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Great	Formulas	Explained	-
Physics,	Mathematics,	Economics



Part	I:	Physics

Intensity:

Under	ideal	circumstances,	sound	or	light	waves	emitted	from	a	point	source	propagate	in
a	spherical	fashion	from	the	source.	As	the	distance	to	the	source	grows,	the	energy	of	the
waves	is	spread	over	a	larger	area	and	thus	the	perceived	intensity	decreases.	We’ll	take	a
look	at	the	formula	that	allows	us	to	compute	the	intensity	at	any	distance	from	a	source.

First	of	all,	what	do	we	mean	by	intensity?	The	intensity	I	tells	us	how	much	energy	we
receive	from	the	source	per	second	and	per	square	meter.	Accordingly,	it	is	measured	in
the	unit	J	per	s	and	m2	or	simply	W/m2.	To	calculate	this	quantity,	we	need	to	know	the
power	of	the	source	P	(in	W)	and	the	distance	r	(in	m)	to	it.

I	=	P	/	(4	·	π	·	r2)

This	is	one	of	these	formulas	that	can	quickly	get	you	hooked	on	physics.	It’s	very	simple
and	extremely	useful.	In	a	later	section	you	will	meet	the	denominator	again.	It	is	the
expression	for	the	surface	area	of	a	sphere	with	radius	r.	Before	we	go	to	the	examples,
let’s	take	a	look	at	a	special	intensity	scale	that	is	often	used	in	acoustics.	Instead	of
expressing	the	sound	intensity	in	the	common	physical	unit	W/m2,	we	can	convert	it	to	its
corresponding	decibel	value	dB	using	the	following	formula:

dB	≈	120	+	4.34	·	ln(I)



with	ln	being	the	natural	logarithm.	For	example,	a	sound	intensity	of	I	=	0.00001	W/m2

(busy	traffic)	translates	into	70	dB.	This	conversion	is	done	to	avoid	dealing	with	very
small	or	large	numbers.	Here	are	some	typical	values	to	keep	in	mind:

0	dB	→	Threshold	of	Hearing

20	dB	→	Whispering

60	dB	→	Normal	Conversation

80	dB	→	Vacuum	Cleaner

110	dB	→	Front	Row	at	Rock	Concert

130	dB	→	Threshold	of	Pain

160	dB	→	Bursting	Eardrums

Now	onto	the	examples.

–––––––-

We	just	bought	a	P	=	300	W	speaker	and	want	to	try	it	out	at	maximal	power.	To	get	the
full	dose,	we	sit	at	a	distance	of	only	r	=	1	m.	Is	that	a	bad	idea?	To	find	out,	let’s
calculate	the	intensity	at	this	distance	and	the	matching	decibel	value.

I	=	300	W	/	(4	·	π	·	(1	m)2)	≈	23.9	W/m2

dB	≈	120	+	4.34	·	ln(23.9)	≈	134	dB

This	is	already	past	the	threshold	of	pain,	so	yes,	it	is	a	bad	idea.	But	on	the	bright	side,
there’s	no	danger	of	the	eardrums	bursting.	So	it	shouldn’t	be	dangerous	to	your	health	as
long	as	you’re	not	exposed	to	this	intensity	for	a	longer	period	of	time.

A	side	note:	the	speaker	is	of	course	no	point	source,	so	all	these	values	are	just	estimates
based	on	the	idea	that	as	long	as	you’re	not	too	close	to	a	source,	it	can	be	regarded	as	a
point	source	in	good	approximation.	The	more	the	source	resembles	a	point	source	and	the
farther	you’re	from	it,	the	better	the	estimates	computed	using	the	formula	will	be.



–––––––-

Let’s	reverse	the	situation	from	the	previous	example.	Again	we	assume	a	distance	of	r	=	1
m	from	the	speaker.	At	what	power	P	would	our	eardrums	burst?	Have	a	guess	before
reading	on.

As	we	can	see	from	the	table,	this	happens	at	160	dB.	To	be	able	to	use	the	intensity
formula,	we	need	to	know	the	corresponding	intensity	in	the	common	physical	quantity
W/m2.	We	can	find	that	out	using	this	equation:

160	≈	120	+	4.34	·	ln(I)

We’ll	subtract	120	from	both	sides	and	divide	by	4.34:

40	≈	4.34	·	ln(I)

9.22	≈	ln(I)

The	inverse	of	the	natural	logarithm	ln	is	Euler’s	number	e.	In	other	words:	e	to	the	power
of	ln(I)	is	just	I.	So	in	order	to	get	rid	of	the	natural	logarithm	in	this	equation,	we’ll	just
use	Euler’s	number	as	the	basis	on	both	sides:

e9.22	≈	eln(I)

10,100	≈	I

Thus,	160	dB	correspond	to	I	=	10,100	W/m2.	At	this	intensity	eardrums	will	burst.	Now
we	can	answer	the	question	of	which	amount	of	power	P	will	do	that,	given	that	we	are
only	r	=	1	m	from	the	sound	source.	We	insert	the	values	into	the	intensity	formula	and
solve	for	P:

10,100	=	P	/	(4	·	π	·	12)



10,100	=	0.08	·	P

P	≈	126,000	W

So	don’t	worry	about	ever	bursting	your	eardrums	with	a	speaker	or	a	set	of	speakers.	Not
even	the	powerful	sound	systems	at	rock	concerts	could	accomplish	this.

–––––––-

The	intensity	of	the	sunlight	reaching	earth	is	about	I	=	1400	W/m2.	Given	that	the
distance	between	earth	and	sun	is	about	r	=	150,000,000,000	m,	what	is	the	sun’s	power
output?	To	calculate	this,	we	again	have	to	solve	the	formula	for	P:

I	=	P	/	(4	·	π	·	r2)

P	=	I	·	4	·	π	·	r2

With	this	done,	getting	the	result	is	simply	a	matter	of	plugging	in	the	given	data.	This
leads	to:

P	=	1400	W/m2	·	4	·	π	·	(150,000,000,000	m)2

P	≈	4	·	1026	W

This	value	is	almost	beyond	comprehension.	In	one	second	the	sun	gives	off	enough	energy
to	satisfy	the	our	current	energy	needs	for	the	next	500,000	years.	Unfortunately	only	very
little	of	this	energy	actually	reaches	earth	and	only	very	little	of	that	can	be	converted	into
useful	energy.

–––––––-

In	the	next	section	we’ll	look	at	another	radially	propagating	wave.	But	hopefully	you
noticed	that	physics	and	math	does	not	need	to	be	difficult.	Some	of	the	greatest
calculations	can	be	done	with	a	handy	formula	and	a	few	lines	of	writing.





Explosions:

When	a	strong	explosion	takes	place,	a	shock	wave	forms	that	propagates	in	a	spherical
manner	away	from	the	source	of	the	explosion.	The	shock	front	separates	the	air	mass	that
is	heated	and	compressed	due	to	the	explosion	from	the	undisturbed	air.	In	the	picture
below	you	can	see	the	shock	sphere	that	resulted	from	the	explosion	of	Trinity,	the	first
atomic	bomb	ever	detonated.

Using	the	concept	of	similarity	solutions,	the	physicists	Taylor	and	Sedov	derived	a	simple
formula	that	describes	how	the	radius	r	(in	m)	of	such	a	shock	sphere	grows	with	time	t	(in
s).	To	apply	it,	we	need	to	know	two	additional	quantities:	the	energy	of	the	explosion	E
(in	J)	and	the	density	of	the	surrounding	air	D	(in	kg/m3).	Here’s	the	formula:

r	=	0.93	·	(E	/	D)0.2	·	t0.4

Let’s	apply	this	formula	for	the	Trinity	blast.

–––––––-

In	the	explosion	of	the	Trinity	the	amount	of	energy	that	was	released	was	about	20
kilotons	of	TNT	or:

E	=	84	TJ	=	84,000,000,000,000	J

Just	to	put	that	into	perspective:	in	2007	all	of	the	households	in	Canada	combined	used



about	1.4	TJ	in	energy.	If	you	were	able	to	convert	the	energy	released	in	the	Trinity
explosion	one-to-one	into	useable	energy,	you	could	power	Canada	for	60	years.

But	back	to	the	formula.	The	density	of	air	at	sea-level	and	lower	heights	is	about	D	=
1.25	kg/m3.	So	the	radius	of	the	sphere	approximately	followed	this	law:

r	=	542	·	t0.4

After	one	second	(t	=	1),	the	shock	front	traveled	542	m.	So	the	initial	velocity	was	542
m/s	≈	1950	km/h	≈	1210	mph.	After	ten	seconds	(t	=	10),	the	shock	front	already	covered	a
distance	of	about	1360	m	≈	0.85	miles.

How	long	did	it	take	the	shock	front	to	reach	people	two	miles	from	the	detonation?	Two
miles	are	approximately	3200	m.	So	we	can	set	up	this	equation:

3200	=	542	·	t0.4

We	divide	by	542:

5.90	≈	t0.4

Then	take	both	sides	to	the	power	of	2.5:

t	≈	85	s	≈	1	and	1/2	minutes

–––––––-

Let’s	look	at	how	the	different	parameters	in	the	formula	impact	the	radius	of	the	shock
sphere:

If	you	increase	the	time	sixfold,	the	radius	of	the	sphere	doubles.	So	if	it	reached	0.85
miles	after	ten	seconds,	it	will	have	reached	1.7	miles	after	60	seconds.	Note	that	this
means	that	the	speed	of	the	shock	front	continuously	decreases.



For	the	other	two	parameters,	it	will	be	more	informative	to	look	at	the	initial	speed	v	(in
m/s)	rather	the	radius	of	the	sphere	at	a	certain	time.	As	you	noticed	in	the	example,	we
get	the	initial	speed	by	setting	t	=	1,	leading	to	this	formula:

v	=	0.93	·	(E	/	D)0.2

If	you	increase	the	energy	of	the	detonation	35-fold,	the	initial	speed	of	the	shock
front	doubles.	So	for	an	atomic	blast	of	20	kt	·	35	=	700	kt,	the	initial	speed	would	be
approximately	542	m	/s	·	2	=	1084	m/s.

The	density	behaves	in	the	exact	opposite	way.	If	you	increase	it	35-fold,	the	initial
speed	halves.	So	if	the	test	were	conducted	at	an	altitude	of	about	20	miles	(where	the
density	is	only	one	thirty-fifth	of	its	value	on	the	ground),	the	shock	wave	would
propagate	at	1084	m/s

Another	field	in	which	the	Taylor-Sedov	formula	is	commonly	applied	is	astrophysics,
where	it	is	used	to	model	Supernova	explosions.	Since	the	energy	released	in	such
explosions	dwarfs	all	atomic	blasts	and	the	surrounding	density	in	space	is	very	low,	the
initial	expansion	rate	is	extremely	high.



Mach	Cone:

When	an	object	moves	faster	than	the	speed	of	sound,	it	will	go	past	an	observer	before
the	sound	waves	emitted	by	object	do.	The	waves	are	compressed	so	strongly	that	a	shock
front	forms.	So	instead	of	the	sound	gradually	building	up	to	a	maximum	as	it	is	usually
the	case,	the	observer	will	hear	nothing	until	the	shock	front	arrives	with	a	sudden	and
explosion-like	noise.

Geometrically,	the	shock	front	forms	a	cone	around	the	object,	which	under	certain
circumstances	can	even	be	visible	to	the	naked	eye	(see	image	below).	The	great	formula
that	is	featured	in	this	section	deals	with	the	opening	angle	of	said	cone.	This	angle,
symbolized	by	the	Greek	letter	θ,	is	also	indicated	in	the	image.

All	we	need	to	compute	the	mach	angle	θ	is	the	velocity	of	the	object	v	(in	m/s)	and	speed
of	sound	c	(in	m/s):

sin	θ	=	c	/	v

Let’s	turn	to	an	example.

–––––––-

A	jet	fighter	flies	with	a	speed	of	v	=	500	m/s	toward	its	destination.	It	flies	close	to	the
ground,	so	the	speed	of	sound	is	approximately	c	=	340	m/s.	This	leads	to:



sin	θ	=	340	/	500	=	0.68

θ	=	arcsin(0.68)	≈	43°

–––––––-

In	the	picture	above	the	angle	is	approximately	62°.	How	fast	was	the	jet	going	at	the	time
when	the	picture	was	taken?	We’ll	set	the	speed	of	sound	to	c	=	340	m/s	and	insert	all	the
given	data	into	the	formula:

sin	62°	=	340	/	v

0.88	=	340	/	v

Obviously	we	need	to	solve	for	v.	To	do	that,	we	first	multiply	both	sides	by	v.	This	leads
to:

0.88	·	v	=	340

Dividing	both	sides	by	0.88	results	in	the	answer:

v	=	340	/	0.88	≈	385	m/s	≈	1390	km/h	≈	860	mph

–––––––-

There’s	a	formula	which	can	serve	as	a	helpful	supplement	to	calculating	the	mach	angle
(or	as	in	the	second	example,	the	speed	of	the	object).	The	air	temperature	varies	with
height.	As	we	go	higher,	the	temperature	gets	lower.	On	average	there’s	a	6	°C	drop	in
temperature	for	every	kilometer	additional	altitude.	So	when	it’s	20	°C	on	the	ground,	we
can	expect	about	-	40	°C	at	a	height	of	10	km.

Why	should	we	care	about	temperature	here?	After	all,	it’s	not	an	input	for	the	formula.
That’s	true,	however,	the	speed	of	sound	depends	on	temperature.	The	hotter	it	is,	the
faster	sound	waves	propagate.	The	formula	below	can	be	used	to	approximate	the	speed	of



sound	c	(in	m/s)	from	the	air	temperature	(in	°C):

c	=	331	·	sq	root	(1	+	T	/	273)

–––––––-

At	a	temperature	T	=	20	°C,	an	average	autumn	day,	sound	moves	with	c	≈	343	m/s.	When
we	go	10	km	up,	which	is	roughly	the	cruising	altitude	of	large	planes,	the	temperature
drops	to	T	=	-	40	°C	and	with	it	the	speed	of	sound	to	c	≈	306	m/s.	Here	the	sound	waves
move	circa	10	%	slower!

–––––––-



Reverberation:

When	you	clap	your	hands	in	a	very	large	room,	you	can	notice	the	sound	persisting	for	a
short	time.	The	reason	for	that	is	that	the	sound	waves	are	reflected	back	and	forth
between	the	walls,	creating	a	large	number	and	a	complex	pattern	of	echos.

At	the	end	of	the	19th	century,	Wallace	Clement	Sabine	empirically	studied	the
reverberation	time	at	Harvard	University	and	derived	a	handy	approximation	formula	for
it.	By	reverberation	time	we	mean	the	time	it	takes	for	the	sound	to	decay	by	60	dB.

It	depends	on	four	quantities:	the	volume	of	the	room	V	(in	m3),	the	total	surface	area	of
the	room	A	(in	m2),	the	absorption	coefficient	of	the	surfaces	a	(dimensionless)	and	finally
the	absorption	coefficient	of	air	b	(in	1/m).	From	these	we	can	get	an	estimate	for	the
reverberation	time	T	(in	s)	using	Sabine’s	formula,	or	rather,	a	slightly	modified	version	of
it:

T	=	0.16	·	V	/	(A	·	a	+	V	·	b)

For	common	brickwork	and	plaster	walls	the	absorption	coefficient	is	about	a	=	0.03,	for
wood	a	=	0.3	and	for	acoustic	tiles	it	can	go	as	high	as	a	=	0.8.	As	for	the	air	absorption
coefficient,	it	is	roughly	b	=	0.02	1/m	at	50	%	humidity.

–––––––-

You	are	in	an	empty	rectangular	hall	with	the	dimensions	30	m	by	30	m	by	5	m.	We	assume
the	absorption	coefficients	to	be	a	=	0.03	and	b	=	0.02	1/m.	What	is	the	reverberation
time	for	this	hall?



First	we	need	to	calculate	the	the	volume:

V	=	30	m	·	30	m	·	5	m	=	4500	m3

and	the	total	surface	area:

A	=	2	·	(30	m	·	30	m	+	30	m	·	5	m	+	30	m	·	5	m)

A	=	2400	m2

Now	we	can	turn	to	Sabine’s	formula:

T	=	0.16	·	4500	m3	/	(	2400	m2	·	0.03	+	4500	m3	·	0.02	1/m)

T	≈	4.4	s

Note	that	for	the	units	to	check	out,	the	constant	0.16	must	have	the	unit	s/m.	This	has
been	left	out	of	the	general	formula	and	the	example	for	simplicity.

If	the	computed	reverberation	time	seems	too	high	to	you,	remember	that	it	is	reduced
significantly	once	the	hall	is	filled	with	equipment	and	people	(which	is	usually	the	case).

–––––––-

How	does	the	reverberation	time	vary	with	the	room	dimensions	and	absorption
coefficients?

Here	we	cannot	simply	look	at	the	volume	and	surface	area	separately	since	they
depend	on	each	other.	The	surface	area	grows	approximately	proportional	to	the	2/3
power	of	the	volume,	which	means	that	overall,	the	reverberation	time	will	grow	with
the	third	root	of	the	volume	for	small	rooms	and	reach	a	limiting	value	for	larger
rooms.	This	limiting	value	is	0.16	/	b	or	about	8	s	at	50	%	humidity.	No	matter	how



big	the	room,	the	reverberation	time	cannot	go	beyond	that.

In	the	picture	below	you	can	see	the	variation	of	reverberation	time	with	volume	and
how	the	curve	flattens	out	as	the	volume	increases	and	the	limiting	value	is
approached.

If	the	absorption	coefficients	increase,	the	reverberation	time	decreases.	If,	for
example,	we	were	to	cover	the	walls	of	the	hall	with	high	quality	acoustic	tiles,	the
reverberation	time	would	drop	to	a	mere	T	≈	0.4	s.

Keep	in	mind	that	the	formula	just	delivers	a	useful	first	estimate.	In	reality,	the	process	of
sound	reflection	depends	in	a	very	complex	way	on	the	specific	geometry	of	a	room.	Two
halls	with	the	same	volume,	surface	area	and	absorption	coefficients	can	still	produce	very
different	reverberation	times.



Doppler:

Have	you	ever	listened	carefully	as	a	police	car	swooshed	by?	If	yes,	then	you	probably
noticed	this	strange	sound	effect.	When	the	car	approached,	the	pitch	of	the	siren	was
relatively	high.	At	the	moment	it	passed	you,	the	pitch	changed	quickly	to	a	lower	tone,
where	it	remained	while	the	car	drove	off.	What	happened?

If	a	source	of	sound	is	moving,	the	sound	waves	emitted	in	the	direction	of	travel	are
compressed.	This	means	that	the	wavelength	gets	shorter	and	accordingly	the	frequency
(pitch)	higher.	So	as	long	as	the	police	car	is	approaching	you,	you	will	receive
compressed	sound	waves	from	the	siren.

The	opposite	happens	to	sound	waves	that	are	emitted	against	the	direction	of	travel.	Their
wavelength	gets	longer	and	the	frequency	lower.	These	are	the	sound	waves	you	receive
when	the	police	car	has	passed	you	and	is	driving	off.	Only	at	the	exact	moment	the	car	is
passing	you	do	you	hear	the	original	tone	of	the	siren.

This	effect	is	not	limited	to	sound	waves,	it	also	occurs	in	the	case	of	light.	Stars	and
galaxies	moving	towards	or	away	from	earth	are	observed	with	a	slight	change	in	light
frequency	(color).	These	red-	and	blue-shifts	are	commonly	used	by	astronomers	to
determine	radial	velocities.

Let’s	get	to	the	formula.	We	need	three	quantities	as	inputs:	the	original	frequency	of	the
source	f	(in	Hz),	the	velocity	at	which	it	approaches	the	observer	v	(in	m/s)	and	the	speed
of	the	waves	c	(in	m/s).	The	observed	frequency	is:

f’	=	f	/	(1	-	v	/	c)



–––––––-

A	car	emitting	sound	at	the	chamber	pitch	f	=	440	Hz	approaches	you	with	v	=	36	m/s.
The	speed	of	sound	is	about	c	=	340	m/s.	At	what	frequency	do	you	perceive	the	sound?

f’	=	440	Hz	/	(1	-	36	/	340)	≈	492	Hz

So	the	Doppler	effect	shifted	the	tone	two	half-notes	from	the	original	note	A	to	note	B.
That	is	certainly	noticeable.

–––––––-

Here’s	how	varying	the	inputs	will	change	the	frequency	perceived	by	the	observer:

If	the	emitted	frequency	doubles,	so	does	the	perceived	frequency.	So	440	Hz	·	2	=
880	Hz	would	change	into	492	Hz	·	2	=	984	Hz.	Again,	this	corresponds	to	a	change
in	pitch	of	about	two	half-tones.

If	the	speed	of	the	source	increases,	the	perceived	frequency	increases	as	well,	that	is,
the	tone	will	be	at	an	even	higher	pitch.	At	72	m/s	the	frequency	would	have	risen	to
558	Hz,	which	is	about	four	half-tones	above	the	original	pitch	(note	C#).

Up	to	this	point	we	only	looked	at	approaching	sound	sources.	In	the	opposite	case,	the
sound	source	moving	away	from	the	observer,	we	need	to	replace	the	minus-sign	in	the
formula	with	a	plus-sign	to	arrive	at	the	correct	result.

–––––––-

Again	the	car	is	emitting	sound	at	the	chamber	pitch	f	=	440	Hz,	but	this	time	it	moves
away	from	you	with	v	=	36	m/s.	What	frequency	will	you	perceive	then?

f’	=	440	Hz	/	(1	+	36	/	340)	≈	398	Hz



The	shift	again	was	about	two	half-tones,	but	this	time	to	a	lower	pitch	(from	note	A	to
note	G).

–––––––-

When	the	speed	of	the	source	becomes	equal	to	or	greater	than	the	speed	of	the	waves	it
emits,	the	first	formula	will	not	work	anymore.	Obviously	in	such	a	case,	you	won’t	hear
any	sound	from	the	approaching	source	as	it	will	reach	your	position	before	the	waves	do.
We	already	had	a	look	at	this	situation	in	the	section	“Mach	Cone”.



Computing	Hurricanes:

In	this	section	we	are	going	to	do	just	what	the	title	says,	that	is	compute	hurricanes.	The
great	formula	that	accomplishes	this,	called	Rankine	formula,	is	very	little	known	among
physicists	and	mathematicians,	most	are	not	aware	of	its	existence.	But	that	doesn’t	make
it	any	less	useful.

One	of	the	most	important	quantities	tha	is	used	to	characterize	a	hurricane,	aside	from	the
size,	is	the	pressure	difference	p	(usually	in	millibars,	in	short:	mb)	between	the	center	and
the	surrounding	of	the	hurricane.	Air	always	flows	from	high	to	low	pressure	and	thus,
when	an	area	of	low	pressure	forms,	air	starts	flowing	towards	it.	Because	of	earth’s
rotation,	the	resulting	flow	is	not	direct.	The	air	rather	circulates	around	and	into	this
region	of	low	pressure.	The	greater	the	pressure	difference,	the	more	violent	the
movement	of	air	will	be.

For	starters,	we	will	assume	this	pressure	difference	to	be	constant	over	the	life	of	a
hurricane.	At	a	later	point	we	will	relax	this	condition,	allowing	the	calculations	to	include
strengthening	and	weakening	hurricanes.	But	for	now,	we	only	care	about	two	quantities:
the	distance	from	an	observer	to	the	center	of	the	storm	r	(any	unit	of	length	will	do	as
long	as	we	are	consistent)	and	the	wind	speed	v	at	this	distance.

The	Rankine	formula	states	that	this	expression	is	conserved	as	the	hurricane	changes
position:

v	·	r0.6	=	constant

Our	strategy	will	be:	first	we	use	current	data	(a	distance	and	a	wind	speed)	to	compute	the
constant,	then	we	are	able	to	get	an	estimate	for	the	wind	speed	at	any	distance.	Note	that
this	equation	tells	us	that	when	we	triple	the	distance	to	the	center	of	the	hurricane,	the
wind	speed	halves.

–––––––-

A	hurricane	is	approaching	and	according	to	TV	reports	it	is	currently	about	600	miles
away	from	our	town.	Current	wind	speeds	are	about	20	mph.	From	the	projected	path	we
can	deduce	that	the	hurricane	will	come	as	close	as	100	miles.	What	is	the	maximum	wind
speed	v	we	can	expect?



First	we	determine	the	constant	using	the	current	data:

20	·	6000.6	≈	930

Now	we	can	set	up	an	equation	for	the	maximum	wind	speed.	Since	we	inputted	the	speed
in	mph,	the	result	will	be	in	the	same	unit.

v	·	1000.6	≈	930

v	·	16	≈	930

v	≈	58	mph

Simple	as	that.	But	remember	that	we	assumed	the	hurricane	to	be	of	constant	strength
during	its	approach.	If	this	is	not	the	case,	we	need	to	include	the	pressure	difference	in
our	calculations,	which	is	what	we	will	do	now.

–––––––-

In	case	of	hurricanes	of	changing	strength,	the	pressure	difference	p	appears	as	a	variable
in	the	Rankine	formula.	This	makes	things	a	little	harder,	but	luckily	not	by	much.

v	·	r0.6	/	sq	root	(p)	=	constant

Let’s	turn	to	an	example.	We	stick	to	the	strategy:	first	determine	the	constant	using
current	data	(a	distance,	a	wind	speed	and	a	pressure	difference),	then	we	can	calculate	the
wind	speed	at	any	distance	and	pressure	difference.

–––––––-

Again	the	approaching	hurricane	is	600	miles	away	with	current	wind	speeds	of	20	mph.
The	pressure	difference	between	the	center	and	surroundings	of	the	hurricane	at	this	point



is	about	60	mb.	During	its	approach,	it	will	come	as	close	as	100	miles	and	is	expected	to
strengthen	to	80	mb.	What	is	the	maximum	wind	speed	v	we	can	expect?

First	we	determine	the	constant:

20	·	(600)0.6	/	sq	root	(60)	≈	120

Now	let’s	find	the	maximum	wind	speed:

v	·	(100)0.6	/	sq	root	(80)	≈	120

v	·	1.8	≈	120

v	≈	67	mph

–––––––-

It	is	important	to	note	that	all	of	the	equations	only	hold	true	outside	the	eye	of	the	storm
(which	is	usually	about	20	to	40	miles	in	diameter).	The	maximum	wind	speed	in	a
hurricane	is	reached	at	the	wall	of	the	eye.	Inside	the	eye	wind	speeds	drop	sharply.	It	is	so
to	speak	“the	calm	within	the	storm”	and	can	make	for	a	quite	eerie	experience.

We’ll	draw	one	last	conclusion	before	moving	on.	The	size	of	the	eye	is	more	or	less	a
constant.	This	implies	that	the	maximum	wind	speed	within	a	hurricane	grows	with	the
square	root	of	the	pressure	difference.	So	if	the	pressure	difference	quadruples,	the
maximum	wind	speed	will	approximately	double.	Real-world	data	confirms	this



conclusion	within	acceptable	boundaries.	As	an	estimate	for	the	maximum	wind	speed	in	a
hurricane	you	can	use	this	formula:

v(max)	≈	16	·	sq	root(p)

The	result	is	in	mph.	For	an	average	category	four	hurricane	(p	=	80	mb)	we	can	expect
maximum	wind	speeds	of	140	mph.



Flow:

Oil	has	become	the	blood	of	the	world.	We	would	need	to	give	up	many	of	the	luxuries	we
unfortunately	often	take	for	granted	if	the	supply	of	oil	stopped.	To	ensure	that	the	flow
never	stops,	a	vast	network	of	pipelines	has	been	built,	transporting	the	precious	fossil	fuel
day	by	day	over	distances	of	thousands	of	miles.	In	this	section	we	will	take	a	look	at	the
flow	of	liquids	and	gases	within	pipes.

The	formula	we	are	focusing	on	here	is	called	Hagen-Poiseuille	law.	It	allows	the
calculation	of	the	volume	flow	rate	F	(in	m3/s)	in	pipes.	Which	quantities	do	we	need	to
accomplish	that?	We	certainly	need	the	dimensions	of	the	pipe,	or	to	be	more	specific,	the
radius	r	(in	m)	and	the	total	length	l	(in	m).	In	the	previous	section	we	stated	that	in	order
for	air	(or	any	gas	or	liquid	for	that	matter)	to	flow,	we	need	to	have	a	pressure	difference
p	(here	measured	in	Pascal	=	Pa	=	N/m2).	Thus,	this	quantity	will	also	of	importance	in
this	case.	Last	but	not	least,	we	need	an	additional	quantity	to	characterize	the	fluid	in	the
system.	Given	the	same	pipe	dimensions	and	pressure	difference,	air	will	certainly	flow	at
a	very	different	rate	than	water	or	oil.	So	to	compute	the	flow	rate,	we	also	need	the	so
called	dynamic	viscosity	μ	(in	Pa	s).

Now	we’re	ready	to	state	the	formula:

F	=	π	·	r4	·	p	/	(8	·	μ	·	l)

–––––––-

A	local	pipeline	with	the	dimensions	r	=	1	m	and	l	=	25,000	m	is	used	to	transport	oil	(μ	=



0.25	Pa	s)	to	a	city.	To	do	that,	a	pump	creates	a	pressure	difference	of	p	=	5000	Pa.	What
is	the	resulting	volume	flow	rate?

We	simply	plug	in	the	values	into	the	formula.	I	will	leave	out	the	units	for	more	clarity.
Rest	assured,	they’ll	check	out,	Hagen	and	Poiseuille	made	sure	of	that.

F	=	π	·	14	·	5000	/	(8	·	0.25	·	25,000)

F	≈	0.3	m3/s	≈	1130	m3/h

–––––––-

The	city	is	not	satisfied	with	the	flow	rate.	It	asks	us	to	increase	this	to	2500	m3/h.	What
pressure	difference	do	we	need	to	apply	for	that?	First	we	have	to	make	sure	that	we	use
the	correct	units,	which	means	the	flow	rate	must	be	in	m3/s.

2500	m3/h	≈	0.69	m3/s

Now	we	can	set	up	an	equation	using	the	formula	and	the	values	we	know.	This	leads	to:

0.69	=	π	·	14	·	p	/	(8	·	0.25	·	25,000)

0.69	=	0.000063	·	p

p	≈	11,000	Pa

We	obviously	need	a	much	stronger	pump	to	satisfy	the	city’s	demand.	A	word	regarding
conversion:	you	multiply	m3/s	by	3600	to	get	to	m3/h	and	you	divide	m3/h	by	3600	to	get	to
m3/s.	When	looking	at	flow,	this	is	a	conversion	you’ll	have	to	do	quite	often.

–––––––-



Let’s	take	a	look	at	how	varying	the	input	quantities	affects	the	resulting	volume	flow	rate:

There	is	a	very	strong	variation	with	pipe	radius.	If	you	double	the	radius,	the	volume
flow	increases	sixteen-fold.	The	pipeline	from	the	latter	example	would	transport
2500	m3/h	·	16	=	40,000	m3/h	if	the	radius	were	2	m.

If	you	double	the	length	of	the	pipeline	(or	the	viscosity	of	the	liquid),	the	volume
flow	rate	halves.	So	going	from	25	km	to	50	km	would	reduce	the	flow	rate	from
2500	m3/h	to	1250	m3/h	if	all	other	quantities	remained	the	same.

If	you	double	the	pressure	difference,	the	volume	flow	rate	doubles	as	well.	So
there’s	a	simple	proportional	relationship	between	the	two,	which	makes	altering	the
flow	by	reducing	or	increasing	pump	power	rather	straight-forward.

I	hope	this	bit	helped	you	to	appreciate	the	mathematics	involved	in	fluid	motion.	It	is
certainly	a	very	rich	and	interesting	field	that	is	worth	going	into.	So	next	time	you	browse
on	Amazon,	be	sure	to	look	for	introductory	books	on	this	topic.



Traffic:

We	just	talked	about	the	flow	of	fluids,	but	I	can	think	of	at	least	one	more	thing	that	can
(and	sometimes	just	won’t)	flow	and	that	is	car	traffic.	Mathematicians	have	come	up	with
dozens	of	models	to	simulate	car	traffic	in	order	to	make	the	whole	system	safer	and	more
efficient.	Some	models	have	proven	to	be	quite	successful	in	this	but	in	the	end,	there’s
always	one	important	factor	they	can’t	get	right:	the	unexpected	and	irrational	behavior	of
people.	Anger,	frustration,	stress	-	you	can’t	put	that	into	numbers.

Still	it’s	worthwhile	to	look	at	some	basics	of	car	traffic	mathematics.	It	has	brought	forth
some	neat	formulas	and	useful	conclusions.	For	the	formulas,	we	will	need	three
quantities:	the	flow	rate	F	(in	cars	per	hour),	the	velocity	of	the	flow	v	(in	miles	per	hour)
and	the	traffic	density	D	(in	cars	per	mile).

There’s	a	reason	why	I	wrote	“miles	per	hour”	instead	of	the	short	form	“mph”.	I	did	that
because	we	can	derive	a	very	important	formula	by	just	looking	at	the	units.	Suppose	we
multiply	the	traffic	density	D	with	the	flow	velocity	v.	What	is	the	unit	of	the	resulting
quantity?	Well,	if	we	multiply	“cars	per	mile”	with	“miles	per	hour”	we	obviously	get	the
unit	“cars	per	hour”	as	a	result,	since	the	miles	cancel	each	other	out.	This	is	just	the	unit
of	the	traffic	flow	F.	Thus:

F	=	D	·	v

So	if	there	are	D	=	40	cars	per	mile	and	the	average	speed	is	v	=	50	mph,	then	the	resulting
traffic	flow	is	F	=	2000	cars	per	hour.	Simple	as	that.	There	are	two	more	formulas	you
should	be	aware	of.	As	of	now,	we	treated	the	traffic	density	and	speed	as	independent
quantities.	But	as	you	know	from	experience,	this	is	not	necessarily	true.	We	know	that	as
the	traffic	density	grows,	the	traffic	slows	down.	So	there	must	be	a	relationship	between
the	two.

Observation	of	traffic	has	shown	that	indeed	there	is	and	that	in	good	approximation	the
average	velocity	decreases	linearly	with	density.	If	we	denote	the	free-flow	velocity	by	u
and	the	maximum	density	by	M,	then	this	formula	provides	a	good	estimate	between
traffic	speed	v	and	density	D:

v	=	u	·	(1	-	D	/	M)



One	word	about	the	new	quantities:	the	free-flow	velocity	is	the	speed	that	drivers	choose
when	the	road	is	almost	empty.	Accordingly,	it	is	usually	close	to	the	speed	limit.	As	for
the	maximum	traffic	density,	it	is	usually	around	300	cars	per	mile	and	lane,	which
corresponds	to	bumper	to	bumper	traffic.

Let’s	do	a	quick	example	before	looking	at	the	interesting	consequences	of	this
relationship.

–––––––-

Observations	have	shown	that	on	a	certain	one-lane	road	the	free-flow	velocity	is	u	=	50
mph	and	the	maximum	density	M	=	300	cars	per	mile.	We	estimate	that	the	current
average	velocity	is	about	v	=	20	mph.	What	is	the	current	traffic	density	and	flow	rate?

First	we’ll	use	the	second	formula	to	determine	the	traffic	density	D	from	the	given	data:

20	=	50	·	(1	-	D	/	300)

Divide	by	50	and	subtract	1	from	both	sides:

0.4	=	1	-	D	/	300

-	0.6	=	-	D	/	300

Finally	multiply	by	-300:

D	=	180	cars/mile

Now	that	we	also	know	the	density,	we	can	easily	compute	the	traffic	flow	rate	F	from	the
first	formula:

F	=	20	mph	·	180	cars/mile	=	3600	cars/hour



–––––––-

If	we	plug	the	relationship	between	the	density	and	speed	into	the	formula	for	traffic	flow,
we	can	see	that	the	traffic	flow	varies	in	a	parabolic	fashion	with	the	density.	At	low
densities,	when	the	road	is	almost	empty,	the	traffic	flow	increases	as	the	density	grows.
However,	at	a	specific	density	the	traffic	flow	reaches	a	maximum	value	and	decreases
after	that.	The	exciting	conclusion:	for	every	road	there’s	a	maximum	flow	rate,	which	we
call	the	capacity.

The	derivation	of	the	formula	for	the	capacity	C	(in	cars	per	hour)	requires	a	bit	of
calculus,	so	we	skip	the	derivation	and	go	right	to	the	formula.	It	includes	only	two
quantities	and	those	we	know	already:	the	free-flow	velocity	u	(in	mph)	and	the	maximum
traffic	density	M	(in	cars	per	mile).

C	=	0.25	·	u	·	M

The	calculations	also	show	that	this	maximum	flow	rate	is	always	reached	at	half	the
maximum	density.

–––––––-

We	go	back	to	the	one-lane	road	from	the	previous	example	with	u	=	50	mph	and	M	=	300
cars	per	mile.	We	computed	that	at	the	current	time	the	traffic	flow	rate	is	3600	cars	per
hour.	How	much	higher	can	this	go?	What	is	the	maximum	flow	rate	on	this	road?

C	=	0.25	·	50	mph	·	300	cars	per	mile

≈	3750	cars	per	hour

This	flow	rate	will	occur	when	the	density	drops	from	the	current	D	=	180	cars	per	mile	to
D	=	300	/	2	=	150	cars	per	mile.	Any	increase	in	density	from	the	current	value	will	only
lower	the	traffic	flow	rate

In	the	picture	below	you	can	see	the	theoretical	relationship	between	the	density	and	flow
rate	for	this	one-lane	road.



–––––––-

But	remember	that	we	are	dealing	with	a	large	number	of	people	here	experiencing	a	large
number	of	different	emotions	while	driving.	All	we	can	hope	for	are	good	approximations.
So	take	all	of	the	formulas	and	results	with	a	plus	/	minus	ten	percent	or	so	accuracy.	As
long	as	people	don’t	act	like	the	rational	beings	traffic	scientists	and	economists	would
like	them	to	be,	we	have	to	settle	for	that.



Gravity:

Every	object	that	is	in	the	proximity	of	other	objects	experiences	a	pull	toward	those.	This
is	one	of	the	most	fundamental	laws	that	exist	in	Physics.	This	pull	keeps	you	connected	to
earth,	earth	connected	to	the	sun,	the	sun	connected	to	the	Milky-Way	and	the	Milky-Way
connected	to	the	local	galaxy	cluster.	You	know	it	by	the	name	of	gravity.

The	formula	describing	this	fundamental	force	was	included	by	Newton	in	his	book
Principa,	published	in	1686.	It	relies	upon	three	quantities:	the	mass	of	one	object	m	(in
kg),	the	mass	of	another	object	M	(in	kg)	and	the	distance	between	them	d	(in	m),
measured	from	center	to	center.	On	top	of	that,	the	formula	includes	a	constant,	called	the
gravitational	constant	G	=	6.67	·	10-11	N	(m/kg)2.

The	formula	for	the	gravitational	force	(in	N)	is:

F	=	G	·	m	·	M	/	r2

Let’s	look	at	one	example	on	how	to	apply	this	formula:

–––––––-

The	mass	of	an	average	adult	is	about	m	=	75	kg.	At	any	moment,	the	person	experiences
the	gravitational	pull	of	earth	with	its	mass	of	M	=	5.97	·	1024	kg.	The	distance	of	a
person	to	earth’s	core	is	about	r	=	6,370,000	m.	Given	this,	what	is	the	gravitational	force
acting	on	this	person?	We	apply	the	formula:

F	=	G	·	80	kg	·	5.97	·	1024	kg	/	(6,370,000	m)2



F	≈	785	N

–––––––-

Let’s	look	at	how	changing	the	inputs	impacts	the	gravitational	force,	before	turning	to	a
neat	simplification.

If	we	double	the	mass	of	one	of	the	objects,	the	gravitational	force	doubles	as	well.
So	a	160	kg	person	would	experience	a	force	of	roughly	785	N	·	2	=	1570	N.	The
same	force	would	act	on	a	80	kg	person	on	a	planet	twice	the	mass	of	earth.

If	we	double	the	distance	between	the	objects,	the	force	decreases	by	a	factor	of	four.
So	if	our	average	adult	were	in	a	space	station	located	at	a	distance	6370	km	·	2	=
12740	km	from	earth’s	core,	the	gravitational	force	would	drop	to	about	785	N	:	4	=
195	N.

When	we	calculate	gravitational	forces	on	earth’s	surface,	we	don’t	need	to	go	through	the
hassle	of	dealing	with	very	small	(gravitational	constant)	or	very	large	(earth’s	mass)
numbers	every	time.	As	you	can	verify	using	the	above	formula,	the	force	on	a	1	kg	mass
located	on	earth’s	surface	is:

g	≈	9.81	N

As	common	in	physics,	I	abbreviated	this	special	value	by	g.	Scientists	call	this	the
gravitational	acceleration.	With	this	number,	we	can	write	the	law	of	gravitation	as	such:

F	=	m	·	g

with	m	being	the	mass	of	the	object	on	earth’s	surface.	Why	is	g	called	gravitational
acceleration?	You	might	remember	Newton’s	second	law,	which	states	that	the	force	of
inertia	is	the	product	of	mass	and	acceleration:

F	=	m	·	a

When	you	drop	a	body,	the	movement	is	caused	by	the	gravitational	pull.	So	we	insert	the
formula	for	gravitation	for	F	to	determine	the	resulting	acceleration:



m	·	g	=	m	·	a

g	=	a

So	g	is	not	only	the	force	a	1	kg	object	experiences	on	earth’s	surface,	it	is	also	the
acceleration	any	object	that	is	dropped	is	subject	to.	Certainly	an	important	value	to	keep
in	mind.

You	might	say	to	yourself:	that	can’t	be	right.	When	you	drop	a	feather,	it	doesn’t
accelerate	as	fast	as	a	stone.	The	thing	is:	it	does	…	in	vacuum.	Initially	the	feather
experiences	exactly	the	same	acceleration	as	the	stone,	9.81	m/s2.	It	is	only	the	presence	of
air	that	makes	them	fall	differently.	If	you	let	both	the	feather	and	the	stone	drop	in	a
vacuum	tube,	both	reach	the	bottom	at	the	same	time.	Make	sure	to	check	out	this
experiment,	it’s	a	real	eye-opener	to	see	a	feather	literally	drop	like	a	stone.

One	quick	note	about	gravitation:	it	is	the	determining	factor	for	the	universe	on	a	large
scale	as	well	as	on	a	human	scale.	But	when	things	get	smaller,	that	is,	when	we	go	to	the
realm	of	molecules,	atoms	or	even	sub-atomic	particles,	gravity	becomes	insignificant.	On
this	level,	the	electromagnetic,	strong	and	weak	force	take	over.	Atoms	don’t	care	for
gravity.



Range:

When	you	throw	an	object,	gravity	will	force	it	on	a	parabolic	path.	One	fundamental
question	that	arises	here	is:	given	that	you	threw	this	object	at	a	velocity	of	v	(in	m/s)	and
an	angle	of	θ	(read	“theta”,	in	°),	how	far	will	it	go?	To	answer	this,	you	need	to	describe
the	trajectory	in	mathematical	form	and	intersect	this	curve	with	the	ground.	Doing	that
results	in	this	very	useful	formula	for	the	range	R	(in	m):

R	=	v2	·	sin	(2	·	θ)	/	g

with	g	being	the	gravitational	acceleration.	Let’s	do	a	simple	and	straight-forward
application.

–––––––-

A	Dolphin	jumps	out	of	the	water	at	a	velocity	of	v	=	5.5	m/s	and	an	angle	of	θ	=	70°	as
shown	in	the	image.	What	distance	will	it	cover	before	hitting	the	water	again?	Remember
that	the	gravitational	acceleration	is	g	=	9.81	m/s2.

R	=	(5.5	m/s)2	·	sin(140°)	/	9.81	m/s2	≈	2	m

If	the	dolphin	wants	to	get	far,	the	best	choice	is	to	jump	at	an	angle	of	θ	=	45°.	This
would	increase	the	range	to:



R	=	(5.5	m/s)2	·	sin(90°)	/	9.81	m/s2	≈	3.1	m

which	is	the	maximum	range	at	the	given	velocity.

–––––––-

Let’s	look	at	how	changing	the	quantities	that	determine	the	trajectory	impact	the	resulting
range:

If	the	velocity	is	doubled,	the	range	increases	fourfold.	So	by	jumping	at	11	m/s
rather	than	5.5	m/s,	the	dolphin	could	have	jumped	a	distance	of	2	m	·	4	=	8	m.

As	mentioned,	an	angle	of	45°	will	always	result	in	the	maximum	range	for	a	certain
velocity.	In	the	case	of	the	dolphin,	choosing	the	optimal	angle	increased	the	range	by
over	50	%.

If	the	gravitational	acceleration	is	doubled,	the	range	is	halved.	This	is	an	inverse
proportional	relationship.	On	the	moon,	where	g	has	only	one-sixth	of	earth’s	value,
the	dolphin	could	have	jumped	2	m	·	6	=	12	m.

Another	quantity	that	might	be	of	interest	in	this	case	is	the	maximum	height	reached	H
(in	m).	You	can	compute	it	with	this	somewhat	complicated	looking	equation:

H	=	0.5	·	(	v	·	sin(θ)	)2	/	g

For	our	dolphin,	we	get	a	maximum	height	of	H	=	1.4	m	for	θ	=	70°	and	H	=	0.8	m	for	θ	=
45°.	As	you	can	see,	getting	as	far	as	possible	does	not	always	mean	getting	as	high	as
possible.



Impact	Velocity:

We	will	stick	to	gravity	for	yet	another	great	formula.	For	many	applications	it	is
necessary	(or	just	interesting)	to	know	the	speed	at	which	a	dropped	object	impacts	the
ground.	To	calculate	it,	we	need	two	quantities:	the	drop	height	h	(in	m)	and	the
gravitational	acceleration	g	(in	m/s2).	Using	the	conservation	of	energy,	one	can	derive	this
formula	for	the	impact	velocity	v	(in	m/s):

v	=	sq	root	(2	·	g	·	h)

Simple,	isn’t	it?	But	note	that	air	resistance	was	neglected,	which	means	that	with	an
atmosphere	present,	the	computed	value	will	only	be	an	approximation.	The	formula
produces	the	most	accurate	values	for	heavy	objects	dropped	from	lower	heights.	In	the
section	“Energy	Conservation”	you	will	see	how	this	formula	is	derived.

–––––––-

A	crane	accidentally	drops	a	heavy	girder	from	a	height	of	20	m.	At	what	speed	will	it
impact?

v	=	sq	root	(2	·	9.81	m/s2	·	20	m)

v	≈	20	m/s	=	72	km/h	≈	45	mph

In	this	case	the	approximation	should	be	very	well	as	the	girder	is	heavy	and	not
influenced	significantly	by	air	resistance	over	such	a	short	distance.

–––––––-

Let’s	see	how	changing	the	input	quantities	impacts	the	impact	velocity:

If	you	quadruple	the	drop	height	(or	the	gravitational	acceleration),	the	impact
velocity	doubles.	So	dropping	the	girder	from	20	m	·	4	=	80	m	will	cause	it	to	land
with	45	mph	·	2	=	90	mph.



Once	the	drop	height	gets	too	big	and	air	resistance	becomes	a	determining	factor,	the
formula	doesn’t	work	anymore.	Luckily	there’s	another	formula	for	just	this	case.	After	a
while	of	free	fall,	any	object	will	reach	and	maintain	a	terminal	velocity.	To	calculate	it,
we	need	a	lot	of	inputs.

The	necessary	quantities	are:	the	mass	of	the	object	(in	kg),	the	gravitational	acceleration
(in	m/s2),	the	density	of	air	D	(in	kg/m3),	the	projected	area	of	the	object	A	(in	m2)	and	the
drag	coefficient	c	(dimensionless).	The	latter	two	quantities	need	some	explaining.

The	projected	area	is	the	largest	cross-section	in	the	direction	of	fall.	You	can	think	of	it	as
the	shadow	of	the	object	on	the	ground	when	the	sun’s	rays	hit	the	ground	at	a	ninety
degree	angle.	For	example,	if	the	falling	object	is	a	sphere,	the	projected	area	will	be	a
circle	with	the	same	radius.

The	drag	coefficient	is	a	dimensionless	number	that	depends	in	a	very	complex	way	on	the
geometry	of	the	object.	There’s	no	simple	way	to	compute	it,	usually	it	is	determined	in	a
wind	tunnel.	However,	you	can	find	the	drag	coefficients	for	common	shapes	in	tables.

Now	that	we	know	all	the	inputs,	let’s	look	at	the	formula	for	the	terminal	velocity	v	(in
m/s).	It	will	be	valid	for	objects	dropped	from	such	a	great	heights	that	they	manage	to
reach	this	limiting	value,	which	is	a	result	of	the	air	resistance	canceling	out	gravity.

v	=	sq	root	(2	·	m	·	g	/	(c	·	D	·	A)	)

Let’s	do	an	example.



–––––––-

Skydivers	are	in	free	fall	after	leaving	the	plane,	but	soon	reach	a	terminal	velocity.	We
will	set	the	mass	to	m	=	75	kg,	g	=	9.81	(as	usual)	and	D	=	1.2	kg/m3.	In	a	head-first
position	the	skydiver	has	a	drag	coefficient	of	c	=	0.8	and	a	projected	area	A	=	0.3	m2.
What	is	the	terminal	velocity	of	the	skydiver?

v	=	sq	root	(2	·	75	·	9.81	/	(0.8	·	1.2	·	0.3)	)

v	≈	70	m/s	≈	260	km/h	≈	160	mph

–––––––-

According	to	some	reports,	there	have	already	been	injuries	due	to	coins	being	dropped
from	tall	buildings	such	as	the	Empire	State.	Is	that	possible?	How	fast	would	a	coin
dropped	from	such	heights	hit	the	ground	(or	people	walking	on	it)?

Let’s	collect	the	necessary	inputs.	If	the	coin	falls	flat,	it	has	a	drag	coefficient	of	c	=	1.1
(see	image).	A	dime	has	a	mass	of	m	=	0.002	kg	and	a	radius	of	about	8	mm	=	0.008	m,
which,	as	you	will	learn	in	the	section	“Going	in	Circles”,	corresponds	to	an	area	of	A	=
0.0002	m2.	The	air	density	near	the	ground	is	D	=	1.25	kg/m3.	Now	let’s	apply	the	formula
to	see	what	the	coin’s	terminal	velocity	will	be:

v	=	sq	root	(2	·	0.002	·	9.81	/	(1.1	·	1.25	·	0.0002)	)

v	≈	12	m/s	≈	43	km/h	≈	27	mph

This	is	for	example	much	less	than	an	airsoft	pellet,	which	at	close	distance	can	impact
with	100	m/s.	So	at	this	speed	the	coin	could	only	cause	injuries	if	it	fell	directly	on	a
person’s	eyes.	Otherwise	it	would	hurt	a	little	and	that’s	about	it.

–––––––-



Again,	let’s	take	a	look	how	changing	the	inputs	varies	the	terminal	velocity.	Two	bullet
points	will	be	sufficient	here:

If	you	quadruple	the	mass	(or	the	gravitational	acceleration),	the	terminal	velocity
doubles.	So	a	very	heavy	skydiver	or	a	regular	skydiver	on	a	massive	planet	would
fall	much	faster.

If	you	quadruple	the	drag	coefficient	(or	the	density	or	the	projected	area),	the
terminal	velocity	halves.	This	is	why	parachutes	work.	They	have	a	higher	drag
coefficient	and	larger	area,	thus	effectively	reducing	the	terminal	velocity.

For	now,	let’s	move	away	from	gravity	and	its	consequences.	But	we	will	surely	return	to
it	in	later	sections.



Braking	distance:

If	something	unexpected	happens	while	driving,	hitting	the	brakes	should	be	your	first
impulse.	How	long	it	then	takes	for	you	to	come	to	a	complete	halt	depends	on	many
things.	Here	are	the	quantities	you	need	to	compute	the	braking	distance.

An	important	factor	is	obviously	the	current	speed	v	(in	m/s).	Aside	from	that,	we	also
need	the	reaction	time	t	(in	s)	and	the	deceleration	(in	m/s2).	The	latter	will	depend	mainly
on	how	strongly	you	hit	the	brakes	and	the	conditions	of	the	road.	If	you’ve	ever	had	the
misfortune	of	needing	to	stop	a	car	on	snow	or	ice,	you	certainly	can	confirm	this.	The
formula	for	the	braking	distance	d	(in	m)	is:

d	=	v	·	t	+	v2	/	(2	·	a)

Before	going	to	the	example,	let’s	first	look	at	typical	values	for	the	inputs.	For	an	alert
and	sober	driver	the	reaction	time	is	t	=	1	s.	When	the	driver	is	intoxicated	or	writing	text
messages,	this	can	increase	to	t	=	2	s.	As	for	the	deceleration,	typical	values	are	a	=	8	m/s2

on	dry	asphalt,	a	=	6	m/s2	on	wet	asphalt,	a	=	2.5	m/s2	on	snow	and	a	=	1	m/s2	on	ice,	all
in	the	case	of	full	braking.

–––––––-

A	sober	driver	(t	=	1	s)	hits	the	brakes	at	v	=	75	mph	≈	34	m/s	on	dry	asphalt	(a	=	8	m/s2).
What	is	his	braking	distance?

d	=	34	·	1	+	342	/	16	≈	105	m	≈	350	ft

How	does	this	compare	to	a	drunk	driver	(t	=	2	s)	under	the	same	conditions?	We	apply
the	formula	again:

d	=	34	·	2	+	342	/	16	≈	140	m	≈	460	ft

The	drunk	driver’s	braking	distance	is	thus	35	m	(or	about	8	car	lengths)	longer.	It	goes
without	saying	that	this	significant	increase	can	decide	between	life	and	death.



Let’s	go	back	to	the	sober	driver	and	see	what	the	105	m	braking	distance	turns	into	when
the	road	is	icy:

d	=	34	·	1	+	342	/	2	≈	610	m	≈	2000	ft

Surprised?	Recalling	last	winter,	I’m	not.	This	value	is	why	no	informed,	sane	person
would	ever	consider	going	more	than	30	mph	or	so	when	the	road	is	fully	covered	in	ice.
Even	at	30	mph	the	braking	distance	is	still	circa	105	m.

–––––––-

As	for	the	dependencies,	it	is	important	to	note	that	the	braking	distance	increases	with	the
square	of	the	velocity	rather	than	being	proportional.	This	means	that	if	you	double	the
speed,	the	braking	distance	will	increase	(approximately)	fourfold.



Centrifugal	Force:

When	you	drive	your	car	through	a	curve,	you	notice	that	there’s	a	force	pushing	you	to
the	side.	It	is	caused	by	your	inertia.	Your	body	wants	to	move	forwards	in	a	straight	line,
but	the	car	disagrees	and	forces	you	to	turn.	What	you	experience	is	the	centrifugal	force.

The	centrifugal	force	acts	on	a	body	whenever	it	changes	direction.	It	is	not	present	in
motion	along	a	straight	line.	When	it	acts,	it	always	does	so	perpendicular	to	the	direction
of	travel	and	away	from	the	center	of	the	curve.	So	this	force	tries	to	“throw	you	out”	of	a
curve.

Let’s	turn	to	the	formula.	It	will	work	whenever	we	have	circular	motion	(most	curves	are
parts	of	circles,	so	it	works	there	as	well).	As	inputs	we	need	the	mass	of	the	moving
object	m	(in	kg),	its	velocity	v	(in	m/s)	and	the	radius	of	the	curve	r	(in	m).	Given	these
quantities,	we	can	easily	compute	the	magnitude	of	the	centrifugal	force:

F	=	m	·	v2	/	r

Let’s	turn	to	an	example.

–––––––-

Assume	the	average	adult	of	mass	m	=	75	kg	drives	with	v	=	35	m/s	through	a	curve	of
radius	r	=	400	m.	He	will	experience	this	centrifugal	force:

F	=	75	kg	·	(35	m/s)2	/	400	m	≈	230	N



Is	that	noticeable?	Well,	let’s	compare	it	to	the	gravitational	force.	We	calculated	that	the
average	adult	experiences	a	gravitational	pull	of	785	N,	the	centrifugal	force	in	this	case
is	a	little	less	than	one	third	of	that.	Very	much	noticeable!

–––––––-

Let’s	turn	an	analysis	of	how	changing	the	inputs	impacts	the	magnitude	of	the	centrifugal
force:

If	we	double	the	mass	of	the	moving	object,	the	centrifugal	force	doubles	as	well.	So
a	160	kg	person	would	experience	a	force	of	230	N	·	2	=	460	N.

If	we	double	the	velocity	of	the	object,	the	centrifugal	force	increases	fourfold.
Because	of	this	strong	variation,	even	a	little	too	fast	can	throw	your	car	and	you	out
of	the	curve.	So	choose	your	speed	carefully.	The	average	adult	driving	with	35	m/s	·
2	=	70	m/s	through	the	curve	from	our	example,	would	be	pulled	with	4	·	230	N	=
920	N	sideways,	which	is	more	than	the	gravitational	force.

If	we	double	the	radius	of	the	curve,	thus	making	the	curve	wider,	the	centrifugal
force	halves.	An	increase	in	radius	to	400	m	·	2	=	800	m	would	decrease	the	force
experienced	to	230	N	:	2	=	115	N.

Combing	the	formula	for	the	centrifugal	force	with	the	law	of	gravitation	can	lead	to	very
powerful	results,	as	can	be	seen	in	the	next	section.



Satellite	Speed:

To	understand	this	part,	you	need	to	read	the	sections	“Gravity”	and	“Centrifugal	Force”,
because	here	we	will	combine	the	two.	Why	don’t	satellites	fall	to	the	ground?	After	all,
there’s	gravity	pulling	them	to	the	earth’s	surface	at	all	times.	Still,	they	stay	up	there,
orbiting	the	planet.

The	fact	that	they	keep	orbiting	despite	gravity	trying	to	ground	them	shows	that	there
must	be	a	second	force	canceling	gravity	out.	As	you	might	have	guessed	by	the
introduction,	this	is	the	centrifugal	force.	It	acts	away	from	the	center	of	the	circular
motion,	so	in	the	exact	opposite	direction	of	the	gravitational	force.

For	the	two	forces	to	cancel	each	other	out,	they	not	only	need	to	have	opposite	directions
but	also	the	same	magnitude.	So	this	equation	must	hold	true:

G	·	m	·	M	/	r2	=	m	·	v2	/	r

On	the	left	side	is	the	expression	for	the	gravitational,	on	the	right	side	that	of	the
centrifugal	force.	As	for	the	quantities:	m	is	the	mass	of	the	satellite,	M	the	mass	of	earth,
r	the	distance	between	the	satellite	and	earth	(or	to	be	more	specific:	from	the	satellite	to
the	center	of	earth)	and	v	the	velocity	of	the	orbiting	satellite.

What’s	so	great	about	this	equation	is	that	we	can	deduce	a	neat	formula	that	shows	how
the	velocity	v	of	a	satellite	depends	on	its	distance	r	to	earth’s	center:

v	=	sq	root	(G	·	M	/	r)



Did	you	notice	what	happened	to	the	satellite’s	mass?	During	the	process	of	solving	for	v
it	simply	vanished.	This	is	nice	because	that’s	one	less	variable	to	know.	So	the	mass	of	a
satellite	does	not	impact	the	speed	it	will	have	in	orbit	at	all.

–––––––-

A	satellite	is	orbiting	at	a	distance	r	=	30,000,000	m	from	earth’s	center.	What	is	its
speed?	For	that	we	also	need	to	know	the	mass	of	earth,	which	you	can	find	in	the	section
“Gravity”.	Inputting	the	values	leads	to:

v	=	square	root	(G	·	5.97	·	1024	kg	/	30,000,000	m)

v	≈	3640	m/s	≈	13,100	km/h	≈	8130	mph

–––––––-

Let’s	take	a	look	at	out	how	altering	the	input	quantities	changes	the	orbital	speed.

If	you	increase	the	planet’s	mass	fourfold,	the	orbital	speed	doubles.	So	at	the	given
distance,	orbiting	a	planet	four	times	the	mass	of	earth	would	result	in	a	speed	of
about	3640	m/s	·	2	=	7280	m/s.

If	you	increase	the	satellite’s	distance	to	the	planet	fourfold,	its	velocity	halves.	So
bringing	the	satellite	up	to	a	distance	of	30	Mm	·	2	=	60	Mm	would	reduce	its	speed
to	3640	m/s	:	2	=	1820	m/s.

We	will	take	a	look	at	more	examples,	but	before	we	can	do	that,	we	need	to	do	some
preparation.	Let’s	deduce	a	formula	for	the	rotation	period	of	the	satellite.	If	the	satellite	is
in	orbit	at	a	distance	r	from	earth’s	center,	it	must	travel	a	distance	of:

d	=	2	·	π	·	r

to	complete	one	revolution.	More	on	this	formula	in	the	section	“Going	in	Circles”.
Remember	that	to	compute	how	long	it	takes	an	object	to	travel	a	certain	distance,	we



divide	the	distance	by	the	velocity.	For	example,	if	you	need	to	travel	d	=	400	miles	and
your	average	speed	is	v	=	80	mph,	then	the	trip	will	take	you:	T	=	d	/	v	=	5	hours.
Similarly,	it	will	take	the	satellite	this	time	T	(in	s)	to	complete	one	revolution:

T	=	2	·	π	·	r	/	v

Since	we	already	derived	a	formula	for	the	speed	of	the	satellite,	let’s	insert	it	here.	This
leads	to:

T	=	2	·	π	·	sq	root	(r3	/	G	·	M)

This	formula	allows	us	to	calculate	a	very	special	orbit	as	you	will	see	in	the	second
example.	Before	we	do	that,	let’s	revisit	the	satellite	from	the	previous	example.

–––––––-

We	already	determined	that	a	satellite	orbiting	at	a	distance	of	r	=	30,000,000	m	from
earth’s	center	will	move	at	a	speed	of	v	=	3640	m/s.	So	instead	of	blindly	applying	the
formula,	we’ll	just	compute	the	distance	it	travels	during	one	revolution	and	compute	the
rotation	period	from	that.

d	=	2	·	π	·	30,000,000	m

d	≈	188,400,000	m

As	mentioned,	the	rotation	period	is	just	the	distance	divided	by	the	speed.	Thus	we	get:

T	=	d	/	v	≈	51,760	s	≈	14.4	h

In	the	time	it	takes	the	earth	to	do	six	revolutions	(24	h	·	6	=	144	h),	the	satellite	will
complete	ten	(14.4	h	·	10	=	144	h).

–––––––-



As	we	increase	the	distance	of	the	satellite	to	earth,	the	rotation	period	increases	as	well.
This	means	that	at	a	certain	distance,	the	satellite	will	have	the	same	rotation	period	as
earth	(24	h)	and	thus	will	always	hover	above	the	same	point.	So	for	an	observer	on	earth,
the	satellite	seems	to	be	stationary.	Hence	the	name	geostationary	orbit	for	this	special
orbit.	At	what	distance	from	the	center	of	earth	is	the	geostationary	orbit	located?

24	hours	correspond	to	86,400	seconds.	Using	the	formula	for	the	rotation	period	and	this
value	we	can	easily	set	up	an	equation	for	the	radius	of	the	geostationary	orbit	(now	you
know	why	we	needed	to	do	some	preparation):

86,400	=	2	·	π	·	sq	root	(r3	/	G	·	M)

Dividing	by	2	·	π	and	squaring	leads	to:

(43,200	/	π)2	=	r3	/	G	·	M

Now	we	multiply	both	sides	by	G	·	M	and	apply	the	third	root,	resulting	in	this	value	for
the	radius	of	the	geostationary	orbit:

r	≈	42,200	km

Subtracting	earth’s	radius	of	6400	km,	this	means	that	the	satellite	is	at	an	altitude	of
35.800	km	above	earth’s	surface.	Just	to	put	that	into	perspective:	commercial	planes	fly
at	heights	of	10	to	12	km.

In	1945	the	science-fiction	author	Arthur	C.	Clarke	already	proposed	to	place	satellites	at
this	altitude	to	make	world-wide	radio	communication	possible.	In	1963	Syncom	2	became
the	first	operational	satellite	in	geostationary	orbit.	Today	more	than	250	satellites	are	in
place	there.

–––––––-

During	the	course	of	this	book	we	will	see	more	examples	of	how	we	can	combine	two
forces	to	produce	very	useful	results.	The	next	chapter	is	such	an	example	and	we	stick	to
the	two	forces	we	just	talked	about.





Roller	Coaster	Loops:

Roller	Coaster	Loops	are	the	highlight	of	any	visit	to	an	amusement	park.	They	are	the
ultimate	thrill,	though	I	have	to	admit	that	personally	I	prefer	to	stay	away	from	them.
Let’s	just	say	you	must	have	the	right	stomach	for	this	experience.

Again	we	should	ask	ourselves	why	the	train	doesn’t	just	fall	down	during	the	loop	and
again	the	answer	will	be:	the	centrifugal	force	cancels	out	gravity.	This	time	we	can	use
the	simplified	formula	for	the	gravitational	force	as	all	of	this	happens	at	the	surface	of
earth.

We	denote	the	mass	of	the	train	by	m	(in	kg),	the	velocity	at	the	top	of	the	loop	by	v	(in
m/s)	and	the	radius	of	the	loop	by	r	(in	m).	To	derive	the	minimum	speed	required	to
complete	the	loop	successfully,	we’ll	set	the	formula	for	the	gravitational	force	equal	to
that	of	the	centrifugal	force:

m	·	g	=	m	·	v2	/	r

v	=	sq	root	(r	·	g)

Just	like	in	the	case	of	the	satellites,	the	mass	does	not	turn	out	to	be	an	influencing	factor.
A	more	massive	train	will	have	a	higher	gravitational	pull	as	well	as	a	higher	centrifugal
push,	so	the	ratio	of	the	two	remains	the	same.	This	is	great	because	this	way,	we	don’t
have	to	worry	about	how	the	equilibrium	of	the	forces	is	affected	by	varying	numbers	of
people	in	the	train.

As	you	can	see,	the	determining	factor	here	is	the	radius	of	the	loop.	If	you	quadruple	it,
the	required	speed	doubles.	Of	course	the	gravitational	acceleration	is	in	there	as	well,	but
usually	we	don’t	care	that	much	for	roller	coasters	on	other	planets	or	moons,	so	we	can
regard	it	as	a	constant.

Another	quantity	that	is	of	interest	here	is	the	required	entry	and	exit	speed.	Note	that	for
the	computation	of	the	force	equilibrium	we	just	needed	the	speed	at	the	top	of	the	loop.
But	naturally	this	speed	is	a	result	of	how	fast	we	enter	the	loop.	We	can	derive	the
formula	for	the	entry	and	exit	speed	u	(in	m/s)	using	the	energy	conservation	law,	which
will	be	featured	in	a	later	section	of	this	book.



u	=	sq	root	(5	·	r	·	g)	≈	2.24	*	v

This	relation	holds	true	assuming	that	ground	friction	and	air	resistance	can	be	neglected
(which	is	usually	a	good	approximation	for	roller	coaster	loops).

–––––––-

The	largest	roller	coaster	loop	can	be	found	at	Six	Flags	Magic	Mountain	in	Valencia,
California.	Its	radius	is	roughly	r	=	22	m.	How	fast	does	a	train	need	to	be	at	the	top	of
the	loop	to	not	drop	down?	What	is	the	minimum	entry	speed	for	the	loop?

Let’s	turn	to	the	first	question:

v	=	sq	root	(22	m	·	9.81	m/s2)

v	≈	15	m/s	≈	53	km/h	≈	33	mph

At	the	top	of	the	loop	it	needs	move	with	at	least	33	mph.	As	for	the	minimum	entry	speed,
according	to	the	second	formula	this	is	just	the	velocity	at	the	top	times	2.24:

u	≈	33.5	m/s	≈	120.5	km/h	≈	75	mph

–––––––-

Often	the	entry	speed	is	provided	by	a	preceding	sharp	drop	in	height	(which	by	itself	is
quite	the	exciting	experience).	What	height	difference	do	we	need	so	that	the	drop
provides	the	necessary	entry	velocity?	In	the	section	“Impact	Speed”	you	learned	that	an
object	being	dropped	and	falling	freely	over	a	height	h	gains	this	speed	v:

v	=	sq	root(2	·	g	·	h)

Interestingly	enough,	this	formula	also	works	for	our	roller	coaster	train	as	long	as	we	can
neglect	frictional	forces.	So	to	calculate	the	necessary	drop	in	height	h	(in	m)	to	gain	the



entry	speed	u	(in	m/s),	we	just	rearrange	the	formula	above:

h	=	u2	/	(2	·	g)	=	2.5	·	r

After	inserting	the	second	formula	of	this	section,	the	one	for	the	entry	speed,	into	this
formula,	we	can	conclude	that	the	required	drop	in	height	is	always	2.5	times	the	radius.

–––––––-

Let’s	revisit	the	largest	roller	coaster	loop	with	its	radius	of	r	=	22	m.	If	a	train,	driven
only	by	gravity,	should	successfully	complete	the	loop,	it	must	drop	by	at	least	h	=	55	m	≈
180	ft	before	entering	the	loop.

–––––––-

Of	course	in	reality	the	situation	is	a	little	more	complex	than	this.	Ground	friction	and	air
resistance	must	be	taken	into	consideration	and	the	loops	are	often	not	exact	circles	but
rather	have	a	clothoidal	form.	But	as	a	first	approximation,	the	above	formulas	do	a
fantastic	job.



Lift:

Just	like	the	satellites	we	just	talked	about,	planes	resist	the	pull	of	gravitation.	However,
they	do	it	by	very	different	means.	So	let’s	look	at	why	flying	works.	When	an	airplane
flies,	some	of	the	air	is	forced	to	go	over	and	some	of	it	to	go	under	the	wing.	Because	of
the	geometry	of	the	wing,	the	air	that	flows	over	the	wing	goes	faster	than	the	air	below	it.
This	is	a	very	crucial	point	because,	according	to	the	Bernoulli	principle,	the	faster	the	air
flows,	the	smaller	the	pressure	is.

So	splitting	the	air	using	the	wing	causes	a	pressure	difference.	Above	the	wing,	the	air
moves	fast	and	thus	the	pressure	is	low,	while	below	the	wing,	we	have	the	opposite
situation.	This	pressure	difference	pushes	the	wing,	and	with	it	the	plane,	upwards.	The
resulting	force	is	called	lift	and	there’s	a	simple	formula	to	calculate	it.

Here	are	the	quantities	we	need	for	understanding	the	formula:	the	velocity	v	(in	m/s)	of
the	plane	relative	to	the	air,	the	area	A	(in	m2)	of	the	wing,	the	density	D	(in	kg/m3)	of	the
air	surrounding	the	plane	and	a	less	known	quantity	called	the	coefficient	of	lift	c
(dimensionless).	The	coefficient	of	lift	depends	on	the	specific	geometry	of	the	wing	and
the	angle	between	the	wing	chord	and	the	streaming	air,	which	is	known	as	the	angle	of
attack.

Given	these	quantities,	calculating	the	lift	(in	N)	couldn’t	be	easier.	We	just	need	to	plug
them	into	this	formula:

L	=	0.5	·	c	·	D	·	A	·	v2

–––––––-



A	Boeing	747,	also	called	Jumbo	Jet,	has	a	lift	coefficient	of	c	=	0.3	when	the	angle	of
attack	is	zero.	We	want	to	calculate	the	lift	at	cruising	altitude.	In	these	heights	the	air
density	is	approximately	D	=	0.3	kg/m3.	The	wing	area	of	a	Jumbo	Jet	is	A	=	511	m2	and
the	cruising	speed	v	=	305	m/s.	This	is	all	we	need	to	compute	the	lift:

L	=	0.5	·	0.3	·	0.3	kg/m3	·	511	m2	·	(305	m/s)2

L	≈	2,150,000	N

So	how	does	this	compare	to	the	gravitational	force	on	(in	short:	weight	of)	the	Jumbo
Jet?	Well,	we	don’t	even	need	to	compute	that.	In	order	to	stay	at	cruising	altitude,	the	lift
must	cancel	out	the	gravitational	force.	So	lift	and	weight	must	be	the	same	at	level	flight.

–––––––-

How	the	the	parameters	in	the	formula	impact	lift?

If	you	double	the	coefficient	of	lift,	the	lift	doubles	as	well.	So	if	the	Jumbo	Jet
increases	its	lift	coefficient	to	0.3	·	2	=	0.6	(for	example	by	increasing	the	angle	of
attack),	the	lift	increases	to	2150	kN	·	2	=	4300	kN.	Doubling	the	density	of	air	D	and
the	wing	area	A	has	the	same	impact	on	lift.

If	you	double	the	velocity	of	the	plane,	the	lift	increases	fourfold.	For	the	Jumbo	jet
this	means	that	at	a	velocity	of	305	m/s	·	2	=	610	m/s,	it	would	experience	a	lift	of
2150	kN	·	4	=	8600	kN	(and	probably	break	apart	very	quickly	as	the	material
couldn’t	handle	such	velocities).

There’s	another	formula	that	is	helpful	in	calculating	lift.	The	air	density	is	not	a	constant,
it	varies	with	height.	The	higher	you	go,	the	less	dense	the	air	becomes.	The	formula
below	can	be	used	to	approximate	the	air	density	D	(in	kg/m3)	at	a	certain	height	h	(in	m):

D	=	1.25	·	exp(-0.0001	·	h)

–––––––-



According	to	this	formula,	the	air	density	at	sea	level	(h	=	0	m)	and	at	the	top	of	the
Mount	Everest	(h	=	8850	m)	is	respectively:

D	=	1.25	·	exp(-0.0001	·	0	m)	=	1.25	kg/m3

D	=	1.25	·	exp(-0.0001	·	8850	m)	≈	0.52	kg/m3

–––––––-

How	does	this	variation	in	density	impact	lift?	Remember	that	as	the	air	density	shrinks,
so	does	lift.	Thus,	when	you	increase	altitude,	lift	decreases.	Or	in	other	words:	as	you	go
up,	you	need	to	go	faster	to	maintain	a	certain	amount	of	lift	(which	is	just	what	planes	do
when	they	climb).

Another	consequence	of	this	is	that	the	necessary	take-off	speed	is	bigger	for	high-altitude
airports.	The	fact	that	at	greater	heights	the	plane’s	engines	produce	less	thrust	(as	well	as
less	reverse	thrust)	makes	taking	off	and	landing	at	such	airports	even	more	challenging.



Airplane	Speed:

It	was	already	mentioned	in	the	previous	section	that	in	order	to	achieve	level	flight,	you
need	the	lift	to	cancel	out	the	gravitational	pull	exactly.	We	can	formulate	that
mathematically	by	setting	lift	equal	to	weight.

0.5	·	c	·	D	·	A	·	v2	=	m	·	g

Note	that	I	used	the	simplified	formula	for	the	gravitational	force,	which	you	might	find
odd	since	I	stated	that	it	only	holds	true	at	earth’s	surface	(on	which	we	clearly	are	not	in
this	case).	But	remember	the	dimensions	we	are	talking	about	here.	Earth’s	radius	is	about
6400	km,	whereas	planes	usually	fly	in	altitudes	12	km	or	below.	So	for	most	practical
purposes,	12	km	altitude	is	still	at	the	surface	of	earth.

What’s	nice	about	the	above	combination	of	lift	and	weight	is	that	we	can	compute	an
airplane’s	equilibrium	speed	from	it	by	solving	for	v.	The	result	looks	like	this:

v	=	sq	root	(	2	·	m	·	g	/	(c	·	D	·	A)	)

–––––––-

A	loaded	Cessna	152	has	a	mass	of	about	m	=	700	kg,	lift	coefficient	c	=	1.2	and	wing
area	A	=	15	m2.	What	is	its	equilibrium	speed	at	very	low	altitudes?	We	will	use	the	air
density	at	sea	level	D	=	1.25	kg/m3	and	g	=	9.81	m/s².	Inputting	this	into	the	above
formula	leads	to:



v	=	sq.	root	(	2	·	700	·	9.81	/	(1.2	·	1.25	·	15)	)

v	≈	25	m/s	=	90	km/h	≈	56	mph

–––––––-

Let’s	look	at	how	varying	the	inputs	will	alter	the	equilibrium	speed	of	an	airplane:

If	you	quadruple	the	plane’s	mass,	the	equilibrium	speed	doubles.	A	plane	four	times
the	mass	of	the	Cessna	152	(with	all	other	parameters	unchanged),	would	need	to	fly
at	56	mph	·	2	=	112	mph	to	maintain	its	altitude.

If	you	quadruple	the	lift	coefficient	(or	density	or	wing	area),	the	equilibrium	speed
halves.	So	if	we	were	able	to	find	a	wing	geometry	that	would	result	in	the	lift
coefficient	being	quadrupled,	the	Cessna	152	could	fly	as	slow	as	56	mph	/	2	=	28
mph	and	still	remain	in	level	flight.

This	section	showed	once	more	that	we	can	get	powerful	results	by	combining	formulas.
The	concept	of	equilibrium	of	forces	worked	for	satellites	as	well	as	for	airplanes.
Whenever	an	object	maintains	height,	stands	still	or	moves	in	a	straight-line,	there	must	be
an	equilibrium	of	forces	causing	that.

So	it’s	not	all	about	formulas,	but	also	about	concepts	of	combining	them	in	a	meaningful
way.	The	equilibrium	of	forces,	the	conservation	of	energy,	linear	momentum	and	angular
momentum	provide	such	meaningful	ways.



Momentum:

Now	we	get	to	a	very	fundamental	physical	quantity,	linear	momentum.	Its	definition	is
very	simple.	An	object	with	mass	m	(in	kg)	moving	at	the	velocity	v	(in	m/s)	has	the
momentum:

p	=	m	·	v

So	a	massive	object	moving	very	fast	has	a	lot	of	momentum,	while	a	light	object	moving
very	slow	has	only	little.	If	an	object	doesn’t	move	at	all,	its	momentum	is	zero.	So	why
should	we	care	about	that?	It	seems	rather	artificial	to	define	such	a	quantity.	But	here’s
the	beautiful	part:	in	any	system	of	objects,	total	momentum	is	conserved.	So	if	one	object
loses	momentum,	the	other	objects	have	to	gain	exactly	this	amount.	In	mathematical
terms:

p	=	constant

And	this	is	our	great	formula.	One	cannot	overstate	the	importance	of	it.	It	is	as	important
as	the	conservation	of	energy	and	without	it,	we	would	still	be	in	the	dark	about	many
aspects	of	nature.	It	works	for	a	cluster	of	stars	as	well	as	for	two	billiard	balls.	As	far	as
we	know,	this	law	true	in	all	of	the	universe.	It	is	how	the	universe	works.

But	for	our	example,	let’s	not	get	carried	away.

–––––––-

Recoil	is	a	consequence	of	the	conservation	of	momentum.	Before	a	shot	is	fired,	both	the
gun	and	the	bullet	are	at	rest.	So	the	total	momentum	is	zero.	When	the	bullet	is	fired,	it
gains	momentum	in	a	certain	direction.	In	order	for	momentum	to	be	conserved,	the	gun
must	gain	the	same	amount	of	momentum	in	the	opposite	direction.



A	typical	9	mm	bullet	has	a	mass	of	m	=	0.012	kg	and	is	launched	at	a	velocity	of	about	v
=	450	m/s	(which	is	more	than	the	speed	of	sound).	In	the	process	of	firing,	it	has	gained
the	momentum:

p	=	0.012	kg	·	450	m/s	=	5.4	kg	m/s

How	does	this	affect	a	m’	=	3	kg	rifle?	Since	the	momentum	must	be	conserved,	this
equation	must	hold	true:

5.4	kg	m/s	=	3	kg	·	v’

with	v’	being	the	velocity	at	which	the	rifle	is	thrown	back.	Solving	this	for	v’	results	in:

v	‘	≈	1.8	m/s	≈	6.5	km/h	≈	4	mph

–––––––-

Another	classic	application	of	the	conservation	of	momentum	is	the	propulsion	of	rockets
using	gases.	Imagine	a	rocket	at	rest	in	space.	To	gain	velocity,	it	expels	m	=	3000	kg	of
hot	gas	at	a	speed	of	v	=	4200	m/s.	The	rocket	weighs	m’	=	10,000	kg.	How	fast	will	it	go
after	the	engine	is	shut	down?



The	momentum	of	the	exhaust	gas	is:

p	=	3000	kg	·	4200	m/s	=	12,600,000	kg	m/s

In	order	for	the	momentum	to	be	conserved,	the	rocket	must	gain	the	same	amount	of
momentum	in	the	opposite	direction:

12,600,000	kg	m/s	=	10,000	kg	·	v’

This	leads	to:

v’	=	1260	m/s	≈	4540	km/h	≈	2810	mph

Note	that	it	since	there’s	no	air	resistance	or	gravity	involved,	it	does	not	matter	at	which
rate	the	rocket	burns	the	gas.	It	could	burn	30	kg/s	for	100	seconds	or	3	kg/s	for	1000
seconds,	the	final	velocity	would	be	the	same.

–––––––-

In	the	next	sections	we’ll	deal	with	yet	another	conservation	law.	Such	conservation	laws
are	very	useful	in	doing	calculations	and	understanding	how	nature	works,	so	you	should
make	sure	to	know	them	by	heart.



Energy	Forms:

This	section	is	meant	as	preparation	for	the	next	section,	in	which	we	will	talk	about
conservation	of	energy.	To	do	that,	we	need	to	know	some	common	types	of	energy.	We
will	focus	on	types	of	energy	that	are	used	in	computing	motion.	All	energy	is	measured	in
Joules	(J)	or	units	derived	from	that.

One	energy	form	we	will	repeatedly	need	is	kinetic	energy	E(kin).	It	is	the	energy	an
object	possesses	due	to	its	speed	and	thus	also	the	minimum	energy	needed	to	bring	an
object	to	a	certain	velocity.	It	depends	only	on	two	inputs:	the	mass	of	the	object	m	(in	kg)
and	its	velocity	(in	m/s).

E(kin)	=	0.5	·	m	·	v2

Note	that	there’s	a	quadratic	dependence	on	speed	meaning	that	if	you	double	speed,	the
kinetic	energy	quadruples.

–––––––-

How	do	the	kinetic	energies	of	small	and	large	airplanes	compare?	A	loaded	Cessna	152
has	a	mass	of	m	=	700	kg	and	cruises	at	a	speed	of	about	v	=	53	m/s.	Its	kinetic	energy	is:

E(kin)	=	0.5	·	700	kg	·	(53	m/s)2

E(kin)	≈	983,000	J

So	a	small	airplane	at	cruising	altitude	has	a	kinetic	energy	in	the	order	of	one	million
joules.	What	about	a	fully	loaded	Jumbo	Jet?	The	newest	models	have	a	mass	of	m	=
400,000	kg	and	cruise	at	v	=	255	m/s.	This	translates	into:

E(kin)	=	0.5	·	400,000	kg	·	(255	m/s)2

E(kin)	≈	13,000,000,000	J



So	here	the	kinetic	energy	is	about	13	billion	joules.	With	the	kinetic	energy	required	to
bring	one	Boeing	747	to	its	cruising	altitude	you	could	you	could	do	the	same	for	13,000
Cessna	152.	That	really	puts	things	into	perspective.

–––––––-

Another	form	of	energy	objects	can	possess	and	that	is	relevant	to	motion	is	the	potential
energy	E(pot).	It	is	the	energy	an	object	has	due	to	its	location	in	a	gravitational	field.	If	a
body	is	at	a	very	high	altitude,	there’s	the	potential	for	the	release	of	a	large	amount	of
energy	by	it	dropping.	For	objects	close	to	the	surface,	the	only	quantities	involved	are	the
mass	of	the	object	m	(in	kg),	the	gravitational	acceleration	g	(in	m/s2)	and	its	height	h	(in
m).

E(pot)	=	m	·	g	·	h

All	relationships	here	are	linear.	If	you	double	the	mass	(or	gravitational	acceleration	or
height),	the	potential	energy	doubles	as	well.	Let’s	look	at	an	example.

–––––––-

Let’s	stick	with	the	Cessna	and	the	Jumbo	Jet.	They	have	respective	cruising	altitudes	of	h
=	2200	m	and	h	=	11,000	m.	What	are	their	potential	energies	in	cruising	mode?	For	the
gravitational	acceleration	we’ll	use	g	=	9.81	m/s2	as	always.	First	let’s	look	at	the
Cessna:

E(pot)	=	700	kg	·	9.81	m/s2	·	2200	m

E(pot)	≈	15,100,000	J

On	to	the	Jumbo	Jet:

E(pot)	=	400,000	kg	·	9.81	m/s2	·	11,000	m



E(pot)	≈	43,200,000,000	J

–––––––-

We	will	include	one	more	energy	form	relevant	to	motion	before	moving	on	to	the	“real
deal”,	that	is,	energy	conservation.	This	energy	form	is	frictional	energy	E(fric).	The	name
says	it	all:	it	is	the	amount	of	energy	we	need	to	provide	to	overcome	frictional	forces.	To
keep	things	simple,	we	restrict	ourselves	to	ground	friction.

The	quantities	involved	here	are:	the	mass	m	(in	kg)	of	the	object	that	is	in	motion,	the
gravitational	acceleration	g	(in	m/s2)	and	the	distance	d	(in	m)	the	object	travels.	Aside
from	that	we	also	need	the	coefficient	of	friction	μ	(dimensionless),	which	depends	on	the
material	of	the	ground,	the	material	of	the	object	and	the	nature	of	the	contact	between	the
two.

E(fric)	=	μ	·	m	·	g	·	d

Again	all	relationships	are	linear,	if	you	double	one	of	the	inputs,	the	frictional	energy
doubles	as	well.	Let’s	turn	to	an	example.

–––––––-

We	want	to	(or	rather	have	to)	displace	a	m	=	100	kg	concrete	block	by	a	distance	of	d	=
10	m	on	wood	ground.	The	coefficient	of	friction	of	concrete	on	wood	is	μ	≈	0.6.	How
much	energy	do	we	need	to	overcome	friction?

E(fric)	=	0.6	·	100	kg	·	9.81	m/s2	·	10	m

E(fric)	≈	5900	J

So	if	we	were	able	to	provide	a	power	of	200	watt	=	200	J/s	this	would	take	us	about	30
seconds.

–––––––-



Instead	of	just	displacing	the	m	=	100	kg	concrete	block	by	pushing	it	over	the	ground,
we’ll	lift	it	on	a	small	cart	and	push	the	cart.	The	friction	coefficient	is	reduced	to	μ	≈
0.03.	However,	now	we	also	need	to	provide	potential	energy	to	lift	the	block	to	a	height	of
h	=	0.25	m.	Is	this	approach	smarter	in	terms	of	energy?

The	frictional	energy	we	need	to	provide	is:

E(fric)	=	0.03	·	100	kg	·	9.81	m/s2	·	10	m

E(fric)	≈	295	J

And	this	is	the	potential	energy	we	need	to	lift	the	concrete	block	on	the	cart:

E(pot)	=	100	kg	·	9.81	m/s2	·	0.25	m

E(pot)	≈	245	J

We	do	not	include	any	energy	for	getting	the	block	off	the	cart.	This	work	can	be	done	by
gravity	alone	(not	elegantly,	but	still).	So	to	displace	the	concrete	block	by	ten	meters
using	the	cart	we	had	to	provide	in	total	295	J	+	245	J	=	540	J,	much	less	than	the	5900	J
we	needed	to	push	the	block	over	the	ground	by	brute	force.

–––––––-

Now	that	we	know	some	common	energy	types	and	how	to	compute	them,	we	are	ready	to
take	a	look	at	one	of	the	most	(if	not	the	most)	fundamental	principal	of	physics.



Energy	Conservation:

You	don’t	need	to	be	a	man	or	woman	of	many	words	to	state	the	energy	conservation
law:	the	total	amount	of	energy	is	constant	in	any	system.	Or	in	mathematical	terms:

E	=	const.

That’s	it,	pure	and	simple.	There	is	no	if,	no	when,	no	but.	All	processes	that	have	been
observed	to	this	date,	whether	under	a	electron	microscope	or	in	the	depth	of	space,	have
fully	obeyed	this	law.	As	far	as	we	know,	it	holds	true	on	any	scale	and	in	any	part	of	the
universe.	The	application	of	the	conservation	of	energy	has	led	to	many	great	formulas
and	discoveries.	We	will	only	take	a	quick	peek	into	this	rich	field	but	rest	assured	you
could	fill	entire	volumes	with	it.

As	a	first	application,	let’s	take	a	look	at	free	fall.	Note	that	the	following	deliberations
also	work	just	fine	for	pendulum	swings	or	almost	frictionless	motion	on	the	ground	over
different	heights.	From	the	perspective	of	energy	conservation,	it	doesn’t	make	much	of	a
difference.

When	a	body	is	at	a	great	height,	it	possesses	a	lot	of	potential	energy.	As	it	drops,	it	loses
potential	energy.	At	the	same	time	it	gains	speed,	which	means	that	the	kinetic	energy
increases.	If	there	are	no	other	forces	except	gravity	involved	(no	friction),	then	the	sum	of
the	potential	and	kinetic	energy	must	be	constant:

E(kin)	+	E(pot)	=	const.

This	allows	us	to	compute	the	velocity	at	any	given	height.	Note	that	initially	all	the



energy	is	in	form	of	potential	energy.	When	the	object	reaches	the	ground,	all	of	the	initial
potential	energy	has	been	transformed	into	kinetic	energy.	So	if	we	only	care	about	the
impact	velocity,	we	can	state	the	energy	conservation	in	this	form:

E(kin,	ground)	=	E(pot,	initial)

If	we	denote	the	initial	height	with	h	(in	m)	and	the	impact	velocity	with	v	(in	m/s),	we	get
this	equation:

0.5	·	m	·	v2	=	m	·	g	·	h

From	that	we	can	easily	deduce	the	impact	speed:

v	=	sq	root	(2	·	g	·	h)

Does	this	formula	look	familiar	to	you?	If	you	read	the	section	“Impact	Speed”	it	should,
as	we	already	took	a	look	at	it	there.	Now	you	know	where	this	great	formula	comes	from.
It	is	simply	the	consequence	of	the	energy	conservation	law.	So	let’s	go	right	to	the	next
application.

When	you	stop	applying	pressure	on	the	gas	pedal	in	your	car,	the	car	will	slowly	but
surely	roll	to	a	stop.	As	it	does	so,	it	loses	kinetic	energy.	Where	does	it	go?	Assuming	the
road	is	horizontal,	there	will	be	no	change	in	potential	energy.	So	it	must	transform	into
frictional	energy	(again	neglecting	air	resistance).	During	the	process	of	rolling	to	a	halt,
the	sum	of	kinetic	and	frictional	energy	must	remain	the	same	in	order	for	the
conservation	law	to	hold	true:

E(fric)	+	E(kin)	=	const.

This	allows	us	to	compute	the	velocity	after	rolling	a	certain	distance.	Again	we	are
mainly	interested	in	the	final	state,	when	all	the	initial	kinetic	energy	has	fully	transformed
into	frictional	energy.	In	mathematical	terms:

E(fric,	final)	=	E(kin,	initial)



Denoting	the	initial	speed	by	v	(in	m/s)	and	the	distance	over	which	the	car	rolled	to	a	halt
by	d	(in	m),	we	get:

μ	·	m	·	g	·	d	=	0.5	·	m	·	v2

So	the	distance	over	which	the	car	rolls	out	is:

d	=	0.5	·	v2	/	(μ	·	g)

Did	you	notice	what	happened	to	the	mass?	Again	it	simply	vanished.	The	mass	of	the	car
has	no	impact	on	the	distance	over	which	it	rolls	out.	Also	noteworthy	is	that	the
dependence	on	initial	speed	is	quadratic,	meaning	that	if	you	double	the	speed	of	the	car,
the	distance	over	which	it	rolls	out	increases	fourfold.	Isn’t	it	amazing	what	we	can	deduce
by	simply	applying	the	conservation	law?

–––––––-

The	coefficient	of	friction	for	a	car	tire	rolling	on	asphalt	is	about	μ	≈	0.015.	Over	what
distance	does	a	car	driving	at	30	mph	=	13.5	m/s	roll	out?	We	already	derived	the
necessary	formula,	so	all	we	need	to	do	is	to	plug	in	the	values.

d	=	0.5	·	13.52	/	(0.015	·	9.81)	≈	620	m	≈	2000	ft

Since	we	neglected	air	resistance,	the	actual	value	is	going	to	be	a	bit	smaller	than	that.
As	the	speed	grows,	the	influence	of	air	resistance	gets	higher	and	must	be	included.	So
the	formula	we	derived	from	the	energy	conservation	has	its	limits,	but	this	is	not	the
conservation	law’s	fault,	it	is	ours	for	leaving	out	other	factors	at	play.

–––––––-

A	hope	this	section	helped	you	to	appreciate	the	meaning	and	usefulness	of	the	energy
conservation	law	in	physics.	If	you	want	to	be	serious	about	physics,	be	sure	to	learn	as
many	energy	types	as	possible	by	heart	and	how	to	combine	them	to	derive	new	formulas.



Heat:

A	long	time	ago,	in	my	teen	years,	this	formula	got	me	hooked	on	physics.	Why?	I	can’t
say	for	sure.	I	guess	I	was	just	surprised	that	you	could	calculate	something	like	this	so
easily.	So	with	some	nostalgia,	I	present	another	great	formula	from	the	field	of	physics.	It
will	be	a	continuation	of	and	a	last	section	on	energy.

To	heat	something,	you	need	a	certain	amount	of	energy	E	(in	J).	How	much	exactly?	To
compute	this	we	require	three	inputs:	the	mass	m	(in	kg)	of	the	object	we	want	to	heat,	the
temperature	difference	T	(in	°C)	between	initial	and	final	state	and	the	so	called	specific
heat	c	(in	J	per	kg	°C)	of	the	material	that	is	heated.	The	relationship	is	quite	simple:

E	=	c	·	m	·	T

If	you	double	any	of	the	input	quantities,	the	energy	required	for	heating	will	double	as
well.	A	very	helpful	addition	to	problems	involving	heating	is	this	formula:

E	=	P	·	t

with	P	(in	watt	=	W	=	J/s)	being	the	power	of	the	device	that	delivers	heat	and	t	(in	s)	the
duration	of	the	heat	delivery.

–––––––

The	specific	heat	of	water	is	c	=	4200	J	per	kg	°C.	How	much	energy	do	you	need	to	heat
m	=	1	kg	of	water	from	room	temperature	(20	°C)	to	its	boiling	point	(100	°C)?	Note	that
the	temperature	difference	between	initial	and	final	state	is	T	=	80	°C.	So	we	have	all	the
quantities	we	need.

E	=	4200	·	1	·	80	=	336,000	J

Additional	question:	How	long	will	it	take	a	water	heater	with	an	output	of	2000	W	to
accomplish	this?	Let’s	set	up	an	equation	for	this	using	the	second	formula:



336,000	=	2000	·	t

t	≈	168	s	≈	3	minutes

–––––––-

We	put	m	=	1	kg	of	water	(c	=	4200	J	per	kg	°C)	in	one	container	and	m	=	1	kg	of	sand	(c
=	290	J	per	kg	°C)	in	another	next	to	it.	This	will	serve	as	an	artificial	beach.	Using	a
heater	we	add	10,000	J	of	heat	to	each	container.	By	what	temperature	will	the	water	and
the	sand	be	raised?

Let’s	turn	to	the	water.	From	the	given	data	and	the	great	formula	we	can	set	up	this
equation:

10,000	=	4200	·	1	·	T

T	≈	2.4	°C

So	the	water	temperature	will	be	raised	by	2.4	°C.	What	about	the	sand?	It	also	receives
10,000	J.

10,000	=	290	·	1	·	T

T	≈	34.5	°C

So	sand	(or	any	ground	in	general)	will	heat	up	much	stronger	than	water.	In	other	words:
the	temperature	of	ground	reacts	quite	strongly	to	changes	in	energy	input	while	water	is
rather	sluggish.	This	explains	why	the	climate	near	oceans	is	milder	than	inland,	that	is,
why	the	summers	are	less	hot	and	the	winters	less	cold.	The	water	efficiently	dampens	the
changes	in	temperature.

It	also	explains	the	land-sea-breeze	phenomenon	(seen	in	the	image	below).	During	the
day,	the	sun’s	energy	will	cause	the	ground	to	be	hotter	than	the	water.	The	air	above	the
ground	rises,	leading	to	cooler	air	flowing	from	the	ocean	to	the	land.	At	night,	due	to	the
lack	of	the	sun’s	power,	the	situation	reverses.	The	ground	cools	off	quickly	and	now	it’s



the	air	above	the	water	that	rises.

–––––––-

I	hope	this	formula	got	you	hooked	as	well.	It’s	simple,	useful	and	can	explain	quite	a	lot
of	physics	at	the	same	time.	It	doesn’t	get	any	better	than	this.	Now	it’s	time	to	leave	the
concept	of	energy	and	turn	to	other	topics.



Part	II:	Mathematics

Trigonometry:

In	geometry	you	will	commonly	deal	with	right	triangles	and	trying	to	compute	them
without	the	incredibly	useful	trigonometric	formulas	is	just	madness.	They	are	the
screwdrivers	in	the	physicist’s	and	mathematician’s	toolbox,	you	always	need	to	have
them	with	you	or	the	simplest	problems	can	quickly	become	unsolvable.

In	the	picture	above	you	can	see	a	right	triangle,	that	is	a	triangle,	that	has	one	90°	angle.
The	side	opposite	the	right	angle	is	called	hypotenuse.	It	is	always	the	longest	side	in	the
triangle.	Let’s	pick	an	angle	other	then	the	right	angle	and	denote	it	by	θ	(in	°).
Unsurprisingly,	the	side	adjacent	to	it	is	called	the	adjacent	and	the	side	opposite	to	it	the
opposite.

The	great	formula	here	will	actually	be	three.	They	allow	us	to	compute	the	entire	triangle
when	two	quantities	are	given.	If	we	know	two	of	the	sides,	we	can	calculate	the	third	side
and	the	angle,	if	we	know	the	angle	and	one	side,	we	can	deduce	the	lengths	of	the
remaining	two	sides.	Here	they	are:

sin	θ	=	opposite	/	hypotenuse

cos	θ	=	adjacent	/	hypotenuse

tan	θ	=	opposite	/	adjacent



Which	one	to	use	will	be	determined	by	which	two	quantities	we	are	given.	If	we	are
given	the	adjacent	and	the	hypotenuse,	it	obviously	makes	sense	to	start	with	the	second
formula.	If	we	are	given	the	angle	θ	and	the	hypotenuse,	we	can	start	with	the	first	or
second	formula,	depending	on	what	we	want	to	find	out.

–––––––-

A	plane	takes	off	and	remains	at	an	angle	of	θ	=	15°	while	climbing.	What	distance	d	has
it	flown	when	reaching	its	cruising	altitude	of	h	=	11	km?

Make	a	sketch	or	go	back	to	the	image	above	to	visualize	this	situation.	In	this	case	the
height	is	obviously	the	opposite	of	the	given	angle	and	the	flown	distance	the	hypotenuse.
This	means	that	we	will	need	to	use	the	sin-formula	for	our	calculations.

sin	θ	=	opposite	/	hypotenuse

sin	15°	=	11	km	/	d

0.26	≈	11	km	/	d

In	the	last	step	we	used	a	calculator	to	evaluate	sin	15°.	Make	sure	the	calculator	is	set	to
“degrees”	not	“rad”.	Otherwise	you	will	end	up	with	an	incorrect	result.	Now	multiply
both	sides	of	the	equation	with	d:

d	·	0.26	≈	11	km

And	then	divide	both	sides	by	0.26:

d	≈	42	km

–––––––-

We	want	to	determine	the	angle	θ	at	which	the	sun’s	rays	impact	the	ground.	To	do	that,	we
place	a	box	on	the	ground	and	measure	its	height	and	the	length	of	its	shadow.	The



respective	values	are	h	=	40	cm	and	l	=	15	cm.

Again,	visualize	this	situation	using	the	image	above.	The	height	of	the	box	is	obviously
the	opposite,	the	length	of	the	shadow	the	adjacent.	So	here	we	are	required	to	apply	the
tan-formula.

tan	θ	=	opposite	/	adjacent

tan	θ	=	40	/	15	≈	2.67

To	deduce	the	angle	from	that,	we	need	to	make	use	of	the	calculator’s	inverse	function.
Enter	the	number	and	press	“inverse”	then	“tan”	(on	some	calculators	you	enter	the
number	after	pressing	“inverse”	and	“tan”).	To	show	that	we	are	using	the	inverse
function,	we	include	the	prefix	“arc”	in	the	equation.

θ	=	arctan(2.67)	≈	69°

–––––––-

Using	the	box	we	just	managed	to	show	that	at	the	moment	the	sun’s	rays	impact	the
ground	at	a	θ	=	69°	angle.	If	at	the	same	time	the	shadow	of	a	house	is	l	=	8	m	long,
what’s	the	height	h	of	the	house?

Going	back	to	the	image,	we	can	see	that	again	we’re	dealing	with	the	opposite	(the
height)	and	the	adjacent	(shadow	length)	of	the	angle.	So	we’ll	stick	to	the	tan-formula.

tan	θ	=	opposite	/	adjacent

tan	69°	=	h	/	8	m

Multiply	both	sides	by	8:

h	=	8	m	·	tan	69°	≈	21	m



–––––––-

These	were	just	a	few	of	millions	of	possible	applications	for	the	trigonometric	formulas.
You	can	be	sure	that	as	you	do	mathematics,	you	will	always	want	to	(or	at	least	need	to)
come	back	to	them.	Luckily,	it’s	not	rocket	science,	but	rather	a	matter	of	making	a	sketch
and	identifying	the	sides	correctly.



Going	in	Circles:

For	mathematicians	the	number	π	has	an	almost	magical	attraction.	Most	great	names	in
mathematics	have	tried	to	find	means	to	calculate	it	even	more	efficiently	or	spent	time
analyzing	its	nature	at	some	point	in	their	lives.	In	some	ways	this	number	is	the	border
between	the	realm	of	the	linear,	straight-lined	world	humans	have	constructed	and	the
non-linear,	curved	world	that	is	nature.	One	of	the	greatest	thing	it	does	is	enabling	us	to
do	calculations	with	circles	and	spherical	objects.

A	circle	is	a	two-dimensional	set	of	points	all	having	a	fixed	distance	to	a	center.	This
distance	is	called	the	radius	r	(in	m).	It	is	the	only	input	we	will	need	here.	A	sphere	has
the	same	definition	as	the	circle	with	the	exception	that	extends	into	the	third	dimension.

The	great	formulas	featured	in	this	section	allow	us	to	compute	the	circumference	of	a
circle	C	(in	m),	the	area	of	a	circle	A	(in	m2),	the	surface	area	of	a	sphere	S	(in	m2)	and	the
volume	of	a	sphere	V	(in	m3).	It	goes	without	saying	that	doing	geometry	would	be
practically	impossible	without	these.

C	=	2	·	π	·	r

A	=	π	·	r2

S	=	4	·	π	·	r2

V	=	4/3	·	π	·	r3



Here	are	some	examples	on	how	to	apply	them.

–––––––-

The	radius	of	earth	is	approximately	r	=	6400	km.	How	far	do	you	need	to	travel	at	the
equator	to	go	around	earth	once?	This	question	requires	us	to	calculate	the	circumference
of	the	equatorial	circle.	Applying	the	formula	we	get:

C	=	2	·	π	·	6400	km	≈	40,200	km

In	a	plane	traveling	at	1000	km/h	(which	is	the	speed	of	a	common	passenger	jet),	this
would	take	us:

t	=	40,200	km	/	1000	km/h	≈	40	h

How	long	do	you	think	this	would	take	by	foot?	The	normal	walking	speed	is	about	5
km/h,	but	since	we	need	to	rest	and	sleep,	we	will	rather	use	an	average	of	3	km/h.

t	=	40,200	km	/	3	km/h	≈	13,400	h	≈	560	days

–––––––-

About	30	%	of	earth’s	surface	is	land.	What	is	the	total	area	of	land	on	earth?	Again	we
use	the	value	r	=	6400	km	for	the	radius.	According	to	the	formulas,	the	surface	area	of
earth	is:

S	=	4	·	π	·	(6400	km)2	≈	515	million	km2

So	the	total	area	of	land	on	earth	is	0.3	·	515	≈	155	million	km2.	A	side	note:	circa	half	of
this	land	is	habitable	for	humans	and	since	there	are	about	7	billion	people	on	earth
today,	we	can	conclude	that	there	is	0.011	km2	habitable	land	available	per	person.	This
corresponds	to	a	square	with	100	m	≈	330	ft	length	and	width.



–––––––-

FIFA	rules	state	that	a	soccer	ball	must	have	a	circumference	of	about	70	cm.	What	is	the
radius	and	volume	of	such	a	ball?	First	we	set	up	an	equation	for	the	radius:

70	cm	=	2	·	π	·	r

Dividing	by	2	·	π	leads	to:

r	=	70	cm	/	(2	·	π)	≈	11	cm

Now	we	can	compute	the	volume:

V	=	4/3	·	π	·	(11	cm)3	≈	5580	cm3

–––––––-

We	could	just	go	on	with	more	and	more	examples	and	we	wouldn’t	run	out	any	time
soon.	Keep	these	formulas	in	mind,	they	are	simple	and	enormously	useful	at	the	same
time.	You	can	apply	them	whenever	there’s	a	circle	or	sphere	in	sight	(which	is
surprisingly	often).



Quadratic	Equations:

I	can	hardly	think	of	a	formula	that	is	more	often	used	in	mathematics	than	this	one.	It’s
quite	long	and	looks	rather	intimidating,	but	still	most	people	who	do	mathematics	know	it
by	heart.	I’m	talking	about	the	formula	to	solve	quadratic	equations.

So	let’s	first	take	a	look	at	what	quadratic	equations	are.	In	the	most	general	case	they
consist	of	three	terms	and	three	real	numbers	a,	b	and	c.	Also	included	is	the	unknown	x,
the	value	of	which	we	want	to	find	out.

a	·	x2	+	b	·	x	+	c	=	0

We	always	need	the	first	term,	so	a	is	not	allowed	to	be	zero.	But	the	other	terms	do	not
always	show	up,	in	which	case	the	respective	value	for	b	or	c	is	set	to	zero.

3	·	x2	-	48	=	0

Here	the	values	of	the	constants	are:	a	=	3,	b	=	0	and	c	=	-48.	Note	that	the	minus-sign	is
part	of	the	constant.	If	we	leave	it	out,	we	will	arrive	at	an	incorrect	solution.	Now	let’s
turn	to	the	great	formula	for	this	section.	It	spits	out	the	solutions	of	a	quadratic	equation
when	we	insert	the	values	of	constants.

x	=	(	-	b	±	sq	root	(	b2	-	4	·	a	·	c	)	)	/	(2	·	a)

Granted,	the	equation	looks	horrible.	And	the	plus-minus-sign	is	not	making	things	easier.
Why	do	we	need	it?	A	quadratic	equation	generally	has	two	solutions.	The	first	solution
we	get	by	using	the	plus-sign,	the	second	by	using	the	minus-sign.

An	example	will	show	that	the	formula	is	not	as	bad	as	it	looks.	If	you	input	the	correct
constants	and	carefully	evaluate	the	resulting	numbers,	nothing	will	go	wrong.

–––––––-

We	want	to	solve	the	equation:



x2	-	6	·	x	+	8	=	0

The	values	of	the	constants	are:	a	=	1,	b	=	-6	and	c	=	8.	Now	let’s	apply	the	formula	to
solve	it:

x	=	(	6	±	sq	root	(	(-6)2	-	4	·	1	·	8	)	)	/	(2	·	1)

Note	that	since	b	=	-6	we	set	-b	=	6.

x	=	(	6	±	sq	root	(4)	)	/	2

x	=	(	6	±	2	)	/	2

Thus,	the	first	solution	is:

x	=	(6	+	2)	/	2	=	4

The	second	solution	is:

x	=	(6	-	2)	/	2	=	2

So	it	wasn’t	as	bad	as	you	might	have	thought.	But	you	noticed	that	we	should	be	very
careful	in	extracting	the	constants	from	the	equation	and	inputting	them	into	the	formula.
Using	wrong	signs	is	the	number	one	cause	of	frustration	with	quadratic	equations,	make
sure	to	avoid	this.

–––––––-

When	you	apply	the	brakes	of	your	car	on	dry	asphalt,	the	braking	distance	d	(in	m)
depends	on	the	initial	speed	v	(in	m/s)	as	such:

d	=	v	+	v2	/	16



For	more	information,	check	out	the	section	“Braking	Distance”.	We	would	like	to	know
at	what	speed	the	braking	distance	becomes	d	=	50	m.	Thus	we	get	this	equation:

50	=	v	+	v2	/	16

let’s	bring	it	to	the	general	form	of	a	quadratic	equation	and	apply	the	great	formula	to
solve	it.

v2	/	16	+	v	-	50	=	0

The	constants	are:	a	=	1/16,	b	=	1	and	c	=	-50.

v	=	(	-1	±	sq	root	(	12	-	4	·	1/16	·	(-50)	)	)	/	(2	·	1/16)

v	=	(	-1	±	sq	root	(13.5	)	)	/	0.125

v	≈	(-1	±	3.7)	/	0.125

The	first	solution	is:

v	≈	(-1	+	3.7)	/	0.125	≈	22	m/s	≈	79	km/h	≈	50	mph

The	second	solution	will	be	negative	and	thus	of	no	relevance	here.	This	is	often	the	case
when	solving	quadratic	equations	in	physics	problems	and	we	can	discard	nonsensical
solutions	without	worries.

–––––––-

If	you	are	serious	about	mathematics,	you	must	be	able	to	solve	quadratic	equations.
There’s	no	way	around	it.	The	same	goes	for	the	type	of	equations	we	will	look	at	in	the
next	section.	Again	there’s	one	“magical”	formula	that	will	allow	us	to	arrive	at	correct
solutions.





Logarithmic	Identity:

There	are	some	formulas	which	are	so	useful	that	you	couldn’t	picture	yourself	doing
mathematics	without	them.	This	identity	is	one	of	them.	Though	often	underrated	and
overlooked,	it	is	what	enables	us	to	solve	exponential	equations.	These	equations	arise
naturally	in	a	vast	amount	of	situations:	population	growth,	radioactivity,	statistics,
banking,	…	In	their	general	form,	they	look	like	this:

ax	=	b

with	a	and	b	being	known	numbers	and	x	the	unknown	number	we	want	to	find	out.	The
key	for	solving	such	equations	is	provided	by	this	simple	yet	powerful	logarithmic
identity:

ln(	ax	)	=	x	·	ln(a)

ln	is	short	for	natural	logarithm,	a	function	that	can	be	found	on	any	good	calculator.
Thanks	to	the	identity,	the	unknown	is	not	in	the	exponent	anymore,	it	“moved”
downwards,	enabling	us	to	solve	for	it	as	we	would	do	in	any	linear	equation.	An	example
will	make	this	clear.

–––––––-

We	deposited	20,000	$	in	a	bank	at	an	annual	interest	rate	of	5	%.	The	(literally	million
dollar)	question	is:	how	many	years	will	it	take	until	this	grows	to	a	million	dollars?	In
mathematical	terms	this	question	corresponds	to:

20,000	·	1.05x	=	1,000,000

with	x	symbolizing	the	number	of	years.	The	first	step	in	solving	this	is	to	bring	it	to	the
general	form	of	an	exponential	equation	by	dividing	both	sides	by	20,000:

1.05x	=	50



We	then	apply	the	natural	logarithm	to	both	sides:

ln(1.05x)	=	ln(50)

Now	look	at	the	expression	on	the	left	side.	It	has	the	same	form	as	the	left	side	of	the
logarithmic	identity	with	a	=	1.05.	So	we	apply	the	identity:

x	·	ln(1.05)	=	ln(50)

It	has	now	transformed	into	a	simple	linear	equation	that	we	can	easily	solve	by	dividing
both	sides	by	ln(1.05):

x	=	ln(50)	/	ln(1.05)

Using	a	calculator,	for	example	the	build-in	Windows	calculator,	we	determine	the
required	values:

ln(50)	≈	3.91

ln(1.05)	≈	0.049

Inserting	this	leads	to:

x	≈	80	years

So	with	the	given	principal	and	interest	rate,	we	would	need	to	wait	80	years	to	become
millionaires.	Maybe	not	the	number	of	years	you	were	hoping	for,	but	the	fact	that	we	were
able	to	derive	a	number	at	all	is	thanks	to	the	logarithmic	identity.

–––––––-

A	new	population	of	algae	has	been	discovered	on	a	lake.	At	the	time	of	the	observation,	it
covered	15	m2	of	the	8500	m2	lake	and	scientists	were	able	to	determine	that	it	grows	with



about	8	%	per	week.	If	no	measures	were	taken,	how	many	months	would	it	take	for	the
algae	population	to	cover	the	entire	lake?

Again	we	convert	this	question	into	an	equation	and	solve	it	using	the	identity	exactly	as
we	did	above:

15	·	1.08x	=	8500

Divide	by	15	to	get	to	the	general	form:

1.08x	=	567

Apply	ln	and	the	identity:

ln(1.08x)	=	ln(567)

x	·	ln(1.08)	=	ln(567)

Solve	the	linear	equation	for	x:

x	=	ln(567)	/	ln(1.08)

x	≈	82	weeks	≈	21	months



–––––––-

As	you	can	see,	the	process	of	solving	these	kinds	of	equations	is	always	the	same.
There’s	only	one	way	and	it’s	the	route	via	the	logarithmic	identity.	So	keep	this	in	mind,
it	will	enable	you	to	solve	a	lot	of	very	interesting	problems.



Living	in	Harmony:

We	will	start	this	section	by	looking	at	the	harmonic	series.	Its	name	comes	from	an
application	in	acoustics	regarding	the	overtones	of	musical	instruments.	The	harmonic
series	H(n)	is	defined	as	the	sum	of	all	reciprocals	of	natural	numbers	up	to	a	certain
number	n.	In	mathematical	terms:

H(n)	=	1	+	1/2	+	1/3	+	…	+	1/n

For	example:

H(4)	=	1	+	1/2	+	1/3	+	1/4	≈	2.08

Simple	as	that.	At	first	this	sum	seems	like	a	rather	artificial	construct,	but	it	does	appear
in	a	surprising	amount	of	real-world	applications.	So	determining	this	sum	can	be	very
helpful.	And	it	was	quite	easy	for	H(4),	but	imagine	having	to	evaluate	H(100)	or
H(1000).	For	the	latter	you	would	need	to	sum	1000	numbers	and	then	do	it	all	over	again
to	double-check.	Not	very	practical.

Luckily,	there’s	a	neat	approximation	formula	for	just	this	sum.	The	higher	the	number	n,
the	better	the	estimate	will	be.	It	is	mathematically	proven	that	as	n	grows	to	infinity,	the
approximation	formula	converges	to	the	true	value.	Here	it	is:

H(n)	≈	ln(n)	+	0.58

The	value	0.58	comes	from	rounding	off	the	Euler-Mascheroni	constant,	which	should	be
where	the	0.58	is	now.	But	since	we	just	want	to	approximate,	there’s	no	need	to	be	overly
precise.	For	our	purposes	the	rounded	off	value	will	do	just	fine.

–––––––-

Imagine	you	are	collecting	stickers	and	the	full	set	of	the	stickers	consists	of	N	different
pieces.	How	many	stickers	will	you	most	likely	need	to	buy	to	complete	the	set?	We	will
denote	the	required	number	of	purchases	by	P.	The	solution	is:



P	=	N	·	(1	+	1/2	+	1/3	+	…	+	1/N)

For	a	large	sticker	set,	evaluating	this	expression	would	be	rather	annoying	and	time-
consuming.	Time	to	apply	the	approximation:

P	≈	N	·	(ln(N)	+	0.58)

This	looks	much	better.	For	a	set	of	N	=	50	stickers,	this	is	how	many	stickers	you	need	to
buy	to	complete	it:

P	≈	50	·	(ln(50)	+	0.58)	≈	225

It’s	interesting	to	note	that	50	of	the	225	purchases	will	be	for	acquiring	the	very	last
sticker	and	25	for	the	one	before	that.

–––––––-

Another	very	cool	application	of	the	harmonic	series	can	be	found	on	the	plus.maths.org.
Imagine	we	start	recording	the	daily	amount	of	rainfall.	How	often	can	we	expect	weather
records	to	be	broken?

Obviously	the	first	day	will	be	a	weather	record.	On	the	second	day	there’s	a	fifty-fifty
chance	that	there	will	be	a	new	record.	The	expected	number	of	weather	records	up	to	this
point	is:

r(2)	=	1	+	1/2

On	the	third	day	there’s	a	1	in	3	chance	that	we	will	see	a	new	weather	record,	leading	to
this	expected	number	of	records:

r(3)	=	1	+	1/2	+	1/3

The	pattern	is	now	obvious.	After	n	days	of	continuous	weather	recording,	this	is	how
many	record	days	we	can	expect	to	see:



r(n)	=	1	+	1/2	+	1/3	+	…	+	1/n	≈	ln(n)	+	0.58

Ten	years	correspond	to	about	3650	days.	In	this	time	the	weather	record	will	most	likely
be	broken	9	times.	In	one	hundred	years,	or	36500	days,	we	should	see	11	record	days.
Note	the	painfully	slow	growth.	We	increased	the	time	span	by	a	factor	of	ten,	yet	the
number	of	record	days	only	grew	by	two.

–––––––-

As	we	saw	in	the	last	example,	the	harmonic	series	grows	impossibly	slowly.	Here	are
some	values	to	convince	you:

H(1000)	≈	7.5

H(2000)	≈	8.2

H(3000)	≈	8.6

H(4000)	≈	8.9

Even	though	we	add	another	thousand	terms	at	each	step,	the	harmonic	series	hardly
increases	in	value.	Even	worse:	the	growth	slows	down.	Where	will	this	end?	Will	we
reach	a	limiting	value	at	some	point?	Or	will	it	just	grow	to	infinity	at	a	terribly	slow
pace?	Mathematically	it	can	be	proven	that	there’s	no	bound.	It	will	just	keep	on	growing
and	growing.



Geometric	Series:

This	one’s	a	real	beauty	and	very	useful	on	top	of	that.	We	noted	that	the	harmonic	series
featured	in	the	last	section	does	not	converge,	meaning	that	it	does	not	grow	to	a	limiting
value	as	we	include	more	and	more	terms.	It	simply	keeps	growing	to	infinity,	which
seems	logical	since	we	add	an	infinite	number	of	terms.	However,	even	with	an	infinite
number	of	terms	a	sum	can	approach	a	limit.	This	is	the	case	in	the	infinite	geometric
series.

Let’s	look	at	one	example	before	stating	the	formula.	Suppose	we	want	to	compute	this
sum:

1	+	(0.8)	+	(0.8)2	+	(0.8)3	+	…

The	sum	of	the	…

…	first	10	terms	is:	4.4631

…	first	20	terms	is:	4.9423

…	first	30	terms	is:	4.9938

…	first	40	terms	is:	4.9993

It	seems	that	rather	than	just	growing	and	growing,	the	sum	approaches	the	limiting	value
five.	With	the	formula	for	the	infinite	geometric	series,	we	can	prove	that.	We	are	given	a
certain	number	x	that	is	between	zero	and	one.	To	compute	the	corresponding	geometric
sum	we	can	use	this	formula:

1	+	x	+	x2	+	x3	+	…	=	1	/	(1	-	x)

In	the	case	of	x	=	0.8	we	get:

1	+	(0.8)	+	(0.8)2	+	(0.8)3	+	…	=	1	/	0.2	=	5

as	expected.	Now	it	might	seem	somewhat	useless	to	you	to	have	a	formula	for	such	sums.



Are	there	actually	applications	for	those?	Plenty.	As	in	the	case	of	the	harmonic	series,	the
geometric	series	pops	up	surprisingly	often	when	solving	physics	or	math	problems.	It	is
one	of	these	formulas	most	physicists	and	mathematicians	know	by	heart	because	they
need	to	use	it	over	and	over	again.

Let’s	turn	to	some	examples.

–––––––-

We	let	a	ball	drop	from	1	m	height.	After	each	impact,	it	bounces	back	to	60	%	of	its
previous	height.	What	distance	will	the	ball	travel	in	total?

After	the	first	impact	it	will	rise	to	0.6	m	height,	after	the	second	impact	to	0.6	·	0.6	=	0.62

m,	after	the	third	impact	to	0.6	·	0.6	·	0.6	=	0.63	m,	and	so	on.	The	total	distance	traveled
is	thus	(note	the	factor	2	since	the	ball	rises	to	and	drops	from	the	computed	height	except
for	the	initial	drop):

d	=	1	+	2	·	0.6	+	2	·	0.62	+	2	·	0.63	+	…

Let’s	rewrite	this	by	factoring	out	2	·	0.6:

d	=	1	+	2	·	0.6	·	(1	+	0.6	+	0.62	+	…	)

Clearly,	the	expression	in	the	bracket	is	a	geometric	series	with	x	=	0.6.	Thanks	to	the
formula	we	can	compute	it:

1	+	0.6	+	0.62	+	…	=	1	/	0.4	=	2.5

Thus	the	total	distance	traveled	is:

d	=	1	+	2	·	0.6	·	2.5	=	4	m

–––––––-



A	patient	with	an	infection	is	advised	to	take	a	50	mg	antibiotics	tablet	every	day.	After
one	day,	only	15	%	of	the	amount	taken	in	by	a	tablet	will	remain	in	the	body.	What
amount	of	antibiotics	will	be	in	the	patient’s	body	in	the	long	run?

On	the	second	day	of	the	treatment,	the	amount	A	of	antibiotics	in	the	body	will	50	mg
from	today’s	tablet	and	0.15	·	50	mg	from	yesterday’s	tablet:

A	=	50	+	0.15	·	50

On	the	third	day,	we	will	again	have	50	mg	from	today’s	tablet,	0.15	·	50	mg	from
yesterday’s	and	0.15	·	0.15	·	50	mg	from	the	tablet	taken	on	the	first	day:

A	=	50	+	0.15	·	50	+	0.152	·	50

Continuing	this	train	of	thought,	we	can	conclude	that	in	the	long	run	the	amount	of
antibiotics	in	the	body	will	be:

A	=	50	+	0.15	·	50	+	0.152	·	50	+	0.153	·	50	+	…

=	50	·	(1	+	0.15	+	0.152	+	0.153	+	…	)

The	sum	in	the	bracket	is	an	infinite	geometric	series	with	x	=	0.15	and	we	compute	its
value	from	the	formula:

1	+	0.15	+	0.152	+	0.153	+	…	=	1	/	0.85	≈	1.18

All	that’s	left	is	inserting	this	for	the	bracket:

A	≈	50	·	1.18	≈	60

So	in	the	long	run	this	treatment	will	lead	to	60	mg	of	antibiotics	being	present	in	the
body,	50	mg	from	today’s	tablet	and	10	mg	rest	from	all	the	previous	tablets.



–––––––-

Is	0.999…	equal	to	1?	One	could	argue	over	this	for	hours	and	hours.	But	instead	of	that,
we’ll	just	calculate	it.	Note	that	we	can	rewrite	0.999…	as	such:

0.999…	=	0.9	+	0.09	+	0.009	+	0.0009	+	…

=	9/10	+	9/100	+	9/1000	+	9/10000	+	…

=	9/10	·	(1	+	1/10	+	1/100	+	1/1000	+	…	)

=	9/10	·	(1	+	1/10	+	(1/10)2	+	(1/10)3	+	…	)

As	you	can	see,	the	expression	in	the	brackets	is	an	infinite	geometric	series	with	x	=	1/10.
Let’s	focus	on	this	sum:

1	+	1/10	+	(1/10)2	+	(1/10)3	+	…

=	1	/	(1	-	1/10)	=	1	/	(9/10)	=	10/9

Inserting	this	for	the	bracket	we	get:

0.999…	=	9/10	·	10/9	=	1

The	proof	is	completed	and	0.999…	is	indeed	and	undeniably	equal	to	1.	Pure
mathematics	can	be	quite	interesting.

–––––––-

I	hope	these	examples	were	helpful	in	understanding	how	the	geometric	series	arises	and
how	we	can	quickly	compute	it.	So	don’t	underestimate	the	usefulness	of	this	formula	and
the	geometric	series.	It	pops	up	in	places	where	you	would	expect	it	the	least.	As	a	final



treat,	here’s	an	image	with	a	simple	yet	brilliant	proof	of	the	formula.	Enjoy!



Poisson	Distribution:

This	is	an	excerpt	from	the	book	“Statistical	Snacks”	by	Metin	Bektas,	available	on
Amazon	for	Kindle.

The	Poisson	distribution	is	a	discrete	probability	distribution,	similar	to	the	binomial
distribution.	One	big	difference	though	is	that	instead	of	having	probabilities	as	inputs,	we
rather	look	at	the	average	rate	of	a	certain	event	occurring.	For	example,	instead	of	being
given	the	chance	of	a	goal	occurring	during	a	game,	we	are	given	the	average	number	of
goals	per	game	and	go	from	that.	This	actually	makes	things	a	lot	easier.

Assume	we	know	from	looking	at	a	certain	soccer	team’s	history	that	it	produces	goals
with	a	mean	rate	of	2.4	goals	per	game.	Now	we	want	to	know	how	likely	it	is	that	during
a	particular	game	it	will	not	shoot	any	goal.	Using	the	Poisson	distribution	we	can	answer
this	question	(and	many	more	questions	of	this	kind)	straightforward:

p(no	goal)	=	9	%

Here’s	the	general	formula	to	solve	such	problems.	We	are	given	an	average	rate	λ	at
which	an	event	is	occurring	over	a	certain	time	span	(goals	per	game,	accidents	per	year,
mails	per	day).	If	the	occurrence	of	the	event	is	random	and	independent	of	any	previous
occurrences,	we	can	use	this	formula	to	calculate	the	chance	that	it	will	occur	k	times
during	said	time	span:

p(k	occurrences)	=	e-λ	·	λk	/	k!

You	are	probably	wondering	about	the	exclamation	mark.	What	does	it	mean	to	have	a
number	followed	by	an	exclamation	mark?	We	call	k!	a	factorial	and	read	“k	factorial”.
Whenever	we	see	this,	we	just	multiply	all	numbers	down	to	one.	For	example:	3!	=	3·2·1
=	6	or	5!	=	5·4·3·2·1	=	120.	So	nothing	to	worry	about.	Of	course	for	0!	this	doesn’t	work,
it	is	defined	as	0!	=	1.	Keep	that	in	mind.

–––––––-

Going	back	to	the	introductory	example,	we	wanted	to	know	how	likely	it	is	for	k	=	0	goals
to	occur	during	a	game	when	the	average	rate	is	λ	=	2.4	goals	per	game:



p(no	goal)	=	e-2.4	·	2.40	/	0!	=	0.09	=	9	%

–––––––-

Statistics	show	that	in	the	US	state	of	New	York	there	are	on	average	five	tornadoes	per
year.	How	likely	is	it	that	during	a	certain	year	only	two	tornadoes	will	form?	What’s	the
probability	of	more	than	five	tornadoes	occurring?

Let’s	turn	to	the	first	question.	All	we	need	as	inputs	for	the	Poisson	distribution	is	the
average	rate,	in	this	case	λ	=	5,	and	the	number	of	occurrences,	in	this	case	k	=	2.
Plugging	that	into	the	formula	gives	us:

p(2	tornadoes)	=	e-5	·	52	/	2!	=	8.4	%

So	the	chance	of	only	two	tornadoes	forming	over	a	year	is	about	1	in	12.	This	was	the
simpler	of	the	two	questions.	What	about	the	chance	of	having	more	than	five	tornadoes?
Since	the	Poisson	distribution	is	infinite,	we	shouldn’t	try	to	do	this	sum:

p(6	tornadoes)	+	p(7	tornadoes)	+	p(8	tornadoes)	+	…

A	better	approach	is	to	compute	how	likely	it	is	to	have	five	or	less	tornadoes.	One	minus
whatever	we	get	there	is	the	probability	of	having	more	than	five	tornadoes.	Let’s	calculate
the	odds	of	five	or	less	tornadoes	occurring	by	simply	adding	the	chances	for	no	tornado,
for	one	tornado,	and	so	on	up	to	five:

p(no	tornado)	=	e-5	·	50	/	0!	=	0.007

p(1	tornado)	=	e-5	·	51	/	1!	=	0.034

Continuing	this	path	until	we	get	to	five	and	summing	all	the	terms	results	in:

p(5	or	less	tornadoes)	=	0.616



Since	the	probability	for	five	or	less	tornadoes	and	the	probability	for	more	than	five
tornadoes	must	add	up	to	one,	we	can	quickly	get	the	desired	result:

p(more	than	5	tornadoes)	=	0.384	=	38.4	%

–––––––-

You	can	easily	find	online	calculators	that	do	all	the	computing	for	you.	I	recommend	the
“Stat	Trek	Poisson	Distribution	Calculator”,	which	is	easy	to	use	and	also	displays
cumulative	probabilities.	This	can	be	very	helpful	when	answering	questions	featuring	the
phrases	“at	least”	or	“more	than”.



Part	III:	Economics

Inflation:

There’s	no	denying	it:	things	get	more	expensive.	This	happens	in	all	economies	and
almost	every	year.	At	moderate	rates,	this	increase	in	price	level	is	not	alarming.	The
picture	below	shows	the	inflation	rates	for	the	US	from	1991	to	2012.	Only	in	2009,
shortly	after	the	financial	crisis,	did	prices	actually	fall.

What	reasons	are	there	for	inflation	to	occur?	One	way	of	answering	this	question	is	to
take	the	monetarist	approach	and	focus	on	the	so	called	Equation	of	Exchange.	It	will	help
us	to	easily	identify	the	culprit.

Let’s	look	at	the	quantities	necessary	to	understand	this	equation	step	by	step	and	using	an
example.	One	quantity	is	the	money	supply	M.	It’s	simply	the	total	amount	of	money
present	in	the	economy.	For	introductory	purposes,	I’ll	set	this	value	to	M	=	100	billion	$.

Also	important	is	the	velocity	of	money	V.	It	tells	us,	how	often	each	dollar	(bill)	is	used
over	the	course	of	a	year.	This	quantity	depends	on	the	saving	habits	of	the	people	in	the
economy.	If	they	are	keen	on	saving,	the	bills	will	only	pass	through	a	few	hands	each
year,	thus	V	is	small.	On	the	other	hand,	if	people	love	to	spend	the	money	they	have,	any
bill	will	see	a	lot	of	different	owners,	so	V	is	large.	For	the	introductory	example,	we’ll	set
V	=	5.



Note	that	the	product	of	these	two	quantities	is	the	total	spending	in	the	economy.	If	there
are	M	=	100	billion	$	in	the	economy	and	each	dollar	is	spend	V	=	5	times	per	year,	the
total	annual	spending	must	be	M	·	V	=	500	billion	$.	This	conclusion	is	vital	for
understanding	the	Equation	of	Exchange.

There	are	two	more	quantities	we	need	to	look	at,	one	of	which	is	the	price	level	P.	It	tells
us	the	average	price	of	a	good	in	the	economy.	If	there’s	inflation,	this	is	the	quantity	that
will	increase.	Let’s	assume	that	in	our	fictitious	economy	the	average	price	of	a	good	is	P
=	25	$.

Last	but	not	least,	there’s	the	number	of	transactions	T,	which	is	just	the	total	number	of
goods	sold	over	the	entire	year.	We’ll	fix	this	to	T	=	200	billion	for	now	and	make	another
very	important	conclusion.

The	product	of	these	last	two	quantities	is	the	total	sales	revenue	in	the	economy.	If	the
average	price	of	a	good	is	P	=	25	$	and	there	are	T	=	200	billion	goods	sold	in	a	year,	the
total	sales	revenue	must	be	P	·	T	=	500	billion	$.	It	is	no	accident	that	the	total	sales
revenue	equals	the	total	spending.	Rather,	this	equality	is	the	(reasonable)	foundation	of
the	Equation	of	Exchange.

For	the	total	spending	to	equal	the	total	sales	revenue,	this	equation	must	hold	true:

M	·	V	=	P	·	T

which	is	just	the	Equation	of	Exchange.	Now	think	about	what	will	happen	if	we	increase
the	money	supply	M	in	the	economy,	for	example	by	printing	money	or	government
spending.	We’ll	assume	that	the	spending	habits	of	the	people	remain	unchanged	(constant
V).	Since	we	increased	the	left	side	of	the	equation,	the	total	spending,	the	right	side	of	the
equation,	the	total	sales	revenue,	must	increase	as	well.

One	way	this	can	happen	is	via	an	increase	in	price	level	P	(inflation).	Indeed	empirical
evidence	shows	that	in	the	US	every	increase	in	money	supply	was	followed	by	a	rise	in
inflation	later	on.

Luckily	there’s	another	quantity	on	the	right	side	which	can	absorb	some	of	the	growth	in
money	supply.	A	rise	in	the	number	of	transactions	T	(increased	economic	activity)
following	the	“money	shower”	will	dampen	the	resulting	inflationary	drive.	On	the	other



hand,	a	combination	of	more	money	and	less	economic	activity	can	lead	to	a	dangerous,
Weimar-style	hyperinflation.

At	some	point	in	your	life,	you	probably	thought	to	yourself:	If	governments	can	print
money,	why	the	hell	don’t	they	just	make	everyone	a	millionaire?	The	answer	to	this
question	is	now	obvious:	The	Equation	of	Exchange,	that’s	why.	If	the	government	just
started	printing	money	like	crazy,	the	rise	in	price	level	would	just	eat	the	newly	found
wealth	up.	Each	dollar	bill	would	gain	three	zeros,	but	you	couldn’t	buy	more	with	it	than
before.

Of	course	there	can	be	much	more	trivial	causes	for	inflation	than	a	growing	money
supply.	Prices	are	determined	by	an	equilibrium	of	supply	and	demand.	If	demand	drops,
retailers	have	to	lower	their	prices	to	sell	off	their	stocks.	Similarly,	if	demand	suddenly
increases,	the	retailer	will	be	able	to	set	higher	prices,	resulting	in	inflation.	This	happens
for	example	when	a	new	technology	comes	along	that	quickly	rises	in	popularity.
Appropriately,	this	kind	of	price	level	growth	is	called	a	demand-pull	inflation.



Doubling	Time	/	Half	Life:

Often	times	we	deal	with	quantities	that	grow	exponentially.	This	means	that	each	year
(month,	week,	…)	it	changes	by	a	fixed	percentage.	A	typical	example	is	compound
interest.	If	you	put	10,000	$	in	a	bank	at	an	interest	rate	of	5	%,	you	will	have	this	amount
of	money	in	your	bank	account	after	t	years:

M	=	10,000	·	1.05t

Another	example	is	radioactive	decay.	If	you	have	100	gram	of	a	radioactive	material	that
decays	with	2	%	per	year,	this	is	the	mass	that	is	left	after	t	years:

m	=	100	·	0.98t

This	shows	that	you	can	easily	set	up	an	equation	for	future	values	of	the	quantity	in	this
form:

F	=	I	·	(1+p)t

with	F	being	the	future	value	after	t	years,	I	being	the	initial	value	and	p	being	the
percentage	change	expressed	in	decimal	numbers.	In	case	of	growth	p	is	positive,	in	case
of	decline	negative.	You	should	keep	this	approach	in	mind,	it	often	comes	in	handy.

One	characteristic	property	of	exponential	growth	or	decline	is	that	the	time	it	takes	for	the
quantity	to	double	or	halve	is	a	constant.	So	if	it	doubles	in	ten	years,	it	will	double	again
in	another	ten	years,	double	yet	again	during	the	next	ten	years,	and	so	on.	This	doubling
time	(or	half	life	in	the	case	of	decline)	can	be	easily	computed	from	this	great	formula:

T	=	ln(2)	/	ln(1+p)

Note	that	the	doubling	time	does	not	depend	in	any	way	on	the	initial	value.	Only	the
percentage	change	counts.	As	for	units,	the	computed	doubling	time	will	be	in	the	unit	of
time	that	the	percentage	change	is	expressed	in.	For	example,	if	a	quantity	grows	4	%	per
month	and	we	input	this	into	the	formula,	the	resulting	doubling	time	will	be	in	months.
Also	remember	to	always	input	the	percentage	as	a	decimal	number.



–––––––-

A	typical	value	for	the	annual	inflation	rate	in	industrialized	countries	is	about	p	=	3	%	=
0.03.	If	this	remained	constant,	how	long	would	it	take	for	prices	to	double?	We	can
answer	this	very	quickly	and	easily:

T	=	ln(2)	/	ln(1.03)	≈	23	years

which	is	about	one	generation.	At	the	end	of	World	War	I	the	inflation	rate	in	the	US	rose
to	about	p	=	20	%	=	0.2.	What	is	the	corresponding	doubling	time?

T	=	ln(2)	/	ln(1.2)	≈	4	years

–––––––-

As	of	2012	the	world	population	is	at	about	seven	billion	people	and	grows	with	1.1	%	per
year.	According	to	the	approach	from	the	introduction	of	this	section,	after	another	t	years
we	can	expect	P	people	to	live	on	earth:

P	=	7	·	1.011t

How	long	does	it	take	mankind	to	double	its	numbers	if	the	trend	continues	at	this	rate?
Let’s	apply	the	great	formula	to	find	out:

T	=	ln(2)	/	ln(1.011)	≈	63	years

So	in	2075	there	would	be	14	billion	people	on	earth.	However,	the	annual	growth	rate
has	been	declining	since	the	sixties	and	is	expected	to	do	so	in	the	future	as	well.	In	1963
the	annual	growth	rate	peaked	at	2.2	%,	which	implies	a	doubling	time	of:

T	=	ln(2)	/	ln(1.022)	≈	32	years

Luckily	for	all	those	alive	and	yet	to	be	born,	the	explosive	growth	is	flattening	out	as	we



speak.	So	in	the	long	run	the	growth	seems	to	be	logistic	rather	than	exponential.

–––––––-

The	radioactive	material	Polonium-210	decays	at	a	rate	of	about	3.5	%	per	week.	What	is
the	half	life	of	this	material?

T	=	ln(2)	/	ln(1.035)	≈	20	weeks

So	if	you	initially	had	a	160	gram	sample	of	Polonium-210,	you’d	be	left	with	…

…	80	grams	after	20	weeks

…	40	grams	after	40	weeks

…	20	grams	after	60	weeks

…	10	grams	after	80	weeks

and	so	on	in	that	fashion.	Where	does	all	this	mass	goes?	It	is	given	off	partly	as	a	stream
of	alpha	particles	and	electrons	and	partly	as	radiation,	all	which	can	be	dangerous	to
people	when	exposed	to	this	radioactive	decay.

–––––––-

So	the	doubling	time	or	half	life	is	indeed	a	very	useful	concept	that	is	easy	to	calculate	on



top	of	that.	It	works	whenever	we	are	faced	with	exponential	growth	(which	is	often).



Optimal	Price:

Choosing	a	price	for	a	product	is	never	easy.	You	can	go	for	low	prices	and	thus	a	high
sales	rate,	but	still	end	up	with	little	revenue	because	your	margin	on	each	sale	was
minimal.	On	the	other	hand,	you	can	choose	high	prices	to	maximize	your	margin,	but
again	you	could	end	up	with	almost	no	revenue	because	people	are	not	willing	to	buy	at
this	price	and	simply	turn	to	your	competition.	What	to	do?

As	so	often,	the	in	between	provides	the	best	option.	Assuming	that	the	sales	rate	x
declines	linearly	with	the	price	p,	there’s	an	optimal	price	p(opt)	that	will	result	in	the
highest	possible	revenue.	The	great	news:	there’s	is	a	simple	formula	to	compute	the
optimal	price.	The	bad	news:	you	need	at	least	two	data	points	to	use	it	and	it’ll	still	be
only	an	approximation.

But	let’s	take	it	step	by	step.	You’ve	been	selling	your	product	for	some	time	now	at	price
p.	During	this	time,	the	sales	rate	was	more	or	less	constant	at	x.	Since	you	feel	that	things
could	be	better,	you	raise	or	lower	the	price	to	a	new	value	p’	and	observe	how	the	market
reacts.	The	sales	rate	changes	to	x’.	With	these	two	data	points,	it	is	possible	to	compute
the	optimal	price.

Before	stating	the	formula	it	is	helpful	to	define	two	additional	quantities	that	we	can
easily	derive	from	the	two	data	points.	The	first	quantity	is	the	percentage	change	in	price
from	p	to	p’:

σ(price)	=	(p’	-	p)	/	p

The	second	quantity	is	(unsurprisingly)	the	percentage	change	in	sales	rate	from	x	to	x’:

σ(sales)	=	(x’	-	x)	/	x

Note	that	the	signs	of	these	two	quantities	usually	differ.	If	we	increase	the	price,	positive
σ(price),	the	sales	rate	usually	falls,	negative	σ(sales).	Make	sure	to	set	the	signs	correctly,
otherwise	the	formula	will	produce	a	false	optimal	price.	That	said,	here’s	the	formula:

p(opt)	=	0.5	·	p	·	(	1	-	σ(price)	/	σ(sales)	)



We	can	also	calculate	the	maximum	possible	sales	revenue	r(max)	using	this	formula:

r(max)	=	-	p(opt)2	·	(x’	-	x)	/	(p’	-	p)

Let’s	apply	the	formulas.

–––––––-

A	company	that	manufactures	and	sells	external	hard	drives	determined	that	at	p	=	60	$	it
sells	x	=	1350	hard	drives	per	month	and	at	p’	=	80	$	it	sells	x’	=	1050.	Estimate	the
optimal	price	and	the	maximum	possible	sales	revenue.

Let’s	first	compute	the	percentage	changes:

σ(price)	=	(80	-	60)	/	60	=	0.33	=	33	%

σ(sales)	=	(1050	-	1350)	/	1350	=	-0.22	=	-22	%

So	the	company	increases	prices	by	33	%	and	as	a	reaction	to	that,	the	sales	rate	dropped
by	22	%.	We	can	now	use	the	formula	for	the	optimal	price:

p(opt)	=	0.5	·	60	$	·	(	1	-	0.33	/	(-0.22)	)

p(opt)	=	75	$

So,	assuming	the	relationship	between	price	and	sales	rate	to	be	linear,	the	optimal	price
for	the	product	is	at	75	$.	At	this	price	the	company	will	make	this	maximum	possible
revenue:

r(max)	=	-752	·	(1050	-	1350)	/	(80	-	60)

r(max)	≈	84,400	$	per	month



This	of	course	also	means	that	at	the	optimum	price,	the	company	will	sell	r(max)	/	p(opt)
≈	1130	hard	drives	per	month.	In	the	image	below	you	can	see	theoretical	variation	of
sales	rate	and	revenue	with	price	for	this	product.

–––––––-

Note	that	the	ratio	σ(price)	/	σ(sales)	determines	how	the	optimal	price	p(opt)	relates	to	the
initially	chosen	price	p.	If	the	percentage	change	in	prices	is	greater	then	the	following
percentage	change	in	sales	rate,	as	it	was	in	the	example,	then	the	optimal	price	is	greater
than	the	initial	price.	If	both	percentage	changes	turn	out	to	be	equal,	the	optimal	price
coincides	with	the	initial	price.

Do	you	have	a	product	on	the	market	as	well?	If	yes,	it	would	be	a	good	idea	to	observe
the	sales	rate	at	two	different	price	levels	and	apply	the	formula.	There’s	a	good	chance
that	this	will	increase	your	revenue	and	profit.



Annuity:

When	you	borrow	a	large	amount	of	money	from	the	bank,	for	example	to	buy	an
expensive	car	or	a	house,	you	will	usually	pay	it	back	in	monthly	installments.	These
include	the	interest	that	is	to	be	paid	on	the	credit.	This	section	focuses	on	the	formula	that
allows	you	to	compute	the	monthly	rates.

What	inputs	do	we	need?	Obviously	we	will	need	the	principal	P	(in	$	or	any	other
currency),	that	is,	the	amount	of	money	that	we	borrowed,	and	the	interest	rate	i
(expressed	in	decimals).	Additionally,	we	need	to	know	the	total	duration	of	the	loan	t	(in
years).	Given	these,	we	can	calculate	the	annuity	A,	which	is	the	annual	installment.

A	=	P	·	i	·	(1	+	i)t	/	((1	+	i)t	-1)

We	just	divide	the	annuity	by	twelve	to	get	the	monthly	installment.	Note	that	the	actual
value	can	be	a	few	percentages	higher	or	lower,	depending	on	the	specific	fees	and
conditions.

Granted,	the	formula	does	not	look	very	appealing.	But	don’t	be	intimidated	by	it.	As	long
as	you	input	the	right	values	and	calculate	carefully,	nothing	will	go	wrong.	It	goes
without	saying	that	the	formula	is	of	great	importance.	It	is	one	of	the	most	often	used
formulas	in	banking	and	will	become	relevant	to	almost	all	of	us	at	some	point	in	our
lives.

–––––––-

We	want	to	get	a	P	=	200,000	$	loan	from	the	bank	and	pay	it	back	over	the	next	t	=	20
years.	The	bank	agrees	to	loan	us	this	sum	at	an	interest	rate	of	i	=	4	%	=	0.04.	What	will
the	monthly	installments	be?	To	find	that	out,	we	simply	plug	in	all	we	know	into	the
annuity	formula:

A	=	200,000	·	0.04	·	1.0420	/	(1.0420	-1)

≈	17,529	/	1.19	≈	14,730	$



So	the	monthly	installments	will	be	14,730	$	/	12	≈	1230	$.

–––––––-

The	computed	monthly	rate	turns	out	to	be	too	high	for	us.	We	would	like	to	reduce	the
installments	by	increasing	the	duration	of	the	loan	to	t	=	30	years.	The	bank	agrees.	How
does	this	affect	the	monthly	rate?

A	=	200,000	·	0.04	·	1.0430	/	(1.0430	-1)

≈	25,947	/	2.24	≈	11,580	$

which	translates	into	a	monthly	installment	of	965	$.	So	the	ten	additional	years	of
responsibility	reduced	the	rate	by	about	20	%.	Is	that	worth	it?	It’s	your	call.

–––––––-

The	annuity	formula	has	a	very	useful	inversion.	Sometimes	we	already	know	what
monthly	rate	(and	thus	annuity	A)	we	would	like	to	or	are	able	to	pay.	Given	the	principal
P	and	interest	rate	i,	we	can	then	compute	the	duration	t	of	the	loan.	To	do	that,	we	first
calculate	this	quantity:

x	=	A/S	-	i

and	insert	the	result	into	this	equation:

t	=	ln(1	+	i	/	x)	/	ln(1	+	i)

–––––––-

Let’s	go	back	to	the	P	=	200,000	$	loan	at	i	=	4	%	interest	rate.	We	would	like	to	have	a
monthly	rate	of	1100	$.	What	is	the	corresponding	duration	of	the	loan?	Note	that	this
monthly	rate	corresponds	to	an	annuity	of	1100	$	·	12	=	13,200	$.



First	we	compute	the	mysterious	x:

x	=	13,200	/	200,000	-	0.04	≈	0.026

Now	we	can	apply	the	formula:

t	=	ln(1	+	0.04	/	0.026)	/	ln(1.04)	≈	24	years

Let’s	make	this	proposal	and	hope	that	the	bank	is	cooperative.	Knowing	the	formulas
certainly	didn’t	hurt.	It	gets	you	on	a	level	playing	field	with	your	bank.

–––––––-

The	annuity	formula	or	its	inversion	is	certainly	no	smooth	sailing	and	don’t	even	bother
to	memorize	it.	But	its	difficulty	is	overrated.	In	the	end,	it’s	just	another	formula	to	plug
values	into.	You	don’t	need	to	be	a	trained	economist	to	do	that.



Queues:

Nobody	likes	waiting	in	line.	Still	we	are	forced	to	do	just	that	almost	every	day:	at	the
bank,	at	the	doctor’s	office,	at	the	fast	food	restaurant,	at	the	gas	station,	…	In	this	section
we	will	take	a	closer	look	at	waiting	in	single	line,	multiple	channel	systems,	meaning	that
in	such	cases	there’s	one	line	for	waiting	customers	and	one	or	more	servers	(see	image).

The	formulas	for	this	case	are	very	complicated	and	extremely	useful.	We	need	three
quantities	as	inputs:	the	arrival	rate	λ	(in	customers	per	unit	time),	the	service	rate	µ	(also
in	customers	per	unit	time)	and	the	number	of	servers	M.	Let’s	focus	on	the	case	of	having
only	one	server	first,	M	=	1.	The	average	waiting	time	per	customer	T	(in	the	given	unit
time)	will	be:

T	=	λ	/	(µ	·	(µ	-	λ)	)

With	this	computed,	we	can	also	easily	state	the	average	number	of	customers	N	in	the
queue:

N	=	λ	·	T

Let’s	do	an	example	for	these	relatively	simple	formulas	before	moving	on	to	the	really
brutal	stuff.

–––––––-



At	the	doctor’s	office	the	patients	arrive	at	a	rate	of	λ	=	5	patients	per	hour.	The	doctor
can	serve	µ	=	6	patients	per	hour.	What	will	be	the	average	waiting	time	for	a	patient?
How	many	people	will	be	in	the	waiting	room	on	average?

T	=	5	/	(6	·	1)	=	0.83	hours	=	50	minutes

N	=	5	·	0.83	≈	4	people	in	waiting	room

–––––––-

Now	let’s	turn	to	the	case	of	more	than	one	server.	Before	we	can	compute	the	waiting
time,	we	will	need	to	evaluate	the	probability	p	of	having	no	customers	in	the	system:

1/p	=	sum	from	n=0	to	n=M-1	over	(	(λ/µ)n	/	n!	)

+	(λ/µ)M	·	M	·	µ	/	(M	·	µ	-	λ)	·	1	/	M!

I	told	you	it’s	gonna	be	brutal!	If	you’re	wondering	about	the	exclamation	mark,	take	a
look	at	the	section	“Poisson	Distribution”.	You’ll	find	an	explanation	there.

For	the	special	case	of	having	M	=	2	servers,	the	overly	complicated	formula	reduces	to
this	much	more	pleasing	one:

1/p	=	1	+	λ/µ	+	(λ/µ)2	·	2	·	µ	/	(2	·	µ	-	λ)	·	0.5

Once	we	calculated	p,	we	can	use	this	formula	to	derive	the	waiting	time	per	customer	T.

T	=	p	·	µ	·	(λ/µ)M	/	(	(M-1)!	·	(M	·	µ	-	λ)2	)

Again	we	can	simplify	this	for	M	=	2	servers:

T	=	p	·	µ	·	(λ/µ)2	/	(2	·	µ	-	λ)2

Luckily,	the	handy	formula	for	computing	the	average	number	of	customers	N	in	the



queue	remains:	N	=	λ	·	T.	That	being	said,	let’s	turn	an	example.

–––––––-

We	will	stick	said	doctor’s	office	with	an	arrival	rate	λ	=	5	and	service	rate	µ	=	6	patients
per	hour.	The	doctor	rightly	feels	that	50	minutes	waiting	time	is	too	much	and	invites	a
colleague	to	join	him.	So	now	there	are	M	=	2	servers.	How	does	this	impact	the	waiting
time	and	number	of	patients	in	the	waiting	room?

First	we	need	the	probability	of	having	no	patient	in	the	system	(no	patient	in	the	waiting
room	or	being	served).	We	can	use	the	simplified	formula:

1/p	=	1	+	5/6	+	(5/6)2	·	2	·	6	/	(2	·	6	-	5)	·	0.5

1/p	≈	1	+	0.83	+	0.60	=	2.43

p	=	0.41

Now	we	can	compute	the	average	waiting	time	T	and	the	average	number	of	people	in	the
waiting	room:

T	=	0.41	·	6	·	(5/6)2	/	(2	·	6	-	5)2

T	≈	0.03	hours	≈	2	minutes

N	=	5	·	0.03	≈	0	people	in	waiting	room

So	the	additional	server	made	a	huge	difference,	reducing	the	waiting	time	from	50
minutes	to	a	mere	2	minutes	and	effectively	emptying	the	waiting	room.

–––––––-

Note	that	all	the	formulas	only	work	when	M	·	µ	is	greater	than	λ	and	the	customers	are



served	by	the	FIFO	(First	In,	First	Out)	principle.	Also	it	was	assumed	that	no	customer
leaves	the	queue	before	being	served.	If	this	occurs	regularly,	then	the	average	queue	size
will	be	shorter	than	the	computed	value.



Risky	Games:

Whenever	we	do	business,	there’s	a	chance	of	success	and	a	chance	of	failure.	How	it	will
turn	out	depends	on	many	things:	our	skills,	our	business	partners,	the	market	situation,
political	decisions,	and	so	on.	A	simple	formula	from	statistics	can	help	us	deal	with	risk
by	allowing	us	to	compute	the	expected	value	of	the	gains	or	losses.

It	is	all	based	on	the	concept	of	probability	distributions,	so	we	need	to	take	a	look	at	those
first.	A	(discrete)	probability	distribution	lists	all	possible	outcomes	along	with	their
probability.	For	example,	imagine	we	are	offered	a	game	of	dice.	We	put	in	a	wager	of	5	$.
If	we	roll	a	six,	we	get	the	wager	back	plus	20	$,	if	we	don’t,	we	lose	the	wager.	Since	we
roll	a	six	with	the	probability	1/6,	here’s	the	probability	table	for	this	game:

-5	$	with	the	probability	5/6

20	$	with	the	probability	1/6

Note	that	in	such	distributions	the	probabilities	must	always	add	up	to	one.	So	is	it	worth
playing	this	game?	How	much	is	our	expected	gain	or	loss	per	round?	This	can	be
answered	using	the	following	great	formula.	Assume	we	are	given	a	probability
distribution	with	the	numerical	outcomes	n(1),	n(2),	n(3),	…	and	their	respective
probabilities	p(1),	p(2),	p(3),	…	The	expected	outcome	per	round	is:

e	=	n(1)·	p(1)	+	n(2)·	p(2)	+	n(3)·	p(3)	+	…

Thus,	we	simply	multiply	all	the	numerical	outcomes	with	their	respective	probabilities
and	do	the	sum.	Let’s	compute	the	expected	value	for	our	game	of	dice:

e	=	-5	$	·	5/6	+	20	$	·	1/6	≈	-0.83	$	per	round

So	this	game	is	not	at	all	favorable	to	us,	in	the	long	run	we	can	only	lose.	If	we	play	100
rounds,	we	can	be	expected	to	lose	83	$.	It’s	better	to	turn	down	this	offer	and	wait	for	a
better	one	to	come	along.

By	the	way,	with	the	concept	of	the	expected	value	it	is	very	simple	to	define	what	a	fair
game	is.	If	e	=	0,	the	game	is	fair.	In	the	above	situation	a	fair	pay-out	in	case	of	rolling	a
six	would	have	been	25	$.	With	this	value	we	get:



e	=	-5	$	·	5/6	+	25	$	·	1/6	=	0	$	per	round

Here	neither	the	player	nor	the	casino	is	favored.	Let’s	turn	to	some	examples	now.

–––––––-

A	start-up	business	wants	to	borrow	100,000	$	from	a	bank	at	an	interest	rate	of	6	%.	The
probability	of	default	is	estimated	to	be	8	%.	Should	the	bank	agree	and	go	ahead	with	the
credit?	To	answer	that,	let’s	take	a	look	at	the	probability	distribution.	In	the	case	of	the
loan	being	paid	back,	the	bank	gains	0.06	·	100,000	$	=	6000	$.	However,	if	the	start-up
business	defaults,	the	bank	will	have	a	loss	of	100,000	$.

-100,000	$	with	the	probability	0.08

6000	$	with	the	probability	0.92

Let’s	look	at	the	expected	value,	that	is,	the	expected	gain	or	loss	per	credit	of	this	type.

e	=	-100,000	$	·	0.08	+	6000	$	·	0.92

≈	-2480	$	per	credit

So	for	the	bank	this	set	up	is	not	favorable,	the	interest	rate	is	too	low	to	make	up	for	the
high	chance	of	default.	Here	you	can	see	why	coupling	interest	rates	to	risk	makes	sense.

–––––––-

Again	the	start-up	business	wants	to	borrow	100,000	$	from	a	bank	and	the	probability	of
default	is	8	%.	How	should	the	bank	set	the	interest	rate	i	in	order	to	have	an	expected
gain	of	1000	$	per	credit	of	this	type?

Again,	let’s	look	at	the	probability	distribution.	The	bank	gains	i	·	100,000	$	if	the	loan	is
paid	back	and	loses	100,000	$	if	the	start-up	business	defaults.

-100,000	$	with	the	probability	0.08

i	·	100,000	$	with	the	probability	0.92



Since	we	want	to	have	an	expected	value	of	1000	$,	we	can	use	the	great	formula	to	set	up
and	solve	this	equation:

1000	=	-100,000	·	0.08	+	i	·	100,000	·	0.92

1000	=	-8000	+	i	·	92,000

9000	=	i	·	92,000

i	≈	0.1	=	10	%

–––––––-

It	should	be	noted	that	the	expected	value	is	a	number	that	is	approached	in	the	long	run.
In	the	dice	game	from	the	introductory	example	you	could	indeed	make	a	profit	despite	its
negative	expected	value.	If	you	played	only	two	rounds	and	you	won	both,	you	would
have	gained	40	$.

The	expected	value	tells	you	what	balance	is	most	likely	to	occur	after	a	large	number	of
rounds	and	this	very	efficiently.	It	is	mathematically	proven	(Law	of	Large	Numbers)	that
as	the	number	of	rounds	grows,	the	actual	balance	will	converge	to	the	computed	value,	no
exception.

The	image	below	shows	the	difference	between	the	actual	profit	per	round	for	a	dice	game
resulting	from	a	randomized	computer	simulation	and	the	theoretical	profit	per	round	as
computed	from	the	formula.	The	convergence	is	clearly	visible.	The	more	rounds	we	play,
the	smaller	this	difference	becomes.	It’s	the	Law	of	large	numbers	in	action.





Part	IV:	Appendix

Unit	Conversion:

Since	we	often	need	to	convert	units	from	the	American	to	the	SI	(or	metric)	system	and
vice	versa,	here’s	a	list	of	commonly	needed	conversion	factors.

Lengths,	SI	to	American:

Multiply	meters	with	3.3	to	get	to	feet

Multiply	meters	with	1.1	to	get	to	yards

Multiply	meters	with	0.00062	to	get	to	miles

Multiply	kilometers	with	3281	to	get	to	feet

Multiply	kilometers	with	1094	to	get	to	yards

Multiply	kilometers	with	0.62	to	get	to	miles

Lengths,	American	to	SI:

Multiply	feet	with	0.3	to	get	to	meters

Multiply	feet	with	0.0003	to	get	to	kilometers

Multiply	yards	with	0.91	to	get	to	meters

Multiply	yards	with	0.00091	to	get	to	kilometers

Multiply	miles	with	1609	to	get	to	meters

Multiply	miles	with	1.61	to	get	to	kilometers

To	convert	a	squared	to	a	squared	unit,	use	the	square	of	the	conversion	factor.	For
example	you	multiply	m2	by	3.32	≈	10.9	to	get	to	ft2.	In	a	similar	fashion	you	can	convert
cubed	units.

Speeds:



Multiply	m/s	with	3.6	to	get	to	km/h

Multiply	m/s	with	2.23	to	get	to	mph

Multiply	km/h	with	0.28	to	get	to	m/s

Multiply	km/h	with	0.62	to	get	to	mph

Multiply	mph	with	0.45	to	get	to	m/s

Multiply	mph	with	1.61	to	get	to	km/h

Other	commonly	used	units:

Multiply	m3/s	with	3600	to	get	to	m3/h

Multiply	m3/h	with	0.00028	to	get	to	m3/s

Multiply	pounds	with	0.45	to	get	to	kilograms

Multiply	kilograms	with	2.22	to	get	to	pounds

1	acre	=	43,560	ft2

Multiply	acres	with	4047	to	get	to	m2

Multiply	m2	with	0.00025	to	get	to	acres

1	liter	=	0.001	m3

Multiply	liters	with	0.62	to	get	to	gallons

Multiply	gallons	with	3.79	to	get	to	liters

Celsius	to	Fahrenheit:	°F	=	1.8	·	°C	+	32

Fahrenheit	to	Celsius:	°C	=	5/9	·	(°F	-	32)

If	you	intend	to	do	conversions	online,	be	sure	to	check	out	the	easy	to	use	website	metric-
conversions.org.	It	features	all	the	conversions	you	could	possibly	need.



Unit	Prefixes:

Also	helpful	and	often	needed	are	the	prefixes	for	units.	They	allow	us	to	write	very	large
or	very	small	numbers	in	a	compact	form.	Try	to	memorize	the	most	common	ones.

tera	(T)	=	1,000,000,000,000

giga	(G)	=	1,000,000,000

mega	(M)	=	1,000,000

kilo	(k)	=	1,000

dezi	(d)	=	0.1

centi	(c)	=	0.01

milli	(m)	=	0.001

micro	(μ)	=	0.000,001

nano	(n)	=	0.000,000,001

pico	(p)	=	0.000,000,000,001
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Excerpt:

As	a	thank	you	to	all	readers	who	have	come	this	far,	I’ll	include	a	short	excerpt	from	my
introductory	physics	ebook	“Physics!	In	Quantities	and	Examples”.

FTL	-	Faster	than	Light

No	object	can	move	faster	than	light	in	vacuum.	So	why	bother	having	a	section	called
“Faster	than	Light”?	The	reason	for	that	is	that	light	does	not	always	move	at	the	same
speed.	When	it	enters	a	material,	it	slows	down,	in	some	cases	even	considerably.	So	faster
than	light	is	indeed	possible,	just	not	in	vacuum.	To	calculate	the	speed	of	light	in	a
material,	which	we’ll	denote	by	c’	to	distinguish	it	from	the	speed	of	light	in	vacuum	c,	we
need	to	know	the	material’s	refractive	index	n	(a	dimensionless	quantity).	The	equation	is
simple:	

c’	=	c	/	n	

For	example,	water	has	a	refractive	index	of	n	=	1.33.	So	instead	of	the	common	c	=
300,000,000	m/s,	light	travels	at	c’	=	225,264,000	m/s	in	water.	It	is	not	uncommon	that
individual	particles	go	faster	than	that.	And	when	they	do,	they	emit	a	certain	type	of
electromagnetic	radiation,	called	Cherenkov	radiation,	which	is	the	optical	equivalent	to	a
sonic	boom.	The	blue	glow	observed	in	nuclear	reactors	is	a	result	of	this	effect.	

Cherenkov	radiation	has	been	put	to	good	use	in	recent	years.	It	provided	the
breakthrough	needed	to	reliably	detect	neutrinos.	These	“ghost	particles”	can	pass
through	matter	(including	Earth	and	the	Sun)	without	any	interaction.	Only	extremely
dense	matter	such	as	neutron	stars	can	capture	them	efficiently.	So	it	is	no	surprise	that
detecting	and	studying	them	is	one	of	the	great	scientific	challenges	of	our	times.	

The	big	breakthrough	came	in	form	of	an	enormous	tank	containing	50,000	tons	of	ultra-
pure	water	and	fitted	with	a	large	number	of	radiation	detectors.	The	installation	is
located	under	Mount	Kamioka	in	Japan	and	named	Super-Kamiokande	(or	just	Super-K).
Whenever	a	neutrino	interacts	with	charged	matter	inside	the	tank	(a	rare	event),	a	cone
of	Cherenkov	radiation	forms	that	can	be	picked	up	by	the	detectors.	This	enables
scientists	to	not	only	count	the	neutrinos,	but	also	determine	the	direction	they	came	from
(which	is	what	previous	neutrino	detectors	were	not	able	to	do).	



Neutrino	astronomy	might	revolutionize	our	understanding	of	the	universe.	Since	the
neutrinos	created	in	the	countless	fusion	processes	within	the	Sun	can	reach	a	detector
without	any	interaction	on	the	way,	neutrino	detectors	allow	scientists	to	look	past	the
boiling	surface	directly	into	the	hellish	interior	of	the	Sun.	They	also	help	to	gather	more
reliable	data	on	supernovas,	another	important	source	of	neutrinos.



More	E-Books	by	Metin	Bektas:

Physics!	In	Quantities	and	Examples

$	3.95	/	144	pages	/	4.6	out	of	5	stars

This	book	is	a	concept-focused	and	informal	introduction	to	the	field	of	physics	that	can
be	enjoyed	without	any	prior	knowledge.	Step	by	step	and	using	many	examples	and
illustrations,	the	most	important	quantities	in	physics	are	gently	explained.	From	length
and	mass,	over	energy	and	power,	all	the	way	to	voltage	and	magnetic	flux.	The
mathematics	in	the	book	is	strictly	limited	to	basic	high	school	algebra	to	allow	anyone	to
get	in	and	to	assure	that	the	focus	always	remains	on	the	core	physical	concepts.



The	Book	of	Forces

$	2.99	/	122	pages	/	no	reviews	available

Forces	make	the	world	go	‘round	-	literally.	This	book	provides	a	quick	and	easy-to-
understand	introduction	to	the	quantity	force	and	an	overview	of	the	many	types	of	forces
that	shape	our	universe.	Besides	enlightening	and	down-to-earth	explanations,	you’ll	find
plenty	of	detailed	exercises	demonstrating	how	the	concepts	and	formulas	can	be	applied
to	real-world	situations.	Knowledge	of	high	school	algebra	is	sufficient	to	follow	the
calculations.	For	more	information,	check	out	the	table	of	contents.



Statistical	Snacks

$	3.95	/	177	pages	/	3.9	out	of	5	stars

Welcome	to	the	wondrous	world	of	statistics	and	probability!	This	informal	book	will	pick
you	up	at	the	very	beginning	and	gently	guide	you	through	the	core	concepts	of
probabilistic	mathematics.	It	carefully	explains	the	basic	ideas	and	shows	you	how	to
apply	them	to	a	vast	number	of	diverse	situations.	If	you’re	looking	for	a	dry	textbook,
you	are	in	the	wrong	place.	This	book	is	all	about	understanding	and	applying	and
applying	and	applying	…

After	closely	examining	the	multiplication	rule	and	its	applications,	including	the	dreaded
at-least-problems,	it	goes	on	to	show	how	the	binomial	distribution	works,	what
astonishing	things	you	can	do	with	the	expected	value,	what’s	so	great	about	the	Poisson
distribution,	how	to	solve	statistical	problems	using	geometry	and	what	all	the	fuss	with
Bayes’	theorem	is	about.	As	a	plus,	the	final	chapter	provides	a	quick	peek	into	further
statistical	concepts	such	as	Markov	chains,	standard	deviation	and	standard	error,	Chi-
Square	and	cellular	automatons.

Besides	demonstrating	how	the	concepts	work,	the	many	bits	of	applications,	the
statistical	snacks,	cover	a	wide	and	diverse	range	of	topics:	monkeys	on	a	typewriter,
multiple	choice	tests,	missile	accuracy,	collecting	stickers,	fair	games,	quantitative
linguistics,	space	probe	communication,	soccer,	tired	colleagues,	drunk	drivers,
immigrants	and	crime,	pirates	and	global	warming	and	many	more.
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