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INTRODUCTION

I Designation of the handbook The purpose of this
baok 1s twofald firstly, 1t 1s designed for quick reference
to mathematical concepls (to find out what a tangent s, to
compute percentages, to recall formulas for the roots of a
quadratic equation, etc) All definitions, rules, formulas,
and theorems are supplied with examples Where required,
hints and suggestions are given as to the use of a rule or
how lo avord common mistakes, and so forth

Secondly, the author believes that this handbook can
serve 4s a manual for reviewing the essentials of mathematics
and even as a first introductory course 1n 1ts practical ap-
plications

2. Handbook and textbook An attempt has been made to
combine the merits of both books in one text That this has
been successful 1s evident from numerous letters from the rea-
ders, most of whom uscd 1t as a textbook True, this hand-
book differs radically fiom an ordinary school textbook,
wheie, especially 1n the senior classes, the cmphasis 1s placed
on reasoning facts are subordinated to logic This at any
rate 1s how the student regards the process. In this book,
the leading role 1s played by factual material. This does not
in the least mean that the reasoning process 1s absent Deri-
vations of formulas are given, but only on occaston, as,
for enample, when 1t is necessary to stress the central idea
of a given section or to overcome any doubts as to the vali-
dity of a result (say, when dealing with operations involving
complex numbers) In deciding whether to keep a proof or
omit 1t the author was guided by his own teaching experience

3, How to use the handbook. For quick reference, use
the extensive index at the back of the book If the user has
forgotlen the exact name of a rule, formula, or mode of solu-
tion, he has a detailed table of contents at his disposal 1n
the front

We strongly advise the user to follow up any additional
references he may encounter when 1nvestigating a term Also,
much useful nformation can be gained by reading through
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the entire section containing the term or concept he 15 inte-
rested 1n
It 1s wise to pay careful attention to the historical surveys
contatned in each division They form an integral part of
the book and contribute greatly to a deeper understanding
of the subject
The reader who desires to use this manual as a textbook
should pay particular attention to the worked examples Any
proofs that are omitted in the handbook can be filled out by
reference to a textbook on the subject erther at the same
time or later However, 1t 1s well to bear in mind that
neither handbook nor textbook alone suffices to give the
reader a knowledge of the subject he must use pencil and
ﬂaper“and work through the examples and problems for
imself.



1. Some Frequently Encountered Constants

TABLES

Quantity n log,o 2 || Quantity n loge nt
E3 3 1416{0 4971 S
on 6 2832/0 7982 ‘V"“ 0 6828 [T 8313
3n 9 4248[0 9743) 3 T
in 12 5664|1 0992 l/"" 0 8060 |1 9063
4 3 4 1888l0 6221f 3 /377 o
ne2 1 5708[0 196! l/ - 0 6204 1 7926
n3 1 0472(0 0200 3/nf o 1450 [0 3314
4 0 7854|T 8951 . 2 7183 |0 4343
6 0 5236/T 7150 o 7 3831 |0 scse
x 180 0 0175)7 2419 | sas7 |0 2171
2n 0 6366{T 8039 £
180 7 57 2958{1 7581 31/" | 3956 [0 1448
10800.71 {3437 7467(3 5363 o T 5657
548000 7 206264 81)5 3114] | ¢ o asmy L
= 1 e? 0 1353 1314
Im 0 3183]1T 5029 L
12x 0 1592/ 2018) YTe 0 6065 |l 7829
1 3n 0 1061{T 0257 31/1 T 07165 |T 8552
% 0 0796/2 9008| T
= T 6378
n 9 8696[0 0943 IM loge | 04343
20 19 7392(1 2953-=In 10f 2 3026 (0 3622
147 { 7725[0 2486 9 9
Vi 2 5066(0 3991 3t 6
Va3 1 25330 0981 ;: lig
Vin Q 56421 7514 ot 720
V2 0 7979{1 9019 71 5040
V3w 0 6772[T 9900 8 40,320
253 1 1284(0 0525, 091 s 3g§':§g
3 /7 1 t646f0 tas7f 10! 1628,
1/" m 39,916,800
2 479,001,600
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6. Logarithms of Trigonometric Functions

(see Sec 186—188, in the column headings log sin, log tan,
log cos, all characteristics are increased by 10)

o | llogsin| d |logtanf cd |logcot] d log cos
0 0| ~= | = | .. o 10 0000 090
1017 4637y (7 4637], 1o 5363 9'999998| 50
20[7 7648 I7607 7648 1761 2 2352 9 99999 | 40
30 (7 940512507 9409 12492 0591 9 99998 |30
408 0658 9698 0658 969' 9342 9 99997 120
50 {8 1627 7928 1627] 7921 8373 9 9939 10
1 08 2419 6698 2419 G?OI 7581 9 9999 0fa9
1018 3088 5808 3089 580‘ 6911 9 9909 50
208 3868} 118 8669 .\ ol 6331 9.9999 (40
3018 4179 4538 4181 457l 5819 1 9. 9999 30
4018 4637 “38 4638 “51 5362 9 9998 20
5018 5050} 47gi8 5053 gpoll 4947 | [ 9 9998 {10
2 08 5428 3488 5431 348l 4569 9.9997 0|38
1018 5776| 4|8 5779 49p|1 4221] | | 9 9997 |50
208 6097 3008 8101 300]! 3899 9 9996 40
30|18 6397 2808 6401 281 1 3599 1 9 9996 30
4018 6677| 5a3(8 6682 gealt 3318 9 9995 120
50 |8 6940| 5,418 6945| g4alt 3055] | | 9 9995 |10
81 018 7188[ yarl8 7194] 4aclt 2806) | | 9 9994 | 0]s7
108 7423( ,0o[8 7429| paqlt 2571) | | 9 9993 |50
20 (8 7645( oyp|8 7652| gya(l 23480 | | 9 9993 |40
30(8 7857| pof8 7865| 50o|1 2135) | | 9 9992 {30
4018 8059| 1gol8 8067| g1 1933 9 9991 |20
508 8251| 1g5l8 8261 |gql1 1739 ; | 8 9990 |10
4] 018 B438] 17718 8446] |gl1 1554 99989 | ofse
10(8 8613( 170|8 8624] 7([1 1376/ | [ 9 9989 |50
2018 8783] [43(8 8795/ g5t 1208] | | 9 9988 |40
30 |8 8946| 15g(8 8960 [5glt 1040 ; | 9 9987 |30
408 9104| [59[8 O118[ y54(1 0882) | | 9 9986 |20
508 9256| 147(8 9272] j4g1 0728 5 | 9 9985 |10
Jog cos] d flogcot| cd |logtan| d log sin °
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Continued
o | * flog sinf d |logtan] ed |logcol| d log cos
51 08 9403] 142 (8 9420] 1431 0580 , 9 9933 0] 85
1018 9545 137 {8 9563| 138 (1 0437| 9 9482 {50
20 {8 9682] 134 |8 9701 135 |1 0299 9 0981 {40
30 |8 9816f 129 |8 9836; 130 |1 0164] | 9 9980 |30
40 18 9945f 125 (8 9966[ 1271 0034] o 9 9979 |20
50 {9 0070] 1229 0093/ 1230 8807 9 9977 |10
6| Ofo 0192] L19]9 0216 120 (0 8784 9 9976 0] 84
109 0311|115 |9 0336[ 117 [0 9664] o 9 9975 |50
2019 0426) 11319 0453} 11410 9547} 9 9973 {40
301 0539[ 10919 0467 111]0 9433 , 9 9972 |30
40 |9 0648} 107 {9 0678} 108 )0 9322 o 9 9971 |20
5019 0755/ 104 [9 0786{ 1050 9214} 9 9969 |10
7f 09 0859 1029 0891) 104]0 9109| o 9 9968 0] 83
109 0961} 999 0995 1010 9005 Pl 9 9966 |50
20 )9 1060 9719 1096/ 980 8904f 9 9964 | 40
3019 1157 9519 1194] 97(0 8806 o 9 9963 {30
40 }9 1252 939 12911 940 8709 9 9 9961 |20
5019 1345/ 91j9 1385 93{0 BGIS 1 9 9959 {10
8| 0[9 1436 89)9 1478 910 8522] 4 9 9958 0|82
1009 1525) 8719 1569 89)0 8431] o 9 9956 |50
209 1612) 859 1658] 87 |0 8342 4 9 9964 |40
309 1697] 849 1745 8G[D 8255 2 9 9952 |ap
4019 1781 82(9 1831 B84|0 8169 o 9 9350 |»9q
50 19 1863 809 1915 82(0 8085} 2 9 9948 |10
9l 049 le43] 79(9 1997 81j0 8003 2 9 9946 of 8l
10 }9 2022| 7819 2078 800 7922 2 9 9944 |59
209 2100] 769 2158) 780 7842) 2 | 9 vg42 | ¢
30 [9 2176] 75)9 2236f 77(0 7764] 2 | 9 9940 |gg
40 19 2251 7319 2313 76j0 7687 2 9 9938 |gp
30 |9 2324 73|y 2389 740 7611 2 9 9936 |yg
10| 0]9 2397 7t|9 2463 730 7537 3 9 9934 0|80
1019 2468 7049 2536 73 |0 7464] 2 9 9931 |gp
20 |9 2538 68{o 2609 710 739(] 2 9 9929 | 49
30 |9 2606 689 2680] 70]0 73207 3 9 9927 |gp
409 2674| 66(9 2750 69)0 7250 2 9 9924 g9
5019 2740f &6|9 2819 680 7181 3 9.9922 |14
logcos| d [logcot| cd [logtan| d log sin ”
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Continued
° [ ¢ llogsinf d |logtan| ed [logcot] d fog cos
11| 09 2806 64 9 2887 66 0 7113 9 9 9519 079
10]9 2870 64 9 2953 67 0 7047 3 9 9917 |50
20(9 2934 63 9 3020 65 0 6980 2 9 9914 |40
309 2997 61 |9 3085 64 0 6915 3 9 9912 130
409 30568 61 9 3149 53 0 6851 2 9 9909 {20
509 3119 50 9 3212 63 0 6788 3 9 9907 |10
12| 0(9 3179 59 9 3275 61 0 6725 3 9 9904 078
109 3238 58 9 3336 61 0 6664 2 9 9901 |50
2019 3296 57 9 3397 61 0 6603] 3 9 9899 |40
30 (9 3353 57 9 3458 59 0 6542 3 9 9896 {30
409 3410 56 9 38517 50 0 6483, 3 9 9893 20
5019 3466 55 9 3576 58 0 6424 3 9 9890 |10
131 0|9 3521 54 9 3634 57 0 6366 3 9 9887 0f77
1019 3575 54 9 3§91 57 0 6309 3 9 9884 |50
209 3629 53 9 3748 56 0 6252, 3 9 9881 |40
3019 3682 52 9 3804 55 0 6196 3 9 9878 |30
409 3734 52 9 3859 55 0 6141 3 9 9875 (20
5019 3786 51 9 3914 54 0 6088 3 9 9872 (10
14| 09 3837, 50 9 3968 53 0 6032 3 9 9869 0176
1019 38871 .o |9 4021 53 |0 5979 3 | 9 9866 (50
20 |9 3937, 49 19 4074 53 0 5926 4 9 9883 |40
3019 3986 49 9 4127 51 0 5873 3 9 9859 |30
40)9 4035 48 9 4178 59 0 5822 3 9 9856 |20
509 4083 47 9 4230 51 0 5770 4 9 9853 |10
15] 09 4130 47 9 4281 50 0 5719 3 9 9849 0{75
1019 4177 6 9 4331 50 0 5669 3 9 9846 [50
2019 4223 % 9 4381 49 0 5619 4 9 9843 |40
3019 4269 5 9 4430} 49 0 5570 3 9 9839 |30
4019 4314 5 9 4479 8 0 5521 4 9 9836 |20
50 (9 4359 44 9 4527, 48 0 6473 4 9 9832 |10
16] 019 4403 M 9 4575 47 0 5425 3 9 9828 074
1019 4447 M 9 4622 47 0 5378 4 9 9825 |50
209 4491 42 10 4669 & 0 5331 4 9 9821 |40
3019 4533 43 9 4716 46 0 5284 3 9 9817 |30
409 4576 42 5‘17'5‘2‘6‘\0-5286 4 9 9814 |20
50 (9 4618 m 9 4808 45 0 5192 4 9 9810 |10
logcos| d |logcot] cd log tan| d log sin ¢
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Continued

° log sinf d {log tan| ed |logcot] d log cos

17| 09 4659 1 9 4853 45 0 5147 4 5 9806 0] 73
1019 4700 4 9 4898 45 0 5102 4 9 9802 |50
20 ]9 4741 40 9 4943 14 0 5057 4 9 9798 {40
309 4781 40 9 4987 44 0 5013 4 9 9794 |30
40 )9 4821 10 9 5031 14 0 4969 4 9 9790 |20
50 |9 486l 39 9 5075 43 0 4925 4 9 9786 {10

18 09 4900 39 9 5118 43 0 1882 4 9 9782 0|72
109 4939 38 9 5161 42 0 4839 N Y 9778 |50
20 (9 4977 38 9 5203 42 0 4707 ' 9 9774 {40
309 5015 37 9 5245 42 0 4755 5 9 9770 |30
4019 5052, 18 9 5287 49 0 4713 4 9 9765 |20
509 5090 36 9 5329 41 0 4671 4 9 9761 |10

15| 019 5126 37 9 5370 41 0 4630 5 9 8757 0] 71
109 5163 26 9 5411 50 0 4589 4 9 9752 |50
209 5199 6 9 5451 s 0 4549 5 9 9748 |40
3009 5235 35 9 5491 40 0 4509 4 9 9743 |30
4019 5270 36 9 5531 10 0 4469 5 9 9739 |20
509 5306 35" 9 5571 40 0 4429 4 9 9734 |10

20{ 09 534! 34 9 5611 a9 0 4389 5 9 9730 070
109 5375 24 9 5650 39 0 4360 1 9 9725 |50
20 [9 5409 34 9 5689 38 0 4311 5 9 9721 |40
309 5443 24 9 5727 39 0 4273 5 9 9716 30
40 (9 5477 33 9 5766 38 0 4234 5 9.9711 |20
5019 5510 33 9 5804 38 0 4196 4 9 9706 |10

21| 019 5543 3‘:5 9 5842 57 4158 5 9 9702 0] 69
1019 5576 33 9 5879 38 0 4121 5 9 9697 |50
20 19 5609 32 9 5917, 37 0 4083 5 9 9692 {40
3019 5641 32 9 5954 37 0 4046 5 9 9687 |30
4019 5673 a1 9 5991 37 0 1009 5 9 9682 |20
50 (9 5704 20 9 6028 36 0 3972 5 9 9677 |10

221 019 5736 ) 9 6064 36 0 3936 5 9 9672 0]68
1019 5767 3l 9 6100 36 0 3300 o 9 9667 |50
20 (9 5798 30 9 6136 26 0 3864 5 9 9661 |40
3019 5828, 31 9 6172 3b 0 3828 5 9 9656 |30
40 [9 5859 30 9 6208, 35 0 3792 5 9 9651 |20
50 {9 5889 30 |9 6243 g [0 3757 M 9 9646 | )0

logcos| d [logecot| d |logtan| ¢ tog sin °
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Continued

o]/ ltogsin] d |logtan] cd Jlogcot| d-| logtos

23| 09 5919 29 9 6279 35 0 3721 5 9 9640 0]67
10|19 5948 30 9 6314 34 0 3686 6 9 9635 {50
20 (9 5978 29 9 6348 35 0 3652 5 9 9629 |40
3019 6007 29 9 6383 24 0 3617 6 9 9624 |30
4019 6036 29 9 6417 25 0 3583 5 9 9618 {20
509 6065 28 9 6452 24 0 3548 N 9 9613 |10

24 09 6093 28 9 6486 34 0 3514 5 9 9807 0|66
1019 6121 28 9 6520 33 0 3480 6 9 9602 |50
2009 6149 28 9 6553 34 0 3447 5 9 9596 |40
309 6177 28 9 6587| a3 0 3413 8 9 9590 |30
4019 6205 97 9 6620, 34 0 3380 5 9 9584 |20
509 6232 27 9 6654 33 0 3346 i 9 9579 |10

25| 0]9 6259 27 9 6687 33 0 3313 6 9 8573 0|85
1019 6286 97 9 6720 2 0 3280 6 9 9567 |50
2019 6313 27 9 6752 33 0 3248 5 9 8561 |40
309 6340 26 9 6785, 30 0 3215 5 9 9555 |30
40 [9 6366 96 9 6817, 35 0 3183 5 9 9549 (g0
50 (9.6392 2% 9 6850 32 0 3150 6 9 9543 |10

26| 09 6418 26 9 6882 a3 0 3118 7 9 9537 RS
1019 6444 |0 691a) ) 0 3086] | 9 9530 |gg
2019 6470 25 9 6946 a1 0 3054 6 9 9524 |40
30 |9 6495 26 9 6977 2 0 3023 s 9 9518 |30
409 65211 o lo 7000 |0 2081 o | 9 9512 |g9
800 6546) ;19 7040] |, [0 2960] o | 9 9505 g

27 09 6570 ;5 9 7072 a1 0 2928 7 9 9499 ol 83
1019 6595 25 9 7103 3 0 2897 6 9 9492 ig5q
20 |9 6620 24 9 7134 31 0 2866 7 9 0486 40
3019 6644 24 9 7165 31 0 2835 6 9 9479 |39
40,9 6668 24 9 7156 30 0 2804 7 9 9473 |59
solo 6602l o fo 7226] . lo 2774 1 | 9 9366 ||y

28] 09 6716 24 9 7257 30 0 2743 6 9 9459 of 62
1019 6740 23 9 7287 30 02713 7 9 9453 50
209 6763 24 9 7317 3 0 2683 7 9 9446 |40
30]9 6787 23 9 7348 30 0 2652 7 9 9439 30
4019 6810] 23 9 7378 30 0 2622, 7 99432 |4
50 {9 6833 a 9 7408 20 0 2592 7 9 9425 10

log cosj d flogcot] ed flogtan] d log sin ¢
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Conlinued
° log sin| d |log tan| cd jlogcot] d log cos
29] 09 6856 23 9 7438 29 0 2662 7 9 9418 0] 61
10 |9 6878 23 9 7467 a0 0 2533 7 9 9411 |50
20 [9 6901 29 9 7497 29 0 2503 7 9 9404 |40
30 |9 6923 23 9 7526 30 0 2474 7 9 $397 |30
40 {9 6946 09 9 75666 29 0 2444 7 9 9390 |20
5019 6968 29 9 7585, 20 0 2415 8 9 9383 |10
30 09 6990 23 9 7614 30 0 2386 7 9 9375 0] 60
109 7012 21 9 7644 29 0 2356 7 9 9368 &0
2019 7033 29 9 7673 28 0 2327 8 9 9361 |40
30 49 7085 21 9 7701 29 0 2299 7 9 9353 |30
40 |9 7076 21 9 7730 29 0 2270 8 9 9346 120
5019 7097 01 9 7789 20 0 2241 7 9 9338 |10
31 09 7118 21 9 7788 28 0 2212 8 9 9331 0] B9
1049 7139 a1 9 7816 29 0 2184 M 9 9323 |50
20 |9 7160 a1 9 7845 28 0 2155 7 9 9315 |40
3019 7181 20 9 7873 29 0 2127 8 9 9308 |30
40 19 7201 21 9 7902 28 0 2098 3 9 9300 |20
50 |9 7222 20 9 7930 28 0 2070 8 9 9282 |10
321 049 7242 20 9 7968 28 0 2042 8 9 0284 0]58
1019 7262 20 9 7986 28 0 2014 8 9 9276 |50
2049 7282 20 9 8014 28 0 1486 8 9 9268 |40
30 |9 7302 20 9 8042 28 G 1958 8 9 9260 {30
40 |9 7322 20 9 8070 27 0 -1930 8 9 92562 j20
50 |9 7342 1e 9 8097 28 0 1903 & 9 9244 110
331 0|9 736! 19 9 8126 28 0 1875 8 9 9236 0]157
10 {9 7380 20 9 8153 97 0 1847 9 9 9228 |50
20 {9 7400 19 9 8180, 28 0 1820 8 9 9219 |40
309 7419 I9 9 8208 27 0 1792 g 9 9211 |30
4019 7438 I 9 8285 28 0. 1765 9 9 9203 |20
50 (9 7457 19 9 8263 27 0 1737 8 9 9194 |10
341 09 7476 18 9 8290 27 0 1710 g 9 9186 0566
10 |9 7494 19 9 8317 97 0 1683 8 9 9177 |50
2019 7513 18 0 8344 27 0 1656 9 9 9169 40
309 75631 19 9 8371 27 0. 1629 9 9 9160 |30
40 18 7550, 18 9 8398 27 0 1602 9 9 9151 |20
50 |9 7568 18 9 8425 27 0 1575 I 9 9142 |10
»J log cos| d |logcot| ed |logtan| d logsin | 7 | °



Continued
o | * flogsin] d [logtan| ed |logcot] d log cos
35| 0{9 7588 18 9 8452 97 0 1548 9 9 9134 0f55
109 7604 12 9 8479 27 0 1521 9 9 9125 |50
2019.7622] 18 9 8506 97 0 1494 9 9 9116 |40
3019 7640 17 9 8533 26 0 1467 9 9 9107 130
4019 7667 18 9 8569 27 0 1441 9 9 9098 |20
5019 7675 9 8586 0 1414 9 9089 |10
17 27 9
36] 09 7692 18 9 8613 26 0 1387 1o 9 9080 0f54
109 7710 17 9 8639 27 0 1361 9 9 9070 |50
2019.7727 17 9 8666 26 0 1334 9 9 9081 |40
3019.7744 17 9 8692 26 0 1308 10 9 9052 |30
409 7761 17 9 8718 27 0 1282 g 9 9042 |20
5019.7778 17 9 8745 2 0 1255 16 9 9033 |10
371 0]9.7795 16 9 8771 2% 0 1229 9 9 9023 053
10(9.7811 17 9 8797 27 0 1203 10 9 9014 150
2019 7828 16 9 8824 26 0 1176 g 9 9004 |40
30{9 7844 17 9 8850 26 0 1150 10 9 8995 {30
401{8 7861 16 9 B876! 26 0 1124 10 9 8985 J20
B0 [9 7877 18 9 8902 26 0 1098 10 9 8975 {10
38| 09 7893 7 9 8928 2% 0 [072, 1 9 8965 0|52
1019 7910 16 9 8954 26 0 1046 10 9 8955 |50
20{9 7926 15 9 8980 26 0 1020] 0 9 8945 140
309 7941 16 9 9006 26 0 0994 10 9 8935 |30
4019 7957 16 9 9032 2 0 0968 10 9 8925 [20
5019 7978 I 9 9058 2 0 0942 10 9 8915 {10
39) 0[9 7989, 15 9 9084 26 0 0916 10 9 8905 o5l
109 8004 16 9 9110 25 0 0890 1 9 B895 |50
2019 8020 15 9 9138 26 0 0865 10 9.8884 140
309 8036 15 9 9161 2 0 0839 10 9 8874 |30
4019 8050 16 9 9187 2% 0 0813 I 9 B864 |20
50 |9 8066 15 9 9212 % 0 0788 10 9 B863 |10
logcos] d |logcot| cd |logtan| d log sin i
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Continued

o |+ liogsin} d [logtan | ed {logeot] d | logcos

40| ofo sos1} .| 0 9288 .. [0 0762) | 9.8843 | 0|50
109 80os| | | 0 9264| . o 0736 ;| 9 8832 |50
2018 8111} | 9 9289} [0 0711} ;) | 9.8821 |40
300 81250 \ . | 9 9315 [0 10 0685 o | 9 8810 30
4010 8140 (. 0 9341) 10 0650) |, | 9 8800 |20
509 8155 9 9366 0 0634 9.8789 |10

14 26 11

41] ofo 8169 . | 0 9302 . |0 0608 , | 9 8778 | O 49
1010 8184 |4 | 9 9417) o040 08B3| |, | 9 8767 80
200 8198 . | 9 9443 - |0 0557| | | 9 8756 |40
30(e 8213 |7 [ 9 9468] 0 10 0532 o | 9 8745 |30
40fo 8227} | 9 9494) [0 05068 |7 | 9 8733 |20
§0fs s2e1f 1|9 9519] 0 10 0481 |, | 9 8722 |10

421 09 8255 14 | 9 9544] 10 0456/ |, | 9 B7I1 | O 48
109 8269 |, | & 9570/ - [0 0430} || | 9 8699 |50
209 8283 7| 0 9595] .. 10 04050 \, | 9 8688 |40
300 8207 |9 9621} . 1o 0373 || 9 8676 f30
400 83t} . | 0 9646) ,o 10 0354/ |, | 8 B665 |20
509 8324) 5 | 9 9671 ,0 10 0329 o | 9 8653 |10

43| 09 8338/ . f 9 9607 . |0 0303 |, | 9 8641 | 0]47
1019 8351 | | 9 o722} . |0 0278 | [ 9 8629 |50
20 (o 8365} | o | 9 9747) ;o 10 0263 |, | 0 8618 f40
309.8378; | 9 9772] o 0 0228 o | 0 8608 {30
400 8301) | 9 0708 . |0 0202 o | 0 8604 |20
509 8405( |, | 9 9823) , 10 0177) \o | 9 8582 (10

441 09 8418 1a | § 9848 o fo 052y | 9 BBEY | 0 48
1019 8431 |, | 9 9874f - 0 0l26) o | 9 8557 |50
200 8444) (5 9 9899) & fo 0101 |1 9 8545 [40
3019 8457| | 9 9924} o fa 0076 |0 | 9 8532 |30
4019 8469| |, 1 9 0948f 0 0051 o | 9 8520 |20
50 o 8482 (o | 9 9976 .. |0 0025 |, | 9.8507 |10

451 oo 8495 10 0000 0 0000 9.8495 48

log cos] d | logcot | cd |logtan| d logstn | + | °
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8. Conversion of Degrees to Radlans (See Sec. 181)

Arc lengths of a circle of radius |
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U
10, Table of Primes < 6000

193 449 738 1031 1321 1637 1997 2333
197 457 739 1033 1327 1657 1999 2339
199 461 743 1039 1361 1663 2003 2341
211 463 751 1049 1367 1667 2011 2347
1 223 467 757 1051 1373 1669 2017 2351
13 227 479 761 1061 1381 1693 2027 2357
17 229 487 769 1063 1399 1697 2029 2871
19 233 491 7738 1069 1409 1699 2039 2377
23 239 499 787 1087 1423 1709 2053 2381
29 241 503 797 1091 1427 1721 2063 2383
ar 251 509 809 1093 1429 1723 2069 2389
81 257 521 811 1097 1433 1733 208} 2393
41 263 523 821 1103 1439 1741 2083 2399
43 269 541 823 1109 1447 1747 2087 2411
47 271 547 827 1117 145) 1753 2089 2417
53 277 857 829 F123 1453 1759 2099 2423
59 281 563 839 1129 1459 1777 211l 2437
61 283 569 853 L1581 1471 1783 2113 2441
67 293 571 857 1183 1481 1787 21290 2447
71 307 577 859 1163 1483 1789 2131 2459
73 311 587 863 1z 1487 1801 2137 2467
79 313 593 877 1181 1489 1811 2141 2473
83 317 599 881 1187 1493 1823 2143 2477
89 331 601 883 1193 1499 1831 2153 2503
97 337 607 887 1201 1511 1847 2161 2521
101 347 613 907 1213 1523 1861 2179 2531
103 349 617 91t 1217 15831 1867 2203 2539
107 353 619 919 1223 1543 1871 2207 2543
109 359 631 929 1229 1549 1873 2213 2549
113 367 641 937 1231 1853 1877 2221 2561
127 373 643 941 1237 1559 1879 2237 2557
131 379 647 947 1249 1567 1889 2239 2579
137 383 653 953 1259 1571 1901 2243 2591
139 389 659 967 1277 1579 1907 2251 2593
149 397 661 971 1279 1583 1913 2267 2609
151 401 673 977 i283 1597 1931 2269 2617
187 409 677 083 1289 1601 1933 2273 2621
163 419 683 991 1291 1607 1949 2281 2633
167 421 691 997 1297 1609 1951 2287 2647
173 431 701 1009 1301 1613 1973 22093 2657
179 433 709 1013 1303 1619 1979 2297 2659
181 439 719 1019 1307 1621 1987 2309 2663
191 43 727 1021 1319 1627 1993 2311 2671
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2677
2683
2687
2689
2693
2699
2707
2711
2713
2719
2729
2731
2741
2749
2753
2767
2777
2789
2791
2797
2801
2803
2819
2833
2837
2843
2851
2857
2861
2879
2887
2897
2903
2909
2917
2927
2939
2953
2957
2968
2969
2971

2998
3001

pr

3011
3019
3023
3037
3041
3049
3061
3067
3079
3083
3089
3109
319
3121
3137
3163
3167
8169
3181
3187
3191
3203
3219
3217
3221
3229
3251
3253
3257
8259
3271

3299
3301

3307
3313
3319
3323
3329
3331

3343
3347
3359
3361

3371

3373
3389
3891
3407
3413
3433
3449
3457
3461
3463
3467
3469
3491
3499
3511
3517
3527
3529
3533
3539
3541
3547
3557
3559
3571
3581
3583
3593
3607
3613
3617
3623
3631
3637
3643
3859
3671
3673
3677
3691
3697
3701
3709
8719

3727
8733
3739
3761
3767
3769
3779
3793
3797
3803
3821
3823
3833
3847
3851
3853
3863
3877
3881
3889
8807
3911
3917
3919
3923
3929
3931
3943
3947
3967
3989
4001
4003
4007
4013
4019
4021
4027
4049
4051
4057
4073
4079
4091

4093
4099
41
4127
4129
4133
4139
4163
4157
4159
4177
4201
4211
4217
4219
4229
4231
4241
4243
4253
4259
4261
4271
4273
4283
4289
4287
4327
4837
4339
4349
4357
4363
4373
4391
4397
4409
442
4423
4441
4447
4451
4457
4463

4481
4483
4493
4507
4513
4517
4619
4523
4547
4549
4561
4567
4583
4591
4597
4603
4621
4637
4639
4643
4649
4651
4657
4663
4673
4679
4691
4703
4721
4723
4729
4733
4761
4769
4783
4787
4789
4793
4799
4801
1813
4817
4831
4861

4871
4877
4889
4903
4909
4919
4931
4933
4937
4943
4951
4957
4967
4969
4973
4987
4993
4999
5003
5009
5011
5021
5023
5039
5051
5059
5077
5081
5087
5099
5101
5107
§113
5119
5147
51563
6167
5171
5179
5189
5197
5209
6227
5231

51

Conlinued
5233 5639
5237 5641
5261 5647
5273 5651
5279 5653
5281 5667
5297 5659
5303 5669
5309 5683
5323 5689
5333 5693
5347 5701
5351 5711
5381 5717
5387 5737
5393 5741
6399 5743
5407 5749
5413 5779
6417 5783
5418 5791
5431 5801
5437 5807
5441 5813
5443 5821
5449 5827
5471 5839
5477 5843
5479 5849
5483 5851
5501 5857
5503 5861
5507 5867
5619 5869
5521 5879
5527 5881
5531 5897
5557 5903
5563 8923
5569 5927
5573  593%
5581 5953
5591 5981
5623 6987
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logs
logsq (or log)
In (or Inge)

lim
const

2= (N P

°
I3

sin

cos

tan
cot
sec
[

arcsin

arecos

arctan
arccot
aresec
arccse

Is equal to

is not equal to

ts approximately equal to

15 greater than

is less than

18 ?reater than or equal to

Is less than or equal to
absolute value

nth root of (usuaily means
the principal ath root)

factorial

logarithm to the base b
common logarithm (loga is
used for ln% 20 when the con-
text shows that the base 1s 10)
natural (Napierian) logarithm
{{o the base &)

lmit

constant

summation of

triangle

angle
arc
1s parallel to

1s perpendicular to
15 similar to

rat10 of the circumference of a
circle to the diameter, equal
to 3 1415926336

degree

minute

second

sine

cosine

tangent
catangent
secant
cosecant

arc sine

are costne

are tangent
are cotangent
arc secant
arc cosecant

a—'=bb
aE
axb
5%2
3<10
azb

agy
laf
3 =2

5!=1 2345=120
{read* factoral 5, or
5] raclorgml)
o0g,8=
log 100=2

AABC
(Pl AsABC and DEF)
é ABC
&
AB

AByCD
ABLCD

AABC~ALEF

10° 30 35"

sin 30°=

o]

cos—fr-,:!)

tan 40°=0 8391
cot 25°10°=2 128
sec 60°=2
cse 90°=1

1 °
aresin ?—30

n
arccos f=—
2

arctan 0 8391=40°

arccot 2 128=25%10"
aresec 2=60°
arcese 1 =900
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12. The Metrlc System of Measurement

Linear Measur

| kilometre (km)—lOOO metres (m)

1 metre (m)=10 decimetres (dm)=100 centimetres (cm)
J decimetre (dm)=10 centimetres (cm)

1 centimetre (cm)=10 millimetres (mm)

Square Measure(area)

l square kilometre (km?)=1,000,000 square metres {m?)
1 square metre (m%)=100 square decimetres (dm?)=10,000 square
centimetres (cm3)
1 hectare (ha)=100 ares=10,000 square metres {m?)
1 are=100 square metres (m?)

Cubic Measure (volume)

1 cuble metre (m#)=1000 cuble decimetres (dm3)=1,000,000 cubic
centimetres (em!

l cubic declmetre (dm')aloou cublc centimetres (cm?)
fitre (=1 cubic decimetre {dm?d)

l hectolstre (hl)=100 litres (1)

Metric Wetght

1 ton (metric)=1000 kxlograms {kg)
1 centner=100 klloog s (kg)

1 kilogram (kg).—l 00 grams (g)

1 gram (g)=1000 milligrams (mg)

13. Some Old Russian Measures

LinearMeasu

versta=500 sagenes:lsoo arshins=3500 feet=10668 m
sagene=3 arshins=48 verchoks=7 feect=84 Inches=2 1336 m
arshin=16 ver:hnks-?l 12 cm

verchok=4 450 ¢

root=12 lnches—-o 3048 m

inch=2 540 ¢

nnutlcal mlle-1852 2min U{SS%S}\GBS 18 m in Britain, 1853 26 m
Werght

1 pood=40 pounds—l(i 380 kg
1 pound=0 4095

14. The Greek Alphabet

Aa alpha Ny nu
BB beta ) xi
T gamma 0o omicron
A delta Nn pi
Ee epsilon Pp rho
V4 zeta Zo slgma
Hn eta Tt tau
af theta ' uﬁsllon
%{n }(ota o i
* ap X ¢
AN lamgda % pst

Mp Q0 omegs



ARITHMETIC

18. The Subject of Arlthmetic

Anthmetic is the science of numbers, the name stemming
from the Greek word “arithmos” which means “number”
It involves the most elementary properties of numbers and
rules of calculation Deeper properties of numbers are stu-
died 1n the theory of numbers.

16. Whols Numbers (Natural Numbers)

The fust conceptions of number were acquired by man
n remote antiquity (see Sec. 17) It began with the coun-
ting of people, animals, and the various articles and posses-
sions of primitive man Counting produced the numbers one,
two, three, etc, which are now called nafural numbers In
arithmetic they are also referred to as whole numbers or n-
tegers (the term “integer” has a broader meaning 1n mathe-
matics; see Sec. 67).

The concept of a natural number 15 one of the most
elementary notions. The only way to explain it is by de-
monstration. In the third century B C, Euclid defined
number (natural number) as a “collection made up of units”,
similar definitions appear mn textbooks even today, But the
words “collection”, or “group”, or “aggregate”, etc do not
ﬁem to be any more comprehensible than the word “num-

",
The sequence of whole numbers

1,28 4,5
Egoes on without end and s called the set of natural num-
75,

17, The Limits of Counting

In primitive society, man could hardly count at all He
was able to distinguish groups of two and three objects,
anything beyond that being thought of as “many” This was
obviously not counting, 1t was only a beginning.
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Gradually larger groups were distinguished, giving rise
to the notions of “four”, “five”, “six”, “seven” For a long
time, the word “seven” was used m some languages to de-
note an indefinitely large quantity.

As man’s activities became more ntricate, the counting
process developed and gave rise to a variety of reckoning
devices the making of notches on sticks and trees, knots in
ropes, groups of stones, ete.*

The human hand with Its five fingers was an invaluable
natural tool for counting. It could not preserve the infor-
mation 1t conveyed but it was ready at hand, so to speak,
and very mobile The language of primitive man was poor,
gesticulations often made up for lacﬁ of words, and numbers
(for which there were no names) were demonstrated in finger
counting (this 1s even done nowadays 1f two persons speaking
different languages do not understand each other).

It 1s quite natural that the newly origmating names for
“large” numbers were often constructed on the basis of the
number 10 corresgondmg to the 10 fingers Certain peoples
developed a number system based on 5, the fingers of one
hand, or on 20 which 1s the total number of fingers and toes
(see Sec [8)

During the early stages of man’s development, the range
of numbers expanded very slowly Counting proceeded throu%h
the first tens and only much later reached one hundred In
many languages, the number 40 represented the Limit and
designated an indefimitely large quantity.

When the counting process reached ten tens and a name
was given to the number 100, it was also used to denote
an indefinitely large number (in some languages, Tartar for
instance, one and the same word is used to denote 40 and
100) The very same process occutred again with the num-
bers thousand, ten thousand, and million.

18, The Decimal System of Numeration

In many modern languages, the names of all numbers up
to a million are made up of 37 words denoting the numbers
1, 2, 3 4,5 6,7 89,10, 11, 12, 13, 14, 15, 16, 17, 18,

* Counting by means of stones (pebbles) served as the starting
point for more sophisticated counting devices such as, for example,
the Russian abacus, the Chinese abacus (or suan phan), the anclent
Elcyptian abacus (a board divided Into strips where counters were
placed) Other peoples had similar devices In Latin, the ides of
counting Is expressed by the word “calculatio” (whence the English
word “calculatjon”) coming from “calculus”, which means “pebble”.
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19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000 (for example, 918,742 nine hundred
ighteen thousand seven hundred forty-two) In turn, the
imes of these 37 numbers are, as a rule, built up from
1e names of the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10,
100, 1000 The underlying element of all these word forma-
tions 1s the number 10, that 1s why the modern system of
numbers 15 called the decumal system of numeration The
exceptional role of 10 1s due to the fact that we have 10
fingers on our two hands (see Sec 17)
That 1s the general rule, but a wide variety of exceptions
are evident in various languages These are due to historical
ecultarities in the development of the counting process
In the Turkic languages (Azerbaiyan, Uzbek, Turkmen,

Kazakh, Tartar, Turkish, etc) the exceptions are the names
of the numbers 20, 30, 40, 50, whereas 60, 70, 80, 90 are
formed on the basis of the names for 6, 7, 8 and 9 In Mon-
golian, on the contrary, the names of the numbers 20, 30,
40, 50 follow the general rule, while 60, 70, 80 and 90 are
exceptions In Russian there is one exception, the name for
“forty” In French the names for the numbers 20 and 80
retain the nondecimal names, 80 s quatrevingt (four twen-
ties) This 1s a remnant of the ancient vigesimal system of
numbers (based on 20— the total number of Tingers and toes)
In Latin also the name for 20 s nondecimal (viginti), but
that for 80 (octoginta) 1s decimal and comes from 8 (octo)
On the other hand, the names for the numbers 18 and 19 are
butlt up from 20 by subtraction 20~-2 and 20—1 (duode-
vigintt, undeviginti, that 1s to say, two from twenty and
one from twenty) The names of the numbers 200, 300, 400,
500, 600, 700, 800, and 900 1n all modern languages are
constructed on the decimal (scale-10) basis

19, Development of the Number Concept

In the counting process, unity 1s the smallest number
There 1s no need {o subdivide 1t, nor 1s 1t even possible at
times {adding half a stone to two stones yields three stones,
not 2'/,, and of course 1t 15 impossible” to select a com-
mittee made up of 2!/, persons) However, unity often has
to be broken up into parts when mdasuring Tengths by
means of steps (2'/, steps long, and the lLike) TFor this
reason, the notion of a fraciionol number (see Secs 30 and
45) was known in remote antiquity Subsequent development
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saw the expansion of the concept of number to wrrational
numbers (Sec 91), negatwe numbers (Sec 67), and complex
numbers (Secs 92 and 98)

Zero (null) was a long time in entering the famuly of
numbers At first, zero (null) had the meaming of absence
of any number (the Latin “nullum” literally means “noth-
mg”)  1f say 3 is taken away from 3 we have nothing For
that” “nothing” to be considered a number, we had to wart
for negative numbers to appear (see Sec 67)

20. Numerals

A numeral 15 a wntten sign depicting a number In the
most ancient times, numbers were denoted by straighi-line
strokes (“rods”) one rod depicted umty, two rods, a two,
and so forth. This notation origmated from the use of not-
ches It still exists in the Roman numerals (see Sec. 21,
Item 5) which denote the numbers 1, 2, 3

This notation 1s tnconvenent for writing large numbers
and so special symbols were used to depict the number 10
gn accordance with the dectmal system of numeration, see

ec 18) and, i some languages, the number 5 as well (in

accordance with quinary numeration which 1s based on the
number of fingers of the human hand) Later, symbols were
invented for still larger numbers These symbols exhibited
a variety of forms 1n the different languages and underwent
considerable modifications 1n the course of time There was
also considerable vartety in the sysiems of numeration, that
15, modes of combiming digits to form large numbers How-
ever, in most number systems the 10-scale was pre-eminent
and formed the basis of the decimal system of numeration
(see Sec 18)

21, Systems of Numeration

1, Ancient Greek numeration. The so-called Attic system
of numeration was used in ancient Greece The numbers 1,

2, 3, 4 were denoted by vertical strokes I, UM, I, The

number 5 had the symbol [ (the first letter “pi", m its

anctent form, of the word “pente”, five), the numbers 6, 7,
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8, 9 were written as [ PlI, ', "Il The number 10 was

depicted as A  (the [irst letter of “deca”, ten) The num-

bers 100, 1000, and 10,000 were denoted by H, X,M the

inttial letters of the corresponding words The numbers
50, 500, and 5000 were given as combinations of the signs

for 5 and 10, 5 and 100, 5 and 1000, namely* ["',F‘,Fl_

The remaming numbers, within the first ten thousand,
were written as follows

HHMM=256, XXMI=2081,
HHHFAAAI=382, PXXPHHH=7800

and so forth,

In the third century B. C, the Attic numeration gave
way to the so-called fonian system Here, the numbers from
I to 9 were denoted by the first nine letters of the alphabet
(the letters ¢, vau, ¢, koppa, and 3 sampi, are archaic; the
Greek alphabet 1s given i Sec 14)

a=1, f=2, y=3, 8=4, e=5, ¢=6, (=7,

1=8, #=9
the numbers from 10 to 90, by the next mine letters:
1=10, %=20, A==30, p=40, v=>50, =60,
0=270, n=80, ¢=90
the numbers from 100 to 900, by the last nine letters:
=100, 0==200, v=2300, v=400, @=>500;
=600, $=700, w=_800, =900

Thousands and tens of thousands were denoted by the

same numerals preceded by a stroke or accent
‘a==1000, 'P=2000, etc

A bar was placed over numerals n order to distinguish
them from letters For example,

m=18, pl=47, of=407; yma=621, x%==620, etc
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In anclent times, the same alphabetic numeration was
used by the Jews, Arabs, and many other peoples of the
Near East It is not known what people used them first

2. Slavic numeration. The Slavic peoples of the south
and east of Europe used the alphabetic system of notation
for writing numbers In some cases, the numerical values
of the letters were established m the order of the Slavic
alphabet, in athers (including Russia) not all letters were
used as numerals but only those found in the Greek alpha-
bet The letter used as a numeral was surmounted by a
special symbol (see accompanying table), and the numerical
values of the letters mcreased in the order of the letters in
the Greek alphabet (the sequence of letters i the Slavic
alphabet was somewhat different)

This Slavic numeration persisted 1 Russia till the end
of the 17th century Under Peter the First, the dominant
system of numeration was the Arabic (see Item 6 below)
which 1s still 1 use today. The Slavic numeration persists,
however, m clerical works.

The Slavic Numerals

>t
ot
e
1
™y
wr
w

=2
ER

it 3

=
>1
x1
z!
uxg
o1
o
£1

0 20 0 w S0 s n & 90

Porow ¥ g

w200 30 40 S0 600 700 S0 W

~<1

1

1
g8z

2
3. The Ancient Armenian and Georglan systems of nume-
ration. Both Armenians and Georgians used the alphabetic
principle of numeration But the anctent alphabets of these
veoples had far more letters than did the Greeks This enab-
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led them to use special symbols for the numbers 1000,
2000, 3000, 4000, 5000, 6000, 7000, 8000, and 9000 The
numerical values of the letters followed the order of the
letters 1n the alphabets of these peoples

The alphabetic numeration persisted till the 18th century
although the Arabic numeration was used occasionally much
earlier (in the Georgian literature such instances go back
to the 10 or 11th century, sources of Armenian mathemat-
cal Niterature reveal such usage no earlier than the 15th
century) In Armenia the alphabetic numeration 1s still used
in designations of chapters, stanzas, and the like In Geor-
gla the alphabetic numeration has gone out of use alto-
gether

4 Babylontan Positional System of Numeration Appro-
ximately 40 centuries prior to the Christian era, the anelent
Babylonians developed a positional system of notation for
their numerattion This 15 a mode of representing numbers 1n
which one and the same digt 1s capable of denoting different
numbers depending on 1ts position Our present-day nume-
ration Is also posttronal 1n the number 52, the digit 5 de-
notes 50, that is, 5-10, while n the number 576, the same
digit stands for five hundred, or 5 10 10 In Babylonian
notation the number 60 was used as we use 10 1n our num-
ber system, whence the name sexagesimal by which the Ba-
bylontan system 1s designated Numbers less than 60 were

denoted by two symbols T for umty and < for ten
They were wedge-shaped (cuneiform) since the Babylonians
wrote on clay tablets with a stylus having the form of a

triangular prism These signs were repeated as many times
as needed, for example,

=8 =20 =2

<y,
T

Numbers exceeding 80 were written in the following man-

ner ﬁT‘ﬁ denoted 5 60+ 2=2302, rather like our notation



of 52 denotes 5:10-+2 The notation

G <K

denoted the number 21.60-35=1295 The following notation

T

stood for 1.60.60--2-6045==3725, much like the modern
notation 125 denotes ! 100-4-2.10-4-5. The sign E was
used as a placeholder, playing the part of zero Thus, the

notation
M <= T

meant 2 60 6040 60-+3=7203 But the absence of any
lower order digits was not indicated, for example, the num-

ber 180==3.60 was denoted as TTT, which ts the same

as the number 3 The same notation m might mean

10,800 =3 60.60, etc Only the context could distingussh the
numbers 3, 180, 10,800, etc
Thenotatlonm could also sigmfy -6-35, 5-3?5=§6%-0—,
53—6%—6(3:2—1?‘:1553 just as we use the numeral 3 to denote
3 3 3 .
5 70 =100 TOT9 61000 ete 11 our system of deci-
mal fractions However, we readily differentiate between these
f;achons by3 annexing zgros m front of the 3, and we write
1_0=0 3, T'66=0 03, m*—“O 003, etc In the Babylontan
notation these zero placeholders were not indicated
Bestdes the sexagestmal system of numeration, the Baby-
lonians used the decimal system, but it was not a positional
system. Apart from symbolsfor | and 10, there were symbols for

100, b=, 1000, <Yb- , and 10,000, <Ly~ - The num-
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bers 200, 300 and so on were written as
T y>- W™

and so forth The same method was used to write the num.
bers 2000, 3000 etc. 20,000, 30,000 etc The number 274

looked like this
e SCSH
T <
the number 2068, like this

- S5/

The sexagestmal system originated at a later period than
the decimal system because the numbers up to 60 were writ-
ten on the basts of the dectmal principle. It 1s still not known
when and how the Babylomans developed the sexagesimal
system There are numerous hypotheses as to how this oc-
curred but there 1s no firm proof for any of them

The sexagesimal notation of whole numbers did not spread
beyond the Assyrian-Babylonian empire, but sexagesimal
fractions spread far and wide to the countries of the Near
East, Central Asia, Northern Africa, and Western Europe.
They found wide use, espemally in astronomy, right up to
the invention of decimal fractions (which was at the beginnin,
of the 17th century), Traces of sexagesimal fractions are stil
found in the divisions of the degree of angle and arc (and
also the hour) mto 60 minutes, and of the minute into 60
seconds

5. Roman numeration. The anctent Romans used a num-
ber system that 1s still in use and 15 called the Roman sys-
tem of numeration We use 1t for designating congresses and
conferences, for numbering the introductory pages of books,
chapter headings, etc -
n thewr latest form, the Roman numerals looked like this.

I=1, V=5 X=10, L=50, C=100, D=>500, M==1000
The earlter forms were somewhat different. Thus, the num-
ber 1000 was denoted by the symbol (}), 500 by the symbol |).

There 1s no rehiable nformation on the ofigin of the Ro-
man numerals The numeral V might have originally depict

ete
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ed the human hand, the numeral X could have been built up
out of two fives In the same way, the symbal for 1000 could
have developed out of doubling the sign for 500 (or vice
versa)

The Roman system of numeration exhibits evident traces
of the quinary system of numbers But Latin (the language
of the Romans) does not have a trace of the quinary number
system This must mean that these numerals were borrowed
by the Romans from another people (most likely from the
Etruscans)

All whole numbers (up to 5000) are written by means of
tteration of the numerals listed above If a large numeral
precedes a smaller one, they are added, if the smaller one
comes [irst (in which case the symbol 13 not repeated), then
1t 1s subtracted from the larger numeral (in Latn, the sub-
tractive principle—see Sec 18—1s preserved in the names
of two cardinal numbers 18 and 19) For example, VI=6,
or 5--1, IV==4, or 5—1, XL=40, or 50—10, LX = 60, or
50--10 No digit 1s repeated more than three times LXX =70,
LXXX =80, the number 90 1s written as XC (and not LXXXX).
i ”The first 12 numbers are written 1n Roman numerals as
ollows

I IL I, 1V, v, VI, VI VL IX, X, XI X1

Examples: XXVIII=28, XXXIX=39, CCCXCVII=237,
MDCCCXVIII =1818

Performing arithmetical operations with multidigit aum-
bers 1s an arduous task when done in Roman numerals Ne-
vertheless, Roman numerals were still the dommnant number
system in [taly up to the I3th century, and in other countries
of Western Europe they persisted till the 16th century

6 The posttional numeration of India The vartous regions
of India had different number systems, one of which spread
to other parts of the world and s today the generally accepted
system of numeration In this system, the numera{s had the
forms of the imtial letters of the appropriate cardinal num-
bers 1n the ancient indian language of Sanskrit (the Devan-
agari alphabet)

Originally, these symbols denoted the numbers 1, 2, 3, ...,
9, 10, 20, 30, . , 90, 100, 1000, which in turn were used to
write the other numbers Later, a special sign (a heavy dot,
circle) was introduced to indicate an empty position n a
number. The signs for numbers exceeding 9 ceased to be used
at a later period, and the Devanagari system of numeration
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pecame the decimal positional system of numeration It 1s
not known how and when this conversion took place, but by
the middle of the 8th century, the posttional system of nu-
meration was 1 wide use 1 India It was about this time
that 1t began tospread to other countries (Indochina, China, Tibet,
info the territory of the present-day Central-Asian republics
of the Soviet Unton, Iran, and elsewhere), A decisive role 1n
the spread of the Hindu numeration n the Arabic countries
was played by a mantfal written at the beginning of the Oth
century by Mohammed ibn-Musa al-Khowarizmi (from Kho-
resm—the present-day Khoresm Oblast of the Uzbek Republic
of the USSR) * It was translated into Latin in Western
Europe 1n the 12th century In the 13th century, the Hindu
system of numeration became dominant in ltaly, and by the
16th century 1t spread to the other countries of Western
Europe. The Europeans borrowed the Hindu number sys-
tem from the Arabs and called it the Arabie system of nume-
ratton Historically, this 1s not correct, but the name persists,
The Arabs also gave us the word “cipher” (“siir™ 11 Ara-
bic) which Diterally means “empty posttion” (this is a trans-
lation of the Sanskrit “sunia” which has the same meaning)
The word was originally used to denote the empty post-
tion (as a placeholder) m a number and that meaning was
sti] current 1n the 18th century, although m the 15th century
the Latin term for “zero”, “null” (nullum~—nothing), had ap-
eared
P The shapes of the Hindu numerals underwent a variety
of modifications over the centuries, the form that we have
today was established n the 16th century.

22, Names of Large Numbers

To facilitate reading and remembering large numbers, the
digits are ordinarily grouped into periods of three each, which
are separated by a comma or a space Say, the number 35461298
1s written 35 461 298 (or 35,461,298) Here, the three digits
298 form the first pertod, 461, the second, and 35, the third.

* This remarkable scholar was also the founder of algebra (see
Sec, 66) Mohammed wrote his works in Arabic, which in ‘the East
was the common lnnqruage of learnlng. just as Latin was at ane time
In Western Europe This explains the name al-Khowarizmi {which
trrﬂu;-’;,ns a dweller of Khoresm) by which Mohammed is known in his-
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Each digit has place value. From nght to left we have. 8 1s
the units digit, 9 the tens digit, 2 the hundreds digit, 1 the
thousands digit, 6 the ten thousands digit, ete

The first period yields units, tens, hundreds, the second
period, thousands, and the third period, millions

The American system of numeration for denominations
above one millton 1§ the same as the French system and the
Russian system, and the British system corresponds to the
German. In the American system each of the denominations
above 1000 millions (the American billion) 1s 1000 times the
one preceding (one trillion=1000 billons, one quadrillion
= 1000 trillions, one quintillion=1000 quadrillions, one
sextillion =1000 quintilhons, and so on for septillions, octil-
lions, nonillions, etc) In the British system the first de-
nomination above 1000 millions (the British milliard) 1s
1000 times the preceding one, but each of the denomina-
tions above 1000 milliards (the British billion) 1s 1,000,000
times the preceding one (one trillion=1,000,000 biilions, one
.quadrillion= 1,000,000 trillions, ete ).

23. Arithmetic Operations

1. Addition. The concegt of adding stems from such fun-
damentally elementary facts that 1t does not require a defi-
nitioh and cannot be defined i formal fashion We can use
synonymous expressions, 1f one so desires, and say it 1s the
process of combining, and the like

Notation: 8-+3=11; 8 and 3 are the addends, 11 is the
sum.

2, Subtraction. When one number 15 subtracted from
another the result 1s called the difference or remainder. The
number subtracted is termed the subfrahend, and the number
from which the subtrahend 15 subtracted 1s called the minuend.

Notatlon: 16—7=8; 15 1s the minuend, 7 is the subtra-
hend, and 8 is the remainder. Subtraction may be checked
by addition: 8--7=15

3. Multiplication., Multiplication is the process of taking
one number (called the mulftplicand) a given number of ti-
fhes (this 1s the multiplier, which tells us how many times
the multiplicand 1s to be taken) The result is called the
product. -The numbers multiplied together are called the
fSle‘::w; of the product (For multiplication by a fraction see

. 34).
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Notation: 12X5=60 or 12 5=60, 12 15 the multiplicand,
5 the tmultipher, and 60 the product (here, 12 and 5 are the
factors of the product) 12x5==124-124 12412412,

Nothing changes 1f we call 5 the multiplicand and 12
the multiphier To take another example, 2X5=24-2--2+42
+2=10 and 5x2=5§+5=10 It 1s therefore more common
to use the senenc term “factor” for the multiplier and the
multiplicand,

4. Division. Division 1s the process of finding one of two
factors from the product and the other factor It 15 the pro-
cess of defermining how many times one number 1s contained
in another. The number divided by another 15 called the di-
vidend. The number divided mto the dividend is called the
dwisor, and the answer obtained by diviston is called the
quotient

Notatlon: 48:6==8 (or 48 — 6=8). Here, 48 is the divi-
dend, 6 the divisor, and 8 the quotient. Division may be
checked by multiplication the product of the divisor (6) and
the quotient (8) yields the dividend. Division may also be

written as ‘—:=8 (see Sec 36)

The quotient obtained by the division of one whole num-
ber by another one may not be a whole number, 1n which
case the quotient may be indicated as fraction (Sec 30)
If the quotient 1s a whole number, we say that the
first number 1s exactly divisitble (or, simply, divisible)
by the second number For example, 35 13 exactly divisible
by 5 since the quotient 1s a whole number, 7

In this case, the second number (5) 1s called the divisor
of the first one, and the first number (35) is termed the
multiple of the second one

Example 1. 5 is a divisor of the numbers 25, 60, 80 and
13 not a divisor of 4, 13, 42, or 61

Example 2. 60 1s a multiple of 15, 20, 30 and s not a
multiple of 17, 40, or 90

In many cases 1t 1s possible to determine whether one
number 1s divisible by another without actually performing
the division (see Sec 25)

In most cases there 15 a remainder after the division. In
the process of division with a remainder we seek the largest
whole number which, when multiplied by the divisor, yields
a number that does not exceed the dividend. The desired
number is a partial quotient The difference between the di-
vidend and the product of divisor by the partial quotient is
termed the remainder, which 1s always less than the divisor,
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Example. 19 1s not divisible exactly by 5 The numbers
1, 2, 3 when multiplied by 5 yield 5, 10, 15, none of which
exceeds 19, whereas 4 by 5 yields 20, which exceeds 19
Hence, the partia] quotient is 3 The difference between 19
and the product 3 5==15 1s 19— 15=4 The remainder 15 4

For division by zero, see Sec 37

5. Involution (raising a number to a power) To raise a
number 1o an (ntegral power (second, third, fourth, etc ) we
multiply the quantity by itself two, three, four, etc times
(for raising a number {6 a negative, zero ot fractional po-
wer, see Sec 125) The number repeated as a factor i1s called
the base, the number which indicates how many times the
base 1s to be used as a factor 1s called the exponent of the
power The result 1s called the power

Notation: 34=81 Here, 3 is the base, 4 1s the exponent,
and 8t 1s the power, 33=3 33 3

The second power 1s also called the square, the third
power 1s also called the cube (of a number) The first power
of a number 15 the number itself

8. Evolution (finding the root of a number) Finding (or
extracting) the root of a number 1s a process by which we
find the base of a power from the power and the exponent
The power here 1s termed the radicand, the exponent is here
the tndex of the root, and the desired base of the power is
termed the roof

Nofation: 3/ 81=3 Here, 81 15 the radicand, 4 the in-
dex, and 3 the root Raising 3 to the fourth power yields 81;
3¢=81 (evolution can be checked by involution)

The second root 1s usually called the square roof, the
third root the cube roof When taking square roots the in-

dex 2 1s usually omitted V 16=4 means VZ 16=4
Addition and subtraction, multiplication and division,
wnvolution and evolution are pairs of tnverse operations
It 1s assumed that the reader 1s acquainted with the rules
of the first four operations with whole numbers. Raising to
a power 1s performed by means of repeated multiplication
For extraction of roots (evelution), see Secs 58, 58a

24, Order of Operations. Brackets
1f several operations are performed one after another, the

result, generally speaking, depends on the seczuence (order)
of the operations For example, 4—2+1=23 il the operations
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are performed as indicated, but if we first add 2 and 1 and
then subiract the sum from 4, we get | Brackeis are used
to indicate the sequence in which the operations are to be
performed (in cases when the result depends on the order of
the operations) Operations indicated in brackets are to be
performed first In our case, (4—2)4-1=3, or 4—(2+1)=1

Example 1. (2-4+4) X5==6X5=30, 2- (4X5) =2--20=22

In order to avotd too many brackets, we agree not to
indtcate brackets (1) when the operations of addition and
subtraction are to be performed 1n the sequence mn which
they are indicated, for mstance, n place of (4—2)~-1==3
we write 4—2+1=3, (2) when multiplication or division
would be indicated tn brackets, for instance, in place of
2+ (4x5)=22 we write 2+4X5=22

In computing expresstons which etther have no brackets
or contain only one set of brackets, perform the operations
1n the following order (1) first the operations n the brackets,
multiplication and division 1n the sequence mn which they
are given but before addition and subtraction, (2) then the
remaining operations, agamn multiplication and division being
accomplished in the order tn which they are indicated but
prior to addition and subtraction

Example 2, 2 5—3 3 Fust multiply, 2-5=10, 3-3=9,
then subtract 10~-9 =1

Example 3 9--16 4—2 (16—2 7-+4)46-(2+5) First
perform the operations indicated in the brackets®
16—274+4=16—14+ 4=6, 2-45=7
Now handle the remamning operations.
9+16 4—2.6+6 7T=9+4—~12+42=43

It often happens that bracketed expressions themselves
have to be enclosed 1n brackets, and the latter once more
in brackets In such cases, the round brackets (parentheses)
are used fust, then square brackets, [ ], and tinally curly
brackels (braces), The sequence of operations then 1s as
follows perform all operations 1n the round brackets in the
indicated order, then all computations in the square brackets
by the same rules, and all the computations in the curly
:)rackzts, efc; fnally, the remaining operations are per-
ormed.
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Example 4. 52 [14~3-(8—6)]+32 (10—2-3) We car-
ry out the operations in the round brackets: this yields

8—6=2, 10—2:3=10—6=4

the operations inythe square brackets yteld 14—3-2=8, and
then the remamning operations

5-4-2.84+32:4=5-416+8=29
which give us our answer
Example 5. {100—([35—(30—20)]}:2 The sequence of

operations st 30—20==10, 35—10=25 100—25=75;
75:2=150.

25, Criterla for Divisibllity

Divisibility by 2. A number divisible by 2 is called an
even number, otherwise 1t 1s odd A number 1s divisible by
two 1f 1ts last digit 1s even or zero, otherwise it is not.

Example. The number 52,738 15 divisible by 2 since the
last digit 1s 8 (even), 7691 1s not divisible by 2 because the
last digit, 1, 1s odd, 1280 1s divistble by 2 because the last
digit 1s zero.

Divisibility by 4. A number 1s divisible by 4 if the last
two digits are zeros or form a number divisible by 4, other-
wise 1t 15 not so divisible

Examples. 31,700 1s divisible by 4 since the last two di-
gits are zeros, 215,634 1s not divistble by 4 because the last
two digits form the number 34, which 1s not divisible by 4;
16,608 15 divisible by 4 since the last two digits 08 yield
the number 8 which 1s divisible by 4

Divisibility by 8. A number 1s divisible by 8 1f the last
three digits are zeros or form a number divisible by 8
Otherwise 1t 15 not divisible by 8

Examples. 125,000 1s divisible by 8 (the last three digits
are zeros), 170,004 1s not divisible by 8 (the last three digits
form the number 4, which cannot be divided by g&,
111,120 15 divistble by 8 since the last three digits form 120,
which 18 divisible by 8

Simular criterta could be indicated for division by 16,
32, 64, etc, but they are of no practical value

Divisibility by 3 and by 9. Only such numbers are divi-
sible by 3 the sum of whose digits 1s divisible by 8, the
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same for 9—the sum of the digits must be divisible

yExamples. The number (7,835 is divisible by 3 but is
not divisible by 9 since the sum of the digits 1474843
45=24 15 divisible by 3 but 15 not divisible by 9 The
number 106,499 15 not divisible erther by 3 or by 9 since
the sum of the digits (29) 1s not divisible by 3 or 9 The
number 52,632 1s divisible by 9 because the sum of the di-
gis (18) 1s divisible by 9

Divisibility by 6. ‘A number 1s divisible by 6 f 1t 1s
straultaneously divistble by 2 and by 3, otherwise 1t 1s not

Example. 126 1s divistble by 6 since 1t can be divided by
2 and by 3

Divis%bility by 5. Numbets ending In 0 or 5 are divisible
by 5, otherwise they are nnt

Example. 240 15 divisible by 5 (the last digit 15 zero),
554 1s not divisible by 5 (the last digit is 4)

Divisibility by 25. A number s divisible by 25 if the
last two digits are zeros or form a number that 15 divisible
b{ 25 (such are 00, 25, 50, or 75), otherwise it 1s not divi-
sible by 25

Example. 7150 1s divisible by 25 (it ends in 50), 4855 1s
not divisible by 25

Divisibility by 10, by 100 and by 1000. Only numbers
ending 1 0 are divisible by 10, only those ending n two
zeros are divisible by 100, and only those ending 1o three
zeros are divisible by 1000

Examples. 8200 is divisible by 10 and by 100, 542,000 s
divisible by 10, 100 and 1000

Divisibility by 11. The number 1l divides only those
numbers whose sum of digits occupymng odd posttions is
either equal to the sum of the digits occupying even positions
or difers from it by a number which 15 divisible by {1

Examples. The number 103,785 1s divisible by 11 since
the sum of the digits in odd positions (14+-34+8=12) is
equal to the sum of the digits in even positions (0--74-5=12)
The number 9,163,627 1s divisible by 1) since the sum of
digits 1n odd positions is 94-64-6-+7=28, while the sum of
digits tn even positions 1s 1+-3--2==6, the difference between
28 and 6 1s 22, which 1s divissble by Il The number
461,025 15 not divisible by 11 since the numbers 4412 =7
and 6-4-04-5=11 are not equal and their difference [1—7=4
is mot divisible by 11

There exist divissbility criteria for other numbers besides
those given above but they are more complicated.
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26. Prime and Composite Numbers

All whole numbers (integers) other than 1 have at least
two divisors unity (one) and the number itself Numbers
that do not have any other divisors are called prune numbers
For example, 7, 41, 53 are prime numbers Numbers which
have other divisors besides | and the number 1itself are called
composite numbers An example 1s 21 with ats divisors 1, 3,
7, 21 and 81 with 1ts divisors 1, 3, 9, 27, 81 The number
one (unty) could be classed as a prime, but 1t 1s better to
put 1t 11 a separate class outside the prime and composite
numbers (this convention stems from the fact that many of
the rules which hold true for all other primes are mvalid
when applied to unity)

There exist infinitely many prime numbers

The primes not exceeding 200 are (see pages 50-51 for
the Table of Primes < 6000).

2,8, 5,7, 11, 13, 17, 19, 23, 29, 81, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, (A
103, 107, 109, 113, 127, 131, 137, 139, 149, 151, )
157, 163, 167, 173, 179, 181, 191, 193, 197, 199

27. Factorization into Prime Factors

Every composite number can be represented uniquely as
a product of prime factars For example, 36 =2 2 3 3=2¢ 32,
45=335=325 (or 3%5, 150=235.5=2352% (or
21 31 52} For small numbers, factorization can be accomp-
hished by mere guesswork For large numbers the following
technique can be used

Example 1. Suppose we have a number 1421 Taking the
primes, one after the other, out of Table of Primes (A), we
stop at the prime which 1s a divisor of the given number
Using the divisibility criteria we see that the numbers 2, 3,
§ cannot be divisors of 1421, we attempt to divide by 7 and
we see that 1421 15 divisible by 7 yielding a quotient of 203,
To the left of the line we write 1421, on the right the divi-
sor, under the number we write the quotient 203 Then we

Work: 1421 | 7 test 203 1 the same manner. We ignore the
203 | 7 numbers 2, 3, 5 that proved ineffective 1n
29| 29 the first trial and begin

with 7. It turns out that 7 1s a divisor of 203 Write 1t down
to the right of 203. Under 203 write the quotient 29, which
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1s prime This completes the factorization We have:
1421 =7 7.29=72.29

The general technique may be stmplified 1n a number of
cases
Example 2. Let us factor the number 1,237,600 1nto prime
factors Noting that 1,237,600=12,376X100, we factor these
two factors separately The latter 1s readily decomposable
into 100=10-10=2-5-2:5==22-5* Then we factor the first
one as follows.

Work: 12,376 | 2 From Table (A) we take the first pri
61881 2 me, 2, we immediately see that it 15 a

3094 | 2 divisor of 12,376 Finding the quotient

1547 | 7 6188, we again take 2 from Table (A).
221 | 13 The second quotient 3094 1s also even,
17117 so we divide 1t by 2. The result 1547

1s no longer divisible by 2 The divisibility criteria show
that it is not divisible by 3 or by 5 either’ Let us try 7.
We get the quotient 221 Try 7 agan It 1s not divisible
Then try the following primes 221 1s not divisible by 11 but
it is divisible by 13 with the quotient 17, which is prime.

The final result 5. 1,237,600=23.7.13.17-22.5%
= 2§.52.7.13.17

28, Greatest Common Dlvisor

A common divsor of several numbers s a divisor (see
Sec. 23, Item 4) of each of them For example, the numbers
12, 18, 30 have 3 as a common divisor, 2 1s also a common
drvisor In every set of common divisors there 1s always a
greatest common dtwisor (6 tn our example), or G C.D

Examples. 4 1s the G.CD. of 16, 20, 28, 5 1s the G. C. D.
of &, 30, 60, and 90

For small numbers, the G C.D. can be found by tnspec-
tion. If we have to do with large numbers, decompose each
wto prime factors (see Sec. 27) and write out those which
are factors of all the given numbers Take each factor with
the smallest exponent with which 1t 1s contained in the given
numbers. Then multiply.

Example 1. Find the G.CD. of 252, 441, and 1080.
Factor into prime factors.

252=22-3%.7, 441=38%.72, 1080==23.33.5



73

We have only one common factor, the prime factor 3.
The smallest exponent of this factor 1s 2 The GCD is
3P=9

Example 2, Find the GCD. of the numbers 234, 1080,
and 8100 234=2.32-13, 1080=23 33.5, 8100=22.34.5?

GCD =232=18

1t may happen that there are no prime factors common
to all the numbers Then the greatest common divisor is 1.
For 1nstance, for 15=23.5, 10=2.5, 6=2.3the GC.D 15 1.
If the GCD of two numbers 1s I, then these numbers are
called relatively prime To 1llustrate, 15 and 22 are relati-
vely prime numbers

29, Least Common Multiple

A common multiple of several numbers is a multiple of
each of them (Sec 23, Item 4) The numbers 15, 6, and 10
have 180 as a common multiple The number 90 15 also a
common multiple of these numbers The set of common
multiples has a least common mulfiple (30 1n our case), or
LCM When dealing with small numbers, the L CM can
be seen at once If the number 15 large, do as follows.
factor the given numbers into prime factors, write out ali
prime factors of at least one_of the given numbers; then
take each factor and raise i1t to the highest power that it s
contamed 111 the given numbers Then multiply

Example 1. Find the L C M. of 252, 441, 1080

Factor into prime factors 252=2% 32.7, 441=32.72,
1080=-23.38.5 Multiply out 22 3% 72.5 and we find the
LCM to be 52,920

Example 2. Find the LCM of 234, 1080, 8100 (see
Sec 28, Example 2) The L CM =23.34.52.13=210,600.

30. Common Fractions

A common fraction (or, simply, a fraction) 1s a part of
unity or several equal parts of umity The number which
indicates how many parts a umt s divided into 15 called
the denominafor of the fraction, the number indicating how
many paris are taken 1s the numeraior of the fraction.
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Notation: % or 3/5 {three fufths) here, 3 1s the numera-

tor and 5 1s the denominator

1f the numerator 1s less than the denominator, the frac-
tion 1s less thanm unity and 1s called a proper fraction
2isa proper fraction If the numerator 1s equal to the

5
denominator, the fraction 1s equal to umty If the numera-

tor 15 greater than the denmominator, the fraction exceeds
umty In these latter two cases 1t 1s called an umproper frac-

tion For example, %, % are improper fractions In order

{o take out the largest whole number contained 1n an 1mpro-
per fraction, divide the numerator by the denormnator I the
division 1s exact, then the improper fraction 1s equal to the

quotient Say, 4—:—:45 5=9 If the diviston 1s not exact,

the (partial) quotient yields the desired integer, while the
remainder becomes the numerator of the fractional part, and
the demominator of the fractional part rematns unchanged

Example. Given the fraction 15§ Divide 48 by 5 to get

the quotient 9 and a remainder of 3, %:9%

A number consisting of an integral part (whole number)
and a fractional part (fraction) 1s called a mixed number

(9—:— for mnstance ) The fractional part of a mixed number

may be an improper fraction (lxke 7%) . It 1s then possible

to take out the largest whole number (see above) and repre.
sent the mixed number so that the [raction becomes proper
{or disappears altogether) For example,

13 13 3 3
7-5—=7+?=7+2—5-=9—5—

Mixed numbers are usually reduced to such form

If 1s often necessary (in multiplying fractions, say) to
operate 1n reverse given a mixed number, 1t 1s required to
represent it m ihe form of a jraction (xmproper iraction).
To do this, (!) multiply the integer 1n the mixed number
by the denominator of the fractional part, (2) add the nu-
merator {o the product The resulting number will be the
numerator of the destred f{raction, and the denominator re-
mdins unchanged
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Example. Given the mixed number 9% (1)9-5=45;
(2)45+3=48, (3)9+=%

31. Reducing Fractions

The value of a fraction 1s not changed if the numerator
and denominator are multiplied by the same number For
example

This 1s called reducing (changing) the fraction to hugher
terms

The value of a fraction remains unchanged if the nume-
rator and denominator are divided by one and the same
number For example

i8_186__3 4 444 1

30306 5’ T 8.4 2
This 1s called reducing the fraction fo lower ferms, or sumpl
reducing the fraction We say that 2 s obtamed from i3

3 30
by dividing out 6.

A fraction can only be reduced if the numerator and de-
nominator have the same divisors (that 1s, if they are not
relatively prime) The reduction may be accomplished gra-
dually or at once using the GCD

Example. Reduce the fraction :—gi‘ to lower terms. Using
the divisibility-by-4 criterton (see Sec 25 above), we see
that 4 15 a common divisor of the numerator and denomina-
tor Dividing out 4 we have 108 08¢ a1 Noting that
27 and 363have 9 as a common divisor, we divide 9 out of
%, 35=7 Further reduction 1s impossible since 3 and
4 are relatively prime

We get the same result 1f we find the greatest common
divisor of the numbers 108 and 144 It 15 36 Dividing out
36 we obtain

108 _ 10836 3

Tad~ 144 36 4

Dividing by the greatest common divisor we have the
fraction in lowest terms,
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32, Comparing Fractions,
Flnding a Common Denominator

If two fractions have the same numerator, the larger
fraction 1s that with the smaller denommator For example,
—;— > —:—, % > —g—. If two fractions have the same denomi-
nator, the greater fraction is that with the greater numer-
ator. 5> 3.

In order to compare two fractions with different nume-
rators and denominators, either one or both of the fractions
have to be transformed so that the denominators are the
same. To do this, change the first fraction to the terms of
the denominator of the second, and the second to the deno-
minator of the first ,

Example. Compare the fractions % and 75 Change the
first by a factor of 12, the second by 8 This ytelds %—_—.%,
;’—2=g—§- Now the denominators are the same Comparing
the numerators we see that the second fraction is greater
than the furst.

This process of changing fractions 1s called finding a com-
mon_denominator

To reduce several fractions to a common denommator,
we can change the denominator of each by a factor equal
to the product of the other denominators For mstance, n
order to reduce the fracttons %, %, -:— to a common deno-
minator, change the first denominator by 5-6==30, the se;:gnd

__200

3 90 5
by 8-5=40, the third by 8-6=48 Weget 3-= 20, 5 =20,

-§—=-§;% The common denomnator 1s the product of the

denominators of all the given fractions: 8-6 5=240

This method of finding a common denominator is the
simplest and, 1n many cases, the most practical The sole
inconvemence 1s that the common denominator may turn
out to be too big, whereas smaller ones may be available
Namely, for a common denominator we can take any com-
mon mulitiple gthe least common multiple, say) of the given
denomunators It 1s then necessary to cgange (muitiply) each
fraction by the quotient obtained from dividing the common
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multiple by the denomunator of the given fraction (this

quotient will be called the addifional factor)

Example. Given the fractions %, —g—, —;— The least com-
mon multiple of the denominators 8, 6, 5 1s 120 The add:-
tional factors are 120 8=15, 120 6==20, 120 5=24 Change
(multlgly) the first fraction by 15, the second by 20, the

third by 24

3_45 5 100 2 _ 48
T b 120 B 120

Most arithmetics give only this technique for reducing
to a common denominator Actually, it 1s of practical use
only when the L CM s seen by inspection, otherwise a great
deal of time is needed to find the L CM and the additio-
nal factors What 1s more, 1t often happens that the L CM
1s not much less than the product of the denominators or
not less at all But then a lot of time 1s spent for no good
reason

33. Adding and Subtracting Fractions

If the denominators of the iractions are the same, the
fracttons may be added by adding their numerators, to sub-
tract them, subtract the numerator of the subtrahend from
the numerator of the minuend This sum or difference will
be the numerator of the answer, the denominator remaining
unchanged If the denominators differ, first reduce the frace
tions to a common denomnator

5,7 12 ] 1
Example 1. T+T‘T_'T=l-z'
E le2 245 _2_ 45 100 48 9
¥ *ETE 5 120 ' 120 120 120 -

To add mixed numbers, separately find the sum of the
integral parts and the fractional parts

Example 3. 73+45=(7+ 4)+<%+%)=u £

7
=12 45

When subtracting mixed numbers, the fractional part of
he subtrahend may be larger than the fractional part of the
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minuend In that case, borrow umty from the mmuend and
change to an improper fraction

3 4

Example 4 74—4 +=T3—475

i
Example 5 11—105=10 - —~10 5 ==+

34, Multiplication of Fractions, Definition

For multiplication and diviston of a fraction by & whole
number (integer), the definitions given above tn Sec, 23
(Items 3 and 4) hold true For example,

3 3 3 3 o1
24 X3=2+2 7+ 2 =85

Conversely, 8 IT 3=22 The practical rules of compu-

4
tation are given below
The definition of Sec 23 1s not vahid for multiplhication

by a fraction. For example, the operation 2% . %cannot be
carried out 1f 1t 1s understood that 2% 15 to be taken as
a factor % times

To multiply a given number (integer or fraction) by
a fraction means to divide the number by the denominator
of the fraction and multiply the result by the numerator,

Example. 800 2, 800 4=200 200 3=600 so thai

BOO-%:GOO The sequence of operations (division and mul-
tiplication) may be reversed and the result will be the same,
800:3=2400 and 24004 =600

The above definition is not a mere whim, it follows from
the necessity to preserve intact the role that multiplication
ﬁl;ys 1n practice and theory when we deal with whole num-

s Two examples will suifice to make this clear.

Example. A litre of kerosene weighs 800 grams What
is the weight of 4 [litres? Solution 800-4=3200(g)
=3 kg 200 g." The result s found by multiplying by 4.

What does-i-. of a litre of kerosene weigh? Solution:
800-%——-600 (g) (see preceding example)
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If we define multiplication by a fraction differently, the
answer will not be correct If we procceded from the defi-
mtion given mn Sec 23 and regarded multiplication by

~i— as 1mpossible, then we would have to solve the problem

‘of the weight of the kerosene by different operations multi-
plication for an integral number of litres, and via a diffe-
rent operation for a “ractional number of litres *

In the multiplication of whole numbers, the product
remains the same no matter what the order of the factors
3.4=4 3=12 This property 1s preserved 1n multiplication

by a fraction as well For example, —g— 3=%+—§-+%=2‘
This result 1s obtaned on the basis of the earlier delinition

{see Sec 23) Interchange the factors 33 The latter defi-
mtion of multiplication no longer holds true, but the new
definttion yields 3 %:2

Generally speaking, 1t turns out that under the new defi-
mition of multiplication, all earlier properties and rules re-
main valid, with the exception of one 1 the earhier defini-
tion of multiplication, a number increased 1n value, whence
the name “multiphcation” (“multus” =many) Now we have
to say thatin multiplication by a number exceeding umty the
multxﬂhcand increases, and in multiplication by a number
less thant unity (a proper fraction), the multiplicand decrea-
ses This discrepancy between the latter fact and the name
of the operation 1s due to the fact that the term “multipli-
cation” origiated at so remote a time that the concept of
multiplication referred solely to whole numbers

85, Multiplication of Fractions. Rule

To multiply a fraction by a fraction, mulitply the nume-
ralors together for the numerator of the product and multtply
the denominators together for the denominator of the product.
If there are mixed numbers, convert them to 1mproper frac-
tions before multiplying Also, before multiplying, divide

* The question nalurally arises as to whelher it Is possible to
give a definition suitable for mulliplication by an integer and by
a fraclion This appears to be impossible when defining multipli-
catlon by a fraction we unaveidably have to assume as known multi-
plication by a whole number (see delinition of this section)
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out (cancel) any common factors 1 the numerator and the
denominator

25 27_ 5 9 _ 45 13

Example 1 2” |20=TZ B=T T=ﬁ=2ﬁ G s
divided out of 25 and 20, 3 out of 12 and 27)

when the number

The foregoing is extended to the case
of factors exceeds two s st 322
Example 2. 4-—~%—~4-——_—_-7—T=—1—_|2
(3 15 divided out of 9 and 3, 2 out of 4 and 2, 7 out of
14 and 7).
If some of the factors are whole numbers, then each one

15 regarded as a fractlon with denolm7m|ator71 \
Example 3. 7 Tg"a_—"—‘"=“—1—

(5 15 divided out of 5 and 15, 4 out of 4 and 8).

36 Diviston of Fractions

The definition of division given earlter in Sec 23 holds
true for the diviston of fractions as well. From 1t follows
the rule

To diwide a number by a fraction, multiply the number by
the reciprocal of the fraction (the reciprocal s the fraction
formed by interchanging the numerator and denominataor:

the reciprocal of —9- is J-)

B
Example 1. —‘;—‘-«5. The reciprocal of -—ls »135-. Hence
2.4 z 15 i
v =T 8 1685 11 _1
Example 2 l— 3—=—§ PSS ITESTIST

This rule 13 also apphicable when the dividend and divi
sor are whole numbers For example, 2.5:2--;—_1-:- Thus,
the fraction bar 1s equivalent to the division sign.

81, Operations Involving Zero

Addition. Adding zero to any number leaves the number
unchanged. 5+0=5, 3> 4+0=33.

Subfraction. Subtracting zero from any number leaves the
number unchanged, 5—0=5, 3%——0:3%.
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Multiplication. Zero times any number is always zero
5:0=0,033=0,00=0

Division. | The quotient obtamed by the division of zero
by any nonzero number is zero 0 7=0, 0 &=

2 The quotient resulting from the division of zero by
zero 15 indeterminate Here, any number satisfies the defini-
tion of a quotient (see Sec 23, Item 4) For example, we
could set 0 0=5 because 5:0=0, but we could also put
0 0.:3—?— because 3% 0-=0 Thus, the problem of dividing
zero by zero has infinitely many solutions and i1s meaningless
without further information, which has to indicate how the
dtvidend and divisor varied before they became zero If this
1s known, then i most cases 1t 1s possible to give meaning
to the expression 0 0 For 1nstance, if we know that tge dr-

3
vidend took on the successive values 165+ T36% * T0-60% *

7 7
ete, and the divisor assumed the values 155, 555, ete.
then the quotient, meantime, assumed the values %) %

3 3 7 3
=5 7553 Too0 =7 - cic., which is to say, remained equal
m.;_, and so the quotient of 0 0 can, here, be taken equal
3
to 5

In such cases, one speaks of evaluating the indeterminate
expression 0 O (see Sec 217, Example 2) Higher mathe.
matics offers @ number of techmiques for evaluating the in-
determinate expression 0 0, but in certain cases the tools of
elementary mathematics suifice

3 The quotient obtamned by dividing some aonzero num-
ber by zero does not exist because 1n this case no number
can satisfy the definition of a quotient (see Sec 23, Item 4)

As an example, take 7 0 No matter what number we
take to test this out (say, 2, 3, 7) we get the same unsatis-
factory answer (2 0=0, 3 0=0, 7 0=0) whereas what we
need is 7 We can say that the problem of dividing a non-
zero number by zero has no solution.

On the other hand, a nonzero number may be divided by
a number arbitrarily close to zero, and the closer the divi-

sor 1s to zero, the greater will be the quotient Thus, ff we
divide 11_0' i';'ﬁ' Tb% |n.looo' ete., by 7, we obtain the quo-
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tients 70, 700, 7000, 70,000, etc, which increase without
hound For this 1eason, we say that the quotient obtained
by dividing 7 by 0 1s “infinitely great” or 1s “equal to infi.
nity”, and we write 7 0-.0 The meaming of ihis expres.
sion 1s that 11 the divisor approaches zero ana the dividend
remains cqual to 7 (or approaches 7), then the quotient wi)
increase without bound

38 The Whole and a Part

1 Finding a part from the whole. To find some part of
a number, multiply 1t by the fraction expressing that part

Example A commuttee of 120 members meets for elections
Two thirds of the body must be present How many mem.
bers must be present for the meeting to take place?

Solution. 120 %:80

2 Finding the whole from a part. To find a number
when one of its parts 1s known, divide the number by the
fraction expressing the given part

Example The dead weight of an ox 1s 3/5 the live weight,
What 15 the hve weight of an ox whose dead weight 1s found
to be 420 kg?

Solution: 420:~ =700 (kg)

3 Expressing a part as a fraction of the whole To exp.
ress a part as a fraction of the whole, divide by the whole
number

Example. Four students are absent in a class of 30 What
part of the class 1s absent?

4_2
Solution 430=§E=ﬁ

39, Decimal Fractions

Computations mvolving common fractions become very
unwieldy 1if the denominators are big numbers The mam
difficulty lies in reductng the fraction to a common deno-
munator This 1s because there 15 no system in the choice of
denominator, any number will do That 1s why even in an-
tiquity the idea arose of choosing regularly (not arbrtraril )
certain parts of a unit (in common fractions they play tge
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part of denominators) The most ancient s stematic fractions
which were used in Babylomia some 4000 years B C and
were passed on by the ancient Greek astronomers to the ast
ronomers of Western Europe were the sexagesimal fractions
(see Sec. 21, Item 4) At the end of the 16th century when
intricate computations nvolving fractions were widely used
in all spheres of lLife, systematic fractions of a different kind
came nto use' dectmal fractions (see Sec 45) Here, the
umt 1s divided into ten equal parts (fenths), each tenth into
tenths (hundredths), and so on The advantage of decimal
fractions over other systematic fractions fes in the fact that
they are based on the same number scale (of ten) as are the
whole numbers As a result, both notation and rules of hand-
Iing decimals are essentially the same as those used when
dealing with whole numbers (integers)

When writing decimals there 1s no need to indicate the
name of the parts (denominator); it 1s clear from the post-
tion of the appropriate digit. We first write the integral part,
then a dot (decimal point),* then the first digit after the
decimal point represents tenths, the second digit, hundredths,
the third, theusandths, etc The digits which come after the
dﬁ(:lmgl pomnt on the right are termed dectmals (decimal

aces,
P Example. 7305 sigmfies seven umits, 3 tenths, 5 thou-
sandths (the zero ndicates that there are mo hundredths), or

3,9 5
7 305=7+1—6+T0—0 +W-°-
One of the advantages of decimal fractions 1s that the

expression of the fractional part is given directly in a form
reduced to a common denominator:

7 808
7.305=7 &

the number following the decimal point (305) 1s the nume-
rator of the fractional part and the demominator of the frac-
tlon 1s the number which shows how many parts are indi-
cated by the last decimal place (1n our case 1t 15 1000).

it a decimal fraction does not have an integral part, then
the best usage recommends a zero to be placed before the

decimal point; for example %:0,3&.

* in some countries, a comma |s
number from the decimal fraction. fs used to sepirate the whole

[
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40. Properties of Decimal Fractions

I Annexing zeros to the right of a decimal fraction does
not change the value

Example. 12 7= 12 70==12,700, etc
{for the difference that s made between 127 and 12 70 see
Sec 48

2 D)roppmg the zeros at the end of a deciumal fraction
does not change the value of the fraction

Example. 0 00830==0 0083. (Zeros that do not come at
the end of the fraction cannot be omitted)

3 A decimal fraction 1s tncreased (multiplied by) 10,
100, 1000, etc times if the decimal point 1s moved one
place, two places, three places, etc to the right

Example. The number 13 058 becomes 100 times larger 1f
we write 1305 8,

4 A decimal fraction 1s reduced dy 10, 100, 1000, ete.
times 1f the decimal point 1s moved leftwards one, two,
three, etc places

Example. 176 24 decreases 10 times 1f we write 17.624, it
will be 1000 times less 1f we write 0 17624,

These properties enable us to perform rapid multiplication
and diviston by the numbers 10, 100, 1000, etc

Examples, [208-100=1208, 1208 10,000= 120,800 (first
write 1208 as 12 0800 and then move the decimal point to
the right four places), 42 03 10=4.203, 42 03:1000 =0 04203
(first ‘write 4203 as 0042 03 and then move the decimal
point three places to the left)

41. Addition, Subtraction and Multiplication of Declmal Fractions

Addition and subtraction of decimal fractions are per-

Work: formed in the same way as the addition and

subtraction of whole numbers, take care fo write

+00 each digit 1nits proper place (tenths under tenths,
14 9 hundredths under hundredths, and the like).

17 28
Example. 2 34-0.02+ 14 96==17.28.
Multiplication of decimal fractions. Multiply the given
numbers as whole numbers disregarding the decimal pont
Then msert the decimal pownt using the following rule:
take the sum of the decimal places in all factors and point
off that number of decimal pluces in the product
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Example 1. 2 064:0 05 Multiply the whole numbers
2064:5==10,320 The first factor had three decimal places,
the second two, and so the product must have five places
set off after the decimal pomt This yelds 010320 The
zero at the end of the fraction 1s dropped and we have
2 064-0 05=0 1032

In this method, do not drop zeros before pomnting off
the dectmal places (when multiplyng by the method given
in Sec 55, the zeros may be dropged)

Example 2. 1 125 0 08, 1125-8=9000 The number of
dectmal places 1s 3+4-2=5 Annexing zeros to the left of
9000 (009000) we pownt off five decimal places to get
0 09000 =0 09

42, Division of a Decimal Fraction by an Integer

1. If the dividend 1s less than the divisor, write a zero
1n the integral part of the quotient and then the dectmal point
.Then, disregarding the decimal pownt, annex to the integral
part of the dividend the first digit of its fractional part, if
the resulting number 1s less than the divisor, put a zero
after the decimal pownt and annex another digit of the
dividend, if we still have a number less than the divisor,
put down another zero, etc, until we get a number exceeding
the divisor The diviston 1s then performed in the same
way as for whole numbers (integers) Note that the dividend
may he “expanded” without bound rightwards from the
decimal point by adding zeros

Note The process of division, as described above, may
never end In that case, the quotient cannot be expressed
exactly by means of a decimal fraction But we can termi-
nate the process at any poitnt and obtain an approximate
result (see Sec 44 below)

Example 1. 13 28.64
Work: Here the number 132 exceeds the divisor as

soon as we shift the decimal pownt one place

1328 | 64 o the right, and so there s no zero directly
12 8 [0.2075 after the decimal point But aiter we bring

48 down the next digit the first remainder (48)
vl 1s less than the divisor, so we put a zero
448 in the dividend (expanded, the dividend
—_ becomes 13.280) This zero 1s then brought
320 down and we can continue the division

process We get a remainder of 32 and again have to bring
down a zero (the dividend then becomes 13 2800).



Here, moving the decimal point one place

75 to the right we get 4, which s less than 75,

0 008T write zero 1 the quotient after the decimal

point, move the decimal point one more

300 place to the right i the dividend to get 48,

which 1s still less than 75 Put a second zero in the quotient

to the right of the decimal point Adding one zero to the
fraction we get 0480, etc

9. If the dividend 15 larger than the divisor, first divide
the integral part, write down the resull in the quotient and
place the decimal pomnt The division process then proceeds
as 1 the preceding case

Example 3. 542 8.16,

Work: Dividing the integral part, we get a quotient
542.8 16 of 33 and a remamnder (the second

¥ Jr. 1emawnder) of 14, Put the decimal point
48 33.925  after 33 and bring down the next digit, 8.

62 Divide 16 into 148 to get 9, which 1s the
48 first digit after the decimal point, ete
148 The same procedure 1s used 1 dividin,
144 a whole number by 2 whole number if |
T 1s desired to give the quotient as a decimal
fraction.
32
80

Example 4. 417 15

Work: Here, the decimal potnt 1s inserted after the
417 15  last integral remainder (12) 15 obtained The
30 [g7g dividend 417 may be written as 4170, it 1s
. then represented as a decimal

Alternatwe method of diwision
The process of division can be written differently:
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Example 5. Divide 45, 837 by 312

14691

312| 45837
312
T463
1248

2187

1872

2850

2808

420

312

T08 (remainder)

43, Division Involving Decimal Fractions

To divide 4 dectmal fraction (or a whole numbei) by a
dectmal fraction, drop the decimal pomnt in the divisor and
move the dectmal point rightwards mn the dividend the same
number of places as 1n the fractional part of the divisor
(if necessary, annex zeros at the end of the dividend)
Division can now be performed as indicated in the preceding
section.

Example. 0 04569:0 0012.

Work* There are four dectmal places 1n the
456 9 12 fractional part of the divisor, and so we
36 35075 Move the decimal point four places to the
—_ right 1 _the dividend to get 456 9. Now
96 divide 456 9 by 12.
€

90

&

60

44, Changing a Decimal Fraction fo a Common Fractlon and Vice
Versa

To change a decimal fraction to a common fraction, drop
the decimal point and make the resulting number the
numerator of the fraction, the denominator 1s the number
indicated by the last demimal place. 1t Is desirable, f
possible, to reduce the fraction to lowest terms.
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If the decimal exceeds umily, 1t s best to change only
the decimal part to a common fraction and leave the integra]
part unchanged

Example 1. Change 00125 to a common fraction The

ast decimal, 5, 1s 1 the ten-thousandths place, lazrgd 50 the

denomynator will be 10,000 We have 0 0125=m=§
Example 2. 2 75:2'1%56=2_i" or 2 75:%3=14—! The

former procedure 15 to be preferred, that 1s, leave unchanged
the 2 to the left of the decimal point and change 0.75 to
a common fraction

In order to change a common fraction to a decimal,
divide the pumerator by the denominator using the rule n
Sec 42 (see Example 4)

Example 3. Change the fraction —Z— to a decimal. Dyvide

7 by 8 to get 0875

In most cases the division process goes on without ead
Then the common fraction cannot be changed into a decimal
fraction exactly, which 1s actually never required 1n practice
The diviston 1s terminated when the quotient has as many
dectmal places as required in a given practical situation

Example 4 1t 1s required to divide 1 kilogram of coffee
into three parts The weight of each 1s 1/3 kg To weigh
this quantity, we have to express it in tenths of a kilogram
(since there are no weights of one-third of a kilogram)
Dividing 1 by 3, we get 13=0333... The division can
be continued endlessly with new threes appearing n the
quotient But small weights (say, less than 1 gram) are not
indicated by ordrnary scales, what 1s more, the coffee beans
themselves weigh more than a gram each Only hundredths
of a kilogram (10 grams) are of practical interest in this

case And so we take -;— kg ~ 033 kg.

For greater accuracy, 1t 1s accepted usage to make al-
lowance for the value of the last rejected digit If 1t
exceeds 6, the retained digit 1s increased by umty

Note. Even when a common fraction can be expressed
exactly as a decimal, this s not done in most cases The
division process 1s terminated as soon as the required degree
of accuracy s attained

Example 5. Change the fraction -312 to a decimal. The
exact value s 0 21875. Depending on the accuracy required,
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the division process 1s terminated with the seco7nd, third,
etc. digit of the quotient, and we take%:\:o 22, 53 = 0.219,
and so on

45, Historical Survey of Fractions

The notion of a fraction could develop only after defimite
conceptions concerning whole numbers had been firmly
established Like the concept of an integer, the concept of
a fraction developed gradually The idea of “one half”*
originated much before that of thirds or fourlhs, and the
latter two appeared much earlier than fractions with other
denomunators The first notion of a whole number evolved
out of the process of counting, the first conception of
fractions, out of the process of measuring (lengths, areas,
weights, and so on) Many languages have traces of the
historical connection between fractions and the existing
system of measures For example, in the Babylonian system
of measures and money, ] talent 1s composed of 60 minas,
one mina making 60 shekels Accordingly, Babylonian
mathematics made extensive use of sexagesimal fractions
(see Sec 21) In the weight and monetary system of ancient
Rome, 1 as consisted of 12 ounces (uncra), the Romans
accordingly made use of duodecimal fractions The fraction

we call Tli was called an “uncia” by the Romans even when
1t was used for measuring lengths or other quantities The
Romans called % one and a half ounces, and so forth

Qur common fractions were widely used by the ancient
Greeks and Hindus The rules for handling fractions given
bly the Hindu scholar Brahmagupta (8th century) differ but
shightly from our own rules Our way of wniting fractions
cotncides with the Hindu custom True, the Hindys did
not use a fraction bar The Greeks wrote the denominator
above the numerator, although other forms of notation were
used more often For example, they wrote (using other
symbols, naturally) 35% (three fifths).

The Hindu symbolism for fractions and rules for handling
fractions spread into the Muslim world 1 the 9th century

* In all Janguages, the concept “half” hds a special name not
connected with the word “two” Originally “half” meant one of two
parts (which were not necessarily equal),
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due {o af Khowarizmi (see Sec 21), and thence to Western
tarope 10 the 13th century thanks to the Italian merchant
and scholar Leonardy of Pisa (also known as Fibonacer)

Bosides common fractions, sexagesimal fracttons were i
use, especially in a-tronomy The latter subsequently gave
wiy lo deermal factions, ‘whicli were first introduced by
the colehrated Samarkend scholar al-Kashi (14th to 15th
century) In Europe, decimal Iractions were introduced by
the Flemish mathematician and engineer (he was also a
merchant) Stmon Stevin (1548—1620)

46 Percentage

The expresston “per cent’ (from the Latin “per centum”,
«by the hundred”) means a hundredth part Symbolically,
19 stands for 001, 27% for 027, 100% for 1, 150% for
1 5, cte (the symbol for percentage, %, 1s a distortion of
the notation ¢y,, which 1s a contraction of the word “cento”)

1% of a sum means 00! of it, to fulfil a plan means
to complete 100% of it, whereas fulfillment by 150% would
mean that one and a hall quotas of the planned amount
liad been completed, and so forth

To find the percentage expression of a given number,
mulltp.  the number by 100 (or, what 1s the same, move
the :?ccu il point {wo places to the right)

xamyres Expressed as a perccutage, 2 1s 2009, the num-
ben 0357 s 35 7Y, the numoer 1 753 15 175 39

To ch. 1ge a percent to a number, aivide the percent by
100 (or, what 1s the same, move the decimal point two pla-
ces to the left)

Examples. 1359 =0135, 23%=0023, 1450 =145,
2,04 =0 495 =0 004

The three principal problems imvolving percentage are

Problem 1 Find the indicated percent of a given number.
(cf Sec 38, Rule I) Multiply the number by the percent
and divide by 100 (er, what 1s the same, move the decimal
point two places to the left in other words, the given num-
ber 1s multiohed by the fraction expressing the given per-
cent)

Example. A planned quota 1n coal production 1s 2860
tons per day A mune pledges to do 115% of the plan. How
many tons of coal will 1t mine per day?

Solution. (1) 2860 115=1328,900

(2) 328,900 100=23289 tons
(which 15 equivalent to 2860-1.15==3289).
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Problem 2 Find a number on the basss of a given percent
(cf Sec 38, Rule 2) The given quantity is divided by the
percent and then multiplied by 100 (or the decimal pornt
1s moved two places to the right, which 1s to say the given
number is divided by the fraction expressing the given
percent)

Example [n processing sugar beets, 125% of the weight
of the beets s granulated sugar What quantity of beets
has to be processed to produce 3000 centners of granulated
sugar?

Solution (1) 3000 12 5=:240 (2) 240 100= 24,000 (cent-
ners) (which 1s tantamount to writing 3000 0 125= 24,000)

Problem 3. Find what percent one number is of another
(cf Sec 38, Rule 3) Multiply the first number by 100 and
divide by the second number

Example 1. A new burning process for brick manufacture
made 1t posstble to ncrease the output of bricks per cubic
metre of furnace from 1200 to 2300 bricks What was the
increase 11 brick output n percentage®

Solution

(1) 2300— 1200 = 1100,

(2) 1100 100 =110,000,

(3) 110,000 1200 =~ 9] 67

Brick output increased by 91 67%

Example 2. According to the seven-year plan, the petro-
leum output in the USSR was to reach (61 milhon tons in
1961 Actually, 166 milhion tons were produced Give the
fulfillment of the 1961 plan 1n percentage

Solution.

(1) 166-100= 16,600,

(2) 16,600 161 = 103 1

Petroleum output in 1961 was 103 1% of the planned
amount

Note 1. In all three types of problems, the sequence of
operations can be change (sa{v, tn the Jast problem, we
could first divide and then multiply by 100)

Note 2. The example which follows is to serve as a war-
mn%»agamst a mistake that 1s very frequently made

th1s required to find out the price of a metre of cloth
prior to a price reduction 1f after a price reduction of 15%
the price i1s 12 roubles per metre Sometimes, 15% of 12
roubles 1s found, that s, 12 0 15=18. This 1s followed by
the addition 124-18=138, and 1t 1s taken that the old
price was 13.8 roubles per metrq This 1s not so because the
percent of reduction 1s established with respect to the earlier
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prices, and 18 roubles 1s not 15% of 13 8 roubles but about
13% (see Problem 3) The correct solution 1s this after the
price reduction, the cloth cost 100% —15% =85% of the
earlier price And so the old price (see Problem 2) was
12 0 85=14 12 roubles per metre

Note 3. In working percentage problems it 1s best to take
advantage of the methods of approximate computations (see
the sections which follow)

41, Approximate Calculations

The numbers we deal with tn everyday affairs are of two
kinds Some state exact magnitudes, others give only appro.
ximate values Thus, we have exact numbers and approximate
numbers We often take an approximate value 1n place of an
exact value simply because the latter is not required In
many cases 1t 1s simply 1mpossible to find a number exactly

Example 1 The number of pages 1n a book 1s exact
This book has 423 pages

Example 2 A hexagon has 9 diagonals, which 1s an exact
number

Example 3 A salesman weighs 50 grams of butter 50 s
an approximate number because the scales are not sensitive
to an increase or decrease of 05 gram

Example 4 The distance by railway from Moscow to Lenin-
grad 1s 651, kilometres The rumber 651 1s an approximate
number because our measuring nstruments are not exact

Operations mvolving approximate values yield afpproxxmate
values What 1s more, mexact digits may result from opera-
tions on the exact digits of the given numbers

Example 5 In multiplying the approximate numbers 60 2
and 801 let us suppose that all the indicated digits are
correct so that the true values can differ from the approxi-
mate ones only 1n hundredths, thousandths, etc The product
1s 4822 02 Here, not only the hundredths and tenths digits
but even the umits digits may be incorrect For example, sup-
pose that the factors were obtamned by rounding off (see
Sec 49) the exact numbers 60 25 and 80 14 Then the exact
product 1s 4828 435, so that the units digit in the approx-
mate product (2) differs from the exact figure (8) by 6 units.

If we know the degree of accuracy of the starting figu-
res, the theory of approximate com putations permits us (1)
to estimate the degree of accuracy of the results prior to
performing the operations, (2) to take the initial numbers
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with the desired degree of accuracy so as to ensure the re-
quired accuracy of the result without involving the computor
mn extra needless computations, (3) to rationalize the very
process of computation by omitting computations that do not
affect the final exact figures of the result.

48. Notation of Approximate Numbers

In approximate calculations we distinguish befween 24
and 240, between 002 and 00200 and so on The notatton
2 4 means that only the umtis and tenths are correct, the
true value of the number may be, say, 2 43 or 2 38 (when
the digit 8 1s dropped, we round the preceding digit upwards,
see Sec 49) The notation 2 40 means that the hundredths
are correct, the true number may be 2403 or 2 398 but not
2421 or 2 382

This distinction also holds true for whole numbers The
notation 382 means that all digits are correct, now 1f there
1s any doubt about the last digit, the number 1s rounded
off and 15 written as 38 10 and not 380 If we write 380 this
means that the last digit (0) 1s true If in the number 4720
only the first two digits are correct, then 1t must be written
as 47 102, this number can also be written 1n the form
47.108, ete

The sigruficant digits of a number are all the correct
digits (except for zeros) which stand at the beginning of the
number For example, in 000385 there are three significant
digits, in the number 0 03085 there are four sigmficant digts,
in 2500 there are four, and tn 25 103 there are two

49, Rules for Rounding Off Numbers

In approximate computations 1t 1s frequently necessar
to round off numbers (both approximate and exact), whic
means dropping one or more of the last digits To ensure
that the rounded number 1s as close as possible to the
original number, use the following rules'

Rule 1. If the first of the discarded digits exceeds 5
then the last digit kept 1s increased by unity. The increase
is also made when the first digit kept 1s equal to 5 and 1s
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followed by one or more significant digits (for the case
when the discarded 5 15 not followed by any digits, see
Rule 3 below)

Example 1. Rounding the number 27 874 to three signif)-
cant digits, we write 27,9 The third digit 8 1s_increased
to 9 since the first discarded digit, 7, exceeds 5 The num-
ber 279 1s closer to the original number than the rounded
(but not increased) number 27 8

Example 2 Rounding the number 36251 to the first
decinal, we write 36 3 The tenths digit 2 1s increased to 3
because ihe first discarded digit 1s equal to 5 and it s
followed by one sigmficant digit, 1 The number 36 3 15
closer to the initial number (though only slightly) than the
unincreased number 36 2

Rule 2. If the first digit dropped 1s less than 5, no
increase 15 made

Example 3 Rounding 27 48 to the necarest whole number,
we write 27 This number 1s closer to the given one than 28

Rule 3 If the digit 5 s dropred, and no sigmificant
digits come after 1t, the rounding 1s done to the closest even
number, that is, the last retamed digit 15 left unchanged if
1t 1s even and 1s increased 1f 1t 15 odd The reason for this
rule 1s given oelow (see note)

Example 4 Rounding 00465 to the third decimal place,
we write 0046 We do not increase the last digit kept since
tt 15 even The number 0046 1s just as close to the given
one as 15 0047

Example 5. Rounding 0 935 to the second decimal place,
we write 0 94 The last retained digit 3 15 increased because
1t 1s odd

Example 6. Rounding the numbers

6527, 0 456, 2 195, 1 450, 0950, 4 851, 0850, 0 05 to the
first decimal place, we get

65,05 22 14,10,49, 08,00

Note. When applying Rule 3 to the rounding off of one
number do not increase the accuracy of the rounding pro-
cess (see Examples 4 and 5) However, 1f the process 1s per-
formed repeatedly, there will be roughly just as many numbers
with excess as with deficit The mutual compensation of er-
rors will ensure the highest possible accuracy of the result

Rule 3 can be modified and made to apply to rounding
off to the closest odd number The accuracy wiil be the same
but even digits are more convement than odd digits
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50. Absolute and Relatlve Errors

The absolute error (or, simply, error) of an spproximate
number 1s the difference between the number and its exact
value (the smali number 1s subtracted from the greater) *

Example 1. There are 1284 employees 1n a given 1nsti
tutron  Rounding this number off to 1300, we get an abso-
lute error of 1300 —1284=16 Rounding off to 1280, we have
an absolute error of 1284—1280=4

The relatwe error of an approximate number 1s the ratio
gzsee Sec  62) of the absolute error of the approximate num-

er to the number 1itself

Example 2. A school has a swudent body of 197 Rounding
this number to 200, we obtain an "absolute error of

200 — 197 =3 The relative error 1s equal to % or, rounded,

3 0,
s5=15%

In most cases it 1s impossible to determine the exact
value of an approximate number and, hence, the exact value
of the error However, 1t 1s almost always possible to es-
tablish that the error (absolute or relative) does not exceed
a certain number

Example 3 A salesman weighs a watermelon on pan scales.
The smallest of the sef of weights 1s 50 grams The result
1s 3600 ?rams This 1s an approximate number The exact
weight of the watermelon 1s not known However, the absolute
error does not exceed 50 grams, and the relative error does
not exceeda% = 14%

A number which definitely exceeds the absolute error
(or, at warst, 1s equal to 1t) is called the lumiing absolute
error A number which defimitely exceeds the relafive error
(or, at worst, 1s equal to 1t) 1scalled the lumiting relative
error

In Example 3, we can take 50 grams for the limiting
absolute error and 149% for the limiting relative error

The magnitude of a llmltmi error 15 not quite definite
Thus, in Example 3 we can take 100, 150 and generally any
number over 50 grams for the limiting absolule error. In
practical cases the smallest possible va?ue of the limiting

* In other words, {f a Is an approximate number and x Its exact
value, then the absolute error is the absolute value (Sec 691 of the
difference g—~x In some manuals, the absolute error is defined as
the difference itself a—x (or the difference x—~a) This quantity can
be positive or negative,
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error 15 taken When the exact magnitude of the error 15
known, this serves, at the same time, as the limiting error

For every approximate number, we must know 1ts imiting
error (absolute or relative). When 1t 1s not directly mndicated,
1t 15 assumed that the limiting absolute error represents one
half of one unit of the last written digit. For instance, 1f we
have the approximate number 4.78 without the limiting error
indicated, then the limiting absolute error is assumed to be
0005 With this convention, we can always do without mdi
cating the Limiting error of a number rounded off by the
rules of Sec. 49

The limiting absolute error 1s denoted by the Greek letter
delta (A); the %mltmg relative error, by the lower-case Greek
delta (8) If an approximate number 1s denoted by a, then
s=2

a

Example 4. A pencil 1s measured with a ruler calibrated
in millimetres and yields a result of 17 9 cm. What 1s the
hmiting relative error of this measurement?

Here, a=17 9 cm, we can take A to be equal to 01 cm,
since 1t 1s not difficult to measure a pencil to within | mm,
yet 1t will not be possible to reduce substantially the limi.
ting error (with practice, 1t 1s possible to read 002 cm, and
even 0.01 cm, on a good ruler but at the very edge of the
ruler the discrepancy may be greater). The relative error 15
TOT% Rounding off, we get ‘5=PTsl ~ 0.6%

Example 5. A cylindrical piston s about 35 mm in dia-
meter To what degree of accuracy must a measutrement be
made with a micrometer so that the lLimiting relative error
15 005%?

Solution. It 1s %wen that the himiting relative error must
constitute 005% of 35 mm Consequently (Sec, 46, Problem 1),
the hmiting absolute error 1s %#:0‘0175 (mm) or, roun-
ding upwards, 002 (mm).

We can use formula '5=I«é Substituting a==35, § = 0.0005,

we get 00()0.‘.'»:-‘,;‘—5 Thus,

A=35 00005=00175 (mm)
51. Preliminary Rounding Off In Addition and Subtraction

If the given numbers do not all end m the same digit
place (order), round off before performing the addition or
subtraction In other words retamn only those digit places



97

that are good for all addends, the others being dropped as
useless For a small number of addends, all digits of the sum,
except the last, will be correct The last digit may not be
quite exact This inexactness can be reduced to a munimum
it we take nto account the digits of the next digit place
(extra digits)

Example 1. Find the sum of 25 3-4-0 442+4-2 741

Without rounding off the terms, we get 28 483 The last
two digits are useless since there 1s a possible 1naccuracy of
several hundredths in the first addend Rounding the sum to
exact digits (that s, to tenths), we get 285 If we first round
off to exact digits, then we readily get 25 3-+04-+27=28 4
The tenths digit 1s less by | Taking the hundredths digits
as well, we get 25 3+ 0 44 -2 74 == 38 48, which, rounded, 15
285 The digit 5 1s more reliable than 4, though 1t mght
very well be that the true figure 1s precisely 4 *

When using extra digits, arrange the computation as indi-
cated in the accompanying scheme with the extra digits sepa-
rated by a vertical line

Woark. 253
04 ¢

+ 274

285

Example 2 Find the sum of 528610956381
-+ 57 350 0087

Without using any extra digits (we retamn only rounded
tenths, see rules for rounding, Sec 49), we get 118 7. With
extra digits, we have 1186 In the latter result, the tenths
digit may prove to be incorrect due to the inaccuracy of the
third addend, a 5 may appear 1n place of 6 (if the third
addend has been rounded off from 8 06) But 61s much more
reliable At any rate 7 cannot be correct, Extra digits yield
an improvement, but only a shight one Compare the two
schemes on the left without extra digits, on the right using

* 1f we assume the first addend (o be 26,26 rounded, then the
sum to hundredths would be 28 44, or approximately 28 4 However,
If 25,3 is the rounded number 25 27 or 2528, elc, then the sum
will be 28 § after rounding

7-652
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extra digits

Work: 529 52 8/ 6
03 026
+381 481
57 4 57 3| 5
118.7 001
8 6

52. Error of & Sum and a Diffsrence

The limiting absolute error of a sum s equal to thesum
of the limiting absolute errors of the separate addends

Example I. The approximate numbers 265 and 32 are
added Let the limiting error of the former be 5, of the lat-
ter, 1 Then the Iimiting error of the sum s equal to
54-1=6 Thus, 1f the true value of the former number s
270, of the latter, 33, then the approximate sum (265--32
=297) 15 © less than the true value (270 4-33=203)

Example 2 Find the sum of the approximate numbers
0090940 083340 0769 - 00714 40 0667 -0 0625 4- 0 0588
-+ 0 0556+ 0 0526

Addition yields 06187 The hmiting error of each addend
15 0 00005, the Limiting error of the sum 15 0 00003 X9 =0 00045
Thus, there 15 a ?ossxble error of up to 5 units in the
last (fourth) dectmal place of the sum, and so we round off
the sum to the third decimal place (thousandths). This yields
0619, where all the decimal places are correct

Note. A large number of addends usually makes for a
balancing of errors, for this reason, only in exceptional cases
does the true error of a sum comcide with the hmiting error
or come close to 1t That these cases are rare 1s seen from
Example 2 where we had 9 addends The true value of each
of them can differ i the [ifth decimal place from the given
approximate value by 1, 2, 3, 4 or even 5 units erther way,
For example, the first addend may be greater than its true
value by 4 umts of the fifth dectmal place, the second by
two umts, the third, less by one umt, etc Calculations show
that the number of all possible cases of the distribution of
errors 1s about 1000 million But only in two cases can the
error of the sum reach the limiting error of 0 00045 This
occurs when (1) the true value of each addend exceeds the
approximate value by 000005, and (2) the true value of
each addend 1s Iéss than the approximate value by 0.00005
Thus, the cases when the error of a sum comcides with the



99

Limiting error constitute only 0 0000002% of all possible
cases
Further calculations show that cases when the error of a
sum of nine addends can exceed three umits of the last de-
cimal place are also very rare Tney amount to only 007%
of all possible cases An error can exceed two umits of the
last decimal place i 2% of all possible cases, one unmit, in
roughly 25% In the remarmng 75Y% of the cases, the error
of nine addends does not exceed onme umt of the last decr-
mal place

Example 3 Assuming the addends of Example 2 to be
exact numbers, * let us round them off to thousandths and
add The miting error of the sum will be 9 0 0005=0 0045
Yet we have

009140083+ 0 07740 071 -0 06740 0620 059
+-0 05640 053 =0 619

That 15 to say, the approximate sum differs from the true
sum by 00003, which i1s a third of a unit of the last deci-
mal place of the approximate numbers All three decimals
of the approximate sum are correct, although theoretically the
fast decimal mught be glaringly inexact

Let us round off to hundredths 1n our addends Now the
limiting error of the sum 1s 9 0005=0045 Yet we get
009- 008+ 008+ 007 +007 006+ 006+ 0 06-~ 005
=062 The true error comes out to only 00013, which 1s
-g— of a unit of the last de¢imal of the approximate numbers

The hmiting absolute error of a difference 1s equal to the
sum of the hmiting absolute errors of the minuend and the
subtrahend

Example 4. Let the limiting error of the approximate
mmuend 85 be 2, and the limuting error of the subtrahend
32 be 3 The hmiting error of the difference 85—32=353 15
241-3=05 Indeed, the true values of the minuend and sub-
trahend may be equal to 85 +2==87 and 32—3=29 Then
the true diiference is 87—29-=58 It differs from the appro-
ximate difterence 83 hv §

. 'liheseladdcnds are obtained by changlng the common fractlons
7 T3 to decimals to within the fourth decimal
place The reader can take other n&mhers at random

1—

IR TERTEN
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The limiting relative error of a sum and a difference can

eastly be found by first computing the bimiting absolute

ror (see Sec 50

o Th(e {tmiting r)elatwe error of a sum (but not of a diffe-
rence) lies between the smallest and largest of the relative
errors of the addends If all the addends have the same (or
roughly the same) limiting relative error, then the sum also
has the same (or roughly the same) limiting relative error
In other words, 1n this case the accuracy of the sum (expres-
sed as a percentage) 1s not inferior to the accuracy of the
addends For a large number of addends, the sum (as a rule)
15 much more accurate than the addends (for the reason
explained 1n the note of Example 2)

Example 5. In each addend of the sum 2444252
4-247=743 the limting relative error 1s approximately
the same, namely, 005 256=02% It 15 the same for the
sum as well Here, the limiting absolute error 1s equal to
0.18, the relative error 0 15 74 3 = 0 15:75=0 2%

In contradistinction to the sum, the difference between
two approximate numbers may be less exact than the mi
nuend and subtrahend The “loss of accuracy” is particularly
great when the minuend and subtrahend differ only slightly

Example 6. Measurements of the outer and inner diame-
ters of a thin-walled pipe yielded 287 mm and 28 3 mm,
respectively Using these figures, we find the wall thickness
—;—-(28‘7-28 3)=02 (mm) The Lmiting relative error of
the minuend (28 7) and the subtrahend (28 3) 1s the same
8==02% The limiting relative error of the difference 04
(and also of half the difference, 02) comes out to 25%

If follows, from the foregoing, that whenever possible one
should avoid computing a desired quantity by subtracting
nearly equal numbers Cf Sec 90, Example 9

53. Errors In a Produet

The lLimiting relatwe error of a product 1s approximately
equal 1o the sum of the limiting relative errors of the fac.
tors (For the exact value of the limiting error see note of
Example 1)

Example 1. Two approxipate numbers, 50 and 20, are
multiplied together Let the lLimiting relative error of the
fust factor be 04%, of the second factor, 0.5% Then the
limiting relative error of the product 50 20= 1000 1s appro-
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simately 0,9% Indeed, the lmmiting absolute error of the
first Tactor 15 50 0 004=02, of the second, 20 0 006=0 1
Therefare, the irue value of the product does not exceed
(50--02) (20 1 0 1)~ 110902, and 15 nol less than (50—0 2)
% (20—0 1)== 091 02 11 (he frue value of the product s
1009 02, then the error ol the product 1s equal to
1009 02— 1000==9 02 and f 1t (s 991 02, then the error of
the product is 1000—99] 02=8 98 These two cases are lhe
most unfavourable ones Hence the himiting absolute error of
the product 15 902 The Limiting relative error 1s equal to
902 1000 =20 9021y, which 15 approximately 0 9%

Note Denote the limiting relative error” of a product by
the letter &, the hnmting relative error of the factors by 9y
and 8, (in Example 1, §;=0004, §,=0005, d==000902)

Our rule (for two factors) then looks like this

8= 0,+4;
The exact expression of 8 1s
’5=61+6z+6162

That 15, the luniting relative error of a product 15 always
greater than the sum of the himiting 1elative errors of the
factors, 1t exceeds this sum by the product of the relative
errors of the factors The excess 15 ordinaridly so small that
it can be ignored Taking Example |, we have 8=0 004
--00054-0004 0 005=000902 The cxcess here is 0 00902
— 0009=0 00002, which 1s about 0 2% of the approximate
value of the limiting relative error This excess 15 so small
that 1t can be disregarded

Example 2 Suppose the approximate numbers 53 2 and
250 are multiplied together The hmiting absolute error of
each 1s 005 Therefore, 8;==005 53 2==0.0009, 8, =0 05:25.0
=0002 The hmting relative error of the product
532 25 0=1330 1s approximately equal to 00009 40 0020
=00029 The quantity 8;8,=0,0009 0002 =0 0000018 s so
small that 1t 15 meanmingless to take 1t into account, The
limiting absolute error of the product 133015 1330.0.00290 = 4,
so that the last digit of the product (zero) may be incorrect

Example 3 Find the volume of a room, given the meas
surements length 4,57 m, width 337 m, heght 3.18 m
(the humiting absolute errors are 0005 m), Multiplying these
numbers together we find the volume {o be 48.974862 m?
But only two digits are delimtely correct here, the third
may already have a shight crror. Indeed, the humiting rola-
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tive errors of the factors are:

8,=0005 4 57 ~ 0 0011, 8,=0005:337 = 0 0015,
8,=0005 3 18 = 00016

The limiting relative error of the product 1s
8:=0 001140 001540 0016 =0 0042

The limiting absolute error of the product A =~ 49 0-0 0042
~ 021 Thus the third significant digtt of the product s
unreliable Hence we take the volume of the room to be
190 ms.

84, Counting Exact Digits In Multiplication

The error 1n a product may be estimated more simply
‘more crudely, true) than by the procedure given in Sec 53
gl‘his estimate 1s based on the following rule

Let two approxtmate numbers be multiplied together and
let each have k significant digits Then the (k—1)st digit of
the product 1s definitely correct, while the kth digit may not
be quite exact However, the error of a product does not
exceed 5!/, units of the kth digit and only 1n exceptional
cases 1s close to this mit Now if the first digits of the
factors 11 a product yield a number exceeding ten (either
taking mnto account or disregarding the effect of the subse-
quent digits), the error of the product does not exceed one
unit of the kth digit

Example 1. Let us multiply together the approximate
numbers 245 and 122, each of which has three significant
digits In the product, 2 9890, the first two digits are surely
correct. The third digit may not be quite exact For the given
values of the factors, the limiting absolute error of the product
(it may be found, as was done in Example !, Sec 53) con-
stitutes 1 8 umits of the third dlgrxt (or 0.0018), as a rule,
the true error will be still less. Therefore the third digit
should be retained and there 15 no sense in keeping the fourth
digit. Rounding off, we have 245.122 ~ 299,

Example 2. Multiply the approximate numbers 46 5x2.82.
In the groduct, 131 130, the first two digits are definmitely
correct Since the first digits of the factors (with account
taken of the subsequent digits) yield 13 1n the product (the
first two digits of “the number 131 130), 1t follows that the
error of the product definitely does not exceed unity In thss
case, the limiting absolute error of the product is only 0.37;
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the true error will, as a rule, be less So the third digit must
be retained It 1s advisable to retain the fourth digit (which
1s not quite exact) as an extra digit only when other opera-
tions are to follow X

When multiplying together three, four or more approxi-
mate numbers, the limiting error increases proportionally
(that 15 tu say, 1t tncreases over that given above by [/,
two, etc tiunes) However, 1n most cases, the true error for
a small number of factors remains within the same himits
(due to a compensation of errors, cf Sec 52).

Practical Advice

1. 1f approximate numbers with the same number of signi-
ficant digits are betng multiplied together, retain the same
number of significant digits in the product The last retained
digtt will be in doubt

2 If some of the factors have more significant digits than
others, then, prior to multiplication, round off the longer
numbers reta;ming as many digits as the least exact factor,
or one more digit (as an extra digit) There 1s no sense in
keeping any more digits

3 If 1t 1s required that the product of two numbers have
a prescribed number of reliable digits, then the number of
exact digits 1n each factor (found via computation or measu-
rement) must be one more If the number of factors 1s greater
than two but less than ten, then the number of exact digits
i each factor must, for complete assurance, be two units
more than the required number of exact digits In most
practical situations only one extra digit 1s quite sufficrent.

To verify these conclusions, let us consider an example
1n which we alreadil know the exact values of the approximate
numbers being multiplied .

1

Example 8. Change the product “%"";"ﬁ'iT:SFlﬁ toa

dectmal Taking 4 sigmficant digits, we get 0 0003330, Now
suppose all we know are the approximate values of the fac-
tors (the reader 1s advised to take any other factors):

1 1 1 1
5=033333, —=014286, =0 09091, T3 =007692

and 1t 1s required to find the product to two sigmficant
digits. To be on the safe side we have to take all factors to
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four significant digits, that 1s, we multiply 0 3333.0.1420
X0 09091 -0 07692

(1) .We find 0 3333-0 1429=10 04762857.

Retaiming four sigmificant digits, we get 0.04763

(2) Perform the following multiplication:

0 047630 0909 =0 0043300433

(3) Retaiming four sigmificant dl%lfs (three would have
sufficed) and performing the last multiplcation, we get

0 004330-0 07692 =0 0003331

The first two significant digits are defimitely correct, so
that the desired number 1s 0 00033 We cannot, beforehand,
be certain of the correctness of the third significant digit,
It proves correct however. The fourth significant digit 1s not
quite exact, but the error does not exceed unity of the cor-
responding decimal place.

If we carry our answer to six decimal places, then we
cannot beforehand be certain of the fifth lelf Actually,
however, even the sixth digit 1s correct. Namely,

(1) 0333-0 143 =0 047619,

(2) 00476-0 0909 =0 00432684,

(3) 0004330 0769=0 000333

If we carry the computation to five decimals, then for
the product we have 000032, i.e, the error 1s 13 units of
the fifth decimal place

55. Shori-Cut Multiplication

‘When applying the rules of multiplication of exact numbers
to approximate numbers we waste fime and effort 1n the com-
putation of digits that will be drogped at a later stage. The
computational procedure can be made more efficient 1f we are
guided by the following rules

(1) Start the multiplication with the higher digit places
of the multipliet (not the lower digit places), when multt.
plying the multiphcand by the highest digit place of the
multipher, carry out the multiplication completely.

(2) Before multiplication by the mext place of the multi-
plier, cross-line the last digit in the multiplicand, multiply
using a shortened multiplicand, but add fo the result the
rounded product of the given place of the multiplier by the
discarded digit of the multiplicand.
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(3) Before multiplying by the third (from the beginning)
place of the multiplier, cross-line one more digit of the mul-
tiplicand {the second from the end), perform the multiphcation
by the remaining digits of the multiplier and take into account
the effect of the digit that was just discarded and so on

(4) The resulting products are arranged so that ajl the
lower digit-orders are aligned one under another

(5) There are special rules for setting the decimal point
m the product, but 1t 1s a good practical rule to make a
rough preliminary guess about the magnitude of the product,
To avoid errors, 1t 1s advisable to cross-line each digit of
the multiplier that has been used

Example 1. Multiply the approximate numbers 6.7428 23 25
Equalize the number of significant digits® drop 8 1n the first
factor and replace 2 by 3 Compute by the accompanying
scheme 1n the following sequence
Work, (1) Disregard the decimal points and multiply

6 743 6743 by 2, write out the result in full. 13486, as
%93 95 usual, begin to multiply with 2 3=6 (write the
13486 6 under the lowest digit-orders of the factors)

2023 (2) Cross-line the digit of the multiplier that

+ 135 was used (2) and the last digit of the multipli
34 cand (3), multiply the next digit of the mults
1578 plier (3) by the shortened multiplicand 674, noting
that the cross-lined dlglt 3 would have given

3 3=9 in the product, and so add 1 to the product (from
the very beginning of the multiplication, 3-4=12, 124-1=13,
write 3 and carry the 1) The lowest order of the product (3)
1s written under the lowest order of the preceding product (6).

(3) Cross out the second digit of the multiplier from the
beginning and the second digif of the multiplicand from the
end, multiply the third digit of the multiplier (2) by the
shortened multiplicand 67, noting that multiplication of this
digit of the multiplier by the discarded digit of the multi-
ghctand would have yielded 8, and so we add ! to the pro-

uc

(4) Finally, crossing out 2 1n the multiplier and 7 in the
multiplicand, multiply 5 by 6, noting first that 5.7 =35,
so that to the product 5:6==30 we add 4 (which 1s better
than 3 since we would have had to multiply not only the
digit 7 but also the discarded digits that foliow 1t),

(5) Add all the products thus obtained to get 15,678

In order to set the decimal point, we round the factors
crudely taking, say, 6 in place of the first and 20 instead of
the second. This gives us a rough product of 120, which
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s that the integral part of our answer Is a three-digit
g:f::llrer. this means %ve must point off the first three digits
and take 156 78 and not 15678 or 1567 8 This answer 15
correct only to the first four digits We use the last digit
(which may contain an error of up to three untts) to round
off the result to 156.8

Example 2. 674,3.232 5. The multiplication 15 performed
as 1n the preceding example We get 15,678 and to point ofi
the decimal place we carry out the rough computation
600.200=120,000, which 15 a six-digit number Since the
integral part of our answer must contamn six digits, and our
number, 15,678, contains five, we annex a zero on the right,
the decimal point lies outside the figures we obtained, 1 e.,
the result of our multiplication yields the whole number
156,780 Since the last digit (zero) 1s defimtely false, we
write the answer as 15,678.10 or 1568+10% {see Sec 48).

"56. Division of Approximate Numbers

Rule 1. The limiting relative error of a quotient 1s appro-
ximately equal to the sum of the limiting relative errors of
the dividend and divisor {cf Sec §3).

Example 1. Divide the approximate number 50 0 by the
approximate number 200 The limiting error of the dividend
and divisor 1s 005 Then the limiting relative error of the

dividend 1s %9%=0.1°/,,, and the imiting relative error of
the divisor is %ﬂ%=0.25°/0. The limiting relative error of
the quotient of 50 0 by 20.0=2.50 must be approximately
0.19/,+0,25%, =0 359/,

Indeed, the true value of the quotient does not exceed
(50 04-0 05):(20 0—005)==250877 and 1s not less than
(50 0—005):(20.0+ 0 05)=2.49127 If the true value of the

uotient 1s 2 50877, then the absolute error comes out to

.50877 —2 50==0.00877. But ff the true value 1s 2.49127,
then the absolute error comes to 2 50—2 49127 =0 00873
The foregoing cases are the most unfavourable. Hence, the
, limiting relative error 1s 0.00877.2 50=0 00351, or, approxi-
mately, 035%.

Note. The exact limiting relative error always exceeds the
approximate error as computed by Rule 1 The percent of
excess is roughly equal to the limiting relative error of the
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divisor. In our example, the excess 1s 0 00001, which is 0 29%
of 00035, whereas the relative error of the divisor is 0 26%

Example 2. Find the limiting absolute error of the quo-
tient of 281 by 0571

Solution. The Iimiting relative error of the dividend 1s
0005 28] =02%; of the divisor, 0 0005 0 571 =0 19%, of the
quotient, 02%-+-01%=03% The limiting absolute error
of the quotient 1s approximately equal to 025';'] x0.603
=0015 Hence, we are already uncertain about the third
sigmficant digit 1n the quottent 2 81 0 571 =4 92

A simpler but more crude estimate of the accuracy of the
%uohenl 18 based on a count of the exact digits (cf. Sec. 54).

he estimate 1s as follows

Rule 2. Suppose the dividend and the divisor each have &
significant digits Then the absolute error of the quotient 1s
at worst close to 105 umts of the (k—I)st place (this va-
lue will never be attained)

As we see, the limiting error of a quotient is theoretically
twice the limiting error of a product (see Sec. 54). Actually,
however, the error of a quotient exceeds by 5 umits the k¥h
digit only 1n exceptional cases (once 1n a thousand), There-
fore, one should take as many significant digits in the quo-
tient as there are in the diwndend and divsor

If one of the given numbers (divaidend or divisor) has
more sigmficant digits than the other, then drop all the
.vauperfluous digits or retain only the first one (as an extra

igit
It 1t 1s required that the quotient have a prescribed num-
ber of correct digits, take one extra significant digit in the
dividend and divisor.

87. Short Dlvision

In order to avoid superfluous computations, carry out the
diviston of approximate numbers as follows.

(1) Disregarding the position of the decimal points, obtain
the first digit of the quotient in the same manner as for
whole numbers If the significant digits of the dividend form
a number that exceeds the significant digits of the divisor
(both are regarded as whole numbers), then the first digit
of the quotient 1s multiplied by the entire divisor Other-
wise cross out the last dl%lt n the divisor and multiply by
the shortened divisor, but take into account the effect of the
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discarded digit Thus, if we divide 2262 by 7646, the first
digit of the quotient 2(22:7=3 with a remainder, but 3
1s not suitable and so we take 2) It 1s then multiplied
into 764 and | 1s added to the result (this 1s the first digit
of the product 2 6=12). This 1s done immediately upon
multiplication by the last digit of the shortened divisor.

(2) The result of multiplying the first digit of the quo-
tient by the divisor (or by the shortened drvisor) s written
under the dividend, aligning digit place under digit place,
Then we find the remamder

(3) Instead of bringing down a zero to the remainder, we
shorten the divisor by cross-linmng the last digit (if the shor-
tening has already been done, then drop the last of the re.
marmng digits) Choosing the second digit of the quotient,
multiply 1t by the shortened divtsor taking into account the
digit just discarded

(4) Write the result of the multiplication under the first
remainder and align the digit places We then find the se-
cond remainder

(5) Instead of bringing down a zero we shorten the divi-
sor by one more digit, etc

6) Having obtained the quotient, we set off the decimal
potnt by a rough estimate
Example 1. 58.83 9.658
Work: (1 Stnce 5883 1s less than 9638, cross
58 83 {9658 out the last diglt of the divisor, 8, from
75795 5092 the very start. The fust digit of the quo-

) tient 1s 6 Multiply by 965, noting that the

=86 discarded digit gives 5 units (6-8 =48, drop
T 8 and round 4 to 5)
-3 (2) Write the product 5795 under the

= dividend, digit place under digit place The
remainder 1s 88
(3) Cross out the second from the last digit of the divi-
sor, 5 The shortened divisor, 96, 1s not contained even once
in the dividend 88, put a zero 1n the quotient, * do not mul-
tiply.
(4) There is no need to find the second remainder
(5) Cross out one more digit of the divisor, 6 The shor-
tened divisor, 9, 1s contained 1n the remainder 9 times, and
so the third digit of the quotient 1s 9 Multiplying by the
shortened divisor with account taken of the effect of the

* Take careful note of this a ireguent mistake 15 made by not
wrlting the zero and dropping the next digit of the divisor
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cross-hined digit, we have 86 and a remainder of 2 This is
not the end of the operation Dropping the last remaining
digit, but taking into account its effect on the result, we
find 1 the quotient another digit 2(2-9=18, the 8 1s drop-
ped and the 1 1s rounded to 2) The last digit s obtained
in simplest fashion by mentally bringing down zero to the
last remainder 2, this yields 20 9 =~ 2

(6) A rough caleulation gives the positron of the decimal
point. In the dividend and divisor we retain only the inte-
gral parts, 1t 1s clear that 58 9 = 6, that s, the integral part
of the quotient 1s a one-digit number The result 1s therefore
equal to 6092, and not 60.92 or 6092, etc

All digits of the answer are correct

Example 2 98 10 0 3216
(1) 9810 15 greater than 3216 Multiply

Work:
98 10 [0 3216 the first digit of the quotient, 3, by 3216
9648|3050 to get 9648

T62 (2) The remainder 1s 162
—161 (3) Cross-line the last digit, 6, of the
- divisor The shortened divisor, 321, does not
go even once 1nto the remainder, the second

digit of the result 1s zero

(4) and (5) Cross-line another digit of the divisor, 1; the
remainder 162 1s divided by the shortened divisor 32, for the
third digit of the quotient we have 5 Multiply 1t by 32 and
take into account the effect of the discarded digit of the
divisor to get 161 Subtract it from the remainder to get 1.
Cross-line the digit 2 1n the divisor The shortened divisor 3
does not go into the remainder 1, and so the last digit of
the quotient is zero

(6) Set the decimal point on the basis of a rough roun-
ding off of the given figures taking 100 in place of 98 10
and 0.3 in place of 03216, we get 100 03 ~ 300, hence the
integral part of the quotient 1s a three-digit number. The
quotient therefore 1s 305 0

88, (nvolution and Evolution of Approximate Numbers

Raising a number to an integral power (involution) is
simply iterated multiplication, and therefore everything sta-
ted 1n Secs. 54, 55 holds true When raising a number to a
small rower. the result has as many correct digits as the
original number or 1t contains a shight error 1n the last di-
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git If the degree 1s large, then the accumulation of smal)
errors may affect higher digit places

When extract.ng a root (evolution), the result has at least
as many correct fxg:ts as the radicand Thus, taking the
square root of the approximate number 40 00, we can obtam
four correct digits (V4000 ~ 6 324) *

The method for finding the square root of a number that
1s frequently taught in school 1s cumbersome and hard to
remember, and 1its’ theoretical justification remawmns rather
obscure to most students Below we give a simple and easy-
to-remember procedure for taking the square root of a number
(to any required degree of accuracy) This method was dese.
ribed by the ancient Greek scholar Heron roughly two thou-
sand years ago (Heron used common fractions, but we, natu.
rally, will use decimals) The same method can be used to
extract third and higher roots (see Sec. 58a below)

Rule for taking the square root. To find the square roots,
make a reasonable guess as a first approximation and do as
follows

(1) Divide the radicand by the first approximation of the
root, 1f 1t turns out that the quotient differs from the first
approximation by a quantity that does not exceed the per-
missible error, the root 1s found

(2) Otherwise we find the arithmetic mean (Sec. 59) of the
divisor and quotient This arsthmetic mean yields a conside-
rably more exact value (second approximation) of the root.
If the chosce of the first approximation has been felicitous,
-the second approximation yields three correct digits, ordina-
rily not less than four correct digits Generally speaking, the
number of correct digits 15 doubled in each new approximatson,

(3) Subject the second approximation to the same test as
the firsts divide the radicand by the second approximation
If the accyracy of the result 1s not sufficient, then find the
third approximation and proceed as before, etc

Note 1 The foregoing method 1s “not afratd” of mistakes
since 1t automatically corrects any error made n the prece-
gmg stage The sole drawback 1s a slowing down of the com-

utation process

S

* If we employ the procedure of extracting a square root usually
studied In school, then we will have to annex four zergs to the radi-
cand writing 40 000000, in order to obtain 6 324 The annexed zeros
will be false digits, but the corresponding digits of the answer will
be correct The result will remain the same itzln place of four zeros
we annex four arbitrary numbers
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Example 1. V4000 The radicand has four significant
digits There 1s no sence 1n finding more than four digits of
the root, and so we will take four

For the first approximation we need a number between 6
and 7 (since 62=236 1s less than the radicand, and 72=49
exceeds 1t) Within these lirmis we can take amy number,
but if we want to save time and effort, we have to take
a number less than 6 5 (since the radicand 1s much closer to
62 than to 7%) Let us take 6 4 (we could have taken 63 or
62, but 61 1s no good because 61 1s too close to 6) Now
do as follows

(1) Divide the radicand 40 00 by the first approximation
64 We have 4000 6 4=625 It 15 already evident that the
second digit of the quotient 625 differs from the dividend
64 This accuracy does not suffice

(2) For the second approximation we take the anthmetic
mean of the dividend 640 and the quotient 625 to get
(6 4046 25) 2=6 325 We may expect that if not all four
digits are correct 1n this second approximation, then at least
the first three are

(3) To check, divide the radicand 40 00 by the second
approximation 6 325 (carry the division to the fourth digit)
4000 6325 ~ 6324 The quotient, 6324, differs from the
divisor, 6 325 by only one unit in the third decimal place,
which means that the root has been found (to the requured
accuracy)

Indeed, squaring 6 324 (that 1s, multiplying that number
by 1tself) we get a number less than the product of 6324
X6 325, which 15 40 00 (approximately) Now if we square
6325, we get a number greater than 6 325 6,324a440 00.
Hence, the desired square root lies between 6 324 and 6 325,
which means that it differs from 6324 (or from 6 325) by
less than one umit mn the third decimal place ¥ 40 00x6 324
(all four digits are correct)

Example 2, V235 The desired root lies between 4 and
5 and 1s much closer to 5 than to 4 (since 23.5 1s much
closer to 25 than to 16) For the first approximation let us
take the round number 50

(1) Divide the radicand 23 5 by the first approximation
500 (carrying the quotient fo the third digit) 23 5:5.0=4 70.

(2) For the second approximation we take the arithmetic
mean (5.00--4 70):2=4.85. We may expect that all three
digits are correct.
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(3) To check, divide the second approximation 485 into
the radicand 235 to get 235 4 85x4 85 Since the quotient
1s equal (to within the second decimal place) to the divisor,
the root 1s found (to the highest possible degree of accuracy)
V3B 5~485

Note 2. If the radicand is a decimal fraction with one
significant digit or zero n the integral part, then to find the
first approximation 1t 1s advisable to move the decimal pomnt
to the right two, four, six, etc digits so that the integral
art has a small number of places Then proceed as 1n Examp-
es | and 2, and in the answer move the decimal point back
one, two, three, etc digits The procedure 1s similar when
the radicand has a multidigit whole-number portion, but then
the decimal poimnt 1s first moved to the left two, four, six,
ete digits

In the radicand, the decimal point can only be moved
an even number of digits

Example 3 ¥ 0008732 Move the decimal point 4 digits
to the right 8732 In choosing the first approximation, we
will take into account only the integral part Let us take,
say, 93

y(l) Divide 93 into 8732 Carrying the division to the
fourth significant digit, we get 87 32 9 3=9 389

(2) Find the arithmetic mean (9 3009 389) 2~9 344,

(3) To check, perform the division 8732 9 344~9 345,
In etther of the two numbers 9 344 and 9 345 all four digits
are correct (the first number yields a deficit, the second, an
excess)

(4) Since, at the beginning, we moved the decimal point
rightwards 4 places, we now move 1t to the left (back) 2 pla-
ces, and we have

V0008732 = 0 09344

Example 4 }/8732000 Move the decrmal pount to e
left 6 digits to get 8732 (1f we move 1t 4 digits, we get
8732 and not 8732 as in the previous example!) Take 3 as
the first approximation

(1) 8732 3=2091!1

(2) (30004-2911) 2==2955

From the first operation 1t 1s clear that there were two
correct digits 1 the first approximation (3.000) We therefore
expect to have 4 correct digits 1n the second approximation
A check confirms this,
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(3) Since we started by moving the decimal point 6 places
to the left, we now come back three places /8733000
~ 2955

58a. Rule for Extracting a Cube Root

To extract the cube root of a number, make a plausible
first estimate and proceed as follows

(1) Divide by the first estimate (c¢f rule of Sec 58) twice:
the dividend 1s first the radicand and then the number obtar-
ned by the first division If the quotient (obtatned by the
second diviston) differs from the c}lrst estimate (approxima-
tion), that 1s to say, from the divisor, by a quantity not
exceeding the permissible error, then the process i1s complete

(2) Ofherwise, average three numbers, namely the quotient
(of twa divisions) and the divisor taken twice (see Example 1
for an illustration of this second operation) We get a second
approximation, which, 1f the first estimate was plausible
enough, s correct to three digits, the fourth digit at worst
requires a correction by umity,

(3) The second estimate can be tested in the same man-
ner as the first, but this 1s a tining procedure

Example 1 13/785 0 The desired root lies between 9 and

10 Take 9 2 as a first estimate (since the radicand 1s roughly
four times closer to 93 than to 103)

(1) Divide 92 1nto the radicand 785 0 and then into the
quotient of 785 0 82 Instead, we can divide 785 by 9 22 to
get 84.64 This yields

7850 92 92=7850 84 64 ~ 9 275

We see that the first estimate yields two correct digits
The best way to make the second ‘estimate 1s to note that
the radicand 7850 s a product of three unequal factors:
785 0=9 2X9 29 275, whereas we have to represent 1t as
the product of three equal factors 785 0= x.x-x (where
x=3/7850) It 1s natural to assume that each of these
equal factors should, approximately, be equal to the average
of the factors 92, 92 and 9 275

(2) Thus, for the second estimate we take the average
(927549 20049 200) 3=9 225 Compute by the short-cut
method (see Sec 60)

(3) For a check, divide the radicand 785 0 by the second
estimate 9.225 and then divide the result again by 9 225 (or
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divide the radicand by 9 2252 = 85 09) We get 9225 (i ap
extra digit 1s not retained in the computations, we get
9 224)

8/785 0 ~ 9 225 (correct to 4 figures)

"Note. In making the first estimate 1t is sometimes advan.
tageous to move the decimal point in the radicand to the
right (or to the left) 3, 6, 9, etc places (cf Sec 58, Note 2)
In the final result, move the decimal point back 1, 2, 3
efc. places The decimal point may be moved only by g
many digits as 1s divisible by 3.

Example 2. §/T835.10 In the radicand, 18,350, move
the decimal point three places to the left to get 18 35, This
number 1s roughly midway between 29=8 and 3%=27, So
for the first approximation we take 2 5

(1) Divide twice by 25 or, what 1s the same, once by
2.5% We get 18,35:25-25=1835.6 25~ 294

We see that in this first approximation only one digit
is correct. Thus, we must expect that in the second appro-
ximation there will only be two correct digits Therefore, in
the next operation we carry the answer only to two places

(2) For the second estimate take the average (25425
+29):3x26

(3) To make the result more precise we divide twice by
2.6 to get

1835:2.6 26=1835 6 76 2 2715

We see that the second estimate furnished two correct
digits, and so the third most likely will yield 4 correct
digits.

(4) For the third estimate, average
(271542 6002 600) 3=2 638

A check (which we omit) would show that the result 1s
correct to four sigmficant digits

3/ 183510 ~ 26 38

B8. Mean Quantities

If we have a sequence of quantities (numbers), any one
between the smallest and greatest 1s a mean. The most
frequently used mean quantities are the arithmetic mean and
the geometric mean.
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The artthmetic mean (arithmetic average, or, sxmp!;', ave-
rage) 1 obtained by adding the given quantities and divi-
ding the sum by the number of quantities:
Gy +8y+ +dp
"

@y, G . . @, are the given quantities, n is the total
number of quantities).

Example. Given the numbers 83, 87, 81, 90

a m.=83+87-:81+90=85 :

am=

The geometric mean 1s obtained by multiplying the given
quantities and taking the nth root of the product (where n
18 the index of the root and 1s equal to the number of quan-

tities taken)
gm=;"aa,...a,

ay, ay, , a, are the given quantities, n is the total

(
number of them)
Example. Given the numbers 40, 50, 82.

g m =3/40.50 2=}/ 164,000 ~s 54.74

The geometric mean 1s always less than the arithmetic
mean (average) except for the case when all numbers are
equal Then the arithmetic mean is equal to the geometric
mean When there are only small fractional differences bet-
ween the numbers, the difference between the arithmetic
mean and the geometric mean 1s small compared to the
numbers.

Averaging (computing arithmetic means) 1s of great impor-
tance n all branches of practical work.

Example 1. The distance between two points 1s measured
with a 10-metre tape measure having centimetre divisions
Ten measurements are taken, which, 1n metres, are. 62.36,
62 30, 62.32, 62.31, 62.36, 62 35, 62.33, 62.32, 62 38, 6237.
The diversity of results 1s due to accidental inaccuracies 1n
the measuring process, These findings are then averaged:

a m =(62.36-62 30+ 62 32. -+62 31 4-62 36 62.35
+62 3362 32+ 62.381-62 37):10=62.34

This number 1s a more reliable value of the distance than
the numbers obtained in the measurements because random
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(accrdental) errors are nearly always balanced when comput.
1ng the average (see Sec 61 below).

Example 2. Height measurements are taken of 1000 per.
sons These are averaged The result is the “average height”
of the persons involved It does not, gemerally speaking,
sigmify the actual height of a given ;‘;erson. But 1f the
measurements are taken of a large number of other people,
the average height will agamn be just about the same Quute
naturally, it may happen that either giants or {ngrmes pre-
dominate 1n a sample of 1000 However, out of all conces-
vable cases these exceptional ones constitute an insignificantly
small percent Hence, for all practical purposes we can take
1t that the average height of any group of 1000 persons wll
be almost the same The anthmetic means obtained in mass
measurements are termed stafistical means, Statistical means
are of considerable practical importance For example, know-
ing the average mulk yield of a cow of a definite breed
under specific feeding conditions, etc, it 15 possible to
compute the yseld of a herd by multiplying the average
yield by the number of cows tn the herd

60, Abridged Calculation of
the Arlthmetic Mean

The numbers 1nvolved 1n computing an arithmetic mean
are ordinanly bunched rather close together If such 1s the
case, computing the average (arithmetic mean) can be greatly
simplified by the following technique

(1} Take an arbitrary number close to the given numbers
If the given numbers differ from one another in the last
digit alone, 1t 1s preferable to make the last digit of the
selected number zero, if the given numbers differ 1n the last
two digits, 1t 15 convement to take a number ending n two
zeros, and so on

(2) Subtract this number in succession from each of the
given ones *

(3) Take the arithmetic mean of the differences thus found,

(4) Add the mean to the chosen number

* Both fosmve and negative numbers can be expected (see Sec
87 on negative numbers) To avoild this, take a number less than any
of the given ones However, the computations will be somewhat
aimﬂher if the chosen number Is about midway between the extremes
of the given numbers
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Example. Find the arithmetic mean of ten numbers: 62 36,
62 30, 62 32, 62.31, 62 36, 6235, 6233, 6232, 62,38, 6237
(cf with the preceding example)

(1) Choose the number 62 30.

(2) Subtract 62,30 from the given numbers; we find the
differences (in hundredths) to be 6, 0, 2, 1, 6, 5,3, 2, 8,7

(3) Now take the average of these differences, which s 4
(hundredths)

(4) Add 004 to 62.30 to get 6234. This is the desired
arithmetic mean (average).

61, Accuracy of the Arithmetlc Moan

1f the arithmetic mean 1s obtained from a comparatively
small sequence of measurements (say, 10, Iike in Example I,
Sec. 59), 1t might well be that the actual value i1s somewhat
different from the computed average Then 1t 1s important
to know how great this deviation can be We are not speak-
ing of the theoretically conceivable deviation (which can be
arbitrarily great) but of the practically possible deviation
(cf Example 2, Sec 59) The magnitude of the latter depends
on the magnitude of the so-called roof mean square denation.

The root mean square deviation 1s the square root of the
arithmetic mean of the squares of the deviations from the
mean It 1s denoted generally by the Greek letter o (sigma):

G=.‘/_(a,—a)'+fa,~a:+ +(ap—a)? (A)

where a=(a;+as+ +a,) n (here a4, a,, , Gy are the
given numbers, n 1s the fotal number of them, a 1s therr
arithmetic mean, and o is the root mean square deviation)

Note In formula (A) any one of the diiferences may be
replaced by its reciprocal; this enables one to dispense with
negative numbers (see Sec. 67 on negative numbers) Namely,
when one of the given numbers 1s less than the mean, we
take 1t for the subtrahend, and the mean for the munuend.
~ Example. Compute the root mean square deviation for the
numbers of the preceding section There, we found the mean
to be 6234 The deviations from the numbers 62 36, 62 30,
ete and ther anthmetic mean are (in,hundredths): 2, 4, 2,
3,2 1,1,2 4,3 The squares of these deviations are 4,
16, 4, 9, 4, 1, 1, 4, 16, 9 The anthmetic mean of the
squares of the deviations 15

4+16+4+0+4 41+ 144+16+9
5 =68
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(hundredths). The square root of this number, ¥ 8.8av3
(hundredths); ¢=003 .

If the number of measurements is approximately equal to
10, then the frue value of the quantity cannot deviate from
the arithmetic mean by more than the root mean square de-
viation 0 To be more precise, deviations exceeding o are
possible only in exceptional cases, the number of which comes
to about half a percent of all possible cases. In the
example just considered, the true value cannot, practically
speaking, deviate from the number 62 34 by more than 0.03
1t therefore lies between 62 34—003=6231 and 6234
+0 03 =62.37

If the number of measurements 1s substantially greater
than ten, then the maximum practically possible deviation
of the true value from the arithmetic mean will be less thano

Namely, the deviation will not exceed the value -‘%—"7_'- (where

n 1s the number of measurements). Thus, when the number
of measurements 1s roughly 1000, the only practically possible
deviations are those that do not exceed 0 lo.

62 Ratio and Proportion

The quotient of two numbers is termed their rafio. The
term “ratio” was once applied only to cases when it was
required to express one C{uantxt.y as a fraction of another
(homogeneous with the first); say, one length as a fractional
part of another, one area as a fraction of another area, and
so forth. These problems are handled by division (see Sec 38).
This explains why the special term “ratio” appeared: it once
had a different meaning from “division”, which referred to
the division of a denominate number by an abstract number,
This distinction 1s no longer made, for instance, we speak
of the ratio of nonhomogeneous quantities, say the weight
of a solid to 1ts volume, etc. When speaking of homogeneous
quantities, we often use percentage

Example. A library has 10,000 books, of which 8000 are
in Russian. What 1s the ratio of Russian books to the total
number? 8000°10,000=08 The desired ratio 1s 08, or 80%.

The dividend is called the anfecedent of the ratio, the
drvisor, the consequent 1In our example, 8000 1s the antece-
dent, and 10,000 the consequeni

Two equal ratios form a proporiton Thus, if one library
has 10,000 books, of which 8000 are Russian and another
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library has 12,000 books, of which 9600 are Russtan, then
the ratio of Russian books to the total number of books in
both libraries 1s the same 8000:10,000=0 8, 9600.12,000=0 8.
What we have 1s a prggorhon. which we write as follows:
8000 10,000=9600-12,000 In words, we say that 8000 15 to
10,000 as 9600 1s to 12,000 8000 and 12,000 are the exiremes
of the proportion, and 10,000 and 9600 are the means,of the
proportton.

The product of the means equals the product of the extre-
mes. In our example, 8000-12,000=96,000,000, 10,000-9600
=96,000,000. One of the extremes is equal to the product
of the means divided by the other extreme. In the same
way, one of the means is equal to the product of the extremes
divided by the other mean If

a.b=c:d
then
a=l, p=%

and so on. In our example

__ 10,000 9600
8000 =755

This property is always used to compute the missing term
of a proportion when the three other terms are known.

Ii?;nple. 12:x:=6 5 {x 18 the missing term, the unknown),

= == 10,
6

For practical applications of proportions see Sec 64.

A proportion 1n which the means are equal is termed a
confinued proportion; for example, 18:6 =6.2 The mean term
of a continued proportion is the geometric mean (see Sec. 59)
of the extreme terms. In our example, 6=} 18-2.

83, Proportlonallty (Varlation)

The values of two different quantities can be interde-
pendent. Thus, the area of a s«]uare depends on the length
of the side, and conversely, the length of the side of a square
18 dependent on the area of the square.

. Two mutually dependent quantities are termed proportional
if the ratio of their values remains constant.

Exampie. The weight of kerosene is proportional to its
volume; 2 litres of kerosene weigh 1.6 kg, 5 litres weigh
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4 kg, 7 hitres weigh 56 kg Thﬁebrallo of the weight to the
volume 15 —‘—;—;0 8, —5-:0 8, 5==08, etc

The constant ratio of proportional quantities 1s called
the constant of proportionality (or constant of variation, or
proportionality f[actor) 1t shows how many umits of one
quantity there are for every umt of another quantity, in our
example, the number of kilograms that 1 litre of "keiosene
weighs (the specific weight of kerosene)

f two quantities are proportional, then any pair of va.
lues of one quantity forms a proportion with a pair of the
corresponding values of the other taken in the same order.
In our example, 16 4=25, 16 56=27, etc Accordingly,
we can define proportionality as follows two quantitres that
depend on each other so that any increase 1n one causes an
mcrease (in the same ratio) in the other are called propor-
tional quantilies

If the dependence of two quantities 1s such that one
mcreases as the other decreases (in the same ratio) then we
have wnversely proportional quantities For example, the runn-
ing time of a train between two stations 1s inversely pro-
portional to the speed of the train At a speed of 50 km/h,
a train covers the distance between Moscow and Leningrad

m 13 hours, going at 65 km/h, 1t covers the distance 1n 10

hours, that 1s when the speed tncreases in the raho%%:%_,

13
the running trme dimimishes in the ratio 15

If two quantities are inversely proportional, then any
pair of values of one quantity forms a proportion with a
pair of the corresponding values of the other taken in the
reverse order In our example, 656 50=13 10

The product of the values of two inversely proportional
quantities remains unchanged In our example, 50 13 =650,
656 10=650 (650 km 1s the distance between Moscow and
Leningrad)

64. Uses of Proportions, Interpolation

The solution of many problems involves proportional
quantities Application of the rules given tn Sec. 62 mecha-
muzes the solution of such problems, reducing them to a
unified procedure, as illustrated 1n the examples given below

Example 1. Fuel consumption at a factory was at 18
tons per 24 hours and at a cost of 3000 roubles per year.
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Efficiency proposals reduced daily consumption to 15 tons.
What should the budget plan of the next year be with
respect to fuel consumption at this factory?

An unsophisticated solution o this problem would be:

(1) find the annual fuel consumption prior to the effici-
ency proposals 1 8+365=657 (tons),

(2) find the cost of one ton of fuel: 3000 657=457 (ro-
ubles),
(3% find the annual cost of the fuel following the 1ntro-
duction of the efficiency suggestion

457-1 5 365=2500 (roubles)

A much faster and easier solution can be found by no-
ting that the daily consumption of fuel and the annual cost
are proportional quantities (this 1s evident from the fact
that an increase 1n the daily consumption produces a propor-
tionate increase 1n the yearly cost, see Sec. 63).

Scheme of solution-

18 tons 3000 roubles,

15 tons x roubles,
x 3000=1518,

2= 200015 9500 roubles

Although proportional relationships are encountered very
often, most of the relationships 1n practical situations do
not obey the law of proportionality It is therefore all the
more important to pote that even for such quantities the
procedure of computation using proportions is stil meaming-
ful For nstance, if we constder the vanations of nonpro-
portional quantities within a certain rather narrow range,
these changes will, for all practical purposes, be proportional.

To 1llustrate, take a square, A side 1s not proportional
to the area, for instance, a side of 2 m 1s associated with
an area of 4 m?, a side of 2,01 m, with an area of (2.01)3
=4 0401 ~v 4 040 (m?; a side of 202 m, with an area of
40804~ 4 080 (m?), and so on We thus see that the ratio
of the sides (for instance, 2 01-1) 1s not equal to the ratio
of the corresponding areas (4 040-1) However, the ratio of
the changes tn the side within the range we confine oursel-
ves to 1s, for all practical purposes, equal to the ratio of the
changes in the area

Indeed, when the side increases from 2 m to 201 m, the
change 1s 0,01 m, when 1t .ncreases from 2 to 202 m, the
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change 1s 0 02 m The ratio of the changes 002.001 15 2
The corresponding changes 1n the area will (to within the
third dectmal) be 1n the furst case, 0040, 1n the second
0080 The ratio of the changes, 0080 0.040, 1s also 2 Thus,
the change in length is proportional to the chamge n area
1{“the quantities are taken to three places of decimals 1f a
fourth decimal 1s taken, a slight deviation from proportiona.
ity will be noted To avord any deviation even 1n the fourth
decimal place, regard the change 1n a side over a still smal-
ler range (say from 1 m to [ 002 m instead of from I to
102 m) In practical work, we always have regard only for
a delinite number of decimals (three, four, and rarely Tive)
For this reason we can consider the changes 1n the side and
area of a square as proportional quantities The situation 15
the same (n an overwhelming majority of other cases This
circumstance 1s utilized in reading between the lines, so to
speak, when we have to do with tables covering a relatively
small number of data We are able to pick out values which
lie between the tabulated values

Example 2. Take a table of square roots (see pages 14-17).
Suppose we wish to find ¥ 63.2, The table does not have
the number 63.2, but only 63, 64, 65, etc.

Radicand Square Root Change 1n Square Root
63 7 937
64 8 000 0 063
85 8 062 0 062

We calculate (see third column) the change, in the value
of the root when the radicand varies by umty from 63 to
64 and from 64 to 65. We see that the difference in these
changes occurs only in the third decimal place (by one umit)
Actually this difference 1s still fess, 1t occurs only in the
fourth decimal place and rounding off to three decimals gave
rise to 1t in the third dectmal place

Now 1f we take only three decimals, all our changes will
be just about the same, that 1s to say, within the range
between 63 and 65 the changes in square roots taken to
three decimals are proportional to the changes m the radi-

cands We therefore find ¥ 63.2 using the following scheme:
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Change 1n Radicand Change 1n Square Ront
1 0 062

02 X
x0062==02 1,
£= 288202019

Now we find ¥ 632 by adding to ¥V 63~a7937 the
number 0012 This yields

632 A7 949

Check by extracting the root to three decimals and you
will see that all the decimals of our result dre correct

The procedure we have just discussed s called inferpo-
lation {an inserting between) In mathematics, interpolation
signifies any procedure by means of which 1t is possible, in
a table with a given number of tabulated values, to find
certatn intermediate numerical values not directly given 1n
the table The elementary kind of interpolation which we
discussed above 1s termed linear inferpolation

Interpolation 1s extenstvely used when dealing with tables
of almost any kind



ALGEBRA

65. The Subject of Algebra

The subject of algebra involves the study of equations
(Secs 79-81) and a number of other probjems that developed
out of the theory of equations At the present time, when
mathematics has split up into a number of specialized areas,
the field of algebra includes only equations of a special kind,
the so-called algebrate equations (see Sec. 83) * On the origin
of the name “algebra” see Sec 66

66. Historical Survey of the Development of Algebra

Babylonia. The roots of algebra go deep into antiquty
About 4000 years ago, Babylomian scholars were already sol-
ving quadratic equations (Sec 93) and systems of two equa-
tions, one of which was of second degree (Sec 97) These
equations were used 1n solving a diversity of problems in
land measurement, construction of buildings and n military
affairs

The literal designations which we use today 1n algebra
were unknown to tﬁe Babylonians who formulated their equa-
tions rhetorically

Greece, The first syncopated (abridged) notations for un-
known quantities are encountered in the writings of the an-
cient Greek mathematictan Diophantus (2nd to 3rd century)
For the unknown, Diophantus used the word “arithmos”
(number), the second power of the unknown was denoted by
“dunams” (the word had many meamings' power, property,
degree **) For the third power, Diophantus used the term

* Note that the usual school course of algebra includes areas that
are only remotely related to the theory of equations Such, for
example, as progressions and logarsthms, which belong more to arith-
metic than to ‘algebra Thelr Inclusion In the course of algebra is
justified on pedagogical grounds

** “Dunamis” was lranslated into Arable as “mal” meaning proper-
ty In the 12th century mathematicians in Western Europe transla-
ted “mal” into Latin as “census”, which has the same meaning.
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skubos” (cube), for the fourth power we find (translated into
English) square-square, for the hifth, square-cube, for the
sixth, cube-cube He denoted these quantities by the first
letters of the corresponding names (we give them in Latin
letters) ar, du, cu, ddu, deu, ccu To distinguish the un-
knowns from known quantities, the latter were accompanied
by the designation “mo” (monades for “umts”) Addition
was not indicated 1n any way, an abbreviation was used for
subtraction, equality was shown by “1s” (“1s0s” means equal)

Neither the Babylonians nor the Greeks considered nega-
tive numbers. An equation lLike 3 ar 8 mo 1s 2 ar 1 mo
(3x+6=2x4-1) Diophantus called “inappropriate” When
Diophantus transposed terms from one side of the equation
to the other, he said that an addend becomes a subtrahend,
and a subtrahend becomes an addend

China Chinese scholars were solving first-degree equations
and systems of them and also quadratic equations 2000 years
prior to the Chnistian era They were acquainted with nega-
tive numbers and irrational numbers Since each symbol n
Chinese writing stands for a concept, there could be no syn-
copations 1n Chinese algebra

At later periods, Chinese mathematics was enriched with
new attainments At the end of the 13th century, the Cht-
nese were fully acquainted with the law of formation of bi-
nomial coefficients which today goes by the name of “Pas-
cal's triangle” (sece Sec 136) In Western Europe this law
was discovered by Stifel, 250 years later

India, Hindu scholars made extensive use of syncopated
notation for unknown quantities and their powers These
notations were the imtial letters of the corresponding names
(an unknown was called “so-much®, the names of various co-
lours—black, Llue, yellow, etc —were used for a second,
third, etc unknown) Hindu scholars made much use of ir-
rational and negative numbers (Greek mathematicians knew
how to find approximate values of roots but eschewed irra-
tionalities 1 algebra) A new addition to the famuly of num-
bers was zero, which came 1 with the negative numbers
Formerly 1t had been used solely for the absence of 2 num-
ber, as a placeholder

Arab-language countries. Uzbekistan, Tajikistan The Hindu
authors wrote on algebraic problems in their astronomical
works. It was 1n Arabic writings—the international language
of the Muslim world—that algebra emerged as an indepen-
dent discipline The founder of algebra as a special branch of
learning was the Central Asian scholar Mohammad of Kho-
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rezmi, more generallg known as al-Khowarnizmi (dweller of
Khorezmi) His algebraic work, composed in the Sth century
A. D, bears the name “the science of the reunmion and oppo-
sition”, or, more freely, “the science of transposition "and
cancellation” “Transposition” denoted the transfer of a sub-
trahend from one side of the equation to the other where it
becomes an addend, the “opposition” (or cancellation) was
the gathering of unknowns on one side of the equation and
the unknowns on the other side. The Arabic for “transpos-
tion” 1s “al-jabr”, Whence the name “algebra”,

Al-Khowarizmi and those that followed him made exten.
stve use of algebra in commercial and monetary computa-
tions Neither he nor any of the other mathematicians who
wrote in Arabic made any use of abbreviations * Neither
did they recognize negative numbers From Hindu sources
they knew about negative numbers but considered their use
insuffictently justified This was true, but whereas the Hindu
scholars werte able to confine themselves to a single comp-
lete quadratic equation, al-Khowarizmi and his successors
had to distmguish three cases (x2+-px=gq, x4 q=px,
x*==px--q, where p and ¢ are positive numbers)

Central Asian, Persian and Arabic mathematicians en.
riched algebra 1n a variety of ways In higher-degree equa-
tions they knew how to find approximate values of the roots
to a very high degree of accuracy. Thus, the celebrated
Central Asian philosopher, astronomer and mathematician
al-Birunt (973—1048), also of Khorezmi, reduced the problem
of computing the side of a regular nonagon 1inscribed in a
given circle to the cubic equation x®=1-43x and found
(in sexagesimal fractions) the approximate value x

= 1.52'45"47'"13""" to within 53 which 1n decimal frac.

tions 1s correct to seven decimal places (The sexagesimal
fraction can be read as one umt, 52 sixtieths, 45 three thou-
sand six hundredths, etc) The scholar Omar Khayyam
1036—1123) of Naishapur, the famous classic of Iranian and
ajik poetry (known in the West for his celebrated Rubaiyat)
made a systematic study of equations of the third degree.
Neither he nor any other of the mathematicians of the Mus-
lim world were able to find expressions for the roots of a
cubic equation in terms of the coefficients However, Omar

* Abbreviations were hardly necessary slnce Arable writing 1s
brief vowels are not written, consonants and semi-consonants are
simple letters and often merge Into a single symbol,
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Khayyam developed a method by which 1t 1s possible (geo-
metrically) to find the number of real roots of a cubtc equa-
tion (he himself was only interested 1n positive roots).

Medieval Europe. In the 12th century, the “Algebra™ of
al-Khowarizmi was translated 1nto Latin and studied mn
Europe It marked the beginnming of the development of al-
ebra 1n European countries, at first under the strong in-
luence of the science of the East Syncopated motation ap-
peared for unknowns and new problems involved 1n trading
were solved, but no essential advances were made until the
first third of the 16th century when the Itahans de! Ferro
and Tartagla found rules for solving cubic equations of the
type x3=px+q, x*+px=q, x*+qg=px, and Cardano, in
1545, demonstrated that any cubic equation can be reduced
to one of these three types At the same time, Ferrari, a
pupil of Cardano, solved a quartic (fourth-degree) equation.

The rules for solving such equations were so complicated
that 1mprovements had to be made 1n uotation. These took
place gradually during a whole century. At the end of the
16th cenlury, the French mathematician Viéte introduced
literal symbols for unknowns and for known quantities as
well (the unknowns were denoted by capital vowels, the
known quantities by capital consonants) Syncopated nota-
tion was introduced for operations as well Different authors
used different kinds By the middle of the 17th century,
algebraic symbolism, thanks to the efforts of the French
scholar Descartes (1596—1650), took on the general outlines
that 1t has toaay

Negative numbers. During the 13th to 16th centuries,
negative numbers were considered by Europeans only in
exceptional cases After the discovery of the solution of the
cubic equation, negative numbers gradually came to be ac-
cepted n algebra, although they were called “false” num-
bers. In 1629 Girard (France) gave a geometric depiction of
negatrve numbers that we still use today About twenty
years later, negative numbers were accepted generally

Complex numbers. The introduction of complex numbers
(Secs 92, 98) was also connected with the discovery of the
solutton to the cubic equation

Even before this discovery, n the solution of the quad-
ratic equation x2--q==px one encountered a case when it

was required to find the square root of (-:—)'—«;, where

the quanlity (%)' was less than ¢. It was concluded in
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that case that the equation does not have any solutions,
Of course, it 1s hard to imagine that the new (complex)
numbers would be introduced at a time when even negative
numbers were considered “false” Yet when solving a cubic
equation by the Tartagha rule 1t turned out that without
operations involving imaginary numbers it 1s impossible to

obtain a real root.
Let us go mto this in more detail, By Tartagha’s rule

a root of the equation
B=prtq (1
is given by the expression
s=y/ut Yo @
where 4 and v are solutions of the system

a+tu=q, w:(—é’—)a @

For example, for the equation x3=9x4-28 (p=9, y=28)
we have
utv=28, up=27
whence either =27, v=1 or u=1, v=27, In both cases

x=3/24 3/ T=4

This equation does not have any other real roots.

But, as Cardano had noted, the system (3) may not have
any real solutions, whereas equation (1) has a real root and,
what 1s more, a positive root. Thus, the equation x3= 15x44
has the root x=4, but the system

uA-v=4, uy=125
has the complex roots' u=2+11i, 0=2—11i (or u=2—11i,

= 1),

Bombell (1572) was the first to shed light on this myste-
rious phenomenon. He pointed out that 24-11¢ 1s the cube
of 241, and 2—111 15 the cube of 2——i; hence we can write

3 3
/2+ll:=2+t, ;/2-—111..—.2—[ and then formula (2)
yields x==(2-+)+(2—i)=4

It was now lm;losslb]e to 1gnore complex numbers. How-
ever, the theory of complex numbers developed slowly. As
late as the 18th century, famous mathematicians argued
about how to find the logarithms of complex numbers.
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Although complex numbers helped to obtain a wide range
of important facts 1nvolving real numbers, their very existence
seemed doubtful Exhaustive rules for operating with comp-
lex numbers were given 11 the muddle of the 18th century
by Euler, one of the greatest mathematicians 1n the history
o{smence At the turn of the 19th century, Wessel of Den-
mark and Argand of France gave a geometrical representation
of complex numbers (Sec 104; the first steps in this direc-
tion were taken by Wallis of England in 1685). But the
work of Wessel and Argand was disregarded and only 1n 1831,
when this method was developed by the great German ma-
thematician Gauss, was 1t accepted generally

After solutions had been found for equations of the third
and fourth degree, mathematicians strenuously sought the
formula for solving the quintic (fifth-degree) equation
However, Ruffim (Italy) proved, at the turn of the 19th
century, that the literal fifth-degree equation x8-+-axt4-bx3
+cx+dx+4-e=0 cannot be solved algebraically, more preci-
sely, 1t 1s impossible to express any root of 1t in terms of
the literal quantities a, b, ¢, d, e using the six algebraic
operations of addition, subtraction, multiplication, division,
mvolution and evolution (Ruffini's proof was not without
fault, and 1n 1824 Abel of Norway gave a flawless proof)

In 1830 Galors (France) demonstrated that no general
equation whose degree exceeds 4 can be solved algebraically.

Nevertheless, every nth-degree equation has (if we constder
complex numbers as well) a routs, some of which may be
equal Ths was known to mathematicians as early as the
17th century (1t stemmed from the analysis of numerous
particular cases), but only at the end of the 18th century
was _the theorem mentioned above proved by Gauss

The problems that engaged algebraists 1n the 19th and
20th centuries for the most part go beyond the range of
elementary mathematics Suffice 1t to note that in the 19th
century many methods were developed for approximate solu-
tion of equations In this direction, important results were
obtamned by the great Russian mathematician N, I Loba-
chevsky

67. Negative Numbers
The first numbers known to man were the natural num-

bers (Sec 16) But these numbers do not suffice even in the
sumplest cases. Indeed, 1n the general case, one natural nume
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ber cannot be divided by another if we confine ourselves to
natural numbers alone Yet situations arise 1n which we have
to divide, say, 3 by 4, 5 by 12, and the litke Without the
introduction of fractions, the division of natural numbers ;5
impossible, fractions make this operation possible

But the operation of subtraction still remains impossible
1n certain cases even after the introduction of fractions: we
cannot subtract a larger number from a smaller number,
say 5 from 3 In everyday life we do not need to perform
such subtraction and so for a very long time that operation
was considered not only impossible but even senseless

The development of algebra demonstrated that such an
operation is necessary (see Sec 68 below) and 1t was put {0
use by scholars of India 1n_about the 7th century, by
Chinese scholars earlier still Hindu scholars, seeking to find
instances of such subtraction, came to an interpretation of
it from the point of view of trade transactions If a merchant
has 5000 roubles and buys 3000 roubles worth of goods, he
has 5000-—~3000=2000 roubles But f he has 3000 and buys
5000 roubles worth of goods, then he 1s 2000 roubles 1n
debt It was considered, accordingly that we subtract
5000 from 3000, the result being a dotted 2000, which meant
“two thousand 1n debt”

This interpretation was artifictal because a merchant
never found the sum of s debt by subtracting 3000— 5000,
he always performed the subtraction thus: 5000—3000 What
1s more, this could serve—with a stretch of the imagina-
tion—only to eaplain the rules of addition and subtraction
of “dotted numbers”, but 1t could not account for the rules
of multiplication and division (see Sec. 69 on rules of ope-
rations) Still and all, this interpretation remained for a long

+time 1n teatbooks and manuals, and even today it occasio-
nally appears

The “impossibility” of subtracting a number from a smal-
ler one 1s due to the fact that the natural numbers (positive
whole numbers) form an infimte sequence 1n only one direc-
tron If we subtract successively | from, say, the number 7,

we get
6.5 4321

One more subtraction yields an absence of any number, and
from there on there 1s nothing fo subtract from If we want
to make subtraction posstble 1n all cases, we must' (1) con-
sider the “absence of a number” as a number (zero); (2) con-
sider 1t possible to subtract another unit from this number, etc.
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We thus generate new numbers which today look like this:
-], =2, -3, etc

These nutmbers are termed negafive integers (or negative whole
numbers) The munus sign reminds us of the origm of a ne-
gative number from the successive subtraction of umity
This sign 1s called a sign of quantity to distinguish 1t from
the subtraction sign, which 1s called an operational sign

The introduction of negative integers implies the need

for negative fractional numbers If we take it that 0—85=—5,
then we must also accept the fact that ()~--—TZ=——17g The

12
number —==1s a negative fractional number

In contradistinction to negative numbers (integral and
fractional), the numbers (integral and fractional) which are
studied 1n arithmetic are called posifive numbers To bring
out this distinction still more, we can affix a plus sign to
any positive number, 1n which case this 1s a sign of quantity
(and not the sign of an operation) For example, the number
2 can be written as 4-2. %

Together, negative and positive numbers are called signed
numbers 1n school textbooks The generic term mn scientific
terminology for these numbers, together with zero, 1s rational
numbers The meaning of this term will become clear when
we discuss the concept of an irrational number (see See 91).
Just as, prior to the introductiun of negative numbers, there

were no positive numbers and the number —2» was simply a

fraction and not a positive fraction, so prior to the intro-
duction of irrational numbers, the numbers -5, —B,

——f, -|-%, etc., were sumply positive and negative num-
bers and fractions, and not rational numbers.

68, Negatlve Numbers (Hlstory and Rules of Operation)

For the student, probably the most difficult item in
algebra 1s that devoted to operations involving negative
numbers. This 15 not beczuse the rules are complicated

* The fact that the signs of operations and the signs of quantity
are the same (+ and —) 1s an advantage with respect to computations,
but the beg\nner finds this rather comphcated It is therefore advi-
sable, at the beginning, to distinguish between the operational sign
and the sign of quantity, and write 2 for a negative two Instead
of =2 This is done in logarithmic computations (see Sec, 129 et seq )

9%
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Quite the contrary, they are simple The dilliculty 1s twolold
(1) Why introduce negatsve numbers? (2) Why are the ope.
rations tnvolving them what they are and not sometling
else® For instance, 1t 1s often hard to grasp why muliipls-
cation and division of a negative number by a negative
number yields a positive number

These questions usually arise because negative numbers
are usually introduced before equations, and the rules for
operating with negative numbers are not re-examined Actu.
arly. it 1s 1n connection with the solution of equations that
both questions can be answered Historically speaking, that
1s exactly how the negative numbers arose If there had
been no equations, there would not have been any need for
negative numbers

For a long time equations were studied without the aid
of negative numbers This was extremely inconvenient
It was to overcome these inconvemences that negative num.
bers were introduced It 1s worth noting that for a long
time many outstanding mathematicians refused to use them
and only grudgingly gave way to the inevitable Even Des.
cartes was still calling them “false numbers”

A simple example will serve to illustrate the nature of
these tnconverences When solving an equation of the first
degree 1n one unknown, say,

Tx—5=10x—11

we transpose the terms so that the knowns are on one side
and the unknowns are on the other In such an operation,
the signs are reversed Collecting unknown quantities m the
n%ht member of the equation and known quantities in the
left member, we get

H—5=10x—T7x, 6=3x, x=2

These manipulations can be carried out without invoking
any negative numbers at all and considering the + and —
signs as signs of addition and subtraction, and not as the
signs of positive and negative numbers But then we have
to think over the question of which side to move the un-
known terms, because 1if, say, in the above equation the
unknown terms are transposed to the left side, we get

Tx—10x=5—11
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Without negative numbers, we cannot subiract 11 from §,
neither ~an we subtract 10x from 7x, which means we can-
not get ahead with the solution Now 1t 1s not always so
easy to see, beforehand, how to avoid this situation, espe-
cially if there are a large number of terms A computor has
to be ready to do a double amount of work in transposing
terms to the proper side It was to make the computational
rocess more eificient that negative numbers were introduced
Fndeed, if we agree to consider “possible” the “1mpossible”
subtraction 5—11, and denote the result by —6, and make
the subtraction 7x—10x yield —3x, then we obtain

—3x1 = —6

Whence x=—6 —3

Now 1t turns out that when introducing negative num-
bers, we have to set up the rule that in the division of a
negative number (—6) by a negative number (—3), the quo-
tient 1s a positive number (2) This (s so because the quotient
must yield the value of the unknown quantity x, which was
found earlier 1n a different manner (without using negative
numbers) and proved to be equal to 2

That, 1n rough outline, was how negative numbers were
first introduced the aim was to rationalize the process of
computation The rules involving negative numbers emerged
from the ntroduction of this more efficient technique into
computational procedures

Numberless tests and years of using negative numbers have
demonstrated the extreme effectiveness of this technique
which has found briliant apphcations 1n all spheres of sei1-
ence and engineering Everywhere, the introduction of nega-
tive numbers permits embracing, 1n a single rule, pheno-
mena that would require dozens of rules if we confined
ourselves to positive numbers

To summarize, the two questions posed above may be
answered as follows (I) negative numbers were introduced
so as to dispose of certain difficulties arising principally in
the solution of equations, (2) the rules involving them fol-
low from the necessity to coordinate the resulfs obtained
?})}J means of negative numbers with those obtained without

em

All these rules (see Sec, 69) can be established when
considering the most elementary kinds of equations, 1n the
same way that we set up a rule for the division of negative
numbers,
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69, Operations with Neqative
and Positive Numbers

The absolute value of a negative number 1s the positive
number obtained simply by reversing the sign The absolute
value of —5 15 +5, that 1s, 5 The absolute value of a po-
sitive number (zero included) 1s the number 1tself

The absolute-value sign consists of two vertical bars that
enclose the number whose absolute value 1s being taken
For example, | —6|=5, |+5]="5, |0]|=0

1. Addition. (a) To add two numbers with like signs,
combine theirr absolute values and prefix the common sign

Examples (+8)+4(411)=19, (—=7)+(—3)=—10

(b} To add two numbers with unlike signs, find the dif.
ference between their absolute values and prefix the sign of
the number whose absolute value 1s greater

Examples, (—3)4-(+12)=9, (—8)-(+1)=—2

2. Subtraction. The subtraction of one number from
another can be replaced by addition, 1n this case, the mi-
nuend dretams its sign, and the sign of the subtrahend 1s
reverse

Examples.
(+D—(+4)=(+7+(—4=3,
(FD—(—A)=(+D)+(+4)=11,
(—T) = (=) =(—T)+(+4) =3,
(= —(—4)=(—4+(+4)=0

Note. When performing addition and subtraction, espe-
cially when the operation involves several numbers, 1t 1s
advisable to do as follows (1) remove all brackets, to do
this, affix a plus sign if the earlier sign in front of the
brackets was the same as that inside the brackets, and a mi-
nus SIEH if 1t was opposite to that inside the brackets,
(2) add the absolute values of all the numbers which now
have the plus sign, (3) add the absolute values of all the
numbers which now have the munus sign; (4) find their
difference and affix the sign of the greater sum

Erample. (~30)—(—11)+ (—6)—(F 12+ (+2);
— (1 —6)— =
B D =02+ (2=~
(@) 1742=19,

(3) 304-6+ 12=148,
(4{ AR
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The result 1s the negative number —29 since the greater
sum (48) was obtained by combining the absolute values
of those numbers which had minus signs 1n the expression
—30+17—6—1242

This expression may be regarded both as a sum of the
numbers —30, 417, —6, —12, +2 and as the result of the
following successive operations the addition of 17 to —30,
the subtraction of 6, the subtraction of 12 and, finally,
the addition of 2 Generally, the expression g—b+c—d
and so on may be regarded as the sum of the numbers (-ta),
(—b), (4c) (—d) and also as the result of the following
successive operattons the subtraction of (+6) from (4-a),
the addition of (+¢), the subtraction of (4d), and so on.

3. Multiplication. To multiply two numbers, multiply
their absolute values and to the product affix a plus sign
if the signs of the factors are the same, and & minus sign
if they are different

Scheme (rule of signs 1n multiplication)

+ -+
+._
-t

W

t
-

Examples. (+2 4)-(—5) =—12, (—2 4).(—5) =12, (—82)

X (+2)=—16 4
When multiplying several factors together, the sign of

the product 1s positive 1f the number of negative factors

is even, and negative 1f the number of negative factors is odd.
Example.

(+5) - =8 (—y ) =—14
(three negative factors)
(%) 42961 (+1)=7
(two negative factors)

4. Division. To divide one number by another, divide
the absolute value of the former by the absolute value of
the latter and place a plus s!dgn in front of the quotient
if the signs of the dividend and divisor are the same, and
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a minus sign 1 they are different (the scheme is the same
as for mulitiplication)

Examples. (—6) (+3)=—2, (+8) (—2)=—4,
(—12) (=12 =+1.

70, Operations with Monomials. Addition
and Subtraction of Polynomials

A monomial 15 a product of two or more factors each of
which 1s erther a number, a letter or a power of a letter,
For example, 2d, a%b, 3abc, —4x%" are monomials A single
number or a single letter may also be regarded as a monomial.

Any one of the factors of a monomial may be taken as
the coefficient of the monomial. The numerical factor (say,
~—4 1n the expression—4x%y2%) 15 often taken as the coefficient.
By 1solating one of the factors as the coefficient, we sumply
wish to stress that the monomial 15 the result of multiplying
the rest of the expression by the coefficient By separating
out the numerical factor as the coefficient, we wish to emp-
hasize that the maimn role 1s played by the literal expression,
which 1s repeated as an addend as many times as indicated
by the numerical factor {coefficient)

Monomials are called similar 1if they are the same or if
they differ solely in the coefficients. It 15 clear then that
two monomials may be similar or disssmular depending on
what coefficients are taken 1f the numerical factors are the
coefficients, then Iike (or similar) monomals are those whose
letter parts are the same For examrle, the monomals ax2ys,
b33, ex®y® are simular 1f the coefficients are taken to be
a, b, ¢, the monomials 3x2y%, —b5x2y% 6x%3% are simjlar if
the coefficients are the numerical factors

Addition of monomials, Generally speaking, the addition
of two or more monomuals can only be indicated, until we
assign numbers to the letters, the sum of several terms can-
not, as a rule, be simplified The only simplification possible
is tn the case of similar terms; here, the sum of similar
terms 1s a term whose coefficient 1s equal to the sum of
:he:r coeflicients, This procedure 15 called collecting like
erms

Example 1. 3x8y3— 5x%y2 4 6x3y2 = 4532,

Example 2. ax’yﬂ-_bxly:+px:yz=(a_b+c) P

Example 3. 4x°y’——3x3y2_.213y2+6x£y1+ 5xy
=204 3%y By
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Taking out a common factor. The operation performed
n Example 2 1s called factoring by taking out a common
factor We say that xy? has been factored out Essentially,
taking out a ‘common factor 1s the same as collecting like
terms
Polynomials. The sum of any number of monomials 15
called a polynomial, The addition of two or more polyno-
mials 18 nothing other than the formation of a new polyno-
mial that includes all the terms of all the original polyno-
mials

Subtracting one polynomial from another 1s the same as
adding a ]polynomual whose terms are those of the original
polynomial with signs reversed.

Example. (4a%+ 26—2x%2) —(12a2~—c)+ (76— 2%y
=403 + 26— 232 — 1222+ ¢ |- Tb— 2% =—8a? - 0b

— 4 4c
(like terms are underhined with the same number of {ines).

Multiplication of monomials. Generally speaking, the
multiplication of monomials can only be ndicated (cf the
foregoing on the addition of monormals). A product of two
or more monomials can be simplified only when they ine-
lude numerical coefficients or powers of ‘the same letters,
1n which case the exponents of the appropriate letters are
combined and the numerical coefficients multiplied together

Example. 5ax?y® (~3a%x4z) = —15a4x0y5z
[we add the exponents of the letter a(l4-3=4) and of the
letter x(2+4-4=6))

Division of monomials. Generally speaking, the division

of one monomial by another one can only be indicated The
guonent of two monomuals can be simplified if the divi-
end and divisor contain numerical coefficients or certam
powers of the same letters, in which case the exponent of
the divisor 1s subtracted from the exponent of the divi-
dend, and the numerical coefficient of the dividend 1s divi-
ded by the numerical coefficient of the divisor

Example. 12x342% 422 =3xy323 [the exponents of the
letter x are subtracted (3—2=1), the same for y (4—1=3)
and for z (5—2=3)].

Note 1. If the exponents of some letter are the same in
the dividend and in the divisor, the letter 1s dropped in the
quotient because, divided by itself, it yields umty Sub-.
tracting exponents we would get 0 We therefore agree to
consider the zeroth power of any number to be the number 1.

Example, 4x3y3. 2%y = 2x0y% e= 242 (x0 = 1),



138

Note 2. Ii the exponent of some letter in the dividend
1s less than the exponent of the same letter in the divisor,
subtraction yields a negative power of that letter For de-
tails concerning negative powers, see Sec 125 The resylt
can also be given in the form of a fraction Then the nega.
tive exponent 1s'not present

Example. 10x%% 2x8yt==5x" ‘y=% because x~‘=;‘-‘- .

.71, Multiplication of Sums and Polynomials

The product of a sum of two or_more expressions by an
expression 15 equal to the sum of the products of each of
the terms by that expression

(@+b+0) x=ax+4bx-+cx (with brackets removed)

In place of the letters @, b, ¢ we could take any expres.
sions, say, any monomials The letter x can also be replaced
by any ‘expression, 1f that expression 1s itself a sum of
several terms, say m+-n, then we have (a4-b+-¢)(m+n)=
=a(m+ n)-4b (m--n)+ ¢ (m4-n) = am+- an-bm--on+-cm--cn
That s, the product of a sum by asum 1s equal to the sum of all
possible products of each term of one sum by each term of
the other sum

For example, this rule refers to the product of a poly-
nomia} by a polynomial*

(3x2—2x - 5) (4% 4- 2) = 1243 —Bx? - 20x - 64— 4x+4- 10
= |2¢8—2%34 16x 4 10
Outline for multiplication:
Ix3—2x+5
4x4-2
12x3—8x3+4-20x
6x2—4x4-10
12632434 16210

72. Formulas for Short-Cut Multiplication of Polynomlals

The following special cases of multiplication of polyno-
mials are frequently encountered and so should be memori-
zed. It 1s particularly important to get into the habit of
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using these formulas for cases when the letters a and b are
replaced by more complicated expressions (say, monomials)

1. (a-+b)*=a2-42ab+b% The square of the sum of
two quantities 1s equal to the square of the first term, plus
twice the product of the two terms, plus the square of the
second term

Example 1 1042 = (100 4)2=10,000-+800+ 16 = 10,816

Example 2. (2ma®+0 1nb%)%= 4m2a'+-0 4mna2p2--0 Oln2hd

Warning (a+b)* 1s not equal to a?4-b?

2. (@~ b)?==a*— 2ab -+ b’ The square of the difference
between two quantities 15 equal to the square of the first
term, minus twice the product of the two terms, plus the
square of the second term This formula may be regarded
as a special case of the preceding one [in place of b we take
—b
{ %]xample 1. 98%==(100—2)%=10,000— 400 4 = 9604

Example 2. (5x®—2y%)% = 25x8— 20x%y3 - 4y?

Warning (a—5)? 1s not equal to a?—b? [see 3].

3. (@4 b)(a—~ b)=a®—b* The product of the sum and
difference of two quantities 1s equal to the difference of
their squares

Example 1. 71-69=(704 1) (70— 1)==70% — | =4899,

Example 2. (0 2a%--¢3) (0 2a%—c3) =0 04atb2—ct.

4, (@+b6)*=a’+ 3a%b - 3ab®-- b3 The cube of the
sum of two quantities 15 equal to the cube of the first term,
glus three times the product of the square of the first term

y the second, plus three times the product of the first term
by the square of the second, plus the cube of the second

Example | 123=(10~-2)3 =108 4-3.103.24-3.10 22

+23=1728

Example 2. (5ab?®-24%)8 = |254%8--]150085% - 60075 - 8a®

Warning (a+6)3 1s not equal to a®-53 [see 6]

5. (a—b)*==a’—~3a% 4 3ab*—b% The cube of the
difference of two quantities 1s equal to the cube of the
first term, minus three times the product of the square of
the first term by the second, plus three times the product
of the first term by the square of the second, minus tﬂe cube
of the second term

Example 993 =(100 — 1)® = 1,000,000 —3.10,000-1 43

X100 1—1=970,299

Warning (a—0b)® 1s not equal to a3—b3® [see 7].

6. (a+b)(a®—ab-+b%=ad+b> The product of the
sum of two quantities by the “imperfect square of the dif-
ference” 1s equal to the sum of their cubes
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7. (a—b)(a®*+ab+b)==a*— b The product of the
difference of two quantities by the “imperfect square of the
sum” 1s equal to the difference of their cubes

73. Division of Sums and Polynomials

The quotient obtained by dividing the sum of two or
more expressions by an expression 1s equal to the sum of
the quotients obtained by dividing each term by that expres-
ston

a+b+re__a b ¢

5 =%t7t7
a, b, ¢, x are any expressions, 1f they are all monomuals,
that 1s, if division of a polynomial by a monomial 1s per-
formed, then each of the quotients may be simplified (see

Sec 70). . | . "

Example. Snb:;lab =g;_b+|l:b =3a-+11b

1f a, b, ¢ are monomials and x 1s a polynomal, that 15 1f
division of a polynomial by a polynomial 1s performed, the quo-
tient cannot, generally speaking, be represented as a polynomial
(ust as the quotient obtained by dividing a whole number
by a whole number cannot always be represented as a whole
number) To putit differently, we cannol always find a poly-
nomial which, when multiphed by the polynomial of the
drvisor, will yield the polynomial of the dividend.

Example. The quotient 222 cannot be represented as a
P g e
polynomyal, the quotient 2% can be represented as a po-
at~yt
Iynomial. = a—

In the general case, the division of a polynomial b?' a
polynomial can be carried out so that a remainder 1s left
over, just as in the case of the division of whole numbers.
However, it 1s necessary to establish just what 1s meant by
the division of polynomials involving a remainder, If we
divide the positive integer 35 by the positive integer 4, we
get 8 and a remainder of 3, The numbers 8 and 3 have the
groperty that 4 8--3=35, that 1s if p 1s the dividend, ¢
he divisor, m the quotient and n the remamnder, then
mq<4-n=p. But this does not suffice fo determine the quo-
tient and remamnder completely, thus, 1n our example
(p=35, ¢=4) the numbers m=6, n=11, m=4, and n=19
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have the same property Also note that the number n must
be less than g. This cannot be Iliterally carried over to the
case of division of polynomials because the same expression
may be greater for one set of values of the letters and smal-
ler than the other for another set A modification s requi-
red. 1n each of the polynomials, some one of the letters of
its terms 1s taken as the principal letter. The highest power
of this letter .s called the degree of the polynomial Then
division 1n which a remainder occurs 1s defined as follows

To divide a polynomial P by a polynomial Q means to
find a polynomial M (quotient) and a polynomial N (rema-
inder) that satisfy two requirements: (1) the equality
MQ-+ N =P must hold, (2) the de%ree of the polynomial ¥
must be lower than that of the polynomial Q

Note. The remainder N need not contain the principal
letter at all, then we say that N 1s of degree zero

1t 1s always possible to find polynomials M and N which
satisfy these requirements umiquely for a given choige of the
principal letter However, they may differ if the chorce
of principal letter 1s different The process of finding the
quotient M and the remainder N 1ssumlar io the process
of division (with a remainder) of one multidigit number by
another The role of higher- and lower-order digits 1s played
by terms containing the principal letter to higher and lower
powers Before beginming the division process, the terms of
the dividend and divisor are arranged in a descending order
of powers of the principal letter.

Outline of division.

(dividend) 8a34-16a2—2a+4] 4a2—2a-1 (divisor)
F8adt4a2F2a Ja-+5 (quotient)
20a%— 4a+4
20?4 1025
6a—1 (remarinder)

(1) Divide the first term of the dividend 8a® by the first
term of the divisor 4a2, the result 2z 15 the first term of
the quotient

(2) Multiply this term b{ the divisor 4a2—2az4-1 to get
8a8—4a%--2a which 1s written under the dividend, stmilar
terms under each other

(3) Subtract the terms of the result from the correspon-
ding terms of the dividend, bring down the next term of
the dividend to get 20a?—4da+-4.



142

(4) Divide the first term of the remainder 20a% by the
first term of the divisor to get 5, which 1s the second term
of the quotient

(5) Multiply the second term of the quotient by the d;
visor to get 20a2—10a-+5, which 1s written under the firsi
remainder

(6) Subtract the terms of this result from the correspon
ding terms of the first remainder to get the second remain
der 6a—1. Its degree 1s less than the degree of the divisor,
which means the division process 1s complete We have 3
quotient of 2a+5 and a remainder of 6a—1

Alternation mode of division*

2x% 4 3x2—2x—4 (quottent)
(divisor) 3x—2 | 6x% +5x3—12¢*—8x-3 (dividend)
6xt—4x?

93— 242
93— 6x°
—6xt—8x
— 652 4x
—12x+3
—12x 48
~—5 (remainder)

74. Divislon of a Polynomlal by
a Flrst-Degree Binomial

If a polynomal containing x is divided by a first-degree
binomial x~—1{, where ¢ 1s some number (positive or nega.
tive), then we get a remainder which can only be a zero-
degree polynomial (see Sec 73), which 1s to say, some num-
ber N The number ¥ may be sought without finding the
quotient, Namely, this number 1s equal to that value of
the dividend which the latter assumes when x=1/

Example 1. Find the remainder left after dividing the polyno-
mial x3—3x84-5x—1 by x—2 Substituting x=2 into the
given polynomal, we find N==23—3.2245.2—]1=5

Indeed, performing the division, we find the quotient
M=x2—¢3 and a remainder N=5

Example 2 Find the remainder obtained from dividing
the polynomial x4-+7 by x+2 Here, /==—2 Substituting
¥=-—21nto x*+7, we find N==(—2)44-7=23

This property of a remainder 1s called the remainder
theorem. 1t was discovered by the French mathematician
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Bézout (1730—1783) The remainder theorem reads: when a
polynomial

B e Y e 20 L S
is divided by x—I, the remainder obtained 1s
N=aglmfaln=~t4gylm=24,  fa,
Proof. By the defimition of division (Sec 73), we have
a®Faixm -4 g, =(x—)Q+N

where Q 1s a polynomial and N 1s a number. Substitute x=1;
the term (x—I)Q vanishes and we get

agl? g™t Aau=N
Note. It may happen that ¥=0 Then [ 1s a root of the
equation
axttaxtit ta,=0 (1)

Example, The polynomial x3-+5x?—18 leaves no remain-
der when divided by x+3 The quotient 15 x2-2x—6
Hence, —3 1s a root of the equation x34-5x2—18=0 In-
deed, (—3)3+5(—3)2—18=0

Conversely, 1f I 15 a root of equation (1), then the leit
member of this equation 1s exactly divisible by x—/

Example The number 2 1s a rcot of the equation
x—3x—~2==0(29—3 2—2=0) Hence, the polynomial
x3—3x—2 1s exactly divisible by x—2 Indeed,

(0 —3x—2) (x—=x3+2-1

75. Divisibllity of the Blnomial
s Fa"byxTa

1. The diiference between identical powers of two num-
bers 15 exactly divisible by the difference between the num-
bers, that 1s xm—a® is divisible by x—a. This criterion,
Iike the ones which follow, are a consequence of the remain-
der theorem (Sec. 74)

The quotient consists of m terms and has the Iollowm%
form. (x®—a®) (x—a)=xM~14qxm=3q2xB—-34. | gm-
(the exponents on x steadily dimimish by umtg', whereas the
exponents on a increase by umty so that the sum of the
exponenis 15 constant and equal to m—1, all coefficients are
equal to +1).
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Examples

(x*—a?) (x—a)=x+a,

(x3—a") (x—a)=x>+ax+a?,

(xt—at) (x—a)=x3+ax®{-a’x+a?,

(x6—ab) (x—a)=xt-}-ax’4-a®x®adx -0t

2 The difference between tdentical even powers of twq
numbers 18 divisible not only by the difference between these
numbers (Item 1) but also by their sum, 1 e, x™—am for
even m, 15 divisible both by x—a and by x+a In the
latter instance, the quotient 1s of the form x#-1_—gym-2
+a2x™~3—  (the plus and mmus signs alternate)

Examples

(x2—a?) (x+a)=x—a,

xd—at) (x+ a)=x3—ax?4alx—a?,

gx“-—aﬁ) (x+a) =15 —axt+ a?x3—a3x%+ adx—ab

Note. Since the difference between even powers is divi-
sible by x-—a and by x+a, it s also divisible by x2-—g?,

Examples.

(xt—at) (x?—a) =22+ a?,
(x8—at) (x2—0?) = +a%?-Fat,
(x8—a?d) (x2—a?)== x84 0%} ax®+|ab

The law of formation of quotients ts obvious; 1t 1s rea-
dily subsumed under the law of Item 1, for example,
(x8—a8) (X2 a?) = [(x2)4— (a?)4] (xP—a?

) ( ) ( =)(Jx2)3 T2 (4 (@)% A (a2
2a. The difference between identical odd powers of twa
numbers 1s not divisible by the sum of the numbers
+For example, neither ¥%—a3 nor x8—a® s divisible by
x+a.
3 The sum of the same powers of two numbers 15 never
drvisible by the difference between these numbers

For example, x—a does not divide into x2+4-a? or x3+a3
or xé+4-af

4 The sum of the same odd powers of two numbers 15
divisible by the sum of the numbers (in the quotient, the
pius and minus signs alternate)

Examples

(' + 0¥ (x+a) = x2—ax-+a?,
(x®+a%.(x+a) = x'—ax?+ a¥xd—adx ab.
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4a The sums of identical even ?owers of two numbers
are not divisible by their difference (Item 3) or even by the
sum of the numbers For example, x2--a% 1s not divisible
either by x—a or by x+a.

76. Factorlzatlon of Palynomlals

A polynomial can sometimes be represented in the form
of a product of two or more polynomials This 1s by far not
always possible but when it 1s possible, 1t 15 often very dif-
ficult to find the required factors. Its practical ulility les
n the fact that it permits simplifying expressions (say, when
common factors can be found 1n the numerator and denomi-
nator of a fraction, for examples, see the next section), The
following are some elementary cases of the factorization of
polynomials

1 If all terms of a polynomial contain the same expres-
sion as a factor 1t can be taken outside the brackets (see
Sec. 70, addition of monomials)

Example 1. 7a%cy— 144543 =7a% (y—2a%¢?)

Example 2. 6x%3- Quxy® -+ dulxy = 2xy (3xy— uy - 2ud).

2. It 1s sometimes possible to break the terms up into
several groups, take out a factor in each group, and find
the same expression 1n all sets of brackets This expression
can then be factored out. factorization of the polynommal is
complete

xample 1. ax+4-bx-ay+by=x(a+b)+y@a+b)
= (a+b) (x+y)

Example 2. 1003~ 658 -+ 4ab#— 15a%

= 5a? (20— 3b) - 26* (2a—36) = (20— 35) (5014 25%).

Note. It is worth remembering that the expressian a—0o
can always be given in the form ~(b—a) so that what ap-
ears at first glance to be different expressions can easily be
urned into the same expressions.

Example 3. 6ay—2bx+ 9by—27ay
= 2x (3q~—b) + 9y (b—3a) = 2x (3a—b)—9y (3a—b)
= (3a—b) (2¢—9g)
3, The transformation explained in Item 2 can sometimes
be carried out after first introducing new terms that mutu-

ally cancel or after breaking up one of the terms into two
summands.
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Example 1. g*—x?=a3+ ax—ax—x?
=a(a-|—x)—x(a+x)=(u+x)(a_.x)
(ct formula 3 of Sec. 72)
Example 2. p?4-pg—2¢*=p*+2pg—pg—2q*
=p(p+29)—q (p-+29)={(p-+29) (p—q).
4 The technique of lem 3 can sometimes be circumven.
ted by using some of the factorization formulas obtained b
mampulating the formulas of short-cut multiplication
(Sec 72), namely
a2 2ab+bé=(a+b)3, a?—2ab+4bi=(a—b)3
b= (a+b) (a—b), etc

Example. 4x%--20xy-25y% Using the first of these for.
mulas (¢=2%, b=">5y), we get

4x2+ 20xy + 2542 = (2% + 5y)?

Successful factorization of pelynomials into the largest
possible number of factors depends largely on one's dexterity
1n handling and combining the techniques enumerated above.

Example. 124 %% —4x—3x2== 12—3x* 4 x3—4x
= 3 (4—x%)—x (4— %) =(4—2x2) 3—x)
= 2+ %) 2—x) B—x).

77. Aigebraic Fractions

An algebrate fraction Is an expression of the form %,

where A and B denote am{ Iiteral or numerical expressions,
and, the horizontal bar is the symbol for diviston The divi-
dend A 1s called the numerator, the divisor B 1s called the
denominator The fractions studied 1n arithmetic are a spe-
cial case of algebraic fractions (1in which the numerator and
denomtnator are posttive whole numbers) The rules for
handling algebraic fractions are the same as those for the
fractions of arithmetic (see Secs 30-36) We therefore confine
ourselves to a number of illustrative exarnples.

Reduction of Fractions
Example 1. The fraction ;‘:’:::: may be reduced by divi-
ding through by 3a%, P& _ 5%

' Ilaw - 7at

2a*— ab—3bt
Example 2. The fraction SR IR

may be reduced by
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cancelling out 2a—3b To see this, factor the numerator and

the denominator (see Sec 76, Item 3)
2a*-ab~3b* _ (2a-3b) (a+h)
2n'—5ab+;3b‘~(20—-317) (a—b)

Addition and Subtraction of Fractions

" n
Example 1. To add the fractions =t take a%? for

the common denominator, the additional factors are b for
the first summand and a for the second

_a+b
Ta-b

m n mb+na
% T = e
Example 2.
a-b - a+b _ a-b - a+b
2at—ab-3b% 2a¥-5ab+3b% ~ (2a-3b) (a+b) {2a—-3b) (a-b)

. ta-bi-(a+ by
T (22=3b) (a+D) (a~b)
_ —~aab
T (2a-3b) (@ =bH)

Note. Only n exceptional cases do multi-termed denomi-
nators have common factors, and if there are common fac-
tors, 1t usually requires a good deal of time to find them
Searching for such factors 1s a good exercise 1n developing
algebraic habits and so the continued attention devoted to
this work 1n textbooks 1s quite justified However, their
practical utility 1s shight and it 1s very often much better
sumply to take the product of the given denominators as the
common denorminator and not search for the simplest one

Multiplication and Division of Fractions
4a%b 2c%d*  8acd

Example 1. T ik Simplification can be car-
ried out erther prior to multiplication or afterwards
Xt-gat | XB—gx—cx4ac
Example 2. X3~ bx+cx~be xi- bt
- (x3~a?) (x2-ph?) _{x+a) (x+h) _ (x+a) (x+b)
T {X<b) (x40) (k) (x=0) (x40 (x—6)  xE-ct

78. Proportions

The definitions of a ratio and a proportion are given in
Sec 62, From the proportion [ollows ad=1be (the

a_c
b d
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product of the means is equal to the product of the extre.
mes), conversely, from ad=>bc follow the proportions

a < a b 4 _c

TTT TTAd v a
and others All these proportions may be obtained from the

original one,il;-z%, using the following rules
1 In the proportion 5-=--, the means may be inter.

changed, the extremes may be interchanged, or both may
be interchanged at the same time We have
a b c d

_ d_ b
TTET FTE T4

¢ 4 ' a’
2 In a proportion, the antecedent and the consequent

of both ratios may be mierchanged From $=2 we get
b

7:-‘01 This proportion was obtained earlier (1n the form

of -f-:-‘b;) In the same tway, nothing is altered by inter.

changing the antecedent and the consequent in the three
proportions given above

Derived proportions, [f %:.3., then the following pro.
portions (called derwed proportions) which are obtained from
the given proportion hold true

atb_ctd a-b_c=d axb_crd @b _o-d
e ¢ 'a ¢’ b d'b d°
&t e ¢ b _d b _ _d
a+b c+d’ a~b ¢-d ' a+b c+d' a-b c¢-d’
arh_e+d avc_a_ ¢ arb_a_ b
a-b c=d*b+d b d'ctd ¢ d'
a-b a b oa-c a e

These and a multitude of other derived proportions can
be combined nto two basic forms

ma+nb __ me+nd o
ma+mb  metnd '
ma+nc __ mbtnd )
ma+tne  mb+nd

where m, n, m;, n, are any numbers Form (2) s obtained by
the same rule as (1) if we first (nterchange the means in
the given proportion
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Putting m=n=m,b=1, /21—:0 i formula (1), we get the
dertved proportion '—’—}—:5{—- , puttingm=rn=m,=1,n,=0
imn (2), we have 5:—c=b;—'l or, interchanging the mean terms,

Fro=-, and so on.

79. Why We Nead Equations

Computational problems are of two kinds direct and in-
direct

Here 1s an instance of a direct problem what 1s the
weight of a chunk of alloy which contains 06 dm?® of
copper (specific weight 89 kg/dm?3) and 04 dm3® of zinc
(specific weight 70 kg/dm?)® Solving, we find the weight
of the copper (89 06=534 (kg)), the weight of the zinc
(70 0.4=28 (kg)) and then the weight of the alloy
(534+28=814 (kg)) These operations and their sequence
are 1imphed 1n the very statement of the problem

Here 1s an instance of an indirect problem an alloy con-
sisting of copper and zinc of volume 1 dm* weighs 8 14 kg.
Find the volumes of the copper and zinc 1n this alloy Here,
the statement of the problem does not indicate the opera-
tions that will lead to the solution In what (s called an
arithmetic solution, considerable ingenuity is often required
to find a plan of solution of an indirect problem Each new
problem requires setting up a fresh scheme, This 1s largely
a waste of the computor's time It was to rationalize the
computing process that the method of equations, which 1s
the basic subject of study in algebra, was created (see
Sec 65) The gist of the method 1s this

1. The desred quantities are given spectal designations
For this purpose we use literal symbols (mostly the last let-
ters of the Latin alphabet, x, y, 2, «, v) Using these sym-
bols and the signs of operations (4, —, etc), we translate
the conditions of the problem into mathematical language,
that 15, we express the relationships between the given
quantities and the unkmown quantities by mathematical
symbols 1nstead of words Each such mathematical state-
ment 15 an equation

2 The next step 1s to solve the equation, that 1s, to
find the values of the sought-for unknown quantities The
solution of an equation 1s a mechanical procedure, which s
1n strict accord with established rules At this stage we no
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longer have to take into account the specific features of
the problem at hand, all we have to do is make use of
firmly set rules and techniques (One of the primary tasks
of algebra i1s to derive these rules )

Thus, equations are needed to mechanize the labour of
the computor After the equation has been set up 1ls solu-
tion can be obtamed quite automatically (which 1s exactly
what computing machines do at present) The difficulty of
solving a problem lies in setting up the equation

80. How to Set Up Equations

To form an equation 1s to express in mathematical form
a relationship between the given (known) quantitres of the
problem and the sought-for (unknown) quantities This rela.
tionship 1s sometimes so explicitly stated in the formula.
tion of the problem that setting up the equation actually
reduces to a word-for-word rehashing of the problem in the
language of mathematical symbolism

Example 1. Petrov recerved 16 roubles more for a job
than half the sum which Ivanov got Together their pay
came to 112 roubles How much did each get?

Denote by x the share of Ivamov Half hus iay 1s [/2¢;
Petrov's pay for the month was 1/2x+ 18, together they re-
cewved a total of 112 roubles In symbols we can write

(1/2¢ 4 16)+x=112

The equation has been set up Solving it by the estab.
lished rules {(Sec 84), we find that Ivanov got paid x=64
roubles, Petrov's pay was 1/2%--16 =48 roubles

More often, however, 1t happens that the relationship
between the known and unknown quantities 1s not expli-
citly stated 1n the problem and has to be built up out of
the statement of the problem Practical problems are almost
all of that kind so that the case we gave above 15 of a
gather artificial type hardly ever encountered in real situa-
1o1s.

It 1s therefore impossible to give exhaustive advice as
to how equations are set up However, as a starting prece
of advice we offer the followmng For the value of the
unknown (or unknowns) take some number or numbers (at
random) and make a check to sce if the guess 1s a solution
to the problem or not If we can make the check and see if
our guess is correct or incorrect (which 1s more likely),
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then we can immediately set about forming the equation
(or equations) we need. Namely, write down the very ope-
rattons that were used to check the correctness of the ran-
domly chosen number bﬁ’ introducing instead a literal sym-
bol for the unknown That 1s the equation we need. .

Example 2. A prece of an alloy composed of copper and
zine weighs 8.14 kg and 1s | dm® 1n volume. How much
copper 1s there mn the alloy (specific weights: copper
89 kg/dm3, zinc, 70 kg/dm?)?

Take some number to express the desired volume of
copper, say 03 dm® Now check to see how close a fit we
get Since | dm® of copper weighs 89 kg, 03 dm® will
weigh 89 03=267 (kg) The volume of zinc mn the alloy
18 [—~03=07 (dm%) This weighs 7.0 07=49 (kg) The
total weight of zinc and copper comes out to 267449
=757 (kg) But the weight of our piece 1s given as8 14 kg.
Our guess was wide of the mark, but at least we have an
equation whose solution will yreld the correct answer. In
place of the guess (03 dm?), denote the volume of copper
(in dm*g by x In place of the product 89.03==267 Eake
the product 89x This 1s the weight of the copper 1n the
alloy In place of 1-~03=07 take I—x; this is the volu-
me of the zinc In place of 70 07=49, take 7 0(1—ux),
which 1s the weight of the zinc In place of 2 67449, take
89x-}7 0 (1—x), which 1s the total weight of the zinc and the
copper, and which 1s given as 814 kg Thus 88x470
X(I~—x)=8 14 The solution of this equation (see Sec. 79)
yields x=06 The solution can be checked In a variety of
ways, which yield a variety of equations, all of which ho-
wever will result 1n the same solution Such equations are
called equivalent equations (see Sec 82)

Quite naturally, after setting up equations has become
a firmly established habit, there is no need to make these
Erehmmary checks of conjectured numbers, simply start out

designating the unknown quantity by some letter (x, y,
etc) and then proceed as if this letter (the unknown) were
the number we wish to venify

81, Essentlal Facts about Equatl

Two expressions, numerical or literal, joined together by
an equality sign (=) form an equation (numerical or Iiteralj,

Every true numerical equation, and also every literal
e%uatlon which holds true for all numerical values of the
letters 1n them is termed an idenfity.
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Examples. (1) The numerical equation 5 34 1==20-—4 5
an dentity (2) The literal equation {a—b) (a-+b)=q2—p2
15 an 1dentity since for all numerical values of o and b the
right and left sides yield the same number A Lteral equa-
tion 1s one 1n which all or some of the knmown quantities
‘are expressed by letters, otherwise the equation is termed
numerical.

It must be pointed out specially which letters of the
equation are to be taken as known and which are to be
regarded as unknown quantifies. The unknowns are ordina.
rily denoted by x, v, 2, u, v, @ According to the number
of unknowns, equations are called equations in one, two,
three, etc unknowns

To solve a numerical equation means to find numerical
values of the indicated unknowns which turn the equation
into an identity. These values are called the roots of the
equatron

To solve a Niteral equation means to find expressions of
the unknowns in terms of the known :}uantmes given in
the equation, which, when substituted for the unknowns,
turn the equatront into an identity The expresstons thus
found are called the roofs of the equation.

2

1
Example 1. ~——=--x 1s a numencal equation in one

2 1
unknown, t For x=1 the expresstons 55 and 5 x form

an 1dentity that 1s, they yield one and the same number,
x=1 15 the root of the equation
Example 2. ax+b=cx+d 15 a literal equation 1n one

unknown, ¥, when ng:-f— 1t becomes an identity, since the
expressions a;—i{—g-l-b and c%-}g——l-d yield the same numbers

for all values of the letters a, b, ¢, d (these ex pressions
ad—bc)

The value x=222 15 the

may be transfdrmed to i

a-c¢
root of the equation

Example 3 3x4-4y==11 is a numerical equation in two
unknowns When x==1, y=2 it becomes an identity
3.144:2=11. The values x=1, y=2 are roots of the equa-
tion; x=—3, y=b5 are also roots of the equation The

values =2, y==! —:— are also roots This equation has tnfi-
nitely many roots but 1t 1s not an identity because, for
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example, when x=2 and y=3 the right and left members
of the equation do not equal each other

Example 4. 2x+-3==2(x-1) 1s « numerical equation 1n
one unknown It does not become an identity for any va-
lues of x whatever (the right member may be represented
as 2x--2 no matter what 2x equals, adding 2 to 2x cannot
yield the same number as adding 3 to 2x) This equation
does not have any roots.

82, Equivalent Equatlons. Solving Equations

Equwalent equations are equations that have the same
roots; for instance, x*=3x—2 and x*--2==3x are equivalent
since they both have the roots x=1 and x=2 The process
of solving an equation consists mainly 1n replacing a given
equation by another one that is equivalent to the first

The basic techniques nvolved 1n solving equations are
the following

1. Replacement of an expression by an equivalent one.
For example, the equation

(x+-1)2=2x+5
may be replaced by the equivalent equation
X2 2x - 1 =2x 45

2. The terms of an equation may be transposed (carried
over from one member, or side, of an equation to the other),
1 this process the sign of each term is reversed. For instance
i the equation x*+42x+1=2x45 we can transpose all
terms to the left member, the terms --2x and -5 go from
the right member to the left member with the sign reversed
The equation x8+4-2x+!—2x—5=0 or, what 15 the same
thing, x*—4=0, 1s equivalent to the original equation,

3 Both members of an equation can be multiplied or
divided by one and the same expression It 1s important
here to bear in mind that the new equation may not be
equivalent to the preceding equation if the expression used
:o multiply or divide has the property of becoming equal
0 z€r0,

Example. Given the equation (x—1) (x+2)=4(x—1).
Divide both sides by x—1 to get x-2==4 This equation
has a unique root, x=2, yet the original equation has the
100t x=2 and also the root x=1 This root was “lost” in
the division by x—1. On the contrary, when we muliply
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both members of the equation x+2=4 by (x—1) a new
root, x=1, appears in addition to the root x=-+2 From
this 1t does not 1 the least follow that we should not mul-
tiply or divide both members of an equation by an expres-
sion which 1s capable of becoming zero The only thing we
have to do, when performing such operations, 1s to note
whether any old roots are lost or any new ones are intro-
duced

4 It 1s also possible to raise both members of an equa-
tion to the same power or extract the same root, however,
the result may be equations that are not equivalent to the
original one For example, the equation 2x=6 has one root,
x=3; but the equation (2x)2=6% or 4¢%==36, has two roots
x=3 and x=—3 Before transforming an equation, check
to see whether some of the original roots are lost or mew
ones troduced Most itmportant 1s to be sure no old roots
are lost. The introduction of new roots 15 not so dangerous
because any root can be substituted into the original equa-
tion and verified on the spot to sce whether 1t satisfies the
equation or not

83, Equations Classifled

An equation s called algebraic if each of its members
(sides) 1s a polynomial or monomial (single term) (see Sec 70)
with respect to the unknown quantities

Examples. bx+ay?=xy--27 1s an algebraic equation n
two unknowns, but the equation bx--ay®=xy--2%¥ 15 not
algebraic because the right member 1s not a polynomial 1n
the letters x and y (the term 2% ;s not a monomial 1n the
letter x)

The degree of an algebraic equafion Transpose all terms
of an algebraic equation to ome side and collect like terms,
if the equation contains only one unknown, then the degree
of the equation 15 the greafest exponent on the unknown
If the equation contains several unknowns, then for each
term of the equation 1t 1s necessary to form the sum of the
exponents of all unknowns The largest sum 1s termed the
degree of the equation

Example 1 The equation 4x3+2x*—17x=4x2—8 5 a
second-degree equation since we get 2x*—17x4-8=0 when
all terms are transposed to the left side

Example 2. The equation gk =c* is an equation of
the first degree since the highest degree of the unknown, x,
15 one.
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Example 3 The equation a8 4 bxdy®—afxyd—2=0 15 an
equation of the sixth degree since the sum of the exponents
on the unknowns x and y comes to 5 for the first and third
terms, 6 for the second and zero for the fourth, the largest
sum 15 6

Equations whose solution reduces fo the solution of an
algebraic equation are somefimes also classed as algebraic
The degree of such an equation 1s the degree of ithe algebraic
equation o which if reduces

Example 4 %’1=2x 1s an equation of the second degree

although the second degrece of the unknown is not evident
However, 1if it s replaced by an equivalent algebraic equa-
tion (by getting rid of the fraction), 1t becomes 2x2—3x
—1=0 A first-degree equation 1n any number of unknowns
18 also called a linear equation

84, First-Degree Equation In One Unknown

An equation of the first degree m one unknown may be
transformed to one of the form ax=»b, where a and b are
given numbers or Literal expressions containing known quan-

tities, The solution (root) is of the form x=—3— Manipula-

tive difficulties oceur onlsy u} carrying out transformations
X = X~ 1

Example 1. srmm = —3
(1) Reduce the right member to a common denominator:

3x-5 _ (3x-1) (x+2)-(2x+5)
2(x+2) (2x+8) (x+2)

(2) Remove brackets 1n the numerator of the right mem-
3x-5§ 3x3+3x~7
ber and collect terms T S I D
(3) Multiply both members by 2 (2x-+5) (x4-2) so as to
clear the equation of fractions (We leave the question as to
whether or not extraneous roots have been introduced till

after the solution )
(3x—5) (26 5) =2 (324 8x—7)
(4) Removing brackets, we get
6x2 4 5x 25 = 6424 6x— 14
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(5) Transpose all unknowns to the left member, all known
quantities to the right, and collect Iike terms We finally
get ~x==11, \he root of the equation.is thus x= —11

Substitute this value into the original equation and venfy
that this root 1s not an extraneous root

x* {(x-a)? | (x-8)2
Example 2. —— -+t imma =0
(1) Reduce the left member to a common denominator
X (x—a) (x—b)
(The additional factors are. % for the first fraction, x—a for
the second, and x—b for the third)
B4 (x-a)d+ (x-b) =3
X (x=a) {(x=b)

(2) We get rid of the fraction by multiplying both sides
by x(x—a)} (x—b)

B4 (x—a) +(x—b)V =3x (x—a) (x—b)

(3) Removing brackets, we have

x3 - x8 — 3ax? 4 3a%x —~a’ 4 49— 3bx? + 3b% — 53
==3y%—3ax?—3bx% - 3abs

(4) Transpose unknown terms to the left and known quan.
tities to the right member, Collecting like terms, we finally
have

3atc—Babx-+3b2x =a34-b3 or 3(a%—ab--b%) x =a% 45
(5) We now find the root of the equation to be
_ a!+b‘l
X = e —ab 1o

This expresson may be simplified by cancelling out
a%—ab+ b2 R
at

X m=—

3

85, A System of Two First-Degres Equations
in Two Unknowns

After performing manipulations like those considered 1n
the preceding section, an equation of the first degree in two
unknowns x and y becomes ax--by=c, where a, b, ¢ are
given numbers or literal expressions.
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Taken separately, such an equation has fimtely many
roots Assign arbrtrary values to one of the unknowns (say 1)
and the value of y can be found from the equation m one
unknown by substituting the value of x into our equation
For instance, in the equation 5x4-3y="7 we can put x=2,
we then get 104-3y=7, whence y=—1

However, 1f the unknowns x and y are connected by two
(not one) equations of the first degree, then they will have
infinttely many solutions only in exceptional cases (sce
Sec. 87) Generally, a system of two first-degree equations in
two unknowns has only one set of solutions (solution set)
It may also happen (in excePhonal cases again) that it does
not have any solutions at all (see Sec 87)

Solving a system of two first-degree equations in two
unknowns may be reduced, 1n a variety of ways, to the solu-
tion of one equation of the first degree in one unknown
Two such procedures are discussed 1n the next section

Problems that lead to a system of two equations mn two
unknowns can always be solved by means of one equation in
one unknown, however, much attention must then be paid
to computations which, when a system of equations is
employed, are handled routinely in the very process of solv-
ing the system The same goes for problems involving three
or more unknowns They may be solved with the aid of one
or two unknown quantities The larger the number of
unknowns 1nvolved, the simpler (generally speaking) it 1s to
set up each ome of the equations, but the more difficult 1s
the process of solution of the system Therefore, practical
considerations suggest introducing as few unknowns as pos-
sible but 1n such a way that setting up the equations does
not become too 1nvolved

Example. A piece of alloy made of copper and zinc weighs
8.14 kg and 1s | dm3 1n volume How much copper and zinc
18 there 1n the alloy (copper has a specific weight of
89 kg/dm?, zinc, 70 kg/dm?? Denoting by x and y the
unknown volumes of copper and zinc, we have two equations

wdy=1, o
89x4+70y=8 14 @

The first states that the total volume of copper and zinc
(in dm%) s equal to 1, the second states that the total
weight (1n kg) 1s equal to 8 {4 (89x 1s the weight of the
copper; 7 Oy, the weight of the zinc) Solving the system of
equations (1)—(2) using the general rules of Sec 86, we find
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x=06, y=04 We solved this same problem in Sec 8
(Example 2) using only one unknown, ¥ The suggestions
given (n Sec 80 hold true as well for setting up a system
of equations m twy or more unknowns

86, Solving a System of Two First-Degree
Equations in Two Unknowns

(a) Solving by the substifution method. This method
consists 1 the following (1) using one equation, find an
expression of one of the unknowns, say x, in terms of the
known quantities and the other unknown, y, (2) substitute
this expression 1nto the second equation, which then contans
only one unknown, y, (3) solve the equation and find the
value of g, (4) substitute the value of y into the expression
of the unknown x which was found at the beginning of the
solution This yrelds the value of x

Example. Solve the system of equations

8x—3y =46,
5x+6y=13

(1) Use the first equation to find the expression of x 1n
terms of the given numbers and the unknown y
x=46; Sy

(2) Substitute this expression 1nto the second equation:
5.4 gy 13

(3) Solve the resulting equation

5 §4G+3y)+48y= 104,
230+ 15y --48y = 104,
15y 48y = 104—230,
63y=—126, y=—2

(4) Substitute the value of y (y=—2) into the expression
x:“——;a—y- This yrelds x=4—6§"———=5

(b) Solving by addition or subtraction, This method con-
sists 1n the fallowing (1) both members of one equation are
mulliplied by some factor, hoth members of the second
equation are multiplied by another factor These factors are
chosen so that the coefiicients of the unknowns in both



equations have the same absolute value after the operation
(2) Add or subtract the equations depending on whether the
signs of the equalized coefficients have the same or different
signs; 1n this war one of the unknowns is eliminated
(3) Solve the resulting equation 1 one unknown (4) The
othtr unknown can be found in the same way, but it 15
ordinanity easter 1o substitute the value of the first unknown
into any one of the given equations and solve the resulting
equation 11 one unknown
Example Solve the system of equations

8y~ 3y =46,
S5x+6y=13

(1) The easiest way 1s to equalize the absolute values of
the coefficients of y, multiply both sides of the first equation
by 2, and both sides of the second by 1 (which 1s to say,
leave 1t unchanged)

8x—3y=46 2] 16x—6y=92,
Bx4-6y=13|1]| Bx-+6y=13
(2) Add the two equations
16v—6y= 92
+ 5p 4 6y= 13
21x =105
(3) Solve the resulting equation
=225

t(4) Substifute the value x=5 into the first equation to
G

g
40—3y=46, —3y=46-—40, — 3y=*6
Whence Y
6
y=:—a-=.-. 2

The method of addition or subtraction 1s preferable to
other methods (1) when the absolute values of the coeffici-
ents of one of the unknowns are equal in the given equations
(then the first of the steps in the solution process s not
needed), (2) when 1t 1s seen at once that the numerical co-
effictents of one of the unknowns can be equalized by means
of small integral factors, (3) when the coeificients of the
equations contain hiteral expressions
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Example Solve thie system
(a-4c) r—(a—c) y==2ab,
(a--b) x—(a-—0) y="2ac
(1) Equahze the coefficients of x, muitiply both sides of
the first equation by (a4-b) of the second by (a+-c¢) to get
(a4-¢) (@) ra—{(a+b) (a—c) y=2ab (a--b),
(a+4-c) {a+b) s—(a—b)(a+-c) y=2ac (a+c)

(2) Subtract the second equation from the [first,
[(a—b) (a+c)—(a+b) (a—c)] y =2ab (a 4-b)—2ac (a-¢)

(3) Solve the equation obtained

. 2ab {a+b)=2ac (a+¢)
y= (a~b) (a+c)—(a+b) (a—c)

This expression can be simphfied considerably but the
manipulations are 1nvelved In the numerator and denomi.
nator, remove brackets, collect terms, factorize and cancel
common factors to simplify the fraction

_ 2a (ab+bt—ac—c?)
y"(a‘—abq—ar-bc)-(a*-:—ab—uc-—bz)
__ _2a [(ab-ac)+(62=ct)]

- ~2ab+2ac

_ 2a[(b=c)a+(b=c) (b+e)]

- ~2a (b-¢)

. 2alh-c)(at+b+e) _
=y = (@+tb+o)

(4) To find x, equalize the coefficients of y tn the original
equations by multiplying the first by (a—b) and the second
by {a—c) Subtracting one equation from the other, we salve
the equation 11 one unknown and find

r= 2ab (a—b)=2ac (a—c)
T T@-b) @re)~(atb) (@-c)

Performing the manipulations as 1in Item 3, we get
¥=>b+-c—a. Substituting of the value of y into one of fhe
original equations would have required unwieldy computa-
tions, this happens very citen when solving hteray equations.
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87. General Formulas for and Special Cases
of Solving Systems of Two Flrst-Degres
Equations in Two Unknowns

The solution of a system of equations of the form

ax-by=c ()
apt+by=e @

may be obtained much faster 1f use 15 made of certain gene-
ral formulas that have been worked out. These formulas may
be found by any method, for example, by the method of
?ddmon and subtraction The solution has the following
orm.

byc~ b,
=T ®
y=gi )

These formulas are easy to remember 1f we introduce for
numerators and denominators the following symbolism We
agree to use the symbol f g to denote the expression ps—rg
which 1s obtained by eross multiplication:

¢t

r s

and a subsequent subtraction of one product from (b“ other
(the product of the right-downwards dlafgal has the plus

slgn) For example, the symbol lg ”‘? signifies §+1—2
X(=-8) =5+ 16=21
The expression
pal__
[ g|=rr

is termed a delermunant of the second order (in contrast to
determinants of orders three, four, etc which arise in the
solution of systems of first-degree equations 1n three, four,
etc unknowns).

1-652
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With the aid of this symbolism, formulas (3) and (4)
look like this

AR A
x~lab @ y=-75 (
a, by a, b, |

Each of the unknowns 1s equal to a fraction, the denomina.
tor of which 1s a determinant made up of the coefficients
of the unknowns and the numerator 1s obtammed from this
determuinant by replacing the coefficients of the correspon-
ding unknown by the constant terms

Example. Solve the system

8x— 3y =46,
5x+46y=13
_ i3 sl_4es+1a 3815 .
"“I —3| 36+53 63
5 6
8 46
_ s 13{_313-54&__-125_ 9
§= s—a“‘ I T
5 6

An investigation shows that when solving the system
(1)—(2), three essentially distinct cases arise
(1) The coefficients of equations (1) and (2) are not pro-

portional. f:— #* EbT Then, no matter what the constant terms,

the equation has a unique solution given by formulas (3)
and (4), or, what 1s the same, by formulas (5) and (6).
(2) The coefficients of (1) and (2) are proportional g—=5-

Then it 1s important to know whether the constant terms as

well are 1n that relation If so, that 1s, lif—r—-%:%, then the
1 1,
system of equations has an infimtude of solutions The reason
for this 15 that one of the equations 1s a consequence of the
other, so that 1n actuality we are dealing with one equation
and not two
Example. In the system

10x 64 =18,

:~r+3y=9
the c%effxcients of the unknowns * and y are proportional.

_ 18
5 =3 =2 The constant ferms are in +N¢ same ratio =2

Hence one of the i 5f the other
equa tiotls 18 a consequence & 1% ,
namely, the first 15 gbta.‘ned from the second by multiplying



163

both members of the iatter by 2 Any one of the infinity
of solutions of one of the equations 1s a solution of the other.
(3) The coefficients of the equations are proportional:
E“-=£— but 'the constant terms are not 1n that ratio Then
the system has no solution because the equations are con-
tradictory
Example. Ini the system

10x+ 6y =20,
5x-3y=9
the coefficients are proporttonal: l—sq=—;i-=2 The ratio of the

constant terms 1s different from the ratio of the coefficients:
32=2-:‘;— The system has no solution because if we mu}-
tiply the second equation by 2, we get 10x+6y=18 which
contradicts the first equation, for one and the same expres-
sion 10x+-6y cannot be equal to 18 and to 20.

88, A System of Thres Firsi-Degree Equations
In Three Unknowns

{f transformations similar to those indicated 1n Sec. 84
are carried out, a first-degree equation in three unknowns
%, y, ¢ takes the form ax-by--cz=d, where a, 6, ¢, d are
given numbers or literal expressions One such equation,
taken separately, or a system of two such equations has an
infimty of solutions In the general case, a system of three
first-degree equations in three unknowns has one set of so-
tutions In exceptional cases (see below) tt can have infinitely
many solutions or none at all

The solutton of a system of three equations 1n three
unknowns i1s based on the same techniques as used in the
solution of a system of two equations in two unknowns,
as will be seen from the following example

Example. Solve the system of equations

3¢—2y+b2=7, 1)
Tx+4y—82=3, (2)
= Sr—8y—dz=—12 @)

Take two equations goi this systerh, say (1) and (2), and
assume that one of the unknowns (say z) has already been
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found, that 1s, ts known Solving this system for x and y
by the rules of Sec. 86, we get
172 592-40

p=— . Y=g @
Substituting these expressions of ¥ and y into (3), we get
an equation 1 one unknown

5(17-22)  3(892-40) . 1o
13 76 =

Solving this equation (see Sec 84), we obtain 2=2 Putting
this value 1n (4), we find x=1, y=3
The general formulas for solving the system

ax+4-by+cz=d
ayx+byy+eiz=dy
apx-boytcgz=dy

may be obtawed by the same device The solution will be
complicated and hard to remember 1if written out mn full,
but 1t can be given a conventent and easily remembered
form 1f we first introduce the concept of a thurd-arder de-
terminant.

A determmant of third order, symbolized compactly as

G

a b ¢
o b oo ©)
a2, by ¢
is simply the expression
abycy+ beyag +cayby —cbyay— acyby—baye, (7

This expression need not be memorized siunce 1t 1s readily
obtainable from its symbol (6) as follows: rewrite the array

(6), adjoining on the'right the furst two columns It then
takes the form (8)

NN Y 3\\-3_\ & g -2

s %
@ Ww b7 W
AN ) N RANCY)

& BN I,

242,78 "% % o7 7 TNINN
S -/ R M NN

Draw diagonal hines [shown in (8) by the dashed lines}
and write out the products of the letters on each of the six
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diagonals. Affix the plus sign to the three products that
represent the diagonals from upper left to lower right, and
the minus sign to the other three products Writing out
these products horizontally, we get (7)

Example 1. Compute ti‘;e third-order determinant

3 -2 5
7 4 8 ®
5 —3 —4

Scheme (8) becomes scheme (8').
The determinant (9) 1s then
34 (—4)+(—2) (—8) 5+5:7+(—3) — 5:4+5 — 3:(—8)+(—3)
e(—2)7 (—4)=—48-+80—105—100—72—56 =— 30|
Using determinants, we can represent the system (5) as

d b c a d ¢ a b d
dy by ¢ N g: < ay ga g:
— 14z 01 €3 Qs Oy & =183 0 dy
= YTTa e = e (10)
ay b, c.f a, b, c.l ay by ¢
ay by & Ay by 0y ay by

Here, each of the unknowns 1s equal to a fraction' the de.
nominator is a determmnant made up of the coefficients of
the unknowns, and the numerator 1s obtained from this
determinant by replacing the coefficients of the corresponding
unknown by the constant terms

Example 2. Solve the system of equations

3x—2y+5z=7,
Tx+4y—82=3,
B3y 4z =— 13

The common denominator of the formulas (10) was computed
1n the example, 1t 18 —301. The numerator of the first of
the formulas in (10) 1s obtained from (9) by replacing the
first column by the column of constant terms 1t looks like
Jthis
7 —2 5§
3 4 -8
—12 -3 —4
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Computing it by (8) we get —301 Thus, we have x=—_‘_—§g-:=1

(cf. the example on page 168). In the same way we find
903 -602
y=cpr=3% =ogpr=2?

The system of equations (5) has a unique solution if the
determinant made up of the coefficients of the unknowns is
not equal to zero Then formulas (10), with this determinant
1n the denorminator, yield the solution of system (5) If the
determinant made up of coeffictents 1s zero, then formulas
(10) become useless for the purpose of computation In this
case system (5) either has an infimty of solutions or none
at all. There are an infinity of solutions if not only the
determinant in the demominators but also the determinants
1 the numerators of formulas (10) vanish, 1t 1s important
to note that if the determinant in the denominators and one
of the determinants in the numerators are zero, then the
other two determinants in the numerators must be zero. The
‘existence of an infinity of soluttons 1s due to the fact that
one of the three equations (5) is a consequence of the other
two [or even each of two of the equations (5) 1s a conse-
quence of the third], so that actually we have not three
but only two equations in three unknowns (or even one
equation)

Example 3. In the system of equations

2—5y+z=—2
4x-3y—6z=1
2x+2ly—162=8

the determinant of coefficients 1s

)]

2 -5 1
4 38 —6 |=0
2 21 —15

[see scheme gs)] Taking one of the determinants 1n the nu.
merators of formulas (10), say the determinant

=2 56 1
I 3 —6
8 21 —I5

which 1s 1 the first one of (10) we find that 1t too is zero
The other two determinants 1n the second and third formulas
of (10) need not be computed since they are certainly zero.
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The system (11} has an mfinite number of solutions, one of
its equations (any one) 1s a consequence of the other two
For example, 1f we multiply the second equation by 2 and
the first by —3 and combune the two equations, we get the
third one

The system (5) has no solutions at all 1f the determinant
in the denominators of formulas (10) is zero but not one of
the determinants in the numerators 1s zero Here, 1t 1s suf-
fictent to ascertain that one of the numerators is nonzero,
then the other two will definitely be different from zero. The
absence of solutions 15 due to the fact that one of the equa-
tions contradicts the other two (or even each one separately).

Example 4. Take the system of equations

2 —bytz=—2
4x+3y—62=1 }
2x+2ly—152=3

which differs from the system (11) solely in the value of the
constant term in the last equation The determinant of the
coefficients therefore remains the same equal to zero. Ho-
wever, the determinants 1n the numerators will be different.
For instance, the numerator of the first of the formulas
of (10) will be

12

-2 -5 1
1 3 —6 |=—135
3 21 ~15

It is not zero The other two numerators are defitutely not
zero The system (12) has no solutions It is inconsistent
because the first two equations yield 2x4-21y—152=8 as a
consequence (see Example 3); g'et the third equation of (12)
has the form 2x4-21y—152=3. Thus one and the same ex-
pression 18 equal to both 3 and 8, which is impossible.

89. Laws of Exponents
I The power of a product of two or more factors is equal
to the product of the same power of each of the separate
factors:
(abe. .. yP=anb"ch...

Example 1. (7:2-10)3=72 2%.107==49.4.100 = 19,600.
Example 2. (x*—a*)3=[(x+a) (x—a)]*=(x+a)* (x—a)?
(cf. Sec. 72, Item 3).
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Of more practical utility is the reverse transformation-
arbrcr, | =(abc .

where the product of the same powers of several quantities
1s equal to the same power of the product of the quantities,

Example 3. 43¢(-Z->“ (-})“:(4 _Z_ —5.):‘:23:8
Exampleﬁ 4. (a4-6)? (a®—ab4-bY=[(a+-b) (a®—ab-+ b2
= (a3 b*
(cf Sec. 72, Item 6)
2. The power of a quottent (or of a fraction) 1s equal to

the quotient obtained by dividing the same power of the
dividend by the same power of the divisor.

a\rn__at
b T

Example 5. (-?-)‘ =§~:=l§

3 ON
6+ b6\3_ (at+b)t
Example 6. (a—:—b) =
u
The wnverse transformation s %;;:(%)".
751 (758
Example 7. (2?:). T ,.=:s;__27
qt— at—
Example 8. arh =(_._-a+b ) = (a—b)3

(ef Sec. 72, Item 3)
. When multiplying powers having the same base, add
the exponents (¢f Sec 70)
aman =gm+n
Example 8, 23.25 234521128
Example 10. (a—4c+ x)? (g—4c-+ %) = (a—4c+ x).
4. In dividing powers having the same base, subtract the

exponent of the divisor from the exponent of the dividend
(cf See. 70)

tad
a4z —gm-n
an

Example 11, 125,123=120-3=|23= (44
Example 12. (x—y)? (x=—y)2=x—y.

Y
5. In finding a power of a power, multiply the exponents:
@™\ == gD

Example 13, (@2 =20=64 o
Example 14, (Eg_)c___(al)c ("’)‘:a_b_i_.

rg g
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90. Operations Involving Radicals

In the formulas given below, the symbol ¥~ denotes the
absolute value of the root

1 The value of a root remains unchanged if ifs index 1s
tncreased n times and the radicand 1s raised to the nth power.

Vi
Example 1. f/z?:‘*;”/?z:;ﬁ/&

2 The value of the root remains unchanged if its index
1s reduced n times and the nth root 1s taken of the radicand

at the same time.
V" Ve
6,5 63 /357 -
Example 2. 8= ]/-/8=V2

Note. This property also holds true when the numherL”"

1s not 1integral, both properties are also valid when n 1s frac-
tional But to see this we first have to extend the concept
of a power and a root by introducing fractional exponents
(see Sec 125)

.3 The root of a product of severai factors 1s equal to the
product of the roots (of the same index) of these factors:

"’Vabc R =”IVE’VF'VE'.
Example 3. 3/ @0 =}/3 Y/ B =a}/ P
The last transformation 1s based on Property 2.
Example, 4. V8=V 16 3=VT6 V3=4 V3

Conversely, the product of roots of the same index is equal
to tae root {of that index) of the product of the radicands.

Yal/ by e, = ab ..
Example 5. V¥ Vab? =V a%bd =a%?

4 The root of a quotient 1s equal to the quotient obtai-
ned by dividing the root of the dividend by the root of the



170

divisor (the indices of the roots are all assumed to be the
same) _ _
ab= 'il/a '{‘/b
Conversely '{’/5 1/17:'{'/5‘3

Example 6. 3/97 4= VT Y T=3 Y1

5 To raise a root to a power, raise the radicand to that

power
(Vay=y&
Conversely, to extract the root of a power, raise the root
of the base to that power

YE= G
Example 7. (f/—d_ﬁ))z = 31/5‘57——— W:a‘;’/m
Example 8. ¥ 27=V 3 =(V3Ip=(V3): Vi=3Y3

6. Ratjonalizing the denominator or numerator of a frac-
tion. Computation of fractional expressions tnvolving radi-
cals 1s often simplified by what 15 termed “rationalizing”
the numerator or denominator. This process signifies elimi-
nating the radicals in the numerator or denominator,

Example 9. Let it be required to compute 1-7-7:-:{—8_—
to 001 If the operations are carried out in the indicated
order, we have (1) V7~ 2646, (2) VB ~ 2499, (3) 2646
~ 2449=0 197, (4) 7 :97 =~ 510 Four operations were re.

quired to obtain the answer; what 1s more, to obtain digits
correct to hunredths required computing the roots to
thousandths, otherwise we would have only two significant

digits 1n the denominator of the fraction L and sowe
could not obtain three correct significant digits (see Sec. 56)
But 1l we first multiply the numerator and denominator
of the fraction by ¥ 74 V6, we get
1 N V7 ___l'7+1’6-

VisVe (3 TE=(Voy 1

~2

32
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The compulation now requires only three operations, and
the root need only be evaluated to hundredths

(1) VTn265 (2 V=245 3) Vi+VB6x510
Here are some typical illustrations
VT YIVE _VE

1 e T e =
Example 10 Ve = VRT3 5
Va+VE (Va+VE)? a+2 Vab+b
E: le 11 — T e e
xample B o Ve a0 i) ab

In these examples, we rationalized the denominator In
the two following examples we rationalize the numerator

Example 12 TSV e

VII-VE1 _ VID-VIG

1
Example 13. = — = ——
P 3 3(V35+V31) 3 (V354+V39)

The transformation in Example 12 is clearly unsuitable
for computational purposes because evaluating the expression
Ve requires division by a multidigit number, whereas the
computation of -Vsﬁ (see Example 10) requires division by

a whole number But the transformation in Example 13 15
useful in that 1t permits computing the roots V'35 and V34
to as mary places as required 1 the answer, whereas in
the original expression we would have had to extract the
roots to a larger number of places (see Example 9) Thus,
the general school practice of rationalizing the denominator
every single time 1s a harmful formalistic tradition,

91. Irrational Numbers

The range of whole and fractional numbers 1s more than
sufficient for purposes of mensuration (see Sec 45) It 1s
not, however, sufficient for the theory of mensuration

For example, let it be required to determine exactly the
length of the diagonal AC in the square ABCD (Fig 1),
the side of which is | metre long The area of the square
ACEF constructed on the diagonal is equal to twice the



arca of ABCD (the tnangle ACB iscontamed twiee 1n ABCD
and four tumes 1n ACLF) Therdore f x 15 the desired
length of AC, then x*—2 However, no
whole number and no fraction can satisfy
this equation
We can do one of two things either
give up atiempting to express cxactly
lengths by numbers or introduce new
numbers 0 addition to the whole and
fractional numbers  After a long period
of struggle, the latter point of view
prevated
These new numbers, which represent
the lengths of line segments that are
incommensurable with the umt length (that 1s to say, hine
segments that cannot be expressed hy any whole or frac-
tional number) are called irrational numbers* In cont-
rast to irrational numbers, whole numbers (integers) and
fractions were called rational Alter the introduction of
negative numbers (this was later, see Sec 686), they too
were split into rational and irrational

Every rational number can be represented in the form % s

where m and n are integers (positive or negative) Irrational
numbers cannot be exactly represented n this form How.
ever, every irrational number can be replaced approximately,

to any degree of accuracy, by a rational number -:l"-. Tor

instance, 1t 1s possible to find a decimal fraction (pure or
mixed) which differs from a given irrational number by an
arbitrarily small number

The numbers ¥'2, V5, VZH— V2, 1/ V—S"-}- V7

and many other expressions involving rational numbers
under the radical’sign are irrational These irrational num-
bers are said to be expressed in terms of radicals

They do not however exhaust the range of irrational
numbers Up to the end of the I8th century, mathematicians
were convinced that the root of any algebraic equation with

* The term “irrational” literally means “having no ratio” Orl%l-
nally, it did not refer to an ifrational number but to quantities
whose ratio Is now expressed by an trrational number Sag’. the ratio
of__l_he diagonal of a square to its side 1s now given by the number
VT Prior to the advent of Irrational numbers, it was customary to
say that the diagonals of a square cannot be related to 1ts side
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rational coefficients could be expressed mn terms of radicals
if the root 1s mot rational, later i1t was proved that this s
true only for equations up to the fourth degree inclusive
(see Sec” 66) As a rule, the irrational roots of equations
of fifth and higher degree cannot be expressed in terms of
radicals Numbers which are the rootsof algebraic equations
with integral coefficients are called algebraic numbers; only
i exceptional cases are algebraic numbers expressible by
radicals, and still rarer are the cases when they are rational.

Algebraic numbers still do not exhaust the range of 1rra-
tional numbers Thus, for instance, the well-known numberz
of geometr%! (see Sec 152) 1s 1rrational, but it cannot be
the root of any algebraic equation with integral coefficients
The same gloes for the number e (see Sec. 128) which 1s not
algebratc In other words, pt (n) and e are not algebraic
numbers

An irratronal number which cannot be the root of any
algebraic equation with integral coefficients 1s called a frans-
cendental number

Up to 1929, only a few numbers had been proved to be
transcendental, the transcendence of the number e was pro-
ved 1n 1871 by the French mathematician Hermite In 1882
the German mathematician Lindemann proved the transcen-
dence of m Academician A. A. Markov (1856—1922) proved
the transcendence of e and n by a new method In 1913
D D Mordukhai-Boltovskor (1877—1952) pointed out a num-
ber of new transcendental numbers It was stil] not known,

however, whether such “ordinary” numbers as Svi‘ V 32
were transcendental or not The Soviet mathematicians
A O Gelfond and R O Kuzmin (1891—1949) proved in
1929 and 1930 that all numbers of the form uV " where @
1s an algebraic number not equal to zero or umty and n
18 an integer, are transcendental The numbers3¥ 2 V'3V 2,
etc, are precisely of this form In 1934 Gelfond completed
these studies He proved the transcendence of all numbers

of the form a? where « and B are arbitrary algebraic num-
bers (provided that o 1s neither 0 mor 1 and B is irrational)

_ p)
For example, the number (V 5) /_ 15 transcendental.

From the transcendence of the numbers of there readil
follows the transcendence of the decimal logarithms of afl
integers (except, of course, 1, 10, 100, 1000, etc)
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92, Quadratic Equations. Imaginary
and Complex Numbers

An algebraic equation of the second degree 1s called
a quadrafic equation The most genetal form of a quadratic
equation 1n one unknown s

ax2+by+c=0

where a, b, ¢ are given numbers or literal expressions in.
volving known quantities (note that the coefficient a cannot
be zero for otherwise the equation would not be quadratic,
but only of degree one) Dividing both members of the
equation by a, we get an equation ot the form

prtg=0 (p =2 4= ‘7)

A quadratic equation of this kind 15 called reduced, the
equation ax®+4bx-c=0 (where a # 1) 1s called unredyced
If one of the quantities &, ¢ or both are zero, then the
quadratic equation 15 termed tncomplete, 1f both b and ¢
are nonzero, the quadratic equation 1s called complete

Examples

3x?48x—5=0, complete unreduced quadratic equation
3x%~—~5=0, incomplete unreduced quadraticequation
x2-—agx=0; 1ncomplete reduced quadratic equation
x2—-12x+7==0, complete reduced quadratic equation

An incomplete quadratic equation of the form
x*=m (m known)

is the simplest case of a quadratic equation and a very im-
portant case too, since the solution of every quadratic re-
duces to this form The solution of this equation 1s

=Vm

Three cases are possible

(1) f m=0, then x=0

(2) 1f m 15 a positive number, then its square root ¥'m
can have two values one positive and one negative Their
absolute values are the same For instance, the equation
x=9 1s satisfied by the value x=-+3 and x=-—3 In
other words, x hag two values: -3 and —3 This 1s frequ-
ently expressed by the double (plus-and-minus) sign 1n front
of the' radical* x==+) 9. This notation means that the
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expresston ¥ 9 denotes the general absolute value of two
roots; 1n our case, the number 3 The (}luanhty Vm may
be irrational (see Sec 9!) Note too that the number m
ttsell may be an trrational number. For instance, let it be
required to solve the equation

xl=x

(geometrically, this means finding the length of a side of
a square equal to the area of a circle of radius 1) Its root
s x=7 7 See Sec 58 on the exiraction of square roots
of numbers

(3) If m 15 a negative number, then the equation s*=m
(say, x?=-—9) cannot have any positive or negative root.
this is obvious since either a positive or a negative number,
when squared, yields a positive number We can thus say
that the equation x2=—9 has no solution, that 1s, the
number ¥ —9 does not exist

Prior to the introduction of negative numbers we would
have been equally justified 1n saying that the equation
2x+6=4 has no solutions But after the introduction of
negative numbers this equation became solvable. In the
same way, the equation x3=-—9which does not have any
solutions tn the set of the positive and negative numbers becom-
es solvable if we introduce new quantitres the square roots
of negative numbers These quantities were first introduced
by the Italian mathematician Cardano in the middle of the
16th century 11 connection with the solution of cubic equ-
ations (see Sec 66) Cardano called these numbers “sophistic”,
Descartes (in the 1630’s) suggested the name “imaginary
numbers” which, most unfortunately, has persisted to this
day In contradistinction to the imaginary numbers, the
earlier known numbers (positive dnd negatxve, including the
irrational numbers) came to be called real numbers. The
sum of a real number and an imaginary number constitutes
a so-called complex number. This term was tntroduced by
Gauss 1 1831 For instance, 24 ¥ =3 1s a complex number,
Complex numbers too are sometimes called 1maginary num-
b;ers Complex numbers are explained 1n detail 1n l'Syecs. 34
et seq.

Having at our disposal imaginary numbers, we can say
that the incomplete quadratic equation x*=m always has
two roots If m > 0, these roots are real, they have the
same absolute value but differ 1n sign. If m=0, both are
zero; if m < 0, they are imaginary,



176
93, Solving a Quadratic Equation

To find the solution of the reduced quadratic
w34 prtg=0
1t suffices to transpose the constant term to the right mem.
P2
ber of the equation and to add T> to both members of

the equation Then the left member becomes a perfect square
and we get the equivalent equation

P\ p\2
(+2)'=(2)"~
It differs from the simplest equation s*=m (see Sec 9)
m aspect alone x -+ £ standsin place of ¥ and (%)z~q
in place of m We find

s+ 5=x) (37—

x=—2 1 (%)“——q )

This formula shows that every quadratic equation has
two roots These roots may be imaginary if —g— tc<q. It
may also happen that both roots of the quadratic are the
same, this occurs when %)ﬁr-q

Formula (1) 1s a particularly convenient form to use
when p 1s an even integer

Example 1 x%—[2y—28=0

Here p=—12, g= —28,

x=64 VELB=6+ V6i=6--8,

X =6+8=14, .

Xy =6 B 2

Example 2. x®+ 12¢-10=0

r=-—84 y3H—-10=—64 2,
=64 VB n—09, xgo= b Y6 x~mell |

Whence




Example 3, x3— 2mx-+mP—n®=0.

g=m g Vil (m—ml=m4 Val=mtn,

Xy =M A, K== m—2

Note. In Example 2, both roots are negative real num-
bers, but irrational (Sec 91), The square roots obtained
solving quadratics mag be extracted by means of computa-
tions (see Sec. 58) or by using tables Unfortunately, mdst
problem books give exercises in quadratic equations that
are specially constructed so that the roots are extracied
exactly, In practical situations, this occurs very rarely For
this reason we stronglly advise the student to rid himself of
tt’hekfezlr of irrational solutlons instilled by such problem
ooks

When p is not an even integer, it is preferable, when
solving reduced quadratics, to use the more general formula
(3) given below and assume a=1 (see Example 5 below).

The unreduced complete quadratic

axd by A4-c=0 @

may be solved by the formula

~b=Vi-da
pem o T @

It 1s abtained from (1) by dividing both members of the
unreduced equation (2) by a,
Example 4, 352—7x -4 =0, (a==3, b=—7, c=4).

T+ VTSTE A 74VT

23 6 !
UL R S ot Y
T T hET S

Example 5, x2-4~7x-+12:-0, (@ 1, 0 =7, ¢=12)

=1 Vii-q2
=l

xl~=-3, X, =—4
Example 6. 060x%4-%2x—84 .0
~32{ V{3 5)2=qd 0 LD (-8 4)

xRy

2000 '
-32:185 « R
R T N LIy wym =g = w--T2
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In Example 6, the coefficients are assumed to be approxi.
mate numbers, as 1s evident from the fact that we write
0 60x2 (and not 0 6x%) Therefore, 1t 1s advisable to perform
the operations by the short-cut method given mn Secs 47
and 48 At any rate, note particularly that by the rules of
the indicated sections, only two exact significant digits can
be obtaimed Note that these results are correct to 01, byt
this does not mean that by putting them 1n the left mem.
ber of the equation we get a number equal to zero to
within 01 On the contrary, substituting into the left mem-
ber, say, the value x=19, we get

060 1934+32-19—84m—02

But 1f the value of x 1s increased by 01 and we take
x=20, then we have

060-20243220—-84=04

Thus, for x=19 the left member was negative, for x=2¢
1t 1s positive This means that it i1s equal ta zero for some
value of x lying between 19 and 20 Consequently, taking
x=19 we err E not more than 01 This 1s what we mean
when we say t{:at the root s equal to 19 to within an
accuracy of 0.1

If & 15 an even number, 1t is best to give the general

formula tn the form
b TR
-5 *J/(‘z") -

a

x=

Example 7. 3x2—14x—80=0

_14VT4380 _ 7+VIEY 7417
==
{1
X, =8, fy= s

This formula is also convenient when the coefficients a,
b, ¢, are literal expresstons

Example 8 ax?—2 (a+b) x4 46=0.

x=“+b": Viatb)*—dab__a+b+ Vai—2ab+ b _a+bila—b)
a P = a )

0n=2 rn=2L



94, Properties of the Rools
of a Quadratic Equation

The formula
_ ~bs Vb da
- 2a
mndicates that 1n the solution of the quadratic equation
ax®+-bx+c=0 three cases are possible
(1) b®—4ac > 0, two roots are real and distinct,

(2) b2—4ac=0, two roots are real and equal (both are

equal to -——2—5; ,

(3) b®*—4ac < 0, both roots are 1maginary

The expression b2—4ac which permits us to diseriminate
between the three cases 1s termed the drscriminant

The signs of the roots, when' the roots are real (that 1s,
when b2—4ac>>0) ate best judged on the basis of the fal-
lowing rule of roots

The sum of the roots of the reduced quadratic equation

¥t prg=0

15 equal to the coefficient of the unknown to the first power
with sign reversed, that s,

Htty=—p
The product of the roots 1s equal to the constant term, 1e,
Xy =¢

95, Factoring a Trinomial
of the Type ax2+bx-+c

The quadratic trinomial ax?4-bx+-c may be decomposed
into first-degree (factors 1n the following manner. solve the
quadratic equation ax®+bx4-c=0 If x; and x, are roots of
this equation, then ax®--bx+c=a(x—x) (x—x,)

Example 1 Factor the trinomial 2x2--13x—24 1nto
first-degree factors Solve the equation 2x24 13x—24==0

We find the roots x,=-g—, xy=—~8 Consequently
2484 l3x—-24=2(x—-~37) (£ 4-8) = (20—3) (- §)

Example 2. Factor x*+a?, the equation x*+a*=0 has
mmaginary rootst xy;=V¥ —¢? x=—V —a? and so it s
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impossible to factor x3-a® Into real factors of the frst deg.
ree. It can be factored Into imaginary factors, however:

Poat= (e V=Y (s — V =0 =(x+al) (t~a))
(t denotes the Imaglnary number ¥ 1)

86, Higher-Dogres Equations Solvable
by Means of Quadratios

Some algebraic equations of higher degree can be solved
by reducing them to quadratic equations. The most impor
tant cases are the following.

1. The left member of an equation can somelimes readi.
ly be decomposed Into factors one of which is a palynomial
not higher tgan the second degree. Then we solve the resul
ting equations by equating each factor to zero separately,
The roots thus found will be the roots of the original equa.
tion.

Example 1, x4+ 5x34-618=0.

The polynomial x$+5x8464% can readily be factored
Into £8 tmdy (K3 bx+6). We solve the equation x3==0 to
get two equal roots x =xy=0. Solve the equation x
+b5x+68=0. Denotlnﬁ fts roots by x; and x,, we have
%y= —2, x,=—3. The roots of the original equation are
fy = Xm0, Xye= —2, xye= 3.

Example 2. Solve the equation ¥3==8.

Rewriting it as x3—8=0, we factor the left member:
a3 B (x—2) (x1-264-4). The equation x—2=0 yields
x;=2, the equation 4%+2¢-44=0 ylelds x;=—1-+} 3,
¥y=—1—V —3. Thus, the equation x¥==8 has one real

root and two Imaginary roots. In other words f/& has,
besides the obvious real value of 2, two imaginary roots
fsee Sec. 111, Example 3).

2. If the equation is of the form ax¥4-bxn4-c=0, It
can be reduced to a quadratic by introducing a new un-
known thus: x#=z,

Example 3. x¢—[3x34- 36 =0. Rewriting the equation as
¥1)8—13x94-36=0 we introduce the new unknown %=z,

he equation then becomes 29—13z4-36=0. Its roots are z, =9,
23=4. Now solve the equations x¥:=9 and x%=4. The first
has the roots x,=3, £, =-3, the second, the roots xy=2,
%y= —2. The roots of the given equation are: 3, ~3, 2, —2.
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1L 18 thus SJ()&\IML‘ {o sutve any equation of the form
art- b | e~ O, which 1s called a biguadratic equalion,
Example 4, %%~~~ 16x% |-64 =0, Representing the equation
as (x')2 | 16¢? 64 —~C, Introduce a new unknown: x*==z,
This yields {he equalion z8%—16z +-64=-0, which has two
equal rools =22, --8 Solve x%=:8 to got (sce Example 2)
9, x,- —1| V=3, £y-: —1—V =3 The other three

Xp o &y Xy
roots In this case are (since zy==2,) cqual to these three.

97, A System of Quadratlo Equations
in Twa Unknowns

The most general form of a sccond-degree equation in
two unknowns is

ax3 by -+ cy®-f-dx ey - =0

where a, b, ¢, d, e [ arc given nurnbers or cxpressions
involving known quaniities One equation of the second
degree 1 two unknowns has an infimty of solutions (see
Sec. 85)

A system of two equations in two unknowns, one equa-
fion being a quadratic cquation and the other a f]rst-degrc}:
equation, may be svlved by the substitution method deseri-
bed in Sec. 86 The cxpression of one unknown in terms of
the other 15 found from the [rst-degree equation Substitut-
ing this expression mto the second-degree equation, we got
an cquation in one unknown In the general case, it 15 a
quadratic equation (see Example 1), However, it may hap-
pen that the second-degree terms cancel out, we then have
a Nist-degree equation (sce Example 2)

Example 1. x8—3xy - 4y8—6x+ 2 =0, x—2y=3,

From the sccond equation we find x=38+42y Substitut-
ing this expression Into the first equation, we get

(B+2)—3@3+2) y+ 4*—6(3+2)+ =0
Solving this equation; we find
9+ 12y + dyd— 9y — 643 4 4y~ 18— 12y + 2y =0,
28 —Ty—9=0,
y;w:‘ﬁ‘:ﬁ

U1='3—v p=—1
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Insert the values thus found yl=%, go=—1 1nto the
expression x=3--2y to get x, =12, x,=1
Example 2 x*—y2=1, x4y=2

From the second equation we find y=2—x Putting this
expression 1nto the first cquation, we get x®—(2—x)?x],
After collecting terms, second-degree terms cancel out, and

we have — 444x=1, whence x==—'3— Putting  this valye

3
into the expression y=2—x, we find y=--

A system of two quadratic equations 1n iwo unknowns
can be solved thus 1f one of the equations does not contain
the term ax® (or the term cy?), then use the substitution
method expressing x (or y) of thuis equation in terms of y
(or x), but if both equations involve terms hike ax? and cy?,
then first apply the method of addition or subtraction
(Sec 85) so as to obtain an equation without ax2 or cy?
Then apply the substitution method After the elimination
process We have an equation 1n one unknown (generally
speaking, of the fourth degree) Only in exceptional cases
ocs 1t reduce to a quadralic equation, but these cases are
encountered rather frequently in the solution of geometric
problems '

Example 3.

Bfxy+ 22 =74, 240420y +yt=T73
Both e?uahons have terms involving x4 and terms involving

y* So first use the addition-or-subtraction method to obtamn
an equation without, say, y?

2P H2ay4y2=T3 2 | _ 4xt4-4xy+27=146
X fxy 42y =74 XBF xy FUr=—74

3x3+ 3xy =72
From this equation we find the expression of y in terms of x
24 xt
y=_;_"_

Then we substitute this expression into one of the given
equations, say the first, to get

24-x? (28—-x1
B»4x T+2 — =74
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Simplifications yreld
A0 24x2— xd 4 1152 —96x2+ 20 =Tda?,
2x4—146x2+4 1152=0,
14— 73524576 =0
We have a biquadratic equation (see Sec 96, Example 3).

Putting x*==z we reduce it to the equation 22—73z 4576 =0
which yields

73 & V73° 4 576 __ 73+ V3095 73565
2 - 2 '

2
2,=064, 2,=9
The first solution gives us ¥, =8, ¥,=—38, the second,
x3=3, x,=—3 Putting the values x;, x,, x5, x, 1nto the

24 -x?
X

y1=—5 y=+5 y=+5 y=~5

In solving systems of second-degree equations artificial
techniques often yield faster and more elegant results

expression y= , we get the corresponding values of 4.

98, Complex Numbers

The development of algebra (Sec. 66) called for numbers
of a new kind besides the familiar positive and negative
numbers They recetved the name complex numbers.

A complex number has the form a--b:, where a and &
are real numbers and 1 1s a new kind of number called the
imagnary uni. *Imaginary” numbers (see Sec 92) constitute
a spectal subset of the complex numbers (when a=0) On
the other hand, the real numbers (ppsitive and negative)
also constitute a special subset of the complex numbers (when

=0,

Let us call the real number a the abscissa of the complex
number a--bi, the real number b, the ordinate of the comp-,
lex number a+-& The basic property of the number ¢ 1s
that the product 11 1s equal to —1, that is

== 03}
For a long time, no physical quantities could be found

that obeyed the same rules as those involving complex num-
bers, say Rule (1) Whence the name “imaginary umt™,
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“1magtnary number”, etc, At present we know many such
physical quantities, and complex numbers are extefisively
employed not only in mathematics but also in physics and
engineering (theory of elasticity, electrical engineering, aero.
dynamics, ete.}

Below (Sec 104) a geometric tnterpretation of complex
numbers 15 given, but first the rules for operating with them
are considered (Secs. 100-103), Here, the question of the
geometric or physical meaning of the number { is not cons.
dered because it differs in various spheres of science.

The rule for each operation involving complex numbery
15 derived from the definition of the operation, The defini.
tions of the operations mvo]vln% complex numbers were not
devised arbitrarily but were established to ensure consistency
with the rules for operating with real numbers (cf. Sec. 34),
The point is that complex numbers must not be considered
separately from the real numbers

99. Basic Conventions Concerning
Complex Numbers

1. The real number o can also be written as a+4-0. {or

a—0-1).
Examples. The notation 3-+0./ means the same as 3,
The notation —2--0++ means -2, The notation 3—';2--1-04

3VZ
1s equivalent to ——.

Note. We have similar instances in ordinary arithmetic
where the fraction —?— denotes the same thing as 5 The no-
tation 002 is simply 2, etc

2. A complex number of the form 04-bi is called a pure
imaginary. The notation i is the same as O-+bi

3. Two complex numbers a--bi, o’+b'i are conside
red equal if they have equal abscissas and ordinates, that
15, f a==a’, b=b'. Otherwise these complex numbers are
not equal. This definition is suggested by the following rea-
sunm% If, say, we could have an equation like 2-4-b5{ =842,
then by the rules of algebra we-would get {=2, whereas {
cannot be a real number

Note, We have not yet defined the addition of complex
numbers, and so, strictly speakm%, we cannot yet assert that
the number 24-5t 1s the sum of the numbers 2 and 5i. It
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would be more correct o say that we have here 4 pair of
real numbers 2 (abscissa) and & (ordinate), these mumbers
generate o new hind of number which we agree to denole
by 245

100. Addition of Complax Numbers

Definition. The sum of the complex numbers a--bi and
a’~-b't 18 the complex number (u+4 a) 4 (b~-b')1

This defimtion 1s suggested by the rules for operating on
ordinary polynomials

Example 1. (—3-}-80) 4+ (4—81) .= | -3

Example 2. (2 0i)4- (7--0i) =940, Since (Sec 99) the
notation 2-0i means the same as 2, etc, theoperation per-
formed is in agreement with ordinary arsthmetic (2-47:==9).

Example 3, (04 2:)-4(04-51)= 0-+7:, that is to say,
(Sec 99), 2U+5i=Tt

Example 4, (=2« 3i) - (2w Bp) =2 ed

In Example 4 the sum of two complex numbers is equal
to a real number, Two complex numbers like ea--bf and
a—m are called conjugate complex numbers, The sum of the
two conjugate complex numbers 1s equal to the real num-
ber 2a.” Note that the sum of two nonconjugate complex
numbcrg can also be a real number, as witness (3-8
+ (4 Bly =7,

Note. Now that the operation of addition has been defi-
ned, we can consider the complex number g--& as the sum
of the numbers a and b1, Thus, the number 2 (which we
agreed could be written as 2+ 0:) and the number & (which,
by Sec 99, means the same as 0--51) yield a sum equal
(according to the definition) to 245

101, Subtraction of Complex Numbers

Definitlon. The difference between the complex number
a+b (minuend) and a'<4-b'L (subtrahend) 1s the complex
number (@ —a')4(b—b') 1.

Example 1. (—52{)=(3—5i)=~84-7i,

Example 2. (34 21)— (s34 2t) =601 == 6,

Example 3, (3~ 41)— (3 4i) = —8i.

Note. The subtraction of complex numbers can be defined
as an operation inverse to addition. Namely, we seek a comp.
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lex number x+y¢ (difference) such that (¢ y1)4-(a’+»"
=a+b By theyldeixmtlon of) Sec. 100, we have (@45

(x+ay (g +b)i=at-bi
By the condition for the equality of complex numbers

(Sec. 99),
x+ta'=a yt+b=b

From these equations we find t=g—a’, y=b—b'

102. Multiplication of Complex Numbers

The definition of the multiplication of complex numbers
1s devised so that (1) the numbers a+& and a’+b" can
be multiplied as algebraic_binomtals and (2) the number ¢
has the property 1*=—-1. By virtue of Requirement 1, the
product {(a--b1) (a’4-b1) must be equal to aa’+(ab’4ba');
+-6b's%, and by wirtue of Requirement 2, this expression
must equal (ea’—bb")+(ab’+ba’)i. Accordingly we have
the following definition

Definition. The product of the complex numbers a-{ b
and a’+bt 1s the complex number

(ad’ +bb") - (ab"+ba') | (0]

Note 1. The equality t*=—I was in the nature of a
tequirement prior to establishment of the rules for multipli.
cation. Now however it follows from the definition. The
point 18 that the notation i, that 1s, .1, is equivalent
(Sec. 99) to the notation (0+1-¢) (0+1.1) Here,a=n, b=,
a'=0, b'=1. We have aga’—bb'=—1, ab’+ba’ =0, so that
theJ)roduct 1s —14-0¢, that is, —I.,

Note 2, In practical situations there is no need to use
formula (1) One can multiply the given numbers as bino-
mials and then put ¥=~—I1.

Example 1. (1—21) (3+2) = 3—~6i+4+2—4¥ =36/
Ut dm=T—di.

Example 2. {3+ bt) (a— bi) =0o2+- b3,

Example 2 shows that the product of conjugate complex
fiumbers is a real posttive number. *

* But the product of two nonconjugate complex numbers can also
be a positive real number, for example (2+3t% (4-62)=26 (see
Sec 100) Now if both the sum and the product of two complex
numbers are real numbers, then these complex numbers must be
conjugate,
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103, Diviston of Complex Numbers

In accordance with the defimtion of the division of real
numbers we give the following defumition.

Defimtion, To divide a complex number a--bt (dividend)
by a complex number o'+ &'t (divisor) means to find a num-
ber x-+yt (quotient) such that, when multiplied by the divi-
sor, 1t yields the dividend

If the divisor is nonzero, then division 1s always possible
and the quotient is untque (for proof see Note 2)° A conve-
nient practical way to find the quotient 1s this

Example 1. Find the quotient of (7—41).(3+2:)

Writing the fraction ;—;;—i , multiply both terms by num-
bet 3—2:, which is the conjugate of 342: (see Sec. 102,
Example 1), to get

(T—40)(3~21) _ 13-26i

Femom =T =12
Example 1 of the preceding section 1s a check

2450 (=2+50) (=3+4]) _ -14-23

Example 2. — g =tT-tm(sv— 2 = — 056
—092
Example 3. :.5—4}2‘:""2‘ The easiest way here 1s to

divide both terms by (—2+471)
Doing as we did 1n Examples | and 2, we find the gene.
ral formuia

Y b | 8 b
(atbn) (@' o =250+ 20, o

In order to prove that the right member of (1) 1s really the
quotient, multiply it by a’4-b's to get a4-tu

Note 1. We could take formula (1) as the definition of
division (cf _the definttions 1n Secs 100 and 101).

Note 2. Formula (1) can also be derived as follows By
the definition we must have (&’ 4b"t) (x+y1)=a+b Hence
(Sec. 99) the following two equations must be satisfied:

a'x—by=a, bx+tay=b @
This system has a unique solution

__aa’+by

- ab+ba
i ot

ati bt
M2 # 2 (Sec. BT), that is, if 550,

X

y=
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It remains o consider the case a™~4-b6==0., This case
{the numbers @' and &' are reall) 1s only Possible when
a'==0 and b'=0, that is when the divisor a’-bt is 2ero,
If however the dividend a--bi Is also zero, then the quotient
Is indeterminate (sce Sec, 37, ltem 2.) But if the dividend
Is not zero, then the cguotlent does nof exlst (we say it |
equal to infinity) (cf. Sec. 37, ltem 3).

104, Complex Numbers Deplotsd
in the Plane

Real numbers may be depicted byApoints on a straight
fine, as shown in Fig. 2 where point A denotes number 4
and point B number —b5. These same numbers can also be
indicated by the line-segments OA, OB, which Indicate both
length and direction

54321012345
Fig. 2.

Every polmt M of the number line depicts some real
number (rational if the linc segment OM is commensurable
with the unit length, and irrational if it Is incommensy.
rable). Thus, there is no place for comp-
lex numbers on the number line,

But complex numbers can be depl-
cled on a “number plane”. To do tﬁis
we choose n rectangular system of coor-
dinates in the plane (see Sec. 211) with
the same scale on both axes (Fig. 3),
The complex number a-<-b: is depicted
by a pornt M, whose abscissa x (in Fig, 3,
x :0P=QM) is equal to the abscissa a
of the complex number and the ordinate y(0Q=PM) is
equal tothe ordinate b of the complex number,

Examples. In Fig, 4, point A with abscissa x=3 and
ordinate y=25 depicts the complex number 3+-5:. Point B
depicts the complex number —24-61; point C 1s the comp.
lQex é:urnbcr —6—21, point D denotes the complex number

—6:.

Real numbers (in complex form they look like this:

a+4-0i) are depicted by points on the X-axis and pure ima.
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ginary numbers (of the form 04 be), by points on the Y-axis

Examples, Point K 11 Fig 4 depucts the real number 6
(or, what s the same thing, the number 64 04, pont L
depicts the pure imaginary v
number 3 (I e, 0-f &), A
point N, the pure {magi- 1
nary —4 (e, 0—~4). The ! \
origin of the coordinates c
indicates the number 0 (which I \\
Is 0-01)

Conjugate complex num L]
bers are depicted by a pair
of points symmetric about it
the axis of abscissas (X-axis);
thus, the points C and €' in
Fig. 4 indlcate the conjugate Fig. 4.
numbers —6-—~2i and —6+2

Complex numbers can also be Indicated by line-segments
(vectors) fssuing from the point O and lermunating ot the
appropriate point of the mumber plane, Thus, the complex
number —2--6i may be described not only by the point B
(Fig. 4), but also by the vector OB The complex number
—6—2i Is denoted by the vector OC, ete.

Note. When we call some line-segment a vector we mean
that there are iwo essentinl things about the line: it has
length and it has a certein direction. Two vectors are consl-
dered the same (equal) only when they have the sume length
and the same direction.

=

E3
>

105. The Modulus and Argument
of a Complex Number

The length of the vector depicting o complex number is
called the modulus of the complex number The modulus of
any complex number not cqual to zero is a positive number,
The modulus of the complex number g -f- b
is symbolized as |a--bl | and also by the
letter r. From the drawing (Fig. B)'it is
clear that

res|at-bifs VEER 0]

The modulys of a real number coln-

cides with Its absolute value, The conju-

sate complex numbers a4 and a—bi
ave the same modulus,
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Example 1. The modulus of the complex number 345
(that 1s, lihel/length of the vector OA m Fig 4) 1s equal to
VETE=V3~58 _

Example 2 |14¢|=V T+ =V 214

Example 3. |—3+41|=5

Example 4. The modulus of the number —7 (that 15,
—740) 15 the length of the vector OM (Fig4) Thys
length 1s expressed by the positive number 7, or

=740 |= V(=DEF0=7

Example 5. The modulus of the number —4¢ (length of
vector ON, Fig_4) 1s 4

Example 6 The modulus of the number —6-—2: (length
of vector 0C, Fig 4) 1s equal to V40~v632 The mody.
lus of the number —6-+-2: (length of vector OC’, Fig 4)is
also equal to V40 Two conjugate complex numbers al-
ways have equal moduli

The angle ¢ between the axis of abscissas and the vee.
tor OM describing the complex number a--bu 1s called the

argument of the complex number g b,

4 In Fig 6, the vector OM depicts the

T complex number —3—3: The angle

1 XOM 13 the argument of this complex

7 X number

1340 Every nonzero complex number

(for the number O the argument is

1 indeterminate) has an infinite number

1 of arguments that differ by an integ-

Fig @ ral number of complete rotations

(that 1s, by 360%, where & 1s any

integer) Thus, the arguments of the complex numbers

—3—3; are all angles of the form 225°4360°%, for instance,
225° 4 360° = 585°, 225°—360° = ~ 135°

The argument @ 1s connected with the coordinates of a
complex number a--b: by the following formulas (see
Fig 5)

]

.

a

b
(1) tang=—2, (2) cosp= = )
&
@) sinp=gmes

However, none of these formulas, laken separately, permits
finding the argument from the abscissa and ordinate (see
examples)
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Example 7. Find the argument of the complex number

—3—3

By formula (2) tan cp=§—§—=1 This condition 1s satis-
fied by an angle of 45° and also by an angle of 225° But
the 45° angle 1s not the argument of the number —3—3:
(Fig 6) The correct answer 1s ¢ =225 (or — 135°, or 585°,
etc) This resuit 1s obtained 1f we note that the abscissa
and the ordinate of the given complex number are negafive
This means that point M lies 1n the third quadrant

Alternative method Use formula (3) to find cos (p-_-;—;

Formula (4) shows that sin@ 1s also nmegative Hence the
angle @ belongs to the third quadrant so that ¢==225°4360°%
Example 8 Find the argument of the complex number

—2+4-6: We find tanq::_-a—é: —3 Since the abscissa 1s me-

gative and the ordinate 1s positive, the angle ¢ lies 1n the
second quadrant Using tables we find @ Ay 180°—72° == 108°
See Fig 4 where point B depicts —2-+6:

The least (in absolute value) argument s called the prin.
cipal value of the argument Thus, for the complex num-
bers —3—3:, 2i—5;, the principal values of the argument
are —135°, --90°, —90°

The argument of a positive real number has the princi-
pal value 0°, for negative numbers, the principal value of
the argument 1s taken to be 180° (and not ~180°).

In the case of conjugate complex numbers, the principal
values of the argument have the same absolute values but
opposite signs Thus, the principal values of the argument
of the numbers —3-+3t and —3—3: are 135° and —135°

106. Trlgonometric Form of a Complex Number

Abscissa a and ordinate b of the complex number a--01
are expressed 1n terms of the modulus 7 and the argument ¢
(see Fig 5) by the formulas

a=rcosQ, b=rsng

Therefore, any complex number can be represented in the
form r (cos - sin @) where r =0

This expression 1s termed the normal frigonometric form
or, simply, the trigonometric form of a complex number.
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Example 1. Represent the complex number 4w 3010
the normal trigonometric form We have (S 105)
re VTR T3 3V2
Consequently
B3B3 3V J(eos (— 1957) | ¢ sin (~135%)
or
331 =8 V2 (cos 2257 1 sin 225°)
and so forth.
Example 2. [or ile compley number —2-46; we have
re VIS0 -V
and (Sce. 105, Example 2) p t08" }enee, the normal tri-
gonometric form of the number -2 | 6{ s
V0 (cos 108° |1 5in 1087
Example 3. The normal trigonomelric form of the num-
ber 3 is 3(¢os 0°-: 51n 0% or, n general form,
3 (cos 360°% { 1 <10 260°%)
Example 4. The normal trigonometric form of the num
ber -3 is 3(cos 180’ |-isin 180") or
3[cos (180° |- 360) | ¢ sin (180°-}- 360°k))
Example B, The normal Luigenomelrie form of the imag-
nary unit £ is cos 90°+ ¢ sin 9" ur
€08 (90° 1-360 k) | ¢ s1n (90° - 360°k)

Here r==1.

Example 8, The normal {nigonometrie form of the num-
ber ~i 15 €08 {(~—90°) {-t«in (- 00) ur

€08 (~~90°-F 360°R) | csin{—90° } 360 k)

Here r=1

In contrast to the trigonometric form, an expression like
a< b s called the algebraw or coordinate {Cartesian) form
of the complex number

Example 7. Represonl the complex number 2 [cos (—40")
+ 1 9in(—407) in olgcbrae form

Here r- 2, ¢ - 407 By formulw (3) and (1) of the
preceding section,

a=crcos@  2cos( A0) 2 0706 - 1532,
brsig 2em(- 10) 22 (- 00643) -1 280
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The algebraic form of the given number 1s (approxima-
tely) 1| 532—1 286:

Example 8. Represent in algebraic form the number
3(cos 270° 41 5tn 270°) Since cos 270°=0, sin 270°== — 1, the
given number 1s equal to —3¢

Example 9 If r (cos ¢4 rsin @) 1s one of two conjugate
complex numbers, then the other can be represented 1n the
form rcos (—@)-+ism(—@)] or in the form r(cos ¢
— 1 sin @), incidentally, the latter expression is not the nor-
mal form

107. Geometric Meanlng of Additlon and Subtraction
of Complex Numbers

Let the vectors OM and OM’ (Fig 7) depict the complex
numbers z=x-+y and 2’=x"+y"t From the point M draw
the vector MK equal to OM’ (that 1s, having the same
length and the same direction as OM’, see Sec 104, note).
Then the vector OK gives the sum
of the given complex numbers *

The vector OK thus constructed 1s
termed the geomefric sum (or, briefly,
the sum) of the vectors OM and OM’
(the name “sum” 1s due to the fact
that 1t arises by analogy with the com-
bining of velocities of moving bodies,
of forces applied to a point, and
of many other physical -quantities)

Thus, the sum of two complex numbers 1s given by the
sum of the vectors depicting the separate summands

The length of side OK of the iriangle OMK is less than
the sum and greater than the difference of the lengths OM
and MK Therefore

lzl—l2 [ <lz+2'|<|2|+|2'|

The equality s valid only when the vectors OM and OM’
have the same (F% 8) or opposxte directions (Fig 9) In
the former case, L M!+]OM |=|0K]|, that 1s [z+2']|
=|z|412'| In the latter case |z+42' |=|jz|~|2'|

* Indeed, the triangles OM’L and MKN are equal Hence,
x=0L=MN=PR, y'=LM'=NK_ Consequently, the absclssa OR=0P
+PR=x+x', and the ordinate RK=y+y"
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Example I. Let z=4+31, 2 =5+12 Then
jzl= VETOI=5, |2 |=VIFIZ=13, 24+2=0+15,
J242 | =V EF15 =306
We have 13—5 < V306 < 1345, 8 < V306 < 18.

Fig 8 Fig 9

Example 2. Let 2=4+3;, 2'=8+61
These complex numbers have the same argument (36°52'),
the corresponding vectors are 1n the same direction.

Here
|z|=5, |2 |=10, 242" =129,
242 |=VIEFB=15

We have 10—5 < 15=10+45

Example 3. Let 2=8—6y, 2'= —12+ 9
These complex numbers are depicted by vectors of opposite
direction (their arguments are equal to 323°08’ and 143°08’)
Here

|2]=10, |2} =15, 242 = —4+31, |z42 | =5

We have
16—10==5 < 15410

The sum of three or more complex numbers can also be
represented as the sum of vectors (OM, OM’, OM" in
Fig 10) depicting the separate summands, that 1s to say,
the vector OK which completes the polygonal line OMSK
{the vector MS s equal to the vector OM’, the vector SK
equals the vector OM"}) The summands may be taken in
any order, the polygonal lines will be different but their
extrermties will comncide Since 0K 13 not longer than the
polygonal line OMSK, 1t follows that

Lotz 42 <zl +]2 |+ 2]

The equality 1s valid only when all summands have the
same direction
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The difference between the complex numbers a+ b and
a'-+b'% is equal to the sum of the numbers a+b: and
—a'—0b"t The latter summand has the same modulus as

Fig. 10 Fig 11

a’+4-b't but 1s opposite 10 direction Therefore, the difference
between two complex numbers represented by the vectors OM
and OM’ (Fig 11) 1s depicted as the sum of the vectors OM
and OM” (as the vector OT)

108. Geometric Meaning of Multiplication
of Complex Numbers

Let two complex numbers z and z' be depicted by the
vectors OM and OM’ (Fig 12) Write down the factors in
trigonometric form and compute the product

22’ =r (cos @481 @) ' (cos @'~ zsm @)
= rr' [(cos g cos ¢' —sin @ sin @) -1 (s1n @ cos @’
+ cos @ sin ')}
That 1s (Sec. i94)
zz'==rr' [cos (p+ ¢') +isin (9 + ¢')] )]

The modulus of the product (it 1s depicted by the vec-
tor OL) 1s rr', and the argunfent of the product s equal
to @+ @' In other words, to multiply iwo complex numbers,
multiply therr modult and add their arguments

This rule holds true for any number of factors

Example 1. Take the complex numbers depicted by the

vectors OM and OM' 1in Fig 12 Their moduli are |OM |=—§-

and |OM'|=2, and the arguments are £ XOM =20° and
£ XOM'=30°. The modulus of the product depicted by the
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vector OL 1s »g—~2=3, the argument of the product (angle
XOL) 15 20°430°=50° We get

—32- (cos 20° -1 s1n 20°) 2 {cos 30° ¢ 511 30°)

=3 (cos 50°+ ¢ sin 50%
Example 2.

4V 2 (cos 45° +1s1n 45")-1—/52(::05 135° 41 s1n 135°%)
=4 (cos 180° -t s 180°) = —4 (Fig 13)

The same factors 1n algebraic form' are 4-+4 and
---;—+%;. Multiplytng them together, we again get —4¢

¥

v

0l

Flg 12 Fig. 18

Example 3. Multiply together 2 (cos 150°+1sin 150°),
3 [cos (—160°) 1 sin (—160°)] and, 05 (cos 10°-zsin 10°)
The modulus of the product 2.3.d5=3 The argument of
the product 150°—160°4-10°=0° The product 1s

3(cos 0°+ s 0°) =3

Example 4.  r(cos @t sin Q) r[cos (—@) -t sin{—q)]
=r‘(cosO"+zsm0°}=r?- ol @
The product of two conjugate complex numbers s a real
number equal to the square of their common modulus
Example 5. % [cos (—30°)+1 sin (—20°)]-2 [cos {—30°)
(-f— 1 510 (—30°)] =3 [cos (—50°) 4 sin (—50°)]
.omparing this with Example 1, we see that by replacing
the factors with conjugate numbers the product 1s replaced
with its conjugate number This property 1s general and can
be extended to any number of factors,
Note 1 The rules for multiplying real numbers are a spe-
cial case of the above rule Thus, i multiplying the num-
bers —2 and —3 their arguments (180° and 180°) combine
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to form 360° so that the product 1s the posttive number 6
[that 15, 6 (cos 360°+ 1 sin 360°)]

Note 2. When a complex number r (cos p-+isin q?‘ is
multiplied by the imaginary unit ¢ (the modulus of which
is 1 and the argument 4-80°), the
modulus of the product remains equal
to r The argument however 1s ncrea-
sed by 90°, which means the vector of
the factor 1s rotated through --90° with-
out changing s length. In particular,
multiplication of 1 {the vector 04 1n
Fig 14) by 1 ts represented by a rota-
tion of the vector OA through 90° Fig, 14.
to position OB, while multiplication
of 1t by 1 18 regz‘esented by a rotation of OB through 90° to
the position . But the vector OC 15 depicted as —I1.
Therefore, 12=—1 In geometric representation, the num.
ber : 1s no more “imaginary” than the number —1.

109, Geometric Meaning of Division
of Complex numbers

Division Is the inverse of multiplication. Therefore, (see
Sec 108), when dividing complex numbers, divide therr mo-
duli (the modulus of the dividend by the modulus of the
divisor) and subtract the arguments (the argument of the
divisor from the argument of the dividend), or

r{cos p~+1 sin @).r’ (cos @' 41 sin ¢')
=+ [cos (p— ")+ 15 (p—g')] M
Example 1. 2(cos 30°+:sim 30°) 6 (cos 46°-4-1 sin 45°)
=+ [cos (—16%) - ts1n (—~159)]
Example 2. —4 4 1/ 2 (cos 45° 1 sin 45°) = 4 (cos 180°
+ ¢ 5tn 180°) 4 V2 (cos 45°+ ¢ sin 45°) = T (cos 135°

+ 1511 135°) Cf Example 2 of the preceding section
In algebraic form

) I I K¢ Y M
—hUt ) =rm=rmah =0

Example 3. Divide 1 by the complex number r(cosg
+ ¢ sin @), The dividend can be wntten as 1 (cos 0°4i sin (°),
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By formula (1) the quottent will be —}— [cos (—@) + 1 sim (—q))
1.r{cos @+t 5m @)= —,’— [cos (—q)+isin{—q)] (2

Geometric construction describe a cirele of radius 1 with
centre at 0. Let |r|>1, that s, the pont M (Fig 15)
depicting the divisor lies outside the circle Draw the tan.
ent MT, from point T draw the perpendicular TM’ to OM,
%he pownt L which 15 symmetric with M’ about the axis of
abscissas depicts the quotient Indeed, lOfL[z[OM | and
from the right triangle OTM, 1n which TM’ 1s the altitude,

Fig 15 Fig 16

we find [OT |2=|OM|.|OM'|, that 15, 1=r|OM’'| or
|oM’ |=—:—. The arguments of the vectors OM and OL are
obviously equal 1n magnitude and opposite 1n sign,

For the case |r| <1 see construction 1n Fig 16

From formula (2) it follows that division of I by a complex
number with modulus r=1 yields a complex number that
1s conjugate to the divisor -

Example 4.  2[cos (—30°)+ ¢ s1n (—30°%)] 6 [cos (—45°)
+esin (——45")]:%(.:05 15°+1 s1n 15°)
Comparing this with Example 1, we see that replacing the
dividend and divisor by conjugate numbers replaces the quo-
tient by Hts conjugate number Formula (1) shows that this
property 1s general

110. Ralsing a Complex Number
to an Infegral Power

According to Sec 108,

17 (cos @+t sin )| ==r* (cos 2@ + 1 s1n 2¢p),
[r {cos @41 sin @)J* = r3 (cos 391 510 3g)
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and generally
[7 (cos @41 sin @)} = ™ (cos n@ -+ i sin nyp) {A)
where n 1s a positive integer. Formula (A) s called
De Moture's theorem (after Abraham De Morvre, 1667—1754)
It“ts valid for a negative integral exponent n (Sec 125) and
also for n==0
For example, [r (cos g+ 1 stn @)}—3

i
= {rteon @+1i sin @)]? =l 3@+1sin 3¢)
Consequently (cf Example 3 of the preceding section),
[r (cos @1 sin @)} =2 = r~3cos (—3p} + 1 s (—3)]
To summarize, to raise a complex number to any integral
power, raise the modulus to that power and multiply the
argument by the exponent of the power For raising to a

fractional power see Sec 112
Example 1 Rarse to the sixth power the number

2=2 (cos 10° 41 s1n 10%)

We have 28=2%(cos 60°+-1 sin 60°) ==324-321 V3.
Example 2. Raise to the 20th power the number
1 V3
gL A,

2 2

The modulus of the number z (Sec 105) 1s I, the argu-
ment 1s —60° Hence, the modulus of 22 1s | and the ar-
gument 1s —1200°=—3 360°—120° We thus have

220 =cos (—120°)+¢ sm(—l20")=—-;——-y-2§—~:

Example 3. Find the expression of the cosine and stne
of the angle 3¢ in terms of the cosine and sine of the angle .

Solution. €08 3+t sin 3¢ = (cos o+t sin @) =cosdp
+ 31 cos? @ sin 4312 cos p sin? @ 13513 p=cos® g
—3cos @it (3cos? @ sing—sind @)

Equating abscissas and ordinates (Sec 99), we find

cos 3p=cos? p—3 sin* @ cos @
and
sin 3p=3cos’@sin p—sind @
Example 4. In the same way we find
08 4¢ = cos? ¢~ 6 cos? g sin? - sint P,
sin 4p =4cos¥p sin p—4cos @sind @
and also the general formulas for sin ng, cos ag (see Sec 198),
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111, Extracting the Root
of a Complex Number

Extracting the root of a number (sce Sec 23, Item 6)
s the mverse of raising a number to a power Therefore
(see preceding section), the modulus of a root (of ntegral
mndex) of a complex number 1s obtained by extracting that
root of the modulus of the radicand, the argument 1s obtai-
ned by dividing the argument by the index of the root:

Vn r(cosip-l—ismtpz{'/? (cos -:—-}-Asm%) (B)
Here the symbol /7 denotes a positive number (the

principal root of the modulus}
The nth root of any compiex number has n distinct va-

Jues. They all have the same moduli V'F, the arguments
however are obtained from the argument of one of them by

successively adding the angle —}-360"

Indeed, let @, be the argument of the radicand Then
9p4-360°, @2 360°, etc are also is arguments Formula
(B) shows that for the argument of the root we can take not

onty 2 but also % 7‘[—-360“, ‘%-}-% 360°, and so on The
corresponding values of the root are not all distinct the
argument 2.+ 360°, 1 e, £24.360° yields the same comp-
lex number as the argument 2, the argument e
x360°="7'+%360°+360“ yields the same complex number

n+l
n

as the argument %14--"'—-360", etc, There will be exactly n

distinet values of the root See examples.

Example I Extract the square root of —9: The modulus
of this number 15 9 Hénce the modulus of the root 15
YV 9=3. The argument of the radicand may be taken equal
to —~80°, —90° -+ 360°, —90°-1-2 360°, etc

In the first case we obtain

1
(—9) 2 = ¥ 9 [cos (—45) +1sin (_.45")]:,,_3?__%. )
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In the second case
1
(—91) 2 = ¥ T(cos 195°+1 sin 135°)=~7§_2:+Vi71 @

In the third case
1

(=997 =V F(cos 315°+ 1 sin 315°)=‘732:-—% :
which 1s the same as i the first Taking ¢ =—90°4-3-360°,
¢=—90°+4 360° or =—090°—360°, —90°—2-360°,

etc, we alternately get the values (1) and (2)

Example 2 Take the square root of 6. The argument
of this number 1s 360°& (k an integer) The argument of the
root 15 360°k'2=180°k If % s zero or an even number,
the argument of iihe root 15 equal to zero or 15 a muitiple

of 360°. Then 162 =4 (cos 0°+1sm0° =4 But if & is an
odd number, then the argument will be 180"l or will differ

from 180° by a multiple of 360° Then 162 =4 (cos 180°
+ 15 180°%)=—4
Example 3. Extract the cube root of | The modulus of

the root 1s ]/ T=1 The argument of the radicand s 360° &
(where % 1s any integer) The argument of the root 1s 120°%
Putting k=0, 1, 2, we find three values of the argument
of the root 0°, 120°, 240° The corresponding values of the
root are *.
2,=co8 0°+isin 0°=1,
1 3

ty=cos 120° 1 sin 120° =— L 1 LT

2 bl
23 = €08 240° 4 s1n 240° =— _;__}:_:3_ i

* 1t is useful to check these results Multiplying the number
z,=—1+T3( by itsell by the rule of Sec 102, we find z;:—-—l—

2 2
_ZQL {=z, Mulliplying once again, we get z3=zy2,=1, Verifica~
v3
tion of the rool z,:-%——,}—l s the same Namely,

VT
z‘.—.-%i.—;l— i=zy, B=2y,=1
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In Fig 17 these values are represented by the points 4,,
A, Ay The triangle A;As4; 15 an equilateral triangle in-
scribed 1n a cirele of radius |

Example 4. Take the sixth root of —t The argument
of the radicand —1 15 180°4360°% The argument of the

rlg 17 Fig 18

root 1s equal to 30°-}-60°k We have the following six values
of the root

zy==cos 30° - 1511 30° = K;—-{—-—}l

2,= 008 90° -+ 510 90° =1,

o £
23=1c0s 150°+ 1 s1n 150" =__2..+.ﬂ_¢,

24=008 210° 41 51N 210° = — o — -1,
zy=005270°4- 1510 270° =— 1,
1

S |
2q=1cos 330°+1 sin 330°=]~23——7t

The powmnts 4,, A,, A,, A,, As Ag which represent these
values (Fig 18) are the vertices of a regular hexagon
From formula (B) 1t follows that the n roots of some
complex number and the a roots of the conjugate of that
number are pairwise conjugate
Example 5 The fourth roots of the number
16 (cos 120°+ ¢ 51 120°) ==— 8+8 ¥ B+ are
2,=2(cos 30°+1 611 30°) = ¥ 31,
2,=2(cos 120° 4151 1209 =— 1 - V' %,
23==2(cos 210°+ 1 510 210%) = — Y B—1,
24==2{cos 300° 41 sin 300°) = | — V' &
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and the fourth roots of the number 16 (cos 120°—¢sin 120°)
= —8--8¥ 31t are
7y =2(cos 30°— 1 510 30°) = J 3—1,
Zp==2(cos 120°—1 510 120 =— 1 — V'3,
2y =2 (cos 210° —1 51n 210°) = — ¥ 3+1,
Z4=2(c0s 300° —1 512 300%) =1+ ¥V 3

The numbers z, and 2, z, and 2, etc. are conjugate in
pairs

112. Raising a Complex Number to an Arbitrary Real Power

Raising a real number to a fractional power is defined
m Sec 125 However, only real values of the power are con-
sidered there Here, we need a more general defimition

Let 1t be given by the following Tormula

[r (cos @ +1 sin @)} ==r? (cos pp -+ 8111 p§) ©)

Here, p 1s any real humber and r” denotes a positive num-
ber representing the pth power of the modulus r

Formula (C) comncides with formula (A) of See 110
when p 1s integral and with (B) of Sec 111 when p 1s the

fraction - If p 1s the fraction —”'li, then by virtue of (C),

(A) and (B)
m
[r (cos 9+ isin )] * = V[’ (cos g+1sin @™ ()

which 1s 1n agreement with the ordingry definition of a
fractional power

The [ractional power of any complex (hence, also real)
number has n distinct values (n 1s the denominator of the
fraction) Formula (C) extends also to any trrational expo-
nent p, 1n which case the pth power of any number has an
ifinite number of values

Example 1 Raise the number—16 to the power—i'.
We have
P=, r=16, p=180° 4 360°k
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3
The modulus of the power (—16)* 1s,by (C), 16% =3

The argument of the power is equal to
2 (180°+4-360° £) = 135°+ 270° &

Assuming k=0, 1, 2, 3 (the other integral values of £
will not yield fresh results), we have the following four va.
lues of the power B

2,=8(cos 185°+15in 135%) =—4 V 2+4 V2,
2,=8 [cos (135° 4 270°) 41 sin (135°+ 270°)]
=8(cos45° 1 45°) =4 V 244 V5,
23 =8c0s (136°+2 270°)4-¢ sin (135°+2-270°)]
=8 [cos (—45°)+1 510 (—45%)] =4 V 2—4 VT,
2=8[cos (136°4+3-270°) -1 5in (135°4-3 270°)]
=8 [c03 (—135%) i sin (—135%)| =—4 ¥V I—4 V%
These values are represented by the points By, By, B, B,
(Fig 19).

Fig 19.

Example 2. Raise the number | to the power %t- Here,
pz;——ﬂ, r=1, g=360°k By (C) we have
1

IR _ opg 360° 360°
1% =cos S ki 5

Figure 20 shows the ponts By, B,, B,, B, .. depicting
the values of the power which result when k=0, 1, 2, 3
All lte on a circle of radius 1 No pairs of points coin-
cide Indeed, each of the angles B,OB,, B,0B,, etc 15 equal
to a radian, 1.¢, each of the arcs ByB,, B\B,, etc 1s one
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radius 1n length If some point B, coincided with By, this
would mean that the circle traversed s times (s a whole number)
contained / radu  But then a single crcuit of the circle

would be of length exactly equal to % radir, yet the cir-

cumference of a circle 1s not commensurable with 1ts radius
Hence, no pair of points By, By, . can be comcident The
more points we take, the more densely they cover the circle
An infinity of pomnts B accumulate about any point of the
circle circumference And yet on the circumierence there are
everywhere sites not occupied by any pomnts B Such, for
nstance, 1s the pornt which is diametrically opposite By, or
any vertex of any regular polygon in which B, 1s one of the
vertices

Note. It 1s also possible to define the power of a comp-
lex number for a complex exponent It too has an infinity
of values, but the corresponding points do not, 1n the gene-
ral case, accumulate They are spread out

113. Some Facts about Higher Degree Equatlons

For general-form equations of third and fourth degree
(see Sec 66), we have formulas which express the roots of
the equation 1n terms of the literal values of the coefficients
These formulas involve radicals of index 2 and 3 They are
complicated and too unwieldy for practical use No such for-
mulas exist for higher-degree equations. It has been proved
that 1t 15 1mpossible to express the roots of a general equa-
tion of degree higher than fourth 1n terms of literal coeffi-
cients by means of a fimte number of additions, subtractions,
multiplications, divisions, involutions and evolutions This
1s possible only for certain particular types of literal equa-
tions of higher degree

Nevertheless, the roots of any algebraic equation with
numerical coefficients can be found in approximate fashion
to any desired degree of accuracy

Prior to the introduction of complex numbers, even a
quadratic equation did not always have a solution (see Sec 92)
With the advent of complex mumbers, every algebraic equa-
stion has at least one root (the coefficients of the algebraic
equation may be quite arbitrary, even complex).

An equation of the nth degree cannot have more than n
distinct roots, though 1t may have a smaller number For
mstance, the quintic (fifth-degree) equation (x — 3) (x —2)
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— 13=0, which in expanded form looks like this: x8
f(fx«.;.l&xa.o_azﬂ'i 23x— =0, has the roots x; =3, x, =2,
%3=1, and no other roots Stll, it 1s considered that this
equation has five roots %, =3, X, =2, Xy=1, x,=1, x5=]
The root 1 1s counted three times because the left member
of the equation involves the factor x—1 to the third power
Counting 1n this manner, we find that every ath degree

equation
axt - axn-t4 +a,=0 (@ # 0} [63)]

has exactly n roots The reason is this Equation (1) may be
represented (umquely) as

Ay (¥ =2,) (X —%5) (¥—x,)=0 2

The numbers x;, X,, , %, are the roots of (I) There
may be, among them, several with the same value (in the
last example, we had x3=x,=xy==1} This value 1s counted
as a root as many times as 1t is repeated 1 counted in this
«fashion, the total number of roots is always equal to n

If the coefficients of an algebraic equation are real and one of
the roots 1s a complex number a-- b1, then the conjugate complex
number a—bt 1s also aroot For instance, the complex number
%3+Z§—3t is a root of the equation x*--1=0(Sec. 111), the

conjugate complex number Q-—}%—gt 15 also a root of this

equation Thus, an equation with real coefficients always has
an even number of complex roots

Every odd-degree equation with real coefficients has at
least one real root (there 1s always an even number of com-
plﬁjx roots and the total number “of roots, by hypothesss, 1s
odd)

The sum of the roots of equation (N ls-—Z—:-. while the

product of the raots is equal to (—l)"z—" These properties
were pointed out by the French mathematictan Viete
1591 Viéte did not recognize negative numbers (cf. Sec 67)
and so he considered the case when all roots are positive

Example The equation x5 —8x4 + 24x8 — 3452 23x—6=90
in=5, ay=1, ay=-8, a,=-6) has the fol owing roots
(see above) 3,2, 1, 1, | Their sum 1s 8 (L e.—:IE) and

their product 6 [1 e (—1)p® -«Ts .
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These properties (and other similar properties) are derived
from a comparison of equations (1) and (2) (all terms in them
must be the same, 1n particular the second and the last)

114, Fundamentals of Inequalities

Two expressions, numerical or literal, connected by the
sign > (greater than) or the sign < (less than) form an tne-
quality (numerical or literal)

Every true numerical iequality and every literal ine-
quality that 1s valid for all numerical real values of the
letters involved 1s called an absolufe or unconditronal tne-
quality

Example 1. The numerical tnequahty 2 3—5 < 8—5 (it
15 truel) 1s an unconditional inequality.

Example 2 The literal mequality a®> — 2 1s uncondi-
tional since for any numerical (real) value of a the quantity
?}2‘ 15 po;ntlve or equal to zero and, hence, 1s always greater

an —

Two expressions can also be connected by the signs < (less
than or equal to) and = (greater than or equal fo) Thus,
the notation 22> 86 means that the quantity 2z 1s either
greater than 3b or equal to 3b These expressions are also
called tnequalities

The literal quantities involved in an inequality can be
classified as known and unknown 1t is common practice to
stipulate which leiters are to be taken for the unknown
quantities and the known quantities Ordinanly, the last
letters of the alphabet (¢, y, 2z, u, v etc.) are used for un-
knowns

To solve an inequality means to indicate the limits
within which the real values of the unknown quantities must
he in order for the inequality to be true

If several inequalitres are given, then to solve the system
of inequalities means to indicate the limits within which
the values of the unknowns must lie so that the given
inequalities are true,

Example 3 Solve the inequality x> <4 This inequality
15 true if {x| <2, that s, if x Ties between —2 and 3
The solution 1s of the form —2 < x < 2,

Example 4. Solve the inequality 2¢ > 8

The solution laoks like this.”x > 4 Here x is bounded
on one side only
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Example 5 The inequality (x—2) (x—3)>0 15 true
if x> 3 [then both factors (x—2), (x—3) are positive] and
also 1f x <2 (then both factors are negative) and 1s not
true when x lies between 2 and 3 (and also when x=2 and
1=3) Therefore, the solution 15 given by two tnequalities

>3 %<2

Example 6. The inequahity x® <—2 has no solution
(cf Example 2)

115, Basle Properties of Inequalities

1 1f a> b, then b < a, conversely, 1f @ < b, then b >q

Example 1. 1f 5x—1 > 2¢1, then 2¢+1 < 5x—1.

92 fa>b and b>c, then a>c In the same way, if
a<band 6<¢, thena<c

Example 2. From the mequalfies x> 2y, 2y > 10 1t
follows that x > 10

3 fa>b, then atc>b+4c¢ (and a~—c> b—c), and
if @ <b, then a4+ ¢ < b+¢ (and a=c¢ < b—¢), which means
that we can add to (or subtract from) both sides of an ine-
guality the same quanfily without changing the sense of the
equaltty

Example 3. Given the inequality x+4-8 > 3 Subtracting 8
from both sides we get £ >—5

Example 4. Given the inequahity x—6 < ~2. Adding 6
to both sides, we have x < 4

4 lfa>b and ¢>d, then a+-¢> b4d, n the same
way, If a<b and ¢ <d, then a+c¢ < b+d, that 1s, two
inequalifies faving the same sense (the expression *inequali-
ties of the same sense” means that both inequalities involve
the sign > or both have the sign <) may be combined term
by term This holds true for any number of inequaltties, say,
ifay > by, a,> by, ay > by, then ay+a,4-a5 > by +by+ by

Example 5. The mequalities —8 > —10 and 5> 2 are
tn.ée Gorgbmmg them termwise, we find the true inequality
- > —

1 1
Example 6. Given the system of inequalities T rtt5y

< 18, -;—x—%y< 4 Adding them term by term, we get
x< 22

Note Two inequalities of the same sense cannot besubtracted
termwise one from the other because the result may be erther
true or untrue For example 1if from the mequarlty 10>8
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we subtract termwise the snequality 2> 1, we have the true
inequality 8> 7, but if we subtract the meéuahty 6>1
from that inequality, we get an absurd result. Compare with
the following ttem
lfa>b and ¢ < d, then a—c>b—~d, f a< b and
¢ >d, then a—c < b—d, that ts, from one inequality 1t 1s
posstble to subtract termwise another inequality of opposite
sense* and leave unchanged the sense of the inequality
from which the other was subtracted
Example 7. The inequalities 12 < 20 and 15 > 7 are true
Subtracting the first from the second term by term and
retaining the sign of the first, we get the true inequality
—3 < 13, Subtracting the first from the second and leaving
the sign of the second, we obtain the true inequality 3 > —13.

Example 8. Given a system of inequalities, %x
+L2'-y< l8,-l§-x-——;-y>8 Subtracting the second one

from the first, we get y < 10.
6 lia>b and m 1s a positive number, then ma > mb

a b
and = > -, or
both sides of an inequality may be dinded or mullipiied
by the same positie number unthoul changing the sense of the

tnequality
ut if a>b and n 1s a negative number, then na < nb
and £ < &, or

both sides of an inequality may be multiplied or divided
by the same negatwe number, bui then the sense of the ine-
quality s reversed (1t 1s of course forbidden to multiply and
divide both members of an inequality by zero).

Example 9. Dividing both sides of the true inequality
25 > 20 by 5, we get the true inequality 5 > 4. But 1f we
divide both sides of 25 > 20 by —5, we have to reverse ihe
sign > {to <) to get the true tnequality —5 < —4

Example 10. From the nequality 2¢ < 12 1t follows that

* <Example 11. From the inequality-—-?:— x>4 1t follows
that x <12

Example 12. From the inequality % > —‘{- 1t follows that
Ix > ky 1f the signs of the numbers { and % are the same,
and that Ix <ky 1f the signs of the numbers ! and k are different.

* The expression “inequallties of opposite sense” meuns that one
of the inequalities has the slign > and tf\e other, the sign <
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118. Some Important Inequaittias

I Jad0|<cia|+[b] Here, o and b are arbitrary real
or complex numbers (but [a|,|b] and |a+ 6] are always
real and positive, see Secs. 69 and 105), that 1s, the modulus
of a sum does not exceed the sum of the modult Equality
occurs only when both numbers a and b have the same
argument (Sec 105), in particular when both numbers are
posttive or both negative

Example 1. Let a=-3, b=—5 Then a+b=-—9
la--b|=2, |a|=3 |b|=5 We have 2 < 345

Example 2. Let a=4--3i, b=6—8 Then

a4-b=10—51, |a+b =V TP F(—5E=V 1%,
la|=VEFE=5, |b|=VE+(=81=10.
|a]+]b|=15

We have V125 < 15
Note The inequality |a+b|<<|a|+|b| may be extended
to a greater number of terms, thus
|a+bt+cl<laj+lb]+]c]
2 a+-";>2 (a 1s a posttive number) The equality holds
only when a=1
3 Vﬁg#(a and b positive numbers), whal this

means 15 that the geometric mean (Sec. 59) of two numibers
does not exceed thewr arithmelic mean The

c equality V-E=5%£ holds only when
AN, =
N

Example 3. a=2, b0=8, Vab=4,

E-J;—b =5,we have 4<5 This inequality

was known 2000 years ago Its obvious natu-

Flg 21 re 1s seen geometrically in Fig 21, where

CD=Y AD-DB and €O=A0 =’*_D;E’

A generalization of 1t 1s the following mequality established
by the French mathematician Cauchy n 1821.

a,+a,+ +a
4 Y e, o, <M T the numbers ay, 4, 4, a,

are positive) The equahty 1s valid only when all numbers
ay, @y, . a4, are equal.
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5 1 _;_ %-}.% < Vb (a and b positive) The sign of
equal ty 1s valid only when aTb Do 6

Example 4. a=2, b=38, I'T (—;+T)=—5~, we have
16
T < 4

The quantity | ;f(—;-+—15— =%lsamean quantity (Sec
59) between a and b. 1t 1s called the harmonic mean * Thus,
the harmonic mean between two quantities does not exceed
the arithmetic mean of the quantities. This property can be
generalized to any number of quantihes, tn conjunction
with the inequality of Item 4 we have

G140yt Han

L (Fha+ - +2) < Voo a2t

2 2 2
al+al+ +ag
= n

(the numbers a,, a,, , a, are arbitrary), thus, the abso-
lute value of the arithmetic mean does not exceed the root.
mean-square (Sec 61) The equals sign holds only when
Ay =0y = =da,
Example 5. a, =3, a,=4, a;=5, a,=6
ay+ay +ay+a,
]

6 ‘n‘w,:. +ap,

Here the artthmetic mean 1s =% and the

root-mean-square 1s

2 2 2 2 m——— —
]/ “1“’:*"3*‘“4=‘/Hlennﬂa:yu
7 7 7

8 . Vs
We have + <4

7 aptady o<V B+ Faix
XV oi+oks 46}

the numbers ay, a;, , an by, by, , b, are arbitrary The

equahity 1s valid only when a; by=ay"b,= .=a, b,
Example 6. Let a;=1, a;=2, a3=5; by =—3, hy=1,

by=2 We have ab+abi+.. +ab,=1(=3)421

¢ In the anclent Greek theory of musical harmony an important
role was played by the harmonlc mean between the lengths of two
strings Whence the name “harmonic®,
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+5 2=9,

Viaita+ +a=VTETi+5=V0,
Vid+od+ +om=V = FEFE=VT
"We have 9< V30 VT4
8, Chebyshev inequalities. Let the numbers a,, a,,
ap; by, by,

, by be positive
I ag<o,<  <a,

n
and b <h < < by, then
@48+ +ap bytby+ by _aibitaghi+  fagb,
* n n < n “)
But f gy << <a, yel b=b=.. =b,
then
d.+a,+ﬂ +dp b,+b,+ﬂ +bﬂ>a,b.+a,h,+n +apby @

In both cases, the equality 1s valid only when all the
numbers a,, a,, , a, are equal and also the numbers by,
by, ., by are equal

Ex;

ample 7. Let a,=1, a;=2, a3=7 and b, =2, b,=3,
by=4 Then

2y +as+
n

3 T
by +by+ + by 2+3+4_3
n 39
Gbitdsbet  tamby 1 2+23+74 o
n - 3 -
We have
10
T 32
Example 8. Let a;=1, a,=2, a;=7 and b, =4, b,=3,
b3=2- Then
a;+agta, _E b,*b,«rlﬁ__s
3 =3 ER
n,b‘+a,b,+a:b,___8
3
We have

10
5 3>8
The inequalities (1) and (2) may be stated thus
If two sequences of positive quantities have the same
number of terms and 1t in both sequences the terms do not

diminish (or do not increase), then the product of the arith-
metic means does not exceed the arithmeti mean of the pro-
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ducts But 1f 1n one sequence the terms do not decrease and
in the other they do not increase, then the opposite Inequa-
tity 1s vahd

These inequalities were discovered in 1886 by the celebra-
ted Russian mathematictan P L Chebyshev (1821—1894)
He also generalized them and proved the following inequali-
ties

Hoco<a,< <a, and 0<h<h< .<by,

then
V ad+ads.. +al V ohepls  +b7
n n

</ BRI GbT @

i/a§+a‘;+ +af i/ sebd+ . +bp
n n

< .i/' (@00 H (@b + _ F(enba)® “

n
and so on
However if 0<oy<a, < <<a, but b, =b,
=b, >0, then the opposite inequalities hold true

117, Equivalent Inequalities. Basic Techniques for Solving
inequaiities

Two 1nequaltities tnvolving the same unknowns are called
equwalent |f they are true for the same values of the un-
knowns

The equivalence of two systems of nequalities i1s defined
1n the same manner

Example I The tnequalities 3x+ 1>2x+ 4 and 3x>2x-+3
are equivalent since both are true for x> 3 and both are
untrue when x<3

Example 2 The inequahties 2x<6 and x2<9 are not
equivalent since the solution of the former 15 x=<C3, while
the solutton of the tatter 1s —3<Cx<3, so that, say for
x=—4, the former 1s true and the latter untrue

The process of solving an inequality consists, in the man,
n replacing the given iequalhty (or the given system of
inequalities) by other, equivalent, inequalities (see Sec 215
for a graphicalsolution of inequalities) When solving nequa-
hities use the following basic techniques (cf Sec 82)

I Replacing one expression by an identical expression.
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2. Transposing a term from one side of the inequality to
the other with a reversal of sign (by virtue of Sec 115,
Item 3

3 I\)ﬁu]ilplymg or dividing both sides of an mequality by
the same numerical quantity (not equal to zero) If the mul-
tiplier 15 positive, then the sense of the inequality remains
unchanged, 1f 1t 1s negative, the sense of the mequahty is
reversed (Sec 115, Item 6),

Each one of these transformations vyields an inequality
that 15 equivalent to the original one

Example 3. Given the inequahty (2x—3)% < 4x2+2 Rep
Jace the left member by the identical expression 4x2—12¢+9
We get 4x3—12¢+9<4x?+2 Transpose 4x2 to the left mem-
ber and 9 to the right member. Colleciing like terms, we get
—12x<~~7. Divide both sides of the inequality by ~12, this
necessitates reversing the sense of the inequality. The solution

of the given inequality 15 £ > T7§

To mulitply (and of course divide} an mequalzty by zero
1s not permissible. When multiplying or dividing both mem-
bers of an tequality by literal expressions, we get an inequ-
ality which, as a rule, is not equivalent to the original one

Example 4. Given lhe mequahty (x—2)x < x—2

Divide both sides by x—2 to get x <1 But this inequa-
lity 1s not equivalent to the original one because, for instance,
the value x=0 does not satisfy the inequality (x—2)x
< x—2 Agan, the mequality x> 1 1s not equivalent to the
original one because, for example, the value x=3 does not
satisfy the nequality (x-—2) x < x~-2

118. Inequalities Classified

Inequalities involving unknown quantities may be divi-
ded into algebraic and {ranscendental inequalifies ~Algebraic
inequalities are further subdivided nto inequalittes of furst,
second, elc degree This classtiication 1s the same as that for
equations (Sec 83)

Example 1 The nequality 3x*—2x+5>0 1s an algebraic
mnequabity of the second degree.

xample 2 The inequahty 2% > x 4+ 4 1s a transcendental
inequality,

Example 3. The inequalty 3x2—2x45>3x(x—2) is an
algebraic inequality of the first degree because 1t can be redu
ced to the wnequahity 4x45>0,
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119, Inequalitles of the First Degree in One Unknown

A Qirst degree (linear) inequality in one unknown can be
reduced to the form
ax > b
It has the solution
x> -Z— f a>0
and
x < -z— i a<0

Example 1 Sofve the inequality 5x—3>8¢--1
Solution, 5x—8x >34-1, —3r >4, r<—1
Example 2. Solve the nequality 5x+2<7x-+-6
Solution 5x—7x<6—2, —2x <4, x>—2
Example 3 Solve the inequality (x—1)2 < x24-8
Solution x2—2x-F1< x248, —2x<7, x >—7.

Note An inequality of the form ax+b > ajx-+6;, 15 an
mequality of the first degree if a and g, are distinct” Other-
wise the inequality is reduced to a numerical (true or untrue)
equaltty

Example 4, Given the inequality 2 (3x—5) <3 (2x—~1)+5
It 15 equivalent to the imequality 6x—10 < 6x-+2 and the
latter can be reduced to the numerical (unconditional) 1mequ-
ality —10<2 Hence, the original inequality 1s uncon-
ditional

Example 5 The 1nequalily 2(3x—5) > 3(2x—1)+5
reduces to the meaningless numerical 1nequality —105>2.
Hence, the original inequality has no solutrons

120. A System of Inequallties of the First Degree

To solve a system ol first-degree inequalities, find the
solution of each inequality separately and compare the solu-
trons This comparison either yields the solution of the
system or reveals that the system does not have any solutions

Example 1. Solve the system of inequalities

4x—3>50— | 2x+4< 8
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The solution of the first inequality 1s x < 2, of the second,
x> % The solution of the system 1s -3— <x<2

Example 2. Solve the system of inequalities

2%—3 > 3x—D5, 214> 8
For the first we have the solution x <2, for the second,
x < —'_‘;- The solution of the system 15 x < —3— (under this
condition the inequabty x < 2 1s cerfainly true)

Example 3, Solve the system of inequalities

2%—3 < 3x—5, 2x4-4 > 8«

The solution of the first tnequality 1s x > 2, the solution
of the second, x < % These conditions are contradictory,
The system has no solutions

Example 4. Solve the system of inequalities
2 < 16, 3x+41> dx—4, 3x+6>2+7, x+5 <246

The solutions are, respectively, x<8, x<5, x>1,
x>—|1 Comparing these conditions we find that the first
two may be replaced by the second alone, and the third

and fourth, by the third alone The solution of the system
151 <x<b

121, Elementary Inequalities of the Second Dagres
in One Unknown

L. The nequalty «* < m 103}
(a) 1f m > 0, the solution 18
~Vm<x<Vm (la)

(b) If m«<0, then there 15 no solution (the square of a
real number cannot be negative)

2 The mequality x2 > m 2

a) If m> 0, then (2) 1s vahd, irstly, for all values of x
greater than V'm, and, secondly, for all values of x less
than —V'm.

t>Vm o x<—Vh (2a)
(b) If m==0, then (2) holds true for all x except x=0
x>0 or x<0 (2b)

() If m<O0, then (2) 15 an unconditronal inequality
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Example 1. The inequality x3 <9 has the solution
—3<x<3

Example 2. The inequality x* <—9 has no solutions.

Example 3. The mequality x? > 9 has for a solution the
set of all numbers greater than 3 and the set of all numbers
less than ~-3

Example 4. The inequahty x*>-—9 15 unconditional.

122. inequalities of the Second Degree
in One Unknown (General Case)

Dividing a second-degree inequality by the coefficient of
x, we reduce 1t to one of the following types:
*4pr49<0, (1y
XR-fpx+q >0 (2)
Transpose the constant term to the right side and add to
both sides (—;L)g. This yields, respectively,
P\ p\1 )
(+5)'< (%)~ )
2 p N3 )
(x+%)"> (§)"—0 @)
If we denote x+-§- by z and (—;)“—q by m, we get the
elementary inequalities
2<m, (iY)
2>m @)
The solution of these inequalities was given 1n the pre
ceding section Knowing 1t, we find the solution of (1) or (2).
Example 1. Solve the inequality —2x3- 14x—20 >0

Divide both members by ~2 (Sec 117, ltem 3) to get
x2—7Tx410 < 0 Transposing the constant term 10 to the

right and adding (%)210 both members, we get (x—-;.y <
< 97, whence (Sec 121, Case la)
3 7 3
—F <r—g <5
Adding %, we find —-g-+-%- <x <%+i. that 1s,
2<x<5.
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Example 2. Solve the mequality —21%4 4x—20<0
Performing the same transformations, we get the inequality

(x—-;)2>%, whence (Sec. 121, Case 2a) we find that

our 1nequality 1s valid, furstly, for x—-—;— >—23-—, that 1s, for

% > 5, and, secondly, for x——;— <—%, or for x < 2.

Example 3. Solve the inequality x®4-6x4-15 < 0 Trans.
posing the constant term to the right and adding to both

members —g— ® e, 9, we find (x+3)2 < —€ This 1ne.

quahity (Sec 121, Case 1b) has no solutions and so the given
inequality has no solutions

Example 4. Solve the nequality x24-6x+15>0 As
Example 3, we find (x+3)% > —6 This inequality (Sec 121,
Case 2¢) 1s unconditional,

123, Arithmetic Progressions

At one time the term progression was used in mathema-
tics to denote any sequence of numbers generated by some
faw that permitfed extending the sequence indefimitely in
one direction For example, by squaring the sequence of
whole numbers, we get the sequence 1, 4, 9, 16, 25, etc.
This can be continued without end simply by applying the
law of formation of the sequence The numbers thus gene-
rated are called the lerms of the sequence At the present
time the term “progression” 1s largely confined to the two
most 1mportant kinds of number sequences anthmetic and
geometric, all other progressions of numbers being termed
sequences

An arithmetic progression 1s a sequence of numbers such
that the diiference between any two successive terms 15 a
constant called the common difference

Example 1 The sequence of natural numbers 1, 2, 3, 4,
5,  1s an arithmetic progression with common difference I,

Example 2. The sequence of numbers 10, 8, 6, 4, 2, 0,
~—2, —4 . 15 an arithmetic progression with common diffe.
rence —2,

Any term of an arihmetic progression may be computed
by the formula

gy =ay+d(n—1)

where @, 1s the first term of the progression, d 1s the com-
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mon difference, and a, 1s the ath term, 2 being the number
of the term

The sum of the first n terms of an arithmehic progres-
sion 1s given by the formula

__{a;+an) n
=y

Example 3. In the progression 12, 15, 18, 21, 24, ., the
tenth term 1s egual to a;,=1243 9=39
The sum of the first ten terms is

)
510=(B'+u;m) lo=(1_+39) lo=255

Example 4. The sum of all mtegers from | to 100 inclu-

sive 1 LEIBOLL00 505

124, Geometric Progressions

A geometric progression 1s a sequence of numbers such
that the ratio of each term to the immediatelv preceding
one 1s a constant called the common ratio (or, simply, rafio)

Example 1. The numbers §, 10, 20, 40, form a geo-
metric progression with ratio 2

Example 2 The numbers 1, 01, 001, 0 00L, etc consti-
tute a geometric progression with ratio 01

A geometric progression 15 termed tncreasing when the
absolute value of its ratio 1s greater than umty (as in
Example 1) and decreasing when it 15 less than unity (as in
Example 2)

Note The ratio of a progression may be a negative num-
ber, but such progressions are of no practical significance

Any term of o geometric progression may be compuled
from the formula

0y = a,q" ! 1)
where a; 1s the first term, ¢ 1s the ratio, and a, is the nth
term, n being the number of the term

The sum of the first n terms of a geometric progression
(whose ratio 1s not unity) 1s given by the formula

_ 8a9~a8; _ 8,-ang
5n=IT T T @

The first expression 1s most conveniently used for increasing
progressions, the second for decreasing progressions
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But if g=1, then the progression consists of equal terms
and n place of (2) we have s, =na;

Example 3. In the geometric progression, 5, 10, 20, 40,
the tenth term a;9=5 22=05 512=2560 The sum of the
first ten terms 1s

5=t 285115

The sum of an infinitely decreasing progression 1s a number
approached without bound by the sum of the first n terms
o? the decreasing progression when the number n increases
without bound

The sum of an 1nfinitely decreasing progression 15 given

by the formula
a.

§=1

1-q
Example 4 The sum of the infimite geometric progression
1

1 1 T
rorowe o (=t e=1) is =g =1 that 15 the
2

sum %-}--—21,—+ +-21—,,— approaches the number 1 without
bound as n increases without bound

125. Negative, Zero and Fractional Exponents

Raising a quantity to the nth power was _ originally
understood as an n-fold repetition of a certain number as
a factor From this point of view, such expressions as 9~%

1o
or 9 2 appear to be meaningless since 1t is clearly 1mpos.
sible to take 9 as a factor for a total of minus two times
or one and one half times. Nevertheless, mathematicians
attach a very delinite meaning td such expressllons. namely,
9-2 15 considered to be equal to Tll'=ElT ] 1?, to V&
=(VT)*=27, efc Here again we encounter the generali-
zation of the concept of a mathematical operation that 1s
constantly going on 1n mathematics The simplest and ear-
liest generalization of this kind was that of the operation
of multiplication to the case of a fractional factor (see
Sec. 34) 11 1s possible to get along without introducing
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fractional or negative exponents, but then problem of a single
kind would have to be solved by a multitude of diverse
rules tnsiead of one The problems we have in mund are to
be found mostly in higher mathematics and therefore many
concrete examples are beyond the scope of this book Howe-
ver, one of these prablems is studied in detail in elemen-
tary mathem.tics It has to do with logarithms (see Sec 126)
It 1s worth noting that the theory of logarithms, which
today 1s intimately bound up with the generahization of
the concept of a power, dispensed with fractional and nega-
t1ve exponents for a whole century after ifs discovery (at the
turn of the 17th century), the same goes for the problems
of mgher mathematics that we mentioned It was only at
the end of the 17th century that the number and comple-
xity of mathematical problems urgently called for a genera-
hzation of the concept of a power That was the path taken
by certain scholars and, most notably, Newton
Defimition of negative power * By defimition, the power
of any number with a negative (integral) exponent 1s umty
divided by the power of that number with a positive expo-
nent, the value of which 1s equal to the absolute value of
the negative exponent, or
a-—mn

cs_ L _ b /3N=2__ ., /3\%_16
ExamplesZa_—éa—_B, 4) "1\4)””5'

(—4)=3= | (=4 =— &, etc

The equation e~#=1 a” holds true both for positive m
and for negative m If, say, m=—5, then —m will be equal

to 45 and our formula will look lLike this a“-_—ai_, , which

15 1 agreement with the definition given above
Operations 1nvolving negative exponents obey all the
rules that hold for positive exponents What 15 more, 1t was
only after the introduction of negative exponents that the
rules for handling positive exponents acquired full generality.
Thus, the formula a™ a"=am™-% (see Sec 89) can now
be applied not only when m > n, but also when m <p.
Example, ab o8=ab-8=p~% Indeed, according to the

1
definition a-3=—aT so that the expression a®.q® =a—3 means
* The terms ‘negative power”, “zeroth power”, and “fractional

power” are taken lo mean powers with a negative, zero and fractio-
nal exponent, respectively
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f—:~=nl, For the formula a™ a® =a™~" to have generalty,

it must hold true when m=n as well For this purpose we
make the following definition

Definition of a zeroth power. The zeroth power of any
nonzero number 1s umily [the expression 0°, like the expres.

sion % (see Sec 37), 1s indeterminate]
Examples 30=1, (—3P=1, (—%)o=l, ab gd =qgf=|,
Definition of a fractional power. To ratse a (real) number
a to the power —','.'- means lo exiract the nth root of the mih

power of a The fractional powers of complex numbers are
discussed in Sec 112

L K
Examples 9%=V7=27, (%)l 3=(,f—7) 3=:|’/(%)‘

1
=18 32‘f
T

Note 1. The base a could be taken negative, but then
its fractional powers might not result 1n real fumbers, For

instance,
3
9 =V Cop=v-8

The root :/v8 cannot be a real number

Ordinarily, elementary mathematics considers only posi-
tive bases of fractional powers.

Note 2. The exponents however, may be positive, nega-
tive or fractional Negative exponents are of no less tmpor-
tance than posttive exponents. In order to master logarith-
mic computations, 1t 1s necessary to do as many exercises
as possible 1n order to get a proper understanding of nega-
tive and fractional exponents

33 3 12
7 _ 7 _1 8 3_,./8 E)
Examples. 9 “ =1.9 =33, (2—7) _1.(2—.,-)
PR 9 L
243 2 F) 1
=223 =1 =t v 0.0642.
= 1:3 l,__2“z00542
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The 1ntroduction of fractional exporients does not involve
any changes 1n the laws of exponents Thus, the formula
am an =gm+n and others are still vahd

& 3 2

5
= ~ g -
Example a’ a 7 —a! True enough, a’ =}/
I
a =1 /aJ Lal = 1/n’ so that our notation sigmifies

Z/aT —,—':: ;/a_2 which 1s true (see Sec. 90, Rule 4).

al

126. The Method of Logarithms. Construcilon
of Logarithmic Tables

The operations of multiplication, division, involution
and evolution are much more labour-consuming than those
of additton and subtraction, especially when they involve
multidigit numbers An insistent need for such operations
arose 1n the 16th century in connection with the develop-
ment of sea navigation which gave rise to improved astro-
nomical observations and calculations It was astronomical
calculations that gave rise, at the turn of the 17th century,
to computations by means of logarithms

Today, such calculations are used whenever one has to
do with large numbers They are already useful when dea-
ling with four-digit numbers and are absolutely necessary
when five-place accuracy 1s required Greater accuracy 1s
rarely needed 1n practical situations

The value of the logarithmic method consists in reducing
multiplication and division of numbers to addition and
subtraction which are much easter to perform Likewise,
mvolution and evolution and also a number of other compu-
tations (trigonometric, for instance) are greatly simplified

The tdea of the method can be illustrated in a few
examples

Suppose we have to multipty 10,000 by 100,000 The
ordinary scheme of multiplying long numbers 1s not neeled
here at all simply count the number of zeros in the multi-
plicand (4) and the multiplier (5) and add these numbers
to get 9, which 1s the number of zeros in the product:
1,000,000,000 (9 zeros) This computation is legitimate be-
cause the factors are (integral) powers of 10. we multiply
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10¢ by 10° and the exponents are added In the same way
we perform division of powers of ten (division 1n this case
1s replaced by subtraction of the exponents)

But only a few numbers can be divided and multiplied
m this manner In the first million (excluding 1) we have
only 6 such numbers, 10, 100, 1000, 10,000, 100,000, 1,000,000
Now there would be more numbers involved i multiplica-
tion and division 1f 1n place of the base 10 we took, say,
2, or some base closer to 1. For 2 as a base, we construct
a table of the first 12 powers

Exponent
(orplogarithm) 1234 5 6 7 8 9 |10 1 12

Power 2 4 8 16 32 64 128 256 512 1024 2048 4096
{or number)

We will now use the term logarithm for the numbers (expo-
nents) n the upper row, and the term number for the num.
bers (powers) 1n the lower row

To multiply any two numbers of the lower row, add the
two numbers above them in the upper row To illustrate,
we find the product of 32 by 64 by adding the 5 above 32
to the 6 above 64 to get 11 The answer 1s under 11, 2048
To divide 4096 by 256, take the numbers 12 and 8 above
them, subtract 8 from 12 to get 4 The answer 1s under
the number 4: 16 If we continue the table to the left and
introduce zero and negative powers of the number 2, 1t s
possible to perform division of small numbers by larger
numbers

Although there are fewer gaps between the powers of 2
than between the powers of 10, this table still involves
only a few numbers and so 1s of Little practical value
But if we take for the base a number much closer to I than
the number 2, this defect will be overcome

Let us take for the base the number 1.00001. There will
be over a multion (1,151, 292) successive powers of this aum-
ber between 1| and 100,000 If we round off the values of
these powers and retamn only 6 significant digits, then a
midlion rounded results will include all the whole numbers
from | to 100,000 True, these will only be approximate
values of the powers But since in the multiplication and
division of hve-dlfgxt integers we are interested only in the
first five places of the result, such tables will enable us to
multiply, divide, elc five-digit integers and, consequently,
decimals with five significant digits,
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That 1s precisely how the first tables of logarithms were
constructed * Thewr computation required many years of
arduous labour Today, anyone could do the Job in about a
month using the methods of higher mathematics Three hund-
red years ago 1t required a hifetime But the result was that
many thousands of computors calculated many times faster
through the use of these tables which were constructed once
and for all time

At the present time, logarithmic tables use the base 10
because this yields a number of computational advantages
since our system of numeration is dectmal To obtam whole
numbers 1t is necessary to use fractional powers of the
number 10

The logarithm of some number to the base 10 1s called
the common logarithm Compilation of tables of common
logarithms does not involve any particular difficulties if a
table to the base 1 00001 has already been compiled Indeed,
suppose we want to find the common logarithm of the
number 3, that is the exponent of the power to which we
*have to raise 10 in order to cbtain 3 In the table to the
base 1 00001 we find

10 ~ 1 00001230,288
3 2 1 0000] 109,881

Raising both members of the first equality to the power
Eso_lQE' we get 100001 ~ 101:280:258) 104 g0 the second

equality can be written as 3 ay 10(109,861:230,258) gy cpy g
to say that the logarithm of the number 3 to the base 10 s
047712 In the same way we can find the common loga-
rithms of other numbers **

* In about 1590 by Bfirgs of Switzerland Independently of him,
and somewhat later the Scotsman Napier constructed a table based
on a number very close {o unity, but less than unity Blirgl published
t;islvgc}rt in the year 1620 whereas Napier's tables” appeared earlfer,
n

¢+ The Ider of constructing of table of fogarithms to the base
10 belongs to the Scotsman Napler and the Englishman Briggs
Together they undertook to recalculate the earlier tables of Napler
te the new base of [0 After the death of Napier, Briges continued
the work and published it completely in 1624 That s why the
base—10 (commonl logarithms are also called Briggstan Fractional
poswers were not yet used in mathematics, but Napier and Br!ggs dld
without them since their defined the term logarithm somewhat diffe-
rently from the presently accepted definition
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121. Basic Properties of Logarithms

The logarithm of a number N fo a base a 1s the exponent
% indicating the power to which a must be raised lo obtain N,
Notation: log, N=x Symbolically, log, ¥ =ux 15 equiva-
lent to a* =¥
Examples. log; 8=3 since 28=8, log,, 16=—4 since
1\~ 13 1\ 1
(7) =16, log (T) =3 since (7) =5
From the definition of a loganithm follows the identity

alot N =y

Examples. 219188, | ¢ ,25==8, 59520295 0/08u N _y

The numbers a (the logarithmuic base) and N (the number)
may be taken integral and fractional (see examples), but
they must be positive 1f we want the logarithms to be real
numbers

The logarithms themselves may be negative. Negatiwe lo-
gartthms are just as important, practically, as posuiive loga-
nithms

If for the base we take a number greater than umty
say, 10), then the larger number has a larger logarthm
he logarithms of numbers greater than umity are positive,
those of numbers less than umty are negative The logarithm
of umty to any base is zero The logarithm of a number
lequ% to the base 1s always umity (in the common logarithms,
og 10=1) *

The Ioéartthm of a product s equal lo the sum of the
logarithms of the factors

log, (pq) =log, p+-log, ¢

The logarithm of the quotient of two numbers 1s equal to
‘tfhe logarithm of the dwidend minus the logarudhm of the
lyisor

logg 2= log, p—log, ¢
The logarithm of the power of a number 1s equal to the
exponent times the logarithm of the number.
log, p™=m log, p
* The number & must not equal unity, otherwise numbers not
equal to unity will not have a logarithm "and any number will be

the logarithm of unjty
We use the symbol log x to mean log,, ¥ [translator]
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The logarithm of a root of a number 15 equal fo the loga~
nthm of the number dwided by the index of the root:

l°ga,l’777=‘,:,— logg »

(thls 1s a consequence of the preceding property since

1
174 p=p'")

Warning. The logarithm of a sum 1s not equal to the
sum of the logarithms, it 15 incorrect to write log,p+log,q
mn pl_lace of log, (p+4) This 1s a common mstake

o take the logarithms of an expression means to express
its logarithm 1n terms of the logarrthms of the quantities
that make up the expression

Examples of taking logarithms:

20%q

(1) logg 35 = log, (2p%m™"")
m

=log, 24 2log, p+log, q—-—§- log, m

14 352 V0 30600
"T85 06 431107

log x=log 14 352—|——21— log 0 20600 — log 185 06 —2 log 43,110

Using a table of common loganithms, find log 14 352,
fog 0 20600, etc and compute the right member of our equa-
tion; this 1s-log x Then, using the table, find the number x
from 1ts logarithm For more detalls, see Secs 131-134

2) x=

128, Natural Logarithms. The Number e

For practical purposes the most convenient are logarithms
to the base 10 (common logarithms) In theoretical investi-
gations however, 1t 1s more convenient to use a different
base, namely the irational number e=2 71828183 (to eight
decimal places) This amazing, at first glance, fact can only
be explained tn higher mathematics Here we will merely
show where the number came from It is closely connected
with the mode of computing logartthms that was explained

In Sec. 126. When for the base we take a number l+—’17
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ity, say 100001 (rn=100,000), then for small
‘r:llt?rs:beﬁg “1'1: g)e,t engrmous logarithms such as 109,861 for the
number 3 To make this logarithm of the same order of
magmitude as 3, 1t has to be reduced by a factor of 2= 100,000
Then 1t will be 109861 The number 3 will have the loga-
rithm 1 09861 if for the base we take

(144 )" =1.000012000% and not 1-+--=100001

Indeed, we have
3= (1 00001)109,851 = | (0OQ1100,000 109801
= (1 00001100,000)1 08881

Computing the quantity 100001100,0% to eight places of
decimals, we get

(141)" =271826763 (n=100,000)

This number 1s very close to the number e, the first five
digits commerde  If we took a number still closer to umty,
say 1000001 (n=1,000,000), then reasoning as before, we
would see that

(14-L)" = 1 000001300000

1s a still more conventent base

To eight places of decimals, this number 15 2 71828047
The first six digits are the same as those 1n the number e
and the seventh digit differs only by umty. The greater the

n
number n, the less the number <l+717) differs from the
number e In other words, the number e 1s the Lt to which
n
(1+%) tends as n increases without bound That 1s the
definstion of the number ¢
n
We have seen that the base l+% and, hence, I+—r"-

as well, enables us to compute logarithms of all possible
numbers the more exactly, the greater the number n It 1s
natural to expect that for this purpose the most convemient

n
number 1s the limit to which l+—;—-> tends as n 1ncreases

without bound, which 1s the number e That precisely 1s the
case. Computation of logarithms to the base e can be per-
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formed more quickly than to any other base The methods
for such calcu(}ation are given 1n higher mathematics

The number e itself can be expressed as a decimal to any
desired degree of accuracy Some tables contain approximate
values of e that far exceed any practical demands However,
it is impossible to express the number e exactly by any
decimal fraction or any rational fraction What 1s mare, e 1s
not only irrational, 1t 1s transcendental (see Sec 91)

Logarithms taken to the base e are called natural loga
rithms Sometimes they are called Napierian, but this 1s
wrong historically *

Notation, Natural logarithms are usually denoted by Inx
mstead of log, x

Example. 1n 3==1 09861

To find the natural logarithm of a number N from its
common logarithm, divide the common logarithm of N by
the common logarithm of e (which is equal to 043429 )

_logN  logN
InN =385 & o h s ~ 230289 log N
The quantity loge=0 43429 1s called the modulus of com-
mon logarithms with respect to natural logarithms and is
denoted by M, so that

In N=mlllogN b

* The base actually used by Napier was the number {—0 0000001
1f we wanted to reduce all logarithms of Napier’'s table by a factor
of 10,000,000=107 (see example analyzed above), we would have to

take as the base the number l——l— , where k=107, which could
then be called the base of Napier’s table But this number is by no

means equal to e (H differs very slightly from the number—}

** The rules given here for converting from natural logarithms to
common logarithms and vice versa are partlcular cases of the general
formulas

. ) logy N
ogg N =log, N logab, OMN:W

which permit converting from the logarithm of a number ¥ to the
base & to a logarithm of the same number to the base ¢ The second
formula yields for N=b

1
loga b—m
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Example From the table of common logarithms we have
log 2=030103, whence
in2 = 030103=069315
To find the common logarithm of a number N from a
given natural loganthm of ¥, multiply the natural loga-

rithm by the modulus of common logarithms with respect
fo natural logarithms M=loge

logN=logelnN=MIn N~ 043429 [n NV

Example 1n3=109861, whence log3=M.| 09861
=047712
Tables are provided to simplify multiplication by M and

-}7. They contain products of M and % by all one-digtt or
all two-digit factors We give below a table for multiplica-
tion of M and Tlu by single-digit numbers

1

Multiples of M Multiples of W
1 0 43429 2 30259
2 0 86859 4 60517
3 1 30288 6 50776
4 1 73718 9 21034
5 2 17147 11 51293
(] 2 60577 13 81661
7 9 04006 16 11810
8 3 47436 18 42068
9 3 90865 20 72327

129, Common Logarithms

From now on, we shall simply use the word logarithm
n the meaming of common logarithm.

The logarithm of unity 15 zero

The logarithms of 10,7100, 1000, etc., are i, 2,3, and so
on, that s, they have as many positive units as there are
zeros following unity,

The logarithms of the numbers 01, 001, 0001, etc are
equal to —I, —2, —3, etc, hence they have as many ne-
gative umts as there are zeros (including the zero in the
units place) preceding umity.
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The logarithms of the other numbers have a fractional
pait which 1s called the mantissa The integral (whole-num-
ber) portion of the logarithm 1s termed the characteristic.

Numbers greater than umity have positive logarithms.
Positive numbers less than umity have negative logarithms
(negative numbers do not have real logarithms)

For example, * log 0 5=—0 30103, log0 005=—2 30103

For the sake of convenience in locating the logarithm
from a number or the number from the logarithm, negative
logarithms are not given in this natural form but 1n an
“artificial” form In the so-called artificial form, a negative
logarithm has a positive mantissa and a negatwe characteristic.

For example, log0005=3 69897 This notation means
that log 0.006=—3--0 69897 =—2 30103

To transfer a negative logarithm from its natural form
to the artificial form, (1) increase the absolute value of its
characteristic bzy unity, (2) put the muinus sign (a bar) over
that number, (3) subtract from 9 all digits of the mantissa
except the last nonzero digit, subtract the last nonzero digit
from 10 The differences obtained are written 1n the same
places of the mantissa as the digits being subtracted Zeros
at the end remamn unchanged

Example 1 Reduce log 0 05=—130103 to the artificial
form (1) increase by 1 the absclute value of the characte-
nistic (which 1s 1), this yields 2, (2) write the characteristic
i artificial form as 2 and place the decimal point, (3) sub-
tract the first digit of the mantissa (which 1s 3) from 9;
this yields 6, write the 6 1n the first decimal place. The
subsequent places will have the digits 9 (=9-—0), 8§ (=9—1),
9(=9—0) and 7 (=10—3), or

—1 30103 =2 69897

Example 2. Represent —0 18350 in artificial form (1)
increase 0 by I to get 1, (2) we have 1, (3) subtract from 9
the digits 1, 8, 3, and from 10 the digil 5, the zero at the
end remains unchanged This yields

—0 18350 =1 81650

To transfer a negative logarithm from the artificial to the
natural form, (1) reduce the absolute value of its characte-
ristic by unity, (2) place the minus sign to the left of the
number, (3) handle the digits of the mantissa as 1n the pre-
ceding case

* All subsequent equations ar oximate fo within half
unit of the last digit 4 are approx el one e
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Example 3. Represent 4 68900 in natural form (1) 4—] =3,
(2) we have —3, (3) subtract the digits 6, 8 of the mantissa
from 9, and the digit 9 from 10, the iwo zeros at the end
remain unchanged This yelds

4 68900=—3 31100

130. Operations Involving Artificial Expressions
of Negalive Logarithms

In the case of artificial expressions of logarithms there 15
no need to convert them to the natural form from the start
With a hittle practice, the techniques described below enable
one to handle artificial expressions directly just as fast as
natural ones

Addition. Mantissas are added as usual, after adding the
tenths it may happen that one or more units have to be
carried, 1f that is the case, then the carried digit 1s added
to the positive characteristics when adding the characterss
tics (which may include both positive and negative numbers)

Example 1. T 1735042 88694 -3 99206

Work.,  Here, adding the tenths yields 2+ 148-4+9=20
22111 (the carried digits are written at the top of the
117350 proper column) Write down 0 and _carry the 2
+§ ggggé Adding the characteristics yields 2-4+142+4-3=0

0 05250

1 1]
Example 2. 27458 Adding the characteristics here we
13089 get 142-d=T
10547

Subtraction The mantissa of the subirahend 1s subtracted
column by columd from the mantissa of the minuend both
when the former 1s less than the latter and vice versa In
the latter case, for the tenths digit of the minuend we bor-
row a positive unit from the charactenstic

= In subtracting tenths we had to
Example 1. 2174l borrow a posttive umt from the
51846 characteristic 3, which changed 1t
50895 to 3 Subtraction of the characte-
ristics ylelds 3—5=2



233

Here we do not have to borrow

Example 2. ?u?g from the characteristic, T—3==4

Here wte can see ﬂiat e;ren wtlll]en

H subtracting a posttive logarithm

Example 3. ——(!’ ég?? from a posttive logarithm, the re-

sult can be obfamned directly in

21894 srhﬁclal form It 15 advisable to

0 SO

In jont addition and subtraction, 1t 1s sometimes prefe-

rable to replace all subtractions by additions In this case,

if the subtrahend 1s a positive number, the corresponding

negative addend 1s converted to artificial form But if 1f 15

negative number spetifted 1 artificial form, 1t 15 _converted

to natural form and the minus sign 1s dropped The resul-
ting addends may then be called cologarithmic addends

Example. _0 1535—1 12361 1686—4 3009 =0 1535 --co-

log addend 1 1236+4-1.1686colog addend 4 3009=0.1535

+ 0 8764 -1.1686 45 6991 =5 8976

Work: 0 1535=<0.1535

+11686=1.1686
—4 3009 =15 6991

5 8976

Multiplication. To multiply an artifictal logarithm by a
positive number, mulhple/ separately first the mantissa and
then the characteristic, if the multiplier 1s a one-digit num-
ber, then the number of positive units obtained 1n multi-
plying the mantissa 1s immediately added to the negative
product of the multiplier into the characteristic However,
1f the multipher 1s mu[tl-dlflt, carry the multiplication by
the mantissa to the end and add the product of the multi-
plier by the characteristic.

Example 1. 3 264
x B 4397
7

39 0779
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Example 2 14397 Use the rules of short-cut multi
e X 17 plication, see Sec 55

1f 1t 1s necessary to tmultiply a negative logarithm
arhifictal form by a negative number, 1t 1s best to convert
the logartthm to natural form first

Division. If the divisor 1s a negative or multi-digit po-
sitive number, 1t 15 best to convert to natural form If the
divisor 15 a single-digit positive number, leave the dividend
i artificial form If the characteristic 15 exactly divisible,
then divide separately the characteristic and then the man-
tissa If the characteristic 1s not exactly divisible, then add
o 1t mentally a least number of negalive umits such that
the resulting number 1s exactly divistble, then add mentally
to the mantissa the same number of positive units

Example. 2 5638 6==1 7606 So as to make the characte-
ristic divistble by 6, add 4 negative umits Dividing the
result, —6, by 6 yields —1 Now fust add 4 positive umts
to the mantissa and then divide 4 5638 by 6

131. Finding the Logarithm of a Number

The logarithms of integral powers of 10 are found without
tables (Sec 129) To find the logarithm of any other num-
ber, do as follows

(A) Finding the characteristic For number greater than
unsty, the characteristic 1s equal to the number of digits i
the integral portion minus one

Examples. log 35 28 =1 (charactenisiic), log 3 528 =0 (cha-
racteristic), log 60,100=4 (characteristic) The numbers thus
found 1n these examples are then followed by a decimal
point and the digits of the mantissa

For numbers less than umty, the characteristic of the
artificial form of the logarithm 1s equal to the number of
zeros preceding the sigmificant digits of the number (inclu-
ding the zero in the units place)

Examples. log0 00635=3 (characteristic), log0 1002 ==1
(characteristic), log 0 06004=3 (characteristic)
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(B) Finding the maniissa To find the mantissa of a de-
cimal fraction (whether pure or mixed), drop the decimal
point and enter the table to find the mantissa of the resul-
tant whole number To do this, drop all zeros (i1f there are
any) at the end of the whole number For example, the
mantissa of the number 20 73 1s cqual to the mantissa of the
number 2073, the mantissa of the number 6,004,800 1s equal
to the mantissa of the number 60,048

When using four-place tables of logarithms, we leave only
the first four digits of any whole number, if the tables are
five-place we use the first five digits The other digits are
discarded because they do not affect (for all practical pur-
poses, at any rate) the digits of the mantissa given in the
tabie

A four-place table gives the mantissa of a three-digit
number directly, a five-place table gives the mantissa of
a four-digit number directly The mantissas of four- (five-)
digit numbers are found by adding so-called mean diiferences,
or proportional parts (see examples given below)

A four-place table of logarithms s given on pages 18-22

Example 1. Find the logarithm of the number 458 We
find the characteristic by nspection (without the use of the
table) 1 Dropping the decimal point, we get the whole
number N =458 Taking the first two digits (45), move along
row 45 to column 8 to find 6609 This 1s the mantissa We
thus have log 45 8==16609

Example 2. Find log 002647 We obtain the characteristic
by inspection, without the table 2 Dropping the decimal
point we have the number 2647 Taking its first two digits
(26) we move along row 26 up to column 4 (4 1s the third
digit of the given number) and read 4216 This 1s the man-
tissa of log 264 In the “proportional parts” of the table we
find the correction corresponding to the digit 7 (the fourth
digit of the given number). It 1s 1n row 26, column 7 of
proportional parts and yields 11 Add this to the earlier
obtatned mantissa to get 4216+ 11==4227, This 1s the man-
tissa of the given number We thus have log 0 02647 =2 4227,

Work  log 00264=24216
7 411
log 0 02647 =2 4227
Note The corrections obtained in the proportional parts

data of the table are computed by means of interpolation
(see Sec 64) The use of interpolation simplifies the work of
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the computor From the table we can see that the mantss
o640 2 Tess than the manirssa of 2630 by 4232 4316 1o
(decimal parts) The difference of 10 between the two num.
bers corresponds to a difference of 16 between the mantissas
Working the proportion, we get

£ 16=7 10=07, x=16 07=11

Fuve-place table of logarithms

Example 1. Find log 002647 We find the characteriste
by iaspection log 0 02647=2 Dropping the decimal pomt,
we have the number 2647 Find row 264 and go along it to
column 7 to find 275 These represent the last three digits
of the mantissa The first two (42) are found at the beginning
of the row The entire mantissa 18 42275, log 0 02647 =2 42975

In most rows, the first two digifs are not indicated They
are taken from the succeeding row (if there 1s an asterisk in
front of the last three digits of the mantissa) or from the
preceding row (if there 1s no asterisk)

Example 2. Find [0%6764 The characteristic 1s 3 Take
row 676 of the table of logarithms and go along 1t to column
4 to get the last three digits of the mantissa 020 They have
an asterisk and so the first two digits (83) are taken from
the next lower row 677 The entire mantissa 1s 83020,
log 6764 =3 83020.

Example 3 Find log66094 Find the characteristic by
inspection It is 0 Drop the decimal point to get 66094
In row 660 (the fust three digils of the number) we seek
column 9 (the fourth digit) and find the number 014 with
an asterisk These are the last three digits of the mantissa
of the number 6609 The first two (82) are found in the next
row The mantissa of log 6609 1s 82014 Find the correction
corresponding to the last digit, 4, of the given number In the
column PP we find a table headed by 6(d==6 1s the diffe-
rence between the mantissas of the numbers 6609 and 6610).
We find the number 4 in the left part of this table Oppo-
site 4 1s 2 4, which we round off to 2 Thisis the correction
which we add fo the earher found mantissa to get 82014
- 2=82016, log 6 6094 =0 82016

Work.
log 6 609 =0 82014
4+ 2

Tog 650940 82016
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132. Finding a Number from a Logarithm *,

Disregard the characteristic and seek, it the table, the
gtven mantissa or ome close to it This ts used to find a
certain whole number (it 1s found directly 1n the first case
and with the ard of a correction, tn the second, see the
examples) Then examine the characteristic. If 1t 15 zero or
positive, then the integral part is formed by taking one umit
more than the number of umts of the characteristic (zeros
can be annexed at the end of the number if necessary)
If the characteristic 1s negative, then place before the number
found as many zeros as there are negative umits in the cha-
racteristic, the zero on the left 1s set off bv a decimal point.
The number thus found corresponds to the given logarithm

Four-place table (see pages 18-22)

Example 1. Find the number whose logarithm 1s equal to
34683 (that 1s, the number 1034683 First 1n the fable seek
the mantissa 4683 or one close to 1t Run down one of the
columns, say column 0, and seek a number whose first two
digits are 46 or a number close to 46 We [ind such a number
(4624) 1in row 29 Thereabouts look for the mantissa 4683,
we find it 1n row 29, column 4 Hence, the number with
mantissa 4683 1s 29¢ Since the characteristic 3 1s positive,
we take 3+-1==4 digits for the integral part And so we
annex a zero at the end of 294 This yields 3 4683 =log 2940.

Example 2 Find the number whose logarithm 1s 3.3916
Proceeding as 1n the previous example, we do not find the
number 3916 among the mantissas, but we find a close number,
3909, at the tntersection of row 24 and column 6 Thus, the
number 246 corresponds to the mantissa 3909, which yields
the Nrst three significant digits of the desired number. The
fourth digit 1s found by computing the correction Thé given
mantissa 3916 exceeds the tabular value 3909 by 7 We seek
this digtt 1n the same row 24 i “Proportional Parts”. It 15
found 1n column 4 The digit 4 1s thus the fourth significant
digit of the desired number, the number 2464 corresponds
to the mantissa 3916 Now examine the characteristic. Since
it 1s negative and contamns tnree umits, we put three zeros
in front of ihe number we found and set off one decimal
place We thus have 3 3916=log 0 002464.

* When looking vp a number on {he basis of sts lour-place logarithm,
1t {s best to use a lable of antilogarithms (see Sec 133) It is not
adyrseble for 1iye-place work to double the volume of a logarithmic
table by adjomming a table of antilogarithms
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Work.

log x=3 3916
3909 log 246
7 4, x=0002464
3076 Tog 2464

Note 1. Bear 1n mind firmly that when seeking a number
on the basis of a logarithm the proportional parts correction
1s annexed to 1t and not added to the fast digit

Note 2. Do not forget that the correction 1s to be sought
in the same row as the number that 1s our approximation
to the mantissa If this row does not have the correction of
the mantissa we need, then take the next closest correction

Fe-place toble of logarithms

Example 1. Find the number whose lo%anthm 1s 3 43377,
Turn the pages noting the first two digits of the mantissas
the numbers increase). Find 43 and then in the viaimity
gook for the last three digits, or 377 These digits are located
at the intersection of row 271 and column & The number
with the mantissa 43377 1s thus 2715 Taking into account
the characteristic (2), we have 2 43377 =1log 0 02715

Note In most cases, the last three digits of a mantissa
are found m the same row as the first two digits, or in one
of the rows below, it 1, however, possible that the last three
digits will be the nearest row above, 1n which case they are
preceded by an asterisk

Example 2. Find a number whose logarithm 1s 0 14185,
Proceed in the same manner as 1n the above example, we do
not find 14185 among the mantissas but we do find 14176,
which 15 close The Tlast three digits of the mantissa (176)
lie above the first two and so we find an asterisk in front
The mantissa 14176, which stands at the intersection of row
138 and column 6, 1s associated with the number 1386, which
yields the first four digits of the desired number The fifth
digit 1s computed by interpolation The mantissa at hand
exceeds the tabular value by 185—176 =9 Now the difference
between the two closest tabular” mantissas 15 208~ 176 =32,

In the column PP we find a small table headed 32. In 1t,
to the right, we look for a number close to 9 and find 9 6.
Opposite this number we find 3 This digit 1s the fifth sig-
mficant digit of the desired number The number having the
mantissa 14185 1s 13863 Taking into account the characte-
ristic, we get 0 14185=log 1,3863.



239

Work
log x="0 14185
14176 1386
x==1 3863

s

_ s 5
TA185 13863

Note When finding a number from a logarithm, the pro-
portional parts data are annexed to the number and are not
added to the last digit

133, Tables of antllogarithms

The so-called table of antilogarithms (see pages 23-27) is
the same as a Jogarithmic table only the data are arranged
diiferently so as to stmpltfy finding a number from a given
Ioianthm Only mantissas (denoted by m) are given in the
table (in boldface type) If the mantissa has three decimal

laces, the table gives a whole number directly, 1f the man-
issa has four decimal places, the number is found with the
aid of proportional parts data (see examples) The given
characteristic 1s then inspected Ti 1t 1s zero or positive, then
the integral part has one more digit than the number of
umits in the characteristic (any number of required zeros
may be annexed at the end of the number) If the characte-
nstic 1s negative, then the number 1s preceded by as many
zeros as there are units in the characteristic The zero at the
extreme left 1s set off by a decimal point The number thus
found corresponds to the given logarithm

Example 1 Find a number whose logarithm 1s equal to
2732 (that 1s, the number [02732) Disregard the characte-
nstic and take the first two digits of the mantissa (73).
Go along row 73 up to column 2 to find the number 5395
Since the characteristic 2 1s positive, the integral part has
2+ 1=3 digits Our answer 15 _102732=:539 §

Example 2. Given logx=3 2758 Findx Disregard the
characteristic_and find the number n row 27 and column 5
It 1s 1884 Find the digit m the proportional parts data
corresponding to the digit 8 It 1s 3 Add it to the number
that was found 1[884--3=1887 Inspect the characteristic.
Since 1t 15 negative and contarns three units, we put three
zeros 1n front of the number 1887 and set off one decimal
place from the left We have

£=0 001887 or log 0 001887 =3 2758
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Work.
log 4 ==3 2758
275 1884
LG S
2758 1887
x=0 001887
Example 3. log x=00817 Find x
08t 1205
T4 2
0817 1207
x=1207
Note When finding a number from a logarithm with the
aid of antilog tables, the proportional parts data are always
added to the last digit and not annexed

134. Logarithmic Computatlons (Worked Examples)

ab
Example 1. Compute qua'CF where a=4 352,
=1 800
(1) Taking logs,

ab ab
logu=log s

at-b? = loEV(u+b)‘ (@=b)
=loga+log b —- [log (a+b)+log (2—b)]
(2 We find a+b and a—b.
+a=4 352 a==4 352
b=1 800 T b=1800
atb==6152 a—b=2552
(3) Fust compute loga--logh, then —,} [log (a+b)
+ log (a—6)]

log a=1log 4 352 =0 6387

logb=log | 800 =10 2553

log alog b=0 8940
log (a+by=1log 6 152=10 7890
log (2—b) =log 2 552 =0 4068
log (a+b) + log (a—b) =1 1958

+ 1log (2+b) +log (a—8)] =0 5679
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(4) Find logu and then u:

0 8940
0 5979
logu=0 2961, u=1977
L.
Example 2. Evaluate P==pe °  where p=10.33, &
=0 00129, £=1000, and ¢ 1s the base of natural logar:thms
(e = 27183)

(1) log P=log p—-%/l loge=log p—-= M,
where M =loge = 0 4343 (the modulus of common logarithms

with respect to natural logarithms, see Sec 128)
(2) Find log p

log p==log 10 33=1 0141
(3) Take the logarithms of the expresston -s—hM:
16g M =log &+ log -+ log M—log p
(4) Evaluate this logarithmic expression®
logk=1log 0 00129=3 1106
log h=10og 1000 =3 0000
log M =10§0 4343 =1 6378
colog p==colog 10 33 =2 9859
log% M =3 7343

Whence - hM =0 05424
(5) Evaluate log P (see ltem I) and then P:
logp =1 0141
T L hm=0 0542
log P =0 9599, whence P=9 118

136. C torics (Permutations and Combinations)

There are two basic ways of arranging items chosen from
some set of distinct objects (elements). They are termed per-
mutations and combinations.

16-652
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1. Permutations. Take m distinct objects (elements) a,
dg, , an Rearrange these elements in all possible ways
keeping their number constant and only changing their order
Each such arrangement (including the original one) 1s called
a permutation The total number of permutations of m ele.
ments is denoted by P, This number is equal to the pro.
duct of all 1ntegers fom 1 (or, what 15 the same thing,
from 2) to m inclusive

Pp==1:2.3. , «(m—1)m=m! )

The symbol m! (read “m factorial”) denotes the product
12.3° m—l)m

Example 1. Find the number of permutations of three
elements @, b, ¢ We have Pyj=1 2 3=6 Indeed, we havep
permutations*

(1) abe, (2) acb, (3) bac, (4) bea, (5) cab, (6) cba

Example 2. In how many ways can five posts be assigned
to five persons elected to the administrative board of a sports
club® Wrnite a list of the posts and opposite each write a
name This will be one permutation The total number of
such permutations 1s Py=1-2 3 4.5=120

Note When m==1 1n the expression 1.2 3.  .m, there 15
only one number, 1 It 1s therefore agreed (by defimition)
that 11==1 For m=0 the éxpression 1.2.3 m becomes
meaningless, and so 1t 1s defined that 0l=1 See Item 2
below for the justification of this convention

Let us now take this set of m elements and make up
groups of # elements In each, arranging the n elements in
different order The resulting arrangements are termed per-
mutations of m elements taken n at a time The total num-
ber of permutations of m elements n at a time 1s denoted
by Pf (or ,P,) This number 1s equal to the product of n
successive 1ntegers of which the largest 1s m

Ph=m(m—1)(m—2 . [m—(n—1)] @

Example 3. Find the number of permutations of four ele-
ments abed taken two at a time We have P}=4.3=12
These permutations are the following

ab, ba, ac, ca, ad, da, be, cb, bd, db, cd, dc

Example 4 A meeting elects 8 persons to its supreme
body, which then chocses a chairman, a secrelary and a
treasurer In how many ways can these posts be assigned?



The desired number 1s the number of permutations of 8 ele-
ments taken 3 at a time, or Pj=8.7.6=33

2, Combinations. Take m distinct elements and make up
groups of n elements in each but disregard the order of the
elements 1 each group We then have combinations of m
elements taken n at a time

The total rumber of distinct combinations 1s denoted
by Cp This number (which 1s integral of course) can be
represented by the formula* (see Ttem I)

P - ml
Cn =Pn p,’:‘ ey ey @)

By definition we assume Cp =1 [this value 15 obtained
from (3)].

The expression 1s often abbreviated to (7).

!
ny (m-n)l
it 1s clear that (F)={%_,), that 15, CH=Ch™"
In computations 1t 1s often more conventent to make use
of other expressions for the number of combinations, namely

on __fg;__m(m-l) [m=(n—1)]
m= B, T2 n
or
C3‘=P#-”=m(m~1) (n+1)

Prm—n T2  (m=n)
Example 5 Find all the combinations of five elements
abede taken three at a time We have CE:%:ID These

ten combinations are

abe, abd, abe, acd, ace, ade, bed, bee, bde, cde

Example 6 There are eight candidates for three counters
In how many ways can the assignments be made? Since the
duties of each counter are the same, we have combinations
and not permutations, asin Example 4 of Item 1 The sought-
for number 13 676

7
Cg =m—56

Combinatorial mathematics deals with many more types

of arrangements than those described above. One of the most

* There Is only one combinatlon containing all m elements and
50 Czsl Formula (3) glves this value only If we agree that Oi=1.
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important types 1s permutations with repetitions of the ele.
ments These are defined as follows Take m clements, of
which m, are identical elements of type one, m;, are identical
elements of asecond kind, ete Permute them 1n all possible
ways. We then get permutafions with repefitions The number
of distinct permutgtlons with repehho?s 18
‘" m
PP, Prp O mimg
My Mo +rmp=m, and k 15 the number of kinds
( 1l-5+~x:m§1;il—!: 7 Fmﬁ the number of distinct permutatnox)Js of
the letters agabbcc with repetitions of the elements Inter-
changing the first two letters does not result in a new ar-
rangement The same occurs when we interchange the fourth
and fifth letters, and 1n other cases But the arrangements
abaabee, caaabeh and certain others are distinctly new ones
In this example, my =3, ty =2, Mmy==2, m==imy -+ my+my=7
The number of distinet permutations 1s
7234587 g1
317218 2329
Example 8. Find the number of distinct permutations made

up of the signs +—+ + 4 ——— Herel, my=4, my==3,
m=m,+my=7 The desired number 1s ;ﬂ~73-|-=35 From this

example 1t 15 easy to see that the number of permutations
of m elements, among which ate repeated m, elements of
the first kind and m, elements of the second kind, 1s equal
to the number of combinations of m elements taken m, ata
time, or to the number of combinations of m elements taken m,
at a time Indeed, each permutation 1s associated with one
and only one selection of positions with the+sign Thus, in
the permutation + - -——+—- the 4 signs occupy the I,
2, 5, 7 positions "so that the corresponding combination is
1, 2, 5, 7 Hence, there are as many permutations as there
are distinet combinations of seven numbers taken four at a
time

136. The Binomlal Theorem

Newfon’s binonual theorem states a formula expressing
(a--by in the form of a polynomial for positive integral n*

* The term “Newton’s binomial theorem” 15 a misnomer, firstly
because (a+6)? 1s not a binomial, secondly, the expansion of {a+b)*
for positive inlegral 7 was known before Newton’s time But to New-
ton goes the credit for the bold and extremely fruitful idea of exten-
ding the expansion to the case of negative and fractional n
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The binomial formula for positive integral = 1s
(@+b)=ant () am=1 b+ (3) am-2 b2+ () an-ap3 4.
+(n%h) ab=1 4o o
or, what is the same thing (see p. 242),

1 1
(@b =0t gy @ b el L (@)

Accordingly, 1t 1s assumed that (§)=(})=1 and also Ol=1
(see note on page 242) With this convention, the first and last
terms of the expansion are of the same form as the other terms.

For computational purposes 1t 1s more conventent to use
the formula

(a4 byr=an +Mn-.1b+f‘_(_;’_'_;_l_)an—zbe+ E-("-:r%%“—-z)-a"-’b’

+ Fbm 3
Example 1. (a-Fb)% =a3+3a% +32ab® - 58 — 43 4 3q2p
12
+ 302449

Example 2 (14x)¢=1+6x+ 1552+420x% 4 15544654 y0
The numbers 1, n, 2421 , n=ln—2) ,ete are ter-

T2
med binomal coeffictents They may be obtained 1n the fol-
lowing manner using only addition In the top row (see
accompanying array) write two umts All other rows begin
and end with unity The intermediate numbers are found by
adding adjacent numbers of the row above Thus, the num-
ber 2 1 the second row 1s found by adding the two units
of the first row, the third row 1s ogtamed from the second
this way 1+4-2=3, 24-1=3, the fourth row from the third
as follows 1+3=4, 3+3=6, 3+1==4, and so forth The
numbers 11 one row are the bimomial coefficients of an
appropriate power Thus array is called Pascal’s triangle (or
the arithmetic triangle)

P
I 2 1
3
4 6 1
t0 51
1615 20 15661
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The Binomial Theorem for Fractional and Negative
Exponents

Suppose we have the expression (a--6)" where n s 4
fraciional or negative number Let |a|>|&] Represent

(a+b)r as a* (14+x)* The quantity x=ai. its absolute valye

1s less than umity The expression (1--x)" may be computed
to any desired degree of accuracy by formula (3)

Example I. ‘—_:x =(1+4x)~1 Heren=—1

an—1)_ (=1)(=2)
Since ‘—‘ﬁ'——"—'l"—z__—‘lv
ala—N(n—=9) _(=D{(=D (=3 4
123 1238 -

and so on, we have (1+%)~1=1—x+4 22t yi— |

The number of terms in the righi-hand member s infi-
nitely great, bul when |x| <1, the sum of the terms, as
their number 1ncreases withoyt bound, tfends to the Limit
-]-;l-; (the expression 1n the right member, if [2| <1, 15 an
mfimtely decreasing geometric series)

Example 2 Compute V1,06 !o‘ﬁve decimal places

Represent VT06 as (14006)2 and apply formula (3)

T i T (ai"‘)
(14-006)2 =145 006+—5—-0062

1,1 1
(=1} (=2
+2—(2_I_l)_§(2~2-ooas+. . =1-+0.03—0 00045
+ 0.0000135—...

Suhsequent terms do not affect the first five decimal
places and sc, summing the four terms written out, we have

V'T.06 ~ 1.02956

Example.3. Find five sigmificant figures of the number
/T30,
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The cube nearest to 130 is 125==58 Represent Vm

! ! 1 1
as (12545)3 =125 3 (1 0 04) 3 =5(1+0 04) 3 Carry the
answer to seven places (taking note of the fact that the error
1s accumulative 1n addition and 1s then increased fivefold):

1 l_(i_l)
(140 09T =140 o4+-3-.1-"‘~2—_'o 042

Lhoy (-2
+__________s(a 12)23 )-oo4a+...

= 1400133333 — 0 00017784 0 0000040 — . .. ==1 0131595
The discarded terms do not affect the seventh digit and we
find 5 1 0131595=5 0657975 Accurate o the fifth decimal
place, we have §/'130=>5 06580 A more precise computation
(with regard for the next term) yields 5 0657970, all decimals
correct

Using this device we can extract the root of any degree
of any number rapidly and to any desired degree of accuracy.

Generalized Binomial Formula

@t st gyt oFar =3 e gy g
where n 1s a posttive integer

The symbol E signifies that we must take the sum of
all terms of the form

n!

ngn
T T ™ M g

where n is the given exponent and ny, ny, .. ,n are arbit-
rary integers or zeros whose sum 1s equal fo n. The number 0!
is taken equal to I

Example
@ btotdp= Y, b am b o e
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the number n=3 may be given as the sum of k=4 integral

sumands thus
3=3404-040,
3=2-+4+140+0,
3=1+141+0
Accordingly, we have

(a-+b- ¢+ = grggrgr (@00 -+ %300

1 OBRCD - QOBNCOS) + 5 (a0 ab o
+ a2b0d® +aboctd - )
+ iy (abod®4-abeod +abhod + av%ed)
=3B+ - d3 4 3 (@b + ab® 4 a%c - ac? + a%d 4 ad?
- b - be-t b4 bt® - 6%+ c?) +6 (abe +abd +acd + bed)

Properties of Binomial Coefficients

1 The coefficients of terms the same distance from the
ends of the expansion are the same
For example, 1n the expansion

(a )8 =08~ 6a8b - 15a4b% 4 200°63 + 150%* 4 Bab® |- b8

the coefficients of the second and second to the last terms
are the same, 6, the coefficients of the third term from the
beginning and the third from the end are the same, 15.

2. The sum of the coefficients of the expansion of (@+-b)2
1s equal to 2# For example, n the expansion above we have

|46+ 154204 1546 | =64=28

3. The sum of the coefficients of terms i odd positions
18 equal to the sum of the coefficients of terms 1n even posi-
tions Each one 15 2#-1, for example, 1n the expansion (a~b)¢
the sum of the coefficients of the ist, 3rd, 5th and 7th terms
1s equal to the sum of the coefficients of the 2nd, 4th and
6th terms

L4 164 154 1 == 64204 6 =32=28



GEOMETRY
A. PLANE GEOMETRY

131, Geometric Constructions

I Io draw, through a gwen pont C, a sirargh! line pa-
rallel {o a gren straight line AB

Open a pair of compasses and draw an arbitrary circle
(F1g 22), centre C, such that it intersects AB Using the

aklmnb

\d L f /e

80
Flg. 22 Fig 23 Fig 24.

same opening of the compasses lay off on AB from one of
the points of intersection, say M, a line-segment MN (in
either direction) and then describe the arc ab from N Jount C
to the pomnt P of intersection of the arcab with the circle
PC 1s the desired straight line.

2 To bisect a gwen line-segment AB

Using a pair of compasses with an arbitrary opening (but
greater than '/, AB) describe two arcs from the endpoints
of the line AB Join their points of intersection (C and D)
with a straight line The intersection point O of the straight
lines AB and CD 1s the midpoint of the line AB

3 To dwnde a gwen line AB info a gwen number of equal

parts

In Fig. 24 draw a straight line ab parallel to A8, on it
lay off as many equal segments of arbitrary length as needed,
say ak=hl=Im=mn=nb Draw the straight lines 4a, Bb
to intersert in the point O Draw straight lines 0, 0l, Om,
On These lines will intersect AB at the points K, L, M, N,
which divide AB into the required number (in our case, 5)
of equal parts
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4 To dunde a gwen line-segmeni nto paris proporfional
to given quantilies

Ttus problem 1s solved 1n the same way as Problem 3,
but on ab we lay off segments proportional to given quants-
ties

5 To draw a straighi line perpendicular to a gwen
straight hine MN from a gwen potnt A,

From an arbstrary pornt O without the given strarght
line (Fig 25) draw a arcle of radius OA Draw a diameter

Y
[0 \ pe
‘\\ N\ 7 M % \\ ; N
M S N —g
A 8 A 8
Flg 25 Fig 26

BC through the second point B of intersection of the circle
with the line MN Jomn A and the endpoint of the diame-
ter, €, CA 1s the desired perpendicular

This mode of construction s particularly useful when
the point 4 hes close to the edge of the paper The method
tt>f solving the next probfem (first case) has the same advan-
age

gﬁ To drop a perpendicular from a gwen potnt C to a
straight line MN

From point C draw an arbitrary inchned line CB (Fig 26)
Find 1ts midpoint O (see Problem 2) and from 1t describe
a aircle of radius OB The curcle also intersects MN at
pont A Join A and C to get the desired perpendicular

When C lies close to MN, this method a? construction
may result 1n a considerable error The following 1s a pre-
ferable alternative construction From point C as centre
(Fig 27), draw an arc DE ‘cutting MN at points D and E
From D and £ as centres, draw two arcscd, ab of the same
radius, they intersect at F Draw FC to obtain the desired
perpendicular

7 For a gwen vertex K and ray KM, lo construct an
angle equal lo a gwen angle ABC

From the vertex B (Fig 28) describe an arc PQ of arbi-
trary radius Using the same opening of the compasses,
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describe from e centre K an arc pg From point p deseribe
an arcap of radius equal to PQ Joimn to K the mtersection
pou]lt q of arcspg and af The angle gKM 1s the required
angle

@A
B e /
At
27 \
<“p
oL
7z
Fig 28,

8 To construct angles of 60° and 30°

From endpoints A and B (Fig 29) of an arbitrary line
AB describe two arcs of radius AB Join their iniersection
points C and D with a straight line which cuts AB at its
midpoint O Join A and C with a straight line / CA0=60°,
£ ACO=30°

8

A ¢
Fig. 30

9 To construct an angle of 45°
Lay off on the sides of a right angle BAC (Fig 30) equal
segments AB and AC and join their endpoints with a
;tralght lm\e CB The line BC forms 45° angles with AC and
B

10 To bisect a gwen angle BAC

From vertex A (Fig 3l) draw an arc DE of arbitrary
radius From points D and E (where DE cuts arms AB and
AC) draw the arcsab, cd with arbitrary equal radn (it is
most convenient to use the original opeming of the compas-
ses) Join therr point of intersection to A, The resulting
straight hine AF bisects the angle BAC.
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11 To tnisect a gwen angle BAC

It is impossible to make this construction with straigh-
tedge and compasses alone Using compasses and a graduated
ruler (say with centimetre divisions) the construction can be
carried out as follows (Fig 32) from point A describe 2

Ay 8

£.58 N 7
TR e e
Fig 82 Fig 83.

arcle of arbitrary radius AC Produce AC beyond A Place
the ruler so that it passes through B, then revolve 1t about B
until ED (the line-segment between
the circle and the straight line AK)
1s equal to the radius AC The angle
EDF 1s one third of the angle BAC

12 Through two gwen ponis A
and B to draw a crcle of gwen rq-
dius r

From points 4 and B (Fig 33)
describe arcs ab and cd of radius r
Their point of 1htersection 1s the centre
of the desired circle

13 To draw a circle throvgh three guen points A, B, C not
lying on a single straight line .

Referring to Fig 34, draw straight hnes ED and KL
perpendicular to lines AC and BC at their midpoints (see
Problem 2) The pomnt O of intersection of these perpendi-
culars 15 the centre of the desired circle

14 To find the centre of a gwen arc of a circle

Take three points an the arc spaced as far apart as pos-
stble Then proceed as in Problem 13

15 To bisect m gien arc of a circle

Join the ends of the arc by a chord Draw a perpendi-
cular through the midpoint of the chord (see Problem 2)
It bisects the arc (and the chord)

18 To find the locus from which a given line AB 1s seen
al a gwen angle o

The desired locus (Fig 35) 1s in the form of two arcs of
equal circles with endpoints at 4 and B (The pomnts A
and B do not belong to the locus) The centres of these arcs
are found as follows, draw perpendiculars AD and BK to the
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endpoints of AB (see Problem 5) Construct an angle KBL=a
We find point C at the mtersection of BL and AD The
midpomt O of line BC 1s the centre of one of the sought-for
arcs The other arc 1s constructed similarly

{7 To draw through a gwen point A a tangent to a grven

crcle
INE4
[ ‘ 8
4
Flg 35 Fig 36

It A hes on the circle (Fig 36), construct BAC perpen-
dicular to radius OA (see Problem 5), CB 1s the required
tangent line

Flg 38 Fig 39

If A les without the circle (Fig 37), bisect A0 (see
Problem 2} and from the midpoint B draw arc CD of radius
BO Jon D and C to A with straight lines The straight
lines AD and AC are the required tangent lines

18 To construct an exlerior common tangent to two given
circles

(a) If the radui of the given circles are equal, the problem
always has two solutions (Fig 38) Through centres A and B
draw diameters KK, and LL, perpendicular to the lme AB
of centres Drawing KL and K,L; we get the required so-
futions

(b) Let the radu of the circles be unequal R > r; from
the centre of the larger circle draw a circle of radius AC=R—r
(Fig 39) Draw to this circle from the centre B of the smaller
crcle the tangent line BC (Problem 17). Join centre A to
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the potnt of contact C. Produce it to meet the larger circle
at D Draw BE perpendicular to BC to meet the smaller
crcle at E Jom D and E The straight lime DE 15 the
desired tangent The problem admits two solutions (DE and
D,E)) f the smaller circle does not lie wholly within the

&

Flg 40 Flg 41

larger one If the smaller circle lies wholly within the larger
one (Fig 40), the problem does not have a solution In the
intermediate case when the circles are tangent internally

L

K
Fig 42. Fig 43

(Fig 41), the problem has one solution through the point M
of internal contact draw KL | AM.

19. To construct an interior common tangent to two gwen
creles

The problem has no solution if one of the circles fies
within the other and also 1f the circles intersect In the case
of external contact (Fig 42) the problem has one solution:
draw KL | AB through M.

In all other cases we have two solutions (DE and D,E,,
Fig 43) From centre A draw a circle of radius equaf ilo
the sum of the radii of the given circles From centre B
draw the tangent BC to the constructed circle (Problem 17).
Jomn the point of contact C and the centre A; the straight
line AC cuts the circle (4) at point D. From B draw a radius
BE_[LBC. Jotn 1ts extremity E to D, ED is the desired tan-
gent. The other tangent, E,D,, is constructed analogously.
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20 To circumscribe a circle about a gven triangle ABC

Draw a circle through vertices A, B, C (see Problem 13).

21. To nscribe a cirele in a gwen (riangle ABC.

In Fig 44 bisect two angles of the triangle, say A and
C (see Problem 10) From the point O of intersection of the
bisectors draw OD_| AC (see Problem 6) Using radius 0D
describe the required circle

A,

Fig. 44 Fig 45

22, To crcumscribe a circle about a gien rectangle (or
square) ABCD.

Draw diagonals BD and AC (Fig 45) From the point O
of their intersection draw a circle of radius 04

A M
INE 7S
p&zps K @

1/
Fig 48, Flg. 47, Fig., 48.

It 15 1mpossible to circumscribe a circle about an oblique-
angled parallelogram

23 To inscribe a circle in a rhombus (or square) ABCD

From the pomnt O of intersection of the diagonals draw
OF | AB (Fig. 46) The circle with centre O and radius OF
15 the required circle

It 15 not possible to nscribe a circle in a nonequilateral
parallelogram.

24 To circumscribe a circle about a gien regular polygon

If the number of sides is even (Fig. 47), join any two
airs of opposite vertices by straight lines AB and CD, From
fhe point O of their intersection describe acircle of radius 04.

If the number of sides 1s odd (Fig. 48), drop perpend:-
culars KL and MN from vertices K and M onto opposite
sides From the intersection point O describe a circle of
radius 0K,
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25 To inscribe a circle 1n a gwen regular polygon

The centre of the circle 1s found as in Problem 24 Frop
the centre drop a perpendicular ON on one of the sides
(see Fig 47) Describe the circle using radius ON (or oL,
Fig. 48).

g26 ’)Fn construct a {riangle, given three sides a, b, and ¢

Let the longest be a If a < b+¢, then the destred tr.
angle can be constructed as follows: lay off BC=a (Fig 49)
From tts extreruties B and C describe arcs mn and pg of
radn ¢ and b Jon the pomnt A of intersection of the arcs
to B and C

M
4
T I\
R A TN
T A N
Fig 49. Flg B0 Flg. 51

8

If a> b--c, then the problem has no solution In the
intermediate case a==b--¢, only a degenerate triangle meets
the conditions 1ts three vertices hie on one straight line.

27 To construct a parallelogram, gwen sides ¢ and b and
one angle a

Construct / A=a (see Problem 7), on its sides lay off
AC==a, AB=0b (Fig 50) Draw from B an arc mn of radius a
and from C an arc pg of radius & Jotn the point D of inter-
section of these arcs to C and B

d’ﬁ& To construct a rectangle, gwen the base and the alii-
tu

Proceed as in Problem 27, construct the right angle « as
in Problem 5

29. To construct.a square, given a side.

Proceed as 1n Problems 27 and 28

30 To construct a square, gwen its diagonal AB

Through the midpoint of AB (Fig. 51), draw a perpen-
dicular MN to AB (see Problem 2). From O, its point of
intersection with AB, lay off on MN lengths OC and 0D
equal to OA ACBD 1s the required square

31 To inscribe a square in a gien curcle

Draw two mutually perpendicular diameters AB and CD
(Fig 52) ACBD is the required square.
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32 To circumseribe a square abou!l a gwen curcle

Draw two mutually perpendicular diameters AB and CD
(Fig 53) From their extremities as centres, describe four
semicircles of radu OA The points of their intersection,
F, G, H, and E, are the vertices of the required square.

[ F ¢ &
4\ ﬁf\g‘?\ﬂ
\ZE VS

D

Fig 52 Flg. 83 Fig. 54.

A

33 To tnseribe a regular pentagon in o gwen circle
Draw two mutually perpendicular diameters AB and CD
(Fig 54) Bisect the radlus AO to get point E From E draw
an arc CF of radius EC, cutting the diameter AB at F.
D
EATNF
/

A 5

Flg 56

From € draw an arc FG of radius CF cutting the given
circle at G, CG (=CF) 1s one side of the required figure
With the same radius, draw arc mn from centre G to get
one more vertex, H, of the desired figure, ete.

3134 To inscribe a regular hexagon and a iriangle in a
circie

Opemn%1 the compasses to the radius of the circle, strike
arcs on the circumference at ponts A, B, C, D, E, F
(Fig 58). Join A, B, C, D, E, F 1n succession to obtain
a regular hexagon Joining alternate points, we get a regu
lar Feqmlateral) triangle

35 To inscribe a regular oetagon wn a gwen circle

Draw two mutually perpendicular diameters AB and CD
(Fig 56) Bisect arcs Alg, DB, BC, CAby pomnts E, F, G, H
(Problem 15) Join 1n successton the eight points thus ob-
tained

36 To inscribe a regular decagon in a giwen circle,



258

Construct a point F (see Fig. 54) as in Problem 33, OF is
a side of the required figure Opening the compasses to the
length OF, strike 10 consecutive arcs on the circumference
These are the vertices of the desired figure

Regular polygons mscribed 1n a circle and having 7 and 9
sides are not constructible exactly by means of straightedge
and compasses.

Fig &8,

37 To arcumscribe about a curcle a regular triangle,
pentagon, hexagon, octagon, and decagon

Mark on the circumference of a circle (Fig. 57) the ver
tices A, B, .., F of a regular 1nscribed polygon with the
same number of sides (see Problems 33 to 36) Draw rady
0A, 08, . , OF and produce them. Bisect the arc AB by
the point £ (see Problem 15) Through E draw JP | QE,
The length JP between the extenstons of adjacent radiy s
a side of the required figure On the extensions of the other
rady lay off lengths OK, OL, ..., ON equal to OP, Jomn
the pomts J, K, L, . ,, N, P in successton The polygon
JKLM .. NP 1s the required one

38 To consiruct a regular n-gon, gwen g side a

On a length BK (Fig 58), equal to 2a, as diameter,
construct a semicircle. Divide the semicircle into n equal
parts by the points C, D, E, F, G (these are the vertices
of a regular nscribed n-gon, n=6 1 our figure) Connect
centre A with all the points obtained, except the last two
(K and G), From B draw an arc ab of radius AB, marking
pownt L on the ray AC Using the same radis, from pont L
draw an arc cd, marking pomnt M on the ray AD, etc Jomn
the pomnts B, L, M, N and so on 1 succession The polygon
ABLMNF 15 the required one

The problem 1s not always solvable by straightedge and
compasses; for instance, for n=7 and n=9 the figure 1s
not constructible since 1t 1s impossible, using straightedge
anclt compasses, to divide a semicircle 1nto 7 or 9 equal
parts.
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138 The Subject of Geometry

Geometry (see Sec 139 on the origm of the word) studies
the spatial properties of objects disregarding all other features.
For instance, a rubber hall 25 ecm n diameter differs from
a cast-iron ball of the same diameter 1n weight, colour,
hardness, etc Geometry disregards all these qualittes of the
balls and states that their spatial properties (shape and di-
mensions) are the same From the viewpoint of geometry,
both objects represent a sphere of diameter 25 em

An object conceptually stripped of all properties except
1ts spatial qualities 1s cal¥ed a geomelric body (solid) A sphere
15 a geometric solid

Extending the process of abstraction, we get the concepts
of a geometric surface, a geometric line and a geometric
point We mentally separate the surface of a solid from the
body 1t belongs to and divest 1t of thichness We deprive
a lime of thickness and width A point s without any dimen-
sions whatever We conceive of a point as serving as the
boundary of a line (or of a part of 1t), a line, as a boun-
dary of a surface, and a surface, as a boundary of a sohd
We visualize the pomt as moving and, 1n this motion, as
generating a line, a line m motion generates a surface,
a moving surface generates a solid

There are no points 1n nature devoid of dimensions, but
there are objects so small that they can conveniently be
taken for geometric points Neither are there any geometric
lines or geometric surfaces n nature, but all the properties
of lines and surfaces revealed in geometry find multifarious
applications in science and engineering This 1s due to the
fact that geometric concepts are products of the spatial
properties of the real world about us It 1s the abstract form
of geometric concepts which serves to strip these properties
of all nessentials and exhibit them m pure form,

139. Historlcal Survey of the Development
of Geometry

The notions of geometry originated in remote antiquity.
They arose out of the necessity to determine the volumes
of various objects (vessels, granaries and the like) The most
ancient written records which contain rules for determining
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areas and volumes were compiled 1n Egypt and Babylonia
about 4000 years ago About 2500 years ago the Greeks took
over from the Egyptians and Babylomians their geometr)c
findings This knowledge was first used mamly n measuring
land areas, whence the Greek term “geometry”, which means
“earth measurement”

The Greek scholars discovered numerous geometric pro-
erties and set up a harmonious system of geometric know-.
Fedge For the basic starting principles they took the most
elementary geometric properties suggested by experience
The other properties were derived from these by logical
reasoning

About 300 BC this system took on a finished form as
the “Elements” of Euclid, a work which also includes the
essentials of theoretical arithmetic The geometric sections
of the “Elements” hardly differ erther 1n content or rigour
from present-day school textbooks of geometry

But we find nothing there about volume, the surface of
a sphere, or the ratio of the circumference of a circle to the
diameter (although there 1s a theorem stating that the areas
of circles are 1n the ratio of the squares of the diameters)
The approximate value of this ratio was known from expe-
rience long before Euclid’s time, but 1t was only tn the
middte of the third century B C that Archimedes (287—212)
gave a rigorous praof that the ratio of the circumference of
a crcle to the diameter (our number n) lies between

3-;— and 3%‘9 Archimedes also proved that the volume of a
sphere 15 less than the volume of a circumscribed cylinder
by exactly | - times and that the surface of a sphere 1s

1—;— times less than the total surface of a circumscribed

cylinder

The methods used by Archimedes in the solution of the
problems mentioned above contain the embryo of the meth-
ods of higher mathematics Archimedes applied these meth-
ods to the solution of many difficult problems n geometry
and mechanies that were very important to construction
work and navigation. For instance, he determined the volu-
mes and the centres of gravity of many solids and studied
tge question of the equ;?lbrmm of floating bodies of diverse
shapes

The Greek geometers investigated the properties of many
curves that have theoretical and practical importance. They
made a particularly deep study of conic sections (see Sec. 167)
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in the second century B C, Apollonius enriched the theory
of corie sections with many important discoveries that have
remained unsurpassed for eighteen centuries

In his study of cotic seclions Apollonius made use of the
method of coordinates (see Sec 211) This method was applied
to curves 1n the plame only 1n the 1630's by the French mathe-
maticians Fermat (1601—1655) and Descartes (1596—1650)
The engineering work of that day did not demand anything
beyond plane curves It was only one hundred years later,
when the demands of developing astronomy, geodesy and
mechanics became urgent, that the coordinate method was
apphied to the study of curved surfaces and lines drawn on
curved surfaces

A systematic development of the coordinate method 1n
space was given i 1748 by the great Euler

For over two thousand years the system of Euclidean
geometry was regarded as immutable But 1n 1826 the celeb-
rated Russtan mathematician N I Lobachevsky created a
new geometric system The starting propositions of this system
differ from those of Euclid in one point only, yet this dif-
ference leads to a multitude of very essential peculiarities
(In Euclidean geometry, through a point A there can pass
only one straight line in the same plane as a given straight
hine BC without intersecting 1t In the geometry of Loba-
chevsky there are infimtely many such straight lines)

Thus, 1n Lobachevskian geometry the sum of the angles
of a triangle 1s always less than 180° (1n Euclidean geometry
it 1s equal to 180°), and the defect (the amount less than 180°)
1s the greater, the larger the area of the triangle It mught
appear that practical experience refutes this and other con-
clusions made by Lobachevsky But this 1s not so Measur-
ing the angles of a triangle directly, we find their sum to
be approximately 180° The exact value eludes us because
of the imperfections of our measuring instruments. On the
other hand, all the triangles that we can measure are too
small for us fo notice the defect m the sum of the angles
via direct measurements.

Subsequent development of Lobachevsky's 1deas showed
that the Euclidean system is insufficient for a study of many
problems of astronomy and physics where we have to do
with bodies of immense proportions However, 1t suffices
fully to handle all practical problems of our mundane hfe
And since, besides, 1t has the advantage of simplicity, 1t
will continue to be used 1n engineering calculations and 1t
will continue to be studied at school.
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140. Theorems, Axioms, Definitlons

An argument that establishes some property is called a
proof or demonstration The property demonstrated is called
a theorem 1In the proof of geometric theorems we proceed
from earlier established properties, some of which n turp
are theorems, however some are constdered 1n geometry to be
basic and are assumed to be true without proof Such pro.
perties, or self-evident truths, are called axioms

Axioms originated from expertence, and 1t 1s experience
agamn that verifies the truth of axioms as a system This
venfication consists tn the fact that all the theorems of
geometry are 1n agreement with experiment, which would not
be the case if the system of axioms were false

Not a single geometric property taken separately is an
axiom, since it can always be demonstrated on the basis of
other properties For nstance, the geometric axiom on the pro-
perty of parallel lines reads “only one line can be drawn paral.
le! {o a given lme through a given point not on this lipe”
(the axiom of parallels) Proof is given, on the basis of this
axiom (and a oumber of others), that the “sum of angles of
a triangle 1s 180°" Yet we could take this latter property
for the axiom 1n place of the axiom of parallels (leaving
the other axioms unchanged) Then the property of parallel
straight lines may be demonstrated thus becoming a theorem

Thus, a system of axtoms can be chosen 1n a variety of
ways The sole requirement ts that the set of axtoms be suf-
fictent to derive all the other geometric properties In geo-
metry, the attempt 1s made to reduce the number of axioms
as far as fosslbe This 1s done n order to elucidate the
logical relationships between the separate properties

Axioms are preferably chosen from among the most ele-
mentary geometric properties True, opinions may differ as
to the simplicity ofp a property

Some of the ‘concepts of geometry are taken to be imitial
and their content 1s extracted from”experience alone (such,
for imstance, 1s the notion of a point) All other concepts
are dertved from these imtial ones They are defined and
such explanations are called defintions = Every geometric
definttion either stems directly from the itial “concepts or
ts based on earlier defined concepts

One and the same geometric concept may be defined dif-
ferently For example, the diameter of a circle may be defined
as a chord that passes through the centre, or as the chord
of greatest length, We can take one of these properties as
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the defimition and then grove the other property Preference
1s given to the most elementary property, here too, inci-
dentally, 1t 1s 1mpossible to ensure complete and general
agreement

141, Stralght Line, Ray, Line-Segment

A straight line can be mentally extended 1n either direc-
tion indefinitely. A straight Iine that 1s bounded on one side
1s called a half-line, or a ray A straight line bounded on
both sides 1s called a ltne-segment

142. Angles

An angle (symbol /) 1s a figure (Fig 59) formed by two
rays, OA and OB (the arms or siudes of the angle), emanating
from a single point O (verfex of the angle) 8

An angle 1$ measured by the amount of
rotation about the vertex O which carries
ray OA to OB Wide use 1s made of two 0 A
systems of measuring angles 1n terms of Fig 59.
radians and degrees They differ in the
choice of the unmit of measurement Radian measure 1s dis-
cussed 1n Sec 180

Measurement of angles in degrees * The umt here s one
degree = 1/360 of one complete rotation (symbol. °) Thus,
one complete rotation (exemplified by the hand of a clock
moving from 0 hrs to 12 hrs) constitutes 360°. A degree
consists of 60 minutes (denoted’); a minute consists of 60
seconds () For example, 42°33'21” 15 read as “42 degrees,
33 munutes, 21 seconds”.

An angle of 90° (1 e, one fourth of a complete revolu-
twtn) 1s called a right angle (Fig 60) and 1s denoted by the
letter d

* The degree unlt of angular measure goes back to remote anti-
quity (see Sec 21, ltem 4) During the first French bourgeols revo-
lutlon of 1793, a centesimal system of angular measurement was
introduced in keeping with the decimal (metric) system of measures
which was introduced at that time In that system a right angle was
divided into 100 degrees (called grades), one degree into 100 minutes,
and one minute into 100 seconds This system is still used today but
not wldely, mostly in geodetic measurements
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An angle less than 90° 1s called acute (AOB in Fig 59),
an angle greater than 80° 1s called obtuse (Fig 61) The
straight lines that form a right angle are called perpendicu-
lar lines

ZL—./; B¥’” DLH

Fig 60 Fig 61 Fig 62

Signs of angles 1t 1s often important to know 1n what
dioction a ray 1s being rotated In angular measurement,
it 15 orc nanily taken that counterclockwise rotation of a ray
corresponds to posifive values, while clockwise rotation inds-
cates negative values For example, if the ray OA maves to

R ST N

Flg 63 Fig 64 Fig 66.
8 (4 8 )
i ] i A {::560"'
4 A
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Fig 66 Flg 67, Fig 88

coincidence with OB, as indicated in Fig 62, then / AOB
=490° In Fig 63, £ AOB=—190° In Fig 64, / AOB
=—270° One and the same arrangement of rays may cor-
respond to different angular measures depending on the type
of rotation Thus, £ A0B in Fig 65 may be taken equal
to 4-450° 1In elementary geometry, angular measurements
are always taken to be positive and are considered to mea-
sure the smallest rotation so that one does not measure
angles greater than 180°,

Adjacent angles In Fig 66 the pair of angles AOB and
COB with common vertex O and common side OB are adja-
cent angles The two otiler sides, 04 and OC are extensions
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of one another The sum of these two adjacent angles Is
180° (2d) In Fig 70 we have adjacent angles AON and NOB
which are less than 180° Angles which have a common ver-
tex, one common arm and are on opposite sides of the com-
mon arm, are called adjacent angles

4
N M .
B——1 "
w c 502,,
Fig 69, Fig 70

Vertically opposite angles (or stmply, vertical angles) are
those which have a common vertex and the sides of one are
the extended sides of the other In Fig 67, Z AOC and
£ DOB (also / COB and / AOD) are vertical angles Verti-
cal angles are equal (£ A0C= / BOD)

When speaking of “an angle between lwo straight lines”,
we mean any one of the four angles produced (usually the
acute angle)

The bisector of an angle 1s the line that divides the angle
1nto two equal parts (Fig 68) The bisectors of vertical anﬁ‘es
(OM and ON 1n Fig 69) form a single straight line The
bisectors of adjacent supplementary angles are perpendicular
to each other (Fig 70)

143, Polygons

A plane figure formed by a closed series of rectilinear
segments 1s called a polygon Figure 71 depicts a hexagon
ABCDEF The points A, B, C, D, E, F, are the vertices of
the polygon, the angles at these points (the angles of the
polygon) are denoted by £/ 4, /B, £/ C, .., £ F. The lines
AC, AD, BE, etc_are diagonals, AB, BC, CD, etc. are the sides
of the polygon. The sum of the lengths of the sides, AB+ BC
+CE+ +FA, 1s termed the perumeler and is denoted
by p, sometimes 2p (then p is the semiperimeter).

Only simple polygons (that is, such that the contour has
no self-intersections) are studied in elementary geometry.
Polygons whose contours have self-intersections are called
star polygons. A star polygon ABCDE 1s shown in Fig. 72.
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If all the diagonals of a polygon lLie instde the figure, the
polygon 1s termed convex The hexagon shown in Fig 71 45
convex, the pentagon mn Fig 73 1s nonconvex, or concave
(the dmgonarY EC lies without the polygon)

The sum of the intertor angles in any convex polygon is
equal to 180° (n—2), where n 1s the number of sides of the

polygon *

A
¢ D 8 ¢
c D
Dt e
A F £ B8 A

E

Flg TI. Fig 72, Fig 78.

144, Triangles

A triangle (symbols A, plural As} is a polygon having
three sides The sides of a triangle are frequently denoted
by lower.case letters corresponding to the labels of the op-

8 g ¢
A 7—C Y ¢ 8 ¢ A
Fig. 74 Fig 75 Fig 78,

posite vertices Ii all three angles of a triangle are acute, the
figure 1s called an acute-angle triangle (Fig 74), if one of the
angles is a right angle, 1t 1s called a right triangle (Fig 75)
the sides forming the right angle are called Zegs (a, b), the
side ofpposlte the right angle 1s called the hypotenuse (c) If
one of the angles 1s obtuse (say, £/ B mn Fig 76), then we
have an obtusc-angle triangle

* In geometry texibooks this property Is ordinarily stated only
for convex polygons, yet it is valid for all “simple” polygons Note
at in a concave polygon, one or several interior angles exceed
180° Thus, in the concave pentagon shown In Fig 73, two angles
are right angles, two are 45° angles‘ and one contains 270°, The sum
of the angles is 180° (5-2)=540°,
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Triangle ABC (Fig 77) is an sosceles triangle two of its
sides are equal (b==c) When three sides are equal (a=b=¢),
as 1n Fig 78, we have an equilateral irangle

In any triangle, the greater angle ts opposite the greater
side, 1If the sides are equal, the opposite angles are equal,

A B B8
¢ ads A= Vi 2
Fig 77 Fig 18 Fig 79

and conversely, 1f the angles are equal, the opposite sides
are equal In particular, equilateral triangles are also equl-
angular, and conversely

The sum of the angles of any triangle 1s 180° Each angle
in an equilateral triangle 1s equal to 60°

Producing one of the sides of a triangle (AC in Fig 79),
we get an exterior angle, / BCD An exterior angle 15 equal
o ngq suz gf the nonadfacent interior angles / BCD
= +

Any side of a triangle 1s less than the sum and more than
the difference of the other two sides (@ < b+-c, a > b—r¢)

The area of a triangle 15 equal to one-half the product of
the base and the alfitude (see Sec 146 on the altitude of a
triangle) S==1/2ah,

145, Congruence of Triangles

Two triangles are congruent if the following elements are
respectively equal
(1) two sides and the inciuded angle for example,
AB=A'B', AC=A'C', LA
=/ A" (Fig '50), P ¢’
(2) two angles and the
adjacent ;/xde, for example,

LC=/C AC
=A4'C’, <

(2a) two angles and the
side opposite one of them, for a 8 A d'

example, [ A=/A’, B
=/ B, AC=A'C', < Fig 80,
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(3) three sides AB=A'B’, BC=B'C’, AC=A'C’,
(4) two sides and the angle opposite the greater side;
for example, AB=A'B’, BC=8'C’, L A=/ A Fig 80,
where BC 1s greater than AB 1f equal angles hie opposite

N/
N
L/\” L »
Fig 81,

smaller sides, then the triangles may not be congruent For
example, the triangles LMN and L'M’N’ 1n lf:g’ 81 are not
congruent although LM =L'M and LN=L'N' and /M

' Here, the angles M, M’ lie opposite the smaller
sides LN, L'N’

146. Remarkable Lines and Points
of the Triangle

The alfitude (or height) of a triangle is the perpendicular
drawn from any vertex of the triangle to the oppostte side
or 1its extension (the side to which the perpendicular 18 drawn
1s then called the base of the triangle) In an obtuse-angle

8 8
2
A A3
“CE, A c
2 E
Fig 82 Fig 83

tri ngle (ABC, .n Fig 82), two altitudes (AD, BE) fall on
the extensions of the sides, outside the triangle, and the third
altitude (CF) falls nside the triangle In an acute-angle tri-
angle (Fig 83), all three altitudes lie within the triangle.
In'a right trnangle, the legs serve as altitudes The three
altitudes of a triangle always meet 1n one point called the
orthocentre In an obtuse-angle triangle the orthocentre lies
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' cot 25 with the

outside the lriangle, in a right triangle
vertex of the right angle
The altitude of a triangle dropped onto side a 15 denoted
by i, It 1s expressed 1n terms of the three sides by the
following formula
ho=2Vop=a) (=B (p=0)
O a
where s
p=ﬁi.2.‘_*f
Median A straight hine which joins a vertex of a triangle

to the midpoint of the opposite side 1s called a median The
three medians of a triangle (AD, BE, CF in Fig 84) are

I3 8
A F 8 A £ [+4
Fig 84 Fig 85

concurrent (that 1s, intersect in one point: the point 1s al-
ways nside the triangle) This point 1s the centroid (the
centre of gravity of the triangle) It divides each median
the ratio 2:1 (reckoning from the vertex) The median which
jotns the vertex A of a triangle to the midpoint of side a 1s
denoted by m, It 1s given, in terms of the sides of the
triangle, by the formula

My=+ VIR FIA—41

An anfte bisector of a triangle (see Sec 142) 1s the line
segment from the given vertex to its intersection with the
opposite side The three angle hisectors of a triangle (AD,
BE, CF, in Fig 85) intersect 1n one point (always inside
the triangle) which 1s the centre of the inscribed circle (see
Sec 156) The bisector of angle A 1s denoted by B, I[ts
length 1s given, 1n terms of the sides of the triangle, by the
following formula

Ba =1720 V-bCP (p—a)

where p is the semiperimeter, A bisector divides the opposite
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side 1nto parts proportional to the sides adjacent to |t
In Fig 85, AE EC=AB BC

Example. AB =30 cm, BC—40cm, AC=49 cm Find AF
and EC The two parts (AE «nd EC) into which AC=49 ¢y
is to be divided are i the ratio 30 40 or 3 4 Taking x
as the scale umt (x=1/; AE, x=1/,EC), we have AC
= 3xfdxr="Tx, x=AC 7=49 7=7, whence AE=3x=7|,
EC=4x=28

7 -\\\
l’? Z \‘\
i 1
A lc
TE
Fig 87 Fig 88

The three perpendicular lines drawn to the sides of a
triangle through their midpotnts (D, E, F, 1n Figs 86, 87, 88)
meet at one point which 1s the circumcentre (see Sec 156)
In an obtuse-angle triangle (Fig 86) this point les outside
the triangle, in an acute-angle triangle (Fig 87) 1t lies inside
the triangle, in a right triangle 1t lLies at the midpoint of
the hypotenuse (Fig 88)

In" an 1sosceles triangle, the altiiude, the median, the
angle bisector and the perpendicular drawn to the midpoint
of the base (which 1n an 1sosceles triangle is always the side
different from the other two) all coincide The same situation
holds true for all three stdes of an equilateral triangle In all
other cases none of these lies coincides wath any other one
The orthocentre, the centroid, the centre of the inscribed
curcle and the circumcentre cowncide only m an equilateral
triangle

147, Orthogonal Project| t ps Bet
the Sides of a Triangle

The orthogonal projection (or, briefly, projection) of a point
on a straight line 1s the oot of the perpendicular from the
point to the line In Fig 89, the points a, b, ¢, d are pro-
jections of the points A4, B, C, D on the straight line MN
The projection of AB on MN 1s the line segment ab of the



271

straight line MV bounded by the projections a and & of the
endpoints of AB The line segment bc 1s the projection of BC,
etc This 1s denoted as ab=pryyAB or, briefly, ab=pr AB.

The sum of the projections of the segments of a polygonal
Iine 1s equal to the projection of the closing segment
In Fig 8, pr AD=pr AB+4prBC+prCD For complete
generality, we must regard the projection of a line as an

¢ F
8 K
D B
7T Fashe
1! = ] 1 i
Mt o N bacdfe
Fig 89. Flg. 90,

algebraic quantity, the projection ab of segment AB 15 taken
to be postfwe 1f b 1s to the night of e, and negafive if 6 1s
to the leit of @ Thus, 1n Fig 90, pr AB=ab 15 negative,
pr BC=bc, pr CD=cd, pr DE =de are positive, pr EF =:ef
1s negative Therefore, the (algebraic) sum of the projections
of the segments of the polygonal line ABCDEF 1s obtained

B 8 8
TN / ‘c
A
vy ¢ -2 ¢
7 D=y ¢ F A
Flg o1 Flg 82 Flg 93

by adding the lengths of the segments bc, ¢d, de and subtrac-
ting the sum of the lengths of the segments ab and ef The
result 15 equal to of, which 1s the projection of the closing
segment AFf

The square of a side of a triangle 1s equal to the sum of
the squares of the other two sides munus twice the product
of one of the two sides by the projection, on it, of the other.
Using the notations of Figs 91 and 92, we have

a¥=h24-c?—2b prycAB (n

If x denotes the length of a projection (a positive number),
then, when angle A 1s acute (prgycAB=x m Fig 91),

a? =24 c2— 20z @
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and when angle A 15 obtuse (pracAB=—ux 1n Fig 92),

a?=b4-c%42bx 6]

If angle 4 15 a rght angle (Fig. 95, then pryc48=¢
and we have

a%=b24-c? (4)

the square of the hypotenuse 1s equal to the sum of the
squares of the legs (this 1s known as the Pythagorean theorem )
The theorem of Pythagoras finds extensive applications in
both practical and theoretical situations

Formula (1) can also be written as

a?=b24¢*—2bccos A
(see Sec. 199).

148, Parallel Straight Lines

Two straight lines AB and CD (Fig 94) are called parallel
lines 1f they hie in one plane and do not meet however far
produced. Symbol: AB||CD The distance between the lines
is everywhere the same

B8 OF 7

2
3

7
8

6/5
2 MaTEN &7

Fig. 94 Fig 95 Fig. 96

¢

All straight lines parallel to the straight line AB are
parallel among themselves

It is considered that two parallel straight lines form an
angle equal to zero (there 1s no angle at all in the direct
sense of the woyd).

If two rays belong to parallel straight lines, then the
angle between the rays is taken fo be zero when the direc-
tion of the rays i1s the same, and 180° when the directions
of the rays are opposite.

Straight lines (AB, CD, EF, Fig 95) perpendicular to a
single straight line M\ are themselves parallel Conversely,

* The theorem is credited to Pythagoras, a Greek philosopher who
{ived in 6th and 5th centuries B C Actually thls theorem was known
in the Ancient East 20 centuries before the Christlsn Era.
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the straight fme MN perpendicular to one of the paralle
lines 1s perpendicular lo all others. All hines perpendicular
to one of two parallel straight lines are perpendicular to the
other The lengths of these perpendiculars between the two
parallel lines are equal Thetr common length 1s the distance
between the parallel straight lines

A straight line (called a transversal) that cuts two parallel
straight lines forms eight angles (Fig. 96), pairs of which
have the following names (I) corresponding angles (/ and 5,
2 and 6, 3 and 7, 4 and 8), these angles are pairwise equal s
LI=L08 L2=/(6, £L3=/LT, L4=/38,

(2) alternate interior angles (4 and 5; 3 and 6), they are
pairwise equal,

(3) alternate exterior angles (/ and 8 2 and 7), they are
also pairwise equal,

(4) intertor angles on the same side of the transversa’
(3 and 5, 4 and 6), the sum of these angles is equal tu
180° (£ &+ £ 5= 180°, £ 4+ £ 6=180°),

Ly Lo 41[

a

Fig. 97, Fig 98. Fig. 99.

(5) extertor angles on the same side of the transversal
(7 and 7, 2 and 8), the sum of these angles 15 equal to
180°(/ T4 £ 7=180°, / 2+ / 8=180°),*

An%lles with corresponding sides parallel are either equal
(1f both are acute or both are obtuse) or their sum is equal
to 180°, in Fig 97 £ 1=/ 2; in Fig 98, £ 3+ £ 4=180°
Angles with corresponding sides perpendicular are lkewise
either equal or constifute a total of 180°

Parallel straight lines that intersect the stdes of an angle,
as shown in Fig. 99, intercept proportional lengths on the
stdes of the angle.

0A_0B_0C __AB_BC__ AC

Da=0r =0~ m o

* When two nonparallel straight lines are cut by a transversal
the angles formed bear the same names as those glven above, but the
relationships belween the angles no longer hold Lrue.
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149, Ths Parallelogram and the Trapezoid

A paraltelogram (ABCD 1 Fig 100) is a quadrilatera]
in which both pairs of opposite sides are parallel The oppo-
site sides of a parallelogram are equal AB=CD, AD=R¢
Any two opposite sides may be taken as bases The perpen.

dicular distance between them s called
the altitude (BF) The diagonals of g pa.

a rallelogram bisect each other (40=0(,
BO=0D) The opposite angles of ,

AF 2 parallelogram are equal (/ A= C,
L B=/D) The sum of ﬁle squézres
rig 100 of the diagonals s equal lo the sum of

the squares of the four sides AC?+ BD?
=AB2+ BC?+CD2+ AD*=2 (AB®4BC? The area § of 4
paralielogram 1s equal {o the product of the base (a) by the
altriude (A,)

S=ah,

Distinguishung features of parallelograms A quadrilateral
ABCD 1s 4 parallelogram provided that

(1) the opposite sides are equal (AB=CD, BC=DA),

(2) two opposite sides arc equal and parallel

(AB=CD, AB| CD),

(3) the diagonals bisect each other,

(4) opposite angles are equal (£ A=/C, /B= /D)

If one of the angles of a parallelogram 1s a right angle,
then all angles are right angles Such a parallelogram 1s

8 [
AN X
A d D a D Ay
l“lz. 101. Flg 102. Flg 103.

called a rectangle (Fig 101) The sides of a rectangle (a, b)
serve as ils altitudes The area of a rectangle 1s equal 1o the
product of tls sides S=ah

The diagonals of a rectangle are equal AC=BD

In a rectangle, the square of a diagonal s equal to (he
sum of the squares of the sides ACt=AD* DC*,
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I a parallelogram has all sides equal, 1t 1s called
a rhombus (Fig 102)

In a rhombus, the diagonals are mutually perpendicular
(AC | BD) and hisect the angles (£ DCA= /BCA, elc).

The area of a rhombus is equal fo half the product of
the dagonals

1
S =—-ds-dy

where d, =AC, dy=8D

A sguare 1s a parallelogram with right angles and equal
sides (Fig. 103) A square is a particular type of rectangle
and also a particular type of rhombus It therefore has all
therr properties, as given above

8 ¢ ()

AR S
A D A 2 A ¥/}
Flg 104 Fig 105 Fig 108

A {rapezod 1s a quadrilateral having one pair of opposite
stdes parallel (BCIlAD, Fig 104) A parallelogram may be
considered as a particular type of trapezoid

The parallel sides are called the bases of the trapezoid,
the other two sides (AB, CD) are called its nonparallel stdes
The perpendicular distance (BK) between the bases 1s called
the alfitude of the trapezoid The line EF jomnmng the
midpoints of the nonparallel sides is called the median (or
mudline) of the trapezoid

The median of a trapezoud s equal lo one-half the sum

of ithe bases EF=—;—(AD+BC), and s parallel to ithem-
EF | AD

The area of a trapezoid s equal 1o the product of the
median by the alfitude

8= (a+b)h

where a=AD, b= BC, h=BK

A triangle 1s the Iimiting (degenerate) case of a trapezaid
when one of the bases shrinks fo a point (Fig 105). A dege-
nerate trapezoid preserves its properties; for example, the
line joining the midpoints E and F of the sides of triangle ABD
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(the median of the triangle) is parallel to side AD and s
equal to one-half of it

A trapezord with equal nonparallel sides 1s called an
1susceles trapezod (AB=CD in Fig 106) The base angles
of an 1sosceles trapezoid are equal (LA=/D, /B= /()

150, Similarity of Plane Figures.
Similar Triangles

1f all the dimensions of a plane figure are changed {increa.
sed or decreased) 1n the same ratio (the ratio of stmulitude),
then the old and new figures are called simdar figures For
nstance, a picture and a photograph of the picture

In two sumlar figures, any corresponding angles are equal,
that s, 1f pomnts A, B, €, D in one figure correspond

8 to ponts a, b, ¢, d of another, then
LABC= fabe, /BCD= /bod, etc
A ¢ Two polygons (ABCDEF and abedef 1n

Fig 107) are similar 1f they have equal
e angles (LA=/a, [B=/b , LF=/})

and their corresponding sides are propor-

ﬂOc tn ! AB~B% __ggg__ _RAP
RNa tomal (G5 =-p =~ = s
¢ This ensures the proportionaltty of all other
Fig. 107, corresponding elements of the polygons, for
example, the diagonals AE and ae have the
same ratio as the sides (%-f—:-‘%—; However, the proportso-

nality of the sides of polygons does not suffice to make them
similar, for example, 1n Fig 108 the sides of the quadrilateral
ABCD (square) are proportional fo the sides of the quadrila.
teral abed (rherbus), each-side of the square 1s twice that of
the rhombus But the diagonals of the square did not di-
mimsh in the same proportion (one diminished more than
twice, the other, less than twice) because the angles of the
rhombus abed are not equal to the angles of the square ABCD
In the similanty of triangles, on the other hand, the
proportionality of the sides 1s sufficient: fwo friangles are
stmular if thewr sides are proportional Thus, if the sides of
a tnangle ABC (Fig 109) are twice the length of the sides
of triangle abe, then the angle bisector BD is twice the
bisector bd, the altitude BE is twice the altitude be, etc,
an the c;)rrespondmg angles are equal (LA =/2a, £B= /b,
= /0).
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If the corresponding angles of fwo friangles are equal,
the triangles are stmudar (1t 1s sufficient to detect the equality
of two pairs of angles because the sum of the angles of a
triangle s always 180°) This criterion 1s not sufficient for
arbitrary polygons For example, the square ABCD and the
rectangle abed (Fig 110) have equal corresponding angles,
but the figures are not similar

8
8 ¢ 8 4
D 7 Ag =)
A Dg A DECadec g Da d
Flg 108 Fig 109 Fig 110

Triangles are also sumlar when {wo sides of one are pro-
portwonal lo fwo sides of the other and the included angles
are equal (that 1s, 1f ’Z—f=}:—f and /B= /b)

Right trangles are sumilar 1f the hypotenuse and a leg
of one are proporfnal o the hypotenvse and a leg of
the other

Any two circles are symilar, one being an increased or
decreased version of the other

The areas of similar figures (say, polygons) are proportio-
nal to the squares of their corresponding limes (sides, for
example) In particular, the areas of circles stand n the same
proportion to one another as the squares of the radu or the
diameters Tt would therefore be a serious mistake to consider
that the ratio of the areas of two circles is equal to the ratio
of their diameters This mistake ts often made, however

Example 1 A circular metal disk of diameter 20 cm
weighs 24 kg How much does a disk (of the same material
and thickness) 10 ¢cm in diameter weigh?

To reason that the diameter of the small disk 1s one-half
that of the large disk and on that basis to say that the smail
disk weighs one-half the large disk, or 12 kg, would be
a grave mustake

Here 1s the correct solution Since the material and
thickness of the disk remam the same, the weights are pro-
portional to the areas, and the ratio of the area of the small

1

disk to the area of the large disk 1s —2'%-)’ =T Hence, the

weight of the small disk 1s 2.4 %:0 6 kg.
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Example 2. The population of a country, call it 4, is
iven as 82 mullion, that of some country B, 4 | million
%i the population of B 1s shown diagrammatically as a square
with side 10 cm, what will the side of the square depicting .

the population of A be?
Denoting the required side by a, we have

1 892 a Y,
(’1%) =q7=2 7 =VIxl4 a~licm

161. Loci and Circles

The locus (plural, loct) of points having a given property
is the totality of the points satisfying the given conditions,

The cirele 1s a locus of points i the plane that are
equidistant from one point, the centre

Equal line-segments joing the centre to points of
the circumference are called radu, (stngular, radius, denoted
by 7 or R) Part of the circumference (say AmD n Fig 111

Fig. 111 Fig 112

is called an arc The stralght lme MN passing through two
ponts of the circumference 15 called a secant, the portion
of 1t, KL, lying 1nside the circle 1s a chord A chord increases
as it approaches the centre of the circle The chord BD
assing through the centre (0) 1s called the diameter, denoted
y d or D The diameter 1s equal to two radn (d=2r)

A clrcle 15 a plane curve consisting of all points at a given
distance (called the radius) from a fixed point 1n the plane,
called the centre. A circle also denotes the region of a plane
all points of whose boundary are at a given §1stance (called
the radius) from a fixed point i the plane (called the centre)

Tangent hne Let the secant PQ (Fig 112) pass through
the points A and B of the circle Let the point B move
along the circumference approaching 4 The secant line PQ
will change 1ts position as 1t rotates about 4. As B appro-
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aches A, the secant PQ will tend to a certain limiting posi-
tion MN The straight line MN 1s called the fangent to the
crcle at the point A. The tangent and the circle have only
one pomnt in cemmon. * We may consider a tangent to be a.
degenerate secant.

A tangent fo a circle is perpendicular to the radius OA
drawn to the point A of contact,

£ c
Vi
Taa— AN
g A D 8
Flg. 113 Fig 114,

From a point without a circle we can draw two tangents
to the circle; the tangents will be of equal length (see Fig. 120).

A segment of a circle 15 the area between a chord and the
arc subtended by the chord (in Fig 114 the arc ACB sub-
tended by the chord AB)

: @8 a
HAH 4 0D”
Fig 115 Fig 11e. Fig. 117,

The perpendicular drawn from the midpoint of the chord
AB to intersection with the arc AB 15 called the sagiéta of
the arc AB The length of the sagitta DC (Fig. 114) is the
altitude of the segment,

A sector of a tircle is that portion of the circle bounded
by two radii of the circle and one of the arcs which they
intercept (Figs. 115 and 116). A sector with radu that form
an angle of 90° 15 called a quadrant (Fig 117)

* This property is ordinarily taken as a definltion of a tangent
to & circle For other lines, however, this definition may prove inva-
1id For example, MN in Fig 113 is tangent to the line CADE at
point A, but MN has, besides A, a point N that belongs to CADE
as well The delinition we glve of a tangent asthe limiling position
of a secant is applicabie to all llnes.
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152. Angles in a Circle. The Length
of the Clrcumference and of an Are

A cenfral angle 1s formed by two radu (Z A0B iy
118)

'An inscribed angle 1s formed by iwo chords (CA and CB

Fig 119) issutng from a common point of the eircle
(£ ACB n Fig 119)

A circumscribed angle 1s one formed by two tangents
issuing from one point (CA and CB which form £ ACB in

Fig 120
N O
A8 }78
«lg 118, Fig. 118 Fig 120

The length of an arc described by the endpoint of a ra-
dws s proportional to the magnitude of the corresponding
central angle, for this reason, the arcs of one and the same
circle may be measured like angles, by degrees (see Sec 142)
Namely, 1° of are 1s taken to be ﬁ aof the circle (that is,

an arc whose central angle 15 equal to %)

¢ The entire circle contains 360°, one half is

A 180°.
g ) To avoid errors that occur frequently,
note that the value of the central angle is
Fig 121 quite independent of the length of the rad-

s whereas the magnitude of the corresponding
arc 15 proportional to the radus Thus, 1 Fig 121, the
central angle preserves the same value rrespective of whether
we form 1 with the radu OC and OD or OA and OB, which
are half that length Now the arcs AB and CD are of une-
qual length although they have the same number of degrees:
arc AB s shorter than arc CD

Generally, the length of an arc 1s proportional to (1) the
radxlus and (2) the magmtude of the corresponding central
angle

The length of the circumierence p constitutes about 3—;-

the length of the diameter p =~ 3-.‘,— d. In other words, the
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ratio of the lengths of circumference and diameter 1s appro-

ximately 3—;—

.. 3]
2 3

alw

The exact ratio —g— ts denoted by the Greek letter p1 (n)
G=n 1)
3—;— 1s an approximate (too high) value of the number n

The number m is irrational (see Sec 91), which means it
cannot be written exactly as a fraction To five decimal pla-
ces, pl 1s given as 3 14159 For practical purposes 1t suffices
to take the value =~ 314, which 1s slightly less (the dif-
ference 1s inessential) than n = 3~;—

Formula (1) yields

p=nd @
or

p=2nr 3)

The length of 1° of are 15

2
P1o =55 =750 )

An arc length of n° 15

Ppe =% &)

Formulas (2) to (5)—all of them are readily derived from
(1)—are of great theoretical and practical value

Example 1. A 2 4-metre strip of steel 1s used to make a
hoop, 02 metre 1s taken up at the ends for riveting What
1s the radius of the hoop?

The length of the circumference p=2 4—~02=2 2 metres
By formula.(3)

=P 22
= Ny 035m
Example 2. The diameter of the driving wheel of a lo-

comotive 15 1.5 metres How many rotations per minute does
the wheel make when the train's speed 1s 30 km/hr?

The wheel covers per minute a distance of 30 60=—é— (km),
or 500 metres In one rotation, it covers a distance equal to
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the length of the circumierence p, p=ad ~314 15~ 47
metres The desired number of rotations 1s 500 4 71 ~ 106,
Example 3. A railway lmne has a track curvature of 800 me.
tres radius The track length on this curvature is 60 metres
How many degrees are there in the arc of the curvature
By formula (5),
180p 180 60
7 314 800
The area of a circle 1s equal to the product of half the
circurnference by the radius

A
'g Sz—;-pr o S=nr?

The area of a sector of a circle (S, Is
Flig 123 qual to the product of half the arculgtn)gth
(Psect) by the radius (7):

n=

~ 4°20' (rounded)

\
Srect=?p:¢-cl’
The area of a sector with an arc of #° 1s
nrin
Sﬂo =‘5’€6
The area of a segment of a circle s found as the diffe.
rence between the area of the sector AOBm (Fig 122) and
the triangle A0B

162a, Huygens' Formula for Arc Length

In practical situations, one often has to find the length
of an arc given in a drawing (or full-size) when it 1s not
known what part of the circle the arc constitutes and what

/ﬂ\h
A ¢ 8
Fig 122a

the radius of the circle 1s. In such cases, use can be made of
the following device.

Mark the mﬁpomt M (Fig. 122a) of a %Wen arc AB (this
potnt lies on the perpendicular CM drawn to the midpont €
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of chord AB) Then measure the chord AB and the chord

AM which intercepts half the arc The length p of arc AB1s
given (approximately) by the following formula of Huygens' *

prAtE@-L)
where /=AM and L=AB

This formula admits of a relative error of about 0.5%,

when AB subtends 60° The percent of error falls off sharply
as the angular measure of the arc decreases Thus, for an arc
of 45° the relative error constitutes approximately 002%

Example Figure 122a depicts an arc AB for which
=AM =340mm, L=AB=67 mm
Huygens' formula yields
p=12:34 04 (2 34 0—67 1) = 68 3 (mm)

Here, all figures are correct since the arc AB subtends
about 45° (this can be gauged by eye) and, hence, the error
ofoéhe formula comes to roughly 0 02%, which 15 less than
005 mm

153. Measuring Angles in a Circle

An inscribed angle constitutes one-hall the central angle
of the intercepted arc In Fig 123, / ACB=— / A0B.

bQ &) &
8 8
Flg 128 Fig 124 Fig 128,

Therefore all 1nseribed angles mterc%pting the same arc are
equal In Fig 124, / ACB=/ ADB=/ AEB In other
words, the chord AB 18 seen from the same angle from all
pomnts of the intercepted arc We say that arc ACDEB sub-
tends an angle of a definite magnitude For example, a semi-
crele subtends an angle of 90° (Fig 125).

* Christian Huygens (1629-1695), Dutch sclentist noted for
works in the fields of optics and mechanics
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Since the central angle contamns as many angle degrees
as arc degrees, 1t follows that an tnscribed angle (/ ACB
Fig 123) 1s measured by one half the intercepted arc AB

An angle formed by two chords (say, / AOB in Fig 126)

1s measured by half the sum of the arcs, —;-((?b—l-A\fi), con

tained between its two sides (produced tn both directions)
An nscribed angle is a spectal case of the one under cong
deration {one of the arcs 15 equal to zero)

SR VFO Y.

Fig. 128 Fig 127 Flg 128 Fig. 129

An angle formed by two secant lines (£ AOB,Fig 127) 15
measured by one-half the difference of the arcs lying between

its two sides -;—(A‘Bmc‘ﬁ) An inscribed angle 1s a particu-

lar case of the angle between two secant lnes (CD=0)
Regarding a tangent line as a degenerate secant line

(Sec I51), we find that the angle formed by a tangent line

and a chord (say, ABC 1n Fig 128), 1s measured by one-half

the intercepted arc -15- AnB , an angle formed by a tangent
line and a secant line (say, / BOA n Fig 129) 1s measured
by one-half the difference of the arcs between its sides,
—;—-(E;l—DVA), a circumscribed angle (/4 COA 1n Fig. 129) 1s
measured by one-half the difference of the arcs between its

sides -%- (CBA—-CDA)

154, Power of a Polnt

The power of o point O with reference to a given circle
of radius r 15 the quantity d%®—/%, where d 1s the distance
OC from the point to the centre of the circle The power of
a point external to the crcle 1s positive, that of a point
internal to the circle, negative For pomts on the circumfe-
rence, the power 1is zero.
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The absolute value of the power of ~ = tdE—r ], is
denoted by p? so that for an exterior p. «, p*=d*—r%, and
for an interior point, p?=,2—4d? The quant:ities p? and p
(the latter 15 assumed to be positive) play an important role

Let there be drawn through O (Figs 130 and 131) all
kinds of secant lines (A8, DE, FG, etc) The product of the
length of a secant from O to its point of intersection with
the circle (OA-OB or 0D. OE or OF.0G, etc) is a constant
equal to p? Of particular 1mportance 1s the case when the
secant line passes through the centre C (see examples below)

r Iy
AN
P SN FEs
— A
N -
5
Fig. 130. Fig 131

If point O 1s external (Fig 130), then, regardm% the tan-
gent line as a degenerate secant line, we have OT?==p? or
the absolute value of the power of a point 15 the square of
the length of the tangent line Thus, the quantity pis equal
to the length of the tangent line OT.

If point O 1s internal (Fig 131), then, drawing through 0
the chord L;L, perpendicular to the drameter DE, we have
OL,=0Ly so that OL}=p?, or the power of a point 15 equal
to the square of the least sermichord passing through the
point Thus, the quantity p 1s equal to the length of the
semichord OL,

Example 1. What 1s the range of sight from an amrcraft
flying over the sea at an altitude of 2 km? Take the dia-
meter of the earth at 12,700 km

Figure 132 gives a schematic vertical cross section of the
earth with O as the location of the aircraft, OE=2 km,
ED=12,700 km The point farthest away on the earth’s sur-
face as seen from the airplane 1s T, OT 1s the tangent line
tp the carcle ETD; OT=p. On the other hand, p?
= 0E-0D ~ 2.12,700 (we take OD =~ 12,700 km, dropping
2 km as a quantity dehmielr less than the hmiting error
of the approximate value of 12,700 km) We thus get

p=V 55,300 ~ 160 (km)
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Example 2 The span of a masonry vault 1s 6 metres, it
has an altitude of 04 metre Determine the radius of the
are of the vault

[
14 E
\Y
"
D
Fig 132, Fig 133

See Fig 133 (schematic) I;L,=6m, EO=04m The
power of the pomt 0 15 pP=0L{=(%d+)?=9 On the

other hand, p*=EQ-0D, since EQ 15 small compared with 0D,
, we can take 0D =2r and we get 9 =~ 04 2r, whence
9

=55 = 1+ (m)

188, Radlcal Axis. Radical Centre

The locus of pomnts M (Figs 134, 135, 136, 137, 138)
having equal powers with reference to two given circles 0,
0, (MKy=MK,) 1s a straight line AB perpendicular to the
line of the centres

Fig 184 Fig 135,

This straight line is called the radical axis of the circles
O, and 0, The distances d;, d, of the radical axis from the
centres 0;, 0, of the given circles may be computed by the
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formulas
2 2
d iy
h=0N= 5+ —5
2 2
=NO, =2 4 37"
dy=N0y = 5+~

where d is the distance 0,0, between the centres of the
circles, and ry and r, are the radii of the circles. It is much

Flg 136. Fig 137

easler to find the radical axis by means of a construction.
1f the circles O, and 0, intersect at pomnts C and D, then
each of these points has power zero with respect to both
circles and, hence, the radical axis passes through C and D
(Fig. 136) If the circles touch at point C (Fig. 137, 138),
then the common tangent serves as therr radical axis, For

Fig 138 Fig 130,

nonintersecting circles, the radical axis may be found thus
Construct (Fig, 139) an auxiliary circle O, to intersect circle
0, 1n points C and D and circle 0, n points £ and F The
straight lines CD, EF are the radical axes of the two pairs
of circles Oy, Oy and 0,, O, For this reason, their point P
of intersection has the same power with respect to 0y, Oy
as {t has with respect to 0, 0;, Hence, 1t has the same powers
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with respect to O, and O,, that is to say, it lies on the ry
dical axis of the two given circles Finding another point
i the same -manner ot dropping a perpendicular PN from
P to 0,0, we find the required radical axis.

Fig 140 Flg 141

The foregoing reasoning shows that the three radical axes
of any three circles Oy, Op, Oy (taken 1n pairs) intersect m
one point This point 1s termed the radical cenfre of the
arcles 0y, 04, Oy In particular, the three common chords
of the three pairwise intersecting circles in Fig, 140 iniersect
in a single point The three common tangent lines of three
pamz/[se tangent circles (Fig 141) also intersect in a single
pon

166. Inscribed and Circumscribed Polygons

A polygon inscribed tn a curcle 1s one tn which all the
vertices lle on the circumference (Fig 142), a polygon cir-
cumscribed about a circle 1s one 1 which lﬂe sides are
tangent to the circle (Fig. 143).

Rly 142 Fig 143

A circle circumscribed about a polygon 1s one that passes
through the vertices (Fig 142), a circle inscribed tn a polygon
is one which touches the sides of the polygon (Fig. 143). U
we take an arbitrary polygon, a circle can neither.be inscribed
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1t nor circumscribed about 1t In the case of a triangle,
it is always possible to inscribe a circle tn 1t and circum-
scribe a circle about 1t (see Sec 137 Problems 20, 21 and
Sec 146)

The radius r of an (nscribed circle 1s given in terms of
the sides a, b, ¢ of a triangle by the formula

,=1/Mm
P

where

_atb+c

=2

The radius R of a ctreumseribed circle 1s given by the

formula
abe

- R —
4 Vp(o-a) (p-b) (p~c)

A crcle can be inscribed in a quadrilateral only when
the sums of the opposite sides are equal, of all parallelog-
rams, only the rhombus (or square, as a special case) admits
tnseribing a cirele Its centre lies at the intersection of the
diagonals

A circle can be circumscribed about a quadrilateral only
when the sum of the onosxte angles 1s equal to 180° (if
this 1s true for one pair of opposite angles, then the sum of the
other pair of angles will definitely come to 180°) Of all paralle-
lograms only the rectangle (square, as a special case) admits
circumscribing a circle, 1ts centre lies at the intersection of
the diagonals

A crcle can be circumscribed about a trapezoid only
when 1t 1s_an 1sosceles trapezoid

In & convex quadrilateral inscribed in a circle, the pro-
duct of the diagonals 1s equal to the sum of the products
of the opposite sides (Ptolemy's theorem) In Fig. 142

AC.-BD=AB DC--AD-BC

157. Regular Polygons

A regular polygon 1s a polygon with equal sides and
angles Figure 144 shows a regular hexagon and Fig 145
a regular octagon A regular quadrilateral i1s a square, and
a regular triangle 1s an equilateral triangle Each angle of a

regular n-gon 1s equal to 1§_'2°_;£2;_?_)

19-652
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Referring to Fig 144 we see that a regular polygon hy
a point O mside 1t that 1s equidistant from all the vertigeg
(0A=0B=0C, etc). This is the centre of the regular poly
gon The centre 15 also equidistant from all the sides of 4
regular polygon (OP=0Q=9R, etc)

The lines OP, 0Q, etc are called apothems (or short
radi), and the lines OA, 0B, etc, are called the rady of

a regular polygon
4

8 D
15
F

Fig 144 Flg 145,

The area of a regular polygon 15 equal to the product of
the semiperimeter by an apothem

S==ph
where
p=(ABLBCHCD+ ), h=0P

A arcle may be nscribed in a regular polygon or circum
seribed about 1t. The centres of the tnscribed and circum-
scribed circles lie at the centre of the regular polygon. The
radius of a circumeircle 15 the radius of the regular polygon,
the radius of the imscribed circle is the apothem (For the
construction of Inscribed and  circumscribed circles of
rolygons see Sec 137, Problems 30-38) A side b, of a regu
ar circumscribed polygon can be expressed in terms of the
stde a, of a regular 1nscribed polygon with the same number
of stdes by the formula

b,=Ra, ]/R“ — TI'”"

where R 15 the radius of the circle
The side a,, of a regular 1nscribed polygon with double
the number of sides 15 expressed 1n terms of &, by the for-

mula
ay = ]/2R2—-2R 1/R=——} A
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The following formulas express relationships between the
sides of certain regular inscribed polygons and the radius of
the circle, .

ag=RV 3~ 1732IR,

a=RV 2141428

=R ]/i'_;.—i ~ 1 178R,

ag=R,

as=RV 2V 5= 07654R,

a0=R 221 % 0 6180R,

a=RV 2V 3~ 05I76R,
en=—+RIVI0F2VE— V3 (Y T—1)=~04156R
s 1 s st o emanent Thems e

pl‘aC ical computations, 0 (3 er ent

most convenient method for computing the sides of the other
polygons 1s by means of the formulas of

irigonometry {see Sec 190) using tables For 8
most polygons, the relations a, R cannot be / \
expressed as algebraic formulas even if we g4

use nested radical signs (radicals within ra- \ /

dicals)

Example. Is 1t possible to obtamn a square
beam (36 cmr on a side) from a log 40 cm in
drameter?

We can take the cross section of the log as a circle of
radius

Fig 148

R=4 =20 (m)

The largest square in this circle 1s the square that is
tnscribed 1 it Hs side AB (Fig 146) 1s equal to 20 2
==20-141=28 (cm) Hence, we cannot obtain a 36X36cm
beam from this log

158. Areas of Plane Figures

In this section we give the most important formulas for
finding the areas S of plane figures (some of them have
already been given m appropriate sections)
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Square (Fig 103, page 274) a 1s a side, d, a diagonal:

Sz=q? = ‘1;_
Rectangle (see Fig 101, page274) a and b are sides
S=ab

Rhombus (see Fig 102, page 274) a 15 a side, d, and d,

are diagonals, and & 15 one of the angles (acute or obtuse)
S = '%’— =a’sina

Parallelogram (see Fig 100 page 274) a and b are sides,
a 1s one of the angles (acute or obtuse) and ks
the altitude

S=oh=absina

Trapezoid (see Figs 104, 106, page 275),
a and b are bases, 4, altitude, and ¢, the median

S=%Lh=ch
Any quadrilateral d,, d,, diagonals, a, the angle between
them (Fig 147)

8§ = %A,d, sin o
A arcumseribable quadriateral (Sec 137, Problem 22)
a, b, ¢, d are the sides.

a+bsc+d
P==—

S=Vp—a)(p—b)(p—c) (p—d)

. Right triangle (see Fig. 75, page 266): a and b are the
egs.

1
S=7 ab

An isosceles triangle (see Fig 77, page 267). a, the base,
b, a side

| ot
S=pay/ %
An equilateral triangle (see Fig 78, page 267) a, a side.
N =% a2 V3
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An arbitrary triangle with a, b, ¢ the sides, a the base,
h the altitude, and A, B, C the angles opposite the sides a,

b, ¢, respectively, p= ‘”:“’ (Fig 148)
1 1 1 s Bsin C k3 sin A
S =—ah=—o ~Lsmont nsed
P g ob s C = = s Fan e

=V plp—a) (p—b) (p—2}

Flg 148 Fig 149,

A polygon whose area 1s sought 1s partitioned 1nto trian.
gles 1n any manner (say by diagonals) It 1s convenient to
Iaartltmn a polygorn, circurnscribed about a circle, by straght
mes from the centre of the circle to the vertices of the
polygon (Fig 149) We then get

S=rp

where r 18 the radius of the circle and p is the semiperi-
meter.
In particular, this formula 1s valid for any regular polygon.
A regular hexagon in which a 1s a side:

S =-§~ Via
A arcle in which d is the diameter, r the radius, C the
length of the circumference
S=f-Cre=mr? (n 3 142 = 5 (~v 0 785%)
A sector of radius r, n 1s the degree measure of the cen-
tral angle and p,o 1s the arc length (Fig 150)

nrin

1
S=7 P =755

An annulus (Fig 151) where R and 7 are the outer and
inner radit, respect,xve‘]‘y, D and d, the outer and inner dia-

meters, respectively, 7 the mean radms; and % the width of
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the annulus
St (RE—r¥) = I (D~ d? =2nrk

Segment The area of a segment (Fig 152) 1s found as the
difference between the area of the sector 0AmB and the
triangle AOB

K
kS “\ ‘:"
ol

5%

V.
\

i s
e 08

=2

Fig 150 Flg 151 Fig 152,

158a. Approximate Formufa for the Area of a Segment

In practical situations, one often has to find the area of
a segment given natural-size or 1 a drawing when 1t 1s not
known what part of the circle the arc of the segment con-
stitutes and what its radius 1s In such cases the following
approximate formula may be used

S%—; ah
where a=AB (Fig 1524) 1s the base of the segment, A=CM

is 1ts altitude In other words, 1t 15 taken that the area of
a segment 15 equal o ~§— the rectangle ADEB Actually, the

D M E

/ C B
Fig 152a.

area of the segment 15 somewhat greater For AB=60° the
relative error of the formula comes to 15%, for AB=45°,
it 1s half as much, for AB=30° 1t 15 0.3% and continues to
fall off gven more rapidly.
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Example. Find the area of the segment AMB (Fig 152a)
whose base =600 mm and altitude #1=8 04 mm

Selutlon, S~ —;’—-60 0:804 &~ 321 (mm?). However, the

third digit 1s definitely incorrect since the arc A8 contains
60° (this 1s visibly so) and, hence, the error of the formula
comes to 1.5%, which 1s roughly 5 square millimetres Making
the ?ppropnate correction, we Iind Sas 326 mm?, all digils
are true,

B, SOLID GEOMETRY
189, General

Solid geometry studies the geometric properties of objects
and figures 1n space. When solving problems 1n solid geometry,
an important techmique 1s the consideration of plane lines
and figures (both those in the solids under study and also
lines and figures constructed as auxiliary elements), It s
therefore very important to learn to recognize and 1solate
diverse plane figures 1n spatial images

160, Basle Concepls

As 1n plane geometry the most elementary line s the
straight line, so 1n solid geometry the most elementary sur-
face is the plane surface—the plane. Planes and straight lines
are the basic elements of solid geometry

One and only one plane can be drawn through any three
points of space not all on one straight lme. Through three
points of one straight line, 1t is gossxble to pass an infim-
tude of planes, called a penctl of planes, the hine through
which all the ]p]anes ass 15 called the axis of the pencil

One and only one plane can be drawn through any straight
line and a pownt external to the line. 1t 1s not always pos-
stble to draw a plane through two straight lines Two straight
lines through which 1t 1s impossible to draw a plane are
termed skew lines

Example. A hornizontal line drawn on one wall of a room
and a vertical fine drawn on the opposite wall are skew lines.

Skew lines are nonintersecting lines no matter how far
produced, but they are not parallel

Parallel lines are nonintersecting lines such that a plane
can be passed through them (cf. Sec. 148).
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The difference between parallel lines and skew lines ;s
that two parallel straight lines have the same direction,
while skew lines have different directions

All the points of one of two parallel lines are equidistant
rom th= corresponding points of the other (the perpendicular
distance 1s taken), whereas the points of
one of two skew lines are at different djs.
tances from the corresponding points of the
other skew line

Pt ""}" One and only one plane can be drawn
S through two intersecting straight lines
Flg. 163 The distance between two skew lines 1s given

by the length of the line segment MN
(Fig 153) joining the nearest points M and N of the skew
1es The straight line MA 1s perpendicular to both skew lines
The distance between parallel straight lines s defined as
'n plane geometry The distance between intersecting straight
lines 1s taken to be zero.
"wo planes may intersect (along a straight line) or may
not intersect Nonintersecting planes are termed parallel
lanes
. A straight line and a plane also erther intersect (in a point)
or do not intersect, 11 which case we say that the sfraight
line 15 parallel to the plane (or that the plane is parallel to
the straight line)

161, Angles

The angle between two interseciing straight lines 1s meast-
red 1n the same way as i plane geometry (because a plane
can be drawn through two such straight lines) The angle
between parallel lines 1s taken to be zero (or 180° see Sec
148) The angle between skew lines AB and CD (Fig 154)*
1s defined thus through any point O draw rays OM || AB and
ON || CD. The angle between AB and CD 1s taken to be equal
to the angle NOM In other words, the straight lines AB
and CD are translated parallel to themselves to new positions
until they intersect For instance, we can take O on one of
the lines AB, or CD, which will then remain fixed.

* On the straight line A8 (and on CD) we can establish a direc-
tion at pleasure from A to B or from B to A (from C to D or from
D to In the former case, the line is denoted AB, in the latter,
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The straight line AB that intersects plane P at pomnt O
forms, generally speaking, distinet angles with distinet lines
0C, OD, OE drawn in the plane P through O (angles AOC,
AOD, AOE, Fig 155) 1f AB 1s perpendicular to two such
straight lines (say OF, OD), then it is perpendicular to all

Fig. 184,

Fig 156

the other lines passing through O (say, OC) In this case we
say that the straight Tine 04 (Fig 156) 1s perpendicular to
the p(;?qne P, and the plane P 1s perpendicular to the straight
line

The orthogonal projection (or simply, projection) of a point
A on a plane P 1s the foot C of the perpendicular drawn

A MmN

Fig 1567 Fig 158 Fig 159,

from the point A to the plane P The projection of a hne-
segment AB on a plane P 15 the line segment CD whose
endpoints are projections of the extremities of AB (Fig. 157).
Operations involving projections constitute one of the basic
techniques of geometric investigation (see Sec. 162) The angle
between a straight Iime and a plane is determined by means
of a projection operation

In Fig. 158, the angle between the straight line OA and
plane P 1s the angle formed by OA and its projection OB 1n
the P %lane If the straight lme MAN is parallel to the P
plane (Fig 159), then it 1s parallel to its projection and the
(acute) angle between MN and the P plane 1s taken to be
p230)

The figure (see Fig 160) formed by two half-planes P
and Q emanating from one straight line CD Is called a dihed-
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ral angle. The line CD 15 the edge of the dihedral angle, the
planes P and Q are called the faces of the angle

Plane R, which 1s perpendicular to the edge of the dihed-
ral angle, forms an angle A0B at the intersection with the
faces P and Q. This 15 called the plane angle of the dihedral
angle

Flg 180 Fig 1861

A dthedral angle 1s measured by tts plane angle Instead
of saying that the “measure of a dihedral angle 1s 30°" we
say that the “dihedral angle 15 equal to 30°", and the like

One often also speaks of “an angle between two planes”
{cf with plane geometry where one speaks of “an angle bet.
ween two lines”) This angle 1s then one of the four angles
formed by the planes (ordinarily, the acute angle) *

The angle (acute) belween fwo parallel planes 1s said to
be zero (Actually there is no angle at all )

,Two planes that form a right angle are termed perpend:-
cular

In Fig 161, the angles formed by the two straight lines
AB and CD, which are respectively perpendicular to the
planes P and @, are equal to the angles between P and Q
(acute angles being equal to acute angles, and obtiuse angles
to obtuse angles) For this reason, the measure of an angle
between two planes, P and Q, may also be defined as the
value of the angle formed by the straight lines AB and CD

162. Projections

Any hine (and not only a straight line), whether 1t lies
in a plane or does not, can be projected onto a plane In
Fig 162, let ABCDE be a line (curved or polygonal) Let

* Vertical and adjacent dihedral angles are defined in the same
way as vertical and adjacent angles between straight lines Vertical
dihedral angles are equal
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us move a point along this line, as the point takes up posi-
tions 4, B, C, D, etc, its projection (Sec 161) will take up
the positions a, b, ¢, d, etc The line abcde described by the
projection of the point moving along ABCDE 1s called the
projeciion of the line ABCDE Though the
shape of the projection depends upon the ¢
shape of the line being projected, 1t does A8
not determine the shape of the line being
projected However, i we know the pro-
{ectxons of a ine ABCDE on two planes,
hen the shape of the line ABCDE itself s defi- Fig 162
ned (there are some special line arrangements
that constitute exceptions) This fact underlies the method
of descriptive geometry in which a geometric figure 1s studied
0|11 the basis of its projections on two mutually perpendicular
planes

The shape of a line projected onto a plane changes Thus,
for instance, 1f we project (see Fig 163) a circle on plane P
from plane Q, which 1s not parallel to P, the projection
will be an oval curve called an ellipse

Flg 163, Flg 184

If a closed curve lying tn the Q plane is projected on
the P plane, then the area S, bounded by the projection 15
connected with the area S bounded by the figure being pro-
jected via the relation

S)=S8cosa

where @ 15 the angle between the planes P and Q
A similar formula relates the length a of AB {see Fig 157
on page 297) to the length a, of 1ts projection CD on the
plane P
ay=acosa

where o 1s the angle between the straight line AB and the
plane P

Points and lines are often projected onto a siratghl line
(the axis of projections)
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Suppose we have a straight hne AB and a point M
(Fig 164) Draw through M a plane perpendicutar to AB
It intersects AB tn a point m, the point m 1s called the
projection of pownt M on the line AB

Projecttng the extremuties M and N of line MN on the
line AB, we obtain the points m and n, the segment they
bound 1s called the projection of the line-segment MN on
the straight line AB * The length a of MN 1s connected
with the length a, of its projection mn by the formula

a,=ac0s e

where « is the angle between the lnes MN and AB. The
projections of line segments on a straight line may be con.
sidered algebraic quantities in the same way as in making
projections 1n a single plane (see Sec 147) Then a theorem
stmilar to the theorem of plane geometry holds true the sum
of the projections of the segments of a polygonal line is
equal to the projection of the closing segment

163, Polyhedral Angles

If through a given pont O (Fig 165) are passed planes
AOB, BOC, COD, etc that intérsect one another successivel
along the straight lines OB, OC, OD, etc (the last plane AOE
intersects the first along the line OA), then the resulting

A 4

Flg. 183 Fig 166 Fig. 167

figure 15 called a polyhedral angle The point O 15 the verfex
of the polyhedral angle.

The planes which form a polyhedral angle are called faces.
The straight lines along which the faces intersect in succes-

* Note that Mm and Nn aregper endicular to AB, but In the general
case (cf Fig 153 on page 296) they are not parallel to one another
they are skew Lines If the straight litnes’ AB and MN are skew lines
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ston are termed the edges of the polyhe - The angles
AOB, BOC and so on are called face angles ~ &

The smaliest number of faces of a polyhedral angle is
three (the irifedral angle in Fig 166) Each face angle of a
trihedral angle 1s less than the -um and greater than the
difference of the other two face angles

The section of a polyhedral angle by a plane (not passing
through the vertex) 1s a polygon (ABCBE mn Fig  165).
If 1t 1s convex, the polyhedral angle is termed convex In a con.
vex polyhedral angle the sum of the face angles does not
exceed 360°

Parallel Flanes intercept, on the edges of a polyhedral
angle (Fig 167), proportional se%ments (SA Sa=SB.8b,ete.)
and form similar polygons (ABCD and abcd)

164. § .iyhedrons® Prism, Paratielepiped, Pyramid

A polyhedron 13 a solid bounded by plane surfaces called
faces (polygons) The faces intersect in straight lines called
edges Their vertices are the wriicrs of the polyhedron Lines
connecting two vertices not lying in
one face are called diagonals of the
polyhedron A convex polyhedron is
one tm which ail diagonals lie with-
m1

A prism (Fig 168) 1s a polyhedron
in which two faces ABCDE and abede
(the bases of the prism) are con-
gruent polygons with corresponding
sides parallel, and all other faces
(AabB, BbeC, etc.) are parallelo- TFl& 188 Fie. 169.

rams whose planes are parallel

%o one straight line (da, or Bb, or Cc, etc) The parallelo-
grams ABba, BCcb, etc are laferal faces The edges Aa, Bb,
ete. are called laferal edges The alfifude of a prism (Mm n
Fig 168) 1s the perpendicular distance between the bases
A prism 1s triangular, quadrangular, pentagonal, hexagonal,
octagonal, etc according as the base 1s a triangle, quadrangle
(quadrilateral), pentagon, hexagon, octagon, efe.

» Elementary geomeiry considers only polyhedral angles such that the
contour ABCOE has no sell-intersections” A simple polyhedral angle
1solates & portion of space which 1s also called a polyhedral angle On
the measutement of polyhedral angles see Sec 172
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If the lateral edges or the prism are perpendicular to the
bases, we have a right prism, otherwise it i1s an oblique prism
If the bases tn a right prism are regular polygons, the prism
18 a regular prism Figure 168 1s an oblique pentagonal prism,
Fig. 169, a regular hexagonal prism

A right section of a prism, a’b'c’d’¢’, 1s a plane section
perpendicular to a lateral edge (Fig 168).

he lateral area of a prism s equal to the length (/) of
a lateral edge times the perimeter (p’) of a right section.

S,¢,=p'l
For a right prism, the bases are right sections and the alti-
tude & 1s equal to a lateral edge, so that
Swt=ph
The volume (V) of a prism is equal to the product of the
area (S7) of a (rlght section by the length (f) of a lateral

dge.

ecee V=5

or the product of the area (S) of the base by the altitude:
V==8h

A parallelepiped 18 a prism whose bases are parallelograms
(Fig. 170). Thus, a parallelepiped has six faces and they are

Fig 170 Flg 171

all parallelograms, Opposite faces are equal and parallel,
A parallelepiped has four diagonals which all intersect in one
point and are bisected by this point Any face may be taken
as the base The volume 15 equal to the area of the base
times the altitude. v

=Sh

A right parallelepiped 1s a parallelepiped whose four late-
ral faces are rectangles



303

A right parallelepiped, all six faces of which are rectang-
les, 15 called a rectangular parallelepiped (Fig 171) The
volume (V) of a right parallelepiped 1s equal to the area (S)
of a base times the altitude (k)

V=38h
For a rectangular parallelepiped we also have the formula
Ve==qbc
where a, b, ¢ are edges
The diagonal (d) of a rectangular parallelepiped 1s related
to 1ts edges by
d’=a’+b‘+cz
A cube 1s a rectangular paralleleprped with all the faces
squares All the edges of a cube are equal, the volume (V)
o? a cube 1s given by the formula
V=g
where a 1s an edge of the cube

A pyranud 1s a polyhedron with ome face (the base) an
arbitrary polygon (ABCDE m Fig 172), and the other faces

Fig 173 Fig 174

(lateral faces) triangles with a common vertex S, called the
vertex of the pyramid The perpendicular SO from the vertex
to the base is the altitude of the pyramd A pyramid 1s
‘riangular, quadrangular, pentagonal, “etc according as the
base 1s a triangle,” quadrangle, pentagon, étc. A triangular
{:yramld 1s a tetrahedron, a quadrangular pyramid 1s a pen-
ahedron, etc.

A 'Eyramxd 1s called regular 1f 1ts base 1s a regular poly-
gon (Fig 173) and the altitude falls 1 the centre of tie
base In a regular pyramid, all lateral edges are equal because
all lateral faces are congruent isosceles triangles The alti-



304

tude (SF) of a lateral face of a regular pyramid s called the
slant hewght
The lateral area of a regular pyramid 1s equal to the

seriperimeter of the base (-;— p) times the slant height (a)

!
Siat =-3pa

The volume of any pyramid 1s equal to one third the
product of the area (S) of the base by the altitude (4)

1
V= Sh

A section abede drawn parallel to the base ABCDE
(Fig 174) produces a solid bounded by this section, the
base, and the lateral surface between them, 1t 1s called the
frustum of a pyramuid (the term fruncated pyramud 1s also
used, though many authors restrict it to nonparallel bases)
The dparallel faces of the frustum (ABCDE and abede) are
called the hases, the distance between them (00;) is the
altitude A frustum 1s regular if the origmal pyramid was
regular All lateral faces of a regular frustum are congruent
1sosceles trapezoids The altitude Ff of a lateral face 1s called
the slant height of the regular truncated pyramid

The lateral area of a regular truncated pyramid 15 equal
to the half-sum of the perimeters of the bases times the
slant height

Stat =‘;' (py+po)a

where py, p, are the perimeters of the bases and a 1s the
slant height

The volume V of mg truncated pyramid s equal to one
third the product of the altitude by the sum of the areas
of the upper base, the lower base, and the mean proportio-
nal between them

=54 (S+VES+S,)

where §; 1s the area of ABCDE, S, 15 the area of gbede,
and A 1s the altitude 00,

As an illustration, the volume V of a regular quad-
rangular truncated pyramid 1s given by the formula

=-4-h(a+ab+b?)

where @ and b are the sides of the squares in the bases
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165. Cylinders

A cylindrical surface 15 a surface generated by a straight
line (AB m Fig 175) moving in the same direction and
intersecting a given lme MN The line MN 1s catled the
directrix (plural, directrices) The straight
line AB 1s termed the generafor, or gene- 8
ratrix (plural, generatrices), of the cylind- M N
rical surface The generator 1n any one fixed
positian 1s called an element A sohid bo-
unded by a cylindrical surface (with a closed-
curve directrix) and two parallel planes 1s Flg 175
called a cylinder (Fig 176) The portions of
the parallel planes bounding the cylinder (ABCDE and abcde)
are termed the bases of the cylinder The distance between
the bases 1s the alfitude of the
cylinder (MN in Fig 176).

A prism 1s a special type
of cyhinder in which the
elements of the generator are
parallel to the lateral edges
and the directrix 1s a polygon
forming the bases On’ the
other hand, an arbitrary cyl-

Fig 176, Fig 177 nder may be regarded as 2
degenerate (smoothed) prism
with a very large number of

very narrow faces. Practically speaking, a cylinder ts indi-
stinguishable from such a prism  All the properties of the
prism are preserved in the cyhndet (see below)

A cylinder 1s called a right cylinder 1f the elements
(rulings) of the generator are perpendicular fo the base,
otherwise 1t i1s an oblique cylinder A crcular cylinder s
one in which the base 15 a circle A right circular cyhinder
(see Fig 177) may be regarded as a degenerate regular prism
Right circular cylinders are commonplace 1n everyday life,
as witness pipes, glasses, cans, etc A right circular cylinder
can be generated by revolving a rectangle about one of its
sides, whence the alternative (synonymous) term cylutder
of, revolution

Sections of the lateral surface of a circular cylinder (we
assume the lateral surface to be produced beyond the bases
of the cylinder) cut parailel to the bases (ABCD n Fig 177)
are circles of the same radius The sections parallel to the
generator form pairs of parallel straight limes (EF and HG),

20-652
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Sections which are not paralle] either to the bases or to the
generator (abcd) are ellipses (see Sec 162).

The lateral area of a cylinder 1s equal to the product of
the generator by the length of the line bounding the section
perpendicular to the generator. In a right cylinder, this
section 15 the base, and the generator is the altitude.
Therefore, the lateral area of a right circular cylinder is
eqtm to the product of the circumference of a base by the
altitude:

Siat=2nrh
The volume of an¥ cylinder is equal to the product of
the area of a base by the altitude
V=8h
For a right circular cylinder,
V=nrih (r the radius of a base)

168. The Cone

A conucal surface is a surface generated by the motion
of a straight line (AB 1n Fig. 178) which always passes
through a fixed foint (S) and intersects a given line (MN)

n elementary geometry we consider only
“"’3 8 conical surfaces without self-intersections,

“

y The line MN 1s called the directrix; the
P 5,'" straight lines corresponding to various pos-
itions of AB are the elements of the gene-

Fig 178 rator of the conical surface Point § is the
t . verfex (or apex) of the cone. A -conical

surface has two sheets (nappes) one desc-
ribed by ray SA, the other, by its extension SB,
By conical surface we frequently mean one of its sheets,
A cone 15 a sohid bounded by one sheet of a comical
surface (with closed directrix) and a plane (ABCDEFGHJ in
Fig. 179) intersecting 1t and not passing through the ver-
tex S The portion of this plane lying inside the comical
surface 1s called the base of the cone The perpendicular
SO from the vertex to the base is the altitude of the cone
A pyramid 15 a spectal case of a cone n which the
direclrix 1s a polygon; an arbitrary come 15 a degenerate
pyramd
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A cone is creular (Fig. 180) if its base 1s a clrcle

The straight line SO connecting the vertex of the cone
and the centre of the base is the axis of the cone 1f the
altitude of a circular cone falls in the centre of the base,
then the cone is called a right circular cone, sometimes
simply a circular cone (Fig. 181). A right circular cone can
be generated by revolving a right triangle about one of its
legs (hence the alternative name of cone of revolution).

Fig 180, Fig 181,

A section of a tircular cone by a plane parallel to the
base is a circle (Fig 180) See Sec 167 on sections of a cone
by glanu not parallel to the base.

he lateral area of a nght crcular cone is equal to the
product of one half the circumference of the base (C) by the
generator {{):

Stat =-%- Cl=arl (r the radius of the base)

The volume of any cone is equal to one third the product
of the area (S) of the base by the altitude (h):

1
V== Sh
For a right circular cone,
1 1
Ve g Sh=o nrth

167. Conlc Sections

Conics (or conuc sections) are lines of intersection of various
planes with the lateral surface of a circular (but not ne-
cessarily right circular) cone. A conical surface is imagined
as extending in both directions from the vertex without limit.

[f a cutting plane intersects only one nappe of a circular
cone and is not parallel to any element of the generator
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(F1g, 182), then the comic section 15 an ellipse (see Sec 162).
In exceptional cases the ellipse becomes a circle (for instance,
in a night circular cone all sections parallel to the base are
circles).

If )the cutting plane intersects only one nappe of a right
circular cone and is parallel fo one of the elements of ‘he
generator (Fig. 183), then the section yields an unbounced
{in one direction) line called a parabola.

Fig 182, Flg. 188.

If the cutting plane intersects both nag?es of the surface
of a circular cone (Fig 184), then the section grields a line
consisting of two branches receding without limif (hyperbola),
In particular, a hyperbola is obtained when the cutting plane
15 parallel to the axis of the cone

Coric sections are of both theoretical and practical inte.
rest. In the practical aspect we have elliptic gear wheels,
parabolic searchlights, planets and certan comets move 1n
elliptical orbits, some comets follow parabolic and hyper-
bolic paths

The fundamentals of conic sections are given n all
manuals devoted to analytic geometry

168, The Sphere

A spherical surface (or, simply, sphere) 1s a locus of points
of space equidistant from one point called the centre of the
sphere (pont O in Fig 185) The radws OF and the dig-
meter EG of a ssp;herlcal surface ate defined 1n the same way
as for a circle (Sec 151)

A solid bounded by a spherical surface is called a sphere

A sphere can be generated by revolving a semicircle
{or a circle) about its diameter,
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All plane sections of a sphere are circles (ABCD in
Fig 185). The radius of the circle increases as the cutting
lane approaches the centre of the sphere The largest circle,
FGH, 1s obtained when the sphere 1s cut by a plane
passing through the centre O, The circle then cuts the sphere

Fig. 185, Fig. 186,

and its surface into two halves, it is called a greaf circle,
The radius of a great circle is equal to the radius of the
sphere

Every E&lf of great circles intersect along the diameter
of the sphere (4B in Fig 186) which also serves as the
drameter of each of the intersecting circles

An infimty of great circles (meridians) can be drawn
through two points of a spherical surface lying at the
extrermties of one and the same diameter.
One and only one great circle can be drawn
through two points not lying at the exire-
mities of one diameter

The shortest distance between two points
on a spherical surface 18 an arc (smaller than
a semtwnicle) of the great circle drawn
through these points.

The surface area of a sphere s equal Fig, 187
to four times the area of a great circle of g 181,
the sphere

S=4nR3

where R 1s the radius of the sphere

The volume of a sphere is equal to the volume of a
pyramid whose base has the same area as the surface of the
sphere, and the altitude 1s the radius of the sphere,

1 4
V=t RS=-nRs

The volume of a sphere 1s one and a half times less than
the volume of a cylinder circumscribed about it (Fig 187),

while the surface area of a sphere s l% times less than the
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total surface area of the cylinder (Archimedes theorem):
=215
=58
H
Ve T vy
where S; 15 the total area and V, 1s the volume of the
cylinder shown 1 Fig 187
169. Spherical Polygons
A spherical polygon 18 a figure consisting of a closed
series of arcs of great circles, no arc must exceed a half of
a great circle. Figure 188 shows a spherical pentagon.

The arcs AB, BC and so on are the sides of a spherical
polygon, the points 4, B, C, etc are the wverfices.

rig 188

A spherical polygon 1s convex 1f its entire contour lies
on one of the two hermispheres formed by the great circle
containing one of the sides The polygon ABCDE of Fig. 188
1s a convex polygon The polygon LMNP of Fig 189 1s not
convex, since its contour lies 1n both hemuspheres formed
by the great circle of the side NM (and also of side NP)

Note. Elementary geometry studies only simple spherical
polygons, 1e, polygons whose contours have no self-inter-
sections Every simple polygon partitions a hemisphere into
two regions, one of which can be taken as the interior region,
the other as the exterior region If the areas of the regions
are not equal, the area of the smaller one 1s usually taken
as the interior,

The interior angle of a spherical polygon, say angle ABC
which in Fig 190 1s denoted by B, is measured by the plane
angle A'BC’ formed by the rays BA’, BC' touching the
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sides BA, BC ln place of the plane angle A’BC’ we can
take the dihedral angle measured by it, the edge of which
1s the radius 0B, and the faces are the
planes OBA', OBC' of the great circ-
les BA, BC.

In the same way, the exterior angle
of a spherical polygon, say angle D"84
denoted 1n Fig 190 by B’ 1s measured
by the plane angle D'BA’ or by the
corresponding dthedral angle The sum
of an inlertor angle and an exterior
angle at one vertex 1s equal to 180°, Fig 180
or n radians

A plane polygon has at least three sides A spherical
polygon can have two Fig 191 depicts a spherical lune
(two-sided polygon) The intertor angles a, lf of a lune
are equal

The area of a lune, the interior angle of which contains o
radrans, is given by the formula

S§=2R%

where R 1s the radius of the sphere

Example A lune whose interior angle 1s a right angle

{quarter of a sphere) has area 2R’~i;—=nR3, which 1s the
same as that of a great crcle (cf Sec 151)

rig 191, Fig 192

In a spherical triangle the sum of the interior angles is
always greater than 180°, the area of the triangle 1s propor-
tional to the excess of tms sum over 180° Namely, i the
interior angles contain a,, x,, oy radians (Fig. 192), then

S=Ra; 03+ g~ 7) 0
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The sum of the exterior angles of a spherical triangle 15
always less than 360° If o, a,, oy are the extertor angles

of a triangle expressed in radian mea-

sure, then
“” 8= R?[2n— (a; + oy + )] @
. L i This formula can be extended to
< ; any spherical polygon Namely

S=RA[2n— (o + 4. +an)

That 15,1 th]e rah? z;fh the area of a
spherical polygon to the square of the
Fig 198 radius of the sphere is equal to the
amount by which 2m 1s greater than
the sum of the extertor angles

Example. Let us consider the spherical triangle formed
by three mutually perpendicular great circles (Fig 193) The

3n

sum of the intertor angles 1s =-. By formula (1) we get

1
S=nR?

The same resull 1s obtained 1f we note that the given trian-
gle constitufes % of the sphere (cf Sec 168)
The sum of the exterior angles of the given triangle 1s

also equal to %’,‘— By formula (2) we agamn find S=%nR'.

170. Parts of a Sphere

The portion of a sphere cut off by a
plane (ABCD in Fig 194) 1s called a spherical
segment of one base

The base of a spherical segment 1s the
arcle ABCD The altitude of a spherical
segment 1s the line NM, or the perpendicular
distance between the centre N of the base o
and the point of intersection with the surface Fig. 194,
of the sphere The point M 1s called the
vertex of the spherical segment

The curved surface area of a spherical segment of one
base 1s equal to the product of the altitude by the perime-
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ter of a great circle of the sphere
8=2nRh
where R 1s the radius of the sphere and A=MN,
The volume of a segment of one base 1s
g (R—%n) or Ve=-bah (13-43r)

where 7 1s the radius of the base of the segment
The portion of a sphere contained between iwo parallel

Fig. 1838 Flg 198

secant planes (ABC and DEF n Fig 195) is called a sphe-
rical segment of two bases The curved surface area of a
spherical segment of two bases 1s called a zone The circles
CB and DFE are the bases of the zone The distance ¥O
between the bases is the altifude of the spherical segment of
two bases {and zone)
The curved surface area of a spherical segment of two
bases 1s equal to the product of the altitude A==NO and the
pertmeter of a great circle of the sphere.

S=2nRk

The volume of a spherwal segment of fwo bases is given
by the formula

V=gt 4a (i h

where ry and r, are the radii of the bases

That portion of a sphere bounded by the surface of a
spherical segment of one base (AC i Fig 196) and a coni-
cal surface (OABCD), the base of which is the base of the
segment (ABCD) and the vertex of which 1s the centre of
the sphere 15 called a spherical sector

The surface area of a spherical secior 15 made up of the
Slill'fﬂce area of a spherical segment of one base and the area
of a cone
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The volume of a spherical sector 15 equal to the volume
of a pyramid, the base of which has the same area as that
part o{ the spherical surface cut out by the sector, and the
altitude 15 equal to the radius of the sphere:

V=_ RS=3nR%

where & 1s the altitude of the spherical segment of one base
belonging to the spherical sector.

171, Tangent Piane to & Sphere, a Cylinder and a Cone

In practical situations, it 15 often possible to replace a

small arc, AB, of a curve (say a circle) by a small seg.

ment AT of the straight line that is

Y] T tangent to the arc AB at A (Fig. 197)

,—_—q The error 1s usually insignificant,

8 For instance, we say that we go

from one point (on the earth's surface)

Flg. 197, to another along a straight line,

whereas actually we move along the

arc of a great circle drawn on the surface of the terrestrial

sphere.

P In the same way, a small part of a curved surface (say

the surface of a sphere) can be replaced approximately by a

small piece of the fangent plane, which 15 a plane that dif-

fers but slightly }a]most lmperceptlblg) from a small_portion

of the curved surface, This was why for millenia people con-
sidered the surface of the earth to be flat (plane).

An exact definition of a tangent plane may be given m
full accordance with the earlier given exact definition of a
tangent line (see Sec. 151). There we considered two points A
and B of a curve (say a circle); one of them was made to
arproach the other, and we noted that in the process the
straight line AB approached a certain limiting position. Now
let us take three points A, B, C (Fig. 198) on a surface (say
of a sphere) Pass a cutting plane P through them. Now let
the two Romts B and C approach A in two different direc-
tions. Then the P plane will approach a certain limiting
position Q irrespective of where the points B and C were
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taken and what their mode of approach to A was. The Q

plane 1s called the tangent plane (at pomnt A).*
The tangent plane to a surface at a i)omt A 1s the plane
ane passing through

approached without ltmit by a secant p
three points of the surface, 4, B, C,
when the })omts B and C approach
A from different directions It may
happen that the surface does not
have any tangent plane at the po-
int A For example, a conical
surface does not have a tangent
plane at the vertex of the cone.

A plane (Q n Fig 199) that
‘“1s tangent to a spherwal surface
is perpendicular to the radius OA terminating at the point
of tangency A plane that is tangent to a spherical surface
has only one point in common with the surface.

Fig 199. Fig. 200 Flg 201

This property is ordinarily taken as a definition of a tan-
gent plane to a sphere However, it is not at all valid in the
case of other surfaces, say the surfaces of a cylinder and
cone, but the definition given earlier 1s applicable to these
surfaces as well

The plane Q (Fig 200) i1s a fangent plane fo the surface
o{‘ a right circular cylinder at the point A and passes tbrou%h
the generator MN which passes through A and through the

* The requirement that points 8 and C lpgrmch A In different
directions is essentlal, If, for example, two travelers move towards the
North Pole along one and the same meridlan or along two meridiang
that are continuations of one another, then the plane passing through
the pole, A, and the points B and C at which the travelers are loca-
ted will always coincide with the plane of the meridian and, hence,
wlll not approach the tangent plane, which is to say that it will
-lwnrs be the same cutting plane This requirement may be stated In
strict fashion as follows lines tangent to the arcs AC and AB at
their point A of intersection must be distinct stralght lines
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tangent lme BC to the base circle at point N, which belongs
to the generator MN The tangent piane to the surface of
a right aircular eylinder 1s separated from all points of ihe
axis of the cylinder by the radis R of the base of the
cylinder

The plane Q (Fig 201), which is the fangeni plane to
the surface of a right curcular cone af the point A (A does
not coincide with the vertex S) passes through the genera-
tor SB, which passes through point A, and through the tan-
gent line MN fo the base circle at pont B.

A cylinder 1s said to be an tnscribed cylinder of a prism
if the lateral faces of the prism are tangent to the cylinder
and the bases of prism and cylinder are coplanar (in the same
plane) A cylinder 15 a circumscribed eylinder of a prism if
the lateral edges of the prism are feneratmg elements of the
lateral surface of the cylinder and the bases of prism and
cylinder are coplanar

The definitions are the same for an inscribed cone of a
pyramud and a circumscribed cone of a pyramid.

172. Solid Angles

A solid angle 1s a portion of space within one nappe of
a contcal surface (see Sec 166) with closed directrix. Like
an engle between two straight lines 1n a plane, a solid angle

extends without bound (an infinite funnel).
A pol‘yhedral angle (Sec. 163) is a special
case of a solid angle (a pyrarpxda] surface is
a special case of a conical surface).

Just as an angle between two straight
lines 1s measured by the arc of a circle, a
soltd angle 15 measured by a portion of the
Fig. 202, strface of asphere. To see this, from vertex 8

of a solid angle, draw a spherical surface of
arbitrary radius. The surface of the solid angle will cut out of
this surface a portion ABCD 1n Fig. 202 The area of this por-
tion will vary with the radius of the sphere but will always
constitute one and the same fraction of the surface area of the
sphere. For this reason, for the measure of a solid angle we
could take the ratio of the area ABCD to the area of the spherical
surface, in the same way that the angle between two straight
lines might be measured by the ratio of the arc subtended
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by them (with centre at the vertex of the angle) to the pe-
rimeter of a circle of the same radius (an angle of half
a rotatron, one-fourth rotation, etc.) However, the accepted
measure for a solid angle 1s the ratio of the area ABCD to
the area of a square constructed on the radius of the sphere
(1t 1s expressed by the quantity R, which 1s proportional to
the surface area 4mR? o? the sphere) This measure of solid
angles 15 similar to the radian measure of angles between
straight lines (see Sec 180),

Thus, for the measure o of a solid angle with vertex S
we take the ratio of the area cut out by a solid angle on the
surface of a sphere of arbitrary radius’ with centre S to the
square of the radius of the sphere

area ABCD

o= R

Example 1. A solid angle formed by three mutually per-
pendicular planes (for instance, by twosides and the bottom
ki

of a rectangular box) 1s equal to < Indeed, if 2 spherical

surface 15 described from ver-
tex S of such a solid angle,

T;' of it will be cut out on

the surface of the sphere
(Fig 203) since three mutu.
ally perpendicular planes will
cut 1t into 8 equal parts
(tmagine a portion of the
surface of a globe cut out
by two mutually perpendicular planes passing through mer-
lglans and by a plane passing through the equator), hence,
the area of this portion of the surface 1s equal o 4nR*8=
=’-‘7R: and its ratio to R® 1s equal fo %

Example 2. Find the sohid angle at the vertex of a cone
whose altitude 1s equal to the radius of the base

Draw from the vertex ot the cone a sphere of radius
equal to the generator 7 of thecone (Fig 204) The altn’:}:ﬂe ap
of the cone may be expressed n terms of L. 0D =—‘2—2-;the
altitude CD of the spherical segment ABC 1s then l--‘—?— H
the spherical area cut out by the solid angle 15 the curved

Fig 208. Flg 204
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surface area of this spherical segment and is equal (see
Sec. 170) to

2nt.cD=2n (1-1F)

Hence the solid angle is
g | #]
(l 2 )

The unit solld angle is a solid angle that cuts out of g
sphere (with centre at the vertex of the angle) an area equal
{o that of the square constructed on the radws. The unit
solid angle 15 called a steradian.

178, Reguiar Polyhedrons

A polyhedron is regular 1f all its faces are congruent re-
gular polygons and the same number of faces meet at each
vertex.

48 D0 &

Fig. 205. Pig. 208. Flg~207.  Fig 208. Fig 209

In contrast to the fact that there are an infinity of
nonsimilar regular poly%ons. there is onlr a limited number
of regular polyhedrons that are not similar. There can only
be five regular convex polyhedrons (and another four regular
concave polyhedrons). These five regular convex polyhedrons
are: the regular tetrahedron or, sizr(l;lgly. tetrahedron
Fig. 205), the hexahedron (or cube, I-"Igz.{n ; the octahedron
F}g. 2%37); the dodecahedron (Fig. ); the icosahedron

q:he Io]lowing table gives the number of vertices and
edges, and also the surface areps and volumes exfrmed mn
terms of an edge @ for the reguler convex polyhedrons.
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A sphere can be inscribed in, and circumscribed about, every

regular polyhedron

174, Symmetry

The word symmetry comes from the Greek meaning ba-
lanced proportions. In the broad sense of the word, symmetry

1s to be understood as any regularity in
the inner structure of a boedy or figure
The study of various kinds of symmetry
represents an extensive and important
branch of geometry that is closely bound
up with many fields of natural science
and engineering, ranging from textiles to
intricate problems in the structure of
matter.

There are three elementary types of
symmetry: :

1. Mirror symmetry, which 1scommeon-
place in our everyday lives As the name
implies, mirror symmetry relates an object
to 1ts image 1n a plane mirror. The geo-
metric definition of mirror symmetry 1s
this: a figure (F1g. 210) 15 called symmeiric
with respect to a plane P (nurror plane,

Fig 210,

plane of symmetry) if each Fomt E of the figure 1s asso-

crated with an 1dentical pon

E’ of the same figure such
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that the line EE' 1s perpendicular to the plane P and 15 cut
1n half by 1t

We say that one figure (or solid) ts mirror-symmetric with
respeet to another 1if together they form a mirror-symmetric
figuré (or solid), In Fig 210, the line ABC 15 symmetric
with respect to the line AB’C, the right hand 15 symmetric
to the left.

It 15 important to note that two symmetric bodies cannot,
generally speaking, be “inserted one into the other”, to put

1t differently, one of the bodies cannot take

D £ the place of the other This is clearly illust-

rated by the fact that a left-hand glove does
not fit the right hand.
A 8 Symmetric figures are essentially different
despite therr many similarities  This s
Flg 21t cogently demonstrated by putting & written
message 1n front of a murror and trymg to
read the text in the murror,

Symmetric objects cannot therefore be called equal in the
narrow sense of the word. They are called murror-equivalent
Generally, mirror-equivatent bodies (or figures) are such that
when they are displaced (translated) in some appropriate fa-
shion they can form two halves of a mirror-symmetric body
(or figure)

2. Central S{mmetry A figure (or solid) 1s said to be
symmetric about a centre C if every pomnt E of the figure
(solid) 15 associated with a point A of the same hgure (solid)
such that the line EA passes through the pomt C which
bisects 1t (Fig. 211). The figure ABCDE composed of two
triangles ABC and EDC (Fig 21[) whose sides are equal 1n
pairs and are extensions of each other has a centre of sym-
mefry (C). Between corresponding patrs of points lie equal
line-segments, the corresponding angles of the two halves of
a solid possessing central symmetry are also equal. Generally
speaking, however, the two halves of a solid having central
symmetry cannot be interchanged, this is the same for the
two halves of a solid possessng mirror symmetry. What is
more, one of the halves of a solid with central symmetry
may (via a rotation through 180° about any axis passing
through the centre of symmetry) be carried to 'a murror-sym-
metric J)osit:on relative to the other (with respect to the piane

erpendicular to the axis of rotatlonl) For this reason, the
wo halves of a solid having central symmetry are murror-
equivalent (sea above).

Example. 1f edges S4, 8B, SC, .., of the pyramid
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SABCDE (Fig 212) are dpmdm:efl to distances equal to the
lengths of these edges and in the opposite direction from the
vertex, then the two pyramids SABCDE and Sabede jointly
form a solid symmetric about the centre S.

1f the pyramid SABCLE n Fig. 212 is hollow and with-
out a “botfom” ABCDE (a pyramidal funnel), then, by turn-
ing it inside out, we get a solid into which we can i

N8
Fig 212, Fig. 213.

gyramld Sabede, n the general case, 1t 1s not possible to
ring these two solids to cotncidence without turning one
instde out, so that in the general case SABCDE and Sabede
are not equal but only mirror-equivalent Equality 1s possible
mn exceptional cases (say if SABCDE is a regular pyramid)

3 Rotational symmeiry A solid (or figure) h:as rotational
symmetry if when rotated through an angle 36-;0- {(n an 1nte-
ger) about a straight hne AB (axis of symmetry) it comncides
completely with its original position "If the number n 1s
equal to 2, 3, 4 etc,, the axis of symmetry 15 termed a fwo-
fold, three-fold, four-fold, elc. axis

Example. Cut a aircle into three sectors with central ang-
les 120° each (Fig 213). Supertmpose the sectors without
turning them over and cut out a figure a of arbitrary shape
Now 1f the sectors are spread out in the original position,
we get a figure (a circle with three odd-shaped holes) which
possesses a three-fold symmetry axis. This axis 1s perpendi-
cular fo the plane of the drawing. A rotation through 120°
ltarmgs the figure to full coincidence with its original posi-
o1

In a narrower sense, an axis of symmetry 1s a two-fold
symmetry axis, and gne speaks of »*ax1al symmetry”, which
may be defined thus. % figure (or bod- ) has axial symmetry
with respect to some axis 1f‘dFr E of 1t 15 associated
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with another point, F, of the same figure such that the line-
segment EF 13 perpendicular to the axis, intersects 1t and 5
bisected by the pomnt of intersection The earhier considered
air of triangles (see Fig 211) has axial symmetry in add;.
1on to central symmetry Its axis of symmetry passes through
point C perpendicular to the plane of the drawing.

The following are some instances of the symmetry types
diseussed above

A sphere has central, muror and axial symmetry. The
centre of symmetry lies at the centre of the sphere, the plane
of any great circle 1s a plane of symmetry, and any diame.
ter of the s}t)here 1s an axis of symmetry. The sphere has
n-fold symmetry, where n 1s any integer

A right circular cone has n-fold axial symmetry, the axs
of symmetry 1sthe axis of the cone

X regular penta%nnal' prism has a plane of symmetry
passing, parallel to the bases at equal distances from them,
and the axis of symmetry s five-fold and coincides with the
axis of the prism A plane bisecting one of the dihedra| ang.
les formed by the lateral faces can also serve as the plane
of symmetry.

176, Symmetry of Plane Figures

1 Mirror-axial symmetry. If a plane figure (ABCDE n
Fig. 214) 1s symmetric about a plane P (this 15 possible if

L
8 ¢
%0 /
Fig 214, Fig 218,

planes ABCDE and P are mutually perpendicular), then the
straight line KL in which the planes intersect is the axis of
symmetry (two-fold) of the figure ABCDE. Conversely, 1if the
plane figure ABCDE has KL as the axis of symmetry in that
plane, then this figure 1s symmetric about the plane P pas
sed through XL perpendicular to the plane of the figure For
this reason, the axis KL may also be called the murror line
of the plane figure ABCDE.
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Two murror-symmetric plane figures can always be supe-
rimposed on each other However, to do this, it is necessary
to take one (or both) outside their common ‘glane.

2 Central symmetry If a plane higure (ABCD in Fig 215)
has a two-fold axis of symmetry perpendicular to the plane
of the figure (the straight line %L in Fig 215), then point O
in which KL .ntersects the plane of the figure 15 the centre
of symmetry of the figure ABCD. Conversely, if the plane
figure ABC% has centre of symmetry O (1t invarjably les in
the plane of the hgure), then this figure has a two-fold
symmetry axis which passes through O perpendicular to the
plane of the figure It is thus alW%ays possible to superimpose
two central-symmetric plane figures without taking them out-
side their common plane. To do this, it suffices to turn one
of tthem through an angle of 180° about the centre of sym-
metry.

As in the case of mirror symmetry, a plane figure in the
case of central symmetry invariably has a two-fold symmetry
axis, but in the former case the axis lies in the plane of
tlile figure, while tn the latter case 1t is perpendicular to this
plane.

For this reason, in plane geometry we have axial sym-
metry only in the former case.

176, Similarity of Solids

The similarity of solids may be defined in the same wa
as the similarity of glane figures (see Sec. 150). Two solids
are similar if one of them 1s obtamed from the other by in-
creasinx or decreasing all (linear) dimensions in the same
ratio machine and a model of the machine are similar
bodies. Two solids (or figures) are mirror-similar if one of
them {s simlar to the mirror image of the other (see Sec. 173.
Thus, for example, the negative of a photograph of a port-
rait 18 mirror-similar to the portrait, Two shoes of different
sizes, but of the same design, one of the left foot, the other
of the right foot, are mirror-similar.

In similar and mirror-similar figures all corresponding
angles iplane and dihedral) are equal. In similar solids, po-
Iyhedral and solid angles are equal, in mirror-similar solids
t e{ are mirror-equivalent.

{ in two tetrahedrons (i. e., two triangular ?yramids) the
corresponding edges are proportional (or, what is the same,
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the corresponding faces are similar), then they are similar or
mirror-similar, so that, for instance, 1f the edges of one are
twice the edges of the other, then the altitudes of one are
twice the altitudes of the other and the radius of a circums.
cribed sphere of one is twice the radius of the other,
ete,

This theorem no longer holds for polyhedrons with a lar.
ger number of faces. For instance, suppose 12 equal rods are
connected so as to form the edges of a cube. If the joints at
the vertices are of the hinged type, then, without extending
the rods, we can alter the shape of the cube to obtain a
parallelepiped P. A parallelepiped P, which 1s similar to P
will not be similar or murror-similar fo the cube, although
its edges are proportional to the edges of the cube, this does
not occur in the case of a tetrahedron made of 6 rods since
it preserves its shape even If we have hinge joints.

hus, generally speaking, proportionality of all edges is
not suffictent for bodies to be similar {or mirror-similar)

Two prisms or two pyramids are similar or mirror-simi.
lar 1f the base and one of the lateral faces of one are simi-
lar to the correspondmﬁ base and lateral edge of the other
and, besides, 1f the dihedral angles formed in both prisms
(pyramids) by the indicated faces are equal: Two regular

risms or pyramids with the same number of faces are simi-
ar 1f the radii of their bases are proportional to their altity-
des. Two right circular cylinders or cones are symilar if the
radu of their bases are proportional to their altitudes.

In similar bodies, the areas of all corresponding plane
and curved surfaces are proportional to the squares of arbi-
trary corresponding line-segments (that is, the ratio of the
areas is equal to the square of the ratio of similitude)

The volumes of similar bodies and also the volumes of
arbitrary corresponding parts of them are proPortlonal to the
cubes of arbitrary corresponding line-segments (that 1s, the
{gtﬂg ())f volumes s equal to the cube of the ratio of simi-
1uae).

These last two proFerties enable us to simplify certain
computations very substantially.

Example 1. A'total of 6.6 kg of drymng o1l is required
n the pamting of a hemuspherical dome of diameter 5 met-
res How much drymng oil is needed to pamnt a dome of dia-
meter 8 metres?

Any two hemispheres are similar bodies. Hence, their
surface areas and the amount of dryln? oil needed to paint
them are proportional to the squares of the diameters.
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Denoting by x the desired quantity of drying otl, we have
e=(3)" #=65(3)'~ 166k

Example 2. A tin can 11 cm in height and 8 cm 1n dia-
meter contains 05 kg of jam. What size can (same shape)
will hold 1 kg of jam?

Denoting the altitude by h and the diameter of the base

of the can by d, we have —l"—l a=.—0—;,.—=2, whence

h=11}/2~ 14 cm
In the same way, d=8 f/fm 10 em.

177. Volumes and Areas of Solids

The following symbols are used' V, volume; 8, area of
base, Sygy, lateral area, P, total area, A, altitude, g, b, ¢,
the dimensions of a rectangular parallelepiped, A, slant height
of regular pyramid and regular truncated pyramid (parallel
bases), /, generator of cone, p, perimeter of base, r, radius
of base, d, diameter of base, R, radius of sphere, D, diame-
ter of sphere

Prism, right or oblique, and paralielepiped

V==_5h
Right prism
Sigt=ph

Rectangular parallelepiped.
V=abe, P=2(ab-bc+ac)

Cube
V=a% P=06a?
Regular or irregular pyramid.
1
V=-8h

Regular pyramid
Stat =1 PA
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Truncated pyramid (parallel bases), regular or irregular.
Vg (S +V5S:+8)h
Truncated pyramid (parallel bases), regular’
Siat=— (PP A
Circular cylinder (right or oblique)
V=Sh=nrtH = ndth
Right circular cylinder:
Stgt =2nrh=ndh
Circular cone (right or oblique)
V= Sh=-p nrth =15 nd%
Right cireular cone
Stat =y pl=nrl = ndl
Truncated (parallel bases) circular cone (right or oblique):
1
V=g k(i nn+ =5k @l +dd, +db)
Truncated (parallel bases) right circular cone.
Stat= (rn+ro) | = 7 (dy +dy) |
Sphere:
V=g aR=-LaD?, P=dxRi=aD
Hemisphere.
v ==—§~nR’=—l%nD’, S=aR*=-t a3,
Sipr=2nR%= DY, P=3mR? =3 xD?
Spherical segment of one base
= 1 nh
Vit (R—ph) =T (13430,
Sigt=2aRh=n(r3+ kY, P=mn(2r14h?)
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Spherical segment of two bases:

V=gt g aih+ri)h
Syat =2nRA
Spherwal sector

V="t nrw

where 4’ s the altitude of the segment contained in the sector.
Hollow sphere

=+ n (Rl —~RY)= 2 (D1 — DY),
P=4a (R}+RY)=n(D}-+Dj)

where Ry and R, are the radu of the mner and outer sphe-
rical surfaces, respectively



TRIGONOMETRY

178. The Subject of Trigonometry

The word “trigonometry” is derived from two Greek words,
strigonon”, triangle, and “metria”, measure The basic task
of trigonometry 1s the solution of triangles, finding unknown
quantities of a triangle from given values of other of iis
quantittes Such, for example, 1s the problem of computing
the angles of a triangle from given sides, computing the sides
of a triangle from the area and two angles, etc Since any
computational problem of geometry may be reduced to the
solution of triangles, trigonometry finds applications in the
entire freld of plane and solid geometry, and 1s extensively
used 1n many areas of natural science and engineering

The theory of the solutton of spherical triangles (Sec 169)
1s called spherical ¢érigonometry, 1n contrast to which the solu-
tion of ordinary triangles 1s termed plane {rigonometry.

The angles of ar. arbitrary triangle cannot be connected
with its sides by means of algebraic relations For this reason,
trigonometry introduces new quantities in addition to the
angles themselves. these are the so-called {7igonometric funchi-
ons (defined m Sec. 182), which can be connected with the
sides of a triangle by sumple algebraic relations On the
other hand, the value of & trigonometric function can be
computed from a given angle, and conversely True, these
computations are arduous and unwieldy, but the work has
been done once and for all and recorded in tables

The value of each trigonometric function varies with the
angle to which 1t corresponds, 1n other words, a trigonomet-
ric quantity 1 a function of the angle (Sec 207), whence the
name trigonometric functions

The various trigonometric functions are interrelated 1n a
variety of important ways These relationships can be used
to reduce and simplify computations That part of trigono-
metry which deals with such relations 15 termed analyticol
{rigonometry (or goniomeiry, the measurement of angles, from
the Greek “gonia”, angle, and “metria”, measure)
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179, Historlcal Survey of the Development of Trigonometry

Solving triangles originated in astronomy and for a long
time trigonometry developed as a department of astronomy

As far as we know, methods for solving (spherical) triang-
les were recorded for the first time by the Greek astronomer
Hipparchus 1 the middle of the 2nd ¢entury B C (this work
1s not extant). The highest attainments of 8L
Greek trigonometry are due to the astronomer o M
Ptolemy (2nd century B C), the creator of '
the geocentric system of the world which A
dominated science till the time of Copernicus.

The Greek astronomers did not deal 1n
sines, costnes and tangents, In place of
tables of these quantities they used tables Fig 216,
that permitted finding the chord of a circle
from the subtended arc Arcs were measured
in degrees and mimnutes, chords too were measured in degrees
(one degree being one sixtieth of the radius), minutes and
seconds The Greeks borrowed this sexagesimal scale from
the Babylonians (see Sec 21)

The tables compiled by Ptolemy contaned the chords of
all arcs for -12— mtervals* computed to within a second.
Using interpolation, the chord of any arc may be fqund mn
them to the same degree of accuracy To simplify inter
lations, Ptolemy gave 1’ corrections ~Ptolemy computed the
tables on the basis of a theorem he discovered called the
theorem of the diagonals of an inscribed quadrilateral
(see Sec 156 .

Medieval astronomers of India also made considerable
advances 1 trigonometry Like the Greeks, they borrowed
the Babyloman degree system of measuring angles But the
Hindus considered not the chords of arcs but the lines of
the smes and consines (that 1s, the lines PM and OP for
arc AM in Fig 216). They also considered the line P4,
which later became known ‘in Europe as the versed sine
(“stnus versus”™).

An arc minute was taken as the umt of measure of
Ine-segments MP, OP, PA Thus, the lne of the sine of

* If we take the central angle intercepting half the arc at hand,
then the chord will be twice the line of the sine of this angle
Ptolemy's table is therefore cquivalent to a five-place table of sine

values for ‘T fntervals.
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arc AB=90° 1s OB, the radius of the circle; the arc
AL, equal to the radius, contains 57°18'==3438" (rounded)
Therefore, the smne of an arc of 90° was taken equal
to 3438’

The extant Hindu tables of sines (the most ancient of
them was compiled tn the 4th or 5th century) are not as
exact as the Ptolemaic tables they are comptled for angles
differing by 3°45’, that s, by 1/24 part of the arc of a
quadrant

Trigonometry saw further development in the Sth to 14th
centuries 1 the works of Arabic-writing authors In the
10th century, the Bagdad scholar Mohammed of Bujan,
known generally as AbQ’l-Wefa, added to the Imnes of sines
and cosines the lines of tangents, cotangents, secants and
cosecants He gave them the same definitions that we find
today in textbooks He also estabhished the basic relation-
ships among these lines (see Sec 191 for the appropriate
formulas) It was in the hands of the famous Moslem scholar
Nasir Eddin (or Nasr ed-din) of Tusi (1201-—1274) that
trigonometry became an independent sctentific discipline
Nasir Eddin made a systematic study of all cases of the
solution of plane and spherical triangles and gave new
methods of solving them '

In the 12th centurv, a sertes of astronomical works were
translated from the Arabic language into Latin, and Euro-
peans thus first learned of trigonometry * However, many of
the achievements of the Arabic-language science, one of which
was a work by Nasir Eddin, remained unknown to Euro-
peans Two hundred years later, the outstanding German
astronomer of the 15th century Johann Muller (1436-—1476)
better known under the name  Regiomontanus, rediscovered
his theorems

* It was st this time that the Latin term “sinus” -Haearem
which meant “bay” or “inlei” or “bosom of a garment” isisa
transiation of the Arabic word “jaib® meaning the same thing i
Is not known how this Arabic term originated  Some belleve that
it came from the Hindu (Sanskrit) ‘jiva” (the first meaning of which
1s bowstring, in geometry, 1t meant chord of an arc) But sine in
Hindu terminology is designated by *“ardha-jiva" which means
“half chord”

The name “cosine” appeared only at the beginning of the 17th
century as a contraction of the term complement sinus (sine of the
complentent), which indicated that the cosine of an angle A4 s the
sine of the complementary angle The terms “tangent” and “secant”
(which, translated from the Latin, mean “contacting”, and “cutting*)
were Introduced in 1683 by the German scholar Finck
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Regiomontanus compiled extensive tables of sines (for
Iintervals accurate to the seventh sigmficant digit) He was
the first to reject the sexagesimal division of the radius,
and for the umt of measure of the sine Iine he took one
ten-millionth part of the radius Thus, sines were expressed
as whole numbers (and not sexagesimal fractions) Mt was
one step more to the iniroduction of decimal fractions But
this step required over 100 years (see Sec 45)

Regiomontanus’ tables were followed by other, still more
detailed, tables G Rheticus (or Rhaeticus, 1514—15786),
friend and collaborator of Copernicus, spent 30 years with
hired computors in compiling tables that were finally comple-
ted and published in 1596 by his pupil Otho The angles
were given for every 10" of arc and the radius was divided
mto 1,000,000,000,000,000 parts so that the sines had 15
correct digits!

Literal symbolism, which in algebra came in at the end
of the 16th century, was established in frigonometry only
in the middle of the 18th century thanks to the efforts of
the great Euler (1707—1783), who gave trigonometry its
modern aspect The quantities sinx, cos x, etc were regarded
by him as functions (Sec 179) of a number x, the radian
measure of the appropriate angle Euler assigned to the
number x all possible values positive, negative and even
complex He also introduced the inverse trigonometric
functions (Sec 201)

180. Radlan Measure of Angles

Besides the degree measure of angles (Sec. 142), trigo-
nometry makes use of the so-called radian measure of angles

Here, the unit of measure 1s the acute central

angle (MON an Fig 217) subtended 1n a N
circle by an arc whose length is equal to the {*
radius of the circle (MN = OM) Such an ‘-“

angle 1s termed a radian. The value of

this angle 15 not dependent on the radius of

the circle and on the position of the arc MN Flg. 217
on the circumference Since a semicircle 1s e 2
seen from the centre at an angle of 180°, and

its length 1s equal fo n radii, the radian is  times less
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than a 180° angle, 1.e , one radian 1s equal to 1’%9- degrees,

1 radian =25 ~ 57° 2058 & 57°1745"

. T
Conversely, one degree is equal to 77 radian

‘°=T§_o radian & 0 017453 radian,

1= ls—oﬁﬁ radian A 0000291 radian,

1" = o5y radian A2 0 000005 radian

The radian measure of an angle (408 1n Fig 218) 1s the
ratio of the angle to the radian (MON in Fig 218), but
the ratio / AOB. / MON 1s equal to

N N -’
A the ratio of the arcs AB MN, that 1s, the
" M ratio of the arc 4B to the radius
N Thus, the radian measure of any angle
8 AOB 15 the ratio of the length of arc 48,
described by an arbitrary radius from
centre O and contained between the sides
Fig. 218, of the angle, to the radius OA4 of this

are

The introduction of radian measure of angles permuts
casting many formulas 1n simpler forms *

It will be useful to remember the following comparative
table of degree and radian measuge of some of the frequently

* In many tri y texts it is st d that in the radlan
measure of angles, the value of the angle Is measured by a pure
(abstract) number The contrast thus created between the radian
and degree measurg of angles Is not justifiable In both systems
§radlan and degree) the angle {s measured b?' a unit of angle. The
act that in one case (degree) the name is stated and in the other
(radian) it Is assumed, plays no role whatsoever

he only reasonable meaning of the foregolnf assertion Is that
the radian measure, which 1s expressed by the ratio of two lengths,
15 completely independent of any chaice of unit of length ~But
peither Is the degree measure dependent on this cholce, what is
more, it too Is a ratio of two lengths namely the length of the arc
described from the vertex of the angle and intercepted by the arms

of the angle to 3—;—5 the part of the arc of a circle of the same

radlus This ratio {s in no way worse than the ratlo of the same
arc to its radlus
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occurring angles:

Angles in degrees 360° | 180° | 90° 60° 45° 30°
b n a n
Angles In radlans 2% n 5 T T -

181, Changing from Degrees to Radians and from Radlans
to Degrees

1. To find the radian measure of an angle from a given
degree measure, multiply (see Sec. 180) the number of degrees

by T’;—ONOOIME& the number of minutes by ﬁ

~0.000291, and the number of seconds by reriioo
As0 000005, and add the products thus found

Example 1. Find the radian measure of the angle 12°30"
to within four decimal places

Solution. Multiply 12 by '!%o" taking the fifth decimal
place of the multipher (because multiplication by 12 wiil

increase the absolute error by a factor of about 10, cf Sec. 54),
12 001745 =0 2094

Multiply 30 by 1oy taking imto account the sixth
decimal place of the multiplier; 30-0 000291 A+ 0.0087. This
yields 12°30" =0 2094 4- 0 0087 =0 2181.

The computations are simphified by using the table of
Sec 8, page 48 It gives results accurate to four decimal
places. In the first column (“degrees”) opposite 12 we find
02094, 1n the second last column (*minutes”) opposite 30
we find 0.0087

Work:

12° =0 2094 (radian)
30" =0 0087
02181
Example 2. Find the radian measure of the angle 217°40,
Using the same table, we have

200° =3 4907
17 =0.2967
40’ =00116

3.7990
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2 To {ind the degree measure of an angle from a given
radian megsure, mult: ply (see Sec 180) the number of radians
by 287 Ai57° 296, that 1s, by ST°I7'45" (if the required
accuracy 1s 0.5’ and the angle contains no more than 9
radians, the multiplier may be rounded off to 57° 30 since
the error of 0004 degree constitutes about one fourth of 5
minute

Exa)mple 8. Find the degree measure of an angle con.
taiming | 360 radians (to within 1°)

Solution. 1 360-57° 30="77° 93 == 77°56"

The computations can be simplified by using the table
of Sec. 9, page 49. We find

1 radian=>57°18’
03 radian=I17°11’
0 060 radian= 3°26’
7755
The discrepancy of 1’ 1s due fo an accumulation of errors
of the terms (see Sec 52

Example 4. Find the degree measure of an angle con-
taining 6 485 radians Using the table we find

6 radians = 343°46’

04 radian = 22°65
0 08 radian = 4°35°
0 005 radian = (°17"

371°33" (imiting error, 2)

182, Trigonometric Functions of an Acute Angle

8 The solution of any triangle ultimately
reduces to the solution of right triangles In
arnght inangle ABC, the ratio of two sides,

¢/ |g 53y side a to the hypotenuse ¢, 15 wholly
dependent on the value of one of the acute
angles, say A (Fig. 219), The ratios of diff-
A ¢ etent pars of sides of a right triangle are
called ¢rigonometric functions of 1ts acute
Fig. 219 angle, With respect to angle A4, these func-
tiotns have the following names and desig-

nations:
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(1) sine smA:ai (ratio of opposile side to hypote-
nuse)

(2) cosine cosA:ic (ratio of adjacent side to hypote-
nuse),

(3) tangent tan 4 -—-% (ratto of opposite side to adjacent
side),

(4) cotangent: cotA:% (ratio of adjacent side to opposite
side),

(5) secant. secA:—;— (ratio of hypotenuse to adjacent
side),

cosecant cscA=—Z— (ratio of hypotenuse to opposite
side)

®

2

With respect to the angle B (the complementary angle
fvzl]ilh respect to A) the names are appropriately changed as
ollows

sinB=-, cosB=

b
, tan B=T’

»r ofe

a

¢

¢
-

B
cot B=—+, secB=-=, cscB=-

For certain angles we can write the exact expressions of
their trigonometric functions The most important cases are
given 1n the table below *

* Strictly speakinfz, angles 0° and 90° cannot appear In a right
triangle as acute angles, but in an extended view of trigonometric
functions (see below) we consider the values of the trigonometric
functions of these angles as well On the other hand, one of the
acute angles of a triangle can approach 90° as close as desired, in
which case the other angle wili ap?rcach zero, then the correspon-
zliin try ?nomatrlc quantities will approach the values indicated
n the table

The symbol @ which we find in the tables Indicates that the
absojute value of the given quantity increases without bound when
the angle aﬁpruaches the vajue indicated in the table This Is what
1s meant when we say that a quantity is equal to Infinity, or beco-
mes infinite (¢f Sec 37 and Sec 217)
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A sin 4 [cos 4 tan A cot 4 sec A esc A
0° 0 1 0 @ 1 ®
300 _;. l’g 7‘5_. vy 725—; 2
45° L:"— V—;_ 1 1 VT vy
80° 1 [ @ 0 ® 1

This table 1s of more theoretical than practical value since
it contains roots that cannot be extracted exactly. For most
angles, 1t 1s 1mpossible to write the exact numerical values
of the trigonometric functions even with the aid of roots.
However, approxumate values can be computed to within any
desired degree of accuracy (see Sec 203) The computations
are arduous and so have been done once and for all time and
the results have been tabulated, Four-place tables of stnes
and costnes are given on pages 36-39 (Sec 6), tables of tan-
gents and cotangents on pages 40-47 (Sec 7)

183, Finding a Trigonometric Function from an Angle*

(a) Sine and cosine. In the table of Sec 6 (pages 36.39)
are given the sies of all angles from 0° to 90° at 1’ intervals
to four decimal places. Since the sine of an angle equals the
cosine of the complementary angle (Sec 182), the same table
may be used to find the cosines of all angles from 90° to 0°
for 1’ ntervals.

* If radian measure of the angle is given, to degree mea-
sure (see Sec 181) e by canvert to ™
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When looking for the sine, the number of degrees is read
mn the lefi-hand column “Degrees” and the rounded number
of minutes (07, 10°, 20", 30', 40’, 50") af the top (this s
indicated by the heading “sines” above the table) When
seeking the cosine, the number of degrees Is read mn the
right-hand column “Degrees” and the rounded number of
minutes af the bottom (this 1s indicated by the footing “co-
sines™) We obtain the basic result at the intersection of the
proper row and column Interpolate for the missing number
of minutes (from [ to 9) This 1s done n the section “Pro-

rtional Parts” 1n the row where the basic result 1s ob-
ained If the sine 18 being sought, the interpolation ts added
to the basic result, 1f the cosine 15 being sought, the inter-

olation ts subfracted from the basic result (this 15 because
he sine increases as the angle increases and the cosine de-
creases)

Example 1. Find sin 53°40°.

In the lefi-hand column “Degrees” take the number 53
and 40’ in the fop row At their intersection we find O 8056.
No proportional parts data are needed

sin 53°40 = 0 8056

Example 2. Find cos 63°10'.

Take the number 63 in the right-hand column “Degrees”
and 10’ in the botfom row. Their intersection ytelds 0 4514
No proportional parts data are needed

cos 63°10'=0 4514

Example 3. Find sin 62°24'.

Take 62 111 the left-hand column and 20’ in the fop row
The intersection yields the basic result of 0 8857. Move along
the same row to the proportional parts data (column 4') to
find 5 (which 1s 00005) Adding it to the basic result we
get 08862

Work:

sin 62°20" =0 8857
+4 +5
sin 62°24' =0 8862

Example 4. Find cos 42°16'. ’

Take 42 1n the right-hand column and 10° in the bottom
row The intersection of column and row yielas the basic
result of 07412, In the same row, move to the proportional
parts data (column 6) fo get the number [2 Subtracting
it from the basic result we obtain 0 7400.

\
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Work.
cos 42°10" =0 7412
+6' —12
cos 42°16' =0 7400

(b) Tangent and cotangent. In the table of Sec 7 (pages
40-47) are given the tangents of all angles from 0° to 90° at
1 intervals accurate to the fourth significant digit Between
0° and 76° the table is constructed Itke the table of sines
In the interval between 76° and 90° (where the variation of
the tangent 1s extremely non-uniform) there 18 no proportio-
nal data section, but the table 1s given in more deta

Since the tangent of an angle equals the cotangent of the
complementary angle (Sec 182), the same table may be used
to find the cotangents of all angles from 90° to 0° at I’ in-
tervals In looking up a tangent, the value of the angle is
read lrke that of sines in Sec 6 [see Item (a)], the cotangent
1s sought in the same way as the cosine.

Example 1. Find tan 82°18’

Read angles (“Degrees”) in the feff column, 82°10’, and 8’
in the fop row The intersection yields

tan 82°18' =7 396

Example 2. Find cot 12°35'.
Read up on the right, 12°30°, and take 5 in the botfom
row The ntersection of column and row yields
cot 12°35' =4 480

Example 3. Find cot 58°36"

Reading up on the right we have 58°, bottom row, 30’
The mtersection yields 06128 In the same row, move to
the proportional parts data (column &' at the bottom) to
Imdw24k5ubtract 1t from 06128 to get 0 6104.

ork:

cot 58°30' =0 6128
-+6 —24
cot 58°36' =0,6104

Example 4. Find tan 48°43'.
We find
tan 48°40' =1 1369
+3 +20
tan 48°43" =1 1389
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184. Finding an Angle from
a Trigonomatric Functlon

To find an angle from a given sine or cosine, use the
tables of Sec 6 (pages 36-39), from a given tangent or cotan-
gent, the tables of Sec 7 (pages 40-47) Run down one of
the columns (say the column headed 0’ at the top), and find
the value we desire or the nearest value In the former case,
we read off the value of the required angle directly (using
the left column of degrees and the top row of minutes when
dealing with sine or tangent, and the right column and bot-
tom row when dealing with cosine or cotangent, cf previous
section) In the latter case, we check for a closer value in
the vicimity, if there 1s one, we read off the value of the
angle as above, If there 1s none, we take the value found
If necessary we refer to proportional parts data Bear in
mind that the proportional parts figure i1s positive for increas-
ing sine and tangent, and negative for increasing cosine
and cotangent (if required, degree measure may be changed
to radian measure, see Sec 18!

Example 1. What s the acute angle & whose cos =0 7173?

In the table of Sec 6, run down the column headed 0
to find the value 07193, which 1s close to the gitven value
Near 1t we find 07173 which coincides with the given value.
Read the degrees in the right column and the minutes 1n the
bottom row to find a=44°10

Example 2, Find the acute angle a whose cos=0 2643,

In the table of Sec 6, the nearest value 1s 0 2644 The
difference 15 00001, and the proporiional parts section has
the smallest number 3 (corresponding to 1) Hence we disre-
gard this correction Using the right column for degrees and
the bottom row for minutes, we get o==74°40'

Example 3. Find the acute angle @, 1f cos e =0 7458

The nearest tabulated value 1s 07451, corresponding to
an angle of 41°50’ The given value exceeds the tabulated
value by 7 umts of the fourth decimal place. In the same
row, moving to the proportional parts data, we find 6 and 8
Take etther one and subiract from the angle 41°50° the cor-
rection 3’ or 4/ This yields 41°47" (too large) -or 41°46’
(too small)

Wark:

0 7451 =cos 41°50"
+7 3
0 7458 = cos 41°47'
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Example 4 What 1s the acute angle o whose tangent
15 4 827?

In the table of Sec 7, find a nearest value (too small),
4822 and another nearest value 4 829 (too large) Since the
latter 1s closer to the given one than the former, take the
latter In the left column we read 78°10’, in the top row, &',
This yields o=78°18".

185. Solving Right Triangles

1. By two sides. If two sides of a right triangle are given,
the third side can be found by the Pythagorean theorem
(Sec. 147). The acute angles are found from one of the first
three formulas of Sec 182 depending on which sides are given,
If, say, we are given the legs a, b, then the acute angle 4
1s found from the formula

tan 4 =4
and the acute angle B 1s found from the formula B==90°—~A4
Case 1. Given leg 2=0 528 metre and hypotenuse ¢==0 697

metre
(1) Determune leg &

b=V Fg?= V0 6975—0 528 A 0.455 (m)
(2) Deterrmune angle-A

_ 8 _00528
sin A =—-=5-zsz A 0 757

In the table of sines find A A 49°10" (limiting error of 5%)
It 1s meaningless to find A to within one munute since by
regarding the values of @ and ¢ as approximate numbers we
cannot be sure even of the third digit of the quotient

S A0 757 (Sec. 56).
(3) Determine angle B-
B=90°—A & 90°—49° 10" = 40°50"

Case 2. Given legs a==8 3 e¢m, b=12.4 cm,
(1) Determine hypotenuse ¢

¢=Y aTB=VEFL12.4 ~ 149 (cm)
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(2) Determine angle A

tnd=$=F2 5067, Amse

(3) Determine angle B:
B=90°—A A 90°—34° =56°

2. By a stde and anacute angle. If we are given an acute
angle A, then B 1s found by the formula B=90°—A The
sides may be found from the formulas of Sec 182, which
may he represented as

a=c¢simA, b=ccosA, a=btan 4,
b=c¢sinB, a=ccosB, b=atan B

(f:hoo;e the formulas that contain the given side or the side
oun

Case 3. Given the hypotenuse c=79 79 metres and the
acute angle A==66°36"

(é) Determine angle B  B=9%0°—A=930°—66°36"
= 23°24'

(2) Determine leg a. a=csind =79 79-sin66°36"
=7979 0917873 23 (m)

(3) Determine legb b=ccos A=7979 03971 =~ 31 68 (m).

Case 4. Given leg a=123 metres and acuté¢ angle
A =6300'

(1) Determine angle B B=90°—63°00" =27°00".

(2) Determine leg & b=ug1an 8 =12.3 tan 27°00/
=123 0509~ 6 26 (m)

a 12 3

(132) . Determine  hypotenuse ¢ c¢= Frw Ty ro g
= 5557 ~ 138 (m)

186. Table of Logarithms of Trigonometric
Functlons

Solving right triangles always requires multiplication and
division, If constderable accuracy is required (say, four-di-
git numbers are being multiplied), then the operations are
very time-consuming, arduous and, hence, the possibility of
errors cropping up increases The use of logarithms saves
both time and energy In logarithmic computations, we do
not use tables of trigonometric functions but tables of their
loganithms. This results in a great saving of time since
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instead of locking up the sine of an angle in the table of
trigonometric functions and then finding the loganithm of
the sine 1n the table of logarithms, we find the logarithm
of the sine directly

in the table of Sec 5 (pages 14-17) are given the values
of the logarithms of sine, cosine, tangent and cotangent to
four-decimal-place accuracy for 10’ intervals If the angle
does not exceed 45°, the name of the required function 1s
read at the top and the angle at the left If the angle
exceeds 45°, the name of the function 15 read at the bottom,
and the vatue of the angle on the right.

The same table permits computing logarithms of trigono-
metrie functions for 1” intervals as well The mode of com-
putation (see Secs 187 and 188) 15 based on the fact that,
within the range of 10, the variation of angle is proportio-
nal to the variation of log sin, log tan, log cos, and log
cot As a rule, the error due to this assumption does not
affect the fourth decimal place The only exceptions are log
sin and log tan for angles close to 0° (from 0° to 4°) and
log cos and log cot for angles close to 90° (86° to 90°); n
these cases the error becomes perceptible

Let us take an illustrative example The increase i1 an
angle from 12°20' to 12°30’ 1s assoctated with an increase in
log sin from 13296 to 13353, which 1s 0 0057 An increase
twice this,* from 12°20" to 12°40’ 1s assoctated with an
increase of log sin from 13296 to T 3410, which 1s 00114,
This increase 1s double the previous increase

Changes 1n log sin that correspond to an increase in angle
of 10’ need not be computed since they are given in the
columns headed d (which stands for difference) Thus, in
column log sin opposite 12°20° we read_ 13296, apposite
12°30/, 13353 The difference 1.3353—T1 3296 =0 0057 15
given in the left column d between T 3296 and 1 3353 (for
brevity, only 57 is given).

The same differences (with the minus sign this time, how-
ever) yield variations of log cos corresponding to 10
increases 1n angle Thus, the same 57 gives a decrease 1n log
cos as the angle increases from 77°30' to 77°40'

Fot log tan and log cot, the differences are given i the
middle column headed ¢ d (common dif!erence}: They serve
the two adjacent columns on the right and left For example,
the differences log tan 12°30°—log tan 12°20' and log

* We took an Increase in excess of 10’ so as not te h to re
sort to a8 more detailed table. © ave ta re
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tan 77°40’—log tan 77°30" have a common value 00061,
which 15 given in the column e d between the appropriate
rows The number 0 0061 also gives a decrease n log cot as
the angle 1ncreases from 12°20" to 12°30" and from 77°30° to
77°40°

The numbers given in the columns d and ¢ d are called
tabular dif;erences

187. Finding the Logarithm of a Trigonometrlc
Function from the Angle*

For angles with a round number of minutes (0’, 10’, 20,
307, 40’, 50°), the required quantity (to within 0.0001) s
taken directly from the table of Sec 5 described in the pre-
vious sectton For the other angles, interpolation ts required

Here, remember that for sin and tan the signs of the
angle corrections and the logarithms of the trigonometric
function are the same, while for cos and cot they are dif-
ferent

Example 1. Find log cos 24°13’

The angle 1s less than 45° and so enter the table at the
top, “log cos" There** we find log cos 24°10" =1 9602 The
tabular difference (the number in the right column d) s
log cos 24°10'—log cas 24°20' =0 0006 Let us find the cor-
rection x for 3 From the proportion

x==00006=3" 10
£=100006-03 ~ 0 0002
This correction must be subfracted from T 9602 We get
log cos 24°13' =T 9600

we have

Work:

log cos 24°10'=T7 9602 d=6
+¥

log cos 24°13' =1 9600

* If the angle is given in radian measure, convert to degree
measure first (Sec )
** Remember that in the table of Sec 5 the charactenistics of all

logarithms are {ncreased by 10, therefore, in place'of 1 we find 9,
In place of 2, we find §, etc
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Note. When 1nterpolating, 1t is not necessary to write
out the whole procedure It 1s enough to multiply (men-
tally) the number of minutes by the tabular diiference and,
rounding off the product, to drop the zero at the end In
our case, we have to multiply 3 by 6 and round the pro-
duct 18 to 20 Dropping the zero, we have the correction 2

Example 2. Find log tan 57°48",

The given angle exceeds 45° and so we enter the table af
the bottom 1n the column headed log tan and take log
tan 57°50'=0.2014, ¢ d (=log tan 57°50’ —log tan 57°40)
=28 (1e, 00028) We now need the correction for the lack-
ing 2’ Multiply (see note of Example 1) 2 by 28 to get 60
(approximately) Drol) the zero and get the correction 6
Subtract it from 0 2014 to get log tan 57°48' =0 2008

Work:

log tan 57°50'=0 2013 d=28
9 —

log tan 57°48"=0 2008

Note. It is also possible to take log tan 57°40' =0 1986
from the table, find the correction 22 (8 28 ~ 220) for 8,
and add 1t to 01986 The result 1s the same but 1t is easter
to multiply 28 by 2 than by 8 so there 1s less chance of
mistakes when multiplying mentally

Example 3. Find log cot 65°17".

log cot 65°20' =1 6620 d=34
3 410

log cot 65°17 =T 6630

Example 4. Find log sin 40°34"
log sin 40°30' =17 8125 d=15
+4 +6

log stn 40°34’ =17 8131

188. Finding the Angle from the Logartthm
of the Trigonometric Functlon

Run down the appropriate columns of the table in
Sec 5 (the values of each function are given in two co-
lumns) and find the required value or the nearest value, 1n
the latter case, write out the tabular difference. Ii the name
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of the trigonometric function is given at the top, read deg-
rees and tens of minutes on the left, if the name 1s given
at the bottom, read them on the right Finally, interpolate
if necessary by means of a proportional calculation (the angle
correction 15 of the same sign for sin and tan, and different
sign for cos and cot)

Example 1. Find the acute angle o 1f log tan =0 2541,
The value 0 2533, which 1s nearest to the given one (tabu-
lar difference cd=29), lies n the column log tan read-
ing up We therefore read 60°50° on the right The correc-
tion x for the extra 8 units of the last place (0 2541
—0 2533=0 0008) 1s found from the proportion

x.10°=8 29
whence x=%~3’ Adding this correction, we get
= 60°53"
Work

log tan a=0 2541

0 2533=log tan 60°50' d=2y
+8 +3
0.2541 ==log tan 60°53"
o == 60°53"

Note The correction may be found mentally in the fol-
lowing manner Consider the difference between the given
value and the tabular value—in our case, 00008—as a
whole number 8 (that 1s, disregard decimal pomnt and zeros
on the left) Increase it tenfold (80) and divide by the tabu-
lar difference (29) The quotient (rounded to umits)—in our
case 1t 15 3—yields the correction mn munutes

Example 2 Evaluate the acute angle o 1f log cos a
15 1 4361,

The nearest tabulated value 1s T 4359, the tabular diffe-
rence d =44 The heading IO_F cos 15 at the bottom, and so
we read 74°10" on the right The tenfold difference between
the given value and the tabulated value 1s 20 The quotient
of %—g (less than half) 1s rounded off to zero.

Hence a==74°10
, Example 3. Evaluate the acute angle « for log cot
a=1 6780

The nearest tabulated value 1s T 6785, the tabular diffe-
rence 1s 32 The heading log cot 1s at the bottom, and so we
read 64°30' on the righi The given value is less by 5 than
the tabulated value Divide the tenfold increased number,
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50, by 32 The rounded off quotient 152 Add 2’ to get
o == 64°32'
Work.
log cot @ 780

1 6785==log cot 64°30' d =232
+2

T 6780 = log cot 64°32"
o= 64°32"
Example 4. Find the acute angle o if log stno=1.7414
logsma=1 7414
1 7419=1logsin 33“3%: d==19

T 7414 = log sin 33277
a=33%27"

189 Solving Right Triangles by Logarithms

Case | Given hypotenuse ¢=9 994, leg b=>5 752 Deter-
mine a, B

»

(1) Determine B sin Bz%,

logsin B=T 7601, B =235
(2) Determine A A=090°—B=754°52',
(8) Determine @ a=b tan A,
log b= 0 7598
log tan A =0 1526
loga==09124, a=8173
Case 2, Given legs a=0920 and 6=0849 Determine the
hypotenuse and acute angles,
(1) Determine angle B tan B:%,
log b=T 9289
— loga=0 0362
log tan B=1 9651, B=42°49’
{2) Determine angle A A=90°—B=47°18",
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b
(3) Determine the hypotenuse ¢ c=_—,

logh=T1 9289
— logsin B=0 1687
logc==0 0976, c=1 252
Case 3 Guven hypotenusec=798 |, acute angle A ==49°18’,
Determine a, 6, B
(1) Determine B B =90°—49"18'=40°42’
(2) Determine ¢ a=csin 4,
logc=2 9021
logsin A =1.8797
loga=2 7818, a=6051
(3) Determine b b==csin B,
log c=2 9021
logsin B=1 8143
logb=27164, b=5205
Case 4. Given leg a=2324 6, acule angle B==49°28" De-
termine b, ¢, A
(1) Determine A
A =90°— B = 90° —49°28' = 40°32'
(2) Determine b. v=a tan B,
loga=25113
log tan =0 0680
log b==2,5793, 6=3796

a
(3) Determine ¢ C=gas

loga=25113
—logsin A=0 1872
loge==2 6985, ¢=4995

190. Practical Uses of Right-Triangle Solutions

In order to make effective use of the procedures discussed
above, 1t 1s necessary to learn to use the relevant tables and
accurately fird the needed results But this is not all there
are two other difficulties The first 1s of a purely geometrical
nature, to learn to find a simple method of isolating a right-
angle triangle 1n any given geometric figure. The following
tllustrative examples will help
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Example 1. Refernng fo the 1sosceles triangle ABC 1n
Fig 220, the base AC and side AB are known It 15 required
to determine angle B at the vertex

Draw the altitude BD which bisects base AC and angle B
Knowing AC, we find AD:%“:. In the night triangle ABD,
we find / ABD from side AD and hypotenuse AB (Case 1,
Secs 185 and 189) Multiplying by two, we find the desired
vertex angle

8 R, 8
A (D
ﬂp [4 //

Fig 220 Fig 221 Fig 222

Example 2. Given the radwus R of a circle, to compute
the side AB of a regular inscribed nonagon

In Fig 221, draw radu OA, OB to the extremities of the
chord AB to get an 1sosceles triangle i which the side
OA=R 1s known It 1s also easy to find the vertex angle

408 =2 —4° Dwiding Z AOB to two right triangles

by drawing the altitude as we did mn the preceding problem,
reduce the problem to Case 3 of Secs 185 and 189

Another difficulty—the most essenttal one-—is to trans-
late a specifically siated problem into mathematical language

Example 8 Compute the mner and outer radu of a ball
bearing so that 1t can accommodate twenty steel balls of
diameter 16 mm each

(To simphfy the problem we assume that the balls are
packed tightly)

The mamn difficulty here is to 1solate the mathematical
content Constructing” Fig 222, we note that we know the
diameter of a ball, BC==16 mm, and hence its radius
AB=AC=8 mm Bestdes, the angle between the radi OA
and OD from the centres of adjacent balls must be é-g%—= 18°,
Furthermore, the ltne AD which connects the centres of adja
cent balls must be equal to the diameter of each of them,
which is AD=16 mm. Now we have an isosceles triangle,
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AOD, 1n which we know the base AD=16 mm and the
vertex angle AOD =18 Dividing 1t into two right triangles,
we reduce the problem to Case 4, Sec. 189, and obtamn
OD=0A4=51.1 mm Whence we find the outer rad:us.
0B=0A-+AB =51 14-8=591 mm
and the inner radius:
0C=04~AC=431 mm

191. Fundamental Relations of Trl try

Knowing one of the trigonometric functions of an acute
angle, it is possible, by applying the relations (1dentities)
given below, to dete:mine the others However, their man
value lies i the possipility of substantially simplifying the
aspect of many general formulas and thus reducing the com-
putational process

sinfa=cos?a==1, tana.cota=1,

sin cos
tana_m, cota.-—m,
sina csco=1, cos o seca=1,
sec?o=1--tan?e, csctu=14cot?a,
cosia = 1 ot

T+tandc  T-cctia’
1 tan? o
sm.aﬁucot’a “iitania
These formulas hold true for the trigonometric functions
oé any angle (see next section). They are called trigonometric
1dentities

192. Trigonometrlc Functlons
of an Arbltrary Angle

It is possible to construct the whole of trigonometry using
only the trigonometric functions of acute angles But then
in the solution of oblique triangles and in many other prob-
lems requiring trigonometry we would have to distinguish
a multitude of separate cases of one and the same problem,
depending on the magnitude of the given angle In contrast,
the solution of all problems becomes unified 1f we extend,
as follows, the concept of sine, cosine, etc to angles of
arbitrary size, that is, not only between 0° and 180° but
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exceeding 180°, not only posttive angles, but negative angles
as well (sce Sec [42) o

To reckcn angles, we take a cicle ABA'B' (Fig 223)
with two mutually pe pendicular diameters A4’ (fuest) and
BB’ (second) Arcs will be reckoned from point 4 Counter-
clockwise rotation will he taken as the positive direction

B
= &
\7]@/ =
\'/
Fig 223 Fig 224

An angle a 1s formed between the moving radius OM and
the fixed radius OA This angle can lie in the first quadrant
(M0A), the second (M,04), the third (M,04) or the fourth
(M,0A4) Taking as posttive the directions 04, OB and as
negative the directions OA’, 0B’, we define the trigonometric
functions of the angles as follows

Fig 225 Fig 228

The line of stne of angle a (Fig 224) is the projection 0Q
of the moving radius on the second diameter (taken with
appropriate sign)

The line of the cosine OP 1s the projection of the moving
radius on the first diameter

The sine of angle a (Fig 224) s the ratio of the [ine of
the sine 0Q (taken with appropriate sign) to the radius R of
the circle.

The cosine 1s the ratio of the line of the cosine OP (taken
with appropriate sign) to the radius

Figure 225 gives the signs of the sine of angle o
(Fig 226, the signs of the cosine) 1 different quadrants.
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The line of the tangent (ADy, AD,, elc, Fig 227) 15 a
segment of the tangent line drawn through the extrermty A
of the first diameter from the point of tangency to intersec.
tion with the moving radius (OMy, OM,, etc) produced

The line of the cofangeni (BE,, BE,, eic, Fig 228) 15 a
segment of the tangent [ine drawn through the extremity B
of the second diameter from the point B of tangency to
intersection with the moving radius (OM,, OM,, etc.) pro-
duced.

The tongent of an angle 1s the ratio of the Iine of the
tangent (taken with appropriate sign) to the radis,

M1,

I,
) (=19
\I, P,
Fig 227 Fig 228. Fig 229

The cofangen! 1s the ratio of the line of the cotangent
(taken with apFroprlate sign) to the radius

The signs of tangent and cotangent for the various quad-
rants are indicated in Fig 229

It is simplest to define the secant and cosecant as recipro-
cals of the cosine and sine

The table on page 351 gives the expressions of each tn-
gonometric function of any angle in terms of the other func-
tions In the expressions with two signs, the choice of sign
depends on the quadrant m which the angle lies (see
Figs 225, 226, 229) .

The graphs of trigonometric functions are given tn Sec, 213.

193, Reduction Fortnulas

These are formulas which make 1t possible () to find
numerical values of trigonometric functions of angles exceed-
ing 90°, ard (2) to make transformations which simplify
the aspect of formulas,

All formulas hold true for arbitrary angles o, although
they are mamly used when @ 1s an acute angle,
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First Group:

sin(—a)=—sing, tan(—o)=-—lang,

cot (—a)=—cota, cos(—a)=--cosa
These formulas permit dispensing with negative angles
Second Group:

sin sin
i:; (360°%+ ) =§:§ a (k& positive integer)
cot cot

These formulas enable us to avoid considering angles
greater than 360°.
Third Group:

sin Fsin
cos o __~ 08
tan (180 ia)"‘itan *
cot + cot

The names of the functions are preserved, the sign on the
rlghlt 15 that which the left-hand side has for @ an acute
angle

For example, sin(I180°—a)= 4-sina, since for o acute,
180°—a lies 1n the second quadrant where the sine 1s po-
sitive, sin (180°+ )= —sinea, smnce for « acute, the angle
180°-- o lies in the third quadrant where the stne 1s nega-
tive; cos (180° —a)= —cos @, since the cosine 1n the second
quadrant 1s negative, etc.

Fourth Group:

sin 5'}-: c;)s sin ; cos
cos _Fsin cos 0 == 0]
tan [ O L=t (& goy [ PO Ta=F o4 1@
cot F tan cot Ftan

The name of the function varies. the cofunction 1s taken
instead of the function The rule of signs 1s the same as n
the preceding group. For instance, cos (270°—a)= —sina
since the angle 270°—o for o acute belongs to the third
quadrant where the cosine 15 negative, cos(270°+-a) =
==<-gina since the cosine s positive 1 the fourth quadrant

All these formulas may be obtaned by applying the fol-
lowing rule

Any tirigonometric function of an angle 90°n+-a 1s equal
an absolute value to the same function of the angle tf n 1s
even and to the cofunction if n 1s odd If the function of
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the angle 90°n<-o 1s positive when a is an acute angle,
then the signs of both functions are the same; if it is ne-
gative, they are different.

The results of the foregoing reduction formulas are sum-
marized 1 the Table on page 354 where rows for secant and
cosecant have been added

194, Addition and Subtraction Formulas

810 (o + ) = sin @ cos P+-cos ce sin fi,
sin (@~ P)=sin ¢ cos p—cos & sin B,
€08 (0t B) = cos & cos B-sin & sin B,
cos (a-—P)=cos awcos P+-sina sin B,

tan (@+By= ——-————ltf’t‘;:;“:::ﬂ \

tan a—tan f

tan (@ —P) =17 Gnp

185. Double-Angle, Triple-Angie
and Halt-Angle Formulas

sin 2a=2 sin o cos a,
cos 2a=cos?a—sina=1-—2sinda=2cos ¢ —1,

2tana |, __sotra-1
tanda=qgmei  cotB=gg

sin3e=3simna—4sinda, cosla=4cos®e—3cosa,
3tana-tanta, __tot*a~3cota
tande = “Tywa ¢ o3 ="ggwat
i O 1-cosa o l1+cosa
sm-§-=._+_ 1/_..2..... C05—2'=i"/_——‘2-‘—.

[] | —cosa sin & 1-cosae
tm-2'=i./ Feosa o 1tcose - sha ?

] 1+cos o sin o 1 +coson
cot "2—"._-:t l/l—cos "o T-tosa  ®ma
The signs m front of the radicals are taken in accord
with the quadrant m which the angle % lies (Secs. 192, 193).
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196. Reducing Trigonometric Expressions

to Forms Convenlent
for Taking Logarithms

sina+sin p=2 smﬁl‘E cos 9‘-‘—& )
sina—sinf=2 (:osﬁf—E sin &8 B

cosu—i—oosﬂ:?cos—ﬂ’cos 5

" -
cos g—cos B= —2 smu sin %58 B gsnit “*p sin 2“

cos g+-sina= V2 cos (45°—a),
c0s u—stn &= V2 sin (45° —a),

tan ook tan p=2RCER oo 4 cot = 0B

€0 ¢ cos B sin o sin B’
tan o+~ cot ﬂ=§::gz:(::3 , tana—cot p= -——:%%H%’—)— .

tan o+ cot =2 csc 2a; tan o cot q= —2 cot 2a;,

I+cos =2 0833 ; | —cosa=2sin? 3,
I+ sin @=2 cos? (45‘— %‘-) s

|—sin a=2sin’(45° -—%—),

sin (460 oy VT sin (45° + 00
li tan & cos 45%cas o cos o

lj;tanatanﬂ=$+;°_'£?%’, cotacotP + 1__::;((:;%)

cos 20 |~ cot? g — 22822

—tantg =
l—tanla=_mr T

tanto— tan3p =2 (:;P’u’:‘;’f“ -8

cot? g—cot3p= tn ‘:";‘.ﬂ; :‘;i(ﬂ-a) .

tanf a—sinda=tan®asina, cot?a—cos®a=cotiacosia
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197, Reducing Expressions Involving
the Angles of a Trlangle
to Logarithmic Form

1i A, B, C are the angles of a iriangle or, generally, if
A+ B-+4C=180°, then certain expressions which do not
have logarithmic formn may be reduced to loganthmic form
by means of the following formulas, which are useful in the
solution of oblique triangles.

s1n A+ sin B=2cos é;—Bcos—(;— ,

sin A—sin B=2sinf—;—Bsm% .

cos A4-cos B=2cos-‘4-§£-sin-§- ,
cos A~—cos B==2sin B;A cos%,

tan A+ tan B =40 €

s AcoB !
sin C
cotA+cotB=m ,
sin 4 4-sin B4 sin C*—':4COS-—;— ms-;l ms-ﬁ— ,
tan A -4-tan B4-tan C=tan A -tan B-tanC,

cot%-}-col-%—-{-mt %=coi-—‘;-cot%cot—ﬁ-

188. Some Important Relations

sin o sin ﬂ=% [cos (a— B)—cos (& + P,
08 0, €08 ﬂ=-‘.; (cos (e~ B)+- cos (=+B)l,

Alnacosﬁ:é—lsm {a+ )+ sin (@ — )]
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These formulas may be used to avord multiplications
(they are frequently used in nonlogarithmic computations in
tigher mathematics, for instance, m the integration of trigo.
nometric functions)

2 tan - 1= tans -
SIN O e, COS O =
1 2
l+tan’—2~ I+ 1ian 3
2tan-°2°-
tanc = -
l-tan’-—z—

These formulas are useful n the solution of trigonomet.
ric equations {and in the integration of trigonometric func-
tions (n higher mathematics).

&
CO‘ST‘CQS

sin o.+sin2a-+smda+ . --sin o= |
2sln—2-

@a+la
F]

slnglﬂ.)..of-. sin %

co0s -} cos 2¢¢+}cos 3+ ... }-cos na=

@
2 sin-2—

08 ne=c0s” at— C} cos"=2 o sin? o+ Ch cosm4 o siné gr— .. ,
sin no.=n cos" 1 o sin a—C3 cos"~8 a sind o
+ Cheos"~Sqsind —. .

In the last two formulas, C& are binomial coefftetents
(see Sec. 136). The signs of the terms alternate, the right
members break off by themselves in that they termmate
in the zeroth or first power of the cosine.

Examples.

€08 30t =c0s? a—3 cos a stnl g,
sin 30 =3 cos? ¢ s1n a—sind @,
€08 40 =cos! ¢ —6 cos? a sint o sind ¢,
sin 4o =4 cos® & sin @ —4 cos & 51n?
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199, Basic Relations Between Elements
of a Trlangle *

Notation a, b, ¢ denote the sides of a triangle, 4, B, €
the angles; p= ”g” 1s the semiperimeter, £ 1s the alti-

tude; S stands for area, R denoctes the radius of a cireum-
scribed circle; r, the radius of an inscribed circle, 7,4, the
radius of a circle tangent to side a and to sides b and ¢
roduced (escribed circle); h, is the altitude drawn to side a;
EA 1s the bisector of angle ﬁ

(1) Law of cosines:

a'=b2fci—ecos A or cos A=DAEne
(cf. Sec. 147).
(2) From 1t are derived the half-angle formulas

A_ {p~b) (p-c) A p(p=8)
sin-g --]/—E——-, CDST_I/-'E““'

tan A =/ b= _ _1 l/(p-a) G-bp-a_ _r
2 P (p-a) -a P =r=a
from which we obtain
(ani
A B _p-e¢ 2 _p~b
tanTtanT_T, ==
tm—z-
(3) Law of stnes
a b c
WA=HE=we—2R

From this law we can derive the following two formulas.
(4) Law of tangents (formula of Regiomontanus).

A+ B C
avh mtan T cot?
a-b ., A-B ~_A-B

tan -5 tan —

* All formulas are ?iven in one version only, two slmliar formu-
las may be obtained lrom each one by a corresponding change of
letters " For example, from the formula

bryci~gr atyct-bt

cos A= 350 we get cos Bz Boe H
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(5) Mollweide’s equations

cos A8 o A8
a+b a-b _ 2
o T T ¢ [4
S 7 CD!-Z—-
(6) Formulas of area
be s A _b*sinAsinC
S= PR S= 2sinB
h?sm B
=Vplp—a)(p—=b(p~c), S=

2sin AsinC °?

S=p?ian %tan L&

T

s:ﬂcot%-cot%coig—,

A h sin 4 —
S=p(p—a)tan-, S—-m, S=Vrrarpr,

(7) Rady of aircumseribed, inscribed and escribed circles

__&a gk L be
R_Zamz_'t

T A BT ihg’
4cos 5 COS = cus-—2~
d4R=rg+4ry+r.—r,
N A
r=T=(p—a)tan-—2—=

asm B &
Rl A
=t i =R 5% sm%sm g,

p~a
(8) Bisector.

200. Solving Oblique Triangles

Case 1. Gaven three sides a, b, ¢

(a) When using tables of natu;al functions, first hind one
of the angles by the law of cosines

br+cl-ql
€08 A =
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The second angle (say B) is found by the taw of sines:

i
s.mB:f’fi"—“1

The third angle 1s found by the formula
C=180°—(A+B)

If considerable accuracy is required (even up to 10”), the
cognputahon (particularly ‘of the first result) s exceedingly
arduous.

(b) When using tables of logarithms, the angles A, B, C
(1t 15 sufficient to compute two of them) are found from one
of the half-angle formulas (Sec. 199, Item 2)

Work:

Given a=74, b=130, c=186
2p=a+b+c=390, p=195, logp=2 2900,

p—a=121 | log(p—a)=2 0828
p—b= 65| log(p—b)=1 8129
p—c= 9| log(p— c)=09542

(1) Compute A

A_ (p-b) (p~cy
tan ?“]/ P lo-a) *
log (p—b)=1 8129
log (p—c) =0 9542
colog p=3 7100
colog (p—a)=3.9172
23943

log tan % = 2.3043=1.1971
L=85T, A=1754

(2) Compute B

B /0=y (p-9)
=y Sen-

A similar computation yields
B =324/
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(3) Compute C as a check

(p—a) (p-b)

c
tan 5 = 70

The result 15 C=129°26"
Check A= 17°54'

B= 3240’
C=129°26'
AFEFC=180

Case 2. Given two sides a, b and the angle between
them, C
(a) When using tables of natural functions, first find side
¢ by the law of cosines

2= a4 b2—2ab cos €
and then angle A by the law of sines:

s:nA=”—’1£-Q

Here, angle A, which corresponds to the sine just found, 1
acute 1if -% > cos C and obfuse if % <cosC

The third angle 1s determined erther by the formula
C=180°—(A+B) or mn the same way as A (for a check)
Finding side ¢ to a hugh degree of accuracy involves arduous
computations

(b) When using tables of logarithms, side ¢ 1s found b
the law of sines after angles 4 and B have been determined.
A and B are found by the law of tangents

c
a+b cot g
a=b= tan AZE
2

from which, using given a, b, C we find -4;;-5 and, since
‘13;—5(—-90"—-%) 1s also kn n, we readily get A and B
Work.

Given, a=2/Q LANE v (0N
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(1) Compute E’:zi

B-A b-g 4
tan-—z—-=mcot-5,

log (b—a) =2 4942

log cot %:T 9214

colog (b+ @) =3 0506
214662, A= 16018

(2) Compute B and A
A g —L=so50r, ZA=1618'

Adding we get B="56°8'. Subtracting we get A==23°32’,
(3) Compute side ¢.
_asinC
T Tsin 47
log a=2 4609
fog sin C=1 9929
colog sin A =0 3987
logc==28525, ¢==7120

Case 3. Given any two angles (say 4 and B) and side ¢.
We carry out the computations in the following manner
whether using logarithms or not. first determine the third
angle of the triangle by the-formula 180°—(4 4+ B), then
the sides a and b by the law of sines Using logarithms, write
out the work as follows.

Given A=>55°20', B=44°41', c=1795

(1) Compute angle C C==180°—(A4 + B)="T79°59",

(2) Compute side a:

_ csin A4
e €
log ¢ =2 9004
log sin A =1 9151
colog sin € =0.0067
loga=28222, a=6640
(3) Compute side b.
Using the formula b=

we obtain b=>567.7,

csln B
sin €

in the same way as above,
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Case 4. Given fwo sides a and b and angle B opposite
one of them

Carry oul the computations as follows whether using loga-
eithms or not first find angle A opposite the other given side
by the law of simes mnA———"—’-,:—"—"j We then get the follo-
wing possibilities

(a)a>b, asmB > b and the problem has no solution;

(b) a > b, asin B==b and there 1s one solution angle A
1s a right angle,

(c) a> b, asin B < b<a, the problem has two solutions:
angle A that corresponds to the computed sine may be taken
acute or obtuse,

(d) a<cb, the problem has one solution angle A s taken
acute

Having determined angle A4, we find C by the formula
C=180°~(A+B). 1f A can have two values, then two va-
lues are obtaned for € as well Finally, the third side ¢ Is
found by the law of sines, c=b?;;'"—89 If two values of C are
found, then ¢ has two values as well and thus the conditions
are satisfied by two distinct triangles

Work:
Given: a=3600, 6=3090, B=21°14'

We have a > b and asin B <b (this is revealed in the
first few steps of the computation) Hence we have Case 4c,
(1) Compute angle 4.

asin B
b '
log 2 =2 5563
log sin B=1.5589
colog b=3 5100
log sin A =T1.6252

If we had asin8 > b, the characteristic of the logarithm
would be positive and the problem would have no solution.
First solution =~ A,=24%7"; second solution Ay=180°
— 24°57' = 155°3’,

2) Compute angle C=180°— (44 B).
first solution €y = 133°49', second solution C,= 343",

(3) Compute side c:

sind =
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first solution second solution

log b==2 4900 log b == 2.4900

log stn C; =1 8583 log sin C, =2 8117
colog stn By =0 4411 colog sin B, =0.4411

logey =2 7894, ¢, =615 7, logc,— 17428, cq==55.3l

201, Inverse Trigonometric Functlons
(Clrcufar Functlons)

The refation x=siny makes 1t possible, with the aid of
tables, to find x if y 1s known, and y if x 18 known (and
does not exceed 1 in absolute value). Thus, we can consider
the sine as a function of an angle, and also the angle as a
function of the sine. This fact s apparent in the notation
y==arcsin x (arcsin is pronounced “ark-sine™) For example,

in place of %.—.—sm 30° we can write 30°=arcslnT'. In the
tatter case, the angle is usually expressed in radians and
not degrees so that one writes %—=arcsin-;— Although this

3
the student s often confused at first. Yet the student finds

nothing out of the ordinary when writing 23=8 and 2= 3 8.
This is because the rules for taking roots differ from those
for raising to a power, and the student is accustomed to
viewing them as two distinct operations, whereas finding the
ane from an angle and an angle from the sine is dane 1n
the same tables, in which only the term “sine” is used and
“arestne” 18 not even mentioned. For this reason, the student
does not perceive of any srecihc operation whose result 15 an
arcsine, To Fut it generally, there Is really no reason for
introducing this concept 1n elementary mathematics. In higher
mathematics the arcsine occurs often enough as a result of
a certain operation called integration, 1t is precisely here
that the concept arcsine originated.

Definition. arcsin x means the angle whose sine is x.
Similar defimitions pertain to arccosx, .arctanx, arccot s,
arcsec x, arccsc ¥ The functions arcsinx, arccosx, etc. are
inverse to the functions sinx, cosx, etc (see Sec 208) (just
as the function V¥ 1 the inverse of %% Hence thelr name:
inverse (rigonometric functions (or curcular funcfions). All
inverse trigonometric functions are multiple valued, which

notatton 1s simply a variation of the notation -l—=sm-’65-.
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means that the following holds true for all of them one
value of x 1s assoctated with an infinity of values of the
function (since an 1nfinite number of angles, say a, 180°—g,
360°+a, have the same sine)

The principal value of arcsinx is the value which ljes

between —%(——90") and +-§~( +90°). Thus, the principal

value of arcsm‘—,;—- 1s %, the principal  value of
< V?) L
aresin | —=5 ) 18—

The principal value of arccosx 1s the value which les
between 0 and n(+-180°. Thus, the principal value of
vy

arccos—- 1§ %; the principal value of arccos(-—%’-)

18 +—3—I¥.
The principal values of arccot x and arcsec x (hike that of
arccos x) [1e between 0 and . The prinerpal values of arctanyx

and arcese x (like that of arcsin x) lie between —% and + &,

Examples. The principal values of arctan (nl):—%,
arccot V3=, arcsec (—2) = +—§~Jc.

1f we use the designations Arcsiax, Arccosx and so on
to denote arbitrary values of the corresponding inverse tri-
gonometric functions, and 1f we retain the designations
arcsin x, arccos x, efc., for the principal values, then the
relationship between the values of an inverse function and
tts principal value 1s given by the following formulas:

Arcsin ¥ =hn(—1)F arcsin x, 1)
Arccos £ =2k 4 arccos x, 2
Arctan x =kn - arctan x, 3)
Arccot x =An - arccot x 4)

where & 1s any integer, positive, negative or zero.

The graphs of inverse trigonometric functions are given
in Sec 213

Example 1 Arcsin 4 =kn(— 1)} arcsm-;—

2
=hnH(—1)F 5
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For k=0 we have 0-a+(—1)0 F =2 (or 30°, the princw
pal value),
for k=1 we have l~u+(—l)£ =n—%= -:—u(or 150°);

for k=— | we have -n+(—1)—1-’;-=~n-%—-1- n
(or —210").
for k=— 2 we have —2n+(—1)— ’——--—2:1-}--———1—::

(or ——330") and so forth.
Example 2. Arccos —2— = 2knf arccos-—— =2kn :};— .
For k=0 we have % {or 60°, the principal value) and
-———’a‘-(or —60°), for k=1 we have2n+%=2%ﬁ (or 420°)

and 21— % =12 (or 300%), end so forth

202. Basic Relations for inverse
Trigonometric Functions*

sin Aresin a==a  Arcstn (sin o) = ka—l-(——-l)"a,
cos Arccos a=a, Arccos (cosa)=2kn 4 a,
tan Arctan a=a, Arctan (tano)=kn | a,
cot Arccot a=a, Arccot (cot @) =kn-+a,
arcsin a=arccos ¥ T—a?= arctan-—.f.—_-f s

arccos a=arcstn ¥ [ —a? = arceot

m,— ’ fora>0
arctan a =arccot % =arcsin

a 1
o == ATCCOS e
AFT VT¥al

arcsin a- arccos a = -’2—‘- s

T
arctan a+-arccot @ = -3, arcsec a-- arcese a = =

7

*The roots in all formulas of this section are positive numbers.
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Arcsin a+ Arcsin p =Aresin (aV T—854- 0¥ T——g3),
Arcsin a— Aresin b = Arcsin (aV T—B—bY T—g9),
Arccos a4 Arccos b=Arccos (ab—V T—atV T—%),
Arccos a— Arccos b = Arceos (ab+ ¥V T— a2V T—5%),

a+b
Arctan a -+ Arctan b= Arctan ="
Arctan g— Arctan b == Arctan ?:Zb )

aresin @V T—=84+ 0V T—a¥) (if

a?+4 b2 < 1, also 1f a?4-62> 1, but
arcsina+aresinb=1 gp < 0),

+ [n—aresin @V T—b24-5Y T—a?)]

(if a?4-4% > 1 and ab > 0),

arcsin (o ¥ T—62—b Y T—a%) (if a2+ b2
< i, also if a®+b* > 1, butab > 0),

-+ [n—arcsin @V T=5% — bl/l—-aﬂ]
(if a?+6%> 1, but ab < 0)

arcsin g—aresinb =

In the last two formulas take the + sign n front of
the square brackets if a 1s positive and the — sign 1f a is
negative

203. On the Construction of Tabies
of Trigonometric Functlons
The arc of a circle (MTM, in Fig 230) 1s always longer

than the subtending chord (MPM,) so that ﬁfx' > 1
However, the smaller the gntra] angle '

MOM,, the less the ratio %.:AMJ: differs "
from unity, and hence the smaller the error
if we consider the arc and its chord to be 4
equal Thus, for a central angle of 10° M,
the arc MM, amounts to 0 174533 r (r the

tadius of the circle) and its chord 1s 0 174312 r: Fig. 280,

0174533 ¢
(RELEyY 7 &1 001

By taking the chord equal to the arc, we have an error of
00002 r, which 1s only about one tenth of one percent.
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For an angle of 2 the relative error is about ten times
less, namely, the arc 1s equal to 0034907 r, the cherd is

equal to 0034904 r Their ratio g gg:gg: :wl 0001 Assu-

ming the arc equal to the chord, we have an error of about
one hundredth of one percent —

On the other hand, the ratio of the arc MAM,; to the
chord MPM; 1s exactly equal to the ratio of the radian
measure of angle MOA (which constitutes one half of the
angle MOM,) to\l}ts sine Indeed, M‘_/AMl MPM,=2MA 2MP

= AH'MP = A% # but A—'{RA 1s the radian measure of
the angle MOA (Sec 180) and g 15 the sine of the same
angl

e
g'l‘his means that by takmg for sme the value of the
angle a itself (in radian measure) we have a small error If
the angle a 15 small By -taking a small enough angle we
can find the sine of the angle to the desired degree of accu-
racy Then we can construct the entire table of trigonomet-
ric functions Suppose we have found, say, sin30° Then by
the formula cos 30'=} 1—sim®30’ we also find the costne
of this angle, then tan 30, cot 30", etc are found from the
formulas on page 351 Continuing, formulas sin 2¢= 2 stn acose
and cos 2u=cos*oe—sin®owill permit finding sin (2x 30")=s1n [°
and cos 1° Then, using the add:twon formulas (Sec 194), we
can compute sin (1°4-30")=s1n1°30" and cos (1°+30")=cos1°30',
Now, knowmng the sine and cosine of the angles 1°30’ and
30', we can find sin 2°, cos 2°, ete

In this way we can construct tables of the trigonometric
functions (using this procedure, we first have to find the
number & to a sufficient degree of accuracy, otherwise we
will not obiam the radian measure of the angle) However,
the computations are extremelf nvolved. Pricr to the 18th
century, table makers (Sec 179) employed computations
that were almost as unwieldy as those. Today, mathematicians
have much faster methods based on higher ‘mathematics.
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204. Trigonometric Equatlons

An equation involving an unknown quantity under the
sign of a trigonometric function 1s called a {rigonometric
equation * .

Example 1. The equation sin y=-3 Is trigonometric
[ts roots are y=30°, y=180°—30°=150°, y=2 180°4 30°
= 390°, y=23 180°—30°=510°, etc and also y=— 180°~-30°
= - 210°, y=— 2.180°+ 30°=— 330°, etc

The general solution (that 1s, the totality of all roots)
may be written thus [¢f Sec 201, formula (1)]

y=Fk 180°+(—1)k-30°

where k Is any Integer, posttive, negative or zero
Consider one of the solutions, say y=230°
It may also be written as y=1800" or y=108,000" or

y:% ~ 0 5236 (we assume the name “radians”) Thus, 1n
the equation sin yz-;- the unknown y 1s the size of the
angle and not of its numerical measure The numerical mea-
sure depends on the choice of units of angular measurement
(degrees, minutes, radians, etc)

If we take the numerical measure of the angle for the
unknown guantity, we have to indicate in what units the ang-
les are measured (see Example 2)

Example 2. In Fig. 231, the chord AK 1s equal to the
radius of the circle, R==0A. How many degrees are there in
the central angle AOK?

Here the desired qugntity 1s a number, denote it by x,
then the size of the angle AOK 1s x° (£ AOK =x° Constru-

cting the bisector 0D of angle AOK, we have £ AOD = (%)o
Sice AK=24D=204 sin £ AOD=2R-sn () and
AK=R (by hypothesis), we get the equation 2R-sin (—;-)o =R,

* Some writers take the term "trlﬁonometrlc equation” In its narrow
sense and demand that the unknown only be under the sign of a
trigonometric function In that sense, the equatlon of Example 3 Is
not a trigonometric equation However, no matter how we regard
the term “trigonometric equation”, whether involving equations i
which the unknown occurs only under the sign of a trigonometric
functlon or in other combinations as well, a consideration of such
equations is useful in many respecis
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or

*\° _1

sin (—é—) =

One of the solutions of this equation 15 x=60
In school, problems like these are solved where both pro-
cedures for setting up the trigonometric equation are equally
suttable, and preference 1s usually given to
the first method However, problems often
A crop up that cannot be handled by the first
p method (see Example 3).

;’ Example 3. In Fig 231, arc AK exceeds
X the chord subtending it by =~ 10472 ti-

mes. Find the central angle AOK
Fig, 231 Apply the second method Denote by x
the degrce measure of the desired angle
{t e, x 15 a number)

As m Example 2, find AK =2R sin (—’2‘—) The degree

measure of the arc AK 1s also equal to x, that 1s, the length

of arc AK constitutes == of the length of the circumference

360
2nR Hence

AR AK=-7 by hypothests, and we get the equation
AR« *\°_=a
R () =%

That 1s,

x sin (—g—>u=l20 1)

This equation has a umique solutton, x =60, which means
the desired angle AOK is equal to 60°

If for the unknown x we took the measure of the angle
AOK 1m minutes, we would get the equation

x sin (£) =7200 @
(its root I1s x=3600, or / AOK = 3600’)

Thus, by taking a different unit of angle measure, we get
a substantially different equation In other words, in this
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specific problem 1t s not possible to set up an equation in
which x denotes the magnitude of the angle and not that of
1ts numerical measure

Note Denote by x the radian measure of angle AOK and
we get the equation

2
%snF=7n @

(1ts root 1s x=—’§-)

In outward appearance, this equation would seem to sug-
gest that x denotes the desired angle AOK rather than its
numerical measure Actually, x here 15 a number, the radian
measure of angle AOK, because equation (3) 1s a contracted

form of the equation x sin (;—) radxans:—%—n In the same
way, we could write

x sm—;f-=l20
instead of equation (1)

205. Technlques for Solving
Trigonometric Equations

When solving trlfonometrlc equations, an attempt 15 made
to find the values of some trigonometric function of the un
known Then, using tables, 1t i1s possible to find the values
of the unknown itself (which, m the general case, are appro-
ximate) The formulas of Sec 201 serve for working out ge
neral solutions
An equation may be solved in different ways The formu
las given in Sec 196 and, particularly, in Secs 194 and 195
ma{yprove useful
hen mampulating trigonometric equations, 1t 1s impor-
tant to take care that the transformed equation 1s equivalent
to the original one Incidentally, it i1s sometimes advisable to
perform transformations in which equivalence cannot be gua
ranteed beforehand But then, in the case of possible exira-
neous roots appearing (say when squaring both members of
the equation, see Examples 5 and 6), 1t 15 necessary to check
all the solutions found. In the case of a loss of roots, estab-
lish which specific roots could be lost and whether they have
actually been lost
Incidentally, 1t 1s easy to avord the danger of losing roots
An example will suffice lo dlusirate this Suppose we have
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the equation tan x=2sinx Write 1t as ::%:2 sin x. Divi-

ding both members by sinx, we get the equation é%'=2.
which 15 not equivalent to the original one. the lost roots of
the equation are sinx=0 But we can proceed differently.
Transpose 2sinx to the left and factor out snx to get

sinx ( co%—-Q) =0, an equivalent equation It is satisfled in

only two cases (1) if sin x=0, (2) if C—O}}=2, that 1s, cos x

= —;—— In the former case, x==kn, n the latter, x=2kn 4 -;—‘.

We have all the roots
Note. When equating one of the factors to zero, take care
that the other factor does nof become infinite In our example,

for sin x=0, we have cosx=- 1 so that L equal

cos x

to —1 or —3 When cos x=—;- we have smx=j:y—2§ But
if the second factor becomes infimite, the result will, as a rule,
be incorrect Suppose we have the equation sin x=0, Wecan
write, equivalently, cos x.tan x=0, but we cannat put cos x=0
(for cos x=0, the equation sin x="01s defiutely not satisfied).
The source of the error lies in the fact that for cos x=0 the
function tan x becomes infinite (tan x-=$—.cl—°?’-f§1'l .

The simplest 1 conception but not always the shortest
procedure for solving a trigonometric equation is this. all tr-
gonometric functions involved mn the equation are expressed
in terms of one and the same function of one and the same

quantity, say n terms of sinx or tan x or tan £, efe. (the

table on page 351 and the formulas for sina, cos «, tanea n
Sec. 201) An apt choiwce of this function often reduces com-
putational work

Example 1, 3-4-2cosa=4sin3q

It 15 convenient here to express sin®a in terms of cosa.
r‘Je have sindo=1—cos?a, and we get an equivalent equa-
1on:

34-2cos a=4 (1 —cos?a) or 4cos?a-2cos b—1=0
This 1s a quadratic equation 1n cosa We find two values
of cos

(cos @), =-"—-l—f“‘—',—5=0.3090, (cos a),:'l"y 808000
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whence o =360° & 4 72°00" and o= 360° & 4~ 144°00"
Example 2. ms,x=8 tan x—2
Here, 1t 1s convenient to express cos®x in terms of tan x
We have cos?x= and obtain the equivalent equation

{+tan®x

Jtan®x—8tang+45=0

Whence (tanx); =1, (tanx),:% The equation has the so-

lutions' x = 180° k~+45° and x=180° k4 59°02' (the first for-
mula 15 exact, the second, approximate)

Example 3. sin?x—5simnxcos x—~6cos?x=0

The simplest procedure here 1s to divide by cos?x We
et
g tan®x—5tan x—6=0

We do not lose roots 1n dividing by cosx Indeed, put-
ting cos =0 1n the given equation, we find stnx=0, and
the equations cos x=0 and sinx=0 are inconsistent

From the equation tan®?x—5 tan x—6 we find (tan x); =6
and (tanx),=—1 The roots are x=180°32"1180°% and
x=—45°4180° £

Example 4. 2 sin® x4- 14 sin x cos x50 cos2x =26

Here 1t 1s not advisable to express cos ¥ in terms of sin x
or vice versa since an irrational expression appears in the se
cond term Rationalization s possible by isolating the term
and squaring, but that 1s complicated and, what is mare,
extraneous solutions may appear It will be better to express
sinx and cos x n terms of tanx We have

sin x=7—t__a’lf_—__- cos x= !
& Vistant x
In these formulas, take both upper signs or both lower signs
(since sin x:cos x must be equal to tanx and not to —tanx)
We get the equivalent equation
2 tanfx+14 tan x+50__26
T+tantx -

Clear fractions There will be no extraneous roots since
14tan®x cannot be equal to zero Collecting like terms, we
get the equivalent equation *

24 tan? - 14 tan x—~24 =0

* This equation can be obtained faster by using the following
artiflclal device since sin®x+cos? x=1, the right member of the gi
ven equation may be written as 26 (sin® x+cos*x) Then transpose all
terms to the lelt and divide by cos? x,
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Whence (tan x); =% and (tan x), = — 72— .

The solutions are 1= =53°07"+ 180° &,
¥=-— 36°52'+180° &

Example 5.
sinx+7cogx=35 ()
Express sinx in terms of cos .
4+ VT cosTx+7cos x =5 @
or

4+ ¥V T—cosfx=5—Tcos x

If the values of cos x were known, we would know what
sign to put in front of the radical (plus if the right member
15 positive, minus if 1t 1s negative) We have to keep both
signs since we do not know the roots of (1} Therefore, eque-
tion (2) is not equivalent to (1) We have introduced extra-
neous roots Squaring both members of (2) and collecting
terms, we get the equation

50 cos? x~-70c05 X424 =0 3)

which 1s equivalent to (2) but not to (1)

We find (cos x); =08, (cos x),=06

Whence %=+ 36°52'+360°% and x=--53°07' -+360%

Check the roots obtaned Substituting cos x=08 into
(1), we get simnx=5—7cos x=5-—56=— 0.6. Hence the
roots x==-} 36°62' 4-360° are extraneous since the sines of
these angles (they le in the first quadrant) are equal to
406 Now the roots -—36°52'--360°% are also those of
equation (1) since the smes of these angles equal —0.6

Now put cosx=06 nto {I) We get sinx=0.8, whence
we conclude that the roots x= - 53°07’ 4 360% are those of
(1) as well (the sines of these angles are 0 8), while the roots
x=— 53°07' 4-360°% are extraneous (the sines of these angles
are —08).

The solutions of equation (1) are*

x=—36°62" 4 360°% and x=53°07' 4-360%

Example 6. The equation considered in Exam{Jle 5is a
special case of the equation asinx+-bcos x==¢ All equations

* Eq (1) may be written equivalently as sin x=5-7 cos x, Squa-
ring, we get sin* x=(5~7 cos x)3, but this'equation is not equivatent
to (1) since it is also obtainable jrom —sin x=5-7cosx Replacing
sin*fx by 1-cos*x, we again get (3), and the rest of the sohutjon
coincides with that given in the text.
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of this general type mazl be solved by the indicated proce-
dure We now give two other methods using the same
example
sinx+7cos x=5 45}
First method. Square (this introduces extraneous roots,
see footnote on page 374) to get
sin? x4 14 sin x cos x - 49 cos? x =25
Employing one of the devices indicated 1n Example 4,
we get 24'tan? x—14 tan x—24=0, which 1s the same equa-
tion obtamed in Example 4 We agam find (tan x)1=%_

(tan ¥)p =~ —i- But this time we have to eliminate the ext.
raneous roots from x = 53°07" - 180°% and x = — 36°62 + 180°%
Iitanx=- we either have sinx=0 8, cosx=06 or

sinx=—08, cosx=—06 Subshiuting mto (1) we see
that only the first pair of values fit, 1 ¢, angle x les in
the firsf quadrant Hence, of the roots x=53°07"--180°%
only those obtained for even values of & are swtable Put-
ting k=2k" we gel ¢=>53°07'4-360°%' In the same way we
find that of the roots t==— 36°52'--180°% only those are
suitable for which % 1s even, that 1s,

x=— 36°62' + 360°%’
Second method. Express sinx and cos x 1 terms of tan %
(formulas of Sec 198) Sumplifymg we obtamn an equivalent
equation. 12 tan’l;——-—Z tan -;-——2=0, whence

X 1 x 1
(1), =4 ()4
We find 5 A 26°34’ 4+ 180% and 4 ~y—18°26" -+ 180%  The
roots are xAv53°08’4360°% and x~v—36°52'+-360% The
advantage of this method s that it does not introduce ext-
raneouts roots
Note. The second method has greater generality, When a
trigonomelric equation 1s reduced to a form which involves
only trigonometric functions of the same angle, then all these
functions may, with the aid of the formulas of Sec, 198, be
expressed m terms of the tangent of half an angle In this
method, the computations are often more complicated but
we dispense with seeking artificial devices and 1n many cases
avoid exiraneous roots.



FUNCTIONS AND GRAPHS

206. Constants and Varlables

The application of mathematics to the study of matural
laws and to their use 1n technology and engineering made
it necessary to miroduce the concept of a varsable quantity
and, by contrast, that of a constant quantity. A variable 15
a quantity which, within the framework of a given problem,
takes on various values A constan! 1s a quantity which,
within the framework of a given problem, remams unchan-
ged The same quantity may be a constant in one problem
and a vartable 1n another

Example The botling temperature T of water 1s a cons-
tant (T =100°C) in most physical problems However T isa
variable whenever we have to consider variations 1n atmosph-
eric_presstire

This distinction between constant and variable quantities
1s a frequent feature of higher mathematics, in elementary
mathematics the chief distinction 1s between knowns and
unknowns The unknown quantity 1s retamed in higher mat-
hematics but 1t does not play the chief role there.

Variables are mostly denoted by the last letters of the
alphabet x, y, 2, constants, by the fust letters, a,b,¢c, ... .

207. The Functional Relatlon Batween
Two Variables

We say that two variable quantities x and y are connec.
ted by a functional relation 1f with each value that one
quantity can take 1s associated one or several definite values
of the other.

Example 1. The boiling pomnt of water (temperature T)
and the atmospheric pressure p are connected by a functio-
nal relation because every value T is associated with one
definite value of p, and conversely. Thus, if T==100°C,
then p 15 invarlabl{ egual to 760 mm of mercury; if T =70°C
then p=234 mm, e ¢ By contrast, the atmospheric pressure p
and the relative humidity of the arr x (if regarded as vari-
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ables) are not connected by a functional relation 1f 1t 15
known that x=90%, nothing definite can be said about p

Example 2. The area S and the perimeier p of an equi-
lateral triangle are connected by a functional relation The
formula S=()/3 36) p* expresses that relationship

If 1t 15 desirable fo emphasize that 1n a given problem
the values of the variable y are to be sought when the values
of the variabie 1 are known, then x s called the tndependent
variable {or the argument) and y 15 termed the dependent va-
riable (or the funciion)

Example 3 1f, knowing the perimeter p of an equilateral
triangle, we wish to make statements concerning the area S
(see Example 2), then p 1s the argument (independent vari.
able) and S s the function (dependent variable)

More often than not x represents the independent variable

If every value of the argument x 15 associated with only
one value of the function g, then the function 1s called a
one-valued (single-valued) function, 1f the association 1s with
two or more values of g, then 1t 1s a multiple-valued (two-
valued, thice-valued, etc) function

Example 4 An object 1s thrown upwards, s 1s the height
1t reaches above the earth and £ 15 the time that elapses irom
the 1mitial nstant of flight The quantity s 1s a one-valued
function of £ since at each instant the altitude of the body
15 a defimite quantity The quantdy ¢ 1s a two-valued func-
tion of s since the body 1s twice at any given altitude once
in the upward flight and once again in the downward fall

The formula s_—_uut——-;- g1? which relates the variables s

and ¢ (the inihial velocity o, and the acceleration of the
earth’s gravitation g are constant values here) shows that for
a given 1 we have one value of s and for a given s we have
two values of ¢ as defined by the quadratic equation

—;-gﬁ—uot +s5=0

208. The Inverse Function

In describing a function 1f is 3uite inessential what letter
1s used to denote the function and the argument, say, 1f we
have y=12 and u==v?, then y is the same function of x as
4 15 of v, m other words, x* and v* represent the very same
function, although the arguments differ,
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If we interchange the argument and the function n a
given functional relation, we obtain a new function, the -
verse of the origmal function

Example 1. Suppose we have a function u of an argu
ment v

If we interchange argument and function, the quantity v wﬂ!
be a function of & and will be given by the formula v= V.
If the argument 1s denoted in both cases by the same letter x,
then the origmal function is #* and the inverse function
15V

Example 2. The inverse function of sinx s arcsinx
Indeed, if y==sinx, then x=aresmy (Sec 201}
| The graph of an inverse function 1s given 1 Sec 213,
tem 7

209, Representation of a Function
by Formula and Table

Many functional relations may be represented (exactly or
approximately) by simple formulas For example, the rela-
tion between the area S of a circle and the radius r 1s given
by the formula S=mnr?, the relation between the altitude s
of a body thrown upward and the time ¢ that elapses from

the mitial instant 1s given by the formula s=vni-—-%g!ﬂ:

actually, the latter formula 1s an approximate one since 1t
disregards both air resistance and the dimmution of ter-
restrial gravitation with increasing altitude

It often happens that a functional relation cannot be
represented as a formula or, if a formula exists, computa-
tions prove to be too complicated. In such cases, other mo-
des of representing functions can be used Such frequently
used modes are tables and graphs (see Sec. 212)

Example. The functional relation between pressure p and
the boiling temperature T of water (cf Sec 207, Example 1)
cannot be expressed as a single formula capable of giving
sufficient accuracy for all cases of practical importance The
relationship can however be given in tabular form (a portion
of such a table 1s illustrated below)
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p,mm | 300 | 350 | 400 | 450 } 500 | 550 | 600 | 650 |} 700

T°C 758,.“.6 830|858 (88519121935 (957 976

For conventence of computation, the values of one var
able are mostly taken at regular intervals, this variable 1s
then called the argument of the table

No table of course can contain all values of the argu
ment, but a table of practical utthty must contain sufficient
values of the argument so that any other value of the fun-
ction may be obtained to the required degree of accuracy
by means of interpolation (see Sec 64)

210. Functional Notatlon

Suppose that a variable y 1s some function of a variable x
I 1s immaterial how the function has been specifted, whether
by formula, table or 1n some other fashion The function
may not even be known at all, all that 1s necessary 1s to
establish the very fact of a functional relationship (Sec 207)
This bare fact 15 denoted as y=/f(x)

The letter [ (from the Latin functio) does not represent
any quanttty as such, Just as the letters in log, tan, etc n
the notations logx, tanx, etc Notations like y=Ilogyx,
y=t{anx, etc are very definite funchional relations between
y and x, the notation g=//¢; repiesents any functional
relation

If we wish to stress the fact that the functional relation
belween z and ¢ differs from that between y and x, then we
take a different letter, say F, and write 2=F (#), y=Ff (x)

Now 1f we wish to stafe that the functional relation bet-
ween z and ¢ 15 the same as that between y and x, then we
use the same letter f, and we write z=f(f), y=={ (x)

I an expression s given (or has been found) of y m terms of
x, then we connect the expression with f (x) by an equalssign
; Exan’lples (1) If 1t 1s known that y=x? then we write

X)= X~

(2) If 1t 1s known that y=sinx, then we can write
flx)=sinx

(3) If f(vy=1log x, then the symbol [ (y) means logy

4 I [(x)=VTF# and F(x)3=3x. then we can write

Y

- Fly
F)fx) =3 ISR . S—
()f() I93 LN 7o) V.r...?
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211, Coordinates

Two mutually rectangular straight lines XX’ and YV
(Fig. 232) form a rectangular coordinate system. The straight
lines XX' and YY' are called the coordinate axes, one of
which (usually XX') 1s given horizontally and 1s called the
axis of abscissas (x-axis), the other, YY*, 'is the axis of ord:-
nates (y-axis), the point O at their intersection 1s the ortgin

of coordinales A scale umt is chosen

| 4 arbitranly for each axis.
T T Taking an arbitrary point M
NN in a plane with axes, we find 1ts
2111y projections P and Q on the axes.
X1 -’«';--'—— X The line-segment OP on the axis of
R pl___ 1] abscissas, and also the number x
i which measures 1t by the chosen
M1 urt of length, or scale umit, 1s
T termed the abscissa of the point M
¥’ The segment OQ on the axis of
Flg_ 202 ordinates, and also the number y

that measures 1t, i1s the ordinate of
the point M The quantities x=0P
and y=0Q are called the recfangular coordinates (or, stmply,
the coordinates) of the point M They are considered positive
or negative by convention (ordinarily, positive segments are
tatd off to the right on the axis of abscissas and upwards
on the axis of ordinates),

In Fig 232, where the scales on both axes are the same,
point M has abscissa x==3 and ordinate y==2, point M,
has abscissa x;==—2 and ordinate y,=1. We can shor
ten this notation to M3, 2), Igl‘ (=2, 1) Simijarly,
M, (—15, —3)

Every point in the plane 1s associated with one number
pair: x, y. Evcj‘? parr of real numbers x, y 1s associated
with one pomt A rectangular coordinate system 1s often
called a Cartesian system of coordinates after the French
Ehllosopher and mathematician Descartes (which 1n Latin is

artesius) who made extensive use of coordinates in the
mnvestigation of many geometric problems. This is & misno-
mer however.*

* Descartes used one axlis énot two) on which he laid off abscls.
sas, ordinates were determined as distances of points In the plane
from the axis of abscissas, Descartes reckoned these dlstances In any
chosen direction, not necessarily perpendicular In the hands of Des-
cartes, both abscissas and ordinates were positive Irrespective of the
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212, Graphical Representation
of Functions

To depict a given functional relation graphically, mark
on the axis of abscissas a number of values Xy, x,, A,
of one of the variables x {ordmnarily the argument), and const-
ruct the ordinates yy, Ys, 43 which are the corresponding
values of the other variable y (the function), we thus obtain
a number of ponts M, (%1, 11), .
My (x5, 1), My (%5 Y3), Join £
them by a smooth curve drawn free-
hand to get the graph of the given
functional relation The advantage 240 M1
of a graphical representation com- g4
pared to tables lies in 1ts pictorial- 0
ness and surveyability A disadvan- 2
tage 15 1ts low accuracy A proper /45| |
choice of scales is very important PRnn P j
here 7 50 00 150 200 250%

Figure 233 gives a graphical rep-
resentation of a functional relation Fig 233
between the modulus of elasticity
E of forged steel (in tons per square centimetre) and the
temperature £ of iron The scales of the abscissas (f) and ordi-
nates (E) are indicated by numerals (The origm and the
axis of abscissas are not shown in the drawing so as not
to enfarge the size of the graph unduly)

The graph 1n Fig 233 was constructed on the basis of
the following table

n

1 (Cy 0 50 100 150 200 250

E (tfem?) 216 21 ¢ 21.2 209 205 | 199

From the graph we can find the approximate values of
the function for those values of the argument which are not
indicated 1n the table For example, suppose 1t 1s required
to find the value of E for #=170°C Lay off on the axis
of abscissas (or on the straight line Af which is parallel
to it) the abscissa #=AP =170 and, erecting the perpend:-
direclions of the line-segments In most textbooks the distinction of

direction by the signs + and — 1s erronecusly credited to Descartes,
whereas tls convention was Introduced by he/s pupils,
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cular PM, read off the ordinate E=PM=2075, Squared
aper facilitates reading a graph Finding intermediate ya-
ues of a function from its graph 1s called graphical interpo-
lation
A graph 1s actually constructed (plotted) from points, and
then a smooth curve is drawn free-hand connecting the sepa-
rate pomnts My, M,, Theoretically, 1t 1s always pos-
sible that the intermediate points not designated 1n the graph
lie far away 1rom the smooth curve One should therefore
define a graph theoretically as the locus of points M (x, y)
,(Sec 151) whose coordinates are connected by a given fun-
ctional relation.

218. Elementary Functions and Their Graphs

1. Proportional quantities. If variables y and x are directly
proportional (Sec 63), then the functional relationship bef-
ween them 1s given by the equation

y=mx M)
where m 15 a constant (the proportionality factor, or constant
of proportionality, or constan! of wvaration). The graph of

direct proportionality, or direct variation (here and hence-
forth 1t 1s assumed that the scales on both axes are the

v Y
R 22
A 14
NG RS
NG 1Y 1
N x {
B
A Lo o 4
“451 ™ 7 Q R X
W 5
LT 1]
INNAERN
T
Fig. 234. Fig 235

same), 1s a straight line that passes through the origin and
forms with the axis of abscissas an angle a, the tangent of
which 1s e(}ua] to the constant m, tan @ =m Therefore the
proportionality factor m is also called the slape of the Line.
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Figure 234 shows the graphs of the function y=mx form:é"

m=1, m=2, and m:-% In determining the angle o

between the axis of abscissas and the §raph, we reckon
counterclackwise from the positive axis of abscissas The slope
of the graph 1s the tangent of the smallest positive angle
through which the positive axis of abscissas can be revolved
in order to be parallel to the given line
2. Linear function. If the vamables # and y are con-
nected by a first degree equation
Ax+By=C (2)
where at least one of the numbers A, B 1s not zero, then
the graph of the functional relation 1s a straight line When
C=0, 1t passes through the origm (cf Ttem 1), otherwise

it does not
Suppose that neither 4 nor B are equal to zero, then the
graph intersects both coordinate axes intercepting on the

axis of abscissas a segment a=% and on the axis of ordi-

nates a segment b=—g;

Examples The graph of the equation 2x+5y=10 15 a
straight line AB (Fig 235), a=7=5, b=-5—=2 The graph
of the equation 2y—3r=9 1s a straight line, 4,8, here,

al=~—=~—3, b]=?=4 5.

-3
Solving (2) for y, we get
y=mx--b (6]
where
m=-—i b-£
B' "B

The function y=mx4-b is called a Linear function. Its
graph is a straight line.

Example. guven the equation 2y—3x==9. Solving for y,
we have y=;2-x+? (m:—l—i—a—i—, b=—2~). The graph

of the funct:ony—-:%x—{-g- is a straight line, 4,8,
(Fig 235).
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The straight line which serves as the graph of the fun-
ction y=mx--b forms with the (positively directed) axis of
abscissas an angle whose tangent 15 m and intercepts on the
axts of ordinates a segment & The constant m 1s called the
slope of the line

Example. For the straight lime A;B,, which 1s the graph

of the function y=7 x—i—% , we have tan / XNBlm—g- ,

OL=%

The equation y=mx (direct proportionality, see Ifem
1) 15 a special case of the equation y=rmx+b(b==0)

The equation y=25 1s also a special case of the equation
y=mx+b (m=0) In this case the quantity y 1s constant
and hence does not depend on x Still and all, we can con-
sider 1t a function of the variable ¥, since to each value of
x there corresponds a defimite value of y, The only distin-
ction 1s that now it has the same value for all values of x

14 Y

| T

d a R RL]

X
0| X
0
5. s
1 1
Fig 236 Fig 237

The peculiarity of the function y==b (y=0.x-b) lies In the
fact that x 1s not a function of y any longer (because the
values of y not equal to & are not associated with any value
of x). The graph of the function y=b 1s a straight line
par?llelpto thae6 a:t(llf of abscissas "

n Fig & e lme PQ 1s the graph of the equation
9=6, and P,Q, 1s the graph of the equagon y-—:-—tlfl

The equation y=b 1s der1ved from (2) when 4=0 (b=—§) .
But if B=0, then (2) may be given as x=ga (a:—%), or x
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is a constant It may be taken as a function of the variable
y (but y will not be a function of x, see above)

The graph of x=a 1s a straight Line parallel to the axis
of ordmates. In Fig 237 the straight line RS 15 the graph of
the equation x= -4, while RS, 1s the graph of the equation
Xz== —

The axis of abscissas 15 the graph of the equation y=0,
the axis of ordinates 15 the graph of the equation x=0

3. Inverse proportionality. If the quantities x and y are
mversely proportional (Sec 63), then the functional relation.
ship between them 1s expres-

c YrA
sed by the equation y=—, T
where ¢ 1s a constant The
graph of inverse proportic-
nality 1s a curve consisting
of two branches, for nstan-
ce, the function yz-} Isg- 4
ven mn Fig 238 as a curve ]
whose branches are 4B and
A’B’. Figure 238 aiso depi
cts the graphs of the function
yz%wlth ¢=1 (dashed line)

and c= —1 These curves are Fig 238

called equilateral hﬂperbalus

(a plane cutting both nappes of a right circular cone parallel

to the axis produces an equilateral hyperbola, see Sec. 167)
4. Quadratic function. The function

y=ax*+4bx+c
where a, b, ¢ are constants and a 3 0 1s called a quadratic
function In the simplest case, y=ax? (b=c=0), the graph

1s a curve passing through the origin
In Fig 239 are depicted graphs of the function y=ax?

A0B (a:-;—); COD (a=1), EOF (a=29), KOL (a=—i)

(K1
|y

2

THe curve \graph) of the function y=ax? 1s a parabola (Sec
167) Every parabola has an axis of symmetry (OY m Fig 239)
called the awis of the parabola, The pomnt O of intersection
of the parabola with its axis 1s termed the verlex of the
parabola,
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The graph of the function y=av®4-bx+c¢ has the same
shape as that of the function y=ax® (for the same value of @),
hence, 1t 1s also a parabola As before, the axis of this para-

bola is vertical, but the vertex lies at the point (—2—"&. c-—%)

and not at the origin

y
RIS 2P
AT
AT 4
NI I "
\mmi fiwm
R Y i
0,
A .
l‘ \
i
Fi 3 n
il L] 7
Fig 239. Fig 240

Example The graph of the function
Y= -;— x2—4x-+-6

where a=-7i,-, b=4, ¢=6 1s the parabola A'0'B’ (Fig 240)
having the same shape as the parabola y=-;~x2 (A0B 1n
Fig 239) The vertex lies n the pont 0’ (4, —2)

] 4 b2 16
<__2_n=2——-l =4, C—E‘"—*G——T T ==—-2>.

= 7
5. Power function. The function y=ax"(a, n constants)
1s called a power funciion The functions y=ax, y=ax?,
y:—:— (see Items 1, 3, 4) are special cases of a power func-
tion {n=1, n=2, n= —1)
Since the zeroth power of any nonzero number 15 unity,*

* The expression 0° 1s indeterminate, in the given case, when the
function y=ax® 1s equal to a for all values of x except zero, we agree
that g is equal to a for x=0.

25*
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the power function for m=0 becomes a constant quantity:
y==a In this case the graph s a straight line parallel to the
axis of abscissas (see ltem 2).

The other cases may be sphit up into two groups, (a) n 18
a positive number, and (b) 7 15 a negative number

(a) In Fig 24! we have the graphs of the function y=xn
for a=01, 4, 5, &, %, 1, 5,23 410 They all
pass tl;rougttxl t}zg urlgll'é
and throug e poin 4 7
(1, 1) For n=1 we have 2 1043 232
a straight hine, the bise-
ctor of the angle XOY.
For n > | the graph first
goes below the straight
line (between x=0 and
x==1) and then above 1t
(for x> 1), forn < 1, vice
versa

We confined ourselves
to the case a=1 since
the other cases are obtar
ned by a simple change
in the scale Negative va- 1
lues of x are not taken
since for ¥ < 0 certamn
power functions with fra 1
ctional exponents, say y=x2 =} %, become meaningless
Power functions are meaningful for integral exponents and
x< 0 but the graphs have different shapes depending on
whether n 1s even or odd

Typical examples are given tn Fig 242 graphs of the
functions y==x% and gzxa. For n even, the graph 1s sym-
metric (see Sec 175) about the axis of ordinates, for n odd,
it 1s symmetric about the orign

By analogy with the graph of the function y=ax? the
graphs of all power functions y=ax®, for positive a, are called
?arabolas of order n (or degree n) Thus, the graph of the
unction y=ax® (Fig 242) s a parabola of third order, or a
cubical parabola

Note. If n 1s a {raction —:— with even denominator ¢ and
odd numerator p, then the quantity "=/ can have two
signs (£9/%) and the graph will exhibit another part

Fig 241
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below the axis of abscissas symmetric to the upper half In
Fig 243 we have the graph of a two valued function

1
y=-2¢% e, x:%yz (a parabola with horizontal axis),
3
Fig. 244 shows the graph of a two-valued function y = + L?x’
(sermicubical parabola, or Neil's parabola)

v
y Lo
'E’,'l}‘
Wi ;
; i/ &
__\'g\ 0y -
'y
X
s X 0
0
——\:' {
T
]
Fig. 242, Fig 248

(b) Fig. 2451glves the graphs of the function y=x* for

n=—a, —5+—h —2 =3, —10. All these graphs
ass through the point (1, 1). For 2= —1 we have a hyper-

gola (Item 3). For n < —1 the graph of the power function
at first (between x=0 and x=1) lies above the hyperbola
and then (for x > 1) below it; for n > — 1, vice versa With
regard to negative values of x and fractional values of n we
can repeat what was said 1 Subitem (a)

All the graphs of Fig 245 approach without bound the
axis of abscissas and the axis of ordinates without actually
reaching etther. Because they resemble hyperbolas, these
graphs are termed hyperbolas of order n

8. The exponential and logarithmic tunctlons. The function
y=a* where a 1s a constant positive number is called an
exponential function The ?umber a 1s taken positive because

for @ < 0 the quantities a=Vaal= 1‘/;;, ete. would
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not be rcal The argument x can assume arbitrary real va-
Jues (Sec  125) Only posttive values of the function y=a¥

Yigs-y2-1 2310
Y y=2", n<0
Y
7 07
_,/_7
0 ~1/2
™,
N -1
N 2
1] 2°X
Fig 244 Fig 245
are taken Thus, for the funchion y=16%, when x::%,we
take only the value y=2 and do not consider the value —2
4
af § & da=m3 2
N ] Y
VT :
T I =
] \ 1] n
’E . R 1//0
L= X ;/ s ]
L0 e 12
s 7-log % /
Fig 246 Flg 247.

(nerther, naturally, do we consider the imagmary values 2
and —21)

In Fig 246 are given graphs of the exponential function
for a::—zl», ~;A. TIE 2, 3, 10 They all pass through the point
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(0, 1) (For a=1 we have a straight line parallel to the axis
of abscissas, the function a* becomes a constant quantity)
For a > |, the graph rises rightwards and for a < 1, 1t falls
All graphs approach without bound the axis of abscissas but
never reach 1t The graphs of the functions y=2% and

y= (—;—)x and also y= 8% and y=<'13-)x and, generally,

X
y=a* and y= (-‘l;-) are symmetric to one another about the

axis of ordinates.

The function y=1log, x, where & is a positive constant not
equal to | (see Secs 127 and 129, footnote), 1s called a lo-
garithme function

A logarithmic function 1s the imverse of an exponential
function Its graph (Fig 247) is obtained from the graph of
an exponenttal function (with equal base) by bending the
drawing along the bisector of the first quadrant The graph
of any inverse function 1s obtamed in the same manner

The graph of every logarsthmic function 1s obtained from
the graph of every other one by a proportionate change i the
ordinate (the logarithms of numbers to different bases are
proportional, cf Sec 128).

7. Trigonometric functions. Periodicity. The defimtion of
a trigonometric function is given 11 Secs 182 and 192

To construct the graph of some trigonometric function
(say, the sine) of a variable angle 1t 15 necessary to specify

on the axis of abscissas a Ii-

14 ne-segment  depicting  some
1 . L definite angle (say 90°) and
i i X on thedamstoi ordinates a sgg—
(1] ment depicting some number
£ 1 N ad (say 1) We can speak of 1de-
y=sinz ntical scales on both axes
only after it has been esta-

Flg 248, blished what angle 1s to be
taken as the umt of mea-

sure. Only then can the number x, which measures the
angle, and the number y, which yields the sine, be depicted
by line segments proportional to the numbers (cf Sec 204).

The convention 1n graph construction 1s to take the radian
as the unit of angular measure Then the function'y=sinx
(“x radians” ts implied) 1s represented by the graph inFig 248
(the scales on the axes are the same) If for the unit of an-
gular measure we take half a radian, then, retaining the same

~f
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scales, we will have to stretch the graph along the axis of
abscissas 1 the ratio 2 |

The curve (graph) of the function y=smx s called a stne
curve (sinusoud

The graph of the junction y==cos x 1s shown mn Fig 249
This 15 also a sine curve, 1t 15 derived from the graph of y=sinx
by translation along OX by

the amount - Y 1 ,

; ’{lranslaft:]loxil (displacement) 7 ™ IR
of the graph of asineor cosine X -
by the amount 2n (rightwards | AANP LRGN
or leftwards) brings it to coin- ’y-wsx L

ctdence with itself Flg 248

1f the graph of some func-
tiont y =/ (%) comes to coinci-
dence with 1tself upon a translation along the axis of abscissas
by some amount, the function is called periome, and the
number p which measures the translation is termed the period
(or cycle) of the function f (x) This verbal definition 1s compa-
ctly expressed by the for-

Y mula

| [ Fletp)=Fn
ysta‘nx J 1f p 15 the period of a fu-

‘ nction f(x), then 2p, 3p,
V —2p,—3p and so forth

0
R g A

are also periods
All trigonometric fun
ctions have a period of 2n
Bestdes, the functions
y==tanx and y=cotx
’ have the period = [since
tan (x -~ kn) =tan x] The
Flg 250 graph of y=tanx 1s given
: in Fig 250, the graph of
y==cotx s given in Fig 251 The tangent curve indefinitely
approaches straight lines parallel to the axis of ordinates

and distant from it by j;-;l -i3%:i5"‘2“: etc  (but

never reaches these straight lines). For the cotangent curve,
a similar role 15 played by straight lines distant from the
y-axis (OY) by £, +2n, 4-35, etc and the y-axis (OY) itself

8. Inverse trigonometric functions. The definitions of the
inverse trigonometric functions were given in Sec 201 (cf.

&
L I
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Sec 208) Given here are the graphs of the functions y=Aresin x
(Fig 252), y=Arccosx (Fig 253), y=Arctanx (Fig 254),
y=Arccot x (Fig 255) They are dertved from the graphs of
the functions y=sinx, etc,

by bending the drawing about Y

¥
\
\

7 NN

g
\ \
\

|

/ Z %

| J y=Rresinx y=Arccos x
Fig 251 Fig 252 Fig 253

the bisector of the first quadrant (cf. Sec 213, Item 5). The

graphs of the functions y=Arcsinx and y=Arccos x are lo-
cated wholly within the vertical strip bounded by the straight

Y
T Y
Al
rid
N
v4id m
s ok | o “ ——
£ X (7
0 \\
4af1 i
g2t g \?’21-4,,5
=
50 sy 7 X
£4
= y=Arptan £ -
b y=Arecot 2
e L =
7 -5

Fig. 254. Flg. 255.

WE_RED
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lines x==+-1 and x=—1 (these functions do not have real
values for 1x1> 1) Each vertical Ime lying inside the indi-
cated “strip intersects the graph an infinite numiber of times
The same goes for the graphs y==Arctanx and y= Arccot x,
only here the vertical straight line may be taken anywhere
This is due to the multiple-valuedness of the inverse trigoro-
metric functions (Sec 201) Those portions of the graphs that
correspond to the principal values are given as heavy lines
in Figs 252 to 255

214, Graphleal Solutlon of Equations

A graphical representation of functions makes 1t easy to
find an approximate solution to any equation in one unknown
or to a system of two equations m two unknowns

To find the solution of a system of two equations in two
unknowns ¥, y, we regard each of the equations as a funct:-
onal relation between the variables x and y and construct {wo
graphs (curves) for these two relations. The coordinates of
points common to both curves yield the desired values of the
unknowns x and y (the roots of the given system of equations),

Example 1. Solve the system of equations

7x- by =235,
—3x4-8y=12

The graph of each of these equations 15 a straight lIme
The line-segments intercepted by the graph of the first equa-
tion on the coordinate axes are

5
=-7—=5, b:—_?=7

(Sec 213, Item 2) Using these segments, construct the straight
line AB (Fig 256) In the same way, wefinda=—4,b=15
for the graph of the second equation and construct the straight
line CD *

The coordinates of the pomt K of intersection of the graphs
yield the required values of x and y We take the values of
the coordmates by inspection x(=0P)=3 1, y(=P;()=2 7

The exact values of the roots are x=3-7, y= 2%—

* Instead of finding the segments ¢ and b, you can plot any two
points of the stralght llne To do this, assign any two values to x
and compute the corresponding values of y
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Example 2. Solve the equation %x”——; x—2=0.Itcan

be solved graphically as an equation in one unknown (see
Example 4 below), but it 1s easier to replace it by a system
of equations

y=-;v x2, y=-;— 42

and then solve the system graphically

\4
1A
Y
] =t KA LAl
X ] N r
A (— ¥ Ll et
3 Py s | L ‘7 AT .
¢ 4 4
mu f 3 A
Fig 256 Fig 257.

The first equation 1s graphically depicted i Fig 257 as
a parabola AOB (Sec. 213, Item 4) which can be plotted b
pomnts The graph of the second equation 1sa straight line Cg
whicn intercepts on the axis of ordinates a line-segment
b(=0E)=2; the slope is m (= tan < DCX)=-5 (Sec. 213,
Item 2) We find two points K and L at the ntersection of
the straight line CD with the parabola AOB The abscissas
of these two poimnts {found by inspection) x;=-—1.6 and
£,=26 yeld the approximate values of the roots of the given
equation” The exact values of the roots are

Xy 7 '

1-VT7 Vi7
- 7 o= 1+2 17

Example 8, Solve the equation 2¥=4x This equation
cannot be reduced to an algebraic eqtuahon One of the roots
(x=4) 1s easily found To find the other roots (if they exist),
it 1s best to begin with a graphical solution. Replace the
given equation by a system. y=2%, y=4x. Plot (Fig. 258)
the graph of the exponential function y=2% (bg ;omts,
assigning to the argument the values x=-—1, 0, 1, 2, 3, etc )
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and of the function y=4x (a straight {ine) Here the ordi-
nates grow much faster than the abscissas, it 1s therefore
better to choose a smaller scale unit for the s-axis (OX) than
forfthe y-axis (0Y) In Fig 258 the difference 1s a factor
of four

At the intersection we find two pomnts, A and B We can
see from the construction that the curves have no other com-
mon points The abscissa of A 1s
x=4 The abscissa of B 1s (by eye)

14
_321 about A0 3
™ v The solution thus found can be
& made precise by computation Using
2% b
Cad
-2 b i
16 g 7" Tan
-2 b \ 1
L8 X
4 HER
X ot
101 23458 M
Fig 268 Fig, 259.

tables of logarithms, we find the value of 2% for x==0.3
It1s 1 231 This number 1s somewhat greater than 4x=1.200
(by 0031) Hence (see the graphy the number 0 3 15 less than
the abscissa of point B Let us test the value x=0 35.
It yields 2¥==1275, 4x=1400, Now 2% 15 less than 4x
(by 0.125) Hence the number 035 15 greater than the
abscissa of B so that the true value of x lies between 0 30
and 0 35, being roughly 4 times closer to the former value
than to the latter (since 0.031 15 4 times smaller than 0 125)
And so xas031 A check yields 2¥=1 240, 4x=1240,
Incidentally, ¥=0.31 ts not the exact root If we take a hig-
her-place logarithmic table there will be a difference 1n
the hfth sigmficant digit between 2% and 4x In the same
way we can find a more precise value for the root.

To find the solution of an equation 1n one unknown, it
1s possible, by h-ansposmgn all terms to the left member, to
represent it as f(x)==0 nstruct the graph of the function
y=f(x) The abscissas of the points of intersection of this
graph with the axis of abscissas will be the roots of the given
equation
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Example 4. Solve the equation -;—x’: -;—x+2 Transpose
all terms to the left member --x2— Ly _2=0. Plot the

graph of the function g'_'Tl x— % x—2 (by pomts)

We get (Fig 259) the parabola A'0'8' Its shape is the same
as in the preceding example, the vertex les in point

o ("'f‘ —2 -;-) (see Sec 213, Item 4) We fimd two points

at the 1ntersection of the graph with the axis of abscissas.
Reading off the absctssas, we gel x;=—16, x,=286,

218. Graphical Solution of Inequalities

A graphical solutton of an inequality (like that of an equa-
tion) 1s not very accurate However, the graphical method 1s
pictorial and readily surveyable, and m the solution of ine-
qualities (particularly systems of inequalities) these features
are still more valuable than in the solufion of equations

The methods of solution are

y the same as for equations (Sec
v ] 214), the solutions however are
i 18717 depicted as line-segments, not
points
7 Example 1. Solve the egq-
X uality
1 1
[AN2 o - x—2 <0
"y L 3 2
0 } Construct  (Fig  260) the
graph  of the function gy
Fig 280 =-,l—x’—-—;-—x-2 (cf Sec. 214,

Example 4) By hypothess,
y < 0, hence, the points corresponding to the solution must
lie below the axis of abscissas The graph shows that the
locus of these points 1s an are, KO'L, of the parabela A’0’B’
(the extremities K and L of the arc are excluded, for them,
y=0) To the values of x which satisfy the given mequality
there correspond interior points of the line-segment KL of
the axis of abscissas We read off the graph —16 < x < 2.6
If an exact solution 1s required, find the abscissas of the
points K and L computationally, that is, solve the quadratic
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equation
1
7
Example 2. Solve the inequality

~VT7 Vi7
xf—%x—-QzO Then we fmdl———z—‘—l <x< Lt,_,—”

1 i
5 B—gx—2>0.

Construct the same graph as in Example 1 This time we
must have y > 0, that 1s the points must lte above the axis
of abscissas The focus of these pomts are the hines KA’ and LB’
which extend upwards without bound (the starting points,
K and L, are excluded) The appropriate points of the axis
of abscissas fill the rays KX and LX (ponts K and L ex-
cluded) This mequality holds true () for x <—16, and (2)
for »> 26 The exact solution 1s

VT
Mx< i @

Example 3. Solve the tnequality
! |
X< g x-2

1417
2

This ineguality 1s equivalent to the tnequality —é~x’

—--{,—x—-? < 0 solved i1 Example I, but in the form given
here 1t 1s easier to solve

Construct (cf Sec 214, Example 2) the graphs of the
functions y:—}x” (parabola A0B n Fig 261) and

y=-2Lx+2 (straight line CD) The bar on y 1s used to dis-
tinguish the ordinate of the straight line from the ordinate
of the parabola for the same abscissa By hypothesis, we must
have y <y, that 1s, the points of the parabola must l1e below
the points of the straight line with the same abscissas The
graph shows that the corresponding pieces of the lines
AOB and CD (arc KOL and line-segment KL) lie above KL,
(heavy lme) of the axis of abscissas (extremities K; and L,
are excluded) Reading off the abscissas of the pants X and L,
we find the (approximate) solutton —16 < x < 2.6

Example 4. Solve the inequality —;—x“ <x—3
Construct (Fig 262) the graphs of the functions y-_-—;- x2
(parabola AOB) and y=x—3 (straight line CD) We must



399

have y <y But the parabola AOB lies entirely above the
straight line CD This inequality does not have a solution

Example 5. Solve the inequality —El,—x’ > x—3 The con-
struction 1s the same as in the preceding example. But here,
¥ >y, therefore the given mequality 1s unconditional

4
Y VA T
\ { Bl ] N 7
D]
L g .
& t N X
N 1 X
n K)o
=
1
Fig, 281, Filg 282

Example 8. Solve the system of inequalities:
i<t b—rx, —,;—x*> ‘g—-—-%x
In place of the fist two inequalities we can write the

following equivalent ones Tl 7“,- g 3——% % Const-
ruct (Fig 263) the graphs of the

Y : functions yn—;-x’ (parabola A0B);
v HA| o=+ x+2 (traght Tine CD),
R 4

e AT Y= 3—+ x (stralght line UV);
15: SEAL ~=%———:-x(stranghtImeEF).The

CE 9449 +H fist two imequalities require that
1 the arc of the parabola lie above

1T the straight line CD and below the

straight line UV or have common
Fig, 283 points with these lines. We thus
1solate arc RP (extremities R, P

included) on the parabola, and line-segment R.P, on the
axis of abscissas The third inequality requires that the arc
of the parabola also pass higher than the straight line EF In
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this way, we isolate arc QP {extremity P included and
extremify Q excluded) from the arc RP, and on the axis of
abscissas we find P,Q; Reading off the abscissas of pownts
Q and P, we have —3<Kx < ~2 -

Example 7. Solve the inequality Hi—

This 1nequality 1s valid in two cases

(1) when A2+ x-—6 < 0 and at the same time x2—x—4 > 0,

(2) when x®+-x—6 > 0 and at the same time x* —x~4 <0

In the former case we have x4 < x* < 6—x The solu-
tion of this system (see Example 6) 1s graphically given by
the line-segment PR, (extremities P, and R; excluded) In
the latter case wehave x+4 > x2 > 6—x. Solving this system
in the same way as the preceding one, we find the arc P"R’
of parabola AOB and the corresponding line-segment P1R; of
the axis of abscissas (extremuitres Py and Ry excluded) Read-
g off the abscissas of points P, R, P', R', we fiid that
the given nequality 1s sahisfied (1) for —3 < x <—16 and
(2) for 2<x< 26,

Example 8 Solve the mequality 2% < 4x

Construct the graphs of the function y==2% (curve UV
Fig 258, page 395) and of the function y==4x (stra;ght line
AB) By hypothesis, y <y, that 1s the pomnts of the curve
UV must be below the points of the straight line AB Read-
ing off the abscissas of the points A and B, we find the so-
lution 03 < x<4

<0

218, Amalytical Geometry (Fundamental Notions)

In elementary geometry, the solution of every separate
problem requires a certain amount of mgenuity and it often
happens that problems which are extremely sumilar require
quite different techniques of solution that are not always easy
to hit upon For mstance, take the problem to find the locus
of pomnts M whose distances MA from a point A are equal
to the distances MB from a given pont B As we know, the
desired locus 1s a straight hne (perpendicular to the midpoint
of AB) Now the method ordinarily used 1n elementary geo-
metry to solve this problem is not switable for the following
prablem find the locus of points M whose distance MA from
pomnt A 1s twice the distance MB from point B

Analytical geometry, which was constructed at the same
time by two French scientists— Descartes (1596 — 1650) and
Fermat (1601 — 1655)—gives umiform techmiques for soluing
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geomeirical problems and reduces the solution of a broad range
of problems to a few regularly used methods This 15 done
n the following manner all the given and required points
and lines are referred to a sysiem of coordinates (1t 1s im-
material what system 1s chosen but one often finds that an
apt choice simplifies the solution of a problem) Having
chosen a system of coordinates, we can describe each point
by 1ts coordinates and each line by an

Y M equation whose graph this line 15, A given
geometric problem 15 thus reduced to an

algebraic  problem, and we have well-

elaborated general methods in our posses-

X swon to solve al%ebralc problems

7 75 This can be illustrated by the following
examples.
Flg 264 Example 1. A circle of radws - 1s

referred to the coordinate system XOY
(Fig 264) 1n which the centre C has abscissa OQ=a and
ordinate QC=0 Set up the equation of the circle.

Let M (x, y) be an arbitrary pomnt on the circle (x=0P,
y=PM) The length of MC 1s always equal to the constant r,
by the definition of a circle Express MC in terms of the
constant coordinates @ and & of centre C and the variable
coordinates x and y of pont M From Fig 264 we have

MC=Y TRELZRMi= Y 0P—0Qr + (PM—QC)
=V GE—af + o

Consequently
V=it y—0=r

(e y—bp=r2 )
This e«iuatmn represents a circle, in other words, the graph
of equation (1) 15 a circle

Example 2. Find the locus of ¥
pownts M for which MA=2MB (A and M
B are two given pomnts separated by a
distance of 2/) ¥d V:}
Take the origm of coordinates at P x
the midpont O of AB and draw one "
of the axes (0X mn Fig 265) along
AB In order to write the condition Fig 265
MA=2MB as an equation between
the coordinates of pomt M (x, y), express MA and MB
in terms of the coordinates From the triangle MBP we have

or
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MB=VPBE L PMi=V (0B—OP2+PMi= V(=3 {4t
In the same way, from triangle AMP we find MA
= V(xF )24 and the condition MA =2MB takes the form
Vathi+@E=2V (—2 +4

Simplifying we have

R ip 20 @
The desired locus 1s the graph of this equation, and the
methods of analytical geometry permut stating at once that

this graph 1s a circle. This is evident f we compare (2) and
(1) Changing equation (2) to the form

(x—% 1)”+y2=(%1)"

we see that it 15 a special case of equation (1) when a=—;—l,

b=0, and r—_--;—t Hence our locus is a curcle with centre

at pomnt € (%l 0) and radius rz—}l

217. Limits

A constant a 1s the [tmit of a variable x1f the variable
approaches a without bound *

It 1s essential to bear 1n mind that when considering a
separate variable one cannot speak of finding its limit But
if we consider two variables and one 1s a function of the
other, then for one of them (argument) 1t 1s possible to
specify the limit, and for the other, to seek the hmit (if 1t
exists)

Example | T’he variables x and y are connected by the
relationship y=‘i—_;, find the lumit of y when x has 6 as

tts himit

*The definition %.iven here Is not quite rigorous enough since the
expression “approaches without bound” must be logically refined
I 1s hardly possible to make 1t more pretise briefly and In appro-
priate fashton The examples that fatlow will elucidate the meaning
of limit to the extent that is necessary here The definitions fre-
quently found i1n elementary textbooks suffer from the same lack of
comprehensiveness, though outwardly they often appear {o be more
precise
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Let the variable x approach the number 6 without bound
in some way, for instance, we assign to x the values 6.1,
601, 6001 and so on We find the values of y 81, 8,01,
8001, etc These values approach the number 8 without
bound The same will occur if we let x approach 6 without
bound n any other way, say, putting x=59, 6 01, 5999,
60001, etc For this reason, when x has the hmit 6, y has
the limit 8 We write this as follows

Imy=8 or km *i_s

x-'g o *2
In the given case we could have ‘obtamed this result by
putting x==6 m the expression y=’ix_:2i In the example

which follows this method would not succeed
2
Example 2. Given y=% Find hmﬂy Substituting x=2
into ’f:_'; we get the indetermmate e);(;ressmn —g— (Sec 37)
Yet compu’tatsons Iske those performed in Example 1 show
that Hmﬁxx:; =4 Ths result could also have been obtained
X

thus: we have %:L’L"—-—i’_—(-;iﬂ When x#2, we can
cancel out x—2 (cancellation 15 not legitimate for x=2).
We get y=x42 (when x#2) Let x approach 2 without
bound though never reactung the value x=2, then y, remain-
ing equal to x+2, approaches 4 without bound

This problem 15 somefimes formulated thus “find the true

e

value of the expressicn ”x_; for x=2" or “evaluate the
x-4

indeterminate expression =3 for £=2" The precise meaning
of these expressions s to find the himit. hm ’;:2‘
x

-2
In the example at hand, evaluating the indeterminate
expression 13 attained by cancelling x—2 out of the fraction
";_‘; with the subsequent substitution x=2 But neither
does this device always lead to the proper result.

218. Infinitely Small and Infinitoly Large Quantlites

A variable whose hmut s zero 1s termed an infinitely
smatl quantily (infinitesimal)
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Example 1. The variable V*¥F3—2 15 an infitesimal
1f x tends to 1 because

hml (VxF3—-2)=0

A vanable that constantly increases in absolute magni-
tude s termed an infinifely large quantity

Example 2 The variable }%5 is an infintely large quan-
tity 1f x tends fo 5

Infinitely large quantities do not have any lLimits None-
theless, it ‘s conventional to say that an infimtely large
quantity “tends to an infinite limit” Accordingly we write

X
illns TE=0 ()]
The symbol 0 (infinity) does not denote any number, and
(1) 1s'not a real equation but simply expresses the fact that,
as x approaches 5 without bound, the absolute value of the
fraction ;;g mereases without bound Here, the fraction can
assume either positive values (when x> 5) or negative
values (when x < 5)

Note In other cases, an mfimtely large quantity may
assume only positive (or only negative) values Thus, if x
15 an infinitesimal, the quantity % 1s infinitely great; but

both when x > 0 and when x < 0 the quantity T:T IS post-

tive In symbols this 1s expressed as* xh”mD?l,a =-w. *Con.
1

trariwise, the quantity — s always negative, and we
1
im [ — ) =—
write xl:nn( x,) @

Accordingly, the result of Example 2 can also he written
X
thus XHTE?——E =+ o,
Example 3. The notation hm f-_;lz I means that when
X

%15 mfintely great (1 e, when x ncreases without bound
n absolute value), the quantity '-'—}l« tends to the hmit 1,



405

The svmbol ¥—s o0 1s read “x approaches (or tends to)
mfity”

Example 4. The expression “the area of a circle s the
limit of the area of a regular inscribed polygon when the
number of sides is infimte” means that, as the number of
sides of the polygon increases without bound, the area of
the polygon approaches without himit the area of the circle.
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axis of abscissas 381
Absolute error 95
Absolute inequality 207
Absolute value 134
Absolute-value sign 134
AbQ '1-Weid 330
Acute angle 264
Acute-angle triangle 266
Additton 65, 134
Addition and subtraction formu

las
Addition and subtraction method
158, 159

Adjacent angles 264
Adjacent dihedral angles 298
Al-Blruni 126
Algebra 125
n Arab-language countries 125
in Babylonia 124
in China 125
in Greece 124
in India 125
1n_medieval Europe 127
origin of name 124
a primary task of 150
subJect of 124
in Tafikistan 125
in Uzbekistan 125
Algebraic equations 124, 154, 155
Algebratc form complex numbers

Algebraie fractions 146

Algebraic inequalities 214
Algebraic numbers 173

-Kashi 90

-Khowarlzmi 64, 90, 126
habetic numeration $9, 60
ernate exterior angles 273
lternate interior angles 273
American billion 65

American system of numeration
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5
Analytical geometry (fundamen-
tals) iﬂo

Analytical tri,

nometrv 328
Ancient Gree!

numeratlon 57

Angle(s) 263, 295
acute 264
adjacent 264
alternate exterior 273
alternate interior 273
arms of 263
bisecting an a 251
bisector of 205, 269
central 280
in a circle 280
measuring 283
circumscribed 280
complementary 335
constructing an a equal to a
iven a 250,
constructing a(s) of 45° 60°
and 30° 251

corresponding 292

degree measure of 332

dihedral 298

exterior 267

extertor {on same side of trans-
versal) 273

inscribed 280

interior (on same side of trans-
versal) 273

obtuse 264

plane 297

polyhedral 300, 316

radian measure of 331, 332

right 264

sides of 263

signs of 264

solid 316

systems of measuring (radlans,
degrees) 263

trihedral 301

trisecting a(s) of 45° 60° and
30° 251, 252

vertex of 263

vertical 265

vertically opposite 265
Annulus, area of 293
Antecedent 118, 148
Ahtilogarithms

able 2

tables of (explained) 239
Apex of cone 306
Apollonlus of Perga 261
Apothem 230
“Approaches infinlty" 405



Ap%roxlmate calculations 92
1l eora/ of 92
Apdprux mate numbers 92
ifference between 100
division of 106
evolution of 109
involution of 109
notation of 93
Arabic system of numeration 64
Arc 278
bisect (of a circle) 252
length of 279
uygens” formula for 282
Archimedes 260
Archimedes’ theorem 310
Arcsin, Arccos, etc 366
principal values of 366
Area(s)
of circles {table) 14
formulas of 360
of sollds 325
Argand, J R 129
Argument 378
of a complex number 189, 190
principal value of 191
a table 380
Arithmetic, subject of 54
Arithmetic average 115
Arithmetic mean 115
abridged calculation of 116
accuracy of 117
Arithmetic operations 65
Anthmetic progressions 218
Arthmetic solutions 149
Arithmetic triangle 245
“Aritbmos” 54

o

Armenian numeration, anclent
Arms of angle 263
Arshin 53

]

Attic system of numeratlon 57
Average 115

arithmetic 115
Averaging 115
Axes, coordinate 38!
Axial symmetry 322
Axiom(s) 262

oii parallels 262

XIS

of absclssas 380

of ordinates 380

of pencil (of planes) 295

of projections 299

radical 286

of symmetry 321
three-fold 321
(wo-fold 321

z-axis 381

y-axis 381
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Babyloruan positional system of
aumeration 60

Base
logarsthmic 226
of Napier's table 229
Bézout, E 143
Billion
Amerlcan 65
British 65
Binomlal coefficlents 245
properties of 248
Binomial formula, generalized 247
Binomial theorem 244
for fractional exponents 245
for negative exponents 245
Biquadratic equation 181
Bisect 2(23 bisect a line-segment)

Bisector 360
angle (of triangle) 268
of angle 251, 265, 270
of arc 252
Bombelli, R 128
Braces 68
Brackets 68
curly 68
round 68
square 68
Brahmagupta 89
Briggs, H 225
Briggsian logarithms 225
British billion 65
British milliard 65
British system of numeration 65
Birgl, J 225

Calculation(s) approximate 92
theory of 92
Calculus (origin of term) 55
Cardano, G 127, 128, 175
Cartesian form of complex num-
bers 192
Carlesian system of coordinates

Cartestus 381

Cauchy, A L 210

Centesimal system of
measurement 263

Central angle 280

Central symmetry 320, 323

angular

Centre
finding the centre of a given
arc of a circle 252
radical 286, 287
of symmetry 320
Centrold 269
Changing a fraction

to higher
terms 76
Characteristic (of logarithms) 231
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finding 234
Chebyshev, P L 213
Chebyshey inequalitles 212
hinese abacus 55

ord 278
“Cipher” (origin of term) 64
) 278

angles in 280
measuring 283
area of 282, 203
areas of (table) 14
centre of 278
circumscribed about quadrila-

era

circumseribing about a rectang-
le or square 255

circumscribing about a regular

pcligon 255
eircumseribing about a triangle

circumsenibing a regular triang-
e, pentagon, hexagon,
octagon, decagon about
clrcum;%t:’lbing a square about
drawing a ¢ of given radius
hrough 2 points 2562
drawing a ¢ through 3 noncoll-
Near points 252
great 309
inscribed in  quadrilateral
inscribing in a regular polygon
5% gular polyg

inscribing in a rhombus or
e

inscribing m a triangle 255 -

inscriblng a regular decagon

n
lnscrihlingza regular hexagon
n

inscribing a regular octagon

n
inscribing a regular ntagon
in 257 pentag

inseribing a square in 256
inscribing & triangle in 257
radius of ctreumseribed, escrl-
bed, inscribed 359
Circular cone 307
Circular cylinder 305
Circular functions 364
Clrcumcentre 270
Clrcumferences, table of 14
Circumscribed angle 280
Circumscribed cone of a pyra

mid 316
Clrcum;lcglbed cylinder of a prism

Circumscribed polygons 288
Coefficlent(s) 136

binomlel 244

properties of 248

Collecting like terms'136
Combinations 243
Comblinatorial mathematics 243
Combinatorics 241

a
Common denomlinator 76
Common difference 218
Common divisor 72
Common fraction 73
chenging to a decimal 88
Common logarithms 225, 230
modulus of 229
table of 18
Common multiple 73
Common ratio 219
Comparing fractions 76
Complementary angle 335
Complement sinus 330
Complete quadratic equation 174
Complex number(s) 127, 174,
175, 183, 189
addition of 185
geometric meaning of 193
algebraic form of 192, 193
argument of 189, 190
Cartestan form of 192
conjugate 185
coordinate form of 192
difference between 195
division of 187
geometric meaning of 197
equal 184
extracting root of 200
forms of 191, 19:
modulus of 189
multiphication of 186
geometric meaning of 195
nonconjugate 186
normal trigonometric form of

1
In the plane 188
power of for a complex expo-

ne!
raising to an arbitrary real
power 203
raising to an integral power 198
subtraction of 185
geometric meaning of 193
trigonometric form of 191
Composite numbers 71
Computational problems
direct 149
mdirect 149
Concave pentagon 266

ne 306
altitude of 306



apex of 306
axis of 307
base of 306
circular 307
volume of 325
cireumscribed (of a pyramid)

mscribed (of a pyrarmd) 316
lateral area of 3
of revolution 307
right circular 307
latera] area of 325
volume of 307
vertex of 307
volume of 307
Congruence of triangles 267
Conic sections 307
Conical surface 306
nappes of 306
sheets of 306
Conies 307
Conjugate complex numbers 185
Consequent 118, 148
Constant(s) 377
of proporttonality 119, 382
table of 13
of variation 120, 383
Constructions, geomemc 249
Contact, external 254
Continued proportion 119
Conversion of
degrees to radians (table} 48
radians to degrees and minutes
ble) 49
Convex hexagon 266
Convex polygon 266
Convex pnlyhedral sng]e 300
Convex polyhedron 3
Convex spherical
Coordinate axes 381
Coordinate form of complex num-

er 192
Coordinate method 261
Coordinate system, rectangular

381
Coordinates 381
rectangular 381
Copernicus, N 329, 331
C.nrrespondmg angles 273
Cosecant 3
Cosine(s) 330 335 350
law o( 9

polygons 310

table
Cotan{;en((w) 335, 352
table of 40
Counting, limits of 54
Criteria for divisibility 69
Cube 67, 303, 318, 319
area of 325
of a difference 139
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of a sum 139
table of 14
volume of 325
Cube root(s} 67
rule for extracling 113
table of 1
Cubte equahons 127
Cubical parabola 388
Curneiform numerals 60
Curly brack els 68
Curve, stne 392
Cycle (of a function) 392
Cyhinder(s) 305
altitude of 305
bases of 305
circular 305
volume of 325
crcumscribed (of a prism) 316
nseribed (of a prism) 316
lateral area of 306
oblique 305
of revolution 305
right 306
right circular 306
lateral area of 308
volume of 307
Cylindrical surface 305

Decagon, regular (to inscribe in
a circle) 258
Decimal 84
Decimal Trachon(s) 84
addition of 8
changn&% to a common fraction

division of (by integers) 85
division volving 87
mixed 17!
multiphication of 84
properties of 84
pure 172
subtraction of 184
Decimal places
Decimal point 83
Decimal = positional
numeration 63
Decimal system of numeration 55
Defect (in trtangle) 261
Definitions 262
Degree {angle) 26
of algebraic equatlon 154, 155
of polynom:al
Degree measure of engles 331
Degrees to radians 3.
conversion of (table) 48
De Moivre, Abraham 199
De Moivre’s theorem 199
Demonstration 262
Denominator 74, 146

system of
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common 76
Dependent variable 378
Derlved proportions 148
Descartes, René 127, 132, {75,

261, 382, 400

Delerminant 161

of order four 161

of order three 161

of second order 161

of third order 164
Devanagari alphabet 63
Devanagari system of numeration

Deviation, root mean square 117
Diagonals of polyhedron 301
Diameter 278
Difference(s) 65

common 218

mean 235

tabular 343
Digit(s) 96

extra 97

Hundreds 65

significant 93

ten thousands 65

ens
\l\ousands 65

s 65
Dlhedral nngle(s) 298
adjacent 298
edge of 298
faces of 298
plane angle of 298
vertical 298
Diophantus 124
Direct prcportmnahty 383
Dlrect variation 383
Dlrectrl;es (p] of directrix) 323,

Directrix 305, 306
Discriminant 179
Dissimilar _monomials 136
Dividend 66
Divisibility 142
of binomial ¥™ Fam™ by xF
a 142

criterta for 69

by 4, 83 96

by 25, 10 100, 1000, 11 70
Dlvlslble exac{ly 57
Diviston 66,

of approxlmale numbers 106
of polynomials NOA

Dodecahedron 318, 319
Dotted numbers 130
Double angle formulas 355
Duodecimal fractions 89

& (number) 173, 227, 228
Edge(s) 298

of dthedral angle 298

lateral 302

of polyhedral angle 301

oi polyhedron 301

Egyptian abacus 55

Element of generator 305, 306
Elementary functions and thelr

grayhs 38
“Elements” (Euclid) 260
Ellipse 299, 308
Equation{s) 151

algebraic 125, 154, 155
degree of 154, 155

blquadratic 181

c}essliication of 154

cubic 127

equivalent 153

essential facts about 151

fifth-degree 129, 205

fourth degree 127

first degree (in one unknown)

system of (in three unknowns)
system of (In two unknowns)

raphical solution of 394
Igher degree {solvable by quad-
ratics) 180

some facts about 205
linear 155
iteral 151, 162
Mollweide's 359
numerical 151, 152
in otte, two, three unknowns 152
quadratlc )(see quadratic equati-

quartic l2
quintic 129, 205
roots of 152
setting up 150
solution of 53
graphical 384
systems of (see systems)
trigonometric 370
for solving 372

by a flrst-degree b I 142
short 107
of sums 140
symbol for 146
Divisor 66
common 72
greatest common 72

Equiangular triangle 267

Equilateral hyperbolas 386

Equilateral triangle 267, 270
area of

Equivalent equations 153

Equivalent inequalities 213



Error(s) 95
absolute 95
of a difference 98
Iimiting absolute 95, 96
of a difference 9
of a sum 99
limtting relative 96
of a difference 100
of a product 100, 101
of a quotient 106 107
in products 100
relative 95
of a sum 98
Euchid 54, 260, 261
Euchidean geometry 261
Euler, L 129, 261, 331
Evaluating indeterminate expres
sions 81
Even number 69
Evolution 67, 109
of approXimate numbers 109
Exact numbers 9
Exponent(s) 67
fractional 220
laws of 167
negative 220
zero 22
Exponential funcﬁcn 389
Expression, Indeterminate 387
Exterior angle 267
Exterfor angles on same side of
transversal 273
Exterior common tangent 253
External contact 21
Extracting a root (o! a number) 110
Extra digits 97
Extremes of a proportion 119

Face(s) 300
of dihedral angle 298
lateral (prism] 302
lateral (pyramid) 303
of polyhedral angle 300
of polyhedron 1
Face "angles 301
Factor(s) 65
prime, factorization Into 71
proportionality 120, 383
Factorial 242
Factoring 137
Factorization 145
of polynomials 145
into prime facturs 71
False numbers 127, 132
Fermat, P 261 400
Ferrarl, L
Ferro, S del 121
Fibonacci

Fifth-degree equation 129, 205
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Figure(s) 291
plane 291
areas of 291
similarity of 276, 323
similar 276
areas of 277
symmetric 320
Finck, T 330
First degree equal:on
known 155
Foot of a perpendicular 197
Form of comlex number 191
algebraic 193
Cartesian 192
coordinate 192
normal trlgonome(nc 191
trigonometric 1
Form of negahve logarlthm 231
artificial 2.
natural 231
Formula(s) 355
addition and subtraction 355
of area 360
double-angle 365
expressing relationships  bet-
ween sides of regular
inscribed  polygon and
radius of circle 291
generalized binomial 247
half angle 35
Huygens' (for arc length) 282
reduction 352
of Regtomontanus 359
for short-cut multiplication of
polynomials 138
triple-angle 355
Fourth-degree equation 127
Fraction(s) 77
addition of 147
algebraic 146
changing to higher
common 73
changing to a decimal 88
comparing 76
decimal 83, 172
addition of 84
changing to a common frac-

n one un-

terms 75

tion
division ol by Integer 85
division involving 87
mixed 172
multiphcation of 84
properties of 8¢
pure 172
subtraction of 84
division of 80, 147
duodecima) 8
improper 74
in lowest terms 75
multipheatson of 78, 79, 147
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proper 7
redumon of 75, 146
reduction of to lowest terms

sexagesimal 6

subtraction of 77, 147

systematic 83
Fractional exponents 220
Fractional power 221, 222
French system of numeration 65
Frustum of pyramld {see truncated

pyramid) 304

bases of 304

regular 304
Function(s) 365

circular 365

elemengasgy {and their graphs)

exponential 389

graphical represenlation of 382

inverse 378

inverse trigonometric 365, 391
arbitrary values of 366
basic relations for 367

linear 384

logarithmic 385, 391
graph of 391

multiple~valued 378

one-valued 378

periodic 392

power 387

quadratic 386

representation of by formuls
and table 378

single-valued 378

three-valued 378

1 {se
" rie fanctions) aa ohe,
two-valued 378

Functional notation 380
Functional relation 377

Galols, 129
Gauss, C F 129, 175
GCD (zr7e2alest common

sor)
Gelfond, A O 173
Senerator 305
ieneratrix 305
jeometric mean 115
seometric progressions 219
decreasing 219
increasing 219
Geometric sum 193
Geometry 2
nnnlyﬂcnl (Iundamentnls) 400
Euclidean 261
hlsturlcal survey of 259

divi-

o000

Lobachevskian 261

plane 249

sohd 295

subject of 259
Georgian numeration, ancient 59
German system of numeration 65
Girard, A 12
Gomomelry 328

6.
Grn hs 375, 382
Great crcle 309
Greatest common divisor 72
Greek alphabet 53

Half 89
alf-angle formulas 355
alf-line 263
armonic 211
armonic mean 211
Height, slant {(of pyramid) 302
Hemisphere 326
area of 325
volume of 325
Hermite, C 173
Heron of Alexandrla 1o
Hexagon 266
convex 266
regular 257
area of 293
Hexahedron 318, 319
Higher degree equations 180
solvable by quadratics 180
some facts about 205
Hindu numerals 64
Hindu system of numeration 64
Hipparchus 329
Hollow sphere, volume of 327
Huygens, C 283
-{uygens formula for arc length

Hyperboln 308
equlilateral 386
of order n 389

Hypotenuse 266

jerfa ofe sdarfe

(Imaginary numberl 180, 197
Icosahedron 318, 3

Adenlltm. trlzunometric 349
dentity 152

nuglnary, pure

mnxlnlagy numbm 174, 175, 180,

Imaginary unit 183, 137
Improper fraction 74

Incomplete quadratic equatiun 174
Independent variable 378



tndeterminate expression 417, 81,
387

evaluation of 81
Index (of a root) 67
lne?’ ualities 207
solute 207
algebraic 214
basic properties of 208
Cheb( v 212
class iicatluu of 214
equivalent
of first degree 214, 215
m one unknown 215
fundamentals of 207
graphical solution of 397
important 210
hinear 215
literal 207
numerical 207
of opposite sense 209
of same sense 209
of second degree 214, 216, 217
solution of (basic technlq ues) 213
graphical 397
system of 215
transcendental 214
unconditional 207
“Infinitely great” 82
nfinitely large quantities 403
Infinitely small quantities 403
Infinitesimal 403
nfinity 335, 404
Inscribed angle 280
Inscribed cone of a pyramid 316
Inscribed eylinder of a prism 316
Iuscribed Folygons 288, 289
Integers b
negative 131
Interior angles on same side of
transversal 273
Interlor common tangent 254
lnterpolatlon 120, 123
fl‘ap ical 382
Inear 123
Inverse function 378
Inverse operations 67
Inverse proportionality 386
Inverse trigonometric functions

arbitrary values of 366
basic relations for 367
Inversely prnporlional quantities

Involution 67, 109

of approximate numbers 109
onlan system of numeration 58
rrational 171

rrational numbers 171, 172
rrezular Pyumid volume of 326
rapezold 276
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Isosceles triangle 267, 270
area of 291

Jiva 330
Koppa 58
Kuzmin, R O 173

Lateral edges 302
Lateral faces (prism) 301
Lateral faces (pyramid} 303
Law(s)

of cosines 359

of exponents 167

of sines 359

of tangents 359
L C 1\71 (least common multiple)

Legs (or rlght lriangle) 266

Leonardo of Pisi

Like moncmials l36

Limiting absolute error 95, 96
ofad flerence 99

a sum
Limiting relatlve errnr 96
of a product 1 02
of a quotlent 106, 107
of a sum 100
Limlts 402
Lindemann, C L F 173
Line(s)
murror 322 .
number 188
parallel 295
parallel straight 272
perpendicular 264
skew 295
straight 263
tangent 278
Linear equation 155
Linear function 384
Linear inequality 215
Linear Interpolation 123
Line-segment 263
Literal equation 151, 152
Literal inetiuallty 207
Lobachevskian geame!ry 261
Lobachevsky, N 129, 261
Loct (pl of locus) 2 ]
Locus 278 .
Logarithms] )
artifieial iorm of negative 23§
base-10 2!
basic ropertles of 226
Briggsian 225
common 225, 230
modulus of 229
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table of 18
finding (of a number) 234
finding (of trigonometric Tune
tion} [rom angle 343
finding angle from (of trigono-
melric function) 344
ftnding a number from 237
method of 223
Napterian 228
natural 227, 229
table of |
natural form of negative 231
negalive 1
operations involving artift
cial expressions of 232
transfer from natural {o ar-
tificial form and vice
versa 231
of a power 226
of a product 226
of a quotient 226
reducing trigonometric expres-
sions to forms convenlent
for taking 356
of & root 227
solving right triangles by 346
table of common 18
table of (explained) 236, 238
table of (of trigonomeiric fun-
clions} 341
taking (examples of) 227
of trigonometiric functions {tab-

le) 28
Logarithmic base 226
Loganthmic computations (wor
ked examples) 240
Logarithmic form, reducing ex
presstons nvelving angles
of a triangle to 357
Logarithmic function 389, 3891
graph of 39}
Loganthmxoc tables, construction

of 22
Lowest terms, frattion in 75
Lune 311

area of 311

spherical 311

Mantissa 231
finding 234

of a proporiion 118
statistical 116
Mean dilferences 235
Mean quan(ties 114
Measure(s)
degree {(of angles) 332
radian (of angles) 332

Meridian 309
Method
addttion or subtraction 158, 159
coordinate 261
of logarithms 223
substitution 158
Metric system of measurement 53
Midline (of trapezoid) 275
Milliard, British 65
Million 65
Mina 89
Minuend 65
Minutes 263
Mirror hine 322
Marror plane 319
Mirror symmetry 319
Mirror-axial symmetry 322
Murror-equivalent 320
Mirror symmetric 320
Mixed number 74
Modulus of common logarithms
with respect to natural
logarithms 229
Modulus of a complex number 189
Mohammed of Bujan 330
Mohammed 1bn-Musa al-Kbowari-

64
Mohammed of Khorezmi
al-Khowarizmt) 125-126
Mollweide’s equations 359
Monom:al(s) 136
addition of 136
dissimilar 136
division of 137
hke 136
multiplication of 137
formulas for skort-cut 138
operations with 136
strilar 136
Mordukhat-Boltovskol, D D [73
Miiller Johann 330
Multiple 66

(see

lued function 378

Markov, A A 173 common 73

Mathematical symbols 52 feast common 78
hematics binatorial 243 ultiple

M Multiplicand 65

ean(s)

arithmetic 115
abridged calculation of 116
accuracy of 117

ﬁeametrlc 15
armonic 211

Multiphication 65, 135
1
by M and W 230
counting exact digits in 102



origin of 79
of polynomials 138
formulas for short cut 138
short-cut 82
of sums 104
Multiplier 65

Napler, J 225, 229
Naptertan logarithms 229
Napier's table 229
base of 229
Nappes 306
Nasir Eddin_al-Tus! 330
Nasr ed-din 330
Natural logarithms 227, 229
table of 18
Natural numbers 54
set of 54
Negative exponents 220
Negative fractional numbers 131
Negative integers 131
Negative logarithms 231
operations 1avolving artifieral
expressions of 232
transfer from artificial to natu-
ral form 231
transfer from natural to arti-
ficaal form 231
Negative numbers 123-127, 129,

history of 131
operations with 134
rules of operation 131
Negative power 221
Negative whole numbers 131
Neil's parabola 388
Newton Isaac 221
Newton’s bimomial thearem 244

n gon
regular 289
regular (to construct, given
a side) 25
Nonconlj;égate complex numbers

Nonconvex peatagon 266
Nondecimal names of numbers 56
Nonlllions 65

Nonpar;]l]rel sides (of trapezoid)

5
Normal trigorometric jorm of
complex number 192

Notation(s
functioral 380
syncopated 124, 125, 127
Null (zero) 57, 64
Number(s}
algebrale 173
approximate 92
difference between 100

415

division of 106

evolution of 108

wnvolution of 109

notation of 93
complex (see Complex numbers)
compostte 71
development of number con-

cept 5
dotted 130
e 173, 227, 228
even 69
exact 92
false 127, 132
mmaginary 174, 175, 180 183
wrrational 171, 172
large, nammes of 64
mixed 74
natural 54
set of 54
negative (see Negative numbers)
negative fractional 131
negative whole 131
nondetimal names of 56
odd 69
one 71
pt 173, 28!
positive 131
operations wtth 134
prime 71
raising to a power 109
rational 131
real 175, 183
rounding off, rules for 93
signed 131
sophistic 175
transcendental 173
whole 54
Number line 1838
Number plane 188
Numerajs 57
cunetform 60
Hindu 64
Roman 62
Slavie 59
Numeration
alphabetic 59, 60
American system of 65
Arabic system of 54
Armenian, anctent 59
Attic system of 57
Bahy]onisnu positional system
0]
British system of 65
decimal positional system of 63
dectmal system ol
Devanagan system of 63
French system of 65
Georgian, anclent 59
German system of 65
Qreek, ancient 57
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Hindu system of 64

Ionian system of 58

posulonal (of India) 63

ﬁu!nary

oman 27, 62

Russtan system oI 65

sexagesimal 6

Slavie

sys(ems of 57

vigesimal system of 56
Numerator 73, 146
Numertcal equation 151, 152
Numerical inequality 207

Oblects, symmetric 320
QOblique cylinder 305
Oblique prism 302
Oblique riang!e. solutlon of 360
Obtuse angle
Obtuse-angle trlnngle 266
Octagon, regular

cxr:umzcnbmg about o circle

inscribing in a cln:le 257
Octahedron 318, 319
“Octillions 65
0Odd number 63
Omar Khayyam 126
One, the number 71
Operation(s)
arithmetic 65
inverse 67
involving zero 80
order of 67

Opgratlonal sign 131
Order of operations 67
Ordinate 381
axis of ordinates 381
Oriﬁin {of coordimates) 381
thocentre 268
Orthogonal projections 270, 207
Otho, V331

Ounce 89

Parabola(s) 308 386
axis o
cubical 388
of degree n 388
Neil's 336
of order n 389
#emicublcal 389
of third order 388
vertex of 386
Parallel lines 295
Parallel planes
Parallel straight lines 272

Parallelepxred 301, 302
ectangu.

area of
voluame of 303 325

Parallelogram 274
altitude of 274
area of 201
construction of 256
distinguishing features of 274
Parallels, axiom of 262
Parentheses 68
Partial quotient 66
Parts, proportional 235
Pascal's triangle 125, 245
encll of slanes 205
axis of
Pentagon
concave 266
nonconvex 266
regular
circumszcsrlbing about a circle

inscribing in a circle 257
Pentahedron 303
Percentage 30
Perimeter 265
Period (of a function) 392
Periodic function 392
Periodicity 391
Periods (of large numbers) 64
Permutations 241-244
Pe{petndicular 250

Perpendicular lines 264
Parpendlcular planes 298
Peter the Fi

Pi (number) 113 260. 281
Placeholder 61, 64
Places, decimal 83
Plane(s)

mirror 319

number 188

parallel 296

pencil of 295
perpendicular 298
of symmetry 319
tangent (io sphere,

eylinder,
cone) 314,
Plane ;gsale (of dihedral angle)

Plane figures
areas of 158
similarity of 276
symmetry of 322
Plane geometry 249
Plane trigonometry 328
Point, decimal (see Comma) 83



power of 284
Polygon(s) 265
circumseribed 288
concave 266
convex 266
nscribed 288

similar 276
simple 265
spherical 310
convex 310
exterior angle of 330, 311
mlerlor3 angle of 310
10

star 2
Polyhedral angles 300, 316
convex 3
edges of 301
faces of 301
vertex of 300
Polyhedren(s) 301
convex 301
diagonals 301
edges of 301
faces of 301
regular 318
regular concave 318
regular convex 318
vertices of 301
Polynomial(s) 137
addition of 136
degree of 141
division of 140, 14
by a first- da%ree bmomlal 142
(aclorlzation
multiplication of 138
subtraction of 136

00!
Positional numeration of India 63
Positlve numbers 131
operations with 134
Power(s) 67
dlvidﬁl?g 168

fractional 221,
multiplying 6
negative 221

of a point 284
of a product 167
of a quotlent 168

ralsing to 67
second 67
third

87
zeroth 137, 221, 222
Power function 386
Prime factors, factorization into 71
Prime nnmbers {p1imes) 71
table 0
Prlnclpll root  of modulus 200
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Prlnc:pal value of argument (of
a complex number) 191

Prism 301, 305

altitude of 301

bases of 301

hexagonal 301

lateral area of 301

lateral faces nf 303

oblique 302

octagonal 301

pentagonal 301

quadrang’ular 301

regular 302

right 302

triangular 301

volume of 302, 325
Problems, computationsl

and indirect

Product(s) 65

errors in 100

of sum and diiterence 139
Progresston(s) 2

artthmetic 2!8

geometric 219

decreasing 219

direct

increasing 219
Projection(s) 210 297, 298
axis of 299
orthogonal 270, 297
Proof 262

Proper iractla 74
Proportion(s) 118, 147
continued 119
derived 148
extremes of 119
means of 119
uses of 120
Proportional parts 235
Proportional quantities

inver ly 120
Proportionality 119
constant of 120
direct 383
Inverse 386
ProPertlona;lty factor 120, 383

113, 120,

Ptolemy’s tables 329
Ptolemys theorem 289
Pyramid 301, 303

frustum of 304

irregular 325

volume of 304, 3256
lateral area of regular 304
lateral areaof regular truncated

304
lateral faces of 303
pentagonal 303
quadrangular 303
regular 347, 303
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area of 325
regular quadrangular truncated

triangular 303

fruncated 304

verfex of 303
Pythagoras 272
Pythagoresn theorem 272

Quadrant 279
Quadratic equations 174
complete 174
mcomplete 174
reduced 174
roots, pro7peri1es of 179
solving 1
system of (in two unknowns)
188, IEQ
unreduced !
8uadratlc functions 388
uadratic frinomial 179
factoring 179
Quadrilateral 274
area of 291
cirele circumseribed about 288
crrcle inseribed in 289
Quadrillion 65
Quantities
infinitely large 403
infinrtely small 432
mean 114
proportional 118, 120
Quartic equation 127
unary numeration 57 63
uintillion 65
Quotient 66
parfial 66

Radian 331
Radian measure of angles 331, 332
Radians to degrees 333
Radtans to degrees and minutes
conversion of (table) 4q
Radical axis 286
Radical centre 286, 288
Radicals, opﬂratmns involving 169
Radicand 67
Radnt (pl of radius) 278
Radius 278 279
of circumseribed circle 360
of escribed circle 360
of inscribed circle 360
short 290
Raismg a number to a power 109
Ratio 118, 219
common 219
of sim:litude 276
Rational numbers 131

Rationalization of denominator
ar numerator 170

Ray 263
Real numbers 175, 183
Reciprocals, table of 14
Rectangle 274

area of 291

construction of 256
Rectangular coordinate system 381
Rectangular coordinates 381
Rectangular ;aralleleplped 303
Reduced quadratic equation 174
Reducing fractions 75, 146

to lower terms
Reduction formulas 352
Regromontanus 331

formula of 360

tables of 330
Regular concave polyhedrons 318
Regular convex polyhedrons 318
Regular frustum of pyramid 304
Regular n-gnn 289
Regular e:o ygons 289

Rn:dlu o ; h d .

egular polyhedrons 318
Regnlar gnsm 302

Regular ?yramid 304, 325
Regular tetrahedron 3.8
Relation, functional 377
Relative error 95

Remainder 66
Remarnder theorem 142
Rhaeticus (or Rhei cus), G 331

Right cireular cone 307
Right circular Cy])nder 305
Right cylinder 3
Right ﬁarallelepxped 302
Right pri:
Right section (of a prism) 302
Right triangle 26
area of 291
by logarithms 346
by aside and an acunte angle 341
by twa cides 340
uses of 347
Roman numerals 62
Roman numerallcn 62
Root(s) &
cube, rule *for extracllng 113
of an equation 152
e'(kracung 87, 110
finding 67
prmc!pal (of tmodulus) 197
square, rule for taking 110
Root mean square deviation 117
Rotational symmetry 321
Round brackets 68



Rounding off numbers 96
m addition  and mbtrachon
{pl’e“mlndry)
rules for 93
Ruffiny, P 129
Russian abacus 35
Russtan measures old 53
Russtan system of numeration 6§

Sagene 53

Sagitia 279

Samp! 58

bclencel goé reunton and opposttion

Science of transposttion and can
cellation 126
Secant 278, 330, 335, 352
Seconds 263
Section(s) 307
conic 307
right (of a prism) 302
Sector 279
area of 282 201
spherical 312
surface area of 312
volume of 313
Segment 279
altitude of 279
area of 282
approximate formula for 294
spherical (of one base) 310
altitude of 312
base 312
curved surface
vertex of 312
volume of 313
spherical (of two bases) 313
altrtude of 332
curved surface area of 313
volume of 313
Semicubical parabols 383
Semuperimeter 265
Septillion 65
Sequence(s) 218
of operations 67
terms of 218
Set, solution 157
Sexagesimal iractions 62
Sexagestmal numeration 60, 62
Sextillion 65
Sheets of a conical surface 306
Shekel 89
Short division 107
Shart radius 290
Short-cut multiplication 104
Sldes of angle 263
Sign(s)
absolute-value 134
of angles 265

area of 312
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of nperation 130
operalional 131
ot quantity 131
Signed numbers 131
Significant digils 93
Signs of angles 264
Similar fignres 976
dreas of 277
Stmilar monomials 136
Stmitlar polygons 276
Stmilar {riangles 276, 277
Stmilarity of plane flgures 276
Stmilartty of solids
Stmilitude, ratio of "76
Simple polygons 265
Simple spherlcal polygons 310
Sine(s) 336, 35
of the complement 330
law of 358
table of 36
Sine curve 392
Sinus 330
Simus versus 329
Sinusord 392
Shew lines 293
Slant height (of pyranmid} 304
Slavic numerals 59
Slavte numeration 59
Slope 383, 384
Soltd(s) 325
areas of 325
stmtlarily of 323
volumes of 325
Solid angles 316
Solid geometry 295
Solution
artthmetic 149
of equations, graphical 394
of inequahties, graphical 887
of right tnangle (see Right
triangle, solution of) 340
Solution set 357
Soj h;sticsnumhers 175

volume of 300, 325
Spherical sector 313
surface area of 313
volume of 314
Spherical lune 311
Spherical gulygcms 310
convex
exterror angle of 3il
interior angle of 310
simple 310
Spherical seFment of one base 312
altitude o
base of 312
ctrved surface area of 312
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fateral area ol 328
vertex of 312
volume of 313,
Spherlcal sef menlaf !wo bases 313
altitude of 3
curved surface area of 313
volume of 3
Spherical suriace 308
Spherical trigonomelry 328
Square 274
area of 291
circumseribing about a circle 257
constructing. given 1ts diagonal

wnstrucllng. given a side 256
inscribing 1 a circle 2
of a difference 139
of a sum 139

Squate brackets 68

Square root(s) 67
rule for faking 110
table of 14

Squares, table of 14

Star polygons 265

',tatlstica means 116

teradian 318

tevm Simon 9

tifel, 125

tra!ght llne 263

uan phan 55

Substltutlon method 158

Subtraction 65, 134

Subtrahend 65

Sum(s) 193
division of 140
geometric
multipllcahon of 138

Surface 306
conical 306

nappes of 306

sneets of 306
cylindrical 305
spherical 308

Symmetric figures 320

Symmetric o ]ecls 320

Symmetry 3
axial 322
axis of 322

three-fold 321
two-fold 321
central 320, 323
centre of 320
mirror 319
mirror-axial 322
plane of 319
of plane figures 322
rotational 321
ypes of (examples of) 322
Syncapsfed rotations 124, 125, 127
System 263

of angular measurement 263
centesimal 263

Cartesian (ol coordinates) 381
of Inequallhless of the first deg-

of quadratic equations In two
unknowns 181
rectangular coordinate 381
of three first-degree equations
in three unknowns 163
of two first-degree equations 1n
two unknowns 156
general formulas 161
solution 158
special cases 161
Systematic fractions 83

Table(s)
of antilogarithms 23, 239
of common logarithms (explal-
ned} 18,
logarithmic cons!rur.ﬂon of 223
logarithms, five-place (explal-

Tie
of logarithms of trigonometric
functions 28, 3

multiplication of M andML 230
Nﬂpler s 229
se 229

Ptolemy s 329
of Regiomontanus 330
of sines (Hindu) 330
of trigonometric functions, con-
struction of 368
Tabular differences 343
Taking cut a common factor 137
Talent 8
’!‘angenl(s) 278, 330, 335, 352

drawin, !hrouh a2 point a
angent a clrcle 254

exterfor cummnn (constructing
?n ect to two circ
es,

interior common ({constructing
an 1 ¢t to two cire
les) 254

law of 359

table of 40

Tangentt “t]le 278“ N .
Tangent plane (la sphere, cylln-
& der":' cofte) 3” 316 4
Tartaglla, N 127

Tartaglia's rule 128

Tends to infinity 405

Terms



fowest, frncﬁr_m in 75
of a sequence 218
Telrahedron 3&’3 318, 319

for fractional 1

421

reducing (to forms convenient
for taking logarithms) 356
Involving angles of a triangle,
}‘educing to logarithmic

Tri form of a pl
mnnbe

5
for negaﬂve exponents 245

de Moivre's 199

Newton’s binomial (see Bino-

mial theorem) 244

Ptolemy’s 289, 329

Pythagorean 272

remainder 142
Transcendence {of a number) 173
Transcendental inequalities 214
Transcendental number 173
Transversal 273
Trapezold 274, 275

altitude of 275

area of 275. 291

bases o

lsosceles 276

nonparallel sides of 275
“Triangle(s) 2

acute- angle 266

altitude of 268

angle bisector of 269

area of 267, 291

arithmetic 245

base of 268

congruence of 267

constructing, given 3 sides 256

elements of,  basic relations

between 359
equiangular 267
equxlateral 267, 270

of
height of 268
inscribing in a circle 257
isosceles 267,
oblique, solution of 360
obtuse-angle 266
Pascal's 125, 245
regular (clrcumscrlh!ng about

a circle} 2

relatlonships between the sides
)

remarkable lines and points in

i 29
solutlon nf 374 340, 346, 347
similar 2
Trlgnnomelrlc equntlons 370
techniques for solving 372
Trigonometric expressions 356

Tri ¢ functlons 328, 336,
391

of an arbitrary angle 349

expression of one in terms of
another 351

finding an angle from 339

ﬂndlng an nn te from & loga

hm of 3.
ﬂnding n «lo unthgl of (from

flnding a ingonome(rlc function
rom an angle 33
cosine 336
cotangent 338
sine 336
tangent 338
inverse 365, 366, 392
arbitrary value of 366
basic relations for 362
tables of, construction ol 368
tables of logarithms of 3
Trigonometric identities 349
Trigonometric relations, impor-
tant 357

Trigonometry 328
analytical 328
basic task of 328
derivation of 328
fundamental relatlons of 343
historical survey of 329
plane 328
spherical 328
subject of 328
Trlhzdrnl angle 301
Trillion 65
Trinomlal 179

g
Triple-angle formufas 355
Trisecting an angle 252
Truncated pyramid 304

bases of 304

Uncia 89

Unconditional inequality 207
Unit, imaginary 183, 197

Unity 7

Unreduced quadratic equation 174

Value 134
absolute 134
principal (of ar%menl of
complex nu
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Variables 377
dependent 378
independent 378
Variation 119
constant of 120
Vector 189
Verchok 53
Versed sine 329
Versta 53
Vertex (see vertices) 263
of angle 263
of cone 306
of polyhedral angle 300
Vertical angles 265
Vertical dithedral angle 298
Vertically opposite angles 265
Verhcess‘)(isee vertex) of polyhedron

Vidte, F 127, 206
Vigestmal system of numbers 56
Volumes of solids 325

Wallis, J 129
Wessel, C 120
Whole and a part 82
Whole numbers 54

Zero 57, 64, 125

operations involving 80
Zero exponents 220
Zeroth power 137, 221 222
Zone 313

altitude of 313

bases of 313






1
'

‘Visglaandhra’ Pubhcanons in Enghsh

g [ MAHEMMIBAL
e s € HANDBOOK

HEWENTARY MATUESATCS

Fun: ith 45
Maths and Physus







