SPARKCHARTS

Acceleration due to gravity	g	$9.8\mathrm{m/s^2}$
Avogadro's number	$N_{\rm A}$	$6.022 \times 10^{23} \mathrm{molecules/mod}$
Coulomb's constant	k	$9\times 10^9{\rm N}\!\cdot\!{\rm m}^2/{\rm C}^2$
Gravitational constant	G	$6.67 \times 10^{-11}{\rm N}\!\cdot\!{\rm m}^2/{\rm kg}^2$
Planck's constant	h	$6.63\times 10^{-34}\rm J\cdot s$
Ideal gas constant	R	$\begin{array}{l} 8.314J/(mol\cdot K) \\ = 0.082atm\cdot L/(mol\cdot K) \end{array}$
Permittivity of free space	ε_0	$8.8541 \times 10^{-12}\mathrm{C/(V\!\cdot\!m)}$
Permeability of free space	μ_0	$4\pi\times 10^{-7}{\rm Wb}/({\rm A}\!\cdot\!{\rm m})$
Speed of sound at STP		$331\mathrm{m/s}$
Speed of light in a vacuum	с	$3.00\times 10^8{\rm m/s}$
Electron charge	е	$1.60\times10^{-19}\mathrm{C}$
Electron volt	eV	$1.6022 \times 10^{-19}{\rm J}$
Atomic mass unit	u	$\begin{array}{l} 1.6606\times 10^{-27}{\rm kg}\\ = 931.5{\rm MeV}/c^2 \end{array}$
Rest mass of electron	$m_{\rm e}$	$\begin{array}{l} 9.11 \times 10^{-31} \mathrm{kg} \\ = 0.000549 \mathrm{u} \\ = 0.511 \mathrm{MeV}/c^2 \end{array}$
of proton	$m_{\rm p}$	$\begin{array}{l} 1.6726\times 10^{-27}{\rm kg}\\ = 1.00728{\rm u}\\ = 938.3{\rm MeV}/c^2 \end{array}$
of neutron		$\begin{array}{l} 1.6750\times 10^{-27}{\rm kg}\\ =1.008665{\rm u}\\ =939.6{\rm MeV}/c^2 \end{array}$
Mass of Earth		$5.976\times 10^{24}\rm kg$
Radius of Earth		$6.378\times10^6\mathrm{m}$
DYNAMICS NEWTON'S LAWS 1. First Law: An object ren	nains i	in its state of rest or motion wi upon by a net external force.

SICS FORM

Red

 $6.5-7.0 \times 10^{-7}$

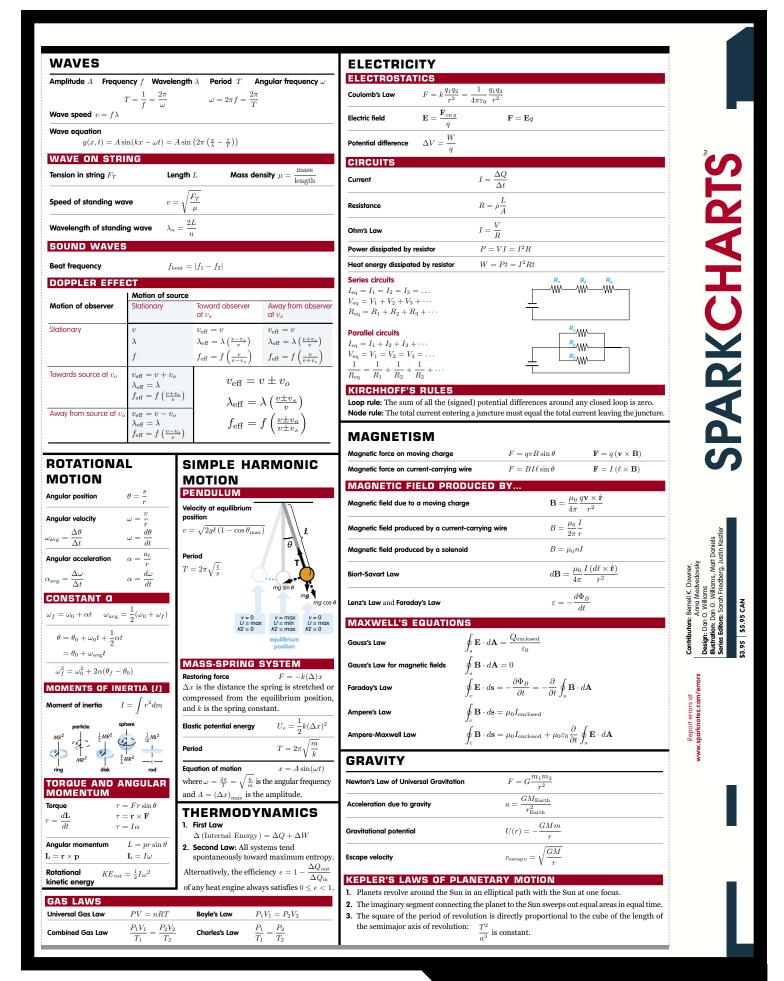
Orange $5.9 - 6.5 \times 10^{-7}$

Yellow $5.7 - 5.9 \times 10^{-7}$

ELECTROMAGNETIC CONSTANTS WAVELENGTHS OF LIGHT IN A VACUUM (m)

f = frequency (in Hz) 10⁸ 10⁹ 10¹⁰ 10¹¹ 10¹² 10¹³ 10¹⁴ 10¹⁵ 10¹⁶ 10¹⁷ 10¹⁸ 10¹⁹ 10²⁰

radio waves microwaves infrared ultraviolet X rays gamma rays


2. Second Law:	bothy unless acted upon by a net external force. $F_{\text{net}} = ma$ $F = \frac{dp}{dt}$
	r every action there is an equal and opposite reaction
Weight	$F_w = mg$
Normal force	$F_{\rm N} = mg \cos \theta \left(\theta \text{ is the angle to the horizontal} \right)$

FRICTION

SPARKCHARTS^{TA}

\$5.95 CAN Copyright © 2002 by SparkNotes LLC. All rights reserved. SparkNotarts is a registered trademark of SparkNotes LLC. A Barris & Noble A Barris & Noble 10 9 8 7 6 3 4 3 2 Printed in the USA 33.95 55.95 CAN

	G	$6.67 \times 10^{-11} \mathrm{N \cdot m^2/kg^2}$		$7 - 5.9 \times 10^{-7}$ $9 - 5.7 \times 10^{-7}$		1		10.4 10.5 10.4		10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻¹¹ 10
Fravitational constant	0	0.07 × 10 N·m / kg	Green 4.					10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁴	⁵ 10 ⁻⁷ 10 ⁻⁸	
lanck's constant	h	$6.63\times 10^{-34}\rm J{\cdot}s$	Blue 4.	$2 - 4.9 \times 10^{-7}$		λ= wavelen	gth (in m)	h = 70		B I ▼ e light 360 nm
eal gas constant	R	8.314 J/(mol·K)	Violet 4.	$0 - 4.2 \times 10^{-7}$				∧=78	o nin Visidie	- 300 nm
gus consium	11	$= 0.082 \operatorname{atm} \cdot L/(\operatorname{mol} \cdot K)$	INDICES	OF REFRACTI	ON F <u>or co</u>	MMON S	UBSTANCES	(l = <u>5.9.</u>)	(10 ⁻⁷ m)
rmittivity of free space	ε_0	$8.8541 \times 10^{-12}\mathrm{C/(V \cdot m)}$	Air	1.00		Alcoh		1.36		
rmeability of free space	μ_0	$4\pi \times 10^{-7} \mathrm{Wb}/(\mathrm{A} \cdot \mathrm{m})$	Corn oil	1.47		Diam		2.42		
eed of sound at STP	. •	331 m/s	_ <u>Glycerol</u>	1.47		Wate	·	1.33		
eed of light in a vacuum	с	$3.00 \times 10^8 \mathrm{m/s}$		CS						_
ectron charge		$1.60 \times 10^{-19} \text{ C}$	REFLEC	TION AND I	REFRACTI	ION			inciden	t ray
-	e		- Law of Ref	merue	$_{\rm nt} = \theta_{\rm reflected}$				angl incide	
ectron volt	eV	$1.6022 \times 10^{-19} \text{ J}$	- Index of re	efraction $n = \frac{c}{v}$	(1	is the spee	d of light in the	e medium)	angl	e of $\theta' \qquad \theta_2$ ang
omic mass unit	u	$1.6606 \times 10^{-27} \text{ kg}$ = 931.5 MeV/ c^2	Snell's Law		$\theta_1 = n_2 \sin \theta_2$				reflec	refracted ro
est mass of electron	$m_{\rm e}$	$9.11 \times 10^{-31} \text{ kg}$ = 0.000549 u	Critical ang	gle $\theta_c = s$	$\operatorname{in}^{-1}\left(\frac{n_2}{n_1}\right)$					
		$= 0.000545 \text{ u}^2$ = 0.511 MeV/ c^2	LENSES	S AND CUR\	ED MIRF	RORS				
of proton	$m_{\rm p}$	$1.6726 \times 10^{-27} \text{ kg}$			$\frac{1}{n} +$	$\frac{1}{q} = \frac{1}{f}$	image size object size	$=-\frac{q}{n}$		
		= 1.00728 u = 938.3 MeV/ c^2	Optical ins	trument Focal d			istance q	Type of i	ima <u>ge</u>	
of neutron		$1.6750 \times 10^{-27} \text{ kg}$	- Lens: Concave				(same side)		erect ()	
		= 1.008665 u = 939.6 MeV/ c^2	Convex	negativ positiv			(same side)		erect 2	p
ass of Earth		= 539.6 MeV/c $5.976 \times 10^{24} \text{ kg}$	-		p > f	positive	(opposite side)	real, inv	erted 🗕	h f
		~	- Mirror: Convex	negativ	/e	negative	(opposite side) virtual (erect 🗿	
dius of Earth		$6.378 \times 10^6 \mathrm{m}$	Concave	positiv			(opposite side	. ,	erect G	
			Concave	positiv	p < f p > f		(same side)		erted 6	0
OYNAMICS										
constant velocity unles 2. Second Law: $F_{\rm net} = m$	mains in ss acted u na	its state of rest or motion wit pon by a net external force. $F = \frac{dp}{dt}$					q F		p q	
NEWTON'S LAWS First Law: An object representation of the constant velocity unless Second Law: $F_{net} = m$ Second Law: For every action	mains in ss acted u a on there i	pon by a net external force.		(, ENERG	-	ER	KINEM	÷		s The provided set of the set of
NEWTON'S LAWS First Law: An object reproductive unless constant velocity unless Second Law: $F_{net} = m$ Third Law: For every action Veight $F_w = m$	mains in ss acted u a on there i mg	pon by a net external force. $F = \frac{dp}{dt}$		K, ENERG W =	$\mathbf{f} \cdot \mathbf{s} = Fs \cos \left(\mathbf{F} \cdot \mathbf{ds} \right)$	ER	Average	IATICS	_	
Iteration Iteration Is First Law: An object representation of the second law: Finet end the second law: $F_{net} = m$ Iteration Is Second Law: For every activities Second law: For every activities Is leight $F_w = n$ Is formal force $F_N = n$ Is RICTION Iteration	mains in ss acted u a on there i mg $mg \cos \theta$	poon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizonta	U VORH	K, ENERG <i>W</i> = <i>W</i> =	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$	ER		÷	_	
IEWTON'S LAWS First Law: An object ret constant velocity unles Second Law: $F_{net} = m$ Third Law: For every activities Velght $F_w = n$ Tormal force $F_N = n$ RICTION Tatic friction $f_{s, max} = \mu_s R$	mains in ss acted u a on there i mg $mg \cos \theta$ F_N	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizonta Kinetic friction $f_k = \mu_k F_N$		K, ENERG <i>W</i> = <i>W</i> =	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \theta$	ER	Average velocity	$\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$	_	
IEWTON'S LAWS First Law: An object ret constant velocity unles Second Law: $F_{net} = m$ Third Law: For every activities Velocity Velocity Right $F_w = n$ ormal force $F_N = n$ Riction r_s is the coefficient of state	mains in ss acted u a on there i mg $mg \cos \theta$ F_N ttic friction	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizonta Kinetic friction $f_k = \mu_k F_N$ on.	WORK Work	K, ENERG W = W = W = W = W = W = W = W =	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$	ER	Average	IATICS $\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$	_	
IEWTON'S LAWS First Law: An object ret constant velocity unles Second Law: $F_{net} = m$ Third Law: For every activities reight $F_w = n$ ormal force $F_N = n$ RICTION ratic friction $f_{s, max} = \mu_s T_s$ s is the coefficient of state k is the coefficient of king	mains in ss acted u a on there i mg $mg \cos \theta$ $F_{\rm N}$ ttic friction hetic friction	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizonta Kinetic friction $f_k = \mu_k F_N$ on.	Work	K, ENERG W = W = wrgy $KE =$ gy Theorem $W =$ rrative forces)	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE	ER	Average velocity Instantaneou	$\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$	_	
IEWTON'S LAWS First Law: An object ret constant velocity unles . Second Law: $F_{net} = m$. Third Law: For every activities /eight $F_w = n$ ormal force $F_N = n$ RICTION	mains in ss acted u a on there i mg $mg \cos \theta$ F _N tic friction here is the fr	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizonta Kinetic friction $f_k = \mu_k F_N$ on, ion.	Work-Energ (for conse Potential et	K, ENERG $W =$ $W =$ ergy $KE =$ gy Theorem $W =$ rrvative forces)nergy $\Delta U =$	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE	ER	Average velocity Instantaneou	IATICS $\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$	<u>s</u> t 	
IEWTON'S LAWS First Law: An object rerectionstant velocity unless Second Law: $F_{net} = m$ Third Law: For every activity leight $F_w = a$ ormal force $F_N = a$ RICTION totic friction $f_{s, max} = \mu_s R$ s is the coefficient of star k is the c	mains in ss acted u a on there is mg mg cos θ F _N tic friction hetic friction hetic friction $_{k} < \mu_{s}$.	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizonta Kinetic friction $f_k = \mu_k F_N$ on. ion.	WORH Work Work Work-Energ (for conse Potential et Gravitation potential et	K, ENERG W = W =	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left[\int \mathbf{F} \cdot d\mathbf{s} \right]$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE $-W$	ER	Average velocity Instantaneou velocity Displacemen Average	IATICS $\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$	s t $s(m)$	DISTANCE
IEWTON'S LAWS First Law: An object rerectionstant velocity unless Second Law: $F_{net} = m$ Third Law: For every activities leight $F_w = a$ ormal force $F_N = a$ RICTION actic friction $f_{s, max} = \mu_s R$ k is the coefficient of star	mains in ss acted u a on there is mg mg cos θ F _N tic friction hetic friction hetic friction $_{k} < \mu_{s}$.	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizonta Kinetic friction $f_k = \mu_k F_N$ on, ion.	Work U V Vork U V Vork U V Vork V Vork V Vork V V Vork V V V V V V V V V V V V V V V V V V V	K, ENERG W = 1 W = 1	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left[\int \mathbf{F} \cdot d\mathbf{s} \right]$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE $-W$	ER	Average velocity Instantaneou velocity Displacemen Average acceleration	IATICS $\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{avg} = \frac{\Delta}{\Delta}$	<u>s</u> t 	DISTANCE
EWTON'S LAWS First Law: An object rer constant velocity unles Second Law: $F_{net} = m$ Third Law: For every activ- leight $F_w = a$ formal force $F_N = a$ RICTION atic friction $f_{s, max} = \mu_s I$ μ_s is the coefficient of state μ_s is the coefficient of μ_s μ_s is the	mains in a acted u a on there is mg $mg \cos \theta$ F_N the friction hetic friction $_k < \mu_s$. LAR V $= \frac{v^2}{r}$	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizontal Kinetic friction $f_k = \mu_k F_N$ on. ion. IOTION Centripetal force $F_c = \frac{mv^2}{r}$	WORH Work Work-Energ (for conse Potential ei Gravitation potential ei Total mech energy	K, ENERG W = W =	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE mgh $KE + U$	ER	Average velocity Instantaneou velocity Displacemen Average	$\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{s} = d\mathbf{v}$	s t $s(m)$	DISTANCE
IEWTON'S LAWS First Law: An object retern constant velocity unless Second Law: $F_{net} = m$ Third Law: For every activities leight $F_w = a$ ormal force $F_N = a$ natic friction $f_{s, max} = \mu_s I$ s is the coefficient of state k is the coefficient of kin or a pair of materials, μ_0	mains in solution in the solution is acted to be a non-the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution is a solution in the solution in the solution in the solution is a solution in the solution in the solution in the solution is a solution in the solution i	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizontal Kinetic friction $f_k = \mu_k F_N$ on. ion. IOTION Centripetal force $F_c = \frac{mv^2}{r}$	WORH Work Work Work Gravitation potential ee Gravitation Total mech	K, ENERG W = W =	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE mgh $KE + U$	ER	Average velocity Instantaneou velocity Displacemen Average acceleration Instantaneou acceleration	$\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} = \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{\text{avg}} = \frac{\Delta}{\Delta}$	s t $s(m)$	DISTANCE
First Law: An object ret constant velocity unles Second Law: $F_{net} = m$ Third Law: For every activities teight $F_w = i$ ormal force $F_N = i$ and friction $f_{s, max} = \mu_s I_s$ is the coefficient of state is the coefficient of state is the coefficient of kin or a pair of materials, μ_i INIFORM CIRCUL entripetal acceleration a_c	mains in a a a a a a a a a a a a a a a a a a a	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizonta Kinetic friction $f_k = \mu_k F_N$ m. ion. IOTION Centripetal force $F_c = \frac{mv^2}{r}$	WORH Work Work-Energ (for conse Potential ei Gravitation potential ei Total mech energy	K, ENERG $W =$ $W =$ $W =$ wrgy $KE =$ gy Theorem $W =$ rvative forces)nergy $\Delta U =$ nanergy $U_g =$ anical $E = I$ power $P_{avg} =$	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE $\mathbf{F} - W$ mgh $KE + U$ $\frac{F}{\Delta t}$	ER	Average velocity Instantaneou velocity Displacemen Average acceleration	$\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{s} = d\mathbf{v}$	s m	DISTANCE
EWTON'S LAWS First Law: An object rer constant velocity unles Second Law: $F_{net} = m$ Third Law: For every active eight $F_w = n$ ormal force $F_N = n$ RICTION atic friction $f_{s, max} = \mu_s I$ is the coefficient of state is the coeff	mains in in signal constraints acted to a constraint of the second seco	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizontal Kinetic friction $f_k = \mu_k F_N$ on. ion. IOTION Centripetol force $F_c = \frac{mv^2}{r}$ ASS $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} + a_z \hat{\mathbf{k}}$ $a = \mathbf{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$ $\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z y_z$	Work Work Work Work-Energ (for conse Potential en Gravitation potential en Total mech energy Average po Instantanen power	K, ENERG W = W =	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE $= -W$ mgh $KE + U$ $= \frac{\Delta W}{\Delta t}$ $= V$	ER 	Average velocity Instantaneou velocity Displacemen Average acceleration Instantaneou acceleration Change in velocity CONISTAN	$\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{s} = \frac{d\mathbf{v}}{dt}$ $\Delta \mathbf{v} = \int \mathcal{I}$	s m	DISTANCE
First Law: First Law: An object rerection constant velocity unless Second Law: $F_{net} = m$ Third Law: For every activity leight $F_w = a$ ormal force $F_N = a$ RICTION attic friction $f_{s, max} = \mu_s R$ is the coefficient of state is t	mains in in signal constraints acted to a constraint of the second seco	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizonta Kinetic friction $f_k = \mu_k F_N$ m. ion. IOTION Centripetal force $F_c = \frac{mv^2}{r}$ IAS $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} + a_z \hat{\mathbf{k}}$ $a = \mathbf{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$	Work Work Work-Energ (for conse Potential ei Gravitation potential ei Total mech energy Average po Instantanee power MOVNE Linear mon	K, ENERG $W =$ $W =$ $W =$ ergy $KE =$ gy Theorem $W =$ rrvative forces) nergy $\Delta U =$ aal nergy $U_g =$ aanical $E = I$ ower $P_{avg} =$ ous $P = F$ ENTUM AN nentum $\mathbf{p} = T$	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^{2} = \frac{p^{2}}{2m}$ ΔKE $= -W$ mgh $KE + U$ $= \frac{\Delta W}{\Delta t}$ $\mathbf{F} \cdot \mathbf{v}$ $\mathbf{D \text{ IMPUI}}$ mv	ER 	Average velocity Instantaneou velocity Displacemen Average acceleration Instantaneou acceleration Change in velocity	$\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{s} = \frac{d\mathbf{v}}{dt}$ $\Delta \mathbf{v} = \int \mathcal{I}$	s m	DISTANCE
EWTON'S LAWS First Law: An object ret constant velocity unles Second Law: $F_{net} = m$ Third Law: For every active eight $F_w = n$ ormal force $F_N = n$ RICTION atic friction $f_{s, max} = \mu_s R$ is the coefficient of state is the coefficient of state is the coefficient of state is the coefficient of state or a pair of materials, μ_1 NIFORM CIRCUL entripetal acceleration a_c VECTOR FOR fortion agnitude the product is the angle between a state pass product $ \mathbf{a} \times \mathbf{b} = a$	mains in ss acted u a on there is mg $mg \cos \theta$ F_N $F_$	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizontal Kinetic friction $f_k = \mu_k F_N$ on. ion. IOTION Centripetol force $F_c = \frac{mv^2}{r}$ ASS $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} + a_z \hat{\mathbf{k}}$ $a = \mathbf{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$ $\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z y_z$	 WORK Work Work Work Work-Energ (for conse Potential ei Gravitation potential ei Total mech energy Average poi Instantanee power MOME 	K, ENERG $W =$ $W =$ $W =$ wrgy $KE =$ gy Theorem $W =$ prvative forces) nergy $\Delta U =$ aal nergy $U_g =$ aanical $E = I$ ower $P_{avg} =$ ous $P = F$ ENTUM AN nentum $\mathbf{p} = r$ J = F	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot \mathbf{ds} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE $= -W$ mgh $KE + U$ $= \frac{\Delta W}{\Delta t}$ $\mathbf{F} \cdot \mathbf{v}$ $\mathbf{D \ IMPUI}$ mv $Tt = \Delta \mathbf{p}$	ER 	Average velocity Instantaneou velocity Displacemen Average acceleration Instantaneou acceleration Change in velocity $ConstantAccelerationv_0 + v_0 + at$	INTICS $\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{s} = \frac{d\mathbf{v}}{dt}$ $\Delta \mathbf{v} = \int \mathbf{v}$ NUTION	s m	DISTANCE
EWTON'S LAWS First Law: An object rer constant velocity unles Second Law: $F_{net} = m$ Third Law: For every active eight $F_w = n$ ormal force $F_N = n$ RICTION atic friction $f_{s, max} = \mu_s I$ is the coefficient of state is the coeff	mains in ss acted u a on there is mg $mg \cos \theta$ F_N $F_$	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizontal Kinetic friction $f_k = \mu_k F_N$ on. ion. IOTION Centripetol force $F_c = \frac{mv^2}{r}$ ASS $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} + a_z \hat{\mathbf{k}}$ $a = \mathbf{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$ $\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z y_z$	WORH Work Work Work Work Work-Energ (for conse Potential el Gravitation potential el Total mech energy Average po Instantanen power MOONE Linear mon Impulse	K, ENERG W = 1 W = 1 D = 1	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^{2} = \frac{p^{2}}{2m}$ ΔKE $= -W$ mgh $KE + U$ $= \frac{\Delta W}{\Delta t}$ $\mathbf{F} \cdot \mathbf{v}$ $\mathbf{D \text{ IMPUI}}$ mv	ER 	Average velocity Displacement Average acceleration Instantaneou acceleration Change in velocity CONSTAN ACCELER $v_f = v_0 + at$ $v_{avg} = \frac{1}{2}(v_0 + at)$	$\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{a}_{\text{avg}} = \frac{\Delta}{dt}$ $\Delta \mathbf{v} = \int \mathbf{v}$ \mathbf{v}	s (m) v dt v true a dt	DISTANCE VELOCITY ACCELERATION
EWTON'S LAWS First Law: An object ret constant velocity unles Second Law: $F_{net} = m$ Third Law: For every activ- eight $F_w = n$ ormal force $F_N = n$ RICTION atic friction $f_{s,max} = \mu_s I$ is the coefficient of stat is the coefficient of stat is the coefficient of stat is the coefficient of stat is the coefficient of a statistic of the provide the coefficient of a statistic of the statistic of the coefficient of a statistic of the statistic of the coefficient of a statistic of the statistic of the coefficient of a statistic of the statistic of the coefficient of the statistic of the stat	mains in ss acted u a on there is mg $mg \cos \theta$ F_N $F_$	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizontal Kinetic friction $f_k = \mu_k F_N$ on. ion. IOTION Centripetol force $F_c = \frac{mv^2}{r}$ ASS $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} + a_z \hat{\mathbf{k}}$ $a = \mathbf{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$ $\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z y_z$	WORH Work Work Work Work Work-Energ (for conse Potential el Gravitation potential el Total mech energy Average po Instantanee power MOOME Linear mon Impulse COLLIS	C, ENERG $W = \frac{1}{W}$ $W = \frac{1}{W}$ W = 1	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot \mathbf{s} \right)$ $\int \mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE $-W$ mgh $KE + U$ $\frac{E}{\Delta K}$ $\frac{E}{\Delta t}$	E R .θ 	Average velocity Instantaneou velocity Displacemen Average acceleration Instantaneou acceleration Change in velocity $ConstantAccelerationv_0 + v_0 + at$	$\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{\text{avg}} = \frac{\Delta}{\Delta}$ $\mathbf{a}_{\text{avg}} = \frac{\Delta}{dt}$ $\Delta \mathbf{v} = \int \mathbf{v}$ \mathbf{v}	s (m) v dt v true a dt	DISTANCE VELOCITY ACCELERATION
EWTON'S LAWS First Law: An object rer constant velocity unles Second Law: $F_{net} = m$ Third Law: For every acti- eight $F_w = a$ formal force $F_N = a$ RICTION attic friction $f_{s, max} = \mu_s F$ is the coefficient of stat is the coefficient	mains in ss acted up a on there is mg $mg \cos \theta$ F_N F_N this friction friction friction friction friction friction friction friction friction $k_{\rm s} < \mu_{\rm s}$.	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizontal Kinetic friction $f_k = \mu_k F_N$ on. ion. IOTION Centripetal force $F_c = \frac{mv^2}{r}$ ASS $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} + a_z \hat{\mathbf{k}}$ $a = \mathbf{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$ $\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z y_z$ $= ab \cos \theta$	WORH Work Work Work Work Work-Energ (for conse Potential ex Gravitation potential ex Total meche energy Average pc Instantanee power MOME Linear mon Impulse COLLIS All collision	C, ENERG W = 1 W = 1 D = 1 D = 1 J = 1	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot \mathbf{s} \right)$ $\int \mathbf{F} \cdot \mathbf{s} = Fs \cos \left(\int \mathbf{F} \cdot d\mathbf{s} \right)$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE $-W$ mgh $KE + U$ $\frac{E}{\Delta K}$ $\frac{E}{\Delta t}$	E R .θ 	Average velocity Instantaneou velocity Displacemen Average acceleration Instantaneou acceleration Change in velocity CONSTAN ACCELER $v_{f} = v_{0} + at$ $v_{g} = \frac{1}{2}(v_{0} + at)$ $s = s_{0} + v_{0} t$	$\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{s}^{s} \mathbf{s} = \frac{d\mathbf{v}}{dt}$ $\Delta \mathbf{v} = \int \mathbf{v}$ \mathbf{v}	s (m) v dt v true a dt	DISTANCE VELOCITY ACCELERATION
EWTON'S LAWS First Law: An object rer constant velocity unles Second Law: $F_{net} = m$ Third Law: For every activity eight $F_w = a$ from force $F_N = a$ RICTION atic friction $f_{s, max} = \mu_s R$ is the coefficient of station is the coefficient of station at pair of materials, μ_1 NIFORM CIRCUL INFORM CIRCUL Intripetal acceleration a_c ECTOR FOR totion to product is the angle between a a sess product $ \mathbf{a} \times \mathbf{b} = a$ $< \mathbf{b}$ points in the vection given by \mathbf{e} right-hand rule: $< \mathbf{b} = (a_yb_z - a_zb_y)\hat{\mathbf{i}} +$	mains in ss acted up a on there is mg $mg \cos \theta$ F_N F_N this friction friction friction friction friction friction friction friction friction $k_{\rm s} < \mu_{\rm s}$.	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizontal Kinetic friction $f_k = \mu_k F_N$ on. ion. IOTION Centripetol force $F_c = \frac{mv^2}{r}$ ASS $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} + a_z \hat{\mathbf{k}}$ $a = \mathbf{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$ $\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z y_z$	Work Work Work Work Work-Energ (for conse Potential ei Gravitation protential ei Total mech energy Average po Instantanen power MOME Linear mon impulse COLLIS All collision Elastic collis	C, ENERG $W = \frac{1}{2}$ $W = \frac{1}{2}$ $W = \frac{1}{2}$ $W = \frac{1}{2}$ $W = \frac{1}{2}$ $W = \frac{1}{2}$ argy $KE = \frac{1}{2}$ argy $Lg = \frac{1}{2}$ anical E = R cons P = F ENTUM AN nentum $\mathbf{p} = r$ $\mathbf{J} = \mathbf{J}$ cons $\mathbf{s} = m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2$ sions	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left\{ \int \mathbf{F} \cdot \mathbf{ds} \right\}$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE $= -W$ mgh $KE + U$ $= \frac{\Delta W}{\Delta t}$ $\mathbf{F} \cdot \mathbf{v}$ $\mathbf{D \ IMPUI}$ mv $Ft = \Delta \mathbf{p}$ $\int \mathbf{F} \ dt = \Delta \mathbf{p}$ $= m_1 \mathbf{v}_1' + m_2$	ER .θ 	Average velocity Displacement Average acceleration Instantaneou acceleration Change in velocity $v_f = v_0 + at$ $v_{avg} = \frac{1}{2}(v_0 + at)$ $s = s_0 + v_0 t - at$ $= s_0 - v_f t - at$	$\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{ds}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{s} = \frac{d\mathbf{v}}{dt}$ $\Delta \mathbf{v} = \int \mathbf{s}$ $\Delta \mathbf{v} = \int \mathbf{s}$ \mathbf{v} \mathbf{t} $\mathbf{t} = \frac{d\mathbf{v}}{dt}$ \mathbf{v} $\mathbf{t} = \int \mathbf{s}$ \mathbf{t} $\mathbf{t} = \frac{d\mathbf{v}}{dt}$	s (m) v dt v true a dt	DISTANCE VELOCITY ACCELERATION
EWTON'S LAWS First Law: An object rer constant velocity unles Second Law: $F_{net} = m$ Third Law: For every acti- sight $F_w = a$ rmal force $F_N = a$ RICTION Ricticon $f_{s, max} = \mu_s R$ is the coefficient of star is the coefficient of star	mains in ss acted up a on there is mg $mg \cos \theta$ F_N F_N this friction friction friction friction friction friction friction friction friction $k_{\rm s} < \mu_{\rm s}$.	pon by a net external force. $F = \frac{dp}{dt}$ s an equal and opposite reaction (θ is the angle to the horizontal Kinetic friction $f_k = \mu_k F_N$ on. ion. IOTION Centripetal force $F_c = \frac{mv^2}{r}$ ASS $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} + a_z \hat{\mathbf{k}}$ $a = \mathbf{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$ $\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z y_z$ $= ab \cos \theta$	Work Work Work Work Work-Energ (for conse Potential ei Gravitation protential ei Total mech energy Average po Instantanen power MOME Linear mon impulse COLLIS All collision Elastic collis	C, ENERG W = 1 W = 1 D = 1 D = 1 J = 1	$\mathbf{F} \cdot \mathbf{s} = Fs \cos \left\{ \int \mathbf{F} \cdot \mathbf{ds} \right\}$ $\frac{1}{2}mv^2 = \frac{p^2}{2m}$ ΔKE $= -W$ mgh $KE + U$ $= \frac{\Delta W}{\Delta t}$ $\mathbf{F} \cdot \mathbf{v}$ $\mathbf{D \ IMPUI}$ mv $Ft = \Delta \mathbf{p}$ $\int \mathbf{F} \ dt = \Delta \mathbf{p}$ $= m_1 \mathbf{v}_1' + m_2$	ER .θ 	Average velocity Instantaneou velocity Displacemen Average acceleration Instantaneou acceleration Change in velocity CONSTAN ACCELER $v_f = v_0 + at$ $v_{avg} = \frac{1}{2}(v_0 + at)$ $s = s_0 + v_0 t$	$\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{v} = \frac{d\mathbf{s}}{dt}$ $\mathbf{t} \Delta \mathbf{s} = \int \mathbf{v}$ $\mathbf{a}_{avg} = \frac{\Delta}{\Delta}$ $\mathbf{s} = \frac{d\mathbf{v}}{dt}$ $\Delta \mathbf{v} = \int \mathbf{s}$ $\mathbf{v} = \frac{d\mathbf{v}}{dt}$	s (m) v dt v true a dt	DISTANCE VELOCITY ACCELERATION

This downloadable PDF copyright © 2004 by SparkNotes LLC.