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On the Most Perfect Forms of Magic Squares, with 
Methods for their Production.* 

BY EMORY MCCLINTOCK. 

PART I.- The Method of Uniform Steps. 

1. The square A is magic because each row, column, and diagonal has the same 
sum, 175; it is pandiagonal because not only the two main diagonals, but also 

A. 

10 5 49 37 32 27 15 
41 29 24 19 14 2 46 
16 11 6 43 38 33 28 

47 42 30 25 20 8 3 
22 17 12 7 44 39 34 
4 48 36 31 26 21 9 

35 23 18 13 1 45 40 

the twelve broken diagonals, such for example as 49 + 29 + 16 + 3 + 39 

+ 26 + 13, have each the same sum; it is symmetrical because any number 
added to the one centrally opposite makes 50, as for example 11 + 39, so that 
any three numbers and their opposites, plus the central number, will have the 
same sum, 175; and it is a knight's path square because the numbers 1, 2, 3, 
. . aa48, 49, 1 will be found to follow such a path, it being presupposed that the 
knight can leave either of the four sides freely to re-enter upon the side opposite, 
exactly as though such sides were adjacent. Thus, from 1, the step to 2 inay be 
divided into two steps down, through 32 to 14, anld one step to the right; or from 
9, two down, through 40 to 15, then one on the right, arriving at 10. 

* Read before the American Mathematical Society, April 25, 1896. 
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100 MCCLINTOCK: On the Most Perfect Forms of Magic Squares, 

2. The forms of magic squares most familiarly known have been symmet- 
rical, though not pandiagonal, It is not to be presumed that symmetrical 
squares should have been known so long, possessing the property, for the 
square of 7, that two centrally opposite numbers shall have 50 for their sum, 
and in general, for the square of 2n + 1, that two centrally opposite numbers shall 
have (2n + 1)2 + 1 for their sum, without some one noticing that any n numbers, 
plus their opposites, plus the central number, making 2n + 1 in all, must form 
a symmetrical group having the same sum as that of any row or column. 
Granting that this observation must have been made, unknown to the present 
writer, it would yet appear that this property of sumnring symmnetrical groups 
has been slighted beyond measure and without cause. In A, for example, there 
are 28 ways of summing 175 by rows, columns, and diagonals, while by refer- 
ence to the symmetric groups hundreds upon hundreds of other ways may be 
exhibited. If dealing with trifles like magic squares is worthy of an Euler or a 
Cayley; if in short it is legitimate, it is because amusement has value. Any 
one who writes a symmetrical square indelibly upon some substance permitting 
instant removal of temporary marks can excite much interest by marking the 
numbers composing a symmetrical group, and subsequently exhibiting in like 
manner many other such groups, all having the same sum. It will be assumned 
in this paper that symmetry is essential in every case. 

3. Pandiagonal squares, not symmetrical, have also been known for centu- 
ries. It is a property of pandiagonal squares, long known and easily recognized, 
that a row or column on one of the four sides can be transposed to the opposite 
side without destroying the magic and pandiagonal attributes of the square. As 
the operation may be repeated indefinitely, any number of rows or columns 
taken together can be transposed with the same freedom. By reason of these 
remarkable properties pandiagonal squares have received from some writers, 
beginning with La Hire, the name "perfect," and from others, beginning with 
Lucas, the namne " diabolic." It is therefore possible to bring any given number 
in such a square, by not mnore than two transpositions, into the middle or any 
other given position. The square A, for example, is only one of 49 commutative 
forms, and of each of these forms there are 8 varieties, because any square what- 
ever mnay be turned upside down or sideways, or reflected in a rnirror, without 
losing its identity. The other 48 forms are not symmetrical, but any one of 
them mnay be regarded as " capable of symmetry," requiring only such transpo- 
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sitions as shall bring the middle number to the middle place. In most cases 
pandiagonal squares are not capable of symmnetry. 

4. A special property of pandiagonal squares has been variously stated by 
analysts. The following description will probably be found as simple as the 
miatter permits of. Choose two numbers in the square, certain combinations 
excepted, and note their relative location, observing how many places up or 
down, how many to the right or left, the second number stands from the first, 
and call this measurement the "step " between the two. It is forbidden to 
choose two numbers which, when divided severally by the root of the square, 
that is, the number of places on its side, say r, shall have either the sanme inte- 
gral quotient or the same renmainder; provided, as regards the division, that 
when there is no remainder the quotient must be reduced by 1, leaving r as the 
remnainder. Repeat the " step " by passing from the second number to a third, 
and so on until stopped by meeting the first number in the way. The cycle of 
numbers thus found will have the " magic " sum. Thus, in A, 5 + 38 + 22 + 13 

+46+ 30+21 = 175. This property may be called "step summation." 

5. To produce a knight's path square whiich shall also be both symrnetrical and 
pandiagonal, the root r being any odd number not divisible by 3 or 5, say 2n + 1, 
we may begin in the middle, with the middle number, and write n numbers 
succeeding, following the knight's path downward and to the right. When we 
have set down the nth number from the middle, that is, having made n steps, this 
number being the first one reached which is divisible by r [in A, 28], we must 
make a cross step before setting down the next number. This cross step may 
either be two places to our left and one down, or two to our right anid one up, 
the general direction being at right angles to that of the previous steps, the 
knight's step always preserving its original character or "bend," viz. in any 
direction which it may take, two places forward and one to the left. [In A, the 
second of the two cross steps indicated is chosen; otherwise 29 would appear 
where 20 is.] Proceeding now again in the original direction, until further pro- 
gress is obstructed [in A, 35 is such a stopping place, since the next step leads to 
the place occupied by 29], we find that a second cross step is necessary, similar 
to the one chosen for the first, and so on till the last number is written, when the 
cross step leads to the place where I must be written, after which the process is 
to be continued till the square is completed. [There is therefore a second 
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square having the properties of A, which the reader will, on laying out the 49 
spaces, have no trouble in filling up off-hand.] In this manner we may produce 
two squares, possessed of this combination of properties, for each odd root not 
divisible by 3 or 5. Or, we may begin by placing 1 in the uppermost row, just 
to the left of the middle column, if the formn of cross step " to our left " is chosen, 
and write the numbers directly in their order, making a cross step when 
obstructed, till the square is completed; or again, by placing 1 in the lowest row, 
just to the right of the middle column, and using the other form of cross step 
throughout. [See A.] A square of any size, however large, mnay be filled out 
in this way for the mere trouble of writing the numbers in their natural order. 
The rule has been given in both forms, starting from the middle and from 1 
respectively, the former method giving more insight into the principles involved, 
the latter being derived from the former with a little assistance from algebra. 
Again, we may start from 1 in any position and produce either square in a non- 
symmetrical form, requiring one or two transpositions, as already explained, to 
bring the middle nuimber to the middle. 

6. What is here presented as a "knight's path square," meaning a square 
containing the numbers in their natural order arranged along a path consisting 
throughout of knight's steps having the same bend, is but a special case, one of 
a class of squares having similar properties, a class which may be referred to as 
" uniform step squares." The square B, wherein r = 11, is a second illustration. 
In A, the uniform step was " two places forward, one to the left," or left-bend 
knight's step. In B it is three places forward, whatever the direction may be, 

B. 

90 54 7 81 34 119 72 25 110 63 16 
85 38 112 76 29 103 56 20 94 47 11 
69 33 107 60 13 98 51 4 78 42 116 
64 17 91 55 8 82 35 120 73 26 100 
48 1 86 39 113 77 30 104 57 21 95 
43 117 70 23 108 61 14 99 52 5 79 
27 101 65 18 92 45 9 83 36 121 74 
22 96 49 2 87 40 114 67 31 105 58 

6 80 44 118 71 24 109 62 15 89 53 
111 75 28 102 66 19 93 46 10 84 37 
106 59 12 97 50 3 88 41 115 68 32 
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then two to the left. The regular step, say from 61 in the middle to 62, or 
from 1 to 2, is three places down and two to our right, as we look at the square, 
our " right " being " left " to any one looking downward from the starting point. 
The cross step, say from 66 to 67, or fromn 11 to 12, is three places to the right 
and two up. A second square having the same properties mnay be produced by 
taking the opposite cross step, three places to the left and two down. If we 
count x places to the right and y places up, the regular step in B is defined by 
x = 2, y = - 3, and the cross step (let us say the cross step to our right) by 
x = 3, y = 2; and the cross step (to our left) for the other square would be 
defined by x - 3, y = - 2. The general rule, when r is prime and greater 
than 5, for producing a " uniform step square " is, first to take for the regular 
step x= a, y=- b, and for the cross step either x b, y = a, or x=- b, 
y - a, where b is any number from 2 to n inclusive, and a is any number 
above 0 and less than b, provided that a2 + b2 is prime to r. Here, as before, n 
is such that r = 2n + 1. (Otherwise we may, subject to the same rare excep- 
tions, define the choice of steps as from the middle place to any place in the 
south-southeast eighth of the square, using the points of the compass as in a 
map; any place, that is to say, included between the m-iddle- column and the 
diagonal, below and to the right of the middle place. This space may at pleasure 
be transferred to any other desired eighth of the square by turning the square 
around or using a real or imaginary looking-glass, so that the restriction of 
movement from the middle to a smnall fraction of the whole space does not impair 
the generality of the method. The samne remark holds concerning the use of 
steps having only the left bend, which in the mirror would of course appear as 
having the opposite bend, such variations not affecting the identitv of the 
square.) Having chosen the steps, we must now proceed exactly as explained 
for the knight's path square in the preceding paragraph, except that another 
place must be found for 1, if it be desired to begin with 1 instead of with the 
middle number. For the knight's step, a= 1, b= 2, and the place of beginning 
(with cross step to our right) is [see A] in the first row, counting from the 
bottom, and in the first column to the right of the middle column. When the 
cross step is to our left, the place of beginning is in all cases symnmetrically, that 
is, centrally, opposite to the place of beginning when the cross step is to our 
right, so that it is unnecessary to discuss both cases. The latter case, "to our 
right," is presupposed in what follows. For all steps in which a 1, the place 
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of beginning is in the first row, counting upward from the bottom; if a 3, the 
second row; if a = 5, the third row, and so on. If a = 2, it is in the first row 
above the middle; if a= 4, the second, and so on. For all steps in which b 2, 
the place of beginning is in the first column from the middle, counting to the 
right; if b = 4, the second, and so on. If b = 3, the place of beginning is in the 
second column, counting from the left; if b - 5, the third, and so on. Knowing 
these things, it is usually possible to begin the writing of the square by putting 
1 in any designated place not in line with the middle place. For example, let 
it be demanded, in a square of 13 on a side, that 1 be placed in the fourth 
column, and in the second row from the top. Here b = 6, a = 3, and the cross 
step is to our left. Or, let the assigned place be in the first column, and in the 
second row from the top. This requires that the direction of the steps be 
changed. We may treat the first column as if it were the top row, and, thus 
giving the square an imaginary turn of 900, we shall regard the row next to the 
top as if it were the column next to that on the right. The problem now is to 
place 1 in the top row and in the second column counting from the.right. For 
the directiorns thus altered, we have b = 3, a = 1, cross step to the left. In 
reality, the regular step will be three places to the right, one upward, and the 
cross step will be three places down, one to the right. 

7. For " uniform step squares," regarded more generally, in which the step 
is defined by coordinates x and y, without restricting the direction of the step, 
we have for the cross steps the codrdinates x1 = T y, y' =- ?x, the upper sign 
referring to what has been spoken of as " the cross step to our right." Taking 
the middle place as the origin of co6rdinates, the location of the first multiple of 
r which is reached in order, after taking n steps from the middle number, is 
nx;, ny, or rather the reinainder of these after division by r; that of the number 
next higher, after making the cross step, is nx q y, ny4x, and that of 1, readily 
deduced from these, x"' - ?ny, y"- = nx, both expressions being likewise 
subject to reduction by any multiple of r, because as a coordinate r = 0. Thus, 
as before, if x=a =1 and y-= - b = -2, the location of 1 is x" =2n=-1, 
yt = ? n; that is, column i 1, row qzn, as in the preceding paragraph. From 
these two general formula for the location of 1, namely, xl = 4? ny, y"' = F nx, 
we learn that to produce a square after assigning 1 to column x", row y", 
measured from the middle of the square, we have merely to add as many times 
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r respectively to x'1 and y"' as shall make them each divisible by n, thus deriving 
x and y at once. Thus, if r = 2n + 1 = 13, x"-n -=5, y" =- 3, the 
step for this location of 1 will be shown by x - (y"I + 3r) / (-T n) = zF 6, 
y (xX' + r)/(J n) = L 3, as in paragraph 6. Since the signs of x and y when 
deterinined in this way depend on that of the cross step, two squares can 
always-subject to certain exceptions which will be noted-be developed from 
any location not in line with the middle which may be assigned to 1, one by the 
direct step, the other by the same step backwards taken with the opposite cross 
step. No step is available for producing a pair of " uniform step squares," in 
which the numbers follow the steps in their natural order, including of course 
under this niamie the class of knight's path squares first described, unless r is 
prime to both x and y, and also prime to both the sumi and the difference of the 
natural numbers indicated by those letters, as well as to the sum of their squares. 

8. Sonme attention may for a moment be drawn to those failing cases wherein 
r is not prime to a2 + b2. It is not practically necessary to speak of composite 
values of r, the lowest of which, under the restrictions stated, is 49. Let us 
glance at the successive prime numbers 7, 11, 13, 17, 19, 23. For every value 
of r, if there were no failing cases, there would be W (r - 1)(r - 3) steps, each 
producing two squares with opposite cross steps. There are 3 such steps for 
r=7, namely, a=1, -b = 2 or 3; a = 2, -b = 3. There is likewise no 
failing case for r = 11, the steps being 10 in number, namely, a = 1, 
-b= 2, 3, 4, or 5; a= 2,- b=3, 4, or 5; a_3, b- =4 or 5, a= 4, 
-b= 5. For r= 13, the failing cases are a= 1, -b 5; a = 2, - b= 3; 
a=4, -b =6; leaving 12 available steps. For r -17, the failing cases are 
a-1, -b-4; a=2, -b=8; a=3,-b=5; a=6, -b=7; leaving 
24 available steps. For r = 19 and r = 23 there are respectively 36 and 55 
available steps without failing cases. 

9. The most important novel element in the knight's path method, and in 
the more general uniform step method of which the knight's path method is a 
special case, consists in the exhibition of uniforin steps by which the numbers 
are written down throughout in order, perhaps starting offhand with 1 in a place 
arbitrarily assigned. If for any purpose it be desired to follow the same series 
of steps while employing -a series of numnbers not in their natural order, it is 
possible to do so, and still to produce a square both symmetrical and pandiago- 
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nal, the path pursued, however, being no longer evident after conmpletion of the 
process. The way of doing this will be shown most readily by an example, in 
which r 7, the samne process being obviously applicable when r has other 
prime values. Let the numbers from 1 to 7 be arranged in any order, subject 
to certain conditions. The middle number, 4, must not be changed. The two 
numbers next to it on either side must have 8, that is, 3 + 5, the same as before, 
for their sum. The two numbers next adjacent must have the same sum, 
and so on. Thus we may perhaps reach some such order as this: 3, 7, 2, 4, 6, 
1, 5. Call this series S0. Form another series, ?,, by adding 7 to each term 
of S,; then another, S2, by adding 14 to each term of S, and so on till 7 
series, ending with 86, have been written down. Now rearrange the letters 
So, Si, .... S6, retaining S3 in the mniddle, in any order, provided the sum of the 
subscripts of any two equidistant from S3 shall remain 6 as before, and suppose 
the result is S5, So, S4, 83, S2, S6, S,. If for these letters we substitute the 
numbers which they represent, we shall have as the result the numbers from 1 
to 49 arranged thus: 38, 42, 37, 39, 41, 36, 40, 3, 7, 2, 4, 6, 1, 5, 31, 35, 30, 32, 

34, 29, 33, 24, 28, 23, 25, 27, 22, 26, 17, 21, 16, 18, 20, 15, 19, 45, 49, 44, 46, 

48, 43, 47, 10, 14, 9, 11, 13, 8, 12. If of the three possible steps for r = 7 we 

C. 

2 41 12 49 18 22 31 

43 17 23 34 5 42 11 

35 4 36 10 44 20 26 

13 47 21 25 29 3 37 

24 30 6 40 14 46 15 
39 8 45 16 27 33 7 

19 28 32 1 38 9 48 

choose the knight's path, and of the two cross steps choose the one to our right, 
we shall follow the order of the steps shown in A, but by using the numbers in 
their new order we shall produce the square C, which is both symmetrical and 
pandiagonal, but in which the knight's path is not obtrusive to the eye. Some 
other uniform step, however, less known than the knighit's path, should be chosen 
if complete disguise is desired. 

10. It is not difficult to prove that the method of uniform steps, for which 
one of the steps which may be chosen is the knight's step, must produce squares 
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both symmetrical and pandiagonal, provided the numbers are written in what 
may be called " symmetrical order," that is to say, either in their natural order, 
or rearranged symmetrically in r series of r numbers each as prescribed in the 
foregoing paragraph. Any square so formed must be symmetrical, because the 
middle number of the middle series is the middle number of all and is set in the 
middle place of the square; the two numbers next it either way have the 
uniform sum r2 + 1, onie of them being located by a step forward, the other by 
a step backward, so as to occupy places symmetrically opposite each other; the 
next pair of niumbers are similarly opposite each other, and so on by pairs 
throughout. 

11. Any square so formed must be pandiagonal, because it satisfies La 
Hire's requirement for what he called "perfect " squares. He divided the 
numbers into r series of r numbers each, without reference to symmetry, regard 
for which appears always to have been slighted, and nearly always unthought 
of, by writers on pandiagonal squares. His system of dividing the numbers into 
series, which has been fruitful in the hands of subsequent writers, was to regard 
every number as the sum of two constituents, say an elementary number p such 
as I, 2, ....(r -1), r, and a base numberq such as 0, r, 2r, ....(r-1)r. 
The elemenitary numbers, after being arranged in any order, may be designated 
in their new order as p2, P2' .... Pr, and the base numbers, similarly 
arranged in any order. as qoX q1l q2 ... q,-1. Any one of the original 
numbers, from I to r2, is known now- as the sum of its two constituents, say 
qk + Pm* La Hire observed that if a square were first formed of q's, each q being 
repeated r times, in such a manner that the same q did not appear twice in the 
same line, that is, the samie row, column, or diagonal, whole or broken, the 
square would be pandiagonal; and that if another square were similarly formed 
of p's, each p being repeated r times, but arranged in some different order from 
that followed in the q square, this also would be pandiagonal; and that the two 
squares might be superimposed, the constituents falling together being added so 
as to produce a " perfect " square. It is enough for us if the same series (see 
paragraph 9) is not represented twice in the same line, and that two numbers of 
the same rank in different series do not appear together in the same line. 

12. That the same series is not represented twice in the same row is plain, 
because each series of r numbers is located by r steps of uniform character, each 

15 



108 MCCLINTOOK: On the Most Perfect Forms of Magic Squares, 

measuring b places down, a places to the right, and b is taken prime to r. It is 
not represeinted twice in the same column, similarly, because a is prime to r. 
And it is not represented twice in the same diagonal, because each step leads to 
the (b + a)th diagonal whose direction is downward to the left and to the (b - a)th 
diagonal whose direction is downward to the right, and both b + a and b - a are 
prime to r. Again, two numbers of the same rank in different series cannot 
appear in line together unless the two leading numbers of those series are in line 
together, for the several series luarch in, so to speak, parallel order with equal 
steps. We must therefore examrine the steps by which the leading numbers of 
the several series follow one upon the other, steps which from the nature of the 
whole network must be uniform. It is sufficient to consider only the cross step 
to our right, the same reasoning sufficing for the case in which the other cross 
step is chosen. The regular step from 1 to 2, assuming for brevity that the 
numbers are in their natural order, is y = - 6, x;a. The step backward, 
therefore, from 1 to r, is y = b, x = - a. The cross step from r to r + 1 is 
y = a, x = b. The step from 1 to r + 1 is therefore y = b + a, x=b- a. 
Since these numbers and their sums and differences are prime to r, no two of 
the leading terms 1, r + 1, 2r + 1, . . . . , can be in line together; and it fol- 
lows, as stated, that no two numbers of the same rank in different series can be 
in line together, so that any square produced by the method of uniform steps is 
pandiagonal. 

13. The method must obviously produce a square whenever the step chosen 
is such as not to interfere with itself, so to speak, an interference which must 
happen whenever a succession, less than r in number, of cross steps, each 
defined by y = a, x = 6, leads to a place which is likewise to be reached 
from the same starting point by a succession of less than r regular steps, each 
defined by y = - b, x = a. Let us suppose such a place to be reached by p 
regular steps, and by q cross steps. Its location, taking the starting point as the 
origin, is y -pb = qa, and x =pa = qb, each expression when greater than 
r being reducible by the subtraction of the arithmetical value of r or some mul- 
tiple of it. Thus, assigning due values to j and k, we have jr - pb = qa, and 
qb = pa + cr. Fromi these by multiplying we derive jbr - p62 = pa2 + kar, 
whence a2 + b2 = mr, where rn = (jb - ka)/p, and p is less than r. Inter- 
ference is therefore avoided (see paragraph 8) when a2 + 62 is prime to r. Sup- 
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pose, for an example of interference, r = 13, a = 1, b = 5. Here m = 2, and 
the simplest values suitable are p = 5, q = 1, j = 2, k = 0; the first cross step 
clashes with the fifth direct. Again, suppose an attempt made to write a knight's 
path square with r = 25, a= 1, b = 2. Here m =1/5, according with p = IO, 
q - 5, j = 1, k = 0; the fifth cross step clashes with the tenth direct. When 
r is prime it is sufficient to assume q 1, k = 0. 

14. In additioin to uniform step squares, other forms may be produced which 
shall be both symmetrical and pandiagonal, proceeding as before by a regular 
step for the first series of r numbers, arranged symmetrically as in paragraph 9 
if not in their natural order, but using a different cross step. If for brevity we 
call the first of the first series 1 and the last of the same series r, the rule, wheni 
r is prime and > 3, may be laid down that the cross step from r to r + 1, the 
first of the next series, may be taken to any place not in line with 1 and not 
already occupied by a number of the first series. To prove this it is only neces- 
sary to show that the steps 1, 2, 3, . . and 1, r + 1, 2r + 1, . . . . cannot lead 
to a common place of meeting before their return to the place of beginning 
where 1 is located. If one series of steps be denoted by x, Y, the first place will 
be located by x, y; the second by 2x, 2y; the third by 3x, 3y; and so on to 
rx, ry, which is the same as 0, 0, the place of beginning. Let us suppose a 
second series of steps, each denoted by 2x, 2y; these will reach the same places, 
r in number, though in different order, namely, 2x, 2y; 4x, 4y; ... . (r - 1) x, 
(r-1)y; (r +1)x, (r+1)y, that is, x, y; then 3x, 3y; . . . . rx, ry, as before; 
and this must hold good whether 2x or 2y, if greater than r, is counted in fill 
or reduced by r, since multiples of r will not affect locations on the square. In 
the same way we shall see that a step from 1 to any one of the places in ques- 
tion, repeated r times, must reach each other of the same places and no other 
place. The like is true of the other series of steps, leading successively to the 
series of places of 1, r + 1, 2r + 1, e . . . Since r + 1 was assigned to a place 
not occupied by any one of the numbers 1, 2, . .. . r, the two paths are there- 
fore wholly distinct. The work mnay either be begun with the middle number in 
the middle place, or a square " capable of symmetry" may be produced by begin- 
ning with 1 in any position. No discussion is here contemplated concerning 
the formation of squares of this irregular sort when r is not prime. It will be 
remarked that this variation of the miiethod must be used when r = 5, whenever 
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a square both symnmetrical and pandiagonal is desired, since in this case r cannot 
be prime to a2 + b2, so that uniformity of step throughout is not possible. 

15. The reasoning of the preceding paragraph may also manifestly be 
applied to cases where the cross step is uniform with the direct step. It is to 
be remarked that it is not possible to take a cross step which shall have a differ- 
ent " bend " while uniform with the direct step in other respects, because such a 
step would lead to a place for r + 1 in line with the place of 1, which is for- 
bidden. The direct step being x = a, y = - b, the position of r, measured 
backward from 1, is z; = - a, y = b. The cross step with the other bend from 
r to r + 1 being x= zF b, y ?a, the position of r + 1, measured from 1, is 
found to be x= -(a ? b), y= ?-i (a i b), showing that r + 1 and 1 are in 
line diagonally with each other. This explains, for example, why no attempt 
has here been made to produce a knight's path square with a cross step having a 
different bend from that of the direct step. It is almost unnecessary to observe 
that if r + 1 were in line with 1 the line could not have the magic sum r (r2+ 1), 
since its sum would be 1+r+1+ 2r+1+ .... + (r-1)r+1=1r(r2-r+2). 
When a different cross step is used, as in paragraph 14, it is not impossible to 
produce squares both symmetrical and pandiagonal for odd values of r, such as 
15 or 25, which do not permit the off-hand formation of uniform step squares. 

PART II.- The Figure-of-Eight Method. 

16. Symmetry, when the root r is even, is less useful a quality than when 
the root is odd, as there is no middle place from which to measure distances. 
The pandiagonal quality is still essential, when r is divisible by 4. It is not 
feasible for other even values of r. Let us assume without further repetition 
that r is divisible by 4. Pandiagonal squares of the best form for such values of 
r-let us call them " complete " squares-possess the following combined prop- 
erties: first, they possess all their properties without diminution however much 
the rows and columns may be transposed (see paragraph 3), differing in this 
respect from symmetrical pandiagonal squares for odd values of r; second, they 
possess additional magic summations by blocks of four, any small square of four 
being chosen as a block, and enough blocks being chosen, overlapping or other- 
wise, to mnake up r numbers in all; third, each number is complementary to the 
one distant from it j r places in the same diagonal. The second property pro- 
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D. 

1 63 3 61 1 2 54 10 56 

16 50 14 52 5 59 7 57 

17 47 19 45 28 38 26 40 
32 34 30 36 21 43 23 41 

53 11 55 9 64 2 62 4 

60 6 58 8 49 15 51 13 
37 27 39 25 48 18 46 20 
44 22 42 24 33 31 35 29 

duces a fourth, that of alternate equivalent couplets. For example, the square 
D is one in which r = 8; in which every block-of four has the sum 130, so that 
any two blocks have the magic sum 260; and in which every number and 
its diagonal fourth have the sum 65. The sum of any two overlapping blocks 
being equal, it follows that all alternate couplets have equal sums. Thus 
1+16 - 3 + 14, 50 + 47 = 52 + 45, 63 + 3 = 47 +19, and so on throughout 

without exception, both vertically and horizontally. A fifth property is an easy 
consequence of the fourth. The alternate couplets being equivalent, the four 
corners of any rectangle whatever, having an even number of places on each 
side, constitute a block again possessed of half the magic sum, so that any +r 
such blocks, however different in size or shape, whether apart or overlapping, 
will have the magic sum. The magic and pandiagonal properties themselves 
follow necessarily in these squares from the third and fourth: as regards the 
whole and broken diagonals, directly from the third, or perhaps rather from a 
sixth property which is a corollary of the third, namely, that any selected 1 r 
numbers in the square added to the r r numbers complementary to them in the 
same diagonals respectively, distant each from its complement r places, will 
have the magic sum. Of each row or column, one-half is composed of the com- 
plements of couplets which are alternate with and equivalent to the couplets 
composing the other half, so that the row or column again has the magic sum. 
What is obviously to be desired is a simple method of producing squares pos- 
sessed of the second and third properties, from which all the others are thus seen 
to follow. The problem is in fact to distribute r2 non-complementary numbers 
in - r adjacent rows or columns, formling one-half of the square, so as to exhibit 
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the second or "blocks of four" property throughout the whole square when it is 
completed by adding the complementary numbers. 

17. The square D was devised by what may be called the figure-of-eight 
method, because the order in which the rows are first written bears some resein- 
blance to the figure 8 laid on one side, the usual sign for infinity. The upper 
half of the square was first filled as indicated below. By following the 

1 2 3 4 12 11 10 9 
16 15 14 13 5 6 7 8 
17 18 19 20 28 27 26 25 
32 31 30 29 21 22 23 24 

order of the numbers from 1 to 32, the reason for using the phrase in question 
will readily be seen. The numbers in every alternate column, second, fourth, 
etc., were then replaced by their complements, and this supplied the upper half 
of D, the lower half being added by writing in the complemrents as indicated in 
the last paragraph. The rule therefore for producing " complete " squares is to 
write the first - r numbers in the first row, then drop to the second row, return- 
ing backwards along the first row and dropping to the second so as to complete 
both rows in what we may call the figure-of-eight manner. The next two rows 
must come next in the same way, and so on till half the square is filled, when 
every alternate column is to be replaced by the complementary numnbers, after 
which the rest of the square is to be completed by writing down the complement 
of etach number in the same diagonal, g r places lower down. The numbers may 
be arranged in their natural order, or in an appropriate artificial order, as will 
be seen later, but no other variation is proposed. 

18. Let us see what happens upon taking the odd numbers first, as seen 
below. If we replace the first, third, fifth, and seventh columns by writing in 

1 3 5 7 23 21 19 17 

31 29 27 25 9 11 13 15 

33 35 37 39 55 53 51 49 

63 61 59 57 41 43 45 47 
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lieu of them the complemnents of the numbers composing them, and supply the 
lower half, we obtain the "complete" square E. We might begin also by 

E. 

64 3 60 7 42 21 46 17 
34 29 38 25 56 11 52 15 
32 35 28 39 10 53 14 49 

2 61 6 57 24 43 20 47 
23 44 19 48 1 62 5 58 

9 54 13 50 31 36 27 40 
55 12 51 16 33 30 37 26 
41 22 45 18 63 4 59 8 

writing the even numbers, but the result would be the samne square, upside down, 
written backwards, and transposed. It is also to be remarked generally that 
it makes no real difference which set of columns is selected for replacement, 
whether the first, third, etc., or the second, fourth, etc. If, for example, the other 
set of columns had been replaced in this case by the complementary numbers, the 
resulting square would have been what E becomes after such transpositions as 
are required to bring 1 to the upper corner on the left hand. The reader 
will find on trial that the numbers may also be taken at intervals of 4, viz. 
1, 5, 9 * O. 61, followed by 2, 6, 10, .... 62. Illustrations of like results for 
larger squares, as where r = 12, r = 16, etc., may be multiplied to any extent. 

19. Since other ways of arranging the numbers in order are doubtless avail- 
able, while certainly the numbers cannot be arranged at random, it becomes 
necessary to examine the principle underlying this method, so as to ascertain 
the limits within which the order of the numbers can be changed. Let the first 
r numbers in the required artificial order be a1, a2, . . . . ar; the second r numibers 
bl, b2, . *- br, and so on. Let the sum of any vertical couplet of the first and 
second row, as first arranged, be gl; of the second and third row, s2, and so on. 
This is then the first arrangement: 

al a.2 0 0 0 02. .a, b,. b2 bi 
br br-1 .b~r?j a.a ar 
Cl C2.@ @ v @* @ -@ @ * (Clr 61. ..d2 d, 
dr ddr-1ir Cr,?,.r+ 1 Cr-i Cr 

m_* Mr* 00 Mrr?- 4r+1 4. 
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The relations which are required for our purpose are: ax + b. + = 

bx + Cr+l -x=27 * x + mr?l-XI= , and also, as will be shown immedi- 
ately, mir - b*-l - a1 = t, another constant sum, positive or negative. 
Also, no two of the numbers in this scheme, representing the first arrangement of 
the upper half of the proposed square, can be complementary, that is, their sum 
must not be r2 + 1. Let us represent r2 + 1 by p. It is immaterial whether the 
alternate columns be replaced by the complementary numbers before or after the 
lower half of the square is filled out complementarily; for the moment, we may 
assume the lower half filled first. The two expressions here given for t correspond 
to those preceding them, to this extent, that if we denote by Sm the constant sum of 
numbers in the row beginning with Mr and those respectively below them in the 

first comiplementary row, viz. p - bWr. . , we shall have m + p +-S mb 

so that t represents s- p. The foregoing relations are sufficient, because when 
they exist any two adjacent vertical couplets must have the same sum, say k, 
and when one of these two couplets is replaced by its complementary couplet, 
the sum of which is 2p- k, the block of four thus formed has the required 
sum 2p. Since any two adjacent rows have constant sums, each row and the 
second, or fourth, etc., row from it must have conistant differences, so that 4, a- 

=mx - b1 is constant for values of x from ar + 1 to r inclusive; or let us say 

that It ml r+ -b,.r = 
gr 

a constant. Then, g= t + a.- alr x 
= t + b* b1.r+l From this, if we take t - g = u1, we have this special rela- 

tion, a ul + a., b. = u1+b . For the next two rows, similarly, C 

= u2 + q, + d,,, and so on for every pair of rows. Conversely, if 

the rows are thus arranged, the final relation first stated, containing t, and 

involving the first complementary row, will follow. We may therefore choose 
I r numbers, a,, a2, . ... ai,, and by adding u1 to each derive successively aJr+1 

to ar; then b= s -ar, b2=s - ar1,....; then c1 = a, + p, c2 a2 +p, 

...C,r= aG,,+p; then c.r+ ieCl+ u2 ...; then d,= bi+pandsoon. For 

el we must introduce another constant, say q, such that el = a, + q; and for el,r ? 

another, say u3; and so on. Thus, if a represent any one of the original i r 

numbers chosen, the others will follow as in the schedule marked F, b being 
derived by subtracting the proper a from s. The choice of the original numbers, 

a, to awtr, is restricted by the requirement that they, with all the numbers derived 
from them by the assignment of s and of the differences p, q, . . . . , u1 u h2) X X . . X 
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F. 

X= 1 to X= Ir. x= 2r to z= r. 

a a a+ u, 
c a + ) a +p + p u 
d b + p i +p + +u2 

e a+q a+q+u3 

f b + q b +q + U3 

whether such differences be positive or negative, making a r2 numbers in all, shall 
be non-complemientary throughout. 

20. The simplest illustration is derived, of course, from the a1 1 1 1 
case r = 4. The three available sets of values corresponding to a2 2 2 2 
the three pandiagonal squares of 4, all of which are necessarily s 9 13 9 
"complete," are shown in the margin. Other values of al, etc., u 1 1 4 
reproduce the same squares. It would involve much study to 
determine the number of possible complete squares of 8 and assign the values 
corresponding. In the simple case D, where the numbers are taken in natural 
order, we have s = 2r + 1 17, u1 u2=u r=4, p=2r = 16; and in 
general, for the natural order in all cases where r = 4n, we have u, = U2 

- ...... X 2n, p=q = .... = 2r, s = 2r + 1. An obvious variation is ob- 
tained by changing the order of the numbers a,, a2, * . alr, while retaining the 
same values of s, u1, etc., and this sort of variation is available for every com- 
plete square, however obtained. The result is to interchange the columns in 
like order, prior to the complementary substitution. In any complete square 
the odd-numbered columns, first, third, etc., of the left half may therefore be 
interchanged in any order, provided those of the right half are interchanged in 
like order, and the like is true of the even-numbered columns among thernselves. 
By turning the square, columns become rows, so that the like is true of rows. 
It is easy to show algebraically that for squares turned partly around, or written 
backwards, or both, the numbers in their new relative positions are subject to 
the same rules of formation. For example, if the square D be so turned that 
the top row reads 44, 37, 60, ....,we can have a144, a2 65 - 37 = 28, 
a3= 60, a4 =12, s = 66, u1l= -.10,p= 2, U2= -6. 

16 
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21. No square can be " complete " which cannot be analyzed according to 
this method of formation, as shown in F. Each block of four, which must have 
the sum 2p, is composed of two pairs of numbers, or couplets, whose sums 
respectively are, let us say, a and ,B. If the second couplet is assumed to have 
been derived from an earlier one by complementary substitution, the sum of the 
earlier couplet is 2p - = a, so that any two adjacent couplets must, prior to 
the substitution, have had the same sum a. This, together with the stated prop- 
erties of the complete square, is all that was presupposed in paragraph 19. 

22. There are many ways more or less formal, of arranging the order of 
the numbers in applying the general method, besides those simplest ways men- 
tioned in paragraphs 17 and 18. It will often be convenient to begin by select- 
ing 2r numbers in arithmetical progression such that if to each be added p, 
positive or negative, for r = 8 ; p and q separately, for r = 12; three such con- 
stants, for r = 16, and so on; the numbers so found, including the original 2r 
numbers, making a r2 in all, shall all be different and non-complementary. The 
2r numbers so taken may then be arranged in r pairs having a uniform sum s, 
the largest being paired with the smallest, and so on. Then, taking only one 
number from a pair, it is necessary to choose 4r numbers for a1, a2, etc., such 
that the other 1 r shall severally differ from them respectively by a conastant 
difference u]1. As an illustration, let r = 12, and let us choose the first 24 for 
our 2r numbers, in pairs, having s= 25, viz. 1 - 24, 2 - 23, 3 - 22, 4 - 21, 5 - 20, 
6-19, 7-18, 8-17, 9-16, 10-15, 11-14, 12-13. We may elect to take 
for the first six a's 1, 2, 3, 7, 8, 9, since by adding 12 to each, say u1 = 12, we 
reach the other six pairs as required. giving the other six a's. If now for the 
utmost simplicity we choose p = q 24, u2 = u3 = 12, the numbers throughout 
assume this order, when arranged in figures-of-eight: 

1 2 3 7 8 9 12 11 10 6 5 4 

24 23 22 18 17 16 13 14 15 19 20 21 

25 26 27 31 32 33 36 35 34 30 29 28 

48 47 46 42 41 40 37 38 39 43 44 45 

49 50 51 55 56 57 60 59 58 54 53 52 

72 71 70 66 65 64 61 62 63 67 68 69 
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PART III.-Previous Approaches to these Methods. 

23. The annexed squares G and H were produced soiie four centuries ago 

G. IEl. H. 

22 47 16 41 10 35 4 38 14 32 1 26 44 20 XN t6 xA a z6 tu3 x 
5 23 48 17 42 11 29 5 23 48 17 42 11 29 E X)/ M t' l; t3 tu xO 

30 6 24 49 18 36 12 21 39 8 33 2 27 45 zx X0 n 2y ' X@ yE 
13 31 7 25 43 19 37 30 6 24 49 18 36 12 X 6 xz MO tn X6 t/3 

38 14 32 126 44 20 46 15 40 9 34 3 28 y6 te y 0 AA r X 

21 39 8 33 2 27 45 13 31 7 25 43 19 37 Cy %ac X' ce ty t A; 

46 15 40 934 3 28 22 47 16 41 10 35 4 x/3 y4 t6 yia t a t c 

by Moschopulus of Constantinople.* His original Greek form of H is given here as 
a matter of interest. For the printer's convenience the cursive digamina repre- 
senting 6 is replaced by 6. It will be seen that G is symmetrical and that H is 
pandiagonal and " capable of symmetry." Only a single author, so far as the 
writer's knowledge extends,t has noticed that certain pandiagonal squares are 
capable of symmetry; and it is most remarkable, for example, that the possi- 
bility of producing fromi H a square both pandiagonal and symmetrical by 
removing the two upper rows to the bottonm should have escaped, if indeed it has 
escaped, the attention of the many acute computers, including a numnber of 
excellent mnathematicians, who have dealt with this subject. The author referred 
to is the Rev. A. H. Frost,t who rediscovered the second rule of Moschopulus, 
unaware of its history, and indeed reproduced H in a varied form, and announced 
that squares derived by that rule could be imade symmetrical. His object, how- 
ever, was to produce pandiagonal squares, and in speaking of symmetry he 
referred only to the location of complementary numbers in opposite places.11 

* See Giunther, " Vermischte Untersuchungen," Leipzig, 1876, for many historical details concerning 
magic squares, including a reprint of the essay of Moschopulus. The squares G and H had already been 
reprinted, in our notation, with an account of the methods of Moschopulus, by Mollweide. 

t This saving clause, which for convenience will be suppressed in what follows, will kindly be under- 
stood and supplied by the reader concerning every other historical statement herein contained. It is 
needed, for very many have written on this subject in all sorts of odd ways and places. 

t Quarterly Journal, XV, 43, dated by author February, 1877. 
11 See paragraph 2, ante. A previous paper by Mr. Frost will be mentioned later. 
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24. The second rule of Moschopulus, illustrated by H, is merely that special 
case of the method of paragraph 14 wherein the direct step is the knight's, two 
places down and one to the right, and the cross step four places down. Another 
rule involving a cross step in our sense, that is, for example, when r = 7, the 
step from 7 to 8 and not the step from 1 to 8, was given by Mr. Frost in an 
earlier paper,* in which, with the knight's step down as the direct step, he pre- 
scribed one place up for what is here called the cross step, and remarked that 
squares so produced are capable of symmetry. Cross steps were treated freely 
by the late President Barnard of Columbia College,t who prescribed analytic 
tests by which to learn whether any given cross step is permissible in connection 
with any given direct step. The simple criterion of paragraph 14 could not 
have occurred to him; and in fact in his discussion of cross steps he had always 
in view the transition from 1 to 8-using the same example-rather than that 
from 7 to 8. It is perhaps owing to so many writers having followed La Hire 
in atteniding to the relation between 1 and 8, and to so few having followed 
Moschopulus in attending to that between 7 and 8, that the idea of a cross step 
uniform with the direct step has not heretofore been brought forward. Like 
other writers, Barnard appears not to have thought of the possibility of pro- 
ducing odd squares both symmetrical and pandiagonal. 

25. Apart from Frost, the only writer known to have produced, even 
casually, in isolated cases, odd squares at once symmetrical and pandiagonal is 
Frolow,t who showed that the symmetrical square G becomes pandiagonal if its 
rows be written in the order 6, 3, 7, 4, 1, 5, 2, making a new square which we 
see to be the same as H with the two upper rows written below the others; and 
that a single square formed just like G for each other prime value of r above 3 
becomes likewise pandiagonal by a similar commutation of rows. Like Frost, 
Frolow failed to extend the notion of symmetry beyond the bare remark that 
two complementary numbers lie opposite each other throughout. 

26. The property of "step summation" explained in paragraph 4 was 
described fully by Barnard as pertainiiig to all " perfect," here called pandiag- 

* Quarterly Journal, VII, 97, dated by author August, 1864. 
tJohnson's Cyclopaedia, first edition, article "Magic Squares"; an able and comprehensive treatise. 

The preface of this volume bears date August, 1876; the title, 1877. 
i" Le Probleme d'Euler, II St. Petersburg, 1884. 
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onal, squares. From his subsequently referring to the later part of his treatise 
as original, it may be presumed that this point was drawn from some earlier 
author. It was indepeildently discovered and published in 1877 by Frost, and 
again published by him later in the article "Magic Squares" of the Encyclo- 
paedia Britannica. Unaware of its earlier discovery, he gave it the name of 
" nasical summation," from the village of Nasik in India, where he resided when 
first engaged upon this subject. 

27. No uniform step square, whether by the knight's step or any other, 
appears to have been produced heretofore having the pandiagonal property. A 
symmetrical knight's path square was devised by Euler, for the case .r = 5. It 
may be found in the Encyclopmdia Britannica. 

28. The proof in paragraph 14 of the independence of two paths is identical 
in principle with that suggested by Frost for the independence of the various 
"normal paths" existing within a square of given dimension. The criterion of 
paragraph 14, thus proved, may also be drawn from the analytic data of Bar- 
nard's treatise, which would have aided materially any one to whom it had 
occurred to experiment with uniform steps, though it gives no hint towards origi- 
nating that idea.* 

29. The "blocks of four" property, for r > 4, seems due to Benjamin 
Franklin, whose square of 16 is reprinted by Giunther. It is not pandiagonal, 
nor does it follow any uniform law, but it is so ingeniously put together that 
every " block of four " without exception has the uniform sum 514. Three 
errors, obviously typographical, require correction. 

30. The " blocks of four " property is to be found in an incomplete form in 
many known pandiagonal squares, that is to say, it holds good for many blocks 
of the square, but not universally. In one at least, namely, the " magic square 
of squares " set forth by Barnard, both properties are universal, but the square 

* This idea, in point of fact, occurred to the writer when he was examining, on page 209 of Gunther's 
treatise, a square of 13 produced by the second rule of Moschopulus. He had, while unacquainted with 
the papers of Barnard and Frost, been working up all possible symmetrical pandiagonal squares of 5 by 
diophantine methods. A chance observation that the published square of 13 was what is here called 
" capable of symmetry" led to an investigation of this method of Moschopulus, and to its extension as 
now shown. 
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fails in what is here stated as the first property of a complete square, that any 

row or column or any number of rows or columns may be transposed without 

changing in any manner the properties of the square. The special square 

referred to is not arranged complementarily in the manner defined here to be 

essential. 

31. But onie complete square appears to have been published heretofore, and 

that unconsciously, the existence of the "blocks of four" property not being 

mentioned. It was given as a pandiagonal square by Frost in his paper of 1877. 

Determining its elements according to the present method, they appear, in their 

simplest form, to be: r=8, a= 1, a2=7, a3 =3, a4 =5, s= 17, ul= 8, 

p =16, u,2=8. 

32. Writers on magic squares have always recognized peculiar difficulties in 

producing pandiagonal squares when r is odd and divisible by 3, and have confessed 

its impossibility wheni r is even and not divisible by 4. The two methods now 

brought forward deal with all classes of cases in which general methods for pro- 

ducing pandiagonal squares are supposed to be possible, and introduce for the 

first time the summation of symmetrical groups as a main object together with 

the pandiagonal property. In addition to this element which characterizes both 

methods, that method which relates to odd squares introduces the further novel 

element of "uniform steps," with an easy rule for steps not uniform; and that 

which relates to even squares combines the further element, due separately to 

Franklin, which is needed for what is here called the "coumplete" square, a 

square produced at once by the simple process of the " figure of eight." 
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