The zero after the decimal point, in this case, is significant and,

hence, the number has three significant figures. Similarly, a cur-

rent value of 100.000 ma has six significant figures, the three zeros

after the decimal point indicating that the measurement is pre-

cise to the nearest thousandth of a milliampere. As a final illustra-

tion, a resistance value of 859.7 ohms has four significant figures,

but if the number is rounded off to 860 ohms, it will have only

three significant figures.

Rounding Off: When a number is expressed to a greater de-

gree of accuracy than is necessary, it is usually rounded off by drop-
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ping one or more digits at the right. The rule for rounding off a

number is very simple: if the last digit (at the right) is less than 5,

simply drop it; if the last digit is 5 or more, drop it and increase

the preceding digit by 1. For example, in successively rounding
off the value for tt = 3.1415926536, the values obtained are

3.141592654, 3.14159265, 3.1415927, 3.141593, 3.14159, 3.1416,

3.142, 3.14, 3.1, and finally 3.

Absolute and Relative Error: If you approximate a value from
a more exact known value, then the difference between the two
values is known as the absolute error. Thus, if you use an approxi-

mate value of 3.7 volts for the exact value of 3.667 volts, the

absolute error is 3.7 — 3.667 = 0.033 volt. Similarly, using an ap-

proximate value of 0.5 ampere for the exact one of 0.54 ampere
results in an absolute error of 0.5 — 0.54 = —0.04 ampere. Note
that the absolute error is negative when the approximate value is

smaller than the exact value, and positive when the approximate

value is greater than the exact one.

The ratio of the absolute error to the exact value is known as

the relative error. Using the previous examples, the relative error

033
in the first case is i"^^ = 0.009 (approximately), and in the sec-

ond case it is
' = -0.074 (approximately).

Note that the relative error is a pure number (without units),

since the units on top and bottom of the ratio cancel. It is most

frequently expressed as percentage error, which is the relative er-

ror multiplied by 100. Using the previous examples again, a rela-

tive error of 0.009 is equivalent to 0.009 X 100 = 0.9% and an er-

ror of -0.074 is equivalent to 0.074 X 100 = 7.47o. (Usually only

the magnitude of the percent error is of interest and the sign is

dropped.)

In most practical calculations a one percent (1%) error—the

usual slide-rule accuracy—is permissible, since the precision of

measurement in electronics rarely equals or exceeds this value.

Except for critical circuits, electrical and electronic components,

such as resistors, capacitors and coils, have a tolerance of ±:10%,

which means that they may be up to 10% higher or lower than

the indicated (nominal) value.

Tubes and transistors usually have an even greater margin of

error, and the performance of most electronic circuits appears to

be unaffected by as much as 20% tolerance from the stated speci-

fications. In a few sensitive circuits, where such factors as fre-
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quency stability or bias voltage may be critical, precision com-

ponents with d=l% or even itzO.1% tolerance may be used.

Approximating Numbers: Now we have a basis for approximat-

ing or rounding off numbers to a required degree of accuracy.

You can use the following rule of thumb. To approximate a num-
ber within a given relative error (expressed as a decimal), round off

the number so that the number of digits retained which are not

zero is one greater than the number of decimal places in the rela-

tive error. Lest this should sound complicated, let's try a few

examples.

Example 1 : The exact value of a resistance, as determined on a

Wheatstone bridge, is 29,735.4 ohms. Round off this value to

successive relative errors of .01%, 0.1%, ITo and 107o.

This is the basic circuit of the Wheatstone

bridge. The resistances (A, B, C and D) have

a special relationship when meter M reads

zero. The relationship is:

A — ^
B ~ D

If B, C and D ore 10, 20 and 30 ohms,

respectively, and A is unknown, it con be
determined by solving the formula for A
and substituting the known values. Thus,

multiplying both sides of the equation by B:

_ IPX 20

30
::= 6.67 ohms

Solution: An error of .01% = .0001. Since there are four deci-

mal places in the error, by the rule above we should round off to

five digits. Hence 29,735.4 ohms becomes 29,735 ohms within

.01%.

Let's check this answer: the absolute error is 29,735 — 29,735.4

-0.4
= -0.4; hence, the relative error is or. r^^r^ ,

: TT —
30,000 (approximately)

-.000013 or -.0013%. This is much less than the required accuracy

of .01%.

An error of 0.1% = .001. Since there are three decimal places,

we retain four digits, and the value is rounded off to 29,740 ohms
(not counting the zero). Again checking, the absolute error is

29,740 — 29,735.4 = 4.6; hence, the relative error is approximately
5

gQQQQ
= .000167, or 0.0167% (i.e, less than 0.1%).
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For an error of 1% or .01 we retain three digits (not counting

zeros), and accordingly we round off the exact value to 29,700

ohms. Since the error incurred is about 35 (i.e., 29,735 — 29,700),

and 1% of the exact value is approximately 300 (i.e., .01 X 29,735),

we are clearly within the required accuracy.

Finally, for a permissible error of 10% or 0.1, we need retain

only two digits (ignoring zeros) and, thus, we round off to 30,000

ohms. Again, the error of 265 (approximately) is evidently less

than 10% of 29,735, which is approximately 2,974.

Example 2: A precision galvanometer reads a current of

.0013275 ampere. If a precision (relative error) of 0.1%, is re-

quired, what value should be used? What is the value for a 1%
relative error?

Even with the use of o precision meter, we can round

off our reeding, depending on the precision we wont

in our answer.

Solution: For a precision of 0.1%) or .001 (three decimal places),

we retain four digits. The exact value is then rounded off to

.001328 ampere, or 1.328 ma. For a 1% or .01 relative error, we
need retain only three digits, hence the value becomes .00133

ampere, or 1.33 ma.
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Error in Adding Numbers: We have seen in the earlier re-

sistance example that there is little point in adding numbers to

a greater degree of accuracy than the precision of measurement or

tolerance of the separate values warrants. In rounding off num-
bers for addition, we would like to have some idea of the total

error incurred, both the absolute value and the percentage. The
absolute error in addition is determined very easily: it is simply

the sum (with proper regard to + or - signs) of the absolute errors

of the individual numbers. If you round off to three decimal

places, for example, the absolute error of each number cannot be

more than one-half of .001, or .0005. Hence, when adding up to

20 numbers, each rounded off to three decimals, the absolute error

is less than 20 X .0005 = .01. Thus, if the addition of up to 20

numbers is to be correct to two decimal places, round off each

number to three decimal places. If more than 20 numbers are in-

volved, round off to four decimal places. In general, when adding

up to 20 numbers, retain one more decimal place than the re-

quired accuracy of the result.

Example: Resistances that have measured values of 4.3416,

9.8164, 0.7295, 21.684, .0037, 762.123 and 1.2845 ohms are con-

nected in series. Find the total resistance correct to one decimal

place.

0.7X9^
vV\A vVSA vNA/>

—

/.xS/t

By first considering the accuracy we want, we can

round off numbers, simplifying our work. In this cose

one resistor con be eliminated from any considera-

tion since it contributes so little to the final result.

Solution: The total resistance is the sum of the individual

resistances. Since the answer is to be correct to one decimal place,

we must retain two decimal places for each number during
addition.
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Hence, 4.34 ohms
9.82 ohms
0.73 ohms

21.68 ohms
0.00 ohms

762.12 ohms
1.28 ohms

799.97 ohms

Rounding this result off to one decimal place, we obtain 800.0

ohms for the total resistance. Note that the answer has four (not

three) significant figures.

How would we find the relative or percentage error incurred

in addition. Following the same definition as before, the

_ , . - Absolute error of sum
Relative error of a sum = t^

Sum

What we really would like to know, however, is how much
each value can be off (that is, its absolute error) for a given per-

missible percentage or relative error in the sum. This is easily

obtained from the definition equation above. Multiplying both
sides by the sum, we obtain

Absolute error of sum = Relative error of sum X Sum

As we have already seen, the absolute error of the sum is also

the product of the absolute error of each value times the number
of values:

Absolute error of sum = Absolute error of each

value X Number of values

We can equate the right sides of these two equations, since their

left sides are equal. Hence,

Absolute error of each value X Number of

values = Relative error of sum X Sum

From this equation we obtain the desired result, by dividing both

sides by the "Number of values":

Absolute (permissible) error of each value

_ Relative error of sum X Sum
Number of values

The only trouble with this formula is that we have to know the

sum in advance to estimate the permissible error of each value.
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For this purpose, however, a very rough mental estimate of the

sum will do. An example will clarify the procedure.

Example: Find the total series resistance of the resistors listed

in the previous example, first to 1% and then to 0.1% accuracy.

Solution: A very rough estimate of only the large numbers
shows that the sum is close to 800. Hence, for a permissible error

in the sum of 1% or .01 and for seven values,

Au 1 / • -u, X 1 -01 X 800
, ,

.

Absolute (permissible) error per value = = = 1.14

Since each value can be off by more than I, we can round off to

the units column, thus dropping all decimal places:

4
10

1

22

762
1

800 ohms

The answer, accurate within \%, therefore is 800 ohms (which is

not the same as 800.0 ohms obtained in the previous example).

For a permissible error in the sum of 0.1% or .001, the

Au 1 1
-001 X 800 ..,.

Absolute error per value = = = U.114

To stay within an absolute error per value of less than 0.114, we
must retain at least one decimal place in each number. Adding
again,

4.3

9.8

0.7

21.7

0.0

762.1

1.3

799.9 ohms

we obtain an answer of 799.9 ohms, accurate within .001 or 0.1%.
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Resistors in parallel

After this digression into error (relative or absolute), let us re-

turn to electricity. You will recall that the equivalent resistance

(R) of two resistors (Rl and R2) in parallel is the product of the

two resistance values divided by their sum. This is expressed by
the familiar mathematical formula:

R
Rl X R2
Rl + R2

Incidentally, this equation also holds for two inductors (LI and
L2) in parallel or for two capacitors (CI and C2) in series, if you
substitute the appropriate symbols.

Although the formula is relatively simple to handle, a lot of

time is wasted by some people to get accurate answers, when an

approximation will do equally well.

Example 1: A phono pickup is connected to the input of an

amplifier with a 56,000-ohm input resistance. If the cartridge is

shunted by a 0.229-megohm resistor, what is the total load into

which the pickup is working? (See Fig. 106.)

PICKUP

Fig. 106. Problems in electronics often
turn out to be nothing more compli-
cated than calculating the total value

of resistors in parallel.

Solution: Since the cartridge shunt resistor and the amplifier

input resistance are in parallel, we can substitute in the formula

for two parallel resistors:

Load Resistance R
56 X 10^ X 229 X 10^

56 X 10^ + 229 X 10^

56 X 229 X 10^

285
(Cancelling 10^)

Working this out laboriously by long-hand, we obtain a load re-

sistance of 45,000 ohms, the recommended value for this cartridge.
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If we wanted to get an approximate estimate, we might have written

_ 56 X 230 X 10^ 280 X 10^
. „ „ „ „ , ^R =

^7^3
= ^ 46,000 ohms*

since 56 goes approximately 5 times into 285. The absolute error

incurred by this approximation is 46,000-45,000 = 1,000 ohms,

and the relative error is
'

^^^
= .022, or 2.2%, which is well

within the tolerance of the usual 10% resistors.

Relative Error in Multiplication: Our intuitive estimate in

the last example was good since we were well within the permis-

sible error. We would, however, like to have some rule to deter-

mine the relative error in advance, so that our estimates will have

the required accuracy. The rule for approximating factors in mul-

tiplication is simple: Retain one more digit in each factor than

there are decimal places in the permissible relative error.

Example: Multiply 3.1415927 (tt) by 2.7182818 (e) to an ac-

curacy of 1%.

Percentage of permissible error

depends on the application.

Sometimes a small error can be
a catastrophie.

Solution: For an error of 1% or .01 we should retain three digits

(one more than in .01) in each factor. Hence,

3.14 X 27.2 = 85.408

Compare this to the more exact product of 85.39734.

When several factors are present in combined multiplication

and division, the relative error of the result is approximately the

difference between the (algebraic) sum of the relative errors of

^ represents "approximately equal to"
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the factors in the numerator and the sum of the factors in the

denominator. Again, retaining one more digit in each factor than

decimal places in the permissible relative error is a safe procedure.

You can use fewer digits, if you judiciously balance the errors in

the factors. Returning to the example of the pickup load re-

sistance:

^ 56 X 229 X 10^
^

285

Assume we want the result within 10% or O.I. Retaining alter-

nately one and two digits,

„ 60 X 230 X 10^ 230 X 10^ ac r^r^f, u u c • uR =
^TT^TT

= z = 46,000 ohms, as before, with

a 2.2% error.

Some Multiplication Tricks: Here are a few tricks, based on
algebraic formulas, that come in handy when multiplying:

1

.

a (b - x) = ab - ax

This formula is useful when one of the two factors to be multi-

plied is a little less than an easily multiplied whole number.

Example: Multiply 945 X 998.

945 X (1,000-2) = 945,000-1,890 = 943,110

2. (a -f x) (a - x) = a- - x^

This result is very handy, when one of the factors is greater and
the other is less by the same amount than an easily squared number.

Example 1: Multiply mentally 53 X 47.

Comparing with Formula 2, above,

(50 + 3) (50 - 3) = 50^ - 3^ = 2,500 - 9 = 2,491

Example 2: Multiply 195 X 205.

Since the order of multiplication doesn't matter, 195 X 205 =
205 X 195, or (200 -f 5) (200-5) = 200—5^ = 40,000-25 = 39,975.

More Than Two Resistors in Parallel: The equivalent re-

sistance (R) of a number of resistors (Rl, R2, R3 . . . Rn) connected
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in parallel is equal to the reciprocal of the sum of the reciprocals

of the individual resistance values. This is expressed mathemati-

cally by:

R =
1

Rl
1 1

^ R2 "^ R3 "^ • +
1

Rn

The proper use of this formula requires skillful and judicious

handling of reciprocals, ordinary fractions, decimal fractions, and
approximations, wherever possible.

Example 1: Resistors of 4, 7 and 14 ohms are connected in

parallel across a 6-volt battery. What is the equivalent resistance

of the combination and the total current drawn by it? (See

Fig. 107.)

Fig. 107. When resistors are connected
in parallel, the totM resistance is always
less than the resistor having the small-

est value. The total current is the sum
of the currents flowing through the

individual resistors.

+

-=-6V

']uii^

R«?

•4ft >7ft \AQ,

Solution: Substituting in the formula for the equivalent re-

sistance, R = -; z 7- = ? ohms.
1

+ y + T4

There are three common proper fractions (under the large frac-

tion bar) which have to be added. To do this, the fractions first

have to be converted to equivalent fractions that have the same
common denominator. We can find the lowest common denomi-
nator (or LCD) by looking for the smallest number that can be
divided by all three denominators. In this case, by inspection, the

LCD is 28. (In more complicated cases, you'll have to split the

denominators into their factors and then find the least common
multiple of all numbers.)

Hence,

R 1

28
+

28
+ _2_

28
J_3_

28

-7-^ = 2.154 ohms.
16

The current, therefore, is I = -;r =
6 volts

R 2.154 ohms
2.786 amperes.
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It isn't always convenient to solve this type of problem using

common fractions, as is shown in the next example.

Example 2: A 150-volt plate-voltage supply feeds three electron

tubes that have equivalent plate-circuit resistances of 850, 3,900

and 4,700 ohms, respectively, as shown in Fig. 108. Compute the

total load resistance and the current drawn.

Fig. 108. This problem can be solved
in tiuo ways. You can find the combined
value of the resistors and then use
Ohm's Law to find the total current

^j^ Or, you can find the current through
each resistor and then add the indi-

vidual currents to get the total. You
could then use Ohm's Law to find the

total resistance.

Solution: Treating this again as a simple parallel circuit, the

total load resistance,

R = —j
-, z— = ? ohms.

+ -TTF^-i-
850 ' 3,900 ' 4,700

Obviously, there is no simple way of combining these fractions.

We'll therefore have to compute the value of the three reciprocals

by changing the common fractions into decimals. This can always

be done by dividing the numerator by the denominator. You have

several choices in going about this. You can do the division long-

hand, which is accurate to as many decimal places as you wish,

though very time-consuming. You can use a slide rule, obtaining

an accuracy of about \% for a 10-inch rule.

As we shall see in a later chapter, the reciprocals may also be

computed rapidly and very accurately by means of a table of five-

place logarithms. If you have mathematical tables handy, which

you should, you will probably find a table of reciprocals, where
you can look up the reciprocal values directly.

Doing it long-hand or by means of mathematical tables, you
should have:

R^ !

.0011765 + .0002564 -f .0002128

Adding, R =
^

= 607.64, or 608 ohms, approximately.

T-U r . , T E 150 volts r^c^AnTherefore, the total current I =Tr = ^^o .

= 0.247 ampere.
R 608 ohms ^
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If you have neither tables nor a slide rule and want to save

time in computation, you might estimate the result as follows:

R= ' '

1 1 1 ~ 1 1 1

+
850 ' 3,900 ' 4,700 900 ' 3,600 ' 4,500

rounding off judiciously, with both positive and negative errors

The LCD of the three fractions is 18,000. Hence,

^ ^ ^^'^^^ Ann u= 600 ohms.
20 + 5 + 4 29 29

18,000 18,000

The absolute error in this approximation is roughly 600 - 608 =
—8

-8 ohms and the magnitude of the relative error is Tyjo"— -.013, or

-1.3%. With the usual 10% resistors, this answer would be quite

acceptable.

PRACTICE EXERCISE 2

1. How many significant figures are there in 3.14159; 345,000;

1,000,000; 1.000000; 0.000001; 0.0327850. (Answers: 6, 6, 7, 7, 1,6).

2. Round offe = 2.7182818285 successively to one decimal

place. (Answers: 2.718281829; 2.71828183; 2.7182818; 2.718282;

2.71828; 2.7183: 2.718; 2.72; 2.7).

3. What is the absolute error incurred when a value for e = 2.72

instead of 2.71828 is used in the previous problem? What is the

relative and the percentage error? (Answers: .00172, .0006327, or

.06327%).

4. A resistance measured with a Wheatstone bridge turns out to

be 212,667 ohms, (a) If a value of 212,700 ohms is used for compu-
tation, what are the absolute, relative and percentage errors? (b)

Will the error be within 1% if a value of 213,000 ohms is used?

(Answers: (a) 33; .00011 approximately; .011%. (b) Yes)

5. A Geiger tube and associated counter register 6,789,274

counts per minute (cpm). Round this value off to an accuracy of

.01%, 0.17o» 17o and 10%. (Answers: 6,789,300 cpm; 6,789,000

cpm; 6,790,000 cpm; 6,800,000 cpm)
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6. Precision resistors with values of 2868.15, 3380.43, 845.31,

27.84 and 343.50 ohms are put in series. What is the total resistance

within 1% accuracy? (Answer: 7,470 ohms)

7. (a) What resistance must be placed in parallel with an 8-ohm
resistor to make the equivalent resistance of the combination equal

to 7 ohms? (b) If an available resistor of 60 ohms is used, what is

the approximate relative error of the combination compared to

7 ohms? (Answers: (a) 56 ohms, (b) Less than 1%—actually 0.84%)

8. In an electrical problem the following expression is to be

3 1416 X 8 X 24 44
computed:

10.94 X 5.22 X 54.682
' ^^^^ ^^ ^^^ approximate

result and the approximate relative error if, instead, the expression

3 2 X 8 X 24

10Q V 5 2 y 55
^^ used? (Answers: 0.197; .002 or 0.2% error)

9. Multiply the following numbers rapidly, using the appro-

priate algebraic formula as shortcut: 1,225 X 99; 198 X 202;

25 X 98 X 35. (Answers: 121,275; 39,996; 85,750)

10. Resistors of 2,500, 10,000 and 50,000 ohms and 100 kilohms

are connected in parallel. What is the equivalent resistance?

(Answer: 1,886.8 ohms)

loov R=?< >20fl >5fl Seon
Fig. 109. With some adjustment, num-
bers that are arukward to handle be-

come fairly easy. The resulting error

is often within limits that can be
tolerated.

11. A 100-volt source is connected into a series-parallel circuit

consisting of five resistors, as shown in Fig. 109. What single equiv-

alent resistance can replace the series-parallel combination and

what is the total line current flow? (Answers: 20 ohms, 5 amperes)
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CHAPTER 2

Network Algebra

ARITHMETIC deals with the rules and laws of manipulating

numbers. Algebra has essentially the same rules, but the manip-

ulations are with symbols. By using symbols, such as a, b, c, x, y, z,

A, C, L, Z, etc., the rules and operations of algebra assume a univer-

sal validity, which is well suited to the problems and formulas of

electronics and engineering in general. Of course, in any specific

problem you must substitute particular numbers and values in the

algebraic formulas and all computations then become purely arith-

metical, as you will recall from our "experiments" with Ohm's
Law. Thus, perhaps the main advantage of using algebra in elec-

tronics is that it allows us to solve most types and classes of problems

in advance by manipulating generalized symbols which can stand

for the particular values of any specific practical problem.

The symbols, or literal numbers, of algebra may be almost any

letter in any alphabet of any language you can think of. Usually,

the first few lower-case letters of the alphabet—a, b, c, d, etc.—stand

for known numbers (5, 3.14, 659, etc.), while the last few letters—

u, v, w, X, y, z—stand for unknown quantities. The following table

lists some of the most frequently encountered symbols in electrical

work and electronics. A few commonly used Greek symbols and
their meaning are also listed.

There just aren't enough letters in the various alphabets to cover

all applications of letters as symbols, and so identical letters are

often used for several functions. The problem is helped through

the use of upper and lower case letters, and also by having super-

script and subscript notation. A superscript is a number or letter

written slightly above and adjacent to a symbol, such as 10^ or

(a -f- b)^ In these two examples, the number 2 is a superscript. A
subscript is written adjacent to and slightly below the symbol,

such as Xl or Xc.
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Symbols Frequently Used in Electronics

Symbol

A
C
E
e

Forf
G
I or i

J

k
L
M
N

Q
R
T
V
X
Xi.

Xc
Y
z

z

a (alpha)

cc (alpha)

P (beta)

€ (epsilon)

e (theta)

X (lambda)

fi (mu)

7r(pi)

n, 0) (omega)

0) (omega)

Meaning

Amplifier gain

Capacitance (farads)

Emf or voltage (volts)

Charge on electron (1.6 X 10"^® coulomb)
Frequency (cycles per second = cps)

Conductance (mhos)

Current (amperes)

Imaginary number or j-operator = \/^
Dielectric constant, coefficient of coupling

Inductance (henrys)

Mutual inductance (henrys)

Number of turns

Quality factor = =— , Transistor
R R

Resistance (ohms)

Transformer

Electron tube (valve)

Reactance (ohms)

Inductive reactance (ohms) = 27rfL

Capacitive reactance (ohms) = l/27rfC

Admittance (mhos) = 1/Z

Impedance (ohms) = R 4- j(Xl-Xc)

Impedance magnitude = VR^ + (Xl-Xc)^

Current gain in transistors = -r- Vc constant (change

in collector current produced by change in emitter

current with collector voltage held constant)

Attenuation constant of rf line

Phase constant of rf line, or feedback factor

Natural base of logarithms = 2.7 1828 (in engineering]

dielectric constant

Angle (degrees)

velocity of wave

frequency
Tube amplification factor

Ratio of circumference to diameter = 3.14159

Symbol for ohms
Angular velocity = 27rf

Wavelength
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Signed Quantities and Graphs: Another distinguishing char-

acteristic of algebra is that all quantities have either plus or

minus signs, indicating that they are either greater (+) or less (-)

than zero, respectively. Dealing with negative symbols or num-
bers should be familiar to you from your daily experience with

the thermometer or, for that matter, from handling positive (+)
or negative (-) errors in the last chapter.

A simple way of looking at signed quantities is to portray them
graphically. Fig. 201 illustrates the familiar rectangular coordinate

equation: y = 4*2x

Y AXIS

TABLE OF VALUES

X y

-5 -6
-4 -4
-3 -2
-2

-1 2
4

1 6

2 8

3 10

+4 12

5 14

l-y,;>)cJ\
1

/w - /

lOH

9
8-
7-

6-

5-

4

•2

H

Fig. 201. The straight line drawn
on this graph represents the

equation y =z 4 -\- 2x.
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system, consisting of a horizontal X-axis and a vertical Y-axis and

a series of squares on graph paper. The perpendicular intersection

of the two axes marks the zero point (0). Values of x to the right

of the Y-axis are considered positive, those to the left are negative.

Values of y above the X-axis are considered positive, those below

the X-axis are negative. It thus becomes possible to assign a

unique point on the graph paper for each pair of values, +x or

-x and+ y or -y. This is written (zhx, =by). For example, the point

.;0, 0) is the intersection of the X and Y axis; the point (+5, -f 3)

is five squares (units) to the right of zero along the X-axis and
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three units above zero along the Y-axis. The point (-7, +5) is

seven units to the left of zero along the X-axis and five units up
along the Y-axis. The point (-6, -2) is six units to left along X
and two units down along Y. Finally, the point (-f 3, -8) is three

units to the right along X and eight units down along Y.

Since every pair of values (x, y) defines a point, an algebraic

equation expressing a relation between the independent variable.

x

and the dependent variable y may be plotted by assuming various

values for x and computing the value of y in each case. For ex-

ample, in the illustration (Fig. 201) we have plotted the algebraic

equation

y = 4 + 2x

by assuming various arbitrary values for the independent variable

X, substituting them in the equation and computing the resultant

value of the dependent variable y. Thus, when x = 0,

y = 4 + 2(0) - 4

and we have the pair of values (0, -f 4). This value of y (+4) is

called the y-intercept, since it marks the intersection of the graph

with the Y-axis (x = 0). When x = -1, we obtain y = 4 -f 2 (-1) =
4 -f (-2) = 2, resulting in the point (-1, 2) and when x = -2, y =
4 -h 2 (-2) == 4 4- (-4) = 0, resulting in the point (-2, 0). This point

(x = -2, y = 0) is called the x-intercept, since it marks the inter-

section of the graph with the X-axis (y = 0).

You can always obtain the y-intercept directly by setting x = 0;

that is, for X = 0, y = 4 + 2(0) = 4, as above. You can obtain the

x-intercept directly by setting y = in the given equation. Thus,

for y = 0, we obtain = 4 + 2x, and solving for x:

2x = -4 (transposing)

X = -4/2 = -2 (dividing by 2)

Hence, the x-intercept is -2, as was obtained previously.

By continuing the process of assuming values for x and com-

puting y from the equation, you can make up a table of values,

listing pairs of corresponding x and y values that signify points

of the graph. Thus, in the present example (Fig. 201), the table of

values looks like this:

X...-5-4-3-2 -1 -fl -f2 -f3 -f4 -f 5 . .

.

Y...-6 -4-2 0+2 +4 +6 -f8 +10 +12 +14...

Since the graph of the equation y = 4 + 2x is obviously a straight
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line, it would have been sufficient in this case to compute the

X- and y-intercepts and possibly one additional pair of values, to

make sure the graph is a straight line.

After obtaining three pairs of values and marking three points

of the graph, we can easily draw a straight line of indefinite length

through the points, as shown in Fig. 201. This line represents

the equation y = 4 -f 2x at every point and is indefinite in length,

When we plot the graph of an equation,

we begin to see that the equation has

meaning and isn't just o group of symbols.

since there are an infinite number of positive and negative values

for X and y. It is apparent from the example that any algebraic

equation can be represented by a graph or curve and, moreover,

any curve or line you can draw represents some sort of algebraic

equation. The branch of analytic geometry is exclusively devoted

to exploring the relations between curves and equations.

Rules of Signs: If you had any difficulties in following the

previous example, you have probably forgotten the rules govern-

ing signs and other elementary algebraic operations. Let us, there-

fore, briefly review these before getting into electronic applications.

Rule 1: To add numbers of like signs, assign the common sign

to the result.

Examples: +5 4-7 +12 +3 = -f 27, or 27 (the + sign may be

omitted)

5x -f 7x + 12x + 3x = 27x
-3 -8-12-5 -4 = -32

Rule 2: To add numbers of unlike signs, first add all positive and
negative quantities, subtract the smaller from the larger, and
place in front of your answer the sign of the larger combination.
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Example 1: Find the algebraic sum of -4, -8, +2,-1-6 and +10
Solution: -4 + (-8) =-12; 2 + 6 + 10 = 18; 18- 12 = 6

Example 2: Add 3y + 19y + 4y-45y
Solution: 3y + 19y + 4y = 26y;

26y - 45y = -(45y - 26y) = -1 9y

Example 3: Find the algebraic sum of

18a + 23b- 12a + 6b + 4a- 16a -39b + 3b

Solution: (18a + 4a) + (-12a- 16a) = 22a - 28a = -(28a- 22a)

= -6a; (23b + 6b + 3b) - 39b = 32b - 39b =
-(39b - 32b) = -7b; -6a + (-7b) = -6a -7b

Rule 3: To subtract signed quantities (i.e., find the algebraic dif-

ference) change the sign of the quantity to be subtracted and add

Learn the algebraic rules and you won't

have a "problem".

Example 1: 12 -(-16) = 12 + (+16) = 12+16 = 28

Example 2: 4c - (-5c) = 4c + (+5c) = 4c + 5c = 9c

Example 3: Find the algebraic difference between

( 1 2x -22x + 3x - 2x) and (-44x + 23x - 8x + 1 3x)

Solution: 12x+ 3x-22x-2x= 15x-24x = -9x

23x+ 13x-44x-8x = 36x-52x = -16x

-9x-(-16x) =-9x + (+16x) = 16x-9x = 7x

or: (12x-22x + 3x-2x)-(-44x + 23x-8x + 13x)

= (-9x) - (-16x) = -9x + 16x = 7x

Rule 4: The product of any two numbers that have like signs

(either " + " or ' -") is positive (+), and the product of a positive

and a negative quantity is negative (-).
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i
Examples: (-7) X (-3) = +21; (-3y) X (-9z) = +27yz

(4u) X (6v) X (9w) = 216uvw

(-8y) X (6z) = -48yz; (-3) X (8) X (6) = -144

I (5u)(3v)(-4w)(6x)(-2y)(10z) = +7,2000uvwxyz

Rule 5: The quotient of two quantities of like sign ("+ " or "-")

is positive, while the quotient of a positive and a negative quantity

is negative.

17
-^2 ^„ -39 ._ -44 X 12 ^__

Examples: ijg
= +2; — = -13; —4x-n ^

These are the basic rules for manipulating signed quantities.

There are some additional fundamental algebraic operations

which you should review at this time if you are not sure you can

do them without difficulty. You will be reviewing arithmetic at

the same time, since a substitution of numbers in the formulas

results in purely arithmetical operations.

Fundamental operations

I

Algebraic symbols can be
written in different ways-
all having the same value.

Rule 6: Quantities may be added in any order or grouping.

x + yH-z = y + x-fz = z + y + x

(x + y) + z = x-|-(y + z) = x4-y + z

Rule 7: Quantities may be multiplied in any order or grouping,

xyz = yxz = zyx = xzy = yzx = zxy

x(yz) = (xy)z = xyz

Rule 8: A coefficient (known quantity) outside a parenthesis means
that all terms within the parenthesis are to be multiplied by it;
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conversely, a factor common to all terms may be placed outside a

parenthesis.

a(x + y) = ax -f ay

ax -f ay + az = a(x + y + z)

Rule 9: A minus (-) sign preceding a parenthesis applies to all

terms within the parenthesis.

-(x - y + z) = -X - (-y) - (4-z) = -X + y - z

-(- X + y - z) = X -(+ y) -f z = X - y -fz

Rule 10: You may remove sets of parentheses or brackets "from the

inside out" or "from the outside in."

X - b [(y -z)] = X - [by - bz] = x - by + bz

or X - b [(y -z)] = x - b(y - z) = x - by 4- bz

Operations with fractions

The following rules review operations with fractions, irrespec-

tive of whether they are algebraic (literal numbers) or arithmetic

(ordinary numbers).

Rule 1 1 : Dividing by x is the same as multiplying by 1/x, provided

x is not equal to zero (written x ^^ 0).

J = y(T>(-^o)

Rule 12: You can multiply the numerator and denominator of a

fraction by the same quantity (k) without changing the value of the

fraction, provided k ^^O.

k

Rule 13: Dividing by a fraction is equivalent to multiplying by

the reciprocal of the fraction.

a _ ax

X
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Rule 14: Fractions with different denominators must be reduced

to their lowest common denominator (LCD) before they can be

added or subtracted.

X y z _ bcx acy abz _ bcx + acy -f abz

a b c
~ abc abc abc

~
abc

Rule 15: The product of two fractions is the product of their

numerators divided by the product of their denominators.

I

acx

byz

Operations with exponents (powers and roots)

The power of a quantity is the product obtained by multiplying

the quantity by itself a given number of times. The exponent indi-

cates the power to which the quantity is to be raised. Thus, x^ means
that X is to be raised to the fifth power, or x • x • x • x • x = x''

The quantity that is to be raised to a power is called the base. Thus,

y" means that the base, y, is to be raised to the nth power. The
following rules review operations with exponents.

Rule 16: An exponent outside a product within a parenthesis

applies to each of the factors within the parenthesis.

(xyz)"^ — x^'y^z"^

Rule 17: The product of two powers with the same base is the base

raised to a power equal to the sum of the exponents.

ymyn :^r ym + n

Rule 18: The quotient of two powers with the same base is the base

raised to a power equal to the exponent of the numerator minus the

exponent of the denominator.

ym

y" ^

Rule 19: Any quantity, except 0, with the exponent is equal to 1.

y" - 1 (y v^ 0)
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Rule 20: A base raised to a negative power is equal to the reciprocal

of the base raised to the same positive power (that is, take the

reciprocal and change the sign of the exponent).

1

Rule 21 : The nth power of the mth power of a quantity is the same

as the mth power of the nth power of that quantity, or the mnth
power of that quantity.

Rule 22: The numerator of a fractional exponent indicates a power

and the denominator a root, of the base quantity.

1

y™ = V^ = Vy (i-e-» the mth root of y)

.

(Note: The exponent 1 is understood and hence may be omitted.)

OR ^= (y")~ = -y/Y^ (hence: (v^y)" = Vf")

Special factors and expansions

The following special factors and their expansions (when multi-

plied) are frequently used in algebraic processes and you might do

well to memorize them.

To manipulate an algebraic quantity

you may need to expand it.
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I

Rule 23: (a + b)^ = a^ + 2ab + b^

Rule 24: (a - b)^ = a^ - 2ab + b=^

Rule 25: (a + b)" = a^ + 3a^b + 3ab^ + b^

Rule 26: (a -b)" = a^ - 3a=^b + 3ab=^ - b"

Rule 27: a^-b=^ = (a-b) (a + b)

Rule 28: a' - b' = (a - b) (a^ + ab + b')

Rule 29: a^ + b^' = (a + b) (a^ - ab + b*)

I

Mathematics is like o game; you must know
the rules before you con play.

Operations with equations (axioms of equality)

The rules listed below govern operations with equations and are

used in their solution.

Rule 30: Equal quantities may be added to, subtracted from, multi-

plied by or divided into both sides of an equation without destroy-

ing the equality. Division by zero (0) is not possible.

If y = z and a = b, then:

1: y+ a = z + b (adding equal quantities)

2: y - a = z -b (subtracting equal quantities)

3: ay = bz (multiplying by equal quantities)

y ^
4: — = -j- (dividing by equal quantities)

a D

(a =b ^0)

Rule 31 : Raising both sides of an equation to the same power, or

taking the same root, does not affect the equality.

y" = z" (raising to the same power)

'\^= yjz (taking the same root)
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PRACTICE EXERCISE 3

1. Compute the value of each side of the equation in Rules 6

through 18 and in Rule 21, when x = 2, y = 3, z = 4, a = 5, b = 6,

c = 8, n = 2, m = 3, and K == 7.

(Answers: Rule 6: 9. Rule 7: 24. Rule 8: 25 and 45. Rule 9: -3.

Rule 10: 8. Rule 11:3/2 = 1.5. Rule 12: 3/2 = 21/14 = 1.5.

T. 1 ,o ^ 5X2 10 ^1Rulel3:-3^=-3- =^ = 33

p 1 1^ 2 ^ 3 ^.4 48 + 60 + 60 14 , .

Rule 14: j -^ j + ^ = fgO ^To^^'^'
fi 1

Rule 15: ^77 = ^- Rule 16: 13,824. Rule 17: 243. Rule 18: 3.

Rule 21: 729.

2. Derive Rule 19 by letting n = m in Rule 18.

3. Derive Rule 20 by letting m = and y = z in Rule 18, and
applying Rule 19.

4. Find the value of each side of the equation in Rule 22 when

y = 4, m = 3 and n = 2. [Answer: 4^/^ = \^4= 1.587

43/2 = (yq[)3 = 8)]

5. Continue problem 1, above for Rules 23 through 29.

(Answers: Rule 23: 121. Rule 24: 1. Rule 25: 1,331. Rule 26:

-1. Rule 27: -11. Rule 28: -91. Rule 29: 341).

6. What's wrong with this demonstration: Let a = b; hence

1: a^ = ab (multiplying by a).

2: a^ - b- = ab - b^ (subtracting b-).

3: (a + b)(a - b) =: b(a - b) (factoring).

4: a + b = b (dividingby a-b).

5: 2b = b (substituting a = b).

6: 2 = 1 (dividing by b).

[Answer: dividing by (a - b) == 0]

7. If a = 2 and b = 3, what is the value of (a + b)-?

[Answer: 25]

8. If a = 2 and b = 3, what is the value of a^ + b^?

[Answer: 13]

9. Multiply (a + b) (a= - ab + b-) to show that it is equal to

a' + b\

10. What is the algebraic sum of (4a - 5b) - (-3a - 4b)?

[Answer: 7a-b]

44



Using algebra in electronics

Knowing a little algebra can be a very useful tool for daily work
in electronics. Though the rules and operations of the "dismal

science"—as mathematics has been called—may be dry as dust, solv-

ing problems arising in practice or deriving your own formulas for

specific situations can be enjoyable.

What to put in parallel: In Chapter 1 we gave the formula for

the resistance of two resistors in parallel:

R = Rl X R2
Rl + R2

and we cited as example (Fig. 106) a phono pickup, shunted by a

0.229-megohm resistor, which was connected to the 56,000-ohm

input termination of an amplifier. The question was to determine

the value of the total load resistance. This (by an application of the

formula) turned out to be 45,000 ohms. It would be more likely, in

practice, that you would have to determine what value resistor you

should place in parallel with the pickup and amplifier input to

obtain a recommended load of 45,000 ohms, for example. Of course,

you could do this easily for this particular case by letting R =
45,000, Rl =- 56,000 and solving for R2 (the value of the shunt

resistor) in the formula above. But if this problem occurs frequently

in your work, you'll want a general formula for the shunt resistor,

R2, \vhich applies to any particular case. We can derive this easily.

Servicing television sets? Finding the

value of resistors in series or parallel

con be a problem.
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Rl X R2 _
Rl + R2

2: Rl R2 = R(R1 + R2) Multiplying by (Rl + R2)

3: R1R2 = RR1 + RR2 Multiplying

4: Rl R2 - R R2= R Rl. Subtracting R R2; also called "trans-

posing"

5: R2(R1-R) = RR1 Factoring R2

6: R2 = J:^l Dividing by Rl - R
Ivl — K.

Step 6 is, of course, the desired formula for the shunt resistance,

R2, to be placed across the pickup. We can now substitute the spe-

cific values of our example (R = 45,000 ohms and Rl = 56,000

ohms) and obtain

^"^ Rl - R (56 X 10^) - (45 X 10^)

=
^^''56^!4''5x^ir^^

= 229 X 103 = 229,000 ohms

Hence, the shunt resistor should be 229,000 ohms, or 0.229 meg-

ohm. As another example of the use of the formula we just derived,

let us solve problem 7a of Practice Exercise 2:

Solution: Let Rl = 8 ohms and R = 7 ohms. Hence,

___ RRl 7X8 7X8 _ ,

Doing this or most other problems by "trial and error", is obviously

more inefficient and time-consuming.

How to Determine Ammeter Shunts

A problem that frequently comes up in practice is to extend the

range of a sensitive milliammeter to measure larger currents, pos-

sibly up to several amperes. You know, of course, that you can do

this readily by placing a shunt resistor across the meter movement,

through which the excess current—beyond the full-scale meter cur-

rent—is made to flow. Such a current-divider arrangement works

very well, provided the shunt resistor is a precision component of

exactly the required value, so that the accuracy of your meter will

be maintained. Let us derive a general formula for the required

shunt resistance, which will apply to all cases of this type.

In Fig. 202, the schematic circuit of such an ammeter shunt ar-

rangement, the symbols stand for:
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Rn, = the internal resistance of the meter movement
Rs = the shunt resistance

E = the voltage applied across the meter and shunt (for full-

scale deflection)

Im = the current through R„ for full-scale meter deflection

Is = the shunt current through shunt resistor R,

It = the total (meter 4- shunt) current = !« 4- I.

Since the voltage, E, applied across the meter is also across the

shunt, we can write:

E = LR« =^I.R. (1)

Hence, ^ I.R.
^"" R.

(dividing by Ra) (2)

and
U R.

I. R«
(dividing by I.) (3)

But since It = I. + I., I.= It - Im (subtracting I„)

AMMETER

(4)

Fig. 202. Basically, an ammeter and its

shunt represent a problem involving
resistors in parallel.

\

/PV-A^

,_ Im
Im ^

l ^ SHUNT . _tAAA •»

It—

Rf

-^^=h Zzt 1

Substituting Equation 4 for I, in Equation 3, we obtain

Im Rf

r^L ~ rt

R I

And solving for R, = i
^
^

It ~ Irn

(5)

(6)

It will be convenient to divide the numerator and denominator of

this expression by Im and obtain the solution in the form

R. =^ (dividing by L) (7)

Equation 7 is the desired expression for the shunt resistance R..
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Example: Extend the range of a 0-1-ma (full-scale) milliam-

meter with 75 ohms internal resistance to 10 ma, 0.1 ampere and
1 ampere. What should be the values of the three shunt resistors?

Solution: Letting R™ = 75, I™ = .001 and substituting in the

formula, we obtain:

1: For It = 10 ma, or .01 ampere

R- '^ 75 75

9
= 8.33 ohms^^

.01

.001 '

lO-I

2: For Ii = O.I ampere

r _ 75 75 75

99
= 0.758 ohm^^ -

O.I - 100 - 1

.001

In this case we might have been tempted to ignore the number 1 in

the denominator, since it is only 1/100 or 17o of the entire denomi-

75
nator. The answer (77^ = 0.75 ohm) would have been within 1%,

roughly, of the correct value, but adding to this the tolerance of a

1% precision resistor might have seriously affected the accuracy

of measurements.

3: For It = 1 ampere

75 75 75
^- =37- == roOOTTi ^1:000 = ^-^^^ ^^"^

.001

Since the number 1 is only 1/1000 or 0.1% of the entire denom-
inator, it is clearly permissible to ignore it and obtain the answer

(.075 ohm) to within 0.1% accuracy.

Kirchhoff's Laws

The bland assumption we made in the computation of the am-

meter shunts—that the sum of the meter and shunt currents equals

the total current—is actually not as self-evident as it may appear at

first. The example illustrates one of two network laws, first formu-

lated by the German physicist Gustav Robert Kirchhoff (1824-

1887). Kirchhoff 's Laws, rather than Ohm's Law (on which they

are based), are used constantly for determining the currents in the

intricate combinations of resistances and voltages called networks.

In brief, Kirchhoff's Laws state:
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1. The sum of the currents flowing into a junction of a circuit

equals the sum of the currents flowing out of the junction.

2. The sum of the electromotive forces (emf) (battery or gen-

erator voltages) around any closed loop of a circuit equals the sum
of the voltage drops across the resistances (or impedances) in that

loop.

You can see from Fig. 203 how you would go about using Kirch-

hoff's first law in a practical case. Here two branch currents (Ii and

KIRCHHOFF'S FIRST LAW'

OR I1 + I2-I3-I4-I5 =0

Fig. 203. The algebraic sum of the currents flowing toward a junction
must be equal to the algebraic sum of the currents flowing away from it.

L) are flowing into the junction J of a circuit, and three currents

(I3, I4 and I.^) are flowing out of the junction. By Kirchhoff's first

law, the sum of the currents flowing into junction J must equal the

sum of the currents flowing out of it:o

I1 + I2 I.. + I. + I:

By subtracting (I3 -f I4 -f I5) from both sides (i.e., transposing), we
may also write this equation:

This suggests that we can simplify Kirchhoff's first law somewhat
by assigning a plus (+ ) sign to all currents flo^ving toward a junc-

tion and a minus (-) sign to currents flowing away from the

junction. We may then rephrase the first law:

The algebraic sum of the currents at a junction is zero, or in

concise mathematical form:

Sum I =

49



(This is sometimes written S I = 0, where the symbol X (sigma)

stands for "the sum of.")

We can similarly simplify Kirchhoff's second law:

Sum of the emf's = sum of the voltage drops (around a closed

loop) or sum E = sum of the IR drops (around a closed loop)

(Recall that a voltage drop = I X resistance, or IR.) And, finally, in

concise mathematical form:

SE - SIR = (around closed loop)

This version of Kirchhoff's second law may be worded: the alge-

braic sum of the potential differences (voltages) around a closed

loop of a circuit is zero. When using this form of the law, you must
remember to assign a plus (H-) sign to a rise in potential (an emf)

and a minus (-) sign to a drop in potential (voltage drop).

Figuring Voltage Dividers: The design of a voltage divider-bleeder

to supply required vacuum-tube operating potentials at certain

currents is a good illustration of the use of Kirchhoff's laws. Let us

derive the general equations for a typical voltage divider (Fig. 204),

TO FILTER a ^
RECTIFIER E

lb2

Fig. 204. This is a series voltage

divider of the type found across

the output of power supplies. It

is sometimes also called a bleeder
since it puts a constant load on

the filter capacitors.

though in a particular case you would, of course, substitute the

values called for in the problem. Assume, an output voltage, E, is

available from the rectifier-filter of the power supply, and plate

voltages Ebi, with a plate current Li, and Eb2, with a plate current

Ib2, are to be supplied by the voltage divider. In addition, a mini-

mum bleeder current, I3, is to flow at all times for adequate voltage

regulation. What are the values needed for resistors Rl, R2 and R3
to provide these voltages and currents, and what is the required
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total current, I. We can find the required current easily by an appli-

cation of Kirchhoff's first law:

At the junction of Rl andR2:

1 = I2 + I.i (1)

^ At the junction of R2 and R3

:

I I2 = I3 -f 1.2 (2)

Substituting for L in Equation 1, the total current:

I = I3 + Ibl + Ib2 (3)

Since I3, Ibi and Ib2 are known, the required current, I, can be found

from Equation 3.

The values of resistors Rl, R2 and R3 may be determined by
applying Ohm's Law, in conjunction with Equations 1, 2 and 3.

At the junction of R2 and R3,

^
Et2 = I3R3; hence R3 = 4^ (4)

also, Ebi - Eb2 = I2R2. But from Equation 2, L = I3 + Ib2, hence,

Ebi-Eb2 = (I3 + Ib2)R2 and dividing by (I3 -f 1.2):

^^
I3 + Ib2 ^ ^

Finally, E - Ebi = IRl = (I3 + Ibi + Ib2) Rl (from Equation 3).

Solving for Ri by dividing through by I = I3 -f Li + Ib2,

E-Ebi _ E-Ebi ,^v

Equations 3, 6, 5 and 4 determine the required values of I, Rl, R2
and R3 for the given voltages and currents. If you have to design

a voltage divider with two taps, therefore, you can determine the

settings of the resistance taps either by substituting the given values

directly in these equations, or by working out the problem fresh

from start with specific values.
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Wheatstone bridge

As another application of Kirchhoff's laws, let us analyze the

Wheatstone bridge (Fig. 205), which, as you know, is used for

precision resistance measurements. In practice, resistors R* and Rb
are given suitable, fixed values and a standard resistance, R,, is ad-

justed in value until a sensitive galvanometer, connected across the

resistance junction, shows zero current deflection. The bridge is

C

AT BALANCE- Rx= -5^ Rs
"b

Fig. 205. The Wheatstone
bridge can be analyzed by

using Kirchhoff's laws.

then said to be balanced and the value of the unknown resistance,

Rx, can be determined very accurately from a knowledge of re-

sistors Ra, Rb, and Rs. (There are many types of bridges, but this is

one of the most common.)
Let us derive the equation for the galvanometer current, Ig, in

terms of the known voltage, E, and the resistances. We can then

determine the condition for bridge balance and the relations re-

sulting between the four resistance arms.

In analyzing such a circuit using Kirchhoff's laws, we assume an

arbitrary current direction in each branch and write the laws in

as many independent equations as there are unknown currents.

(Independent equations will not reduce to identical forms by alge-

braic substitution.) We then solve the equations simultaneously

to obtain the unknown currents. If any current values come out

negative (-), this simply means that we have assumed the wrong
current direction in the particular branch and that it should be

reversed. Applying Kirchhoff's first law, for the assumed current
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directions shown in the diagram (Fig. 205), we can write at junc-

tion C:

I. = I. + I, (1)

and at junction F:

lb + I. = I. (2)

Then, applying Kirchhoff's second law for the voltage drops around
the loops of the circuit, and recalling that IR drops are negative (-),

we obtain around loop ABFDA:

+E-LRb-I.R.=0, (3)

around loop ABCDA:
4-E-I.R.-LR, = 0, (4)

and around loop BCFB:

-LR.-I,R. + LR. = 0. (5)

(Here the voltage drop LRb is plus, since it is opposed to the

assumed current direction.)

Voltage drops are quite common.

To solve for the galvanometer current, I,, we progressively re-

duce the five simultaneous equations in number, eliminating one

of the unknown currents each time. Substituting for lb = I. -I»

from Equation 2 and for I. = I, + L from Equation 1 in Equations

3, 4 and 5 we obtain:

53



In Equation 3: +E - (L - Ig)Rb - I.R, = 0, and simplifying

+ E + IgR.-I.(R. + Rs) = (6)

In Equation 4: 4-E - (Ig 4- Ix)R. - LRx = 0, and again

simplifying: + E - IgR. - L(R. -f R,) = (7)

In Equation 5: -(I, + Ix)R. - hK + (L - I.)Rb =
simplifying: -I,(R. + R^ + R^) + LRb - LR. = (8)

By solving Equation 6 for L and Equation 7 for L, and substi-

tuting the results in Equation 8, we obtain from Equation 6:

Sometimes, as in manufacturing and
in mathematics, changing the original

form is both helpful and necessary.

^' = rttr: '
^°"" ^^"^''°" ^= ^' = rttr;

and, hence, Equation 8 becomes

T /R 4- T? 4- T? \ J.
(E + IgRb)Rb (E - IgR.)R> _

-I.(R. + R. + Rb) + R^ ^ R^ R^ + R^
- (9)

Transposing the first term to the right and placing the fractions

over the common denominator (Rb + R.)(R. +Rx):

(E + I,Rb)Rb(R, + Rx) - (E - I,R.)R.(Rb +R.) _ , ,^ ^ p ^ p n

(RrTRO(RrrR:) " ^^^^ ^ ^^ "^ ^'^

Multiplying by (Rb + R.)(R. + Rx) to get rid of the fractions:

(E + I.Rb)Rb(R. + Rx) - (E - I,R.)R.(Rb + R.) =
I.(R. + Rb H- R,)(Rb -f R.)(R. + Rx).
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Finally, multiplying the parentheses, cancelling equal terms on

both sides of the equation and collecting all terms with Ig!

E RbRx — E RaR, ^= Ig(RaRbRg } RaRgRs "h RaRbRs -\~

RaRbRx + RbRgRx + RaRsRx + RgRsRx + RbRsRx)

Solving for Ig by dividing through by the parenthesis at the right

and simplifying, we obtain the desired galvanometer current:

I. = E
RbRx — RaRs

(R, + R,)(RbR. + RbR. + R.R.) + R.Rx(Rb + R.)
(10)

Although this expression looks very complex, substitution of

actual values results in a relatively simple computation. We see at

once that the numerator of Equation 10 must equal zero (0) for

bridge balance, since by definition the galvanometer current must
be zero. Hence, for Ig = 0, we let

RbRx ~ RaR$ — u (11)

and, thus, obtain the desired condition for bridge balance.

Dividing Equation 1 1 through by Ri,R. and transposing, %ve may
write

Rx R.

R.
(12)

This shows that the ratio of the unknown resistance, Rx, to the

standard resistance, R„ equals the ratio of the bridge arm resist-

ances, Ra to Rb. The statement that two ratios are equal is called

a proportion, and all kinds of interesting things can be proved

^x.
If the equation doesn't balance, it isn't

an equation.
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about proportions. For instance, you can see (by multiplying) that

r T^ T^ T^ r» ^* ^» ^ ^» + R» Ra 4- Rb , . -

for R, : R. = Ra : Rb, or-^ = ^, weget
^^ _ ^ ^ R -R ^^^^^

may come in handy occasionally during numerical computation.

Proportions are particularly easy to handle on a slide rule. For
example, if a Wheatstone bridge is balanced with R. = 3,000 ohms,

Rb = 2,000 ohms and R, = 6,445 ohms, you can find unknown
resistance Rx easily by setting up the proportion:

Ra : Rb = Rx : Rs or 3,000 : 2,000 = R, : 6,445

To do this on any slide rule, simply set the C and D scales to the

same proportions; (Fig. 206):

ANSWER
966

1

Fig. 206, The slide rule is ideal for providing quick answers to problems
in proportion.

CD C D
3:2= X : 6,445

(9,660)

As shown in the illustration, opposite 2 on D set 3 on C. Then,
opposite 6,445 (approximately) on D read the answer 966 (approxi-

mately). Since C (3) is greater than D (2), the result must be

9,660 ohms.

Of course, you can also solve Equation 12 directly for Rx by
multiplying by R,:

R.
Rx

R,
R. (13)

Substituting in Equation 13 Ra = 3,000 ohms, Rb = 2,000 ohms
and R, = 6,445 ohms from the previous example, we obtain:

^ 3.000 X 6.445 . ,^ _^^^ ,
_ ..^ ,

Rx =
97)00

ohms = 1.5 X 6,445 ohms = 9,668 ohms

(The arithmetical answer, naturally, is more exact than the slide

ruleans\ver.)
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PRACTICE EXERCISE 4

1. Derive a formula for the equivalent parallel resistance of n

equal resistors, of value R each. (Answer: —

)

2. Resistance Rl is inserted in parallel with two equal parallel

resistors of value R2 each, (a) What is the general formula for the

total combined resistance, and (b) what is its value, if Rl = 3,000

ohms and R2 = 4,000 ohms (each).

R1R2
[Answer: (a)

2ri + r9 > (^) ^'^OO ohms]

3. An amplifier input termination of 100,000 ohms is in parallel

with an input tube grid resistor of 0.5 megohm, (a) What value of

resistance should be placed in shunt with a phono pickup con-

nected to the input to comply with the manufacturer's recom-

mended input load resistance of 20,000 ohms? (b) If the shunt

resistor = Rl, the grid resistor = R2, the input termination = R3
and the recommended load resistance = R, find a formula for Rl.

RR2R3
[Answer: (a) 26,300 ohms; (b) Rl =

R2R3 - RR3 - RR2 '*

4. A 0-1 -ma meter with an internal resistance of 100 ohms is to

be extended to a range of (a) 0.1 ampere and (b) 1 ampere. Deter-

mine the value of the shunt resistor within 0.1% for each case.

[Answer: (a) 1.010 ohms; (b) 0.100 ohm]

5. The voltage divider of Fig. 204 is to deliver a plate voltage

Ebi = 300 volts, at a current Ibi = 100 ma, and a plate voltage

Eb2 = 150 volts, at a current L. = 30 ma. If the filter output volt-

age E = 450 volts, and the bleeder curent 13 = 20 ma, determine
total current I and the values of resistors Rl, R2 and R3, using the

relations developed in the text. (Answer: I = 150 ma; Rl = 1,000

ohms; R2 = 3,000 ohms; R3 = 7,500 ohms.)

6. A known resistance Rx = 50 ohms is inserted into the Wheat-
stone-bridge network of Fig. 205. If the battery voltage E = 100

volts, R. = 30 ohms, Rb = 60 ohms, R, =40 ohms, and the galvan-

ometer resistance Rg = 20 ohms, determine the unbalanced gal-

vanometer current Ig, the currents through each of the resistance

arms and the voltage drop across each, and also total current I and
equivalent resistance R of the network.
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[Hint: Determine the currents by substituting the resistance and
voltage values directly into the equations developed in the text,

solve the simultaneous equations for the currents L, lb, L, L and Ig.

Then determine the voltage (IR) drops across each resistor and,

finally, determine the total current at point B (I = I. + L) and

find the equivalent resistance, R = -r .]

[Answer: Ig = 0.36 amp. I, = 1.475 amp. lb = 0.86 amp. L =
1.115 amp. I. = 1.22 amp. I = 2.335 amp. R = 42.8 ohms. Voltage

across Ra = 44.25; across Rb = 51.6; across Rx = 55.75; across R, =
48.8. Voltage across the meter (Rg) = 7.2.]

7. If resistor Rx in problem 6 is removed from the bridge, what

value should be substituted to obtain a balanced bridge? (Answer:

20 ohms.)
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CHAPTER 3

From AC to Complex Numbers

THE signals of electronics are alternating currents and voltages,

which continuously rise and fall in magnitude and periodically

reverse their polarity. Some circuit components slow down alter-

nating currents, while others speed them up, so that the current

and applied voltage do not always rise and fall together. Because

of these added complexities, alternating currents are not success-

fully handled by the limited mathematical tools we have developed

for direct currents, and hence, we must expand our mathematical

horizon somewhat. An understanding of vectors and phase rela-

tions, and the correct mathematical manipulation of these by

elementary trigonometry and complex numbers, will enable us to

solve most ac problems rapidly and efficiently. Moreover, the

mastery of these relatively simple methods will lend your calcula-

tions an aura of elegance, which other, more clumsy methods can-

not attain.

Elementary ac generator

Let us investigate briefly the generation of an ac voltage by an

armature coil rotating in a uniform magnetic field (Fig. 301). A
coil (or conductors) cutting lines of magnetic flux will have an

electromotive force (emf) induced in it proportional to the flux

density of the field, the length of the conductor and the velocity of

rotation. As the coil rotates between the poles of a magnet, its long

sides cut the flux first in one direction, then in the other, thus

producing an emf (and current) that alternates continuously in

polarity (plus during one half-cycle, minus during the other).

When the coil is in approximately the position illustrated (Fig.

301), its sides cut a maximum number of lines of force at right

angles (perpendicularly) to the field. In this position, the emf in-

duced in the coil reaches a maximum value. A quarter revolution
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or 90° later, the two long conductors of the coil move parallel to

the lines of force and do not cut any of them. The voltage induced

in the coil, consequently, is zero. As the coil continues to rotate

(counterclockwise in the illustration), the direction of the induced

emf and current reverses and the voltage begins to build up in the

opposite direction. As the armature coil completes one-half revolu-

tion (180°), its sides move once again perpendicularly to the field

BRUSHES
LOAD

Fig. 301. This is the basic arrangement of an alternating-current generator. When
the coil rotates, a voltage is induced across those portions of the coil that move
at angles to the magnetic field. One of these is marked L. With the help of slip

rings and carbon brushes, this induced voltage is impressed across the resistive

load, causing a current to flow through it.

and the induced voltage is again at a maximum, though in the

opposite direction. If the coil voltage is connected to an external

load circuit through two continuously contacting slip rings, an

alternating current will flow through the load circuit. Fig. 301

shows the direction of (electron) current flow for the field direction

and coil position illustrated. The current direction reverses during

each half-revolution.

What is a sine wave?
Now let us investigate how the induced emf or current varies

from moment to moment, between its maximum and zero values.

Fig. 302 illustrates the magnetic field and coil in cross-section, with

one of the long coil sides facing the reader. For simplicity, assume

that the radius of the circle of rotation represents one side of the
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armature coil and that this same length also represents the max-

imum value, Em, of the induced alternating voltage. We want to

find out ho^v this induced voltage varies in magnitude (^vith time

or angle of rotation, 6) as the radius turns counterclockwise in the

magnetic field to simulate the actual rotation of the armature in

a generator.

Let us start the rotation with the radius in the horizontal posi-

tion and its end point. A, moving parallel Avith the field lines (point

1). At this instant (0° rotation), the induced voltage is zero, as

shown by point 1 at 0° for the plot of the voltage at right. As the

radius rotates, only the portion perpendicular to the flux (i.e., cuts

it at right angles) will have a voltage induced in it. We can obtain

the effective perpendicular portion at any time by drawing a line

from the end of the radius perpendicular to the horizontal diameter

0° 60° 120° 180° 270° 360° 90° 180° 270° 360°

\* ONE CYCLE 4" ONE CYCLE »j

DEGREES OF ROTATION OR TIME —
Fig. 302. Generation of a sine wave by a rotating coil in a magnetic field.

of the circle. The length of this perpendicular line at any instant

will then represent the magnitude of the voltage induced in the

armature coil at that instant. Hence, by dropping perpendiculars

from the end point of the radius to the horizontal at regular inter-

vals, we can determine the variation of the instantaneous induced
voltage with the amount of angular rotation or with time, if the

speed of rotation is uniform.

To the right of the rotating radius in Fig. 302 we have plotted

the length of the perpendicular (also called vertical projection of

the radius) against the counterclockwise angle that the radius forms
with the horizontal diameter. For example, when the rotating

radius makes an angle of 30" with the horizontal (point 2), a hori-
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zontal line drawn from the end point of the radius to the 30*

ordinate of the waveform plot at the right determines the height

of the perpendicular at 30** rotation and, hence, the magnitude of

the voltage induced at that instant.

Similarly, when the radius makes an angle of 90° (point 4), the

horizontal line drawn to the 90 ** ordinate of the voltage waveform
determines the value of the induced voltage at that instant. This

turns out to be the maximum value, Em. As we continue to plot the

length of the perpendicular (or vertical projection) against the

angular rotation, or time, we obtain the voltage waveform shown
at the right of Fig. 302. Evidently, as the radius rotates, its vertical

projection varies between maximum values of -}-Em and -E^, and

generates the smoothly varying waveform shown. After one com-

plete rotation cycle, the waveform repeats itself. This type of

periodic or recurrent waveform is known as a sine wave.

A working knowledge of mathe-

matics is an indispensable tool

in the laboratory.

[Spectran Electronics Corp.]
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Sines, cosines and tangents

You can see in Fig. 302 that the rotating radius, its vertical pro-

jection and the horizontal diameter always form a right triangle,

regardless of the angular position (6) of the radius. Certain special

relationships, known as trigonometric functions, hold for any right

triangle. Figs. 303 through 306 review these relationships. In Fig.

303 we have drawn a line of length r to a point P, with rectangular

90°
Y

1ST QUADRANT

(0<d<90°)

/
P(x,y)

</^
+y

Iflo"
/\B

IQO.^
+ x X

(x2+a2 = r2)
SINE B =

COSINES =

TANGENT B =

y
r

X
r

X

-Y

270"
Fig. 303. Trigonometric functions in the first quadrant. In this quadrant

the sine, cosine and tangent all have positive values.

coordinates x and y. The line forms an arbitrary angle, 6, with the

X-axis, which is somewhere between 0** and 90°. The line r to point

P, together with the x and y coordinates of P, forms a right triangle,

in which the following trigonometric functions are defined:

r
sine of 6 (sin 6)

cosine of 6 (cos 6) = —

tangent of 6 (tan 6)
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While these three are the most frequently used trigonometric

functions, the following reciprocal functions also hold:

1 X
cotangent of 6 (cot 6) = = —

cosecant of (cosec 6) = ——- = —
^ ^ sin ^ y

secant of 6 (sec 6) =
cos 6 X

You can see at once that the relationship sin =— in Fig. 303 is

90°
""

Y2ND QUADRANT

180

(90°<d< 180°)

-X

SIN ^= -I-

cos^

r

_ -X _

= +

TAN 9 =rj =

270"
Fig. 304. Trigonometric functions in the second quadrant. The

angle, theta, is greater than 90° but less than 180°.

identical with the relationship between the rotating radius and its

vertical projection in Fig. 302. If we let the radius r = 1 (unit

length), then sin ^ = y/1 = y, and hence, the vertical projection (y)

of the radius in Fig. 302 at any instant equals the sine of the angle

of rotation. Therefore, the voltage induced in the armature coil

(represented by the radius) varies as the sine of the angle of rota-

tion (0).
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Moreover, the plot of the vertical projection of the radius against

the angle of rotation (at the right in Fig. 302) is the graph of the

sine function against 6, and is known as a sine wave. The ordinary

ac generator, thus, automatically generates a sine wave. Let us see

how such a sine wave varies in magnitude and sign (" + " or"-")
with increasing angle 0.

Variation of functions with angle

If the angle 6 in Fig. 303 were 0° (point P on the X-axis), y = 0,

and hence sin ^ = — = 0. In contrast, if ^ =90** (point P on the

180

3RD QUADRANT

Fig. 305. Trigonometiic functions in the third quadrant. The sine and
cosine are both negative, the tangent positive.

r, and hence sin ^ = ^ = — = 1. Thus, for angles {0)
Y-axis), y

between 0' and 90' (called the first quadrant) the sine of 6 varies
between and 1. Moreover, since the length r is always taken as
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positive and the y-coordinate is positive in the entire first quadrant,

y
the ratio — = sin ^ is positive (+ ) in the first quadrant. Similar

reasoning shows that the cosine of 6 varies between 1 (for = 0*)

and (for = 90°) and is also positive (+ ) in the first quadrant.

To determine the limits of the tangent function, first let = 0*

v
and then set = 90\ For = 0\y =0, and tan = -^ = — = 0.

90'

(270°<5<360^)

"y
SIN ^ = -p

cos ^ = -p

180^- 0°, 360°

4TH QUADRANT

270

Fig. 306. Trigonomttric junctions in the foiDtli quddrunt. The angle,

thetu, is between 270° and 360°.

¥oT e = 90%x = 0, and hence, tan 6 = -^ = 00 (infinity).

Thus, the tangent function is positive and varies between and oo

in the first quadrant.

By referring to Fig. 304, you can easily determine the variation

of the sine, cosine and tangent functions in the second quadrant

for values of 6 between 90 ° and 1 80^ Since r and y are both positive.
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the sine function is "+ " and declines in value from 4- 1 at = 90°

to at = 180°. The cosine function is negative (-), since the

x-coordinate is negative throughout the second quadrant. The
function varies from for ^ = 90° (when x = 0) to -1 for (9 = 180°

(when -X = r). Since y is positive and x is negative (-) in the second

y
quadrant, the ratio — = tan 6 is also negative (-) throughout

X
the quadrant. The tangent function varies in magnitude from cxj at

90° to Oat 180°.

You can verify for yourself the variation of the three main func-

tions in the third quadrant (Fig. 305) for angles from 180° to 270°,

and in the fourth quadrant (Fig. 306) for angles from 270° to 360°

(which is, of course, the same as 0°). The table (on page 68) briefly

summarizes the variation in the value of the sine, cosine and tan-

gent functions in the four quadrants (from 0° to 360°). You don't

need to memorize this, since you can derive the sign and limits of

each function quickly by drawing diagrams similar to Figs. 303

through 306.

Any circle can be divided info four 90°-ongle portions, each ot which is known as a

quadront. A$ you con see in the upper drawing, rotation of the hypotenuse, r, increases

the size of the angle theto. This angle coo have any value from to 360 degrees. The

applicable quadrant depends on the final angular position of radius R. [The ordinate y
has been omitted in these drawings for simplification.]
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Variation in Value and Sign of Main Functions

Sin Cos Tan

Quadrant Sign Value Sign Value Sign Value

1 (0°-90°) + Otol + ItoO + Oto 00

II (90°-180°) + ItoO - Otol 00 too
III (180°-270°) - Oto 1 - ItoO + Oto 00

IV (270°-360°) - ItoO + Otol 00 too

Although you can look up the value of the functions for any

angle 6 in the tables of natural trigonometric functions, you should

commit to memory a few standard values for angles of 0*^, 30°,

45°, 60° and 90°. You can verify each of the values listed in the

table following by drawing the appropriate right triangle and

x^ » y2 =

y=^ SIN450=^-^-^-r 1 =7r = 0-^07

COS 45^ - r -
^ -

yfz
0.707

.0 _ y - /2 _
1

^2

TAN 45 = Y =
1 = ^-000

Fig. 307, Values of the functions when the phase angle is 45°.

recalling the Pythagorean law: the square on the hypotenuse of a

right triangle equals the sum of the squares of the other two sides

;

or, referring to Fig. 303,

X- + y- = r^; hence: r = VxM^y^
For example, when B = 45° in the right triangle, the remaining

angle must also equal 45°, since the three angles must add up to

180° (that is, 45° + 45° + 90° =^ 180°). The angles being equal, the

two sides adjacent to the hypotenuse must also be equal (Fig. 307).

Letting the length of the hypotenuse equal unity (r = I), we can

write: x^ + y- = r- but r = 1, and x = y
hence x^ -f x^ = 1^ or 2x2 = 1 (substituting)

and solving for x: x^ = -r- and x = ~~j=
5 ^^so yVY a/2-
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We, therefore, have r = 1, x =
1

andy =
1

for the three
V2 ' V2"

sides of the triangle, and compute the three functions for 6 = 45°,

as follows:

r 1 >/2 ^ 1 V2"

and tan 45° ;= = 1 , as shown in the table.
l/\/2

Value of Functions for Frequently Used Angles

Angle (9: 0° 30° 45° 60° 90°

sin (9 1/2=0.5 1/V2"= 0.707 1/2V3"= 0.866 1

cos(9 1 V2V3'= 0.866 l/v'2"= 0.707 V2 = 0.5

tan^ 1/V3"= 0.5774 1 \/3"= 1.732 00

sin 30° = -^ = —^ = 0.5

cos 30° =

2

VI

ton 30° = -^ = —Tir = 0.5774

2

_1_

VJ

^/y
l/2\/3 = 0.866 y^
0.5774

r =2X^

.y^
\30» 90°

These are the values of the functions when
the phase angle is 30° [see drawing
above] and when the phase angle is 60°

[see drawing below]. In examining the tri-

angles you will see some apparent relation-

ships. The sin of 30° is the some as the cos

of 60°. Similarly, the cos of 30° is equiva-
ent to the sin of 60°. Howevf^r, tan 30° and
ton 60° ore reciprocals.

sin 60° = y

r

V3
2

= Ml\/Z = 0.866

60° = X 1

cos
r

"~
2

= 0.5

ton 60° = y

X 1

= VJ= .732

x = \/T

yl
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Instantaneous value of ac voltage and current

Now let us get back to the sine wave generated by a rotating

armature (Fig. 802). Since we now know that the instantaneous

voltage, e, generated by the armature (or rotating radius) varies as

the sine of the angle of rotation, 6, and that its maximum value is

En,, we may \vrite for the voltage generated at any instant:

e = En, sin 6 (1)

We further know that, for a uniformly rotating armature, the angu-

lar velocity (symbol co) must equal the angle (6) "swept out" per

unit time (t), or co — 6/t, where 6 is the angle measured in radians

(360° = 2 TT or 6.283 radians) and t is the time in seconds. Substi-

tuting for ^ in (1) above, we obtain for the instantaneous ac voltage:

e = En, sin cot (2)

Moreover, since each 360° revolution of the armature corresponds

to 27r radians, the angular velocity (a>) in radians is simply 27r times

the number of revolutions per second, or 27r times the frequency, f.

Expressed in symbols, the angular velocity,

o) = 27rf = 6.283f (since tt = 3.1416) (3)

If such an alternating voltage, e, is applied to a resistive load

circuit, the instantaneous current, i, will, of course, undergo simi-

lar variations as the voltage and will be related to the maximum
value of the current, In,, in the same way. Hence, we can write the

instantaneous value of the current,

i = In, sin cut = L sin 27rft (4)

Example: A coil of an elementary ac generator rotates between

two poles of a magnet at a rate of 3,600 revolutions per minute

(rpm). If the maximum (peak) value of the induced voltage is 170

and the peak value of the current through a load is 20 amperes,

(a) write the expressions for the instantaneous values of the voltage

and current at any time, and (b) compute the instantaneous values

of the voltage at .004167, .00833, .0125 and .0167 seconds after the

generator is turned on. (Assume that the generator starts with zero

voltage at zero time.)

3,600
Solution: (a) A speed of 3,600 rpm is equivalent to

^^
= 60

revolutions per second (rps). The frequency, f, therefore is 60

cycles per second (cps). Hence, the angular velocity (in radians),

70



co = 27Ti = 6.283 X 60 = 377 radians/sec

Hence, e = E„, sin cot = 170 sin 377 1 volts

and i = L sin cot = 20 sin 377t amperes

(b) Note: Since 277 radians = 360°, vrrad = 180°, yrad = 90°,

etc. We can write e = Em sin 27rft = 170 sin 1207rt.

Hence, after .004167 second,

e = 170 sin 12077 x .004167 = 170 sin 0.577 = 170 sin y
= 170 sin 90°= 170 X 1 -- 170 volts

After .00833 second:

e = 1 70 sin 1 2077 X .00833 = 1 70 sin 77 - 1 70 sin 1 80°

-= 170 X0 = 0volts

After .0125 second:

e= 170sinl2077X .0125 = 170 sin 1.577= 170 sin 270°

= 170(-1) =-170 volts

And after .0167 second:

e = 170sinl2077X .0167 = 170 sin 277= 170 sin 360°

= 170xO = Ovolts

It is evident from the example that the instants of time have been

chosen equal to 14, 1/2, Ya and 1 cycle of the ac voltage, where the

Mathematics loses its mystery

and becomes less difficult, once

you know the rules and have
learned how to apply them.

wave goes through its maximum and zero values. You can see that

the voltage oscillates between values of 0, +170 and -170.
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Effective (root-mean-square) value of ac

Since the instantaneous value of an alternating current varies

continuously as a sine wave between zero, positive and negative

maximum values, some way had to be found to define a value of the

current and voltage that could be said to be effective in a circuit.

The effective value of an alternating current is that value which

produces heat at exactly the same rate as an equal quantity of direct

current flowing through the same resistance. In other words, an

effective alternating current of 1 ampere produces the same heat

in a given resistance and given time as 1 ampere dc.

From the manner in which the effective ac value is determined,

by taking the root of the mean (or average) squared current value,

the term root-mean-square (rms) value arises; it means exactly the

same as the effective ac value. Without going into the computations,

it turns out that the effective (or rms) value of an alternating cur-

rent or voltage is equal to l/\/2"or 0.707 times the maximum
(or peak) value of the current or voltage. Hence, the effective value

of an alternating current, I = 0.707 Im, and the effective value of

an ac voltage, E = 0.707 Em. Similarly, the peak or maximum ac

current, Im = 1.4 1 41, and the peak or maximum ac voltage, Em =
1.4I4E, where I and E stand for the effective values.

Example: An ac voltage with a peak value of 162.8 causes an rms

current of 20 amperes to flow. What is the effective value of the

voltage and the peak value of the current?

Solution: E = 0.707 Em = 0.707 X 162.8 =115 volts (rms)

Im = 1.4141 = 1.414 X 20 = 28.3 amperes (peak)

Phase, phase angle and phase difference

The terms phase, phase angle and phase difference are constantly

and often interchangeably, used in connection with ac, with con-

siderable confusion as to just what they mean. To get these con-

cepts straight, you have to make a few simple distinctions.

1. When phase or phase angle is used in connection with a single

alternating current or voltage, it refers to the fraction of a cycle

that has elapsed since the current or voltage has passed a given

reference point (usually the starting point). For example, at the

start of the ac voltage in Fig. 302 (point 1), the phase is said to be

zero. At point 2, the phase or phase angle is 30°, at point 3 it is 60°,

at point 4 it is 90°, or a quarter cycle; at point 7 it is 180°, or a half-

cycle; at point 10 it is 270°, or three-quarter cycle, and so forth.
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When used in this way, the phase is significant only for a fraction

of a cycle, since it repeats during each successive cycle.

2. The terms phase or phase difference are more frequently used

to compare two or more alternating currents or voltages of the same

frequency that pass through their zero and maximum values at dif-

ferent instants of time. For example, you know that the current

in a coil or capacitor does not rise and fall together with the ac

voltage applied across these components, and hence, the current

is said to be out of phase with the voltage, or to have a phase angle

or phase difference. When the frequency is the same, each cycle of

an alternating current or voltage takes exactly the same amount of

time (T = 1/f), and hence, the phase difference between two such

alternating voltages, currents, or a voltage and a current, is con-

veniently expressed in degrees or fractions of a cycle, a measure of

time being implied in either case.

360'

a b

Fig. 308. Voltages and currents can be in phase or out of phase in varying degrees.

Sine waves out of phase

Sine waves 1 and 2 in Fig. 308 may represent two ac voltages,

currents or a voltage and a current of the same frequency which
we would like to compare. Evidently, waveform 1 has a larger peak

value (also called amplitude) than waveform 2. Moreover, the

waves do not rise and fall in unison and, hence, are out of phase

with each other. We would like to know by how much.
In Fig. 308-a, sine wave 1 has a value of zero at the 0° reference

point, while sine wave 2 is at its negative maximum value at the

same instant. Only when sine wave 1 reaches its positive maximum
value at the 90° point along the time axis does sine wave 2 finally
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pass through zero. Again, Avhen sine wave 1 returns to zero at the

180° marker, sine wave 2 just reaches its positive maximum value

and, when wave 1 reaches its negative maximum value, wave 2 just

passes downward through zero. Clearly, sine waves I and 2 are

out of phase with each other by one-quarter cycle or 90°. More-

over, since sine wave 1 reaches corresponding points of the cycle

earlier than sine wave 2, wave 1 is said to lead wave 2 by 90° in

phase. Equivalently, sine w^ave 2 lags sine w^ave 1 by 90°, or a

quarter cycle. It doesn't matter at which points of the cycle you

measure, the phase difference between the two sine waves will

always be 90°, or a quarter-cycle.

Fig. 308-b shows two sine waves of the same frequency 180°, or

one-half cycle out of phase with each other. When wave 1 rises in

the positive direction from the 0° starting point, wave 2 rises in the

negative direction. When wave 1 starts to go negative at the 180°

marker, wave 2 just starts to go positive. Again, we can measure

the phase difference at any two corresponding points of the cycle.

For example, measuring at the positive maximum points of the sine

waves, wave 2 is seen to reach its positive maximum at 270° along

the time axis, while wave 1 reaches its maximum at 90°. Conse-

quently, the phase difference between the waves is 270° - 90° =
180°. Measuring at any other two points would have given the same
result. Moreover, for a 180° phase difference, either sine wave may
be considered leading or lagging in phase. Sine wave 1 is always

positive when wave 2 is negative, and vice versa.

Vector representation

The successive vertical projections of a counterclockwise rotat-

ing radius generate a sine waveform. Conversely, it is also true

that a sine wave can be represented at any instant of time by the

position, at that instant, of a rotating radius. All we need to do is

to make the length of the radius equal to the peak value (amplitude)

of the sine wave and position the radius at such an angle that its

projection upon the vertical (that is, the sine of the angle) equals

the value of the sine wave at the particular instant.

In Fig. 309 we have drawn the rotating radii (usually called

rotating vectors) that would be required to generate sine waves 1

and 2 of Fig. 308-a. At the top left of the figure, a counterclockwise

rotating radius, R, equal in length to the amplitude of sine wave 1;

is illustrated in five positions, corresponding to five successive in-

stants of time. As in Fig. 302, the vertical projections of the radius
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at these successive instants yield the corresponding ordinates of

the sine wave shown at the right. Thus, at zero time or 0° rotation

(point 1) the vertical projection of R is zero and, hence, the ordinate

of the sine wave at the right also is zero.

A moment later, after R has reached the 45° position (point 2),

the vertical projection of R, transferred to the 45° position of the

sine-wave plot at the right, gives the height of the ordinate at this

360^

Fig. 309. Sine waves can be produced by rotating vectors.

instant. This is equal, of course, to R sin 45°, or 0.707R. When R
has reached the 90° angular position (point 3), its vertical projec-

tion equals the full length of the radius (since R sin 90° = R) and,

hence, the sine-wave ordinate at 90° (point 3) reaches its peak value

equal to R.

As the radius continues to rotate, its vertical projections grow
smaller again, reaching zero at 180° rotation (point 5), whereupon
they rise in the negative direction. By plotting the vertical projec-
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tions of the rotating radius at a sufficient number of successive in-

stants, the smooth sine-wave trace shown at top right of Fig. 309

is obtained.

At the bottom of Fig. 309 we have again drawn a counterclock-

wise rotating vector, R, but of a length equal to the amplitude of

sine wave 2 in Fig. 308-a. Moreover, at zero time or 0° rotation

(point I), this vector points vertically downward so that its vertical

projection is a maximum in the negative direction. Accordingly,

the sine wave at the right commences its cycle at 0° or (point 1) with

an ordinate equal to the negative peak value (-R).

The remainder of the plot is obtained in the same way as above,

except that the amplitudes of the sine wave at the right now cor-

respond to the smaller length of the radius (or vector) R, at the left.

It is evident that this sine wave lags 90° in phase behind the wave
on top. This represents sine wave 2 of Fig. 308-a. Moreover, as you
will have realized, such a rotating radius or vector is capable of

generating the graph of a sine wave solely by its mathematical

properties (i.e., the successive vertical projections), quite apart from
the electrical properties of the simple ac generator we started with.

While a rotating vector is necessary to generate the graph of a

sine wave, a stationary vector is sufficient to represent a sine wave

at any particular instant of time. Thus, at the top left of Fig. 310

we have again drawn the two sine waves of Fig. 308-a on a common
time axis for comparison. The top right of the illustration shows

an equivalent vector diagram which represents the two sine waves

at the instant they pass through 0°. To obtain this diagram we have

simply drawn (from a common point of origin, 0) the two rotating

vectors (R) of Fig. 309 top and bottom, at the instant they pass

through 0°. In effect, therefore, we have "frozen" the two rotating

vectors of the previous illustration in time.

Note that the length of vectors 1 and 2 equals the amplitudes of

sine waves 1 and 2, respectively, and that the 90° angle between

them clearly shows the 90° phase difference between the two sine

waves. Note further that neither the length of the vectors nor the

angle between them would have been affected if we had drawn the

vectors for some other instant of time. As you can verify, we would

have simply turned the entire diagram about its origin (zero point).

Since in most ac problems we are interested only in comparing the

amplitudes and relative phase of two or more sine waves, the in-

stant of time chosen does not matter.

The bottom left of Fig. 310 reproduces the 180° out-of-phase

sine waves of Fig. 308-b, while the bottom right shows the equiva-
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lent vector diagram at 0°. Note again that the vectors are equal in

length to the sine-wave amplitudes and that they are 180° apart.

What are vectors?

We have been talking very glibly about rotating and stationary

vectors without having identified them. As you may have gathered

from our examples, a vector is simply a straight line of a certain

length pointed in a specific direction. Such a directed line segment,

or vector, is used to represent physical quantities that have both

magnitude and direction (called vector quantities). The length

of the line denotes the magnitude of the vector quantity, and its

direction, with respect to some base or reference line, denotes the

direction of the vector quantity.

There are many such quantities besides alternating currents

SINE WAVES 1 AND 2 OF FIG. 308-fl

h 180^

uS

EQUIVALENT VECTOR DIAGRAM (AT 0°)

180*=

360° — 2 1

SINE WAVES 1 AND 2 OF FIG. 308-

&

EQUIVALENT VECTOR DIAGRAM CAT 0°)

Fig. 310. A pair of rotating vectors products a pair of sine wants whose phase
angle is the same as the phase angle of the vectors.

and voltages. Velocity, for example, is a vector quantity, since you
must specify both the speed of a vehicle (such as mph) as well as the

direction in which it is going (north, east, etc.) to determine where
it will be at any time. Force is another vector quantity having both
magnitude and direction. If two people pull a load with the same

77



amount of force but in opposite directions, they are not helping

each other much, since the force vectors will cancel. If they pull in

the same direction, however, the force vectors add, and the load is

pulled easily.

In contrast, quantities that have magnitude only are known as

scalar quantities. Length, width, height, time and potential are such

quantities, since a single number suffices to specify them completely.

All the numerical quantities we have dealt with in arithmetic and
algebra thus far have been of the scalar variety.

Vector addition

There are certain rules for combining (adding or subtracting)

vectors, which differ from those for ordinary numbers that have

magnitude only. As an example, let us assume that sine waves 1 and
2 of our previous example (see Fig. 308-a and 310 top) represent

the output voltages of two ac generators which are to be connected

in series to a load. We would like to know the combined amplitude

and relative phase of the total voltage applied to the load. At the

left of Fig. 311 we have again reproduced two sine waves of the

same frequency, originally illustrated in Fig. 308-a. To obtain the

combined or resultant waveform, we simply add the ordinates of

the two waves, point for point, with proper regard to the sign

(+ or -). In other words, the algebraic addition of sine waves 1

and 2 at every point will yield the resultant wave. You can verify

this easily at a few key points. Thus at 0°, where sine wave 1 passes

through zero, the ordinate of the resultant equals the (negative)

amplitude of sine wave 2. At about 38° along the time axis, the

positive ordinate of wave 1 equals the negative ordinate of wave 2

and, hence, their sum or the resultant equals zero. At 90°, when
wave 2 passes through zero, the ordinate of the resultant equals the

(positive) ordinate of wave 1 (that is, they intersect). At the positive

point of intersection of sine waves 1 and 2 their ordinates are equal

and, hence, the resultant ordinate equals their sum or twice the

value of each.

If you continue in this manner, the resultant waveform will

emerge. This is seen to be another sine wave, greater in amplitude

than either wave 1 or 2 (but not equal to their sum), and lagging

wave 1 in phase by about 38°, or equivalently leading wave 2 in

phase by about 52°. (Since wave 1 leads wave 2 by 90° and tfte

resultant lags wave 1 by 38°, it must lead wave 2 by the difference.

orby90°-38° = 52°.)

Now compare the cumbersome algebraic addition of the two
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sine waves with the extremely simple vector addition of the two

waveforms shown at the right in Fig. 311. Here we have again re-

produced the vector diagram of sine waves 1 and 2 from the top

ri2:ht of Fisf. 310. To "add" the two vectors and find the resultant,

we simply complete the parallelogram and draw in the diagonal

0-R. This diagonal is the resultant vector, representing the vector

sum of sine waves 1 and 2. The length of the resultant OR repre-

sents the amplitude of the resultant sine wave, as you can verify by

measuring. The direction of the resultant vector indicates the phase

difference of the resultant waveform with respect to sine waves 1

and 2. By measuring the angles with a protractor, you can easily

determine that the resultant vector lags behind sine wave 1 by

•RESULTANT

RESULTANT-

ADDITION OF SINE WAVES 1 AND 2 OF

FIG. 308 a TO GIVE RESULTANT WAVEFORM
EQUIVALENT VECTOR ADDITION

OF SINE WAVES 1 AND 2

Fig. 311. The algebraic addition of a pair of vectors produces a resultant.

The resultant can be considered as a rotating vector.

about 38° and leads sine wave 2 by 52°, as before. Moreover, since

the resultant vector can be looked upon as the hypotenuse of a

right triangle whose sides are made up by vectors 1 and 2, the

magnitude and angle of the resultant can be determined precisely

by calculation without resort to ruler and protractor. More about

this presently.

The simple parallelogram method of adding two vectors can

replace the laborious step-by-step method of algebraically adding

two waveforms to determine the resultant. You might object that

the resultant vector (at the right in Fig. 311) does not actually show
the waveform of the resultant voltage (left, Fig. 311) but gives only

its amplitude and relative phase. This is not really necessary,

however. We know in advance, from theoretical considerations,
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that the resultant of sine waves with the same frequency must
always be another sine wave. Hence, the vector resultant 0-R repre-

sents a sine wave, which you could easily sketch by making the

amplitude equal to the length of the vector and by drawing it with

the proper phase angle with respect to sine waves I and 2. When
two or more sine waves differ in frequency, the resultant is not a

sine wave and it must be obtained by the step-by-step addition of

the individual waveforms. Vector addition is possible only for

waves of the same frequency.

Two methods of adding vectors

Assume that the output of one of the generators in the last ex-

PARALLELOGRAM
METHOD

TOE-TO-TIP
METHOD

El =64V^>
o
in

ii

OJ

lij

NJ

El = 64V

^'
^>^

"V
N,

LU

Er = \/Ei^+E2^ = \/642 +50^ = \/6596 = 81.2V

TAN ^ =
1^

= 1^ = 0.781

.'. e =ARC TAN 0.781 = 38°

Fig. 312. Two methods of adding vectors.

ample (Fig. 311) is sine-wave voltage Ei = 64 volts, while the out-

put sine wave of the other generator Eo = 50 volts. Eo lags Ei by 90°

in phase, as before. At the left of Fig. 312 we have again laid out the

two voltage vectors (to an arbitrary scale) at right angles to each

other from the common origin (0). Completing the parallelogram

and drawing the diagonal, as before, you will find by measuring

the length of the diagonal (to the same scale as Ei and Eo) it repre-

sents a resultant voltage, Er = 81.2 volts. With a protractor you

can ascertain that Er lags behind Ei by 38° or, equivalently, leads

E2 by 52°.

Since opposite sides of a parallelogram are equal, it is evident
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that the dotted lines of the parallelogram are equal in length to

vectors Ei and E2, respectively. We could, therefore, have obtained

the resultant, Er, quickly by laying out vector Eo at the end of and

at right angles to vector Ei, as is shown at the right of Fig. 312. The
resultant, Er, then is simply the hypotenuse of the right triangle

thus formed. If the vectors are not at right angles to each other,

you can still use this "toe-to-tip" method of adding vectors, and

find the resultant by drawing a line from the origin (0) to the tip

Sometimes you can do faster

servicing by reaching for your

math book instead of a screw-

driver.

of the second (or last) vector. The toe-to-tip method of vector addi-

tion is considerably faster than the parallelogram method when
more than two vectors are involved.

In the example of a right triangle, you can again measure the

resultant (hypotenuse) and the included angle and find that

Er = 81.2 volts and = 38°, as before. However, in the case of a

right triangle, it is much more precise to use the Pythagorean

theorem (c^ = a- -f b^) to find the length of the hypotenuse (or

resultant), and a little elementary trigonometry to find the angle d.

Thus the length of the hypotenuse, or magnitude of the resultant,

Er = \/e7TT7 = V642 -f 50^ = V 4,096 -f 2,500

= \/6.596 = 81.2 volts

To find the phase angle 6, you need only realize that the ratio of the

opposite side (E2) to the adjacent side (Ei) defines the tangent of 0.

Eo 50
Hence, tan = 'v^~~aT~ 0.781. In a table of trigonometric func-

tions the angle (6) corresponding to this tangent value is 38° (ap-

proximately) , as before.

You could also have solved the problem by trigonometry alone.
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without resort to the Pythagorean theorem. First find the tangent

of 6 and the phase angle, ^, as above. Then, realizing that the ratio

of the opposite side (Eo) to the hypotenuse (E,,) defines tlie sine of 6,

E E
you can write: sin 6 = -p^, and hence, Er = . "^ . Substituting,

50 volts 50 volts
Ek =

sin 38° 0.616 (from tables)
= 81.2 volts.

Since in most ac impedance problems you are required to find the

resultant of two vectors at right angles, you will find this method
of solving a right vector triangle extremely useful. We shall discuss

various methods for solving ac impedance problems later on.

PARALLELOGRAM METHOD

V3

>
o
o

' - 200 V

RESULTANT
OF V1+V3

45" Vi

(fl)

EOO V

(6) V1+V3

RESULTANT = 272V
V123

Vi

id)

200 V Vi

V1 + V2+V3

"TOE-TO-TIP" METHOD

RESULTANT OF
Via +V2 = 272 V

Vi23

REFERENCE LINE

(C) V1+V2 + V3

Fig. 313. Methods of adding vectors where more than two vectors are involved.

Adding more than two vectors

Both the parallelogram and toe-to-tip method can be used for

adding more than two vectors. Using the parallelogram method,

solve the problem step by step. First, obtain the resultant of any

two vectors, then add this resultant vector to a third vector by com-

pleting the parallelogram, and so on. Naturally, this method can
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become quite cumbersome when a number of vectors are to be

added. With the toe-to-tip method, in contrast, you can add a

number of vectors almost in one step.

As an example, consider the vector addition of three ac voltages

45^ out of phase with each other (Fig. 313). \'I = 200 volts and is

represented by the horizontal vector 0-\'l in Fig. 313-a. V2, 50 volts

in magnitude, is represented by vector 0-\'2 and leads \'l by 45° in

phase. \'3 (100 volts) is represented by the vertical vector 0-\'3 in

Fig. 313-a. Let us find the resultant voltage acting when these three

voltages are applied to an ac circuit.

First, using the parallelogram method, we find the resultant of

VI and \^3, as shown in Fig. 313-b. The resultant, VI 3, is repre-

sented by the diagonal. Next, we add vector \'2 to VI 3, as illus-

trated in Fig. 313-c. Completing the parallelogram of these two
vectors and drawing the diagonal, we obtain the resultant, VI 23,

^s'hich represents the vector sum of \'l, \'2 and \'3. Measuring the

Fig. 314. Techniques for the subtraction of vectors.

length of this resultant to the scale of the diagram, we find the

magnitude of \'123 to be about 272 volts. With a protractor we
determine the angle between \'123 and \'l (the horizontal reference

line) to be about 30°. Thus, the resultant VI 23 is 272 volts in

magnitude and it leads VI in phase by 30°; it also lags V2 by 45° -

30°, or 15°, and \'3 by 90° - 30°. or 60°.'

The toe-to-tip method of adding the vectors yields the same
result much quicker, as shown in Fig. 313-d. Here we have laid

off vector \'2 toe-to-tip to vector \'l, and vector \'3 to the tip

(arrow point) of V2. You have to take care, of course, that the



length of the vectors and their directions are preserved when you
do this. You can obtain the resultant by drawing a line from the

origin (0) to the arrow point of V3. This resultant again measures

272 volts in length and leads vector VI 30° in phase.

Vector subtraction

Two vectors may be "subtracted" from each other by reversing

the vector to be subtracted and then adding this reversed vector

to the first. This process is very similar to algebraic subtraction,

except that you have to reverse an entire line segment. For example,

in Fig. 314-a, vector A is to be subtracted from vector B. To do
this, simply reverse vector A and then add -A to B by the parallelo-

gram method. The resultant vector, C, represents the vector dif-

ference, or C = B - A.

If, in contrast, vector B is to be subtracted from vector A, B is

reversed and -B is added to A (see Fig. 3I4-b). The diagonal of the

-^i

•=l

+ /"""^E
E.I

//\\

E,I

If
90** \80** 270** 36w

CIRCUIT WAVEFORMS VECTOR DIAGRAM

Fig. 315. In a purely resistive circuit, the voltage and current are in phase. Note
that the vectors are superimposed since there is no phase difference between them.

new parallelogram, C, is the resultant and represents the vector

difference, C = A - B. If more than two vectors are to be subtracted

from each other, take the vector difference of two vectors at a time

and continue step by step until the problem is completed. You
probably will find the toe-to-tip method of adding the reversed

vectors more convenient in this case.

Vector applications: reactance and impedance calculations

We are now ready to use our knowledge of vectors in practical

ac reactance and impedance calculations. But before we get into

this, let us quickly review the fundamental facts of alternating-

current flow in resistive, inductive and capacitive circuits.

Case 1—Pnre Resistance: A resistance behaves in exactly the same

way with an applied ac voltage as for dc. As shown in Fig. 315, the
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amount of current flow is determined by Ohm's Law and the volt-

age and current waveforms are in phase. The vector diagram also

shows that the current, though smaller, is in line (or in phase) with

the voltage. To obtain the effective (rms) values of E and I, which

are the values indicated by most voltmeters and ammeters, multiply

the peak values by a factor of .707.

Case 2—Pure Inductance (Fig. 316): A pure inductance doesn't

exist, of course, since every coil has some winding resistance. How-
ever, the case is of interest whenever the inductance is large com-
pared to the winding resistance, so that the latter may be neglected.

The effect of a pure inductance is to make the current lag 90° be-

hind the applied voltage and also choke down its magnitude to a

value smaller than in the absence of the inductance. This property

of an inductance is known as inductive reactance (Xl). The indue-
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Fig. 316. In a purely inductive circuit, the current lags the voltage by 90°. You can
see the phase displacement by examining the vectors or the sine waves.

tive reactance, Xl = 27rfL = 6.283fL (approximately), where f is

the frequency (in cycles) of the applied voltage and L is the value

of the inductance in henries.

To find the current in a pure inductance, we must modify Ohm's
Law and divide the applied voltage by the (inductive) reactance

rather than the resistance.

Hence, current I = -^
Xl 27rfL 6.283fL

You can see in the waveforms and vector diagram of Fig. 316 that

the current through an inductance coil lags the applied voltage

90° in phase

Example: Determine the magnitude of the rms current flowing

through a 5-henry choke of negligible resistance, which is con-

nected across the 115-volt 60-cycle ac line.
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Solution: Xl = 27rfL = 6.283 x 60 X 5 = 1,885 ohms

115 volts

X:= 1,885 ohms = -°^^""'P^'^^

(You could, of course, have performed the entire calculation in one
step by using the formula I = E/27rfL.)

Case 3—Pure Capacitance (see Fig. 317): Though a capacitor

completely blocks the flow of direct current, it permits a certain

-^r
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/

CIRCUIT VECTOR DIAGRAM

Fig. 317. In a purely capacitive circuit, the current leads the voltage by 90'', Com-
pare the arrangement here with that shown in Fig. 316.

amount of ac flow because it is alternately charged in opposite

directions. The opposition presented by a capacitor to the flow of

alternating current is called capacitive reactance (Xc) and its mag-

nitude is given by the formula:

1 1 0.1592
Xc =

27rfC 6.283fC fC

where C is in farads. The current in a purely capacitive circuit,

therefore, is given by the ratio of the applied voltage (E) to the

E
capacitive reactance (Xc), or I = ^rr-.

The effect of the capacitive reactance is to make the current

through the capacitor lead the applied voltage by 90° in phase.

This is clearly shown by the waveforms and the vector diagram

of Fig. 317. To indicate the phase opposition of capacitive react-

ance to inductive reactance, a minus sign (-) is sometimes placed

in front of the capacitive reactance value.

Example: What is the magnitude of the current when a 220-

volt 60-cycle ac voltage is applied across a 25-fif capacitor?
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Solution: 25/xf = 25 X 10"

reactance X. = 1

farads. Hence, the capacitive

1

6.283fC 6.283 X 60 X 25 X 10-«
= 106 ohms

Current I = -^ =
Ac

220 volts „ ._.

T06-Hh^
= 2.075 amperes.

Note: When the frequency is given in megacycles = (10^ cycles)

and the capacitance is in microfarads = (10"^ farad) then the factors

10® and 10"® in the denominator cancel and, may be omitted.

Impedance: The alternating current in a pure resistance is in

phase with the applied voltage, while the current in a pure in-

ductance lags the impressed voltage by 90° and the current in a

pure capacitance leads the applied voltage by 90°. When both

inductance and capacitance are present, the current will either lag

or lead the impressed voltage by 90°, depending upon whether the

inductive or the capacitive reactance is larger in magnitude. The

Xl =+6An

x = XL-Xc=4n

Xc=-2n^

x=4n.r-

90'

90' R=3a 3A

X =4A

R=3n

Fig. 318. The presence of resistance, inductance and capacitance in a circuit is

really a problem in vectors and can be solved as such.

total opposition to current flow is then presented by the net re-

actance (X), which is equal to the vector or algebraic sum of the

inductive reactance (Xl), and the capacitive reactance (Xc). Since

Xl is considered positive (-f ) and Xc is taken as negative (-), the

net reactance, X, also is simply equal to the arithmetic difference

between the numerical values of Xl and Xc:

Net Reactance X = Xl - Xc = 27rfL -
1

When all three—resistance, inductance and capacitance—are

combined in series, the total opposition to current flow, called the

impedance (Z), is equal to the vector sum of the resistance and net
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reactance. The current, which is the same throughout the R-L-C
series circuit, can either lead or lag the impressed voltage, depend-

ing upon the impedance. Moreover, the vector sum of the voltage

drops across R, L and C must equal the value of the impressed

voltage (emf). (The arithmetic sum of the voltage drops may well

exceed the applied voltage.)

Assume, for example, that an R-L-C series circuit has a resistance

of 3 ohms, an inductive reactance, Xl, of 6 ohms, and a capacitive

reactance, Xc, of -2 ohms. A vector diagram of this situation is

shown at the left in Fig. 318. The resistance is arbitrarily drawn
as a horizontal vector with a length of 3 units (equal to 3 ohms).

The inductive reactance, Xl, is a vector of 6 units in length, drawn
vertically upward, since it is positive (-f ) and forms an angle of

90^ with the resistance. The capacitive reactance, Xc, is 2 units

long and drawn vertically downward, since it is negative or in

^^.^
,c%^

27rfC

TAN«=|-=
R - «

OR e = ARC TAN -s-RESISTANCE (R) z ""^ " ""^ "^"' R

Fig. 319. Impedance, or the total opposition to current flow in an ac circuit, can

be calculated through the algebraic addition of vectors.

phase opposition with the inductive reactance. The vector sum
of Xl and Xc is the net reactance.

X = 6 + (-2) = 6-2= -f4ohms,

which is seen to be the same as the arithmetic difference Xl - Xc.

Since net reactance X is positive, it is drawn vertically upward and

is 4 units in length (corresponding to 4 ohms).

The impedance, Z, of the circuit is the vector sum of the net

reactance and resistance. It is easily obtained by completing the

parallelogram of R and X and drawing in the diagonal, as shown
at the right in Fig. 318.

Alternatively, you can use the toe-to-tip method, placing reac-

tance X at the end of the resistance vector, R, and drawing the

hypotenuse, Z. In either case, the magnitude of impedance vector Z

turns out to be 5 units long or 5 ohms in value, while its phase

angle 6 = 53.2° with respect to the resistance.
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The triangle (at the right in Fig. 318) is a standard configuration

known as a 3-4-5 triangle. Whenever two sides of a triangle are in

proportion as 3 to 4 (or 6 to 8, 15 to 20, etc.), the hypotenuse will

always be in the proportion of 5 units in length (that is, 6 to 8 to 10

or 15 to 20 to 25, etc.). Another such standard triangle is in the

proportion of 5 to 12 to 13.

While you could easily compute the impedance by drawing a

vector diagram for any particular case, the fact that the resistance

and net reactance always form a right triangle permits us to formu-

late a simple mathematical solution for all cases. Fig. 319 illus-

trates a general impedance triangle, with the resistance vector, R,

forming the horizontal side; the net reactance, X, the vertical side,

and the impedance, Z, the hypotenuse of the triangle. The mathe-

matical relations are evident from the figure and, hence, we can

write immediately:

Impedance Magnitude, Z = VR' + X- = VR' + (Xl-Xc)^

I

also, since Xl = 27rfL and Xc =
27rfG

X / X \
Phase Angle, 6 = arc tan^ (i.e. the angle whose tangent is ^ j

X X.-Xc (^"'^^"2^;^)
or tan 9 = R R

Applying these relations to the previous example, for R = 3 ohms,
Xl = 6 ohms and Xc = 2 ohms, we obtain

Magnitude Z = VR^ + (X^-Xc)^ = VS' -\- (6-2)^

= \/9-f 16 = 5 ohms
X 4

and tan ^ =— = —== 1 .333. Hence, from the tables, 6 = 53°8'

Ohm's Law for ac

Now that we have such a convenient formula for the total op>-

position (Z) to the flow of alternating current, we can readily write

down a modified form of Ohm's Law for ac:
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©10 KC
lOOV

C=.001/LtF

-Hh-

Xl=62.8K

XL-Xc=X=46.9K-r

R2=30K
—AAAr

Cfl) R-L-C SERIES CIRCUIT

El= 91.6V

EL-Ec=68.4Va

Xc-15.9Kf

Rl= R2=
20K 30K

C*) IMPEDANCE DIAGRAM

Er^= Er2« Eri + Erj'
29.2V 43.8V 73V

Ec* 23.2 V t Re = 50K

CO VOLTAGE piAGRAM C</) EQUIVALENT CIRCUIT

Fig. 320. Series circuit and its equivalent impedance and voltage vector diagrams.

^ Applied Voltage , E E
Current = --^ ^ ^, or I = -^ =

,Impedance Z VR' + (Xl - XcY

Of course, you can always find the magnitude of the impedance, Z,

simply by taking the ratio of the voltage over the current, or

magnitude Z = y
Finally, the voltage drop across an impedance.

E = IZ = I VR' + (Xl-Xc)^

The phase angle by which the current leads or lags the applied

voltage is, of course, equal to the angle 6 between the resistance
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and the impedance in the impedance triangle (Fig. 319) and, hence,

is again given by:

^ X Xl — Xc ^ X
tan = -^ =—5 or ^ == arc tan —

("the angle whose tangent is" may be written either "arc tan" or

"tan-i".)

As a check on your impedance computations, you have the fact

that, in an R-L-C series circuit, the vector sum of the voltage drops

The triangle i$ on important figure.

It shows up when we work with

phase or impedance.

across the resistance (Er), the inductance (El), and the capacitance

(Ec) must add up to the applied voltage (E). That is,

E = \/Er^ + (El-Ec)^

Moreover, since the voltage drops across the circuit components

are proportional to their resistance or reactance, respectively, the

angle between the current and voltage is also given by

F — E
Phase angle 6 = arc tan—^* Er

By drawing a vector diagram of the separate voltage drops and tak-

ing their vector sum, you can always make this check on your
calculations.

Example: In the R-L-C series circuit shown in Fig. 320-a find

the impedance and phase angle, the line current and the equivalent

R-C or R-L combination that will replace the circuit at a frequency

of 10 kc. Check your calculations by drawing a vector diagram of

the separate voltage drops across the resistors, capacitor and coil.

Solution (Fig. 320): The total series resistance,

R = Rl + R2 = 20,000 ohms -f 30,000 ohms = 50,000 ohms.

The inductive reactance of the 1 -henry choke (L) at 10,000 cycles,

Xl = 27rfL = 6.283 X 10,000 X 1 = 62,800 ohms (approximately).
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The capacitive reactance of the .001-fii capacitor (C) at 10,000 cycles,

1 1

Xc =
27rfC 6.283 X 10,000 X .001 X 10-«

= 15,900 ohms (approximately).

The net reactance, X, is the difference between Xl and Xc, or

X = Xl - Xc = 62,800 ohms - 15,900 ohms = 46,900 ohms.

Whether current or voltage leads

depends on the relative amounts
of inductance and capacitance in a

circuit.

Since the net reactance comes out positive (+), the circuit is pri-

marily inductive at a frequency of 10 kc. To find the impedance

(Fig. 320-b), we use the formula

Z=-\/RJTX^= V (50,000)2 + (46,900)2

= V(25X 10«) + (22 X 10«)

V47 X 10« = 6.86 X 10^ = 68,600 ohms

X 46,900 = arc tan 0.938,The phase angle, = arc tan ^^ = arc tan
^^ ^^n.

which turns out to be 43° 10' or 43.2° (from the tables).

Finally, the line current in the series circuit,

100 volts
, ^^ ,^ , , .^

^Q ^^^ ,
— = 1.46 X 10-^ ampere, or 1.46 ma.

68,600 ohms ^-I-
This current lags the applied voltage by 43.2° (the phase angle), but

is in phase with the voltage drop across the resistors. If you measure

the impedance vector, Z, and the phase angle, 0, in Fig. 320-b, you
will find that the graphical results check these calculations.

Let us find the equivalent circuit at 10 kc (Fig. 320-d). We know
the equivalent resistance R, = 50,000 ohms. Since the circuit is in-
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ductive (X is +), we can use the formula Xl = 27rfL to obtain the

equivalent inductance, L*. Hence,

X 46,900
L.

27rf
= 0.75 henry (See Fig. 320-d.)

6.28 X 10,000

Thus, a combination of a 50,000-ohm resistor and 0.75-henry choke

would have the same reactance (46,900 ohms) and impedance

(68,600 ohms) at a frequency of 10 kc as the actual circuit.

As a final check, let us obtain the separate voltage drops and see

whether their vector sum adds up to the generator voltage (100 v).

The algebraic sum of the voltage drops

in a closed network is equal to the voltage

at the generator.

The voltage across R1,Er, = I R1 = 1.46 X 10"^^ X 20,000 - 29.2

volts. The drop across R2, Er^ = I R2 = 1.46 X 10"^ X 30,000 =
43.8 volts. Hence the total resistance drop = Eri + Erz = 29.2 +
43.8 = 73 volts, as is shown in the voltage vector diagram (Fig.

320-c).

The voltage drop across the coil (L),

El = IXl == 1.46 X 10-^ X 62,800 = 91.6 volts. This drop leads

the current by 90° and, hence. El is vertical (upward) in (c).

The voltage drop across the capacitor (C),

Ec = IXc = 1.46 X 10-^ X 15,900 = 23.2 volts. This voltage

drop lags behind the current by 90° and, hence, is downward. The
net reactive voltage drop in the circuit is:

El - Ec = 91.6 - 23.2 = 68.4 volts. Since this voltage is posi-

tive (-f), the vector is drawn vertically upward in Fig. 320-c.
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Finally, the vector sum of the voltage drops,

VEr2 + (Ei.-Ec)^ = V(73)2 ^ (68.4)2 = V5,S29 -h 4,671

= ViO.OOO = 100 volts

which is equal to the generator voltage (E = 100 volts), as antici-

pated. Checking the phase angle,

El-Ec 68.4 ^^^„= arc tan

—

:^ = arc tan -=^ = arc tan 0.938
tjR to

and turns out again to be about 43.2° (from tables), as before.

Since the generator voltage (in Fig. 320-c) leads the resistive drops

by 43.2°, and the current is in phase with the voltage across the

resistors, the current must lag the generator voltage by 43.2°.
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PRACTICE EXERCISE 5

1. Using the definitions of the trigonometric functions and Fig.

303, prove the following relations: tan = ^; sin^^ + cos^^ = 1;

tan e = Vsec^^-l; cosec 6 = Vcot^O + 1; sin = cos (90 - 6)

= sin (180 - 6); cos 6 = sin (90 - 6) = -cos (180 - $); tan 6 = cot

(90-^)= -tan (180-61).

2. Using a diagram similar to Fig. 307, verify that: sin 30° = cos

60° = 1/2; cos 30° = sin 60° = i/gVS- tan 30° = l/\/3; tan 60 =vT
3. A 400-cycle sine-wave voltage has a peak value of 100. Write

the expression for the instantaneous value of the voltage (e) and

compute its values at .000625, .00125, .001875 and .0025 seconds

after the generator is turned on. [Answer: e = 100 sin 800 n t; 100,

0,-100 and volts.]

4. A 25-cycle alternating-current sine wave has an amplitude of

30 amperes, (a) Compute the effective (rms) value and (b) the

instantaneous value of the current .002 second after it passes

through zero in the positive direction.

[Answer: (a) 21.2 amperes; (b) 9.27 amperes.]

5. An ac voltmeter reads 385 volts (rms) drop across a load and
an ammeter indicates 22 amperes load current. What are the peak

values of E and I? [Answer: 545 volts, 31.1 amperes.]

6. Sine wave 1 leads sine wave 2 by 60° and lags wave 3 by
130°. Find the phase angle between waves 2 and 3, and determine

which is leading. [Answer: Sine wave 2 leads wave 3 by 170°.]

7. Vector X is 200 units long and at right angles with vector Y,

which is 150 units long, (a) Find the vector sum X -f Y and the

angle between the resultant and Y. (b) Find the vector difference

X - Y and Y - X, and compare the magnitude of the resultants

with that in (a). [Answer: (a) 250 units, 53.2°; (b) same length.]

8. A vector is 13 units long and forms an angle of 22.6° with
the horizontal. Resolve this vector into two rectangular component
vectors, whose vector resultant will equal the original vector.

(Hint: the vertical component is the resultant times sin 6, and
the horizontal component is the resultant times cosine 6.)

[Answer: 12 units horizontal; 5 units vertical.]
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9. A 20-volt signal from a 5-mc oscillator is applied to a lOO/t/xf

capacitor. Find the capacitive reactance and the current.

[Answer: Xc — 318 ohms; I = 63 ma.]

10. A 60-ohm resistor, a 33.2-/>tf capacitor and a 0.r)3-henry coil

with a 30-ohm winding resistance are connected in series across

a 300 volt, 60-cycle ac source. Find the inductive and capacitive

reactances, the impedance, the line current, and the phase angle

by which the current leads or lags the applied voltage.

[Answer: Xl = 200 ohms; Xc = 80 ohms; //== 150 ohms;

I - 2 amps; I lags E by 53.2°.]

11. A circuit contains inductive and capacitive reactances of 50

ohms each and a resistive component of 25 ohms. However, the

vector diagram shows the resistive component only. Is this correct?

[Answer: The vector diagram is correct. The algebraic sum
of the reactances is zero, hence need not be dra^vn. The
circuit is in a condition of resonance.]

12. If the length of the resistance vector is 30 units, the reactive

vector 40 units, what is the length of the impedance vector?

[Answer: 50 units.]
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CHAPTER 4

Complex Numbers

THE man who first put downV-1 ^v^s undoubtedly shocked by his

own audacity. For what was the meaning of this strange-looking

quantity? What number multiplied by itself could possibly yield

-1? As he kept experimenting, this adventurer discovered a whole

new world of such numbers, \/^, \/-12.59, \/-x, y/-by, etc.,

which all looked equally mysterious. Since he couldn't find any

numbers whose square would come out negative, he called them

imaginary numbers and he gave the symbol i to \/-\. Thus, by

factoring \/^ from his quantities, he obtained \/T X V-1 — 2i,

\/T2759\/^ = ,S.55i,€\/^^ iVZand\/5y • V^-- 2.24\/y i.

The letter i looked much better than \/^and it sort of covered up
the whole unthinkable mess. Moreover, as he kept fooling with

these quantities, he found out that there was nothing imaginary

about them. On the contrary, they rounded out the whole number
system and could be given various interesting interpretations. As
the utility of the so-called "imaginaries" became obvious in engi-

neering and electrical calculations, the symbol j came into use for

the imaginary quantity (\/-l), to avoid confusion with the current

symbol i. Thus, in all electrical work the imaginary number \/-l

is known as the j-operator and, as we shall see, it comes in very

handy for the solution of alternating-current problems.

J-operator rotates a vector through 90°

One interesting interpretation of the j-operator is that it rotates

any quantity multiplied by it by a counterclockwise angle of 90°

(i.e., a right angle). Consider a vector, -|-a, laid out to the right of

the origin (0) along the horizontal axis, in accordance with the
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usual rectangular notation (Fig. 401). If you multiply a by -1, th(

result, -a, ^vill be a vector of length a, extending to the left of the

origin, as shown in the figure.

You might say, geometrically speaking, that multiplying a vector

by -1 has rotated it through 180°, or two right angles. Multiplying

-a by -1 once more results again in +a, or the original vector.

Hence, multiplying twice by -1 results in rotating a vector through

"IMAGINARY" AXIS

+ jan

-a

Fig. 401. Fundamental
operations using the

j-opera tor.

jaif

-J

REAL AXIS

o

+a

360°, or four right angles. Now, multiplying by a factor of -1 is

equivalent to multiplying by j^ since j^ = j
*

j = V-T • \/^ = -1»

and multiplying twice by -1 is equivalent to multiplying by jS

since j* = j2 . j2 =z (-1)(-1) = +1.
Thus, multiplying twice by j, or by j^ = -1, results in rotation

by two right angles or 180°, while multiplying four times by j, or

^y j' — +1> results in rotation by four right angles, or 360°. Con-

sistent with this geometrical interpretation, it follows without

further ado that multiplying a quantity once by j or V-l is equiva-

lent to rotating it by one right angle, or 90°, and multiplying a

quantity three times by j, or j^ = (\/^)(\^)(V-^ = -j» is

equivalent to rotating it by three right angles or 270°.
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In Fig. 401, the vector +ja is vertically upward, rotated 90°

counterclockwise from its original (horizontal) position, and the

vector j^a = -ja is shown vertically down^vard and rotated 270°

counterclockwise from its original position.

In other w^ords, multiplying a vector four times in succession

by the j-operator rotates it through four right angles, or 360°. Thus,

original vector, +a (0° rotation)

multiplying by j: j(+a) = 4-ja (vertically up, 90° rotation)

multiplying again by j: j(ja) = 'fa. = -a (horizontal, 180° rotation)

and again: j(j-a) = j^a = -ja (vertically down, 270° rotation)

and for the fourth time: j(j^a) = j^a = +a (360° rotation)

The horizontal axis in Fig. 401, along which the real quantities H-a

and -a are located, is called the axis of reals, while the vertical axis,

along which the "imaginary" quantities +ja and -ja arc located,

is known as the axis of imagiiiaries. You can see tliat any real or

imaginary quantity can easily be located along one of these two

rectangular axes.

What are ^^complex numbers"?

Let us extend this graphical representation of imaginary num-
bers a little further. The real and imaginary axes, apparently,

define a plane in which any point has a specific numerical designa-

tion, just as in the conventional rectangular coordinate plane. Let

us designate the horizontal (real) axis as the R or resistance axis

+JMREACTANCE)
(12, j5)

-2-

-3-

-4

-5

-6-1

+ R

10 12
(RESISTANCE)

-jx

Fig. 402. The use of complex numbers is a convenient xcny to represent
impedances.
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(Fig. 402) and the vertical (imaginary) axis as the jX or reactance axis.

(We could have equally well chosen an X-axis and jY-axis but,

since we are going to deal with impedance later on, the R and jX
axes ^vill be more useful.) Thus, any point in the R-jX plane will

have a horizontal or real abscissa along R and a vertical or im-

aginary ordinate along jX. A line dra^vn to such a point will repre-

sent a vector R + jX, ^vhere R and X may represent any values

at all.

The quantity R -f jX is called a complex number, though there

is nothing complex about it. It is simply a rectangular vector presen-

tation. Thus, the complex number 3 -f j4 in Fig. 402 represents a

vector that is made up of a horizontal (real) component of 3 ohms
resistance and a vertical (imaginary) component of 4 ohms react-

ance. The line drawn to the point 3 -f j4 is 5 units long, since

it is the hypotenuse of a triangle with sides 3 and 4 units long

(V3- 4- 4- = \/25 = 5). Similarly, a line drawn to the point

12 -f j5 represents a vector made up of a horizontal (resistance)

component of 12 ohms and a vertical (reactance) component of

5 ohms. This vector is \/12- + 5- = \/l44 + 25 = vT69 = 13

units in length.

In general, a line drawn to any complex number (or point)

R + jX is a vector that is \/R^ + X" units in length, and hence,

can represent an impedance, Z, in accordance with our previous

definition. Moreover, the angle 6 which the impedance vector

makes with the resistance (real or horizontal) axis is given by

tan = ^, as before. This is, apparently, a very convenient way

to represent impedances.

Addition and subtraction of complex numbers

All the fundamental operations of algebra apply to complex
numbers, with the proviso that the real and imaginary portions

must be handled separately. Thus two complex numbers are equal

only if both their real and imaginary parts, respectively, are equal.

This follows from the vector representation of a complex number
(Fig. 402). If two complex numbers are to represent the same
point or vector, obviously their two abscissas (real parts) and their

two ordinates (imaginary parts) must be equal. Similarly, if you
set the complex number R -f jX = 0, then both R == and X = 0,

since the zero point (or vector) can neither have an abscissa nor an
ordinate.
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To add or subtract complex numbers, simply add or subtract

the real and imaginary parts separately. For example, adding the

two complex numbers graphed in Fig. 402,

(3 + j4)

-K12 + J5)

15 + J9

Fig. 403 illustrates the vector addition of the two numbers obtained

by completing the parallelogram. The result, 15 4- j9, is a vector

made up of a horizontal (real) component, 15 units long and a verti-

cal (imaginary) component 9 units long. If we subtract (3 + j4)

from (12 + j5), we obtain algebraically

(12 + j5)

-(3 + j4)

9+ jl

The vector subtraction (in Fig. 403), obtained by adding the re-

versed (negative) vector -(3 + j4) to (12 + j5) yields the same result

8-1 +jx

-8-1 -JX
Fig. 403. This diagram illuslKtlcs vector addition and subtraction.

(9 -}- jl). Similarly, subtracting (12 + j5) from (3 + j4), we obtain

-9-jl-

(3 + j4)

-(12 + j5)

-9-jl

The vector subtraction, shown in Fig. 403, again leads to exactly

the same result.
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Thus, we can state in general, for two complex numbers (or im-

pedances), Zl = Rl -f jXl and Z2 = R2 + jX2,

the sum, ZI 4- Z2 = (Rl + R2) + j
(XI + X2), and the difference,

Zl - Z2 = (Rl - R2) + j
(XI - X2).

Multiplication and division of complex numbers

You can multiply complex numbers in exactly the same way as

algebraic polynomials, except that you replace
'f by -1, j^ by -j and

j* by +1, when it occurs in the final result. Thus, to multiply

Zl = Rl + jXl, by Z2 = R2 + jX2:

Zl X Z2 = (Rl + jXl) (R2 + jX2) = R1R2 + JX1R2 +
JR1X2 + J2X1X2 = (R1R2-X1X2) + j(RlX2 + X1R2)

Example: Multiply (5 -f j3) by (2 "j2)

(5 + j3) (2-j2) = 10 + j6-jl0-j^6 = I0-j4-(-l)(6)

= 10-j4 + 6 = 16-j4

Conjugate numbers

Two complex numbers are conjugate if they differ only in the

sign of the imaginary (j) term. Thus, (5 + j9) and (5 - j9) are con-

jugate, and in general (R + jX) and (R- jX) are conjugate complex
numbers. The interesting thing about conjugate complex numbers
is that both their sum and their product are real numbers. To
demonstrate,

the sum, (R -fjX) 4- (R - jX) = 2R + jXR - jXR = 2R, and

the product, (R -f jX)(R- jX) = R^ -f jXR-jXR -j^X^ = R^ -f- X^

Division

To divide one complex number by another we first simplify

(rationalize) the denominator by multiplying both numerator and
denominator by the conjugate of the denominator. This will make
the denominator a real number, which can be divided into the nu-

merator. Thus, if Zl = Rl + jXl and Z2 = R2 -f jX2, the quotient

r Z]_ _ Rl + jXI _ (Rl + jXI)(R2-jX2)
^ Z2 ~ R2 + jX2 ~ (R2 + jX2) (R2 - jX2)

_ R1R2 + jXlR2-jRlX2-j^XlX2~
R22-j^X2=^

^ (R1R2 + X1X2) -f- J(X1R2-R1X2)-
R22 + X22
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R1R2 4-X1X2 .X1R2
+ J

R1X2
R22 + X2^ R22 + X2'

Example: Divide (5 + jS) by (2 -j2)

5 -h j3 _ (5 4- j3) (2 + j2) ^ 10 + j6 + jlO + j^6

(2-j2)(2 + j2) 4-jH

4 + jl6 _ 1 + j4

2-j2

10 + J16-6

4 + 4

8
0.5 + j2

Polar form of complex numbers

There are two coordinate systems—the rectangular and the polar

—for specifying points in a plane. In the polar coordinate system,

the location of a point is specified by the length of a line (called

radius vector) drawn from the origin to the point and by its inclina-

tion (angle 6) with respect to a usually horizontal reference line.

(See Fig. 404.) Complex numbers and their associated vectors may

jx z

/
= R+jX

/^/ Qi

jA / z
Vx CO

N
II

X

R= IZlCOS B R

Fig. 404. Complex numbers can be
stated in either polar or rectangular

form.

be stated either in rectangular or polar form, the latter frequently
being more convenient for multiplication, division, powers and
roots.

Rectangular-to-polar conversion

The magnitude (i.e., the length of the vector) of a complex quan-
tity, Z = R + jX, is given by the Pythagorean theorem. The mag-
nitude of Z is usually symbolized |Z| to distinguish it from the
vector, Z, which has both magnitude and direction. Thus,

|z| = Vr' + x^

The angle between Z and the horizontal (real) axis,

X X= arctan — or tan ^ = —, as shown in Fig. 404.
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Using these relations you can express any complex number

Z = R + jX in polar form, |Z|/^

Example: Express 12 + j5 in polar form

|Z| - V12^ + 52 = V144 + 25 - VT69 = 13

5
e = arctan j^ ^ arctan .416 = 22.63° (from the tables).

Hence, 12 + j5 = 13/22.63°

Polar-to-rectangular conversion

Fig. 404 also illustrates the relations for converting a complex
number from polar form to rectangular form. The horizontal or

Sometimes It is necessary and con-

venient to change from polar to

rectangular coordinates.

real component, R, of the vector Z is clearly the horizontal projec-

tion, or

R=: |Z|cos^

The vertical or imaginary component, X, is, of course, the vertical

projection, or X = |Z| sin ^. Hence, the polar form

\L\/Oj=^ |Z| cos ^ + j
|Z| sin Q (in rectangular form).

Example: Convert 35/40° to rectangular form.

35/40° - 35 cos 40° + j35 sin 40°

= 35 (.7660) + j35(.6428) = 26.81 + J22.50

Addition and subtraction in polar form

Though we have written down this heading nonchalantly, it just

isn't possible. To add or subtract complex numbers given in polar
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form, you have to convert first to rectangular form, then add or

subtract; you may convert the result back to polar form, if you wish.

This is, obviously, inconvenient, but as an example let's add 35/40^

and 47/55^. We have seen above that 35 /40^ = 26.81 + J22.50.
Converting 47/55^ = 47cos. 55° + j47sin 55° = 47(.5736) + j47

(.8192) = 26.96 + J38.50. Adding (26.81 + J22.50) + (26.96 +
J38.50), we obtain the result 53.77 + j6I .0. You may let it go at that,

but if you wish to convert back to polar form, recall that

tan^
X 61.0

R~ 53.77
1.134. Hence, = arctan 1.134 = 48.6°

(from the tables). You can get the magnitude by the usual relation,

IZI = VR' + X' \/(53.77)^+(61)^

VeenV2890 + 3721 = \/6611 = 81.4,

which is somewhat complicated because of the squares and square

roots. It is much easier to get the magnitude from the relations

R X
or |Z| = -—- (see Fig. 404).

cos ^ ' ' sm ^ ^ ° ^
\Z\ =

Hence, IZI

or

53.77

cos 48.6°

61

sin 48.6°

53.77

.6613

6\

.75

= 81.4

-77^=81.4

Thus, the final result of the addition is 8 1 .4 /48.6° .

You may realize by now the complications you get into when you

try to add complex numbers in polar form. Subtraction is done in

the same manner, but we won't bother to give an example of this

rather inconvenient method.

Adding and subtracting complex numbers
in polar form con sometimes result in

mental strain.
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Multiplication and division in polar form

The polar form of complex numbers really comes into its own,

when you have to multiply or divide by a number of them. To
multiply complex numbers (or vectors) in polar form, simply multi-

ply their magnitudes (absolute values) and add their angles. Thus,

{\Z\\ieV) X (|Z2|/^ = |Z1| X IZ2I /6I1 + (92

You can verify this statement by converting first to the rectangular

form, multiplying the quantities together, and then converting

back to polar form; you will find this an interesting exercise in

trigonometry.

Example: Multiply 47/55^ by 55/40^

47/55° X 55/40° = 47 X 55/55^+40^= 2,585/95°

Division

To divide one complex number by another, divide their magni-

tudes and subtract the angles. (The numbers must be in polar

form.) Hence, Z\/e\-^ 12/02 = || /^-6>2.

You can verify this rule in the same way, by converting to rectangu-

lar form.

Example: Divide 47/55° by 55/40°

47/55° -H 55/40° = ||- /55°-40° = 0.855/15°

Powers and roots

Powers and roots of complex numbers are also easily obtained,

when they are in polar form. There is an interesting theorem,

known as De Moivre's theorem, which we won't bother to prove.

It states

[r(cos ^ H- j sin 0)]" = r" (cos n^ + j sin n^),

where n may be an integer or a fraction, positive or negative. This

theorem, therefore, applies to powers (integral exponents) as well

as to roots (fractional exponents). Accordingly, we can formulate

the rule: to raise a complex number (in polar form) to a power,

raise its magnitude to the desired power and multiply the angle by

the exponent. Thus, {Z/ey = Z" (cos n^ + j sin n^) = Zyn^

Example: (15/20°)^ = 15V3x20° = 3,375 /60°
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Roots are extracted in similar fashion: to extract a root of com-

plex numbers, extract the required root of the magnitude and

divide the angle by the index of the root. (Square root has index 2,

etc.) Hence, (Z/^)^^" = Z^^" /-^

/50
Example: \/1Q/5Q^ = VlO / "^ ^ 3.16/25^

Let's examine the result and see what it looks like graphically:

(Z l&f = Z" (cos n^ + j sin 0)

then

3.16/25° = 3.16 (cos 25° + j sin 25°)

from tables of natural sines and cosines we obtain:

sin 25° = .4226

cos 25° = .9063

thus we have

3.16 (.9063 -h j .4226) = 2.86 + j 1.335

and we can plot this graphically as shown below:
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You might well ask, what happens to the other roots, since a

square root has two roots, a cube root has three roots, etc. If you
want these roots, simply add 360° to the original angle (which
doesn't change it) and divide again by the index (n) of the root.

After you have done this (n-1) times, you will have all the roots, and
the answers will start to repeat themselves. To illustrate, let's say

you want to find the 5 fifth roots of 32/150° .

/I p>n°
To find the first root: (32 /1 50°^ ^^ = (32)^^^ /^^T- = 2/30°

^u A . .oovw. / 150° + 360° ^ /510°
The second root ^3^^..y

.5U- +W ^ 2/5H): ^ 2/i02_o

The third root = 2/^J^l±3^ = 2/^ = 2^174^

The fourth root = ^/^Jm^t^L = 2/f^ =^
2/246f

The fifth root = 2 /1^^L±^ = 2/i^ = 2/318o/ 1230° + 360° ^2 /

If you attempted to find a sixth root, it would be

/ 1 500° -4- 860° /1Q50°
2 / : = 2/^^^-= 2/390° = 2 /30° , which

is the same as the original first root. Hence, the five roots listed

above are all the roots of (32/150°)^^\ Note that you could have

written down the five roots directly by realizing that the increments

in the angle of each root are equal to 360°/", or in this case, where

the index n = 5, the increments are 360°/^ = 72° for each root.

Note further that each of the roots listed in polar form above repre-

sent distinct answers, when converted to rectangular form. As an

exercise, let us find the five rectangular vectors corresponding to

the roots.

The original number, 32/150° = 32(cos 150° + jsin 150°) i

= -27.7 + jl6
I

The first root, 2/30° = 2(cos 30° + jsin 30°) = 1.732 + jl

The second root, 2/102° = 2(cos 102° + jsin 102°)

= -.4158+ jl.956 j
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Finding a root is tlie inverse of raising a number to o power.

The third root, 2/174^ = 2(cos 174° + jsin 174°)

= -1.989 + jO.209

The fourth root, 2/246° - 2(cos 246° + jsin 246°)

& = -0.8134- jl.827

The fifth root, 2 /318° = 2(cos 318° + jsin 318°)

= 1.486 -jl.338

Fig. 405 is a vector representation of the five roots of 32/150°

Note that all five roots lie in a circle of radius 2 and each are

spaced 72° apart (starting with an angle of 30°).

Solving ac problems with complex numbers

Having mastered complex numbers you now have a powerful

tool for solving ac (and other vector) problems with ease and
elegance. In effect, you now can calculate wdth vectors without ever

constructing a vector diagram and measuring lines or angles. A
few examples will illustrate how you can apply your knowledge of

complex number calculations most efficiently.

Example 1: A series ac circuit has a resistance of 90 ohms, an

inductive reactance of 200 ohms and a capacitive reactance of

80 ohms. Voltmeters placed across the components read 180 volts

for the voltage drop across the resistance, 400 volts across (an as-

sumed pure) inductance, and 160 volts across the capacitance.

Find the impedance of the circuit, the phase angle, the applied

voltage (E), and the line (series) current.
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Solution (see Fig. 406): Since R = 90 ohms, Xl = 200 ohms and
Xc = 80 ohms, the impedance,

Z = R + j(X. - Xc) = 90 + j(200-80) = 90 + jl20 ohms

120
Converting to polar form, tan 6 = -^rrr- = 1.33; hence 6 = 53.2°.

90

The magnitude, |Z| = R 90 90

COS0 cos 53.2° 0.6
= 150 ohms.

Hence, the impedance, Z = 150/53.2° , has a magnitude of 150
ohms and a phase angle of 53.2°. (See Fig. 406-a.) Since the net

2/318^

2 /246

Fig. 405. Vector representation of the five roots of 32/150°.

reactance (X) is positive, the circuit is inductive, and the current
lags the voltage by 53.2°.

The applied voltage in a series circuit must equal the vector sum
of the voltage drops. Here, Vr = 180 V, Vi. = 400 V and Vc = 160 V.

Hence, the applied voltage (or emf),

E=Vr + j(Vl-Vc) = 180 + j(400-160) = 180 + j240 volts.
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240
1.33, and 6 =Again, converting to polar form, tan 6 = —

^

53.2°, as before. The magnitude of |E| = \/{\mY + (240)^ =

y/WMO = 300 volts, or equivalently, |E| =^^ = ^|^^ ^ cos 6 cos 53.2°

180

0.6
= 300 volts.

Hence, the applied voltage, E = 300/53.2° volts (Answer), where
the positive angle indicates that the applied voltage (E) leads the

voltage drop across R (Vr) by 53.2°. (See Fig. 406-b.) Since the

current is in phase with the voltage across the resistance, this is

equivalent to the statement that E leads I by 53.2° or I lags E by
53.2°, as before.

Finally, the line current, I

300 /53.2°

150/53.2°
2/0° amperes.

Thus, the line current is 2 amperes and its angle is 0°. Since the

voltage has a positive angle of -1-53.2°, this again means that E

AVl=4.00V

^1 XL = 20on

xc=8on

Vr = 180V

f VC=160V

Fig. 406. This problem involving an ac circuit is readily solved by converting to

polar fonri.
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XL«40n +jx

Graphic representation of Example 2, be-

low, for extreme values of 30 cps and 10 kc.

Note the effect of increasing frequency on
the impedance. For lower frequencies, the

impedance approaches the resistance, hence

inductive reactance ploys a role of decreas-

ing importance.

Z=3+j40

VOICE COIL RESISTANCE=3a
INDUCTANCE = 637/ih

B+

R»3il

leads I (or I lags E) by 53.2°. If you rotated the entire vector diagram

of Fig. 406-b clockwise by 53.2°, then E would line up with the

horizontal axis and I would lag behind by an angle of -53.2°.

Since the phase angle is usually measured with respect to the ap-

plied voltage, the applied voltage vector (E) generally serves as

horizontal reference line. Either method will give the correct

solution.

Example 2: A speaker voice coil has a resistance of 3 ohms and
an inductance of 637 microhenries. If the speaker is to be con-

nected to an output transformer with taps of 4, 8, and 16 ohms,

decide which tap to use at 1000 cps. Also find the mismatch between

the amplifier output impedance and the speaker at 30 cps and 10

kc. (Neglect other factors, which affect the voice coil impedance.)

Solution: The inductive reactance, Xl = 27rfL = 6.283 X 1000 X
.637 X 10-3 = 4 ohms (at f = 1000 cps). Hence, the voice coil im-

pedance, Z = R + jX = 3 + j4 ohms, at 1000 cps. The magnitude

of the impedance, \Z\ = \/R' + X^ = \/^^ + 4^ = \/9 + 16

\/25 = 5 ohms.
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Thus, the 4-ohm tap of the output transformer provides the best

match at the mid-frequency range (1000 cps).

At 30 cps, Xl = 6.283 X 30 X 0.637 X 10-' = 0.12 ohms. Hence,

Z = R + jX = 3 + j0.12 = 3 ohms, approximately. (Since the in-

ductive reactance is less than 1/20 of the resistance, we can neglect

it.) At 30 cps, therefore, the voice coil presents an almost pure resist-

ance of 3 ohms. The mismatch of 1 ohm (at the 4-ohm tap) is the

same as at the mid-frequency of 1 000 cps.

At 10,000 cps (10 kc),X. = 6.283 X 10^ X 6.37 X 10-^ =^ 40 ohms.

Hence, the voice coil impedance, Z= 3 + j40 ohms. The absolute

value (magnitude), |Z| = \/WT~(40y = \/9 -f 1600 = \/T609
— 40.1 ohms.

(We could have neglected R in comparison with X, in this case.)

Thus, at 10 kc the voice coil impedance is practically purely in-

ductive, and it presents a mismatch of 10:1 (i.e., 40:4). Other
factors are usually present, however, which reduce the magnitude
of mismatch.

Example 3: In the series-parallel ac circuit, illustrated in Fig.

407, find the impedance of each the parallel branches, the total

'^ I=8.44Z1.9^MA\I

1 ^-^E=100v''
^^" -R

'^Ii = 2 98Z-63.5°MA

RESISTANCE

^-Z = 11,850^-1.9°

Z2=13,000Z-22.6°
- iX

CURRENT VECTOR DIAGRAM IMPEDANCE VECTOR DIAGRAM

Fig. 407. Series-parallel circuit and its current and impedance vector diagrams.
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impedance, the branch currents, the total (line) current, and the

voltage drops across the resistors, the capacitor and the coil.

Solution: The given circuit constants are: E = 100 V; f = 500
kc; L - 9.55 millihenries; C = 63.6 fxfxi', Rl = 15,000 ohms;
R2 = 12,000 ohms. The inductive reactance, Xl = 27rfL = 6.283

X 5 X 10"^ X 9.55 X \0-^ = 30,000 ohms. The capacitive reactance,

^' ^ 2^SC ^ 6.283 X 5 X 10^ X 63.6 X 10"^^
"^ ^'^^^ °^^^-

The impedance of branch 1, Zl = Rl + jXl = 15,000 + j30,000

ohms; in polar form, tan di = ,c' ^^ = 2, hence 6i = arctan 2 =
* 15,UUU

63.5^; the magnitude, |Z| = V(1.5 X 10^^ + (3 X 10^)^ ==

VI 1.25 X 10^ = 33,600 ohms. (We could also have used the re-

lation |Z1| = Rl/cos^i.)

Hence, Zl = 15,000 + j30,000 = 33,600/63.5 ohms.

The impedance of branch 2, Z2 = R2 - jXc = 12,000 - j5000

ohms (since Xc is negative); again converting to polar form,

tan ^2=
"

=-0.416; hence^2 = arctan-.416== -22.6°;

|Z2| = V(12 X Wy + (5 X Wy = VTWxW= 13,000 ohms.

Thus, Z2 = 12,000 - J5000 = 13,000 /-22.6° ohms.

To find the total impedance, Z, we use the same formula as for

11 1 . ry Zl Z2
two parallel resistances, or Z =

-l 79
'

Zl + Z2 = (15,000 + j30,000) + (12,000- J5000) = 27,000 -f

j25,000; in polar form, tan 6^., = |^^ = 0.926; 6,., = arctan

.926 = 42.8°.

27 000 27 000
|Z1 + Z2I = '

^^^ = '1^7 = 36,800 ohms. Thus, in polar
cos 42.8° 0.734 ^

form, Zl + Z2 = 36,800/42.8° ohms. Substituting in the formula,

_ Zl Z2 _ (33,600/63.5°) (1 3,000 /-22.6°)

^~Z1 4- Z2
~

36,800/42.8°

436,000/40.9°
=

35.s;i^;^ = ^^850 /-1.9° ohms.
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I E 100/0^
The total line current, I = "7 =

11 850 /-I 9°

I

= 0.00844 /1.9^ amperes.

E 100/0°
the branch current, Ii = 777

Zl 33,600/63.5°

= 0.00298/-63.5 ° amperes.

E 100/0°
and branch current I2 = ttt: =

I
, axi^ uiaxxcii e^iiciXL .2 2:2 1 3,0Q0/-22.6°

= 0.0077/22.6° amperes.

Finally, let us compute the voltage drops across Rl, R2, L and C.

E^, = LRl = (2.98 X 10-^) /-63.5° X 15 X 10^ = 44.6 /-63.5° volts.

Er, = LR2 = (7.7 X 10-^) /22.6° X 12 X 10^ = 92.5 /22.6° volts.

E, =I,X. = (2.98 X 10-^) /-63.5° X (30x 10^)/90° = 89.5/26.5°

volts.

and Ec = LXc = (7.7 X I0-^)/22.6° X 5x 107-90° = 38.5 /-67.4°

volts.
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PRACTICE EXERCISE 6

1. First add the following pairs of complex numbers; then sub-

tract the second from the first. Also, plot each pair of numbers on
graph paper and take the vector sum and difference graphically:

5 + J3and2-j2; 6-j4and-5- j3; 3 -f J2and2 -f j3.

(Answers: 7 -f jl,3 + j5; 1 -j7, 11 -jl; 5 + j5, 1 -jl.)

2. Multiply the following numbers: (2 + j5) (3 - j2); (3 - jl)

(3 + jl); (a + jVb) (a- jVb); (2 + J3-J2V2)(1 -f j3 + jWT).

(Answers: 16 + jll; 10; a^ + b; (9-6\/2T+ j(9 + 6\/2y.

3. Divide (6 - j4) by (-5 - j3); (2 + j5) by (2 - j5); (x + jy) by
(x + j2y);(a-jb)by(a + jb).

/Answers- ±±J1^- "^^ + J^Q .
x^ + 2f - jxy a^-b^-j2ab

(Answers.—^y—

,

29"" '

x^ + 4y^ ' a^ + b^ •)

4. Draw a diagram to derive the relations between the rec-

tangular and polar form of a complex number and convert the

following numbers into rectangular or polar form, as required:

42.4 + J16.7; 51.4 /-10.5^
; 6 + j5; 3/45^; -1 - j4; 2 /300^ .

(Answers: 45.6 /21 .5^
; 50.5 - i9.36; 7.8 /39.8°;

2.12 + J2.12; 4.13/256^; l-jl.73).

5. First add 45.6/21.5° to 51.4 /-10.5° , then subtract the former

from the latter number. (Answers: 92.9 + J7.34; 8.1 -
J26.06.)

6. By using the relation Z/^ = Z(cos + jsin 6) prove that

Zl/^I Zl
Zl/^X Z2/6/2 ^ (Zl Z2) /^l + 02 and -^^^ ""

Z2"
^^^ " ^^'

7. Reduce to polar form and find the product of

(1 + J) (3 + JV5) (Answer: 2a/6/75°.)
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8. Divide in polar form (3 4- jVS) by (1 + jl).

(Answer: 2.45 /-15^. )

9. Find (2 - jl)^ (1 + j2)^ the three cube roots of 27; the five

rootsof(2 + j2)^^^

(Answers: 25/25S°44^ 56/316^25^ 3,-1.5 + j2.6,-1.5-j2.6;

1.232/9_°, L232/8F, 1.232/153_°, 1.232/225^ and 1.232/297^ )

10. Rework problem 10 in Exercise 5, using complex number
notation.

11. A 48-volt, 100 cps ac source is connected across a parallel cir-

cuit, consisting of three branches. Branch 1 is a 6-ohm resistor;

branch 2 a 66 microfarad capacitor, and branch 3 a 19 millihenry

choke coil. Compute the branch impedances, the total imped-

I

I

©

Rl CI

AWHe
90K .001

E=IOOV
f = 2KC

|S90K ^\ .

C2 =

.001

Fig. 408. This is the series-parallel circuit

for problem 12.

ance (Z), the total (line) current (It), and the three branch currents.

Draw vector diagrams.

(Answers:

Zl = R = 6/0^ ohms; Z2 = Xc = 24/-9Q° ; Z3 = X^ = 12/90^;

Z = 5.65 + jl.414 = 5.82/14^; h = 8.25/-14° ; U - 8 amperes;

Ic = 2/-90^ amperes; 1l = 4/90^ amperes.)

12. Part of a Wien-bridge oscillator circuit consists of a series

Rl-Cl combination and a parallel R2-C2 combination, both con-

nected in series with an applied voltage, E == 100 volts at 2,000 cps.
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If Rl = R2 = 90,000 ohms, and CI = C2 = 1,000 /x/xf, compute
the total impedance, Z, at 2,000 cps; the total line current, L; the

branch currents, I, and h, through R2 and C2; the voltage drop.

El, across Rl-Cl, and the drop, E2, across R2-C2.

(Answers: Z = 129,400- j 124,300 = 179,000 7-44^ ohms; h =
0.559/44^ ma; I, through R2 := 0.37 /-4.6^ ma; h through C2

= 0.418/85.4° ma; El (across Rl-Cl) = 67 /2.6° volts;

E2 (across R2-C2) = 33.3/-4.6° volts.)

13. What is meant by conjugate complex numbers? Demonstrate

by setting up a problem that the sum and product of conjugate

complex numbers are real numbers.

14. In the division of one complex number by another, how is

the denominator formed into a real number?

15. Explain, in your own words, the difference between rec-

tangular and polar coordinate systems. How do we distinguish

between the magnitude of Z and the vector Z?

16. Explain the difference between a power and a root.
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CHAPTER 5

I
Logarithms

IF
somebody told you to add instead of multiplying, to subtract

instead of dividing, and to multiply and divide in place of raising

to a power or extracting a root, you would probably think of the

suggestion as fantastic. But this is exactly what John Napier (1550-

1617) told the world in 1614 when he published his work on loga-

rithms.

Logarithms (abbreviated logs) will do all the things we men-
tioned above, but you have to pay a price for all this simplicity:

you have to learn to use a table of logarithms. This may be as brief

as a single sheet for "four-place" logs, which are accurate to four

significant figures, or as long as 20 pages for "five-place" tables,

which are accurate to five figures. Of course, if you carry a slide rule

around, you have a convenient table of logs built right into it,

though you may not know it. When you multiply with a slide rule,

you are adding logs expressed as distances along the C and D scales,

and when you divide, you are subtracting logs or distances along

the scales. A slide rule can give you an "engineering accuracy" of

about 1%, depending upon how well you read it, while five-place

log tables are accurate to about .01%, again depending upon how
well you can use (interpolate) them. Thus, a table of logs is a good
investment for accurate calculations.

What are logarithms?

The definition of logarithms sounds like double talk: the loga-

rithm of a number is the exponent, or the power, to which the base

(another number) must be raised to produce the given number.
To illustrate, in the expression

2* = 16 (i.e.,2x2x2x2 = 16)
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The number 2 is the base, 4 is the exponent (power) or logarithm,

and 16 is the resulting number. In accordance with the definition,

therefore, the logarithm of 16 to the base 2 is 4. This is written

log2 16 = 4

Thus, we can write the following short-hand definition of logs:

If b'^ = N, then log^N = x

In practice, only two base numbers (b) are used for logs. In 90%
of your work you will use the number 10 as base, since it is also

Multiplying and dividing large num-
bers? If you use ordinary arithmetic,

you'll need reams of paper.

the base of the number system. Logs to the base 10 are called com-

mon logarithms, and when no other base is stated, 10 is always

implied. The other base is the number e — 2.7182818285 (approxi-

mately), which is called the natural number. Logs to the base e are

known as natural or Napierian logarithms, after their inventor,

John Napier. Natural logs are useful in electrical theory and par-

ticularly for "exponential" capacitor charge and discharge calcula-

tions. The fundamental operations of calculating with logs are

exactly the same for both systems, but there is a difference in finding

the logs in a table. Let us first deal with common logs.
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Finding common logs in the tables

You do not need a table to find the logs of exact power of 10,

since these must have integers as exponents (logs). Thus,

logio 10 = 1, since 10^ = 10 (by definition of logs)

log 100 = 2, since 10'^^ = 100

log 1,000 = 3, since 10^ = 1,000

log 10,000 = 4, since 10* == 10,000

log 100,000 = 5, since 10^ = 100,000

log 1,000,000 = 6, since 10^ = 1,000,000, and so forth.

^^ujl

The easier way is to turn your back on

those stacks of paper ancJ use logs.

The logio 1 = 0, since W (or any other number to the zero power)

is 1. The logs of negative powers of 10 (decimal fractions) are, of

course, negative. Thus,

1, since 10-^ = —- = .1log.o.l

log .01 =-2, since 10"^ =

log .001 = -3, since 10-=» =

log .0001 =-4, since 10* =

log .00001 = -5, since 10"^ =

100

1

t;ooo
^

1

To;ooo

1

100,000

.01

= .001

- .0001

,00001, and so forth.
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Thus, we can find the log of all exact powers of 10 directly, as

shown above. You would hardly bother with logs, however, to cal-

culate with powers of 10. What about inexact powers of 10, num-
bers like 5, 46, 365, 3,897, 12.57, .153, .0024, etc.? Let's examine

them in turn. Since the number 5 is between 1 and 10, it must

have a log between and 1, or 0.???; 46 is between 10 and 100 and,

thus, the log is between 1 and 2, or 1.???; 365 is between 100 and

1,000, and hence, the log is between 2 and 3, or 2.???; 3,897 is be-

tween 1,000 and 10,000, so that the log is between 3 and 4, or 3.????;

12.57 is again between 10 and 100, and thus the log is 1.???. Note

that we can always determine the integral portion of the log to the

left of the decimal point by an inspection of the number, but we
cannot ascertain the decimal portion to the right of the point (i.e.,

the question marks). The integer preceding the decimal point is

called the characteristic of the log, while the decimal portion is

called the mantissa. You can determine the characteristic directly,

but you'll have to look up the mantissa in the log tables.

A test setup is the result of planning and mathematics is always part of that planning.

[Spectran Electronics Corp.]

^^^
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I

Determining the characteristic

You could always determine the characteristic by writing down
the exponent of the nearest power of 10 of the number, as we have

done in the preceding table. But you may also note from the char-

acteristics of the numbers we have just written that the character-

istic is always one less than the number of digits to the left of the

decimal point. Hence, you can use the following rule for the char-

acteristic of numbers greater than 1

:

Rule 1: For numbers greater than 1 the characteristic is positive

and is numerically one less than the number of digits to the left of

the decimal point.

<^^^
This is the sad but inevitable result of

failing to follow our advice. Final warning
— save time, trouble and paper — learn to

use logs.

i
We already know that for numbers less than 1 the characteristic

is negative and we can formulate the following rule to determine it:

Rule 2: For numbers less than 1 (decimals) the characteristic is

negative and is numerically one greater than the number of zeros

immediately following the decimal point. For example, using the

same numbers as before, the characteristic of .153 is -1, since there

are no zeros after the decimal point; the characteristic of .0024 is -3,

since there are two zeros. Thus, the characteristics of 72,350, 7,235,

72.35, 7.235, .7235, and .0007235 are 4, 3, 1, 0, -1, and -4, respec-

tively, while the mantissas are exactly the same.

I
There is one more point you have to observe concerning charac-

teristics. Since the mantissa (in the tables) is always positive, while

the characteristic may be either positive or negative, you cannot
place a minus (-) sign in front of the entire logarithm. You may
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place the ' -" sign above the characteristic, or better, add 10 to the

negative characteristic and then subtract 10 again after the loga-

rithm. For example, if the characteristic is -4 and the mantissa is

0.6571 (the log of .000454), you may write either 4.6571, or

6.6571 -10 (adding and subtracting 10), but not -4.6571.

Finding the mantissa

You can find the mantissa of all numbers in the log tables, either

the brief four-place tables, which list four decimal places, or five-

or higher-place tables of greater accuracy. The mantissa depends

only on the significant figures in the number whose log is desired

and does not depend on the decimal point. The characteristic takes

Log tables will look attractive if you're involved

in any work requiring computations.

care of that, as we have seen. Thus, the mantissas of 72,350, 7,235,

7.235 and .0007235 are all the same and equal to 0.85944 (from

tables). The logs of these numbers are, therefore, 4.85944, 3.85944,

0.85944, and 6.85944-10, respectively.

In finding the mantissa from four-place log tables, the left-hand

column of the table, headed N, lists the first two significant figures

of the given number, while the top row shows the third figure.

Hence, in finding a log, you first look for two significant digits in

the left-hand column under N, then follow the row across the page

until you reach the intersection with the column listing the third

digit. This is the desired mantissa. The process is the same for five-

place tables, except that you will find three digits under N. Looking

up the log of 595 in four-place tables, for example, first find 59 in

the left-hand (N) column and 5 in the top row; then follow the 59
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row across to the right until it intersects with the 5 column (or go

down the 5 column to the intersection with the 59 row). At the

intersection point you will read 7,745. The mantissa, therefore, is

0.7745 (the decimal point is implied) and the log of 595 is 2.7745.

Similarly, looking up the log of 7,235 in five-place tables, find 723

in the column under N, then go across to the intersection with

column marked "5" on top, and find the number 85,944. (You may
find only 944, the first two digits 85 being listed the first time they

appear.) The mantissa, therefore, is 0.85944 and the log of 7,235

is 3.85944. (See pages 152-153 for four-place log tables.)

As an exercise, let us look up the logs of the numbers we listed

with question marks, a little while ago:

Number Characteristic Mantissa Logarithm Remarks

5 0.6990 0.6990 4-place tables

46 1 0.6628 1.6628 4-place tables

365 2 0.5623 2.5623 4-place tables

3,897 3 0.59073 3.59073 5-place tables

12.57 1 0.09934 1.09934 5-place tables

0.153 -1 0.1847 9.1847-10 4-place tables

0.0024 -3 0.3802 7.3802-10 4-place tables

Interpolation

We looked up the numbers 3,897 and 12.57, which have four

digits each, in five-place log tables, since numbers with more than

three digits are not listed in the four-place log tables. What, if we
had only four-place tables available and wanted to find the value

of the extra (fourth) digit? Well, we would use an arithmetical

process known as interpolation, which assumes that logs increase

proportionately (linearly) with the number. (This isn't quite cor-

rect.) By arranging the mantissas in a tabular manner, you can in-

terpolate easily. Thus to find the log of 3897, write:

mantissa of 3900 = 0.5911

mantissa of 3890 = 0.5899

the difference = .0012

Since 3,897 is 7/10 of the way between 3,890 and 3,900, the mantissa

must be 7/10 of the way between 0.5899 and 0.5911. But 7/10 X
.0012 = .00084; hence, we must add the increment, .00084, to

0.5899, obtaining 0.59074. The log of 3,897, therefore, is 3.59074
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when interpolated on four-place tables. Compare this with the

value 3.59073 from five-place tables, which differs by no more than

1 part in 100,000.

Similarly, to find the log of 12.57, we write

mantissa of 1,260 = 0.1004

mantissa of 1,250 = 0.0969

difference =- .0035

Again 1,257 is 7/10 between 1,250 and 1,260. Hence, 7/10 X .0035

= .00245 is the increment. Adding .00245 to .0969 we obtain a man-
tissa of .09935. Hence the log of 12.57 from four-place tables is

1.09935, compared to 1.09934 obtained directly from five-place

tables. You can, of course, apply interpolation to five-place tables

also, thus obtaining the log for numbers of five significant figures.

You will find that commercial tables usually list the proportional

parts for various differences between logs on the margin of each

page. This makes possible interpolation between logs by inspection.

Looking up the antilog

After you have completed your calculations with logs, the result

will be another logarithm. The number that corresponds to this

logarithm, called the antilogarithm or antilog, is the numerical

result we're interested in, of course. To find the antilog, or the

number corresponding to a log, you must use the tables in reverse,

so to speak. For example, to find the antilog of 1.8987, first look in

the four-place log tables for the mantissa 0.8987. You will find it in

the "79" row (of N) and under the "2" column to the right. Thus,

the significant digits of the number are 792. Since the characteristic

is 1, there must be two digits to the left of the decimal point, by our

previous rule. Thus, the antilog of 1 .8987 is 79.2.

As another example, let's find the antilog of 2.4325. The mantissa

0.4325 is not listed in the four-place tables. However, mantissas

0.4314, corresponding to 270, and 0.4330, corresponding to 271, are

listed. Hence, we must interpolate. The difference between the two

mantissas is 0.4330 - 0.4314 = .0016, and the difference between

the given mantissa (0.4325) and the one listed for 270 (0.4314) is

0.4325 - .4314 = .0011. Hence the desired number is ^77777^ = T^
.00 lb lb

of the way between 270 and 271. Adding jt" = 0.69 (approximately)

to 270, we obtain the significant figures 27,069. Since the character-

126



ft

istic is 2, in this case, there must be three figures preceding the deci-

mal point, and hence, the desired number is 270.69. In practice, it

is sufficient to carry the interpolation to the nearest tenth (0.1), so

that the antilog of 2.4325 is 270.7, to the nearest tenth.

Finally, as an example of a negative characteristic, let's find the

antilog of 4.74846 or 6.74846 -10. Since the mantissa has five

places, let us try to find it in five-place log tables. The exact mantissa

is not listed, however. The nearest two mantissas we can find, and
the numbers corresponding to them are:

f

0.74850 corresponding to 5604
and 0.74842 corresponding to 5603

difference 0.00008 (corresponding to 1)

The difference between the desired mantissa and the one listed for

5603 is 0.74846 - 0.74842 = .00004. Hence, the desired number is

- — "5" ^^ one-half of the way between 5603 and 5604; the
.UOOOo o

significant figures, thus, are 56035. Since the characteristic is -4.

»

Having trouble finding the desired

number? Interpolation will help.

three zeros must follow the decimal point (that is, one less than the

characteristic), by the rule for negative characteristics. Hence, the

desired antilog of -4.74846 is .00056035. Though our step-by-step

presentation of the required interpolation makes the calculations

appear lengthy, they are actually extremely simple, and often can

be performed mentally.
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Computations with logarithms

After having spent all this time looking up logs and antilogs, let

us now see what we can do with them. Remember, we promised at

the outset of the chapter that we would be able to add instead of

multiplying, subtract instead of dividing, and so forth. The follow-

ing brief rules finally fulfill this promise. Though we have dealt

Once you learn the rules, working with

logs is easy. But it does take practice —
enough practice to get you out of the

head-scratching department.

only with common logs (to the base 10) thus far, the following rules

are valid for operations with any system of logs, regardless of the

base.

Rule 1: To multiply two or more numbers add their logarithms

and look up the antilog of the result. If the numbers to be multi-

plied are M and N, this rule may be formulated mathematically

logMN = logM + logN

To prove this rule, let x = logb M, so that b" = M
(by definition of logs)

and let y = logb N, so that b'' — N,

where b is any base.

Multiplying, M X N = b'' X b^ = b'^'

Taking the log of both sides, logb MN = log (b"^^) = x + y
(by definition).

Hence, logb MN = x + y = logb M -f logb N (by substitution).

Example: Multiply 69.52 by 4.37

Solution: log (69.52 X 4.37) = log 69.52 + log 4.37

log 69.52 = 1.8421

log 4.37 = 0.6405

sum = 2.4826

128



Thus the product is the antilog of 2.4826 = 303.8. The actual

product of 69.52 X 4.37 turns out to be 303.8024. The error in

using logs in this case is about 8 parts in 1,000,000 or .0008%.

Rule 2: To divide one number by another, subtract the loga-

rithm of the divisor from the log of the dividend and find the anti-

log of the result.

M
Mathematically, log t^ = logM - log N

You can prove this rule in the same way as the multiplication rule.

Example: Divide 69.52 by 4.37

SoZw^on; log (69.52 - 4.37) = log 69.52 -log 4.37

log 69.52 = 1.8421

log 4.37 = 0.6405

difference = 1.2016

The quotient is the antilog of 1.2016 = 15.907

A slight case of log m minus log n.

Rule 3: To raise a number to a power, multiply the log of the

number by the exponent of the power and find the antilog of the

result. Thus, log M" = n log M
Example 1 : Compute the value of (5.2)®

Solution: log (5.2)® = 6 log 5.2

log 5.2 - .7160; 6 X .7160 = 4.2960; the antilog

of 4.2960 = 19,765; hence, (5.2)® = 19,765.

Example 2: Find the value of (45. 6)-^

Solution: log(45.6)-3 = -3 log 45.6

log 45.6- 1.65896

-3 log 45.6 = -3 X 1.65896 = -4.97688
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Since the log tables list only positive mantissas, we add and sub-

tract 10, obtaining

10.00000-10
- 4.97688

5.02312-10

The quantity 5.02312 - 10, which is the negative of the log above,

is called the cologarithm of the number. Cologs are occasionally

useful, since, during division, you can add the colog of the divisor

instead of subtracting its logarithm. If a large number of quantities

A big problem doesn't mean a big work
sheet -- if you use logs.

are to be variously multiplied and divided, it is easier to add the

cologs in one column, rather than to subtract in separate calcula-

tions. In this particular case, the antilog of 5.02312 - 10 =
.000010547. (Since the characteristic is -5, the number of zeros after

the decimal point is 4.)

Hence, (45.6)-^ = .000010547 = 1.0547 X 10-^

Rule 4: To extract the root of a number, divide the logarithm

of the number by the index of the root and find the antilog of the

result. (Since roots are powers with fractional exponents, this is,

of course, the same as multiplying the log of the number by the

fractional exponent; hence, rule 3 above covers roots also, if

properly applied.)

Mathematically, log \/M =— log M
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Example: Find the third root of 1.572 (V 1-572).

Solution: log vT572 - -|- log ^-^^^

t log 1.572 = .19645

1 1 Q645

J log 1.572 = ^^^j^ = .065483

antilog .065483 = 1.1628

I
Hence, VT:572 = 1.1628

Using logs

I As an example of the combined use of these four rules, let us

carry out the calculations in the following example.

Example.- Using logs, compute the value of o nm / Aom'^
3.9^1 (.0^7)

^ I 3.921 (.027)2 J

= -^ log 167.2 + 3 log 8.16 -(log 3.921 +2 log .027)

Tabulating: log 167.2 = 2.22324; hencey log 167.2.... = 0.74108

log 8.16 = 0.91169; hence 3 log 8.16 = 2.73507

y log 167.2 + 3 log 8.16 = sum = 3.47615

log 3.921 =0.59340 = 0.59340

log 0.027 = 8.43136-10; 2 log .027.. = 16.86272-20

log 3.921 + 2 log .027 = sum = 17.45612-20

= 7.45612-10

difference (3.47615) -(7.45612 -10)

= 3.47615-7.45612 + 10 = 13.47615

- 7.45612

difference = 6.02003

Thus, the resulting log answer is 6.02003, and the antilog of

6.02003 = 1,047,200 is the numerical answer to the problem.

Natural logarithms and exponentials

John Napier, the inventor of logarithms, used as base the natural
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number €, which is an irrational number like tt. Thus, he defined

his system of logs: .

if e'^ — N, then log cN = x

The Napierian system of natural logs is still used extensively in
I

engineering theory and higher mathematics, primarily because the '

Limits aren't just a mathematical

invention. A fence is a good, prac-

tical example — especially if the

cow turns out to be a bull.

slope of an exponential curve (y = Ae^") at any point equals the

ordinate at that point. The basis of differential calculus is the slope

of the tangent of a function of y and, if this slope is equal to y,

differentiation becomes a very simple matter. The natural number,

€, is usually defined in this way:

€ =
Lim
n-^oo(-^y

which is read "epsilon equals the limit of one plus one over n to the

nth power, as n approaches infinity." This limit can be obtained by

taking the sum of the infinite series

--! I 1

2-1 ^3-2-l ' 4-3-2-1 5-4-3-2-1

By adding extra terms you can get the value of € to any desired

accuracy. Computing sum of the six terms listed above, we obtain

1 .
1111 = 2.71667

A more accurate value for e is 2.7182818285; this is usually rounded
off in engineering problems to 2.7183.

Finding natural logs

Standard, commercially available mathematical tables usually
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list natural logarithms (loge N), as well as the exponential function,

6*. You will find the complete logarithm, characteristic and man-

tissa in natural log tables rather than the mantissa alone. This

makes looking up natural logs extremely simple. What can you

Lost in the mathemafical woods? Look to

natural log tables for help.

do, however, if you don't have natural log tables available? You
can easily derive for yourself the following simple relations between
common and natural logarithms:

let loge N = X, so that ^ = N
and logio M = y, so that 10'' = M

To find the log of the same number in both systems, N = M, or

€'* = 10"

Taking the log of both sides of this equation, first to the base e,

loge e" = X = loge 1
0'' = y loge 1 0, or X = y loge 10.

Substituting, x = loge N, y = logio M and M = N, we obtain

logeN =log.oN • loge 10, (1)

which gives the conversion from common to natural logs. Simi-

larly, taking the log of e* == 10'' to the base 10,

log,oe^ = log,o(100 = y

or X logio€ = y

Again, substituting for x = loge N and for y = logio M = logio N,
we obtain

loge N X logio € = logic N,

or logio N = loge N X logic e, (2)

133



which gives the conversion from natural to common logs. Com-
bining these relations (1) and (2) , we finally derive

loge N = log.o N X loge 10 =^^^ (3)

and log.o N = loge N X log.o e =^^^ (4)

Looking up the two constants, loge 10 = 2.3026 and logio e = 0.4343,

and substituting in (3) and (4) above, we can summarize the con-

version formulas (recalling that loge N = natural logs, and logio N
= common logs):

11 1 o o^o/- common log
natural log = common log X 2.3026 = .^^ ° (5)

and common log = natural log X 0.4343 = ^
(6)

Thus, you can always obtain the natural log by multiplying the

common log of the number by 2.3026 or dividing it by 0.4343.

Conversely, you can obtain the common log by multiplying the

natural log of a number by 0.4343 or by dividing it by 2.3026.

There is one other point you must observe when looking up
natural logs. These are usually given only for numbers from 1 to

10. If the number whose log is desired is 10 times or 1/10 as great

as the number listed, you'll have to add or subtract, respectively,

the loge 10 or 2.3026. Thus, each time you shift the decimal point

of the listed number one place to the right, you must add 2.3026 to

the natural log of the number in the tables, and each time you

shift the decimal point one place to the left, you must subtract

2.3026 from the listed natural log. All other operations are the

same as for common logs.

Example: Find the natural logs of 5.46 and 85, both from

natural log tables and by conversion from common log tables.

Then find the product of the two numbers by means of natural

logs and check the result by use of common logs.

Solution: Looking up first in natural log tables, log 5.46 =
1.69745 and log 8.5 = 2.14007. To find log 85 we must add 2.3026

to log 8.5, or 2.14007 + 2.3026 = 4.44267

Hence, loge 5.46 = 1.69745

and loge 85 - 4.44267
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In 4-place common log tables we find

logio 5.46 = 0.7372

and logio85 = 1.9294

No magic is needed to convert common
logs to natural logs.

To convert common logs to natural logs, we multiply by 2.3026.

Hence, loge 5.46 = 0.7372 X 2.3026 - 1.69747 (approximately), and

loge 85 = 1.9294 X 2.3026 - 4.44264 (approximately)

Hence, the natural logs found by either method check closely. To
find the product of 5.46 X 85 by natural logs (using the values

from the tables), we add the natural logs. Thus, the sum of the

two logs is 6.14012, as shown.

1.69745

+ 4.44267

sum 6.14012

But the natural log table from 1 to 10 lists only values to 2.3026.

Hence, we look up 1/100 of the number by subtracting twice

2.3026, or 4.60520, from the log. The difference is 1 .53492.

6.14012
-4.60520

difference 1.53492

The aiuilog of 1.53492 is 4.641 by interpolation from the table

Since this is only 1/100 of the value, however, the result is 100 X
4.641 or 464.1.

Checking this result with common logs, we obtain a sum of

0.7372 -f 1.9294 = 2.6666. The antilog of this number, by inter-

polation from common log tables, again is 464.1. The exact result

of 5.46 X 85, by arithmetic, is 464.10.
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Using natural logs and exponentials in electrical problems

The natural number e, natural logs and exponentials (e") pop up
continuously in electronic pulse work, computations of time con-

stants, transmission lines, etc. Let us study one such problem-
capacitor charge and discharge—to become familiar with the han-

dling of exponentials and natural logs. The ciiarge and discharge

of a capacitor is one of the classic problems in electricity, which

is solved with elegance by the methods of elementary calculus.

Though we won't go into calculus here, we can take a look at the

characteristic equations and curves of this problem.

Capacitor charge

The circuit for charging or discharging a capacitor through a

resistance is shown in Fig. 501. An uncharged capacitor, C, in

SWITCH CLOSED
. CHARGE ATt =

, c .

DISCHARGE? r

\
=?C Ec

_L

CAPACITOR CHARGING CIRCUIT

CHARGE

C Ec

CAPACITOR DISCHARGE CIRCUIT

Fig. 501. Simple arrangement for charg-

ing and discharging a capacitor.

series with a limiting resistor, R, is connected through a switch to

a source of constant potential, E. (This may be a battery.) At a

certain time, t = 0, the switch is placed in "charge" position, con-

necting the battery voltage E across the R-C combination. At the

moment of closing the switch, the current rushes into the capacitor

and is limited only by the resistor, R. By Ohm's Law, therefore,

136



the current i = :^ at time t = (when the switch is closed). After
rv

a certain (theoretically infinite) time interval, the charging current

^i = E/ROR Ec =E^

IRC 2RC 3RC 4RC SRC

CHARGING CURVES

TIME ^

»- 1.0

i •«

3 .6
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UI
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21= 1 ^c"
L-
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DISCHARGE CURVE (CURRENT)

TIME ^
Fig. 502. Capacitor charge and discharge curves.

drops to zero, when the capacitor has been fully charged to the

battery voltage, E. Hence, at t = oo (infinity) i = 0. The charging

current at any time (t) is given by

= R* (1)

You can verify this equation for the two conditions we have

E _i}_ E E
stated : at t = 0, i =-- e'"""^ =^ e^ =r^ (since a number raised to

the zero power is 1)

E -«- E ^ E 1 El
andatt= 00,1=:^ €-=-€- =-x^==^X-

===1x0 =
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Thus, the charging current is — when the switch is first closed, and

it is zero after an infinite time, in accordance with the previous

conditions. Between these two extreme values, the current i de-

clines "exponentially" in accordance with the equation, and as

shown in the charging curve of Fig. 502.

The voltage across the resistor, Er, is of course the product of

the charging current, i, and the resistance, R. Hence, at any time

ER = iR = E€-^ [multiplying (1) by R] (2)

The voltage built up on the capacitor must equal the difference

between the battery voltage, E, and the drop across the resistance,

Er. Hence, at any time,

Ec = E-Er = E-E€-^ =E(1-€-^) (3)

Again, you can check this equation for two conditions, since the

voltage across the capacitor must be zero initially (at t = 0) and it

must equal E eventually (at t = oo), when the capacitor is charged.

Substituting in (3), at t = 0, Ec = E (1 - e-") == E (1 - 1) = and

at a time t = oo, Ec = E (I - €-°^) = E (1 - 0) = E, which checks

the stated conditions. The capacitor voltage builds up between

these two values in an exponential manner, as shown in the curve.

Time constant

Let us find the charging current and capacitor voltage at a cer-

tain time, T, when t = RC. This time interval (after the switch

t'-Rxc
A time constant [in seconds] is the prod-

uct of the resistance [in ohms] and the

capacitance [in farads].
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has been closed) is known as the time constant of the circuit. For

the condition, t = T = RC, we obtain

. E _Hc E , E 1 E ^ - __ E

^=R^ "-r"^R><T- Rx2.718 ^^-^^^R

andEc = E(l - e-H) = E (1 -e-') - E (1 - 0.368) -= 0.632 E.

Thus, we see that after a time interval equal to one time constant

(t = RC) has elapsed, the charging current has declined to 0.368 or

E
36.87o of its initial value, -5-, and the capacitor voltage has reached

0.632 or 63.2% of its final value, E. The product of R and C, or

the time constant, therefore, is a convenient way to gauge the

approximate charging time of an R-C circuit. The charging curves

(top right, Fig. 514) have been plotted in terms of time constants,

rather than seconds. You can see from the curves that after a time

equal to two time constants (t = 2RC), the capacitor voltage (Ec)

reaches approximately 0.865 or 86.5% of its final value, after three

time constants (3RC) about 95%), after four time constants, 98.2%),

and after five time constants it reaches 99.3% (approximately) of

its final value. During the same time intervals the current declines

to 1 3.5% at 2RC, 5% at 3RC, 1 .8% at 4RC, and to 0.7% of its initial

value at 5RC. For all practical purposes, therefore, the charging

process can be considered completed after five time constants, or

5RC.

Example: As a practical illustration, assume that the battery

voltage (E) in Fig. 503 is 200 volts, R -= 100,000 ohms, and C =

r n \oqoooK
I I

Jsi

Fig. 303. Circuit inxiohiing prob-
lem in time co7istant.

0.001 /Lcf. Determine the time constant; find the charging current,

capacitor voltage and resistor voltage drop 200 microseconds after

the switch (SI) is closed; determine the time when the voltage across

the resistor will be 50 volts, and the time it takes for the capacitor

to be fully charged (practically).
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Solution: The time constant = RC = 10^ X .001 X 10-« = .0001

second (10"* second) or 100 microseconds. The charging process will

be completed in about five time constants, or 5RC = 500 micro-

seconds.

You could, of course, determine the current and voltages after

200 microseconds, or 2RC, from the charging curves, but substitut-

E t
^00 200x10-6

^€-HC - 10^ ^ ^00xI0-«

Charging a capacitor produces a smooth curve.

ing in the equations will give more accurate results. Hence, when
t = 200 X 10-«'

V 900 200x10-6

2 X 10-^ €--^

From the tables of the exponential function, e-^ = 0.1353 (approxi-

mately). Hence, i = 2 X 10"^ X 0.1353 = 0.2706 X 10-^ ampere =
0.2706 ma. If you don't have exponential tables but do have natural

log tables available, you could write:

log i = log. (2 X 10-3 g-2) = log^ 2-3 log, 10-2

From log tables, log, 2 = 0.69315 and log, 10 = 2.3026;

hence, log i = 0.69315 - 3 X 2.3026 - 2 = 0.69315 - 8.9078

= -8.21465

Since negative logarithms are not listed in the natural log table,

we add 4 X log, 10 = 4 X 2.3026 = 9.2104, thus obtaining the log

of 10,000 times the desired number. Adding (-8.21465 + 9.2104) =
0.99575 and looking up the antilog of 0.99575, we obtain 2.707 by
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2.707 = 0.2707interpolation. The desired current, therefore, is T7^r^r^^)

X 10"^ ampere.

The voltage across R after 200 microseconds is

Eh = iR = 0.2706 X 10-^ X 10^ = 27.06 volts

and the voltage across the capacitor,

Ec = E - E„ = 200 - 27.06 = 1 72.94 volts.

Alternatively, substituting in equation (3)

Ec- E(l-e-^) -200(1-6-^') = 200(1-0.1853)
= 200 X 0.8647 = 172.94 volts.

To find the time when Er = 50 volts, we substitute in equation 2

Er = E €-^ = 200 e""^ = 50 volts

50
or

200

t

hence, logc 0.25 = - ,r.

= 0.25 = e

But, 10^,0.25 = 8.614-10

thus, 8.614- 10 = -1.386 = -
10-

and, hence, t = 1.386 X 10"^ = 138.6 microseconds.

Capacitor discharge

Assume that the capacitor in the R-C circuit of Fig. 504 has been
fully charged to the battery voltage, E. If the switch is now placed

CHARCe DJSCMARO^
o

JT \
:^C

Fig. 504. The direction of dis-

charge current is opposite to the
charging current.

in the discharge position, we have provided a direct path and
the capacitor discharges through the resistor (R). The discharge
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current is, of course, opposite in direction to the charging current,

though it must be the same in magnitude, declining again from E
to 0. Hence, we can write directly the equation for the discharge

current ^
i=-— e-^ (4)

where the minus (-) sign stands for the reversed current direction.

Fig. 502 shows the current discharge curve, which is seen to have

mirror symmetry with the current charging curve.

The voltage across the resistor, Er, again is equal to iR, or

ER===iR--E€-ife- (5)

Since the battery is short-circuited, the sum of the capacitor voltage

and the resistance drop must equal zero, or

Ec + Er = 0, and hence, Ec = -Er = Ee -^fe^ (6)

Thus, the capacitor voltage Ec declines from its initial value, E, at

t = 0, to zero at t = oo. The relative values of the discharge current

Starting time in an RC circuit or a

sack race is when T = 0.

and voltages after a time interval of one time constant (t = T = RC)

E
are all the same in this case and equal to 0.368 ^ or 0.368 E, re-

spectively. In other words, the current, the capacitor voltage and

the drop across the resistor all decline to 36.8% of their initial

values after an interval of one time constant.

Example: If the capacitor in the previous example has been

charged to 200 volts and is then discharged, find the current and the

capacitor voltage 300 microseconds after the switch has been closed.
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Solution: Substituting in equation 4,

E --i_ 200 300 X 10-^

i = -— e"«c =-—— e" 100x10-6 =-2 X 10"^ X €"'

R lU^

from tables of the exponential function, e-'^ = .0498 (approxi-

mately). Hence, i = -2 X 10"^ X .0498 = - .0996 X 10-^ ampere.

(The minus sign indicates the negative discharge current.)

The capacitor voltage, Ec — -Er = -iR

hence, Ec = - (-.0996 X 10"^) X 10^ - 9.96 volts.

Decibels for comparing power and voltage levels

In communication and acoustical work where enormous ranges

of power are involved, power ratios are usually compared by a loga-

Relative levels of sound power are

measured in decibels.

rithmic unit, known as the decibel (db). The logarithm of a ratio

increases by only 1 for each tenfold increase in the ratio, thus per-

mitting very large ratios to be expressed by conveniently small

numbers. (The log of 10,000,000 : 1, for example is only 7.) The
use of a logarithmic unit, like the decibel, has an additional signi-

ficance in acoustics, since the response of the human ear increases

approximately as the logarithm of the acoustic power. Thus, the

increase in the number of decibels of a sound corresponds approxi-

mately to the actual increase in loudness experienced.

The mathematical definition of the decibel is very simple. If the

two powers being compared are PI and P2, respectively, then the

PI
number of decibels = lOlogio-po" »
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that is, decibels are 10 times the log of the power ratio. If PI is

greater than P2, then the ratio P1/P2 is larger than 1, and the num-
ber of decibels will be positive (+ ); if PI is less than P2, however,

the number of db will be negative (-). Thus, if PI is twice P2, then

PI
db=- 101ogp2 = 10 log 2 = 10X0.301 = 3 db (approximately),

but if PI is one-half of P2 (i.e., PI = V4 P2), then

db = 10 log|| = 10 log 1/2 = 10 log 1 - 10 log 2

= 0-10x.3=-3db

(since the log of 1 is zero). Hence, if you hear someone say that the

frequency response of an amplifier is 3 db down at the low and high

We can get some idea of the behavior

of on amplifier by plotting its response

curve.

ends, compared to the mid-frequency response, he means that the

power at the low and high ends is -3 db or one-half of the midfre-

quency power of the amplifier. The 3-db or half-power points are

also frequently used to specify the bandwidth of a tuned circuit. It

may also be useful to keep in mind that 1 db represents a power

ratio of about 5 to 4, while 60 db corresponds to a ratio of 1,000,000

to 1. Electrical handbooks give tables of db versus the power ratio,

so you won't even have to bother to look up the logarithm.

Voltage and current ratios

Regrettably, the decibel is frequently used in electrical work to

express voltage and current ratios, and it is here that the confusion

begins. Since the decibel is defined as expressing a power ratio, it

can be used for voltage and current ratios only when the power is an
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exact function of the voltage or current and the resistances are

equal. Thus, in electrical circuits where the po^ver is proportional

to the square of the current or the voltage, Tve may write

PI = i,2R, = 111 and P2 = h'R2 = ^Ki K2

Substituting for the current ratio in the defining equation,

\

'°
I

db = 10 log^ = 10 logj^ = 20 loe 4^+10 Ior
R̂.

and for the voltage ratio

db = 101og^-101og-|^
^^^^^ft

R=

E R
Hence,db = 201ogTr^+ 10 log -^

If the resistances are equal, the decibel

formulas for the comparison of voltages,

currents and powers becomes simplified.

If the resistances or impedances associated with the two currents or

voltages arc equal (R, = R-,), and only then,

Ri R2
log 1 =

and hence, db == 1 log t^ = 20 log 7^ = 20 log -^

You will frequently find in practice that resistance or impedance
values are ignored and the voltage or current levels are compared
on a db basis by taking 20 times the log of their ratio. As an ex-
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ample, consider an audio amplifier which produces 20 watts output

across an 8-ohm impedance if a 5-millivolt signal is applied across

a 1-megohm input resistor (Fig. 505). To determine the gain of the

amplifier in decibels, let Ri = 8 ohms, PI = 20 watts, £2 = 5 milli-

volts = .005 volt, R2 = 1 megohm = 10^ ohms. The power level at

the input, V2 = ^ =^^A^ =^^4^ = 25 X 10-^^ watt;
R2 10^ 10^

also, the output voltage, E, = VPI Ri = VWyTS = \/l60
= 12.65 volts.

E R
Hence, the gain in db = 20 log -pA -f 10 log -^

= 20 log 2530+ 10 log (1.25 X 10^)

= 20 X 3.4031 + 10 X 5.0969 = 68.06 + 50.97 = 1 19.03 db

AMPLIFIERINPUT E2=5MV

i

<R2 t
P| =20W

\

^ RI*

dbGAIN=IOLOG-|^=20LOG|^-l-IOL06—
Pg Eg "'

Fig. 505. Problem involving the calculation of

voltage gain of an amplifier.

If you ignored the ratio of the resistances in this case, you would
get an erroneous gain figure of 68 db (approximately) instead of

119 db. If you don't want to run into this kind of trouble, use only

the power ratio to obtain the db gain. In this case.

db = 101ogU-=101og
20 = 10 log 8 X 10^

P2 ^25X10-"

10 X 11.903 = 119.03 decibels.

The answer is, of course, the same as in the previous computation.
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Decibel gain figures are especially useful for finding the stage-by-

stage gain of a number of cascaded amplifier stages, since you can

add db instead of multiplying the numerical voltage gain. Thus, if

each stage of an amplifier has 20 db gain, corresponding to a voltage

ratio of 1 to 10 across equal impedances, the gain of five such cas-

caded stages is 5 X 20, or 100 db, corresponding to an overall volt-

age ratio of 1 to 100,000.

DB reference levels

Decibels are also occasionally used in acoustics and electronics to

express a power (sound or electrical) level with reference to some

ZERO-DB

The use of decibels often requires

reference to a stondorci level.

Standard zero-db reference level. Thus, in acoustics the zero-db ref-

erence level is set at 10"^® watt per square centimeter, which is ap-

proximately the faintest sound one can hear. All other sound
powers may then be expressed with reference to this zero level. For
example, the rustle of leaves in a gentle breeze is about 15 db above
the zero-db level of 10'^^ watts. The noise in an average residence

is about 40 db above the zero level, a subway train has a leyel of

about 100 db and a propeller-driven airplane at 18 feet from the

ground produces about 125 db of noise. Similarly, in electrical

work a zero-db level of 1 milliwatt across an impedance of 600 ohms
is frequently used. However, other logarithmic units, such as VU
(volume units), have slightly different definitions.
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PRACTICE EXERCISE 7

1. Write the following in logarithmic form: 2^ = 16; 3^ = 9;

43/2 ^8; 5° = 1; 3-^ =4-' 16-3'* = 4"' 25-^'' ^-r-O O D

3
(Answers: logs 16 = 4; logs 9 = 2; log4 8 =y ; log, 1 = 0;

1 1 1 1

1 3
1

1 1 Xlog- y = -1
;
log.oy = - y; log.sy = - ^.)

2. What are the characteristics of logio of 82.16, 3,285, 1.845,

50,436, 0.62, .0865, .00006 and 3,890.05.

(Answers: 1; 3; 0; 4: -1; -2; -5; 3.)

3. Given log 386.5 = 2.5872, what is log 38.65, log 3.865, log

38,650, log .0003865.

(Answers: 1.5872; 0.5872; 4.5872; 4.5872.)

4. Find the log to the base 10 of the following numbers: 28.69;

4.8692; 1238.6:0.8691; 0.004981; and 86,43^2,000.

(Answers: 1.4578; 0.6874; 3.0929; 1.9391; 3.6973; 7.9367.)

5. Look up the antilog corresponding to the following logs (base

10): 1.8162; 7.5670-10; 0.8197; 3.0067; 8.6283-10; 9.1287-10.

(Answers: 65.5; .00369; 6.603; 1016; .04249; 0.1345.)

6. Compute by common logs the value of each of the following:

(a) (36.42)(111.42)(3.46)%0176); (b)^; (c) (7^)' =

6/;

(d) (3.087)* X (1.234)2 - (-3.5421)^ (e)
(861.42)V21.477

\/-121.4

(Answers: (a) 854.8; (b) .0003652; (c) 51.03; (d) -3.112;

(e) -550.)

7. Solve the following: 3.7^^ = 1 11.42; 2.14"^ = 62.875; and (3.86)''^^

= 0.4863.

(Answers: x = 3.602; x = 5.443; x = -1.533.)

8. Compute the value of € correct to three decimal places by means

of the infinite series given in the text. (Answer 2.718)
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9. If loga N = y and logc N = x, find two expressions for log. N
as a function of logc N.

loecN
(Answers: log. N = log.clogc N

logc a
•)

10. Find the natural logarithm (logf) of the follou'ing numbers:

.01: 0.86; 3.74; 8.2;^44; 85; 143; 804; and 1,107.

'

(Answers: 5.395 -10; 9.849 -10; 1.31909; 2.10413; 3.78419;

4.44265; 4.6284; 6.8960; 7.0941.)

11. By means of natural logs compute: €°^ €^^; €

€^0 and €-^^

(Answers: 1.0408; 2.1170; 0.54335; 3.4903;

.063292; 22,026 and .000045.)

0.61. gl-25 2.78.

12. If the battery voltage E in Fig. 506 is 250 volts, R = 50,000

ohms and C= .001 /^f, find (a) the time constant of the cir-

<r^o WAA-
SOKSl

-h- ZSO >40V^S
±.00\^<'

Fig. 500. Circuit arrangement for

problem 12.

13.

cuit; (b) Er and Ec at 100 microseconds after the switch is

closed; (c) the time (in microseconds) when Er = 50 volts, and
(d) the value of the charging current the instant the switch is

closed, assuming that the capacitor was initially already

charged to 100 volts (i.e., at t = 0, Ec = 100 volts).

(Answers: (a) 50 microseconds; (b) Er — 33.7 volts, Ec = 216.3

volts; (c) 80.5 microseconds; (d) 3 milliamperes.)

In a gas-tube sweep oscillator, a capacitor (C) is charged

through a resistor (R) from a dc plate-supply voltage, Et.

When the voltage across C reaches the ionization potential, Ei,

of the tube, the capacitor is practically instantly discharged

(R = 0) through the tube to a lower, deionization potential,
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R

Eb

Fig. 507. Circuit arrangement for

problem 13.

Ed. The cycle then repeats, the capacitor again being charged to £»

and then discharged to Ed. If the charge curve is exponential, as

stated in the text, and the discharge takes zero time, derive an

expression for the period, T, of the oscillation. (See Fig. 507.)

(Answer: T = RC loge
r (E^-E.) i.

l(E.-E.)J^

14. If the input resistor (in Fig. 505) of the amplifier was reduced

to 50,000 ohms, how would this affect the db gain of the

amplifier?

(Answer: the gain would be down 13 db, to 106 db.)
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COMMON LOGARITHMS

12 3 4 5 6 7 8

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374

11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755

12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106

13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430

14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014

16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279

17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529

18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765

19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201

21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404

22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598

23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784

24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133

26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298

27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456

28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609

29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900

31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038

32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172

33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302

34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551

36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670

37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786

38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899

39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117

41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222

42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325

43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425

44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618

46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712

47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803

48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893

49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067

51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152

52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235

53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316

54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396
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COMMON LOGARITHMS

N 1

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474

56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551

57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627

58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701

59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846

61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917

62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987

63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055

64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189

66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254

67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319

68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382

69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506

71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567

72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627

73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686

74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802

76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971

79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773

95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996
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NATURAL LOGARITHMS

N 1

1.0 0.0000 0100 0198 0296 0392 0488 0583 0677 0770 0862

1.1 0953 1044 1133 1222 1310 1398 1484 1570 1655 1740

1.2 1823 1906 1989 2070 2151 2231 2311 2390 2469 2546

1.3 2624 2700 2776 2852 2927 3001 3075 3148 3221 3293

1.4 3365 3436 3507 3577 3646 3716 3784 3853 3920 3988

1.5 0.4055 4121 4187 4253 4318 4383 4447 4511 4574 4637

1.6 4700 4762 4824 4886 4947 5008 5068 5128 5188 5247

1.7 5306 5365 5423 5481 5539 5596 5653 5710 5766 5822

1.8 5878 5933 5988 6043 6098 6152 6206 6259 6313 6366

1.9 6419 6471 6523 6575 6627 6678 6729 6780 6831 6881

2.0 0.6931 6981 7031 7080 7129 7178 7227 7275 7324 7372

2.1 7419 7467 7514 7561 7608 7655 7701 7747 7793 7839

2.2 7885 7930 7975 8020 8065 8109 8154 8198 8242 8286

2.3 8329 8372 8416 8459 8502 8544 8587 8629 8671 8713

2.4 8755 8796 8838 8879 8920 8961 9002 9042 9083 9123

2.5 0.9163 9203 9243 9282 9322 9361 9400 9439 9478 9517

2.6 9555 9594 9632 9670 9708 9746 9783 9821 9858 9895

2.7 0.9933 9969 0006 0043 0080 0116 0152 0188 0225 0260

2.8 1.0296 0332 0367 0403 0438 0473 0508 0543 0578 0613

2.9 0647 0682 0716 0750 0784 0818 0852 0886 0919 0953

3.0 1.0986 1019 1053 1086 1119 1151 1184 1217 1249 1282

3.1 1314 1346 1378 1410 1442 1474 1506 1537 1569 1600

3.2 1632 1663 1694 1725 1756 1787 1817 1848 1878 1909

3.3 1939 1969 2000 2030 2060 2090 2119 2149 2179 2208

3.4 2238 2267 2296 2326 2355 2384 2413 2442 2470 2499

3.5 1.2528 2556 2585 2613 2641 2669 2698 2726 2754 2782

3.6 2809 2837 2865 2892 2920 2947 2975 3002 3029 3056

3.7 3083 3110 3137 3164 3191 3218 3244 3271 3297 3324

3.8 3350 3376 3403 3429 3455 3481 3507 3533 3558 3584

3.9 3610 3635 3661 3686 3712 3737 3762 3788 3813 3838

4.0 1.3863 3888 3913 3938 3962 3987 4012 4036 4061 4085

4.1 4110 4134 4159 4183 4207 4231 4255 4279 4303 4327

4.2 4351 4375 4398 4422 4446 4469 4493 4516 4540 4563

4.3 4586 4609 4633 4656 4679 4702 4725 4748 4770 4793

4.4 4816 4839 4861 4884 4907 4929 4951 4974 4996 5019

4.5 1.5041 5063 5085 5107 5129 5151 5173 5195 5217 5239

4.6 5261 5282 5304 5326 5347 5369 5390 5412 5433 5454

4.7 5476 5497 5518 5539 5560 5581 5602 5623 5644 5665

4.8 5686 5707 5728 5748 5769 5790 5810 5831 5851 5872

4.9 5892 5913 5933 5953 5974 5994 6014 6034 6054 6074

5.0 1.6094 6114 6134 6154 6174 6194 6214 6233 6253 6273

5.1 6292 6312 6332 6351 6371 6390 6409 6429 6448 6467

5.2 6487 6506 6525 6544 6563 6582 6601 6620 6639 6658

5.3 6677 6696 6715 6734 6752 6771 6790 6808 6827 6845

5.4 6864 6882 6901 6919 6938 6956 6974 6993 7011 7029
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NATURAL LOGARITHMS

12 3 4 5 6 7 8

5.5 1.7047 7066 7084 7102 7120 7138 7156 7174 7192 7210

5.6 7228 7246 7263 7281 7299 7317 7334 7352 7370 7387

5.7 7405 7422 7440 7457 7475 7492 7509 7527 7544 7561

5.8 7579 7596 7613 7630 7647 7664 7681 7699 7716 7733

5.9 7750 7766 7783 7800 7817 7834 7851 7867 7884 7901

6.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066

6.1 8083 8099 8116 8132 8148 8165 8181 8197 8213 8229

6.2 8245 8262 8278 8294 8310 8326 8342 8358 8374 8390

6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547

6.4 8563 8579 8594 8610 8625 8641 8656 8672 8687 8703

6.5 1.8718 8733 8749 8764 8779 8795 8810 8825 8840 8856
6.6 8871 8886 8901 8916 8931 8946 8961 8976 8991 9006
6.7 9021 9036 9051 9066 9081 9095 9110 9125 9140 9155
6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301

6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445

7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587
7.1 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727

7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865

7.3 1.9879 9892 9906 9920 9933 9947 9961 9974 9988 0001

7.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136

7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268
7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399
7.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528
7.8 0541 0554 0567 0580 0592 0605 0618 0631 0643 0656
7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782

8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906
8.1 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029

8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150

8.3 1163 1175 1187 1199 1211 1223 1235 1247 1258 1270

8.4 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389

8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 1506

8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622

8.7 1633 1645 1656 1668 1679 1691 1702 1713 1725 1736

8.8 1748 1759 1770 1782 1793 1804 1815 1827 1838 1849

8.9 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961

9.0 2.1972 1983 1994 2006 2017 2028 2039 2050 2061 2072
9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181

9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289
9.3 2300 2311 2322 2332 2343 2354 2364 2375 2386 2396
9.4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502

9.5 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607
9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711

9.7 2721 2732 2742 2752 2762 2773 2783 2793 2803 2814

9.8 2824 2834 2844 2854 2865 2875 2885 2895 2905 2915

9.9 2925 2935 2946 2956 2966 2976 2986 2996 3006 3016

10.0 2.3026
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MATHEMATICAL SYMBOLS

Symbol Name Description

1,2,3,4,5,
6, 7, 8, 9, Numerals The numbers used in mathematics

00 Infinity A quantity larger than any number

. Decimal point A period used to point off numbers

+ Plus sign Addition, positive

- Minus sign Subtraction, negative

± Plus or minus Addition or subtraction

q= Minus or plus Subtraction or addition

X Multiply by Multiplication (arithmetic)

a*h a is multipled by b Multiplication (algebra)

T- Divided by Division

a/h a is divided by b

or "a is to b"
Division (fraction or ratio form)

a a is divided by b Division (fraction or ratio form)

b or "rt is to b"

n:h a is to b Ratio form of division

= Equal to Equality

= Identical with Identity

Approximately
equal to

Approximate equality in equations

¥- Not equal to Inequality

< Less than Inequality

> Greater than Inequality

4 Less than or equal

> Greater than or equal

-> Approaches (as a limit)

L Perpendicular Geometry

II
Parallel to Geometry

L Positive angle sign Geometry

r Negative angle sign Geometry

A Triangle Geometry

O Circle Geometry

, , Therefore Geometry, Logic

# or No Number When placed before numerals

% Percent Placed after number expressing percent

Continued To indicate the continuation of a

sequence numbers or series

156



MATHEMATICAL SYMBOLS

Symbol Name Description

Epsilon

i
€

4! or |4 Factorial

£ Sigma, Summation
n Summation from o
^

to n

( )
Parentheses

[ ] Brackets

{ }
Braces

Vinculum

V Radical

V Radical and vin-

culum

x/TorA'" Fourth root of the

quantity A
^^ The second power of

the quantity A

Ml The absolute value

of vector A
A or A /4 is a vector

A A \s2l vector

A. X is a subscript

i (v^)
i (V^)
9 Degree sign

# Minute sign

// Second sign

ab Determinant sign

cd

e == 2.7 1828 183..., the base of natural

logarithms (Napierian base)

0.3679

A number multiplied by all smaller num-
bers, thus 4! = \^= (4) (3) (2) (1) == 24

To add a series of terms

To add a series of terms ranging from
o to ?2

A sign at both ends of a grouping

A sign at both ends of a grouping

A sign at both ends of a grouping

A line placed over a grouping

Extract the square root of a number

Extract the square root of a group of

quantities or numbers

Extract the fourth root of A or raise A
to the fourth power

The power to which a quantity is to be
raised. The number 2 is called the

exponent of A

The magnitude of a vector quantity

A quantity that has both magnitude and
direction

When the magnitude is expressed \A\,

A can be used to express a vector

quantity

To identify the quantity A, as, for ex-

ample, lying along the x-axis

The j operator in electrical engineering

Imaginary number

Angles in degrees

Angles in minutes

Angles in seconds

The determinant of two simultaneous
equations
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TABLE OF DECIMAL EQUIVALENTS

.0156- 1/64 .2656--17/64 .5156-33/64 .7656-49/64

1/32-.0312 9/32-.2812 17/32--.5312 25/32-.7812
.0469- 3/64 .2969--19/64 .5469-35/64 .7969-51/64

1/16-.0625 5/16-.3125 9/16--.5625 13/16-.8125
.0781- 5/64 .3281--21/64 .5781-37/64 .8281-53/64

3/32-.0937 11/32-.3437 19/32--.5937 27/32-.8437
.1094- 7/64 .3594--23/64 .6094-39/64 .8594-55/64

1/8 -.1250 3/8-.3750 5/8--.6250 7/8-.8750
.1406- 9/64 .3906--25/64 .6406-41/64 .8906-57/64

5/32-.1562 13/32-.4062 21/32--.6562 29/32-.9062
.1719-11/64 .4219--27/64 .6719-43/64 .9219-59/64

3/16-.1875 7/16-.4375 11/16--.6875 15/16-.9375
.2031-13/64 .4531--29/64 .7031-45/64 .9531-61/64

7/32-.2187 15/32-.4687 23/32--.7187 31/32-.9687
.2344-15/64 .4844--31/64 .7344-47/64 .9844-63/64

1/4-.2500 1/2-.5000 3/4--.7500 1-1.000

POWER AND VOLTAGE RATIOS in db

Inverse Inverse
Voltage Power Voltage Power
Ratio Ratio Decibels Ratio Ratio

1.000 1.000 1.0000 1.0000

1.122 1.259 1 .8913 .7943

1.259 1.585 2 .7943 .6310

1.413 1.995 3 .7079 .5012

1.585 2.512 4 .6310 .3981

1.778 3.162 5 .5623 .3162

1.995 3.981 6 .5012 .2512

2.239 5.012 7 .4467 .1995

2.512 6.310 8 .3981 .1585

2.818 7.943 9 .3548 .1259

3.162 10.000 10 .3162 .1000

3.548 12.59 11 .2818 .07943

3.981 15.85 12 .2512 .06310

4.467 19.95 13 .2239 .05012

5.012 25.12 14 .1995 .03981

5.623 31.62 15 .1778 .03162

6.310 39.81 16 .1585 .02512

7.079 50.12 17 .1413 .01995

7.943 63.10 18 .1259 .01585

8.913 79.43 19 .1122 .01259

10.000 100.00 20 .1000 .01

17.78 316.2 25 .056 .00316

31.62 1,000 30 .03162 .001

.56.23 3,162 35 .01778 .000316

ioo.o 10,000 40 .010 .0001

177.8 31.620 45 .0056 .0000316

316.2 100,000 50 .003162 .00001

1.000 ] ,000,000 60 .001 .000001

3,162 IC),000,000 70 .0003162 .0000001

10.000 IOC),000,000 80 .0001 .00000001

31,620 1,00(3,000,000 90 .00003162 .000000001

100,000 10,00(},000.000 100 .00001 .0000000001
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ALGEBRAIC FORMULAS

{l)a-\- b = b -{- a (20)t'=-6=-6
(2)(a + b) + c = a-\-{b -^c) (21)i=f = -f
(S)(a + b + c) = a -{- b + c

/oo\ a , b ac -\- be a -\- b
^ ^ c c ~ c^ ~~ c

(4)-{a-b -\- c) =-a + b-c /o3\ a b_ac-bc_a-b
^ ^ c c c« c

(5)(a + b-c)=a + b-c
(OA\ a

,
c _ad + be

(P)
a -\- c = b -\- d, ii a = b and c = d (^^)(f)(i)=f^

(7) ab = ba

(2^)4=(f)(f)=!f
(8) {ab)c = a{bc) = abc = {a){b){c) d

(27) {a^){ar) = a*"*"

(9) aib + c) = ab + ac

(28) (a'")" = a"^

(10) ac = bd,iia = b and c= d

(29) (ate)'" = a^b'^c'^

(U)a + {-b) = a-b

(12)wz-(-6) = -a-\- b

f\
(31) !:=«'""

(lS)i = 0; (0)(a)=0
u

a \ / \ /

(32) a' = 1

14)(oo)(a) = 00
(33) a^=y/'^

{\b)f=oo

(16) a(-6) = -<ib

(17) (-«)(-6) = afe

(18) ^(-6) =ab

(34) a-
_ 1

(35) (a + b){a -^ b) = a' -{-2ab-\-b' = {a-\-by

(S6)(a + b){a-b)=a'-b*

(37) (a-b){a-b)=a'-2ab -\- b' = (a- b)'

(38) (a + 6)(f-d) =ac-|- bc-ad-bd
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MISCELLANEOUS>

(1) € = 2.71828183 (17) log 8 ^ 0.903090

(2)
-= 0.36787944
e

(18) log 9^:0.954243

(3) log e = 0.43429448 (19) log 10=^ 1.000000

(4) 77 = 3.14159265 (20) 1 radian ^ 180°/7r = 57°17'44.8"

(5) 2 77 = 6.28318530 (21) 1^ ^ 77/180° = 0.01745329 radian

(6) —=0.31830989
77

(22) VT-^ 1.0000

(7) 77= = 9.8690440 (23) V2 - 1.4142

(8) VtF= 1.77245385 (24) ^s/J^ 1.7321

(9) log77 = 0.49714987 (25) y/1 ^ 2.0000

(10) log 1 = 0.000000 (26) V5"= 2.2361

(11) log2 = 0.301030 (27) VS"= 2.4495

(12) log 3 = 0.477121 (28) V^-- 2.6458

(13) log4 = 0.602060 (29) V8'= 2.8284

(14) log 5 = 0.698970 (30) V9'-= 3.0000

(15) log 6 =0.778151 (31) V'n)'= 3.1623

(16) log 7 = 0.845098 (32) j-V-1

[logs are to base 10]

160

















others TAB BOOKS of Interest
HOBBY & EXPERIMENT
542— TRANSISTOR PROJECTS FOR HOBBY-
ISTS 3, STl'DENTS. Steckler. 192 pages, 140

illus. $4.95

537 — 125 ONE-TRANSISTOR PROJECTS.
Rufus Turner. 192 pages, 125 illus. $3.95

524 — 104 EASY PROJECTS FOR THE
ELECTRONICS GADGETEER. Robert M.
Brown. 160 pages, 104 illus. $3.95

487 — 64 HOBBY PROJECTS FOR HOME &
CAR. Brown &Olsen. 192 pages. 111 illus. $3.95

486 — 104 SIMPLE ONE-TUBE PROJECTS.
Robert M. Brown. 192 pages, 104 illus. $3.95

464-ELECTRONIC HOBBYIST'S IC PROJECT
HANDBOOK. Robert AA. Brown. 160 pages S3. 95

462—104 EASY TRANSISTOR PROJECTS YOU
CAN BUILD. Robert M. Brown. 224 pages, 104

Illus. $3.95

135 — RADIO CONTROL MANUAL. Edward L.

Saftord. 192 pages, 147 illus. $3.95

129 — SKILL-BUILDING TRANSISTOR
PROJECTS& EXPERIMENTS. Lou Garner. 192

pages, 128 illus. $3.95

122 — ADVANCED RADIO CONTROL. Edward
L. Saftord, Jt . 192 pages, 174 illus. $4.95
93— RADIO CONTROL HANDBOOK: New 3rd
Edition. Howard McEntee. 320 pages, 240111. $5.95

89 — TRANSISTOR PROJECTS. Radio Elec-

tronics Staff. 160 pages, 123 illus. $2.95

83— FUN WITH ELECTRICITY. Tom Kennedy,
Jr. 128 pages, 95 illus. $2.95

74 — MODEL RADIO CONTROL. Edward L.

Saftord, jr. 192 pages, 210 illus. $3.95

70 — ELECTRONIC PUZZLES & GAMES.
Matthew Mandl. 128 pages, 72 illus. $2.50

69— ELECTRONIC HOBBYIST'S HANDBOOK.
Rufus Turner. 160 pages, 118 illus. $3.95

AMATEUR RADIO

543 — AMATEUR RADIO EXTRA-CLASS
LICENSE STUDY GUIDE. 73 Magazine. 224

pages, 162 illus. $4.95

527 — AMATEUR RADIO /XDVANCED CLASS
LICENSE STUDY GUIDE. 73 Magazine. 192

pages, 73 illus. -$3.95

499 — CB RADIO OPERATOR'S GUIDE. Brown
& Lawrence. 224 pages, 138 illus. $3.95"

469 — HAM RADIO INCENTIVE LICENSING
GUIDE. Bert Simon. 160 pages, 314 Q & A, 35

illus. $3.95

468 — 104 HAM RADIO PROJECTS FOR
NOVICE & TECHNICIAN. Bert Simon. 192

pages, 104 illus. $3.95

460 — VHF HAM RADIO HANDBOOK. Edward
G. MacKinnon. 176 pages, 100 illus. $3.95

RADIO SERVICING

504 — HOW TO FIX TRANSISTOR RADIOS &
PRINTED CIRCUITS. Leonard C. Lane. 256
pages, 150 illus. $4.95

429 — EASY WAY TO SERVICE RADIO
RECEIVERS. Sands. 176 pages, 100 illus. $3.95

78— RAPID RADIO REPAIR. G. Warren Heath.
224 pages, 104 illus. $3.95

76 — SERVICING TRANSISTOR RADIOS.
Leonard D'Airo. 224 pages, 202 illus. $4.95

95H

BASIC TECHNOLOGY
538 — COMPUTER CIRCUITS & HOW THEY
WORK. Byron Wels. 192 pages. 134 illus. S4.95

530 — BASIC ELECTRONICS PROBLEMS
SOLVED. D. A. Smith. 192 pages, 100 illus. S4.95

528 — PULSE & SWITCHING CIRCUITS.
Harvey Swearer. 256 pages, 200 illus. S4.95

510— HOW TO READ ELECTRONIC CIRCUIT
DIAGRAMS. Brown & Lawrence. 192 pages, plus

64-page schematic foldout section, 140 illus. S3. 95

112— LEARN ELECTRONICS BY BUILDING.
John Schroeder. 208 pages, 209 illus. $4.95

111 — BASIC TRANSISTOR COURSE. P:.ul R.

Kenian. 224 pages, 176 illus. $4.95

105 — BASIC TV COURSE. George Kravit,:. 224

pages, 137 illus. S5.V5

104— BASIC RADIOCOURSE. John T. F-ye: 224

pages, 131 illus. $4

GlOO — BASIC MATH COURSE FOR ELEC-
TRONICS. Jacobwitz. 160 pages, 89 illus. 54.95

99 — INDUSTRIAL ELECTRONICS MADE
EASY. Tom Jaski. 288 pages, 239 illus. S:;.95

SOLID-STATE TECHNOLOGY

513 — UNDERSTANDING SOLID-STATE
CIRCUITS. Crowhurst. 192 pages, 150 illus. $4.95

501 — WORKING WITH SEMICONDUCTORS.
A. C. Saunders. 224 pages, 185 illus. $4.95

493 — SEMICONDUCTORS FROM A TO Z.

Phillip Dahlen. 288 pages, 300 illus. S4.95

470 — TRANSISTOR CIRCUIT GUIDEBOOK.
Byron Wels. 224 pages, 104 illus. $4.95

116 — GETTING STARTED WITH " RAN-
SISTORS. Lou Garner. 160 pages, 89 illus. $3.95

94— TRANSISTORS. Radio Electronics Staff 96

pages, 65 illus. $1.95

75 — TRANSISTORS— THEORY & PRACTICE.
Rufus Turner. 160 pages, 143 illus. $3.95

63— TRANSISTOR CIRCUITS. Rufus Turner.
160 pages, 146 illus. $3.95

61 — TRANSISTOR TECHNIQUES. Radio
Electronics Staff. 96 pages, 78 illus. $1.95

AUDIO & HI-FI STEREO

546 — ELECTRONIC MUSICAL INSTRU-
MENTS. Crowhurst. 192 pages, 125 illus. $4.95

529 — HANDBOOK OF MAGNETIC RECOR
DING. Finn Jorgensen. 224 pages, 90 illus. 34.95

534 — SERVICING MODERN HI-FI STEREO
SYSTEMS. Norman Crowhurst. 224 pages, plus

schematic foldout section. 125 illus. $4.95

505 - INSTALLING & SERVICING HOME
AUDIO SYSTEMS. Jack Hobbs. 256 pages, 150

illus. $4.95

497 _ TAPE RECORDING FOR FUN &
PROFIT. Walter Salm. 224 pages, 200 illus. ^-.95

494 _ AUDIO SYSTEMS HANDBOOK. Norman
Crowhurst. 192 pages, 125 illus. $4.95

120— HI-FI TROUBLES. Herman Burstein. 160

pages, 130 illus. $3.95

86 — INSTALLING HI-FI SYSTEMS. Markell &
Stanton. 224 pages, 152 illus. S5.95

79 — DESIGNING AND BUILDING HI Fl

FURNITURE. Markell. 224 pages, 195 illus. $4.95

67 - ELEMENTS OF TAPE RECORDER
CIRCUITS. Burstein & Pollak. 224 pages, $4.95
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