
ar
X

iv
:p

hy
si

cs
/9

70
20

31
v1

  [
m

at
h-

ph
] 

 2
4 

Fe
b 

19
97

“Cayley-Klein” schemes for

real Lie algebras and

Freudhental Magic Squares

Mariano Santander

Departamento de F́ısica Teórica, Facultad de Ciencias,
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Abstract

We introduce three “Cayley-Klein” families of Lie algebras through re-

alizations in terms of either real, complex or quaternionic matrices. Each

family includes simple as well as some limiting quasi-simple real Lie algebras.

Their relationships naturally lead to an infinite family of 3×3 Freudenthal-like

magic squares, which relate algebras in the three CK families. In the lowest

dimensional cases suitable extensions involving octonions are possible, and for

N = 1, 2, the “classical” 3×3 Freudenthal-like squares admit a 4×4 extension,

which gives the original Freudenthal square and the Sudbery square.

http://arXiv.org/abs/physics/9702031v1


1 The sa, sl, sy CK families

Consider the real matrices of order N+1 given by:

Jab =









· ·
· · · −ωab ·
· ·

· 1 · · · · ·

· ·









, Mab =









· ·
· · · · ωab ·
· ·

· 1 · · · · ·

· ·









, Hm =







−1 ·
·

· · 1 ·
·





, E0 =







1






(1)

where a, b = 0, 1, . . . , N, a < b, m = 1, . . . , N , the matrix indices range from
0, 1, . . . , N , the dotted rows and columms are those with row or column indices a, b
or m, and ωab := ωa+1ωa+2 · · ·ωb depend on N non-zero real coefficients ω1, . . . , ωN .

We apply two basic procedures to these matrices to build up a set of matrices over
R, C, H which contain sets of generators for all simple classical real Lie algebras:

• Let X be a real matrix in (1). In the complex case, let X1 := iX. In the quaternion
case, let X1 := iX, X2 := jX, , X3 := kX. Generically, these new matrices will be
denoted Xα, where the range of α is none for R, 1 for C and 1, 2, 3 for H.

• For any X in the previous list, define matrices X, X;λ, λ = 1, 2, 3 of order 2(N+1):

X =

(

X
X

)

, X;1 =

(

X
−X

)

, X;2 =

(

X
X

)

, X;3 =

(

X
−X

)

(2)

Let A be any matrix of order r over either K = R, C, H, and let G denote the
symmetric or antisymmetric real matrix of an hermitian or skew-hermitian product
in the space K

r. The matrix A will be called G-antihermitian if A†G+GA† = 0, and
G-hermitian if A†G − GA† = 0. With the choices Iω = diag (1, ω01, ω02, . . . , ω0N)
and Iω = I;1, the matrices Jab, M

α
ab, H

α
m, Eα

0 are Iω-antihermitian, and Jab, Mab;λ,
Hm;λ, E0;λ, J

α
ab;λ, M

α
ab, H

α
m, E

α
0 are Iω-antihermitian, no matter of whether ωi = 0 or

not.

Now we define the three “classical” CK series of algebras as follows [1]:

• saω1...ωN
(N+1, K), the special antihermitian CK algebra over K is the quotient

of the Lie algebras of N +1×N +1 Iω-antihermitian matrices over K by its center.
They can be realized as the Lie algebra of all Iω-antihermitian matrices over K if
K = R, H and as the subalgebra determined by the condition trX = 0 if K = C.

• slω1...ωN
(N +1, K), the special linear CK algebra over K is the quotient of the

Lie algebra of all N+1×N+1 matrices over K by its center. It can be realized as the
Lie subalgebra of the Lie algebra of all N+1×N+1 matrices over K determined by
the condition trX = 0 if K = R, C and by the condition Re(trX) = 0 when K = H.

• syω1...ωN
(2(N +1), K), the special symplectic antihermitian CK algebra over K

is the quotient of the Lie algebra of Iω-antihermitian matrices of order 2(N+1) over
K by its center. It is the analogous to the first family when the metric matrix is the
antisymmetric Iω. It can be realized again as the Lie algebra of all Iω-antihermitian
matrices if K = R, H and as the subalgebra with trX = 0 if K = C.
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The notation sa has been used in [2] and the notation sy is new, although of
course the algebras so denoted are not. The CK algebras with ω1 . . . ωN = + . . .+
are isomorphic to the ones usually denoted by the same symbol and without any ω
subscript. The translation to the standard notation is as follows:

K = R K = C K = H

sa+...+(N+1, K) so(N+1) su(N+1) sp(N+1)
sl+...+(N+1, K) sl(N+1, R) sl(N+1, C) su∗(2(N+1))
sy+...+(2(N+1), K) sp(2(N+1), R) su(N+1, N+1) so∗(4(N+1))

(3)

When the ωi are not all positive, the CK algebras in the three sa series are
isomorphic to the non-compact real forms so(p, q), su(p, q), and sp(p, q). When
some ωi = 0, the general CK algebras saω1...ωN

(N+1, K), etc. are defined in such a
way that each ωi = 0 corresponds to a contraction; lack of space precludes giving
details.

The CK Lie algebras sa, sl, sy over the three associative division algebras R, C, H
can be generated by means of adequate choices of matrices, as given in the Table:

Lie algebra has a linear basis given by the matrices
K=R K=C K=H

saω1...ωN
(N+1, K) Jab Jab, M

1
ab, H

1
m Jab, M

α
ab, H

α
m, Eα

0

slω1...ωN
(N+1, K) Jab, Mab, Hm Jab, Mab, Hm, Jab, Mab, Hm,

J1
ab, M

1
ab, H

1
m Jα

ab, M
α
ab, H

α
m, Eα

0

syω1...ωN
(2(N+1), K) Jab, Mab;λ, Hm;λ, Jab, Mab;λ, Hm;λ, E0;λ, Jab, Mab;λ, Hm;λ, E0;λ,

E0;λ J
1
ab;λ, M

1
ab, H

1
m J

α
ab;λ, M

α
ab, H

α
ma, E

α
0

2 The “classical” (N+1)-d Freudenthal-like square

The former table looks simpler if each Lie algebra is given as the Lie span (instead
of the linear span) of as few elements as possible. A minimal choice is:

Lie algebra is the Lie span of the generators
K=R K=C K=H

saω1...ωN
(N+1, K) Jab Jab, M

1
ab Jab, M

1
ab, M

2
ab

slω1...ωN
(N+1, K) Jab, Mab Jab, Mab, M

1
ab Jab, Mab, M

1
ab, M

2
ab

syω1...ωN
(2(N+1), K) Jab,Mab;2,Mab;1 Jab,Mab;2,Mab;1,M

1
ab Jab,Mab;2,Mab;1,M

1
ab,M

2
ab

This Table shows a rather unexpected and remarkable symmetry between rows
and columns. Since R ⊂ C ⊂ H, each algebra is in the obvious way a subalgebra
of those at its left. And each algebra is also a subalgebra of those below it, pro-
vided we have made the isomorphic identifications Jab → Jab, Mab → Mab ;2, M

1
ab →

M
1
ab, M

2
ab → M

2
ab. This is required since sy is a group of matrices of dimension twice

that of sl.
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We shall better observe this symmetry if we move from the left to the right and
from the top to the bottom. We realize that in each step new generators appears.
Let us illustrate this idea as follows. As we move from the top sa to the bottom
sy, Mab appears in the first step (sa → sl) and Mab ;1 in the second (sl → sy). This
behaviour is the same for the three columns R, C, H. On the other hand, moving
from left to right, in the transition R → C we always add M1

ab, and in the transition
C → H we add M2

ab. This behaviour appears in the three rows.

This symmetry suggests to consider a 3×3 square of CK algebras, with rows
labeled by R, C, H and columns by sa, sl, sy. Each site in the Table below contains
the generic algebra in the CK family, the complete list of their basis generators, and
the Cartan class of the corresponding simple Lie algebras.

BN/2 or D(N+1)/2 AN CN+1

saω1...ωN
(N+1, R) saω1...ωN

(N+1, C) saω1...ωN
(N+1, H)

Jab Jab, M
1
ab, H

1
m Jab, M

α
ab, H

α
m, Eα

0

AN AN ⊕ AN A2(N+1)−1

slω1...ωN
(N+1, R) slω1...ωN

(N+1, C) slω1...ωN
(N+1, H)

Jab, Mab, Hm Jab, Mab, Hm, Jab, Mab, Hm,
J1

ab, M
1
ab, H

1
m Jα

ab, M
α
ab, H

α
m, Eα

0

CN+1 A2(N+1)−1 D2(N+1)

syω1...ωN
(2(N+1), R) syω1...ωN

(2(N+1), C) syω1...ωN
(2(N+1), H)

Jab, Mab ;λ, Hm ;λ, E0 ;λ Jab, Mab ;λ, Hm ;λ, E0 ;λ, Jab, Mab ;λ, Hm ;λ, E0 ;λ,
J

1
ab;λ, M

1
ab, H

1
m J

α
ab;λ, M

α
ab, H

α
m, Eα

0

Dimension checking is easy. Each Jab or Mab counts as N(N + 1)/2, each Hm as
N , and each E0 as one. If the three columns are labeled by p = 1, 2, 4 and the three
rows by q = 1, 2, 4, the dimension of the algebra at site p, q is

dim(p, q) = pq
N(N + 1)

2
+ (p + q − 2)N + (0, 0, 3)p + (0, 0, 3)q (4)

where the symbols (0, 0, 3)p or (0, 0, 3)q refers to the 3 extra generators (Eα
0 ) or (E0 ;λ)

appearing respectively when K = H or in the sy case. There are similar expressions
for the characters of the CK algebras involved. We emphasize that for each choice
of values ω1 . . . ωN , the algebras included in the square are different. Finally, when
some ωi = 0 then the algebras are not simple; nevertheless the properties of the
square are maintained in all cases, so this (ω1 . . . ωN)-square includes a “compact”,
several “non-compact” and additional “non-simple” versions.

3 The lowest-dimensional “classical” Freudenthal

squares and their extensions to include excep-

tional algebras.

The first two squares, N = 1, 2 allow an extension by introducing an additional
p = 8 column, associated to octonions O, and an additional q = 8 row with the so-
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called metasymplectic algebras, denoted here my. Lie algebras worth of the names
sa(N +1, O), sl(N +1, O), sy(2(N +1), O), my(2(N +1), O) are only possible when
N = 1, 2 and due to the nonassociativity of O its proper definition requires some
approach alternative to the one sketched in Sec. 1 (for sa and sl this is done in [2]).

In the N = 2 case, we get the original Freudenthal square [3], which has several
versions most of which are obtained by particular choices of the constants ω1, ω2 in:

B1≡A1≡C1≡E1 A2 C3≡B2 F4

saω1ω2
(3, R) saω1ω2

(3, C) saω1ω2
(3, H) saω1ω2

(3, O)
A2 A2 ⊕ A2 A5 E6

slω1ω2
(3, R) slω1ω2

(3, C) slω1ω2
(3, H) slω1ω2

(3, O)
C3≡B2 A5 D6 E7

syω1ω2
(6, R) syω1ω2

(6, C) syω1ω2
(6, H) syω1ω2

(6, O)
F4 E6 E7 E8

myω1ω2
(6, R) myω1ω2

(6, C) myω1ω2
(6, H) myω1ω2

(6, O)

Notice that reflection in the main diagonal corresponds to a change of real form.
When N = 1, the extended “classical” Freudenthal-like square is:

D1 A1≡B1≡C1≡E1 C2≡B2 B4

saω1
(2, R) saω1

(2, C) saω1
(2, H) saω1

(2, O)
A1≡B1≡C1≡E1 A1 ⊕ A1≡E2 A3≡D3 D5≡E5

slω1
(2, R) slω1

(2, C) slω1
(2, H) slω1

(2, O)
C2≡B2 A3≡D3 D4 D6

syω1
(4, R) syω1

(4, C) syω1
(4, H) syω1

(4, O)
B4 D5≡E5 D6 D8

myω1
(4, R) myω1

(4, C) myω1
(4, H) myω1

(4, O)

In the case ω1 = 1, and through some of the low-dimension isomorphisms of Lie
algebras, this square coincides with the very nice form so(m, n), m = 2, 3, 5, 9, n =
0, 1, 2, 4 proposed by Sudbery [2]. Only the first row is different when ω1 = −1, and
a degenerate form correspond to ω1 = 0.

4 Conclusions

Consideration of the three sa, sl, sy CK series leads in a rather natural way to a
“tower” of “classical” Freudenthal-like squares relating different algebras in these
CK families. In the lowest dimensional cases N = 1, 2, octonions are also allowed,
and in these cases these squares can be extended to 4×4. When the constants
ωi are different from zero, we get simple Lie algebras in these three series and the
“classical” N = 2 Freudenthal square reduces to the different versions (compact
and non-compact) of the original Freudenthal square, while N = 1 gives the one
proposed by Sudbery.

The introduction of an adequate notation is the key to open the view to this
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square: in the standard conventional notation and in the special case where all
constants ωi are different from zero, this square would read in a rather uninspiring
form whose direct relation to reals, complex numbers and quaternions is rather
remote:

so(p, q) su(p, q) sp(p, q)
sl(N+1, R) sl(N+1, C) su∗(2(N+1))
sp(2(N+1), R) su(N+1, N+1) so∗(4(N+1))

(5)

This approach also displays the basic role played by the orthogonal CK family,
soω1...ωN

(N+1) ≡ saω1...ωN
(N+1, R). This is the antihermitian CK algebra over the

reals, and appears as a subfamily in all other CK series. To gain familiarity with all
CK families, the orthogonal one should be first studied at depth.

We finally mention that similar ideas might also be pursued for the remaining
(orthogonal and symplectic) CK families, which are associate to Lie algebras of
“antisymmetric” or “symplectic-antisymmetric” (instead of antihermitian) matrices.
Details for the case K = H are involved. Three more towers (linear, orthogonal and
symplectic) appear. Each tower makes sense for CK algebras with a fixed set of
constant values ωi, and there are as many such towers as the 3N essentially different
sets of constants ωi. Different real forms, either compact or not, of all simple real Lie
algebras are related among themselves by several of these Freudenthal-like squares.
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