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Preface

The purpose of this handbook is to present the reader with a teachable text

that includes theory and examples. Useful analytical techniques provide the

student and the practitioner with powerful tools for mechanical design. This

book may also serve as a reference for the designer and as a source book for

the researcher.

This handbook is comprehensive, convenient, detailed, and is a guide

for the mechanical engineer. It covers a broad spectrum of critical engineer-

ing topics and helps the reader understand the fundamentals.

This handbook contains the fundamental laws and theories of science

basic to mechanical engineering including controls and mathematics. It

provides readers with a basic understanding of the subject, together with

suggestions for more speci®c literature. The general approach of this book

involves the presentation of a systematic explanation of the basic concepts of

mechanical systems.

This handbook's special features include authoritative contributions,

chapters on mechanical design, useful formulas, charts, tables, and illustra-

tions. With this handbook the reader can study and compare the available

methods of analysis. The reader can also become familiar with the methods

of solution and with their implementation.

Dan B. Marghitu
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1. Vector Algebra

1.1 Terminology and Notation

T
he characteristics of a vector are the magnitude, the orientation, and

the sense. The magnitude of a vector is speci®ed by a positive

number and a unit having appropriate dimensions. No unit is stated if

the dimensions are those of a pure number. The orientation of a vector is

speci®ed by the relationship between the vector and given reference lines

and=or planes. The sense of a vector is speci®ed by the order of two points

on a line parallel to the vector. Orientation and sense together determine the

direction of a vector. The line of action of a vector is a hypothetical in®nite

straight line collinear with the vector. Vectors are denoted by boldface letters,

for example, a, b, A, B, CD. The symbol jvj represents the magnitude (or

module, or absolute value) of the vector v. The vectors are depicted by either

straight or curved arrows. A vector represented by a straight arrow has the

direction indicated by the arrow. The direction of a vector represented by a

curved arrow is the same as the direction in which a right-handed screw

moves when the screw's axis is normal to the plane in which the arrow is

drawn and the screw is rotated as indicated by the arrow.

Figure 1.1 shows representations of vectors. Sometimes vectors are

represented by means of a straight or curved arrow together with a measure

number. In this case the vector is regarded as having the direction indicated

by the arrow if the measure number is positive, and the opposite direction if

it is negative.

4. Equilibrium 40
4.1 Equilibrium Equations 40
4.2 Supports 42
4.3 Free-Body Diagrams 44

5. Dry Friction 46
5.1 Static Coef®cient of Friction 47
5.2 Kinetic Coef®cient of Friction 47
5.3 Angles of Friction 48

References 49
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A bound vector is a vector associated with a particular point P in space

(Fig. 1.2). The point P is the point of application of the vector, and the line

passing through P and parallel to the vector is the line of action of the vector.

The point of application may be represented as the tail, Fig. 1.2a, or the head

of the vector arrow, Fig. 1.2b. A free vector is not associated with a particular

point P in space. A transmissible vector is a vector that can be moved along

its line of action without change of meaning.

To move the body in Fig. 1.3 the force vector F can be applied anywhere

along the line D or may be applied at speci®c points A;B;C . The force vector

F is a transmissible vector because the resulting motion is the same in all

cases.

The force F applied at B will cause a different deformation of the body

than the same force F applied at a different point C . The points B and C are

on the body. If we are interested in the deformation of the body, the force F

positioned at C is a bound vector.

Figure 1.2

Figure 1.3

1. Vector Algebra 3

St
at

ic
s



The operations of vector analysis deal only with the characteristics of

vectors and apply, therefore, to both bound and free vectors.

1.2 Equality

Two vectors a and b are said to be equal to each other when they have the

same characteristics. One then writes

a � b:

Equality does not imply physical equivalence. For instance, two forces

represented by equal vectors do not necessarily cause identical motions of

a body on which they act.

1.3 Product of a Vector and a Scalar

DEFINITION The product of a vector v and a scalar s, s v or vs, is a vector having the

following characteristics:

1. Magnitude.

js vj � jvsj � jsjjvj;
where jsj denotes the absolute value (or magnitude, or module) of the

scalar s.

2. Orientation. s v is parallel to v. If s � 0, no de®nite orientation is

attributed to s v.

3. Sense. If s > 0, the sense of s v is the same as that of v. If s < 0, the

sense of s v is opposite to that of v. If s � 0, no de®nite sense is

attributed to s v. m

1.4 Zero Vectors

DEFINITION A zero vector is a vector that does not have a de®nite direction and whose

magnitude is equal to zero. The symbol used to denote a zero vector is 0. m

1.5 Unit Vectors

DEFINITION A unit vector (versor) is a vector with the magnitude equal to 1. m

Given a vector v, a unit vector u having the same direction as v is obtained

by forming the quotient of v and jvj:
u � v

jvj :
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1.6 Vector Addition

The sum of a vector v1 and a vector v2: v1 � v2 or v2 � v1 is a vector whose

characteristics are found by either graphical or analytical processes. The

vectors v1 and v2 add according to the parallelogram law: v1 � v2 is equal to

the diagonal of a parallelogram formed by the graphical representation of the

vectors (Fig. 1.4a). The vectors v1 � v2 is called the resultant of v1 and v2.

The vectors can be added by moving them successively to parallel positions

so that the head of one vector connects to the tail of the next vector. The

resultant is the vector whose tail connects to the tail of the ®rst vector, and

whose head connects to the head of the last vector (Fig. 1.4b).

The sum v1 � �ÿv2� is called the difference of v1 and v2 and is denoted

by v1 ÿ v2 (Figs. 1.4c and 1.4d).

The sum of n vectors vi , i � 1; . . . ;n,Pn
i�1

vi or v1 � v2 � � � � � vn;

is called the resultant of the vectors vi , i � 1; . . . ;n.

Figure 1.4
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The vector addition is:

1. Commutative, that is, the characteristics of the resultant are indepen-

dent of the order in which the vectors are added (commutativity):

v1 � v2 � v2 � v1:

2. Associative, that is, the characteristics of the resultant are not affected

by the manner in which the vectors are grouped (associativity):

v1 � �v2 � v3� � �v1 � v2� � v3:

3. Distributive, that is, the vector addition obeys the following laws of

distributivity:

v
Pn
i�1

si �
Pn
i�1
�vsi�; for si 6� 0; si 2 R

s
Pn
i�1

vi �
Pn
i�1
�s vi�; for s 6� 0; s 2 R:

Here R is the set of real numbers.

Every vector can be regarded as the sum of n vectors �n � 2; 3; . . .� of

which all but one can be selected arbitrarily.

1.7 Resolution of Vectors and Components

Let 1, 2, 3 be any three unit vectors not parallel to the same plane

j 1j � j 2j � j 3j � 1:

For a given vector v (Fig. 1.5), there exists three unique scalars v1, v1, v3, such

that v can be expressed as

v � v1 1 � v2 2 � v3 3:

The opposite action of addition of vectors is the resolution of vectors. Thus,

for the given vector v the vectors v1 1, v2 2, and v3 3 sum to the original

vector. The vector vk k is called the k component of v, and vk is called the k

scalar component of v, where k � 1; 2; 3. A vector is often replaced by its

components since the components are equivalent to the original vector.

i i i

i i i

i i i

i i i

i i i

Figure 1.5
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Every vector equation v � 0, where v � v1 1 � v2 2 � v3 3, is equivalent

to three scalar equations v1 � 0, v2 � 0, v3 � 0.

If the unit vectors 1, 2, 3 are mutually perpendicular they form a

cartesian reference frame. For a cartesian reference frame the following

notation is used (Fig. 1.6):

1 � ; 2 � ; 3 � k

and

? ; ? k; ? k:

The symbol ? denotes perpendicular.

When a vector v is expressed in the form v � vx � vy � vz k where , ,

k are mutually perpendicular unit vectors (cartesian reference frame or

orthogonal reference frame), the magnitude of v is given by

jvj �
�������������������������
v2

x � v2
y � v2

z

q
:

The vectors vx � vx , vy � vy , and vz � vyk are the orthogonal or rectan-

gular component vectors of the vector v. The measures vx , vy , vz are the

orthogonal or rectangular scalar components of the vector v.

If v1 � v1x � v1y � v1z k and v2 � v2x � v2y � v2z k, then the sum of

the vectors is

v1 � v2 � �v1x � v2x � � �v1y � v2y � � �v1z � v2z �v1z k:

1.8 Angle between Two Vectors

Let us consider any two vectors a and b. One can move either vector parallel

to itself (leaving its sense unaltered) until their initial points (tails) coincide.

The angle between a and b is the angle y in Figs. 1.7a and 1.7b. The angle

between a and b is denoted by the symbols (a;b) or (b; a). Figure 1.7c

represents the case (a, b� � 0, and Fig. 1.7d represents the case (a, b� � 180�.
The direction of a vector v � vx � vy � vz k and relative to a cartesian

reference, , , k, is given by the cosines of the angles formed by the vector

i i i

i i i

i i i j i

i j i j

i j i j

i j

i j i j

i j

i j

i j

Figure 1.6
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and the representative unit vectors. These are called direction cosines and

are denoted as (Fig. 1.8)

cos�v; � � cos a � l; cos�v; � � cos b � m; cos�v;k� � cos g � n:

The following relations exist:

vx � jvj cos a; vy � jvj cos b; vz � jvj cos g:

i j

Figure 1.7

Figure 1.8
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1.9 Scalar (Dot) Product of Vectors

DEFINITION The scalar (dot) product of a vector a and a vector b is

a � b � b � a � jajjbj cos�a;b�:
For any two vectors a and b and any scalar s

�sa� � b � s�a � b� � a � �sb� � sa � b m

If

a � ax � ay � az k

and

b � bx � by � bz k;

where , , k are mutually perpendicular unit vectors, then

a � b � ax bx � ayby � az bz :

The following relationships exist:

� � � � k � k � 1;

� � � k � k � � 0:

Every vector v can be expressed in the form

v � � vi � � vj� k � vk:

The vector v can always be expressed as

v � vx � vy � vz k:

Dot multiply both sides by :

� v � vx � � vy � � vz � k:
But,

� � 1; and � � � k � 0:

Hence,

� v � vx :

Similarly,

� v � vy and k � v � vz :

1.10 Vector (Cross) Product of Vectors

DEFINITION The vector (cross) product of a vector a and a vector b is the vector (Fig. 1.9)

a � b � jajjbj sin�a;b�n

i j

i j

i j

i i j j

i j j i

i j

i j

i

i i i i j i

i i i j i

i

j
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where n is a unit vector whose direction is the same as the direction of

advance of a right-handed screw rotated from a toward b, through the angle

(a, b), when the axis of the screw is perpendicular to both a and b. m

The magnitude of a � b is given by

ja � bj � jajjbj sin�a;b�:
If a is parallel to b, ajjb, then a � b � 0. The symbol k denotes parallel. The

relation a � b � 0 implies only that the product jajjbj sin�a;b� is equal to

zero, and this is the case whenever jaj � 0, or jbj � 0, or sin�a;b� � 0. For

any two vectors a and b and any real scalar s,

�sa� � b � s�a � b� � a � �sb� � sa � b:

The sense of the unit vector n that appears in the de®nition of a � b depends

on the order of the factors a and b in such a way that

b� a � ÿa � b:

Vector multiplication obeys the following law of distributivity (Varignon

theorem):

a �Pn
i�1

vi �
Pn
i�1
�a � vi�:

A set of mutually perpendicular unit vectors ; ;k is called right-handed

if � � k. A set of mutually perpendicular unit vectors ; ;k is called left-

handed if � � ÿk.

If

a � ax � ay � az k;

and

b � bx � by � bz k;

i j

i j i j

i j

i j

i j

Figure 1.9
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where ; ;k are mutually perpendicular unit vectors, then a � b can be

expressed in the following determinant form:

a � b �
k

ax ay az

bx by bz

������
������:

The determinant can be expanded by minors of the elements of the ®rst row:

k

ax ay az

bx by bz

�������
������� �

ay az

by bz

�����
�����ÿ ax az

bx bz

���� ����� k
ax ay

bx by

�����
�����

� �aybz ÿ az by � ÿ �ax bz ÿ az bx � � k�ax by ÿ aybx �
� �aybz ÿ az by � � �az bx ÿ ax bz � � �ax by ÿ aybx �k:

1.11 Scalar Triple Product of Three Vectors

DEFINITION The scalar triple product of three vectors a;b; c is

�a;b; c� � a � �b� c� � a � b� c: m

It does not matter whether the dot is placed between a and b, and the cross

between b and c, or vice versa, that is,

�a;b; c� � a � b� c � a � b � c:
A change in the order of the factor appearing in a scalar triple product at most

changes the sign of the product, that is,

�b; a; c� � ÿ�a;b; c�;
and

�b; c; a� � �a;b; c�:
If a, b, c are parallel to the same plane, or if any two of the vectors a, b, c are

parallel to each other, then �a;b; c� � 0.

The scalar triple product �a;b; c� can be expressed in the following determi-

nant form:

�a;b; c� �
ax ay az

bx by bz

cx cy cz

������
������:

1.12 Vector Triple Product of Three Vectors

DEFINITION The vector triple product of three vectors a;b; c is the vector a � �b� c�. m

The parentheses are essential because a � �b� c� is not, in general, equal to

�a � b� � c.

For any three vectors a;b, and c,

a � �b� c� � a � cbÿ a � bc:

i j

i j

i j

i j

i j

i j
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1.13 Derivative of a Vector

The derivative of a vector is de®ned in exactly the same way as is the

derivative of a scalar function. The derivative of a vector has some of the

properties of the derivative of a scalar function.

The derivative of the sum of two vector functions a and b is

d

dt
�a � b� � da

dt
� db

dt
;

The time derivative of the product of a scalar function f and a vector function

u is

d � f a�
dt
� df

dt
a � f

da

dt
:

2. Centroids and Surface Properties

2.1 Position Vector

The position vector of a point P relative to a point O is a vector rOP � OP

having the following characteristics:

j Magnitude the length of line OP

j Orientation parallel to line OP

j Sense OP (from point O to point P)

The vector rOP is shown as an arrow connecting O to P (Fig. 2.1). The

position of a point P relative to P is a zero vector.

Let ; ;k be mutually perpendicular unit vectors (cartesian reference

frame) with the origin at O (Fig. 2.2). The axes of the cartesian reference

frame are x ; y; z . The unit vectors ; ;k are parallel to x ; y; z , and they have

the senses of the positive x ; y; z axes. The coordinates of the origin O are

x � y � z � 0, that is, O�0; 0; 0�. The coordinates of a point P are x � xP ,

y � yP , z � zP , that is, P �xP ; yP ; zP �. The position vector of P relative to the

origin O is

rOP � rP � OP � xP � yP � zP k:

i j

i j

i j

Figure 2.1
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The position vector of the point P relative to a point M , M 6� O, of

coordinates (xM ; yM ; zM ) is

rMP � MP � �xP ÿ xM � � �yP ÿ yM � � �zP ÿ zM �k:
The distance d between P and M is given by

d � jrP ÿ rM j � jrMP j � jMPj �
�����������������������������������������������������������������������������
�xP ÿ xM �2 � �yP ÿ yM �2 � �zP ÿ zM �2

q
:

2.2 First Moment

The position vector of a point P relative to a point O is rP and a scalar

associated with P is s, for example, the mass m of a particle situated at P . The

®rst moment of a point P with respect to a point O is the vector M � srP . The

scalar s is called the strength of P .

2.3 Centroid of a Set of Points

The set of n points Pi , i � 1; 2; . . . ;n, is fS g (Fig. 2.3a)

fS g � fP1;P2; . . . ;Png � fPigi�1;2;...;n :

The strengths of the points Pi are si , i � 1; 2; . . . ;n, that is, n scalars, all

having the same dimensions, and each associated with one of the points of

fS g. The centroid of the set fS g is the point C with respect to which the sum

of the ®rst moments of the points of fS g is equal to zero.

The position vector of C relative to an arbitrarily selected reference point

O is rC (Fig. 2.3b). The position vector of Pi relative to O is ri . The position

i j

Figure 2.2
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vector of Pi relative to C is ri ÿ rC . The sum of the ®rst moments of the

points Pi with respect to C is
Pn

i�1 si �ri ÿ rC �. If C is to be the centroid of

fS g, this sum is equal to zero:

Pn
i�1

si�ri ÿ rC � �
Pn
i�1

siri ÿ rC

Pn
i�1

si � 0:

The position vector rC of the centroid C , relative to an arbitrarily selected

reference point O, is given by

rC �
Pn
i�1

siriPn
i�1

si

:

If
Pn

i�1 si � 0 the centroid is not de®ned.

The centroid C of a set of points of given strength is a unique point, its

location being independent of the choice of reference point O.

Figure 2.3
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The cartesian coordinates of the centroid C �xC ; yC ; zC � of a set of points

Pi , i � 1; . . . ;n; of strengths si , i � 1; . . . ;n, are given by the expressions

xC �
Pn
i�1

sixiPn
i�1

si

; yC �
Pn
i�1

siyiPn
i�1

si

; zC �
Pn
i�1

siziPn
i�1

si

:

The plane of symmetry of a set is the plane where the centroid of the set

lies, the points of the set being arranged in such a way that corresponding to

every point on one side of the plane of symmetry there exists a point of equal

strength on the other side, the two points being equidistant from the plane.

A set fS 0g of points is called a subset of a set fS g if every point of fS 0g is a

point of fS g. The centroid of a set fS g may be located using the method of

decomposition:

j Divide the system fSg into subsets

j Find the centroid of each subset

j Assign to each centroid of a subset a strength proportional to the sum

of the strengths of the points of the corresponding subset

j Determine the centroid of this set of centroids

2.4 Centroid of a Curve, Surface, or Solid

The position vector of the centroid C of a curve, surface, or solid relative to a

point O is

rC �

�
D

rdt�
D

dt
;

where D is a curve, surface, or solid; r denotes the position vector of a typical

point of D, relative to O; and dt is the length, area, or volume of a differential

element of D. Each of the two limits in this expression is called an ``integral

over the domain D (curve, surface, or solid).''

The integral
�
D

dt gives the total length, area, or volume of D, that is,�
D

dt � t:

The position vector of the centroid is

rC �
1

t

�
D

r dt:

Let ; ;k be mutually perpendicular unit vectors (cartesian reference

frame) with the origin at O. The coordinates of C are xC , yC , zC and

rC � xC � yC � zC k:

i j

i j
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It results that

xC �
1

t

�
D

x dt; yC �
1

t

�
D

y dt; zC �
1

t

�
D

z dt:

2.5 Mass Center of a Set of Particles

The mass center of a set of particles fS g � fP1;P2; . . . ;Png � fPigi�1;2;...;n is

the centroid of the set of points at which the particles are situated with the

strength of each point being taken equal to the mass of the corresponding

particle, si � mi , i � 1; 2; . . . ;n. For the system of n particles in Fig. 2.4, one

can say Pn
i�1

mi

� �
rC �

Pn
i�1

miri :

Therefore, the mass center position vector is

rC �
Pn
i�1

miri

M
; �2:1�

where M is the total mass of the system.

2.6 Mass Center of a Curve, Surface, or Solid

The position vector of the mass center C of a continuous body D, curve,

surface, or solid, relative to a point O is

rC �
1

m

�
D

rr dt;

Figure 2.4
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or using the orthogonal cartesian coordinates

xC �
1

m

�
D

xr dt; yC �
1

m

�
D

yr dt; zC �
1

m

�
D

zr dt;

where r is the mass density of the body: mass per unit of length if D is a

curve, mass per unit area if D is a surface, and mass per unit of volume if D is

a solid; r is the position vector of a typical point of D , relative to O ; dt is the

length, area, or volume of a differential element of D; m � �
D
r dt is the total

mass of the body; and xC , yC , zC are the coordinates of C .

If the mass density r of a body is the same at all points of the body, r
constant, the density, as well as the body, are said to be uniform. The mass

center of a uniform body coincides with the centroid of the ®gure occupied

by the body.

The method of decomposition may be used to locate the mass center of a

continuous body B:

j Divide the body B into a number of bodies, which may be particles,

curves, surfaces, or solids

j locate the mass center of each body

j assign to each mass center a strength proportional to the mass of the

corresponding body (e.g., the weight of the body)

j locate the centroid of this set of mass centers

2.7 First Moment of an Area

A planar surface of area A and a reference frame xOy in the plane of the

surface are shown in Fig. 2.5. The ®rst moment of area A about the x axis is

Mx �
�

A

y dA; �2:2�

and the ®rst moment about the y axis is

My �
�

A

x dA: �2:3�

Figure 2.5
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The ®rst moment of area gives information of the shape, size, and orientation

of the area.

The entire area A can be concentrated at a position C �xC ; yC �, the

centroid (Fig. 2.6). The coordinates xC and yC are the centroidal coordinates.

To compute the centroidal coordinates one can equate the moments of the

distributed area with that of the concentrated area about both axes:

AyC �
�

A

y dA; ) yC �

�
A

y dA

A
� Mx

A
�2:4�

AxC �
�

A

x dA; ) xC �

�
A

x dA

A
� My

A
: �2:5�

The location of the centroid of an area is independent of the reference axes

employed, that is, the centroid is a property only of the area itself.

If the axes xy have their origin at the centroid, O � C , then these axes

are called centroidal axes. The ®rst moments about centroidal axes are zero.

All axes going through the centroid of an area are called centroidal axes for

that area, and the ®rst moments of an area about any of its centroidal axes are

zero. The perpendicular distance from the centroid to the centroidal axis

must be zero.

In Fig. 2.7 is shown a plane area with the axis of symmetry collinear with

the axis y . The area A can be considered as composed of area elements in

symmetric pairs such as that shown in Fig. 2.7. The ®rst moment of such a

pair about the axis of symmetry y is zero. The entire area can be considered

as composed of such symmetric pairs and the coordinate xC is zero:

xC �
1

A

�
A

x dA � 0:

Thus, the centroid of an area with one axis of symmetry must lie along the

axis of symmetry. The axis of symmetry then is a centroidal axis, which is

another indication that the ®rst moment of area must be zero about the axis

Figure 2.6
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of symmetry. With two orthogonal axes of symmetry, the centroid must lie at

the intersection of these axes. For such areas as circles and rectangles, the

centroid is easily determined by inspection.

In many problems, the area of interest can be considered formed by the

addition or subtraction of simple areas. For simple areas the centroids are

known by inspection. The areas made up of such simple areas are composite

areas. For composite areas,

xC �
P

i
AixCi

A

yC �
P

i

AiyCi

A
;

where xCi and yCi (with proper signs) are the centroidal coordinates to

simple area Ai , and where A is the total area.

The centroid concept can be used to determine the simplest resultant of

a distributed loading. In Fig. 2.8 the distributed load w�x � is considered. The

resultant force FR of the distributed load w�x � loading is given as

FR �
�L

0

w�x �dx : �2:6�

From this equation, the resultant force equals the area under the loading

curve. The position, �x , of the simplest resultant load can be calculated from

the relation

FR �x �
�L

0

xw�x � dx ) �x �

�L

0

xw�x � dx

FR

: �2:7�

Figure 2.7
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The position �x is actually the centroid coordinate of the loading curve area.

Thus, the simplest resultant force of a distributed load acts at the centroid of

the area under the loading curve.

Example 1

For the triangular load shown in Fig. 2.9, one can replace the distributed

loading by a force F equal to �12��w0��b ÿ a� at a position 1
3 �b ÿ a� from the

right end of the distributed loading. m

Example 2

For the curved line shown in Fig. 2.10 the centroidal position is

xC �

�
x dl

L
; yC �

�
y dl

L
; �2:8�

where L is the length of the line. Note that the centroid C will not generally

lie along the line. Next one can consider a curve made up of simple curves.

For each simple curve the centroid is known. Figure 2.11 represents a curve

Figure 2.8

Figure 2.9

20 Statics

Statics



made up of straight lines. The line segment L1 has the centroid C1 with

coordinates xC 1, yC1, as shown in the diagram. For the entire curve

xC �
P4
i�1

xCiLi

L
; yC �

P4
i�1

yCiLi

L
: m

2.8 Theorems of Guldinus±Pappus

The theorems of Guldinus±Pappus are concerned with the relation of a

surface of revolution to its generating curve, and the relation of a volume of

revolution to its generating area.

THEOREM Consider a coplanar generating curve and an axis of revolution in the plane

of this curve (Fig. 2.12). The surface of revolution A developed by rotating

the generating curve about the axis of revolution equals the product of the

length of the generating L curve times the circumference of the circle formed

by the centroid of the generating curve yC in the process of generating a

surface of revolution

A � 2pyC L:

The generating curve can touch but must not cross the axis of revolution. m

Figure 2.10

Figure 2.11
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Proof

An element dl of the generating curve is considered in Fig. 2.12. For a single

revolution of the generating curve about the x axis, the line segment dl traces

an area
dA � 2py dl :

For the entire curve this area, dA, becomes the surface of revolution, A, given

as

A � 2p
�

y dl � 2pyC L; �2:9�

where L is the length of the curve and yC is the centroidal coordinate of the

curve. The circumferential length of the circle formed by having the centroid

of the curve rotate about the x axis is 2pyC . m

The surface of revolution A is equal to 2p times the ®rst moment of the

generating curve about the axis of revolution.

If the generating curve is composed of simple curves, Li , whose

centroids are known (Fig. 2.11), the surface of revolution developed by

revolving the composed generating curve about the axis of revolution x is

A � 2p
P4
i�1

LiyCi

� �
; �2:10�

where yCi is the centroidal coordinate to the ith line segment Li .

THEOREM Consider a generating plane surface A and an axis of revolution coplanar

with the surface (Fig. 2.13). The volume of revolution V developed by

Figure 2.12
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rotating the generating plane surface about the axis of revolution equals the

product of the area of the surface times the circumference of the circle

formed by the centroid of the surface yC in the process of generating the

body of revolution

V � 2pyC A:

The axis of revolution can intersect the generating plane surface only as a

tangent at the boundary or can have no intersection at all. m

Proof

The plane surface A is shown in Fig. 2.13. The volume generated by rotating

an element dA of this surface about the x axis is

dV � 2py dA:

The volume of the body of revolution formed from A is then

V � 2p
�

A

y dA � 2pyC A: �2:11�

Thus, the volume V equals the area of the generating surface A times the

circumferential length of the circle of radius yC . m

The volume V equals 2p times the ®rst moment of the generating area A

about the axis of revolution.

Figure 2.13
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2.9 Second Moments and the Product of Area

The second moments of the area A about x and y axes (Fig. 2.14), denoted as

Ixx and Iyy , respectively, are

Ixx �
�

A

y2 dA �2:12�

Iyy �
�

A

x 2 dA: �2:13�

The second moment of area cannot be negative.

The entire area may be concentrated at a single point �kx ; ky � to give the

same moment of area for a given reference. The distance kx and ky are called

the radii of gyration. Thus,

Ak2
x � Ixx �

�
A

y2 dA) k2
x �

�
A

y2dA

A

Ak2
y � Iyy �

�
A

x2 dA) k2
y �

�
A

x 2dA

A
: �2:14�

This point �kx ; ky � depends on the shape of the area and on the position of

the reference. The centroid location is independent of the reference position.

DEFINITION The product of area is de®ned as

Ixy �
�

A

xy dA: �2:15�

This quantity may be negative and relates an area directly to a set of

axes. m

If the area under consideration has an axis of symmetry, the product of

area for this axis and any axis orthogonal to this axis is zero. Consider the

Figure 2.14
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area in Fig. 2.15, which is symmetrical about the vertical axis y . The planar

cartesian frame is xOy . The centroid is located somewhere along the

symmetrical axis y . Two elemental areas that are positioned as mirror

images about the y axis are shown in Fig. 2.15. The contribution to the

product of area of each elemental area is xy dA, but with opposite signs, and

so the result is zero. The entire area is composed of such elemental area

pairs, and the product of area is zero.

2.10 Transfer Theorems or Parallel-Axis Theorems

The x axis in Fig. 2.16 is parallel to an axis x 0 and it is at a distance b from the

axis x 0. The axis x 0 is going through the centroid C of the A area, and it is a

centroidal axis. The second moment of area about the x axis is

Ixx �
�

A

y2 dA �
�

A

�y 0 � b�2 dA;

Figure 2.15

Figure 2.16
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where the distance y � y 0 � b. Carrying out the operations,

Ixx �
�

A

y 02dA � 2b

�
A

y 0dA � Ab2:

The ®rst term of the right-hand side is by de®nition Ix 0x 0 ,

Ix 0x 0 �
�

A

y 02dA:

The second term involves the ®rst moment of area about the x 0 axis, and it is

zero because the x 0 axis is a centroidal axis:�
A

y 0dA � 0:

THEOREM The second moment of the area A about any axis Ixx is equal to the second

moment of the area A about a parallel axis at centroid Ix 0x 0 plus Ab2, where b

is the perpendicular distance between the axis for which the second moment

is being computed and the parallel centroidal axis

Ixx � Ix 0x 0 � Ab2: m

With the transfer theorem, one can ®nd second moments or products of

area about any axis in terms of second moments or products of area about a

parallel set of axes going through the centroid of the area in question.

In handbooks the areas and second moments about various centroidal

axes are listed for many of the practical con®gurations, and using the parallel-

axis theorem second moments can be calculated for axes not at the centroid.

In Fig. 2.17 are shown two references, one x 0; y 0 at the centroid and the

other x ; y arbitrary but positioned parallel relative to x 0; y 0. The coordinates

of the centroid C �xC ; yC � of area A measured from the reference x ; y are c

and b, xC � c, yC � b. The centroid coordinates must have the proper signs.

The product of area about the noncentroidal axes xy is

Ixy �
�

A

xy dA �
�

A

�x 0 � c��y 0 � b� dA;

Figure 2.17
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or

Ixy �
�

A

x 0y 0dA � c

�
A

y 0dA � b

�
A

x 0dA � Abc:

The ®rst term of the right-hand side is by de®nition Ix 0y 0 ,

Ix 0y 0 �
�

A

x 0y 0dA:

The next two terms of the right-hand side are zero since x 0 and y 0 are

centroidal axes: �
A

y 0dA � 0 and

�
A

x 0dA � 0:

Thus, the parallel-axis theorem for products of area is as follows.

THEOREM The product of area for any set of axes Ixy is equal to the product of area for

a parallel set of axes at centroid Ix 0y 0 plus Acb, where c and b are the

coordinates of the centroid of area A,

Ixy � Ix 0y 0 � Acb: m

With the transfer theorem, one can ®nd second moments or products of

area about any axis in terms of second moments or products of area about a

parallel set of axes going through the centroid of the area.

2.11 Polar Moment of Area

In Fig. 2.18, there is a reference xy associated with the origin O. Summing Ixx

and Iyy ,

Ixx � Iyy �
�

A

y2dA �
�

A

x 2dA

�
�

A

�x 2 � y2� dA �
�

A

r 2dA;

where r 2 � x 2 � y2. The distance r 2 is independent of the orientation of the

reference, and the sum Ixx � Iyy is independent of the orientation of the

Figure 2.18
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coordinate system. Therefore, the sum of second moments of area about

orthogonal axes is a function only of the position of the origin O for the axes.

The polar moment of area about the origin O is

IO � Ixx � Iyy : �2:16�
The polar moment of area is an invariant of the system. The group of terms

Ixx Iyy ÿ I 2
xy is also invariant under a rotation of axes.

2.12 Principal Axes

In Fig. 2.19, an area A is shown with a reference xy having its origin at O.

Another reference x 0y 0 with the same origin O is rotated with angle a from xy

(counterclockwise as positive). The relations between the coordinates of the

area elements dA for the two references are

x 0 � x cos a� y sin a

y 0 � ÿx sin a� y cos a:

The second moment Ix 0x 0 can be expressed as

Ix 0x 0 �
�

A

�y 0�2dA �
�

A

�ÿx sin a� y cos a�2dA

� sin2 a
�

A

x 2dA ÿ 2 sin a cos a
�

A

xy dA � cos2 a
�

A

y2dA

� Iyy sin2� Ixx cos2ÿ2Ixy sin a cos a: �2:17�

Using the trigonometric identities

cos2 a � 0:5�1� cos 2a�
sin2 a � 0:5�1ÿ cos 2a�

2 sin a cos a � sin 2a;

Eq. (2.17) becomes

Ix 0x 0 �
Ixx � Iyy

2
� Ixx ÿ Iyy

2
cos 2aÿ Ixy sin 2a: �2:18�

Figure 2.19
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If we replace a with a� p=2 in Eq. (2.18) and use the trigonometric relations

cos�2a� p� � ÿ cos 2a; sin�2a� p� � ÿ cos 2 sin;

the second moment Iy 0y 0 can be computed:

Iy 0y 0 �
Ixx � Iyy

2
ÿ Ixx ÿ Iyy

2
cos 2a� Ixy sin 2a: �2:19�

Next, the product of area Ix 0y 0 is computed in a similar manner:

Ix 0y 0 �
�

A

x 0y 0dA � Ixx ÿ Iyy

2
sin 2a� Ixy cos 2a: �2:20�

If ixx , Iyy , and Ixy are known for a reference xy with an origin O , then the

second moments and products of area for every set of axes at O can be

computed.

Next, it is assumed that Ixx , Iyy , and Ixy are known for a reference xy

(Fig. 2.20). The sum of the second moments of area is constant for any

reference with origin at O. The minimum second moment of area corre-

sponds to an axis at right angles to the axis having the maximum second

moment. The second moments of area can be expressed as functions of the

angle variable a. The maximum second moment may be determined by

setting the partial derivative of Ix 0y 0 with respect to a equals to zero. Thus,

@Ix 0x 0

@a
� �Ixx ÿ Iyy ��ÿ sin 2a� ÿ 2Ixy cos 2a � 0; �2:21�

or

�Iyy ÿ Ixx � sin 2a0 ÿ 2Ixy cos 2a0 � 0;

where a0 is the value of a that satis®es Eq. (2.21). Hence,

tan 2a0 �
2Ixy

Iyy ÿ Ixx

: �2:22�

The angle a0 corresponds to an extreme value of Ix 0x 0 (i.e., to a maximum or

minimum value). There are two possible values of 2a0, which are p radians

apart, that will satisfy the equation just shown. Thus,

2a01 � tanÿ1
2Ixy

Iyy ÿ Ixx

) a01 � 0:5 tanÿ1
2Ixy

Iyy ÿ Ixx

;

Figure 2.20
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or

2a02 � tanÿ1
2Ixy

Iyy ÿ Ixx

� p) a02 � 0:5 tanÿ1
2Ixy

Iyy ÿ Ixx

� 0:5p:

This means that there are two axes orthogonal to each other having extreme

values for the second moment of area at 0. On one of the axes is the

maximum second moment of area, and the minimum second moment of area

is on the other axis. These axes are called the principal axes.

With a � a0, the product of area Ix 0y 0 becomes

Ix 0y 0 �
Ixx ÿ Iyy

2
sin 2a0 � Ixy cos 2a0: �2:23�

By Eq. (2.22), the sine and cosine expressions are

sin 2a0 �
2Ixy������������������������������������

�Iyy ÿ Ixx �2 � 4I 2
xy

q
cos 2a0 �

Iyy ÿ Ixx������������������������������������
�Iyy ÿ Ixx �2 � 4I 2

xy

q :

Substituting these results into Eq. (2.23) gives

Ix 0y 0 � ÿ�Iyy ÿ Ixx �
Ixy

��Iyy ÿ Ixx �2 � 4I 2
xy �1=2

� Ixy

Iyy ÿ Ixx

��Iyy ÿ Ixx �2 � 4I 2
xy �1=2

:

Thus,

Ix 0y 0 � 0:

The product of area corresponding to the principal axes is zero.

3. Moments and Couples

3.1 Moment of a Bound Vector about a Point

DEFINITION The moment of a bound vector v about a point A is the vector

Mv
A � AB� v � rAB � v; �3:1�

where rAB � AB is the position vector of B relative to A, and B is any point of

line of action, D, of the vector v (Fig. 3.1). m

The vector Mv
A � 0 if the line of action of v passes through A or v � 0.

The magnitude of Mv
A is

jMv
Aj � M v

A � jrAB jjvj sin y;

where y is the angle between rAB and v when they are placed tail to tail. The

perpendicular distance from A to the line of action of v is

d � jrAB j sin y;
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and the magnitude of Mv
A is

jMv
Aj � M v

A � d jvj:

The vector Mv
A is perpendicular to both rAB and v: Mv

A ? rAB and Mv
A ? v.

The vector Mv
A being perpendicular to rAB and v is perpendicular to the

plane containing rAB and v.

The moment vector Mv
A is a free vector, that is, a vector associated

neither with a de®nite line nor with a de®nite point. The moment given by

Eq. (3.1) does not depend on the point B of the line of action of v;D, where

rAB intersects D. Instead of using the point B, one could use the point B 0

(Fig. 3.1). The vector rAB � rAB 0 � rB 0B where the vector rB 0B is parallel to v,

rB 0Bkv. Therefore,

Mv
A � rAB � v � �rAB 0 � rB 0B � � v � rAB 0 � v � rB 0B � v � rAB 0 � v;

because rB 0B � v � 0.

3.2 Moment of a Bound Vector about a Line

DEFINITION The moment Mv
O of a bound vector v about a line O is the O resolute (O

component) of the moment v about any point on O (Fig. 3.2). m

Figure 3.1
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The Mv
O is the O resolute of Mv

A,

Mv
O � n �Mv

An

� n � �r � v�n
� �n; r; v�n;

where n is a unit vector parallel to O, and r is the position vector of a point

on the line of action v relative to the point on O.

The magnitude of Mv
O is given by

jMv
Oj � j�n; r; v�j:

The moment of a vector about a line is a free vector.

If a line O is parallel to the line of action D of a vector v, then

�n; r; v�n � 0 and Mv
O � 0.

If a line O intersects the line of action D of v, then r can be chosen in

such a way that r � 0 and Mv
O � 0.

If a line O is perpendicular to the line of action D of a vector v, and d is

the shortest distance between these two lines, then

jMv
Oj � d jvj:

3.3 Moments of a System of Bound Vectors

DEFINITION The moment of a system fS g of bound vectors vi , fS g � fv1; v2; . . . ; vng �
fvigi�1;2;...;n about a point A is

MfS gA �
Pn
i�1

M
vi

A : m

DEFINITION The moment of a system fS g of bound vectors vi , fS g � fv1; v2; . . . ; vng �
fvigi�1;2;...;n about a line O is

MfS gO �
Pn
i�1

M
vi

O :

The moments of a system of vectors about points and lines are free

vectors.

Figure 3.2
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The moments MfSgA and MfSgA0 of a system fSg, fSg � fvigi�1;2;...;n, of bound

vectors, vi, about two points A and P are related to each other as

MfS gA � MfS gP � rAP � R; �3:2�
where rAP is the position vector of P relative to A, and R is the resultant of

fSg. m

Proof

Let Bi be a point on the line of action of the vector vi, and let rABi and rPBi be

the position vectors of Bi relative to A and P (Fig. 3.3). Thus,

MfS gA �
Pn
i�1

M
vi

A �
Pn
i�1

rABi � vi

� Pn
i�1
�rAP � rPBi � � vi �

Pn
i�1
�rAP � vi � rPBi � vi �

� Pn
i�1

rAP � vi �
Pn
i�1

rPBi � vi

� rAP �
Pn
i�1

vi �
Pn
i�1

rPBi � vi

� rAP � R �Pn
i�1

M
vi

P

� rAP � R �MfS gP :

If the resultant R of a system fS g of bound vectors is not equal to zero,

R 6� 0, the points about which fS g has a minimum moment Mmin lie on a line

called the central axis, �CA�, of fS g, which is parallel to R and passes through

a point P whose position vector r relative to an arbitrarily selected reference

point O is given by

r � R �MfS gO

R2 :

Figure 3.3
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The minimum moment Mmin is given by

Mmin �
R �MfS gO

R2 R:

3.4 Couples

DEFINITION A couple is a system of bound vectors whose resultant is equal to zero and

whose moment about some point is not equal to zero.

A system of vectors is not a vector; therefore, couples are not vectors.

A couple consisting of only two vectors is called a simple couple. The

vectors of a simple couple have equal magnitudes, parallel lines of action,

and opposite senses. Writers use the word ``couple'' to denote a simple

couple.

The moment of a couple about a point is called the torque of the couple,

M or T. The moment of a couple about one point is equal to the moment of

the couple about any other point, that is, it is unnecessary to refer to a

speci®c point.

The torques are vectors, and the magnitude of the torque of a simple

couple is given by

jMj � d jvj;
where d is the distance between the lines of action of the two vectors

comprising the couple, and v is one of these vectors. m

Proof

In Fig. 3.4, the torque M is the sum of the moments of v and ÿv about any

point. The moments about point A

M � Mv
A �Mÿv

A � r � v � 0:

Figure 3.4
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Hence,

jMj � jr � vj � jrjjvj sin�r; v� � d jvj: m

The direction of the torque of a simple couple can be determined by

inspection: M is perpendicular to the plane determined by the lines of action

of the two vectors comprising the couple, and the sense of M is the same as

that of r � v.

The moment of a couple about a line O is equal to the O resolute of the

torque of the couple.

The moments of a couple about two parallel lines are equal to each

other.

3.5 Equivalence

DEFINITION Two systems fS g and fS 0g of bound vectors are said to be equivalent when:

1. The resultant of fSg;R, is equal to the resultant of fS0g;R0:
R � R0:

2. There exists at least one point about which fSg and fS0g have equal

moments:

exists P : MfS gP � MfS
0g

P : m

Figures 3.5a and 3.5b each shown a rod subjected to the action of a pair

of forces. The two pairs of forces are equivalent, but their effects on the rod

are different from each other. The word ``equivalence'' is not to be regarded

as implying physical equivalence.

For given a line O and two equivalent systems fS g and fS 0g of bound

vectors, the sum of the O resolutes of the vectors in fS g is equal to the sum of

the O resolutes of the vectors in fS 0g.
The moments of two equivalent systems of bound vectors, about a point,

are equal to each other.

Figure 3.5
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The moments of two equivalent systems fS g and fS 0g of bound vectors,

about any line O, are equal to each other.

3.5.1 TRANSIVITY OF THE EQUIVALENCE RELATION
If fS g is equivalent to fS 0g, and fS 0g is equivalent to fS 00g, then fS g is equivalent

to fS 00g.
Every system fS g of bound vectors with the resultant R can be replaced

with a system consisting of a couple C and a single bound vector v whose

line of action passes through an arbitrarily selected base point O. The torque

M of C depends on the choice of base point M � MfS gO . The vector v is

independent of the choice of base point, v � R.

A couple C can be replaced with any system of couples the sum of

whose torque is equal to the torque of C .

When a system of bound vectors consists of a couple of torque M and a

single vector parallel to M, it is called a wrench.

3.6 Representing Systems by Equivalent Systems

To simplify the analysis of the forces and moments acting on a given system,

one can represent the system by an equivalent, less complicated one. The

actual forces and couples can be replaced with a total force and a total

moment.

In Fig. 3.6 is shown an arbitrary system of forces and moments,

fsystem 1g, and a point P . This system can be represented by a system,

fsystem 2g, consisting of a single force F acting at P and a single couple of

torque M. The conditions for equivalence areP
Ffsystem 2g �P Ffsystem 1g ) F �PFfsystem 1g

Figure 3.6
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and P
M
fsystem 2g
P �PM

fsystem 1g
P ) M �PM

fsystem 1g
P :

These conditions are satis®ed if F equals the sum of the forces in fsystem 1g,
and M equals the sum of the moments about P in fsystem 1g. Thus, no matter

how complicated a system of forces and moments may be, it can be

represented by a single force acting at a given point and a single couple.

Three particular cases occur frequently in practice.

3.6.1 FORCE REPRESENTED BY A FORCE AND A COUPLE
A force FP acting at a point P fsystem 1g in Fig. 3.7 can be represented by a

force F acting at a different point Q and a couple of torque M fsystem 2g. The

moment of fsystem 1g about point Q is rQP � FP , where rQP is the vector

from Q to P . The conditions for equivalence areP
M
fsystem 2g
P �PM

fsystem 1g
P ) F � FP

and P
M
fsystem 2g
Q �PM

fsystem 1g
Q ) M � M

FP

Q � rQP � FP :

The systems are equivalent if the force F equals the force FP and the couple

of torque M
FP

Q equals the moment of FP about Q.

3.6.2 CONCURRENT FORCES REPRESENTED BY A FORCE
A system of concurrent forces whose lines of action intersect at a point

P fsystem 1g (Fig. 3.8) can be represented by a single force whose line of

action intersects P , fsystem 2g. The sums of the forces in the two systems are

equal if

F � F1 � F2 � � � � � Fn :

The sum of the moments about P equals zero for each system, so the systems

are equivalent if the force F equals the sum of the forces in fsystem 1g.

Figure 3.7
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3.6.3 PARALLEL FORCES REPRESENTED BY A FORCE
A system of parallel forces whose sum is not zero can be represented by a

single force F (Fig. 3.9).

3.6.4 SYSTEM REPRESENTED BY A WRENCH
In general any system of forces and moments can be represented by a single

force acting at a given point and a single couple.

Figure 3.10 shows an arbitrary force F acting at a point P and an arbitrary

couple of torque M, fsystem 1g. This system can be represented by a simpler

one, that is, one may represent the force F acting at a different point Q and

the component of M that is parallel to F. A coordinate system is chosen so

that F is along the y axis,

F � F ;j

Figure 3.8

Figure 3.9
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and M is contained in the xy plane,

M � Mx �My :

The equivalent system, fsystem 2g, consists of the force F acting at a point Q

on the z axis,

F � F ;

and the component of M parallel to F,

Mp � My :

The distance PQ is chosen so that jrPQ j � PQ � Mx=F . The fsystem 1g is

equivalent to fsystem 2g. The sum of the forces in each system is the same F.

The sum of the moments about P in fsystem 1g is M, and the sum of the

moments about P in fsystem 2g isP
M
fsystem 2g
P � rPQ � F�My � �ÿPQk� � �F � �My � Mx �My � M:

The system of the force F � F and the couple Mp � My that is parallel to F

is a wrench. A wrench is the simplest system that can be equivalent to an

arbitrary system of forces and moments.

The representation of a given system of forces and moments by a

wrench requires the following steps:

1. Choose a convenient point P and represent the system by a force F

acting at P and a couple M (Fig. 3.11a).

2. Determine the components of M parallel and normal to F (Fig. 3.11b):

M � Mp �Mn; where Mp jjF:

i j

j

j

j j j i j

j j

Figure 3.10
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3. The wrench consists of the force F acting at a point Q and the parallel

component Mp (Fig. 3.11c). For equivalence, the following condition

must be satis®ed:

rPQ � F � Mn :

Mn is the normal component of M.

In general, fsystem 1g cannot be represented by a force F alone.

4. Equilibrium

4.1 Equilibrium Equations

A body is in equilibrium when it is stationary or in steady translation relative

to an inertial reference frame. The following conditions are satis®ed when a

body, acted upon by a system of forces and moments, is in equilibrium:

1. The sum of the forces is zero:P
F � 0: �4:1�

2. The sum of the moments about any point is zero:P
MP � 0; 8P : �4:2�

Figure 3.11
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If the sum of the forces acting on a body is zero and the sum of the moments

about one point is zero, then the sum of the moments about every point is

zero.

Proof

The body shown in Fig. 4.1 is subjected to forces FAi , i � 1; . . . ;n, and

couples Mj , j � 1; . . . ;m. The sum of the forces is zero,P
F � Pn

i�1
FAi � 0;

and the sum of the moments about a point P is zero,

P
MP �

Pn
i�1

rPAi � FAi �
Pm
j�1

Mj � 0;

where rPAi � PAi , i � 1; . . . ;n. The sum of the moments about any other

point Q is

P
MQ �

Pn
i�1

rQAi � FAi �
Pm
j�1

Mj

� Pn
i�1
�rQP � rPAi � � FAi �

Pm
j�1

Mj

� rQP �
Pn
i�1

FAi �
Pn
i�1

rPAi � FAi �
Pm
j�1

Mj

� rQP � 0�Pn
i�1

rPAi � FAi �
Pm
j�1

Mj

� Pn
i�1

rPAi � FAi �
Pm
j�1

Mj �
P

MP � 0:

Figure 4.1
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A body is subjected to concurrent forces F1, F2; . . . ; Fn and no couples. If the

sum of the concurrent forces is zero,

F1 � F2 � � � � � Fn � 0;

the sum of the moments of the forces about the concurrent point is zero, so

the sum of the moments about every point is zero. The only condition

imposed by equilibrium on a set of concurrent forces is that their sum is zero.

4.2 Supports

4.2.1 PLANAR SUPPORTS
The reactions are forces and couples exerted on a body by its supports.

Pin Support
Figure 4.2 shows a pin support. A beam is attached by a smooth pin to a

bracket. The pin passes through the bracket and the beam. The beam can

rotate about the axis of the pin. The beam cannot translate relative to the

bracket because the support exerts a reactive force that prevents this move-

ment. Thus a pin support can exert a force on a body in any direction. The

force (Fig. 4.3) is expressed in terms of its components in plane,

FA � Ax � Ay :

The directions of the reactions Ax and Ay are positive. If one determines Ax

or Ay to be negative, the reaction is in the direction opposite to that of the

arrow. The pin support is not capable of exerting a couple.

Roller Support
Figure 4.4 represents a roller support, which is a pin support mounted on

rollers. The roller support can only exert a force normal (perpendicular) to

the surface on which the roller support moves freely,

FA � Ay :

i j

j

Figure 4.2
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The roller support cannot exert a couple about the axis of the pin, and it

cannot exert a force parallel to the surface on which it translates.

Fixed Support
Figure 4.5 shows a ®xed support or built-in support. The body is literally built

into a wall. A ®xed support can exert two components of force and a couple:

FA � Ax � Ay ; MA � MAz k:i j

Figure 4.3

Figure 4.4

Figure 4.5
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4.2.2 THREE-DIMENSIONAL SUPPORTS
Ball and Socket Support
Figure 4.6 shows a ball and socket support, where the supported body is

attached to a ball enclosed within a spherical socket. The socket permits the

body only to rotate freely. The ball and socket support cannot exert a couple

to prevent rotation. The ball and socket support can exert three components

of force:

FA � Ax � Ay � Az k:

4.3 Free-Body Diagrams

Free-body diagrams are used to determine forces and moments acting on

simple bodies in equilibrium.

The beam in Fig. 4.7a has a pin support at the left end A and a roller

support at the right end B. The beam is loaded by a force F and a moment M

at C . To obtain the free-body diagram, ®rst the beam is isolated from its

supports. Next, the reactions exerted on the beam by the supports are shown

on the free-body diagram (Fig. 4.7b). Once the free-body diagram is obtained

one can apply the equilibrium equations.

The steps required to determine the reactions on bodies are:

1. Draw the free-body diagram, isolating the body from its supports and

showing the forces and the reactions

2. Apply the equilibrium equations to determine the reactions

For two-dimensional systems, the forces and moments are related by

three scalar equilibrium equations:

P
Fx � 0 �4:3�P
Fy � 0 �4:4�P

MP � 0; 8P : �4:5�

i j

Figure 4.6
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One can obtain more than one equation from Eq. (4.5) by evaluating the sum

of the moments about more than one point. The additional equations will not

be independent of Eqs. (4.3)±(4.5). One cannot obtain more than three

independent equilibrium equations from a two-dimensional free-body

diagram, which means one can solve for at most three unknown forces or

couples.

For three-dimensional systems, the forces and moments are related by

six scalar equilibrium equations: P
Fx � 0 �4:6�P
Fy � 0 �4:7�P
Fz � 0 �4:8�P
Mx � 0 �4:9�P
My � 0 �4:10�P
Mx � 0 �4:11�

One can evaluate the sums of the moments about any point. Although one

can obtain other equations by summing the moments about additional

points, they will not be independent of these equations. For a three-

dimensional free-body diagram one can obtain six independent equilibrium

equations and one can solve for at most six unknown forces or couples.

A body has redundant supports when the body has more supports than

the minimum number necessary to maintain it in equilibrium. Redundant

supports are used whenever possible for strength and safety. Each support

added to a body results in additional reactions. The difference between the

number of reactions and the number of independent equilibrium equations is

called the degree of redundancy.

Figure 4.7
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A body has improper supports if it will not remain in equilibrium under

the action of the loads exerted on it. The body with improper supports will

move when the loads are applied.

5. Dry Friction

If a body rests on an inclined plane, the friction force exerted on it by the

surface prevents it from sliding down the incline. The question is: what is the

steepest incline on which the body can rest?

A body is placed on a horizontal surface. The body is pushed with a

small horizontal force F . If the force F is suf®ciently small, the body does not

move. Figure 5.1 shows the free-body diagram of the body, where the force

W is the weight of the body, and N is the normal force exerted by the

surface. The force F is the horizontal force, and Ff is the friction force exerted

by the surface. Friction force arises in part from the interactions of the

roughness, or asperities, of the contacting surfaces. The body is in equili-

brium and Ff � F .

The force F is slowly increased. As long as the body remains in

equilibrium, the friction force Ff must increase correspondingly, since it

equals the force F . The body slips on the surface. The friction force, after

reaching the maximum value, cannot maintain the body in equilibrium. The

force applied to keep the body moving on the surface is smaller than the

force required to cause it to slip. The fact that more force is required to start

the body sliding on a surface than to keep it sliding is explained in part by the

necessity to break the asperities of the contacting surfaces before sliding can

begin.

The theory of dry friction, or Coloumb friction, predicts:

j The maximum friction forces that can be exerted by dry, contacting

surfaces that are stationary relative to each other

j The friction forces exerted by the surfaces when they are in relative

motion, or sliding

Figure 5.1
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5.1 Static Coef®cient of Friction

The magnitude of the maximum friction force, Ff , that can be exerted

between two plane dry surfaces in contact is

Ff � msN ; �5:1�

where ms is a constant, the static coef®cient of friction, and N is the normal

component of the contact force between the surfaces. The value of the static

coef®cient of friction, ms , depends on:

j The materials of the contacting surfaces

j The conditions of the contacting surfaces: smoothness and degree of

contamination

Typical values of ms for various materials are shown in Table 5.1.

Equation (5.1) gives the maximum friction force that the two surfaces can

exert without causing it to slip. If the static coef®cient of friction ms between

the body and the surface is known, the largest value of F one can apply to

the body without causing it to slip is F � Ff � msW . Equation (5.1) deter-

mines the magnitude of the maximum friction force but not its direction. The

friction force resists the impending motion.

5.2 Kinetic Coef®cient of Friction

The magnitude of the friction force between two plane dry contacting

surfaces that are in motion relative to each other is

Ff � mkN ; �5:2�

where mk is the kinetic coef®cient of friction and N is the normal force

between the surfaces. The value of the kinetic coef®cient of friction is

generally smaller than the value of the static coef®cient of friction, ms .

Table 5.1 Typical Values of the Static
Coef®cient of Friction

Materials mms

Metal on metal 0.15±0.20

Metal on wood 0.20±0.60

Metal on masonry 0.30±0.70

Wood on wood 0.25±0.50

Masonry on masonry 0.60±0.70

Rubber on concrete 0.50±0.90
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To keep the body in Fig. 5.1 in uniform motion (sliding on the surface)

the force exerted must be F � Ff � mkW . The friction force resists the

relative motion, when two surfaces are sliding relative to each other.

The body RB shown in Fig. 5.2a is moving on the ®xed surface 0. The

direction of motion of RB is the positive axis x . The friction force on the body

RB acts in the direction opposite to its motion, and the friction force on the

®xed surface is in the opposite direction (Fig. 5.2b).

5.3 Angles of Friction

The angle of friction, y, is the angle between the friction force, Ff � jFf j, and

the normal force, N � jNj, to the surface (Fig. 5.3). The magnitudes of the

normal force and friction force and that of y are related by

Ff � R sin y

N � R cos y;

where R � jRj � jN� Ff j.
The value of the angle of friction when slip is impending is called the

static angle of friction, ys :

tan ys � ms :

Figure 5.2
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The value of the angle of friction when the surfaces are sliding relative to

each other is called the kinetic angle of friction, yk :

tan yk � mk :
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1. Fundamentals

1.1 Space and Time

S
pace is the three-dimensional universe. The distance between two

points in space is the length of the straight line joining them. The unit

of length in the International System of units, or SI units, is the meter

(m). In U.S. customary units, the unit of length is the foot (ft). The U.S.

customary units use the mile (mi) �1 mi � 5280 ft� and the inch (in)

�1 ft � 12 in�.
The time is a scalar and is measured by the intervals between repeatable

events. The unit of time is the second (s) in both SI units and U.S. customary

units. The minute (min), hour (hr), and day are also used.

The velocity of a point in space relative to some reference is the rate of

change of its position with time. The velocity is expressed in meters per

second (m=s) in SI units, and is expressed in feet per second (ft=s) in U.S.

customary units.

The acceleration of a point in space relative to some reference is the rate

of change of its velocity with time. The acceleration is expressed in meters

per second squared �m=s2� in SI units, and is expressed in feet per second

squared �ft=s2� in U.S. customary units.

1.2 Numbers

Engineering measurements, calculations, and results are expressed in

numbers. Signi®cant digits are the number of meaningful digits in a

number, counting to the right starting with the ®rst nonzero digit. Numbers

can be rounded off to a certain number of signi®cant digits. The value of p
can be expressed to three signi®cant digits, 3.14, or can be expressed to six

signi®cant digits, 3.14159.

The multiples of units are indicated by pre®xes. The common pre®xes,

their abbreviations, and the multiples they represent are shown in Table 1.1.

For example, 5 km is 5 kilometers, which is 5000 m.
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Some useful unit conversions are presented in Table 1.2. For example,

1 mi=hr in terms of ft=s is (1 mi equals 5280 ft and 1 hr equals 3600 s)

1
mi

hr
� 1

1 mi � 5280 ft

1 hr � 3600 s
� 1

5280 ft

3600 s
� 1:47

ft

s
:

1.3 Angular Units

Angles are expressed in radians (rad) in both SI and U.S. customary units.

The value of an angle y in radians (Fig. 1.1) is the ratio of the part of the

Table 1.1 Pre®xes Used in SI Units

Pre®x Abbreviation Multiple

nano- n 10ÿ9

micro- m 10ÿ6

mili- m 10ÿ3

kilo- k 103

mega- M 106

giga- G 109

Table 1.2 Unit Conversions

Time 1 minute � 60 seconds

1 hour � 60 minutes

1 day � 24 hours

Length 1 foot � 12 inches

1 mile � 5280 feet

1 inch � 25.4 millimeters

1 foot � 0.3048 meter

Angle 2p radians � 360 degrees

Figure 1.1
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circumference s subtended by y to the radius R of the circle,

y � s

R
:

Angles are also expressed in degrees. There are 360 degrees �360�� in a

complete circle. The complete circumference of the circle is 2pR . Therefore,

360� � 2p rad:

2. Kinematics of a Point

2.1 Position, Velocity, and Acceleration of a Point

One may observe students and objects in a classroom, and their positions

relative to the room. Some students may be in the front of the classroom,

some in the middle of the classroom, and some in the back of the classroom.

The classroom is the ``frame of reference.'' One can introduce a cartesian

coordinate system x ; y; z with its axes aligned with the walls of the class-

room. A reference frame is a coordinate system used for specifying the

positions of points and objects.

The position of a point P relative to a given reference frame with origin

O is given by the position vector r from point O to point P (Fig. 2.1). If the

point P is in motion relative to the reference frame, the position vector r is a

function of time t (Fig. 2.1) and can be expressed as

r � r�t �:

The velocity of the point P relative to the reference frame at time t is de®ned

by

v � dr

dt
� _r � lim

Dt!0

r�t � Dt � ÿ r�t �
Dt

; �2:1�

Figure 2.1
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where the vector r�t � Dt � ÿ r�t � is the change in position, or displacement

of P ; during the interval of time Dt (Fig. 2.1). The velocity is the rate of

change of the position of the point P . The magnitude of the velocity v is the

speed v � jvj. The dimensions of v are (distance)=(time). The position and

velocity of a point can be speci®ed only relative to a reference frame.

The acceleration of the point P relative to the given reference frame at

time t is de®ned by

a � dv

dt
� _v � lim

Dt!0

v�t � Dt � ÿ v�t �
Dt

; �2:2�

where v�t � Dt � ÿ v�t � is the change in the velocity of P during the interval

of time Dt (Fig. 2.1). The acceleration is the rate of change of the velocity of P

at time t (the second time derivative of the displacement), and its dimensions

are (distance)=(time)2.

2.2 Angular Motion of a Line

The angular motion of the line L, in a plane, relative to a reference line L0, in

the plane, is given by an angle y (Fig. 2.2). The angular velocity of L relative

to L 0 is de®ned by

o � dy
dt
� _y; �2:3�

and the angular acceleration of L relative to L0 is de®ned by

a � do
dt
� d2y

dt 2
� _o � �y: �2:4�

The dimensions of the angular position, angular velocity, and angular

acceleration are (rad), (rad=s), and �rad=s2�, respectively. The scalar coordi-

Figure 2.2
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nate y can be positive or negative. The counterclockwise (ccw) direction is

considered positive.

2.3 Rotating Unit Vector

The angular motion of a unit vector u in a plane can be described as the

angular motion of a line. The direction of u relative to a reference line L0 is

speci®ed by the angle y in Fig. 2.3a, and the rate of rotation of u relative to L0

is de®ned by the angular velocity

o � dy
dt
:

The time derivative of u is speci®ed by

du

dt
� lim

Dt!0

u�t � Dt � ÿ u�t �
Dt

:

Figure 2.3a shows the vector u at time t and at time t � Dt . The change in u

during this interval is Du � u�t � Dt �u�t �, and the angle through which u

Figure 2.3
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rotates is Dy � y�t � Dt � ÿ y�t �. The triangle in Fig. 2.3a is isosceles, so the

magnitude of Du is

jDuj � 2juj sin�Dy=2� � 2 sin�Dy=2�:
The vector Du is

Du � jDujn � 2 sin�Dy=2�n;
where n is a unit vector that points in the direction of Du (Fig. 2.3a). The time

derivative of u is

du

dt
� lim

Dt!0

Du

Dt
� lim

Dt!0

2 sin�Dy=2�n
Dt

� lim
Dt!0

sin�Dy=2�
Dy=2

Dy
Dt

n

� lim
Dt!0

sin�Dy=2�
Dy=2

Dy
Dt

n � lim
Dt!0

Dy
Dt

n � dy
dt

n;

where lim
Dt!0

sin�Dy=2�
Dy=2

� 1 and lim
Dt!0

Dy
Dt
� dy

dt
. So the time derivative of the

unit vector u is

du

dt
� dy

dt
n � on;

where n is a unit vector that is perpendicular to u;n ? u, and points in the

positive y direction (Fig. 2.3b).

2.4 Straight Line Motion

The position of a point P on a straight line relative to a reference point O can

be indicated by the coordinate s measured along the line from O to P

(Fig. 2.4). In this case the reference frame is the straight line and the origin of

the reference frame is the point O. The reference frame and its origin are

used to describe the position of point P . The coordinate s is considered to be

positive to the right of the origin O and is considered to be negative to the left

of the origin.

Let u be a unit vector parallel to the straight line and pointing in the

positive s direction (Fig. 2.4). The position vector of the point P relative to

the origin O is

r � su:

The velocity of the point P relative to the origin O is

v � dr

dt
� ds

dt
u � _su:

Figure 2.4
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The magnitude v of the velocity vector v � vu is the speed (velocity scalar)

v � ds

dt
� _s:

The speed v of the point P is equal to the slope at time t of the line tangent to

the graph of s as a function of time.

The acceleration of the point P relative to O is

a � dv

dt
� d

dt
�vu� � dv

dt
u � _vu � �su:

The magnitude a of the acceleration vector a � au is the acceleration scalar

a � dv

dt
� d2s

dt 2
:

The acceleration a is equal to the slope at time t of the line tangent to the

graph of v as a function of time.

2.5 Curvilinear Motion

The motion of the point P along a curvilinear path, relative to a reference

frame, can be speci®ed in terms of its position, velocity, and acceleration

vectors. The directions and magnitudes of the position, velocity, and accel-

eration vectors do not depend on the particular coordinate system used to

express them. The representations of the position, velocity, and acceleration

vectors are different in different coordinate systems.

2.5.1 CARTESIAN COORDINATES
Let r be the position vector of a point P relative to the origin O of a cartesian

reference frame (Fig. 2.5). The components of r are the x ; y; z coordinates of

the point P ,

r � x � y � zk:

The velocity of the point P relative to the reference frame is

v � dr

dt
� _r � dx

dt
� dy

dt
� dz

dt
k � _x � _y � _zk: �2:5�

The velocity in terms of scalar components is

v � vx � vy � vz k: �2:6�
Three scalar equations can be obtained:

vx �
dx

dt
� _x ; vy �

dy

dt
� _y; vz �

dz

dt
� _z : �2:7�

The acceleration of the point P relative to the reference frame is

a � dv

dt
� _v � �r � dvx

dt
� dvy

dt
� dvz

dt
k � _vx � _vy � _vz k � �x � �y � �zk:

i j

i j i j

i j

i j i j i j
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If we express the acceleration in terms of scalar components,

a � ax � ay � az k; �2:8�
three scalar equations can be obtained:

ax �
dvx

dt
� _vx � �x ; ay �

dvy

dt
� _vy � �y; az �

dvz

dt
� _vz � �z : �2:9�

Equations (2.7) and (2.9) describe the motion of a point relative to a cartesian

coordinate system.

2.6 Normal and Tangential Components

The position, velocity, and acceleration of a point will be speci®ed in terms

of their components tangential and normal (perpendicular) to the path.

2.6.1 PLANAR MOTION
The point P is moving along a plane curvilinear path relative to a reference

frame (Fig. 2.6). The position vector r speci®es the position of the point P

relative to the reference point O. The coordinate s measures the position of

the point P along the path relative to a point O 0 on the path. The velocity of P

relative to O is

Dv � dr

dt
� lim

Dt!0

r�t � Dt � ÿ r�t �
Dt

� lim
Dt!0

Dr

Dt
; �2:10�

where Dr � r�t � Dt � ÿ r�t � (Fig. 2.6). The distance travelled along the path

from t to t � Dt is Ds. One can write Eq. (2.10) as

v � lim
Dt!0

Ds

Dt
u;

i j

Figure 2.5

2. Kinematics of a Point 59

D
yn

am
ic

s



where u is a unit vector in the direction of Dr. In the limit as Dt approaches

zero, the magnitude of Dr equals ds because a chord progressively

approaches the curve. For the same reason, the direction of Dr approaches

tangency to the curve, and u becomes a unit vector, t, tangent to the path at

the position of P (Fig. 2.6):

v � vt � ds

dt
t: �2:11�

The tangent direction is de®ned by the unit tangent vector t, which is a path

variable parameter

dr

dt
� ds

dt
t

or

t � dr

ds
: �2:12�

The velocity of a point in curvilinear motion is a vector whose magnitude

equals the rate of change of distance traveled along the path and whose

direction is tangent to the path.

To determine the acceleration of P , the time derivative of Eq. (2.11) is

taken:

a � dv

dt
� dv

dt
t� v

dt

dt
: �2:13�

If the path is not a straight line, the unit vector t rotates as P moves on the

path, and the time derivative of t is not zero. The path angle y de®nes the

direction of t relative to a reference line shown in Fig. 2.7. The time

derivative of the rotating tangent unit vector t is

dt

dt
� dy

dt
n;

where n is a unit vector that is normal to t and points in the positive y
direction if dy=dt is positive. The normal unit vector n de®nes the normal

Figure 2.6

60 Dynamics

D
yn

am
ics



direction to the path. If we substitute this expression into Eq. (2.13), the

acceleration of P is obtained:

a � dv

dt
t� v

dy
dt

n: �2:14�

If the path is a straight line at time t , the normal component of the

acceleration equals zero, because in that case dy=dt is zero.

The tangential component of the acceleration arises from the rate of

change of the magnitude of the velocity. The normal component of the

acceleration arises from the rate of change in the direction of the velocity

vector.

Figure 2.8 shows the positions on the path reached by P at time t , P �t �,
and at time t � dt , P �t � dt �. If the path is curved, straight lines extended from

these points P �t � and P �t � dt � perpendicular to the path will intersect at C as

shown in Fig. 2.8. The distance r from the path to the point where these two

lines intersect is called the instantaneous radius of curvature of the path.

If the path is circular with radius a, then the radius of curvature equals

the radius of the path, r � a. The angle dy is the change in the path angle,

Figure 2.7

Figure 2.8
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and ds is the distance traveled, from t to t � dt . The radius of curvature r is

related to ds by (Fig. 2.8)

ds � rdy:

Dividing by dt , one can obtain

ds

dt
� v � r

dy
dt
:

Using this relation, one can write Eq. (2.14) as

a � dv

dt
t� v2

r
n:

For a given value of v, the normal component of the acceleration depends on

the instantaneous radius of curvature. The greater the curvature of the path,

the greater the normal component of the acceleration. When the acceleration

is expressed in this way, the normal unit vector n must be de®ned to point

toward the concave side of the path (Fig. 2.9). The velocity and acceleration

in terms of normal and tangential components are (Fig. 2.10)

v � vt � ds

dt
t; �2:15�

a � at t� ann; �2:16�

where

at �
dv

dt
; an � v

dy
dt
� v2

r
: �2:17�

If the motion occurs in the x y plane of a cartesian reference frame

(Fig. 2.11), and y is the angle between the x axis and the unit vector t, the

unit vectors t and n are related to the cartesian unit vectors by

t � cos y � sin y

n � ÿ sin y � cos y :
�2:18�i j

i j

Figure 2.9
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Figure 2.10

Figure 2.11
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If the path in the x y plane is described by a function y � y�x �, it can be

shown that the instantaneous radius of curvature is given by

r �
1� dy

dx

� �2
" #3=2

d2y

dx2

���� ���� : �2:19�

2.6.2 CIRCULAR MOTION
The point P moves in a plane circular path of radius R as shown in Fig. 2.12.

The distance s is

s � Ry; �2:20�

where the angle y speci®es the position of the point P along the circular

path. The velocity is obtained taking the time derivative of Eq. (2.20),

v � _s � R _y � Ro; �2:21�

where o � _y is the angular velocity of the line from the center of the path O

to the point P . The tangential component of the acceleration is at � dv=dt ,

and

at � _v � R _o � Ra; �2:22�

Figure 2.12
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where a � _o is the angular acceleration. The normal component of the

acceleration is

an �
v2

R
� Ro2: �2:23�

For the circular path the instantaneous radius of curvature is r � R .

2.6.3 SPATIAL MOTION (FRENET'S FORMULAS)
The motion of a point P along a three-dimensional path is considered

(Fig. 2.13a). The tangent direction is de®ned by the unit tangent vector

t�jtj � 1�

t � dr

ds
: �2:24�

Figure 2.13
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The second unit vector is derived by considering the dependence of t on s,

t � t�s�. The dot product t � t gives the magnitude of the unit vector t, that

is,

t � t � 1: �2:25�
Equation (2.25) can be differentiated with respect to the path variable s:

dt

ds
� t� t � dt

ds
� 0) t � dt

ds
� 0: �2:26�

Equation (2.26) means that the vector dt=ds is always perpendicular to the

vector t. The normal direction, with the unit vector is n, is de®ned to be

parallel to the derivative dt=ds. Because parallelism of two vectors corre-

sponds to their proportionality, the normal unit vector may be written as

n � r
dt

ds
; �2:27�

or

dt

ds
� 1

r
n; �2:28�

where r is the radius of curvature.

Figure 2.13a depicts the tangent and normal vectors associated with two

points, P �s� and P �s � ds�. The two points are separated by an in®nitesimal

distance ds measured along an arbitrary planar path. The point C is the

intersection of the normal vectors at the two positions along the curve, and it

is the center of curvature. Because ds is in®nitesimal, the arc P �s�P �s � ds�
seems to be circular. The radius r of this arc is the radius of curvature. The

formula for the arc of a circle is

dy � ds=r:

The angle dy between the normal vectors in Fig. 2.13a is also the angle

between the tangent vectors t�s � ds� and t�s�. The vector triangle t�s � ds�,
t�s�, dt � t�s � ds� ÿ t�s� in Fig. 2.13b is isosceles because jt�s � ds�j �
jt�s�j � 1. Hence, the angle between dt and either tangent vector is

90� ÿ dy=2. Since dy is in®nitesimal, the vector dt is perpendicular to the

vector t in the direction of n. A unit vector has a length of 1, so

jdtj � dyjtj � ds

r
:

Any vector may be expressed as the product of its magnitude and a unit

vector de®ning the sense of the vector

dt � jdtjn � ds

r
n: �2:29�

Note that the radius of curvature r is generally not a constant.

The tangent �t� and normal �n� unit vectors at a selected position form a

plane, the osculating plane, that is tangent to the curve. Any plane containing

t is tangent to the curve. When the path is not planar, the orientation of the
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oscillating plane containing the t, n pair will depend on the position along

the curve. The direction perpendicular to the osculating plane is called the

binormal, and the corresponding unit vector is b. The cross product of two

unit vectors is a unit vector perpendicular to the original two, so the binormal

direction may be de®ned such that

b� t� n:

Next the derivative of the n unit vector with respect to s in terms of its

tangent, normal, and binormal components will be calculated. The compo-

nent of any vector in a speci®c direction may be obtained from a dot product

with a unit vector in that direction:

dn

ds
� t � dn

ds

� �
t� n � dn

ds

� �
� b � dn

ds

� �
b: �2:31�

The orthogonality of the unit vectors t and n; t ? n, requires that

t � n � 0: �2:32�
Equation (2.32) can be differentiated with respect to the path variable s:

t�dn

ds
� n � dt

ds
� 0

or

t � dn

ds
� ÿn � dt

ds
� ÿn � 1

r
n

� �
� ÿ 1

r
: �2:33�

Because n � n � 1, one may ®nd that

n � dn

ds
� 0: �2:34�

The derivative of the binormal component is

1

T
� b � dn

ds
; �2:35�

or

dn

ds
� 1

T
b; �2:36�

where T is the torsion. The reciprocal is used for consistency with Eq. (2.28).

The torsion T has the dimension of length.

Substitution of Eqs. (2.33), (2.34), and (2.35) into Eq. (2.31) results in

dn

ds
� ÿ 1

r
t� 1

T
b: �2:37�

The derivative of b,

db

ds
� t � db

ds

� �
t� n � dn

ds

� �
n� b � db

ds

� �
b; �2:38�

may be obtained by a similar approach.
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Using the fact that t, n, and b are mutually orthogonal, and Eqs. (2.28)

and (2.37), yields

t � b � 0) t � db

ds
� ÿ dt

ds
� b � ÿ 1

r
n � b � 0

n � b � 0) n � db

ds
� ÿ dn

ds
� b � ÿ 1

T

b � b � 1) b � db

ds
� 0:

�2:39�

The result is

db

ds
� ÿ 1

T
n: �2:40�

Because n is a unit vector, this relation provides an alternative to Eq. (2.36)

for the torsion:

1

T
� ÿ db

ds

���� ����: �2:41�

Equations (2.28), (2.37), and (2.40) are the Frenet's formulas for a spatial

curve.

Next the path is given in parametric form, the x ; y , and z coordinates are

given in terms of a parameter a. The position vector may be written as

r � x �a� � y�a� � z �a�k: �2:42�
The unit tangent vector is

t � dr

da
da
ds
� r0�a�

s 0�a� ; �2:43�

where a prime denotes differentiation with respect to a and

r0 � x 0 � y 0 � z 0k:

Using the fact that jtj � 1, one may write

s 0 � �r0 � r0�1=2 � ��x 0�2 � �y 0�2 � �z 0�2�1=2: �2:44�
The arc length s may be computed with the relation

s �
�a
ao

��x 0�2 � �y 0�2 � �z 0�2�1=2 da; �2:45�

where ao is the value at the starting position. The value of s 0 found from

Eq. (2.44) may be substituted into Eq. (2.43) to calculate the tangent vector

t � x 0 � y 0 � z 0k���������������������������������������
�x 0�2 � �y 0�2 � �z 0�2

q : �2:46�

From Eqs. (2.43) and (2.28), the normal vector is

n � r
dt

ds
� r

dt

da
da
ds
� r

s 0
r00

s 0
ÿ r0s 00

�s 0�2
� �

� r

�s 0�3 �r
00s 0 ÿ r0s 00�: �2:47�

i j

i j

i j
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The value of s 0 is given by Eq. (2.44) and the value of s 00 is obtained

differentiating Eq. (2.44):

s 00 � r0 � r00
�r0 � r0�1=2 �

r0 � r00
s 0

: �2:48�

The expression for the normal vector is obtained by substituting Eq. (2.48)

into Eq. (2.47):

n � r

�s 0�4 �r
00�s 0�2 ÿ r0�r0 � r00��: �2:49�

Because n � n � 1, the radius of curvature is

1

r
� r

�s 0�4 j�r
00�s 0�2 ÿ r0�r0 � r00��j

� r

�s 0�4 �r
00 � r00�s 0�4 ÿ 2�r0 � r00�2�s 0�2 � r0�r0 � r00��1=2;

which simpli®es to

1

r
� 1

�s 0�3 �r
00 � r00�s 0�2 ÿ �r0 � r00�2�1=2: �2:50�

In the case of a planar curve y � y�x � �a � x �, Eq. (2.50) reduces to

Eq. (2.19).

The binomial vector may be calculated with the relation

b � t� n � r0

s 0
� r

�s 0�4 �r
00�s 0�2 ÿ r0�r0 � r00��

� r

�s 0�3 r0 � r00:
�2:51�

The result of differentiating Eq. (2.51) may be written as

db

ds
� 1

s 0
db

da
� 1

s 0
d

da
r

�s 0�3
� �

�r0 � r00� � r

�s 0�4 �r
0 � r000�: �2:52�

The torsion T may be obtained by applying the formula

1

T
� ÿn � db

ds

� ÿ r

�s 0�4 �r
00�s 0�2 ÿ r0�r0 � r00�� � 1

s 0
d

da
r

�s 0�3
� �

�r0 � r00� � r

�s 0�4 �r
0 � r000�

" #
:

The preceding equation may be simpli®ed and T can be calculated from

1

T
� ÿ r2

�s 0�6
�r00 � �r0 � r000��: �2:53�

The expressions for the velocity and acceleration in normal and tangential

directions for three-dimensional motions are identical in form to the expres-

sions for planar motion. The velocity is a vector whose magnitude equals the

rate of change of distance, and whose direction is tangent to the path. The

acceleration has a component tangential to the path equal to the rate of
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change of the magnitude of the velocity, and a component perpendicular to

the path that depends on the magnitude of the velocity and the instantaneous

radius of curvature of the path. In planar motion, the normal unit vector n is

parallel to the plane of motion. In three-dimensional motion, n is parallel to

the osculating plane, whose orientation depends on the nature of the path.

The binomial vector b is a unit vector that is perpendicular to the osculating

plane and therefore de®nes its orientation.

2.6.4 POLAR COORDINATES
A point P is considered in the x y plane of a cartesian coordinate system.

The position of the point P relative to the origin O may be speci®ed either by

its cartesian coordinates x ; y or by its polar coordinates r ; y (Fig. 2.14). The

polar coordinates are de®ned by:

j The unit vector ur, which points in the direction of the radial line from

the origin O to the point P

j The unit vector uy, which is perpendicular to ur and points in the

direction of increasing the angle y

The unit vectors ur and uy are related to the cartesian unit vectors and by

ur � cos y � sin y ;

uy � ÿ sin y � cos y :
�2:54�

The position vector r from O to P is

r � r ur ; �2:55�
where r is the magnitude of the vector r; r � jrj.

The velocity of the point P in terms of polar coordinates is obtained by

taking the time derivative of Eq. (2.55):

v � dr

dt
� dr

dt
ur � r

dur

dt
: �2:56�

i j

i j

i j

Figure 2.14
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The time derivative of the rotating unit vector ur is

dur

dt
� dy

dt
uy � ouy; �2:57�

where o � dy=dt is the angular velocity.

If we substitute Eq. (2.57) into Eq. (2.56), the velocity of P is

v � dr

dt
ur � r

dy
dt

uy �
dr

dt
ur � rouy � _r ur � rouy; �2:58�

or

v � vr ur � vyuy; �2:59�
where

vr �
dr

dt
� _r and vy � ro: �2:60�

The acceleration of the point P is obtained by taking the time derivative of

Eq. (2.58):

a � dv

dt
� d2r

dt 2
ur �

dr

dt

dur

dt
� dr

dt

dy
dt

uy

� r
d2y
dt 2

uy � r
dy
dt

duy

dt
:

�2:61�

As P moves, uy also rotates with angular velocity dy=dt . The time derivative

of the unit vector uy is in the ÿur direction if dy=dt is positive:

duy

dt
� ÿ dy

dt
ur : �2:62�

If Eq. (2.62) and Eq. (2.57) are substituted into Eq. (2.61), the acceleration of

the point P is

a � d2r

dt 2
ÿ r

dy
dt

� �2
" #

ur � r
d2y
dt2
� 2

dr

dt

dy
dt

� �
uy:

Thus, the acceleration of P is

a � ar ur � ayuy; �2:63�
where

ar �
d2r

dt 2
ÿ r

dy
dt

� �2

� d2r

dt 2
ÿ ro2 � �r ÿ ro2

ay � r
d2y
dt 2
� 2

dr

dt

dy
dt
� ra� 2o

dr

dt
� ra� 2 _ro:

�2:64�

The term

a � d2y
dt 2
� �y

is called the angular acceleration.
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The radial component of the acceleration ÿro2 is called the centripetal

acceleration. The transverse component of the acceleration 2o�dr=dt � is

called the Coriolis acceleration.

2.6.5 CYLINDRICAL COORDINATES
The cylindrical coordinates r ; y, and z describe the motion of a point P in the

xyz space as shown in Fig. 2.15. The cylindrical coordinates r and y are the

polar coordinates of P measured in the plane parallel to the x y plane, and

the unit vectors ur , and uy are the same. The coordinate z measures the

position of the point P perpendicular to the x y plane. The unit vector k

attached to the coordinate z points in the positive z axis direction. The

position vector r of the point P in terms of cylindrical coordinates is

r � r ur � zk: �2:65�

The coordinate r in Eq. (2.65) is not equal to the magnitude of r except when

the point P moves along a path in the x y plane.

The velocity of the point P is

v � dr

dt
� vr ur � vyuy � vz k

� dr

dt
ur � rouy �

dz

dt
k

� _rur � rouy � _zk;

�2:66�

Figure 2.15
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and the acceleration of the point P is

a � dv

dt
� ar ur � ayuy � az k; �2:67�

where

ar �
d2r

dt 2
ÿ ro2 � �r ÿ ro2

ay � ra� 2
dr

dt
o � ra� 2 _ro

az �
d2z

dt 2
� �z :

�2:68�

2.7 Relative Motion

Suppose that A and B are two points that move relative to a reference frame

with origin at point O (Fig. 2.16). Let rA and rB be the position vectors of

points A and B relative to O. The vector rBA is the position vector of point A

relative to point B. These vectors are related by

rA � rB � rBA: �2:69�
The time derivative of Eq. (2.69) is

vA � vB � vAB ; �2:70�
where vA is the velocity of A relative to O, vB is the velocity of B relative to

O, and vAB � drAB=dt � _rAB is the velocity of A relative to B. The time

derivative of Eq. (2.70) is

aA � aB � aAB ; �2:71�

Figure 2.16
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where aA and aB are the accelerations of A and B relative to O and

aAB � dvAB=dt � �rAB is the acceleration of A relative to B.

3. Dynamics of a Particle

3.1 Newton's Second Law

Classical mechanics was established by Isaac Newton with the publication of

Philosophiae naturalis principia mathematica, in 1687. Newton stated three

``laws'' of motion, which may be expressed in modern terms:

1. When the sum of the forces acting on a particle is zero, its velocity is

constant. In particular, if the particle is initially stationary, it will remain

stationary.

2. When the sum of the forces acting on a particle is not zero, the sum of

the forces is equal to the rate of change of the linear momentum of

the particle.

3. The forces exerted by two particles on each other are equal in

magnitude and opposite in direction.

The linear momentum of a particle is the product of the mass of the particle,

m, and the velocity of the particle, v. Newton's second law may be written as

F � d

dt
�mv�; �3:1�

where F is the total force on the particle. If the mass of the particle is

constant, m � constant, the total force equals the product of its mass and

acceleration, a:

F � m
dv

dt
� ma: �3:2�

Newton's second law gives precise meanings to the terms mass and force. In

SI units, the unit of mass is the kilogram (kg). The unit of force is the newton

(N), which is the force required to give a mass of 1 kilogram an acceleration

of 1 meter per second squared:

1 N � �1 kg��1 m=s2� � 1 kg m=s2:

In U.S. customary units, the unit of force is the pound (lb). The unit of mass is

the slug, which is the amount of mass accelerated at 1 foot per second

squared by a force of 1 pound:

1 lb � �1 slug��1 ft=s2�; or 1 slug � 1 lb s2=lb:
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3.2 Newtonian Gravitation

Newton's postulate for the magnitude of gravitational force F between two

particles in terms of their masses m1 and m2 and the distance r between

them (Fig. 3.1) may be expressed as

F � Gm1m2

r 2
; �3:3�

where G is called the universal gravitational constant. Equation (3.3) may

be used to approximate the weight of a particle of mass m due to the

gravitational attraction of the earth,

W � GmmE

r 2
; �3:4�

where mE is the mass of the earth and r is the distance from the center of the

earth to the particle. When the weight of the particle is the only force acting

on it, the resulting acceleration is called the acceleration due to gravity. In this

case, Newton's second law states that W � ma, and from Eq. (3.4) the

acceleration due to gravity is

a � GmE

r 2
: �3:5�

The acceleration due to gravity at sea level is denoted by g. From Eq. (3.5)

one may write GmE � gR2
E , where RE is the radius of the earth. The

expression for the acceleration due to gravity at a distance r from the

center of the earth in terms of the acceleration due to gravity at sea level is

a � g
R2

E

r 2
: �3:6�

At sea level, the weight of a particle is given by

W � mg: �3:7�
The value of g varies on the surface of the earth from one location to another.

The values of g used in examples and problems are g � 9:81 m=s2 in SI units

and g � 32:2 ft=s2 in U.S. customary units.

3.3 Inertial Reference Frames

Newton's laws do not give accurate results if a problem involves velocities

that are not small compared to the velocity of light �3� 108 m=s�. Einstein's

theory of relativity may be applied to such problems. Newtonian mechanics

Figure 3.1
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also fails in problems involving atomic dimensions. Quantum mechanics may

be used to describe phenomena on the atomic scale.

The position, velocity, and acceleration of a point are speci®ed, in

general, relative to an arbitrary reference frame. Newton's second law

cannot be expressed in terms of just any reference frame. Newton stated

that the second law should be expressed in terms of a reference frame at rest

with respect to the ``®xed stars.'' Newton's second law may be applied with

good results using reference frames that accelerate and rotate by properly

accounting for the acceleration and rotation. Newton's second law, Eq. (3.2),

may be expressed in terms of a reference frame that is ®xed relative to the

earth. Equation (3.2) may be applied using a reference that translates at

constant velocity relative to the earth.

If a reference frame may be used to apply Eq. (3.2), it is said to be a

Newtonian or inertial reference frame.

3.4 Cartesian Coordinates

To apply Newton's second law in a particular situation, one may choose

a coordinate system. Newton's second law in a cartesian reference frame

(Fig. 3.2) may be expressed as P
F � ma; �3:8�

where
P

F �P Fx �
P

Fy �
P

Fz k is the sum of the forces acting on a

particle P of mass m, and

a � ax � ay � az k � �x � �y � �zk

i j

i j i j

Figure 3.2
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is the acceleration of the particle. When x ; y , and z components are equated,

three scalar equations of motion are obtained,P
Fx � max � m �x ;

P
Fy � may � m �y;

P
Fz � maz � m �z ; �3:9�

or the total force in each coordinate direction equals the product of the mass

and component of the acceleration in that direction.

Projectile Problem
An object P , of mass m, is launched through the air (Fig. 3.3). The force on

the object is just the weight of the object (the aerodynamic forces are

neglected). The sum of the forces is
P

F � ÿmg . From Eq. (3.9) one may

obtain

ax � �x � 0; ay � z �y � ÿg; az � �z � 0:

The projectile accelerates downward with the acceleration due to gravity.

Straight Line Motion
For straight line motion along the x axis, Eqs. (3.9) areP

Fx � m �x ;
P

Fy � 0;
P

Fz � 0:

3.5 Normal and Tangential Components

A particle P of mass m moves on a curved path (Fig. 3.4). One may resolve

the sum of the forces
P

F acting on the particle into normal Fn and tangential

Ft components: P
F � Ft t� Fnn:

j

Figure 3.3
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The acceleration of the particle in terms of normal and tangential compo-

nents is

a � at t� ann:

Newton's second law is P
F � ma

Ft t� Fnn � m�at t� ann�; �3:10�

where

at �
dv

dt
� _v; an �

v2

r
:

When the normal and tangential components in Eq. (3.10) are equated, two

scalar equations of motion are obtained:

Ft � m _v; Fn � m
v2

r
: �3:11�

The sum of the forces in the tangential direction equals the product of the

mass and the rate of change of the magnitude of the velocity, and the sum of

the forces in the normal direction equals the product of the mass and the

normal component of acceleration. If the path of the particle lies in a plane,

the acceleration of the particle perpendicular to the plane is zero, and so the

sum of the forces perpendicular to the plane is zero.

3.6 Polar and Cylindrical Coordinates

A particle P with mass m moves in a plane curved path (Fig. 3.5). The motion

of the particle may be described in terms of polar coordinates. Resolving the

Figure 3.4
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sum of the forces parallel to the plane into radial and transverse components

gives P
F � Fr ur � Fyuy;

and if the acceleration of the particle is expressed in terms of radial and

transverse components, Newton's second law may be written in the form

Fr ur � Fyuy � m�ar ur � ayuy�; �3:12�

where

ar �
d2r

dt 2
ÿ r

dy
dt

� �2

� �r ÿ ro2

ay � r
d2y
dt 2
� 2

dr

dt

dy
dt
� ra� 2 _ro:

Two scalar equations are obtained:

Fr � m� �r ÿ ro2�
Fy � m�ra� 2 _ro�: �3:13�

The sum of the forces in the radial direction equals the product of the mass

and the radial component of the acceleration, and the sum of the forces in the

transverse direction equals the product of the mass and the transverse

component of the acceleration.

The three-dimensional motion of the particle P may be obtained using

cylindrical coordinates (Fig. 3.6). The position of P perpendicular to the x y

plane is measured by the coordinate z and the unit vector k. The sum of the

forces is resolved into radial, transverse, and z components:P
F � Fr ur � Fyuy � Fz k:

Figure 3.5
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The three scalar equations of motion are the radial and transverse relations,

Eq. (3.13) and the equation of motion in the z direction,

Fr � m� �r ÿ ro2�
Fy � m�ra� 2 _ro�
Fz � m �z :

�3:14�

3.7 Principle of Work and Energy

Newton's second law for a particle of mass m can be written in the form

F � m
dv

dt
� m _v: �3:15�

The dot product of both sides of Eq. (3.15) with the velocity v � dr=dt gives

F � v � m _v � v; �3:16�
or

F � dr

dt
� m _v � v: �3:17�

But

d

dt
�v � v� � _v � v � v � _v � 2 _v � v;

and

_v � v � 1

2

d

dt
�v � v� � 1

2

d

dt
�v2�; �3:18�

where v2 � v � v is the square of the magnitude of v. Using Eq. (3.18) one

may write Eq. (3.17) as

F � dr � 1

2
m d �v � v� � 1

2
m d �v2�: �3:19�

Figure 3.6

80 Dynamics

D
yn

am
ics



The term

dU � F � dr

is the work where F is the total external force acting on the particle of mass m

and dr is the in®nitesimal displacement of the particle. Integrating Eq. (3.19),

one may obtain �r2

r1

F � dr �
�v2

2

v2
1

1

2
m d �v2� � 1

2
mv2

2 ÿ
1

2
mv2

1; �3:20�

where v1 and v2 are the magnitudes of the velocity at the positions r1 and r2.

The kinetic energy of a particle of mass m with the velocity v is the term

T � 1

2
mv � v � 1

2
mv2; �3:21�

where jvj � v. The work done as the particle moves from position r1 to

position r2 is

U12 �
�r2

r1

F � dr: �3:22�

The principle of work and energy may be expressed as

U12 �
1

2
mv2

2 ÿ
1

2
mv2

1: �3:23�

The work done on a particle as it moves between two positions equals the

change in its kinetic energy.

The dimensions of work, and therefore the dimensions of kinetic energy,

are (force)� (length). In U.S. customary units, work is expressed in ft lb. In SI

units, work is expressed in N m, or joules ( J).

One may use the principle of work and energy on a system if no net

work is done by internal forces. The internal friction forces may do net work

on a system.

3.8 Work and Power

The position of a particle P of mass m in curvilinear motion is speci®ed by

the coordinate s measured along its path from a reference point O (Fig. 3.7a).

The velocity of the particle is

v � ds

dt
t � _st;

where t is the tangential unit vector.

Using the relation _v � dr=dt , the in®nitesimal displacement dr along

the path is

dr � v dt � ds

dt
t dt � ds t:
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The work done by the external forces acting on the particle as result of the

displacement dr is

F � dr � F � ds t � F � t ds � Ft ds;

where Ft � F � t is the tangential component of the total force.

The work as the particle moves from a position s1 to a position s2 is

(Fig. 3.7b)

U12 �
�s2

s1

Ft ds: �3:24�

The work is equal to the integral of the tangential component of the total

force with respect to distance along the path. Components of force perpen-

dicular to the path do not do any work.

The work done by the external forces acting on a particle during an

in®nitesimal displacement dr is

dU � F � dr:

The power, P , is the rate at which work is done. The power P is obtained by

dividing the expression of the work by the interval of time dt during which

the displacement takes place:

P � F � dr

dt
� F � v:

In SI units, the power is expressed in newton meters per second, which is

joules per second ( J=s) or watts (W). In U.S. customary units, power is

Figure 3.7
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expressed in foot pounds per second or in horsepower (hp), which is 746 W

or approximately 550 ft lb=s.

The power is also the rate of change of the kinetic energy of the object,

P � d

dt

1

2
mv2

� �
:

3.8.1 WORK DONE ON A PARTICLE BY A LINEAR SPRING
A linear spring connects a particle P of mass m to a ®xed support (Fig. 3.8).

The force exerted on the particle is

F � ÿk�r ÿ r0�ur ;

where k is the spring constant, r0 is the unstretched length of the spring, and

ur is the polar unit vector. If we use the expression for the velocity in polar

coordinates, the vector dr � vdt is

dr � dr

dt
ur � r

dy
dt

uy

� �
dt � dr ur � rdy uy

F � dr � �ÿk�r ÿ r0�ur � � �dr ur � rdy uy� � ÿk�r ÿ r0� dr :

�3:25�

One may express the work done by a spring in terms of its stretch, de®ned by

d � r ÿ r0. In terms of this variable, F � dr � ÿkd dd, and the work is

U12 �
�r2

r1

F � dr �
�d2

d1

ÿkd dd � ÿ 1

2
k�d2

2 ÿ d2
1�;

where d1 and d2 are the values of the stretch at the initial and ®nal positions.

3.8.2 WORK DONE ON A PARTICLE BY WEIGHT
A particle P of mass m (Fig. 3.9) moves from position 1 with coordinates

�x1; y1; z1� to position 2 with coordinates �x2; y2; z2� in a cartesian reference

frame with the y axis upward. The force exerted by the weight is

F � ÿmg :j

Figure 3.8
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Because v � dr=dt , the expression for the vector dr is

dr � dx

dt
� dy

dt
� dz

dt
k

� �
dt � dx � dy � dzk:

The dot product of F and dr is

F � dr � �ÿmg � � �dx � dy � dzk� � ÿmg dy :

The work done as P moves from position 1 to position 2 is

U12 �
�r2

r1

F � dr �
�y2

y1

ÿmg dy � ÿmg�y2 ÿ y1�:

The work is the product of the weight and the change in the height of the

particle. The work done is negative if the height increases and positive if it

decreases. The work done is the same no matter what path the particle

follows from position 1 to position 2. To determine the work done by the

weight of the particle, only the relative heights of the initial and ®nal

positions must be known.

3.9 Conservation of Energy

The change in the kinetic energy is

U12 �
�r2

r1

F � dr � 1

2
mv2

2 ÿ
1

2
mv2

1: �3:26�

A scalar function of position V called potential energy may be determined as

dV � ÿF � dr: �3:27�

i j i j

j i j

Figure 3.9
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If we use the function V , the integral de®ning the work is

U12 �
�r2

r1

F � dr �
�V2

V1

ÿdV � ÿ�V2 ÿ V1�; �3:28�

where V1 and V2 are the values of V at the positions r1 and r2. The principle

of work and energy would then have the form

1

2
mv2

1 � V1 �
1

2
mv2

2 � V2; �3:29�

which means that the sum of the kinetic energy and the potential energy V is

constant:

1

2
mv2 � V � constant �3:30�

or

E � T � V � constant: �3:31�
If a potential energy V exists for a given force F, i.e., a function of position V

exists such that dV � ÿF � dr, then F is said to be conservative.

If all the forces that do work on a system are conservative, the total

energy Ð the sum of the kinetic energy and the potential energies of the

forces Ð is constant, or conseved. The system is said to be conservative.

3.10 Conservative Forces

A particle moves from position 1 to position 2. Equation (3.28) states that the

work depends only on the values of the potential energy at positions 1 and 2.

The work done by a conservative force as a particle moves from position 1 to

position 2 is independent of the path of the particle.

A particle P of mass m slides with friction along a path of length L. The

magnitude of the friction force is mmg and is opposite to the direction of the

motion of the particle. The coef®cient of friction is m. The work done by

the friction force is

U12 �
�L

0

ÿmmg ds � ÿmmgL:

The work is proportional to the length L of the path and therefore is not

independent of the path of the particle. Friction forces are not conservative.

3.10.1 POTENTIAL ENERGY OF A FORCE EXERTED BY A SPRING
The force exerted by a linear spring attached to a ®xed support is a

conservative force.

In terms of polar coordinates, the force exerted on a particle (Fig. 3.8) by

a linear spring is F � ÿk�r ÿ r0�ur . The potential energy must satisfy

dV � ÿF � dr � k�r ÿ r0� dr ;
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or

dV � kd dd;

where d � r ÿ r0 is the stretch of the spring. Integrating this equation, the

potential energy of a linear spring is

V � 1

2
kd2: �3:32�

3.10.2 POTENTIAL ENERGY OF WEIGHT
The weight of a particle is a conservative force. The weight of the particle P

of mass m (Fig. 3.9) is F � ÿmg . The potential energy V must satisfy the

relation

dV � ÿF � dr � �mg � � �dx � dy � dzk� � mg dy; �3:33�
or

dV

dy
� mg:

After integration of this equation, the potential energy is

V � mgy � C ;

where C is an integration constant. The constant C is arbitrary, because this

expression satis®es Eq. (3.33) for any value of C . For C � 0 the potential

energy of the weight of a particle is

V � mgy : �3:34�
The potential energy V is a function of position and may be expressed in

terms of a cartesian reference frame as V � V �x ; y; z �. The differential of dV

is

dV � @V
@x

dx � @V
@y

dy � @V
@z

dz : �3:35�

The potential energy V satis®es the relation

dV � ÿF � dr � ÿ�Fx � Fy � Fz k� � �dx � dy � dzk�
� ÿ�Fx dx � Fy dy � Fz dz �; �3:36�

where F � Fx � Fy � Fz k. Using Eqs. (3.35) and (3.36), one may obtain

@V

@x
dx � @V

@y
dy � @V

@z
dz � ÿ�Fx dx � Fy dy � Fz dz �;

which implies that

Fx � ÿ
@V

@x
; Fy � ÿ

@V

@y
; Fz � ÿ

@V

@z
: �3:37�

j

j i j

i j i j

i j
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Given the potential energy V � V �x ; y; z � expressed in cartesian coordi-

nates, the force F is

F � ÿ @V

@x
� @V
@y
� @V
@z

k

� �
� ÿHV ; �3:38�

where HV is the gradient of V . The gradient expressed in cartesian

coordinates is

H � @

@x
� @

@y
� @

@z
k: �3:39�

The curl of a vector force F in cartesian coordinates is

H� F �

k

@

@x

@

@y

@

@z

Fx Fy Fz

����������

����������
: �3:40�

If a force F is conservative, its curl H� F is zero. The converse is also true:

A force F is conservative if its curl is zero.

In terms of cylindrical coordinates the force F is

F � ÿHV � ÿ @V

@r
ur �

1

r

@V

@y
uy �

@V

@z
k

� �
: �3:41�

In terms of cylindrical coordinates, the curl of the force F is

H� F � 1

r

ur r uy k

@

@r

@

@y
@

@z

Fr rFy Fz

���������

���������: �3:42�

3.11 Principle of Impulse and Momentum

Newton's second law,

F � m
dv

dt
;

is integrated with respect to time to give�t2

t1

F dt � mv2 ÿmv1; �3:43�

where v1 and v2 are the velocities of the particle P at the times t1 and t2.

The term
� t2
t1

F dt is called the linear impulse, and the term mv is called

the linear momentum.

The principle of impulse and momentum: The impulse applied to a

particle during an interval of time is equal to the change in its linear

momentum (Fig. 3.10).

The dimensions of the linear impulse and linear momentum are (mass)

times (length)=(time).

i j

i j

i j
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The average with respect to time of the total force acting on a particle

from t1 to t2 is

Fav �
1

t2 ÿ t1

�t2

t1

F dt ;

so one may write Eq. (3.43) as

Fav�t2 ÿ t1� � mv2 ÿmv1: �3:44�
An impulsive force is a force of relatively large magnitude that acts over a

small interval of time (Fig. 3.11).

Equations (3.43) and (3.44) may be expressed in scalar forms. The sum

of the forces in the tangent direction t to the path of the particle equals the

product of its mass m and the rate of change of its velocity along the path:

Ft � mat � m
dv

dt
:

Integrating this equation with respect to time, one may obtain�t2

t1

Ft dt � mv2 ÿmv1; �3:45�

Figure 3.10

Figure 3.11
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where v1 and v2 are the velocities along the path at the times t1 and t2. The

impulse applied to an object by the sum of the forces tangent to its path

during an interval of time is equal to the change in its linear momentum along

the path.

3.12 Conservation of Linear Momentum

Consider the two particles P1 of mass m1 and P2 of mass m2 shown in Fig.

3.12. The vector F12 is the force exerted by P1 on P2; and F21 is the force

exerted by P2 on P1. These forces could be contact forces or could be exerted

by a spring connecting the particles. As a consequence of Newton's third law,

these forces are equal and opposite:

F12 � F21 � 0: �3:46�

Consider that no external forces act on P1 and P2, or the external forces are

negligible. The principle of impulse and momentum to each particle for

arbitrary times t1 and t2 gives�t2

t1

F21 dt � m1vP1�t2� ÿm1vP1�t1��t2

t1

F12 dt � m2vP2�t2� ÿm1vP2�t1�;

where vP1�t1�, vP1�t2� are the velocities of P1 at the times t1, t2, and vP2�t1�,
vP2�t2� are the velocities of P2 at the times t1, t2. The sum of these equations

is

m1vP1�t1� �m2vP2�t1� � m1vP1�t2� �m2vP2�t2�;

or the total linear momentum of P1 and P2 is conserved:

m1vP1 �m2vP2 � constant: �3:47�

Figure 3.12
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The position of the center of mass of P1 and P2 is (Fig. 3.12)

rC �
m1rP1 �m2rP2

m1 �m2

;

where rP1 and rP2 are the position vectors of P1 and P2. Taking the time

derivative of this equation and using Eq. (3.47) one may obtain

�m1 �m2�vC � m1vP1 �m2vP2 � constant; �3:48�
where vC � drC =dt is the velocity of the combined center of mass. The total

linear momentum of the particles is conserved and the velocity of the

combined center of mass of the particles P1 and P2 is constant.

3.13 Impact

Two particles A and B with the velocities vA and vB collide. The velocities of

A and B after the impact are v0A and v0B . The effects of external forces are

negligible and the total linear momentum of the particles is conserved (Fig.

3.13):

mAvA �mBvB � mAv0A �mBv0B : �3:49�
Furthermore, the velocity v of the center of mass of the particles is the same

before and after the impact:

v � mAvA �mBvB

mA �mB

: �3:50�

If A and B remain together after the impact, they are said to undergo a

perfectly plastic impact. Equation (3.50) gives the velocity of the center of

mass of the object they form after the impact (Fig. 3.13b).

If A and B rebound, linear momentum conservation alone does not

provide enough equations to determine the velocities after the impact.

3.13.1 DIRECT CENTRAL IMPACTS
The particles A and B move along a straight line with velocities vA and vB

before their impact (Fig. 3.14a). The magnitude of the force the particles exert

on each other during the impact is R (Fig. 3.14b). The impact force is parallel

to the line along which the particles travel (direct central impact). The

particles continue to move along the same straight line after their impact

(Fig. 3.14c). The effects of external forces during the impact are negligible,

and the total linear momentum is conserved:

mAvA �mBvB � mAv0A �mBv0B : �3:51�
Another equation is needed to determine the velocities v0A and v0B .

Let t1 be the time at which A and B ®rst come into contact (Fig. 3.14a).

As a result of the impact, the objects will deform. At the time tm the particles

will have reached the maximum compression (period of compression,

t1 < t < tm ; Fig. 3.14b). At this time the relative velocity of the particles is

zero, so they have the same velocity, vm . The particles then begin to move

apart and separate at a time t2 (Fig. 3.14c). The second period, from the
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Figure 3.14

Figure 3.13
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maximum compression to the instant at which the particles separate, is

termed the period of restitution, tm < t < t2.

The principle of impulse and momentum is applied to A during the inter-

vals of time from t1 to the time of closest approach tm and also from tm to t2,�tm

t1

ÿFc dt � mAvm ÿmAvA �3:52��t2

tm

ÿFr dt � mAv0A ÿmAvm; �3:53�

where Fc is the magnitude of the contact force during the compression phase

and Fr is the magnitude of the contact force during the restitution phase.

Then the principle of impulse and momentum is applied to B for the

same intervals of time: �tm

t1

Fc � dt � mBvm ÿmBvB �3:54��t2

tm

Fr dt � mBv0B ÿmBvm; �3:55�

As a result of the impact, part of the kinetic energy of the particles can be lost

(because of a permanent deformation, generation of heat and sound, etc.).

The impulse during the restitution phase of the impact from tm to t2 is in

general smaller than the impulse during the compression phase t1 to tm .

The ratio of these impulses is called the coef®cient of restitution (this

de®nition was introduced by Poisson):

e �
� t2
tm

Fr dt� tm
t1

Fc dt
: �3:56�

The value of the coef®cient of restitution depends on the properties of the

objects as well as their velocities and orientations when they collide, and it

can be determined by experiment or by a detailed analysis of the deforma-

tions of the objects during the impact.

If Eq. (3.53) is divided by Eq. (3.52) and Eq. (3.55) is divided by

Eq. (3.54), the resulting equations are

�vm ÿ vA�e � v0A ÿ vm

�vm ÿ vB �e � v0B ÿ vm :

If the ®rst equation is subtracted from the second one, the coef®cient of

restitution is

e � v0B ÿ v0A
vA ÿ vB

: �3:57�

Thus, the coef®cient of restitution is related to the relative velocities of the

objects before and after the impact (this is the kinematic de®nition of e

introduced by Newton). If the coef®cient of restitution e is known, Eq. (3.57)

together with the equation of conservation of linear momentum, Eq. (3.51),

may be used to determine v0A and v0B .
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If e � 0 in Eq. (3.57), then v0B � v0A and the objects remain together after

the impact. The impact is perfectly plastic.

If e � 1, the total kinetic energy is the same before and after the impact:

1

2
mAv2

A �
1

2
mBv2

B �
1

2
mA�v0A�2 �

1

2
mB �v0B�2:

An impact in which kinetic energy is conserved is called perfectly elastic.

3.13.2 OBLIQUE CENTRAL IMPACTS
Two small spheres A and B with the masses mA and mB approach with

arbitrary velocities vA and vB (Fig. 3.15a). The initial velocities are not

parallel, but they are in the same plane.

The forces they exert on each other during their impact are parallel to the

n axis (center line axis) and point toward their centers of mass (Fig. 3.15b).

There are no forces in the t direction at the contact point (tangent direction at

the contact point). The velocities in the t direction are unchanged by the

impact:

�v0A�t � �vA�t and �v0B �t � �vB �t : �3:58�
In the n direction the linear momentum is conserved:

mA�vA�n �mB �vB �n � mA�v0A�n �mB �v0B �n: �3:59�

Figure 3.15
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The coef®cient of restitution is de®ned as

e � �v
0
B �n ÿ �v0A�n
�vA�n ÿ �vB �n

: �3:60�

If B is a stationary object (®xed relative to the earth), then

�v0A�n � ÿe�vA�n :

3.14 Principle of Angular Impulse and Momentum

The position of a particle P of mass m relative to an inertial reference frame

with origin O is given by the position vector r � OP (Fig. 3.16). The cross

product of Newton's second law with the position vector r is

r � F � r �ma � r �m
dv

dt
: �3:61�

The time derivative of the quantity r �mv is

d

dt
�r �mv� � dr

dt
�mv

� �
� r �m

dv

dt

� �
� r �m

dv

dt
;

because dr=dt � v, and the cross product of parallel vectors is zero.

Equation (3.61) may be written as

r � F � dHO

dt
; �3:62�

where the vector

HO � r �mv �3:63�
is called the angular momentum about O (Fig. 3.16). The angular momen-

tum may be interpreted as the moment of the linear momentum of the

particle about point O. The moment r � F equals the rate of change of the

moment of momentum about point O .

Figure 3.16
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Integrating Eq. (3.62) with respect to time, one may obtain�t2

t1

�r � F� dt � �HO �2 ÿ �HO �1: �3:64�

The integral on the left-hand side is called the angular impulse.

The principle of angular impulse and momentum: The angular impulse

applied to a particle during an interval of time is equal to the change in its

angular momentum.

The dimensions of the angular impulse and angular momentum are

�mass� � �length�2=�time�.

4. Planar Kinematics of a Rigid Body

A rigid body is an idealized model of an object that does not deform, or

change shape. A rigid body is by de®nition an object with the property that

the distance between every pair of points of the rigid body is constant.

Although any object does not deform as it moves, if its deformation is small

one may approximate its motion by modeling it as a rigid body.

4.1 Types of Motion

The rigid body motion is described with respect to a reference frame

(coordinate system) relative to which the motions of the points of the rigid

body and its angular motion are measured. In many situations it is convenient

to use a reference frame that is ®xed with respect to the earth.

Rotation about a ®xed axis. Each point of the rigid body on the axis is

stationary, and each point not on the axis moves in a circular path

about the axis as the rigid body rotates (Fig. 4.1a).

Translation. Each point of the rigid body describes parallel paths (Fig.

4.1b). Every point of a rigid body in translation has the same velocity

and acceleration. The motion of the rigid body may be described the

motion of a single point.

Planar motion. Consider a rigid body intersected by a plane ®xed

relative to a given reference frame (Fig. 4.1c). The points of the

rigid body intersected by the plane remain in the plane for two-

dimensional, or planar, motion. The ®xed plane is the plane of the

motion. Planar motion or complex motion exhibits a simultaneous

combination of rotation and translation. Points on the rigid body will

travel nonparallel paths, and there will be at every instant a center of

rotation, which will continuously change location.
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The rotation of a rigid body about a ®xed axis is a special case of planar

motion.

4.2 Rotation about a Fixed Axis

Figure 4.2 shows a rigid body rotating about a ®xed axis a. The reference line

b is ®xed and is perpendicular to the ®xed axis a; b ? a. The body-®xed line

Figure 4.1
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c rotates with the rigid body and is perpendicular to the ®xed axis a; c ? a.

The angle y between the reference line and the body-®xed line describes the

position, or orientation, of the rigid body about the ®xed axis. The angular

velocity (rate of rotation) of the rigid body is

o � dy
dt
� _y; �4:1�

and the angular acceleration of the rigid body is

a � do
dt
� d2y

dt 2
� �y: �4:2�

The velocity of a point P , of the rigid body, at a distance r from the ®xed axis

is tangent to its circular path (Fig. 4.2) and is given by

v � ro: �4:3�
The normal and tangential accelerations of P are

at � ra; an �
v2

r
� ro2: �4:4�

4.3 Relative Velocity of Two Points of the Rigid Body

Figure 4.3 shows a rigid body in planar translation and rotation. The position

vector of the point A of the rigid body rA � OA, and the position vector of

the point B of the rigid body is rB � OB. The point O is the origin of a given

reference frame. The position of point A relative to point B is the vector BA.

Figure 4.2
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The position vector of point A relative to point B is related to the positions of

A and B relative to O by

rA � rB � BA: �4:5�
The derivative of Eq. (4.5) with respect to time gives

vA � vB � vAB ; �4:6�
where vA and vB are the velocities of A and B relative to the reference frame.

The velocity of point A relative to point B is

vAB �
dBA

dt
:

Since A and B are points of the rigid body, the distance between them,

BA � jBAj, is constant. That means that relative to B, A moves in a circular

path as the rigid body rotates. The velocity of A relative to B is therefore

tangent to the circular path and equal to the product of the angular velocity o
of the rigid body and BA:

vAB � jvAB j � oBA: �4:7�
The velocity vAB is perpendicular to the position vector BA, vAB ? BA. The

sense of vAB is the sense of o (Fig. 4.3). The velocity of A is the sum of the

velocity of B and the velocity of A relative to B.

4.4 Angular Velocity Vector of a Rigid Body

EULER'S

THEOREM
A rigid body constrained to rotate about a ®xed point can move between any

two positions by a single rotation about some axis through the ®xed

point. m

Figure 4.3
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With Euler's theorem the change in position of a rigid body relative to a

®xed point A during an interval of time from t to t � dt may be expressed as

a single rotation through an angle dy about some axis. At the time t the rate

of rotation of the rigid body about the axis is its angular velocity o � dy=dt ,

and the axis about which it rotates is called the instantaneous axis of

rotation.

The angular velocity vector of the rigid body, denoted by v, speci®es

both the direction of the instantaneous axis of rotation and the angular

velocity. The vector v is de®ned to be parallel to the instantaneous axis of

rotation (Fig. 4.4), and its magnitude is the rate of rotation, the absolute value

of o. The direction of v is related to the direction of the rotation of the rigid

body through a right-hand rule: if one points the thumb of the right hand in

the direction of v, the ®ngers curl around v in the direction of the rotation.

Figure 4.5 shows two points A and B of a rigid body. The rigid body has

the angular velocity v. The velocity of A relative to B is given by the equation

vAB �
dBA

dt
� v� BA: �4:8�

Proof

The point A is moving at the present instant in a circular path relative to the

point B. The radius of the path is jBAj sin b, where b is the angle between the

vectors BA and v. The magnitude of the velocity of A relative to B is equal to

the product of the radius of the circular path and the angular velocity of the

Figure 4.4
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rigid body, jvAB j � �jBAj sin b�joj, which is the magnitude of the cross

product of BA and v or

vAB � v� BA:

The relative velocity vAB is perpendicular to v and perpendicular to BA.

When Eq. (4.8) is substituted into Eq. (4.6), the relation between the

velocities of two points of a rigid body in terms of its angular velocity is

obtained:

vA � vB � vAB � vB �v� BA: �4:9�

m

4.5 Instantaneous Center

The instantaneous center of a rigid body is a point whose velocity is zero at

the instant under consideration. Every point of the rigid body rotates about

the instantaneous center at the instant under consideration.

The instantaneous center may be or may not be a point of the rigid body.

When the instantaneous center is not a point of the rigid body, the rigid body

is rotating about an external point at that instant.

Figure 4.5
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Figure 4.6 shows two points A and B of a rigid body and their directions

of motion DA amd DB ,

vAkDA and vBkDB ;

where vA is the velocity of point A, and vB is the velocity of point B.

Through the points A and B perpendicular lines are drawn to their

directions of motion:

dA ? DA and dB ? DB :

The perpendicular lines intersect at point C :

dA \ dB � C :

The velocity of point C in terms of the velocity of point A is

vC � vA �v� AC;

where v is the angular velocity vector of the rigid body. Since the vector

v� AC is perpendicular to AC,

�v� AC� ? AC;

this equation states that the direction of motion of C is parallel to the

direction of motion of A:

vC kvA: �4:10�

The velocity of point C in terms of the velocity of point B is

vC � vB �v� BC:

The vector v� BC is perpendicular to BC,

�v� BC� ? BC;

Figure 4.6
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so this equation states that the direction of motion of C is parallel to the

direction of motion of B:

vC kvB : �4:11�
But C cannot be moving parallel to A and parallel to B, so Eqs. (4.10) and

(4.11) are contradictory unless vC � 0. So the point C , where the perpendi-

cular lines through A and B to their directions of motion intersect, is the

instantaneous center. This is a simple method to locate the instantaneous

center of a rigid body in planar motion.

If the rigid body is in translation (the angular velocity of the rigid body is

zero) the instantaneous center of the rigid body C moves to in®nity.

4.6 Relative Acceleration of Two Points of the Rigid Body

The velocities of two points A and B of a rigid body in planar motion relative

to a given reference frame with the origin at point O are related by (Fig. 4.7)

vA � vB � vAB :

Taking the time derivative of this equation, one may obtain

aA � aB � aAB ;

where aA and aB are the accelerations of A and B relative to the origin O of

the reference frame and aAB is the acceleration of point A relative to point B.

Because the point A moves in a circular path relative to the point B as the

rigid body rotates, aAB has a normal component and a tangential component

(Fig. 4.7):

aAB � an
AB � at

AB :

Figure 4.7
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The normal component points toward the center of the circular path (point

B), and its magnitude is

jan
AB j � jvAB j2=jBAj � o2BA:

The tangential component equals the product of the distance BA � jBAj and

the angular acceleration a of the rigid body:

jat
AB j � aBA:

The velocity of the point A relative to the point B in terms of the angular

velocity vector, v, of the rigid body is given by Eq. (4.8):

vAB � v� BA:

Taking the time derivative of this equation, one may obtain

aAB �
dv

dt
� BA �v� vAB

� dv

dt
� BA �v� �v� BA�:

De®ning the angular acceleration vector a to be the rate of change of the

angular velocity vector,

a � dv

dt
; �4:12�

one ®nds that the acceleration of A relative to B is

aAB � a� BA �v� �v� BA�:
The velocities and accelerations of two points of a rigid body in terms of its

angular velocity and angular acceleration are

vA � vB �v� BA �4:13�
aA � aB � a� BA �v� �v� BA�: �4:14�

In the case of planar motion, the term a� BA in Eq. (4.14) is the tangential

component of the acceleration of A relative to B, and v� �v� BA� is the

normal component (Fig. 4.7). Equation (4.14) may be written for planar

motion in the form

aA � aB � a� BA ÿ o2BA: �4:15�

4.7 Motion of a Point That Moves Relative to a Rigid Body

A reference frame that moves with the rigid body is a body ®xed reference

frame. Figure 4.8 shows a rigid body RB , in motion relative to a primary

reference frame with its origin at point O0, XO0YZ . The primary reference

frame is a ®xed reference frame or an earth ®xed reference frame. The

unit vectors
0
,

0
, and k0 of the primary reference frame are

constant.
The body ®xed reference frame, xOyz , has its origin at a point O of the

rigid body �O 2 RB� and is a moving reference frame relative to the primary

i j
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reference. The unit vectors ; , and k of the body ®xed reference frame are

not constant, because they rotate with the body ®xed reference frame.

The position vector of a point P of the rigid body �P 2 RB� relative to the

origin, O, of the body ®xed reference frame is the vector OP. The velocity of

P relative to O is

dOP

dt
� vPO � v�OP;

where v is the angular velocity vector of the rigid body. The unit vector

may be regarded as the position vector of a point P of the rigid body

(Fig. 4.8), and its time derivative may be written as d =dt � i � v� . In a

similar way the time derivative of the unit vectors j and k may be obtained.

The expressions

d

dt
� i � v�

d

dt
� j � v�

dk

dt
� ?

k � v� k

�4:16�

are known as Poisson's relations.

i j

i

i i

i
i

j
j

Figure 4.8
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The position vector of a point A (the point A is not assumed to be a point

of the rigid body) relative to the origin O0 of the primary reference frame is

(Fig. 4.9)

rA � rO � r;

where

r � OA � x � y � zk

is the position vector of A relative to the origin O, of the body ®xed reference

frame, and x ; y , and z are the coordinates of A in terms of the body ®xed

reference frame. The velocity of the point A is the time derivative of the

position vector rA:

vA �
drO

dt
� dr

dt
� vO � vAO

� vO �
dx

dt
� x

d

dt
� dy

dt
� y

d

dt
� dz

dt
k � z

dk

dt
:

Using Eqs. (4.16), one ®nds that the total derivative of the position vector r is

dr

dt
� _r � _x � _y � _zk �v� r:

i j

i
i

j
j

i j

Figure 4.9
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The velocity of A relative to the body ®xed reference frame is a local

derivative:

vArel �
@r

@t
� dx

dt
� dy

dt
� dz

dt
k � _x � _y � _zk; �4:17�

A general formula for the total derivative of a moving vector r may be written

as

dr

dt
� @r
@t
�v� r: �4:18�

This relation is known as the transport theorem. In operator notation the

transport theorem is written as

d

dt
� � � @

@t
� � �v� � �: �4:19�

The velocity of the point A relative to the primary reference frame is

vA � vO � vArel �v� r; �4:20�
Equation (4.20) expresses the velocity of a point A as the sum of three terms:

j The velocity of a point O of the rigid body

j The velocity vArel of A relative to the rigid body

j The velocity v� r of A relative to O due to the rotation of the rigid

body

The acceleration of the point A relative to the primary reference frame is

obtained by taking the time derivative of Eq. (4.20):

aA � aO � aAO

� aO � aArel � 2v� vArel � a� r �v� �v� r�; �4:21�

where

aArel �
@2r

@t 2
� d2x

dt2
� d2y

dt 2
� d2z

dt 2
k �4:22�

is the acceleration of A relative to the body ®xed reference frame or relative

to the rigid body. The term

aCor � 2v� vArel

is called the Coriolis acceleration force.

In the case of planar motion, Eq. (4.21) becomes

aA � aO � aAO

� aO � aArel � 2v� vArel � a� r ÿv2r;
�4:23�

The motion of the rigid body (RB) is described relative to the primary

reference frame. The velocity vA and the acceleration aA of point A are

relative to the primary reference frame. The terms vArel and aArel are the

velocity and acceleration of point A relative to the body ®xed reference

i j i j

i j
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frame, i.e., they are the velocity and acceleration measured by an observer

moving with the rigid body (Fig. 4.10).

If A is a point of the rigid body, A 2 RB, vArel � 0 and aArel � 0.

4.7.1 MOTION OF A POINT RELATIVE TO A MOVING REFERENCE FRAME
The velocity and acceleration of an arbitrary point A relative to a point O of

a rigid body, in terms of the body ®xed reference frame, are given by

Eqs. (4.20) and (4.21):

vA � vO � vArel �v� OA �4:24�
aA � aO � aArel � 2v� vArel � a�OA �v� �v�OA�: �4:25�

These results apply to any reference frame having a moving origin O and

rotating with angular velocity v and angular acceleration a relative to a

primary reference frame (Fig. 4.11). The terms vA and aA are the velocity and

acceleration of an arbitrary point A relative to the primary reference frame.

The terms vArel and aArel are the velocity and acceleration of A relative to the

secondary moving reference frame, i.e., they are the velocity and accelera-

tion measured by an observer moving with the secondary reference frame.

Figure 4.10
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4.7.2 INERTIAL REFERENCE FRAMES
A reference frame is inertial if one may use it to apply Newton's second law

in the form
P

F � ma.

Figure 4.12 shows a nonaccelerating, nonrotating reference frame with

the origin at O0, and a secondary nonrotating, earth centered reference frame

with the origin at O. The nonaccelerating, nonrotating reference frame with

the origin at O0 is assumed to be an inertial reference. The acceleration of the

earth, due to the gravitational attractions of the sun, moon, etc., is gO . The

earth centered reference frame has the acceleration gO as well.

Figure 4.11

Figure 4.12
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Newton's second law for an object A of mass m, using the hypothetical

nonaccelerating, nonrotating reference frame with the origin at O0, may be

written as

maA � mgA �
P

F; �4:26�
where aA is the acceleration of A relative to O0, gA is the resulting

gravitational acceleration, and
P

F is the sum of all other external forces

acting on A.

By Eq. (4.25) the acceleration of A relative to O0 is

aA � aO � aArel ;

where aArel is the acceleration of A relative to the earth centered reference

frame and the acceleration of the origin O is equal to the gravitational

acceleration of the earth, aO � gO . The earth-centered reference frame does

not rotate �v � 0�.
If the object A is on or near the earth, its gravitational acceleration gA due

to the attraction of the sun, etc., is nearly equal to the gravitational accelera-

tion of the earth gO , and Eq. (4.26) becomesP
F � maArel : �4:27�

One may apply Newton's second law using a nonrotating, earth centered

reference frame if the object is near the earth.

In most applications, Newton's second law may be applied using an

earth ®xed reference frame. Figure 4.13 shows a nonrotating reference frame

with its origin at the center of the earth O and a secondary earth ®xed

reference frame with its origin at a point B. The earth ®xed reference frame

with the origin at B may be assumed to be an inertial reference andP
F � maArel ; �4:28�

where aArel is the acceleration of A relative to the earth ®xed reference frame.

The motion of an object A may be analysed using a primary inertial

reference frame with its origin at the point O (Fig. 4.14). A secondary

reference frame with its origin at B undergoes an arbitrary motion with

angular velocity v and angular acceleration a. Newton's second law for the

object A of mass m is P
F � maA; �4:29�

where aA is the acceleration of A acceleration relative to O. Equation (4.29)

may be written in the formP
Fÿm�aB � 2v� vArel � a� BA

�v� �v� BA�� � maArel ;
�4:30�

where aArel is the acceleration of A relative to the secondary reference frame.

The term aB is the acceleration of the origin B of the secondary reference

frame relative to the primary inertial reference. The term 2v� vArel is the

Coriolis acceleration, and the term ÿ2mv� vArel is called the Coriolis force.
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Figure 4.13

Figure 4.14
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This is Newton's second law expressed in terms of a secondary reference

frame undergoing an arbitrary motion relative to an inertial primary reference

frame.

5. Dynamics of a Rigid Body

5.1 Equation of Motion for the Center of Mass

Newton stated that the total force on a particle is equal to the rate of change

of its linear momentum, which is the product of its mass and velocity.

Newton's second law is postulated for a particle, or small element of matter.

One may show that the total external force on an arbitrary rigid body is equal

to the product of its mass and the acceleration of its center of mass. An

arbitrary rigid body with the mass m may be divided into N particles. The

position vector of the i particle is ri and the mass of the i particle is mi

(Fig. 5.1):

m � PN
i�1

mi :

The position of the center of mass of the rigid body is

rC �
PN
i�1

miri

m
: �5:1�

Taking two time derivatives of Eq. (5.1), one may obtain

PN
i�1

mi

d2ri

dt 2
� m

d2rC

dt 2
� maC ; �5:2�

where aC is the acceleration of the center of mass of the rigid body.

Figure 5.1
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Let f ij be the force exerted on the j particle by the i particle. Newton's

third law states that the j particle exerts a force on the i particle of equal

magnitude and opposite direction (Fig. 5.1):

f ji � ÿf ij :

Newton's second law for the i particle isP
j

f ji � Fext
i � mi

d2ri

dt 2
; �5:3�

where Fext
i is the external force on the i particle. Equation (5.3) may be

written for each particle of the rigid body. Summing the resulting equations

from i � 1 to N , one may obtainP
i

P
j

f ji �
P

i

Fext
i � maC ; �5:4�

The sum of the internal forces on the rigid body is zero (Newton's third law):P
i

P
j

f ji � 0:

The term
P

i Fext
i is the sum of the external forces on the rigid body:P

i
Fext

i �
P

F:

One may conclude that the sum of the external forces equals the product of

the mass and the acceleration of the center of mass:P
F � maC : �5:5�

If the rigid body rotates about a ®xed axis O (Fig. 5.2), the sum of the

moments about the axis due to external forces and couples acting on the

body is P
MO � IOa;

where IO is the moment of inertia of the rigid body about O and a is the

angular acceleration of the rigid body. In the case of general planar motion,

the sum of the moments about the center of mass of a rigid body is related to

its angular acceleration by P
MC � IC a; �5:6�

Figure 5.2
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where IC is the moment of inertia of the rigid body about its center of mass C .

If the external forces and couples acting on a rigid body in planar motion

are known, one may use Eqs. (5.5) and (5.6) to determine the acceleration of

the center of mass of the rigid body and the angular acceleration of the rigid

body.

5.2 Angular Momentum Principle for a System of Particles

An arbitrary system with mass m may be divided into N particles

P1;P2; . . . ;PN . The position vector of the i particle is ri � OPi and the

mass of the i particle is mi (Fig. 5.3). The position of the center of mass, C , of

the system is rC �
PN

i�1 miri=m. The position of the particle Pi of the system

relative to O is

ri � rC � CPi : �5:7�

Multiplying Eq. (5.7) by mi , summing from 1 to N , one may ®nd that

PN
i�1

miCPi � 0: �5:8�

The total angular momentum of the system about its center of mass C is the

sum of the angular momenta of the particles about C ,

HC �
PN
i�1

CPi �mivi ; �5:9�

where vi � dri=dt is the velocity of the particle Pi .

The total angular momentum of the system about O is the sum of the

angular momenta of the particles,

HO �
PN
i�1

ri �mivi �
PN
i�1
�rC � CPi� �mivi � rC �mvC �HC ; �5:10�

Figure 5.3
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or the total angular momentum about O is the sum of the angular momentum

about O due to the velocity vC of the center of mass of the system and the

total angular momentum about the center of mass (Fig. 5.4).

Newton's second law for the i particle isP
j

f ji � Fext
i � mi

dvi

dt
;

and the cross product with the position vector ri, and sum from i � 1 to N

gives P
i

P
j

ri � f ji �
P

i
ri � Fext

i �
P

i
ri �

d

dt
�mivi�: �5:11�

The ®rst term on the left side of Eq. (5.11) is the sum of the moments about O

due to internal forces, and

ri � f ji � ri � f ij � ri � �f ji � f ij � � 0:

The term vanishes if the internal forces between each pair of particles are

equal, opposite, and directed along the straight line between the two

particles (Fig. 5.5).

Figure 5.4

Figure 5.5
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The second term on the left side of Eq. (5.11),P
i

ri � Fext
i �

P
MO ;

represents the sum of the moments about O due to the external forces and

couples. The term on the right side of Eq. (5.11) isP
i

ri �
d

dt
�mivi � �

P
i

d

dt
�ri �mivi� ÿ vi �mivi

� �
� dHO

dt
; �5:12�

which represents the rate of change of the total angular momentum of the

system about the point O.

Equation (5.11) may be rewritten asP
MO �

dHO

dt
: �5:13�

The sum of the moments about O due to external forces and couples equals

the rate of change of the angular momentum about O.

Using Eqs. (5.10) and (5.13), one may obtainP
MO �

d

dt
�rC �mvC �HC � � rC �maC �

dHC

dt
; �5:14�

where aC is the acceleration of the center of mass.

If the point O is coincident with the center of mass at the present instant

C � O, then rC � 0 and Eq. (5.14) becomesP
MC �

dHC

dt
: �5:15�

The sum of the moments about the center of mass equals the rate of change

of the angular momentum about the center of mass.

5.3 Equations of Motion for General Planar Motion

An arbitrary rigid body with the mass m may be divided into N particles Pi ,

i � 1; 2; . . . ;N . The position vector of the Pi particle is ri � OPi and the

mass of the particle is mi (Fig. 5.6).

Let dO be the axis through the ®xed origin point O that is perpendicular

to the plane of the motion of a rigid body x ; y;dO ? �x ; y�. Let dC be the

parallel axis through the center of mass C , dC kdO . The rigid body has a

general planar motion, and one may express the angular velocity vector as

v � ok.

The velocity of the Pi particle relative to the center of mass is

dRi

dt
� ok � Ri ;

where Ri � CPi . The sum of the moments about O due to external forces

and couples is P
MO �

dHO

dt
� d

dt
��rC �mvC � �HC �; �5:16�
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where

HC �
P

i
�Ri �mi �ok � Ri ��

is the angular momentum about dC . The magnitude of the angular momen-

tum about dC is

HC � HC � k �
P

i

�Ri �mi �ok � Ri �� � k

�P
i

mi ��Ri � k� � Ri �� � ko �
P

i

mi ��Ri � k� � �Ri � k��o

�P
i

mi jRi � kj2o �P
i

mirio;

�5:17�

where the term jk � Ri j � ri is the perpendicular distance from dC to the Pi

particle. The identity

�a � b� � c � a � �b� c�
has been used.

The moment of inertia of the rigid body about dC is

I �P
i

mir
2
i ;

Equation (5.17) de®nes the angular momentum of the rigid body about dC :

HC � Io or HC � Iok � I v:

Substituting this expression into Eq. (5.16), one may obtainP
MO �

d

dt
��rC �mvC � � I v� � �rC �maC � � I a: �5:18�

If the ®xed axis dO is coincident with dC at the present instant, r � 0, and

from Eq. (5.18) one may obtainP
MC � I a:

Figure 5.6
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The sum of the moments about dC equals the product of the moment of

inertia about dC and the angular acceleration.

5.4 D'Alembert's Principle

Newton's second law may be written as

F� �ÿmaC � � 0; or F� Fin � 0; �5:19�
where the term Fin � ÿmaC is the inertial force. Newton's second law may

be regarded as an ``equilibrium'' equation.

Equation (5.18) relates the total moment about a ®xed point O to the

acceleration of the center of mass and the angular acceleration:P
MO � �rC �maC � � I a

or P
MO � �rC � �ÿmaC �� � �ÿI a� � 0: �5:20�

The term Min � ÿI a is the inertial couple. The sum of the moments about

any point, including the moment due to the inertial force ÿma acting at the

center of mass and the inertial couple, equals zero.

The equations of motion for a rigid body are analogous to the equations

for static equilibrium: The sum of the forces equals zero and the sum of the

moments about any point equals zero when the inertial forces and couples

are taking into account. This is called D'Alembert's principle.
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1. Stress

I
n the design process, an important problem is to ensure that the strength

of the mechanical element to be designed always exceeds the stress due

to any load exerted on it.

1.1 Uniformly Distributed Stresses

Uniform distribution of stresses is an assumption that is frequently considered

in the design process. Depending upon the way the force is applied to a

mechanical element Ð for example, whether the force is an axial force or a

shear one Ð the result is called pure tension (compression) or pure shear,

respectively.

Let us consider a tension load F applied to the ends of a bar. If the bar is

cut at a section remote from the ends and we remove one piece, the effect of

the removed part can be replaced by applying a uniformly distributed force

of magnitude sA to the cut end, where s is the normal stress and A the cross-

sectional area of the bar. The stress s is given by

s � F

A
: �1:1�

This uniform stress distribution requires that the bar be straight and made

of a homogeneous material, that the line of action of the force contain the

centroid of the section, and that the section be taken remote from the ends

and from any discontinuity or abrupt change in cross-section. Equation (1.1)

and the foregoing assumptions also hold for pure compression.

If a body is in shear, one can assume the uniform stress distribution and

use

t � F

A
; �1:2�

where t is the shear stress.

1.2 Stress Components

A general three-dimensional stress element is illustrated in Fig. 1.1a. Three

normal positive stresses, sx ; sy , and sz , and six positive shear stresses, txy ,

tyx , tyz , tzy , tzx , and txz , are shown. To ensure the static equilibrium, the

following equations must hold:

txy � tyx ; tyz � tzy ; txz � tzx : �1:3�
The normal stresses sx , sy , and sz are called tension or tensile stresses and

considered positive if they are oriented in the direction shown in the ®gure.

Shear stresses on a positive face of an element are positive if they act in the

positive direction of the reference axis. The ®rst subscript of any shear stress

component denotes the axis to which it is perpendicular. The second

subscript denotes the axis to which the shear stress component is parallel.
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A general two-dimensional stress element is illustrated in Fig. 1.1b. The

two normal stresses sx and sy , respectively, are in the positive direction.

Shear stresses are positive when they are in the clockwise (cw) and negative

when they are in the counterclockwise (ccw) direction. Thus, tyx is positive

(cw), and txy is negative (ccw).

1.3 Mohr's Circle

Let us consider the element illustrated in Fig. 1.1b cut by an oblique plane at

angle f with respect to the x axis (Fig. 1.2). The stresses s and t act on this

Figure 1.1 Stress element. (a) Three-dimensional case; (b) planar case.

Figure 1.2
Normal and

shear stresses on
a planar surface.
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oblique plane. The stresses s and t can be calculated by summing the forces

caused by all stress components to zero, that is,

s � sx � sy

2
� sx ÿ sy

2
cos 2f� txy sin 2f; �1:4�

t � ÿ sx ÿ sy

2
sin 2f� txy cos 2f: �1:5�

Differentiating Eq. (1.4) with respect to the angle f and setting the result

equal to zero yields

tan 2f � 2txy

sx ÿ sy

: �1:6�

The solution of Eq. (1.6) provides two values for the angle 2f de®ning the

maximum normal stress s1 and the minimum normal stress s2. These

minimum and maximum normal stresses are called the principal stresses.

The corresponding directions are called the principal directions. The angle

between the principal directions is f � 90�.
Similarly, differentiating Eq. (1.5) and setting the result to zero we obtain

tan 2f � ÿ sx ÿ sy

2txy

: �1:7�

The solutions of Eq. (1.7) provides the angles 2f at which the shear stress t
reaches an extreme value.

Equation (1.6) can be rewritten as

2txy cos 2f � �sx ÿ sy � sin 2f;

or

sin 2f � 2txy cos 2f
sx ÿ sy

: �1:8�

Substituting Eq. (1.8) into Eq. (1.5) gives

t � ÿ sx ÿ sy

2

2txy cos 2f
sx ÿ sy

� txy cos 2f � 0: �1:9�

Hence, the shear stress associated with both principal directions is zero.

Substituting sin 2f from Eq. (1.7) into Eq. (1.4) yields

s � sx � sy

2
: �1:10�

The preceding equation states that the two normal stresses associated with

the directions of the two maximum shear stresses are equal.

The analytical expressions for the two principal stresses can be obtained

by manipulating Eqs. (1.6) and (1.4):

s1; s2 �
sx � sy

2
�

����������������������������������
sx ÿ sy

2

� �2

� t2
xy

r
: �1:11�
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Similarly, the maximum and minimum values of the shear stresses are

obtained using

t1; t2 � �
����������������������������������
sx ÿ sy

2

� �2

� t2
xy

r
: �1:12�

Mohr's circle diagram (Fig. 1.3) is a graphical method to visualize the

stress state. The normal stresses are plotted along the abscissa axis of the

coordinate system and the shear stresses along the ordinate axis. Tensile

normal stresses are considered positive (sx and sy are positive in Fig. 1.3)

and compressive normal stresses negative. Clockwise (cw) shear stresses are

considered positive, whereas counterclockwise (ccw) shear stresses are

negative.

The following notation is used: OA as sx , AB as txy , OC as sy , and CD as

tyx . The center of the Mohr's circle is at point E on the s axis. Point B has the

stress coordinates sx , txy on the x faces and point D the stress coordinates

sy , tyx on the y faces. The angle 2f between EB and ED is 180�; hence the

Figure 1.3
Mohr's circle.
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angle between x and y on the stress element is f � 90� (Fig. 1.1b). The

maximum principal normal stress is s1 at point F , and the minimum principal

normal stress is s2 at point G . The two extreme values of the shear stresses

are plotted at points I and H , respectively. Thus, the Mohr's diagram is a

circle of center E and diameter BD.

EXAMPLE 1.1 For a stress element having sx � 100 MPa and txy � 60 MPa (cw), ®nd the

principal stresses and plot the principal directions on a stress element

correctly aligned with respect to the xy system. Also plot the maximum

and minimum shear stresses t1 and t2, respectively, on another stress

element and ®nd the corresponding normal stresses. The stress components

not given are zero.

Solution

First, we will construct the Mohr's circle diagram corresponding to the given

data. Then, we will use the diagram to calculate the stress components.

Finally, we will draw the stress components.

The ®rst step to construct Mohr's diagram is to draw the s and t axes

(Fig. 1.4a) and locate points A of sx � 100 MPa and C of sy � 0 MPa on the

s axis. Then, we represent txy � 60 MPa in the cw direction and tyx � 60 MPa

in the ccw direction. Hence, point B has the coordinates sx � 100 MPa,

txy � 60 MPa and point D the coordinates sx � 0 MPa, tyx � 60 MPa. The

line BD is the diameter and point E the center of the Mohr's circle. The

intersection of the circle with the s axis gives the principal stresses s1 and s2

at points F and G , respectively.

The x axis of the stress elements is line EB and the y axis line ED . The

segments BA and AE have the length of 60 and 50 MPa, respectively. The

length of segment BE is

BE � HE � t1 �
��������������������������
�60�2 � �50�2

q
� 78:1 MPa:

Since the intersection E is 50 MPa from the origin, the principal stresses are

s1 � 50� 78:1 � 128:1 MPa; s2 � 50ÿ 78:1 � ÿ28:1 MPa:

The angle 2f with respect to the x axis cw to s1 is

2f � tanÿ1 60

50
� 50:2�:

To draw the principal stress element, we start with the x and y axes

parallel to the original axes as shown in Fig. 1.4b. The angle f is in the same

direction as the angle 2f in the Mohr's circle diagram. Thus, measuring 25:1�

(half of 50:2�) clockwise from x axis, we can locate the s1 axis. The s2 axis

will be at 90� with respect to the s1 axis, as shown in Fig. 1.4b.

To draw the second stress element, we note that the two extreme shear

stresses occur at the points H and I in Fig. 1.4a. The two normal stresses

corresponding to these shear stresses are each equal to 50 MPa. Point H is
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39.8� ccw from point B in the Mohr's circle diagram. Therefore, we draw

a stress element oriented 19:9� (half of 39:8�) ccw from x as shown in

Fig. 1.4c. m

1.4 Triaxial Stress

For three-dimensional stress elements, a particular orientation occurs in

space when all shear stress components are zero. As in the case of plane

stress, the principal directions are the normals to the faces for this particular

orientation. Since the stress element is three-dimensional, there are three

principal directions and three principal stresses s1, s2, and s3, associated

with the principal directions. In three dimensions, only six components of

stress are required to specify the stress state, namely, sx , sy , sz , txy , tyz ,

and tzx .

Figure 1.4
Mohr's circle

application. (a)
Mohr's circle
diagram; (b)

principal stres-
ses; (c) extreme

value of the
shear stresses.
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To plot Mohr's circles for triaxial stress, the principal normal stresses are

ordered so that s1 > s2 > s3. The result is shown in Fig. 1.5a. The three

principal shear stresses t1=2; t2=3, and t1=3 are also shown in Fig. 1.5a. Each of

these shear stresses occurs on two planes, one of the planes being shown in

Fig. 1.5b. The principal shear stresses can be calculated by the following

equations

t1=2 �
s1 ÿ s2

2
; t2=3 �

s2 ÿ s3

2
; t1=3 �

s1 ÿ s3

2
: �1:13�

If the normal principal stresses are ordered �s1 > s2 > s3�, then tmax � t1=3.

Figure 1.5
Mohr's circle for

triaxial stress
element. (a)
Mohr's circle
diagram; (b)
planar case.
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Let us consider a principal stress element having the stresses s1, s2, and

s3 as shown in Fig. 1.6. The stress element is cut by a plane ABC that forms

equal angles with each of the three principal stresses. This plane is called an

octahedral plane. Figure 1.6 can be interpreted as a free-body diagram when

each of the stress components shown is multiplied by the area over which it

acts. Summing the forces thus obtained to zero along each direction of the

coordinate system, one can notice that a force called octahedral force exists

on plane ABC . Dividing this force by the area of ABC , the result can be

described by two components. One component, called octahedral normal

stress, is normal to the plane ABC , and the other component, called

octahedral shear stress, is located in the plane ABC .

1.5 Elastic Strain

If a tensile load is applied to a straight bar, it becomes longer. The amount of

elongation is called the total strain. The elongation per unit length of the bar

E is called strain. The expression for strain is given by

E � d
l
; �1:14�

Figure 1.6
Octahedral stress

element.
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where d is the total elongation (total strain) of the bar of length l .

Shear strain g is the change in a right angle of an element subjected to

pure shear stresses.

Elasticity is a property of materials that allows them to regain their

original geometry when the load is removed. The elasticity of a material can

be expressed in terms of Hooke's law, which states that, within certain limits,

the stress in a material is proportional to the strain which produced it. Hence,

Hooke's law can be written as

s � E E; t � G g; �1:15�
where E and G are constants of proportionality. The constant E is called the

modulus of elasticity and the constant G is called the shear modulus of

elasticity or the modulus of rigidity. A material that obeys Hooke's law is

called elastic.

Substituting s � F =A and E � d=l into Eq. (1.15) and manipulating, we

obtain the expression for the total deformation d of a bar loaded in axial

tension or compression:

d � Fl

AE
: �1:16�

When a tension load is applied to a body, not only does an axial strain

occur, but also a lateral one. If the material obeys Hooke's law, it has been

demonstrated that the two strains are proportional to each other. This

proportionality constant is called Poisson's ratio, given by

n � lateral strain

axial strain
; �1:17�

It can be proved that the elastic constants are related by

E � 2G �1� n�: �1:18�
The stress state at a point can be determined if the relationship between

stress and strain is known and the state of strain has already been measured.

The principal strains are de®ned as the strains in the direction of the

principal stresses. As is the case of shear stresses, the shear strains are zero

on the faces of an element aligned along the principal directions. Table 1.1

lists the relationships for all types of stress. The values of Poisson's ratio n for

various materials are listed in Table 1.2.

1.6 Equilibrium

Considering a particle of nonnegligible mass, any force F acting on it will

produce an acceleration of the particle. The foregoing statement is derived

from Newton's second law, which can be expressed asP
F � ma;

where
P

F is the sum of the forces acting on the particle, m the mass of the

particle, and a the acceleration. If all members of a system under investiga-
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tion are assumed motionless or in motion with a constant velocity, then every

particle has zero acceleration a � 0 and

F1 � F2 � � � � � Fi �
P

F � 0; �1:19�
The forces acting on the particle are said to be balanced and the particle is

said to be in equilibrium if Eq. (1.19) holds. If the velocity of the particle is

zero, then the particle is said to be in static equilibrium.

A system may denote any part of a structure, that is, just one particle,

several particles, a portion of a rigid body, an entire rigid body, or several

rigid bodies. We can de®ne the internal forces and the internal moments of a

system as the action of one part of the system on another part of the same

system. If forces and moments are applied to the considered system from the

outside, then these forces and moments are called external forces and

external moments.

The condition for the equilibrium of a single particle is expressed by

Eq. (1.19). For a system containing many particles, Eq. (1.19) can be applied

to each particle in the system. Let us select a particle, say the j th one, and let

Fe be the sum of the external forces and Fi be the sum of the internal forces.

Then, Eq. (1.19) becomes P
Fj � Fe � Fi � 0: �1:20�

Table 1.1 Elastic Stress±Strain Relations

Type of stress Principal strains Principal stresses

Uniaxial E1 �
s1

E
s1 � E E1

E2 � ÿnE1 s2 � 0

E3 � ÿnE1 s3 � 0

Biaxial E1 �
s1

E
ÿ ns2

E s1 �
E �E1 � nE2�

1ÿ n2

E2 �
s2

E
ÿ ns1

E s2 �
E �E2 � nE1�

1ÿ n2

E3 � ÿ
ns1

E
ÿ ns2

E
s3 � 0

Triaxial E1 �
s1

E
ÿ ns2

E
ÿ ns3

E s1 �
E E1�1ÿ n� � nE �E2 � E3�

1ÿ nÿ 2n2

E2 �
s2

E
ÿ ns1

E
ÿ ns3

E s2 �
E E2�1ÿ n� � nE �E1 � E3�

1ÿ nÿ 2n2

E3 �
s3

E
ÿ ns1

E
ÿ ns2

E s1 �
E E3�1ÿ n� � nE �E1 � E2�

1ÿ nÿ 2n2

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design. McGraw-Hill, New York, 1989. Used with permission.
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For n particles in the system we getPn
1

Fe �
Pn
1

Fi � 0: �1:21�

The law of action and reaction (Newton's third law) states that when two

particles react, a pair of interacting forces exist, these forces having the same

magnitude and opposite senses, and acting along the line common to the two

particles. Hence, the second term in Eq. (1.21) is zero and Eq. (1.21) becomesPn
1

Fe � 0: �1:22�

Equation (1.22) states that the sum of the forces exerted from the outside

upon a system in equilibrium is zero. Similarly, we can prove that the sum of

the external moments exerted upon a system in equilibrium is zero, that is,Pn
1

Me � 0: �1:23�

If Eqs. (1.22) and (1.23) are simultaneously satis®ed, then the system is in

static equilibrium.

To study the behavior of any part of a system, we can isolate that part

and replace the original effects of the system on it by interface forces and

moments. Figure 1.7 is a symbolic illustration of the process. The forces and

Table 1.2 Physical Constants of Materials

Modulus of
elasticity E

Modulus of
rigidity G

Unit weight
w

Poisson's
Material Mpsi GPa Mpsi GPa ratio n lb=in3 lb=ft3 kN=m3

Aluminum (all alloys) 10.3 71.0 3.80 26.2 0.334 0.098 169 26.6

Beryllium copper 18.0 124.0 7.0 48.3 0.285 0.297 513 80.6

Brass 15.4 106.0 5.82 40.1 0.324 0.309 534 83.8

Carbon steel 30.0 207.0 11.5 79.3 0.292 0.282 487 76.5

Cast iron, gray 14.5 100.0 6.0 41.4 0.211 0.260 450 70.6

Cooper 17.2 119.0 6.49 44.7 0.326 0.322 556 87.3

Douglas ®r 1.6 11.0 0.6 4.1 0.33 0.016 28 4.3

Glass 6.7 46.2 2.7 18.6 0.245 0.094 162 25.4

Inconel 31.0 214.0 11.0 75.8 0.290 0.307 530 83.3

Lead 5.3 36.5 1.9 13.1 0.425 0.411 710 111.5

Magnesium 6.5 44.8 2.4 16.5 0.350 0.065 112 17.6

Molybdenum 48.0 331.0 17.0 117.0 0.307 0.368 636 100.0

Monel metal 26.0 179.0 9.5 65.5 0.320 0.319 551 86.6

Nickel silver 18.5 127.0 7.0 48.3 0.322 0.316 546 85.8

Nickel steel 30.0 207.0 11.5 79.3 0.291 0.280 484 76.0

Phosphor bronze 16.1 111.0 6.0 41.4 0.349 0.295 510 80.1

Stainless steel (18-8) 27.6 190.0 10.6 73.1 0.305 0.280 484 76.0

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design. McGraw-Hill, New York, 1989. Used with permission.
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moment are internal for the whole system, but they become external when

applied to the isolated part. The interface forces, for example, are repre-

sented symbolically by the force vectors F1; F2, and Fi in Fig. 1.7. The

isolated part, along with all forces and moments, is called the free-body

diagram.

1.7 Shear and Moment

Let us consider a beam supported by the reactions R1 and R2 and loaded by

the transversal forces F1; F2 as shown in Fig. 1.8a. The reactions R1 and R2 are

considered positive since they act in the positive direction of the y axis.

Similarly, the concentrated forces F1 and F2 are considered negative since

they act in the negative y direction. Let us consider a cut at a section located

at x � a and take only the left-hand part of the beam with respect to the cut

as a free body. To ensure equilibrium, an internal shear force V and an

internal bending moment M must act on the cut surface (Fig. 1.8b). As we

noted in the preceding section, the internal forces and moments become

external when applied to an isolated part. Therefore, from Eq. (1.22), the

shear force is the sum of the forces to the left of the cut section. Similarly,

from Eq. (1.23), the bending moment is the sum of the moments of the forces

to the left of the section. It can be proved that the shear force and the

bending moment are related by

V � dM

dx
: �1:24�

Figure 1.7
Free body
diagram.
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If bending is caused by a uniformly distributed load w , then the relation

between shear force and bending moment is

dV

dx
� d2M

dx 2
� ÿw; �1:25�

A general force distribution called load intensity can be expressed as

q � lim
Dx!0

DF

Dx
:

Integrating Eqs. (1.24) and (1.25) between two points on the beam of

coordinates xA and xB yields�VB

VA

dV �
�xB

xA

q dx � VB ÿ VA: �1:26�

The preceding equation states that the changes in shear force from A to B is

equal to the area of the loading diagram between xA and xB . Similarly,�MB

MA

dM �
�xB

xA

V dx � MB ÿMA; �1:27�

which states that the changes in moment from A to B is equal to the area of

the shear force diagram between xA and xB .

1.8 Singularity Functions

Table 1.3 lists a set of ®ve singularity functions that are useful in developing

the general expressions for the shear force and the bending moment in a

beam when it is loaded by concentrated forces or moments.

EXAMPLE 1.2 Develop the expressions for load intensity, shear force, and bending moment

for the beam illustrated in Fig. 1.9.

Figure 1.8 Free body diagram of a simply supported beam.
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Table 1.3 Singularity Functions

Function Graph of fn�x� Meaning

Concentrated moment
(unit doublet)

hx ÿ aiÿ2 � 0 x 6� a� x

ÿ1 hx ÿ aiÿ2dx � hx ÿ aiÿ1

hx ÿ aiÿ2 � �1 x � a

Concentrated force
(unit impulse)

hx ÿ aiÿ1 � 0 x 6� a� x

ÿ1 hx ÿ aiÿ1dx � hx ÿ ai0

hx ÿ aiÿ1 � �1 x � a

Unit step hx ÿ ai0 � 0 x < a
1 x � a

�
� x

ÿ1 hx ÿ ai0dx � hx ÿ ai1

Ramp hx ÿ ai1 � 0 x < a
x ÿ a x � a

�
� x

ÿ1 hx ÿ ai1dx � hx ÿ ai2
2

Parabolic hx ÿ ai2 � 0 x < a
�x ÿ a�2 x � a

�
� x

ÿ1 hx ÿ ai2dx � hx ÿ ai3
3

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design. McGraw-Hill, New York, 1989. Used with permission.
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Solution

We note that the beam shown in Fig. 1.9 is loaded by the concentrated forces

F1 and F2. The reactions R1 and R2 are also concentrated loads. Thus, using

Table 1.3, the load intensity has the following expression:

q�x � � R1hxiÿ1 ÿ F1hx ÿ l1iÿ1 ÿ F2hx ÿ l2iÿ1 � R2hx ÿ liÿ1:

The shear force V � 0 at x � ÿ1. Hence,

V �x � �
�x

ÿ1
q�x � dx � R1hxi0 ÿ F1hx ÿ l1i0 ÿ F2hx ÿ l2i0 � R2hx ÿ li0:

A second integration yields

M �x � �
�x

ÿ1
V �x � dx � R1hxi1 ÿ F1hx ÿ l1i1 ÿ F2hx ÿ l2i1 � R2hx ÿ li1:

To calculate the reactions R1 and R2, we will evaluate V �x � and M �x � at

x slightly larger than l . At that point, both shear force and bending moment

must be zero. Therefore, V �x � � 0 at x slightly larger than l , that is,

V � R1 ÿ F1 ÿ F2 � R2 � 0:

Similarly, the moment equation yields

M � R1l ÿ F1�l ÿ l1� ÿ F2�l ÿ l2� � 0:

The preceding two equations can be solved to obtain the reaction forces R1

and R2. m

EXAMPLE 1.3 A cantilever beam with a uniformly distributed load w is shown in Fig. 1.10.

The load w acts on the portion a � x � l . Develop the shear force and

bending moment expressions.

Solution

First, we note that M1 and R1 are the support reactions. Using Table 1.3, we

®nd that the load intensity function is

q�x � � ÿM1hxiÿ2 � R1hxiÿ1 ÿ whx ÿ ai0:

Figure 1.9
Free-body

diagram of a
simply supported
beam loaded by

concentrated
forces.
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Integrating successively two times gives

V �x � �
�x

ÿ1
q�x � dx � ÿM1hxiÿ1 � R1hxi0 ÿ whx ÿ ai1

M �x � �
�x

ÿ1
V �x � dx � ÿM1hxi0 � R1hxi1 ÿ

w

2
hx ÿ ai2:

The reactions can be calculated by evaluating V �x � and M �x � at x slightly

larger than l and observing that both V and M are zero in this region. The

shear force equation yields

ÿM1 � 0� R1 ÿ w�l ÿ a� � 0;

which can be solved to obtain the reaction R1. The moment equation gives

ÿM1 � R1l ÿ w

2
�l ÿ a� � 0;

which can be solved to obtain the moment M1. m

1.9 Normal Stress in Flexure

The relationships for the normal stresses in beams are derived considering

that the beam is subjected to pure bending, that the material is isotropic and

homogeneous and obeys Hooke's law, that the beam is initially straight with

a constant cross-section throughout all its length, that the beam axis of

symmetry is in the plane of bending, and that the beam cross-sections remain

plane during bending.

A part of a beam on which a positive bending bending moment

Mz � M k (k being the unit vector associated with the z axis) is applied as

shown in Fig. 1.11. A neutral plane is a plane that is coincident with the

elements of the beam of zero strain. The xz plane is considered as the neutral

plane. The x axis is coincident with the neutral axis of the section and the y

axis is coincident with the axis of symmetry of the section.

Applying a positive moment on the beam, the upper surface will bend

downward and, therefore, the neutral axis will also bend downward

(Fig. 1.11). Because of this fact, the section PQ initially parallel to RS will

Figure 1.10
Free-body

diagram for a
cantilever beam.
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twist through the angle df with respect to P 0Q 0. In Fig. 1.11, r is the radius of

curvature of the neutral axis, ds is the length of a differential element of the

neutral axis, and f is the angle between the two adjacent sides RS and P 0Q 0.
The de®nition of the curvature is

1

r
� df

ds
: �1:28�

The deformation of the beam at distance y from the neutral axis is

dx � ydf; �1:29�

and the strain

E � ÿ dx

ds
; �1:30�

where the negative sign suggests that the beam is in compression. Manip-

ulating Eqs. (1.28), (1.29), and (1.30), we obtain

E � ÿ y

r
: �1:31�

Since s � E E, the expression for stress is

s � ÿ Ey

r
: �1:32�

Figure 1.11
Normal stress in

¯exure.
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Observing that the force acting on an element of area dA is sdA and

integrating this force, we get�
s dA � ÿ E

r

�
y dA � 0: �1:33�

Since the x axis is the neutral axis, the preceding equation states that the

moment of the area about the neutral axis is zero. Thus, Eq. (1.33) de®nes

the location of the neutral axis, that is, the neutral axis passes through the

centroid of the cross-sectional area.

To ensure equilibrium, the internal bending moment created by the

stress s must be the same as the external moment Mz � M k, namely,

M �
�

ys dA � E

r

�
y2 dA; �1:34�

where the second integral in the foregoing equation is the second moment of

area I about the z axis. It is given by

I �
�

y2 dA: �1:35�

Manipulating Eqs. (1.34) and (1.35), we obtain

1

r
� M

EI
: �1:36�

Finally, eliminating r from Eqs. (1.32) and (1.36) yields

s � ÿMy

I
: �1:37�

Equation (1.37) states that the stress s is directly proportional to the bending

moment M and the distance y from the neutral axis (Fig. 1.12). The

maximum stress is

s � Mc

I
; �1:38�

where c � ymax . Equation (1.38) can also be written in the two forms

s � M

I =c
; s � M

Z
; �1:39�

where Z � I =c is called the section modulus.

EXAMPLE 1.4 Determine the diameter of a solid round shaft OC in Fig. 1.13, 36 in long,

such that the bending stress does not exceed 10 kpsi. The transversal loads of

800 lb and 300 lb act on the shaft.

Solution

The moment equation about C yieldsP
MC � ÿ36R1 � 24�800� � 8�300� � 0:
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Figure 1.12
Bending stress in

¯exure.

Figure 1.13
Loading diagram

of a rotating
shaft. (a) Free
body diagram;

(b) shear force
diagram; (c)

bending moment
diagram.
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The foregoing equation gives R1 � 600 lb. The force equation with respect to

the y axis is

R1 ÿ 400ÿ 150� R2 � 0;

yielding R2 � 500 lb. The next step is to draw the shear force and the bending

moment diagrams shown in Figs. 1.13b and 1.13c. From the bending moment

diagram, we observe that the maximum bending moment is

M � 600�12� � 7200 lb in:

The section modulus is

I

c
� pd3

32
� 0:0982d3:

Then, the bending stress is

s � M

I =c
� 7200

0:0982d3
:

Considering s � 10;000 psi and solving for d, we obtain

d �
�����������������������������

7200

0:0982�10000�
3

s
� 1:94 in: m

1.10 Beams with Asymmetrical Sections

Considering the restriction of having the plane of bending coincident with

one of the two principal axes of the section, the results of the preceding

section can be applied to beams with asymmetrical sections.

From Eq. (1.33), the stress at a distance y from the neutral axis is

s � ÿ Ey

r
: �1:40�

and, thus, the force on the element of area dA in Fig. 1.14 is

dF � s dA � Ey

r
dA:

Figure 1.14
Normal stress of

asymmetrical
section beam.
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The moment of this force about the y axis gives

My �
�

z dF �
�
sz dA � ÿ E

r

�
yz dA: �1:41�

The last integral in Eq. (1.41) is the product of inertia Iyz . It can be shown that

Iyz �
�

yz dA � 0 �1:42�

if the bending moment on the beam is in the plane of one of the principal

axes. Hence, the relations developed in the preceding section can be applied

to beams having asymmetrical sections only if one takes into account the

restriction given by Eq. (1.42).

1.11 Shear Stresses in Beams

In the general case, beams have both shear forces and bending moments

acting upon them. Let us consider a beam of constant cross-section subjected

to a shear force V � V j and a bending moment Mz � M k, j and k being the

unit vectors corresponding to the y and z axes, respectively (Fig. 1.15). From

Eq. (1.24), the relationship between V and M is

V � dM

dx
: �1:43�

Figure 1.15 Shear stresses in beams.
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Let us consider an element of length dx located at a distance y1 above the

neutral axis. Because of the shear force, the bending moment is not constant

along the x axis. Let us denote by M the bending moment on the near side of

the section and by M � dM the bending moment on the far side. These two

moments produce normal stresses s and s� ds, respectively. The normal

stresses generate forces perpendicular to the vertical faces of the element.

Since the force acting on the far side is larger than that one acting on the near

side, the resultant of these forces would cause the element to tend to slide in

the ÿx direction. To ensure equilibrium, the resultant must be balanced by a

shear force acting in the �x direction on the bottom of the section. A shear

stress t is generated by this shear force. Summarizing, three resultant forces

are exerted on the element, that is, FN � FN i, i being the unit vector

corresponding to the x axis, due to the normal stress s acting on the near

face; FF � FF i due to the normal stress s� ds acting on the far face; and

FB � FB i due to the shear stress t acting on the bottom face.

Let us consider a small element of area dA on the near face. Since stress

acting on this area is s, the force exerted on the small area can be calculated

as sdA. Integrating, we ®nd that the force on the near face is

FN �
�c

y1

s dA; �1:44�

where the limits show that the integration is from the bottom of the element

y � y1 to the top y � c. If we use the expression s � My=I , the preceding

equation yields

FN �
M

I

�c

y1

y dA: �1:45�

The force acting on the far face can be calculated in a similar fashion, namely,

FF �
�c

y1

�s� ds� dA � M � dM

I

�c

y1

y dA: �1:46�

The force on the bottom face is

FB � tb dx ; �1:47�
where b is the width of the element and b dx is the area of the bottom face.

Observing that all three forces act in the x direction, we can sum them

algebraically: P
Fx � FN ÿ FF � FB � 0: �1:48�

Substituting FN and FF and solving for FB yields

FB � FF ÿ FN �
M � dM

I

�c

y1

y dA ÿM

I

�c

y1

y dA � dM

I

�c

y1

y dA: �1:49�

Substituting Eq. (1.47) for FB and solving for shear stress gives

t � dM

dx

1

Ib

�c

y1

y dA: �1:50�
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Using Eq. (1.43), we ®nd that the shear stress formula becomes

t � V

Ib

�c

y1

y dA: �1:51�

In the preceding equation, the integral is the ®rst moment of area of the

vertical face about the neutral axis usually denoted as Q, and

Q �
�c

y1

y dA: �1:52�

Therefore, Eq. (1.51) can be rewritten as

t � VQ

Ib
; �1:53�

where I is the second moment of area of the section about the neutral axis.

1.12 Shear Stresses in Rectangular Section Beams

Figure 1.16 shows a part of a beam acted upon by a shear force V � V j and a

bending moment Mz � M k. Because of the bending moment, a normal

stress s is produced on a cross-section of the beam, such as A±A. The beam

is in compression above the neutral axis and in tension below. Let us

consider an element of area dA located at a distance y above the neutral

axis. Observing that dA � b dy , we ®nd that Eq. (1.52) becomes

Q �
�c

y1

y dA � b

�c

y1

y dy � by2

2

����c
y1

� b

2
�c2 ÿ y2

1 �: �1:54�

Figure 1.16
Stresses in
rectangular

section beams.
(a) Side view;

(b) cross-
section.
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Substituting Eq. (1.54) into Eq. (1.53) gives

t � V

2I
�c2 ÿ y2

1 �: �1:55�

This equation represents the general equation for shear stress in a beam of

rectangular cross-section. The expression for the second moment of area I

for a rectangular section is

I � bh3

12
;

and, if we substitute h � 2c and A � bh � 2bc, the expression for I becomes

I � Ac3

3
: �1:56�

Substituting Eq. (1.56) into Eq. (1.55) yields

t � 3V

2A
1ÿ y2

1

c2

� �
� C

V

A
: �1:57�

The values C versus y1 are listed in Table 1.4. The maximum shear stress is

obtained for y1 � 0, that is,

tmax �
3V

2A
; �1:58�

and the zero shear stress is obtained at the outer surface where y1 � c.

Formulas for the maximum ¯exural shear stress for the most commonly used

shapes are listed in Table 1.5.

1.13 Torsion

A torque vector is a moment vector collinear with an axis of a mechanical

element, causing the element to twist about that axis. A torque Tx � T i

applied to a solid round bar is shown in Fig. 1.17. The torque vectors are the

arrows shown on the x axis. The angle of twist is given by the relationship

y � Tl

GJ
; �1:59�

where T is the torque, l the length, G the modulus of rigidity, and J the polar

second moment of area. Since the shear stress is zero at the center and

Table 1.4 Variation of Shear Stress t � C
V

A

Distance y1 0 0.2c 0.4c 0.6c 0.8c c

Factor C 1.50 1.44 1.26 0.96 0.54 0

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design. McGraw-Hill, New York, 1989. Used
with permission.
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maximum at the surface for a solid round bar, the shear stress is proportional

to the radius r, namely,

t � T r
J
: �1:60�

If r is the radius to the outer surface, then

tmax �
Tr

J
: �1:61�

Table 1.5 Formulas for Maximum Shear
Stress Due to Bending

Beam shape Formula

tmax �
3V

2A

tmax �
4V

3A

tmax �
2V

A

tmax �
V

Aweb

Figure 1.17
Torsion bar.
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For a rotating shaft, the torque T can be expressed in terms of power and

speed. One form of this relationship can be

H � 2pTn

33;000�12� �
FV

33;000
� Tn

63;000
; �1:62�

where H is the power (hp), T the torque (lb in), n the shaft speed (rev=min),

F the force (lb), and V the velocity (ft=min). When SI units are used, the

equation becomes

H � T o; �1:63�
where H is the power (W), T the torque (N m), and o the angular velocity

(rad=s). Thus, the torque T can be approximated by

T � 9:55
H

n
; �1:64�

where n is in rev=min.

For rectangular sections, the following approximate formula applies:

tmax �
T

wt2
3� 1:8

t

w

� �
: �1:65�

Here w and t are the width and the thickness of the bar, respectively.

EXAMPLE 1.5 (Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design.

McGraw-Hill, New York, 1989.)

Figure 1.18 shows a crank loaded by a force F � 1000 lb that causes

twisting and bending of a 3
4-in diameter shaft ®xed to a support at the origin of

the reference system. Draw separate free body diagrams of the shaft AB and

the arm BC , and compute the values of all exerted forces, moments, and

torques. Compute the maximum torsional stress and the bending stress in the

arm BC and indicate where they occur.

Solution

The two free body diagrams are shown in Fig. 1.19. The force and torque at

point C are

F � ÿ1000 lb; T � ÿ1000k lb in:

At the end B of the arm BC ,

F � 1000 lb; M � 4000 lb in; T � 1000k lb in;

whereas at the end B of the shaft AB ,

F � ÿ1000 lb; T � ÿ4000 lb in; M � ÿ1000k lb in:

At point A,

F � 1000 lb; M � 6000k lb in; T � 4000 lb in:

j

j i

j i

j i
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Figure 1.18
Crank

mechanism.
Used with

permission from
Ref. 16.

Figure 1.19
Free body

diagrams of a
crank

mechanism.
Used with

permission from
Ref. 16.
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For the arm BC , the bending stress will reach a maximum near the shaft at B.

The bending stress for the rectangular cross-section of the arm is

s � M

I =c
� 6M

bh2
� 6�4000�

0:25�1:25�2 � 61;440 psi:

The torsional stress is

tmax �
T

wt2
3� 1:8

t

w

� �
� 1000

1:25�0:25�2 3� 1:8
0:25

1:25

� �
� 43;008 psi:

The stress occurs at the middle of the 1 1
4-in side. m

1.14 Contact Stresses

The theory presented in this section is based on the Hertzian stresses

approach. A typical case of contact stresses occurs when the bodies in

contact have a double radius of curvature. This means that the radius in the

plane of rolling is different from the radius in a perpendicular plane, both

planes taken through the axis of the contacting force. When such bodies are

pressed together the produced stresses are three-dimensional. As the bodies

are pressed, the initial point of contact between the bodies becomes an area

of contact.

For example, if a force F is applied to two solid spheres of diameters d1

and d2, respectively, the spheres are pressed together and a circular area of

contact of radius a is developed. The radius a is given by

a �
���������������������������������������������������������
3F

8

�1ÿ n2
1�=E1 � �1ÿ n2

2�=E2

1=d1 � 1=d2

3

s
; �1:66�

where E1, n1 and E2, n2 are the elastic constants of the two spheres,

respectively. The pressure distribution within each sphere is semielliptical

(Fig. 1.20). The maximum pressure Pmax is obtained at the center of the

contact area given by

Pmax �
3F

2pa2
: �1:67�

In the case of the contact between a sphere and a plane surface or a

sphere and an internal spherical surface, Eqs. (1.66) and (1.67) can also be

applied. If we observe that for a plane surface d � 1 and for an internal

surface the diameter is a negative quantity, the principal stresses are

sx � sy � ÿPmax 1ÿ z

a
tanÿ1 1

z

a

0B@
1CA�1� m� ÿ 1

2 1� z 2

a2

� �
2664

3775; �1:68�

sz �
ÿpmax

1� z 2

a2

: �1:69�
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In the case of the contact between two cylinders of length l and

diameters d1 and d2 (Fig. 1.21), the area of contact is a narrow rectangle of

width 2b and length l . The pressure distribution is elliptical. The half-width b

is given by

b �
���������������������������������������������������������
2F

pl

�1ÿ n2
1�=E1 � �1ÿ n2

2�=E2

1=d1 � 1=d2

s
; �1:70�

and the maximum pressure by

Pmax �
2F

pbl
: �1:71�

As in the case of the sphere contact, setting d � 1, the preceding equations

can be applied for the contact of a cylinder and a plane surface or a cylinder

Figure 1.20
Contact stress of
two spheres. (a)

Spheres in
contact; (b)

contact stress
distribution.

Used with
permission from

Ref. 16.
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and an internal cylindrical surface (for the last situation d is negative). The

stresses on the z axis are given by the following equations, respectively:

sx � ÿ2nPmax

��������������
1� z 2

b2

r
ÿ z

b

 !
�1:72�

sy � ÿPmax 2ÿ 1

1� z 2

b2

0BB@
1CCA

��������������
1� z 2

b2

r
ÿ 2

z

b

2664
3775 �1:73�

sz �
ÿPmax��������������
1� z 2

b2

r : �1:74�

2. De¯ection and Stiffness

A rigid is a mechanical element that does not bend, de¯ect, or twist when an

external action is exerted on it. Conversely, a ¯exible is a mechanical element

Figure 1.21
Contact stress of

two cylinders.
(a) Cylinders in

contact; (b)
contact stress
distribution.

Used with
permission from

Ref. 16.
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that changes its geometry when an external force, moment, or torque is

applied. Therefore, rigidity and ¯exibility are terms that apply to particular

situations. This chapter deals with de¯ection analysis that is frequently

performed in the design of, for example, transmissions, springs, or auto-

motive suspensions.

2.1 Springs

The property of a material that enables it to regain its original geometry after

having been deformed is called elasticity. Let us consider a straight beam of

length l which is simply supported at the ends and loaded by the transversal

force F (Fig. 2.1a). If the elastic limit of the material is not exceeded (as

indicated by the graph), the de¯ection y of the beam is linearly related to the

force, and, therefore, the beam can be described as a linear spring.

The case of a straight beam supported by two cylinders is illustrated in

Fig. 2.1b. As the force F is applied to the beam, the length between the

supports decreases and, therefore, a larger force is needed to de¯ect a short

beam than that required for a long one. Hence, the more this beam is

de¯ected, the stiffer it becomes. The force is not linearly related to the

de¯ection, and, therefore, the beam can be described as a nonlinear

stiffening spring.

A dish-shaped round disk acted upon by the load F is shown in Fig. 2.1c.

To ¯atten the disk, a larger force is needed, so the force increases ®rst. Then,

the force decreases as the disk approaches a ¯at con®guration. A mechanical

element having this behavior is called a nonlinear softening spring.

If we consider the relationship between force and de¯ection as

F � F �y�; �2:1�
then the spring rate is de®ned as

k�y� � lim
Dy!0

DF

Dy
� dF

dy
; �2:2�

where y is measured at the point of application of F in the direction of F . For

a linear spring, k is a constant called the spring constant, and Eq. (2.2)

becomes

k � F

y
: �2:3�

2.2 Spring Rates for Tension, Compression, and Torsion

The total extension or deformation of a uniform bar is

d � Fl

AE
; �2:4�
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where F is the force applied on the bar, l the length of the bar, A the cross-

sectional area, and E the modulus of elasticity. From Eqs. (2.3) and (2.4), the

spring constant of an axially loaded bar is obtained:

k � AE

l
: �2:5�

If a uniform round bar is subjected to a torque T , the angular de¯ec-

tion is

y � Tl

GJ
; �2:6�

Figure 2.1
Springs. (a)

Linear spring;
(b) stiffening

spring; (c) soft-
ening spring.

Used with
permission from

Ref. 16.
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where T is the torque, l the length of the bar, G the modulus of rigidity, and J

the polar moment of area. If we multiply Eq. (2.6) by 180=p and substitute

J � pd4=32 (for a solid round bar), the expression for y becomes

y � 583:6Tl

Gd 4
; �2:7�

where y is in degrees and d is the diameter of the round cross-section. If we

rewrite Eq. (2.6) as a ratio between T and y, we can de®ne the spring rate:

k � T

y
� GJ

l
: �2:8�

2.3 De¯ection Analysis

If a beam is subjected to a positive bending moment M , the beam will de¯ect

downward. The relationship between the curvature of the beam and the

external moment M is

1

r
� M

EI
; �2:9�

where r is the radius of curvature, E the modulus of elasticity, and I the

second moment of area. It can be proved mathematically that the curvature

of a plane curve can be described by

1

r
� d2y=dx2

�1� �dy=dx �2�3=2 ; �2:10�

where y is the de¯ection of the beam at any point of coordinate x along its

length. The slope of the beam at point x is

y � dy

dx
: �2:11�

If the slope is very small, that is, y � 0, then the denominator of Eq. (2.10)

1� dy

dx

� �2
" #3=2

� �1� y2�3=2 � 1:

Hence, Eq. (2.9) yields

M

EI
� d2y

dx 2
: �2:12�

Differentiating Eq. (2.12) two times successively gives

V

EI
� d3y

dx 3
�2:13�

q

EI
� d4y

dx 4
; �2:14�
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where q is the load intensity and V the shear force,

V � dM

dx
and

dV

dx
� d 2M

dx 2
� q :

The preceding relations can be arranged as follows:

q

EI
� d4y

dx 4
�2:15�

V

EI
� d3y

dx 3
�2:16�

M

EI
� d2y

dx 2
�2:17�

y � dy

dx
�2:18�

y � f �x �: �2:19�
Figure 2.2 shows a beam of length l � 10 in loaded by the uniform load

w � 10 lb=in. All quantities are positive if upward, and negative if downward.

Figure 2.2 also shows the shear force, bending moment, slope, and de¯ection

diagrams. The values of these quantities at the ends of the beam, that is, at

x � 0 and x � l , are called boundary values. For example, the bending

moment and the de¯ection are zero at each end because the beam is simply

supported.

2.4 De¯ections Analysis Using Singularity Functions

Let us consider a simply supported beam acted upon by a concentrated load

at the distance a from the origin of the xy coordinate system (Fig. 2.3). We

want to develop an analytical expression for the de¯ection of the beam by

using the singularity functions studied in Section 1.8. Since the beam is

simply supported, we are interested in determining the de¯ection of the

beam in between the supports, namely for 0 < x < l. Thus, Eq. (2.15) yields

EI
d4y

dx 4
� q � ÿF hx ÿ aiÿ1: �2:20�

Because of the range chosen for x, the reactions R1 and R2 do not appear in

the preceding equation. Integrating from 0 to x Eq. (2.20) and using

Eq. (2.16) gives

EI
d3y

dx 3
� V � ÿF hx ÿ ai0 � C1; �2:21�

where C1 is an integration constant. Using Eq. (2.17) and integrating again,

we obtain

EI
d2y

dx 2
� M � ÿF hx ÿ ai1 � C1x � C2; �2:22�
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where C2 is also an integration constant. We can determine the constants C1

and C2 by considering two boundary conditions. The boundary condition

can be M � 0 at x � 0 applied to Eq. (2.22), which gives C2 � 0 and M � 0

at x � l also applied to Eq. (2.22), which gives

C1 �
F �l ÿ a�

l
� Fb

l
:

Figure 2.2 Uniformly loaded beam.
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Substituting C1 and C2 in Eq. (2.22) gives

EI
d2y

dx 2
� M � Fbx

l
ÿ F hx ÿ ai1: �2:23�

Integrating Eq. (2.23) twice according to Eqs. (2.18) and (2.19) yields

EI
dy

dx
� EI y � Fbx 2

2l
ÿ F hx ÿ ai2

2
� C3 �2:24�

EIy � Fbx 3

6l
ÿ F hx ÿ ai3

6
� C3x � C4: �2:25�

The integration constants C3 and C4 in the preceding equations can be

evaluated by considering the boundary conditions y � 0 at x � 0 and y � 0

at x � l . Substituting the ®rst boundary condition in Eq. (2.25) yields C4 � 0.

The second condition substituted in Eq. (2.25) yields

0 � Fbl 2

6
ÿ Fb3

6
� C3l ;

Figure 2.3
Simply

supported beam
loaded by a

concentrated
force.
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or

C3 � ÿ
Fb

6l
�l2 ÿ b2�:

If we substitute C3 and C4 in Eq. (2.25), the analytical expression for the

de¯ection y is obtained:

y � F

6EIl
�bx �x2 � b2 ÿ l2� ÿ lhx ÿ ai3�: �2:26�

The shear force and bending moment diagrams are shown in Fig. 2.3.

As a second example, let us consider the beam shown in Fig. 2.4a. The

loading diagram and the approximate de¯ection curve are shown in

Fig. 2.4b. We will develop the analytical expression for the de¯ection y as

a function of x in a similar manner as for the preceding example. The loading

equation for x in the range 0 < x < l is

q � R2hx ÿ aiÿ1 ÿ whx ÿ ai0: �2:27�
Integrating this equation four times according to Eqs. (2.15) to (2.19) yields

V � R2hx ÿ ai0 ÿ whx ÿ ai1 � C1 �2:28�

M � R2hx ÿ ai1 ÿ w

2
hx ÿ ai2 � C1x � C2 �2:29�

EI y � R2

2
hx ÿ ai2 ÿ w

6
hx ÿ ai3 � C1

2
x 2 � C2x � C3 �2:30�

EIy � R2

6
hx ÿ ai3 ÿ w

24
hx ÿ ai4 � C1

6
x3 � C2

2
x 2 � C3x � C4: �2:31�

Figure 2.4
Cantilever beam

loaded by a
uniformly

distributed force
at the free end.

(a) Loading
diagram; (b)

free-body
diagram. Used
with permission

from Ref. 16.
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The integration constants C1 to C4 can be evaluated by considering appro-

priate boundary conditions. Both EI y � 0 and EIy � 0 at x � 0. This gives

C3 � 0 and C4 � 0. At x � 0 the shear force is equal to ÿR1. Therefore,

Eq. (2.28) gives V �0� � R1 � C1. The de¯ection must be zero at x � a. Thus,

Eq. (2.31) yields

C1

6
a3 � C2

2
a2 � 0 or C1

a

3
� C2 � 0: �2:32�

At the overhanging end, at x � l , the moment must be zero. For this

boundary condition Eq. (2.29) gives

R2�l ÿ a� ÿ w

2
�l ÿ a�2 � C1l � C2 � 0;

or, if we use the notation l ÿ a � b and the equation resulting from the sum

of the forces in the y direction, namely R2 � R1 � wb � ÿC1 � wb,

C1a � C2 � ÿ
wb2

2
: �2:33�

Solving Eqs. (2.32) and (2.33) simultaneously for C1 and C2 gives

C1 �
3wb2

4a
; C2 �

wb2

4
:

Therefore, the reaction R2 is obtained:

R2 � ÿC1 � wb � wb

4a
�4a � 3b�:

Equation (2.29) for x � 0 gives

M �0� � M1 � C2 �
wb2

4
:

The analytical expression for the de¯ection curve is obtained by

substituting the expressions for R2 and the constants C1, C2, C3, and C4 in

Eq. (2.31), that is,

EIy � wb

24a
�4a � 3b�hx ÿ ai3 ÿ w

24
hx ÿ ai4 ÿ wb2x 3

8a
� wb2x 2

8
: �2:34�

2.5 Impact Analysis

An impact situation is shown in Fig. 2.5, where a weight W moving with a

constant velocity v on a frictionless surface strikes a spring of constant k. We

are interested in ®nding the maximum force and the maximum de¯ection of

the beam caused by the impact.

The following equation of motion for the weight can be developed after

the impact:

W

g
�y � ÿky : �2:35�
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Here, the left-hand side term is actually mass times acceleration and the right-

hand side term is the force due to the spring. It tends to retard the motion of

the weight and, therefore, the spring force is negative. Written as

�y � kg

W
y � 0;

Eq. (2.35) is a homogeneous second-order differential equation having the

solution

y � A cos
kg

W

� �1=2

t � B sin
kg

W

� �1=2

t ; �2:36�

where A and B are two constants to be determined. Differentiating Eq. (2.36),

we obtain the equation for the velocity of W after impact:

_y � A
kg

W

� �1=2

sin
kg

W

� �1=2

t � B
kg

W

� �1=2

cos
kg

W

� �1=2

t : �2:37�

Considering the initial conditions y � 0 and _y � v at t � 0 in Eqs. (2.36) and

(2.37), respectively, the constants A and B are obtained:

A � 0; B � v

�kg=W �1=2 :

Substituting the preceding expressions in Eq. (2.36), we can write the

solution of the equation of motion (2.35) as

y � v

�kg=W �1=2 sin
kg

W

� �1=2

t : �2:38�

The maximum de¯ection is obtained when sin
kg

W

� �1=2

t � 1. Thus,

ymax �
v

�kg=W �1=2 � v
kg

W

� �1=2

: �2:39�

The maximum force acting on the spring is

Fmax � kymax � kv
kg

W

� �1=2

: �2:40�

Another impact situation is shown in Fig. 2.6a. A weight W falls a

distance h and impacts a structure or member of spring rate k. The origin of

the coordinate y corresponds to the position of the weight at t � 0. We want

to ®nd the maximum de¯ection and the maximum force acting on the spring

caused by the impact.

Figure 2.5
Impacting

system.
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The free-body diagrams of the weight shown in Fig. 2.6b and 2.6c depict

two different situation, namely y � h and y > h, respectively. For each free-

body diagram, Newton's second law yields, respectively,

W

g
�y � W ; y � h

W

g
�y � k�y ÿ h� �W ; y > h: �2:41�

The foregoing equations are linear, but each applies only for a certain range

of y . The solution to the ®rst equation is

y � gt2

2
; y � h: �2:42�

The preceding solution is no longer valid if y � h, which corresponds to the

moment of time

t1 �
2h

g

� �1=2

: �2:43�

Differentiating Eq. (2.42) with respect to time gives the equation for the

weight velocity,

_y � gt ; y � h: �2:44�

The velocity of the weight at t � t1 is

_y1 � gt1 � �2gh�1=2: �2:45�

To solve the second equation of the system (2.41), it is convenient to

de®ne another time variable t 0 � t ÿ t1. Thus, t 0 � 0 when the weight strikes

Figure 2.6
Impacting

system falling
under gravity.

(a) System
diagram; (b)

free-body
diagram before

impact; (c) free-
body diagram
after impact.

Used with
permission from

Ref. 16.
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the spring. The solution of the second equation of the system (2.41) in terms

of the new time variable t 0 is

y � A cos
kg

W

� �1=2

t 0 � B sin
kg

W

� �1=2

t 0 � h �W

k
: �2:46�

The constants A and B can be evaluated by considering the initial conditions

in a similar fashion as for the preceding example. Therefore, the ®nal

expression for y will be

y � W

k

� �2

� 2Wh

k

" #1=2

cos
kg

W

� �1=2

t 0 ÿ f

" #
� h �W

k
; y > h; �2:47�

where the phase angle f is given by

f � p
2
� tanÿ1 W

2kh

� �1=2

: �2:48�

The maximum de¯ection of the spring d � y ÿ h occurs when the cosine

term in Eq. (2.47) is equal to unity. Therefore,

d � W

k
�W

k
1� 2kh

W

� �� �1=2

: �2:49�

The maximum force acting on the spring is

F � kd � W �W 1� 2hk

W

� �� �1=2

: �2:50�

2.6 Strain Energy

The work done by the external forces on a deforming elastic member is

transformed into strain, or potential energy. If y is the distance a member is

deformed, then the strain energy is

U � F

2
y � F 2

2k
; �2:51�

where y � F =k. In the preceding equation, F can be a force, moment, or

torque.

For tension (compression) and torsion, the potential energy is, respec-

tively,

U � F 2l

2AE
�2:52�

U � T 2l

2GJ
: �2:53�

Let us consider now the element with one side ®xed (Fig. 2.7a). The

force F places the element in pure shear and the work done is U � F d=2.
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The shear strain is g � d=l � t=G � F =AG . Therefore, the strain energy due

to shear is

U � F 2l

2AG
: �2:54�

The expression for the strain energy due to bending can be developed

by considering a section of a beam as shown in Fig. 2.7b. PQ is a section of

the elastic curve of length ds and radius of curvature r. The strain energy is

dU � �M =2�dy. Since rdy � ds, the strain energy becomes

dU � Mds

2r
: �2:55�

Considering Eq. (2.9), we can eliminate r in Eq. (2.55) and obtain

dU � M 2ds

2EI
: �2:56�

The strain energy due to bending for the whole beam can be obtained by

integrating Eq. (2.56) and considering that ds � dx for small de¯ections of

the beam, that is,

U �
�

M 2dx

2EI
: �2:57�

Figure 2.7 Strain energy. (a) Strain energy due to direct shear; (b) strain energy due to bending.
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The strain energy stored in a unit volume u can be obtained by dividing

Eqs. (2.52)±(2.54) by the total volume lA:

u � s2

2E
(tension and compression)

u � t2

2G
(direct shear)

u � t2
max

4G
(torsion):

Even if shear is present and the beam is not very short, Eq. (2.57) still

gives good results. The expression of the strain energy due to shear loading

of a beam can be approximated by considering Eq. (2.54) multiplied by a

correction factor C . The values of C depend upon the shape of the cross-

section of the beam. Thus, the strain energy due to shear in bending is

U �
�

CV 2dx

2AG
; �2:58�

where V is the shear force. Table 2.1 lists the values of the correction factor C

for various cross-sections.

EXAMPLE 2.1 Consider a simply supported beam shown of length l and rectangular cross-

section (Fig. 2.8). A uniformly distributed load w is applied transversally. Find

the strain energy due to shear.

Table 2.1 Strain Energy Correction Factors
for Shear

Beam cross-sectional shape FactorC

Rectangular 1.50

Circular 1.33

Tubular, round 2.00

Box sections 1.00

Structural sections 1.00

Source: Arthur P. Boresi, Omar M. Sidebottom, Fred B.
Seely, and James O. Smith, Advanced Mechanics of Materi-
als, 3rd ed., p. 173. Wiley, New York, 1978.

Figure 2.8
Uniformly loaded

beam.
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Solution

If we consider a cut at an arbitrary distance x from the origin and take only

the left part of the beam as a free body, the shear force can be expressed as

V � R1 ÿ wx � wl

2
ÿ wx :

The strain energy given by Eq. (2.58) with C � 1:5 (see Table 2.1) is

U � 1:5

2AG

� l

0

wl

2
ÿ wx

� �2

dx � 3w2l3

48AG
: m

EXAMPLE 2.2 A concentrated load F is applied to the end of a cantilever beam (Fig. 2.9).

Find the strain energy by neglecting the shear.

Solution

The bending moment at any point x along the beam has the expression

M � ÿFx . If we substitute M into Eq. (2.57), the strain energy is

U �
�l

0

F 2x2

2EI
dx � F 2l3

6EI
: m

2.7 Castigliano's Theorem

Castigliano's theorem provides a unique approach to de¯ection analysis. It

states that when forces act on elastic systems subject to small displacements,

the displacement corresponding to any force, collinear with the force, is

equal to the partial derivative of the total strain energy with respect to that

force (Ref. 16). Castigliano's theorem can be written as

di �
@U

@Fi

; �2:59�

where di is the displacement of the point of application of the force Fi in

the direction of Fi , and U is the strain energy. For example, applying

Castigliano's theorem for the cases of axial and torsional de¯ections and

Figure 2.9
Cantilever beam

loaded by a
concentrated

force at the free
end.
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considering the expressions for the strain energy given by Eqs. (2.52) and

(2.53), we obtain, respectively,

d � @

@F

F 2l

2AE

� �
� Fl

AE
�2:60�

y � @

@T

T 2l

2GJ

� �
� Tl

GJ
: �2:61�

Even if no force or moment acts at a point where we want to determine

the de¯ection, Castigliano's theorem can still be used. In such a case, to apply

Castigliano's theorem, ®rst we need to consider a ®ctitious (dummy) force or

moment Qi at the point of interest and develop the expression for the strain

energy including the energy due to that dummy force and moment. Then, we

®nd the expression for the de¯ection by using Eq. (2.61) where the

differentiation will be performed with respect to the dummy force or

moment Qi , that is, di � @U =@Qi . Finally, since Qi is a ®ctitious force or

moment, we will set Qi � 0 in the expression for di.

EXAMPLE 2.3 A cantilever of length l is loaded by a transversal force F at a distance a as

shown in Fig. 2.10. Find the maximum de¯ection of the cantilever if shear is

neglected.

Solution

The maximum de¯ection of the cantilever will be at its free end. Therefore, to

apply Castigliano's theorem, we consider a ®ctitious force Q at that point.

Since we will apply Eq. (2.57) to develop the expression for the strain energy,

we need to ®nd the expression for the bending moment M . Hence, the

bending moments corresponding to the segments OA and AB are, respec-

tively,

MOA � F x ÿ a� � � Q�x ÿ l �
MAB � Q�x ÿ l �:

The total strain energy is obtained:

U �
�a

0

M 2
OA

2EI
dx �

� l

a

M 2
AB

2EI
dx :

Figure 2.10
Castigliano's

theorem applied
for a cantilever

beam.
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When Castigliano's theorem is applied, the de¯ection is

y � @U
@Q
� 1

2EI

�a

0

2MOA

@MOA

@Q
dx �

�l

a

2MAB

@MAB

@Q
dx

� �
:

Since

@MOA

@Q
� @MAB

@Q
� x ÿ l ;

the expression for the de¯ection becomes

y � F

EI

�a

0

F x ÿ a� � � Q�x ÿ l �� ��x ÿ l � dx �
�l

a

�Q�x ÿ l ���x ÿ l � dx

� �
:

Since Q is a dummy force, setting Q � 0 in the preceding equation gives

y � F

EI

�a

0

x ÿ a� ��x ÿ l � dx � a2�3l ÿ a�
6EI

: m

2.8 Compression

The analysis and design of compression members depends upon whether

these members are loaded in tension or in torsion. The term column is

applied to those members for which failure is not produced because of pure

compression. It is convenient to classify the columns according to their

length and to whether the loading is central or eccentric. Thus, for example,

there are long columns with central loading, intermediate-length columns

with central loading, columns with eccentric loading, or short columns with

eccentric loading. The problem of compression members is to ®nd the

critical load that produces the failure of the member.

2.9 Long Columns with Central Loading

Figure 2.11 shows long columns of length l having applied an axial load P

and various end conditions. The load P is applied along the vertical

symmetry axis of the column. The end conditions shown in Fig. 2.11 are

rounded±rounded ends (Fig. 2.11a), ®xed±®xed ends (Fig. 2.11b), free±®xed

ends (Fig. 2.11c), and rounded±®xed ends (Fig. 2.11d).

To develop the relationship between the critical load Pcr and the column

material and geometry, ®rst let us consider the situation shown in Fig. 2.11a.

The ®gure shows that the bar is bent in the positive y direction and, thus, a

negative moment is required:

M � ÿPy : �2:62�
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Conversely, if the bar is bent in the negative y direction, a positive moment

would is needed, and also M � ÿPy because of ÿy . Using Eqs. (2.17) and

(2.62), we obtain

d2y

dx 2
� ÿ P

EI
y; �2:63�

or

d2y

dx 2
� P

EI
y � 0: �2:64�

The solution of the preceding equation is

y � A sin

�����
P

EI

r
x � B cos

�����
P

EI

r
x ; �2:65�

where A and B are constants of integration that can be determined by

considering the boundary conditions y � 0 at x � 0 and y � 0 at x � l .

Substituting the two boundary conditions in Eq. (2.65), we obtain B � 0 and

0 � A sin

�����
P

EI

r
l : �2:66�

Figure 2.11
Loading

columns. (a)
Column with

both ends
pivoted; (b)
column with

both ends ®xed;
(c) column with
one free end and

one ®xed end;
(d) column with
one pivoted and
guided end and
one ®xed end.

Used with
permission from

Ref. 16.
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If we consider A � 0 into the foregoing equation, we obtain the trivial

solution of no buckling. If A 6� 0, then

sin

�����
P

EI

r
l � 0; �2:67�

which is satis®ed if
�����������
P=EI
p

l � np, where n � 1; 2; 3; . . . : The critical load

associated with n � 1 is called the ®rst critical load and is given by

Pcr �
p2EI

l2
: �2:68�

This equation is called Euler column formula and is applied only for

rounded-ends columns. Substituting Eq. (2.68) into Eq. (2.65), we ®nd the

equation of the de¯ection curve:

y � A sin
px

l
: �2:69�

This equation emphasizes that the de¯ection curve is a half-wave sine.

We observe that the minimum critical load occurs for n � 1. Values of n

greater than 1 lead to de¯ection curves that cross the vertical axis at least

once. The intersections of these curves with the vertical axis occur at the

points of in¯ection of the curve, and the shape of the de¯ection curve is

composed of several half-wave sines.

Consider the relation I � Ak2 for the second moment of area I , where A

is the cross-sectional area and k the radius of gyration. Equation (2.68) can be

rewritten as

Pcr

A
� p2E

�l=k�2 ; �2:70�

where the ratio l=k is called the slenderness ratio and Pcr =A the critical unit

load. The critical unit load is the load per unit area that can place the column

in unstable equilibrium. Equation (2.70) shows that the critical unit load

depends only upon the modulus of elasticity and the slenderness ratio.

Figure 2.11b depicts a column with both ends ®xed. The in¯ection points

are at A and B located at a distance l=4 from the ends. Comparing Figs. 2.11a

and 2.11b, we can notice that AB is the same curve as for the column with

rounded ends. Hence, we can substitute the length l by l=2 in Eq. (2.68) and

obtain the expression for the ®rst critical load:

Pcr �
p2EI

�l=2�2 �
4p2EI

l2
: �2:71�

Figure 2.11c shows a column with one end free and the other one ®xed.

Comparing Figs. 2.11a and 2.11c, we observe that the curve of the free±®xed

ends column is equivalent to half of the curve for columns with rounded
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ends. Therefore, if 2l is substituted in Eq. (2.68) for l, the critical load for this

case is obtained:

Pcr �
p2EI

�2l �2 �
p2EI

4l2
: �2:72�

Figure 2.11d shows a column with one end ®xed and the other one

rounded. The in¯ection point is the point A located at a distance of 0:707l

from the rounded end. Therefore,

Pcr �
p2EI

�0:707l �2 �
2p2EI

l2
: �2:73�

The preceding situations can be summarized by writing the Euler

equation in the forms

Pcr �
Cp2EI

l2
;

Pcr

A
� Cp2E

�l=k�2 ; �2:74�

where C is called the end-condition constant. It can have one of the values

listed in Table 2.2.

Figure 2.12 plots the unit load Pcr =A as a function of the slenderness ratio

l=k. The curve PQR is obtained. In this ®gure, the quantity Sy that corre-

sponds to point Q represents the yield strength of the material. Thus, one

would consider that any compression member having an l=k value less than

�l=k�Q should be treated as a pure compression member, whereas all others

can be treated as Euler columns. In practice, this fact is not true. Several tests

showed the failure of columns with a slenderness ratio below or very close to

point Q. For this reason, neither simple compression methods nor the Euler

column equation should be used when the slenderness ratio is near �l=k�Q.

The solution in this case is to consider a point T on the Euler curve of

Fig. 2.12 such that, if the slenderness ratio corresponding to T is �l=k�1, the

Euler equation should be used only when the actual slenderness ratio of the

Table 2.2 End-Condition Constants for Euler Columns

End-condition constant C

Column end
conditions

Theoretical
value

Conservative
value

Recommended
valuea

Fixed±free 1=4 1=4 1=4

Rounded±rounded 1 1 1

Fixed±rounded 2 1 1.2

Fixed±®xed 4 1 1.2

a To be used only with liberal factors of safety when the column load is accurately known.
Source: Joseph E. Shigley and Charles R. Mischke, Mechanical Engineering Design, 5th ed., p. 123. McGraw-
Hill, New York, 1989. Used with permission.
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column is greater than �l=k�1. Point T can be selected such that

Pcr =A � Sy=2. From Eq. (2.74), the slenderness ratio �l=k�1 is obtained:

l

k

� �
1

� 2p2CE

Sy

 !1=2

: �2:75�

2.10 Intermediate-Length Columns with Central Loading

When the actual slenderness ratio l=k is less than �l=k�1, and so is in the

region in Fig. 2.12 where the Euler formula is not suitable, one can use the

parabolic or J. B. Johnson formula of the form

Pcr

A
� a ÿ b

l

k

� �2

; �2:76�

where a and b are constants that can be obtained by ®tting a parabola (the

dashed line tangent at T ) to the Euler curve in Fig. 2.12. Thus, we ®nd

a � Sy �2:77�

and

b � Sy

2p

� �2
1

CE
: �2:78�

Figure 2.12
Euler's curve.

Used with
permission from

Ref. 16.
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Substituting Eqs. (2.77) and (2.78) into Eq. (2.76) yields

Pcr

A
� Sy ÿ

Sy

2p
l

k

� �2
1

CE
; �2:79�

which can be applied if
l

k
� l

k

� �
1

:

2.11 Columns with Eccentric Loading

Figure 2.13a shows a column acted upon by a force P that is applied at a

distance e, also called eccentricity, from the centroidal axis of the column. To

solve this problem, we consider the free-body diagram in Fig. 2.13b.

Equating the sum of moments about the origin O to zero gives

P
MO � M � Pe � Py � 0: �2:80�

Substituting M from Eq. (2.80) into Eq. (2.17) gives a nonhomogeneous

second-order differential equation,

d2y

dx 2
� P

EI
y � ÿPe

EI
: �2:81�

Figure 2.13
(a) Eccentric

loaded column;
(b) free-body

diagram.
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Considering the boundary conditions

x � 0; y � 0

x � l

2
;

dy

dx
� 0;

and substituting x � l=2 in the resulting solution, we obtain the maximum

de¯ection d and the maximum bending moment Mmax :

d � e sec
1

2

�����
P

EI

r !
ÿ 1

" #
�2:82�

Mmax � ÿP �e � d� � ÿPe sec
1

2

�����
P

EI

r !
: �2:83�

At x � l=2, the compressive stress sc is maximum and can be calculated

by adding the axial component produced by the load P and the bending

component produced by the bending moment Mmax , that is,

sc �
P

A
ÿMc

I
� P

A
ÿ Mc

Ak2
: �2:84�

Substituting Eq. (2.83) into the preceding equation yields

sc �
P

A
1� ec

k2
sec

1

2k

������
P

EA

r !" #
: �2:85�

Considering the yield strength Sy of the column material as sc and manip-

ulating Eq. (2.85) gives

P

A
� Syc

1� �ec=k2� sec��l=2k� ������������
P=AE
p � : �2:86�

The preceding equation is called the secant column formula, and the term

ec=k2 the eccentricity ratio. Since Eq. (2.86) cannot be solved explicitly for

the load P , root-®nding techniques using numerical methods can be applied.

2.12 Short Compression Members

A short compression member is illustrated in Fig. 2.14. At point D, the

compressive stress in the x direction has two component, namely, one due to

the axial load P that is equal to P=A and another due to the bending moment

that is equal to My=I . Therefore,

sc �
P

A
�My

I
� P

A
� PeyA

IA
� P

A
1� ey

k2

� �
; �2:87�

where k � �I =A�1=2 is the radius of gyration, y the coordinate of point D, and

e the eccentricity of loading. Setting the foregoing equation equal to zero and
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solving, we obtain the y coordinate of a line parallel to the x axis along

which the normal stress is zero:

y � ÿ k2

e
: �2:88�

If y � c, that is, at point B in Fig. 2.14, we obtain the largest compressive

stress. Hence, substituting y � c in Eq. (2.87) gives

sc �
P

A
1� ec

k2

� �
: �2:89�

For design or analysis, the preceding equation can be used only if the range

of lengths for which the equation is valid is known. For a strut, it is desired

that the effect of bending de¯ection be within a certain small percentage of

eccentricity. If the limiting percentage is 1% of e , then the slenderness ratio is

bounded by

1

k

� �
2

� 0:282
AE

Pcr

� �1=2

: �2:90�

Therefore, the limiting slenderness ratio for using Eq. (2.89) is given by

Eq. (2.90).

Figure 2.14
Short compres-
sion member.

172 Mechanics of Materials

M
ech

an
ics



3. Fatigue

A periodic stress oscillating between some limits applied to a machine

member is called repeated, alternating, or ¯uctuating. The machine

members often fail under the action of these stresses, and the failure is

called fatigue failure. Generally, a small crack is enough to initiate fatigue

failure. Since the stress concentration effect becomes greater around it, the

crack progresses rapidly. We know that if the stressed area decreases in size,

the stress increases in magnitude. Therefore, if the remaining area is small,

the member can fail suddenly. A member failed because of fatigue shows

two distinct regions. The ®rst region is due to the progressive development of

the crack; the other is due to the sudden fracture.

3.1 Endurance Limit

The strength of materials acted upon by fatigue loads can be determined by

performing a fatigue test provided by R. R. Moore's high-speed rotating beam

machine. During the test, the specimen is subjected to pure bending by using

weights and rotated with constant velocity. For a particular magnitude of the

weights, one records the number of revolutions at which the specimen fails.

Then, a second test is performed for a specimen identical with the ®rst one,

but the magnitude of the weight is reduced. Again, the number of revolutions

at which the fatigue failure occurs is recorded. The process is repeated

several times. Finally, the fatigue strengths considered for each test are

plotted against the corresponding number of revolutions. The resulting

chart is called the S±N diagram.

Numerous tests have established that the ferrous materials have an

endurance limit de®ned as the highest level of alternating stress that can

be withstood inde®nitely by a test specimen without failure. The symbol for

endurance limit is S 0e . The endurance limit can be related to the tensile

strength through some relationships. For example, for steel, Mischke1

predicted the following relationships

S 0e �
0:504Sut , Sut � 200 kpsi (1400 MPa)

100 kpsi, Sut > 200 kpsi

700 MPa, Sut > 1400 MPa,

8<: �3:1�

where Sut is the minimum tensile strength. Table 3.1 lists the values of the

endurance limit for various classes of cast iron. The symbol S 0e refers to the

endurance limit of the test specimen that can be signi®cantly different from

the endurance limit Se of any machine element subjected to any kind of

loads. The endurance limit S 0e can be affected by several factors called

modifying factors. Some of these factors are the surface factor ka, the size

1 C. R. Mischke, `̀ Prediction of stochastic endurance strength,'' Trans. ASME, J. Vibration,
Acoustics, Stress, and Reliability in Design 109(1), 113±122 (1987).
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Table 3.1 Typical Properties of Gray Cast Iron

Fatigue
Shear Modulus of elasticity stress

Tensile Compressive modulus (Mpsi) Endurance Brinell concentration
ASTM strength Sut strength Suc of rupture Ssu limit Se hardness factor
number (kpsi) (kpsi) (kpsi) tension torsion (kpsi) HB Kf

20 22 83 26 9.6±14 3.9±5.6 10 156 1.00

25 26 97 32 11.5±14.8 4.6±6.0 11.5 174 1.05

30 31 109 40 13±16.4 5.2±6.6 14 201 1.10

35 36.5 124 48.5 14.5±17.2 5.8±6.9 16 212 1.15

40 42.5 140 57 16±20 6.4±7.8 18.5 235 1.25

50 52.5 164 73 18.8±22.8 7.2±8.0 21.5 262 1.35

50 62.5 187.5 88.5 20.4±23.5 7.8±8.5 24.5 302 1.50

Source: Joseph E. Shigley and Charles R. Mischke, Mechanical Engineering Design, 5th ed., p. 123. McGraw-Hill, New York, 1989. Used with permission.
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factor kb, or the load factor kc. Thus, the endurance limit of a member can be

related to the endurance limit of the test specimen by

Se � ka kb kc S 0e : �3:2�

Some values of the foregoing factors for bending, axial loading, and torsion

are listed in Table 3.2.

3.1.1 SURFACE FACTOR ka

The in¯uence of the surface of the specimen is described by the modi®cation

factor ka, which depends upon the quality of the ®nishing. The following

formula describes the surface factor:

ka � aS b
ut : �3:3�

Sut is the tensile strength. Some values for a and b are listed in Table 3.3.

Table 3.2 Generalized Fatigue Strength Factors for Ductile Materials

Bending Axial Torsion

a. Endurance limit

Se � kakbkcS 0e , where S 0e is the
specimen endurance limit

kc (load factor) 1 1 0.58

kb (gradient factor)

diameter< (0.4 in or 10 mm) 1 0.7±0.9 1

(0.4 in or 10 mm)< diameter
< (2 in or 50 mm)

0.9 0.7±0.9 0.9

ka (surface factor) See Fig. 3.5

b. 103-cycle strength 0.9Su 0.75Su 0.9Sus
a

aSus � 0:8Su for steel; Sus � 0:7Su for other ductile materials.
Source: R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design. John Wiley & Sons,
New York, 1991. Used with permission.

Table 3.3 Surface Finish Factor

Factor a
Exponent

Surface ®nish kpsi MPa b

Ground 1.34 1.58 ÿ0.085

Machined or cold-drawn 2.70 4.51 ÿ0.256

Hot-rolled 14.4 57.7 ÿ0.718

As forged 39.9 272.0 ÿ0.995

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design. McGraw-
Hill, New York, 1989. Used with permission.

3. Fatigue 175

M
ec

h
an

ic
s



3.1.2 SIZE FACTOR kb

The results of the tests performed to evaluate the size factor in the case of

bending and torsion loading of a bar, for example, can be expressed as

kb �
d

0:3

� �ÿ0:1133

in; 0:11 � d � 2 in

d

7:62

� �ÿ0:1133

mm; 2:79 � d � 51 mm;

8>>><>>>: �3:4�

where d is the diameter of the test bar. For larger sizes, the size factor varies

from 0.06 to 0.075. The tests also revealed that there is no size effect for axial

loading; thus, kb � 1.

To apply Eq. (3.4) for a nonrotating round bar in bending or for a

noncircular cross section, we need to de®ne the effective dimension de . This

dimension is obtained by considering the volume of material stressed at and

above 95% of the maximum stress and a similar volume in the rotating beam

specimen. When these two volumes are equated, the lengths cancel and only

the areas have to be considered. For example, if we consider a rotating round

section (Fig. 3.1a) or a rotating hollow round, the 95% stress area is a ring

having the outside diameter d and the inside diameter 0:95d. Hence, the 95%

stress area is

A0:95s �
p
4
�d2 ÿ �0:95d �2� � 0:0766d2: �3:5�

If the solid or hollow rounds do not rotate, the 95% stress area is twice

the area outside two parallel chords having a spacing of 0:95D, where D is

the diameter. Therefore, the 95% stress area in this case is

A0:95s � 0:0105D2: �3:6�
Setting Eq. (3.5) equal to Eq. (3.6) and solving for d, we obtain the effective

diameter

de � 0:370D; �3:7�
which is the effective size of the round corresponding to a nonrotating solid

or hollow round.

A rectangular section shown in Fig. 3.1b has A0:95s � 0:05hb and

de � 0:808�hb�1=2: �3:8�
For a channel section,

A0:95s �
0:5ab; axis 1-1;

0:052xa � 0:1tf �b ÿ x �; axis 2-2;

�
�3:9�

where a; b; x ; tf are the dimensions of the channel section as depicted in

Fig. 3.1c.

The 95% area for an I-beam section is (Fig. 3.1d)

A0:95s �
0:10atf ; axis 1-1;

0:05ba; tf > 0:025a; axis 2-2:

�
�3:10�
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3.1.3 LOAD FACTOR kc

Tests revealed that the load factor has the following values:

kc �
0:923; axial loading; Sut � 220 kpsi (1520 MPa);

1; axial loading; Sut > 220 kpsi (1520 MPa);

1; bending;

0:577; torsion and shear:

8>>><>>>: �3:11�

Figure 3.1 Beam cross-sections. (a) Solid round; (b) rectangular section; (c) channel section; (d) web
section. Used with permission from Ref. 16.

3. Fatigue 177

M
ec

h
an

ic
s



3.2 Fluctuating Stresses

In design problems, it is frequently necessary to determine the stress of parts

corresponding to the situation when the stress ¯uctuates without passing

through zero (Fig. 3.2). A ¯uctuating stress is a combination of a static plus a

completely reversed stress. The components of the stresses are depicted in

Fig. 3.2, where smin is minimum stress, smax the maximum stress, sa the

stress amplitude or the alternating stress, sm the midrange or the mean stress,

sr the stress range, and ss the steady or static stress. The steady stress can

have any value between smin and smax and exists because of a ®xed load. It

is usually independent of the varying portion of the load. The following

relations between the stress components are useful:

sm �
smax � smin

2
�3:12�

sa �
smax ÿ smin

2
: �3:13�

The stress ratios

R � smin

smax

A � sa

sm

�3:14�

are also used to describe the ¯uctuating stresses.

3.3 Constant Life Fatigue Diagram

Figure 3.3 illustrates the graphical representation of various combinations of

mean and alternating stress. This diagram is called the constant life fatigue

diagram because it has lines corresponding to a constant 106-cycle or

``in®nite'' life. The horizontal axis (sa � 0) corresponds to static loading.

Yield and tensile strength are represented by points A and B, while the

compressive yield strength ÿSy is at point A0. If sm � 0 and sa � Sy (point

A00), the stress ¯uctuates between �Sy and ÿSy . Line AA00 corresponds to

¯uctuations having a tensile peak of Sy , and line A0A00 corresponds to

compressive peaks of ÿSy . Points C , D, E , and F correspond to sm � 0

for various values of fatigue life, and lines CB, DB, EB, and FB are the

estimated lines of constant life (from the S±N diagram). Since Goodman

developed this empirical procedure to obtain constant life lines, these lines

are called the Goodman lines.

From Fig. 3.3, we observe that area A00HCGA corresponds to a life of at

least 106 cycles and no yielding. Area HCGA00H corresponds to less than 106

cycles of life and no yielding. Area AGB along with area A0HCGA corre-

sponds to 106 cycles of life when yielding is acceptable.
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EXAMPLE 3.1 (Source: R. C. Juvinall and K. M. Marshek, Fundamentals of Machine

Component Design. John Wiley & Sons, New York, 1991.)

Estimate the S±N curve and a family of constant life fatigue curves

pertaining to the axial loading of precision steel parts having Su � 120 ksi,

Sy � 100 ksi (Fig. 3.4). All cross-sectional dimensions are under 2 in.

Solution

According to Table 3.2, the gradient factor kb � 0:9. The 103-cycle peak

alternating strength for axially loaded material is S � 0:75Su � 0:75�120� �
90 ksi. The 106-cycle peak alternating strength for axially loaded ductile

material is Se � kakbkcS 0e , where S 0e � �0:5��120� � 60 ksi from Eq. (3.1),

Figure 3.2
Sinusoidal ¯uc-
tuating stress.
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kc � 1, and ka � 0:9 from Fig. 3.5. The endurance limit is Se � 48:6 ksi. The

estimated S±N curve is plotted in Fig. 3.6. From the estimated S±N curve, the

peak alternating strengths at 104 and 105 cycles are, respectively, 76.2 and

62.4 ksi. The sm±sa curves for 103; 104; 105, and 106 cycles of life are given in

Fig. 3.6. m

Figure 3.3 Constant life fatigue diagram. Used with permission from Ref. 9.

Figure 3.4 Axial loading cylinder. (a) Loading diagram; (b) ¯uctuating load.
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3.4 Fatigue Life for Randomly Varying Loads

For the most mechanical parts acted upon by randomly varying stresses, the

prediction of fatigue life is not an easy task. The procedure for dealing with

this situation is often called the linear cumulative damage rule. The idea is

as follows: If a part is cyclically loaded at a stress level causing failure in 105

cycles, then each cycle of that loading consumes one part in 105 of the life of

the part. If other stress cycles are interposed corresponding to a life of 104

cycles, each of these consumes one part in 104 of the life, and so on. Fatigue

failure is predicted when 100% of the life has been consumed.

Figure 3.5 Surface factor. Used with permission from Ref. 9.
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The linear cumulative damage rule is expressed by

n1

N1

� n2

N2

� � � � � nk

Nk

� 1 or
Pj�k

j�1

nj

Nj

� 1; �3:15�

where n1;n2; . . . ;nk represent the number of cycles at speci®c overstress

levels and N1;N2; . . . ;Nk represent the life (in cycles) at these overstress

levels, as taken from the appropriate S±N curve. Fatigue failure is predicted

when the above equation holds.

Figure 3.6
Life diagram.

Used with
permission from

Ref. 9.
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EXAMPLE 3.2 (Source: R. C. Juvinall and K. M. Marshek, Fundamentals of Machine

Component Design, John Wiley & Sons, New York, 1991.)

The stress ¯uctuation of a part during 6 s of operation is shown in

Fig. 3.7a. The part has Su � 500 MPa, and Sy � 400 MPa. The S±N curve for

bending is given in Fig. 3.7c. Estimate the life of the part.

Solution

The 6-s test period includes, in order, two cycles of ¯uctuation a, three

cycles of ¯uctuation b, and two cycles of c. Each of these ¯uctuations

corresponds to a point in Fig. 3.7b. For a the stresses are sm � 50 MPa, sa �
100 MPa.

Points (a), (b), (c) in Fig. 3.7b are connected to the point sm � Su , which

gives a family of four ``Goodman lines'' corresponding to some constant

life.

The Goodman lines intercept the vertical axis at points a0 through c 0.
Points a through d correspond to the same fatigue lives as points a0 through

d 0. These lives are determined from the S±N curve in Fig. 3.7c. The life for a

and a0 can be considered in®nite.

Adding the portions of life cycles b and c gives

nb

Nb

� nc

Nc

� 3

3� 106
� 2

2� 104
� 0:000011:

This means that the estimated life corresponds to 1=0.000011, or 90,909

periods of 6-s duration. This is equivalent to 151.5 hr. m

3.5 Criteria of Failure

There are various techniques for plotting the results of the fatigue failure test

of a member subjected to ¯uctuating stress. One of them is called the

modi®ed Goodman diagram and is shown in Fig. 3.8. For this diagram the

mean stress is plotted on the abscissa and the other stress components on the

ordinate. As shown in the ®gure, the mean stress line forms a 45� angle with

the abscissa. The resulting line drawn to Se above and below the origin are

actually the modi®ed Goodman diagram. The yield strength Sy is also plotted

on both axes, since yielding can be considered as a criterion of failure if

smax > Sy .

Four other criteria of failure are shown in the diagram in Fig. 3.9, that is,

Soderberg, the modi®ed Goodman, Gerber, and yielding. The fatigue limit Se

(or the ®nite life strength Sf ) and the alternating stress Sa are plotted on the

ordinate. The yield strength Syt is plotted on both coordinate axes and the

tensile strength Sut and the mean stress Sm on the abscissa. As we can

observe from Fig. 3.9, only the Soderberg criterion guards against yielding.
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We can describe the linear criteria shown in Fig. 3.9, namely Soderberg,

Goodman, and yield, by the equation of a straight line of general form

x

a
� y

b
� 1: �3:16�

Figure 3.7 Fatigue analysis of a cantilever beam. (a) Bending stress; (b) stress ¯uctuation; (c) life diagram;
(d) loading diagram. Used with permission from Ref. 9.
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In this equation, a and b are the coordinates of the points of intersection of

the straight line with the x and y axes, respectively. For example, the

equation for the Soderberg line is

Sa

Se

� Sm

Syt

� 1: �3:17�

Similarly, the modi®ed Goodman relation is

Sa

Se

� Sm

Sut

� 1: �3:18�

The yielding line is described by the equation

Sa

Sy

� Sm

Syt

� 1: �3:19�

Figure 3.8
Goodman

diagram. Used
with permission

from Ref. 16.
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The curve representing the Gerber theory is a better predictor since it passes

through the central region of the failure points. The Gerber criterion is also

called the Gerber parabolic relation because the curve can be modeled by a

parabolic equation of the form

Sa

Se

� Sm

Syt

 !2

� 1: �3:20�

If each strength in Eqs. (3.17) to (3.20) is divided by a factor of safety n,

the stresses sa and sm can replace Sa and Sm . Therefore, the Soderberg

equation becomes

sa

Se

� sm

Sy

� 1

n
; �3:21�

the modi®ed Goodman equation becomes

sa

Se

� sm

Sut

� 1

n
; �3:22�

Figure 3.9
Various criteria
of failure. Used
with permission

from Ref. 16.
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and the Gerber equation becomes

nsa

Se

� nsm

Sut

� �2

� 1: �3:23�

Figure 3.10 illustrates the Goodman line and the way in which the Goodman

equation can be used in practice. Given an arbitrary point A of coordinates

sm , sa as shown in the ®gure, we can draw a safe stress line through A

parallel to the modi®ed Goodman line. The safe stress line is the locus of all

points of coordinates sM , sm for which the same factor of safety n is

considered, that is, Sm � nsm and Sa � nsa .

References

1. J. S. Arora, Introduction to Optimum Design. McGraw-Hill, New York, 1989.

2. F. P. Beer and E. R. Johnston, Jr., Mechanics of Materials. McGraw-Hill, New

York, 1992.

3. K. S. Edwards, Jr., and R. B. McKee, Fundamentals of Mechanical Component

Design. McGraw-Hill, New York, 1991.

4. A. Ertas and J. C. Jones, The Engineering Design Process. John Wiley & Sons,

New York, 1996.

5. A. S. Hall, Jr., A. R. Holowenko, and H. G. Laughlin, Theory and Problems of

Machine Design. McGraw-Hill, New York, 1961.

6. B. J. Hamrock, B. Jacobson, and S. R. Schmid, Fundamentals of Machine

Elements. McGraw-Hill, New York, 1999.

Figure 3.10
Safe stress line.

Used with
permission from

Ref. 16.

References 187

M
ec

h
an

ic
s



7. R. C. Hibbeler, Mechanics of Materials. Prentice-Hall, Upper Saddle River, NJ,

2000.

8. R. C. Juvinall, Engineering Considerations of Stress, Strain, and Strength.

McGraw-Hill, New York, 1967.

9. R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component

Design. John Wiley & Sons, New York, 1991.

10. G. W. Krutz, J. K. Schueller, and P. W. Claar II, Machine Design for Mobile and

Industrial Applications. Society of Automotive Engineers, Warrendale, PA,

1994.

11. W. H. Middendorf and R. H. Engelmann, Design of Devices and Systems.

Marcel Dekker, New York, 1998.

12. R. L. Mott, Machine Elements in Mechanical Design. Prentice Hall, Upper

Saddle River, NJ, 1999.

13. R. L. Norton, Design of Machinery. McGraw-Hill, New York, 1992.

14. R. L. Norton, Machine Design. Prentice Hall, Upper Saddle River, NJ, 2000.

15. W. C. Orthwein, Machine Component Design. West Publishing Company,

St. Paul, MN, 1990.

16. J. E. Shigley and C. R. Mischke, Mechanical Engineering Design. McGraw-Hill,

NY, 1989.

17. C. W. Wilson, Computer Integrated Machine Design. Prentice Hall, Upper

Saddle River, NJ, 1997.

188 Mechanics of Materials

M
ech

an
ics



4 Theory of
Mechanisms

DAN B. MARGHITU

Department of Mechanical Engineering,
Auburn University, Auburn, Alabama 36849

Inside
1. Fundamentals 190

1.1 Motions 190
1.2 Mobility 190
1.3 Kinematic Pairs 191
1.4 Number of Degrees of Freedom 199
1.5 Planar Mechanisms 200

2. Position Analysis 202
2.1 Cartesian Method 202
2.2 Vector Loop Method 208

3. Velocity and Acceleration Analysis 211
3.1 Driver Link 212
3.2 RRR Dyad 212
3.3 RRT Dyad 214
3.4 RTR Dyad 215
3.5 TRT Dyad 216

4. Kinetostatics 223
4.1 Moment of a Force about a Point 223
4.2 Inertia Force and Inertia Moment 224
4.3 Free-Body Diagrams 227
4.4 Reaction Forces 228
4.5 Contour Method 229

References 241

189



1. Fundamentals

1.1 Motions

For the planar case the following motions are de®ned (Fig. 1.1):

j Pure rotation: The body possesses one point (center of rotation) that

has no motion with respect to a ®xed reference frame (Fig. 1.1a). All

other points on the body describe arcs about that center.

j Pure translation: All the points on the body describe parallel paths

(Fig. 1.1b).

j Complex (general) motion: A simultaneous combination of rotation

and translation (Fig. 1.1c).

1.2 Mobility

The number of degrees of freedom (DOF) or mobility of a system is equal to

the number of independent parameters (measurements) that are needed to

Figure 1.1
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uniquely de®ne its position in space at any instant of time. The number of

DOF is de®ned with respect to a reference frame.

Figure 1.2 shows a free rigid body, RB, in planar motion. The rigid body

is assumed to be incapable of deformation, and the distance between two

particles on the rigid body is constant at any time. The rigid body always

remains in the plane of motion xy. Three parameters (three DOF) are

required to completely de®ne the position of the rigid body: two linear

coordinates (x, y) to de®ne the position of any one point on the rigid body,

and one angular coordinate y to de®ne the angle of the body with respect to

the axes. The minimum number of measurements needed to de®ne its

position are shown in the ®gure as x, y, and y. A free rigid body in a

plane then has three degrees of freedom. The rigid body may translate along

the x axis, vx , may translate along the y axis, vy , and may rotate about the z

axis, oz .

The particular parameters chosen to de®ne the position of the rigid body

are not unique. Any alternative set of three parameters could be used. There

is an in®nity of possible sets of parameters, but in this case there must always

be three parameters per set, such as two lengths and an angle, to de®ne the

position because a rigid body in plane motion has three DOF.

Six parameters are needed to de®ne the position of a free rigid body in a

three-dimensional (3D) space. One possible set of parameters that could be

used are three lengths (x, y, z) plus three angles (yx ; yy ; yz ). Any free rigid

body in three-dimensional space has six degrees of freedom.

1.3 Kinematic Pairs

Linkages are basic elements of all mechanisms. Linkages are made up of links

and kinematic pairs (joints). A link, sometimes known as an element or a

member, is an (assumed) rigid body that possesses nodes. Nodes are de®ned

as points at which links can be attached. A link connected to its neighboring

Figure 1.2
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links by s nodes is a link of degree s. A link of degree 1 is also called unary

(Fig. 1.3a), of degree 2, binary (Fig. 1.3b), of degree 3, ternary (Fig. 1.3c), etc.

The ®rst step in the motion analysis of a mechanism is to sketch the

equivalent kinematic or skeleton diagram. The kinematic diagram is a stick

diagram and display only the essential of the mechanism. The links are

numbered (starting with the ground link as number 0) and the kinematic

pairs are lettered. The input link is also labeled.

A kinematic pair or joint is a connection between two or more links (at

their nodes). A kinematic pair allows some relative motion between the

connected links.

The number of independent coordinates that uniquely determine the

relative position of two constrained links is termed the degree of freedom of a

given kinematic pair. Alternatively, the term kinematic pair class is intro-

duced. A kinematic pair is of the j th class if it diminishes the relative motion

of linked bodies by j degrees of freedom; that is, j scalar constraint conditions

correspond to the given kinematic pair. It follows that such a kinematic pair

Figure 1.3
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has 6j independent coordinates. The number of degrees of freedom is the

fundamental characteristic quantity of kinematic pairs. One of the links of a

system is usually considered to be the reference link, and the position of

other RBs is determined in relation to this reference body. If the reference

link is stationary, the term frame or ground is used.

The coordinates in the de®nition of degree of freedom can be linear or

angular. Also, the coordinates used can be absolute (measured with regard to

the frame) or relative. Figures 1.4±1.9 show examples of kinematic pairs

commonly found in mechanisms. Figures 1.4a and 1.4b show two forms of a

planar kinematic pair with one degree of freedom, namely, a rotating pin

kinematic pair and a translating slider kinematic pair. These are both typically

referred to as full kinematic pairs and are of the ®fth class. The pin kinematic

pair allows one rotational (R) DOF, and the slider kinematic pair allows one

translational (T) DOF between the joined links. These are both special cases

of another common kinematic pair with one degree of freedom, the screw

and nut (Fig. 1.5a). Motion of either the nut or the screw relative to the other

results in helical motion. If the helix angle is made zero (Fig. 1.5b), the nut

rotates without advancing and it becomes a pin kinematic pair. If the helix

Figure 1.4
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angle is made 90 �, the nut will translate along the axis of the screw, and it

becomes a slider kinematic pair.

Figure 1.6 shows examples of kinematic pairs with two degrees of

freedom, which simultaneously allow two independent, relative motions,

namely translation (T) and rotation (R), between the joined links. A kinematic

pair with two degrees of freedom is usually referred to as a half kinematic

pair and is of the 4th class. A half kinematic pair is sometimes also called a

roll±slide kinematic pair because it allows both rotation (rolling) and

translation (sliding).

A joystick, ball-and-socket kinematic pair, or sphere kinematic pair

(Fig. 1.7a), is an example of a kinematic pair with three degrees of freedom

(third class), which allows three independent angular motions between the

Figure 1.5
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two links that are joined. This ball kinematic pair would typically be used in a

three-dimensional mechanism, one example being the ball kinematic pairs

used in automotive suspension systems. A plane kinematic pair (Fig. 1.7b) is

also an example of a kinematic pair with three degrees of freedom, which

allows two translations and one rotation.

Note that to visualize the degree of freedom of a kinematic pair in a

mechanism, it is helpful to ``mentally disconnect'' the two links that create the

kinematic pair from the rest of the mechanism. It is easier to see how many

degrees of freedom the two joined links have with respect to one another.

Figure 1.6
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Figure 1.8 shows an example of a second-class kinematic pair (cylinder on

plane), and Fig. 1.9 represents a ®rst-class kinematic pair (sphere on plane).

The type of contact between the elements can be point (P), curve (C), or

surface (S). The term lower kinematic pair was coined by Reuleaux to

describe kinematic pairs with surface contact. He used the term higher

kinematic pair to describe kinematic pairs with point or curve contact.

The main practical advantage of lower kinematic pairs over higher kinematic

pairs is their better ability to trap lubricant between their enveloping surfaces.

This is especially true for the rotating pin kinematic pair.

Figure 1.9

Figure 1.7

Figure 1.8
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A closed kinematic pair is a kinematic pair that is kept together or closed

by its geometry. A pin in a hole or a slider in a two-sided slot is a form of

closed kinematic pair. A force closed kinematic pair, such as a pin in a half-

bearing or a slider on a surface, requires some external force to keep it

together or closed. This force could be supplied by gravity, by a spring, or by

some external means. In linkages, closed kinematic pairs are usually

preferred and are easy to accomplish. For cam±follower systems, force

closure is often preferred.

The order of a kinematic pair is de®ned as the number of links joined

minus one. The simplest kinematic pair combination of two links has order 1

and is a single kinematic pair (Fig. 1.10a). As additional links are placed

on the same kinematic pair, the order is increased on a one-for-one basis

(Fig. 1.10b. Kinematic pair order has signi®cance in the proper determination

of overall degrees of freedom for an assembly.

Bodies linked by kinematic pairs form a kinematic chain. Simple

kinematic chains are shown in Fig. 1.11.

A contour or loop is a con®guration described by a polygon (Fig. 1.11a).

The presence of loops in a mechanical structure can be used to de®ne

the following types of chains:

Figure 1.10
Used with

permission from
Ref. 15.
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j Closed kinematic chains have one or more loops so that each link

and each kinematic pair is contained in at least one of the loops (Fig.

1.11a). A closed kinematic chain has no open attachment point.

j Open kinematic chains contain no loops (Fig. 1.11b). A common

example of an open kinematic chain is an industrial robot.

j Mixed kinematic chains are a combination of closed and open

kinematic chains.

Another classi®cation is also useful:

j Simple chains contain only binary elements.

j Complex chains contain at least one element of degree 3 or higher.

A mechanism is de®ned as a kinematic chain in which at least one link

has been ``grounded'' or attached to the frame (Figs. 1.11a and 1.12). By

Reuleaux's de®nition, a machine is a collection of mechanisms arranged to

transmit forces and do work. He viewed all energy- or force-transmitting

devices as machines that utilize mechanisms as their building blocks to

provide the necessary motion constraints.

The following terms can be de®ned (Fig. 1.12):

j A crank is a link that makes a complete revolution about a ®xed

grounded pivot.

j A rocker is a link that has oscillatory (back and forth) rotation and is

®xed to a grounded pivot.

j A coupler or connecting rod is a link that has complex motion and is

not ®xed to ground.

Ground is de®ned as any link or links that are ®xed (nonmoving) with

respect to the reference frame. Note that the reference frame may in fact itself

be in motion.

Figure 1.11
Used with

permission from
Ref. 15.
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1.4 Number of Degrees of Freedom

The concept of number of degrees of freedom is fundamental to analysis of

mechanisms. It is usually necessary to be able to determine quickly the

number of DOF of any collection of links and kinematic pairs that may be

suggested as a solution to a problem. The number of degrees of freedom or

the mobility of a system can be de®ned as either of the following:

j The number of inputs that need to be provided in order to create a

predictable system output

j The number of independent coordinates required to de®ne the

position of the system

The family f of a mechanism is the number of DOF eliminated from all

the links of the system.

Every free body in space has six degrees of freedom. A system of family f

consisting of n movable links has �6ÿ f �n degrees of freedom. Each

kinematic pair of class j diminishes the freedom of motion of the system

by j ÿ f degrees of freedom. If we designate the number of kinematic pairs

of class k as ck , it follows that the number of degrees of freedom of the

particular system is

M � �6ÿ f �n ÿ P5
j�f �1

� j ÿ f �cj : �1:1�

In the literature, this is referred to as the Dobrovolski formula.

Figure 1.12
Used with

permission from
Ref. 15.

1. Fundamentals 199

M
ec

h
an

is
m

s



A driver link is that part of a mechanism which causes motion, such as

the crank. The number of driver links is equal to the number of DOF of the

mechanism. A driven link or follower is that part of a mechanism whose

motion is affected by the motion of the driver.

1.5 Planar Mechanisms

For the special case of planar mechanisms � f � 3�, formula (1.1) has the form

M � 3n ÿ 2c5 ÿ c4; �1:2�
where c5 is the number of full kinematic pairs and c4 is the number of half

kinematic pairs.

The mechanism in Fig. 1.11a has three moving links �n � 3� and four

rotational kinematic pairs at A, B, C, and D �c5 � 4�. The number of DOF for

this mechanism is

M � 3n ÿ 2c5 ÿ c4 � 3�3� ÿ 2�4� � 1:

For the mechanism shown in Fig. 1.12 there are seven kinematic pairs of class

5 �c5 � 7� in the system:

j At A, one rotational kinematic pair between link 0 and link 1

j At B, one rotational kinematic pair between link 1 and link 2

j At B, one translational kinematic pair between link 2 and link 3

j At C, one rotational kinematic pair between link 0 and link 3

j At D, one rotational kinematic pair between link 3 and link 4

j At D, one translational kinematic pair between link 4 and link 5

j At A, one rotational kinematic pair between link 5 and link 0

The number of moving links is ®ve �n � 5�. The number of DOF for this

mechanism is

M � 3n ÿ 2c5 ÿ c4 � 3�5� ÿ 2�7� � 1;

and this mechanism has one driver link.

There is a special signi®cance to kinematic chains that do not change

their mobility after being connected to an arbitrary system. Kinematic chains

de®ned in this way are called system groups. Connecting them to or

disconnecting them from a given system enables given systems to be

modi®ed or structurally new systems to be created while maintaining the

original freedom of motion. The term ``system group'' has been introduced

for the classi®cation of planar mechanisms used by Assur and further

investigated by Artobolevskij. If we limit this to planar systems containing

only kinematic pairs of class 2, from Eq. (1.2) we can obtain

3n ÿ 2c5 � 0; �1:3�
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according to which the number of system group links n is always even. The

simplest system is the binary group with two links �n � 2� and three full

kinematic pairs �c5 � 3�. The binary group is also called a dyad. The sets of

links shown in Fig. 1.13 are dyads, and one can distinguish the following

types:

j Rotation rotation rotation (dyad RRR) (Fig. 1.13a)

j Rotation rotation translation (dyad RRT) (Fig.1.13b)

j Rotation translation rotation (dyad RTR) (Fig. 1.13c)

j Translation rotation translation (dyad TRT) (Fig. 1.13d)

j Translation translation rotation (dyad TTR) (Fig. 1.13e)

The advantage of the group classi®cation of a system lies in its simplicity.

The solution of the whole system can then be obtained by composing partial

solutions.

The mechanism in Fig. 1. 11a as one driver, link 1, with rotational motion

and one dyad RRR, link 2 and link 3.

The mechanism in Fig. 1.12 is obtained by composing the following:

Figure 1.13

1. Fundamentals 201

M
ec

h
an

is
m

s



j The driver link 1 with rotational motion

j The dyad RTR: links 2 and 3, and the kinematic pairs B rotation �BR�, B

translation �BT �, C rotation �CR �
j The dyad RTR: links 4 and 5, and the kinematic pairs D rotation �DR�,

D translation �DT �, A rotation �AR�.

2. Position Analysis

2.1 Cartesian Method

The position analysis of a kinematic chain requires the determination of the

kinematic pair positions and=or the position of the mass center of the link. A

planar link with the end nodes A and B is considered in Fig. 2.1. Let �xA; yA�
be the coordinates of the kinematic pair A with respect to the reference frame

xOy, and �xB ; yB � be the coordinates of the kinematic pair B with the same

reference frame. Using Pythagoras, one can write

�xB ÿ xA�2 � �yB ÿ yA�2 � AB2 � L2
AB ; �2:1�

where LAB is the length of the link AB.

Let f be the angle of the link AB with the horizontal axis Ox. Then, the

slope m of the link AB is de®ned as

m � tanf � yB ÿ yA

xB ÿ xA

: �2:2�

Let n be the intercept of AB with the vertical axis Oy. Using the slope m and

the intercept n, one ®nds that the equation of the straight link, in the plane, is

y � mx � n; �2:3�
where x and y are the coordinates of any point on this link.

Figure 2.1
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For a link with a translational kinematic pair (Fig. 2.2), the sliding

direction �D� is given by the equation

x cos aÿ y sin aÿ p � 0; �2:4�
where p is the distance from the origin O to the sliding line �D�. The position

function for the kinematic pair A�xA; yA� is

xA cos aÿ yA sin aÿ p � �d ; �2:5�
where d is the distance from A to the sliding line. The relation between the

kinematic pair A and a point B on the sliding direction, B 2 �D� (the symbol 2
means ``belongs to''), is

�xA ÿ xB � sin bÿ �yA ÿ yB � cosb � �d ; �2:6�

where b � a� p
2
.

If Ax � By � C � 0 is the linear equation of the line �D�, then the

distance d is (Fig. 2.2)

d � jAxA � ByA � C j�����������������
A2 � B2
p : �2:7�

For a driver link in rotational motion (Fig. 2.3a), the following relations

can be written:

xB � xA � LAB cosf

yB � yA � LAB sinf: �2:8�
From Fig. 2.3b, for a driver link in transitional motion one can have

xB � xA � s cosf� L1 cos�f� a�;
yB � yA � s sinf� L1 sin�f� a�: �2:9�

For the RRR dyad (Fig. 2.4), there are two quadratic equations of the form

�xA ÿ xC �2 � �yA ÿ yC �2 � AC 2 � L2
AC � L2

2

�xB ÿ xC �2 � �yB ÿ yC �2 � BC 2 � L2
BC � L2

3 ; �2:10�

Figure 2.2
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where the coordinates of the kinematic pair C, xC and yC , are the unknowns.

With xC and yC determined, the angles f2 and f3 are computed from the

relations

yC ÿ yA ÿ �xC ÿ xA� tanf2 � 0

yC ÿ yB ÿ �xC ÿ xB� tanf3 � 0: �2:11�

Figure 2.3

Figure 2.4
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The following relations can be written for the RRT dyad (Fig. 2.5a):

�xA ÿ xC �2 � �yA ÿ yC �2 � AC 2 � L2
AC � L2

2

�xC ÿ xB� sin aÿ �yC ÿ yB� cos a � �h: �2:12�
From these two equations, the two unknowns xC and yC are computed.

Figure 2.5b depicts the particular case for the RRT dyad when L3 � h � 0.

For the RTR dyad (Fig. 2.6a), the known data are the positions of the

kinematic pair A and B, xA, yA, xB , yB , the angle a, and the length L2

�h � L2 sin a�. There are four unknowns in the position of C �xC ; yC � and in

the equation for the sliding line �D�: y � mx � n. The unknowns in the

sliding line m and n are computed from the relations

L2 sin a � jmxA ÿ yA � nj���������������
m2 � 1
p

yB � mxB � n: �2:13�
The coordinates of the kinematic pair C can be obtained using

�xA ÿ xC �2 � �yA ÿ yC �2 � L2
2

yC � mxC � n: �2:14�
In Fig. 2.6b the particular case when L2 � h � 0 is shown.

To compute the coordinates of the kinematic pair C for the TRT dyad

(Fig. 2.7), two equations can be written:

�xC ÿ xA� sin aÿ �yC ÿ yA� cos a � �d

�xC ÿ xB � sin bÿ �yC ÿ yB � cosb � �h: �2:15�
The input data are xA, yA, xB , yB , a, b, d, h, and the output data are xC , yC .

Figure 2.5
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Figure 2.6

Figure 2.7
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EXAMPLE Determine the positions of the kinematic pairs of the mechanism shown in

Fig. 2.8. The known elements are: AB � l1, CD � l3, CE � l4, AD � d1, and h

is the distance from the slider 5 to the horizontal axis Ax.

Solution

The origin of the system is at A, A � O, that is, xA � yA � 0. The coordinates

of the R kinematic pair at B are

xB � l1 cosf; yB � l1 sinf:

For the dyad DBB (RTR) the following equations can be written with respect

to the sliding line CD:

mxB ÿ yB � n � 0; yD � mxD � n:

With xD � d1 and yD � 0 from the preceding system, the slope m of the link

CD and the intercept n can be calculated:

m � l1 sinf
l1 cosfÿ d1

; n � d1l1 sinf
d1 ÿ l1 cosf

:

The coordinates xC and yC of the center of the R kinematic pair C result from

the system of two equations

yC �
l1 sinf

l1 cosfÿ d1

xC �
d1l1 sinf

d1 ÿ l1 cosf

�xC ÿ xD �2 � �yC ÿ yD �2 � l2
3 :

Because of the quadratic equation, two solutions are obtained for xC and yC .

For continuous motion of the mechanism, there are constraint relations for

choosing the correct solution, that is, xC < xB < xD and yC > 0.

Figure 2.8
Used with

permission from
Ref. 15.
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For the last dyad CEE (RRT), a position function can be written for the

kinematic pair E:

�xC ÿ xE �2 � �yC ÿ h�2 � l2
4 :

It results the values xE1 and xE2, and the solution xE > xC will be selected for

continuous motion of the mechanism. m

2.2 Vector Loop Method

First the independent closed loops are identi®ed.

A vector equation corresponding to each independent loop is estab-

lished. The vector equation gives rise to two scalar equations, one for the

horizontal axis x, and one for the vertical axis y.

For an open kinematic chain (Fig. 2.9), with general kinematic pairs (pin

kinematic pairs, slider kinematic pairs, etc.), a vector loop equation can be

considered:

rA � r1 � � � � rn � rB �2:16�

or

Pn
k�1

rk � rB ÿ rA: �2:17�

The vectorial Eq. (2.17) can be projected on the reference frame xOy:

Pn
k�1

rk cosfk � xB ÿ xAPn
k�1

rk sinfk � yB ÿ yA: �2:18�

Figure 2.9
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2.2.1 RRR DYAD
The input data are that the position of A is �xA; yA�, the position of B is

�xB ; yB�, the length of AC is LAC � L2, and the length of BC is LBC � L3 (Fig.

2.4). The unknown data are the position of C �xC ; yC � and the angles f2 and

f3.

The position equation for the RRR dyad is AC� CB � rB ÿ rA, or

L2 cosf2 � L3 cos�f3 � p� � xB ÿ xA;

L2 sinf2 � L3 sin�f3 � p� � yB ÿ yA: �2:19�
The angles f2 and f3 can be computed from Eq. (2.19). The position of C

can be computed using the known angle f2:

xC � xA � L2 cosf2

yC � yA � L2 sinf2: �2:20�

2.2.2 RRT DYAD
The input data are that the position of A is �xA; yA�, the position of B is

�xB ; yB�, the length of AC is L2, the length of CB is L3, and the angles a and b
are constants (Fig. 2.5a).

The unknown data are the position of C �xC ; yC �, the angle f2, and the

distance r � DB.

The vectorial equation for this kinematic chain is

AC� CD� DB � rB ÿ rA, or

L2 cosf2 � L3 cos�a� b� p� � r cos�a� p� � xB ÿ xA

L2 sinf2 � L3 sin�a� b� p� � r sin�a� p� � yB ÿ yA: �2:21�
One can compute r and f2 from Eq. (2.21). The position of C can be found

with Eq. (2.20).

Particular case L3 � 0 (Fig. 2.5b): In this case Eq. (2.21) can be written as

L2 cosf2 � r cos�a� p� � xB ÿ xA

L2 sinf2 � r sin�a� p� � yB ÿ yA: �2:22�

2.2.3 RTR DYAD
The input data are that the position of A is �xA; yA�, the position of B is

�xB ; yB�, the length of AC is L2, and the angle a is constant (Fig. 2.6a).

The unknown data are the distance r � CB and the angles f2 and f3.

The vectorial loop equation can be written as AC� CB � rB ÿ rA, or

L2 cosf2 � r cos�a� f2 � p� � xB ÿ xA

L2 sinf2 � r sin�a� f2 � p� � yB ÿ yA: �2:23�
One can compute r and f2 from Eq. (2.23). The angle f3 can be written

f3 � f2 � a: �2:24�

2. Position Analysis 209

M
ec

h
an

is
m

s



Particular case L2 � 0 (Fig. 2.6b): In this case, from Eqs. (2.23) and (2.24)

one can obtain

r cos�f3� � xB ÿ xA;

r sin�f3� � yB ÿ yA: �2:25�

EXAMPLE Figure 2.10a shows a quick-return shaper mechanism. Given the lengths

AB � 0:20 m, AD � 0:40 m, CD � 0:70 m, CE � 0:30 m, and the input angle

f � f1 � 45 �, obtain the positions of all the other kinematic pairs. The

distance from the slider 5 to the horizontal axis Ax is yE � 0:35 m.

Figure 2.10
Used with

permission from
Ref. 15.
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Solution

The coordinates of the kinematic pair B are

xB � AB cosf � 0:20 cos 45� � 0:141 m

yB � AB sinf � 0:20 sin 45� � 0:141 m:

The vector diagram (Fig. 2.10b) is drawn by representing the RTR (BBD)

dyad. The vector equation corresponding to this loop is written as

rB � r ÿ rD � 0;

or

r � rD ÿ rB ;

where r � BD and jrj � r . Projecting the preceding vectorial equation on x

and y axis, we obtain two scalar equations:

r cos�p� f3� � xD ÿ xB � ÿ0:141 m

r sin�p� f3� � yD ÿ yB � ÿ0:541 m:

The angle f3 is obtained by solving the equation

tanf3 �
0:541

0:141
�)f3 � 75:36�:

The distance r is

r � xD ÿ xB

cos�p� f3�
ÿ 0:56 m:

The coordinates of the kinematic pair C are

xC � CD cosf3 � 0:17 m

yC � CD sinf3 � ÿAD � 0:27 m:

For the next dyad RRT (CEE) (Fig. 2.10c), one can write

CE cos�pÿ f4� � xE ÿ xC

CE sin�pÿ f4� � yE ÿ yC :

Solving this system, we obtain the unknowns f4 and xE :

f4 � 165:9� and xE � ÿ0:114 m: m

3. Velocity and Acceleration Analysis

The classical method for obtaining the velocities and=or accelerations of links

and kinematic pairs is to compute the derivatives of the positions and=or

velocities with respect to time.
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3.1 Driver Link

For a driver link in rotational motion (Fig. 2.3a), the following position

relation can be written:

xB �t � � xA � LAB cosf�t �;
yB �t � � yA � LAB sinf�t �: �3:1�

Differentiating Eq. (3.1) with respect to time, we obtain the following

expressions:

vBx � _xB �
dxB �t �

dt
� ÿLAB

_f sinf

vBy � _yB �
dyB �t �

dt
� LAB

_f cosf: �3:2�

The angular velocity of the driver link is o � _f.

The time derivative of Eq. (3.2) yields

aBx � �xB �
dvB �t �

dt
� ÿLAB

_f2 cosfÿ LAB
�f sinf

aBy � �yB �
dvB �t �

dt
� ÿLAB

_f2 sinf� LAB
�f cosf; �3:3�

where a � �f is the angular acceleration of the driver link AB.

3.2 RRR Dyad

For the RRR dyad (Fig. 2.4), there are two quadratic equations of the form

�xC �t � ÿ xA�2 � �yC �t � ÿ yA�2 � LAC � L2
2

�xC �t � ÿ xB �2 � �yC �t � ÿ yB �2 � LBC � L2
3 : �3:4�

Solving this system of quadratic equations, we obtain the coordinates xC �t �
and yC �t �.

The derivative of Eq. (3.4) with respect to time yields

�xC ÿ xA�� _xC ÿ _xA� � �yC ÿ yA�� _yC ÿ _yA� � 0

�xC ÿ xB�� _xC ÿ _xB � � �yC ÿ yB�� _yC ÿ _yB � � 0; �3:5�
The velocity vector vC � � _xC ; _yC �T of the preceding system of equations can

be written in matrix form as

vC � M1 � v; �3:6�
where

v � � _xA; _yA; _xB ; _yB �T
M1 � Aÿ1

1 � A2

A1 �
xC ÿ xA yC ÿ yA

xC ÿ xB yC ÿ yB

� �
A2 �

xC ÿ xA yC ÿ yA 0 0

0 0 xC ÿ xB yC ÿ yB

� �
:
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Similarly, by differentiating Eq. (3.5), the following acceleration equations are

obtained:

� _xC ÿ _xA�2 � �xC ÿ xA�� �xC ÿ �xA� � � _yC ÿ _yA�2 � � yC ÿ yA�� �yC ÿ �yA� � 0

� _xC ÿ _xB �2 � �xC ÿ xB �� �xC ÿ �xB � � � _yC ÿ _yB�2 � � yC ÿ yB�� �yC ÿ �yB � � 0:

�3:7�

The acceleration vector is obtained from the preceding system of equations:

aC � � �xC ; �yC �T � M1 � a �M2: �3:8�
Here,

a � � �xA; �yA; �xB ; �yB �T
M2 � ÿAÿ1

1 � A3

A3 �
� _xC ÿ _xA�2 � � _yC ÿ _yA�2
� _xC ÿ _xB�2 � � _yC ÿ _yB�2

" #
:

To compute the angular velocity and acceleration of the RRR dyad, the

following equations can be written:

yC �t � ÿ yA � �xC �t � ÿ xA� tanf2�t � � 0

yC �t � ÿ yB � �xC �t � ÿ xB � tanf3�t � � 0: �3:9�

The derivative with respect to time of Eq. (3.9) yields

_yC ÿ _yA ÿ � _xC ÿ _xA� tanf2 ÿ �xC ÿ xA�
1

cos2 f2

_f2 � 0

_yC ÿ _yB ÿ � _xC ÿ _xB � tanf3 ÿ �xC ÿ xB�
1

cos2 f3

_fx � 0: �3:10�

The angular velocity vector is computed as

v � � _f2;
_f3�T � V1 � v �V2 � vC ; �3:11�

where

V1 �

xC ÿ xA

L 2
2

ÿ xC ÿ xA

L 2
2

0 0

0 0
xC ÿ xB

L 2
3

ÿ xC ÿ xB

L 2
3

2664
3775

V2 �
ÿ xC ÿ xA

L 2
2

xC ÿ xA

L 2
2

ÿ xC ÿ xB

L 2
3

xC ÿ xB

L 2
3

2664
3775:

When Eq. (3.11) is differentiated, the angular vector a � _v � � �f2;
�f3�T is

a � _V1 � v � _V2 � vC �V1 � a � _V2 � aC : �3:12�
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3.3 RRT Dyad

For the RRT dyad (Fig. 2.5a), the following equations can be written for

position analysis:

�xC �t � ÿ xA�2 � �yC �t � ÿ yA�2 � AC 2 � L2
AC � L2

2

�xC �t � ÿ xB � sin aÿ �yC �t � ÿ yB � cos a � �h: �3:13�
From this system of equations, xC �t � and yC �t � can be computed.

The time derivative of Eq. (3.13) yields

�xC ÿ xA�� _xC ÿ _xA� � �yC ÿ yA�� _yC ÿ _yA� � 0

� _xC ÿ _xB � sin aÿ � _yC ÿ _yB � cos a � 0: �3:14�
The solution for the velocity vector from Eq. (3.14) is

vC � � _xC ; _yC �T � M3 � v; �3:15�
where

M3 � Aÿ1
4 � A5

A4 �
xC ÿ xA yC ÿ yA

sin a ÿcos a

� �
A5 �

xC ÿ xA yC ÿ yA 0 0

0 0 sin a ÿcos a

� �
:

Differentiating Eq. (3.14) with respect to time,

� _xC ÿ _xA�2 � �xC ÿ xA�� �xC ÿ �xA� � � _yC ÿ _yA�2 � �yC ÿ yA�� �yC ÿ �yA� � 0

� �xC ÿ �xB� sin aÿ � �yC ÿ �yB� cos a � 0;

�3:16�
gives the acceleration vector

aC � � �xC ; �yC �T � M3 � a �M4; �3:17�
where

M4 � ÿAÿ1
4 � A6

A6 �
� _x �C ÿ _xA�2 � � _yC ÿ _yA�2

0

" #
: �3:18�

The angular position of the element 2 is described by

yC �t � ÿ yA ÿ �xC �t � ÿ xA� tanf2�t � � 0: �3:19�
The time derivative of Eq. (3.19) yields

_yC ÿ _yA ÿ � _xC ÿ _xA� tanf2 ÿ �xC ÿ xA�
1

cos2 f2

_f2 � 0; �3:20�

and the angular velocity of the element 2 is

o2 �
xC ÿ xA

L2
2

�� _yC ÿ _yA� ÿ � _xC ÿ xA� tanf2�: �3:21�
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The angular acceleration of the element 2 is a2 � _o2.

3.4 RTR Dyad

For the RTR dyad (Fig. 2.6a), the following relations can be written:

�xC �t � ÿ xA�2 � �yC �t � ÿ yA�2 � L2
2

tan a �
yC ÿ yB

xC ÿ xB

� �
ÿ yC ÿ yA

xC ÿ xA

� �
1� yC ÿ yB

xC ÿ xB

� �
� yC ÿ yA

xC ÿ xA

� �
� � yC ÿ yB ��xC ÿ xA� ÿ � yC ÿ yA��xC ÿ xB �
�xC ÿ xB ��xC ÿ xA� � � yC ÿ yB �� yC ÿ yA�

: �3:22�

The time derivative of Eq. (3.22) yields

�xC ÿ xA�� _xC ÿ _xA� � � yC ÿ yA�� _yC ÿ _yA� � 0

tan a�� _xC ÿ _xB��xC ÿ xA� � �xC ÿ xB �� _xC ÿ _xA��
� tan a�� _yC ÿ _yA�� yC ÿ yB� � � yC ÿ yA�� _yC ÿ _yB��
� � _yC ÿ _yA��xC ÿ xB � � � yC ÿ yA�� _xC ÿ _xB�
ÿ � _yC ÿ _yB��xC ÿ xA� ÿ � yC ÿ yB �� _xC ÿ _xA� � 0; �3:23�

or in matrix form,

A7 � vC � A8 � v; �3:24�
where

A7 �
xC ÿ xA yC ÿ yA

g1 g2

� �
A8 �

xC ÿ xA yC ÿ yA 0 0

g3 g4 g5 g6

� �
;

and

g1 � ��xC ÿ xB� � �xC ÿ xA�� tan aÿ �yC ÿ yB � � �yC ÿ yA�
g2 � ��yC ÿ yA� � �yC ÿ yB�� tan aÿ �xC ÿ xA� � �xC ÿ xB �
g3 � �xC ÿ xB � tan a� �yC ÿ yB �
g4 � �xC ÿ xA� tan a� �yC ÿ yA�
g5 � �yC ÿ yB� tan a� �xC ÿ xB �
g6 � �yC ÿ yA� tan aÿ �xC ÿ xA�:

The solution for the velocity vector from Eq. (3.24) is

vC � M5 � v; �3:25�
where

M5 � Aÿ1
7 � A8:
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Differentiating Eq. (3.24), we obtain

A7 � aC � A8 � a ÿ A9; �3:26�
where

A9 �
� _xC ÿ _xA�2 � � _yC ÿ _yA�2

g7

" #
g7 � 2� _xC ÿ _xB �� _xC ÿ _xA� tan a� 2� _yC ÿ _yB �� _yC ÿ _yA� tan a

ÿ 2� _yC ÿ _yB �� _xC ÿ _xA� � 2� _yC ÿ _yA�� _xC ÿ _xB�:
The acceleration vector is

aC � M5 � a ÿM6; �3:27�
where

M6 � Aÿ1
7 � A9:

To compute the angular velocities for the RTR dyad, the following equations

can be written:

yC �t � ÿ yA � �xC �t � ÿ xA� tanf2

f3 � f2 � a: �3:28�
The time derivative of Eq. (3.28) yields

� _yC ÿ _yA� � � _xC ÿ _xA� tanf2 � �xC ÿ xA�
1

cos2 f2

_f2

_f3 � _f2: �3:29�
The angular velocities are

o2 � o3 �
cos2 f2

xC ÿ xA

�� _yC ÿ _yA� ÿ � _xC ÿ _xA� tanf2�: �3:30�

The angular accelerations are found to be

a2 � a3 � _o2 � _w3: �3:31�

3.5 TRT Dyad

For the TRT dyad (Fig. 2.7), two equations can be written:

�xC �t � ÿ xA� sin aÿ � yC �t � ÿ yA� cos a � �d

�xC �t � ÿ xB � sin bÿ � yC �t � ÿ yB � cos b � �h: �3:32�
The derivative with respect to time of Eq. (3.32) yields

� _xC ÿ _xA� sin aÿ � _yC ÿ _yA� cos a� �xC ÿ xA�_a cos a� � yC ÿ yA�_a sin a � 0

� _xC ÿ _xB � sin bÿ � _yC ÿ _yB � cos b� �xC ÿ xB � _b cos b� � yC ÿ yB� _b sin b � 0;

�3:33�
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which can be rewritten as

A10 � vC � A11 � v1; �3:34�

where

v1 � � _xA; _yA; _a; _xB ; _yB ; _b�T

A10 �
ÿ sin a ÿcos a

sin b ÿcos b

� �
A11 �

sin a ÿcos a 0 x1 0 0

0 0 0 sin b ÿcos b x2

� �
x1 � �xA ÿ xC � cos a� � yA ÿ yC � sin a

x2 � �xB ÿ xC � cos b� � yB ÿ yC � sin b:

The solution of Eq. (3.34) gives the velocity of kinematic pair C,

vC � M7 � v1; �3:35�

where

M7 � Aÿ1
10 � A11:

Differentiating Eq. (3.34) with respect to time, we obtain

A10 � aC � A11 � a1 ÿ A12; �3:36�

where

a1 � � �xA; �yA; �a; �xB ; �yB ; �b�T

A12 �
x3

x4

" #
x3 � 2� _xC ÿ _xA�_a cos a� 2� _yC ÿ _yA� _b sin a

ÿ �xC ÿ xA�_a2 sin a� �yC ÿ yA�_a2 cos a;

x4 � 2� _xC ÿ _xB� _b cos b� 2� _yC ÿ _yB � _b sin b

ÿ �xC ÿ xB � _b2 sin b� �yC ÿ yB� _b2 cos b:

The solution of the preceding equations give the acceleration of kinematic

pair C,

aC � M7 � a �M8; �3:37�

where

M8 � Aÿ1
10 � A12:
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EXAMPLE The mechanism considered is shown in Fig. 3.1. Find the motion of the

mechanism for the following data: AB � 0:100 m, CD � 0:075 m, DE �
0:200 m, AC � 0:150 m, driver link angle f � f1 � 45 �, and angular speed

of the driver link 1 o � o1 � 4:712 rad=s. m

3.5.1 VELOCITY AND ACCELERATION ANALYSIS OF THE MECHANISM
The origin of the ®xed reference frame is at C � 0. The position of the ®xed

kinematic pair A is

xA � 0; yA � AC : �3:38�

Kinematic Pair B
The position of kinematic pair B is

xB �t � � xA � AB cosf�t �; yB �t � � yA � AB sinf�t �; �3:39�

and for f � 45 �,

xB � 0:000� 0:100 cos 45� � 0:070 m;

yB � 0:150� 0:100 sin 45� � 0:220 m:

Velocity Analysis: The linear velocity vector of B is

vB � _xB � _yB ;i j

Figure 3.1
Used with

permission from
Ref. 15.
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where

_xB �
dxB

dt
� ÿAB _f sinf; _yB �

dyB

dt
� AB _f cosf: �3:40�

With f � 45 � and _f � o � 4:712 rad=s,

_xB � ÿ0:100�4:712� sin 45� � ÿ0:333 m=s

_yB � 0:100�4:712� cos 45� � 0:333 m=s

vB � jvB j �
����������������
_x 2
B � _y2

B

q
�

���������������������������������������
�ÿ0:333�2 � 0:3332

q
� 0:471 m=s: �3:41�

Acceleration analysis: The linear acceleration vector of B is

aB � �xB � �yB ;

where

�xB �
d _xB

dt
� ÿAB _f2 cosfÿ AB �f sinf

�yB �
d _yB

dt
� ÿAB _f2 sinf� AB �f cosf: �3:42�

The angular acceleration of link 1 is �f � _o � 0. The numerical values are

�xB � ÿ0:100�4:712�2 cos 45� � ÿ1:569 m=s2

�yB � ÿ0:100�4:712�2 sin 45� � ÿ1:569 m=s2

aB � jaB j �
����������������
�x 2
B � �y2

B

q
�

����������������������������������������������
�ÿ1:569�2 � �ÿ1:569�2

q
� 2:220 m=s2: �3:43�

Link 3
The kinematic pairs B, C, and D are located on the same link BD. The

following equation can be written:

yB �t � ÿ yC ÿ �xB �t � ÿ xC � tanf3�t � � 0: �3:44�
The angle f3 � f2 is computed using

f3 � f2 � arctan
yB ÿ yC

xB ÿ xC

; �3:45�

and for f � 45� one can obtain

f3 � arctan
0:22

0:07
� 72:235�:

Velocity analysis: The derivative of Eq. (3.44) yields

_yB ÿ _yC ÿ � _xB ÿ _xC � tanf3 ÿ �xB ÿ xC �
1

cos2 f3

_f3 � 0: �3:46�

The angular velocity of link 3, o3 � o2 � _f3, can be computed as

o3 � o2 �
cos2 f3� _yB ÿ _yC ÿ � _xB ÿ _xC � tanf3�

xB ÿ xC

; �3:47�

i j
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and

o3 �
cos2 72��0:333� 0:333 tan 72:235��

0:07
� 1:807 rad=s:

Acceleration analysis: The angular acceleration of link 3, a3 � a2 � �f3,

can be computed from the time derivative of Eq. (3.46):

�yB ÿ �yC ÿ � �xB ÿ �xC � tanf3 ÿ 2� _xB ÿ _xC �
1

cos2 f3

_f3

ÿ 2�xB ÿ xC �
sinf3

cos3 f3

_f2
3 ÿ �xB ÿ xC �

1

cos2 f3

�f3 � 0: �3:48�

The solution of the previous equation is

a3 � a2 �
�

�yB ÿ �yC ÿ � �xB ÿ �xC � tanf3 ÿ 2� _xB ÿ _xC �
1

cos2 f3

_f3

ÿ 2�xB ÿ xC �
sinf3

cos3 f3

_f2
3

�
cos2 f3

xB ÿ xC

; �3:49�

and for the given numerical data

a3 � a2 �
�
ÿ 1:569� 1:569 tan 72:235� � 2�0:333� 1

cos2 72:235�
1:807

ÿ 2�0:07� sin 72:235�

cos2 72:235�
�1:807�2

�
cos2 72:235�

0:07
� 1:020 rad=s2: �3:50�

Kinematic Pair D
For the position analysis of kinematic pair D, the following quadratic

equations can be written:

�xD �t � ÿ xC �2 � � yD �t � ÿ yC �2 � BC 2 �3:51�
�xD �t � ÿ xC � sinf3�t � ÿ � yD �t � ÿ yC � cosf3�t � � 0: �3:52�

The previous equations can be rewritten as follows:

x 2
D �t � � y2

D �t � � CD2

xD �t � sinf3�t � ÿ yD �t � cosf3�t � � 0: �3:53�
The solution of the preceding system of equations is

xD � �
CD�����������������������

1� tan2 f3

p � � 0:075���������������������������������
1� tan2 72:235�
p � ÿ0:023 m

yD � xD tanf3 � ÿ0:023 tan 72:235� � ÿ0:071 m: �3:54�
The negative value for xD was selected for this position of the mechanism.

Velocity analysis: The velocity analysis is carried out by differentiating

Eq. (3.53),

xD _xD � yD _yD � 0

_xD sinf3 � xD cosf3
_f3 ÿ _yD cosf3 � yD sinf3

_f3 � 0; �3:55�
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which can be rewritten as

ÿ0:023 _xD ÿ 0:07 _yD � 0

0:95 _xD ÿ 0:023�0:3��1:807� ÿ 0:3 _yD ÿ 0:07�0:95��1:807� � 0: �3:56�
The solution is

_xD � 0:129 m=s; _yD � ÿ0:041 m=s:

The magnitude of the velocity of kinematic pair D is

vD � jvD j �
�����������������
_x 2
D � _y2

D

q
�

���������������������������������������
0:1292 � �ÿ0:041�2

q
� 0:135 m=s:

Acceleration analysis: The acceleration analysis is obtained using the

derivative of the velocity given by Eq. (3.55):

_x2
D � xD �xD � _y2

D � yD �yD � 0

�xD sinf3 � 2 _xD
_f3 cosf3 ÿ xD

_fu2
3 sinf3 � xD

�f3 cosf3 ÿ �yD cosf3

� 2 _yD
_f3 sinf3 � yD

_f2
3 cosf3 � yD

�f2
3 sinf3 � 0: �3:57�

The solution of this system is

�xD � 0:147 m=s2; �yD � 0:210 m=s2:

The absolute acceleration of kinematic pair D is

aD � jaD j �
����������������
�x 2
d � �y2

D

q
�

��������������������������������������
�0:150�2 � �0:212�2

q
� 0:256 m=s2:

Kinematic Pair E
The position of kinematic pair E is determined from

�xE �t � ÿ xD �t ��2 � �yE �t � ÿ yD �t ��2 � DE 2: �3:58�
For kinematic pair E, with the coordinate yE � 0, Eq. (3.58) becomes

�xE �t � ÿ xD �t ��2 � y2
D �t � � DE 2; �3:59�

or

�xE � 0:023�2 � �0:071�2 � 0:22;

with the correct solution xE � 0:164 m.

Velocity analysis: The velocity of kinematic pair E is determined by

differentiating Eq. (3.59) as follows:

2� _xE ÿ _xD ��xE ÿ xD � � 2yD _yD � 0: �3:60�
This can be rewritten as

_xE ÿ _xD �
yD _yD

xE ÿ xD

:

The solution of the foregoing equation is

_xE � 0:129ÿ �ÿ0:071��ÿ0:041�
0:164� 0:023

� 0:113 m=s:
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Acceleration analysis: The derivative of Eq. (3.60) yields

� �xE ÿ �xD ��xE ÿ xD � � � _xE ÿ _xD �2 � _y2
D � yD �yD � 0; �3:61�

with the solution

�xE � �xD ÿ
_y2
D � yD �yD � � _xE ÿ _xD �2

xE ÿ xD

;

or with numerical values

�xE � 0:150ÿ �ÿ0:041�2 � �ÿ0:07��0:21� � �0:112ÿ 0:129�2
0:164� 0:023

� 0:271 m=s2:

Link 4
The angle f4 is determined from

yE ÿ yD �t � ÿ �xE �t � ÿ xD �t �� tanf4�t � � 0; �3:62�

where yE � 0. The preceding equation can be rewritten as

ÿyD �t � ÿ �xE �t � ÿ xD �t �� tanf4�t � � 0; �3:63�

and the solution is

f4 � arctan
ÿyD

xE ÿ xD

� �
� arctan

0:071

0:164� 0:023

� �
� 20:923�:

Velocity analysis: The derivative of Eq. (3.63) yields

ÿ _yD ÿ � _xE ÿ _xD � tanf4 ÿ �xE ÿ xD �
1

cos2 f4

_f4 � 0: �3:64�

Hence,

o4 � _f4 � ÿ
cos2 f4� _yd � � _xe ÿ _xd � tanf4�

xe ÿ xd

� 0:221 rad=s:

Acceleration analysis: The angular acceleration of link 4 is determined

by differentiating Eq. (3.64) as follows:

ÿ �yD ÿ � �xE ÿ �xD � tanf4 ÿ 2� _xE ÿ _xD �
1

cos2 f4

_f4

ÿ 2�xE ÿ xD �
sinf4

cos3 f4

_f2
4 ÿ �xE ÿ xD �

1

cos2 f4

�f4 � 0:

The solution of this equation is

a4 � �f4 � ÿ1:105 rad=s2:
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4. Kinetostatics

For a kinematic chain it is important to know how forces and torques are

transmitted from the input to the output, so that the links can be properly

designated. The friction effects are assumed to be negligible in the dynamic

force analysis or kinetostatics analysis presented here. The ®rst part of this

chapter is a review of general force analysis principles and conventions.

4.1 Moment of a Force about a Point

A force vector F has a magnitude, an orientation, and a sense. The magnitude

of a vector is speci®ed by a positive number and a unit having appropriate

dimensions. The orientation of a vector is speci®ed by the relationship

between the vector and given reference lines and=or planes. The sense of

a vector is speci®ed by the order of two points on a line parallel to the vector.

Orientation and sense together determine the direction of a vector. The line

of action of a vector is a hypothetical in®nite straight line collinear with the

vector.

The force vector F can be expressed in terms of a cartesian reference

frame, with the unit vectors , , and k (Fig. 4.1):

F � Fx � Fy � Fz k: �4:1�

The components of the force in the x, y, and z directions are Fx , Fy , and Fz .

The resultant of two forces F1 � F1x � F1y � F1z k and F2 � F2x �
F2y � F2z k is the vector sum of those forces:

R � F1 � F2 � �F1x � F2x � � �F1y � F2y � � �F1z � F2z �k: �4:2�
A moment (torque) is de®ned as the moment of a force about (with respect

to) a point. The moment of the force F about the point O is the cross product

vector

M�F�O � r � F

�
k

rx ry rz

Fx Fy Fz

�������
�������

� �ryFz ÿ rz fy � � �rz Fx ÿ rx Fz � � �rx Fy ÿ ryFx �k; �4:3�

i j

i j

i j i

j

i j

i j

i j

Figure 4.1
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where r � OA � rx � ry � rz k is a position vector directed from the point

about which the moment is taken (O in this case) to any point on the line of

action of the force (Fig. 4.1).

The magnitude of M�F�O is

jM�F�O j � M
�F�
O � rF j sin yj;

where y � ��r; F� is the angle between vectors r and F, and r � jrj and

F � jFj are the magnitudes of the vectors.

The line of action of M�F�O is perpendicular to the plane containing r and F

(M�F�O ? r and M
�F�
O ? F), and the sense is given by the right-hand rule.

Two forces, F1 and F2; that have equal magnitudes jF1j � jF2j; opposite

senses F � ÿF2, and parallel directions (F1kF2) are called a couple. The

resultant force of a couple is zero R � F1 � F2 � 0. The resultant moment

M 6� 0 about an arbitrary point is

M � r1 � F1 � r2 � F2;

or

M � r1 � �ÿF2� � r2 � F2 � �r2 ÿ r1� � F2 � r � F2; �4:4�
where r � r2 ÿ r1 is a vector from any point on the line of action of F1 to any

point of the line of action of F2. The direction of the torque is perpendicular

to the plane of the couple and the magnitude is given by (Fig. 4.2)

jMj � M � rF2j sin yj � hF2; �4:5�
where h � r j sin yj is the perpendicular distance between the line of action.

The resultant moment of a couple is independent of the point with respect to

which moments are taken.

4.2 Inertia Force and Inertia Moment

Newton's second law of motion states that a particle acted on by forces

whose resultant is not zero will move in such a way that the time rate of

i j

Figure 4.2
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change of its momentum will at any instant be proportional to the resultant

force.

In the case of a particle with constant mass (m � constant), Newton's

second law is expressed as

F � ma; �4:6�
where the vector F is the resultant of the external forces on the particle and a

is the acceleration vector of the particle.

In the case of a rigid body, RB, with constant mass m, Newton's second

law is (Fig. 4.3)

F � maC �4:7�
MC � IC a; �4:8�

where

j F is the resultant of external force on the rigid body

j aC is the acceleration of the center of mass, C, of the rigid body

j MC is the resultant external moment on the rigid body about the

center of mass C

j IC is the mass moment of inertia of the rigid body with respect to an

axis passing through the center of mass C and perpendicular to the

plane of rotation of the rigid body

j a is the angular acceleration of the rigid body

Equations (4.7) and (4.8) can be interpreted in two ways:

1. The forces and moments are known and the equations can be solved

for the motion of the rigid body (direct dynamics).

2. The motion of the RB is known and the equations can be solved for

the force and moments (inverse dynamics).

The dynamic force analysis in this chapter is based on the known motion of

the mechanism.

Figure 4.3
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D'Alembert's principle is derived from Newton's second law and is

expressed as

F� �ÿmaC � � 0 �4:9�
MC � �ÿIC a� � 0: �4:10�

The terms in parentheses in Eqs. (4.9) and (4.10) are called the inertia force

and the inertia moments, respectively. The inertia force Fin is

Fin � ÿmaC ; �4:11�

and the inertia moment is

Min � ÿIC a: �4:12�

The dynamic force analysis can be expressed in a form similar to static force

analysis, P
R �P F� Fin � 0 �4:13�P

TC �
P

MC �Min � 0; �4:14�

where
P

F is the vector sum of all external forces (resultant of external

force), and
P

MC is the sum of all external moments about the center of

mass C (resultant external moment).

For a rigid body in plane motion in the xy plane,

aC � �xC � �yC ; a � ak;

with all external forces in that plane, Eqs. (4.13) and (4.14) becomeP
Rx �

P
Fx � Fin x �

P
Fx � �ÿm �xC � � 0 �4:15�P

Ry �
P

Fy � Fin y �
P

Fy � �ÿm �yC � � 0 �4:16�P
TC �

P
MC �Min �

P
MC � �ÿIC a� � 0: �4:17�

With d'Alembert's principle the moment summation can be about any

arbitrary point P, P
TP �

P
MP �Min � rPC � Fin � 0; �4:18�

where

j
P

MP is the sum of all external moments about P

j Min � ÿICa is the inertia moment

j Fin � ÿmaC is the inertia force

j rPC � PC is a vector from P to C

The dynamic analysis problem is reduced to a static force and moment

balance problem where the inertia forces and moments are treated in the

same way as external forces and torques.

i j

226 Theory of Mechanisms

M
ech

an
ism

s



4.3 Free-Body Diagrams

A free-body diagram is a drawing of a part of a complete system, isolated in

order to determine the forces acting on that rigid body. The following force

convention is de®ned: Fij represents the force exerted by link i on link j.

Figure 4.4 shows various free-body diagrams that can be considered in

the analysis of a crank slider mechanism (Fig. 4.4a).

In Fig. 4.4b, the free body consists of the three moving links isolated

from the frame 0. The forces acting on the system include a driving torque M,

an external driven force F, and the forces transmitted from the frame at

kinematic pair A, F01, and at kinematic pair C, F03. Figure 4.4c is a free-body

diagram of the two links 1 and 2. Figure 4.4d is a free-body diagram of a

single link.

Figure 4.4
Used with

permission from
Ref. 15.
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The force analysis can be accomplished by examining individual links or

subsystems of links. In this way the reaction forces between links as well as

the required input force or moment for a given output load are computed.

4.4 Reaction Forces

Figure 4.5a is a schematic diagram of a crank slider mechanism comprising of

a crank 1, a connecting rod 2, and a slider 3. The center of mass of link 1 is

C1, the center of mass of link 2 is C2, and the center of mass of slider 3 is C.

The mass of the crank is m1, the mass of the connecting road is m2, and the

mass of the slider is m3. The moment of inertia of link i is ICi , i � 1; 2; 3.

The gravitational force is Gi � ÿmig , i � 1; 2; 3, where g � 9:81 m=s2

is the acceleration of gravity.

For a given value of the crank angle f and a known driven force Fext , the

kinematic pair reactions and the drive moment M on the crank can be

computed using free-body diagrams of the individual links.

Figures 4.5b, 4.5c, and 4.5d show free-body diagrams of the crank 1, the

connecting rod 2, and the slider 3. For each moving link the dynamic

equilibrium equations are applied.

j

Figure 4.5 Used with permission from Ref. 15.
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For the slider 3 the vector sum of the all the forces (external forces Fext ,

gravitational force G3, inertia forces Fin 3, reaction forces F23, F03) is zero

(Fig. 4.5d): P
F�3� � F23 � Fin 3 � G3 � Fext � F03 � 0:

Projecting this force onto the x and y axes givesP
F�3� � � F23x � �ÿm3 �xC � � Fext � 0 �4:19�P
F�3� � � F23y ÿm3g � F03y � 0: �4:20�

For the connecting rod 2 (Fig. 4.5c), two vertical equations can be written:P
F�2� � F32 � Fin 2 � G2 � F12 � 0P

M�2�B � �rC ÿ rB � � F32 � �rC 2 ÿ rB � � �Fin 2 � G2� �Min 2 � 0;

or P
F�2� � � F32x � �ÿm2 �xC 2� � F12x � 0 �4:21�P
F�2� � � F32y � �ÿm2 �yC 2� ÿm2g � F12y � 0 �4:22�

k

xC ÿ xB yC ÿ yB 0

F32x F32y 0

�������
��������

k

xC 2 ÿ xB yC 2 ÿ yB 0

ÿm2 �xC 2 ÿm2 �yC 2 ÿm2g 0

�������
�������

ÿ IC2a2k � 0: �4:23�
For the crank 1 (Fig. 4.5b), there are two vectorial equations,P

F�1� � F21 � Fin 1 � G1 � F01 � 0P
M�1�A � rB � F21 � rC 1 � �Fin 1 � G1� �Min 1 �M � 0

or P
F�1� � � F21x � �ÿm1 �xC 1� � F01x � 0 �4:24�P
F�1� � � F21y � �ÿm1 �yC 1� ÿm1g � F01y � 0 �4:25�

k

xB yB 0

F21x F21y 0

�������
��������

k

xC 1 yC 1 0

ÿm1 �xC 1 ÿm1 �yC 1 ÿm1g 0

�������
�������ÿ IC 1a1k �M k � 0;

�4:26�
where M � jMj is the magnitude of the input torque on the crank.

The eight scalar unknowns F03y , F23x � ÿF32x , F23y � ÿF32y , F12x �
ÿF21x , F12y � ÿF21y , F01x , F01y , and M are computed from the set of eight

equations (4.19), (4.20), (4.21), (4.22), (4.23), (4.24), (4.25), and (4.26).

4.5 Contour Method

An analytical method to compute reaction forces that can be applied for both

planar and spatial mechanisms will be presented. The method is based on

the decoupling of a closed kinematic chain and writing the dynamic

i

j

i

j

i j i j

i

j

i j i j
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equilibrium equations. The kinematic links are loaded with external forces

and inertia forces and moments.

A general monocontour closed kinematic chain is considered in Fig. 4.6.

The reaction force between the links i ÿ 1 and i (kinematic pair Ai) will be

determined. When these two links i ÿ 1 and i are separated (Fig. 4.6b), the

reaction forces Fiÿ1;i and Fi;iÿ1 are introduced and

Fiÿ1;i � Fi;iÿ1 � 0: �4:27�
Table 4.1 shows the reaction forces for several kinematic pairs. The following

notations have been used: MD is the moment with respect to the axis D, and

FD is the projection of the force vector F onto the axis D.

It is helpful to ``mentally disconnect'' the two links (i ÿ 1) and i, which

create the kinematic pair Ai, from the rest of the mechanism. The kinematic

pair at Ai will be replaced by the reaction forces Fiÿ1;i , and Fi;iÿ1. The closed

kinematic chain has been transformed into two open kinematic chains, and

two paths I and II can be associated. The two paths start from Ai .

For the path I (counterclockwise), starting at Ai and following I the ®rst

kinematic pair encountered is Aiÿ1. For the link i ÿ 1 left behind, dynamic

equilibrium equations can be written according to the type of kinematic pair

Figure 4.6
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at Aiÿ1. Following the same path I, the next kinematic pair encountered is

Aiÿ2. For the subsystem (i ÿ 1 and i ÿ 2), equilibrium conditions correspond-

ing to the type of the kinematic pair at Aiÿ2 can be speci®ed, and so on. A

similar analysis can be performed for the path II of the open kinematic chain.

The number of equilibrium equations written is equal to the number of

unknown scalars introduced by the kinematic pair Ai (reaction forces at this

kinematic pair). For a kinematic pair, the number of equilibrium conditions is

equal to the number of relative mobilities of the kinematic pair.

Table 4.1 Reaction Forces for Several Kinematic Pairs

Type of joint Joint force
or moment

Unknowns Equilibrium
condition

Fx � Fy � F
F ? DD

jFx j � Fx

jFy j � Fy

MD � 0

F ? DD jFj � F
x

FD � 0

Fx � Fy � F
F ? DD

jFx j � Fx

jFy j � Fy

x

FD � 0
MD � 0

F ? DD
Fkn

jFj � F
x

FD � 0
MD � 0

Fx � Fy � Fz � F jFx j � Fx

jFy j � Fy

jFz j � Fz

MD1
� 0

MD2
� 0

MD3
� 0
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The ®ve-link ( j � 1; 2; 3; 4; 5) mechanism shown in Fig. 4.7a has the

center of mass locations designated by Cj �xCj
; yCj

; 0�. The following analysis

will consider the relationships of the inertia forces Fin j , the inertia moments

Min j , the gravitational force Gj , the driven force, Fext , to the joint reactions

Fij , and the drive torque M on the crank 1 [15].

To simplify the notation, the total vector force at Cj is written as

Fj � Fin j � Gj and the inertia torque of link j is written as Mj � Min j . The

diagram representing the mechanism is depicted in Fig. 4.7b and has two

contours 0-1-2-3-0 and 0-3-4-5-0.

Remark

The kinematic pair at C represents a rami®cation point for the mechanism

and the diagram, and the dynamic force analysis will start with this kinematic

pair. The force computation starts with the contour 0-3-4-5-0 because the

driven load Fext on link 5 is given.

4.5.1 (I) CONTOUR 0-3-4-5-0
Reaction F34

The rotation kinematic pair at C (or CR ; where the subscript R means

rotation), between 3 and 4, is replaced with the unknown reaction (Fig. 4.8)

F34 � ÿF43 � F34x � F34y :i j

Figure 4.7
Used with

permission from
Ref. 15.
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If the path I is followed (Fig. 4.8a), for the rotation kinematic pair at E (ER ) a

moment equation can be written asP
M�4�E � �rC ÿ rE � � F32 � �rC 4 ÿ rD � � F4 �M4 � 0;

or

k

xC ÿ xE yC ÿ yE 0

F34x F34y 0

�������
��������

k

xC 4 ÿ xE yC 4 ÿ yE 0

F4x F4y 0

�������
��������M4k � 0: �4:28�

Continuing on path I, the next kinematic pair is the translational kinematic

pair at D (DT ). The projection of all the forces that act on 4 and 5 onto the

sliding direction D (x axis) should be zero:

P
F
�4 5�
D �PF

�4 5�
� � �F34 � F4 � F5 � Fext � �

� F34x � F4x � F5x � Fext � 0: �4:29�
After the system of Eqs. (4.28) and (4.29) are solved, the two unknowns F34x

and F34y are obtained.

Reaction F45

The rotation kinematic pair at E (ER ), between 4 and 5, is replaced with the

unknown reaction (Fig. 4.9)

F45 � ÿF54 � F45x � F45y :

i j i j

& &

i i

i j

Figure 4.8
Used with

permission from
Ref. 15.
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If the path I is traced (Fig. 4.9a), for the pin kinematic pair at C (CR ) a

moment equation can be written,

P
M�4�C � �rE ÿ rC � � F54 � �rC 4 ÿ rC � � F4 �M4 � 0;

or

k
xE ÿ xC yE ÿ yC 0
ÿF45x ÿF45y 0

������
�������

k
xC 4 ÿ xC yC 4 ÿ yC 0

F4x F4y 0

������
�������M4k � 0: �4:30�

For the path II the slider kinematic pair at E (ET ) is encountered. The

projection of all forces that act on 5 onto the sliding direction D (x axis)

should be zero:

P
F�5�D �

P
F�5� � � �F45 � F5 � Fext � �

� F45x � F5x � Fext � 0: �4:31�

The unknown force components F45x and F45y are calculated from Eqs. (4.30)

and (4.31).

i j i j

i i

Figure 4.9
Used with

permission from
Ref. 15.
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Reaction F05

The slider kinematic pair at E (ET ), between 0 and 5, is replaced with the

unknown reaction (Fig. 4.10)

F05 � F05y :

The reaction kinematic pair introduced by the translational kinematic pair is

perpendicular to the sliding direction, F05 ? D. The application point P of the

force F05 is unknown.

If the path I is followed, as in Fig. 4.10a, for the pin kinematic pair at E

(ER ) a moment equation can be written for link 5,P
M�5�E � �rP ÿ rE � � F05 � 0;

or

xF05y � 0 �) x � 0: �4:32�

The application point is at E (P � E ).

Continuing on path I, the next kinematic pair is the pin kinematic pair C

(CR ):

P
M
�4 5�
C � �rE ÿ rC � � �F05 � F5 � Fext � � �rC 4 ÿ rC � � F4 �M4 � 0;

j

&

Figure 4.10
Used with

permission from
Ref. 15.
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or

k
xE ÿ xC yE ÿ yC 0

F5x � Fext F05y 0

������
�������

k
xC 4 ÿ xC yC4 ÿ yC 0

F4x F4y 0

������
�������M4k � 0: �4:33�

The kinematic pair reaction force F05y can be computed from Eq. (4.33).

4.5.2 (II) CONTOUR 0-1-2-3-0
For this contour the kinematic pair force F43 � ÿF34 at the rami®cation point

C is considered as a known external force.

Reaction F03

The pin kinematic pair DR, between 0 and 3, is replaced with unknown

reaction force (Fig. 4.11)

F03 � F03x � F03y :

If the path I is followed (Fig. 4.11a), a moment equation can be written for

the pin kinematic pair CR for the link 3,P
M�3�C � �rD ÿ rC � � F03 � �rC 3 ÿ rC � � F3 �M3 � 0;

i j i j

i j

Figure 4.11
Used with

permission from
Ref. 15.
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or

k
xD ÿ xC yD ÿ yC 0

F03x F03y 0

������
�������

k
xC 3 ÿ xC yC3 ÿ yC 0

F3x F3y 0

������
�������M3k � 0: �4:34�

Continuing on path I, the next kinematic pair is the pin kinematic pair BR,

and a moment equation can be written for links 3 and 2,P
M
�3 2�
B � �rD ÿ rB � � F03 � �rC 3 ÿ rB � � F3 �M3 � �rC ÿ rB� � F43

� �rC 2 ÿ rB � � F2 �M2 � 0;

or

k

xD ÿ xB yD ÿ yB 0

F03x F03y 0

�������
��������

k

xC 3 ÿ xB yC 3 ÿ yB 0

F3x F3y 0

�������
�������

�M3k �
k

xC ÿ xB yC ÿ yB 0

F43x F43y 0

�������
�������

�
k

xC 2 ÿ xB yC 2 ÿ yB 0

F2x F2y 0

�������
��������M2k � 0: �4:35�

The two components F03x and F03y of the reaction force are obtained from

Eqs. (4.34) and (4.36).

Reaction F23

The pin kinematic pair CR, between 2 and 3, is replaced with the unknown

reaction force (Fig. 4.12)

F23 � F23x � F23y :

If the path I is followed, as in Fig. 4.12a, a moment equation can be written

for the pin kinematic pair DR for the link 3,P
M0�3�D � �rC ÿ rD � � �F23 � F43��rC 3 ÿ rD � � F3 �M3 � 0;

or

k

xC ÿ xD yC ÿ yD 0

F23x � F43x F23y � F43y 0

�������
��������

k

xC 3 ÿ xD yC 3 ÿ yD 0

F3x F3y 0

�������
��������M3k � 0:

�4:36�
For the path II the ®rst kinematic pair encountered is the pin kinematic

pair BR, and a moment equation can be written for link 2,P
M
�2�
B � �rC ÿ rB � � �ÿF23� � �rC 2 ÿ rB� � F2 �M2 � 0;

i j i j

&

i j i j

i j

i j

i j

i j i j
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or

k
xC ÿ xB yC ÿ yB 0
ÿF23x ÿF23y 0

������
�������

k
xC 2 ÿ xB yC 2 ÿ yB 0

F2x F2y 0

������
�������M2k � 0: �4:37�

The two force components F23x and F23y of the reaction force are obtained

from Eqs. (4.36) and (4.37).

Reaction F12

The pin kinematic pair BR, between 1 and 2, is replaced with the unknown

reaction force (Fig. 4.13)

F12 � F12x � F12y :

If the path I is followed, as in Fig. 4.13a, a moment equation can be written

for the pin kinematic pair CR for the link 2,P
M
�2�
C � �rB ÿ rC � � F12 � �rC 2 ÿ rC � � F2 �M2 � 0;

or

k
xB ÿ xC yB ÿ yC 0

F12x F12y 0

������
�������

k
xC 2 ÿ xC yC 2 ÿ yC 0

F2x F2y 0

������
�������M2k � 0: �4:38�

i j i j

i j

i j i j

Figure 4.12
Used with

permission from
Ref. 15.
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Continuing on path I, the next kinematic pair encountered is the pin

kinematic pair DR, and a moment equation can be written for links 2 and 3

P
M
�2 3�
D � �rB ÿ rD � � F12 � �rC 2 ÿ rD � � F2 �M2

� �rC ÿ rD � � F43 � �rC 3 ÿ rD � � F3 �M3 � 0;

or

k

xB ÿ xD yB ÿ yD 0

F12x F12y 0

�������
��������

k

xC 2 ÿ xD yC 2 ÿ yD 0

F2x F2y 0

�������
��������M2k

�
k

xC ÿ xD yC ÿ yD 0

F43x F43y 0

�������
��������

k

xC 3 ÿ xD yC3 ÿ yD 0

F3x F3y 0

�������
��������M3k � 0: �4:39�

The two components F12x and F12y of the kinematic pair force are computed

from Eqs. (4.38) and (4.39).

Reaction F01 and Driver Torque M

The pin kinematic pair AR, between 0 and 1, is replaced with the unknown

reaction force (Fig. 4.14)

F01 � F01x � F01y :

&

i j i j

i j i j

i j

Figure 4.13
Used with

permission from
Ref. 15.
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The unknown driver torque is M � M k. If the path I is followed (Fig. 4.14a),

a moment equation can be written for the pin kinematic pair BR for the link 1,P
M�1�B � �rA ÿ rB � � F01 � �rC 1 ÿ rB� � F1 �M1 �M � 0;

or

k

xA ÿ xB yA ÿ yB 0

ÿF01x ÿF01y 0

�������
��������

k

xC 1 ÿ xB yC 1 ÿ yB 0

F1x F1y 0

�������
��������M1k �M k � 0:

�4:40�
Continuing on path I, the next kinematic pair encountered is the pin

kinematic pair CR, and a moment equation can be written for links 1 and 2,P
M
�1 2�
C � �rA ÿ rC � � F01 � �rC 1 ÿ rC � � F1 �M1 �M

� �rC 2 ÿ rC � � F2 �M2 � 0: �4:41�
Equation (4.41) is the vector sum of the moments about DR of all forces and

torques that act on links 1, 2, and 3:P
M
�1 2 3�
D � �rA ÿ rD � � F01 � �rC 1 ÿ rD � � F1 �M1 �M

� �rC2 ÿ rD � � F2 �M2 � �rC ÿ rD � � F43 � �rC 3 ÿ rD � � F3

�M3 � 0: �4:42�

i j i j

&

& &

Figure 4.14
Used with

permission from
Ref. 15.
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The components F01x , F01y , and M are computed from Eqs. (4.40), (4.41), and

(4.42).
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1. Screws

T
hreaded fasteners such as screws, nuts, and bolts are important

components of mechanical structures and machines. Screws may

be used as removable fasteners or as devices for moving loads.

1.1 Screw Thread

The basic arrangement of a helical thread wound around a cylinder is

illustrated in Fig. 1.1. The terminology of an external screw threads is (Fig.

1.1):

j Pitch, denoted by p, is the distance, parallel to the screw axis,

between corresponding points on adjacent thread forms having

uniform spacing.

j Major diameter, denoted by d, is the largest (outside) diameter of a

screw thread.

j Minor diameter, denoted by dr or d1, is the smallest diameter of a

screw thread.

j Pitch diameter, denoted by dm or d2, is the imaginary diameter for

which the widths of the threads and the grooves are equal.

Figure 1.1
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The standard geometry of a basic pro®le of an external thread is shown in

Fig. 1.2, and it is basically the same for both Uni®ed (inch series) and ISO

(International Standards Organization, metric) threads.

The lead, denoted by l, is the distance the nut moves parallel to the

screw axis when the nut is given one turn. A screw with two or more threads

cut beside each other is called a multiple-threaded screw. The lead is equal

to twice the pitch for a double-threaded screw, and to three times the pitch

for a triple-threaded screw. The pitch p, lead l, and lead angle l are

represented in Fig. 1.3. Figure 1.3a shows a single-threaded, right-hand

screw, and Fig. 1.3b shows a double-threaded left-hand screw. All threads

are assumed to be right-hand, unless otherwise speci®ed.

A standard geometry of an ISO pro®le, M (metric) pro®le, with 60�

symmetric threads is shown in Fig. 1.4. In Fig. 1.4 D(d) is the basic major

diameter of an internal (external) thread, D1�d1� is the basic minor diameter

of an internal (external) thread, D2�d2� is the basic pitch diameter, and

H � 0:5�3�1=2p.

Metric threads are speci®ed by the letter M preceding the nominal

major diameter in millimeters and the pitch in millimeters per thread. For

example:

M 14� 2

M is the SI thread designation, 10 mm is the outside (major) diameter, and the

pitch is 2 mm per thread.

Figure 1.2
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Screw size in the Uni®ed system is designated by the size number for

major diameter, the number of threads per inch, and the thread series, like

this:

500
8
ÿ 18 UNF

500
8

is the outside (major) diameter, where the double tick marks mean inches,

and 18 threads per inch. Some Uni®ed thread series are

UNC, Uni®ed National Coarse

UNEF, Uni®ed National Extra Fine

Figure 1.3
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UNF, Uni®ed National Fine

UNS, Uni®ed National Special

UNR, Uni®ed National Round (round root)

The UNR series threads have improved fatigue strengths.

1.2 Power Screws

For application that require power transmission, the Acme (Fig. 1.5) and

square threads (Fig. 1.6) are used.

Power screws are used to convert rotary motion to linear motion of the

meshing member along the screw axis. These screws are used to lift weights

Figure 1.4

Figure 1.5

1. Screws 247

M
ac

h
in

e
Co

m
p
o
n
en

ts



(screw-type jacks) or exert large forces (presses, tensile testing machines).

The power screws can also be used to obtain precise positioning of the axial

movement.

A square-threaded power screw with a single thread having the pitch

diameter dm, the pitch p, and the helix angle l is considered in Fig. 1.7.

Consider that a single thread of the screw is unrolled for exactly one turn.

The edge of the thread is the hypotenuse of a right triangle and the height is

the lead. The hypotenuse is the circumference of the pitch diameter circle

(Fig. 1.8). The angle l is the helix angle of the thread.

The screw is loaded by an axial compressive force F (Figs. 1.7 and 1.8).

The force diagram for lifting the load is shown in Fig. 1.8a (the force Pr

acts to the right). The force diagram for lowering the load is shown in Fig.

1.8b (the force Pl acts to the left). The friction force is

Ff � mN ;

Figure 1.6

248 Machine Components

M
ach

in
e

Co
m

p
o
n
en

ts



where m is the coef®cient of dry friction and N is the normal force. The

friction force is acting opposite to the motion.

The equilibrium of forces for raising the load givesP
Fx � Pr ÿ N sin lÿ mN cos l � 0 �1:1�P
Fy � F � mN sin lÿ N cos l � 0: �1:2�

Similarly, for lowering the load one may write the equationsP
Fx � ÿPl ÿ N sin l� mN cos l � 0 �1:3�P
Fy � F ÿ mN sin lÿ N cos l � 0: �1:4�

Figure 1.7

Figure 1.8
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Eliminating N and solving for Pr gives

Pr �
F �sin l� m cos l�

cos lÿ m sin l
; �1:5�

and for lowering the load,

Pl �
F �m cos lÿ sin l�

cos l� m sin l
: �1:6�

Using the relation

tan l � l=pdm

and dividing the equations by cos l, one may obtain

Pr �
F ��l=pdm� � m�
1ÿ �ml=tdm�

�1:7�

Pl �
F �mÿ �l=pdm��
1� �ml=pdm�

: �1:8�

The torque required to overcome the thread friction and to raise the load is

Tr � Pr

dm

2
� Fdm

2

l � pmdm

pdm ÿ ml

� �
: �1:9�

The torque required to lower the load (and to overcome a part of the friction)

is

Tl �
Fdm

2

pmdm ÿ l

pdm � ml

� �
: �1:10�

When the lead l is large or the friction m is low, the load will lower itself. In

this case the screw will spin without any external effort, and the torque Tl in

Eq. (1.10) will be negative or zero. When the torque is positive, Tl > 0, the

screw is said to be self-locking.

The condition for self-locking is

pmdm > l :

Dividing both sides of this inequality by pdm and using l=pdm � tan l yields

m > tan l: �1:11�
The self-locking is obtained whenever the coef®cient of friction is equal to or

greater than the tangent of the thread lead angle.

The torque, T0, required only to raise the load when the friction is zero,

m � 0, is obtained from Eq. (1.9):

T0 �
Fl

2p
: �1:12�

The screw ef®ciency e can be de®ned as

e � T0

Tr

� Fl

2pTr

: �1:13�
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For square threads the normal thread load, F, is parallel to the axis of the

screw (Figs 1.6 and 1.7). The preceding equations can be applied for square

threads.

For Acme threads (Figs 1.5) or other threads, the normal thread load is

inclined to the axis because of the thread angle 2a and the lead angle l. The

lead angle can be neglected (is small), and only the effect of the thread angle

is considered (Fig. 1.9). The angle a increases the frictional force by the

wedging action of the threads. The torque required for raising the load is

obtained from Eq. (1.9) where the frictional terms must be divided by cos a:

Tr �
Fdm

2

l � pmdm sec a
pdm ÿ ml sec a

� �
: �1:14�

Equation (1.14) is an approximation because the effect of the lead angle has

been neglected. For power screws the square thread is more ef®cient than

the Acme thread. The Acme thread adds an additional friction due to the

wedging action. It is easier to machine an Acme thread than a square thread.

In general, when the screw is loaded axially, a thrust bearing or thrust

collar may be used between the rotating and stationary links to carry the axial

component (Fig. 1.10). The load is concentrated at the mean collar diameter

dc . The torque required is

Tc �
Fmcdc

2
; �1:15�

where mc is the coef®cient of collar friction.

Figure 1.9
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EXAMPLE A double square-thread power screw has the major diameter d � 64 mm and

the pitch p � 8 mm. The coef®cient of friction m is 0.08, and the coef®cient of

collar friction mc is 0.08. The mean collar diameter dc is 80 mm. The external

load on the screw F is 10 kN.

Find:

1. The lead, the pitch (mean) diameter and the minor diameter

2. The torque required to raise the load

3. The torque required to lower the load

4. The ef®ciency

Solution

1. From Fig. 1.6a:

The minor diameter is

dr � d ÿ p � 64ÿ 8 � 56 mm;

the pitch (mean) diameter is

dm � d ÿ p=2 � 64ÿ 4 � 60 mm:

The lead is

l � 2p � 2�8� � 16 mm:

Figure 1.10
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2. The torque required to raise the load is

Tr �
Fdm

2

l � pmdm

pdm ÿ ml

� �
� Fmcdc

2

� 104�60��10ÿ3�
2

16� p0:08�60�
p60ÿ 0:08�16�
� �

� 104�0:08��80��10ÿ3�
2

� 49:8� 32 � 81:8 N m:

3. The torque required to lower the load is

Tl �
Fdm

2

pmdm ÿ l

pdm � ml

� �
� Fmcdc

2

� 104�60��10ÿ3�
2

p0:08�60� ÿ 16

p60� 0:08�16�
� �

� 104�0:08��80��10ÿ3�
2

� ÿ1:54� 32 � 30:45 N m:

The screw is not self-locking (the ®rst term in the foregoing expres-

sion is negative).

4. The overall ef®ciency is

e � Fl

2pTr

� 104�16��10ÿ3�
2p�81:8� � 0:31: m

2. Gears

2.1 Introduction

Gears are toothed elements that transmit rotary motion from one shaft to

another. Gears are generally rugged and durable and their power transmis-

sion ef®ciency is as high as 98%. Gears are usually more costly than chains

and belts. The American Gear Manufacturers Association (AGMA) has

established standard tolerances for various degrees of gear manufacturing

precision. Spurs gears are the simplest and most common type of gears. They

are used to transfer motion between parallel shafts, and they have teeth that

are parallel to the shaft axes.

2.2 Geometry and Nomenclature

The basic requirement of gear-tooth geometry is the condition of angular

velocity ratios that are exactly constant, that is, the angular velocity ratio

between a 30-tooth and a 90-tooth gear must be precisely 3 in every position.

The action of a pair of gear teeth satisfying this criteria is named conjugate

gear-tooth action.
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LAW OF

CONJUGATE

GEAR-TOOTH

ACTION

The common normal to the surfaces at the point of contact of two gears in

rotation must always intersect the line of centers at the same point P, called

the pitch point.

The law of conjugate gear-tooth action can be satis®ed by various tooth

shapes, but the one of current importance is the involute of the circle. An

involute (of the circle) is the curve generated by any point on a taut thread as

it unwinds from a circle, called the base circle (Fig. 2.1a). The involute can

Figure 2.1
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also be de®ned as the locus of a point on a taut string that is unwrapped from

a cylinder. The circle that represents the cylinder is the base circle. Figure

2.1b represents an involute generated from a base circle of radius rb starting

at the point A. The radius of curvature of the involute at any point I is given

by

r �
���������������
r 2 ÿ r 2

b

q
; �2:1�

where r � OI . The involute pressure angle at I is de®ned as the angle

between the normal to the involute IB and the normal to OI, f � �IOB.

In any pair of mating gears, the smaller of the two is called the pinion

and the larger one the gear. The term ``gear'' is used in a general sense to

indicate either of the members and also in a speci®c sense to indicate the

larger of the two. The angular velocity ratio between a pinion and a gear is

(Fig. 2.2).

i � op=og � ÿdg=dp; �2:2�

where o is the angular velocity and d is the pitch diameter; the minus sign

indicates that the two gears rotate in opposite directions. The pitch circles are

the two circles, one for each gear, that remain tangent throughout the

Figure 2.2
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engagement cycle. The point of tangency is the pitch point. The diameter of

the pitch circle is the pitch diameter. If the angular speed is expressed in rpm,

then the symbol n is preferred instead of o. The diameter (without a

qualifying adjective) of a gear always refers to its pitch diameter. If other

diameters (base, root, outside, etc.) are intended, they are always speci®ed.

Similarly, d, without subscripts, refers to pitch diameter. The pitch diameters

of a pinion and gear are distinguished by subscripts p and g (dp and dg are

their symbols; Fig. 2.2). The center distance is

c � �dp � dg�=2 � rp � rg; �2:3�

where r � d=2 is the pitch circle radius.

In Fig. 2.3 line tt is the common tangent to the pitch circles at the pitch

point, and AB is the common normal to the surfaces at C, the point of contact

of two gears. The inclination of AB with the line tt is called the pressure

angle, f. The pressure angle most commonly used, with both English and SI

units, is 20�. In the United States 25� is also standard, and 14.5� was formerly

an alternative standard value. Pressure angle affects the force that tends to

separate mating gears.

The involute pro®les are augmented outward beyond the pitch circle by

a distance called the addendum, a (Fig. 2.4). The outer circle is usually

Figure 2.3
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termed the addendum circle, ra � r � a. Similarly, the tooth pro®les are

extended inward from the pitch circle a distance called the dedendum, b.

The involute portion can extend inward only to the base circle. A ®llet at the

base of the tooth merges the pro®le into the dedendum circle. The ®llet

decreases the bending stress concentration. The clearance is the amount by

which the dedendum in a given gear exceeds the addendum of its mating

gear.

The circular pitch is designated as p and is measured in inches (English

units) or millimeters (SI units). If N is the number of teeth in the gear (or

pinion), then

p � pd=N ; p � pdp=Np; p � pdg=Ng : �2:4�
More commonly used indices of gear-tooth size are diametral pitch, Pd (used

only with English units) and module, m (used only with SI). Diametral pitch

is de®ned as the number of teeth per inch of pitch diameter:

Pd � N =d ; Pd � Np=dp; Pd � Ng=dg : �2:5�
Module m, which is essentially the complementary of Pd , is de®ned as the

pitch diameter in millimeters divided by the number of teeth (number of

millimeters of pitch diameter per tooth):

m � d=N ; m � dp=Np; m � dg=Ng : �2:6�
One can easily verify that

pPd � p � p in inches; Pd in teeth per inch�
p=m � p � p in millimeters; m in millimeters per tooth�

m � 25:4=Pd :

With English units the word ``pitch,'' without a qualifying adjective, denotes

diametral pitch (a ``12-pitch gear'' refers to a gear with Pd � 12 teeth per inch

Figure 2.4
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of pitch diameter). With SI units ``pitch'' means circular pitch (a ``gear of pitch

3.14 mm'' refers to a gear having a circular pitch p of 3.14 mm).

Standard diametral pitches Pd (English units) in common use are as

follows:

1 to 2 by increments of 0.25

2 to 4 by increments of 0.5

4 to 10 by increments of 1

10 to 20 by increments of 2

20 to 40 by increments of 4

With SI units, commonly used standard values of module m are as follows:

0.2 to 1.0 by increments of 0.1

1.0 to 4.0 by increments of 0.25

4.0 to 5.0 by increments of 0.5

Addendum, minimum dedendum, and clearance for standard full-depth

involute teeth (pressure angle is 20�) with English units in common use

are

Addendum a � 1=Pd

Minimum dedendum b � 1:157=Pd :

For stub involute teeth with a pressure angle equal to 20�, the standard values

are (English units)

Addendum a � 0:8=Pd

Minimum dedendum b � 1=Pd :

For SI units the standard values for full-depth involute teeth with a pressure

angle of 20� are

Addendum a � m;

Minimum dedendum b � 1:25 m:

2.3 Interference and Contact Ratio

The contact of segments of tooth pro®les that are not conjugate is called

interference. The involute tooth form is only de®ned outside the base circle.

In some cases, the dedendum will extend below the base circle. Then, the

portion of tooth below the base circle will not be an involute and will

interfere with the tip of the tooth on the mating gear, which is an involute.

Interference will occur, preventing rotation of the mating gears, if either of

the addendum circles extends beyond tangent points A and B (Fig. 2.5),

which are called interference points. In Fig. 2.5 both addendum circles

extend beyond the interference points.
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The maximum possible addendum circle radius of a pinion or gear

without interference is

ra�max � �
����������������������������
r 2

b � c2 sin2 f
q

; �2:7�
where rb � r cosf is the base circle radius of the pinion or gear. The base

circle diameter is

db � d cosf: �2:8�
The average number of teeth in contact as the gears rotate together is the

contact ratio CR, which is calculated (for external gears) from

CR �
������������������
r 2

ap ÿ r 2
bp

q
�

������������������
r 2

ag ÿ r 2
bg

q
ÿ c sinf

pb

; �2:9�

where rap , rag are addendum radii of the mating pinion and gear, and rbp , rbg

are base circle radii of the mating pinion and gear. The base pitch pb is

computed with

pb � pdb=N � p cosf: �2:10�

Figure 2.5
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The base pitch is like the circular pitch, except that it represents an arc of the

base circle rather than an arc of the pitch circle. The acceptable values for

contact ratio are CR > 1:2.

For internal gears the contact ratio is

CR �
������������������
r 2

ap ÿ r 2
bp

q
ÿ

���������������������
r 2

ag ÿ ru2
bg

q
� c sinf

pb

: �2:11�

Gears are commonly speci®ed according to AGMA Class Number, a code

that denotes important quality characteristics. Quality numbers denote tooth-

element tolerances. The higher the number, the tighter the tolerance. Gears

are heat treated by case hardening, nitriding, precipitation hardening, or

through hardening. In general, harder gears are stronger and last longer than

soft ones.

EXAMPLE Two involute spur gears of module 5, with 19 and 28 teeth, operate at a

pressure angle of 20�. Determine whether there will be interference when

standard full-depth teeth are used. Find the contact ratio.

Solution

A standard full-depth tooth has on addendum of a � m � 5 mm.

The gears will mesh at their pitch circles, and the pitch circle radii of

pinion and gear are

rp � mNp=2 � 5�19�=2 � 47:5 mm

rg � mNg=2 � 5�28�=2 � 70 mm:

The theoretical center distance is

c � �dp � dg�=2 � rp � rg � 47:5� 70 � 117:5 mm:

The base circle radii of pinion and gear are

rbp � rp cosf � 47:5 cos 20� � 44:635 mm

rbg � rg cosf � 70 cos 20� � 65:778 mm:

The addendum circle radii of pinion and gear are

rap � rp � a � m�Np � 2�=2 � 52:5 mm

rag � rg � a � m�Ng � 2�=2 � 75 mm:

The maximum possible addendum circle radii of pinion and gear, without

interference, are

ra�max �p �
�����������������������������
r 2

bp � c2 sin2 f
q

� 60:061 mm > rap � 52:5 mm

ra�max �g �
�����������������������������
r 2

bg � c2 sin2 f
q

� 77:083 mm > rag � 75 mm:

Clearly, the use of standard teeth would not cause interference.
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The contact ratio is

CR �
������������������
r 2

ap ÿ r 2
bp

q
�

������������������
r 2

ag ÿ r 2
bg

q
ÿ c sinf

pm cosf
� 1:590;

which should be a suitable value �CR > 1:2�. m

2.4 Ordinary Gear Trains

A gear train is any collection of two or more meshing gears. Figure 2.6a

shows a simple gear train with three gears in series. The train ratio is

computed with the relation

i13 �
o1

o3

� o1

o2

o2

o3

� ÿN2

N1

� �
ÿN3

N2

� �
� N3

N1

: �2:12�

Only the sign of the overall ratio is affected by the intermediate gear 2, which

is called an idler.

Figure 2.6b shows a compound gear train, without idler gears, with the

train ratio

i14 �
o1

o2

o20

o3

o30

o4

� ÿN2

N1

� �
ÿ N3

N20

� �
ÿ N4

N30

� �
� ÿ N2N3N4

N1N20N30
: �2:13�

Figure 2.6
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2.5 Epicyclic Gear Trains

When at least one of the gear axes rotates relative to the frame in addition to

the gear's own rotation about its own axes, the train is called a planetary gear

train or epicyclic gear train. The term ``epicyclic'' comes from the fact that

points on gears with moving axes of rotation describe epicyclic paths. When

a generating circle (planet gear) rolls on the outside of another circle, called a

directing circle (sun gear), each point on the generating circle describes an

epicycloid, as shown in Fig. 2.7.

Generally, the more planet gears there are, the greater is the torque

capacity of the system. For better load balancing, new designs have two sun

gears and up to 12 planetary assemblies in one casing.

In the case of simple and compound gears, it is not dif®cult to visualize

the motion of the gears, and the determination of the speed ratio is relatively

easy. In the case of epicyclic gear trains, it is often dif®cult to visualize the

motion of the gears. A systematic procedure using the contour method is

presented in what follows. The contour method is applied to determine the

distribution of velocities for an epicyclic gear train.

The velocity equations for a simple closed kinematic chain areP
�i�

vi;iÿ1 � 0P
�i�

AAi �vi;iÿ1 � 0;
�2:14�

where vi;iÿ1 is the relative angular velocity of the rigid body (i) with respect

to the rigid body �i ÿ 1�, and AAi is the position vector of the kinematic pair,

Ai , between the rigid body (i) and the rigid body �i ÿ 1� with respect to a

``®xed'' reference frame.

EXAMPLE The second planetary gear train considered is shown in Fig. 2.8a. The system

consists of an input sun gear 1 and a planet gear 2 in mesh with 1 at B. Gear 2

is carried by the arm S ®xed on the shaft of gear 3, as shown. Gear 3 meshes

with the output gear 4 at F. The ®xed ring gear 4 meshes with the planet gear

2 at D.

Figure 2.7
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There are four moving gears (1, 2, 3, and 4) connected by the following:

j Four full joints �c5 � 4�: one at A, between the frame 0 and the sun

gear 1, one at C, between the arm S and the planet gear 2, one at E,

between the frame 0 and the gear 3, and one at G, between the frame

0 and the gear 3.

j three half joints �c4 � 3�: one at B, between the sun gear 1 and the

planet gear 2, one at D, between the planet gear 2 and the ring gear,

and one at F, between the gear 3 and the output gear 4. The module of

the gears m is 5 mm.

The system possesses one DOF,

m � 3n ÿ 2c5 ÿ c4 � 3 � 4ÿ 2 � 4ÿ 3 � 1: �2:15�

The sun gear has N1 � 19-tooth external gear, the planet gear has N2 �
28-tooth external gear, and the ring gear has N5 � 75-tooth internal gear.

The gear 3 has N3 � 18-tooth external gear, and the output gear has N4 �
36-tooth external gear. The sun gear rotates with input angular speed

n1 � 2970 rpm (o1 � o10 � pn1=30 � 311:018 rad=s). Find the absolute

Figure 2.8 Used with permission from Ref. 18.
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output angular velocity of the gear 4, the velocities of the pitch points B and

F, and the velocity of joint C.

Solution

The velocity analysis is carried out using the contour equation method. The

system shown in Fig. 2.8a has ®ve elements (0, 1, 2, 3, 4) and seven joints.

The number of independent loops is given by

nc � l ÿ p � 1 � 7ÿ 5� 1 � 3:

This gear system has three independent contours. The graph of the kinematic

chain and the independent contours are represented in Fig. 2.8b.

The position vectors AB, AC, AD, AF, and AG are de®ned as follows:

AB � �xB ; yB ; 0� � �xB ; r1; 0� � �xB ; mN1=2; 0�;
AC � �xC ; yC ; 0� � �xC ; r1 � r2; 0� � �xC ; m�N1 � N2�=2; 0�;
AD � �xD ; yD ; 0� � �xD ; r1 � 2r2; 0� � �xD ; m�N1 � 2N2�=2; 0�;
AF � �xF ; yF ; 0� � �xF ; r3; 0� � �xF ; mN3=2; 0�;
AG � �xG ; yG ; 0� � �xC ; r3 � r4; 0� � �xG ; m�N3 � N4�=2; 0�:

First Contour
The ®rst closed contour contains the elements 0, 1, 2, and 0 (clockwise path).

For the velocity analysis, the following vectorial equations can be written:

v10 �v21 �v02 � 0

AB�v21 � AD�v02 � 0:
�2:16�

Here the input angular velocity is

v10 � �o10; 0; 0� � �o1; 0; 0�;
and the unknown angular velocities are

v21 � �o21; 0; 0�
v02 � �o02; 0; 0�:

The sing of the relative angular velocities is selected positive, and then the

numerical results will give the real orientation of the vectors.

Equation (2.16) becomes

o1 � o21 � o02 � 0

k

xB yB 0

o21 0 0

�������
��������

k

xD yD 0

o02 0 0

�������
������� � 0: �2:17�

Equation (2.17) projected on a ``®xed'' reference frame xOyz is

o1 � o21 � o02 � 0;

yBo21 � yDo02 � 0:
�2:18�

i i i

i j i j
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Equation (2.18) represents a system of two equations with two unknowns

o21 and o02. Solving the algebraic equations, we obtain the following value

for the absolute angular velocity of planet gear 2:

o20 � ÿo02 � ÿ
N1o1

2N2

� ÿ105:524 rad=s: �2:19�

Second Contour
The second closed contour contains the elements 0, 3, 2, and 0 (counter-

clockwise path). For the velocity analysis, the following vectorial equations

can be written:

v30 �v23 �v02 � 0

AE�v30 � AC�v23 � AD�v02 � 0:
�2:20�

The unknown angular velocities are

v30 � �o21; 0; 0�
v23 � �o23; 0; 0�:

When Eq. (2.20) is solved, the following value is obtained for the absolute

angular velocity of the gear 3 and the arm S:

o30 �
N1o1

2�N1 � N2�
� 62:865 rad=s: �2:21�

Third Contour
The third closed contour contains the links 0, 4, 3, and 0 (counterclockwise

path). The velocity vectorial equations are

v40 �v34 �v03 � 0

AG �v40 � AF�v34 � AE�v03 � 0
�2:22�

or

o40 � o34 ÿ o30 � 0

k

xG yG 0

o40 0 0

�������
��������

k

xF yF 0

o34 0 0

�������
������� � 0: �2:23�

The unknown angular velocities are

v40 � �o40; 0; 0�
v34 � �o34; 0; 0�:

The absolute angular velocity of the output gear 4 is

o40 � ÿ
N1N3o1

2�N1 � N2�N4

� ÿ31:432 rad=s: �2:24�

i i i

i j i j
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Linear Velocities of Pitch Points
The velocity of the pitch point B is

vF � o40r4 � 2:828 m=s:

The velocity of the joint C is

vB � o10r1 � 14:773 m=s;

and the velocity of the pitch point F is

vC � o30�r1 � r2� � 7:386 m=s:

Gear Geometrical Dimensions
For standard external gear teeth the addendum is a � m.

Gear 1:

Pitch circle diameter d1 � mN1 � 95:0 mm

Addendum circle diameter da1 � m�N1 � 2� ÿ 105:0 mm

Dedendum circle diameter dd1 � m�N1 ÿ 2:5� � 82:5 mm:

Gear 2:

Pitch circle diameter d2 � mN2 � 140:0 mm

Addendum circle diameter da2 � m�N2 � 2� � 150:0 mm

Dedendum circle diameter dd2 � m�N2 ÿ 2:5� � 127:5 mm:

Gear 3:

Pitch circle diameter d3 � mN3 � 90:0 mm

Addendum circle diameter da3 � m�N3 � 2� � 100:0 mm

Dedendum circle diameter dd3 � m�N3 ÿ 2:5� � 77:5 mm:

Gear 4:

Pitch circle diameter d4 � mN4 � 180:0 mm

Addendum circle diameter da4 � m�N4 � 2� � 190:0 mm

Dedendum circle diameter dd4 � m�N4 ÿ 2:5� � 167:5 mm:

Gear 5 (internal gear):

Pitch circle diameter d5 � mN5 � 375:0 mm

Addendum circle diameter da5 � m�N5 ÿ 2� � 365:0 mm

Dedendum circle diameter dd5 � m�N5 � 2:5� � 387:5 mm:

Number of Planet Gears
The number of necessary planet gears k is given by the assembly condition

�N1 � N5�=k � integer;

and for the planetary gear train k � 2 planet gears. The vicinity condition

between the sun gear and the planet gear

m�N1 � N2� sin�p=k� > da2

is veri®ed.
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The group drawings for this mechanism with planetary gears are given in

Fig. 2.9. m

2.6 Differential

Figure 2.10 is a schematic drawing of the ordinary bevel-gear automotive

differential. The drive shaft pinion 1 and the ring gear 2 are normally hypoid

gears. The ring gear 2 acts as the planet carrier for the planet gear 3, and its

speed can be calculated as for a simple gear train when the speed of the

drive shaft is given. Sun gears 4 and 5 are connected, respectively, to each

rear wheel.

When the car is traveling in a straight line, the two sun gears rotate in the

same direction with exactly the same speed. Thus, for straight-line motion of

the car, there is no relative motion between the planet gear 3 and ring 2. The

planet gear 3, in effect, serves only as a key to transmit motion from the

planet carrier to both wheels.

When the vehicle is making a turn, the wheel on the inside of the turn

makes fewer revolutions than the wheel with a larger turning radius. Unless

this difference in speed is accommodated in some manner, one or both of the

tires would have to slide in order to make the turn. The differential permits

Figure 2.9
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the two wheels to rotate at different velocities, while delivering power to

both. During a turn, the planet gear 3 rotates about its own axis, thus

permitting gears 4 and 5 to revolve at different velocities. The purpose of a

differential is to differentiate between the speeds of the two wheels. In the

usual passenger-car differential, the torque is divided equally whether the car

is traveling in a straight line or on a curve. Sometimes the road conditions are

such that the tractive effort developed by the two wheels is unequal. In this

case the total tractive effort available will be only twice that at the wheel

having the least traction, because the differential divides the torque equally.

If one wheel should happen to be resting on snow or ice, the total effort

available is very small and only a small torque will be required to cause the

wheel to spin. Thus, the car sits there with one wheel spinning and the other

at rest with no tractive effort. And, if the car is in motion and encounters

slippery surfaces, then all traction as well as control is lost.

Figure 2.10
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It is possible to overcome the disadvantages of the simple bevel-gear

differential by adding a coupling unit that is sensitive to wheel speeds. The

object of such a unit is to cause most of the torque to be directed to the slow-

moving wheel. Such a combination is then called a limited-slip differential.

2.6.1 ANGULAR VELOCITIES DIAGRAM
The velocity analysis is carried out using the contour equation method and

the graphical angular velocities diagram.

There are ®ve moving elements (1, 2, 3, 4, and 5) connected by the

following:

j Five full joints �c5 � 5�: one between the frame 0 and the drive shaft

pinion gear 1, one between the frame 0 and the ring gear 2, one

between the planet carrier arm 2 and the planet gear 3, one between

the frame 0 and the sun gear 4, and one between the frame 0 and the

sun gear 5

j Three half joints �c4 � 3�: one between the drive shaft pinion gear 1

and the ring gear 2, one between the planet gear 3 and the sun gear 4,

and one between the planet gear 3 and the sun gear 5

The system possesses two DOF:

M � 3n ÿ 2c5 ÿ c4 � 3 � 5ÿ 2 � 5ÿ 3 � 2:

The input data are the absolute angular velocities of the two wheels o40 and

o50.

The system shown in Fig. 2.10a has six elements (0, 1, 2, 3, 4, and 5) and

eight joints �c4 � c5�. The number of independent loops is given by

nc � 8ÿ p � 1 � 8ÿ 6� 1 � 3:

This gear system has three independent contours. The graph of the kinematic

chain and the independent contours are represented in Fig. 2.10b.

The ®rst closed contour contains the elements 0, 4, 3, 5, and 0 (clockwise

path). For the velocity analysis, the following vectorial equations can be

written:

v40 �v34 �v53 �v05 � 0;

or

v40 �v34 � v50 �v35: �2:25�
The unknown angular velocities are v34 and v35. The relative angular

velocity of the planet gear 3 with respect to the sun gear 4 is parallel to

the line Ia, and the relative angular velocity of the planet gear 3 with respect

to the sun gear 5 is parallel to Ib. Equation (2.25) can be solved graphically

(Fig. 2.11). The vectors OA and OB represent the velocities v50 and v40. At A

and B two parallels at Ib and Ia are drawn. The intersection between the two

lines is the point C. The vector BC represents the relative angular velocity of
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the planet gear 3 with respect to the sun gear 4, and the vector AC represents

the relative angular velocity of the planet gear 3 with respect to the sun

gear 5.

The absolute angular velocity of planet gear 3 is

v30 � v40 �v34:

The vector OC represents the absolute angular velocity of the planet gear.

The second closed contour contains the elements 0, 4, 3, 2, and 0

(counterclockwise path). For the velocity analysis, the following vectorial

equation can be written:

v40 �v34 �v23 �v02 � 0: �2:26�
If we use the velocities diagram (Fig. 2.11), the vector DC represents the

relative angular velocity of the planet gear 3 with respect to the ring gear 2,

v23, and the OD represents the absolute angular velocity of the ring gear 2,

v20.

From Fig. 2.11 one can write

o20 � jODj � 1

2
�o40 � o50�

o32 � jDC j � 1

2
�o50 ÿ o40� tan a:

�2:27�

When the car is traveling in a straight line, the two sun gears rotate in the

same direction with exactly the same speed, o50 � o40, and there is no

relative motion between the planet gear and the ring gear, o32 � 0. When the

wheels are jacked up, o50 � ÿo40 and the absolute angular velocity of the

ring gear 2 is zero.

2.7 Gear Force Analysis

The force between mating teeth (neglecting the sliding friction) can be

resolved at the pith point (P in Fig. 2.12) into two components:

j A tangential component Ft, which accounts for the power transmitted

j A radial component Fr, which does no work but tends to push the

gears apart

Figure 2.11
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The relationship between these components is

Fr � Ft tanf; �2:28�
where f is the pressure angle.

The pitch line velocity in feet per minute is equal to

V � pdn=12 �ft=min�; �2:29�
where d is the pitch diameter in inches of the gear rotating n rpm.

In SI units,

V � pdn=60;000 �m=s�; �2:30�
where d is the pitch diameter in millimeters of the gear rotating n rpm.

The transmitted power in horsepower is

H � Ft V =33;000 �hp�; �2:31�
where Ft is in pounds and V is in feet per minute.

Figure 2.12
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In SI units the transmitted power in watts is

H � Ft V �W�; �2:32�

where Ft is in newtons and V is in meters per second.

The transmitted torque can be expressed as

Mt � 63;000 H =n �lb in�; �2:33�

where H is in horsepower and n in rpm.

In SI units,

Mt � 9549 H =n�N m�; �2:34�

where the power H is in kW and n in rpm.

EXAMPLE The planetary gear train considered is shown in Fig. 2.13. The sun gear has

N1 � 19-tooth external gear, the planet gear has N2 � N20 � 28-tooth external

gear, and the ring gear has N5 � 75-tooth internal gear. The gear 3 has

N3 � 18-tooth external gear, and the output gear has N4 � 36-tooth external

gear. The module of the gears is m � 5 mm, and the pressure angle is

f � 20�. The resistant or technological torque is M4 � M1 , where

M4 � 500 Nm, and is opposed to the angular velocity of the output gear,

v40 � o4 , o4 < 0 (Fig. 2.14). The joints are frictionless.

i

i

Figure 2.13 Used with permission from Ref. 18.
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The position vectors of the joints are de®ned as follows (Fig. 2.13):

rA � �0; 0; 0�
rB � AB � �0; r1; 0� � �0; mN1=2; 0�
rC � AB � �0; r1 � r2; 0� � �0; m�N1 � N2�=2; 0�
rC 0 � AC0 � �0; ÿr1 ÿ r2; 0� � �0; ÿm�N1 � N2�=2; 0�
rD � AD � �0; r1 � 2r2; 0� � �0; m�N1 � 2N2�=2; 0�
rE � �#; 0; 0�
rF � AF � �#; r3; 0� � �#; mN3=2; 0�
rG � AG � �#; r3 � r4; 0� � �#; m�N3 � N4�=2; 0�: �2:35�

The x parameter # is not important for the calculation. m

Gear 4
The force of gear 3 that acts on gear 4 at the pitch point F is denoted by F34.

The force between mating teeth can be resolved at the pith point into two

components, a tangential component Ft34 � F34 cosf, and a radial compo-

nent Fr34 � F34 sinf, or

F34 � �0; Fr34; Ft34� � F34 sinf � F34 cosfk: �2:36�j

Figure 2.14 Used with permission from Ref. 18.
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The equilibrium of moments for the gear 4 with respect to its center G can be

written as P
M
�gear 4�
G � M4 � GF� F34 � 0; �2:37�

where GF � rF ÿ rG � ÿr4 . Equation (2.37) can be written as

M4 �
k

0 ÿr4 0
0 F34 sinf F34 cosf

������
������ � 0: �2:38�

Solving Eq. (2.38) gives the reaction F34,

F34 �
2M4

mN4 cosf
� 2 � 500

0:005 � 36 � cos 20�
� 5912:1 N: �2:39�

The reaction of the ground 0 on gear 4 at G is

F04 � ÿF34:

Link 3
The link 3 is composed of the gear 3 and the planetary arm. The reaction of

the gear 4 on gear 3 at F is known:

F34 � ÿF34 � ÿF34 sinf ÿ F34 cosfk:

The unknowns are the reactions of the planets gears 2 and 20 on the planet

arm at C and C 0:

F23 � F23r � F23t k

F203 � ÿF23r ÿ F23t k:
�2:40�

The reaction of the ground 0 on gear 3 at E is

F03 � ÿF43:

From the free-body diagram of link 3 (Fig. 2.14), the tangential component of

the force F23t can be computed writing a moment equation with respect to

the center of gear 3, E:P
M�link 3�

E � �rF ÿ rE � � F43 � �rC ÿ rE � � F23 � �rC 0 ÿ rE � � F203

�
k

0 r3 0

0 ÿF34 sinf ÿF34 cosf

�������
��������

k

# r1 � r2 0

0 F23r F23t

�������
�������

�
k

# ÿr1 ÿ r2 0

0 ÿF23r ÿF23t

�������
������� � ÿF34r3 cosf � 2F23t �r1 � r2� � 0:

�2:41�
The force F23t is

F23t �
M4r3

2�r1 � r2�r4

� 1063:83 N: �2:42�

j

i
i j

j

j

j

i j i j

i j

i i
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Gear 2
The forces that act on gear 2 are

F32 � ÿF23r ÿ F23tk, the reaction of the arm on the planet 2 at C, the

tangential component F32t � ÿF23t is known

F12 � F12 sinf � F12 cosfk, the reaction of the sun gear 1 on the planet

2 at B; unknown

F02 � ÿF02 sinf � F02 cosfk, the reaction of the ring gear 0 on the

planet 2 at D ; unknown

Two vectorial equilibrium equations can be written. The sum of

moments that act on gear 2 with respect to the center C is zero,P
M
�gear 2�
C � �rD ÿ rC � � F02 � �rB ÿ rC � � F12

k

0 r2 0

0 ÿF02 sinf F02 cosf

�������
��������

k

0 ÿr2 0

0 F12 sinf F12 cosf

�������
������� � 0; �2:43�

and the sum of all the forces that act on gear 2 is zero,P
F�gear 2� � F02 � F12 � F32

� �ÿF02 sinf � F02 cosfk� � �F12 sinf � F12 cosfk�
� �F23r � F23t k� � 0: �2:44�

Solving the system of Eqs. (2.43) and (2.44) results in

F32r � 0; F12 � F02 �
M4r3 secf
4�r1 � r2�r4

� 566:052 N: �2:45�

Gear 1
The equilibrium torque Me � Me that acts on the input sun gear 1 is

computed from the moment equation with respect to the center A,P
M
�gear 1�
A � Me � 2rB � F21; �2:46�

and

Me �
M4r1r3

2�r1r4 � r2r4�
� 50:531 Nm: �2:47�

The equilibrium torque Me has the same direction and orientation as the

angular velocity v10.

2.8 Strength of Gear Teeth

The ¯ank of the driver tooth makes contact with the tip of the driven tooth at

the beginning of action between a pair of gear teeth. The total load F is

assumed to be carried by one tooth, and is normal to the tooth pro®le (see

Fig. 2.15). The bending stress at the base of the tooth is produced by the

j

j

j

i j i j

j j

j

i
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tangential load component Ft which is perpendicular to the centerline of the

tooth. The friction and the radial component Fr are neglected. The parabola

in Fig. 2.15 outlines a beam of uniform strength. The weakest section of the

gear tooth is at section A±A, where the parabola is tangent to the tooth

outline.

The bending stress s is

s � 6M

Bt2
� 6Ft h

Bt2
; �2:48�

and

Ft � sB�t 2=6h� � sB�t2=6hp�p; �2:49�

where M � Ft h is the bending moment, h is the distance between the section

A±A and the point where the load is applied, and t is the tooth thickness. In

the preceding equations, B is the face width and is limited to a maximum of 4

times the circular pitch, that is, B � kp, where k � 4.

The form factor g � t 2=6hp is a dimensionless quantity tabulated in

Table 2.1.

If g is substituted in the preceding equation, the usual form of the Lewis

equation is

Ft � sBpg; �2:50�

Figure 2.15
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or

Ft � sp2kg � sp2kg=P 2
d : �2:51�

If the pitch diameter Pd is known, then the following form of the Lewis

equation may be used:

P 2
d=g � skp2=Ft : �2:52�

Here s is the allowable stress, k is 4 (upper limit), Ft � 2Mt=d is the

transmitted force, and Mt is the torque on the weaker gear.

If the pitch diameter is unknown, the following form of the Lewis

equation may be used:

s � 2Mt P
3
d

kp2gN
: �2:53�

Here s is stress less than or equal to the allowable stress, and N is the number

of teeth on the weaker gear. The minimum number of teeth, N, is usually

limited to 15.

Table 2.1 Form Factors g for Use in Lewis Strength Equation

Number of 14 1
2

�
full-depth 20� full-depth 20� stub

teeth involute or composite involute involute

12 0.067 0.078 0.099

13 0.071 0.083 0.103

14 0.075 0.088 0.108

15 0.078 0.092 0.111

16 0.081 0.094 0.115

17 0.084 0.096 0.117

18 0.086 0.098 0.120

19 0.088 0.100 0.123

20 0.090 0.102 0.125

21 0.092 0.104 0.127

23 0.094 0.106 0.130

25 0.097 0.108 0.133

27 0.099 0.111 0.136

30 0.101 0.114 0.139

34 0.104 0.118 0.142

38 0.106 0.122 0.145

43 0.108 0.126 0.147

50 0.110 0.130 0.151

60 0.113 0.134 0.154

75 0.115 0.138 0.158

100 0.117 0.142 0.161

150 0.119 0.146 0.165

300 0.122 0.150 0.170

Rack 0.124 0.154 0.175

Source : A. S. Hall, A. R. Holowenko, and H. G. Laughlin, Theory and Problems of Machine Design, Schaum's
Outline Series. McGraw-Hill, New York, 1961. Used with permission.
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2.8.1 ALLOWABLE TOOTH STRESSES
The allowable stress for gear tooth design is

Allowable s � s0

600

600� V

� �
for V less than 2000 ft=min

� s0

1200

1200� V

� �
for V 2000 to 4000 ft=min

� s
78

78� ����
V
p

� �
for V greater than 4000 ft=min;

where s0 is the endurance strength for released loading corrected for average

stress concentration values of the gear material, measured in psi, and V is the

pitch line velocity, measured in ft=min. The endurance strength is

s0 � 8000 psi for cast iron, and s0 � 12;000 psi for bronze. For carbon

steels the endurance strength range is from 10,000 psi to 50,000 psi.

2.8.2 DYNAMIC TOOTH LOADS
The dynamic forces on the teeth are produced by the transmitted force, and

also by the velocity changes due to inaccuracies of the tooth pro®les,

spacing, misalignments in mounting, and tooth de¯ection under load.

The dynamic load Fd proposed by Buckingham is

Fd �
0:05 V �BC � Ft �

0:05 V � �����������������
BC � Ft

p � Ft ;

where Fd is the dynamic load (lb), Ft is the transmitted force (tangential

load), and C is a constant that depends on the tooth material and form, and

on the accuracy of the tooth cutting process. The constant C is tabulated in

Table 2.2. The dynamic force Fd must be less than the allowable endurance

Table 2.2 Values of Deformation Factor C for Dynamic Load Check

Materials Tooth error (inches)
Involute

Pinion Gear tooth form 0.0005 0.001 0.002 0.003

Cast iron Cast iron 14 1
2

�
400 800 1600 2400

Steel Cast iron 14 1
2

�
550 1100 2200 3300

Steel Steel 14 1
2

�
800 1600 3200 4800

Cast iron Cast iron 20� full depth 415 830 1660 2490

Steel Cast iron 20� full depth 570 1140 2280 4320

Steel Steel 20� full depth 830 1660 3320 4980

Cast iron Cast iron 20� stub 430 860 1720 2580

Steel Cast iron 20� stub 590 1180 2360 3540

Steel Steel 20� stub 860 1720 3440 5160

Source : A. S. Hall, A. R. Holowenko, and H. G. Laughlin, Theory and Problems of Machine Design, Schaum's Outline Series, McGraw-
Hill, New York, 1961. Used with permission.
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load F0. The allowable endurance load is F0 � s0Bgp; where s0 is based on

average stress concentration values.

2.8.3 WEAR TOOTH LOADS
The wear load Fw is

Fw � dpBKQ; �2:54�

where dp is the pitch diameter of the smaller gear (pinion), K is the stress

factor for fatigue, Q � 2Ng=�Np � Ng�, Ng is the number of teeth on the gear,

and Np is the number of teeth on the pinion.

The stress factor for fatigue has the expression

K � s2
es �sinf��1=Ep � 1=Eg�

1:4
;

where ses is the surface endurance limit of a gear pair (psi), Ep is the modulus

of elasticity of the pinion material (psi), Eg is the modulus of elasticity of the

gear material (psi), and f is the pressure angle. An estimated value for

surface endurance is

ses � �400��BHN� ÿ 10;000 psi;

where BHN may be approximated by the average Brinell hardness number

of the gear and pinion. The wear load Fw is an allowable load and must be

greater than the dynamic load Fd . Table 2.3 presents several values of K for

various materials and tooth forms.

EXAMPLE 1 A driver steel pinion with s0 � 20;000 rotates at n1 � 1500 rpm and transmits

13.6 hp. The transmission ratio is i � ÿ4 (external gearing). The gear is made

of mild steel with s0 � 15;000 psi. Both gears have a 20� pressure angle and

are full-depth involute gears. Design a gear with the smallest diameter that

can be used. No fewer than 15 teeth are to be used on either gear.

Solution

In order to determine the smallest diameter gears that can be used, the

minimum number of teeth for the pinion will be selected, Np � 15. Then

Ng � Npi � 15�4� � 60. It is ®rst necessary to determine which is weaker, the

gear or the pinion. The load carrying capacity of the tooth is a function of the

s0g product. For the pinion s0g � 20;000�0:092� � 1840 psi, where g � 0:092

was selected from Table 2.1 for a 20� full-depth involute gear with 15 teeth.

For the gear s0g � 15;000�0:134� � 2010 psi, where g � 0:134 correspond to

a 20� full-depth involute gear with 60 teeth. Hence, the pinion is weaker. The

torque transmitted by the pinion is

Mt � 63;000 H =n1 � 63;000�13:6�=1500 � 571:2lb in: �2:55�
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Since the diameter is unknown, the induced stress is

s � 2Mt P
3
d

kp2gNp

� 2�571:2�P 3
d

4p2�0:092��15� � 20:97P 3
d ; �2:56�

where a maximum value of k � 4 was considered. Assume allowable stress

s � s0=2 � 20; 000=2 � 10; 000 psi. This assumption permits the determina-

tion of an approximate Pd . Equation (2.56) yields P 3
d � 10; 000=20:97 �

476:87. Hence, Pd � 8. Try Pd � 8. Then dp � 15=8 � 1:875 in. The pitch

line velocity is V � dppn1=12 � 1:875p�1500�=12 � 736:31 ft=min. Because

the pitch line velocity is less than 2000 ft=min, the allowable stress will be

s � 20;000
600

600� 736:31

� �
� 8979:95 psi:

Using Eq. (2.56) the induced stress will be s � 20:97�83� � 10736:64 psi. The

pinion is weak because the induced stress is larger than the allowable stress

(10736� 8979:95). Try a stronger tooth, Pd � 7. Then dp � 15=7 � 2:14 in.

The pitch line velocity is V � dppn1=12 � 2:14p�1500�=12 � 841:5 ft=min.

Because the pitch line velocity is less than 2000 ft=min, the allowable stress is

s � 20;000
600

600� 736:31

� �
� 8324:66 psi:

Table 2.3 Values for Surface Endurance Limit ses and Stress Fatigue Factor K

Average Brinell hardness Surface Stress fatigue factor K
number of steel pinion endurance

and steel gear limit ses 14 1
2

�
20 �

150 50,000 30 41

200 70,000 58 79

250 90,000 96 131

300 110,000 114 196

400 150,000 268 366

Brinell hardness number, BHN

Steel pinion Gear

150 C.I. 50,000 44 60

200 C.I. 70,000 87 119

250 C.I. 90,000 144 196

150 Phosphor bronze 50,000 46 62

200 Phosphor bronze 65,000 73 100

C.I. pinion C.I. gear 80,000 152 208

C.I. pinion C.I. gear 90,000 193 284

Source : A. S. Hall, A. R. Holowenko, and H. G. Laughlin, Theory and Problems of Machine Design, Schaum's
Outline Series, McGraw-Hill, New York, 1961. Used with permission.
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Using Eq. (2.56) the induced stress will be s � 20:97�73� � 7192:71 psi. Now

the pinion is stronger because the induced stress is smaller than the allowable

stress. Then the parameter k can be reduced from the maximum value of

k � 4 to k � 4�7192:71=8324:66� � 3:45. Hence, the face width B � kp �
3:45�p=7� � 1:55 in. Then Pd � 7, B � 1:55 in, dp � 2:14 in, and dg �
dp�4� � 2:14�4� � 8:57 in. The circular pitch for gears is p � pdp=Np �
pdg=Ng � 0:448 in, and the center distance is c � �dp � dg�=2 � 5:35 in.

The addendum of the gears is a � 1=Pd � 1=7 � 0:14 in, while the minimum

dedendum for 20� full-depth involute gears is b � 1:157=Pd � 1:157=7 �
0:165 in. The base circle diameter for pinion and gear are dbp � dp cosf �
2:14 cos 20� � 2:01 in, and dbg � dg cosf � 8:56 cos 20� � 8:05 in, respec-

tively. The maximum possible addendum circle radius of pinion or gear

without interference can be computed as

ra�max � �
����������������������������
r 2

b � c2 sin2 f
q

;

where rb � db=2. Hence, for pinion ra�max � �
���������������������������������
1� 5:352 sin 20�
p � 3:29 in,

while for the gear ra�max � �
�����������������������������������
42 � 5:352 sin 20�
p � 5:1 in. The contact ratio CR

is calculated from the equation

CR �
������������������
r 2

ap ÿ r 2
bp

q
�

������������������
r 2

ag � r 2
bg

q
ÿ c sinf

pb

;

where rap , rag are the addendum radii of the mating pinion and gear, and rbp ,

rbg are the base circle radii of the mating pinion and gear. Here, rap �
rp � a � dp=2� a � 1:21 in, rag � rg � a � 4:42 in, rbp=2 � 1:0 in and

rbg � dbg=2 � 4:02 in. The base pitch is computed as pb � pdb=N �
p cos 20� � 0:42 in. Finally, the contact ratio will be CR � 1:63, which

should be a suitable value �>1:2�. m

EXAMPLE 2 A steel pinion �s0 � 137:9� 106 N=m2� rotates an iron gear �s0 �
102:88� 106 N=m2� and transmits a power of 20 kW. The pinion operates

at n1 � 2000 rpm, and the transmission ratio is 4 to 1 (external gearing). Both

gears are full-depth involute gears and have a pressure angle of 20�. Design a

gear with the smallest diameter that can be used. No less than 15 teeth are to

be used on either gear.

Solution

To ®nd the smallest diameter gears that can be used, the number of teeth for

the pinion will be Np � 15. Hence, Ng � Np4 � 15�4� � 60.

It is ®rst necessary to determine which is weaker, the gear or the pinion.

For the pinion, the product s0g � 137:9�0:092� � 12:686� 106 N=m2, where

g � 0:092 was selected from Table 2.1 for a 20� full-depth involute gear with

15 teeth. For gear s0g � 102:88�0:134� � 13:785� 106 N=m2, where g �
0:134 corresponds to a 20� full-depth involute gear with 60 teeth. Hence,

the pinion is weaker.
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The torque transmitted by the pinion is

Mt � 9549 H =n1 � 9549�20�=2000 � 95:49 Nm: �2:57�
Since the diameter is unknown, the induced stress is

s � 2Mt

kp2gNpm3
� 2�95:49�

4p2�0:092��15�m3
� 3:5

m3
; �2:58�

where Pd was replaced by 1=m, and a maximum value of k � 4 was

considered. Assume allowable stress s � s0=2 � 137:9=2 � 68:95� 106

N=m2. This assumption permits the determination of an approximate m.

Equation (2.58) yields m3 � 3:5=68:95 � 3:7 mm. Try m � 3 mm. Then

dp � Npm � 15�3� � 45 mm. The pitch line velocity is V � dppn1=

60;000 � 45p�2000�=60;000 � 4:71 m=s. The allowable stress will be

s � 137:9
600

600� 4:71

� �
� 136:85� 106 N=m2:

According to Eq. (2.58), the induced stress will be s � 3:5�3� 10ÿ3�3 �
129:83� 106 N=m2. The pinion is stronger. Because the smallest diameter is

required, we will determine the smallest m such that the induced stress

remains lower than the allowable stress. Try m � 2:75 mm. Then dp �
Npm � 15�2:75� � 41:25 mm. The pitch line velocity is V � dppn1=60;000 �
41:25p�2000�=60;000 � 4:32 m=s. The allowable stress will be

s � 137:9
600

600� 4:32

� �
� 136:91� 106 N=m2:

The induced stress will be s � 3:5=�2:75� 10ÿ3�3 � 168:56� 106 N=m2.

Now the pinion is weak. Hence, the minimum m that satis®es the stress

constraints is m � 3 mm. Then the parameter k can be reduced from the

maximum value of k � 4 to k � 4�129:83=136:85� � 3:79. Hence, the face

width B � kp � 3:79�pm� � 35:77 mm, and dp � 45 mm. Then dg �
dp�4� � 45�4� � 180 mm. The circular pitch for gears is p � pdp=Np �
pdg=Ng � 9:42 mm, and the center distance is c � �dp � dg�=2 � 112:5 mm.

The addendum of the gears is a � m � 3 mm, while the minimum deden-

dum for 20� full-depth involute gears is b � 1:26m � 3:75 mm. The base

circle diameters for pinion and gear are dbp � dp cosf � 45 cos 20� �
42:28 mm, and dbg � dg cosf � 180 cos 20� � 169:14 mm, respectively. The

maximum possible addendum circle radius without interference for the

pinion is ra�max � �
����������������������������������������������
21:142 � 112:52 sin 20�
p � 69:1 mm, and for the gear is

ra�max � �
����������������������������������������������
84:572 � 112:52 sin 20�
p � 107:15 mm. The contact ratio CR is

CR �
������������������
r 2

ap ÿ r 2
bp

q
�

������������������
r 2

ap ÿ r 2
bg

q
ÿ c sinf

pb

;

Here, rap , rag are the addendum radii of the pinion and the gear, and rbp , rbg

are the base circle radii of the pinion and the gear. Here, rap � rp � a �
dp=2� a � 25:5 mm, rag � rg � a � 93 mm, rbp � dbp=2 � 21:14 mm, and

rbg � dbg=2 � 84:57 mm. The base pitch is computed as pb � pdb=N �
p cos 20� � 8:85 mm. Hence, CR � 1:63 > 1:2 should be a suitable value. m

282 Machine Components

M
ach

in
e

Co
m

p
o
n
en

ts



3. Springs

3.1 Introduction

Springs are mechanical elements that exert forces or torques and absorb

energy. The absorbed energy is usually stored and later released. Springs are

made of metal. For light loads the metal can be replaced by plastics. Some

applications that require minimum spring mass use structural composite

materials. Blocks of rubber can be used as springs, in bumpers and vibration

isolation mountings of electric or combustion motors.

3.2 Materials for Springs

The hot and cold working processes are used for spring manufacturing. Plain

carbon steels, alloy steels, corrosion-resisting steels, or nonferrous materials

can be used for spring manufacturing.

Spring materials are compared by an examination of their tensile

strengths, which requires the wire size to be known. The material and its

processing also have an effect on tensile strength. The tensile strength Sut is a

linear function of the wire diameter d, which is estimated by

Sut �
A

dm
; �3:1�

where the constant A and the exponent m are presented in Table 3.1.

The torsional yield strength can be obtained by assuming that the tensile

yield strength is between 60% and 90% of the tensile strength. According to

the distortion-energy theory, the torsional yield strength for steels is

0:35Sut � Sy � 0:52Sut : �3:2�
for static application, the maximum allowable torsional stress tall may be

used instead of Ssy :

Ssy � tall �
0:45Sut ; cold-drawn carbon steel

0:50Sut ; hardened and tempered carbon and low-alloy steel

0:35Sut ; austenitic stainless steel and nonferrous alloys:

8<:
�3:3�

Table 3.1 Constants of Tensile Strength Expression

Material m A

kpsi MPa

Music wire 0.163 186 2060

Oil-tempered wire 0.193 146 1610

Hard-drawn wire 0.201 137 1510

Chrome vanadium 0.155 173 1790

Chrome silicon 0.091 218 1960

Source : J. E. Shigley and C. R. Mischke, Mechanical Engineering Design.
McGraw-Hill, New York, 1989. Used with permission.
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3.3 Helical Extension Springs

Extension springs (Fig. 3.1) are used for maintaining the torsional stress in the

wire. The initial tension is the external force, F, applies to the spring. Spring

manufacturers recommended that the initial tension be

tinitial � �0:4ÿ 0:8� Sut

C
; �3:4�

where Sut is the tensile strength in psi. The constant C is the spring index,

de®ned by C � D=d , where D is the mean diameter of the coil and d is the

diameter of the wire (Fig. 3.1).

The bending stress, which occurs in section A±A, is

s � 16FD

pd3

r1

r3

� �
; �3:5�

and torsional stress in section B±B is

t � FD

pd 3

r4

r2

� �
: �3:6�

In practical application the radius r4 is greater than twice the wire diameter.

Hook stresses can be further reduced by winding the last few coils with a

decreasing diameter D (Fig. 3.2). This lower the nominal stress by reducing

the bending and torsional moment arms.

3.4 Helical Compression Springs

The helical springs are usually made of circular cross-section wire or rod (Fig.

3.3). These springs are subjected to a torsional shear stress and to a

transverse shear stress. There is also an additional stress effect due to the

curvature of the helix.

Figure 3.1
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3.4.1 SHEAR STRESS, t
The total shear stress, t (psi), induced in a helical spring is

t � Tr

J
� F

A
� 16T

pd3
� 4F

pd2
; �3:7�

where

T � FD=2; is the torque �lb in�
r � d=2; is the wire radius �in�
F is the axial load �lb�
A � pd2=4 is the cross-section area �in2�
J � pd4=32 is the polar second moment of inertia �in in4�:

Figure 3.2

Figure 3.3
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The shear stress expressed in Eq. (3.7) can be rewritten as

t � KsP
FD

pd3
; �3:8�

where Ks is the shear stress multiplication factor,

Ks �
2C � 1

2C
: �3:9�

The spring index C � D=C is in the range 6 to 12.

3.4.2 CURVATURE EFFECT
The curvature of the wire increases the stress on the inside of the spring and

decreases it on the outside. One may write the stress equation as

t � Kw

8FD

pd3
; �3:10�

where Kw is called the Wahl factor and is given by

Kw �
4C ÿ 1

4C ÿ 4
� 0:615

C
: �3:11�

The Wahl factor corrects both curvature and direct shear effects. The effect of

the curvature alone is de®ned by the curvature correction factor Kc, which

can be obtained as

Kc �
Kw

Ks

: �3:12�

3.4.3 DEFLECTION, d
The de¯ection±force relations are obtained using Castigliano's theorem. The

total strain energy for a helical spring is

U � Ut � Us �
T 2l

2GJ
� F 2l

2AG
; �3:13�

where

Ut �
T 2l

2GJ
�3:14�

is the torsional component of the energy, and

Us �
F 2l

2AG
�3:15�

is the shear component of the energy. The spring load is F, the torsion torque

is T, the length of the wire is l, the second moment of inertia is J, the cross-

sectional area of the wire is A, and the modulus of rigidity is G.

Substituting T � FD=2, l � pDN , J � pd4=32, and A � pd2=4 in Eq.

(3.13), one may obtain the total strain energy as

U � 4F 2D3N

d4G
� 2F 2DN

d2G
; �3:16�

where N � Na is the number of active coils.
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When Castigliano's theorem is applied, the de¯ection of the helical

spring is

d � @U
@F
� 8FD3N

d4G
� 4FDN

d2G
: �3:17�

If we use the spring index C � D=d , the de¯ection becomes

d � 8FD3N

d4G
1� 1

2C 2

� �
� 8FD3N

d4G
: �3:18�

3.4.4 SPRING RATE
The general relationship between force and de¯ection can be written as

F � F �d�: �3:19�
Then the spring rate is de®ned as

k�d� � lim
Dd!0

DF

Dd
� dF

dd
; �3:20�

where d must be measured in the direction of the load F and at the point of

application of F. Because most of the force±de¯ection equations that treat the

springs are linear, k is constant and is named the spring constant. For this

reason Eq. (3.20) may be written as

k � F

d
: �3:21�

From Eq. (3.18), with the substitution C � D=d , the spring rate for a helical

spring under an axial load is

k � Gd

8C 3N
: �3:22�

For springs in parallel having individual spring rates ki (Fig. 3.4a), the spring

rate k is

k � k1 � k2 � k3: �3:23�
For springs in series, with individual spring rates ki (Fig. 3.4b), the spring rate

k is

k � 1
1

k1

� 1

k2

� 1

k3

: �3:24�

Figure 3.4
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3.4.5 SPRING ENDS
For helical springs the ends can be speci®ed as (Fig. 3.5) (a) plain ends; (b)

plain and ground ends; (c) squared ends; (d) squared and ground ends. A

spring with plain ends (Fig. 3.5a) has a noninterrupted helicoid, and the ends

are the same as if a long spring had been cut into sections. A spring with

plain and ground ends (Fig. 3.5b) or squared ends (Fig. 3.5c) is obtained by

deforming the ends to a zero-degree helix angle. Springs should always be

both squared and ground (Fig. 3.5d) because a better transfer of the load is

obtained. Table 3.2 presents the type of ends and how that affects the

number of coils and the spring length. In Table 3.2, Na is the number of

active coils, and d is the wire diameter.

Figure 3.5

Table 3.2 Types of Spring Ends

Term End coils, Total coil, Free length, Solid length, Pitch,
Ne Nt L0 Ls p

Plain 0 Na pNa � d d �Nt � 1� �L0 ÿ d �=Na

Plain and ground 1 Na � 1 p�Na � 1� dNt L0=�Na � 1�
Squared or closed 2 Na � 2 pNa � 3d d �Nt � 1� �Lo ÿ 3d �=Na

Squared and ground 2 Na � 2 pNa � 2d dNt �Lo ÿ 2d �=Na

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design. McGraw-Hill, New York, 1989. Used with permission.
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EXAMPLE An oil-tempered wire is used for a helical compression spring. The wire

diameter is d � 0:025 in, and the outside diameter of the spring is D0 �
0:375 in. The ends are plain and the number of total turns is 10.5. Find:

The torsional yield strength

The static load corresponding to the yield strength

The rate of the spring

The de¯ection that would be caused by the static load found

The solid length of the spring

The length of the spring so that no permanent change of the free length

occurs when the spring is compressed solid and then released

The pitch of the spring for the free length

Solution

From Eq. (3.3) the torsional yield strength, for hardened and tempered

carbon and low-alloy steel, is

Ssy � 0:50Sut :

The minimum tensile strength given from Eq. (3.1) is

Sut �
A

dm
;

where, from Table 3.1, the constant A � 146 kpsi and the exponent m �
0:193.

The minimum tensile strength is

Sut �
A

dm
� 146

�0:025�0:193 � 297:543 kpsi:

The torsional yield strength is

Ssy ÿ 0:50Sut � 0:50�297:543� � 148:772 kpsi:

To calculate the static load F corresponding to the yields strength, it is

necessary to ®nd the spring index, C, and the shear stress correction factor,

Ks . The mean diameter D is the difference between the outside diameter and

the wire diameter d,

D � D0 ÿ d � 0:375ÿ 0:025 � 0:350 in:

The spring index is

C � D

d
� 0:350

0:025
� 14:

From Eq. (3.9), the shear stress correction factor is

Ks �
2C � 1

2C
� 2�14� � 1

2�14� � 1:035:

With the use of Eq. (3.7), the static load is calculated with

F � pd3Ssy

8KsD
� p�0:0253��148:772��103�

8�1:035��0:350� � 2:520 lb:

From Table 3.2, the number of active coils is Na � Nt � 10:5.
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The spring rate, Eq. (3.22) for N � Na is

k � Gd

8C 3Na

� �11:5��106��0:025�
8�143��10:5� � 1:24 lb=in:

The de¯ection of the spring is

d � F

k
� 2:520

1:24
� 2:019 in:

The solid length, Ls , is calculated using Table 3.2:

Ls � d �Nt � 1� � 0:025�10:5� 1� � 0:287 in:

To avoid yielding, the spring can be no longer than the sold length plus the

defection caused by the load. The free length is

L 0 � d� Ls � 2:019� 0:287 � 2:306 in:

From Table 3.2, the pitch p is calculated using the relation

p � L 0 ÿ d

Na

� 2:306ÿ 0:025

10:5
0:217 in:

3.5 Torsion Springs

Helical torsion springs (Fig. 3.6) are used in door hinges, in automobile

starters, and for any application where torque is required. Torsion springs are

of two general types: helical (Fig. 3.7) and spiral (Fig. 3.8). The primary stress

in torsion springs is bending. The bending moment Fa is applied to each end

of the wire. The highest stress acting inside of the wire is

si �
KiMc

I
; �3:25�

where the factor for inner surface stress concentration Ki is given in Fig. 3.9,

and I is the moment of inertia. The distance from the neutral axis to the

extreme ®ber for round solid bar is c � d=2, and c � h=2 for rectangular bar.

For a solid round bar section, I � pd4=64, and for a rectangular bar,

I � bh3=12. Substituting the product Fa for bending moment and the

equations for section properties of round and rectangular wire, one may

write for round wire

I

c
� pd3

32
; si �

32Fa

pd3
Ki;round ; �3:26�

and for rectangular wire

I

c
� bh2

6
; si �

6Fa

bh2
Ki;rectangular : �3:27�

The angular de¯ection of a beam subjected to bending is

y � ML

EI
; �3:28�
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where M is the bending moment, L is the beam length, E is the modulus of

elasticity, and I is the momentum of inertia.

Equation (3.28) can be used for helical and spiral torsion springs. Helical

torsion springs and spiral springs can be made from thin rectangular wire.

Round wire is often used in noncritical applications.

Figure 3.6

Figure 3.7
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3.6 Torsion Bar Springs

The torsion bar spring, shown in Fig. 3.10, is used in automotive suspension.

The stress, angular de¯ection, and spring rate equation are

t � Tr

J
�3:29�

y � Tl

JG
�3:30�

k � JG

l
; �3:31�

Figure 3.8

Figure 3.9
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where T is the torque, r � d=2 is the bar radius, l is the length of the spring,

G is the modulus of rigidity, and J is the second polar moment of area.

For a solid round section, J is

J � pd4

32
: �3:32�

For a solid rectangular section,

J � bh3

12
: �3:33�

For a solid round rod of diameter d, Eqs. (3.29), (3.30), and (3.31) become

t � 16T

pd3
�3:34�

y � 32Tl

pd4G
�3:35�

k � pd4G

32l
: �3:36�

3.7 Multileaf Springs

The multileaf spring can be a simple cantilever (Fig. 3.11a) or a semielliptic

leaf (Fig. 3.11b). The design of multileaf springs is based on force F, length L,

de¯ection, and stress relationships. The multileaf spring may be considered

as a triangular plate (Fig. 3.12a) cut into n strips of width b or stacked in a

graduated manner (Fig. 3.12b).

Figure 3.10

Figure 3.11
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To support transverse shear Ne, extra full-length leaves are added on the

graduated stack, as shown in Fig. 3.13. The number Ne is always one less

than the total number of full length leaves N.

The prestressed leaves have a different radius of curvature than the

graduated leaves. This will leave a gap h between the extra full-length leaves

and the graduated leaves before assembly (Fig. 3.14).

Figure 3.12

Figure 3.13
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3.7.1 BENDING STRESS se

The bending stress in the extra full-length leaves installed without initial

prestress is

se �
18FL

bt2�3Ne � 2Ng�
; �3:37�

where F is the total applied load at the end of the spring (lb), L is the length of

the cantilever or half the length of the semielliptic spring (in), b is the width

of each spring leaf (in), t is the thickness of each spring leaf (in), Ne is the

number of extra full-length leaves, and Ng is the number of graduated leaves.

3.7.2 BENDING STRESS sg

For graduated leaves assembled with extra full-length leaves without initial

prestress, the bending stress is

sg �
12FL

bt 2�3Ne � 2Ng�
� 2se

3
: �3:38�

3.7.3 DEFLECTION OF A MULTILEAF SPRING, d
The de¯ection of a multileaf spring with graduated and extra full-length

leaves is

d � 12Fl 3

bt2E �3Ne � 2Ng�
; �3:39�

where E is the modulus of elasticity (psi).

3.7.4 BENDING STRESS, s
The bending stress of multileaf springs without extra leaves or with extra full

length prestressed leaves that have the same stress after the full load has

been applied is

s � 6Fl

Nbt 2
; �3:40�

where N is the total number of leaves.

Figure 3.14
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3.7.5 GAP
The gap between preassembled graduated leaves and extra full-length leaves

(Fig. 3.14) is

h � 2FL3

Nbt 3E
; �3:41�

3.8 Belleville Springs

Belleville springs are made from tapered washers (Fig. 3.15a) stacked in

series, parallel, or a combination of parallel±series, as shown in Fig. 3.15b.

The load±de¯ection and stress±de¯ection are

F � Ed

�1ÿ m2��do=2�2M
��h ÿ d=2��h ÿ d�t � t3� �3:42�

s � Ed

�1ÿ m2��do=2�2M
�C1�h ÿ d=2� � C2t �; �3:43�

Figure 3.15
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where F is the axial load (lb), d is the de¯ection (in), t is the thickness of the

washer (in), h, is the free height minus thickness (in), E is the modulus of

elasticity (psi), s is the stress at inside circumference (psi), do is the outside

diameter of the washer (in), di is the inside diameter of the washer (in), and m
is the Poisson's ratio. The constant M, C1, and C2 are given by the equations

M � 6

p loge �do=di�
do=di ÿ 1

do=di

� �2

C1 �
6

p loge �do=di�
do=di ÿ 1

loge�do=di �
ÿ 1

� �
C2 �

6

p loge �do=di�
do=di ÿ 1

2

� �
:

4. Rolling Bearings

4.1 Generalities

A bearing is a connector that permits the connected members to rotate or to

move relative to one another. Often one of the members is ®xed, and the

bearing acts as a support for the moving member. Most bearings support

rotating shafts against either transverse (radial) or thrust (axial) forces. To

minimize friction, the contacting surfaces in a bearing may be partially or

completely separated by a ®lm of liquid (usually oil) or gas. These are sliding

bearings, and the part of the shaft that turns in the bearing is the journal.

Under certain combinations of force, speed, ¯uid viscosity, and bearing

geometry, a ¯uid ®lm forms and separates the contacting surfaces in a sliding

bearing, and this is known as a hydrodynamic ®lm. An oil ®lm can also be

developed with a separate pumping unit that supplies pressurized oil to the

bearing, and this is known as a hydrostatic ®lm.

The surfaces in a bearing may also be separated by balls, rollers, or

needles; these are known as rolling bearings. Because shaft speed is

required for the development of a hydrodynamic ®lm, the starting friction

in hydrodynamic bearings is higher than in rolling bearings. To minimize

friction when metal-to-metal contact occurs, low-friction bearing materials

have been developed, such as bronze alloys and babbitt metal.

The principal advantage of these bearings is the ability to operate at

friction levels considerably lower at startup, the friction coef®cient having the

values m � 0:001±0:003. Also, they have the following advantages over

bearings with sliding contact: they maintain accurate shaft alignment for

long periods of time; they can carry heavy momentary overloads without

failure; their lubrication is very easy and requires little attention; and they are

easily replaced in case of failure.
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Rolling bearings have the following disadvantages: The shaft and house

design and processing are more complicated; there is more noise for the

higher speeds; the resistance to shock forces is lower; the cost is higher.

4.2 Classi®cation

The important parts of rolling bearings are illustrated in Fig. 4.1: outer ring,

inner ring, rolling element and separator (retainer). The role of the separator

is to maintain an equal distance between the rolling elements. The races are

the outer ring or the inner ring of a bearing. The raceway is the path of the

rolling element on either ring of the bearing.

Rolling bearings may be classi®ed using the following criteria (Fig. 4.2):

j The rolling element share: ball bearings (Fig. 4.2a±f), roller bearings

(cylinder, Figs. 4.2g,h; cone, Fig. 4.2i; barrel, Fig. 4.2j), and needle

bearings (Fig. 4.2k)

j The direction of the principal force: radial bearings (Figs. 4.2a,b,g,h),

thrust bearings (Figs. 4.2d,e), radial-thrust bearings (Figs. 4.2c,i), or

thrust-radial bearings (Fig. 4.2f)

j The number of rolling bearing rows: rolling bearings with one row

(Figs. 4.2a,d,g,k), with two rows (Figs. 4.2b,e,h), etc.

The radial bearing is primarily designed to support a force perpendicular

to the shaft axis. The thrust bearing is primarily designed to support a force

parallel to the shaft axis.

Single row rolling bearings are manufactured to take radial forces and

some thrust forces. The angular contact bearings provide a greater thrust

capacity. Double row bearings are made to carry heavier radial and thrust

forces. The single row bearings will withstand a small misalignment or

de¯ection of the shaft. The self-aligning bearings (Fig. 4.2f), are used for

severe misalignments and de¯ections of the shaft.

Cylinder roller bearings provide a greater force than ball bearings of the

same size because of the greater contact area. This type of bearing will not

take thrust forces. Tapered (cone) roller bearings combined the advantages

of ball and cylinder roller bearings, because they can take either radial or

thrust forces, and they have high force capacity.

Needle bearings are used where the radial space is limited, and when the

separators are used they have high force capacity. In many practical cases

they are used without the separators.

4.3 Geometry

In Fig. 4.3 is shown a ball bearing with the pitch diameter given by

dm �
d0 � d

2
; �4:1�

where d0 is the outer diameter of the ball bearing and d is the bore.
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The pitch diameter can be calculated exactly as

dm �
Di � De

2
; �4:2�

where Di is the race diameter of the inner ring and De is the race diameter of

the outer ring.

Figure 4.1
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In general the ball bearings are manufactured with a clearance between

the balls and the raceways. The clearance measured in the radial plane is the

diametral clearance, sd , and is computed with the relation (Fig. 4.3)

sd � De ÿ Di ÿ 2D; �4:3�

where D is the ball diameter.

Because a radial ball bearing has a diametral clearance in the no-load

state, the bearing also has an axial clearance. Removal of this axial clearance

Figure 4.2
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causes the ball±raceway contact to assume an oblique angle with the radial

plane. Angular-contact ball bearings are designed to operate under thrust

force, and the clearance built into the unloaded bearing along with the

raceway groove curvatures determines the bearing free contact angle.

Because of the diametral clearance for radial ball bearing there is a free

endplay, sa , as shown in Fig. 4.4. In Fig. 4.4 the center of the outer ring

raceway circle is Oe , the center of the inner ring raceway circle is Oi , and the

center of the ball is O.

The distance between the centers Oe and Oi is

A � re � ri ÿ D; �4:4�
where re is the radius of the outer ring raceway and ri is the radius of the

inner ring raceway.

Figure 4.3

Figure 4.4
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If the raceway groove curvature radius is r � fD, where f is a dimen-

sionless coef®cient, then

A � � fe � fi ÿ 1�D � BD; �4:5�

where B � fe � fi ÿ 1 is de®ned, as the total curvature of the bearing. In the

preceding formula, re � feD and ri � fiD , where fe and fi are adimensional

coef®cients.

The free contact angle a0 is the angle made by the line passing through

the points of contact of the ball and both raceways and a plane perpendicular

to the bearing axis of rotation (Fig. 4.4). The magnitude of the free contact

angle can be written

sin a0 � 0:5sa=A: �4:6�

The diametral clearance can allow the ball bearing to misalign slightly

under no load. The free angle of misalignment y is de®ned as the maximum

angle through which the axis of the inner ring can be rotated with respect to

the axis of the outer ring before stressing bearing components,

y � yi � ye ; �4:7�

where yi (Fig. 4.5a) is the misalignment angle for the inner ring,

cos yi � 1ÿ sd ��2fi ÿ 1�D ÿ sd=4�
2dm �dm � �2fi ÿ 1�D � sd=2�

; �4:8�

Figure 4.5
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and ye (Fig. 4.5b) is the misalignment angle for the outer ring,

cos ye � 1ÿ sd ��2fe ÿ 1�D ÿ sd=4�
2dm�dm ÿ �2fe ÿ 1�D � sd=2�

: �4:9�

With the trigonometric identity

cos yi � cos ye � 2 cos��yi � ye �=2� cos�yi ÿ ye�=2� �4:10�
and with the approximation yi ÿ ye � 0, the free angle of misalignment

becomes

y � 2 arccos��cos yi � cos ye�=2�; �4:11�
or

y � 2 arccos 1ÿ sd

4dm

�2fi ÿ 1�D ÿ sd=4

dm � �2fi ÿ 1�D � sd=2
� �2fe ÿ 1�D ÿ sd=4

dm ÿ �2fe ÿ 1�D � sd=2

� �� �
:

�4:12�

4.4 Static Loading

In Fig. 4.6a is shown a single row radial thrust (angular contact) ball bearing.

The contact angle a is the angle of the axis of contact between balls and

Figure 4.6
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races. For a single row radial ball bearing, the angle a is zero. If Fr is the

radial force applied to the ball, then the normal force to be supported by the

ball is

F � Fr

cos a
; �4:13�

and the axial force, Fa (or Ft ), is

Fa � F sin a: �4:14�
For self-aligning roller bearings (Fig. 4.6b), the preceding relations are

valid for each roller, and the total axial force is zero.

For tapered roller bearings (Fig. 4.6c), there are three contact angles: ai ,

the contact angle for the inner ring; ae , the contact angle for the outer ring;

and af , the contact angle for the frontal face.

The normal and axial forces for the inner ring are

Fi �
Fri

cos ai

and Fai � Dri tan ai ; �4:15�

where Fri is the radial force acting on the inner ring. The normal and axial

forces for the outer ring are

Fe �
Fre

cos ae

and Fae � Fre tan ae ; �4:16�

where Fre is the radial force acting on the outer ring. The normal and axial

forces for the frontal face are

Ff �
Frf

cos af

and Faf � Frf tan af ; �4:17�

where Frf is the radial force acting on the frontal face.

The equilibrium equations for the radial and axial directions are

Fri ÿ Frf ÿ Fre � 0 or Fri ÿ Ff cos af ÿ Fe cos ae � 0 �4:18�
Fai � Faf ÿ Fae � 0 or Fri tan ai � Ff sin af ÿ Fe sin ae � 0: �4:19�

From Eqs. (4.18) and (4.19), the forces Fe and Ff are obtained:

Fe �
Fri �sin af � tan ai cos af �

sin�ae � af �
�4:20�

Ff �
Fri �sin ae ÿ tan ai cos ae �

sin�ae � af �
: �4:21�

4.5 Standard Dimensions

The Annular Bearing Engineers' Committee (ABEC) of the Anti-Friction

Bearing Manufacturers Association (AFBMA) has established four primary

grades of precision, designated ABEC 1, 5, 7, and 9. ABEC 1 is the standard

grade and is adequate for most normal applications. The other grades have

progressively ®ner tolerances. For example, tolerances on bearing bores
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between 35 and 50 mm range from �0:0000 to ÿ0:0005 in for ABEC grade I,

and from �0:0000 to ÿ0:0001 in for ABEC grade 9. Tolerances on other

dimensions are comparable. Similarly, the AFBMA Roller Bearing Engineers

Committee has established RBEC standards I and 5 for cylindrical roller

bearings.

The bearing manufacturers have established standard dimensions (Fig.

4.7 and Table 4.1) for ball and straight roller bearings, in metric sizes, which

de®ne the bearing bore d, the outside diameter d0, the width w, the ®llet sizes

on the shaft and housing shoulders r, the shaft diameter dS , and the housing

diameter dH .

For a given bore, there is an assortment of widths and outside diameters.

Furthermore, the outside diameters selected are such that, for a particular

outside diameter, one can usually ®nd a variety of bearings having different

bores. That is why the bearings are made in various proportions for different

series (Fig. 4.8): extra-extra-light series (LL00), extra-light series (L00), light

series (200), and medium series (300).

Figure 4.7
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Table 4.1 Bearing Dimensions

Ball bearings Roller bearings
Bearing
Basic d d0 w r dS dH d0 w r dS dH

Number (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

L00 10 26 8 0.30 12.7 23.4

200 10 30 9 0.64 13.8 26.7

300 10 35 11 0.64 14.8 31.2

L01 12 28 8 0.30 14.5 25.4

201 12 32 10 0.64 16.2 28.4

301 12 37 12 1.02 17.7 32.0

L02 15 32 9 0.30 17.5 29.2

202 15 35 11 0.64 19.0 31.2

302 15 42 13 1.02 21.2 36.6

L03 17 35 10 0.30 19.8 32.3 35 10 0.64 20.8 32.0

203 17 40 12 0.64 22.4 34.8 40 12 0.64 20.8 36.3

303 17 47 14 1.02 23.6 41.1 47 14 1.02 22.9 41.4

L04 20 42 12 0.64 23.9 38.1 42 12 0.64 24.4 36.8

204 20 47 14 1.02 25.9 41.7 47 14 1.02 25.9 42.7

304 20 52 15 1.02 27.7 27.7 52 15 1.02 25.9 46.2

L05 25 47 12 0.64 29.0 42.9 47 12 0.64 29.2 43.4

205 25 52 15 1.02 30.5 46.7 52 15 1.02 30.5 47.0

305 25 62 17 1.02 33.0 54.9 62 17 1.02 31.5 55.9

L06 30 55 13 1.02 34.8 49.3 47 9 0.38 3.33 43.9

206 30 62 16 1.02 36.8 55.4 62 16 1.02 36.1 56.4

306 30 72 19 1.02 38.4 64.8 72 19 1.52 37.8 64.0

L07 35 62 14 1.02 40.1 56.1 55 10 0.64 39.4 50.8

207 35 72 17 1.02 42.4 65.0 72 17 1.02 41.7 65.3

307 35 80 21 1.52 45.2 70.4 80 21 1.52 43.7 71.4

L08 40 68 15 1.02 45.2 62.0 68 15 1.02 45.7 62.7

208 40 80 18 1.02 48.0 72.4 80 18 1.52 47.2 72.9

308 40 90 23 1.52 50.8 80.0 90 23 1.52 49.0 81.3

L09 45 75 16 1.02 50.8 52.8 75 16 1.02 50.8 69.3

209 45 85 19 1.02 52.8 77.5 85 19 1.52 78.2

309 45 100 25 1.52 57.2 88.9 100 25 2.03 55.9 90.4

L10 50 80 16 1.02 55.6 73.7 72 12 0.64 54.1 68.1

210 50 90 20 1.02 57.7 82.3 90 20 1.52 57.7 82.8

310 50 110 27 2.03 64.3 96.5 110 27 2.03 61.0 99.1

L11 55 90 18 1.02 61.7 83.1 90 18 1.52 62.0 83.6

211 55 100 21 1.52 65.0 90.2 100 21 2.03 64.0 91.4

311 55 120 29 2.03 69.8 106.2 120 29 2.03 66.5 108.7

(continued)
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Table 4.1 Continued

Ball bearings Roller bearings
Bearing
Basic d d0 w r dS dH d0 w r dS dH

Number (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

L12 60 95 18 1.02 66.8 87.9 95 18 1.52 67.1 88.6

212 60 110 22 1.52 70.6 99.3 110 22 2.03 69.3 101.3

312 60 130 31 2.03 75.4 115.6 130 31 2.54 72.9 117.9

L13 65 100 18 1.02 71.9 92.7 100 18 1.52 72.1 93.7

213 65 120 23 1.52 76.5 108.7 120 23 2.54 77.0 110.0

313 65 140 33 2.03 81.3 125.0 140 33 2.54 78.7 127.0

L14 70 110 20 1.02 77.7 102.1 110 20

214 70 125 24 1.52 81.0 114.0 125 24 2.54 81.8 115.6

314 70 150 35 2.03 86.9 134.4 150 35 3.18 84.3 135.6

L15 75 115 20 1.02 82.3 107.2 115 20

215 75 130 25 1.52 86.1 118.9 130 25 2.54 85.6 120.1

215 75 160 37 2.03 92.7 143.8 160 37 3.18 90.4 145.8

L16 80 125 22 1.02 88.1 116.3 125 22 2.03 88.4 117.6

216 80 140 26 2.03 93.2 126.7 140 26 2.54 91.2 129.3

316 80 170 39 2.03 98.6 152.9 170 39 3.18 96.0 154.4

L17 85 130 22 1.02 93.2 121.4 130 22 2.03 93.5 122.7

217 85 150 28 2.03 99.1 135.6 150 28 3.18 98. 139.2

317 85 180 41 2.54 105.7 160.8 180 41 3.96 102.9 164.3

L18 85 140 24 1.02 99.6 129.0 140 24

218 85 160 30 2.03 104.4 145.5 160 30 3.18 103.1 147.6

318 85 190 43 2.54 111.3 170.2 190 43 3.96 108.2 172.7

L19 90 145 24 1.52 104.4 134.1 145 24

219 90 170 32 2.03 110.2 154.9 170 32 3.18 109.0 157.0

319 90 200 45 2.54 117.3 179.3 200 45 3.96 115.1 181.9

L20 95 150 24 1.52 109.5 139.2 150 24 2.54 109.5 141.7

220 95 180 34 2.03 116.1 164.1 180 34 3.96 116.1 167.1

320 95 215 47 2.54 122.9 194.1 215 47 4.75 122.4 194.6

L21 100 160 26 2.03 116.1 146.8 160 26

221 100 190 36 2.03 121.9 173.5 190 36 3.96 121.4 175.3

321 100 225 49 2.54 128.8 203.5 225 49 4.75 128.0 203.5

L22 105 170 28 2.03 122.7 156.5 170 28 2.54 121.9 159.3

222 105 200 38 2.03 127.8 182.6 200 38 3.96 127.3 183.9

322 105 240 50 2.54 134.4 218.2 240 50 4.75 135.9 217.2

L24 120 180 28 2.03 132.6 166.6 180 28

224 1220 215 40 2.03 138.2 197.1 215 40 4.75 139.2 198.9

324 120 260 55 6.35 147.8 235.2

(continued)
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4.6 Bearing Selection

Bearing manufacturers' catalogs identify bearings by number, give complete

dimensional information, list rated load capacities, and furnish details

concerning mounting, lubrication, and operation.

Often, special circumstances must be taken into account. Lubrication is

especially important in high-speed bearing applications, the best being a ®ne

oil mist or spray. This provides the necessary lubricant ®lm and carries away

friction heat with a minimum ``churning loss'' within the lubricant itself. For

ball bearings, nonmetallic separators permit highest speeds.

The size of bearing selected for an application is usually in¯uenced by

the size of shaft required (for strength and rigidity considerations) and by the

available space. In addition, the bearing must have a high enough load rating

to provide an acceptable combination of life and reliability.

Table 4.1 Continued

Ball bearings Roller bearings
Bearing
Basic d d0 w r dS dH d0 w r dS dH

Number (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

L26 130 200 33 2.063 143.8 185.4 200 33 3.18 143.0 188.2

226 130 230 40 2.54 149.9 210.1 230 40 4.75 149.1 213.9

326 130 280 58 3.05 160.0 253.0 280 58 6.35 160.3 254.5

L28 140 210 33 2.03 153.7 195.3 210 33

228 140 250 42 2.54 161.5 228.6 250 42 4.75 161.5 232.4

328 140 300 62 7.92 172.0 271.3

L30 150 225 35 2.03 164.3 209.8 225 35 3.96 164.3 212.3

230 150 270 45 2.54 173.0 247.6 270 45 6.35 174.2 251.0

L32 160 240 38 2.03 175.8 223.0 240 38

232 160 290 48 6.35 185.7 269.5

L36 180 280 46 2.03 196.8 261.6 280 46 4.75 199.6 262.9

236 180 320 52 6.35 207.5 298.2

L40 200 310 51

240 200 360 58 7.92 232.4 334.5

L44 220 340 56

244 220 400 65 9.52 256.0 372.1

L48 240 360 56

248 240 440 72 9.52 279.4 408.4

Source : R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design. John Wiley & Sons, New York, 1991. Used
with permission.
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4.6.1 LIFE REQUIREMENT
The life of an individual ball or roller bearing is the number of revolutions (or

hours at some constant speed) for which the bearings run before the ®rst

evidence of fatigue develops in the material of either the rings or of any of

the rolling elements. Bearing applications usually require lives different from

that used for the catalog rating. Palmegran determined that ball bearing life

varies inversely with approximately the third power of the force. Later studies

have indicated that this exponent ranges between 3 and 4 for various rolling-

element bearings. Many manufacturers retain Palmegren's exponent of 3 for

ball bearings and use 10=3 for roller bearings. Following the recommenda-

tion of other manufacturers, the exponent 10=3 will be used for both bearing

types. Thus the life required by the application is

L � LR �C =Fr �3:33; �4:22�

where C is the rated capacity (from Table 4.2), LR is the life corresponding to

the rated capacity (i.e., Lr � 9� 107 revolutions), and Fr is the radial force

involved in the application. The required value of the rated capacity for the

application is

Creq � Fr �L=LR �0:3: �4:23�

For a group of apparently identical bearings the rating life, LR , is the life

in revolutions (at a given constant speed and force) that 90% of the group

tested bearings will exceed before the ®rst evidence of fatigue develops.

Different manufacturers' catalogs use different values of LR (some use

LR � 106 revolutions).

Figure 4.8
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4.6.2 RELIABILITY REQUIREMENT
Tests show that the median life of rolling-element bearings is about ®ve times

the standard 10% failure fatigue life. The standard life is commonly desig-

nated as the L10 life (sometimes as the B10 life), and this life corresponds to

10% failures. It means that this is the life for which 90% have not failed, and

Table 4.2 Bearing Rated Capacities, C, for 90� 106 Revolution Life (LR) with 90% Reliability

Radial ball, a � 0� Angular ball, a � 25� Roller

L00 200 300 l00 200 300 1000 1200 1300
d xlt lt med xlt lt med xlt lt med
(mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

10 1.02 1.42 1.90 1.02 1.10 1.88

12 1.12 1.42 2.46 1.10 1.54 2.05

15 1.22 1.56 3.05 1.28 1.66 2.85

17 1.32 2.70 3.75 1.36 2.20 3.55 2.12 3.80 4.90

20 2.25 3.35 5.30 2.20 3.05 5.8 3.30 4.40 6.20

25 2.45 3.65 5.90 2.65 3.25 7.20 3.70 5.50 8.5

30 3.35 5.40 8.80 3.60 6.00 8.80 8.30 10.0

35 4.20 8.50 10.6 4.75 8.20 11.0 9.30 13.1

40 4.50 9.40 12.6 4.95 9.90 13.2 7.20 11.1 16.5

45 5.80 9.10 14.8 6.30 10.4 16.4 7.40 12.2 20.9

50 6.10 9.70 15.8 6.60 11.0 19.2 12.5 24.5

55 8.20 12.0 18.0 9.00 13.6 21.5 11.3 14.9 27.1

60 8.70 13.6 20.0 9.70 16.4 24.0 12.0 18.9 32.5

65 9.10 16.0 22.0 10.2 19.2 26.5 12.2 21.1 38.3

70 11.6 17.0 24.5 13.4 19.2 29.5 23.6 44.0

75 12.2 17.0 25.5 13.8 20.0 32.5 23.6 45.4

80 14.2 18.4 28.0 16.6 22.5 35.5 17.3 26.2 51.6

85 15.0 22.5 30.0 17.2 26.5 38.5 18.0 30.7 55.2

90 17.2 25.0 32.5 20.0 28.0 41.5 37.4 65.8

95 18.0 27.5 38.0 21.0 31.0 45.5 44.0 65.8

100 18.0 30.5 40.5 21.5 34.5 20.9 48.0 72.9

105 21.0 32.0 43.5 24.5 37.5 49.8 84.5

110 23.5 35.0 46.0 27.5 41.0 55.0 29.4 54.3 85.4

120 24.5 37.5 28.5 44.5 61.4 100.1

130 29.5 41.0 33.5 48.0 71.0 48.9 69.4 120.1

140 30.5 47.5 35.0 56.0 77.4 131.2

150 34.5 39.0 62.0 58.7 83.6

160 113.4

180 47.0 54.0 97.9 140.1

200 162.4

220 211.3

240 258.0

Source : New Departure-Hyatt Bearing Division, General Motors Corporation.
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it corresponds to 90% reliability �r � 90%�. Thus, the life for 50% reliability

is about ®ve times the life for 90% reliability. Using the general Weibull

equation together with extensive experimental data, a life adjustment

reliability factor Kr , is recommended. The life adjustment reliability factor,

Kr , is plotted in Fig. 4.9. This factor is applicable to both ball and roller

bearings. The rated bearing life for any given reliability (greater than 90%) is

thus the product Kr LR . Incorporating this factor into Eqs. (4.22) and (4.23)

gives

L � Kr LR �C =Fr �3:33

Creq � Fr

L

Kr LR

� �0:3

:
�4:24�

4.6.3 INFLUENCE OF AXIAL FORCE
For ball bearings (load angle a � 0�), any combination of radial force (Fr )

and thrust (Fa) results in approximately the same life as does a pure radial

equivalent force, Fe , calculated as

j For 0:00 < Fa=Fr < 0:35) Fe � Fr

j For 0:35 < Fa=Fr < 10:0) Fe � Fr�1� 1:115�Fa=Fr ÿ 0:35��
j For Fa=Fr > 10:0) Fe � 1:176Fa

Figure 4.9
Used with

permission from
Ref. 8.
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Standard values of load angle a for angular ball bearings are 15�, 25�, and

35�. Only the 25� angular ball bearings will be treated next. The radial

equivalent force, Fe , for angular ball bearings with a � 25� is:

j For 0:00 < Fa=Fr < 0:68) Fe � Fr

j For 0:68 < Fa=Fr < 10:0) Fe � Fr�1� 0:87�Fa=Fr ÿ 0:68��
j For Fa=Fr > 10:0) Fe � 0:911Fa

4.6.4 SHOCK FORCE
The standard bearing rated capacity is for the condition of uniform force

without shock, which is a desirable condition. In many applications there are

various degrees of shock loading. This has the effect of increasing the

nominal force by an application factor, Ka . In Table 4.3 some representative

sample values of Ka are given. The force application factor in Table 4.3

serves the same purpose as factors of safety.

If we substitute Fe for Fr and adding Ka , Eq. (4.24) gives

L � Kr LR

C

KaFe

� �3:33

Creq � KaFe

L

Kr LR

� �0:3

:

�4:25�

When more speci®c information is not available, Table 4.4 may be used

as a guide for the life of a bearing in industrial applications. Table 4.4

contains recommendations on bearing life for some classes of machinery.

The information has been accumulated by experience.

EXAMPLE 1

(FROM REF. 8)
Select a ball bearing for a machine for continuous 24-hour service. The

machine rotates at the angular speed of 900 rpm. The radial force is

Fr � 1 kN, and the thrust force is Fa � 1:25 kN, with light impact.

Table 4.3 Application Factors Ka

Type of application Ball bearing Roller bearing

Uniform force, no impact 1.0 1.0

Gearing 1.0±1.3 1.0

Light impact 1.2±1.5 1.0±1.1

Moderate impact 1.5±2.0 1.1±1.5

Heavy impact 2.0±3.0 1.5±2.0

Source : R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design. John
Wiley & Sons, New York, 1991. Used with permission.
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Solution

Both radial, a � 0�, and angular, a � 25�, ball bearings will be chosen. The

equivalent radial force for radial and angular ball bearings is for Fa=Fr � 1:25,

j For 0:35<Fa=Fr < 10:0) Fe � Fr�1� 1:115�Fa=Fr ÿ 0:35�� � 2:4 kN

(radial bearing)

j For 0:68 < Fa=Fr < 10:0) Fe � Fr�1� 0:87�Fa=Fr ÿ 0:68�� � 1:8 kN

(angular bearing)

From Table 4.3 choose (conservatively) Ka � 1:5 for light impact. From

Table 4.4 choose (conservatively) 60,000 hour life. The life in revolutions is

l � 800 rpm� 60;000 h� 60 min=h � 3240� 106 rev:

For standard 90% reliability (Kr � 1, Fig. 4.9), and for LR � 90� 106 rev (for

use with Table 4.2), Eq. (4.25) gives

Creq � KaFe

L

Kr LR

� �0:3

� �2:4��1:5��3240=90�0:3 � 10:55 kN �radial bearing�
� �1:8��1:5��3240=90�0:3 � 7:91 kN �angular bearing�:

Radial Bearings
j From Table 4.2 with 10.55 kN for L00 series ) C � 11:6 kN and

d � 70 mm bore. From Table 4.1 with 70 mm bore and L00 series,

the bearing number is L14.

Table 4.4 Representative Bearing Design Lives

Design life
Type of application (kh, thousands of hours)

Instruments and apparatus for infrequent use 0.1±0.5

Aircraft engines 0.5±2.0

Machines used intermittently, where service
interruption is of minor importance 4±8

Machines intermittently used, where reliability is
of great importance 8±14

Machines for 8-hour service,but not every day 14±20

Machines for 8-hour service, every working day 20±30

Machines for continuous 24-hour service 50±60

Machines for continuous 24-hour service where
reliability is of extreme importance 100±200

Source : R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design. John Wiley & Sons,
New York, 1991. Used with permission.
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j From Table 4.2 with 10.55 kN for 200 series ) C � 12:0 kN and

d � 55 mm bore. From Table 4.1 with 55 mm bore and 200 series,

the bearing number is 211.

j From Table 4.2 with 10.55 kN for 300 series ) C � 10:6 kN and

d � 35 mm bore. From Table 4.1 with 35 mm bore and 300 series,

the bearing number is 307.

For angular contact bearings the appropriate choices would be L11, 207,

and 306.

The ®nal selection would be made on the basis of cost of the total

installation, including shaft and housing. m

EXAMPLE 2 Figure 4.10 shows a two-stage gear reducer with identical pairs of gears. An

electric motor with power H � 2 kW and n1 � 900 rpm is coupled to the

shaft a. On this shaft there is rigidly connected the input driver gear 1 with

the number of teeth N1 � Np � 17. The speed reducer uses a countershaft b

with two rigidly connected gears 2 and 20, having N2 � Ng � 51 teeth and

N20 � Np � 17 teeth. The output gear 3 has N3 � Ng � 51 teeth and is rigidly

®xed to the shaft c coupled to the driven machine. The input shaft a and

output shaft c are collinear. The countershaft b turns freely in bearings A and

B. The gears mesh along the pitch diameter and the shaft are parallel. The

diametral pitch for each stage is Pd � 5, and the pressure angle is f � 20�.
The distance between the bearings is s � 100 mm, and the distance

l � 25 mm (Fig. 4.10). The gear reducer is a part of an industrial machine

intended for continuous one-shift (8 hours per day). Select identical extra-

light series (L00) ball bearings for A and b.

Figure 4.10
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Solution

The pitch diameters of pinions 1 and 20 are d1 � d20 � dp � Np=Pd � 17=5 �
3:4 in. The pitch diameters of gears 2 and 3 are d2 � d3 � dg � Ng=Pd �
51=5 � 10:2 in. The circular pitch is p � p=Pd � 3:14=5 � 0:63 in.

Angular Speeds
The following relation exists for the ®rst stage:

n1

n2

� N2

N1

) n2 � n1

N1

N2

� 900
17

51
� 300 rpm: �4:26�

For the second stage

n2

n3

� N3

N20
) n3 � n2

N20

N3

� 300
17

51
� 100 rpm: �4:27�

The angular speed of the countershaft b is nb � n2 � 300 rpm, and the

angular speed of the driven shaft c is nc � n3 � 100 rpm.

Torque Carried by Each Shaft
The relation between the power Ha of the motor and the torque Ma in shaft a

is

Ha �
Mana

9549
; �4:28�

and the torque Ma in shaft a is

Ma �
9549Ha

na

� 9549�2 kW�
900 rpm

� 21:22 Nm:

The torque in shaft b is

Mb �
9549Ha

nb

� Ma

N2

N1

� 21:22
51

17
� 63:66 Nm;

and the torque in shaft c is

Mc �
9549Ha

nc

� Mb

N3

N20
� 63:66

51

17
� 190:98 Nm:

Bearing Reactions
All the gear radial and tangential force is transferred at the pitch point P. The

tangential force on the motor pinion is

Ft �
Ma

rp

� 21:22

0:0431
� 492:34 N;

where rp � dp=2 � 1:7 in � 0:0431 m. The radial force on the motor pinion is

Fr � Ft tanf � 492:34 tan 20� � 179:2 N:

The force on the motor pinion 1 at P (Fig. 4.11) is

F21 � Fr21 � Fr21k � 179:2 ÿ 492:34k N: �4:29�j j
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The force on the countershaft gear 2 at P is

F12 � ÿF21 � Fr12 � Ft12k � ÿ179:2 � 492:34k N: �4:30�

The forces on the countershaft pinion 20 at R are three times as large, that is,

Ft 0 �
Mb

rp

� 63:66

0:0431
� 1477 N

Fr 0 � Ft 0 tanf � 1477 tan 20� � 537:6 N

and

F320 � Fr320 � Ft320k � ÿ537:6 ÿ 1477k N: �4:31�

The unknown forces applied to bearings A and B can be written as

FA � FAy � FAz k

FB � FBy � FBz k:

j j

j j

j

j

Figure 4.11
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A sketch of the countershaft as a free body in equilibrium is shown in Fig.

4.11. To determine these forces, two vectorial equations are used. The sum of

moments of all forces that act on the countershaft with respect to A is zero:P
MA � AP � F12 � AR � F320 � AB� FB

�
k

ÿl r2 0

0 Fr12 Ft12

�������
��������

k

s � l r20 0

0 Fr320 Ft320

�������
��������

k

s 0 0

0 FBy FBz

�������
������� � 0;

�4:32�

or P
MA � � lFt12 ÿ �s � l �Ft320 ÿ sFBz � 0P

MA � k � ÿlFr12 � �s � l �Fr320 � sFBy � 0:
�4:33�

From the preceding equations, FBy � 627:2 N and FBz � 1969:33 N. The

radial force at B is

FB �
��������������������
F 2

By � F 2
Bz

q
� 2066:8 N:

The sum of all forces that act on the countershaft is zero,P
F � F12 � FA � FB � F320 � 0; �4:34�

or

ÿFr12 � FAy � FBy ÿ Fr320 � 0

Ft12 � FAz � FBz ÿ Ft320 � 0:
�4:35�

From Eq. (4.35), FAy � 89:6 N and FAz � ÿ984:67 N. The radial force at A is

FA

��������������������
F 2

Ay � F 2
Az

q
� 988:73 N:

Ball Bearing Selection
Since the radial force at B is greater than the radial force at A, FB > FA, the

bearing selection will be based on bearing B. The equivalent radial force for

radial ball bearings is Fe � FB � 2066:8 N.

The ball bearings operate 8 hours per day, 5 days per week. From Table

4.3 choose Ka � 1:1 for gearing. From Table 4.4, choose (conservatively)

30,000 hour life.

The life in revolutions is

L � 300 rpm� 30;000 h� 60 min=h � 540� 106 rev:

i j i j i j

j
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For standard 90% reliability (Kr � 1, Fig. 4.9), and for LR � 90� 106 rev (for

use with Table 4.2), Eq. (4.25) gives

Creq � KaFe

L

Kr LR

� �0:3

� �1:1��2066:8� 540� 106

�1�90� 106

� �0:3

� 3891:67 N

� 3:9 kN:

From Table 4.2, with 3.9 kN for L00 series ) C � 4:2 kN and d � 35 mm

bore. From Table 4.1, with 35 mm bore and L00 series, the bearing number is

L07. The shaft size requirement may necessitate the use of a larger bore

bearing.

5. Lubrication and Sliding Bearings

Lubrication reduces the friction, wear, and heating of machine parts in

relative motion. A lubricant is a substance that is inserted between the

moving parts.

5.1 Viscosity

5.1.1 NEWTON'S LAW OF VISCOUS FLOW
A surface of area A is moving with the linear velocity V on a ®lm of lubricant

as shown in Fig. 5.1a. The thickness of the lubricant is s and the deforming

Figure 5.1
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force acting on the ®lm is F. The layers of the ¯uid in contact with the moving

surface have the velocity v � V and the layers of the ¯uid in contact with the

®xed surface have the velocity v � 0.

Newton's law of viscous ¯ow states that the shear stress t in a ¯uid is

proportional to the rate of change of the velocity v with respect to the

distance y from the ®xed surface,

t � F

A
� m

@v

@y
; �5:1�

where m is a constant, the absolute viscosity, or the dynamic viscosity. The

derivative @v=@y is the rate of change of velocity with distance and represents

the rate of shear, or the velocity gradient. For a constant velocity gradient Eq.

(5.1) can be written as (Fig. 5.1b).

t � m
V

2
: �5:2�

The unit of viscosity m, U.S. customary units, is pound-second per square

inch, lb s=in2, or reyn (from Osborne Reynolds). In SI units, the viscosity is

expressed as newton-seconds per square meter, N s=m2, or pascal-seconds,

Pa s. The conversion factor between the two is the same as for stress,

1 reyn � 6890 Pa s:

The reyn and pascal-second are such large units that microreyn (mreyn)

and millipascal-second (mPa s) are more commonly used. The former

standard metric unit of viscosity was the poise. One centipoise, cp, is

equal to one millipascal-second,

1cp � 1 mPa s:

Liquid viscosities are determined by measuring the time required for a given

quantity of the liquid to ¯ow by gravity through a precision opening. For

lubricating oils, the Saybolt universal viscometer, shown in Fig. 5.2, is an

instrument used to measure the viscosity. The viscosity measurements are

Saybolt seconds, or SUS (Saybolt universal seconds), SSU (Saybolt seconds

universal), and SUV (Saybolt universal viscosity).

With a Saybolt universal viscometer one can measure the kinematic

viscosity, n. The kinematic viscosity is de®ned as absolute viscosity, m, divided

by mass density, r,

n � m
r
: �5:3�

The units for kinematic viscosity are length2=time, as cm2=s, which is the

stoke (St). Using SI units, 1 m2=s � 104 St.

Absolute viscosities can be obtained from Saybolt viscometer measure-

ments (time s, in seconds) by the equations

m�mPa s or cp� � 0:22 sÿ 180

s

� �
r �5:4�
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and

m�mreyn� � 0:145 0:22 sÿ 180

s

� �
r; �5:5�

where r is the mass density in grams per cubic centimeter, g=cm3 (which is

also called speci®c gravity). For petroleum oils the mass density at different

temperatures is

r � 0:89ÿ 0:00063��Cÿ 15:6� g=cm3; �5:6�
or

r � 0:89ÿ 0:00035��Fÿ 60� g=cm3: �5:7�

The Society of Automotive Engineers (SAE) classi®es oils according to

viscosity.

The viscosity of SAE single viscosity motor oils is measured at 100�C
(212�F):

SAE Viscosity range m at 100�C
viscosity grade (cSt)

20 5:6 � m < 9:3

30 9:3 � m < 12:5

40 12:5 � m < 16:3

50 16:3 � m < 21:9

Figure 5.2
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The viscosity of motor oils with a W suf®x is measured at temperatures

that depend upon the grade:

SAE
viscosity

Viscosity
range Temperature

Viscosity range
at 100�C

grade m (cp) (�C) m (cSt)

0 W m � 3250 ÿ30 3:8 � m
5 W m � 3500 ÿ25 3:8 � m

10 W m � 3500 ÿ20 4:1 � m
15 W m � 3500 ÿ15 5:6 � m
20 W m � 4500 ÿ10 5:6 � m
25 W m � 6 000 ÿ5 9:3 � m

Multigrade motor oils, such SAE 10W-30, must meet the viscosity

standard at the W temperature and the SAE 30 viscosity requirement at

100�C.

In Figs. 5.3, 5.4, and 5.5 are shown graphics representing the absolute

viscosity function of temperature for typical SAE numbered oils. Grease is a

non-Newtonian material that does not begin to ¯ow until a shear stress

exceeding a yield point is applied.

Figure 5.3
Used with

permission from
Ref. 8.
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Multigrade oils, such as SAE 10W-40, have less variation of viscosity with

temperature than a single-grade motor oil such as SAE 40 or SAE 10W. The

viscosity index (VI) measures the variation in viscosity with temperature. The

viscosity index, on the Dean and Davis scale, of Pennsylvania oils is

VI � 100. The viscosity index, on the same scale, of Gulf Coast oils is

VI � 0. Other oils are rated intermediately. Nonpetroleum-base lubricants

have widely varying viscosity indices. Silicone oils have relatively little

variation of viscosity with temperature. The viscosity index improvers

(additives) can increase viscosity index of petroleum oils.

EXAMPLE The Saybolt kinematic viscosity of an oil corresponds to 60 s at 90�C (Fig.

5.2). What is the corresponding absolute viscosity in millipascal-seconds (or

centipoises) and in microreyns?

Solution

From Eq. (5.4), the absolute viscosity in centipoise is

m � 0:22sÿ 180

s

� �
r � �0:22��60� ÿ 180

60

� �
0:843 � 8:598 cp �or 8:598 mPa s�:

Figure 5.4
Used with

permission from
Ref. 8.
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From Eq. (5.5), the absolute viscosity in microreyns, mreyn, is

m � 0:145 0:22sÿ 180

s

� �
r � 0:145 �0:22��60� ÿ 180

60

� �
0:843 � 1:246 mreyn:

From Eq. (5.6), the mass density of the oil is

r � 0:89ÿ 0:00063��Cÿ 15:6� � 0:89ÿ 0:00063�90ÿ 15:6� � 0:843 g=cm3:

m

5.2 Petroff's Equation

Hydrodynamic lubrication is de®ned when the surfaces of the bearing are

separated by a ®lm of lubricant, and does not depend upon the introduction

of the lubricant under pressure. The pressure is created by the motion of the

moving surface. Hydrostatic lubrication is de®ned when the lubricant is

Figure 5.5
Used with

permission from
Ref. 15.
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introduced at a pressure suf®ciently high to separate the surfaces of the

bearing.

A hydrodynamic bearing (hydrodynamic lubrication) is considered in

Fig. 5.6. There is no lubricant ¯ow in the axial direction and the bearing

carries a very small load. The radius of the shaft is R, the clearance is c, and

the length of the bearing is L (Fig. 5.6). The shaft rotates with the angular

speed n rev=s and its surface velocity is V � 2pRn.

From Eq. (5.2) the shearing stress is

t � m
V

s
� 2pRmn

c
: �5:8�

The force required to shear the ®lm is the stress times the area,

F � tA;

where A � 2pRL.

The torque is the force times the lever arm,

T � FR � �tA�R � 2pRmn

c
2pRL

� �
R � 4p2mnLR3

c
: �5:9�

If a small radial load W is applied on the bearing, the pressure P (the radial

load per unit of projected bearing area) is

P � W

2RL
:

The frictional force is fW, where f is the coef®cient of friction, and the

frictional torque is

Tf � ÿf �W �R � f �2RLP �R � 2R2fLP : �5:10�
From Eqs. (5.9) and (5.10), the coef®cient of friction is

f � 2p2 mn

P

� � R

c

� �
: �5:11�

Figure 5.6
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This is called Petroff's law or Petroff's equation. In Petroff's equation there are

two important bearing parameters: the dimensionless variable �mn=P �, and

the clearance ratio �R=c� with the order between 500 and 1000.

The bearing characteristic number, or Sommerfeld number S, is given by

D � mn

P

R

c

� �2

; �5:12�

where R is the journal radius (in), c is the radial clearance (in), m is the

absolute viscosity (reyn), n is the speed (rev=s), and P is the pressure (psi).

The power loss is calculated with the relation

H � 2pTf n: �5:13�

EXAMPLE 5.1 A shaft with a 120 mm diameter (Fig. 5.7) is supported by a bearing of

100 mm length with a diametral clearance of 0.2 mm and is lubricated by oil

having a viscosity of 60 mPa s. The shaft rotates at 720 rpm. The radial load is

6000 N. Find the bearing coef®cient of friction and the power loss.

Solution

1. From Eq. (5.11), the coef®cient of friction is

f � 2p2 mn

P

� � R

c

� �
:

With R � 60 mm � 60 10ÿ3 m, c � 0:1 mm, n � 720 rev=min �
12 rev=s, and oil viscosity m � 60 mPa s � 0:06 Pa s, the pressure is

P � W

2RL
� 6000 N

2�0:06 m��0:1 m� � 500;000 N=m2 � 500;000 Pa:

Figure 5.7
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Using the numerical data, we ®nd that the value of the coef®cient of

friction is

f � 2p2 �0:06 Pa s��12 rev=s�
500;000 Pa

60 mm

0:1 mm
� 0:017:

2. The friction torque is calculated with

Tf � fWR � �0:017��6000 N��0:06 m� � 6:139 Nm

3. The power loss is

H � 2pTf n � 2p�6:139 Nm��12 rev=s� � 462:921 Nm=s � 462:921 W:

m

5.3 Hydrodynamic Lubrication Theory

In Fig. 5.8 is shown a small element of lubricant ®lm of dimensions dx, dy,

and dz. The normal forces, due the pressure, act upon the right and left sides

of the element. The shear forces, due to the viscosity and to the velocity, act

upon the top and bottom of the element. The equilibrium of forces gives

p dx dz � tdx dz ÿ p � dp

dx
dx

� �
dy dz ÿ t� @t

@y
dy

� �
dx dz � 0; �5:14�

Figure 5.8
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which reduces to

dp

dx
� @t
@y
: �5:15�

In Eq. (5.15) the pressure of the ®lm p is constant in the y direction and

depends only on the coordinate x, p � p�x �. The shear stress t is calculated

from Eq. (5.1),

t � m
@v�x ; y�
@y

: �5:16�

The velocity v of any particle of lubricant depends on both coordinates x and

y, v � v�x ; y�.
From Eqs. (5.15) and (5.16) results

dp

dx
� m

@2v

@2y
; �5:17�

or

@2v

@2y
� 1

m
dp

dx
: �5:18�

Holding x constant and integrating twice with respect to y gives

@v

@y
� 1

m
dp

dx
y � C1

� �
; �5:19�

and

v � 1

m
dp

dx

y2

2
� C1x � C2

� �
: �5:20�

The constants C1 and C2 are calculated using the boundary conditions for

y � 0) v � 0, and for y � s ) v � V .

With C1 and C2 values computed, Eq. (5.16) gives the equation for the

velocity distribution of the lubricant ®lm across any yz plane,

v � 1

2m
dp

dx
�y2 ÿ sy� � V

s
y : �5:21�

The volume of lubricant Q ¯owing across the section for width of unity in the

z direction is

Q �
�2

0

v�x ; y�dy � Vs

2
� s3

12m
dp

dx
: �5:22�

For incompressible lubricant the ¯ow is the same for any section,

dQ

dx
� 0:

By differentiating Eq. (5.22), one can write

dQ

dx
� V

2

ds

dx
ÿ d

dx

s3

12m
dp

dx

� �
;
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or

d

dx

s3

m
dp

dx

� �
� 6V

ds

dx
; �5:23�

which is the classical Reynolds equation for one-dimensional ¯ow.

The following assumptions were made:

The ¯uid is Newtonian, incompressible, of constant viscosity, and

experiences no inertial or gravitational forces

The ¯uid has a laminar ¯ow, with no slip at the boundary surfaces

The ¯uid experiences negligible pressure variation over its thickness

The journal radius can be considered in®nite

The Reynolds equation for two-dimensional ¯ow is (the z direction is

included) is

@

@x

s3

m
@p

@x

� �
� @

@z

s3

m
@p

@z

� �
� 6V

@s

@x
: �5:24�

For short bearings, one can neglect the x term in the Reynolds equation:

@

@z

s3

m
@p

@z

� �
� 6V

@h

@x
: �5:25�

Equation (5.25) can be used for analysis and design.

5.4 Design Charts

Raimondi and Boyd have transformed the solutions of the Reynolds Eq.

(5.25) to chart form. The charts provide accurate solutions for bearings of all

proportions. Some charts are shown in Figs. 5.9 to 5.15. The quantities given

in the charts are shown in Fig. 5.16. The Raimondi and Boyd charts give plots

of dimensionless bearing parameters as functions of the bearing characteristic

number, or Sommerfeld variable, S.

EXAMPLE 5.2 A journal bearing has the diameter D � 2:5 in, the length L � 0:625 in, and

the radial clearance c � 0:002 in, as shown in Fig. 5.17. The shaft rotates at

n � 3600 rpm. The journal bearing supports a constant load W � 1500 lb.

The lubricant ®lm is SAE 40 oil at atmospheric pressure. The average

temperature of the oil ®lm is Tavg � 140�F.

Find the minimum oil ®lm thickness h0, the bearing coef®cient of friction

f, the maximum pressure pmax , the position angle of minimum ®lm thickness

f, the angular position of the point of maximum pressure ypmax
, the

terminating position of the oil ®lm ypo , the total oil ¯ow rate Q, and the

¯ow ratio (side ¯ow=total ¯ow) Qs=Q.
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Solution

The pressure is

P � W

LD
� 1500

�0:625��2:5� � 960 psi:

The dynamic viscosity is m � 5 � 10ÿ6 reyn (SAE 40, Tavg � 140�F), from Fig.

5.4. The Sommerfeld number is

S � R

c

� �2mn

P
� 1:25

0:002

� �2
5� 10ÿ6�60�

960
� 0:122:

For all charts, S � 0:122 and L=D � 0:25 are used.

Figure 5.9
From Ref. 19.

Figure 5.10
From Ref. 19.
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Figure 5.11
From Ref. 19.

Figure 5.12
From Ref. 19.
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From Fig. 5.9, ho=c � 0:125, that is, the minimum ®lm thickness

h0 � 0:00025 in. From Fig. 5.11, �R=c�f � 5:0, that is, the coef®cient of

friction f � 0:00832. From Fig. 5.14, P=pmax � 0:2, that is, the maximum

®lm pressure pmax � 4800 psi.

From Fig. 5.10, the position angle of minimum ®lm thickness f � 25�.
From Fig. 5.15, the terminating position of the oil ®lm ypo � 32�, and the

angular position of the point of maximum pressure ypmax
� 9�.

From Fig. 5.12, the ¯ow variable Q=RcnL � 5:9, that is, the total ¯ow

Q � 0:553 in3=s. From Fig. 5.13, the ¯ow ratio (side ¯ow=total ¯ow)

Qs=Q � 0:94, that is, 6% of the ¯ow is recirculated. m

Figure 5.13
From Ref. 19.

Figure 5.14
From Ref. 19.

5. Lubrication and Sliding Bearings 331

M
ac

h
in

e
Co

m
p
o
n
en

ts



Figure 5.15
From Ref. 19.

Figure 5.16
Used with

permission from
Ref. 16.
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EXAMPLE 5.3 The oil lubricated bearing of a steam turbine has the diameter D � 160 mm

(Fig. 5.18). The angular velocity of the rotor shaft is n � 2400 rpm. The radial

load is W � 18 kN. The lubricant is SAE 20, controlled to an average

temperature of 78�C.

Find the bearing length, the radial clearance and the corresponding

values of the minimum oil ®lm thickness, the coef®cient of friction, the

friction power loss, and the oil ¯ows.

Solution

From Table 5.1, for a steam turbine (1 to 2 MPa range) the unit load

P � 1:5 MPa is arbitrarily selected. Based of this decision, the bearing

length is

L � W

PD
� 18;000

�1:5��160� � 75mm:

Figure 5.17

Figure 5.18
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Arbitrarily round this up to L � 80 mm to give L=D � 1
2 for convenient use of

the Raimondi and Boyd charts.

With L � 80 mm, P is given by the relation

P � W

LD
� 18;000

�80��160� � 1:406 MPa:

From Fig. 5.9 for L=D � 1
2, the optimum zone is between S � 0:037 and

S � 0:35.

From Fig. 5.3 the viscosity of SAE 20 oil at 78�C is m � 9:75 mPa s.

Substituting the known values into the equation for S,

S � mn

P

� � R

c

� �2

gives

0:037 � �9:75 � 10ÿ3 Pa s��40 rev=s�
�1:406 � 106 Pa�

80

c

� �2

:

Hence, the clearance is c � 0:2 mm �c=R � 0:00025�.
Similarly, for S � 0:35, c � 0:0677 mm �c=R � 0:00083�.
The minimum oil ®lm thickness ho is calculated from the ratio ho=c

obtained from Fig. 5.9. The coef®cient of friction f is calculated from the ratio

Rf=c obtained from Fig. 5.11. The total oil ¯ow rate Q is calculated from the

ratio Q=(RcnL) obtained from Fig. 5.12. The side leakage oil ¯ow Qs is

determined from the ratio Qs=Q obtained from Fig. 5.13. The values of ho , f,

Q, and Qs , as functions of c �0:03 � c � 0:23�, with c extending to either side

of the optimum range, are listed in Table 5.2 and plotted in Fig. 5.19. Figure

Table 5.1 Representative Unit Sleeve Bearing Loads in Current Practice

Application Unit load P � Wmax

LD

Relatively steady load

Electric motors 0.8±1.5 MPa 120±250 psi

Steam turbines 1.0±2.0 MPa 150±300 psi

Gear reducers 0.8±1.5 MPa 120±250 psi

Centrif. pumps 0.6±1.2 MPa 100±180 psi

Rapidly ¯uctuating load

Diesel engines:

Main bearings 6±12 MPa 900±1700 psi

Connecting rod bearings 8±15 MPa 1150±2399 psi

Automotive gasoline engines:

Main bearings 4±5 MPa 600±750 psi

Connecting rod bearings 10±15 MPa 1700±2300 psi

Source : R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design. John Wiley & Sons,
New York, 1991. Used with permission.
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5.19 indicates a good operation for the radial clearances between about

0.05 mm and 0.22 mm.

For the minimum acceptable oil ®lm thickness, ho , the following

empirical relations are given (Trumpler empirical equation):

ho � homin � 0:0002� 0:00004D�ho and D in inches�
ho � homin � 0:005� 0:00004D�ho and D in millimeters�: �5:26�

For D � 160 mm the minimum acceptable oil ®lm thickness is

homin � 0:005� 0:00004�160� � 0:0114 mm:

The minimum ®lm thickness using a safety factor of Cs � 2 applied to the

load, and assuming an ``extreme case'' of c � 0:22 mm, is calculated as

follows:

j The Sommerfeld number is

S � mn

CsP

� �
R

c

� �2

� �9:75��10ÿ3��40�
�2��1:406 � 106�

80

0:22

� �2

� 0:01625:

j From Fig. 5.9, using S � 0:01625, we ®nd ho=c � 0:06, and the

minimum ®lm thickness ho is 0.0132 mm.

This value satis®es the condition ho � 0:0132 � homin � 0:0114.

Friction power loss can be computed using the value of the friction

torque Tf . For the tightest bearing ®t where c � 0:05 mm and f � 0:0093, the

friction torque is

Tf �
WfD

2
� �18;000 N��0:0093��0:160 m�

2
� 13:392 N m;

Table 5.2 Numerical Values for Example 5.3

c S h0 f Q Qs

(mm) (mm) (mm3=s) (mm3=s)

0.0300 1.7453 0.0231 0.0147 26,730 9,620

0.0400 0.9817 0.0256 0.0111 39,980 19,990

0.0500 0.6283 0.0270 0.0093 52,980 31,790

0.0670 0.3499 0.0288 0.0075 77,450 54,220

0.0900 0.1939 0.0288 0.0068 110,540 88,430

0.1100 0.1298 0.0275 0.0062 140,400 117,940

0.1300 0.0929 0.0260 0.0060 169,060 145,390

0.1500 0.0698 0.0255 0.0055 198,680 176,830

0.1800 0.0485 0.0234 0.0050 242,750 220,910

0.2000 0.0393 0.0220 0.0047 272,140 253,090

0.2200 0.0325 0.0220 0.0047 300,940 281,380

0.2300 0.0297 0.2185 0.0046 315,730 296,780
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and the friction power is

Friction power � nT

9549
� �2400��13:392�

9549
� 3:365 kW: m
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1. Introduction

V
ibration can be characterized by systems having mass and elasticity.

Vibrations are categorized as free and forced. Free vibration occurs

when external forces are absent and the system oscillates under the

action of forces within the system itself. Natural frequencies are established

by the mass of the system and the stiffness of the system. The calculation of

the natural frequencies is important in the study of vibrations.

Forced vibration is when there are external forces (excitation forces) that

act on the system. For the analysis of linear vibrating systems, the principle of

superposition is valid.

Vibrating systems are subject to damping when energy is dissipated. The

number of independent coordinates required to uniquely describe the

motion of a system is called the degree of freedom of the system. A free

particle in planar motion has two degrees of freedom (two translations), and

a free particle in space has three degrees of freedom (three translations). A

free rigid body in planar motion has three degrees of freedom (two

translations and one rotation), and a free rigid body in space has six degrees

of freedom (three translations and three rotations).

Consider a particle of mass m suspended from a spring with the elastic

constant k, (Fig. 1.1). When the particle is displaced from its rest or

equilibrium position the mass m will oscillate about the equilibrium position

with simple harmonic motion. The displacement x of the mass from the

equilibrium position is a sine wave. This simple harmonic motion can be

represented by a point P on the circumference of circle of radius r as shown

in Fig. 1.2. The term ``harmonic'' was originally borrowed from music and

means that the motion is exactly repeated after a certain period of time T. The

linear tangential velocity v of the point P is

v � or ; �1:1�
where o is the angular velocity. The period T for one complete revolution

of the point P is given by

T � 2pr

v
� 2pr

or
� 2p

o
: �1:2�

Figure 1.1
Oscillations of a
mass suspended

on a spring.
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The frequency f is the number of complete oscillations that take place in

one second (the reciprocal of the period):

f � 1

T
: �1:3�

The unit for frequency is hertz (Hz). The angular velocity o is

o � 2pf �1:4�

and is also known as the angular frequency, circular frequency, or radian

frequency. The projection of P on the vertical diameter is the point Q, which

moves up and down with simple harmonic motion

x � r sin y � r sinot : �1:5�

The velocity and acceleration of harmonic motion can be determined by

differentiation of Eq. (1.5):

v � _x � or cosot � or sin ot � p
2

� �
a � �x � ÿo2r sinot � o2r sin�wt � p�:

�1:6�

The velocity and acceleration are also harmonic functions with the same

frequency of oscillation.

For trigonometric functions, Euler's equation is

eiy � cos y� i sin y; �1:7�

where i � �������ÿ1
p

.

2. Linear Systems with One Degree of Freedom

The linear systems with one degree of freedom (DOF) are mechanical

systems whose geometric con®guration at a particular moment in time can

be determined using a single scalar parameter (distance or angle).

Figure 1.2
Simple harmonic

motion.
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2.1 Equation of Motion

The differential equation of motion for a body of mass m with one degree of

freedom will be developed. Consider the mass attached to the end of a spring

and a damper (Fig. 2.1). The mass m is in translational motion, and x is the

linear displacement. The forces acting on the body are:

j The elastic (spring) force in spring Fe � ÿkx, where k is the spring

stiffness. The minus sign is due to the fact that the elastic force tends to

bring the body to the equilibrium position.

j The damping force in damper Fr � ÿc_x, which is opposite to the

motion. The force Fr is also called the viscous resistance force and c is

called the coef®cient of viscous damping.

j The exciting force Fp � F0 sin pt, which disturbs the body from the

equilibrium position. The exciting circular frequency is p (rad=s).

Newton's second law projected on the direction of motion gives

m �x � ÿkx ÿ c _x � F0 sin pt : �2:1�

The general differential equation of translational linear vibrations with one

degree of freedom is

m �x � c _x � kx � F0 sin pt : �2:2�

Another example of a linear system with one degree of freedom is a shaft

with torsional spring stiffness k (the torque moment needed to perform a

rotation of 1 radian) carrying at one end a mass of moment of inertia J (Fig.

2.2). A damper with the coef®cient c is hooked on the shaft.

The following torques act on the shaft:

j The elastic torque Me � ÿky, which acts on the shaft and is opposed

to the angular deformation y.
j The damping torque Mr � ÿc_y, which is produced by the damper

and is also opposed to the motion

j The exciting torque Mp � M0 sin pt.

Figure 2.1
Mechanical

model of a linear
system with one

DOF.
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The equation of motion with respect to the shaft axis gives

J �y � ÿkyÿ c _y�M0 sin pt ; �2:3�
and the general differential equation of torsional vibrations of the shaft is

J �y� c _y� ky � M0 sin pt : �2:4�

2.2 Free Undamped Vibrations

The mechanical model of a free undamped vibration is given in Fig. 2.3 and

consists of a particle of mass m in a rectilinear motion. The particle is

attached to one end of a massless spring of elastic constant k.

The equation of motion on the 0x axis is

m �x � kx � 0; �2:5�

or

�x � k

m
x � 0: �2:6�

If we denote k=m � o2 > 0, where o is the undamped circular (angular)

frequency, the differential equation of motion becomes

�x � o2x � 0: �2:7�

Figure 2.2
Shaft with

torsional spring
and damper.

Figure 2.3
Mechanical

model of a free
undamped
vibration.
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The characteristic equation in r is

r 2 � o2 � 0; �2:8�
and the general solution is

x � C1 sinot � C2 cosot ; �2:9�
where C1 and C2 are constants.

Equation (2.9) can be written as

x � A sin�ot � j�; �2:10�
with

A �
������������������
C 2

1 � C 2
2

q
; tanj � C2

C1

; �2:11�

where A is the amplitude, and j is the phase angle.

Using the initial condition

t � 0) x � x0

_x � v0

�
�2:12�

and the derivative of Eq. (2.9) with respect to time,

_x � C1o cosot ÿ C2o sinot ; �2:13�
the constants are

C1 �
v0

o
; C2 � x0

A �
�����������������
x 2

0 �
v2

0

o2

r
; j � arctan

x0o
v0

:

�2:14�

The equation of motion is now

x � v0

o
sinot � x0 cosot ; �2:15�

or

x �
�����������������
x 2

0 �
v2

0

o2

r
sin ot � arctan

x0o
v0

� �
: �2:16�

The motion in this case is a harmonic vibration. The displacement x, velocity

_x , and acceleration �x are represented in Fig. 2.4, for the values x0 � 0 m,

v0 � 1 m=s, and o � 0:5 rad=s.

The period of vibration is given by

T � 2p
o
� 2p

�����
m

k

r
; �2:17�

and the frequency of motion is

f � 1

T
� o

2p
� 1

2p

�����
k

m

r
: �2:18�
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The undamped circular frequency of the motion is called the natural

(circular or angular) frequency of the system and is given by

o �
�����
k

m

r
�

�����
g

fst

r
; �2:19�

where fst is the static de¯ection

fst �
mg

k
; �2:20�

where g is the acceleration of gravity.

2.3 Free Damped Vibrations

2.3.1 FUNDAMENTALS
All real systems dissipate energy when they vibrate, and the damping must

be included in analysis, particularly when the amplitude of vibration is

required. Energy is dissipated by frictional effects. The general expression

of the viscous damping force is given by

Fr � ÿ�sign _x �R; �2:21�
where

sign _x �
1; _x > 0
0; _x � 0
ÿ1; _x < 0:

8<: �2:22�

The most common types of damping are as follows:

j Dry damping, when

R � const �2:23�
j Viscous damping, when

R � cv � c _x ; �2:24�
where c is the coef®cient of viscous damping and v � _x.

Figure 2.4
Harmonic
vibration,
x0 � 0 m,
v0 � 1 m,

o � 0:5 rad=s.
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j Arbitrary damping, where

R � cvn�n > 1� �2:25�
This damping leads to a nonlinear differential equation of motion.

2.3.2 FREE DAMPED VIBRATIONS WITH DRY DAMPING
In this case, the viscous damping force R is given by Coulomb's law of

friction,

R � mN ; �2:26�
where N is the normal force and m is the coef®cient of friction.

The resistance force has a constant value and it is opposed to the

direction of motion. A simple example is shown in Fig. 2.5. The differential

equation of motion is

m �x � kx � �mmg: �2:27�

The minus sign is for the case of positive motion along the 0x axis.

The general solutions of the above equation are

x � C1 sinot � C2 cosot ÿ mmg

k
;

x � C2 sinot � C2 cosot � mmg

k
;

8><>: �2:28�

where the natural angular frequency is o �
����������
k=m

p
.

Assume the body of mass m at rest and the spring is compressed (or

stretched) such that its initial displacement is jx0j > jxs � mmg=kj. With the

initial conditions

t � 0) x � �x0

_x � 0
;

�
�2:29�

the equations of motion are

x � ÿ�x0 ÿ xs� cosot ÿ xs

x � �x0 ÿ 3xs� cosot � xs
:

�
�2:30�

Figure 2.6 represents the displacement x for x0 � 5 m, xs � 0:25 m,

o � 1 rad=s. The maximum distances x1; x2; . . . ; xn for the body at each

step are determined from the condition _x � 0, and they are x1 � x0 ÿ 2xs ,

jx2j � x0 ÿ 4xs ; . . . ; jxnj � x0 ÿ 2nxs .

Figure 2.5
Mechanical

model of a free
damped

vibration with
dry damping.
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The motion stops when the distance is xn � xs . The number of steps n

for which the body vibrates back and forth is determined from

xn � xs ) n � x0 ÿ xs

2xs

� kx0 ÿ mmg

2mmg
: �2:31�

The manner of oscillation decay is shown in Fig. 2.6. The amplitudes of

motion decrease linearly in time. The zone x � �xs is called the dead zone.

2.3.3 FREE DAMPED VIBRATIONS WITH VISCOUS DAMPING
Viscous damping is a common form of damping that is found in many

engineering systems such as instruments and shock absorbers. In such cases

the viscous damping force is proportional to the ®rst power of the speed

R � cv , and it always opposes the motion. This type of vibration appears for

the case of motion in a liquid environment with low viscosity or in the case of

motion in air with speed under 1 m=s. Figure 2.7a shows a mechanical model

Figure 2.6
Oscillation decay
for free damped

vibration with
dry damping:

x0 � 5 m,
xs � 2:5 m,

o � 1 rad=s.

Figure 2.7
Free damped

vibration with
viscous

damping.
(a) Linear
damping;

(b) torsional
damping.
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for a free vibration with linear damping, and Fig. 2.7b represents a model for

a free vibration with torsional damping.

The equation of motion for the linear displacement, x, is

m �x � ÿkx ÿ c _x ; �2:32�
or

m �x � c _x � kx � 0: �2:33�
The equation of motion for the angular displacement, y, is

m �y � ÿkyÿ c _y; �2:34�
or

m �y� c _y� k _y � 0: �2:35�
Consider the single degree of freedom model with viscous damping shown

in Fig. 2.8. The differential equation of motion is

m �x � c _x � kx � 0; �2:36�

or

�x � c

m
_x � k

m
� 0; �2:37�

or

�x � 2a _x � o2x � 0; �2:38�
where

o �
���
k
p

=m

is the undamped natural (angular) frequency, and

a � c=2m

is the damping ratio.

The characteristic equation in r for Eq. (2.38) is

r 2 � 2ar � o2 � 0; �2:39�
with the solutions

r1;2 � ÿa�
����������������
a2 ÿ o2
p

: �2:40�

Figure 2.8
Mechanical

model of
free damped

vibration
with viscous

damping.
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Case 1. a2 ÿ o2 < 0) the roots r1 and r2 are complex conjugate

(r1; r2 2 C, where C is the set of complex numbers).

Case 2. a2 ÿ o2 > 0) the roots r1 and r2 are real and distinct

(r1; r2 2 R; r1 6� r2, where R is the set of real numbers).

Case 3. a2 ÿ o2 � 0) the roots r1 and r2 are real and identical, r1 � r2.

In this case, the damping coef®cient is called the critical damping

coef®cient, c � ccr, and

a � o) ccr

2m
�

�����
k

m

r
: �2:41�

The expression of the critical damping coef®cient is

ccr � 2
�������
km
p

� 2mo: �2:42�
One can classify the vibrations with respect to critical damping coef®cient as

follows:

Case 1. c < ccr ) complex conjugate roots (low damping and oscilla-

tory motion).

Case 2. c > ccr ) real and distinct roots (great damping and aperiodic

motion).

Case 3. c � ccr ) real and identical roots (great damping and aperiodic

motion).

Case 1: Complex Conjugate Roots a2 ÿ o2 < 0
The term

b �
����������������
o2 ÿ a2
p

�2:43�
is the quasicircular frequency.

The roots of Eq. (2.39) are

r1;2 � a� ib: �2:44�
The solution of the differential equation is

x � eÿat �C1 sin bt � C2 cos bt �; �2:45�
or

x � Aeÿat sin�bt � j�; �2:46�
where C1, C2 (A and j) are constants.

If we use the initial condition

t � 0) x � x0

_x � v0

�
�2:47�

and the derivative of Eq. (2.45) with respect to time,

_x � ÿaeÿat �C1 sin bt � C2 cos bt � � beÿat �C1 cosbt ÿ C2 sin bt �; �2:48�
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the constants are

C2 � x0; C1 �
v0 � ax0

b
; �2:49�

or

A �
������������������
C 2

1 � C 2
2

q
�

������������������������������������
x 2

0 �
v0 � ax0

b

� �2
s

�2:50�

tanj � C2

C2

� bx0

v0 � ax0

: �2:51�

The solution is

x � eÿat v0 � ax0

b
sin bt � x0 cos bt

� �
; �2:52�

or

x �
������������������������������������
x 2

0 �
v0 � ax0

b

� �2
s

eÿat sin bt � arctan
bx0

v0 � ax0

� �
: �2:53�

The exponential decay, Aeÿat , decreases in time, so one can obtain a motion

that is modulated in amplitude. In Eq. (2.43) the quasicircular (or quasian-

gular) frequency b is

b �
����������������
o2 ÿ a2
p

�
������������������������
k

m
ÿ c

2m

� �2
r

� o

�����������������������
1ÿ c

ccr

� �2
s

: �2:54�

The quasiperiod of motion is

Tb �
2p
b
� 2p����������������

o2 ÿ a2
p : �2:55�

The diagram of motion for x is shown in Fig. 2.9, for x0 � 0 m, v0 � 0:2 m=s,

a � 0:1 sÿ1, and o � 0:8 rad=s.

The rate of decay of oscillation is

x �t �
x �t � Tb�

� Aeÿat sin�bt � j�
Aeÿa�tT b� sin�b�t � Tb� � j� �

1

eÿ2pa=b � e2pa=b � const: �2:56�

Figure 2.9
Oscillation decay
for free damped

vibration with
viscous

damping:
x0 � 0 m,

v0 � 0:2 m,
a � 0:1 sÿ1,

o � 0:8 rad=s.
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Equation (2.56) shows that the displacement measured at equal time intervals

of one quasiperiod decreases in geometric progression. To characterize this

decay, the logarithmic decrement d is introduced

d � ln
x �t �

x �t � Tb�
� ln e2pa=b � 2pa����������������

o2 ÿ a2
p � pc

mb
: �2:57�

The manner of oscillation decay can be represented using x and o as axes,

(Fig. 2.10). The oscillation continues until the amplitude of motion is so small

that the maximum spring force is unable to overcome the friction force.

Case 2: Real and Distinct Roots a2 ÿ o2 > 0
The roots of the characteristic equation are negative

r1 � ÿl1; r2 � ÿl2; l1 and l2 > 0: �2:58�
The solution of Eq. (2.38) in this case is

x � C1eÿl1t � C2eÿl2t : �2:59�
The motion is aperiodic and tends asymptotically to the rest position (x ! 0

when t !1). Figure 2.11 shows the diagrams of motion for different initial

conditions.

Case 3: Real Identical Roots a2 ÿ o2 � 0
The roots of the characteristic equation are

r1 � r2 � ÿa: �2:60�

Figure 2.10
Oscillation decay

represented
using x and o

axes.

Figure 2.11
Diagram of

damped motion
for different

initial
conditions: (a)
x0 > 0, v0 > 0;

(b) x0 > 0,
v0 < 0 (low);

(c) x0 > 0,
v0 < 0 (great).
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The solution of the differential equation, namely the law of motion, in this

case becomes

x � eÿat �C1t � C2� �
C1t � C2

eat
�2:61�

When t !1, one obtains the undeterminate x � 1=1. The l'Hospital rule

is applied in this case:

x � lim
t!1

C1t � C2

eat
� lim

t!1
C1

aeat
� C1

1 � 0; �2:62�

namely, the motion stops aperiodically.

The diagrams of motion are similar to the previous case, with the same

boundary conditions. Critical damping represents the limit of periodic

motion; hence, the displaced body is restored to equilibrium in the shortest

possible time, and without oscillation. Many devices, particularly electrical

instruments, are critically damped to take advantage of this property.

2.4 Forced Undamped Vibrations

2.4.1 RESPONSE OF AN UNDAMPED SYSTEM TO A SIMPLE HARMONIC
EXCITING FORCE WITH CONSTANT AMPLITUDE

Common sources of harmonic excitation imbalance in rotating machines, the

motion of the machine itself, or forces produced by reciprocating machines.

These excitations may be undesirable for equipment whose operation may

be disturbed or for the safety of the structure if large vibration amplitudes

develop. Resonance is to be avoided in most cases, and to prevent large

amplitudes from developing, dampers and absorbers are often used.

General Case
An elastic system is excited by a harmonic force of the form

Fp � F0 sin pt ; �2:63�
where F0 is the amplitude of the forced vibration and p is the forced angular

frequencies. The differential equation of motion for the mechanical model in

Fig. 2.12 is

m �x � kx � F0 sin pt ; �2:64�
or

�x � k

m
x � F0

m
sin pt : �2:65�

Figure 2.12
Mechanical

model of forced
undamped
vibrations.
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The following notation is used:

k

m
� o2;

F0

m
� q : �2:66�

Equation (2.65) can be written as

�x � o2x � q sin pt ; �2:67�
with the solution

x � C1 sinot � C2 cosot � xp : �2:68�
The particular solution xp of the nonhomogeneous differential equation is

xp � C sin pt ; �2:69�
and the second derivative with respect to time is

�xp � ÿCp2 sin pt : �2:70�
The constant C is determined using Eqs. (2.67), (2.69), and (2.70) for o 6� p:

ÿCp2 sin pt � o2C sin pt � q sin pt ; �2:71�
or

C o2 ÿ p2
ÿ � � q ) C � q

�o2 ÿ p2� : �2:72�

Introducing in Eq. (2.68) the obtained value of C, one can get

x � C1 sinot � C2 cosot � q

o2 ÿ p2
sin pt ; �2:73�

which may be written as

x � A sin�ot � j� � q

o2 ÿ p2
sin pt : �2:74�

The constants C1 and C2 (A and j) are determined from the initial conditions

t � 0) x � 0
_x � 0

�
�2:75�

The derivative with respect to time of Eq. (2.73) is

_x � C1o cosot ÿ C2o sinot � qp

o2 ÿ p2
cos pt : �2:76�

With the help of Eqs. (2.75), (2.73), and (2.76) the constants are

C1 � ÿ
p

o
q

o2 ÿ p2

C2 � 0:

The vibration equation is

x � q

o2 ÿ p2
sin pt ÿ p

o
sinot

h i
: �2:77�
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Equation (2.77) is a combined motion of two vibrations: one with the natural

frequency o and one with the forced angular frequency p. The resultant

is a nonharmonic vibration (Fig. 2.13), here for o � 1 rad=s, q � 1 N=kg,

p � 0:1 rad=s. The amplitude is

A � q

o2 ÿ p2
�

F0

m

o2 ÿ p2
�

F0

m

1

o2

1ÿ p2

o

� �2

�
F0

m

m

k

1ÿ p

o

� �2 �
F0

k

1

1ÿ p

o

� �2 �
xst

1ÿ p

o

� �2 � xst A0; �2:78�

Figure 2.13
Combined

motion of two
vibrations:

o � 1 rad=s,
q � 1 N=kg,

p � 0:1 rad=s.
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where xst � F0=k is the static deformation of the elastic system, under the

maximum value F0, and

jA0j �
1����1ÿ p

o

� �2
���� �2:79�

is a magni®cation factor. In Fig. 2.14 is shown the magni®cation factor

function of p=o.

From Fig. 2.14 one can notice:

j Point a ( p � 0, A0 � 1) and x � xst . The system vibrates in phase with

force.

j Point b ( p!1, A0 ! 0), which corresponds to great values of

angular frequency p. The in¯uence of forced force is practically null.

j Point c ( p � o, A0 !1). This phenomenon called resonance and is

very important in engineering applications.

The curve in Fig. 2.14 is called a curve of resonance.

Resonance
When the frequency of perturbation p is equal to the natural angular

frequency o, the resonance phenomenon appears. The resonance is char-

acteristic through increasing amplitude to in®nity. In Eq. (2.77) for o � p, the

limit case is obtained, limp!o x � 1 � 0. Using l'Hospital's rule one can

calculate the limit:

lim
p!o

x � q lim
p!o

sin pt ÿ p

o
sinot

o2 ÿ p2
� q lim

p!o

t cos pt

ÿ2p
� ÿq

2o

� �
cosot : �2:80�

A diagram of the motion is shown in Fig. 2.15 for q � 1 N=kg and o �
0:2 rad=s. The amplitude increases linearly according to Eq. (2.80).

The Beat Phenomenon
The beat phenomenon appears in the case of two combined parallel

vibrations with similar angular frequency (o � p). One can introduce the

Figure 2.14
Curve of

resonance.
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factor e � oÿ p, and in this case p=o � 1 and p � o � 2o. The vibration

becomes

x � q

o2 ÿ p2
�sin pt ÿ sinot �

� q

�o� p��oÿ p� 2 sin
�p ÿ o�t

2
cos
�p � o�t

2

� 2q

2oe
sin
�ÿet �

2
cos

2ot

2
� ÿ q

oe
sin

e
2

t
� �

cosot : �2:81�

The amplitude is in this case is

f�t � � ÿ q

oe
sin

e
2

t
� �

: �2:82�

The vibration diagram is shown in Fig. 2.16 for q � 2 N=kg, e � 0:12 rad=s

and o � 0:8 rad=s.

2.4.2 RESPONSE OF AN UNDAMPED SYSTEM TO A CENTRIFUGAL
EXCITING FORCE

Unbalance in rotating machines is a common source of vibration excitation.

Frequently, the excited (perturbation) harmonic force came from an

Figure 2.15
Diagram of
resonance

phenomenon:
q � 1 N=kg,

o � 0:2 rad=s.

Figure 2.16
Diagram of beat

phenomenon:
q � 2 N=kg,

E � 0:12 : rad=s,
o � 0:8 rad=s.
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unbalanced mass that is in a rotating motion that generates a centrifugal

force. For this case the model is depicted in Fig. 2.17. The unbalanced mass

m0 is connected to the mass m1 with a massless crank of lengths r. The crank

and the mass m0 rotate with a constant angular frequency p. The centrifugal

force is

F0 � m0rp2; �2:83�

and represents the amplitude of the forced vibration (Fp � F0 sin pt ). The

amplitude of the combined vibration is

A0 � q

o2 ÿ p2
� F0

k

1

1ÿ P

o

� �2 �
m0rp2

k

1

1ÿ p

o

� �2

�
m0

m
rp2

k

m

1

1ÿ p

o

� �2 �
m0

m
r

p

o

� �2

1ÿ p

o

� �2 �
m0r

m
A00; �2:84�

where A00 is a magni®cation factor, and m � m1 �m0. The magni®cation

factor A00 is

A00 �
p

o

� �2

1ÿ p

o

� �2 �
p

o

� �2

A0: �2:85�

The variation of the magni®cation factor is shown in Fig. 2.18 where the

representative points are a, b, and c.

Figure 2.17
Mechanical

model of
undamped

system with
centrifugal

exciting force.

Figure 2.18
Variation of the

magni®cation
factor.
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2.4.3 RESPONSE OF AN UNDAMPED SYSTEM TO A NONHARMONIC
PERIODIC EXCITING FORCE

One may consider the nonharmonic periodic exciting force F (t). The

function F (t) obeys the Dirichlet conditions. The exciting force F (t) can be

developed in Fourier series:

Fp � F �t � � a0 � a1 cos pt � a2 cos 2pt � � � � � b1 sin pt � b2 sin 2pt � � � �
�2:86�

For n terms,

F �x � � F0 � F1 sin�pt � j1� � F2 sin�2pt � j2� � � � �
� Pn

i�0
Fi sin�ipt � ji �: �2:87�

The equation of motion is

m �x � kx � F �t �: �2:88�

For the linear differential equation, the superposition principle is applied and

the general solution is

x � C1 sinot � C2 cosot � F0

mo2
� F1

m�o2 ÿ p2� sin�pt � j1�

� F2

m�o2 ÿ �2p�2� sin�2pt � j2� �
F3

m�o2 ÿ �3p�2� sin�3pt � j3� � � � � ;

�2:89�

or

x � C1 sinot � C2 cosot �Pn
i�0

Fi

m�o2 ÿ �ip�2� sin�ipt � ji�: �2:90�

The resonance appears for the ®rst harmonic (the fundamental harmonic)

and for superior harmonics (o � p, o � 2p, o � 3p, . . . ,o � np).

2.4.4 RESPONSE OF AN UNDAMPED SYSTEM TO AN ARBITRARY
EXCITING FORCE

For this general case the exciting force is an arbitrary force Fig. (2.19). The

differential equation of motion is

m �x � kx � F �t �: �2:91�
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The vibration in this case is

x � C1 sinot � C2 cosot � 1

mo

�t
0

F �t � sin�o�tÿ t ��dt ; �2:92�

where t is presented in Fig. 2.19 and C1, C2 are constants. The integral in Eq.

(2.92) is called the Duhamel integral.

2.5 Forced Damped Vibrations

2.5.1 RESPONSE OF A DAMPED SYSTEM TO A SIMPLE HARMONIC
EXCITING FORCE WITH CONSTANT AMPLITUDE

The mechanical model is shown in Fig. 2.20. The differential equation of

motion is

m �x � c _x � kx � F0 sin pt : �2:93�
The following notation is used:

c

2m
� 2a;

k

m
� o;

F0

m
� q : �2:94�

The equation of motion becomes

�x � 2a _x � o2x � q sin pt : �2:95�

Figure 2.19
Arbitrary

exciting force of
an undamped

system.

Figure 2.20
Mechanical

model of forced
damped

vibration.
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Case 1: �c < ccr� or a < o.
The characteristic equation is

r 2 � 2ar � o2 � 0; �2:96�
with the roots

r1;2 � ÿa�
����������������
a2 ÿ o2
p

� ÿa� ib; �2:97�
where

ÿb2 � a2 ÿ o2: �2:98�
The general solution of differential equation (2.95) is

x � x1 � x2; �2:99�
where x1 represent the solution of the differential homogenous equation, and

x2 is a particular solution of the differential nonhomogeneous equation. In

this case x1 represents the natural vibration of the system and x2 is the forced

vibration of the system. The solution of the free damped system is

x1 � eÿat �C1 sinot � C2 cosot �; �2:100�
or

x1 � B1eÿat sin�ot � j�; �2:011�
where

B1 �
������������������
C 2

1 � C 2
2

q
and tanj � C2

C1:
�2:102�

The solution of the forced (excited) vibration is

x2 � D1 sin pt � D2 cos pt : �2:103�
The constants D1 and D2 are determined using the identi®cation method.

One can calculate

_x2 � D1p cos pt ÿ D2p sin pt

�x2 � ÿD1p2 sin pt ÿ D2p2 cos pt :

�
�2:104�

Introducing Eq. (2.103) and Eq. (2.104) in Eq. (2.95) one can obtain

ÿD1p2 sin pt ÿ D2p2 cos pt
� �� 2a�D1p cos pt ÿ D2p sin pt �

� o2 D1 sin pt � D2 cos pt
� � � q sin pt :

�2:105�

Using the identi®cation method, the linear system is obtained

D1�o2 ÿ p2� ÿ 2D2ap � q

2D1ap � D2�o2 ÿ p2� � 0:

�
�2:106�

Solving this system, one ®nds

D1 �
�o2 ÿ p2�q

�o2 ÿ p2�2 � 4a2p2

D2 � ÿ
2apq

�o2 ÿ p2�2 � 4a2p2
:

�2:107�

360 Theory of Vibration

V
ib

ratio
n



Therefore the forced vibration x2 has the expression

x2 �
�o2 ÿ p2�q

�o2 ÿ p2�2 � 4a2p2
sin pt ÿ 2apq

�o2 ÿ p2�2 � 4a2p2
cos pt �2:108�

or

x2 � B2 sin�pt ÿ f�; �2:109�
where

B2 �
������������������
D2

1 � D2
2

q
and tanf � ÿD2

D1

: �2:110�

In conclusion, the motion of the system is represented by the equation

x � B1eÿat sin�ot � j� � B2 sin�pt ÿ f�: �2:111�
The graphic of the vibration is shown in Fig. 2.21 for x0 � 0 m, v0 � 0:2 m=s,

o � 5 rad=s, q � 1 N=kg, p � 0:3 rad=s, a � 0:1 sÿ1.

According to Eq. (2.110) the amplitude of the vibration is

B2 �
������������������
D2

1 � D2
2

q
� q

�o2 ÿ p2�2 � 4a2p2

���������������������������������������
�o2 ÿ p2�2 � 4a2p2

q
� q���������������������������������������
�o2 ÿ p2�2 � 4a2p2

q : �2:112�

One can denote

xst �
F0

k
� F0=m

k=m
� q

o2
; �2:113�

where xst represents the static deformation.

The amplitude of forced vibration can be written as

B2 �
q

o2��������������������������������������������
1ÿ p2

o2

� �2

� 4
a2

o2

p2

o2

s � xst A1; �2:114�

where A1 is the magni®cation factor. The expression of the magni®cation

factor is

A1 �
1������������������������������������������

1ÿ p2

o2

� �2

� 4
a2

o2

p2

o2

s � 1�����������������������������������������������������
1ÿ p2

o2

� �2

�4
c

ccr

� �2
p

o

� �2

s
;

�2:115�

where

a
o
�

c

2m�����
k

m

r � c

2
�������
km
p � c

ccr

: �2:116�
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In Fig. 2.22 the magni®cation factor A1 is plotted versus the ratio p=o.

Different curves for different values of the ratio c=ccr are obtained. In the

case of c=ccr � 0 (system without damping),

A1 �
1

1ÿ p2

o2

� A0: �2:117�

The damping factor c=ccr has a large in¯uence on the amplitude near

resonance. It is recommended to avoid the domain 0:7 < p=o < 1:3.

Figure 2.21
Graphic of

damped
vibration of a

system with
simple harmonic

exciting force
with constant

amplitude:
x0 � 0 m,

v0 � 0:2 m=s,
o � 5 rad=s,
q � 1 N=kg,

p � 0:3 rad=s,
a � 0:1 sÿ1.
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The maximum of A1 is obtained from the relation

dA1

d
p2

o2

� � � 0) p

o
�

����������������������
1ÿ 2

a
o

� �2
r

�
�������������������������
1ÿ 2

c

ccr

� �2
s

: �2:118�

The delay is compute with relation

tanj � ÿD2

D1

� 2ap

o2 ÿ p2
�

2
a
o

p

o

1ÿ p

o

� �2 �
2

c

ccr

p

o

1ÿ p

o

� �2 ; �2:119�

and

f � arctan

2
c

ccr

p

o

1ÿ p

o

� �2 : �2:120�

The variation of delay versus frequency ratio is plotted in Fig. 2.23. From Fig.

2.23, for p=o < 1 is obtained f � 0, namely, the vibration is in phase with

the perturbation force. For p=o > 1 is obtained f � p, that is, the vibration

Figure 2.22
Diagram of the
magni®cation

factor A1.

Figure 2.23
Variation delay.

2. Linear Systems with One Degree of Freedom 363

V
ib

ra
ti

o
n



and perturbation forces are in opposition of phase. For the case c=ccr 6� 0

(systems with damping), for p=o < 1 the phase angle between the vibration

and perturbation forces is 0 < f < p=2, and for p=o > 1 the phase angle is

p=2 < f < p. For p � o and for any parameter c=ccr , the phase angle is the

same.

Using d'Alambert's principle for a general system with one DOF, we

obtain the differential equation

ÿm �x ÿ c _x ÿ kx � F0 sin pt � 0; �2:121�
where m �x is the inertia force, c �x is the damping force, kx is the spring force,

and F0 sin pt is the perturbation force. Equation (2.121) is another form of Eq.

(2.93).

To represent Eq. (2.121) with rotating vectors (Fig. 2.24), the equation of

motion is considered as

x � A sin�pt ÿ f�: �2:122�

In Fig. 2.24 the vector A represents the amplitude of the excited vibration.

The angular frequency of all rotative vectors is p. A difference of phase f
between the vector A and perturbation force is noticed. The four vectors

illustrated in Fig. 2.24 are in equilibrium and the projection on the vector A

and its normal directions yields

mp2A � F0 cosfÿ kA � 0
F0 sinfÿ cpA � 0:

�
�2:123�

2.5.2 RESPONSE OF A DAMPED SYSTEM TO A CENTRIFUGAL EXCITING
FORCE

Unbalance in rotating machines is a common source of vibration excitation.

One can consider the system shown in Fig. 2.25 with the total mass

m � m1 �m0: �2:124�

The mass is connected to the base through an elastic spring with the elastic

constant k and through a damper with the coef®cient of viscous resistance c.

The unbalance is represented by an eccentric mass m0 with eccentricity r that

Figure 2.24
Damped

vibration
representation
with rotating

vectors.
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is rotating with angular velocity p � const (Fig. 2.25). The mass m0 produces

the perturbation centrifugal force

F0 � m0rp2: �2:125�
In this case

q � F0

m
� m0rp2

m1 �m0

: �2:126�

With Eq. (2.114) one can obtain the expression of the amplitude to maintain

excited vibration,

A00 �

q

o2�������������������������������������������������
1ÿ p2

o2

� �2

� 4
c

ccr

� �2
p2

o2

s

�
m0r

m1 �m0

p2

o2�������������������������������������������������
1ÿ p2

o2

� �2

� 4
c

ccr

� �2
p2

o2

s � m0r

m1 �m0

A2; �2:127�

where A2 is a nondimensional magni®cation factor and has the expression

A2 �
p2

o2�������������������������������������������������
1ÿ p2

o2

� �2

� 4
c

ccr

� �2
p2

o2

s : �2:128�

Using Eqs. (2.115) and (2.128) one can write

A2 � A1

p

o

� �2

: �2:129�

In Fig. 2.26 is shown the in¯uence of c=ccr on the magni®cation factor, A2.

Figure 2.25
Mechanical
model of a

damped system
with a

centrifugal
exciting force.
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2.5.3 RESPONSE OF A DAMPED SYSTEM TO AN ARBITRARY EXCITING
FORCE

In a general case, the perturbation force is a arbitrary function of time F (t).

The differential equation of motion is (Fig. 2.27)

m �x � c _x � kx � F �t �: �2:130�

In the case of less friction (c < ccr �, with notation from section 2.5.1 and with

the notation

F �t �
m
� q1; �2:131�

the differential equation of motion becomes

�x � 2a _x � o2x � q1: �2:132�

Because Eq. (2.132) is a linear differential equation, the superposition

principle can be applied:

x � x1 � x2: �2:133�

The general solution of the homogenous differential equation x1 correspond-

ing to Eq. (2.132) is calculated with Eqs. (2.45) or (2.46), and it is the natural

vibration of the system. The particular solution x2 of Eq. (2.132) is deter-

mined with the help of the conservation of momentum theorem. The

variation of perturbation force on mass unit q1 is shown in Fig. 2.28. For

Figure 2.26
In¯uence of
c=ccr on the

magni®cation
factor A2.

Figure 2.27
Mechanical
model of a

damped system
with arbitrary
exciting force.
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an arbitrary time one can consider an elementary impulse q1dt , as repre-

sented in Fig. 2.28. For the direction of motion one can write

Fdt � mdv; �2:134�

and

dv � Fdt

m
� q1dt : �2:135�

For the time t, t > t , the variation of the speed dv can be considered as the

initial speed of vibration (which begins at time tÿ t).

The case c < ccr is considered with the initial condition

t � 0) x � 0
_x � v0:

�
�2:136�

Using the general solution given by Eq. (2.45), with notation from Eq. (2.43)

and with initial condition Eq. (2.136), the values of the constants C1 and C2

are obtained:

C1 �
v0

b
; C2 � 0: �2:137�

The solution of motion in this case is

x � v0

b
eÿat sin bt : �2:138�

Substituting in Eq. (2.138) the speed given by Eq. (2.135), one can write the

elementary displacement

dx � q1dt

b
eÿa�tÿt � sin b�tÿ t �: �2:139�

In Eq. (2.139) one can consider �tÿ t � the time interval. For each elementary

impulse q1dt produced between time t � 0 and t � t results an elementary

Figure 2.28
The variation of

an arbitrary
exciting force on

mass unit, q1.
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displacement dx. The effect of continuous action of perturbation force in

time interval �0; t� is obtained through integration:

x2 �
1

b

�t
0

q1eÿa�tÿt � sin b�tÿ t �dt

� 1

mb

�t
0

F �t �eÿa�tÿt � sin b�tÿ t �dt : �2:140�

The preceding expression is the Duhamel integral and represents the effect

of an arbitrary perturbation force F (t ) in the time interval (0,t). Applying the

superposition principle, one can obtain the law of motion for the general

case, which represents the complete solution of the differential equation

(2.132) on the interval (0, t�:

x � eÿat
�

v0 � ax0

b
sin bt� x0 cosbt

�
� 1

mb

�t
0

F �t �eÿa�tÿt � sin b�tÿ t �dt : �2:141�

In Eq. (2.141) the ®rst term represents the effect of the initial displacement x0

and of the initial speed v0, and the second term is the effect of the

perturbation force F (t ). If the damping is neglected, a � 0 and b � o, the

equation of motion is

x � v0

o
sinot� x0 cosot� 1

mo

�t
0

F �t � sino�tÿ t �dt : �2:142�

If we use the identity

sin�otÿ ot � � sinot cosot ÿ cosot sinot ; �2:143�
Eq. (2.142) becomes

x0 �
1

mo
sinot

�t
0

F �t � cosotdt ÿ cosot
�t

0

F �t � sinotdt

� �
: �2:144�

One can denote

A � 1

mo

�t
0

F �t � cosotdt ;

B � ÿ 1

mo

�t
0

F �t � sinodt ;

�2:145�

and Eq. (2.142) can be rewritten as

x � v0

o
sinot� x0 cosot� A sinot� B cosot: �2:146�

If

F �t � � F0 sin pt ; �2:147�
one can obtain the results from section 2.4.1.

Equation (2.142) can be used in case of a mass system acted on by a

series of discontinuous impulses, which produce jumps in speed Dv0, Dv1,

368 Theory of Vibration

V
ib

ratio
n



Dv2; . . . , at time moments t � 0, t � t 0, t � t 00. For x0 � 0 one can obtain the

equation of motion on the (0, t) interval:

x � 1

o
�Dv0 sinot� Dv1 sino�tÿ t 0� � Dv2 sino�tÿ t 00� � � � ��: �2:148�

2.6 Mechanical Impedance

For the mechanical system shown in Fig. 2.29a, the spring force is

F � kx ; �2:149�

where x is the displacement and k is the spring constant. The case of a forced

vibration with viscous damping is considered in Fig. 2.29b. The differential

equation of motion is

m �x � c _x � kx � F �t � � F0 cos pt : �2:150�
This equation can be written in complex form:

m �z � c _z � kz � F0eipt : �2:151�
Equation (2.151) can be obtained from

m �y � c _y � ky � F0 sin pt ; �2:152�
by multiplying by i (i2 � ÿ1) and adding term by term with Eq. (2.150). If in

this equation _z � ipz and �z � ÿp2z are replaced, one may obtain

F0eipt � ÿmp2 � icp � k
ÿ �

z : �2:153�
If the notation

Z � ÿmp2 � icp � k; �2:154�
is used, Eq. (2.153) becomes

F0eipt � Zz ; �2:155�
where Z is mechanical impedance.

In this way, the study of the forced vibration is reduced to a static

problem, and

z � eipt

Z
F0 �

eipt

ÿmp2 � k � icp
F0: �2:156�

Figure 2.29
Forced vibration:

(a) undamped
forced vibration;

(b) forced
vibration with

viscous.
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The amplitude A is

A � jz j � jeipt jF0

jÿmp2 � k � icpj �
jeipt jF0

mjo2 ÿ p2 � 2iapj ; �2:157�

or

A � q���������������������������������������
�o2 ÿ p2�2 � 4a2p2

q : �2:158�

Equation (2.158) is the same as Eq. (2.112).

In the case of n mechanical impedances Z1, Z2; . . . , Zn in parallel, one

can write

Z � Z1 � Z2 � � � � � Zn; �2:159�
or

Z � Pn
i�1

Zi : �2:160�

For mechanical impedances in series the total impedance is

Z � 1

1

Z1

� 1

Z2

� � � � � 1

Zn

; �2:161�

or

Z � 1Pn
i�1

1

Zi

: �2:162�

2.7 Vibration Isolation: Transmissibility

2.7.1 FUNDAMENTALS
A machine with mass m excited by a perturbation force F0 sin pt is consid-

ered. The machine is on a foundation. The foundation is rigid, and the

machine has only translational motions. Vibration isolation consists in

diminishing the force that is transmitted to the foundation. The coef®cient

of transmissibility is

t � Ftrmax

F0max

; �2:163�

where Ftrmax is the maximum transmitted force and F0max is the maximum

perturbation force.

Machine Directly on a Foundation
In this case (Fig. 2.30), the perturbation force is transmitted to the foundation.

The transmissibility coef®cient is t � 1 and the machine is not isolated.
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Machine on a Foundation with Elastic Elements
The machine is connected to a foundation through elastic elements with the

equivalent elastic constant k (Fig. 2.31). The force is transmitted to the

foundation through elastic elements; therefore, the transmitted force is the

elastic force kx. In Fig. 2.32 is depicted the variation of magni®cation factor

versus frequency ratio.

In the case of undamped forced vibration, the particular solution is

xp � A sin pt � q

o2 ÿ p2
sin pt ; �2:164�

where

A � q

o2 ÿ p2
�

F0

m

o2 ÿ p2
�

F0

m

1

o2

1ÿ p2

o2

�2:165�

�
F0

m

m

k

1ÿ p2

o2

� F0

k

1

1ÿ p2

o2

� xst A0: �2:166�

The magni®cation factor is

A0 �
A

xst

� 1����1ÿ p2

o2

���� : �2:167�

Figure 2.30
Mechanical

model of
transmissibility

in the case of a
machine directly
on a foundation.

Figure 2.31
Mechanical

model of
transmissibility

in the case of a
machine on a

foundation with
elastic elements.
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The maximum transmitted force is kA, and the transmissibility coef®cient is

t � Ftrmax

F0max

� kA

F0

� A

F0

k

� A

xst

� A0: �2:168�

The diagram in Fig. 2.32 represents the variation of the transmissibility

coef®cient. The case of a machine directly on a foundation (rigid joint)

gives a particular case, o!1, point a on the diagram in Fig. 2.32. Also, if

p <
���
2
p

o one can obtain jtj > 1, i.e., the force transmitted to the foundation

is greater than the perturbation force. For good operation it is necessary that

jtj > 1. As a result in calculus one will take the negative values; thus,

t � 1

1ÿ p

o

� �2 < ÿ1; �2:169�

where (p=o�2 > 2.

In conclusion, in the case of a machine on a foundation with elastic

elements, it is recommended that p=o >
���
2
p

. The dangerous situation is

when p=o � 1.

Machine on a Foundation with an Elastic Element and a Damper
The machine is settled on a foundation with the help of an elastic element

with the elastic constant k, and a damper with the viscous damping

coef®cient c (Fig. 2.33). The transmitted force is not in the same phase with

Figure 2.32
Variation of

transmissibility
coef®cient.

Figure 2.33
Mechanical

model of
transmissibility

in the case of a
machine on a

foundation with
an elastic

element and a
damper.
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the perturbation force. In this case, the transmitted force is

Ftrmax � �kx � c _x �max: �2:170�
The exciting vibration is

x � A sin�pt ÿ f�; �2:171�
and

_x � Ap cos�pt ÿ f�: �2:172�
Therefore, the force transmitted to the foundation is

Ftr � kx � c _x

� kA sin�pt ÿ f� � cAp cos�pt ÿ f�
� M sin�pt ÿ f�; �2:173�

The amplitude of resultant vibration is

M �
������������������������������
k2A2 � c2A2p2

p
� Ftrmax ; �2:174�

which represents the maximum transmitted force. Elastic force and damping

force are delayed by p=2. By Eq. (2.110) the transmissibility coef®cient is

t � A
��������������������
k2 � c2p2

p
F0

�

q���������������������������������������
�w2 ÿ p2�2 � 4a2p2

q ��������������������
k2 � c2p2

p
F0

m
m

�

������������������������
k2

m2 �
c2

m2
p2

s
����������������������������������������
�o2 ÿ p2�2 � 4a2p2

q �
���������������������������������������

o4 � 4a2p2

�o2 ÿ p2�2 � 4a2p2

s
; �2:175�

or ������������������������������������������
1� 4

a2

o2

p2

o2

1ÿ p2

o2

� �2

� 4
a2

o2

p2

o2

vuuuuuut �

�������������������������������������������������
1� 4

c

ccr

� �2
p2

o2

1ÿ p2

o2

� �2

� 4
c

ccr

� �2
p2

o2

vuuuuuut : �2:176�

From Eq. (2.175) one can observe that the transmissibility coef®cient t does

not depend on the amplitude of perturbation force. Equation (2.175) is

plotted in Fig. 2.34, which shows the variation of transmissibility coef®cient

as a function of the ratio c=ccr . If t � 1, the perturbation force is transmitted

integral to the foundation. For the case a=o � 0 one may obtain

jtj � 1 � 1����1ÿ p2

o2

���� : �2:177�

There are two cases:

Case a: 1 � 1ÿ p2=o2 ) p=o � 0, which corresponds to the point a on

the diagram shown in Fig. 2.34.
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Case b: 1 � ÿ�1ÿ p2=o2� ) p=o � ���
2
p

, which corresponds to the point

b on the diagram of Fig. 2.34. All the curves of variation of transmis-

sibility coef®cient in Fig. 2.34 cross point a�p=o � 0, t � 1� and point

b�p=o � ���
2
p

, t � 1�.

To demonstrate that all the curves cross at point b, one can put p2=o2 � 2.

From Eq. (2.175) results ����������������������������������
1� 4

a2

o2 2

�1ÿ 2�2 � 4
a2

o2
2

vuuuuut � 1: �2:178�

Hence, for any value of ratio a=o it results t � 1. The choice of the ratio

a=o � c=ccr is made from case to case, taking into account the transitory

regime.

2.8 Energetic Aspect of Vibration with One DOF

2.8.1 MECHANICAL WORK AND POTENTIAL ENERGY FOR A SPRING
WITH A LINEAR CHARACTERISTIC

The elastic force of a linear spring is is

Fe � ÿkx ; �2:179�
where x is the linear displacement. The elementary mechanical work of an

elastic force is

dL � Fedx � ÿkxdx ; �2:180�
and the mechanical work for a displacement from 0 to x is

L �
�x

0

dL � ÿk

�x

0

xdx � ÿk
x 2

2
: �2:181�

The elastic force is a conservative force and

U � ÿ 1

2
kx 2 � C : �2:182�

Figure 2.34
The in¯uence of

c=ccr on the
transmissibility

coef®cient t.
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One can write

dL � dU � ÿdV ; �2:183�
and the potential energy is

V � 1

2
kx 2: �2:184�

2.8.2 SIMPLE HARMONIC VIBRATION
The mechanical model for this vibration was shown in Fig. 2.3. The

differential equation of the model is

m �x � kx � 0: �2:185�
Multiplying Eq. (2.185) by x gives

mx �x � kx _x � 0: �2:186�
This can be written as

d

dt

1

2
m _x2 � 1

2
kx 2

� �
� 0: �2:187�

Using the kinetic energy E � 1
2 mx2 and potential energy V � 1

2 kx 2 results in

d

dt
�E � V � � 0; �2:188�

or

Emax � E � V � const; �2:189�
that is, the total mechanical energy of a system remains constant, and the

system is a conservative system. Figure 2.35 shows the variation of the kinetic

energy and the potential energy during one period (the total energy is

constant at any time).

2.8.3 FREE DAMPED VIBRATION
The mechanical model was shown in Fig. 2.8, and the differential equation of

motion is

m �x � c _x � kx � 0; �2:190�

Figure 2.35
Variation of the

kinetic energy
and the

potential energy
during one

period.
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or

m �x � kx � ÿc _x : �2:191�
Multiplying by x gives

d

dt

�
1

2
m _x 2 � 1

2
kx 2

�
� ÿc _x 2 �2:192�

or

d

dt
�E � V � � ÿc _x

dx

dt
: �2:193�

Therefore,

dEmec � ÿc _xdx � dLdamp; �2:194�

where ÿc _xdx � dLdamp is the elementary mechanical work of the viscous

damped force, which is the resistant mechanical work. The solution of the

equation of motion is

x � Aeÿat sin�bt � j�: �2:195�
Hence,

_x � Aeÿat �ÿa sin�bt � j� � cos�bt � j��: �2:196�
The quasiperiod is given by Tb � 2p=b.

In considering instances when the displacement x � 0, the mechanical

energy of system is equal to the maximum kinetic energy,

Emech � Emax � 1
2 m _x 2: �2:197�

With Eq. (2.197), this gives the following results:

For t � 0)
E0 � 1

2 mA2�ÿa sinj� b cosj�2; �2:198�
For t � Tb � 2p=b)

ETb
� 1

2
mA2eÿ2a�2p=b� ÿa sin b

2p
b
� j

� �
� b cos b

2p
b
� j

� �� �2

� 1

2
mA2eÿ4ap=b�ÿa sinj� b cosj�2: �2:199�

For t � 2Tb � 4p=b)

E2Tb
� 1

2
mA2eÿ2a�4p=b� ÿa sin b

4p
b
� j

� �
� b cos b

4p
b
� j

� �� �2

� 1

2
mA2eÿ8ap=b�ÿa sinj� b cosj�2: �2:200�
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For comparison one can use the ratio ETb
=E0 � eÿ4ap=b and E2Tb

=ETb
�

eÿ4ap=b and the same values are obtained. With the logarithmic decrement

one can get

Et�Tb
� Et e

ÿ2d: �2:201�

2.8.4 UNDAMPED FORCED VIBRATION
The mechanical model was shown in Fig. 2.12.

The differential equation of motion is

m �x � kx � F0 sin pt : �2:202�
Multiplying by x, one can obtain

d

dt

1

2
m _x 2 � 1

2
kx 2

� �
� F0 _x sin pt �2:203�

or

d

dt
�E � V � � F0

dx

dt
sin pt : �2:204�

Therefore,

dEmec � F0 sin ptdx � dLpert ; �2:205�
where the elementary mechanical work of the perturbation force is denoted

by

F0 sin ptdx � dLpert : �2:206�
Because the mechanical work of the perturbation force is an active mechan-

ical work, it results in dEmec > 0, that is, the mechanical energy of the system

increases because of the perturbation force. The equation of motion is

x � q

o2 ÿ p2
sin pt ÿ p

o
sinot

� �
: �2:207�

2.8.5 DAMPED FORCED VIBRATION
The mechanical model was shown in Fig. 2.20. The equation of motion is

m �x � c _x � kx � F0 sin pt ; �2:208�
or

m �x � kx � ÿc _x � F0 sin pt : �2:209�
Multiplying by _x , one may obtain

d

dt

1

2
m _x2 � 1

2
kx 2

� �
� c _x 2 � F0 _x sin pt ; �2:210�

or

d

dt
�E � V � � ÿc _xdx � F0 sin ptdx : �2:211�
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With Eq. (2.194) and Eq. (2.206) one can write

dEmax � dLdamp � dLpert : �2:212�

In a permanent regime the law of motion is

x � A sin�pt ÿ f�; �2:213�

and

_x � Ap cos�pt ÿ f�; �2:214�
dx � Ap cos�pt ÿ j�dt : �2:215�

In Eq. (2.112) the amplitude is

A � q���������������������������������������
�o2 ÿ p2�2 � 4a2p2

q ; �2:216�

the delay is

tanf � 2ap

o2 ÿ p2
; �2:217�

and

sinf � tanf���������������������
1� tan2 f

p � 2ap���������������������������������������
�o2 ÿ p2�2 ÿ 4a2p2

q : �2:218�

For a period, when o � p, the mechanical work produced by the perturba-

tion force and the damped force is

Lpert �
�2p=o

0

F0 sin ptdx �
�2p=p

0

F0 sin ptAp�cos�pt ÿ f�dt

� F0Ap

�2p=p

0

sin pt cos�pt ÿ f�dt

� F0Ap

�2p=p

0

sin pt cos pt cosfdt �
�2p=p

0

sin2 pt sinfdt

� �
� F0Ap sinf

�2p=p

0

1ÿ cos 2pt

2
dt

� F0Ap sinf
2

2p
p

� �
� F0Ap sinf

2

�2p=p

0

cos 2ptdt : �2:219�

Therefore,

Lpert � pF0A sinf: �2:220�
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Using Eqs. (2.220), (2.216), and (2.218) gives

Lpert � pF0

q���������������������������������������
�o2 ÿ p2�2 � 4a2p2

q 2ap���������������������������������������
�o2 ÿ p2�2 � 4a2p2

q

�
pF0

F0

m

c

m
p

�o2 ÿ p2�2 � 4a2p2
�

p
F0

m

� �2

cp

�o2 ÿ p2�2 � 4a2p2

� pcpq2

�o2 ÿ p2�2 � 4a2p2
: �2:221�

One may obtain

Lpert � pcpA2: �2:222�

In a similar way

Ldamp �
�2p=o

0

ÿ c _xdx � ÿc

�2p=p

0

Ap cos�pt ÿ f�Ap cos�pt ÿ f�

� ÿcA2p2

�2p=p

0

cos2�pt ÿ f�dt

� ÿcA2p2

�2p=p

0

1� cos 2�pt ÿ f�
2

dt

� ÿ cA2p2

2

2p
p

� �
ÿ cA2p2

2

�2p=p

0

cos 2�pt ÿ f�dt : �2:223�

Therefore,

Ldamp � ÿpcA2p: �2:224�

From Eqs. (2.222) and (2.224) results

Lpert � Ldamp � 0; �2:225�

that is,

Emech � E � V � const: �2:226�
One can ®nd conservative systems in the case of damped forced vibration.

2.8.6 RAYLEIGH METHOD
The Rayleigh method is an approximative method used to compute the

circular frequency of conservative mechanical systems with one or more

DOF. One may consider a conservative mechanical system with one DOF.

The kinetic energy T and the potential energy V were shown in Fig. 2.35.

Hence,

Emax � Vmax : �2:227�
With Eq. (2.227) one can compute the approximative circular frequency.
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2.9 Critical Speed of Rotating Shafts

Rotating shafts tend to bow out at certain speeds and whirl in a complicated

manner. Whirling is de®ned as the rotation of the plane made by the bent

shaft and the line of centers of the bearings. The phenomenon results from

such various causes as mass unbalance, hysteresis damping in the shaft,

gyroscopic forces, and ¯uid friction in bearings. Figure 2.36a shows a shaft

with a wheel of mass m. The center of mass, G, of the wheel is at the distance

e (eccentricity) from the center of the wheel, A. The shaft rotates with a

constant (angular) speed O � p � const. The centrifugal force is Fc � mep2

and acts at the center of mass, G. By projecting the centrifugal force on the

horizontal (Ox) and the vertical axis (Oy) (radial and tangential directions,

Fig. 2.36b), the following relations are obtained:

FcH � mep2 cos pt
FcV � mep2 sin pt :

�
�2:228�

This perturbation periodic forces generate transversal vibrations in two

planes. The shaft is loaded with a bending moment. If the circular frequency

of transversal vibration (bending) is equal to the rotation angular speed, then

the resonance will take place. In this case rotation angular speed is called

critical angular speed Ocr , and the critical rpm is ncr , given by

ncr �
30

p
Ocr : �2:229�

Figure 2.36
Shaft with a

wheel: (a) shaft
with a wheel of

mass m; (b)
mechanical

model.
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Since the shaft has distributed mass and elasticity along its length, the system

has more than one degree of freedom. One can assume that the mass of the

shaft is negligible and its lateral stiffness is k. In this case the natural

frequency is

o �
�����
k

m

r
�

�����
g

fst

r
; �2:230�

where fst is the static de¯ection.

The center line of the support bearings intersects the plane of the wheel

at O, (Fig. 2.37a), and the shaft center is de¯ected with r � OA. The lateral

view of a general position of the rotating wheel of mass m is shown in Fig.

2.37b. A particular case is shown in Fig. 2.37b: OA and AG are in extension.

The elastic force and the centrifugal force are in relative equilibrium,

kr � m�r � e�p2 � mrp2 �mep2; �2:31�

and

r � e
p2

k

m
ÿ p2

� e

p

o

� �2

1ÿ p

o

� �2 : �2:232�

This equation is plotted in Fig. 2.38. From this ®gure one can observe that

there are two domains. One is undercritical � p < o� when r > 0 and the

point G is outside of segment OA. The other one is overcritical � p > o� when

r < 0 and the point G is inside of segment OA. If angular speed of the shaft

increases, the point of mass G tends to point O (center line of bearings). This

phenomenon is called self-centering or self-aligning.

In the situations when the wheel is not at middle of the shaft and it is at

one extremity (Fig. 2.39) or at a distance a from the bearing (Fig. 2.40), the

gyroscopic phenomenon appears. In this case the centrifugal force P � myp2

and gyroscopic moment (moment of inertial forces) appear. To determine the

gyroscopic moment M of the wheel, consider a plane made by the de¯ected

Figure 2.37
(a) Shaft with a

wheel in
rotational

motion;
(b) Lateral view

of a general
position of the
rotating wheel.
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shaft and the unde¯ected line of the shaft. The whirl o1 is de®ned as the

speed of rotation of this plane about the unde¯ected line of the shaft.

Resolving o1 into components perpendicular and parallel to the face of the

wheel, one can obtain o1 sin y and o1 cos y, as shown in Fig. 2.39:

M � Jz

�
1� Jz ÿ Jx

Jz

o1

o
cos y

�
o� o1: �2:233�

Here, o1 � O � p; y is the de¯ection angle of the shaft at point A with

respect to the axis of the bearings; Jz � J1 and Jx � Jy � J2 are the moments

of inertia of the wheel; Jz is the moment of inertia of the wheel with respect

to an axis perpendicular to the wheel at the point A (polar moment of

inertia); and Jx , Jy are the moment of inertia with respect to two perpendi-

cular diameters of the wheel in the plane (diametric moments of inertia). For

the cases shown in Figs. 2.39 and 2.40, because angle y is small one can

approximate sin y � 0 and cos y � 1, and the gyroscopic moment is

M ÿ � J1 ÿ J2�o2
1 sin y cos y � � J1 ÿ J2�p2y: �2:234�

Figure 2.39
Shaft with a
wheel at one

extremity: (a)
shaft with a

wheel at one
extremity; (b)

mechanical
model.

Figure 2.38
Variation
of center

de¯ection r.
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The gyroscopic torque has the effect of decreasing the de¯ection at bending.

Therefore, the gyroscopic effect increases the stiffness of the shaft. In the

case when the rotation speed of the wheel and the rotation speed of the

elastic line of the shaft are different, the gyroscopic torque is changed. If O0 is

the angular rotation speed of the plane that contain the elastic line of the

shaft, then

M � � J1pO0 ÿ J2p2�y: �2:235�

If the speed of this plane is opposite to the angular speed of the shaft, the

gyroscopic torque will change the sign. The de¯ection of bending increase

and the critical rpm is low.

The elasticity of the supports of the shaft is another cause that produces

modi®cations to the the critical rpm. If kA and kB (Fig. 2.41) are the elastic

constants of the supports and ki is the elastic constant of the shaft, the

equivalent constant for the supports is

1

kr

�
a2

kB

� b2

kA

�a � b�2 ; �2:236�

and the equivalent constant for the supports and shaft is

1

k
� 21

kr

� 1

ki

: �2:237�

Figure 2.40
(a) Shaft with

a wheel at
distance a from
the bearing; (b)

mechanical
model.

Figure 2.41
Elasticity of the
supports of the

shaft.
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The natural frequency of the system, o, is different from the circular

frequency, o0, for the case of rigid supports:

o �
�����
k

m

r
; o0 �

�����
ki

m

r
:

The ratio of the two circular frequencies is

o
o0

�
����
k

ki

s
�

�������������
1

ki

kr

� 1

vuuut : �2:238�

If one can consider the weight of the wheel, the moment of the force is

M0 � mge sin pt ; �2:239�
The angular acceleration is

e � M0

J0
� mge sin pt

J0
: �2:240�

Because of this angular acceleration, the tangential force of inertia is (Fig.

2.42b)

Ft � mee � m2ge2

J0
sin pt : �2:241�

The two components are

FtH � Ft cos pt � m2ge2

J0
sin pt cos pt � m2ge2

2J0
sin 2pt

FtV � Ft sin pt � m2ge2

J0
sin2 pt � m2ge2

2J0
�1ÿ cos 2pt �:

�2:242�

This perturbation force with circular frequency 2p presents the danger of

resonance for the case o � 2p ) p � o=2.

Figure 2.42
Tangential force

of inertia: (a)
weight of the

wheel; (b)
tangential force

of inertia.
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3. Linear Systems with Finite Numbers of Degrees
of Freedom

Systems with n degrees of freedom are described by a set of n simultaneous

ordinary differential equations of the second order with n generalized

coordinates. The number of natural frequencies is equal to the number of

degrees of freedom. A system with two degrees of freedom will have two

natural frequencies. When free vibration takes place at one of these natural

frequencies, a de®nite relationship exists between the amplitude of the two

coordinates, and the con®guration is referred to as the natural mode. The two

degrees of freedom system will then have two normal mode vibrations

corresponding to the two natural frequencies. Free vibration initiated under

any condition will in general be the superposition of the two normal mode

vibrations. However, forced harmonic vibration will take place at the

frequency of the excitation, and the amplitude of the two coordinates will

tend to a maximum at the two natural frequencies. A mode of vibration is

associated with each natural frequency. Since the equations of motion are

coupled, the motion of the masses is the combination of the motions of the

individual modes.

The steps for solving a vibration problem are (Fig. 3.1)

j From the physical model, go to the mechanical model, involving the

option to work with the continuous model or the discrete model (with

a ®nite number of degrees of freedom).

j From the mechanical model, go to the mathematical model. The

mathematical model consists of a set of differential equations.

j Perform qualitative analysis with or without determination of the

dynamic response. The stability analysis, determination of natural

frequency, etc., are parts of the qualitative analysis.

Figure 3.1
The steps for

solving a
vibration
problem.

3. Linear Systems with Finite Numbers of Degrees of Freedom 385

V
ib

ra
ti

o
n



3.1 Mechanical Models

3.1.1 ELASTIC CONSTANTS
The elastic constants are associated with a linear displacement q as the result

of a force F, or are associated with an angular displacement y as the result of

a moment M:

k � F

q
or k � M

y
:

In both cases the elastic constant, denoted by k, is associated with a Hooke

model (Fig. 3.2). For a series connection of Hooke models, with ki elastic

constant, the equivalent elastic constant ke is

1

ke

� Pn
i�1

1

ki

; �3:1�

and for parallel connection, the equivalent elastic constant ke is

ke �
Pn
iÿ1

ki : �3:2�

The elastic constants (spring stiffness) for useful cases are presented in Table

3.1.

EXAMPLE 3.1 The mechanical model for the physical model shown in Fig. 3.3 will be

determined. The rods 1 and 2 are linear elastic. The R1 spring has diameter of

wire d1, average (medium) radius r, and n1 number of turns. Linear springs

R2, R3, R4, R5 are identical with diameter of wire d2, average radius r=2, and

n2 number of turns. The R6 spring is identical with the R1 spring.

Solution

Using Table 3.1, elastic constants (spring stiffness) are determined from rods

1 and 2. For the rod 1,

k1 �
3E1I1

l3
1

�N=m�:

For the rod 2,

k2 �
27E2I2

8l3
2

�N=m�:

Figure 3.2
Hooke model.
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Table 3.1

Mechanical model Elastic constants

k � 3EI �a � b�
a2b2

;

k � 3EI �a � b�3
a3b3

;

k � 3EI

l 3
;

k � 12EI �a � b�3
a3b2�3a � 4b� ;

k1 �
12EI �a � c�3
a3c3�4a ÿ 3c� �form1�; k2 �

3EI

b3
�form2�;

k1 �
3EI �a � c�

a2c2
�form1�; k2 �

3EI

b3
�form2�:

Figure 3.3
Physical model

for Example 3.1.
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The elastic constant for the spring R1 and R6 is

k3 �
Gd 4

1

64r 3n1

�N=m�:

For the springs R2±R5, the elastic constant is

k4 �
Gd 4

2

8r 3n2

�N=m�:

Using the mechanical model shown in Fig. 3.4, one may ®nd

1

k 0
� 1

k1

� 1

k3

) k 0 � k1k3

k1 � k3

1

k 00
� 1

k2

� 1

k3

� 1

4k4

) k 00 � 4k2k3k4

k2 � k3 � 4k4

:

For the next model, shown in Fig. 3.4b, two springs of constants k 0 and k 00 are

connected in parallel. The ®nal model is shown in Fig. 3.4c and has the

elastic constant ke � k 0 � k 00. m

EXAMPLE 3.2 Determine the elastic constant k associated with the displacement q (parallel

to the direction D±D) for the linear elastic curved beam in Fig. 3.5. The force

F acts at A where the mass m is located. The direction of F is the direction

of q.

Solution

First, one can evaluate the deformation at A on q direction (parallel with

D±D).

Figure 3.4
Mechanical

model. (a) The
equivalent

mechanical
model of the

physical model;
(b) two springs

connected in
parallel; (c) ®nal

model.
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Next, one can compute the elastic constant k as the ratio between the

force F and the computed deformation. To compute the deformation at A, the

Mohr-Maxwell method is used.

The bending moment in section B of rod is M �j� � FR�sin l� sinj�. If a

unitary force 1 acts at A (this force is parallel to F), the bending moment of

the unitary force with respect to B is m�j� � R�sin l� sinj�.
By the Mohr±Maxwell method, the de¯ection at A is

f � 1

EI

�3p=2

0

M �j�m�j�ds;

where ds � Rdj is the elementary length of rod axis. Solving the integral

gives for the de¯ection

f � FR3

EI

3p
2

sin2 l� 2 sin l� 3p
4

� �
:

The elastic constant is

k � F

f
� EI

3p
2

sin2 l� 2 sin l� 3p
4

;

and the mechanical model is shown in Fig. 3.5b. m

EXAMPLE 3.3 Determine the elastic constant k associated with the displacement q (parallel

with direction D2D2) for the system in Fig. 3.6a.

Solution

In section A±A (Fig. 3.6b), three static undetermined variables X1, X2, and X3

are introduced. By symmetry, X2 � 0 and X3 � F =2. To compute X1, the

Mohr±Maxwell method or the Castigliano theorem can be used. The

mechanical work of deformation is

Ld �
4

2EI1

�L1=2

0

X1 ÿ
Fx

2

� �
dx � 4

2EI2

�L2=2

0

X 2
1 dx :

Figure 3.5
Linear elastic
curved beam:
(a) physical
model; (b)
equivalent

mechanical
model.
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With @Ld=@X1 � 0 (Castigliano theorem) results

X1 �
FL1

8

I2L1

�I2L1 � I1L2�
:

According to the Veresceaghin method (with force 1) the bending de¯ection

at point P is

fb �
FL2

1

96EI1

L1I2 � 4L2I1
L2I2 � L2I1

:

In this case the elastic constant is

k � F

fb
� 96EI1�L1I2 � L2I1�

L2
1�L1I2 � 4L2I1�

:

The mechanical model is shown in Fig. 3.6c. m

3.1.2 DAMPING
All real systems dissipate energy when they vibrate. The energy dissipated is

often very small, that is, an undamped analysis is sometimes realistic. When

the damping is signi®cant, its effect must be included in the analysis,

particularly when the amplitude of vibration is required. It is often dif®cult

to model damping exactly because many mechanisms may be operating in a

system. However, each type of damping can be analyzed, and since in many

dynamical systems one form of damping predominates, a reasonably accu-

rate analysis is usually possible.

Damping represents forces of friction and can be either external damp-

ing or internal damping.

External damping appears as the result of interaction between a

mechanic system and the external environment. It can be of the following

types:

Figure 3.6
Linear elastic

frame: (a)
physical model;
(b) three static

undetermined
variables X1, X2,

and X3 are
introduced; (c)

equivalent
mechanical

model.
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1. Columbian damping is associated with dry friction, with the friction

force given by

Ff � ÿmkFkjk �
v

kvk ; �3:3�

where m is the coef®cient of friction, Fj is the joint force, and v is the

relative velocity of sliding.

2. Viscous damping is associated with the dissipating force Fv � ÿcv,

where v is the relatively velocity, and c is the coef®cient of viscous

resistance.

If c � (const. the damping is called linear damping; if c � c�t�, the

damping is called parametric damping; and if c � c�q�, c � c�_q�,
c � c�q; _q� or generally c � c�q; _q; t�, the damping is called complex

damping.

Internal damping is associated with viscoelastic damping and hysteresis

damping. The most common type of damping is linear viscous damping (Fig.

3.7). In case of series connection, the equivalent coef®cient of viscous

damping is

1

ce

� Pn
i�1

1

ci

; �3:4�

and in the case of a parallel connection, it is

ce �
Pn
i�1

ci ; �3:5�

The coef®cient of viscous damping for one degree of freedom q is

c � ck

po
; �3:6�

where c is relative dissipation of energy, k is the elastic constant, and o is the

natural frequency.

From Eq. (3.6) one can obtain

c �
q1

p

�������
km
p

q2

p

�����
kJ

p ;

8><>: �3:7�

where q1 is the linear displacement, m is the mass, q2 is the angular

displacement, and J is the mass moment of inertia.

Figure 3.7
Linear viscous

damping.
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3.1.3 MASS GEOMETRY
The reduction of a physical model to a mechanical model with a ®nite

number of degrees of freedom implies the following:

j Elements of rigid body type (RB) or material point (MP) type

j Elements of continuous system (CS) type

For a discrete system with mi, i � 1; . . . ; n masses, the sum of all material

point masses must be equal to the total mass M of the system:

Pn
i�1

mi � M : �3:8�

3.2 Mathematical Models

3.2.1 NEWTON METHOD
The Newton method can be used for a system with material points. There are

two situations.

Situation A
The material points (MP) are interconnected with linear springs ki and linear

dampers ci . Application of the Newton equation for MPi (Fig. 3.8) leads to a

mathematical model for MP. For the system in Fig. 3.8, the equation of motion

for the mi mass is

mi �qi �ÿkiÿ1�qi ÿ qiÿ1� ÿ ciÿ1� _qi ÿ _qiÿ1�
ÿki �qi ÿ qi�1� ÿ ci � _qi ÿ _qi�1� � Fi �t �: �3:9�

EXAMPLE 3.4 Determine the mathematical model associated with the mechanical model

shown in Fig. 3.9.

Figure 3.8
Material points

(MP)
interconnected

with linear
springs and

linear dampers.
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Solution

The Newton method is applied, and

m �q1 � ÿk�q1 ÿ 0� ÿ c� _q1 ÿ 0� ÿ 2k�q1 ÿ q2� ÿ 2c� _q1 ÿ _q2� � F �t �
2m �q2 � ÿ2k�q2 ÿ q1� ÿ 2c� _q2 ÿ _q1� ÿ k�q2 ÿ 0� ÿ c� _q2 ÿ 0�;

�
or, ®nally, the mathematical model is

m �q1 � 3c _q1 ÿ 2c _q2 � 3kq1 ÿ 2kq2 ÿ F �t � � 0
2m �q2 ÿ 2c _q1 � 3x _q2 ÿ 2kq1 � 3kq2 � 0:

�

Situation B
The material points (MP) result from the lumped masses of rods (beams),

plates, or elastic solids. For elastic displacements the coef®cients of in¯uence

aij will be de®ned. For systems with one DOF, to move a mass m with a

distance x a force F is required, that is, F � kx .

Similarly, if a force F is applied to the mass, the de¯ection will be

x � �1=k�F . If a is de®ned as the inverse of k, then x � aF , where a is the

¯exibility coef®cient of in¯uence. The stiffness matrix of the system is [K].

The elements of the matrix �A� � �K �ÿ1 are the ¯exibility coef®cients of

in¯uence. For the system of masses shown in Fig. 3.10, the de¯ection due to

the force Fi will be aij Fi . Each time a new force acts on another mass the

system will move to a new static con®guration and the total displacement for

the mass mi will be

xi � ai1F1 � ai2F2 � � � � � ainFn �
Pn
j�1

aij Fj :

Figure 3.9
Mechanical
model for

Example 3.4.

Figure 3.10
Lumped masses
model for linear
rod in bending

vibration.
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One can write

X � �A�F ;

where

X � fx1 x2 . . . xngT ; F � fF1 F2 . . . Fng; and �A� �

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. ..

.

an1 an2 . . . ann

266664
377775:

m

EXAMPLE 3.5 Using the coef®cients of in¯uence method, write the equation of motion for

the bending vibration for a linear rod with n lumped masses (Fig. 3.10).

Solution

Let u1; . . . ;un be the unit vectors attached to the displacements of the

sections 1; . . . ;n. For these sections the inertial forces attached to the masses

m1; . . . ;mn are introduced as

Fin1
� ÿm1 �q1u1; . . . ; Finn

� ÿmn �qnun :

One can write

q1 � a11�F1 ÿm1 �q1� � a12�F2 ÿm2 �q2� � � � � � a1n�Fn ÿmn �qn�
qn � an1�F1 ÿmq �q1� � an2�F2 ÿm2 �q2� � � � � � ann�Fn ÿmn �qn�:

�
Finally, the equations of motions are

a11m1 �q1 � � � � � a1nmn �qn � q1 � a11F1 � � � � � a1nFn

a21m1 �q1 � � � � � a2nmn �qn � q2 � a21F1 � � � � � a2nFn

..

.

an1m1 �q1 � � � � � annmn �qn � qn � an1F1 � � � � � annFn:

m

8>>><>>>: �3:10�

EXAMPLE 3.6 Determine the mathematical model for the system shown in Fig. 3.11.

Figure 3.11
Linear beam

system.
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Solution

With the coef®cients of in¯uence given in Table 3.2, the result is

a11

L2�3L�2
3EI �4L� �

3L3

4EI
; a22 �

4L3

3EI
; a33 � a11

� 11L3

12EI
; a21 � a12; a13 � a31 �

7L3

12EI

a23 � a32 � a12 � a21:

Table 3.2

Mechanical model

a11 �
a3

3EI

a22 �
l3

3EI

a12 �
a2

2EI
1ÿ a

3

� �

a11 �
a2�1ÿ a�2

3EIl

a22 �
b2�l ÿ b�2

3EIl

a12 �
ab

6EIl
�l 2 ÿ a2 ÿ b2�

a11 �
a2

3EI1

I1l

I2
� a

� �
a22 �

b2�l ÿ b�2
3EI2l

a12 � ÿ
ab�l ÿ b��l � a�

6EI2l

a11 �
a2�l1 ÿ a�2

3EI1l1
1ÿ �l1 � a�2

4l1 l1 �
I1
I2

l2

� �
2664

3775
a22 �

b2�l2 ÿ b�2
3EI2l2

1ÿ �2l2 ÿ b�2

4l2 l2 �
I2
I1

l1

� �
2664

3775
a12 �

a2b�l1 ÿ a��l2 ÿ b��l1 � a��l2 � b�
12EI1l1l2

I2
I1

l1 � 4l2

� �
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Using Eq. (3.10), one can obtain

a11m �q1 � a12m �q2 � a13m �q3 � q1 � a11F � a12�2F �
a21m �q1 � a22m �q2 � a23m �q3 � q2 � a21F � a22�2F �
a31m �q1 � a32m �q2 � a33m �q3 � q3 � a31F � a32�2F �:

8<:
For complex geometry the coef®cients of in¯uence are determined using the

Mohr±Maxwell method. m

EXAMPLE 3.7 Find the mathematical model for system shown in Fig. 3.12 (only ¯exural

vibrations are considered). The stiffness of the rods is EI.

Solution

Place the force 1 at section 2 (a12 � a21) and at section 3 (a13 � a31). Because

of symmetry, a12 � a23 � a32. m

3.2.2 LAGRANGE METHOD
For a mechanical model with n degrees of freedom, with n generalized

coordinates q1; . . . ; qn , the Lagrange equations are

d

dt

@T

@ _qj

 !
� @T
@qj

� Qj ;

where t is the total kinetic energy of the mechanical model, and Qj is the

generalized force associated with the coordinate qj .

Kinetic Energy
The kinetic energy is given by

T � TMP � TRB ; �3:11�
where TRB is the total kinetic energy of the rigid bodies, and TMP is the total

kinetic energy of the material points.

Figure 3.12
System in

¯exural
vibrations.
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The kinetic energy of the material points is

TMP �
P

i

miv
2
i

2
; �3:12�

where mi are the masses of the MP and vi are the velocities of the mi . For a

rigid body (RB), the kinetic energy is computed using the generalized

relation

T � M v2
0

2
�M �v0; v; rc� �

1

2
v� ~J0 �v�; �3:13�

where M is the mass of the rigid body, v0 is the velocity of the origin O of a

reference frame, J0 is the tensor (matrix) of inertia of the rigid body with

respect to O, v is the angular velocity vector of the rigid body, and rc is the

position vector of the mass center of the rigid body with respect to O . For k

rigid bodies the kinetic energy is

TRB �
P
k

Mkv2
0k

2
�Mk �v0k ; vk ; rck � �

1

2
vk � J0k �vk �

� �
: �3:14�

Particular cases for rigid body motion:

j Rotation motion:

T � JDo
2

2
; �3:15�

where JD is the moment of inertia of RB with respect to a ®xed axis of

revolution D
j Planar motion:

T � M v2
c

2
� Jco

2

2
; �3:16�

where vc is the velocity of the mass center and J c is the moment of

inertia with respect to a perpendicular axis on the plane of motion at

its center of mass.

Generalized Force Qj

The generalized force Qj is

Qj � Q
�E �
j � Q

�D�
j � Q

�F �
j �3:17�

where Q
�E �
j is the component of generalized force due to the Hooke models,

Q
�D�
j is the component of generalized force due to the dissipating force, in

particular linear damping, and Q
�F �
j is the component of the generalized force

due to the external forces (weight forces, technological forces etc.). If the

Hooke model with the elastic constant k is between two points of position

vectors r1 and r2, the elastic potential of the model is

V �E � � k�r1 ÿ r2�2
2

�3:18�
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and

Q
�E �
j � ÿ

@

@qj

P
l

V
�E �

l

� �
� ÿ @

@qj

P
l

kl �r1l ÿ r2l �2
2

� �
: �3:19�

If linear damping c is between two point with velocities v1 and v2, then the

Rayleigh function of dissipation is

D � c�v1 ÿ v2�2
2

�3:20�

and

Q
�D�
j � ÿ @

@ _qj

P
m

Dm

� �
� @

@ _qj

P
m

cm�v1m ÿ v2m�2
2

� �
: �3:21�

The components Q
�F �
j are computed using the general relation

Q
�F �
j �

P
p

Fp �
@rp

@qj

; �3:22�

where rp is the position vector of the force Fp .

3.2.3 THE DERIVATIVE OF ANGULAR MOMENTUM METHOD
For the model with rotors in Fig. 3.13, the equations of motion are

Ji �qi �ÿ kiÿ1�qi ÿ qiÿ1� ÿ ciÿ1� _qi ÿ _qiÿ1� ÿ ki �qi ÿ qi�1�
ÿ ci � _qi ÿ _qi�1� �M �t �; �3:23�

where Ji is the inertia moment with respect to its axis.

EXAMPLE 3.8 Determine the mathematical model of torsional vibrations for the physical

model shown in Fig. 3.14. The friction torque and the viscous damping

coef®cients will be considered. The viscous damping coef®cients are c1, c2,

c3, and c4.

Solution

The elastic constants of the shaft sections are

ki �
GIpi

Li

; i � 1; 2; 3; 4;

where Ipi � pd3
i =16:

Figure 3.13
Model with

rotors.
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With the help of Eq. (3.23) the following equations of motion are

obtained:

J1 �q1 � ÿk1q1 ÿ c1 _q1 ÿ k2�q1 ÿ q2� ÿ c2� _q1 ÿ _q2�
J2 �q2 � ÿk2�q2 ÿ q1� ÿ c2� _q2 ÿ _q1� ÿ k3�q2 ÿ q3� ÿ c3� _q2 ÿ _q3� �M �t �
J3 �q3 � ÿk3�q3 ÿ q2� ÿ c3� _q3 ÿ _q2� ÿ k4q3 ÿ c4 _q3:

m

8<:

EXAMPLE 3.9 Write the mathematical model of the vibrations of the tool system in a

shaping machine. The mechanical model is shown in Fig. 3.15.

Solution

The Lagrange method is used. The generalized coordinates (Fig. 3.15b) are

q1 � Dq�1 � q�1 ÿ q�10; q2 � Dq�2 � q�2 ÿ q�20; q3 � Dq�3 � Dq�3 ÿ q�30;

Figure 3.14
Physical and
mechanical

model of
torsional

vibrations.

Figure 3.15
Tool assembly in

a shaping
machine. (a)

Physical model;
(b) mechanical

model.
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where q�10, q�20, q�30 are the position of the system in static stable equilibrium,

when the Px0 and Py0 act on the system. Therefore, we have a vibration

around a stable equilibrium position. The relations of transformation from the

reference xOy to the ®xed reference frame XO1YZ are

XA

YA

� �
� q�1

q�2

� �
� �M � l1

0

� �
;

XB

YB

� �
� q�1

q�2

� �
� �M � 0

l2

� �
XD

YD

� �
� q�1

q�2

� �
� �M � 0

l3

� �
;

XC

YC

� �
� q�1

q�2

� �
� �M � L1

L2

� �
XE

YE

� �
� q�1

q�2

� �
� �M � L3

L4

� �
;

where

�M � � cos q�3 ÿ sin q�3
sin q�3 cos q�3

" #
is the rotation matrix.

The following relations result:

XA � q�1 � l1 cos q�3
YA � q�2 � l1 sin q�3

;

�
XB � q�1 ÿ l2 sin q�3
YB � q�2 � l2 cos q�3

;

�
XD � q�1 ÿ l3 sin q�3
YD � q�2 � l3 cos q�3

�
XE � q�1 � L3 cos q�3 ÿ L4 sin q�3
YE � q�2 � L3 sin q�3 � L4 cos q�3

;

�
XC � q�1 � L1 cos q�3 ÿ L2 sin q�3
YC � q�2 � L1 sin q�3 � L2 cos q�3

:

�
The kinetic energy is

T � TRB �
M v2

c

2
� Jco

2

2
;

where

vc � _XC � _YC � � _q�1 ÿ L1 sin q�3 _q�3 ÿ L2 cos q�3 _q�3 �
� � _q�2 � L1 cos q�3 _q�3 ÿ L2 sin q�3 _q�3 � :

With _q�3 � _q3, _q�2 � _q2, _q�1 � _q1,

vc � � _q1 ÿ L1 sin� _q�30 � q3� _q3 ÿ L2 cos� _q�30 � q3� _q3�
� � _q2 � L1 cos� _q�30 � q3� _q3 ÿ L2 sin� _q�30 � q3� _q3� :

The angular velocity is

v � _q�3 k � _q3k;

where k � � . The following trigonometric relations are known:

sin�q�30 � q3� � sin q�30 cos q3 � cos q�30 sin q3

cos�q�30 � q3� � cos q�30 cos q3 ÿ sin q�30 sin q3:

For small oscillations q3! 0, on cos q3 � 1, sin q3 � q3,

sin�q�30 � q3� � sin q�30 � q3 cos q�30

cos�q�30 � q3� � cos q�30 ÿ q3 sin q�30:

i j

i j i

j

i

j

i j
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The kinetic energy becomes

T � M

2
� _q2 � _q2

2 � L2
1 � L2

2� _q2
3 ÿ 2�L1 sin _q�30 � L2 cos _q�30� _q1 _q3�

�M ��L1 cos q�30 ÿ L2 sin q�30� _q2 _q3� �
JC _q2

3

2
:

The symbol D is the variation of distance from the instant position (at time t)

to the static equilibrium position, and one can write

D�sin q�3 � � sin q�3 ÿ sin q�30 �
1

1!
cos q�30�q�3 ÿ q�30� � q3 cos q�30;

D�cos q�3 � � ÿq3 sin q�30;

where the Taylor series has been used:

AA0 � �XA ÿ l1� �YA � �q�1 ÿ L1 cos q�3 ÿ l1� � �q�2 � l1 sin q�3 �
BB0 � �q�1 ÿ l2 sin q�3 � � �q�2 � l2 cos q�3 ÿ l2�
DD0 � �q�1 ÿ L3 sin q�3 � � �q�2 � l2 cos q�3 ÿ l3�

DAA0 � �q1 ÿ l1q3 sin q�30� � �q2 � l1q3 cos q�30�
DBB0 � �q1 ÿ l2q3 sin q�30� � �q2 ÿ l2q3 cos q�30�
DDD0 � �q1 ÿ l3q3 sin q�30� � �q2 ÿ l3q3 cos q�30� :

The potential of the elastic forces is

V �E �
k1

2
�DAA0�2 �

k2

2
�DBB0�2 �

k3

2
�DDD0�2:

After elementary calculation,

V �E � � k1

2
�q2

1 � q2
2 � l2

1 q2
3 � 2l1q3�q2 cos q�30 ÿ q1 sin q�30��

� k2

2
�q2

1 � q2
2 � l2

2 q2
3 ÿ 2l2q3�q1 sin q�30 � q2 cos q�30��

� k3

2
�q2

1 � q2
2 � l2

3 q2
3 ÿ 2l3q3�q1 sin q�30 � q2 cos q�30��:

The generalized forces corresponding to the cutting force P � ÿPX ÿ PY ,

where PX � PX 0 sin�ot �, PY � PY 0 sin�ot �, are

Q1 � P
@RE

@q1

; Q2 � P
@RE

@q2

; Q3 � P
@RE

@q3

;

where

RE � �q�1 � L3 cos q�3 ÿ L4 sin q�3 � � �q�2 � L3 sin q�3 � L4 cos q�3 �
q�1 � q�10 � q1; q�2 � q�20 � q2; q�3 � q�30 � q3:

The generalized forces are

Q1 � ÿPX0 sin�ot �; Q2 � ÿPY 0 sin�ot �
Q3 � �L3�sin q�30 � q3 cos q�30� � L4�cos q�30 ÿ q3 sin q�30��PX0 sin�ot �

� �L4�sin q�30 � q3 cos q�30� ÿ L3�cos q�30 ÿ q3 sin q�30��PY 0 sin�ot �:

i j i j

i j

i j

i j

i j

i j

i j

i j
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The weight is negligible for this example.

The Lagrange equations are

d

dt

@T

@ _qj

 !
ÿ @T
@qj

� ÿ @V
�E �

@qj

� Qj ; j � 1; 2; 3;

and the linear system with constant coef®cients is

M �q1 ÿM �L1 sin q�30 � L2 cos q�30� �q3 � �k1 � k2 � k3�q1

ÿ2�k1l1 � k2l2 � k3l3�q3 sin q�30 � ÿPX0 sin�ot �
M �q2 ÿM �L1 cos q�30 � L2 sin q�30� �q3 � �k1 � k2 � k3�q2

�2�k1l1 ÿ k2l2 ÿ k3l3�q3 cos q�30 � ÿPY 0 sin�ot �
�M �L2

1 � L2
2� � Jc � �q3 ÿM �L1 sin q�30 � L2 cos q�30� �q1

�M �L1 cos q�30 ÿ L2 sin q�30� �q2 � �k1l2
1 � k2l2

2 � k3l2
3 �q3

ÿ�k1l1 � k2l2 � k3l3�q1 sin q�30 � �k1l1 ÿ k2l2 ÿ k3l3�q2 cos q�30

� �L3�sin q�30 � q3 cos q�30� � L4�cos q�30 ÿ q3 sin q�30��PX0 sin�ot �
��L4�sin q�30 � q3 cos q�30� ÿ L3�cos q�30 ÿ q3 sin q�30��PY 0 sin�ot �;

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
which represents the mathematical model of motion. The values q�10, q�20, q�30,

result from the static equilibrium position under the action of the force

P0 � ÿPX0 ÿ PY 0 . m

EXAMPLE 3.10 Determine the mathematical model of motion for the mass m in Fig. 3.16.

Solution

Using the Newton method for the mass m results in

m �q � ÿk�q ÿ XB � ÿ c _q :

With

XB � r cos�o0t � � l

��������������������������������
1ÿ l2 sin2�o0t �

q
and l � r

l
;

i j

Figure 3.16
Model with one

DOF.
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the equation of motion becomes

m �q � c _q � kq � k r cos�o0t � � l

��������������������������������
1ÿ l2 sin2�o0t �

q �
: m

�

3.2.4 CONCLUSIONS ABOUT MATHEMATICAL MODELS OF LINEAR
VIBRATIONS WITH A FINITE NUMBER OF DEGREES OF FREEDOM

Vibration with One Degree of Freedom q(t)
The mathematical model is a differential equation with constant coef®cients,

m �q � c _q � kq � F �t �; �3:24�

where m can be a mass or inertia moment (according to q a linear displace-

ment or angular displacement), c is the coef®cient of viscous (damping)

resistance, k is the elastic constant (spring stiffness), and F is the exciting

(disturbing) force.

With the notations

c

m
� 2n;

k

m
� o2

n; f�t � �
1m

F �t �;

the mathematical model becomes

�q � 2n _q � o2
nq � f�t �: �3:25�

Vibration with a Finite Number of Degrees of Freedom
The mathematical model is a system of linear differential equation system

with constant coef®cients of the type

Pn
j�1
�mij �qj � dij _qj � rij qj � � Fi �t �; i � 1; . . . ;n: �3:26�

The system given by Eq. (3.26) can be written in a matrix form

�M �� �q � � �D�� _q � � �R ��q � � �F �; �3:27�

where �M � � �mij � is called the inertia matrix (its elements are masses or

inertia moments), �D� � �dij � is called the damping matrix (its elements are

coef®cients of damping), �R � � �rij � is called the stiffness matrix (its elements

are elastic constants), �q � � �q1; . . . ; qn �T , �F � � �F1; . . . ; Fn �T .
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EXAMPLE 3.11 For the mathematical model from Example 3.8, the matrices are

�M � �
J1 0 0

0 J2 0

0 0 J3

264
375; �D� �

c1 � c2 ÿc2 0

ÿc2 c2 � c3 ÿc3

0 ÿC3 c3 � c4

264
375

�R � �
k1 � k2 ÿk2 0

ÿK2 k2 � k3 ÿk3

0 ÿk3 k3 � k4

264
375; �q � �

q1

q2

q3

264
375;

�F � �
0

M �t �
0

264
375:

In conclusion, from Eq. (3.27) one can classify the vibrations:

�F � � 0) free vibrations

�F � 6� 0) force dvibrations

�D� � 0) undamped vibrations

�D� 6� 0) damped vibrations: m

3.3 System Model

3.3.1 VIBRATIONS WITH ONE DEGREE OF FREEDOM
Mathematical models from Eqs. (3.24) and (3.25) are open monovariable

systems (with one input and one output). The input value is i�t � � F �t � or,

respectively, i�t � � f�t �. The output value is e�t � � q�t �. The mathematical

model can be written as

_x � �A�x� �B�
e � �C �x; �3:28�

where

�A� � 0 1
ÿo2

n ÿ2n

� �
; �B� � 0

1

� �
; �C � � 1 0

� �
; i � f�t �; e � q�t �:

3.3.2 VIBRATION WITH A FINITE NUMBER OF DEGREES OF FREEDOM
The mathematical model of Eqs. (3.26) and (3.27) are also open monovari-

able linear systems. The input vector is � �F �, the output vector is e � �q �
and the state vector is

x � �q �� _q �
� �

:

From the matrix form of Eq. (3.27), the canonical form results:

_x � �A�x� �B�f
�q � � �C �x: �3:29�

i

i
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Here

�A�2n�2n �
�0�n�n �I �n�n

ÿ�M �ÿ1�R � ÿ�M �ÿ1�D�
� �

; �B�2n�2n �
�0�n�n �0�n�n

�I �n�n �0�n�n

� �
f � �f� � �M �1 �F �

�0�n�1

� �
; �C � � �I �n�n �0�n�n

� �
:

3.4 Analysis of System Model

3.4.1 DYNAMICAL RESPONSE
For a vibration with one degree of freedom, the dynamic response [solution

of Eq. (3.27)] is

x�t � � e �A�t x0 �
�t

0

e �A��tÿt��B�f�t�dt
q�t � � �C �x;

�3:30�

where [A], [B], [C ] are given in Eq. (3.27), and x0 � q�0�= _q�0���
.

For vibrations with more than one degree of freedom, the dynamic

response [solution of Eq. (3.29)] is given by

x�t� � E �A�t x0 �
�t

0

e �A��tÿt��B� � f�t�dt

�q � � �C �x;
�3:31�

where the matrices [A], [B ], [C ], f � �f� are given by Eqs. (3.29) and

x0 � �q1�0�; . . . ; qn�0�; _q1�0�; . . . ; _qn�0��T .

3.4.2 QUALITATIVE ANALYSIS OF THE SYSTEM MODEL
Natural Frequency of Vibrant System
Consider one free undamped system with n degrees of freedom. The

mathematical model, Eq. (3.26) with �D� � 0 and �F � � 0, is

�M �� �q � � �R ��q � � 0: �3:32�
In this model the motion of the system is ``disconnected'' from the environ-

ment. This is natural motion. The coincidence of exciting angular frequency

with natural frequency leads to a phenomenon called resonance. For a

system with n degrees of freedom, the dynamic response given by Eqs.

(3.31) and (3.31) becomes

x�t � � e �A�t x0

�q � � �C �x�t �: �3:33�

In this particular case,

�A� � �0�n�n �I �n�n

ÿ�M �ÿ1�R � �0�n�n

� �
: �3:34�
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But

e �A�t � Lÿ1���I �s ÿ �A��ÿ1� � Lÿ1 adj ��I �s ÿ �A��
P �s�

� �
; �3:35�

with P �s� � det��I �s ÿ �A�� (characteristic polynomial). For the roots of equa-

tion P �jo� � det��I �s ÿ �A�� we have e �A�t !1 and

P �s� � det
s�I �n�n ÿ�I �n�n

�M �ÿ1�R � s�I �n�n

� �
: �3:36�

With s ! jo and P �jo� � 0, the equation for the natural frequency of a

system is

det��R � ÿ o2�M �� � 0; �3:37�
where the solutions are the natural frequencies o1, o2; . . . ;on of the vibrant

system.

EXAMPLE 3.12 Determine the equation of the natural frequency for the vibrant system

presented in Example 3.4.

Solution

In this case the matrices are

�M � � m 0
0 2m

� �
; �R � � 3k ÿ2k

ÿ2k 3k

� �
:

Equation (3.38) becomes

det
3k ÿ2k
ÿ2k 3k

� �
ÿ o2 m 0

0 2m

� �� �
� 0;

or

3k ÿ o2m ÿ2k
ÿ2k 3k ÿ 2mo2

� �
� 0;

or

2m2o4 ÿ 9mko2 � 5k2 � 0;

which gives the natural frequencies

o1 � 2:775

�����
k

m

r
�sÿ1�; o2 � 1:139

�����
k

m

r
�sÿ1�

and the frequencies

f1 � 0:442

�����
k

m

r
�Hz�; f2 � 0:181

�����
k

m

r
�Hz�:

In general, for systems with two degrees of freedom, the equation of the

natural frequency is a fourth-order equation. m

406 Theory of Vibration

V
ib

ratio
n



EXAMPLE 3.13 Determine the equation of the natural frequency for the vibrant system

presented in Example 3.8.

Solution

In this particular case the matrix are

�M � �
J1 0 0
0 J2 0
0 0 J3

24 35; �R � �
k1 � k2 ÿk2 0
ÿk2 k2 � k3 ÿk3

0 ÿk3 k3 � k4

24 35:
The equation of the natural frequencies is

�k1 � k2� ÿ o2J1 ÿk2 0
ÿk2 �k2 � k3� ÿ o2J2 ÿk3

0 ÿK3 �k3 � k4� ÿ o2J3

24 35 � 0:

An equation of sixth order in o is obtained, which through the substitution

o2 � u leads to an equation of order 3 in u. m

3.5 Approximative Methods for Natural Frequencies

3.5.1 HOLZER METHOD
The elastic force in a Hooke model (Fig. 3.17) can be

Fjÿ1 � kjÿ1�qjÿ1 ÿ qj �; �3:38�

which results in the recurrence relation

qj � qjÿi ÿ
Fjÿ1

kjÿ1

: �3:39�

The equation of motion for the mass mj is

mj �qj � Fjÿ1 ÿ Fj : �3:40�

With qj �t � � qj sin�ot � j� one can obtain ÿo2mj qj � Fjÿ1 ÿ Fj , and the

result is the relation of recurrence,

qj � qjÿi ÿ
Fjÿ1

kjÿ1

Fj � Fjÿ1 �mjo
2qj :

8><>: �3:41�

Equations (3.41) are the fundamental relations of the recurrence of the

Holzer method for mechanical models with lumped masses and Hooke

models. In principle, the Holzer method consists in writing successive

Figure 3.17
The elastic force

in a Hooke
model.
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recurrence relations under the condition that a displacement or a force must

be zero.

EXAMPLE 3.14 Using the Holzer method, determine the natural frequencies for the mechan-

ical model in Fig. 3.18.

Solution

Write successive Eqs. (3.41):

F1 � q1�m1o
2 ÿ k0�

q1 � q0 ÿ
F0

k0

F1 � F0 �m1o
2q1:

8<:
But q0 � 0, and F0 � ÿk0q1 results in

q2 � q1 ÿ
F1

k1

F2 � F1 �m2o
2q2:

8<:
Replacing F1 as a function of q1 and q2 in an F2 expression, we obtain

F2 � q1 m1o
2 ÿ k0 �m2o

2 1ÿ 1

k1

�m1o
2 ÿ k0�

� �� �
q3 � q2 ÿ

F2

k2

F3 � F2 �m3o
2q3:

8<:
Replacing q2 as a function of q1 and F2 as a function of q1 in the expression

for q3, and then in the F3 expression, one can obtain F3:

q4 � q3 ÿ
F2

k2

F4 � F3 �m4o
2q4:

8<:
Replacing q3 as a function of q1 and F3 as a function of q1 in the expression

for q4, and q4 � 0, in the end one can calculate F4. m

Figure 3.18
Mechanical
model for

Example 3.14.
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EXAMPLE 3.15 Using the Holzer method, determine the natural frequencies of the mechan-

ical model in Fig. 3.19.

Solution

Write successive Eqs. (3.41) to obtain

q2 � q1 ÿ
F1

k1

F1 � F0 �m1o
2q1:

8<:
But F0 � 0, so q2 � q1 1ÿmo2=k1

ÿ �
and

q3 � q2 ÿ
F2

k2

F2 � F1 �m2o
2q2:

8<:
Replacing q2 as a function of q1 and F2 as a function of q1 in the expression

for q3, one obtains

F3 � F2 �m3o
2q3:

Replacing F2 as a function of q1 and q3 as a function of q1 in the expression

for F3, and given that F3 � 0, we obtain the expression for the natural

frequencies of the mechanical system. m

3.5.2 APPLICATION OF THE HOLZER METHOD TO A MECHANICAL MODEL
WITH ROTORS AND HOOKE MODELS

In this case, vectors of state attached to a shaft section are used. One vector

of state is �z � � �j;M �T , where j is the angle of rotation of the section and M

is the torsion moment (torque) in some section.

Because in the zone of the rotor the diagram of moments is discontin-

uous, M l
i 6� M r

i , where M l
i is the torsion moment at left and M r

i at right (Fig.

3.20). Because the rotor is rigid, jl
i � jr

i � ji (the rotation at left is equal to

the rotation at right).

Vectors of state at left and right of section i are

�z �li � jl
i

M l
i

� �
; and �z �ri � jr

i

M r
i

� �
:

The equation of motion of rotor i is

Ji �ji � M r
i ÿM l

i ; �3:42�

Figure 3.19
Mechanical
model for

Example 3.15.
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and with ji �t � � ji sin�ot � j�, M l
i � M l

i sin�ot � j�, M r
i � M r

i sin�ot � j�,
we obtain

ÿo2Jiji � M r
i ÿM l

i : �3:43�
Therefore,

jl
i � jr

i ; M r
i � M l

i ÿ o2Jiji ; �3:44�
and the result is the recurrence relation between vectors of state,

�z �ri � �Ai ��z �li ; �3:45�
where

�Ai � � 1 0
ÿo2Ji 1

� �
:

For the zone between two successive rotors,

M l
i � M r

iÿ1; jl
i ÿ jr

iÿ1 �
M l

i

kiÿ1

� M r
iÿ1

kiÿ1

: �3:46�

There results the following recurrence relation between vectors of state at the

extremity of a shaft section between two successive rotors:

�z �li � �Bi ��z �riÿ1; �3:47�
where

�Bi � �
1

1

kiÿ1

0 1

24 35:
In conclusion, the recurrence relations between vectors of state are

�z �ri � �Ai ��z �li in a second of rigid rotors

�z �li � �Bi ��z �riÿ1 in a section between two successive rotors:

EXAMPLE 3.16 With the Holzer method, determine the natural frequencies for the mechan-

ical model from Fig. 3.21.

Figure 3.20
Torsional

mechanical
model.
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Solution

We can write, successively,

�z �l3 � �B3��z �r2; �z �r2 � �A2��z �l2
�z �l2 � �B2��z �r1; �z �r1 � �A1��z �l1; �z �l1 � �B1��z �r0;

where

�B3� �
1

1

k3

0 1

24 35; �B2� �
1

1

k2

0 1

24 35; �B1� �
1

1

k1

0 1

24 35
�A1� ÿ

1 0

ÿo2J1 1

� �
; �A2� �

1 0

ÿo2J2 1

� �
:

Reuniting the preceding relations, one can write

�z �l3 � �B3��A2��B2��A1��B1��z �r0;
but

�z �l3 �
0

M l
3

� �
; �z �r0 � 0

M r
0

� �
;

and

0
M l

3

� �
� �B3��A2��B2��A1��B1� 0

M r
0

� �
:

With M r
0 � 0 one can obtain the equation for natural frequencies. m

3.5.3 RAYLEIGH METHOD
The dynamic response of free undamped vibrations is an overlapping of

harmonic vibrations with natural frequencies o1; . . . ;on , resulting in

q1�t � � A11 sin�o1t � j1� � � � � � A1n sin�ont � jn�
q2�t � � A21 sin�w1t � j1� � � � � � A2n sin�ont � jn�

..

.

qn�t � � An1 sin�o1t � j1� � � � � � Ann sin�ont � jn�:

8>>><>>>: �3:48�

One can denote

A21 � m21A11; A31 � m31A11; . . . ;An1 � mn1A11

A22 � m22A12; A32 � m32A12; . . . ;An2 � mn2A12

..

.

A2n � m2nA1n; A3n � m3nA1n; . . . ;Ann � mnnA1n;

8>>><>>>: �3:49�

Figure 3.21
Mechanical
model for

Example 3.16.
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where mik are called the coef®cients of distribution.

The vectors of distribution can be introduced:

�m�1 �
1
m21

..

.

mn1

26664
37775; �m�2 �

1
m22

..

.

mn2

26664
37775; . . . ; �m�n �

1
m2n

..

.

mnn

26664
37775:

It easy to demonstrate that the vectors of distribution �m�k verify the system

��R � ÿ o2
k �M ���m�k � �0�: �3:50�

The natural modes of vibration associated with the natural frequency are the

column vectors

�q �k �
A1k sin�ok t � jk�
A2k sin�ok t � jk�

..

.

Ank sin�ok t � jk �

26664
37775 � �m�kA1k sin�ok t � jk �: �3:51�

The kinetic energy of a system with more than one degree of freedom can be

calculated using the relation

T � 1
2 � _q �T �M �� _q �; �3:52�

and the potential of elastic forces attached to Hooke models can be

determined using the relation

V � 1
2 �q �T �R ��q �: �3:53�

Corresponding to the k mode of vibration:

Kinetic energy T �k� � 1
2 � _q �Tk �M �� _q �k ;

Potential of elastic forces V �k� � 1
2 �q �Tk �R ��q �k :

Replacing �q �k with Eq. (3.51), the following results are obtained:

T �k� � 1
2 �m�Tk �M ��m�kA2

1ko
2
k cos2�ok t � jk � �3:54�

and

V �k� � 1
2 �m�Tk �R ��m�kA2

1k sin2�ok t � jk �: �3:55�
The system is undamped; therefore, T

�k�
max � V

�k�
max , and there results the

relation of calculus for the natural frequency,

ok �
�����������������������
�m�Tk �R ��m�k
�m�Tk �M ��m�k

s
: �3:56�

The following is the methodology for working with the Rayleigh method:

j Adopt an expression for �m�k and determine, using Eq. (3.56), a ®rst

value for ok.
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j With the natural frequency calculated in this way, introduce the

torsors of inertia (forces or torques) and determine the new displace-

ment, namely a new expression for �m�k, which is reintroduced in Eq.

(3.56). The Rayleigh method gives the minimum natural frequency

superior to the real value, and maximum natural frequency inferior to

the real value.

EXAMPLE 3.17 Using the Rayleigh method, determine one natural frequency for the

mechanical model from Fig. 3.22, where k1 � k, k2 � 2k, k3 � k, m1 �
2m, m2 � 3m, m3 � m.

Solution

The mathematical model is

m1 �q1 � k1q1 � k2q2 � 0

m2 �q2 ÿ k1q1�k1 � k2�q2 ÿ k2q3 � 0;

m3 �q3 ÿ k2q2 � �k2 � k3�q3 � 0;

8><>:
where the matrix of inertia is

�M � �
m1 0 0
0 m2 0
0 0 m3

24 35;
and the matrix of rigidity (stiffness) is

�R � �
k1 ÿk1 0
ÿk1 k1 � k2 ÿk2

0 ÿk2 k2 � k3

24 35:
The vectors of distribution is �m�k � �1; m2k ; m3k �T .

Figure 3.22
Mechanical
model for

Example 3.17.
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Replacing this in Eq. (3.49), one ®nds

ok �
�1; m2k ; m3k �

k1 ÿk1 0
ÿk1 k1 � k2 ÿk2

0 ÿk2 k2 � k3

24 35 1
m2k

m3k

24 35
�1; m2k ; m3k �

m1 0 0
0 m2 0
0 0 m3

24 35 1
m2km3k

� �
8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

1=2

:

If the masses vibrate in phase, �m�k � �1; 1; 1�T , which in particular cases

results in

o � ok �
����������������
0:166

k

m

r
:

If two neighboring masses vibrate in phase, and the third in opposition of

phase, one can have the cases

�m�k � �1;ÿ1;ÿ1�T when o � ok �
������������
1:5

k

m

r
;

�m�k � �1; 1; ÿ1�T when o � ok �
����������������
0:833

k

m

r
:

If the neighboring masses vibrate in opposition of phase,

�m�k � �1; ÿ1; 1�T when o � ok �
��������������
2:15

k

m

r
: m

3.5.4 ANALYSIS OF STABILITY OF VIBRANT SYSTEM
A vibrant system with more than one degree of freedom is a multivariable

open linear system with [F ] or �f� as inputs and [q] as output. The matrix of

transfer for the open system is

�H � � �C �T �s�I � ÿ �A��ÿ1�B�; �3:57�
where matrices [A], [B ], [C ] are given as functions of the inertia matrix [M],

damping matrix [D], and stiffness matrix [R].

The transfer matrix becomes

�H � � ��I �; �0�� � �s�I � ÿ �A��ÿ1 �0� �0�
�I � �0�

� �
; �3:58�

where [I] is the unit matrix and [0] is the null matrix, both with the dimensions

n � n.

The characteristic polynomial for the open system is

P �s� � det�s�I � ÿ �A�� �3:59�
or

P �s� � det
s�I � ÿ�I �
�M �ÿ1�R � s�I � � �M �ÿ1�D�

� �
; �3:60�
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which becomes

P �s� � det�s2�M � � s�D� � �R �� � 0: �3:61�

The stability of vibrant systems with n degrees of freedom depends on the

position of the roots of the polynomial Eq. (3.61). The stability criteria are

algebraic (Routh, Hurwitz), or grapho-analytical criteria (Cramer, Leonhard).

The use of polar diagrams (Nyquist) or Bode diagram requests a procedure to

reduce the multivariable system to a monovariable system.

EXAMPLE 3.18 Determine the conditions of stability of motion for the vibrant system

presented in Example 3.8.

Solution

With

�M � �
J1 0

0 J2 0

0 0 J3

264
375; �D� �

c1 � c2 ÿc2 0

ÿc2 c2 � c3 ÿc3

0 ÿc3 c3 � c4

264
375;

�R � �
k1 � k2 ÿk2 0

ÿk2 k2 � k3 ÿk3

0 ÿk3 k3 � k4

264
375;

the characteristic polynomial becomes

a1 ÿc2s ÿ k2 0
ÿc2s ÿ k2 a2 ÿc3s ÿ k3

0 ÿc3s ÿ k3 a3

������
������ � 0;

where a1 � s2J1 � s�c1 � c2� � k1 � k2, a2 � s2J2 � s�c2 � c3� � k2 � k3, a3 �
s2J3 � s�c3 � c4� � k3 � k4.

Developing this, we obtain a sixth-order polynomial, and the Hurwitz

criterion can be applied to study stability.

Stability criterion Nyquist starts with the construction of the polar

diagram.

The polar diagram (Fig. 3.23) has the following characteristics:

j Point C, which corresponds to o � 0, gives the speci®c displacement

of the system in the static regime [m=N].

j The number of loops of polar diagram is the number of vibration

modes (implicitly the number of degrees of freedom). For the diagram

in Fig. 3.23, these are the three modes of vibration corresponding to

loops 1, 2, 3.

j The value of o that corresponds to the point on the loop placed at

maximum distance from origin is the natural frequency associated

with the mode of vibration that corresponds to the respective loop.

For the polar diagram in Fig. 3.23, point B corresponds to one angular
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frequency oB, giving the natural frequency oB that is attached to the

vibration mode corresponding to loop 2.

j The points of polar diagram in proximity to the origin give information

about the behavior of the vibrant system at high frequencies of

excitation.

j The maximum de¯ection of the vibrant system, for each mode of

vibration, is equal to the diameter of a circle that better approximates

the associated loop of points of maximum distance from origin (i.e.,

diameter A1A2 of the circle associated with loop 1 is the maximum

de¯ection for the ®rst mode of vibration).

j With the preceding circle diameters one can appreciate the damping

level of the respective mode of vibration.

The polar diagram can be traced for a vibrant physical system using

experimental data. In addition, this type of diagram indicates the linearity or

nonlinearity of the vibrant system. m

4. Machine-Tool Vibrations

4.1 The Machine Tool as a System

The machine tool is a system (Fig. 4.1) with the following characteristics:

j Elastic subsystem (ES): workpiece, tool, device, and elastic structure of

the machine tool

j Actuator subsystem (AS); electric motors and hydraulic motors

j Subsystem due to the friction process and dissipation effects (FS)

j Subsystem due to the cutting process (CPS) that includes processes

from the contact between workpiece and tool

Figure 3.23
Polar diagram.
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The interconnection of the different subsystems is made with the help of the

elastic subsystem (ES) (Fig. 4.1). The deformations of ES produce the

variation of chip thickness, namely the variation of the cutting force

(ESÿ!CPS�. The variation of the cutting force produces the modi®cation

of stresses and deformations of the elastic structure �CPSÿ!ES�.
In engineering practice, equivalent systems are used:

j Equivalent subsystem SDE1±AS (Fig. 4.2a). This subsystem is used for

modeling the actuator's processes. As a mechanical model it has

lumped masses, rotors, Hooke models, and linear dampers.

j Equivalent subsystem SDE2±FS (Fig. 4.2b). This subsystem is used for

modeling the friction processes, with the same mechanical model as

SDE1±AS.

j Equivalent subsystem SDE3±CPS (Fig. 4.2c). This subsystem is used

for modeling the cutting process.

The preceding systems can be analyzed using the system presented in Fig.

4.3 where z is eliminated.

Figure 4.1
The machine-
tool system.

Figure 4.2
Equivalent
subsystem.

(a) Subsystem
SDE1±AS;

(b) subsystem
SDE2±FS;

(c) subsystem
SDE3±CPS.

Figure 4.3
Open system.
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4.2 Actuator Subsystems

Actuators can be rotating motors and linear motors. A rotating motor is

associated with a torsional model (Fig. 4.4a), and a linear motor is associated

with a linear displacement model (Fig. 4.4b).

To compute the elastic constant (spring constant) kM and the damping

coef®cient cM , the following cases will be presented.

4.2.1 ROTATING ELECTRIC MOTORS
AC Asynchronous Electric Motors
The elastic constant is

kM � 2pMmax �Nm=rad�; �4:1�
where p is the number of pole pairs and Mmax is the maximum torque in

N=m.

The damping coef®cient is

cM � scror JM ; �4:2�
where or is the natural frequency (in sÿ1); or � 2pfr , where fr is the

frequency of the alternative current (AC); and scr is the critical sliding. The

critical sliding, scr , is scr � �ncr ÿ n0�n0, where n0 is the rate of revolution for

the unload function (null couple) in rev=min, and �ncr � is the rate of

revolution corresponding to Mmax from the mechanical characteristic. JM is

the inertia moment for the rotor (in kg=m2). One can compute JM using the

relation JM � 0:36Gr dr (in kg=m2), where Gr (in da=N) is the weight of rotor

and dr is the exterior diameter of the rotor (m).

DC Electric Motors
In this case the elastic constant is

kM �
1

mo0Te

�Nm=rad�; �4:3�

where m is the slope of the static characteristic torque-sliding (M ÿ s), and

o0 is the angular velocity for the unload function. The damping coef®cient is

cM �
JM
Te

; �4:4�

Figure 4.4
(a) Torsional

model; (b)
linear model.
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where Te is the electromagnetic time constant of excitation given by the

relation Te � Le=Re , Le is the inductance of excitation, and Re is the active

resistance of excitation.

The logarithmic decrement associated with the rotating electric motor is

d � 1:25 . . . 2:5.

4.2.2 LINEAR HYDRAULIC MOTOR
For this type of motor, the elastic constant can be determined using the

relation

kM �
Al

2B
� DlA

2Ed
�N=m�; �4:5�

where A is the area of the active cross-section (in m2) (Fig. 4.5), l is the

displacement of the piston (the length of the active chamber, in m), B is the

modulus of elasticity of the liquid (bulk modulus, in N=m2), D is the inside

diameter of the cylinder (m), E is the Young modulus of the cylinder material

(N=m2), and d is the thickness of cylinder (m).

4.3 The Elastic Subsystem of a Machine Tool

4.3.1 THE ELASTIC SUBSYSTEM OF A KINEMATIC CHAIN
Consider the general case of a kinematic chain with gear, belts, and shafts.

The following algorithm is given.

Step 1
Calculate the elastic constants of the shafts with negligible mass using the

relation

kA �
GIp

L
; �4:6�

where Ip � pd4=32�m4� is polar moment of inertia of the shaft with diameter

d. For a tubular shaft, the polar moment of inertia is Ip � p�D4 ÿ d4�=32�,
where D is the outside diameter and d is the inner diameter of the tube shaft,

Figure 4.5
Linear hydraulic

motor.
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G is the modulus of rigidity (torsional modulus of elasticity, in N=m2), and L is

the active length of the shaft.

Step 2
Calculate the moments of inertia of the rotors with respect to their geometric

axes,

JR �

mD2

8
for rotors that can be approximated with a full cylinder

mD2

4
for rotors that can be approximated with a ring

with mean diameter D

8>>><>>>: �4:7�

where m is the mass of the rotor in (kg).

Calculate the moments of inertia for each shaft with respect to the

geometric axis of the shaft:

JA �
mD2

8
for full section shafts

m�D2 ÿ d2�
8

for tubular shafts

:

8>><>>: �4:8�

For rotors placed at the extremity of the shaft, the moments of inertia can be

calculated using

J 0R � JR �
1

6
JA: �4:9�

Step 3
For each gear, calculate a supplementary elastic constant ks that considers the

bending deformation

ks �
rFt

jr

; �4:10�

where r is the pitch radius, Ft is the tangential force from gearing, and jr is

the relative supplementary rotation of the gear that takes into consideration

the bending.

If P is the power of the shaft and o is the angular velocity of the shaft,

then

ks �
P

ojr

: �4:11�

The rotation jr can be calculated using

jr �
1

r
�� f1T � f2T � � � f1R � f2R � tan�a� j��; �4:12�

where f1T , f2T are the de¯ections in the tangential direction of the gear for the

two shafts, f1R , f2R are the de¯ections in the radial direction of the gear for the

two shafts, and j is the angle of friction of gearing (for steel, tanj � 0:1�.
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This results in

ks �
Pr

o�� f1T � f2T � � � f1R � f2R � tan�a� j�� : �4:13�

The computed value of ks is added to the value of k for the gearing case.

Step 4
Compute the equivalent length for each torsional singularity using the

relation

le �
GIp

k
�m�; �4:14�

where GIp is the torsional stiffness of the shaft on which the singularity is

placed, and k is the elastic constant of the singularity.

For n torsional singularities placed on the shaft, the total equivalent

length is

Le �
Pn
i�1

le i : �4:15�

The length of calculus for each shaft is given by

Lc � L � Le; �4:16�
where L is the active length of the shaft.

The elastic constant is computed using the relation

k 0A �
GIp

Lc
�Nm=rad�: �4:17�

Step 5
Select a shaft of reference and reduce the inertia moments of rotors placed on

other shafts with respect to the reference shaft. Reduction to reference shaft

of an inertia moment Jk corresponding to a rotor placed on another shaft is

given by

Jr � Jk i2; �4:18�
where i � o=or is the transmission ratio between the shaft with the rotor and

the reference shaft (or is the angular velocity of the reference shaft, and o is

the angular velocity of the shaft where the rotor is placed). The reduced

procedure is applied for all the rotors.

Step 6
Reduce to the reference shaft the elastic constants and the lengths of calculus

for all the other shafts. One can write

Lc;r �
Lc

i2
; �4:19�
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where Lc is the length of calculus for a shaft, Lc;r is length of calculus reduced

at the reference shaft, and i is the transmission ratio. For the elastic constant

the reduction is made with the relation

kr � ki2: �4:20�

Step 7
For each active section of the shaft, determine the damping coef®cients c.

The reduction of the damping coef®cients to the reference shaft is given by

the relation

cr � ci2: �4:21�

Step 8
Reduce the outside torques M (that act on a rotor placed on other shafts than

the reference shaft) to the reference shaft:

Mr � Mi: �4:22�
Using step 1 to step 8 one may obtain an equivalent mechanical model with

rotors placed on the reference shaft. The reduction of the rotors (and

therefore the reduction of the degrees of freedom) is made (Fig. 4.6) using

the relations

J 0iÿ1 � Ji�1 � Ji
ki

ki�1 � ki

�4:23�

J 0i�1 � Ji�1 � Ji
ki�1

ki�1 � ki

�4:24�

k 0i �
kiki�1

ki � ki�1

�4:25�

c 0i �
cici�1

ci � ci�1

: �4:26�

Step 9
For the mechanical model obtained after step 7 or step 8 one can write the

mathematical model. A complex kinematic chain can be transformed into a

Figure 4.6
Reduction of

number of rotors
(and therefore
of degrees of

freedom).
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simpler model as shown in Fig. 4.7. A point of rami®cation P as a rotor with

inertia moment JP � 0 and rotation qP can be considered.

One can write the equations

JP �qP � 0 � ÿk�qP ÿ q� ÿ c� _qP ÿ _q� ÿPn
j�1
�kj �qP ÿ qj �

�cj � _qP ÿ _qj ��
J �q � ÿk�q ÿ qP � ÿ c� _q ÿ _qP � ÿ k 0�q ÿ q 0� ÿ c 0� _q ÿ _q 0�
�M �t �

J1 �q1 � ÿk1�q1 ÿ qP � ÿ c1� _q1 ÿ _qP � ÿ K 01�q1 ÿ q 01�
ÿc 01� _q1 ÿ _q 01� �M1�t �

..

.

Jn �qn � ÿkn�qn ÿ qP � ÿ cn� _qn ÿ _qP � ÿ k 0n�qn ÿ q 0n�
ÿc 0n� _qn ÿ _q 0n� �Mn�t �:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�4:27�

EXAMPLE 4.1 A gear train with two stages is shown in Fig. 4.8. The gear train has an

asynchronous electric motor EM, an elastic clutch with bolts C, the spur gears

R1, R2, R3, R4, and the rotor R with an exterior driven torque

MR �t � � M0 sin�ot �. The exterior driven torque MR acts on the rotor R. The

gears R1, R2, R3, R4 and the rotor R are ®xed on the shafts I, II, III with the

keys K1, K2, K3, K4, and K5. Analyze the system (the torsional vibration) using

a reduced system with three degrees of freedom.

Given data: Power on the shafts P1, P2, P3 (W), input rotation n1

(rev=min), AC asynchronous electric motor with p pole pairs, maximum

torque Mmax (N=m), rotation for the unload function (null couple) n0

(rev=min), rotation corresponding to Mmax from mechanical characteristic

ncr , frequency of the alternative current fr (AC), moment of ¯y wheel GD2

(N=m2). Shaft characteristics are given in Table 4.1.

Figure 4.7
Mechanical

model of the
kinematic chain.
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The clutch is with bolts and has the elastic dynamic constant kd � 3. The

rotor R has the mass M and the exterior diameter dR. Gear characteristics are

shown in Table 4.2.

All of the gears are cylindrical with pressure angle f � 20�. The keys are

shown in Table 4.3.

Figure 4.8
Gear train with

two stages.

Table 4.2 Gear Characteristics

Gear
Number
of teeth

Width
(m)

Pitch circle
radius

(m)

Deformation of a
teeth pair,
krd (m3=N)

Mass
(kg)

R1 N1 l1 r1 k � 6� 10ÿ13 m1

R2 N3 l2 � l1 r2 k � 6� 10ÿ13 m2

R3 N3 l3 r3 k � 6� 10ÿ13 m3

R4 N4 l4 � l3 r4 k � 6� 10ÿ13 m4

Table 4.1 Shaft Characteristics

Diameter Transverse elasticity
Shaft number (m) Section type modulus (N=m2)

I dI Full round G

II dII Full round G

III dIII Full round G
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Solution

Step 1
The elastic constants of the shafts are

k1 �
pGd 4

I

32L1

; k2 �
pGd 4

II

32L2

; k3 �
pGd 4

III

32L3

�Nm=rad�:

Step 2
Compute the inertia moment for electric motor

J 0EM �
GD2

8g
�kg m2�;

where g is the gravitational acceleration, g � 9:81 m=s2, and D is the diameter

of the rotor of the motor. The inertia moment of the clutch is neglected.

The inertia moments for the spur gears are

J 0R1 �
m1r1o

2
1

2
; J 0R2 �

m2r2o
2
2

2
; J 0R3 �

m3r2o
2
3

2
; J 0R4 �

m4r4o
2
4

2
�kg m2�:

The inertia moment for the rotor is J 0R � Md 2
R=8�kg m2).

Compute the inertia moments for shafts

JI �
MI d

2
I

8
; JII �

MII d
2
II

8
; JIII �

MIII d
2
III

8
�kg m2�:

The corrected inertia moments for extremity rotors are computed using the

relations

JME � J 0ME � 1
6 JI ; JR1 � J 0R1 � 1

6 JI ; JR2 � J 0R2 � 1
6 JII

JR3 � J 0R3 � 1
6 JII ; JRA � J 0R4 � 1

6 JIII ; JR � J 0R � 1
6 JIII :

Step 3
The torsional singularities are the electric motor EM, the clutch C, the gear

contacts at A and B, and the keys K1±K5. The elastic constants are computed

for each singularity.

Table 4.3 Key Characteristics

Shaft Length Number
Key Key type diameter (m) of joint (m) Height of keys

K1 prismatic dI l1 h1 1

K2 prismatic dII l2 h2 1

K3 prismatic dII l3 h3 1

K4 prismatic dIII l4 h4 1

K5 prismatic dIII l5 h5 1
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For the electric motor,

kEM � 2pM max �N m=rad�:
For the spur gears,

k 0R1 �
l1r 2

1 cos a
10krd

; k 0R2 �
l2r 2

2 cos a
10krd

; k 0R3 �
l3r 2

3 cos a
10krd

For the clutch,

kC � 28:6kd Gd 2
max�in N m=rad�; where dmax is in meters andG is in daN=cm2:

For the keys,

kK 1 �
d 2

I l1h1

10k
; kK 2 �

d2
II l2h2

10k
; kK 3 �

d2
II l3h3

10k

kK 4 �
d 2

III l4h4

10k
; kK 5 �

d2
III l5h5

10k
�N m=rad�;

where k � 6:4� 10ÿ4 for prismatic keys.

Step 4
The angular velocities are

oI �
pnI

30
; oII �

pnI N1

30N2

; oII �
pnI N1N3

30N2N4

�sÿ1�:

The torques of the shafts are

MI �
PI

oI

; MII �
PII

oII

; MIII �
PIII

oIII

�N m�:

The tangential forces in gearing are

Gearing R1 R2 : Ft1ÿ2 � MI =r1 �N�
Gearing R3 R4 : Ft3ÿ4 � MII =r3 �N�

The radial forces in gearing are

Gearing R1 R2 : Fr1ÿ2 � Ft1ÿ2 tan a �N�
Gearing R3 R4 : Fr3ÿ4 � Ft3ÿ4 tan a �N�

With these forces one can compute the de¯ections in tangential plane

and in radial plane at the points K1, K2, K3, K4, and K5. The following

de¯ections are obtained:

Point K1 �shaft I � : tangential fIT ; radial fIR

Point K2 �shaft II � : tangential f 0IIT ; radial f 0IIR
Point K3�shaft II � : tangential f 00IIT ; radial f 00IIR

Point K4�at shaft III � : tangential fIIT ; radial fIIIR :

426 Theory of Vibration

V
ib

ratio
n



With Eq. (4.12) one can calculate the coef®cient of correction jr for each

gear:

jR1 �
1

r1

�� fIT � f 0IIT � � � fIR � f 0IIR � tan�a� j��

jR2 �
1

r2

�� fIT � f 0IIT � � � fIR � f 0IIR � tan�a� j��

jR3 �
1

r3

�� f 00IIT � fIIIT � � � f 00IIR � fIIIR � tan�a� j��

jR4 �
1

r4

�� f 00IIT � fIIIT � � � f 00IIR � fIIIR � tan�a� j��:

Using Eq. (4.11) or (4.10), the supplementary elastic constants are computed

for each gear:

k 00R1 �
PI

oIjR1

; k 00R2 �
PII

oIIjR2

; k 00R3 �
PIII

oIIIjR3

; k 00R4 �
PIV

oIIIjR4

; �Nm=rad�:

The total elastic constants for each gear are

kR1 � k 0R1 � k 00R1; kR2 � k 0R2 � k 00R2; kR3 � k 0R3 � k 00R3; kR4 � k 0R4 � k 00R4:

Step 5
The lengths for each singularity are

lEM �
GIPI

kME

; lC �
GIPI

kC

; lK 1 �
GIPI

kK 1

lK 2 �
GIPII

kK 2

; lK 3 �
GIPII

kK3

; lK 4 �
GIPIII

kK 4

lK 5 �
GIPIII

kK 5

; lR1 �
GIPI

kR1

; lR2 �
GIPII

kR2

lR3 �
GIPII

kR3

; lR4 �
GIPIII

kR4

where

IPI �
pd4

I

32
; IPII �

pd 4
II

32
; IPIII �

pd4
III

32
:

The lengths of calculus for the active section for each shaft are

LI � L1 � lEM � lC � lK 1 � lR1

LII � L2 � lK 2 � lK 3 � lR2 � lR3

LIII � L3 � lR4 � lK 4 � lK 5:

The elastic constants can be recalculated as

kI �
GIPI

LI
; kII �

GIPII

LII

; kIII �
GIPIII

LIII

�N m=rad�:

The mechanical model is shown in Fig. 4.9. The damping constants cI , cII , cIII

can be determined with Eq. (3.7).
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Step 6
Shaft III is chosen as the reference shaft. The reduction of the inertia

moments of rotors placed on other shafts will be calculated. The transmission

ratios with respect to the reference shaft are

i1ÿ3 �
oI

oIII

� N2N4

N1N3

; i2ÿ3 �
o2

oIII

� N4

N3

:

The relations of reduction for the inertia moments are

J R
EM � JEM i2

1ÿ3; J R
R1 � JR1i2

1ÿ3; J R
R2 � JR2i2

2ÿ3; J R
R3 � JR3i2

2ÿ3:

The following notations are used:

J1 � J R
EM ; J2 � J R

R1 � J R
R2; J3 � J R

R3 � J R
R4; J4 � J R

R5:

Step 7
The elastic constants kI and kII are reduced to the reference shaft:

k1 � kI i
2
1ÿ3; k2 � kII i

2
2ÿ3; k3 � kIII :

Step 8
The damping coef®cients cI and cII are reduced to reference shaft:

c1 � cI � i2
1ÿ3; c2 � cII � i2

2ÿ3; c3 � cIII :

Step 9
The external torque M acts on the reference shaft. The mechanical model

reduced to the reference shaft is shown in Fig. 4.10. The mechanical model

has four degrees of freedom. To simplify the calculations the number of

degrees of freedom is reduced to three eliminating the rotor J3. A new

mechanical model is obtained (Fig. 4.11). The mathematical model corre-

sponding to the new mechanical model, shown in Fig. 4.11, is

J1 �Q1 � ÿk1�Q1 ÿ Q2� ÿ c1� _Q1 ÿ _Q2�
J 02 �Q2 � ÿk1�Q2 ÿ Q1� ÿ c1� _Q2 ÿ _Q1� ÿ k23�Q2 ÿ Q3� ÿ c23� _Q2 ÿ _Q3�
J 04 �Q3 � ÿk23�Q3 ÿ Q2� ÿ c23� _Q3 ÿ _Q2� �M0 sin�ot �:

8><>:

Figure 4.9
Mechanical

model.
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The kinematic chain just analyzed is speci®c to a gear box and a feed box of

a machine tool.

To obtain a linear motion, the following kinematic chains can be used:

screw nuts (Fig. 4.12a), screw nuts with rolling element (Fig. 4.12b), pinion

rack (Fig. 4.12c), and linear hydraulic motor (Fig. 4.12d).

For the mechanical model shown in Fig. 4.12e, m is the mass of the

system and x � q is the linear displacement. The elastic constant k for the

usual cases is given in Table 4.4 and the coef®cient c can be calculated with

the relation

c � d
p

�������
km
p

�N s=m�;

where d is the logarithmic decrement. m

4.3.2 ELASTIC SYSTEM OF SHAFTS
The mechanical model of ¯exural vibration of linear shafts was presented in

Example 3.5 using the method of the coef®cients of in¯uence. The mathe-

matical model is given by Eq. (3.10), and can be completed with internal

damping. Thus, to each lumped mass a linear damping is attached, ÿci _qi ,

i � 1; 2; . . . ;n. The mathematical model becomesPn
i�1

aji�mi �qi � ci _qi � � qj �
Pn
i�1

ni�1ajiFi ; j � 1; 2; . . . ;n: �4:28�

A shaft can be modeled as a beam with lumped masses with the following

speci®cations.

A
The shaft is modeled as a beam with constant section and the constant

stiffness for bending is EI. If the variation of diameter is less than 25% or the

variation in length is less than 10%, the hypothesis of constant section of

shaft is admissible. If the variation of the section is greater than 25%, an

Figure 4.10
Reduced

mechanical
model.

Figure 4.11
Mechanical

model with three
degrees of

freedom.
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equivalent geometric inertia moment I is computed. For example, for the

shaft shown in Fig. 4.13, the equivalent inertia moment is

I � I1I2

I1 �
�li � l3�

l 3
�I2 ÿ I1�

: �4:29�

B: The Lumped Masses Model Location
B1: The lumped masses are located in the sections of the shaft where the

rotors are. For example, for the main shaft of a lathe, milling machine, or

boring machine (Fig. 4.14), the gear R1 is the lumped mass m01 and the rotor

R2 is the lumped mass m02.
B2: The lumped mass values. The lumped masses, without the shaft

mass, are numerically equal to the masses of the rotors. For the system

represented in Fig. 4.14, m01 � mR1, m02 � mR2.

B3: The transformation of the mass shaft into lumped masses. The

calculation of the additional masses m00i can be achieved by two methods:

Figure 4.12
Mechanical
model of a

kinematic chain
with screw nuts.
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Table 4.4

Kinematic chain Conventional Elastic constants
type representation k (N=m) Notations

E is Young's modulus (N=m2)

Screw nuts
(sliding friction)

Fig. 4.12a k � pEd2
m

4
dm is mean diameter of screw (m)

l is active length (m)

Screw nuts with
rolling element
without pretension

Screw nuts with
rolling element
with pretension

Fig. 4.12b

Fig. 4.12b

k � 53� 10ÿ6z

����������������������������
D sin5 a cos5 l

k1

s

D � 3:8
3

����������
F 2

a

d1z 2

s

k1 � mu1

3

�����������������
2r2 ÿ d1

E 2d1r2

s

k � 1:5� 10ÿ3z sin2 l3
�����
F0

p
d

D � 1:4Fa

z3
����������
F0d1

p

z is the number of active rolling elements
D is the contact deformation (mm)
Fa is the axial force (daN)
d1 is the diameter of the rolling ball
a is the contact angle of the rolling ball
l is the lead angle of the screw
r2 is the radius of pro®le for helix race
m1 is a coef®cient
F0 is the pretension force

Pinion±rack Fig. 4.12c k � 10ÿ4KAl cos a l is the width of the pinion

KA � 1:6� 103 (daN=mm2) a is the pressure angle

for steel rack with normal teeth KA is the speci®c pressure for

KA � 2:8� 103 (daN=mm2) teeth contact (daN=mm2)

for steel rack with helix teeth

Vibration



1. The application of the general theory of the equivalent dynamic

system with lumped masses with the elastic solid. The method is

dif®cult to apply in current calculus.

2. The calculation of a coef®cient of reduction ai such as m00i � aim,

where m is mass of the shaft.

EXAMPLE 4.2 Determine the coef®cient of reduction ai for the mechanical models shown

in Fig. 4.15. The mass of the shaft is m.

Solution

The elastic constants are determined using Table 4.4. The natural frequency

modes for some continuous systems are given in Table 4.5, where r is

speci®c mass and A is the area of the section.

The natural frequencies are computed with the relation

o �
�����
k

m

r
:

For the model in Fig. 4.15a, one can write

o �
�������
ka

m00

r
�

����������������������
3EI �a � b�

a2b2m00

r
:

Figure 4.13
Shaft with

variation of
section.

Figure 4.14
The main shaft

of a lathe,
milling machine,

or boring
machine. (a)

Physical model;
(b) mechanical

model with
lumped masses.
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Equalizing the preceding equation with the natural frequency o1 �n � 1�,
position 1 in Table 4.5, gives

����������������������
3EI �a � b�

a2b2m00

r
�

������
EI

rA

r
� p2

�a � b�2 :

But m00 � am and rA � m=�a � b�. The coef®cient of reduction will be

a � 3�a � b�4
p4a2b2

:

Figure 4.15 Mechanical models and elastic constant with respect to lumped masses.
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For Fig. 4.15b one can write

o �
�������
kb

m00

r
�

����������������������
EI �a � b�3

a3b3am

s
�

����������������������
WI �a � b�

m

r
4:73

a � b

� �2

;

and from position 3 in Table 4.5,

a � �a � b�6
4:734a3b3

:

For Fig. 4.15c,

a �
�������
kc

m00

r
�

�����������
3EI

L3am

r
�

�������
EIL

m

r
1:875

a � b

� �2

;

and from position 4 in Table 4.5,

a � 3

1:8754
� 0:2427:

For Fig. 4.15d, one can use the same procedure.

For Fig. 4.15e, one can calculate two coef®cients of reduction a1 with

respect to m001 and a2 with respect to m002 . If m1 is the mass of the AC section,

a1 is determinated with the relation from Fig. 4.15a, where a! c, and

b ! a:

a1 �
3�a � c�4
p4a2c2

; m001 � a1m1:

Table 4.5

No. Model Natural frequencies Notations

1. on �
������
EI

rA

r
� n

2p2

l2
; n � 1; 2; 3 . . .

r, speci®c mass;
A, cross-sectional area

2. o1 �
������
EI

rA

r
� 4:73

l

� �2 r, speci®c mass;
A, cross-sectional area

o2 �
������
EI

rA

r
� 7:853

l

� �2

3. o1 �
������
EI

rA

r
� 3:927

l

� �2 r, speci®c mass;
A, cross-sectional area

o2 �
������
EI

rA

r
� 7:069

l

� �2

4. o1 �
������
EI

rA

r
� 1:875

l

� �2 r, speci®c mass;
A, cross-sectional area

o2 �
������
EI

rA

r
� 4:694

l

� �2
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If m2 is the mass of the AB section, a2 is determined using the relation from

Fig. 4.15e, and one can write a2 � 0:2427 and m002 � a2m2.

The situation presented in Fig. 4.15f can be calculated using the same

procedure. m

4.4 Elastic System of Machine-Tool Structure

The machine tool is considered as an assembly of rigid bodies connected

together with Hooke models (elastic models) and linear viscous dampers.

The mathematical model for the mechanical model is determined using the

Lagrange method. Therefore, it is essential to determine the elastic constants

k and the damping coef®cients c.

4.4.1 MOUNTING OF A MACHINE TOOL ON A FOUNDATION
The elastic constant k (Fig. 4.16) can be calculated for the following

situations:

A.1. Mounting of the machine tool with a steel spring:

k � zGd 4

8D3n
�N=m�: �4:30�

where z is the number of supports, G is the shear modulus (N=m2),

d is the wire diameter (m), D is the mean coil diameter (m), and n is

the number of active coils.

A.2. Mounting of the machine tool on rubber plates or damping carpet:

k � Ed A

h
: �4:31�

where A is the contact area (m2), h is the thickness of the damping

element (m), and Ed is the dynamic elasticity modulus of rubber

(N=m2).

A.3. Mounting of the machine tool on a concrete foundation:

k � A � cs �N=m�: �4:32�
Here A is the contact area (m2), and cs is the coef®cient of elastic

contraction of soil (N=m3).

Figure 4.16
Mounting of a

machine tool on
a foundation.
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The damping coef®cient c is computed using

c � d
p

�������
km
p

; �4:33�

where m is the mass of the machine tool and d is the logarithmic

decrement, which has different values depending on foundation

type.

4.4.2 SLIDER JOINTS
The elastic constant can be calculated using

k � A

k0

�N=m�; �4:34�

where A is the contact area (m2) and k0 is an elastic constant that depends on

the length of the slider. In Eq. (4.34) the de¯ection of the slider was

neglected. The mechanical model of the system can be determined as

follows.

Sliding Support
Using a trapezoidal distribution of the contact pressure (Fig. 4.17a), one can

obtain a suitable model. The constant k is placed on the resultant force F

direction of the contact pressure. The coef®cient kA corresponds to the action

mechanism and q3 corresponds to a rotation of the Hooke model. The center

of stiffness C is in the direction of the force F.

In the case of triangular distribution of the contact pressure (Fig. 4.17b),

F1 and F2 forces are the resultants of two triangular repartitions. The center of

stiffness has the position given by

d � k1a�b ÿ a�
k1�b ÿ a� � k2b

: �4:35�

To specify the values of the elastic constants kA, k1, k2, the type and the

geometry of the slider must be given.

Figure 4.17
Sliding support.
(a) Trapezoidal

repartition
(distribution) of
contact pressure;

(b) triangular
repartition of

contact pressure.
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Rolling Slider
The slider is modeled as a system with six degrees of freedom (Fig. 4.18). To

specify the values of the elastic constants kA, k1, k2, k3, k4, k5, the type (balls

or rolls) and the geometry of the slider must be given.

4.5 Subsystem of the Friction Process

4.5.1 DRY FRICTION
In this category are dry sliding friction and mixed friction, namely, Coulom-

bian friction. The lubricant ®lm is present between surfaces, and the

hydrodynamic phenomenon is present.

The friction force in the stationary regime is

Ff � m�kd�; �4:36�

where m is the friction coef®cient, which depends on the material, relative

velocity, pressure of contact, surfaces status, lubricant, temperature, etc.; k is

the elastic constant to de¯ection in the perpendicular direction of the half

joint surfaces; and d is the perpendicular de¯ection

Ff �
mA

k0

d: �4:37�

In the transitory regime, the transfer function is

HF �s� �
cf

TF s � 1
� Ff

d
; �438�

where cf � mk is the stationary characteristic of the contact friction, and TF is

a time constant that is determined on the basis of the characteristic of the

transitory regime. Equation (4.38) is valid in following conditions: the natural

frequency of the variable mass f � 25; . . . ; 30 (Hz), and the variation of the

relative velocity Dvr � 1; . . . ; 1:5 (mm=s). In the case of other values a

nonlinear model will be used.

Figure 4.18
Rolling slide

modeled as a
system with six

degrees of
freedom.
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4.5.2 ROLLING AND SLIDING FRICTION
The friction moment in a stationary regime is

Mf � r � Ff � F0r � mr N ; �4:39�

where F0 is the constant component of the friction force, r is the radius of the

rolling body (ball or roll), mr is the friction coef®cient for rolling, and N is the

normal push force. The transfer function is similar to Eq. (4.38), but some

restrictive conditions are applied (cf has lower values and TF has greater

value). At the start, F0 can increase by 15±20% in the case of rolling slide,

due to dynamic stick±slip phenomena.

EXAMPLE 4.3 Analyze the mechanical model shown in Fig. 4.19 for a slider with a mass m.

Solution

The friction force is

Ff � Fa; adherence force; _q � 0 �at rest�
F0 ÿ a _q; _q > 0 �motion�:

�
�4:40�

The following forces act on the mass m:

The elastic force: ÿk�qÿ v0t�;
The friction force with guide-slide: F0 ÿ a_q;

The damping force: ÿc�_qÿ v0�.

The equation of motion is

m �q � ÿk�q ÿ v0t � ÿ �F0 ÿ a _q� ÿ c� _q ÿ v0�; �4:41�

or

m �q � �c ÿ a� _q � kq � kv0t � cv0 ÿ F0: �4:42�

The Cauchy problem is q�0� � 0, _q�0� � 0, and the mass starts from rest. It is

considered that at t � 0 the damping force cv0 is equal to the adherence

force Fa : cv0 � Fa . Therefore, cv0 ÿ F0 � Fa ÿ F0 � DF .

Figure 4.19
Mechanical

model of a slider
motion.
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The solution of the mathematical model given by Eq. (4.22) is

q�t � � eÿdt mdv0

k
ÿ DF

k

� �
cos�ot � � mv0

ko
�d2 ÿ o2� ÿ dDF

ok

� �
sin�ot �

� �
� v0t � DF

k
ÿ 2mdv0

k
; �4:43�

where

d � c ÿ a
2m

; o �
�����
k

m

r
ÿ d2; DF � Fa ÿ F :

The velocity and the acceleration are

v � �q � eÿdt ÿv0 cos�ot � � DF

mo
ÿ ov0

d

� �
sin�ot �

� �
� v0 �4:44�

a � �q � eÿdt DF

m
cos�ot � � kv0

mo
ÿ dDF

mo

� �
sin�ot �

� �
: �4:45�

Functions of the value v0, two motion regimes can appear:

Case 1: v0 � v0cr

See Fig. 4.20. For t 2 �0; T1�, the mass m is moved and at t � T1 the

acceleration is null or negative a�T1� � 0. From t � T1 to t � T1 � T2, the

mass m is at rest. At the moment t � T1 � T2, the acceleration is

a�T1 � T2� � DF =m, and a new cycle of motion starts. The motion is the

discontinuous ``stick±slip'' phenomenon.

Case 2: v0 > v0cr

See Fig. 4.21. The motion is continuous and the velocity of the mass tends to

reach the value v0 in stationary regime.

Figure 4.20
Discontinuous

motion
(stick±slip).

Figure 4.21
Continuous

motion.
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To ®nd the value of v0cr , one can follow these steps:

Set v�T1� � 0 and a�T1� � 0.

From Eqs. (4.45) and (4.45) with v0 � v0cr, the system obtained is

edT1 ÿ cos�oT1� ÿ
d
o

sin�oT1�
� �

v0cr �
1

mo
sin�oT1�

� �
DF � 0;

k

mo
sin�oT1�

� �
v0cr �

1

m
cos�oT1� ÿ

d
mo

sin�oT1�
� �

DF � 0:

8>>><>>>: �4:46�

The determinant of the system must be equal to zero:

edT1 cos�oT1� ÿ
d
o

sin�oT1�
� �

� 1: �4:47�

The value of T1 is replaced in one of the relations of Eqs. (4.46) to obtain

the critical velocity v0cr.

For v0cr one can use the approximating relation

v0cr �
DF���������������

4pmky
p ; �4:48�

where y � �c ÿ a�=2 �������
km
p

.

The time T2 of rest for mass m, in the condition of ``stick±slip'' is

determined from the condition

q�T1� � v0cr �T1 � T2� � q�T1 � T2�; �4:49�
which gives the time

T2 � ÿ
1

o
edT1 sin�oT1�: �4:50�

The period of ``stcik-slip'' is T � T1 � T2. m

4.6 Subsystem of Cutting Process

In general the cutting process is stable if the chips are continuous. For

fragmentary chips and built-up edges an unstable cutting process can appear.

For dynamic modeling of the cutting process, one can consider constant

cutting parameters (speed v and feed fr ). In this case the cutting force

depends only on the variation of depth of cut ap (Fig. 4.22). If Fa is the

cutting force, then in the stationary regime Fa � Fa�y� (a nonlinear function).

Considering a linear function, one can write

Fa�u� � kau; �4:51�
where ka � F 0�y0� is a stationary characteristic of the cutting process (N=mm)

and u � y ÿ y0 is the relative displacement between the tool and the

workpiece. The characteristic ka is ka � bp, where b is the width of the

chip (mm) and p is the speci®c pressure (N=mm2).
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For the transitory regime, with variation of the cutting force due to the

variation of depth of cut and the variation of the tool geometry hypothesis,

one can write

Ha�s� �
F �u�

u
� ka

Tas � 1
; �4:52�

where Ta is a constant that depends on the stability of the cutting process,

cutting speed, depth of cut, etc.

Like the friction process, the cutting process is a self-excited vibration

generator. The top edge of the tool can describe a closed trajectory AmBnA

that can be approximated with an ellipse (Fig. 4.23).

One can model the tool with Hooke models, k1 and k2, in the direction of

the main axes of rigidity with a reference frame at the center of rigidity C0 as

shown in Fig. 4.24. If C0C is the elastic displacement of C0 with q1 and q2 the

components on the C0Y and C0Z directions, one can write the cutting force

as

Fa � F0 ÿ ru; �4:53�

where u is the relative displacement between the tool and the workpiece and

r is a proportionality coef®cient. If the C0YY and C0Z axes are the main

directions of rigidity, then the coef®cients of in¯uence are

axx � a11 �
1

k1

; ayy � a22 �
1

k2

; axy � a12 � ayx � a21 � 0:

Figure 4.22
Cutting process.

Figure 4.23
Self-excited

vibration
phenomenon.
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The equations of motion are (the damping is neglected)

q1 � ÿa11m �q1 ÿ a11ru cos�bÿ a0�
q2 � ÿa22m �q2 ÿ a22ru cos�bÿ a0� ;

�
�4:54�

where u � q1 cos a0 ÿ q2 sin a0.

The mathematical model becomes

m �q1 � �k1 � r cos a0 cos�bÿ a0��q1 ÿ r sin a0 cos�bÿ a0�q2 � 0

m �q2 � r cos a0 sin�bÿ a0�q1 � �k2 ÿ r sin a0 sin�bÿ a0��q2 � 0
:

�
�4:55�

One can denote the following:

The matrix of inertia

Mm
m 0
0 m

� �
;

The matrix of rigidity

C � k1 � r cos a0 cos�bÿ a0� ÿr sin a0 cos�bÿ a0�
r cos a0 sin�bÿ a0� k2 ÿ r sin a0 sin�bÿ a0

� �
:

The characteristic polynomial is

P �s� � det�s2�Mm� � �C �� � 0;

or

s4 � �a1 � a2 � b ÿ a�s2 � �a1a2 ÿ aa1 � ba2� � 0; �4:56�
where a � sin a0 sin�bÿ a0�, b � cos a0 cos�bÿ a0�, k1=r � a1.

One can use the notations

u � s2

M � a1 � a2 � b ÿ a

2
> 0

D � 1

4
��a1 � a2 � b ÿ a�2 ÿ 4�a1a2 ÿ aa1 � ba2��:

The following cases are obtained:

Figure 4.24
Tool model with

Hooke models.
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Case 1: D > 0, M >
����
D
p

, u1, u2 < 0; consequently, the characteristic

equation of Eq. (4.56) has four imaginary roots. The dynamic

response of the system is the overlap of two harmonic vibrations.

Case 2: D > 0, M <
����
D
p

, u1 > 0, u2 < 0, consequently, the characteristic

equation of Eq. (4.56) has two real roots (one negative and the other

positive) and two imaginary roots. The dynamic response of the

system is composed of one harmonic vibration, one unperiodic

vibration with increasing amplitude in time, and one unperiodic

vibration with decreasing amplitude in time. The motion is unstable.

Case 3: D < 0, u1, u2 are complex roots; consequently, the roots of

characteristic equations are complex, type s1;2;3;4 � �e� jf , quasiper-

iodics, one with increasing amplitude in time and the other with

decreasing amplitude (Figs. 4.25, 4.26). It is the case of self-excited

vibrations.

Case 4: D � 0, u1, u2 < 0. The motion is unstable.

In conclusion, the self-vibration of the tool±workpiece system appears when

k1 � k2

r
� cos b

� �2

ÿ 4
k1k2

r 2
ÿ k1

r
sin a0 sin�bÿ a0� �

k2

r
cos�bÿ a0�

� �
< 0 :

�4:57�

Figure 4.25
Motion with

increasing
amplitude in

time.

Figure 4.26
Motion with

decreasing
amplitude in

time.
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The preceding equation can be rewritten as

r 2 cos2 b� 2��k1 � k2� cos b� 2k1 sin a0 sin�bÿ a0��r
ÿ 4k2 cos a2 cos�bÿ a0�r � �k1 ÿ k2�2 < 0

: �4:58�
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7 Principles of Heat
Transfer

ALEXANDRU MOREGA

Department of Electrical Engineering, ``Politehnica''
University of Bucharest, Bucharest 6-77206, Romania

H
eat transfer is present in almost any industrial and natural process.

It suf®ces to mention the vital domain of energy generation and

conversion, for instance energy generation through ®ssion or

fusion, the combustion processes of fossil combustibles, or the magnetohy-

drodynamic power generation, where numerous heat transfer problems

occur. There are many heat transfer problems related to solar energy

conversion systems for heating and air conditioning purposes and for

electrical energy production. Heat transfer processes also in¯uence the

performance of propulsion systems, such as jet or internal combustion

engines. They are present in many domains, for instance in the design of
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common water heating systems, incinerators, energy conversion through

cryogenic systems, cooling of electronic devices and circuits, electrical

machines and drives, and may imply all known heat transfer mechan-

isms Ð conduction, convection and radiation Ð which are then present

through out the entire technological chain and design stages. In many

circumstances the solutions to thermal optimization problems regarding the

maximization of heat transfer rates are crucial to maintaining the thermal

stability of materials and devices that may have to work under extreme

thermal conditions.

At a broader scale, heat transfer processes are important factors in air and

water pollution and strongly in¯uence local and global climate.

Another class of collateral yet major problems is the thermal pollution

associated with thermal residual exhaustion Ð such as cooling towers in

thermal centrals.

Classical thermodynamics is concerned with the initial and ®nal equili-

brium states of the physical systems in between which these evolve, without

a particular focus on the actual dynamics of the processes through which

they take place. Heat transfer is a science related to thermodynamics, but

distinctly constructed to study the speci®c modes of heat transfer. The basic

concepts with which it operates are heat transfer, temperature, and heat ¯ux.

The intervening physical quantities are not only thermodynamic quantities,

such as temperature, pressure, and heat, or mechanical quantities, such as

velocity, mass ¯ow, and shear stress, but also speci®c (heat transfer)

quantities, such as heat ¯ux density and heat transfer coef®cients. A very

suggestive, though not rigorous, de®nition was given by PoincareÂ [1, 5]: heat

transfer is driven by the temperature difference, usually called thermal

gradient, that exists between the system and its surroundings.

There are three basic heat transfer mechanisms: conduction, convection,

and radiation. They may occur either individually or combined.

1. Heat Transfer Thermodynamics

The instantaneous state of a thermodynamic system is described through a

set of physical quantities called thermodynamic properties. By de®nition,

properties are those quantities whose numerical values do not depend on the

particular path (evolution) that the system under investigation follows

between the initial and the ®nal thermodynamic equilibrium states. Quan-

tities such as temperature and pressure are properties because their values

depend strictly and solely on the instantaneous conditions under which they

are measured. On the other hand, work, heat, mass transfer interactions and

entropy are not properties, being related to the particular route followed by

the system. It is important to notice that the properties must vary smoothly

across the boundaries and interfaces. This restriction is also needed in order

for the energy balance to make sense.
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The ®rst principle of thermodynamics, also called the energy

conservation law, quanti®es the energy interactions of a thermodynamic

system. The heat that is transferred, Q (joules), and the work interactions, W

(joules), are the two thermodynamic quantities that quantify the changes in

the system energy inventory, E (joules). For an in®nitely small process (i.e.,

between two in®nitely close states of thermodynamic equilibrium) under-

gone by a closed system that interacts with another system Ð that may be

also its surroundings Ð this principle may be written as

dQ ÿ dW � dE ; �1:1�
where dQ is the heat interaction (outside±in) experienced by the system, and

dW is the work interaction done by the system. Here d and d denote

elementary variations of the quantities that depend (are thermodynamic

properties), or respectively do not depend (are not properties), on the

particular path followed by the system, from the initial to the ®nal equilibrium

states. The per-time form of the balance equation (1.1) [3, 5] is obtained by

dividing (1.1) through the corresponding time increment, dt , that is,

q ÿ w � dE

dt
� _E ; �1:2�

where q (watts) is the heat transfer rate and w (watts) is the work rate

(power).

Since the work and the heat interactions are related to the environment,

or neighboring systems, the terms in the left-hand side of (1.2) represent the

total heat transfer and work rates. A generalized, global form of (1.2) isP
i

qi ÿ
P

j
wj �

dE

dt
� _E ; �1:3�

where the sums extend over all possible heat and work ``ports'' (parts of the

system boundary) of interaction.

Generally, the basic system for which balance equations and principles

are formulated is a region of space of ®nite volume, called the control

volume. When this region is reducible to a surface, the system is then called

the control surface. These concepts are useful also in other circumstances,

for instance in formulating solution methods to mathematical models related

to physical problems, the so-called control volume±based methods.

Under the assumption of thermodynamic equilibrium (1.8), the energy

balance (1.1) for a control volume may be formulated either on a ®nite time

interval basis, that is, in terms of energy and heat variation � J� (Fig. 1.1),

Ein � Eg ÿ Eout � DEst ; �1:4�
or on a time rate basis �W � J=S�

_Ein � _Eg ÿ _Eout �
dEst

dt
� _Est : �1:5�

The terms _Ein and _Eout are the energy variation rates due to the heat and

work interactions experienced by the system, here the control volume. These
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quantities represent surface or boundary interactions associated exclusively

with the processes that take place at the system boundary or control surface

level. The most common processes are conduction, convection, and radia-

tion. If besides these interactions there is also mass transfer, then mechanical

energies (potential and kinetic) speci®c to the ¯ow may also contribute the

overall energy balance.
_Eg is the internal heat generation rate from other forms of energy, such

as chemical, electrical, magnetic, or nuclear. This term is a body source and

its magnitude is proportional to the size of the system. The quantity _Est is the

internal energy growth rate due to the energy transfer experienced by the

system through its boundary and to the internal heat generation.

When the system interacts with its surroundings Ð which sometimes

may conveniently be seen as a second system or the complement of the ®rst

system with respect to the entire space Ð exclusively through heat transfer,

the control volume balance equation (1.5) reduces to the control surface

balance

_Ein � _Eout ; �1:6�

an equation that is valid under both steady and unsteady conditions.

Considering the three possible heat transfer mechanisms (Fig. 1.2), it follows

that for the unit boundary surface

q 00cond ÿ q 00conv ÿ q 00rad � 0: �1:7�

The temperature T (kelvins) is a primitive quantity, in the sense that it

is not introduced by utilizing other, previously de®ned thermodynamic

quantities. Temperature does not depend on the particular path between

the initial and ®nal states; hence, it is a thermodynamic property. With

respect to it, one de®nes the condition of thermodynamic equilibrium for

two closed systems, A and B, as

TA � TB ; �1:8�

that is, the systems must have the same temperature. Consequently, there

exists no heat transfer between systems that are in thermodynamic equili-

brium with each other.

Figure 1.1
The energy

balance for a
control volume.
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A method for measuring the temperature of a system consists of

thermally contacting it with a thermometer Ð a standard system that,

among other restrictions, is not to perturb the thermodynamic state of the

system under investigation, while still remaining sensitive to the thermal

interaction (heat transfer) experienced by the system. The conversion

relation from the Kelvin to the Celsius absolute temperature scales is

T ��C� � T �K� ÿ 273:15.

The Second principle of thermodynamics evidences the different

nature of the quantities in (1.3) Ð heat and work are not properties, whereas

energy is a property. For a closed system, that undergoes an elementary

process, this principle may be written as

P
i

qi

Ti

� dS

dt
; �1:9�

where S (joules) is the entropy of the system, a new thermodynamic

property. The ratio qi=Ti�W=K� is the entropy transfer rate at the port

(boundary section) i, whose thermodynamic equilibrium temperature is Ti ,

and where qi is the corresponding heat interaction rate. Here, as in (1.3), the

sum extends over the heat transfer ports of the system.

A qualitative analysis of (1.3) reveals two fundamental aspects:

j The entropy transfer is not related to the work interaction (that is,

work is null entropy interaction)

j Any thermal process, or heat interaction, is accompanied by an

entropy transfer, qi=Ti, of the same sign as the heat that is transferred.

Remarkably, these aspects are not evidenced by the ®rst principle (1.1),

which makes no distinction between the two types of thermodynamic

Figure 1.2
The mechanisms
of heat transfer.
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interactions, heat and work: Apparently, they contribute equally to the

change in the system energy.

The classical de®nition of the work interaction is the force that acts upon

the system, dotted (vector scalar product) with the elementary displacement

of its point of application. In the same framework, the thermal interaction

represents the energy interaction driven by the temperature difference

between the system and its surroundings.

The speci®c heat at constant pressure, cP , and the speci®c heat at

constant volume, cV , are two thermodynamic parameters that may be

utilized to characterize the heat transfer processes.

The speci®c heat at constant pressure may be de®ned and evaluated as

well through a heating process at constant pressure undergone by a sample

of a working substance, which in this case is the thermodynamic system. The

mass of the sample, m, the heat transferred to the system, dQ, the

temperature variation, dT , and the change in the system volume, dV , are

measurable quantities. Their knowledge yields

cP �def dQ

mdT

� �
P

: �1:10�

The elementary heat interaction is here dQ � dU � dW , where U � E is the

internal energy of the system, and the work interaction is dW � PdV , where

P is the pressure (a property) that is kept constant throughout this particular,

isobaric process. Subsequently, dQ � d �U � PV � � dH , where dH is its

elementary variation of a new quantity, called enthalpy, H (joules), and

de®ned through H � U � PV . The de®nition (1.10) may then be put under

the alternative and sometimes more convenient form

cP �def dh

dT

� �
P

; �1:11�

where h � H =m� J=kg� is the speci®c enthalpy.

The speci®c heat at constant volume, cV , may be introduced through a

heating process at constant volume. Measuring the heat input, dQ, and the

associated temperature increase, dT , yields

cV �def dQ

mdT

� �
V

: �1:12�

The ®rst principle applied to this particular process Ð for which the work

interaction, dW , is zero Ð leads to the alternative de®nition for the speci®c

heat at constant volume

cV �def du

dT

� �
V

; �1:13�

where u � U =m� J=kg� is the speci®c internal energy of the system.

In the special case of a pure substance, cP and cV are functions of both

temperature and pressure. However, there are two particular situations when

these quantities are functions of temperature only:
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The ideal gas limit of a substance, where cP and cV are related by

Mayer's Law,

cP T� � � cV T� � � R : �1:14�
R � 8:315�kJ=kmol K� is the universal constant of the ideal gas of the

substance under consideration and denoted by a single quantity, c.

The incompressible substances (solid and liquid), for which the two

speci®c heats are equal,

cP T� � � cV T� � � c T� �: �1:15�
This latter case is of interest in conduction and convection heat transfer

in electrical and electronic equipment and devices.

1.1 Physical Mechanisms of Heat Transfer: Conduction,
Convection, and Radiation

The heat transfer mechanisms are conduction, convection, and radiation.

However, in many applications of practical importance only one or two of

these mechanisms may actually intervene.

Conduction heat transfer occurs in nonmoving substances, solids,

liquids, or gases, that experience internal temperature gradients (Fig. 1.3a). At

a microscopic scale, this process may be explained by the molecular

interactions. This type of heat transfer belongs to the larger class of so-

called diffusion processes.

The conduction heat ¯ux, q 00cond , is de®ned by Fourier's law as

q00cond �
def ÿkHT ; �1:16�

Figure 1.3 (a) Conduction, (b) convection, and (c) radiation heat transfer.
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where k�W=mK� is the thermal conductivity of the substance, and HT is the

temperature gradient (in cartesian coordinates, H � @

@x
� @

@y
� @

@z
k).

When heat is transferred by a ¯owing ¯uid then, in addition to molecular

diffusion, transport mechanisms occur, and the process is called thermal

convection (Fig. 1.3b). Since heat is transferred between the system (for

instance, a solid body) and its surroundings via a ¯uid conveyor (gas or

liquid), the properties of the ¯ow (velocity ®eld, turbulence, etc.) may

signi®cantly in¯uence the transfer rate.

Two important convection ¯ow types are commonly utilized in a

majority of technical applications, such as the cooling of electrical machines

and apparatuses, electronic devices, and circuits: external ¯ow Ð the body is

bathed by the ¯uid with which it thermally interacts Ð and the internal

¯ow Ð within the cavities, channels, ducts, etc., formed by the bodies in

between which the ¯uid circulates.

The external ¯ows where the ¯uid velocity at the point of contact (wall)

is zero are characterized by hydrodynamic and temperature boundary layers.

The hydrodynamic boundary layer is that ¯ow region adjacent to the wall

where the velocity varies from zero (at the wall) to the free stream value, U1
(far away from the wall). The temperature boundary layer is identi®ed as

that ¯ow region adjacent to the wall where the ¯uid temperature varies from

the wall temperature, Tw , to the incident (``fresh'') ¯uid temperature, T1. The

two boundary layers grow (or ``develop'') downstream, in the ¯ow direction,

and their particular structure (laminar, transition, or turbulent) depends on

the ¯ow parameters, wall conditions, etc. The boundary layer concepts and

the related phenomena are crucial to the analysis of heat transfer problems.

The convection heat ¯ux, q 00conv , is quanti®ed by Newton's law,

q 00conv �def
h�Tw ÿ T1�; �1:17�

which states its proportionality to the temperature difference �Tw ÿ T1� that

may exist between the surface (of the wall, plate, etc.) temperature, Tw , and

the free stream temperature, T1. From the thermodynamic equilibrium

condition (1.28) it follows that q 00conv is zero when the ¯uid and the body

are in thermal equilibrium �Tw � T1�.
The term h �W=m2K� is called the convection heat transfer coef®cient,

®lm conductance, or ®lm coef®cient. It accounts for all heat transfer

processes that take place inside the boundary layer and, consequently,

depends on the particular structure of the boundary layer, geometry, ¯ow

type, and wall properties, and on the hydrodynamic and thermal properties

of the ¯uid. By convention, the convection heat ¯ux rate is positive when

heat is transferred from the wall to the ¯uid �Tw > T1�, and negative

conversely.

In internal ¯ow it is the body that guides the ¯ow. In contrast to the

external ¯ow, where the free stream temperature, T1, is usually a known

quantity, in the internal ¯ow the corresponding quantity is the bulk

i j
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temperature, Tb , which is de®ned with respect to a ¯ow cross section.

Consequently,

q 00conv � h�Tw ÿ Tb�: �1:18�
The contributions of the two mechanisms Ð diffusion and transport Ð to the

convection heat transfer are different in the two cases, that is, the viscous

internal and external ¯ows, and they are related to the thicknesses of the

hydrodynamic and temperature boundary layers. Since in viscous ¯ows the

velocity at the wall (the solid±¯uid interface) is zero, the only heat transfer

mechanism is the molecular diffusion. Macroscopically, this process trans-

lates into the conduction heat ¯ux density (2.6),

q 00cond � ÿk
@Tw

@y

� �
y�0�

; �1:19�

where k is the thermal conductivity of the ¯uid and T � Tw is the ¯uid

temperature at y � 0� (on the ¯uid side of the wall). From (1.17), (1.18), and

(1.19) it follows that, at the wall,

h � ÿ k

Tw ÿ T1

@T

@y

� �
y�0�
�external flow�; �1:20�

h � ÿ k

Tw ÿ Tb

@T

@y

� �
y�0�
�internal flow�: �1:21�

Apparently, the objective of the thermal analysis concerning the convec-

tion heat interaction is ®nding the heat transfer coef®cient, h. Figure 1.4

shows the role played by the ¯ow and the ¯uid in the convection heat

transfer, in terms of h [2, 4]. However, it should be mentioned that there are

Figure 1.4
Convection heat

transfer regimes.
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convection heat transfer processes to which the latent heat associated with

phase changes (liquid±gas, solid±liquid), also contributes. Two important

situations Ð not discussed in this text Ð are then frequently encountered:

boiling and condensation [2, 4].

The knowledge of h [Eqs. (1.20); (1.21)] necessitates the evaluation of

the temperature ®eld inside the ¯uid region, at the wall, and this quantity

depends on the ¯ow structure. Consequently, the ¯ow solution Ð usually a

nontrivial task Ð is a necessary stage in any consistent heat transfer problem

solution, and to carry it out the heat transfer physical model has to be

completed with the equations speci®c to the ¯ow, namely the momentum

and continuity equations.

Radiation heat transfer is conveyed by electromagnetic waves. Ther-

mal radiation is emitted by any substance that has a ®nite temperature, and it

is essentially a process related to the surfaces of the bodies (Fig. 1.3c). This

process is of undulatory electromagnetism, photonic by nature, and it may be

explained through the changes in the atomic and molecular electron con®g-

urations, which, in turn, are accompanied by a net energy transfer. Whereas

conduction and convection necessitate the existence of a ``working,'' inter-

mediate substance, thermal radiation may exist even in the absence of the

substance, that is, in vacuum.

The Stefan±Boltzmann law gives the maximum heat ¯ux at which the

thermal radiation may be emitted by the surface of a body, called an ideal

radiator or blackbody :

q 00SB � sT 4
S : �1:22�

TS is the absolute temperature of the body surface and s is Stefan±Boltzmann

constant, a universal constant �s � 5:67� 10ÿ8 W=m2K�. The radiative heat

¯ux emitted by a real surface, called a gray surface, is only a fraction of that

emitted by the blackbody (an idealized concept):

q 00SB;b � esT 4
S ; �1:23�

where the nondimensional parameter e is called the emissivity �0 � e � 1�.
Similarly, a surface may absorb only a fraction of an incident heat ¯ux, q 00inc :

q 00abs � aq 00inc : �1:24�

Here, a is the absorption coef®cient �0 � a � 1�, and q 00inc is the incident heat

¯ux.

A frequently encountered case of practical signi®cance is that of a body

situated in an enclosure (cavity) that interacts thermally with its con®ning

walls. The net heat transfer rate between the surface of this body, assumed to

be a gray surface of area A and temperature TS , and the inner surface of the

cavity, of temperature Tcav , may be evaluated by

q 00rad �
qrad

A
� se�T 4

S ÿ T 4
cav �: �1:25�
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In many technical applications, a simpler, linearized form of (1.25) that is

analogous to the convection heat ¯ux de®nition (1.17).

qrad � hr A�TS ÿ Tcav � �1:26�

hr � se�TS � Tcav ��T 2
S � T 2

cav � ' constant; �1:27�
is considered satisfactorily accurate.

If the space between the body and the cavity is ®lled by a ¯uid (i.e. not

vacuum), thermal radiation may be accompanied by conduction and convec-

tion heat transfer. For an in-depth, detailed presentation of radiation heat

transfer the reader is referred to, for instance, ref. 2.

1.2 Technical Problems of Heat Transfer

Heat transfer is concerned with the heat transfer interaction of the system

under investigation (A), at temperature TA, with its surrounding space (B), at

temperature TB , when TA 6� TB , that is, outside the thermal equilibrium. The

intensity of this interaction is characterized by the heat transfer rate,

q� J=s � W�. This quantity is usually a dynamic, time dependent variable,

and it depends on many factors: the initial and ®nal states, the thermo-

dynamic properties, and the geometry of both system (A) and its environ-

ment (B) (motion, ¯ow, etc.). The thermodynamic equilibrium condition

(1.8), on one hand, and the temperature de®nition, on the other hand,

suggest that at a thermodynamic equilibrium state,

q � 0 for TA � TB : �1:28�
Depending on the particular application, the main goal of the thermal

design may be either the inhibition of the heat transfer (the thermal

insulation problem), its increase (the cooling problem), or temperature

control within prescribed, safe limits. Consequently, the following technical

problems may be formulated:

The thermal insulation problem: Here the temperatures of the system

(A), TA, and of its environment (B), TB, are known, speci®ed

quantities. The key quantity of the thermal design, or optimization,

is the ``heat lost,'' and the central problem consists of leading the

thermal (insulation) design so as to reduce the heat dissipation rate.

The cooling problem: In this class of applications the heat transfer rate is

prescribed. The thermal analysis is then aimed at reducing the

associated temperature drop. A subsequent objective is the reduction

in the entropy ``production,'' and therefore in the ``lost'' work. The

usual means of reaching this objective are, for instance, thermal

contact improvement (reduction), and this may be achieved by

selecting the type of ¯ow for the cooling agent, the geometry, and

the thermal properties of the contact surfaces Ð to mention only a

few.
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Temperature control: For a large class of problems, the thermal design

objective is to maintain the system within some speci®c, prescribed

thermal operating conditions. For instance, in order to function well,

electronic devices and equipment, electrical cables, and electrical

machines and apparatus must comply with speci®ed minimum and

maximum safe temperature limits. In this situation, the heat transfer

rate is generally variable; hence, the system temperature is also

variable.

2. Conduction Heat Transfer

To a larger or lesser extent, conduction heat transfer is present in any thermal

process and in all substances: solids, liquids, and gases. At the microscopic

scale, heat conduction occurs through the atomic or molecular activity of the

substance, and it may be seen as a form of energy interaction, from higher

energy particles to lower energy particles, via particle interactions.

An intuitive model for heat conduction is that of a gas at rest, where no

macroscopic motion is perceived, that supposedly undergoes the action of

an externally imposed temperature difference (Fig. 2.1). This temperature

gradient may be produced, for instance, by two horizontal surfaces that

con®ne the gas and that are at different, known temperatures �TH ; TC �. At

any location inside the gas, the temperature is a measure of the internal

energy of the gas that is due, at a microscopic scale, to the random, or

Brownian, translations and vibrations of the gas molecules. In this inter-

pretation, the higher temperatures are associated with higher molecular

energies, whereas the lower temperatures correspond to lower molecular

energies. The systematic ``collisions'' between neighboring molecules are

accompanied by a net energy transfer at the molecular level, from the more

Figure 2.1
Heat conduction
through atomic

or molecular
activity.
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``energetic'' to the less energetic molecules. The heat transfer goes always

from hot to cold, that is from the surface (zone) of high temperature to the

surface (zone) of low temperature.

In the case under investigation (the upper plate is hot, TH , and the lower

plate is cold, TC , TH > TC ) the molecular collisions occur in the Oy direction,

in the hot!cold direction. This phenomenon is associated with a net energy

transfer in the Oy direction, and respectively to a heat ¯ux by molecular

diffusion.

Although in the case of liquids the molecules are much more densely

packed, that is, the molecular interactions are much stronger, heat conduc-

tion is still produced by a similar mechanism. In the modern microscopic

theory of heat transfer, the thermally driven lattice waves are responsible for

this type of energy interactions [4]. If in a thermally nonconducting medium

heat transfer is conveyed by these waves, in a thermally conducting medium

the free-electron translational motion also contributes to the process.

2.1 The Heat Diffusion Equation

The quantitative characterization of heat transfer, in general, and that of the

conduction heat transfer, in particular, relies on the evaluation of the heat

transfer rate. When applied to a 1D control volume of size Dx (Fig. 2.2), the

®rst principle yields

qx ÿ qx�Dx ÿ w � @e
@t
: �2:1�

Here the heat transfer rate qx is taken with respect to the positive direction of

Ox , that is, from hot to cold. In this case, the single contribution to the energy

inventory, e, is the internal energy, u:

e � �rADx �u: �2:2�

Figure 2.2
The control

volume balance
for the

conduction heat
transfer.
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r�kg=m3� is the mass density of the bar, and A�m2� is the cross-sectional area.

In the case of incompressible substances, the internal energy variation is

du � cdT ; �2:3�
such that the right-hand side of (29) may be written as

@e

@t
� �rcADx � @T

@t
: �2:4�

The work interaction, w�W=m3�, which is a term in the energy balance

(2.1), also accounts Ð in a broader sense Ð for interactions other than those

of a mechanical nature. For instance, it also comprises the Joule heating

related to an electrical current that may ¯ow through the bar,

ÿw � �ADx � _q : �2:5�
Here _q �W=m3� is the Joule heat generation rate (2.23), and the minus sign

accounts for the sense of this work interaction Ð toward the system.

From the balance equation (2.1) it results that the heat transfer rate, qx , is

proportional to the temperature drop along the control volume, Dx , that is,

qx � C �Tx ÿ Tx�Dx �. Empirically, it may be shown that the constant C is

equal to the ratio A=Dx , which suggests the de®nition

qx �def
kA
@T

@x
; �2:6�

also called the Fourier law. It follows that

q 00x � ÿk
T2 ÿ T1

L
� k

DT

L
; �2:7�

where q 00x �W=m2� is the heat ¯ux (density) rate per unit area, in the heat ¯ow

direction Ox .

Equation (2.7) shows that the heat ¯ux is proportional to the temperature

gradient in the Ox direction. The term k �W=m�K� is the thermal conductivity

of the control volume (the bar), a property of the substance. The minus sign

accounts for the heat transfer ¯ow: from hot to cold �T1> T2�.
In the particular case of a plate of ®nite thickness, L, with k � const and

under steady-state conditions, the temperature gradient is

dT

dx
� T2 ÿ T1

L
: �2:8�

This relation also suggests a convenient method of evaluating the heat ¯ux

(density) rate. If heat is transferred through a surface of size A, the total heat

¯ux is then qx � q 00x A.

An explicit, simpler expression for the conduction heat ¯ux that leaves

the control volume Dx may be obtained by the Taylor linearization pro-

cedure, namely

qx�Dx � qx �
@qx

@x
DX � ÿA k

@T

@x
� @

@x
k
@T

@x

� �
Dx

� �
: �2:9�
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In the limits of this ®rst order approximation, the balance equation (2.1) for a

1D control volume becomes

@

@x
k
@T

@x

� �
� _q � rc

@T

@t
; �2:10�

which is the (1D) heat conduction law or diffusion law.

It is instructive to recognize the terms that appear in (2.10): the heat

conduction term,
@

@x
k
@T

@x

� �
, the internal heat generation term, _q , and the

internal heat accumulation or delay term, rc
@T

@t
. The group rc is called the

speci®c heat capacity of the substance.

The speci®c heat ¯ux (or ¯ux density) is a vector quantity. For linear,

isotropic, and homogeneous media, its expression is

q00 � q 00x � q 00y � q 00z k � ÿk
@T

@x
� @T
@y
� @T
@z

k

� �
� ÿkHT � ÿk grad T :

�2:11�

The Heat Conduction Equation in the Principal Systems of Coordinates

Vector form (any coordinate system):

rc
@T

@t
� div� ��k gradT � � _q

Cartesian �x; y; z�:

rc
@T

@t
� @

@x
�kx

@T

@x
� � @

@y
ky

@T

@y

� �
� @

@z
kz

@T

@z

� �
� _q

Cylindrical �r;j; z�:

rc
@T

@t
� 1

r

@

@r
�kr r

@T

@r
� 1

r 2

@

@y
ky
@T

@y

� �
� @

@z
�kz

@T

@z
� � _q

Spherical �r;j; y�:

rc
@T

@t
� 1

r 2

@T

@r
kr r 2 @T

@r

� �
� 1

r 2 sinj
@

@j
kj
@T

@j

� �
� 1

r 2 sin2 j
@

@y
ky
@T

@y

� �
� _q

Unless otherwise speci®ed, in the following sections of this chapter on

conduction heat transfer the system under investigation is assumed to be a

solid body.

2.2 Thermal Conductivity

Several theories try to produce explicit de®nitions for k in terms of the

different types of thermal properties (linearity, isotropy, homogeneity). For

i j i j

2. Conduction Heat Transfer 459

H
ea

t
Tr

an
sf

er



instance, the thermal conductivity of monatomic gases, k, is a function of

temperature only [5]:

k � k0

T

T0

� �n

: �2:12�

Here, n � 1
2 (theoretically) and k0 is the thermal conductivity measured at T0

(n � 0:7 for helium). For solid substances, the thermal conductivity is

explained by the free electron motion (the so-called electronic gas), ke and

by the lattice vibrations kl ; hence,

k � ke � kl : �2:13�
However, in many practical situations a satisfactory approximation is

k � ke : �2:14�
The electron±phonon interactions, kph, and the electron impurities, as

well as the lattice imperfections (cracks, discontinuity, etc.) ki , contribute to

the free electrons mobility reduction and may be accounted for by

1

ke

� 1

kph

� 1

ki

; �2:15�

and through the empirical relations

1

kph

� af T 2;
1

ki

� ai

T
; �2:16�

where af and ai are two constants, speci®c to a particular substance.

Summing up, (41), (43), and (44) lead to the following de®nitions for the

thermal conductivity (a function of temperature):

k�T � � 1

af T 2 � ai

T

: �2:17�

k�T � has a maximum. Analytically,

kmax �
3

22=3
a

1=3
f a

2=3
i ; for T � ai

2af

 !1=3

: �2:18�

A very good approximation of k for the nonpure metals is given by the

Wiedemann-Franz law [2],

k
re

T
� L 0; �2:19�

where re �S=m� is the electrical resistivity of the metal and L 0 �
2:4510ÿ8 V2=K

2 is Lorentz's constant.

In many applications of technical interest, within the range of working

temperatures, thermal conductivity may be considered constant. Figure 2.3

[4] gives an order of magnitude image of the thermal conductivities for

different substances, under normal pressure and temperature working

conditions.
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Assuming that the thermal conductivity is constant, (2.10) becomes

@2T

@x 2
� _q

k
� 1

a
@T

@t
; �2:20�

where the group a � k=rc�m2=s�, typical of any diffusion problem, is the

thermal diffusivity. For monatomic gases at low pressure, the mass density r
is proportional to the ratio P=T , cP is constant, and (2.20) becomes

a � a0

T

T0

� �n�1
P

P0

� �ÿ1

: �2:21�

Hence, a is function of temperature and pressure.

Although Fourier's law (2.6) and the heat conduction law [(2.10) and

(2.11)] were introduced for solid substances, they are equally valid for liquids

and gases, with the observation that here c is the speci®c heat at constant

pressure, that is, cP 6� cV .

2.3 Initial, Boundary, and Interface Conditions

Mathematically, the macroscopic diffusion equation of heat transfer is a

partial differential equation, in space and time. Consequently, the heat

transfer problem is a well-posed problem in the Hadamard sense Ð that is,

there exists a solution, which is unique and depends continuously on the

boundary conditions Ð if consistent initial conditions (ICs) and boundary

conditions (BCs) for the temperature are prescribed and if the heat sources

de®nitions are speci®ed.

The ICs Ð here, the temperature Ð need to be prescribed for the

boundary and in the entire physical region that makes the system, and

they pinpoint the initial thermodynamic state of the system.

The BCs Ð either the temperature (Dirichlet condition) or its gradient

(Neumann condition), or a linear combination of these two quantities (Robin

condition) Ð must be given for the entire boundary, at any moment (Fig.

2.4). The BCs account for the interactions of the system with its surroundings.

Figure 2.3
The thermal

conductivity for
different

substances,
under normal
pressure and
temperature

working
conditions.
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The Dirichlet condition is related to boundaries (surfaces) with prescribed

temperature; the Neumann condition is related to prescribed heat ¯ux

boundaries, and the Robin condition is posed for convection and linearized

radiation heat transfer boundaries. For systems with an open boundary, these

conditions are replaced by regularity or asymptotic BCs posed on the open

boundary.

If the physical region of the problem is piecewise homogeneous, that is,

with piecewise constant thermal conductivity, then the interfaces between

the different constituent regions are surfaces of discontinuity for the

temperature gradient (Fig. 2.5). Mathematically, on these interfaces one

speci®es continuity conditions for the temperature and for the heat ¯ux.

The latter implies a ®nite ``jump'' in the temperature gradient. Should an

interface also bear a super®cial heat source (or sink), then the heat ¯ux also

has a jump, equal to the value of the source (sink). One such example is the

melting=solidi®cation interface in a phase change problem, where the latent

heat of melting=solidi®cation acts as heat source=sink.

It should be noted that this discussion on ICs, BCs, and interface

conditions is consistent with the concepts of thermodynamic property

(whereas temperature is a property, the temperature gradient is not a

Figure 2.4 The heat transfer boundary conditions.

Figure 2.5
Heat transfer
through the

interface that
separates two

solids with
different thermal

conductivities.
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property), that of initial state (ICs), and the uniqueness of the solution to the

partial differential equation of the heat conduction problem (the temperature

®eld).

2.4 Thermal Resistance

An important concept introduced through (2.8), by analogy with the elec-

trical conduction process, is that of thermal resistance. Similarly to the

electrical resistance, which is associated with the electrical current ¯ow,

the thermal resistance is associated with heat ¯ow. Basically, the thermal

resistance Rth�K=W� is de®ned by the ratio of temperature drop to heat ¯ux.

Depending on the particular heat transfer mechanism (conduction, convec-

tion, radiation), the thermal resistance may be

Conduction Rth;cond �
Th ÿ Tc

qcond

L

kA

Convection Rth;conv �
TS ÿ T1

qconv

1

hconvA

Radiation Rth;rad �
TS ÿ Tsurf

qrad

1

hrad A
:

Here A is the heat transfer cross-sectional area, normal to the heat ¯ux

direction (Ox), L is the length of the heat ¯ux tube, k is the thermal

conductivity of the sample, Th is the high temperature, Tc is the low

temperature, TS is the wall temperature of the sample, T1 is the ambient

temperature, Tsurf is the temperature of the radiative surface, hconv is the

convection heat transfer coef®cient, and hrad is the radiation heat transfer

coef®cient.

Another important derived concept is the contact thermal resistance.

This type of thermal resistance is common to all technical applications Ð

electrical machines and apparatuses, electronics and power electronics,

etc. Ð wherever contact interfaces or composite media exist. The heat

transfer is then accompanied by a supplementary temperature drop at

these interface levels, and this phenomenon is accounted for by the speci®c

contact thermal resistance, R 00contact (Fig. 2.6).

The real, imperfect mechanical contact between parts A and B of a

composite structure makes the heat ¯ux, q 00y , ¯ow through conduction

between the contacting solid parts, q 00cond , and by combined convection

and=or radiation through the microcavities, q 00cavity . The effective area of

contact is usually small, which is particularly true for rugous surfaces. The

major contribution to the heat transfer process is then left for the microcav-

ities. The apparently abrupt temperature variation at the interface level is not

a discontinuity (remember, temperature is a property) but a steep variation,

of the order of degrees per micron.

Usually, the unwanted thermal contact resistance that exists in the case

of solid bodies whose thermal conductivities exceed those of the ¯uid that
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®lls in the contact microcavities (e.g., air) may be reduced by enhancing the

effective contact area. Technically, this can be done by increasing the contact

pressure, by smoothing out the rugosities, or by using a contact ®ller Ð a

¯uid or a soft material of a higher thermal conductivity than both A and B.

However, in any situation, no solution can suppress the unwanted effect of

the microcavities.

2.5 Steady Conduction Heat Transfer

2.5.1 STEADY CONDUCTION WITHOUT INTERNAL HEAT SOURCES
In this class of problems the heat ¯ux is produced by an externally imposed

temperature gradient Ð for example, the faces of a plate of ®nite thickness

are connected to heat reservoirs that have different temperatures. Table 2.1

summarizes a few basic 1D con®gurations. Other common con®gurations are

as follows:

The homogeneous pane wall (Fig. 2.7):

Equation
d

dx
k

dT

dx

� �
� 0

BCs T �0� � T1T �L� � T2

T �x � � �T2 ÿ T1�
x

L
� T1

qx �
kA

L
�T1 ÿ T2�

Solution qx �
kA

L
�T1 ÿ T2�

q 00x � kL�T1 ÿ T2�
Rth �

1

h1A
� L

kA
� 1

h2A

Figure 2.6 The speci®c contact thermal resistance.
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Table 2.1

Type of wall ! Plane Cylindrical Spherical

Energy equation
d 2T

dx 2
� 0

1

r

d

dr
r

dT

dt

� �
� 0

1

r2

d

dt
r 2 dT

dr

� �
� 0

Temperature ®eld T1 ÿ DT
x

L
T2 ÿ DT

ln
r

r2

� �
ln

r1

r2

� � T1 ÿ DT
1ÿ r1

r

1ÿ r1

r2

Heat ¯ux k
DT

L

kDT

r ln
r2

r1

� � kDT

r 2
1

r1

ÿ 1

r2

� �
Heat transfer rate kA

DT

L
2pL

kDT

r ln
r2

r1

� � 4p
kDT

1

r1

ÿ 1

r2

Thermal resistance
L

kA

ln
r2

r1

� �
2pLk

1

r1

ÿ 1

r2

4pk

Critical insulation Ð
k

h
2

k

h

Figure 2.7
Steady heat
conduction

without internal
heat sources

within the
homogeneous

plane wall.
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The composite plane wall (Fig. 2.8):

Equation
d

dx
k

dT

dx

� �
� 0

BCs T �0� � T1;1; T �L� � T1;2

Interface k1

dT

dx

����
x�Laÿ

� k2

dT

dx

����
x�La�

; k2

dT

dx

����
x�Lbÿ

� k3

dT

dx

����
x�Lb�

Solution qx �
T1;2 ÿ T1;1

Rth

Rth �
1

h1A
� La

h1A
� Lb ÿ La

k2A
� Lc ÿ Lb

k3A
� 1

h2A

2.5.2 STEADY CONDUCTION WITH INTERNAL HEAT SOURCE
In many circumstances, heat transfer is related to heat generation or

absorption, through conversion from=to other forms of energy (e.g., chemi-

cal, nuclear, or electrical). Examples of heat generation are electrical heating,

associated with the presence of electrical current; thermal effects produced

by electrical and magnetic hysteresis in ferroelectric and ferromagnetic

substances; exothermal chemical reactions; and nuclear ®ssion. Examples

of heat absorption processes are thermoelectric effects (Peltier, Thomson,

Zeebeck [5]) and endothermal chemical reactions. From the heat transfer

point of view, these internal Ð exo- and endothermal Ð processes are

treated as heat sources and heat sinks.

A frequently encountered thermal effect in electrical engineering is Joule

heat generation. The work rate (power) needed for an electrical current i (A)

to pass through an electrical conductor with the electrical resistance Re�O� is

_Eg � I 2Re ; �2:22�

Figure 2.8
Steady heat
conduction

without internal
heat sources

within the
composite plane

wall.
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and it dissipates as heat. Should the heat production be uniform throughout

the entire conductor volume, V , then its generation rate is

_q �
_Eg

V
� I 2Re

V

W

m3

� �
: �2:23�

It is important to note that the thermal resistance was introduced in the

context of linear, homogeneous, and isotropic media without heat sources

and, as such, its utilization in the analysis of heat transfer problems in media

with heat sources may be improper.

The Plane Wall with Internal Heat Source
A simple model for the heat conduction in a region with heat sources is that

of the plane wall of ®nite thickness 2L, which is in contact with two thermal

reservoirs that keep its faces at constant temperatures T1 and T2 (Fig. 2.9c). If

the plate is made of a homogeneous, linear, and isotropic substance with the

thermal conductivity k, and if there is a body heat source with the heat

generation rate _q , then the mathematical model and the solution to it are

Equation
d2T

dx 2
� _q

k
� 0

BCs T �ÿL� � T1; T �L� � T2

Solution T �x � � _qL2

2k
1ÿ x 2

L2

� �
T2 ÿ T1

2

x

L
� T2 � T1

2
:

Figure 2.9
Heat conduction
within the plane

wall of ®nite
thickness in a

region with
internal heat

sources.
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Should T1 � T2, then (by symmetry) it results that the vertical midplane is

an adiabatic surface, that is, dT =dx jx�0 � 0. Hence the problem may be

reduced (Figs. 2.9a, 2.9b), and the solution is T �x � � _qL2=2k � TS .

2.6 Heat Transfer from Extended Surfaces (Fins)

By heat transfer from extended surfaces is usually understood the global heat

transfer process Ð by conduction, inside a solid, ®nned body (inclusively the

®ns), and by convection and=or radiation from this one to its ambient (e.g.,

air). The most common applications are those where such extended surfaces

are used to enhance the heat transfer rate from a solid body to its surround-

ing environment. In this context, such an extended, ®nned surface is called

radiator.

For the particular cases in Fig. 2.10a there are two options for enhancing

the heat transferred from the solid body to its surroundings: either by

improving (increasing) the heat transfer coef®cient h, or by increasing the

total heat transfer area, that is, by extending it through ®nning. In many

situations the ®rst option is not affordable since it would imply a (larger)

pump or even another, thermally more effective ¯uid (e.g., water, or

dielectric ¯uids instead of air). Figure 2.10b shows a possible solution to

the second, usually preferred option.

A key feature that a ®nned structure must possess is a higher thermal

conductivity than that of the substrate, or it may diminish the heat transferred

rather than increasing it. Ideally, the ®nned structure should be made of such

a material as to allow for (almost) isothermal operation, thus maximizing the

heat transfer rate.

Finned surfaces are extensively used in electrical machine design,

electronic and electric devices and circuits, internal combustion engines,

Figure 2.10
Heat transfer

from extended
surfaces.
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refrigeration systems, and domestic heaters, to name only some applications.

The particular design of the ®ns may be very different (plates, pins, tubes,

etc.), depending on the particular technical application, mounting conditions,

weight restrictions, fabrication technology, and cost. The radiators may be

utilized either to extend the surfaces of the solid bodies through which the

heat transfer takes place, or as intermediate heat transfer elements between

different working ¯uids (heat exchangers). They may be made of ®ns with

variable cross sections but, in any situation, they ful®ll the same function:

they convey the largest part of the heat that is transferred from the ®nned

body to its surrounding ¯uid environment.

2.6.1 THE GENERAL EQUATION OF HEAT CONDUCTION IN FINS
The heat conduction equation is obtained by writing the heat transfer rate

balance for a control volume. For simplicity, we shall consider that the 1D ®n

with variable cross section shown in Fig. 2.11 is made of a linear, isotropic,

and homogeneous substance and that there is no internal heat generation.

The heat balance for the dx slice is then

qx � qx�dx � dqconv : �2:24�

Fourier's law (2.6) may be used to compute the longitudinal heat ¯ux

that enters the control volume:

qx � ÿkAc�x �
dT

dx
: �2:25�

[Ac�x � is the ®n cross-sectional area.] Taylor's linearization scheme gives a

simpler expression for the heat ¯ux that leaves the control volume, namely,

qx�dx � qx �
dqx

dx
dx ; �2:26�

Figure 2.11
The heat transfer
rate balance for

a 1-D control
volume within a

®n of variable
cross section.
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which combined with (53) yields

qx�dx � ÿkAc�x �
dT

dx
ÿ k

d

dx
Ac�x �

dT

dx

� �
dx : �2:27�

Finally, if we substitute the lateral convection heat transferred from the side

wall of the control volume,

dqconv � hdAS �T ÿ T1�; �2:28�
and (2.25) and (2.27) in the balance equation (2.24), we obtain

d2T

dx 2
� 1

Ac

dAc

dx

� �
dT

dx
ÿ 1

Ac

h

k

dAS

dx

� �
�T ÿ T1� � 0: �2:29�

2.6.2 FINS WITH CONSTANT CROSS-SECTIONAL AREA
For these ®ns (Fig. 2.12), Ac�x � � Ac � constant; the outer surface area is

AS �x � � Px � const, where P is the wet perimeter of the ®n cross-section;

and (2.29) reduces then to

d2T

dx 2
ÿ hP

kAc

�T ÿ T1� � 0; �2:30�

or, in nondimensional form,

d2y
dx 2
ÿm2y � 0; m2 � hP

kAc

; y�x � � T �x � ÿ T1: �2:31�

The solution to this standard, second-order Euler ordinary differential

equation is of the form

y�x � � C1emx � C2eÿmx ; �2:32�

where the integration constants C1 and C2 may be determined by imposing

the boundary conditions prescribed for x � 0 and x � L. Table 2.2

Figure 2.12
Heat transfer

from ®ns with
constant cross-

section.
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summarizes some frequently encountered types of ®ns with isothermal

bases Ð that is, T �0� � Tb , or y�0� � yb � T0 ÿ T1.

The ®ns' performance in enhancing the heat transferred from the ®nned

body to its surroundings is evaluated against several quality indicators:

ef®cacy ef , thermal resistance, Rth;f ; ef®ciency Zf , and overall super®cial

ef®ciency Zov . Table 2.3 summarizes the de®nitions of these quantities and

their actual forms for the ®ns listed in Table 2.2. Two common types of

radiators are shown in Fig. 2.13.

Table 2.3

Effectivity Ef �def qf

hAc;byb

� Rth;b

Rth;f

Ef �
kP

hAc

� �1=2

(in®nite ®n)

Thermal resistance Rth;f �def yb

qf

Rth;b �def yb

qb

Ef®ciency Zf �
def qf

qmax

� qf

hAf yb

Zf �
tanh�mL�

mL
(insulated tip)

Zf �
tanh�mLc�

mLc

(active tip)

Overall ef®ciency Zov �
def qt

qmax

� qt

hAtyb

Zov � 1ÿ Af

At

�1ÿ Zf �

Ac;b � Ac �0�, ®n basis area; Af , ®n lateral area; At � ÿAf � Ab , radiator total area (®nned and un®nned
surface).
Lc � L � t=2, corrected length for the active-tip ®n, acceptable for ht=k < 0:0625.
qf , heat ¯ux rate transmitted by the ®n; qt � hAbyb � hAf Zf yb , total heat ¯ux rate transmitted by the ®n; qb ,
heat ¯ux rate transmitted to the ®n (through the area covered by its base).
Rth;b , convection thermal resistance (what would be without the ®n).

Table 2.2a

Tip condition Temperature, y=yb Heat transfer rate, qf

Convection

hy�L� � ÿk
dy
dx

����
x�L

cosh�m�L ÿ x�� � h

mk
sinh�m�L ÿ x ��

cosh�mL� � h

mk
sinh�mL�

M

sinh�mL� � h

mk
cosh�mL�

cosh�mL� � h

mk
sinh�mL�

Adiabatic

dy
dxx�L

� 0
cosh�m�L ÿ x��

cosh�mL� M tanh�mL�

Temperature

y�L� � yL

yL

yb

sinh�mx � � sinh�m�L ÿ x ��
sinh�mL� M �

cosh�mL� ÿ yL

yb

sinh�mL�
Asymptotic

y�L� ���!
L!1 0 eÿmx M

ay � T �x� ÿ T1; yb � y�0� � T �0� ÿ T1; m2 � hP=kAc; M � �������������
hPkAc

p
.
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2.7 Unsteady Conduction Heat Transfer

In many applications heat transfer is a dynamic, time-dependent process. For

instance, the onset of an electric current or the onset of a time-dependent

magnetic ®eld in an electroconductive body, or a change in the external

thermal conditions of the body, are examples where the thermal steady state

(if any) is reached asymptotically, through a transient regime. In these

circumstances, the temperature ®eld inside the body is obtained by solving

the time-dependent energy balance equation.

2.7.1 LUMPED CAPACITANCE MODELS
When the thermal properties of the body under investigation and the thermal

conditions of its surface are such that the temperature inside the body varies

uniformly in time, and the body is Ð at any moment Ð almost isothermal,

then the lumped capacitance method is a very convenient, simpler, yet

satisfactory accurate tool of thermal analysis.

Let us assume that a uniformly heated, isothermal (Ti) iron chunk is

immersed at t � 0 in a cooling ¯uid with T1< Ti (Fig. 2.14). The temperature

inside the body decreases smoothly, monotonously, to eventually reaching

the equilibrium value, T1. Heat is transferred inside the body by conduction,

and by convection from the body to the surrounding ¯uid reservoir. If the

thermal resistance of the body is small as compared to the thermal resistance

of the ¯uid, then the heat transfer process is such that the instantaneous

temperature ®eld inside the body is uniform, which implies that the internal

temperature gradients are negligibly small. The energy balance equation then

takes the particular form

ÿ _Eout � _Est ; �2:33�

Figure 2.13
Radiators.
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which means

ÿhAS �T ÿ T1� � rVc
dT

dt
; �2:34�

or, put in nondimensional form,

rVc

hAS

dy
dt
� ÿy; y � T ÿ T1: �2:35�

Time integration from the initial state �t � 0, y�0� � yi � to the current

state �t ; y�t ��, that is, �rVc=hAS �
� y
yi

dy=y � ÿ � t

ti
dt , where yi � Ti ÿ T1,

yields

rVc

hAS

ln
yi

y
� t ; or

yi

y
� T ÿ T1

Ti ÿ T1
� eÿ�hAS =rVc�t : �2:36�

The group rVc=hAS �s� is the thermal time constant (seconds), and it may be

re-written as

tt �
1

hAS

� �
�rVc� � Rt Ct : �2:37�

From a practical point of view, it is particularly useful to outline the

analogy that exists between the heat ¯ux problem described by (2.36) and

that of the electrical current in the R C circuit shown in Fig. 2.15.

The heat transferred to the ¯uid in the time span �0; t �,

Q �def
�t

0

qdt � hAS

�t

0

ydt ; �2:38�

is a measure of the change in the internal energy undergone by the system

(body) from the initial (at t � 0) to the current state (t � t):

ÿQ � DEst : �2:39�

Figure 2.14
The lumped
capacitance

model for the
cooling of a

uniformly
heated,

isothermal iron
chunk.
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Although this result is reported here for a cooling process, such as the

metallurgical process of annealing, where the internal temperature decreases

(that is, Q > 0�, the relation (2.39) is also true for heating processes, where

Q < 0; that is, the internal energy of the body increases.

The Limits of Applicability for the Lumped Capacitance Model
It is important to recognize that, although very convenient, the lumped

capacitance models have a limited validity and, subsequently, applicability

criteria for them are needed.

The plate of ®nite thickness, L, in Fig. 2.16 is assumed to be initially

isothermal, Ti . The face at x � L is in contact with a ¯uid reservoir at T1
�Ti > T1�, while the face at x � 0 is maintained at Ti . The heat ¯ux balance

for the control surface at x � L is then

kA

L
�T1 ÿ T2� � hA�T2 ÿ T1�; or

T1 ÿ T2

T2 ÿ T1
� L=kA

1=hA
� Rcond

Rconv

� Bi: �2:40�

The nondimensional quantity Bi � hL=k is called the Biot number. This

group plays an important role in the evaluation of the internal conduction

heat transfer processes with surface convection conditions, and it may be

Figure 2.15
The analogy
between the

heat ¯ux
problem of the

lumped
capacitance

model and the
electrical current

in an R C
circuit.

Figure 2.16
The Biot

criterion used to
assess the

validity of the
lumped

capacitance
model.

474 Principles of Heat Transfer

H
eat

Tran
sfer



used to assess the validity of the lumped capacitance method for a particular

case. The concept of characteristic length, Lc , and the Bi-criterion may be

used to decide whether this assumption is valid or not. Essentially, Bi� 1

means that the (internal) conduction thermal resistance of the body is much

smaller the convection thermal resistance from this one to the ¯uid; hence,

the lumped capacitance model may be safely used. In contrast when Bi� 1

the (internal) conduction thermal resistance of the body is larger than the

convection thermal resistance from the body to the ¯uid, and therefore

lumped capacitance models must be used with caution.

Consequently, if Bi � hLc=k < 0:1, then the lumped capacitance model is

consistent. This interpretation is correct, of course, in linear, isotropic, and

homogeneous substances. Figure 2.17 gives a qualitative image of the

temperature ®eld inside a plate of ®nite thickness for different ranges of

the Bi number.

As apparent, the proper evaluation of Lc is crucial to the success of the

lumped capacitance method, and for simple problems it is not too dif®cult to

®nd it. For instance, in the previous problem (Fig. 2.16) Lc � L. For bodies of

more complex geometry Lc may be taken as the size of the body in the

direction of the temperature gradient (heat ¯ux ¯ow). Sometimes Lc is

conveniently approximated by Lc � V =AS ; where V is the volume of the

body and As its external surface area. This simple de®nition yields

hAS

rVc
t � h

rcLc

t � hLc

k

k

rcS

1

L2
c

t � hLc

k

� �
a
L2

c

t

� �
� Bi Fo; �2:41�

where Fo � �a=L2
c �t is the Fourier number Ð a nondimensional time. It

should be noticed that, unlike the Bi number, Fo is not a constant, but

rather a dynamic quantity. If we use this notation, (2.36) becomes

y
yi

� T ÿ T1
Ti ÿ T1

� eÿBi Fo: �2:42�

Figure 2.17
The temperature

®eld inside a
plate of ®nite
thickness for

different ranges
of Biot number.
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2.7.2 GENERAL CAPACITIVE THERMAL ANALYSIS
Although the Bi-criterion may be useful in deciding whether the lumped

capacitance model is satisfactorily accurate, there are many situations when

its validity is questionable Ð for instance, the presence of internal heat

sources, (nonlinear) radiative heat transfer, etc.

Figure 2.18 shows a schematic of a plate whose initial temperature Ti (at

t � 0) is such that Ti 6� T1 and Ti 6� Tsurf . The imposed heat ¯ux, q 00S , and the

convection, q 00conv , and radiation, q 00rad , heat ¯uxes related to the body surface,

AS �h� and AS �conv;rad �, respectively, are assumed to be such that, globally, the

total combined conduction±radiation heat ¯ows from the body to the

enclosure walls. The heat ¯ux balance for the body (the control volume

here) may be written as

q 00S AS �h� � _Eg ÿ �q 00conv � q 00rad �AS �conv;rad � � rVc
dT

dt
; �2:43�

or, by using the heat ¯ux de®nitions (1.17, 1.19, 1.25), as

q 00S AS �h� � _Eg ÿ �h�T ÿ T1� � se�T 4 ÿ T 4
surf ��AS �conv;rad � � rVc

dT

dt
: �2:44�

Although usually this nonlinear ordinary differential equation has no

exact solution, in certain speci®c cases it may be analytically integrable. Two

such circumstances are listed next.

(a) In the absence of internal heat sources _Eg and imposed heat ¯ux q00S ,
if the convection heat ¯ux is negligibly small with respect to the

radiative heat ¯ux, q00conv � q00rad , then (2.44) takes the simpler form

rVc
dT

dt
� esAS �rad ��T 4 ÿ T 4

surf � � 0; �2:45�

Figure 2.18
The heat ¯ux

balance for the
general

capacitive
thermal

analysis.
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which is solved exactly by

�T

Ti

dT

T 4 ÿ T 4
surf

� rVc

esAS �rad �

�t

0

dt ; �2:46�

yielding an explicit de®nition for the time rather than for the

temperature, that is,

t � rVc

4eAS �rad �

� ln
Tsurf � T

Tsurf ÿ t

�����
�����ÿ ln

Tsurf � Ti

Tsurf ÿ Ti

�����
������ 2 tanÿ1 T

Tsurf

 !
ÿ tanÿ1 Ti

Tsurf

 !" #( )
:

�2:47�

(b) If the radiation heat transfer component is negligibly small,

q00rad � �q00conv; q00S�, and the conduction heat transfer coef®cient h is

constant, then (2.44) becomes

dy0

dt
� Ay0 � 0; y0 � yÿ B

A
; A � hAS �conv�

rVc
; B � q 00S AS �h� � _Eg

rVc
;

�2:48�

admitting the analytic solution

y0

y0i
� eÿAt ; or

T ÿ T1
Ti ÿ T1

� eÿAt � B=A

Ti ÿ T1
1ÿ eÿAt
� �

: �2:49�

2.7.3 UNSTEADY HEAT CONDUCTION DRIVEN BY TEMPERATURE
GRADIENTS

Outside the limits of validity for the lumped capacitance approach, the

thermal problem may be solved by integrating (2.44), which may imply

the solution to the domain effects due to temperature gradients. A simple,

introductory model is the 1D heat transfer conduction problem of a plate of

®nite thickness L, made of a linear, isotropic, and homogeneous thermo-

conductive substance k, and without internal heat sources. At t � 0 the face

x � L, assumed to be initially isothermal, Ti , is exposed to a ¯uid reservoir of

temperature T1, while the face x � 0 is thermally insulated, that is, no heat

¯ux is crossing it. The heat transferred from the plate to the ¯uid is conveyed

by conduction, inside the body, and by convection, within the ¯uid. The

latter process is characterized by the constant convection heat transfer

2. Conduction Heat Transfer 477

H
ea

t
Tr

an
sf

er



coef®cient h. The mathematical model and solution for the unsteady, 1D

conduction heat transfer process inside the plate are then

Dimensional form:

�PDE� ! @T

@t
� a

@2T

@x2
; a � k

rc

�ICs� ! T �x ; 0� � Ti

�BCs� !
@T

@x
jx�0 � 0

ÿk
@T

@x
jx�L � h�T �L; t � ÿ T1�:

8>><>>:

�2:50a�

Nondimensional form:

�PDE� ! @~y
@Fo
� @

2 ~y
@ ~x 2

�ICs� ! ~y� ~x ; 0� � 1

�BCs� !

@~y
@ ~x

����
~x�0

� 0

@~y
@ ~x

����
~x�L

� ÿBi ~y�1; Fo�

8>>>><>>>>:

�2:50b�

here ~y � y
yi

� T ÿ T1
Ti ÿ T1

; ~x � x

L
; ~t � at

L2
� Fo

� �
:

Qualitatively, the solution to the dimensional problem (2.50) is a function

of several quantities Ð space, time, ICs, BCs, and material properties Ð

whereas the solution to the nondimensional problem (2.50) depends only

on ~x , Fo, and Bi:

T � T �x ; t ; Ti ; T1; L; k; h; a�; ~y � ~y� ~x ; Fo;Bi�: �2:51�
For a given geometry, the nondimensional temperature has the merit of a

universal function of ~x , Fo, and Bi, rather than a function of all ICs, BCs, and

material properties.

The 1D problem [(2.50a), (2.50b); i.e., L � �H ;W �� may be solved

exactly by the variable separation method [6], yielding

~y � P1
n�1

Cneÿz
2
nFo cos�zn ~x �; Cn �

4 sin zn

2zn � sin�2zn�
; zn tan zn � Bi: �2:52�

For Fo � 2 (that is, at ``large'' times t) this in®nite series may be

satisfactorily well represented by only its ®rst term,

~y � ~y0 cos�z1x *�; ~y0 � C1eÿz
2
1Fo; �2:53�

where ~y0 stands for the midplate temperature. Table 2.4 [2, 7] gives several

numerical values for z1 and C1, for different Bi numbers. An important

consequence that follows is that the temperature history at any location

inside the plate repeats identically the history of temperature in the middle of

the plate.
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In many practical situations it is important to know the total heat

transferred from the plate to the ¯uid, Q, from the initial moment (t � 0)

to the current time (t > 0). The balance equation

Ein ÿ Eout � DEst ; Eout � Q;DEst � E �t � ÿ E �0� �2:54�
then yields

Q � ÿ�E �t � ÿ E �0��; or Q � ÿ
�

V

rc�T �r ; t � ÿ Ti � dv: �2:55�

It is convenient to put this result too in a nondimensional form by using the

same scaling:

~Q � Q

Qref

� ÿ
�

V

T �r ; t � ÿ Ti

Ti ÿ T1

dv

V
�
�

~V

�1ÿ ~y�d ~v: �2:56�

In the limits of the approximation (2.53) ®rst, the right-hand side may be

integrated to yield

~Q � Q

Qref

� 1ÿ sin z1

z1

~y0; �2:57�

where ~y0 may be obtained from (2.53) second, whereas the coef®cients z1

and C1 can be identi®ed in Table 2.4.

The graphical representations of these results [8, 9] the so-called ``Heisler

charts'' Ð were used intensively in the unsteady heat conduction analysis.

First, Fig. 2.19 [8] gives the midplate temperature, T �0; t � at any moment, and

then Fig. 2.20 [8] gives the corresponding temperature (at that time) at any

other location within the plate. If T0 is known for a set of values of Fo and Bi,

then the corresponding temperature distribution inside the plate may be

evaluated at any moment. The procedure may be reversed in order to ®nd

the time needed for the plate face to reach a prescribed temperature.

Table 2.4

Plane wall In®nite cylinder Sphere

Bi z1(rad) C1 z1(rad) C1 z1(rad) C1

0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030

0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060

0.03 0.1732 1.0049 0.2439 1.0075 0.2989 1.0090

0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120

0.05 0.2217 1.0082 0.3142 1.0124 0.3852 1.0149

0.1 0.3111 1.0160 0.4417 1.0246 0.5423 1.0298

0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441

1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732

5.0 1.3138 1.2402 1.9898 1.5029 2.5704 1.7870

10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249

50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962

100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990
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Figure 2.19 Temperature history in the midplane of a plate immersed suddenly in a ¯uid of a different temperature (L � plate half-thickness) Ð after Heisler, used
with permission from A. Bejan, Heat Transfer, John Wiley, 1993, Fig. 4.7, pp. 159 and 160.

HeatTransfer



The absence of Fo from (2.57) indicates that the temperature history at

any point in the plate corresponds to the midplate temperature history. This

feature is a direct consequence of the assumption Fo � 0:2, which is accurate

for ``large'' times as compared to the initial phases of the transient process.

Figure 2.21 [9] charts the heat transferred [Eq. (2.57)]. Here, the non-

dimensional temperature drop is put in terms of Fo and Bi exclusively. The

results obtained for the plate of ®nite thickness may be also utilized for the

thermal analysis of plate with one face (x � 0) thermally insulated (adiabatic)

and with the other face (x � L) in contact with a convecting ¯uid.

Other 1D Geometries

Cylindrical bar of in®nite length
L

r0

> 1

� �
:

~y � P1
n�1

Cneÿz
2
nFoJ0�zn ~r �;Cn �

2

zn

J1�zn�
J 2
0 �zn� � J 2

1 �zn�
; zn

J1�zn�
J0�zn�

� Bi

Figure 2.20 Relationship between the temperature in any plane �x� and the temperature
in the midplane (x � 0, Fig. 2.19) of a plate immersed suddenly in a ¯uid of a different
temperature (L � plate half-thickness) Ð after Heisler, used with permission from A. Bejan,
Heat Transfer, John Wiley, 1993, Fig. 4.8, p. 160.
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( J0 and J1 are Bessel functions of ®rst type and order 0 and 1 ).

Sphere:

~y � P1
n�1

Cneÿz
2
nFo sin�zn ~r �

zn ~r
;Cn �

4�sin�zn� ÿ zn cos�zn��
2zn ÿ sin�2zn�

; 1ÿ zn cot�zn� � Bi:

The following approximations for Fo � 0:2 were indicated by Heisler:

Cylinder:

~y � C1eÿz
2
1FoJ0�z1 ~r � � ~y0 J0�z1 ~r �; ~y0 � C1eÿz

2
1Fo

~Q � Q

Qref

� 1ÿ 2~y0

z1

J1�z1�:

Sphere:

~y � C1eÿz
2
1Fo sin�z1 ~r �

z1 ~r
� ~y0

sin�z1 ~r �
z1 ~r

; ~y0 � C1eÿz
2
1Fo

~Q � Q

Qref

� 1ÿ 3~y0

z3
1

�sin�z1� ÿ z1 cos�z1��:

Table 2.4 lists the values of z1 and C1 for several Bi numbers. Figures 2.22,

2.23 [8], and 2.24 [9] represent the charts for the cylinder, and Figs. 2.25, 2.26

[8], and 2.27 [9], those for the sphere. It may be noticed that for the cylinder

and sphere Bi is based on ro rather than L.

The solutions to these unidirectional problems may be combined to

construct the time-dependent solutions to more complex, 3D problems, and

Figure 2.21
Total heat

transfer between
a plate and the

surrounding ¯uid,
as a func-tion of
the total time of

exposure, t.
(After H. GroÈber,

S. Erk, and U.
Grigull,

Fundamentals of
Heat Transfer,

McGraw-Hill, New
York, 1961), used

with permission
from A. Bejan,
Heat Transfer,

John Wiley, 1993,
Fig. 4.9, p. 162.
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Figure 2.22 Temperature history at the centerline of a long cylinder immersed suddenly in a ¯uid of a different temperature (r0 � cylinder radius) Ð after Heisler,
used with permission from A. Bejan, Heat Transfer, John Wiley, 1993, Fig. 4.10, pp. 164, 165.
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Figure 2.23
Relationship
between the

temperature at
any radius �r�

and the
temperature at
the centerline
(r � 0, Figure
26) of a long

cylinder
immersed

suddenly in a
¯uid of a
different

temperature
(L � plate half-

thickness) Ð
after Heisler,

used with
permission from
A. Bejan, Heat
Transfer, John

Wiley, 1993, Fig.
4.11, p. 166.

Figure 2.24
Total heat

transfer between
a long cylinder

and the
surrounding
¯uid, as a

function of the
total time of
exposure, t.

(After H. GroÈber,
S. Erk and U.

Grigull,
Fundamentals of

Heat Transfer,
McGraw-Hill, New

York, 1961),
used with

permission from
A. Bejan, Heat
Transfer, John

Wiley, 1993, Fig.
4.12, p. 166.
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Figure 2.25 Temperature history in the center of a sphere immersed suddenly in a ¯uid of a different temperature (r0 � sphere radius) Ð after Heisler, used with
permission from
A. Bejan, Heat Transfer, John Wiley, 1993, Fig. 4.13, p. 167 and p. 168.
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Figure 2.26 Relationship between the temperature at any radius �r� and the temperature in the center (r � 0,
Figure 29) of a sphere immersed suddenly in a ¯uid of a different temperature (L � plate half-thickness) Ð after
Heisler, used with permission from A. Bejan, Heat Transfer, John Wiley, 1993, Fig. 4.14, p. 169.

Figure 2.27 Total heat transfer between a sphere and the surrounding ¯uid, as a function of the total time
of exposure, t. (After H. GroÈber, S. Erk and U. Grigull, Fundamentals of Heat Transfer, McGraw-Hill, New York,
1961), used with permission from A. Bejan, Heat Transfer, John Wiley, 1993, Fig. 4.15, p. 169.
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an introductory analysis may be found in ref. 2. The central idea of the

method is the superposition principle that is applicable to the heat conduc-

tion problems in linear media.

2.7.4 UNSTEADY HEAT CONDUCTION IN SEMI-INFINITE SOLID BODIES
Another important 1D heat transfer problem is that of a semi-in®nite body

with a surface thermal condition Ð temperature, heat ¯ux, or convection

boundary conditions. Although this is a much idealized 1D problem, it may

well model situations of practical interest Ð for instance, heat transfer from

the earth's surface, or the thermal ®eld inside a large body in the vicinity of its

outer surface. The initial condition may be T �x ; 0� � Ti , whereas the

boundary condition is replaced by the prescribed, expected asymptotic

behavior, T �x ; t � !
x!1 Ti . The exact solutions to the problem (2.50a) for the

three types of BCs are as follows:

Speci®ed temperature, T �0; t� � TS

T �x ; t � ÿ TS

Ti ÿ TS

� erf
x

2
�����
at
p

� �
; q 00S �t � � ÿk

@T

@x

����
x�0

� k�������
pat
p �TS ÿ Ti � �2:58�

Speci®ed heat ¯ux, q00S � q000

T �x ; t � ÿ Ti � 2
�����
at
p q 000

k
erf ÿ x

2
�����
at
p

� �2
" #

ÿ q 000 x

k
erfc

x

2
�����
at
p

� �
�2:59�

Convection condition, ÿk
@T

@x

����
x�0

� h�T1 � T �0; t��

T �x ; t � ÿ Ti

T1 ÿ Ti

� erf
x

2
�����
at
p

� �
ÿ erfc

x

2
�����
at
p � h

�����
at
p
k

� �
e

hx
k � h2at

k2 : �2:60�

The function erf Z is the Gauss error function and erfc�Z� is the

complementary error function, erfc �def
1ÿ erf�Z�. The similarity and time-

dependent temperature pro®les are shown in Fig. 2.28.

An interesting application where the semi-in®nite model may be used is

that of two contacting semi-in®nite bodies that have different initial tempera-

tures, T1;i > T2;i . If the contact thermal resistance is negligibly small then, by

thermodynamic arguments, the interface must instantaneously reach the, as

yet unknown, equilibrium temperature TS , such that T1;i > TS > T2;i . And

since TS remains unchanged throughout the entire transient regime, it follows

that the temperature ®elds and the heat ¯uxes inside the bodies are of the

form (2.58). The interface temperature may then be found by invoking the

¯ux continuity condition at the interface,

q 00S ;1 � q 00S ;2; or ÿ k1�TS ÿ T1;i ����������
pa1t
p � k2�TS ÿ T2;i ����������

pa2t
p ; �2:61�
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which yields

TS �
� ��������

krc
p �1T1;i � �

��������
krc

p �2T2;i

� ��������
krc

p �1 � �
��������
krc

p �2
: �2:62�

In the preceding equations k1 and k2 are the thermal conductivities of the two

bodies.

3. Convection Heat Transfer

3.1 External Forced Convection

In ¯uid media (gases and liquids), heat transfer may occur through two

different types of mechanisms. First is the thermal diffusion, which is due to

the thermal, random motion of microscopic particles. In addition, there exists

an amount of heat that is convected by the macroscopic motion of the ¯uid.

This motion, called ¯ow, may be produced either by a source of a different,

nonthermal nature ( forced convection), by a temperature gradient (natural

Figure 2.28
The similarity �a�

and time-
dependent �b�

temperature
pro®les for

unsteady heat
conduction in
semi-in®nite
solid bodies.
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or free convection), or by a combination of these two types of sources

(mixed convection). The global heat transfer is called heat convection, and its

component produced solely by the macroscopic ¯ow process is then called

heat convection.

When driven by an external (to the heat source) forced ¯ow, the

convection heat transfer is called external forced convection.

3.1.1 THE CONVECTION HEAT TRANSFER COEFFICIENT
In the previous sections, the convection heat transfer between a solid body

and the ¯uid within which this is immersed (air, water, etc.) was character-

ized by the local heat transfer coef®cient

h �def q 00

TS ÿ T1
; �3:1�

but no particular discussion was given of the methods that may actually be

used to evaluate it. Because the ¯ow conditions may vary with respect to the

body surface, it follows that h is introduced by (3.1) as a local quantity. The

total heat transfer rate, q , is the integral of the heat transfer rate, q 00, over the

body surface, AS :

q �
�

AS

q 00dAS : �3:2�

Should the body surface be isothermal, TS , an average heat transfer coef®-

cient may be introduced by

�h �def q

AS �TS ÿ T1�
; �3:3�

which is related to h by

�h � 1

AS

�
AS

hdAS : �3:4�

In the particular case of a 2D, isothermal plate of size L in the ¯ow direction,

the average heat transfer coef®cient is de®ned as

�h �def 1

L

�L

0

hdx : �3:5�

The central objective of convection heat transfer design is the evaluation

of the local convection heat ¯ux or of the total convection heat transfer rate.

In turn, these quantities may be computed provided that the heat transfer

coef®cients are known. Therefore, a vast body of experimental and theore-

tical efforts are aimed at evaluating them. This is a dif®cult task since, besides

the numerous parameters that may occur (¯uid density, viscosity, thermal

conductivity, speci®c heat), other factors such as the geometry of the body

surface and the ¯ow particularities also signi®cantly contribute to the

convection process. However, whatever the complexity of these dependen-

cies, the convection heat transfer is related to the concepts of hydrodynamic

and thermal boundary layers.
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3.1.2 THE HYDRODYNAMIC BOUNDARY LAYER
The boundary layer concept was introduced by Prandtl (1904) [12, 13] to

describe the shallow ¯uid domain that adjoins the solid wall bathed by the

¯ow, where the velocity ®eld varies form zero (at the wall) to the free stream

velocity U1, and the ¯uid temperature varies from the wall temperature Tw to

the free stream temperature T1.

Empirically, there is evidence that a viscous ¯uid is adherent to the rigid

body surface that it ``washes'' (Fig. 3.1). The ¯uid layer between the body

surface and the free ¯ow region is called the hydrodynamic boundary layer.

This ¯ow domain has a particular signi®cance in ¯uid mechanics: it is in this

region that the velocity ®eld varies from zero (at the wall) to the free stream

velocity, U1. This ¯ow slowing down is typical of viscous ¯uids, and it is due

to the shear stress, t, which acts parallel to the ¯ow.

The boundary layer thickness d is a function of the local downstream

coordinate x , that is, d � d�x �: Traditionally, the velocity ®eld may be used to

de®ne its size in the y-direction �uju�d99
� 0:99U1�, and the boundary layer

thickness is then called the velocity boundary layer thickness d � d99 [12].

The wall viscous friction is evaluated by the nondimensional wall friction

coef®cient, Cf , through the wall shear stress,

Cf �def tw

rU 21
: �3:6�

In the case of ¯uids with linear, homogeneous, isotropic dynamic viscosity m,

also called Newtonian ¯uids, the wall shear stress is

tw � m
@u

@y y�0:
��� �3:7�

3.1.3 THE THERMAL BOUNDARY LAYER
The presence of a temperature difference between the body and the ¯uid

reservoir is responsible for the convection heat transfer within the ¯uid.

However, since the viscous ¯uids adhere to the solid walls (the no-slip

assumption), heat transfer at the wall±¯uid interface is by pure conduction.

Figure 3.1
The forced
convection

hydrodynamic
and the thermal
boundary layers.
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Consequently, on the ¯uid side,

q 00w � ÿkf

@T

@y

����
y�0

; �3:8�

where kf is the thermal conductivity of the ¯uid. The heat ¯ux balance at the

same interface is

h � ÿ
kf

@T

@y

����
y�0

Tw ÿ T1
: �3:9�

The boundary layer dynamics has a direct in¯uence upon the heat

transferred between the body and the ¯uid. Similarly to the hydrodynamic

boundary layer, and typically for convection heat transfer, in the ¯ow domain

there exists a temperature boundary layer (Fig. 3.1) that separates the wall

(at Tw ) from the thermally ``fresh'' ¯uid that is at the ¯uid reservoir

temperature T1. Its size is measured by the temperature boundary layer

thickness dT , de®ned through [10]

Tw ÿ T �dT �
Tw ÿ T1

� 0:99: �3:10�

Similarly to d, dT � dT �x � and it increases downstream, the ¯uid adjacent

to the hot (cold) wall heats up (cools down) both by thermal diffusion from

(to) the wall and by the enthalpy transported downstream (upstream) by the

¯ow. Usually the two boundary layers have different thicknesses, d 6� dT ,

and their ratio is equal to the ¯uid kinematic viscosity to thermal diffusivity

ratio (the Prandtl number of the ¯uid).

The ¯ow transport processes (of momentum, heat, energy, etc.) that exist

inside the boundary layer are essential to convection heat transfer. Should the

¯ow cease, then the heat convection process reduces to its diffusive,

molecular component, that is, to thermal conduction.

3.1.4 LAMINAR AND TURBULENT BOUNDARY LAYER FLOWS
A ®rst, crucial stage in the analysis of convection heat transfer consists of

recognizing the particular boundary layer ¯ow regime, or respectively the

hydrodynamic boundary layer type: laminar, transition, or turbulent.

Qualitatively, laminar ¯ow is characterized by a coherent, ordered structure.

Its streamlines appear as discernible fascicles, suggesting well-de®ned

particle paths. In particular, the velocity ®eld of the 2D ¯ow represented in

Fig. 3.2 has two components �u; v�; the vertical component v may contribute

signi®cantly to the heat transfer process.

The speci®c trend of a turbulent boundary layer ¯ow with high

irregularity is characterized by large velocity ¯uctuations, which usually

result in high momentum and heat transport and high mixing rates that

substantially amplify the heat transfer. Unlike the envelope of a laminar

boundary layer, which is a smooth surface, the envelope of a turbulent

boundary layer is diffuse and irregular.
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The boundary layer that develops (Fig. 3.2) is initially laminar. Small

perturbations or wall roughness may trigger instabilities that eventually grow

into turbulence that Ð somewhere downstream Ð destroys the regular, lami-

nar ¯ow structure. The region that connects the laminar section of the ¯ow to

the turbulent zone is called the transition zone.

The turbulent section has a complex structure that may be divided into

three distinguishable layers, strati®ed in the y-direction. The ®rst layer, in

contact with the wall, is called the laminar substrate Ð the ¯ow here is

laminar. The second layer, called the buffer, is a transition zone between the

laminar substrate and the outer, turbulent ¯ow. The third layer, which is

actually the turbulent layer, extends into and merges with the free stream,

laminar ¯ow. The velocity ®elds in the transition and turbulent sections have

essentially 3D structures, and the associated transport phenomena are

ampli®ed through a vigorous mixing process. Figure 3.3 Ð after [2] Ð

shows, qualitatively, the x -pro®les of the velocity boundary layer thickness

and of the heat transfer coef®cient.

The main mechanisms of convection heat transfer are associated with

¯ow transport processes; therefore, their governing equations Ð mass

Figure 3.2
The structure of

forced
convection

boundary layer
¯ow: laminar,

transition, and
turbulent
sections.

Figure 3.3
A qualitative

view of the
velocity

boundary layer
thickness and of
the heat transfer
coef®cient in the

forced convec-
tion boundary
layer Ð used

with permission
from A. Bejan,
Heat Transfer,

John Wiley,
1993, Fig. 5.16,

p. 258.
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conservation and momentum balance Ð which are speci®c to hydrody-

namics, are part of the mathematical model. To complete the analysis

framework, the energy balance that describes the energy rate conservation

speci®c to the heat transfer must be added.

3.1.5 MASS CONSERVATION (CONTINUITY)
The mass ¯ow rates that enter and leave a ¯uid control volume are such that,

inside the control volume, mass is neither created nor destroyed. The mass

¯ow rate that leaves the control volume in the x -direction (Fig. 3.4) is, in the

limits of the Taylor linear approximation [12],

�ru� � @�ru�
@x

dx

� �
dy; �3:11�

where r is the ¯uid density. This relation and a similar one for the ¯ow in

y-direction yield

�ru�dy � �rv�dx ÿ �ru� � @�ru�
@x

dx

� �
dy ÿ �rv� � @�rv�

@y
dy

� �
dx � 0;

�3:12�
or what is called the 2D continuity equation,

@�ru�
@x
� @�rv�

@y
� 0; or �3:13a�

div�ru� � �u � grad�r� rdiv u � 0: �3:13b�
Here u � u � v is the velocity vector ®eld, and div �u� � H � u � @u

@x
� @v
@y

is

its divergence.

3.1.6 THE MOMENTUM BALANCE (NAVIER±STOKES)
Newton's law applied to the ¯uid control volume states that the sum of all

forces that act upon the control volume is equal to the net rate of mechanical

momentum relative to the control volume (Figs. 3.5, 3.6) [10, 12].

i j

Figure 3.4
Mass

conservation
principle for an

in®nitesimal
control volume

in a 2D ¯ow.
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There are two types of forces that act on the control volume: the body

forces (X ; Y Ð due to gravity, centrifugal motion, magnetic and electric

®elds, etc.), which are proportional to the control volume size, and the

super®cial forces (due to the hydrostatic pressure and to the ¯uid viscosity),

which are proportional to the size of the surface upon which they act.

Relatively to the control volume, the mechanical effort due to the viscous

¯ow may be decomposed uniquely into two components: a normal stress

(effort) si;j , and a shear (tangential) stress (effort), ti;j . The ®rst subscript, i,

indicates the orientation of the control volume surface by specifying the

orientation of its normal; the second subscript, j , shows the direction of the

force component. For example, for the x � surface in Fig. 3.5 the normal

stress sxx corresponds to a force normal to the surface, and the tangential

stress txy corresponds to a force that acts in the y-direction, along the

x -surface.

Figure 3.5
Surface and body

forces that
contribute to the

momentum
balance for an

in®nitesimal
control volume

in a 2D ¯ow.

Figure 3.6
Inertia of

momentum
¯ows and inertia

that contribute
to the

momentum
balance for an

in®nitesimal
control volume

in a 2D ¯ow.
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The arrows in Fig. 3.5 are oriented with respect to the positive direction,

indicating thus the sign convention. Accordingly, the normal stress due to the

hydrostatic pressure Ð perceived in fact as an external force Ð has a

compression effect, whereas the normal stress, due to viscosity, has a

stretching effect. The shear stress acts within the interface between adjacent

¯uid elements and it is a consequence of a viscous ¯uid ¯ow Ð should the

¯ow cease, then the shear stress vanishes. In the limits of the Taylor linear

approximation, the forces that act upon the control volume are

Fs;x �
@sxx

@x
ÿ @p
@x
� @tyx

@y

� �
dxdy �3:14a�

Fs;y �
@txy

@x
� @syy

@y
ÿ @p
@y

� �
dxdy : �3:14b�

The other contributor to the momentum balance are the net momentum

¯uxes (Fig. 3.6). For instance, contributing to the x -momentum balance are

the mass ¯ow rate �ru�, that is, its associated momentum ¯ux �ru�u, and the

mass ¯ow rate �rv�, that is, its associated momentum ¯ux, �rv�u,

@��ru�u�
@x

� @ �rv�u� �
@y

: �3:15�

The x -momentum equation may now be written as

@��ru�u�
@x

� @t ��rv�u�
@y

� @sxx

@x
ÿ @p
@x
� @tyx

@y
� X : �3:16�

By the continuity equation (3.13a), it follows that

r u
@u

@x
� v

@u

@y

� �
� @

@x
�sxx ÿ p� � @tyx

@y
� X : �3:17�

A similar expression may be obtained for the y-momentum balance,

namely,

r u
@v

@x
� v

@v

@y

� �
� @txy

@x
� @

@y
�syy ÿ p� � Y : �3:18�

The next step consists of specifying the normal and viscous shear stress

in terms of the ¯ow quantities. The normal stress produces a linear

deformation, whereas the shear stress results in an angular distortion. On

the other hand, the magnitude of any stress is proportional to the control

volume deformation rate, which, in turn, is proportional to the ¯uid viscosity

and to the ¯ow gradients. For Newtonian ¯uids, the stress is proportional to

the velocity gradients and the constant of proportionality equals the ¯uid

viscosity. Generally, the evaluation of such dependencies is a dif®cult task
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that basically relies on empirical observations. In particular, it was found that

[12]

sxx � 2m
@u

@x
ÿ 2

3
m
@u

@x
� @v
@y

� �
�3:19�

syy � 2m
@v

@y
ÿ 2

3
m
@u

@x
� @v
@y

� �
�3:20�

txy � tyz � m
@u

@y
� @v
@x

� �
: �3:21�

When utilized in (3.17) and (3.18) they yield

r u
@u

@x
� v

@u

@y

� �
� ÿ @p

@x
� @

@x
m 2

@u

@x
ÿ 2

3

@u

@x
� @v
@y

� �� �� �
�3:22�

r u
@v

@x
� v

@v

@y

� �
� ÿ @p

@y
� @

@y
m 2

@v

@y
ÿ 2

3

@u

@x
� @v
@y

� �� �� �
; �3:23�

or, in vector form,

r�u � grad�u � ÿgradp � mH2u H2 � @2

@x 2
� @2

@y2
� @2

@z 2

� �
: �3:24�

It should be noted that the continuity equation (3.13b) and the momen-

tum equation (3.14) are valid for all ¯ows, including boundary layer ¯ows.

However, based on the speci®c nature of the boundary layer, simpler forms

are available and, naturally, are generally preferred.

3.1.7 THE ENERGY BALANCE
The energy balance is derived also on a control volume base (Fig. 3.7) [10].

Neglecting the potential energy and its effects, the total speci®c energy (per

unit mass) of the ¯uid control volume includes the internal energy, e , and

the kinetic energy, V 2=2, where V 2 � u2 � v2 (juj � V is the velocity). The

internal and kinetic energies are advected through the control volume

surface. The energy accumulation rate related to these transport processes

in the x -direction is

_Eadv;x ÿ _Eadv;x�dx � ru e � V 2

2

� �
dy

ÿ ru ÿ� V 2

2

� �
� @

@x
ru e � V 2

2

� �
dx

� �� �
dy

� ÿ @

@x
ru e � V 2

2

� �� �
dxdy : �3:25�
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Figure 3.7 The different contributors to the energy balance for an in®nitesimal control volume in a 2D ¯ow
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The molecular diffusivity (i.e., the thermal conduction) contributes also

to the energy inventory, such that the net energy transfer rate toward the

control volume is

_Econd ;x ÿ _Econd ;x�dx � ÿ k
@T

@x

� �
dy ÿ ÿk

@T

@x
ÿ @

@x
k
@T

@x

� �� �

� @

@x
k
@T

@x

� �
dxdy : �3:26�

Other contributors to the energy balance include the mechanical work-

type interactions, which are produced by body and surface forces. More

precisely, the net rate of the mechanical work produced by the forces acting

in the x -direction upon the control volume may be written as

_Wnet ;x � �Xu� dxdy � @

@x
��sxx ÿ p�u� dxdy � @

@y
�tyx u� dxdy; �3:27�

where the ®rst term on the right-hand side stands for the mechanical work

produced by the body force X , while the other terms are due to pressure and

viscous forces.

Summing up (3.25), (3.26), (3.27) and the analogous equations for the

y-direction yields the energy balance for the control volume:

@

@x
ru e � V 2

2

� �� �
ÿ @

@y
rv e � V 2

2

� �� �

� @

@x
k
@T

@x

� �
� @

@y
k
@T

@y

� �
� �Xu � Y v� ÿ @

@x
�pu� ÿ @

@y
�pv�

� @

@x
�sxx u � txyv� �

@

@y
�tyx u � syyv� � _q �3:28�

Here _q is the internal (body) heat generation rate inside the control volume

and e� J=m3� is the speci®c energy. This equation accounts for the conserva-

tion of the mechanical work and thermal energy. A more convenient form is

obtained by subtracting (3.27) and (3.28) multiplied by u, respectively v,

from (3.28):

ru
@e

@x
� rv

@e

@y
� @

@x
k
@T

@x

� �
� @

@y
k
@T

@y

� �
ÿ p

@u

@x
� @v

y

� �
� mF� _q : �3:29�

The quantity mF, de®ned by

mF � m
@u

@y
� @v
@x

� �2

�2
@u

@x

� �2

� @v

@y

� �2
" #

ÿ 2

3

@u

@x
� @v
@y

� �2
( )

; �3:30�

is called viscous dissipation. The ®rst term in (3.30) stands for the viscous

shear stress, and the other terms are due to the normal stress. Qualitatively,

viscous dissipation represents the irreversible conversion of mechanical

energy in heat by viscous effects within the ¯uid.
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In some situations, the speci®c enthalpy, i� J=m3�,

i � e � p

r
; �3:31�

is preferred rather than the energy, yielding

ru
@i

@x
� rv

@i

@y
� @

@x
k
@T

@x

� �
� @

@y
k
@T

@y

� �
� mF� _q : �3:32�

For the perfect gas of a particular substance di � cdT ; hence,

rcp u
@T

@x
� v

@T

@y

� �
� @

@x
k
@T

@x

� �
� @

@y
k
@T

@y

� �
� mF� _q : �3:33�

Alternatively, for incompressible substances cV � cP and the mass

conservation equation (3.13) reduces to

@u

@x
� @v
@y
� 0: �3:34�

If we observe that de � cV dT � cP dT , (3.29) becomes

rcp u
@T

@x
� v

@T

@y

� �
� @

@x
k
@T

@x

� �
� @

@y
k
@T

@y

� �
� @

@z
k
@T

@z

� �
� mF� _q :

�3:35�
The vector form of this equation is

rcp�u � grad�T � div�kgradT � � mF� _q : �3:36�

3.1.8 SCALE ANALYSIS RULES
Scale analysis is recommended as a ®rst-stage, order-of-magnitude solution

approach to any boundary and initial value problem. Scale analysis is often

misinterpreted either as dimensional analysis or as the arbitrary scaling of a

mathematical model. Scaling is generally aimed at stability analyses or at

improving the condition number of the numerical models for speci®c

physical models. Although it is not the direct result of scale analysis, scaling

should always be considered in mathematical and numerical models.

Scale analysis is concerned with producing consistent order-of-magni-

tude estimates of the relevant physical quantities that occur in the equations

that make up the mathematical model. When appropriately used, scale

analysis may forecast the true solution within a range of approximation of

utmost order one (i.e., within a few percent), as compared to more elaborate

and, presumably, more accurate numerical or analytical solutions.

As example of scale analysis we shall consider the problem of a metallic

plate of ®nite thickness 2D, with thermal conductivity k, mass density r, and

speci®c heat c, which at t � 0 is immersed in a warmer, high thermal

conductivity ¯uid such that its faces instantaneously reach the equilibrium

temperature T1 � T0 � DT (Fig. 3.8) [10]. If the only quantity of interest is

the diffusion time, that is, the time when the plate attains the ®nal,

equilibrium temperature, then a scale analysis may suf®ce.
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Invoking the apparent symmetry, this problem may be reduced to the

half plate thickness, D, domain. The unsteady conduction heat transfer in the

plate is described by the energy law, Eq. (2.20), which represents a balance

between two terms of the same order of magnitude.

rcP

@T

@t
� k

@2T

@x2
� k

@

@x

@T

@x

� �
# #

rcP

DT

t
� k

D

DT

D
� kDT

D2
:

�3:37�

Hence,

rcP

DT

t
� kDT

D2
; �3:38�

yielding

t � D2

a
; �3:39�

where a � k=rcP �m2=s� is the thermal diffusivity of the metal.

Considering the analysis carried out in this example, the following

scaling rules may be de®ned:

1. The size of the physical domain must be well de®ned. In the previous

example the size was D.

2. Any equation expresses the balance between the scales of at least two

dominant, algebraically summed terms. In the preceding example

above, (3.38), the terms on the left-hand and right-hand sides are

dominant, comparable in an order of magnitude sense. Generally

speaking, the energy law may contain more than two terms, yet not all

of them are necessarily equally important. The principles of selecting

the dominant scales are given by the following rules 3±5.

3. If in the sum of two terms

c � a � b;

Figure 3.8
The scale

analysis of the
cooling process
undergone by a

metallic plate of
®nite thickness

that is immersed
in a warmer,
high thermal
conductivity

¯uid.
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the order of magnitude of one of the terms is larger than that of the

other one, that is,

O�a�>O�b�;
then the order of magnitude of the sum is that of the leading term

O�a� � O�b�:
The same rule applies in case of subtraction, c � aÿ b or c � ÿa� b.

4. If the terms of the sum

c � a � b

have the same order of magnitude O�a� � O�b�, then the sum has the

same order of magnitude, that is,

O�c� � O�a� � O�b�:
5. The order of magnitude of the product

p � ab

is equal to the product of the orders of magnitude of the terms,

O�p� � O�a�O�b�:
Similarly, the order of magnitude of a ratio

r � a

b

is equal to the ratio of the orders of magnitude of the terms,

O�r � � O�a�
O�b� :

3.1.9 STREAMLINES AND HEATLINES
Visualization has generally a special, insightful meaning in the solution to any

problem. In convection processes it is important to ``see'' the ¯uid motion

and, more speci®cally, to visualize the energy ``¯ow.'' At least to this end, a

particular useful vector quantity may be introduced based on the continuity

equation (3.36). Under the incompressible ¯ow assumption, the velocity ®eld

is divergence-free. Consequently, it may be conjectured that it is produced by

a vector ®eld C, called the streamfunction [12]:

u �def ÿcurlC �curlC � H�C�: �3:40�
This de®nition speci®es only the solenoidal part of the streamfunction,

C, whereas its potential part is not known. However, the good news is that in

2D problems (cartesian or axially symmetric) the streamfunction is diver-

gence-free, that is, its solenoidal part is consistently zero and, consequently, it

is a well de®ned quantity from the point of view of the uniqueness theorem

of vector ®elds. Furthermore, it follows that under such circumstances the

streamfunction has only one component, orthogonal to the ¯ow, which
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technically reduces it to a scalar quantity. In a 2D cartesian ¯ow, the

streamfunction C � ck, is related to the velocity ®eld by

u � @c
@y
; v � ÿ @c

@x
: �3:41�

It may be easily veri®ed that the c � const lines Ð called streamlines Ð

are velocity ®eld lines; hence, a very convenient method to visualize ¯ows

consists of tracing its streamlines.

Similarly, the equation that describes the steady-state convection heat

transfer process without internal heat sources,

rcp u
@T

@x
� v

@T

@y

� �
� @

@x
k
@T

@x

� �
� @

@y
k
@T

@y

� �
; �3:42�

may be rewritten as

@

@x
rcpuT ÿ k

@T

@x

� �
� @

@y
rcpvT ÿ k

@T

@y

� �
� 0; �3:43�

where we see the emergence of a new, once again divergence-free, vector

®eld rcpuT ÿ kgradT . Consequently, a new vector quantity Ð called the

heatfunction [10] and labeled H Ð is introduced through its curl part:

@H

@y
� rcpuT ÿ k

@T

@x
;
@H

@x
� rcpvT ÿ k

@T

@y
: �3:44�

A completely analogous discussion may be conducted with respect to

the solenoidal part of H, and with respect to the cases (cartesian, axially-

symmetric) where the heatfunction is a well, and completely de®ned vector

quantity.

When motion ceases, the heatlines coincide with the heat ¯ux lines,

which, together with the isotherms, are commonly used in the visualization

of conduction heat transfer. It is important to notice that the isotherms,

T � const, are meaningful in conduction heat transfer, but less so in

convection heat transfer. It is only in conduction that the isotherms are

locally orthogonal to the heat ¯ow direction. Using the isotherms to visualize

convection heat transfer is as inappropriate as using the P � const lines to

visualize the ¯uid ¯ow [10].

3.1.10 BOUNDARY LAYER HEAT TRANSFER
The hydrodynamic and energy equations that fully describe the 2D boundary

layer steadystate heat transfer are as follows (Fig. 3.1) [10]:

Continuity:

@u

@x
� @v
@y
� 0: �3:45�
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Momentum:

u
@u

@x
� v

@u

@y
� ÿ 1

r
@p

@x
� n

@2u

@x 2
� @

2u

@y2

� �
�3:46�

u
@v

@x
� v

@v

@y
� ÿ 1

r
@p

@y
� n

@2v

@x2
� @

2v

@y2

� �
: �3:46�

Energy:

u
@T

@x
� v

@T

@y
� a

@2T

@x 2
� @

2T

@y2

� �
; �3:47�

where n � m=r�m2=s� is the kinematic viscosity. The usual boundary condi-

tions that close the physical model are

�a� No-slip u � 0

�b� Impermeable v � 0

�c� Wall temperature T � T0

9>=>; at the wall

�d � Uniform flow u � U1
�e� Uniform flow v � 0

� f � Uniform temperature T � T1

9>=>; far from the wall

Boundary Layer Assumptions
The free stream structure of the ¯ow outside the boundary layer implies [10]

u � U1; v � 0; p � P1; T � T1: �3:48�
On the other hand, the main scales of the boundary layer are

x � L; y � d; and u � U1: �3:49�
Here d is the boundary layer thickness, and L is the downstream size (length)

of the wall; therefore, the size of the boundary layer is approximately d� L.

The streamwise momentum equation (3.46) indicates the balance of

three terms:

Inertia Pressure Friction

U1
U1
L
; v

U1
d

p

rL
v

U1
L2
; v

U1
d2 :

�3:50�

By the continuity equation (3.45),

U1
L
� v

d
; �3:51�

and it follows that both inertia terms in (3.50) have the same order of

magnitude U 21=L: However, if the boundary layer is shallow, then

d� L; �3:52�
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and the last term in (3.50) is dominant. Therefore, @2u=@x 2 may be neglected

for @2u=@y2, which yields the simpler form

u
@u

@x
� v

@u

@y
� ÿ 1

r
@p

@x
� n

@2u

@y2
: �3:53�

By the same argument, that is, the boundary layer is a very shallow zone,

the momentum equation in the y-direction, orthogonal to the wall, reduces to

u
@v

@x
� v

@v

@y
� ÿ 1

r
@p

@y
� n

@2v

@y2
: �3:54�

Although generally not used in the boundary layer analysis, (3.54) is mean-

ingful through an important consequence: Since in the d� L region the

pressure variation in the y-direction is negligable compared to that in x -

direction, the term @p=@x in (3.53) may be replaced by dP1=dx , which is a

known quantity. The validity of this substitution may be veri®ed by dividing

the pressure differential by dx ,

dp

dx
� @p
@x
� @p
@y

dy

dx
; �3:55�

and by comparing the order of magnitude of the pressure gradient compo-

nents, @p=@x and @p=@y , that act as source terms in (3.53) and (3.54). The

second term on the right-hand side of (3.53) and (3.54) account for friction

(against the ¯ow), while their left-hand sides stand for inertia terms. For

those ¯ow regimes where the pressure gradients are comparable to friction,

(3.53), Eq. (3.54) suggests the following scale relations:

@p

@x
� mU1

d2 ;
@p

@y
� mv

d2 : �3:56�

Further on, with the use of (3.55), they yield

@p

@y

@y

@x

@p

@x

� vd
U1L
� d

L

� �2

� 1: �3:57�

This result was expected: In the boundary layer domain, d� L; (3.55)

reduces to

dP

dx
� @p
@x
� dP1

dx
: �3:58�

Consequently, the boundary layer momentum equation is

u
@u

@x
� v

@u

@y
� ÿ 1

r
dP1
dx
� n

@2u

@y2
; �3:59�

and, in fact, it accounts for both momentum equations, (3.53) and (3.54).

The boundary layer energy equation may be obtained analogously,

yielding

u
@T

@x
� v

@T

@y
� a

@2T

@y2
: �3:60�
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It is important to note that this result shows the heat diffusion in x -direction

exceeding the heat diffusion in y-direction.

In conclusion, the boundary layer equations are only two (3.59) and

(3.60) Ð instead of four, the number of the complete set. Also, the absence of

the second-order x -derivatives @2=@x 2 makes their solution simpler. The scale

analysis detailed next produces a ®rst, simple answer that is satisfactorily

accurate.

3.1.11 SCALE ANALYSIS OF THE HYDRODYNAMIC AND THERMAL
BOUNDARY LAYERS

The equations (3.59) and (3.60) describe the ¯ow and heat transfer process in

the slender region of size d� L, and may predict which of the two boundary

layers is thicker, that is, which quantity, dT or d; is larger, since usually

d 6� dT . The heat transfer boundary layer analysis is focused on two main

objectives: (i) the hydrodynamic problem, concerned with evaluating the

wall shear stress, and (ii) the thermal problem, targeted toward estimating the

heat transfer coef®cient.

(i) The hydrodynamic problem consists of evaluating the wall shear

stress

tw � m
@u

@y

����
y�0

; �3:61�

which, in the velocity boundary layer, scales as

tw � m
U1
d
: �3:62�

Apparently tw is inversely proportional to d: For a speci®ed free stream ¯ow

�U1� of a known ¯uid �m; r�, the wall shear stress increases for a decreasing

velocity boundary layer thickness, d. As for the simpler ¯ows, for which

dP1=dx � 0 (for instance the ¯ow of a cooling ¯uid through a radiator made

of a plate ®n network), (3.59) scales as

Inertia � Friction

U 21
L
;
vU1
d
� n

U1
d2 :

�3:63�

It may be shown [by the continuity equation (3.45)] that the two terms on the

left-hand side of (153) have the same order of magnitude; hence,

d � nL
U1

� �1=2

; or
d
L
� Reÿ1=2

L : �3:64�

The nondimensional group ReL is the Reynolds number based on L, the

length scale of the boundary layer.

At this point, a note on the signi®cance of ReL in the boundary layer

theory is useful [10]. Although generally in ¯uid mechanics ReL is regarded,

for a given ¯ow, as an order of magnitude estimator of the ratio of inertial to

friction [12], this interpretation may not always be correct. In the boundary
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layer ¯ows always governed by the balance inertia�friction, ReL may reach

values as high as the order of 104 before transition to turbulence occurs.

Therefore, in boundary layer ¯ow, the only acceptable interpretation seems

to be

Re1=2
L �

wall length

boundary layer thickness
: �3:65�

Therefore, it is not ReL but its square root, Re1=2
L , that is meaningful: Re1=2

L is

the shape factor (hence, a geometric estimator) of the boundary layer ¯ow

region.

An important result of the scale analysis is that d is shown to be

proportional to L1=2. More accurate analyses con®rm that along the wall

�0< x < L� the velocity boundary layer thickness growth as x1=2. As a detail,

the slope of this function is in®nite in the origin, that is, at x � 0 the

boundary layer envelope is orthogonal to the wall.

Equation (3.64) also shows another important consequence: The velocity

boundary layer assumption d� L is acceptable provided Reÿ1=2
L � 1. This

result may be used as a criterion for checking the validity of a particular type

of boundary layer analysis, for given circumstances. However, even if this

restriction is ful®lled, there are ¯ow domains, such as the region of size

Reÿ1=2
l within the entrance region at the tip of the wall of length l , where the

boundary layer assumption still do not apply.

By virtue of these scaling analyses, the wall shear stress is seen to scale

as

tw � m
U1
L

Re1=2
L � rU 2

1Reÿ1=2
L : �3:66�

Consequently, the wall friction coef®cient,

Cf �
tw

1
2 ru2

;

scales as

Cf � Reÿ1=2
L �3:67�

which solves the ®rst problem of the boundary layer. Numerous experiments

and calculations con®rm the accuracy of these results in the limit of a factor

of order 1.

(ii) The heat transfer problem may be addressed by evaluating the

convection heat transfer coef®cient, h, for the temperature boundary layer of

thickness dT [10]:

h � k DT =dT� �
DT

� k

dT

: �3:68�

Here DT � Tw ÿ T1 is the temperature drop within the temperature bound-

ary layer of size dT � L.
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The energy equation (3.60) is the balance of two terms: the transversal,

wall-to-¯ow conduction heat transfer and the streamwise, convection heat

transfer (enthalpy ¯ow):

Convection � Conduction

u
DT

L
; v

DT

dT

� a
DT

d2
T

:
�3:69�

The mass conservation law (3.45) applied to the thermal boundary layer

in the scaling sense leads to

u

L
� v

dT

; �3:70�

which reveals that the two convection scales have the same order of

magnitude, namely u�DT =L�. However, the order of magnitude of u is not

necessarily U1! As shown by (3.69) and (3.70), the scale of u is related to the

scale of dT ; consequently, it depends on the size of dT relative to d.
We ®rst assume that

�1� d� dT ! u � U1
(Fig. 3.9 after [10]). In this situation,

dT

L
� Peÿ1=2

L � Prÿ1=2Reÿ1=2
L ; �3:71�

where PeL � U1L=a is the nondimensional PeÂclet group. From comparing

(3.64) and (3.61), it follows that the size of dT relative to d is in fact the

Prandtl number of the ¯uid, Pr � n=a,

dT

d
� Prÿ1=2: �3:72�

Consequently, the assumption d� dT stands only if Pr1=2 � 1, for ¯uids that

fall within the range of liquid metals. In this case, the heat transfer coef®cient

h and Nusselt number, NuL �def
h=L, are

h � k

L
Pr1=2Re1=2

L ;NuL � Prÿ1=2Re1=2
L �Pr � 1�: �3:73�

Of special practical importance are ¯uids with a Prandtl number of order

1 (air), or greater than 1 (water, oils, etc.). Let us assume that in this situation,

�2� d� dT ! u � dT

d
U1:

The balance conduction�convection (Fig. 3.9) is now

dT

L
� Prÿ1=3Reÿ1=2

L ; respectively
dT

d
� Prÿ1=3 � 1; �3:74�

con®rming that the assumption is valid for ¯uids with Prÿ1=3 � 1. Subse-

quently, h, and NuL scale as

h � k

L
Pr1=3Re1=2

L ;NuL � Pr1=3Re1=2
L �Pr � 1�: �3:75�

These results are consistent within the limits of a factor of order 1, O�1�.
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Although straightforward, simple, and relevant, the scale analysis has

several drawbacks. First, its results are meaningful only in an order of

magnitude sense, more precisely in the limits of the unspeci®ed proportion-

ality coef®cients. Another dif®culty is the ambiguous signi®cance of several

quantities, such as the wall shear stress, tw , and the heat transfer coef®cient,

h: Are they local or average quantities? In any case, to be consistent with the

scale analysis results, whatever other, more accurate solution method might

be used, the local and average quantities it produces should be of the same

order of magnitude.

3.1.12 THE INTEGRAL METHOD
This approximative method was originally introduced by Pohlhausen and

von KaÁrman [10], and it may be used to provide numerical values for the

coef®cients of proportionality left unspeci®ed by the scale analysis. This

method relies on the hypothesis that the y-pro®les of u and T are not

particularly relevant in the evaluation of tw and h.

Figure 3.9
Velocity and

thermal
boundary layers
in the external

forced
convection for
¯uids with (a)

Pr > 1; (b)
Pr < 1.
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Multiplying the continuity equation (3.13) by u and adding the result to

the right hand side of (3.59), then amplifying the same continuity equation

(3.13a) by T and adding this result to the left hand side of (3.60), yields

@�u2�
@x
� @�uv�

@y
� ÿ 1

r
dP1
dx
� @

2u

@y2
�3:76�

@�uT �
@x
� @�vT �

@y
� a

@2T

@y2
; �3:77�

which, further integrated over the interval y 2 �0;Y � (Fig. 3.10), where

Y > maxfd; dT g, results in

d

dx

�Y

0

u2dy � uY vY ÿ u0v0 � ÿ
Y

r
dP1
dx
� n

@u

@y

� �
Y

ÿn @u

@y

� �
0

�3:78�

d

dx

�Y

0

uTdy � uY TY ÿ u0T0 � a
@T

@y

� �
y

ÿ @T

@y

� �
0

" #
: �3:79�

Because the free stream ¯ow is uniform, @=@yjy�Y � 0, uY � U1,

TY � T1, and since at the wall v0 � 0, it follows that vY may be obtained

by integrating the mass conservation equation (3.13) over the boundary layer

height �0;Y �

d

dx

�Y

0

udy � vY ÿ v0 � 0: �3:80�

Replacing this result in (3.78) and (3.79) yields the momentum and energy

integral equations for the laminar boundary layer,

d

dx

�Y

0

u�U1 ÿ u� dy � Y

r
dP1
dx
� dU1

dx

�Y

0

udy � n
@u

@y

� �
0

�3:81�

d

dx

�Y

0

u�T1 ÿ T � dy � a
@T

@y

� �
0

: �3:82�

Figure 3.10
The integration

path in the
boundary layer

integral method.
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These equations are conservation relations for the ¯uid control volume

of size dx � Y , where x is the downstream coordinate. The forces that act

upon this control volume are (Fig. 3.11)

left! right

Mx �
� Y

0 ru2dy

MY � U1d _m; where _m � � Y

0 rudy;

P1Y :

8><>:
right! left

Mx�dx � Mx �
dMx

dx
dx

tdx

Y �P1 �
dP1
dx

dx �:

8>>><>>>:

At this point, to integrate the energy equation (3.82) a certain u�y� pro®le

has to be assumed:

u � U1m�n�; n 2 �0; 1�;
U1; n � 1:

�
Here m�n� is a shape function, unspeci®ed as yet, and n � y=d. The

boundary layer hypothesis, dP1=dx � 0, may be used, yielding the follow-

ing ordinary differential equation for the velocity boundary layer thickness:

d
dd
dx

�1

0

m�1ÿm�dn

� �
� n

U1

dm

dn

����
n�0

: �3:83�

Finally, by integration, the following expressions for the local velocity

boundary layer thickness and for the friction coef®cient,

d
x
� a1Reÿ1=2

x �3:84�

Cf ;x �
t

0:5rU 21
ÿ a2Reÿ1=2

x ; �3:85�

are obtained.

Figure 3.11
The forces that

contribute to the
conservation

relations for the
¯uid control

volume of size.
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Although

a1 �

�������������������������������
2

dm

dn

����
n�0� 1

0 m�1ÿm�dn

vuuuut and a2 �
�����������������������������������������������������
2

dm

dn

����
n�0

�1

0

m�1ÿm� dn

s

are functions of the particular shape function used, these results are

consistent with the scale analysis conclusions. Table 3.1 [10] shows several

shape functions that are frequently used, and shows their in¯uence on the

boundary layer integral solutions.

The proportionality coef®cients for the heat transfer relations that are not

speci®ed by the scale analysis may be determined in an analogous manner

by assuming ®rst a speci®c pro®le for the temperature,

T0 ÿ T

T0 ÿ T1
� m�p�; p � y

dT

2 �0; 1�

T � T1; p > 1

Recalling that the scale analysis gave evidence that the ratio D � dT =

d � D�Pr� is a function only of the Prandtl number, the discussion reduces to

two cases:

1. High-Prandtl-number ¯uids �dT < d�: The energy equation reduces to

the implicit form for D�Pr�,

Pr � 2

dm

dp

����
p�0

�a1D�2
�1

0

m� pD��1ÿm� p�� dp

� �ÿ1

; �3:86�

a result that is consistent with the scale analysis. If we select the

simplest temperature pro®le, m � p, (3.86) leads to

D�Pr� � Prÿ1=3; �3:87�

Table 3.1

Nu Reÿ1=2
x Prÿ1=3

Pro®le
m�n� or m�p�

d
x

Re1=2
x Cf ;xRe1=2

x

Uniform
temperature
�Pr > 1�

Uniform
heat ¯ux
�Pr < 1�

m � n 3.46 0.577 0.289 0.364

m � n�3ÿ n2�
2

4.64 0.646 0.331 0.417

m � sin
np
2

4.8 0.654 0.337 0.424

Similarity solution 4.92 0.664 0.332 0.458
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which is identical to the scale analysis result for the ¯uids with Pr � 1,

(3.52). Table 3.1 also indicates several shape functions for the

temperature and the corresponding NuL. A frequent choice is the

cubic pro®le m � p�3ÿ p2�=2, which yields

D � dT

d
� 0:977 Prÿ1=3 �3:88�

h � 0:323
k

x
Pr1=3Re1=2

x �3:89�

NuL �
hx

k
� 0:323

k

x
Pr1=3Re1=2

x : �3:90�

2. Low-Prandtl-number ¯uids �Pr � 1, i.e., D� 1): These ¯uids form

the liquid-metal case. Equation (3.86) is replaced by

Pr � 2

dm

dp

����
p�0

�a1D�2
�1=D

0

m� pD��1ÿm� p�� dp �
�1

1=D
�1ÿm�p��dp

" #ÿ1

:

�3:91�
Since D� 1, the second integral on the right-hand side is dominant

and, if we select the pro®le m � p, yields

D � dT

d
� �3Pr�ÿ1=2; or

dT

x
� 2Prÿ1=2Reÿ1=2

x ; for Pr � 1: �3:92�

The corresponding heat transfer coef®cient and the Nusselt number,

h � k

dT

� 1

2

k

x
Pr1=2; NuL �

hx

k
� 1

2
Pr1=2Re1=2

x ; �3:93�

are consistent with the scale analysis results, and are also con®rmed

by experiment.

3.1.13 THE SIMILARITY SOLUTIONS FOR THE HYDRODYNAMIC AND
THERMAL BOUNDARY LAYERS

Exact, analytic boundary solutions were obtained by Blasius (for ¯ow) [16]

and Pohlhausen (for heat transfer) [17]. The central idea Ð inspired from

experiment Ð resides in recognizing that the velocity and temperature

pro®les within the boundary layer region are self-similar with respect to

the y-coordinate (orthogonal to the wall, i.e., to the ¯ow). This suggests that

there exists a set of unique, or ``master'' velocity and temperature pro®les,

such that at any location downstream (x -coordinate) the local velocity and

temperature pro®les are similar to them. Mathematically, it means that there

exists a change of variables �x ; y� ! Z, where Z is called the similarity

variable, such that the velocity and temperature pro®les are functions only of

Z. The master pro®les form the object of similarity analysis.

For the velocity ®eld, similarity means u=U1 � function�Z�. Using the

scaling analysis result d�x � � x Reÿ1=2
x , Blasius de®ned

Zdef �
y

x
Re1=2

x : �3:94�
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On the other hand, it was shown (3.41) that the velocity ®eld for a

Cartesian, 2D ¯ow is the curl of the streamfunction, C, that is,

u � @c
@y
; v � ÿ @c

@x
: �3:95�

Consequently, it may be conjectured that

u

U1
� f 0�Z�; �3:96�

where the unknown function f �Z�; apparently related to the streamfunction,

is introduced through its derivative, f 0�Z� � df =dZ, unknown as yet.

The boundary layer ¯ow problem consists then of

j Continuity:
@u

@x
� @v
@y
� 0

j Momentum: u
@u

@x
� v

@u

@y
� v

@2u

@y2
; ) @c

@y

@2c
@x@y
ÿ @c
@x

@2c
@y2
� v

@3c
@y3

and of the following boundary conditions:

y � 0; ) u � v � 0; ) @c
@y
� 0;c � 0

y !1; ) u! U1; ) @c
@y
! U1:

On the other hand, the velocity±streamfunction relations (3.95) yield

c � �U1nx �1=2f �Z� �3:97�

v � 1

2

nU1
x

� �1=2

�Z f 0 ÿ f �; �3:98�

which produce an alternative form of the momentum equation and boundary

conditions, in fact the similarity velocity boundary layer problem:

2f 000 � ff 00 � 0 �3:99�

f 0 � f � 0; for Z � 0
f 0 ! 1; for Z!1: �3:100�

Blasius solved the nonlinear ordinary differential equation (3.99) by an

asymptotic method Ð the resulting velocity pro®le, obtained numerically by

using a Runge±Kutta fourth-order, constant step scheme, is shown in Fig.

3.12. If we recall that u � 0:99U1 occurs at Z � 4:92, then the velocity

boundary layer thickness is

d
x
� 4:92Reÿ1=2

x : �3:101�

3. Convection Heat Transfer 513

H
ea

t
Tr

an
sf

er



At this point it should be mentioned that other de®nitions for the

hydrodynamic boundary layer are around, for instance,

d* �def
�1

0

1ÿ u

U1

� �
dy;

d*
x
�f �Z� 1:73Re1=2

x �displacement thickness�

y �def
�1

0

u

U1
1ÿ u

U1

� �
dy;

y
x
�f �Z� 0:664Reÿ1=2

x �momentum thickness�:

An important result of the similarity analysis is an estimate for the friction

coef®cient,

Cf ;x �f �Z�
m
@u

@y

����
y�0

1
2 rU 21

� 2f 00 Z�0Reÿ1=2
x ;

�� �3:102�

or, using the satisfactorily good evaluation f 00jZ�0 � 0:332,

Cf ;x � 0:664Reÿ1=2
x : �3:103�

The boundary layer similarity heat transfer problem for the isothermal

wall �Tw � T0� consists of the following partial differential equation and

boundary conditions:

y00 � Pr

2
f y0 � 0; y�Z� � T ÿ T0

T1 ÿ T0

�3:104�

y � 0; for Z � 0 �3:105�
y! 1; for Z!1 �3:106�

Figure 3.12
Blasius solution
to the similarity

velocity pro®le
in external

forced
convection.
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For air (Pr � 1), y � f 0; hence, the heat transfer problem is identical to the

hydrodynamic problem and, consequently, the two boundary layer envel-

opes coincide. Since f �Z� is a known quantity, the temperature pro®le may

be obtained for any other Pr number. The intermediate result produced by

integrating (3.104) once,

y0�Z� � y0�0�eÿPr
2

� Z

0
f �b�db

; �3:107�
may be integrated again to yield

y�Z� � y0�0�
�Z

0

e
ÿPr

2

� g

0
f �b�db

dg: �3:108�

It is now apparent that y�Z� depends on the particular value of y0�0�Ð itself a

function of Pr Ð which may be obtained by invoking the asymptotic condi-

tion (3.106),

y0�0� �
�1

0

e
ÿPr

2

� g

0
f �b�db

dg
� �ÿ1

: �3:109�

The evaluation of this expression is particularly important to the convection

boundary layer problem since both the heat transfer coef®cient

h � k

x
Re1=2

x y0�0� �3:110�

and the local Nusselt number

Nux �
hx

k
Re1=2

x y0�0� �3:111�

depend on it (are functions of it).

Instead of an explicit de®nition for y0�0�, Pohlhausen proposed the

empirical correlation

y0�0� � 0:332Pr1=3; �3:112�
valid for Pr> 0:5. A different correlation has to be utilized if Pr< 0:5 or,

alternatively, (3.104) should be solved numerically for that particular value

of Pr.

Remarkably, in the limit Pr! 0 (i.e., for ¯uids with very high thermal

conductivity), the ordinary differential equation (3.104) admits an analytical

solution. In this case, f 0 � 1, and by further differentiation it yields

d

dZ
y00

y0

� �
� ÿ Pr

2
f 0; �3:113�

which is exactly integrated by

y�Z� � erf
Z
2

�����
Pr
p� �

: �3:114�

Consequently,

y0�0� � Pr

p

� �1=2

;Nu �
Pr!0

hx

k
� 0:564Pr1=2Re1=2

x ; �3:115�

in good agreement with the scale analysis results (3.73).
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It is important to recognize the limits of these similarity solutions, called

``exact.'' It suf®ces to analyze the behavior of the predicted v component of

the velocity that, erroneously, does not vanish for Z!1 (in the free

stream) Ð rather it reaches the ®nite value 0:86U1Reÿ1=2
x . Since in the

boundary layer theory v=U1 �Z!1Reÿ1=2
x , the accuracy of the results increases

with Re1=2
x ; hence, the thinner the boundary layer the more accurate the

analysis. Another dif®culty occurs for x ! 0, which is the starting section of

the boundary layer.

The analytical form of the heatfunction for the forced convection

boundary layer at the warm wall is [11]

~H � ~x ; Z� � H �x ; y�
rcP U1�T0 ÿ T1�LReÿ1=2

L

� ~x 1=2 f �Z�y�Z� � 2

Pr
y0�Z�

� �
� ~x 1=2gT �Z� �isothermal wall� �3:116�

Ĥ � ~x ; Z� � H �x ; y�
q 00L

� ~x
1

2
Prf �Z�y�Z� � y0�Z�

� �
� ~xgF �Z� �isoflux wall�: �3:117�

Like the temperature ®eld of the Pohlhausen solution, the heatfunction ®eld

depends on the Prandtl number. It is apparent that ~H � ~x ; ~y� and Ĥ � ~x ; Z� are

not similarity functions. However, they are the product of two terms: a

similarity heatfunction, gT �Z� or gF �Z�, and a particular function of the

downstream coordinate that depends on the particular thermal boundary

condition (here a warm, isothermal or constant-¯ux wall). An interesting

feature of the similarity heatfunction g�Z� is that it clearly shows the

contribution of the two mechanisms of heat transfer: transversal conduction,

y0�Z�, and convection, f �Z�y�Z�.

3.1.14 OTHER THERMAL CONDITIONS
The isothermal plate is the simplest and, historically, one of the oldest

problems. However, in many applications other thermal conditions may

occur. Although the speci®c quantities h and Nu differ from case to case, the

boundary layer concepts and the theory introduced by Prandtl, Blasius, and

Pohlhausen are, from a broader perspective, the same. Several examples are

detailed next.

Wall with Unheated Starting Section
An important thermal design problem is the evaluation of the heat trans-

ferred from a wall with an unheated �T � T1� starting section, 0< x < x0

(Fig. 3.13). The solution may be found by the integral method. If we select

the temperature pro®le m � p�3ÿ p2�=2, and the velocity pro®le m �
n�3ÿ n2�=2 (Table 3.1), the energy integral equation becomes

D3 � 4D2x
dD
dx
� 0:932

Pr
; �3:118�
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and it admits the solution

D3 � 0:932

Pr
� Cxÿ3=4: �3:119�

The integration constant C is obtained by applying the boundary condition:

The temperature boundary layer starts at x � x0, and hence,

D � 0:977Prÿ1=3 1ÿ x0

x

� �3=4
� �1=3

: �3:120�

For x0 � 0 this result coincides with (3.88). The local Nusselt number is

then

Nux �
hx

k
� 0:323Pr1=3Re1=2

x 1ÿ x0

x

� �3=4
� �1=3

: �3:121�

Wall with Speci®ed Nonuniform Temperature
The previous result may be used to solve a more general heat transfer

problem: a nonuniform heated plane wall with a speci®ed temperature

distribution. For an isothermal source, Tw � T0, located at x1< x < x2, the

temperature boundary layer may be thought of as being produced by a

superposition of two temperature boundary layers, as shown in Fig. 3.14. The

associated heat ¯uxes are as follows:

In the unheated section:

0< x < x1; q
00 � 0:

In the heated section:

x1< x < x2; q
00 � 0:323

k

x
Pr1=3Re1=2

x

DT

1ÿ x1

x

� �3=4
� �1=3

:

In the unheated section (by superposition):

x > x2; q
00 � 0:323

k

x
Pr1=3Re1=2

x

DT

1ÿ x1

x

� �3=4
� �1=3 �

ÿDT

1ÿ x2

x

� �3=4
� �1=3

8>>><>>>:
9>>>=>>>;:

Figure 3.13
Forced

convection heat
transfer from a
plane wall with

an unheated
starting section.
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This result may be generalized. For example, in the case of a heat source

described by a stairlike temperature pro®le, DTi , the heat ¯ux is

q 00 � 0:323
k

x
Pr1=3Re1=2

x

PN
i�1

DTi

1ÿ xi

x

� �3=4
� �1=3

;

�3:122�

where xi is the length of the wall section i with the imposed temperature DTi .

Wall with Speci®ed Uniform Heat Flux
In many problems, such as the cooling of electronic or nuclear components,

the wall heat ¯ux rather than the temperature is the known quantity. In these

applications, overheating, burnout, and melting are very important issues

and, consequently, the evaluation of the wall temperature distribution, Tw �x �,
is one of the main goals in thermal design.

Figure 3.14
Forced

convection heat
transfer from a

nonuniform
heated plane

wall with a
speci®ed

temperature
distribution.
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The integral method and the pro®les introduced previously may be

utilized to compute the temperature drop Tw �x � ÿ T1 in the case when

q 00 � const, yielding the local Nusselt number:

Nux �
q 00

Tw �x � ÿ T1

x

k
� 0:458Pr1=3Re1=2

x �Pr> 1�: �3:123�

A more general case is the heated plane wall with a nonuniform heat ¯ux

distribution q 00�x �:

Tw �x � ÿ T1 �
0:623

k
Prÿ1=3Reÿ1=2

x

�x

x�0

1ÿ x
x

� �3=4
" #ÿ2=3

q 00�x�dx �Pr> 1�:

�3:124�

3.1.15 OTHER FLOW CONDITIONS
In the boundary layer momentum balance (3.59), the horizontal component

of the pressure gradient is negligibly small compared to the inertia and

friction terms. This assumption is valid when the ¯ow is parallel to the wall. If

the wall is inclined with respect to the ¯ow, let us say by an angle of b=2,

then the free stream is accelerated in the x -direction, along the wall. If we

neglect the laminar boundary layer, within which the viscous friction

balances the inertia, the ¯ow that engulfs an angular obstacle with the

opening b may be considered inviscid. In this situation, the momentum

balance is made by two terms: the friction and the pressure gradient.

Consequently, the ¯ow may be solved by methods speci®c to potential

problems. The free stream velocity pro®le outside the boundary layer around

angular obstacles is, in the limits of the potential (Laplace) theory,

U1�x � � Cxm�b�;C � const;m � b
2pÿ b

: �3:125�

By using Bernoulli's equation,

1

r
dP1
dx
� ÿU1

dU1
dx

[12], and (3.125), the momentum equation for the boundary layer around an

angular obstacle (of angle b) is

u
@u

@x
� v

@v

@y
� m

x
U 2
1 � n

@2u

@y2
: �3:126�

Falkner and Skan [18] found that this problem admits a similarity solution

with an additional parameter, m (Blasius is a particular case, for m � 0).

Analogously to Pohlhausen's method and using the Falkner±Skan solution to

the ¯ow, Eckert [19] found a similarity solution for the convection heat

transfer problem. The friction coef®cient in this case is Cf ;x � Reÿ1=2
x ; Nusselt

number is less sensitive to the longitudinal pressure gradient and the scale

relation Nu � Pr1=3Reÿ1=2
x is accurate for a larger range of b values. Eckert
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computed the Nu Reÿ1=2
x group as a function of Pr and b. Figure 3.15 [10]

shows how, by employing an appropriate scaling, the NuPrÿ1=3Reÿ1=2
x group

appears as a function of only b.

3.2 Internal Forced Convection

In many applications convection heat transfer between a solid body and a

¯uid occurs through an internal (to the heat source) forced ¯ow. The main

quantities of interest are, again, the friction coef®cient, the longitudinal

(streamwise) pressure drop, and the heat transfer coef®cient that evaluates

the heat transferred to the ¯ow. Similarly to the external forced convection

problem, where the Prandtl±Pohlhausen analysis was shown to provide

simpler mathematical models, the interest in simpler, yet satisfactorily

accurate hydrodynamic and heat transfer equations is appealing here as

well. The main concepts speci®c to the internal forced convection are the

fully developed ¯ow and fully developed temperature ®eld. They are direct

consequences of the hydrodynamic and temperature boundary layers that

develop in external forced convection [21]. Similarly to the boundary layer

that separates the external ¯ow into two regions (a free stream ¯ow and a

boundary layer ¯ow), the concept of ``fully developed'' helps distinguishing

the entrance region ¯ow from the fully developed region ¯ow.

Figure 3.15 Local friction and heat transfer in laminar boundary layer ¯ow along an isothermal wedge-
shaped body Ð used with permission from A. Bejan, Convection Heat Transfer, John Wiley, 1984, Fig. 2.10, p. 57
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3.2.1 THE HYDRODYNAMIC ENTRANCE LENGTH
The ¯ow in the 2D channel of Fig. 3.16, made of two parallel plates, has a

uniform velocity entrance pro®le, U . As in external forced convection,

boundary layers are expected to develop at top and bottom walls on a

downstream length x suf®ciently small compared to the size of the inter-

plates channel spacing, D. When d reaches the limiting value D=2, the two

boundary layers start interacting. Consequently, the channel ¯ow may be

divided into two regions: an entrance (or developing) region Ð where the

boundary layers do not interact (are distinct) and where there is a central free

stream ¯ow unperturbed by the presence of the boundary layers Ð and a

fully developed region, where the central free stream ¯ow ceases to exist for a

central channel ¯ow, and where the boundary layers merge into interacting.

A straightforward order-of-magnitude evaluation of the entrance length

size, X , may be obtained by using Blasius's solution, d=x � 4:92Reÿ1=2
x

(3.81), and the constraint d�X � � D=2:

X

D
Reÿ1

D � 0:0103: �3:127�

The more accurate integral solution for the entrance region, due to

Sparrow and Crawford [20], accounts for the acceleration of the central ¯ow

caused by the growing compression exerted by the developing boundary

layers. This effect is illustrated in Fig. 3.16: As the boundary layers accumu-

late stagnant ¯uid at the walls, the free stream velocity, Uc , has to increase in

order to preserve the rUD mass ¯ow through any cross section. The

momentum integral equation (3.81), with U1 replaced by Uc , Y � d�x �
and with the pressure gradient, dP1=dx , replaced by dP=dx Ð a function

of Uc�x � , as suggested by Bernoulli's equation r�U 2
c =2� � P � const Ð yields

Uc

dUc

dx
� 1

r
dP

dx
� 0: �3:128�

Figure 3.16 2D channel ¯ow with uniform velocity entrance pro®le: the entrance (or developing) and the
fully developed regions.
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Eliminating dP=dx between (3.128) and (3.81) results in

d

dx

�d
0

�Uc ÿ u�udy � dUc

dx

�d
0

�Uc ÿ u�dy � n
@u

@y

����
x�0

: �3:129�

On the other hand, the mass conservation law yields�d
0

rudy �
�D

2

0

rUcdy � rU
D

2
: �3:130�

Sparrow's integral approach is based on the boundary layer pro®le

u

Uc

� 2
y

d
ÿ y

d

� �2

; �3:131�

which yields

x

D
Reÿ1

D �
3

160
9

Uc

U
ÿ 2ÿ 7

U

Uc

ÿ 16 ln
Uc

U

� �
;
d�x �
D=2
� 3 1ÿ U

Uc�x �
� �

: �3:132�

If we recall that at the boundary layer merging station, X , the boundary

layer thickness is constrained, d�X � � D=2, it follows that

Uc�X � �
3

2
U ;

X

D
Reÿ1

D � 0:0065: �3:133�

This solution is smaller by 37% than the scale analysis solution (3.127)

[10]. The basic conclusion of the two analyses (scale and integral) is that the

laminar entrance length is proportional to DReD , where the proportionality

coef®cient is of order 10ÿ2.

Schlichting [15] solved this problem by using two asymptotic expansions

for the laminar entrance region (for the beginning and for the end, respec-

tively), and obtained

X

D
Reÿ1

D � 0:04: �3:134�

The different structures of the entrance and fully developed regions is

also apparent in the wall shear stress, tw �x �, as suggested by the friction

coef®cient

Cf ;x �def tw �x �
1
2 rU 2

;

which, by Sparrow's analysis is

Cf ;x ReD �
8

3

Uc

U
1ÿ U

Uc

� �ÿ1

: �3:135�

Figure 3.17 [10] shows Cf ;x ReD computed by using Blasius's solution,

d=x � 4:92Reÿ1=2
x , where U1 is replaced by U in the de®nitions of Cf ;x and

Rex . The friction coef®cient variation indicates, as expected, the existence of

two distinct boundary layers. In the fully developed region tw �x �, and hence

Cf ;x ; ceases to depend on x , because the velocity pro®le u�x ; y� itself is no

longer a function of x .
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The entrance region problem for a cylindrical, circular duct may be

treated analogously [10].

3.2.2 FULLY DEVELOPED FLOW
The stationary forms of the mass conservation equation,

@u

@x
� @v
@y
� 0; �3:136�

and momentum balance equation,

u
@u

@x
� v

@u

@y
� ÿ 1

r
@P

@x
� n

@2u

@x 2
� @

2u

@y2

� �
�3:137�

u
@v

@x
� v

@v

@y
� ÿ 1

r
@P

@y
� n

@2v

@x 2
� @

2v

@y2

� �
; �3:137�

may be substantially simpli®ed by the following argument: At the coordinate

x � L; that is, in the fully developed region, y � D and u � U . The mass

conservation law (3.136) suggests the following scaling for the transversal

component of the velocity:

v � DU

L
: �3:138�

Hence, the fully developed region is situated far enough downstream (with

respect to the entrance region) that the order of magnitude (scale) of v is

negligibly small. Consequently, mass conservation yields

v � 0;
@u

@x
� 0: �3:139�

Figure 3.17
Skin friction

coef®cient in the
entrance region

of a parallel-duct
¯ow.
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It should be noticed that the scale y � D (constraint) is consistent for the

fully developed region, whereas the scaling x � d is appropriate for the

entrance region. The ®rst scaling corresponds to a variable velocity pro®le in

the entire cross section; the second scaling refers to the case of a d-thick

region that grows with the x -coordinate.

The y-momentum equations (3.137) and (3.139) lead to

@P

@y
� 0;

which indicates that, mathematically, P is a function of x only. This

conclusion is similar to that obtained previously, in the external boundary

layer problem: in the fully developed region the pressure is constant in any

cross section of the ¯ow. In virtue of this conclusion, the x -momentum

equation (3.137a) becomes

dP

dx
� m

@2u

@y2
� const �3:140�

Since, on one hand, P � P �x � and, on the other hand u � u�y�, each

term in (3.140) has to be constant. Solving (3.140) with wall no-slip boundary

conditions, ujy��D
2
� 0 yields the Hagen-Poiseuille solution [22, 23] to the

fully developed ¯ow between parallel plates,

u � 3

2
U 1ÿ y

D=2

� �2
" #

;U � D2

12m
ÿ dP

dx

� �
: �3:141�

Here, the y-origin is taken at the channel longitudinal axis. The velocity

pro®le is parabolic and the velocity is proportional to the pressure drop per

unit duct length.

For a duct of an arbitrary cross section, (3.140) is replaced by

dP

dx
� mH2u � const; �3:142�

which, in the particular case of a cylindrical circular cross-section duct of

radius r0, becomes

dP

dx
� m

@2u

@r 2
� 1

r

@u

@r

� �
: �3:143�

The solution to this problem with the no-slip wall boundary condition is

u � 2U 1ÿ r

r0

� �2
" #

;U � r 2
0

8m
ÿ dP

dx

� �
: �3:144�

The forms (3.141) and (3.144) are the simplest results for fully developed

channel ¯ow in a constant cross-section duct. Generally, solving the Poisson

problem (3.142) is considerably more complicated.

For Hagen±Poiseuille ¯ows, it is customary to de®ne the Reynolds

number as ReD � UD=n. Since in this case the governing balance is between

the longitudinal (downstream) pressure gradient and the viscous friction
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(opposed to the ¯ow), this group is a measure of the ratio of pressure force to

friction force, which scales as

ÿ dP

dx

m
@2u

@r 2

� O�1�: �3:145�

3.2.3 THE HYDRAULIC DIAMETER AND THE PRESSURE DROP
Although in the fully developed region the mass ¯ow rate _m and the pressure

drop DP are proportional, their analytic relation, _m�DP �, is not that simple,

and its identi®cation forms the object of substantial experimental work.

The longitudinal momentum equation for a control volume in the fully

developed region (Fig. 3.18, after [10]) is

ADP � twpL; �3:146�

where p is the ``wet'' perimeter. In the fully developed region it is customary

to replace the wall shear stress, tw , by the friction factor, f , a nondimen-

sional quantity de®ned [similarly to Cf ;x � tw �x �= 1
2 rU 2� by

f �def tw
1
2 rU 2

: �3:147�

However, unlike Cf ;x ; which was de®ned for the entrance region, f does not

depend on x . Consequently, the pressure drop in the fully developed region

is computed by

DP � f
pL

A

1

2
rU 2

� �
: �3:148�

The inverse of the ratio p=A is the characteristic size of the duct cross-section,

that is,

rh �
A

p
; �hydraulic radius�; or Dh � 4rh �

4A

p
�hydraulic diameter�:

�3:149�
Table 3.2 after [10], gives the hydraulic diameter for several types of ducts of

cross sections with reduced degrees of asymmetry, all with the same

Figure 3.18
Contributors to

the longitudinal
momentum

balance for a
¯uid control

volume in the
fully developed

region.
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equivalent hydraulic diameter, Dh. For cross sections of higher degrees of

asymmetry, the hydraulic diameter is of the order of magnitude of the

smallest cross-sectional dimension.

By (3.148), the pressure drop is

DP � f
4L

Dh

1

2
rU 2

� �
; �3:150�

and it may be evaluated provided f is a known quantity. For Hagen±

Poiseuille ¯ows, the solutions to (3.141) and (3.144) are

Parallel plates �D � inter-plates spacing� ! f � 24

ReDh

;Dh � 2D;

Circular tube �D � tube diameter� ! f � 16

ReDh

;Dh � D:

Table 3.3 [10] summarizes the friction factor, f , for ducts of different

cross-section types, in laminar ¯ows �ReDh
< 2000�.

Table 3.2

Cross section Hydraulic diameter

Circular

Square

Triangular

Rectangular (4 : 1)

Parallel plates
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The friction factor, f , may be computed provided the solution to (3.143)

is known. For instance, for a duct of rectangular cross section a � b (Fig.

3.19),

dP

dx
� m

@2u

@y2
� @

2u

@z 2

� �
� const �3:151�

The analytic solution to this Poisson equation may be obtained, for example,

by the variable separation method. However, a simpler yet satisfactorily

accurate solution may be derived by assuming the velocity pro®le

u�y; z � � u0 1ÿ y

a=2

� �2
" #

1ÿ z

b=2

� �2
" #

; �3:152�

Table 3.3

NuD � hDh=k

Cross section fReDh

pD2
h

4

1

Aduct q00 uniform T0 uniform

13.3 0.605 3 2.35

14.2 0.785 3.63 2.89

16 1 4.364 3.66

18.3 1.26 5.35 4.65

24 1.57 8.235 7.54

24 1.57 5.385 4.86

Figure 3.19
Duct of

rectangular
cross section.
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where u0 is the maximum velocity (in the axis). The problem then reduces to

®nding u0.

It is obvious that u�y; z � thus obtained does not identically match the

true solution to the problem. The maximum value of the velocity results by

imposing that (3.152) veri®es (3.151) integrated (averaged) over the duct

cross section, namely,

ab
dP

dx
� m

�a
2

ÿa
2

�b
2

ÿb
2

@2u

@y2
� @

2u

@z 2

� �
dzdy : �3:153�

Consequently,

ab
dP

dx
� ÿ 16

3
mu0

b

a
� a

b

� �
; �3:154�

and using the de®nition of the average,

U �def 1

ab

�a
2

ÿa
2

�b
2

ÿb
2

udz dy; �3:155�

yields

u0 �
9

4
U : �3:156�

Finally, this result produces the following expression for the friction factor:

f � a2 � b2

�a � b�2
24

ReDh

; where Dh �
2ab

a � b
: �3:157�

3.2.4 HEAT TRANSFER IN THE FULLY DEVELOPED REGION
The key problem of heat transfer in duct ¯ows is to determine the relation-

ship between the wall-to-stream temperature drop and its associated heat

transfer rate. For ¯ow in a circular duct of radius r0 and with average

longitudinal velocity U , the mass ¯ow rate is _m � rpr 2
0 U (Fig. 3.20, [10]).

The heat transfer rate from the wall to the stream should equal the change in

the enthalpy of the stream. To verify this we write the ®rst principle for a

control volume of length dx ,

q 002pr0dx � _m�hx�dx ÿ hx �: �3:158�
In the perfect gas limit of the ¯uid �dh � cP dTm�, or in the limit of an

incompressible ¯ow and under a negligible pressure variation �dh � cP dTm�,
this balance equation implies

dTm

dx
� 2

r0

q 00

rcU
; �3:159�

where, for incompressible ¯ows, cP was replaced by c. The temperature Tm

that appears in the energy balance written for the control volume is the

average temperature of the stream, and it indicates that the actual tempera-
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ture ®eld in the stream is not uniform. Its de®nition results from the ®rst

principle applied to a stream tube, that is, q 002pr0dx � d
�
A
rucP TdA, as

Tm �def 1

rcP U

1

A

�
A

rucP TdA: �3:160�

For ducts with uniform-temperature walls, this means

Tm �
1

U

1

pr 2
0

�
A

uTdA: �3:161�

As the temperature varies in every cross section of the duct, there exists a

wall-to-stream temperature drop DT � Tw ÿ Tm . The heat transfer coef®cient

is then

h �def q 00

Tw ÿ Tm

�
k
@T

@r

����
r�r0

DT
; �3:162�

where q 00 is positive if the heat transfer is wall$ stream.

3.2.5 THE FULLY DEVELOPED TEMPERATURE PROFILE
The heat transfer coef®cient may be evaluated provided the temperature

®eld T �x ; y�, and hence the energy boundary value problem for the speci®ed

boundary conditions, is solved ®rst. For example, for the stationary laminar

¯ow in a straight circular duct, the energy equation is

1

a

�
u
@T

@x
� v

@T

@y

�
� @

2T

@r 2
� 1

r

@T

@r
� @

2T

@x 2
: �3:163�

In the hydrodynamic fully developed region, v � 0 and u � u�r �, which

implies

u�r �
a
@T

@x
� @

2T

@r 2
� 1

r

@T

@r
� @

2T

@x 2
: �3:164�

Figure 3.20
Heat transfer in

the fully
developed region

for ¯ow in a
cylindrical duct.
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This equation indicates the balance

Axial convection � Radial conduction;Axial conduction

with the following scales:

U

a
q 00

DrcP U

� �z���������}|���������{Convection

� DT

D2

radial

;
1

x

q 00

DrcP U

� �
:

Longitudinal
z���������������}|���������������{Conduction

�3:165�

Note that en route to this scaling relation we used the relation

@T

@x
� q 00

DrcP U
; �3:166�

introduced by (3.159).

Apparently, the radial conduction is a central term in (3.165) Ð without

its contribution there is no heat transfer associated to the internal ¯ow. The

scales (3.165) multiplied by D2=DT and the de®nition of the heat transfer

coef®cient, h � q 00=DT , yield

hD

k

z}|{Convection

� 1

Radial

;
hD

k

� �2 a
DU

� �2

:

Longitudinal
z�����������������}|�����������������{Conduction

�3:167�

The bottom line to this analysis is that for large PeÂclet numbers, PeD , the

axial conduction heat transfer may be negligibly small, and the energy

equation becomes

u�r �
a
@T

@x
� @

2T

@r 2
� 1

r

@T

@r
PeD �

UD

a
� 1

� �
: �3:168�

Furthermore, from the balance

Axial convection � Radial conduction;

it follows that the Nusselt number is a constant of order 1,

NuD �
hD

k
� 1 PeD �

UD

a
� 1

� �
: �3:169�

The temperature pro®le produced by this analysis corresponds to fully

developed ¯ow. It represents the temperature distribution downstream

from the two entrance regions �X ;XT �; where both u and T are developing.

At this point it is important to note that, in the literature, the fully

developed temperature pro®le is de®ned through

Tw ÿ T

Tw ÿ Tm

� f
r

r0

� �
; �3:170�

where T , Tw , and Tm may be functions of x . This analytic form for T �x ; r � is
a consequence of NuD � 1, so,

NuD �
hD

k
� q 00

Tw ÿ Tm

D

k
; or NuD � D

@T

@r

����
r�r0

Tw ÿ Tm

� 1: �3:171�
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Consequently, the variation of @T =@r jr�r0
with respect to x is identical to that

of Tw �x � ÿ Tm�x �, and since @T =@r is a function of x and r , it follows that

NuD �
@T =@�r=r0�

Tw �x � ÿ Tm�x �
� f1

r

r0

� �
� O�1�; �3:172�

which, further integrated with respect to r=r0, yields

T x ;
r

r0

� �
� �T0 ÿ Tm�f2

r

r0

� �
� f3�x �: �3:173�

Here f1, f2, and f3 are functions of r=r0 and x .

3.2.6 DUCTS WITH UNIFORM HEAT FLUX WALLS
When q 00 is not a function of x , the ordinary differential equation (3.168)

admits an analytical solution,

T �x ; r � � Tw �x � ÿ
q 00

h
f

r

r0

� �
; hence

@T

@x
� dTw

dx
; or

dTw

dx
� dTm

dx
:

�3:174�
By virtue of (3.159),

@T

@x
� 2

r0

q 00

rcP U
� const �3:175�

Consequently, the temperature at a particular location is a linear function of

x , and its slope is proportional to q 00 (Fig. 3.21), after [10]. On the other hand,

the r -variation of T , respectively f�r=r0�, may be found by solving the

energy equation for the thermally fully developed ¯ow. Using (3.168), the

temperature pro®le (3.174) and the Hagen±Poiseuille velocity pro®le (3.144)

yield

ÿ2
hD

k
�1ÿ r �2� � d2f

dr �2
� 1

r *

df
dr *

; r * � r

r0

; �3:176�

Figure 3.21
Heat transfer in

the fully
developed region
for a cylindrical

duct with
uniform heat

¯ux walls.

3. Convection Heat Transfer 531

H
ea

t
Tr

an
sf

er



with NuD � hD=k now emerging explicitly. Integrating this equation twice

and using the boundary condition f0jr*�0 � finite results in

f�r *;NuD � � C2 ÿ 2NuD

r *

2

� �2

ÿ r �2

4

� �2
" #

: �3:177�

The integration constant C2 may be found by using (3.174), (3.177), and the

condition T jr*�1 � Tw , namely,

T � Tw ÿ �Tw ÿ Tm�Nu
3

8
ÿ r �2

2
� r �4

8

� �
: �3:178�

The average temperature drop Tw ÿ Tm (3.160) is then

Tw ÿ Tm �
1

pr 2
0 U

�2p

0

�r0

0

�Tw ÿ T �urdrdy � 4

�1

0

�Tw ÿ T ��1ÿ r �2�r *dr *:

�3:179�
Consequently,

1 � 4NuD

�1

0

3

8
ÿ r �2

2
� r �4

8

� �
�1ÿ r �2�r *dr * � 11

48
NuD ; �3:180�

which means that the Nusselt number for the thermally fully developed

Hagen±Poiseuille region is

NuD �
48

11
: �3:181�

This result is in good agreement with the scale analysis (3.169).

Table 3.3 gives the Nusselt number, NuD � hDh=k, for different types of

ducts, obtained by integrating the energy equation

u

a
@T

@x
� H2T ; �3:182�

where the longitudinal temperature gradient, @T =@x , may be explicitly

obtained via a balance equation of type (3.159), that is,

dTm

dx
� q 0

rcP AU
� const �3:183�

q 0 is the heat transfer rate per duct unit length, an x -independent quantity.

Generally, for the noncircular ducts, the wall temperature on a circumfer-

ential outline, Tw , is assumed constant and, subsequently, the heat ¯ux is

nonuniform in the x -direction.

3.2.7 DUCTS WITH ISOTHERMAL WALLS
Figure 3.22, after [10], shows a qualitative sketch of the temperature pro®le

for a duct with an isothermal, Tw , wall. If the average temperature of the ¯ow

at coordinate x1 in the fully developed region is T1, then the heat transfer is
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driven by the temperature difference Tw ÿ T1 where the ¯ow temperature is

increasing downstream, monotonously. Consequently, the heat ¯ux

q 00�x � � h�Tw ÿ Tm�x �� �3:184�

exhibits the same trend. On the other hand, by scale analysis (3.169), h was

shown to be constant. Now, eliminating q 00 between (3.184) and (3.159) and

then integrating it yields

T0 ÿ Tm�x �
�T0 ÿ T1�

� eÿ�a�xÿx1�=r 2
0 U �NuD ; �3:185�

which clearly indicates an exponential decrease with respect to x . The NuD

number that appears in (3.185) may be computed by solving the energy

equation (3.168), where the temperature gradient @T =@x is written as

@T

@x
� @

@x
�T0 ÿ f�T0 ÿ Tm�� � f

dTm

dx
:

Merging this result, the Hagen±Poiseuille solution, and the temperature

pro®le T � T0 ÿ f�T0 ÿ Tm� into the energy equation �3:164� leads to the

nondimensional form

ÿ2 NuD �1ÿ r �2�f � d 2f
dr �2
� 1

r �
df
dr *

; �3:186�

which, if we observe that the sign of f�r *� is reversed, is similar to (3.176).

The corresponding boundary conditions may be

Axial symmetry:
df
dr *

����
r ��0

� 0;

Isothermal wall: fjr ��1 � 0:

�3:187�

Figure 3.22
Heat transfer in

the fully
developed region
for a cylindrical

duct with
isothermal walls.
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If we apply the heat transfer coef®cient de®nition (3.162), the Nusselt

number then results as

NuD � ÿ2
df
dr *

����
r ��1

: �3:188�

The solution f�r *;Nu� to the problem (3.186), (3.187) and the de®nition

(3.188) may be found, for instance, by a ®xed-point iterative procedure using

a starting guess value for NuD that is then successively improved. The ®nal

result,

NuD � 3:66; �3:189�
is in good agreement with the scale analysis result (3.169). Table 3.3 also

gives the Nusselt numbers for several common types of ducts.

3.2.8 HEAT TRANSFER IN THE ENTRANCE REGION
The previous results are valid for laminar internal forced ¯ow, when both

velocity and temperature are fully developed, that is, for x >maxfX ;XT g.
The length XT is that particular value of the x -coordinate where dT reaches

the value of the hydraulic diameter.

The scale analysis may be used to produce order of magnitude estimates,

and Fig. 3.23a shows, qualitatively, the in¯uence of Pr on the scaling

dT �XT � � Dh. As seen previously, the ratio d=dT increases monotonously

with Pr; hence, X =XT has to vary conversely.

Figure 3.23
The internal

forced
convection heat
transfer in the

Entrance Region
for ¯uids with

(a) Pr � 1, (b)
Pr � 1.
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For ¯uids with Pr � 1, in virtue of (3.71), dT grows faster than d,

dT �x � � xPrÿ1=2Reÿ1=2
x ; �3:190�

and, if we consider that at the temperature entrance region limit x � XT and

dT � Dh, it follows that

XT Prÿ1=2Reÿ1=2
XT
� Dh; or

XT

Dh

� �1=2

�ReDh
Pr�ÿ1=2 � 1: �3:191�

Alternatively, this result may also be put in the form

XT

Dh

�ReDh
Pr�ÿ1 � const; �3:192�

where the constant value was identi®ed, empirically, as being ``approxi-

mately 0.1.''

A similar scale analysis for the hydrodynamic problem leads to

XT

Dh

� �1=2

Reÿ1=2
Dh
� 1: �3:193�

For ¯uids with Pr � 1 (water, oils, etc.), dT �= Dh, although in the

entrance region the temperature boundary layer grows more slowly than

the velocity boundary layer. In this situation the velocity pro®le extends over

Dh (Fig. 3.23). Hence, in the temperature boundary layer the scale of u is U ,

and it may be shown that dT �x � � xReÿ1=2
x Prÿ1=2, that is, a result that is

identical to the one obtained for ¯uids with Pr � 1. The scaling relations

(3.193) and (3.191) lead to

XT

X
� Pr; �3:194�

a valuable, general conclusion that is valid for any Pr.

The local Nusselt number in the thermally developing region �x � XT �
scales as

NuD �
hDh

k
� q 00

DT

Dh

k
� Dh

dT

� x=Dh

ReDh
Pr

 !ÿ1=2

; �3:195�

and similarly to the dT (3.190) scale, it is valid for any Pr. This result was

validated by other, more accurate solutions.

3.3 External Natural Convection

Natural, or free convection occurs when the ¯uid ¯ows ``by itself'' becauses

of its density variation with the temperature, and not because of imposed,

external means (e.g., a pump). For example, in a stagnant ¯uid reservoir that

is in contact with a warmer, vertical wall (the heat source here), the ¯uid

layer that contacts the wall is heated by the wall through thermal diffusion,

and it becomes lighter as its density decreases. Consequently, this warmer

¯uid layer is entrained into a slow, upward motion that, provided the ¯uid
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reservoir is large enough, does not perturb the ¯uid away from the wall.

Because the hydrostatic pressure in the stagnant ¯uid reservoir decreases

with altitude, a control volume of ¯uid conveyed in this ascending motion Ð

in fact, a wall jet Ð expands while traveling upward.

By virtue of the mass conservation principle (the reservoir contains a

®nite amount of ¯uid), the ¯uid control volume will eventually return to the

bottom of the warm wall, entrained by a descending stream. In this closing

sequence of its travel the ¯uid control volume is cooled and compressed (its

density is increased) by the increasing hydrostatic pressure.

Summarizing, the ¯uid control volume may be seen as a system that

undergoes a cyclic sequence of heating, expansion, cooling, and compres-

sion processes, which is in fact the classical thermodynamic work-producing

cycle (Fig. 3.24) [2]. Here, unlike the classical thermodynamic cycles, the

heating and expansion, on one hand, and the cooling and compression, on

the other hand, are (respectively) simultaneous processes Ð neither at

constant volume (the control volume expands=compresses while heating

up=cooling down) nor isobaric (the hydrostatic pressure varies continuously

with the altitude). The work potential produced by this cycle is ``consumed''

through internal friction between the ¯uid layers, which are in relative

motion.

In natural convection heat is transferred from the heat source (e.g., the

warm, vertical wall) to the adjacent ¯uid layer by thermal diffusion, then by

convection and diffusion within the ¯uid reservoir. When the ¯uid reservoir

that freely convects the heat is external to the heat source, the convection

heat transfer is called external.

Figure 3.24
External natural
convection: The

¯uid control
volume acts as a

system that
undergoes a

cyclic sequence
of heating Ð the

classical
thermodynamic
work-producing

cycle.
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3.3.1 THE THERMAL BOUNDARY LAYER
The ¯uid region where the temperature ®eld varies from the wall tempera-

ture to the reservoir temperature and where, in fact, motion exists is called

the thermal (temperature) boundary layer (Fig. 3.25).

The central object of the thermal analysis is, again, to evaluate the heat

transferred from the wall to the reservoir, and the bottom line to it is ®nding

the heat transfer coef®cient

hy �def q 00w;y
Tw ÿ T0

� ÿ
k
@T

@x

����
x�0

Tw ÿ T0

: �3:196�

Here T0 is the reservoir temperature far away from the wall, Tw is the wall

temperature, k is the thermal conductivity of the ¯uid, and q 00w;y is the wall

heat ¯ux rate in the y-direction (horizontal).

The mass conservation equation is

@u

@x
� @v
@y
� 0; �3:197�

the momentum equation is

r u
@u

@x
� v

@u

@y

� �
� ÿ @P

@x
� m

@2u

@x 2
� @

2u

@y2

� �
�3:198�

r u
@v

@x
� v

@v

@y

� �
� ÿ @P

@y
� m

@2v

@x2
� @

2v

@y2

� �
ÿ rg; �3:198�

Figure 3.25
The structure of

the natural
convection

boundary layer
¯ow: laminar,

transition, and
turbulent
sections.
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and the energy equation is

u
@T

@x
� v

@T

@y
� a

@2T

@x 2
� @

2T

@y2

� �
�3:199�

These form the partial differential equation part of the mathematical model of

this boundary layer problem.

As for the forced convection boundary layer, the natural convection

boundary layer consists of a temperature boundary layer of thickness dT ,

and a hydrodynamic boundary layer, of thickness d.
The temperature gradient at the wall scales as

@T

@x

����
x�0

� DT

dT

; where DT � Tw ÿ T0; �3:200�

and, since the thermal boundary layer is a slender region, it makes sense to

assume that

dT � y : �3:201�

This means that, in the governing equations, the second-order derivatives

with respect to y may be neglected with respect to the second-order

derivatives with respect to x :

Another important feature revealed by the scaling is that pressure does

not vary signi®cantly across the dT region, that is,

P �x ; y� ' P �y� � P0�y�: �3:202�

Furthermore, if we observe that the pressure distribution in the reservoir

is essentially hydrostatic, the pressure gradient in the y-direction may be

replaced by

dP0

dy
� ÿr0g: �3:203�

All these derivations yield the following simpli®ed forms:

r u
@v

@x
� v

@v

@y

� �
� m

@2v

@x 2
� �r1 ÿ r�g; �3:204�

u
@T

@x
� v

@T

@y
� a

@2T

@x 2
: �3:205�

These form the reduced set of boundary layer equations.

As shown by the thermodynamic equation of state r � r�T ;P �, the

density of the ¯uid is a function of temperature and pressure. Consequently,

by Taylor expansion, it follows that

r ' r0 � �T ÿ T0�
@r
@T

����
p

� �P ÿ P0�
@r
@P

����
T

� � � � : �3:206�
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Experimental evidence indicates that the pressure dependence is negligibly

small compared to the temperature dependence; hence, the ®rst-order linear,

approximation of the density is

r ' r0 � r0b�T ÿ T1� � r0�1ÿ b�T ÿ T0��: �3:207�
Here b�Kÿ1, a constant) is the coef®cient of volumetric expansion.

It is important to note that this linear approximation is valid only when

b�T ÿ T0� � 1; that is, when the departure from the reference density

r0�T0;P0� (recorded in the reservoir) is suf®ciently small. When the tempera-

ture dependence of the ¯uid properties within the boundary layer region is

signi®cant, for a better agreement of the theoretical model with experiment

the ¯uid properties should be evaluated at �Tw ÿ T0�=2, called the ®lm

temperature.

In the limits of this linear approximation (3.207), the boundary layer

momentum equation (3.204) becomes

u
@v

@x
� v

@v

@y|�������{z�������}
Inertia

� n
@2v

@x2�|������{z������}
Friction

gb�T ÿ T0�|��������{z��������}
Buoyancy

�3:208�

where n � m=r0 is the kinematic viscosity. By the scaling argument (3.201)

the temperature corrections for r are discarded, except for the buoyancy

term Ð its cancellation here would suppress the only source of motion. The

linearization of r�T ;P � and the (3.208) form of the momentum equation are

known as the Oberbeck±Boussinesq approximation [24, 25].

3.3.2 THE SCALE ANALYSIS
An order of magnitude analysis of 3.196 shows that the heat transfer

coef®cient scales as

hf �
k

dT

: �3:209�

By the same approach, the following balances are identi®ed:

Mass conservation (3.197):

u

dT
� v

y
: �3:210�

Momentum balance (3.208):

u
v

dT

; v
v

y
� n

v

d2
T

; gbDT : �3:211�

Energy balance (3.205):

u
DT

dT

; v
DT

y
� a

DT

d2
T

: �3:212�
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The mass conservation scaling relation (3.210) may be used to produce a

simpler form of the energy balance (3.217),

v
DT

y|�{z�}
Convection �enthalpy�

� a
DT

d2
T

;|��{z��}
Conductiona �diffusion�

�3:213�

and of the momentum balance (3.211),

v
v

y|{z}
Inertia

� n
v

d2
T|{z}

Friction

; gbDT :|���{z���}
Buoyancy

�3:214�

It is important to note that in natural convection, the leading term (i.e.,

the source of motion) is the buoyancy term. The other terms, inertia and

friction, act as opposing body forces.

Buoyancy±Friction Balance (High-Pr Fluids)
In this case,

v2

y
< n

v

d2
T

; �3:215�

and the momentum scaling (3.214) reduces to

n
v

d2
T

� gbDT ; �3:216�

which leads to the following order-of-magnitude relations:

u � a
y

Ra1=4
y ; v � a

y
Ra1=2

y ; dT � y Raÿ1=4
y : �3:217�

The Rayleigh group, that emerges,

Ray �
gb�Tw ÿ T0�y3

an
; �3:218�

has the same order of magnitude as the thermal boundary layer aspect ratio

y=dT . The last relation in (3.217) may be used to estimate the order of

magnitude of the heat transfer coef®cient (3.209),

hy �
k

y
Ra1=4

y ; �3:219�

and, further on, the local Nusselt number,

Nuy �
hyy

k
� Ra1=4

y : �3:220�

Finally, by using (3.217) second and third, the scaling relation (3.215)

translates into

a< n; or 1< Pr: �3:221�
Hence, the buoyancy±friction balance occurs in ¯uids with high Prandtl

numbers �Pr�> 1�.
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Another important result of this analysis is that the velocity pro®le in

natural convection has two length scales: the distance from the wall to the

stagnant reservoir �d�,
d � yRaÿ1=4

y Pr1=2; �3:222�
and the distance from the wall to the location of the peak velocity �dT �: The

ratio of these scales is of the order of the square root of the ¯uid Prandtl

number,

d
dT

� Pr1=2> 1: �3:223�

Buoyancy±Inertia Balance (Low-Pr Fluids)
For low-Pr ¯uids the momentum balance is

v2

y
� gbDT

v2

y
> n

v

d2
T

� �
; �3:224�

and, consequently,

u � a
y

Bo1=4; v � a
y

Bo1=2; dT � yBoÿ1=4; �3:225�

where

Bo � RayPr �3:226�
is the Boussinesq group.

The local Nusselt number now scales as

Nuy �
hyy

k
� Bo1=4; �3:227�

and substituting v and dT scales in the inequality v2=y > vv=d2
T yields< Pr�> 1.

In the buoyancy±inertia balance regime, the wall jet has the same

thickness as the thermal boundary layer, dT . The region adjacent to the

wall where the velocity pro®le goes from zero (at the wall) to its peak value

(at dS ) is called the shear layer. Its scale is

dS � y
Ray

Pr

� �ÿ1=4

� yGrÿ1=4
y ; �3:228�

which con®rms that dS is smaller than dT :

dS

dT

� Pr1=2< 1: �3:229�

The nondimensional group Gr in (3.228) is the Grashof number. This

quantity is usually introduced through

Gry �def Ray

Pr
� gb�Tw ÿ T0�y3

n2
: �3:230�

These scaling results are valid provided the shear layer and the thermal

boundary layer are slender, namely,

1 >
y

dS

� Ray

Pr

� �1=4

and 1 >
y

dT

� �RayPr�1=4
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hold. The second restriction is stronger, and it implies that Ray > Prÿ1, which

is in fact the condition that validates the scaling results. Several wall thermal

conditions are discussed next.

3.3.3 VERTICAL WALL WITH UNIFORM TEMPERATURE
The dimensionless coef®cients of order 1 left unspeci®ed by the scale

analysis may be found by more accurate methods, for instance, the similarity

analysis.

For high-Pr ¯uids the similarity variable Z (x3.3.13) may be introduced

by scaling the coordinate orthogonal to the wall with the thermal boundary

layer thickness, respectively,

Z � x

yRaÿ1=4
y :

�3:231�

The v±velocity pro®le (3.217) second,

G �Z; Pr� � v

�a=y�Ra1=2
y

; �3:232�

the streamfunction

�
u � @c

@y
; v � ÿ @c

@x
, i.e., G � ÿ dF

dZ

�
F �Z; Pr� � c

aRa1=4
y ;

�3:233�

and the temperature pro®le for the isothermal wall, Tw ,

y�Z; Pr� � T ÿ T0

Tw ÿ T0

; �3:234�

are the similarity forms of the heat transfer quantities.

Rewriting the energy (3.205) and momentum (3.208) equations in terms

of c instead of u and v, and then replacing x , y , and c by Z, F , and y, yields

the similarity equations of the natural convection thermal boundary layer (for

�Pr�> 1� ¯uids):

1

Pr

1

2
F 02 ÿ 3

4
FF 00

� �
� ÿF 000 � y �3:235�

3

4
F y0 � y00: �3:236�

The boundary conditions that close the model are

Z � 0)
F � 0 �u � 0; impermeable wall�
F 0 � 0 �v � 0; no-slip�
y � 1 �T � Tw ; isothermal wall�

8><>:
Z!1) F 0 ! 0 �v � 0; stagnant fluid reservoir�

y! 0 �T � Tw ; isothermal fluid reservoir�:
�
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The similarity temperature and velocity pro®les along a vertical wall for

laminar natural convection are shown in Fig. 3.25.1 The local Nusselt number

produced by this analysis,

Nuy �def hyy

k
�
ÿk

@T

@x

����
x�0

�Tw ÿ T1�
y

k
� ÿ dy

dZ

��������
x�0

Ra1=4
y ; �3:237�

indicates that the local heat ¯ux, q 00w;y , varies as yÿ1=4. This result is

approximated within 0.5% by

Nuy � 0:503
Pr

Pr � 0:986Pr1=2 � 0:492

� �1=4

Ra1=4
y ; �3:238�

which covers the entire range of Prandtl numbers. The asymptotic values

predicted by (3.238), namely,

Nuy � 0:503Ra1=4
y ; Pr � 1

0:600�RayPr�1=4; Pr � 1;

(
are in good agreement with the order-of-magnitude analysis (3.220), (3.227).

A quantity of importance to the heat transfer analysis, the average or

overall Nusselt number, is de®ned by

Nuy �def
�hyy

k
� �q 00w;y
�Tw ÿ T0�

y

k
; �3:239�

where �q 00w;y is the wall heat ¯ux averaged over �0; y � and �q 00w;yy � q 0w;y . The

Nuy that corresponds to (3.238) is

Nuy � 0:671
Pr

Pr � 0:986Pr1=2 � 0:492

� �1=4

Ra1=4
y : �3:240�

For air �Pr � 0:72�, this correlation gives

Nuy � 0:517Ra1=4
y : �3:241�

3.3.4 TRANSITION TO TURBULENCE
Under speci®ed thermal conditions and for a given ¯uid, the boundary layer

¯ow is laminar for y small enough that the corresponding Ray is below a

certain critical value (Fig. 3.26). Traditionally [4], the threshold limit is

Ray � 109, regardless of the particular Pr number of the working ¯uid. This

criterion, which does not depend on Pr, was shown [26] to be better

represented by the condition Gry � 109 for all ¯uids within the range

10ÿ3�< Pr�< 103.

1 The velocity and temperature similarity pro®les shown in Fig. 3.26 were computed by the

same approach that was used previously for the solution to the Blasius±Pohlhausen, external

forced convection problem (x3.1.13). Equations (3.237) and (3.240) were utilized to

determine dy
dZ jx�0.
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Churchill and Chu [27] recommend an empirical correlation for the

overall Nusselt number,

Nuy � 0:825� 0:387Ra1=6
y

1� 0:492

Pr

� �9=16
" #8=27

8>>>>><>>>>>:

9>>>>>=>>>>>;

2

; �3:242�

that holds for �10ÿ1�<Ray �< 1012�, and it covers the entire Rayleigh number

range (laminar, transition, and turbulence). The physical properties that

appear should be evaluated at the ®lm temperature, �Tw � T0�=2. For air

�Pr � 0:72�, (3.242) assumes the simpler form

Nuy � �0:825� 0:325Ra1=6
y �2: �3:243�

Figure 3.26
The similarity
velocity and
temperature

pro®les in
laminar natural

convection.
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A more accurate correlation for the laminar regimes Gry < 109� was

found by Churchill and Chu [27]:

Nuy � 0:68� 0:67Ra1=4
y

1� 0:492

Pr

� �9=16
" #4=9

�3:244�

Nuy � 0:68� 0:515Ra1=4
y �Pr � 0:72�: �3:245�

3.3.5 VERTICAL WALL WITH UNIFORM HEAT FLUX
The relations (3.205) and (3.208) are general. Therefore, they may be used

for the uniformly heated wall, q 00w � const: In the laminar regime of high

Prandtl number ¯uids, the local Nusselt number scales as Nuy � Ra1=4
y , or

q 00w
DT �y�

y

k
� gbDT �y�y3

an

� �1=4

) q 00w
DT �y�

y

k

� �5

� gbq 00wy4

ank
� Ra�1=5y ; �3:246�

where DT �y� � Tw �y� ÿ T0 and Ray* is the Rayleigh number de®ned with the

heat ¯ux (the known quantity here). Apparently, DT �y� varies as y1=5. The

similarity solution for the uniform heat ¯ux [28], which is ®tted satisfactorily

well by

Nuy � 0:616Ra�1=5y

Pr

Pr � 0:8

� �1=4

; �3:247�

con®rms this result.

The following formulas for Nuy, de®ned based on the wall-averaged

temperature difference Tw �y� ÿ T0, are recommended in ref. 29:

Nuy � 0:6Ray*
1=5

Nuy � 0:75Ra�1=5y

9=; laminar; 105<Ray*< 1013 �3:248a�

Nuy � 0:568Ra�0:22
y

Nuy � 0:645Ra�0:22
y

)
turbulent; 1013<Ray*< 1016: �3:248b�

For air �Pr � 0:72�, they give

Nuy � 0:55Ra�1=5y �laminar� �3:248c�
Nuy � 0:75Ra�1=5y �turbulent�: �3:248d�

Churchill and Chu [27] proposed another correlation for the overall

Nusselt number, valid for all Rayleigh and Prandtl numbers:

Nuy � 0:825� 0:387Ra1=6
y

1� 0:437

Pr

� �9=16
" #8=27

8>>>>><>>>>>:

9>>>>>=>>>>>;

2

: �3:249�
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The Rayleigh number here is based on the y-averaged temperature differ-

ence, T w ÿ T1. For air �Pr � 0:72� this correlation predicts

Nuy � 0:825� 0:328Ra1=6
y

h i2

; �3:250�

which yields an asymptotic formula for high Rayleigh numbers Ray > 1010,

namely,

Nuy � 0:107Ra1=6
y : �3:251�

These relations may be rewritten in terms of the ¯ux Rayleigh number,

Ray*, by using the conversion Ray � Ray*=Nuy .

3.3.6 OTHER EXTERNAL NATURAL CONVECTION CONFIGURATIONS

Thermally strati®ed ¯uid reservoir (Fig. 3.27):

b � DTmax ÿ DTmin

DTmax

NuH �
q 00w;H
DTmax

H

k
NuH � f �b; Pr�Ra1=4

H �2�

RaH �
gbDTmaxH 3

an
:

Inclined walls (Fig. 3.28, after [2]):

Isothermal wall; Tw : Ray �
�g cosf�bDTwÿ1y3

an

Isoflux wall; q 00w : Ray* �
�g cosf�bq 00wy4

ank
:

Figure 3.27
The natural

convection ¯ow
in an enclosure

heated
differentially

from the sides.
The left wall is

warm, at TH, and
the right wall is

cold, at Tc,
TH > Tc.
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Figure 3.28
The effect of

inclination
relative to the

vertical direction
on the natural
convection at

the plane wall.

Figure 3.29
Natural

convection at
the horizontal

plane wall.
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Horizonal isothermal walls (Fig. 3.29):

Hot surface facing upward; or cold surface facing downward:

Nu � 0:54Ra1=4
L �104<RaL < 107�

0:15Ra1=4
L �107<RaL < 109�:

(
Hot surface facing downward; or cold surface facing upward:

NuL � 0:27Ra1=4
L �105<RaL < 1010�:

Immersed bodies:

Horizontal cylinder �27�:

NuD � 0:6� 0:387Ra1=6
D

1� 0:559

Pr

� �9=16
" #8=27

8>>>>><>>>>>:

9>>>>>=>>>>>;

2

�10ÿ5<RaD < 1012; any Pr�

NuD �
q 00w;D
DT

D

k

RaD �
gbDTD3

an
:

Sphere �31� :

NuD � 2� 0:589Ra1=4
D

1� 0:469

Pr

� �9=16
" #4=9

8>>>>><>>>>>:

9>>>>>=>>>>>;

2

�RaD < 1011; Pr�> 0:7�:

Vertical cylinder �35� :
Thick cylinder; dT � D;D <H

�boundary layer theory; x3:3:3�:
Thin cylinder �31�

NuH �
4

3
2� 7RaH Pr

5�20� 21 Pr�
� �1=4

� 4�272� 315 Pr�
35�64� 63 Pr�

H

D
�laminar�

NuH �
�hH

k
;RaH �

gbDTH 3

an

�h;wall averaged heat transfer coefficient

8>>>>>>><>>>>>>>:
Sparrow and Ansari [32]

NuD � 0:775Ra0:208
D

�H � D;RaD > 1:4� 104; for air�
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Other immersed bodies:

Lienhard �33�

Nul �
Pr�> 0:7

0:52Ra1=4
l

Nul �
�hl

k
; RaH �

gbDTl3

an
�h;wall averaged h

l ; the distance traveled by the boundary

layer fluid

8>>>>><>>>>>:
Yovanovich �34�

Nul � Nu
0
l �

0:67GlRa1=4
l

1� 0:492

Pr

� �9=16
" #4=9

or

Nul � 3:47� 0:51Ra1=4
l

8>>>>>><>>>>>>:

Nul �
�hl

k

Nu
0
l ! conduction limit

Ral �
gbDTl3

an
0<Ral < 108;

Gl ; geometric factor

l � A1=2;
�h;wall averaged h:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
3.4 Internal Natural Convection

One of the simplest problems of internal natural convection is the vertical

channel formed by two heated plates (Fig. 3.30), such as vertically mounted

electronic printed boards in an electronic package, or vertical plate ®ns. For

the beginning, we will assume that the plates are isothermal, at Tw , and that

the ¯uid reservoir outside the channel is also isothermal, at T1, such that

Tw > T1. The ¯uid that penetrates the channel from below warms up in

contact with the walls, and the thermal boundary layers that develop upward,

along the plates, entrain the ¯uid in an ascending, free convection ¯ow.

Naturally, since the heat is removed from the channel via a ¯uid (gas or

liquid), the ¯ow properties (velocity ®eld, turbulence, etc.) do signi®cantly

in¯uence its transfer rate. The natural convection channel ¯ow is charac-

terized by two length scales: the channel height, H , and the interplate

spacing, L.

Two important ¯ow con®gurations are commonly encountered:

The wide channel limit: The interplate spacing is large enough for the

thermal boundary layers to touch each other, and the temperature

boundary layer is thinner than the interplate spacing, dT < L (Fig.

3.29). For the ¯uids with Pr�> 1, the wide channel limit means

L

H
>Raÿ1=4

H or
L

H
>Raÿ1

L : �3:52�

The heat transfer rate may be accurately computed with the single-

wall formulas (3.242)±(3.243) or (3.248)±(3.251).
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The narrow channel limit: The interplate spacing is small enough such

that the hydrodynamic boundary layers interact into a Hagen±

Poiseuille-like ¯ow (Fig. 3.29b) over almost the entire channel height.

In the narrow-channel limit the ¯ow is thermally fully developed over

nearly the entire channel height, and for ¯uids with Pr ' 1 it is also

hydrodynamically fully developed Ð it is essentially a vertical ¯ow with

u � 0; @v=@y � 0. As for the external ¯ows, where dP1=dy � ÿr1g, here

@P=@y � const � dP=dy : Furthermore, because both ends of the channel are

open dP=dy � dP1=dy � ÿr1g.

If we notice that the ¯uid temperature at the channel outlet is nearly

equal to the wall temperature, the momentum equation (3.208) may be

simpli®ed to

n
@2v

@x 2
' ÿ gb�T ÿ T1�

n
� const; �3:253�

which is equivalent to the momentum equation (3.140) for the parallel-plate

channel forced convection. However, the source of motion is here

ÿgb�Tw ÿ T1�=n, rather than �1=m�dP=dx . The solution to (3.253) with no-

slip boundary conditions is the parabolic pro®le

v�x � � gbDTL2

n
1ÿ x

L=2

� �
2
�
;DT � Tw ÿ T1:

�
�3:254�

This pro®le yields the vertical mass ¯ow rate per unit length

_m0 �
�L=2

ÿL=2

rvdx � rgbDTL3

12n
: �3:255�

As the longitudinal pressure gradient that drives the ¯ow, dP=dy �
ÿrgb�T ÿ T1�, is independent of the channel height H , the velocity pro®le

Figure 3.30
Internal natural

convection in
the vertical

channel formed
by two heated

plates. The two
limits: (a) wide

channel; (b)
narrow channel.
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and the mass ¯ow rate given by (3.254) and (3.255) are also independent

of H .

The total heat carried out of the chimney by the stream is

q 0 � _m0cP �T ÿ T1� �
rgbcP �DT �2L3

12n
: �3:256�

It follows that the average Nusselt number is

NuH �def �q 00H
DTk
� 1

24
RaL; �3:257�

where �q 00 � q 0=2H is the channel-averaged heat ¯ux. This result Ð valid in

the narrow-channel limit Ð is correct, provided the local wall to stream

temperature drop is less than the wall to fresh ¯uid temperature drop,

namely,

Tw ÿ T �x ; y�< Tw ÿ T1: �3:258�
The scaling relation behind this inequality is �q 00L=k <DT , and it yields a

valuable criterion,

RaL <
H

L
; �3:259�

that may be used to validate the narrow-channel limit assumption, in a

general chimney analysis.

Table 3.4 (after ref. 2) lists the average Nusselt number for several types

of chimney ¯ows, in the narrow-channel limit.

3.4.1 ENCLOSURES HEATED DIFFERENTIALLY FROM THE SIDES
An important category of internal free convection is concerned with ¯ows

con®ned to cavities. Figure 3.27 depicts the classical problem of the natural

convection ¯ow in an enclosure heated differentially from the sides (the left

wall is warm, at TH , and the right wall is cold, at Tc , TH > Tc). The working

¯uid is entrained into a circular stream Ð upward at the warm wall, and

downward at the cold wall. A vast body of literature is devoted to this area of

investigation Ð several general trends are summarized in ref. 2.

For square enclosures there are, as for the channel free ¯ows, two

limiting cases: the wide cavity case, when the thermal boundary layer

thickness is smaller than the cavity width, dT < L; and the narrow cavity

case, when the cavity is thin enough for the thermal boundary layers to

interact.

In the ®rst case (the wide cavity), the theory developed for external

natural convection may be utilized to predict the heat transfer properties. For

instance, [36] recommends the Berkovsky±Polevikov correlation

NuH �
�q 00H
kDT

� 0:22
Pr

0:2� Pr
RaH

� �0:28
L

H

� �0:09

; �3:260�

for H =L 2 �2; 10�, Pr< 105, RaH < 1013.

In the opposite limit (the narrow cavity, L=H <Raÿ1=4
H ), if the enclosure is

tall enough, then the heat transfer between the side walls approaches the
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pure conduction regime limit. The same conclusion is valid for shallow

enclosures, with distinct jets along the top and bottom walls [2]. A theoretical

solution to the average Nusselt number, NuH , in the boundary layer regime

for Pr�> 1 ¯uids was indicated by [37]

NuH �
�q 00H
kDT

� 0:25Ra2=7
H

H

L

� �1=7

: �3:261�

When the heat ¯ux is speci®ed rather than DT , the Rayleigh number may be

rewritten as RaH* � RaH NuH � gb4q 00=ank, such that Eq. (3.261) becomes

NuH � 0:34Ra�2=9H

H

L

� �1=9

: �3:262�

Apparently, as pointed out in ref. 2, the heat transfer correlations developed

for systems with isothermal walls apply satisfactorily to the same con®gura-

tions, but with uniform heat ¯ux walls, provided the corresponding Rayleigh

number is based on the heat ¯ux.

3.4.2 ENCLOSURES HEATED DIFFERENTIALLY, FROM BELOW
In this case, the driving, vertical temperature gradient (Fig. 3.31, after [2])

must exceed a critical value for convection to occur. This condition is usually

Table 3.4

Cross section Nu=RaDh

1

106:4

1

113:6

1

128

1

192
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put in terms of a critical Rayleigh number [38], which for shallow enclosures

is

RaH �
gb�TH ÿ Tc�H 3

an �> 1708: �3:263�

Below this limit, heat transfer is by pure conduction and the temperature

varies linearly in the vertical direction. Immediately above this threshold

value, counterrotating two-dimensional rolls appear, indicating the onset of

the so-called BeÂnard convection. If RaH is further increased, then the ¯ow

pattern changes to three-dimensional cells of hexagonal shape [2]. For

enclosures that are not shallow, depending on the particular length to

height aspect ratio, this threshold may depart from the critical value (3.263)

and the ¯ow structure may be different.

From the heat transfer design point of view, it is important to provide

adequate conditions for the system to work beyond the thermal convection

onset limit, so as to augment the heat transfer into exceeding the pure

conduction limit through the convection transport process. A measure of this

augmentation, for the shallow enclosures, is given by the following correla-

tion for the Nusselt number [39]:

NuH � 0:069Ra1=3
H Pr0:074:

This expression is validated by experiments within the range

3� 105<RaH < 7� 109 [2].

3.4.3 INCLINED ENCLOSURES HEATED DIFFERENTIALLY, FROM THE
SIDES

Figure 3.32 shows the impact of the orientation of the differentially heated

cavity. The recommended correlations for the overall Nusselt number,

Figure 3.31
The natural

convection ¯ow
in an enclosure

heated
differentially,

from below.
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NuL�t�, for various ranges of the inclination angle t are [36, 2]

Nu�t� �

1� �NuL�90�� ÿ 1��sin t�1=4 t 2 �90�; 180��
NuL�90���sin t�1=4; t 2 �t*; 90��
NuL�90��
NuL�0��

�sin t*�1=4
� �t=t*

;
t 2 �0�; t*�
H

L
< 10

8<:
1� 1:44 1ÿ 1708

RaL cos t

� �� t 2 �0�; t*�
H

L
> 10

8><>:
� 1ÿ 1708� �sin 1:8t�1:6

RaL cos t

" #

� RaL cos t
5830

� �1=3

ÿ1

" #�
;

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
Here, the quantities marked with ��* have to be set to zero when negative.

Figure 3.32 The effect of the inclination angle on the heat transfer rate and ¯ow pattern in an enclosure
heated differentially, from opposite side walls.
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3.4.4 OTHER CONFIGURATIONS HEATED DIFFERENTIALLY

Annular space between horizontal, coaxial cylinders, Fig. 3.33 [2, 40]:

q 0
W

m

� �
� 2:425�Ti ÿ T0�k

1� Di

D0

� �3=5
" #5=4

Pr RaDi

0:861� Pr

� �1=4

�laminar regime; all Pr�

for

RaDi
� gb�Ti ÿ T0�D3

i

an �< 107 and RaDi
<

D0

D0 ÿ Di

� �4

:

Annular space between concentric spheres [2, 40]:

q �W � � 2:325�Ti ÿ T0�kDi

1� Di

D0

� �7=5
" #5=4

Pr RaDi

0:861� Pr

� �1=4

�laminar regime; all Pr�:
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1. Fluids Fundamentals

1.1 De®nitions

The branches of applied mechanics that study the behavior of ¯uids at rest or

in motion are called ¯uid mechanics and hydraulics.

Substances capable of ¯owing and taking the shape of containers are

called ¯uids. The following characteristics of ¯uids apply:

j Fluids can be classi®ed as liquids or gases.

j Liquids are incompressible, occupy de®nite volumes, and have free

surfaces.

j Gases are compressible and expand until they occupy all portions of

the container.

j Fluids cannot sustain shear or tangential forces when in equilibrium.

j Fluids exert some resistance to change of form.

1.2 Systems of Units

1.2.1 INTERNATIONAL SYSTEM OF UNITS
The fundamental units in the international system (SI) are meter (m), kilo-

gram (kg), and second (s), corresponding respectively to the following

fundamental mechanical dimensions: length, mass, and time. The unit of

force is the newton (N) derived from Newton's second law: force (N) � mass

(kg)� acceleration (m=s2). Therefore, 1 N � 1 kg �m=s2. Other units are m3

for unit volume, kg=m3 for unit density, joule (1 J � 1 N m) for work and

energy, and pascal (1 Pa � 1 N=m2) for pressure or stress. The temperature

unit is the degree Celsius (C) and the unit of the absolute temperature is the

kelvin (K).

1.2.2 BRITISH ENGINEERING SYSTEM OF UNITS
The fundamental units in this system (called the FPS system) are foot (ft),

pound (lb), and second (sec), corresponding to the length, force, and time

fundamental mechanical dimensions. Other units are ft3 for the unit volume,

ft=sec2 for unit acceleration, ft-lb for unit work, and lb=ft2 for unit pressure.

The unit for mass is called the slug. The slug can be derived from Newton's

second law applied for freely falling mass, namely weight (lb) � mass

(slugs)�g �32:2 ft=sec2. then, mass (slugs) � weight (lb)=g �32:2 ft=sec2).

Thus, 1 slug � lb-sec2=ft. The temperature unit is the degree Fahrenheit (F)

or, on the absolute scale, the degree Rankine (R).

1.3 Speci®c Weight

The weight of a unit volume of a ¯uid is called the speci®c or unit weight

denoted by g.
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The speci®c weight of liquids can be considered as constant for practical

applications, whereas the speci®c weight of gases can be calculated by using

the equation of state

pv

T
� R; �1:1�

where p is the absolute pressure, v the volume per unit weight, T the

absolute temperature, and R the gas constant. The gas constant is given by

R � R0

Mg
; �1:2�

where R0 is the universal gas constant and Mg the molar weight. If we

substitute v � 1=g in Eq. (1.1), the expression for the speci®c weight of gases

is obtained:

g � p

RT
: �1:3�

The units of g are lb=ft3 or N=m3.

1.4 Viscosity

The amount of resistance of a ¯uid to a shearing force can be determined by

the property of the ¯uid called viscosity. The Newtonian ¯uids are the ¯uids

for which there is a proportionality between the shear stress and the rate of

shear strain. The proportionality is given by

t � m
dV

dy
; �1:4�

where t is the shear stress, m the absolute or dynamic viscosity, V the strain,

dV =dy the rate of shear strain, and y the distance between two imaginary

parallel layers in the ¯uid, and the strain V is measured in between the layers

(Fig. 1.1). The units of m are Pa s or lb-sec=ft2.

Figure 1.1
Typical system

used to develop
the expression

for the viscosity
of a ¯uid.
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The coef®cient of kinematic viscosity is another viscosity coef®cient

de®ned as

n � m
r
� mg

g
; �1:5�

where m is the absolute viscosity and r the mass density. The units of n are

m2=2 or ft2=2.

Viscosities of liquids are not affected by the pressure changes but

decrease with an increase in temperature. The absolute viscosity of gases

increases with a temperature increase, but it is not affected by pressure

changes. For a constant temperature, the kinematic viscosity of gases varies

inversely with pressure, since the speci®c weight of gases changes with

pressure changes.

1.5 Vapor Pressure

The vapor pressure is the pressure created by the vapor molecules when

evaporation takes place within an enclosed space. It increases with tempera-

ture increase.

1.6 Surface Tension

The surface tension s is de®ned as

s � DF

DL
; �1:6�

where DF is the elastic force transverse to any element length DL in the

surface. The units of s are N=m or lb=ft.

1.7 Capillarity

If a segment of a capillary tube is submerged in a liquid, the liquid in the

capillary tube can rise or fall. This effect is called capillarity and is caused by

the surface tension. The rise or fall depends on the relative magnitudes of the

cohesion and the adhesion of the liquid to the walls of the capillary tube.

Liquids rise in the tube when adhesion is greater than cohesion and fall in the

tube when the cohesion is greater than adhesion. The capillarity is important

when the diameter of the tube is greater than 3
8 inch or 10 mm.

1.8 Bulk Modulus of Elasticity

The bulk modulus of elasticity E is de®ned as the ratio of the change in unit

pressure to the corresponding volume change per unit of volume and

expresses the compressibility of a ¯uid. E is given by

E � dp

ÿdv=v
: �1:7�
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The minus sign is inserted to give a positive value for E when the pressure dp

increases and the fractional volume dv=v decreases. The units of E are Pa or

lb=in2.

1.9 Statics

Pressure is perhaps the most used quantity in ¯uid statics. The ¯uid pressure

acts normal to any plane and is transmitted with equal intensity in all

directions. In a liquid, the pressure is the same at any point located on the

same horizontal plane. For the measurement of the pressure, various gages

above or below the atmospheric pressure are used. Vacuum is a term used to

indicate a space with a pressure less than atmospheric pressure. The average

atmospheric pressure, called the standard atmospheric pressure, is equal to

14.7 psi, 101.3 kPa, 760 mm of mercury, or 1 atmosphere.

The pressure can be expressed as

p � dF

dA
; �1:8�

where F is the force acting on a surface of area A. If F is uniformly distributed

over the area A, then

p � F

A
: �1:9�

The units of pressure are lb=ft2 �psf�, lb=in2 �psi�, or Pa �N=m2�.
Considering two points at different levels in a liquid, h1 and h2,

respectively, the difference in pressure between the points is given by

p2 ÿ p1 � g�h2 ÿ h1�; �1:10�
where g is the unit weight of the liquid and h2 ÿ h1 the difference in

elevation. Taking h1 � 0, that is, one point located at the surface of the

liquid, and assuming h2 � h is positive downward, Eq. (1.10) becomes

p � gh: �1:11�
The above equations are valid as long as g is constant. The elevation h in Eq.

(1.11) is also called the pressure head and represents the height of a column

of homogeneous ¯uid that will produce a given intensity of pressure.

Therefore,

h � p

g
: �1:12�

For small changes in elevation dh, Eq. (1.11) can be written as

dp � ÿgdh: �1:13�
The negative sign means that as h increases, being positive upward, the

pressure decreases.

There are two ways to express the pressure measurements, that is,

absolute pressure and gage pressure. Absolute pressure uses absolute zero as

its base. Gage pressure uses standard atmospheric pressure as its base. For
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example, if a ¯uid pressure is 3.8 kPa above standard atmospheric pressure,

its gage pressure is equal to 3.8 kPa and its absolute pressure is equal to

3:8� 101:3 � 105:1 kPa. A device for measuring atmospheric pressure is the

barometer. It consists of a tube more than 762 mm in length inserted in an

open container of mercury with a closed tube end at the top and an open

tube end at the bottom. The mercury extends from the container up into the

tube. At sea level, the mercury rises in the tube to a height of approximately

762 mm. The level of mercury rises or falls as atmospheric pressure changes.

Direct reading of the mercury level gives the pressure head of mercury,

which can be converted to pressure by using Eq. (1.11).

To measure the pressure of other ¯uids, devices such as piezometers or

manometers can be used.

1.10 Hydrostatic Forces on Surfaces

1.10.1 FORCE EXERTED ON A PLANE AREA
The force exerted by a liquid on a plane area is given by

F � ghcgA; �1:14�
where g is the speci®c weight of the liquid, hcg the depth of the center of

gravity of the area, and A the area. The line of action of the force passes

through the center of pressure, which is given by

ycp �
Icg

ycgA
� ycg; �1:15�

where Icg is the moment of inertia of the area about its center of gravity axis.

1.10.2 FORCE EXERTED ON A CURVED SURFACE
In this case, the hydrostatic force has a horizontal component and a vertical

component. The horizontal component on a curved surface is equal to the

normal force on the vertical projection of the surface. It acts through the

center of pressure for the vertical projection. The vertical projection is equal

to the weight of the volume of liquid above the area. The volume can be real

or imaginary. The vertical projection passes through the center of gravity of

the volume.

1.10.3 HOOP OR CIRCUMFERENTIAL TENSION
Hoop (circumferential) tension is produced by the exerted internal pressure

in the walls of a cylinder.

The longitudinal stress in thin-walled cylinders (t < 0:1; d , t is the wall

thickness, d the cylinder diameter) closed at the ends is equal to half the

hoop tension.

1.10.4 HYDROSTATIC FORCES ON DAMS
Some safety factors should be considered when one checks for dam stability.

The stability of the dam can be affected by the following factors:
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j Large hydrostatic forces that cause a tendency for the dam to slide

horizontally and overturn it around the downstream edge

j Hydrostatic uplift along the bottom of the dam caused by water

seeping under the dam

Thus, the safety factors are those against sliding and against overturning.

Also, the pressure intensity on the base must be checked.

1.11 Buoyancy and Flotation

Buoyancy and ¯otation are based on Archimedes' principle, which states

that the force, called the buoyant force, that lifts (buoys) upward a ¯oating or

submerged body in a ¯uid is equal to the weight of the ¯uid that would be in

the volume displaced by the ¯uid. In other words, there is a balance between

the weight of the ¯oating body and the buoyant force. The point located at

the center of gravity of the displaced ¯uid is called the center of buoyancy.

The buoyant force acts through this point.

Some buoyancy applications include determination of irregular volumes,

speci®c gravities of liquids, and naval architectural design.

To address the stability problem of submerged and ¯oating bodies, the

following principles apply:

j In order for a submerged body to be stable, the body's center of

gravity must lie below the center of buoyancy of the displaced liquid.

j In order for a submerged body to be in neutral equilibrium for all

positions, the body's centers of gravity and buoyancy must coincide.

j In order for a ¯oating cylinder or sphere to be stable, the body's

center of gravity must lie below the center of buoyancy.

j The stability of other ¯oating objects depends on whether a righting or

overturning moment is developed when the centers of gravity and

buoyancy move out of vertical alignment because of the changing of

position of the center of buoyancy.

1.12 Dimensional Analysis and Hydraulic Similitude

1.12.1 DIMENSIONAL ANALYSIS
The mathematics of dimensions of quantities is called dimensional analysis.

The physical relationships among quantities can be expressed by equations.

Within these equations, absolute numerical and dimensional equality must

exist. By manipulating the physical relationships, they can be reduced to

fundamental quantities, such as force F or mass M , length L, and time T . A

typical application includes the following items:

j Converting one system of units to another

j Developing equations
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j Reducing the required number of variables

j Establishing the principles of model design

1.12.2 HYDRAULIC MODELS
In general, hydraulic models can be either true models or distorted models.

True models have almost all characteristics of the prototype reproduced to

scale (geometric similitude) and ful®ll the design constrains (kinematic and

dynamic similitude).

1.12.3 GEOMETRIC SIMILITUDE
If the ratios of all corresponding dimensions in model and prototype are

similar, we say that geometric similitude exists. Examples of such ratios are

Lmodel

Lprototype

� Lratio or
Lm

Lp

� Lr �1:16�

and

Amodel

Aprototype

� L2
model

L2
prototype

� L2
ratio � L2

r : �1:17�

1.12.4 KINEMATIC SIMILITUDE
If

j The paths of homologous moving particles are geometrically similar

and

j The ratios of the velocities of homologous particles are equal

then we say that kinematic similitude exists. Examples of useful ratios are

Velocity
Vm

Vp

�
Lm

Tm

Lp

Tp

� Lm

Lp

� Tm

Tp

� Lr

Tr

�1:18�

Acceleration
am

ap

�
Lm

T 2
m

Lp

T 2
p

� Lm

Lp

� T 2
m

T 2
p

� Lr

T 2
r

�1:19�

Discharge
Qm

Qp

�
L3

m

Tm

L3
p

Tp

� L3
m

L3
p

� Tm

Tp

� L3
r

Tr

: �1:20�
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1.12.5 DYNAMIC SIMILITUDE
If the ratios of all homologous forces in model and prototype are the same,

than we say that dynamic similitude exists. The dynamic similitude exists

between systems with geometric and kinematic similitude.

Newton's second law of motion
P

Fx � Max forms a basis for the

required conditions for complete similitude. The forces in Newton's equation

can be viscous forces, pressure forces, gravity forces, surface tension forces,

or elasticity forces. The following relationship between forces acting on

model and prototype is obtained:P
ForcesmP
Forcesp

� Mmam

Mpap

: �1:21�

1.12.6 USEFUL RATIOS

Inertial force ratio:

Fr �
forcemodel

forceprototype

� Mmam

Mpap

� rmL3
m

rpL3
p

� Lr

T 2
r

� rr L2
r

Lr

Tr

� �2

Fr � rr L2
r V 2

r � rr Ar V 2
r : �1:22�

Equation (1.22) expresses the general law of dynamic similarity between

model and prototype, also known as Newtonian equation.

Inertia±pressure force ratio (Euler number):

Ma

pA
�

rL3 � L

T 2

pL2
�

rL4 V 2

L2

pL2
� rL2V 2

pL2
� rV 2

p
: �1:23�

Inertia±viscous force ratio (Reynolds number):

Ma

tA
� Ma

m
dV

dy

� �
A

� rL2V 2

m
V

L

� �
L2

� rVL

m
: �1:24�

Inertia±gravity force ratio:

Ma

Mg
� rL2V 2

rL3g
� V 2

Lg
: �1:25�

The square root of this ratio, V =
�����
Lg
p

, is known as the Froude number.

Inertia±elasticity force ratio (Cauchy number):

Ma

EA
� rL2V 2

EL2
� rV 2

E
: �1:26�

The square root of this ratio, V =
���������
E=r
p

, is known as the Mach number.
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Inertia±surface tension ratio (Weber number):

Ma

sL
� rL2V 2

sL
� rLV 2

s
: �1:27�

Time ratios:

Tr �
L2

r

nr

�1:28�

Tr �
������
Lr

Gr

s
�1:29�

Tr �
���������������
L3

r � rr

sr

r
�1:30�

Tr �
Lr�����
Er

rr

s : �1:31�

1.13 Fundamentals of Fluid Flow

Unlike solids, the elements of a ¯owing ¯uid can move at different velocities

and can be subjected to different accelerations. The following principles

apply in ¯uid ¯ow:

j The principle of conservation of mass, from which the equation of

continuity is developed

j The principle of kinetic energy, from which some ¯ow equations are

derived

j The principle of momentum, from which equations regarding the

dynamic forces exerted by ¯owing ¯uids can be established

1.13.1 PROPERTIES
Fluid ¯ow can be characterized as steady or unsteady, uniform or nonuni-

form, laminar or turbulent, one-dimensional, two-dimensional, or three-

dimensional, and rotational or irrotational.

If the direction and magnitude of the velocity at all points in the ¯uid are

identical, the ¯ow is called true one-dimensional. It is also acceptable when

the single dimension is taken along the central streamline of the ¯ow and

when the velocities and the accelerations normal to the streamline can be

neglected. For this case, the average values of velocity, pressure, and

elevation are used to model the ¯ow as a whole.

If the ¯uid particles ¯ow in planes or parallel planes and the streamline

patterns are identical in each plane, the ¯ow is called two-dimensional.

Irrotational ¯ow is that ¯ow in which no shear stresses occur. Therefore,

no torque exist, and thus the particles do not rotate about their center of

mass.
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1.13.2 STEADY FLOW
If the velocity of succesive ¯uid particle at any point in the ¯uid is the same at

successive moments of time, the ¯ow is called steady ¯ow. The velocity is

constant with respect to time �@V =@t � 0�, but it may vary at different points

or with respect to distance. The other ¯uid variables do not vary with time,

that is, @p=@t � 0, @r=@t � 0, @Q=@t � 0, etc. A steady ¯ow can be uniform or

nonuniform.

If the ¯uid variables change with time �@V =@t 6� 0�, the ¯ow is called

unsteady ¯ow.

1.13.3 UNIFORM FLOW
If the magnitude and the direction of the velocity do not vary with respect to

distance �@V =@s � 0�, the ¯ow is called uniform ¯ow. Therefore, the other

¯uid variables, such as y; p and Q, do not change with distance.

If the ¯uid variables change with distance �@V =@s 6� 0�, the ¯ow is called

nonuniform ¯ow.

1.13.4 STREAMLINES
The imaginary curves drawn through a ¯uid to show the direction of motion

for various sections of the ¯ow are called streamlines. The velocity vectors

are always tangent to the streamlines and, therefore, there is no ¯ow across a

streamline at any point.

1.13.5 STREAMTUBES
A group of streamlines that bound an elementary portion of a ¯owing ¯uid is

called a streamtube. For small cross-sectional areas of a streamtube, the

velocity of the center of the cross section can be taken as the average velocity

of the section as a whole.

1.13.6 EQUATION OF CONTINUITY
The equation of continuity is obtained from the principle of conservation of

mass. For steady ¯ow, the principle of conservation of mass becomes

r1A1V1 � r2A2V2 � const; �1:32�
or

g1A1V1 � g2A2V2; �1:33�
that is, the mass of ¯uid passing all sections in a stream of ¯uid per unit time

is the same. If the ¯uid is incompressible (g1 � g2), Eq. (1.33) yields

Q � A1V1 � A2V2 � const; �1:34�
where A1 and A2 are the cross-sectional areas of the stream at sections 1 and

2, respectively, and V1 and V2 are respectively the velocities of the stream at

the same sections. Commonly used units of ¯ow are cubic feet per second

(cfs), gallons per minute (gpm), or million gallons per day (mgd).
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For steady two-dimensional incompressible ¯ow, the continuity equation

is

An1
V1 � An2

V2 � An3
V3 � const; �1:35�

where An terms are the areas normal to the respective velocity vectors.

1.13.7 FLOW NETS
A ¯ow net consists of the following:

j A system of streamlines spaced so that the rate of ¯ow q is the same

between each succesive pair of lines

j Another system of lines normal to the streamlines spaced so that the

distance between normal lines equals the distance between adjacent

streamlines.

The ¯ow nets are drawn to show the ¯ow patterns in cases of two

dimensional and three-dimensional ¯ow. Although an in®nite number of

streamlines are required to completely describe a ¯ow under a given set of

boundary conditions, in practice, a small number of streamlines are used if

acceptable accuracy is obtained.

1.13.8 ENERGY AND HEAD
Three forms of energy are usually considered in ¯uid ¯ow problems, namely

potential, kinetic, and pressure energy.

Potential energy (PE) is the energy possessed by an element of ¯uid due

to its elevation above a reference datum (Fig. 1.2). PE is given by

PE � Wz ; �1:36�
where W is the weight of the considered element and z the distance where

the element is located with respect to the datum.

Figure 1.2
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Kinetic energy (KE) is the energy possessed by an element of ¯uid due

to its velocity. The following expression can be used to calculate KE:

KE � 1

2
mV 2: �1:37�

Here m is the mass of the element and V its velocity. If the mass m is

expressed as m � W =g, where g is the gravitational acceleration, Eq. (1.37)

becomes

KE � 1

2

WV 2

g
: �1:38�

Pressure energy or ¯ow energy (FE) is de®ned as the work needed to

force the element of ¯uid across a certain distance against the pressure. The

following expression applies:

FE � p A d : �1:39�
Here p is the pressure, A is the cross-sectional area, and d the distance over

which the work is done in moving the element of ¯uid. The term A d is in

fact the volume of the element, A d � W =g, where g is the speci®c weight of

the ¯uid. Therefore,

FE � p
W

g
: �1:40�

The total energy E is the sum of PE, KE, and FE, and from Eqs. (1.36),

(1.38), and (1.40), we obtain

E � Wz � 1

2

WV 2

g
� p

W

g
: �1:41�

Each term in Eq. (1.41) can be expressed in ft-lb or N m. In ¯uid mechanics

and hydraulic problems, it is customary to work with energy expressed as a

head, that is, the amount of energy per unit weight of ¯uid. The units for

head are ft-lb=lb or N m=N of ¯uid. Mathematically, these units are ft and m.

To express the total energy (E ) as a head (H ), Eq. (1.41) can be divided

by the weight of the ¯uid W , which gives

H � z � V 2

2g
� p

g
; �1:42�

where z is known as the elevation head, V 2=2g as the velocity head, and p=g
as the pressure head.

1.13.9 ENERGY EQUATION
The energy equation is derived by applying the principle of energy to ¯uid

¯ow. In the direction of ¯ow, the principle of energy is summarized by the

general equation

Energy section 1� Energy addedÿ Energy lostÿ Energy extracted

� Energy section 2: �1:43�
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For the case of steady ¯ow of incompressible ¯uids, Eq (1.43) becomes

p1

g
� V 2

1

2g
� z1

� �
� HA ÿ HL ÿ HE �

p2

g
� V 2

2

2g
� z2

� �
: �1:44�

This equation is known as the Bernoulli equation.

1.13.10 VELOCITY HEAD
The kinetic energy per unit weight at a particular point is called velocity head.

The true kinetic energy can be calculated by integrating the differential

kinetic energies from streamline to streamline and considering the kinetic

energy correction factor a. a is applied to the V 2
av=2g, and it is given by

a � 1

A

�
A

v

V

� �3

dA; �1:45�

where V is the average velocity in the cross section, v is the velocity at any

point in the cross section, and A is the area of the cross section. Studies

indicated that a � 1:00 for uniform distribution of velocity, a � 1:02 to 1.15

for turbulent ¯ows, and a � 2:00 for laminar ¯ow.

1.13.11 POWER
Power is given by the following relationships:

Power P � gQH � lb=ft3 � ft3=sec� ft-lb=lb � ft-lb=sec;

horsepower � gQH

550
;

or

P � N=m3 �m3=s� N �m=N � N �m=s � watts�W�:

2. Hydraulics

Hydraulic systems are installed because they enabled the designer to

signi®cantly magnify and=or transfer forces. Hydraulic components in

earth-moving machines allow relatively large forces to be applied at locations

remote from the engine with small additional weight and complexity. For

these machines, such as presses and mining machines, an engine-driven

pump powers the thrust cylinders and=or the torque motors at remote

locations under the control of a single operator at a central location.

2.1 Absolute and Gage Pressure

In order to select the proper pumps and reservoirs, the following quantities

are of interest:
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j Absolute pressure is that pressure measured with respect to an

absolute vacuum pressure

j Gage pressure is the difference in pressure between the pressure

being measured and the ambient pressure

The ambient pressure is assumed to be the atmospheric pressure. In general,

the atmospheric pressure at a particular location depends on the altitude and

the weather. It is assumed that the atmospheric pressure is 14.5 psi in the

English system of units and 1 bar �� 105 Pa� in the SI system.

The other units for pressure are psia, denoting the absolute pressure in

pounds per square inch, psig, denoting the gage pressure in pounds per

square inch, bar, denoting the gage pressure in SI units; and the height of a

water column or the height of a column of mercury that produces the

speci®ed pressure at its base. Henceforth, the height of a mercury column

will refer to the absolute pressure only.

Table 2.1 lists the conversion factors among several systems of units.

2.2 Bernoulli's Theorem

Bernoulli's theorem in its simplest form can be developed by applying the

conservation of energy in a nonviscous, incompressible ¯uid.

The kinetic energy of a volume of ¯uid of mass m moving with velocity v

is given by

KE � mv2

2
; �2:1�

and the potential energy is given by

PE � mgz ; �2:2�

where z is the elevation above a reference position, and g is the gravity

acceleration.

The pressure energy is

Pe � pV ; �2:3�

where p is the pressure and V is the reference volume.

Table 2.1 Equivalents between
Pressure Units

psia in H2O in Hg

1 27.7 2.04

0.49 13.6 1

0.036 1 0.073

14.7 407.2 29.9
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The total energy E of the reference volume of ¯uid is

mv2

2
�mgz � pV � EV : �2:4�

If we divide by the reference volume, V , Eq. (1.4) may be written as

rv2

2
� rgz � p � E ; �2:5�

where r � m=V is the density.

Equation (1.5) is valid for any points 1 and 2 of the circuit. Therefore,

r�v2
1 ÿ v2

2�
2

� rg�z1 ÿ z2� � p1 � p2 � 0: �2:6�

Equation (2.6) is the standard form of Bernoulli's theorem.

In the form given in Eq. (2.6), the pressure may be either gage pressure

or absolute pressure. The units, however, must be consistent. If g is in ft=s2,

then v must be in ft=s, p must be in lb=ft2, r must be in lb=ft3, and z must be

in ft. In the SI system if g is in m=s2, then v must be in m=s, p must be in

N=m2, r must be in kg=m3, and z must be in m.

This formula is particularly important in the design of hydraulic systems

because it clearly shows the relation between pressure and ¯ow velocity in a

hydraulic line. If one is increased, the other one should be decreased.

EXAMPLE 2.1 A pressure gage mounted at station 1 in a ¯uid line with an internal diameter

of 2.0 in reads 320.0 psig for a ¯uid ¯ow of 15.0 gpm (gal=min). The ¯uid is a

hydraulic oil of density 35:2 lb=ft3. It passes through a reducer to a pressure

hose with an internal diameter of 1.5 in, and to a gear motor of a robot arm

that moves 20 in above and below the level of station 2 as shown in Fig. 2.1.

Find the gage pressure at stations 2, 3, and 4. Energy losses at the reducer are

negligible. m

Solution

Using Eq. (2.6), we get

rv2
1

2
� p1 � rgz1 �

rv2
2

2
� p2 � rgz2;

where p1 � 320:0� 122 � 46;080 psfg.

Figure 2.1
Pressure line 1,
reduced section

2, and torque
motor at

position 3 and 4.
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The rate of change of volume @V =@t is denoted by _Q and is measured in

units of gallons per minute or liters per minute:

1 gallon �1 Gal� � 231 in3:

The velocities can be found by using

v1 �
_Q

A1

; v2 �
_Q

A2

; and v2 � v1

A1

A2

;

along with the numerical values for velocities,

v1 �
15�231�
60�12�3

�12�2
p�1:0�2 � 1:531 ft=s; v2 � 7:353

p�0:5�2
p�0:75�2 � 2:723 ft=s:

Since there is no change in elevation between stations (1) and (2), the z

terms cancel out in Eq. (1.6). Therefore, by solving Bernoulli's equation for p2

at station (2.2), we obtain

p2 �
r
2
�v2

1 ÿ v2
2� � p1

� 35:2

2�32:2� �1:5312 ÿ 2:7232� � 46;080 � 46;082:798 psfg � 320:018 psig:

Because of the elevation at station (3),

p3 � p2 � rg�z2 � z3� � 46;080� 35:2 0ÿ 20

12

� �
� 46;025:833 psfg

� 319:623 psig:

At station (4), the pressure is

p4 � 46080� 35:2
20

12

� �
� 46138:667 psfg � 320:407 psig: m

2.3 Hydraulic Cylinders

Some types of hydraulic cylinders are shown in Fig. 2.2. Types presented in

Figs. 2.2a and 2.2b are the most common. Since both cylinders have two

ports, one located at the head end and the other one at the cap end, the

difference between single acting and double acting cylinders is whether ¯uid

pressure is delivered under external control to both ends or to just one end.

The piston and the rod in the single-acting cylinder can be extended by

forcing the ¯uid in the port located at the cap end. To drain from that port, an

external force can be applied as the rod is retracted. The port at the head end

can be used to admit air or ¯uid as the rod is retracted. Single-acting cylinders

can also be retracted hydraulically and extended mechanically. Double-

acting cylinders have ports at each end of the cylinder and, thus, the piston

and rod can be moved hydraulically in either direction. The double rod

cylinder, shown in Fig. 2.2c, is a cylinder having a single piston and a piston

rod extending from each end. These types are used when the equality of

forces and speeds must be independent of travel direction. For the spring
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return cylinder shown in Fig. 2.2d, the returning to the initial position is due

to the spring force. In Figs. 2.2e and 2.2f are shown the tandem and duplex

cylinders, respectively, used for operation in two directions. A telescoping

cylinder is shown in Fig. 2.2g. Terminology for the major parts of a hydraulic

cylinder is shown in Fig. 2.3, where 1 is the cap end, 2 is the head end, 3 is

the piston rings, 4 is the piston rod, 5 and 9 are the ports, 6 is the cylinder

body, 8 is the rod gland seals, and 10 is the rod gland bushing.

If the inertial forces are high, the cap end of the cylinder undergoes a

shock when the piston and rod touch the cap. This shock can be reduced by

installing a hydraulic cushion as shown in Fig. 2.4. The hydraulic cushion

consists of a cushion spear, 10; a needle valve, 8; and a secondary drain line

Figure 2.2 Types of hydraulic cylinders.

Figure 2.3
Terminology

used for major
components of

hydraulic
cylinder.
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from the needle valve. As the piston, 7, approaches the end cap, the tapered

portion of the cushion spear partially closes the larger port at the cap end and

slows the ¯ow from the cylinder, 3, thus decelerating the piston. When the

cushion spear ®nally closes the larger port, the draining of the remaining ¯uid

is slowed further and it is diverted through the small needle valve ori®ce. The

cushion sleeve 6 performs the same function at the head end 2. In Fig. 2.4, is

a check valve, and 9 is the ¯oating cushion bushing.

Let us consider two cylinders connected by a hydraulic line as shown in

Fig. 2.5, and let force F1 act upon cylinder 1. If the cross-sectional area of the

piston is A1, the pressure required in the ¯uid to hold piston 1 in equilibrium

is

p1A1 � F1: �2:7�
The force needed to hold piston 2 in equilibrium is given by �p1 � p2 � p�

p1A2 � F2; �2:8�
since the pressure is unchanged throughout a stationary ¯uid.

Upon elimination of p between Eq. (2.7) and Eq. (2.8), it is found that

F2 �
A2

A1

F1: �2:9�

Figure 2.4
Hydraulic
cylinder.

(a)Cushion
sleeve to cushion

motion toward
the head end;

cushion spear for
motion toward

the cap end. (b)
Varieties of

cushion spears.
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If force F2 moves piston 2, then piston 1 must also move if none of the

incompressible ¯uid leaves or enters the system. If no energy is lost, the work

done by piston 2 must be equal to that done by piston 1. Thus,

F1x1 � F2x2; �2:10�

where x1 and x2 denote the displacements of pistons 1 and 2, respectively.

Substituting F2 in Eq. (2.10) from Eq. (2.9) yields

x1 �
A2

A1

x2: �2:11�

The increased force on piston 1 is obtained at the expense of increased

motion of piston 2. Equation (2.9) will not hold during motion because of

pressure loss in the hydraulic lines and cylinders. That fact will be discussed

in the following sections. However, Eq. (2.9) does hold once the pistons and

¯uid come to rest. Equation (2.10) is an approximation to the actual motion

and force relations because of energy losses due to viscosity and turbulence.

These losses are usually negligible, when compared to the energy being

transmitted from cylinder to cylinder.

2.4 Pressure Intensi®ers

In Fig. 2.6 is shown a pressure intensi®er, also known as an intensi®er. In the

®gure, 1 is the inlet port, 2 and 3 are the outlet ports, and 4 is the cylinder

house. The pistons in the two cylinders of different diameters are connected

mechanically. Since the forces on the two pistons are equal, it follows that if

they are held in equilibrium by the pressurized ¯uid in each cylinder, the

pressures must be related according to

p1A1 � F1 � F2 � p2A2; �2:12�

Figure 2.5
Simple hydraulic
system to show
force, area, and

cylinder
displacement

relations.
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so that

p2 � p1

A1

A2

�2:13�

holds in the steady-state condition, that is, when the pistons are not

accelerated or decelerated.

2.5 Pressure Gages

The pressure gages on machines are either mechanical or electrical.

The Bourdon gage, shown in Fig. 2.7, works on the principle that

pressure in a curved tube will tend to straighten it. Thus, as shown in the

®gure, pressure acts equally on every square inch area in the tube, 1. Since

the surface S1 on the outside of the curve is greater than the surface area S2

on the shorter radius, the force acting on S1 is greater than the force acting on

S2. When the pressure is applied, the tube straightens out until the difference

in force is balanced by the elastic resistance of the material of the tube. The

tube is bent into a circular arc and it becomes oval in cross-section. There-

fore, it tends to straighten more easily under pressure. The tube works by

differential areas, since the area on which the pressure acts outward is greater

than the area on which the pressure acts inward. The open end of the tube

passes through the socket 2, which is threaded so that the gage can be

screwed into an opening in the hydraulic system. The closed end of the tube,

9, is linked to a pivoted segment gear, 3, meshed with a small gear, 4, to

which a pointer, 5, is attached. Beneath the pointer there is a scale, 6, reading

in pounds per square inch. The gage is calibrated against known pressures to

ensure accurate readings. Under pressure the tube tends to straighten and the

segment moves around its pivot, 8, rotating the gear and the pointer. The

pointer assembly is usually pressed on the shaft in such manner that it is

removable for resetting when the gage is calibrated against a master unit.

Electronic pressure indication may be obtained by means of a piezoelectric

sensor that transforms a pressure-induced force into an electric charge that is

electronically transformed by a coupler into a voltage that is proportional to

the pressure. The active element in a piezoelectric sensor is the piezoelectric

Figure 2.6
Schematic of a

pressure
intensi®er.
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crystal, whose structure causes it to produce opposite electrical charges on its

upper and lower surfaces when it is subjected to a compressive force

perpendicular to those surfaces.

2.6 Pressure Controls

The ®rst hydraulic component in the pressure line is a unit designed to

control and protect the pump and drive unit from damage due to over-

pressurization. This unit is called the pressure control valve. The most

commonly used overload protectors or system pressure control valves are

either simple direct-pressure-operated or more elaborate compound or pilot-

operated relief valves. Although the basic functions of both types are similar,

the methods and limits of operation vary considerably.

2.6.1 DIRECT-OPERATED RELIEF VALVES
Three types of simple direct-operated relief valves are shown in Fig. 2.8. An

adjustable spring force on the disk (Fig. 2.8a), cone (Fig. 2.8b), or ball (Fig.

2.8c), seals the inlet from the outlet as long as the inlet pressure cannot

overcome the spring force. The effective area for each type is denoted by A.

The area A multiplied by the system pressure gives the force that pushes

against the spring force that holds the valve closed. The conditions discussed

at this point indicate only the pressure at which the valve begins to open or

crack: To fully relieve the system pressure, we must provide for a volume of

¯ow through the relief valve. At the cracking pressure, a highly restricted and

very minor ¯ow is allowed. Since the pressure is a result of the resistance to

the ¯ow, the system pressure will continue to rise after the cracking pressure

Figure 2.7
Major parts for
Bourdon tube

gage.
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is reached. It will rise until the valve opening is large enough to allow

suf®cient decrease in ¯ow resistance to the lower system pressure up to the

desired level. At this point, the relief valve is said to operate at its full-¯ow

pressure. The spring rate (the action of the spring) will further complicate the

opening of the valve. As the valve seat cracks, the upward movement will

compress the spring. Any upward movement of the valve will produce

further spring compression and, thus, will increase the mechanical resistance

of the valve until it is fully open. It will thus be faced with a full-¯ow pressure

setting well above our cracking pressure setting and will attain a condition of

pressure override. Protection of the system requires that the full-¯ow pressure

setting be the one used. As a result, because of the cracking the oil leaks into

the return or into the outlet line, decreasing the effective available volume to

a point below the actual system relief setting. It is not uncommon for direct-

acting relief valves that cracking occurs at a pressure value less than 80% of

the full-¯ow pressure setting of the valve. Therefore, the full pumped volume

is available only if the system pressure is less than 80% of the maximum

operating pressure.

Figure 2.8
Types of simple
direct-operating
relief valve. (a)

Direct-acting
relief valve with
disk poppet; (b)

direct-acting
relief valve with

cone poppet; (c)
direct-acting

relief valve with
ball poppet.
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Direct-operated relief valves show a de®nite tendency to open and close

rapidly, or chatter, owing to pressure pulsations. As a result system pressure

variations may exist. In the process of chattering, the valve seal parts are

rapidly damaged to the point that they will constantly leak, producing erratic

control.

Figure 2.8a shows a very poor design. The ¯at surface is prevented from

sealing by the slightest bit of contamination, thus giving very poor control.

Figures 2.8b and 2.8c show examples of practical sealing methods. The

tapered or rounded surface of the valve, by seating on the sharp edge of the

ori®ce, will seal very well with minor wear on both parts. Hardening by heat

treatment, the valve or the seat or both will extend the valve's life.

Direct-operated relief valves are considered to be fail-safe. Worn or

broken parts allow excessive leakage, causing the pressure loss. In all three

illustrations (Fig. 1.8), the valve area is denoted by B and, above the sealing

point, it is considerably larger than the effective opening area denoted by A.

Since area B is greater than area A, any pressure at the outlet port will be

ampli®ed by the ratio of area B to area A. This ratio must be added to the

spring setting of the valve.

2.6.2 DIRECT-OPERATED SPOOL-TYPE PRESSURE CONTROLS
An improved design of the direct-operated relief valve is illustrated in Figs.

2.9a±2.9c. Instead of using the cone, ball, or disk shown in Fig. 2.8, a closely

®tted spool is considered to open and close the outlet port of the valve. The

sealing method employed in this type of pressure control valve is the same as

that used for the spool-type, directional control valves on most hydraulic

systems. The adjustment of the cracking pressure is accomplished by

increasing or decreasing the compression of the spring, 3. The system

pressure is piped into either port marked A and is transmitted to piston 2

via chamber C . As the system pressure on piston 2 exceeds the spring

force 3, the spool 1 will move up and allow a ¯ow of oil from inlet to

outlet.

The pressure control characteristics of this valve will be very similar to

those found with the simple direct-operating valve: a cracking pressure, a

full-¯ow pressure, and, owing to the spring rate, a certain amount of pressure

override. There may also occur the action termed ``chatter'' in the description

of the simple direct-acting relief valve. However, this open-and-close move-

ment with a spool-type valve will not damage the valve sealing surface. This

action with a spool-type valve will be referred to as a throttling action. The

spool may consistently vary the size of the outlet opening that is exposed to

the pressure chamber and thus relieve or bypass only as much oil as is

required to reduce the system pressure to the adjusted level. In the event the

system pressure continues to rise, the spool will cease to throttle and assume

the full-open position. At this point, the full-¯ow pressure condition of the

valve occurs.

582 Fluid Dynamics

Flu
id

D
yn

am
ics



The life of the spool-type valve is superior to the life of the simple direct-

operated valve. This is due to the decrease in wear on the sealing surfaces.

The control action is also softer or cushioned. Figures 2.9a to 2.9c are referred

to as hydro-cushioned valves, indicating a soft or cushioned action. This type

of valve is designed with the piston 2 having an area equal to one-eighth the

area of the main valve spool. This feature allows the control spring 3 to be

much smaller and more sensitive than found in simple direct-operated

valves. It also allows much larger volumes to be ef®ciently handled without

the undesirable, erratic, and cumbersome springs needed for the simple

direct-acting type. Opening and closing pressures are much closer. Pressure

override is generally due to the spring rate encountered by continued

compression of the adjustment spring as the spool moves upward to open

the outlet port.

Figure 2.9
Spool-type relief

valve shown
(a) closed;

(b) throttled;
(c) fully open.
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The spool-type valve may be controlled remotely. Figures 2.10a to 2.10c

show the methods of remote control connection. In Fig. 2.10a, the bottom

cap containing piston 2 is 180�. As a result, chamber C is no longer open to

the inlet chamber A. Chamber C is now connected to a remote source of

pressure. The remote pressure will now control the valve exactly as

described in Fig. 2.9 when the system inlet pressure is the controlling

medium. In Fig. 2.10b the control piston 2, shown in Fig. 2.10a, has been

removed. The discussion of Fig. 2.9 indicated that piston 2 has an area equal

to one-eighth of the bottom of spool 1. With the arrangement shown in Fig.

2.10b, a remote pressure that is one-eighth of that required in Fig. 2.10a

causes the system in Fig. 2.10b to operate. If the system of Fig. 2.10a operates

at 800 lb=in2, the system of Fig. 2.10b requires only 100 lb=in2 to operate. The

ratio of areas inversely affects the pressure at which the spool operates. The

greater the effective area, the lower the pressure needed to move the spool.

Figure 2.10c, by the addition of chamber F , allows independent opera-

tion of the valve as Fig. 2.10a or Fig. 2.10b without mutual interference.

Figure 2.10
Spool-type relief
valve controlled

remotely.
(a) high

pressure; (b) low
pressure;
(c) dual
pressure.
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Because of this feature, this valve is a relief valve that operates at two

different pressures. It can be controlled from two remote and independent

sources. Note that, in order to operate this type of valve as shown in Figs.

2.10b and 2.10c, the internal drain ori®ce D in Fig. 2.10a is not used. The

cushion of spool 1 can still be achieved by the oil from the remote valve-

operating source.

2.6.3 SEQUENCE VALVES
Figure 2.11 shows a valve unit adapted for pressure control of hydraulic

actions so that one function cannot be exerted until the pressure of another

function has reached a predetermined value. When performing in such a

manner, the valve is called a sequence valve. Sequence valves must all be

externally drained, since the system pressure is available at the outlet. The

only difference between the valves shown in Figs. 2.11a and 2.11b is the

method of valve actuation. The valve in Fig. 2.11a is directly operated by the

system pressure at the inlet port of the valve, whereas the valve in Fig. 2.11b

is adapted to be operated remotely by a pressure completely independent of

the pressure at the inlet of the valve.

2.6.4 SEQUENCE VALVE FOR REVERSE FREE FLOW
Figure 2.12 shows a revised valve to allow pressure-controlled ¯ow in one

direction and uncontrolled free ¯ow in the reverse direction. A simple check

valve, 4, between the inlet port and the outlet port allows this condition. The

presence of system pressure at the outlet port during operation requires that

this valve be externally drained. Rotation of the bottom end cap 2 offers a

choice between direct system operation, as shown in Fig. 2.12a, or remote

independent operation, as shown in Fig. 2.12b.

Figure 2.11 Sequence valve. (a) Directly operated, externally drained; (b) remotely operated, externally
drained.
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The application drawing is shown incorporating the directly operated

valve in Fig. 2.12c. With this circuit, both cylinder A and cylinder B extend at

the same time, but cylinder B does not retract until cylinder A has fully

retracted. One port of the directional control valve is connected unre-

strictedly to the piston end of each cylinder. With this circuit the cylinders

extend at the same time. The second port of the directional valve is directly

connected to the rod end of cylinder A. The sequence valve is teed into this

line at its inlet port, and the outlet port is connected to the rod end of cylinder

B. As pressure is directed to this port of the directional control valve, cylinder

Figure 2.12 Sequence valve for reverse free ¯ow. (a) Directly operated, externally drained. Valve shown open
in sequenced position. (b) Remotely operated, externally drained. Valve shown closed to regular ¯ow. (c)
Application drawing showing a typical circuit with sequence valve.
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A retracts. Cylinder B does not move until cylinder A has completed its

retraction and until the system pressure has increased to the point at which

the sequence valve is opened, allowing ¯ow from its inlet to the outlet and to

cylinder B. The check valve in the sequence valve allows the passage of

exhaust oil from the end of cylinder B as both cylinders are extended.

2.6.5 COUNTERBALANCE VALVES
Figure 2.13 shows an adaptation of the valve presented in the previous

section used to control the operation of a hydraulic cylinder. The valve is

now used in the exhaust line. Figure 2.13 is identical to Fig. 2.12, with the

difference that the valve presented in Fig. 2.13 is internally drained (dashed

line). This valve can be directly operated as shown in Fig. 2.13a or remotely

operated as shown in Fig. 2.13b.

An application for this type can be similar with the application presented

in Fig 2.12c if we consider just one cylinder lifting a heavy load. A counter-

balance valve is installed in the line supplying the rod end of the lift cylinder

so that the inlet of the counterbalance valve is piped to the cylinder and the

outlet is piped to one port of the directional control valve. Under these

conditions the free-¯ow characteristic of the counterbalance valve allows

unrestricted lifting of the load. Lowering the load does not require over-

coming the pressure setting of the counterbalance valve. After the counter-

balance valve has opened, oil is allowed to ¯ow through the counterbalance

valve through the directional control and back to the reservoir. The setting of

the counterbalance valve can be adjusted to suit the load and ensure ``no-

drift'' holding and smooth lowering of the load.

Figure 2.13 Counterbalance valve. (a) Directly operated, internally drained, reverse free ¯ow. (b) Remotely
controlled, internally drained, reverse free ¯ow.
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2.6.6 COMPOUND RELIEF VALVES
A typical compound relief valve is shown in Fig. 2.14. This type of valve can

also be referred to as a pilot-operated relief valve. Figure 2.14a indicates that

hydraulic pressure at the inlet acts on the bottom of the main spool 1 and, by

passing through ori®ce A, it also acts on the top side of spool 1. Oil passage

through chamber B makes the system pressure available to the pilot valve 3.

Note that pilot valve 3 is a simple direct-acting relief valve that is held on its

seat by the adjustment of the force on spring 4. Spool 1 is maintained in the

closed position by spring 2 and by the system pressure on its top side. Note

that the area of the top side of spool 1 that is exposed to system pressure is

slightly larger than the bottom area exposed to the same system pressure.

This slight difference in area ensures more positive sealing and makes this

valve's cracking pressure 90 to 95% of the full-¯ow pressure.

A cycle of operation with this valve would start as the system pressure,

conveyed to the pilot valve 3 by passages A and B, overcomes the force of

spring 4 and forces the pilot 3 open. Oil is now free to ¯ow out of the drain D

at very low pressure and return to the reservoir. The system ¯ow continues

through ori®ce A, but note that ori®ce B is larger than ori®ce A. As a result,

the pressure on the top side of spool 1 drops below the system pressure, and

spool 1 moves up and opens the outlet port. As long as the pilot 3 remains

open, the size difference between ori®ce A and ori®ce B maintains a

condition of hydraulic unbalance and holds the valve open. A decrease of

pressure allows the pilot 3 to close and quickly equalize the pressure on the

Figure 2.14 Compound relief valve. (a) Externally drained, shown closed. (b) Valve shown open.
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top and bottom of spool 1. The force of spring 2 and the difference in area

between the top side and the bottom side of spool 1 will quickly move the

spool 1 down and close the outlet port.

Figure 2.15 shows another version of the compound-type relief valve.

This valve is referred to as a balanced-piston-type relief valve. The operating

functions in Fig. 2.15a are basically the same as those in Fig. 2.14. The main

difference is in the method of ¯ow. From the pilot valve 2, oil is returned to

the reservoir. The pilot drain D is a hole or ori®ce passing through the main

spool 1 directly into the outlet port. This feature requires fewer hydraulic

lines, but it also allows outlet back pressure to adversely affect pilot

operations. It is important that the outlet lines be unrestricted to ensure

Figure 2.15
Version of the

compound-type
relief valve.

(a) Valve shown
closed.

(b) Compound
relief valve with
remote venting

valve in use.
Valve shown

open or vented.
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minimum back pressure. Ori®ce B in Fig. 2.15a is placed differently, as is the

pilot valve. The port V in Fig. 2.15 offers a new method of control for the

compound-type unit. If port V is allowed to be open to the atmosphere or,

by a simple valve, to the reservoir, the pressure on the top side of the main

spool 1 will be relieved and the spool will immediately move upward and

open. This practice is called venting and offers an auxiliary or additional

method of instantly relieving the system pressure without altering or affecting

the unvented operating setting of the valve. A simple direct-operating relief

valve, manually operated, will handle venting functions and further increase

the ¯exibility of this unit's operation. Figure 2.15b shows a typical arrange-

ment that allows manually controlled venting and=or automatic system

pressure operation. The vent valve is small since it is required to handle

minor volumes.

2.6.7 COMPOUND-TYPE SEQUENCE VALVES
Figures 2.16a and 2.16b show the revised compound relief valve. Figure

2.16a illustrates the unit designated as the Y type. Since the outlet chamber

becomes the secondary port exposed to the system pressure when the valve

opens, an external bleed line E (Fig. 2.16a) must be used. The pilot chamber

is no longer opened at the center ori®ce D of spool 1. The ori®ce D is now

used to ensure complete hydraulic balance of spool 1 when the unit is in its

sequenced position. The operation of the valve in Fig. 2.16a starts when the

system pressure at the inlet port passing through ori®ce A reaches the level

required to unseat pilot piston 3. The pressure drop through ori®ce A causes

a reduced pressure in chamber B and allows spool 1 to move upward and

open, the outlet or secondary port. Oil passing through ori®ce D in the center

of spool 1 is now opened to system pressure, and the effective areas on both

Figure 2.16
Compound-type
sequence valve.

(a) Type Y
sequence valve.

(b) Type X
sequence valve.
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sides of valve 1 are equal. The continued ¯ow and pressure drop through

ori®ce A maintains a lower pressure in chamber B, the valve remaining open.

In the event that the inlet pressure decreases, pilot piston 3 closes, the

pressure in chamber B rises, and the valve closes.

The valve presented in Fig. 2.16a is dependent on the system pressure at

the point of operation. Figure 2.16b shows another modi®cation of the basic

compound unit. This model is identi®ed as the X type. For this type an open

passage between the pilot chamber and the top of spool 1 is used. The ori®ce

D through the center of spool 1 is eliminated.

Operation of the X type is different from any type previously discussed.

The purpose of this design is to ®ll the main circuit of a system with oil before

¯ow to the outlet or secondary circuit is allowed. As the main circuit becomes

full, the pressure rises at the inlet of Fig.2.16b. The ¯ow through ori®ce A

causes the opening of pilot 3, and, as a result, spool 1 opens. As the valve

opens, the full area of the bottom spool 1 is exposed to system pressure.

Since the small guide area of the top side spool 1 is opened to the pilot drain

chamber, the spool 1 is hydraulically unbalanced because of the differential

area. It is required that the system pressure be suf®cient to overcome the very

light force of spring 2 to remain open. This X type does not close until the

system pressure has decreased nearly to zero. This valve's main purpose is

therefore limited to controlling the sequence of ¯ow as a hydraulic system is

put into operation.

2.6.8 PRESSURE-REDUCING VALVES
A low-pressure, low-volume ¯ow in addition to the main system high-

pressure, high-volume ¯ow is required by some hydraulic systems. The

extra pump can be eliminated by the use of a pressure-reducing valve to

supply the small ¯ow at reduced pressure.

Figure 2.17 shows an X -model pressure-reducing valve. The X -valve

combines the features of the direct-operated valve type with those of the

compound-type valve. This valve incorporates a pilot 1 to control the action

of the main spool 3, thus being a compound valve. The pressure-actuated

spool 3 seals because of its close ®t to the main body and because of a sliding

action that opens and closes the outlet or reduced-pressure port. As system

¯ow begins, the inlet is supplied with oil at the main pressure-control-valve

setting. The ¯ow to the outlet or reduced-pressure port is transmitted through

ori®ce C , which is a narrow space between the reduced-diameter section of

spool 3 and the main body. The ¯uid under pressure passes through

chamber D and exerts a force on the bottom area of spool 3. A very small

ori®ce E carries the pressurized oil through the center of spool 3 into

chamber A. The areas of both ends of spool 3 are equal and under the

same pressure so that a state of hydraulic balance exists. Spool 3 is thus held

down by the force of spring 4. Since a reduced pressure at the outlet is

desired, pilot 1 is adjusted to open at a pressure considerably lower than the

pressure available at ori®ce C . The ori®ce E has a smaller area than chamber
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D, and the ¯ow of the oil from E to F causes a pressure drop. The pressure in

chamber F and on the top of spool 3 is lower than the pressure in chamber D

or the pressure on the bottom of spool 3. Hydraulic unbalance occurs now;

spring 4 is overcome and spool 3 is moved upward. As spool 3 moves

upward, ori®ce C is reduced in size, opposing the ¯ow, and a pressure drop

is created between the inlet and outlet ports. Port C will thus be consistently

changed to increase or decrease the resistance to the ¯ow in order to

maintain a constant reduced pressure at the outlet. As the ¯ow from the

outlet port increases in response to an increased low-pressure ¯ow demand,

the spool will move downward and open ori®ce C . As ¯ow is diminished,

ori®ce C will be closed. The maximum pressure available at the outlet is the

sum of the forces of spring 2 and spring 4.

This valve has three critical situations. Ori®ce E is very small and it can

be very easily plugged by minute foreign bodies. A constant ¯ow through

ori®ce E to the drain port of the pilot valve is needed to maintain a constant

dependable reduced pressure. Ori®ce F must remain completely open. The

pilot drain must have a free, unrestricted, unshared line to the reservoir. The

®nal critical area of this valve is the close tolerance required between spool 3

and the bore of the main body.

2.7 Flow-Limiting Controls

2.7.1 CHECK VALVES
The simple check valve limits the ¯ow to one direction. Figure 2.18a shows a

simple check valve of the right-angle type in closed position, in which the

¯ow from outlet to inlet is not allowed. A round poppet A is placed in the

inlet port by the force of spring B. System pressure at the inlet port acts on

the bottom of poppet A, compressing spring B, and opening the valve to

Figure 2.17
Pressure-

reducing valve.
(a) Valve shown
static. (b) Valve

shown
operating.
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allow the ¯ow from inlet to outlet. The ori®ce C in poppet A serves as a drain

for chamber D. It also exposes the top side of the poppet to the prevailing

pressure of the outlet side when it is closed and of the inlet side when it is

open. The system pressure need only overcome the force of spring B to hold

the valve open. The pressure drop through this valve, from inlet to outlet, is

thus equal to the force of spring B when the valve is properly sized with

respect to ¯ow volume. Figure 2.18b shows the valve in the opened position.

There are situations in hydraulic circuit design when it is desirable to

have the automatic single-¯ow feature of the simple check valve for only a

portion of the time and at any given time to be able to allow ¯ow in either

direction. This situation occurs in working with load-lifting devices. The

normal single-¯ow characteristic allows the load to be lifted at any time and

automatically held. It is also required that the ability to lower the load be

included in the design. A pilot-operated check valve will adequately perform

this function.

Figure 2.19 illustrates a pilot-operated check valve. In Fig. 2.19a, the

check valve has a portion constructed in a manner similar to the simple

check valve in Fig. 2.18. A pilot piston D with a stem E and a pilot pressure

port for external connection have been added.

Figure 2.19b shows the valve when inlet pressure is high enough to

overcome the force of spring B. Pilot pressure is still 0 lb=in2, and thus the

inlet pressure acts on the top side of piston D and holds the pilot stem E

downward. The valve acts as the conventional check valve in Figs. 2.19a and

2.19b.

Let us assume that we need to have the ¯ow from the outlet port to the

inlet port. A load has been lifted by allowing ¯ow from inlet to outlet, and

that it is now time to lower the load.

The application of an independent external pressure to the pilot port will

move piston D upward, allowing ¯ow from outlet to inlet, thus lowering the

Figure 2.18
Simple check
valve. Right-
angle check
valve shown

(a) closed and
(b) open.
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load. To maintain the valve in an opened position, the following relation is

required:

PP � DB > FsB � PC � DT

or

FP > FsB � Fi

because

P � A � F

where Pp is the pilot pressure, DB is the bottom area D, FSB is the spring B

force, Pi is the inlet pressure, DT is the top area D, FP is the pilot force, and Fi

is the inlet force. Also P is the pressure, A is the area, and F is the force.

2.7.2 PARTIAL-FLOW-LIMITING CONTROLS
For a hydraulic cylinder, the speed in one direction can be controlled if a

simple needle valve is located in the exhaust port of the cylinder. This is

referred to as a meter-out application. The exhaust pressure of a hydraulic

cylinder is relatively stable and, thus, it maintains a reasonably accurate ¯ow

rate control with a simple needle valve. Figure 2.20a shows a simple needle-

valve meter-out control. The unit depicted in Fig. 2.20 has the additional

feature of allowing the ¯ow to pass through a check valve B in one direction,

thus being unaffected by the adjustment of the metering valve A. The

metered ¯ow direction of these valves is usually indicated by an arrow on

the external surface of the unit. A ®ne adjustment thread on the stem of valve

A provides a precise control of the ¯ow. An adjustment of A is minor while

the valve is subjected to system pressure. Excessive looseness of the locknut

for valve A and excessive turning of valve A may damage the small valve

seal. If large adjustments are needed, they are best accomplished at 0 lb=in2.

Figure 2.19
Pilot-operated

check valve
shown (a)
closed and

(b) with pilot
actuated to

allow constant
¯ow or reverse

¯ow.
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The ¯ow control illustrated in Fig. 2.20d is far superior to those shown in Figs.

2.20a to 2.20c. The unit shown in Fig. 2.20d is adjustable at any time, even

while under maximum pressure.

2.8 Hydraulic Pumps

Although many hydraulic pumps and motors appear to be interchangeable in

that they operate on the same principles and have similar parts, they often

have design differences that make their performances better as either motors

or pumps. Moreover, some motors have no pump counterparts. In this

chapter only positive-displacement pumps are considered (those pumps

that deliver a particular volume of ¯uid with each revolution of the input

drive shaft). This terminology is used to distinguish them from centrifugal

pumps and turbines.

2.8.1 GEAR PUMPS
The simplest type of these pumps is the gear pump, shown in Fig. 2.21, in

which the ¯uid is captured in the spaces between the gear teeth and the

housing as the gears rotate. Flow volume is controlled by controlling the

speed of the drive gear. Although these pumps may be noisy unless well

designed, they are simple and compact.

2.8.2 GEROTOR PUMPS
Another version of the gear pump is the gerotor, whose cross section is

presented schematically in Fig. 2.22. The internal gear has one fewer tooth

Figure 2.20 Single-needle valve ¯ow control. (a) Metered ¯ow in both directions. (b) Check valve for reverse
¯ow. (c) Reverse ¯ow check valve shown open. (d) Valve constructed to allow adjustment while under pressure.
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than the external gear, which causes its axis to rotate about the axis of the

external gear. The geometry is such that on one side of the internal gear the

space between the inner and outer gerotor increases for one-half of each

rotation and on the other side it decreases for the remaining half of the

rotation. It consists of three basic parts: the ring, the outer gerotor, and the

inner gerotor. The number of the teeth varies, but the outer gerotor always

has one more tooth than the inner gerotor.

The ®gure shows the two kidney-shaped ports, namely, the suction port

and discharge port. The axis around which the inner element rotates is offset

by the amount e from the axis of the outer gerotor, which, driven by the inner

gerotor, rotates within the ring.

Figure 2.21
Gear pump.

Figure 2.22
Gerotor pump.

596 Fluid Dynamics

Flu
id

D
yn

am
ics



2.8.3 VANE PUMPS
Figure 2.23a shows the sketch of a vane pump. The drive shaft center line is

displaced from the housing center line, having uniformly spaced vanes

mounted in radial slots so that the vanes can move radially inward and

outward to always maintain contact with the housing. Fluid enters through

port plates, shown in Fig. 2.23b, at each end of the housing. The advantages

of vane pumps over gear pumps are that they can provide higher pressures

and variable output without the need to control the speed of the prime

mover (electric motor, diesel engine, etc). The design modi®cation required

for a variable volume output from a pump having a circular interior cross

section is that of mounting the housing between end plates so that the axis of

the cylinder in which the vane rotates may be shifted relative to the axis of

the rotor, as shown in Fig. 2.24. The maximum ¯ow is obtained when they

are displaced by the maximum distance (Fig. 2.24a), and zero ¯ow is

obtained when the axis of the rotor and the housing tend to coincide (Fig.

2.24b).

Figure 2.23
Vane pump. (a)

Cross section
shown

schematically.
(b) Port plate
with inlet port

and outlet port.

2. Hydraulics 597

Fl
u
id

D
yn

am
ic

s



2.8.4 AXIAL PISTON PUMP
An axial piston pump is shown in Fig. 2.25. The major components are the

swashplate, the axial pistons with shoes, the cylinder barrel, the shoeplate,

the shoeplate bias spring, and the port plate. The shoeplate and the shoe-

plate bias spring hold the pistons against the swashplate, which is held

stationary while the cylinder barrel is rotated by the prime mover. The

cylinder, the shoeplate, and the bias spring rotate with the input shaft, thus

forcing the pistons to move back and forth in their respective cylinders in the

cylinder barrel. The input and output ¯ows are separated by the stationary

port plate with its kidney-shaped ports. Output volume may be controlled by

changing the angle of the swashplate. As angle a between the normal to the

swashplate and the axis of the drive shaft in Fig. 2.26b goes to zero, the

¯ow volume decreases. If angle a increases (Fig. 2.26a), the volume also

increases. Axial piston pumps with this feature are known as overcenter axial

piston pumps.

2.8.5 PRESSURE-COMPENSATED AXIAL PISTON PUMPS
For these pumps the angle a of the swashplate is controlled by a spring-

loaded piston that senses the pressure at a selected point in the hydraulic

system. As the pressure increases, the piston can decrease a in an effort to

decrease the system pressure, as illustrated in Fig. 2.26b. Pressure compensa-

tion is often used with overcenter axial piston pumps in hydrostatic transmis-

sions to control the rotational speed and direction of hydraulic motors.

2.9 Hydraulic Motors

Hydraulic motors differ from pumps because they can be designed to rotate

in either direction, can have different seals to sustain high pressure at low

rpm, or can have different bearings to withstand large transverse loads so

Figure 2.24
Cross-sectional

schematic
variable vane
pump (a) for

maximum ¯ow,
and (b) for

minimum ¯ow.
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they can drive sprockets, gears, or road wheels on vehicles. A rotating valve

that distributes the pressure to the pistons in sequence causes the output

shaft to rotate in the desired direction. The pistons are mounted in a block

that holds the pistons perpendicular to the rotor. Each piston slides laterally

on a ¯at surface inside the housing as it applies a force between the ¯at

portion of the housing and the eccentric rotor. Figure 2.27 shows a radial

piston pump with the pistons, 2, arranged radially around the rotor hub, 1.

The rotor with the cylinders and the pistons are mounted with an eccentricity

in the pump house 3. The pistons, which can slide within the cylinders with a

special seal system, pull and then push the ¯uid (the arrows on the ®gure)

through a central valve 4.

Orientation of the block relative to the housing is maintained by means

of an Oldham coupling. The schematic principle of operation of an Oldham

coupling is presented in Fig. 2.28. The main parts are the end plate 1,

coupling plate 2, and block 3, which contains the pistons and the eccentric

Figure 2.25 Axial piston pump. (a) Overcenter axial pump without drive shaft shown. (b) Basic parts for
axial piston pump.
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Figure 2.26 Simpli®ed schematic of the operation of the compensator piston in controlling the angle of the
swashplate to control output ¯ow rate. (a) Large displacement for full ¯ow. (b) Zero displacement for no ¯ow.

Figure 2.27
Sectional views
of radial piston

pump.
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portion of the shaft. Slot a is cut into plate 1 and accepts track A, which is part

of plate 2. Track B is perpendicular to track A and is located on the opposite

side of plate 2 from track A. Slot b is cut into the block and accepts track B.

Thus, any displacement of the block relative to plate 1, which is attached to

the housing, can be decomposed into components parallel to tracks A and B.

As the shaft turns the center of the eccentric and of the block, it will describe

a circle about the center of the housing, but the block itself will not rotate.

Pistons, block, and housing, therefore, will always maintain their proper

orientation relative to one another.

2.10 Accumulators

An accumulator is a tank that accumulates and holds ¯uid under pressure.

Accumulators are used to maintain the pressure in the presence of ¯uctuating

¯ow volume, to absorb the shock when pistons are abruptly loaded or

stopped, as in the case of planers, rock crushers, or pressure rollers, or to

supplement pump delivery in circuits where ¯uid can be stored during other

parts of the cycle. The bladder-type accumulator is presented in Fig. 2.29a.

This design incorporates a one-piece cylindrical shell with semicircular ends

to better withstand system pressure. A rubber bladder or separator bag is

installed inside the outer shell. It is this bladder that, when ®lled with a gas

precharge, supplies the energy to expel stored liquid at the desired time. A

poppet valve is supplied in the lower end of the accumulator to prevent the

bladder from being damaged by entering the ¯uid port assembly. This

poppet is held open by a spring but is closed once the accumulator

precharge extends the bladder and causes it to contact the top of the

Figure 2.28
Front and side

views of plates 1
and 2 and the

block, which
provides an

Oldham coupling
relation.
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poppet. The gas used for accumulator service is an inert gas such as nitrogen.

Also, a small valve is used to ®ll the bladder with gas. This valve is similar to

those used to ®ll auto tires. A locknut is provided to anchor this valve and the

bladder to the shell.

The piston-type accumulator is shown in Fig. 2.29b. Note that the piston

type resembles a conventional hydraulic cylinder minus the piston rod. This

con®guration can be identi®ed as free or ¯oating piston operation. The gas

precharge is on one side of the piston, and the system oil is on the other. Two

seals are indicated on the piston head. Therefore, the two rings keep the

piston head from cocking, but actual sealing is accomplished by the seal ring

on the gas side of the piston head.

Figure 2.29 Internal construction of accumulators. (a) Bladder-type accumulator. (b) Piston-type accumu-
lator.
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2.11 Accumulator Sizing

Accumulator size depends on the amount of ¯uid to be stored and the means

used to supply pressure to the ¯uid stored in the accumulator. If a weight

above a piston is used, the accumulator must be large enough to hold the

¯uid and the volume of the weight and piston. When gas pressure is used,

either in a bladder or above a piston, the sizing of the accumulator requires

that we consider the behavior of the gas as it is being compressed by the

incoming ¯uid. The gas equation is considered to be polytropic and includes

isothermal and reversible adiabatic changes as special cases if the appro-

priate value of the exponent is selected. An isothermal process is one in

which the compression is slow enough for the temperature of gas to remain

constant. An adiabatic process is one that is so rapid that no heat is lost and

the temperature rises accordingly. The polytropic gas equation is

pV n � poV n
o : �2:14�

If the accumulator volume is Vf and pressure is pf , when it is ®lled with the

desired amount of ¯uid, and Ve and pe are the volume and pressure when it

is empty, the volume of stored ¯uid in Vs is

Vs � Ve ÿ Vf : �2:15�
From Eq. (2.14) it follows that

pf V n
f � peV n

e ; �2:16�
so that upon solving Eq. (2.16) for Vf and substituting into Eq. (1.15), the

required volume Ve of the accumulator is given by

Ve �
Vs

1ÿ pe

pf

 !1=n b �2:17�

where the value of n is given in Fig. 2.30 and b is an experimentally

measured factor given by

b � 1:24; for bladder-type accumulators

b � 1:11; for piston-type accumulators

2.12 Fluid Power Transmitted

For calculating the power transmitted to a particular unit, it is necessary to

know the functional formula for power,

P � F v; �2:18�
where F is the force, and v is the velocity.

The force F can be written as

F � pA; �2:19�
where p is the pressure and A is the cross-sectional area.
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If L is the distance traveled in time t by a point that moves with the ¯uid

¯owing through the hose or cylinder of cross-sectional area A, the power

required to move that ¯uid is

P � pA
@L

@t
� pAv � p

@V

@t
: �2:20�

The rate of change of time @V =@t is denoted by _Q in units of gallons per

minute or liters per minute.

1 gallon �1 gal� � 231 in3; and 1 horsepower �hp� � �ft lb=min�=33;000:

2.13 Piston Acceleration and Deceleration

To analyze piston behavior, we consider piston velocity and acceleration as a

function of the system parameters.

The velocity is the volumetric ¯ow rate divided by the cross-sectional

area Ac of the cylinder. Thus,

vr �
_Q

Ac

; �2:21�

where vr denotes the velocity of the piston and rod.

Figure 2.30
Schematic for
regenerative

cylinder circuit.
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During the motion, the rod and piston are accelerating, and the

equilibrium equation is

m � d2x

dt 2
� pAc ÿ �Fr � f �; �2:22�

where Fr is the force opposing the motion of the piston and f is the friction

and ¯uid losses at the exhaust ports.

If the pressure is constant, which is a reasonable approximation if the

lines and ®ttings are large enough to produce only negligible pressure losses,

one may integrate Eq. (2.22) to get

dx

dt
� pAc ÿ �Fr � f �

m
t �2:23�

when the piston starts from rest.

When set equal to the piston maximum steady-state velocity vr , the time

needed to accelerate to velocity vr is

ta �
mvr

pAc ÿ �Fr � f � : �2:24�

The distance required for the piston to reach this velocity may be calculated

by integrating Eq. (2.23) with respect to time and using the condition that the

motion started from x � 0 to obtain

xa �
mv2

r

2�pAc ÿ �Fr � f �� �
tavr

2
; �2:25�

Here m is the total accelerating mass; that is, the piston, the rod, and any

mass being accelerated by the piston and rod. If the stroke of the cylinder is

less than xa , the piston will accelerate over the entire stroke.

The time needed by the piston to accelerate, move at constant velocity,

and decelerate may be estimated by using the relationship

t1 � ta � td �
s ÿ �xa � xd �

vr

; �2:26�

where s is the stroke length, td is the deceleration time, and xd is the

deceleration distance.

Hydraulic pistons usually move relatively slowly because the ratio

between hose and cylinder cross-sectional areas is generally small and

because large line losses are associated with large velocities. Acceleration

times and distances are negligible.

2.14 Standard Hydraulic Symbols

The time and effort to draw and modify design drawings for hydraulic

systems (Fig. 2.30) can be greatly reduced by employing a set of standard

design symbols to denote hydraulic components. Two different conventions

have been accepted for joining and crossing hydraulic lines. They are
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presented in Fig. 2.31a. The main hydraulic lines are drawn as solid lines;

pilot lines are drawn as long dashes; exhaust and drain line are drawn as

short dashes. Check valves are drawn as in Fig. 2.31b, where ¯ow is allowed

from A to B, but not from B to A. Figures 2.32 and 2.33 show other activation

symbol, and Fig. 2.34 shows the symbolic circuit for the regenerative

cylinder, initially shown in Fig. 2.30.

2.15 Filters

Filters are used in hydraulic circuits to remove foreign matter without adding

appreciably to pressure loss in the circuit. Normally only one ®lter is added

to most hydraulic systems on machines, unless a particular component is

especially sensitive to dirt and must have extra protection. Filters are added

in the reservoir, in the pump intake from the reservoir, or in the return line to

the reservoir. Motivation for the ®rst two choices is that the pump is usually

the most expensive single component in the system and that foreign matter

tends to collect in the reservoir because the ¯ow velocity is low Ð it acts as a

settling tank. The disadvantage of this location is that if the ®lter becomes

clogged, it can starve the pump and cause extensive damage. This possibility

may be largely eliminated by placing the ®lter in the return line, but with the

risk of damaging the ®lter by forcing large particles through it. A pilot-

operated check valve may be used to bypass a clogged ®lter, but at the

expense of circulating foreign matter that should have been ®ltered out.

Another alternative is to stop the system when the pressure across a ®lter

exceeds a limiting value. Particulate matter is described in terms of its largest

dimension in micrometers (microns), where a micrometer is 1� 10ÿ6 meters.

Filters are classi®ed in terms of their ability to entrap these particles by means

of a b value. The symbol b is immediately followed by a number that denotes

the diameter of the particles involved according to the relation

bd �
Number of particles of diameter d upstream from filter

Numbers of particles of diameter d downstream from the filter
:

Most ¯uid ®lters are not rated for particles less than 3 mm; b may be taken as

1.0 to d < 3.

Figure 2.31
(a) Joining and

(b) crossing
hydraulic lines.

606 Fluid Dynamics

Flu
id

D
yn

am
ics



2.16 Representative Hydraulic System

A simple hydraulic circuit to provide bidirectional control of a hydraulic

cylinder is shown in Fig. 2.35. It includes a motor with a clutch between the

motor and pump, a ®lter in the motor intake lane from the reservoir, and a

manually operated directional valve.

Figure 2.32 Activation symbols.
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Figure 2.33 Other activation symbols.
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Figure 2.34
Symbolic circuit
for regenerative
cylinder circuit

schematic shown
in Fig. 2.30.

Figure 2.35
Representative

hydraulic circuit.
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T
his chapter, ``Control,'' is an introduction to automation for technical

students and engineers who will install, repair, or develop automatic

systems in an industrial environment. It is intended for use in

engineering technology programs at the postsecondary level, but it is also

suitable for use in industrial technology curricula, as well as for in-service

industrial training programs. Industrial managers, application engineers, and

production personnel who want to become familiar with control systems or

to use them in production facilities will ®nd this chapter useful.

The text requires an understanding of the principles of mechanics and

¯uid power, as well as a familiarity with the basics of mathematics. Although

not essential, a good knowledge of the principles of physics is also helpful.

1. Introduction

Control engineering is concerned with the automation of processes in order

to provide useful economic products. These processes can be conventional

systems, such as chemical, mechanical, or electrical systems, or modern

complex systems such as traf®c-control and robotic systems. Control engi-

neering is based on the foundation of feedback theory and linear system

analysis. The aim of the control system is to provide a desired system

response.

In order to be controlled, a process can be represented by a block, as

shown in Fig. 1.1. The input±output relationship represents the cause and

effect relationship of the process. The simplest system of automation is the

open-loop control system, which consists of a controller that provides the

input size for the process (Fig. 1.2).
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Plant.
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A closed-loop control system (Fig. 1.3) uses a feedback signal consisting

of the actual value of the output. This value is compared with the prescribed

or desired input, and the result of the comparison de®nes the system error.

This size is ampli®ed and used to control the process by a controller. The

controller acts in order to reduce the error between the desired input and the

actual output. Moreover, several quality criteria are imposed in order to

obtain a good evolution of the global system.

1.1 A Classic Example

One of the most popular examples of a feedback control system is the water-

level ¯oat regulator (Fig. 1.4). The output of the system is de®ned by the

Figure 1.2
Open-loop

control system.

Figure 1.3 Closed-loop control system.

Figure 1.4
Water-level ¯oat

regulator.
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water level measured by a ¯oat that controls, by a mechanical system, the

valve that, in turn, controls the water ¯ow out of the tank. The plant is

represented by the water tank, and the water ¯owing into the tank represents

a disturbance of the system. If the water level increases, the ¯oat moves up

and, by a mechanical system representing the controller, initiates the opening

of the valve. If the water level decreases, the ¯oat moves down and initiates

the closing of the valve. The size of the closing or opening can be adjusted

from a reference panel that provides the prescribed values. The system

operates as a negative feedback control system because a difference is

obtained between the prescribed value and the output; the water level and

the variations of the water level are eliminated by compensation through the

valve functions.

This system represents one of the simplest control systems. Effort is

necessary in order to eliminate transient oscillations and to increase the

accuracy of the control system.

2. Signals

The differential equations associated with the components of control systems

(Appendix A) indicate that the time evolution of the output variable x0�t � is a

function of the input variable xi �t �. In order to obtain the main characteristics

of these elements it is necessary to use standard input signals.

(a) The impulse function d�t �: The unit impulse is based on a rectangular

function f �t � such as

fe�t � � 1=e; 0 � t � e
0; t > e;

�
�2:1�

where e > 0. As e approaches zero, the function fe�t � approaches the

impulse function d�t �, where�1
0

d�t �dt � 1 �2:2��1
0

d�t ÿ a�f �t �dt � f �a�: �2:3�

The impulse input is useful when one considers the convolution

integral for an output x0�t � in terms of an input xi �t �,

x0�t � �
�t

0

h�t ÿ t�xi�t�dt �lÿ1fh�� �xi�� �g; �2:4�

where h�s�;xi �s� are the Laplace transforms of h�t �; xi �t �, respec-

tively (Appendix B). If the input is the impulse function d�t �,
xi �t � � d�t � �2:5�

x0�t � �
�t

0

h�t ÿ t�d�t�dt; �2:6�
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and we have

x0�t � � h�t �: �2:7�
(b) The step input: This standard signal is de®ned as

xi �t � � a; t > 0
0; t < 0:

�
�2:8�

The Laplace transform is

Xi �s� �
a

s
: �2:9�

This signal is shown in Fig. 2.1.

(c) The ramp input: The standard test signal has the form (Fig. 2.2)

xi �t � � at ; t > 0
0; t < 0

�
�2:10�

and the Laplace transform

Xi �s� �
a

s2
: �2:11�

(d) The sinusoidal input signal: The standard form is

xi�t � � a sinot ; o � 2p
T
; �2:12�

Figure 2.1
Step input.

Figure 2.2
Ramp input.
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where a is the amplitude, o is the frequency of the signal (Fig. 2.3),

and T is the period. This signal is used when we analyze the

response of the system when the frequency of the sinusoid is

varied. So, several performance measures for the frequency

response of a system. The Laplace transform is

Xi�s� �
ao

s2 � o2
: �2:13�

3. Transfer Functions

All the elements of the control system are unidirectional information trans-

mission elements:

Y �s� � Xo�s�
Xi �s�

: �3:1�

The transfer function of the linear system is de®ned as the ratio of the

Laplace transform of the output variable Xo�s� to the Laplace transform of the

input variable Xi�s�, with all the initial conditions assumed to be zero. The

transform function is de®ned only for linear and constant parameter systems.

3.1 Transfer Functions for Standard Elements

Transfer functions for standard elements are the following:

(a) Proportional element: For this element, the output is proportional to

the input,

xo�t � � K xi �t � �3:2�
Xo�s� � K Xi �s�; �3:3�

and the transfer function (Fig. 3.1) will be

Y �s� � Xo�s�
Xi �s�

� K : �3:4�

Figure 2.3
Sinusoidal input.
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(b) Integrating element: The output is de®ned by the integral of the

input,

xo�t � � KI

�
xi�t �dt ; �3:5�

or

_xo�t � � KI xi�t �; �3:6�
sXo�s� � KI Xi�s� �3:7�

and the transfer function

Y �s� � Xo�s�
Xi�s�

� KI

s
: �3:8�

(c) Differentiating element: This element is de®ned by

xo�t � � KD _xi �t � �3:9�
Xo�s� � KDsXi �s� �3:10�

with the transfer function

Y �s� � Xo�s�
Xi �s�

� KDs: �3:11�

(d) Mixed elements: From standard elements, we can obtain new

transfer functions:

j Proportional-integrating element (PI):

�s� � K � KI

s
�3:12�

j Proportional-differentiating element (PD):

Y �s� � K � KDs �3:13�
j Proportional-integrating±differentiating element (PID):

Y �s� � K � KI

s
� KDs �3:14�

3.2 Transfer Functions for Classic Systems

We consider the linear spring±mass±damper system described in Appendix

A.1, Eq. (A1.2), with zero initial conditions

Ms2Xo�s� � kf sXo�s� � kXo�s� � AXi�s�: �3:15�

Figure 3.1
Transfer

function.
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The transfer function will be

Y �s� � Xo�s�
Xi �s�

� A

Ms2 � kf s � k
: �3:16�

In a similar way, for the linear approximated rotational spring mass

damper system, we have

Y �s� � Y�s�
T �s� �

1

Js2 � kf s � �k �Mgl=2� : �3:17�

4. Connection of Elements

In order to represent a system with several variables under control, an

interconnecting of elements is used. Each element is represented by a block

diagram. The block diagram is a unidirectional block that represents the

transfer function of its variables. For example, the block diagram of the linear

spring±mass±damper element is represented as in Fig. 4.1. This representa-

tion de®nes the relationships between the inputs, the system pressure p�t �,
and the output, the position z �t �.

In order to represent a complex system, an interconnecting of blocks is

used. This representation offers a better understanding of the contribution of

each variable than is possible to obtain directly from differential equations.

(a) Cascade connection: In this case, the output of the ®rst element is

also the input in the second element (Fig. 4.2),

Xi2�s� � Xo1�s�; �4:1�

but

Y1�s� �
Xo1�s�
Xi1�s�

; Y2�s� �
Xo2�s�
Xi2�s�

; �4:2�

Figure 4.1
Block diagram of

the linear
spring±mass±

damper element.

Figure 4.2
Cascade

connection.
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and for the overall system,

Y �s� � Xo�s�
Xi�s�

� Xo1�s�
Xi1�s�

� Xo2�s�
Xi2�s�

� Y1�s� � Y2�s�: �4:3�

(b) Parallel connection: For this structure, the input is the same for both

elements, and the output is de®ned by summing of outputs:

Xi1�s� � Xi2�s� � Xi�s� �4:4�
Xo�s� � Xo1�s� � Xo2�s� �4:5�

and

Y �s� � Xo�s�
Xi �s�

� Xo1�s�
Xi1�s�

� Xo2�s�
Xi2�s�

� Y1�s� � Y2�s�: �4:6�

(c) Negative feedback connection: This system is represented in Fig. 4.3.

The relations that describe the system are (Fig. 4.4)

E �s� � Xi �s� ÿ Xf �s� �4:7�
Xo�s�
Y1�s�

� Xi �s� ÿ Xo�s� � Y2�s�: �4:8�

The transfer function will be

Y �s� � Xo�s�
Xi �s�

� Y1�s�
1� Y1�s� � Y2�s�

: �4:9�

Relation (4.9) is particularly important because it represents the

closed-loop transfer function.

(d) Complex connection: A complex structure can contain a number of

variables under control. This system can be described by a set of

equations represented as Laplace transforms:

X01�s� � Y11�s� � Xi1�s� � Y12�s� � Xi2�s� � � � � � Y1m�s� � Xim�s�
X02�s� � Y21�s� � Xi1�s� � Y22�s� � Xi2�s� � � � � � Y2m�s� � Xim�s�;

..

.

X0n�s� � Yn1�s� � Xi1�s� � Yn2�s� � Xi2�s� � � � � � Ynm�s� � Xim�s�;
�4:10�

Figure 4.3
Parallel

connection.

Figure 4.4
Negative
feedback

connection.
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where Yij �s� is the transfer function relating the ith output variable to

the j th input variable (Fig. 4.5).

5. Poles and Zeros

In Section 4 we introduced the negative feedback connection as the main

connection in the control systems. This connection is also known as a closed-

loop connection or closed-loop control system (Fig. 5.2). The presence of

feedback assures the improvement of control quality.

An open-loop control system is shown in Fig. 5.1. The main difference

between the open- and closed-loop control systems is the generation and

utilization of the error signal. The error signal is de®ned as the difference

between the input variable and the feedback variable,

e�t � � xi�t � ÿ xf �t � �5:1�
E �s� � Xi�s� ÿ Xf �s�: �5:2�

Figure 4.5
Block diagram
for a complex

structure.
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The closed-loop system (Fig. 5.2) operates so that the error is reduced to

a minimum value. We consider that a control system with good performance

ensures that

lim
t!1 e�t � � 0: �5:3�

We demonstrated that the transfer function for closed-loop systems is

Y �s� � Y1�s�
1� Y1�s� � Y2�s�

: �5:4�

From (5.2) and (5.4) we easily obtain

E �s� � 1

1� Y1�s� � Y2�s�
� Xi �s�; �5:5�

which de®nes the error signal as a function of the input variable.

If we consider Y2�s� � 1 (direct negative feedback system),

Y �s� � Y1�s�
1� Y1�s�

; �5:6�

where Y1�s� is called ``the direct-way transfer function'' or ``open-loop

transfer function.'' This transfer function can be written as

Y1�s� �
Q�s�
R�s� ; �5:7�

where Q�s�, R�s� are two polynomials.

In the relation (5.7), the denominator polynomial R�s�, when set equal to

zero, is called the characteristic equation because the roots of this equation

determine the character of the system. The roots of this characteristic

equation are called the poles or singularities of the system.

The roots of the numerator polynomial Q�s� in (5.4) are called the zeros

of the system. The complex frequency s-plane plot of the poles and zeros

graphically portrays the character of the system. Y1�s� can be rewritten as

Y1�s� �
K �s � z1��s � z2� � � � �s � zm�
sl �s � p1��s � p2� � � � �s � pn�

; �5:8�

Figure 5.1
An open-loop

control system.

Figure 5.2
A closed-loop

control system.
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where K is a constant and ÿz1;ÿz2; . . . ;ÿzm are the zeros of the

Y1�s�;ÿp1;ÿp2; . . . ;ÿpn are the poles, and p � 0 represents an l -order

pole of Y1�s�.
If l � 0, relation (5.8) de®nes a type-zero transfer function; for l � 1, we

have a type-one transfer function; etc. For example, let us consider the

translational mechanism in Fig. 5.3. The dynamic model is de®ned by the

equation

F �t � � G �m �z �t � � kf _z �t �; �5:9�

where kf is the friction constant, F is the input variable, and z is the output

variable. If we neglect the component G , the transfer function for this

element can be considered as

Ym�s� �
Z �s�
F �s� �

1

s�ms � kf �
: �5:10�

The relation (5.10) represents a type-one transfer function in which we

®nd two poles,

p1 � 0

p2 � ÿ
kf

m
:

�5:11�

A simple closed-loop control system can be introduced, in which the

direct way contains a power ampli®er of the force F (Fig. 5.4) with a gain

factor. The function for the direct way is

Y1�s� �
Z �s�
E �s� �

kG

s�ms � kf �
; �5:12�

Figure 5.3
Translational
mechanism.

Figure 5.4
Closed-loop

control for a
translational
mechanism.
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and the transfer function for the closed-loop system will be

Y �s� � kG

ms2 � kf s � kG

: �5:13�

6. Steady-State Error

The steady-state error is the error generated after the transient response

(determined by the input variation or a disturbance signal) has decayed,

leaving only the continuous response.

6.1 Input Variation Steady-State Error

Let us consider the closed-loop control system from Fig. 5.2, in which we

assume Y2�s� � 1 (the direct negative feedback connection, Fig. 6.1). From

Eq. (5.5) we obtain

E �s� � 1

1� Y1�s�
� Xi�s�: �6:1�

In order to calculate the steady-error Es, we use the ®nal-value theorem

(Appendix A.2),

Es � lim
t!1 e�t � � lim

s!0
�sE �s��: �6:2�

From Eq. (6.1), results

Es � lim
s!0

s
1

1� Y1�s�
Xi�s�

� �
: �6:3�

If we consider a unit step input, Xi�s� � 1=s,

Es � lim
s!0

1

1� Y1�s�
� �

: �6:4�

Figure 6.1
Direct negative

feedback
connection.
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We consider Y1�s� in general form Eq. (5.8). For a type-zero system, the

steady-state error is

Es �
1

1� Y1�0�
; �6:5�

Es �
1

1�
K
Qm
i�1

ziQn
i�1

pi

: �6:6�

For a type-one system or more (l � 1),

Y1�0� � 1; �6:7�
and

Es � 0: �6:8�
For a ramp input, Xi �s� � 1=s2, we have

Es � lim
s!0

s
1

1� Y1�s�
� 1
s2

� �
�6:9�

Es � lim
s!0

1

sY1�s�
: �6:10�

If Y1�s� de®nes a type-zero system (l � 0),

Es � 1: �6:11�
For a type-one system,

Es �
Qn
i�1

pi

K
Qm
i�1

zi

: �6:12�

If l > 1,

Es � 0: �6:13�

6.2 Disturbance Signal Steady-State Error

A disturbance signal d �t � is an unwanted signal that affects the system's

output signal. Feedback in control systems is used to reduce the effect of

disturbance input.

We will consider the closed-loop control system from Fig. 6.1, and we

assume that the disturbance signal is applied on the direct path of the system

(Fig. 6.2). We consider that the disturbance signal point allows the decom-

position of the transfer function Y1�s� in two blocks, Y 01�s�;Y 001 �s�. Let us

624 Control

Co
n
tro

l



assume the case in which a steady state for xi�t � � 0, d �t � � 0 is obtained. Of

course, xo�t � � 0,

Xi �s� � 0

D�s� � 0 �6:14�
X0�s� � 0:

Now, we consider a disturbance signal (the input signal is Xi�s� � 0),

Xo�s� � Y 001 �s�D�s� � Y 01�s� � Y 001 �s�E �s�; �6:15�
where

Eo�s� � ÿXo�s� �6:16�
Y 01�s� � Y 001 �s� � Y1�s� �6:17�

From Eqs. (6.15)±(6.17), we obtain

Xo�s� �
Y 001 �s�

1� Y1�s�
D�s�: �6:18�

We can de®ne the transfer function due to the disturbance as

YOD�s� �
Y 001 �s�

1� Y1�s�
: �6:19�

The steady-state error signal, in this case, will be (xi �t � � 0)

jeD �t �j � jxo�t �j �6:20�

ED �s� �
Y 001 �s�

1� Y1�s�
D�s�: �6:21�

If the disturbance signal is a unit step, D�s� � 1=s, we obtain

ED �s� �
1

s

Y 001 �s�
1� Y1�s�

: �6:22�

If we consider that Y 001 �s� is a type-zero transfer function and Y1�s� is a

type-one transfer function, we obtain

EDS � lim
t!1 eD �t � � lim

s!0
�sED �s�� �6:23�

EDS � lim
s!0

Y 001 �s�
1� Y1�s�

; �6:24�

Figure 6.2
Disturbance in

the control
system.
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but

lim
s!0

Y1�s� � 1; �6:25�
so that

EDS � 0: �6:26�
If we consider that Y 001 �s� is a type-one transfer function, from Eq. (6.24)

we obtain

EDS � lim
s!0

Y 001 �s�
1� Y 01�s� � Y 001 �s�

�6:27�

or

EDS � lim
s!0

1
1

Y 001 �s�
� Y 01�s�

; �6:28�

but

lim
s!0

1

Y 001 �s�
� 0; �6:29�

and, from Eq. (6.28),

EDS � lim
s!0

1

Y 01�s�:
�6:30�

In order to obtain EDS � 0 it is necessary that

lim
s!0

Y 01�s� � 1: �6:31�

Relation (6.31) shows that the disturbance steady-state error approaches

zero if Y 01�s� represents a type-one transfer function.

The transient response for a unit step disturbance signal is represented in

Fig. 6.3. If Y 01�s� is a type-zero transfer function, then EDS 6� 0. (Fig. 6.4).

Figure 6.4
Transient

response for a
type-zero

transfer function
Y 0i �s�.

Figure 6.3
Transient

response for a
type-one

transfer function
Y 01�s�.

626 Control

Co
n
tro

l



For example, let us reconsider the translational mechanism presented in

Fig. 5.3 and 5.4. If we neglect the gravitational component, the system

de®nes a type-one transfer function

Y1�s� �
kG

s�ms � kf �
; �6:32�

and the steady-state error will be

E �s� � lim
s!0

s
s�ms � kf �

ms2 � kf s � kG

� Zd �s�
" #

: �6:33�

For the step input,

zd �t � � zd*

Zd �s� �
zd*

s
;

�6:34�

we obtain

E �s� � 0; �6:35�
and for the ramp input,

zd �t � � kd t

Zd �s� �
kd

s2
:

�6:36�

From (6.33) results

E �s� � kd kf

kG

: �6:37�

We now reconsider the dynamic model (5.9) in which we do not neglect

the gravitational component G :

F �t � � G �m �z �t � � kf _z �t �: �6:38�

If we use the Laplace transform, we obtain

Z �s� � 1

s�ms � kf �
F �s� ÿ 1

s�ms � kf �
G �s�: �6:39�

We can remark that the gravitational component can be interpreted as a

disturbance of the system (Fig. 6.5).

Figure 6.5
Disturbance in

the closed-loop
control for

translational
mechanism.
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For an input zd � 0, from Eqs. (6.20) and (6.21) we obtain

ED �s� � ÿ
1

ms2 � kf s � kG

G �s�; �6:40�

but G �s� � G=s and from Eqs. (6.24) and (6.40),

jEDS j �
G

kG

: �6:41�

7. Time-Domain Performance

The time-domain performance is important because control systems are time-

domain systems. This means that time performance is the most important

performance for control systems. Time-domain performance is usually

de®ned in terms of the response of a system to the test input signals: step

unit or ramp input. The standard step response of a control is shown in Fig.

7.1.

We can de®ne the following parameters:

(a) The overshoot is de®ned as the difference between the peak value M

of the time response and the standard input,

s � M ÿ 1; �7:1�

or, more generally,

s � M ÿ xd*; �7:2�

Figure 7.1
Unit step

response of a
system.
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where xd* is the amplitude of the step input. Frequently, this

parameter is de®ned as the percent overshoot,

sp �
M ÿ xd*

xd*
� 100: �7:3�

(b) The peak time is de®ned as the time required for the system to reach

the peak value.

(c) The rise time Tr is the time required for the system to reach the input

value for the ®rst time. These parameters are normally used for

underdamped systems. For overdamped systems another parameter

Tr1
is used that represents the rise time between 0:1xd* and 0:9xd*.

(d) The settling time Ts is de®ned as the time required for the system to

settle within a certain percentage D of the input amplitude xd*.

(e) The damping order d is de®ned as

d � 1ÿ s3

s
; �7:4�

where s3 is the amplitude of the third oscillation (Fig. 7.1). In order

to obtain good performance it is necessary that

d � dp; �7:5�
where dp is the prescribed value (of course, dp � 1).

All these parameters are de®ned in terms of the response of the

system to the test input. The same procedure can be used if we

analyze the response of the system to the disturbance test (Fig. 7.2).

(f) The disturbance overshoot is de®ned as the difference between the

peak value Md of the output signal and the input (constant value)

when a unit step disturbance [d �t � � 1] is applied:

W � Md ÿ xi : �7:6�
(g) The disturbance damping order d is de®ned as

d � 1ÿ W3

W
; �7:7�

Figure 7.2
Unit step

disturbance
response of a

system.
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where W3 is the third amplitude of the oscillation for a unit step

disturbed system.

It is very important for the control system analysis to establish the

relationship between the representation of a linear system in terms of the

location of the poles and zeros of its transfer function, and its time-domain

response to a unit step. This relationship will be developed in the following

sections, but now we will try to present this problem.

Let us consider a closed-loop system with the transfer function

Y �s� � X0�s�
Xi �s�

� Y1�s�
1� Y1�s�

;

where Y1�s� has the form (5.8). We assume that the roots of the characteristic

equation of Y �s� (the poles) are si ; i � 1; . . . ;m (simple poles) and

ÿak � j � ok ; k � 1; . . . ;n (complex conjugate pairs). For a unit step

input, the output of the system can be written as a partial fraction expansion

[8]:

X0�s� �
1

s
�Pn

i�1

Ai

s � si

� Pn
k�1

Bk

s2 � 2aks � �a2
k � o2

k �
: �7:8�

Then the inverse Laplace transform can be obtained as a sum of terms:

x0�t � � 1�Pm
i�1

Aie
ÿsi �t � Pn

k�1

Bk

ok

eÿak �t sinok � t : �7:9�

The transient response contains a steady-state output, exponential terms,

and damped sinusoidal terms. It is clear that, in order for the response to be

stable, the real parts of the roots si and ak must be negative.

For example, we consider the closed-loop control system from Fig. 5.4.

The closed-loop transfer function is

Y �s� � kG

s2m � skf � kG

: �7:10�

This relation can be rewritten as

Y �s� � o2
n

s2 � 2zons � o2
n

; �7:11�

where on is the natural frequency,

o2
n �

kG

m
; �7:12�

and z is the dimensionless damping ratio,

z � kf

2
�������������
m � kG

p : �7:13�

The roots of the characteristic equation are

s1;2 � ÿzon � on

�������������
z2 ÿ 1

q
: �7:14�
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When z > 1, the roots are real and the system is de®ned as overdamped.

For z < 1, the roots are complex and conjugates and the system is called

underdamped:

s1;2 � ÿzon � jon

�������������
1ÿ z2

q
: �7:15�

For z � 1, we have double roots and the system is de®ned as critical

damping:

s1 � s2 � ÿzon: �7:16�
If we consider a unit step input, the transient response of Eq. (7.11)

is [4, 9]

x0�t � � 1ÿ eÿzont�������������
1ÿ z2

p � sin on

�������������
1ÿ z2

q
� t � tanÿ1

�������������
1ÿ z2

p
z

 ! !
: �7:17�

The form of the transient response is illustrated in Fig. 7.3.

8. Frequency-Domain Performances

The frequency response of a system is de®ned as the steady-state response of

the system to a sinusoidal input signal. For a linear system, the output signal

will be a sinusoidal signal that differs from the input only in amplitude and

phase angle. The frequency transfer function is obtained by replacing s with

jo. This transfer function is a function of the complex variable jo,

Y �jo� � Y �s�js�jo �8:1�
Y �jo� � P �o� � jQ�o�; �8:2�

where

P �o� � Re�Y � jo��
Q�o� � Im�Y � jo��:

�
�8:3�

The transfer function can be also represented by a magnitude M �o� and

a phase C�o�,
Y �jo� � M �o� � e j �C�o�; �8:4�

Figure 7.3
Response of the

closed-loop
control for the

translational
mechanical

system.
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where

C�o� � tanÿ1 Q�o�
P �o�

� �
�8:5�

jM �o�j2 � �P �o�2 � �Q�o��2�: �8:6�

8.1 The Polar Plot Representation

The polar plot representation is the graphical representation of Y � jo�. The

polar plot is obtained as the locus of the real and imaginary parts of Y � jo� in
the polar plane. The coordinates of the polar plot are the real and imaginary

parts of Y � jo�. For example, we reconsider the open-loop system for a

translational mechanism (5.13), Y1�s� � kG=s�ms � kf �. The transfer function

can be rewritten as

Y1�s� �
k

s�ts � 1� ; �8:7�

where

k � kG

kf

t � m

kf

:

�8:8�

The frequency transfer function Y1�jo� will be

Y1�s�js�jo � Y1�jo� �
k

ÿo2 � jo
: �8:9�

From Eqs. (8.3)±(8.6), we obtain

P1�o� �
ÿko2t

o4t2 � o2

Q1�o� �
ÿok

o4t2 � o2

�8:10

and

M1�o� �
k

�o4t2 � o2�1=2 �8:11�

C1�o� � ÿ tanÿ1 ÿ1

ot

� �
: �8:12�

We ®nd several values of M �o� and C�o�:

For o � 0,

M1�0� � 1
C�0� � ÿ p

2
;
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For o � 1=t,

M1

1

t

� �
�

���
2
p

2
kt

C
1

t

� �
� ÿ 3p

4
;

For o � 1,

M1�1� � 0

C�1� � ÿp:
The polar plot of Y1�jo� is shown in Fig. 8.1.

8.2 The Logarithmic Plot Representation

Logarithmic plots or Bode plots are based on logarithmic graphical plots for

the magnitude and phase angle,

log Y1� jo� � log M1�o� � jC1�o�: �8:13�
The logarithm of M1�o� is normally expressed in terms of

log M1�o� ! 20 log M1�o�; �8:14�
where the units are decibels (dB). The logarithmic gain in decibels and the

angle C1�o� can be plotted versus the frequency o.

In order to analyze this method we will use the model offered by the

translational mechanism,

Y1�jo� �
k

jo� jot� 1� � M1�o� � e j �C1�o�: �8:15�

The transfer function can be rewritten as

Y1� jo� � Y 0� jo� � Y 00� jo� � Y 000� jo�; �8:16�

Figure 8.1
Polar plot for

open-loop
system of

translational
mechanism.
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where

Y 0� jo� � M 01�o� � e j �C0�o� � k �8:17�
Y 00� jo� � M 001 �o� � e j �C00�o� � 1

jo
�8:18�

Y 000� jo� � M 0001 �o� � e j �C000�o� � 1

jot� 1
: �8:19�

By using the logarithmic plots, the magnitude and angle can be easily

plotted from the partial transfer functions Y 0� jo�, Y 00� jo�, Y 000� jo�:

20 log M1�o� � 20 log M 01�o� � 20 log M 001 �o� � 20 log M 0001 �o�; �8:20�
C1�o� � C01�o� �C001�o� �C0001 �o�: �8:21�

Examining the relations (8.17)±(8.19), we obtain

20 log M 001 �o� � 20 log k �8:22�

20 log M 001 �o� � 20 log
1

jo

���� ���� � ÿ20 logo �8:23�

20 log M 0001 �o� � 20 log
1

jot� 1

���� ���� � ÿ20 log�1� o2t2�1=2: �8:24�

The relation (8.22) de®nes the logarithmic gain as a constant, and the

phase angle is zero (Fig. 8.2):

C01�o� � 0: �8:25�

In order to plot the magnitude versus frequency in a Bode diagram, we

consider that the use of a logarithmic scale of frequency is the most judicious

choice. In this case, the frequency axis is marked by logo.

The logarithmic magnitude M 001 �o� from Eq. (8.23) will be represented by

a straight line. The slope of the line can be computed by choosing an interval

Figure 8.2
Frequency

diagrams for
M01�o� and

C01�o�.
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of two frequencies with a ratio equal to 10. This interval is called a decade.

Let us consider two frequencies, o2;o1;o2 � 10 � o1. The slope will be

20 log M 001 �o2� ÿ 20 log M 001 �o1� � ÿ20 logo2 � 20 logo1

� ÿ20 log
o2

o1

� ÿ20 dB=decade: �8:26�

The phase plot is obtained easily from Eq. (8.18):

C001�o� � ÿ
p
2
: �8:27�

An approximate representation of Y 0001 � jo� can be obtained if we analyze

the frequency domain around the value

ob �
1

t
; �8:28�

called the break frequency. For small frequencies, o� 1=t, the relation

(8.24) can be rewritten as

20 log M 0001 �o� � 0: �8:29�
For large frequencies, o� 1=t, we have

20 log M 0001 �o� � ÿ20 logot: �8:30�
The relation (8.30) de®nes a straight line with the slope

20 log M 0001 �o2� ÿ 20 log M 0001 �o1� � ÿ20 logo2t� 20 logo1t

� ÿ20 log 10 � ÿ20 dB=decade: �8:31�
The approximate plot of magnitude is represented in Fig. 8.4 by the solid

line, and the exact curve by the dashed line. The phase angle C0001 �o� is

obtained from Eq. (8.19) (Fig. 8.3) as

C0001 �o� � ÿ tanÿ1�ot�: �8:32�

Figure 8.3
Frequency

diagrams for
M001�o� and

C001�o�.
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For the break value ob � 1=t; we have 20 log M 0001 �1=t� � ÿ20 log 2 �
ÿ3 dB, C0001 �1=t� � ÿ tanÿ1�1� � ÿp=4. The Bode plots for Y1� jo� can be

obtained by adding the plots of the partial transfer functions. The result is

presented in Fig. 8.5.

Figure 8.4
Frequency

diagrams for
M0001 �o� and

C0001 �o�.

Figure 8.5
Frequency plots

for Y1� jo�.
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8.3 Bandwidth

The bandwidth is an important parameter that de®nes the quality of the

closed-loop control system,

Y � jo� � Y1� jo�
1� Y1� jo�

; �8:33�

and we consider M �o�, C�o� the magnitude and the phase of the closed-loop

system, respectively:

Y �jo� � M �o�ej �C�o�: �8:34�
The general form of M �o� is represented in Fig. 8.6.

The maximum magnitude is Mp and the frequency is called the resonant

frequency or . The bandwidth is de®ned as the domain of frequency for

which

M �o� �
���
2
p

2
M �0�: �8:35�

The associated frequency is ob , and if we consider M �0� � 1, then

20 log M �oB� � 20 log

���
2
p

2
� ÿ3 dB: �8:36�

If the open-loop transfer function has a pole in the origin, then

limo!0 Y1� jo� � 1, and

lim
o!0

Y �jo� � 1; �8:37�

then

M �0� � 1: �8:38�
If Y1�s� does not have a pole in origin, then

M �0� < 1: �8:39�
For example, we reconsider the closed-loop control system from Fig. 5.4

(translational mechanism closed-loop control).

Figure 8.6
Magnitude M�o�
for a closed-loop

system.
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From (7.11)±(7.13), we have the transfer function

Y �s� � o2
n

s2 � 2zons � o2
n

Y �jo� � 1

1ÿ o
on

� �2

� 2z
o
on

j

:
�8:40�

The logarithmic magnitude M �o� and the phase angle C�o� will be

20 log M �o� � ÿ10 log 1ÿ o
on

� �2
 !2

� 4z
o2

o2
n

 !
�8:41�

C�o� � ÿ tanÿ1

2z
o
on

1ÿ o2

o2
n

0BB@
1CCA: �8:42�

We will approximate these functions in two frequency domains. For

o� on , we obtain

20 log M �o� � 0 �8:43�
C�o� � 0: �8:44�

Figure 8.7
Frequency plots

for a closed-loop
control system.
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For o� on, we neglect several terms in (8.41) and

20 log M �o� ' ÿ40 log
o
on

; �8:45�

which determines a curve with a slope of ÿ40 dB=decade. Also, the phase

angle will be

C�o� ' ÿp: �8:46�

The magnitude asymptotes meet the 0-dB axis for o � on. The differ-

ence between the actual magnitude curve and the asymptotic approximation

is a function of the damping ratio z. The maximum value of the frequency

response Mp occurs at the resonant frequency or . When the damping ratio z
approaches zero, the resonant frequency or approaches the natural

frequency on (Fig. 8.7).

9. Stability of Linear Feedback Systems

A stable system is de®ned as a system with a bounded system response. If the

system is subjected to a bounded input or disturbance and the response is

bounded in magnitude, the system is said to be stable.

A ®rst result for the linear closed-loop system stability was obtained in

Section 7. For a unit step input, the output was written as

Xo�s� �
1

s
�Pm

i�1

Ai

s � si

� Pn
k�1

Bk

s2 � 2aks � �a2
k � o2

k �
; �9:1�

and the time response is obtained as a sum of terms,

xo�t � � 1�Pm
i�1

Aie
ÿsi t � Pn

k�1

Bk

ok

eÿsk t sinok t : �9:2�

Clearly, in order to obtain a bounded response, the real part of the

characteristic roots si and ak must be negative.

We may conclude that ``a necessary and suf®cient condition that a

feedback system be stable is that all the poles of the system transfer function

have negative real parts.'' Of course, the main methods, investigate the

stability by determining the characteristic roots. There are also other methods

that do not require the determination of the roots but use only the

polynomial coef®cients of the characteristic equations or the frequency

transfer function.
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9.1 The Routh±Hurwitz Criterion

The Routh±Hurwitz criterion is a necessary and suf®cient criterion for linear

system stability. This criterion is based on the ordering of the coef®cients of

the characteristic equation [4, 8, 9, 17, 18]

D�s� � ansn � anÿ1snÿ1 � � � � � a1s � a0 � 0 �9:3�

into an array as follows:

sn an anÿ2 anÿ4 � � �
snÿ1 anÿ1 anÿ3 anÿ5 � � �
snÿ2 bnÿ1 bnÿ3 bnÿ5 � � �
snÿ3 cnÿ1 cnÿ3 cnÿ5 � � �
snÿ4 dnÿ1 dnÿ3 dnÿ5 � � �
..
.

266666664

377777775:

Here,

bnÿ1 � ÿ
1

anÿ1

an anÿ2

anÿ1 anÿ3

���� ����; bnÿ3 � ÿ
1

anÿ1

an anÿ4

anÿ1 anÿ5

���� ����
cnÿ1 � ÿ

1

bnÿ1

anÿ1 anÿ3

bnÿ1 bnÿ3

���� ����; cnÿ3 � ÿ
1

bnÿ1

anÿ1 anÿ5

bnÿ1 bnÿ5

���� ����
dnÿ1 � ÿ

1

cnÿ1

bnÿ1 bnÿ3

cnÿ1 cnÿ3

���� ����; . . . :

The Routh±Hurwitz criterion requires that all the elements of the ®rst

column be nonzero and have the same sign. The condition is both necessary

and suf®cient. For example, we consider the characteristic equation of a

third-order system [8, 9, 18]

s3 � �l� 1�s2 � �l� mÿ 1�s � �mÿ 1� � 0: �9:4�

The coef®cient array is

s3 1 l� mÿ 1

s2 l� 1 mÿ 1

s
l�l� m�
l� 1

0

s0 mÿ 1 0

2666664

3777775:

The necessary and suf®cient conditions will be

C1: l > ÿ1

C2: l�l� m� > 0 �9:5�
C3: m > 1:

These conditions are presented in Fig. 9.1. The ®nal domain for the

condition C � C1 \ C2 \ C3 is shown in Fig. 9.1b.
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9.2 The Nyquist Criterion

We consider the closed-loop control system transfer function

Y �s� � Y1�s�
1� Y1�s�

: �9:6�

The characteristic equation of this system is

D�s� � 1� Y1�s�: �9:7�
For a system to be stable, all the zeros of D�s� must be lie in the left-hand

s-plane. In order to investigate the positions of equation characteristic roots, a

Figure 9.1 (a) Partial conditions. (b) Condition C � C1 \ C2 \ C3. (c) Nyquist contour.
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special contour C in the s-plane, which encloses the entire right-hand s-

plane, is chosen. This contour is called the Nyquist contour (Fig. 9.1). The

contour passes along the jo-axis from ÿj1 to �j1 and is completed by a

semicircular path of radius r , where r approaches in®nity. For this contour C ,

the corresponding contour D in the D�s�-plane will encircle the origin in a

clockwise direction N times (see Appendix C),

N � Z ÿ P ; �9:8�
where Z , P represent the number of zeros and poles, respectively, of the

characteristic equation D�s�. Of course, the number of poles P of D�s� is

equal to the number of poles of the open-loop transfer function Y1�s�.
The Nyquist criterion prefers to operate by the complex function

Y1�s� � D�s� ÿ 1; �9:9�
instead of D�s�, which also represents the transfer function of the open-loop

control system. In this case the number of clockwise encirclements of the

origin (Appendix C) becomes the number of clockwise encirclements of the

ÿ1 point in the plane Y1�s�. We know that the stability of the closed-loop

system requires that the number of zeros Z in the right-hand plane (equal to

the number of poles of the closed-loop system) should be zero:

N � ÿP : �9:10�
Now, we can formulate the Nyquist criterion as follows [6, 9]:

A necessary and suf®cient condition for the stability of the closed-

loop control system is that, for the contour D in the Y1�s�-plane, the

number of counterclockwise encirclements of the (ÿ1; 0) point be

equal to the number of poles of Y1�s� from the right-hand s-plane.

In the particular case when the open-loop system Y1�s� is stable, the

number of poles of Y1�s� in the right-hand s-plane is zero (P � 0); the

Nyquist criterion requires that the contour D in the Y1�s�-plane not encircle

the (ÿ1; 0) point.

We will illustrate the Nyquist criterion by several examples. First, let us

consider the thermal heating system presented in Fig. 9.2.

The model of a tank system containing a heated liquid is de®ned by the

transfer function [9, 16]

YH �s� �
1

ct s � Qcs �
1

Rt

� � � y�s�
I �s� ; �9:11�

where y � yo ÿ ye de®nes the system output and represents the temperature

difference between the temperature of the ¯uid out and the environmental

temperature, I is the electrical current that ensures heating of the system, and

ct , Q, cs , Rt represent the thermal capacitance, the ¯uid ¯ow rate (constant),
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the speci®c heat of the ¯uid, and the thermal resistance of insulation,

respectively. The direct control path contains a DC ampli®er with k-gain.

The transfer function of the open-loop system is

Y1�s� � k
1

ct s � Qcs �
1

Rt

� � ; �9:12�

which can be rewritten as

Y1�s� �
k1

t1s � 1
; �9:13�

where

k1 �
k

Qcs �
1

Rt

t1 �
ct

Qcs �
1

Rt

:
�9:14�

The transfer function of Y1�s� has a pole p1 � ÿ1=t1 so that the open-

loop system is stable. The mapping contour of Y1�s� is a circle (Fig. 9.3) that

does not encircle the point (ÿ1; 0) (see Appendix A.3). Of course, the closed-

loop system is stable.

Figure 9.2
Closed-loop

control for a
thermal heating

system.

Figure 9.3
Mapping contour

for thermal
heating system.
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A second example is offered by the closed-loop control of a translational

mechanism (Sections, Fig 5.4). The transfer function of the open-loop system

is

Y1�s� �
k

s�ms � kf �
; �9:15�

or

Y1�s� �
k1

s�ts � 1� ; �9:16�

where

k1 �
k

kf

t � m

kf

:

�9:17�

We can remark the presence of two poles,

p1 � ÿ
1

t
p2 � 0:

�9:18�

In this case, the Nyquist contour C contains an in®nitesimal semicircle

contour of radius r1! 0 in order to satisfy the condition that the contour

cannot pass through the pole of origin. The mapping contour by Y1�s� is

obtained from the rules discussed in Appendix A.3. This is presented in Fig

9.4b.

Figure 9.4
(a) Nyquist

contour. (b)
Mapping contour
for translational

mechanism.
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When s traverses the large semicircle of the Nyquist contour, o varies

from �1 to ÿ1, and we have

Y1�s�js�r2ejf � k1

tr 2
2

eÿ2jf; �9:19�

lim
r2!1

Y1�s� � lim
r2!1

k1

tr 2
2

���� ���� � eÿ2jf: �9:20�

It is clear that f changes from f � p=2 at o � �1 to f � ÿp=2 at

o � ÿ1 so that the angle change of Y1�s� is from ÿ2p=2 � ÿp at o � �1
to 2p=2 � p at o � ÿ1. The magnitude of the contour is de®ned by an

in®nitesimal circle of radius k1=tr
2
2 , where r2 is in®nite.

For the small semicircular detour around the pole p2 � 0, the mapping

can be approximated by

Y1�s�js�r1ejf � k1

r1ejf �9:21�

lim
r1!0

Y1�s�js�r1ejj � lim
r1!0

k1

r1

eÿjf: �9:22�

The angle of Y1�s� has a value from p=2 at o � 0ÿ to ÿp=2 at o � 0�.

The magnitude will be in®nite.

If we now consider the portion of the contour C from o � 0� to

o � �1, we will have

Y1�s� � ÿk1

ot� j

o��ot�2 � 1� � Yr �s� � jYi�s�: �9:23�

For o! 0 we obtain

lim Yr �o� � ÿk1t

lim Yi�o� � ÿ1:
�9:24�

The same procedure can be used for the portion o � ÿ1 to o � 0ÿ,

and we obtain a symmetrical polar plot.

If we analyze the stability of the closed-loop system, we see that the

open- loop system is at the limit of stability (Z � 0 and a pole at the origin),

but the closed-loop system has a mapping contour that does not encircle the

ÿ1 point, so that the system is always stable.

Let us consider the same system, the translational mechanism, for which

the driving system is represented by a solenoid (Fig. 9.5). A solenoid is an

electrical system that converts direct current (DC) electrical energy into

translational mechanism energy. The transfer function is

Ys �
F �s�
V �s� �

ks

Rs � sLs

; �9:25�
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where Rs and Ls are electrical system parameters, and ks represents a

coef®cient of the mechanical system. A feedback path is obtained by a

potentiometer,

Yf �s� �
V �s�
Z �s� � k1

f : �9:26�

The open-loop transfer function is

Y1�s� �
ks

s�ms � kf ��Rs � sLs �
; �9:27�

and the closed-loop transfer function will be

Y �s� � Y1�s�
1� Y1�s�Yf �s�

: �9:28�

We write

Y 01�s� � Y1�s�Yf �s� �
k 0

s�t1s � 1��t2s � 1� ; �9:29�

where

t1 �
m

kf

t2 �
Ls

Rs

�9:30�

k 0 � ks

k1
f Rs

:

If we use the same procedure as that discussed in the previous example,

we can use the Nyquist contour from Fig. 9.4a.

We see that

lim
r1!0

Y 01�s�js�r1ejj � lim
r1!0

k 0

r1

eÿjf: �9:31�

The magnitude approaches in®nity and the angle of the Y 01�s�-plane

contour changes from ÿp=2 at o � 0� to p=2 at o � 0ÿ.

Also, for ÿ1 < o < �1, we have

lim
r2!1

Y 01�s�js�r2ejj � k 0

r 3
2

eÿ3jf; �9:32�

Figure 9.5
A translational

mechanism with
electrical drive.
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so that the Y 01�s� angle varies from ÿ3p=2 at o � �1 to 3p=2 at o � ÿ1.

The magnitude of Y 01�s� approaches zero. The mapping in the Y 01�s�-plane

contour is shown in Fig. 9.6.

We see that it is possible that the contour may encircle the ÿ1 point. In

this case the number of encirclements is equal to two and the system

becomes unstable. In order to improve the quality of the motion, we will

compute the point where Y 01�s� intersects the real axis. First, we calculate the

frequency oc of the intersection point from the condition

Y 01i �o� � 0; �9:33�
where we considered

Y 01�jo� � Y 01r �o� � jY 01i �o�: �9:34�
From Eqs. (9.33) and (9.29) we get [4, 9] the critical frequency

oc �
1���������
t1t2
p : �9:35�

The intersection point coordinate is obtained as

Y 01r �oc� �
ÿk 0t1t2

t1 � t2

: �9:36�

The stability condition requires

ÿk 0t1t2

t1 � t2

> ÿ1: �9:37�

The relation (9.37) enables us to impose certain constraints on the gain

factor k 0,

k 0 <
t1 � t2

t1t2

: �9:38�

Figure 9.6
Mapping contour

for the
translational

mechanism with
electrical drive.
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If the gain factor k 0 has the limit value

k 0c �
t1 � t2

t1t2

; �9:39�

the closed-loop system will have a pole on the jo-axis, and the system is at

the limit of stability. As k 0 decreases below this limit value, stability increases

and the margin between the new gain k 0 and k 0c is a measure of the relative

stability.

This measure of relative stability is called the gain margin and is de®ned

as the reciprocal of the gain jY 01�jo�j at the frequency at which the phase

angle is p:

1

d
� 1

jY 01�oc�j
: �9:40�

It can also be de®ned in decibels:

20 log
1

d

� �
� ÿ20 log jY 01�oc�j: �9:41�

Another measure of the relative stability can be de®ned [6, 9, 20] by the

phase margin (w) as the phase angle through which the Y 01�jo� plot must be

rotated in order that the unity magnitude jY 01�jo�j � 1 point should pass

through the (ÿ1; 0) point in the Y 01�s�-plane. This index is called the phase

margin and is equal to the additional phase log required before the system

becomes unstable.

9.3 Stability by Bode Diagrams

In the previous section we established that the gain and phase margins are a

measure of relative stability. But the gain and phase margins are easily

evaluated from the Bode diagram.

The critical point for stability is de®ned for

jY1�joc�j � 1; �9:42�
which corresponds to [see Eq. (8.4)]

jM �oc�jdB � 0 �9:43�
C�oc� � kp �9:44�

where k is an odd number.

From the Bode diagram, the gain margin will be

d � M �ot �; �9:45�
where ot is the frequency for which

C�ot � � ÿp; �9:46�
and the phase margin w is

w � jC�oc�j ÿ p: �9:47�

648 Control

Co
n
tro

l



If the polar plot for Y1�jo� approaches the critical point (ÿ1; 0), the

system is at the limit of stability, the logarithmic magnitude is 0 dB, and the

phase angle is p on the Bode diagram. Let us now consider the translational

mechanism with electrical drive discussed in the preceding section. From Eq.

(9.29) we have

Y1�jo� �
k 0

jo�jot1 � 1��jot2 � 1� : �9:48�

We assume k 0 � 1, t1 � 0:2, t2 � 0:1. The Bode characteristics are

presented in Fig 9.7.

The critical frequency is oc � 1. The gain margin is estimated by the

segment AB, d � 20 dB, and the phase margin is evaluated by the segment

CD, w � ÿ80�.

10. Design of Closed-Loop Control Systems by
Pole-Zero Methods

In the preceding sections we analyzed the design and adjustment of the

system parameters in order to provide a desirable quality of the control

Figure 9.7
Bode

characteristics
for the

translational
mechanism with
electrical drive.
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system. But often it is not simple to adjust a parameter of a technological

process that has a complex con®guration. It is preferable to reconsider the

structure of the control system and to introduce new structure components

that allow a better selection and adjustment of the parameters for the overall

system.

These new structure components are called controllers.

10.1 Standard Controllers

In Fig. 10.1 we present a feedback control system in which a controller

ensures the quality of the control system. The adjustment of the controller

parameters in order to provide suitable performance is called compensation.

The transfer function of the controller is designated as

Yc�s� �
Xc�s�
E �s� ; �10:1�

where E �s� is the system error and Xc�s� de®nes the output of the controller.

This variable acts as the input for the second component, the driving system,

which represents an interface between the controller and the mechanical

process:

YD �s� �
Xp�s�
Xc�s�

: �10:2�

If we suppose that the transfer function of the mechanical system

(process) is Yp�s�, the open-loop system has the transfer function

Y1�s� � Yc�s� � YD �s� � Yp�s� and the closed-loop control system

Y �s� � Yc�s� � YD �s� � Yp�s�
1� Yc�s� � YD �s� � Yp�s� � YT �s�

; �10:3�

where YT �s� represents the transfer function of the transducer on the feed-

back path.

In order to facilitate the selection of the best control structure, several

types of standard controllers are used.

(a) The P controller (proportional controller) is de®ned by the equation

xc�t � � Kp � e�t �: �10:4�

Figure 10.1 A feedback control system with controller.
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This controller provides a proportional output as a function of

the error

Yc�s� � Kp : �10:5�
(b) I controller (integration controller):

xc�t � �
1

Ti

�
e�t �dt �10:6�

Yc�s� �
1

Tis
: �10:7�

(c) PI controller (proportional-integration controller):

xc�t � � Kp e�t � � 1

Ti

�
e�t �dt

� �
�10:8�

Yc�s� � Kp 1� 1

Tis

� �
: �10:9�

(d) PD controller (proportional-derivative controller):

xc�t � � Kp e�t � � Td

de�t �
dt

� �
�10:10�

Yc�s� � Kp�1� Td s�: �10:11�
(e) PDD2 controller (proportional-derivative-derivative controller):

xc�t � � Kp Td1
Td2

d2e�t �
dt 2

� �Td1
� Td2

�de�t �
dt
� e�t �

� �
�10:12�

Yc�s� � Kp�1� Td1
s��1� Td2

s�: �10:13�
(f) PID controller (proportional-integration-derivative controller):

xc�t � � Kp e�t � � 1

Ti

�
�t �dt � Td

de�t �
dt

� �
�10:14�

Yc�s� � Kp 1� 1

Tis
� Td s

� �
: �10:15�

The design of a control system requires the selection of a type of

controller, the arrangement of the system structure, and then the selection

and adjustment of the controller parameters in order to obtain a set of desired

performances.

If the theoretical design of the controller requires a transfer function

more complex than those of PID or PDD2 controllers, it is preferable to

connect several types of standard controllers that can achieve the desired

performance.

10.2 P-Controller Performance

We consider the transfer function of an open-loop system (5.8) rewritten in

the form

Y1�s� �
K

sl
� Q�s�

R�s� ; �10:16�
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where l � 0; 1; 2 (l > 2 determines the instability of the system) and Q�s�,
R�s� are polynomials with coef®cients of s0 equal to 1:

Q�0�
R�0� � 1:

From Eq. (10.16) we obtain

K � lim
s!0
�sl � Y1�s��: �10:17�

If we consider the transfer function for l � 0 (a type- zero system) in Eq.

(5.8),

Y1�s� �
A � Qm

i�1
�s � zi�Qn

j�1
�s � pj �

; �10:18�

where ÿzi , ÿpj represent the zeros and poles of the open-loop system,

respectively, we obtain

K �
A � Qm

i�1
ziQn

j�1
pj

: �10:19�

For a unit step input, from Eq. (6.6) we get the steady error

E �s� � 1

1�
A � Qm

i�1
ziQn

j�1
pj

: �10:20�

We will now analyze closed-loop systems. First, we consider the transfer

function of a thermal heating system (9.12)±(9.14),

Y1�s� �
k1

t1s � 1
;

with the closed-loop transfer function

Y �s� � X0�s�
Xi �s�

� Y1�s�
1� Y1�s�

� k1*

s � p1

; �10:21�

where

p1 � ÿ
1� k1

t1

;

k1* �
k1

t1

;

8>><>>: �10:22�

and k1, t1 are de®ned in Eq. (9.14).
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The transient response for a unit step input xi�t � will be

X0�s� � Y �s� � Xi �s�
X0�s� �

k1*

s � p1

� 1
s
:

�10:23�

Expanding Eq. (10.23) in a partial fraction expansion, we obtain

X0�s� �
c0

s
� c1

s � p1

; �10:24�

where

c0 � �s � X0�s��js�0 �
k1*

p1

�10:25�

c1 � ��s � p1� � X0�s��js�ÿp1
� ÿk1*

p1

: �10:26�

Then, the relation (10.24) becomes

x0�t � �
k1*

p1

ÿ k1*

p1

eÿp1�t : �10:27�

The transient response is presented in Fig. 10.2. It is composed of the

steady-state output k1*=p1 and an exponential term �k1*=p1�eÿp1t . The steady-

state error will be

Es � 1ÿ x0�1� � 1ÿ k1*

p1

: �10:28�

We remark that when p1 approaches the origin (jp1j decreases), the time

constant 1=p1 and also the duration of the transient response increase. It is

clear that a fast transient response requires a large p1 that will determine the

increase of the steady-state error. As a second case, we consider the closed-

loop transfer function for a translational mechanism (Fig. 5.4). The open-loop

transfer function is given by Eq. (9.16). The closed-loop transfer function will

be

Y �s� � o2
n

s2 � 2zons � o2
n

; �10:29�

Figure 10.2
Transient

response for
closed-loop
control of a

thermal system.
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where the natural frequency on and damping ratio z are

o2
n �

k1

t1

z � 1

t1on

;

8>><>>: �10:30�

and k1, t1 are given in Eq. (9.17). The system poles are (Fig. 10.3)

p1;2 � ÿzon �
�������������
1ÿ z2

q
: �10:31�

In Section 6, we obtained that the steady-state error is

Es � 0 �10:32�

for a unit step input (6.8), and

Es �
2z
on

; �10:33�

for a ramp input (6.12). The overshoot of the transient response can be

obtained by using the identity

s2 � 2zons � o2
n � �s � zon�2 � �on

�������������
1ÿ z2

q
�2: �10:34�

From Eq. (10.29),

X0�s� � Y �s� � Xi�s� �
1

s
ÿ s � 2zon

s2 � 2zons � o2
n

; �10:35�

or

X0�s� �
1

s
ÿ s � zon

�s � zon�2 � �on

�������������
1ÿ z2

p
�2

 !

� z�������������
1ÿ z2

p � on

�������������
1ÿ z2

p
�s � zon�2 � �on

�������������
1ÿ z2

p
�2

 !
: �10:36�

Figure 10.3
Poles of a

closed-loop for a
translational
mechanism.
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The inverse Laplace transform of Eq. (10.36) will give

x0�t � � 1ÿ eÿzont�������������
1ÿ z2

p � sin on

�������������
1ÿ z2

q
t � tanÿ1

�������������
1ÿ z2

p
z

 ! !
: �10:37�

The transient response is shown in Fig. 10.4. The maximum value of the

time response is obtained for

dxo�t �
dt
� 0: �10:38�

We obtain the values of time for which x0�t � achieves the extremes [4]

tex �
kp

on

�������������
1ÿ z2

p ; k � 0; 1; 2; . . . : �10:39�

For k � 0 we obtain the absolute minimum value at k � 0; for k � 1 we

obtain the peak value time

Tp �
p

on

�������������
1ÿ z2

p : �10:40�

If we substitute Tp in Eq. (10.37) we obtain the overshoot

s � eÿpz=
��������
1ÿz2
p

: �10:41�
We see that for z � 0, the overshoot is 100 (the system is at the limit of

stability) and for z > 0:85 the overshoot approaches zero.

The settling time (Ts) is de®ned as the time required for the system to

settle within a certain percentage d of the input amplitude. From Eq. (10.36)

we obtain the condition [4]

eÿzonTs�������������
1ÿ z2

p � d; �10:42�

Figure 10.4
Transient

response of a
closed-loop

control for a
translational
mechanism.
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and

Ts �
ln�d

�������������
1ÿ z2

p
�

ÿzon

: �10:43�

The bandwidth (oB) was discussed in Section 8.

From Eqs. (8.35), (8.40), and (8.29) we obtain

o2
n���������������������������������������������������

�o2
n ÿ o2

B �2 � �2zonoB �2
q �

���
2
p

2
: �10:44�

The bandwidth oB will be

oB � on

����������������������������������������������������
1ÿ 2z2 �

���������������������������
2ÿ 4z2 � 4z4

qr
: �10:45�

For example, for z � 0:5,

oB � 1:27on; �10:46�
and for z � 0:7,

oB � on : �10:47�

10.3 Effects of the Supplementary Zero

We consider a closed-loop control system as in Fig. 10.1 where the controller

is de®ned by a PD transfer function (10.11). We assumed that the controlled

process is represented by the translational mechanism (9.16). The closed-

loop transfer function will be

YPD �s� �
on

z
� �s � z �

s2 � 2zons � o2
n

; �10:48�

where z is the zero introduced by the PD controller,

z � ÿ 1

TD

; �10:49�

and

o2
n �

kp

t

z � 1� kpTD

2ton

: �10:50�

The transfer function of the open-loop control system from Fig. 10.5

represents a type-one system, so that the steady-state error will be

Es � 0; �10:51�
for a unit step input. For a ramp input signal, we obtain from Eq. (6.10)

Es � lim
s!0

1

s � Y1PD
�s�

" #
; �10:52�
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where

Y1PD
�s� � YPD �s�

1ÿ YPD�s�
;

Y1PD
�s� �

o2
n

z
� �s � z �

s s � 2zon ÿ
o2

n

z

� �� � : �10:53�

Substituting Y1PD
�s� in Eq. (10.52), we obtain

EsPD
�

2zÿ on

z
on

: �10:54�

It is clear that the steady-state error decreases by the value l � on=z . If

we cancel the effect of the zero, z !1, the PD steady-state error

approaches the P steady-state error,

EsPD
! EsP

� 2z
on

:

From Eq. (10.54) we also have the condition

2z >
on

z
: �10:55�

In order to analyze the transient response, we will rewrite (10.48) as

YPD �s� � 1� s

z

� �
YP �s�; �10:56�

where YP �s� represents the closed-loop transfer function with a P controller

discussed in the preceding section,

YP �s� �
o2

n

s2 � 2zons � o2
n

: �10:57�

For a unit step input, the output x0�t � will be

X0�s� � YP �s� � Xi �s� �
1

z
sYP �s�Xi �s�: �10:58�

The inverse Laplace transformation of (10.58) will give

x0PD
�t � � x0P

�t � � 1

z

dx0P
�t �

dt
; �10:59�

where x0PD
, x0P

denote the output signal for a PD controller or a P controller

in the control system, respectively. It is clear that the overshoot of this system

will be increased by the term �1=z � � �dx0P
�t �=dt (Fig. 10.6).

Figure 10.5
A closed-loop

control system
with PD

controller.
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From Eqs. (10.37) and (10.59) we obtain

x0PD
�t � � 1ÿ eÿzont

��������������������������
l2 ÿ 2zl� 1

p �������������
1ÿ z2

p sin�on

�������������
1ÿ z2

q
t � g�; �10:60�

where

g � tanÿ1

�������������
1ÿ z2

p
zÿ l

�10:61�

l � on

z
: �10:62�

The maximum value is obtained by

dx0PD
�t �

dt
� 0; �10:63�

which enables us to calculate the time [4]:

TPPD
� pÿ �gÿ j�

on

�������������
1ÿ z2

p : �10:64�

We remark that if z !1, l! 0, g � j and the value of (10.64) is the

same as that determined for the P-controller (10.40).

The overshoot will be

sPD �
��������������������������
l2 ÿ 2zl� 1

q
� eÿz�pÿ�gÿj�=

��������
1ÿz2
p

: �10:65�
The settling time TsPD

can be determined by using the condition

eÿzonTsPD �
��������������������������
l2 ÿ 2zl� 1

p �������������
1ÿ z2

p � 0:05: �10:66�

If we develop Eq. (10.66) and consider the settling time TsP
de®ned by

(10.42), (10.43), we obtain

TsPD
� 1

zon

� ln
��������������������������
l2 ÿ 2zl� 1

q
� TsP

: �10:67�

Figure 10.6
Transient

response with PD
controller.
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In general, the values of z and l verify the conditions (10.55)

0 < z < 1

0 < l < 2z:
�10:68�

In these cases

ln

��������������������������
l2 ÿ 2zl� 1

q
< 0; �10:69�

so that

TsPD
< TsP

: �10:70�
We can conclude that a PD controller does not increase the duration of

the transient response. Let us now analyze the bandwidth oB . From Eq.

(10.48) we obtain

20 log M �o� � 20 log

o2
n

z

�����������������
o2 � z 2

p
����������������������������������������������
�o2

n ÿ o2� � �2zono�2
q : �10:71�

The Bode diagram of magnitude M �o� is presented in Fig. 10.7. The zero

z introduces a new break frequency

oz � z ; �10:72�
and a straight line with slope �20 dB=decade. The last line, determined by

the denominator expression, will have a slope ÿ20 dB=decade. We can

compare the M �o� Bode diagram de®ned by Eq. (10.71) with a typical M �o�
Bode diagram described by the relation (8.40).

Examining both diagrams, we see that

oz
B > oB : �10:73�

In ref. 8, is proven that the increasing of the bandwidth is limited at

oB < oz
B < 2oB : �10:74�

Figure 10.7
Bode diagram of

M�o�: (a) for
Y� jo� de®ned
by (8.40); (b)

for Y� jo�
de®ned by

(10.71).
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10.4 Effects of the Supplementary Pole

In the preceding section we discussed the effects of the zeros introduced by

the PD controller on the performance of closed-loop control systems.

We will analyze the effects of the poles that are added to the transfer

function of the direct path by integrating controllers. We assume that the new

closed-loop transfer function has the form

YI �s� �
kI

�s2 � 2zons � o2
n��s � p*� ; �10:75�

where p* is the new pole and kI is chosen as

kI � o2
np; �10:76�

in order to obtain the condition

jYI �0�j � M �0� � 1: �10:77�
The open-loop transfer function (10.53) is

Y1I
�s� � o2

np*

s�s2 � �2zon � p*�s � �2zonp*� o2
n��
: �10:78�

The steady-state error EsI
will be, for a unit step input,

EsI
� 0; �10:79�

and for a ramp input (2.10),

EsI
�

2z� on

p*

on

; �10:80�

which determines an increase of the steady-state error by the value on=p*. If

we cancel the pole effect, p !1, the steady-state error achieves the value

of the P-controller steady-state error, 2z=on . The effects of the pole p* are

insigni®cant if the pole approaches the origin.

The transient response for a unit step input will be

X0I
�s� � YI �s� �

1

s
� o2

np*

s�s � p*��s2 � 2zons � o2
n�
: �10:81�

The partial fraction expansion of (10.81) is

X0I
�s� � 1

s
� C1

s � p1

� C2

s � p2

� C3

s � p*
; �10:82�

where p1, p2 are the conjugate complex poles of s2 � 2zons � o2
n . The

inverse Laplace transform of (10.82) has the form

x0�t � � 1� C1eÿp1�t � C2eÿp2�t � C3eÿp��t ; �10:83�
where the last two terms represent the damped oscillation (for 0 < z < 1) of

the system determined by the two conjugate complex poles. The second

term C3eÿp��t represents a new exponential oscillation. The amplitude of this
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oscillation can be calculated by multiplying by the denominator factor of

(10.82) corresponding to C3 and setting s equal to the root

C3 � ��s � p*�X0I
�s��s�ÿp� : �10:84�

Alternatively, the equation may be written as

C3 � ÿ
o2

n

p�2 ÿ 2zonp*� o2
n

: �10:85�

For C1, C2 we can use the same procedure

C � ��s � p1�X0I
�s��s�ÿp1

� ÿ p2

p2 ÿ p1

�10:86�

C2 � ��s � p2�X0I
�s��s�ÿp2

� p1

p2 ÿ p1

: �10:87�

If we evaluate the relation (10.85) we see that p�
2 ÿ 2zonp*� o2

n is

always negative for 0 < z < 1 so that

C3 < 0: �10:88�
This inequality indicates that the pole p* has a favorable in¯uence on the

transient response because it contributes to the diminution of the oscillation

component.

In order to analyze the bandwidth oP
B , we will represent the M �o� Bode

diagram (Fig. 10.8). It is clear that the bandwidth oP
B is decreased by

introducing the pole ÿp*:

oP
B < oB : �10:89�

10.5 Effects of Supplementary Poles and Zeros

In order to illustrate the characteristics and advantages of introducing poles

and zeros, we will consider the closed-loop transfer function

YPZ �s� �
p*

z *
o2

n�s � z *�
�s2 � 2zons � o2

n��s � p*� ; �10:90�

Figure 10.8
Bode diagram of

M�o�: (a) for
Y� jo� de®ned
by (8.40); (b)

for Y� jo�
de®ned by

(10.75).
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where ÿp*, ÿz * represent the new pole and zero and the p*=z * coef®cient

ensures the condition

jYPZ �0�j � 1: �10:91�
The steady-state error will be

EsPZ
� 0 �10:92�

for a unit step input, and for a ramp input,

EsPZ
� 2z

on

� 1

p*
ÿ 1

z *

� �
: �10:93�

In this case, it is possible to improve the steady-state error if

1

p*
<

1

z *
�10:94�

or

p* > z * �10:95�
and p*, z * approaches the origin (Fig. 10.9). The transient response for a unit

step input is obtained as in Eq. (10.81),

X0PZ
�s� �

p*

z *
o2

n�s � z *�
s�s2 � 2zons � o2

n��s � p*� ; �10:96�

which can be rewritten as

X0PZ
�s� � 1

s
� C1*

s � p1

� C2*

s � p2

� C3*

s � p*
; �10:97�

where ÿp1, ÿp2 are conjugate complex poles. The inverse Laplace transform

of Eq. (10.97) will be

xoPZ
�t � � 1� C1*e

ÿp1�t � C2*e
ÿp2�t � C3*e

ÿp��t ; �10:98�

Figure 10.9
An s-plane plot

of the poles and
zeros.
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where

C1* � ��s � p1�X0PZ
�s��s�ÿp1

; �10:99�
C2* � ��s � p2�X0PZ

�s��s�ÿp2
�10:100�

C3* � ��s � p*�X0PZ
�s��s�ÿp� ; �10:101�

or

C1* � ÿ
p2

p2 ÿ p1

� p*

z *
� z *ÿ p1

p*ÿ p1

�10:102�

C2* �
p1

p2 ÿ p1

� p*

z *
� z *ÿ p2

p*ÿ p2

�10:103�

C3* �
p*

z *
o2

n�z *ÿ p*�
ÿ p*� p�2 ÿ 2zon p*� o2

n�: �10:104�

If we compare C1*, C2* with C1, C2 from Eqs. (10.86) and (10.87),

respectively, we obtain

C1* � C1

p*

z *
� z *ÿ p1

p*ÿ p1

�10:105�

C2* � C2

p*

z *
� z *ÿ p2

p*ÿ p2

: �10:106�

If the new zero ÿz * and pole ÿp* verify the condition (see Fig. 10.9)

p* � z * �10:107�
or

p*

z *
� 1; �10:108�

and

p* � z *� j ÿ p1j � j ÿ p2j � on; �10:109�
then

z *ÿ p1

p*ÿ p1

���� ���� � z *ÿ p2

p*ÿ p2

���� ���� � 1: �10:110�

From Eqs. (10.105), (10.106), and (10.110), we obtain

C1* � C1 �10:111�
C2* � C2: �10:112�

We conclude that the introduction of the new pole and zero ÿp*, ÿz *

does not in¯uence the ®rst two transient components of x0PZ
�t �. The last

component C3*e
ÿp��t can be analyzed from the relation (10.104) and the

condition (10.108). Therefore C3* can be rewritten as

C3* �
p*

z *
o2

n�z *ÿ p*�
ÿp*o2

n

;
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or

C3* � ÿ1� p*

z *
: �10:113�

Because the pole ÿp* and the zero ÿz * verify the condition (10.95), from

(10.113) an alteration of the transient response results, which determines the

increase of the overshoot. In order to improve the transient response, we can

introduce the constraint

C3* � Ds; �10:114�
where, for a typical application, Ds is chosen as

Ds � 0:01� 0:05; �10:115�
which determines an overshoot variation between 1% and 5%. The band-

width oPZ
B is not modi®ed because the effects of the pole ÿp* that determines

the break frequency

oP
B � p* �10:116�

are compensated by the effects of the zero ÿz * with a break frequency

oZ
B � z *; �10:117�

in the conditions for which the relation (10.107) is veri®ed.

10.6 Design Example: Closed-Loop Control of a Robotic Arm

Consider the control system for a rotational robotic arm (Fig. 10.10), where

YC �s� represents the controller transfer function and the robotic arm is

described by the transfer function

YARM �s� �
kA

s�s � tA�
: �10:118�

Equation (10.118) is easily obtained from the dynamic model described

in Appendix A.1 (A.1.4) in which the gravitational term is neglected. We

assume that the parameters identify the following values for kA, tA [1, 4]:

kA � 15

tA � 95:

Figure 10.10 Rotational robotic arm control system.
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First, let us try a P-controller with the transfer function

YC �s� � kP : �10:119�
In this case, the open-loop transfer function will be

Y1�s� �
15kP

s�s � 95� : �10:120�

The control system requires the following performance:

Overshoot:

s�%� � 7:5%: �10:121�
Steady-state error:

Es � 0; ��10:122�
for unit step input, and

Es �%� � 2% ��10:123�
for ramp input.

Bandwidth:

oB � 100: �10:124�
The last condition of the bandwidth allows the estimation of the damping

ratio. From Eq. (10.41) we obtain

z � 0:636: �10:125�
If we use the pole representation from Fig. 10.3, we obtain the pole

phase angle

j � cosÿ1 z � 50�300: �10:126�
The condition (10.123) of the ramp steady-state error determines the

natural frequency from Eq. (10.33),

2z
on

� 0:02:

Therefore, we obtain

on � 63:5; �10:127�
but the relation (10.45) requires

oB � 1:1oN ; �10:128�
and from the condition (10.124),

oN � 91: �10:129�
The inequalities (10.127) and (10.129) de®ne the natural frequency

domain on ,

6:5 � oN � 91: �10:130�
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For a closed-loop transfer function of type (10.29), the open-loop

transfer function Y1�s� has the form (10.53)

Y1�s� �
o2

n

s�s � 2zon�
: �10:131�

From the denominator expressions of relations (10.130) and (10.131), we

obtain

2zon � 95;

or

on � 75: �10:132�
This value of on veri®es the condition (10.130) and can be adopted as

the optimum value of the natural frequency (Fig. 10.11).

The numerator expressions of the same relations enable us to obtain

15kP � o2
n : �10:133�

Then, the gain coef®cient of the P controller will be

kP � 375: �10:134�
The pole distribution of the closed-loop system is (Fig. 10.11)

p1 � ÿzon � jon

�������������
1ÿ z2

q
� ÿ47:7� j57:87

p2 � ÿ47:7ÿ j57:87:
�10:135�

We can conclude that a closed-loop control system for a robotic arm with

P controller satis®es all the conditions (10.120)±(10.123), and the system

parameters are

on � 75

z � 0:636

j � 50�360:

Figure 10.11
Optimal pole

distribution for a
closed control

system of a
robotic arm with

P controller.
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Let us consider that the mechanical parameters of the arm de®ne a

transfer function by the form

YARM �s� �
10

s�s � 0:1� ; �10:136�

and the closed-loop control performances are as follows:

Overshoot:

s�%� � 7:5%: �10:137�
Steady-state error:

Es � 0 for unit step input �10:138�
Es �%� � 2% for ramp input: �10:139�

Bandwidth:

oB � 50: �10:140�
In this case, the conditions (10.127), (10.129) require

z � 0:636

on � 63:5;
�10:141�

but, from Eq. (10.45),

oB � 1:1on: �10:142�
It is clear that the condition (10.140) can not be veri®ed. In this case we

propose introducing an additional pole and zero p*, z *, in the transfer

function of the system. First, we divide the overshoot in two parts,

s � s*� sPZ ; �10:143�
where sPZ is the overshoot determined by the additional pole and zero. We

estimate sPZ as

sPZ � 0:03: �10:144�
Then s* determined by the main poles will be

s* � 0:45: �10:145�
From Eq. (10.41) we obtain

z � 0:7: �10:146�
and

j � cosÿ1 z � 45�: �10:147�
In the preceding section we established that the in¯uence of an addi-

tional pole and zero on the bandwidth is negligible, and for z � 0:07 we have

oB � on:

From the condition (10.140), we impose

oB � on � 50: �10:148�
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It follows that the main pole positions will be de®ned by (Fig. 10.12)

p1 � ÿ35� j35

p2 � ÿ35ÿ j35:
�10:149�

We can remark that these pole positions do not verify the ramp steady-

state error (10.139). Indeed, we have

Es �
2z
on

� 0:028

Es �%� � 2:8%: �10:150�

From Eqs. (10.93) and (10.139), the effects of the new pole and zero on

the ramp steady-state error determine the condition

1

z *
ÿ 1

p*
� 0:4

50
; �10:151�

and the overshoot sPZ from Eq. (10.144) determines a new equation

[(10.113)±(10.115)],

p*

z *
� 1:03: �10:152�

Solving p*, z * from Eqs. (10.151) and (10.152), we have

p* � 3:75

z * � 3:64:
�10:153�

From Eq. (10.90), the closed-loop transfer function will be

YPZ �s� �
2523�s � 3:64�

�s2 � 70s � 2450��s � 3:75� : �10:154�

The open-loop transfer function of (10.154) is obtained by the form

Y1PZ
�s� � 2523�s � 3:64�

s�s � 71:07��s � 2:67� ; �10:155�

Figure 10.12
Pole-zero

distribution for a
closed control

system of a
robotic arm with

complex
structure

controller.

668 Control

Co
n
tro

l



but

Y1PZ
�s� � YC �s�YARM �s� � YC �s�

10

s�s � 0:1� : �10:156�

From the relations (10.155) and (10.156) we obtain the transfer function

of the controller,

YC �s� �
253:3�s � 3:64��s � 0:1�
�s � 71:07��s � 2:67� : �10:157�

This transfer function de®nes a complex structure controller that can be

obtained by a cascade connection of standard controllers (PD) and compen-

sator networks.

11. Design of Closed-Loop Control Systems by
Frequential Methods

In Section 8, frequency-domain performance was discussed and the main

advantages for designing in this ®eld were speci®ed. These results will be

used to deduce the transfer function of the controller in a closed-loop control

system and to adjust its parameters in order to satisfy the system perfor-

mance. We will discuss this procedure by examining a typical model, a

second-order system, described by a transfer function

Y1�s� �
k1

s�t1s � 1� ; �11:1�

which de®nes the dynamic behavior of the translational mechanism. We

assume that the following performances are imposed:

Settling time:

Ts � Tsimp; �11:2�
Overshoot:

s � simp; �11:3�
Steady-state error:

Es � 0 for a unit step input �11:4�
Es � Esimp for a ramp input: �11:5�

The ®rst step is the same as the one we discussed in the previous section.

We will try to identify the position of the main poles. The condition (11.3)

and the relation (10.41) enable us to calculate the damping ratio x, and the

condition (11.2) introduced in the relation (10.43) determines the natural

frequency on .
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Then, we can estimate the transfer function of the closed-loop system

that satis®es the ®rst two conditions (11.2) and (11.3),

Y �s� � o2
n

s2 � 2xons � o2
n

; �11:6�

or, in the frequency domain,

Y �jo� � o2
n

�o2
n ÿ o2� � j2xono

: �11:7�

The magnitude plot 20 log jY �jo�j is presented in Fig. 11.1 (curve a). This

plot has a break point at frequency on , and high frequency is represented by

a straight line with a slope of ÿ40 dB=decade.

From the transfer function (11.7) we obtain the open-loop transfer

function

Y1�jo� �
o2

n

jo�jo� 2xon�
; �11:8�

which has the same representation at high frequency as the closed-loop

transfer function (11.7) (a straight line with slope ÿ40 dB=decade), but the

break frequency is (curve b, Fig. 11.1)

oa � 2xon: �11:9�
The transfer function (11.8) de®nes a type-one system, which determines

a steady-state error Es � 0 for a unit step input so that the condition (11.4) is

veri®ed.

Figure 11.1
Bode plots for
the design by

frequency
methods.
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In order to solve the condition of steady-state error for a ramp input

(11.5), we rewrite the relation (11.8) as

Y1�jo� �
on=2x

jo
jo

2xon

� 1

� � : �11:10�

The numerator expression de®nes a gain factor k,

k � on

2x
� 1

Es

: �11:11�

If condition (11.5) is not satis®ed, we can increase the gain kp of the

controller, so that the overall gain of the open loop system is

k 0kc �
1

Esimp

; �11:12�

where kc de®nes the critical value of the gain that satis®es the condition

(11.5). Of course, this new gain modi®es the damping ratio x0 and the natural

frequency o0n ;

k 0 � o0n
2x0

; �11:13�

but

2xon � 2x0o0n � oa: �11:14�
The new transfer function is represented by curve c in Fig. 11.1:

Y 01� jo� �
k 0

jo
jo

2xon

� 1

� � : �11:15�

The new natural frequency o0n can be evaluated by the intersection of

the jY 01� jo�j high-frequency plot (the slope ÿ40 dB=decade) and the o-axis.

We can remark that

o0n > on; �11:16�
which determines the damping ratio

x0 < x; �11:17�
which can increase the prescribed value of the overshoot. In order to

eliminate these dif®culties, we introduce a cascade network that must have

a frequency response of the same magnitude as the type Y 01� jo� (curve c) for

small frequencies while, for medium frequencies, having a frequency

response of the magnitude of the type Y1� jo� (curve b). In this case, we

ensure the steady-state performance (t !1 or o! 0) and transient

performance for the frequencies o � on . This network will introduce a

zero z * and a pole p*. The magnitude plot is presented in Fig. 11.2.
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The transfer function is de®ned by

Y1*�jo� �
1

z *
jo� 1

1

p*
jo� 1

� p*

z *

jo� z *

jo� p*
; �11:18�

where

p* < z *: �11:19�
The overall open-loop transfer function will be

Y1*� jo� �
k 0

1

z *
jo� 1

� �
jo

jo
2xon

� 1

� �
1

p*
jo� 1

� � : �11:20�

The magnitude plot of Y1*� jo� is presented in Fig. 11.1 curve d. We see

that if we make a good selection of the coef®cients p* and z *, we can satisfy

all the performances for steady and transient states.

12. State Variable Models

The state variable method represents an attractive method for the analysis

and design of control systems based on reconsidering the dynamic models of

the systems described by differential equations. Thus, these methods repre-

sent time-domain techniques, in which the response and description of a

system are given in terms of time t . The time-domain methods can be readily

used for nonlinear systems, for time-varying control systems for which one or

more of the parameters of the system may vary as a function of time, for

multivariable systems (the systems with several inputs and outputs) etc. In

this sense, these methods represent stronger techniques than the classical

methods of the Laplace transform or frequency response.

State variables are those variables that determine the future behavior of a

system when the present state and the input signals are known.

The state variables are represented by a state vector

x � �x1; x2; . . . ; xn�T ; �12:1�

Figure 11.2
jY*� jo�j plot for
a compensation

network.
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where the components x1; x2; . . . ; xn de®ne the system state variables. The

state of the system is described by a set of ®rst-order differential equations

[5, 6, 8, 9, 18] written in terms of the state variables

_x1 � a11x1 � a12x2 � � � � � a1nxn � b11u1 � � � � � b1mum

_x2 � a21x1 � a22x2 � � � � � a2nxn � b21u1 � � � � � b2mum

..

.

_xn � an1x1 � an2x2 � � � � � annxn � bn1u1 � � � � � bnmum;

�12:2�

where the new variables u1;u2; . . . ;um represent the input signals.

Equation (12.2) can be rewritten in matrix form,

_x � Ax � Bu; �12:3�
where

A �

a11 a12 � � � a1n

a21 a22 � � � a2n

..

.

an1 an2 � � � ann

266664
377775

B �
b11 � � � b1m

..

.

bn1 � � � bnn

2664
3775;

�12:4�

and

u � �u1;u2; . . . ;um�T �12:5�
de®nes the input vector of the system.

The initial state of the system is de®ned by the vector

x0 � �x1�t0�; x2�t0�; . . . ; xn�t0��T : �12:6�
The state variables are not all readily measurable or observable. The

variables that can be measured represent the output variables. They are

de®ned by the matrix equation

y � Cx � Du; �12:7�
where C and D are �p � n�; �p �m� constant matrices and y is the output

vector

y � �y1; y2; . . . ; yp �T : �12:8�
In order to illustrate the concept of the state variables, we can use several

examples.

The ®rst example is represented by the linear spring±mass±damper

mechanical system (Fig. 12.1). From Appendix A we obtain the differential

equation that describes the behavior of this system,

M �z � kf _z � kz � AP : �12:9�

12. State Variable Models 673

Co
n
tr

o
l



The state variables that can de®ne this system rigorously are the position

and the velocity. We can write

x1 � z

x2 � _z ;
�12:10�

the system state variables. The input is pressure p � u. Equation (12.10) can

be rewritten as

_x1 � x2

_x2 � ÿ
kf

M
x2 ÿ

k

M
x1 �

A

M
u:

�12:11�

In the matrix form (12.3), we will have

A �
0 1

ÿ k

M
ÿ kf

M

24 35
B � A

M
:

�12:12�

We assume that only the position is measurable, so that we have for the

output

y � Cx ; �12:13�
where

y � x1;

C � �1 0�: �12:14�

The second example is represented by a coupled spring±mass system

shown in Fig. 12.2.

The dynamic model is described by the differential equations

m1 �z1 � k1�z1 ÿ z2� � F

m2 �z2 � kf _z2 � k2z2 ÿ k1�z1 ÿ z2� � 0:

(
�12:15�

Figure 12.1
The linear

spring±mass±
damper

mechanical
system.

Figure 12.2
The coupled
spring±mass

system.
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We de®ne the state vector as

x � �x1; x2; x3; x4�T ;
where

x1 � z1

x2 � _z1

x3 � z2

x4 � _z2;

the input is

u � F ;

and the output variables are represented by positions z1, z2

y � �y1; y2�T :
Equations (12.3) and (12.7) will have the

A �

0 1 0 0

ÿ k1

m1

0
k1

m1

0

0 0 0 1
k1

m1

0 ÿ kf

m2

� k1

m1

� �
ÿ kf

m2

26666664

37777775 �12:16�

B �

0
1

m1

0

0

266664
377775

C � 1 0 0 0

0 0 1 0

� �
: �12:17�

The mathematical model offered by the matrix equations (12.3) and

(12.7) is called in the literature [9, 18] ``the input±state±output'' model.

In matrix form, the solution of Eq. (12.3) can be written as an exponential

function [8, 9, 18]:

x �t � � exp�At �x �0� �
�t

0

exp�A�t ÿ t��Bu�t�dt: �12:18�

The Laplace transform of this relation has the form

X �s� � �sI ÿ A�ÿ1x �0� � �sI ÿ A�ÿ1BU �s�; �12:19�
where X �s�, U �s� are the Laplace transforms of the state and input vectors,

and

�sI ÿ A�ÿ1 � f�s� �12:20�
is the Laplace transform of

f�t � � exp A�t �: �12:21�
f�t � is called the transition matrix.
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The solution of the state equation can be rewritten as

x �t � � f�t �x �0� �
�t

0

f�t ÿ t�Bu�t�dt: �12:22�

If the initial conditions x �0�, the input u�t �, and the transition matrix f�t �
are known, we can calculate the time response x �t �. Thus, ®nding the

transition matrix is a very important issue.

If we consider the input u � 0, we obtain

x �t � � f�t �x �0�; �12:23�
or

X �s� � f�s�x �0�: �12:24�
We can rewrite Eq. (12.23) by components:

x1�t �
x2�t �

..

.

xn�t �

26664
37775 �

f11�t � f12�t � � � � f1n�t �
f21�t � � � � f2n�t �

..

.

fn1�t � fn2�t � � � � fnn�t �

26664
37775

x1�0�
x2�0�

..

.

xn�0�

26664
37775 �12:25�

From this equation we see that the matrix coef®cient fij �t � is the

response of the ith state variable due to an initial condition on the j th

state variable when there are zero initial conditions for all the other states,

fij �t � � xi�t �
xj �0� � 1

xk �0� � 0; 8k 6� j

u�t � � 0

�12:26�

or by the Laplace transform

Fij �s� � Xi �s�
xj �0� � 1

xk �0� � 0; 8k 6� j

U �s� � 0

�12:27�

There are several techniques that allow the evaluation of the matrix

coef®cients fij �t � or fij �s� [18]. In order to illustrate these methods, we will

use the signal ¯ow diagram of the system presented in Appendix A.4. We will

develop this procedure for the linear spring±mass±damper mechanical

system (Fig. 12.1) described by Eq. (12.11). The signal diagram ¯ow in

Laplace variable is shown in Fig. 12.3.

We note, therefore, that in order to determine the matrix coef®cients, it is

necessary to evaluate the Xi�s�, changing the initial conditions xi �0�. Thus,

the coef®cient f11�s� is obtained from the initial conditions x1�0� � 1;

x2�0� � 0.
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From Fig. 12.3 we can easily obtain

X1 �
1

s
�1� X2�

X2 �
1

s
ÿ k

M
X1 ÿ

kf

M
X2

� �
;

then

f11�s� � X1�s� �
s � kf

M

s2 � kf

M
s � k

M

: �12:28�

If we repeat this procedure for all matrix coef®cients, we obtain

f12�s� �
1

s2 � kf

M
s � k

M

f21�s� �
s � kf

M

s2 � kf

M
s � k

M

�12:29�

f22�s� �
s

s2 � kf

M
s � k

M

:

The transition matrix f�t � is obtained by the inverse Laplace transforms

of fij �s�. The stability of the state variable models can be easily studied by

analyzing matrix A. Indeed, the unforced system has the form

_x � Ax ; �12:30�
which gives an exponential solution of x �t � (12.18). It has been proven [8, 9,

17, 18] that the stability of the system (12.30) is obtained by solving the

characteristic equation

det�lI ÿ A� � 0: �12:31�
The placement of the characteristic equation roots, the A eigenvalues in

the left-hand part, will determine the system stability. For example, if we

Figure 12.3
The signal-¯ow
diagram for the

linear spring±
mass±damper

mechanical
system.
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consider the linear spring±mass±damper system from Fig. 12.1 with

k=M � 2, kf =M � 3, from Eq. (12.12) we obtain

A � 0 1
ÿ2 ÿ3

� �
:

The characteristic equation will be

det
l ÿ1
2 l� 3

� �
� 0;

which has the roots l1 � ÿ2, l2 � ÿ1. The system is stable.

13. Nonlinear Systems

In the preceding sections we have discussed the analysis methods and design

techniques of systems for which linear models are valid. However, in the

control system there are many nonlinearities whose discontinuous nature

does not allow linear approximation. These nonlinearities include Coulomb

friction, saturation, dead zones, and hysteresis and are found in a great

number of models in control engineering. Their effects cannot be derived by

linear methods, and nonlinear analysis techniques must be developed to

predict a system's performance in the presence of these inherent nonlinea-

rities.

13.1 Nonlinear Models: Examples

Nonlinearities in the mechanical systems can be classi®ed as inherent

(natural) and intentional (arti®cial).

Inherent nonlinearities are those that are produced in natural ways.

Examples of inherent nonlinearities include centripetal forces in rotational

motion, and Coulomb friction between contacting surfaces. Arti®cial non-

linearities are introduced by the designer in order to improve system

performance. We offer, as typical examples, the nonlinear control laws, the

adaptive control law, and the sliding control.

Nonlinearities can also be classi®ed [2, 3, 12] in terms of their mathe-

matical properties as continuous and discontinuous. The discontinuous

nonlinearities cannot be locally approximated by linear functions, for exam-

ple, hysteresis or saturation.

In this section we will present several typical nonlinearities and

nonlinear models.
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1. The gravitational pendulum with rotational spring±mass±damper

mechanical system is presented in Fig. 13.1. The dynamic model is

described by the differential equation

J �y� kf
_y� ky�Mg

l

2
sin y � T ; �13:1�

where the nonlinearity is de®ned by the gravitational component

Mg sin y.

2. The nonlinear mass±damper±spring system is presented in Fig. 13.2.

The dynamic equation of the free system is [12]

M �x � b _x j _x j � kx � k1x 3 � 0; �13:2�

where b__xj_xj represents the nonlinear damping and (kx� k1x3) repre-

sents the nonlinear spring.

3. The hydraulic actuator used for the linear positioning of a mass is

shown in Fig. 13.3 [8]. An input displacement x moves the control

value, and thus ¯uid passes into the upper part of the cylinder and the

piston is moved. When the input is small, its increase leads to a

corresponding (often proportional) increase of the output, the piston

displacement. But when the input reaches a certain level, its further

increase produces little or no increase of the output. The output

simply stays around its maximum value. The device is said to be in

saturation (Fig. 13.4).

4. Transmission systems frequently offer a nonlinearity termed backlash

[12]. It is caused by the small gaps that exist in transmission mechan-

Figure 13.1
Gravitational

pendulum with
rotational

spring±mass±
damper system.

Figure 13.2
Nonlinear mass±

damper±spring
system.
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isms. These gaps are determined by the unavoidable errors in

manufacturing and assembly. As a result of the gaps, when the driving

gear (Fig. 13.5) rotates a smaller angle than the gap, the driven gear

does not move at all, which corresponds to the dead-zero (OA

segment in Fig. 13.5); after contact has been established between

the two gears, the driver gear follows the rotation of the driving gear

in a linear fashion (AB segment). When the driving gear rotates in the

reverse direction by a distance of two gaps, the driven gear does not

move (BC segment). After the contact between the two gears is

established, the driven gear follows the rotation of the driving gear

(CD segment). The overall nonlinearity is presented in Fig. 13.5 [12].

5. The two-axis planar articulated robot is an example of the complexity

of the dynamic model of this class of mechanical structures. Let us

consider the planar robotic structure in Fig. 13.5b. Applying the

Denavit±Hartenberg algorithm, we obtain the differential equations

that describe the system [1, 13],

t1 � a1 �q1 � a2 �q2 � b1 _q1 _q2 � b1 _q2
2 � c1

t2 � a3 �q1 � a4 �q2 � b3 _q2
1 � c2;

�13:3�

Figure 13.3
Hydraulic
actuator.

Figure 13.4
Saturation

nonlinearity of
the hydraulic

actuator.
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where q1, q2 represent the generalized coordinates of the motions; t1,

t2, de®ne the input torques; a1, a2, a3, a4, b1, b2, b3, c1, c2 are

nonlinear coef®cients of the motion parameters [1],

a1 � m1l2
1 � J1 �m2�l2

1 � l2
c2
� 2l1lc2

cos q2� � J2

a2 � a3 � m2l1lc2
cos q2 �m2l2

c2
� J2

a4 � m2l2
c2
� J2

b2 � b3 �
b1

2
� m2l1lc2

sin q2

c1 � m1lc1
g cos q1 �m2g�lc2

cos�q1 � q2� � l1 cos q1�
c2 � m2glc2

cos�q1 � q2�;

and m1, m2, l1, l2, J1, J2, lc1
, lc2

represent the parameters of the

mechanical structure.

13.2 Phase Plane Analysis

The phase plane method is concerned with the graphical study of second-

order autonomous systems described by [2, 3, 12]

_x1 � f1�x1; x2�
_x2 � f2�x1; x2�;

�13:4�

where x1, x2 represent the system state variables and f1, f2, are nonlinear

functions of the states.

Figure 13.5
(a) A backlash

nonlinearity in a
transmission

mechanism. (b)
A two-axis

planar
articulated

robot.
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The state space of the x1, x2 de®nes a plane called the phase plane. A

solution x �t � of Eq. (12.1) de®nes a phase plane trajectory, and a family of

these trajectories represents a phase portrait of the system [2].

An important concept in phase plane analysis is that of a singular point.

A singular point is an equilibrium point in the phase plane, which implies the

conditions

_x1 � 0

_x2 � 0:
�13:5�

From conditions (13.5) and Eqs. (13.4) we obtain the equilibrium

relations

f1�x1; x2� � 0

f2�x1; x2� � 0:
�13:6�

From Eq. (13.6) we obtain the values x1, x2 that de®ne the equilibrium

point.

There are several techniques for generating phase plane portraits, by

using analytical graphical [2] and numerical methods [3] based on computers.

The analytical methods are based on the behavior of nonlinear systems

similar to a linear system around each equilibrium point. Consider x 0 the

equilibrium point and we can de®ne a vicinity around x 0,

x � x 0 � my : �13:7�
In this vicinity, Eqs. (13.4) can be rewritten as

y � Ay � _g�m; x0
1 ; x

0
2 �; �13:8�

where

lim
m!0

g�m; x 0
1 ; x

0
2 � � 0: �13:9�

The matrix A is the Jacobian of f1, f2, and it has the form [3]

A �
@f1
@x1

@f1
@x2

@f2
@x1

@f2
@x2

2664
3775m � 0 � a11 a12

a21 a22

� �

x1 � x 0
1 �13:10�

x2 � x 0
2 :

The characteristic equation of the matrix A has the form

D: l2 � a1l� a0 � 0; �13:11�
where

a1 � ÿ�a11 � a12� � ÿtrA

a0 � det A:
�13:12�
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The trajectories in the vicinity of this singularity point can display

different characteristics, depending on the values of the characteristic

equation roots, l1, l2. We have the following cases [12]:

j A stable node is obtained when both eigenvalues are negative. In this

case x1�t� � x�t� and x2�t� � _x�t� converge to zero exponentially (Fig.

13.6a).

j An unstable node is obtained when both eigenvalues are positive,

l1 > 0, l2 > 0, and x�t�, _x�t� diverge from zero exponentially (Fig.

13.6b).

Figure 13.6
Phase portraits

of nonlinear
systems in the

vicinity of
singular points.
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j A saddle point corresponds to the case when l1 < 0, l2 < 0. Now, the

system trajectory determined by l2 will diverge to in®nity (Fig. 13.6c).

j A stable focus is obtained when both eigenvalues are conjugate

complex and the real parts are negative. The trajectories converge

to the origin but encircle the origin one or more times (Fig. 13.6d).

j An unstable focus is determined by the case when both eigenvalues

have positive real parts. The trajectories encircle the origin and

diverge to in®nity (Fig. 13.6e).

j A center point is produced when both eigenvalues have real parts

equal to zero (Fig. 13.6f). The trajectories are ellipses.

We consider as an example the mechanical system presented in Fig. 13.7.

This system consists of a rigid beam with a rotational spring around a center

pivot and a solid ball rolling along a groove in the top of the beam. The

control problem is to position the ball in the desired position yd � 0, by using

a torque applied to the beam as a control input at the pivot.

The dynamic model of the mechanical system can be approximated by

J �y� ksy � T ; �13:13�

where ks is the spring constant. We neglect the mass of the ball.

The nonlinearity of the control system is determined by the controller,

which is a bang-bang controller:

T � ÿk sgn�e�: �13:14�

The unforced system is described by

�y� ks

J
y � 0; �13:15�

but

�y � d _y
dt
� d _y

dy
dy
dt
� _y

d _y
dy
; �13:16�

Figure 13.7
Control system

for the
mechanical

system of ball
and beam.
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so that Eq. (13.15) can be rewritten as

_yd _y� ks

J
ydy � 0: �13:17�

Integrating this equation yields

_y2 � ks

J
y2 � c: �13:18�

The characteristic equation eigenvalues are

l1;2 � �j

�����
ks

J

s
: �13:19�

Therefore, the phase trajectories are a family of ellipses and the singular point

is a center point (Fig. 13.8). These cases represent the behavior of nonlinear

systems in the vicinity of singular points similarly to approximated linear

systems, but nonlinear systems can have more complicated behavior in terms

of limit cycles.

In the phase plane, a limit cycle is de®ned as an isolated closed curve.

Depending on the trajectories in the vicinity of the limit cycle, there are the

following types of limits cycles [12]:

j Stable limit cycles at which all trajectories in the vicinity of the limit

cycle converge to it.

j Unstable limit cycles where all trajectories in the vicinity of the limit

cycle diverge from it.

j Semistable limit cycles where some of the trajectories in the vicinity of

the limit cycle converge to it and others diverge from it (Fig. 13.9).

13.3 Stability of Nonlinear Systems

We reconsider the nonlinear system described by Eq. (13.4) in the general

form

_x � f �x ;u; t �; �13:20�

Figure 13.8
Phase portrait

for the unforced
system of ball

and beam.
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where u is the system input and x0 � x �0� is the initial condition. The

nonlinear system (13.20) is said to be autonomous if f does not depend

explicitly on time:

_x � f �x ;u�: �13:21�

Otherwise, the system is called nonautonomous [12]. We de®ne the

equilibrium points by relations (13.5) and (13.6). If we now consider a

constant input u�t � � u*, we can de®ne an equilibrium point x * of the system

(13.21) associated with the input u�t � � u*, a point in the state space that

veri®es the condition [3, 12]

f �x *;u*� � 0: �13:22�

It is evident that _x �t � � 0 at each equilibrium point. Thus, if x �0� � x 0 is

an equilibrium point, then x �t � � x0 for t � 0.

Figure 13.9
Limit cycles:
(a) stable,

(b) unstable,
(c) semistable.
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An autonomous nonlinear system can have no equilibrium points, one

equilibrium point, or multiple equilibrium points. We consider as an example

the dynamic model of the one-axis robot (Fig. 13.10) [13, 21],

m

3
�ml

� �
a2 �q � g

m

2
�ml

� �
a cos q � b� _q� � T ; �13:23�

where m, ml de®ne the arm and load mass, respectively, q is the generalized

coordinate of the system, and T is the input torque. Equation (13.23) can be

written in terms of state variables

x1 � q

x2 � _q;
�13:24�

as

_x1 � x2;

_x2 �
1

a2
m

3
�m2

� � ÿg
m

2
�ml

� �
a cos x1 ÿ b�x2� � T

� �
: �13:25�

If the input torque is T � u* � constant, the equilibrium point x1* � q* is

obtained from the condition

cos x1* �
u*

ag
m

2
�ml

� � ; �13:26�

because the term b�x2� satis®es the relation

b�0� � 0: �13:27�
If the system is unforced, u* � 0, we obtain (Fig. 13.10b)

x1* �
p
2
: �13:28�

De®nition and knowledge of the equilibrium points are the essential

elements in the interpretation of the asymptotic nonlinear system stability. An

equilibrium point x * of the system (13.21) is asymptotically stable [12] if and

only if for each e > 0 there is a d > 0 such that if

kx �0� ÿ x *k < d; �13:29�

Figure 13.10
(a) One-axis

robot.
(b) Equilibrium

point.
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then

kx �t � ÿ x *k < e; for t ! 0; �13:30�
and

x �t � ! x *; for t !1:
Thus, if an equilibrium point x * is asymptotically stable, then any

solution that starts out suf®ciently close to x * stays close in the sense that

kx �t � ÿ x *k remains small and the solution asymptotically approaches x * in

the limits as t !1.

13.4 Liapunov's First Method

Let x * be an equilibrium point of the system (13.21), for the input

u* � constant, and let J �x *� be the Jacobian matrix of f �x ;u*� evaluated at

x � x *. Let lk be the eigenvalue of J �x *�,
det�lI ÿ J �x *�� � 0: �13:31�

Then x * is asymptotically stable if the real part of each eigenvalue is negative:

Re lk < 0; 0 � k � n: �13:32�
Liapunov's ®rst method represents a suf®cient condition for asymptotic

stability, but it is not a necessary condition.

For example [13], we can reconsider the one-axis robot system from Fig.

13.10, where, for simplicity, we assume that the friction is purely viscous,

b�x2� � b1x2; �13:33�
and the input is constant,

T � u*: �13:34�
From Eqs. (13.24) and (13.25) we obtain the Jacobian

J �x � �
0 1

ga

c

m

2
�ml

� �
sin x1* ÿ

b1

c

24 35; �13:35�

where

c � a2 m

3
�ml

� �
:

The characteristic equation of J �x *� is obtained from (13.31),

l2 � b1

c
lÿ

g
m

2
�ml

� �
a sin x1*

c
� 0; �13:36�

and the eigenvalues will be

l1;2 � ÿ
b1

2c
� 1

2

b2
1

c2
�

4g
m

2
�ml

� �
a sin x1*

c

0@ 1A1=2

: �13:37�
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If we analyze the discriminant of Eq. (13.37), assigning typical values to

the arm parameters and noting that the coef®cient b1 has small values, it is

clear that we have the eigenvalues in the left half of the complex plane if

sin x1* � sin q* < 0; �13:38�
which represents the domain

ÿp < q < 0: �13:39�
We conclude that the asymptotic stability domain corresponds to the

positions under the horizontal axis.

13.5 Liapunov's Second Method

This method is based on a fundamental physical observation: If the total

energy of a mechanical system is continuously dissipated, then the system

must reach an equilibrium point. Thus, the stability of a system can be

studied by examining a scalar function, that is, an energy or Liapunov

function [2, 3, 12].

A Liapunov function is a function V �x � that satis®es the following

properties:

1: V �x � has a continuous derivative

2: V �0� � 0; �13:40�
3: V �x � > 0 for x 6� 0:

Properties 2 and 3 de®ne this function as a positive-de®nite function.

Liapunov's second method is a direct method based on the ®nding of a

Liapunov function.

Let V be a Liapunov function. Then x * (the equilibrium point of the

system) is asymptotically stable if the system has the following solutions:

_V �x �t �� � 0

_V �x �t �� � 0 if x �t � � 0:
�13:41�

Condition 1 indicates that the values of V �x �t �� do not increase along the

solutions of the system. Condition 2 indicates that there is a single solution for

which V �x �t �� remains constant, x �t � � 0.

Then, because V �x �t �� does not increase and does not stay constant, it

must decrease. Therefore, V �x �t �� ! 0 for t !1 and x �t � ! 0 for t !1.

In order to evaluate _V �x �, we calculate

_V �x � � @V
@x

_x ; �13:42�

and from Eq. (13.21) we obtain

_V �x � � @V
@x

f �x ;u*�: �13:43�

13. Nonlinear Systems 689

Co
n
tr

o
l



In order to illustrate this method we will reconsider the control of the

mechanical system of ball and beam. We rewrite Eq. (13.13) in the form

�y� ay � cu; �13:44�
where

a � ks

J

c � 1

J
:

We de®ne the state variables x1, x2 as

x1 � y

x2 � _y:
�13:45�

We introduce a nonlinear complex controller that controls both variables

(Fig. 13.11), the position x1 � y and the velocity x2 � _y. The control law is

assumed to be

T � ÿk 0x2 ÿ b sgn�x1 � kx2�; �13:46�
where k 0, b, k are constants.

The state equations of this system are obtained from relations (13.44)±

(13.46):

_x1 � x2

_x2 � ÿax1 ÿ k 0cx2 ÿ bc sgn�x1 � kx2�:
�13:47�

We choose a Liapunov function as

V � 1

2
s2; �13:48�

where

s � x1 � kx2: �13:49�
From Eq. (13.42) we obtain

_V � s _s � s� _x1 � k _x2�: �13:50�

Figure 13.11
The control

system for the
mechanical

system of ball
and beam, with

nonlinear
complex

controller.
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Substituting _x1; _x2 from Eq. (13.47) in _V , we have

_V � s�x2 � k�ÿax1 ÿ k 0cx2 ÿ bc sgn�s���: �13:51�
If we choose the gain coef®cient k 0 as

k 0 � 1ÿ k2a

kc
; �13:52�

from (13.51) we obtain

_V � s�ÿka�x1 � kx2� ÿ bc sgn�s��; �13:53�
or

_V � ÿkas2 ÿ bcjsj: �13:54�
Condition 1 of Liapunov's second method is satis®ed. For the second

condition, we note that

_V �x1�t �; x2�t �� � 0 �13:55�
requires

s�t � � 0: �13:56�
Then

x1�t � � 0

x2�t � � 0:
�13:57�

We conclude that the equilibrium point x1* � 0, x2* � 0 is asymptotically

stable.

14. Nonlinear Controllers by Feedback
Linearization

As in the analysis of nonlinear control systems, there is no general method for

designing nonlinear controllers. Several methods and techniques applicable

to particular classes of nonlinear control problems are presented in the

literature [1±3, 12, 13].

One of the most attractive methods is feedback linearization. Feedback

linearization techniques determine a transformation of the original system

models into equivalent models of a simpler form.

Consider the system de®ned by the equation

_x � f �x ;u�: �14:1�
Feedback linearization is solved in two steps [2, 12].

First, one ®nds the input-state transformation

u � g�x ;w�; �14:2�
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so that the nonlinear system dynamics are transformed into equivalent linear

time-invariant dynamics

_x � Ax � bw : �14:3�
The second step is to determine a linear technique in order to obtain a

good placement of the poles

w � ÿkx : �14:4�
This method, also called input-state linearization, is simply applied for a

special class of nonlinear systems described by the so-called companion

form [12],

_x1 � x2

_x2 � x3

..

.

_xnÿ1 � xn

_xn � f �x � � b�x �u;

�14:5�

where u is a scalar control input and f and b are nonlinear functions of the

state. In order to cancel the nonlinearities and impose a desired linear

dynamics we can use particular transformations of (14.2) by the form

u � 1

b�x � �w ÿ f �x ��; �14:6�

where we assume that

b�x � 6� 0; �14:7�
for x 2 X -state space.

In this case, we obtain a linear model

_x1 � x2

_x2 � x3

..

.

_xnÿ1 � xn

_xn � w :

�14:8�

If we introduce a control law

w � ÿk0x ÿ k1 _x ÿ � � � ÿ knÿ1x �nÿ1�; �14:9�
the closed-loop control system (14.8), (14.9) will have the characteristic

equation

s2 � knÿ1snÿ1 � � � � � k0 � 0; �14:10�
and we can choose the coef®cients k0; k1; . . . ; knÿ1 such that all the roots of

Eq. (14.10) are strictly in the left half complex plane.

As a ®rst example, we reconsider the dynamic model of a nonlinear

mass±damper±spring system (13.1), which can be rewritten as

M �x � b _x j _x j � kx � k1x 3 � F : �14:11�
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By introducing the state variables x1; x2, and the control u (Fig. 14.1) we

will have the companion form

_x1 � x2

_x2 �
1

M
�ÿbx2jx2j ÿ kx1 ÿ k1x 3

1 � �
1

M
u:

�14:12�

A feedback linearization is obtained by

u � M �bx2jx2j � kx1 � k1x 3
1 � w�; �14:13�

and the linear control can be chosen as

w � ÿa1x1 ÿ a2x2:

In this case, we obtain the closed-loop system in the form (Fig. 14.2)

_x1 � x2

_x2 � ÿa1x1 ÿ a2x2;
�14:14�

and a good selection of coef®cients a1; a2 enables us to obtain the desired

performance.

For a desired behavior de®ned by x1d
; x2d

; _x2d
, we can choose the

control law as

w � _x2d
ÿ a1e1 ÿ a2e2; �14:15�

and the characteristic equation will have the form

�e � a2 _e � a1e � 0: �14:16�

Figure 14.1
Input-state

linearization.

Figure 14.2
Nonlinear

controller for the
control problem
of the nonlinear

mass±damper±
spring system.
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The second example is offered by the control problem of the two-axis

planar articulated robot (Fig. 14.3). The dynamic model of the robot was

presented by Eq. (13.3), and they can be rewritten as

A�q� �q � B�q� _q � c�q� � t; �14:17�

where

q � �q1; q2�T

A�q� � a1�q� a2�q�
a3�q� a4�q�

� �
B�q� � b1 _q2 b2 _q2

b3 _q1 0

� �
c�q� � c1�q�

c2�q�
� �

t � �t1 t2�T :
It is known that the inertial matrix A�q� is invertible [13, 21] so that we

can propose a nonlinear control

t � A�q�w � B�q� _q � c�q�; �14:18�
where w is the new input vector,

w � �w1w2�T : �14:19�
If we de®ne by

q* � �q; _q; q*�T �14:20�
and

qd* � �qd ; _qd ; �qd �T �14:21�
the desired values of the position, velocity, and acceleration for each arm,

then the error system will be

qd*ÿ q* � �qd ÿ q; _qd ÿ _q; �qd ÿ �q �T : �14:22�
The linear control is assigned the form

w � �qd ÿ a1� _qd ÿ _q� ÿ a0�qd ÿ q�: �14:23�

Figure 14.3
Nonlinear

controller for
a two-axis planar

articulated
robot.
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From Eqs. (14.17), (14.18), and (14.23) we obtain

� �qd ÿ �q� � a1� _qd ÿ _q� � a0�qd ÿ q� � 0; �14:24�
which de®nes the linear dynamics of the error (qd ÿ q). A good selection of

a1; a0 enables us to obtain the desired performance.

15. Sliding Control

15.1 Fundamentals of Sliding Control

The methods discussed in the preceding sections require a good knowledge

of system parameters and therefore suffer from sensitivity to errors in the

estimates of these parameters. Thus, modeling inaccuracies can have strong

adverse effects on nonlinear control. Therefore, any practical design must

ensure system robustness in conditions in which a model's imprecision is a

reality.

One of the simplest approaches to robust control is the so-called sliding

control. The basic idea is that the control signal changes abruptly on the basis

of the state of the system. A control system of this type is also referred to as a

variable-structure system [1, 12, 14].

Let us consider a dynamic system in a companion form,

_x1 � x2

_x2 � x3

..

.

_xn � f �x � � b�x �u:
�15:1�

In Eqs. (15.1), the functions f �x � and b�x � are not known exactly, but we

do know the sign and are bounded by known, continuous functions of x .

The control issue is to get the state x to track a speci®c time-varying state

xd � �xd ; _xd ; . . . ; x �nÿ1�
d �T ; �15:2�

where

xd �0� � x �0� � x0: �15:3�
Let e be the tracking error,

e* � �x ÿ xd ; _x ÿ _xd ; . . . ; x �nÿ1� ÿ x
�nÿ1�
d �T ; �15:4�

or

e* � �e; _e; . . . ; e�nÿ1��T : �15:5�
Let us de®ne a surface

s�x � � P � e*� _e*; �15:6�
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where P can be any positive-de®nite matrix. For example, P can be a

diagonal matrix with positive diagonal elements

P � diag� p1; p2; . . . ; pn�: �15:7�
The set of all x such that

s�x � � 0 �15:8�
is a (2n ÿ 1)-dimensional subspace or hyperplane that is called the switching

surface.

The switching surface divides the state space into two regions. If

s�x � > 0, then we are on one side of the switching surface and the control

law has one form; if s�x � < 0, then we are on the other side of the switching

surface and the control law will have a different form. Thus, the control

changes structure when the state of the system crosses the switching surface.

For the case of n � 1, the second system s�x � � 0 corresponds to a line

through the origin with a slope of ÿp1 (Fig. 15.1):

s�x � � p1e � _e � 0: �15:9�
Our objective is to develop a control law that will drive the system to the

switching surface in a ®nite time and then constrain the system to stay on the

switching surface.

When the system is operating on the switching surface, we say that it is in

the sliding mode (Fig. 15.2).

The closed-loop control system for sliding mode control is presented in

Fig. 15.3.

Figure 15.1
Switching line
for a second-
order system.

Figure 15.2
Trajectories for a

sliding control.
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The controller ensures the evolution to the switching line. When the

trajectory penetrates the switching line, the control law switches and directs

the solution back toward the switching line, then switches again and keeps

the motion on the switching line.

One of the simplest control laws can be

u � ÿk sgn�s�; �15:10�

but the control law can be more complex because of the complexity and

nonlinearity of the system.

On the switching line, in theory, the oscillations about the switching

surface have zero amplitude and in®nite frequency. However, in practice

they have a small amplitude and a high frequency depending on the

controller performance.

When the system is in the sliding mode, s�x � � 0. Then, from Eq. (15.9),

p1e � _e � 0: �15:11�

We can conclude that, in the sliding mode, the error is independent of

the system parameters. This property de®nes the robustness of sliding control

systems.

In order to illustrate the sliding control, we again consider the control

issue of the ``ball and beam.'' We cancel the rotational spring and assume

that the dynamic model of the system is determined by

J �Y � T ; �15:12�

or

_x1 � x2

_x2 � cu;
�15:13�

with

c � 1

J
:

We consider that the desired values of the state variables are x1d , x2d .

Then the errors will be de®ned by

e1 � x1d ÿ x1

e2 � x2d ÿ x2:
�15:14�

Figure 15.3
A sliding control

system.
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If we adopt, for simplicity, that x1d , x2d , are equal to zero, Eq. (15.3) can

be rewritten in terms of e1, e2 as

_e1 � e2

_e2 � ÿcu:
�15:15�

Let the switching line be de®ned by

s�e� � pe1 � e2 � 0: �15:16�
First, we propose a bang-bang controller of the form (Fig. 15.3)

u � U sgn�s�; �15:17�
or

u � �U ; if s > 0
ÿU ; if s < 0:

�
�15:18�

The phase trajectory can be obtained from Eq. (15.15) rewritten in the

form

�e � ÿcu: �15:19�
Integrating this equation we obtain (see Section 13)

_e2 � ÿ2cu � d ; �15:20�
where d is a constant. This relation de®nes a family of parabolas. The phase

portrait of this control is presented in Fig. 15.4.

The trajectory starts from the initial point for u � �U , and the evolution

is represented by the parabola arc that emerges from the initial point. When

the trajectory penetrates the switching line, the control u changes at u � ÿU

and the new trajectory is represented by another parabola arc. The motion

continues until the trajectory penetrates the switching line again and a new

change of the control is produced, etc.

Figure 15.4
Phase portrait of

the sliding
control for

u � sgn �s� for
the ball and

beam problem.
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We can note that when the trajectory reaches the origin, the motion is

stable, although the initial system (15.13) is at the limit of stability (an

oscillation) determined by the two poles s1 � s2 � 0.

We reconsider Eq. (15.15), but we suppose that the control law is

described by

u � ÿk 0e1 � k 00 sgn�s�jsj: �15:21�
The closed-loop system is (Fig. 15.5)

_e1 � e2

_e2 � ck 0e1 ÿ ck 00 sgn�s�jsj: �15:22�

In order to prove the system's stability, we consider the Liapunov

function

V � 1

2
s2; �15:23�

where

s � pe1 � e2: �15:24�
Now, we can evaluate

_V � s _s � s�p _e1 � _e2�: �15:25�
Substituting _e1, _e2 in the last relation, we obtain

_V � s�pe2 � ck 0e1 ÿ ck 00 sgn�s�jsj�: �15:26�
We choose k 0, so that

ck 0 � p2:

In this case, we have

_V � s�psÿ ck 00 � sgn sjsj�;
or

_V � ÿ�ÿp � ck 00�s2: �15:27�
If we choose

ck 00 > p; �15:28�

Figure 15.5
The closed-loop
control system
with a complex

control law:
u � k0e1�

k00 sgn�s�jsj for
the ball and

beam problem.

15. Sliding Control 699

Co
n
tr

o
l



we obtain the asymptotic stability of the system,

_V � 0: �15:29�
The solution _V � 0 is obtained only for s � 0 or e1�t � � 0, e2�t � � 0.

These examples de®ne the sliding control, a control method in which

several parameters of the controller are modi®ed abruptly. For this reason,

this method is also known in the literature as the variable structure control.

15.2 Variable Structure Systems

We wish to extend the previous results to another control problem class in

which several parameters of the process, of the plant, itself are modi®ed

abruptly in order to satisfy the control performances. We must make clear the

differences between the control system discussed in the previous section and

this method. In the conventional sliding control the controller parameters

were modi®ed; now we wish to change the components of the process of the

system.

In order to analyze this method, we will discuss a particular example. We

consider a nonforced second-order system de®ned by the differential

equation

�x � 2zon _x � o2
nx � 0; �15:30�

If the desired value is xd � 0, the dynamic of the error

e � xd ÿ x �15:31�
can be obtained as

�e � 2zon _e � o2
ne � 0: �15:32�

In this case, we consider that the variable parameter, which can offer a

control solution by the principle of variable structure, is the damping ratio z.
The solution of this differential equation is well-known [(7.17)]:

e�t � � eÿzont�������������
1ÿ z2

p sin on

�������������
1ÿ z2

q
t � tanÿ1

�������������
1ÿ z2

p
z

 ! !
: �15:33�

The phase portrait for z < 1 in the plane (_e; e) is presented in Fig. 15.6.

We can note the damped oscillation form of the trajectory.

In order to establish the system switching law, we introduce a switching

line

s�e� � pe1 � e2 � 0: �15:34�
We assume that the motion of the system is started at point A and the

evolution is determined by a damping ratio z < 1. When the trajectory

penetrates the switching line, we try to ®nd the control law of the damping

ratio z in order to obtain an evolution along the switching line, toward the

origin.
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From Eq. (15.32) we obtain

�e � ÿ2zon _e ÿ o2
ne; �15:35�

but

�e � d _e

dt
;

and dividing by _e gives

d _e=dt

de=dt
� ÿ2zon _e ÿ o2

ne

_e
; �15:36�

or

d _e

de
� ÿ2zon ÿ o2

n

e

_e
: �15:37�

However, from Eq. (15.34) we have

d _e

de
� e

_e
� ÿr: �15:38�

Substituting (15.38) in (15.37) we obtain

r � ÿ2zonrÿ o2
n

ÿr :

This relation enables us to determine the critical value of the damping

ratio for which the system evolution is on the switching line:

z* � r2 � o2
n

2onr
: �15:39�

In this case, the control system requires the following sequential

procedure:

Step 1: A conventional control is utilized and the system motion is

produced by the trajectory segment AB.

Figure 15.6
The phase

portrait of a
second-order

system with z
control.
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Step 2: When the trajectory penetrates the switching line, the damping

ratio is increased such that

z � z*: �15:40�

The motion occurs on the switching line, toward the origin (Fig. 15.6).

We will use this procedure. It is clear that changing the damping ratio

when the system is moving requires a special technology. The following

example will try to illustrate the problem of the variable structure systems.

The ER rotational damper system represents a rotational mechanism in

which the damping ratio is controlled by electrorheological ¯uids (ER ¯uids).

ER ¯uids are emulsions formed by mixing an electrically polarizable solid

material in powder form in a nonconducting liquid medium [15, 16]. When

the suspension is subjected to a DC electric ®eld, the ¯uid behaves as a solid

(Fig. 15.7), the viscosity increasing signi®cantly. The mechanism is presented

in Fig. 15.8.

The dynamic model can be approximated by

J �Y� kf
_Y � T ; �15:41�

where the ER ¯uid viscosity modi®es the parameter kf . If we assume a simple

ampli®er with k-gain in the open-loop system, we obtain

Y1�s� �
o2

n

s�s � 2zons� ; �15:42�

where z is the damping ratio,

z � k

2
���
J
p ; �15:43�

Figure 15.7
Viscosity control

of ER ¯uids by
an electric ®eld.

Figure 15.8
ER rotational

damper
mechanism.
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and the natural frequency is

on �
k

J
: �15:44�

The closed-loop control system will have the transfer function

Y �s� � o2
n

s2 � 2zons � o2
n

: �15:45�

The variable structure system is presented in Fig. 15.9. We note two

control loops. The ®rst is the conventional feedback control, and the second

is the variable structure control of the damping ratio.

A switching controller determines the intersection between the trajectory

and the switching line. A high-voltage system ensures the changing of the

damping ratio as in the relation (15.39).

The phase portrait is shown in Fig. 15.10.

A. Appendix

A.1 Differential Equations of Mechanical Systems

All the elements of the control system are single-way information transmis-

sion elements. For these elements we can establish an ``input'' and an

``output.''

Figure 15.9
Variable

structure system
for the ER
rotational

damper
mechanism.

Figure 15.10
Phase portrait
for a variable

structure system.
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In order to describe the behavior of an element in the control system, it is

necessary to de®ne an equation that expresses the output as a function of the

input. Because the systems under consideration are dynamic, the descriptive

equations are usually differential equations.

The differential equations describing the dynamic performance of a

physical system are obtained by utilizing the physical laws of the process.

The general form of a linear differential equation is

� � � � a3x���0�t � � a2 �x0�t � � a1 _x0�t � � a0x0�t � � b1xi�t � � b1 _xi �t � � � � � ;
�A:1:1�

where xi�t �, x0�t � denote the input and output variables, respectively, as

functions of time. In this equation, xi ; x0 can be physical variables, such as

translational velocity, angular velocity, pressure, or temperature, but they do

not represent the same physical dimension. For example, if xi is a force, x0

can be the translational velocity.

Equation (A.1.1) represents a simpli®ed form of the mathematical model

of a physical system. Practically, the complexity of the system requires a

complex mathematical model de®ned by nonlinear differential equations.

The analysis of these systems is very complicated. But, a great majority of

physical systems are linear within some range of the variables, so we can

accept the model (A.1.1) as a linear, lumped approximation for the majority

of elements that we will analyze.

For a complex mechanical structure, the dynamic equations can be

obtained by using Newton's second law of motion.

A summary of differential equation for lumped, linear elements is given

in Table A.1.1 [8, 9, 16]. The symbols used are de®ned in Table A.1.2.

If we consider the mechanical system shown in Fig. A.1.1, we obtain

AP �t � ÿ kf _z �t � ÿ kz �t � � M �z �t �;

where the active force is composed from

j AP�t�, the pressure force

j kf _z�t�, the translational damper force,

j ÿkz�t�, the translational spring force,

j M �z�t�, the inertial force

or

M �z �t � � kf _z �t � � kz �t � � AP �t �; �A:1:2�

where A is the piston area, kf is the friction constant, and k is the spring

constant (we neglect the gravitational term Mg).

If we use conventional notation for the input, xi � P , and for the output,

x0 � z , we obtain

M �x0�t � � kf _x0�t � � kx0�t � � Axi�t �; �A:1:3�
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Table A.1.1 Differential Equations for Ideal Elements

Physical element Describing equation Symbol

Translational spring
v � 1

K

dF

dt

Rotational spring o � 1

K

dT

dt

Fluid inertia
P � I

dQ

dt

Translational mass
F � M

dv

dt

Rotational mass
T � J

do
dt

Fluid capacitance
Q � Cf

dP

dt

Translational damper F � f v

Rotational damper T � f o

Table A.1.2 Symbols for Physical Quantities

F , force

T , torque

Q, ¯uid volumetric ¯ow rate

v, translational velocity

o, angular velocity

P , pressure

M , mass

J , moment of inertia

Cf , ¯uid capacitance

f , viscous friction
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which represents a second-order linear constant-coef®cient differential equa-

tion.

For the rotational spring±mass±damper mechanical system from Fig.

A.1.2, we obtain a similar equation, but if we do not neglect the gravitational

component, we will have

J �y�t � � kf
_y�t � � ky�t � �Mg

l

2
sin y�t � � T �t �: �A:1:4�

This equation de®nes a second-order nonlinear differential equation. A

linear approximation of the nonlinear term can be obtained if we use the

Taylor series expansion about the operating point x * [8, 9, 17],

h�x � � h�x *� � dh

dx

����
x�x�

�x ÿ x0*�
1!

� d2h

dx 2

����
x�x�

�x ÿ x0*�2
2!

� � � � ; �A:1:5�

and we use only the ®rst two terms (neglecting the higher-order terms),

h�x � � h�x *� � dh

dx

����
x�x�

�x ÿ x0*�
1!

: �A:1:6�

We consider the operating point, the equilibrium point y* � 0,

Mg
l

2
sin y � Mg

l

2
sin 0�Mg

l

2
cos�yÿ 0�;

Mg
l

2
sin y � Mg

l

2
y:

�A:1:7�

Figure A.1.1
Linear spring±
mass±damper

mechanical
system.

Figure A.1.2
The rotational
spring±mass±

dampler
mechanical

system.
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The linear approximation of (A.1.3) will be

J �y�t � � kf
_y�t � � k �Mg

l

2

� �
y�t � � T �t �: �A:1:8�

Of course, this approximation is reasonably accurate if the variations Dy
are suf®ciently small about the operating point y* � 0.

A.2 The Laplace Transform

The Laplace transform for a function f �t � is de®ned by [6, 8, 9, 17]

F �s� �
�1

0

f �t �eÿst dt : �A:2:1�

Normally, we write

F �s� � Lf f �t �g: �A:2:2�
The Laplace transform (A.2.1) for a function f �t � exists if the transforma-

tion integral converges. Therefore,�1
0

j f �t �jeÿs1t dt <1; �A:2:3�

for some real, positive s1. If the magnitude of f �t � is j f �t �j < Meat for all

positive t , the integral will converge for s1 > a. s1 is de®ned as the abscissa

of absolute convergence.

The inverse Laplace transform is

f �t � � 1

2pj

�s�j1

sÿj1
F �s�est ds: �A:2:4�

The Laplace variable s can be considered to be the differential operator

s � d

dt
; �A:2:5�

and

1

s
�
�t

0�
dt : �A:2:6�

The Laplace transform has the advantage of substituting the differential

equations by the algebraic equations. A list of some important Laplace

transforms is given in Table A.2.1.

A.3 Mapping Contours in the s-Plane

A transfer function is a function of complex variable s � s� jo. The function

Y �s� is itself complex and can be de®ned as

Y �s� � Yr � jYi : �A:3:1�
It can be represented on a complex Y �s�-plane with coordinates Yr , Yi .
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If the s variable varies in the s-plane on a contour C , Y �s� will de®ne

another contour D in the Y �s�-plane. Thus, the contour C has been mapped

by Y �s� onto a contour D. On this contour, for each value of the Y �s� function

will correspond a value of the complex variable s .

The direction of traversal of the s-plane contour is shown by arrows on

the contour (Fig. A.3.1). Then, a similar traversal occurs on the Y �s�-plane

contour D, as we pass beyond C in order, as shown by the arrows. By

convention [8, 9, 18, 19] the area within a contour to the right of the

transverse of the contour is considered to be the area enclosed by the

Table A.2.1 Laplace Transforms

f �t� F�s�
Impulse function d�t � 1

1 1

s

tn n!=sn�1

eÿat 1

s � a

eÿat f �t � F �s � a�
sinot o

s2 � o2

cosot s

s2 � o2

1ÿ eÿat a

s�s � a�

1

�b ÿ a� �e
ÿat ÿ eÿbt � o

�s � a��s � b�

eÿat sinot 1

�s � a�2 � o2

eÿat cosot s � a

�s � a�2 � o2

on�������������
1ÿ x2

p eÿxon t sinon

�������������
1ÿ x2

q
t ; x < 1

o2
n

s2 � 2xons � o2
n

dk f �t �
dtk

skF �s� ÿ skÿ1 _f �0�� ÿ � � � ÿ f �kÿ1��0��

�t

ÿ1
f �t �dt F �s�

s
�
� 0

ÿ1 f �t �dt

s
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contour. Therefore, we will assume the clockwise traversal of a contour to be

positive and the area enclosed within the contour to be on the right.

We consider the transfer function

Y �s� � A�s ÿ z1�; �A:3:2�
where A is a constant and z1 de®nes a zero of Y �s�,

s � z1 � Rejj;

where R , j are variables,

s ÿ z1 � Rejj:

If the contour C in the s-plane encircles the zero z1, this is equivalent to a

rotation of the (s±z1) vector by 2p in the case when the corresponding

contour D in the Y �s�-plane encircles the origin in a clockwise direction. If

the contour C does not encircle the zero z1, the angle of s±z1 is zero when

the traversal is in a clockwise direction along the contour and the contour D

does not encircle the origin (Fig. A.3.2).

Now, we consider the transfer function

Y �s� � A

s ÿ p1

; �A:3:3�

Figure A.3.1
Contour C in

s-plane.

Figure A.3.2
Contour D in

Y�s�-plane.
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where p1 de®nes a pole of Y �s�
s � p1 � Rejj;

Then

Y �s� � A

R
eÿjj: �A:3:4�

We assume that the contour C encircles the pole p1. Considering the

vectors s as shown for a speci®c contour C (Fig. A.3.3) we can determine the

angles as s traverses the contour. Clearly, as the traversal is in a clockwise

direction along the contour, the traversal of D in the Y �s�-plane is in the

opposite direction. When s traverses along C a full rotation of 2p rad, for the

Y �s�-plane we will have an angle ÿ2p rad (Fig. A.3.4).

We can generalize these results. If a contour C in the s-plane encircles Z

zeros and P poles of Y �s� as the traversal is in a clockwise direction along the

contour, the corresponding contour D in the Y �s�-plane encircles the origin

of the Y �s�-plane

N � Z ÿ P

times in a clockwise direction. The resultant angle of Y �s� will be

Df � 2pZ ÿ 2pP : �A:3:5�

The case in which the contour C encircles Z � 3 zeros and P � 1 pole in

the s-plane is presented in Figs. A.3.5 and A.3.6. The corresponding contour

D in the Y �s�-plane encircles the origin two times in a clockwise direction.

Figure A.3.3
Contour C in
s-plane with

a pole p1.

Figure A.3.4
Contour D in

Y�s�-plane.
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One of the most interesting mapping contours in the s-plane is from the

Nyquist contour. The contour passes along the jo-axis from ÿj1 to �j1
and is completed by a semicircular path of radius r (Fig. A.3.7). We choose

the transfer function Y1�s� as

Y1�s� �
k

ts � 1
; �A:3:6�

which has the pole p1 � ÿ1=t real and negative. In this case, the Nyquist

contour does not encircle a pole.

Figure A.3.5
Contour C for

Z � 3 and
P � 1.

Figure A.3.6
Contour D for

N � Z and
P � 2.

Figure A.3.7
(a) Nyquist

contour and a
pole p1 � ÿ1=t.

(b) Mapping
contour for

Y1�s� �
k=�ts� 1�.
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From (A3.4) we have

Y1�s� �
k

tR
eÿjy: �A:3:7�

When s traverses the semicircle C with r !1 from o � �1 to

o � ÿ1, the vector Y1�s� with the magnitude k=tR has an angle change

from ÿp=2 to �p=2.

When s traverses the positive imaginary axis, s � jo �0 < o <1�, the

mapping is represented by

Y �s� � k

1� jot
� k

1ÿ jot
1� o2t2

; �A:3:8�

which represents a semicircle with diameter k (Fig. A.3.7b, the solid line).

The portion from o � ÿ1 to o � 0ÿ is mapped by the function

Y1�s�js�ÿjo � Y1�ÿjo� � k
1� jot
1� o2t2

: �A:3:9�

Thus, we obtain the complex conjugate of Y1�jo�, and the plot for the

portion of the polar plot from o � ÿ1 to o � 0ÿ is symmetrical to the polar

plot from o � �1 to o � 0� (Fig. A.3.7b).

A.4 The Signal Flow Diagram

A signal ¯ow diagram is a representation of the relationship between the

system variables. The signal ¯ow diagram consists of unidirectional opera-

tional elements that are connected by the unidirectional path segments. The

operational elements are integration, multiplication by a constant, multi-

plication of two variables, summation of several variables, etc. (Fig. A.4.1).

Figure A.4.1 Signal ¯ow diagram elements.
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These functions are often suf®cient to develop a simulation model of a

system.

For example, we consider a dynamic model described by the differential

equation

�x � a1 _x � a2x � u: �A:4:1�

Using the notations

x � x1

_x � x2;

Eq. (A.4.1) can be rewritten as

_x1 � x2

_x2 � ÿa1x2 ÿ a2x1 � u:
�A:4:2�

The signal ¯ow diagram of (A.4.1) is presented in Fig. A.4.2. The diagram

has two representations, one for time-domain variables and one for the

Laplace transform representation.

Figure A.4.2
Signal ¯ow

diagrams (a) in
the time

domain, (b) in
the Lap1ace

variable domain.
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1. Differential Equations

1.1 Ordinary Differential Equations: Introduction

1.1.1 BASIC CONCEPTS AND DEFINITIONS
Operatorial Equation
Let X , Y be arbitrary sets and f : X ! Y a function de®ned on X with values

in Y . If y0 2 Y is given, and x 2 X must be found so that

f �x � � y0; �1:1�
then it is said that an operatorial equation must be solved. A solution of

Eq. (1.1) is any element x 2 X that satis®es Eq. (1.1). The sets X , Y can have

different algebraical and topological structures: linear spaces, metrical

spaces, etc. If f is a linear function, that is, f �ax1 � bx2� � af �x1� � bf �x2�,
and if X and Y are linear spaces, then Eq. (1.1) is called a linear equation. If

Eq. (1.1) is a linear equation and y0 � yY (the null element of space Y ), then

Eq. (1.1) is called a linear homogeneous equation.

Differential Equation
An equation of the form (1.1) for which X and Y are sets of functions is

called a functional equation. A functional equation in which is implied an

unknown function and its derivatives of some order is called a differential

equation. The maximum derivation order of the unknown function is called

the order of the equation. When the unknown function depends on a single

independent variable, the equation is termed an ordinary differential

equation (or, more brie¯y; a differential equation). If the unknown function

depends on more independent variables, the corresponding equation is

called a partial differential equation. The general form of a differential

equation of order n is

F �t ; x ; x 0; x 00; . . . ; x �n�� � 0; �1:2�
where t is the independent variable, x � x �t � is the unknown function, and

F is a function de®ned on a domain D � Rn�2 (R is the set of real numbers).

It is called a solution of Eq. (1.2) on the interval I � �a; b� � R, a function

j � j�t � of C n�I � class [i.e., j�t � has continuous derivatives until n-order],

which has the following properties:

1. �t;j�t�;j0�t�; . . . ;j�n��t�� 2 D; 8t 2 I

2. F�t;j�t�;j0�t�; . . . ;j�n��t�� � 0; 8t 2 I

If the function F can be explicated with the last argument, it then yields

x �n� � f �t ; x ; x 0; . . . ; x �nÿ1��; �1:3�
which is called the normal form of the n-order equation.
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Cauchy's Problem
Let G � Rn�1 be the de®nition domain of the function f from Eq. (1.3) and

�t0; x0
0 ; x

0
1 ; . . . ; x 0

nÿ1� 2 G . If the solution of Eq. (1.3) satis®es the initial

conditions

x �t0� � x 0
0 ; x 0�t0� � x 0

1 ; . . . ; x �nÿ1��t0� � x 0
nÿ1; �1:4�

then the problem of ®nding that solution of Eq. (1.3) is called the Cauchy's

problem for Eq. (1.3). The Cauchy's problem for Eq. (1.2) is formulated

analogously. The general solution of Eq. (1.3) is a function family depending

on the independent variable and on n arbitrary independent constants

j � j�t; c1; c2; . . . ; cn�, and which satis®es the conditions

1. j�t; c1; c2; . . . ; cn� is a solution for Eq. (1.2) on an interval Ic

2. For any initial conditions (1.4), there could be determined the values

c0
1; c0

2; . . . ; c0
n of the constants c1; c2; . . . ; cn so that j�t; c0

1; c0
2; . . . ; c0

n� is
the solution for the Cauchy's problem with the conditions (1.4)

A solution obtained from the general solution for particular constants

c1; c2; . . . ; cn is called a particular solution. A singular solution is a solution

that cannot be obtained from the general solution.

EXAMPLE 1.1 Consider the following equation:

x 02 � x 2 ÿ 1 � 0: �1:5�
This is a differential equation of the ®rst order. Expressing it with x 0, we

obtain

x 0 �
��������������
1ÿ x2
p

and x 0 � ÿ
��������������
1ÿ x2
p

; �1:6�
hence two equations of normal form. Let us consider the ®rst equation. This

is of the form of Eq. (1.3) with n � 1, the right-hand side function being

f �x � � ��������������
1ÿ x 2
p

and de®ned on G � R � �ÿ1; 1�. In its expression, the

independent variable t does not appear explicitly. The function

j�t � � sin t is derivable, and substituting it in the equation, we ®nd the

equality cos t � jcos t j. This is an identity on any interval Ik of the form

Ik � �ÿ�p=2� � 2kp; �p=2� � 2kp�, k 2 Z (Z is the set of integer numbers).

Then, on each of these intervals the function j�t � � sin t is the solution for

equation x 0 � ��������������
1ÿ x 2
p

. Now, consider the functions family j�t; c� �
sin�t � c�, c 2 R. Let us set the interval Ic � �ÿ�p=2ÿ c; �p=2� � c�. For

t 2 Ic , t � c 2 �ÿ�p=2�; �p=2�� and j�t; c� � sin�t � c� is the solution on Ic

for the equation x 0 � ��������������
1ÿ x 2
p

. If �t0; x0� 2 G � R � �ÿ1; 1� settled from the

condition j�t0; c� � x0, then sin�t0 � c� � x0 and the value of c obtained

from this condition and denoted by c0 is c0 � arcsin x0 ÿ t0. The function

j�t ; c0� � sin�t � c0� is a solution for the equation and satis®es the initial

condition, so it is the general solution. m

1. Differential Equations 717

D
if

fe
re

n
ti

al
Eq

u
at

io
n
s



Remark 1.1

The constant functions j1�t � � 1 and j2�t � � ÿ1 are solutions on R for the

equation x 0 � ��������������
1ÿ x 2
p

, but they cannot be obtained from the general

solution for any particular constant c, and hence there are singular

solutions. m

1.1.2 SYSTEMS OF DIFFERENTIAL EQUATIONS
A system of differential equations is constituted by two or more differential

equations. A system with n differential equations of the ®rst order in normal

form is a system of the form

x 01 � f1�t ; x1; x2; . . . ; xn�
x 02 � f2�t ; x1; x2; . . . ; xn�

� � �
x 0n � fn�t ; x1; x2; . . . ; xn�;

8>><>>: �1:7�

fi : I � D � R � Rn . A solution of the system of equations (1.7) on the interval

J � I is an assembly of n functions �j1�t �;j2�t �; . . . ;jn�t �� derivable on J

and that, when substituted with the unknowns x1; x2; . . . ; xn , satis®es Eqs.

(1.7) in any t 2 J .

Initial Conditions
Consider that t0 2 J and �x0

1 ; x
0
2 ; . . . ; x 0

n� 2 D are settled. The conditions

x1�t0� � x 0
1 ; x2�t0� � x 0

2 ; . . . ; xn�t0� � x 0
n �1:8�

are called initial conditions for the system of equations (1.7).

Vectorial Writing of the System of Equations (1.7)
If the column vector X �t � is written as

X �t � �
x1�t �
x2�t �
� � �

xn�t �

8>><>>:
9>>=>>;;

with

f �t ;X � �
f1�t ; x1; x2; . . . ; xn�
f2�t ; x1; x2; . . . ; xn�

� � �
fn�t ; x1; x2; . . . ; xn�

8>><>>:
9>>=>>;;

then the system of equations (1.7) can be written in the form

X 0�t � � f �t ;X � �1:9�
and the initial conditions (1.8) are

X �t0� � X0; �1:10�
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where

X0 �
x0

1

x0
2

� � �
x 0

n

8>><>>:
9>>=>>;: �1:11�

Relation between a System of First-Order Differential Equations with n
Equations and an Equation of Order n
Consider the equation of order n

u�n� � f �t ;u;u0; . . . ;u�nÿ1��; �1:12�
with the initial condition

u�t0� � u0
0; u0�t0� � u0

1; . . . ;u�nÿ1��t0� � u0
nÿ1: �1:13�

Using the notation

u � x1; u0 � x2; . . . ;u�nÿ2� � xnÿ1;u
�nÿ1� � xn; �1:14�

by derivation we ®nd the system

x 01 � x2

x 02 � x3

� � �
x 0nÿ1 � xn

x 0n � f �t ; x1; x2; . . . ; xn�;

8>>>><>>>>: �1:15�

which is of the form of Eqs. (1.7). If the vector

X �t � �
x1�t �
x2�t �
� � �

xn�t �

8>><>>:
9>>=>>;

is a solution for the system of equations (1.15), then the function u�t � � x1�t �
is a solution for Eq. (1.12). Conversely, if u�t � is a solution of Eq. (1.12), then

X �t � �
x1�t �
x2�t �
� � �

xn�t �

8>><>>:
9>>=>>;

with x1; x2; . . . ; xn given by Eq. (1.13) is a solution of the system of equations

(1.15). In summary, ®nding the solution of an n-order differential equation is

equivalent to ®nding the solution of an equivalent system with n equations of

the ®rst order. The situation is the same for Cauchy's problem. We conclude

that ®nding the solution of a system with superior-order equations is

equivalent to ®nding the solution of a system with more equations of ®rst

order.
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1.1.3 GEOMETRICAL MEANING
Let us consider a ®rst-order equation in the normal form

y 0 � f �x ; y�: �1:16�
In the plane xOy , the quantity y 0 � dy=dx represents for the curve y � y�x �
the slope of the tangent at that curve. The differential equation (1.16) thus

establishes a relation between the coordinates of a point and the slope of the

tangent to the solution graph at that point. It de®nes a direction ®eld, and the

problem of ®nding solutions (the integration of the differential equation) is

reduced to the problem of ®nding curves, called integral curves, which have

the property that the tangent directions in any of their point coincide with the

®eld direction. The Cauchy's problem for Eq. (1.16) with the condition

y�x0� � y0 means to ®nd the integral curve that passes through the point

M0�x0; y0�. The isocline is the locus of points M �x ; y� in the de®nition domain

of function f for which the tangents to the integral curves have the same

direction. The equation

f �x ; y� � k; �1:17�
where k 2 R, gives the points in which the ®eld has the direction k. For k � 0

will be obtained the extreme points for integral curves. The general solution

of Eq. (1.16) represents a curve family depending on a parameter, and it is

called a complete integral.

The Differential Equation of a Curve Family
Let us consider the curve family

y � j�x ;a�; �1:18�
where a is a real parameter. It can be considered that Eq. (1.18) represents

the complete integral of the differential equation that must be found.

Derivation of Eq. (1.18) with respect to x yields

y 0�x � � @j�x ;a�
@x

: �1:19�

Eliminating the parameter a from Eqs. (1.18) and (1.19), we ®nd a relation of

the form

F �x ; y; y 0� � 0; �1:20�
which is called the differential equation of the family Eq. (1.18). If the curve

family is given in the form

F�x ; y;a� � 0; �1:21�
then the differential equation of this family is obtained by eliminating the

parameter a from the equations

F�x ; y;a� � 0

@F
@x
� @F
@y

y 0 � 0:

8<: �1:22�
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In the case when the curves family depends on n parameters

F�x ; y;a1; a2; . . . ;an� � 0;

the differential equation of this family is obtained by eliminating the para-

meters a1;a2; . . . ;an from the above equation and the other n ÿ 1 equations

obtained by derivation with respect to x , successively until the nth-order.

The differential equation of a curve family has as a general solution the given

family itself.

Isogonal Trajectories
Let us consider the plane curve family

F�x ; y;a� � 0; �1:23�
where a is a real parameter. A curve in the plane xOy is called isogonal to the

family Eq. (1.23) if it intersects the curves of the family Eq. (1.23) at the same

angle a. When a � p=2, the curve is called orthogonal. The isogonal curve

family Eq. (1.23) with tan a � k is obtained as follows:

j Find the differential equation of the family Eq. (1.23).

j In that differential equation, substitute y0 by �y0 ÿ k�=�1� ky0�, if

a 6� p=2 or, ÿ1=y0 when a � p=2.

j Find the general solution of the differential equation obtained; this is

the isogonal family of Eq. (1.23).

EXAMPLE 1.2 Consider the differential equation y 0 � ÿx=2y .

(a) Make an approximation construction of the integral curves, using the

isoclines.

(b) Find the general solution (complete integral).

(c) Find the orthogonal family of the complete integral. m

Solution

(a) The differential equation is of the form y 0 � f �x ; y�, with f �x ; y� �
ÿx=2y . The de®nition domain of function f is D � R � �ÿ1; 0� [ R�
�0;1�. The equation of isoclines (1.17) gives ÿx=2y � k; hence

y � ÿx=2k; k 2 Rnf0g. The corresponding isoclines to the values of k

ÿ1; ÿ 1
2 ; ÿ 1

4 ;
1
4 ;

1
2 ; 1

are the straight lines

y � 1
2 x ; y � x ; y � 2x ; y � ÿ2x ; y � ÿx ; y � ÿ 1

2 x ;

presented in Fig. 1.1.

1. Differential Equations 721

D
if

fe
re

n
ti

al
Eq

u
at

io
n
s



(b) The equation can be written as

x � 2yy 0 � 0

or

x dx � 2y dy � 0:

Then,

d �12 x 2 � y2� � 0:

Consider that x 2=2� y2 � a2, with a2 an arbitrary positive constant. The

general solution (the complete integral) is a parabolas family. The differential

equation of this is y 0 � ÿx=2y . Substituting y 0 by ÿ1=y 0 in this equation

yields the differential equation of the isogonal family ÿ1=y 0 � ÿx=2y . This

equation is written as

xy 0 � 2y; x dy � 2y dx ;
dy

y
� 2

dx

x
; d �ln jyj� � 2 d �ln jx j�:

This yields ln jyj � 2 ln jx j � c. The arbitrary constant c could be chosen in

the form c � ln b, b > 0. The isogonal curve family is jyj � bx2, which

represents a family of parabolas. In Fig. 1.2 are represented two isogonal

families.

1.1.4 PHENOMENA INTERPRETED BY MEANS OF DIFFERENTIAL
EQUATIONS

Differential equations make it possible to study some ®nite-determinist and

differentiable phenomena. Determinist phenomena are those processes

whose future evolution state is uniquely determined by the state of present

Figure 1.1
The correspond-

ing isoclines
( y � 1

2 x, y � x,
y � 2x,

y � ÿ2x,
y � ÿx,

y � ÿ 1
2 x).
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conditions. Finite phenomena are those processes that need a ®nite number

of parameters for their correct description. Differentiable phenomena are

those processes in which the functions used for their description are

derivable (up to some order). Next, some examples of modeling by means

of differential equations are presented.

Phenomenon of Growth (or Decay)
In the study of some phenomena of growth from economy, biology, etc. [For

instance, the growth (decay) of production, population of a race, material

quantity], there appear differential equations of the form

df �t �
dt
� k�t �f �t �; �1:24�

where k�t � > 0 in the case of a growth phenomenon and k�t � < 0 when it is

the curve of a decaying phenomenon. For example, if in a study of the

evolution of a certain species, we denote by f �t � the number of individuals at

the moment t , by n and m the coef®cient of birth rate and death rate,

respectively, then given the assumption that the population is isolated (i.e.,

there is no immigration or emigration), the variation rate of the population

f 0�t � will be given by

df �t �
dt
� �n ÿm�f �t �: �1:25�

If we take into account the inhibiting effect of crowding, we obtain the

equation

f 0�t � � �n ÿm�f �t � ÿ af 2�t �; �1:26�
where a is a positive constant that is very small compared to (n ÿm).

Figure 1.2
Two isogonal

families.
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A Mathematical Model of Epidemics
Let us consider a population of n individuals and a disease spreading by

direct touch. At a moment t , the population is composed of three categories:

j x�t� � the number of individuals not infected

j y�t� � the number of infected individuals that are not isolated (are

free)

j z�t� � the number of infected individuals that are isolated (under

observation)

It is natural to presume that the infection rate ÿx0�t� is proportional to x � y
and the infected individuals become isolated at a rate that is proportional to

their number, y. This yields the system

x 0 � ÿbxy;

y 0 � bxy ÿ gy;

x � y � z � n:

8><>: �1:27�

The Dog Trajectory
A man walks on a line Oy with the uniform velocity v. At the moment t � 0

he is at point O, and he calls his dog, which at that moment is at point A at

the distance OA � a. The dog runs to the master with the uniform velocity

v1 � kv (k > 0), the velocity being always oriented to the master (Fig. 1.3).

Find the equation of the dog trajectory and the time at which it will reach its

master. Discuss.

The Basic Dynamical Equations
Consider that M is a material point of mass m that moves in R3 under the

action of a force F [which usually depends on time, on the position r �t � of

Figure 1.3
The dog trajec-

tory.
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the point M , and on the motion velocity dr=dt . Applying Newton's second

law of dynamics, we obtain

m
d2r

dt2
� F t ; r ;

dr

dt

� �
; �1:28�

where r �t � is the vector with components x �t �, y�t �, z �t �. The scalar

transcription of Eq. (1.28) leads to the system

m
d2x

dt 2
� f1�t ; x ; y; z ; x 0�t �; y 0�t �; z 0�t ��

m
d 2y

dt 2
� f2�t ; x ; y; z ; x 0�t �; y 0�t �; z 0�t ��

m
d2z

dt2
� f3�t ; x ; y; z ; x 0�t �; y 0�t �; z 0�t ��;

8>>>>>>><>>>>>>>:
�1:29�

where f1, f2, f3 are the components of F .

The Problem of the Second Cosmic Velocity
The goal of this problem is to ®nd the velocity v0 of the vertical launching of a

body as it escapes the in¯uence of the earth's gravitational attraction. If we

use the law of universal attraction and Newton's second law, the equation of

motion is

m �r �t � � ÿk
mM

r 2�t � ; �1:30�

where r �t � is the distance from the center of the earth to the center of the

body, m is the mass of the body, M is the mass of the earth, and k is the

constant of universal attraction.

Equation of an Electrical Oscillatory Circuit
Let us consider an electrical circuit composed of an inductance L, a resistor R,

and a capacitor C , having a voltage U . The laws of electricity yield the

differential equation

LI 00�t � � RI 0�t � � 1

C
I �t � � f �t �; �1:31�

where I �t � is the intensity and f �t � � U 0�t �.

Equation of a Mechanical Oscillator
The equation of motion of a material point with mass m, which moves on the

Ox axis under the action of an elastic force F � ÿo2x , is

m �x � o2x � 0: �1:32�
Taking into account the existence of a friction force proportional to the

exterior velocity f �t �, we ®nd the differential equation

m �x � b _x � o2x � f �t �; �1:33�
which is called the equation of vibration.
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Directions of the Normal Stresses in a Plane Problem of Elasticity Theory
These directions are de®ned by the differential equation

dy

dt

� �2

� sx ÿ sy

txy

dy

dt

� �
ÿ 1 � 0; �1:34�

where sx , sy , txy are the stresses (assumed known).

De¯ection of a Beam
To ®nd the critical load for the de¯ection of a beam with one end joined and

the other one cantilevered, we use the differential equation

d 2w

dx 2
� P

EI
w � H

EI
x : �1:35�

Rotating Shaft
If the shaft rotates with the angular speed o, then

d 4y

dx 4
ÿ gAo2

gEI
y � 0; �1:36�

where o is the angular velocity, A is the area of the transverse section of the

shaft, g is the speci®c mass of the material, g is the gravitational acceleration,

and y is the de¯ection at point x .

1.2 Integrable Types of Equations

A differential equation is integrable by quadratures if the general solution of

the equation can be expressed in an explicit or implicit form that may contain

quadratures (i.e., inde®nite integrals).

1.2.1 FIRST-ORDER DIFFERENTIAL EQUATIONS OF THE NORMAL FORM
Equations with Separable Variables
An equation with separable variables is a ®rst-order differentiable equation

of the form

x 0�t � � p�x �q�t �; �1:37�
where q is a continuous function de®ned on the interval �a1; a2� � R, and p

is a continuous nonzero function, on the interval �b1; b2� � R. If we separate

the variables �dividing by p�x �� and integrate, the solution is of the form�
dx

p�x � �
�

q�t � � C : �1:38�

The solution of Eq. (1.37) with the initial condition

x �t0� � x0 �1:39�
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is given by the equality �x

x0

du

p�u� �
�t

t0

q�s�ds:

Remark 1.2

If p�x � � 0 has solutions x � ck , then they are singular solutions. An

equation of the form

M �x �N �y�dx � P �x �Q�y�dy � 0 �1:40�
is also an equation with separable variables. Let us assume that the functions

that appear are continuous and N �y� 6� 0, P �x � 6� 0. Dividing by N �y�P �x �
yields

M �x �
P �x � dx � Q�y�

N �y�dy � 0; �1:41�

with the general solution�
M �x �
P �x � dx �

�
Q�y�
N �y�dy � C : �1:42�

EXAMPLE 1.3 Consider the equation dx=dt � at a�xb1 � bxb2�; a, b, a 2 R, b1, b2 2 Q. The

equation is written in the form dx=�xb1 � bxb2 � � ata; �xb1 � bxb2 6� 0�. If b1,

b2 2 Z, in the ®rst term is necessary to integrate by decomposing a rational

function into simple fractions. If b1, b2 2 Q, b1 � n01=n1, b2 � n02=n2, we can

make the replacement x � yr , where r is a common multiple of numbers n1

and n2. Finally, we will obtain a rational function. m

Remark 1.3

If the equation xb1 � bxb2 � 0 has as solutions x � k, then these are singular

solutions of the initial equation.

Particular Cases

1. b � 0, b1 � 1,

�
dx

x
� ln jxj

2. b � 0, b1 6� 1,

�
dx

xb1
� xb1�1

b1 � 1

3. b1 � 1, b2 � 0,

�
dx

x� b
� ln jx� bj

4. b1 � 2, b2 � 0, b > 0,

�
dx

x2 � b
� 1���

b
p arctan

x���
b
p

5. b1 � 2, b2 � 0, b < 0,

�
dx

x2 � b
� 1

2
�������ÿb
p ln

���� xÿ �������ÿb
p

x� �������ÿb
p

����
6. b1 � 1, b2 �

1

2
.
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Making the replacement x � y2 yields�
dx

x � b
���
x
p �

�
2y dy

y2 � by
� 2

�
dy

y � b
� 2 ln jy � bj � 2 ln j ���xp � bj:

APPLICATION 1.1 The relaxation phenomenon (the decrement in time of the stresses of a piece

under a constant deformation and a constant temperature) is described by

the differential equation _s=E � s=Z � 0, in which s represents the stress in

the transverse sections of the piece; _s � ds=dt is the derivative of stress with

respect to time; E is the modulus of elasticity of the material (constant); and Z
is the viscidity coef®cient (constant). Determine the solution s � s�t �. m

Solution

The equation is separable and can be written as

_s
E
� ÿ s

Z
;

_s
s
� ÿ E

Z
;

ds
s
� ÿ E

Z
dt ;

�
ds
s
� ÿ

�
E

Z
dt � C ;

ln s � ÿ E

Z
t � ln c1;

where c1 > 0. (The arbitrary constant C is of the form C � ln c1). From the

last equality, the general solution is

s�t � � c1eÿ�E=Z�t :

Considering the condition s�0� � s0 yields c1 � s0, and the solution is

_s�t � � s0eÿ�E=Z�t :

APPLICATION 1.2 The rotation j of a console is given by the differential equation

dj
dx
� pl 2

2EI0
�
a

x 2

l2
� b

x 3

l3

a � 3b
x

l

;

where a, b, p, EI0 are prescribed nonzero constants. In the ®xed end (x � l),

the rotation is zero.

Solution

The preceding equation has separated variables. The function j is given by

the integral

j � pl2

2EI0

� a
x 2

l2
� b

x 3

l3

a � 3b
x

l

dx � C :
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After the replacement x=l � y , dx � l dy ,

j � pl2

2EI0

�
ay2 � by3

a � 3by
dy � C � pl3

6EI0

�
3by3 � 3ay2

3by � a
dy � C

� pl3

6EI0

�
y2 � 2a

3b
y ÿ 2a2

9b2
� 2a3

9b2

1

3by � a

� �
dy � C

j � pl3

6EI0

y3

3
� a

3b
y2 ÿ 2a2

3b2
y � 2a3

27b3
ln�3by � a�

� �
� C

j�x � � pl3

18EI0

x

l

� �3

� a

b

x

l

� �2

ÿ 2a2

b2

x

l

� �
� 2a3

9b3
ln 3b

x

l
� a

� �� �
� C :

The condition j�l � � 0 yields

C � ÿ pl3

18EI0
1� a

b
ÿ 2a2

b2
� 2a3

9b3
ln�3b � a�

� �
;

and then the solution is

j�x � � pl3

18EI0

x

l

� �3

ÿ1� a

b

x 2

l2
ÿ 1

� �
ÿ 2a2

b2

x

l
ÿ 1

� �
� 2a3

9b3
ln

3b
x

l
� a

3b � a

264
375: m

APPLICATION 1.3 Equation of Radioactive Disintegration

The disintegration rate of a radioactive substance is proportional to the

mass of that substance at the time t , namely, x �t �. The differential equation of

disintegration is x 0�t � � ÿax �t �, where a is a positive constant that depends

on the radioactive substance. Determine the disintegration law and the

halving time.

Solution

The differential equation dx=dt � ÿax �t � is a separable equation. Separating

the variables, dividing by x �t �, and integrating gives dx=x � ÿa dt ;�
dx=x � ÿa � dt � C . Then, ln x �t � � ÿat � ln c1 (C was chosen as ln c1)

and the general solution x �t � � c1eÿat . From the initial condition, x �t0� � x0,

x0 � c1eÿat0 , which yields c1 � x0eat0 . The solution is

x �t � � x0eÿa�tÿt0�;

where x0 is the substance quantity at the time t0. The halving time is the time

period T after which the substance quantity is reduced by half,

x �t0 � T � � 1
2x0. From this condition results

x0eÿaT � 1
2x0; or eÿaT � 1

2 :

Thus,

ÿaT � ÿ ln 2;
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or

T � 1

a
ln 2:

Remark 1.4

Radioactive disintegration is a decaying phenomenon. m

APPLICATION 1.4 Newton's Law of Cooling

The rate at which a body is cooling is proportional to the difference of

the temperatures of the body and the surrounding medium. It is known that

the air temperature is U1 � 10�C and that during T � 15 minutes the body is

cooled from U2 � 90�C to U3 � 50�C. Find the law for the changing body

temperature with respect to time.

Solution

If we denote the time by t and the body temperature by U �t �, then

dU =dt � k�U ÿ U1�, where k is the proportionality factor. Separating the

variables gives dU =�U ÿ U1� � k dt . Taking integrals of the left- and right-

hand sides gives �
dU

U ÿ U1

� k

�
dt � C ;

or ln�U ÿ U1� � kt � ln c1. Hence, U ÿ U1 � c1ekt . Then U � U1 � c1ekt . To

®nd the constants c1 and k, we use the conditions of the problem,

U �0� � U2 and U �T � � U3:

Hence, U2 � U1 � c1. Then c1 � U2 ÿ U1 and U3 � U1 � �U2 ÿ U1�ekT .

Thus, ekT � �U3 ÿ U1�=�U2 ÿ U1�, or ek � ��U3 ÿ U1�=�U2 ÿ U1��1=T and

U �t � � U1 � �U2 ÿ U1���U3 ÿ U1�=�U2 ÿ U1��t=T . Substituting the values U1 �
10�C, U2 � 90�C, U3 � 50�C, T � 15 min gives

U � 10� 80�12�t=15: m

Remark 1.5

In Application 1.4, it was assumed that the proportionality factor is constant.

Sometimes it is supposed that it depends linearly on time, k � k0�1� at �. In

this case,

dU

dt
� k0�1� at ��U ÿ U1�

or

dU

U ÿ U1

� k0

�
�1� at �dt � C

ln�U ÿ U1� � k0 t � at2

2

� �
� ln c1; U ÿ U1 � c1ek0�t��at2=2��:
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Thus,

U �t � � U1 � c1ek0�t��at 2=2��:

Using

U �0� � U2

yields

U2 � U1 � c1;

or

c1 � U2 ÿ U1:

Next is used

U �T � � U3;

or

U3 � U1 � �U2 ÿ U1�ek0�T��aT 2=2��:

Thus,

ek0�T��aT 2=2�� � U3 ÿ U1

U2 ÿ U1

;

or

ek0 � U3 ÿ U1

U2 ÿ U1

� �1=�T��aT 2=2��
:

Finally,

U �T � � U1 � �U2 ÿ U1�
U3 ÿ U1

U2 ÿ U1

� ��2t�at2�=�2T�aT 2�
: m

APPLICATION 1.5 The Emptying of a Vessel

Study the law of leakage of water from a vessel that has the shape of a

rotation surface about a vertical axis, with a hole A in the bottom part. Study

the following particular cases:

(a) The vessel has a hemisphere shape of radius R

(b) The vessel has a truncated cone shape with the small base as bottom,

the radii R1, R2, and height H

(c) The vessel has a truncated cone shape with the large base as bottom,

the radii R1, R2, and height H

(d) The vessel has a cone shape with the vertex at bottom

(e) The vessel has a cylinder shape m
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Solution

In hydrodynamics is deduced an expression of the form v � k
���
h
p

that

determines the leakage velocity through a hole at depth h from the free

surface of the liquid. The equation of median curve of the form r � r �h� is

assumed to be known. The volume of water that leaks in elementary time dt

is evaluated in two different ways. The liquid leaks through the hole and ®lls

a cylinder with base A and height v dt ; hence, dV � Av dt � Ak
���
h
p

dt . On

the other side, the height of liquid in the vessel will descend by dh; the

differential volume that leaks is dV � ÿpr 2dh. Introducing into equations

the two expressions of dV gives the differential equation with separable

variables ÿpr 2dh � Ak
���
h
p

dt . Separating the variables yields

dt � ÿ p
Ak

r 2�h����
h
p dh;

and after solving the integral from the expression, we ®nd

t � ÿ p
Ak

�
r 2�h����

h
p dh � C :

From the condition h�0� � H , the constant C is determined.

(a) In the case of a spherical shape (Fig. 1.4), it can be written that

r 2 � h�2R ÿ h�. Then,

t � ÿ p
Ak

�
h�2R ÿ h����

h
p dh � C

Figure 1.4
The emptying of

a spherical
vessel.
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or

t � ÿ p
Ak

2R

� ���
h
p

dh ÿ
�

h3=2dh

� �
� C

� ÿ p
Ak

4

3
Rh3=2 ÿ 2

5
h5=2

� �
� C :

Using the condition

h�0� � H

yields

C � p
Ak

4

3
RH 3=2 ÿ 2

5
H 5=2

� �
;

and hence t � p
Ak

4

3
R�H 3=2 ÿ h3=2� ÿ 2

5
�H 5=2 ÿ h5=2�

� �
. The time T for

which h�T � � 0 is T � p
Ak

H 3=2 4

3
R ÿ 2

5
H

� �
. For H � R (the hemisphere

is full), T � 14

15

� �
pR5=2

Ak
.

(b) From the geometry of a cone (Fig. 1.5),

r ÿ R1

h
� R2 ÿ R1

H
and r � R1 �

R2 ÿ R1

H
h:

Then,

r 2���
h
p � R2

1���
h
p � 2R1�R2 ÿ R1�

H

���
h
p
� R2 ÿ R1

H

� �2

h3=2;

Figure 1.5
The emptying of
a truncated-cone

vessel with the
small base at the

bottom.
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and substituting this in the expression of t , after integration, yields

t � ÿ p
Ak

2R2
1

���
h
p
� 4

3

� �
R1�R2 ÿ R1�

H
h3=2 � 2

5

� �
R2 ÿ R2

1

H
h5=2

� �
� C :

Using the condition

h�0� � H ;

we ®nd that

C � p
Ak

2R2
1

�����
H
p
� 4

3

� �
R1�R2 ÿ R1�

H
H 3=2 � 2

5

� �
R2 ÿ R2

1

H
H 5=2

� �
;

and hence,

t � p
Ak

2R2
1 �

�����
H
p ÿ

���
h
p
� � 4

3

� �
R1�R2 ÿ R1�

H
�H 3=2 ÿ h3=2�

�
� 2

5

� �
R2 ÿ R2

1

H
�H 5=2 ÿ h5=2�

�
:

The condition h�T � � 0 implies

T � p
�����
H
p

Ak
2R2

1 �
4

3
R1�R2 ÿ R1� �

2

5
�R2 ÿ R1�2

� �
:

(c) From Fig. 1.6, �r ÿ R1�=�H ÿ h� � �R2 ÿ R1�=H and yields,

r � R2 �
�R1 ÿ R2�

H
h: m

Figure 1.6
The emptying of
a truncated-cone

vessel with the
large base at the

bottom.
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Remark 1.6

If in the expression of r from case (b) we replace R1 by R2, we ®nd the

expression of r from case (c). Consequently, the expressions of t and T for

case (c) will be obtained from the corresponding expressions obtained in (b),

in which R1 is replaced by R2 and R2 by R1:

t � p
Ak

2R2
2 �

�����
H
p ÿ

���
h
p
� � 4

3

� �
R2�R1 ÿ R2�

H
�H 3=2 ÿ h3=2�

�
� 5

2

R1 ÿ R2

H

� �2

�H 5=2 ÿ h5=2�
#

T � p
�����
H
p

Ak
2R2

2 �
4

3
R2�R1 ÿ R2� �

2

5
�R1 ÿ R2�2

� �
: m

Remark 1.7

If we compare the expressions of T in cases (b) and (c), denoting by T 0 the

expression in case (c), then

T 0 ÿ T � p
�����
H
p

Ak
2�R2

2 ÿ R2
1 � �

4

3
R2R1 ÿ

4

3
R2

2 ÿ
4

3
R1R2 �

4

3
R2

1

�
� 2

5
�R1 ÿ R2�2 ÿ

2

5
�R2 ÿ R1�2

�
� p

�����
H
p

Ak

2

3
�R2

2 ÿ R2
1 �;

or

T 0 � T � 2

3

p
�����
H
p

Ak
�R2

2 ÿ R2
1 �:

(d) It is obtained from case (b), taking R1 � 0, R2 � R . Hence,

t � 2pR2

5AkH 2
�H 5=2 ÿ h5=2� and T � 2pR2

5Ak

�����
H
p

:

(e) It is obtained from case (b), taking R1 � R2 � R . Then,

t � 2pR2

Ak
�
�����
H
p
ÿ

���
h
p
� and T � 2pR2

Ak

�����
H
p

: m

Equations That Can Be Reduced to Separable Equations (Equations with
Separable Variables)
Equations of the form

x 0 � f �at � bx � �1:43�
are reducible to equations with separable variables by the replacement of

functions

u � at � bx : �1:44�
Indeed,

du

dt
� a � b

dx

dt
� a � bf �u�; hence,

du

a � f �u� � dt and t �
�

du

a � bf �u� � C :
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EXAMPLE 1.4 Solve the equation x 0�2t � 2x � 1� � �t � x ÿ 1�2. m

Solution

Let us make the notation t � x � u and then 1� dx

dt
� du

dt
, or

1� �u ÿ 1�2
2u � 1

� du

dt
) u2 � 2

2u � 1
� du

dt

) 2u � 1

u2 � 2
du � dt

)
�

2u � 1

u2 � 2
du �

�
dt � C :

If we separate the ®rst member in two integrals,�
2u

u2 � 2
du �

�
du

u2 � 2
� t � c ) ln�u2 � 2� � 1���

2
p arctan

u���
2
p � t � c:

The general solution is

ln�t 2 � x 2 � 2tx � 2� � 1���
2
p arctan

t � x���
2
p � t � c: m

APPLICATION 1.6 A body with mass m is acted on by a force proportional to time (the

proportionality factor is equal to k1). In addition the body experiences a

counteraction by the medium that is proportional to the velocity of the body

(the proportionality factor being equal to k2). Find the law of the body's

motion. m

Solution

The differential equation of motion is m
dv

dt
� k1t ÿ k2v. Denoting

k1t ÿ k2v � u, we ®nd (after derivation with respect to t) k1 ÿ k2

dv

dt
� du

dt
.

Multiplying by m and taking into account the replacement k1m ÿ k2u �
m

du

dt
, which is an equation with separable variables, du=�k1m ÿ k2u� �

1

m
dt . After integration,�

du

k1m ÿ k2u
� 1

m

�
dt � C ) ÿ 1

k2

ln jk1m ÿ k2uj � t

m
� C :

The initial condition v�0� � 0 results in u�0� � 0; hence, ÿ 1

k2

ln jk1mj � C .

Replacing the value of C yields ÿ 1

k2

ln jk1m ÿ k2uj � t

m
ÿ 1

k2

ln jk1mj.

Multiplying by (ÿk2), ln jk1m ÿ k2uj � ln jk1mj ÿ k2

m
t ; hence, k1m ÿ k2u �

k1meÿk2t=m ) k2u � k1m ÿ k1meÿk2t=m . Replacing u by its expression

depending on v gives

k2k1t ÿ k2
2v � k1m ÿ k1meÿk2t=m ) v�t � � k1m

k2
2

eÿk2t=m � k1

k2

t ÿ k1m

k2
2

:
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To ®nd the dependence of displacement on time, we use the equality

v�t � � ds�t �
dt

or s�t � �
�

v�t �dt � C ; s�0� � 0:

This yields

s�t � �
�

k1m

k2
2

eÿk2t=m � k1

k2

t ÿ k1m

k2
2

� �
dt � C

� ÿ k1m2

k3
2

eÿk2t=m � k1

2k2

t 2 ÿ k1m

k2
2

t � C

s�0� � s0 ) s0 � C ÿ k1m2

k3
2

;

hence,

C � s0 �
k1m2

k3
2

and s�t � � s0 �
k1m2

k3
2

ÿ k1m

k2
2

t � k1

2k2

t 2 ÿ k1m2

k3
2

eÿk2t=m: m

Homogeneous Equations
A differential equation of the ®rst order,

x 0 � f �t ; x �; �1:45�
is called a homogeneous equation if the function f �t ; x � is homogeneous

with degree zero, that is,

f �lt ; lx � � f �t ; x �; 8l 6� 0: �1:46�
If l � 1=t �t 6� 0�, then f �t ; x � � f �1; x=t �, which means that the function f

depends only on the ratio x=t . After replacement,

x

t
� u; �1:47�

and making the notation f �1;u� � j�u�, x � tu,
dx

dt
� u � t

du

dt
and

Eq. (1.45) becomes u � t
du

dt
� j�u�, which is an equation with separable

variables,
du

dt
� �j�u� ÿ u�=t . This equation is de®ned on domains of the

form �ÿ1; 0� � �u1;u2� or �0;1� � �u1;u2�, where u1, u2 are two consecu-

tive zeros of function j�u� ÿ u. Separating the variables and integrating,

du

j�u� ÿ u
� dt

t
:

The general solution is �
du

j�u� ÿ u
� ln jt j � C : �1:48�

Remark 1.8

If uk are solutions of the equation

j�u� ÿ u � 0; �1:49�
then the straight lines x � ukt are singular solutions of Eq. (1.45).
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Remark 1.9

If f �x ; y� � P �x ; y�=Q�x ; y�, with P and Q homogeneous polynomials that

have the same degree, then Eq. (1.45) is a homogeneous equation.

EXAMPLE 1.5 Find the general solution of equation y=y 0 � x �
����������������
x 2 � y2

p
. m

Solution

The equation is written in the form y
dx

dy
� x �

����������������
x2 � y2

p
, or

dx

dy
� x

y
�

�����
x 2

y2

s
� 1:

The replacement
x

y
� u yields x � yu; the general solution is

dx

dy
� u � y

du

dy
) u � y

du

dy
� u �

��������������
u2 � 1

p
) du��������������

u2 � 1
p � dy

y
)
�

du��������������
u2 � 1
p

�
�

dy

y
� ln c ) ln�u �

��������������
u2 � 1

p
� � ln y � ln c ) u �

��������������
u2 � 1

p
� cy ) x

y
�

��������������
x 2

y2
� 1

s
� cy )

����������������
x 2 � y2

p
� cy2 ÿ x ) x 2 � y2

� c2y4 ÿ 2cxy2 � x 2 ) c2y2 � 2cx � 1: m

APPLICATION 1.7 Parabolic Mirror

Find a mirror such that light from a point source at the origin O is

re¯ected in a beam parallel to a given direction.

Solution

Consider the plane section of the mirror (Fig. 1.7). Consider that the ray of

light OP strikes the mirror at M and is re¯ected along MR , parallel to the x -

axis. If MT is the tangent in M and a, i and r are the angles indicated, i � r

by the optical law of re¯ection, and r � a by geometry. Hence, a � i and

jOT j � jOM j; jOT j � jPT j ÿ x , MP=PT � tan a � y 0 ) jMP j � y 0jPT j )
y � y 0jPT j ) jOT j � jy=y 0j ÿ x ; jOM j �

����������������
x2 � y2

p
. The differential equa-

tion is

y

y 0

���� ����ÿ x �
����������������
x 2 � y2

p
) y

y 0
� x �

����������������
x 2 � y2

p
:

This is the equation from the previous example. Its general solution is the

family of parabolas c2y2 � 2cx � 1. If we state the condition, for example,

y�ÿ1� � 0, we obtain c � 1
2, and the solution is x � 1

4 y2 ÿ 1. m

APPLICATION 1.8 The Problem of the Swimmer

To cross a river, a swimmer starts from a point P on the bank. He wants

to arrive at a point Q on the other side. The velocity v1 of the running water is
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k1, and the velocity v2 of the swimmer's motion is constant k2. Find the

trajectory described by the swimmer, knowing that the relative velocity is

always directed to Q. m

Solution

Consider that M is the swimmer's position at time t (Fig. 1.8). The

components of the absolute velocity on the two axes Ox and Oy are

dx

dt
� k1 ÿ k2

x����������������
x 2 � y2

p
dy

dt
� ÿk2

y����������������
x 2 � y2

p :

8>><>>:
Dividing these equalities gives the differential equation of the demanded

trajectory,

dx

dy
� x

y
ÿ k

��������������
x 2

y2
� 1

s
; k � k1

k2

:

This is a homogeneous equation, and after the replacement x � yu and

dx=dy � u � y�du=dy�, the equation becomes y�du=dy� � ÿk
��������������
u2 � 1

p
, or

du=
��������������
u2 � 1
p � ÿk�dy=y�. Integration gives

ln�u �
��������������
u2 � 1

p
� � ÿk ln y � ln c�c > 0� or u �

��������������
u2 � 1

p
� cyÿk :

This then yields

u � 1

2

c

yk
ÿ yk

c

� �
:

Returning to x and y , we ®nd

x � 1

2
y

c

yk
ÿ yk

c

� �
:

Figure 1.7
Re¯ection of a

beam in a para-
bolic mirror.
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The condition for the trajectory to pass through P �x0; y0� yields

c � ykÿ1
0 �x0 �

����������������
x2

0 � y2
0

p
�. The condition for trajectory to pass through Q is

written as

lim
y!0

1

2
y

c

yk
ÿ yk

c

� �
� 0;

and it is possible if k < 1. m

Remark 1.10

For k1 � 0, k � 0, and the trajectory has the equation x � x0

y0

y , that is, the

linear segment between P and Q. m

Equations That Can Be Reduced to Homogeneous Equations
Consider the equation

x 0 � f
a1t � b1x � c1

a2t � b2x � c2

� �
ai ; bi ; ci 2 R; i � 1; 2; �1:50�

to which will be attached the algebraic system

a1t � b1x � c1 � 0
a2t � b2x � c2 � 0:

�
�1:51�

If

a1b2 ÿ a2b1 6� 0; �1:52�

Figure 1.8
Trajectory of the

swimmer.
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then the system of equations (1.51) has a unique solution (t0; x0). Let us

change the variables:

x � y � x0

t � s � t0:

�
�1:53�

Because dx=dt � dy=ds, Eq. (1.50) becomes

dy

ds
� f

a1s � b1y

a2s � b2y

� �
� f

a1 � b1

y

s

a2 � b2

y

s

0BB@
1CCA �not j

y

s

� �
;

which is a homogeneous equation. If a1b2 ÿ a2b1 � 0, then a1=a2 � b1=b2 �
k; hence,

a1t � b1x � c1

a2t � b2x � c2

� a1t � b1x � c1

k�a1t � b1x � � c2

;

and if we make the notation y � a1t � b1x , Eq. (1.50) may be written as

dy

dt
� b1 f

y � c1

ky � c2

� �
� a2;

which is an equation with separable variables.

EXAMPLE 1.6 Integrate the equation
dx

dt
� t ÿ x � 3

t � x ÿ 1
. m

Solution

The system

t ÿ x � 3 � 0
t � x ÿ 1 � 0

�
�1:54�

has the unique solution t0 � ÿ1, x0 � 2. Let us change the variables:

t � s ÿ 1
x � y � 2:

�
Because dx=dt � dy=ds, the initial equation becomes

dy

ds
� s ÿ y

s � y
�

1ÿ y

s

1� y

s

;

which is a homogeneous equation. The replacement y � su, dy=ds �
u � s�du=ds� leads to

u � s
du

ds
� 1ÿ u

1� u
or s

du

ds
� 1ÿ 2u ÿ u2

1� u
:

Separating the variables and integrating gives

�u � 1�du

u2 � 2u ÿ 1
� ds

s
� 0) 1

2
ln ju2 � 2u ÿ 1j � ln jsj � c

) s2�u2 � 2u ÿ 1� � c1:

Returning to the initial variables yields y2 � 2ys ÿ s2 � c1. Hence, the general

solution is �x ÿ 2�2 � 2�t � 1��x ÿ 2� ÿ �t � 1�2 � c1. m

1. Differential Equations 741

D
if

fe
re

n
ti

al
Eq

u
at

io
n
s



Remark 1.11

From u2 � 2u ÿ 1 � 0, we obtain u1;2 � ÿ1� ���
2
p

and �x ÿ 2�=�t � 1� �
ÿ1� ���

2
p

as singular solutions.

EXAMPLE 1.7 Integrate the equation

dx

dt
� 2t � 2x � 4

t � x ÿ 1
: m

Solution

The right-hand member

f �t ; x � � 2�t � x � � 4

t � x ÿ 1

is a function only of t � x . Changing the function, t � x � y yields

1� dx

dt
� dy

dt
; hence,

dy

dt
� 1� 2y � 4

y ÿ 1
) dy

dt
� 3

y � 1

y ÿ 1
) y ÿ 1

y � 1
dy � 3dt :

Integrating, y � 2 ln jy � 1j � 3t � c, hence, the general solution is

x ÿ 2t � 2 ln jt � x � 1j � c: m

Total Differential Equations
A ®rst-order equation of the form

h1�t ; x �dt � h2�t ; x �dx � 0 �1:55�
is said to be a total (or exact) differential equation if its lefthand side is a total

differential of some function H �t ; x �,

h1dt � h2dx � dH � @H
@t

dt � @H
@x

dx : �1:56�

This equality is possible if and only if

@h1

@x
� @h2

@t
�1:57�

should hold in some range D of variables t and x . The general integral of

Eq. (1.55) is of the form

H �t ; x � � c or

�t

t0

h1�t; x0�dt�
�x

x0

h2�t ; s�ds � c: �1:58�

EXAMPLE 1.8 Solve the equation �2t ÿ 3xt 2�dt � �x 2 � x ÿ t3�dx � 0. m

Solution

Let us verify that this equation is a total differential equation: @h1=@x � ÿ3t 2;

@h2=@t � ÿ3t 2, so that @h1=@x � @h2=@t ; that is, the condition (1.57) is
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ful®lled. The general integral is
� t

t0
�2tÿ 3t2x0�dt�

� x

x0
�s2 � s ÿ t 3�ds � c )

t2jtt0 ÿ t3jtt0x0 �
s3

3
� s2

2

� �
jxx0
ÿ t3sjxx0

� c ) t2 ÿ t 2
0 ÿ t 3x0 � t 3

0 x0 �
x 3

3
� x2

2

ÿ x 3
0

3
ÿ 1

2
x 2

0 ÿ t 3x � t 3x0 � c ) t2 � x3

3
� x2

2
ÿ t3x � c1, where

c1 � c � t2
0 ÿ t3

0 x0 �
x3

0

3
� 1

2
x 2

0 : m

The Integrating Factor
In some cases, where Eq. (1.55) is not a total differential equation, it may be

possible to select a function m�t ; x � that, after multiplying the left-hand side,

turns into a total differential dH � mh1dt � mh2dx . This function m�t ; x � is

called an integrating factor. From the de®nition of the integrating factor,
@

@x
�mh1� �

@

@t
�mh2�, or h1

@m
@x
ÿ h2

@m
@t
� @h2

@t
ÿ @h1

@x

� �
m. Hence,

h1

@ lnm
@x
ÿ h2

@ lnm
@t
� @h2

@t
ÿ @h1

@x
; �1:59�

and a partial differential equation has been obtained. The integrating factor is

relatively easy to ®nd in the following cases.

1. If m � m�t�, then
@m
@x
� 0, and Eq. (1.59) will take the form

d lnm
dt
�
@h1

@x
ÿ @h2

@t

h2

� j�t �: �1:60�

Then,

ln m �
�
j�t �dt : �1:61�

2. If m � m�x�, then
@m
@t
� 0, and Eq. (1.59) will take the form

d lnm
dx
�
@h2

@t
ÿ @h1

@x

h1

� c�x �: �1:62�

Then,

lnm �
�
c�x �dx : �1:63�

EXAMPLE 1.9 Solve the equation �x 2 � 3tx �dt � �tx � t 2�dx � 0. m
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Solution

The derivatives are

@h1

@x
� 2x � 3t ;

@h2

@t
� x � 2t ;

8>><>>:
with

@h1

@x
6� @h2

@t
, but

@h1

@x
ÿ @h2

@t

h2

� x � t

t �x � t � �
1

t
:

This satis®es condition (1.61), and ln m � � �1=t �dt ) ln m � ln t ) m � t .

Multiplying the given equation by t , we ®nd the total differential equation

�x 2t � 3t 2x �dt � �t 2x � t3�dx � 0, whose general solution is given by the

equality
� t

t0
�x2

0 t� 3t2x0�dt�
� x

x0
�t2s � t3�ds � c. After the evaluation of inte-

grals and reducing the similar terms, the general solution is

t 2x 2 � 2t 3x � c1; c1 being an arbitrary constant: m

EXAMPLE 1.10 Solve the equation �tx � 2t �dt � �t 2 � x 2�dx � 0. m

Solution

We can write that
@h1

@x
� t ;

@h2

@t
� 2t ) @h1

@x
6� @h2

@t
, but

@h2

@t
ÿ @h1

@x

� �
=h1 �

t

t �x � 2� �
1

x � 2
� c�x �:

The equation has an integrable factor m � m�x �:

ln m �
�

dx

x � 2
) ln m � ln jx � 2j ) m � x � 2:

Multiplying the given equation by x � 2, we ®nd the equation with total

differentials

�tx 2 � 4tx � 4t �dt � �xt2 � x 3 � 2t 2 � 2x 2�dx � 0:

With Eq. (1.58), after the evaluation of integrals and reducing similar terms,

the general solution is

2t 2 � t 2x 2

2
� x 4

4
� 2t2x � 2

3
x3 � c1: m

EXAMPLE 1.11 Solve the equation �3x 2 ÿ t �dt � �2x 3 ÿ 6tx �dx � 0 with an integrating

factor of the form m � j�t � x2�. m
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Solution

Set t � x 2 � y . Then m � m�y�, and consequently,

@ ln m
@t
� d lnm

dy

@y

@t

� �
� d lnm

dy
;

@ ln m
@x
� d ln m

dy

@y

@x

� �
� 2x

d lnm
dy

:

Equation (1.59) used to ®nd the integrating factor will be of the form

�2xh1 ÿ h2�
d lnm

dy
� @h2

@t
ÿ @h1

@x
or

d lnm
dy
�
@h2

@t
ÿ @h1

@x

2xh1 ÿ h2

:

Since h1 � 3x 2 ÿ t , h2 � 2x 3 ÿ 6tx , then

@h2

@t
ÿ @h1

@x

2xh1 ÿ h2

� ÿ3

t � x 2
� ÿ3

y
;

and hence d ln m=dy � ÿ3=y , or m � yÿ3, that is, m � 1=�t � x2�3, and multi-

plying the given equation by m � 1=�t � x 2�3 yields

3x2 ÿ t

�t � x 2�3 dt � 2x 3 ÿ 6tx

�t � x 2�3 dx � 0:

This is a total differential equation, and according to Eq. (1.58), its general

integral is�t

t0

3x 2
0 ÿ t

�t� x 2
0 �3

dt�
�x

x0

2s3 ÿ 6ts

�t � s2�3 ds � c or; �t � x 2�2c � t ÿ x 2: m

Linear Differential Equations of First Order
A ®rst-order linear differential equation is an equation that is linear in the

unknown function and its derivative. A linear equation has the form

dx

dt
� a�t �x � b�t �; �1:64�

where a�t � and b�t � will henceforth be considered continuous functions of t

in the domain in which it is required to integrate Eq. (1.64). If b�t � � 0, then

Eq. (1.64) is called homogeneous linear. In this case,

dx

dt
� a�t �x � 0; �1:65�

which is an equation with separable variables, dx=x � ÿa�t �dt , and inte-

grating,

ln jx j � ÿ
�

a�t �dt � ln c1; c1 > 0) x � ceÿ
�

a�t �dt ; c 6� 0: �1:66�

This is the general solution of Eq. (2.29). Also, it satis®es the initial condition

x �t0� � x0, given by

x �t � � x0e
ÿ
� t

t0
a�t�dt

:
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The general solution of a nonhomogeneous Eq. (1.65) can be found by the

method of variation of an arbitrary constant, which consists in ®nding the

solution of Eq. (1.65) in the form

x � c�t �eÿ
�

a�t �dt ; �1:67�
where c�t � is a new unknown function of t . Computing the derivative

dx

dt
� c 0�t �eÿ

�
a�t �dt ÿ c�t �a�t �eÿ

�
a�t �dt

and substituting it into the original Eq. (1.64),

c 0�t �eÿ
�

a�t �dt ÿ a�t �c�t �eÿ
�

a�t �dt � a�t �c�t �eÿ
�

a�t �dt � b�t �;
or

c 0�t � � b�t �e
�

a�t �dt :

Integrating, we ®nd

c�t � �
�

b�t �e
�

a�t �dt
dt � c1;

and consequently,

x � e
ÿ
�

a�t �dt
c1 �

�
b�t �e

�
a�t �dt dt

� �
�1:68�

is the general solution of Eq. (1.64).

Remark 1.12

The general solution of a nonhomogeneous linear equation is the sum of

the general solution of the corresponding homogeneous equation

c1eÿ
�

a�t �dt and a particular solution of the nonhomogeneous equation

eÿ
�

a�t �dt
�

b�t �e
�

a�t �dt dt obtained from Eq. (2.32) for c1 � 0.

Properties
1. The general solution of a nonhomogeneous linear Eq. (1.64) is of the

form

x � A�t �c � B�t �; c 2 R; �1:69�
and the general solution of the homogeneous linear Eq. (1.65) is of

the form

x � A�t �c; c 2 R: �1:70�
2. If x1 and x2 are two particular solutions of Eq. (1.64), then the general

solution is

x � x1 � c�x2 ÿ x1�: �1:71�
3. A linear equation remains linear whatever replacements of the

independent variable t � j�t� are made [where j�t� is a differentiable

function].
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4. A linear equation remains linear whatever linear transformations of

the sought-for function x � a�t�y� b�t� take place [where a�t� and b�t�
are arbitrary differentiable functions, with a�t� 6� 0 in the interval

under consideration].

EXAMPLE 1.12 Find the solution through (0;ÿ1) for the equation

�t 2 � 1�x 0 � 2tx � t2: m

Solution

Dividing both sides of equation by t2 � 1 gives

x 0 � 2t

t 2 � 1
x � t2

t2 � 1
:

The corresponding homogeneous equation of the given equation is

x 0 � 2t

t 2 � 1
x � 0;

and its general solution is x � c=�t 2 � 1�. The general solution of the

nonhomogeneous equation is sought in the form x � c�t �=�t 2 � 1�. Substitut-

ing it into the nonhomogeneous equation yields

c 0�t �
t 2 � 1

ÿ 2tc�t �
�t 2 � 1�2 �

2tc�t �
�t2 � 1�2 �

t 2

t 2 � 1
; c 0�t � � t 2; c�t � � t 3

3
� c1:

Hence, the general solution is

x � c1

t 2 � 1
� t3

3�t2 � 1� :

Using the condition x �0� � ÿ1, then c1 � ÿ1. The solution of the initial value

problem is

x � 1

t 2 � 1

t3

3
ÿ 1

� �
: m

EXAMPLE 1.13 Solve the equation y 0 � y=�2y ln y � y ÿ x �. m

Solution

This equation is linear if one considers x as a function of y ,
dx

dy
� 2y ln y � y ÿ x

y
, or

dx

dy
� x

y
� 2 ln y � 1. Using Eq. (1.68), we ®nd that

x � eÿ
�
�1=y�dy c1 �

�
�2 ln y � 1�e

�
�1=y�dy dy

� �
;

x � 1

y
c1 �

�
�2 ln y � 1�y dy

� �
;

and ®nally,

x � c

y
� y ln y :

1. Differential Equations 747

D
if

fe
re

n
ti

al
Eq

u
at

io
n
s



EXAMPLE 1.14 Find the solution of an equation satisfying the indicated condition

2xy 0 ÿ y � 1ÿ �2= ���
x
p �, y !ÿ1 as x !�1. m

Solution

The general solution of equation y 0 ÿ 1

2x
y � 1

2x
ÿ 1

x
���
x
p is

y � e
�
�1=2x �dx c �

�
1

2x
ÿ 1

x
���
x
p

� �
eÿ
�
�1=2x �dx

� �
) y � ���

x
p

c �
�

1

2x
ÿ 1

x
���
x
p

� �
1���
x
p dx

� �
� ���

x
p

c � 1

x
ÿ 1���

x
p

� �
� c

���
x
p � 1���

x
p ÿ 1 lim

x!1 c
���
x
p � 1���

x
p ÿ 1

� �
� ÿ1) c � 0:

The solution with the indicated condition is

y � 1���
x
p ÿ 1:

APPLICATION 1.9 The Motion of Parachutes

A body with mass m is dropped with an initial velocity v0 from some

height. It is required to establish the law of velocity v variation as the body

falls, if in addition to the force of gravity the body is acted upon by the

decelerating force of the air, proportional to the velocity (with constant

k). m

Solution

By Newton's second law, m
dv

dt
� F , where

dv

dt
is the acceleration of the

moving body and F is the force acting on the body in the direction of motion.

This force is the resultant of two forces: the force of gravity mg, and the force

of air resistance ÿkv, which has the minus sign because it is in the opposite

direction to the velocity. Then, m
dv

dt
� mg ÿ kv, or

dv

dt
� k

m
v � g. The

solution of this linear equation is v � ceÿkt=m �c � � gekt=mdt � ) v�t � �
ceÿkt=m � gm=k. Taking into account that v�0� � v0, then v0 � c �mg=k;

c � v0 ÿmg=k, and v�t � � �v0 ÿmg=k�eÿkt=m �mg=k. From this formula it

follows that for suf®ciently large t , the velocity v depends slightly on v0. It will

be noted that if k � 0 (the air resistance is absent or so small that it can be

neglected), we obtain a result familiar for physics,

v � v0 � gt :

Remark 1.13

The equation m
dv

dt
� mg ÿ kv could be also solved as an equation with

separable variables. The equation from Application 1.6 could be regarded as

a ®rst-order linear equation. m
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APPLICATION

1.10
Consider an electrical circuit with a resistor R and a self-inductance L that

satis®es the differential equation L
dI

dt
� RI � E , where E is the electromotive

force. Find the electrical intensity I , t seconds after the moment of switching

on, if E changes according to the sinusoidal law E � E0 cosot , and I � 0 for

t � 0. m

Solution

Using the notation a � R

L
, we obtain the linear equation

dI

dt
� aI �

�E0=L� cosot . The solution is I � eÿat �c � �E0=L�
�

eat cosot dt �. Integrating

twice by parts, we obtain

I �t � � ceÿat � E0�o sinot � a cosot �
L�o2 � a2� :

If I �0� � 0, then

c � ÿ E0a
L�o2 � a2� ;

and consequently,

I �t � � E0

L�o2 � a2� �o sinot � a cosot ÿ aeÿat �:

Since t is suf®ciently large, and eÿat is a small quantity (a > 0) and can be

ignored,

I �t � � E0

L�o2 � a2� �o sinot � a cosot �: m

Bernoulli's Equation
This equation is of the form

dx

dt
� a�t �x � b�t �x a; a 2 Rnf0; 1g: �1:72�

Using the substitution x 1ÿa � y , Bernoulli's equation may be reduced to a

linear equation. Indeed, differentiating,

x 1ÿa � y; �1:73�
and �1ÿ a�xÿa dx

dt
� dy

dt
. Substituting into Eq. (1.72), we ®nd the linear

equation

dy

dt
� �1ÿ a�a�t �y � �1ÿ a�b�t �: �1:74�

EXAMPLE 1.15 Solve the equation
dx

dt
ÿ 2t

t 2 � 1
x � ÿ t2

t2 � 1
x 2 and ®nd the solution through

(0;ÿ1). m
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Solution

Dividing both sides of equation by x 2 gives

1

x 2

dx

dt

� �
ÿ 1

x

� �
2t

t 2 � 1
� ÿ t 2

t2 � 1
:

We use the substitution

1

x
� y; ÿ 1

x 2

dx

dt

� �
� dy

dt
:

After substitution, the last equation turns into the linear equation

dy

dt
� 2t

t2 � 1
y � t 2

t 2 � 1

with the general solution

y � 3c1 � t 3

3�t2 � 1�
(see Example 1.12). Hence, the general solution of the given equation is

x � 3�t 2 � 1�=�3c1 � t 3�. If x �0� � ÿ1, then c � ÿ1. It follows that

x � 3�t 2 � 1�
t 3 ÿ 3

: m

EXAMPLE 1.16 Find the solution of equation satisfying the indicated condition

xy 0 ÿ y � 1ÿ 2���
x
p

� � ���
y
p

; lim
x!�1 � 1: m

Solution

If we divide both sides of the equation by
���
y
p

,
x���
y
p dy

dx

� �
ÿ ���

y
p � 1ÿ 2���

x
p ,

and set
���
y
p � z ,

1

2
���
y
p dy

dx

� �
� dz

dx
, then 2x

dz

dx
ÿ z � 1ÿ 2���

x
p , which is a

linear equation whose general solution is (see Example 1.14)

z � c
���
x
p � 1���

x
p ÿ 1:

The general solution of the given equation is

y � z 2 � c
���
x
p � 1���

x
p ÿ 1

� �2

; lim
x!1 c

���
x
p � 1���

x
p ÿ 1

� �2

� 1) c � 0;

hence, the required solution is

y � 1ÿ 2
���
x
p � x

x
: m
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APPLICATION

1.11
Find the law of motion for a body provided by the resistance of the medium

depending on the velocity, F � l1v� l2v
a; a 6� 1. m

Solution

The equation of motion is assumed having the form m
dv

dt
� ÿl1vÿ l2v

a, or
dv

dt
� l1

m
v � ÿ l2

m
va, which is a Bernoulli equation. Dividing by va and making

the substitution u � v1ÿa, we ®nd the linear equation

du

dt
� �1ÿ a� l1

m
u � ÿ 1ÿ a

m
l2;

whose complete integral is

u�t � � ce �aÿ1��l1=m�t ÿ l2

l1

and v � ce �aÿ1��l1=m�t ÿ l2

l1

� �1=�1ÿa�
:

To ®nd the constant c, we use the initial condition v�t0� � v0.

Riccati's Equation
The equation of the form

dx

dt
� p�t �x 2 � q�t �x � r �t � �1:75�

is called Riccati's equation and in the general form is not integrable by

quadratures, but may be transformed into a linear equation by changing the

function, if a single particular solution x1�t � of this equation is known.

Indeed, using the substitution

x �t � � x1�t � �
1

y�t � ; �1:76�

we obtain

x 0�t � � x 01�t � ÿ
y 0�t �
y2�t � ; x 2�t � � x 2

1 �t � �
2x1�t �
y�t � �

1

y2�t � :

Substituting into Eq. (1.75), since x 01�t � � p�t �x 2
1 � q�t �x1 � r �t �, yields the

linear equation

y 0 � �2p�t �x1�t � � q�t ��y � ÿp�t �: �1:77�
Finding its complete integral and substituting it into Eq. (1.76), we obtain the

complete integral of Riccati's equation.

Properties

1. The general solution of Riccati's equation is of the form

x � A1�t �c � B1�t �
A�t �c � B�t � ; c 2 R: �1:78�

This results from Eqs. (1.76) and (1.69).
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2. If there are known four particular solutions xi, 1 � i � 4, of the form

of Eq. (1.78), corresponding to the constants ci, 1 � i � 4, then

x4 ÿ x1

x4 ÿ x2

:
x3 ÿ x1

x3 ÿ x2

� c4 ÿ c1

c4 ÿ c2

:
c3 ÿ c1

c3 ÿ c2

:

3. If there are known three particular solutions x1, x2, x3 of Riccati's

equation, then the general solution is given by

x ÿ x1

x ÿ x2

:
x3 ÿ x1

x3 ÿ x2

� c; c 2 R: �1:79�

4. If there are known two particular solutions x1, x2, then to ®nd the

solution of Eq. (1.75) means to calculate a single quadrature.

EXAMPLE 1.17 The equation

x 0 � Ax 2 � B

t
x � c

t 2
; A;B;C � constants; �B � 1�2 � 4AC �1:80�

has a particular solution of the form x1 � a=t , a being constant.

Particular case: t 2x 0 � t2x2 � tx ÿ 1: m

Solution

We can write

x1 �
a

t
; x 01 � ÿ

a

t2
;

and

ÿ a

t 2
� A

a

t 2
� B

a

t 2
� c

t 2
, Aa2 � �B � 1�a � C � 0:

Because �B � 1�2 � 4AC , the last equation has real roots. In the particular

case,

x 0 � ÿx 2 � 1

t
x ÿ 1

t 2
; A � ÿ1;B � 1;C � ÿ1) �B � 1�2 ÿ 4AC � 0:

For a, the equation could be written as ÿAa2 � 2a ÿ 1 � 0) a � 1, and

x1 � 1=t is a particular solution. If substitute

x � 1

t
� 1

y
; x 0 � ÿ 1

t 2
ÿ y 0

y2
;

then

t2 ÿ 1

t 2
ÿ y 0

y2

� �
� t2 1

t
� 1

y

� �2

� t
1

t
� 1

y

� �
ÿ 1 or y 0 ÿ 1

t
y � 1;

which is a linear equation, with the general solution

y � e
�
�1=t �dt c �

�
eÿ
�
�1=t �dt dt

� �
;

hence, y � ct � ln t . The general solution of the given equation is

x � 1

t
� 1

ct � ln t
:
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EXAMPLE 1.18 Solve the equation x 0 � Ax2 � Btm , A;B 2 R, in the particular cases

(a) m � 0

(b) m � ÿ2. m

Solution

(a) The equation x0 � Ax2 � B has separable variables, dx=�Ax2 ÿ B� �
ÿdt. The solution is �

dx

Ax 2 ÿ B
� c ÿ t :

(b) The equation is x0 � Ax2 � B=t2. If we substitute

x � y

t
; x 0 � ty 0 ÿ y

t2
;

then ty0 � yÿ Ay2 � B, or

dy

B � y ÿ Ay2
� dt

t
:

EXAMPLE 1.19 Show that the Riccati's equation

x 0 � a
x 2

t
� 1

2

� �
x

t
� c; a; c 2 R �1:81�

could be transformed into an equation with separable variables, changing the

function x � y
��
t
p

. m

Solution

We can write x � y
��
t
p

, x 0 � y 0
��
t
p � y

1

2
��
t
p , and the equation becomes

y 0
��
t
p � 1

2
��
t
p y � ay2 � 1

2

y��
t
p � c, or

��
t
p dy

dt
� ay2 � c, which is an equation

with separable variables. Separating the variables gives

dy

ay2 � c
� dt��

t
p ;

�
dy

ay2 � c
� 2

��
t
p � k; �k � constant�: m

PARTICULAR

EXAMPLE
Integrate the equation tx 0 ÿ 1

2
x2 ÿ 1

2
x � 1

2
t . It is similar to

x 0 � 1

2

x2

t

� �
� 1

2

x

t

� �
� 1

2
. This equation is of the form of Eq. (1.81), with

a � 1

2
, c � 1

2
, and the solution is�

dy

y2 � 1
� 4

��
t
p � k1 ) arctan y � 4

��
t
p � k1;

) arctan
x��

t
p � 4

��
t
p � k1 ) x � ��

t
p

tan�4 ��
t
p � k1�: m
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1.2.2 ELEMENTARY TYPES OF EQUATIONS NOT SOLVED FOR
DERIVATIVE

A ®rst-order differential equation not solved for derivative is of the form

F �t ; x ; x 0� � 0: �1:82�

Equations of the First Order and Degree n in x0

Consider the differential equation

a0�t ; x ��x 0�n � a1�t ; x ��x 0�nÿ1 � � � � � an�t ; x � � 0; �1:83�
with aj 2 C �D�; D � R2, a0 6� 0. Let us solve this equation for x 0. Let

x 0 � f1�t ; x �; x 0 � f2�t ; x �; . . . ; x 0 � fm�t ; x � �m � n� �1:84�
be a real solution for Eq. (1.81). The general integral equation will be

expressed by a sum of the integrals

F1�t ; x ; c1� � 0; F2�t ; x ; c2� � 0; . . . ; Fm�t ; x ; cm� � 0; �1:85�
where Fi�t ; x ; ci � is the integral of the equation

x 0 � fi �t ; x �; �i � 1; 2; . . . ;m�: �1:86�
Thus, k integral curves pass through each point of the domain where x 0 takes

on real values.

EXAMPLE 1.20 Solve the equation tx 02 ÿ 2xx 0 ÿ t � 0. m

Solution

Let us solve this equation for x 0:

x 0 � x � ���������������
x 2 � t 2
p

t
; x 0 � x ÿ ���������������

x 2 � t2
p

t
:

Then we obtain two homogeneous equations that can be solved by the

substitution x=t � u. Integrating each one gives

x � 1

2
ct2 ÿ 1

c

� �
and x � 1

2
c ÿ t 2

c

� �
:

Both families of solutions satisfy the original equation.

Equations of the Form F�x0� � 0
For equations of the form

F �x 0� � 0; �1:87�
there exists at least one constant root x 0 � ki , since Eq. (1.87) does not

contain t and x (ki is a constant). Consequently, integrating equation x 0 � ki ,

then x � ki t � c, or ki � �x ÿ c�=t ; hence,

F
x ÿ c

t

� �
� 0 �1:88�

is an integral of Eq. (1.87).
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EXAMPLE 1.21 Solve the equation �x 0�5 ÿ �x 0�3 � x 0 � 2 � 0. m

Solution

The integral of this equation is

x ÿ c

t

� �5

ÿ x ÿ c

t

� �3

� x ÿ c

t
� 2 � 0: m

Equations of the Form F�t; x0� � 0
For equations of the form

F �t ; x 0� � 0; �1:89�
let us consider the case when these equations cannot be solved for x 0.

(a) If Eq. (1.89) is readily solvable for t, t � j�x 0�, then it is nearly always

convenient to introduce x 0 � p as parameter. Then t � j�p�. Differentiating

this equation and replacing dx by p dt yields dx � pj0�p�dp, x ��
pj0�p�dp � c. The general solution is

t � j�p�; x �
�

pj0�p�dp � c: �1:90�

(b) If Eq. (1.89) is not solvable (or is dif®cult to solve) for both t and x 0,
but allows the expression of t and x 0 in terms of some parameter p,

t � j�p�; x 0 � c�p�:
Then, dt � j0�p�dp, dx � x 0dt � c�p�j0�p�dp, and

x �
�
c�p�j0�p�dp � c; t � j�p�: �1:91�

So, the general solution of Eq. (1.89) is obtained in the parametric form

Eq. (1.91).

EXAMPLE 1.22 Solve the equation tx 0 � �x 0�3 � �x 0�2 ÿ 1. m

Solution

Substitute x 0 � p. Then

t � p2 � p ÿ 1

p
; dt � 2p � 1� 1

p2

� �
dp;

dx � x 0dt � p dt � p 2p � 1� 1

p2

� �
dp; x �

�
2p2 � p � 1

p

� �
dp � c:

The general solution of the equation is

t � p2 � p ÿ 1

p
; x � 2

3
p3 � p2

2
� ln jpj � c: m

EXAMPLE 1.23 Solve the equation t 2=3 � �x 0�2=3 � a2=3. m
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Solution

If we set t � a sin3 p, x 0 � a cos3 p, then

dx � x 0dt � a cos3 p�3a sin2 p� cos p dp; dx � �3a2 sin2 p� cos4 p dp;

x � 3a2

8

�
sin2 2p�1� cos 2p�dp � c:

Hence,

x � 3a2

16
p ÿ 1

4
sin 4p � 1

3
sin3 2p

� �
� c;

t � a sin3 p:

8<: �1:92�

Equations of the Form F�x; x0� � 0
Consider equations of the form

F �x ; x 0� � 0: �1:93�

(a) If x0 � j�x�, then
dx

j�x� � dt;

�
dx

j�x� � t � c.

(b) If x � c�x0�; x0 � p, and dt � dx

x0
� c0� p�

p
dp, or

t �
�
c0� p�

p
dp � c;

x � c�t �

8<: �1:94�

is the general solution.

(c) If it is dif®cult to solve Eq. (1.93) for x0 and x, then it is advisable to

introduce the parameter p and replace Eq. (1.93) by two equations,

x � j�p� and x0 � c�p�. Since dx � x0dt, then dt � dx

x0
� j0� p�

c� p� dp.

Thus, in parametrical form, the desired integral curves are de®ned

by the equations

t �
�
j0�p�
c�p� dp;

x � j� p�:

8><>: �1:95�

EXAMPLE 1.24 Solve the equation x � �x 0�3 � �x 0�2 � 20. m

Solution

Substitute x 0 � p. Then

x � p3 � p2 � 20; dx � �3p2 � 2p�dp;

dt � dx

x 0
� 3p2 � 2p

p
dp ) dt � �3p � 2�dp:
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Equations t � 3
2 p2 � 2p � c and x � p3 � p2 � 20 are parametrical equations

for an integral curve family. m

EXAMPLE 1.25 Solve the equation x 2=5 � �x 0�2=5 � 1. m

Solution

Substitute x � sin5 p, x 0 � cos5 p. Then

dt � dx

x 0
� 5 sin4 p

cos4 p
dp; t � 5

�
sin4 p

cos4 p
dp � c:

The general solution of the given differential equation in the parametrical

form is

t � 5 1
3 tan3 p ÿ tan p � p
h i

;

x � sin5 p:
m

(

The Lagrange Equation
The equation

x � tj�x 0� � c�x 0� �1:96�
is called Lagrange's equation. Setting x 0 � p, differentiating with respect to t ,

and replacing dx by p dt , this equation is reduced to a linear equation in t as

a function of p,

x � tj� p� � c� p�; p � j� p� � tj0� p�dp

dt
� c0� p�dp

dt
;

or

� p ÿ j� p�� dt

dp
� tj0� p� � c0� p�: �1:97�

Finding the solution of this last equation t � r � p; c�, we obtain the general

solution of the original equation in parametrical form,

t � r � p; c�
x � r � p; c�j� p� � c� p�:

�
In addition, the Lagrange equation may have some singular solution of the

form x � j�c�t � c�c�, where c is the root of equation c � j�c�.

EXAMPLE 1.26 Integrate the equation x � t �x 0�2 ÿ x 0. m

Solution

Let us set x 0 � p, then x � tp2 ÿ p. Differentiating, p � p2 � �2pt ÿ 1�dp

dt
, or

p ÿ p2 � �2pt ÿ 1�dp

dt
, whence � p ÿ p2� dt

dp
� 2pt ÿ 1, or

dt

dp
� 2p

p�1ÿ p� t ÿ
1

p�1ÿ p� :
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We obtain a ®rst-order linear equation

dt

dp
� 2

1ÿ p
t � 1

p� p ÿ 1� :

Integrating this linear equation gives

t � e

�
�2=�1ÿp��dp

c �
�

1

p� p ÿ 1� e
�
�2=�pÿ1��dp

dp

� �
;

t � 1

� p ÿ 1�2 �c � p ÿ ln j pj�;

x � p2

� p ÿ 1�2 �c � p ÿ ln j pj� ÿ p:

The roots of the equation p ÿ j� p� � 0, that is, p ÿ p2 � 0, are p � 0 and

p � 1, corresponding to x � 0 and x � t ÿ 1, which are the singular solu-

tions for the original equation. m

The Clairaut Equation
This equation has the form

x � tx 0 � c�x 0�: �1:98�
The method of solution is the same as for the Lagrange equation. Using the

substitution x 0 � p, we obtain x � tp � c� p�. Differentiating with respect to

t , p � p � �t � c0� p��dp

dt
or, �t � c0� p�� dp

dt
� 0, whence either

dp

dt
� 0 and

hence p � c or, t � c0� p� � 0. In the ®rst case, eliminating p gives

x � tc � c�c�; �1:99�
which is a one-parameter family of integral curves. In the second case, the

solution is de®ned by the equation

x � tp � c� p�;
t � c0� p� � 0:

�
�1:100�

This is the ``envelope'' of the family of integral curves from Eq. (1.99). The

form of Eq. (1.99) is obtained directly from Eq. (1.98), replacing x 0 with c.

EXAMPLE 1.27 Integrate the equation x � tx 0 � 2�x 0�2. m

Solution

Setting x 0 � p, then x � tp � 2p2. Differentiating this equation with respect

to t , p � p � �t � 4p�dp

dt
, whence �t � 4p�dp

dt
� 0. A one-parameter family of

integral straight lines has the form x � tc � 2c2. The envelope of this family,

de®ned by equation x � tc � 2c2 and t � 4c � 0, is an integral curve.

Eliminating c yields

x � t ÿ t

4

� �
� 2

t

4

� �2

; or x � ÿ t 2

8
:

(See Fig. 1.9.) m
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1.2.3 DIFFERENTIAL EQUATIONS OF HIGHER ORDERS
Equations of the Form x�n� � f �t�
Consider equations of the form

x �n� � f �t �: �1:101�
After n-fold integration, the general solution is

x �
�
� � �
�

f �t �dt � � �dt � c1

tnÿ1

�n ÿ 1�!� c2

�t ÿ t0�nÿ2

�n ÿ 2�! � � � � � cnÿ1t � cn:

�1:102�
It is possible to prove by induction that the general solution of Eq. (1.101)

could be written in the form

x � 1

�n ÿ 1�!
�t

t0

�t ÿ s�nÿ1f �s�ds � c1

�t ÿ t0�nÿ1

�n ÿ 1�! � c2

�t ÿ t0�nÿ2

�n ÿ 2�! � � � � � cn:

�1:103�

EXAMPLE 1.28 Find the complete integral of the equation

y 00 � k�l ÿ x �; �k; l � constants�
and a particular solution satisfying the initial conditions y�0� � 0, y 0�0� � 0.

m

Solution

Integrating the equation gives y 0 � k

�x

0

�l ÿ x �dx � c1 � k lx ÿ x 2

2

� �
� c1;

y � k

�x

0

lx ÿ x 2

2

� �
dx � c1x � c2; y � k l

x 2

2
ÿ x 3

6

� �
� c1x � c2, the

complete integral. From the initial conditions, we ®nd that c1 � 0, c2 � 0,

Figure 1.9
The envelope

of family
x � tc � 2c2.

1. Differential Equations 759

D
if

fe
re

n
ti

al
Eq

u
at

io
n
s



and y � k

2
l
x2

2
ÿ x3

6

� �
is the particular solution that satis®es the initial

conditions.

APPLICATION

1.12
A cantilevered beam ®xed at the extremity O is subjected to the action of a

concentrated vertical force P applied to the end L of the beam, at a distance l

from O (Fig. 1.10). The weight of the beam is ignored. Let us consider a cross

section at the point N �x �. The bending moment relative to section N is equal

to M �x � � �l ÿ x �P . The differential equation of the bent axis of a beam is

y 00

�1� y 02�3=2 �
M �x �

EJ
;

where E is the modulus of elasticity and J is the moment of inertia of the

cross-sectional area of the beam, relative to the horizontal line passing

through the center of gravity of the cross-sectional area, and R �
�1� y 02�3=2=y 00 is the curvature radius of the bent beam axis. Assuming that

the deformations are small and that the tangents to the bent axis form a small

angle with the x -axis, the square of the small quantity y 02 can be ignored and

the differential equation of the bent beam will have the form

y 00 � P

EJ
�l ÿ x �:

The initial conditions are y�0� � 0, y 0�0� � 0. The solution for this problem is

(see Example 1.28)

y � P

2EJ
lx 2 ÿ x 3

3

� �
:

Figure 1.10
A cantilevered
beam ®xed at

point O and
subjected to the

action of a
concentrated
vertical force

applied to
point L.
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Particularly, the de¯ection h at the extremity of the beam is

h � y�l � � Pl 3

3EJ
: m

Equations of the Form F�t; x�n�� � 0
Consider equations of the form

F �t ; x �n�� � 0: �1:104�
(a) Equation (1.104) can be solved for the second argument x�n� � f �t�

and it is found Eq. (1.101).

(b) The equation is not solvable for x�n�, but allows expressions for t and

x�n� in terms of some parameter p:

t � j� p�; x �n� � c� p�:
Then,

dx �nÿ1� � x �n�dt � c� p�j0� p�dp;

x �nÿ1� �
�
c� p�j0� p�dp � c1 � c1� p; c1�;

and similarly,

dx �nÿ2� � x �nÿ1�dt � c1�p�j0� p�dp

x �nÿ2� �
�
c1� p�j0� p�dp � c2 � c2� p; c2�

Finally, the general solution in parametrical form is

x � cn� p; c1; c2; . . . ; cn�
t � j� p�:

�
�1:105�

EXAMPLE 1.29 Solve the equation t ÿ ex 00 ÿ �x 00�2 � 0. m

Solution

Choosing x 00 � p, then t � ep � p2, dt � �e p � 2p�dp; dx 0 � x 00 dt �
p�e p � 2p�dp ) x 0 � � � pe p � 2p2�dp � c1 or x 0 � pe p ÿ e p � 2

3 p3 � c1;

dx � x 0dt � � pt p ÿ e p � 2
3 p2 � c1��e p � 2p�dp and x � � � pe p ÿ e p � 2

3 p3�
c1��e p � 2p�dp � c2.

Integrating,

x � 1
2 e2p p ÿ 3

2

ÿ �� ep 2
3 p3 ÿ 2p � 8

3� c1

� �
� 4

15 p5 � c1p2 � c2

t � e p � p2:

(

Equations of the Form F�t; x�k�; x�k�1�; . . . ; x�n�� � 0
Consider an equation of the form

F �t ; x �k�; x �k�1�; . . . ; x �n�� � 0: �1:106�
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In this case the order of the equation may be reduced to n ÿ k by changing

the variables x �k� � y . Equation (1.105) becomes F �t ; y; y 0; . . . ; y �nÿk�� � 0.

Using this equation we ®nd y � f �t ; c1; c2; . . . ; cnÿk �, and x is found from

x �k� � f �t ; c1; c2; . . . ; cnÿk � by k-fold integration.

EXAMPLE 1.30 Find the solution of the equation tx 000 ÿ x 00 � 1ÿ 2��
t
p

� � �����
x 00
p

, satisfying the

initial condition x �1� � x 0�1� � x 00�1� � 0. m

Solution

If we denote x 00 � y , the Bernoulli's equation is ty 0 ÿ y � 1ÿ 2��
t
p

� � ���
y
p

with

the general solution (see Example 1.16) y � c
��
t
p � 1��

t
p ÿ 1

� �2

. Replacing y

by x 00: x 00 � c
��
t
p � 1��

t
p ÿ 1

� �2

. From the initial condition x 00�1� � 0, we

obtain c � 0; hence, x 00 � 1

t
ÿ 2��

t
p � 1; x 0 � ln t ÿ 4

��
t
p � t � c1; x 0�1� � 0

) c1 � 3; hence, x 0 � ln t ÿ 4
��
t
p � t � 3, and then x �t � � t ln t ÿ

1ÿ 8

3
t 3=2 � t 2

2
� 3t � c2; x �1� � 0) c2 �

1

6
. The solution for the given

problem is

x �t � � t ln t ÿ 8

3
t 3=2 � t 2

2
� 3t ÿ 5

6
:

Equations of the Form F�x; x0; x00; . . . ; x�n�� � 0
Consider equations of the form

F �x ; x 0; x 00; . . . ; x �n�� � 0: �1:107�

The substitution x 0 � y makes it possible to reduce the order of the

equation. In this case y is regarded as a new unknown function of x . All

the derivatives x 0; x 00; . . . ; x �n� are expressed in terms of derivatives of the

new unknown function y with respect to

x ; x 0 � dx

dt
� y

x 00 � dy

dt
� dy

dx

dx

dt

� �
� y

dy

dx

x 000 � d

dt
y

dy

dx

� �
� d

dx
y

dy

dx

� �
dx

dt
� y y

d2y

dx 2
�

�
dy

dx

� �2
#
; etc:

Substituting these expressions for x 0; x 00; . . . ; x �n� in the equation yields a

differential equation of order �n ÿ 1�.
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EXAMPLE 1.31 Escape-Velocity Problem

Determine the smallest velocity with which a body must be thrown

vertically upward so that it will not return to the earth. Air resistance is

neglected (see Eq. 1.301). m

Solution

Denote the mass of the earth by M and the mass of the body by m. By

Newton's law of gravitation, the force of attraction f acting on the body m is

f � ÿk
Mm

r 2
, where r is the distance between the center of the earth and

center of gravity of the body, and k is the gravitational constant. The

differential equation of the motion for the body is

m
d 2r

dt 2
� ÿk

Mm

r 2
or;

d2r

dt 2
� ÿk

M

r 2
: �1:108�

The minus sign indicates a negative acceleration. The differential Eq. (1.108)

is an equation of type Eq. (1.107). This will be solved for the initial conditions

r �0� � R;
dr

dt
�0� � v0: �1:109�

Here, R is the radius of the earth, and v0 is the launching velocity. Let us

make the following notations:
dr

dt
� v,

d2r

dt 2
� dv

dt
� dv

dr

�
dr

dt

�
� v

dv

dr
, where v

is the velocity of motion. Substituting in Eq. (1.i08) gives v
dv

dr
� ÿk

M

r 2
.

Separating variables, we ®nd vdv � ÿkM
dr

r 2
. Integrating this equation

yields
v2

2
� kM

1

r
� c1. From conditions (1.109), c1 is found:

v2
0

2
� kM

1

R

� �
� c1

or

c1 � ÿ
kM

R
� v2

0

2
;

and

v2

2
� kM

1

r
� v2

0

2
ÿ kM

R

� �
: �1:110�

The body should move so that the velocity is always positive; hence,

v2=2 > 0. Since for a boundless increase of r the quantity kM =R becomes

arbitrarily small, the condition v2=2 > 0 will be ful®lled for any r only for the

case

v2
0

2
ÿ kM

R
� 0 or v0 �

����������
2kM

k

r
:

Hence, the minimal velocity is determined by the equation

v0 �
����������
2kM

R

r
; �1:111�
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where k � 6:66�10ÿ8� cm3=(g s2), R � 63�107� cm. At the Earth's surface, for

r � R , the acceleration of gravity is g � 981 cm=s2. For this reason, Eq.

(1.108) yields g � k
M

R2
, or M � gR2

k
. Substituting this value of M into Eq.

(1.111), we ®nd

v0 �
��������
2gR

p �
�������������������������������
2�981��63��107�

p
� 11:2�105� cm=s � 11:2 km=s:

Equations of the Form F�x; x00� � 0
Consider equations of the form

F �x ; x 00� � 0: �1:112�

This equation is a particular case of Eq. (1.107), frequently encountered in

applications. The order can be reduced with

dx

dt
� y;

d 2x

dt2
� dy

dt
� dy

dx

dx

dt

� �
� y

dy

dx
:

If Eq. (1.112) is readily solvable for the second argument x 00 � f �x �, then

multiplying this equation by 2x 0dt � 2dx yields d �x 0�2 � 2f �x �dx , and

dx

dt
� �

��������������������������������
2

�
f �x �dx � c1

s
;� dx��������������������������������

2
�

f �x �dx � c1

q � dt

t � c2 � �
�

dx��������������������������������
2
�

f �x �dx � c1

q :

Equation (1.112) may be replaced by its parametric representation x � j�p�,
x 00 � c�p�; then dx 0 � x 00dt and dx � x 0dt yields x 0dx 0 � x 00dx or 1

2 d �x 0�2 �
c�p�j0�p�dp )�x 0�2� 2

�
c�p�j0�p�dp � c1 ) x 0 ��

������������������������������������������
2
�
c�p�j0�p�dp � c1

q
,

and from dx � x 0dt we ®nd dt and then t ,

dt � dx

x 0
� j0� p�dp

�
�������������������������������������������
2
�
c� p�j0� p�dp � c1

q
t � �

�
j0� p�dp�������������������������������������������

2
�
c� p�j0� p�dp � c1

q � c2;

�1:113�

and x � j�p�. Equations (1.113) de®ne in parametrical form a family of

integral curves.

APPLICATION

1.13
A chain of length l meters slides off from a table. At the initial instant of

motion, d meters of chain hang from the table (Fig. 1.11). Study how long it

will take for the whole chain to slide off. (Suppose there is no friction.) m
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Solution

If the extremity B decrease with distance x , the differential equation of

motion is gl
d2x

dt 2
� gr�x � d �, where r is the linear density. This equation is

of the form
d2x

dt 2
� g

l
�x � d �. Let us make the following notation:

dx

dt
� v;

d2x

dt2
� dv

dt
� dv

dx

dx

dt

� �
� v

dv

dx
:

Then, v
dv

dx
� g

l
�x � d �. Separating the variables and integrating yields

vdv � g

l
�x � d �dx , v2 � g

l
�x 2 � 2xd � � c1. From the initial conditions

t � 0, x �0� � 0, v�0� � 0, we ®nd c1 � 0, and then

v2 � g

l
�x 2 � 2xd � or

dx

dt
� v �

���
g

l

r
�
�������������������
x 2 � 2xd

p
�:

Separating the variables again and integrating gives

dx�������������������
x 2 � 2xd
p �

���
g

l

r
dt )

�
dx�������������������

x 2 � 2xd
p �

���
g

l

r
t � c2

or ln�x � d � �������������������
x2 � 2xd
p � �

���
g

l

r
t � c2. From x �0� � 0, we obtain c2 � ln d ;

hence,

t �
���
l

g

s !
ln

x � d � �������������������
x 2 � 2xd
p

d
:

For x � l ÿ d,

T �
���
l

g

s !
ln

l � ���������������
l2 ÿ d2
p

d
:

The Equation F�t; x; x0; x00; . . . ; x�n�� � 0; Homogeneous in the Variables
x; x; . . . ; x�n�

For such an equation,

F �t ; x ; x 0; x 00; . . . ; x �n�� � 0; �1:114�

Figure 1.11
A chain that
slides off a

table.
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the following relation can be established:

F �t ; kx ; kx 0; . . . ; kx �n�� � kmF �t ; x ; x 0; . . . ; x �n��: �1:115�
The order of such an equation can be reduced using the substitution

x � e

�
ydt ; �1:116�

where y is a new unknown function of t . Differentiating gives

x 0 � ye

�
ydt

x 00 � �y2 � y 0�e
�

ydt

� � �
x �k� � F�y; y 0; . . . ; y �kÿ1��e

�
ydx :

8>>><>>>:
Substituting into the initial equation and observing that the factor e

m
�

ydt may

be taken outside the sign of function F gives f �t ; y; y 0; . . . ; y �nÿ1�� � 0.

EXAMPLE 1.32 Solve the equation txx 00 ÿ tx 02 ÿ xx 0 � 0. m

Solution

F �t ; x ; x 0; x 00� � txx 00 ÿ tx 02 ÿ xx 0; F �t ; kx ; kx 0; kx 00� � k2F �t ; x ; x 0; x 00�:
The equation is homogeneous in x , x 0, x 00. If we use the substitution

x � e

�
ydt ; x 0 � ye

�
ydt ; y 00 � �y2 � y 0�e

�
ydt ;

then

e
2
�

ydt �ty2 � ty 0 ÿ ty2 ÿ y � � 0; or ty 0 ÿ y � 0:

The solution of this last equation is y � c1t , and the general solution of the

given equation is

x � e

�
c1tdt � ec1�t2=2��ln c2 ; or x � c2ec1�t2=2�:

1.3 On the Existence, Uniqueness, Continuous Dependence
on a Parameter, and Differentiability of Solutions of
Differential Equations

1.3.1 THEOREMS OF EXISTENCE AND UNIQUENESS OF THE SOLUTION

FOR THE EQUATION
dy

dx
� f�x; y�

THEOREM 1.1 On the Existence and Uniqueness of the Solution

If in the equation

dy

dx
� f �x ; y�; �1:117�

function f �x ; y� is continuous in the rectangle D: x0 ÿ a � x � x0 � a,

y0 ÿ b � y � y0 � b and satis®es, in D, the Lipschitz condition

jf �x ; y1� ÿ f �x ; y2�j � Ljy1 ÿ y2j; �1:118�

766 Appendix: Differential Equations and Systems of Differential Equations

D
ifferen

tial
Eq

u
atio

n
s



where L is a constant, then exists a unique solution y � y�x �,
x 2 �x0 ÿ h; x0 � h� of Eq. (1.117) that satis®es the condition y�x0� � x0, where

h < min a;
b

M

� �
; M � max j f �x ; y�j in D: m �1:119�

Remark 1.14

The existence of a solution for Eq. (1.117) can be proved only if we assume

the continuity of function f �x ; y�.
Remark 1.15

The existence and uniqueness of solution y � y�x � on the interval

(x0 ÿ h; x0 � h) can be extended over an interval of length h1 if the

conditions of the existence and uniqueness theorem are ful®lled in the

neighborhood of the new initial point �x0 � h; y�x0 � h��, by repeating the

reasoning.

Remark 1.16

The existence of bounded derivative @f =@y in domain D is suf®cient for a

function f �x ; y� to satisfy a Lipschitz condition in D and

L � max
D

@f

@y

���� ����:
Remark 1.17

The solution of Eq. (1.117) with y�x0� � y0 can be found using the method of

successive approximations as follows. First, construct a sequence fyn�x �g of

functions de®ned by the recurrence relations

yn�x � � y0 �
�x

x0

f �t ; ynÿ1�t ��dt ; n � 1; 2; . . . : �1:120�

The sequence fyn�x �g converges to an exact solution of Eq. (1.117), satisfying

the condition y�x0� � x0 in some interval (x0 ÿ h; x0 � h). The estimative

error resulting from the replacement of the exact solution y�x � by the nth

approximation yn�x � is given by the inequality

jy�x � ÿ yn�x �j �
MLn

�n � 1�! hn�1: �1:121�

Remark 1.18

In a quite analogous way it is possible to prove the theorem of the existence

and uniqueness of the solution y1�x �; y2�x �; . . . ; yn�x � for the system of

equations

dyi

dx
� fi �x ; y1; y2; . . . ; yn�; yi �x0� � yi0

; �i � 1; 2; . . . ;n�; �1:122�

or

yi � yi0
�
�x

x0

fi �t ; y1�t �; y2�t �; . . . ; yn�t ��dt ; �i � 1; 2; . . . ;n�: �1:123�

1. Differential Equations 767

D
if

fe
re

n
ti

al
Eq

u
at

io
n
s



THEOREM 1.2 Consider that in the region D de®ned by the inequalities x0 ÿ a � x0 � a,

yi0
ÿ bi � yi � yi0

� bi �i � 1; 2; . . . ;n�, the right-hand side of Eq. (1.122)

satis®es the following conditions:

1. All functions fi�x; y1; y2; . . . ; yn�; �i � 1; 2; . . . ; n� are continuous and

hence also bounded, j fij � M ,

2. All functions fi�x; y1; y2; . . . ; yn�; �i � 1; 2; . . . ; n� satisfy the Lipschitz

condition

j fi �x ; y1; y2; . . . ; yn� ÿ fi �x ; z1; z2; . . . ; zn�j � N
Pn
i�1
jyi ÿ zi j:

Then, the system of equations (1.122) has the unique solution

y1; y2; . . . ; yn. The functions y1; y2; . . . ; yn are de®ned on the interval

x0 ÿ h0 < x < x0 � h0, where

h0 � min a;
b1

M
; . . . ;

bn

M

� �
: m �1:124�

THEOREM 1.3 There exists a unique solution of an n-order differential equation

y �n� � f �x ; y 0; y 00; . . . ; y �nÿ1�� that satis®es the conditions y�x0� � y0, y 0�x0� �
y 00; . . . ; y �nÿ1��x0� � y

�nÿ1�
n , if in the neighborhood of the initial values

(x0; y0; y
0
0; . . . ; y �nÿ1�

0 ) function f is a continuous function in all its arguments

and satis®es the Lipschitz condition with respect to all arguments from the

second onwards. m

THEOREM 1.4 On the Continuous Dependence of a Solution on a Parameter and on the

Initial Values

(a) If the right side of the differential equation

dx

dy
� f �x ; y; m� �1:125�

is continuous with respect to m for m0 � m � m1 and satis®es the

conditions of the theorem of existence and uniqueness, and the

Lipschitz constant L does not depend on m, then the solution y�x; m�
of this equation that satis®es condition y�x0� � y0 depends continu-

ously on m.

(b) If y � y�x; x0; y0� is the solution of Eq. (1.117) satisfying the condition

y�x0� � y0, then this function depends continuously on the initial

values x0 and y0. m

THEOREM 1.5 On the Differentiability of Solutions

If in the neighborhood of a point (x0; y0), a function f �x ; y� has

continuous derivatives until k order inclusive, then solution y�x � of

Eq. (1.117) that satis®es the initial condition y�x0� � y0 has continuous

derivatives until (k � 1) order inclusive, in the neighborhood of x0. m
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EXAMPLE 1.33 Find the ®rst three successive approximations y1, y2, y3 for the solution of the

equation dy=dx � 1� xy2, y�0� � 0, in a rectangle D: ÿ 1
2 � x � 1

2,

ÿ 1
2 � y � 1

2. m

Solution

We can write that f �x ; y� � 1� xy2, maxD j f �x ; y�j � 1� 1
8 � 9

8, that is,

M � 9
8; h � min�a; b=M � � min�12 ; 4

9� � 4
9, @f =@y � 2xy ) maxD j@f =@yj � 1

2,

that is, L � 1
2. If we choose y0�x � � 0, then

y1 �
�x

0

f �x ; y0�dx �
�x

0

dx � x ;

y2 �
�x

0

f �x ; y1�dx �
�x

0

�1� x 3�dx � x � x 4

4
;

y3 �
�x

0

f �x ; y2�dx �
�1

0

1� x x � x 4

4

� �2
" #

dx � x � x 3

3
� x 7

14
� x 10

160
:

The absolute error in the third approximation does not exceed the value

jy ÿ y3j �
ML3

4!
h4 � 9

8

1

2

� �3
4

9

� �4
1

4!
� 2:286

104
:

EXAMPLE 1.34 Find the ®rst three successive approximations for solution of the system

y 0 � z ; y�0� � 0

z 0 � ÿy2; z �0� � 1
2 ;

�

D :

ÿ1 � x � 1

ÿ1 � y � 1

ÿ1 � z � 1:

8><>: m

Solution

The functions f �x ; y; z � � z and g�x ; y; z � � ÿy2 are continuous in D .

maxD j f �x ; y; z �j � maxD jz j � 1; maxD jg�x ; y; z �j � maxD j ÿy2j � 1, that

is, M � 1,

@f

@y
� 0) max

@f

@y

���� ���� � 0;

@f

@z
� 1) max

@f

@z

���� ���� � 1) function f satisfies the Lipschitz condition with

Lf � 1;

@g

@y
� ÿ2y ) @g

@y

���� ���� � jÿ2yj � 2;

@g

@z
� 0) max

@g

@y

���� ���� � 0) function g satisfies the Lipschitz condition with

Lg � 2:
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Then,

h � min a;
b1

M
;
b2

M

� �
� 1:

There is a unique solution y � y�x �, z � z �x �, x 2 �ÿ1; 1� of the initial

system. Writing y0�x � � 0, z0�x � � 1
2, then yields

yn�x � � y0 �
�x

0

f �t ; ynÿ1�t �; znÿ1�t ��dt �
�x

0

znÿ1�t �dt

zn�x � � z0 �
�x

0

g�t ; ynÿ1�t �; znÿ1�t ��dt � 1

2
�
�x

0

�ÿy2
nÿ1�t ��dt

y1�x � �
�x

0

z0�t �dt �
�x

0

1

2
dt � x

2
; z1�x � �

1

2
�
�x

0

0dt � 1

2

y2�x � �
�x

0

z1�t �dt �
�x

0

1

2
dt � x

2
; z2�x � �

1

2
�
�x

0

ÿ t 2

4

� �
dt � 1

2
ÿ x 3

12

y3�x � �
�x

0

z2�t �dt �
�x

0

1

2
ÿ t 3

12

� �
dt � x

2
ÿ x 4

48
; z3�x � �

1

2
�
�x

0

ÿ t 2

4

� �
dt

� 1

2
ÿ x 3

12
:

1.3.2 EXISTENCE AND UNIQUENESS THEOREM FOR DIFFERENTIAL
EQUATIONS NOT SOLVED FOR DERIVATIVE

In this section, let us consider equations of the form

F �x ; y; y 0� � 0: �1:126�

It is obvious that generally, for such equations, not one but several integral

curves pass through some point (x0; y0), since as a rule, when solving the

equation F �x ; y; y 0� � 0 for y 0, we ®nd several (not one) real values

y 0 � fi �x ; y�; �i � 1; 2; . . .�, and if each of the equations y 0 � fi �x ; y� in the

neighborhood of point (x0; y0) satis®es the conditions of the theorem of

existence and uniqueness, then for each one of these equations there will be

a unique solution satisfying the condition y�x0� � y0.

THEOREM 1.6 There is a unique solution y � y�x �, x0 ÿ h � x � x0 � h (with h0 suf®-

ciently small) of Eq. (1.126) that satis®es the condition y�x0� � y0, for which

y 0�x0� � y 00, where y 00 is one of the real roots of the equation F �x0; y0; y
0� � 0

if in a closed neighborhood of the point (x0; y0; y
0), the function F �x ; y; y 0�

satis®es the following conditions:

1. F�x; y; y0� is continuous with respect to all arguments.

2. The derivative @F=@y0 exists and is nonzero in (x0; y0; y0�.
3. There exists the derivative @F=@y bounded in absolute value

@F=@y
�� ��. m
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Remark 1.19

The uniqueness property for the solution of equation F �x ; y; y 0� � 0, which

satis®es condition y�x0� � y0, is usually understood in the sense that not

more than one integral curve of equation F �x ; y; y 0� � 0 passes through a

given point (x0; y0) in a given direction.

EXAMPLE 1.35 Let us consider the problem xy 02 ÿ 2yy 0 ÿ x � 0; y�1� � 0.

(a) Study the application of Theorem 1.6.

(b) Solve the problem. m

Solution

(a) The function F �x ; y; y 0� � xy 02 ÿ 2yy 0 ÿ x is continuous with respect to

all arguments and x0 � 1, y0 � 0. F �x0; y0; y
0� � 0) F �1; 0; y 0� � 0, that is,

y 02 ÿ 1 � 0) y 001 � 1 and y 002 � ÿ1. @F =@y � 2xy 0 ÿ 2y ; @F =@y 0�1; 0; 1� �
2 6� 0; @F =@y 0�1; 0;ÿ1� � ÿ2 6� 0. Hence, the derivative exists and is non-

zero. @F =@y � ÿ2y 0; @F =@y
�� �� � jÿ2y 0j � M1. The considered problem has a

unique solution

y � y�x �; 1ÿ h � x � 1� h:

(b) Solving the equation for y 0 (see Example 1.20), we obtain two equations

y 0 � y � ����������������
y2 � x 2

p
x

; y 0 � y ÿ ����������������
y2 � x 2

p
x

with the solutions y � 1
2 �cx2 ÿ �1=c�� and y � 1

2 �c ÿ �x 2=c��. For y 001 � 1,

x0 � 1, y0 � 0, we obtain 0 � 1
2 �c ÿ �1=c�� ) c � 1 and y � 1

2 �x2 ÿ 1�.
Setting y 002 � ÿ1, x0 � 1, y0 � 0 yields

y � 1
2 �1ÿ x 2�:

EXAMPLE 1.36 For the equation 2y 02 � xy 0 ÿ y � 0, y�2� � ÿ 1
2:

(a) Study the application of Theorem 1.6.

(b) Solve the problem. m

Solution

(a) The function F �x ; y; y 0� � 2y 02 � xy 0 ÿ y is continuous and @F =@y �
ÿ1) @F =@y

�� �� � 1 is bounded. @F =@y 0 � 4y 0 � x , x0 � 2, y0 � ÿ 1
2,

F �x0; y0; y 0� � 0) 2y 02 � 2y 0 � 1
2 � 0) y 00 � ÿ 1

2. This yields @F =@y 0�x0; y0;

y 0� � @F =@y 0�2;ÿ 1
2 ;ÿ 1

2� � 0. The derivative @F =@y 0 exists, but is zero. The

uniqueness condition is not ful®lled.

(b) The equation 2y 02 � xy 0 ÿ y � 0 has the general solution

y � cx � 2c2 and the singular solution y � ÿ�x 2=8�. Condition y�2� � ÿ 1
2
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gives ÿ 1
2 � 2c � 2c2 ) 4c2 � 4c � 1 � 0) c � ÿ 1

2; y � ÿ 1
2 x � 1

2 is a solu-

tion, and y � ÿ�x 2=8� is another solution.

1.3.3 SINGULAR SOLUTIONS OF DIFFERENTIAL EQUATIONS
The set of points (x ; y) at which the uniqueness of solutions for equation

F �x ; y; y 0� � 0 �1:127�

is violated is called a singular set. If the conditions (1) and (3) of Theorem 1.6

are ful®lled, then in the points of a singular set, the equations

F �x ; y; y 0� � 0 and
@F

@y
� 0 �1:128�

must be satis®ed simultaneously. Eliminating y 0 from these equations, we

®nd the equations

F�x ; y� � 0; �1:129�

which must be satis®ed by the points of the singular set. However, the

uniqueness of solution of Eq. (1.127) is not necessarily violated at every point

that satis®es Eq. (1.129), because the conditions of Theorem 1.6 are only

suf®cient for the uniqueness of solutions, but are not necessary, and hence

the violation of a condition of theorem does not imply the violation of

uniqueness. The curve determined by Eq. (1.129) is called a p-discriminant

curve (PDC), since Eqs. (1.128) are most frequently written in the form

F �x ; y; p� � 0 and @F =@p � 0. If a branch y � j�x � of the curve F�x ; y� � 0

belongs to the singular set and at the same time is an integral curve, it is

called a singular integral curve, and the function y � j�x � is called a

singular solution. Thus, in order to ®nd the singular solution of Eq. (1.127)

it is necessary to ®nd the PDC de®ned by the equations F �x ; y; p� � 0,

@F =@p � 0, to ®nd out [by direct substitutions into Eq. (1.127)] whether there

are integral curves among the branches of the PDC and, if there are such

curves, to verify whether uniqueness is violated in the points of these curves

or not. If the uniqueness is violated, then such a branch of the PDC is a

singular integral curve. The envelope of the family of curves

F�x ; y; c� � 0 �1:130�

is the curve that in each of its points is tangent to some curve of the family

(1.130), and each segment is tangent to an in®nite set of curves of this family.

If Eq. (1.130) is the general integral of Eq. (1.127), then the envelope of the

family (1.130) (if it exists) will be a singular integral curve of Eq. (1.127). The
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envelope forms a part of the c-discriminant curves (CDCs) determined by the

system

F�x ; y; c� � 0;
@F
@c
� 0: �1:131�

For some branch of a CDC de®ned by an envelope, it is suf®cient to satisfy on

it the following:

1. There exist the bounded partial derivatives

@F
@x

���� ���� � N1;
@F
@y

���� ���� � N2; �1:132�

where N1, N2 are constants.

2. One of the following conditions is satis®ed:

@F
@x

���� ���� 6� 0 or
@F
@y

���� ���� 6� 0: �1:133�

Remark 1.20

Note that these conditions are only suf®cient; thus, curves involving a

violation of one of conditions (1) or (2) can also be envelopes.

EXAMPLE 1.37 Find the singular solutions of the differential equation 2y 02 � xy 0 ÿ y � 0. m

Solution

The following p-discriminant curves are found:

F �x ; y; p� � 2p2 � xp ÿ y � 0

@F

@p
� 4p � x � 0) p � ÿ x

4
:

8><>:
Substituting p � ÿ�x=4� into the ®rst equation yields y � ÿ�x2=8�. Substitut-

ing y � ÿ�x2=8� and y 0 � ÿ�x=4� in the given equation 2y 02 � xy 0 ÿ y � 0,

we observe that y � ÿ�x 2=8� is a solution of this equation. Let us test if the

solution y � ÿ�x 2=8� is singular.

Version I
The general solution is

y � cx � 2c2:

Let us write the conditions for the tangency of the curves y � y1�x � and

y � y2�x � in the point with abscissa x � x0: y1�x0� � y2�x0�, y 01�x0� � y 02�x0�.
The ®rst equation shows the ordinate coincidence of curves and, second, the

slope coincidence of tangents to those curves at the point with abscissa

x � x0. Setting y1�x � � ÿ�x 2=8�, y2�x � � cx � 2c2, then ÿ�x 2
0 =8� �

cx0 � 2c2, ÿ�x0=4� � c. Substituting c � ÿ�x0=4� into the ®rst equation, we
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®nd that ÿ�x0=8� � ÿ�x0=8�, that is, for c � ÿ�x0=4� the ®rst equation is

identically satis®ed, since x0 is the abscissa of an arbitrary point. It can be

concluded that at each of its points, the curve y � ÿ�x2=8� is touched by

some other curves of the family y � cx � 2c2 (see Example 1.27). Hence,

y � ÿ�x 2=8� is a singular solution for the given equation.

Version II
The c-discriminant curves are

F�x ; y; c� � cx � 2c2 ÿ y � 0
@F
@c
�x ; y; c� � x � 4c � 0; hence c � ÿ x

4
:

(

Substituting c � ÿ�x=4� in the ®rst equation yields y � ÿ�x 2=8�. This is the c-

discriminant curve. Making a direct substitution, we observe that a solution

for the given equation is found. Then, @F=@y � ÿ1 6� 0, so that one of the

conditions (1.133) is ful®lled. The curve y � ÿ�x 2=8� is the envelope of the

family y � cx � 2c2; hence y � ÿ�x 2=8� is a singular solution for the

equation 2y 02 � xy 0 ÿ y � 0.

1.4 Linear Differential Equations

1.4.1 HOMOGENEOUS LINEAR EQUATIONS: DEFINITIONS AND GENERAL
PROPERTIES

DEFINITION 1.1 An n-order differential equation is called linear if it is of the ®rst degree in the

unknown function y and its derivatives y 0; y 0; . . . ; y �n�, or is of the form

a0y �n� � a1y �nÿ1� � � � � � any � f �x �; �1:134�
where a0;a1; . . . ; an and f are given continuous functions of x and a0 6� 0

(assume a0 � 1) for all the values of x in the domain in which Eq. (1.134) is

considered. The function f �x � is called the right-hand member of the

equation. If f �x � 6� 0, then the equation is called a nonhomogeneous

linear equation. But if f �x � � 0, then the equation has the form

y �n� � a1y �nÿ1� � � � � � any � 0 �1:135�
and is called a homogeneous linear equation. m

Remark 1.21

If the coef®cients ai�x � are continuous on the interval a � x � b, then, in the

neighborhood of any initial values

y�x0� � y0; y 0�x0� � y 00; . . . ; y �nÿ1��x0� � y
�nÿ1�
0 ; �1:136�

where x0 2 �a; b�, the conditions of the theorem of existence and uniqueness

are satis®ed.
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DEFINITION 1.2 The functions y1�x �; y2�x �; . . . ; yn�x � are said to be linearly dependent in the

interval (a; b) if there exist constants a1; a2; . . . ; an , not all equal to zero, such

that

a1y1�x � � a2y2�x � � � � � � anyn�x � � 0

is valid. If, however, the identity holds only for a1 � a2 � � � � � an � 0, then

the functions y1�x �; y2�x �; . . . ; yn�x � are said to be linearly independent in

the interval (a; b). m

EXAMPLE 1.38 Show that the system of functions

1; x ; x 2; . . . ; xn �1:137�
is linearly independent in the interval (ÿ1;1). m

Solution

The identity a01� a1x � � � � � anxn � 0 may hold only for a0 � a1 � � � � �
an � 0.

EXAMPLE 1.39 Show that the system of functions

ek1x ; ek2x ; . . . ; eknx ; �1:138�
where k1; k2; . . . ; kn are different in pairs, is linearly independent in the

interval ÿ1 � x � 1. m

Solution

Suppose the contrary, that is, that the given system is linearly dependent in

this interval. Then, a1ek1x � a2ek2x � � � � � aneknx � 0 on the interval

(ÿ1;1), and at least one of the members a1; a2; . . . ; an is nonzero, for

example an 6� 0. Dividing this identity by ek1x yields a1 � a2e �k2ÿk1�x �
a3e �k3ÿk1�x � � � � � ane �knÿk1�x � 0. Differentiating this identity gives

a2�k2 ÿ k1�e �k2ÿk1�x � a3�k3 ÿ k1�e�k3ÿk1�x � � � � � an�kn ÿ k1�e�knÿk1�x � 0:

After dividing this identity by e �k2ÿk1�x , we ®nd

a2�k2 ÿ k1� � a3�k3 ÿ k1�e �k3ÿk2�x � � � � � an�kn ÿ k1�e �knÿk2�x � 0:

Differentiating yields

a3�k3 ÿ k1��k3 ÿ k2�e�k3ÿk2�x � � � � � an�kn ÿ k1��kn ÿ k2�e �knÿk2�x � 0;

and then

an�kn ÿ k1��kn ÿ k2� � � � �kn ÿ knÿ1�e�knÿknÿ1�x � 0;

which is false, since an 6� 0; kn 6� k1; kn 6� k2; . . . ; kn 6� knÿ1 according to the

condition, and e �knÿknÿ1�x 6� 0.

1. Differential Equations 775

D
if

fe
re

n
ti

al
Eq

u
at

io
n
s



EXAMPLE 1.40 Prove that the system of functions

eax sin bx ; eax cos bx ; b 6� 0 �1:139�
is linearly independent in the interval (ÿ1;1). m

Solution

Consider the identity a1eax sin bx � a2eax cos bx � 0. If we divide by

eax 6� 0, then a1 sin bx � a2 cos bx � 0. Then we substitute in this identity

the value of x � 0 to get a1 � 0 and hence a1 sin bx � 0; but the function

sin bx is not identically equal to zero, so a1 � 0. The initial identity holds only

when a1 � a2 � 0, that is, the given functions are linearly independent in the

interval ÿ1 < x <1.

DEFINITION 1.3 Consider the functions y1�x �; y2�x �; . . . ; yn�x � that have derivatives of order

�n ÿ 1�. The determinant

W �y1; y2; . . . ; yn � �

y1�x � y2�x � � � � � � � yn�x �
y 01�x � y 02�x � � � � � � � y 0n�x �
� � � � � � � � � � � � � � �

y
�nÿ1�
1 �x � y

�nÿ1�
2 �x � � � � � � � y

�nÿ1�
n �x �

���������

��������� �1:140�

is called the Wronskian determinant for these functions. Let y1�x �;
y2�x �; . . . ; yn�x � be a system of functions given in the interval [a; b]. m

DEFINITION 1.4 Let us set

hyi ; yj i �
�b

a

yi �x �yj �x �dx ; i; j � 1; 2; . . . ;n: �1:141�

The determinant

G�y1; y2; . . . ; yn� �

hy1; y1i hy1; y2i � � � � � � hy1; yni
hy2; y1i hy2; y2i � � � � � � hy2; yni
� � � � � � � � � � � � � � �
hyn; y1i hyn; y2i � � � � � � hyn; yni

���������

��������� �1:142�

is called the Grammian of the system of functions fyk �x �g. m

THEOREM 1.7 If a system of functions y1�x �; y2�x �; . . . ; yn�x � is linearly dependent in the

interval [a; b], then its Wronskian is identically equal to zero in this

interval. m
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THEOREM 1.8 Liouville's Formula

Consider that y1�x �; y2�x �; . . . ; yn�x � are solutions of the homogeneous

linear Equations (1.135), and W �x � � W �y1�x �; y2�x �; . . . ; yn�x �� is the

Wronskian determinant. Then

W �x � � W �x0�e
ÿ
� x

x0
a1�x �dx

: �1:143�

Equation (1.143) is called Liouville's formula. m

THEOREM 1.9 If the Wronskian W �x � � W �y1�x �; y2�x �; . . . ; yn�x ��, formed for the solu-

tions y1; y2; . . . ; yn of the homogeneous linear Eqs. (1.135), is not zero for

some value x � x0 on the interval [a; b], where the coef®cients of the

equation are continuous, then it does not vanish for any value of x on that

interval. m

THEOREM 1.10 If the solutions y1; y2; . . . ; yn of Eq. (1.135) are linearly independent on an

interval [a; b], then the Wronskian W formed for these solutions does not

vanish at any point of the given interval. m

THEOREM 1.11 For a system of functions y1�x �; y2�x �; . . . ; yn�x � to be linearly dependent, it

is necessary and suf®cient that the Grammian be zero.

Let us write the homogeneous linear Eq. (1.135) as

L�y � � 0; �1:144�

where

L�y � � y �n� � a1�x �y �nÿ1� � � � � � an�x �y : �1:145�

Then L�y � will be termed a linear differential operator. m

THEOREM 1.12 The linear differential operator L has the following two basic properties:

1. L�cy� � cL�y�, c � constant.

2. L�y1 � y2� � L�y1� � L�y2�. m

Remark 1.22

The linearity and homogeneity of Eq. (1.135) are retained for any transfor-

mation of the independent variable x � j�t �, where j�t � is an arbitrary

n-times differentiable function, with j0�t � 6� 0; t 2 �a; b�.
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Remark 1.23

The linearity and homogeneity are also retained in a homogeneous linear

transformation of the unknown function y�x � � a�x �z �x �.

THEOREM 1.13 The totality of all solutions of Eq. (1.135) is an n-dimensional linear space. A

basis in such a space is a fundamental system of solutions, that is, any family

of n linearly independent solutions of Eq. (1.135). m

COROLLARY 1.1 (for Theorem 1.13)

The general solution for a � x � b of the homogeneous linear equation

(1.135) with the coef®cients ai �x �; �i � 1; 2; . . . ;n� continuous on the

interval a � x � b is the linear combination

y � Pn
i�1

ciyi �1:146�

of n linearly independent (on the same interval) partial solutions

yi �i � 1; 2; . . . ;n� with arbitrary constant coef®cients. m

THEOREM 1.14 If a homogeneous linear equation L�y � � 0 with real coef®cients ai�x � has a

complex solution y�x � � u�x � � iv�x �, then the real part of this solution u�x �
and its imaginary part v�x � are separately solutions of that homogeneous

equation. m

Remark 1.24

Knowing one nontrivial particular solution y1 of the homogeneous linear

Eq. (1.135), it is possible with the substitution

y � y1

�
udx ; u � y

y1

� �0
�1:147�

to reduce the order of the equation and retain its linearity and homogeneity.

Knowing k linearly independent (on the interval a � x � b) solutions

y1; y2; . . . ; yk of a homogeneous linear equation, it is possible to reduce

the order of the equation to (n ÿ k) on the same interval a � x � b.

Remark 1.25

If two equations have the form

y �n� � a1�x �y �nÿ1� � � � � � an�x �y � 0 �1:148�
y �n� � b1�x �y �nÿ1� � � � � � bn�x �y � 0; �1:149�

where the functions ai�x � and bi �x �; �i � 1; 2; . . . ;n� are continuous on the

interval a � x � b and have a common fundamental system of solutions,

y1; y2; . . . ; yn , then the equations coincide. This means that ai�x � � bi �x �,
�i � 1; 2; . . . ;n� on the interval a � x � b.
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Remark 1.26

Consider that the system of functions y1�x �; y2�x �; . . . ; yn�x �, with all deriva-

tives to the n-order inclusively, is linearly independent in the interval [a; b].

Then, the equation

y1�x � y2�x � � � � yn�x � y�x �
y 01�x � y 02�x � � � � y 0n�x � y 0�x �
� � � � � � � � � � � � � � �

y
�n�
1 �x � y

�n�
2 �x � � � � y

�n�
n �x � y �n��x �

���������

��������� � 0; �1:150�

with y�x � an unknown function, will be a linear differential equation for

which the functions y1�x �; y2�x �; . . . ; yn�x � are a fundamental system of

solutions. The coef®cient of y �n��x � in Eq. (1.150) is the Wronskian

W �y1; y2; . . . ; yn � of this system.

Remark 1.27

(a) If

a0�x � � a1�x � � � � � � an�x � � 0; �1:151�
then y1 � ex is a particular solution of the equation

a0�x �y �n� � a1�x �y �nÿ1� � � � � � an�x �y � 0: �1:152�
(b) If Pn

k�0

�ÿ1�kanÿk �x � � 0; �1:153�

then y1 � eÿx is a particular solution of Eq. (1.152).

(c) If all coef®cients a0�x�; a1�x�; . . . ; an�x� are polynomials, then the

equation can have a polynomial as a particular solution.

(d) If

anÿ1�x � � xan�x � � 0; �1:154�
then y1 � x is a particular solution of Eq. (1.152).

EXAMPLE 1.41 Solve the problem

xy 000 ÿ y 00 ÿ xy 0 � y � 0; y�2� � 0; y 0�2� � 1; y 00�2� � 2: m

Solution

Using Remark 1.27, we can ®nd the following:

(a) xÿ 1ÿ x� 1 � 0) y1 � ex is a particular solution.

(b) ÿxÿ 1� x� 1 � 0) y2 � eÿx is a particular solution.
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(c) ÿx� x�1� � 0) y3 � x is a particular solution. The Wronskian is

W �y1; y2; . . . ; yn� �
ex eÿx x
ex ÿeÿx 1
ex eÿx 0

������
������ � 2x 6� 0 for x 6� 0:

The system fex; eÿx; xg is a fundamental system of solutions on

(0;1). The general solution of the equation xy000 ÿ y00 ÿ xy0 � y � 0 is

y�x � � c1ex � c2eÿx � c3x :

Using the initial conditions yields

e2c1 � eÿ2c2 � 2c3 � 0

e2c1 ÿ eÿ2c2 � c3 � 1

e2c1 � eÿ2c2 � 2:

8><>:
The solution of this system is c1 � 2eÿ2, c2 � 0, c3 � ÿ1. Then, the

solution of the equation with the initial condition is

y�x � � 2eÿ2ex ÿ x :

EXAMPLE 1.42 Find the general solution of the equation

�2x ÿ 3�y 000 ÿ �6x ÿ 7�y 00 � 4xy 0 ÿ 4y � 0; x 2 �2;1�: m

Solution

Using Remark 1.27, we ®nd the particular solutions y1 � ex , y2 � x with the

Wronskian

W �y1; y2� � ex x
ex 1

���� ���� � ex �1ÿ x � 6� 0; x 2 �2;1�:

The solution y1, y2 is linearly independent on [2;1). Using Eq. (1.147) gives

y 0 � y 01

�
udx � y1u � ex

�
udx � ex u

y 00 � y 001 � 2y 01u � y1u0 � ex

�
udx � 2ex u � ex u0

y 000 � y 0001 � 3y 001 u � 3y 01u0 � y1u00 � ex

�
udx � 3ex u � 3ex u0 � ex u00;

and the equation takes the form �2x ÿ 3�u00 ÿ 2u0 ÿ �2x ÿ 5�u � 0. With the

substitution u � u1

�
vdx , u1 � �y2=y1�0, it is possible to reduce the order of

the equation:

�2x ÿ 3�u00 ÿ 2u0 ÿ �2x ÿ 5�u � 0:
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Indeed,

u1 �
x

ex

� �0
� �xeÿx �0 � �1ÿ x �eÿx

u � u1

�
vdx � �1ÿ x �eÿx

�
vdx

u0 � u01

�
vdx � u1v � �x ÿ 2�eÿx

�
vdx � �1ÿ x �eÿxv

u00 � u001

�
vdx � 2u01v� u1v

0 � �3ÿ x �eÿx

�
vdx � 2�x ÿ 2�eÿxv

� �1ÿ x �eÿxv0;

and the equation takes the form ÿ�2x 2 ÿ 5x � 3�v0 � �4x2 ÿ 12x � 10�v � 0,

or

v0

v
� 4x 2 ÿ 12x � 10

2x 2 ÿ 5x � 3
:

After integration, we obtain

v�x � � e2x �2x ÿ 3�
�x ÿ 1�2 :

Substituting this expression in u � u1

�
vdx gives

u�x � � �1ÿ x �eÿx

�
e2x �2x ÿ 3�
�x ÿ 1�2 dx

� �1ÿ x �eÿx

�
e2x 2

x ÿ 1
ÿ 1

�x ÿ 1�2
� �

dx

� �
� �1ÿ x �eÿx

�
2e2x

x ÿ 1
dx �

�
1

x ÿ 1

� �0
e2x dx

� �
� �1ÿ x �eÿx

�
2e2x

x ÿ 1
dx � 1

x ÿ 1
e2x dx ÿ

�
2e2x

x ÿ 1
dx

� �
� ÿex ;

and y � y1

�
u�x �dx � ex

� �ÿex �dx � ÿe2x . If y � ÿe2x is a solution of a

homogeneous equation, then y3�x � � e2x is also a solution of that equation.

The system of functions fex ; x ; e2x g is a fundamental system �W � y1y2; y3� �
ÿ�2x ÿ 3� 6� 0; 8x 2 �2;1��, and the general solution is

y�x � � c1ex � c2x � c3e2x :

EXAMPLE 1.43 Find the homogeneous linear differential equation, knowing that the funda-

mental system of solutions is x , ex , e2x . m
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Solution

Using Remark 1.26, this equation is

x ex e2x y
1 ex 2e2x y 0

0 ex 4e2x y 00

0 ex 8e2x y 000

��������
�������� � 0;

that is,

y 000
x ex e2x

1 ex 2e2x

0 ex 4e2x

������
������ÿ y 00

x ex e2x

1 ex 2e2x

0 ex 8e2x

������
������� y 0

x ex e2x

0 ex 4e2x

0 ex 8e2x

������
������ � 0;

and ®nally,

�2x ÿ 3�y 000 ÿ �6x ÿ 7�y 00 � 4xy 0 ÿ 4y � 0:

1.4.2 NONHOMOGENEOUS LINEAR EQUATIONS
A nonhomogeneous linear differential equation is of the form

a0�x �y �n� � a1�x �y �nÿ1� � � � � � an�x �y � g�x �:
If a0�x � 6� 0 for the interval of variation of x , then, after division by a0�x �, we

®nd

y �n� � p1�x �y �nÿ1� � � � � � pn�x �y � f �x �: �1:155�
This equation is written brie¯y as (see Eq. (1.145))

L�y � � f �x �: �1:156�
If, for a � x � b all the coef®cients pi �x � in Eq. (1.155) and f �x � are

continuous, then it has a unique solution that satis®es the conditions

y �k��x0� � y
�k�
0 �k � 0; 1; . . . ;n ÿ 1�; �1:157�

where y
�k�
0 are any real numbers and x0 is any number in the interval

a � x � b. The properties of the linear operator L yield the following.

THEOREM 1.15 The sum ~y � y1 of the solution ~y of the nonhomogeneous equation

L�y � � f �x � �1:158�
and of the solution y1 of the corresponding homogeneous equation L�y � � 0

is a solution of the nonhomogeneous Eq. (1.156). m

THEOREM 1.16 The Principle of Superposition

If yi is a solution of equation L�y� � fi�x� �i � 1; 2; . . . ;m�, then y �Pm
i�1 aiyi

is a solution of the equation

L�y � � Pm
i�1

ai fi �x �; �1:159�

where ai are constants. m
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Remark 1.28

This property also holds true for m!1 if the series
Pm

i�1 ai yi converges

and admits an n-fold differentiation.

THEOREM 1.17 If the equation L�y � � U �x � � iV �x � [where all the coef®cients pi �x � and

functions U �x � and V �x � are real] has a solution y � u�x � � iv�x �, then the

real part of the solution u�x � and the imaginary part v�x � are, respectively,

solutions for

L�y � � U �x �; L�y � � V �x �: m �1:160�

THEOREM 1.18 The general solution on the interval a � x � b of the equation L�y � � f �x �
with continuous (on the same interval) coef®cients pi �x � and f �x � is equal to

the sum of the general solution
Pn

i�1 ciyi of the corresponding homoge-

neous equation and of some particular solution ~y of the nonhomogeneous

equation. Hence, the integration of a nonhomogeneous linear equation

reduces to give one particular solution of the equation and to integrate the

corresponding homogeneous linear equation. m

The Method of Variation of Parameters (Lagrange's Method)
If to choose a particular solution of the nonhomogeneous equation is

dif®cult, but the general solution of the corresponding homogeneous equa-

tion y �Pn
i�1 ciyi is found, then it is possible to integrate the nonhomoge-

neous linear equation by the method of parameter variation. To apply this

method, it is assumed that the solution of the nonhomogeneous Eq. (1.155)

has the form

y � c1�x �y1 � c2�x �y2 � � � � � cn�x �yn : �1:161�
Since the choice of functions ci �x �; �i � 1; 2; . . . ;n� has to satisfy only one

equation, (1.155), it is required for these n functions ci �x � to satisfy some

other (n ÿ 1) equationsPn
i�1

c 0i�x �y �k�i � 0; k � 0; 1; . . . ;n ÿ 2:

With the conditions (1.164), Eq. (1.155) takes the formPn
i�1

c 0i y
�nÿ1�
i � f �x �:

To summarize, the functions ci �x �; �i � 1; 2; . . . ;n� are determined from the

system of n linear equations

c 01�x �y1 � c 02�x �y2 � � � � � c 0n�x �yn � 0
c 01�x �y 01 � c 02�x �y 02 � � � � � c 0n�x �y 0n � 0

� � �
c 01�x �y �nÿ2�

1 � c 02�x �y �nÿ2�
2 � � � � � c 0n�x �y �nÿ2�

n � 0

c 01�x �y �nÿ1�
1 � c 02�x �y �nÿ1�

2 � � � � � c 0n�x �y �nÿ1�
n � f �x �;

8>>>><>>>>: �1:162�
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with a nonzero determinant of the system

y1 y2 � � � � � � yn

y 01 y 02 � � � � � � y 0n
� � � � � � � � � � � � � � �

y
�nÿ1�
1 y

�nÿ1�
2 � � � � � � y

�nÿ1�
n

��������
�������� � W �y1; y2; . . . ; yn� 6� 0:

Knowing all c 0i�x � � ji �x � from Eq. (1.162) yields (using quadratures) that

ci �x � �
�
ji�x �dx � ci ;

where ci are arbitrary constants. Substituting the obtained values for ci �x � in
Eq. (1.161), we can ®nd the general solution of Eq. (1.155).

EXAMPLE 1.44 Solve the equation y 00 ÿ y � f �x �. m

Solution

The corresponding homogeneous equation is y 00 ÿ y � 0, and its fundamen-

tal system of solutions is y1 � ex , y2 � eÿx . Let us ®nd the general solution of

the given equation by the method of parameter variation y � c1�x �ex �
c2�c�eÿx . From the following system,

c 01�x �ex � c 02�x �eÿx � 0
c 01�x �ex ÿ c 02�x �eÿx � f �x �

�
yields

c 01�x � � 1
2 eÿx f �x �

c 02�x � � ÿ 1
2 ex f �x �:

(

After integration we ®nd

c1�x � � 1
2

� x

0 eÿt f �t �dt � c1

c2�x � � ÿ 1
2

� x

0 et f �t �dt � c2:

(

If we substitute these values of c1�x � and c2�x � in the expression for y, the

general solution of the given equation is

y�x � � c1ex � c2eÿx � 1

2

�x

0

�exÿt ÿ eÿ�xÿt ��f �t �dt :

Cauchy's Method for Finding a Particular Solution of a Nonhomogeneous
Linear Equation L�y�x�� � f �x�
Consider the nonhomogeneous linear equation

L�y�x �� � f �x �: �1:163�
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In this method it is assumed that we know the solution K �x ; t � (dependent

on a single parameter) of the corresponding homogeneous equation

L�y�x �� � 0, and the solution satis®es the conditions

K �t ; t � � K 0�t ; t � � � � � � K �nÿ2��t ; t � � 0 and K �nÿ1��t ; t � � 1:

�1:164�
In this case,

yp�x � �
�x

x0

K �x ; t �f �t �dt �1:165�

will be a particular solution of Eq. (1.156), and the solution satis®es the zero

initial conditions y�x0� � y 0�x0� � � � � � y �nÿ1��x0� � 0. The solution K �x ; t �,
called Cauchy's function, may be isolated from the general solution

y �Pn
i�1 ciyi �x � of the homogeneous equation if the arbitrary constants

ci are chosen to satisfy the conditions (1.164).

EXAMPLE 1.45 Solve the equation y 00 � y � f �x �. m

Solution

The corresponding homogeneous equation is y 00 � y � 0. It is easy to verify

that its general solution is ~y�x � � c1 sin x � c2 cos x . The conditions (1.162)

leads to the following equations:

c1 sin t � c2 cos t � 0
c1 cos t ÿ c2 sin t � 1:

�
Hence, c1 � cos t , c2 � ÿ sin t , and the solution K �x ; t � must be of the form

K �x ; t � � sin x cos t ÿ cos x sin t � sin�x ÿ t �:
According Eqs. (1.165), the solution of the given equation that satis®es zero

initial conditions is

yp�x � �
�x

x0

sin�x ÿ t �f �t �dt :

Remark 1.29

To ®nd the Cauchy's function, the general solution of Eq. (1.156) and the

solution satisfying the initial conditions (1.157), the procedure is as follows.

First, ®nd the fundamental system y1�t �; y2�t �; . . . ; yn�t � of the corresponding

homogeneous equation L�y � � 0 and the Wronskian

W �t � � W �y1�t �; y2�t �; . . . ; yn�t ��. The Cauchy's function is

K �x ; t � � 1

W �t �

y1�t � y2�t � � � � � � � yn�t �
y 01�t � y 02�t � � � � � � � y 0n�t �
� � � � � � � � � � � � � � �

y
�nÿ2�
1 �t � y

�nÿ2�
2 �t � � � � � � � y

�nÿ2�
n �t �

y1�x � y2�x � � � � � � � yn�x �

����������

����������
: �1:166�
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The general solution of Eq. (1.156) is

y�x � � c1y1�x � � c2y2�x � � � � � � cnyn�x � �
�x

x0

K �x ; t �f �t �dt : �1:167�

If we set y �k��x0� � y
�k�
0 ; k � 0; 1; 2; . . . ;n ÿ 1, then

ci �
Wi�x0�
W �x0�

; �1:168�

where

Wi �x0� �
y1�x0� y2�x0� � � � yiÿ1�x0� y0 yi�1�x0� � � � yn�x0�
y 01�x0� y 02�x0� � � � y 0iÿ1�x0� y 00 y 0i�1�x0� � � � y 0n�x0�
� � � � � � � � � � � � � � � � � � � � � � � �

y
�nÿ1�
1 �x0� y

�nÿ1�
2 �x0� � � � y

�nÿ1�
iÿ1 �x0� y

�nÿ1�
0 y

�nÿ1�
i�1 �x0� � � � y

�nÿ1�
n �x0�

���������

���������:
�1:169�

The solution of Eq. (1.156) satisfying Eq. (1.157) is

y�x � � Pn
i�1

Wi�x0�
W �x0�

yi�x � �
�x

x0

K �x ; t �f �t �dt :

A Physical Interpretation

In many problems the solution y�t � of the equation

y �n� � p1�t �y �nÿ1� � � � � � pn�t �y � f �t � �1:170�

describes the displacement of some system, the function f �t � describes a

force acting on the system, and t is the time. First, suppose that when t < s

the system is at rest, its displacement is caused by a force fe�t � that differs

from zero only in the interval s < t < s � e, and the momentum of this force

is
� s�e
s

fe�t�dt � 1. Denote by ye�t � the solution of equation

y �n� � p1�t �y �nÿ1� � � � � � pn�t �y � fe�t �:

Then, ye�t � �
� t

t0
K �t ; s�fe�s�ds; lime!0 ye�t � � K �t ; s�. The function K �t ; s� is

called the in¯uence function of the instantaneous momentum at time t � s.

The solution of Eq. (1.163) with zero initial conditions in the form

y � � t

t0
K �t ; s�f �s�ds indicates that the effect of a constant acting force

may be retarded as the superposition of in¯uences of the instantaneous

momentum.

EXAMPLE 1.46 Solve the problem y 00 � w2y � f �x �; y�x0� � y0, y 0�x0� � y 00. m
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Solution

The fundamental system of equation y 00 � w2y � 0 is y1 � cos wx ,

y2 � sin wx . Then, the Wronskian is

W �y1; y2� � cos wx sin wx
ÿw sin wx w cos wx

���� ���� � w; W �t � � w :

The Cauchy's function is

K �x ; t � � 1

W �t �
y1�t � y2�t �
y1�x � y2�x �

���� ����
� 1

w

cos wt sin wt

cos wx sin wx

���� ���� � 1

w
sin w�x ÿ t �

W1�x0� �
y0 sin wx0

y 00 w cos wx0

���� ���� � y0w cos wx0 ÿ y 00 sin wx0

W2�x0� �
cos wx0 y0

ÿw sin wx0 y 00

���� ���� � y 00 cos wx0 � wy0 sin wx0

y�x � � W1�x0�
W �x0�

y1�x � �
W2�x0�
W �x0�

y2�x � �
�x

x0

K �x ; t �f �t �dt

y�x � � 1

w
��y0w cos wx0 ÿ y 00 sin wx0� cos wx � �y 00 cos wx0

� wy0 sin wx0� sin wx � � 1

w

�x

x0

sin w�x ÿ t �f �t �dt

y�x � � y0 cos w�x ÿ x0� �
1

w
y 00 sin w�x ÿ x0� �

1

w

�x

x0

sin w�x ÿ t �f �t �dt :

EXAMPLE 1.47 Solve the problem x 00�t � � w2x �t � � A sin at , x �0� � x0, x 0�0� � v0. m

Solution

Using Example 1.46 yields

x �t � � x0 cos wt � 1

w
v0 sin wt � A

w

�t

0

sin w�t ÿ s� sin asds;

�
�t

0

sin w�t ÿ s� sin asds

� 1

2

�t

0

fcos�wt ÿ �w � a�s� ÿ cos�wt ÿ �w ÿ a��g ds

� 1

2

sin�wt ÿ �w � a�s�
ÿ�w � a�

� ����t
0

� sin�wt ÿ �w ÿ a�s�
w ÿ a

����t
0

�
� 1

2

sin at

w � a
� sin wt

w � a
� sin at

w ÿ a
ÿ sin wt

w ÿ a

� �
� 1

w2 ÿ a2
�w sin at ÿ a sin wt �:

Hence

x �t � � x0 cos wt � 1

w
v0 sin wt � A

w2 ÿ a2
sin at ÿ a

w
sin wt

� �
:
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Remark 1.30

If a � w , then�t

0

sin w�t ÿ s� sin wsds � 1

2

�t

0

�cos w�t ÿ 2s� ÿ cos wt �ds

� 1

2

sin wt

w
ÿ t cos wt

� �
;

and

x �t � � x0 cos wt � 1

w
v0 sin wt � A

2w2
�sin wt ÿ tw cos wt �:

EXAMPLE 1.48 Solve the problem

�x ÿ 1�y 00 ÿ xy 0 � y � x 2 ÿ 2x � 1; y�2� � ÿ1; y 0�2� � 1: m

Solution

Let us write the equation in the form

y 00 ÿ x

x ÿ 1
y 0 � 1

x ÿ 1
y � x ÿ 1:

The coef®cients are continuous for x 2 �1;1�. The corresponding homo-

geneous equation is

y 00 ÿ x

x ÿ 1
y 0 � 1

x ÿ 1
y � 0;

and its fundamental system of solutions is y1 � x , y2 � ex . The Wronskian is

W �y1; y2� � x ex

1 ex

���� ���� � ex �x ÿ 1� 6� 0; x 2 �1;1�; W �t � � et �t ÿ 1�:

The Cauchy's function is

K �x ; t � � 1

W �t �
y1�t � y2�t �
y1�x � y2�x �
���� ���� � 1

�t ÿ 1�et

t et

x ex

���� ���� � �exÿt t ÿ x � 1

t ÿ 1
:

The particular solution of the equation

y 00 ÿ x

x ÿ 1
y 0 � 1

x ÿ 1
y � x ÿ 1

that satis®es the initial conditions

y�x0� � 0; y 0�x0� � 0

is

yp�x � �
�x

x0

K �x ; t �f �t �dt �
�x

x0

�exÿt t ÿ x �dx ;

yp�x � � ÿ�x � 1� � �x0 � 1�exÿx0 ÿ x 2 � xx0 � ÿx 2 � x ÿ 1� 3exÿ2:
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The general solution of the equation

y 00 ÿ x

x ÿ 1
y 0 � 1

x ÿ 1
y � x ÿ 1

is

y�x � � c1x � c2ex ÿ �x � 1� � �x0 � 1�exÿx0 ÿ x 2 � xx0

� c1x � c2ex ÿ x 2 � x ÿ 1� 3exÿ2;

and

W1�x0� �
y0 y2�x0�
y 00 y 02�x0�

���� ���� � ÿ1 e2

1 e2

�����
����� � ÿ2e2 �x0 � 2; y0 � ÿ1; y 00 � 1�

W2�x0� �
y1�x0� y0

y 01�x0� y 00

���� ���� � x0 ÿ1

1 1

���� ���� � x0 � 1 � 3:

The solution for the given problem is

y�x � � W1�x0�
W �x0�

y1�x � �
W2�x0�
W �x0�

y2�x � � yp�x �;

that is,

y�x � � 6exÿ2 ÿ x2 ÿ x ÿ 1:

EXAMPLE 1.49 Find the general solution of the equation x 00 � 4x � sin x � 4t . m

Solution

Consider the equations x 00 � 4x � sin t and x 00 � 4x � 4t . Using Example

1.47 with w � 2, a � 2, A � 1, the general solution of the equation

x 00 � 4x � sin t is x1�t � � c1 cos 2t � c2 sin 2t � 1
3 sin t ÿ 1

6 sin 2t . A solution

of the equation x 00 � 4x � 4t is x2�t � � t . Using Theorem 1.16 (the principle

of superposition), we ®nd that the sum

x �t � � x1�t � � x2�t � � c1 cos 2t � c2 sin 2t � 1
3 sin t ÿ 1

6 sin 2t � t

is the general solution for the given equation.

1.4.3 HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT
COEFFICIENTS

Consider the differential equation

a0y �n� � a1y �nÿ1� � � � � � any � 0; �1:171�
where a0;a1; . . . ;an are real constants, a0 6� 0. To ®nd the general solution

of Eq. (1.171), the following steps are necessary:

1. Write the characteristic equation for Eq. (1.171),

a0l
n � a1l

nÿ1 � � � � � anÿ1l� an � 0: �1:172�
2. Find the roots l1; l2; . . . ; ln of the characteristic equation (1.172).
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3. According to the nature of the roots for the characteristic equation

(1.172), write out the linearly independent particular solutions of

Eq. (1.171), taking into account the following:

(a) Corresponding to each real single root l of the characteristic

equation (1.172), there is a particular solution elx of the differential

equation (1.171).

(b) Corresponding to each single pair of complex conjugate roots

l1 � a� ib, l2 � aÿ ib of the characteristic equation (1.172), there

are two linearly independent solutions eax cos bx and eax sin bx of the

differential equation (1.171).

(c) Corresponding to each real root l of multiplicity s of the character-

istic equation (1.172), there are s linearly independent particular

solutions elx; xelx; x2elx; . . . ; xsÿ1elx of the differential equation

(1.171).

(d) Corresponding to each pair of complex conjugate roots l1 � a� ib,

l2 � aÿ ib of multiplicity s, there are 2s linearly independent

particular solutions of the differential equation (1.171):

eax cos bx; xeax cos bx; . . . ; xsÿ1eax cos bx, and eax sin bx; xeax sin bx;

. . . ; xsÿ1eax sin bx. The number of particular solutions of the differ-

ential equation (1.171) is equal to the order of the equation. All the

solutions constructed are linearly independent and make up the

fundamental system of solutions of the differential Eq. (1.172).

EXAMPLE 1.50 Find the general solution of the equation y 000 ÿ y 00 ÿ 2y 0 � 0. m

Solution

The characteristic equation l3 ÿ l2 ÿ 2l � 0, has the roots l1 � 0, l2 � ÿ1,

l3 � 2. Since they are real and distinct, the general solution is

yg;h�x � � c1 � c2eÿx � c3e2x :

EXAMPLE 1.51 Find the general solution of the equation y 000 ÿ 4y 00 � 5y 0 ÿ 2y � 0. m

Solution

The characteristic equation l3 ÿ 4l2 � 5lÿ 2 � 0 has the roots l1 � l2 � 1;

l3 � 2. The general solution is

yg;h�x � � c1ex � c2xex � c3e2x :

EXAMPLE 1.52 Find the general solution of the equation y 000 � 2y 00 � 2y 0 � 0. m
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Solution

The characteristic equation l3 � 2l2 � 2l � 0 has the roots l1 � 0,

l2 � ÿ1ÿ i, l3 � ÿ1� i. The general solution is

yg;h � c1 � c2eÿx cos x � c3eÿx sin x :

EXAMPLE 1.53 Find the general solution of the equation y �6� � 8y �4� � 16y 00 � 0. m

Solution

The characteristic equation l6 � 8l4 � 16l2 � 0 has the roots l1 � l2 � 0;

l3 � l4 � 2i ; l5 � l6 � ÿ2i . The general solution is

yg;h�x � � c1 � c2x � c3 cos 2x � c4 sin 2x � c5x sin 2x � c6x cos 2x :

EXAMPLE 1.54 Differential Equation of Mechanical Vibrations

Find the general solution of the equation

y 00�x � � py 0�x � � qy�x � � 0; p > 0; q > 0: m

Solution

The characteristic equation l2 � pl� q � 0 has the roots

l1 � ÿ
p

2
�

��������������
p2

4
ÿ q

r
; l1 � ÿ

p

2
ÿ

��������������
p2

4
ÿ q

r
:

(a) If p2=4 > q, the general solution is y�t� � c1eÿl1t � c2eÿl2t �l1 < 0,

l2 < 0�. From this formula it follows that limt!1 t!1y�t� � 0.

(b) Let p2=4 � q. The general solution will be

y�t � � c1eÿpt=2 � c2teÿpt=2 � �c1 � c2t �eÿpt=2:

Here y�t� also approaches zero as t!1, but not so fast as in the

preceding case (because of the factor c1 � c2t).

(c) Let p2=4 < q. The general solution is

y�t � � eÿpt=2 c1 cos

������������������
ÿ p2

4
� q

r !
t � c2 sin

������������������
ÿ p2

4
� q

r !
t

" #
;

or

y�t � � eÿpt=2�c1 cos bt � c2 sin bt �; b �
������������������
ÿ p2

4
� q

r
:

In the following formula, the arbitrary constants c1 and c2 will be

replaced. Let us introduce the constants A and j0, connected with c1

and c2 by the relations c1 � A sinj0, c2 � A cosj0, where A and j0

are de®ned as follows in terms of c1 and c2: A �
��������������
c2

1 � c2
2

p
,
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j0 � arctan�c1=c2�. Substituting the values of c1 and c2 in the formula

of y�t� yields y�t� � Aeÿpt=2 sin�bt � j0�.

1.4.4 NONHOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT
COEFFICIENTS

Consider the equation

a0y �n� � a1y �nÿ1� � � � � � any � f �x � �1:173�
with a0;a1; . . . ;an being real constant coef®cients. From Theorem 1.18, the

integration of Eq. (1.173) reduces to ®nd one particular solution of this

equation and to integrate the corresponding homogeneous linear equation.

For the right-hand side f �x � of Eq. (1.173), we suppose that has the following

form:

f �x � � eax �Pl �x � cos bx � Qm�x � sin bx �: �1:174�
Here Pl �x � and Qm�x � are polynomials of degree l and m, respectively. In

this case, a particular solution yp;n of Eq. (1.173) must be of the form

yp;n � xseax � ~Pk �x � cos bx � ~Qk �x � sin bx �; �1:175�
where k � max�m; l �, ~Pk �x � and ~Qk �x � are polynomials of degree k of the

general form with undetermined coef®cients, and s is the multiplicity of the

root l � a� ib of the characteristic equation (if a� ib is not a root of

the characteristic equation, then s � 0).

EXAMPLE 1.55 Find the general solution of the equation y 000 ÿ y 00 ÿ 2y 0 � ex . m

Solution

The general solution of corresponding homogeneous equation is (see

Example 1.50)

yg;h � c1 � c2eÿx � c3e2x :

The right-hand side f �x � � ex is of the form of Eq. (1.174) with a � 1, b � 0,

Pl �x � � 1. But a� ib � 1 is not a root of the characteristic equation. Hence, a

particular solution yp;n of the given equation must be of the form yp;n � aex ,

a � constant. Then,

y 0p;n � aex ; y 00p;n � aex ; y 000p;n � aex :

Substituting in the given equation yields ÿ2aex � ex , and hence a � ÿ 1
2.

Consequently, the particular solution is yp;n � ÿ 1
2 ex , and the general solu-

tion yg;n of the given equation is of the form

yg;n � c1 � c2eÿx � c3e2x ÿ 1
2 ex :

EXAMPLE 1.56 Find the general solution of the equation

y 000 ÿ y 00 ÿ 2y 0 � 6x 2 � 2x : m
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Solution

The characteristic equation of the corresponding homogeneous equation has

the roots l1 � 0, l2 � ÿ1, l3 � 2, and the general solution

yg;h � c1 � c2eÿx � c3e2x :

The right-hand side f �x � � 6x 2 � 2x is of the form Eq. (1.174) with a � 0,

b � 0, P2�x � � 6x 2 � 2x . Since a� ib � 0 is a root of the characteristic

equation, a particular solution must be of the form yp;n � x �ax 2�
bx � c� � ax 3 � bx2 � cx . If we substitute the expression for yp;n in the

given equation, then ÿ6ax 2 � �ÿ6a ÿ 4b�x � �6a ÿ 2b ÿ 2c� � 6x2 � 2x ,

whence

ÿ6a � 6
ÿ6a ÿ 4b � 2
6a ÿ 2b ÿ 2c � 0:

8<:
This system has the solution a � ÿ1, b � 1, c � ÿ4 and hence

yp;n � ÿx 3 � x 2 ÿ 4x . The general solution of the given equation is

yg;n � c1 � c2eÿx � c3e2x ÿ x 3 � x 2 ÿ 4x :

EXAMPLE 1.57 Find the general solution of the equation

y 000 ÿ y 00 ÿ 2y 0 � ex � 6x2 � 2x : m

Solution

The general solution yg;h of the corresponding homogeneous equation is

yg;h � c1 � c2eÿx � c3e2x :

To ®nd the particular solution yp;n of the given equation, let us ®nd the

particular solutions of the two equations

y 000 ÿ y 0 ÿ 2y 00 � ex and y 000 ÿ y 00 ÿ 2y 0 � 6x 2 � 2x :

The ®rst has a particular solution y1 � ÿ 1
2 ex (see Example 1.55), and the

second has a particular solution y2 � ÿx 3 � x 2 ÿ 4x (see Example 1.56).

Using the principle of superposition of solutions, the particular solution yp;n

of the given equation is the sum of the particular solutions y1 and y2,

yp;n � y1 � y2 � ÿ 1
2 ex ÿ x3 � x2 ÿ 4x ;

and the general solution is

yg;n � c1 � c2eÿx � c3e2x ÿ 1
2 ex ÿ x 3 � x 2 ÿ 4x :

EXAMPLE 1.58 Find the general solution of the equation

y �4� � 8y 00 � 16y � x cos 2x : m
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Solution

The characteristic equation of the corresponding homogeneous equation is

l4 � 8l2 � 16 � 0 and has the roots l1 � l2 � 2i, l3 � l4 � ÿ2i. The

general solution of the homogeneous equation is

yg;h � c1 cos 2x � c2x cos 2x � c3 sin 2x � c4x sin 2x :

To ®nd a particular solution for the nonhomogeneous equation, the proce-

dure is as follows. Consider the equation z �4� � 8z 00 � 16z � xe2ix . It can

easily be seen that the right-hand side of the last equation is

x cos 2x � Re�xe2ix �. Then, zp;n of the last equation is found:

zp;n � x 2�ax � b�e2ix � �ax 3 � bx 2�e2ix

z 00p;n � �6ax � 2b � 4i�3ax 2 � 2bx � ÿ 4�ax 3 � bx2��e2ix

z
�4�
p;n � �48ai ÿ 24�6ax � 2b� ÿ 32i�3ax2 � 3bx � � 16�ax 3 � bx 2��e2ix :

Substituting into the equation and reducing e2ix from both sides yields

ÿ14�6ax � 2b� � 48ai � x , whence a � ÿ 1
96, b � ÿ 1

64 i, so that

zp;n � ÿ 1

96
x 3 ÿ i

64
x 2

� �
e2ix � ÿ 1

96
x 3 � 3

2
ix 2

� �
�cos 2x � i sin 2x �

zp;n � ÿ
1

96
x 3 cos 2x ÿ 3

2
x 2 sin 2x

� �
ÿ 1

96
i x3 sin 2x � 3

2
x 2 cos 2x

� �
:

Hence, yp;n � Rezp;n � ÿ 1
96 �x 3 cos 2x ÿ 3

2 x 2 sin 2x �. The general solution of

the given equation is

yg;n � yg;h � yp;n

yg;n � �c1 � c2x � cos 2x � �c3 � c4x � sin 2x ÿ 1

96
x 3 cos 2x ÿ 3

2
x 2 sin 2x

� �
:

1.4.5 LINEAR EQUATIONS THAT CAN BE REDUCED TO LINEAR
EQUATIONS WITH CONSTANT COEFFICIENTS

(a) Euler's equations: Equations of the form

a0�ax � b�ny �n� � a1�ax � b�nÿ1y �nÿ1� � � � � � anÿ1�ax � b�y 0 � any � f �x �;
�1:176�

where ai and a; b are constants, are called Euler's equations. An Euler's

equation can be transformed by changing the independent variable

ax � b � et �or ax � b � ÿet ; if ax � b < 0� �1:177�
into a linear equation with constant coef®cients. Indeed, we can write that

dy

dx
� dy

dt

dt

dx

� �
� eÿt dy

dt
;
d2y

dx2
� d

dt
eÿt dy

dt

� �
dt

dx

� �
� eÿ2t d 2y

dt 2
ÿ dy

dt

� �
; . . . ;

dky

dxk
� eÿkt b1

dy

dt
� b2

d2y

dt 2
� � � � � bk

dky

dtk

� �
;

where bi are constants; upon substitution into Eq. (1.177), it follows that the

transformed equation will be a linear equation with constant coef®cients.
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(b) Consider the differential equation

y �n� � p1�x �y �nÿ1� � p2�x �y �nÿ2� � � � � � pn�x �y � f �x �: �1:178�
If, by the substitution

t � j�x �; �1:179�
Eq. (1.178) may be reduced to a linear equation with constant coef®cients,

that will be possible only if

t � c

� ������������
pn�x �n

p
dx : �1:180�

EXAMPLE 1.59 Find the general solution of the equation

x 2y 00 ÿ 2xy 0 � 2y � x : m

Solution

Using the substitution x � et , then y 0 � eÿt dy

dt
, y 00 � eÿ2t d 2y

dt 2
ÿ dy

dt

� �
and

the equation takes the form
d2y

dt2
ÿ 3

dy

dt
� 2y � et . The roots of the char-

acteristic equation are l1 � 1, l2 � 2, and the general solution of the

homogeneous equation is yg;h�t � � c1et � c2e2t . The right-hand side is

f �t � � et , and since the number 1 is a root for the characteristic equation,

the particular solution yp;n�t � of the nonhomogeneous equation must be of

the form yp;n�t � � atet . Substituting the expression for yp;n�t � yields a � ÿ1,

whence yp;n�t � � ÿtet . The general solution of the nonhomogeneous equa-

tion with constant coef®cients is yg;n�t � � c1et � c2e2t ÿ tet . But since

x � et ,

y � c1x � c2x 2 ÿ x ln x

is the general solution for the initial equation.

EXAMPLE 1.60 The Chebyshev Equation

Find the general solution of the equation

�1ÿ x 2�y 00 ÿ xy 0 � n2y � 0; x 2 �ÿ1; 1�: m �1:181�

Solution

The equation is of the form

y 00 ÿ x

1ÿ x 2
y 0 � n2

1ÿ x 2
y � 0:

Using Eq. (1.180) with p2�x � � n2=�1ÿ x2�, yields

t � c

� ��������������
n2

1ÿ x 2

r
dx :
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For c � ÿ1=n, we obtain

t � arccos x or; x � cos t and y 0 � dy

dx
� dy

dt

dt

dx

� �
� ÿ 1

sin t

dy

dt

� �
y 00 � d

dt
ÿ 1

sin t

dy

dt

� �
dt

dx

� �
� 1

sin2 t

d2y

dt 2

� �
ÿ cos t

sin3 t

dy

dt

� �
:

If we substitute into Eq. (1.181), then �d 2y=dt2� � n2y � 0 with the

general solution y�t � � c1 cos nt � c2 sin nt , or y � c1 cos�n arccos x � �
c2 sin�n arccos x �. The functions

Tn�x � � cos�n arccos x � �1:182�
are called Chebyshev polynomials.

1.4.6 SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS
General Properties
The general form of a second-order nonhomogeneous linear equation is

a0�x �y 00 � a1�x �y 0 � a2�x �y � g�x �; a0�x � 6� 0; �1:183�
or, after division by a0�x �,

y 00 � p�x �y 0 � q�x �y � f �x �: �1:184�
The corresponding homogeneous linear equations are

a0�x �y 00 � a1�x �y 0 � a2�x �y � 0; �1:185�
or

y 00 � p�x �y 0 � q�x �y � 0: �1:186�
The Wronskian of functions y1 and y2 is

W �x � � W �y1�x �; y2�x �� � y1 y2

y 01 y 02

���� ���� � y1y 02 ÿ y 01y2; �1:187�

and Liouville's formula has the form

W �x � � W �x0�e
ÿ
� x

x0
p�x �dx

: �1:188�
If y1 is a particular solution of Eq. (1.186), to ®nd the general solution reduces

to integrating the functions. Indeed, a second particular solution of

Eq. (1.186) is

y2 � y1

�
e
ÿ
�

p�x �dx

y2
1

dx ; �1:189�

and the general solution of the homogeneous Eq. (1.186) is

y � c1y1 � c2y1

�
e
ÿ
�

p�x �dx

y2
1

dx : �1:190�
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If p�x � is differentiable, Eq. (1.186) can be transformed into another equation

in which the ®rst-derivative term does not occur. Indeed, if we set

y � a�x �z ; a�x � � e
ÿ
�

p�x �
2 dx ; �1:191�

the result of substituting in Eq. (1.184) is

z 00 � ÿ p 0�x �
2
ÿ p2�x �

4
� q�x �

� �
z � 0; �1:192�

where the function

Q�x � � ÿ p 0�x �
2
ÿ p2�x �

4
� q�x � �1:193�

is called the invariant of Eq. (1.186). Equation (1.186) can be transformed

into

d2y

dt 2
� q�x �e2

�
p�x�dx

y � 0 �x � x �t �� �1:194�

by the substitution of the independent variable

t �
�

e
ÿ
�

p�x�dx
dx : �1:195�

Equations of the form

�a�x �y 0�0 � b�x �y � 0; a�x � > 0 �1:196�
are called self-adjoint. Equations (1.185) and (1.196) can be transformed into

one another. Indeed, if we multiply Eq. (1.185) by the function

m�x � � 1

a0�x �
e

�
a1 �x �
a0 �x �dx ; �1:197�

we ®nd

e

�
a1 �x�
a0 �x�dx

y 00 � a1�x �
a0�x �

e

�
a1 �x �
a0 �x �dx

y 0 � a2�x �
a0�x �

e

�
a1 �x �
a0 �x �dx

y � 0; �1:198�

and if we set

a�x � � e

�
a1 �x �
a0 �x �dx ; b�x � � a2�x �

a0�x �
e

�
a1 �x �
a0 �x �dx ; �1:199�

then

a�x �y 00�x � � a0�x �y 0�x � � b�x �y � 0; �1:200�
or

�a�x �y 0�0 � b�x �y � 0: �1:201�
Equation (1.185) is self-adjoint if

a00�x � � a1�x �; �1:202�
that is, if it has the form

a0�x �y 00 � a00�x �y � b�x �y � 0: �1:203�
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Equation (1.192) is also self-adjoint. For the self-adjoint equation,

p�x �y 00 � p 0�x �y 0 � q�x �y � 0 �1:204�
yields

p�x �W �x � � p�x0�W �x0� � constant �1:205�
Indeed, after division by p�x �, this yields

y 00 � p 0�x �
p�x � y 0 � q�x �

p�x � y � 0

and the Liouville's formula (1.188) has the form

W �x � � W �x0�e
ÿ
� x

x0

p0 �s�
p�s�ds � W �x0�e ln

p�x0 �
p�x � � W �x0�p�x0�

p�x � : �1:206�

The order of Eq. (1.184) can be reduced (see Eq. (1.114)), using the

substitution

y 0

y
� z : �1:207�

The result is the Riccati's equation

z 0 � ÿz 2 ÿ p�x �z ÿ q�x �: �1:208�

EXAMPLE 1.61 Find the general solution of the equation

�1ÿ x 2�y 00 ÿ 2xy 0 � 2y � 0; x 2 �ÿ1; 1�: m

Solution

The function y1 � x is a particular solution. Then, a second particular

solution is

y2 � y1

�
e

�
ÿp�x �dx

y2
1

dx � x

�
e

�
2x

1ÿx2dx

x 2
dx � x

�
dx

�1ÿ x 2�x 2

� x ÿ 1

x
� 1

2
ln

1� x

1ÿ x

� �
:

The general solution is [see Eq. (1.190)]

y � x c1 � c2 ÿ
1

x
� 1

2
ln

1� x

1ÿ x

� �� �
:

Remark 1.31

Only y1 � x is bounded for x !�1.

EXAMPLE 1.62

(a) Transform the Bessel equation

x 2y 00 � xy 0 � �x 2 ÿ n2�x � 0; x > 0; n 2 R; �1:209�
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into another equation in which the ®rst-derivative term does not

occur.

(b) Find the general solution of the equation x2y00 � xy0 � �x2 ÿ 1
4
�y � 0,

x > 0. m

Solution

(a) Dividing by x2 yields

y 00 � 1

x
y 0 � 1ÿ n2

x 2

� �
y � 0:

Using Eq. (1.191) for p � 1=x, q � 1ÿ �n2=x2�, we ®nd

y � e
ÿ
�

1
2xdx

z � z���
x
p

Q�x � � ÿ p 0�x �
2
ÿ p2�x �

4
� q�x � � 1�

1
4ÿ n2

x2
;

and the equation

z 00 � 1�
1
4ÿ n2

x 2

� �
z � 0:

(b) If n � 1
2, the transformed equation is z 00 � z � 0 with the general solution

z � c1 sin x � c2 cos x , or y � c1��sin x �= ���
x
p � � c2��cos x �= ���

x
p �.

Remark 1.32

Multiplying the solutions y1 � �sin x �= ���
x
p

and y2 � �cos x �= ���
x
p

by
��������
2=p
p

yields

y�x � � c1

������
2

px

r
sin x � c2

������
2

px

r
cos x :

The functions

J1=2�x � �
������
2

px

r
sin x; Jÿ1=2�x � �

������
2

px

r
cos x

are called Bessel functions with n � 1
2 and n � ÿ 1

2.

EXAMPLE 1.63

(a) By the substitution of the independent variable, transform the

equation

�1ÿ x 2�y 00 � 2xy 0 � �1ÿ x 2�3y � 0; x 2 �ÿ1; 1�
into another equation in which the ®rst-derivative term does not

occur.

(b) Find the general solution for the given equation. m
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Solution

(a) Using the substitution Eq. (1.195) yields

t �
�

e
ÿ
�

2x

1ÿx2dx
dx �

�
e ln jx2ÿ1jdx �

�
�1ÿ x 2�dx � x ÿ x 3

3
;

y 0 � dy

dx
� dy

dt

dt

dx

� �
� �1ÿ x 2�dy

dt
;

y 00 � d

dx
�1ÿ x2�dy

dt

� �
� ÿ2x

dy

dt
� �1ÿ x2�2 d2y

dt 2
:

Substituting into the given equation, we ®nd

�1ÿ x 2�3 d 2y

dt 2
� �1ÿ x 2�3y � 0; or

d2y

dt 2
� y � 0:

(b) The general solution of the last equation is

y � c1 cos t � c2 sin t ;

or

y � c1 cos x ÿ x3

3

� �
� c2 sin x ÿ x 3

3

� �
:

EXAMPLE 1.64 The Legendre equation

�1ÿ x2�y 00 ÿ 2xy 0 � n�n � 1�y � 0 �1:210�
is a self-adjoint equation. m

EXAMPLE 1.65 Transform the Bessel equation x 2y 00 � xy 0 � �x 2 ÿ n2�y � 0 into a self-adjoint

equation. m

Solution

Dividing by x gives

xy 00 � y 0 � x ÿ n2

x

� �
y � 0 or; �xy 0�0 � x ÿ n2

x

� �
y � 0;

which is a self-adjoint equation.

EXAMPLE 1.66 Transform the Chebyshev equation

�1ÿ x 2�y 00 ÿ xy 0 � n2y � 0; x 2 �ÿ1; 1�;
into a self-adjoint equation. m

Solution

Multiplying the given equation by the function

m�x � � 1

1ÿ x2
e

�
ÿx

1ÿx2dx � 1��������������
1ÿ x 2
p
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yields ��������������
1ÿ x 2
p

y 00 ÿ x��������������
1ÿ x 2
p y 0 � n2��������������

1ÿ x 2
p y � 0

or

�
��������������
1ÿ x2
p

�y 0��0 � n2��������������
1ÿ x 2
p �y� � 0;

which is a self-adjoint equation.

Zeros of Solutions for Second-Order Linear Differential Equations
Let us consider the equation

y 00 � p�x �y 0 � q�x �y � 0: �1:211�
(a) If y�x� is a particular solution of Eq. (1.211), then the roots (zeros) of

y�x� � 0 are simple and isolated.

(b) If two solutions of Eq. (1.211) have in common a zero, then those

solutions are linearly dependent and have all zeros in common.

(c) Sturm's theorem: If y1 and y2 are two particular linear independent

solutions of Eq. (1.211), then their zeros are mutually separated.

(d) The maximum principle: If q�x� < 0; 8x 2 �a; b�, and y is a parti-

cular solution of Eq. (1.211), then it does not touch the positive

maximal points and the negative points on (a; b).

(e) Is the following corollary:

COROLLARY 1.2 Bilocal Problem

If q�x� < 0; 8x 2 �a; b�, then the problem

y 00 � p�x �y 0 � q�x �y � f �x �
p; q; f 2 C �a; b�;

x �a� � x �b� � 0;

8<:
has at most one solution. m

(f) Sturm's comparison theorem: If Q1�x� � Q2�x�; 8x 2 �a; b�; Q1;

Q2 2 C�a; b� then, between two consecutive zeros of the equation

y00 � Q1�x�y � 0, there is at least one zero of the equation

y 00 � Q2�x �y � 0:

COROLLARY 1.3

1. The distance between two consecutive zeros t1 and t2 of any solution

of the equation

y 00 � w2y � 0 �1:212�
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is

t2 ÿ t1 �
p
w
: �1:213�

2. Comparison equations: Consider the equation

x 00 � Q�t �x � 0; 0 < m � Q�t � � M ; t 2 �a; b�; �1:214�
and the comparison equations

y 00 �my � 0
z 00 �Mz � 0:

�
If x is a solution of Eq. (1.214) and t1, t2 are two consecutive zeros of

this equation, then

p�����
M
p � t2 ÿ t1 �

p�����
m
p : m �1:215�

EXAMPLE 1.67 Consider the Bessel equation x 2y 00 � xy 0 � �x 2 ÿ n2�x � 0 or, transformed

into an equation in which the ®rst-derivative term does not occur,

z 00 � 1�
1
4ÿ n2

x 2

� �
z � 0:

If we compare with z 00 � z � 0, the distance between two consecutive zeros

is

t2 ÿ t1 > p if n > 1
2 and t2 ÿ t1 < p if n < 1

2 :

Boundary-Value Problems
Consider the following problem: Find the solution of the equation

d

dx
�p�x �y 0� � q�x �y � f �x �; x 2 �a; b�; �1:216�

with the conditions

a0y�a� � a1y 0�a� � 0; b0y�b� � b1y 0�b� � 0: �1:217�
Suppose that the real-valued function p�x � has a continuous derivative in the

interval �a; b�; p�x � > 0 for a � x � b, the real-valued function q�x � is

continuous in the interval �a; b�, a0, a1, b0, b1 are real constants, a0, a1 are

not both zero, and b0, b1 are not both zero. This problem is called a

boundary-value problem. If f �x � � 0, then it is considered a homogeneous

boundary-value problem. Generally, boundary-value problems are not

always solvable, that is, sometimes there are no solutions, and if solutions

exist, there may be several or even an in®nity of solutions. The problem

consisting of Eqs. (1.216) and (1.217) has at most one solution if the

corresponding homogeneous boundary-value problem has only one zero

solution y�x � � 0. Indeed, if one assumes the existence of two different

solutions y1�x � and y2�x � for the boundary-value problem Eqs. (1.216) and

(1.217), then the function y�x � � y1�x � ÿ y2�x � is a solution for the homo-

geneous boundary-value problem. In solving homogeneous boundary-value
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problems, proceed as follows. First, ®nd the general solution of the given

differential equation y � c1y1�x � � c1y2�x �, y1�x � and y2�x � being linearly

independent solutions. Then, require that this solution y�x � should satisfy the

given conditions (1.217). This leads to some linear system of equations that is

used to ®nd c1, c2. By solving this system, if possible, the solution will be

found for the given boundary-value problem.

EXAMPLE 1.68 Solve the problem

y 00 ÿ y 0 � 0; y�0� � 0; y�1� � 0: m

Solution

The general solution is y�x � � c1ex � c2eÿx . If we set y�0� � 0, y�1� � 0,

then

c1 � c2 � 0
c1e � c2eÿ1 � 0;

�
�1:218�

and c1 � c2 � 0. Only y�x � � 0 is solution for the given problem.

EXAMPLE 1.69 Solve the following boundary-value problem:

y 00 � y 0 � 0; y�0� � 0; y�p� � 0: m

Solution

The general solution of the differential equation is

y�x � � c1 cos x � c2 sin x :

Setting y�0� � 0, y�p� � 0 yields

c1 � 0
c2 � sin p � 0;

�
which is satis®ed for an arbitrary c2. All the functions y � c2 sin x are

solutions for given boundary-value problem.

EXAMPLE 1.70 Solve the boundary-value problem

y 00 � y � 0; y�0� ÿ y�2p� � 0; y 0�0� ÿ y 0�2p� � 0: m

Solution

The general solution of the differential equation is y�x � � c1 cos x � c2 sin x .

The boundary conditions involved are c1 ÿ c1 � 0, c2 ÿ c2 � 0 and are

satis®ed anyway. All the functions y � c1 cos x � c2 sin x are solutions for

the given problem.

EXAMPLE 1.71 Solve the problem y 00 � y � 1; y�0� � 0, y 0�p� � 0. m
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Solution

The general solution of the differential equation is

y�x � � c1 cos x � c2 sin x � 1:

From the boundary conditions, c1 � ÿ1, c2 � 0. Only the function y �
1ÿ cos x is a solution for the given problem.

Green's Function for the Boundary-Value Problem
It was presumed that there exists no nontrivial solution y�x � for the

homogeneous equation

d

dx
�p�x �y 0� � q�x �y � 0 �1:219�

satisfying the boundary conditions (1.217). This condition guarantees the

existence and uniqueness of a solution for the boundary-value problem

consisting of Eqs. (1.216) and (1.217). Consider that y1�x � is the solution of

Eq. (1.219) with the ®rst condition (1.217) and y2�x � is the solution of

Eq. (1.219) with the second boundary condition (1.217). The functions y1

and y2 are linearly independent. The solution for the nonhomogeneous

boundary problem consisting of Eqs. (1.216) and (1.217) must be of the form

y � c1�x �y1�x � � c2�x �y2�x �; �1:220�

with functions c1�x �, c2�x � solutions of the system

c 01�x �y1�x � � c 02�x �y2�x � � 0

c 01�x �y 01�x � � c 02�x �y 02�x � �
f �x �
p�x � :

8><>: �1:221�

Then

c 01�x � � ÿ
f �x �y2�x �
W �x �p�x �

c 02�x � �
f �x �y1�x �
W �x �p�x � ;

8>>><>>>: �1:222�

and using Eq. (1.206) yields

c1�x � � ÿ
1

W �a�p�a�
�x

a

y2�s�f �s�ds � c1

� 1

W �a�p�a�
�b

x

y2�t �f �t �dt � c1

c2�x � �
1

W �a�p�a�
�x

a

y1�s�f �s�ds � c2;

8>>>>>>>><>>>>>>>>:
�1:223�
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with c1, c2 constants. Involving the boundary conditions gives c1�b� � 0,

c2�a� � 0 or c1 � 0, c2 � 0, and hence

c1�x � �
1

W �a�p�a�
�b

x

y2�t �f �t �dt

c2�x � �
1

W �a�p�a�
�x

a

y1�t �f �t �dt :

8>>><>>>: �1:224�

If we substitute Eq. (1.224) into Eq. (1.220), then

y�x � � 1

W �a�p�a�
�x

a

y2�x �y1�t �f �t �dt �
�b

x

y1�x �y2�t �f �t �dt

� �
: �1:225�

If we denote by

G �x ; t � � 1

W �a�p�a�
y1�t �y2�x �; a � t < x
y1�x �y2�t �; x � t � b;

�
�1:226�

and substitute into Eq. (1.225), the solution of the nonhomogeneous

boundary-value problem of Eqs. (1.216) and (1.217) must be of the form

y�x � �
�b

a

G �x ; t �f �t �dt : �1:227�

The function G �x ; t � is called Green's function and has the following

properties:

1. G�x; t� is continuous with respect to x for ®xed t and a � x � b,

a < t < b.

2. G�t; x� � G�x; t��G�x; t� is symmetrical).

3. �G0�t � 0; t� ÿ G0�t ÿ 0; t�� � 1

p�t�.

4. For x 6� t, G�x; t� satis®es the differential equation
d

dx
�p�x�y0��q�x�y�0

and the boundary conditions

a0G �a; t � � a1

@G

@x
�a; t � � 0

b0G �b; t � � b1

@G

@x
�b; t � � 0:

8>><>>: �1:228�

THEOREM 1.19 If the homogeneous boundary-value problem has only the trivial solution,

then the Green's function exists and is unique, and the solution for the

nonhomogeneous boundary value problem is Eq. (1.227). m

EXAMPLE 1.72 Find the Green's function of the boundary-value problem

y 00 � f �x �; y�0� ÿ y 0�0� � 0; y�1� ÿ y 0�1� � 0: m �1:229�
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Solution

The general solution of the homogeneous differential equation y 00 � 0 is

y�x � � c1x � c2. The solution of the homogeneous equation that satis®es the

®rst condition is y1�x � � c1�x � 1�. Indeed,

y�x � � c1x � c2; y 0�x � � c1; y�0� ÿ y 0�0� � c2 ÿ c1 ) c2 � c1:

The solution of the homogeneous equation that satis®es the second condi-

tion is y2 � c1x . Setting c1 � 1, then y1 � x � 1, y2 � x ;

W �x � � x � 1 x
1 1

���� ���� � 1;

W �0�p�0� � 1. Using Eq. (1.226) yields

G �x ; t � � x �t � 1�; 0 � t < x
�x � 1�t ; x � t � 1;

�
�1:230�

and the solution is

y�x � �
�x

0

x �t � 1�f �t �dt �
�1

x

�x � 1�tf �t �dt : �1:231�

EXAMPLE 1.73 Find the Green's function of the boundary-value problem

y 00 � w2y � f �x �; y�0� � 0; y�1� � 0: m �1:232�

Solution

The general solution of the homogeneous differential equation is

y�x � � c1 cos wx � c2 sin wx :

The solution of the homogeneous equation with the condition y�0� � 0

is y1�x � � c2 sin wx . The solution of equation y 00 � w2y � 0 with the con-

dition y�1� � 0 is y2�x � � c2�sin wx ÿ tan w cos wx �. Indeed, y�1� �
0, c1 cos w � c2 sin w � 0) c1=c2 � ÿ tan w ) c1 � ÿc2 tan w and y2�x �
� c2�sin wx ÿ tan w cos wx �. Setting c2 � 1, yields y1�x � � sin wx ; y2�x � �
sin wx ÿ tan w cos wx ; W �x � � w tan w ; W �0�p�0� � w tan w :

G �x ; t � � cos w

w sin w

sin wt �sin wx ÿ tan w cos wx � 0 � t < x
sin wx �sin wt ÿ tan w cos wt � x � t � 1:

�
Hence,

G �x ; t � � 1

w sin w

sin wt sin�x ÿ 1�w 0 � t < x
sin wx sin�t ÿ 1�w x � t � 1;

�
�1:233�

and the solution of problem Eq. (1.232) is

y�x � � 1

w sin w

�x

0

sin wt sin�x ÿ 1�wdt �
�1

x

sin wx sin�t ÿ 1�wdt

� �
: �1:234�
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EXAMPLE 1.74 Find the Green's function of the boundary-value problem

y 00 ÿ w2y � f �x �; y�ÿ1� � y�1�; y 0�ÿ1� � y 0�1�: m

Solution

The general solution of time homogeneous differential equation is

y�x � � c1ewx � c2eÿwx :

The condition y�ÿ1� � y�1� gives c2 � c1, so that the solution of the

homogeneous equation with this condition is y1�x � � c1�ewx � eÿwx � �
2c1 cosh wx . For c1 � 1

2, y1�x � � cosh wx . The condition y 0�ÿ1� � y 0�1�
gives c2 � ÿc1 and y2�x � � 2c1 sinh wx , and setting c1 � 1

2, y2�x � � sinh wx ,

W �x � � cosh wx sinh wx

w sinh wx w cosh wx

���� ���� � w

G �x ; t � � 1

w

cosh wt � sinh wx ; ÿ1 � t < x

cosh wx � sinh wt ; x � t � 1:

�
�1:235�

The solution of the given problem is

y�x � � 1

w

�1

ÿ1

sinh wx cosh wtf �t �dt �
�1

x

cosh wx sinh wtf �t �dt

� �
: �1:236�

Integration of Differential Equations by Means of Series
The problem of integrating the homogeneous linear equation of order n

p0�x �y �n� � p1�x �y �nÿ1� � � � � � pn�x �y � 0 �1:237�
reduces to choosing n or at least (n ÿ 1) linearly independent particular

solutions. In more involved cases, the particular solutions are in the form of a

sum of a certain series, especially often in the form of the sum of a power

series or a generalized power series. The conditions under which there are

solutions in the form of the sum of power series or a generalized power

series are ordinarily established by the methods of functions theory. The

function j�x � is said to be holomorphic (or analytic) in some neighborhood

jx ÿ x0j < r of the point x � x0 if it can be represented in that neighborhood

by the power series

j�x � � Pn
k�0

ck �x ÿ x0�k ; �1:238�

converging in the domain jx ÿ x0j < r. Similarly, the function

j�x1; x2; . . . ; xn� is said to be holomorphic over all its independent variables

in some neighborhood jxk ÿ x
�0�
k j < rk �k � 1; 2; . . . ;n� of the point

(x �0�1 ; x �0�2 ; . . . ; x �0�n ) if it can be represented by the power series

j�x1; x2; . . . ; xn� �
Pn
k�0

ck1;k2;...;kn
�x1 ÿ x

�0�
1 �k1 �x2 ÿ x

�0�
2 �k2 � � � �xn ÿ x �0�n �kn ;

�1:239�
converging in the domain jxk ÿ x

�0�
k j < rk �k � 1; 2; . . . ;n�.
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THEOREM 1.20 (a) If p0�x�, p1�x�, p2�x� are analytical functions of x in the neighborhood

of the point x � x0 and p0�x� 6� 0, then the solutions of the equation

p0�x �y 00 � p1�x �y 0 � p2�x �y � 0 �1:240�
are also analytical functions in a certain neighborhood of the same

point, and hence, the solution of Eq. (1.240) may be in the form

y � a0 � a1�x ÿ x0� � a2�x ÿ x0�2 � � � � � an�x ÿ x0�n � � � � :
�1:241�

(b) If Eq. (1.240) satis®es the conditions of the previous theorem, but

x � x0 is a zero of ®nite order s for the function p0�x�, a zero of

(sÿ 1) order or higher for the function p1�x� (if s > 1), and a zero of

order not lower than (sÿ 2) for time coef®cient of p2�x� (if s > 2),

then there is at least one nontrivial solution of Eq. (1.240) in the sum

form of the generalized power series

y � a0�x ÿ x0�k � a1�x ÿ x0�k�1 � a2�x ÿ x0�k�3 � � � �
� an�x ÿ x0�k�n � � � � ; �1:242�

where k is a real number that may be either positive or negative. m

Particular Case

Let us consider the second-order differential equation

y 00 � p�x �y 0 ÿ q�x �y � 0: �1:243�
If the coef®cients p�x � and q�x � of the equation can be represented as

p�x � �
P1
k�0

akxk

x
; q�x � �

P1
k�0

bkxk

x 2
; �1:244�

where the series in the numerators converge in a domain jx j < R and the

coef®cients a0 and b0 are not simultaneously, zero then then Eq. (1.243) has

at least one solution in the form of a generalized power series

y � x n P1
k�0

ckxk �c0 6� 0�; �1:245�

which converges at least in the same domain jx j < R . In order to ®nd the

exponent n and the coef®cients ck , it is necessary to substitute series from

Eq. (1.245) in Eq. (1.243), cancel x n, and equate the coef®cients of all powers

of x to zero (the method of undetermined coef®cients). Here the number n is

found from the governing equation

n�nÿ 1� � a0n� b0 � 0; �1:246�
where

a0 � lim
x!0

xp�x �; b0 � lim
x!0

x 2q�x �: �1:247�
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Consider that n1 and n2 are the roots of the governing equation (1.246). Then

there are three cases.

1. If the difference n1 ÿ n2 is not equal to an integer or zero, then it is

possible to develop two solutions of the form of Eq. (1.245),

y1 � x n1
P1
k�0

ckxk �c0 6� 0�; y2 � x n2
P1
k�0

Akxk �A0 6� 0�:

2. If the difference n1 ÿ n2 is a positive integer number, then it is possible

in general to develop only one series [the solution of Eq. (1.243)],

y1 � x n1
P1
k�0

ckxk :

3. If Eq. (1.246) has a multiple root n1 � n2, then it is possible to

construct only one series, the solution (1.245). In the ®rst case, the

constructed solutions y1�x� and y2�x� will surely be linearly indepen-

dent (i.e., their ratio will not be constant). In the second and the third

case, only one solution was constructed for each case. Note that if the

difference n1 ÿ n2 is a positive integer number or zero, then besides

solution (1.245), Eq. (1.245) will have a solution of the form

y2 � Ay1�x � ln x � x n2
P1
k�0

Akxk : �1:248�

In this case, y2�x� contains an extra term of the form Ay1�x� ln x, where

y1�x� is given in the form of Eq. (1.248). The constant A in Eq. (1.248)

may turn out to be zero, and then we will ®nd an expression in the

form of a generalized power series for y2. We will mention another

method of integrating differential equations in series, found to be

easier when applied to nonlinear differential equations. Suppose that

we are given the differential equation

y �n� � f �x ; y; y 0; . . . ; y �nÿ1��; �1:249�

and the initial conditions

y�x0� � y0; y 0�x0� � y 00; . . . ; y �nÿ1��x0� � y
�nÿ1�
0 : �1:250�

THEOREM 1.21 If the right-hand side of Eq. (1.249) is holomorphic over all its independent

variables x ; y; y 0; y 00; . . . ; y �nÿ1� in a neighborhood O, jx ÿ x0j < R ,

jy ÿ y0j < R1, jy 0 ÿ y 00j < R1; . . . ; jy �nÿ1� ÿ y
�nÿ1�
0 j < R1, of the point

�x0; y0; y
0
0; . . . ; y �nÿ1�

0 �;
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then Eq. (1.249) has the unique solution

y�x � � y0 � y 00�x ÿ x0� �
y 00
2!
�x ÿ x0�2 � � � � �

y
�nÿ1�
0

�n ÿ 1�! �x ÿ x0�nÿ1

� P1
k�n

ak �x ÿ x0�k ; ak �
y
�k�
0

k!

 !
;

�1:251�

satisfying the initial conditions (1.250) and being holomorphic in some

neighborhood of the point x � x0. Series (1.252) converges in the domain

jx ÿ x0j < r, where r � a�1ÿ eÿb=�n�1�aM �. a and b are constants, satisfying

the conditions 0 < a < R , 0 < b < R , and M � maxO j f �x ; y; y 0;
. . . ; y �nÿ1��j. m

EXAMPLE 1.75 Find the solution of the equation �x ÿ 1�y 00 ÿ xy 0 � y � 0 in the form of the

power series. m

Solution

Consider that y�x � is in the form of series y�x � �P1k�0 ckxk . Then

y 0�x � �P1k�1 kckxkÿ1, y 00 �P1k�2 k�k ÿ 1�ckxkÿ2. Substituting y�x �, y 0�x �,
and y 00�x � in the given equation yieldsP1

k�2

k�k ÿ 1�ckxkÿ1 ÿ P1
k�2

k�k ÿ 1�ckxkÿ2 ÿ P1
k�1

kckxk � P1
k�0

ckxk � 0:

Gathering together the similar terms and equating the coef®cients of all

powers of x to zero, we obtain relations from which are found the

coef®cients c0; c1; . . . ; cn; . . . : Thus, x 0jc0 ÿ 2�1��c2� � 0; x1jc1 ÿ 1�c1� �
2�1��c2� ÿ 3�2��c3� � 0; x2jc2 ÿ 2�c2� � 3�2��c3� ÿ 4�3��c4� � 0; . . . ; xk

jck ÿ kck � �k � 1��k��ck�1� ÿ �k � 2��k � 1�ck�2 � 0. Choosing c0 � 1 and

c1 � 1 yields

c2 �
1

1�2� ; c3 �
1

1�2��3� ; . . . ; ck �
1

k!
; . . . ;

and consequently,

y1�x � � 1� x

1!
� x2

2!
� � � � � xn

n!
� � � � � ex :

If we choose c0 � 0 and c1 � 1, then c2 � 0; c3 � 0; . . . ; cn � 0; n � 2, and

the solution is y2�x � � x . The choice c0 � 1, c1 � 1 is equivalent to the initial

conditions y1�0� � 1, y 01�0� � 1. The choice c0 � 0, c1 � 1 is equivalent to the

initial conditions y2�0� � 0, y 02�0� � 1. Any solution of the given equation will

be a linear combination of solutions y1�x � and y2�x �.

EXAMPLE 1.76 Legendre's Equation

Find the solution of equation

�1ÿ x 2�y 00 ÿ 2xy 0 � n�n � 1�y � 0; n � constant; �1:252�

810 Appendix: Differential Equations and Systems of Differential Equations

D
ifferen

tial
Eq

u
atio

n
s



in the form of power series. m

Solution

If the equation is divided by 1ÿ x 2, so that the coef®cient of y 00 is 1, we

obtain

p�x � � ÿ2x

1ÿ x 2
; q�x � � n�n � 1�

1ÿ x 2
:

Since these coef®cients have power-series expansions valid for jx j < 1, the

solution y also has a power-series expansion for jx j < 1. Let us assume that

y � P1
k�0

ckxk and yields y 0 � P1
k�1

kckxkÿ1; y 00 � P1
k�2

k�k ÿ 1�ckxkÿ2:

Substituting in the given equation and considering the coef®cient of xk yields

ck�2�k � 2��k � 1� � ck �k�k � 1� ÿ n�n � 1��:
For k � 0 results

ck�2 � ck

�k ÿ n��k � n � 1�
�k � 1��k � 2� :

The coef®cients for even k are determined from c0, and those for odd n are

determined from c1. Computing the coef®cients, gives as the ®nal result

y � c0 1ÿ n�n � 1�
2!

x 2 � �n ÿ 2�n�n � 1��n � 3�
4!

x 4

�
ÿ �n ÿ 4��n ÿ 2�n�n � 1��n � 3��n � 5�

6!
x 6 � � � �

�
� c1 x ÿ �n ÿ 1��n � 2�

3!
x 3 � �n ÿ 3��n ÿ 1��n � 2��n � 4�

5!
x5 ÿ � � �

� �
:

If n is a positive integer, either the coef®cient of c0 or the coef®cient of c1

reduces to a polynomial, depending on whether n is even or odd. Choosing

c0 and c1 so that the polynomials have the value 1 when x � 1 yields the

Legendre polynomials Pn�x �,

1; x ;
3

2
x 2 ÿ 1

2
;

5

2
x3 ÿ 3

2
x ;

35

8
x 4 ÿ 15

4
x 2 � 3

8
; . . . :

EXAMPLE 1.77 Bessel's Equation

Solve the Bessel equation

x 2y 00 � xy 0�x2 ÿ n2�y � 0; x > 0; �1:253�
with n a given constant. m

Solution

The Bessel equation can be rewritten as

y 00 � 1

x
y 0 � x2 ÿ n2

x 2
y � 0:
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Then p�x � � 1=x , q�x � � �x 2 ÿ n2�=x 2, so that

a0 � lim
x!0

xp�x � � 1; b0 � lim
x!0

x 2q�x � � ÿn2:

The governing equation (1.246) for r is

r�rÿ 1� � 1�r� ÿ n2 � 0 or r2 ÿ n2 � 0; whence r1 � n; r2 � ÿn:
The ®rst particular solution of the Bessel equation must be of the form of the

generalized power series y � x nP1
k�0 ckxk . Substituting y , y 0, and y 00 in this

equation gives

x 2 P1
k�0

ck �k � n��k � nÿ 1�xk�nÿ2 � x
P1
k�0

ck �k � n�xk�nÿ1

� �x 2 ÿ n2�P1
k�0

ckxk�n � 0;

or, after some simple transformations and canceling x n,P1
k�0

��k � n�2 ÿ n2�ckxk � P1
k�0

ckxk�2 � 0:

From this, equating to zero the coef®cients of all powers of x yields

�n2 ÿ n2�c0 � 0
��1� n�2 ÿ n2�c1 � 0
��2� n�2 ÿ n2�c2 � c0 � 0
��3� n�2 ÿ n2�c3 � c1 � 0
� � �
��k � n�2 ÿ n2�ck � ckÿ2 � 0
� � �

The ®rst relation is satis®ed for any value of the coef®cient c0. The second

relation gives c1 � 0, the third gives

c2 � ÿ
c0

�2� n�2 ÿ n2
� ÿ c0

22�1� n� ;

the fourth c3 � 0, and the ®fth

c4 � ÿ
c2

�4� n�2 ÿ n2
� c0

24�1� n��2� n��1��2� :

It is obvious that all coef®cients with odd indices are zero, c2k�1 � 0,

k � 0; 1; 2; . . . : The coef®cients with even indices are of the form

c2k �
�ÿ1�kc0

22k �n� 1��n� 2� � � � �n� k�k!
; k � 1; 2; . . . :

To simplify further computations, assume that c0 � c0=2
nG�1� n�, G being

the Euler gamma function de®ned for all positive values (as well as for all

complex values with a positive real part) as follows:

G�p� �
�1

0

eÿt � t pÿ1dp; G�p � 1� � pG�p�: �1:254�
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Then, the particular solution of the Bessel equation, denoted by Jn�x �, takes

the form

Jn�x � �
P1
k�0

�ÿ1�k
k!G�k � n� 1�

x

2

� �2k�n
: �1:255�

This function is called Bessel's function of the ®rst type of order n. The

second particular solution of the Bessel equation (1.253) is

Jÿn�x � �
P1
k�0

�ÿ1�k
k!G�k ÿ n� 1�

x

2

� �2kÿn
; �1:256�

derived from solution (1.255) by replacing n by ÿn, since Eq. (1.253) contains

n to the even power and remains unchanged when n is replaced by ÿn. If n is

not an integer, then the solutions Jn�x � and Jÿn�x � are linearly independent

and the general solution of the Bessel equation may be taken in the form

y � AJn�x � � BJÿn�x �;
where A and B are arbitrary constants. If n is an integer, then

Jÿn�x � � �ÿ1�nJn�x � �n is integer�
and it is necessary to seek another solution instead of Jÿn�x �, a solution that

would be linearly independent of Jn�x �. Let us introduce a new function

Yn�x � �
Jn�x � cos npÿ Jÿn�x �

sin np
; �1:257�

called the Bessel function of the second type and order n. The function Yn�x �
is a solution of Eq. (1.253), linearly independent of Jn�x �. It follows that the

general solution of Eq. (1.253) can be represented as

y � AJp�x � � BYp�x �;

A and B being arbitrary constants.

Remark 1.33

Now, let us consider the frequently occurring equation

x 2y 00 � xy 0 � �b2x2 ÿ n2�y � 0 �b 6� 0; constant�: �1:258�
The general solution of Eq. (1.258) is

y � AJn�bx � � BYn�bx �:

Periodic Solutions of Linear Differential Equations
Consider the second-order nonhomogeneous linear differential equation

with constant coef®cients

y 00 � p1y 0 � p2y � f �x �; �1:259�
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f �x � being a periodic function of period 2p that can be expanded into Fourier

series,

f �x � � a0

2
� P1

n�1
�an cos nx � bn sin nx �: �1:260�

The periodic solution of Eq. (1.259) must be of the form

y�x � � A0

2
� P1

n�1
�An cos nx � Bn sin nx �: �1:261�

Let us substitute series (1.261) in Eq. (1.259) and select its coef®cients so that

Eq. (1.259) is satis®ed formally. Equating the left-hand and right-hand free

terms, the coef®cients of cos nx and sin nx of the obtained equation, yields

A0 �
a0

p2

; An �
�p2 ÿ n2�an ÿ p1nbn

�p2 ÿ n2�2 � p2
1n2

Bn �
�p2 ÿ n2�bn � p1nan

�p2 ÿ n2�2 � p2
1n2

; n � 1; 2; . . . :

�1:262�

The ®rst equation of (1.262) gives the necessary condition for the existence

of a solution of the form Eq. (1.261): If a0 6� 0, then it is necessary that p2 6� 0.

Substituting Eq. (1.262) in Eq. (1.261) gives

y�x � � a0

2p
� P1

n�1

��p2 ÿ n2�an ÿ p1nbn� cos nx � ��p2 ÿ n2�bn � p1nan� sin nx

�p2 ÿ n2�2 � p2
1n2

�1:263�
When p1 � 0 and p2 � k2, with k � 1; 2; . . . ; a periodic solution will exist,

and

ak �
1

p

�2p

0

f �x � cos kxdx ; bk �
1

p

�2p

0

f �x � sin kxdx : �1:264�

For n 6� k the coef®cients An and Bn are found from Eq. (1.262) and

coef®cients Ak and Bk remain arbitrary, since the expression Ak cos kx �
Bk sin kx is the general solution of the corresponding homogeneous equa-

tion. If conditions (1.264) fail to hold, Eq. (1.259) has no periodic solutions.

When p2 � 0 and a0 � 0, the coef®cient A0 remains undetermined and

Eq. (1.259) has an in®nite number of periodic solutions differing from one

another by a constant term. If the right-hand side f �x � of Eq. (1.259) is of

period 2l 6� 2p, then it is necessary to expand f �x � using the period 2l and

seek a solution of Eq. (1.259) in the form

y�x � � A0

2
� P1

n�1
An cos

npx

l
� Bn sin

npx

l

� �
;

Eq. (1.262) changing accordingly.

EXAMPLE 1.78 Find the periodic solutions of the equation

y 00 � 2y � P1
n�1

2�ÿ1�n�1

n
sin nx : m
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Solution

We can write

p1 � 0; p2 � 2 6� k2 �k 2 N*�

a0 � 0; an � 0; bn �
2�ÿ1�n�1

n
�n � 1; 2; . . .�:

The solution must be in the form of the series

y�x � � A0

2
� P1

n�1
�An cos nx � Bn sin nx �;

and ®nding the coef®cients An and Bn from Eq. (1.262), then

A0 �
a0

p2

� 0; An � 0; Bn �
2�ÿ1�n�1

n�2ÿ n2� ; �n � 1; 2; . . .�:

The periodic solution of the given equation is

y�x � � P1
n�1

2�ÿ1�n�1

n�2ÿ n2� sin nx :

EXAMPLE 1.79 Find the periodic solutions of the equation

y 00 � y 0 � P1
n�1

2�ÿ1�n�1

n
sin nx : m

Solution

It can be written that

p1 � 0; p2 � 1 � k2; k � 1;

a1 � 0; b1 � 2 6� 0

and conditions (1.264) fail to hold. Consequently, the given equation has no

periodic solutions. Indeed, the given equation may be written in the form

y 00 � y 0 � P1
n�2

2�ÿ1�n�1

n
n sin nx � 2 sin x ;

and in accordance with the principle of superposition, its general solution is

y�x � � ~y�x � � yp�x �;
where ~y�x � is the general solution of equation

y 00 � y 0 � P1
n�2

2�ÿ1�n�1

n
sin nx

and yp is a particular solution of equation

y 00 � y � 2 sin x :

One solution is yp � ÿ2x cos x , which is clearly nonperiodic.
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EXAMPLE 1.80 Find the periodic solutions of the equation

y 00 � y � P1
n�2

2�ÿ1�n�1

n
sin nx : m

Solution

It can be written that

p1 � 0; p2 � 1 � 12:

The resonance terms a1 cos X � b1 sin x are absent in the right-hand

member. Therefore, a periodic solution exists and is determined by Eqs.

(1.262) and (1.263),

a0 � 0; a1 � 0; b1 � 0; an � 0; bn �
2�ÿ1�n�1

n
; n � 2; 3; . . . ;

A0 � 0; A1 � 0; An � 0; �n � 2; 3; . . .�; B1 � 0; Bn �
2�ÿ1�n�1

n�2ÿ n2� ;

n � 2; 3; . . . ; yp�x � �
P1
n�2

2�ÿ1�n�1

n�2ÿ n2� sin nx :

Remark 1.34

The general solution is

y�x � � P1
n�2

2�ÿ1�n�1

n�2ÿ n2� sin nx � C1 cos x � C2 sin x ;

where C1 and C2 are arbitrary constants and y�x � is periodic for any C1

and C2.

2. Systems of Differential Equations

2.1 Fundamentals

Consider the system of ®rst-order equations

dx1

dt
� f1�t ; x1; x2; . . . ; xn�

dx2

dt
� f2�t ; x1; x2; . . . ; xn�

� � �
dxn

dt
� fn�t ; x1; x2; . . . ; xn�

8>>>>>>>>><>>>>>>>>>:
�2:1�

and the initial conditions

xi �t0� � xi0
; �i � 1; 2; . . . ;n�: �2:2�
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The suf®cient conditions for the existence and uniqueness of a solution of

the system of Eqs. (2.1), given the initial conditions (2.2), are as follows:

1. Continuity of all functions fi in the neighborhood of the initial values

2. ful®llment of the Lipschitz condition for all functions fi with respect to

all arguments, beginning with the second one, in the same neighbor-

hood

Condition 2 may by replaced by a condition requiring the existence of

partial derivatives bounded in the absolute value

@fi
@xj

; �i; j � 1; 2; . . . ;n�:

The solution of the system of equations (2.1) is an n-dimensional vector

function x1�t �; x2�t �; . . . ; xn�t �, which will be denoted by X�t �. Using this

notation, the system of equations (2.1) may be written as

dX

dt
� F �t ;X�; �2:3�

where F is a vector function with the coordinates f1; f2; . . . ; fn , the initial

conditions are

X�t0� � X0; �2:4�
and X0 is a n-dimensional vector with coordinates (x10; x20; . . . ; xn0).

The solutions of the system of equations

x1 � x1�t �; x2 � x2�t �; . . . ; xn � xn�t �
or, brie¯y, X � X�t �; de®nes in the Euclidean space with coordinates

t ; x1; x2; . . . ; xn a certain curve called the integral curve.

Geometrically, the Cauchy problem with Eqs. (2.1) and (2.2) can be

stated as follows: Find in the space of variables (t ; x1; x2; . . . ; xn) an integral

curve passing through a given point (t0; x10; x20; . . . ; xn0). A different inter-

pretation of solutions is possible.

In the Euclidean space with rectangular coordinates x1; x2; . . . ; xn , the

solution x1 � x1�t �; x2 � x2�t �; . . . ; xn � xn�t � de®nes a law of motion of

some trajectory depending on the variation of parameter t, which in this

interpretation will be called ``time.'' In such interpretation, the derivative

dX=dt will be the velocity of motion of a point, and dx1=dt ;

dx2=dt ; . . . ; dxn=dt will be the coordinates of velocity of that point. Given

this interpretation, which is convenient and natural in many mechanical

problems, the system of Eqs. (2.1) or (2.3) is ordinarily called dynamical, the

space with coordinates x1; x2; . . . ; xn is called the phase space, and the curve

X � X�t � is called the phase trajectory. At a speci®ed instant of time t , the

dynamical system of Eqs. (2.1) de®nes a ®eld of velocities in the space

x1; x2; . . . ; xn . If the vector function F is dependent explicitly on t , then the
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®eld of velocities varies with time and the phase trajectories can intersect. But

if the vector F or the equivalent of all functions fi is not dependent explicitly

on t , then the ®eld of velocities is stationary and the motion will be steady. In

the last case, if the conditions of the theorem of existence and uniqueness are

ful®lled, then only one trajectory will pass through each point of the phase

space (x1; x2; . . . ; xn). Indeed, in this case an in®nite number of different

motions X � X�t � c�, where c is an arbitrary constant, occur along each

trajectory X � X�t �; this is easy to see if we make the variables changing

t1 � t � c, after which the dynamical system does not change the form

dX

dt1
� F �X�;

and consequently X � X�t1� will be a solution, or, in the previous variables,

X � X�t � c�. Assume that two trajectories pass through a certain point X0 of

the phase space, X1�t � passing through X0 at the moment of time t0 and X2�t �
passing through X0 at the moment of time t0 (t0 and t0 are are two values of

variable t -time),

X � X1�t � and X � X2�t �;X1� t0 � � X2� t0 � � X0:

On each of the trajectories we consider the solution

X � X1�t ÿ t0 � t0 � and X � X2�t ÿ t0 � t0 �:

We ®nd a contradiction with the theorem of existence and uniqueness, since

two different solutions X1�t ÿ t0 � t0 � and X2�t ÿ t0 � t0 � satisfy one and the

same initial condition X�t0� � X0.

EXAMPLE 2.1 Show that the system of functions x �t � � A cos�2t � j�, y�t � �
ÿ2A sin�2t � j� is the general solution for the system of equations

dx

dt
� y;

dy

dt
� ÿ4x : m

Solution

In this example, the domain D is ÿ1 < t < �1, ÿ1 < x ; y < �1.

Substituting the functions x �t � and y�t � in the system gives identities in t ,

valid for any values of constants A and j. Note that for the given system the

conditions of the theorem of existence and uniqueness for the Cauchy

problem hold in the whole domain D. Therefore, any triplet of numbers t0,

x0, y0 may be taken as the initial conditions x �t0� � x0, y�t0� � y0. The system

is

x0 � A cos�2t0 � j�
y0 � ÿ2A sin�2t0 � j�;

�
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and A, j are found:

A � 1

2

������������������
4x 2

0 � y2
0

q
cos�2t0 � j� � 2x0������������������

4x 2
0 � y2

0

p
sin�2t0 � j� � ÿ y0������������������

4x2
0 � y2

0

p :

Regarding t as a parameter, we ®nd a family of parabolas on the phase plane

x ; y with center at the origin of coordinates

4x 2 � y2 � A2; A � 1

2

������������������
4x2

0 � y2
0

q
:

The right-hand member of the given system is not dependent on t , and then

the trajectories do not intersect. Fixing A yields a de®nite trajectory, and for

different j there will correspond different motions along this trajectory. The

equation of the trajectory 4x 2 � y2 � A2 does not depend on j so that

motions for ®xed A are along the same trajectory. When A � 0, the phase

trajectory consists of a single point, called in this case the rest point of the

system.

2.2 Integrating a System of Differential Equations by the
Method of Elimination

One of the main methods for integrating a system of differential equations

consists of the following: All unknown functions, except one, are eliminated

from the equations of the system of equations (2.1) and from the equations

obtained by the differentiation of the equations that make up the system; to

®nd this function, a single differential equation of the higher order is

obtained. Integrating the equation of higher order provides one of the

unknown functions; the other unknown functions are determined from the

original equations and from the equations obtained as a result of their

differentiation. Next will be described more exactly the process of eliminat-

ing all unknown functions except one, say x1�t �.
Let us make the assumption that all functions fi have continuous partial

derivatives up to (n ÿ 1)-order inclusive, with respect to all arguments.

Differentiating the ®rst equation of the system of equations (2.1) with respect

to t gives

d2x1

dt 2
� @f1
@t
�Pn

i�1

@f1
@xi

dxi

dt

� �
:

Replacing the derivatives dxi=dt with their expressions fi from Eqs. (2.1) and

designating for the right-hand side F2�t ; x1; x2; . . . ; xn� yields

d2x1

dt2
� F2�t ; x1; x2; . . . ; xn�:
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Differentiating this identity and then doing as before, we obtain

d3x1

dt 3
� F3�t ; x1; x2; . . . ; xn�:

Continuing in the same way, ®nally we ®nd the system

dx1

dt
� f1�t ; x1; x2; . . . ; xn�

d2x1

dt 2
� F2�t ; x1; x2; . . . ; xn�

� � �
dnx1

dtn
� Fn�t ; x1; x2; . . . ; xn�:

8>>>>>>>>><>>>>>>>>>:
�2:5�

Suppose that the determinant

D� f1; F2; F3; . . . ; Fnÿ1�
D�x2; x3; . . . ; xn�

6� 0: �2:6�

Then, from the ®rst (n ÿ 1) equations of the system (2.5), we ®nd

x2; x3; . . . ; xn , expressed in terms of the variables t ; x1; dx1=dt ; . . . ;

dnÿ1x1=dtnÿ1:

x2 � j2�t ; x1; x
0
1; . . . ; x �nÿ1�

1 �
x3 � j3�t ; x1; x

0
1; . . . ; x �nÿ1�

1 �
� � �

xn � jn�t ; x1; x
0
1; . . . ; x �nÿ1�

1 �:

8>>>><>>>>: �2:7�

Substituting these expressions into the last of Eqs. (2.5), we ®nd an n-order

equation to determine x1,

dnx1

dtn
� f�t ; x1; x

0
1; . . . ; x �nÿ1�

1 �: �2:8�

Solving this equation yields x1:

x1 � c1�t ; c1; c2; . . . ; cn�: �2:9�
Differentiating the expression (n ÿ 1) times, we ®nd the derivatives,

dx1=dt ;d2x1=dt 2; . . . ;dnÿ1x1=dtnÿ1 as functions of t ; c1; c2; . . . ; cn . If we

substitute these functions into Eqs. (2.7), then x1; x2; . . . ; xn are

x2 � c2�t ; c1; c2; . . . ; cn�
x3 � c3�t ; c1; c2; . . . ; cn�

� � �
xn � cn�t ; c1; c2; . . . ; cn�:

8>>><>>>: �2:10�

For this solution, to satisfy the given initial conditions (2.2), it is necessary to

®nd [from Eqs. (2.9) and (2.10)] the appropriate values of the constants

c1; c2; . . . ; cn .
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Remark 2.1

If the system (2.1) is linear in the unknown functions, then Eq. (2.8) is also

linear.

Remark 2.2

If the condition (2.6) is not ful®lled, then the same process may be employed,

but in the place of function x1 we take another function from x1; x2; . . . ; xn . If

condition (2.6) is not ful®lled for any choice of some functions x1; x2; . . . ; xn

in the place of x1, then various exceptional cases are possible.

Remark 2.3

The differential equations of a system may contain higher-order derivatives

and then yield a system of differential equations of higher order.

EXAMPLE 2.2 Solve the system of equations

dx

dt
� y;

dy

dt
� ÿ4x � t

for the initial conditions

x �0� � 1; y�0� � 9
4 : m

Solution

If we differentiate the ®rst equation of the system with respect to t and

substitute dy=dt � ÿ4x � t in the obtained equations, the given system is

reduced to a second-order linear equation,

d2x

dt 2
� 4x � t :

The general solution of this equation is

x �t � � c1 cos 2t � c2 sin 2t � 1
4 t :

Since y � dx=dt , then y � ÿ2c1 sin 2t � 2c2 cos 2t � 1
4, and thus the general

solution of the given system is

x � c1 cos 2t � c2 sin 2t � 1
4 t ; y � ÿ2c1 sin 2t � 2c2 cos 2t � 1

4 :

From the initial conditions x �0� � 1, y�0� � 9
4, we ®nd c1 � 1, c2 � 1, and the

particular solution of the given system that satis®es the initial conditions is

x � cos 2t � sin 2t � 1
4 t ; y � ÿ2 sin 2t � 2 cos 2t � 1

4 :
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EXAMPLE 2.3 Solve the system of equations

d2x1

dt 2
� ax1 ÿ bx2 � 0;

d2x2

dt 2
ÿ cx1 � dx2 � 0; a; b; c; d 2 R�; ad > bc:

m

Solution

Differentiating the ®rst equation twice with respect to t gives

d 4x1

dt4
� a

d2x1

dt2
ÿ b

d2x2

dt 2
� 0;

but

d2x2

dt2
� cx1 ÿ dx2 � cx1 ÿ

d

b

d2x1

dt 2
� ax1

� �
;

and we ®nd a linear equation of the fourth order,

d4x1

dt4
� �a � d �d

2x1

dt2
� �ad ÿ bc�x1 � 0:

The characteristic equation is

r 4 � �a � d �r 2 � �ad ÿ bc� � 0:

Since a; b; c;d 2 �0;1� and ad > bc, in the last equation, r 2 < 0. If we

substitute r 2 � ÿl, then

l2 ÿ �a � d �lÿ �bc ÿ ad � � 0

l1;2 �
a � d �

�������������������������������
�a ÿ d �2 � 4bc

p
2

:

The general solution of the linear equation is

x1�t � � c1 cos
�����
l1

p
t � c2 sin

�����
l2

p
t � c3 cos

�����
l3

p
t � c4 sin

�����
l4

p
t :

In the last formula, let us replace the arbitrary constants c1, c2, c3, c4 with

others. We introduce the constants A1 and j1, which are related to c1 and c2:

c1 � A1 sinj1; c2 � A1 cosj1:

The constants A1 and j1 are de®ned as follows in terms of c1 and c2:

A1 �
���������������
c2

1 � c2
2

q
; j1 � arctan

c1

c2

:

Analogously, A2 �
���������������
c2

3 � c2
4

p
, j1 � arctan �c3=c4�. Substituting the values of

c1, c2, c3 and c4 gives

x1�t � � A1 sin� �����
l1

p
t � j1� � A2 sin� �����

l2

p
t � j2�

x2�t � �
A1

b
�a ÿ l1� sin�

�����
l1

p
t � j1� �

A2

b
�a ÿ l2� sin�

�����
l2

p
t � j2�;

8<:
which is the general solution of the given system.
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2.3 Finding Integrable Combinations

The integration of the system of differential equations

dxi

dt
� fi �t ; x1; x2; . . . ; xn�; �i � 1; 2; . . . ;n� �2:11�

is accomplished by choosing integrable combinations. Integrable combina-

tions represents a differential equation of the form

F t ;u;
du

dt

� �
� 0;

which is a consequence of Eqs. (2.11), using suitable arithmetic operations

(addition, subtraction, multiplication, and division), but which is readily

integrable: for example, an equation of the type

df�t ; x1; x2; . . . ; xn� � 0:

One integrable combination permits one ®nite equation

f1�t ; x1; x2; . . . ; xn� � c1;

which relates the unknown functions and the independent variable. Such a

®nite equation is called a ®rst integral of the system of equations (2.11). Thus,

the ®rst integral

f�t ; x1; x2; . . . ; xn� � c

of the system (2.11) is a ®nite equation that is converted into an identity for

some value c if the solution of the system of equations (2.11) is substituted in

the place of xi �t � �i � 1; 2; . . . ;n�. The left-hand member f�t ; x1; x2; . . . ; xn�
is also called a ®rst integral, and then the ®rst integral is de®ned as a function

not identically equal to a constant, but retaining a constant value along the

integral curves of the system of Eqs. (2.11). Geometrically, the ®rst integral

f�t ; x1; x2; . . . ; xn� � c for ®xed c may be interpreted as an n-dimensional

surface in (n � 1)-dimensional space with the coordinates t ; x1; x2; . . . ; xn ,

each integral curve having a common point with the surface that lies entirely

within the surface. From n integrable combinations found, the ®rst n

integrals are

f1�t ; x1; x2; . . . ; xn� � c1

f2�t ; x1; x2; . . . ; xn� � c2

� � �
fn�t ; x1; x2; . . . ; xn� � cn;

8>><>>: �2:12�

and if all these integrals are independent, that is,

D�f1;f2; . . . ;fn�
D�x1; x2; . . . ; xn�

6� 0;

then all the unknown functions are determined from the system of equations

(2.12). To ®nd integrable combinations in solving the system of differential
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equations (2.11), it is sometimes convenient to use the symmetrical form

when writing the system (2.11),

dx1

f1�t ; x1; x2; . . . ; xn�
� dx2

f2�t ; x1; x2; . . . ; xn�
� � � � � dxn

fn�t ; x1; x2; . . . ; xn�
� dt

1
:

�2:13�
To solve the system of Eq. (2.13), one may either take pairs of relations

allowing separation of the variables, or use the derived proportions

a1

b1

� a2

b2

� � � � � an

bn

� l1a1 � l2a2 � � � � � lnan

l1b1 � l2b2 � � � � � lnbn

; �2:14�

where the coef®cients l1; l2; . . . ; ln are arbitrary and chosen so that the

numerator should be the differential of the denominator or so that the

numerator should be the total differential and the denominator equal to zero.

EXAMPLE 2.4 Solve the system

dx

dt
� y

�y ÿ x �2 ;
dy

dt
� x

�y ÿ x �2 : m

Solution

Dividing the ®rst equation by the second, yields dx=dy � y=x or xdx � ydy,

whence x 2 ÿ y2 � c1. Subtracting the second equation from the ®rst, we ®nd

d �x ÿ y�=dt � 1=� y ÿ x �, whence �x ÿ y�2 � 2t � c2. Thus, we ®nd two ®rst

integrals of the given system,

c1�t ; x ; y� � x 2 ÿ y2 � c1; c2�t ; x ; y� � �x ÿ y�2 � 2t � c2;

which are independent, since the Jacobian

D�c1;c2�
D�x ; y� �

@c1

@x

@c1

@y

@c2

@x

@c2

@y

���������

��������� �
2x ÿ2y

2�x ÿ y� ÿ2�x ÿ y�

�����
����� � ÿ4�x ÿ y�2 6� 0:

Solving the system x2 ÿ y2 � c1, �x ÿ y�2 � 2t � c2 for the unknown func-

tions, we obtain the general solution for the given systems,

x � c1 � c2 ÿ 2t

2
���������������
c2 ÿ 2t
p ; y � c1 ÿ c2 � 2t

2
���������������
c2 ÿ 2t
p :

EXAMPLE 2.5 Solve the system of equations

dt

x1 ÿ x2

� dx1

x2 ÿ t
� dx2

t ÿ x1

: m
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Solution

Adding the numerators and denominators gives

dt

x1 ÿ x2

� dx1

x2 ÿ t
� dx2

t ÿ x1

� dt � dx1 � dx2

0

(here l1 � 1, l2 � 1, l3 � 1). Hence dt � dx1 � dx2 � 0 or d �t � x1 � x2��0,

and so t � x1 � x2 � 0 is a ®rst integral of the system. Multiplying the

numerators and denominators of fractions in this system gives

tdt

tx1 ÿ tx2

� x1dx1

x1x2 ÿ x1t
� x2dx2

tx2 ÿ x1x2

� tdt � x1dx1 � x2dx2

0
;

hence,

tdt � x1dx1 � x2dx2 � 0 or d �t 2 � x 2
1 � x 2

2 � � 0;

and so the second ®rst integral is

t2 � x2
1 � x2

2 � c2:

Solving the system t � x1 � x2 � c1, t 2 � x 2
1 � x 2

2 � c2 for the unknown

functions, we ®nd the general solution.

2.4 Systems of Linear Differential Equations

A system of differential equations is called linear if it is linear in all unknown

functions and their derivatives. A system of n linear equations of the ®rst

order, written in the normal form, looks like

dxi

dt
� Pn

j�1
aij �t �xj � fi �t �; �i � 1; 2; . . . ;n�: �2:15�

The system of equations (2.15) may be compactly written in the form of one

matrix equation

dX

dt
� AX � F ; �2:16�
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where

A �

a11 a12 � � � a1n

a21 a22 � � � a2n

� � � � � � � � � � � �
an1 an2 � � � ann

26664
37775; X �

x1

x2

..

.

xn

8>>>><>>>>:

9>>>>=>>>>; �2:17�

dX

dt
�

dx1

dt

dx2

dt

..

.

dxn

dt

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
; F �

f1

f2

..

.

fn

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
: �2:18�

The column matrix

Y �t � �
y1�t �
y2�t �
� � �

yn�t �

8>><>>:
9>>=>>;

is said to be a particular solution of Eq. (2.15) in the interval (a; b) if the

identity

dY

dt
� AY �t � � F �t �

holds for a < t < b. If all functions aij �t � and fi �t � in Eqs. (2.15) are

continuous on the interval [a; b], then in a suf®ciently small neighborhood

of every point (t0; x10; x20; . . . ; xn0) where a � t0 � b, the conditions of the

theorem of existence and uniqueness are ful®lled and, hence, a unique

integral curve of the system of equations (2.15) passes through every such

point. If we de®ne the linear operator L by the equality

L�X � � dX

dt
ÿ AX ; �2:19�

then Eq. (2.16) may be written more concisely as

L�X � � F : �2:20�
If all fi �t � � 0; �i � 1; 2; . . . ;n�, or the matrix F � 0, then the system of

equations (2.15) is called homogeneous linear ; it is of the form

L�X � � 0: �2:21�
The solutions of the linear system have the following basic properties.

THEOREM 2.1 If X is a solution of the homogeneous linear system L�X � � 0, then cX , where

c is an arbitrary constant, is a solution of the same system. m
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THEOREM 2.2 The sum X1 � X2 of two solutions X1 and X2 of a homogeneous linear system

of equations is a solution of that system. m

COROLLARY 2.1 A linear combination,
Pn

i�1 cXi with arbitrary constant coef®cients of

solutions X1;X2; . . . ;Xn of a homogeneous linear system L�X � � 0 is a

solution of that system. m

THEOREM 2.3 If the homogeneous linear system of equations (2.21) with real coef®cients

aij �t � has a complex solution X � U � iV , then the real and imaginary

parts

U �
u1

u2

� � �
un

8>><>>:
9>>=>>;

and

V �
v1

v2

� � �
vn

8>><>>:
9>>=>>;

are separately solutions of that system. m

THEOREM 2.4 If the Wronskian W of solutions X1;X2; . . . ;Xn ,

W �t � � W �X1;X2; . . . ;Xn� �
x11 x12 � � � x1n

x21 x22 � � � x2n

� � � � � � � � � � � �
xn1 xn2 � � � xnn

��������
��������; �2:22�

of the homogeneous system of equations (2.21) with coef®cients

aij �t � continuous on the interval a � t � b is zero at least in one point

t � t0 of the interval a � t � b, then the solutions X1;X2; . . . ;Xn are

linearly dependent on that interval, and hence W �t � � 0 on that interval.

m

THEOREM 2.5 The linear combination
Pn

i�1 ciXi of the homogeneous linear system of

equations (2.21) with the coef®cients aij �t � continuous on the interval

a � t � b is the general solution of the system of equations (2.21) on that

interval. m

THEOREM 2.6 If eX is a solution of the nonhomogeneous linear system of equations (2.20)

and X1 is a solution of the corresponding homogeneous system of equations

(2.21), then the sum X1 � eX is a solution of the nonhomogeneous system of

equations (2.20). m
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THEOREM 2.7 The general solution, on the interval a � t � b, of the nonhomogeneous

system of equations (2.20) with the coef®cients aij �t � continuous on that

interval is equal to the sum of solution
Pn

i�1 ciXi of the corresponding

homogeneous system and the particular solution eX of the nonhomogeneous

system. m

THEOREM 2.8 The Principle of Superposition

The solution of the system of linear equations

L�X � � Pn
i�1

Fi

Fi �

f1i�t �
f2i�t �
� � �

fni�t �

8>>><>>>:
9>>>=>>>;

is the sum
Pn

i�1 Xi of solutions Xi of the equations

L�Xi � � Fi �i � 1; 2; . . . ;n�: m

THEOREM 2.9 If the system of linear equations

L�X � � U � iV

U �

u1

u2

� � �
un

8>>><>>>:
9>>>=>>>;

V �

v1

v2

� � �
vn

8>>><>>>:
9>>>=>>>;;

with real functions aij �t �;ui �t �; vi �t �; �i; j � 1; 2; . . . ;n�, has the solution

X � ~U � i ~V ,

~U �
fu1fu2

� � �fun

8>><>>:
9>>=>>;

and

~V �
fv1fv2

� � �fvn

8>><>>:
9>>=>>;
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then the real part of the solution ~U and the imaginary part ~V are suspected to

be solutions of the equations

L�X � � U and L�X � � V : m

2.4.1 THE METHOD OF VARIATION OF ARBITRARY PARAMETERS
(THE LAGRANGE METHOD)

If the general solution of the corresponding homogeneous system of

equations (2.21) is known, and one cannot choose a particular solution of

the system of equations (2.20), then the method of variation of parameters

may be applied.

Let X �Pn
i�1 ciXi be the general solution of the system (2.21).

The solution of the nonhomogeneous system (2.20) must be of the form

X �t � � Pn
i�1

ci�t �Xi ; �2:23�

where ci�t � are the new unknown functions. If we substitute into the

nonhomogeneous equation, we obtainPn
i�1

c 0i �t �Xi � F :

This vector equation is equivalent to a system of n equations

Pn
i�1

c 0i �t �x1i � f1�t �Pn
i�1

c 0i �t �x2i � f2�t �
� � �Pn

i�1
c 0i�t �xni � fn�t �:

8>>>>>>><>>>>>>>:
�2:24�

All c 0i�t � are determined from this system, c 0i �t � � ji �t � �i � 1; 2; . . . ;n�,
whence

ci�t � �
�
ji �t �dt � �ci �i � 1; 2; . . . ;n�:

The system

X1 �
x11

x21

..

.

xn1

8>>><>>>:
9>>>=>>>;; X2 �

x12

x22

..

.

xn2

8>>><>>>:
9>>>=>>>;; . . . ;Xn �

x1n

x2n

..

.

xnn

8>>><>>>:
9>>>=>>>;

of particular solutions of the homogeneous system of differential equations is

said to be fundamental in the interval (a; b) if its Wronskian

W �t � � W �X1;X2; . . . ;Xn� �
x11�t � x12�t � � � � x1n�t �
x21�t � x22�t � � � � x2n�t �
� � � � � � � � � � � �

xn1�t � xn2�t � � � � xnn�t �

��������
�������� 6� 0
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for all t 2 �a; b�. In this case, the matrix

M �t � �
x11�t � x12�t � � � � x1n�t �
x21�t � x22�t � � � � x2n�t �
� � � � � � � � � � � �

xn1�t � xn2�t � � � � xnn�t �

2664
3775 �2:25�

is said to be a fundamental matrix. The general solution of the homo-

geneous linear system of equations (2.21) is

X �t � � M �t �c

c �

c1

c2

� � �
cn

8>>><>>>:
9>>>=>>>;; �2:26�

The solution of the homogeneous system

dX

dt
� AX

that satis®es the initial condition X �t0� � X0 is

X �t � � M �t �Mÿ1�t0�X0: �2:27�
The system of equations (2.24) may be written in the form

M �t �c 0�t � � F �t �;
and hence

c�t � �
�t

t0

Mÿ1�s�F �s�ds � ~c:

The general solution of the system of equations (2.16) is

X �t � � M �t � ~c �M �t �
�t

t0

Mÿ1�s�F �s�ds; �2:28�

and the solution that satis®es X �t0� � X0 is

X �t � � M �t �Mÿ1�t0�X0 �
�t

t0

M �t �Mÿ1�s�F �s�ds: �2:29�

THEOREM 2.10 Liouville's Formula

Let W �t� be the Wronskian of solutions X1;X2; . . . ;Xn of the homogeneous

system of equations (2.21). Then

W �t � � W �t0�e
� t

t0

Pn

j�1
ajj �s�ds

; �2:30�
where t0 2 �a; b� is arbitrary. The homogeneous linear system of differential

equations

dxi

dt
� Pn

j�1
aij xj �2:31�
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for which the functions X1;X2; . . . ;Xn ,

Xk �
x1k

x2k

� � �
xnk

8>><>>:
9>>=>>;;

are linearly independent solutions, may be written as

dxi

dt

dxi1

dt

dxi2

dt
� � � dxin

dt
x1 x11 x12 � � � x1n

x2 x21 x22 � � � x2n

� � � � � � � � � � � � � � �
xn xn1 xn2 � � � xnn

���������������

���������������
� 0 �i � 1; 2; . . . ;n�: �2:32�

EXAMPLE 2.6 Show that the system of vectors

X1 � 1
t

� �
; X2 � ÿt

et

� �
is a fundamental system of solutions for the following system:

dx1

dt
� t

et � t2
x1 ÿ

1

et � t2
x2

dx2

dt
� et �1ÿ t �

et � t 2
x1 �

et � t

et � t2
x2:

m

8>><>>:
Solution

The Wronskian determinant is

W �t � � 1 ÿt
t et

���� ���� � et � t2 6� 0; for all t 2 R :

The vector

X1 � 1
t

� �
has the components x11�t � � 1, x21�t � � t and

dx11

dt
� 0;

t

et � t 2
x11 ÿ

1

et � t 2
x21 �

t

et � t 2
ÿ t

et � t 2
� 0 � dx11

dt
;
dx21

dt
� 1

et �1ÿ t �
et � t 2

x11 �
et � t

et � t 2
x21 �

et �1ÿ t �
et � t 2

� �e
t � t �t

et � t2
� et � t 2

et � t 2
� 1 � dx21

dt
:

Hence, X1 is a solution for the given system. Analogously, X2 if a solution. m
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Remark 2.4

The given system can be written as

dX

dt
� A�t �X ; A�t � �

t

et � t 2

ÿ1

et � t 2

et �1ÿ t �
et � t 2

et � t

et � t 2

2664
3775:

Replacing X1 (respectively X2) in the equation yields

dX1

dt
�

0

1

( )
; AX1 �

t

et � t2

ÿ1

et � t2

et �1ÿ t �
et � t2

et � t

et � t2

2664
3775 1

t

( )
�

0

1

( )
;

hence, X1 is a solution for the given system. m

EXAMPLE 2.7 Find the homogeneous linear system of differential equations for which the

following vectors are linearly independent solutions:

X1 �
1
t
t2

8<:
9=;; X2 �

ÿt
1
2

8<:
9=;; X3 �

0
0
et

8<:
9=;: m

Solution

The Wronskian determinant is

W �t � �
1 ÿt 0
t 1 0
t2 2 et

������
������ � et �1� t 2� 6� 0 for all t 2 R :

Equations (2.32), in this case, are

dx1

dt
0 ÿ1 0

x1 1 ÿt 0

x2 t 1 0

x3 t 2 2 et

�����������

�����������
� 0; or

dx1

dt
� t

1� t 2
x1 ÿ

1

1� t 2
x2

dx2

dt
1 0 0

x1 1 ÿt 0

x2 t 1 0

x3 t 2 2 et

�����������

�����������
� 0; or

dx2

dt
� t

1� t 2
x1 �

t

1� t 2
x2
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and

dx3

dt
2t 0 et

x1 1 ÿt 0

x2 t 1 0

x3 t2 2 et

�����������

�����������
� 0; or

dx3

dt
� 4t ÿ t 2

1� t 2
x1 �

2t2 ÿ t3 ÿ 2

1� t 2
x2 � x3:

We ®nd the system

dX

dt
� A�t �X ; where A�t � �

t

1� t2

ÿ1

1� t 2
0

1

1� t2

t

1� t 2
0

4t ÿ t2

1� t2

2t 2 ÿ t 3 ÿ 2

1� t 2
1

266666664

377777775
; X �

x1

x2

x3

8>><>>:
9>>=>>;:

EXAMPLE 2.8

The following system is considered:

dx1

dt
� t

1� t2
x1 ÿ

1

1� t2
x2

dx2

dt
� 1

1� t2
x1 �

t

1� t2
x2

dx3

dt
� 4t ÿ t 2

1� t 2
x1 �

2t2 ÿ t3 ÿ 2

1� t 2
x2 � x3:

8>>>>>>><>>>>>>>:
(a) Find the general solution.

(b) Find the particular solution with the initial condition

X �0� �
1
1
3

8<:
9=;: m

Solution

The system of vectors

X1 �
1
t
t 2

8<:
9=;; X2 �

ÿt
1
2

8<:
9=;; X3 �

0
0
et

8<:
9=;

is a fundamental system of solutions. The general solution is

X �t � � c1X1 � c2X2 � c3X3 �
c1 ÿ c2t
c1t � c2

c1t2 � 2c2 � c3et

8<:
9=;:
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The initial condition

X �0� �
1
1
3

8<:
9=;

gives c1 � 1, c2 � 1, c3 � 1, and the solution that satis®es the initial condition

is

X �t � �
1ÿ t
t � 1

t2 � 2� et

8<:
9=;; or

x1�t � � 1ÿ t
x2�t � � t � 1
x3�t � � 2� t 2 � et :

m

8<:
EXAMPLE 2.9 Consider the system

dx1

dt
� t

1� t 2
x1 ÿ

1

1� t 2
x2 � t

dx2

dt
� 1

1� t 2
x1 �

t

1� t 2
x2 � t 2

dx3

dt
� 4t ÿ t3

1� t2
x1 �

2t ÿ t 3 ÿ 2

1� t2
x2 � x3 � e2t :

8>>>>>>><>>>>>>>:
(a) Find the general solution.

(b) Find the particular solution with the initial condition

X �0� �
1
1
3

8<:
9=;: m

Solution

The corresponding homogeneous system is that from the previous example,

and its general solution is

X �t � �
c1 ÿ c2t
c1t � c2

c1t 2 � 2c2 � c3et

8<:
9=;:

The general solution of the given system will be found by the method of

parameter variation,

X �t � �
c1�t � ÿ tc2�t �
c1�t �t � c2�t �

c1�t �t 2 � 2c2�t � � c3�t �et

8<:
9=;:

From the system

c 01�t � ÿ tc 02�t � � t
c 01�t �t � c 02�t � � t 2

c 01�t �t 2 � 2c 02�t � � c 03�t �et � e2t ;

8<:
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we obtain c 01�t � � t , c 02�t � � 0, c 03�t � � et ÿ t3eÿt . Integrating yields

c1�t � �
t 2

2
� ~c1; c2�t � � ~c2; c3�t � � et � eÿt �t 3 � 3t 2 � 6t � 6� � ~c3:

The general solution of the given system is

X �t � �
~c1 ÿ ~c2t

~c1t � ~c2

~c1t 2 � 2 ~c2 � ~c3et

8><>:
9>=>;�

1 ÿt 0

t 1 0

t2 2 et

264
375 t 2=2

0

et � eÿt �t 3 � 3t 2 � 6t � 6�

8><>:
9>=>;

X �t � �
~c1 ÿ ~c2t

~c1t � ~c2

~c1t 2 � 2 ~c2 � ~c3et

8><>:
9>=>;�

1
2 t2

1
2 t3

1
2 t 4 � e2t � t3 � 3t2 � 6t � 6

8><>:
9>=>;; m

or

x1�t � � ~c1 ÿ ~c2t � 1
2 t 2

x2�t � � ~c1t � ~c2 � 1
2 t 3

x3�t � � ~c1t2 � 2 ~c2 � ~c3et � 1
2 t 4 � e2t � t3 � 3t2 � 6t � 6:

8><>:
(b) The initial condition

X �0� �
1
1
3

8<:
9=;

yields ~c1 � 1, ~c2 � 1, ~c3 � ÿ6. The solution that satis®es the given initial

condition is

x1�t � � 1ÿ t � 1
2 t 2

x2�t � � t � 1� 1
2 t 3

x3�t � � e2t ÿ 6et � 1
2 t4 � t3 � 4t2 � 6t � 8:

m

8><>:

2.5 Systems of Linear Differential Equations with Constant
Coef®cients

A linear system with constant coef®cients is a system of differential equations

of the form

dxi

dt
� Pn

j�1
aij xj � fi �t � �i � 1; 2; . . . ;n� �2:33�

where the coef®cients aij are constants. The system (2.33) may be compactly

written in the form of one matrix equation

dX

dt
� AX � F ; �2:34�

where matrix A is constant.

The linear systems can be integrated by the method of elimination, by

®nding integrable combinations, but it is possible to ®nd directly the
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fundamental system of solutions of a homogeneous linear system with

constant coef®cients.

For the system

dx1

dt
� a11x1 � a12x2 � � � � � a1nxn

dx2

dt
� a21x1 � a22x2 � � � � � a2nxn

� � �
dxn

dt
� an1x1 � an2xn � � � � � annxn;

8>>>>>>>>><>>>>>>>>>:
�2:35�

the solution must be of the form

x1 � s1elt ; x2 � s2elt ; . . . ; xn � snelt ; �2:36�
with si �i � 1; 2; . . . ;n� and l constants. Substituting Eqs. (2.36) in Eqs. (2.35)

and canceling elt yields

�a11 ÿ l�s1 � a12s2 � � � � � a1nsn � 0
a21s1 � �a22 ÿ l�s2 � � � � � a2nsn � 0

� � �
an1s1 � an2s2 � � � � � �ann ÿ l�sn � 0:

8>><>>: �2:37�

The system of equations (2.37) has a nonzero solution when its determinant

is zero,

D �
a11 ÿ l a12 � � � a1n

a21 a22 ÿ l � � � a2n

� � � � � � � � � � � �
an1 an2 � � � ann ÿ l

��������
�������� � 0: �2:38�

Equation (2.38) is called the characteristic equation.

Let us consider a few cases.

2.5.1 CASE I: THE ROOTS OF THE CHARACTERISTIC EQUATION ARE REAL
AND DISTINCT

Denote by l1; l2; . . . ; ln the roots of the characteristic equation. For each

root lj , write the system of equations (2.37) and ®nd the coef®cients

s1j ; s2j ; . . . ; snj :

The coef®cients sij �i � 1; 2; . . . ;n� are ambiguously determined from the

system of equations (2.37) for l � li, since the determinant of the system is

zero; some of them may be considered equal to unity. Thus,

j For the root l1, the solution of the system of equations (2.35) is

x11 � s11el1t ; x21 � s21el1t ; . . . ; xn1 � sn1el1t :

j For the root l2, the solution of the system (2.35) is

x12 � s12el2t ; x22 � s22el2t ; . . . ; xn2 � sn2el2t :
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. . .

j For the root ln, the solution of the system (2.35) is

x1n � s1nelnt ; x2n � s2nelnt ; . . . ; xnn � snnelnt :

By direct substitution into equations, the system of functions

x1 � c1s11el1t � c2s12el2t � � � � � cns1nelnt

x2 � c1s21el1t � c2s22el2t � � � � � cns2nelnt

� � �
xn � c1sn1el1t � c2sn2el2t � � � � � cnsnnelnt ;

8>><>>: �2:39�

where c1; c2; . . . ; cn are arbitrary constants, is the general solution for the

system of equations (2.35). Using vector notation, we obtain the same result,

but more compactly:

dX

dt
� AX : �2:40�

The solution must have the form

X � ~Selt

~S �

s1

s2

� � �
sn

8>>><>>>:
9>>>=>>>;:

The system of equations (2.37) has the form

�A ÿ lI � ~S � 0; �2:41�

where I is the unit matrix. For each root lj of the characteristic equation

jA ÿ lI j � 0 is determined, from Eq. (2.41), the nonzero matrix Sj and, if all

roots lj of the characteristic equation are distinct, we obtain n solutions

X1 � S1el1t ;X1 � S2el2t ; . . . ;Xn � Snelnt ;

where

Sj �
s1j

s2j

� � �
snj

8>><>>:
9>>=>>;:

The general solution of the system (2.35) or (2.40) is of the form

X � Pn
j�1

Sj cj e
lj t ; �2:42�

where cj are arbitrary constants.
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2.5.2 CASE II: THE ROOTS OF THE CHARACTERISTIC EQUATION ARE
DISTINCT, BUT INCLUDE COMPLEX ROOTS

Among the roots of the characteristic equation, let the complex conjugate

roots be

l1 � a� ib; l2 � aÿ ib:

To these roots correspond the solutions

xi1 � si1e �a�ib�t �i � 1; 2; . . . ;n�
xi2 � si2e �aÿib�t l; �i � 1; 2; . . . ;n�:

�
�2:43�

The coef®cients si1 and si2 are determined from the system of equations

(2.37). It may be shown that the real and imaginary parts of the complex

solution are also solutions. Thus, we obtain two particular solutions,

~xi1 � eat �~s 0i1 cos bt � ~s 0i2 sin bt �
~xi2 � eat �~s 00i1 cos bt � ~s 00i2 sin bt �;

(
�2:44�

where ~s 0i1, ~s 0i2, ~s 00i1, ~s 00i2 are real numbers determined in terms of si1 and si2.

2.5.3 CASE III: THE CHARACTERISTIC EQUATION HAS A MULTIPLE ROOT
lk OF MULTIPLICITY r

The solution of the system of equations (2.35) is of the form

X �t � � �S0 � S1t � � � � � Srÿ1trÿ1�els t ; �2:45�
where

Sj �
s1j

s2j

� � �
snj

8>><>>:
9>>=>>;;

sij are constants. Substituting Eq. (2.45) into Eq. (2.40) and requiring an

identity to be found, we de®ne the matrices Sj ; some of them, including Srÿ1

as well, may turn out to be equal to zero.

EXAMPLE 2.10 Solve the system

dx1

dt
� ÿx1 ÿ 2x2

dx2

dt
� 3x1 � 4x2:

m

8>><>>:
Solution

The characteristic equation

ÿ1ÿ l ÿ2
3 4ÿ l

���� ���� � 0; or l2 ÿ 3l� 2 � 0;
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has the roots l1 � 1, l2 � 2. For l1 � 1, the system of equations (2.41) has

the form

ÿ2s11 ÿ 2s21 � 0
3s11 � 3s21 � 0:

�
Hence s11 � ÿs21 � arbitrary ��1�, and

S1 � 1
ÿ1

� �
:

For l2 � 2, the system of equations (2.41) has the form

ÿ3s12 ÿ 2s22 � 0
3s12 � 2s22 � 0;

or s22 � ÿ
3

2
s12:

�
Substituting s12 � 2, then s22 � ÿ3 and

S2 � 2
ÿ3

� �
:

The general solution (2.42) is

x1

x2

� �
� c1et � 2c2e2t

ÿc1et ÿ 3c2e2t

� �
; hence

x1 � c1et � 2c2e2t ;
x2 � ÿc1et ÿ 3c2e2t :

m

�

EXAMPLE 2.11 Solve the system

dx1

dt
� 2x1 ÿ x2

dx2

dt
� x1 � 2x2:

m

8>><>>:
Solution

The characteristic equation

2ÿ l ÿ1
1 2ÿ l

���� ���� � 0; or l2 ÿ 4l� 5 � 0;

has the roots l1 � 2� i, l2 � 2ÿ i.

For l1 � 2� i, the system of equations (2.41) has the form

ÿis11 ÿ s12 � 0

s11 � is12 � 0;
or s12 � ÿis11;

(
hence, s11 � 1, s12 � ÿi , and

S1 � 1
ÿi

� �
:

For l2 � 2ÿ i, the system of equations (2.41) has the form

is12 ÿ s22 � 0
s12 � is22 � 0;

or s22 � is12;

�
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hence s12 � 1, s22 � i , and

S2 � 1
i

� �
:

The general solution is

x1

x2

� �
� c1S1e�2�i�t � c2S2e �2ÿi�t � c1e�2�i�t � c2e �2ÿi�t

ÿic1e �2�i�t � ic2e �2ÿi�t

( )

� e2t �c1 � c2� cos t � i�c1 ÿ c2� sin t

�c1 � c2� sin t ÿ i�c1 ÿ c2� cos t

� �
:

Taking ~c1 � c1 � c2, ~c2 � i�c1 ÿ c2�, the general solution is

x1 � e2t � ~c1 cos t � ~c2 sin t �
x2 � e2t � ~c1 sin t ÿ ~c2 cos t �: m

�

EXAMPLE 2.12 Solve the system

dx1

dt
� 3x1 ÿ x2

dx2

dt
� x1 � x2:

m

8>><>>:
Solution

The characteristic equation

3ÿ l ÿ1
1 1ÿ l

���� ���� � 0; or l2 ÿ 4l� 4 � 0;

has the roots l1 � l2 � 2. Hence, the solution must have the form

x1 � �s10 � s11t �e2t

x2 � �s20 � s21t �e2t :

�
Substituting in the given system, we obtain

2�s10 � s11t � � s11 � 3�s10 � s11t � ÿ s20 ÿ s21t
2�s20 � s21t � � s21 � s10 � s11t � s20 � s21t ;

�
whence

s21 � s11; s10 ÿ s20 � s11:

s10 and s20 remain arbitrary. If we denote these arbitrary constants by c1 and

c2, respectively, the general solution is of the form

x1 � �c1 � �c2 ÿ c1�t �e2t

x2 � �c2 � �c2 ÿ c1�t �e2t :
m

�
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EXAMPLE 2.13 Solve the system

dx1

dt
� ÿx1 � x2 � x3

dx2

dt
� x1 ÿ x2 � x3

dx3

dt
� x1 � x2 ÿ x3:

m

8>>>>>>><>>>>>>>:
Solution

The characteristic equation is

ÿ1ÿ l 1 1
1 ÿ1ÿ l 1
1 1 ÿ1ÿ l

������
������ � 0; and l1 � 1; l2 � l3 � ÿ2:

Corresponding to the root l1 � 1 is the solution

X1 � S1et �
a1

a2

a3

8<:
9=;et :

The system (2.41) has the form

ÿ2a1 � a2 � a3 � 0
a1 ÿ 2a2 � a3 � 0
a1 � a2 ÿ 2a3 � 0:

8<:
Hence, a1 � a2 � a3 � c1 are arbitrary, and

X1 �
c1et

c1et

c1et

8<:
9=;:

Corresponding to the multiple root l2 � l3 � ÿ2 is the solution

X2�t � � �S0 � S1t �eÿ2t �
s10 � s11t

s20 � s21t

s30 � s31t

8><>:
9>=>;eÿ2t

X 02�t � � ÿ2�S0 � S1t �eÿ2t � S1eÿ2t :

Substituting in the system X 0�t � � AX �t � yields

�A � 2I ��S0 � S1t � � S1 or
1 1 1
1 1 1
1 1 1

24 35 s10 � s11t
s20 � s21t
s30 � s31t

8<:
9=; �

s11

s12

s13

8<:
9=;:

Hence,

s10 � s20 � s30 � �s11 � s21 � s31�t � s11 � s12 � s13;
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and

s11 � s12 � s13 � 0

s10 � s20 � s30 � 0:

The quantities s10 and s20 remain arbitrary. Denoting them by c2 and c3,

respectively, yields

X2�t � �
c2eÿ2t

c3eÿ2t

ÿ�c2 � c3�eÿ2t

8<:
9=;;

and the general solution of the given system is

X �t � �
x1�t �
x2�t �
x3�t �

8<:
9=; � X1�t � � X2�t � �

c1et � c2eÿ2t

c1et � c3eÿ2t

c1et ÿ �c2 � c3�eÿ2t

8<:
9=;: m

EXAMPLE 2.14 Solve the system

dx1

dt
� ÿx1 � x2 � x3 � e2t

dx2

dt
� x1 ÿ x2 � x3 � 1

dx3

dt
� x1 � x2 ÿ x3 � t

8>>>>>>><>>>>>>>:
with the initial conditions x1�0� � ÿ 1

4, x2�0� � 1, x3�0� � 5
4. m

Solution

The corresponding homogeneous system

dx1

dt
� ÿx1 � x2 � x3

dx2

dt
� x1 ÿ x2 � x3

dx3

dt
� x1 � x2 ÿ x3

8>>>>>>><>>>>>>>:
has the general solutions

X �t � �
c1et � c2eÿ2t

c1et � c3eÿ2t

c1et ÿ c2eÿ2t ÿ c3eÿ2t

8<:
9=; � et eÿ2t 0

et 0 eÿ2t

et ÿeÿ2t ÿeÿ2t

24 35 c1

c2

c3

8<:
9=; � M �t �c;

where

M �t � �
et eÿ2t 0
et 0 eÿ2t

et ÿeÿ2t ÿeÿ2t

24 35; c �
c1

c2

c3

8<:
9=;:
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We seek the solution of the nonhomogeneous system in the form

X �t � � M �t �c�t �:
Substituting in the given system yields

M 0�t �c�t � �M �t �c 0�t � � A�t �M �t �c�t � � F �t �;
or

M �t �c 0�t � � F �t �:
Hence,

c 0�t � � Mÿ1�t �F �t �;
where Mÿ1�t � is the inverse of M �t �. Then,

Mÿ1�t � � 1

3

eÿt eÿt eÿt

2e2t ÿe2t ÿe2t

ÿ2e2t 2e2t ÿe2t

24 35;
and

c 0�t � � 1

3

eÿt eÿt eÿt

2e2t ÿe2t ÿe2t

ÿ2e2t 2e2t ÿe2t

24 35 e2t

1
t

8<:
9=; � 1

3

et � eÿt � teÿt

2e4t ÿ e2t ÿ te2t

ÿe4t � 2e2t ÿ te2t

8<:
9=;:

Integrating yields

c�t � � 1

3

et ÿ 2eÿt ÿ teÿt � ~c1

1

2
e4t ÿ 1

4
e2t ÿ t

2
e2t � ~c2

ÿ 1

4
e4t � 5

4
e2t ÿ t

2
e2t � ~c3

8>>>><>>>>:

9>>>>=>>>>;:
The general solution of the nonhomogeneous system is

X �t � �
x1�t �
x2�t �
x3�t �

8><>:
9>=>; �

~c1et � ~c2eÿ2t � 1
2 e2t ÿ 1

2 t ÿ 3
4

~c1et � ~c3eÿ2t � 1
4 e2t ÿ 1

2 t ÿ 1
4

~c1et ÿ ~c2eÿ2t ÿ ~c3eÿ2t � 1
4 e2t ÿ 1

8><>:
9>=>;:

From the initial conditions,

~c1 � ~c2 ÿ 1
4 � ÿ 1

4
~c1 � ~c3 � 1
~c1 ÿ ~c2 ÿ ~c3 ÿ 3

4 � 5
4 ;

8<:
whence ~c1 � 1, ~c2 � ÿ1, ~c3 � 0. The solution of the system with the initial

values is

x1�t � � et ÿ eÿ2t � 1
2 e2t ÿ 1

2 t ÿ 3
4

x2�t � � et � 1
4 e2t ÿ 1

2 t ÿ 1
4

x3�t � � et � eÿt � 1
4 e2t ÿ 1:

m

8><>:
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EXAMPLE 2.15 Solve the system of the second-order differential equations

d2x1

dt 2
� a11x1 � a12x2

d2x2

dt 2
� a21x1 � a22x2:

8>><>>:
The numerical case is

d 2x1

dt2
� ÿ2x1 � 3x2

d2x2

dt 2
� ÿ2x1 � 5x2:

m

8>><>>:
Solution

Again, we seek the solution in the form

x1 � s1elt ; x2 � s2elt :

Substituting these expressions into the system and canceling out elt , we ®nd

a system of equations for determining s1, s2, and l,

�a11 ÿ l2�s1 � a12s2 � 0

a21s1 � �a22 ÿ l2�s2 � 0;

(

or �A ÿ l2I �S � 0, where

S � s1

s2

� �
:

Nonzero s1 and s2 are determined only when the determinant of the system is

equal to zero,

jA ÿ l2I j � 0:

This is the characteristic equation of the given differential system. For each

root lj of the characteristic equation, we ®nd

Sj �
s1j

s2j

� �
�j � 1; 2; 3; 4�:

The general solution will have the form

x1

x2

� �
� P4

j�1
Sj e

lj t cj ;

where cj are arbitrary constants. The differential system

d2x1

dt 2
� ÿ2x1 � 3x2

d2x2

dt 2
� ÿ2x1 � 5x2

8>><>>:
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has the characteristic equation

ÿ2ÿ l2 3

ÿ2 5ÿ l2

�����
����� � 0;

and the roots

l1 � i; l2 � ÿi; l3 � 2; l4 � ÿ2:

For l1 � i and l2 � ÿi , the system �A ÿ l2I �S � 0 yields

ÿs1 � 3s2 � 0 or s1 � 3s2; S1 � 3
1

� �
; S2 � 3

1

� �
:

For l3 � 2 and l4 � ÿ2, it yields

ÿ6s1 � 3s2 � 0; or s2 � 2s1 and S3 � 1
2

� �
; S4 � 1

2

� �
:

The general solution is

x1 � 3c1eit � 3c2eÿit � c3e2t � c4eÿ2t

x2 � c1eit � c2eÿit � 2c3e2t � 2c4eÿ2t :

�
Let us write out the complex solutions

x11 � eit � cos t � i sin t; x21 � eÿit � cos t ÿ i sin t :

The real and imaginary parts are separated from the solutions:

~x11 � cos t ; ~x21 � sin t :

Now, the general solution can be expressed as

x1�t � � 3c1 cos t � 3c2 sin t � c3e2t � c4eÿ2t

x2�t � � c1 cos t � c2 sin t � 2c3e2t � 2c4eÿ2t :

�
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Index

A
ABEC grade. See Annular Bearing Engineers'

Committee
Absolute temperature scales, 449
Absorption, of heat, 454, 466
Acceleration

analysis of, 211±222
angular, 55, 71
centripetal, 72
Coriolis, 72
de®ned, 52
normal, 78
of a point, 54±55
tangential component, 61, 78
velocity and, 211±222
See also Newton's laws of motion

Accumulators, ¯uid, 601±604
Acme threads, 247, 251
Action-reaction. See Newton's laws of motion,

third law
Addendum circle, 256±257
Adiabatic processes, 603
AFBMA. See Anti-Friction Bearing Manufacturers

Association
AGMA number. See American Gear Manufacturers

Association
American Gear Manufacturers Association

(AGMA), 253
class number, 260

Analytic functions, 807±808
Angles

angular units, 53±54
degrees of, 54
of friction, 47±49
between vectors, 7

Angular acceleration, 55, 71
Angular frequency, 341
Angular impulse, 95
Angular momentum, 94

derivative of, 398
principle of, 113±115

Angular units, 53±54
Angular velocity

diagrams of, 269±270
of rigid body, 98±99
RRR dyad and, 3

Annular Bearing Engineers' Committee (ABEC)
grades, 304

Anti-Friction Bearing Manufacturers Association
(AFBMA), 304

ABEC grades, 304
Arc length, 68
Archimedes' principle, 565
Area

axis of symmetry, 18
centroids, 17±20, 25
composite, 19
®rst moment, 17±21
loading curve, 20
parallel-axis theorem, 27
polar moment, 27±28
principal axes, 28±30
product of, 24, 27, 30
second moments, 24±25
surface properties, 17±20

Associative law, 6
Asymptotic boundary conditions, 461±462
Automotive differential, 267±268
Autonomous systems, 686
Axes

centroidal, 17±20, 25
orthogonal, 19, 76±77
principal, 28±30
rotation about, 21, 23, 96
of symmetry, 18±19, 24
See also Cartesian coordinates

Axial loading, 175
Axial piston pump, 598

B
Backlash, 679
Ball and beam problem, 697±699
Ball-and-socket supports, 44
Bandwidth, 637±638
Barometer, 564
Base point, 36
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Beams
asymmetric sections, 139±140
bending moment, 131±132, 175
cantilevered, 134, 156, 164, 184±185, 760
channel, 177
cross-sections, 176±177
de¯ection of. See De¯ection analysis
endurance limit, 173
fatigue analysis, 173±187
Gerber criterion, 186
Goodman lines, 178±179, 183±185
I-beams, 176
loading analysis, 165±171, 177
Moore tests, 173±175
rectangular, 177
shear stresses, 140±142
size factor, 176
S±N diagrams for, 173
Soderberg criterion, 183±185
strain in, 160±163
stress in, 139±143, 184
web section, 177

Bearings
ABEC grades, 304±305
ball-raceway contact, 301
characteristic number, 325
contact angle, 303
fatigue life, 310
free contact angle, 302
free endplay, 301
life requirement, 309±311
lubrication of, 318±336
misalignment angle, 302
rated capacity, 309
reliability factor, 310±311
rolling, 297±318
selection of, 317
self-aligning, 304
sliding, 297, 318±336
standard life, 310
tapered, 304
total curvature of, 302

Beat phenomenon, 355
Beat transfer, 446
Belleville springs, 296±297
Belts, 253
Bending, 175

moment, 131, 132
shear force, 131±132
singularity functions, 132
stress, 284, 295
vibration and, 393

Berkovsky-Polevikov correlation, 551
Bernoulli equation, 519±521, 572±574, 749

Bernoulli's theorem, 573±575
Bessel equation, 798, 800, 802, 811, 813
Bessel functions, 482, 799, 813
BHN. See Brinell hardness number
Big-bang controller, 684
Bilocal problem, 801
Binomial vector, 69±70
Biot numbers, 475, 478
Blackbody, 454
Bladder accumulators, 603
Blasius number, 512
Blasius solution, 521±522
Bode diagrams, 415, 633, 648±649, 659
Body forces, 494
Boiling, 454
Bolts, 244
Boring machine, 432
Boundary conditions, 461±462. See also speci®c

systems

Boundary layer
assumptions, 503
equations for, 538
heat transfer and, 490, 502±505, 513
hydrodynamic, 490
laminar ¯ow, 491±492
momentum equation, 504
scale analysis of, 505±508
shape factor, 506
similarity solutions for, 512±516
streamlines, 491
transition zone, 492
turbulent ¯ow, 491±492
types of, 491

Boundary-value problem, 153, 802±807
Bound vectors, 30±36
Bourdon gage, 579
Boussinesq equation, 541
Break frequency, 635
Brinell hardness number (BHN), 279
British engineering units, 560
Brownian motion, 456
Buckingham equation, 278
Bulk modulus of elasticity, 562
Bulk temperature, 452±453
Buoyancy, 565
Buoyancy-friction balance, 540
Buoyancy-inertia balance, 541
Burnout, 518

C
Cantilevered beam, 134, 156, 164, 184±185, 760
Capacitive thermal analysis, 476±477
Capillarity, 562
Cartesian coordinates, 7, 58, 70, 76±77
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Cartesian method, 202±208
Cascade connection, 618
Castigliano's theorem, 163±165, 286, 390
Cauchy number, 567
Cauchy problem, 438, 717, 817
Cauchy's function, 784±785, 788
Celsius scale, 449
Center, instantaneous, 100±101
Center of mass, 111±113
Central axis, 33
Central loading, 165±170
Centripetal acceleration, 72
Centroid, 12±22

area moment and, 17±20
axes and, 18, 25
cartesian coordinates of, 15
decomposition, method of, 15
®rst moment, 13, 17±20
Guldinus-Pappus theorems, 21±23
loading curve, 20
mass center and, 16
parallel-axis theorems, 25±26
points and, 13±15
polar moment, 27
position vector, 12
principal axes, 28±29
product of area, 24
second moments, 24
solid, 15
statics and, 12±28
surface properties, 13±15
symmetry and, 18
transfer theorems, 25±26

Chains
belts and, 253
complex, 198
kinematic, 197
simple, 198
sliding, 764

Channel section, 176
Characteristic functions, 677, 789

eigenvalues, 683±685
roots of, 351, 836±838
polynomial, 414±415

Characteristic length, 475
Chatter, 582
Chebyshev equation, 795±796, 800
Chebyshev polynomials, 796
Check valves, 592±594
Churning loss, 308
Circular angular speed, 380
Circular frequency, 341
Circular motion, 64±65
Circumferential tension, 564

Clairaut equation, 758
Closed-loop systems, 613, 649±672
Columns, 169±171
Commutative law, 6
Companion form, 692, 695
Comparison equations, 802
Complementary error function, 487
Complete integrals, 720
Complex general motion, 190
Component vectors, 7±8
Components, of machines, 243±328
Composite areas, 19
Compound relief valves, 588±590
Compression, 150±152, 165
Compression effect, 495
Concurrent forces, 37
Condensation, 454
Conduction, heat, 446, 448, 451±472

boundary conditions, 461±462
®lms, 452
®ns and, 468±471
heat transfer, 456±458
initial conditions, 461±462
interface conditions, 461±462
semi-in®nite solid bodies, 487
steady, 464±467
thermal conductivity, 452, 458±461
thermal resistance, 463
unsteady, 472±488
See also Heat transfer

Conjugate gear, 254
Conservation effects

of energy, 84±85, 447
forces and, 85±87
of linear momentum, 89±90
of mass, 568
systems 375

Constant life fatigue diagram, 178±181
Contact ratio, gears, 258±261
Contact stresses, 147±149
Continuity equation, 493, 503, 569
Contour equation method, 269
Contour, in structure, 197
Contour mapping, 707±712
Contour method, 229±241
Control surface, 447
Control theory

bandwidth, 637±638
Bode diagrams, 648
closed-loop systems, 649±672
connection of elements, 618±619
feedback linearization, 691±694
frequency-domain performance, 631±639
frequential methods, 669±672
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Control theory (continued)
Laplace transform, 707
linear feedback systems, 639±649
Lipaunov method, 688±689
logarithmic plots, 633±636
nonlinear systems, 678±695
Nyquist criterion, 641±647
P-controller performance, 651±655
polar plot, 632
pole-zero methods, 620, 649±669
robotic arm, 664±668
Routh±Hurwitz criterion, 640
signal ¯ow diagram, 712±714
signals and, 613±615
sliding controls, 695±700
stability and, 639±649
standard controllers, 650
state variable models, 672±677
steady-state error, 623±624
time-domain performance, 628±631
transfer functions, 616±618

Control volume, 447, 494±499
Controls, hydraulic, 580±594
Convection, heat, 446, 448, 451±454, 488±549

external forced, 488±520
external natural, 535±549
free, 535
heat transfer and, 488±555
heat transfer coef®cient, 489
internal ¯ow, 452
internal forced, 520±535
thermal boundary layer, 490
types of, 452
See also Heat transfer; speci®c parameters

Cooling, Newton's law of, 730
Cooling problem, 455
Coordinate systems, 95

cartesian, 58
cylindrical, 72±73
polar, 70
principal systems of, 459

Coriolis force, 72, 106, 109
Cosmic velocity, 725
Coulomb friction, 46±49, 346, 437
Coulombian damping, 391
Counterbalance valves, 587
Coupler, de®ned, 198
Couples

bound vectors and, 34
equivalent systems, 36±39
force and, 37
moments and, 30±40
simple, 34
statics and, 34±36

torque of, 34
Cracking pressure, 580
Cramer criteria, 415
Crank, de®ned, 146, 198
Crank slider mechanism, 227±228
Critical damping, 631
Critical load, 165, 167
Cross product, 9±10, 223
Cryogenic systems, 446
Curl, 87, 502
Curvature, 15±17

correction factor, 286
de®nition of, 136
differential equation for, 720±721
envelope of, 758, 772
force and, 564
instantaneous radius of, 61
of plane curve, 152
of surface, 15±17

Curvilinear motion, 58±59
Cutting process, 440±444
Cylinders, 482, 575±577
Cylindrical bar, 481
Cylindrical coordinates, 72±73, 78±80, 87

D
D'Alembert's principle, 364

Newton's second law and, 226
rigid body and, 117

Damping
arbitrary, 346
coef®cients of, 418, 435
complex, 391
Coulombian, 391
critical, 352, 631
damping ratio, 348
dead zone, 347
differential equations for, 705
dry, 345±347
electric motors, 418
energy dissipated, 390
external, 390±391
internal, 391
linear, 391
matrix, 403
Newton's second law, 342
order, 629
oscillation decay, 351
overdamped system, 631
parametric, 391
transmissibility and, 371±372
underdamped system, 631
of vibrations, 343±359
viscous, 345, 347±352, 391, 398
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Dams, forces on, 564
Dead zone, 347
Dean±Davis scale, 322
Decay phenomena, 723, 730
Decomposition method, 15±17
De¯ection analysis

beams and, 131±132, 152±153, 163, 726
Castigliano's theorem, 163±164, 286
central loading, 165±169
columns and, 165±171
compression and, 165
compression members, 171
deformation and, 3, 160±163, 389
eccentric loading, 170
expression for, 157
impact analysis, 157±159
maximum values, 158
springs and, 150±151
stiffness, 149±172
strain energy, 160±162
See also Beams

Degrees of freedom, 190
coordinates and, 193
®nite, 385
kinematic pairs, 199
number of, 199±200

Delay term, 459
Denavit±Hartenberg algorithm, 680
Derivative vectors, 12
Determinants, 11
Diametral clearance, 300
Diametral pitch, 257
Difference, of vectors, 5
Differential, automotive, 267±268
Differential equations

constant coef®cients in, 835±837
existence of solutions, 766
integrable, 726±766, 823±824
linear, 744±814, 825±837
method of elimination, 819±822
ordinary equations, 716±726
systems of, 816±837
uniqueness of solutions, 766
See also speci®c concepts, methods, types

Differentials, gears, 267±270
Diffusion processes, 451

law of, 459
molecular, 457, 498
thermal, 457±459, 461, 488, 499

Dimensional analysis, 499, 565±567
Direct-operated relief valves, 580
Direct-way transfer function, 621
Dirichlet conditions, 358, 461±462
Discontinuity, surfaces of, 462

Dissipation, 398
Distance, of points, 13
Distortion-energy theory, 283
Distribution coef®cients, 412
Distributive law, 6
Divergence, 493
Dobrovolski formula, 199
Dog trajectory, 724
Door hinges, 290
Dot product, 4, 9
Driver link, 200, 203, 212
Driver torque, 239
Dry damping, 345, 346±347
Dry friction, 46±49, 346, 391, 437
Duct ¯ows, 528, 531±535
Ductile materials, 175
Duhamel integral, 368
Dyad structures, 201

links, 202
RRR, 209, 212, 214
RRT, 205, 209
RTR, 209, 215
TRT, 216±222

Dynamics
angular impulse, 94
angular momentum prinicple, 113±114
angular motion, 55, 98±99
angular units, 53
cartesian coordinates, 76
center of mass, 111±112
conservation effects, 84±87
curvilinear motion, 58
cylindrical coordinates, 78±79
D'Alembert's principle, 117
dynamical similitude, 567
energy and, 80
equations of motion, 115±116
impact, 90±93
impulse, 87±88
inertial reference frames, 75
instantaneous center, 100±101
kinematics of a point, 54±73
linear, 89
momentum, 87±89, 94
motion types, 95±96
Newtonian gravitation, 75
Newton's laws. See Newton's laws of motion
normal components, 59±72, 77
of particles, 74±94
planar kinematics, 94±110
polar coordinates, 78±79
power, 81±83
relative acceleration, 102
relative motion, 73
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Dynamics (continued)
relative velocity, 97
of rigid body, 94±117
rotating unit vector, 56
rotation about axis, 96
straight line motion, 57
tangential components, 59±72, 77
work and, 81±83
See also speci®c concepts, models

E
Eccentric loading, 170±171
Eckert solution, 519
Effective dimension, 176
Eigenvalues, 683, 685
Einstein's theory of relativity, 75
Elasticity

constants of, 386±390, 435
Castigliano theorem, 163±165
deformation and, 3, 160±163, 389
impact and, 90±93
kinematics of, 419±429
modulus of, 128
springs and, 342
strain and, 127±128, 160±163
subsystems, 419±429
theory of, 726
See also speci®c parameters, models

Electric motors, 418, 425
Electrical oscillatory circuit, 725
Electromagnetic radiation, 454
Electronic gas, 460
Elimination, method of, 819
Emissivity, 454
Emulsions, 702
End conditions, 165, 168
Endurance limit, 173±177
Energy

balance, 496±499
conservation of, 84±85, 447
equation, 571
generation of, 445
kinetic, 81±84, 93, 396±397, 568
potential, 81±84, 160, 570
thermodynamics, 446±455
See also speci®c systems, parameters

English units, 257±258
Enthalpy, 499, 507
Entrance region effects, 534±535
Entropy transfer, 449
Envelope, of curves, 758, 772
Epidemics, model of, 724
Equilibrium, 40±45, 128±131

body in, 40

conditions of, 40
equations of, 40±42
free-body diagrams, 44
Newton's second law, 117
nonlinear systems, 687
static, 40±44, 129, 130
stress, 128±130
supports, 42±43
unstable, 167
See also speci®c systems

Equivalence relations, 35±36
Equivalent systems, 35±40
ER ¯uids, 702
Escape-velocity problem, 763
Euler columns, 167±168
Euler gamma function, 812
Euler linear equations, 794
Euler number, 567
Euler's equation, 341
Euler's theorem, 99
Exact differential equations, 742
Existence, of solutions, 766, 770
Extended surfaces, 468±471
External convection, 535±549
External moments, 129

F
Fail-safe valves, 582
Falkner±Skan solution, 519
Family, of mechanisms, 199
Fatigue

endurance limit, 173±177
fatigue strengths, 175, 247
¯uctuating stresses, 178
life fatigue diagram, 178±180
in materials, 173±187
randomly varying loads, 181±182

Feedback, 613, 619, 691±694
Film coef®cient, 452
Film conductance, 452
Film temperature, 539
Filters, hydraulic, 606±607
Finish, of surface, 175
Fins, 468±471
Fixed stars, 76
Fixed support, 43
Flexibility coef®cient, 393
Flexible elements, 149
Flexure, 135±139
Float regulator, 613
Flotation, 565
Flow conditions, 519
Flow con®gurations, 549
Flow-limiting controls, 592±595
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Flow nets, 570
Fluctuating stresses, 173, 178
Fluid capacitance, 705
Fluid dynamics

absolute gage pressure, 572
Bernoulli's theorem, 573±574
bulk modulus of elasticity, 562
buoyancy, 565
capillarity, 562
dimensional analysis, 565±567
®lters, 606
¯otation, 565
¯ow-limiting controls, 592±594
¯uid characteristics, 560
¯uid inertia, 705
¯uid power transmitted, 604
gage pressure, 572
hydraulic cylinders, 575±577
hydraulic motors, 598±600
hydraulic similitude, 565±567
hydraulics, 572±607
hydrostatic forces, 564
piston motion, 604
pressure controls, 580±591
pumps, 595±597
representative system, 607
speci®c weight, 560
standard symbols, 605
statics, 563
surface tension, 562
vapor pressure, 562
viscosity, 561

Fourier law, 451, 458, 461, 469
Fourier number, 475
Fourier series, 358
Frame, 193
Free-body diagrams, 44±46, 131, 135, 156, 159,

227
Free convection, 535
Free-®xed ends, 165
Free vector, 3
Frenet formulas, 65±70
Frequency, 341, 349
Frequency-domain performances, 631±639
Frequential methods, 669±672
Friction

angles of, 47±49
coef®cient of, 47±48, 346, 514
Coulomb's law of, 346
dry, 46±49, 391, 437
friction factor, 525, 527
inclined plane, 46
kinetic angle of, 49
kinetic coef®cient, 47±48

rolling, 438
sliding, 438±440
static coef®cent, 47
statics and, 46±47
torque, 398
vibrations and, 437±439

Froude number, 567
Fully developed ¯ow, 523±529
Functional equation, 716
Fundamental matrix, 829±830

G
g. See Gravitational constant
Gages, 572±574, 579
Gain margin, 648
Gamma function, 812
Gases

Brownian motion, 456
equation of state, 561
ideal, 451
perfect, 499
speci®c weights of, 561

Gauss error function, 487
Gear pumps, 595
Gears, 253±282

AGMA Class Number, 260
belts, 253
conjugate gear-tooth action, 254
contact ratio, 258±261
de®ned, 253
differentials, 267±270
epicycle trains, 262±265
force analysis, 270±275
heat treated, 260
idler, 261
interference, 258±261
mating, 255
ordinary trains, 261
pitch. See Pitch, gear
planetary train, 266, 272
power transmission ef®ciency, 253
spurs, 253, 425
strength of teeth, 275±282
tooth geometry, 253±258, 278

General motion, 190
Generalized coordinates, 399
Generating curve, 21
Geometric similitude, 566
Gerber criteria, 183
Gerotor pumps, 595±596
Goodman diagrams, 178, 183±185
Gradient, de®ned, 87
Grammian, of system, 776±777
Grashof number, 541
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Gravitational constant (g), 75
Gravitational pendulum, 679
Gray surface, 454
Grease, 321
Green's function, 804±807
Ground, de®ned, 193, 198
Growth phenomena, 723
Guldinus±Pappus theorems, 21±23
Gyration, 24
Gyroscopic effects, 383

H
Hadamard problem, 461
Hagen-Poiseuille ¯ows, 524, 526, 531, 550
Harmonic motion, 340, 345, 352, 358, 385
Heat transfer

absorption, 454, 466
Bessel functions, 482
boundary layers, 490, 502±505, 513
buoyancy-inertia balance, 541
capacitive thermal analysis, 476±477
coef®cient of, 452, 489, 505
conduction, 451±454, 456±472
convection, 451±454, 488±555
cylindrical, 481±482
differential heating, 551±553
duct ¯ows, 528, 531±535
entrance region, 534±535
equation for, 457±459
extended surfaces, 468±471
external natural, 535±549
®ns, 468±471
¯ow conditions, 519
¯ow con®gurations, 549
¯ux density, 446
fully developed ¯ow, 523±525, 528±529
heat diffusion equation, 457±458
heat function, 502
hydrodynamic entrance length, 521±523
inclined walls, 546
initial conditions, 461±462
integral method, 508±512
interface, 461±462
internal forced, 520±535
isotherms, 502, 516, 546±548
lumped capacitance method, 472±474
mechanisms of, 446
nonuniform temperature, 517
one-dimensional geometry, 481
plates, 516
pressure drop, 525±528
principles of, 445±555
radiation, 451±454
rate, 455

reservoirs, 464
scale analysis, 539±541
similarity solutions, 512±516
spherical, 482
streamlines, 501±502
technical problems of, 455
thermal boundary layer, 490±491, 537±539
thermal conductivity, 459±460
thermal diffusion, 448, 461, 499
thermal resistance, 463
thermodynamics, 446±455
total, 447
turbulence, 543±544
uniform heat ¯ux, 518
unsteady, 472±488
vertical wall, 542±543, 545±546
walls, 546±548
wide cavity case, 551
work rates, 447
See also speci®c effects, parameters

Heisler charts, 479
Helical spring, 285
Hertzian stresses, 147
Holomorphic function, 807±808
Holzer method, 407, 409±411
Homogeneous equations, 737, 740, 774
Homogeneous plane wall, 465
Hook stresses, 284
Hooke models, 407±411, 417, 435, 441
Hooke's law, 128, 135
Hoop tension, 564
Hurwitz criterion, 415
Hydraulics

absolute gage pressure, 572
accumulators, 601±604
actuators, 679
Bernoulli equation, 573±574
circuit symbols, 605±608
cylinders, 575±577
®lters, 606
¯ow-limiting controls, 592±594
¯uid dynamics, 572±607
gage pressure, 572
hydraulic diameter, 525±528
models, 566
motors, 598±600
piston acceleration, 604
power transmission, 604
pressure controls, 580±591
pressure gages, 579
pressure intensi®ers, 578
pumps, 595±597
representative system, 607
similitude, 565±567
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standard hydraulic symbols, 605
Hydro-cushioned valves, 583
Hydrodynamics, 437

boundary layer, 452, 489±490
entrance length, 521±523
®lms, 297
lubrication, 323
phenomenon, 437
problem of, 505
See also speci®c parameters, systems

Hydrostatics
®lms, 297
forces in, 564
lubrication, 323
pressure, 495
See also speci®c parameters, systems

I
I-beam section, 176
I-controller. See Integration controller
Ideal elements, 705
Ideal gas, 451
Ideal radiator, 454
Identi®cation method, 360
Idler, 261
Immersed bodies, 548, 549
Impact analysis, 157±160

conservation in, 90
de¯ection stiffness, 157±159
direct impact, 90±93
oblique impact, 93±94
perfectly plastic, 90

Impedance, 369±370
Impermeable conditions, 503
Impulse, 87±88

angular, 94
Impulse function, 614
Inclined plane, 46
Inclined walls, 546
Incompressible ¯ow assumption, 501
Incompressible substances, 451
Inertia matrix, 403
Inertial force, 117, 224±226, 567
Inertial reference frames, 75±76, 108±111
In¯uence function, 786
Initial conditions, 461±462, 718
Input-output model, 675
Input-state linearization, 692
Instantaneous center, 61, 100±101
Insulation problem, 455
Integrable equations, 726±766, 823, 835
Integral method, 508±512
Integrating factors, 743
Integration constant, 153

Integration (I) controller, 651
Intensi®ers, 578
Interfaces, 130, 461±462
Interference gears, 258±261
Intermediate-length columns, 169±170
Internal damping, 391
Internal forced convection, 520±535
Internal forces, 129
Internal gears, 260
Internal heat term, 459
Internal moments, 129
International (SI) system, 53, 74, 257, 560
International Standard Organization (ISO), 245
Invariants, 797
Involute, of circle, 254
Irrotational ¯ow, 568
ISO. See International Standard Organization
Isoclines, 720
Iso¯ux wall transfer, 546
Isogonal trajectories, 721
Isothermal transfer, 516, 532±534, 546, 548

J
Jacks, screw-type, 248
Jacobian matrix, 682
Johnson formula, 169
Joints, 192
Joule heating, 458, 466

K
Kelvin scale, 449
Kinematic chains, 223

class, 192
closed, 197±198, 230
decoupling of, 229
degrees of freedom, 199
elastic subsystem, 419±429
equilibrium conditions, 231
force closed, 197
full, 193
higher, 196
lower, 196
mixed, 198
moment equation, 239
monocontour, 230
open, 198
order of, 197
pairs, 191±198, 228±237
pin, 234, 236, 237
rami®cation point, 232, 236
reaction forces, 235±236
rotation, 233
slider, 234, 235
translational, 233, 235
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Kinematics
chains. See Kinematic chains
diagrams of, 192
planar. See Planar kinematics
of points, 54±73
of rigid body, 94±110
similitude, 566
viscosity, 503, 562
See also speci®c parameters

Kinetic energy, 81, 396±397
change in, 81, 84
material points, 397
perfectly elastic impact, 93
principle of, 568

Kinetostatics, 223±229
contour method, 229
free-body diagrams, 227
inertia moment, 224±226
moments of force, 223
reaction forces, 227

L
Lagrange equations, 402, 757
Lagrange method, 396±398, 435, 783, 829±835
Lagrange model, 399
Laminar ¯ow, 491
Laplace transforms, 615, 707±713
Lathes, 432
Lattice vibrations, 457, 460
Lead, 245
Leakage equation, 732
Legendre equation, 800, 810
Leonhard criteria, 415
Lewis equation, 276
L'Hospital rule, 352
Liapunov methods, 689±691
Light, velocity of, 75
Limit cycles, 685
Line, motion of, 55
Line of action, 2
Linear damage rule, 181
Linear damping, 391
Linear equations

constant coef®cients, 790±796, 835±845
differential equations, 744±814, 825±837
homogeneous, 789±792
integrable combinations, 835
nonhomogeneous, 782±789, 792±794
second-order, 796±816
systems of, 825
zeros of solutions, 801

Linear hydraulic motor, 419
Linear impulse, 87
Linear momentum, 74, 87, 89±90

Linear operator, 777, 826
Linear springs, 83, 150
Linear systems, 342

degrees of freedom, 341, 385±416
feedback in, 639±649
torques in, 342

Liouville formula, 777, 796, 798, 830
Lipschitz condition, 817
Loading

area and, 20
central, 169±170
centroid and, 20
diagram, 156
eccentric, 170±171
intensity, 132
load factor, 19±20
loading curve, 19±20
randomly varying, 181±183
See also Stresses

Logarithmic plots, 633±636
Long columns, 165±168
Loop structures, 197
Lorentz constant, 460
Lubrication

®lms, 297, 437
hydrodynamic, 323, 326±328
hydrostatic, 323
nonpetroleum-base, 322
sliding bearings, 318±328

Lumped capacitance models, 472±475
Lumped masses model, 393±394, 417, 430, 432

M
Mach number, 567
Machines

components of, 243±328
gears, 253±275
mounting of, 435±436
Reuleaux de®nition, 198
rolling bearings, 297±308
screws, 244±247
sliding bearings, 318±328
springs, 283±296
as a system, 416±417
vibrations of, 416±444
See also speci®c types, concepts

Macroscopic motion, 488
Magni®cation factor, 363±365
Manometers, 564
Mass, 74
Mass center, 16±17
Mass conservation principle, 493, 523, 537
Mass-damper-spring system, 679
Mass geometry, 392
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Material points, 392±397
Materials

beams. See Beams
Castigliano theorem, 163±164
central loading, 165±169
compression, 165
constant life fatigue diagram, 178±180
contact, 147±148
de¯ection analysis, 149±171
eccentric loading, 170
elastic strain, 127
endurance limit, 173±177
equilibrium, 128±130
fatigue, 173±187
¯exure, 135±138
¯uctuating stresses, 178
impact analysis, 157±159
mechanics of, 119±187
Mohr's circle, 121±124
randomly varying loads, 181±182
shear moment, 131
shear stresses, 140±142
short compression members, 171
singularity functions, 132, 153
spring rates, 150±151
strain energy, 160±162
stress, 120±147
torsion, 143±146
See also speci®c concepts, methods

Maximum principle, 801
Mayer's law, 451
Mechanical impedance, 369±370
Mechanisms

Cartesian method, 202±207
contour method, 229
de®ned, 198
degrees of freedom, 199
differential equations for, 703±707
free-body diagrams, 227
inertia moment, 224±226
kinematic pairs, 191±198
kinetostatics, 223±229
materials and, 119±197
mechanical models, 386±392
mobility, 190±191, 199
moments of a force, 223
oscillators, 725
planar, 200
position analysis, 200±208
reaction forces, 227
theory of, 189±240
vector loop method, 208±210
velocity acceleration analysis, 211±216
See also speci®c topics, types

Melting, 518
Metric threads, 245
Milling machine, 432
Minimum moment, 34
Mobility, 190±191. See also Degrees of freedom
Modifying factors, 173
Module, de®ned, 257
Mohr-Maxwell method, 389
Mohr's circle, 121±125
Molecular diffusivity, 457, 498
Moments, 131±132, 223

about a line, 31±32
bending, 132
of bound systems, 30±33
couples and, 30±40
de®ned, 223
external, 129
®rst, 13, 17±21
internal, 129
kinematic pairs, 239
minimum, 34
statics and, 30±32
sum of, 115, 226
of systems, 30±33

Momentum, 87±88
angular, 94
balance, 493±496
boundary layer, 504
equation for, 537
¯ux, 495
impulse and, 87±88
linear, 74
principle of, 568
streamwise, 503

Monatomic gases, 460
Moore test, 173±177
Motion. See Newton's laws of motion
Motor oils, 321
Motors, 598±601
Multileaf springs, 292±296
Multiple-threaded screw, 245

N
Natural frequency, 345
Navier-Stokes equation, 493±496
Net momentum ¯uxes, 495
Neumann condition, 461±462
Neutral axis, 135
Newtonian equation, 567
Newtonian ¯uids, 495, 561
Newtonian gravitation, 75
Newtonian reference frame, 74±76, 108±111
Newton's, law of cooling, 730
Newton's, law of viscous ¯ow, 318±323
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Newton's laws of motion
second law, 74±77, 80, 87, 108±112, 117,

224±226
cartesian coordinates, 76±77
D'Alembert's principle, 226
damping and, 342
equilibrium equation, 117
reference frames, 74±76, 108±111
relative motion, 111
third law, 89, 112, 130
See also Dynamics; speci®c systems

Newton's method, 392±396
No-slip conditions, 503, 524
Nonautonomous system, 686
Nondimensional temperature, 478
Nonhomogeneous linear equations, 784
Nonlinear controllers, 691±695
Nonlinear equations of motion, 346
Nonlinear springs, 150
Nonlinear systems, 678±691
Normal component, of force, 59±73, 77±78
Normal stress, 120, 135±139, 494, 495, 726
Normal vector, 68
Null entropy interaction, 449
Numerical methods, 171
Nusselt number, 507, 515, 540
Nuts, 244
Nyquist criterion, 415, 641±647, 711

O
Oberbeck±Boussinesq approximation, 539
Octahedral shear stress, 127
Oils, 297, 322
Oldham coupling, 599
Open-loop control system, 620±621
Operator notation, 106
Operatorial equation, 716
Orientation, 4, 12, 70
Orthogonal vectors, 7, 19
Oscillations. See Vibrations
Osculating plane, 66±67
Overdamped system, 631
Overheating, 518
Overshoot, 628, 654

P
P-controller. See Proportional controllers
P-discriminant curve (PDC), 772
Pappus theorems, 22±23
Parabolic formula, 169
Parabolic mirror, 738
Parachutes, motion of, 748
Parallel-axis theorem, 25±27
Parallel forces, 38

Parametric damping, 391
Partial differential equation, 716
PD controller. See Proportional-derivative

controller
PDC. See P-discriminant curve
Peltier effects, 466
Perfect gas, 499
Perfectly elastic impact, 93
Perfectly plastic impact, 90
Periodic stress, 173
Petroff equation, 323
Phase margin, 648
Phase plane method, 681±682
Phase space, 817
Piezometers, 564
Pin support, 42
Pinion gear, 255
Piston-type accumulator, 602±604
Pitch, gear

diameter, 255, 257, 271, 298
English units, 257
line velocity, 271
pitch point, 270
pitch circles, 255±256
screws, 244
See also Gears

Planar kinematics, of a rigid body
angular momentum and, 113±114
angular velocity vector, 98±99
D'Alembert's principle, 117
equations of motion, 115±116
instantaneous center, 100±101
motion types, 95±96
point relative to body, 103±110
relative acceleration and, 102
relative velocity and, 97
rotation about axis, 96

Planar mechanisms, 200±202
Planar motion, 59±64, 115±117, 397
Planar supports, 42±43
Plane of symmetry, 15
Plane wall, 465, 467
Plastic impact, 90
Plastic springs, 283
Pohlhausen method, 516, 519
Pohlhausen-von Karman method, 508
Point, kinematics of, 54±73, 103±110
Points, centroid of, 13±15
Poisson equation, 527
Poisson problem, 524±525
Poisson ratio, 128, 297
Poisson relations, 104
Polar coordinates, 78±80

binomial vectors, 70
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coordinate systems, 70±71
orientation and, 70
potential energy, 85
velocity in, 70

Polar diagram, of vibration, 416
Polar moment, of area, 27±28
Polar plot representation, 632±633
Pole-zero methods, 620, 649±669
Poles, of system, 621
Polytropic gas equation, 603
Position analysis, 200±208
Position, of a point, 54±55
Position vector, 12±13
Potential energy, 84, 570

polar coordinates, 85
of spring, 85±86
strain energy and, 160
of weight, 86±87

Power, 572
de®ned, 82
generation of, 445
transmission of, 253, 598±600, 604
work and, 81±83

Power screws, 247±253
Prandtl number, 491, 507, 511, 516, 540
Prandtl±Pohlhausen analysis, 520
Presses, 248
Pressure

angle, 256
controls, 580±591
de®ned, 563
gages, 579
hydraulic diameter, 525±528
intensi®ers, 578
pressure drop, 525±528
valves, 591

Principal axes, 28±30
Principal directions, 122
Product of area, 24

parallel-axis theorem, 27
principal axes, 30
second moments and, 24

Product, vector, 4±6
Projectile problem, 77
Proportional (P) controllers, 650±655
Propulsion, 445
Pumps, 595±598
Pure shear, 120
Pure substance, 450

Q
Quadratures, 726
Quasicircular frequency, 349

R
Radian unit, 53±54, 341
Radiation, 446, 448, 451±454
Radiator, 468
Radioactivity, 729
Radius of curvature, 61
Raimondi±Boyd charts, 328, 334
Rami®cation point, 236
Random vibrations, 456
Randomly varying loads, 181±183
Rayleigh function, 398
Rayleigh group, 540
Rayleigh method, 379, 411±414
Reaction forces, 227±229, 235
Reactions, in supports, 42
Reciprocating machines, 352
Rectangular section beams, 142±143
Rectangular vectors, 7
Recurrence relations, 409
Redundancy, degree of, 45
Reference frames

cartesian coordinates, 7, 58
®xed stars, 76
inertial, 75±76, 108±111
moving, 107
Newton's second law and, 76
relativity and, 73±75
rigid body motion, 95
secondary, 111
types of, 95
See also Coordinate systems

Regularity, 461±462
Relative acceleration, 102
Relative motion, 73
Relative velocity, 97
Relativity, theory of, 73±75
Relaxation phenomenon, 728
Relief valves, 580, 582, 588±590
Repeated stress, 173
Representative system, 598±600
Resistivity, of metal, 460
Resolution, of vectors, 6
Resonance, 405

curve of, 355
frequency of, 637
harmonics and, 358

Rest point, of system, 819
Restitution, coef®cient of, 92
Resultants, vector, 5, 19
Reverse free ¯ow, 585±587
Revolution, 21, 23
Reynolds equation, 328
Reynolds number, 505, 524, 567
Riccati equation, 751, 798
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Rigid bodies
acceleration of, 102±103
angular momentum, 113±114
angular velocity, 98±100
D'Alembert's principle, 117
de®nition of, 95
dynamics of, 111±117
equations of motion, 115±116
instantaneous center of, 100±101
motion types, 95±96
planar kinematics of, 94±110
point relative to, 103±110
reference frame, 95
relative velocity of, 97±98
rotation about axis, 96

Rigid element, 149
Rigidity, modulus of, 128
Robin condition, 461±462
Robotics, 664±669, 680, 694
Rocker, de®ned, 198
Roller supports, 42
Rolling bearings, 297±318
Rolling friction, 438
Rolling slider, 437±438
Root-®nding techniques, 171
Rotation, 190, 352, 397, 418

about axis, 96
angular speed, 380
critical speed, 380±384
instantaneous axis of, 99
kinematic pairs, 233
shafts, 145, 380±384, 725, 726
torque, 145
unbalance and, 356
unit vector, 56±57

Rotational damper system, 702
Rotational spring, 705
Rotors, 409±411
Rounded-®xed ends, 165
Rounded-rounded ends, 165
Routh±Hurwitz criterion, 640
Routh stability criteria, 415
RRR dyad, 209, 212±214
RRT dyad, 205
RTR dyad, 209, 215
Runge±Kutta scheme, 513

S
S±N diagram, 173
S-plane contours, 702±712
Saddle points, 684
SAE. See Society of Automotive Engineers
Saybolt seconds, 319
Saybolt viscosity, 319

Scalar product, 9, 11
Scalars, 4, 6±7
Scale analysis, 499±501, 505±508, 539±541
Scaling, 499
Schlichting method, 522
Screws

Acme threads, 251
diameter, 244
ef®ciency, 250
jacks, 248
multiple-threaded, 245
pitch, 244
power, 247±253
self-locking, 250
square threads, 251
uni®ed system, 246
See also speci®c types, threads

Secant column formula, 171
Second moments

area, 24±25, 29
maximized, 29
parallel-axis theorem, 26
transfer theorem, 26±27

Section modulus, 137
Self-adjoint equation, 797±798, 800
Self-alignment, 381
Self-centering, 381
Self-locking screws, 250
Self-similar pro®les, 512
Semi-in®nite solid bodies, 487
Sense, of vectors, 4, 12
Separable equations, 735
Separable variables, 726
Sequence valves, 585, 590±591
Settling time, 655
Shape factor, 506
Shaper mechanism, 210
Shaping machine, 399
Shear, 131±132

beams and, 140±142
bending moment, 132
direct shear effects, 286
helical spring, 285
loading, 162
moment, 131
multiplication factor, 286
octahedral, 127
pure, 120
shear layer, 541
singularity functions, 132
strain energy, 162
stress, 120, 140±142, 285, 490, 494
viscous ¯ow and, 319

Shock absorbers, 347
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Short compression members, 171±172
SI units, 53, 74, 257, 560
Signal ¯ow diagram, 712±714
Signals, control theory and, 613±615
Signi®cant digits, 52
Silicone oils, 322
Similarity analysis, 512±519
Similarity variable, 542
Simple couple, 34
Singular integral curve, 772
Singular point, in phase plane, 682±683
Singular solutions, 772±774
Singularities, of system, 621
Singularity functions, 132±135, 153±157
Sinusoidal input, 615
Sinusoidal stress, 179
Size factor, 176
Skeleton diagram, 192
Slenderness ratio, 167, 169, 172
Slider joints, 436±437
Sliding bearings, 297
Sliding controls, 695±703
Sliding friction, 438±440
Sliding pairs, 234±235
Society of Automotive Engineers (SAE), 320
Soderberg criterion, 183
Solar energy, 445
Sommer®eld number, 325
Space, de®ned, 52
Sparrow analysis, 522
Spatial motion formulas, 65±70
Speci®c energy, 498
Speci®c enthalpy, 499
Speci®c heat, 450, 459
Speci®c internal energy, 450
Speci®c weight, 560
Spheres contact radius, 147
Spheres, heat transfer, 482
Spool-type controls, 582±584
Springs, 150, 283±296

Belleville springs, 296±297
compression of, 150±152
distortion-energy theory, 283
elastic constant for, 388
elastic force of, 374±375
ends, 288
extension, 284
helical, 284±290
linear, 83, 150
linear characteristic, 374±375
mass-damper system, 617±618
materials for, 283
mechanical work and, 374±375
multileaf, 292±296

nonlinear, 150
potential energy, 85±86, 374±375
rates, 150±151, 287±288
spring constant, 150, 287, 388
spring index, 286
stiffness, 150, 342, 386
tension, 150±152
torsion, 150±152, 290±293

Spur gears, 253, 425
Square threads, 247±248, 251
Stability

analysis of, 414±415
criteria for, 415
of linear feedback systems, 639±649
of nonlinear systems, 685±688
vibration and, 414±415

Standard controllers, 650
Standard hydraulic symbols, 605
State variable models, 669±672
Static coef®cient of friction, 47
Statics

centroids, 12±28
couples, 34±36
equilibrium in, 40±44, 129, 130
¯uid dynamics, 563
friction and, 46±47
loading, 303±304
moments, 30±32
surface properties, 12±28
vector algebra for, 1±12
See also speci®c concepts, methods

Steady-state error, 623±628
Steam turbine, 333
Stefan-Boltzmann law, 454
Step input, 615
Stick-slip phenomenon, 438±439
Stiffness, de¯ection and, 149±172
Stiffness matrix, 393, 403
Straight line motion, 57±58, 77
Strain energy, 127±128, 160±162
Strains, principal, 128
Streamfunction, 501
Streamlines, 491, 501±502, 569
Streamwise momentum equation, 503
Strengths, of points, 13
Stress, 120

alternating, 173, 178
beams and, 139±143
components of, 120±121
contact, 147±149
elastic strain, 127
equilibrium and, 128±130
¯exure and, 135±138
¯uctuating, 178
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Stress (continued)
materials and, 120±147
Mohr circle, 121±124
normal, 120, 726
periodic, 173
principal, 122
randomly varying, 181
shear, 120, 131, 140±142
singularity functions, 132, 153
sinusoidal, 179
three-dimensional, 120
torsion, 143±146
triaxial, 125±127
uniformly distributed, 120

Stretching effect, 495
Sturm comparison theorem, 801
Superposition, 358, 368, 385, 487, 782, 828
Supports, 42±46
Surface factor, 175
Surface of revolution, 21
Surface properties, 12±28
Surface tension, 562±564
Swimmer problem, 738
Switching surface, 696
Symbols, standard, 605
Symmetry, axis of, 24
System group, 200
Systems, of equations, 816±837

T
Tangent vector, 68
Tangential component of force, 59±78
Taylor approximation, 401, 458, 469, 493
Temperature, 446, 456, 478. See also Heat transfer
Tensile testing machines, 248
Tension, spring rates, 150±152
Tension load, 120
Tension moment, 409
Thermal boundary layer, 489±491, 537±539
Thermal time constant, 473
Thermodynamics, 446±455

equilibrium in, 448
®rst principle of, 447
heat transfer, 446
second principle of, 449
See also Heat transfer

Thermometer, 449
Thomson effects, 466
Threads, 247

Acme, 247
fasteners, 244
fatigue strengths, 247
ISO and, 245
metric, 245

right hand assumption, 245
screws, 244
uni®ed series, 245, 246

Three-dimensional supports, 44
Time, de®ned, 52
Time derivative, 12
Time-domain performance, 628±631
Torque, 67±68, 143±147

couple and, 34
damping, 342
de®ned, 223
differentials, 268
elastic strain, 342
formula, 69
friction, 398
rotating shaft, 145
spring rates, 150±152
stress and, 143±146
technological, 272
torsion springs, 290
vector, 143
wrench, 36
See also Moments

Total differential equations, 742
Transfer functions, 613±618, 707
Transfer theorems, 25±27
Transitivity, 36
Translation, 190
Translational pair, 233, 235
Transmissibility coef®cient, 373
Transmission systems, 679
Transport mechanisms, 452
Transport theorem, 106
Trigonometric identities, 28
Triple product, vector, 11
TRT dyad, 216±222
Turbulence, 491±492, 543±544
Twist, angle of, 143

U
Undamped circular frequency, 345
Underdamped system, 631
Uni®ed threads, 245±247
Uniform body, 17
Uniform ¯ow, 503, 569
Uniform heat ¯ux, 518
Uniformly distributed stresses, 120
Uniqueness of solutions, 766, 770
Uniqueness theorem, 501
Unit conversions, 53
Unit load, critical, 167
Unit vectors, 4

angular motion of, 56
binomial vectors, 70
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cartesian, 62
determinant form, 11
normal, 60
orthogonality of, 67
rotating, 56±57
tangent direction, 60
time derivative of, 56

Units, systems of, 74, 560
Universal constant, of ideal gas, 451
Universal function, 478
Universal gravitational constant, 75
Unsteady conduction, 472±488

V
Vacuum, de®ned, 563
Valves

check, 592±594
compound, 588±590
counterbalance, 587
hydraulics, 580±592
hydro-cushioned, 583
pressure-reducing, 591
relief, 580, 582, 588±590
sequence, 585
spool-type, 584
venting, 590

Vane pumps, 597
Vapor pressure, 562
Variable separation method, 478
Variable structure systems, 700±703
Variation of parameters, 783, 829±835
Vectors

addition, 4
angle between, 7±8
angular velocity, 98±99
associativity and, 6
bound, 3
characteristics of, 2
commutativity and, 6
cross product, 9±10
derivative of, 12, 106
direction of, 2
distributivity and, 6
equality of, 4
®elds, 501
free, 3
functions, 12
line of action, 2
magnitude of, 2
orientation of, 2
point of application of, 3
position, 12±13
position analysis, 208±210
representations of, 2

resolution of, 6
scalar product, 9
scalars and, 4
sense of, 2
statics, 1±12
transmissible, 3
triple product, 11
unit, 4, 11, 56±60, 62, 67
zero vectors, 4

Velocity, 218, 269
acceleration analysis, 211±222
de®ned, 52
of a point, 54±55
polar coordinates, 70

Velocity head, 572
Venting valve, 590
Veresceaghin method, 390
Versor. See Unit vectors
Vibrations

actuator subsystems, 418
arbitrary exciting force, 358±359
bending and, 393
centrifugal exciting force, 356±357, 364
conservative systems, 375
cutting process, 440±443
damping and, 340±369, 375±379
elastic subsystem, 419±437
energetic aspect, 374±379
equation of, 725, 791
equation of motion and, 342
®nite degrees of freedom and, 385±407
free, 340, 342±352
free undamped, 343±345
friction process, 437±439
harmonic motion, 340
Holzer method, 409
isolation mountings, 283
isolation of, 370±374
linear shafts, 429
machine tool, 416±444
magni®cation factor, 365
mechanical impedance, 369
mechanical models, 386±391
natural frequencies, 407±415
nonharmonic exciting force, 358
with one degree of freedom, 374±379
phase angle, 364
polar diagram, 416
rotating shafts and, 374±379
self-excited, 441
simple harmonic, 359±364, 375
stability, 414±415
steps for solving problems, 385
superposition of, 385
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Vibrations (continued)
system model, 404±405
theory of, 339±444
transmissibility of, 370±374
undamped, 352±359, 377

Viscometer, 319
Viscosity, 318±323

absolute, 319
boundary conditions, 503
coef®cient of, 342
damping, 342, 345, 347±352, 391, 398
dissipation, 498
dynamic, 319
¯uid dynamics, 561
kinematic, 319, 503
of liquids, 562
resistance force, 342
shear stress, 495
temperature and, 562
unit of, 319
viscous ¯ow, 318±323

Volumetric expansion, 539

W
Wall

friction coef®cienct, 490, 506, 517
heat ¯ux, 518
no-slip conditions, 524
nonuniform temperature, 517
shear stress, 490, 505
temperature conditions, 503
unheated starting section, 516

Wear load, 279
Weber number, 568
Weibull equation, 311
Weight, 83±87
Wide cavity case, 551
Wide channel limit, 549
Wiedemann±Franz law, 460
Work, 80±84, 450
Wrench, 36, 38±40
Wronskian determinant, 776±779, 796, 829±831

Y
Yielding line, 185
Young modulus, 419

Z
Zeebeck effects, 466
Zero vectors, 4
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