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Abstract

Title of Dissertation: HELICOPTER FLIGHT DYNAMICS SIMULATION

WITH REFINED AERODYNAMIC MODELING

Colin Rhys Theodore, Doctor of Philosophy, 2000

Dissertation directed by: Dr. Roberto Celi, Associate Professor
Department of Aerospace Engineering

This dissertation describes the development of a coupled rotor-fuselage flight

dynamic simulation that includes a maneuvering free wake model and a coupled

flap-lag-torsion flexible blade representation. This mathematical model is used to

investigate effects of main rotor inflow and blade modeling on various flight dynamics

characteristics for both articulated and hingeless rotor helicopters. The inclusion of

the free wake model requires the development of new numerical procedures for the

calculation of trim equilibrium positions, for the extraction of high-order, constant

coefficient linearized models, and for the calculation of the free flight responses to

arbitrary pilot inputs.

The free wake model, previously developed by other investigators at the Uni-

versity of Maryland, is capable of modeling the changes in rotor wake geometry

resulting from maneuvers, and the effects of such changes on the main rotor inflow.

The overall flight dynamic model is capable of simulating the helicopter behavior



during maneuvers that can be arbitrarily large. The combination of sophisticated

models of rotor wake and blade flexibility enables the flight dynamics model to cap-

ture the effects of maneuvers with unprecedented accuracy for simulations based

on first principles: this is the main contribution of the research presented in this

dissertation.

The increased accuracy brought about by the free wake model significantly im-

proves the predictions of the helicopter trim state for both helicopter configurations

considered in this study. This is especially true in low speed flight and hover. The

most significant improvements are seen in the predictions of the main rotor collective

and power required by the rotor, which can be significantly underpredicted using

traditional linear inflow models.

Results show that the free-flight on-axis responses to pilot inputs can be predicted

with good accuracy with a relatively unsophisticated models that do not include

either a free wake nor a refined flexible blade model. It is also possible to predict the

off-axis response from first principles, that is, without empirically derived correction

factors and without assumptions on the wake geometry. To do so, however, requires

much more sophisticated modeling. Both a free wake model that includes the wake

distortions caused by the maneuver and a refined flexible blade model must be used.

Most features of the off-axis response can be captured by using a simpler dynamic

inflow theory extended to account for maneuver-induced wake distortions, and for a

fraction of the cost of using a free wake model. The most cost-effective strategy, for

typical flight dynamic analyses, and if vibratory loads are not required, is probably

to calibrate such a theory using the more accurate free wake-based model, and then

use it in all further calculations.
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Nomenclature

a Lift-curve slope

a Acceleration vector

A State matrix

b Semi-chord length

B Control matrix

c Blade section chord length
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Chapter 1

Introduction and Literature
Review

1.1 Introduction

In recent years, there has been increased interest in improving the accuracy of flight

dynamics mathematical models of helicopters. There have been a number of fac-

tors that have contributed to this interest. For example, the increasingly stringent

handling qualities requirements set forth in Ref. [2] require high levels of dynamic

stability and reduced control cross-coupling in helicopters. Furthermore, advances

in design and construction technologies are producing increasingly lightweight and

more maneuverable helicopters. This is apparent from the recent increase in the

number of hingeless and bearingless rotor configurations. Also, the reliable design

of high-gain, high-authority flight control systems requires increasingly more accu-

rate mathematical models in both the time and frequency domains. A fourth reason

is the traditional problem of lack of accuracy in the off-axis response calculations

with flight dynamics models, to the extent that such calculations are often predicted

in the opposite direction to experimental results. This is because of the lack of un-

derstanding of the physical mechanisms associated with the rotor and aerodynamics

that results in specific helicopter response characteristics. The aeroelastic stabil-
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ity characteristics of advanced rotor helicopters are difficult to calculate accurately

with current models, especially in the lag direction. With the development of more

highly maneuverable helicopters, coupled with the development of advanced rotor

systems, the task of analyzing the handling qualities, rotor/body stability charac-

teristics and response of these helicopters has become increasingly more difficult.

All of these aspects of helicopter flight dynamics analysis require increasingly more

accurate mathematical models describing the dynamics of the coupled rotor/body

system.

Flight dynamics simulation is the task of analyzing the dynamic response of

the aircraft as a whole, and, in particular, aircraft response during unsteady tran-

sient conditions. The task of flight dynamics analysis involves two key ingredients.

The first ingredient is to describe the dynamics of the various components of the

helicopter problem in an appropriate mathematical form. This involves the defini-

tion and construction of mathematical models for the individual components, and

when coupled together, hopefully describe the dynamics of the system as a whole.

These models include (with some examples): 1. A fuselage model (rigid, elastic).

2. A blade lift model (steady, quasi-steady, unsteady, dynamic stall). 3. A blade

structural model (rigid-blade, elastic-blade, small or large deformations). 4. An

inflow model (uniform, linear, prescribed wake, free wake, maneuvering free wake).

Additional models may include the dynamics of the tail rotor, empennage, control

linkages and actuators, engine, control system, etc. The second ingredient of a flight

dynamic simulation involves the coupling of the individual component mathematical

models to form a complete model that describes the dynamics of the aircraft as a

whole. Then to use this complete model for the calculation of trim equilibrium con-

ditions, linearized models through analytical or numerical perturbations, and time

history responses to arbitrary pilot control inputs. The task of coupling the individ-
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ual component models together for the calculation of the required solutions is often

the most difficult task in flight dynamics analysis. This is compounded by the fact

that the individual component models may require different solution techniques. In

addition, the types of results that can be obtained are often limited by the fact that

some of the individual components may be incompatible for one or more of the flight

dynamics solutions required.

The flight dynamics simulation model used in this research study evolved origi-

nally from the GENHEL helicopter model of Howlett [3]. In this original model, the

rotor was modeled with rigid blades that were hinged in both flap and lag and blade

torsional dynamics were included using a simple empirically based dynamic twist

model. The fuselage was modeled as a rigid body with the aerodynamic characteris-

tics of the fuselage and empennage being provided via look-up tables of empirically

measured aerodynamic coefficients. This model contributes much of the modeling

of the fuselage, empennage and tail rotor to the current model, or essentially any

parts of the model not related to the main rotor. The GENHEL model was extended

by Ballin [4] who made a number of changes to increase the fidelity of the model,

especially with respect to the modeling of the engine. Kim [5] added the dynamic

modeling of the main rotor inflow using the Pitt-Peters dynamic inflow model [6, 7].

A new trim procedure was also developed. The equations of motion were repre-

sented in rigorous first-order form. This allowed for the development of methods

to calculate linear, constant coefficient equations of motion that describe the small

perturbation dynamics about an equilibrium position, where the linear model in-

cludes the dynamics of individual blades, of the main and tail rotor inflow, and of

the propulsion system. The model developed by Kim was termed UM-GENHEL.

Turnour [8] extended the modeling of the rotor blades by including a fully numerical

structural formulation [9] that includes coupled elastic flap, lag and torsional de-
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grees of freedom. A finite element analysis was used along with a modal coordinate

transformation to reduce the number of blade degrees of freedom. Turnour also con-

sidered the inflow modeling by adding a higher order dynamic inflow model [10, 11]

that includes the effects of trailed as well as shed wake and added the Leishman-

Nguyen [12] state-space unsteady aerodynamics model. The mathematical model,

termed FLEXUM, is specialized for the UH-60A articulated rotor helicopter, and

this model is composed of a set of first order differential equations that represent

the dynamics of the bare-airframe. From this mathematical model, trim, lineariza-

tion and time history results can be obtained. This FLEXUM model represents the

starting point for the formulation of the current flight dynamics simulation model.

Recently the aerodynamic modeling of the main rotor has come under increased

scrutiny. Various research studies have concluded that increasing the fidelity of aero-

dynamic and inflow models can correspondingly increase the fidelity of the complete

aircraft model and lead to improvements in the accuracy of flight dynamics analysis.

In general, flight dynamics models that have included inflow dynamics have used

the Pitt-Peters dynamic inflow model [6] or more recently the Peters-He finite state

wake model [11]. The use of these dynamic inflow models involves a number of

key assumptions about the aerodynamic environment of the main rotor. The first

assumption is that the rotor wake has a cylindrical structure that is skewed with

forward speed. This prescribed wake structure then forms the basis of the calcula-

tion of the main rotor inflow. Second, it is assumed that changes in the main rotor

aerodynamics occur slowly, indicating the low-frequency nature of these dynamic

inflow models. With these assumptions in mind, it has been reported that dynamic

inflow models, in general, give good results in hover and high speed forward flight,

but accuracy has been lacking at moderate speeds in the transitional flight regime.

An alternative to these dynamic inflow models that prescribe the geometry of the
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rotor wake are the free wake models where the wake structure itself becomes part of

the solution and no a priori assumptions are made about the wake structure. The

use of these free wake models results in more physically realistic wake structures.

The development of more sophisticated models to examine the aerodynamic

environment of the main rotor disk, including free wake models, has been made

possible with advances in computer architecture and technology. One of these free

wake models, which has been used to develop the new flight dynamics model in the

current study, is the Maryland Free Wake model (MFW) [1], which is also known as

the Bagai-Leishman free wake model. This inflow model uses a relaxation technique

to solve the numerically the governing wake equations for an assumed steady flight

condition. This leads to the positions of the individual vortex filaments that make

up the wake structure. With the addition of maneuvering effects [13] to the Bagai-

Leishman free wake inflow model, the resulting inflow model has the ability to

capture the effects of steady pitch and roll rates on the wake as encountered during

maneuvers. This ability to capture maneuvering effects is fairly unique as far as free

wake models are concerned. Unlike dynamic inflow models, the free wake model

does not make any assumptions about the positions of the vortex wake filaments.

This ability to capture the effects of maneuvers on the inflow distribution is not

included in traditional dynamic inflow models. A review of inflow modeling used in

flight dynamics applications and the effect that these models have on various flight

dynamics results is presented in Section 1.2.3.

The current analysis focuses on the modeling of hingeless rotor helicopters, (al-

though the UH-60A articulated rotor helicopter is also considered), and the effect

that main rotor aerodynamic modeling, particularly the inflow, has on the various

flight dynamic results. The modeling of hingeless rotor helicopters (in particular the

BO-105) required altering portions of the fuselage, empennage and tail rotor math-
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ematical models of the original FLEXUM code to enable the available BO-105 data

to be used. The major contribution of the present study, however, is to the modeling

of the main rotor aerodynamic environment. A two-dimensional quasi-steady aero-

dynamics model [14] is included to calculate the blade sectional aerodynamic loads,

where this model takes into account the shed wake effects associated with variations

in aerodynamic loads with respect to time. The trailed wake effects associated with

radial variations in the aerodynamic loads are taken into account by using various

inflow models. The most significant of these inflow models is the maneuvering free

wake model of Bagai and Leishman [1] that is used to calculate the distribution of

inflow over the main rotor. Results with the free wake inflow model are compared

to results obtained with the traditional Pitt-Peters dynamic inflow model as well as

with results obtained by using an extended momentum-based dynamic inflow model.

This model, proposed by Keller and Curtiss [15, 16] and Arnold et al. [17], includes

wake distortion effects from pitch and roll rates on a linear inflow distribution.

An important aspect of the new flight dynamics model is that it has the capability

of accurately modeling helicopter behavior during maneuvers where the excursions

from trim need not be small. This provides an accuracy range beyond that of

linearized models. However, the deviations from trim are not arbitrary and they

must be within the validity of the Euler angle definitions. The free wake model,

being of a maneuvering type, also captures the effects of maneuvers on the wake

geometry and on the inflow distribution. Therefore, both the flight dynamics and

free wake models can, at least in principle, capture the effects of maneuvers on the

helicopter response. This ability to capture the maneuver effects is not present in the

Pitt-Peters dynamic inflow model and while it is present in the extended dynamic

inflow model [15, 16, 17], there are a number of assumptions used in this model that

may limit it usefulness in general flight dynamics work (see Section 1.2.3). The types
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of maneuvers considered include the analysis of the helicopters in steady turns, as

well as the analysis of the response resulting from arbitrary control inputs.

The general objective of this dissertation is to couple the Bagai-Leishman ma-

neuvering free wake inflow model with a comprehensive flight dynamics model. Then

to use this new flight dynamics model to investigate the effects on inflow modeling

on flight dynamics. As previously discussed, these results include trim solutions

in straight and level flight as well as in steady coordinated turns, stability of the

rotor/body system as well as the aeroelastic stability of the rotor system, and the

response to pilot inputs, which include harmonic inputs for frequency responses and

arbitrary pilot inputs for time history responses. Results are presented for both

articulated and hingeless rotor helicopters and the various results generated with

the new flight dynamics model that includes the maneuvering free wake model are

compared with a baseline flight dynamics model with the Pitt-Peters inflow model

and also with flight test data where such data are available.

Particular attention is given to the long-standing problem in flight dynamics of

predicting the off-axis response of the helicopter to pilot inputs, and especially the

pitch and roll cross-coupling. This off-axis response problem has received a fair

amount of attention of late with a number of possible explanations presented by

various researchers. However, at present, there is no definitive explanation for the

lack of accurate prediction of the off-axis response or the requirements to improve

the predictions in flight dynamics analyses. The present study looks at the effect of

inflow modeling on off-axis response predictions and examines the level of sophisti-

cation required in the various components of the flight dynamics model that allow

for an improvement in the off-axis response predictions.
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1.2 Literature Review

This section presents a survey of various publications that are relevant to the current

study. This section is divided into five parts. The first part surveys current “com-

prehensive” rotorcraft simulation models and emphasizes the modeling of the main

rotor aerodynamic environment. The next reviews aeromechanical stability analy-

ses and the effect that inflow modeling has on aeromechanical stability predictions.

The third part is comprised of a review of inflow models suitable for flight dynamics

modeling, including dynamic and free wake inflow models. The fourth part reviews

the analysis of helicopters in steady coordinated turns. The final part reviews some

recent publications that address the prediction of off-axis response characteristics of

helicopters.

1.2.1 Flight dynamic simulation modeling

The requirements of accurate modeling of helicopters, particularly in the design

phase, has prompted the development of quite a number of simulation models that

describe the dynamic behavior of the helicopter as a whole. With advances in

computer architecture, larger and more sophisticated simulation models are being

developed and these models can be used to calculate wider ranges of flight simu-

lation results. These so-called “comprehensive” rotorcraft codes generally include

sophisticated models for the various components of the helicopter and they allow

for a variety of solutions to be generated. There are quite a few comprehensive

rotorcraft codes in current use that include some or all of the ingredients required

for flight dynamics simulation work. Most of these current codes are developed in-

house or are only available commercially. For this reason, there is little that has

been published on the specifics of the individual component models or the solution
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techniques used, especially with respect to the most recent versions of these codes.

Publications generally focus on the comparison of results generated with these codes

with flight test data and results generated by using other such codes in an endeavor

to validate the codes and gain additional knowledge of specific rotorcraft modeling

problems. In general, an overview of the modeling techniques is all that is pre-

sented with little or no details of the techniques and issues related to coupling the

individual component models together. Or of the solution techniques used for the

calculation of the specific flight dynamics results.

With these problems in mind, this section presents a brief survey of some of the

comprehensive rotorcraft codes that are in current use. First a general overview of

the component modeling is presented, with a focus on the specifics of the aerody-

namic modeling of the main rotor environment because this aspect of the modeling

is the focus of the current research study. Next, the types of solutions that are

available from each of these codes is looked at including some brief details about

the techniques used in making the calculations. This is followed by a discussion

of the validation of these codes and some examples of these validation studies that

are available in the literature. Finally the validation of the various stages of the

development of the GENHEL, UM-GENHEL and FLEXUM codes is examined.

The comprehensive rotorcraft codes considered in this survey are the following: 1.

The Second Generation Comprehensive Helicopter Analysis System (2GCHAS) [18]

developed by the ARMY/AMES. 2. The COmprehensive Program for Theoretical

Evaluation of Rotorcraft (COPTER) [19] developed by Bell. 3. CAMRAD [20, 21]

collectively refers to the family of comprehensive helicopter codes CAMRAD, CAM-

RAD/JA and CAMRAD II developed by Johnson Aeronautics. 4. The Technology

One program (TECH-01) [22] developed by Boeing. 5. FLIGHTLAB that was

originally developed by DuVal [23] as a coupling of the flexible rotor model of the
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REXOR aeroelastic analysis with the GENHEL aircraft model of Howlett [3]. 6.

The University of Maryland Advanced Rotorcraft Code (UMARC) [24, 25] devel-

oped at the University of Maryland.

All of the comprehensive rotorcraft codes considered include the modeling of the

coupled rotor/fuselage problem. With respect to modeling of the fuselage, all of

the codes include a rigid fuselage model, while the 2GCHAS, COPTER, TECH-

01 and UMARC codes allow for a NASTRAN modal representation of the elastic

fuselage. All of the codes include the flexibility of modeling different types of rotor

hub configurations, including articulated, hingeless, and bearingless hubs. Being

of the second generation of codes, a finite element analysis of the main rotor blade

elasticity is used in all cases. This finite element basis allows for the dynamic analysis

of rigid and elastic blades, with fully coupled flap, lag and torsional degrees of

freedom being included in the 2GCHAS, COPTER, CAMRAD and UMARC codes.

TECH-01 models the blade by using coupled flap/pitch dynamics and uncoupled lag

dynamics. FLIGHTLAB uses coupled flap/lag and uncoupled torsional dynamics.

With respect to the modeling of the main rotor inflow characteristics, a num-

ber of inflow modeling options associated with each of the comprehensive rotorcraft

codes are available. A simple uniform inflow model using momentum theory is avail-

able in the 2GCHAS, CAMRAD and UMARC codes. A linear inflow distribution

is available using the Pitt-Peters [6, 7] three-state dynamic inflow model can be

selected in the TECH-01 and UMARC codes. The Drees [26] dynamic inflow model

is available in the TECH-01 and UMARC codes. There are also a number of vortex

wake models that can be used for inflow calculations in each of the codes. All of the

codes allow for the vortex geometries to be prescribed based on parameters including

the flight condition, motion of the rotor blades, blade loading distribution, etc. The

first free wake model to be used in flight dynamics simulation work was the Scully
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free wake model [27] and the inclusion of this model is an option in the 2GCHAS,

COPTER, CAMRAD and UMARC codes. The Johnson free wake model [20] is

a modification of the Scully free wake model for use in the CAMRAD family of

codes, and, this is also available in the COPTER and UMARC codes. MFW is the

Maryland Free Wake model [1], and, this is available in the 2GCHAS and UMARC

codes.

There are no current comprehensive codes that include a maneuvering free wake

model to capture the direct aerodynamic effects of maneuvers, including pitch and

roll rate maneuvers on the vortex wake geometries and subsequent inflow distri-

butions. It should be mentioned that 2GCHAS does have the ability to capture

maneuvering effects on the vortex wake geometry, but this is only available through

a prescribed wake model and it is not clear from the published literature how this

is achieved.

With respect to trim calculations, each of the codes allows for free-flight and

wind-tunnel trim conditions to be calculated, with CAMRAD being the only code

that is reported to have the capability of calculating trim conditions of helicopters

during steady maneuvers, such as coordinated turns and descending and climbing

flight. There are some differences in the procedures used to calculate the trim

conditions. 2GCHAS uses a periodic trim procedure that enforces periodicity as the

basis for the trim calculations where UMARC uses an algebraic trim where a trim

equilibrium condition is enforced by satisfying a set of equations. CAMRAD has

the ability to use both types of trim procedures to calculate trim conditions.

All of the comprehensive codes have the capability of extracting a set of linear

equations from the non-linear equations that make up the mathematical models.

Because of the complexity of the non-linear mathematical models, the linearized

models in each case have to be calculated numerically by using a perturbation anal-
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ysis. The basis of the linearized model calculations is a trim equilibrium position.

For the cases where the equations of motion are formulated in the rotating frame

of reference, the resulting linear models have periodic coefficients and require the

use of analytical techniques that can handle periodic coefficients, such as Floquet

Theory [28, 29]. These codes also allow for constant coefficient linear models to be

calculated in the non-rotating frame using a multi-blade coordinate transformation.

Because each of the codes allows for the extraction of linearized models about

a trim equilibrium condition, time histories can be calculated in response to pilot

inputs by using the linear model. With the exception of UMARC, the comprehensive

codes allow for the calculation of free-flight responses to arbitrary pilot inputs by

using the full non-linear mathematical model. The time history responses to pilot

inputs are calculated by numerically integrating the equations of motion. Only

FLIGHTLAB can calculate free-flight responses in real-time and this is achieved

through the use of parallel processing.

Most of the published validations are made with the comprehensive codes that

are used in government (2GCHAS) and educational (UMARC) research institutions

and those available commercially (CAMRAD, FLIGHTLAB,). There has been less

published in the literature regarding the codes that are developed by companies for

in-house use with their own products, namely the COPTER code developed by Bell

and the TECH-01 code developed by Boeing. Although these comprehensive codes

contain some or all of the ingredients required for flight dynamics work, the actual

number of studies and publications that deal with the specifics of flight dynamics

simulation are limited.

The FLIGHTLAB real-time flight dynamics simulation code has been used in a

number of studies that look at some of the specifics of flight dynamics work. The

study of He and Lewis [30] contains a validation study with the UH-60A for both
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trim and dynamic time history results. The modeling included elastic blades and

the Peters-He finite state dynamic inflow model [10, 11]. Trim results were presented

in straight and level flight with the sideslip angle set to zero for the entire speed

range. These results showed a fair degree of accuracy when compared to flight test

data, although the main rotor collective was significantly underpredicted. Time

history results in hover were calculated for a lateral step input and compared to

flight test data. The results showed an over-prediction of the roll rate response with

uniform inflow dynamics that was not seen with the addition of non-uniform inflow

dynamics. The off-axis, pitch rate response was initially predicted in the opposite

direction to flight test data and the correlation was not improved by using elastic

blades or higher-harmonic inflow dynamics. Similar results for a longitudinal stick

maneuver showed a good correlation with flight test data for the on-axis response,

but not for the off-axis response.

Another study using the FLIGHTLAB code, performed by Choi, He and Du

Val [31], also focused on the modeling of the UH-60A helicopter. This study mod-

eled the main rotor blades as rigid beams that were hinged in the flap and lag

directions and the inflow was modeled using a three-state dynamic inflow model.

Validation was performed by comparing the simulation results to flight test data for

a variety of maneuvers. Results showed that the primary, or on-axis response was in

good agreement with flight test data, while the cross-coupling, or off-axis response

predictions were not satisfactory for most cases.

With respect to the GENHEL [3] model, which forms the basis for the current

model, there have been a number of validation studies that have been performed

on various versions of this model. Ballin [32] performed a validation of a real-

time version of the original GENHEL simulation code with the UH-60A helicopter.

Comparisons were made between simulation results and flight test data for trim in
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straight and level flight, climbs and descents and 1-g coordinated turns. Compar-

isons were also made for dynamic time history results for a variety of maneuvers.

The dynamic time history results presented in this study showed a general accu-

rate prediction of the on-axis characteristics following control inputs, however the

off-axis response characteristics were poorly predicted.

Kim, Celi and Tischler [5] focused on the extraction of linearized models with the

UM-GENHEL model to represent the linearized dynamics of the UH-60A in differ-

ent flight conditions. All of the results presented here were in the frequency domain

and the validation study showed that, at least in hover, there was a good correla-

tion between calculated results and flight test data for the on-axis response from

0.5 rad/sec to 15 rad/sec, which is the frequency range that is generally the most

important for flight dynamics work. There were no results presented for the off-axis

response calculations. Turnour and Celi [8] extended the model to include a coupled

flap-lag-torsion elastic rotor formulation. Frequency response results presented for

the UH-60A in hover and forward flight were shown to improve the accuracy of

the calculated results to include the frequency range from about 0.5 rad/sec to 50

rad/sec with the addition of the flexible blade model. Turnour [33] also looked at

the effects of including the finite state wake model and an unsteady aerodynamics

model on the results in the frequency domain. The correlation between calculated

results and flight test data showed a favorable correlation for the on-axis results

and some improvement in the magnitude of the off-axis response was seen in certain

frequency ranges. Yet the phase of the off-axis response was not improved.

1.2.2 Aeromechanical models and comprehensive analyses

Aeroelasticity is the study of dynamic characteristics of the helicopter body/rotor

system that considers the coupling between the aerodynamic, structural and inertial
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contributions. There has been quite a bit of activity in the field of rotorcraft aeroelas-

ticity, especially with the advent of advanced rotor systems including hingeless and

bearingless rotor helicopters. Some comprehensive reviews of the aeromechanical

characteristics related to hingeless rotor helicopters include studies by Johnson [34],

Ormiston et al. [35], Friedmann [36], and Chopra [37]. These are particularly rele-

vant since the soft-in-plane hingeless rotor helicopter, which is studied in the current

research, is susceptible to a number of resonance conditions, including ground and

air resonances.

As mentioned in the previous section, many aeroelastic studies are made with

the comprehensive rotorcraft codes that are currently available. An example is the

study of Millott et al. [38] who presented a comparison of trim variables, aeroelas-

tic stability and response of hingeless rotor blades in forward flight obtained with

2GCHAS and two other aeroelastic codes. The 2GCHAS results were obtained with

the Greenberg quasi-steady aerodynamics model [39] and a uniform inflow distri-

bution. A further example was the study of Ganguli et al. [40] that looked at the

prediction of vibratory hub loads with the UMARC comprehensive rotorcraft code,

and a free wake model [41]. This study compared the results with a number of

aerodynamic and inflow models, including linear and free wake inflow models, with

quasi-steady and unsteady aerodynamic models. While the use of the unsteady aero-

dynamic model caused only minor changes in the results, the use of the non-linear

inflow modeling was critical to the prediction of the rotor hub loads, both in the low

and high speed flight regimes. The study of Milgram and Chopra [42] looked at the

analysis of rotors with trailing edge flaps and compared results obtained with the

UMARC and CAMRAD/JA codes to wind tunnel data, where the UMARC code

used in this study included the Maryland Free Wake model [1]. A conclusion of

this study was that a free wake model is required for the correct prediction of the
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vibratory loads, particularly at low advance ratios.

The use of three-dimensional wake modeling is often used for the calculation of

loads and vibrational characteristics of rotors but are not as common in the aeroe-

lastic stability analysis of rotors. The study of Chunduru et al. [43] examined the

effects of main rotor aerodynamic modeling on the stability characteristics of a small

scale isolated hingeless rotor. Particular attention was paid to the prediction of the

lag damping, which is difficult to predict for hingeless rotor helicopters. The in-

clusion of a dynamic stall model and the finite state wake inflow model improved

the overall predictions when compared to results using a quasi-steady stall theory.

With respect to the prediction of the lag damping, the results obtained with the dy-

namic stall and finite state wake models in general improved the overall lag damping

predictions. Nagabhushanam and Gaonkar [44] also used a finite state wake inflow

model in the study of aeromechanical stability prediction of hingeless rotor heli-

copters. Hover and forward flight conditions were examined for air resonance, as

well as with the helicopter in ground contact for ground resonance predictions. This

study again shows that improvements in lag damping predictions for hingeless rotor

helicopters could be obtained by using the finite state wake model. The best cor-

relations with test data were obtained with a high number of azimuthal harmonics

and radial shape functions indicating that the use of a non-linear inflow may be

required to improve the various stability predictions.

The UMARC code with the free wake model from CAMRAD was used by Torok

and Chopra [45] to study aeroelastic stability. While this study used a variable

free wake geometry in the calculation of the trim state of the helicopter, the wake

geometry was fixed for the stability analysis. Thus, the wake distortion effects

resulting from perturbations in the trim state were not included in the calculation

of the stability characteristics.
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1.2.3 Wake and inflow models suitable for flight dynamics
work

An important component of any flight dynamics analysis is the modeling of the aero-

dynamic environment of the main rotor. As described in Section 1.2.1, there are a

number of rotorcraft comprehensive codes that are in current use in the rotorcraft

community, and that there are also quite a number of inflow models that are used

within these comprehensive codes. With respect to flight dynamics modeling, each

of these inflow models has specific strength and weaknesses in calculating specific

flight dynamic simulation results. Many of the simple dynamic inflow models that

have been around for a number of years are still in extensive use today in calculat-

ing many types of flight simulation results. There are a number of reasons for this

including the fact that they have been extensively used and validated and they are

reliable and accurate for many types of analyses. One reason is that they are gen-

erally computationally inexpensive and they are in the form required to be coupled

to existing comprehensive codes. Another reason is that many of these inflow mod-

els are formulated in first order form and fit quite easily into the formulation and

solution methodologies of existing mathematical models. In the simplest form, the

dynamic inflow models would be formulated as a set of first order ordinary differen-

tial equations with a number of associated states and an equal number of equations.

This allows for the integration of these equations and states by simply appending

them to the current mathematical models. The Pitt-Peters dynamic inflow model is

an example where the linear distribution of inflow over the rotor disk is represented

by three inflow coefficients, and the inflow dynamics is modeled by three first-order

ordinary differential equations. The more recent finite state wake models, which

have a variable number of states, are not limited to a linear inflow distribution, but

rather allow for higher order polynomials representing the radial variation of inflow

17



and higher harmonic variations of inflow around the azimuth. This is achieved while

still retaining the first order nature of the model, with the number of dynamic in-

flow equations being equal to the number of coefficients required to describe the

inflow distribution over the main rotor disk. Thus this particular form of dynamic

inflow model can have its equations appended to the first order mathematical model

describing the dynamics of the rest of the helicopter.

There are however a number of drawbacks of using these for flight dynamics work.

The first of these drawbacks is that the inflow distributions are limited to the math-

ematical representation that is defined by the model. For instance, the Pitt-Peters

dynamic inflow model limits the inflow to a linear radial variation with only the

first harmonic azimuthal variation, resulting in a linear inflow distribution over the

rotor disk. The finite state wake models improve this by allowing for a higher-order

representation of inflow variation along the radius and higher-harmonic variations

around the azimuth, but the same problem occurs where there are restrictions put

on the types of inflow distributions that are allowed. The second drawback is that

these dynamic inflow models are based on assumptions about the structure of the

wake geometry that is used to calculate the inflow distribution. For instance, the

Pitt-Peters dynamic inflow models is based on an undistorted helical structure that

is skewed with forward speed. Similar assumptions about the wake structures are

also made in other dynamic inflow models of this type. These inflow models have

been shown to give fair degrees of accuracy in low speed flight, including hover, and

for high speed flight, but accuracy is limited at moderate forward speeds and in the

transitional flight regime. A third drawback is the inherent low-frequency nature

of the dynamic inflow models and the inability to accurately predict high-frequency

events. The type of results that are of interest here would include higher-harmonic

blade loading and high-frequency vibration loads on the helicopter. There are a
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number of studies [46, 45] that have concluded that the accurate prediction of vari-

ous blade loads and helicopter vibrations cannot be performed by using traditional

linear dynamic inflow models.

Some comprehensive reviews of inflow modeling and its use in flight dynamics

analyses include those conducted by Gaonkar and Peters [47], Gaonkar [48] and

Chen [49]. At this time the limitations on model complexity that could be reasonable

included in flight dynamics codes have limited the modeling of inflow to relatively

simple models. One of the most widely used of these early dynamic inflow models is

the Pitt-Peters dynamic inflow model [6] that is a linear, unsteady theory that relates

the transient rotor loads (thrust, roll moment and pitch moment) to the overall

transient response of the rotor induced-velocity field and the equations themselves

are derived using an unsteady actuator-disk theory.

The next level of sophistication of inflow models would be where the inflow

distribution over the rotor disk is calculated based on a prescribed vortex wake.

Using the Biot-Savart law, the induced velocity at any point on the rotor disk

is calculated as the combined influence of all of the modeled vortices associated

with the wake. There are no predefined limitations placed on the types of inflow

distributions that can be obtained, as with fixed state dynamic inflow models. As

with dynamic inflow models, there are a number of drawbacks associated with inflow

models of this type. The first is that the wake geometry is prescribed and requires

knowledge of the appropriate wake structure to use for the specific flight condition

and rotor and blade configuration. This requires an extensive knowledge of the wake

structures and factors that effect the wake structures to accurately model the wake

geometry. A second drawback is that with these prescribed wake models is that all

inflow dynamics are lost since the inflow distribution is calculated with the wake

geometry at a specific instant in time. The inflow is calculated from a prescribed
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wake geometry that does not include the effects of time variations in the inflow

or the blade loading. The third drawback is that the inflow cannot in general be

represented by a set of first order equations. This means that the equations related to

the prescribed wake inflow models cannot be simply appended to the flight dynamics

models and treated the same as dynamic inflow models. This creates difficulties for

various aspects of flight dynamics analyses, including the calculation of linearized

models, that are in general calculated numerically, as there are no states associated

with the wake geometry or inflow distribution that can be perturbed independently

of the rest of the model. This means that when any of the states are perturbed, the

results include or are contaminated by the changes in the inflow associated with the

states perturbations.

The next step from prescribed wake models is to use free wake models to generate

the rotor inflow distributions used in the flight dynamics simulation model. With

free wake models, the rotor wake structure is not prescribed and it is allowed to

distort under the influence of the flight condition, blade loading and self-induced

interaction to become a part of the solution. The study of Bagai [50] contains

an excellent review of free wake models, including their development, types of free

wake model currently used, solutions techniques and associated problems with the

formulation and use. With respect to flight dynamics simulation modeling, the

use of free wake inflow models includes the least amount of assumptions of any of

the types of inflow models considered here and, in principle, should produce the

most realistic wake structure among the inflow models. However, this comes at

a cost as there are a number of drawbacks associated with the use of free wake

models to provide the inflow used in flight dynamics work. The first two of these

drawbacks are also associated with prescribed wake models and are the lack of inflow

dynamics associated with the use of the free wake model and the lack of defined states
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associated with the inflow model. A third drawback is the computational expense

associated with the use of free wake models. This is particularly true when the free

wake model is coupled to a flight dynamics model where the free wake model, may

be required to be evaluated quite a number of times in the course of calculating the

required flight dynamics results.

A fourth drawback is that while the use of free wake inflow models is based on

less assumptions than the other types of inflow models, there are still a number of

assumptions that have to be made. These assumptions include: 1. How the rotor

wake is to be modeled (single tip vortex, vortex sheet, etc). 2. The structure of

the individual vortex filaments including the vortex core size and velocity profile

through the vortex. 3. The initial strength of the vortex filaments and how the

dissipation and diffusion of the vortices are to be modeled. 4. The radial release

point of the vortices from the blades and how the roll up of the vorticity in the tip

region is handled. 5. The specifics of the discretization of the vortex wake and the

age of the individual vortex filaments before they are assumed to no longer influence

the main rotor inflow. While all of these aspects of the use of the free wake models

are function of the free wake model itself, they will influence the coupling with the

flight dynamics model and are thus discussed here.

The study of Landgrebe [51] looked at the correlation of free wake model wake

geometries with experimental results. While this study did not include any flight

dynamics effects or effects of the free wake model on flight dynamics results it did

attempt to validate the wake geometries generated with a free wake model. The

study also investigated the effects of various rotor parameters on wake geometries

and compared them to experimental data. The various rotor design parameters

were the following: number of blades, blade twist, aspect ratio, tip speed, and

ground height. This is important since the amount of test data is limited, and any
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validation of free wake geometries with test data is important, especially with respect

to maneuvering forward flight applications. The study showed that, for hover, there

was a good overall agreement between the predicted free wake geometries and those

obtained from experiments.

Miller and Bliss [52] introduced a free wake model that calculates the wake

geometry by direct inversion of a linear system. This model enforces periodicity of

the wake as a boundary condition and is thus steady-state in nature. The wake

was modeled as a single tip vortex released from each blade and held for four rotor

turns by using a 15 degree azimuthal resolution. Results for low and high speed

showed good correlations with results obtained by using traditional time-marching

free wake models and indicated that no loss of accuracy was seen.

There are few studies that have focused on the validation of specific compo-

nents of the mathematical models that make up the comprehensive codes, namely

comparisons of predicted and experimental wake geometries, vortex strength and

structure characteristics and the subsequent inflow distributions over the rotor disk.

This is because of the limited amount of experimental data that is available due

to the difficulties in making the required measurements in an experimental setting.

However there are some studies that deal with the validation of the inflow and wake

characteristics.

For instance the study of Hoad, Althoff and Elliott [53] looked at a validation

of the inflow distributions predicted by using a number of analytical models, which

included the CAMRAD code with the Scully free wake model [27]. The validation

was performed by comparing the inflow distributions calculated in the simulation

models at various advance ratios with experimental data measured on a reduced-

scale rotor model in a wind tunnel. The test apparatus was a four-bladed fully

articulated rotor where all blades were of a rectangular planform with NACA0012
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airfoil section, -8 degrees of linear twist, 33.8 inch radius and 2.6 inch chord. The

inflow measurements were made by using laser velocimetry at a vertical distance of

approximately one chord length above the rotor. This vertical spacing resulted from

difficulties in making velocity measurements within or close to the plane of the rotor.

This also required that the induced velocity distributions used for comparison from

the CAMRAD code also had to be calculated at the same vertical spacing above

the plane of the rotor. The experimental and simulation inflow distributions were

comparable at advance ratios below about µ = 0.15 with some significant differences

being observed at higher speeds. Most notably of these differences was the measured

induced upflow region at the front of the rotor disk that enlarged from the forward

most 20% of the rotor disk at µ = 0.15 to almost the complete forward half of

the rotor disk at µ = 0.30, that was significantly under-predicted in extent by the

CAMRAD model at high advance ratios.

The study by Ghee and Elliott [54] involved a validation of the wake geometries

calculated using the CAMRAD code with the Scully free wake model [27] against

experimental data. The test apparatus was the same as that used in the study of

Hoad, Althoff and Elliott [53], which used a reduced scale, four-bladed fully articu-

lated rotor. The visualization of the vortex wake geometry was performed by using a

combination of a laser light sheet that was pulsated at the rotor speed to visualize a

stationary wake and smoke was injected in the flow so that the flow structures were

visible with the laser sheet. This study looked at a number of the physical aspects

of the vortex wake, including the wake geometries, the apparent vortex trajectories

near the rotor disk that gave an indication of the induced velocities and the charac-

teristics of the vortex core. This study showed that the overall wake geometries were

predicted well for the advance ratios of 0.15 and 0.23 considered in these studies.

Although there were a number of areas in which the predictions did not agree with
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the experimental data, including the trajectory of the tip vortices created near the

leading edge of the disk that resulted in inaccuracies in the prediction of the upwash

there.

1.2.4 Helicopter analysis in coordinated turns

One aspect of flight dynamics analysis that has not received much attention is the

analysis of helicopters in turning flight. To this end, the current research study

includes the analysis of articulated and hingeless rotor helicopters in level coordi-

nated turns. The flight condition is also assumed to be steady by setting the linear

and angular components of the body acceleration to zero. Coordinated turns are

considered by enforcing the condition of zero resultant lateral force on the body.

The focus of the present study is on the effect that inflow and blade modeling have

on the trim and aeroelastic stability characteristics in steady coordinated turns at

various forward speeds.

Chen and Jeske [55] formulated a set of exact kinematic equations that describe

the motions of helicopters in steady helical turns. An important finding of this study

was that the sideslip angle during steady coordinated turns has a strong influence

on the trim equilibrium position. It was shown that the sideslip angle has a strong

influence on the pitch attitude and roll rate of the helicopter. The effect of the angle

of attack of the body on the helicopter attitudes and rates was also examined.

Ballin [32] looked at trim results for the UH-60A in descending and climbing

steady coordinated turns and compared results generated with the GENHEL flight

dynamics simulation model with flight test data. Kim [56] performed a similar

comparison with the UM-GENHEL model and also presented some results in the

frequency domain that compared frequency responses in straight flight with fre-

quency responses in 1-g turns. There have been very few studies that deal with
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articulated rotor, in particular the UH-60A helicopter, in steady coordinated turns,

and none that deal with the aeroelasticity characteristics.

Aeroelastic studies of hingeless rotor helicopters in turning flight are very lim-

ited, and there is no experimental data with which to validate simulation results.

Chen [57] has examined the stability and control characteristics of different rotor

configurations by using the set of kinematic relations developed in Ref. [55]. The

rotor was modeled by using a rigid blade with root springs, undergoing flap motion

only. This study examined the factors that effect the stability in turns, including

the effects of the direction of the turn and effects of forward speed.

Spence and Celi [58] looked at the aeromechanical stability of a soft-in-plane hin-

geless rotor helicopter in coordinated steady turns. An elastic blade model was used,

including nonlinearities from moderately large elastic deflections. The Pitt-Peters

dynamic inflow model was used to represent the inflow dynamics. The aeromechani-

cal stability was assessed by starting from a trim state and linearizing the equations

of motion. The resulting linear system has periodic coefficients and the stability

characteristics was assessed by using Floquet theory. In this study, the effects of

turn rate, aircraft speed and flight path angle on the stability in turns was exam-

ined. It was shown that the effect of level turns is to stabilize the lag mode. There

were no comparisons with flight test data because there is no such data available

that addresses aeromechanical stability in turning flight.

The studies of Celi [59, 60] have examined the aeroelastic stability of soft-in-

plane hingeless rotor helicopters in steady “high-g” turns. The rotor model included

coupled flap, lag and torsional degrees of freedom. The Dress wake model was used

to describe the non-linear inflow distribution over the rotor disk. The study [59]

focused on the effects of steady stall and compressibility effects associated with the

use of a quasi-steady aerodynamics model and airfoil coefficients obtained from look-
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up tables as functions of angle of attack and Mach number. It was shown that the

effect of compressibility increased the damping of the lag mode.

1.2.5 Helicopter cross-coupling

A long-standing problem in helicopter flight dynamics has been the inability to ac-

curately predict the off-axis response to pilot inputs. This is especially true of the

pitch and roll cross-coupling. Until recently, the prediction of the off-axis response

(e.g., the pitch response to a lateral cyclic pilot input) were inaccurate, to the point

of sometimes having the wrong sign when compared to the results of flight tests.

The cause of the discrepancies has come under recent scrutiny with a number of the-

ories being presented as to the correct physical explanation of the off-axis response

phenomena. Some of these explanations include the following: wake curvature, wake

stacking, wake swirl, wake inertia, unsteady wake effects, blade flexibility, inaccu-

rate modeling of rotor/fuselage interactions, and a number of other theories. At

this stage, there is still no definitive explanation as to the precise physical causes

of specific off-axis response observed on actual helicopters, nor is there a defini-

tive mathematical theory that can be used in a flight dynamics simulation mode to

accurately predict helicopter cross-coupling over a broad range of applications.

The first major contribution to the understanding of the off-axis response prob-

lem has come from the work of Rosen and Isser [61], who were the first to point

out the importance of vortex spacing on the inflow distribution over the rotor disk

during steady pitch and roll rate maneuvers. Steady pitch and roll motions of the

rotor shaft alter the rotor wake spacing by decreasing the spacing on one side of the

rotor disk and increasing the spacing on the opposite side. The distortions of the

wake geometry resulting from maneuvers modifies the inflow distribution at the ro-

tor disk. This change in inflow distribution causes changes in blade flapping, which
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in turn changes the aerodynamic pitch and roll moments from the rotor. This study

showed that, in hover, the inclusion of the wake distortion from a steady pitching

motion of the shaft resulted in a sign change of the lateral flapping. Similar results

were observed for rolling motions. A “specially developed” prescribed wake model

was used to take into account the wake distortion effects caused by pitch and roll

maneuvers. For the UH-60A and AH-64 helicopters, this new model was found to

improve the prediction of cross-coupling pitch and roll derivatives. The mechanism

is that for a steady nose-up shaft pitch rate, the wake vertical spacing is increased at

the front of the disk and decreased at the rear of the disk, bringing the tip vortices

closer to the rotor disk. This causes a decrease in inflow and increase in lift over

the front of the disk and corresponding inflow increase and lift decrease over the

rear. The change in longitudinal lift distribution results in a lateral change in blade

flapping, which contributes to the off-axis response. While this study shows the

importance of pitch rate effects on the wake geometry and subsequent inflow dis-

tributions, and that improvements in off-axis response predictions can be achieved,

there are a number of limitations of this study that make it difficult to apply the

theory to a general rotorcraft problem. First, the wake geometry and wake pertur-

bations from steady shaft rates are prescribed, requiring an a priori knowledge of

wake structures. Second, the analysis is performed in hover and it would be difficult

to generalize to forward flight. Finally, the effects of wake geometry and inflow

changes were examined on the lateral flapping only, and not on the lateral response

of a helicopter in a general case.

Following Rosen and Isser’s work, other investigations have developed simple

inflow models that capture the inflow changes from a maneuver through the use of

correction coefficients. Keller [15] developed a so called extended momentum theory

that contains simple additional terms proportional to pitch and roll rates. The
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additional terms contain correction coefficients that account for the wake geometry

distortions from pitch and roll angular rates on the main rotor inflow, the numerical

values of which are determined based on a vortex ring analysis. Results generated

with the new inflow model were compared to flight test data for the UH-60A in

hover, and they showed a significant improvement in the prediction of the off-axis

response. The helicopter motion model included linear rotor/fuselage equations of

motion that were specialized for hover. The fuselage and empennage aerodynamic

forces were neglected as was the tail rotor. The rigid blade model was used with flap

and lag hinges. Blade torsion was not included. The applicability of this model to

general rotorcraft problems suffers from the same limitations as the study of Rosen

and Isser [61], where the wake distortions resulting from angular rates are prescribed

and the study is limited to the hover flight condition. Although since this new model

is based on a simple three-state dynamic inflow model, its integration into existing

flight dynamics simulation models is straight forward with no increase in execution

time.

The wake geometry changes resulting from a maneuver have been modeled by

Basset [62] and by Basset and Tchen-Fo [63] by using a dynamic vortex wake model.

In this model, the wake is represented by vortex rings. The vortex rings were

arranged into vortex groups where each contained a number of planar and concentric

vortex rings. One vortex group was released from the rotor for each rotor revolution

of time. The center of each vortex group was convected at the local velocity, that

is a combination of the rotor trajectory and the inflow calculated from the mean

aerodynamic load. While each vortex group remains planar, the effect of pitch and

roll rate maneuvers alters the attitude of the planar vortices with respect to the

rotor. In a flight dynamic simulation model, this wake model is used to calculate

two wake distortion coefficients that relate the longitudinal inflow change to pitch
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rate, Kq, and the lateral inflow change to the roll rate, Kp. The coefficients are then

used in the Pitt-Peters dynamic inflow model [6, 7] to couple the angular rates to

the inflow distribution. Results presented showed that Kq and Kp are non-linear

functions of advance ratio and that the longitudinal and lateral values were different.

Substantial improvements in the prediction of the hover off-axis response for the BO-

105 were obtained. This study extends the work of Keller [15] to forward flight, and

shows how the wake distortion correction coefficients vary with advance ratio.

The studies of Rosen and Isser [61], Keller [15] and Basset and Tchen-Fo [63]

have made the assumption that there is a linear relationship between the change in

inflow and the imposed angular rate. For instance the assumption is made that the

longitudinal change in inflow is directly proportional to the magnitude of the pitch

rate of the rotor disk, including the shaft pitch rate. This leads to the KR factor [15]

being independent of the angular rate for the hover cases considered.

A maneuvering free wake model was used by Bagai et al. [13] to study the effects

of steady angular rates on inflow distributions. The free wake model used was the

Maryland Free Wake model [1] with the addition of maneuvering effects [13]. The

rotor was modeled as an isolated rotor and only flap dynamics were considered.

The results of this study showed an essentially linear relationship between the an-

gular rates and the longitudinal and lateral inflow changes. However, it was also

shown that in low speed forward flight the proximity of the tip vortices to the rotor

results in non-linear changes in the inflow distributions indicating that a simple su-

perposition of inflow changes resulting from maneuvers may not be possible for this

flight condition. Another important conclusion was the dependence of the results

on the advance ratio, where the steady pitch and roll rates affect the longitudinal

and lateral inflow differently, and show non-linear variations with advance ratio.

These results with advance ratio compare favorably with similar results generated
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by Basset [62, 63].

A completely different explanation for the discrepancies of off-axis predictions

has been offered by von Grünhagen [64]. A “virtual inertia effect” was proposed that

accounts for the in-plane, or swirl components of the rotor wake that increases the

inertia of the main rotor and contributes to the overall equilibrium of the helicopter.

In this analysis, the rotor wake was assumed to have a stationary angular momentum

that is fixed to the rotor disk and moves with the rotor. In essence, the rotor wake

adds a virtual inertia to the rotor that induces a reaction moment directly to the

aircraft when angular rates of the rotor hub are present. The additional reaction

moments are applied directly to the moment equilibrium equations of the fuselage,

whereas the studies of Rosen and Isser [61], Keller [15] and Basset [62, 63] introduce

changes to the inflow equations to account for wake distortion. This new theory can

be easily added to an existing flight dynamics model as, in essence, a feedback of the

aircraft angular rates on the moment equilibrium equations. This results in simple

correction terms that can be added to a flight dynamics model, and has been shown

to improve considerably the off-axis predictions for the BO-105 in hover and forward

flight. This theory does not try to model the aerodynamic environment of the rotor

in detail, but rather to present an overall effect that can be used within a flight

dynamics simulation model to assist in the prediction of helicopter cross-coupling

over a wide range of flight conditions.

All of the previous studies have attempted to improve the correlation of off-axis

response through refined theoretical models. A different approach has been proposed

by Mansur and Tischler [65]. Corrected lift and drag coefficients of the blade airfoils

were obtained from the instantaneous, baseline values through a first-order filter, the

time constant of which is selected in terms of an equivalent aerodynamic phase lag.

This phase lag is then determined from flight test data by using system identification
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techniques. This approach was spured by the fact that linear models extracted from

flight test data do accurately capture the off-axis response phenomena, while linear

models generated from simulation models are lacking in off-axis response predictions.

The technique was applied to the analysis of the AH-64 and substantially improved

the off-axis response predictions in both hover and forward flight. The dependence

of the technique on experimental data limits its applicability to general helicopter

problems. This is especially the case where appropriate test data in the required

flight condition is not available. While this model was shown to improve the off-axis

flight response prediction capability of flight simulation models for specific cases, it

does not contribute significantly to the physical understanding of helicopter cross-

coupling.

A review of three aerodynamic models that have been proposed to improve off-

axis response predictions was made by Arnold [17]. The aerodynamic models are

as follows: 1. Momentum theory extended to include the effects of wake distortion

on the inflow distribution [15]. 2. A first-order aerodynamic lag model that his in

general equivalent to a lift deficiency function where τL is an aerodynamic phase

lag that is used in the equation for the aerodynamic lift. 3. An aerodynamic

phase correction, that essentially produces a phase shift in the aerodynamic flapping

moment, where ψa is the aerodynamic phase angle that is defined by this theory.

Comparisons between the different models were made with the UH-60A helicopter in

hover by using a simple helicopter model and with blade degrees of freedom in flap

only. Results showed that when the theoretical values of the coefficients were used

in each of the models, there were significant improvements in off-axis predictions.

Yet the best agreement with test data was obtained with coefficient values that were

higher than their theoretical values. This indicates that, in each case, the theoretical

analyses capture some but not all of the effects required to give the best agreement
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with test data.

1.3 Objectives of Study

The primary motivation for the present research is that current flight dynamics

simulation capabilities are inadequate in a number of areas. As a consequence, for

example, flight control law design based only on analytical predictions of helicopter

dynamics is still unsatisfactory, and extensive tuning of the flight control laws on the

actual aircraft is usually needed. Reasonably accurate results have been obtained

by taking advantage of flight test results, or through specific assumptions on the

behavior of the aircraft. This requires that the actual aircraft be available for testing,

and limits the range of validity of the results. An especially challenging example

is the prediction of the off-axis response of helicopters to pilot inputs, which has

traditionally been predicted inaccurately (particularly roll-to-pitch and pitch-to-roll

cross-coupling), to the extent of sometimes being predicted in the opposite direction

to test data.

More sophisticated representations of the aerodynamics and dynamics of the

main rotor have the potential of increasing the accuracy and the generality of the

predictions. To obtain accurate, first principle based predictions, a coupled flap,

lag and torsional elastic blade model and a maneuvering free vortex wake model

are probably necessary, but no flight dynamic simulation model with such a level of

refinement is currently available.

In light of the literature review presented in the previous section, and the moti-

vations listed above, the main objectives of this study are:

1. To develop a mathematical model that includes flexible blades, arbitrary hub

motions and a maneuvering free vortex wake model for flight dynamics ap-
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plications. This will be accomplished by coupling the Bagai-Leishman ma-

neuvering free wake with an existing flight dynamic simulation that already

includes flexible blade modeling.

2. To develop methods for the calculation of trim equilibrium conditions, linear

models and free-flight dynamics time responses, as needed by the introduction

of the free wake, and to validate these results with test data.

3. To identify issues related to the use of the free vortex wake model for vari-

ous flight dynamics calculations and determine the validity and limitations of

assumptions made in this the new mathematical model and in the solution

procedures.

4. To study the effects of aerodynamic modeling, particularly inflow modeling,

and blade modeling on various types of flight dynamics predictions.

5. To investigate helicopter cross-coupling (particularly roll-to-pitch and pitch-to-

roll cross-coupling) characteristics and mechanisms of articulated and hingeless

rotor helicopters, and to assess the effects of inflow and blade modeling on the

cross-coupling predictions.

6. To validate the new simulation model through comparisons with flight test

data.

Additionally, the original flight dynamics model, which was specialized for the

Sikorsky UH-60A Blackhawk, will be extended to include a detailed configuration of

the Eurocopter BO-105. This will allow the validation of the model with two differ-

ent sets of flight test data. The validation with the BO-105 data will be especially

significant, because this hingeless rotor helicopter exhibits strong couplings between
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roll and pitch dynamics, and blade flexibility plays an important role in its flight

dynamic characteristics.
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Chapter 2

Mathematical Model

This chapter describes the main features of the mathematical model of the heli-

copter used in this research. A brief overview of the main mathematical features

of the model is followed by a detailed description of the aircraft coordinate systems

and reference frames. A list of the main assumptions used in the formulation of the

mathematical model, and in the solution methods is provided next. The chapter

continues with the formulation of the main rotor equations of motion, including the

components of the equations, the finite element discretization of the equations, and

the modal coordinate transformation. Then the formulation of the rigid fuselage

equations, including complete descriptions of all of the components of the applied

loads. Followed by the formulation of the equation representing tail rotor inflow

dynamics and the transformation of the equations of motion into rigorous first or-

der, state space form. Finally, the main rotor inflow models are briefly described:

first, the dynamic inflow models, in the versions with and without the modeling of

maneuvering effects, and then, the maneuvering free vortex wake model.
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2.1 Overview

The mathematical model used in this study describes the rigid body dynamics of

the aircraft, the coupled flap-lag-torsion-axial dynamics of each main rotor blade,

and the inflow dynamics for the main rotor and the tail rotor. With the exception

of the free wake, the mathematical model is formulated as a system of first order,

coupled, non-linear ordinary differential equations of the form:

ẏ = f(y,u; t) (2.1)

where y is a vector of states, u is a vector of controls and t is time.

The maneuvering free wake model is implemented as a set of nonlinear alge-

braic equations. These equations result from the finite difference discretization of

a hyperbolic partial differential equation (PDE), namely the vorticity transport

equation [66]. Because the free wake finite difference equations are solved using a

relaxation technique, the solution is a steady state wake geometry and inflow distri-

bution appropriate for a steady flight condition. Therefore, although the governing

equations contain the ingredients required to describe time-accurate wake dynamics,

the free wake model of Ref. [13] used in this research is rigorously valid only for a

trimmed flight condition.

The wake partial differential equations are simultaneously discretized in space

and in time, and there is no intermediate stage where the partial differential equa-

tions are converted into a set of ordinary differential equations with time as the

independent variable. Therefore, the wake model does not contribute any addi-

tional dynamic equations to the basic flight dynamics model, nor does it change the

basic first order form of the equations of motion from Eqn. (2.1). This mismatch

between the mathematical forms of the wake and of the rest of the aircraft model

raises a number of issues concerning the incorporation of the free wake model into
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the flight dynamic analysis, especially in the extraction of a linearized model and

in the calculation of the transient response to pilot inputs. These issues will be

addressed in detail in the following chapters.

When a dynamic inflow model, rather than the free wake, is used to describe the

main rotor inflow, the state vector y takes the form (for a four-bladed rotor):

y(ψi) = [u v w p q r φF θF ψF λt λ0 λc λs q
1
1 q1

2 q1
3 q1

4 q̇1
1 q̇1

2 q̇1
3 q̇1

4

. . . qNh
1 qNh

2 qNh
3 qNh

4 q̇Nh
1 q̇Nh

2 q̇Nh
3 q̇Nh

4 ] (2.2)

in which u, v, w, p, q, and r are the velocities and rates in the body fixed coordinate

system; φF , θF , and ψF are the Euler angles of the fuselage; λ0, λc, and λs are

respectively the uniform, cosine and sine coefficients of the dynamic inflow model;

λt is the tail rotor inflow; and qki and q̇ki are the generalized displacement and velocity

coordinates for the i-th blade and the k-th normal mode in the rotating frame at

the azimuth angle ψi.

When the inflow distribution over the main rotor is calculated using the free

wake model, the dynamic inflow states (λ0, λc, and λs) are removed from the state

vector and the dynamic inflow equations are removed from the first-order model.

The state vector then takes the form:

y(ψ) = [u v w p q r φF θF ψF λt q
1
1 q1

2 q1
3 q1

4 q̇1
1 q̇1

2 q̇1
3 q̇1

4

. . . qNh
1 qNh

2 qNh
3 qNh

4 q̇Nh
1 q̇Nh

2 q̇Nh
3 q̇Nh

4 ] (2.3)

The control vector, u is defined as:

u = [θ0 θ1c θ1s θt θ̇0 θ̇1c θ̇1s] (2.4)

where θ0 and θt are the main and tail rotor collective controls, θ1c and θ1s are the

lateral and longitudinal cyclic controls and θ̇0, θ̇1c and θ̇1s are the time derivatives
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of the pitch controls. The time derivatives of the pitch controls are required only in

special cases, such as, for example, in the modeling of the lag damper used on the

Sikorsky UH-60A [3, 5].

2.2 Coordinate Systems

The coordinate systems required for the formulation of the equations can be divided

into three groups, namely:

1. Body coordinate systems, which are used to describe the overall motion of the

helicopter.

2. Main rotor coordinate systems, which are used to formulate the equations of

motion of the rotor blades, including the calculation of the aerodynamic and

inertia loads, and the elastic deformations of the blades.

3. Free wake coordinate systems, which are used to describe the geometry of the

vortex wake with respect to the main rotor blades.

2.2.1 Body coordinate systems

The three main coordinate systems that are used to describe the overall motion of

the aircraft are the inertial, body-fixed, and wind coordinate systems. The frames

of reference of these coordinate systems and the transformations from one system

to another are as follows:

Inertial coordinate system

The inertial coordinate system has its origin at the center of mass of the helicopter,

with the z-axis aligned parallel to the direction of gravity. The actual directions of

the x and y axes are not important in the present study, because the results are not
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a function of the course followed by the aircraft. If such information was important,

the x and y axes could be selected as pointing North and East respectively. The

axes of this coordinate system are xI , yI , zI with corresponding unit vectors iI, jI,

kI. This coordinate system is shown in Figure 2.1.

Body-fixed coordinate system

The body-fixed coordinate system has its origin at the center of mass of the heli-

copter, and axes that rotate with the fuselage. This system will also be referred to

as the “fuselage” coordinate system. Its axes are xB, yB, zB, and point forward, to

starboard, and downward respectively. The corresponding unit vectors are iB, jB,

kB. The xB− zB plane is a plane of symmetry, or quasi-symmetry of the helicopter.

This system is illustrated in Figure 2.1.

The transformation from inertial to body-fixed frames of reference is based on

the Euler angles φ, θ and ψ which represent the roll, pitch and yaw attitudes of the

aircraft. This transformation by the Euler angles is illustrated in Figure 2.2. The

transformation from inertial frame to body-fixed frame is given by the matrix [67]:

[TBI] =




cos θ cosψ sinψ cos θ − sin θ

sinφ sin θ cosψ
− cosφ sinψ

sinφ sin θ sinψ
+ cosφ cosψ

sinφ cos θ

cosφ sin θ cosψ
sinφ sinψ

cosφ sin θ sinψ
− sinφ cosψ

cosφ cos θ




(2.5)

so that: 


iB
jB
kB


 = [TBI]




iI
jI
kI


 (2.6)

Helicopter manufacturers often identify longitudinal, lateral, and vertical ref-

erence lines, and define points on the helicopter with reference to these axes; the

distances along these lines are called stations, buttlines and waterlines, respectively
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(e.g., see Ref. [3]). Then the x, y and z body-axes are parallel to the longitudinal,

lateral, and vertical reference lines, respectively.

2.2.2 Wind coordinate system

The wind coordinate system has its origin at the center of mass of the helicopter and

is defined with respect to the freestream airflow experienced by the helicopter. For

the hovering flight condition, where there is no freestream airflow, the wind coordi-

nate system becomes undefined. To overcome this problem, the hover is considered

in this study to be at a forward speed of 1 knot.

The xW -axis of the wind coordinate system is aligned with the freestream veloc-

ity, and points forward. The yW and zW axes point to the right and down respec-

tively. The wind and body-fixed frames are related by the aircraft angles of attack

αF and sideslip βF (the subscript “F” has been added to prevent confusion with the

aerodynamic angle of attack of the blade cross-sections and the blade flapping angle

respectively). As customary [67] the angle of attack αF is defined as the angle that

the projection of the freestream velocity vector onto the xB-zB plane makes with

the xB body axis; the angle is positive for a relative airflow coming from below. The

sideslip angle βF is defined as the angle that the airflow makes with the xB-zB plane,

and is positive with the relative airflow coming from the right. The unit vectors of

this coordinate system are iW, jW, kW along xW , yW , and zW respectively.

As shown in Figure 2.3, the transformation from body-fixed to wind reference

frames is obtained by a rotation of the sideslip angle βF about the zB-axis, followed

by a rotation of the angle of attack αF about the y-axis (which is the yB-axis after

the βF rotation). This transformation from body-fixed to wind coordinate systems
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is given by the matrix:

[TWB] =


 cosαF cos βF − cosαF sin βF − sinαF

sin βF cos βF
sinαF cos βF − sinαF sin βF cosαF


 (2.7)

so that: 


iW
jW
kW


 = [TWB]




iB
jB
kB


 (2.8)

2.2.3 Main rotor coordinate systems

Shaft coordinate system

To relieve steady loads in flight, main rotor shafts are not usually mounted parallel

to the zB body axis, but instead their axes make small angles with it. The angles

that the shaft makes with the yB-zB and with the xB-zB plane are defined as the

longitudinal and lateral shaft tilt respectively, and are denoted with iθ and iφ. The

shaft coordinate system takes these angles into account. This is a non-rotating

coordinate system that has its origin at the rotor hub. Its orientation depends on

the tilt of the main rotor shaft relative to the body-fixed coordinate system. Its

axes are xS, yS, zS with corresponding unit vectors iS, jS, kS. The transformation

from body-fixed to shaft-fixed reference frames is defined by a rotation of iθ about

the body-fixed y-axis followed by a rotation of iφ about the x-axis.

The transformation from body-fixed to shaft-fixed frame is illustrated in Fig-

ure 2.4 and is described by the following matrix:

{TSB] =




cos iθ sin iθ sin iφ sin iθ cos iφ
0 cos iφ − sin iφ

− sin iθ cos iθ sin iφ cos iθ cos iφ


 (2.9)

so that: 


iS
jS
kS


 = [TSB]




iB
jB
kB


 (2.10)
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Hub rotating coordinate system

The hub rotating coordinate system has its origin at the hub; the system rotates

about the z-axis with a speed equal to the main rotor speed. Its axes are x, y, z

and the corresponding unit vectors are i, j, k. The z-axis is aligned parallel with

the shaft and points upwards, in the opposite direction to zS. The x-axis lies in a

vertical plane passing through the elastic axis of the undeformed blade. The y-axis

is orthogonal to the x-z plane and points in the blade lead direction. Each blade has

its own set of hub rotating coordinates. The relationship between the hub rotating

coordinate system and the shaft coordinate system is illustrated in Figure 2.5.

The transformation from shaft non-rotating coordinates to hub rotating coor-

dinates is defined by the blade azimuth angle, which is positive in the direction of

rotation with the advancing blade on the starboard side of the rotor, and is zero

when the blade is over the tail. The transformation from the shaft non-rotating to

the hub rotating reference frames is given by the matrix:

{TRS} =



− cosψ sinψ 0
sinψ cosψ 0

0 0 −1


 (2.11)

so that: 


i
j
k


 = [TRS]




iS
jS
kS


 (2.12)

Undeformed preconed blade coordinate system

The undeformed preconed blade coordinate system is a rotating coordinate system

with origin at the blade root. Its unit vectors are êx, êy, êz, defined such that

êx points outboard, êy points in the blade lead direction and êz points upwards

perpendicular to the blade elastic axis. The transformation from the hub rotating

coordinate system to the undeformed preconed blade coordinate system is defined
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by the blade precone angle βp. The transformation is given by the matrix:

TPR =




cos βp 0 sin βp
0 1 0

− sin βp 0 cos βp


 (2.13)

so that: 


êx
êy
êz


 = [TPR]




i
j
k


 (2.14)

For the case in which there is no precone, the hub rotating and undeformed

preconed blade coordinate systems are coincident. This is the coordinate system in

which the equations of motion of the blade are written.

Deformed blade coordinate system

The deformed blade coordinate system is a rotating coordinate system with origin

at any point on the deformed elastic axis of the blade. Its unit vectors are ê′
x, ê′

y, ê′
z

where ê′
x points outboard along the tangent to the elastic axis at the origin point.

The ê′
y axis is aligned with the blade chord perpendicular to the elastic axis and

is positive in the blade lead direction. The ê′
z is normal to the ê′

x-ê
′
y plane and is

defined as positive up.

The transformation from undeformed to deformed blade coordinates is given by

the matrix [68]:

TDP =


 S11 S12 S13

S21 S22 S23

S31 S32 S33


 (2.15)

where

S11 = cos θy cos θz

S12 = cos θy sin θz

S13 = − sin θy

S21 = sin θx sin θy cos θz − cos θx sin θz
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S22 = cos θx cos θz − sin θx sin θy sin θz

S23 = sin θx cos θy

S31 = cos θx sin θy cos θz + sin θx sin θz

S32 = −(sin θx cos θz − cos θx sin θy sin θz)

S33 = cos θx cos θy

and where,

θx = φ

sin θy = − w,x√
1 + 2u,x + u,x2 + v,x2 + w,x2

cos θy = −
√

1 + 2u,x + u,x2 + v,x2√
1 + 2u,x + u,x2 + v,x2 + w,x2

sin θz =
v,x√

1 + 2u,x + u,x2 + v,x2 + w,x2

cos θz =
1 + u,x√

1 + 2u,x + u,x2 + v,x2 + w,x2

The transformation from the undeformed, preconed blade coordinate system to

the deformed blade coordinate system is given by:




ê′
x

ê′
y

ê′
z


 = [TDP]




êx
êy
êz


 (2.16)

The relationships between the hub rotating coordinate system and the unde-

formed and deformed preconed blade coordinate systems are illustrated in Figure 2.6.

Tip path plane coordinate system

The tip path plane coordinate system is a nonrotating coordinate system used in

the formulation of the dynamic inflow model [7]. Its unit vectors are iTPP, jTPP,

kTPP. The z-axis of this coordinate system is perpendicular to the plane defined
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by the first-harmonic flapping motion of the blade tips and points downward. The

transformation from the shaft reference frame to the tip path plane reference frame

is illustrated in Figure 2.7 and is given by the matrix:

[TTS] =


 cos β1c sin β1c sin β1s sin β1c cos β1s

0 cos β1s − sin β1s

− sin β1c cos β1c sin β1s cos β1c cos β1s


 (2.17)

where β1c and β1s are multiblade coordinates defined as follows:

β1c =
2

Nb

Nb∑
j=1

wtipj

R− e
cosψj (2.18)

β1s =
2

Nb

Nb∑
j=1

wtipj

R− e
sinψj (2.19)

where Nb is the number of blades, e is the hinge offset and wtipj is the elastic

deflection of the tip of the jth blade.

The unit vectors of the tip path plane and shaft-fixed systems are related by:


iTPP

jTPP

kTPP


 = [TTS]




iS
jS
kS


 (2.20)

Blade sectional aerodynamics coordinate system

The blade sectional aerodynamics coordinate system is a rotating coordinate system

with its origin at any point on the elastic axis of the blade. This is the coordinate

system in which the local airflow velocity components at the blade section are rep-

resented. Its unit vectors are eT , eP and eR, defined such that eT points aft in the

blade lag direction, eP points outboard along the tangent to the elastic axis at the

origin point and eR is normal to the eT -eP plane and is defined as positive up.

The total airflow velocity at a blade section used in the calculation of the sectional

aerodynamic loads in the blade sectional aerodynamics coordinate is represented as:

VA = UTeT + UPeP + UReR (2.21)
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and the absolute velocity of the blade section in the undeformed preconed blade

coordinate system is represented as:

VP = Vxêx + Vyêy + Vzêz (2.22)

The transformation of the absolute velocity of the blade section in the unde-

formed preconed blade coordinate system to the total airflow velocity in the blade

sectional aerodynamics coordinate system is given by the matrix:

[TAP] =




− sin ζ cos ζ 0
sin β cos ζ sin β sin ζ − cos β

− cos β cos ζ − cos β sin ζ − sin β


 (2.23)

where β and ζ are the local flap and lag slopes of the blade elastic axis with reference

to the undeformed preconed blade coordinate system and are given by:

β =
∂w

∂x
(2.24)

ζ =
∂v

∂x
(2.25)

where w and v represent the flap and lag displacements of the elastic axis.

The unit vectors of the blade sectional aerodynamics and undeformed preconed

blade coordinate systems are related by:


eT
eP
eR


 = [TAP]




êx
êy
êz


 (2.26)

2.2.4 Free wake coordinate systems

The free wake model [1] used in this study is formulated in a wind axis system.

The trim conditions used for wake geometry and inflow calculations are consistent

with a wind tunnel trim methodology. Therefore, the shaft tilt angle with respect

to the freestream flow is fixed and the trim controls, θ0, θ1c, θ1s are determined to

provide a thrust vector of prescribed magnitude and aligned parallel to the rotor

46



shaft. This alignment of the thrust vector is obtained when the tip path plane is

parallel to the rotor hub plane, which implies that there is no cyclic variation in

the blade flapping angle. Therefore, only a rotor coning angle is considered in the

free wake calculations. The free wake formulation leads to the following coordinate

systems:

Global wake coordinate system

The global wake coordinate system is a wind axis system in which the free wake

model is formulated. The x-axis is aligned with the freestream flow and is positive

aft, the y-axis points to starboard and the z-axis points up. For a wind tunnel trim

problem, the x-axis is aligned with the longitudinal axis of the wind tunnel.

As illustrated in Figure 2.8, the angle that the z-axis makes with the rotor shaft

is the longitudinal shaft tilt αS, and also indicates the angle of attack of the rotor

hub with respect to the freestream flow. Because there is no cyclic variation in rotor

flapping, the longitudinal shaft tilt αS is also the angle of attack of the rotor tip

path plane with respect to the freestream flow. The longitudinal shaft tilt αS is

defined as positive with the shaft tilted aft so that the thrust vector is also tilted

in the aft direction. The axes of the global coordinate system are xG, yG, zG, with

corresponding unit vectors iG, jG, kG.

Rotating blade coordinate system

The rotating blade coordinate system has its origin at the hub, with the x-axis

aligned with the blade elastic axis and pointing outboard. The free wake model

assumes that the blade is rigid in flap, lag and torsion and has a single flap hinge

located at the axis of rotation. The y-axis of this coordinate system is perpendicular

to the blade and points forward in the direction of the lead motion of the blade.
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The z-axis points upwards perpendicular to the x-y plane. This is the coordinate

system in which the local blade aerodynamic environment is defined for the free

wake model. The axes of this coordinate system are xF , yF , zF with corresponding

unit vectors iF, jF, kF.

The transformation from the global coordinate system to the rotating blade

coordinate system requires a rotation by the longitudinal shaft tilt αS about the

yG-axis, followed by a rotation of the azimuth angle ψ about the new z-axis that is

aligned with the tilted rotor shaft, and a rotation of the blade coning angle β0 about

the new y-axis which is normal to the shaft and points in the blade lead direction.

The coning angle used here is the sum of the coning due to blade flapping and of

any built-in precone angle if present.

The transformation from the global coordinate system to the rotating blade

coordinate system is given by the matrix:

[TFG] =




cosαS cosψ cos β0

+ sinαS sin β0
sinψ cos β0

− sinαS cosψ cos β0

+ cosαS sin β0

− cosαS sinψ cosψ sinαS sinψ

− cosαS cosψ sin β0

+ sinαS cos β0
− sinψ sin β0

sinαS cosψ sin β0

+ cosαS cos β0




(2.27)

so that: 


iF
jF
kF


 = [TFG]




iG
jG
kG


 (2.28)

Free wake blade preconed coordinate system

The free wake blade preconed coordinate system has its origin at the hub; its unit

vectors are iP, jP, kP with the x-axis pointing outboard along the blade, the y-

axis pointing in the blade lead direction and the z-axis pointing up. The induced

velocities calculated in the free wake model are returned to the flight dynamics
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model in this reference frame.

The transformation from the global-fixed frame to the free wake blade preconed

rotating frame is defined by a rotation of the longitudinal shaft tilt αS about the

global fixed yG-axis, followed by a rotation of the azimuth angle ψ about the new

z-axis that is aligned with the tilted rotor shaft, and a rotation of the precone angle

βP about the new y-axis which is normal to the rotor shaft and points in the blade

lead direction.

The transformation from global-fixed to blade preconed reference frames is given

by the matrix:

TPG =




cosαS cosψ cos βp
+ sinαS sin βp

sinψ cos βp
− sinαS cosψ cos βp

+ cosαS sin βp
− cosαS sinψ cosψ sinαS sinψ

− cosαS cosψ sin βp
+ sinαS cos βp

− sinψ sin βp
sinαS cosψ sin βp
+ cosαS cos βp




(2.29)

so that: 


iP
jP
kP


 = [TPG]




iG
jG
kG


 (2.30)

2.2.5 Coupling of the flight dynamic and the free wake co-
ordinate systems

Because the coordinate systems used in the free wake model are slightly different

from those used in the rest of the flight dynamic model, it is necessary to define

appropriate transformations between the two sets.

The first such transformation is required because the freestream velocity and

body rates calculated in the flight dynamic coordinate systems need to be provided

to the free wake model. This requires a conversion from the body-fixed axis system

(Section 2.2.1) to the global wake axis system (Section 2.2.4).

The second transformation is required when the inflow distribution calculated in

the free wake model needs to be provided to the rest of the flight dynamic model.
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This requires a conversion from the rotating blade coordinate system used in the free

wake model (Section 2.2.4) to a reformulated free wake blade preconed coordinate

system (from that of Section 2.2.4).

Body-fixed to global wake coordinate systems

The conversion from the body-fixed coordinate system used in the flight dynamic

model to the global wake system used in the free wake model requires some con-

sideration of the trim procedures for which each model was intended. For instance,

for wind tunnel trim calculations, the x-axis of the global wake coordinate system

is aligned with the freestream and results in a fixed angle of attack of the rotor

disk. For free-flight trim calculations this is not the case because the pitch and roll

attitudes of the body are variable, and because the cyclic variation in blade flapping

change the angle of attack of the rotor disk with respect to the freestream.

Therefore, to define the transformation between the two systems, the axes of

the free wake global wake coordinate system are assumed to be aligned with the

body-fixed axes system. This results in a global wake coordinate system that is

no longer aligned with the freestream flow but rather with the aircraft body and

that also rotates with the body. Using this convention, any changes in the angles

of attack or sideslip in the flight dynamics model will be treated as changes in the

velocity components, u, v, w used by the free wake model. Using this assumption

the transformation from the body-fixed to the wake global wake reference frames is

simply given by the following matrix:

TGB =


 −1 0 0

0 1 0
0 0 −1


 (2.31)

so that: 


iG
jG
kG


 = [TGB]




iB
jB
kB


 (2.32)
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Using this transformation, the velocity components of the body can be converted

from the body-fixed system to the global wake axis system as follows:


uG
vG
wG


 =




−uB
vB

−wB


 (2.33)

and the body pitch and roll rates are converted as follows:{
pG
qG

}
=

{
−pB
qB

}
(2.34)

This transformation also implies that the angle of attack of the rotor disk αS

used in the free wake model is equal to the longitudinal shaft tilt iθ in the flight

dynamics model.

Blade flap angle transformation

In the free wake model formulation the blade flap angle is assumed to be con-

stant [66], and therefore longitudinal and lateral flapping are not explicitly included.

Therefore, the free wake model needs to be slightly modified, so that the blade flap

angle is a function of the azimuth angle and not simply equal to a constant coning

angle.

A further assumption made in the free wake model is that the blade is straight

and has a flap hinge at the axis of rotation. Because in the present study the blades

may be flexible and have hinges not exactly on the axis of rotation, an “equivalent”

blade flap angle needs to be defined, for use in the free wake calculations. This

flap angle β represents the angle between the hub plane and a straight blade hinged

at the axis of rotation that has the same tip flap displacement as the elastic blade.

This is illustrated in Figure 2.9, which shows that the tip flap locations are the same

for the straight and elastic blades. The “equivalent” blade flapping angle is given

by the following equation:

β(ψ) =
wtip(ψ)

R
+ βp (2.35)
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where wtip is the flapping displacement of the elastic blade from the undeformed

preconed blade coordinate system in the flight dynamics model and βp is the blade

precone angle. The blade flapping angle β(ψ) therefore includes contributions from

both the blade precone angle and the elastic deformation of the blade. The calcu-

lation of the tip flap displacement within the flight dynamic model is discussed in

Section 3.2.2.

The transformation from the global wake coordinate system to the free wake ro-

tating blade coordinate system given in Equation (2.27) is now defined by a rotation

by the longitudinal shaft tilt iθ followed by the azimuth angle ψ and the flapping

angle β as follows:

TFG =




cos iθ cosψ cos β
+ sin iθ sin β

sinψ cos β
− sin iθ cosψ cos β

+ cos iθ sin β
− cos iθ sinψ cosψ sin iθ sinψ

− cos iθ cosψ sin β
+ sin iθ cos β

− sinψ sin β
sin iθ cosψ sin β
+ cos iθ cos β




(2.36)

so that: 


iF
jF
kF


 = [TFG]




iG
jG
kG


 (2.37)

For completeness, the transformation from the global fixed to free wake blade

preconed reference frames given in Equation (2.29) is also reformulated as:

TPG =




cos iθ cosψ cos βp
+ sin iθ sin βp

sinψ cos βp
− sin iθ cosψ cos βp

+ cos iθ sin βp
− cos iθ sinψ cosψ sin iθ sinψ

− cos iθ cosψ sin βp
+ sin iθ cos βp

− sinψ sin βp
sin iθ cosψ sin βp
+ cos iθ cos βp




(2.38)

so that: 


iP
jP
kP


 = [TPG]




iG
jG
kG


 (2.39)

It should be mentioned that it is assumed within the free wake model that the

blade does not have lag and torsion degrees of freedom. Thus lag and torsion effects

are not included in these transformations.
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2.3 Main assumptions

The main assumptions made in the formulation of the mathematical model used in

this research are listed below.

1. The undeformed blade is straight with no sweep, droop or torque offsets.

2. The wind velocity is zero.

3. The airframe is a rigid body with a constant mass and a uniform mass distri-

bution; the x-z plane is a plane of symmetry.

4. For the Sikorsky UH-60 configuration the pitch angle of the horizontal stabi-

lizer is fixed for a given flight condition, and the control logic for the automatic

positioning of the stabilizer is not modeled.

5. The fuselage and tail surface aerodynamics are derived from wind tunnel tests

without the main rotor. The aerodynamic coefficients are provided in the

form of look-up tables as functions of angle of attack and sideslip, which are

not necessarily small angles. Stall, compressibility, and unsteady aerodynamic

effects are neglected for the fuselage and tail.

6. For the Eurocopter BO-105 configuration, the blade is cantilevered at the hub

and its feathering axis is preconed by the angle βP .

7. For the Sikorsky UH-60 configuration, the blade is assumed to be rigid in flap,

lag and torsion inboard of the flap and lag hinges.

8. The flap, lag and pitch hinges (when they are present) are coincident.

9. The blade cross sections are symmetric with respect to the major principal

axes.
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10. The lines connecting the blade cross-sectional centers of gravity (CG), aerody-

namic centers (AC), and elastic axes (EA) need not be coincident. The blade

cross-sectional area centroid and elastic axes are coincident, meaning that the

tension center is coincident with the elastic axis.

11. Blade chord, built-in twist, stiffness and mass properties, and cross-sectional

offsets are defined at discrete spanwise stations, and vary linearly in between.

12. The blade is built of an isotropic, linearly elastic material.

13. Bernoulli-Euler beam theory is used, implying that plane cross sections remain

plane and perpendicular to the elastic axis during deformations. The effects

of shear deformation are neglected.

14. The blade undergoes moderate deflections implying small strains and finite

rotations.

15. Structural damping forces are of a viscous type.

16. Without the free wake inflow model, a two-dimensional quasi-steady aerody-

namics model is used to calculate the main rotor aerodynamics loads. The

unsteady aerodynamics of the main rotor is modeled by a dynamic inflow

model. The tip losses due to 3D effects are approximated by considering the

outboard 3% of the blade to be ineffective aerodynamically.

17. The aerodynamic coefficients of the main rotor blade sections are provided in

the form of look-up tables derived from wind tunnel tests. The lift, drag and

moment coefficients are tabulated as a function of angle of attack, for Mach

numbers ranging from 0.3 to 1 in increments of 0.1. The aerodynamic coeffi-

cients vary linearly between angle of attack and Mach number data points.

54



18. The effects of dynamic stall are not included. Static stall is reflected in the

empirical lift, drag and moment coefficients. Below stall the unsteady aero-

dynamic includes circulatory effects and the acceleration type non-circulatory

effects are neglected with the exception of the pitch damping.

19. Aerodynamic forces and moments on the blade section are based on the airflow

velocity at the elastic axis of the blade.

20. All blades are assumed to have identical mass, stiffness, and geometric prop-

erties.

21. The blades rotate at a constant angular speed, Ω. Engine and engine control

system dynamics are neglected.

22. The blade pitch control system, including the actuators, is infinitely stiff.

Freeplay in the control linkages is not modeled. The swashplate and tail rotor

collective control are attached rigidly to the pilot controls.

The following assumptions are made when coupling the free wake model to the

rest of the flight dynamic model:

1. Blade trailed vorticity is characterized by a single vortex released from the

blade elastic axis at the blade tip.

2. The initial tip vortex strength is taken to be a percentage of the maximum

bound circulation along the blade. The percentage value used is determined

empirically. The same value is used at all azimuth angles.

3. Within the free wake model, it is assumed that the blade is rigid and straight

with a single flap hinge at the axis of rotation. An “equivalent” flap angle is

defined as indicated in Section 2.2.5.
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4. The free wake model provides all three spatial components of the induced

velocity in the free wake blade preconed coordinate system (see Section 2.2.4),

however the x and y components are set to zero and only the z component (i.e.,

the component along the zP axis) is used for the calculation of the aerodynamic

loads.

5. For the purpose of calculating all the aerodynamic properties, the bound cir-

culation and blade control points are located at the 1/4-chord station. This

implies that the Weissinger-L model [69], which locates the blade control points

at the 3/4-chord station, is not used.

2.4 Main rotor equations of motion

This section contains a brief description of the mathematical model of the rotor

system. The basic formulation and solution of the equations is unchanged with

respect to previous work (see Section 1.1 for a description of the evolution of the

model), and therefore only the most important modeling features are summarized

here.

The dynamics of the main rotor blades are treated individually in the rotating

frame where equations for each blade are formulated independently, rather than con-

sidering the dynamics of the rotor system as a whole and formulating the equations

in the non-rotating frame. This modeling of individual blades by separate (although

coupled) equations allows for the analysis of rotor systems with dissimilar blades.

So this analysis can model rotor systems where conceivably all of the blades are

tracked differently and thus have different dynamics, or an extreme case where the

blade control is ineffective through the failure of a pitch link. However, for all of

the results in this study, the blades are assumed to be identical and follow the same

56



track.

The main rotor blades are modeled as flexible beams undergoing coupled flap,

lag, torsion, and axial motion. They are attached to a hub that may have large am-

plitude linear and angular motions. The blade equations of motion are nonlinear,

coupled, partial differential equations with periodic coefficients. These equations

are transformed into a system of nonlinear, coupled, ordinary differential equations

using a finite element discretization to eliminate the spatial variable. The discretiza-

tion is based on Galerkin’s method of weighted residuals. The resulting beam finite

element has 15 nodal degrees of freedom, namely: flap and lag bending displace-

ments and slopes at the ends of the element, for a total of 8 degrees of freedom;

torsional rotations at the ends of the element and at the element mid-point; and

axial displacements at four equally spaced nodes within the element, including the

two end points. The aerodynamic, structural, tensile and inertial load vectors are

calculated numerically, using Gaussian integration.

A modal coordinate transformation, is used to reduce the number of degrees of

freedom and consequently the number of equations that describe the dynamics of

each rotor blade. Coupled, rotating blade mode shapes are used in the transforma-

tion. The result is a system of nonlinear, coupled, second order ordinary differential

equations with time-varying coefficients, which is converted to first-order form and

is coupled to the rest of the mathematical model.

This section summarizes the formulation of the main rotor equations of motion.

The derivation of the distributed aerodynamic, inertial, structural, and tension loads

is described first. Next is a description of the finite element modeling procedure

including the degrees of freedom within each element, the calculation of the element

load vectors, and the assembly of the local element properties into a global blade

finite element model. This is followed by a description of the calculation of the blade
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mode shapes, of the modal coordinate transformation, and of the final conversion

to first order form.

2.4.1 Main rotor aerodynamic loads

A key ingredient for the calculation of the aerodynamic forces and moments is the

absolute velocity of a point on the elastic axis of the blade, which is the derivative

with respect to time of the position vector of a point on the elastic axis of the blade

relative to a fixed point. The position vector is given by:

RP = RCG + RH + RB (2.40)

where RCG is the position vector of the body center of gravity with respect to a

fixed point, RH is the position vector of the hub with respect to the center of gravity

and RB is the position vector of the point P , on the elastic axis of the blade, with

respect to the hub.

The position vector of the hub as referenced from the center of gravity, RH , is

given by:

RH = xHiB + yHjB + zHkB (2.41)

where xH , yH and zH are the components of the position vector from the center of

gravity of the body to the hub.

The position vector of the point on the elastic axis as referenced from the hub,

RB, is given by:

RB = ei + (x0 + u)êx + vêy + wêz (2.42)

where e is the offset of the blade flap, lag and pitch hinges (where present) from

the axis of rotation. This also marks the radial location of the blade root, where

the elastic portion of the blade begins; the portion of the blade inboard of the

hinge is assumed to be rigid, but may still produce aerodynamic loads if the actual
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configuration requires it. The quantity x0 is the distance from the blade root (start

of elastic portion) to the point P on the elastic axis of the undeformed section in the

êx direction and u, v and w are the components of the elastic deflections of the point

from the undeformed blade frame. Using the coordinate transformation presented

in Eqn. (2.13), this position vector can be expressed in terms of the undeformed

preconed coordinate system as

RB = (e cos βp + x0 + u)êx + vêy + (w − sin βp)êz (2.43)

where βp is the blade precone angle.

The absolute velocity of the point on the elastic axis is given by:

VP =
dRP

dt
=

dRCG

dt
+

dRH

dt
+

dRB

dt
(2.44)

where

dRH

dt
=

∂RH

∂t
+ ω × RH (2.45)

dRB

dt
=

∂RB

∂t
+ ω × RB (2.46)

where ω is the angular velocity vector of the body and is

ω = piB + qjB + rkB (2.47)

where p, q and r are respectively the roll, pitch and yaw rates.

Because the fuselage is rigid, the derivative ∂RH/∂t is zero. The component

∂RB/∂t is the velocity vector of the point as seen by an observer that moves with

the body-fixed axes. Therefore, it is given by

∂RB

∂t
=

(
∂RB

∂t

)
R

+ Ω × RB (2.48)

where
(
∂RB

∂t

)
R

represents the velocity vector of the point relative to the hub in the

rotating frame and Ω is the angular velocity vector of the main rotor

Ω = ΩkS (2.49)
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where Ω is the rotor speed.

The body components of the velocity are

dRCG

dt
= uiB + vjB + wkB (2.50)

where u, v and w are the linear velocity components in the body-fixed axes system

and should not be confused with the blade elastic deflections in Eqn. 2.43.

The absolute velocity VP (from Eqn. 2.44) is given by:

VP =
dRCG

dt
+

(
∂RB

∂t

)
R

+ Ω × RB + ω × [RH + RB] (2.51)

The total velocity VT of the generic point is given by

VT = VP − VI (2.52)

where VI is the velocity induced at the generic point by the rotor wake. In the

undeformed preconed blade coordinate system, the components of the velocity VP

can be written in the form

VP = V11êx + V12êy + V13êz (2.53)

where êx, êy and êz are the unit vectors of the undeformed preconed blade coordinate

system and V11, V12 and V13 are the velocity components in each of these directions.

The second term in Eqn. (2.52) can similarly be written as

VI = λxêx + λyêy + λzêz (2.54)

where λx, λx and λx are the x, y and z components in the undeformed preconed

blade coordinate system of the induced velocity. With the dynamic inflow model,

only the z component of the induced velocity is available, but with the free wake

inflow model, all three inflow components are available. However in this study only
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the z component of VI will be considered even when the free wake inflow model is

used.

Including only the z component of the induced velocity, the total velocity is

VT = V11êx + V12êy + (V13 − λz)êz (2.55)

= Vxêx + Vyêy + Vzêz (2.56)

where Vx, Vy and Vz are the velocity components in the undeformed preconed blade

coordinate system.

Using the coordinate transformation presented in Eqn. (2.23), which takes into

account the local flap and lag angles of the blade section elastic axis, this total

velocity can be expressed in terms of the airflow velocity components in the blade

sectional aerodynamics coordinate system

VA = UTeT + UPeP + UReR (2.57)

where VA is the resultant velocity of the airflow at the 1/4-chord location. The

UT and UR components follow the usual sign conventions by which UT is positive

for an airflow coming toward the leading edge of the airfoil and UR is positive for

an outboard flow. The component UP is defined as positive for a flow coming from

below.

The yaw angle of the flow γI is shown in Figure 2.10 and is defined in terms of

the velocity components as

γI = cos−1


 |UT |√

U2
T + U2

R


 (2.58)

so that

cos γI =
|UT |√

U2
T + U2

R

(2.59)
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so that cos γI is always a number between 0 and 1. This implies that cos γI is

positive regardless of the sign of the UT component of the flow.

The angle of attack at the blade section αY (also shown in Figure 2.10) is given

by:

αY = tan−1

[
(UT tan θG + UP ) cos γI
UT − UP tan θG cos2 γI

]
(2.60)

where θG is the total geometric pitch of the blade section, defined as

θG = θ0 + θ1c cos(ψ + ∆SP ) + θ1s sin(ψ + ∆SP ) + θTW + φ (2.61)

where ψ is the blade azimuth angle, θTW is the built-in twist, ∆SP is the swashplate

phasing angle and φ is the elastic rotating of the blade section about the elastic axis.

The blade section lift, drag and moment coefficients are obtained from data

look-up tables as a function of the local angle of attack and Mach number, that is

CL = CL(αY ,M) (2.62)

CD = CD(αY ,M) (2.63)

CM = CM(αY ,M) (2.64)

The blade section force and moment calculations are based on two-dimensional

quasi-steady aerodynamics [14]. The basic expressions for the distributed lift L and

pitching moment M are [14]:

L = LQ +
1

2
aρ(bR)2

[
ḧ + V0α̇−

(
xA − 1

2
bR

)
α̈

]
(2.65)

M = LQxA +
1

2
aρ(bR)2

(
xA − 1

2
bR

) [
ḧ−

(
xA − 1

2
bR

)
α̈

]

−1

2
aρV0α̇(bR− xA)(bR)2 −

(
a

16

)
ρ(bR)4α̈ (2.66)

where a is the lift-curve slope, ρ is the air density, b is the non-dimensional semi-

chord length, R is the blade radius, α is the total pitch angle of the blade section
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, h, ḣ and ḧ are the heave displacement, velocity and acceleration respectively, V0

is the oncoming freestream flow, xA is the blade cross-sectional aerodynamic center

offset from the elastic axis (positive for aerodynamic center forward of the elastic

axis). α̇ is the time rate of change of the total blade pitch angle and is

α̇ = θ̇G = −θ1c sin(ψ + ∆SP ) + θ1s cos(ψ + ∆SP ) + φ̇ (2.67)

The quasi-steady lift LQ is given by:

LQ = aρbRV 2
0

[
α +

ḣ

V0

+
α̇

V0

(bR− xA)

]
(2.68)

The acceleration terms ḧ and α̈ in Eqs. (2.65) and (2.66) will be neglected in the

present study. They represent non-circulatory or apparent mass terms, together with

the α̇ term that instead will be retained. With this simplification, the expression

for the quasi-steady lift remains unchanged, whereas the expressions for the total

lift and the aerodynamic pitching moment reduce to

L = LQ +
1

2
aρ(bR)2V0α̇ (2.69)

M = LQxA − 1

2
aρV0α̇(bR− xA)(bR)2 (2.70)

In Eqn. (2.68) the term α + ḣ
V0

represents the angle of attack αY , which is used

in the data tables to obtain the lift coefficient. Thus the current implementation of

the quasi-steady lift equation is

LQ =
1

2
CLρV

2
0 c +

1

2
aρV0c

(
c

2
− xA

)
α̇ (2.71)

=
1

2
ρV 2

0 c
[
CL +

aα̇

V0

(
c

2
− xA

)]
(2.72)

where c is the local blade chord.

The lift equation (Eqn. (2.69)), with the chord c substituted for the semi-chord

b, becomes

L = LQ +
1

8
aρAV0c

2α̇ (2.73)
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The aerodynamic drag is given by:

D = CD
1

2
ρAV

2
0 c (2.74)

where CD is the steady drag coefficient obtained from look-up tables.

The aerodynamic lift L and drag D forces have to be transformed to the local

blade sectional aerodynamics coordinate system. The aerodynamic force compo-

nents are fP in the direction of the eP axis, fT in the direction of the eR axis and

fR in the direction of the eR axis. The transformation of the aerodynamics forces

is given by:

fP =
1

V0

[
L

UT
cos γI

+ DUP

]
(2.75)

fT =
1

V0

[DUT − LUP cos γI ] (2.76)

fR =
1

V0

[
DUR − L

UP cos γIUR
UT

]
(2.77)

For convenience the total pitching moment is separated into three components

as follows:

M = MS + MQ + Mα̇ (2.78)

where MS the a steady component resulting from the steady pitching moment coef-

ficient CM , MQ is the component from Eqn. (2.70) resulting from the quasi-steady

lift and Mα̇ is the component from Eqn. (2.70) that represents the non-circulatory

pitch damping contribution. These components are written as follows:

MS =
1

2
CMρV 2

0 c
2 (2.79)

MQ = fP
LQ
L

xA cos θG + fT
LQ
L

xA sin θG (2.80)

Mα̇ = −1

8
aρV0c

2α̇
(
c

2
− xA

)
(2.81)

where the ratio
LQ

L
is required to scale the force components fP and fT which
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contain the total lift and not just the quasi-steady lift component that is required

in Eqn. (2.80).

The distributed aerodynamic loads are calculated in the undeformed preconed

blade coordinate system by converting the force components in the blade sectional

aerodynamics coordinate system fP , fT and fR using the inverse of the coordinate

transformation matrix presented in Eqn. (2.23). The distributed aerodynamic forces

are

pA = (fP cos ζ sin β − fT sin ζ − fR cos ζ cos β) êx

+ (fP sin ζ sin β + fT cos ζ − fR sin ζ cos β) êy

+ (−fP cos β − fR sin β) êz

= pAxêx + pAyêy + pAzêz (2.82)

The distributed aerodynamic moments are

qA = −M cos ζ cos βêx −M sin ζ cos βêy −M sin βêz

= qAxêx + qAyêy + qAzêz (2.83)

2.4.2 Main rotor inertial loads

In the formulation of the main rotor equations of motion, the distributed loads due

to blade inertia are required. These inertia loads are dependent on the absolute

acceleration of a point on the rotor blade, aP . The inertia forces and moments per

unit span are respectively given by

pI = −
∫
A
ρ(aP + gkI)dA

= pIxêx + pIyêy + pIzêz (2.84)

qI = −
∫
A
ρ

[
(y0ê

′
x + z0ê

′
y) × (aP + gkI)

]
dA

= qIxêx + qIyêy + qIzêz (2.85)
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where ρ is the mass density of the blade, y0 and z0 are the coordinates of the generic

mass point of the cross section A (see Figure 2.6) and gkI is the contribution due to

gravity (kI is the z-component of the inertial coordinate system (see Section 2.2.1)).

The absolute acceleration of the point on the rotor blade (aP in Eqs. (2.84)

and (2.85)) is obtained by taking the second derivative with respect to time of

the position vector of the point. The formulation of the position vector RP for

the calculation of the inertial loads is the same as that in Eqn. (2.40) with some

additions since the point P refers to a general point on the deformed blade section,

whereas for the aerodynamic loads calculations P was on the elastic axis. With

reference to Eqn. (2.42) the position vector of the point with respect to the hub is

represented by

RB = ei + (x0 + u)êx + vêy + wêz+y0ê
′
y + z0ê

′
z (2.86)

where the underlined terms have been added to Eqn. (2.42). Using the coordinate

transformations presented in Eqs. (2.13) and (2.15), this position vector can be

expressed in terms of the undeformed preconed coordinate system as

RB =
[
(e cos βp + u) + x0+S21y0 + S31z0

]
êx +

[
v+S22y0 + S32z0

]
êy +

[
w − sin βP+S23y0 + S33z0

]
êz (2.87)

where the underlined terms are the additions to Eqn. (2.43) for the generic point on

the deformed blade section.

The absolute velocity of the point is the same as that in Eqn. (2.51)

VP =
dRCG

dt
+

(
∂RB

∂t

)
R

+ Ω × RB + ω × [RH + RB] (2.88)

where each of the components are the same as those defined in Section 2.4.1 with

the exception of the RB vector which is defined in Eqn. (2.87).
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The acceleration of the point on the blade relative to a fixed point is

aP =
d2RCG

dt2
+

∂2RB

∂t2
+ 2ω × ∂RB

∂t
+ ω̇ × (RB + RH) +

ω × [ω × (RB + RH)] (2.89)

where

∂2RB

∂t2
=

(
∂2RB

∂t2

)
R

+ Ω̇ × RB + 2Ω ×
(
∂RB

∂t

)
R

+ Ω × (Ω × RB) (2.90)

The body components of the acceleration are

d2RCG

dt2
= u̇iB + v̇jB + ẇkB (2.91)

where u̇, v̇ and ẇ are the linear acceleration components in the body fixed axes

system.

Combining Eqs. (2.48), (2.89) and (2.90) gives the final expression for the abso-

lute acceleration of a point on the blade

aP =
d2RCG

dt2
+ ω̇ × RH + ω × (ω × RH) +

(
∂2RB

∂t2

)
R

+ Ω̇ × RB +

2Ω ×
(
∂RB

∂t

)
R

+ Ω × (Ω × RB) + ω̇ × RB +

2ω ×
[(

∂RB

∂t

)
R

+ Ω × RB

]
+ ω × (ω × RB) (2.92)

The acceleration in Eqn. (2.92) is substituted into Eqs. (2.84) and (2.85) to give

the distributed forces and moments per unit span at the particular blade section.

The expansion of the acceleration terms is further detailed by Turnour [33].

2.4.3 Main rotor structural loads

The structural terms in the main rotor blade equations of motion are derived using

Bernoulli-Euler theory for homogeneous, isotropic beams undergoing deflections in
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flap, lag, torsion, and axial directions. A fully numerical formulation [9] is used:

the mathematical expressions of the various components of the structural model are

not expanded symbolically, but are instead assembled numerically as part of the

solution process. The formulation does not require the use of ordering schemes.

The starting point for the structural model was a theory [68] that was limited to

moderately large deflections because an ordering scheme had to be used to reduce

the mathematical complexity of the model. The numerical implementation of the

same theory used in the present study, however, is not limited to moderately large

deflections because the ordering scheme is no longer used (see Ref. [9] for further

details).

The numerical implementation is based on the fact that the numerical values of

the displacements and of their space and time derivatives are always available as

part of the solution process, as explained in Section 2.4.6. Therefore, they can be

used directly to calculate the numerical values of the structural loads [9].

A set of strain-displacement relations are used to calculate the strain components

within the blade section. The strain components for a point on the blade section

are determined using:

εxx =
1

2
(Gx · Gx − 1) (2.93)

εyy =
1

2
(Gy · Gy − 1) (2.94)

εzz =
1

2
(Gz · Gz − 1) (2.95)

εxy =
1

2
(Gx · Gy) (2.96)

εxz =
1

2
(Gx · Gz) (2.97)

εyz =
1

2
(Gy · Gz) (2.98)

where the vectors Gx, Gy and Gz represent the spatial derivatives of the position
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vector of the generic point on the deformed blade section (Eqn. (2.86)). With the

assumption that the cross-section is rigid, the expressions for Gx, Gy and Gz are:

Gx =
∂RB

∂x
= (1 + u,x)êx + v,xêy + w,xêz +

y0(−κyê
′
x + τ ê′

z) + z0(−κzê
′
x + τ ê′

y) (2.99)

Gy =
∂RB

∂y
= ê′

y (2.100)

Gz =
∂RB

∂z
= ê′

z (2.101)

where κy and κz are the blade curvatures and τ is the elastic twist of the deformed

blade section, and these are given by:

κy = −ê′
x · ê′

y,x = −(S11S21,x + S12S22,x + S13S23,x) (2.102)

κz = −ê′
x · ê′

z,x = −(S11S31,x + S12S32,x + S13S33,x) (2.103)

τ = −ê′
y · ê′

y,x = −(S21S21,x + S22S22,x + S23S23,x) (2.104)

where the S operators are given in Eqn. (2.15).

The stress-strain relationship is given by:




σxx
σyy
σzz
σxy
σxz
σyz




= [Q]




εxx
εyy
εzz
εxy
εxz
εyz




(2.105)

where for a linear elastic and isotropic material

[Q] =




E 0 0 0 0 0
0 E 0 0 0 0
0 0 E 0 0 0
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G




(2.106)

where E is Young’s Modulus and G is the shear modulus of the material.
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The final ingredient is the stress-force relationship that produces the structural

forces and moments at the blade section. The stress-force relationship is

F = T ê′
x + Vyê

′
y + Vzê

′
z =

∫ ∫
A
tdA (2.107)

M = Mxê
′
x + Myê

′
y + Mzê

′
z =

∫ ∫
A
d × tdA (2.108)

where

d = y0ê
′
y + z0êz (2.109)

t = σxxê
′
x + τxyê

′
y + τxzê

′
y (2.110)

Because the equations of motion are written in the undeformed preconed blade

coordinate system, the structural operators required to calculate the structural nodal

loads, Eqn. (2.154), need to be transformed to that coordinate system. The resulting

structural operators associated with the lag, flap and torsion equations of motion

are given by:

pSy = [Mz,x + S13,xMx + (S23,x − S13S21,x)My − S32My,x],x (2.111)

pSz = [My,x + S12,xMx + (S32,x − S12S31,x)Mz − S23Mz,x],x (2.112)

qSx = Mx,x + (S21,x + S13S23,x)My + (S31,x + S12S32,x)Mz (2.113)

The vector of nodal structural loads (Eqn. (2.154)) requires the derivatives of

the structural operators with respect to the spanwise coordinate. The required

operators are:

pIISy = Mz − S32My (2.114)

pIISz = −(My − S23Mz) (2.115)

pISy = −S13,xMx − (S23,x − S13S21,x)My − S32,xMy (2.116)

pISz = S12,xMx + (S32,x − S12S31,x)My + S23,xMy (2.117)

qISx = Mx (2.118)
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where the superscripts ( )I and ( )II indicate that the structural load contributions

to the modal loads are expressed as operators on the first and second derivatives

respectively with respect to the spanwise coordinate of the mode shape.

2.4.4 Lag damper loads

A mechanical damper, if present, is modeled by introducing viscous damping into

the blade motion at the blade root in the lag direction. The viscous damping model

has a non-linear force-velocity relationship that is implemented through the use of

look-up tables [3]. The lag damper is considered to produce a pure moment at the

root of the blade (hinge). The moment MD generated by the damper is given by:

MD = MDxêx + MDyêy + MDzêz (2.119)

The details of the implementation of the lag damper model as coupled to the

fully numerical blade elastic model are provided in Ref. [33].

2.4.5 Tension-induced loads

The tension in the blade, primarily from centrifugal loads, contributes to two types of

blade loads. The first type of loads are the tension contributes to the axial dynamics

of the blade. However since the current study does not include axial degrees of

freedom, axial dynamics are not considered. The second are pure bending moments

that originate from the curvature of the blade in combination with the axial tension.

This effective stiffening is included in this study, and the associated loads will be

termed “tension-induced loads”.

The tension-induced loads must be calculated after all of the other distributed

loads since the blade tension is dependent on the aerodynamic, inertial and struc-

tural loads. The calculation of the tension-induced distributed loads is started at

the blade tip where the axial tension is zero and proceeds inboard to the blade root.
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The tension-induced loads are calculated based on the equations of equilibrium

of a deformed rod [68]:

P IT = TS12êy + TS13êz

= pITyêy + pITzêz (2.120)

where S12 and S13 are elements of transformation matrix from undeformed to de-

formed coordinates (Eqn. (2.15)), T is the tension load at the particular blade sec-

tion, and the superscript ( )I indicates that the tension-induced loads contribution

to the modal loads is expressed as an operator on the first derivative with respect

to spanwise coordinate of the mode shape.

2.4.6 Finite element analysis

A finite element analysis is used to convert the governing partial differential equa-

tions of motion of the blade to ordinary differential equations, by eliminating the

spanwise variable. The finite element representation is based on the Galerkin method

of weighted residuals [70].

Figure 2.11 illustrates the nodal degrees of freedom in each element. The total

number of degrees of freedom is 11: displacements and slopes in flap and lag bending

at the two end points of the element, for a total of 8 degrees of freedom; and torsional

rotations at the two ends of the element and at a mid-element point. In Figure 2.11,

φ, v and w denote respectively the torsion, lag and flap degrees of freedom. It

should be noted that the study of Turnour [33] also included four degrees of freedom

representing the displacements in the axial direction. However in this study axial

dynamics are not considered.

The lag degrees of freedom are represented as

yv = { v0 vx,0 v1 vx,1}T (2.121)
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where v0 and vx,0 are the lag displacement and rotation at the inboard end and v1

and vx,1 are the lag displacement and rotation at the outboard end. Similarly for

the flap degrees of freedom

yw = { w0 wx,0 w1 wx,1}T (2.122)

and for torsion

yφ =
{
φ0 φ 1

2
φ1

}T
(2.123)

where φ0 is the torsional rotation at the inboard end, φ 1
2

is the twist at the center

of the element and φ1 at the outboard end. The vector of degrees of freedom for a

single element (the i-th element) is arranged as:

yi =




y
yw
yφ


 (2.124)

The elemental degrees of freedom are combined into global degrees of freedom as

shown in Figure 2.12, which also shows the blade discretized into four finite elements.

With the eleven degree of freedom elements used, the total number of degrees of

freedom for the blade, Ny, is 5 + 6Ne where Ne is the number of finite elements

used. With the application of the root constraints, the number of actual degrees

of freedom is reduced. For an articulated rotor, Ny is reduced by three with the

flap, lag and torsional displacements being zero at the inboard end. For a hingeless

rotor, Ny is reduced by five with the flap and lag rotations being zero as well as the

flap, lag and torsional displacements being zero at the inboard end. It should be

noted that this formulation does not require equal-sized elements, but just that the

elements form a continuous beam so that compatibility at the element boundaries

is retained.

The degrees of freedom are contained in the vector, yn, which is ordered as
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follows:

yn =


 vn

wn

φn


 (2.125)

where

vn =




v0

v0,x

v1

v1,x
...

vNe

vNe,x




(2.126)

wn =




w0

w0,x

w1

w1,x
...

wNe

wNe,x




(2.127)

φn =




φ0

φ1
...

φ2Ne


 (2.128)

The displacements and blade twist at any point in the element can be calculated

from the nodal degrees of freedom using Hermite interpolation polynomials. For

flap and lag the polynomials, or shape functions, are

Hv(xe) = Hw(xe) =




1 − 3η2 + 2η3

η(1 − 2η + η2)l
3η2 − 2η3

η(−η + η2)l




T

(2.129)

where l is the length of the element and η = xe/l with xe being the distance from

the inboard end of the element. Thus η = 0 represents the inboard end and η = 1

represents the outboard end of the element.
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The shape functions for torsion are

Hφ(xe) =




1 − 3η + 2η2

4η − 4η2

−η + 2η2




T

(2.130)

Therefore, the flap, lag and torsion deflections at any point inside the element

are given by

v(xe) = Hv(xe)yv(t) (2.131)

w(xe) = Hw(xe)yw(t) (2.132)

φ(xe) = Hφ(xe)yφ(t) (2.133)

Using this formulation, the derivatives of the displacements with respect to span-

wise location and time are easily found. This results from the fact that the shape

functions are only a function of spanwise coordinates and the nodal displacement

quantities are only a function of time. Therefore, the derivative with respect to

the spanwise coordinate requires the differentiation of the shape function only and

the derivative with respect to time requires the differentiation of nodal degrees of

freedom only.

The derivatives of the Hermite polynomials with respect to spanwise coordinates

are

Hv,x(xe) = Hw,x(xe) =
1

l




−6η + 6η2

(1 − 4η + 3η2)l
6η − 6η2

(−2η + 3η2)l




T

(2.134)

Hv,xx(xe) = Hw,xx(xe) =
1

l2




−6 + 12η
(−4 + 6η)l

6 − 12η
(−2 + 6η)l




T

(2.135)

and those with respect to the torsional shape functions are

Hφ,x(xe) =
1

l




−3 + 4η
4η − 8η
−1 + 4η




T

(2.136)
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Using these expressions, the derivatives of the displacement quantities with re-

spect to spanwise distance are

v,x(xe) = Hv,x(xe)yv(t) (2.137)

v,xx(xe) = Hv,xx(xe)yv(t) (2.138)

w,x(xe) = Hw,x(xe)yw(t) (2.139)

w,xx(xe) = Hw,xx(xe)yw(t) (2.140)

φ,x(xe) = Hφ,x(xe)yφ(t) (2.141)

Similarly, the derivatives of the displacements with respect to time are

v̇(xe) = Hv(xe)ẏv(t) (2.142)

v̈(xe) = Hv(xe)ÿv(t) (2.143)

ẇ(xe) = Hw(xe)ẏw(t) (2.144)

ẅ(xe) = Hw(xe)ÿw(t) (2.145)

φ̇(xe) = Hφ(xe)ẏφ(t) (2.146)

φ̈(xe) = Hφ(xe)ÿφ(t) (2.147)

The displacements and derivatives are used in the calculation of the distributed

aerodynamic, inertial, tensile and structural loads for the blade, as well as the

moment from the lag damper. So, the distributed blade loading can be calculated

at any point along the span of the blade.

The distributed nodal loads are calculated using the displacement quantities.

The formulation is based on the Galerkin finite element method [70]. The element

inertia load vector is calculated using

pIi =
∫ li

0




pIyHv (xe)
pIzHw (xe)
qIxHφ (xe)


 dx (2.148)
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where pIy, pIz and qIx are components of the distributed inertial loads pI and pI are

defined in Eqs. (2.84) and (2.85) in Section 2.4.2. The vector of distributed nodal

loads for the i-th element is arranged as follows:

pIi =




pIiv

pIiw

pIiφ


 (2.149)

where pIiv , pIiw and pIiφ are the nodal load vectors for the elemental lag, flap and

torsional degrees of freedom respectively. The individual nodal load vector for the

lag loads is arranged as follows:

pIiv =
∫ li

0
pIyHv (xe) dx =




pIv0

pIv0,x

pIv1

pIv1,x


 (2.150)

where pIv0 and pIv0,x are the lag force and moment at the inboard end of the element

and pIv1 and pIv1,x are the lag force and moment at the outboard end of the element.

Similarly, for the flap nodal loads

pIiw =
∫ li

0
pIzHw (xe) dx =




pIw0

pIw0,x

pIw1

pIw1,x


 (2.151)

and for torsion

pIiφ =
∫ li

0
qIxHφ (xe) dx =




pIφ0

pIφ 1
2

pIφ1


 (2.152)

where pIφ0 is the torsional load at the inboard end, pIφ 1
2

is the torsional load the the

center of the element and pIφ1 at the outboard end.

The aerodynamic nodal loads, pA, associated with the ith element are calculated

using

pAi =
∫ li

0




pAyHv (xe)
pAzHw (xe)
qAxHφ (xe)


 dx (2.153)
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where pAy, pAz and qAx are the components of the blade section aerodynamic loads

pA and qA in the undeformed blade rotating coordinate system. This system is

used since it is the system in which the main rotor equations of motion are to

be represented. The distributed aerodynamic loads were defined in Eqs. (2.82)

and (2.83) in Section 2.4.1. The arrangement of the elements of the aerodynamic

elemental load vector is similar to that of the inertial load vector (Eqs. (2.149)-

(2.152)).

The structural nodal load vector for the i-th element is given as

pSi =
∫ li

0




pISyHv,x (xe) + pIISyHv,xx (xe)

pISzHw,x (xe) + pIISzHw,xx (xe)

qSxHφ (xe) + qISxHφ,x (xe)



dx (2.154)

where the structural operators pISy, pIISy, pISz, pIISz, qSx and qISx are defined in the

undeformed blade coordinate system according to Eqs. (2.113) through (2.118) in

Section 2.4.3. The arrangement of the elements of the structural elemental load

vector is similar to that of the inertial load vector (Eqs. (2.149)-(2.152)).

Finally the tension load vector for the i-th finite element is given by:

pTi =
∫ li

0




pITyHv,x (xe)
pITzHw,x (xe)

0


 dx (2.155)

where the distributed tension-induced loads are defined in Eqn. (2.120) in Sec-

tion 2.4.5. The arrangement of the elements of the tension-induced elemental load

vector is similar to that of the inertial load vector (Eqs. (2.149)-(2.152)).

The integration of the distributed loads to obtain the nodal load vectors for each

element is performed numerically using an 8-point Gaussian integration formula.

Thus the total number of Gauss points for the blade is 8Ne, and once the blade is

separated into Ne elements, the Gauss points do not change. This is an important
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point to consider when the flight dynamics model is coupled to the free wake model,

as the spanwise distribution of the Gauss points must be known and held fixed

throughout the analysis.

The final contribution to the elemental nodal load vector is associated with

the moments produced by the lag damper. The lag damper applies a concentrated

moment, MD, to the inboard end of the inboard-most element. These root moments

are applied directly to the nodal load vector in the undeformed blade coordinate

system

pD1 = { 0 MDy 0 0 0 MDz 0 0 MDx 0 0 }T (2.156)

where the subscript ( )1 applied to the nodal load vector indicates that this is for the

inboard most element only. The quantities MDx, MDy and MDz are the components

of the lag damper moment (Eqn. (2.119)).

2.4.7 Blade mode shapes

A modal coordinate transformation, which is based on a set of blade mode shapes,

is performed to reduce the number of rotor degrees of freedom. This set of blade

mode shapes and corresponding natural frequencies is calculated using the rotating

blade in a vacuum with no damping. The problem of finding the mode shapes and

natural frequencies is written as

[M ] ÿn + [K]yn = 0 (2.157)

where [M ] is the linear portion of the mass matrix, [K] is the linear portion of

the stiffness matrix and yn is the vector of nodal displacements from the finite

element model. The mass and stiffness matrices must be calculated using a finite

difference approximation as the mass and stiffness matrices are non-linear and are

never built explicitly. In fact the inertial, structural and tension loads are non-
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linear functions of the blade displacements and their implementation is based on a

numerical formulation.

The calculation of the linear portion of the mass matrix is obtained from the

inertial loads acting on the blade. The vector of nodal inertial loads acting on the

blade is ordered as follows:

pI =




pIv

pIw

pIφ


 (2.158)

where

pIv =




pIv1

pIv1,x

pIv2

pIv2,x

...
pIvNe+1

pIvNe+1,x




(2.159)

pIw =




pIw1

pIw1,x

pIw2

pIw2,x

...
pIwNe+1

pIwNe+1,x




(2.160)

pIφ =




pIφ1

pIφ2

...
pIφ2Ne+1




(2.161)

The i-th column of the mass matrix is obtained by perturbing the i-th compo-

nent of the nodal acceleration vector of each displacement, with all of the other

accelerations held to zero. If the blade inertial load vector (Eqn. (2.158)) is repre-

sented symbolically as pI(ÿn, ẏn,yn) then the calculation of the i-th column of the

mass matrix can be written as

Mi =
pI(ÿi,0,0) − pI(0,0,0)

δ
(2.162)
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where ÿi = δei, δ is the perturbation size and ei is a vector that contains a one in

the i-th element and zero in all other elements. The entire mass matrix is obtained

column by column by perturbing each successive element of the nodal acceleration

vector.

The stiffness matrix is obtained from a combination of the structural, inertial and

tension contributions. The nodal load vectors for the structural and tension-induced

loads are calculated in the same way as the inertial nodal load vector (Eqn. (2.158)-

(2.161)). The i-th column of the stiffness matrix is obtained by perturbing the i-th

component of the nodal displacement vector which is represented as

Ki =
pI(0,0,yi) − pI(0,0,0)

δ
+

pS(0,0,yi) − pS(0,0,0)

δ
+

pT(0,0,yi) − pT(0,0,0)

δ
(2.163)

The blade mode shapes are calculated by solving the eigen equation

ω2 [M ] ȳn + [K] ȳn = 0 (2.164)

where ȳn are the eigenvectors which form the columns of the modal transformation

matrix, [V ].

The square roots of the eigenvalues are the natural frequencies of vibration ω,

with the i-th element of ω being the natural frequency of the i-th mode described

by the i-th eigenvector.

In looking at the eigenvectors, in all but a few cases, it is generally seen that

there is a combination of flap, lag and torsion in the mode shape itself, indicating

the coupled nature of the flexible blade modes. It is customary to define each mode

depending on the dominant tip response, whether in the flap, lag or torsional degrees

of freedom. Thus a mode where wtip is the largest component of the mode shape
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is identified as a ‘flap’ mode; if vtip is largest, then the mode is identified as a ‘lag’

mode; and if φtip is largest then the mode is identified as a ‘torsion’ mode.

These definitions are not strict because, all of the blade modes are usually coupled

and can contain flap, lag and torsional components. The exceptions to this are the

lowest frequency flap and lag modes of an articulated rotor, which are rigid body

modes, and have a linear spanwise distribution of displacements in the corresponding

degree of freedom.

The mode shapes are scaled so that the tip deflection of the dominating displace-

ment quantity is equal to 1. Using this scheme, the RMS value of the tip deflection

will always be greater than or equal to 1

(
w2
tip + v2

tip + φ2
tip

) 1
2 ≥ 1 (2.165)

2.4.8 Modal coordinate transformation

The number of nodal degrees of freedom representing the blade motion is ND =

5+6Ne, which results in ND second order, non-linear ordinary differential equations

representing the dynamics of each rotor blade.

To reduce the number of degrees of freedom and equations a modal coordinate

transformation is used. The vector of finite element degrees of freedom, yn, defined

in Eqn. (2.125) is written as the product of a modal coordinate transformation

matrix [V ] and a vector of modal coefficients, q, as

yn = [V ]q (2.166)

The columns of [V ] contain normal modes of the blade. Therefore, if Nm modes

are used in the modal coordinate transformation, the matrix [V ] had ND rows and

Nm columns, usually with Nm 
 ND. The vector q becomes the vector of blade

generalized coordinates for the problem.
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It should be mentioned that, with the exception of the calculation of the main

rotor blade mode shapes, the vector of the finite element degrees of freedom yn is

not built explicitly. Instead the degrees of freedom for each element are extracted

in turn, as follows:

yi = [Vi]q (2.167)

where yi contains the degrees of freedom of the i-th element (Eqn. (2.124)) and [Vi]

is the portion of the [V ] matrix corresponding to the i-th element.

The nodal load vectors for each element, defined in Eqs. (2.148) and (2.153)

through (2.156) are transformed into modal load vectors using the same modal

coordinate transformation used to reduce the number of degrees of freedom. The

transformation of the individual elemental nodal load vectors to modal loads vectors

is as follows

FA =
Ne∑
i=1

[Vi]
T pAi (2.168)

FI =
Ne∑
i=1

[Vi]
T pIi (2.169)

FS =
Ne∑
i=1

[Vi]
T pSi (2.170)

FT =
Ne∑
i=1

[Vi]
T pTi (2.171)

FD =
Ne∑
i=1

[Vi]
T pDi (2.172)

This transformation of the load vectors leads to the governing equations repre-

senting the blade dynamics. These ordinary differential equations are represented

as

0 = FA + FI + FS + FT + FD (2.173)

where the total number of modal equations is obtained by multiplying the number of
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blades, Nb, by the number of mode shapes in the modal coordinate transformation,

Nm.

2.5 Fuselage equations of motion

The non-linear equations of motion of the fuselage are formulated in the body fixed

coordinate system. The assumption is made that the aircraft body is rigid. The

three force and moment equilibrium equations are written as follows:

X
R

m0

= mu̇ + m(qw − rv) + mg sin θF (2.174)

Y
R

m0

= mv̇ + m(ru− pw) −mg cos θF sinφF (2.175)

Z
R

m0

= mẇ + m(pv − qu) −mg cos θF cosφF (2.176)

L
R3

m0

= Ixxṗ− Ixy q̇ − Ixz ṙ − Iyz(q
2 − r2) − Ixzpq + Ixypr

−(Iyy − Izz)qr (2.177)

M
R3

m0

= Iyy q̇ − Ixyṗ− Iyz ṙ − Ixz(r
2 − p2) − Ixyqr + Iyzpq

−(Izz − Ixx)pr (2.178)

N
R3

m0

= Izz ṙ − Ixzṗ− Iyz q̇ − Ixy(p
2 − q2) − Iyzpr + Ixzqr

−(Ixx − Iyy)pq (2.179)

The terms on the left hand side of Eqs. (2.174)-(2.179) are the externally applied

loads at the center of gravity of the body. These terms would include contributions

from the main and tail rotors, as well as aerodynamic loads applied directly to the

fuselage. The terms on the right hand side represent the rigid body motion of the

fuselage in response to the applied loading.

The mass and inertia terms are non-dimensionalized with respect to the main
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rotor radius and a reference blade mass, as follows:

m =
mR

m0

(2.180)

Ixx = Ixx
R3

m0

(2.181)

where m0 is a reference mass per unit length of the blade and R is the main rotor

radius. The mass m and inertia Ixx quantities include the entire helicopter with

the exception of the main rotor blades which are included as the gkI terms in the

equations for the main rotor inertial loads (Eqs. (2.84) and (2.85)). These main rotor

mass and inertia loads are dependent on the linear and angular accelerations of the

body and are taken into account in the left hand side of the Eqs. (2.174)-(2.179) as

applied forces and moments to the center of gravity of the body.

The applied forces and moments are the sum of contributions from the main

rotor, tail rotor, fuselage and empennage and are written as follows:

X = XMR + XTR + XF + XV + XH (2.182)

Y = YMR + YTR + YF + YV + YH (2.183)

Z = ZMR + ZTR + ZF + ZV + ZH (2.184)

L = LMR + LTR + LF + LV + LH (2.185)

M = MMR + MTR + MF + MV + MH (2.186)

N = NMR + NTR + NF + NV + NH (2.187)

where the subscript MR denotes the main rotor, TR the tail rotor, F the fuselage,

H and V the horizontal and vertical tail loads.

Another three equations are obtained from the relationship between the aircraft

rates and Euler angles. There equations are as follows:

φ̇F = p + q tan θF sinφF + r tan θF cosψF (2.188)
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θ̇F = q cosφF − r sinφF (2.189)

ψ̇F = r
cosψF
cos θF

+ q
sinφF
cos θF

(2.190)

The components of the external forces and moments applied to the center of

gravity of the body are now treated in turn.

2.5.1 Main rotor loads

The contributions to the fuselage loads from the main rotor are of inertial and

aerodynamic origin. The distributed aerodynamic and inertial loads are integrated

along the span of the span of the blade to obtain the loads at the hub for a hingeless

rotor, or at the hinge for an articulated rotor. Since the equations of motion of the

main rotor blades are formulated in the undeformed preconed coordinate system

(Section 2.2.3), the integrated loads are also formulated in this reference frame.

These forces and moments are given by

FR =
∫ 1

e
(pA + pI)dx0 (2.191)

MR =
∫ 1

e
RC × (pA + pI)dx0 + MD (2.192)

where pA, pI and MD are defined by Eqs. (2.82), (2.84) and (2.119), respectively.

These loads are in the rotating frame at the hinge for an articulated rotor, or at the

axis of rotation for a hingeless rotor (in this case the hinge offset e is zero). Also RC

is the position vector of the deflected elastic axis from the hub in the undeformed

preconed coordinate system, and is given by:

RC = x0êx + uê′
x + vê′

y + wê′
z (2.193)

The main rotor loads have to be converted to equivalent loads at the center of

gravity of the body in the body fixed axes system (xB, yB, zB). This transformation
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depends on the rotor type because no flap and lag moments are transferred through

the hinge for an articulated rotor configuration.

For a hingeless rotor configuration, the main rotor forces resolved at the center

of gravity of the body for a single blade are given by:

FMR =




XMR

YMR
ZMR


 = [TSB]−1[TRS]

−1[TPR]−1




∫ 1
0 (pAx + pIx)dx0∫ 1
0 (pAy + pIy)dx0∫ 1
0 (pAz + pIz)dx0


 (2.194)

where distributed aerodynamic and inertial load components are given in Eqs. (2.82)

and (2.84) respectively; [TPR]−1 transforms the loads from the preconed to non-

preconed coordinate systems (Eqn. (2.13)); [TRS]
−1 transforms from the rotating to

non-rotating reference frames (Eqn. (2.11)); and finally [TSB]−1 transforms from the

shaft to body fixed axes systems (Eqn. (2.9)).

The moment vector from the main rotor loads resolved at the center of gravity

of the body for a single blade is given by:

MMR =




LMR
MMR

NMR


 = [TSB]−1[TRS]

−1[TPR]−1




∫ 1
0 (qAx + qIx)dx0 + MDx∫ 1
0 (qAy + qIy)dx0 + MDy∫ 1
0 (qAz + qIz)dx0 + MDz




+ [TSB]−1[TRS]
−1[TPR]−1

{∫ 1

0
RC × (pA + pI) dx0

}
(2.195)

+ RH × FMR

where the distributed aerodynamic and inertial loads are given in Eqs. (2.83) and

(2.85) and the lag damper moments are given in Eqn. (2.119) and RH is the position

vector of the hub relative the center of gravity of the body (Eqn. (2.41)).

For an articulated rotor configuration, there are no aerodynamic or inertial blade

moments in the flap and lag directions are transferred through the hinge. The forces

generated by the rotor are obtained by integrating the aerodynamic and inertial

distributed loads over the elastic portion of the blade and. For a single rotor blade,
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it is

FMR =




XMR

YMR
ZMR


 = [TSB]−1[TRS]

−1[TPR]−1




∫ 1
e (pAx + pIx)dx0∫ 1
e (pAy + pIy)dx0∫ 1
e (pAz + pIz)dx0


 (2.196)

The moment vector from the main rotor loads resolved at the center of gravity

of the body, for a single blade, is

MMR =




LMR
MMR

NMR


 = [TSB]−1[TRS]

−1[TPR]−1




MDx

MDy∫ 1
0 (qAz + qIz)dx0 + MDz




+ [TSB]−1[TRS]
−1[TPR]−1 {RC × FR} (2.197)

+ RH × FMR

where the first term indicates that all of the lag damper moments but only the

pitching moments of the distributed inertial and aerodynamic loads are transferred

through the hinge. The second term transforms the forces at the blade hinge into

moments at the hub by considering the position vector from the hub to the hinge

in the rotating frame, RC , where RC is

RC = eêx (2.198)

The final term in Eqn. (2.197) transforms the forces at the hub into moments at

the center of gravity of the body; the moment arm is the distance RH of the hub

from the aircraft center of gravity (Eqn. (2.41)).

2.5.2 Fuselage aerodynamic loads

The forces and moments acting directly on the fuselage are of aerodynamic origin

and are obtained from non-linear data tables of aerodynamic coefficients. These

aerodynamic loads are based on the freestream velocity at the fuselage aerodynamic

reference point, with a correction factor to take into account interference of the main
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rotor

uF = uB + yfrB − zfqB + uinf
(2.199)

vF = vB + zfpB − xfrB + vinf
(2.200)

wF = wB + xfqB − yfpB + winf
(2.201)

where xf , yf and zf are the components of the position vector from the center of

gravity of the body to the aerodynamic reference point of the fuselage; uinf
, uinf

and uinf
are the interference velocities that are based on the main rotor downwash,

tip speed and wake skew angle, and are based on experimental results. These inter-

ference components are only used for the UH-60A and not for the BO-105.

For the UH-60A

uinf
= v0νxwf

(β1c, χ) (2.202)

vinf
= 0 (2.203)

winf
= v0νzwf

(β1c, χ) (2.204)

where β1c is the longitudinal tilt of the tip path plane, given in Eqn. (2.18); v0 is

the main rotor downwash; and χ is the rotor wake skew angle, given by

χ = tan−1 uS
|v0 − wS|

+ β1c (2.205)

where uS and wS are the freestream velocity components taken in the shaft fixed

coordinate system. The functions νxwf
(β1c, χ) and νzwf

(β1c, χ) are provided in the

form of look-up tables.

The angles of attack and sideslip of the fuselage are

αF = tan−1 wF
|uF |

(2.206)

βF = tan−1 vF√
v2
F + w2

F

(2.207)
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where αF is defined as positive nose up and βF is defined as positive nose right.

The dynamic pressure is

q̄F =
1

2
ρ
R2

m0

(u2
F + v2

F + w2
F ) (2.208)

The representation of the fuselage aerodynamic data for the BO-105 and UH-60A

differ in that the UH-60A data used in the present study were provided in the wind

axes system while the BO-105 data were provided in the body fixed axes system.

For the UH-60A, non-linear fuselage aerodynamic coefficients are defined in the

wind-axes system

CDf = CDαf (αF ) + CDβf (βF ) (2.209)

CY f = CY f (|βF |) (2.210)

CLf = CLαf (αF ) + CLβf (−βF ) (2.211)

CRf = − βF
|βF |

CRf (|βF |) (2.212)

CMf = CMαf (αF ) − βF
|βF |

CMf (|βF |) (2.213)

CNf = CNf (−βF ) (2.214)

The non-dimensional fuselage aerodynamic loads in the wind axes system are

FwF = −q̄FCDf iF − q̄FCY f jF − q̄FCLfkF (2.215)

MwF = q̄FCRf iF − q̄FCMf jF + q̄FCNfkF (2.216)

The transformation of the loads from the wind axes system to the body axes

system is made by considering the angles of attack and sideslip at the aerodynamic

reference point of the fuselage. The transformation is similar to the transformation

from wind axes system to body fixed system (Eqn. (2.7)) and is

TFB =




cosαF cos βF cosαF sin βF − sinαF
sin βF cos βF

sinαF cos βF − sinαF sin βF cosαF


 (2.217)
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so that 


iB
jB
kB


 = [TFB]−1




iF
jF
kF


 (2.218)

The forces and moments due to the fuselage aerodynamics, resolved at the center

of gravity of the body, are:

FF =




XF

YF
ZF


 = [TFB]−1FwF = [TFB]−1




−q̄FCDf
−q̄FCY f
−q̄FCLf


 (2.219)

and

MF =




LF
MF

NF


 = [TFB]−1MwF + xF × FF (2.220)

where xF is the position vector of the fuselage aerodynamic reference point from

the center of gravity of the body

xF = xf iB + yf jB + zfkB (2.221)

For the BO-105 the non-linear fuselage aerodynamic coefficients are represented

in the body fixed axes system and are functions of the angles of attack and sideslip

at the aerodynamic reference point:

CXf = CXf (αF , βF ) (2.222)

CY f = CY f (αF , βF ) (2.223)

CZf = CZf (αF , βF ) (2.224)

CLf = CLf (αF , βF ) (2.225)

CMf = CMf (αF , βF ) (2.226)

CNf = CNf (αF , βF ) (2.227)

The non-dimensional aerodynamic forces at the center of gravity in the body

axes system are:

FF =




XF

YF
ZF


 =




q̄FCXf
q̄FCY f
q̄FCZf


 (2.228)
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The fuselage aerodynamic moment vector is

MF =




LF
MF

NF


 =




q̄FCLf
q̄FCMf
q̄FCNf


 + xF × FF (2.229)

where xF is given by Eqn. (2.221).

2.5.3 Empennage aerodynamic loads

The load contributions from the empennage are the result of aerodynamic loads

acting on the horizontal and vertical tail surfaces. The loads are based on the

resultant velocities at the horizontal and vertical tail aerodynamic reference points:

uH = KHuB + xH × ω + uinH
(2.230)

uV = KV uB + xV × ω + uinV
(2.231)

where KH and KV are empirical factors that define the extent of the dynamic

pressure losses at the horizontal and vertical tails respectively; xH × ω and xV × ω

are the velocity components due to the rotation of the body; uinH
and uinV

are the

interference velocity components due to the presence of the main rotor and fuselage,

based on wind tunnel test data and are defined for the UH-60A only. For the BO-105

the interference velocities are assumed to be zero.

For the UH-60A, the interference velocities are non-linear functions of the main

rotor downwash, tip speed and rotor wake skew angle:

uinH
= v0νxwH(β1c, χ)iH + v0νzwH(β1c, χ)kH (2.232)

uinV
= v0νxwV (β1c, χ)iV + v0νzwV (β1c, χ)kV (2.233)

where v0, β1c and χ are defined in the same way as the quantities in Section 2.5.2,

that is v0 is the main rotor downwash, β1c is the longitudinal tilt of the tip path
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plane and χ is the rotor wake skew angle. The functions νxwH(β1c, χ), νzwH(β1c, χ),

νxwV (β1c, χ) and νzwV (β1c, χ) are provided in the form of look-up tables.

The dynamic pressures at the tail surfaces are

q̄H =
1

2
ρ
R2

m0

(u2
H + v2

H + w2
H) (2.234)

q̄V =
1

2
ρ
R2

m0

(u2
V + v2

V + w2
V ) (2.235)

The angles of attack and sideslip at the tail surfaces are given by:

αH = tan−1 wH
|uH |

+ θ0H (2.236)

βH = tan−1 vH√
v2
H + w2

H

(2.237)

αV = tan−1 wV
|uV |

(2.238)

βV = tan−1 vV√
v2
V + w2

V

(2.239)

where the angles of attack are defined as positive nose up, the angle of sideslip are

defined as positive nose right and θ0H is the variable pitch angle of the horizontal

tail, for the UH-60A only, that is adjusted by the flight control system as a function

of the flight speed.

The aerodynamic loads acting on the empennage of the UH-60A and BO-105

are calculated differently: as the UH-60A aerodynamic coefficients are defined in

the local wind axes system, while the BO-105 aerodynamic coefficients are defined

in the body axes system.

For the UH-60A, the lift and drag aerodynamic coefficients at the tail surfaces

are given by:

CLH = CLH(αH) (2.240)

CDH = CDH(|αH |) (2.241)
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CLV = CLV (βV ) (2.242)

CDV = CDV (|βV |) (2.243)

The aerodynamic loads in the local wind axes systems of the horizontal and

vertical tails are:

FwH = −CDH q̄HSHiH − CLH q̄HSHkH (2.244)

FwV = −CDV q̄V SV iV + CLV q̄V SV jV (2.245)

where SH and SV are the surface areas of the horizontal and vertical tails respec-

tively.

These forces are converted from the local wind axes system of the horizontal (iH,

jH, kH) and vertical (iV, jV, kV) tails to the body fixed system using transformations

similar to Eqn. (2.217). The transformation from horizontal tail wind axes system

to the body fixed system is

THB =


 cos(αH − θ0H) cos βH cos(αH − θ0H) sin βH − sin(αH − θ0H)

sin βH − cos βH 0
sin(αH − θ0H) cos βH sin(αH − θ0H) sin βH cos(αH − θ0H)


 (2.246)

so that: 


iB
jB
kB


 = [THB]−1




iH
jH
kH


 (2.247)

The aerodynamic forces and moments of the horizontal tail, resolved at the center

of gravity of the body are given by

FH =




XH

YH
ZH


 = [THB]−1FwH (2.248)

and

MH =




LH
MH

NH


 = xH × FH (2.249)
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where xH is the position vector of the horizontal tail aerodynamic reference point

with respect to the center of gravity of the body

xH = xHiB + yHjB + zHkB (2.250)

For the vertical tail

TVB =


 cosαV cos βV cosαV sin βV − sinαV

sin βV − cos βV 0
sinαV cos βV sinαV sin βV cosαV


 (2.251)

so that 


iB
jB
kB


 = [TVB]−1




iV
jV
kV


 (2.252)

And the forces and moments at the center of gravity of the body are:

FV =




XV

YV
ZV


 = [TVB]−1FwV (2.253)

and:

MV =




LV
MV

NV


 = xV × FV (2.254)

where the position vector from the center of gravity of the aircraft to the vertical

tail reference points xV is

xV = xV iB + yV jB + zV kB (2.255)

For the BO-105, the aerodynamic coefficients are defined in the body axes system

CXH = CXH(αH , βH) (2.256)

CY H = CY H(αH , βH) (2.257)

CZH = CZH(αH , βH) (2.258)

CLH = CLH(αH , βH) (2.259)

CMH = CMH(αH , βH) (2.260)
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CNH = CNH(αH , βH) (2.261)

CXV = CXV (αH , βV ) (2.262)

CY V = CY V (αH , βV ) (2.263)

CZV = CZV (αH , βV ) (2.264)

CLV = CLV (αH , βV ) (2.265)

CMV = CMV (αH , βV ) (2.266)

CNV = CNV (αH , βV ) (2.267)

For the horizontal tail

FH =




XH

YH
ZH


 =




q̄HSHCXH
q̄HSHCY H
q̄HSHCZH


 (2.268)

MH =




LH
MH

NH


 =




q̄HSHCLH
q̄HSHCMH
q̄HSHCNH


 + xH × FH (2.269)

and for the vertical tail

FV =




XV

YV
ZV


 =




q̄V SVCXV
q̄V SVCY V
q̄V SVCZV


 (2.270)

MV =




LV
MV

NV


 =




q̄V SVCLV
q̄V SVCMV
q̄V SVCNV


 + xV × FV (2.271)

2.5.4 Tail rotor loads

The tail rotor is modeled based on a modification of the simplified closed-form Bailey

solution [71]. The velocity vector of the airflow at the tail rotor in the body fixed

axes system is given by

utr = uB + xTR × ω + uintr (2.272)
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where uintr is the interference velocity due to the fuselage and main rotor wake and

is a function of the main rotor downwash, tip speed and wake skew angle:

uintr = v0νxwtr(β1c, χ)iTR + v0νzwtr(β1c, χ)kTR (2.273)

where the functions νxwtr(β1c, χ) and νzwtr(β1c, χ) are provided in the form of look-up

tables.

The position vector from the center of gravity of the body to the hub of the tail

rotor, xTR, is:

xTR = xtriB + ytrjB + ztrkB (2.274)

Expressing the velocity components at the tail rotor hub in the body fixed co-

ordinate system

utr = uB + ytrrB − ztrqB + uintr (2.275)

vtr = vB + ztrpB − xtrrB + vintr (2.276)

wtr = wB + xtrqB − ytrpB + wintr (2.277)

A coordinate transformation is applied to these velocity components to obtain

the velocity components in the local tail rotor coordinate system. This transforma-

tion consists of two rotations. The first about the xB axis by the tail rotor cant

angle, Γ, and the second about the new z axis by the tail rotor yaw angle, Λ. The

coordinate transformation matrix is given by:

TTB =


 cos Λ − sin Γ sin Λ cos Γ sin Λ

0 cos Γ sin Γ
− sin Λ − sin Γ cos Λ cos Γ cos Λ


 (2.278)

The velocity components in the local tail rotor coordinate system are:




utl

vtl

wtl


 = [TTB]




utr
vtr
wtr


 (2.279)
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where the subscript (tl) indicates the velocity components in the local tail rotor

coordinate system.

Using the Bailey analysis, the final expression for the non-dimensional tail rotor

thrust is:

Ttl = 2ρ
(
πR̄t

)2
νtvT t

(
Ω̄tR̄t

)2
Kblk

[
R2

m0

]
(2.280)

where R̄t and Ω̄t are the non-dimensional tail rotor radius and rotational speed

respectively, νt is the tail rotor induced velocity, vT t is the total speed of the airflow

at the tail rotor hub and Kblk is the empirical tail rotor blockage factor to account

for the presence of the vertical tail.

The total speed of the airflow is given by:

vT tl =
√
µ2

t + λ2
t (2.281)

where

µtl =
√
u2

tl + v2
tl (2.282)

λt = wtl − νt (2.283)

The non-dimensional torque produced by the tail rotor is given by:

Qtl =
1

2
ρ

(
Ω̄tR̄t

)2
πR̄3

t

[
R2

m0

]
(2.284)

The only forces and moments considered in the present study will be the thrust

and torque loads in the local tail rotor coordinate system, that is:

Ftl = −Ttljt (2.285)

Mtl = −Qtljt (2.286)

The resultant tail rotor loads at the center of gravity of the body are obtained

using the transformation from tail rotor coordinate system to body fixed system
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(Eqn. (2.278)), and the position vector, xt, of the tail rotor hub with respect to the

center of gravity of the aircraft,

FTR =




XTR

YTR
ZTR


 = [TTB]−1Ftl (2.287)

MTR =




LTR
MTR

NTR


 = [TTB]−1Mtl + xTR × FTR (2.288)

2.6 Tail rotor inflow dynamics

The tail rotor inflow dynamics are based on the dynamic inflow theory of Pitt-

Peters [6], with the sine and cosine components of the tail rotor inflow assumed to

be zero. This reduces the dynamic inflow of the tail rotor to a single equation

1

Ωt
τtν̇t + νt = LtCTt (2.289)

where

τt =
1

vTt

4

3π
(2.290)

\Lt =
1

2vTt

(2.291)

and vTt is the total induced velocity at the tail rotor, defined as:

vTt =
√

(u2
t + λ2

t ) (2.292)

The thrust coefficient of the tail rotor, CTt is given by:

CTt =
Ttlm0Ω

2R2

ρπΩ2
tR

4
t

(2.293)

where Ωt is the tail rotor rotational speed, Rt is the tail rotor radius and Ttl is the

non-dimensional tail rotor thrust (Eqn. (2.280)).
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2.7 Dynamic inflow model

Two dynamic inflow models are used to provide the main rotor inflow for the baseline

configuration when the free wake model is not included. The first dynamic inflow

model used is the Pitt-Peters model [6]; the corresponding equations can be found

in Ref. [7]. This is a three state model that consists of a uniform inflow component,

v0, and sine and cosine inflow components, vs and vc, respectively. They represent

an inflow distribution that has a first-harmonic azimuthal distribution and a linear

radial distribution. It should be mentioned that this inflow model takes into account

the effects of the trailed wake only and thus does not conflict with the quasi-steady

aerodynamics model (Section 2.4.1), used for the calculation of sectional aerody-

namic loads, which considers the effects of shed wake alone.

The dynamic inflow equations relate the inflow dynamics to the aerodynamic

loads in a linear, first-order fashion. Represented in the wind reference coordinate

system of the tip path plane, the dynamic inflow equations are

1

Ω
M




v̇0

v̇s
v̇c


 + L−1

nl




v0

vs
vc


 =




CT
−CL
−CM



aero

(2.294)

where M is the matrix of mass terms which represents the time delay effects due to

the unsteady wake; Lnl is the non-linear version of the inflow gain matrix [7]; and

CT , CL and CM are the instantaneous rotor thrust, rolling moment and pitching

moment coefficients respectively, in the wind axis system.




CT
−CL
−CM



aero

=




1 0 0
0 cos βF sin βF
0 − sin βF cos βF







CT
C1

−C2



aero

(2.295)




v0

vs
vc



aero

=


 1 0 0

0 cos βF sin βF
0 − sin βF cos βF







λ0

λs
λc



aero

(2.296)
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In the non-rotating hub-fixed coordinate system, Eqn. (2.294) becomes

1

Ω
[τ ]




λ̇0

λ̇s
λ̇c


 +




λ0

λs
λc


 = Lnl




CT
C1

−C2



aero

(2.297)

where

[τ ] = LnlM (2.298)

The matrix of apparent mass terms M is

M =




8
3π 0 0

0 16
45π 0

0 0 16
45π


 (2.299)

and for twisted rotors, M11 = 128π
75 .

The inflow gain matrix Lnl is

Lnl =




1
2vT

0 15π
64vm

tan χ
2

0 −4
vm(1 + cosχ)

0

15π
64vT

tan χ
2 0 −4 cosχ

vm(1 + cosχ)


 (2.300)

where χ is the wake skew angle, vT is the normalized total velocity at the center of

the rotor and vm is the mass flow parameter, and these are given by:

χ = tan−1

(
us

|λ|ΩR

)
+ β1c (2.301)

vT =
√

(µ2 + λ2) (2.302)

vm =
[µ2 + λ(λ + ν0)]

vT
(2.303)

Finally the matrix [τ ] is found from M and Lnl and is

[τ ] =




1
vT

4
3π 0 −1

12vm
tan χ

2
0 64

45πvm(1 + cosχ)
0

5
8vT

tan χ
2 0 64 cosχ

45πvm(1 + cosχ)


 (2.304)
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The force and moment coefficients in the non-rotating hub plane (Eqn. (2.295))

are based only on the rotor aerodynamic loads and are calculated by integrating

the distributed aerodynamic forces, pA (Eqn. (2.82)) and moments qA (Eqn. 2.83)).

These aerodynamic load coefficients are

CT =
∫ 1

0
pAzdx (2.305)

C1 =
∫ 1

0
(qAx cosψ − qAy sinψ)dx (2.306)

−C2 =
∫ 1

0
(−qAy cosψ − qAx sinψ)dx (2.307)

The inflow at a given radial station r and azimuth angle ψ is calculated from

the inflow coefficients as follows:

λ(r, ψ) = λ0 + λsr sinψ + λcr cosψ (2.308)

where r is the non-dimensional spanwise coordinate.

The inflow is inserted into the aerodynamics model in the undistorted preconed

blade coordinate system (see Section 2.2.3), which requires a transformation by the

precone angle βP

λz(r, ψ) = cos βP (λ0 + λsr sinψ + λcr cosψ) (2.309)

This inflow is inserted into the aerodynamics model in Eqn. (2.55).

The second dynamic inflow model used to provide the main rotor inflow is the

extended momentum theory model proposed by Keller and Curtiss [15, 16] and

Arnold et al. [17]. This inflow model includes wake distortion effects from pitch and

roll rates of the tip path plane on the linear inflow distribution. This is a three

state model that consists of a uniform inflow component, λ0, and sine and cosine

inflow components, λs and λc, respectively. For the hover flight condition, the
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equations governing the inflow dynamics in the non-rotating hub-fixed coordinate

system Eqn. (2.294) are

1

Ω
[τ ]




λ̇0

λ̇s
λ̇c


 +




λ0

λs
λc


 = Lnl




CT
C1

−C2



aero

+ KT


 0 0 0

0 µy 0
0 0 µx




+KR


 0 0 0

0 p + b′1 0
0 0 q + a′1


 (2.310)

where the underlined terms are those added to Eqn. (2.297) with the extended

momentum theory model. The matrices [τ ] and Lnl are calculated in hover from

Eqs. (2.304) and (2.300) with µ = 0 and χ = 0. The term KT arises from the “blow

back” of the wake due to translation. For this study it is assumed that KT = 0.

The term KR arises from the curvature of the wake due to the pitch and roll rates

of the rotor. The quantities q and p are the pitch and roll rates and a′1 and b′1 are

the longitudinal and lateral flap rates.

The inflow at a given radial station r and azimuth angle ψ is calculated using

Eqn. (2.308) and converted to the undistorted preconed blade coordinate system (see

Section 2.2.3) using Eqn. (2.309). The inflow is then inserted into the aerodynamics

model in Eqn. (2.55).

2.8 Assembly of equations of motion

The equations of motion that describe the dynamics of the complete aircraft have

been derived in previous sections, namely the main rotor equations in Section 2.4,

the fuselage equations in Section 2.5, and the dynamic inflow equations for the

baseline case (in which the free wake model is not used) in Section 2.7. These

equations have been formulated to be in first-order, ODE form

ẏ = g(ẏ,y,u ; t) (2.311)
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However this representation of the equations of motion introduces complications

when linear models or time histories are to be calculated because of the presence

of state derivatives on the right hand side of the equation. The terms containing

the state derivatives that appear in the right hand side of Eqn. (2.311) must be

identified and grouped on the left hand side, resulting in a system of equations that

are in rigorous first-order, ODE form.

The right hand side derivative terms result from the acceleration-dependent por-

tions of the main rotor and fuselage equations. Specifically, for the main rotor these

terms are associated with main rotor inertia. Acceleration-dependent terms of struc-

tural or aerodynamic origin are neglected [33]. The state derivatives that appear on

the right hand side are collected into the following vector (for the baseline case with

the dynamic inflow model)

ẏ = [u̇ v̇ ẇ ṗ q̇ ṙ φ̇ θ̇ ψ̇ λ̇0 λ̇s λ̇c λ̇t q̇
1
1 q̇1

2 q̇1
3 q̇1

4 q̈1
1 q̈1

2 q̈1
3 q̈1

4

. . . q̇Nh
1 q̇Nh

2 q̇Nh
3 q̇Nh

4 q̈Nh
1 q̈Nh

2 q̈Nh
3 q̈Nh

4 ]� (2.312)

where u̇, v̇, ẇ, ṗ, q̇, ṙ, φ̇, θ̇ and ψ̇ are the linear and angular accelerations and the

angular velocities at the center of gravity of the aircraft, λ0, λs, λc and λt are the

time derivatives of the main and tail rotor dynamic inflow coefficients and q̇ki and

q̈ki are the generalized velocity and acceleration coefficients of the i-th blade for the

k-th normal mode.

The equation resulting from the removal of the acceleration-dependent terms

from the equations g is

ẏ = gI(ẏ ; t) + gN(y,u ; t) (2.313)

in which

gI(ẏ ; t) = ECẏ (2.314)
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where EC is an inertial coupling matrix that is calculated numerically using a pertur-

bation analysis and gN is the equations of motion with the acceleration-dependent

terms removed. This is substituted into Eqn. (2.313) to give

ẏ = ECẏ + gN(y,u ; t) (2.315)

from which the required first order form can be easily obtained

ẏ = (I − EC)−1gN(y,u ; t) (2.316)

or

ẏ = f(y,u ; t) (2.317)

which is the form of the equations of motion described in Eqn. (2.1).

Using this formulation, the generalized acceleration coefficients q̈ have been

moved to the left hand side of the second-order ODEs governing the blade dy-

namics (Eqn. (2.173)). This results in the ODEs governing the blade motion taking

the form,

q̈ = fq(q̇,q) (2.318)

2.9 Free wake model

The free wake model used in the current study is the Bagai-Leishman free wake

model that is implemented as the Maryland Free-Wake Code (MFW) (Ref. [1])

with minor modifications required to interface it with the rest of the flight dynamics

model. This section summarizes the main features of the free wake model.

This model uses a relaxation scheme to calculate a steady-state wake geometry

that defines the induced velocity distribution at the rotor disk consistent with the

blade loads. This inflow is used to calculate the aerodynamic loads within the

flight dynamics model. A relaxation scheme is used so the model cannot produce a
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time accurate solution because any wake and inflow transients are removed by the

relaxation strategy.

This free wake model belongs to a general set of wake methods known as free

vortex methods in which the rotor wake is modeled as a set of vortex filaments

and/or vortex sheets. The combined influence, or induced effects, of the individually

modeled vortices can be calculated at any point in the flow field or at points on the

blades themselves for the case of the inflow.

In the Bagai-Leishman model, the rotor wake is modeled using a set of “free”

vortices that are allowed to distort. The “free” vortices distort under the self and

mutual influence of all of the modeled vortices, as well as the bound circulation.

The geometry and strength of the wake vortices are used to calculate the induced

velocity distribution at the rotor disk.

The trailed wake from each blade is modeled by a single “tip” vortex. The

initial strength and radial release point are supplied as an input to the model. For

the results in this study the assumption is made that the tip vortices are released

from the blade quarter-chord at the blade tip. An additional assumption is that

the strengths of the tip vortices are given as a function of the bound circulation

distribution along the blade at each individual azimuth angle. For an azimuth

angle, ψ, the tip vortex strength is

Γtip(ψ) = CΓ max
i=1,N

[Γb(ri, ψ)] (2.319)

where Γtip(ψ) is the tip vortex strength and CΓ is an empirical factor determined

experimentally that represents the ratio of the initial tip vortex strength to the

maximum bound circulation along the blade. Γb(ri, ψ) (Eqn. (3.45)) is the bound

circulation at a blade section at a radius ri and an azimuth angle ψ.

For the study of Bagai [50] it was assumed that the sum of the blade bound
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vorticity outboard of the maximum is trailed into the tip vortex. This implies that

the initial tip vortex strength is equal to the maximum bound circulation over the

span of the blade at a particular azimuth angle. The same assumption is nominally

used for this study. Experimental studies [72, 73] have determined that the tip vortex

strength is lower than the maximum bound circulation along the blade span, so the

effects of including a value of CΓ that is consistent with experimental measurements

is also investigated.

In the free wake model it is possible to include a “secondary” vortex that is

associated with a vortex released from the blade root. The initial vortex strength

and radial release point of this vortex would be supplied as input to the model. The

current study does not look at the effects of the inclusion of this “secondary” vortex.

Additionally, the model includes provisions for a number of rigid trailed vortices

that are prescribed and not allowed to distort. The number, lengths, radial locations

and strengths of these “trailers” must be supplied as an input to the model. The

geometry of these rigid inboard trailers is an undistorted helix and their inclusion

attempts to account for the vorticity that is trailed behind the blade inboard of the

tip region, due to the radial change in the bound circulation in this region. The

results presented in this study will not include these additional inboard trailers.

A free vortex model of this type is governed by the vorticity transport equation,

which states that the vortices are convected downstream of the rotor at the local

flow field velocity,

∂Fr(ψ, ζ)

∂ψ
+

∂Fr(ψ, ζ)

∂ζ
=

1

Ω
FV (Fr(ψ, ζ)) (2.320)

where Fr is the position vector of a point on a vortex filament, ψ is the azimuth angle

of the blade from which the vortex filament is released, ζ is the azimuthal distance

along the vortex filament to the point, FV is the local velocity vector at the point
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Fr(ψ, ζ) and includes the induced effects from the circulation of the modeled vortices

and the bound circulation, as well as any freestream contributions. This velocity

vector did not originally include any maneuvering effects on the free vortices and

this capability was added for the current analysis in accordance with the method

presented by Bagai et al. [13], which is described later in this section.

The first step in solving the vorticity transport equation (Eqn. (2.320)) to find

the wake geometry is to discretize the equation using finite differences. The first

discretization is with respect to the distance along the vortex filament, ζ. This is

done by discretizing the tip vortex filament into a number of straight line vortex

segments that are joined at a set of collocation points to form a continuous vortex

filament. The set of collocation points describes the geometry of the rotor wake. The

azimuthal distance between each successive collocation point is the vortex filament

discretization resolution, ∆ζ. The length of each tip vortex filament is an input to

the free wake model, and is given in terms of a maximum wake age, ζmax. Therefore

the total number of straight line vortex segments in each filament is,

Ns =
ζmax
∆ζ

(2.321)

and the total number of collocation points for a single vortex filament is,

Nζ =
ζmax
∆ζ

+ 1 (2.322)

The overall free wake geometry is characterized by the positions of the colloca-

tion points corresponding to a number of trailed vortex filaments, each of which is

generated at a discrete azimuth angle. This leads to the second, or azimuthwise,

discretization where the resolution ∆ψ of the discretization is the azimuthal distance

between the release point of each successive vortex filament. The total number of

vortex filaments representing the tip vortex geometries at the entire set of azimuth
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angles is,

Nψ =
2π

∆ψ
(2.323)

The free wake model for the azimuthal discretization resolution ∆ψ need to be

equal to the vortex discretization resolution ∆ζ, but they are equal for the current

study. These parameters are collectively referred to the wake resolution ∆ψ.

Figure 2.13 shows the conventions used for the discretization in the ζ and ψ

directions. When considering the locations of the collocation points, the index j is

used as a reference to the azimuth angle ψ and the index k references the location

of the collocation point in the vortex filament ζ.

A pseudo-implicit predictor-corrector method is used to solve Eqn. (2.320) nu-

merically using a relaxation technique. The details of the implementation of the

numerical scheme have been presented in Refs. [1], [66], [74]. The partial differential

equation, Eqn. (2.320), is first order in ψ and ζ. The solution requires the specifica-

tion of two boundary conditions, one in the ψ direction and one in the ζ direction.

The first boundary condition, with respect to ψ, enforces periodicity of the wake,

that is

Fr(ψ, ζ) = Fr(ψ + 2π, ζ) (2.324)

The second boundary condition, with respect to ζ, ensures that the trailed vortex

filaments are attached to the blade at each azimuth angle, i.e.,

Fr(ψ, 0) = rv (cos β cosψ cosαs + sin β sinαs) iG

+ rv cos β sinψjG

+ rv (sin β cosαs − cos β cosψ sinαs)kG (2.325)

where αs is the longitudinal shaft tilt and is positive aft, rv(ψ) is the radial release

point of the vortex filaments (assumed to be at the blade tip for the current study,
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i.e., rv = 1.0) and β(ψ) is the rigid blade flapping angle based on an equivalent

straight blade with a flap hinge at the axis of rotation (see Section 3.2.2 for further

details).

The velocity contributions on the right hand side of Eqn. (2.320) is given as

FV (Fr(ψ, ζ)) = FV∞ + FVind (Fr(ψ, ζ))
[

+ FVe (Fr(ψ, ζ))
]

(2.326)

where FV∞ is the freestream velocity which is uniform through the flow field (see Sec-

tion 3.2.2) and FVind contains the induced effects of all of the modeled vortices as well

as the effects of the bound circulation. The vector FVe is an external velocity profile

that results from outside influences that produce non-uniform flow-field velocities,

such as gusts and maneuvers. This terms is enclosed in square brackets to indicate

that it was not part of the original free wake model and was added for this analysis.

The external velocity profile with the inclusion of maneuver-induced effects is

given by [13],

FVe (Fr(ψ, ζ)) = (−qGz)iG + (pGz)jG + (qGx− pGy)kG (2.327)

where these velocity components are resolved in the free wake global fixed coordinate

system at the position given by xG, yG and zG, also in the global fixed coordinate

system (see Section 2.2.4). The quantities pG and qG are the roll and pitch rates at

the hub in the same coordinate system.

Before the induced velocities can be calculated, consideration must be given to

the vortex model used to represent the free vortices released from the blade tips

(and the prescribed inboard trailers when they are present). Two aspects of the

vortex model that are important here. These are the tangential velocity profile (i.e.,

the velocity profile normal to the vortex centerline) and the diffusion of the vortex

along its length.
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The tangential velocity profile is characterized by an inner viscous region which

consists of a “solid-body” rotation and an outer region that simulates a potential

vortex profile. Ref [75] shows that the tangential velocity profile of the rotor tip

vortices can be closely approximated by

vθ(r) =
Γr

2π
√
r4
c + r4

(2.328)

where Γ is the vortex circulation strength and rc is the vortex viscous core radius,

which is typically 10-15% of the blade chord.

The diffusion of the vortex is incorporated as a variation in the viscous core

radius rc in which the core radius grows as function of the vortex age in a manner

consistent with the decay of a Lamb-Oseen vortex [76]

rc(ζ) = 2.24

√
νδ

ζ

Ω
(2.329)

where ν is the kinematic viscosity of air, ζ is the vortex age in radians, Ω is the

rotational speed of the rotor, and δ is an “eddy” or turbulent velocity coefficient that

determines the rate at which the vortex core grows with time, and is determined

empirically [50].

It should be noted that while vortex diffusion is taken into account as an increase

in core radius with vortex age, there is no modeling of vortex dissipation where the

vortex circulation strength would decrease with vortex age. Instead it is assumed

that the vortex strength is constant along length.

The contributions to the vorticity transport equation from the induced induced

(FVind in Eqn. (2.326)) are comprised of the instantaneous velocity contributions of

all of the vortex filaments in the wake. The Biot-Savart law is used to calculate the

velocity induced at a point located at position Fr relative to the vortex element dFl,
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and takes the form,

FVind =
Γ

4π

∫ dFl × Fr

|Fr|3 (2.330)

Incorporating the tangential velocity profile model (Eqn. (2.328)) and vortex

diffusion (Eqn. (2.329)) into the Biot-Savart law, the induced velocity due to the

vortex element becomes,

FVind =
Γh

2π
√
r4
c + h4

∫ dFl × Fr

|Fr|3 (2.331)

where h is the perpendicular distance of the evaluation point from the influencing

vortex element. The total induced velocity at a point in the flow field is the combined

effect of all of the influencing vortices.

The pseudo-implicit predictor-corrector scheme is an iterative procedure on the

geometry of the “free” vortices, in which a new vortex wake geometry is the result

of each iteration. Thus there is a change in wake geometry from one iteration to

the next, which can be quantified by considering the L2 norm of the wake geometry

change between successive iterations. The root mean square (RMS) change in the

wake structure is calculated using [50],

RMS =
1

jmaxkmax

√√√√√ jmax∑
ψ:j=1

kmax∑
ζ:k=1

(Frnj,k − Frn−1
j,k )2 (2.332)

where jmax is the number of blade azimuthal steps in one revolution, with jmax = Nψ,

and kmax is the number of collocation points used to describe each of the trailed

vortex filaments, with kmax = Nζ .

In the Bagai-Leishman free wake model, the iterative process defining the wake

geometry is started by assuming an undistorted helical wake structure. The conver-

gence criterion for the iterative process is based on the RMS change in the wake

geometry for the current iteration in comparison with the RMS change in wake
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geometry from the first iteration. Or more specifically, the wake geometry is con-

sidered converged when the ratio of the RMS change for the current iteration to

the RMS change of the first iteration falls below a certain threshold. This can be

written as

(RMS)n
(RMS)1

< ε (2.333)

where ε is the threshold for convergence, (RMS)n is the RMS change in wake

geometry of the nth iteration, (RMS)1 is the RMS change of the first iteration

started from an undistorted helical wake. In the present study the convergence

criterion was slightly modified, and based on the absolute RMS change in wake

geometry, rather than the relative change, as detailed later in Section 3.2.3.

Finally, the converged wake is used to calculate the local induced velocity at

specified points along the blade span and around the azimuth. These local velocities

only contain contributions from the bound and wake circulations and represent only

the induced velocity, FVind(Fr(ψ, ζ)) from Eqn. (2.326). The free stream and kinematic

contributions to the local blade aerodynamic profile are included internally in the

flight dynamics code.
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Figure 2.1: Inertial and fuselage coordinate systems.

114



Figure 2.2: Euler rotations from the inertial to fuselage coordinate systems. Se-
quence of rotations: ψ −→ θ −→ φ.
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Figure 2.3: Relationship between velocity vector and fuselage coordinate system.
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Figure 2.4: Transformation from fuselage and shaft coordinate systems. Sequence
of rotations: iθ −→ iφ.
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Figure 2.5: Hub-fixed rotating and shaft-fixed non-rotating coordinate systems.
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Figure 2.6: Blade deformed and undeformed coordinate systems.
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Figure 2.7: Transformation from shaft to tip path plane coordinate systems.
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Figure 2.8: Global-fixed coordinate system for free wake model.
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Figure 2.9: Definition of tip flapping angles for the flight dynamics and free wake
models.
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Figure 2.10: Definition of blade section yaw angle γI and angle of attack φY .
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Figure 2.11: Finite element nodes and degrees of freedom.
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Figure 2.12: Blade degrees of freedom using four finite elements.
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Figure 2.13: Discretized physical domain for free wake [1].
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Chapter 3

Solution Methods: Trim

This chapter presents the methods used to calculate the trim state of the helicopter.

The generic flight condition assumed is a steady, coordinated, helical turn. Straight

and level flight is treated as a special case of turn with the flight path angle and

turn rate equal to zero.

This chapter is divided into two main parts. The first describes the baseline

trim procedure, for the case in which a free wake model is not included. The second

describes in detail the changes in the formulation and solution methods required by

the incorporation of the free wake model into the trim procedure. A third section

describes how to reconstruct the state vector corresponding to the trim solution.

3.1 Baseline trim procedure

This section describes the baseline trim procedure for the case in which the free

wake model is not included. The baseline flight condition is described first, followed

by a description of the unknowns of the problem, the equations that make up the

trim problem, and the solution process. The basic trim procedure is essentially the

same as that described in Refs. [60] and [77], which extend the original formulation

by Chen and Jeske [55].

127



3.1.1 Definition of the flight condition

The trim state is calculated for a coordinated, steady, helical turn defined by the

following parameters:

1. the velocity V along the trajectory;

2. the flight path angle γ, positive for climbing flight; and

3. the turn rate ψ̇, positive for a turn to the right, or clockwise when seen from

above.

The geometry of the trim problem for a coordinated turn is shown in Figure 3.1.

Straight and level flight is treated as a special case of turn with ψ̇ = γ = 0. For

hover it should also be V = 0. However, a zero speed would introduce zeros in the

denominator of some trim expressions, and therefore a very small number sufficient

to avoid numerical singularities is used instead. This eliminates the need for two

different sets of equations for zero and nonzero values of V , and has no practical

repercussions on the accuracy of the final results.

3.1.2 Unknowns of the trim problem

The unknowns of the trim problem are grouped into a vector x that is partitioned

into a rigid body part, a main rotor part and an inflow part as follows:

x =




xB
xR
xI


 (3.1)

The xB partition contains the unknowns of the trim procedure associated with the

overall trim of the helicopter:

xB = [ θ0 θ1c θ1s θt αF βF φF θF λt ]� (3.2)
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where θ0, θ1c, θ1s and θt are the trim control settings of the main and tail rotors;

αF and βF are the angles of attack and sideslip of the fuselage; φF and θF are the

roll and pitch Euler angles of the fuselage; and λt is the constant tail rotor inflow,

and is included in the xB partition for convenience. The subscript ( )F is used to

indicate that the quantity is related to the fuselage.

Once the angle of attack αF and the sideslip βF are known, the velocities u, v,

and w along the body axes can be obtained from

u = V cosαF cos βF (3.3)

v = V sin βF (3.4)

w = V sinαF cos βF (3.5)

The angular velocities p, q, and r about the body axes can be obtained from

p = −ψ̇ sin θF (3.6)

q = ψ̇ sinφF cos θF (3.7)

r = ψ̇ cosφF cos θF (3.8)

The xR partition contains the Fourier series expansion coefficients of each of the

blade modes retained for trim (see Section 2.4.8 for further details on the modal

coordinate transformation). In the trim condition, the blade motion is periodic

and the generalized coordinate of each of the blade modes is approximated by a

truncated Fourier series. The coefficients of these Fourier expansions become the

unknowns of the trim problem:

qk(ψ) ≈ qkapp(ψ) = qk0 +
Nh∑
j=1

(qkjc cos jψ + qkjs sin jψ) (3.9)

where qk0 is the constant coefficient in the expansion of the k-th mode, and qkjc and

qkjs are respectively the coefficients of the j-th harmonic cosine and sine for the k-th
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mode. Also, Nh is the number of harmonics included in the expansion for each mode

and Nm is the number of main rotor modes retained for the trim procedure.

It should be mentioned that the generalized coordinates qk and their Fourier

series approximations qkapp are periodic functions of the azimuth angle ψ where the

Fourier series expansion coefficients qk0 , q
k
jc and qkjs are constant for a particular trim

vector and are not a function of azimuth angle.

The coefficients of the Fourier series expansion make up the xR partition, which

is arranged as follows:

xR = [ q1
0 q1

1c q
1
1s q

1
2c q

1
2s . . . q

1
Nhc

q1
Nhs

. . .

. . . qNm
0 qNm

1c qNm
1s qNm

2c qNm
2s . . . qNm

Nhc
qNm
Nhs

]� (3.10)

The assumption is made that the blades are identical, and perform identical

motions in trim. Therefore, the dynamics of only one blade need be taken into

account.

Finally, the xI partition contains the constant trim values of the dynamic inflow

coefficients representing the main rotor inflow (see Section 2.7 for further details on

the inflow model):

xI = [ λ0 λs λc ]� (3.11)

where λ0 is the uniform inflow component, and λs and λc are the sine and cosine

inflow components, respectively. Thus the total number of trim variables associated

with the dynamic inflow model is 3.

The partitions xB,xR, and xI contain respectively 9, Nm(2Nh + 1), and 3 un-

knowns. Therefore, the total number of trim variables is 12 + Nm(2Nh + 1).
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3.1.3 Formulation of the trim problem

The trim problem is formulated as a system of coupled nonlinear algebraic equations

symbolically written as

F(x) = 0 (3.12)

The vector F of equations is composed of three partitions

F =




FB
FR
FI


 (3.13)

where FB represents the set of equations that enforce overall force and moment

equilibrium on the fuselage, and includes some geometric and dynamic conditions

that have to be satisfied in the turn. An equation for the average tail rotor inflow

is also included in this vector. These equations will be collectively referred to as

“fuselage equations.” The second partition, FR, contains the equations that enforce

the periodicity of main rotor blade dynamics. The final partition, FI , contains the

trim equations related to the main rotor inflow model; they enforce the requirement

that the derivatives of the harmonics of the main rotor inflow be zero when averaged

over one rotor revolution. Each of these sets of equations will now be considered in

turn.

Fuselage equations

The fuselage trim equations consist of a set of nine algebraic equations describing

the trim state of the entire aircraft and the tail rotor inflow. These equations are

defined by the following conditions:

1. Force and moment equilibrium. These six equations require that the linear

and angular accelerations of the aircraft be equal to zero when averaged over
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one rotor revolution.

∫ 2π

0
u̇ dψ = 0 (3.14)∫ 2π

0
v̇ dψ = 0 (3.15)∫ 2π

0
ẇ dψ = 0 (3.16)∫ 2π

0
ṗ dψ = 0 (3.17)∫ 2π

0
q̇ dψ = 0 (3.18)∫ 2π

0
ṙ dψ = 0 (3.19)

Eqs. (3.14)-(3.16) are equivalent to enforcing force equilibrium along the body

axes, whereas Eqs. (3.17)-(3.19) enforce moment equilibrium about the body

axes. The derivatives u̇, . . . , ṙ are given in Eqs. 2.174 through 2.179 respec-

tively.

2. Equation for turn coordination. The turn coordination equation requires that

the Y force component be equal to zero when averaged over one rotor revolu-

tion, that is:

∫ 2π

0

[
sinφF − ψ̇V

g
(cosαF cosφF + sinαF tan θF ) cos βF

]
dψ = 0 (3.20)

In straight flight ψ̇ = 0, and Eqn. (3.20) becomes:

∫ 2π

0
sinφF dψ = 0

This means that the turn coordination equation implies that in straight flight

the average roll angle is zero regardless of the flight speed. At high speed this

is a reasonable assumption if the helicopter has a vertical tail, because large

lateral forces and yaw moments can be generated by the tail. As the speed

decreases the vertical tail becomes less effective, and to achieve lateral force
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equilibrium along the yB body axis it is necessary to generate lateral weight

components through the roll angle φF . Therefore, at hover and low speeds,

φF = 0 may not be a good assumption. In reality there is a trade-off between

φF and βF , which leaves part of the trim problem undetermined for the straight

flight case. Mathematically this means that when ψ̇ = 0 the solution of

Eqn. (3.20) is only one of an infinite number of possible combinations of φF

and βF .

To eliminate the ambiguity, the turn coordination equation, Eqn. (3.20) is

used for straight flight only at advance ratios above µ = 0.1. This implies

a zero trim roll angle, which is a reasonable assumption. For advance ratios

below µ = 0.1 the turn coordination equation is replaced by another, which

enforces a zero average sideslip angle:

∫ 2π

0
βFdψ = 0 (3.21)

and trim is achieved through a variable, usually nonzero, bank angle φF .

3. Relationship between angle of attack and Euler pitch angle. This equation

corresponds to a kinematic relation between the flight path angle, γ, and

angle of attack, sideslip angle, roll angle, and pitch angle:

∫ 2π

0
[cosαF cos βF sin θF − (sin βF sinφF + sinαF cos βF cosφF ) cos θF

− sin γ] dψ = 0 (3.22)

(3.23)

4. Tail rotor inflow. This equation requires that the tail rotor inflow be constant

on average over one rotor revolution:

∫ 2π

0
ν̇t dψ = 0 (3.24)
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Blade Trim Equations

A Galerkin technique is used to transform the governing blade ordinary differential

equations into a set of non-linear algebraic equations. The motion of the blade is

assumed to be periodic. The generalized coordinates and their derivatives can be

obtained from their truncated Fourier series expansions, Eqn. (3.9):

qk(ψ) ≈ qkapp(ψ) = qk0 +
Nh∑
j=1

(qkjc cos jψ + qkjs sin jψ) (3.25)

q̇k(ψ) ≈ q̇kapp(ψ) = Ω
Nh∑
j=1

(−qkjc sin jψ + qkjs cos jψ) (3.26)

q̈k(ψ) ≈ q̈kapp(ψ) = −Ω2
Nh∑
j=1

(qkjc cos jψ + qkjs sin jψ) (3.27)

where the superscript k refers to the k-th mode in the modal coordinate trans-

formation and Nh is the highest harmonic in the truncated Fourier series for the

approximation to the generalized coordinates.

The generalized coordinates for each mode are assembled into a vector

q =




q1

q2

...
qNm




(3.28)

and similarly

q̇ =




q̇1

q̇2

...
q̇Nm




(3.29)

q̈ =




q̈1

q̈2

...
q̈Nm




(3.30)

Similar vectors are also defined for the approximations to the generalized co-

ordinates and to their derivatives calculated from the Fourier series expansions of
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Eqs. (3.25) through (3.27):

qapp =




q1
app

q2
app
...

qNm
app




(3.31)

q̇app =




q̇1
app

q̇2
app
...

q̇Nm
app




(3.32)

q̈app =




q̈1
app

q̈2
app
...

q̈Nm
app




(3.33)

The ODEs governing the motion of a single blade have been written in the form

(see Eqn. (2.318))

q̈ = fq(q̇,q) (3.34)

where it is implied that the generalized coordinates, their derivatives and the set of

equations are given as a function of the azimuth angle.

In general, if the approximate solutions for q, Eqs. (3.25)-(3.27) are substituted

in Eqn. (3.34), the equation will not be exactly satisfied. There will usually be a

nonzero residual vector ε, defined as:

ε(ψ) = q̈app − fq(q̇app,qapp) (3.35)

where the vector of residuals ε, contains one element for each of the blade modes

used in the modal coordinate transformation.

According to the Galerkin method, the choice of qj0, q
j
kc, and qjks that minimizes

135



on average the residual vector ε is that which satisfies the following equations [60]




∫ 2π

0
εk(ψ) dψ = 0

∫ 2π

0
εk(ψ) cos jψ dψ = 0 j = 1, . . . , Nh

∫ 2π

0
εk(ψ) sin jψ dψ = 0 j = 1, . . . , Nh

(3.36)

This formulation yields a set of 1 + 2Nh vector algebraic equations, and a total

of (1 + 2Nh)Nm scalar equations if Nm modes are used in the modal coordinate

transformation. These equations make up the partition FR of the vector of trim

equations, Eqn. (3.13).

Dynamic Inflow Trim Equations

The dynamic inflow models have been described in Section 2.7. The treatment of

both dynamic inflow models is the same since they are both represented in first order

form. The corresponding trim equations enforce the requirement that the average

over one rotor revolution of the derivative of each dynamic inflow coefficient be zero,

that is:

∫ 2π

0
λ̇0 dψ = 0 (3.37)∫ 2π

0
λ̇s dψ = 0 (3.38)∫ 2π

0
λ̇c dψ = 0 (3.39)

The number of main rotor inflow trim equations is 3 and these equations make

up the partition FI of the vector of trim equations, Eqn. (3.13).

Summary of trim equations and unknowns for the baseline case

The complete set of trim equations for the baseline case is composed of:
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• 3 force equilibrium equations, Eqs. (3.14)-(3.16)

• 3 moment equilibrium equations, Eqs. (3.17)-(3.19)

• 1 equation for turn coordination, Eqn. (3.20), or, for straight flight at µ ≤ 0.1,

zero average sideslip, Eqn. (3.21)

• 1 kinematic relation for the flight path angle, Eqn. (3.23)

• 1 tail rotor inflow equation, Eqn. (3.24)

• (1 + 2Nh)Nm equations for periodic blade motion, Eqs. (3.36)

• 3 equations for the main rotor inflow, Eqs. (3.37)-(3.39)

for a total of 12 + (1 + 2Nh)Nm equations.

The vector x of unknowns of the baseline trim procedure is composed of:

xtrim = [θ0 θ1c θ1s θ0t αF βF θF φF λt q
1
0 q1

1c q
1
1s q

1
2c q

1
2s . . . q

1
Nhc

q1
Nhs

. . .

. . . qNm
0 qNm

1c qNm
1s qNm

2c qNm
2s . . . qNm

Nhc
qNm
Nhs

λ0 λs λc ]� (3.40)

where the unknowns are:

• Collective pitch θ0, lateral and longitudinal cyclic pitch θ1c and θ1s of the main

rotor; collective pitch θ0t of the tail rotor

• Angles of attack αF and sideslip βF of the fuselage

• Pitch angle θF and roll angle φF of the fuselage

• Tail rotor inflow λt

• Modal coefficients of the main rotor blade motion, qk0 , q
k
jc and qkjs with k being

the mode number

137



• Uniform, sine and cosine coefficients of the dynamic inflow model λ0, λs and

λc

for a total of 12 + (1 + 2Nh)Nm unknowns.

3.1.4 Solution of baseline trim equations

The set of trim equations is solved using a standard nonlinear algebraic equation

solver. In the present study, the equations were solved using the code HYBRD [78],

which implements a quasi-Newton method. It is useful to recall some aspects of the

solution process that will be important in the coupling of the free wake model.

The code HYBRD requires that the system of trim equations be written in the

form

F(x) = r (3.41)

where r is the vector of residual obtained by substituting a tentative trim solution x

into the system of equations F. In other words, it is only necessary to calculate the

residuals r of the trim equations for given values of pitch settings, blade motions,

fuselage velocities, attitudes and rates, and steady inflow, regardless of whether such

values actually correspond to a trimmed solution. The equation solver then adjusts

the values of x to reduce the norm of r below a certain tolerance, and therefore solve

the trim problem. Figure 3.2 shows a block diagram that summarizes the baseline

trim procedure.

3.2 Trim Procedure with Free Wake Inflow Model

This section presents the procedure for the calculation of the trim solution when the

dynamic inflow model is replaced by the maneuvering free wake model. The basic

differences between the two trim formulations are outlined first.
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3.2.1 Formulation of the trim problem with the free wake

The definition of the flight condition is the same as that of the baseline trim. There-

fore, the velocity V along the trajectory, the turn rate ψ̇, and flight path angle γ,

completely define the problem.

When the free wake model provides the main rotor inflow, there are no explicit

trim unknowns associated with the main rotor inflow. With reference to Eqn. (3.1),

the vector of trim unknowns is now partitioned only into a rigid body part xB and

a main rotor part xR as follows:

x =

{
xB
xR

}
(3.42)

Therefore, the vector x of unknowns of the modified trim procedure with the

free wake model is smaller than the corresponding vector for the baseline trim, and

is given by:

xtrim = [θ0 θ1c θ1s θ0t αF βF θF φF λt q
1
0 q1

1c q
1
1s q

1
2c q

1
2s . . . q

1
Nhc

q1
Nhs

. . .

. . . qNm
0 qNm

1c qNm
1s qNm

2c qNm
2s . . . qNm

Nhc
qNm
Nhs

]� (3.43)

When the inflow is calculated using the free wake, the trim equations associated

with the dynamic inflow model are omitted. Therefore, with reference to Eqn. (3.13),

the system of trim equations reduces to:

F =

{
FB
FR

}
(3.44)

that is, the trim equations are now:

• 3 force equilibrium equations, Eqs. (3.14)-(3.16)

• 3 moment equilibrium equations, Eqs. (3.17)-(3.19)
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• 1 equation for turn coordination, Eqn. (3.20), or, for straight flight at µ ≤ 0.1,

zero average sideslip, Eqn. (3.21)

• 1 kinematic relation for the flight path angle, Eqn. (3.23)

• 1 tail rotor inflow equation, Eqn. (3.24)

• (1 + 2Nh)Nm equations for periodic blade motion, Eqs. (3.36)

for a total of 9 + (1 + 2Nh)Nm equations.

3.2.2 Calculation of Main Rotor Inflow

Figure 3.3 shows schematically how the maneuvering free wake model is coupled to

the remaining flight dynamics model. Specifically the figure shows that the flight

dynamics model provides the maneuvering free wake model with:

1. the bound circulation distribution, Γb(r, ψ)

2. the equivalent rigid blade flapping angles, β(ψ)

3. the pitch and roll rates, (pG, qG)

4. the freestream velocity components, (VGx, VGy, VGz)

In turn, the free wake model provides the main rotor inflow distribution λz(r, ψ).

Details of the treatment of each of these items will be presented below.

Bound circulation distribution

Within the free wake model, the bound circulation is required for two different types

of calculations, namely: (i) to initialize the strengths of the tip vortices released from

the blade tips, and (ii) to calculate the wake vortex propagation due to the bound

circulation distribution.
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The value of the bound circulation is calculated in the flight dynamics model at

a given blade station r and azimuth angle ψ using the following equation:

Γb(r, ψ) =
1

2
L(r, ψ) V (r, ψ) c(r) (3.45)

where r is the spanwise coordinate, ψ is the azimuth angle, L is the non-dimensional

total lift from the quasi-steady aerodynamic model (Eqn. (2.73)), V is the local

velocity at the blade section (Eqn. (2.52)), and c is the local blade chord.

The radial stations used in the flight dynamics model are those necessary to

calculate the generalized aerodynamic loads for the finite element representation of

the blade. The calculation is performed using an 8-point Gauss quadrature formula

over each finite element. Therefore, if NE finite elements are used to model the

blade, the quantities required to calculate the bound circulation will be available at

8NE non-equidistant radial stations.

The azimuth angles used in the calculation of the trim solution are those required

to calculate integrals such as those of Eqs. (3.36). The integration for one full rotor

revolution is broken up into NA equal sized azimuthal sections and an azimuthal

integration is performed for each section. An 8-point Gauss quadrature integration

technique is used for each of the azimuthal segments. Therefore, if NA azimuthal

sections are used in the integration over the rotor disk, the quantities required to

calculate the bound circulation will be available at 8NA non-equidistant azimuth

angles.

The free wake model does not require the bound circulation at any specific

number or distribution of spanwise coordinates. Therefore for simplicity the number

and distribution of spanwise locations used in the free wake model are chosen to be

the same as those used in the flight dynamics model, with a total of 8NE non-

equidistant radial stations.
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The same is not true, however, for the azimuth angles, because the free wake

model requires that the bound circulation be provided at a set of equally spaced

azimuth angles. The number of equidistant azimuth angles used in the free wake

model is given in Eqn. (2.323), and is dependent on the azimuthal discretization

resolution ∆ψ. Because the azimuthal locations where the bound circulation is

required for the free wake model are different from those of the flight dynamics

model, some form of interpolation is required. At each blade radial station a simple

one-dimensional linear interpolation is used to obtain the bound circulation values

at the free wake azimuthal points from the values at the flight dynamics azimuthal

points.

Rigid blade flapping angles

Within the free wake model the precise flap displacements of the blade tips with

respect to the hub plane are required, as these flap displacements define the initial

release points of the vortex filaments. For this study the wake is modeled by a single

vortex filament released from the tip of each blade.

As discussed in Section 2.2.5, the assumption is made within the free wake model

that the blades are straight and are allowed to flap about a single flap hinge located

at the axis of rotation. An “equivalent” flapping angle of the rigid blade is defined

that is sufficient to locate the blade tip in the flap direction.

In the flight dynamics model, the tip flap displacement is given as a function of

the azimuth angle and is

wtip(ψ) =
Nm∑
k=1

φk(R)qkapp(ψ) (3.46)

where wtip(ψ) is the flap displacement of the blade tip in the undeformed preconed

blade coordinate system, Nm is the number of normal modes used in the modal
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coordinate transformation, φk is the displacement in the k-th normal mode and qkapp

is the modal coefficient for the k-th mode (Eqn. (3.25)).

The “equivalent” blade flapping angle (Eqn. (2.35)) includes the effects of blade

precone and is given by:

β(ψ) =
wtip(ψ)

R
+ βP (3.47)

where βP is the precone angle of the blade.

Equations (3.46) and (3.47) imply two minor assumptions, namely: (i) that the

tip displacements due to lag and axial deformations are small enough to be neglected,

and (ii) that the tip vortex is released from a point on the elastic axis at the blade

tip.

The “equivalent” blade flap angles are calculated at the same non-equidistant

azimuth angles as the bound circulation. Therefore, a linear interpolation is required

to convert the flapping angles from the flight dynamics model non-equidistant az-

imuth angles to the free wake model equidistant azimuth angles.

Pitch and roll rates

The pitch and roll rates are required in the free wake model to provide the varying

flow field velocities due to the maneuver. These pitch and roll rates produce a

velocity profile that varies through the flow field, which in turn gives the free wake

model the ability to capture the effects of maneuvers on the resulting wake geometry

(Eqn. (2.327)). The free wake model requires the pitch and roll rates in the global

fixed coordinate system (see Section 2.2.4) in which the free wake model equations

are formulated.

The pitch and roll angular velocities about the body axes system are calculated

from the turn rate ψ̇ and the pitch θF and roll φF Euler angles using Eqs. (3.6)

and (3.7). These angular rates are then converted from the body fixed axes system
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to the global, fixed axes system using the coordinate transformation TGB, according

to Eqn. (2.32). This gives the pitch qG and roll pG rates in the global, fixed coordinate

system. The result of the transformation of the rates is:

pG = −pB (3.48)

qG = qB (3.49)

Freestream velocity components

The values of the freestream velocity components in the global, fixed coordinate

system are required by the free wake model to define the uniform velocity field

around the rotor and wake. This uniform flow field comes from the translational

velocities at the center of mass of the aircraft.

The translational velocities of the aircraft in the body axes system are calculated

for the flight speed V and the angles of attack αF and sideslip βF using Eqs. (3.3)-

(3.5). These body velocity components are transformed to translational velocity

components in the global, fixed coordinate system using the transformation TGB,

according to Eqn. (2.32). Since the velocity components of the freestream as experi-

enced by the body are required, the negative of the translational velocities is taken,

as follows:




VGx
VGy
VGz


 =




−uG
−vG
−wG


 =




uB
−vB
wB


 (3.50)

where VGx, VGz and VGz are the freestream velocity components that are passed to

the free wake model.

Inflow distribution from free wake

Once a converged solution for the free wake geometry is obtained, the inflow distri-

bution is calculated using the modified Biot-Savart law (Eqn. (2.331)) which includes
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the effects of the viscous vortex core and vortex diffusion. These calculations are

made in the global, fixed coordinate system which results in the x, y and z-induced

velocity components at each of the blade radial stations and azimuth angles used in

the free wake model [50].

The inflow is required in the flight dynamics model in the blade preconed co-

ordinate system (Eqn. (2.55)), so the free wake induced velocity components must

be transformed to this frame. This involves rotations by the shaft tilt iθ, azimuth

angle ψ and blade precone angle βP , with the resulting transformation being TPG,

Eqn. (2.29). Even though the x, y and z components of the inflow are available

from the free wake model, only the z component is used in the current study.

A one-dimensional linear interpolation is used to convert the values of the inflow

from the equidistant azimuthal locations used in the free wake model to the non-

equidistant azimuthal locations used in the flight dynamics model. As with the

bound circulation, no interpolation is required in the radial direction, as the radial

stations used in the free wake model are the same as those of the flight dynamics

model.

Once the linear interpolation of the inflow has been performed, the z-component

of the inflow is inserted into Eqn. (2.55), which represents the total velocity of the

blade section.

3.2.3 Solution of Trim Equations with Free Wake Model

The basic aspects of the solution of the trim equations with the free wake model

are the same as those of the baseline case, in the sense that the trim procedure still

consists of the solution of a coupled set of nonlinear algebraic equations. However,

the procedure differs in some important details.

Figure 3.4 shows a schematic of the modified trim procedure with the free wake
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model providing the main rotor inflow. Mathematically, the problem can still be

written in the form of Eqn. (3.41). As with the baseline case, the trim procedure

is started by supplying an initial guess of the trim state to the algebraic equations

solver HYBRD. The equation solver iterates to reduce the vector of residuals r

(Eqn. (3.41)) below a certain tolerance, at which point the trim solution is reached.

When the free wake model is included, the trim process takes the form of a triple

nested loop (shown in Figure 3.4). The outermost loop is associated with the basic

solution of the trim equations and is called the trim loop. The two inner loops are

the circulation loop and the wake geometry loop and these are associated with the

free wake solution. These three nested loops are now described in turn.

Trim Loop

The outermost loop is called the trim loop and consists of the solution of Eqn. (3.41).

This is the same as in the baseline case except that the inflow equations and the

corresponding inflow unknowns have been removed. At every iteration, the algebraic

equation solver provides a tentative value of the trim vector x. All the subsequent

calculations are performed with this value of x, and therefore with given values

of pitch settings, fuselage velocities, attitudes and rates, and harmonics of blade

motion, regardless of whether or not these values correspond to an actual trim

condition. This trim vector x is then passed to the inner loops. The output from

these inner loops is the free wake inflow distribution that corresponds to the trim

vector x and this is used to evaluate the trim equations to get a set of equation

residuals r. The trim loop is terminated when the norm of the residual vector r in

Eqn. (3.41) becomes smaller than a preassigned tolerance; at that point the trim

solution has been found.

146



Circulation Loop

The second loop involves an iteration on the bound circulation and inflow distri-

butions and is called the circulation loop. This loop is shown in Figure 3.4 and is

started by assuming an initial inflow distribution. This initial inflow is taken to be

the final inflow distribution from the previous evaluation of the circulation loop, if

such an inflow distribution is available. The very first time that the circulation loop

is evaluated, the initial inflow is chosen to be uniform at a value of 0.05. This initial

inflow is, in fact, arbitrary and does not affect the final inflow at the conclusion of

the circulation loop, but does affect the number of iterations required for conver-

gence, and thus the computational time. So, for maximum computational efficiency,

the initial inflow should be chosen to be as close as possible to the converged inflow.

For this reason the inflow distribution resulting from the previous evaluation of the

circulation loop is used to start the current evaluation.

The inflow distribution is used to evaluate the main rotor aerodynamic loads,

including the bound circulation distribution (Eqs. (2.54) and (3.45)). This bound

circulation, along with the rigid blade flap angles, the body pitch and roll rates and

the freestream velocity components, are passed to the free wake model. It should

be pointed out that of all the inputs to the free wake model, Figure 3.3, the bound

circulation is the only one that is dependent on the inflow distribution and thus is

the only free wake input which varies during the circulation loop. The other inputs,

namely the blade motion, body rates and aircraft velocities are given directly from

the tentative trim vector x.

The free wake model iterates on the wake geometry and returns a new inflow dis-

tribution generated by the innermost loop. This new inflow is used to re-evaluate the

aerodynamic loads, bound circulation and wake geometry to continue the circula-
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tion loop. The circulation loop is terminated when the inflow distribution converges,

that is when the L2 norm of the difference between the current inflow distribution

and that of the previous iteration falls below a preassigned tolerance. The L2 norm

of the inflow change is given by:

‖∆λ‖n2 =
1

8NA8NE

√√√√√ 8NA∑
ψ:j=1

8NE∑
r:k=1

(λnj,k − λn−1
j,k )

2
(3.51)

where 8NA and 8NE are the number of azimuth angles and blade radial stations re-

spectively where the inflow values are available. When the value of the L2 norm falls

below a certain tolerance, then the loop has converged. The final free wake inflow

distribution is returned to the trim loop for the evaluation of the trim equations.

Wake Geometry Loop

The third and innermost loop is called the wake geometry loop, and adjusts the

geometry of the vortex wake to make it consistent with the free wake inputs. As

illustrated in Figure 3.4 this loop is entirely contained within the free wake model

and consequently all of the inputs to the free wake model, including the bound

circulation, are held fixed within this loop.

The initial wake geometry used to start the loop is taken as the final wake

geometry from the previous time the loop was evaluated. For the very first iteration

of the wake geometry loop in the calculation of a trim solution, the vortex wake is

taken to have an undistorted helical structure. A better strategy is to used the final

wake geometry from a previous trim case at a similar speed, if such a wake geometry

is available.

The convergence criterion for this loop has been slightly modified, compared

with that of Ref. [74] and mentioned in Section 2.9. The free wake model originally

used an undistorted helical wake as its starting point and used the change in wake
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geometry over the first iteration as the basis for convergence. Thus the wake was

considered converged when the ratio of the wake geometry change for the current

iteration to that of the first iteration fell below a certain tolerance (Eqn. (2.333)).

This is not appropriate for the current application as it would be computationally

very expensive to start the wake geometry loop with an undistorted helical wake

each time.

The convergence criterion which is currently used is based on the absolute value

of the change in wake geometry for the current iteration. This is more appropriate

than the previous convergence criteria since the starting wake geometry is different

each time the loop is evaluated and may already represent a converged wake solution.

The root mean square (RMS) change in the wake geometry between successive wake

geometry iterations, as calculated in the free wake model, is given by Eqn. (2.332):

(RMS)n =
1

jmaxkmax

√√√√√ jmax∑
ψ:j=1

kmax∑
ζ:k=1

(Frnj,k − Frn−1
j,k )2 (3.52)

where jmax is the number of blade azimuthal steps in one rotor revolution and kmax is

the number of collocation points used to describe each of the trailed vortex filaments.

The loop is considered converged when the value of (RMS)n falls below a pre-

assigned tolerance. Finally the inflow distribution is calculated with the converged

wake geometry and returned to the circulation loop.

3.3 State vector corresponding to the trim solu-

tion

Once the trim solution has been determined using the non-linear equation solver,

the vectors of states and controls can be calculated. Both of these vectors are

calculated using a combination of the trim solution x and the flight condition from

which the trim was defined. The vectors of states and controls are required as the
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starting point for the calculation of time histories by direct numerical integration of

the equations of motion and for the extraction of the linearized models.

Since the equations of motion are formulated in the rotating frame of reference,

the state vector is also required in the rotating frame. The calculation of the state

vector in the rotating frame is thus defined with respect to a reference azimuth

angle, ψREF . This angle is taken to be the azimuthal location of a reference blade

and is termed the reference azimuth angle. The locations of all other blades can be

determined from this reference azimuth angle.

For the baseline case when the free wake model is not included, the state vector

includes information about the inflow distribution over the main rotor disk, as well

as about the blade and body motions. The state vector in the rotating frame can be

partitioned into a rigid body part, an inflow part and a main rotor part, as follows:

y =




yB
yI
yR


 (3.53)

The rigid body part of the state vector yB contains the state variables associated

with the motion of the rigid body of the aircraft and are not dependent on the

reference azimuth angle at which the state vector is defined. As with the rigid body

portion of the trim vector, the tail rotor inflow is included in the rigid body portion

of the state vector for convenience. This rigid body part takes the form:

yB = [u v w p q r φF θF ψF λt]
� (3.54)

These components are determined from the rigid body part of the trim vector,

xR and the flight condition from which the trim solution was calculated, namely the

velocity, V , the flight path angle, γ, and the turn rate, ψ̇. The velocity components

along the body axes are obtained from

u = V cosαF cos βF (3.55)
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v = V sin βF (3.56)

w = V sinαF cos βF (3.57)

the angular velocities p, q, and r about the body axes can be obtained

p = −ψ̇ sin θF (3.58)

q = ψ̇ sinφF cos θF (3.59)

r = ψ̇ cosφF cos θF (3.60)

The pitch and roll Euler angles of the fuselage in the state vector, θF , φF , are

the same as those in the trim vector and are directly available. As for the Euler

yaw angle, ψF , the value is arbitrary since it is defined with respect to the inertial

coordinate system; in the present study it is taken to be zero. The value of the tail

rotor inflow, λt, in the state vector is the same as that in the trim vector.

The main rotor portion of the state vector yR contains modal coefficients for the

individual main rotor blades and their time derivatives; these are dependent on the

azimuth angle. For a four-bladed rotor, the main rotor portion of the state vector

takes the form:

y(ψi)R = [q1
1 q1

2 q1
3 q1

4 q̇1
1 q̇1

2 q̇1
3 q̇1

4 (3.61)

. . . qNm
1 qNm

2 qNm
3 qNm

4 q̇Nm
1 q̇Nm

2 q̇Nm
3 q̇Nm

4 ]�

in which qki and q̇ki are the generalized displacement and velocity coefficients of the

i-th blade for the k-th normal mode in the rotating frame at azimuth angle, ψi.

These states are reconstructed from the Fourier series expansions at trim, that

is:

qki = qk0 +
Nh∑
j=1

(qkjc cos jψi + qkjs sin jψi) k = 1, 2, . . . , Nm (3.62)

q̇ki = Ω
Nh∑
j=1

(−qkjc sin jψi + qkjs cos jψi) k = 1, 2, . . . , Nm (3.63)
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where the superscript k refers to the k-th mode in the modal coordinate transfor-

mation and the subscript i is the blade number. It should be mentioned that the qi

and q̇i quantities referring to the displacement and velocity modal quantities of the

i-th blade, and shown in the left hand side of Eqs. (3.62) and (3.63), are a function

of the azimuth angle of the blade, whereas the q0, qjc and qjs quantities referring to

the Fourier series coefficients of the expansion of the generalized modal coordinates,

and shown in the right hand side of Eqs. (3.62) and (3.63), are constant for a given

trim solution and are not a function of azimuth angle.

The calculation of the blade states depends on the azimuth angle of the blade

under consideration. The azimuth angle of the current blade, the i-th blade, is

calculated with respect to the reference azimuth angle using:

ψi = ψREF +
2π(i− 1)

Nb

(3.64)

where the reference blade is blade number 1 and the other blades are numbered 2,

3 and 4 in the counter clockwise direction. Nb is the number of main rotor blades.

The inflow part of the state vector yI contains the inflow coefficients for the

dynamic inflow model, which are not a function of the azimuth angle at which the

state vector is defined. Further the inflow coefficients in the state vector are the

same in number and distribution as those in the inflow portion of the trim vector

xI (Eqn. (3.11)). So the inflow portion of the state vector is as follows:

yI = xI =




λ0

λs
λc


 (3.65)

For the modified flight dynamics model, the free wake is used to provide the

vortex wake geometry and main rotor inflow. The state vector no longer contains

the inflow part and is made up of only a rigid body part and a main rotor part, as
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follows:

y =

{
yB
yR

}
(3.66)

The rigid body and main rotor parts of this state vector are the same as those

for the baseline case with the dynamic inflow model. Thus the state vector for the

modified flight dynamics model is smaller than for the baseline case since it does

not include any inflow coefficients.

The vector of controls is the same for the baseline case and the case with the

free wake model and is as follows:

u = [θ0 θ1c θ1s θt θ̇0 θ̇1c θ̇1s]
� (3.67)

The main and tail rotor controls in the control vector are the same as those in

the rigid body portion of the trim vector. The derivatives of the controls in the

control vector are taken to be zero for trim since the controls themselves are fixed

for trim.

153



Figure 3.1: Geometry of a helicopter in a steady coordinated turn.
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Figure 3.2: Schematic of the baseline trim procedure with the dynamic inflow model
included.
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Figure 3.3: Inputs and outputs of the free wake model.
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provide the main rotor inflow.
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Chapter 4

Solution Methods: Linearization
of the Equations of Motion

This chapter presents the methods used to extract a linearized model of the coupled

rotor-fuselage system. The linear model describes the small perturbation motion

about a given equilibrium position. Although the procedure is valid for a lineariza-

tion about an arbitrary flight condition, only trimmed equilibrium conditions are

used in this study.

When the free wake model is not included, the state vector consists of velocities,

attitudes and angular rates of the helicopter, generalized coordinates that describe

rotor dynamics, and main rotor and tail rotor inflow states. When the free wake

model is included, the main rotor inflow states are dropped. Therefore, inflow and

wake dynamics are neglected.

This chapter is divided into two main parts. The first describes the baseline

linearization procedure for the case in which a free wake model is not included.

The second describes in detail the changes in the formulation and solution methods

required by the incorporation of the free wake model into the linearization procedure.
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4.1 Linearization of baseline equations of motion

The linearized model is based on a first-order Taylor series expansion of the non-

linear system f of differential equations about a trimmed equilibrium position. The

equilibrium position is defined by appropriate values of the state vector ytrim and of

the control vector utrim. Because of the inclusion of rotor dynamics, the state vec-

tor ytrim in the rotating frame has time-varying coefficients, even in steady, straight

flight. This is also true in hover as there is some time variation due to the small

amounts of longitudinal and lateral cyclic pitch necessary to maintain trim. The

state and control vectors are obtained from the trim solution as described in Sec-

tion 3.3. The state vector is in the rotating frame and is thus defined with respect

to an azimuth angle ψk.

The Taylor series expansion of the non-linear equations f about a trim condition

is

∆ẏ =

[
∂f

∂y

]
y=ytrim

∆y +

[
∂f

∂u

]
u=utrim

∆u + O
(
‖∆y‖2, ‖∆u‖2

)
(4.1)

where the perturbation state and control vectors are defined as follows:

∆ẏ = ẏ − ẏtrim (4.2)

∆y = y − ytrim (4.3)

∆u = u − utrim (4.4)

The perturbation matrices in Equation (4.1) are obtained using finite difference

approximations:

[
∂f

∂y

]
y=ytrim

≈
[

∆f

∆y

]
y=ytrim

= A (4.5)

[
∂f

∂u

]
u=utrim

≈
[

∆f

∆u

]
u=utrim

= B (4.6)
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Therefore the linearized model in the rotating frame has the form:

∆ẏ = A∆y + B∆u (4.7)

The state matrix A and the control matrix B are calculated using central dif-

ference approximations. The generic element aij of the matrix A at azimuth ψk is

given by:

aij(ψk) =
fi(ytrim(ψk) + δyj,utrim, ψk) − fi(ytrim(ψk) − δyj,utrim, ψk)

2δyj
(4.8)

where δyj is a vector that contains all zeros, except for the j-th element which

contains the value of a small perturbation δyj. Similarly, the generic element bij of

the control matrix B at azimuth ψk is given by:

bij(ψk) =
fi(ytrim(ψk),utrim + δuj, ψk) − fi(ytrim(ψk),utrim − δuj, ψk)

2δuj
(4.9)

where δuj is a vector that contains all zeros, except for the j-th element which

contains the value of the small perturbation δuj.

It should be noted that the rotor equations of motion (Eqn. (3.12)) are formulated

in a rotating frame, namely the hub fixed, rotating coordinate system. Thus, the

rotor portions of the vectors y and ẏ, of their perturbations ∆y and ∆ẏ, and of the

state and control matrices A and B are also defined in a rotating frame at a specific

azimuth angle ψk.

The rotor portions of the state vector and of the linearized matrices are trans-

formed to the body fixed non-rotating frame, resulting in a linearized system that

is written entirely in a non-rotating system. This system can be indicated with the

following notation:

∆ẏNR = ANR∆yNR + BNR∆u (4.10)
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where the state ANR and control BNR matrices in the non-rotating frame are

calculated using the multiblade coordinate transformation according to Eqs. A.10

and A.11 for azimuth angle ψk.

The control vector is already defined in a fixed system and needs no further

transformation. The state vector in the non-rotating frame yNR is defined for a

four-bladed rotor as:

yNR(ψ) = [u v w p q r φF θF ψF λ0 λs λc λt q
1
0 q1

1c q
1
1s q

1
2 q̇1

0 q̇1
1c q̇

1
1s q̇

1
2 (4.11)

. . . qNm
0 qNm

1c qNm
1s qNm

2 q̇Nm
0 q̇Nm

1c q̇Nm
1s q̇Nm

2 ]�

where qk0 , q
k
1c, q

k
1s, and qk2 are respectively the collective, longitudinal, lateral, and

differential portion of the generalized coordinate of the k-th rotor mode. It is also:

∆yNR = yNR − yNRtrim
(4.12)

∆ẏNR = ẏNR − ẏNRtrim
(4.13)

In transforming the linearized model from the rotating frame to the non-rotating

frame, the multiblade coordinate transformation reduces the time dependency but

does not completely remove it. For this reason, the matrices ANR and BNR are

calculated over one rotor revolution, at a number of equidistant azimuth angles,

and then averaged to obtain a linear, time-invariant system.

The choice of azimuth angles, ψk, depends on the helicopter configuration. For

the case with four dissimilar blades, averaging over a full rotor revolution is required

for the calculation of the linearized model. However, for the case with four identical

blades considered in this study, the linearization need only be carried out over one

quadrant. Therefore, the azimuth angles are chosen as,

ψk =
kπ

2N
(4.14)
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where N is the total number of linearized models calculated in the rotating frame.

This final linearized system is represented by the matrices Aavg and Bavg as

follows:

∆ẏNR = Aavg∆yNR + Bavg∆u (4.15)

The procedure for the calculation of the state Aavg and control Bavg matrices,

(Eqn. (4.15)) is shown schematically in Figure 4.1. The various steps of the proce-

dure are listed below, to allow a comparison with the procedure used when the free

wake is present:

1. The calculation of the linearized model is started from a trim vector x corre-

sponding to the flight condition about which the linearization is desired. This

trim vector need not represent an actual trim solution; however, for all of the

results in the present study trimmed flight conditions are used. So the trim

vector used for a given flight condition is that resulting from the baseline trim

procedure described in Section 3.1.

2. For the current azimuth angle ψk in the azimuthal loop, the state y(ψk) and

control u vectors are obtained from the trim vector x as described in Sec-

tion 3.3. The reference azimuth angle ψREF used in the calculation of the

state vector is taken to be ψk, representing the azimuthal location of Blade 1.

3. Calculate the state matrix A(ψk) in the rotating frame using finite difference

approximations as shown in Eqn. (4.8). This involves a loop where each el-

ement of the state vector in the rotating frame is positively and negatively

perturbed to build the state matrix column by column as the loop progresses.

The state matrix is entirely defined after the positive and negative perturba-

tions of all of the state variables are made.
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4. Convert the perturbation matrix A(ψk) to the fixed frame using a multiblade

coordinate transformation (Eqn. (A.10)) to obtain ANR(ψk).

5. Calculate the control matrix B(ψk) in the rotating frame using finite difference

approximations as shown in Eqn. (4.9). This involves a loop where each ele-

ment of the control vector is positively and negatively perturbed to build the

control matrix column by column as the loop progresses. The control matrix

is entirely defined after the positive and negative perturbations of all of the

control variables are made.

6. Convert the perturbation matrix B(ψk) to the fixed frame using a multiblade

coordinate transformation (Eqn. (A.11)) to obtain BNR(ψk).

7. Repeat Steps 2 through 6 for each azimuth angle ψk. The result is a set

of state and control matrices in the non-rotating frame, one at each of the

azimuth angles used.

8. The state perturbation matrices ANR(ψk) in the non-rotating frame are aver-

aged element by element to obtain the final linearized state matrix, Aavg, for

the desired flight condition. The control perturbation matrices BNR(ψk) are

also averaged element by element to obtain the final linearized control matrix,

Aavg, for the same flight condition.

It should be noted that this linearization procedure is slightly different from that

presented earlier in Refs. [5, 33]. The difference is in the way that the state vector

is calculated at each azimuth angle used in the averaging of the state and control

matrices. Previously, the linearization procedure started from the state vector in

the rotating frame at a reference azimuth angle of zero, and the state vector was

updated at each successive azimuth angle by integrating the equations of motion
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in time to the new reference azimuth angle. There are two reasons why this was

changed in favor of calculating the state vector at each azimuth angle directly from

the trim vector. The first is that the ODE solver used in the time integration here

cannot easily be adapted during the linearization when the free wake model is used

to provide the main rotor inflow. Second, as the time integration is performed, the

state vector no longer strictly represents a trimmed condition, since the equations

of motion may be unstable in certain flight conditions. This is not an issue when a

true trim condition is used to start the linearization procedure since the deviation

from trim after integrating for one rotor revolution will be negligible. However if

we were analyzing a flight condition that did not represent trim, then the change in

the state vector after integrating for one rotor revolution may significantly change

the results.

4.2 Linearization of equations of motion with free

wake model

The maneuvering free wake model used in this study is a quasi-steady model that

is rigorously valid only in steady, i.e., trimmed, flight conditions. In fact, it is based

on the assumption that the blade motion is periodic, and that the hub moves with

constant linear and angular velocities. When the rotor or the hub motions are

perturbed from the trimmed position, as is the case in the linearization process, the

wake vortices do “move” to positions consistent with the new rotor or hub motion,

but this apparent transient behavior is due to the relaxation algorithm, and therefore

it is of a numerical, rather than a physical nature.

Because the wake is quasi-steady, it does not include inflow dynamics and does

not add states to the linearized system. As a consequence, it does not add poles

or zeros to the small perturbation dynamics as the dynamic inflow model does. It
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does, however, modify the state and control matrices by modifying the aerodynamic

loads. Furthermore, by changing trim, it changes the equilibrium position about

which the governing equations are linearized. This causes an additional change in

the state and control matrices because the equations are nonlinear.

With the free wake model used to supply the main rotor inflow, the circulation

loop, described for trim, must be evaluated each time a state or control is perturbed.

If the method used was the same as for the baseline case, where perturbations are

made in the rotating frame, the total number of evaluations of the circulation loop

would be 2(Ny+Nu)N if central differencing is used. The quantity N is the number

of azimuthal locations, Ny is the number of states and Nu is the number of controls.

An alternative to the expense of making the perturbations in the rotating frame

and evaluating the circulation loop each time is to make the perturbations in the

fixed frame. In the fixed frame, each state and control variable is perturbed only once

positively and once negatively in the calculation of the linearized model. Because

the circulation loop is evaluated only when a variable is perturbed, the number of

circulation loop evaluations required is reduced to 2(Ny + Nu) from 2(Ny + Nu)N .

Since the evaluation of the circulation loop is the most computationally expensive

portion of the model, the total time to obtain the linearized model is essentially

reduced by a factor of about N .

The circulation loop used in the calculation of the linearized model is essentially

the same as that for trim, but with a couple of changes. For trim, the azimuth angles

in the flight dynamics model are obtained using a Gaussian distribution since an

azimuthal integration is used. For the linearization, there is no restriction on the

azimuth angles or azimuthal spacing, so these are chosen to be the same as those

used with the free wake model. Thus no interpolation is required to convert the

bound circulation or rigid blade flapping angles from the flight dynamics model to
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the free wake model or to convert the inflow from the free wake model to the flight

dynamics model. This makes the inflow-circulation loop a little simpler, but does

not decrease the computational time required for the loop.

The procedure for the calculation of the state matrix Aavg (Eqn. (4.15)) is shown

schematically in Figure 4.2. The various steps of the procedure with the free wake

model included are as follows:

1. Reconstruct from the trim vector x the state vector in the non-rotating frame

yNR and the control vector u.

2. This is the start of the state variable loop where the state number is indicated

by the variable j. Initially j = 1, indicating that the loop starts at the first

state variable.

3. A positive perturbation is made to the j-th state. yj+NR indicates that the

j-th state variable is perturbed in the positive direction with all other state

variables remaining unchanged.

4. With the current state vector in the non-rotating frame yj+NR, the wake geom-

etry and corresponding inflow distribution is calculated using the circulation

loop previously described. This gives the inflow distribution over the entire

rotor disk corresponding to the positively perturbed state vector.

5. This is the azimuth angle loop, where each of the azimuth angles ψk at which

the inflow is available are treated in-turn. At the k-th azimuth angle, the

multiblade coordinate transformation is used to calculate the state vector in

the rotating frame as follows:

yj+R (ψk) = T(ψk)y
j+
NR (4.16)
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where the subscript R is added to clearly indicate that the vector, yj+R (ψk),

is in the rotating frame, although the addition of this subscript is not strictly

necessary. T(ψk) is the multiblade coordinate transformation matrix (A.5).

This perturbed state vector in the rotating frame yj+R (ψk) is used to evaluate

the equation of motions using the inflow distribution corresponding to the

perturbed state vector at azimuth angle ψk. This provides the time derivative

of the state vector in the rotating frame, which is represented as follows:

f j+R (ψk) = f(yj+R (ψk),u;ψk) (4.17)

This derivative vector is converted to the non-rotating frame by applying the

multiblade coordinate transformation given in Eqn. A.14 as follows:

f j+NR(ψk) = Td1f
j+
R (ψk) + Td2y

j+
R (ψk) (4.18)

where f j+NR(ψk) is the derivative state vector in the non-rotating frame at

the k-th azimuth angle for a positive perturbation in the j-th state variable.

Td1 and Td2 are the multiblade coordinate transformation matrices given by

Eqs. (A.15) and (A.16) respectively.

The result of this azimuth angle loop is a set of derivative state vectors cor-

responding to the positive perturbation of the j-th state variable, one at each

azimuth angle ψk.

6. Apply a negative perturbation to the j-th state yj−NR in the non-rotating frame

and calculate the inflow distribution using the circulation loop with the new

state vector. This step is similar to Steps 3 and 4 combined, but with a

negative perturbation of the j-th state instead of a positive perturbation. This

step produces the inflow distribution over the rotor disk corresponding to the

negatively perturbed state vector.
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7. Loop through the azimuth angles ψk at which the inflow is available, computing

the derivative vector in the non-rotating frame f j−NR(ψk) at each. The procedure

is the same as that in Step 5 but with the negatively perturbed state vector.

At each azimuth angle, the rotating frame state vector is calculated

yj−R (ψk) = T(ψk)y
j−
NR (4.19)

and the equations of motion are evaluated to obtain the vector of derivatives

f j−R (ψk) = f(yj−R (ψk),u;ψk) (4.20)

and finally the derivative vector is calculated in the non-rotating frame using

a coordinate transformation

f j−NR(ψk) = Td1f
j−
R (ψk) + Td2y

j−
R (ψk) (4.21)

The result of this azimuth angle loop is a set of derivative state vectors corre-

sponding to the negative perturbation of the j-th state variable, one at each

of the azimuth angles ψk.

8. The j-th column of the average state vector in the non-rotating frame Aavg

is calculated using the derivative vectors for the positive and negative pertur-

bations. This column corresponds to the number of the state variable that is

being perturbed. Considering the j-th state variable, the j-th column of the

state matrix is given by:

Aj
avg =

1

N

N∑
k=1

f+
NRk(ψk) − f−NRk(ψk)

2δyj
(4.22)

where Aj
avg represents the j-th column of the state perturbation matrix in the

non-rotating frame.
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9. The variable j is incremented and Steps 3 through 8 are repeated, each time

producing one column of the state perturbation matrix Aj
avg. This loop is

continued until the entire state perturbation matrix Aavg has been constructed.

The control perturbation matrix is calculated in the same way as the state per-

turbation matrix except that the controls are perturbed instead of states in Steps 3

and 6. Also the control perturbation matrix in the non-rotating frame is build one

column at a time in Step 8 as follows:

Bj
avg =

1

N

N∑
k=1

f+
NRk(ψk) − f−NRk(ψk)

2δuj
(4.23)

The results of this procedure is a linearized model that has the effects of the free

wake model on the inflow distribution included implicitly. The linearized model has

the form:

∆ẏNR = Aavg∆yNR + Bavg∆u (4.24)

169



State Perturbation Loop

Trim Solution
y(ψ=0, u)

Loop Through
Azimuth  Angles ψk

Derivatives Using
Central Differences

State Matrix
AR(ψk)

State Matrix - Fixed
ANR( ψk)

Control Matrix-Fixed
BNR(ψk)

Control Matrix
BR(ψk)

Fixed Frame Matrices
ANR(ψk)  BNR( ψk)

Derivatives Using
Central Differences

Average Models
In Fixed Frame

Linear Model
Aavg  Bavg

Control Perturbation Loop

Azimuth Angle Loop

Figure 4.1: Schematic of the baseline linear model extraction procedure with the
dynamic inflow model.
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Figure 4.2: Schematic of linearization procedure with the free wake model used to
provide the inflow distribution.
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Chapter 5

Solution Methods: Time
Integration

5.1 Time integration of baseline equations of mo-

tion

The time integration of the baseline equations of motion involves the calculation

of the dynamic response results for a given set of initial conditions and controls

that are applied during the integration. There are two methods by which the time

histories are calculated. The first is to integrate the full set of non-linear equations

with respect to time. The second is a simpler approach where the time history is

calculated by performing the integration using the linearized equations of motion,

which is calculated at the flight condition from which the time history is required;

in this case the results are obviously only valid for small perturbation motion about

a trimmed condition.

5.1.1 Integration of non-linear equations of motion

As the equations of motion are represented in first-order state space form,

ẏ = f(y,u; t) (5.1)

172



an ordinary differential equation solver is used to integrate the non-linear equations

numerically. A variable step, variable order Adams-Bashforth ordinary differential

equation solver is used for this numerical integration. In this study, the system of

equations is integrated from an initial condition corresponding to a trimmed heli-

copter state. This procedure is shown schematically in Figure 5.1. The simulation

is started from the trim condition and the non-linear equations of motion are inte-

grated with respect to time until the simulation is complete. This figure also shows

that internally, the ordinary differential equation solver evaluates the equations of

motion with a variable step size.

The integration is performed with respect to time and produces the time histories

of all of the state variables for a prescribed set of control inputs. Typically the control

inputs would include the time histories of one or more of the pilot or swashplate

controls. In addition to prescribing the controls, the time histories of one or more of

the state variables themselves can be specified. For instance in a lateral maneuver,

the actual flight test roll rate could be prescribed along with the controls, when

looking at the pitch rate, or the off-axis response, of the helicopter.

5.2 Time integration of equations of motion with

free wake

With the free wake model included, the system of Eqs. (5.1) no longer contains

equations for inflow dynamics. Instead a steady-state main rotor inflow is provided

by the free wake model at various stages of the time integration. The same two

methods that were used in the baseline case are used here to calculate the time his-

tories with the free wake model; namely integration of the full non-linear equations

of motion and integration of a linearized set of equations.
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5.2.1 Numerical integration of the non-linear equations of
motion

Again the Adams-Bashforth variable step, variable order ordinary differential equa-

tion solver is used to integrate the equations of motion, with the free wake model

now providing the inflow distribution for the main rotor.

The variable step Adams-Bashforth algorithm must be able to evaluate the equa-

tions of motion at any azimuth angle. The specific values of azimuth angle used are

selected by the integration algorithm itself and are not known prior to the integra-

tion. This raises an issue with the free wake model since the inflow is only available

at a specific set of azimuth angles. For the trim calculations, the azimuthal points

are given at the points required by Gaussian quadrature, and although the step

size is not uniform, the points are known in advance and the inflow is interpolated

accordingly. For the linearized model calculations, the equations of motion are eval-

uated at a set of evenly spaced azimuth angles which are the same as the azimuth

angles used in the free wake model and no interpolation is required. This issue does

not arise with dynamic inflow since the dynamic inflow equations are formulated in

the rotating frame and can be evaluated at any azimuth angle. With the free wake

model used in the time integration, a linear interpolation of the inflow is performed

as a function of the azimuth angle.

The free wake model used in this study is a steady-state wake model based on

a relaxation technique, so it is strictly only valid for steady-state trim conditions.

This means that when the free wake model is used to calculate the inflow at a

certain point in the maneuver, this point is assumed to represent a steady-state

condition. The free wake model iterates to find a steady-state wake geometry and

uses this to calculate a steady-state inflow distribution. Therefore there are no

dynamics associated with the wake or inflow, and whenever the free wake model is
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evaluated there is an instantaneous change in the wake geometry and subsequent

inflow distribution.

With respect to the time integration, this lack of inflow dynamics with the free

wake means that the inflow can only be updated at specific points in the maneuver.

The question is: how often should the inflow be updated during the time integration?

At one extreme, the free wake inflow distribution is calculated only at the start of the

time integration from the trim condition and is held fixed for the entire maneuver.

Thus the maneuver-induced wake distortions and their subsequent effect on the

inflow are not present in the calculated dynamic response. At the other extreme,

a new inflow distribution is calculated at each time step of the integration. Thus

any changes in the state variables or controls during the maneuver would lead to

instantaneous changes in the wake geometries and inflow. This scheme would also

be prohibitively expensive as far as CPU time is concerned because of the number

of times the inflow distribution would have to be calculated for a realistic maneuver.

For the dynamic response results presented in this study the inflow distribution

is updated using the free wake model at the start of each rotor revolution. There-

fore, the total number of times that the inflow is calculated is equal to the total

number of rotor revolutions for the particular maneuver. This method is illustrated

in Figure 5.2 and the procedure is as follows:

1. The simulation is started from a trimmed flight condition that is represented

by the trim vector xtrim (Eqn. (3.40)). The state vector in the rotating frame

at an azimuth angle of zero y(ψREF = 0) is calculated using the method

presented in Section 3.3.

2. The current states and controls of the helicopter are used to evaluate the

circulation loop, to give the steady-state inflow distribution over the main
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rotor disk. This implies that the current state of the helicopter is assumed

to represent a steady-state condition. The circulation loop is the modified

loop that was described in Section 4.2 for the calculation of a linearized set of

equations.

3. The inflow distribution is now held fixed and used to integrate the non-linear

equations of motion for a single rotor revolution, using the prescribed control

inputs during the particular rotor revolution. During this rotor revolution

control inputs and changes in helicopter states have no effect on the wake

geometry because the inflow is held fixed and consequently on the inflow dis-

tribution.

4. Using the new state of the helicopter, Steps 2 and 3 are repeated for each rotor

revolution until the simulation is complete.

As with the baseline case, the time histories of one or more states in addition to

the controls can be prescribed for the time integration.

176



Start
Simulation

Variable
Step

Integrate EOM
Using DE/STEP

RHS :  Equations
of Motion

Simulation
Complete

Figure 5.1: Schematic of the baseline time integration procedure with the dynamic
inflow model.
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Figure 5.2: Schematic of the time integration procedure with the free wake model
included.
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Chapter 6

Aircraft Modeling Configurations

Two aircraft configurations are used in this study. The first is the Eurocopter BO-

105 that incorporates a hingeless rotor system. The second is the Sikorsky UH-60A

that uses an articulated rotor system. This section describes the general physical

attributes of these helicopters and the modeling configurations used in the current

study.

6.1 BO-105 configuration

The BO-105 has a hingeless soft in-plane main rotor. This configuration results in

an equivalent hinge offset of about 14%, which produces a high control power and

bandwidth, making the helicopter highly maneuverable. The high relative hinge

offset also contributes to high cross couplings between the longitudinal and lateral-

directional dynamics of the helicopter. The results presented in this study for the

BO-105 helicopter are with the flight control system turned off (bare airframe con-

figuration).

Table 6.1 contains the configuration of the BO-105 soft-in-plane hingeless rotor

helicopter used in this study. Results are presented for a gross weight of 4,850

lbs. and at altitudes of 250 and 3000 feet. Assuming a standard atmosphere, these
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altitudes correspond to CT/σ values of 0.070 and 0.076 respectively.

The main rotor blades are modeled using a set of natural mode shapes that are

calculated using the finite element technique as detailed in Section 2.4.7. In the

calculation of the normal modes the geometric pitch angle at the root of the blade

is set to zero. The cross-sectional centers of gravity and shear of the blade are

coincident at the quarter-chord location, which effectively decouples torsion from

the flap and lag degrees of freedom when considering the structural and inertial

contributions. The presence of the small amount of structural twist of the blade

introduces a small coupling between the flap and lag bending modes. Four finite

elements of equal spanwise length are nominally used in the calculation of the natural

blade modes, although the effect of the number of finite elements is investigated with

the use of eight finite elements in some specific calculations. The mass and stiffness

distributions of the blade are assumed to be uniform, and their values are chosen

so that the fundamental flap, lag and torsion frequencies match those presented in

Ref. [79]. Table 6.3 lists the modes that are included in the current analysis for the

BO-105, generated using four and eight finite elements, including the modal natural

frequencies for the current analysis and those from Ref. [79] (which are based on

the true, nonuniform mass and stiffness distributions), and the type of the mode.

Figures 6.1 through 6.7 show the seven lowest frequency natural mode shapes for

the BO-105, generated with four finite elements and uniform mass and stiffness

distributions.

The numerical results for the BO-105 generated for this study are obtained with

two different blade models. The first is a simple blade model that includes only

the fundamental elastic flap mode that has a natural frequency of 1.1253/rev and is

shown in Figure 6.2. The second blade model is a refined blade model that includes

the first seven elastic blade modes with the lowest natural frequencies. This refined
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blade model includes three flap modes, two lag modes and two torsional modes

(Figs. 6.1-6.7).

Figures 6.8 through 6.14 show a comparison between the first seven elastic blade

modes with four and eight finite elements. These figures show that there is very

little difference between the two sets of blade modes with the different numbers of

finite elements. The effect of the number of finite elements on the trim results for

the BO-105 is investigated in Section 7.1.6.

6.2 UH-60A configuration

The UH-60A Black Hawk helicopter has a fully-articulated 4-bladed rotor with a

radius of 26.83 feet and a forward shaft tilt of 3 degrees. The blade airfoil section is

the SC 1095 and the tip is swept by 20 degrees over the outboard most 1.90 feet of

the radius, although the swept tip region is not included in this study and the blade

is assumed to be straight. The hinge offset is 1.25 feet and the cuff extends outboard

another 3.83 feet. The blade has a chord length of 1.75 feet and an equivalent linear

twist of about -18 degrees, although the blade is twisted only outboard of cuff. The

actual blade twist from the root to tip is -14 degrees (without the inclusion of the

swept tip). Its design rotor speed is 27 rad/sec or 260 RPM. The tail rotor has a cant

angle of 20 degrees, and therefore it generates relatively strong couplings between

longitudinal and lateral directional dynamics. It uses the same airfoil section and

blade twist as the main rotor, but with a smaller radius (5.5 feet) and a smaller chord

(0.81 feet). The horizontal stabilizer uses the NACA 0014 airfoil. Its incidence is

adjustable by the flight control system as a function of speed. It has an area of 45

square feet and an aspect ratio of 4.6. The vertical stabilizer uses the NACA 0021

airfoil. It has a surface area of 32.3 square feet and an aspect ratio of 1.92.
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Table 6.2 contains the configuration of the UH-60A articulated rotor helicopter

used in this study. Results are presented at a gross weight of 16,000 lbs. and at an

altitude of 5250 feet. Many of the UH-60 specific parameters and non-linear func-

tions have been adapted for use with this model from an existing UH-60 simulation

model [3]. Further details of the implementation of the UH-60A helicopter can be

found in the GENHEL theory manual [3].

For the numerical results for the UH-60A generated for this study, two blade

models are used. The first is a simple blade model that includes the rigid lag mode

of frequency 0.2680/rev (Fig. 6.15) and the rigid flap mode of frequency 1.0352/rev

(Fig. 6.16). The second blade model is a refined blade model that includes the first

six blade modes, shown in Figures 6.15 through 6.20, together with the correspond-

ing natural frequencies.
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MAIN ROTOR

Number of blades 4
Radius R, ft 16.12
Blade chord c, ft 0.89
Rotational speed Ω, rad/sec 44.4
Tip speed Vtip, ft/sec 715.73
Longitudinal mast tilt iθ, deg -3.0
Airfoil section NACA23012
First airfoil section, ft 3.61
Blade precone βP , deg 2.5
Linear blade twist θTW , deg -6.2
Solidity σ 0.07
Lock number γ at 250 feet 5.54
Lock number γ at 3000 feet 5.11
Control phase shift ∆SP ,deg -10.0

FUSELAGE

Gross weight w, lbs 4850.17
Pitch inertia Iyy, lbs-ft2 3667.92
Roll inertia Ixx, lbs-ft2 1056.17
Yaw inertia Izz, lbs-ft2 3023.20
Ixz, lbs-ft2 486.80
CG below hub, ft 3.15

TAIL ROTOR

Number of blades 2
Radius Rtr, ft 3.18
Blade chord ctr, ft 0.59
Rotational speed Ωtr, rad/sec 233.0
Tip speed, ft/sec 726.21
Rotor shaft tilt, deg -4.2

Table 6.1: Main parameters of the BO-105 helicopter configuration.
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MAIN ROTOR

Number of blades 4
Radius R, ft 26.83
Blade chord c, ft 1.75
Rotational speed Ω, rad/sec 27.0
Tip speed Vtip, ft/sec 724.41
Longitudinal mast tilt iθ, deg -3.0
Airfoil section SC 1095
First airfoil section, ft 5.08
Blade precone βP , deg 0.0
Linear blade twist θTW , deg -18.0
Solidity σ 0.083
Lock number γ 5.11
Control phase shift ∆SP ,deg -9.7

FUSELAGE

Gross weight w, lbs 16000.00
Pitch inertia Iyy, lbs-ft2 38512.0
Roll inertia Ixx, lbs-ft2 4659.0
Yaw inertia Izz, lbs-ft2 36796.0
Ixz, lbs-ft2 1882.0

TAIL ROTOR

Number of blades 4
Radius Rtr, ft 5.5
Blade chord ctr, ft 0.81
Rotational speed Ωtr, rad/sec 124.62
Tip speed, ft/sec 685.41
Rotor shaft cant angle, deg 20.0

Table 6.2: Main parameters of the UH-60A Black Hawk helicopter configuration.
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Mode Mode Frequency (/rev)
Number Type Ref. [79] 4 FEMs 8 FEMs

1 1st lag 0.732 0.7316 0.7312
2 1st flap 1.125 1.1253 1.1247
3 1st torsion 3.176 3.1806 3.1805
4 2nd flap 2.780 3.4141 3.4108
5 2nd lag 4.510 4.4860 4.4820
6 3rd flap 5.007 7.6743 7.6342
7 2nd torsion 6.349 9.1375 9.1269

Table 6.3: BO-105 blade natural frequencies
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Figure 6.1: BO-105 first elastic lag mode. Frequency = 0.7316/rev.
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Figure 6.2: BO-105 first elastic flap mode. Frequency = 1.1253/rev.
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Figure 6.3: BO-105 first elastic torsional mode. Frequency = 3.1806/rev.
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Figure 6.4: BO-105 second elastic flap mode. Frequency = 3.4141/rev.
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Figure 6.5: BO-105 second elastic lag mode. Frequency = 4.4860/rev.
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Figure 6.6: BO-105 third elastic flap mode. Frequency = 7.6743/rev.
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Figure 6.7: BO-105 second elastic torsional mode. Frequency = 9.1375/rev.
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Figure 6.8: BO-105 first elastic lag mode. Frequency = 0.7316/rev.
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Figure 6.9: BO-105 first elastic flap mode. Frequency = 1.1253/rev.

194



-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

D
is

pl
ac

em
en

t 
(N

on
-D

im
en

si
on

al
)

Blade Span (Non-Dimensional)

Lag - 4 FEMs

Torsion - 4 FEMs

Flap - 4 FEMs

Lag - 8 FEMs

Torsion - 8 FEMs

Flap - 8 FEMs

Figure 6.10: BO-105 first elastic torsional mode. Frequency = 3.1806/rev.
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Figure 6.11: BO-105 second elastic flap mode. Frequency = 3.4141/rev.
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Figure 6.12: BO-105 second elastic lag mode. Frequency = 4.4860/rev.
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Figure 6.13: BO-105 third elastic flap mode. Frequency = 7.6743/rev.
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Figure 6.14: BO-105 second elastic torsional mode. Frequency = 9.1375/rev.
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Figure 6.15: UH-60A first natural mode shape. Frequency = 0.2680/rev.
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Figure 6.16: UH-60A second natural mode shape. Frequency = 1.0352/rev.
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Figure 6.17: UH-60A third natural mode shape. Frequency = 2.8187/rev.
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Figure 6.18: UH-60A fourth natural mode shape. Frequency = 4.6516/rev.
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Figure 6.19: UH-60A fifth natural mode shape. Frequency = 5.1797/rev.
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Figure 6.20: UH-60A sixth natural mode shape. Frequency = 7.8886/rev.
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Chapter 7

Trim Results

This chapter presents the trim results in straight and level flight for the BO-105

and UH-60A helicopters and in steady turning flight for the UH-60A. A free-flight

trim procedure that considers the dynamics of the entire helicopter is used for the

numerical results presented in this chapter. The simulation results are compared

with flight test data where such data are available.

7.1 BO-105 Trim Results

The trim results presented in this section refer to the BO-105 helicopter with the

flight control system turned off (bare airframe configuration). The two blade mod-

eling configurations for the BO-105 described in Section 6.1 are used to represent

blade motion and flexibility. These are the simple blade model that includes only

the first elastic flap mode and the refined blade model that includes the first seven

blade modes with the lowest natural frequencies. It should be recalled that these

modes are calculated by assuming that the mass and stiffness distributions of the

blade are uniform and the center of gravity offset from the elastic axis of the blade

section is zero along the blade span. This effectively uncouples the torsional degrees

of freedom from the flap and lag degrees of freedom for the calculation of the blade
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modes in the absence of aerodynamic loads. The quasi-steady aerodynamic model

used for the calculation of main rotor aerodynamic loads does, however, introduce

pitch-flap coupling. The mutual interactions between the main rotor and fuselage

aerodynamic environments are neglected with both the dynamic inflow and free

wake models, although a simple model of main rotor downwash on the horizontal

tail is included with the dynamic inflow model in Section 7.1.5.

The flight test data used for comparison have been obtained from Ref. [80] and

were measured at an altitude of 3000 feet with a gross vehicle weight of 4850 pounds.

7.1.1 Effect of inflow and blade modeling

The effect of inflow and blade flexibility modeling on the various trim results are

shown in Figures 7.1 through 7.8. The results with the baseline flight dynamics

model are denoted with the “Dyn. inflow” legend indicating that the Pitt-Peters

model is used for the representation of inflow dynamics; recall that the inflow of

the Pitt-Peters model has a linear variation over the rotor disk. The results with

the new flight dynamics model that use the free wake inflow are denoted with the

“Free wake” legend. For these results, the resolution of the vortex wake ∆ψ is 5

degrees, the total length of each vortex filament is 720 degrees, and the initial tip

vortex strength is assumed to be equal to the maximum bound circulation along the

blade (CΓ = 1.0). The two blade models used in the generation of the numerical

trim results are the simple blade model with the first elastic flap mode only, denoted

with the “1 mode” legend and the refined blade model with the first seven elastic

blade modes, denoted by the “7 modes” legend.

Figure 7.1 shows the correlation for the collective pitch as a function of forward

speed. Considering first the results with the dynamic inflow model, with only the

first elastic flap mode to model blade flexibility, the main rotor collective is under-

207



predicted by about three to five degrees over the entire speed range. This is typical

of results with the Pitt-Peters dynamic inflow model, which tends to underpredict

the collective. With the refined blade model and dynamic inflow, the results are sig-

nificantly improved with a one degrees underprediction of the collective in the low

speed region which stretches to a two to three degree difference in the high speed

region. In looking at the effects of blade modeling, it is seen that the inclusion of

the refined blade model increases the main rotor collective required by about two

to three degrees over the entire speed range. This difference can be explained when

considering the blade elastic twist that is present with the refined blade model, but

not with the simple blade model. Figure 7.9 shows the elastic twist angle at the

blade tip as a function of azimuth angle in hover and at forward speeds of 60 and 120

knots. The dynamic inflow and refined blade models are used. The blade tip twist

using the simple blade model is not shown because no torsional degrees of freedom

are included, so the twist is zero. This figure shows that in hover there is a two

degree nose down elastic twist that is nearly independent of azimuth angle. This

nose down elastic twist requires an increase in the root collective pitch setting to

recover the same thrust as in the torsionally rigid rotor. As the speed increases, the

azimuthal variation in tip elastic twist becomes larger because of cyclic variations

in the blade aerodynamic environment. The average tip twist is, however, between

-2 and -3 degrees at each of the speeds considered, accounting for the 2 to 3 degree

higher collective required with the refined blade model over the simple blade model.

Notice that the baseline (or dynamic inflow) results include a tip loss correction,

according to which the outboard 3% of the blade does not generate aerodynamic

lift.

The results in Figure 7.1 are generated with the free wake model. In the low

speed region, the introduction of the free wake inflow model improves the correlation
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with flight test data with the simple blade model, however, with the refined blade

model the collective is over-predicted by between two and three degrees. As with

the dynamic inflow results, the differences in the free wake results with the simple

and refined blade models can be explained by the presence or absence of elastic twist

in the blade model. Figure 7.10 shows the blade elastic twist at the blade tip as a

function of azimuth angle, using the refined blade model in hover and at forward

speeds of 63 and 127 knots. The increase in collective associated with the refined

blade model again results from the blade tip twist. There is only a small variation

in the average tip twist with forward speed. At speeds above 40 knots, the results

with the free wake model and the simple blade model underpredict the main rotor

collective, as do the results with the refined blade model.

Now the dynamic inflow and free wake model results can be compared, and the

largest differences between the predicted results are seen in hover. With the refined

blade model, there is a three to four degree difference in the collective in hover,

which decreases to less than one degree in high speed flight. The same trend is

observed in the results with the simple blade model. This indicates that the effect

of inflow modeling is greatest in hover and low speed flight, decreases as the speed

increases, and only plays a minor roll at high speed.

Figure 7.2 shows the correlation for the main rotor power required for trim versus

forward speed. The dynamic inflow results underpredict the power over the entire

speed range, while power is over-predicted with the free wake model in the low

speed region up to about 60 knots, and under-predicted in the high speed range.

This figure also shows that the power required is essentially independent of blade

modeling for the entire speed range considered. As expected the results with the

two different inflow models converge at high speed where the aerodynamic modeling

of the fuselage plays a more significant role and the wake vortices are quickly swept
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away from the disk. The differences between the simulation results and the flight test

data in the high speed region seem to indicate that there may be some deficiencies

in the fuselage aerodynamic model which are evident at high speeds but not at low

speeds. A similar underprediction of the main rotor collective is seen in Figure 7.1,

which also indicates some problem with the fuselage aerodynamic model. The effects

of fuselage aerodynamic model on the trim results of the BO-105 are examined in

Section 7.1.4.

The largest difference between the predicted power with the dynamic inflow

and free wake models is seen in hover. Here, most of the power required by the

main rotor is induced power, and therefore will be directly dependent on the inflow

distribution. Figure 7.11 shows a comparison of the longitudinal variation in inflow

generated with the dynamic inflow and free wake models in hover with the refined

blade model. With dynamic inflow, the inflow is essentially uniform with a value of

between 0.05 and 0.06 over the entire rotor disk. With the free wake, the inflow over

the inner 80% of the rotor disk is between 0.1 and 0.12 and drops to zero in the tip

region. Comparing these inflow distributions shows that the free wake inflow values

are significantly higher than the dynamic inflow values over most of the rotor disk.

The effect of this higher inflow is to increase the main rotor power required. This

can be clearly seen in Figure 7.2 which shows that the predicted power required to

hover using the free wake inflow model is over 50% higher than the power required

using the dynamic inflow model. Another effect that this has is to increase the

induced angle of attack of the blade sections, which requires an increase in the main

rotor collective to increase the blade pitch so that the rotor system will produce the

same amount of thrust. The over-prediction of the inflow generated with the free

wake model is dealt with further in Section 7.1.2.

Figure 7.3 shows the correlation for the longitudinal cyclic pitch. The agreement
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with flight test data is generally good for both inflow models over the entire speed

range. Below 40 knots there is essentially no difference in the results with inflow

model or with blade model. This figure also illustrates the differences in the def-

inition of the trim procedure above and below an advance ratio of 0.1 (42 knots).

Up to an advance ratio of 0.1, the trim is based on the assumption that the sideslip

angle is zero, where for µ ≥ 0.1 the assumption of coordinated turn is maintained.

Recall that in straight flight this assumption leads to sinφ cos θ = 0, which implies

that the roll angle φ is close to zero. In the region from 40 to 80 knots, using the

free wake model leads to an overprediction of forward cyclic.

Figure 7.4 shows the correlation with the lateral cyclic pitch. The simulation

results show good agreement with the flight test data over the entire speed range,

with the exception of the free wake inflow results in the region from 30 to 40 knots.

Figure 7.5 shows the correlation for the tail rotor collective setting. The simula-

tion results in general show an overprediction of the tail rotor collective. This can

be attributed in part to the relatively simple way in which the tail rotor thrust is

calculated with the Bailey solution [71], which is based on momentum theory and

so is limited to the uniform inflow assumption. With the free wake model, the tail

rotor collective is higher because the rotor power is overpredicted, and so is main

rotor torque. To balance this additional torque, the tail rotor thrust must be higher,

requiring a higher tail rotor collective.

Figure 7.6 shows the correlation for the fuselage pitch attitude. In this case

the agreement is good for both inflow models over most of the speed range and the

simulations results are not altered by the blade model. For speeds between about 20

and 35 knots both models fail to predict a pitch-up behavior. This is likely because

the aerodynamic interaction between the main rotor wake and horizontal tail and

rear of the fuselage has been neglected. Therefore the entrance of the horizontal tail
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into the rotor wake, and its subsequent exit as the speed increases, is not included in

these results. Section 7.1.5 examines the effect of including a simple model of main

rotor downwash on the horizontal tail on the trim results to explain the failure of

the simulation models to predict the nose-up pitch in the 20 to 35 knot speed range.

Figure 7.7 shows the effect of inflow modeling on the roll attitude. There were

no flight test data available to allow a comparison with the simulation results. This

figure clearly shows the differences in trim calculations above and below an advance

ratio of 0.1, where the bank angle is variable below µ = 0.1 and is zero above

µ = 0.1. The bank angle shown here is not affected by the refinement of the blade

model. With the free wake inflow model a higher bank angle to the left is predicted,

compared with the dynamic inflow case. This is a direct result of the higher roll

moments caused by the overprediction of tail rotor thrust at low speed.

Figure 7.7 shows the effect of inflow modeling on the sideslip angle. The trim is

performed to a variable sideslip angle for speeds above µ = 0.1. The modeling of the

blade does not affect the prediction of the sideslip angle. In the speed range from

40 to about 70 knots, there are significant differences in the sideslip angle prediction

with the free wake model predicting a significantly higher nose left sideslip angle.

The results presented in this section showed the effect of inflow and blade model-

ing on the trim predictions of the BO-105 helicopter. These results raise some issues

regarding the use of the free wake model and the modeling of the BO-105. With

respect to inflow predictions using the free wake model, the effect of the initial tip

vortex strength is examined in Section 7.1.2 and the effect of the wake resolution is

examined in Section 7.1.3. These results show that there may be some deficiencies

with the specific modeling of the BO-105. The effect of fuselage modeling is exam-

ined in Section 7.1.4, and a simple model for the downwash of the main rotor on

the horizontal tail is examined in Section 7.1.5.
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7.1.2 Effect of tip vortex strength

The free wake model trim results shown in Figures 7.1 through 7.8 were calculated

based on the assumption that the initial tip vortex strength at each azimuth angle is

equal to the maximum bound circulation along the blade at the particular azimuth

angle. This was found to lead to an over-prediction of the main rotor collective and

power required, particularly in hover and low speed flight. The effect of the initial

tip vortex strength on the calculated trim results is investigated in this section.

Bagai [50] uses essentially the same free wake model as the current study and

assumes that 100% of the vorticity outboard of the peak bound circulation rolls

up into the tip vortex. This led to an overprediction of the hover inflow by about

50% when compared to that generated using a momentum theory analysis. The

experimental studies of Dosanjh et al. [73] and Bhagwat and Leishman [72] related

measurements of tip vortex characteristics to bound circulation and showed that

the tip vortex strengths are lower than the maximum bound circulation. Dosanjh

et al. [73] experimented with a rectangular untwisted wing in a wind tunnel and

found that only 58% of the peak bound circulation rolls up into the tip vortex. This

value was calculated by dividing the measured tip vortex strength by the theoretical

maximum bound circulation calculated using lifting-line theory. For this fixed wing

case, the peak bound circulation was observed at the semi-span point and dropped to

zero at the wing tips. Bhagwat and Leishman [72] used LDV measurements on one

and two-bladed hovering rotors to conclude that 85% of the peak bound circulation

is contained in the trailed tip vortex filaments. The blades were rectangular and

untwisted so that the lift distribution was biased towards the blade tip with the

point of peak bound circulation close to the tip. At present the physical mechanisms

involved in the formation of the trailed tip vortices are not fully understood and it
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is not clear how the physical characteristics (planform, twist, aspect ratio, etc.) or

the operational characteristics (circulation distribution, thrust coefficient, advance

ratio, etc.) effect the trailed vortices. The parameter CΓ, which is the ratio of

the initial tip vortex strength to the maximum bound circulation must therefore be

derived empirically.

Figures 7.12 through 7.19 show the effects of variations in the tip vortex strength

on the trim results generated with the free wake inflow model and the simple and

refined blade models. The calculation of the initial tip vortex strength is given as a

fraction of the maximum bound circulation along the blade at a particular azimuth

angle (Eqn. (2.319)), where CΓ is the ratio of the initial tip vortex strength to the

maximum bound circulation along the blade. The values of CΓ used in these figures

are 1.00 and 0.70, which represent 100 and 70 percent respectively of the initial

tip vortex strength to the maximum bound circulation. By lowering the initial tip

vortex strength, the inflow distribution is affected in essentially two ways. First

the inflow is calculated based on the influence of the tip vortices and since the tip

vortex strengths are decreased, the inflow will also be decreased. Second the wake

geometry itself will be changed by changes in the tip vortex strength, which will

also affect the inflow.

Figure 7.12 shows the correlation for the collective pitch as a function of forward

speed. The effect of lowering the initial tip vortex strength is to decrease the main

rotor collective in hover by about two degrees, which significantly improves the

correlation between the free wake results with the refined blade model and the flight

test data. The initial tip vortex strength has less effect as the speed increases as the

collective pitch becomes more a function of the fuselage aerodynamic modeling than

inflow modeling. This also shows that the changes in the initial tip vortex strengths

do not improve the predictions of the main rotor collective at high speeds.
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Figure 7.13 shows the effect of tip vortex strength on the prediction of the main

rotor power required. By assuming that the initial tip vortex strength is 70% of the

maximum bound circulation, the power predictions are substantially improved for

speeds up to about 50 knots compared with flight test data. In hover, where almost

all of the power required is induced, there is a good quantitative agreement between

the results with CΓ = 0.70 and the flight test data. This seems to indicate that

the inflow distribution, or at least the mean inflow, is being predicted with good

accuracy. As with the main rotor collective, the power is under-predicted for speeds

above 50 knots and changes in the tip vortex strengths do not effect this result.

The longitudinal variation in the hover inflow distributions generated with vary-

ing tip vortex strengths is shown in Figure 7.20. The curves are generated with

CΓ = 1.00 and CΓ = 0.70. The decrease in the tip vortex strength with CΓ = 0.70

results in a corresponding decrease in the inflow values. This decreased inflow results

in a decrease in the power required to hover because most of the power in hover is

induced.

The longitudinal cyclic predictions are shown in Figure 7.14, where the corre-

lation between simulation and flight test results are improved by decreasing the

tip vortex strength. This is particularly true at about 40 knots where the over-

prediction of the forward stick with CΓ = 1.00 is reduced with CΓ = 0.70. Again

the results beyond 50 knots seem to suggest a problem with the aerodynamic model

of the fuselage. The lateral cyclic predictions shown in Figure 7.15 show a better

agreement between simulation results and flight test data with reduced tip vortex

strength for speeds below 40 knots. The agreement also improved above 50 knots,

although these results have to be considered with care because there are some issues

with the aerodynamic model of the fuselage.

Figure 7.16 shows the correlation for the tail rotor collective. With the reduced
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tip vortex strengths, the magnitude of inflow over the rotor disk is reduced, which in-

turn reduces the main rotor power required and the main rotor torque. A lower tail

rotor thrust and thus lower tail rotor collective is required to balance the lower main

rotor torque. In hover, essentially all of the main rotor torque has to be balanced

by the thrust from the tail rotor and because the main rotor torque decreases by

decreasing the tip vortex strengths, there is a corresponding decrease in the tail rotor

collective required. This improves the correlation between the simulation results and

the flight test data, however, the tail rotor collective is over-predicted by a couple

of degrees. This is probably related to the simple uniform inflow model used for the

analysis of the tail rotor.

Figure 7.17 shows that the prediction of the fuselage pitch attitude is not sig-

nificantly affected by the reduction in the tip vortex strengths. The same is true of

the fuselage roll attitude shown in figure 7.18 where the predicted results are only

slightly affected by the tip vortex strength. Figure 7.19 shows the effect of the tip

vortex strength on the prediction of the sideslip angle required for trim. The only

differences in the predicted results are in the range from 40 to 70 knots where the

lower value of the tip vortex strengths results in a lower value of the fuselage sideslip

angle. Because the fuselage sideslip angle is strongly coupled to the lateral cyclic

and the tail rotor collective, the lower value of the predicted tail rotor collective also

results in a lower value of the fuselage sideslip angle.

The results of this section show the effect of tip vortex strength on the trim

results for the BO-105. The parameter that governs the strength of the free tip

vortices is CΓ, which is the ratio of the tip vortex strength to the maximum bound

circulation along the blade at a particular azimuth angle. By decreasing CΓ from

1.00 to 0.70, the corresponding reduction in the inflow results in lower trim values of

the main rotor collective and power required. This is particularly evident in hover
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where the inflow has the greatest effect. These results show that the trim predictions

for the BO-105 are significantly improved with CΓ = 0.70, or only 70% of the bound

circulation from the blade tip to the peak circulation along the blade is rolled up

into the tip vortex.

7.1.3 Effect of vortex wake resolution

The vortex wake used in the free wake model is represented by a single vortex fila-

ment released from the 1/4-chord location at the tip of each blade. There are three

important parameters associated with the modeling of these tip vortices. These are:

the initial tip vortex strength, the resolution of the vortex wake and the total length

of the vortex filament. The effect of the initial tip vortex strength has been exam-

ined in the previous section. The total length of each vortex filament corresponds

to two revolutions of the main rotor, or 720 degrees for all of the numerical results

in this study. This leaves the free wake resolution, which is the focus of this section.

As described in Section 2.9, the wake resolution is characterized by two param-

eters, namely, the azimuthal discretization resolution ∆ψ and the vortex filament

discretization resolution ∆ζ. For this study these parameters are equal and are

referred to collectively as the wake resolution ∆ψ. This wake resolution does not

directly affect the trim calculations, in the sense that the azimuthal points at which

the equations are evaluated are determined by the Gaussian quadrature used for

the azimuthwise integrals (see Section 3.1.3). This is because the azimuthal points

where the equations of motion are evaluated are given be a Gaussian distribution

and so are not a function of the wake resolution. Within the free wake model, the

wake resolution has essentially three effects. The first is with respect to computa-

tional efficiency. In fact, by halving the value of ∆ψ, the computer time required

for each iteration of the wake geometry loop increases four fold. Second, the inflow
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distribution is affected as the wake geometry used to calculate the inflow will be

somewhat dependent on the wake resolution. The effect that these inflow differ-

ences have on the trim results is investigated in this section. The third effect is with

respect to the convergence of the free wake model. The convergence characteristics

of the free wake model are not investigated in this study, however, there are some

conditions in which the wake geometry loop of the free wake model fails to converge.

These regions are pointed out in this section.

Figures 7.21 through 7.26 show the trim results calculated with the free wake

model with wake resolutions ∆ψ of 5 and 10 degrees and compare these predicted

results with flight test data. Both the simple and refined blade models are used with

CΓ = 0.70.

These figures show that the wake resolution has only a small influence on the

trim solution. This same trend is seen with all of the trim variables. It is also seen

that no trim condition could be found with ∆ψ = 10o for speeds below 40 knots.

This is caused by the failure of the wake geometry loop within the free wake model

to converge.

These results indicate, for the wake resolutions considered, that the predicted

trim results are not dependent on the wake resolution. However, it is not always

possible to obtain trim results with the coarse wake resolution because the free wake

geometry loop may fail to converge at low speeds.

7.1.4 Effect of fuselage aerodynamic modeling

It has been suggested in previous sections that a possible cause of the discrepancies

between the simulation results and the flight test data in the high speed range is the

aerodynamic model of the fuselage. In this section, a simple fuselage aerodynamic

drag model is used to generate additional trim results for the BO-105. This simple
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fuselage drag model has the aerodynamic drag calculated based on an estimate

of the fuselage parasitic equivalent wetted or flat-plate area, f , of 20 ft2. The

resulting drag force is assumed to act in the direction of the freestream flow at

the aerodynamic reference point of the fuselage. The aerodynamic loads from the

empennage are still present and are not effected by the inclusion of the simple

fuselage drag model.

Figure 7.27 shows the effect of fuselage modeling on the main rotor collective

required for trim and compares the simulation results with flight test data. The nu-

merical results are calculated with the refined blade model and the free wake model

with ∆ψ = 5o and CΓ = 0.70. For speeds up to 50 knots, the fuselage aerodynamic

model has essentially no effect on the prediction of the collective pitch as the low

dynamic pressure in this region results in low fuselage aerodynamic loads. As the

speed increases from 50 knots, the fuselage aerodynamic model has an increasing

influence on the results. The simple fuselage drag model produces an improvement

in the correlation of the main rotor collective with the flight test data in the high

speed range where the fuselage aerodynamic model has the greatest influence.

Figure 7.28 shows the correlation with the main rotor power required. Again,

the fuselage aerodynamic model does not effect the results at low speed below 50

knots and the use of the simple fuselage drag model produces an improvement in

the prediction of the main rotor power above 50 knots. As the power required in

high speed forward flight is predominantly a function of the fuselage drag, the higher

drag associated with the simple model produces a higher power at high speeds and

an improved correlation with flight test data.

Figure 7.29 shows the effect of fuselage modeling on the longitudinal cyclic re-

quired for trim. At high speed, the correlation with the flight test data is improved

with the simple fuselage drag model when compared with the results using the non-

219



linear fuselage aerodynamic model. However, the correlation worsens in the speed

range from 40 to 80 knots where an over-prediction of the forward stick is predicted.

Figure 7.30 shows the effect of fuselage modeling on the lateral cyclic. The simple

aerodynamic model improves the correlation with flight test data, except in the

range from 40 to 70 knots. This is probably because the simple fuselage drag model

does not include yawing and pitching moment responses from non-zero pitch and

yaw attitudes.

Figure 7.31 shows the effect of fuselage modeling on the tail rotor collective. For

the speed range of hover to 40 knots, there is no difference in the tail rotor collective

as in this speed range the sideslip angle is set to zero as part of the trim procedure.

The simple fuselage model contributes only a drag force and no yawing moments

with sideslip angle are produced. The lack of yawing moments from the fuselage

aerodynamics is the reason for the increase in the tail rotor collective for speeds

above 40 knots where the sideslip angle is not zero. Without the yawing moments

from the fuselage, a higher tail rotor thrust is required to compensate, resulting in

a higher tail rotor collective.

Figures 7.32, 7.33 and 7.34 show the effect of fuselage aerodynamic modeling

on the pitch, roll and sideslip angles of the fuselage respectively for trim. The

correlation of the pitch attitude is improved in the high speed region with the

simple fuselage drag model, although this fuselage aerodynamic model does not

include any pitching moments resulting from pitch attitude that would be present

on the actual helicopter. The roll attitudes are non-zero below 40 knots and are

not significantly effected by the fuselage aerodynamic model in this region. The

largest difference between the results with the two fuselage models are with respect

to the sideslip angle. With the simple fuselage drag model the main rotor torque is

balanced entirely from the thrust of the tail rotor and the lateral forces produced
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by the vertical tail. Because the lateral force is dependent on the sideslip angle, a

higher vertical tail lateral force required a higher sideslip angle.

These results show that improvements in the predictions of the main rotor col-

lective and power required can be achieved using the simple fuselage aerodynamic

drag model. This seems to indicate that the discrepancies at high speed with the

non-linear fuselage aerodynamic model are due to an underestimation of the fuselage

drag. The predictions of the tail rotor collective and sideslip angle are, however,

less satisfactory because the simple drag model does not include yawing moments

produced with non-zero sideslip angle for µ ≥ 0.1. Any improvement in the corre-

lation of the predicted trim state of the BO-105 with flight test data would require

further validation and improvement in the fuselage aerodynamic model.

7.1.5 Effect of downwash on horizontal tail

This section presents results obtained with the inclusion of a simple model for the

downwash from the main rotor onto the horizontal tail, and describes the effects that

this modification has on the trim results. It was observed in Figure 7.6 that there

were discrepancies between the simulation results and the flight test data in the

speed range from 15 to 40 knots where the nose up pitch attitude changes observed

in the flight test data were not captured. The nose-up attitude in the flight test data

is probably a result of the interaction between the main rotor downwash and the

horizontal tail. The downwash from the main rotor would contribute to a download

on the horizontal tail, which in-turn would produce a nose-up pitch of the fuselage.

The effect of including a simple model of the downwash on the horizontal tail is

examined in this section.

In the simple interaction model, the downwash from the main rotor contributes

to the velocity profile at the horizontal tail in the speed range from 15 to 40 knots.
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Within this speed range, it is assumed that the horizontal tail is immersed in the

far wake of the main rotor, and that the rotor wake has contracted to half the disk

area. The downwash velocity at the horizontal tail is, therefore, twice the downwash

at the rotor disk. Only results with the dynamic inflow model were obtained, and

the average downwash over the rotor is used in the calculation of this aerodynamic

interaction.

Figures 7.35 and 7.36 show the effect of the inclusion of the aerodynamic in-

teraction on the longitudinal cyclic and fuselage pitch attitude respectively. The

numerical results are generated with the refined blade model and dynamic inflow.

These figures show that the predicted longitudinal cyclic and pitch attitude are only

slightly effected in the speed range from 15 to 40 knots and that the inclusion of

the simple aerodynamic interaction model has only a small effect. A more nose-up

pitch attitude is observed with the aerodynamic interaction included, which is in

the correct direction to improve the correlation with flight test data but it too small

to make much of an improvement.

It should be remembered that this simple aerodynamic interaction model in-

cludes the downwash from the main rotor onto the horizontal tail and not the fuse-

lage. The results suggest that the interactions between the main rotor downwash

and the fuselage and empennage are complicated and to accurately capture the

physical effects a more refined aerodynamic interaction model would be required.

The prediction of the pitch attitude (Fig. 7.36) in hover agrees well with the flight

test data, however as the speed increases towards 40 knots, the model predicts a

decreasing nose-up pitch attitude while the flight test data shows that the nose-up

attitude increases. As seen in the flight test data, as the speed increases from hover

to 40 knots the increasing nose-up attitude is probably a result of the influence of the

main rotor downwash moving further aft along the fuselage causing a more nose-up
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attitude with speed. This would be in addition to the downwash on the horizontal

tail. As the speed increases from about 40 knots, the fuselage is no longer immersed

in the main rotor downwash and the nose-up pitch attitudes are no longer seen.

These results suggest that a more refined model for the aerodynamic interactions

between the main rotor downwash and fuselage and empennage is required to more

fully capture the longitudinal dynamics of the helicopter at low speed.

7.1.6 Effect of the number of finite elements

Figures 6.8 through 6.14 have shown that the number of finite elements used in the

generation of the main rotor natural mode shapes had only a small effect on the mode

shapes themselves and the corresponding natural frequencies. This section examines

the effect of the number of finite elements used in the mode shape calculations on

the predicted trim results. The numerical results are generated with the dynamic

inflow model and four and eight finite elements. For both sets of results the refined

blade model is used with seven modes used in the modal coordinate transformation.

Figures 7.37 through 7.42 show the effect of the number of finite elements on

the predicted trim results and the correlation with flight test data. It is shown that

the number of finite elements has a negligible effect on the prediction of the trim

condition. However, it should be remembered that the blade properties used for

the modeling of the BO-105 main rotor blades are uniform along the span. More

finite elements may be needed to describe the behavior of the actual blade, which

has highly nonuniform properties, especially in the root section, and it may also be

necessary to include more blade modes in the modal coordinate transformation.
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7.2 UH-60A trim results - straight and level flight

The trim results presented in this section refer to the UH-60A helicopter with the

flight control system turned off (base airframe configuration). The two blade mod-

eling configurations for the UH-60A described in Section 6.2 are used to represent

blade motion and flexibility. These are the simple blade model that includes the

rigid flap and lag modes and the refined blade model that includes the first six blade

modes with the lowest natural frequencies. The flight test data used for comparison

have been obtained from Ref. [81] and were measured at an altitude of 5250 feet

with a vehicle gross weight of 16000 pounds.

The effect of inflow and blade modeling on the various trim results are shown

in Figures 7.43 through 7.50. The results with the baseline flight dynamics model

are denoted with the “Dyn. inflow” legend indicating that the Pitt-Peters model

is used for the representation of inflow dynamics. The results with the new flight

dynamics model that uses the free wake inflow are denoted with the “Free wake”

legend. For these results, the vortex filament discretization resolution ∆ζ of the

wake is 5 degrees, the total length of each vortex filament is 720 degrees, and the

initial tip vortex strength is assumed to be equal to the maximum bound circulation

along the blade (CΓ = 1.0). The two blade models used in the generation of the

numerical trim results are the simple blade model with the rigid flap and lag modes,

denoted with the “2 modes” legend and the refined blade model with the first six

elastic blade modes, denoted by the “6 modes” legend.

Figure 7.43 shows the correlation for the collective stick input as a function of

forward speed. The units on the vertical axis of this figure are the percentages of the

control excursion, with 0% corresponding to the lowest collective pitch and 100%

corresponding to the highest. Consider first the simulation results with the dynamic
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inflow model. The predicted values of the collective stick agree well with the flight

test data for speeds greater than about 50 knots, or µ ≥ 0.1, however, at lower speeds

the collective is underpredicted. This is typical of results generated using a dynamic

inflow model, where at advance ratios less than 0.1 the calculated collective pitch is

significantly less than that calculated with a more accurate vortex wake model. The

results also show very little effect of blade modeling on the predicted main rotor

collective stick, most likely because of the structural and aerodynamic coupling

between the flap, lag and torsional degrees of freedom. With the free wake inflow

model, the prediction of the main rotor collective stick (Fig. 7.43) is considerable

improved below 50 knots. This is a results of the higher inflow predicted by the

free wake model, compared with that predicted by the dynamic inflow model. For

speeds from 50 to about 100 knots, the collective stick is slightly overpredicted with

the free wake model.

The correlation for the main rotor power required is shown in Figure 7.44. The

trends here are similar to those of the prediction of the collective stick, where below

50 knots, or µ ≥ 0.1, the power is significantly underpredicted using the dynamic

inflow model while the predictions are significantly improved using the free wake

model. In this speed range the majority of the main rotor power required results from

induced effects. Because the free wake inflow values are generally higher than those

of the dynamic inflow model, a higher power is predicted when using the free wake

model. For speeds above 50 knots, the prediction of the power is improved using the

free wake model. As with the prediction of the collective stick, the modeling of the

blades does not significantly affect the prediction of the main rotor power required.

Figures 7.45 and 7.46 show the correlation of the longitudinal stick input and

fuselage pitch attitude for trim respectively. The accurate prediction of the pitching

behavior at low speeds is difficult because of the complex aerodynamic interactions
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between the main rotor wake and the fuselage and horizontal tail. These aerody-

namic interactions are not modeled in this study. With this in mind, both the

dynamic inflow and free wake models show a reasonable prediction of the longitudi-

nal stick position over the entire speed range. Both models, however, fail to predict

the forward stick required between 20 and 50 knots, which is probably a results of

the aerodynamic interactions previously discussed. For the UH-60A, the incidence

of the horizontal tail is variable, and is changed by the flight control system as a

function of speed. For the current study, the horizontal tail incidence angle is set

based on the forward speed. The pitch attitude of the fuselage is predicted well

above about 80 knots but is overpredicted by a couple of degrees below this speed.

Figure 7.47 shows the correlation of the lateral stick input for trim. This figure

shows only a small influence of the inflow and blade modeling on the prediction of

the lateral stick position for trim. The numerical predictions are good for speeds

above about 50 knots, however right stick is required for trim in the low speed region

below 50 knots and is not captured in the simulation results.

Figure 7.48 shows the predicted pedal position. This quantity is usually coupled

to the lateral stick and the required main rotor power. The units on the vertical

axis of this figure correspond to the pedal input: 0% is a full left pedal and a high

value of tail rotor collective, while 100% is a full right pedal and a low value of tail

rotor collective. The prediction of pedal position is improved in the low speed region

with the inclusion of the free wake model. This is a result of the higher main rotor

torque (and power) predicted with the free wake model, that is balanced by a higher

thrust from the tail rotor. This figure also shows that the pedal is predicted more to

the right, corresponding to a lower tail rotor collective, over the entire speed range

when compared to the flight test data. This is due to the relatively simple way in

which the tail rotor is modeled. The Bailey solution [71] (see Section 2.5.4) used
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is based on momentum theory and a uniform inflow distribution that leads to an

underprediction of the collective pitch required to generate the required tail rotor

thrust. This may help to explain the underprediction of the tail rotor collective at

all speeds.

Figures 7.49 and 7.50 show the correlation of the fuselage roll attitude and

sideslip angle respectively. For µ ≤ 0.1, corresponding to V ≤ 45 knots, the sideslip

angle is zero and the trim is performed to a variable roll attitude. A higher fuselage

roll attitude to the left is predicted with the free wake model because of the higher

tail rotor thrust required to balance the main rotor torque in the low speed region.

Both the dynamic inflow and free wake model results for the roll attitude agree well

with the flight test data. For speeds above 45 knots, µ ≥ 0.1, the roll attitude is

zero and the trim is performed to a variable sideslip angle. The prediction of the

fuselage sideslip angle is, in general, improved with the free wake model, although in

the speed range from 50 to 70 knots, the sideslip angle to the right is overpredicted

with the free wake model. This is a result of the higher main rotor torque associated

with the free wake model.

7.3 UH-60A trim results - turning flight

The analysis of helicopters in maneuvering flight has become more important as he-

licopters become more maneuverable with advanced hub designs and higher control

power. In particular the analysis of helicopter performance, stability and control in

maneuvering flight has been receiving increased attention. The focus of this section

is the trim analysis of helicopters in steady coordinated level turns.

The current flight dynamic model is capable of modeling helicopter behavior in

maneuvering flight where the deviations from trim need not be small. In addition,
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the calculation of the trim equilibrium position in steady coordinated turns, as well

as in climbing and descending flight is possible. The free wake model used in the

current study is of a maneuvering type and has the ability to capture the effects of

steady maneuvers on the wake geometry and subsequent inflow distribution. In par-

ticular, the wake distortions associated with pitch and roll rates encountered during

steady turns are captured by the free wake model. The baseline flight dynamics

model, which uses a dynamic inflow model, does not include wake distortion effects

in the inflow model and so cannot fully capture the pitch and roll rate effects during

steady maneuvering flight.

The trim results presented in this section refer to the UH-60A in steady coordi-

nated turning flight at a constant altitude and a forward speed of 100 knots. The

refined blade model for the UH-60A, as described in Section 6.2, is used to represent

the blade motion and flexibility. This blade model includes the first six blade modes

with the lowest natural frequencies. The flight test data used for comparison have

been obtained from Ref. [81] and were measured at an altitude of 5250 feet with a

gross vehicle weight of 16000 pounds.

Figures 7.51 through 7.56 show the trim quantities for the UH-60A in a level

coordinated turn at a forward speed of 100 knots. The numerical results are obtained

as a function of the prescribed turn rate ψ̇ and then plotted as a function of the bank

angle φF . In these figures, the curves marked “Free wake inflow” are calculated with

the flight dynamics model that includes the maneuvering free wake model and the

curves marked “Dynamic inflow” are calculated using the baseline flight dynamics

model that includes dynamic inflow.

Figure 7.51 shows the trim pitch attitude θF versus roll attitude φF and com-

pares the simulation results with flight test data. For turns to the right, where

the roll attitude of the fuselage is positive, the prediction of the pitch attitude is
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improved with the free wake model. However for turns to the left, where the roll

attitude is negative, the predictions with dynamic inflow correlate better with the

test data. For left turns the pitch attitude is underpredicted by about two degrees

with the free wake model where the fuselage pitches to a lower nose-up attitude.

The study of Chen and Jeske [55] showed that the pitch attitude is very sensitive to

the aircraft sideslip angle in turning flight, which contributes to the discrepancies

in the prediction of the pitch attitude. For the calculation of the numerical results,

turn coordination is assumed where the average lateral acceleration over one rotor

revolution is zero. This turn coordination assumption will effect the prediction of

the sideslip angle, and based on the work of Chen and Jeske [55], also the predicted

pitch attitude. Figure 7.54 shows the longitudinal stick position required for trim

versus roll attitude. The numerical results show that the free wake model predicts

a more aft stick position then with dynamic inflow and that the offset between the

two sets of results is virtually independent of the roll attitude. The more aft stick

required with the free wake model causes a more aft tilt of the tip path plane which

compensates for the lower nose-up pitch attitude associated with the free wake pitch

results.

The predicted values of the main rotor power required and collective pitch agree

well with the flight test data as shown in Figures 7.56 and 7.52, with the free wake

model predictions showing a better accuracy for all bank angles. As expected there

is an increase in the rotor thrust and power requirements as the helicopter negotiates

a tighter turn. The figures also indicate that the thrust required for turns to the

right is greater than for turns to the left, although the differences are fairly small.

The reason for this is that the yaw rates associated with turning flight reduce the

effective rotor speed for right turns and increase it for left turns.

Comparisons for the predictions of the pedal and lateral stick positions are shown
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in Figures 7.55 and 7.53. The inflow model has little effect on the prediction of the

pedal input and the simulation results underpredict the right pedal when compared

to flight test data for all turn rates. The differences between the flight test and

simulation results are probably a result of the relatively simple way in which the tail

rotor thrust is calculated. Another contributing factor would be the prediction of the

sideslip angle, which will also effect the thrust of the tail rotor. Improvements in the

prediction of the fuselage sideslip angle and in the modeling of the tail rotor should

lead to improvements in the pedal predictions. The lateral stick predictions show

an excellent agreement with flight test data and the predictions are also virtually

independent of the inflow model.

Figures 7.57 and 7.58 show a comparison of the free wake geometries in straight

and level and turning flight conditions at 100 knots. In particular, rear and side

views of the wake geometries in left and right turns at a turn rate of 15 deg/sec are

compared with those obtained in straight and level flight. Looking at the figures

showing the wake geometries from the retreating side, the positive (nose-up) pitch

rate associated with both left and right turns causes the wake to be swept back more

in the plane of the rotor, and not as much below the rotor as in the straight flight

case. The figures also show that the positive roll rates for right turns and negative

roll rates for left turns do not have a significant effect on the wake geometries.

This is evident in looking at the views of the wake geometries from the rear, which

show only slight differences in the wake geometries for the positive and negative roll

rates associated with right and left turns. Any differences in the wake geometries

resulting from the different roll rates should be most visible in the rear views of the

wake geometries, however only small differences are observed. This indicates that

the wake geometry changes due to pitch rate, which are similar for both right and

left turns, are more significant than those of the roll rate, which have opposite sign
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for left and right turns.

7.4 Discussion of trim results

This section contains a further discussion of the trim results for the BO-105 and

UH-60A helicopters presented earlier in this chapter.

The BO-105 trim results indicate that there is an issue related to the aero-

dynamic modeling of the fuselage. Figures 7.1 and 7.2 show that the main rotor

collective and power required are significantly underpredicted when compared with

flight test data in the high speed range where the effects of fuselage modeling are

strongest. The aerodynamic forces and moments on the fuselage are calculated

from aerodynamic coefficients that are presented in look-up tables as functions of

the angles of attack and sideslip. The coefficients themselves were obtained from

wind tunnel data. The underprediction of the main rotor collective and power re-

quired suggests that the fuselage aerodynamic drag is being under-predicted. The

results of Section 7.1.4 show that the collective and power predictions are signifi-

cantly improved with a simple fuselage drag model with an equivalent flat-plate area

of 20 ft2 for the fuselage aerodynamic drag calculations. This simple model does

not include yawing and pitching moments due to angles of attack and sideslip and

correspondingly worsens the predictions of the pitch attitude and sideslip angle.

With respect to the effect of blade modeling on the trim calculations, the numer-

ical results presented in this chapter are generated using two different blade models

are used for both the BO-105 and UH-60A. These are a simple blade model that

includes a minimum number of blade modes, and a refined blade model that includes

additional blade mode shapes with additional degrees of freedom. For the UH-60A

there was essentially no difference in the trim results with the two blade models.
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However, for the BO-105 the results showed a number of differences. The most sig-

nificant of these was to the main rotor collective where the use of the refined blade

model predicted a two to three degree increase in the collective when compared with

the simple blade model predictions. This difference is fairly uniform over the entire

speed range. The increase in collective is attributed to the blade elastic twist that is

present with the refined blade model but not with the simple blade model that does

not include torsional degrees of freedom. While the elastic twist is dependent on the

forward speed and blade azimuth angle, a nose down elastic twist of between two

and five degrees is consistently observed (Figs. 7.9 and 7.10). This translates into an

increase in the main rotor collective required to produce the required thrust for trim.

The BO-105 main rotor blades are modeled with uniform mass and stiffness distri-

butions and the sectional center of gravity is coincident with the elastic axis along

the blade which results in no structural pitch-flap or pitch-lag coupling. The quasi-

steady aerodynamics model does however introduce aerodynamic pitch-flap coupling

in the form of pitching moments due to flap rate. In hover, the cyclic variations

in blade section aerodynamic environment and flapping are small, so the pitching

moments due to aerodynamic pitch-flap coupling will likewise be small. Here the

nose down elastic twist is therefore almost entirely due to the non-zero pitching

moments coefficients that act about the 1/4-chord location and are fundamental to

the airfoil. If these steady pitching moment coefficients were assumed to be zero,

then the large nose down elastic tip twist would not be present and the prediction of

the collective would be considerably different. In addition to this a non-zero offset

between the sectional center of gravity and elastic axis would introduce structural

pitch-flap coupling which would further alter the torsional dynamics, including the

blade elastic twist and thus the prediction of the main rotor collective.

The use of the free wake model to calculate the main rotor inflow improves the
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correlation of the trim predictions with flight test data for both the BO-105 and UH-

60A. The two free wake parameters that were investigated in this chapter were the

resolution of the wake and the initial tip vortex strength. The results of Section 7.1.3

show that the wake resolution does not effect the trim results but for speeds below

about 50 knots no trim condition could be reached. This is characterized by the

failure of the wake geometry loop, within the free wake model, to converge.

The second free wake parameter investigated in this chapter was the amount of

bound vorticity that is assumed to roll up into the trailed tip vortex. The initial

strength of the tip vortex is given as a percentage of the maximum bound circula-

tion along the blade at each azimuth angle. Considering the hover flight condition,

the initial tip vortex strength is particularly important as there is an almost direct

relationship between this tip vortex strength and the resulting inflow. There is also

an almost direct relationship between the inflow and the power required because in

hover almost all of the power required by the rotor is induced in nature. Figures 7.2

and 7.44 show the power predictions for the BO-105 and UH-60A helicopters respec-

tively, and that with dynamic inflow in hover, the power is under-predicted. This is

because, in hover, the use of momentum theory leads to an under-prediction of the

inflow and so the power.

The use of the free wake model produces a hover power prediction that is sig-

nificantly higher than that predicted with dynamic inflow, mainly as a result of the

higher inflow values associated with the free wake model. By assuming that all of

the vorticity outboard of the peak value is contained in the tip vortex, an excellent

agreement is found between the numerical predictions and flight test data for the

UH-60A (Fig. 7.44) over the entire speed range. For the BO-105 the power required

(Fig. 7.2) to hover is significantly over-predicted with CΓ = 1.00. However if it is

assumed that only 70% (CΓ = 0.70) of the peak bound circulation ends up in the
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tip vortex, then the power prediction for the BO-105 is improved (Fig. 7.13). A

possible source of the differences between the BO-105 and UH-60A results is related

to the blade structural twist, which significantly effects the blade loading and cir-

culation distributions. For the UH-60A, the rotor is optimized for low speed and

hovering flight and thus includes a high amount of structural twist (−14.0o from

root to tip) which has the effect of producing a more uniform lift distribution and

a more linear circulation distribution. For the BO-105, the small amount of blade

twist (−6.2o from root to tip) produces a more linear lift distribution and a more

parabolic circulation distribution. It is not clear how these differences in lift and

circulation distributions effect the characteristics of the tip vortices. For modeling

purposes, it may be more appropriate to use an average, or weighted average bound

circulation to define the tip vortex characteristics rather than the peak value.

The effect of inflow modeling on trim predictions in level coordinated turns was

investigated for the UH-60A at a forward speed of 100 knots. The simulation results

showed that inflow modeling has a more significant effect on the trim quantities

related to the longitudinal dynamics than those related to the lateral-directional

dynamics. The predictions of the lateral stick and pedal positions were not signif-

icantly effected by inflow modeling, however, noticeable differences were observed

in the predictions of the pitch attitude and of the longitudinal stick position. The

calculation of the simulation results involves the assumption of turn coordination,

which ensures that the lateral acceleration is zero when averaged over one rotor rev-

olution, and this assumption significantly effects the prediction of the sideslip angle.

Because the pitch attitude is very sensitive to the sideslip angle in turning flight,

small changes in the sideslip angle can have noticeable effects on the prediction of

the pitch attitude and of the longitudinal stick position because these two quantities

are related.
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The main rotor collective, power required and lateral cyclic were predicted with

good accuracy using both inflow model, however, the results with the free wake in-

flow model showed a slightly better agreement with the flight test data. The extent

of the right pedal was underpredicted with both inflow models and these inaccura-

cies can be attributed to the relatively simple model used for the tail rotor thrust

calculations. Wake geometries for varying turn rates showed that the magnitude of

the turn rate has a more significant effect on the wake geometry than the direction

of the turn, which has only a small effect. The pitch rate, which is positive for

both left and right turns, has a large effect on the wake geometry, while the roll

rate, which is positive for right turns and negative for left turns, has only a small

effect on the wake geometries. This indicates that the pitch rate effects are more

significant than the roll rate effects on the wake geometries and inflow distributions.
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Figure 7.1: Effect of inflow models and blade modeling on main rotor collective
pitch required for trim versus airspeed for the BO-105 in straight and level flight.
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Figure 7.2: Effect of inflow models and blade modeling on main rotor power required
for trim versus airspeed for the BO-105 in straight and level flight.
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Figure 7.3: Effect of inflow models and blade modeling on longitudinal cyclic pitch
required for trim versus airspeed for the BO-105 in straight and level flight.
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Figure 7.4: Effect of inflow models and blade modeling on lateral cyclic pitch re-
quired for trim versus airspeed for the BO-105 in straight and level flight.
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Figure 7.5: Effect of inflow models and blade modeling on tail rotor collective pitch
required for trim versus airspeed for the BO-105 in straight and level flight.
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Figure 7.6: Effect of inflow models and blade modeling aircraft pitch attitude for
trim versus airspeed for the BO-105 in straight and level flight.
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Figure 7.7: Effect of inflow models and blade modeling on aircraft roll attitude for
trim versus airspeed for the BO-105 in straight and level flight.
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trim versus airspeed for the BO-105 in straight and level flight.
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Figure 7.9: Effect of forward speed on blade tip elastic twist versus azimuth angle
for the BO-105 with dynamic inflow and the refined blade model.
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Figure 7.10: Effect of forward speed on blade tip elastic twist versus azimuth angle
for the BO-105 with the free wake and the refined blade model.
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Figure 7.13: Effect of tip vortex strength on main rotor power required versus
airspeed for the BO-105 in straight and level flight.
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Figure 7.14: Effect of tip vortex strength on longitudinal cyclic pitch required versus
airspeed for the BO-105 in straight and level flight.
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Figure 7.15: Effect of tip vortex strength on lateral cyclic pitch required versus
airspeed for the BO-105 in straight and level flight.
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Figure 7.16: Effect of tip vortex strength on tail rotor collective pitch required versus
airspeed for the BO-105 in straight and level flight.
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Figure 7.17: Effect of tip vortex strength on aircraft pitch attitude versus airspeed
for the BO-105 in straight and level flight.
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Figure 7.18: Effect of tip vortex strength on aircraft roll attitude versus airspeed
for the BO-105 in straight and level flight.
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Figure 7.19: Effect of tip vortex strength on aircraft sideslip angle versus airspeed
for the BO-105 in straight and level flight.
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Figure 7.21: Effect of free wake resolution on main rotor collective pitch versus
airspeed for the BO-105 in straight and level flight.
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Figure 7.22: Effect of free wake resolution on main rotor power required versus
airspeed for the BO-105 in straight and level flight.
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Figure 7.23: Effect of free wake resolution on longitudinal cyclic pitch versus airspeed
for the BO-105 in straight and level flight.
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Figure 7.24: Effect of free wake resolution on lateral cyclic pitch versus airspeed for
the BO-105 in straight and level flight.
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Figure 7.25: Effect of free wake resolution on tail rotor collective pitch versus air-
speed for the BO-105 in straight and level flight.
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Figure 7.26: Effect of free wake resolution on aircraft pitch attitude versus airspeed
for the BO-105 in straight and level flight.
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Figure 7.27: Effect of fuselage aerodynamic modeling on main rotor collective pitch
versus airspeed for the BO-105 in straight and level flight with the free wake and
the refined blade model.
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Figure 7.28: Effect of fuselage aerodynamic modeling on main rotor power required
versus airspeed for the BO-105 in straight and level flight with the free wake and
the refined blade model.
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Figure 7.29: Effect of fuselage aerodynamic modeling on longitudinal cyclic pitch
versus airspeed for the BO-105 in straight and level flight with the free wake and
the refined blade model.
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Figure 7.30: Effect of fuselage aerodynamic modeling on lateral cyclic pitch versus
airspeed for the BO-105 in straight and level flight with the free wake and the refined
blade model.
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Figure 7.31: Effect of fuselage aerodynamic modeling on tail rotor collective pitch
versus airspeed for the BO-105 in straight and level flight with the free wake and
the refined blade model.
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Figure 7.32: Effect of fuselage aerodynamic modeling on aircraft pitch attitude
versus airspeed for the BO-105 in straight and level flight with the free wake and
the refined blade model.
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Figure 7.33: Effect of fuselage aerodynamic modeling on aircraft roll attitude versus
airspeed for the BO-105 in straight and level flight with the free wake and the refined
blade model.
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Figure 7.34: Effect of fuselage aerodynamic modeling on aircraft sideslip angle versus
airspeed for the BO-105 in straight and level flight with the free wake and the refined
blade model.
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Figure 7.35: Effect of inclusion of main rotor downwash on horizontal tail on longi-
tudinal cyclic pitch versus airspeed for the BO-105 in straight and level flight with
dynamic inflow and the refined blade model.
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Figure 7.36: Effect of inclusion of main rotor downwash on horizontal tail on air-
craft pitch attitude versus airspeed for the BO-105 in straight and level flight with
dynamic inflow and the refined blade model.
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Figure 7.37: Effect of number of finite elements on main rotor collective pitch versus
airspeed for the BO-105 in straight and level flight with dynamic inflow and the
refined blade model.
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Figure 7.38: Effect of number of finite elements on main rotor power required versus
airspeed for the BO-105 in straight and level flight with dynamic inflow and the
refined blade model.
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Figure 7.39: Effect of number of finite elements on longitudinal cyclic pitch versus
airspeed for the BO-105 in straight and level flight with dynamic inflow and the
refined blade model.
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Figure 7.40: Effect of number of finite elements on lateral cyclic pitch versus airspeed
for the BO-105 in straight and level flight with dynamic inflow and the refined blade
model.
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Figure 7.41: Effect of number of finite elements on tail rotor collective pitch versus
airspeed for the BO-105 in straight and level flight with dynamic inflow and the
refined blade model.
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Figure 7.42: Effect of number of finite elements on aircraft pitch attitude versus
airspeed for the BO-105 in straight and level flight with dynamic inflow and the
refined blade model.
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Figure 7.43: Effect of inflow models and blade modeling on main rotor collective
stick versus airspeed for the UH-60A in straight and level flight.
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Figure 7.44: Effect of inflow models and blade modeling on main rotor power re-
quired versus airspeed for the UH-60A in straight and level flight.
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Figure 7.45: Effect of inflow models and blade modeling on longitudinal stick versus
airspeed for the UH-60A in straight and level flight.
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Figure 7.46: Effect of inflow models and blade modeling on aircraft pitch attitude
versus airspeed for the UH-60A in straight and level flight.
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Figure 7.47: Effect of inflow models and blade modeling on lateral stick versus
airspeed for the UH-60A in straight and level flight.
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Figure 7.48: Effect of inflow models and blade modeling on pedal position versus
airspeed for the UH-60A in straight and level flight.
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Figure 7.49: Effect of inflow models and blade modeling on aircraft roll attitude
versus airspeed for the UH-60A in straight and level flight.

284



-10

-5

0

5

10

0 20 40 60 80 100 120 140 160

S
id

es
lip

 A
ng

le
 (

de
g)

Airspeed (knots)

Free wake - 2 mode

Free wake - 6 modes

Dyn. inflow - 2 mode

Dyn. inflow - 6 modes

Flight test

Figure 7.50: Effect of inflow models and blade modeling on aircraft sideslip angle
versus airspeed for the UH-60A in straight and level flight.
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Figure 7.51: Effect of inflow modeling on pitch attitude as a function of roll attitude
for the UH-60A in a level coordinated turn at 100 knots.
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Figure 7.52: Effect of inflow modeling on collective stick position as a function of
roll attitude for the UH-60A in a level coordinated turn at 100 knots.
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Figure 7.53: Effect of inflow modeling on lateral stick position as a function of roll
attitude for the UH-60A in a level coordinated turn at 100 knots.
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Figure 7.54: Effect of inflow modeling on longitudinal stick position as a function
of roll attitude for the UH-60A in a level coordinated turn at 100 knots.
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Figure 7.55: Effect of inflow modeling on pedal position as a function of roll attitude
for the UH-60A in a level coordinated turn at 100 knots.
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Figure 7.56: Effect of inflow modeling on main rotor power required as a function
of roll attitude for the UH-60A in a level coordinated turn at 100 knots.
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Figure 7.57: Effect of right turn (ψ̇ = 15 deg/sec) on wake geometry at 100 knots.
Top figure shows view of wake from rear. Bottom figure shows view of wake from
retreating side.

292



-0.6

-0.4

-0.2

0

0.2

0.4

Straight Flight
Left Turn

-1.5 -1 -0.5 0 0.5 1 1.5

N
on

-d
im

en
si

on
al

 z
 c

oo
rd

in
at

e

Non-dimensional y coordinate

-0.6

-0.4

-0.2

0

0.2

0.4

Straight Flight
Left Turn

-1 0 1 2 3 4 5

N
on

-d
im

en
si

on
al

 z
 c

oo
rd

in
at

e

Non-dimensional x coordinate

Figure 7.58: Effect of left turn (ψ̇ = −15 deg/sec) on wake geometry at 100 knots.
Top figure shows view of wake from rear. Bottom figure shows view of wake from
retreating side.
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Chapter 8

Linearized Model Results

This chapter presents results derived from a linear representation of the equations

of motion calculated from a given trim condition by numerically perturbing the

equations of motion, as described in Chapter 4. These results include poles and

frequency responses and are presented for both the UH-60A and BO-105 helicopters

in hover as well as in straight and level forward flight. Special attention is given to

the off-axis or cross-coupling predictions with the flight simulation model and the

effects of inflow and blade modeling on the off-axis frequency responses.

The simulation results are compared to flight test data, where such data are

available. The flight tests were typically conducted with frequency sweeps of each

of the control axes and the responses of each of the helicopter states were measured.

A system identification technique [82] was used to prepare the frequency response

data of the amplitude and phase for each input/output pair. A coherence function

is defined that is a measure of the accuracy of the flight test data at a particular

frequency. The coherence function γ2
xy is defined as:

γ2
xy =

|Gxy|2
|Gxx||Gyy|

(8.1)

where Gxx, Gyy and Gxy are the input, output and cross-spectral density estimates

respectively. The properties of the coherence function as they relate to the current
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study are discussed in Ref. [83]. The flight test frequency response results used in

this study are considered to be accurate if the coherence function has a value,

γ2
xy ≥ 0.6 (8.2)

The first set of results for this chapter examine the effects of inflow and blade

modeling on the system poles and the on-axis and off-axis frequency responses for

the UH-60A in hover. Similar sets of results are presented for the UH-60A in forward

flight at speeds of 80 and 120 knots. Next, the effects of inflow and blade modeling

for the BO-105 in hover and at 80 knots are examined. With respect to the free

wake model, the effects of two important modeling parameters are investigated. The

effect of the vortex wake resolution is examined in Section 8.5 and the effect of the

numerical perturbation size used to calculate the linearized models is considered

in Section 8.6. The third inflow model used is an extended momentum theory

based dynamic inflow model that includes maneuver induced wake distortions. The

effects of this inflow model on the frequency response predictions are presented in

Section 8.7. The final set of results consider frequency responses for the UH-60A in

level left and right coordinated turns at a forward speed of 100 knots and the effect

of inflow modeling on these results is examined. This is followed by a discussion the

linearized model results.

8.1 UH-60A in hover

The results in this section refer to the UH-60A articulated rotor helicopter in hover

at an altitude of 5250 feet. Details of the modeling parameters of the UH-60A

are presented in Section 6.2. The effects of blade and inflow modeling on the pole

locations and the frequency responses are examined. The free wake model used is

the Bagai-Leishman maneuvering free wake model that captures the effects of steady
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maneuvers on the inflow. For the free wake results, the resolution of the vortex wake

∆ψ is 10 degrees, the total length of each vortex filament ζmax is 720 degrees, and

the initial tip vortex strength is equal to the maximum bound circulation along the

blade (CΓ = 1.0). The other inflow model is the dynamic inflow model of Pitt-

Peters that does not include maneuver induced distortions on the wake geometry

and inflow. Two different blade models are used in the generation of the numerical

results. These are a simple blade model that includes only the rigid flap and lag

modes, and a refined blade model that includes the first six blade modes with the

lowest natural frequencies.

8.1.1 Poles

Figures 8.1 and 8.2 show the effect of inflow modeling on the open loop poles of the

helicopter mathematical model for the UH-60A in the hover flight condition. The

simple blade model with rigid flap and lag degrees of freedom is used. These figures

show the imaginary part of the poles on the y-axis plotted against the real part of

the pole on the x-axis and for brevity only the positive component of the imaginary

parts are shown.

Figure 8.1 has labeled both the rotor and inflow poles. All of the rotor poles

appear as complex conjugate pairs with both inflow models. The progressive flap

and progressive lag modes have frequencies greater than that of the rotor speed

(27 rad/sec) and these modes are not significantly effected by inflow modeling.

The reactionless and collective flap modes have frequencies close to that of the

rotor speed, and the locations of these modes show only a small effect of inflow

modeling. The damping of the regressive and collective lag modes is increased

slightly with the addition of the free wake model, while the regressive flap mode

shows virtually no effect of inflow modeling. Three additional poles are present with
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dynamic inflow that are related to the uniform component and harmonic components

of the main rotor inflow dynamics. These poles are not present in the free wake

results. This is because the free wake model does not contribute dynamic equations

to the mathematical model and so does not contribute any poles. Each of the main

rotor inflow poles are stable with the uniform component (ωn = 14 rad/sec) being

the most important for flight dynamics work. The final pole here is for the tail rotor

inflow, that is predicted to be more stable with the free wake inflow model than

with dynamic inflow.

Figure 8.2 shows the poles of the UH-60A in hover on an enlarged scale so that

the fuselage poles are visible. The complex conjugate pair for the dutch roll mode

is slightly unstable for dynamic inflow with ωn = 0.6604 rad/sec and ζ = −0.1360

but is stabilized with the use of the free wake model with ωn = 0.6769 rad/sec and

ζ = 0.1938. The spiral modes of the helicopter appear as a pair of real and negative

poles (stable) with both inflow models, and the overall stability of these modes is

not effected by inflow modeling. Inflow modeling, however, significantly effects the

locations of the poles related to the short period and phugoid modes. The short

period mode is a stable complex conjugate pair with dynamic inflow (ωn = 0.5045

rad/sec and ζ = 0.9624), but exists as two real stable poles with the free wake model

(ωn = 0.3645 rad/sec and ωn = 0.1558 rad/sec). The phugoid mode is unstable with

both the dynamic inflow and free wake models. The free wake shows the phugoid

as a complex conjugate pair (ωn = 0.6399 rad/sec and ζ = −0.5466) while dynamic

inflow modeling shows the phugoid as a pair of real poles; one stable (ωn = 0.2168

rad/sec and ζ = 1.0) and one unstable (ωn = 0.3878 rad/sec and ζ = −1.0). This

phugoid mode for the UH-60A is effected by the coupling of the longitudinal and

pitching motions by the 20 degree cant of the tail rotor and the incidence of the

horizontal tail, which is 39 degrees in hover. An additional pole is generated at the
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origin (not shown) which is a direct consequence of retaining the heading degree of

freedom in the mathematical model.

8.1.2 On-axis frequency response

The effects of inflow and blade flexibility modeling on the on-axis frequency response

results for the UH-60A in hover are shown in Figures 8.3 through 8.6. The “Dyn.

inflow” legend denotes the frequency response results derived from the baseline flight

dynamics model that includes the Pitt-Peters dynamic inflow. The “Free wake”

legend denotes the frequency response results derived from the new flight dynamics

model that includes the Bagai-Leishman maneuvering free wake. Results with the

simple blade model are denoted with the “2 modes” legend and results with the

refined blade model are denoted with the “6 modes” legend. The curve labeled

“Flight test” indicates the data derived from flight test measurements.

Figure 8.3 shows the comparison for the roll rate response, p, to a lateral stick

input δlat for the UH-60A in hover. This figure is typical of those in this section

where simulation results generated with both inflow and both blade models are

compared to data derived from flight tests. The range of accuracy of the flight

test data, based on the coherence function (Eqn. (8.1)), is also indicated in these

frequency response figures.

Over the frequency range shown in Figure 8.3 the blade model has essentially no

effect on the response predictions both in amplitude and phase. This is seen with

both the baseline and new flight dynamics models, where the two curves calculated

with dynamic inflow are almost superimposed and the two curves calculated with

the free wake model are also almost superimposed. As far as the amplitudes are

concerned, the simulation results show a good qualitative agreement with the flight

test data, although the gains are slightly over-predicted over much of the frequency
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range. For frequencies between 5 and 20 rad/sec the inflow modeling does not effect

the gain predictions, while in the lower frequency range between 0.6 to 5 rad/sec the

use of the free wake model worsens the over-prediction of the amplitude. Both inflow

models capture the frequency of the notch response associated with the regressive

lag mode at about 19 rad/sec. The peak corresponding to the lateral body mode

of frequency ωn = 0.660 rad/sec and damping ζ = 0.136 predicted with dynamic

inflow is somewhat smoothed out with the free wake model, where this lateral body

mode is more highly damped with a frequency of ωn = 0.640 rad/sec and damping

of ζ = 0.547. In the phase portion, for frequencies above 0.8 rad/sec, there is a

good agreement between the simulation results and the flight test data, although

the phase lag predicted with the free wake model is slightly higher for frequencies

up to about 7 rad/sec. Below 0.8 rad/sec the phase predictions with both inflow

models are poor, although the coherence estimates indicate that the experimental

data are rather unreliable at the low end of the frequency range and it is, therefore,

impossible to determine conclusively whether the addition of the free wake model

improves the correlation in this frequency range. Also for frequencies below 0.5

rad/sec there is a 180o phase difference between the results with the free wake and

those with dynamic inflow.

The amplitude and phase predictions of the pitch rate response q to the longi-

tudinal stick input δlon are compared to test data in Figure 8.4. Over the frequency

range of accurate flight test data, between 1 and 12 rad/sec, there is an excellent

agreement between the simulation results and flight test data in both amplitude and

phase. In this frequency range the simulation results are not effected by either the

inflow model or the blade model. Large errors remain below a frequency of 1 rad/sec

for the amplitude predictions and below 0.8 rad/sec for the phase predictions, al-

though this is outside the range of accurate flight test data and it is impossible to
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determine whether the free wake model improves the accuracy of these predictions.

Figure 8.5 shows the vertical acceleration response ẇ to a collective stick input

δcol in hover. The correlation with flight test data is again quite good, although

the amplitudes are slightly over-predicted for frequencies below 8 rad/sec and that

the over-prediction is higher with the free wake than with dynamic inflow. This is

probably due to the lack of inflow dynamics associated with the free wake model,

where a change in the main rotor collective produces a corresponding instantaneous

change in the inflow without any inflow dynamics. Because the frequency responses

are dynamic responses, the lack of inflow dynamics with the free wake model could

be responsible for the over-prediction of the amplitude of the vertical acceleration

to a collective stick input. Below a frequency of 1 rad/sec, the phase differences

between the simulation results and the flight test data increases steadily to about

90o at a frequency of 0.1 rad/sec.

Figure 8.6 shows the yaw rate frequency response r to a pedal input δped. A good

agreement is seen between the simulation results and the flight test data over the

frequency range of accurate flight test data. As with the other on-axis frequency

responses, there are some significant differences in the phase between the simulation

results and flight test data in the low frequency range below about 0.5 rad/sec.

Neither the blade model nor inflow model have a significant effect on the yaw rate

frequency responses.

The results presented in this section showed the on-axis frequency responses

for the UH-60A in the hover flight condition. In general there is a good agreement

between the simulation results and the flight test data in the frequency ranges where

the flight test data is considered accurate. However, some differences in both the

amplitude and phase predictions were observed in the low frequency region below

about 0.8 rad/sec. It was also observed that the blade model did not significantly
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affect the predictions in the frequency range considered (0.1 to 100 rad/sec). This

indicates that the on-axis frequency response characteristics can be predicted with

good accuracy using a relatively unsophisticated blade model that includes only

the rigid flap and lag modes. The inflow model did, however, have some effect on

the on-axis frequency responses, but these effects were in general quite small in the

frequency range of importance for flight dynamics work, although the magnitude

of the vertical acceleration to collective stick was over-predicted with the free wake

model. This was possible a result of the absence of inflow dynamics or unsteadiness

associated with the free wake model. The most significant effect of inflow modeling

was seen in the low frequency range below about 0.8 rad/sec where some large

differences were observed.

8.1.3 Off-axis frequency response

The effects of inflow and blade modeling on the prediction of the off-axis frequency

responses for the UH-60A in hover are shown in Figures 8.7 through 8.18. Because

a major focus of this study is with respect to the prediction of the off-axis response

characteristics and the accuracy of such predictions when compared to flight test

data, these comparisons are significant. However the frequency ranges for which the

flight test data are considered accurate are generally quite limited for the off-axis

responses, and in many cases the flight test data are inaccurate at all frequencies.

This limits the comparisons that can be made and conclusions about the accuracy

of the predictions.

Figures 8.7 through 8.9 show the pitch rate q, vertical acceleration ẇ and yaw

rate r responses respectively to a lateral stick input δlat for the UH-60A in hover.

As with the on-axis responses, these figures show only a minor effect of the blade

model on the numerical results. The accuracy of the flight test data shown in

301



these figures are suspect at all frequencies, which limits the extent to which the

simulation results can be validated. Given this difficulty, the amplitude of the pitch

response is predicted with fair accuracy with both inflow models for frequencies

above 2 rad/sec. Below this frequency, the amplitude is over-predicted with both

inflow models. This is particularly evident at a frequency of about 0.6 rad/sec where

there is a predicted peak corresponding to the lateral phugoid mode that is slightly

unstable in hover with both the dynamic inflow and free wake models. A notch type

response is seen in the pitch amplitude at about 6.5 rad/sec with dynamic inflow

that corresponds to the regressive flap mode with frequency ωn = 5.590 rad/sec and

damping ζ = 0.553. This notch is not seen with the free wake since the regressive

flap mode is more highly damped ζ = 0.859 and has a higher frequency ωn = 9.765

rad/sec. The phase of the pitch response is predicted poorly in the frequency range

from 0.6 to 6 rad/sec, and there are also significant effects of inflow modeling in this

frequency range. However for frequencies above 6 rad/sec and below 0.6 rad/sec,

all of the numerical results show similar phase predictions and correlate well with

the test data. The amplitude of the vertical acceleration is significantly improved

with the free wake, which shows a good correlation with the flight test data over

the entire frequency range. The notch at about 8.5 rad/sec predicted with dynamic

inflow is not seen in the free wake results nor in the flight test data. The phase of the

vertical acceleration to a lateral control is predicted poorly over the entire frequency

range with an average phase discrepancy of about 180o. For the yaw rate response,

there is a reasonable agreement between the numerical results and flight test data

over most of the frequency range, and an excellent correlation is seen within the

frequency range of accurate flight test data from 6 to 12 rad/sec. Below a frequency

of about 0.6 rad/sec there is a 180o phase difference between the simulation results

with dynamic inflow and those with the free wake.
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Figures 8.10 through 8.12 show the roll rate p, vertical acceleration ẇ and yaw

rate r responses respectively to a longitudinal stick input δlon. The amplitude of the

roll response is predicted higher with the free wake model than with dynamic inflow

over most of the frequency range. The phase plot for the roll rate response shows

virtually no effect of the inflow model for frequencies above 4 rad/sec, however, some

large differences in the phase predictions are seen at frequencies below this value.

Also, there is a consistent 180o phase difference between the two sets of inflow results

for frequencies below 0.6 rad/sec. The correlation with flight test data for the roll

response is poor, but the lack of accurate test data limits this comparison. However,

for frequencies below 0.8 rad/sec, the free wake phase results correlate well with the

test data, while dynamic inflow results remain 180o out of phase. The magnitude

of the vertical acceleration is under-predicted with both inflow models, although

the free wake results correlate better with the flight test data. The phase is poorly

predicted, with the free wake results being 180o out of phase with the flight test

data over most of the frequency range. Again, the free wake and dynamic inflow

results show a 180o phase difference in the low frequency range below 0.8 rad/sec.

Figures 8.13 through 8.15 show the roll rate p, pitch rate q and yaw rate r re-

sponses respectively to a collective stick input δcol. Each of these responses show that

the free wake model over-predicts the amplitude for frequencies below 10 rad/sec

when compared to both the dynamic inflow results and the flight test data. The

magnitudes however correlate well with the flight test data in the high frequency

range above 10 rad/sec and the effects of inflow modeling in this region tend to

be small. A similar trend was seen for the on-axis response to a collective stick

input (Fig. 8.5) where the amplitude of the vertical acceleration was over-predicted,

particularly at low frequencies. This over-prediction of both the on-axis and off-axis

responses due to collective inputs is probably due to the lack of inflow dynamics as-
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sociated with the free wake model. The phase of the roll rate response is predicted

with good accuracy using both inflow models for the frequency range from 0.8 to

12 rad/sec. Below 0.8 rad/sec the dynamic inflow model gives a better correlation

with the test data. The phase of the pitch rate response is predicted poorly over the

entire frequency range with both inflow models. For the yaw rate response, the flight

test data is accurate in the range from 0.6 to 8 rad/sec and the simulation results

show an excellent correlation with the flight test data in this region, although the

magnitudes are over-predicted with the free wake model. At frequencies below 0.6

rad/sec, the phase predictions are still in good agreement with the test data while

the amplitude is significantly over-predicted.

Figures 8.16 through 8.18 show the roll rate p, pitch rate q and vertical accel-

eration ẇ responses respectively to a pedal input δped. Over the range of accurate

flight test data for the roll rate response, the results obtained with dynamic inflow

show a better correlation than those using the free wake. The phase of the roll

rate response is predicted well in the low frequency range below 0.4 rad/sec, and in

this region the predictions are not significantly effected by inflow modeling. For the

pitch rate response, neither the amplitude nor phase are effected by the inflow. The

lack of accurate flight test data make these comparisons difficult, but there is, in

general, a good agreement between the simulation results and flight test data in the

low frequency range below 0.8 rad/sec. The vertical acceleration predictions are in

general poor in both magnitude and phase, although the inaccuracies in the flight

test data make the comparison difficult.

The results presented in this section showed the off-axis frequency responses for

the UH-60A in hover. The quality of the flight test data, based on the coherence

function, was in general poor. This limits the comparisons that can be made between

the simulation results and flight test data. However, in the frequency ranges where
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the flight test data was accurate the correlations were good. The general low quality

of the flight test data made it impossible to fully determine the accuracy of the

simulation results. A more complete validation of the predicted off-axis responses

would require more reliable flight test data.

As with the on-axis responses, the off-axis response predictions are not signifi-

cantly effected by blade modeling. The inflow model, however, does effect the fre-

quency response results. The largest differences with inflow are seen in the medium

to low frequency range. For the phase responses to a longitudinal stick input there

is a 180o phase difference between the free wake and dynamic inflow results for fre-

quencies below about 0.8 rad/sec. The off-axis phase predictions to a lateral stick

input did not show this phase difference between the dynamic inflow and free wake

results at low frequencies. The magnitude responses to a collective stick input were

predicted higher with the free wake model than with the dynamic inflow model. This

increased gain was probably a result of the lack of inflow dynamics or unsteadiness

associated with the free wake model.

8.2 UH-60A in forward flight

This section examines the poles and frequency response results for the UH-60A in

straight and level forward flight at an altitude of 5250 feet. The forward speeds of

80 and 120 knots are considered since these are the speeds at which flight test data

is available. However this flight test data is only available for the on-axis responses.

The modeling configurations are the same as those described in Section 8.1 for the

UH-60A in hover. The two inflow models are the Pitt-Peters dynamic inflow model

and the free wake model (∆ψ = 10o, ζmax = 720o and CΓ = 1.0). Results with both

the simple and refined blade models are presented.
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8.2.1 Poles

Figures 8.19 and 8.20 show the effect of inflow modeling on the open-loop (bare

airframe) poles for the UH-60A at 80 knots. Figures 8.27 and 8.28 show similar

results at 120 knots. At both speeds, the simple blade model with the rigid flap and

lag modes is used.

Figures 8.19 and 8.27 show the rotor and inflow poles at speeds of 80 and 120

knots respectively. It should be noted that the tail rotor inflow poles have large

negative real values and are off the left side scale of these figures. The poles as-

sociated with the main rotor dynamic inflow model move further to the left side

with higher frequencies as the speed increases. Therefore, inflow dynamics have a

lessening effect on the lower frequency body modes as the speed increases. As for

the rotor modes, the poles with the free wake model are in general more highly

damped than those with dynamic inflow. This trend is seen at both forward speeds

with each of the low frequency rotor modes, namely the reactionless and collective

lag modes and the regressive flap mode.

Figures 8.20 and 8.28 show the body modes at 80 and 120 knots respectively.

In forward flight, it is somewhat difficult to properly identify the fuselage poles

because of large amounts of coupling between the longitudinal and lateral degrees

of freedom resulting from, amongst other things, the canted tail rotor. At both

speeds, the results show a general low sensitivity of the pole locations to inflow

modeling. This is an expected result since inflow modeling plays a lesser roll in the

overall dynamics of the helicopter as the speed increases. The dutch roll mode is

stable at both 80 and 120 knots and is not significantly effected by inflow modeling,

although at 80 knots the damping is reduced from ζ = 0.2363 with the dynamic

inflow model to ζ = 0.1808 with the free wake model. The short period mode tends
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to become less stable as the speed is increased. With the free wake model, at 80

knots, the short period oscillation is stable (ωn = 0.2865 rad/sec and ζ = 0.2251)

but becomes slightly unstable at 120 knots (ωn = 0.2041 rad/sec and ζ = −0.0016).

The spiral mode, that was a pair of stable real poles in hover, splits and become a

stable complex conjugate pair in forward flight. The phugoid instability, that was

seen in hover as a complex conjugate pair with the free wake model and as a pair

of stable and unstable real poles with dynamic inflow, is seen as a pair of real poles

with each inflow model in forward flight. This pair of poles include a stable real

pole and a static divergence pole lying on the positive real axis. This unstable pole

for the phugoid mode is not significantly effected by the inflow model or the forward

speed. The instability of this phugoid mode is related to the positive incidence angle

of the horizontal tail, which couples the longitudinal and pitch dynamic motions.

8.2.2 On-axis frequency response

Figures 8.21 and 8.29 show the roll rate response p to a lateral control input δlat

at 80 and 120 knots respectively. At 80 knots (Fig. 8.21), both the amplitude and

phase are predicted well at all frequencies except in the low frequency range below

0.5 rad/sec where the amplitude is somewhat under-predicted and there are some

differences in the phase. The notch type response and the phase increase associated

with the regressive lag mode at about 20 rad/sec are captured well in the numerical

results. The same general observations are valid for the 120 knot case, as shown in

Figure 8.29. Here the amplitude and phase predictions are very good for frequencies

above 0.4 rad/sec. The on-axis response to a lateral control in forward flight only

shows a dependency on inflow modeling at very low frequencies below about 0.5

rad/sec. At other frequencies the inflow model has no significant effect.

Figures 8.22 and 8.30 show the pitch rate response q to a longitudinal control
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input δlon at 80 and 120 knots respectively. Neither the amplitude nor the phase

predictions are significantly effected by blade or inflow modeling. The amplitudes are

predicted accurately over the entire frequency range, except at very low frequencies

below about 0.5 rad/sec where the predictions are not as good. Above 0.5 rad/sec

both models predict the phase response very accurately. This agreement remains

good even to frequencies of 20-30 rad/sec, although the low coherence makes the

accuracy of the flight test data above 10 rad/sec somewhat questionable.

Figures 8.23 and 8.31 show the vertical acceleration response ẇ to a collective

control input δcol at 80 and 120 knots respectively. At 80 knots, the amplitudes

are over-predicted by between 5 and 10 dB over the entire range of accuracy of the

flight test data. This over-prediction is even higher at lower frequencies, although

there is essentially no dependency of the amplitude on inflow or blade modeling. At

120 knots, the amplitude over-predictions are slightly higher than those at 80 knots.

Again, there is no dependency of the results on inflow or blade modeling. The phase

portions at 80 and 120 knots are poorly predicted with both the dynamic inflow and

free wake models over the entire frequency range.

Figures 8.24 and 8.32 show the yaw rate response r to pedal input δped at 80 and

120 knots respectively. The frequency response results identified from the flight test

data have a very limited range of accuracy. At both speeds the model predictions

for both the magnitude and phase are in good agreement with the responses derived

from flight test data over this accurate frequency range. The predictions outside

the range of accuracy of the test data are not as good, although correlations in

these frequency ranges are difficult. The blade model does not effect these results,

although there is some dependency on inflow modeling below 1 rad/sec.

The results presented here showed the on-axis frequency responses for the UH-

60A in forward flight at 80 and 120 knots. In general, there was a good agreement

308



between the simulation results and flight test data in the frequency ranges where

the flight test data was considered accurate. Outside this range the predictions were

not as good, although correlations in these frequency ranges are more difficult be-

cause of the questionable accuracy of the flight test data. These frequency response

predictions for the UH-60A in forward flight showed very little dependency on blade

modeling. The dependency of the responses to inflow modeling decreases as the for-

ward speed increases with a higher sensitivity to inflow modeling in forward flight

than in hover.

8.2.3 Off-axis frequency response

Figures 8.25 and 8.33 show the off-axis pitch rate q frequency responses to a lateral

stick input δlat for the UH-60A at forward speeds of 80 and 120 knots respectively.

At 80 knots the magnitude predictions with the free wake model are consistently

about 8 dB higher than those with dynamic inflow over most of the frequency range.

A similar trend is seen for the magnitude predictions at 120 knots, however, the

difference is smaller at about 4 dB. The phase results show essentially no dependence

on inflow modeling, with all of the phase curves being almost superimposed. This

lack of sensitivity of the phase results to inflow modeling is seen at both 80 and 120

knots. There is also little sensitivity in the magnitude and phase predictions to blade

modeling. This lack of sensitivity to inflow modeling in forward flight is different

from that in hover (Fig. 8.7) where the phase predictions show a dependency on

inflow modeling, particularly in the frequency range from 0.7 to 7 rad/sec.

Figures 8.26 and 8.34 show the off-axis roll rate p frequency responses to a

longitudinal stick input δlon at 80 and 120 knots respectively. Both figures show

only a small effect of blade modeling on the frequency response results. Although

the results with the free wake model and the simple blade model at 120 knots
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(Fig. 8.34) show some phase differences from about 0.2 rad/sec to 0.8 rad/sec. The

suspicious nature of these predictions could be the results of the way in which

the linearized models are calculated with the free wake model and the difficulties

in accurately capturing the wake distortion effects. This is discussed further in

Section. 8.6. At 80 knots, for frequencies above 1 rad/sec both the magnitude and

phase predictions show very little sensitivity to inflow modeling. Below 1 rad/sec the

amplitude predictions with the free wake are higher than those with dynamic inflow.

The extent of the notch type response predicted with dynamic inflow at about 0.7

rad/sec is significantly smaller with the free wake model. The phase predictions

show little sensitivity to inflow modeling over the entire frequency range. At 120

knots, both the amplitude and phase predictions show little sensitivity to blade or

inflow modeling. In hover, the phase of the roll rate response to a lateral stick input

(Fig. 8.10) did show a sensitivity to inflow modeling for frequencies below 4 rad/sec

and also showed a 180o phase difference between the dynamic inflow and free wake

model predictions below 0.6 rad/sec. However, at 80 and 120 knots, this sensitivity

of the phase to inflow modeling is not seen.

The results presented in this section showed some off-axis frequency responses for

the UH-60A at 80 and 120 knots of forward speed. No flight test data were available,

which made it impossible to determine the accuracy of the predictions. As with all

of the other results for the UH-60A, both in hover and forward flight, it was shown

that there is very little dependency of the frequency response predictions on blade

modeling. Although, unlike in hover, the off-axis frequency response predictions in

forward flight show very little dependency on inflow modeling.

310



8.3 BO-105 in hover

The results in this section refer to the BO-105 hingeless rotor helicopter in hover

at an altitude of 3000 feet. Details of the modeling parameters of the BO-105 are

presented in Section 6.1. The effects of blade and inflow modeling on the pole

locations and the frequency responses are examined. For the free wake results, the

resolution of the vortex wake, ∆ψ, is 5 degrees, the total length of each vortex

filament ζmax is 720 degrees, and the initial tip vortex strength is equal to the

maximum bound circulation along the blade (CΓ = 1.0). The other inflow model

is the dynamic inflow model of Pitt-Peters that does not include maneuver induced

distortions on the wake geometry and inflow. Two different blade models are used

in the generation of the numerical results. These are a simple blade model that

includes only the first elastic flap mode, and a refined blade model that includes the

first seven elastic blade modes with the lowest natural frequencies.

8.3.1 Poles

Figures 8.35 and 8.36 show the effects of inflow modeling on the open-loop poles of

the helicopter mathematical model for the BO-105 in hover. The model representing

the blade motion and flexibility is the refined blade model that includes the seven

elastic blade modes with the lowest natural frequencies. Because the BO-105 has a

hingeless main rotor and does not incorporate a lag damper, the damping of the lag

modes remains fairly low. To ensure that the lag modes remain stable, an additional

1% of critical modal damping is added to the damping of the first lag mode and an

additional 0.5% of critical damping is added to that of the second lag mode.

Figure 8.35 shows the effect of inflow modeling on the rotor poles. The highest

frequency modes are related to the second elastic torsion and third elastic flap
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blade modes and their poles are not significantly effected by inflow modeling. The

damping of the second lag mode is predicted higher with the free wake model than

with dynamic inflow, but these differences are small. However, because the lag

damping is low, the increase in damping with the free wake model is a significant

result. The most significant effect of inflow modeling is on the first and second flap

modes, and on the first torsional mode. The free wake acts to significantly decrease

the frequencies and damping of the first and second flap modes from the results with

dynamic inflow. For some of these modes, the damping is reduced to about half of

its original value. An exception to this, however, is the regressive flap mode where

the damping increases. For the first torsional mode, the damping and frequencies

of the poles are significantly increased. As with the second lag mode, the poles

related to the first lag mode are effected only a slight amount where the free wake

model acts to increase the damping of the first lag mode poles. Again, because the

damping of the first lag mode is relatively low, the increased damping of this mode

with the free wake is found to be significant.

Figure 8.36 shows the pole locations related to the body modes of the BO-105 in

hover. The complex conjugate pair for the phugoid is slightly unstable with dynamic

inflow, with ωn = 0.5370 rad/sec and ζ = −0.2488, and is made more unstable using

the free wake inflow model with ωn = 0.6352 rad/sec and ζ = −0.5619. The dutch

roll mode is stabilized with the free wake model from ωn = 0.6753 rad/sec and

ζ = 0.1841 with dynamic inflow to ωn = 0.7333 rad/sec and ζ = 0.5457 with the

free wake. The other two body poles for the BO-105 shown here are related to a

spiral mode and a pitch mode. The real part of the spiral mode is reduced and that

of the pitch mode is increased with the use of the free wake model. There are also

three body modes that are not shown in this figure. The first is the heading mode,

which would be located at the origin. The other two are a roll mode and a pitch
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mode, which have negative real parts that place them further to the left (stable

region) than can be seen on this figure.

8.3.2 On-axis frequency response

The effect of inflow and blade modeling on the on-axis frequency response results

for the BO-105 in the hover flight condition are shown in Figures 8.37 through 8.40.

Results with both the free wake and dynamic inflow models are included. The

dynamic inflow model is the Pitt-Peters model, which does not include maneuvering

effects. The free wake results are generated with a vortex wake resolution ∆ψ of 5

degrees, the total length of each vortex filament ζmax is 720 degrees and the initial

tip vortex strength is equal to the maximum bound circulation along the blade

(CΓ = 1.0). There simple and refined blade models are used.

Figure 8.37 shows the effect of inflow and blade modeling on the roll rate p

response to a lateral control input δlat for the BO-105 in hover. The effects of

blade modeling are most visible at high frequencies above about 60 rad/sec. At

about 80 rad/sec there is a peak in the magnitude predictions generated with the

refined blade model because of the progressive lag mode. The inflow model has no

significant effect on the phase predictions but does effect the magnitude. Here the

gain is predicted lower with the free wake than with dynamic inflow for frequencies

below 1 rad/sec.

Figure 8.38 shows the pitch rate response q to a longitudinal control input δlon.

The blade model has little effect below about 8 rad/sec. The differences above this

frequency result from the inclusion of the first elastic lag mode with the refined blade

model. In the frequency range from 0.9 to 6 rad/sec, there is no significant effect

of inflow modeling. Below 0.9 rad/sec there is an increased gain predicted with the

dynamic inflow model and the differences in the phase when compared with the free
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wake predictions.

Figure 8.39 shows the vertical acceleration ẇ frequency response to a collective

stick input δcol. The predictions here are not sensitive to either the blade model

nor the inflow model, with the exception of the notch type response at a frequency

of about 35 rad/sec, which is a result of the collective and differential lag modes

added with the refined blade model. The yaw rate r response to a pedal input δped

is shown in Figure 8.40. As with the response to a collective input there is little

sensitivity of the response to inflow or blade modeling over most of the frequency

range. The only difference is with respect to blade modeling at about 30 rad/sec as

a result of the first lag model.

The results presented in this section showed the effect of blade and inflow mod-

eling on the on-axis frequency responses for the BO-105 in hover. The effects of

inflow modeling were only seen in the responses to lateral and longitudinal control

inputs in the low frequency range below 1 rad/sec. Above this frequency the effects

of inflow modeling were minimal. The blade model only effected the results for

frequencies above about 15 rad/sec and the differences here were as a result of the

inclusion of lag degrees of freedom with the refined blade model.

8.3.3 Off-axis frequency response

The effect of inflow and blade modeling on the prediction of the off-axis frequency

responses for the BO-105 in hover is examined in this section. However, due to the

lack of flight test data for the off-axis responses, no conclusions about the accuracy

of the predictions can be made.

Figure 8.41 shows the pitch rate q response to lateral control input δlat for the

BO-105 in hover. For flight dynamics work, the most important frequency range

is generally from about 2 to 20 rad/sec, and this is the region in which the most
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significant effects of inflow and blade modeling are seen. Significant phase differences

with inflow and blade modeling are evident, but it is not clear which results are

most accurate because of the lack of test data. The same types of trends are seen

in Figure 8.42, which shows the off-axis roll rate p response to a longitudinal stick

input δlon. Again, there are significant phase differences in the frequency range from

0.8 to 20 rad/sec with the different inflow and blade models.

8.4 BO-105 in forward flight

This section examines the poles and frequency response results for the BO-105 in

straight and level forward flight at a forward speed of 80 knots, and at an altitude of

3000 feet. The modeling configurations are the same as those described in Section 8.3

for the BO-105 in hover. The two inflow models used are the Pitt-Peters dynamic

inflow model and the free wake model (∆ψ = 5o, ζmax = 720o and CΓ = 1.0).

Results with both the simple and refined blade models are presented.

8.4.1 Poles

Figures 8.43 and 8.44 show the effect of inflow modeling on the open-loop poles for

the BO-105 in forward flight at 80 knots. The effect of inflow modeling on the rotor

poles is shown in Figure 8.43. The change in the pole locations with inflow modeling

is significantly less at the 80 knot case than in hover. The first and second lag modes,

as well as the third flap and second torsional modes are essentially independent of

inflow modeling. The damping of the poles, which is related to the second flap

mode, is reduced with the free wake model, while the damping of the poles related

to the first torsional mode is increased.

The pole locations for the body modes at 80 knots are shown in Figure 8.44.

The phugoid mode is seen as an unstable complex conjugate pair using both inflow
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models. The free wake model acts to further destabilize this mode from ωn = 0.2398

rad/sec and ζ = −0.0728 with dynamic inflow to ωn = 0.1903 rad/sec and ζ =

−0.1824 with the free wake model. The phugoid mode is less unstable at 80 knots

than it was in hover. The natural frequency of the dutch roll mode is significantly

higher at 80 knots than in hover, and the inflow modeling plays only a minor roll

on the location of this pole at 80 knots. The spiral mode, which was stable in hover

with both inflow models, remains marginally stable at 80 knots with dynamic inflow,

but is seen as a static divergent pole lying on the positive real axis when using the

free wake model. The pole related to pitch is seen to be less stable with the addition

of the free wake model than with dynamic inflow. As in the hover case, the heading

pole at the origin is not shown and the two poles for pitch and roll motion have

negative real parts that place them further to the left (stable region) than can be

seen on this figure.

8.4.2 On-axis frequency response

This section examines the on-axis frequency response results for the BO-105 at a

forward speed of 80 knots and at an altitude of 3000 feet. Figure 8.45 shows a

comparison for the roll rate frequency response p to a lateral stick input δlat. Both

the amplitude and phase are predicted well at all frequencies except in the low

frequency range below 0.4 rad/sec where the amplitude is somewhat over-predicted

and there are some differences in the phase. The blade model does not significantly

effect the predictions in the frequency range from 0.4 to 10 rad/sec but does have

some effect outside this range. The effect of the regressive lag mode is visible in

the results with the refined blade model at about 12 rad/sec but is not seen with

the simple blade model results as no lag degrees of freedom are included within this

model. The flight test data has phase and amplitude changes from the regressive
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lag mode at about 14 rad/sec indicating that the frequency of this mode is slightly

under-predicted by the simulation model. The other difference is the peak predicted

at about 80 rad/sec from the progressive lag mode, which has low damping but is

beyond the frequency range of interest for typical flight dynamics work. The effects

of inflow modeling on this on-axis response is small, which is similar to the trend

seen for the UH-60A in forward flight.

Figure 8.46 shows the pitch rate response q to a longitudinal control input δlon

at 80 knots. The amplitude predictions are qualitatively in good agreement with

the test data over the entire frequency range, although the simulation results are

consistently a couple of dB higher. The phase predictions made with the free wake

model are in good agreement with the test data over the entire frequency range,

and show a significant improvement over the dynamic inflow results for frequencies

below 5 rad/sec. The peak in the amplitude associated with the unstable phugoid

mode is over-predicted with the dynamic inflow model at a frequency of 2.5 rad/sec

with the refined blade model and 3.5 rad/sec with the simple blade model and this

peak contributes to the lack of accuracy of the phase with dynamic inflow in this

frequency range.

Figure 8.47 shows the vertical acceleration ẇ response to a collective control

input δcol. The amplitude of the response is over-predicted over the entire frequency

range with both inflow models, although qualitatively the predictions agree well

with the test data. The phase predictions are not as good as those of the amplitude,

although the general trends are similar. A notch type response is visible at about

35 rad/sec corresponding to the collective lag mode. A smaller notch is also visible

at about 80 rad/sec corresponding to the progressive lag mode. Apart from these

two high frequency effects, the blade model effects the predictions only in the low

frequency range, where the effects of blade modeling on the locations of the body
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poles cause these changes. The effects of inflow modeling are visible only in the mid

to low frequency range below 5 rad/sec.

Figure 8.48 shows the yaw rate response r to a pedal input δped. The predictions

of both the amplitude and phase are found to be in excellent agreement with the

flight test data using both inflow models and both blade models over the frequency

range where the test data exist. The response resulting from the collective lag mode

at about 32 rad/sec is clearly visible in the predictions using the refined blade model.

Apart from this lag mode, the effects of blade and inflow modeling are only visible

at frequencies below 0.8 rad/sec and the lack of test data in this region make it

difficult to interpret these differences.

8.4.3 Off-axis frequency response

Figure 8.49 and 8.50 show the off-axis frequency of pitch q in response to a lateral

input δlat, and roll p response to a longitudinal input δlon, respectively. For the pitch

rate response to a lateral stick input, as shown in Figure 8.49, neither the free wake

model nor the dynamic inflow model give particularly good results for the predictions

of either the amplitude or the phase. There are also some significant differences

in the predictions with the different blade models. The notch type response at

about 2.2 rad/sec made using the free wake model with the refined blade model is

“suspicious” and is not seen with the other simulation models nor the flight test

data. It should be remembered that the individual perturbations for the states and

controls were tailored only for the hover flight condition and not specifically for 80

knots, which probably contributes to these differences. This is discussed further in

Section 8.6.

A similar trend is seen in Figure 8.50 which shows the roll rate response to a

longitudinal control input. The amplitude predictions made using the free wake
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model are lower than those with dynamic inflow and also show a better agreement

with the test data. Although the phase predictions are seen to be better with

dynamic inflow than with the free wake model.

8.5 Effect of free wake resolution

This section examines the effect of the wake resolution ∆ψ within the free wake

model on the results derived from the linearized models calculated using the free

wake. The wake resolution is an important parameter for two main reasons. The

first is with respect to computational time. By halving ∆ψ, the computer time

required for each iteration of the wake geometry loop increases by a factor of four.

The second is that the convergence of the wake geometry loop within the free wake

model is particularly sensitive to the wake resolution at certain flight conditions.

Convergence of the wake geometry loop is in general more difficult with a coarser

wake.

Figures 8.51 and 8.52 show the effect of the free wake resolution on the rotor

and body poles for the UH-60A in hover. The wake resolutions are ∆ψ = 5o and

∆ψ = 10o, respectively. The simple blade model is used for both sets of results

because it was previously shown that for the UH-60A in hover, the blade model

does not have a significant effect on the linearized results. These results show some

effect of the wake resolution on the pole locations, but in each case these difference

is small.

Figures 8.53 and 8.54 show the roll p to lateral δlat and pitch q to longitudinal

δlon on-axis frequency responses, again for the UH-60A in hover. The differences

resulting from wake resolution are small and isolated to the low frequency range

below 0.6 rad/sec. This frequency range is lower than that generally considered to
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be important for flight dynamics work.

Figures 8.55 and 8.56 show the pitch q to lateral δlat and roll p to longitudinal

δlon off-axis frequency responses. As with the on-axis responses, the effects of wake

resolution are only seen at the low frequency region below 0.6 rad/sec and the

differences here are smaller than those for the on-axis responses.

These results indicate, for the wake resolutions considered, that the predicted

pole locations and both the on and off-axis frequency responses are not dependent

on the wake resolution. This conclusion should however be considered carefully

because with the coarser wake resolution (∆ψ = 10o) the convergence of the free

wake model is not always possible.

8.6 Effect of numerical perturbation

The linear models generated in the current study describe the small perturbation

motion about a given equilibrium position. The linear models are generated by

numerically perturbing the equations of motion about this equilibrium position.

A central difference approximation to the derivatives is used and the individual

elements of the state A and control B matrices are calculated using Eqs. (4.8)

and (4.9). These equations require, amongst other things, a numerical value by

which the state and control variables are perturbed. It is the effect of the size of

this numerical perturbation that is now examined in this section.

With the dynamic inflow model the perturbation size has little effect on the value

of the individual stability and control derivatives that make up the state and control

matrices, and also on the resulting frequency responses [56]. The perturbation,

however, cannot be arbitrarily large because the equations of motion are non-linear

in nature. If the perturbation is too large, then the Taylor series expansion of
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the equations (Eqn. (4.1)) is truncated to only include the first derivative or linear

terms introduces truncation errors. This still leaves a wide range of perturbation

values that can be used, and they span a number of orders of magnitude below the

point where truncation errors become an issue. This is, however, not true when

the free wake inflow model is used. Here, the circulation loop, which is a double

nested loop of the wake geometry and inflow distribution, is contained within the

perturbation loop. This is illustrated in Figure 4.2, where the circulation loop is

evaluated after each of the positive and negative perturbations of the states and

controls are made. Ideally the tolerances of the inner loops would be tighter than

those of the outer loops [84], with the tightest tolerance on the innermost loop

(wake geometry loop) and the loosest tolerance on the outermost loop (perturbation

loop). However this is not possible with the free wake model, where because of the

convergence characteristics of the wake geometry loop, the tolerance of the innermost

loop is, in general, higher than those of the outer loops. The consequence of this,

is that the value of the numerical perturbation used to calculate the individual

elements of the state and control matrices must be chosen carefully to fully capture

the free wake effects.

Figures 8.57 and 8.58 show the effect of the size of the numerical perturbation

of the roll rate ∆p on the Lp and Mp stability derivatives for both the BO-105 and

UH-60A in hover. Figures 8.59 and 8.60 show similar results of the pitch rate pertur-

bation size ∆q on the Lq and Mq stability derivatives. Each of these figures has the

stability derivative value on the y-axis plotted as a function of the perturbation size

used in the central difference approximation to the derivative (Eqs. (4.8) and (4.9)).

The perturbations are made from the pitch and roll rate trim values, which are zero

for the straight and level flight case considered. Therefore the perturbation values

shown in Figures 8.57 through 8.60 represent the absolute value of the perturbation
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and not a relative value.

Three distinct regions are obtained in each of the figures. The first is an erro-

neous region where the perturbation size is too small and the effects of the free wake

geometry and subsequent inflow changes are not captured. This region is labeled

“Free wake not activated”. When the perturbation size is too small, then the cir-

culation loop (including the wake geometry loop and the circulation-inflow loop) is

already converged without the need for further wake geometry and inflow iterations.

So the effects of the wake geometry and inflow changes are not captured and the

free wake is essentially not activated.

The second is another erroneous region where the perturbation is too large and

the errors are related to the fact that the Taylor series is truncated to only include

the first derivative or linear terms (Eqn. (4.1)). This region is labeled “Truncation

region”. This region exists because of the non-linear nature of the mathematical

model and when the perturbation size increases, the effects of these non-linearities

on the linear approximation becomes more noticeable.

The final region is where the perturbation size is large enough to ensure that the

free wake is activated and the effects of the wake distortions on the inflow distribution

captured, but not too large that errors resulting from truncation become significant.

This region is labeled “Correct region” in Figures 8.57 through 8.60.

The trends seen in these figures with three distinct regions, are typical of those

for all of the stability and control derivatives. Namely that the value of the nu-

merical perturbation significantly effects the prediction of the stability and control

derivatives. Considering Figure 8.57, which shows the effect of the roll rate pertur-

bation size on the Lp derivative, it is shown that the range of perturbations to be

in the “Correct region” is limited for both helicopters and is less than an order of

magnitude for the UH-60A. Also, the size and location of this “correct region” is a
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function of the helicopter itself because it is different for the BO-105 and UH-60A he-

licopters. In fact, the location and size of the region for which the perturbation size

is correct is dependent on a number of factors, including the helicopter, the state

or control derivative being perturbed, the equation being considered, the trim or

equilibrium condition, the flight condition, and various free wake model parameters.

These results indicate that the perturbation size used in the calculation of the

central difference approximations (such as those in Eqs. (4.8) and (4.9)) required

to build the linearized model must be chosen carefully. Further, the selection of

the perturbation size used for each state and control variable must be treated sep-

arately. Here a relationship between the derivative value and the perturbation size,

such as those shown in Figures 8.57 through 8.60, would be constructed and a cor-

rect perturbation size selected for each state and control variable. This leads to

a complicated and computationally expensive method for the determination of the

linearized models that accurately captures the effects of the free wake, including

the wake distortions from maneuvers. For the current analysis, this entire proce-

dure has been performed for the BO-105 and UH-60A helicopters only in the hover

flight condition. For the calculation of the linearized models in forward flight, the

perturbations used are those from the hover flight condition. For this reason any

linearized model results in forward flight for both the BO-105 and UH-60A must be

considered with care.

Figures 8.61 through 8.68 show the effects on the frequency responses of using

an incorrect perturbation size for some of the state variables. For the BO-105 in

hover, Figures 8.61 through 8.64 show the on-axis and off-axis frequency responses

to lateral and longitudinal control inputs. In each of these figures there are three

curves. The first, labeled “Correct perturbations”, is generated using the correct

perturbation values of all of the state and control variables and represents an accu-
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rate frequency response that captures the maneuvering effects associated with the

free wake model. The next curve, labeled “Non-linear region”, has the two columns

of the state matrix related to derivatives of the roll rate p and the pitch rate q

generated with perturbations that are too large and in the “Truncation region”.

Therefore, the columns related to perturbations of p and q are erroneous. The other

columns of the state matrix and all of the columns of the control matrix are cal-

culated using the correct perturbations and are identical to those of the “Correct

perturbations” linear model. The final curve, labeled “Wake not activated”, has the

p and q perturbation value being too small to correctly activate the wake and so

the columns of the state matrix related to the derivatives with p and q are also er-

roneous. Again, all of the other columns of the state matrix and the control matrix

remain unchanged.

Figures 8.61 and 8.62 show that the on-axis frequency responses are not signifi-

cantly effected while the off-axis responses, shown in Figures 8.63 and 8.64 so show

significant changes. Here, significant magnitude and phase changes are seen for the

case in which the free wake is not activated, even though only two columns of the

linearized model were changed. Also of significance is that these differences occur in

the center of the frequency region that is of most interest in flight dynamics work,

namely between 2 and 20 rad/sec. Similar trends are also seen for the UH-60A in

hover (Figures 8.65 through 8.68) where again the columns related to the derivatives

with p and q were altered. The the UH-60A, the on-axis frequency responses were

not significantly affected but there were changes in both the magnitude and phase

predictions for the off-axis responses.

It was shown in Figure 8.34 that there were some “suspicious” predictions with

the free wake model and the simple blade model for the UH-60A at 120 knots. In

particular, the step change in the phase predictions at a frequency of 0.2 rad/sec
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is probably the result of an incorrect perturbation size of one or more of the states

or controls where the free wake is not being activated correctly. It should be re-

membered that the perturbation sizes for the states and controls were tailored for

the hover flight condition only, and these values were also used to calculate the

linearized model results at 120 knots. A further validation of the linearized model

results in forward flight would require the tailoring of the perturbation size for each

of the states and controls at the particular flight condition. For this precise reason,

the results from the linearized models in forward flight must be considered with

caution.

The linearized model results with dynamic inflow seem to be fairly independent

of the perturbation size used to calculate the linearized models. The same is not true,

however, with the free wake model, where the range of valid perturbations required

to accurately capture the maneuvering effects associated with the free wake model

are relatively small. In certain cases, this range can be as small as a single order of

magnitude. In addition, the correct range of perturbation values is dependent on a

number of parameters, including the state or control being considered, its numerical

value, the particular helicopter, the helicopter configuration, the forward speed, etc.

For this study the correct values of the numerical perturbations were tailored for

the hover flight condition only. For forward flight, the perturbation sizes used were

the same as those from hover and so are not specifically tailored for any forward

flight conditions. For this reason the forward flight results presented in this chapter

much be considered with care.
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8.7 Keller’s extended momentum theory

The third inflow model that is considered in this study is the so called “extended

momentum theory” model, proposed by Keller [15]. This model includes wake dis-

tortion effects from maneuvers through the use of a wake distortion parameter KR

(see Section 2.7). The major difference between this model, which captures wake

distortion effects from maneuvers, and the free wake model, which also captures

maneuver effects, is that the extended momentum theory model includes inflow

dynamics or unsteadiness while the free wake model does not.

Figures 8.69 through 8.72 show the on-axis and off-axis frequency responses to

lateral and longitudinal control inputs for the UH-60A in hover. Various values of

the wake distortion parameter KR are used. The dynamic inflow results, that do

not include wake distortion effects, can be considered as the case with KR = 0.0.

The simple blade model with rigid flap and lag modes is used. Figure 8.69 shows

the on-axis roll rate response p to a lateral stick input δlat. This response is not

significantly effected by the KR value and the agreement with the flight test data is

good over the range of accuracy of the test data. The only difference being that the

peak corresponding to the dutch roll mode at about 0.6 rad/sec is increased with

higher KR values. The on-axis pitch rate response q to a longitudinal stick input

δlon is shown in Figure 8.70. The effect of the KR value is small and the agreement

with the flight test data is excellent where the test data is considered accurate.

The most significant effects of the inclusion of the wake distortion effects is

to the off-axis responses, which are shown in Figures 8.71 and 8.72. Figure 8.71

shows that a substantial improvement in the phase of the pitch rate response q to a

lateral stick input δlat is achieved as the KR value is increased, although it should

be remembered that the flight test data is considered to have limited accuracy over
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the entire frequency range. While the dynamic inflow predictions (KR = 0.0) show

a 180o phase difference from the flight test data in the frequency range from 0.9 to

6 rad/sec, the predictions with KR = 1.5 are in phase with the flight test data from

about 1.2 to 6 rad/sec. The magnitude predictions do not, however, show the same

improvement, although the lack of accurate flight test data make these comparisons

difficult.

The off-axis roll rate response p to a longitudinal control input δlon, shown in

Figure 8.72, also has an improved correlation with the inclusion of the wake distor-

tion effects. The phase predictions are improved in the frequency range from 3 to 12

rad/sec, and a better agreement with the flight test data is seen with increasing KR.

However the inclusion of wake distortion effects does not effect the phase in the fre-

quency range from 1 to 3 rad/sec and the correlation in this region is not improved

here. The magnitude predictions deteriate somewhat with the wake distortions and

the over-predictions increase as the value of KR is increased.

Similar trends with the inclusion of the wake distortion effects are seen when

compared with the BO-105 results. Figures 8.73 through 8.76 show the on-axis and

off-axis responses to longitudinal and lateral control inputs for the BO-105 at 80

knots. The refined blade model is used. As with the UH-60A, the on-axis responses

are not significantly effected while the off-axis predictions are somewhat improved.

8.8 Discussion of linearized model results

This section contains a discussion of the linearized model results for the BO-105 and

UH-60A helicopters presented earlier in this chapter.

The on-axis response results for the BO-105 did not show significant effects of

inflow or blade modeling in the frequency range between 2 and 20 rad/sec. At
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frequencies lower than 2 rad/sec there were, however, some differences with inflow

modeling, which were generally a consequence of the effects of inflow modeling on the

rigid body or fuselage modes. At frequencies above 10 rad/sec, blade modeling has

some effect on the on-axis predictions because of the additional blade modes included

in the refined blade model. In particular, the effects of the inclusion of the first elastic

lag mode with the refined blade model effects the frequency responses from about 10

to 80 rad/sec. These trends are seen in both hover and forward flight at 80 knots.

With respect to the off-axis response predictions, the inclusion of the free wake

model does not improve the correlation with the test data, although the limited

amount of flight test data available limited the comparisons to a flight condition of

80 knots only. These off-axis response predictions also showed some sensitivity to

blade modeling, particularly in the frequency range from 1 to 8 rad/sec. The third

inflow model considered was the extended momentum theory model, proposed by

Keller, which includes wake distortion effects from maneuvers. When these results

were compared to those with the Pitt-Peters dynamic inflow model, there were only

small changes in the on-axis response predictions. In the frequency range from 0.5

to 2 rad/sec, the phase of the on-axis responses were slightly degraded with the wake

distortion effects included. However, for the off-axis responses, the correlation for

the pitch response to a lateral input was improved with the wake distortion effects

included, while it was slightly degraded for the roll response to a longitudinal input.

For the UH-60A, the on-axis frequency responses were, in general, in good agree-

ment with the test data in the frequency range where the flight test data was consid-

ered accurate. This was seen in both hover and forward flight. In hover, the on-axis

responses to longitudinal and lateral control inputs showed a 180o phase difference

between the predictions with the dynamic inflow and free wake inflow models for fre-

quencies below 0.8 rad/sec. This same trend was not seen in forward flight. Again,
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in hover the magnitude of the vertical acceleration to a collective control input was

over-predicted with the free wake model, as were the magnitudes of the off-axis re-

sponses to collective. This over-prediction of the responses to collective is probably

resulting from the lack of inflow dynamics or unsteadiness associated with the free

wake model, where the change in inflow occurs instantaneously following a change

in collective. For the pitch to lateral and roll to longitudinal off-axis responses in

hover, there are some improvements in the magnitude predictions with the free wake

model, but no real improvements in the phase predictions. Although these correla-

tions should be considered carefully because the accuracy of the flight test data for

the off-axis responses is in general quite low. In forward flight, no flight test data

for the off-axis responses exists, and so no conclusions about the accuracy of the

predicted responses could be made. With the extended momentum theory inflow

model, which includes wake distortion effects from maneuvers, there are substantial

improvements in the prediction of the phase of the off-axis frequency responses of

both the pitch to lateral and roll to longitudinal responses in hover. This trend is

not seen in the corresponding amplitude predictions where the amplitudes are some-

what over-predicted with the inclusion of the maneuvering effects in the dynamic

inflow model.

These results for the UH-60A indicate that neither inflow nor blade modeling

have a significant effect on the on-axis responses in the frequency range of interest

for flight dynamics work, that is in the range from 2 to 20 rad/sec. However for the

off-axis response predictions the extended momentum theory model gives the best

phase correlations, while at the same time degrading the magnitude predictions.

The off-axis response predictions were not improved with the free wake model. This

seems to indicate, at least for the UH-60A in hover, that the unsteadiness of the

inflow is critical for the accurate prediction of the off-axis frequency responses.
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The effect of the free wake resolution on the poles and frequency response results

was also examined. This free wake parameter has only a small effect on the frequency

responses which is visible only in the low frequency range. Here the effect of the

wake resolution on the body pole locations, although small, probably causes the

changes in the frequency response predictions.

The final effect investigated was that of the perturbation size used in the calcu-

lation of the central difference approximation to the first derivatives that make up

the linearized model. It was shown that the choice of perturbation size is critical

with the free wake model and some rather small changes in this perturbation can

have significant effects on the predicted responses. If the perturbation size is too

small, then the free wake is essentially not activated and the effects of the free wake

distortions from maneuvers are not fully captured. If the perturbation size is too

large, then truncation errors become important. This leaves a perturbation region

in-between, where the free wake effects are captured accurately. This region is gen-

erally quite small and dependent on a number of factors. These include the state or

control variable being perturbed, the helicopter and helicopter configuration, flight

condition, various free wake parameters, etc. This means that the perturbation size

for each state and control variable must be chosen separately and carefully so that

the free wake is activated correctly. This must also be done for each helicopter at

each flight condition. For this study the perturbation sizes for each of the states

and controls to correctly activate the wake were determined for the BO-105 and

UH-60A in the hover flight condition only. The values of the perturbation sizes

used in forward flight were not specifically examined, but rather, the values from

the hover flight condition were used. For this reason, all of the forward flight results

presented in this chapter must be considered with care. This is because the use of

incorrect perturbation sizes for just one or two states can have significant effects on
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the frequency response predictions. For the UH-60A in hover, the use of incorrect

perturbations for the pitch and roll rates produced significant phase differences in

the off-axis response predictions for frequencies of 2 to 10 rad/sec, which is precisely

the frequency range that is of most interest in flight dynamics work.
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Figure 8.3: Effect of inflow models and blade modeling on the on-axis roll rate
frequency response to lateral stick input for the UH-60A in hover.
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Figure 8.4: Effect of inflow models and blade modeling on the on-axis pitch rate
frequency response to longitudinal stick input for the UH-60A in hover.
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Figure 8.5: Effect of inflow models and blade modeling on the on-axis vertical
acceleration frequency response to collective stick input for the UH-60A in hover.
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Figure 8.6: Effect of inflow models and blade modeling on the on-axis yaw rate
frequency response to pedal input for the UH-60A in hover.
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Figure 8.7: Effect of inflow models and blade modeling on the off-axis pitch rate
frequency response to lateral stick input for the UH-60A in hover.
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Figure 8.8: Effect of inflow models and blade modeling on the off-axis vertical
acceleration frequency response to lateral stick input for the UH-60A in hover.
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Figure 8.9: Effect of inflow models and blade modeling on the off-axis yaw rate
frequency response to lateral stick input for the UH-60A in hover.
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Figure 8.10: Effect of inflow models and blade modeling on the off-axis roll rate
frequency response to longitudinal stick input for the UH-60A in hover.
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Figure 8.11: Effect of inflow models and blade modeling on the off-axis vertical
acceleration frequency response to longitudinal stick input for the UH-60A in hover.
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Figure 8.12: Effect of inflow models and blade modeling on the off-axis yaw rate
frequency response to longitudinal stick input for the UH-60A in hover.
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Figure 8.13: Effect of inflow models and blade modeling on the off-axis roll rate
frequency response to collective stick input for the UH-60A in hover.
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Figure 8.14: Effect of inflow models and blade modeling on the off-axis pitch rate
frequency response to collective stick input for the UH-60A in hover.
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Figure 8.15: Effect of inflow models and blade modeling on the off-axis yaw rate
frequency response to collective stick input for the UH-60A in hover.
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Figure 8.16: Effect of inflow models and blade modeling on the off-axis roll rate
frequency response to pedal input for the UH-60A in hover.
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Figure 8.17: Effect of inflow models and blade modeling on the off-axis pitch rate
frequency response to pedal input for the UH-60A in hover.
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Figure 8.18: Effect of inflow models and blade modeling on the off-axis vertical
acceleration frequency response to pedal input for the UH-60A in hover.
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Figure 8.19: Effect of inflow modeling on rotor and inflow poles for the UH-60A at
80 knots with the simple blade model.

350



0

0.5

1

1.5

2

2.5

3

-4 -3 -2 -1 0 1

Dynamic inflow
Free wake inflow

Im
ag

in
ar

y 
pa

rt
   

 (
ra

d/
se

c)

Real part     (rad/sec)

Dutch Roll

Spiral

Short
Period

Stable

Phugoid

Figure 8.20: Effect of inflow modeling on fuselage poles for the UH-60A at 80 knots
with the simple blade model.
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Figure 8.21: Effect of inflow models and blade modeling on the on-axis roll rate
frequency response to lateral stick input for the UH-60A at 80 knots.
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Figure 8.22: Effect of inflow models and blade modeling on the on-axis pitch rate
frequency response to longitudinal stick input for the UH-60A at 80 knots.
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Figure 8.23: Effect of inflow models and blade modeling on the on-axis vertical
acceleration frequency response to collective stick input for the UH-60A at 80 knots.
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Figure 8.24: Effect of inflow models and blade modeling on the on-axis yaw rate
frequency response to pedal input for the UH-60A at 80 knots.
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Figure 8.25: Effect of inflow models and blade modeling on the off-axis pitch rate
frequency response to lateral stick input for the UH-60A at 80 knots.
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Figure 8.26: Effect of inflow models and blade modeling on the off-axis roll rate
frequency response to longitudinal stick input for the UH-60A at 80 knots.
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Figure 8.27: Effect of inflow modeling on rotor and inflow poles for the UH-60A at
120 knots with the simple blade model.
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Figure 8.28: Effect of inflow modeling on fuselage poles for the UH-60A at 120 knots
with the simple blade model.
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Figure 8.29: Effect of inflow models and blade modeling on the on-axis roll rate
frequency response to lateral stick input for the UH-60A at 120 knots.
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Figure 8.30: Effect of inflow models and blade modeling on the on-axis pitch rate
frequency response to longitudinal stick input for the UH-60A at 120 knots.

361



-40

-30

-20

-10

0

10

20

Flight test
Free wake - 2 modes
Free wake - 6 modes
Dyn. inflow - 2 modes
Dyn. inflow - 6 modes

0.1 1 10 100

w
/ δ

co
l   

   
A

m
pl

itu
de

 (
dB

)

.

Accurate
Flight Test

-270

-180

-90

0

90

180

270

360

450

0.1 1 10 100

w
/ δ

co
l   

   
P

ha
se

 (
de

g)

Frequency (rad/sec)

.

Accurate
Flight Test

Figure 8.31: Effect of inflow models and blade modeling on the on-axis vertical
acceleration frequency response to collective stick input for the UH-60A at 120
knots.

362



-20

0

20

40

60

80

Flight test
Free wake - 2 modes
Free wake - 6 modes
Dyn. inflow - 2 modes
Dyn. inflow - 6 modes

0.1 1 10 100

r/
δ pe

d
   

   
A

m
pl

itu
de

 (
dB

)

Accurate
Flight Test

-450

-360

-270

-180

-90

0

90

0.1 1 10 100

r/
δ pe

d   
   

P
ha

se
 (

de
g)

Frequency (rad/sec)

Accurate
Flight Test

Figure 8.32: Effect of inflow models and blade modeling on the on-axis yaw rate
frequency response to pedal input for the UH-60A at 120 knots.
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Figure 8.33: Effect of inflow models and blade modeling on the off-axis pitch rate
frequency response to lateral stick input for the UH-60A at 120 knots.
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Figure 8.34: Effect of inflow models and blade modeling on the off-axis roll rate
frequency response to longitudinal stick input for the UH-60A at 120 knots.
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Figure 8.35: Effect of inflow modeling on rotor and inflow poles for the BO-105 in
hover with the refined blade model.
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Figure 8.36: Effect of inflow modeling on fuselage poles for the BO-105 in hover
with the refined blade model.
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Figure 8.37: Effect of inflow models and blade modeling on the on-axis roll rate
frequency response to lateral stick input for the BO-105 in hover.
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Figure 8.38: Effect of inflow models and blade modeling on the on-axis pitch rate
frequency response to longitudinal stick input for the BO-105 in hover.
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Figure 8.39: Effect of inflow models and blade modeling on the on-axis vertical
acceleration frequency response to collective stick input for the BO-105 in hover.
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Figure 8.40: Effect of inflow models and blade modeling on the on-axis yaw rate
frequency response to pedal input for the BO-105 in hover.
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Figure 8.41: Effect of inflow models and blade modeling on the off-axis pitch rate
frequency response to lateral stick input for the BO-105 in hover.
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Figure 8.42: Effect of inflow models and blade modeling on the off-axis roll rate
frequency response to longitudinal stick input for the BO-105 in hover.
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Figure 8.43: Effect of inflow modeling on rotor and inflow poles for the BO-105 at
80 knots with the refined blade model.
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Figure 8.44: Effect of inflow modeling on fuselage poles for the BO-105 at 80 knots
with the refined blade model.
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Figure 8.45: Effect of inflow models and blade modeling on the on-axis roll rate
frequency response to lateral stick input for the BO-105 at 80 knots.
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Figure 8.46: Effect of inflow models and blade modeling on the on-axis pitch rate
frequency response to longitudinal stick input for the BO-105 at 80 knots.
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Figure 8.47: Effect of inflow models and blade modeling on the on-axis vertical
acceleration frequency response to collective stick input for the BO-105 at 80 knots.
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Figure 8.48: Effect of inflow models and blade modeling on the on-axis yaw rate
frequency response to pedal input for the BO-105 at 80 knots.
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Figure 8.49: Effect of inflow models and blade modeling on the off-axis pitch rate
frequency response to lateral stick input for the BO-105 at 80 knots.
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Figure 8.50: Effect of inflow models and blade modeling on the off-axis roll rate
frequency response to longitudinal stick input for the BO-105 at 80 knots.

381



0

10

20

30

40

50

60

-60 -50 -40 -30 -20 -10 0 10

Free wake - ∆ψ = 5 deg
Free wake - ∆ψ = 10 deg

Im
ag

in
ar

y 
pa

rt
   

 (
ra

d/
se

c)

Real part     (rad/sec)

Tail Rotor Inflow

Progressive Flap

Progressive Lag

Reactionless Flap

Regressive
Flap

Reactionless Lag

Regressive Lag

Collective Flap

Collective
Lag

Stable

Figure 8.51: Effect of free wake resolution on the rotor poles for the UH-60A in
hover with the simple blade model.
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Figure 8.52: Effect of free wake resolution on the fuselage poles for the UH-60A in
hover with the simple blade model.
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Figure 8.53: Effect of free wake resolution on the roll rate frequency response to a
lateral stick input for the UH-60A in hover with the simple blade model.
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Figure 8.54: Effect of free wake resolution on the pitch rate frequency response to a
longitudinal stick input for the UH-60A in hover with the simple blade model.
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Figure 8.55: Effect of free wake resolution on the pitch rate frequency response to a
lateral stick input for the UH-60A in hover with the simple blade model.
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Figure 8.56: Effect of free wake resolution on the roll rate frequency response to a
longitudinal stick input for the UH-60A in hover with the simple blade model.
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Figure 8.57: Effect of numerical perturbation size on the rolling moment stability
derivative to roll rate in hover for the BO-105 (top) and UH-60A (bottom). The
simple blade model is used for both aircraft.
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Figure 8.58: Effect of numerical perturbation size on the pitching moment stability
derivative to roll rate in hover for the BO-105 (top) and UH-60A (bottom. The
simple blade model is used for both aircraft.
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Figure 8.59: Effect of numerical perturbation size on the rolling moment stability
derivative to pitch rate in hover for the BO-105 (top) and UH-60A (bottom). The
simple blade model is used for both aircraft.
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Figure 8.60: Effect of numerical perturbation size on the pitching moment stability
derivative to pitch rate in hover for the BO-105 (top) and UH-60A (bottom). The
simple blade model is used for both aircraft.
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Figure 8.61: Effect of numerical perturbation size on the on-axis roll rate response
to a lateral stick input for the BO-105 in hover with the simple blade model.
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Figure 8.62: Effect of numerical perturbation size on the on-axis pitch rate response
to a longitudinal stick input for the BO-105 in hover with the simple blade model.
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Figure 8.63: Effect of numerical perturbation size on the off-axis pitch rate response
to a lateral stick input for the BO-105 in hover with the simple blade model.

394



-65

-60

-55

-50

-45

-40

-35

-30

-25

Correct perturbations
Non-linear region
Wake not activated

0.1 1 10 100

p/
δ lo

n
   

   
A

m
pl

itu
de

 (
dB

)

-450

-360

-270

-180

-90

0

0.1 1 10 100

p/
δ lo

n
   

   
P

ha
se

 (
de

g)

Frequency (rad/sec)

Figure 8.64: Effect of numerical perturbation size on the off-axis roll rate response
to a longitudinal stick input for the BO-105 in hover with the simple blade model.
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Figure 8.65: Effect of numerical perturbation size on the on-axis roll rate response
to a lateral stick input for the UH-60A in hover with the simple blade model.
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Figure 8.66: Effect of numerical perturbation size on the on-axis pitch rate response
to a longitudinal stick input for the UH-60A in hover with the simple blade model.
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Figure 8.67: Effect of numerical perturbation size on the off-axis pitch rate response
to a lateral stick input for the UH-60A in hover with the simple blade model.
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Figure 8.68: Effect of numerical perturbation size on the off-axis roll rate response
to a longitudinal stick input for the UH-60A in hover with the simple blade model.
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Figure 8.69: Effect of wake distortion parameter KR within the extended momentum
theory model on the on-axis roll rate frequency response to a lateral stick input for
the UH-60A in hover with the simple blade model.
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Figure 8.70: Effect of wake distortion parameter KR within the extended momentum
theory model on the on-axis pitch rate frequency response to a longitudinal stick
input for the UH-60A in hover with the simple blade model.
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Figure 8.71: Effect of wake distortion parameter KR within the extended momentum
theory model on the off-axis pitch rate frequency response to a lateral stick input
for the UH-60A in hover with the simple blade model.
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Figure 8.72: Effect of wake distortion parameter KR within the extended momentum
theory model on the off-axis roll rate frequency response to a longitudinal stick input
for the UH-60A in hover with the simple blade model.
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Figure 8.73: Effect of wake distortion parameter KR within the extended momentum
theory model on the on-axis roll rate frequency response to a lateral stick input for
the BO-105 at 80 knots with the refined blade model.
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Figure 8.74: Effect of wake distortion parameter KR within the extended momentum
theory model on the on-axis pitch rate frequency response to a longitudinal stick
input for the BO-105 at 80 knots with the refined blade model.
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Figure 8.75: Effect of wake distortion parameter KR within the extended momentum
theory model on the off-axis pitch rate frequency response to a lateral stick input
for the BO-105 at 80 knots with the refined blade model.
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Figure 8.76: Effect of wake distortion parameter KR within the extended momentum
theory model on the off-axis roll rate frequency response to a longitudinal stick input
for the BO-105 at 80 knots with the refined blade model.
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Chapter 9

Time Integration Results

This chapter presents the dynamic response results calculated with the flight sim-

ulation model and includes comparisons with flight test data where such data is

available. First, the stick fixed dynamic responses are considered; at a forward

speed of 17 knots for the BO-105 and in hover for the UH-60A. Second, the dy-

namic response to lateral stick maneuvers for both BO-105 and UH-60A helicopters

are considered and the simulation results are compared to flight test data. Special

attention is given to the off-axis or cross-coupling predictions with the flight simula-

tion model and the effects of inflow and blade modeling on the calculated dynamic

responses.

9.1 BO-105 Stick Fixed Dynamic Response

This section presents the results of a simulation for the BO-105 helicopter with the

controls held fixed at the calculated trim value. The trim condition is calculated

in straight and level flight at a forward speed of 17 knots and an altitude of 250

feet. This flight condition is used for the stick fixed dynamic response because it

is the same flight condition as the dynamic response to a lateral stick maneuver

considered in Section 9.3. The purpose of the stick fixed simulation is to determine
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the amount of drift from the trim conditions as a function of time. For a perfectly

trimmed helicopter all the curves should either be straight lines or exactly periodic.

The time history results are calculated with the dynamic inflow and free wake inflow

models and with the two main rotor blade configurations as discussed previously.

Figures 9.1 and 9.2 show respectively the linear and angular accelerations at the

center of gravity of the body as a function of time for the first 0.3 seconds of the

time integration. This corresponds to about 2-1/4 rotor revolutions. These linear

and angular accelerations are proportional to the resultant forces and moments at

the center of mass of the helicopter. Both the simple and refined blade models are

used, with the simple blade model results denoted by “1 mode” and the refined blade

model results with “7 modes”. These figures show the vibrational characteristics at

the center of mass of the helicopter for each of the inflow and blade models. The

magnitude of the accelerations predicted using the free wake inflow model are at

least an order of magnitude higher than those predicted using a momentum theory

based dynamic inflow model, and the highest periodic accelerations are predicted

with the refined blade model.

Focusing on the linear accelerations, Figure 9.1 also shows that the magnitude

of the vertical acceleration is higher than in the longitudinal and lateral directions.

This is a result of the higher main rotor loads in the vertical direction. Figure 9.2

shows that the roll acceleration is higher than the pitch and yaw accelerations. This

is because the roll inertia is lower than the pitch and yaw inertias. For the models

that include the free wake, including coupled flap-lag-torsion dynamics (refined blade

model), higher vibrations are predicted at the center of gravity than the simpler

blade model with the fundamental flap mode only. The reason for this is that the

higher harmonics of inflow with the free wake excites higher blade modes, which

results in higher accelerations at the center of mass of the body.
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The mathematical model of this study was not validated for vibratory load cal-

culations. However, the general trends appear to be consistent with the results

presented in Ref. [85], namely, that the predicted vibratory loads increase with the

introduction of a free wake model, and with a more sophisticated flexible blade

modeling.

From a flight dynamics point of view, it should be noted that the predictions of

the model with the free wake are not exactly periodic. Therefore, the average linear

and angular accelerations of the aircraft are not equal to zero, and a slow drift away

from trimmed conditions should be expected. Figures 9.3 through 9.5 show such a

drift for the linear and angular velocities and fuselage attitudes respectively. The

calculations were performed for 45 rotor revolutions, corresponding to just over 6

seconds of simulation time. The results obtained using the dynamic inflow model

are also shown in the figures. It is clearly seen that the linear and angular velocities

and angular attitudes calculated with the free wake model slowly deviate from trim,

whereas the results with the dynamic inflow model remain almost perfectly trimmed.

These deviations are larger with the refined blade model. The roll rate p (Fig. 9.4)

calculated with the free wake and refined blade model builds up to 2-3 degrees per

second within the first few rotor revolutions. This is in part because of the higher

angular accelerations in the roll direction with the free wake model and the refined

blade model. All the other linear and angular velocities build up more slowly.

The results of Figures 9.3 through 9.5 indicate the starting point for the inte-

gration is not an exact trim condition. The algebraic trim procedure used in the

present analysis is based on the same mathematical model as the free flight response

simulation, and does enforce, among other conditions, force and moment equilib-

rium on average over one rotor revolution. Furthermore, the linear and angular

velocities and the fuselage attitudes are assumed to be constant (the angular rates

410



are assumed to be zero for straight flight). This algebraic trim procedure does not,

however, explicitly enforce periodicity of the states at the end of one revolution of

time integration. Also, the time dependency of the blade motions is approximated

in the trim calculations by a truncated Fourier series, whereas the free flight re-

sponse calculations do not contain any such approximation. Therefore, there are

small differences between the trim and the free flight response solutions with fixed

controls, which result in the slow drift of the latter shown in Figures 9.3 through 9.5.

This is not significant when the dynamic inflow model is used, because the pre-

dicted accelerations are small. It only becomes an issue with the free wake model

because of the higher predicted accelerations. An alternative to the algebraic trim

is a periodic trim procedure that explicitly enforces periodicity. In a periodic trim

condition, the helicopter returns to its original state after the equations of motion

are integrated for each rotor revolution. This allows for the linear and angular ve-

locities and fuselage attitudes to vary through the time integration as long as they

return to their original values after each rotor revolution. This procedure was de-

scribed in Ref. [77], where it was called “Phase II” trim, and it was used to refine

the results of an algebraic trim procedure (“Phase I” trim) identical to that used in

the present study. In Ref. [77] no benefits were observed, but the results referred to

an articulated, rigid blade, and dynamic inflow was used. A periodic trim procedure

may be more appropriate when a free wake inflow model, as well as blade flexible

modes, is used.

There are two additional numerical issues that arise with the inclusion of the

free wake model that are not seen using the baseline flight dynamics model with

the dynamic inflow model. The first of these is related to the strategy of updating

the inflow distribution when the free wake model is used. In this case, the inflow

distribution is updated only at the start of each rotor revolution and is held fixed
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for that particular rotor revolution. Therefore, any disturbances that occur within

the rotor revolution have no effect on the inflow until the next rotor revolution.

Furthermore the helicopter state at the start of each rotor revolution is used to cal-

culate the inflow distribution, which leads to the assumption that, for the free wake

model calculations, this helicopter state represents a steady-state condition at which

a steady-state inflow is calculated. This is illustrated in Figure 9.6, which shows the

angular velocities at the center of gravity of the body as a function of time for the

first 0.3 seconds of time integration. The free wake model is evaluated at the trim

condition to obtain the inflow distribution to start the calculation of the dynamic

response. This inflow distribution is now fixed and used to integrate the equations

of motion for one rotor revolution, or to about 0.14 seconds (shown in Fig. 9.6).

At this point the helicopter state is assumed to be steady state for the purposes of

re-evaluating the free wake model and producing a new inflow distribution. It is

seen that at the start of the second rotor revolution the angular velocities are no

longer zero, as in trim, and will effect the resulting inflow distribution.

The second numerical issue is related to the difference in the treatment of the

main rotor inflow calculations between the trim and time integration phases of the

simulation. As described in Section 3.2.2, a one-dimensional linear interpolation is

required to convert the values of the inflow from the equidistant azimuthal locations

used in the free wake model to the non-equidistant azimuthal locations used in

the flight dynamics model trim calculations. However, during the time history

calculations, no such interpolation is required because the azimuthal points used

in the free wake and are the same as those used in the flight dynamics model.

The result of this is that the inflow distribution resulting from trim and the inflow

distribution used to start the numerical time integration will be slightly different

as a direct result of the linear interpolation. This difference in inflow distributions
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also contributes to the drift from the trim condition when the stick fixed dynamic

response is considered.

9.2 UH-60A Stick Fixed Dynamic Response

This section presents the results of a simulation for the UH-60A helicopter with the

controls held fixed at the calculated trim value. The trim condition is calculated

in straight and level flight at a forward speed of 1 knot (representative of hover)

and an altitude of 5250 feet. This flight condition is the same as that used for

the dynamic response to a lateral stick maneuver as considered in Section 9.4. As

with the BO-105 dynamic response, the purpose of the stick fixed simulation is to

determine the amount of drift from the trim conditions as a function of time. The

time history results are calculated with the dynamic inflow and free wake inflow

models, and with the two main rotor blade configurations used for the UH-60A.

Figures 9.7 and 9.8 show the linear and angular accelerations at the center of

gravity of the body as a function of time for the first 0.6 seconds of the time inte-

gration, which corresponds to about 2-1/2 rotor revolutions. These figures show the

vibrational characteristics at the center of mass of the helicopter, and these linear

and angular accelerations are proportional to the forces and moments at the center

of mass. The figures show that the accelerations predicted using the free wake in-

flow model are of similar magnitudes to those predicted using a momentum based

dynamic inflow model. However, while in each case the vibrations predicted with

the dynamic inflow model are centered around zero, the vibrations predicted with

the free wake model are either not centered at zero or drift away from this zero

center within the first couple of rotor revolutions. As with the BO-105, including

more modes in the modal coordinate transformation with the refined blade model
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predicts higher vibrations at the center of gravity. It is also noted that these vibra-

tional accelerations calculated for the UH-60A (Figs. 9.7 and 9.8) in the near hover

flight condition are significantly lower than those of the BO-105 (Figs. 9.1 and 9.2).

The lower vibrational accelerations with the UH-60A are in part a result of the lower

cyclic variations in blade loading in hover as compared to forward flight. Also, the

articulated hub of the UH-60A does not transfer blade flap and lag moments directly

though to the center of mass of the body, where as the articulated hub of the BO-105

does transfer these flap and lag moments directly through to the hub. Therefore,

the hub configuration is also important in looking at vibrational characteristics at

the center of mass of the body.

Figures 9.9 through 9.11 show the linear and angular velocities and fuselage

attitudes respectively for 45 rotor revolutions, corresponding to just over 10 seconds

of simulation time. As with the BO-105 results, it is clearly seen in these figures

that the linear and angular velocities and angular attitudes calculated with the free

wake model slowly deviate from trim, whereas the results with the dynamic inflow

model remain almost perfectly trimmed. The drift from trim is slower to develop for

the UH-60A from the near hover flight condition than for the BO-105 at 17 knots of

forward speed as a result of the lower vibrational accelerations associated with the

UH-60A in near hover. The drift in trim for the dynamic response of the UH-60A

in near hover and the numerical issues related to the calculation of the dynamic

responses are the same as those for the BO-105, as described in Section 9.1.

9.3 BO-105 Lateral Maneuver Results

This section presents results of a free flight simulation, for a mostly lateral cyclic

maneuver at 17 knots. Simulation results for the BO-105 are compared with flight
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test data. The control deflections that define the maneuver are shown in Figure 9.12.

The maneuver is part of a series of test flights carried out for system identification

purposes [86]. The control excursions are relatively small, and the response of the

helicopter is mostly in a linear range of the flight simulation model.

9.3.1 Effect of blade and inflow modeling

Figure 9.13 shows the roll and pitch rate predictions obtained using the dynamic

inflow model with the simple and refined blade models. The dynamic inflow model

is the Pitt-Peters three-state dynamic inflow model, as implemented in Ref. [7]. This

model does not include maneuver-induced effects on the wake geometry and inflow,

and therefore is representative of straight flight conditions only. These results show

a typical trend already observed by other investigators, namely that the roll rate

(on-axis) response is predicted accurately while the pitch rate (off-axis) response

is predicted poorly. The off-axis response predictions are not improved with the

refined blade model including 7 flexible blade modes. Figure 9.14 shows the fuselage

pitch and roll attitude changes from trim calculated with the dynamic inflow model.

The roll attitude (on-axis) change is predicted with a fair accuracy while the pitch

attitude (off-axis) change is predicted with significantly less accuracy.

Figure 9.15 shows the roll and pitch rate predictions obtained using the ma-

neuvering free wake model with both the simple and refined blade models. The

results with the refined blade model show that the on-axis response p is accurately

predicted. The off-axis response q is also predicted with reasonable accuracy. The

agreement for the initial pitch acceleration, which is indicated by the slope of the

pitch rate response for t of about 1.5 seconds, is excellent. The same is true for

t of about 3 seconds, when the helicopter responds to the reversal of the lateral

cyclic input. Before the application of the first lateral cyclic input, i.e., for t ≤ 1.5
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seconds, the predicted pitch rate response slowly drifts away from zero. This is a

consequence of the trim methodology, as mentioned in Section 9.1.

The other curves in Figure 9.15 have been obtained using the simple blade model,

that is, representing blade flexibility with just the first flap mode. The on-axis

response p tends to be over-predicted, although it remains in phase with the lateral

input. The off-axis response q, on the other hand, is predicted poorly. The initial

nose-up motion is missed almost completely, and good agreement is recovered only

after 3-4 seconds. Figure 9.16 shows the fuselage pitch and roll attitude changes

from trim with the free wake model. With the refined blade model, both the roll

attitude (on-axis) and pitch attitude (off-axis) changes are predicted accurately with

the refined blade model and the free wake. With the simple blade model, the roll

attitude change is over-predicted and the pitch attitude change is initially predicted

in the opposite direction to the flight test results.

All of these results show a substantial improvement in the prediction of the pitch

rate (off-axis) response with the free wake model when compared to the dynamic

inflow model results, however this improvement is only observed when the refined

blade model that includes coupled flap-lag-torsion dynamics of the rotor blades. The

improvements are not seen with the simple blade model with only the fundamen-

tal blade flap mode. To examine the effect of the blade model on the simulation

responses, the conditions for trim are first examined.

Figures 9.17 and 9.18 show the circulation distributions corresponding to trim

(t = 0) at 17 knots with the simple blade model, and the dynamic inflow and

free wake models respectively. With the dynamic inflow model (Figure 9.17) there

is an almost linear distribution of circulation from the blade root to tip with the

peak circulation values observed at the blade tips with a value between 100 and

150 ft2/sec. With the free wake model (Figure 9.18) a similar linear distribution of
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circulation from the blade root to tip is observed, although a slight bias towards the

blade tips is observed. The variation in circulation along the length of the blades is

higher with the free wake model than with dynamic inflow where the peak values of

circulation with the free wake model are at the blade tips with values between 250

and 300 ft2/sec.

Figures 9.19 and 9.20 show the change or perturbation in circulation with the

inclusion of the additional blade flexibility associated with the refined blade. These

contour plots are generated with dynamic inflow and the free wake model respec-

tively. These circulation changes are generated by subtracting the baseline circula-

tion distributions with the simple blade model from those generated with the refined

blade model, and represent the change in bound circulation that is observed when

including the additional blade flexibility associated with the refined blade model.

With dynamic inflow, the effect of the inclusion of the additional blade flexibility

(Figure 9.19) is to decrease the circulation in the tip region and to increase the cir-

culation over the inner portion of the rotor disk. This redistribution of circulation

is in part a result of the nose down elastic blade twist (about two degrees from the

blade root to tip) associated with the refined blade model. This elastic twist there-

fore acts to move the mean bound circulation inboard and offloads the blade tips to

a certain degree. A similar trend is seen in the free wake model results (Figure 9.19)

where the tip region is somewhat off-loaded by moving the mean bound circulation

inboard when the refined blade model is used. However, where the change with dy-

namic inflow was virtually independent of azimuth angle, the change with the free

wake model increases the bound circulation over the inboard portions of the blade

more on the advancing side than on the retreating side.

There are two effects that contribute to the change in the circulation distributions

with the different blade models. The first is that the refined blade model includes
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elastic twist of the blades where the simple model does not. This was mentioned

earlier. The second is that the blade model effects the trim solution. It was shown

in Figure 7.1 that there was about a two degree increase in the trim collective pitch

required when the refined blade model was used, and this also effects the circulation

distribution.

Figure 9.21 shows respectively the rear and side views of the wake geometries for

the trim condition at 17 knots calculated with the simple and refined blade models.

A small amount of wake roll-up becomes visible near the end of the wake on both

the advancing and retreating sides of the disk even at this near hover flight condition

of 17 knots. The two wake geometries are essentially the same except for a slight

vertical offset. This offset is due to the higher blade tip flap displacements that are

calculated with the refined blade model. Because the origin in the wake geometry

plots is located at the rotor hub, the higher blade flap angles with the refined blade

model are seen as a vertical displacement of the tip vortices.

Figure 9.22 shows the inflow distribution for trim at 17 knots with dynamic

inflow and the refined blade model. This figure shows a linear distribution of inflow

over the rotor disk with a mostly longitudinal variation. The lowest value of about

0.012 being near the front of the disk and the highest value of about 0.076 being

near the rear of the disk. Even at this relatively low speed of 17 knots, there is

a significant longitudinal variation of inflow from the front to the rear of the disk,

with the lowest value at the front of the disk being about one-sixth the magnitude

of the peak value at the rear.

Figure 9.23 shows the inflow distribution for trim at 17 knots with the free wake

and refined blade models. This figure shows that the inflow over much of the disk

(except for a region at the front) is between 0.08 and 0.12, which is significantly

higher than that predicted with dynamic inflow. The inflow over the front of the
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disk drops sharply and a small upwash is observed at the blade tips from azimuth

angles of about 100 to 260 degrees. This upwash is observed only at the very tip of

the blades and is a result of the blow back of the wake at this speed, as shown in

Figure 9.21.

The differences in the simulation results with varying blade and inflow models

start just after the lateral stick is first applied at about 1.5 seconds. By t = 1.7

seconds, the maximum roll rate (on-axis) response is reached and differences in the

pitch rate (off-axis) responses are visible. The point between the 12th and 13th

rotor revolutions, or about 1.7 seconds, is examined further to determine the source

of the differences in the off-axis response.

Figure 9.24 shows the change in the inflow distribution from the trim condition

at 17 knots to the start of the 13th rotor revolution as calculated with the dynamic

inflow model. This inflow change is calculated by subtracting the inflow at the

trim condition from the inflow at the start of the 13th rotor revolution of time

integration. This figure shows a mostly longitudinal change in the inflow which

produces a mostly longitudinal change in the lift distribution over the rotor disk.

Because the response of the rotor lags the lift change by slightly under 90 degrees,

this longitudinal change in lift results in a lateral change in the rotor response which

contributes to a lateral response of the helicopter. This helps to explain the poor

off-axis response predictions with the dynamic inflow model that does not include

maneuver-induced effects, which is because the inflow changes contribute to the

lateral response and not to the longitudinal response of the helicopter.

Figure 9.25 shows the rear and side views of the actual wake geometries at the

1st and 13th rotor revolutions predicted with the free wake model. The refined blade

model is used for the generation of these results. At the 13th rotor revolution, the

roll rate is about 11 deg/sec and the pitch rate is about -2 deg/sec. Looking at the
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view of the wake geometry from the rear, a slight elongation of the vortex wake on

the retreating side is visible that is a result of the pitch and roll rates at this point

in the maneuver. There is also a smaller contraction of the wake on the advancing

side.

Figure 9.26 shows the difference in inflow generated with these two wake ge-

ometries, with the inflow from the wake at t = 0 used as the baseline. This inflow

change is calculated by subtracting the inflow at t = 0 from the inflow at the start

of the 13th rotor revolution. Looking at the retreating side, the stretching of the

vortex wake resulting from the pitch and roll rates moves the vortex filaments fur-

ther from the rotor disk, which in turn lowers the inflow in this region. This inflow

change is clearly visible in Figure 9.26. The decrease in inflow increases the lift in

this region. Conversely, on the advancing side the effect of the pitch and roll rates

is a contraction of the vortex wake, which moves the vortex filaments closer to the

rotor and produces an increase in the inflow. This increase in inflow decreases the

lift on the advancing side. Because the response of the rotor lags the lift change by

slightly under 90 degrees, the decrease in lift on the advancing side causes the rotor

to flap down at the front, and the increase in lift on the retreating side causes the

rotor to flap up at the rear. This change in flapping causes a nose down tilt of the

rotor disk and a corresponding nose down pitching moment. This lateral change

in inflow, which causes a longitudinal change in blade response, was not seen with

the dynamic inflow model and helps to explain the more accurate prediction of the

off-axis response generated with the free wake and refined blade models.

Figure 9.27 shows the change in inflow from trim at t = 0 to the 13th rotor

revolution made using the simple blade model. This figure shows an increase in

inflow on the advancing side and a decrease in inflow on the retreating side, which is

similar to the inflow changes seen in Figure 9.26 with the refined blade model. With
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the simple blade model, the inflow changes required to improve the prediction of

off-axis response are present, but the improvements in the off-axis response are not

seen. Therefore, this suggests that the prediction of the off-axis dynamic response

to pilot inputs is a truly aeroelastic problem, which requires both a free wake model

that includes wake distortions resulting from maneuvers and flexible blade models

that include coupled flap, lag and torsional degrees of freedom.

9.3.2 Effect of wake resolution

The wake resolution is composed of two free wake parameters. These are the vortex

filament discretization resolution ∆ζ, and the azimuthal discretization resolution

∆ψ (see Section 2.9). For this study these have the same value and are collectively

referred to as the wake resolution. For the free wake results shown in Figure 9.15 the

wake resolution ∆ψ is 5 degrees and the total length of each filament is 720 degrees.

Figure 9.28 shows the effect of reducing the free wake resolution, i.e., increasing ∆ψ,

on the accuracy of the prediction of roll and pitch rate responses. The results shown

in Figure 9.28 are generated with wake resolutions of ∆ψ = 5o, as in Figure 9.15, and

∆ψ = 10o. The refined, 7-mode blade model is used for both cases. It is seen that

the roll rate p is predicted well using both vortex wake resolutions, with the finer

resolution providing a slightly better accuracy. For the pitch rate q predictions, the

coarser discretization still gives reasonably good results, but the finer discretization

is noticeably more accurate. These results indicate that the accurate prediction of

dynamic responses to pilot inputs requires, amongst other things, a careful selection

of the free wake resolution from both computational and accuracy points of view.
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9.3.3 Effect of maneuver-induced wake distortions

The Bagai-Leishman free wake model used in this study is capable of capturing

the changes in wake geometry caused by the maneuver [13]. Figure 9.29 attempts

to separate the effects of these maneuver-induced wake geometry changes on the

pitch and roll rate predictions. The refined, 7-mode blade model is used. Wake

resolution and maximum wake age are the same as in Figure 9.15, that is, ∆ψ = 5o

and the total length of each filament is 720 degrees. The “Free wake (zero rates)”

legend indicates the results obtained by arbitrarily setting to zero the roll and pitch

rates provided to the free wake as inputs; although not completely rigorous, this

effectively removes the maneuvering effects from the free wake model. These roll

and pitch rates are set to zero only for the calculation of the free wake geometry and

in all the other portions of the model p and q retain their correct value. The results

show that the roll rate response p is not significantly affected. On the other hand,

there is some worsening of the off-axis correlation, and the magnitude of the pitch

response tends to be under-predicted. Therefore, the changes in wake geometry from

the maneuver need to be taken into account for a good prediction of the off-axis

response, although they do not appear to be important for the on-axis predictions.

To try to determine where these differences in the pitch rate response p come

from, the results corresponding to the start of the 13th rotor revolution were exam-

ined. Recall that in the simulation of a given rotor revolution, the wake geometry

and associated inflow is that obtained at the end of the previous rotor revolution

and is held fixed through the current rotor revolution. Therefore the point at the

end of the 12th rotor revolution is marked on the plots in Figure 9.29. This is the

time at which differences in the pitch rate response q start to become visible and

is also close to the time at which the highest value of the roll rate p, following the
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initial lateral cyclic control input, is reached. The inclusion of maneuvering effects

on the free wake geometry should be most visible at this time.

Figure 9.30 shows respectively a rear and side view of the wake geometries during

the 13th rotor revolution of the maneuver. The roll and pitch rates are about 9

deg/sec and 3 deg/sec respectively. The thin dashed lines in these figures shows the

geometry of the wake with the maneuvering effects removed by setting p = q = 0

for the free wake calculations. The thick solid lines show the geometry of the wake

with the free wake maneuvering effects correctly modeled. The geometries of the

two wakes are very similar. Although there is a small contraction of the wake on

the advancing side, that is, the vortices are closer together, and elongation on the

retreating side resulting from the inclusion of the positive (advancing side down)

roll rate on the wake geometry. This similarity of the wake geometries with and

without maneuvering effects is not surprising considering that the values of the roll

and pitch rates are themselves quite small. However, the differences in the pitch rate

response (Fig. 9.29) with and without the maneuvering effects show that even this

small difference in the wake geometries can have a noticeable effect on the off-axis

response prediction.

Figure 9.31 shows the “perturbation” in inflow from the wake geometry changes

resulting from the inclusion of maneuvering effects. This perturbation is defined as

the inflow distribution generated with the maneuvering effects included minus the

inflow distribution that does not include those effects. This essentially isolates the

effects of maneuver-induced changes in wake geometry on the inflow distribution.

However, it should be pointed out that, because p and q are set to zero only for

the calculation of the wake distortions resulting from the maneuver and nowhere

else, the changes in inflow resulting from the kinematics of the maneuver are still

retained in both cases; for example, in both cases a nose-up pitching motion will
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generate a downwash on the front of the disk, and an upwash on the rear.

The inflow perturbation just defined, and shown in Figure 9.31, essentially corre-

sponds to an additional downwash on the advancing side and an additional upwash

on the retreating side. This translates into lower angles of attack, lower lift, and

lower flapping moments on the advancing side; with the reverse being true on the

retreating side. Because of the delay in the flapping response of the rotor, this in

turn translates into an increase in longitudinal flapping (tip path plane tilting down

over the nose), and helps explain the stronger nose down pitch rate achieved at this

point in the time history calculations with the maneuver-induced wake distortions

included (see Figure 9.29).

9.3.4 Effect of inflow dynamics

This section examines the effects of inflow dynamics or unsteadiness on the roll and

pitch rate responses to mostly a lateral maneuver for the BO-105 at 17 knots. The

dynamic inflow model is used with varying levels of wake unsteadiness. The inflow

equation takes the form

k[M ]λ̇ + [K]λ = C (9.1)

where k = 1 gives the correct inflow dynamics as in the Pitt-Peters dynamic inflow

model. For values of k less than 1, the dynamic effects are reduced and the inflow

changes more quickly than with k = 1. For very small values of k, the dynamic effects

are effectively removed, and the inflow model becomes quasi-steady. For values of k

greater than 1, the dynamic effects are enhanced by effectively increasing the fluid

inertia. The result of the enhanced dynamics is that the inflow changes more slowly

with time. For the case with very large k, the inflow would effectively be constant

and invariant with time. While this procedure is not rigorous, it does show the

effects of changing the inflow dynamics or unsteadiness on the predicted responses.
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Figure 9.32 shows the effect of inflow dynamics on the prediction of the roll and

pitch rate responses to the mostly lateral stick maneuver. The refined blade model

is used for all of the predictions. With dynamic inflow, the “Baseline” refers to

the results with k = 1, “Dynamics reduced” refers to the results with k < 1, and

“Dynamics enhanced” refers to the results with k > 1. This figure shows that the

on-axis response is significantly over-predicted when the dynamics or unsteadiness

associated with inflow are reduced. This over-prediction of the on-axis response with

reduced inflow dynamics also leads to some changes in the pitch rate prediction.

9.3.5 Comparison with Keller’s extended momentum the-
ory

The other inflow model that is investigated in this study is an “extended momen-

tum theory” model, proposed by Keller [15], which includes additional inflow terms

proportional to pitch and roll rates (see Section 2.7). This model is characterized

by a wake distortion parameter KR that is determined based on a simplified vortex

wake analysis (or may be identified from flight test data). The value proposed by

Keller for hover was 1.5. Other studies have determined different values for this

parameter, from 0.75 to 1.75 [63], with the specific values depending on the theory

used. Figure 9.33 compares results obtained using various values of the wake distor-

tion parameter KR with results obtained with the dynamic inflow model and with

flight test data. The dynamic inflow results can be considered as the case KR = 0.

The 7-mode, refined blade model was used. The modification to the dynamic inflow

model proposed by Keller is strictly only valid in the hover flight condition; here it

is used in a near hover flight condition, i.e., 17 knots. Figure 9.33 shows that the on-

axis roll rate response p is not significantly changed with the inclusion of the wake

distortion effects. On the other hand, the off-axis correlation is noticeably improved
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with the addition of the wake distortion effects. The best overall correlation with

test data seems to occur when using KR = 1.5.

Figure 9.34 shows the change in the inflow distribution from the trim condition

to the point at the start of the 13th rotor revolution. The extended momentum

theory with KR = 1.5 and the refined blade models are used. This inflow change

is calculated by subtracting the trim inflow from the inflow at the start of the 13th

rotor revolution. Recall that a similar inflow change with the dynamic inflow model

that does not include maneuver-induced effects (Fig. 9.24) showed a mostly longi-

tudinal change in the inflow, which contributes mostly to the lateral response of the

helicopter. Using the extended momentum theory and KR = 1.5, the linear inflow

change (Fig. 9.34) is both in the longitudinal and lateral directions. Focusing on the

lateral change in inflow, this figure shows an increase in inflow on the advancing side

and a decrease in inflow on the retreating side. This translates into a nose-down, or

negative, pitching moment. This explains the improvement in the prediction of the

initial off-axis response to the lateral maneuver.

Finally, Figure 9.35 compares the results obtained with the maneuvering free

wake model and with the extended dynamic inflow and KR = 1.5. Both results are

generated with the 7-mode refined blade model. The on-axis roll rate response is

predicted with good accuracy with both inflow models. Yet the free wake model

predicts the off-axis pitch rate response more accurately. Keller’s model, as a linear

inflow model, cannot be used for the prediction of vibratory loads, however, it does

capture the main features of the off-axis response, and is computationally far more

efficient than the free wake model. Therefore, for typical flight dynamic simulations,

using an extended dynamic inflow model such as Keller’s, with the KR constant

calibrated using a more accurate maneuvering free wake model, appears to be the

most cost-effective strategy.
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9.4 UH-60A - Lateral Maneuver

This section presents results of a free flight simulation, for a mostly lateral stick

maneuver for the UH-60A in hover at an altitude of 5250 feet. The simulation

results for the UH-60A are compared with flight test data. The control deflections

that define the maneuver are shown in Figure 9.36. The control deflections for this

maneuver are relatively small to ensure that the response of the helicopter is mostly

in the linear range of the flight simulation model.

9.4.1 Effect of inflow and blade modeling

Figure 9.37 shows the roll and pitch rate predictions obtained using the dynamic

inflow model with the simple and refined blade models. The dynamic inflow model

is the Pitt-Peters model, which does not include maneuver-induced effects on the

wake geometry and inflow, and so is only representative of straight flight and level

conditions. These results are typical of those with dynamic inflow modeling, where

the roll rate (on-axis) response is predicted with good accuracy but the pitch rate

(off-axis) response is predicted poorly. With respect to blade modeling, the results

here for the UH-60A show a similar trend to those of trim and linearization where

the predictions are fairly insensitive to blade modeling.

It is worth pointing out that the off-axis response predictions seem to initially

start in the correct direction before moving in the opposite direction to the flight

test data. However, this occurs in the region essentially before the lateral control is

first applied (Figure 9.37). The small negative pitch rate that builds up in the first

0.8 seconds results from the small amount of negative or forward longitudinal stick

over this time.

Focusing on the flight test data shown in Figure 9.37, the roll rate response
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to the mostly lateral stick input is relatively small with a peak value less than 10

deg/sec. Also, the off-axis or pitch rate response is less than 2 deg/sec. for the

entire 4 seconds of the time history. For responses of such small magnitudes, effects

such as rotor-fuselage aerodynamic interactions (which are not modeled here) may

affect significantly the actual responses. Because the off-axis response is small, it

may be somewhat difficult to obtain good correlations.

Figure 9.38 shows the roll and pitch rate responses obtained using the maneu-

vering free wake model, and with both the simple and refined blade models. These

results are generated with a vortex wake resolution ∆ψ of 10o, the total length of

each vortex filament ζmax is 720o, and the initial tip vortex strength is equal to the

maximum bound circulation along the blade (CΓ = 1.0). Both the pitch and roll

rate responses are found to be independent of blade modeling, although the drift in

the pitch rate response is higher with the refined blade model than with the simple

blade model. This is a result of the higher vibrational accelerations associated with

the refined blade model. The on-axis response is over-predicted and the off-axis

response is predicted poorly.

The over-prediction of the roll rate has a significant effect on the pitch rate

predictions and contributes to the lack of accuracy of the pitch rate predictions.

However, there appears to be no improvement in the initial pitch rate response to

the lateral control using the maneuvering free wake model even before the roll rate

is over-predicted.

There are some possible explanations for this over-prediction of the on-axis re-

sponse and the lack of accuracy in the off-axis response predictions. First, the

coupling between the longitudinal and lateral motions for the UH-60A is not being

correctly captured with the free wake model during the lateral maneuver.

Second there is a lack of inflow dynamics or unsteadiness associated with the
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free wake model. It was shown that the off-axis frequency response predictions were

not improved with the free wake model that includes maneuver-induced effects but

not inflow dynamics or unsteadiness. However, improvements were seen with the

extended momentum theory inflow model that includes wake distortion effects.

The third explanation is related to the blade modeling. For the current study

the UH-60A rotor is modeled with straight blades that have no sweep in the tip

region. This limits the coupling between the pitch and flap degrees of freedom in the

simulation model, which may be important for the correct prediction of the dynamic

responses. For the BO-105, it was shown that the inclusion of the torsional degrees

of freedom with the refined blade model significantly reduced the over-prediction

of the on-axis response and led to similar improvements in the off-axis response

predictions.

Each of these possible explanations for the lack of accuracy of the prediction of

the UH-60A dynamic responses is now treated in turn in the next three sections.

9.4.2 Effect of free wake modeling

This section examines the effects of the free wake resolution and the maneuver-

induced wake distortions as possible sources for the lack of accuracy in the prediction

of the off-axis responses. For the free wake results shown in Figure 9.38 the wake

resolution ∆ψ is 10o and the total length of each vortex filament ζmax is 720o.

Figure 9.39 shows the effect of increasing the wake resolution, i.e., decreasing ∆ψ,

on the accuracy of the prediction of the roll and pitch rate responses. In comparing

the results generated with a wake resolution of 5o and those with ∆ψ = 10o, it is

seen that the roll rate is over-predicted with both wake resolutions. For the pitch

rate predictions, there is also no effect of wake resolution on the predicted responses.

Although for the case with the courser wake and the refined blade model, the free
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wake model fails to converge after about 1.6 seconds of simulation time.

The other effect that is investigated in this section is whether the coupling be-

tween the longitudinal and lateral motions resulting from the wake distortion effects

on the inflow distribution is being accurately captured. To determine if the maneu-

ver effects are being accurately captured, the results corresponding to the 7th rotor

revolution are examined. Recall that in the simulation of a given rotor revolution,

the wake geometry and associated inflow is that obtained at the end of the previous

rotor revolution and is held fixed through the current rotor revolution. The point

at the start of the 7th rotor revolution, t=1.39 sec., is close to the point of the max-

imum roll rate response and the effect of the maneuver induced wake distortions

on the inflow should be apparent. Figure 9.40 shows the change in the inflow from

the start of the maneuver, at t=0 sec., to the start of the 7th rotor revolution, at

t=1.39 sec. This inflow change is calculated by taking the inflow at t=1.39 sec. and

subtracting the inflow at t=0. The results show a general increase in inflow on the

advancing or starboard side of the rotor and a general decrease in inflow on the

retreating or port side. This translates into a lateral change in the lift distribution,

which causes a nose down longitudinal tilt of the rotor disk resulting from the inflow

change. This is in the correct direction to improve the off-axis response predictions,

but such improvements are not seen in the present results.

In conclusion, the results presented in this section indicate that the correct effects

of maneuver-induced wake distortions are being captured by the free wake model,

yet these do not translate into significant improvements in the off-axis response

predictions.
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9.4.3 Effect of inflow dynamics

This section examines the effects of inflow unsteadiness on the roll and pitch rate

responses to mostly a lateral maneuver for the UH-60A in hover. The dynamic

inflow model is used with varying levels of wake dynamics with various values of k

in Eqn. (9.1), as described in Section 9.3.4.

Figure 9.41 shows the effect of inflow dynamics on the prediction of the roll and

pitch rate responses to the mostly lateral stick maneuver for the UH-60A in hover.

The simple blade model is used because the predictions with both the dynamic

inflow and free wake models were found to be fairly insensitive to blade modeling.

With dynamic inflow, the “Baseline” refers to the results with k = 1, “Dynamics

reduced” refers to the results with k < 1, and “Dynamics enhanced” refers to the

results with k > 1. This clearly shows that the on-axis response is significantly

over-predicted when the dynamics associated with inflow are reduced. This over-

prediction of the on-axis response with reduced inflow dynamics leads to higher

positive pitch rate predictions from about t=2 sec. Even though the over-prediction

of the roll rate with reduced inflow dynamics is not as large as that with the free

wake model, these results do suggest that the lack of inflow dynamics contributes

to the over-prediction of the roll rate response with the free wake model. The over-

prediction of the roll rate response also leads to inaccuracies in the off-axis pitch rate

responses. For the UH-60A, improvements in the off-axis response predictions first

require accurate on-axis response predictions and this seems to require the inclusion

of inflow dynamics.

9.4.4 Effect of tip sweep

This section examines the effect of including a swept tip to the modeling of the

UH-60A rotor blades on the dynamic response. The current rotor blade model does
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not have the capability of accurately modeling the swept tip region. For the results

presented in this section the swept tip region is implemented as an offset of the

center of gravity location from the elastic axis of the straight blade. This is not

a rigorous method for the inclusion of a swept tip with the current inertial model,

and leads to an inaccurate prediction of the inertial loads in the lag direction. This

has implications for the lag dynamics of the blade, along with the torque and power

calculations. So that this does not become an issue with the swept tip included,

only the flap and torsional degrees of freedom are included.

For the UH-60A in hover, Figure 9.42 shows the roll and pitch rate responses to

the mostly lateral maneuver. The curve denoted with the “Dyn. inflow - 2 modes”

legend is generated with dynamic inflow and the simple blade model that includes

only the rigid flap and lag modes with no tip sweep. The curve denoted with the

“Free wake - 2 modes” legend again uses the simple blade model with no tip sweep

but inflow is modeled using the free wake. The final curve denoted with the “Free

wake - Swept tip” legend uses the free wake inflow model and a blade model that

includes the rigid and first elastic flap modes and the first elastic torsion mode, and

also includes a swept tip. For the on-axis roll rate response, there is essentially no

effect of the inclusion of the swept tip with the free wake, and the on-axis response

is still over-predicted. For the off-axis response, there are improvements to be found

with the addition of the tip sweep. This improvement is apparent from t=0.9 sec.

where the control is first applied, and the off-axis response shows the same trend as

the flight test data until about t=1.4 sec. At this point the over-prediction of the

on-axis response significantly affects the off-axis response.

The results of this section showed that the inclusion of the swept tip with the

free wake model leads to the accurate prediction of the initial off-axis response

direction. However, the over-prediction of the on-axis response with the straight

432



(unswept) blade is not improved with the swept tip. This over-prediction of the on-

axis response ultimately leads to the off-axis response being predicted inaccurately.

The results found here agree with those of the BO-105 (Section 9.3) where the

inclusion of additional blade modes (particularly torsion) was critical for the accurate

prediction of the off-axis response.

9.4.5 Comparison with Keller’s extended momentum the-
ory

This section examines the effects of the extended momentum theory on the dynamic

response predictions for the UH-60A. This inflow model includes maneuver-induced

wake distortions through the wake distortion parameter KR and also retains inflow

dynamics. Figure 9.43 compares the results with flight test data obtained using KR

values of 0 and 1.5 and the simple and refined blade models. Notice that the blade

model does not effect either the on-axis or off-axis responses. The inclusion of the

wake distortion effects leads to some small changes in the on-axis response, but more

significantly, shows that the off-axis response is predicted in the correct direction,

as least initially. The improvements are seen from t=1.1 sec., where the roll rate

has built up sufficiently to effect the inflow and lead to improvements in pitch rate

predictions, to t=1.6 sec., where the predictions and test data start to diverge.

The results presented in this section showed that improvements in the off-axis

response predictions can be achieved using an extended momentum theory inflow

model that includes maneuver induced wake distortions. In addition, these im-

provements can also be achieved using a relatively unsophisticated blade model

that includes only the rigid flap and lag modes.
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9.5 Discussion of time integration results

This section contains a discussion of the time integration results presented in this

chapter for the responses to stick-fixed simulations and to lateral control maneuvers

for the BO-105 and UH-60A helicopters.

The results for the stick-fixed simulations showed that it was possible to obtain

realistic values of the vibratory loads through the incorporation of the maneuvering

free wake model, although no validation of the vibratory loads prediction was car-

ried out. These stick-fixed responses also showed a slow drift away from the trim

condition as the simulation proceeded. This indicated that the trim calculations

must be carried out much more accurately when using a free wake model, rather

than when a dynamic inflow type model is used. The algebraic trim procedure used

in the current study enforces, among other things, force and moment equilibrium

where the average forces and moments over a single rotor revolution are zero, but

does not explicitly enforce periodicity. This is not significant with a dynamic inflow

type model but becomes an issue with the free wake model because of the higher

acceleration predictions. A shooting type procedure that explicitly enforces period-

icity may prove to be necessary for the calculation of the trim condition when using

the free wake inflow model.

For the BO-105, the free flight on-axis responses to pilot pitch and roll inputs can

be predicted with good accuracy with a relatively unsophisticated model. Here nei-

ther the refined blade model not the free wake model are required. It is also possible

to predict the off-axis responses from first principles, that is, without empirically

derived correction factors and without assumptions about the wake geometry. This,

however, requires sophisticated modeling with both a refined flexible blade model

and a free wake model that includes the wake distortions caused by the maneuvers.
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The BO-105 results also confirmed that the free wake model used is this study

can be effectively used for the prediction of free-flight dynamic response even though

the free wake model is only rigorously valid for steady, trimmed conditions. Most of

the features of the off-axis response can be captured using a dynamic inflow theory

extended to account for maneuver-induced wake distortions, and for a fraction of

the cost of using a free wake model. Probably the most cost-effective strategy for

the BO-105 response predictions (if vibratory loads are not required) is to calibrate

such an inflow theory using the more accurate free wake based model, and use the

inflow theory in all of the calculations.

For the UH-60A, the conclusions are somewhat different. The on-axis responses

to pilot inputs can be predicted accurately with a traditional dynamic inflow model

but are significantly over-predicted with the free wake model. In addition, the off-

axis response predictions were not improved with the maneuvering free wake model

regardless of the blade model. A contributing factor to this is the over-prediction

of the on-axis response, however the off-axis responses to the initial lateral control

is in the incorrect direction, even before the on-axis response is over-predicted.

An investigation into the effects of inflow dynamics on the predicted on-axis

response seem to suggest that the over-prediction of the on-axis response with the

free wake model is partially a result to the lack of inflow dynamics associated with the

free wake. The inflow dynamics, however, did not seem to directly effect the off-axis

response predictions. The effects were indirect and related to the over-prediction of

the on-axis response. An investigation of the inflow distribution produced by the

maneuvering free wake model showed that the inflow changes required to improve the

prediction of the off-axis response were present. However, these maneuver-induced

inflow changes did not lead to improvements in the off-axis response predictions. A

third investigation was carried out for the UH-60A that examined the effect on the
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off-axis response of including a swept tip. Although not implemented rigorously,

the inclusion of the tip sweep did not reduce the over-prediction of the on-axis

response when using the free wake model. However, improvements in the initial

off-axis response predictions to the pilot control inputs were seen with the accurate

qualitative and quantitative predictions. A short time after the initial control input,

the predictions become less satisfactory because of the over-prediction of the on-axis

response.

The accurate prediction of the on-axis response to pilot control inputs for the

UH-60A seems to be highly dependent on the modeling of inflow dynamics. The

off-axis response seems to be less dependent on the inflow dynamics and more on the

blade modeling where the modeling of the swept tip is required. Here the flap-torsion

coupling introduced by the swept tip appears to be critical.
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Figure 9.1: Effect of inflow models and blade modeling on linear accelerations at
the computed trim conditions for the BO-105 at a forward speed of 17 knots.
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Figure 9.2: Effect of inflow models and blade modeling on roll, pitch and yaw
accelerations at the computed trim conditions for the BO-105 at a forward speed of
17 knots.
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Figure 9.3: Effect of inflow models and blade modeling on velocity components from
the computed trim conditions for the BO-105 at a forward speed of 17 knots.
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Figure 9.4: Effect of inflow models and blade modeling on roll, pitch and yaw rates
from the computed trim conditions for the BO-105 at a forward speed of 17 knots.

440



-10

-5

0

5

10

0 1 2 3 4 5 6 7

R
ol

l A
tti

tu
de

 (
de

g)
Dyn. inflow - 1 Mode

Dyn. inflow - 7 Modes
Free Wake - 7 Modes

Free Wake - 1 Mode

-10

-5

0

5

10

0 1 2 3 4 5 6 7

P
itc

h 
A

tti
tu

de
 (

de
g)

Dyn. inflow - 1 Mode Dyn. inflow - 7 Modes

Free Wake - 7 ModesFree Wake - 1 Mode

-20

-15

-10

-5

0

5

10

15

20

0 1 2 3 4 5 6 7

Y
aw

 A
ng

le
 (

de
g)

Dyn. inflow - 1 Mode

Dyn. inflow - 7 Modes

Free Wake - 7 Modes

Free Wake - 1 Mode

Time (sec)

Figure 9.5: Effect of inflow models and blade modeling on roll, pitch and yaw
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Figure 9.6: Effect of inflow models and blade modeling on roll, pitch and yaw rates
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the computed trim conditions for the UH-60A in hover.
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Figure 9.8: Effect of inflow models and blade modeling on roll, pitch and yaw
accelerations from the computed trim conditions for the UH-60A in hover.
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Figure 9.9: Effect of inflow models and blade modeling on velocity components at
the computed trim conditions for the UH-60A in hover.
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Figure 9.10: Effect of inflow models and blade modeling on roll, pitch and yaw rates
at the computed trim conditions for the UH-60A in hover.
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Figure 9.11: Effect of inflow models and blade modeling on roll, pitch and yaw
attitudes at the computed trim conditions for the UH-60A in hover.
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Figure 9.12: Control deflections from trim for the selected maneuver for the BO-105
in straight and level flight at 17 knots.

448



-20

-15

-10

-5

0

5

10

15

20

Flight test
Dyn. inflow (1 mode)
Dyn. inflow (7 modes)

0 1 2 3 4 5

R
ol

l r
at

e 
p 

   
  (

de
g/

se
c)

-10

-5

0

5

10

0 1 2 3 4 5

P
itc

h 
ra

te
 q

   
   

(d
eg

/s
ec

)

Time (sec)

Figure 9.13: Effect of number of blade modes on the roll and pitch rate responses
for the BO-105 with the dynamic inflow model (without maneuver-induced effects).
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Figure 9.14: Effect of number of blade modes on the roll and pitch attitudes for the
BO-105 with the dynamic inflow model (without maneuver-induced effects).
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Figure 9.15: Effect of number of blade modes on the roll and pitch rate responses
for the BO-105 with the free wake model.
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Figure 9.16: Effect of number of blade modes on the roll and pitch attitudes for the
BO-105 with the free wake model.
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Figure 9.17: Circulation distribution for the trimmed flight condition for the BO-105
at 17 knots with dynamic inflow and simple blade model.
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Figure 9.18: Circulation distribution for the trimmed flight condition for the BO-105
at 17 knots with the free wake and simple blade model.
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Figure 9.19: Effect of blade model on circulation distribution for trim at 17 knots
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Figure 9.20: Effect of blade model on circulation distribution for trim at 17 knots
for the BO-105 with the free wake model. Baseline with simple blade model.
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Figure 9.21: Effect of blade model on trim wake geometry at 17 knots for the BO-105
with the free wake.
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Figure 9.23: Inflow distribution for trim at 17 knots for the BO-105 with the free
wake and the refined blade model.
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Figure 9.24: Change in inflow distribution from trim condition at 17 knots to the
point at the start of the 13th rotor revolution for the BO-105 with dynamic inflow
and the refined blade model. Baseline is trim inflow.
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Figure 9.25: Effect of blade model of wake geometry 13 rotor revolutions into the
maneuver for the BO-105 with the free wake.
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Figure 9.26: Change in inflow distribution from trim condition at 17 knots to the
point at the start of the 13th rotor revolution for the BO-105 with the free wake
and the refined blade model. Baseline is trim inflow.
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Figure 9.27: Change in inflow distribution from trim condition at 17 knots to the
point at the start of the 13th rotor revolution for the BO-105 with the free wake
and the simple blade model. Baseline is trim inflow.
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Figure 9.28: Effect of the free wake resolution ∆ψ on the roll and pitch rate response
for the BO-105 with the free wake and refined blade model.

464



-20

-15

-10

-5

0

5

10

15

20

Flight test
Free wake (zero rates)
Free wake

0 1 2 3 4 5

R
ol

l r
at

e 
p 

   
  (

de
g/

se
c)

12 Rotor
Revolutions

-10

-5

0

5

10

0 1 2 3 4 5

P
itc

h 
ra

te
 q

   
   

(d
eg

/s
ec

)

Time (sec)

12 Rotor
Revolutions

Figure 9.29: Effect of maneuver-induced wake distortions on the roll and pitch rate
response for the BO-105 with the free wake and the refined blade model.
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Figure 9.30: Effect of inclusion of maneuver-induced wake distortions within the
free wake model on the wake geometry at 17 knots for the BO-105.
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Figure 9.31: Change in inflow with the inclusion of maneuver-induced wake distor-
tions within the free wake model at 13 rotor revolutions into the maneuver for the
BO-105. Baseline with no maneuver-induced wake distortions.
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Figure 9.32: Effect of inflow dynamics or unsteadiness on the roll and pitch rate
responses to the lateral maneuver for the BO-105 at 17 knots.
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Figure 9.33: Effect of wake distortion parameter KR within the extended momentum
theory model on the roll and pitch rate responses for the BO-105 with the refined
blade model.
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Figure 9.34: Change in inflow with the inclusion of maneuver-induced effects with
KR = 1.5 at the 13th rotor revolution for the BO-105 with the refined blade model.
Baseline with dynamic inflow and no maneuver-induced effects.
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Figure 9.35: Effect of inflow model on roll and pitch rate responses for the BO-105
with the refined blade model.
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Figure 9.36: Control deflections from trim for the selected maneuver for the UH-60A
in hover.
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Figure 9.37: Effect of blade modeling on the roll and pitch rate responses to the
lateral maneuver for the UH-60A from hover with dynamic inflow.
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Figure 9.38: Effect of blade modeling on the roll and pitch rate responses to the
lateral maneuver for the UH-60A from hover with the free wake and ∆ψ = 10
degrees.
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Figure 9.39: Effect of free vortex wake resolution on the roll and pitch rate responses
to the lateral maneuver for the UH-60A from hover.
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Figure 9.40: Change in inflow distribution from hover to the start of the 7th rotor
revolution for the UH-60A from hover with the refined blade model. Baseline is trim
inflow.
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Figure 9.41: Effect of inflow dynamics or unsteadiness on the roll and pitch rate
responses to the lateral maneuver for the UH-60A from hover.
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Figure 9.42: Effect of inclusion of tip sweep roll and pitch rate responses to the
lateral maneuver for the UH-60A from hover with the free wake. Blade model with
tip sweep includes two flap modes and one torsion mode.
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Figure 9.43: Effect of wake distortion parameter KR within the extended momentum
theory model on the roll and pitch rate responses for the UH-60A with the refined
blade model.
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Chapter 10

Summary and Conclusions

A coupled rotor-fuselage flight dynamic model has been developed that includes a

maneuvering free wake model and a coupled flap-lag-torsion flexible blade model.

The model has been used to investigate effects of inflow and blade modeling on the

prediction of various flight dynamic characteristics for both articulated and hingeless

rotor helicopters. The inclusion of the free wake model required new numerical

procedures for the calculation of trim equilibrium positions, for the extraction of

high-order, constant coefficient linear equations, and for the calculation of free flight

time history responses to arbitrary pilot inputs.

With respect to the extraction of high-order linearized models using the free

wake, it should be kept in mind that the free wake has no predefined states or

equations that can be perturbed, and therefore no inflow dynamics is modeled.

The new linearization procedure indirectly perturbs the free wake model when the

perturbations of each of the state and control variables are performed. Therefore, the

effects of the free wake equations are included within the resulting linearized models

without the addition of state variables. However, no unsteadiness or dynamics

associated with the inflow is rigorously modeled.

With respect to the calculation of the dynamic time responses with the free
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wake, which is rigorously valid for a steady flight condition only, the assumption is

made that a “steady state” condition exists each time the free wake model inflow

is calculated. The new time integration procedure stops the integration of the

equations of motion at specific intervals of the integration, at which time the inflow

is updated using the free wake model.

Results were presented for two distinct configurations: an articulated rotor con-

figuration based on the UH-60A and a hingeless rotor configuration based on the

BO-105. For both of these configurations, results were presented for trim, stabil-

ity poles, frequency responses and dynamic time history responses to pilot inputs.

The effects of inflow and blade modeling on each of the particular results were pre-

sented, and the simulation results were compared with actual flight test data where

such data were available. The effects of turn rate and turn direction on the trim

state and frequency response characteristics were studied for the UH-60A. This new

model provided a valuable tool for the investigation of the effects of inflow and

blade modeling on specific helicopter responses. In particular, an investigation of

the off-axis response or cross-coupling was performed, and it was possible to draw

specific conclusions regarding the level of modeling sophistication required in flight

dynamics codes to improve the accuracy of the off-axis predictions.

Based on the results presented in this dissertation, the following conclusions can

be drawn:

1. The use of the free wake model significantly improves the predictions of the

helicopter trim state for both configurations considered. This was especially

true in low speed flight and hover. The most significant improvements were

seen in the predictions of the main rotor collective and power required by the

rotor, which were significantly under-predicted when using dynamic inflow.
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These improvements can be explained by the higher average main rotor inflow

generated with the free wake model than that of the dynamic inflow model.

As the forward speed increases, the predicted trim state becomes less sensitive

to inflow modeling. In high speed forward flight, the type of inflow model does

not have a significant effect on the accuracy of the predictions.

2. The initial tip vortex strength was found to have a significant effect on the

trim state of the helicopter. The parameter CΓ is the ratio of the initial tip

vortex strength to the maximum bound circulation along the blade. The best

correlations with test data were achieved with CΓ = 0.7 for the BO-105 and

CΓ = 1.0 for the UH-60A. At present, the physical mechanisms involved in the

formation of the trailed vortex are not fully understood, and so the parameter

CΓ must be derived empirically. The resolution of the vortex wake does not

effect the predicted trim state. However, the wake resolution significantly

affects the convergence characteristics of the wake model. With low wake

resolution, wake convergence proved difficult at low speeds unless longer tip

vortices were retained in the wake simulation.

3. Using the free wake model, the linearized models extracted from the full set of

non-linear equations were found to be particularly sensitive to the numerical

perturbation used in the central difference approximation to the derivatives

that make up the linear model. The range of perturbations that can be used

to correctly capture the free wake effects are, in general, quite small. Careful

selection of the values of the numerical perturbations is therefore required.

4. The on-axis frequency responses were not significantly affected by inflow mod-

eling in the frequency range of interest for flight dynamics applications, and

the correlations with flight test data were, in general, good. The extended
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momentum theory inflow model, which includes maneuver induced wake dis-

tortions while retaining inflow dynamics, showed the best predictions of the

off-axis frequency responses. The addition of the free wake model did not

improve the off-axis response predictions. The probable reason for this is the

lack of inflow dynamics or unsteadiness associated with the free wake model.

5. For the BO-105, the free flight on-axis response to pilot inputs can be predicted

with good accuracy with a relatively unsophisticated model; neither a free

wake nor a refined flexible blade model are required. It is also possible to

predict the off-axis response from first principles, that is, without empirically

derived correction factors and without assumptions on the wake geometry. To

do so, however, requires a more sophisticated modeling capability. Both a free

wake model that includes the wake distortions caused by the maneuver and a

refined flexible blade model must be used.

6. For hingeless rotor helicopters, it appears that most features of the off-axis re-

sponse can be captured by using a dynamic inflow theory extended to account

for maneuver-induced wake distortions, and for a fraction of the cost of using

a free wake model. The most cost-effective strategy, for typical flight dynamic

analyses and if vibratory loads are not required, is probably to calibrate such

a theory using the more accurate free wake-based model, and then use it in

all further calculations.

7. For the UH-60A, the free flight dynamic responses to pilot inputs appear to be

sensitive to inflow dynamics. While dynamic inflow models accurately predict

the on-axis response, the use of the free wake model leads to the on-axis

response being over-predicted. This over-prediction was not affected by blade

modeling while the lack of inflow dynamics or unsteadiness associated with
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the free wake model was shown to contribute to the on-axis response over-

prediction. The lack of accuracy of the on-axis response predictions for the

UH-60A using the free wake leads to similar differences in the off-axis response.

Although, the inclusion of the swept tip region leads to some improvements

in the off-axis response predictions, at least initially. Further investigation is

therefore required into the dynamic responses of the UH-60A.
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Appendix A

Multiblade Coordinate
Transformation

The multiblade coordinate transformation is used to transform the state vector from

the rotating frame to the fixed frame and vice versa. Specifically, the multiblade

coordinate transformation involves a conversion of the portions of the state vector

that correspond to the rotor degrees of freedom.

From Eqn. (3.53) the state vector in the rotating frame is partitioned into a rigid

body part, an inflow part and a main rotor part, as follows (for the baseline case

with the dynamic inflow model):

y =




yB
yI
yR


 (A.1)

where the rigid body yB and inflow yI parts are given in Eqs. (3.54) and (3.65)

respectively.

For a four-bladed rotor and Nm blade modes used in the modal coordinate trans-

formation, the main rotor partition of the state vector yR is

y(ψ)R = [q1
1 q1

2 q1
3 q1

4 q̇1
1 q̇1

2 q̇1
3 q̇1

4 (A.2)

. . . qNm
1 qNm

2 qNm
3 qNm

4 q̇Nm
1 q̇Nm

2 q̇Nm
3 q̇Nm

4 ]�
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In the non-rotating frame of reference the state vector for a four-bladed rotor

and Nm blade modes is

yNR(ψ) = [u v w p q r φF θF ψF λ0 λs λc λt q
1
0 q1

1c q
1
1s q

1
2 q̇1

0 q̇1
1c q̇

1
1s q̇

1
2 (A.3)

. . . qNm
0 qNm

1c qNm
1s qNm

2 q̇Nm
0 q̇Nm

1c q̇Nm
1s q̇Nm

2 ]�

where qk0 , q
k
1c, q

k
1s, and qk2 are respectively the collective, longitudinal, lateral, and

differential portion of the generalized coordinate of the k-th rotor mode.

The transformation from the rotating frame to the non-rotating frame is

y = TyNR yNR = T−1y (A.4)

where T is the multiblade coordinate transformation matrix from the non-rotating

frame to the rotating frame.

The matrix T can be partitioned in the same way as the state vector (Eqn. (A.1))

T =


 TB 0 0

0 TI 0
0 0 TR


 (A.5)

where

TB = [I] (size = 10 × 10) (A.6)

TI = [I] (size = 3 × 3) (A.7)

and

TR =




Tf 0
. . .

0 Tf


 (A.8)

where the number of diagonal blocks (Tf ) is equal to the number of blade modes

used in the modal coordinate transformation.
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The block matrix is

Tf =




1 cosψ sinψ −1 0 −Ω sinψ Ω cosψ 0
1 − sinψ cosψ 1 0 −Ω cosψ −Ω sinψ 0
1 − cosψ − sinψ −1 0 Ω sinψ −Ω cosψ 0
1 sinψ − cosψ 1 0 Ω cosψ Ω sinψ 0
0 0 0 0 1 cosψ sinψ −1
0 0 0 0 1 − sinψ cosψ 1
0 0 0 0 1 − cosψ − sinψ −1
0 0 0 0 1 sinψ − cosψ 1




(A.9)

The perturbation matrices in the non-rotating frame (ANR and BNR) can be

obtained from the perturbation matrices in the rotating frame (A and B) through

the transformations

ANR = T−1(AT − Ṫ) (A.10)

BNR = T−1B (A.11)

The multiblade transformation is also used to transform the derivative state

vector from the rotating frame to the non-rotating frame. This transformation only

effects the portions of the derivative vector related to the rotor degrees of freedom.

As in Eqn. A.1, the derivative vector in the fixed frame is partitioned into a rigid

body part, and a main rotor part, as follows (with the inflow part removed since

the transformation is only used when the free wake model is used):

ẏ =

{
ẏB
ẏR

}
(A.12)

For a four bladed rotor and Nm blade modes used in the modal coordinate

transformation, the main rotor portion of the derivative vector ẏR is:

y(ψ)R = [q̇1
1 q̇1

2 q̇1
3 q̇1

4 q̈1
1 q̈1

2 q̈1
3 q̈1

4 (A.13)

. . . q̇Nm
1 q̇Nm

2 q̇Nm
3 q̇Nm

4 q̈Nm
1 q̈Nm

2 q̈Nm
3 q̈Nm

4 ]�

The transformation from the rotating to non-rotating frames is:

ẏNR = Td1ẏ + Td2y (A.14)
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where Td1 and Td2 are the multiblade coordinate transformation matrices and are

given by:

Td1 =

[
TB 0
0 TR1

]
(A.15)

Td2 =

[
0 0
0 TR2

]
(A.16)

where

TB = [I] (size = 10 × 10) (A.17)

and

TR1 =




Tg 0
. . .

0 Tg


 (A.18)

TR2 =




Th 0
. . .

0 Th


 (A.19)

where the number of diagonal blocks (Tg and Tg) is equal to the number of blade

modes used in the modal coordinate transformation.

The block matrices are (for a four-bladed rotor)

Tg =
1

4




1 1 1 1 0 0 0 0
2C1 2C2 2C3 2C4 0 0 0 0
2S1 2S2 2S3 2S4 0 0 0 0

1 −1 1 −1 0 0 0 0
0 0 0 0 1 1 1 1

−2ΩS1 −2ΩS2 −2ΩS3 −2ΩS4 2C1 2C2 2C3 2C4

2ΩC1 2ΩC2 2ΩC3 2ΩC4 2S1 2S2 2S3 2S4

0 0 0 0 1 −1 1 −1




(A.20)

Th =
1

4




0 0 0 0 0 0 0 0
−2Ω sinψ1 −2Ω sinψ2 −2Ω sinψ3 −2Ω sinψ4 0 0 0 0

2Ω cosψ1 2Ω cosψ2 2Ω cosψ3 2Ω cosψ4 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

L1(ψ1) L1(ψ2) L1(ψ3) L1(ψ4) 0 0 0 0
L2(ψ1) L2(ψ2) L2(ψ3) L2(ψ4) 0 0 0 0

0 0 0 0 0 0 0 0




(A.21)
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where

C1 = cos(ψ1) (A.22)

C2 = cos(ψ2) (A.23)

C3 = cos(ψ3) (A.24)

C4 = cos(ψ4) (A.25)

S1 = sin(ψ1) (A.26)

S2 = sin(ψ2) (A.27)

S3 = sin(ψ3) (A.28)

S4 = sin(ψ4) (A.29)

L1(ψ) = −2Ω̇ sinψ − 2Ω2 cosψ (A.30)

L2(ψ) = 2Ω̇ cosψ − 2Ω2 sinψ (A.31)
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