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Preface

Due to their unique ability to hover and their ability to land and take off from 
any terrain, including rooftops, helicopters have established themselves 
as unique flying vehicles. Their utility has been growing steadily in both 
civil and military applications. In India, the requirements of high altitude 
operation and access to remote areas of the country necessitate the use of 
helicopters as a means of transportation. Helicopters are complex dynamic 
systems whose design and development require a high level of expertise 
and technology. Until the early 1990s, in India, very little academic and 
research activity was focused on helicopter studies. To create trained man-
power in the field of helicopter design and development, a short course was 
organized by the Department of Aerospace Engineering, Indian Institute 
of Technology (IIT) Kanpur, in 1997 to highlight several important aspects 
of helicopter technology. The feedback from the participants indicated that 
the course provided a good insight on helicopter theory. We were very glad 
to note that this course has created an awareness and interest in helicopters 
among various organizations. In addition, this course has led to the forma-
tion of a strong bond between the academic institution (IIT Kanpur) and the 
industry (Hindustan Aeronautics Limited [HAL], Bangalore). This book is 
a culmination of the efforts put in to the preparation of lecture notes for a 
regular graduate-level introductory course as well as for a series of lectures 
given to designers, engineers, operators, users, and researchers on the fun-
damentals of helicopter dynamics and aerodynamics.

The book is written at a basic level to provide a fundamental understand-
ing and an overview of helicopter dynamics and aerodynamics. All the 
equations are derived from the first principle, and the approximations are 
clearly explained. The book is divided into 11 chapters, presented in a sys-
tematic manner, starting with historical development, hovering and verti-
cal flight, simplified rotor blade model in the flap mode, and forward flight. 
Two chapters are devoted to the aeroelastic response and stability analysis 
of an isolated rotor blade in uncoupled and coupled modes. Chapters 8 to 10 
address the modeling of coupled rotor–fuselage dynamics and the associ-
ated flight dynamic stability. Chapter 11 is devoted to a simplified analysis 
of the ground resonance aeromechanical stability of a helicopter. Any stu-
dent with a good knowledge and background in dynamics, vibration, aero
dynamics, and undergraduate-level mathematics should be able to follow 
the contents of the book.

The illustrations given in the introduction chapter are sketches drawn 
using pictures available in the open literature and various sources from web-
sites to avoid copyright infringment and to comply with Intellectual Property 
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Rights (IPR) regulations. If any reader is interested in the actual figures, he/she 
may refer to the literature or use website search options.

Writing this book has been an enlightening and a trying experience for 
me. Without the support of the following people, it would not have been pos-
sible for me to complete this book. My sincere thanks are due to my students 
Gagandeep Singh, Vadivazhagan, K.R. Prashanth, Puneet Singh, V. Laxman, 
Rohin Kumar, Sriram Palika, and to project staff Nikita Srivastava and Smita 
Mishra.

I would like to place on record my sincere thanks to my peers V.T. 
Nagaraj, P.P. Friedmann, I. Chopra, D. Hodges, D. Peters, G.H. Gaonkar, 
A.R. Manjunath, and R. Ormiston. As a researcher in the field of helicopter 
dynamics and aerodynamics, I have immensely benefitted from reading the 
excellent books written by W. Johnson, G. Padfield, A.R.S. Bramwell, W.Z. 
Stepniewski, G. Leishman, R.W. Prouty, A. Gessow, and G.C. Myers.

Finally I am indebted to my family and friends for their generosity in their 
support. The material presented in this book has been developed by the 
author and any resemblance to the material available in the open literature 
is not intentional; however, if anyone finds any similarity, it is requested that 
it may be brought to my attention so that suitable corrective action may be 
taken.

C. Venkatesan
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1
Historical Development of 
Helicopters and Overview

Nature has played a significant role in creating a desire in human beings to 
develop flying machines. It is well known that bird (of course with flapping 
wings) flying had a strong influence in the development of gliders and air-
craft. Even in plants, the concept of flying over reasonably long distance to 
spread the seeds exists. For the sake of illustrating the beauty of nature, a few 
examples of flying fixed wing (Figure 1.1) and rotating wing (Figures 1.2–1.5) 
seeds are shown. The rotating wing seeds can be further divided into single 
or multiple wing seeds.

The fixed wing seed (Figure 1.1), known as Alsomitra macrocarpa, has a 
wing span of about 13 cm. It can glide through air in wide circles in the rain 
forest and can travel a substantial distance.

There are several types of rotating winged seeds. Some of them have 
only one wing attached to a seed at the root (Figures 1.2 and 1.3). The wing 
is a membrane with a slight twist. It spins as it falls, and it is similar to the 
autorotation of a helicopter when it descends after a power loss. Depending 
on height and wind speed above the ground, these seeds can be swept 
far away from the parent tree. Some of the seeds have two, three, or more 
wings (Figures 1.4 and 1.5).

Unlike a fixed wing aircraft, helicopters use rotating wings to provide 
lift, propulsion, and control. In addition, helicopters are capable of hov-
ering, landing, and takeoff from any terrain. Efficient accomplishment of 
vertical flight (with minimum power) is the fundamental characteristic of 
the helicopter. In the following section, a brief history of the development 
of helicopter is provided.

Historical Development

During the initial development of helicopters, three fundamental problems 
had to be overcome by the designers.
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FIGURE 1.1
Fixed wing seed (Alsomitra macrocarpa).

FIGURE 1.2
One-seeded fruit with one wing (South American Tipuana tipu tree).

1 cm

FIGURE 1.3
Pine tree winged seed from woody cone rather than from flowers.
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•	 Keeping the structural weight and the engine weight at a minimum 
so that the engine develops enough power to lift itself and some use-
ful load

•	 Developing a light, strong structure for rotor hub and blades
•	 Understanding and developing schemes for controlling the helicop-

ter, including the torque balance

These problems were essentially similar to those faced by the developers 
of the airplane, which were solved by the Wright brothers. The development 
of the helicopter took a longer duration possibly due to the difficulty in verti-
cal flight, which required a further development in aeronautical technology.

FIGURE 1.4
One-seeded two-winged fruit (Gyrocarpus, Hawaiian Islands).

(a) (b)

FIGURE 1.5
Multiwinged spinning fruit/seed (Thailand). (a) Diptocarpus obtusifolios. (b) Gluta Melanorrhoea 
usitata.
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Chronological Development of Helicopters

The material presented in the following is based on the information avail-
able in Bramwell (1976); Johnson (1980); Stepniewski (1984); Prouty (1990); 
Padfield (1996); Leishman (2000); Seddon (1990); Bielawa (1992) and the arti-
cles appeared in Vertiflite, a publication of AHS International, The Vertical 
Flight Technical Society.

•	 B.C.: The Chinese flying top (400 B.C.), shown in Figure 1.6, is a stick 
with a propeller on top, which was spun by the hands and released.

•	 15th century: Leonardo da Vinci sketched a machine for vertical 
flight utilizing a screw-type propeller (Figure 1.7).

•	 18th century: Sir George Cayley constructed models (Figure 1.8) 
powered by elastic elements and made some sketches. Mikhail V. 
Lomonosov of Russia demonstrated a spring-powered model to the 
Russian Academy of Sciences. Similarly, Launoy and Bienvenu of 
France demonstrated a model having turkey feathers (Figure 1.9) 
for rotors to the French Academy of Sciences. This model climbed a 

FIGURE 1.6
Chinese top, B.C.

FIGURE 1.7
Sketch of Leonardo da Vinci’s “Helicopter,” 15th century.
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height of 20 m, creating an enormous interest in flying. These mod-
els had little impact on full-scale helicopter development.

•	 19th century: The last half of the 19th century saw some progress, but 
there was no successful vehicle. The problem was due to the lack of 
a cheap, reliable, and light engine. Attempts were made to use steam 
engine, and W. H. Phillips (England, 1842) constructed a 10-kg steam-
powered model. Similarly, Ponton d’Amecourt (France, 1862) built a 
4-kg steam-powered model (Figure 1.10) having coaxial contra-rotating 
rotors. At full power, this model reportedly tried to bob lightly on its 

FIGURE 1.8
Sir George Cayley’s helicopter, 1796.

FIGURE 1.9
Launoy and Bienvenu: turkey-feather rotors, 18th century.
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base. Ponton d’Amecourt was responsible for inventing the word heli-
copter derived from coining the two words helix (which means “screw” 
or “spiral”) and petron (which means “wing”). Enrico Forlanini (Italy, 
1878) built a 3.5-kg flying steam-driven model (Figure 1.11). This model 
climbed a height of about 12 m and stayed aloft for about 20 min.

Thomas Edison’s experiments with models led to the important conclu-
sion that no helicopter would fly until engines with a weight-to-power ratio 

FIGURE 1.10
Gustave Ponton d’Amecourt’s steam-powered helicopter, 1865.

FIGURE 1.11
Forlanini’s steam model helicopter, 1877.
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below 1 or 2 kg/hp were available. (It may be noted that present-day turbo 
shaft engines have a weight-to-power ratio of the order of 0.5–0.15 kg/ hp or, 
in other words, 2–5 hp/kg.) Around 1900, internal combustion reciprocat-
ing engines became available, which made airplane and helicopter flight 
possible.

•	 20th century
•	 Renard (France, 1904) built a helicopter with two side-by-side rotors 

using a two-cylinder engine. He introduced the flapping hinge.
•	 Paul Cornu (France, 1907) constructed the first man-carrying 

helicopter with two contra-rotating rotors of 6-m diameter, in 
tandem configuration (Figure 1.12). The total weight of the vehi-
cle was 260 kg and was powered by a 24-hp engine. This helicop-
ter achieved an altitude of 0.3 m for about 20 s. It had problems 
with stability. However, Cornu became the first person to suc-
ceed in actual helicopter flight.

•	 Louis Charles Brequet (France, 1907) built a machine that he 
called “helicoplane” (Figure 1.13). It had four rotors (8-m diameter 
rotors), with a gross weight of 580 kg, and an engine with 45 hp. 
This vehicle made a tethered flight at an altitude of 1 m for about 
1 min. The vehicle had no control mechanism. Breguet was one 
of the foremost pioneers to lift a full-scale helicopter with a pilot.

•	 Henry Berliner (U.S.A., 1920–1922), son of Emile Berliner, an 
inventor, built a two-engine co-axial vehicle (Figure 1.14), 
which lifted a pilot. He also built a side-by-side rotor helicopter 
(Figure  1.15), in which forward flight control was achieved by 
titling the rotor shaft. These vehicles were highly unstable.

FIGURE 1.12
Paul Cornu’s first man-carrying helicopter, 1907.
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FIGURE 1.13
Louis Breguet’s large four-rotor helicopter, 1907.

FIGURE 1.14
Berliner coaxial vehicle, 1920–1922.

FIGURE 1.15
Berliner helicopter with side-by-side rotors, 1924.
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•	 Sikorsky (Russia, 1910) built a vehicle with coaxial rotors 
(Figure 1.16) having a rotor diameter of 5.8 m and a 25-hp engine. 
This vehicle could lift its own weight of 180 kg, but not with a pilot.

•	 B. N. Yuriev (Russia, 1912) built a two-bladed main rotor and 
a small anti-torque tail rotor (main rotor: 8-m diameter, 200-kg 
weight, 25-hp engine). This helicopter did not make any success-
ful flight.

•	 Lts. Petroczy and von Karman (Austria, 1916) constructed a teth-
ered contra-rotating, coaxial helicopter with three engines of 
40 hp each (Figure 1.17). The rotor diameter was 6 m. This vehicle 
was designed as an observation platform. Although it made sev-
eral flights, it had control problems.

FIGURE 1.16
Sikorsky’s coaxial rotor vehicle, 1910.

FIGURE 1.17
Lts. Petroezy and von Karman’s tethered contra-rotating coaxial helicopter, 1916.
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•	 George de Bothezat (U.S.A., 1922) built a large helicopter (Figure 1.18) 
with four six-bladed rotors at the ends of intersecting beams having 
a weight of 1600 kg and a 180-hp engine. Good control behavior 
was obtained by utilizing differential collective. This vehicle made 
many flights with passengers at an altitude of 4 to 6 m. This was the 
first rotorcraft ordered by the U.S. Army. Later, it was abandoned 
due to the mechanical complexity of the vehicle.

•	 Etienne Oehmichen (France, 1924) built a machine (Figure 1.19) 
with four two-bladed rotors (7.6- and 6.4-m diameter) to provide 

FIGURE 1.19
Etienne Oehmichen’s four two-bladed rotor vehicle, 1924.

FIGURE 1.18
George de Bothezat’s large 6-bladed rotor helicopter, 1922.
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lift and five horizontal propellers for attitude control, two pro-
pellers for propulsion, and one propeller for yaw control, all 
powered by a 120-hp engine. It had 13 separate transmission sys-
tems. This vehicle made several flights and set a distance record 
of 360 m.

•	 M. Raoul P. Pescara (Spain, 1920–1926) built a helicopter (Figure 1.20) 
with two coaxial rotors of four blades each having a diameter of 
6 m. This was powered by a 120-hp engine. For forward flight con-
trol, he warped the biplane blades to change their pitch angle over 
one cycle. Pescara was the first to demonstrate cyclic pitch control 
for helicopters. This vehicle set a record distance of 736 m but had 
stability problems.

•	 von Baumhaver (Holland, 1924–1929) developed a single main 
rotor and a tail rotor vehicle. This had a two-bladed main rotor of 
15-m diameter, a total weight of 1300 kg, and a 200-hp engine. A 
separate engine of 80 hp was used for the tail rotor. Blade control 
was achieved by cyclic pitch using a swash plate, similar to mod-
ern helicopters. Several flights were made around 1-m altitude. 
There were difficulties in control because of separate engines for 
the main and tail rotors. The project was abandoned after a bad 
crash in 1929.

•	 Corradino d’Ascanio (Italy, 1930) built a helicopter with two 
coaxial rotors having a diameter of 13 m and powered by a 95-hp 
engine. The blades had flap hinges and free feathering (pitch-
ing of blades) hinges. Collective (constant pitch angle over the 

FIGURE 1.20
Pescara coaxial helicopter, 1925.
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azimuth) and cyclic (variation of pitch angle once in a revolution) 
pitch changes were achieved by controlling the servo tabs on 
the blade. For many years, this vehicle held records for altitude 
(18 m), endurance (8 min, 45 s), and distance (1078 m).

•	 Although the development of helicopter was fairly well advan- 
ced, it had severe stability and control problems. It was in the 
1920s to the 1930s that autogyro was developed. An autogyro is 
essentially an airplane with wings replaced by rotors. A propel-
ler is used for propulsive forces. It was developed by Juan de 
la Cierva (Spain, 1920–1930). In this vehicle, the rotor acts as a 
windmill and generates the lift. The initial design even used the 
conventional airplane-type control surfaces with no power to the 
rotor (Figure 1.21). In autogyro, hover and vertical flight are not 
possible, but a very slow forward flight can be possible. The rea-
son for this development was that Cierva’s airplane crashed due 
to stall in 1919. He then became interested in designing an air-
craft with a low takeoff and landing speed. In 1922, Cierva built 
the C-3 autogyro with a five-bladed rigid rotor, and the vehicle 
had a tendency to fall over sideways. Cierva incorporated flap-
ping hinges in his design, which eliminated the rolling moment 
on the aircraft in forward flight. He was the first to use the flap 
hinges successfully in a rotary wing vehicle. In 1925, Cierva 
founded the Cierva Autogyro Company in England. In the next 
decade, about 500 autogyros were produced. In 1927, a crash 
led to the understanding of high inplane loads due to flapping 
(Coriolis effect), which led to the incorporation of lag hinges. In 
1932, Cierva added rotor control to replace the airplane control 
surfaces. Lacking true vertical flight capability, the autogyro 
was never able to compete effectively with rotary wing aircraft. 
However, autogyro development had an influence on helicopter 
development.

FIGURE 1.21
Cierva autogyro, 1920–1930.
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•	 Louis Charles Brequet (France, 1935) built a coaxial rotor helicopter 
having an 18-m diameter rotor powered by a 350-hp engine. This 
vehicle (Figure 1.22) exhibited promising control and stability char-
acteristics. Even though it was damaged before the completion of 
the test, it is thought to be the first successful helicopter ever built.

•	 E. H. Henrich Focke (Germany, 1936) constructed a helicopter 
with two three-bladed rotors mounted on side-by-side con-
figuration (7-m diameter, 950-kg weight, 160-hp engine). The 
rotors were contra-rotating, and the small propeller in the nose 
was used to cool the engine. The rotors had an articulated hub. 
Directional and longitudinal control was achieved by cyclic 
pitch and roll by differential collective. Vertical and horizontal 
tail surfaces were used for stability and trim in forward flight. 
The vehicle set records for speed (122.5 kmph), altitude (2440 m), 
endurance (1 h, 21 min), and distance (224 km).

•	 Igor Sikorsky (U.S.A., 1930–1941) pursued helicopter development 
in America, after leaving Russia. He built the VS-300 in 1941, which 
had a single three-bladed main rotor having a 9-m diameter and 
a tail rotor with an all-up weight of 520 kg, and a 100-hp engine. 
Lateral and longitudinal control was by the main rotor cyclic, and 
directional control, by the tail rotor. The tail rotor was driven by 
a shaft from the main rotor. Initially, this vehicle had three tail 
rotors (one vertical, two horizontal). Later, it was reduced to two 
and, finally, to one vertical tail rotor. In 1942, the R-4, a deriva-
tive of VS-300 (Figure 1.23), was constructed. This helicopter had a 
single main rotor and one tail rotor (main rotor: diameter, 11.6 m; 
weight, 1100 kg; 185-hp engine). This model went into production, 
and several hundreds were built during World War II. Sikorsky’s 
vehicle is considered to be the first practical, truly operational, and 
mechanically simple and controllable vehicle.

FIGURE 1.22
Louis Charles Brequet’s coaxial rotor helicopter, 1935.
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The success of Sikorsky’s vehicle led to the development of other success-
ful helicopters in America. Lawrence Bell (two-bladed main rotor helicopters), 
Frank N. Piasecki (tandem rotor helicopters), Stanley Hiller, Charles Kaman, 
and McDonnell built different types of helicopters. These names later became 
helicopter manufacturing companies in America. Piasecki’s company became 
the Boeing–Vertol company. In Russia, Mikhail Mil (Mil helicopters), Nikolai 
Kamov (coaxial rotor helicopters), and Alexander Yakolev (Yak-24 helicopter) 
built helicopters in 1949 to 1955. The invention of helicopters can be considered 
to be completed by 1950s. However, new developments are still being pursued, 
which are possible due to the overall technological development in several 
associated fields. Modern developments include

	 (a)	 Notar (No-Tail Rotor) McDonnell–Douglas
	 (b)	 Tilt rotor (V-22 Osprey) Bell–Boeing
	 (c)	 ABC (Advancing Blade Concept, Sikorsky) (Coaxial, Contra-Rotating 

Rotors)
	 (d)	 X-Wing (NASA) (Circulation Control Rotors)
	 (e)	 Tilt Wing
	 (f)	 Compound helicopter

Helicopter Configurations

Helicopter configurations may be broadly classified into five types. However, 
with newly emerging configurations such as NOTAR, X-Wing, and com-
pound helicopter, additional classifications may come into the picture. 

FIGURE 1.23
Igor Sikorsky’s helicopter, 1941.
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However, the basic principle of helicopter flight may not differ in these con-
figurations. In the following, a brief description of the conventional classifi-
cations is provided.

	 1.	Single main rotor: This configuration has a single main rotor and 
one tail rotor for torque control (Figure 1.24). It has the advantage of 
being simple. The disadvantage is the danger of the vertical tail rotor 
to ground personnel. One French design (AS 365 N2 Dauphin 2) has 
a fan-tail configuration. This is known as the Fenestron or the Fan-in-
Fin type.

	 2.	 Jet rotor: This configuration provides the simplest solution to the 
torque balance. Fuselage directional control is achieved by rudder 
or vane, which uses the rotor downwash in hover (Figure 1.25). In 
this configuration, the presence of a jet engine at the tip of the blade 
leads to complex blade dynamics.

	 3.	Coaxial rotor: In this configuration, the fuselage torque is balanced 
by two main rotors rotating in opposite directions. This design 
has the advantage of having its overall dimension defined by the 
main rotor diameter and also saving the power required for the tail 
rotor. However, the rotor hub and controls design is more complex 
(Figure  1.26). Kamov Ka-32A and Ka-226 are examples of coaxial 
contra-rotating rotor configuration.

	 4.	Side-by-side rotors: The basic advantage of side-by-side rotor config-
uration is that it requires less power to produce lift in forward flight, 
which is similar to a large aspect ratio airplane wing (Figure 1.27). 
The disadvantages are increased parasite drag and high structural 
weight. In addition, compared to single rotor configuration, side-by-
side configuration has complex gearing and transmission systems 
(e.g., Bell–Boeing V-22 Osprey).

FIGURE 1.24
Conventional single main rotor and one tail rotor helicopter configuration.
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	 5.	Tandem rotors: The main advantage of the tandem configuration lies 
in its clean fuselage, together with a large available centre of grav-
ity range (Figure 1.28). Total load may be distributed between the 
two rotors. Disadvantages are due to complexities in transmission 
and gear systems, which are similar to side-by-side configuration. 
Another disadvantage is the loss in efficiency of the rear rotor since 
it operates in the wake of the front rotor. The loss in efficiency may 
be minimized by placing the rear rotor above the front rotor (e.g., 
Boeing CH-47 series).

FIGURE 1.26
Coaxial contra-rotating rotor helicopter configuration.

FIGURE 1.25
Tip jet rotor configuration.
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Control Requirements

The position and attitude of a rigid body (or vehicle) in space can be con-
trolled by forces and moments applied along the respective direction. For a 
six-degrees-of-freedom control, one requires six control inputs. In general, it 
would be difficult for a human being to control a machine having six inde-
pendent controls. However, it is possible to reduce the number of controls by 

FIGURE 1.27
Side-by-side rotor configuration.

FIGURE 1.28
Tandem rotor configuration.
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coupling together a few independent controls. But, such couplings involve 
some sacrifice on complete freedom of control both in the position and the 
attitude of the vehicle simultaneously in space.

For example, the pilot requires an ability to produce moments about all 
the three orthogonal axes to correct the vehicle in a maneuver or when 
the vehicle is disturbed in a gust. If the pilot can produce a moment that is 
accompanied by force, he sacrifices the ability to maintain force equilibrium. 
Therefore, by coupling pitching moment with longitudinal force and rolling 
moment with side (lateral) force, the necessity of two of the six independent 
controls can be eliminated. Thus, in helicopters, there are four independent 
controls that are found to be sufficient for flying.

	 1.	Vertical (or height or altitude) control: This control is required to change 
the altitude of the helicopter. It is achieved by increasing or decreas-
ing the pitch angle of the rotor blades to increase or reduce the thrust, 
respectively. (Note that, in helicopter terminology, “thrust” implies the 
total lift force generated by all the rotor blades in the rotor system.)

	 2.	Directional control: Directional control denotes the control of the 
heading of the helicopter by rotating about a vertical axis. In single 
main rotor helicopter, this is achieved by producing a moment about 
a vertical axis through the c.g. of the helicopter by modifying the 
thrust of the tail rotor.

	 3.	Lateral control: Lateral control involves the application of both 
force and moment. When the pilot applies lateral control, a rolling 
moment is produced about the c.g. of the helicopter due to a tilt of 
the main rotor thrust vector (Figure 1.29). As a consequence of the 
tilt, a component of the rotor thrust acts in the direction of the tilt. 
Hence, an application of lateral control results in a rotation in roll 
and in a sideward motion of the helicopter.

	 4.	Longitudinal control: Longitudinal control is identical to lateral con-
trol. Pitching moment is coupled with longitudinal force when the 
pilot applies longitudinal control.

 
Longitudinal control 

T 
T 

Centre of gravity

Lateral control 

FIGURE 1.29
Helicopter control by tilt of the rotor thrust for longitudinal and lateral controls.
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In general, cross coupling between various degrees of freedom of the heli-
copter is undesirable. For example, in a single main rotor machine, an increase 
in vertical force results in an increase in rotor torque (due to drag force acting 
on the blade), so a correction is required in the directional control to maintain 
the fuselage heading. Therefore, any control application to produce a required 
moment or force needs some compensating control inputs on other axes as 
well. Moreover, without an automatic stability augmentation system, the heli-
copter is not stable, particularly in hover. Consequently, the pilot is required 
to provide the feedback control to stabilize the vehicle continuously; therefore, 
flying a helicopter demands constant attention. The use of an automatic con-
trol system to augment the stability and control characteristics is desirable, but 
such systems increase the cost and complexity of the helicopter.

Table 1.1 provides a comparison of the control inputs required for various 
types of helicopter configurations. Except for the conventional single main 
rotor and one-tail rotor configuration, all other configurations use differen-
tial collective or cyclic inputs, that is, when the input to one rotor increases, 
the input to the other rotor decreases by the same amount.

Rotor Systems

The classification of rotor systems is essentially based on the type of the 
mechanical arrangement of the rotor hub and the blade attachment to 

Table 1.1

Rotor Control Input for Various Helicopter Configurations

Helicopter 
Configuration

Height Longitudinal Lateral Directional

Torque 
Balance

Vertical 
Force

Pitch 
Moment

Roll 
Moment

Yaw 
Moment

Single main rotor Main rotor Main rotor Main rotor Tail rotor Tail rotor
and tail rotor Collective Cyclic Cyclic Collective Thrust

Coaxiala Main rotor Main rotor Main rotor Main rotor Main rotor
Collective Cyclic Cyclic Differential Differential

Collective Torque
Tandema Main rotor Main rotor Main rotor Main rotor Main rotor

Collective Differential Cyclic Differential Differential
Collective Cyclic Torque

Side by sidea Main rotor Main rotor Main rotor Main rotor Main rotor
Collective Cyclic Differential Differential Differential

Collective Cyclic Torque
a	 Combined pitch differential control.
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accommodate the flap, lag motion, and the ability to change the pitch angle 
of the blade.

	 1.	Articulated rotor: A schematic of the articulated rotor is shown in 
Figure 1.30. The rotor blades are attached to the rotor hub with flap 
(out-of-plane motion) and lag (in-plane deformation) hinges. A pitch 
bearing is employed to provide changes in the pitch angle of the 
rotor blade. The location of the hinges (offset distances) from the 
center of the hub plays a significant role in the performance, stabil-
ity, control, and ground resonance characteristics of the vehicle. The 
advantage of an articulated rotor system is that the blade root bend-
ing moment is zero. The disadvantage is that there are many moving 
parts due to the hinges, which require frequent maintenance.

	 2.	Teetering rotor: Two blades forming a continuous structure are attached 
to the rotor shaft with a single flap hinge in a teetering or seesaw 
arrangement, as shown in Figure 1.31. There is no lag hinge, but a pitch 
bearing is provided to change the pitch angle of the blade. These rotor 
systems are simple but can be used for small helicopters. As the weight 
of the helicopter becomes large, more blades may be required for the 
distribution of loads. Since there are only two blades, these rotor sys-
tems provide high vibratory loads.

	 3.	Hingeless rotor (or rigid rotor): In hingeless rotor systems, the rotor 
blades are attached to the hub without flap and lag hinges, but it 
has a feathering (pitch) bearing. The blades are attached to the hub 
with cantilever root restraint (Figure 1.32) so that blade flap and lag 
motions occur through elastic bending near the root. The flexible 
section of the blade near its root acts like virtual hinges in the flap 
and the lag. This rotor system is also called “rigid rotor.” However, 
the limit of a fully rigid blade is applicable only to propellers. The 

Lag hinge
Flap hinge

Pitch bearing

Torsion
Flap

Lag

FIGURE 1.30
Schematic of articulated rotor hub/blade configuration.
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advantage of a hingeless rotor system is that it has fewer moving 
parts. The disadvantage is that these rotor systems will give rise to 
high vibratory loads at the hub.

	 4.	Bearingless rotor: In this rotor system, not only are the flap and lag 
hinges eliminated, but also the pitch bearing. The rotor blades are 
attached to the rotor hub through a composite beam (Figure 1.33) 
called the “flex beam.” This composite beam is not only designed to 
provide the required stiffness in the flap and lag deformations of the 
blade, but also acts as a pitch change mechanism. The pitch change 
in the blade is achieved by twisting a composite beam, thereby 

Flap hinge
Pitch bearing

Flap

Lag
Torsion

FIGURE 1.31
Schematic of a teetering (or seesaw)-type rotor configuration.

Pitch bearing

Flap

Torsion
Lag

FIGURE 1.32
Schematic of a hingeless rotor configuration.
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eliminating the pitch bearing. The main advantage of this rotor sys-
tem is that it has fewer moving parts, but the simplicity in configura-
tion hides the complexity in the design aspects.

Performance: Power Requirement

To fly any vehicle, power is required. In the case of helicopters, engine power 
must be supplied to the rotor for the following three main reasons:

•	 Power is required to produce lift, which is generated by pushing the 
air down. The power required for generating lift is referred to as 
“induced power.” In hover, this power is about 60%.

•	 Power is required to drag the blades through air. This is known as 
“profile drag power,” and in hover, it is about 30%.

•	 During forward flight, power must be supplied to drag the fuselage 
through the air in addition to the induced and profile drag losses. 
This power is known as “parasite drag power.”

The variation of power loss with forward speed is shown in Figure 1.34. 
The performance capabilities of the helicopter are determined by the power 
available to power required curves.

From Figure 1.34, it is clear that, while parasite power increases rapidly 
with airspeed, the power required for producing lift, that is, the induced 
power, decreases with increasing speed. As the rotor moves forward, the 
rotor encounters a large mass of air per second. Therefore, to produce the 
same thrust, the rotor needs to impact less velocity to the mass of air, and 

Flex beam

Flap

LagTorsion

Torque tube

FIGURE 1.33
Schematic of a bearingless rotor configuration.
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hence, the energy imparted to air is reduced. Profile drag power increases 
slightly initially and increases at a higher rate at high speeds. The sum of 
these power losses is also plotted in the figure. It is clear that, if power avail-
able is just equal to the power required to hover, the performance of the 
machine is marginal. The vehicle can barely hover and will be unable to 
climb. It may be noted that, near the ground, a helicopter will be able to 
hover even when it has insufficient power to hover away from the ground. 
This is due to a phenomenon known as “ground effect.” The ground stops 
the rotor downwash (or induced velocity), thus decreasing the induced 
power required to hover. It is also noted that the reduction in power required 
with forward speed enables an overloaded helicopter to take off in wind or 
to make a ground run to attain a small forward speed.

Apart from these three power losses, there are additional losses due to 
nonuniform flow, swirl in the wake, tip losses, loss in transmission sys-
tems, rotor-fuselage aerodynamic interference, tail rotor, etc.

•	 Nonuniform inflow: 5–7%
•	 Swirl loss: 1%
•	 Tip loss: 2–4%
•	 Engine transmission: 4–5% (turbine)
•	 Tail rotor: 7–9%
•	 Rotor-fuselage aerodynamic interference: ~2%
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Power variation with forward speed.
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2
Introduction to Hovering and 
Vertical Flight Theory

The lifting rotor is assumed to be in hovering condition when both the rotor 
and the air outside the slip stream are stationary, that is, there is no relative 
velocity between the rotor and the air outside the slip stream. The airflow 
developed due to the rotor is confined inside a well-defined imaginary slip 
stream, as shown in Figure 2.1. There is an axial symmetry in the airflow 
inside the slip stream.

The hovering theory (or momentum theory) was formulated for marine 
propellers by W. J. Rankine in 1865 and was later developed by R. E. Froude 
in 1885. Subsequently, Betz (1920) extended the theory to include rotational 
effect.

Momentum Theory

Momentum theory is based on the basic conservation laws of fluid mechan-
ics (i.e., conservation of mass, momentum, and energy). The rotor is continu-
ously pushing the air down. As a result, the air in the rotor wake (inside the 
slip stream) acquires a velocity increment or a momentum change. Hence, 
as per Newton’s third law, an equal and opposite reaction force, denoted as 
rotor thrust, is acting on the rotor due to air. It may be noted that the velocity 
increment of the air is directed opposite to the thrust direction.

Assumptions of Momentum Theory

The rotor is assumed to consist of an infinite number of blades and may 
therefore be considered as an “actuator disk.” The actuator disk is infinitely 
thin so that there is no discontinuity in the velocity of air as it flows through 
the disk. The rotor is uniformly accelerating the air through the disk with 
no loss at the tips. The axial kinetic energy imparted to the air in the slip 
stream is equal to the power required to produce the thrust. In addition, air 
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is assumed to be incompressible and frictionless. There is no profile drag loss 
in the rotor disk, and the rotational energy (swirling motion of air) imparted 
to the fluid is ignored.

Not e:  The actuator disk model is only an approximation to the actual rotor. 
The momentum theory is not concerned with the details of the rotor blades 
or the flow, and hence, this theory by itself is not sufficient for designing the 
rotor system. However, it provides an estimate of the induced power require-
ments of the rotor and also of the ideal performance limit. The slip stream of 
the actuator disk in hovering condition is shown in Figure 2.2.

The rotor disk is represented by a thin disk of area A (= πr2); the far field 
upstream is denoted as station 1, and the far field downstream is denoted as 
station 4. The pressure of air at stations 1 and 4 is atmospheric pressure P0. 

Axis of symmetry

�rust

Downstream

ν

Rotor disk

Upstream

Slip stream

Figure 2.1
Rotor disk and slip stream.

Station 1: far-field upstream

Station 4: far-field downstream

P0 ν = 0

�rust

ν

w

Station 2

Station 3

Rotor disk area = πr 2

Figure 2.2
Flow condition in the slip stream.
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Stations 2 and 3 represent the locations just above and below the rotor disk, 
respectively. It is assumed that the loading is uniformly distributed over the 
disk area. The induced velocity or inflow velocity is ν at the rotor disk, and 
w is the far field wake–induced velocity. The fluid is assumed to be incom-
pressible, having a density ρ. The conservation laws are as follows:

Mass flow rate is given as

	 m A= ρ ν 	 (2.1)

Momentum conservation is obtained by relating the force to the rate of 
momentum change, which is given as

	 T m w A w= − = ( )0 ρ ν 	 (2.2)

Energy conservation relates the rate of work done on the air to its change 
in kinetic energy per second, which is given as

	 T m w mwν = − =1
2

0
1
2

2 2
 ( ) 	 (2.3)

Substituting for m  from Equation 2.1 and using Equation 2.2, Equation 2.3 
can be written as

	 ρ ν ν ρ νA w A w= ⋅1
2

2

Cancelling the terms results in

	 ν ν= ⇒ =1
2

2w w 	 (2.4)

This shows that the far field–induced velocity is twice the induced velocity 
at the rotor disk.

Substituting for w in Equation 2.2, the expression for rotor thrust in terms 
of induced velocity at the rotor disk is given by

Rotor thrust:

	 T = ρAν2ν	 (2.5)

or the induced velocity is given as

	 ν
ρ

= T
A2

	 (2.6)
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The induced power loss or the power required to develop the rotor thrust 
T is given as

	 P T T
T

A
= =ν

ρ2
	 (2.7)

The induced power per unit thrust for a hovering rotor can be written as

	
P
T

T
A

= =ν
ρ2

	 (2.8)

The above expression indicates that, for a low inflow velocity, the efficiency 
is higher. This is possible if the rotor has a low disk loading (T/A). In gen-
eral, the disk loading of helicopters is of the order of 100–500 N/m2, which 
is the lowest disk loading for any vertical take-off and landing (VTOL) vehi-
cle. Therefore, the helicopters have the best hover performance. Note that the 
parameter determining the induced power is essentially T/(ρA). Therefore, the 
effective disk loading increases with an increase in altitude and temperature.

The pressure variation along the slip stream can be determined from the 
steady-state Bernoulli equation. The pressure between stations 1 and 2 and 
between stations 3 and 4 are related, respectively, as

	 p p0 1
21

2
= + ρν

 
between stations 1 and 2	 (2.9)

and

	 p p w2
2

0
21

2
1
2

+ = +ρν ρ   between stations 3 and 4	 (2.10)

The pressure variation along the slip stream is shown in Figure 2.3. There is 
a pressure jump across the rotor disk even though the velocity is continuous. 

Pressure of slip stream

Atmospheric pressure
P0 P0

P1

P2

Figure 2.3
Pressure variation along the slip stream.



29Introduction to Hovering and Vertical Flight Theory

The jump in pressure is caused by the power given to the rotor to push the 
air downstream.

From Equations 2.9 and 2.10, the rotor thrust can be evaluated.

	 T p p A w A A A= − = = =( ) ( )2 1
2 2 21

2
1
2

2 2ρ ρ ν ρ ν 	 (2.11)

The various quantities can be written in nondimensional form. Using the 
tip speed ΩR of the rotor blade as reference, the rotor inflow is represented 
in nondimensional form as

	 Inflow ratio: λ ν= =
ΩR

CT

2
	 (2.12)

Thrust coefficient CT and power coefficient CP are defined, respectively, as

	 Thrust coefficient: C
T

A R
T =

ρ ( )Ω 2 	 (2.13)

	 Power coefficient: C
P

A R
T

A R R
C

P
T= = =

ρ ρ
ν

( ) ( )Ω Ω Ω3 2

3 2

2
	 (2.14)

The hovering efficiency of the rotor is defined as

	 M = minimum power required to hover ideal power
Actual

( )
ppower required to hover actual

= T
P

ν
	 (2.15)

M is called the figure of merit (FM). The ideal value of M is equal to 1. 
However, for practical rotors, the value will be less than 1. For good rotors, 
M is in the range of 0.75 to 0.8. For inefficient rotors, FM will have a value 
around 0.5. FM can be used for comparing the efficiency of different rotor 
systems. It should be noted that FM is defined only for the hovering condi-
tion of the rotor.

Blade Element Theory

Blade element theory (BET) is the foundation for all analyses of helicopter 
dynamics and aerodynamics because it deals with the details of the rotor 
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system. This theory relates the rotor performance and the dynamic and aero-
elastic characteristics of the rotor blade to the detailed design parameters. In 
contrast, although momentum theory is useful to predict the rotor-induced 
velocity for a given rotor thrust, it cannot be used to design the rotor system 
and the rotor blades.

The basic assumption of BET is that the cross section of each rotor blade 
acts as a two-dimensional airfoil to produce aerodynamic loads, that is, sec-
tional lift, drag, and pitching moment. The effect of the rotor wake is entirely 
represented by an induced angle of attack at each cross section of the rotor 
blade. Therefore, this theory requires an estimate of the wake-induced veloc-
ity at the rotor disc. This quantity can be obtained either from the simple 
momentum theory (as given in the previous section) or from more complex 
theories, such as the prescribed wake or the free wake vortex theories, or 
nonuniform inflow calculations using acceleration potential.

History of the Development of BET

The origin of BET can be attributed to the work of Willium Froude (1878). 
However, the first major treatment was by Stefan Drzewiecki, during 1892 to 
1920. Drzewiecki considered different blade sections to act independently but 
was not certain about the aerodynamic characteristics to be used for the air-
foils. The two velocity components considered in the theory are (1) tangential 
velocity Ωr due to rotation and (2) axial velocity V of the propeller. Note that 
the inflow component at the rotor disk was not included. In Drzewiecki’s 
calculations, the estimated performance exhibited a significant error, which 
was attributed to the airfoil characteristics. Since the aspect ratio affects the 
aerodynamic characteristics (in fixed wings), Drzewiecki proposed that the 
three-dimensional wing characteristics (with appropriate aspect ratio) be 
used in the BET. The results of this theory had the correct general behavior 
but were found to be quantitatively inaccurate.

Several attempts (Betz [1915] and Bothezat [1918]) were made to include the 
increased axial velocity from the momentum theory into the BET. However, 
Prandtl’s finite wing theory provided a proper framework for the correct 
treatment and inclusion of the influence of the propeller wake on the aero-
dynamic environment at the blade section. In fixed wing, the lifting line 
theory is used for the calculation of induced velocity from the properties of 
the vortex wake. Thus, following the same approach, the vortex wake was 
used to define the induced velocities at each cross section of the rotor blade. 
This theory is called the “vortex theory.” It was through this approach rather 
than through the momentum theory that induced velocity was finally incor-
porated correctly in the BET. Therefore, during the initial stages of devel-
opment, the vortex theory dominated the momentum theory in evaluating 
the inflow at the rotor disk. The vortex theory is also regarded as a reliable 
approach in both fixed and rotary wing analyses.
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BET for Vertical Flight

In this section, as a general case, BET is applied to a rotor that has a vertical 
velocity. If the vertical velocity term is set equal to zero, it represents the hov-
ering condition of the rotor. While developing the BET, several assumptions 
are made. The important assumptions are as follows:

	 1.	 In the preliminary highly simplified case, the rotor blade is assumed 
to be a rigid beam with no deformation. The blade can have a 
pretwist. (The effects of blade deformation will be considered in 
later chapters.)

	 2.	The rotor system is rotating with a constant angular velocity Ω.
	 3.	The plane of rotation of the rotor blades is perpendicular to the shaft.
	 4.	The rotor is operating at low disk loading, i.e., a small value of inflow 

velocity.
	 5.	Compressibility and stall effects are neglected.

Figure 2.4 shows a rotor system along with the nonrotating hub fixed 
axes system (XH–YH–ZH) and the rotating blade fixed axes system (X1–Y1–Z1). 
Figure 2.5 shows a typical cross section of the rotor blade at a radial distance 
r from the center of rotation (or the hub center), various velocity components, 
and the resultant forces acting on the airfoil section. The blade is set at a pitch 
angle θ measured from the plane of rotation. UT and UP are, respectively, the 
tangential and the perpendicular relative air velocity components, as viewed 
by an observer on the blade section.

In vertical flight condition, UP consists of the climb velocity VC of the heli-
copter (or rotor) and the induced velocity ν. Note that VC = 0 for hovering 
condition. The tangential component of velocity UT is due to rotor rotation. 

Z1, ZH Y1

X1

XH

YH

r

o

ψ

A

A

Ω

Figure 2.4
Nonrotating hub fixed and rotating blade fixed coordinate systems.
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The relative air velocity components UT and UP for vertical flight can be 
written as

	 UT = Ωr  and  UP = VC + ν	 (2.16)

The resultant air velocity U and the inflow angle are given by

	

U U U

U
U

= +

=

T P

P

T

2 2

tan φ
	 (2.17)

It can be seen that the vertical component of velocity UP modifies the angle 
of attack. Thus, the effective angle of attack at the blade section is given as

	 α = θ − ϕ	 (2.18)

The sectional lift and drag forces can be written as
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where C is the blade chord, and Cl and Cd are, respectively, the lift and drag 
aerodynamic coefficients, which are functions of the angle of attack and the 
Mach number. Resolving these two sectional forces along parallel and per-
pendicular directions to the rotor disk, the vertical and horizontal (or in-
plane) force components can be obtained as
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	 (2.20)
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Figure 2.5
Typical cross section of a rotor blade at radial location r and the velocity components.
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Combining the forces due to all the blades in the rotor system, the elemen-
tal thrust, torque, and power due to all the blades in the rotor system can 
be obtained. The following expressions are obtained by noting that the sec-
tional forces acting on the blade cross section at a radial distance r are the 
same on all the blades.

	

dT NF dr

dQ NF rdr

dP dQ N F rdr

=

= −

= =

Z
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Y

1

1Ω Ω

	 (2.21)

where N is the total number of blades in the rotor system. The negative sign 
in the torque expression indicates that aerodynamic drag force on the blade 
provides a clockwise torque when the rotor is rotating in a counterclockwise 
direction, as shown in Figure 2.1. The positive quantity of the torque essen-
tially represents the torque applied to the rotor by the engine to keep the 
rotor rotating at the prescribed angular velocity.

Assuming that UP << UT, one can make a small angle assumption for the 
inflow angle. Note that this assumption is not valid near the blade root. 
However, since the dynamic pressure near the root is very small, the aerody-
namic loads are also of small magnitude. Hence, the error due to the small 
angle assumption can be considered to be negligible. In addition, due to root 
cutout, the cross sections near the root (~20% of the rotor radius) do not pro-
duce any significant aerodynamic lift.

Making a small angle assumption, one can write
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where a is the lift curve slope.
Substituting the above approximations, the expressions for lift and drag 

per unit length, from Equation 2.19, can be written as
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Also, the force components can be approximated as

	
F L
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− ≈ +1 φ
	 (2.24)

Using this approximation, the elemental thrust, torque (applied torque), 
and power (Equation 2.21), can be expressed as
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The elemental thrust, torque, and power quantities can be nondimension-
alized by using appropriate reference quantities, as
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Thrust Coefficient

Using Equations 2.16, and 2.23 to 2.26, the elemental thrust coefficient can be 
written as
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Solidity ratio is defined as σ = blade area/rotor disk area, where σ
π

= NCR
R2  

is the solidity ratio for the constant chord blade.

	 λ ν= +V
R

C

Ω
 is the total inflow ratio	

 r
r
R

=
	

(2.28)

The differential expressions can be integrated over the length of the blade 
by assuming a constant chord, and a uniform inflow.

The thrust coefficient is obtained as

	 C
a

r r drT = −∫ σ θ λ
2

2

0

1

[ ] 	 (2.29)

Assuming a linear twist variation for the blade pitch angle along the span 
of the blade as

	 θ θ θ θ θ θ= + = + −0 0 75 0 75r rtw twor( ( . ) ). 	 (2.30)

where θtw, θ0, and θ0.75 are the blade twist rate due to the pretwist of the 
blade, the pitch angles at the blade root, and at a radius 0.75 R, respectively. 
Substituting Equation 2.30 in Equation 2.29 and integrating over the length 
of the blade, the thrust coefficient becomes

	 C
a

T = −






σ θ λ
2 3 2

0 75. 	 (2.31)

On the other hand, a twist distribution of θ
θ

= tip

r
 (known as the “ideal 

twist distribution”) results in a thrust coefficient expression given as

	 C
a

T tip= −σ θ λ
4

[ ] 	 (2.32)

This ideal twist distribution, while physically not possible to achieve, is 
of interest because it gives a uniform inflow over the rotor disk for constant 
chord blades. This twist distribution is denoted as ideal twist distribution 
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because the momentum theory shows that uniform inflow provides a mini-
mum induced power loss.

Now, it is shown that BET provides a relationship between rotor thrust 
coefficient, pitch angle, and inflow ratio. On the other hand, momentum the-
ory gives a relationship between thrust coefficient and inflow ratio.

For hovering condition, in the case of constant chord and a linearly twisted 
blade, thrust coefficient is written as (note: VC = 0)

	 C
a

T = −




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σ θ λ
2 3 2

0 75. 	 (2.33)

From the momentum theory, the inflow ratio in hover is given as (Equation 
2.12)

	 λ = CT

2 	

Combining the above two expressions, the relationship between θ0.75 and 
CT can be written as

	 θ
σ0 75

6 3
2 2. = +C

a
CT T 	 (2.34)

The first term corresponds to the mean angle of attack of the rotor blade, 
while the second term is the additional pitch angle required due to the 
induced inflow. The above three relationships can be used to obtain an esti-
mate of the thrust coefficient, the pitch angle at 0.75 R, and the inflow ratio 
under hovering condition.

Using Equations 2.12 and 2.33, a relationship between the inflow ratio and 
the blade pitch angle θ0.75 can be obtained as

	 λ σ
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a16

1
64

3
10 75. 	 (2.35)

Torque/Power Coefficient

The elemental torque and power coefficients can be obtained from Equations 
2.16, 2.23, 2.25, and 2.26. They are shown to be equal, and it is given as
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The velocity quantities with overbar represent nondimensional quantities 
obtained by dividing with reference velocity ΩR, which is the tip speed of 
the rotor blade.

The elemental power coefficient can be written as
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Noting from Equation 2.27 that the first term contains an elemental thrust 
coefficient, Equation 2.37 can be written as
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Integrating both sides over the rotor system, the power coefficient can be 
obtained as
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The power coefficient Cpi represents the power loss due to total induced 
flow, and CPpd is the power loss due to profile drag.

For uniform inflow, the power due to total induced flow is Cpi = λCT.
Since total inflow λ ν= +V

R
C

Ω
, during climb, Cpi includes the power required 

for climbing as well as the induced power loss. Therefore, one can write the 
induced power in terms of two quantities, namely climb power and induced 
power, that is,

	 Cpi = Cpc + Cpiv

In other words, this power term can be expressed as

	 Pi = Pc + Piv = VCT + νT = (VC + ν)T	 (2.40)
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During hover λ = CT

2
, therefore, the induced power loss becomes

	 C C
C

P Pi iv
= = T

3 2

2
	 (2.41)

This is the induced power loss in hover under ideal condition. However, 
for a real rotor with a practical twist, a planform, and a finite number of 

blades, the induced power loss will be higher than the ideal value 
CT

3 2

2
. 

One way to compute the induced power loss is to integrate λ dCT∫  under 
real conditions, taking into account the nonuniform inflow over the rotor 
disk. On the other hand, one can use the same expression as the momentum 
theory expression for power loss but with an empirical factor κ to account for 
the additional losses due to the real situation, that is,

	 C
C

pi
T= κ 3 2

2
	 (2.42)

The factor κ accounts for nonideal conditions, and its value is usually taken 
as 1.15, which implies an additional power of about 15% more than the ideal 
power.

Next, consider the profile power term from Equation 2.39, which is given as

	 C
C

r drPpd
d= ∫ σ

2
3 	 (2.43)

Assuming the constant chord for the blade with the drag coefficient Cd = 
Cdo (a constant), the profile power loss can be obtained by integrating over 
the rotor radius. It is given as

	 C
C

Ppd
do= σ

8
	 (2.44)

Combining Equations 2.42 and 2.44, the total power loss in hover can be 
expressed as

	 C
C C

p
T do= +κ σ3 2

2 8
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The efficiency of the rotor is expressed as the ratio of the ideal power over 
the actual power. This ratio is denoted as figure of merit, which is given by

	 M
C

C C
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C C
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T do

ideal

3 2

3 2
2

2 8
κ σ 	 (2.45)

A plot of figure of merit M as a function of thrust CT (for a set of given 
values of (σ, Cdo, κ)) is shown in Figure 2.6. It can be noted from the figure 
that, for low values of thrust coefficient, due to a comparatively high value 
of profile drag, the figure of merit is low. Thus, the rotor is not operating 
efficiently. As CT increases, the figure of merit increases. For high values 
of CT (≈0.006–0.01), figure of merit does not show a large variation. This 
functional form indicates that figure of merit asymptotically approaches 
unity as the CT is increased. In practical situations, for a large value of CT, 
the angle of attack has to be large, which can lead to blade stall and an asso-
ciated increase in drag. Hence, there will be a reduction in figure of merit.

Figure of merit is a useful parameter for comparing the efficiency of dif-
ferent rotors having the same disk loading. For a given value of CT, figure of 
merit M will have a high value for a low value of solidity ratio σ and drag 
coefficient Cd0. If the rotor solidity is too low, a high value of angle of attack 
will be required to achieve the given thrust (Equation 2.34). Therefore, the 
rotor should have as low a value of solidity as possible with an adequate 
stall margin for the airfoil. Blade twist and variable chord also influence the 
induced and profile power losses. A study of these effects requires a more 
detailed analysis, which can be taken as an exercise.
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Variation of figure of merit with thrust coefficient.
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Combined Differential Blade Element and Momentum 
Theory: Nonuniform Inflow Calculation

The nonuniform inflow distribution as a function of radial distance from 
the center of the rotor disk can be obtained by comparing the differential 
thrust expressions obtained from both the momentum theory and the BET. 
Consider a circular strip of differential area dA = 2πrdr at a radial distance r 
from the center of the rotor disk, as shown in Figure 2.7. From BET (Equation 
2.27), the differential thrust expression over this differential area is given as

	 dC
a

r r drT = −σ θ λ
2

2( ) 	 (2.46)

The differential thrust expression from the momentum theory can be writ-
ten as

	 dT = ρ(V + ν)2ν(2πrdr)	 (2.47)

In nondimensional form, Equation 2.47 can be written as

	 dC rdrT = 4λλ i 	 (2.48)

where total inflow λ ν= +V
RΩ

 and induced inflow λ ν
i =

ΩR
 and λc = V

RΩ
. 

Hence, λi = λ − λc.
Equating the two differential thrust expressions given in Equations 2.46 

to 2.48, an equation for λi can be formed:

R
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Δr

Figure 2.7
Annular area for nonuniform inflow calculation.
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Solving for λi and taking the positive root,

	 λ
λ σ λ σ σ θ λ

i

a a
a r

=
− +





 + +





 + −4

2
4

2
8

8

2

c c c( )

	

or

	 λ λ σ λ σ σ θ λi
a a a

r= − +




 + +





 + −c c

c2 16 2 16 8

2

( ) 	 (2.50)

For the hovering condition, λc = 0, and the inflow ratio becomes
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Equation 2.51 provides an expression for the nonuniform inflow distribu-
tion in hover. It can be seen that the inflow ratio is a function of radial dis-
tance. (Compare this expression with the uniform inflow expression derived 
earlier and given in Equation 2.35.) Using the above equation, for given val-
ues of pitch, twist, and chord, the inflow λi can be calculated as a function of 
radius. It can be observed from Equation 2.51 that a uniform inflow distribu-
tion requires that θr = a  constant. In other words, the ideal twist distribu-
tion is given by the expression

	 θ
θ

= tip

r
	 (2.52)

It can be shown that uniform inflow results in uniform disk loading (i.e., 

equal areas of rotor disk support equal thrust, that is, dT
dA

 = a constant) and 

also provides minimum induced power loss. (The proof can be taken as an 
exercise.)

Although the rotor performance evaluated using nonuniform inflow may 
be more accurate than that evaluated using uniform inflow, the differential 
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momentum theory is still only an approximate theory. A more refined inflow 
distribution can be obtained using the vortex theory or from computational 
fluid dynamics (CFD) calculations.

Tip Loss Factor

When the chord at the blade tip is finite, BET gives a nonzero lift. However, 
the lift drops to zero at the tip due to three dimensional flows. Since the 
dynamic pressure is proportional to r2, the blade loading is concentrated 
near the tip and drops steeply to zero at the tip, as shown in Figure 2.8. The 
loss of lift at the tip is very important in calculating rotor performance.

A rigorous treatment of tip loading requires a lifting surface analysis. An 
approximate method to account for tip losses is to assume that the blade 
element outboard of the radial station r = BR(B < 1.0) has only profile drag 
but produces no lift. The parameter B is called “tip loss factor.” A number of 
methods are available for evaluating B. Prandtl gave an expression for tip 
loss factor in terms of thrust coefficient and number of blades, which can be 
approximately given as (Bramwell, 1976):

	 B
C
N

= −1 T

Generally, tip loss factor is taken as B = 0.97, and it provides a good correla-
tion with the experimental results.
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Spanwise lift distribution on the blade, showing the tip and the root offset effects.
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Blade Root Cutout

Performance losses can also occur due to root cutout (Figure 2.9). The lifting 
portion of the blade generally starts at a radial station of about 10% to 30% 
of the rotor radius. The root cutout portion is required for installing flap-lag 
hinges, pitch bearings, blade root attachment to the hub, etc.

Considering both root cutout and tip losses, in BET, the integration for 
thrust is performed from r r= root  to r B= , that is,

	 C dC
R

B

T T

root

= ∫ 	 (2.53)

Since the dynamic pressure at the root is very low, the correction to the 
thrust calculation is also very small. Therefore, in the following, these effects 
have been neglected. However, in design calculations, one must take into 
account these effects.

Mean Lift Coefficient

The operating condition of the rotor can be represented by defining the mean 
aerodynamic lift coefficient Cl, which is obtained as follows. From Equation 
2.46, one can write the thrust expression in terms of the lift coefficient Cl.

	 dC
a

r r dr C r drT l= − =σ θ λ σ
2 2

2 2( ) 	 (2.54)

Root section

Figure 2.9
Rotor blade root section/root cutout.
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where the lift coefficient is given as C a
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From Equation 2.55, the mean lift coefficient can be expressed as
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CT

σ
 is the ratio of the thrust coefficient to the solidity ratio. This quantity is a 

measure of the mean lift coefficient of a blade. Correspondingly, 
6C

a
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σ
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interpreted as the mean angle of attack of the blade. It can be shown that 
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represents dimensionless blade loading, whereas 
T
Rπ 2  is the disk loading.
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CT

σ
 plays an important role in rotor aerodynamics since many characteristics 

of the rotor and the helicopter depend on the mean lift coefficient of the blade. 
The rotor figure of merit in hover, from Equation 2.45, can be expressed as
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where λh
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 is the inflow ratio during hover. This expression can also 

be written as
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Substituting for CT in terms of Cl from Equation 2.56, as C
C
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l= σ

6
,
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This expression indicates that, for a high value of figure of merit, the blade 
must have an airfoil that has a high value of lift-to-drag ratio.
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Ideal Rotor versus Optimum Rotor

Ideal rotor is one where the induced power loss is a minimum. Hence, it 
requires a uniform inflow, with the rotor blade having an ideal twist dis-
tribution. Optimum rotor is one which is optimized to have both induced 
and profile power losses at a minimum. Minimum induced power requires 
uniform inflow. Minimum profile power requires that each blade section 

operates at its optimum condition with a maximum value of 
C
C

l

d

. These two 

criteria determine the twist and taper for the optimum rotor, which has the 
best hover performance. Due to manufacturing considerations, almost all 
rotor blades have a constant chord over a major portion of the rotor blade.

Momentum Theory for Vertical Flight

Vertical flight of the helicopter at a speed V includes climb (V > 0), hover 
(V = 0), descent (V < 0), and also the special case of autorotation (i.e., power-
off descent). Between hover and autorotation descend speed, the helicopter 
is descending at a reduced power. At autorotation descend speed, the heli-
copter rotor does not require any power to keep the rotor rotating. Beyond 
autorotation descend speed, the rotor is actually generating power. An inter-
pretation of induced power losses requires a discussion of the flow states 
of the rotor in axial flight. Consider two cases of the actuator disk theory, 
namely vertical climb and vertical descent. Assume that the flow is uniform 
in the slip stream. Figure 2.10 shows the velocity profile in both cases. The 
arrows represent the positive direction of flow velocity in the slip stream. 
It may be noted that, for climb, velocity V is positive, and for descent, it is 

Rotor disk
area A = πR2

Rotor disk
area A = πR2

�rust �rust

Wake slip stream

(a) (b) 
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V + ν V + ν

VV + w

V + W

Figure 2.10
Flow velocities in climb and descent. (a) Climb (V > 0). (b) Descent (V < 0).
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negative. In the following, the derivation of the induced velocity expression 
for both climb and descent is provided side by side.

Climb (V > 0) Descent (V < 0)
Mass flow through the rotor disk

m A V= +ρ ν( ) m A V= +ρ ν( )

Momentum conservation

T m V w mV mw= + − =  ( ) T mV m V w mw= − + = −  ( )

Energy conservation

P m V w mV= + −1
2

1
2

2 2
 ( ) P mV m V w= − +1

2
1
2

2 2
  ( )

Simplifying,

P m Vw w= +1
2

2 2
 ( ) P m Vw w= − +1

2
2 2

 ( )

Since P = T(V + ν), we have

 mw V m Vw w( ) ( )+ = +ν 1
2

2 2 − + = − + mw V m Vw w( ) ( )ν 1
2

2 2

w = 2ν w = 2ν
Hence, thrust

T = ρA(V + ν)2ν T = −ρA(V + ν)2ν

Since the induced velocity in hover is given as ν
ρh

2

2
= T

A
, and assuming 

that the actuator disk in steady vertical flight is supporting the same weight 
as in hover (i.e., T T Ah h= = ρ ν2 2 ). Equating the thrust expressions in hover 
and vertical flight, the equation for the induced flow ν can be obtained for 
both climb and descent as

Climb (V > 0)

	
ν

ν ν
ν

νh h h

V +






= 1

Descent (V < 0)

	

ν
ν ν

ν
νh h h

V +






= −1

Solving these equations, the induced velocity 
ν
νh

 as a function of V can be 
obtained for climb and descent flight conditions.
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Note that induced velocity ν
νh

 is always positive. Hence, it may be noted 

that the negative root of the radical is not valid for climb, but for descent, 
both the positive and negative roots of the radical will provide a positive 
induced velocity. It will be shown later that the positive root of the radical is 
not a valid root due to the physical condition of the flow.

Climb (V > 0)

	
ν

ν ν νh h h

= − +






+V V
2 2

1
2

	 (2.59a)

Descent (V < 0)

	
ν

ν ν νh h h

= − ±






−V V
2 2

1
2

	 (2.59b)

The net flow velocity at the rotor disk is
Climb (V > 0)

	
V V V+ = +







+ν
ν ν νh h h2

1
2

	 (2.60a)

Descent (V < 0)

	
V V V+ = ±







−ν
ν ν νh h h2 2

1
2

	 (2.60b)

The net velocity at the far wake is
Climb (V > 0)

	
V V+ = +







+2
4

2
ν

ν νh h 	

Descent (V < 0)

	
V V+ = ±







−2
4

2
ν

ν νh h 	

Using Equations 2.59a and 2.59b, the variation of induced velocity ν
νh

 ver-

sus climb (or descent) velocity V
νh

 is plotted, and it is shown in Figure 2.11.

The dashed portions of the curve are branches of the solution, which are 
extrapolated beyond the assumed conditions. These dashed lines do not 
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correspond to the assumed flow state. The line V + ν = 0 is where the direc-
tion of flow through the rotor disk and the total induced power P = T(V + ν) 
change sign. At the line, V + 2ν = 0, the flow in the far wake changes sign. The 
three lines V = 0, V + ν = 0, and V + 2ν = 0 divide the graph into four regions. 
These regions are denoted as the normal working state (hover and climb), 
the vortex ring state, the turbulent wake state, and the windmill brake state. 
The flow characteristics in each of the states are described below.

Normal Working State

The normal working state includes climb and hover. During climb, the veloc-
ity in the slip stream throughout the flow field is downward, with both V 
and ν positive. For mass conservation, the wake contracts downstream of 
the rotor. The momentum theory gives a good estimate of the performance. 
Hover (V = 0) is the limit of the normal working state. Even in hover, the 
momentum theory gives a good estimate of the performance. The flow pat-
tern in the normal working state is shown in Figure 2.12.
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3210–1–2–3–4–5
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theory
solution
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Figure 2.11
Variation of induced flow as a function of climb and descent speed.
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Figure 2.12
Flow pattern in the normal working state. (a) Climb (V > 0). (b) Hover (V = 0).
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Vortex Ring State

When the rotor starts to descend, definite slip stream ceases to exit because 
the flow inside the slip stream changes its direction as we move from far 
upstream to far wake downstream. Therefore, there will be a large recircula-
tion and turbulence. In the vortex ring state, the induced power (P = T(V + 
ν) > 0) is positive in the sense that the engine has to supply power to the rotor 
to keep it rotating. The flow pattern and the directions of the flow are shown 
in Figure 2.13.

The flow pattern in the vortex ring state is like that of a vortex ring in 
the plane of the rotor disk. The upward velocity in the free stream keeps 
the tip vortices piled up as a ring. As the strength builds up, it breaks away 
from the disk plane, leading to a sudden breakdown of the flow. The flow is 
highly unsteady and produces a highly disturbing low-frequency vibration. 
The momentum theory is not valid since the flows inside the slip stream are 
in opposite directions.

The limiting case of the vortex ring state is when the flow through the 
disk is zero, that is, V + ν = 0. It may be noted that, during descent, V < 0 and 
induced velocity ν > 0. Hence, the power required for the induced flow ν is 
exactly equal to the gain in power due to descent. This state corresponds to 
ideal autorotation (in the absence of profile power loss).

Turbulent Wake State

The turbulent wake state corresponds to the region in Figure 2.11, where V + 
ν = 0 to V + 2ν = 0. Under the condition V + ν = 0, there is no flow though the 
rotor disk. In reality, there is a considerable recirculation and turbulence. 
The flow pattern in the turbulent wake state is shown in Figure 2.14. The flow 
state is somewhat similar to the flow past a circular plate of the same area of 
the rotor disk, with no flow through the disk and a turbulent wake behind it. 

Rotor disk

(a) (b)

V

Figure 2.13
Flow pattern and velocities in the vortex ring state. (a) Low descent rates. (b) High descent rates.
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When the descent speed increases, V + ν < 0, that is, the flow at the rotor disk 
is upward with less recirculation through the rotor. The flow above the rotor 
is highly turbulent. The rotor in this state experiences some roughness due 
to turbulence, but not like the high vibration in the vortex ring state.

Windmill Brake State

At the high rate of descent (V < −2ν), the flow once again becomes smooth, 
with a definite slip stream. The flow is upward throughout the slip stream, 
and the momentum theory is valid in this condition. In this state, the power 
P = T(V + ν) is less than 0, implying that the rotor is producing power (or 
power is extracted from the flow). The flow pattern in the windmill brake 
state is shown in Figure 2.15.

It is important to note that induced velocity is almost impossible to mea-
sure in flight. Therefore, the induced velocity curve is drawn by calculating 

(a) (b)

Figure 2.14
Flow pattern in the turbulent wake state. (a) Ideal autorotation (V + ν = 0). (b) Tubulent wake state.
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Figure 2.15
Flow pattern in the windmill brake state. (a) Boundary (V + 2V = 0). (b) Windmill brake state.
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the induced velocity from the power measurements. The power supplied to 
the rotor can be expressed as a sum of three components, given as

	 Shaft power = climb power + induced power + profile power

	 P TV T
C

R R= + +ν σ ρπd0

8
2 3( )Ω 	 (2.61)

For given values of shaft power, gross weight (T = W), rotor angular veloc-
ity, rate of descent, and blade drag coefficient, the mean effective induced 
velocity can be determined from the above equation.

Another way of presenting the induced velocity variation was developed 
by Lock (1947). In this representation (Figure 2.16), the variation of total 

induced velocity V +





ν
νh

 is plotted as a function of V
νh

. This curve is also 

known as the “universal inflow curve.”
In the vortex ring and the turbulent wake regions, the inflow curve is repre-

sented by a band, corresponding to practical situations. The universal inflow 

curve crosses the ideal autorotation line at about V
νh







= −1 71.  (i.e., in the 

range of −1.6 to −1.8). In practical situations, because of fuselage drag effects, 
autorotation occurs at a higher rate of descent, which is in the turbulent wake 
state. In the turbulent wake region, the inflow curve can be approximated by 

V + ν

V + ν = 0 P 
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Figure 2.16
Total inflow as a function of climb and descent speed.
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a straight line PQ. The coordinates of P and Q are, respectively, ( X,0 ) and Q 
is (−2,−1). The equation of line PQ can be written as

	
V X

X X
V+ = −

+
+

+
ν

ν νh h2
1

2
	 (2.62)

where X  is the intercept at the V
νh

 axis.

When X = −1 71. , the inflow equation in the turbulent wake state becomes

	
V V+ = +ν

ν νh h

5 9 3 4. . 	 (2.63)

Autorotation in Vertical Descent

Autorotation is the state of rotor operation where there is no net power 
requirement from the power plant. The source of power is due to the decrease 
in gravitational potential energy. The descent velocity supplies the power to 
the rotor, and the helicopter is capable of power-off autorotation in vertical 
flight. It may be noted that the lowest descent rate is achieved in forward 
flight, which will become obvious when we deal with forward flight power 
requirements in the following chapter.

The net power to the rotor during autorotation is zero. Hence, from 
Equation 2.61,

	 P = T(V + ν) + Ppd = 0	 (2.64)

In Equation 2.64, the first term represents the power required to generate 
the thrust to support the weight of the helicopter through total inflow at the 
rotor disk, and the second term represents the profile power required to drag 
the rotor blades through air.

Using nondimensional parameters, Equation 2.64 can be written as

	 C R R
V

C R RT
h

h Ppdρπ ν
ν

ν ρπ2 2 2 3 0( ) ( )Ω Ω+





+ = 	 (2.65)

or

	 C R R
V C R R

R
C RT

h

T
Ppdρπ ν

ν
ρπ

ρπ
ρπ2 2

2 2

2
2

2
( )

( )Ω Ω+





+ (( )ΩR 3 0= 	 (2.66)
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Using Equations 2.56 and 2.61, Equation 2.66 can be simplified as

	 V C

C

C
C

+ = − ∝ν
ν σh

Ppd

T

d

l
3 2

0
3 2 3 22

	 (2.67)

This expression indicates that a low value of 
C
C

d

l

0
3 2  provides a low descent 

velocity in autorotation in vertical descent. Knowing the thrust and profile 
drag coefficients, the descent rate can be obtained from the universal inflow 
curve (Figure 2.16). The value of V + ν

νh

 is typically about −0.3, which is in 

the turbulent wake state. Since the slope of the curve (the slope is 3.5 from 
Equation 2.63) is very large in this region, the increase in the descent rate 
required to overcome profile drag is very small. Tail rotor and other aerody-
namic interference losses must also be included in evaluating the autorotation 
descent rate. Such losses are usually about 15% to 20% of the profile power. 
The limits of the descent rate in vertical autorotation are essentially the limits 
of the turbulent wake state (i.e., V

νh

 in the range of −1.71 to −2). For practical 

purposes, one can assume that autorotation occurs for V
νh

 = −1.81. For typical 

values of inflow νh, the autorotation descent velocity is in the range V = 15 
to 25 m/s. (For the values of helicopter disk loading T/A = 100–500 N/m2, νh 
is in the range of 6.4–14 m/s, with density ρ = 1.225 kg/m3.) The autorotation 
performance may also be evaluated in terms of rotor drag coefficient. During 
steady autorotation descent, the drag coefficient of the rotor can be defined as

	 C
T
V A

T A
V VD

h/
/

/ /
= = =





1 2

2
4

2
2 2

2

ρ
ρ

ν
( )

	 (2.68)

For typical values of 
V
νh

to= − −1 71 1 81. . , the drag coefficient has a value in 

the range of 1.22 to 1.38. For real helicopters, CD is in the range of 1.1 to 1.3. For 
comparison, a circular plate of area A has a drag coefficient of about CD = 1.28 
and a parachute of frontal area A has CD = 1.40. This shows that a helicopter 
rotor in power-off descent is quite efficient in producing the thrust to support 
the helicopter. The rotor is almost as good as a parachute of the same diameter.

Forces on a Blade Element during Autorotation

The physics of autorotation can be best understood by studying the forces act-
ing on the typical cross section of the rotor blade during descent. The velocity at 
the blade element is made up of rotational speed UT = Ωr and normal velocity 
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UP = V + ν (note that V is negative and ν is positive, but UP is negative; hence, it 
is shown with an upward arrow) to the rotor plane, as shown in Figure 2.17.

The inflow angle

	 tan φ = = =U
r

D
L

C
C

P d0

lΩ
	 (2.69)

where Cd0 and Cl are sectional drag and lift coefficients, respectively. In auto-
rotative equilibrium, there is no net force component in the plane of rotation. 
The resultant force is acting only along the rotor axis. Hence, from Figure 
2.17, we have

	 Dcos ϕ − Lsin ϕ = 0	 (2.70)

when Dcos ϕ − Lsin ϕ > 0 or tanφ < D
L

, there is a net decelerating force acting 

on the airfoil in the plane of rotation. Similarly, when Dcos ϕ − Lsin ϕ < 0 or 

tanφ > D
L

, there is a net accelerating force acting on the airfoil in the plane of 

rotation.
An interesting and useful diagram for studying the autorotation charac-

teristics of a particular airfoil is shown in Figure 2.18. The figure consists of 

the airfoil section characteristics tan−1 0C
C

d

l

 plotted against the section angle 

of attack α. Note that both X and Y scales are the same.
Let us assume that the diagram is applied to a particular cross section 

of the rotor blade by first marking off the pitch angle (θ) of the section from 
the origin along the α axis (i.e., X-axis) and then constructing a 45° line from the 
pitch angle, as shown in Figure 2.18. A perpendicular from any point on the 
line to the horizontal axis will define the inflow angle ϕ. Point A corresponds 

UP
Ωr

θ

φ

φ

D

L

Figure 2.17
Components of relative airflow and aerodynamic forces acting on a blade section during 
descent.
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to the case, when tan φ > C
C

d

l

0 . This implies that there is a resultant acceler-

ating force acting on the blade element, in the direction of rotation. As Ωr 
increases, the inflow angle ϕ will decrease (Equation 2.69). The element con-
tinues to accelerate until its rotational speed has increased to such a value 
that the autorotative equilibrium condition is established, as indicated by 

point B. In this condition, tan φ = C
C

d

l

0 .

There are several important facts that can be drawn from this curve. For a 
given pitch angle θ, and the 45° line (looking at both Figures 2.17 and 2.18),

	 1.	Any point above the curve (point A) represents an accelerating con-
dition, where the resultant aerodynamic force vector falls ahead of 
the rotor axis;

	 2.	Any point on the curve (point B) represents autorotative equilib-
rium, where the resultant force vector is along the rotor axis; and

	 3.	Any point below the curve (point C) represents a decelerating condi-
tion, where the resultant aerodynamic vector falls behind the rotor axis.

The highest possible value of pitch (θm) at which autorotation is possible 
corresponds to the value of θ for which the 45° line is tangent to the curve 
(i.e., point D). It is important to note that autorotation is a stable phenomenon, 
so long as the pitch angle is less than the maximum θm. Therefore, one can 
conclude that any disturbance slowing down the rotor will increase the angle 
ϕ and will accelerate the rotor to an autorotative equilibrium. Similarly, any 
disturbance that speeds up the rotor decreases ϕ and decelerates the rotor.

Decelerating conditions

Accelerating
condition

Autorotative
equilibrium

(C)

θ φ

α

45°

(B)

(A)

tan–1 Cd0
Cl

(D)

α (radians)

Figure 2.18
Effect of operating pitch angle at autorotation condition.
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The autorotation diagram also demonstrates some important concepts 
concerning the relationship between rotational speed and blade pitch angle. 
If changes in inflow velocity due to θ are neglected, then inflow angle ϕ 

varies inversely with Ω
Ω

r
U

r
tanφ =







P . Therefore, the highest value of rota-

tion speed corresponds to the lowest value of ϕ. The pitch angle (θ) for 
maximum rotor speed is the pitch defined by the intersection of the 45° line 

through the minimum value of the 
C
C
d

l

0  curve and the X-axis. Operating 

at a higher pitch angle implies lower rotational speed. Point D, therefore, 
corresponds to the lowest rotational speed for autorotation. This point is 
a discontinuity—any slight increase in pitch angle would make the blade 
decelerate, and the resulting stopping and rotation in the opposite direc-
tion would be catastrophic. As the pitch angle is decreased from the maxi-
mum value θm, the rotational speed increases until the minimum value of 
C
C
d

l

0  is reached. Then, a further reduction in pitch angle will decrease the 

rotational speed.

Efficient Angle of Attack for Autorotation

The aim in the design of an autorotating rotor is to obtain a minimum 
rate of descent for a given helicopter weight and horizontal speed. The 
optimum angle of attack corresponds to angle α, which provides the low-

est value of C
C

d

l

0
3 2

.

Figure 2.19 shows the region of the optimal operating angle attack (i.e., in 
the range of the angle of attack, which is 10–14°) for a typical airfoil. So long 
as the optimum part of the curve is flat, the operating angle could be any-
where in a reasonably high range of angles but below the stalling angle. It 
must be remembered, however, that the foregoing description pertains to a 
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 with an angle of attack for a typical airfoil.
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single blade section. In reality, each cross-sectional element of the rotor blade 
operates at a different velocity and angle of attack. Therefore, some sections 
may have accelerating forces, while other elements may have decelerating 
forces. It is necessary to integrate the forces to obtain the overall effect on the 
blade. Figure 2.20 shows the different regions of the rotor disk during autoro-
tation: (1) near root: there is stall; (2) mid region: there is an accelerating force 
due to moderate blade speed; and (3) outer region: there is a decelerating 
force due to high blade speed.

Ground Effect

The proximity of the ground to a hovering rotor increases the rotor thrust 
for a given power. In other words, the influence of the ground reduces the 
induced velocity at the rotor disk. Because of this phenomenon, a helicopter 
can hover in ground effect at a higher gross weight than is possible with out-
of-ground effect. Analytically, ground effect is studied by a method of images 
(Figure 2.21), where a mirror image rotor is placed beneath the ground plane 
so that the boundary condition of no flow through the ground is automati-
cally satisfied. The effect of the image vortex is to reduce the inflow velocity 
at the rotor disk above the ground. Useful information, however, is obtained 
from measurements.

The increase in thrust T
T∞

 at a constant power can be plotted as a function 

of the height above the ground Z
R







. It may be noted that T∞ is the thrust 

Rotor disk

Blade

Decelerating torque

Accelerating
torque

Power from air to
rotor

Power from rotor to air

Stall

Figure 2.20
Aerodynamic condition in terms of the in-plane sectional loads acting along the span of the 
blade during autorotation.
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when the rotor is far away from the ground and T is the thrust when it is near 
the ground. Considering only induced power, if it is a constant, then

	 λ λC CT T= ∞ ∞ 	 (2.71)

or

	
C
C

T
T

T

T∞ ∞

∞ ∞= = =λ
λ

ν
ν 	 (2.72)

Cheeseman and Bennett (1955) (Cheeseman and Bennett, 1955) derived a 
simple expression for the ground effect of a hovering rotor, which is given as

	 T
T R Z∞

=
−

1
1 4 2( )/

	 (2.73)

Rotor inflow
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Figure 2.21
Rotor hovering near the ground and method of images.
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Figure 2.22
Thrust variation in hover with rotor height from ground.



59Introduction to Hovering and Vertical Flight Theory

The thrust variation with ground effect, given in Equation 2.73, is plotted 
on Figure 2.22. It can be seen that ground effect is generally negligible when 
the rotor is one diameter above the ground (Z/(2R) > 1.0). Ground effect 
decreases rapidly with forward speed of the helicopter, since the rotor wake 
is swept backward. Therefore, it is evident that ground effect is also sensitive 
to crosswinds, which will displace the wake from the rotor. It is observed 

that ground effect also depends on rotor blade loading CT

σ
 (Bramwell, 1976; 

Johnson, 1980).
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3
Introduction to Forward Flight Theory

During forward flight, as the rotor blades go around the azimuth, they expe-
rience a time-varying periodic oncoming airspeed. It is assumed that the 
rotor blade is rotating in a counterclockwise direction when viewed from 
above the rotor. This condition has been followed throughout the book. The 
rotor disk can be divided into two half regions: one denoted as the “advanc-
ing side” (Figure 3.1), where the relative air velocity of the blade is higher 
than the rotational speed, and the other denoted as the “retreating side,” 
where the relative air velocity is lower than the rotational speed of the blade. 
This asymmetry in the aerodynamic environment leads to time-varying 
periodic loads. Unlike the hovering condition, the time-varying nature of 
the blade loading creates a dynamic response of the blade, which must be 
included in the formulation in forward flight.

Momentum Theory in Forward Flight

First, let us formulate the momentum theory in forward flight to evaluate the 
induced flow through the rotor disk. Consider a rotor operating at a forward 
speed V, with an angle of attack α between the free-stream velocity and the 
rotor disk, as shown in Figure 3.2.

Following the momentum theory in hover, let us assume that the induced 
velocity at the disk is ν, and in the far wake, w = 2ν. These induced velocities 
are assumed to be in the direction that is parallel to the rotor thrust vector T, 
but in the opposite direction.

From momentum conservation, one can write

	 T m=  2ν 	 (3.1)

The mass flow rate is given by

	 m AU= ρ 	 (3.2)
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FIGURE 3.1
Rotor disk in forward flight.
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FIGURE 3.2
Direction of flow velocities in the forward-flight momentum theory.
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Following Glauert (Bramwell, 1976), the resultant flow velocity at the rotor 
disk is given by
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Using Equations 3.1 and 3.2, the expression for thrust in forward flight can 
be expressed as

	 T A V V= + +2 2 2ρ ν α α ν( cos ) ( sin ) 	 (3.4)

Using energy conservation, the relationship between rotor power and 
change in kinetic energy can be written as

	 P m V V V T V= + + −{ } = + ( )[( cos ) ( sin ) ] ( sin )1 2 22 2 2/ α α ν α ν 	 (3.5)

For high forward speeds (V ≫ ν), one can approximate the thrust expres-
sion as

	 T ≅ ρAV 2ν	 (3.6)

In hover (V = 0), the thrust expression (Equation 3.4) reduces to

	 T = 2ρAν2	 (3.7)

It may be noted that the resultant velocity expression (Equation 3.3), used 
in the definition of mass flow rate through the rotor disk, provides the thrust 
expressions in both limits of hover and high forward speed. In the following, 
as a note, a brief derivation is provided using the fixed wing theory to relate 
the expression for thrust at high forward speeds.

Br ie f not e:  The finite wing theory provides the expression for the induced 
drag coefficient in terms of the lift coefficient and the aspect ratio as (Ref. 4)

	 C
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Expressing in dimensional form, the induced drag for a planar circular wing of 
span b = 2R and area A = πR2 (aspect ratio AR = b2/A), operating at a speed V is

	 D
T
AVi =
2

22ρ
	 (3.9)

(Not e:  Lift is denoted by the symbol T, for ease of comparison.)
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Induced velocity ν at the wing is related to the ratio of induced power to 
thrust, which can be written as (using Equation 3.9)

	 ν
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	 (3.10)

This expression matches with the induced velocity expression derived for 
a rotor operating at a high forward speed, given in Equation 3.6. At high for-
ward speeds, the rotor wake is swept behind the plane of the disk, as in the 
fixed wing. Hence, at high forward speeds, the rotor behaves like a circular 
wing. The lifting line theory interprets ν as the induced velocity at the wing. 
For a circular wing, the aspect ratio becomes AR = (2R)2/(πR2). This value of 
aspect ratio (AR = 4/π = 1.27) is very low; hence, considerable variation in the 
induced velocity over the rotor disk can be expected.

Rewriting Equation 3.4, for a given thrust, the induced velocity at any for-
ward speed is obtained as a solution of the following equation:

	 T A V V= + +2 2 2ρ ν α α ν( cos ) ( sin ) 	 (3.11)

Since the thrust T A= 2 2ρ νh  in hover, one can write the induced velocity 
in forward flight in terms of the induced velocity in hover by equating the 
thrust expressions in hover and forward flight as (since thrust is basically 
equal to the weight of the helicopter)

	 ν ν
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	 (3.12)

Defining the following nondimensional quantities:

	 Advance ratio: µ α= V
R

cos
Ω

	 (3.13)

	 Total induced velocity (or total inflow): λ = V sinn
tan

α ν µ α λ+ = +
ΩR i 	(3.14)

Using Equations 2.12 and 3.12, the induced velocity [λi = ν/(ΩR)] expression 
in forward flight can be written as
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or, using Equation 3.14, one can write

	 λ µ α
µ λ

= +
+

tan
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2 2 2
	 (3.16)

For a given value of thrust coefficient CT, advance ratio μ, and disk angle α, 
the induced velocity λi can be obtained by numerically solving Equation 3.15. 
When α = 0, at high forward speeds, μ ≫ λi, induced velocity can be approxi-
mately expressed as (from Equation 3.15)
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Figure 3.3 shows the variation of rotor-induced velocity with forward 

speed, when α = 0. The approximation λ
µi
T= C

2
 is quite good for 

µ
λh

> 1 5. .  For 

typical helicopters, when 
µ

λh

> 1 5. , it corresponds to an advance ratio μ > 0.1. 

Hence, except at very low speeds the rotor wake is similar to the wake of 
a circular wing. The speed range 0 < μ < 0.1 is called the “transition zone,” 
where the rotor wake has both vertical and horizontal velocity components. 
The transition region has a number of special characteristics, such as a high 
level of blade loads and vibration due to blade–vortex interaction. A sche-
matic of the rotor wake in forward flight is shown in Figure 3.4.

The helical vortices trailing from the blade are swept downward by the 
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FIGURE 3.3
Variation of induced velocity with forward speed.
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can be estimated fairly accurately using the momentum theory. The transi-
tion region 0 < μ/λh < 1.5 corresponds approximately to the wake skew angle 
χ = 0° to 60°. The relative position of the rotor blade and the individual wake 
vortices vary periodically as the blade rotates. This periodicity produces a 
strong variation in the wake-induced velocity encountered by the blade and 
also in the blade loading. The induced velocity is highly nonuniform in for-
ward flight. Realizing the variation in induced velocity, Glauert (1926) pro-
posed an inflow model, which is of the form

	 ν ν ψ= +




0 1

r
R

Kx cos 	 (3.18)

where ν0 is the mean induced velocity at the rotor disk and Kx is assumed 
to be equal to 1.2. This model simulated a longitudinal variation of induced 
velocity, with an upwash at the leading edge and an increase in induced 
velocity at the trailing edge of the rotor disk.

The classical vortex theory for forward flight is based on the actuator disk 
model. The vorticity is distributed throughout the wake rather than being 
treated as concentrated discrete lines. Oftentimes, uniform loading is also 
assumed so that the vorticity is only on the surface of the wake cylinder and 
in a root vortex. These assumptions yield a simple wake model, but still, 
the problem is complicated. With uniform loading, the results are the same 
as from the momentum theory, particularly at high speed. Because of the 
limitations of the wake model, the vortex theory results based on the actua-
tor disk model are presently useful to indicate the general features of the 
induced velocity. A detailed distribution of the inflow has to be obtained 
from nonuniform inflow computations, using a discrete vorticity model of 
the wake. A simple wake structure of the shed (γs) and trailing (γt) vortices 
along with a strong tip vortex is shown in Figure 3.5.

Coleman, Feingold, and Stempin (1945) performed a vortex theory analysis 
for the induced velocity variation along the fore–aft diameter of the rotor. 
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FIGURE 3.4
Rotor wake structure at a moderate forward speed.
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They considered a uniform loading rotor. Drees (1949) calculated the rotor-
induced velocity using the vortex theory with a bound circulation having an 
azimuthal variation given by Γ = Γ0 − Γ1 sin ψ. Hence, he treated both trail-
ing and shed vorticity. Mangler and Squire (1950) treated the rotor as a lift-
ing surface and formulated the problem of pressure jump across the surface 
in elliptic coordinates. Using pressure–shape functions, they obtained the 
induced velocity distribution over the rotor disk.

All these theories provide an expression for the induced flow at the rotor 
disk, which can be written in a general form as

	 ν ν ψ ψ= + +

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
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where ν0 is the mean value of the induced velocity obtained from the momen-
tum theory. Equation 3.19 represents the variation of induced velocity as a 
function of both radial and azimuthal locations on the rotor disk. Different 
researchers have derived expressions for Kx and Ky. It must be noted that 
Equation 3.19 represents the steady inflow in forward flight. Several research 
studies have been undertaken to formulate time varying unsteady inflow. 
This is beyond the scope of this book.

Coleman, Feingold, and Stempin (1945) provided the expression for the 
constants as
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	 Ky = 0	 (3.21)
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Sample wake structure of a rotor blade in forward flight.
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In this model, Kx approaches unity at a high speed.
Drees (1949) obtained the expressions for the constants as
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	 Ky = − 2μ	 (3.23)

Kx = 0 for μ = 0, and has a maximum value of about 1.1 for μ = 0.16 and is 
approximately equal to 1 at μ ≈ 0.3.

One can use any of these expressions for the induced velocity in forward 
flight while performing the rotor blade analysis. It must be borne in mind 
that all these theories are only approximate. There has been a continued 
research effort to improve the inflow model in forward flight. Currently, the 
focus is directed toward using the computational fluid dynamics approach to 
estimate the induced velocity and blade loads. However, several basic stud-
ies on helicopter dynamics and rotor blade aeroelasticity use the momentum 
theory because of its simplicity and ease of implementation.

Blade Element Theory in Forward Flight

Before developing the mathematical expressions of the aerodynamic loads 
in forward flight, it is important to discuss the physics of the blade motion 
in forward flight. During forward flight, the rotor disk is moving almost 
horizontally in the air. Thus, the rotor blade, as it goes around the azimuth, 
experiences a periodically varying relative air velocity due to the forward 
speed as well as its angular motion (Figure 3.6). Note that out-of-plane defor-
mation of the rotor blade due to time-varying aerodynamic lift is denoted as 
the flapping motion of the blade.

On the advancing side, the velocity of relative airflow is more than that 
on the retreating side. If a constant angle of attack is assumed, then forward 
flight will produce different lift forces on the two halves of the rotor disk, 
with the advancing side producing more lift than the retreating side. (This 
differential lift results in a rolling moment on the rotor.) Thus, the rotor 
blades experience once per revolution (1/rev) variation in aerodynamic 
loads due to the asymmetry in the airflow. In response to this variation in 
loads, there is a 1/rev dynamic response of the blade in out-of-plane bend-
ing, which is the flapping motion of the blade. The inertia load associated 
with the flapping motion results in a net reduction in the blade root loads. 
To alleviate the root bending moment in flap, earlier rotor designs incorpo-
rated a root hinge (articulated rotor). In the last three decades, rotors without 
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hinges (hingeless rotors) have been successfully designed. In these rotors, 
the blade root is strong enough to withstand the load and flexible enough to 
provide the flapping motion necessary to reduce the root loads. Increased 
hub moments in hingeless rotors have a significant effect on the handling 
qualities of the helicopter, which will be discussed in later chapters. In sum-
mary, one can state that the flapping motion of the blade reduces the asym-
metry of the rotor moment during forward flight. Thus, flap motion is of 
principal concern in the analysis and/or design of the helicopter for good 
performance in forward flight.

During steady forward flight, the blades experience a 1/rev load varia-
tion due to asymmetry in the flow, that is, the loads and the blade response 
undergo a periodic variation with period 2π (one revolution of the rotor 
around the azimuth). The periodic variation of the flapping motion of the 
rotor blade can be represented as a Fourier series.
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where ψ πk t
k
N

= + −Ω 2
1

. The subscript “k” represents the kth blade in the 
rotor system, and N is the total number of blades in the rotor system. Ω is the 
rotor angular speed in radians per second.
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FIGURE 3.6
Description of relative air velocity in forward flight.



70 Fundamentals of Helicopter Dynamics

The harmonics (or the coefficients) of the series can be written as
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In the analysis of rotor blade flapping motion, only a finite number of har-
monics is considered to describe the periodic motion of the rotor blade.

Let us examine the physical meaning of these harmonics of the flap motion. 
β0 represents the mean flap angle, which is called the “coning angle.” β1c and 
β1s generate a 1/rev variation of the flap angle, as shown in Figure 3.7.

β1c represents a longitudinal tilt of the tip-path plane (TPP) with respect to 
the reference plane. β1s represents the lateral tilt. The higher harmonic com-
ponents represent the warping of the TPP (Figure 3.8). Higher harmonic com-
ponents become important at high speeds, and they must be included while 
performing vibration analysis. Beyond second harmonics, the harmonic con-
tents decrease with an increase in harmonic number. For ease of understand-
ing of the physics of the rotor response problem, only first harmonic contents 
are included in the analysis, and all the other harmonics are neglected.

Similar to flap motion, one can express harmonic motion for both the lead–
lag and the elastic torsional deformation of the rotor blade.

The blade lead–lag motion can be expressed as

	 ςk = ς0 + ς1c cos ψk + ς1s sin ψk + …….	 (3.28)

The elastic torsional deformation of the blade can also be expressed as

	 φk = φ0 + φ1c cos ψk + φ1s sin ψk + ……..	 (3.29)

The main source of blade pitch is due to the pilot command or pilot input. 
These control inputs are specified by a mean and a first harmonic variation as

	 θk = θ0 + θ1c cos ψk + θ1s sin ψk	 (3.30)

θ0 is the collective pitch input. θ1c and θ1s are known as cyclic pitch inputs. 
Collective pitch angle θ0 controls the average blade force or, hence, the 
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magnitude of the rotor thrust. The cyclic pitch control inputs influence the 
TPP tilt (1/rev flapping), that is, the orientation of the thrust vector. θ1c con-
trols the lateral (β1s) tilt and θ1s controls the longitudinal (β1c) tilt of the TPP. 
This aspect will become clear while relating pilot input to flap response.

The pitch input variation of the blade is achieved by a swash plate mecha-
nism. There are also other means of achieving the pitch control of the blade, 
such as the Kaman servo-flap or the pitch–flap kinematics coupling. A sche-
matic of a swash plate mechanism is shown Figure 3.9.

The swash plate mechanism has rotating and nonrotating parts. The nonro-
tating part is connected to the control mechanism from the pilot. The pitch con-
trol link rod from each rotor blade is connected to the rotating part of the swash 
plate. During collective input, the pilot moves the nonrotating part of the swash 
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FIGURE 3.7
Physical meaning of rotor flapping in zero and first harmonics. (a) Coning. (b) Longitudinal tilt 
(view from port side). (c) Lateral tilt (view from aft).
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FIGURE 3.8
Rotor blade flapping in higher harmonics.
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FIGURE 3.9
Swash plate mechanism.
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plate up and down, which also makes the rotating part of the swash plate move 
up and down. This up-and-down motion of the swash plate changes the pitch 
angle of the blade by the same value at all azimuth locations of the rotor system. 
During cyclic input, the pilot tilts the nonrotating part of the swash plate about 
the longitudinal axis (or the lateral axis), thereby tilting the rotating part of the 
swash plate. In this configuration of the tilted swash plate, as the rotor blade 
goes around the azimuth, the pitch control link rod attached to the blade moves 
up and down, thereby changing the blade pitch once in a revolution.

Reference Planes

It is important to choose a reference frame for the description of the motion 
of the blade, control pitch angle, aerodynamic loads, etc. There are different 
types of reference frames (Figure 3.10), each having its own advantage in the 
description of the rotor blade motion.

Hub plane

No-feathering plane

θ0 + θ1s

θ0 – θ1s

θ0 + θ1cθ0 – θ1c

90°

270°

180° 0°

Hub plane

Horizontal

Swash plate plane

Tip-path plane

FIGURE 3.10
Various reference planes.
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Tip-Path Plane

As the name suggests, it is the plane that is parallel to the plane described 
by the tip of the blade, particularly in the collective and first harmonic cyclic. 
For an observer sitting in this plane, there is no 1/rev flap motion. The ori-
entation of the TPP with respect to any other plane defines the cyclic flap (β1c 
and β1s) angles.

No-Feathering Plane

In the no-feathering plane (NFP), there is no variation in the 1/rev pitch 
angle of the blade. Therefore, its orientation defines θ1c and θ1s with reference 
to any other plane.

Control Plane

The control plane (CP) represents the plane from where the pitch input is 
applied to the blade. This plane is the swash plate plane.

Hub Plane

The hub plane (HP) is normal to the shaft. This is the natural reference frame 
for defining blade motion as well as the blade loads.

In general, these reference planes are distinct, but under certain condi-
tions, two reference planes can coincide. For a flapping rotor with no cyclic 
pitch control (like the tail rotor or the auto gyro), the HP and the CP are 
equivalent. If there is no pitch–flap coupling or other pitch sources (which 
will be described in a later chapter), the CP and the NFP coincide. For a feath-
ering rotor with no flapping (such as a propeller with a cyclic pitch), the HP 
and the TPP are equivalent.

While analyzing helicopter rotor dynamics, one can use any reference 
frame for defining rotor blade velocity, blade motion, and various forces and 
moments. Since HP is the most convenient plane, it is used as the reference 
plane (Figure 3.11) in the formulation in the entire book.

Let us assume that, during forward flight, the relative air velocity V is 
inclined to the HP at angle α.

The horizontal component of relative airspeed in the HP is V cos α.
In nondimensional form, it is denoted as advance ratio

	 µ α= V
R

cos
Ω

	 (3.31)

The normal component of relative air velocity at the HP is V sin α.
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In nondimensional form, it is denoted as inflow due to climb

	 λ α µ αc = =V
R

sin
tan

Ω
	

The total inflow must be a combination of the forward flight component and 
the rotor-induced flow, which is given as (from Equations 3.14–3.16)

	 λ = λc + λi	 (3.32)

Having defined the velocity components in the HP due to helicopter for-
ward flight, let us identify the velocity components at a typical cross section 
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FIGURE 3.11
Velocity, blade motion, and hub loads in the reference HP.
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of the rotor blade at a radial distance r from the hub center and at an arbitrary 
azimuthal position ψ. Let us assume that the blade is centrally hinged and 
that it undergoes only a rigid flapping motion. For a systematic development 
of aerodynamic loads acting on the blade, it is essential to define the follow-
ing coordinate systems (Figure 3.12).

XH–YH–ZH refers to the hub-fixed nonrotating reference coordinate system. 
Its origin is at the center of the hub. Axis XH is pointing toward the tail of the 
helicopter, and axis ZH is pointing vertically up. Axis YH completes the triad 
following the right-hand rule.

X1–Y1–Z1 refers to the hub-fixed rotating coordinate system. Its origin is at 
the center of the hub. The X1 axis is in the plane of the rotor hub, but moving 
with kth blade.

X2–Y2–Z2 refers to the blade-fixed rotating coordinate system. Its origin is 
at the center of the hub.
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FIGURE 3.12
Coordinate systems for systematic formulation. (a) In-plane velocity components UT and UR. 
(b) UR and blade deformation β. (c) Section A-A.
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Assume that the rotor blade has a uniform cross section and that the X2 
axis is along the aerodynamic center of the blade (25% of chord). In addition, 
assume that the cross-sectional mass center is coincident with the aerody-
namic center.

The transformation relationship between the various coordinate systems 
can be written as
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where ψk represents the azimuth location of the kth blade, and
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where (−βk) represents the flap angle of the kth blade from HP. The negative 
sign denotes that it is a clockwise rotation angle.

The position vector of any arbitrary point P along the X2 axis of the kth 
blade is given as

	
 

r rexp = 2
	 (3.35)

Rewriting this vector in the X1–Y1–Z1 system,
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The angular velocity of the rotor blade is taken as 




ω = Ωez1
.

The velocity of point P has two components: one due to rotation and 
another due to flapping motion. The velocity of point P is given by
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Taking the vector cross-product, the velocity of point P can be written as
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In the blade-fixed coordinate system, the velocity of point P can be written 
as
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Assuming that the flap angle βk is a small quantity, one can make a small 
angle assumption for the trigonometric functions. The reduced expression 
for the velocity of point P can be written as
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(Not e:  For the sake of consistency and convenience, the time derivative of 

flap βk is nondimensionalized as  β β β
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nondimensional time Ωt.) In the following, the dot symbol represents the 
nondimensional time derivative.

The relative air velocity at the blade section due to the motion of the heli-
copter and the total induced flow given in Equations 3.31 and 3.32 can be 
written as components along the kth blade axes system as

	


  

V R e R e Rek y k x zh = − + −µ ψ µ ψ λΩ Ω Ωsin cos
1 1 1

	 (3.41)

Resolving these velocity components in the blade-fixed system, we have

	



 

V R e R e Rk y k k x kh = − + −µ ψ µ ψ β µ ψΩ Ω Ωsin cos cos cos sin
2 2

ββ λ β

λ β

k z k z

k x

e R e

R e

 



2 2

2

−

−

Ω

Ω

cos

sin
	

		

(3.42)

Invoking a small angle assumption, Equation 3.42 can be written as

	


  

V R e R e R ek y k x k k zh 2 2 2
≅ − + − −µ ψ µ ψ µ ψ β λΩ Ω Ωsin cos cos ΩΩ ΩRe R ez k x

 

2 2
− λ β

		
  (3.43)

The relative air velocity at the blade cross section at radial station r from 
the hub center is given as

	
 



V V vrel h p= − 	 (3.44)
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Substituting Equations 3.40 and 3.43, one obtains

	

� � �
V R R e R r ek k x k yrel = − + − −

+

( cos ) ( sin )

(

µ ψ λ β µ ψΩ Ω Ω Ω
2 2

−− − −µ ψ β λ βΩ Ω ΩR R r ek k k zcos )�
�

2

	 (3.45)

With reference to the airfoil cross section (Figure 3.12), using Equation 3.45, 
the velocity components can be expressed as follows:

Tangential velocity component at any radial location r:

	 U r R R
r
Rk kT = + = +





Ω Ω Ωµ ψ µ ψsin sin 	 (3.46)

Radial velocity component along the blade:

	 UR = μΩR cos ψk − λΩR βk	 (3.47)

The normal velocity component at r:

	 UP = λΩR + Ωrβk + βkμΩR cos ψk	 (3.48)

Note that λ is the total inflow, which includes the normal velocity com-
ponent due to forward speed V and the induced velocity v = λiΩR, that is, 
λΩR = μΩR tan α + λiΩR. Also, note that the time derivative of βk is with 
respect to the nondimensional time Ωt.

Consider the two-dimensional cross section of the rotor blade. The resul-
tant velocity of the oncoming flow can be written, by assuming that the 
inflow velocity UP is small compared to the oncoming velocity component 
UT, as

	 U U U U= + ≈T P T
2 2 	 (3.49)

The inflow angle is given by

	 tan φ = U
U

P

T

	 (3.50)

or, for small angles,

	 φ ≈ U
U

P

T

	 (3.51)
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The sectional aerodynamic lift and drag acting on the airfoil are given as

	 L U CC= 1
2

2ρ l 	 (3.52)

	 D U CC= 1
2

2ρ d 	 (3.53)

where C is the blade chord, and Cl and Cd are the sectional lift and drag coef-
ficients, respectively. These coefficients are functions of the Mach number 
and the angle of attack. Resolving these forces along the normal and in-plane 
directions in the reference plane (Figure 3.12),

	 Fz2 = L cos ϕ − D sin ϕ ≅ L	 (3.54)

	 Fy2 = −(L sin ϕ + D cos ϕ)	 (3.55)

Note that L sin ϕ represents the induced drag term. The components of 
these distributed aerodynamic loads along the X1–Y1–Z1 axis system can be 
given as

	

F Fx z k1 2= − sin β (note that radial drag effects aree neglected)

F F

F F

y y

z z k

1 2

1 2

=

= cosβ

	 (3.56)

Invoking a small angle assumption and noting that L ≫ D, and neglecting 
radial drag effects, the aerodynamic force components can be approximated 
as

	 Fz1 ≅ Fz2 ≅ L	 (3.57)

	 Fy1 ≅ −(Lϕ + D)	 (3.58)

	 Fx1 ≅ −Lβk	 (3.59)

The aerodynamic root moment can be obtained as

	






 



M r F r e r e Fk x k zA = × = + ×( cos sin )β β1 1 	 (3.60)

The root aerodynamic moment can be expressed in component form as

	


 

M F r e F r r F e ry k x x k k z yA = − + − +1 1 1 1 1sin ( sin cos ) cβ β β oosβk y zF e1 1

{ } 	 (3.61)
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Substituting in Equation 3.52, for lift coefficient as Cl = aαe, where a is the 
lift curve slope and αe is the effective angle of attack, which is given as

	 α θ φ θe
P

T

= − ≈ − U
U

	 (3.62)

Using Equations 3.49, 3.52, and 3.62, the aerodynamic lift per unit span of 
the blade can be written as

	 F U C a
U
Uz1

21
2

≅ −














ρ θT

P

T

	 (3.63)

Rewriting Equation 3.63 as

	 F C a U U Uz1
21

2
≅ −ρ θ[ ( )]T P T 	 (3.64)

The velocity components can be written in nondimensional form (from 
Equations 3.46 and 3.48) as

	 U RU R
r
R kT T= = +





Ω Ω µ ψsin 	 (3.65)

	 U RU R
r
R k k kP P= = + +





Ω Ω λ β β µ ψ cos 	 (3.66)

Substituting these velocity components in Equation 3.64, the normal force 
(thrust) per unit length of the blade can be expressed as

	 F Ca R
r
R

r
Rz k k k1

2
2

1
2

= +




 − + +ρ µ ψ θ λ β β µ ψ( ) sin cosΩ 

kk k
r
R





 +



















µ ψsin
		

  (3.67)

Similarly, in-plane drag force acting per unit span of the blade can be 
obtained using Equations 3.52, 3.53, and 3.55

	 F U C C Cy1
21

2
= − +ρ φ φ[ sin cos ]l d 	 (3.68)

Using small angle assumption (Equation 3.58), the drag expression is given as

	 F U C a
U
U

U
U

Cy1
21

2
≈ −







+








ρ θT

P

T

P

T
d 	 (3.69)
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Rewriting it as

	 F C aU U aU U Cy1
2 21

2
= − + ρ θP T p T d 	 (3.70)

Substituting the velocity components from Equations 3.65 and 3.66,

	 F Ca R

r
R

r
R

y

k k k k

1
21

2
= −

+ +




 +



ρ

λ β β µ ψ µ ψ

( )

cos sin

Ω







− + +




 + +







θ

λ β µβ ψ µ ψr
R

r
Rk k k k

 cos sin
2 22

C
a
d





















	(3.71)

The in-plane radial force per unit span can be expressed as (using Equations 
3.59 and 3.67),

	 F Ca R

r
R

r
R

x

k

k k

1
2

2

1
2

= −
+







− + +

ρ
µ ψ θ

λ β β µ

( )
sin

cos

Ω
 ψψ µ ψ

β

k k

k

r
R





 +

























sin

	 (3.72)

Rotor Hub Forces

Integrating the blade loads along the span results in blade root loads. Then, 
by summing up the loads due to all the blades in the rotor system, one can 
obtain the hub loads. The average value of these hub loads can be obtained 
by integrating over the azimuth and dividing by 2π. One can also obtain the 
mean and various harmonics by Fourier analysis. The hub loads in symbolic 
representation are given in Figure 3.11. The nondimensional form of the hub 
forces and moments can be written as

Thrust: C
T

R RT =
ρπ 2 2( )Ω

Longitudinal in-plane force: C
H

R RH =
ρπ 2 2( )Ω

Lateral in-plane force: C
Y

R RY =
ρπ 2 2( )Ω

Roll moment: M
M

R R RxH
x=

ρπ 2 2( )Ω

Pitch moment: M
M

R R RyH
y=

ρπ 2 2( )Ω
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Yaw moment (or torque): C
M

R R R
z

Q = H

ρπ 2 2( )Ω
It may be noted that, in obtaining the hub loads, only aerodynamic effects 
are considered and inertial loads due to blade motion are neglected.

Nondimensional Thrust

The nondimensional thrust is given by summing up the root loads due to all 
blades in the rotor system as

	 C
T

R R N
N F dr

R R
k

N

z

R

T = =
=

∑ ∫ρπ ρπ2 2
1

1 2 2

0

1 1
( ) ( )Ω Ω

	 (3.73)

where N represents the number of blades in the rotor system. It is to be 
noted that it is assumed that all the blades in the rotor system are identi-
cal and in Equation 3.73, N is multiplied and divided for convenience of 
nondimensionalization.

Substituting for Fz1 from Equations 3.64–3.67, and assuming constant chord 
and airfoil section, the nondimensional thrust expression can be simplified as

	 C
N

a U U U dr
k

N

T T T P= −










∫∑

=

1 1
2

2

0

1

1

σ θ( ) 	 (3.74)

where σ is the solidity ratio and r
r
R

= .

Substituting for the nondimensional velocities as

	 U r kT = + µ ψsin

	 U r k k kP = + +λ β β µ ψ cos 	

the expression for nondimensional thrust becomes

	

C
N

a r r

r rk

N
k k k

k

T =
+ +

− +=
∑1

2

2

1

2 2 2

2

σ µ ψ µ ψ θ

λ β

( sin sin )

{  ++ + + +



r rk k k k k k k kβ µ ψ λµ ψ β µ ψ β µ ψ ψcos sin sin sin cos }
2











=

∫

=

0

1

1

1
2

dr

C
N

a

k

T
σ ψ[ ]function of azimuth

NN

∑
	



(3.75)

Before integrating Equation 3.75 over the azimuth to obtain the mean value 
of nondimensional thrust (or thrust coefficient), one must know the form of 
θk and βk, where θk represents the blade pitch input and βk represents the flap 
response of the kth blade.
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In-Plane Drag Force Coefficient (Longitudinal)

The nondimensional in-plane drag in the longitudinal direction is obtained 
as a sum of the components of in-plane forces Fy1 and Fx1. It is given as

	 C
H

R R N
N

F F

R
k

N
y k x k

H = =
− +

=
∑ρπ

ψ ψ
ρπ2 2

1

1 1

2

1
( )

( sin cos )

(Ω ΩΩR
dr

R

)2

0
∫ 	 (3.76)

Substituting for the respective force components from Equations 3.68–3.72 
and using nondimensional representation, the in-plane drag force coefficient 
can be written as

C
N

a
U U U U

C
a

U U UH P T P T
d

k T P T= − +








− −{ }1
2

2 2 2σ θ ψ θsin ββ ψk k

k

N

drcos




















∫∑

= 0

1

1 	
(3.77)

Substituting the nondimensional velocity components from Equations 3.65 
and 3.66

	

C
N

a

r r

rH

k k k k

k k=

+ + +

− + +1
2

σ

λ β β µ ψ µ ψ θ

λ β β

( cos )( sin )

(



 µµ ψ µ ψ
ψ

µ

cos ) ( sin )
sin

( sin

k k
d

k

r
C
a

r

2 2+ +

















− + ψψ θ λ β β µ ψ µ ψ β ψk k k k k k kr r) ( cos )( sin ) cos2 − + + +{ }


























∫∑
=

dr
k

N

0

1

1

 	
(3.78)

Rearranging the terms provides

	

C
N

a
r

C
a

r rH

k
d

k

k k
=

+

+ + − +
1

2

2

σ
µ ψ ψ

µ ψ θ λ β

( sin ) sin

( sin ) (  ++{ }
+ + − +

β µ ψ

λ β β µ ψ ψ µ ψ β

k k

k k k k kr r

cos )

( cos )sin ( sin )

kk k

k

N

dr

cos ψ{ }























∫∑
= 0

1

1

� (3.79)

This expression consists of two effects, which correspond to profile drag 
and induced drag. This can be expressed as

	 C
N

a
H

k

N

=
=

∑1
2

1

σ

 
[profile drag term + induced drag term]

The above expression can be symbolically represented as
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	 CH = CH0 + CHi

Subscript “0” stands for profile drag term and “i” stands for induced drag 
term.

In-Plane Force Coefficient (Lateral)

Similar to in-plane drag force, in-plane side force (or lateral force) can be 
obtained. The nondimensional in-plane force in the lateral direction is 
obtained as a sum of the components of in-plane forces Fy1 and Fx1. It is 
given as

	 C
Y

R R N
N

F F
R R

drY
Y k X k= = +

ρπ
ψ ψ

ρπ2 2
1 1

2 2

1
( )

( cos sin )
( )Ω Ω

001

R

k

N

∫∑
=

	 (3.80)

Substituting for the respective force components from Equations 3.68–3.72 
and using nondimensional representation, the in-plane drag force coefficient 
can be written as

C
N

a
U U U U

C
a

U U UY P T P T
d

k T P T= − − +








− −{1
2

2 2 2σ θ ψ θcos }}







∫∑

=

β ψk k

k

N

drsin
0

1

1
	

(3.81)
Substituting the nondimensional velocity components

	

C
N

a

r r

rY

k k k k

k=
−

+ + +

− + +1
2

σ

λ β β µ ψ µ ψ θ

λ β β

( cos )( sin )

(





kk k k
d

k

r
C
a

r

µ ψ µ ψ
ψ

µ

cos ) ( sin )
cos

( si

2 2+ +

















− + nn ) ( cos )( sin ) sinψ θ λ β β µ ψ µ ψ β ψk k k k k k kr r2 − + + +{ }


























∫∑
=

dr
k

N

0

1

1

� (3.82)

Rearranging the terms provides

	

C
N

a

r
C
a

r rY

k
d

k

k=

− +

− + − +1
2

2

σ

µ ψ ψ

µ ψ θ λ β

( sin ) cos

( sin ) ( 

kk k k

k k k k kr r

+{ }
+ + + +

β µ ψ

λ β β µ ψ ψ µ ψ

cos )

( cos )cos ( sin ) ββ ψk k

k

N

dr

sin{ }























∫∑
= 0

1

1

	
(3.83)
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This expression consists of two effects that correspond to profile drag and 
induced drag, and it is expressed as

	 C
N

a
Y

k

N

=
=

∑1
2

1

σ  [profile drag term + induced drag term]

	
The above expression can be symbolically represented as

	 CY = CY0 + CYi

CY0 represents the profile drag effect and CYi represents the induced drag effect.

Moment Coefficient (CMx and CMy)

The moment coefficients CMx and CMy depend on the type of attachment at 
the root of the blade to the hub. If the blade is centrally hinged (as shown in 
Figure 3.13a), no net moment is transferred to the hub. On the other hand, 
if the rotor is idealized as a centrally hinged, spring restrained rigid blade 
(Figure 3.13b), then the root moment is equal to the product of the blade flap 
deformation and the root spring constant Kβ.

In the next chapter, various idealized models of the rotor blade will be 
discussed. A brief glimpse of various idealizations is given here for informa-
tion. In an articulated rotor with a hinge offset e, the hub moment is the vec-
tor product of the blade root shear at the hinge and the hinge offset distance. 
If the rotor is a hingeless rotor, the hub moment is the integrated effect of the 
blade loads. A hingeless rotor blade can be idealized as a spring restrained 
offset hinged rigid blade (as shown in Figure 3.14), simulating the fundamen-
tal elastic mode of the blade.

In Figure 3.14, e is the hinge offset and Kβ is the equivalent root spring 
constant representing the flexibility of the blade in flap. In this chapter, for 
simplicity, let us assume that the blade is idealized as a centrally hinged 

β β

Shaft Shaft

(a) (b)

Kβ

FIGURE 3.13
Rigid blade models: (a) centrally hinged model and (b) centrally hinged spring restrained model.



87Introduction to Forward Flight Theory

rigid blade with a spring restraint. In this case, the blade root moment is Kββ, 
where β is the flap deformation of the blade. The hub moments can be written 
as (refer to Figure 3.13b)

	 C
R R R

Kx k k

k

N

M =
=

∑1
2 2

1
ρπ

β ψβ( )
sin

Ω 	 (3.84)

	 C
R R R

Ky k k

k

N

M = −
=

∑1
2 2

1
ρπ

β ψβ( )
cos

Ω 	 (3.85)

Torque Coefficient (CQ)

The torque coefficient due to all blades of the rotor system can be expressed as

	 C
M

R R N
N r F dr

R R
Q

z
Y

R

k

N

= = ∫∑
=ρπ ρπ2 2 1 2 2

01

1 1
( )

{ }
( )Ω Ω

	 (3.86)

Substituting for Fy1 and expressing it in a nondimensional form:

	 C
N

a
r

r r

r
Q

k k k k

k

= −
+ +( ) +( )

− + +

1
2

σ
λ β β µ ψ µ ψ θ

λ β β





cos sin

kk k k
dk

N

r
C
a

dr
µ ψ µ ψcos sin( ) + +( )















∫∑

=
2 2

0

1

1

	
(3.87)

The – sign indicates that the torque is acting in the clockwise direction. 
Since we are interested in the magnitude of torque, we will not carry the 

Ω 

e

β

Kβ

FIGURE 3.14
Idealized offset-hinged spring-restrained model of a rotor blade.
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– sign. The two components of drag forces contributing to the torque can be 
expressed as

	 C
N

a
Q

k

N

=
=

∑1
2

1

σ

 
[Induced drag term + profile drag term]	

 CQ = CQi + CQ0

CQ0 is due to the profile drag and CQi is due to the induced drag effect.
It may be noted that the thrust coefficient (CT), in-plane force coefficients 

(CH, CY), and torque coefficient (CQ) depend on the blade pitch input θ and 
the flap motion β. For the evaluation of these coefficients, one should know the 
time variation of θ and β. The time variation of β has to be obtained from the 
dynamics of blade motion in flap. The flap response is then substituted 
in the hub load expressions to obtain the total hub load (mean + time varia-
tion). The mean value is used for trimming the helicopter. The time variation 
provides the vibratory loads. This clearly brings out the fact that the blade 
dynamics is inherently coupled to the equilibrium and response analysis of 
the helicopter. In a more general formulation, the time response of the blade 
flap (β), lag ζ, and torsional φ deformations have to be included in the analysis.

In the following, let us obtain the expressions for the mean values of the 
various rotor hub load coefficients by assuming that the blade pitch input θ 
and the flap response β are known. Assuming a linear blade twist, the pitch 
angle θ at a radial location (r/R) of the kth blade is given as

	 θ θ θ θ ψ θ ψk k k
r
R

= + + +0 1 1tw c scos sin 	 (3.88)

Similarly, the flap response βk can be written with emphasis only on first 
harmonic terms as

	 βk = β0 + β1c cos ψk + β1s sin ψk + higher harmonic terms	 (3.89)

where ψ ψ π
k N

k= + −2
1( )  and ψ = Ωt represents the nondimensional time or 

the azimuthal position of the first blade, i.e., k = 1.
Note that from Equation 3.89, one can express the harmonic contents as 

(neglecting all higher harmonic terms)

	

β β

β β ψ β ψ

0

1

1 1

1 1

1

1
2

2

=

+ =

=

= =

∑

∑ ∑

N

N N

k

k

N

c c k

k

N

k k

k

N

cos cos

ββ β ψ β ψ1 1

1 1

1
2

2
s s k

k

N

k k

k

N

N N
− =

= =
∑ ∑cos sin

	 (3.90)
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Substituting the expressions for pitch angle and flap angle given in Equations 
3.88 and 3.89, in the various force and moment coefficients, and integrating over 
the radius and taking the summation over all the N blades in the rotor system, 
the resulting algebraic expression will contain several harmonic terms in ψ 
(which is equal to Ωt). These terms can be grouped into (a) constant term and 
(b) terms corresponding to different harmonics. The constant term represents 
the mean load, and the harmonics represent the vibratory loads at the hub due 
to all blades. The frequency of the terms treated in the flap angle expression 
(Equation 3.89). In general, the frequencies of the harmonics can be symbolically 
represented as mNΩ, where m = 1, 2, 3,…, and N is the number of blades, and Ω is 
the rotor angular velocity. For example, if there are two blades in the rotor system, 
the frequencies of the harmonics will be 2Ω, 4Ω, 6Ω, etc. (also denoted as 2/rev, 4/
rev, 6/rev harmonic contents). On the other hand, if the rotor system contains four 
blades, the harmonics of the hub loads will be 4Ω, 8Ω, 12Ω (denoted as 4/rev, 8/rev, 
12/rev harmonics), and so on. The same criterion can be applied to a rotor system 
with any number of blades. It is now evident that as the number of blades in the 
rotor system increases, the harmonics of the hub loads shift to higher frequencies.

In the following, the constant terms (or the mean values) of the force and 
moment coefficients as a function of advance ratio, blade pitch input, blade 
flap harmonics, and inflow through the rotor disc are given in closed-form 
analytical expressions. (Note: The derivation of the closed-form expressions 
can be taken as an exercise.)

Mean Thrust Coefficient CT:
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Mean In-plane Longitudinal Force Coefficient CH:
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Mean In-plane Lateral Force Coefficient CY:
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Mean Torque Coefficient: CQ = CMz:
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	 (3.94)

Mean Roll Moment Coefficient:

	 C
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	 (3.95)

Mean Pitch Moment Coefficient:

	 C
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	 (3.96)

(Not e:  Reverse flow and radial drag effects have been neglected in obtain-
ing these expressions.)

In addition to the mean hub loads in forward flight, one can obtain an 
expression for the power required for flight.

Power in Forward Flight

With all the power transmitted to the main rotor through the shaft, we have 
P = ΩQ. It can be shown that the nondimensional power coefficient is equal to 
the nondimensional torque coefficient. Though the expression for the nondi-
mensional torque coefficient has been derived and given in Equation 3.94, let 
us try to obtain a different form of the expression for CQ starting from a basic 
expression. The mean torque coefficient can also be obtained by taking the 
mean load over the azimuth due to a single blade and multiplied by the num-
ber of blades. It can be expressed as (from Equation 3.86). (Note: subscript “k” 
is removed to denote that the first blade is treated as the reference single blade.)
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Changing the integral to nondimensional form:
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Substituting for the solidity ratio, the above integral equation can be written as
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Substituting the force term from Equation 3.68, the integral can be written as
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Assuming a small flap angle, from Equations 3.52–3.54 and 3.56, one can 
obtain an expression for the lift coefficient term as
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Substituting Equation 3.101 in CQ expression of Equation 3.100,
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(3.102)

Substituting for tanφ = U
U

P

T

 and cosφ = U
U

T
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Note that the – sign indicates that the torque is acting in the clockwise 
direction. Since we are interested in the magnitude, we can drop the – sign. 
Equation 3.103 can be written as a sum of induced (CQi) and drag term (CQ0):

	 CQ = CQi + CQ0	 (3.104)
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Similarly, let us formulate an expression for mean CH in terms of Fz1 (from 
Equations 3.55, 3.56, and 3.76):
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Using Equations 3.57, 3.59, and 3.68, and nondimensionalizing Equation 
3.105
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Substituting Equation 3.101, Equation 3.106 can be written as
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Substituting for tanϕ and cosϕ and rearranging the terms
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(3.108)

Equation 3.108 can be written as a combination of the induced term (CHi) 
and the drag term (CH0):

	 CH = CHi + CH0	 (3.109)

Let us write
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Let us evaluate the various terms of CQ:
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Noting from Equation 3.65 that U rT = + µ ψsin  and r
r
R
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Substituting from Equation 3.66, U rP = + +λ β µβ ψ cos
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Changing the order of integration and integrating over the azimuth for 
average quantity, the second term becomes zero because
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This term represents the work done on the blade section by the periodic force 
Fz1 during one revolution. Under steady-state condition, the periodic motion 
of the blade requires that total work done per revolution is zero. The proof is 
given in the note below.

Br ie f not e:  The flap dynamic equation of a rotating blade can be written 
as (this will be discussed in the next chapter)
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Evaluating the average work done by the aerodynamic load during one 
revolution, i.e.,
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Since the term β β2 2 2+ v  is periodic, the integral is zero.

Therefore, Equation 3.113 can be written as
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This term can be written as

	 C C dCQi Hi T

A

+ = ∫µ λ area integral over the rotor dissk 	 (3.116)

where dCT is the mean thrust per unit area of the rotor disk.
The total power coefficient can be written as

	 C C dC C C CP Q T H Q H= = − + +∫ λ µ µ( )0 0 	 (3.117)

This expression can be further simplified by representing the total induced 
flow λ in terms of helicopter drag and lift. From Equation 3.14, the total inflow 
is given as

	 λ = μ tan α + λi

For small angle, the total inflow can be written as

	 λ = λi + μ tan α ≅ λi + μα	 (3.118)

Figure 3.15 shows an idealized representation of forces acting on the heli-
copter in the longitudinal direction. The velocity of the helicopter is V, and 
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it is inclined with respect to the horizontal plane by the angle θFP represent-
ing the flight path angle. The reference plane is taken as a hub plane, which 
is inclined with respect to the flight path by angle α. The forces acting in 
the vertical plane are shown in Figure 3.15. The thrust T is acting normal 
to the hub plane, and the longitudinal force H is acting at the hub center. W 
is the weight of the helicopter, and D is the helicopter drag force acting along 
the wind velocity direction. From Figure 3.15, the climb velocity of the heli-
copter can be defined as

	 Vclimb = V sin θFP = VC	 (3.119)

The nondimensional climb velocity can be written as (assuming small angle)

	 λ θ µθC
C FP

FP
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R
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R
= = ≈

Ω Ω
sin

	 (3.120)

Force equilibrium condition requires that

	 T cos(α − θFP) + H sin(α − θFP) = W + D sin θFP	 (3.121)

	 T sin(α − θFP) – H cos(α − θFP) = D cos θFP	 (3.122)

Assuming small angles and neglecting the drag force in comparison to 
weight W, one can write the above two equations as

	
T W

H D T FP
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	 (3.123)
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FIGURE 3.15
Idealized representation of helicopter loads in the longitudinal direction.
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Rearranging and nondimensionalizing

	 α θ= + +FP
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	 (3.124)

Substituting Equation 3.124 in the expression for inflow (Equation 3.118):
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Substituting for λ in CP expression (Equation 3.117), the total power can be 
written as a combination of four components as

	 C dC C C
D
W

C C C CP i T c T H T H Q H= + + + − + +∫ λ λ µ µ µ µ( )0 0 	 (3.126)

Equation 3.126 can be written as

	 CP = CPi + CPc + CPp + CP0	 (3.127)

where CPi is the induced power, CPc is the climb power, CPp is the parasite 
power to overcome the drag of the helicopter, and CP0 is the rotor profile 
power to turn the rotor in air.

The profile power expression can be simplified to obtain a closed-form 
expression. The profile power expression is given as

	 CP0 = CQ0 + μCH0	 (3.128)

Substituting in Equation 3.128, the individual expressions from Equations 
3.103, 3.104, 3.108, and 3.109,
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Combining the two terms and simplifying, one obtains
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Assuming that U U≈ T , the profile drag power can be written as
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The mean value of CP0 can be obtained by averaging over the azimuth,
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Evaluating the integral, the expression for profile drag can be obtained as
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With the inclusion of reverse flow and radial drag effects, a further increase 
in CP0 is observed. The coefficient of μ2 can be more than 3.

The rotor-induced power is given as C dCPi i T= ∫ λ  where dCT =
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.

For uniform inflow, the induced power can be written as CPi = λiCT. For 
forward speeds above μ ≥ 0.1, a good approximation for induced flow can be 

expressed as λ κ
µi
T≈ C

2
 taking into account tip loss, nonuniform inflow, and 

other effects. The induced power loss can be expressed as
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The parasite power term can be approximated as C
D
W

C
VD

R RPp T= ≈µ
ρπ 2 3( )Ω

 

by equating the total weight of the helicopter to rotor thrust T. If the heli-
copter drag is written in terms of equivalent flat plate area f, then it can be 

expressed as D V f CDF= 1
2

2ρ , where CDF = 1.0. The parasite power term can 

now be written as

	 C
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	 (3.135)

In general, for most of the helicopters, the value of 
f
Rπ 2  is of order of 0.01.
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In summary, the rotor power coefficient in forward flight may be written, 
as by combining all the individual contributions,

	 C
C C f
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CP

T d
c T≅ + + + +κ

µ
σ µ µ λ

2
2 3

2 8
1 3

1
2

[ ] 	 (3.136)

The rotor power has four components, namely, induced power, profile 
drag power of the rotor, parasite drag power of helicopter, and climb power.

Figure 3.16 shows a typical variation of power with forward speed for the 
level flight of a helicopter. It can be seen that as the forward speed increases 
from hover, the power initially decreases up to a forward speed of about μ = 
0.15, and then the power increases drastically with forward speed. The initial 
decrease in power requirement is mainly due to the reduction in induced flow 
through the main rotor as the helicopter increases its speed from hover. As the 
speed increases, the parasite drag power of the helicopter increases in cubic 
power of forward speed. The profile drag power shows a quadratic variation 
with forward speed. Therefore, at high forward speeds, the power required is 
mainly to overcome fuselage drag, whereas during hover, the power required 
is mainly the induced power to lift the weight of the helicopter.

The variation of power with forward speed is an important parameter 
required in the selection of a suitable engine for the helicopter. The excess power 
over the power required for level flight is the available power that can be used 
for climbing the helicopter. The power curve also indicates the maximum speed 
that the helicopter can fly, which is dependent on the power rating of the engine.
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FIGURE 3.16
Variation of power with forward speed during level flight.
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4
Rotor Blade Flapping Motion: Simple Model

It has been clearly brought out in Chapter 3 that, during forward flight, the 
hub loads are dependent on the blade pitch input and the flap response of the 
blade. The mean hub load expressions have been derived by assuming that 
the flap response can be represented by a first harmonic variation. Therefore, 
to complete the solution, one must evaluate the flap response of the blade to 
a given blade pitch input. The input quantities are collective, lateral, and lon-
gitudinal cyclic pitch inputs (θ0, θ1c, θ1s), and the output is the flap response 
of the blade (i.e., harmonics of the flap response β0, β1c, β1s). These response 
quantities depend on the configuration of the blade model. Initially, a sim-
plified model will be used to highlight the essential features of the problem; 
later, additional features will be included in the idealized blade model. In 
the simplified case, the rotor blade is idealized as a rigid beam hinged at 
the center of the hub, as shown in Figure 4.1. The rotor blade is assumed to 
undergo only flap motion.

Let us derive the equation of the motion of the rotor blade, starting from 
first principles. The equation of the motion of the blade can be obtained by 
making the total moment about the flap hinge at the root 0.

	 ( ) ( )M MI Flap ext Flap+ = 0 	 (4.1)

where MI is the inertia moment and Mext is the external aerodynamic 
moment. The subscript indicates the component of the moment vector about 
the flap axis.

The rotor blade is idealized as a rigid beam element undergoing only flap-
ping motion. The position vector of any point P on the kth blade, of an N 
bladed rotor system, in the deformed state can be written as (Figure 4.1)

	
   

r re r e r ek kp x x z= = +2 1 1cos sinβ β 	 (4.2)

The angular velocity of the rotor blade is taken as 




ω = Ωez1. It is assumed 
that the angular velocity of the rotor is a constant, and hence, the angular 

acceleration d
dt

ω = 0.
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The absolute velocity of point P has two components: one due to rotation 
and another due to the flapping motion in the rotating frame. The absolute 
velocity of point P is given by
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
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
 + = − +sin coβ β

1 ssβ β ωk
kd
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e X r





z p1 + 	 (4.3)

Evaluating the vector cross-product, the velocity of point P can be written as

	
   

v r
d
dt

e r
d
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e r ek
k

k
k

kp x z y= − + +sin cos cosβ β β β β1 1 Ω 11 	 (4.4)

The absolute acceleration of point P is given by

	



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2
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ω ω

eel
p+ ω ωX X r( ) 	 (4.5)

Substituting various terms, after time differentiation, the absolute accel-
eration of point P can be written as
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(4.6)
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Figure 4.1
Centrally hinged rigid blade model.
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Rearranging the terms,
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(4.7)

The inertia force acting on a blade element of length dr is given as ( )−ρdr ap  , 
where ρ is the mass per unit length of the blade. The inertia moment about 
the root is given as

	 M r X dr a
R

I p p= −∫  

( )ρ
0

	 (4.8)

Substituting for the position vector from Equation 4.2 and taking the vec-
tor cross-product, the component of inertia moment about the flap axis ey1 
can be obtained. It is given as

	 ( ) sin cosM r
d
dt

r drk
k k

R

I Flap = +




∫ ρ β β β2

2

2
2 2

0

Ω
	

(4.9)

Integrating the term over the length of the blade and the inertia moment in 
flap motion can be expressed as

	 ( ) sin cosM I
d
dt

k
k kI Flap b= +





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2

2
2β β βΩ 	 (4.10)

where I r dr
R

b = ∫ ρ 2

0
 is the mass moment of inertia of the blade about the flap 

hinge at the center of the hub.
Invoking a small angle assumption for flap angle βk, the inertia moment in 

the flap can be simplified as

	 ( )M I
d
dt

k
kI Flap b≅ +





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2

2
2β βΩ 	 (4.11)
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The external flap moment due to the distributed aerodynamic lift acting 
on the blade can be written, using Equations 3.54 and 3.60, as

	 ( ) ( ) ( )M re F e dr rF dr
R R

ext Flap x z z zx= = −∫ ∫ 

2 2 2

0

2

0

	 (4.12)

where Fz2 is the lift per unit length acting on the blade, which is also equal 
to Fz1 (Equation 3.57).

Combining the inertia and the aerodynamic effects (Equation 4.1), the flap 
equation can be written as

	 I
d
dt

rF drk
k

R

b z

2

2
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1
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β β+
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Substitute in Equation 4.13 for Fz1 from Equation 3.67 as
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(4.14)

In Equation 4.13, nondimensionalize the time derivative term on the LHS 

as d
dt

k
k

2

2
2β β= Ω   and the integral on the RHS with respect to the rotor radius R. 

After integrating RHS over the length of the blade, the flap equation can be 
written in symbolic form as

	 β β ρ γk k
aCR
I

M M+ = =
4

b
Flap Flap 	 (4.15)

where γ ρ= aCR
I

4

b

 is denoted as the Lock number, which represents the ratio 

of the aerodynamic effect to the inertia effect of the blade. Typically, γ is of 
the order 8 to 10 for articulated rotors and 5 to 7 for hingeless blades. The 
term MFlap is given as

	

M r
r r
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(4.16)

where r
r
R

=  represents the nondimensional radial variable.
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Assume that the blade pitch angle consists of the pilot input and a linear 
geometric twist of the blade:

	 θ θ θ= +I tw
r
R

	 (4.17)

Substituting Equation 4.17 in Equation 4.16 and assuming uniform inflow 
(λ), after integration over the length of the blade, the aerodynamic moment 
term can be obtained as
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	 (4.18)

Equation 4.18 can be symbolically written as

	 M M M M M Mk kFlap I twtw
= + + + +θ θ λ β βθ θ λ β β



 	 (4.19)

The aerodynamic flap moment at the blade root is dependent on blade 
pitch input (θI), the blade geometric twist (θtw), the rotor inflow (λ), the blade 
flap response (βk), and the time derivative of the flap response ( βk). The time 
derivative term βk represents aerodynamic damping in the flap mode.

The blade pitch control input (θI) given by the pilot can be mathematically 
expressed as

	 θI = θ0 + θ1c cos ψk + θ1s sin ψk	 (4.20)

It may be noted that the steady-state periodic flap response is represented as a 
Fourier series approximation containing several harmonics. For the sake of sim-
plicity, but without losing the physics of the problem, let us assume that the flap 
response is represented by the following truncated Fourier series.

	 βk = β0 + β1c cos ψk + β1s sin ψk + higher harmonic terms	 (4.21)
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For the given pitch input, the flap response βk can be obtained by either 
(1) the harmonic balance method or (2) the operator method (very similar to 
the evaluation of Fourier coefficients). The flapping equation is operated by 
the following integrals:
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2
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0
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π
ψ

π

( )Flap Equation d k =∫ 	 (4.22)
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π

( )sinFlap Equation k kd =∫ 	 (4.24)

Performing the above operations, we obtain a set of three algebraic 
equations in terms of the harmonic coefficients of βk and θI. Solving these 
equations, one can obtain the coefficients β0, β1c, β1s in terms of θ0, θ1c, θ1s. 
Performing these three integral operations on the left-hand side of the flap 
equation (Equation 4.15), and using Equation 4.21, one obtains
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Apply the operator to the right-hand side of the flap equation (Equation 
4.15). After neglecting all the higher harmonic contents of the flap response, 
and using Equations 4.18 and 4.20, the following set of three algebraic equa-
tions are obtained:
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	 0
8
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2 3 4 4 8 16

1 2
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The inflow can also be defined in the no-feathering plane (NFP). Note that 
the inflow λ is defined in the hub plane, as shown in Figure 4.2.

On the other hand, if the inflow is defined with respect to the NFP (as 
shown in Figure 4.2), Equations 4.28 to 4.30 can be written in a modified form. 
Inflow with respect to NFP is given by (using a small angle assumption)

	 λNFP ≅ λ − μθ1s	 (4.31)

Using this modified definition, Equations 4.28 to 4.30 can be written as
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where θ0.8 = θ0 + 0.8θtw and θ0.75 = θ0 + 0.75θtw represent the blade pitch angle 
at radial locations 0.8R and 0.75R, respectively.

λ

θ1s

μ 

Hub plane

No-feathering plane

Figure 4.2
Flow directions in the hub plane and the NFP.
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The three equations, Equations 4.28 to 4.30 (or Equations 4.32–4.34), can 
be solved for the harmonics of flap motion β0, β1c, β1s, due to the blade pitch 
input and the inflow.

Based on these equations, certain interesting observations can be made.

	 1.	The rotor coning angle β0 is proportional to the pitch angle and 
inflow (Equation 4.32). Since blade loading CT

σ
 is related to the blade 

pitch angle and the inflow, one can state that the coning angle is pro-
portional to the blade loading.

	 2.	The rotor coning angle is also proportional to the Lock number 
(Equation 4.32). For the normal operating range of μ ≤ 0.35, the con-
ing angle remains almost a constant.

	 3.	The first harmonics βic and βis are proportional to the advance ratio μ 

and also to the blade loading CT

σ
.

Typically, β0, β1c, and β1s are of the order of few degrees. Reducing Equations 
4.28 to 4.30 to hovering condition (μ = 0) results in

	 β γ θ θ λ
0

0

8 10 6
= + −









tw 	 (4.35)

	 β1s − θ1c = 0	 (4.36)

	 β1c + θ1s = 0	 (4.37)

It is interesting to note that a cosine harmonic pitch input (θ1c) produces a 
sine harmonic flap (β1s) of the same magnitude and a sine harmonic input 
(θ1s) produces a cosine harmonic flap (β1c). This is an important result of flap 
dynamics to the blade pitch input in the helicopter rotor system. It implies 
that forward tilting of the rotor tip path plane (β1c) requires a blade pitch 
input θ1s, which is denoted as a longitudinal cyclic input. Similarly, for the 
lateral tilting of the rotor tip path plane, β1s requires a pitch input θ1c, denoted 
as a lateral cyclic input. The reason for this behavior is as follows. It is evi-
dent from the flap equation (Equation 4.15) that the nondimensional natural 
frequency of the blade is 1/rev. The excitation force due to aerodynamic load 
has a fundamental harmonic component (i.e., due to the blade pitch input 
θI; Equation 4.20) whose frequency is also 1/rev. Hence, the flap motion is 
excited at resonant frequency. At resonance, the response of a single-degree-
of-freedom system always lags behind the input by a phase of 90° (that is, 
one quarter of a cycle means an azimuth angle of 90°). The proof is given in 
the following.
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Using Equation 4.18, the flap equation (Equation 4.15) under hovering con-
dition can be written as (assuming zero twist)

	 



β β γ θ λ β
k k

k+ = − −








1
8 6 8I 	 (4.38)

Rearranging the terms

	  β γ β β γ θ γ λk k k+ + = −
8 8 6I 	 (4.39)

For harmonic variation of the input θI, the flap response βk can be obtained 
easily. Assuming that λ is a constant, it will affect only the flap coning angle 
(Equation 4.35). One can notice from Equation 4.39 that the rotor blade flap 
equation in hover is essentially a second-order damped system. Assuming 
θ θ ψ ψI = +cos[ ( )]n k 0 , the steady-state flap response can be written as 
β β ψ ψ ψk kn= + −cos[ ( ) ]o ∆ . Note that n represents the ratio of excitation fre-
quency to the natural frequency of the system, which, in this case, is 1/rev. 
Solving for the magnitude and the phase angle of βk, one obtains
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For n = 1, the phase lag is Δψ = 90°.
For example, if θI = θ1c cos ψk, then β β ψ β ψ β ψk k k k= − ° = =cos[ ] sin sin90 1s .
A cosine harmonic pitch input produces a sine harmonic in flap motion. 

Similarly, a sine harmonic pitch input produces a cosine harmonic flap 
motion.

It is important to recognize that these results are valid only for a centrally 
hinged rotor blade. For a general configuration of blades such as hingeless or 
bearingless blades, there will be a cross-coupling between the sine and the 
cosine harmonics of the pitch input to the longitudinal (β1c) and the lateral 
(β1s) flap response of the blade. The phase lag will be less than 90° because 
the natural frequency in the flap will be more than 1/rev. Therefore, in the 
design of the rotor control system, this phase lag must be properly accounted 
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for in the hardware of the swash plate system. Even though the phase lag 
between the pilot pitch input and the blade flap response can vary with for-
ward speed μ, the control system is usually designed for a single value of a 
phase angle since the variation in the phase between the pitch control input 
and the flap response in forward speed is not very significant.

Flap Motion with a Centrally Placed Root Spring

In the previous section, the rotor blade is modeled as a rigid blade hinged at 
the center of the hub. It is noted that the natural frequency of the rotating blade 
in the flap is observed to be exactly equal to 1/rev. To represent the realistic 
rotor blade having the natural frequency more than 1/rev, one can modify the 
rotor blade model by including a linear torsional spring at the root, as shown in 
Figure 4.3. The spring constant is taken as Kβ. This model can simulate a hinge-
less rotor blade configuration. In the undeformed state, the rotor blade is having 
a precone angle βp, as shown in Figure 4.3. The influence of the precone angle 
on the blade root load will be brought out in the following discussion.

Introduction of a root spring introduces a resisting moment in the flap 
direction, which is directly proportional to the flap deformation. Inclusion 
of the flap restoring moment due to the root spring alters the flap equation 
(Equation 4.13). The modified flap equation can be written as

	 I
d
dt

K rF drk
k k

R

b p z

2

2
2

1

0

β β β ββ+






+ − = ∫Ω ( ) 	 (4.42)
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Rotor shaft

Blade

Undeformed state

Kβ

Figure 4.3
Rigid rotor blade with centrally hinged spring restrained idealization.
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Note that the flap angle βk is defined with respect to the hub plane. Following 
the procedure described in the previous section, substituting for Fz1, performing 
the integration, and nondimensionalizing, the flap equation becomes

	 β β β γβ β
k k

K

I

K

I
M+ +







− =1 2 2
b b

pΩ Ω F 	 (4.43)

From Equation 4.43, it can be noted that the nondimensional rotating natu-
ral frequency of the blade in the flap mode is given as

	 ω ωβ
RF

b
NR

2
2

21 1= + = +
K

I Ω
	 (4.44)

where the nonrotating natural frequency in the flap is defined as ω β
NR
2

b

=
K

I Ω2 .

MF is the aerodynamic moment coefficient as given earlier in Equation 4.18. 
Applying the operator method, assuming that the flap response contains 
only up to first harmonics, the LHS of the flap equation (Equation 4.43) can 
be written as
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Performing the integral operation on the right-hand side of Equation 4.43, 
and equating to the corresponding LHS coefficients, one obtains the follow-
ing equations for flap harmonics:
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From Equation 4.31, λNFP = λ − μθ1s.
From Equation 4.48, the coning angle can be expressed as
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Rewriting the expression for coning angle as
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where βideal is defined as the coning angle when ωRF = 1, and is given by
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The effect of the precone angle is to reduce the steady-state deformation 
in the flap angle. The mean hinge moment due to the flap deformation of 
the spring at the root is given as follows (using Equation 4.52). (Note: From 
Figure 4.3, that flap angle is measured from the hub plane not from the initial 
undeformed state with a precone angle βp.)
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Simplifying Equation 4.54, the mean hinge moment in flap motion can be 
written as
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Substituting for Kβ in terms of nondimensional rotating flap natural fre-
quency ωRF

2 , from Equation 4.44, the flap hinge moment becomes

	 M IF b
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The mean hinge moment is nonzero when ωRF
2 1> , unless the precone angle 

is chosen to be equal to βideal, i.e., (βp = βideal). When βp = βideal, the equilibrium 



111Rotor Blade Flapping Motion

coning angle will be β0 = βideal (from Equation 4.52), and the root spring Kβ 
does not get strained. Hence, the mean hub moment is 0. This indicates that 
a proper choice of the precone will reduce the blade root moment, thereby 
reducing the hub moment. The ideal value of the precone depends on the 
rotor loading and the operating condition. Hence, the precone can have a 
value equal to βideal only for a particular operating condition. Normally, the 
value of the precone in practical rotor blades will be about 2°.

Considering hovering condition (μ = 0), and simplifying the response 
equations (Equations 4.49 and 4.50) for β1c and β1s,
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Solving for β1c and β1s, one obtains
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Comparing Equations 4.59 and 4.60 with Equations 4.36 and 4.37, it can be 
seen that the effect of having ωRF

2 1>  is to introduce longitudinal flapping β1c 
due to lateral cyclic pitch θ1c and lateral flapping β1c due to longitudinal cyclic 
pitch θ1s.

Assuming θ θ ψ ψ= +cos( )0  and β β ψ ψ ψ= + −cos( )0 ∆ , the magnitude and 
the phase of the flap response become
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where β β β= +{ }1
2

1
2 1 2

c s

/
 and θ θ θ= +{ }1

2
1
2 1 2

c s

/
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Rewriting the phase difference or the phase angle between the pitch input 
and the flap response as
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It is evident from these expressions that increasing the flap frequency 
ωRF more than 1 reduces the phase lag in the flap response from 90°. When 
ωRF = 1 15.  and γ = 8, the amplitude β θ/  is reduced by about 5%, but the phase 
lag reduces to 72° from 90°, as compared to a centrally hinged rotor blade. 
This phase change constitutes a coupling of the lateral and the longitudinal 
response of the tip path plane with respect to blade pitch inputs. As far as 
the control of the helicopter by the pilot is concerned, this coupling is par-
tially reduced by compensating the phase lag between the control plane and 
the Tip Path Plane (TPP). The control system geometry is modified so that 
the rotor still responds with purely longitudinal TPP tilt due to θ1s. Note 
that forward speed has an influence on phase shift. Moreover, it is not the 
same in both axes of the cyclic. Therefore, the control rigging to compensate 
for the lateral–longitudinal coupling is a function of forward speed, and it 
is not the same in both lateral and longitudinal axes. Since this variation is 
not very large, a single value of phase is used for the geometric design of 
the control system so that it is reasonably satisfactory over the entire speed 
range of the helicopter.

In the rotating frame, the blade root moment due to flap deflection is given 
as (replacing the spring constant in terms of blade inertia and rotating natu-
ral frequency in the flap; Equation 4.44)

	 M Ik kF = − = − −Κ Ωβ β β ω β β( ) ( )( )p b RF p
2 2 1 	 (4.65)

The mean value of the pitch and roll moments acting at the rotor hub, due to 
all the blades, can be obtained by summing over all the blades and averaging 
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over the azimuth (see Figure 4.4 for the transformation of the blade root flap 
moment to the hub moment in pitch and roll).

	 Pitch moment:  M
N

M dk kyH F= − ∫2
0

2

π
ψ ψ

π

cos 	 (4.66)

	 Roll moment:  M
N

M dk kxH F= ∫2
0

2

π
ψ ψ

π

sin 	 (4.67)

Substituting for MF from Equation 4.65 and for βk from Equation 4.21 and 
integrating, the pitch and roll moments can be written as

	 M
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IyH b RF c= − −
2

12 2
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12
1Ω ( )ω β 	 (4.69)

The pitching and rolling moment coefficients at the hub can be expressed 
in nondimensional form as

	 C
M

R R RMyH
yH=

ρπ 2 2( )Ω
	 (4.70)

Substituting for MyH from Equation 4.68, the pitch moment coefficient becomes
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Figure 4.4
Flap moment MF.
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Multiplying and dividing by the blade area CR (assuming constant chord) 
and the lift curve slope a, Equation 4.71 can be written as

	 C
NCR

R
I

CaR
aMyH

b
RF c= − −

2
12 4

2
1π ρ

ω β( ) 	 (4.72)

Equation 4.72, providing the pitch moment coefficient at the rotor hub, can 
also be written as
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Similarly, the roll moment coefficient can be expressed as
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These expressions show that the moment-generating capability of the rotor 
system is dependent on the rotating natural frequency in the flap, and the 
moment is greatly increased when ωRF > 1. The articulated rotor provides 
fewer hub moments because the rotating flap natural frequency is less than 
that of the hingeless or bearingless rotor configurations.

The pitch and roll moments about the fuselage center of gravity (c.g.) 
consist of two components. One is due to the direct hub moment (given in 
Equations 4.73 and 4.74) and the other is due to the hub in-plane forces H and 
Y. In the following, a derivation is given, providing a simple expression for 
the pitch and roll moments about the fuselage c.g. for hovering condition. 
The final expression clearly brings out the effect of the flap natural frequency 
in generating control moments about the fuselage c.g.

Writing the thrust coefficient and the in-plane force coefficients under hov-
ering condition as (from Equations 3.91–3.94)

	 C
a

T
tw= + −











σ θ θ λ
2 3 4 2

0 	 (4.75)

	 C
a

H c
tw

c
s

c c s= − − + − + +σ θ β θ β λ θ θ β λβ β β
2 3 4 4 6

3
4

0
1 1

1
1

0
1 1

0

66








 	 (4.76)

	 C
a

Y s
tw

s
c

s s c= − + + + − +σ θ β θ β λ θ θ β λβ β β
2 3 4 4 6

3
4

0
1 1

1
1

0
1 1

0

66






	 (4.77)
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Assuming ωRF ≈ 1 0. , then from Equations 4.57 and 4.58, β1s ≈ θ1c and −β1c ≈ 
θ1s. Using these relations, the hub in-plane free coefficients (Equations 4.76 
and 4.77) can be simplified as

	 C
a

H
tw

c= + −








 −σ θ θ λ β

2 3 4 2
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2 3 4 2
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In other words,

	 CH = −CTβ1c	 (4.80)

	 CY = −CTβ1s	 (4.81)

It is now evident that the in-plane hub forces are due to the tilt of the thrust 
vector with respect to the hub plane, which is achieved by tilting the rotor 
tip path plane due to the cyclic flap. From Figure 4.5, it can be seen that the 
moment about the c.g. of the fuselage will be due to the direct hub moment 
and the moment due to the hub in-plane forces. When the c.g. of the helicopter 

MxH
MyH

T

h

HY

MzH

Horizon
ZH

XH
YH

Figure 4.5
Hub loads.
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is at a height (h/R) directly below the hub, the moment about the c.g. can be 
written as
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Several interesting observations can be made from Equation 4.82. (1) Direct 
hub moment (first term on the right side) is dependent on flap frequency, 
and this effect is 0 when the flap frequency is 1/rev. (2) Direct hub moment 
is independent of rotor thrust or rotor load factor. (3) For hingeless rotors, 
the direct hub moment (first term) may be two to four times greater than the 
effect due to the thrust tilt term (second term). This simple derivation clearly 
brings out the effect of flap natural frequency on the generation of control 
moment by the rotor system. The moment expressions become more complex 
in forward flight due to the inclusion of advance ratio μ. The above expres-
sion provides a clear insight on the control moment–generating capability of 
the rotor system in helicopters.
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5
Helicopter Trim (or Equilibrium) Analysis

In the previous chapters, it is shown that rotor forces and moments are 
functions of flap response and blade pitch input. In the most general case, 
these forces and moments will also be functions of blade lag, torsion, and 
perturbational hub motion. During steady flight, the trim condition or 
equilibrium of the helicopter requires that the mean values of the forces 
and moments acting at the center of the mass of the helicopter must be 0. 
Since there are six equations of equilibrium, which are three force and 
three moment equations, one can solve for six unknown quantities satisfy-
ing the equilibrium equations. For hover and level flight conditions, the six 
unknown quantities are the collective pitch (θ0) input of the main rotor, the 
cyclic pitch inputs (θ1c, θ1s) of the main rotor, the tail rotor collective pitch 
(θTR), the pitch attitude (α), and the roll attitude (Φ) of the helicopter. It may 
be recognized that the rotor loads are influenced by the blade response and 
the rotor inflow; hence, it becomes necessary to solve for the rotor inflow 
and the blade response equations. They form the intermediate stage in the 
solution procedure.

In the following, a step-by-step procedure for the trim analysis of a heli-
copter in steady-level flight is presented. In this example, the helicopter 
model is highly simplified. Empennage control surfaces are not included. 
The helicopter is assumed to be flying at steady forward speed V. There is 
no side-slip velocity. Tail rotor is assumed to generate only thrust. Only the 
first harmonic flap response of the main rotor is considered. This analysis is 
sometimes referred to as “flap trim” since only the flap motion of the main 
rotor is considered in rotor dynamics.

Let us first define the relevant coordinate systems that are shown in Figure 5.1.
Xea–Yea–Zea is the earth-fixed inertial coordinate system, with Zea pointing 

toward the earth’s center.
Xb–Yb–Zb is the body fixed coordinate system with origin at the center of 

gravity (c.g.) of the fuselage. Xb is pointing toward the nose, Yb is pointing 
toward the starboard side, and Zb is pointing downward.

XH–YH–ZH is the hub-fixed nonrotating coordinate system with its origin at 
the center of the main rotor hub. XH is pointing toward the tail, YH is pointing 
toward the starboard side, and ZH is pointing vertically upward.

Let us now define all the relevant quantities shown in Figure 5.1. The 
velocity vector V of the helicopter is in the body-fixed Xb–Zb plane. The angle 
θFP represents the flight path angle defined as the angle between the hori-
zon and the velocity vector. Note that XH and ZH are parallel to Xb and Zb 
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respectively, but pointing in opposite directions. The angles Θ and Φ are the 
equilibrium pitch and the roll attitude, respectively, of the helicopter, and 
angle α represents the angle between the body Xb axis and the velocity vec-
tor V of the helicopter. The weight of the helicopter is acting down at the c.g. 
of the helicopter. The drag force acting on the fuselage due to forward flight 
is assumed to act at the c.g. along the direction of the relative air velocity 
vector, as shown in Figure 5.1. The mean loads due to the main rotor system 
are acting at the main rotor hub center as shown. The tail rotor is assumed 
to provide only thrust force as shown. The coordinates of the main rotor hub 
center and the tail rotor thrust location are given respectively as (hx, hy, hz) 
and (hxT, 0, hzT). It may be noted that one can add forces due to other lifting 
surfaces such as horizontal tail and vertical fin, which are neglected in the 
present formulation.

The transformation matrix relating the earth-fixed system and the body-
fixed system at the fuselage c.g. is obtained by using Euler angle transforma-
tion. The earth axis system is first rotated counterclockwise about the Yea 
axis through an angle Θ representing the pitch angle and then followed by 
a counterclockwise rotation about the rotated Xea axis through an angle Φ 
representing the roll angle so that the new orientation is along the body-
fixed fuselage c.g. coordinate system. The relationship between the earth-
fixed system and the fuselage axis system can be given as
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Forces and moments acting on a helicopter.
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Equation 5.1 can be written as
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From Figure 5.1, note that, when the angles are small, the pitch angle Θ = 
(θFP − α).

The force and moment equilibrium equations are written in the c.g. fixed 
fuselage coordinate system (Xb–Yb–Zb). Hence, all the forces and moments 
acting on the helicopter are first transferred to the c.g. of the helicopter in the 
body-fixed fuselage axis system, and the equilibrium equations are written 
in the body coordinate system. In the following, all the relevant equations for 
the trim analysis of the helicopter in forward flight are given.

Assuming uniform inflow model, the rotor inflow equation is given as

	 1.	 Inflow equation

	 λ µ α
µ µ α λ

= +
+ +

tan
( tan )

CT

i2 2 2
	 (5.3)

	 or can also be written as

	 λ µ α
µ λ

= +
+

tan
CT

2 2
	 (5.4)

	 Resolving the forces and moments along the fuselage axis system, 
the six equilibrium equations can be written as follows.

	 2.	Thrust equation: vertical force perpendicular to the hub plane

	 −T + W cos (θFP − α) cos Φ + D sin α = 0	 (5.5)

	 3.	Horizontal force equation: longitudinal direction

	 −H − D cos α − W sin (θFP − α) = 0	 (5.6)

	 4.	Side force equation: starboard side

	 Y + TT + W sin Φ cos (θFP − α) = 0	 (5.7)
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	 5.	Roll moment equation

	 −MxH − Yhz − TT hzT − Thy = 0	 (5.8)

	 6.	Pitch moment equation

	 MyH + Thx − Hhz = 0	 (5.9)

	 7.	Yawing moment

	 −MzH + Yhx + Hhy + TThxT = 0	 (5.10)

In the above equilibrium equations, the expression for tail rotor thrust can 
be taken as similar to the expression for main rotor thrust, except for the 
fact that tail rotor has only collective pitch angle and that all the param-
eters in that expression must correspond to tail rotor parameters. Since the 
main rotor hub loads depend on the flap harmonics of the blade β0, β1c, β1s, 
these harmonics have to be obtained before solving the above equilibrium 
equations.

The step-by-step procedure for trim analysis is given in the following.
The given quantities are V, θFP, W, D, hx, hy, hz, hxT, hzT, βp, ωRF, θtw, γ, R, Ω.
Step 1: Assume α, and let T ≈ W evaluate the advance ratio μ.
Using inflow equation (Equation 5.4), solve for the total inflow λ.
Step 2: Assuming θ0, θ1c, and θ1s and using the following equations repre-

senting the equilibrium deformation of the blade in the flap mode, solve for 
β0, β1c, and β1s (using Equations 4.31, and 4.48 to 4.50).
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Step 3: Knowing λ, β0, β1c, and β1s, solve the six equilibrium equations 
(Equations 5.4 to 5.10) for θ0, θ1c, θ1s, α, Φ, and θTR.

Go to step 1.
Iterate until convergence is achieved.
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Step 4: Evaluate the power required using the product of the rotor torque 
and the rotor angular speed of the main rotor system. An approximate eval-
uation of the tail rotor power can be obtained from the tail rotor thrust.

Repeat the calculation for different values of forward speed.
Step 5: Plot flap response.
Plot the variation of θ0, θ1c, θ1s, α, Φ, and θTR and β0, β1c, and β1s as a function 

of advance ratio μ.
A highly simplified sample trim problem is given in the following.

Sample Trim Problem

Perform a trim procedure to evaluate the variation of collective and cyclic 
input to the main rotor blades, the fuselage pitch attitude, and the inflow 
ratio with the advance ratio (μ = 0, 0.05, 0.1, 0.15, 0.2, and 0.3) using the hub 
loads and the flap response (up to the first harmonic only) for the given heli-
copter data:

•	 Weight coefficient of the helicopter: 0.0032
•	 Lift-curve slope: 2π
•	 Blade profile drag coefficient: 0.0079
•	 Twist: 0
•	 Fuselage aerodynamic moments: 0.0
•	 Density of air: 1.225 kg/m3

•	 Solidity ratio: 0.1
•	 Number of blades: 4
•	 Lock number: 12
•	 Rotating flap-natural frequency: 1.1/rev
•	 Equivalent flat plate area: 0.037/π (nondimensionalized with respect 

to [w.r.t.] rotor disk area)
•	 Location of the hub centre from c.g. (hx, hy, hz): (0, 0, –0.426) (nondimen-

sionalized w.r.t. rotor radius) (c.g. is directly below the rotor shaft)
•	 Location of the tail rotor hub centre from c.g. (hxT, hyT, hzT): (–1.2, 0, 0) 

(nondimensionalized w.r.t. main rotor radius)
•	 Flight path angle: 0

Assume that the rotor side force and the main rotor torque are balanced by 
the tail rotor thrust. Hence, neglect the side force equation and the yaw equa-
tion. Use the remaining four equilibrium equations (Equations 5.5, 5.6, 5.8, 
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and 5.9) to obtain the four quantities θ0, θ1c, θ1s, and α. (Please note that, in a 
general case, all the six equilibrium equations are solved for the six unknowns 
θ0, θ1c, θ1s, α, Φ, and θTR.) In the following, a clear description of the procedure 
in obtaining the converged solution of this simple problem is presented.

Procedures

Step 1: Solve for hover (μ = 0):
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Step 2: Use the above values as an initial guess to solve for successive μ (say, 
μ = 0.05), as follows:

•	 Initial guess:

	 θo = 0.091, θ1s = 0, θ1c = 0, α = 0

•	 Assume CT = Cw, and use the following inflow equation to solve for λ:

	 λ µ α
µ λ

= +
+

tan
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22 2

	

•	 Solve for β0, β1s, β1c using the following equations (for 0 twist and no 
preflap):
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•	 Compute CT, CH, CY, CMxH, and CMyH using the following expressions 
(from Equations 3.91 through 3.93, 4.73, and 4.74):
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•	 Solve the four equilibrium equations for θo, θ1s, θ1c, and α using the 
Newton–Raphson method, as follows:

•	 The four equilibrium equations: (roll angle ϕ = 0 and using the 
given data)

Thrust equation: −T + W cos α + D sin α = 0

Drag equation: −H + W sin α − D cos α = 0

Roll moment equation: −MxH − Yhz = 0

Pitch moment equation: MyH − Hhz = 0

•	 In nondimensional form using given data:

CT − Cw cos α − 0.0059 μ2 
sin

cos

α

α( )
=2 0

CH − Cw sin α − 0.0059 μ2 
1

0
cos α

=
0.426 CY − CMxH = 0

0.426 CH − CMyH = 0
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•	 Using the expressions of CT, CH, and CY, let
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•	 Using the equations above, define fi = fi(θo, θ1s, θ1cα) as follows:
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•	 Solve the simultaneous equations using the Newton–Raphson 
method:
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		  Assuming small α:
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•	 Obtain the new approximations as follows:
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Not e:  If convergence is not obtained with k = 1, then k can be taken as 2,4,…
etc., to get the desired convergence.

•	 Repeat this process by replacing the new approximations with 
the previous guess until we get the values to the desired accuracy.

Results

The results are given in Figures 5.2 to 5.5. The observations made are as 
follows:

	 1.	The fuselage pitch attitude (α) increases progressively with forward 
speed (Figure 5.2).

	 2.	The collective pitch (θo) decreases from its hover value to a minimum 
at a moderate forward speed. This is due to the benefit of transla-
tional velocity component on the lifting capability of the rotor. The 
collective pitch then increases with forward speed (Figure 5.2).

	 3.	The inflow variation is similar to that of the collective pitch 
(Figure 5.3).

	 4.	The longitudinal cyclic pitch (θ1s) increases (sign reversed) with the 
forward speed to tilt the rotor forward to overcome the drag of the 
helicopter fuselage (or, in other words, to counteract the effect of β1c) 
(Figure 5.2).

	 5.	The variation in longitudinal cyclic pitch (θ1s) along with the for-
ward speed effect of the increased oncoming velocity in the advanc-
ing side and the reduced oncoming velocity in the retreating side 
results in a net increase in longitudinal flapping (β1c) with forward 
speed (Figure 5.4).

	 6.	The collective flap angle does not show much variation with for-
ward speed (Figure 5.4).

	 7.	The blade coning causes a lateral flapping response. When a blade 
passes over the front of the disk, the effects of the forward flight 
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cause an increase in the angle of attack because it acts as an upwash. 
At the rear of the disk, the angle of attack is decreased. This causes 
a lateral tilt of the disk as shown by the variation of lateral flapping 
(β1s) with forward speed (Figure 5.4). This angle is very small.

	 8.	The lateral cyclic pitch (θ1c) increases gradually with forward speed 
to counteract the lateral disc tilt caused by coning. Actually, an addi-
tional amount of lateral cyclic will be required to balance the tail 
rotor thrust. However, this effect is ignored in the present exercise 
(Figure 5.2).

	 9.	The flapping response of the blade is of the form

	 βk = βo + β1c cos ψk + β1s sin ψk
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Figure 5.2
Variation of control input and pitch attitude with forward speed.
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where, for the kth blade,

	 ψ π ψk = − +2
1

N
k[ ]

	

		  The flap response over one revolution is shown in Figure 5.5 for 
different forward speeds.

It is important to recognize that several important aspects have been 
neglected in the formulation of the expressions for the loads and the flap 
response of the blade. They are tip loss, root cutout, inflow variation, reverse 
flow, compressibility and stall effects, dynamics of the blade in lag, torsional 
modes, etc. The influence of these items will need to be considered while 
analyzing the complete problem. In general, these items will quantitatively 
modify the trim values but will not affect the qualitative nature of the results, 
except in the case of lateral cyclic pitch (θ1c) in low forward speeds.
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Variation of flap harmonic with forward speed.
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Flap response over one rotor revolution for different forward speeds.
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Reverse Flow

During forward flight, an area on the retreating side of the rotor disk experi-
ences a velocity of the airflow directed from the trailing edge to the leading 
edge. This region is known as the “reverse flow region,” and it can be computed 
as follows.

The component of forward speed normal to the rotor blade cross section at 
any azimuth angle is given by

	 V cos α sin ψ = μΩR sin ψ

The relative air velocity due to blade motion is Ωr.
The condition for reverse flow is (Ωr + μΩR sin ψ) ≤ 0.
In nondimensional form, it is given as r + ≤µ ψsin 0.
The boundary of the reverse flow region is given by the equation r + μR 

sin ψ = 0.
From Figure 5.6,

	 OA = r = OB cos θ = OB cos (270 − ψ) = OB [− sin ψ] = μR sin ψ

Since sin ψ is negative for ψ > 180°, the reverse flow region occurs in the 
retreating side of the rotor. Hence, the diameter of the reverse flow region 

is μR. The ratio of the reverse flow region to the total disk area is 
µ2

4
. Since 

the root cutout extends up to 15% to 25% of the rotor radius, it will more or 
less cover the reverse flow region. Therefore, the reverse flow region can be 
neglected in the analysis. However, at high advance ratio, the reverse flow may 
become significant, and it may be included in calculating the aerodynamic 
loads on the blade. Near the reverse flow boundary (i.e., outside the reverse 
flow region), there will be a significant separated and radial flow disturbance.

Ψr

O
θ

μR

B

A

V cos α

Figure 5.6
Reverse flow region in forward flight.
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6
Isolated Rotor Blade Dynamics

Helicopter rotor blades are long slender beams undergoing axial, lag, flap, 
and torsional deformations. Figure 6.1 shows the deformation of an elastic 
blade model. A detailed analysis of blade dynamics requires the formula-
tion of coupled equations of motion. These equations are nonlinear due to 
the inclusion of moderate deformation effects, involving nonlinear strain–
displacement relationships. Formulation of the equations of motion of the 
rotor blade has been a topic of research since the 1970s. Earlier theories were 
restricted to treating the dynamics of isotropic blades; later, in the late 1980s 
and early 1990s, beam theories suitable for composite rotor blades were for-
mulated. Research efforts are also directed to the development of a multidis-
ciplinary optimization of composite rotor blades.

For a fundamental understanding of rotor blade dynamics, one can for-
mulate an idealized model of the blade. In the following, a simple model of 
the rotor blade is formulated by idealizing the blade as a rigid blade having 
a spring restraint and a root offset. The blade is assumed to be uniform. 
The root springs represent the stiffness of the blade in the flap, lag, and tor-
sional modes (Figure 6.2). This model, although relatively simple, captures 
the essential features of the blade dynamics and its aeroelastic behavior. This 
model is equally valid for both articulated and hingeless rotor blades. The 
limitation of this model is that it represents only the fundamental vibratory 
mode of the blade. Therefore, this type of blade model may not be suitable for 
vibration analysis of the helicopter, where the participation of higher modes 
of the blades is significant.

To have a fundamental understanding, the dynamics of the blade will 
be analyzed independently for the flap, lead–lag, and torsion modes (in an 
uncoupled manner), taking one degree of freedom at a time. Such an analysis 
will bring out not only the essential features of the blade dynamics, but also 
the constraints that have to be considered in the design of a rotor blade.

Isolated Blade Flap Dynamics in Uncoupled Mode

Consider a rotor blade undergoing only flap deflection. The blade is ideal-
ized as a uniform rigid beam with a root offset e and a root spring Kβ, as 
shown in Figure 6.3. The rotor blade is assumed to have a precone angle βP. 
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To describe the motion of the blade and also for a consistent formulation of 
the dynamics of the rotor blade, several coordinate systems are required. 
These coordinate systems are shown in Figures 6.3 and 6.4.

êxH, êyH, êzH represent the unit vectors of the hub-fixed nonrotating coordi-
nate system, with origin at the center of the hub.

êx1, êy1, êz1 are the unit vectors of the hub-fixed rotating coordinate system, 
with origin at the center of the hub. It may be noted that unit vectors êzH and 
êz1 are parallel and coincident vectors.

x

u

v

w

θZ

êz1

êz2

êy1

êx1

êy2

êx2

θX

θY

Figure 6.1
General deformation of a rotor blade.

Kφ
Kβ

KφC
Kζ

θ

Figure 6.2
Idealized model of the rotor blade.
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î, ĵ, k̂ are the unit vectors along the undeformed state of the rotating blade, 
with origin at the hinge offset location.

êx2, êy2, êz2 are the blade-fixed rotating system in the deformed state of the 
blade, with origin at the hinge offset location.

It may be noted that the flap deformation β of the blade is defined with 
respect to the undeformed state of the blade having a precone angle βP. The 
rotor is operating at a constant angular velocity Ω about êz1. It may be noted 
that, in this formulation, the hub is fixed and it does not have any motion.

βp

β   

O   

e

Kβ

Ω   

êz1 êz2 êy2

êx2

î

Ĵk

êy1

êx1

Figure 6.3
Idealized rotor blade in flap motion.
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êxH

Ω

êyH

 

 

Figure 6.4
Hub-fixed nonrotating and rotating coordinate system.
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Assuming that the mass of the blade is distributed uniformly along the 
blade reference axis êx, the position vector of an arbitrary mass point P on the 
blade in the deformed state is given as

	 r ee rex xp = +ˆ ˆ1 2 	 (6.1)

The transformation relationship between the unit vectors along hub-fixed 
rotating coordinate systems can be written as
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	 (6.2)

Using the transformation, the position vector of point P given in Equation 
6.1 can be written as

	


r ee r e r ex x zp p p= + + + +ˆ cos( )ˆ sin( )ˆ1 1 1β β β β 	 (6.3)

The absolute velocity of point P can be obtained as (noting that the position 
vector is defined in the rotating coordinate system)

	
� �� �
v r e X rzp p rel p= { } + Ω ˆ 1 	 (6.4)

Differentiating Equation 6.3 and substituting the respective quantities, the 
absolute velocity of point P can be written as
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Equation 6.5 can be expanded as
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(6.6)

The absolute acceleration of the mass point P can be obtained from the 
expression (note that Ω is a constant)
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(Note: ω = Ωêz1)
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Differentiating Equation 6.3 and substituting various quantities, the abso-
lute acceleration of mass point P can be expressed as

	



a r
d
dt

r
d
dtp p p= − + − +







−

sin( ) cos( )

{

β β β β β β2

2

2

2Ω ee r e

r
d
dt

e

r

x

y

+ +

+ − +

+

cos( )} ˆ

sin( ) ˆ

cos(

β β

β β β

β

p

p

1

12Ω

++ −






+β β β β βp p) sin( ) ˆd
dt

r
d
dt

ez

2

2

2

1

	

(6.8)

The inertia force of elemental mass at point P is given as −ma dr


P , where m 
is the mass per unit length of the blade.

The inertia moment about the flap hinge can be obtained by taking moment 
about the hinge.
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Substituting the acceleration term from Equation 6.8 and taking cross-
product, the inertia moment about the hinge point can be obtained, which 
is given as

	

M m r
d
dt

e

r
d
dt

I x

R e

= − +






+ <

−

∫ 2 2 2
1

0

2
2

2

Ω β β β

β

sin ( )ˆp

ccos ( ) sin( )cos( )2 2
2

2

β β β β β β β+ −






+ +

+

p p pr
d
dt

r
d22

2
2 2

2
β β β β β β β β

dt
r

d
dt

sin ( ) sin( )cos(+ +






+ +p p p))

[ cos( )] sin( ) ˆ

sin(

+ + + + >

+

Ω

Ω

2
1

22

e r r e

r
d
dt

yβ β β β

β
p p

ββ β β β+ +



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Considering only the flap moment (i.e., the component of the moment 
about the êy1 axis), the inertia moment in the flap mode can be written as
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(6.11)

Integrating over the length of the blade, the inertia moment in flap mode 
can be written as

	
M I

d
dt

MX e Iβ
β β β β βI b c.g. p b p= + + + +

2

2
2 2Ω Ωsin( ) sin( )coss( )β β+ p

	
(6.12)

The term Ib represents the mass moment of inertia of the blade about the 
flap hinge, and MXc.g. represents the first moment of the mass about the flap 

hinge. For a blade with a uniform mass distribution, I m
R e

b = −( )2

3
 and 

MX m
R e

c.g. = −( )2

2
.

When the angles β and βp are small, one can make the approximation as

	 sin (β + βp) ≈ (β + βp)

	 cos (β + βp) ≈ 1

Using these small angle approximation and uniform mass distribution of 
the blade, the flap inertia moment about the flap hinge (Equation 6.12) can 
be written as

	
M m

R e d
dt

me
R e

m
R e

β
β β βI p= − + − + + −( ) ( )

( )
( )2 2

2
2

2
2

2

3 2 3
Ω Ω (( )β β+ p

	
(6.13)

Rearranging the terms, and nondimensionalizing the time derivative 
term, the inertia moment in the flap can be written as (note that, for conve-
nience, the symbol ‘dot’ is used in the following for the nondimensional time 
derivative)
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where l = (R − e) is the length of the rotor blade from the hinge offset.
Next, let us evaluate the flap moment due to the aerodynamic load acting 

on the uniform untwisted blade. The aerodynamic load acting on the blade 
can be obtained using either unsteady aerodynamics due to the Theodorsen 
theory or quasi-steady approximation of the Theodorsen theory or quasi-
static approximation. In quasi-static approximation, the aerodynamic lift is 
evaluated based on the instantaneous angle of attack at every cross section 
of the blade. In the following, the quasi-static formulation is used for conve-
nience. Assuming that the blade has zero pretwist, the aerodynamic lift (L) 
and drag (D) forces per unit length of the blade can be written as (Figure 6.5)

	 L U C a
U
UT

= +




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1
2

2ρ θcon
P 	 (6.15)

	 D U CC= 1
2

2
0ρ d 	 (6.16)

where θcon is the control pitch input at the cross section of the blade. The 
resultant velocity and the induced angle are given as

	 U U U UT T= + ≈P
2 2 	 (6.17)

θcon

UP

UT

φ   
U   

Figure 6.5
Flow directions and effective angle of attack at a typical cross section.
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	 tanΦ Φ≈ = U
UT

P 	 (6.18)

where UP and UT are the relative air velocity components in normal and tan-
gential directions to the airfoil cross section of the blade, as shown in Figure 6.5.

The components of velocity have to be defined in the blade-fixed (êx2, êy2, êz2), 
coordinate system, in the deformed state of the blade, as shown in Figure 6.3.

The net relative velocity of airflow at the blade cross section is due to two 
components:

	 1.	The velocity due to the forward speed of the vehicle and the induced flow
	 2.	The velocity due to the blade motion

The net relative air velocity vector can be written as

	
 



V V vnet F P= − 	 (6.19)



VF  is the free stream velocity in the hub plane due to the forward speed of 
the vehicle and rotor inflow (as shown in Figure 3.2), which is expressed as

	


V V e V e R e exH zH xH zHF = − + = −cos ˆ  ( sin   ) ˆ  ( ˆ     ˆα α ν µ λΩ )) 	 (6.20)

where V is the forward velocity of the vehicle, ν is the induced velocity, and 
α is the angle of tilt of the rotor hub plane. In nondimensional form, µ rep-
resents the advance ratio and λ represents the total inflow through the rotor 
disk.

Velocity due to blade motion 


vP is given in Equation 6.6.
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Transforming the velocity components given in Equation 6.20, along the 
hub-fixed (êx1, êy1, êz1) rotating system, and combining with Equation 6.21, the 
net relative air velocity can be written as

	


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(6.22)
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Simplifying Equation 6.22 and transforming the velocity components to 
the blade-fixed (êx2, êy2, êz2) rotating system, using Equation 6.2, the net rela-
tive air velocity experienced at the cross section of the rotor blade can be 
written as
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Assuming small angles, and identifying the respective velocity compo-
nents, the tangential and normal relative air velocities at the airfoil cross 
section of the rotor blade can be written as

	 UT = −{−μΩ R sin ψ − Ω {e + r}}	 (6.24)

	 U R r
d
dt

RP p= − + − −µ β β ψ β λ( ) cosΩ Ω 	 (6.25)

The aerodynamic force along êz2 direction acting at the cross section of the 
rotor blade is given as

	 Fz = L cos ϕ + D sin ϕ

Assuming ϕ to be small
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Substituting the velocity components, the force per unit length can be writ-
ten as
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(6.26)

Nondimensionalizing various quantities as e
e
R

r
r
R

= =, , and converting 

the time derivative flap term with respect to nondimensional time ψ = Ωt 
(denoted by “dot”), the aerodynamic lift force per unit length can be written 
as



140 Fundamentals of Helicopter Dynamics

	 F R Ca
e r

e r
z =

+ +

− + + +

1
2

2

2

ρ
µ ψ θ

µ ψ µ β β
( )

sin

  sin   ( )c
Ω con

p oos ψ β λ+ +















r  	 (6.27)

Taking moment about the flap hinge and integrating over the length of the 
blade, the aerodynamic flap moment can be obtained as

	 M F r drz
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	 (6.28)

Nondimensionalizing the integral,
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Substituting for Fz from Equation 6.27 and integrating over the length of 
the blade, the aerodynamic flap moment  can be obtained. While integrating 
over the length of the rotor blade, it is assumed that the rotor inflow λ is con-
stant over the blade span. The aerodynamic moment is given as
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	 l R e R e= − = −( )/ 1 	 (6.30)

Combining the inertia moment (Equation 6.14), the aerodynamic moment 
(Equation 6.30), and the elastic moment of the root spring due to flap defor-
mation, the flap dynamic equation can be formulated. Nondimensionalizing 
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time derivatives, combining various terms and rearranging them in order, 
the flap equation can be written as
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(6.31)

where γ ρ=  aCR
Ib

4

 is the Lock number and I
ml

b = 
3

3
 is the blade mass 

moment of inertia about the flap hinge.
Let us first discuss about the form of the flap equation in forward flight, 

given in Equation 6.31. The equation of motion is a linear differential equa-
tion with time-varying periodic coefficients associated with the advance ratio 
µ. In addition, it is evident from the equation that, for a first harmonic blade 
pitch input (θcon), the flap response of the blade will have higher harmonics.

There is no closed solution for Equation 6.31. It may be noted that this 
equation was formulated neglecting reverse flow, stall, and compressibility 
effects. In the early days of helicopter development, considerable attention 
was paid to this equation since its solution provides an important concept on 
the stability of periodic systems. The stability of the solution is analyzed by 
using the Floquet–Liapunov theory. Another approximate approach was to 
use multiblade coordinate transformation, which converts the lower-order 
periodic systems into constant coefficient terms, but higher-order periodic 
terms will still remain in the equation. Therefore, after performing the mul-
tiblade coordinate transformation, the remaining higher harmonic coeffi-
cients are neglected, and the stability of the system is analyzed using the 
approximate constant coefficient equation.

One can obtain, for a given initial condition, the time response of the homo-
geneous part of the flap equation (Equation 6.31), by numerical integration 
scheme. For the sake of academic interest, the homogenous part of Equation 
6.31 is solved for two values of advance ratio. They are µ = 0.5 and 1.4. The ini-
tial condition is taken as β(0) = 0.06 and β( ) .0 0 0= . Figure 6.6 shows the flap 
response for these two different values of advance ratio. It can be seen from 
the response that, for µ = 0.5, the flap response shows a damped behavior, 
but for µ = 1.4, flap response shows an undamped oscillatory behavior. For 
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small values of advance ratio, the response is stable, and for high values of 
advance ratio, the flap response becomes unstable. Fortunately, for the case 
of real helicopters, the value of advance ratio is less than µ = 0.4. Therefore, 
even though the flap equation of a rotor blade is having periodic coefficients, 
the flap motion of the blade is well damped in the operating speed of the 
helicopters.

Considering hovering condition, Equation 6.31 can be simplified by setting 
an advance ratio µ = 0. The simplified flap equation applicable for hovering 
condition can be written as
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	 (6.32)

Equation 6.32 resembles the dynamics of a single-degree-of-freedom 
spring–mass–damper system. The coefficient of β corresponds to the stiff-
ness effect, the coefficient of β  represents the damping, and the β  term cor-
responds to the inertia effect.

A spring–mass–damper system can be represented by the dynamical 
equation.

	  X
c
m

X
k
m

X
F
m

t+ + = ( ) 	 (6.33)
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Figure 6.6
Flap response of a rotor blade for a given initial condition at different advance ratios.
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Rewriting Equation 6.33, by assuming that the system is an underdamped 
system,

	  X X X F t+ =2 2ςω ωn n+ ( ) 	 (6.34)

where the natural frequency ωn
2( )  and the damping ratio (ζ) are defined as

k
m n= ω2  and 

c
m

c
c

c
mc

c
n= = ς ω2  with c kmc = 2  and ς = c

cc

.

Comparing term by term between Equations 6.32 and 6.34, the nondimen-
sional rotating natural frequency in the flap mode ( )ωRF  is given by
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2 1 2 	 (6.35)

where the nondimensional nonrotating flap frequency is given by

	 ω β
NRF

b

=
K

I Ω2 	 (6.36)

From Equation 6.35, it can be seen that the effect of root spring Kβ is to 
increase the rotating natural frequency in the flap mode. Similarly, the 
hinge offset also increases the flap natural frequency. Note that the rotating 
natural frequency in the flap mode is always greater than 1/rev. Generally, 
for articulated rotor with a hinge offset of e = 0 02.  to 0.05, the nondimen-
sional rotating flap natural frequency is about 1.015 to 1.04. For hingeless 
rotor blades, the nondimensional rotating flap natural frequency is around 
1.09 to 1.1/rev, and such a high natural frequency corresponds to a large 
hinge offset of an equivalent articulated blade ( . . )e � ∼0 11 0 12 . It is shown 
earlier that a high value of flap natural frequency results in large control 
moments (or hub moments). Large control moment provides a large margin 
for center of gravity (c.g.) movement in the helicopter for trim purposes, in 
addition to providing good maneuvering capability. However, large control 
moment also results in higher vibratory loads from the rotor to be transmit-
ted to the fuselage.

The damping in the flap mode is given by (comparing Equations 6.32 and 
6.34),

	 2
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4
3

4 3ςω γ
n l e l= +





 	 (6.37)
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Since ω ωn = RF , the damping ratio in the flap mode can be written as

	 ς γ
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4
3

4 3

RF

l e l 	 (6.38)

For small values of flap hinge offset e , the length of the blade l ≈ 1. Now, 
for typical values of Lock number γ (in the range of 6–8), and for the nondi-
mensional rotating flap natural frequency ωRF  close to unity, the damping 
ratio ς = 30% ~ 50%. This is a very high value of damping for any vibrating 
system, and this damping is due to aerodynamics. Because of high damping, 
the flap motion of a rotor blade is a well-damped mode, and hence, the flap 
response reaches its steady-state value, to a given step input in pitch angle, 
in a very short time, that is, within the time taken for one rotor revolution. In 
practice, the actual value of damping in the flap mode may be around 25%, 
which, itself, is very high. The damped natural frequency of the blade in the 

flap mode ω ω ζd n= −( )1 2  can be less than 1/rev.

Pitch–Flap (δ3) Coupling

Pitch–flap coupling is employed in a rotor blade to introduce a pitch change 
during flap motion. This coupling, known as δ3 coupling, can be introduced 
geometrically in articulated blades using a kinematic arrangement in the 
hinge, as shown in Figure 6.7. In hingeless and bearingless rotors, during 
operation, because of elastic deformation, this coupling is always present.

Mathematically, the effect of pitch–flap coupling is represented as a change 
in blade pitch angle due to flap motion by the expression

	 Δθ = −KPββ	 (6.39)

where Δθ is the change in pitch angle due to flap motion, β is the flap angle, 
and KPβ is the pitch–flap coupling parameter.

From Figure 6.7, it can be noted that the blade rotation about the hinge is 
denoted as q. The component of rotation q, defining the flap motion of the 
blade, is β = q cos δ3, and the component of q along the blade axis represent-
ing pitch change is Δθ = −q sin δ3. Replacing q in terms of flap angle β, the 
change in blade pitch angle due to flap deflection becomes Δθ = −β tan δ3. 
Hence, it is evident that KPβ = tan δ3. For positive values of pitch–flap cou-
pling, a flap-up motion produces a decrease in the pitch angle (nose down) 
of the blade, and a negative value of pitch–flap coupling increases the pitch 
angle (nose-up change) for flap up motion.
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The effect of this pitch–flap coupling is to increase the stiffness of the blade 
in flap motion, which, in turn, increases the flap frequency. The pitch–flap 
coupling modifies the flap dynamics. For simplicity, the influence of pitch–
flap coupling on the flap equation of a blade in hover is given below.

Earlier, the equation of motion was derived for flapping motion without 
the δ3 coupling. The effect of this coupling can be introduced easily (in a 
quasistatic manner) by replacing θcon by the modified pitch angle (θcon − KPββ) 
in the flap equation given in Equation 6.32. Assuming KPβ to be positive, the 
flap equation for a blade with pitch–flap coupling under hovering condition 
can be written as
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(6.40)

From Equation 6.40, it is seen that the effect of Kpβ is to modify the stiffness 
term (i.e., coefficient of β). Since the additional term depends on Lock number 
γ, this underlined term is also referred to as aerodynamic stiffness due to the 

Blade

Flap hinge

δ3

Ω

Hub

Ω

q

Figure 6.7
Geometric arrangement showing pitch–flap coupling.
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δ3 effect. A positive value of Kpβ increases the flap natural frequency, and a 
negative Kpβ decreases the natural frequency in the flap mode. For positive 
values of Kpβ, because of the increased stiffness, the flap response is reduced. 
Generally, this coupling is geometrically introduced in tail rotors to reduce 
its flap response. The typical value of Kpβ is about 1.0. For hingeless and bear-
ingless rotors, this coupling depends on blade deformation in the lag mode, 
and therefore, it depends on the inertial and structural characteristics of the 
blade and on the aerodynamic loads.

Pitch–Lag (δ1) Coupling

Similar to pitch–flap geometric coupling, one can also form pitch–lag cou-
pling. For an articulated rotor blade, the pitch–lag coupling can be intro-
duced by kinematic arrangement, and the pitch change due to lag motion 
can be expressed as

	 Δθ = − KPςς	 (6.41)

For positive values of KPς, lag back motion (i.e., for negative lag deforma-
tion, (−ς)) introduces a pitch-down attitude, and for negative values of KPς, 
lag back motion produces a nose-up attitude of the blade. The pitch–lag cou-
pling is known to have a very strong influence on the damping in lag mode. 
Combining both δ3 and δ1 effects, the net change in the pitch angle of the 
blade due to flap and lag motions can be written as

	 Δθ = KPςς − KPββ	 (6.42)

(It should be pointed out that the sign convention for KPς may differ from one 
reference to another. Hence, one must be consistent while formulating the 
equations of motion.)

In practical design of rotor blades, (δ1) coupling is not introduced in the con-
struction of the blade. However, these (δ1 and δ3) couplings are effectively intro-
duced in an elastic blade due to their deformation in the flap and lag modes.

Structural Flap–Lag Coupling

Even though helicopter blades are long, slender flexible beams, for the pur-
pose of analysis, they can be idealized as a rigid blade with root springs. 
These idealized models provide information about the essential features of 
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helicopter blade dynamics and coupled rotor/body dynamics, and hence, 
these models are widely used both in the design and the fundamental under-
standing of the dynamics of the rotor blades. One of the major limitations of 
this model is that only the fundamental modes of the blade are represented. 
Therefore, for loads and vibration analysis, these models are not suitable. 
Since most of the blade flexibility is concentrated near the root of the blade, 
deformation of the blade takes place about these flexible locations, which 
form the virtual hinge. An idealized model of a blade undergoing flap and 
lag motions is shown in Figure 6.8.

The rotational springs Kβ and Kς represent the equivalent spring constants 
representing the flexibility of the blade in the flap and lag deformations, 
respectively, and they are orthogonal to each other. Angle θ represents the 
blade pitch angle. Note that, depending on the location of the pitch bearing, 
during pitch angle change, the spring assembly can rotate through the same 
angle (if the pitch bearing is in-board of the spring assembly, say, at location 
A in Figure 6.8) or it need not rotate at all (if the pitch bearing is out-board of 
the spring assembly at location B in Figure 6.8). However, one can theoreti-
cally form a general approach such that when the blade rotates through a 
pitch angle θ, the spring assembly rotates through an angle Rθ. When R = 1, 
the flap–lag coupling is in unity, and when R = 0, there is no flap–lag cou-
pling. This parameter R simulates the condition on the location of pitch bear-
ing with respect to flap–lag hinges; if the pitch bearing is in-board of the 
spring assembly, the value of R = 1; if the pitch bearing is out-board of the 
spring assembly, the value of R = 0.

The formulation of the relationship between the flap–lag deformation of 
the spring and their respective moments can be obtained by considering a 

Κβ

θ

θ

A

B

z

y

x

Κζ

Figure 6.8
Idealized rotor blade for flap–lag dynamics.
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flap rotation β and a lag rotation ζ of the spring assembly. Let us now for-
mulate the relationship between flap and lag moments, and flap and lag 
deformations. Consider the case where the pitch bearing is in-board of the 
spring assembly. For a given pitch angle θ, the spring assembly will also 
rotate through the same angle θ, as shown in Figure 6.8. The coordinate sys-
tem (x, y, z) represents the system before pitch input. The coordinate system 
(x1, y1, z1) represents the system after rotating through angle θ about the x (or 
x1) axis.

Let us assume that flap deformation is represented by an angular rotation 
−β about the y axis (note that the negative sign denotes clockwise rotation 
and the positive value of β refers to the flap-up deformation) and the lag 
deformation is represented by an angular rotation ζ about the z axis (the 
positive value of ζ represents the lead-forward deformation of the blade), as 
shown in Figure 6.9.

Assuming that the rotation angles are very small, the deformation of the 
spring assembly can be written as follows:

The spring Kβ will be rotated through an angle −β cos θ + ζ sin θ about 
the y1 axis.

The spring Kζ will be rotated through an angle ζ cos θ + β sin θ about 
the z1 axis.

The applied moment about the y1 axis is −My1 = Kβ (−β cos θ + ζ sin θ).
The applied moment about the z1 axis is Mz1 = Kζ (ζ cos θ + β sin θ).

θ

x

θ
–βB

Κβ

Κζ A
y

y1

zζz1

Figure 6.9
Flap and lag deformations.
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Resolving these moments along the y and z axes system, we have

	 −My = −My1 cos θ – Mz1 sin θ

	 Mz = Mz1 cos θ – My1 sin θ

Substituting the respective moments, the relation between the flap and lag 
moments and the flap and lag deformations can be written in matrix form as

	
M

M

K K

K K
y

z












=

+

− −
β ζ

β ζ

θ θ

θ θ

cos sin

sin cos

2 2  

( )    
  

( )  

( )

− −

+















K K

K K

β ζ

β ζ

θ θ

θ θ

sin cos

sin cos2 2

ββ
ζ












  	 (6.43)

It may be noted that, in Equation 6.43, flap-up is positive (i.e., the posi-
tive value of β represents flap-up condition) and lead-forward is positive (the 
positive value of ζ represents lead-forward condition). 

If the pitch bearing is out-board of the flap and lag spring assembly, the 
change in pitch angle will not rotate the spring assembly. In this case, the 
moment deformation relation can be written as

	
M K

M K
y

z

=

=
β

ς

β

ς 	 (6.44)

Combining Equations 6.43 and 6.44, the moment–deformation relationship 
can be written in a general form as

	
M

M

K K

K K R

R Ry

z












=

+

− −
β ζ

β ζ

θ θ

θ

cos sin  

( )sin  

2 2

ccos   
  

( )sin  cos

( sin cosR

K K R R

K KR Rθ

θ θ

θ θ
β ζ

β ζ

− −

+2 2 ))
 



























β
ζ

	 (6.45)

From the above relationship, it can be seen that, because of the coupling 
term, a flap motion introduces a lag moment and a lag motion produces a 
flap moment. This type of coupling is called “structural flap–lag coupling.” 
For θ = 0, the coupling is 0. Also, when (Kβ − Kς) is equal to 0, the coupling is 0 
for all values of θ. This condition is known as “matched stiffness” blade con-
figuration. In general, practical blades do not have matched stiffness (chord-
wise bending stiffness is ~20–40 times greater than flap bending stiffness). 
However, it is possible to design a blade to have matched stiffness in flap and 
lag; thereby, one can eliminate structural flap–lag coupling.

These various coupling factors significantly influence the aeroelastic 
behavior of the rotor blade and, hence, must be treated in a proper manner 
while performing rotor blade aeroelastic analysis.
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Isolated Blade Lag Dynamics in Uncoupled Mode

Consider a rigid blade with a root offset and a root spring undergoing only 
lead–lag motion, as shown in Figure 6.10.

The rotor blade is hinged at a distance e from the center of the hub, and a 
spring representing the lead–lag stiffness is situated at the hinge. The spring 
constant is taken as Kζ. The rotor blade is undergoing a lag deformation ζ 
about the hinge, as shown in Figure 6.10. During lag deformation, the root 
spring Kς and a component of centrifugal force provide restoring moments 
to lag deformation ς. The equation of the motion of the blade can be obtained 
by balancing the moment about the root hinge. Assume that the mass of the 
blade is uniformly distributed along the blade reference axis.

The reference coordinate systems are given as

êx1, êy1, êz1 are the unit vectors of the hub-fixed rotating coordinate sys-
tem, with origin at the hub center.

êx2, êy2, êz2 are blade-fixed rotating system in the deformed state of the 
blade, with origin at the hinge offset location. Note that unit vectors 
êz1 and êz2 are parallel and are normal to the plane of Figure 6.10.

Ω

ζ

e

x P

c.f.

Κζ

êy1

êx2

êx1

Figure 6.10
Idealized offset hinged spring restrained the rigid blade model for lead–lag motion.
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The position vector of any point P on the deformed blade can be written as

	 r e e r e e e r e r ex x x x yp = + = + +ˆ ˆ ˆ cos ˆ sin ˆ1 2 1 1 1ζ ζ 	 (6.46)

Assuming the constant angular velocity (Ω) of the blade, the absolute 
velocity and absolute acceleration of point P can be obtained.

The absolute velocity of point P can be obtained as (noting that the position 
vector is defined in the rotating coordinate system)

	
� ���v r e XrP P z P= { } +  ˆ  

rel
 Ω 1 	 (6.47)

Differentiating Equation 6.46 and substituting the respective quantities, 
the absolute velocity of point P can be written as

	
 

v r
d
dt

e r
d
dt

e e Xrx y zP P= − + +sin   ˆ cos ˆ ˆζ ζ ζ ζ
1 1 1Ω 	 (6.48)

Substituting for the position vector and taking the cross-product, the veloc-
ity vector can be expanded as

	


v r
d
dt

e r
d
dt

e e r ex y yP = − + + +sin ˆ cos ˆ ( cos )ˆζ ζ ζ ζ ζ1 1 1Ω −− Ωr exsin ˆζ 1

	
(6.49)

The absolute acceleration of the mass point P can be obtained from the 
relationship

	








a
d r

dt
dw
dt

Xr wX
dr

dt
p p

P
rel

p
r

=




 + +





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2

2 2
eel

p+ ( )wX wXr


	 (6.50)

(Note: ω = Ωêz1)
Differentiating Equation 6.46 and substituting various quantities, the abso-

lute acceleration of mass point P can be expressed as

	


a r
d
dt

r
d
dt

r
d
dtp = −







− − −cos sin cosζ ζ ζ ζ ζ ζ
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ζ ζ ζ ζ
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r

d
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r ey− −








Ω Ωsin sin ˆ

	

(6.51)

The inertia moment about the lag hinge is given by

	

Q r e r e X ma drx y

l

I = + −∫ ( cos ˆ sin ˆ ) ( )  ζ ζ1 1

0



p 	 (6.52)
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where l = R − e is the length of the blade, and m is the mass per unit length 
of the blade.

Substituting for 


ap  from Equation 6.51 in Equation 6.52 and simplifying, 
the inertia moment in lag mode, which is directed along the êz1  axis, can be 
written as

	 Q r
d
dt

er mdr
l

I = − +




∫ 2

2

2
2

0

ζ ζΩ sin 	 (6.53)

Invoking small angle assumption (i.e., sin ζ ≃ ζ), the inertia moment in the 
lag mode can be written as

	 Q I
d
dt

MX ebI c.g.= − +






2

2
2ζ ζΩ 	 (6.54)

where the mass moment of inertia of the blade about the lag hinge is 

I r m dxb

l

= ∫ 2

0
, the static mass moment about the lag hinge is MX rm dx

l

c g. . = ∫0
 

, 

and the mass of the blade is M mdx
l

= ∫0
.

For a blade with a uniform mass distribution, I
Ml

b =
2

3
, MX

Ml
c g. . = 2

, and 
M = m l.

Assume that the aerodynamic drag force acting on the blade gives rise 
to an aerodynamic moment QA about the lag hinge. Combining the inertia, 
aerodynamic and elastic root moments, the equation of the motion in lag 
mode can be written in symbolic form as, 

	 QA + QI = Kζζ	 (6.55)

Rearranging and substituting for QI from Equation 6.54,

	 I
d
dt

K MX e Qb c.g. A

2

2
2ζ ζζ+ + =( )Ω 	 (6.56)

Assuming uniform blade, the lead–lag dynamic equation can be simplified 
as

	
Ml d

dt
K

M l e
Q

2 2

2

2

3 2
ζ ζζ+ +





 = 

   Ω
A 	 (6.57)
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From Equation 6.57, the nondimensional rotating natural frequency in the 
lag mode can be written as

	 ω ω ζ
RL

RL

b

= = +
Ω Ω

K

I
e
l2

3
2

  	 (6.58)

where 
K

I
ζ

bΩ2  represents the nondimensional nonrotating natural frequency 

in the lag mode. Equation 6.58 can be written in a modified form as

	 ω ωRL RL= +
−N
e

R e
2 3

2
  	 (6.59)

(Note: l = R − e and ωNRL is the nondimensional nonrotating natural fre-
quency in lag mode.)

For articulated rotors, the root spring Kζ = 0. Therefore, the rotating nat-
ural frequency in the lag mode is directly proportional to the hinge off-
set e. Typically, in articulated rotors, the rotating natural frequency in the 
lag mode is around ωRL to= 0 25 0 3. . , which corresponds to a hinge offset 
of 

e
R
≈ 0 04 0 06 4 6. . ( % ~ %)to or  of the rotor radius. For hingeless rotors, the 

natural frequency in the lag mode is of the order of ωRL ≈ 0 7. , which corre-
sponds to an equivalent hinge offset of about 25%. When the rotating non-
dimensional natural frequency in the lag mode ωRL > 1, then the rotor blade 
is said to be a stiff-in plane rotor blade, and when ωRL < 1, the rotor blade is 
denoted as a soft-in plane rotor.

The aerodynamic moment in the lag mode (QA) is very small in magni-
tude compared to the aerodynamic moment in the flap mode. In the flap 
mode, the aerodynamic moment is due to the lift forces acting on the blade, 
whereas in the lag mode, the moment is due to aerodynamic drag force, 
which is about 1% of the lift force. Hence, the damping in the lag mode is 
usually very small. It may be noted that isolated lag mode is always stable. 
However, the lag mode can become unstable under certain operating condi-
tions. There are several types of instabilities involving the lag mode, namely, 
flap–lag aeroelastic instability and coupled rotor–fuselage aeromechanical 
instability (ground resonance or air resonance). Hence, to avoid these insta-
bilities, external lag dampers are provided in the rotor blades. The various 
aeroelastic instabilities will be discussed in later chapters.

Isolated Blade Torsional Dynamics in Uncoupled Mode

Now, let us consider the dynamics of the rotor blade undergoing only tor-
sion motion. The rotor blade is assumed to be a rigid blade that is free to 
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rotate about the pitch bearing. The torsional stiffness of the blade and the 
control system stiffness are combined together. This combined stiffness is 
represented as Kc, and it is assumed to be located at the root of the blade, with 
an offset a from the axis of the blade (bearing axis), as shown in Figure 6.11. 
The effective torsional stiffness of the blade is Kϕ = Kca2.

The reference coordinate systems are given as

êx1, êy1, êz1 are the unit vectors of the hub-fixed rotating coordinate sys-
tem, with origin at the hub center.

êx2, êη, êξ are the unit vectors of the cross-sectional coordinate system 
fixed to the blade, with origin at the cross section of the blade pitch 
axis. Note that unit vectors êx1 and êx2 are parallel, and they represent 
the axis of torsion rotation.

The blade pitch angle consists of two parts. They are θ0 representing the 
initial pitch angle of the blade due to the control input from the pilot, and ϕ 
is due to the elastic deformation of the root spring.

Ω

yθ

dmyΩ2

Ref. pitch axis êx1

θ

Tan δ = y/x Component of CF perpendicular to blade axis = dmyΩ2

θ

θ

θ = θ0 + φ 

φ

Ω

Κc

Κφ = Κc a2

a

x

dm CF

êz1 êz1
êξ

êη

êy1

êy1

êx1

ηm

yδ

Figure 6.11
Idealized blade for torsion dynamics.



155Isolated Rotor Blade Dynamics

The transformation relationship between the unit vectors along the hub-
fixed rotating coordinate system and the cross-sectional coordinate system 
can be written as

	

ˆ

ˆ

ˆ
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e
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

	 (6.60)

The coordinates η, ξ represent the cross-sectional position of any arbitrary 
point P from the origin at the reference pitch axis. The position vector of any 
mass point P in the cross section is given as


r re e ex y zp sin(= + + + + −ˆ cos( )ˆ sin( )ˆ1 0 1 0 1 0η θ φ η θ φ ξ θ ++ + +φ ξ θ φ)ˆ cos( )ˆey ze1 0 1 	(6.61)

Assuming that the rotor angular rate Ω is a constant, the absolute velocity 
of the mass point P can be obtained from the relationship

	
� �� �
v e XrrP z= { } +  ˆP rel PΩ 1 	 (6.62)

Differentiating Equation 6.61 and substituting the respective quantities, 
the absolute velocity of point P can be written as
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(6.63)

Substituting for the position vector from Equation 6.61 and taking the 
cross-product, the velocity vector can be expanded as
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(6.64)

The absolute acceleration of mass point P can be obtained from the 
relationship

	

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(Note: ω = Ωêz1)
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The absolute acceleration of point P can be written as



a

d
dt

d
dt

e

p

x

=

− − + − +








2 0 0 1Ω η θ φ φ ξ θ φ φ
sin( ) cos( ) ˆ −−

+
− + − +







r e

d
dt

d
dt

xΩ 2
1

0

2

2 0

ˆ

sin( ) cos( )η θ φ φ η θ φ φ
 − +

+ +




 −

2

0

2

2

0

2
2

ξ θ φ φ

ξ θ φ φ η

cos( )

sin( ) c

d
dt

d
dt

Ω oos( ) sin( )

ˆ

cos(

θ φ ξ θ φ

η θ

0
2

0

1

+ + +

























+

Ω

ey

00

2

2 0 0

22

+ − + − +




φ φ η θ φ ξ θ φ φφ

) sin( ) sin( )
d
dt dt

dd
ddt dt

e
d

z2 0 1

2

− +















ξ θ φ φ

cos( ) ˆ
	

		  (6.66)

The inertia moment about the blade root can be obtained by integrating 
over the volume of the blade as

	


 

M r X a dvI pp b
vol

= −∫   ( )  ρ 	 (6.67)

where ρb is the mass per unit volume of the blade.
Since we are interested in the torsional motion, let us consider only the 

moment about the reference blade axis (êx1 component). Substituting the posi-
tion vector and the acceleration vector in Equation 6.67, taking the vector 
cross-product, and performing the integration over the cross section, the tor-
sional inertia moment can be written as

	
( ) ( ) ( )sin( )M I I
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where the cross-sectional integrals are defined as

	 ρ η ρ ξ ρ ηξξξ ηη ηξb b b
2 2dA I dA I dA Im m m= = =∫∫ ∫∫ ∫∫; ; 	 (6.69)

In Equation 6.68, the integration is performed over the length l of the blade.
Assuming a uniform cross section along the length of the blade, Equation 

6.68 can be integrated to obtain the total torsional inertia moment of the 
blade. The torsional equation of motion can be written, by balancing the 
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inertia, aerodynamic (MA), and elastic torsional moments about the reference 
axis, as

	
− + − − +l I I
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(6.70)

where Kϕ is the torsional spring constant at the root.
Assuming a small angle for torsional deformation ϕ,

	 sin (θ0 + ϕ) ≈ sin θ0 + ϕ cos θ0	 (6.71)

	 cos (θ0 + ϕ) ≈ cos θ0 − ϕ sin θ0	 (6.72)

Substituting Equations 6.71 and 6.72 in Equation 6.70 and neglecting 
higher-order terms, the torsional equation of motion can be written as
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  (6.73)

It can be seen from Equation 6.73 that the natural frequency in torsion is 
dependent on the pitch angle θ0. If we assume that θ0 is equal to 0 and con-
sider only free vibration in torsional motion, the nondimensional rotating 
natural frequency in torsional mode can be written as

	 ω ω φ

ξξ ηη

ξξ ηη

ξξ ηη
RT

RT= =
+

+
−
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I I l

I I
I Im m

m m
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	 (6.74)

Generally, for rotor blades, Imηη ≪ Imξξ; therefore, the rotating natural fre-
quency in torsion can be written as

	 ω ωRT N RT
2 1+ 	 (6.75)

where ω φ

ξξ ηη
N

m m

K

lRT =
+(I I ) Ω2  is the nondimensional nonrotating torsion 

natural frequency of the blade.
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Equation 6.75 indicates that the angular rate Ω of the blade adds to the 
stiffness in the torsion. In general the rotating natural frequency in torsion is 
above 3.5/rev or more than 4/rev. When Kϕ = 0, the natural frequency in the 
torsion of a rotating blade is equal to 1/rev. This stiffness (or the restoring 
moment) arises due to the effect of the centrifugal force acting on an element 
of mass, which is away from the axis of rotation, as shown in Figure 6.11. This 
effect is known as the “tennis racquet effect.”

Damping in the torsional mode is provided by the aerodynamic moment 
due to the unsteady pitch motion of the blade. It may be noted that Theodorsen 
two-dimensional unsteady aerodynamic theory for an oscillating airfoil can 
be used for obtaining the torsional aerodynamic moment on the oscillating 
blade. In isolated torsional mode, the aerodynamic damping is reasonably 
high, and it is found to be in the order of 10% of the critical damping.
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7
Rotor Blade Aeroelastic Stability: 
Coupled Mode Dynamics

In the previous chapter, the dynamics of an isolated idealized rotor blade 
in various uncoupled modes was considered. In this chapter, let us consider 
the dynamics of coupled motion. The coupled dynamics leads to various 
aeroelastic instabilities in the rotor blade. The analysis of coupled flap–lag–
torsion dynamics of a rotor blade is rather complicated. However, one can 
bring out the essential characteristics of aeroelastic stability of the blade by 
considering two separate problems. They are (1) the coupled flap–lag dynam-
ics and (2) the coupled flap–torsion dynamics of an isolated rotor blade. The 
fundamental understanding of these two simplified cases is a precursor to 
the complicated study of coupled flag–lag–torsion and axial dynamics of an 
elastic rotor blade, which is essential for the analysis of rotor blade aeroelas-
tic stability, response, loads, and vibration.

Coupled Flap–Lag Dynamics

Consider a rigid blade having a hinge offset and root springs simulat-
ing the flexibility of the blade in the flap and lag modes, as shown in 
Figure 7.1. Lag and flap deformations are shown in Figure 7.2 for clarity. 
The formulation of the coupled flap–lag dynamic equations requires elas-
tic, inertia, and aerodynamic operators. Since these operators depend on 
blade motion, the kinematic description of blade motion forms the first 
step in the formulation of equations of motion. This requires the choice 
and definition of several hub-fixed and blade-fixed, deformed and unde-
formed state coordinate systems and the transformation relationships 
between them. Using the kinematic description of blade motion, the iner-
tia operator is formulated. Knowing the blade motion and the relative air 
velocity components, the aerodynamic operator is formulated. The pro-
cedure essentially follows the one outlined in the previous chapter on 
isolated blade dynamics in uncoupled modes. The systematic formulation 
of the equations of motion of coupled flap–lag dynamics is presented in 
the following. The equations of motion for the system shown in Figure 7.1 
can be written in symbolic form as
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Flap equation

	 Mβ + QIy + QAy = 0	 (7.1)

	 where Mβ is the moment due to root spring restraint, QIy is the inertia 
moment in the flap mode, and QAy is the aerodynamic moment in the 
flap mode.

Lag equation

	 Mζ + QIz + QAz = 0	 (7.2)

	 where Mζ is the moment due to the root spring, QIz is the inertia moment 
in the lag mode, and QAz is the aerodynamic moment in the lag mode.

Ω

θ

Kβ

Kζ

FIGURE 7.1
Idealization of rotor blade for coupled flap–lag dynamics.

Ω

Root spring assembly

β

ζ

Flap spring
Lag spring

êz1

êy1

êx1

FIGURE 7.2
Flap–lag deformations of the rigid blade.
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In the following, a systematic approach to the derivation of the coupled flap–
lag dynamics of the isolated rotor blade is presented.

Ordering Scheme

When deriving equations of motion for the coupled flap–lag dynamics 
of a rotor blade, a large number of higher-order terms have to be consid-
ered. Research has clearly indicated that many higher-order terms can be 
neglected systematically by using an ordering scheme.

The ordering scheme is based on defining a small dimensionless parame-
ter ε, which represents typical slopes due to the elastic deflections of the rotor 
blade. It is known that, for helicopter blades, ε is in the range 0.1 ≤ ε ≤ 0.15.

The ordering scheme is based on the assumption that

	 1 + O(ε2) ≌ 1

that is, the terms of order O(ε2) are neglected in comparison with unity. The 
orders of magnitude for various parameters governing this problem are 
given in the following.
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Coordinate Transformations

In the derivation of equations of motion of the helicopter, various reference 
coordinate systems are used. The transformation relationship between quanti-
ties referred in various inertial and non-inertial coordinate systems has to be 
established before deriving the equations of motion. The relationship between 
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two orthogonal coordinate systems with axes Xi, Yi, Zi and Xj, Yj, Zj with êxi, êyi, 
êzi and êxj, êyj, êzj as unit vectors along the respective axes is given as

	

e

e

e

T

e

e

e

xi

yi

zi

ij

xj

yj

zj



















=


















[ ]


	 (7.3)

where [Tij], the transformation matrix, can be found using the Euler angles 
required to rotate the jth system so as to make it parallel to the ith system.

Summary of Coordinate Systems for Flap–Lag Motion

The complete set of coordinate systems used in the development of the flap–
lag dynamics of the rotor blade is described in the following for convenience.

H: Inertial hub-fixed nonrotating system, with origin at the center of 
the hub. The unit vectors are êxH, êyH, êzH.

1k: Hub-fixed rotating system, which rotates with the kth blade, with 
origin at the center of the hub. The unit vectors are êx1, êy1, êz1.

2k: The origin is at the hinge offset, and it is parallel to the 1k system. The 
2k system rotates with the kth blade. The unit vectors are êx2, êy2, êz2.

3k: Undeformed coordinate system of the blade after precone, with ori-
gin at the kth-blade hinge offset. The unit vectors are êx3, êy3, êz3.

4k: Deformed coordinate system after undergoing flap angle βk and lag 
angle ζk with respect to the 3k system, with origin at the kth-blade 
hinge offset. The unit vectors are êx4, êy4, êz4.

Figure 7.3 shows the H and 1k coordinate systems. The H system is a hub-
fixed nonrotating coordinate system whose origin is at the center of the rotor 
hub. The 1k system is a coordinate system with origin at the center of the hub 
and rotates with the kth blade. This 1k system is rotated from the H system 
by an azimuth angle ψk about the Z1 axis, as shown in Figure 7.3.

The azimuth angle ψk is measured from êXH
, and counterclockwise rota-

tion is taken as positive. The transformation matrix between the H and the 
1k system is given by

	 T H

k k

k k1

0

0

0 0 1

  = −

















cos sin

sin cos

ψ ψ
ψ ψ 	 (7.4)
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where ψk is the azimuth position of the kth blade. It is defined as ψ k = 

ψ π+ −2
1

N
k( ), and ψ = Ωt represents the nondimensional time (or the azimuth 

location of the first blade).
N is the number of blades in the rotor system.
The 2k system is also a rotating system, with its origin at the hinge offset 

location, as shown in Figure 7.4. The 2k system and the 1k system are parallel, 
and the transformation matrix is given by

	 [ ]T21

1 0 0
0 1 0
0 0 1

=
















	 (7.5)

Z1, ZH

X1

YH

Y1

XH

ψk

Ω

FIGURE 7.3
Hub-fixed nonrotating and rotating coordinate systems.

X1, X2

Z1

Z2

Y2

Y1

e1

FIGURE 7.4
Blade root–fixed rotating axis system, with origin at the hinge offset.
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Rotating the 2k system by an angle βp (precone angle) about the Y2 axis, the 
3k system is obtained, which is shown in Figure 7.5. Assuming that βp is very 
small, one can make the small assumption such that sin βp ≈ βp and cos βp ≈ 
1. The transformation matrix is given by

	 [ ]T32

1 0

0 1 0
0 1

=
−






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






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
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β

β

p

p

	 (7.6)

It may be noted that, in the undeformed state, the reference axis of the kth 
blade is along the X3k axis.

The 4k system is the blade-fixed deformed coordinate system. Considering 
flapping and lagging motion, the 3k system is rotated first by flap angle βk 
and followed by lag angle ζk (i.e., first, a clockwise rotation about êy3k, fol-
lowed by a counterclockwise rotation about the rotated êz3k axis), as shown in 
Figure 7.6. The sequence of rotation is flap followed by lag. The transforma-
tion matrix [T43] can be written as
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
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	 (7.7)

(Note: X3i, Y3i, and Z3i represent the intermediate coordinate system after 
executing flap rotation.)

YH Y2, Y3

XH

Z2

Z3
ZH

X3

Z2

βp

FIGURE 7.5
Undeformed reference state of the kth blade with precone.
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Assuming small angles [ζk,βk ≈ O(ε)], the transformation matrix can simpli-
fied as

	 [ ]T
k k

k k k

k

43

1

1

0 1

= − −
−















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


ζ β
ζ ζ β
β

	 (7.8)

Acceleration of a Point “P” on the kth Blade

Considering the rigid rotor blade to be a straight line, the position vector 
(from the hub center) of a point “P” on the kth blade in the deformed state is 
given as (using the inverse of the transformation given in Equation 7.7)

	



r ee xe ee x

x

e

e
x x x k k x

k y

P = + = +
+

ˆ ˆ ˆ cos cos

sin

ˆ

ˆ
1 4 1 3ζ β

ζ 33 3+ x ek k zcos sin ˆζ β 	 (7.9)

(Note that the position vector of point P consists of two parts, namely posi-
tion from the hub center to the hinge and position from the hinge to point P.)

Writing the position vector in the 1k system (using Equations 7.5–7.7), we 
have

	



r e x x e x ek k k k x k yP p= + − +( cos cos cos sin )ˆ sin ˆζ β ζ β β ζ1 11

1+ +( cos cos cos sin )ˆx x ek k k k zζ β β ζ βp
	 (7.10)

X3

X3i

X4

Y2, Y3, Y3i
Z4, Z3i

Z2
Y4

βk

ζk

Z3

X2
βp

FIGURE 7.6
Deformed state of the blade after flap and lag rotations.
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Making small angle assumption, the position vector can be written as

	


r e x x e x x x eek x k y k zp p P= + − + + +( )ˆ ( )ˆˆβ β ζ β β1 1 1 	 (7.11)

The absolute velocity of point P can be obtained as (note that the rotor is 
rotating at a constant angular velocity Ωêz1)

	
� �� �
v e Xrr zP P Prel

= { } + Ωˆ 1 	 (7.12)

Differentiating Equation 7.10 and substituting the respective quantities, 
the absolute velocity of point P can be written as (after nondimensionalizing 
the time derivative with rotor angular velocity Ω) (note that a small angle 
assumption is used in making the approximation and, also, higher-order 
terms are neglected)

	
� � � � � �
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	 (7.13)

The absolute acceleration of mass point P can be obtained from the expression
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(7.14)

Note: ω = Ωêz1

Differentiating Equation 7.10, and substituting various quantities in 
Equation 7.14, the absolute acceleration of mass point P can be obtained. 
Making a small angle assumption and neglecting higher-order terms, the 
acceleration at point P can be expressed as
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Rearranging the terms, the acceleration of point P on the kth blade is 
expressed as
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Using coordinate transformation matrices, the acceleration of point P on 
the blade is expressed in the 3k system as
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Distributed Inertia Force

The distributed inertia force per unit length of the kth blade is obtained from 
d’Alembert’s principle. The distributed inertia force acting on the kth blade 
is expressed as

	 pI p= −∫∫ ρ


a dA 	 (7.18)

where ρ is the mass density of the blade, and the integral is taken over the 
cross section of the blade.

Substituting the various components of acceleration from Equation 7.17 in 
Equation 7.18, the distributed inertia forces can be obtained in the blade-fixed 
3k system. The components of these distributed inertia loads are given by

	 pI px k k k k k k k km x x x x e x x3
2 2 2= + + + + + −Ω ζ ζ ζ β β β β β    ( )) +{ }2x k

ζ 	 (7.19)

	 pI py k k k k k k k km x x x x x3
2 2= + + + +{ }Ω ( )ζ ζ β β β β ζ ζ   	 (7.20)

	 pI p pz k k km x xe k3
2 2= − − −{ }+Ω  β β β ζ( ) 	 (7.21)

where the mass per unit length of the blade is given by m dA= ∫∫ ρ .

Root Inertia Moment

The inertia moment about the root hinge of the blade can be obtained by 
using d’Alembert’s principle by evaluating the integral of the vector product, 
which is given as

Q x x xe e ek k x k y k k zI = − + +ρ ζ β ζ ζ β( cos cos sin cos sinˆ ˆ ˆ3 3 33)Xa dA dx


p{ }∫∫∫ 	 (7.22)
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Substituting for acceleration from Equation 7.17 and making a small angle 
assumption after taking the vector cross-product and integrating over the 
cross section, the inertia moment in the component form can be written as 
(after neglecting higher-order terms)

	

Q q dx Q q dx Q qx k x k

l

y k Iy k z k z k

l

I I I I I3 3

0

3 3 3 3

0

= ==∫ ∫, , ddx
l

0
∫

	

where l = (R−e) is the length of the blade from the hinge offset, and

	
q m x xe x x xx k k k k k k k k kI 3

2 2 2 2 22= + + + −{ }Ω Ωζ ζ ζ ζ β ζ β ζ  	 (7.23)

	 q m x x xe xy k k k k kI p p3
2 2 2 22= + + + + +{ }Ω  β β β ζ β β( )( ) ( ) 	 (7.24)

	 q m x x xez k k k k kI p3
2 2 22= + − −{ }Ω  β β β ζ ζ( ) 	 (7.25)

Integrating over the length of the blade and simplifying, the inertia 
moment about the root can be obtained. Since we are interested in only the 
flap and lead–lag moments, expressions for these two components are pro-
vided in the following.

Inertia moments in flap and lag motion:

	 Q I I I eMXy k k k kI b c.g.b b p3
2 2 2 22≅ + + ++Ω Ω Ω Ω β ζ β β( ) ( )((   )β βp + k 	 (7.26)

	 Q I I eMXz k k k kkI b b c.g.p3
2 2 22= − + −+Ω Ω Ω ζ β ζβ β( ) 	 (7.27)

where I mx dx
R e

b =
−

∫ 2

0
 is the mass moment of inertia of the blade about the 

hinge, MX mx dx
R e

c.g. =
−

∫0
 is the first moment of mass of the blade about the 

hinge offset, and M mdx
R e

=
−

∫0
 is the mass of the blade.

Aerodynamic Loads

The aerodynamic loads for coupled flap–lag dynamics are obtained by using 
a quasi-static aerodynamic model. The blade is assumed to be a straight 
blade having a zero twist. A uniform inflow model based on the momentum 



169Rotor Blade Aeroelastic Stability

theory is used. Figure 7.7 shows the velocity components and the resultant 
aerodynamic forces acting on a typical cross section of the rotor blade. The 
blade is set at an initial pitch angle θcon. The oncoming air velocities UT and 
UP represent the tangential and perpendicular components, respectively.

The resultant velocity U and the inflow angle are given by

	 U U UT P= +2 2 	 (7.28)

	 tanφ = U
U

P

T

	 (7.29)

The effective angle of attack of the blade section is given as

	 α = θcon − ϕ	 (7.30)

The sectional lift and drag forces can be written, respectively, as

	 L U cC= 1
2

2ρ l 	 (7.31)

and

	 D U cC= 1
2

2
0ρ d 	 (7.32)

where ρ is the density of air, c is the blade chord, and Cl and Cd0 the aero-
dynamic lift and drag coefficients, respectively, which are functions of the 
angle of attack and the Mach number. Note that the sectional aerodynamic 
moment is taken as 0.

Assuming UP ≪ UT, one can make the approximation, U ≌ UT and tan ϕ ≌ ϕ.

α

φ Up

Fz4k

L

–Fy4k

D

φ

UT

θcon

U
φ

FIGURE 7.7
Relative air velocities and aerodynamic loads on a blade element.
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The expressions for lift and drag per unit length can be written, respec-
tively, as

	 L aU
U
U

c=






−1
2

2   ρ θT con
P

T

	 (7.33)

and

	 D U cCT= 1
2

2
0ρ d 	 (7.34)

Relative Air Velocity Components at a Typical 
Cross Section of the kth Blade

The cross-sectional aerodynamic loads are obtained in the deformed state of 
the blade. Hence, the components of velocity have to be defined in the blade-
fixed (êx4k, êy4k, êz4k) rotating coordinate system.

The net relative velocity of airflow has two components. They are (1) the 
forward speed of the vehicle (μΩR) and the induced flow (λΩR), and (2) the 
velocity due to blade motion.

Let 


VF  be the free-stream velocity of air defined in the hub plane. It is 
given as

	


V R e R e R e R exH zH k x k yF = − = − −Ω Ω Ω Ω Ωµ λ µ ψ µ ψˆ ˆ cos ˆ sin ˆ1 1 RR ezλˆ 1 	 (7.35)

Velocity at a point “P” on the reference axis due to blade motion in the 1k 
system is given as (from Equation 7.13)
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x e x ek y k z
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	 (7.36)

The net relative air velocity vector at the typical cross section of the blade 
can be written as

	
 



V V vknet air F P− = −1 	 (7.37)

Using the transformation relationships given in Equations 7.5 to 7.8, the net 
air velocity in the 4k system can be written as

	
 

V T T T Vk knet air net air− −=4 43 32 21 1[ ][ ][ ] 	 (7.38)
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The net air velocity can be written in symbolic form as

	



V U U Ue e enet air k R x T y z− = − −4 4 4 4ˆ ˆ ˆ  P 	 (7.39)

Using Equations 7.35 to 7.38, the radial, tangential, and perpendicular 
velocity components are obtained and are given as (for convenience, the 
length quantities are nondimensionalized with respect to the rotor radius 
R, and the time derivatives are nondimensionalized with the rotor angular 
velocity Ω).

	 U R ek k k k k kR p p= − − − + −{ }Ω ( ) cos sin (   )1 β β µ ψ ζ µ ψ β β λ ζ 	 (7.40)

U R x x e xk k k k k k kT p p= + − + + + + − −Ω ζ µ ψ µ ψ ζ β β λ ζ β βcos sin ( )  xx kζ2{ } 	 (7.41)

	 U R x xk k k k k kP p p p= + + − + + +{ }Ω ( ) cos ( ) ( )β β µ ψ β β λ β ζ β β1  	 (7.42)

Note that the velocity components UT and UP represent the oncoming air 
velocity in the directions, as shown in Figure 7.7. The velocity components 
can be simplified by neglecting higher-order terms with respect to the lead-
ing term. The final expressions for the air velocity components are given as

	 U R x x ek k k kT ≅ + + + +{ }Ω ζ µ ψ µ ψ ζcos sin  	 (7.43)

	 U R x xk k k k kP p p= + + + + +{ }Ω (   ) cos  ( )β β µ ψ λ β ζ β β 	 (7.44)

Aerodynamic Loads and Moments at the Blade Root

The aerodynamics lift and drag forces acting on a typical cross section are 
resolved along the blade cross-sectional coordinate system, as shown in 
Figure 7.7. They are given as

	 Fy4k = −L sin ϕ − D cos ϕ	 (7.45)

	 Fz4k = L cos ϕ − D sin ϕ	 (7.46)

Assuming that the drag is very small in comparison to the lift, and that 
the induced angle ϕ is very small, the sectional aerodynamic loads can be 
approximated as

	 Fy4k ≌ −Lϕ − D	 (7.47)
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	 Fz4k ≌ L	 (7.48)

Substituting from Equations 7.33 and 7.34, the sectional aerodynamic loads 
can be written as

	 F ac U U U
U C

ay k4
2

2
01

2
= − − +





ρ θP T con P

T d 	 (7.49)

	 F ac U U Uz k T4
21

2
= −( )ρ θcon P T 	 (7.50)

Note that the aerodynamic force along the x4k axis is taken as 0. The aero-
dynamic moment about the hinge at the root can be obtained by using the 
two forces in the 4k system, which is written as

	

Q xe X F F dxe ex k y k y k z k z k

l

A = +∫ ˆ ( ) ˆ ˆ4 4 4 4 4

0 	

(7.51)

where l = (R − e) is the length of the blade. Substituting the aerodynamic 
forces Equations 7.49 and 7.50, and using Equations 7.43 and 7.44, the aero-
dynamic moment about the hinge can be obtained. The components of the 
aerodynamic moment are given as

	 Q xF dxy k z k

l

A 4 4

0

= − ∫ 	 (7.52)

	 Q xF dxz k y k

l

A 4 4

0

= ∫ 	 (7.53)

Using the transformation relationship given in Equation 7.8, the aerody-
namic moments can be transformed to the components in the 3k system. 
Neglecting higher-order terms, it may be expressed as

	 QAy3k = QAy4k	 (7.54)

	 QAz3k ≌ QAz4k − βkζkQAy4k	 (7.55)

The detailed expressions for these aerodynamic moments in flap and lead–
lag motion are given in the following.
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Aerodynamic Loads

The aerodynamic loads are obtained using a quasi-steady aerodynamic 
model. The blade is assumed to be a straight blade having a zero twist. A 
uniform inflow model based on the momentum theory is used. Stall, com-
pressibility, and reverse flow regions have not been considered.
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The moment expression can be written in two parts as

	 Q Q Qy k y k y kA A
L

A
NL

3 3 3= + 	 (7.57)

where the superscript “L” represents the linear term and NL represents the 
nonlinear term.
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The aerodynamic moment in the lag can be written in two parts as

	 Q Q Qz k z k z k
NL

3 3 3= +A
L

A 	 (7.59)
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where the superscript “L” represents the linear term and NL represents the 
nonlinear term.

Root Spring Moment

The restoring moments due to root spring assembly can be written as (from 
Equation 6.45)

	 Mβ = (Kβ cos2 Rθ + Kζ sin2 Rθ)βk − (Kβ − Kζ) sin Rθ cos Rθ ζk	 (7.60)

and

	 Mζ = −(Kβ sin2 Rθ + Kζ cos2 Rθ)ζk + (Kβ − Kζ) sin Rθ cos Rθ βk	 (7.61)

Subscript “k” refers to the kth blade in the rotor system.
Substituting the various load expressions in Equations 7.1 and 7.2, the cou-

pled flap and lag equations of motion can be expressed in an expanded form. 
These equations are coupled nonlinear ordinary differential equations. The 
stability of the blade is analyzed using linearized perturbation analysis 
about a nonlinear equilibrium position. This analysis is usually denoted as 
“linearized aeroelastic stability analysis.” The procedure for the linearized 
stability analysis is described in the following.

	 1.	Assume that
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	 (7.62)

	 where θ0, β0, ζ0, and λ0 represent the equilibrium quantities. In 
forward flight condition, because of periodic loading, the equi-
librium quantities will also be time varying. However, in the spe-
cialized case of hover, the equilibrium quantities are constants. 
θ β ζ λ( ), ( ), ( ), ( )t t t tand  are the perturbational quantities about the 
equilibrium (trim) state of the blade.

	 2.	Substituting the assumed form of the four parameters (Equation 7.62) 
in the flap–lag equations and collecting all the terms corresponding 
to the equilibrium state and the perturbational quantities and equat-
ing them separately to 0, we obtain two sets of equations. The first 
set of equations, containing only trim quantities (β0, ζ0, θ0, λ0), are 
called “trim or equilibrium state equations.” In forming the other set 
of equations containing the perturbational quantities, the product 
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of perturbational quantities is neglected due to their small order. 
This second set of equations containing the perturbation quantities 

β ζ θ λ( ), ( ), ( ), ( )t t t t( )  are called “linearized stability equations.” For 
example, the approximation used for converting a nonlinear term 
into linearized perturbation terms is shown in the following.

	 β ζ β β ζ ζ β ζ β ζζ βk k t t tt= + + ≅ + +( ( ))( ( )) ( )( )0 0 0 0 0 0
    	 (7.63)

	 It may be noted that the product of perturbation quantities are 
neglected while forming the linearized perturbation equations.

	 3.	 In forward flight, the equilibrium (or trim state) equations are non-
linear differential equations with time-varying coefficients. These 
equations are solved by time integration or by harmonic balance 
approach to obtain the steady-state response (equilibrium response) 
of the blade. In the case of hover, the equilibrium state equations are 
nonlinear algebraic equations that can be solved by the Newton–
Raphson method.

	 4.	The linearized perturbation equations are linear differential equa-
tions. For forward flight, they contain time-varying periodic coeffi-
cients. The stability analysis in forward flight has to be performed 
by using the Floquet–Lyapunov theory or the approximate method 
of multiblade coordinate transformation. In the case of hover, the 
equations are linear differential equations with constant coefficients. 
Following the standard procedure of eigenvalue analysis, the stabil-
ity of the system in hover can be analyzed. The eigenvalues appear as 
(sj = σj ± iωj) complex quantities, where σj represents the damping and 
ωj represents the frequency of the jth aeroelastic mode. If σj is nega-
tive, the mode is stable, and if σj is positive, the mode is unstable.

The whole exercise of aeroelastic stability analysis is carried out to identify 
whether a mode is stable or not and how the stability of the blade is affected 
by various system parameters and operating conditions.

Example

Let us consider the simplest case of hovering flight. Assume that μ = 0, 
βp = 0 and include pitch–flap and pitch–lag couplings. Let us represent 
the perturbation as
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177Rotor Blade Aeroelastic Stability

The assumption of constant inflow simplifies the problem. On the 
other hand, if we include the time variation in inflow λ( )t( ), one has to 
formulate an additional equation for λ using the perturbation momen-
tum theory, which is an extension of the momentum theory. This exten-
sion of formulating an additional equation for λ(t) is the fundamental 
basis for the dynamic inflow model, which is not covered in this basic 
book.

The inclusion of lag–pitch coupling (δ1) and pitch–flap coupling (δ3) 
modifies the pitch angle as

	
θ θ β ζ β ζβ ζ β ζ= − + + − +( ) ( ) con P P P PK K K K0 0

  	 (7.65)

It may be noted from Equation 7.63 that

	 θ θ β ζ θ β ζβ ζ β ζ0 0 0= − + = − +( ) ( ) ( )  con P P P PK K t K Kand  

	

where θcon is the control pitch input given at the blade root.
Substituting these expressions (Equations 7.64 and 7.65) in the flap–lag 

equations and separating the equilibrium and perturbation equations 
yield the following (for the sake of simplicity, the nonlinear terms in 
aerodynamic moments are neglected in formulating the equations given 
in the following).

Equilibrium Equations

The equilibrium state equations in the flap and lag modes are given as 
follows:

Flap mode:
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Lag mode:
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Dividing by IbΩ2 and collecting terms, the equilibrium equations in nondi-
mensional form can be written as follows:

Equilibrium equation in the flap:

	

ω

ω

θ ω θ β

ω
NRF con NRL con

NRF NRL

2 2 2 2
0

2 2

cos sinR R+( )
− −( )ssin cosR R

eMX

I
e

l l

θ θ ζ

β β γ

con con

c.g.

b

0

0 0

4 3

2 4
2

3
+ + + + + ee K

e e K

l

l l l

2
2

0

4 3
2

2

0

2

4
2

3 2













− + +








P

P

β

ζ

β

ζ




= + +








− +




γ θ λ
2 4

2
3 2 3 2

4 3
2

2

0

3 2

con
l l l l l

e e e 












	 (7.68)

Equilibrium equation in the lag:
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where
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Linearized Stability Equations (Perturbation Equations)

The linearized perturbation equations can be written as follows:

Perturbation equation in the flap mode:
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Perturbation equation in the lag mode:

	

− + + −( sin cos ) (   )sin coK R K R K K Rβ ζ β ζθ θ θζ2 2
con con con

� ss

 

R

I I eMX

aCR

θ

β

ρ

β

ζ β ζ

con

b b c.g.

�

��� �� �− + −

+

Ω Ω Ω2 2
0

22

44 2

0
4 3

0

3

02

2
4 3

2
3

Ω

− +












+

−

C
a

l
e

l ld �� ��ζ β λ

θ ��� ��

�

β λ ζ

θ λ

l l l

l l

e

e

4 3

0

0

3

3 2

4 3 3

3 2

+








+








− +








































= 0

	

(7.71)

It should be noted that, in Equations 7.70 and 7.71, θ0 = θcon − KPββ0 + KPζζ0 
and   θ β ζβ ζ= − +   K KP P .

The inflow λ0 can be obtained from either of the two following equations:
The global momentum theory provides the constant inflow as

	 λ0 = CT

2
	 (7.72)
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The local momentum theory relates inflow at 75% of the radius to the 
blade pitch angle:

	 λ σ
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where θ0 = θcon − KPββ0 + KPζζ0.

The set of equilibrium, perturbation, and inflow equations can be solved 
for two different sets of conditions. They are as follows: (1) given the thrust 
coefficient CT, evaluate the equilibrium and the stability of the system; and 
(2) given the pitch angle θcon, evaluate the equilibrium and the stability of the 
blade.

Problem 1

Given the thrust coefficient CT, solve for the equilibrium and stability 
conditions. In this approach, knowing CT, a preliminary estimate of λ0 

can be obtained as λ0 = CT

2
.

Using the relationship,

	 C
a
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σ θ λ
2 3 2

0 0 	 (7.74)

where θ0 = θcon − KPββ0 + KPζζ0.
Assuming β0 and ζ0 to be 0, an initial estimate of the pitch angle θcon 

can be obtained from Equation 7.74. Solving the four equations (two 
equilibrium equations [Equations 7.68 and 7.69], the differential inflow 
equation [Equation 7.73], and the thrust coefficient equation [Equation 
7.74]) iteratively, the equilibrium quantities θcon, β0, ζ0, and λ0 can be 
obtained.

Problem 2

Given the pitch angle θcon, evaluate the inflow from the differential inflow 
equation (Equation 7.73) (by assuming that, in the first iteration, β0, and 
ζ0 is 0). Using the three equations (two equilibrium equations [Equations 
7.68 and 7.69] and the differential inflow equation [Equation 7.73]), solve 
iteratively for β0, ζ0, and λ0. The resulting thrust can be obtained from the 
thrust equation (Equation 7.74).
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Perturbational Stability Equations

The linearized perturbation equations (Equations 7.70 and 7.71) can be writ-
ten in matrix form as (after dividing by IbΩ2)

	 [ ] [ ] [ ]M C K
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= 0 	 (7.75)

where
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The elements of the damping and stiffness matrices are given as
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It is evident from these equations that the damping matrix is a function of 
equilibrium position. Therefore, depending on the operating condition and 
system parameters, the elements of the damping matrix will vary. For cer-
tain combinations of operating condition and system parameters, the cou-
pled flap–lag dynamic system can become unstable. The stability analysis is 
carried out as follows:

Assume a solution of the form

	




β
ζ

β
ζ


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








=












est 	 (7.76)

Substituting Equation 7.76 in the stability equation (Equation 7.75) yields
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The characteristics polynomial can be written as

	 (M11s2 + C11s + K11)(M22s2 + C22s + K22) − (C12s + K12)(C21s + K21) = 0	 (7.78)

Solving for all the roots, one can obtain the information about the stability of 
the system. The roots appear as complex conjugate pairs as sj = σj ± iωj, where 
σj represents the modal damping and ωj represents the modal frequency. If σj is 
positive, the mode is unstable, and if σj is negative, the mode is stable.

A parametric study can be performed to obtain the effect of each param-
eter on the stability of the rotor blade. In the open literature, several studies 
have been performed to analyze the flap–lag stability of the rotor blade in 
hover. Sample results are shown in Figure 7.8, which have been evaluated 
using the data given in Table 7.1.

The effect of the rotating natural frequencies of the blade in the flap and 
lag modes on the flap–lag stability is shown in Figure 7.8. The nondimen-
sional flap frequency is varied from 1.05 to 1.5, whereas the nondimensional 
lag frequency is varied from 0.8 to 1.8. Five different values of the blade pitch 
angle are considered from 0.2 to 0.6 rad in steps of 0.1 rad. The nondimen-
sional hinge offset of the blade is taken as 0.1. It may be noted that, for a given 
pitch angle, the region inside loop is an unstable zone and the region outside 
loop is a stable zone. The unstable region increases with an increase in blade 
pitch angle. An important point to note is that, unless the nondimensional 
lag frequency is greater than 0.95/rev, flap–lag instability does not occur. 
The region of instability depends on the pitch angle of the blade. The low-
est value of pitch angle at which the blade can go unstable is around 0.197 
rad. The results shown in Figure 7.8 indicate that flap–lag instability is more 
likely to be a problem of stiff-in plane rotors. Usually, main rotor blades are 
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soft-in-plane rotors (i.e., ωRL < 1 0. ); hence, flap‑lag instability is unlikely to 
occur. On the other hand, for stiff-in-plane tail rotors, flap–lag instability is a 
possibility at high thrust conditions.

It is shown in the literature that structural flap–lag coupling, pitch–flap, 
and pitch–lag couplings have a significant influence on the flap–lag stability 
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ω R
L 

(la
g 

fr
eq

ue
nc

y)

1.05
.8

.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

θ = 0.2
θ = 0.3
θ = 0.4
θ = 0.5
θ = 0.6

FIGURE 7.8
Stability boundary of flap–lag dynamics with coupling parameter R = 0.

Table 7.1

Data for the Flap–Lag Stability Analysis of the 
Main Rotor Blade

Variable Quantity

Number of blades, N 4
Air density at sea level, ρ (kg/m3) 1.224
Coefficient of drag, cd0 0.008
Weight of the helicopter, W (N) 45,000
Radius of the main rotor blade, R (m) 6.6
Chord of the main rotor blade, c (m) 0.5
Main rotor rotating speed, Ω (rpm) 300
Mass of the main rotor blade, m0 (kg/m) 11.24
Lift curve slope, a 2π
Precone, βp (°) 0
Hinge offset, e (m) 0.66
Flap–pitch coupling, Kpβ 0

Lag–pitch coupling, Kpζ 0
Structural flap–lag coupling parameter, R 0
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of the rotor blade. Using the equations given here, one can study the effect of 
various individual parameters on the flap–lag stability of rotor blade.

Coupled Flap–Torsion Dynamics in Hover

The aeroelastic stability of the coupled flap–torsion dynamics of an isolated 
rotor blade is similar to the divergence and bending–torsion flutter problems 
of a fixed wing. However, there are certain fundamental differences between 
the flap–torsion dynamics of a rotor blade and the bending–torsion problem 
of a fixed wing. The major difference is in the description of the unsteady 
aerodynamic load on the blade. In the fixed wing case, the unsteady wake 
from the wing is swept behind the wing, whereas in the rotary wing case, 
the wake is pushed down below the rotor. The wake structures are entirely 
different for the two cases. The prediction of unsteady aerodynamic loads 
on a rotor blade is very difficult, and it is still a topic of research. Therefore, 
for the purpose of understanding, a simple aerodynamic model, based on 
the fixed wing theory, will be used; however, certain modifications will be 
incorporated to make the model suitable for rotary wing aeroelastic analysis. 
Such a model will provide a good understanding of the fundamental aspects 
of the coupled flap–torsion dynamics. Another difference between the rotary 
wing and the fixed wing aeroelastic problem is the effect of rotation, which 
introduces a coupling between flap and torsion, when the blade sectional 
center of mass is offset from the feathering (pitching) axis.

Figure 7.9 shows a uniform blade with two springs at the root. The spring Kβ 
represents the flap spring, and the linear spring Kc represents the combined 
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FIGURE 7.9
Idealization of the rotor blade for coupled flap–torsion dynamic analysis and the coordinate 
systems.
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effect of control system stiffness and blade torsional stiffness. This spring is 
attached at the root with an offset a. The effective torsional stiffness of the 
blade is given as Kθ = Kca2.

The rotor blade undergoes flap deformation β, followed by a torsional 
deformation θ, as shown in Figure 7.9.

X1 − Y1 − Z1 represents the hub-fixed rotating coordinate system, which 
is also referred to as the “undeformed blade coordinate system,” with unit 
vectors êx1, êy1, êz1.

X2 − Y2 − Z2 represents the deformed blade coordinate system, with unit 
vectors êx2, êy2, êz2.

η − ξ represents the blade cross-sectional coordinate system, whose origin 
is at the reference elastic axis (EA) at a distance r from the hub center. The 
unit vectors along the cross-sectional coordinate system are êη, êξ.

The transformation relationship between the X1, Y1, Z1 and the X2, Y2, Z2 
axes system is given by
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	 (7.79)

The transformation between the X2, η, ξ and the X2, Y2, Z2 coordinate sys-
tems can be given as
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The position vector of any arbitrary point P in the cross section can be 
written as

	


r re e exP = + +ˆ ˆ ˆ2 η ξη ξ 	 (7.81)

Using these transformation relationships given in Equations 7.78 and 7.79, 
the position vector can be written as

	


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(7.82)
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Rewriting the position vector using a small angle assumption for flap 
deflection β, the position vector can be written as

	



r r e

e r
x

y

P = − +
+ − +

[ ( sin cos )]ˆ

( cos sin )ˆ (

β η θ ξ θ
η θ ξ θ

1

1 ββ η θ ξ θ+ +sin cos )êz1
	 (7.83)

Since the cross-sectional dimension of the blade is very small compared 
to the length, one can neglect the term β(η sin θ + ξ cos θ) in comparison to r. 
Neglecting this term, the position vector can be simplified as

	


r re e r ex y zP ≅ + − + + +ˆ ( cos sin )ˆ ( sin cos )ˆ1 1η θ ξ θ β η θ ξ θ 11 	 (7.84)

The absolute velocity of point P is

	
� �� ��

V XrrP P Prel
= ( ) +  ω 	 (7.85)

where 


ω = Ωêz1  is the angular velocity of the rotor system. Expanding Equation 
7.84, the absolute velocity of point P can be written as
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

+ + −( ){ } 
r ez
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	 (7.86)

Note that the time derivatives are taken w.r.t. nondimensional time ψ = Ωt.
The velocity at the reference EA at location x is given as

	
� �V re r ey zEA = +Ω[ ˆ ˆ ]1 1β 	 (7.87)

The absolute acceleration of point P is

	
� � ���� �� � � � �
a r Xr Xr X XrP P P P P= + + +ω ω ω ω2 ( ) 	 (7.88)

Substituting various terms and noting that Ω is a constant, the acceleration 
at point P in expanded form can be written as
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(7.89)
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The acceleration can be approximated by neglecting higher-order terms, 
such as θ2  and 2 θ η θ ξ θ( sin cos )+  in comparison to other terms. The simpli-
fied expression can be written as

	

� ��a rexP = − + − − − +{ }  ˆ ( cos sin ) ( sin cos )Ω2
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	 (7.90)

The cross-sectional inertia force and inertia moment about the reference EA 
can be obtained by evaluating the following integrals over the cross section.

	
 
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where ρb is the mass per unit volume of the blade.
Equation 7.92 can be written as

	 �q e e Xy zI = − + + ( cos   sin )ˆ ( sin cos )ˆ   (η θ ξ θ η θ ξ θ1 1 −−∫∫ ρb P
A

�
a dA) 	 (7.93)

Defining the cross-sectional integrals as follows:

Mass per unit length of the blade:

	 m dA= ∫∫ ρb

Static mass moment per unit length:
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Using the integrals given in Equation 7.94, the distributed inertia force per 
unit length of the blade can be written as

	 pIx1 = mΩ2r	 (7.95)

	 p m m m myI m m m m1
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β η θ ξ θ θ 	 (7.97)

The distributed inertia moment per unit length can be written as
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	 q r dAyI b1
2= − + − ∫∫Ω ρ η θ ξ θ( sin cos ){ } 	 (7.99)

	 q r dAzI b1
2= − − − − ∫∫Ω ρ η θ ξ θ( cos sin ){ } 	 (7.100)

Integrating over the cross section and simplifying, the distributed inertia 
moment per unit span can be written as
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	 q m m ryI m m1
2= − − + Ω ( sin cos )η θ ξ θ 	 (7.102)

	 q m m rzI m m1
2= − + − Ω ( cos sin )η θ ξ θ 	 (7.103)

The important sectional inertia forces and moments are shown in Figure 7.10.
The inertia moment about the root of the rotor blade, assuming a zero 

hinge offset, can be obtained from the expression
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Identifying the relevant quantities from the above integral, the torsional 
and flap moments at the blade root can be written as follows:

Torsional inertia moment at the root:

	 Q q r p drx x y
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{ }β 	 (7.105)

Assuming uniform properties along the span of the blade, Equation 7.105 
can be written in expanded form as

	

Q m m
R

I I RxI m m1
2

2

2
= − − + +




Ω ( cos sin ) (   )η ξ θ β θξξ ηη




+ − + −{ }
+

(   )sin cos (cos sin )

(

I I I R

m

ξξ ηη ηξθ θ θ θ

β η

2 2

m ccos sin ) ( sin cos )θ ξ θ η θ ξ θ θ− + +








m
R

m m
R

m m m

2 2

2 2







		
  (7.106)

Flap inertia moment at the root:
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FIGURE 7.10
Sectional inertia loads.
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Equation 7.107 can be expanded as

	

Q m m
R

m
R

m
R

m

yI m m1
2

2 3 3

2 3 3
= + + +

+




Ω ( sin cos )  

(

η ξ θ β β

ηη θ ξ θ θm mcos sin ) −



m
R2

2


Rewriting the root inertia moment in the flap as
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The coupled flap–torsion equations of motion can be obtained by moment 
balance at the root of the blade. These equations can be symbolically written 
as follows:

Flap equation:

	 QIy1 + Kββ + QAy1 = 0	 (7.109)

Torsion equation:

	 QIx1 + Kθθ + QAx1 = 0	 (7.110)

where QAx1 and QAy1 are the torsion and flap root moments, respec-
tively, due to the aerodynamic loads acting on the blade.

In evaluating the aerodynamic loads on a typical cross section of the 
rotor blade undergoing flap (plunging) and torsion (pitching) motions, 
care must be exercised. The unsteady aerodynamic loads acting on the 
rotor blade is very difficult to be evaluated because of the complex rotor 
wake piling up beneath the rotor. The first unsteady aerodynamic model 
was developed by Theodorsen (1935) for an oscillating thin airfoil under-
going pitching and plunging motions in an incompressible flow. This the-
ory is not directly applicable to the rotor blade because of the difference 
in the wake geometry. This theory was later modified by Greenberg (1947) 
to include the effect of pulsating oncoming flow and constant angle of 
attack. However, the wake geometry was similar to the Theodorsen model. 
Later, in 1957, Loewy (1957) considered a hovering model with wake lay-
ers beneath the rotor blade. This is the first two-dimensional unsteady 
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aerodynamic model applicable for rotor blades. The lift and moment 
expressions obtained in the Loewy theory are similar to those obtained 
in the Theodorsen theory, except that the lift deficiency function has a 
different form.

It is important to recognize that the Loewy theory is difficult to implement 
in a rotor blade analysis. Hence, the Greenberg or the Theodorsen model is 
used in evaluating rotor blade cross-sectional aerodynamic loads. However, 
in practical situations, the static airfoil data are dynamically corrected and 
used as a table look-up for calculating aerodynamic loads. Currently, efforts 
are underway to calculate unsteady aerodynamic loads using computational 
fluid dynamics (CFD) techniques.

For a highly simplified analysis, a quasi-steady aerodynamic approxima-
tion of the Theodorsen theory will be used in the following. This model is 
reasonable to bring out the essential features of coupled flap–torsion dynamic 
aeroelastic stability. It should be pointed out that the quasi-static aerody-
namic model based on the instantaneous effective angle attack used in the 
previous chapters and section (while considering flap dynamics and flap–lag 
dynamics) cannot be applied for coupled flap–torsion dynamics because this 
quasi-static aerodynamic model does not include the effects of the rate of 
change of the pitch angle of the blade. Hence, this model is inadequate to be 
used in coupled flap–torsion dynamics.

Let us now develop the aerodynamic loads acting on the rotor blade 
undergoing flap–torsion dynamics using a quasi-steady approximation of 
the Theodorsen unsteady aerodynamic theory. Consider an airfoil executing 

ηm

α

h

L(t)

UEA CM AC

M(t)

b(a + 1/2)

ba

b/2

bb

FIGURE 7.11
Typical cross section of a rotor blade undergoing plunging and pitching motions.
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a simple harmonic motion in pitching and plunging motions, as shown in 
Figure 7.11.

In Figure 7.11, b represents the blade semi-chord, EA represents the elastic 
axis, AC represents the aerodynamic center (at quarter-chord location), and 
CM represents the center of mass location of the cross section of the blade. 
The plunging motion is represented by the displacement of the point at EA 
by h, and the pitching motion is represented by α, measured with respect to 
the oncoming flow U.

The expressions for the unsteady lift and moment acting at the reference 
EA are given by the Theodorsen theory as

	 L t b h U ba UbC k h U b a( ) ( )  [ ]= + − + + + −


πρ α α πρ α2 2
1
2



 





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







α 	 (7.111)
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1
2

	 (7.112)
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	 (7.113)

where ρ is the density of air, b = C/2 is the blade semi-chord, C(k) is the 

Theodorsen lift deficiency function (complex quantity), and k
b

U
= ω

 is the 
reduced frequency parameter.

The first term in both L and MEA is called the “apparent mass term.” The 
second-order time derivative terms can be neglected in apparent mass terms 
because of their order of smallness in comparison to the blade mass. However, 
the α  term is retained since it represents aerodynamic damping. The quasi-
steady aerodynamic assumption relates to neglecting the unsteady wake 
effects by making C(k) = 1.0.

The simplified quasi-steady aerodynamic model can be written as

	 L t b U Ub h U b a( ) [ ]= + + + −
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Relative Air Velocity Components at a Typical Cross Section

The cross-sectional aerodynamic loads are obtained in the deformed state of 
the blade. Hence, the components of velocity have to be defined in the blade-
fixed deformed (êx2, êy2, êz2) coordinate system.

The net relative velocity of airflow has two components. They are (1) the 
forward speed of the vehicle (μΩR) and the induced flow (λΩR), and (2) the 
velocity due to blade motion.

Let 


VF  be the free-stream velocity of air defined in the hub plane. It is 
given as (from Equation 7.35)

	


V R R R ee ek x k y zF = − −Ω Ω Ωµ ψ µ ψ λcos sin ˆˆ ˆ1 1 1 	 (7.116)

The velocity at the reference EA at location r is given as (Equation 7.87)

	
� �V re r ey zEA = +Ω[ ˆ ˆ ]1 1β 	

The net relative air velocity vector at the typical cross section of the blade 
can be written as

	
  

V V Vknet air F EA− = −1 	 (7.117)

Using the transformation relationships given in Equation 7.78, net air 
velocity in the 2k system can be written as

	
 

V T Vk knet air net air− −=2 21 1[ ] 	 (7.118)

The net air velocity can be written in symbolic form as

	



V U e U Ue ek R x T y znet air P− = − −2 2 2 2ˆ ˆ ˆ
	 (7.119)

Using Equation 7.119, the radial, tangential, and perpendicular velocity 
components are written as (for convenience, the length quantities are nondi-
mensionalized with respect to R and the time derivatives are nondimension-
alized with rotor angular speed Ω)

	 U R R rkR = − +{ }Ω µ ψ β λ β βcos cos ( )sin 	 (7.120)

	 UT = Ω{+Rμ sin ψk + r}	 (7.121)
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	 U R R rkP = +{ }+Ω sin cos ( )cosβ µ ψ λ β β 	 (7.122)

Neglecting the radial velocity component, and assuming a small angle for 
flap deflection β, the velocity components can be written as

	 UT = Ω{Rμ sin ψk + r}	 (7.123)

	 U R R rkP = +{ }+Ω β µ ψ λ βcos  	 (7.124)

Before applying these velocity components for aerodynamic load evalu-
ation, one must identify the velocity components in relation to Figure 7.11. 
For the sake of simplicity, let us assume that the rotor is operating under 
hovering condition (μ = 0). Using Equations 7.123 and 7.124, the velocity com-
ponents, angle of attack, and its rate can be identified as

	
U r
h r R

= +
= − −
=

Ω
Ω Ω
β λ

α θ
	 (7.125)

	 

α θ= Ω

	 ba x
b= −A 2 	

(Note that xA represents the distance from the EA to the aerodynamic center 
in the blade cross section; Figure 7.11.)

Substituting the expressions given in Equation 7.125 in the unsteady lift and 
moment expressions given in Equations 7.114 and 7.115 yields the following:

Lift per unit span:

	 L t b r r b r R r b x( ) { }   ({ }( )= + − − + + −πρ θ πρ β λ θ2 2Ω Ω Ω Ω Ω Ω



A ))Ω θ  	(7.126)

Moment about the EA per unit span:

	
M t b r b x

r bx r R

EA A
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+ − −

πρ θ
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2

2
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Ω Ω Ω



 ++ + − Ω Ωr b xθ θ( )A


	 (7.127)

It is to be noted that lift acts normal to the resultant of the oncoming flow. 
For a small angle assumption for flap angle, the lift L(t) can be assumed to 
act along the z1 axis.
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Aerodynamic Flap Moment

The aerodynamic moment in the flap can be obtained from integrating the 
moment due to lift over the entire span of the blade, and it is given by

	 Q L t r dry

R

A 1

0

= − ∫ ( )   	 (7.128)

Substituting for the lift expression from Equation 7.126, the expanded 
expression for aerodynamic flap moment can be written as

	 Q b r R r r b x r
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Assuming uniform properties along the span of the blade, one can inte-
grate Equation 7.129 and obtain an expression for the aerodynamic flap 
moment about the root flap hinge.
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Noting that the lift curve slope of airfoil can be taken as a = 2π, Equation 
7.130 can be modified as
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Aerodynamic Torsional Moment

The aerodynamic torsion moment about the EA, acting on the entire blade, 
can be obtained by integrating the sectional aerodynamic moment over the 
length of the blade. It is given as

	 Q M drx

R

A EA1

0

= ∫ 	 (7.132)

Substituting Equation 7.127 in Equation 7.132, one obtains
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Assuming uniform properties along the span of the blade, Equation 7.133 
can be integrated to obtain the aerodynamic pitch moment acting on the 
rotor blade about the EA.
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(7.134)

Noting that the lift curve slope of airfoil can be taken as a = 2π, Equation 
7.134 can be modified as
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  (7.135)

Collecting the inertia, elastic, and aerodynamic loads acting on the blade, 
the coupled flap–torsion equations can be written as follows:

Flap equation:
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Torsion equation:
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Equations 7.136 and 7.137 are coupled nonlinear differential equations. 
These nonlinear equations can be further simplified by making a small angle 
assumption as

	 cos θ ≃ 1 sin θ ≃ θ

In addition, assume that the cross section of the blade is symmetric (i.e., 
ξm = 0 and Iηξ = 0). Using all these approximations, the flap–torsion equations 
of motion can be simplified as follows:

Flap equation:
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Torsion equation:
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The aeroelastic stability analysis requires the equilibrium equations and 
the perturbation equations about the equilibrium state.

Assuming a solution of the form,

	 θ θ φ φ= + +0 0
( )t

	 β β β= +0
( )t 	

where ϕ0 and β0 are constant quantities representing the equilibrium defor-
mation of the blade and  φ βand  are time-dependent perturbational quan-
tities. θ0 represents the pitch input given to the blade. Substituting these 
expressions, and collecting the constant and the time-varying terms and 
equating then separately to 0, the equilibrium equations and linearized sta-
bility equations are obtained.

Equilibrium equations:
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Writing in matrix form,
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The equilibrium values of β0 and ϕ0 can be obtained by inverting the square 
matrix and multiplying the column vector in the right-hand side. Divergence 
is a static instability phenomenon, indicating that the equilibrium values of 
β0 and ϕ0 are indeterminate (or infinity). Such a situation is possible, if the 
determinant of the square matrix is equal to 0. This condition provides the 
divergence limit of the blade. It is given as

	 1
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This equation indicates that rotor blade divergence depends on flap fre-
quency, torsional frequency, blade torsional inertia, the offset between the 
aerodynamic center and the elastic center, the offset between the mass center 
and the elastic center, and the Lock number. If we make an assumption that 
the blade can be treated as a thin plate, then Iηη = 0, and the divergence con-
dition can be written as
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Using the above equation, one can formulate different conditions for 
avoiding blade divergence. (Note: The determinant must be greater than 0 to 
avoid divergence instability.) From Equation 7.144, the condition for avoiding 
divergence instability can be expressed as
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Condition B: Neglecting 
3
2
ηm

R
 in comparison to 

γ
8

 in Equation 7.143, a 

modified form of the condition can be written
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Flutter or dynamic stability equations: The perturbation equations can be 
written as (to avoid confusion, different notations have been used for the 
damping and the stiffness matrices)
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Assuming a solution of the form  β β φ φ= =e est stand  and substituting in 
Equation 7.147, the characteristic equation is formed. The four roots of the 
characteristic equation have to be evaluated numerically. The roots appear 
as complex conjugates. The real part represents the modal damping, and the 
imaginary part represents the modal frequency. The stability of the system has 
been studied by several researchers using quasi-steady aerodynamics or the 
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Theodorsen unsteady aerodynamic theory. The significant parameters affect-
ing the stability of the system are the natural frequency in torsion ωT, and the 
offset parameters xA and ηm. Generally, to avoid high oscillatory loads in the 
control system during flight, the rotor blade is designed in such a manner to 
make xA equal to 0 or to a very small value. Using the data given in Table 7.2, 
typical results showing flutter and divergence boundaries are obtained.

The nondimensional torsional frequency is varied from 0 to 4.8. The non-
dimensional offset distance between sectional c.g. and the EA ( ηm 2b ) is 
varied from 0 to −0.08 in a step of 0.01. The negative sign indicates that the 
mass center is behind the EA. The results of the divergence and stability 
boundaries are shown in Figure 7.12.

If the torsional frequency is fixed at the value corresponding to point A 
(2.0) and the chordwise c.g. position is varied, the line AB is traced. The blade 
is completely stable until the line intersects the divergence boundary at point 
B. Increasing ηm to a higher value, the flutter boundary is reached at point C. 
Between points B and C, the stability roots are found to be complex pairs 
with a negative real part, implying dynamic stability. To the right of point 
C, the stability roots become a complex pair, with a positive real part indi-
cating instability. It can be noted that, for low values of torsional frequency, 
the divergence occurs first followed by flutter. However, at higher values of 
torsional frequency, the flutter occurs first, followed by the divergence. It is 
observed that the region of stability of the blade increases with increasing 
torsional frequency. At high torsional frequencies, a large value of negative 
ηm/2b is required to destabilize the blade. It is noted that moving the c.g. 

Table 7.2

Data for Flap–Torsion Stability Analysis

Variable Quantity

Number of blades, N 4
Air density at sea level, r (kg/m3) 1.224
Coefficient of drag, cd 0.008
Radius of the main rotor blade, R (m) 6.6
Chord of the main rotor blade, C (m) 0.5
Main rotor rotating speed, Ω (rpm) 300
Mass of the main rotor blade, m0 (kg/m) 11.24
Flap frequency, ωRF (rad/s) 1.09
Lift curve slope, a 2π
Offset between the EA and the aerodynamic center, xA 0
Mass moment of inertia per unit length

Iηη 0

Iξξ 0.004

Iηξ
0
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forward toward the leading edge of the rotor blade stabilizes the blade. In 
practice, the leading edge mass is added to bring the CM as close as possible 
to the EA, which is usually designed to be close to the aerodynamic center.

Increasing torsional frequency improves both the static stability (divergence) 
and the dynamic stability (flutter) of the blade. Hence, most of the blades are 
designed to have a torsional frequency in the range of 4.0/rev to 5.0/rev.

During forward flight, because of the periodic nature of the aerodynamic 
loads, the equations of motion will have time-varying periodic coefficients. 
The stability of time-varying periodic systems has to be treated in a differ-
ent manner. Several researchers have studied the aeroelastic stability problem 
in forward flight using the Floquet–Liapunov theory. Another approach is 
to modify the periodic coefficient equations into a set of constant coefficient 
equations (in an approximate manner) using multiblade coordinate or Fourier 
coordinate transformation. The stability analysis is then performed using the 
constant coefficient equations. It may be noted that this procedure of trans-
forming periodic coefficient equations to constant coefficient equations is 
approximate and is applicable only for low forward speeds. It is worthwhile 
pointing out that it was only during the late 1970s and the early 1980s that 
the aeroelastic stability analysis of the coupled flag–lag–torsional dynamics of 
isotropic rotor blades was solved. The composite blade aeroelastic analysis is 
the topic of research during the early and mid-1990s. During the last decade, 
research effort is focused on developing smart rotors with a trailing edge flap 
control and tip shape modifications to reduce rotor loads and rotor noise.
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Unstable

Stable

ω T
 (t

or
sio

na
l f

re
qu

en
cy

)

0.08

A

D E F

B C

0.070.060.050.040.030.020.010
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

4.8
Flutter
Divergence

FIGURE 7.12
Stability boundaries for flap–torsional motion.
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8
Rotor Modes: Multi-Blade 
Coordinate Transformation

The dynamics of a coupled rotor–fuselage helicopter system is a very com-
plex problem. A detailed model should include the blade modes in axial, flap, 
lag, and torsion; the rigid body motion of the fuselage in both translation and 
rotation; and the flexible modes of the fuselage. Figure 8.1 shows a schematic 
of the interactions in a rotor—fuselage system.

Even if it is assumed that the fuselage is rigid and the blade is idealized 
as a rigid blade with a root spring, the total number of degrees of freedom 
of the dynamic model becomes (6 fuselage rigid body modes + 3N flap, lag, 
and torsion modes of all blades), where N is the number of blades in the 
main rotor system. For example, say for N = 4, the total number of degrees 
of freedom is 18. In addition, if one includes the fuselage flexible modes, the 
problem will become a formidable one. Furthermore, inclusion of rotor aero-
dynamics will make the problem highly complex. Now, the question is, how 
do we go about solving this complex problem? The approach adopted in the 
simplification of this problem, based on the certain fundamental characteris-
tics of the rotor–fuselage dynamics, is quite interesting.

There are three types of problems associated with rotor–fuselage dynam-
ics. They are (1) vehicle dynamics related to flying and handling character-
istics; (2) aeromechanical instabilities, such as ground resonance and air 
resonance; and (3) vibration problems. These classifications are based on the 
frequency range of interest for each problem. In addition, the physics of the 
problem is also different for each one of them, and hence, different assump-
tions are used in solving these problems.

The range of the frequency of motion is below 0.5−1.0 Hz for vehicle 
dynamic problems, which involve analyzing the stability and control charac-
teristics of the helicopter. These characteristics describe the handling quali-
ties and/or flying qualities of the helicopter. A successful vehicle should have 
very good handling qualities meeting the MIL-H-8501A, FAR, DEFSTAN, 
or ADS-33 requirements. Ground and air resonance problem involves the 
coupling of rotor lead–lag modes with body modes in pitch and roll, caus-
ing instability. When the helicopter is on ground, the instability is denoted 
as ground resonance, which is generally very dangerous. This instability is 
avoided by providing adequate damping in the lead–lag mode of the rotor 
blade and in the landing gear of the helicopter. These instabilities occur in 
the frequency range of 2−5 Hz depending on the blade lag frequency and the 
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fuselage frequencies in pitch and roll. The problem of vibration in helicop-
ters involves the estimation of fuselage response to rotor vibratory loads. The 
frequency of interest in vibration problems falls in the range of about 5Hz 
and above. Hence response problem requires the inclusion of a large number 
of blade and fuselage degrees of freedom.

Multiblade Coordinate Transformation

When dealing with coupled rotor–fuselage dynamics, it must be recognized 
that the fuselage motion is influenced by the combined effect of the hub loads 
due to all the blades. Therefore, one can address the problem by analyzing 
the dynamics of the rotor system rather than by analyzing the dynamics of 
the individual rotor blades due to perturbation in hub motion. Please note 
that the dynamics of the individual blades contributes to the dynamics of the 
rotor system. The response of individual blades is analyzed in the rotating 
frame, whereas the dynamics of the rotor system is studied from a nonrotat-
ing frame. The mathematical approach to convert the degrees of freedom 
of individual blades into rotor degrees of freedom is known as “multiblade 
coordinate transformation.” Note that this transformation can be applied 
only to linear differential equations. In the following, a clear description of 

Landing skid

Tail rotor thrust

Rolling moment

Vertical fin load

Pitching moment

X 

Fuselage

Torque 

�rust 

Center of mass

Horizontal tail load

Y 
Z 

Figure 8.1
Schematic of a coupled rotor–fuselage interaction.
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the multiblade coordinate transformation is presented, and it will be applied 
to the flap dynamics of the rotor blade to highlight the essential features of 
the flap dynamics as observed by a person in the nonrotating frame.

To have a physical understanding of the rotor modes, let us consider a 
four-bladed rotor system undergoing flap motion βi(i = 1, … 4). Since there 
are four blades, there are four degrees of freedom in the rotating frame. 
These degrees of freedom can be converted into four rotor degrees of free-
dom describing the motion of the rotor tip-path plane. These rotor modes are 
described as collective, cyclic, and differential (or alternating) modes.

Figure 8.2 shows all these rotor modes for both the flap and lag motions 
of the blade. In the collective mode, all blades move through the same angle 
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Longitudinal
cyclic

Lateral cyclic

Differential
or

alternating
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Figure 8.2
Rotor degrees of freedom in flap and lag motions.
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irrespective of the azimuth. In the longitudinal and lateral cyclic modes, 
the tip-path plane tilts in longitudinal and lateral directions. In the differ-
ential mode, alternate blades move through the same angle but in opposite 
directions.

It can be seen that, in the collective flap mode, the c.g. of the rotor system 
moves up and down; in cyclic modes, it moves in the plane of rotation; and 
in the alternating mode, it does not move. In collective and differential lag 
modes, the c.g. of the rotor system remains at the hub center, but in cyclic lag 
modes, the c.g. moves in the plane of rotation.

In the following, a description of the transformation from blade degrees 
of freedom to rotor degrees of freedom is provided. This transformation is 
known as “multiblade coordinate transformation.”

Transformation to Multiblade Coordinates

For an N-bladed rotor with blades evenly spaced around, the azimuth angle 
for the kth blade, at any instant, can be written as

	 ψ ψ π
Κ = + − = …2

1 1
 

( ) ,
N

k Nκ 	 (8.1)

where ψ = Ωt is the azimuth location of the first blade, and the variable ψ can 
also be used as a nondimensional time variable.

Let αk be a generalized coordinate associated with any degree of freedom 
(say, flap or lead–lag or torsion) of the kth blade. Since this αk is associated 
with the rotating blade, it is called a “rotating coordinate.” If there are N 
blades, the behavior of all the blade in the particular degree of freedom 
can be represented by N rotating coordinates α1 … αN. By suitably choos-
ing a transformation, these N rotating coordinates can be transformed to 
another set of N coordinates, each of which is associated with a specific 
variation of all the αk’s as viewed from a nonrotating frame. This type of 
transformation is called the “multiblade transformation.” Basically, this 
transformation transforms the rotating coordinates into a nonrotating 
frame. Usually, the physical explanation about this transformation is given 
only with reference to the flap or lag motion of the blade, as shown in 
Figure 8.2.

The transformation from the rotating to the nonrotating coordinate is 
obtained by performing the following operations.
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where n = 1,…L, and

	
L

N= − 1
2

 for odd N	

and

	 L
N= − 2
2

 for even N.	

The inverse transformation is given by

	 α α α ψ α ψ αk M

n

L

k k
k

Mn n= + + + −
=

−∑  ( cos( ) sin( ) ( )
1

1nc ns 	 (8.3)

The last term will appear only for even N.
The transformation, given in Equation 8.3, appears like a truncated Fourier 

series, except for the last term. The major difference between this transfor-
mation and the usual Fourier transformation is that, here, the coefficients αM, 
αnc, αns, α−M are all functions of time, whereas in the Fourier series, the coef-
ficients are constants. That is why, sometimes, these multiblade coordinates 
are also referred to as “Fourier coordinates.”

Differentiating Equation 8.2 with respect to nondimensional time ψ = Ωt 
(where Ω is a constant), one obtains
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Differentiating once again with respect to ψ,
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	 (8.5)

It can be seen in Equation 8.5 that the transformation of the second deriva-
tive terms of the rotating degrees of freedom introduces Coriolis and cen-
trifugal terms in the nonrotating frame.

The transformation from the rotating frame to the nonrotating frame is 
accomplished by applying the following N operators to the complete set of 
linear perturbation equations of the blade dynamics in the rotating frame.
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The application of these four operators to the blade equation of motion 
transforms the blade degrees of freedom to rotor degrees of freedom. The 
resulting equations will have the multiblade coordinates as the new set of 
generalized coordinates. These equations represent the dynamics of the 
rotor as a whole as viewed from the nonrotating frame.

To understand the physics of the transformation from blade degrees of 
freedom to rotor degrees of freedom, let us consider the dynamics of a cen-
trally hinged, spring-restrained rigid blade undergoing only flap motion in 
hover. Let βi be the degree of freedom of the ith blade. The flap equation can 
be written as simplified after setting e = 0 and βp = 0 in Equation 6.32

	  β γ β ω β γ θ γ λi i NRF i+ + +( ) = − = …
8

1
8 6

12
0 0  ( )i N 	 (8.7)

Note that 1 2 2+ =( )ω ωNRF RF

Let us assume that there are four blades (N = 4). Under hovering condi-
tions, the collective pitch angle θ0 and the inflow ratio λ0 remain the same for 
all blades. Since we are interested in the eigenvalues (frequencies) and eigen-
vectors (mode shapes), it is sufficient to consider only the homogeneous part 
of the flap equation. Another way of looking at the problem is to decompose 
the flap degree of freedom into two parts, which is given as

	 β β βi i= +0
 ( )t 	 (8.8)



210 Fundamentals of Helicopter Dynamics

where β0 is the equilibrium value that is a constant and βi( )t  is the time-
varying perturbational quantity. Substituting for βi in Equation 8.7 and col-
lecting the constant part and the perturbational part separately, we have

Equilibrium equation:

	 ω β γ θ γ λRF
2

0 0 08 6
( ) = − 	 (8.9)

Perturbation equation:

	 ��� �� �β ωγ β βl l RF i+ + ( ) =
8

02 	 (8.10)

In this simple case, the perturbation equation is nothing but the homo-
geneous part of the flap equation, which describes the dynamics of the flap 
motion of the ith blade about the equilibrium flap angle β0.

Applying the multiblade transformation (Equation 8.6) to the perturba-
tional equation, the following four equations in multiblade coordinates are 
obtained. These four equations are given as

Collective flap equation:

	  β γ β βωM M M+ + ( ) =
8

02
RF 	 (8.11)

1-cosine flap equation:

	   β β β γ β γ β βω1 1 1 1 1
2

12
8 8

0c s c c s RF c+ − + + + ( ) = 	 (8.12)

1-sine flap equation:

	   β β β γ β γ β βω1 1 1 1 1
2

12
8 8

0s c s s c RF s− − + − + ( ) = 	 (8.13)

Differential (or alternating) flap equation:

	  β γ β βω− − −+ + ( ) =M M M8
02

RF 	 (8.14)

It is obvious from the above equations that the form of the collective and 
alternating modes remains the same as the individual blade equation of 
motion in the rotating frame.
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The eigenvalues of the collective and differential modes can be obtained 
from the characteristic equation

	 S S2 2

8
0+ + ( ) =γ ωRF 	 (8.15)

The roots are

	 S S S i1 2
2

2
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γ γω
	

The damping in collective and differential modes is 
γ
16

, and the damped 

natural frequency is ω γ
RF
2

2

16
−





 . These eigenvalues are the same as the 

eigenvalues of the flap mode in the rotating frame.
However, the cyclic mode equations (Equations 8.12 and 8.13) indicate that 

both the 1-cosine and the 1-sine modes are coupled. These equations can be 
written in the matrix form as
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The eigenvalues of the coupled modes can be obtained by forming the 
characteristic determinant and solving for the roots.

The characteristic determinant is given as
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The characteristic equation is

	 S S S2 2
2 2

8
1 2

8
0+ + −
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Equation 8.18 can be written as
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2 2
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Rearranging,

	 S i S i S i2 2 2

8
2 1

8 8
2+ +





 + − +







+ −






γ ω γ γ
   RF  + − −







=S iω γ
RF
2 1

8
0 	 (8.20)

The two roots corresponding to the first term of Equation 8.20 can be writ-
ten as
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The other two roots corresponding to the second term of Equation 8.20 are

	 S i5 6
2

2

16
1

16, = − + ± −


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







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Since S4,S5 and S3,S6 are complex conjugate pairs, let us consider only S3 
and S5:

	 S i i3 5
2

2

16 16, = − + −






γ γω RF 	 (8.23)

The frequencies of the 1-cosine and the 1-sine cyclic modes in the fixed 
frame are shifted by ±1/rev from the rotating system frequency. A compari-
son of frequencies and damping in the rotating and nonrotating system is 
given in Table 8.1.

It is important to recognize that the collective and the differential modes 
are uncoupled modes, whereas the cyclic modes are coupled. For example, 
when ωRF rev= 1 1. /  and γ = 8, the frequency in the collective and the differ-
ential modes is 0.9798/rev. The frequencies in cyclic modes are 1.9798/rev 
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and 0.0202/rev. In each cyclic mode, the tip-path plane has both β1c and β1s 
components. These frequencies correspond to the wobbling motion of the 
tip–path–plane. The damping in all flap modes is very high, which is equal to 
γ
16  

. Hence, these are damped out quickly. In the rotating frame, all the blades 

have the same damping and frequency, whereas in the nonrotating frame, all 
rotor modes have the same damping but have different frequencies.

Similar to flap modes, lag modes also provide high-frequency and low-
frequency cyclic modes, Generally, the low-frequency cyclic lag and flap 
modes couple with the body pitch or roll modes. When the low-frequency lag 
mode coincides with body frequencies, it leads to aeromechanical instabil-
ity such as ground or air resonance. Sometimes, the low-frequency flap 
mode plays an important role in influencing the air resonance behavior of 
the helicopter. Since damping in lag modes is very less, the low-frequency 
lag mode can become unstable during operation. Hence, an external lag 
damper is provided to augment the lag mode damping and also to avoid 
lag instability.

When the multiblade coordinate transformation is applied to perturbation 
equations in forward flight, unlike hover, all the flap modes will be coupled. 
This formulation is given as an exercise to understand the formulation of 
the multiblade coordinate transformation applied to helicopter rotor blade 
dynamics. As indicated earlier, the number of rotor modes is dependent on 
the number of blades in the rotor system.

Table 8.1

Comparison of Damping and Frequencies in Rotating and Nonrotating Frames

Rotating Frame 

All Blades Have the Same Eigenvalues

Nonrotating Frame

Different Modes Have Different Eigenvalues

Damping Frequency Mode Damping Frequency

− γ
16

ω γRF /2 216− ( ) Collective − γ
16

ω γRF /2 216− ( )

Differential − γ
16

ω γRF /2 216− ( )

Cyclica
− γ
16

1 162 2+ −ω γRF /( )

Cyclicb
− γ
16

− + −1 162 2ω γRF /( )

a	 Denoted as the high-frequency flap mode (or progressive flap).
b	 Denoted as the low-frequency flap mode (or regressive flap).
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9
Flap Dynamics under General 
Motion of the Hub

In the earlier chapter, the flap dynamics of the rotor blade was developed 
either under hovering condition or under steady forward motion of the 
hub (or helicopter). For the study of the flight dynamics of the helicopter, 
it is essential to develop the flap dynamic equation by including a general 
motion of the hub and analyzing the effect of the hub motion on rotor blade 
flap motion. It may be noted that hub motion is created due to fuselage 
translational and rotational motions. While developing the equations, it is 
assumed that the fuselage is a rigid body and that it can undergo rigid body 
translation and rotation motions. The flap dynamic equation of a rotor blade 
is developed in a systematic manner in the following.

Coordinate Systems and Representation of Various Quantities

First, we need to define several coordinate systems for a systematic deriva-
tion of the equation of the motion of a rotor blade when the hub undergoes 
a general motion. Figure 9.1 shows a body-fixed (xs1 − ys1 − zs1) coordinate 
system, with origin at the c.g. of the helicopter. The unit vectors are given as 
ˆ ˆ ˆ, ,e e ex y zs s s1 1 1.

The translational velocity of the helicopter is represented as components in 
the body-fixed system as

	


V ue ve wex y zc.g. s s s= + +ˆ ˆ ˆ1 1 1 	 (9.1)

The instantaneous angular velocity of the helicopter is given as

	


ω heli s s s= + +pe qe rex y zˆ ˆ ˆ1 1 1 	 (9.2)

The position vector of the main rotor hub center H from the c.g. of the 
fuselage is given as

	


r h h he e ex x y y z zH s s s= + +ˆ ˆ ˆ1 1 1 	 (9.3)
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The velocity at the center of the hub is due to helicopter translational and 
rotational motions, which is defined as

	
 




V V XrH c.g. heli H= + ω 	 (9.4)

Substituting various vector quantities from Equations 9.1 to 9.3, the veloc-
ity at the hub center is given as

	


V u qh rh e v rh ph e w ph qhz y x x y y yH s s= + − + + − + + −( )ˆ ( )ˆ (1 1 xx ze)ˆ s1 	 (9.5)

For the sake of conciseness, one can write the velocity at the hub as

	


V u e v e w ex y zH H s H s H s= + +( )ˆ ( )ˆ ( )ˆ1 1 1 	 (9.6)

Figure 9.2 shows the hub-fixed nonrotating and body-fixed coordinate 
systems.

The hub-fixed coordinate system (xH, yH, zH) has its origin at the center of the 
hub, with its ZH axis along the rotor shaft pointing vertically upward. The 
transformation relationship between the hub-fixed H system and the fuse-
lage-fixed s1 system is given as
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	 (9.7)

Hub
êYs1

êZs1êXs1

Figure 9.1
Body-fixed coordinate system with origin at the c.g. of the helicopter.
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It is assumed that, in this formulation, the rotor shaft axis is parallel to the 
fuselage zs1 axis.

Figure 9.3 shows the hub-fixed nonrotating coordinate system and the 
hub-fixed rotating (x1k, y1k, z1k) coordinate system rotating with the kth blade. 
The rotor system is rotating with an angular rate Ω about the z1 (or zH) axis.

êXs1

êZs1

êYs1

XH

YH
ZH

Figure 9.2
Hub-fixed nonrotating and body-fixed coordinate systems.

Ω

Ψ

Ψ

O

Y1

YH

ZH, Z1

X1

XH

Figure 9.3
Hub fixed nonrotating and hub-fixed rotating coordinate systems.
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The transformation relationship between the two coordinate systems is 
given as
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	 (9.8)

where the angle ψk represents the azimuth angle of the kth blade. It is defined 
as

	 ψ ψ π
k N

k= + −2
1( )

	
(9.9)

N is the total number of blades in the rotor system and ψ = Ωt.
Combining Equations 9.7 and 9.8, one can relate the fuselage system with 

the hub-fixed system rotating as
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Next, we define the blade-fixed rotating coordinate system with its origin 
at the blade root, which is offset by a distance e from the hub center, as shown 
in Figure 9.4.

It may be noted that 1k and 1ek systems are parallel to each other, and the 
transformation relating is given as follows. It is assumed that the x1ek axis is 
along the undeformed state of the kth blade.
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(9.11)

Figure 9.5 shows the rotating coordinate system attached to the rotor blade 
defining the deformed state during flap motion. It is assumed that the rotor 
blade is assumed to be rigid, with a root spring at the root at point A, as 
shown in Figure 9.4. The axis x2k is along the deformed longitudinal axis of 
the blade.
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e

O

A

êZ1eK

êY1eK

êX1eK

Figure 9.4
Blade-fixed rotating coordinate system with origin at blade root A.

βK

êZ2K

êY2K,

êX2K

êX1eK

êX1eK

êZ1eK

A x

Figure 9.5
Rotating blade-fixed coordinate system during flap deformation.
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The transformation relationship between the deformed state of the rotor 
blade and the fuselage-fixed system can be written as
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Now, let us define the blade cross-sectional coordinate system, as shown 
in Figure 9.6.

The transformation between the cross-sectional coordinate system at a dis-
tance r from the hinge offset location and the deformed state of the blade can 
be written as
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The angle θ represents the cross-sectional pitch angle. The reference axis of 
the blade is taken as the x2k (or x3k) axis.

It may be noted that the aerodynamic loads are evaluated based on the 
velocity components defined in the deformed 2k system.

êZ2k

êY2k

η̂

θ

ξ̂

Figure 9.6
Blade cross-sectional coordinate system.
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First, let us evaluate the inertia loads and then the aerodynamic loads for 
formulating the equation of the motion of the kth blade under the general 
motion of the hub.

Kinematics

From the hub center, the position vector of any point P on the reference lon-
gitudinal axis of the blade in the deformed state can be written as (from 
Figures 9.4 and 9.5)

	


r R ee xex ek x kp = +( ˆ   ˆ )1 2 	 (9.14)

Note that the length units are nondimensionalized with respect to the 
rotor radius R.

Using the coordinate transformation given in Equation 9.12, the position 
vector can be expressed as

	


r R ee x e x ex ek k x ek k z ekp = + +( ˆ cos ˆ sin ˆ )1 1 1β β 	 (9.15)

The angular velocity of the kth rotor blade is due to fuselage angular veloc-
ity (Equation 9.2) and rotor angular velocity. It is given as

	
� �

ω ωk ze= +heli HΩˆ
	 (9.16)

Substituting Equation 9.2 and using the coordinate transformations, the 
angular velocity of the kth blade can be written as

	
ω k x y z zpe qe re e= − + − + Ωˆ ˆ ˆ ˆH H H H 	 (9.17)

Nondimensional Form

It is convenient to use nondimensional form while expressing various quan-
tities. Time is nondimensionalized by rotor angular speed Ω, and length is 
nondimensionalized with rotor radius R.

We can express the angular velocity of the kth blade as

	
ω K x y zpe qe r e= Ω − + + − +[ ˆ ˆ ( )ˆ ]H H H1 	 (9.18)
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(Note that the quantities inside the bracket are nondimensional quantities. 
For the sake of convenience, the same symbol is also used in nondimensional 
form.) Using the transformation relationships given in Equations 9.8 to 9.10, 
the angular velocity vector (Equation 9.19) can be expressed in the hub-fixed 
rotating coordinate system as

ω ψ ψ ψ ψk k k x ek k k yp q e p q e= Ω − + + +[( cos sin )ˆ ( sin cos )ˆ1 11 11ek z ekr e+ − +( )ˆ ] 	 (9.19)

Taking the time derivative of Equation 9.20, the angular acceleration vector 
can be written as
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







 	 (9.20)

The velocity vector at point P on the reference longitudinal axis of the 
blade can be obtained from the following expression:

	
� � � ���V V r XrkP H p rel P= + +( ) ω 	 (9.21)

where 


VH  is the velocity at the hub center O. Substituting various quan-
tities and the taking vector cross-product, the velocity at point P can be 
written as
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	 (9.22)

It should be noted that, in Equation 9.23, the quantities inside the brack-
ets are nondimensional quantities. Length quantities are nondimensional-
ized with respect to the rotor radius R, and time is nondimensionalized with 
respect to the rotor angular velocity Ω. Transforming the velocity at point P 
to the 2k system, we have
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	 (9.23)

The absolute acceleration of mass point P can be obtained from the expres-
sion given as

	
� � � � ���� �� ��a a r X r Xrk kP H P p P= + + + +( ( ( )) )rel rel2 ω ω ω kk kX X r(   )

� �ω P 	 (9.24)

The individual components of the accelerations are given below for 
convenience.

Using Equations 9.2 and 9.5, the acceleration at the center of the hub can be 
obtained, which is given as
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(9.25)

The relative acceleration can be written, using Equation 9.16, as

( ) cos sin ˆ��� � ��r R x x e xk k k k x ekp rel = Ω − −( ) + −2 2
1β β β β ssin cos ˆβ β β βk k k k z ekx e� ��2

1+( ) 	 (9.26)

The Coriolis acceleration term can be written as
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The angular acceleration term is given as
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The centripetal acceleration term is written as
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Substituting all the components of acceleration given in Equations 9.26 to 
9.30 in Equation 9.25, the absolute acceleration of mass point P on the refer-
ence longitudinal axis of the rotor blade can be written as
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Note that the quantities inside the square brackets are nondimensional 
quantities.

Using the acceleration expression given in Equation 9.31, one can evaluate 
the inertia force and the inertia moment about the flap hinge by integrating 
the distributed inertia force acting on the rotor blade.

The inertia force and the inertia moment at the blade root are obtained 
from the following integrals:

	 Inertia force: 
� �
P m a R dx

R Re
R

I p= −

−

∫ ( )
0

	 (9.31)

	 Inertia moment at blade hinge: 
� �

Q Rxe Xm a R dxx k

R Re
R

I p= −

−

∫ ˆ ( )2

0

	 (9.32)

Note that the integration over the nondimensional length of the blade.
Since the acceleration expression contains terms that are either dependent 

or independent of the nondimensional radial location x, the following three 
integrals representing the mass, the first moment of mass, and the mass 
moment of inertia of the blade about the root hinge are defined.
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where Mb is the mass of the blade, MXc.g. is the first moment of blade mass 
about the flap hinge, and Ib is the mass moment of inertia of the blade about 
the flap hinge.

Inertia Moment in Flap

Substituting the acceleration expression in Equations 9.32 and 9.33 and integrat-
ing, one can obtain the inertia force and moment. Since we are interested in 
developing only the flap equation, in the following, the component of inertia 
moment about the flap hinge is given. The detailed expression for other compo-
nents of forces and moments can be evaluated. Using the coordinate transfor-
mation, the inertia moment expression given in Equation 9.33 can be written as
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The expression for flap inertia moment is given as
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Aerodynamic Moment in Flap

Knowing the aerodynamic loads acting at every cross section of the rotor 
blade, the aerodynamic flap moment can be obtained. Figure 9.7 shows a 
typical cross section of the rotor blade and the relative air velocity compo-
nents required for the evaluation of the sectional aerodynamic loads.

The velocity components of the cross section due to the motion of the blade 
and the hub are given in Equation 9.24. The relative air velocity component 

ξ̂ η

θ

ˆ

êZ2k

êY2k

UT

UP

FIGURE 9.7
Cross section of the blade in the deformed state and the velocity components.
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tangential to the cross section can be identified to be equal to the y compo-
nent of the blade velocity, which is given as

	 UT = +VPy2k	 (9.36)

Assuming the rotor inflow velocity as

	
ν λ= − ΩR êzH 	 (9.37)

Using the transformation relationships, the normal component of the rela-
tive air velocity at a typical cross section of the rotor blade can be written as

	 UP = +VPz2k + λΩRcosβk	 (9.38)

Using Equation 9.24, the expression for the tangential and normal compo-
nents of the relative air velocity can be written as

	
U R u qh rh v rh ph

r

T z y k x z k= Ω + − + + −

+ − +

{( )sin ( )cos

( )(

ψ ψ

1 ee x p q xk k k k+ − − +cos ) ( cos sin ) sin }β ψ ψ β
	 (9.39)

and

U R u qh rh v r h phz y k k x z kP = Ω + − − + −{( )sin cos (   )sin siβ ψ β nn

  ( )cos ( sin cos )(

ψ

β β ψ ψ

k

y x k k k kw ph qh x p q x e− + − + − + + ccos ) cos }β λ βk k+
	 (9.40)

The expression for the lift force per unit length acting on the blade can be 
written as

	 F ca U U Uz T T2
21

2
 ρ θ − p 	 (9.41)

The aerodynamic flap moment about the flap hinge is obtained by inte-
grating the effect of distributed lift force, and it is given as

	 Q xRF R dxy ek z

R Re
R

A 1 2

0

≅ −

−

∫ 	 (9.42)

Substituting Equation 9.42 in Equation 9.43 and using Equations 9.40 and 
9.41, the aerodynamic flap moment can be obtained. While evaluating the 
aerodynamic flap moment, a large number of terms will have to be handled, 



229Flap Dynamics under General Motion of the Hub

if one retains all the terms. However, for the sake of convenience, many of 
the higher-order small terms can be neglected, based on a meaningful order-
ing scheme. In the following, various terms are assigned an order of mag-
nitude, which will help in eliminating higher-order terms from the moment 
expression.

Rewriting the velocity expressions, given in Equations 9.40 and 9.41,

	 UT = ΩR{A + B + C + Dx + Ex}	 (9.43)

	 UP = ΩR{F + G + H + Ix + Jx + K + L}	 (9.44)

The individual terms and their leading term order can be defined, after 
making a small angle assumption for flap angle βk, as

A = (u + qhz − rhy)sinψk Order O(1)
B = (v + rhx − phz)cosψk Order O(1)
C = (−r + 1)e Order O(1)
D = (−r + 1)cosβk ≃ (−r + 1) Order O(1)
E = −(−pcosψk + qsinψk)sinβk ≃ −(−pcosψk + qsinψk)βk Order O(ϵ2)
F = (u + qhz − rhy)sinβkcosψk ≃ (u + qhz − rhy)βkcosψk Order O(ϵ)
G = −(v + rhx − phz)sinβksinψk ≃ −(v + rhx − phz)βksinψk Order O(ϵ)
H = −(w + phy − qhx)cosβk ≃ −(w + phy − qhx) Order O(ϵ)
I k= β Order O(ϵ)
J = −(psinψk + qcosψk) Order O(ϵ)
K = −(psinψk + qcosψk)ecos βk ≃−(psinψk + qcosψk)e Order O(ϵ)
L = λcosβk ≃ λ = λ0 + λ1cxcosψk + λ1sxsinψk Order O(ϵ)
		

(9.45)

Note that the inflow velocity is assumed to be varying with azimuth and 
radial location.

The product of the velocity components required for evaluating the lift per 
unit span of the blade can be written as
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T
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2 2 2 2
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Substituting the velocity products (Equation 9.47) in Equation 9.42 and 
using Equation 9.43, the aerodynamic moment about the flap hinge at the 
blade root can be obtained. In symbolic form, it is given in the following, 
after expanding the expression for the blade pitch angle.
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	 (9.47)

In Equation 9.48, the term l represents the nondimensional length of the 

blade from the hinge offset to the tip, that is, l
R Re

R
e= − = −1 .

For the sake of completeness, the expanded form of the aerodynamic flap 
moment about the root hinge is given in the following without neglecting 
any term.
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(9.48)

Combining the inertia moment (Equation 9.36) and the aerodynamic flap 
moment (Equation 9.49), the flap equation of the kth blade under general 
maneuver condition can be written as
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	 QIy1ek + QAy1ek + Kββk = 0	 (9.49)

This flap equation is a nonlinear equation with time-varying coefficients. 
For a simplified analysis, one can make several approximations and ana-
lyze the flap dynamics of the rotor blade for perturbation in fuselage trans-
lation and rotational motions. First, let us assign an order of magnitude 
to various parameters and neglect the higher-order terms from the flap 
equation. Using the simplified flap equation, one can obtain the steady-
state flap response for a given flight condition and also the transient flap 
response due to perturbations in the blade pitch input and in the fuselage 
motions. The perturbation response of the flap motion plays a significant 
role in determining the flight dynamic characteristics of the helicopter, 
that is, both the stability and the control response of the helicopter. In the 
following, all the parameters are represented as a combination of steady-
state value and a perturbation quantity, along with an appropriate order of 
magnitude.

Parameter Order of magnitude

u u u t= +s
( ) Order O(1)

v v v t= +s
( ) Order O(1)

w w w t= +s
( ) Order O(ϵ)

p p p t= +s
( ) Order O ε

3
2( )

q q q t= +s
( ) Order O ε

3
2( )

r r r t= +s
( ) Order O ε

3
2( )

λ λ λ0 0 0= +s
 ( )t Order O(ϵ)

λ λ λ1 1 1c cs c= +  ( )t Order O(ϵ)

λ λ λ1 1 1s ss s= +  ( )t Order O(ϵ)

θ θ θ0 0 0= +s
 ( )t Order O(1)

θ θ θ1 1 1c cs c= + ( )t Order O(1)

θ θ θ1 1 1s ss s= + ( )t Order O(1)

β β βk k kt t= +s( ) ( ) Order O(ϵ)

		
(9.50)

In Equation 9.51, the quantities with (~) are perturbation quantities. It may 
be noted that, in representing the steady-state (or equilibrium) quantities, a 
subscript “s” is used. Substitute the terms in Equation 9.51 in the flap equa-
tion and separate the equations into two parts, after neglecting the prod-
ucts of the perturbation quantities. One part of the equation, containing only 
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steady quantities, represents the steady-state nonlinear flap equation, and 
the other part of the equation containing perturbation quantities represents 
the linearized perturbation equation of the flap dynamics. As an example, let 
us consider the case of hover and obtain the perturbation flap equation about 
the hover equilibrium condition.

While obtaining the perturbation flap equation, let us assume that the 
hinge offset e = 0, and the harmonics of inflow λ1c = 0 and λ1s = 0.

Assuming that the helicopter is in hovering condition (i.e., us, vs, ws = 0, 
ps, qs, rs = 0, and θ1cs, θ1ss = 0), from Equation 9.50, the perturbation equation for 
flap dynamics can be written as
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  (9.51)

Dividing by IbΩ2 and combining appropriate terms, Equation 9.52 can be 
written in a modified form as (it may be noted that the subscript “s” rep-
resenting the steady-state quantities, in blade pitch angle and inflow, are 
removed for convenience, without creating any ambiguity)
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In Equation 9.53, γ is the Lock number, which is defined as γ ρ= acR
I

4

b
. 

Equation 9.53 can be further simplified by making the assumption that the 
helicopter c.g. is lying on the rotor shaft axis. This assumption implies that 
hx = 0 and hy = 0. Imposing this condition, the perturbation flap equation 
(about the hovering condition) can be written as (noting that the nondimen-
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Equation 9.54 clearly shows that the flap motion of the kth rotor blade 
is influenced by the perturbation in fuselage translation and rotational 
motions, the time-varying rotor inflow, and the time-varying blade pitch 
input given by the pilot. It is important to recognize that fuselage per-
turbation motion influences the dynamics of all the blades in the rotor 
system at the same time, but the effect depends on the azimuth location of 
the rotor blade. This point is observed from the presence of the azimuth 
location ψk of the kth blade.

Perturbation Flap Equations in the 
Multiblade Coordinate System

For the sake of convenience, let us consider a four-bladed rotor system. 
Applying the multiblade coordinate transformation operators given 
in Equation 8.6 to the perturbation flap equation in hovering condi-
tion (Equation 9.54), the following four equations are obtained. It may 
be noted that these equations are obtained after applying trigonometric 
identities.
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Alternating flap or differential flap:

	  β γ β ω β− − −+ + =M M M8
02

RF 	 (9.55)

It is obvious to note that the collective mode is influenced by perturbation 
in collective pitch θ0, vertical motion w, yaw motion r , and inflow λ0. The 
alternating mode is uncoupled in hover.

1-cosine flap:
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1-sine flap
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Since 1-cosine and 1-sine equations are coupled, they can be written in 
matrix form as
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(9.58)

These equations describe the dynamics of the rotor degrees to the per-
turbational motion at the hub due to fuselage motion, the perturbation in 
inflow, and the perturbation in blade input. The cyclic mode equations are 
coupled; the cyclic flap motion β1c, β1s are influenced by perturbation in pitch 
( )q , the roll ( )py  and translational motion ( , ) u v  of the hub, inflow, and cyclic 
pitch input.

From Equations 9.55, 9.56, and 9.59, it is obvious that cyclic modes are 
uncoupled from the collective mode and the alternating mode. In addition, 
the influencing parameters are also different. Hence, cyclic modes in hover 
can be analyzed independently. (Note that, in forward flight, the collective 
mode will be coupled to cyclic and alternating modes.)

It was shown earlier that the rotor thrust vector is almost perpendicu-
lar to the tip-path plane. Hence, a tilt of the tip-path plane caused by hub 
motion or blade input essentially tilts the thrust vector. Therefore, the 
modified thrust vector can give rise to forces/moments about the center 
of the mass, leading to the perturbational motion of the vehicle. This 
rotor/body coupling can be understood by the following block diagram 
(Figure 9.8).

Since the damping in flap motion is high, the time to half amplitude is typ-
ically of the order of 0.04 to 0.05 s. This corresponds to an azimuthal motion 
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of about 70° to 90°. Hence, the flap response reaches its steady-state value 
in a much shorter time than the perturbation input from the pilot or the 
perturbation in hub motion. In other words, the flap dynamics of the rotor 
system is much faster than the fuselage dynamics. Therefore, it is a good 
approximation to use the quasi-steady response of the flap motion. (This is 
also referred to as “low-frequency flap response.”) This kind of approxima-
tion would be sufficient for the analysis of vehicle stability and control char-
acteristics, where the frequency of motion is well below 1 Hz.

The quasi-steady approximation (or low-frequency approximation) helps 
in providing a good understanding of the physics of the rotor motion and 
also simplifies the formulation of the fuselage perturbation equations for 
stability and control analyses. If the quasi-steady assumption is not made, 
then one must include rotor dynamics in the study of vehicle dynamics. In 
the following, the quasi-steady response of the rotor degrees of freedom to 
hub motion and blade pitch input under hovering condition is presented. 
Neglecting the time derivative terms of the flap degrees of freedom from 
the left-hand side of flap equations, we have the steady-state flap response 
expressed as a function of hub motion.

Collective flap
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Flap dynamics

Vehicle dynamics
u, v, w
P, q, r

Hub
motion Blade

motion

βo, β1c, β1s

Pilot input

Figure 9.8
Schematic of the coupled rotor flap and fuselage dynamics.
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Collective flap βM is influenced by collective pitch θ0, inflow λ0, vertical 
translation w and ��w, and yaw motion r.

Cyclic flap:
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  (9.60)

Solving for β1c and β1s and using the notation,

	 Sc
RF

/
= −ω
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2 1
8( )

	 (9.61)

The parameter Sc defines the coupling between lateral and longitudinal 
motion due to the rotating flap frequency ωRF. This parameter is also some-
times denoted as the “stiffness number.”
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Noting that, in hover C
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cyclic flap response to various perturbation quantities can be written as
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Simplifying Equation 9.64,
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If constant inflow is assumed, then the perturbation terms in inflow 
  λ λ λ0 1 1, ,c sand  are all equal to 0. On the other hand, if the time variation of 
inflow is to be considered, then one has to formulate the appropriate equa-
tions for inflow dynamics in terms of blade and hub motion. Such a model is 
represented by a set of equations known as the “perturbation inflow model,” 
which is written in the form
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Equation 9.66 is obtained by equating the perturbation expressions in rotor 
thrust, and the pitch and roll moment at the hub, obtained from the momen-
tum theory and the blade element theory. If one takes into account the time 
delay in inflow dynamics, Equation 9.66 is extended by including a time 
derivative term, as shown:
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Equation 9.67 is known as the “dynamic inflow model.” For the sake of 
simplification, in the following, the inflow perturbations are neglected, and 
the inflow is taken as a constant. (Note that the details of these models can 
be referred to in published literature.)

Cyclic Flap Motion

Cyclic flap motion (β1c, β1s) is influenced by cyclic pitch input  θ θ1 1c s,( ), hub 
translational motion ( ), u v , and rotational motion ( , ) p q  and angular accelera-
tion ( , )�� ��p q . The parameter Sc RF / /= −( )  ( )ω γ2 1 8  provides the coupling between 
lateral and longitudinal motion. The magnitude of Sc indicates the amount 
of cross-coupling. In the following, the relationship between flap motion 
derivatives and Sc is given.

Cross-coupling control derivatives:
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Damping derivatives (cross-coupling) due to angular motion:
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Damping derivatives (direct) due to angular motion:

	
∂

∂
= ∂

∂
=

+

+
− +







β β γ
σα

λ1 1
2

0

16

1
8

2
4

c s
c

c q p

S

S
C

hT
z

	

Damping derivatives (cross-coupling) due to translational motion:
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Damping derivatives (direct) due to translational motion:
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Cross-coupling derivative with angular acceleration:
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Generally, the value of the coupling parameter Sc varies from 0 (for teeter-
ing rotor with ωRF = 1 ) to 0.3 (for hingeless rotors). A high value of Sc = 0.5 
is possible for heavy blades having a small value of Lock number γ. A plot of 
some of the derivatives is shown below in Figure 9.9.

In the range of Sc = 0 to 0.3 (Figure 9.9a), the direct control derivatives 
( )∂ ∂β θ1 1c s/   and ( )∂ ∂β θ1 1s c/   are almost equal to unity; however, the cross-
control derivatives ( )∂ ∂β θ1 1c c/   and ( )∂ ∂β θ1 1s s/   increases from 0 to 0.3. This 
shows that the cross-coupling becomes significant, that is, about 30% of the 
direct control derivative, for Sc = 0.3. Because of this cross-coupling, the hub 
moments transmitted to the fuselage will introduce a pitch–roll response 
coupling, which is dependent on the relative magnitude of the helicopter 
inertia in pitch and roll.
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With hz = 0 (Figure 9.9b), the direct damping derivative due to angular motion 
remains more or less a constant until Sc = 0.5, beyond which it decreases. The 
cross-damping (Figure 9.9c) varies linearly with Sc and changes its sign at high 
values of Sc. It is evident that the damping derivatives are highly dependent on 
the Lock number. For heavy blades (γ = 6), the direct damping is two-to-four 
times the cross-damping, whereas for light blades (γ = 12), direct damping and 
cross-damping are almost equal for low values of Sc. The direct damping deriva-
tive gives the angle of lag between the tip-path plane and the shaft. This lag 
angle provides an opposing effect due to the thrust tilt (providing an opposing 
moment about the fuselage c.g.) to the angular motion, as shown in Figure 9.10.
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The damping derivatives due to translational perturbation motion depends 
on the operating thrust condition of the rotor. The variation with coupling 
parameter Sc shows a trend that is similar to the variation of control deriva-
tives. The above formulation clearly indicates that, for hingeless rotor blades, 
the off-axis response due to cross-coupling can be as large as the on-axis 
response. At high speed, the control derivatives will also be coupled to col-
lective input (i.e., blade coning, and differential modes will be coupled to 
cyclic modes). At high speed, the pitch response due to collective input can 
be as strong as that due to longitudinal cyclic input. The yaw response to 
the collective input will require compensation from tail rotor thrust vari-
ation (pedal input). In addition, at high speeds, the pitch response due to 
yaw motion may require different control strategies in left and right turns. 
These high levels of coupled motion are also influenced by the main rotor–
wake interaction with the empennage control surfaces. Hence, the pilot must 
always stay in the loop to constantly provide corrective inputs to the vehicle 
for achieving the desired response. These cross-coupling effects seriously 
affect the performance of the helicopter. In addition, the control task of the 
helicopter will be further increased if the visual cues available to the pilot 
degrade (say, night flying, poor visibility, nap-of-the-earth flight, etc.) and 
also the aggressiveness of the maneuver.

It is important to recognize that, in determining the performance of the 
helicopter, the pilot’s subjective opinion plays a significant role. The defini-
tion of Cooper and Harper (1969) on the handling quality is stated as “those 
qualities or characteristics of an aircraft that govern the ease and precision 
with which a pilot is able to perform the tasks required in support of an 
aircraft role.” Since quantifying the ability of the pilot is more difficult, the 
Cooper–Harper pilot’s rating scale is used (Figure 9.11) and is accepted as a 
measure of handling qualities.
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Figure 9.10
Tip-path plane lag due to hub (or shaft) rotation.
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It is truly ideal to have a Level 1 vehicle satisfying the requirements 
throughout the operational flight envelope and for all mission tasks, under 
varying environmental conditions. However, in reality, it is almost impossible to 
meet the Level 1 criteria. In the absence of a Level 1 vehicle, it is acceptable 
to have Level 2 characteristics. It may be noted that, with handling quality 
rating of 6, the pilot workload is more, and he may not be able to fly for a long 
time due to fatigue. It may be interesting to note that a Level 2 vehicle in a 
good environment may become Level 3 under bad environment conditions. 
Although the pilot’s opinion is a very important factor or may be the final 
decision in accepting a vehicle, quantitative criteria are necessary for setting 
design standards, which would be helpful for designers and certifying agen-
cies. The most comprehensive set of requirements is provided by the U.S. 
Army’s Aeronautical Design Standard for handling qualities (ADS-33) devel-
oped in 1982. The earlier requirements are due to the MIL-H-8501A (1961). 
The basic difference between the requirements of MIL-H-8501A and that of 
ADS-33 are related to the Mission Task Elements. The details of these can be 
found in the ADS-33 handling quality requirements of military rotorcraft.

Since the cross-coupling between various degrees of freedom of the heli-
copter deteriorates the performance of the helicopter, to improve the vehicle 
flying quality to a higher level and to reduce the pilot’s workload, artificial 
stability and control augmentation is provided in the helicopter. However, 
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before discussing artificial stability, one must analyze and understand first 
the flying qualities of a basic helicopter. There are several reasons to under-
stand basic helicopter handling qualities. They are as follows: (1) the design 
of the stability and control augmentation system (SCAS) will become bet-
ter; (2) in case of failed SCAS, the level of the basic helicopter characteristics 
define the criticality of the SCAS (flight safety or mission critical); (3) better 
flying quality of the basic vehicle requires less authority from SCAS; and 
(4) any saturation in SCAS authority will result in the pilot flying the basic 
helicopter. In the following chapter, the dynamics and stability characteris-
tics of the basic helicopter are presented.
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10
Helicopter Stability and Control

Analysis of helicopter stability and control is a very complicated dynamic 
problem involving the coupling of rotor motion with the fuselage degrees 
of freedom. In general, this problem can be simplified by assuming that 
blade flap dynamics is much faster than fuselage dynamics, and therefore, 
the steady-state flap response to fuselage perturbation motion is treated in 
a quasi-static (or also known as “low-frequency approximation”) manner. 
In addition, the lead–lag and the torsion motions of the rotor blade can be 
neglected. The reason for this approximation can be attributed to the fact 
that the steady-state hub loads due to the flap motion of the blade are large 
compared to the hub loads due to the lag or the torsional motion. It is impor-
tant to note that, for ground and air resonance problems, lag motion plays 
an important role, whereas in helicopter stability and control problems, lag 
mode is generally neglected.

In Chapter 9, we have analyzed the response of the rotor system in the 
flap mode (or the rotor tip-path plane) to perturbation in hub motion and 
also to control pitch input. Since the response of the tip-path plane to hub 
motion changes the orientation of the thrust vector, it gives rise not only 
to a force, but also to a moment about the center of mass of the fuselage. 
The study of helicopter dynamics is simplified by analyzing the interaction 
of hub loads generated due to rotor flap motion, which is due to fuselage 
perturbation motion. The two important aspects in the study of helicopter 
dynamics are related to (1) the stability of the vehicle about an operating 
condition, and (2) the dynamic response of the vehicle to a given control 
input by the pilot.

Stability

The stability of a dynamic system can be defined as the tendency of the sys-
tem to return to the original state following a disturbance. Static stability 
is measured by the force or moment per unit disturbance, which is gener-
ated to restore the system to its original state. Dynamic stability deals with 
the time required to return to its original state following a unit disturbance, 
and it can be analyzed from the time response of the vehicle to an initial 
disturbance. The time histories describing various types of time response 
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indicating stability, namely, monotonic or oscillatory convergent motion, 
non-oscillatory or oscillatory neutral stable motion, and monotonic diver-
gent or oscillatory divergent unstable motion, are shown in Figure 10.1.

Control

Control is related to the ability to generate necessary forces and moments that 
are required to perform a desired maneuver and/or to maintain the vehicle 
in the desired flight path under an external disturbance due to gust. In the 
following, two definitions representing the quantitative measure related to 
control are given.

Control power is defined as the measure of the total moment or force that 
can be generated in the vehicle to a given control input by the pilot to execute 
a maneuver.
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Types of time response describing dynamic stability.
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Control sensitivity can be related to either the initial acceleration per unit 
stick movement (or control motion) or the steady-state velocity of the vehicle 
produced by unit stick motion.

The stability and control characteristics of the helicopter are analyzed 
using the flight dynamic equations of motion of the helicopter. While formu-
lating the flight dynamic equations, the fuselage is treated as a rigid body 
undergoing a general maneuver.

Flight Dynamic Equations for a General Maneuver: 
Trim (Equilibrium) and Perturbation Analysis

The flight dynamic equations of motion of a helicopter under general maneu-
ver are highly complicated. Hence, in the following, the formulations of the 
equations of motion and the solution procedure are described in a general 
symbolic manner. Subsequently, the stability characteristics of a helicopter 
under hovering condition will be solved using a simple model, based on the 
formulations presented in earlier chapters.

A very complex and general flight condition of a helicopter corresponds to 
a descent spin with sideslip velocity or a climb spin with sideslip velocity, as 
shown in Figure 10.2. The complexity arises due to two factors: one related to 
the kinematics of rigid body motion and the other related to describing the 
orientation of the vehicle and its flight path with respect to a ground-based 
observation coordinate system.
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General maneuver of a helicopter.
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The analysis of vehicle dynamics requires the development of the equations 
of motion of a helicopter. In this formulation, the helicopter is generally treated 
as a rigid body having three components of translational acceleration of the 
center of mass and three angular acceleration components defined along a 
suitable body-fixed coordinate system. The total number of degrees of freedom 
is 6. The corresponding six equations are three force equilibrium equations 
and three moment equilibrium equations. Apart from these six equilibrium 
equations, there are three more equations (kinematic relations) relating the 
instantaneous angular velocity of the helicopter to the rate of change of the 
orientation of the helicopter with respect to a ground-fixed coordinate system. 
The formulation of these equations is provided in the following.

Consider a body-fixed coordinate system (xb − yb − zb) with origin at the 
center of mass of the helicopter, as shown in Figure 10.3.

Let u, v, w be the components of velocity of the center of mass of the heli-
copter along xb − yb − zb, respectively, and p, q, r be the instantaneous angular 
velocity components along xb − yb − zb, respectively.

The translational acceleration of the center of mass is given by

	
� � �� � � �
a ui v wk ui vj wkj= + +( ) + + +( )ˆ ˆ ˆ ˆ ˆˆ

b b b b b b 	

Substituting for the time derivatives of the unit vectors,

	
� � � �a vj wk pi qj rk ui vui b= + +( ) + + +( ) × +ˆ ˆ ˆ ˆ ˆ ˆ ˆ

b b b b  b b
ˆ̂ ˆj wkbb +( ) 	

Combining the components, the acceleration at the center of mass can be 
written as

	
� � � �a u rv qw i v pw ru j w qu pv k= − +( ) + − +( ) + − +( )ˆ ˆ ˆ

b b b 	 (10.1)

yb, jb̂

xb, ib̂ zb, kb
ˆ

Figure 10.3
Body-fixed coordinate system.
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The external forces acting on the helicopter fuselage are due to the following:

	 1.	Main rotor hub loads
	 2.	Tail rotor hub loads
	 3.	Fuselage aerodynamic loads
	 4.	Aerodynamic loads on horizontal tail
	 5.	Aerodynamic loads on vertical fin
	 6.	Gravity

Since the force equilibrium equations are written in the body-fixed (xb − yb − 
zb) coordinate system, the components of gravity load along the body-fixed 
system have to be obtained from the coordinate transformation relationship 
between the earth-fixed nonrotating system and the body-fixed rotating sys-
tem. This relationship essentially describes the orientation or attitude of the 
helicopter with respect to the ground-fixed axis system.

The attitude or orientation of the helicopter with respect to the earth-fixed 
system is given by three angles. Since finite rotations are not vector quanti-
ties, these angles are not unique, and the rotation sequence commonly used 
in flight dynamics is yaw–pitch–roll (ψ, θ, ϕ).

Let the earth-fixed coordinate system be denoted by xea − yea − zea. First, 
rotate the earth-fixed coordinate system about the zea axis through an angle 
ψ in a counterclockwise direction, as shown in Figure 10.4.

The transformation relationship between the earth-fixed system and the 
new coordinate system (x1, y1, z1) can be written as
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Next, rotate the coordinate system about the y1 axis through an angle θ in 
a counterclockwise direction, as shown in Figure 10.5.

The transformation relationship between x1, y1, z1 and the new coordinate 
system (x2, y2, z2) is given as
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Finally, rotate the x2, y2, z2 coordinate system about the x2 axis through an 
angle ϕ in a counterclockwise direction, as shown in Figure 10.6. The new 
coordinate system is the body-fixed system.

The transformation relationship between the two coordinate systems can 
be written as
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Combining all the transformation relationships, the final transformation 
relationship between the earth-fixed system and the body-fixed axis system 
can be written as
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(10.5)

Since Γ is an orthogonal transformation, one has

	 Γ−1 = ΓT	 (10.6)

Let us formulate the relationship between the instantaneous angular 
velocity of the helicopter and the rate of change of orientation angles ψ, θ, 
and ϕ. The instantaneous angular velocity vector is defined in the body fixed 
system as

	


ω = + +pi qj rkˆ ˆ ˆ
b b b 	 (10.7)

Also, it may be noted that the angular velocity vector can be written in 
terms of the time derivatives of orientation angles as

Using the transformation relationships, given in Equations 10.3 to 10.5, one 
can write the instantaneous angular velocity components in terms of orien-
tation angles and their rates as

	 p = − φ ψ θsin 	 (10.8)

	 q = +

θ φ ψ φ θcos sin cos 	 (10.9)

	 r = − +

θ φ ψ φ θsin cos cos 	 (10.10)
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Equations 10.8 to 10.10 represent the three kinematic relationships between 
the instantaneous angular velocity of the helicopter and the rate of change 
of the helicopter orientation angles with respect to the earth-fixed system.

The components of gravity load along the xb − yb − zb system can be easily 
obtained from the transformation relationships given in Equation 10.5. Let 
X, Y, Z be the components of the resultant external loads, other than gravity, 
acting on the fuselage center of mass along the body-fixed xb − yb − zb coordi-
nate system. Using Equation 10.1, the force equations can be written as

	 X M u rv qw M gF= − + +F ( ) sin θ 	 (10.11)

	 Y M v pw ru M g= − + −F F( ) sin cos φ θ 	 (10.12)

	 Z M w qu pv M g= − + −F F( ) cos cos φ θ 	 (10.13)

where MF is the total mass of the helicopter.
Knowing the angular velocity and the inertia tensor of the helicopter, the 

components of the angular momentum of the helicopter along the body-
fixed axis system can be written as
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(Note that the inertia tensor is symmetric.)
The moment equation can be written as

	
� � � ��

M H H= + ×ω 	 (10.15)

where

�
� � � � � ��

H I p I q I r i I p I q I rxx xy xz yx yy yz= − −( ) + − + −( )b̂
ˆ̂ ˆj I p I q I r kzx zy zz bb + − + +( )� � � 	 (10.16)

and

	





ω × = − − + − − + + H q I p I q I r r I p I q I rzx zy zz yx yy zz( ) ( ) ˆ̂

( ) ( ) ˆ

i

r I p I q I r p I p I q I r jxx xy xz zx zy zz

b

+ − − − − − +  bb

b+ − + − − − − p I p I q I r q I p I q I r kyx yy yz xx xy xz( ) ( ) ˆ

	 (10.17)
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Assume that the external moment acting on the helicopter center of mass 
can be written as

	


M Li Mj Nk= + +ˆ ˆ ˆ
b b b 	 (10.18)

Collecting all the terms from Equations 10.16 to 10.18 and equating the 
respective quantities, the three moment equations of the helicopter can be 
obtained, and they are given as

	 L I p I q I r q I p I q I r r Ixx xy xz zx zy zz yx= − − + − − + − −( ) ( ) (   pp I q I ryy yz+ − ) 	 (10.19)

M I p I q I r r I p I q I r p Iyx yy yz xx xy xz zx= − + − + − − − −( ) ( ) (   pp I q I rzy zz− + ) 	 (10.20)

	 N I p I q I r p I p I q I r q Izx zy zz yx yy yz x= − − + + − + − − −( ) ( ) (   xx xy xzp I q I r− − ) 	 (10.21)

In general, the numerical value of Ixz is comparable to the value of Ixx. 
However, all the other cross-products of inertia can be taken as 0. Then, the 
simplified form of moment equations can be given as

	 L I p I r pq qr I Ixx xz yy zz= − + − − ( ) ( ) 	 (10.22)

	 M I q I r p rp I Iyy xz zz xx= − − − − ( ) ( )2 2 	 (10.23)

	 N I r I p qr pq I Izz xz xx yy= − − − − ( ) ( ) 	 (10.24)

It can be seen that, due to Ixz, the cyclic symmetry in the equations is lost.
From Equations 10.8 to 10.10, the kinematic relationship between the rate 

change of the helicopter orientation angles and the instantaneous angular 
velocity of the fuselage can be written as

	 ψ φ
θ

φ
θ

= +sin
cos

cos
cos

q r 	 (10.25)

	 θ φ φ= −cos   sin  q r 	 (10.26)

	 φ θ φ θ φ= + +p q rtan sin   tan cos   	 (10.27)
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Under a steady turn maneuver, in the spin mode, the spin axis is always 
directed vertically. The rate of change of the orientation angles θ and ϕ are 
0, and the gravitational force components along the body-fixed system are 
constant. This type of flight condition resembles spiral climbing or descend-
ing with the side slip.

A thorough and rigorous analysis of flight dynamics must include the 
blade degree of freedom in the flap, lag, and torsion modes. Inclusion of 
the blade equations along with the vehicle dynamic equations will pres-
ent a set of highly complicated coupled equations. Generally, the lag and 
torsion modes of the blade are neglected since their contribution to the 
vehicle flying qualities is relatively less significant. The coning and the 
longitudinal and lateral flapping of the rotor modes have a significant 
influence on vehicle dynamics. Since the damping in the flap modes is 
large, the time constant is of the order of one-quarter to one-half of a revo-
lution of the rotor. The dynamics of the flap mode is much faster than the 
fuselage dynamics, and the rotor flap reaches its steady-state value in a 
very short time. Hence, flap dynamics is included in vehicle dynamics in a 
quasi-static manner, which eliminates the blade degrees of freedom from 
the flight dynamic problem. It is assumed that the rotor system produces 
force and moments at the rotor hub instantaneously in response to vehicle 
motion or to pilot control inputs.

The dynamic equations of motion are nonlinear coupled differential 
equations. The formulation of helicopter trim equations and perturbation 
(stability) equations are based on the perturbation approach. The stabil-
ity analysis is performed about an equilibrium (trim) flight condition, and 
hence, the equations of motion are linearized about the trim state of the 
helicopter.

The process of linearization is as follows.
Assume that each degree of freedom and control inputs can be written as 

two components: one representing the trim (or equilibrium) value and the 
other a perturbational quantity, as

	

θ θ
φ φ φ ν

θ= = + = +
= + =

+e e e

e e

� ��
�
( )  ( )  ( )

( ) 

t u u u t p p t

t v

p

++ = +
= = + = +

� �

� ��
v t q q q t

t w w w t r r r t

( )  ( ) 

( )  ( )
e

e e eψ ψ
	

θ θ θ θ θ θ θ θ θ θ θ θ0 0 0 1 1 1 1 1 1 0 0= + = + = + = +e c ce c s se s T Te
   

00T 	 (10.28)

Similarly, the force and moment components acting on the helicopter are 
given as a sum of equilibrium and perturbation quantities. Using Taylor’s 
theorem for analytic functions, the forces and moments can be written in the 
approximate form as
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  (10.29)

In writing the above expansion, it is assumed that only the flap mode of 
the rotor is included in a quasi-static form in the evaluation of rotor loads.

For convenience, the above expansion can be written in a compact form as

	
X X X X X X X X X Xu v w p q r pp q= + + + + + + + +e u v w p q r� � � � � � �� ��� �qq rX X X

X X X X

r+ + +

+ + + +

��� � �

� � �

θ φ

θ θ θ θ

θ φ

θ θ θ
0 1 10 1 1c sc s 00 0T T

�θ
		


(10.30)

In general, the derivative terms associated with ��p , ��q, and ��r  are generally 
very small compared to the inertia of the helicopter, and hence, they can be 
neglected. Also, the terms associated with θ  and φ  are generally 0; hence, 
these terms are not usually included in the Taylor series expansion.

Similar to Equation 10.30, other force and moment components are 
expanded.

In Equation 10.30, the quantity with subscript “e” corresponds to the equi-
librium quantity in steady-state maneuver, and it is a constant (i.e., it is time 
invariant). Substituting these types of expressions and Equation 10.28 in 
the equations of motion (Equations 10.11 to 10.13, 10.22 to 10.24, 10.8 to 10.10) 
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and collecting terms corresponding to the equilibrium state and those cor-
responding to the perturbation quantities (after neglecting the product of 
perturbation quantities), and equating them separately to 0, two sets of equa-
tions are formed. The time invariant set corresponds to the trim state, and 
the time variant set represents the linearized perturbation equations.

The time variant equations correspond to the stability equations. The trim 
equations are nonlinear algebraic equations. They are given as follows:

Force equations:

	 m(−reve + qewe) + mg sin θe = Xe	 (10.31)

	 m(−pewe + reue) − mg sin ϕe cos θe = Ye	 (10.32)

	 m(−qeue + peve) − mg cos ϕe cos θe = Ze	 (10.33)

Moment equations:

	 −Ixz(peqe) − (Iyy − Izz)qere = Le  (roll)	 (10.34)

	 − −( ) − − =I r p I I r p Mxz zz xxe e e e e pitch2 2 ( ) ( ) 	 (10.35)

	 −Ixz(−qere) − (Ixx − Iyy)peqe = Ne  (yaw)	 (10.36)

where Xe, Ye, Ze and Le, Me, Ne are the steady-state forces and moments acting 
on the helicopter at the center of mass location. The steady-state roll, pitch, 
and yaw rates (pe, qe, re) are related to the steady-state spin rate ψe as (from 
Equations 10.8–10.10)

	 pe e e= − ψ θsin 	 (10.37)

	 qe e e e= ψ φ θsin cos 	 (10.38)

	 re e e e= ψ φ θcos cos 	 (10.39)

In level flight, pe = qe = re = 0. Since there is no angular motion of the fuselage, 
the trim equations reduce to three force and three moment equilibrium equa-
tions (Equations 10.31 to 10.36). On the other hand, if the helicopter is performing 
a steady turn, pe, qe, and re will have finite values. The trim equations are non-
linear algebraic equations and can be solved by the iterative numerical scheme.

Equations 10.31 to 10.39 comprise a set of nine equations. Under equilib-
rium condition, the total number of unknown quantities is 13. They are given 
as follows:

	 Translation velocity components: ue, ve, we
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	 Angular velocity components: pe, qe, re

	 Steady spin rate: ψe

	 Orientation angles: θe, ϕe

	 Pilot input angles: θ0, θ1c, θ1s, θ0TR	 (10.40)

Since there are only nine equations, for a unique mathematical solution, 
four quantities must be viewed as independent, and they must be prescribed. 
It may be noted that any four quantities can be prescribed, and the remain-
ing nine quantities can be evaluated by solving the nine equations. For a 
general flight condition, the following four quantities are usually prescribed. 
They are

	 Vfe: flight speed

	 γfe: flight path angle

	 ψe e= Ω : turn rate or spin rate

	 βe: side-slip angle	 (10.41)

It is interesting to note that the variables of the problem are different 
from the given four quantities. One has to formulate a proper relationship 
between them. In the following, the relationships between trim parameters 
Vfe, βe, and γfe, and the velocity components ue, ve, and we are obtained. The 
incidence and side-slip angles are defined as

	 αe
e

e

=






−tan 1 w
u

: incidence angle	 (10.42)

	 βe
e

fe

=






−sin 1 v
V

: side slip angle	 (10.43)

Note that the components of Vfe are ue, ve, we along the body-fixed coordi-
nate system. This velocity vector of the helicopter is turning at a steady spin 
rate Ωe, as shown in Figure 10.7.

Let us assume that the velocity vector 


Vfe  makes an angle γfe (flight path 
angle) with respect to the horizontal plane (xea − yea plane) of the earth-fixed 
system, as shown in Figure 10.8.

From Figure 10.8, the velocity components of Vfe along the earth-fixed sys-
tem can be written as

	 Uea = Vfe cos γfe cos χ	 (10.44)
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	 Vea = Vfe cos γfe sin χ	 (10.45)

	 Wea = Vfe sin γfe	 (10.46)

The angle χ represents the angle between the earth-fixed x axis (xea) and 
the projected velocity vector in the horizontal plane.

Using the transformation relationship between the earth-fixed system and 
the body fixed system (Equation 10.5), the velocity components in the body-
fixed system can be obtained as

	 ue = Vfe[cos γfe cos θe{cos χ cos ψe + sin χ sin ψe} − sin γfe sin θe]	 (10.47)

v Ve fe fe e e e e e= −

+

cos {sin sin cos sin }cos cosγ χ φ θ ψ φ ψ

ccos {sin sin cos cos } sin ssin sinγ χ φ θ ψ φ ψ γfe e e e e e fe+ + iin cosφ θe e  		
  (10.48)

yb, ve

ue, xb

we, zb

Vfe

Ωe

zea

Figure 10.7
Spin rate and the components of the velocity vector.

yea, vea

zea, wea

uea, xea

Vfe

γfe

χ

Figure 10.8
Flight path angle defined with respect to the earth-fixed horizontal plane.
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w Ve fe fe e e e e e= +[cos {cos sin sin sin }

  

cos cosγ χ φ θ ψ φ ψ

         cos {cos sin sin cos }sin sin+ −γ χ φ θ ψ φ ψfe e e e e e ++ sin cos ]cosγ φ θfe e e

		


(10.49)

Combining the two angles χ and ψe, and representing χe = χ − ψe, the veloc-
ity components can be simplified as

	 ue = Vfe[cos γfe cos θe cos χe − sin γfe sin θe]	 (10.50)

	 ve = Vfe[cos γfe sin ϕe sin θe cos χe + cos γfe cos ϕe sin χe + sin γfe sin ϕe cos θe]

		  (10.51)

	we = Vfe[cos γfe cos ϕe sin θe cos χe − cos γfe sin ϕe sin χe + sin γfe cos ϕe cos θe]

	  (10.52)

where χe = χ − ψe is denoted as the track angle. Note that χ and ψe (= Ωet) are 
time-dependent quantities.

During steady maneuver, ue, ve, we, θe, ϕe, γfe are constants. Hence, χe must 
also be a constant, even though χ and ψe are time varying, but their differ-
ence will be a constant under steady maneuver. From a geometric point of 
view, one can approximately say that the track angle χe represents the angle 
between the velocity vector and the body-fixed x axis (xb axis) projected on 
the horizontal earth plane. In steady maneuver, this track angle remains a 
constant, and it is related to the side-slip angle, which is described in the 
following.

Since the side-slip angle is defined as sin βe
e

fe

= v
V

, there is a relationship 

between the track angle and the side-slip angle. From Equation 10.49, one can 
write the expression for side-slip angle in terms of the equilibrium angle in 
the pitch and roll orientation angles of the helicopter, the flight path angle, 
and the track angle as

sinβe = cosγfe sinϕe sinθe cosχe + cosγfe cosϕe sinχe + sinγfe sinϕe cosθe	 (10.53)

Denoting

	

K

K

K

1

2

3

=

=

= −

cos sin  sin

cos cos

sin sin

γ φ θ

γ φ

β γ

fe e e

fe e

e ffe e esin  cosφ θ

	 (10.54)

Substituting the new variables in Equation 10.53, one has

	 K1 cosχe + K2 sinχe − K3 = 0	 (10.55)
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Rearranging Equation 10.55 and squaring both sides yields

	 K K K K K1
2 2

3
2

2 3 2
2 22cos sin sinχ χ χe e e= − + 	 (10.56)

Rewriting Equation 10.56 as

	 K K K K K K2
2

1
2 2

2 3 3
2

1
22 0+( ) − + − =sin sinχ χe e 	 (10.57)

Solving for the track angle,

	 sin  χe =
± − −( ) +( )

+

2 4 4

2

2 3 2
2

3
2

3
2

1
2

2
2

1
2

2
2

1

K K K K K K K K

K K22( ) 	 (10.58)

Simplifying the expression,

	 sin χe =
± + −

+( )
K K K K K K K

K K
2 3 1

4
1
2

2
2

3
2

1
2

1
2

2
2

	 (10.59)

Of the two solutions, only one of the angles will be physically meaningful, 
and it should satisfy Equation 10.51. This track angle χe is defined in terms of 
βe, θe, ϕe, and γfe.

The iterative procedure for trim analysis during steady maneuvering flight 
is as follows:

	 1.	Given all the parameters of the vehicle, blade data, flight speed, flight 
path angle, side-slip angle, and turn rate.

	 2.	Assume θe, ϕe, θ0e, θ1ce, θ1se, θ0Te.
	 3.	Compute track angle χe.
	 4.	Obtain ue, ve, we, pe, qe, re.
	 5.	Solve for the rotor inflow.
	 6.	Solve the blade equations for the response and hub loads.
	 7.	Obtain fuselage and other surface aerodynamic loads.
	 8.	Balance the fuselage force and moment equations.
	 9.	Obtain new estimates θ0e, θ1ce, θ1se, θ0Te, ϕe, θe.
	 10.	Go to step 2. Iterate until convergence is reached. The converged 

set corresponds to the trim condition in steady maneuver of the 
helicopter.
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Linearized Perturbation Equations

Along with the trim equations, after neglecting the product of the perturba-
tion quantities, linearized stability equations are obtained. For example, let us 
consider the linearized force equation in the X direction (using Equations 10.11, 
10.28, and 10.30).

M M r v M q w M g

X

u v r w qeF F e e F e F e

u

�� � � � � �− + + + + =( ) ( ) cos θ θ

�� � � � � � �� �� �� � �u v w p q r p qX X X X X X X Xp q r+ + + + + + + +v w p q r
�� � �

� � � �

r X X

X X X X

+ +

+ + + +

θ φ

θ θ θ θ

θ φ

θ θ θ θ
0 1 1 00 1 1 0c s Tc s T

	 (10.60)

Similarly, all the force, moment, and kinematic equations are written in 
this linearized form. The quantities Xu, Xv, Xw…… etc. are known as sta-
bility derivatives, and Xθ0, Xθ1c… . . etc. are known as control derivatives. 
Before writing the linearized equations in matrix form, one must establish a 
relationship between the orientation rates of the angles in θ (pitch), ϕ (roll), 
and ψ (yaw), and the instantaneous angular rates of the helicopter. For finite 
angular motion, one must formulate this relationship using the Euler angle 
transformation. If the pitch and roll angles are small, one can resort to the 
approximation that �� �φ = p  (roll), �� �θ = q  (pitch), and �� �ψ = r  (yaw). In the follow-
ing, only this approximate relationship is used, which is sufficient for the 
purpose of explaining the fundamentals of helicopter dynamics.

It is important to note that the perturbation equations have to be nondi-
mensionalized before proceeding to perform stability or control response cal-
culations. Dividing the force equations by MbΩ2R and moment equations by 
MbΩ2R2, and performing some simple mathematical manipulations, the per-
turbation equations of motion can be written in matrix form as (Note: 6 dynam-
ical equations + 2 kinematic relations. The yaw rate relationship is generally 
not included since the yaw angle can be directly obtained from the yaw rate.)

	
X AX Bu= + 	 (10.61)

The state vector: { } , , , , , , ,X =       


u v w p q r

T
θ φ

	 { } , , ,u =     θ θ θ θ0 1 1 0s c T

T
	

The vector X is the nondimensional state vector, u is the control vector, 
A is the system matrix, and B is the control matrix. The equations can be 
arranged in a manner such that longitudinal dynamics (involving only u, q, 
and θ ) can be separated from lateral dynamics (involving v, p , r , and φ) and 
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heave dynamics (involving w). Even though there is cross-coupling between 
all the motions, for the purpose of analysis and understanding, and also for 
the preliminary design of the control laws of automatic flight control system, 
longitudinal dynamics, lateral dynamics, and heave dynamics are analyzed 
separately.

For steady turn case, the equilibrium quantities pe, qe, and re will be pres-
ent in the linearized perturbation equations, as shown in Equation 10.60. For 
level flight, these quantities are 0. The quantities ue, ve, and we represent the 
steady velocity components along the three body-fixed axes, with origin at 
the center of mass of the helicopter. The component of velocity we represents 
descent or climb, and ve corresponds to side slip.

The dynamic characteristics of the helicopter are analyzed by identify-
ing the eigenvalues of the system matrix A. Solving the full system may be 
computationally easy, but analyzing the results becomes a little challenging 
because of coupling effects. Therefore, to gain a good understanding, differ-
ent motions are decoupled and solved separately.

Stability Characteristics

The linearized perturbation equation (Equation 10.61) is used to obtain the 
stability behavior of the base helicopter by solving an eigenvalue problem of 
the homogeneous part of the equation.

	 X AX− = 0 	 (10.62)

Assuming a solution as X X= est, the eigenvalue problem is obtained.

	 [sI − A]{X} = 0	 (10.63)

The characteristic determinant is

	 |sI − A| = 0	 (10.64)

Since system matrix A is of size 8 × 8, there are eight eigenvalues. If all 
the roots are complex, then there will be four pairs of complex conjugate 
roots. In general, for a helicopter, the root si (i = 1 to 8) will contain both 
complex and real roots. One can represent the complex roots by si = σi ± iωi, 
where σi represents the modal damping in the ith mode and ωi represents 
the frequency of the ith mode. When σi is negative, the mode is stable, and 
when σi is positive, the mode is unstable. When ωi is equal to 0, the root is 
a real root, indicating that the mode is either a pure divergent mode (if σi 



267Helicopter Stability and Control

is positive) or a pure convergent mode (if σi is negative). The eigen analy-
sis of an 8 × 8 matrix is mathematically a very simple task to perform in 
a computer. However, an analytical solution will be a formidable task. The 
reason for a simplified analytical approach for stability analysis is that it will 
provide a substantial understanding of the phenomenon and information 
about which stability derivatives influence a mode and how the stability of 
the system can be improved by design modifications. The eigenvalues of the 
eighth-order (coupled) system for a typical helicopter is shown in Figure 10.9 
as a root locus plot.

The eight roots contain two complex conjugates (four roots) plus four 
real roots. Of these, the root represented as “phugoid” is initially unsta-
ble at hover and becomes stable at midrange of forward speeds and again 
becomes unstable at high forward speeds. The eigenvector of the phugoid 
root indicates predominant participation from pitch, forward velocity, and 
vertical velocity states. The other complex root is known as the “Dutch 
roll,” which has predominant participation from roll, side-slip velocity, and 
yaw. This root, although oscillatory, is generally stable. The other four roots 
are real roots, and they represent a stable convergent motion over the entire 
speed range. They are pitch subsidence, heave subsidence, roll subsidence, 
and spiral subsidence. As the name suggests, these modes have predomi-
nant contribution from the respective motion. The spiral mode is predomi-
nantly yaw motion in hover, with roll and side-slip contribution increasing 
with forward flight. A thorough understanding of the stability of the heli-
copter can be obtained by analyzing the system in subsets. By separating 
the dynamics into subsets, longitudinal dynamics, lateral dynamics, and 
heave dynamics are mathematically decoupled, even though, physically, 
there is coupling. In the following, a highly simplified analysis of helicop-
ter stability in longitudinal, lateral, and heave dynamics is presented, using 
the various expressions derived in earlier chapters. Through these simpli-
fied formulations, the essential features of helicopter stability in hover are 
captured.

Simplified Treatment of Helicopter Dynamics in Hover

Using the mathematical formulation developed in earlier chapters for hub 
loads and rotor flap response to hub perturbation motions, a highly sim-
plified analysis of helicopter stability can be developed. The results of this 
simplified analysis provide a fundamental understanding on the stability of 
the helicopter.

A simplified model of a helicopter is shown in Figure 10.10. The body axis 
system (Xb − Yb − Zb) has its origin at the center of mass of the helicopter. The 
main rotor is assumed to be rotating counterclockwise when viewed from 
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Figure 10.9
Loci of eigenvalues as a function of forward speed.
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top. The perturbation motion of the helicopter along the body axes is shown 
in Figure 10.10.

Longitudinal Dynamics in Hover

For the purpose of discussion, let us consider the longitudinal dynamics 
of a hovering helicopter, as shown in Figure 10.10. In Chapter 4, the expres-
sions for hub forces and moments in terms blade flapping are derived under 
hovering condition (Equations 4.73 to 4.82). Using these expressions, explicit 
formulation of perturbation in hub loads will be derived (assuming zero 
twist for the blade) and used in the formulation of helicopter dynamics 
in hover. It may be noted that the proper change in sign will be incorpo-
rated by taking into consideration the direction of axes system indicated in 
Figures 4.5 and 10.10.

As the first example, let us write the relevant equations representing the 
longitudinal dynamics of the helicopter, consisting of the nondimensional 
variables: pitch angle (θ), pitch rate (q), and longitudinal velocity (u).

From Chapter 4, for a rotor under hovering condition, the longitudinal hub 
force due to the rotor flap is derived and is given in Equation 4.78. (Note that 
the negative sign is changed because of the change in the direction of x axis.) 
The longitudinal force in dimensional form can be written as

	 X R R
a

F c= −






ρπ σ θ λ β2 2 0
12 3 2

( )Ω 	 (10.65)

Zt Xt

Xb

Yb

Zb
r~

Tt

Q

h

Ω

w~

v~

u~

q, θ~ ~

p, Ф~ ~

Figure 10.10
Simple model of helicopter with reference axis system.
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Similarly, the pitching moment at the center of mass of the helicopter due 
to the main rotor hub force in longitudinal direction and the pitch moment 
at the hub is given (from Equation 4.82) as

	 M R R R
a

r
C

a
h
RyF

RF T
c= − −







−ρπ σ ϖ
σ

β2 2
2

12
1

( )     { }Ω 	 (10.66)

(Note that the quantity h denotes the rotor hub height from the center of 
mass of the helicopter. h should be taken as negative when the rotor hub is 
above the center of mass due to proper sign convention.)

The perturbation force equation along the body Xb axis can be written 
(from Equations 10.11, 10.28, and 10.60) as

	 Ω2RM M g XuF F F�� �+ =θ ∆ 	 (10.67)

(Note that the perturbation acceleration is nondimensionalised with respect 
to Ω2R. The equilibrium angle in pitch θe is assumed as 0 during hover.)

In Equation 10.67, the first term on the left-hand side represents the inertia 
force of the fuselage, the second term represents the component of gravity 
force along the longitudinal direction, and the term on the right-hand side 
represents the perturbation in longitudinal force due to main rotor aerody-
namic loads, which is to be obtained from Equation 10.65, and it is expressed 
in terms of the perturbation motion of the helicopter and the rotor blade 
cyclic input as

	 ∆X
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The perturbation moment equation for pitching motion can be written as

	 Ω2I MqYY y�� = ∆ F 	 (10.69)

where the right hand–side term represents the perturbation in fuselage pitch-
ing moment due to main rotor aerodynamic loads, which is to be obtained 
from Equation 10.66, and it is expressed as

	 ∆M
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The kinematic relationship between the rate of change of the pitch angle 
and the pitch rate is given as

	 �� �θ = q 	 (10.71)
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The set of Equations 10.65 to 10.71 represents the longitudinal dynamics of 
the helicopter in hover. One can simplify these equations further by substituting 
for various derivative terms and rearranging the equations in state space form.

For the sake of simplicity, let us express Equations 10.65 and 10.66 as

	 XF = α1β1c	 (10.72)

	 MyF = −α2β1c	 (10.73)

where α1 and α2 are given as

	 α ρπ σ θ λ
1

2 2 0

2 3 2
= −







R R
a

( )Ω 	 (10.74)

and

	 α ρπ σ ϖ
σ2

2 2
2

2
1= − −







R R R
a

r
C

a
h
R

( )  Ω RF T 	 (10.75)

Substituting Equation 10.68 in Equation 10.67, and Equation 10.70 in Equation 
10.69, and using Equations 10.74 and 10.75, and nondimensionalizing the force 
equation with MbΩ2R and the moment equation by MbΩ2R2, the perturbation 
equations in longitudinal translation and pitch can be written, respectively, as

Perturbation force equation in the X direction:
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(10.76)

where
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Perturbation pitching moment equation:
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where
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Combining Equations 10.71, 10.76, and 10.78, the longitudinal dynamic 
equations of the helicopter in hover can be written in matrix form as
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  (10.80)

The various derivative terms in the matrices, involving longitudinal flap 
and the perturbation motion of the fuselage, can be obtained in terms of cou-
pling parameter Sc, derived from Chapter 9 (derivatives given in Equation 
9.68). The longitudinal stability of the system can be analyzed by neglecting 
the excitation term from the right-hand side of Equation 10.80 and solving 
the eigenvalues of the homogeneous part of the equation. One can notice 
that the magnitude of the derivative terms (inertia terms) on the left-hand 
side of Equation 10.80 will usually be very small, and hence, these terms are 
often neglected from the formulation. (This aspect is shown in the following 
by solving an example problem.)

Rearranging the homogenous part of Equation 10.80 (in symbolic form), 
after neglecting the derivative terms in the inertia matrix, as
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The eigenvalue problem becomes
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The characteristic equation is given by

	 s s X M s X M M X
g

R
M3 2

2
0− + + − + =( ) ( )u q u q u q uΩ

	 (10.83)

One can solve for the three roots and establish the stability behavior of the 
helicopter in longitudinal dynamics. Using the above derivation, the stabil-
ity of the helicopter in longitudinal dynamics is analyzed for the sample data 
given in Table 10.1. The stability of the helicopter was analyzed for different 
values of the coupling parameter Sc, which predominantly influences the sta-
bility of the helicopter.

For various values of the coupling parameter, the eigenvalue problem for 
longitudinal dynamics is solved, and the results are given in the following. 
(Note: This problem can be treated as an exercise for a clear understanding.)

Sc = 0.0:
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Table 10.1

Given and Calculated Data of the Various Parameters of a Helicopter

Parameter Value

Weight of the helicopter, W 45,000 N
g 9.81 m/s2

Mass moment of inertia of the helicopter in pitch, Iyy 20,000 kgm2

Main rotor radius, R 6.6 m
Main rotor blade chord, c 0.5 m
Number of blades in the main rotor system, N 4
Rotor angular velocity, Ω 32 rad/s

Density of air, ρ 0.954 kg/m3

Height of the rotor hub above center of gravity (c.g.), h −1.6 m
Mass per unit length of the blade, ρb 11.21 kg/m
Lift curve slope, a 5.73/rad
Mass of the fuselage (W/g), MF 4587.2 kg
Thrust coefficient, CT 0.007727
Mass of the rotor blade, Mb 73.99 kg
Mass moment of inertia of the blade about its root, Ib 1074.3 kgm2

Inflow ratio, λo 0.06216

Rotor solidity, σ 0.09646

Lock number, γ 4.8276
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Sc = 0.1:
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Sc = 0.2:
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Sc = 0.3:
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Eigenvectors:
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It can be seen from the eigenvalues that one root is a stable real root and 
the other two roots are complex roots with a positive real part indicating 
instability. Since the eigenvalues are given in nondimensional form, they 
can be dimensionalised by multiplying with rotor angular velocity. It is well 
known that the helicopter is unstable in the phugoid mode in hover. The root 
locus plot is shown in Figure 10.11.

The above treatment of solving the longitudinal dynamics of the helicop-
ter does not provide an understanding of the influence of various derivative 
terms in Equation 10.81 (or Equation 10.80) of the problem. Hence, the prob-
lem can be further simplified by decoupling the pitch rate motion from the 
phugoid (longitudinal and pitch) by using the following technique.

Let us write the longitudinal motion as
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	 (10.84)

From the above equation, the two partition equations from the eigenvalue 
form can be written as

	 (sI − A11)X1 − A12X2 = 0	 (10.85)

	 [sI − A22]X2 − A21X1 = 0	 (10.86)
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Figure 10.11
Variation in eigenvalues with change in coupling parameter Sc.
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Substituting for X1 from Equation 10.85 in Equation 10.86, the characteristic 
equation becomes

	 f2(s) = |sI − A22 − A21[sI − A11]−1A12| = 0	 (10.87)

On the other hand, if we substitute for X2 from Equation 10.86 in Equation 
10.85, one obtains

	 f1(s) = |sI − A11 − A12[sI − A22]−1A21| = 0	 (10.88)

The two equations, Equations 10.87 and 10.88, can be solved to obtain the 
eigenvalues of the system. In a weakly coupled system, the eigenvalues cor-
responding to the degrees of freedom (X1) can be obtained from the equa-
tion f1(s) = 0. The eigenvalues corresponding to X2 can be obtained from the 
equation f2(s) = 0. However, in solving for the eigenvalues, one may have to 
approximate the inverse matrix in the characteristic equation, which is given 
in a general form as

	 [sI − A]−1 = −A−1[I + sA−1 + s2A−2 + ….]	 (10.89)

When the coupling is weak, this expansion can be approximated to two 
terms.

Applying the above approach to longitudinal dynamics, one has (from 
Equation 10.81)
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	 (10.90)

Substituting the respective terms in Equation 10.88, the eigenvalues of vector 
X1 ( u,θ)T can be obtained from the simplified characteristic equation given as
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Simplifying Equation 10.91 as
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Rearranging the terms, the characteristic equation can be written as
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Expanding,
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Neglecting the terms with Xq (based on approximate order) in the first 
term, the natural frequency in the phugoid mode can be given as

	 ω p
u

q

2
2

= − M
M

g

RΩ
  	 (10.95)

The damping in the phugoid mode is given by

	 2
2 2
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= − − +
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X

X M

M
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g

R  Ω 	 (10.96)

These expressions clearly indicate the influence of the ratio of the pitch-
ing moment due to speed (speed stability) and the pitching moment due to 
pitch rate (direct damping in pitch) on both the frequency and the damping 
in the phugoid mode. As described earlier, the speed stability Mu depends 
on the amount of flapping due to perturbational motion in u. This derivative 
is the major source of instability and also plays a dominant role in damp-
ing. Hence, augmenting or improving speed stability will have a significant 
effect in improving the damping in the phugoid mode. This is the reason 
for having a tail plate, which can give rise to a pitch moment about the c.g. 
However, the tail plate becomes effective in forward flight only. In addition, 
the c.g. location also plays a significant role in phugoid mode stability.

General Notes

The longitudinal stability of a hingeless helicopter is generally of inferior 
quality compared to that of an articulated rotor helicopter. The distinc-
tion becomes more pronounced at high forward speeds. Aft. c.g. location 
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deteriorates the longitudinal stability. Because of the unstable phugoid mode 
and also due to its severity in hingeless helicopters, stability augmentation 
systems are provided to improve the quality of flight. The positive aspect 
of this poor stability of hingeless rotors is that they provide higher control 
moments for improved maneuverability.

The other mode, namely pitch, is a damped mode. The contribution to 
pitch damping is due to Mq.

It is important to recognize that the above reduced order modeling holds 
good for hovering condition. However, in forward flight, due to the coupling 
between vertical velocity ( )z , pitch, and forward velocity ( )x , the reduced 
order modeling cannot be directly applicable.

Vertical Dynamics (Heave Dynamics)

The uncoupled vertical dynamics equation can be derived from the funda-
mental theory of a rotor having a small (or perturbational) axial velocity.

With reference to Figure 10.10, assuming a small vertical velocity of the 
helicopter w, the expression for rotor thrust from the blade element theory 
can be written as (assuming that the vertical velocity changes the rotor 
inflow uniformly)

	 T R R
a w= − +







ρπ σ θ λ2 2 0

2 3 2 2
( )  Ω



	 (10.97)

Similarly, the expression for thrust from the momentum theory can be 
expressed as

	 T R R w= −ρπ λ λ2 2 2( ) ( )Ω  	 (10.98)

It is important to note that perturbation in vertical velocity changes the 
thrust, which, in turn, can influence the rotor inflow. Therefore, it is essential 
to evaluate the change in inflow due to a small perturbation in vertical veloc-
ity of the helicopter first, before we formulate the equation of the helicopter 
in heave dynamics.

From Equation 10.97, change in thrust due to change in vertical velocity 
and the collective pitch can be expressed as
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From Equation 10.97, it can be noted that

	
∂
∂

= −






T
R R

a
λ

ρπ σ2 2

2
1
2

( )Ω 	 (10.100)

and
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Total change in thrust due to perturbation velocity w  can be obtained 
from Equation 10.97 as
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Similarly, the total change in thrust can also be obtained from Equation 
10.98 as
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Equating the expressions in Equations 10.102 and 10.103, one obtains

	 − ∂
∂

+ = ∂
∂

− − ∂
∂

σ λ σ λ λ λ λa
w

a
w

w
w4 4

4 2 2
 





  	 (10.104)

Rearranging the terms, one obtains
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	 (10.105)

From Equation 10.105, one can obtain an expression for the variation in 
inflow velocity due to perturbation in vertical velocity of the helicopter at 
hovering condition (i.e., at w = 0 ) as
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Substituting Equations 10.100, 10.101, and 10.106 in Equation 10.99, the 
change in thrust at hover due to perturbation in vertical motion and collec-
tive input can be written as
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On simplification, Equation 10.107 becomes
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The variation thrust can be expressed as
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The force balance equation representing the vertical dynamics of the heli-
copter can be written as (with reference to Figure 10.10)

	 M g T T M RwF F− + =( )∆ Ω2 �� 	 (10.110)

Substituting for ΔT from Equation 10.109 and cancelling the steady-state 
value of thrust equal to the weight of the helicopter, the vertical dynamics of 
the helicopter can be written as

	 − − ⋅
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a R R
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w w
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16F F

� � ��   	 (10.111)

Equation 10.111 can be written in symbolic form as

	 �� � �w wZ Z= +w θ θ
0 0 	 (10.112)

The derivative Zw and Zθ0  can be obtained from the expressions given 
in Equation 10.111. Knowing the thrust coefficient CT, the inflow λ in hover 
can be obtained. It is important to recognize that Zw is always negative, and 
hence, the heave mode is always stable in hover.
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Lateral–Directional Dynamics

The lateral–directional dynamics of the helicopter involves motion in roll, 
yaw, and side slip. According to the eighth-order model, the degrees of 
freedom contributing to lateral dynamics are side-slip velocity v, roll rate 
p, yaw rate r , and roll angle φ. The reduced fourth-order system will have 
four eigenvalues. One of them will be a complex eigenvalue representing 
Dutch roll oscillation, and two real roots will represent periodic motion in 
the roll and spiral modes. In general, the roll mode is heavily damped and 
the spiral mode is lightly damped, but both are real stable roots. The roll 
subsidence is due to roll damping Lp, and the yaw subsidence is due to the 
yaw derivative Nr. The oscillatory Dutch roll mode is similar to the oscilla-
tory phugoid mode, but the major difference is that, in general, the Dutch 
roll mode is stable, while the phugoid mode is unstable.

In lateral dynamics, the coupling between yaw–roll–side slip is relatively 
strong; hence, reduced order modeling will not be accurate enough to predict 
the eigenvalues. However, there are certain coordinate transformations that 
can be used to obtain a weakly coupled system. Then, the order of the system 
can be reduced. However, the validity of such a procedure depends on the 
magnitude of coupling between yaw and roll. When the coupling is high, 
the validity of order reduction breaks down. The key derivatives of yaw–roll 
coupling are Np and Lr.

In the following, the dynamics of the helicopter in hover under lateral and 
directional motions is derived using the mathematical formulation presented 
in earlier chapters. This derivation is very similar to the one presented for 
longitudinal dynamics. Keeping Figure 10.10 as a reference, the perturbation 
equations for lateral–directional dynamics can be written for each degree of 
freedom.

The perturbation equation in lateral motion can be written as

	 M Rv T Y M gF T F FΩ2 �� �= + +∆ ∆ φ 	 (10.113)

where ΔTT represents the tail rotor thrust perturbation and ΔYF is the pertur-
bation in side force due to the main rotor.

The perturbation equation in roll motion can be written as

	 I M T ZpXX xΩ2�� = −∆ ∆F T T 	 (10.114)

where ΔMxF represents the roll moment at the center of mass due to the main 
rotor hub loads. Note that the quantity ZT is negative as per the coordinate 
system shown in Figure 10.10.
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The perturbation in yaw dynamics can be written as

	 I T XrZZΩ2�� = ∆ T T 	 (10.115)

Note that the quantity XT is negative as per the coordinate system shown 
in Figure 10.10.

The kinematic relationship between the time derivative of the roll angle 
and roll rate can be written as

	
�� �φ = p 	 (10.116)

The set of equations, given in Equations 10.113 to 10.116, represents the 
coupled lateral–directional dynamics of the helicopter in hover. Let us now 
substitute the various perturbation quantities in these equations to obtain 
the final set of complete equations.

Following the argument given in deriving Equation 10.109, the perturba-
tion in tail rotor thrust can be expressed (in terms of quantities related to tail 
rotor) as
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		  (10.117)

In Equation 10.117, the inflow λT corresponds to the tail rotor inflow. It can 
be evaluated from the main rotor torque coefficient (same as the power coef-
ficient) as given in the following.

The main rotor power (or torque) coefficient in hover can be expressed as 
(from Equations 2.42 to 2.45)
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	 (10.118)

Using Equation 10.118, the main rotor torque can be written as
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Knowing the main rotor torque, the tail rotor thrust can be obtained from 
torque balance as
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Note that the quantity XT is a negative as per the coordinate system shown 
in Figure 10.10.

Knowing the tail rotor thrust, the tail rotor inflow during hovering condi-
tion can be obtained as
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	 (10.121)

Next, consider the side force. Using the expression for main rotor side force 
in terms of the lateral flapping given in Equation 4.79,
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This equation can be written as

	 YF = −α1β1s	 (10.123)
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From Equation 10.123, the perturbation in the main rotor side force can be 
expressed as
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The roll moment at the center of mass due to the main rotor load is given 
as (Equation 4.82)
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From Equation 10.125, the perturbation in roll moment can be written as

	 ∆M
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Substituting various expressions for the perturbation loads, the perturba-
tion equation in side slip (Equation 10.113) can be written as
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(10.127)

Note that the velocity and rate quantities are nondimensionalized with 
respect to the main rotor angular velocity Ω.

Dividing Equation 10.127 by MbΩ2R and rearranging the terms, the side-
slip equation can be written as

M R
M R

v
a

a
X
R

r
Z
R

pvF

b

T T

T T

T TΩ
Ω

2

2 3
2

16
�� � ��= −

+
+ −




α σ λ
λ σ 




−

− ∂
∂

+ ∂
∂

+ ∂

Ω
Ω

R
R

a

v
v

p
p

T T

T
T

s s

α σ θ

α β β β

3 0

1
1 1

6
�

�
�

�
� 11 1

1
1

1

1
1

s s

c
c

s

s
s

F

∂
+ ∂

∂
+ ∂

∂








 +

��
�� �

�
�
�

p
p

Mβ
θ

θ β
θ

θ gg
M R

  

bΩ2
�φ

		
	



(10.128)

where  α1  and  α3  are given, respectively, as
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The perturbation equation for rolling rate (from Equation 10.114) can be 
written as
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Nondimensionalizing the equation by dividing with MbΩ2R2, one 
obtains
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The yaw dynamic equation (Equation 10.115) can be written as
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Dividing by MbΩ2R2 and nondimensionalizing, the yaw equation becomes
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Rewriting the above equation in a compact form as
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Equations 10.116, 10.128, 10.131, and 10.134 represent the coupled lateral–
yaw dynamic equations. These equations can be written in state space form 
as, after defining (for compactness)
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Noting that the flap derivative terms in the inertia matrix are very small 
in magnitude, they can be neglected. Inverting the inertia matrix, Equation 
10.136 can be written in the first-order state space form, which is given as

��

��

��

��

v

p

r

Y
g
R

Y Y

L L L

φ

























=

v p r

v p

Ω2

0 0 1 0
0 rr

v p rN N N

v

p

r0











































�
�

�
�

φ




+








Y Y Y

L L L

N N N

θ θ θ

θ θ θ

θ θ θ

1 1 0

1 1 0

1 1 0

0 0 0
c s T

c s T

c s T

































�
�
�

θ
θ
θ

1

1

c

s

0T

	 (10.137)

One can solve the stability of the helicopter in lateral–yaw dynamics by 
solving the eigenvalue problem of the homogeneous part of Equation 10.137. 
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One can solve for the four roots and establish the stability behavior of the 
helicopter. Using the above formulation, the stability of the helicopter in 
the coupled lateral–yaw dynamics is analyzed for the sample data given in 
Table 10.2. The stability of the helicopter was analyzed for different values of 
the coupling parameter Sc.

The results of the stability analysis are provided in the following for vari-
ous cases of coupling parameter Sc.

Table 10.2

Given and Calculated Data of Various Parameters

Parameter Value

Weight of the helicopter, W 45,000 N
g 9.81 m/s2

Roll inertia of helicopter, Ixx 5000 kgm2

Main rotor radius, R 6.6 m
Tail rotor radius, RT 1.275 m
Main rotor blade chord, c 0.5 m
Tail rotor blade chord, cT 0.19 m
Number of blades in the main rotor, N 4
Number of blades in the tail rotor, NT 4
Main rotor angular velocity, Ω 32 rad/s

Tail rotor angular velocity, ΩT 160 rad/s

Density of air, ρ 0.954 kg/m3

Height of the rotor hub above the center of mass, h −1.6 m
Height of the tail rotor hub center above the c.g., ZT −2 m
Tail rotor hub location, XT −7.9 m
Mass per unit length of the main rotor blade, Mb 11.21 kg/m
Lift curve slope, a 5.73/rad
Drag coefficient, Cdo 0.01
Empirical loss factor, κ 1.15
Helicopter mass, MF 4587.2 kg
Main rotor thrust coefficient, CT 0.007727
Main rotor torque coefficient, CQ 0.000658
Main rotor torque, Q 25311 Nm
Tail rotor thrust, TT 3204 N
Main rotor blade mass, Mb 73.99 kg
Mass moment of inertia of the main rotor blade about the flap hinge, Ib 1074.3 kg m2

Main rotor inflow in hover, λo 0.06216

Tail rotor inflow in hover, λT 0.08890

Main rotor solidity ratio, σ 0.09646

Tail rotor solidity ratio, σT 0.1897

Main rotor Lock number, γ 4.8276
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Sc = 0.3:
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The eigenvalues are shown in the root locus plot in Figure 10.12. From 
the sample results, it can be seen that the coupled lateral–yaw dynamics in 
hover is stable for Sc not equal to 0. Only when Sc is 0, the Dutch roll mode is 
unstable. The non-oscillatory stable modes correspond to the pure roll mode 
and yaw mode. The more stable mode corresponds to the roll mode, and the 
less stable mode corresponds to the yaw mode. This observation is made by 
analyzing the eigenvectors of the modes.

Control Characteristics/Control Response

The control characteristics of helicopters deal with the problem of evaluat-
ing the response of the system to a given input, which is the blade pitch 
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input. Since there are four inputs, generally, the study involves analyzing 
the helicopter behavior to each one of them independently. The control char-
acteristics or handling quality requirements of a helicopter are specified in 
MIL-H-8501A or by ADS-33. In the following, a simplified treatment of the 
control response is provided.

Pitch, Roll, and Yaw Response to Control Inputs

In analyzing the control response of the helicopter, one can address the prob-
lem of (1) initial response to control input and/or (2) steady-state response. 
Generally, for accurate maneuvering, it is the initial response that plays a 
major role. The response behavior of the vehicle is always analyzed using the 
linearized perturbation equations developed earlier.

	
X AX Bu= + 	 (10.138)

In general, the pilot’s opinion plays a major role in deciding whether 
the helicopter has a good/adequate/poor control response behavior. If the 
response of the vehicle to unit pilot input is very small, then the pilot will 
find the vehicle too sluggish, and if the response is too large, then the vehicle 
is oversensitive. Hence, there is a trade-off between sluggishness and over-
sensitivity. It must be noted that the opinion of the pilot will also change 
with experience.

In the handling quality requirements, two parameters of the helicopter are 
used. One is control power and the other is control damping. These will be 
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explained in the following by considering the uncoupled motion in any one 
axis (say roll).

The uncoupled roll equation can be written as

	 �� � �p
L
p

p
L

IXX

= ∂
∂

+ ∂
∂







θ

θ
1

1
1

c
c 	 (10.139)

Rewriting Equation 10.139 as

	 �� � �p
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L
p

p
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XX XX

− ∂
∂
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1 1
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c 	 (10.140)

Note: L
L
p I

L
L

I
L L I L L
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XXp c

c
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∂
= ∂

∂
→ = =1 1

1
1

1 1; ;θ θ θθ
//IXX

Equation 10.140 is a first-order differential equation, and its solution can 
be written as

	 p
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p

θ1c 	 (10.141)

Note that τ = Ωt is the nondimensional time. The solution can also be 
expressed as

	 p =

control moment/unit control input
roll inertiaa

roll damping
roll inertia

roll












−
−

  1 e
damping

roll inertia




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





τ

	 (10.142)

The handling quality requirements are based on the two parameters rep-
resenting the initial angular acceleration of roll motion for unit control input 
and damping in roll, that is,

	
control moment/unit control input

roll inertia
vs..

roll damping
roll inertia

 
	

 or vs.c pL L

I IXX XX

θ1
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or

	 Lθ1c  vs.  Lp

Note that, in addition to the rotor aerodynamic characteristics in generat-
ing control moment, the inertia of the helicopter also plays a major role in 
determining the control characteristics of the helicopter. Similar parameters 
are used for pitch and yaw with the corresponding control moment, damp-
ing, and inertia.

For pitch, the two parameters are M Mθ1s
vs. q.

For yaw, the two parameters are N Nθ0T
vs. T.

An alternate form of representing the handling qualities is by using the 
parameters: steady-state rate per unit control moment and the time constant, 
that is,

For roll, L
L L
θ1 1c

p p

vs. .

For pitch, M
M M

θ1 1s

q q

vs. .

For yaw, N
N N
θ0 1T

T r

vs. .

Gust Response

Assume a vertical upward gust wg, which can be added to the vertical motion 
of the helicopter, and write the uncoupled vertical dynamic equation as

	 �� �w wZ Z w= +w w g 	 (10.143)

The heave damping derivative defines the transient response as well as the 
gain for the gust input. The expression for Zw in hover is given as (Equation 
10.111)

	 Z
a R R

a Mw
F

= −
+

2
16

2σ ρπ λ
λ σ

 

(   )( ) 	

Note that σπR2 = NCR = blade area (Ab).
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An important parameter in the damping derivative is blade loading 
(MF/πR2). Since the blade loading is much higher than the wing loading of 
a fixed-wing aircraft, helicopters are less sensitive to gust than a fixed-wing 
aircraft of the same weight.

Helicopter gust response problem is quite complex, which involves the 
characterization and modeling of atmospheric disturbances, the analysis of 
helicopter response, and the formulation of the ride qualities. These aspects 
need to be addressed while considering operating environments, such as 
nap-of-the-earth flight, flying close to and landing in a high-rise building, 
etc.
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11
Ground Resonance–Aeromechanical 
Instability: A Simple Model

During the operation of the helicopter, the low-frequency lag mode of the 
rotor system can couple with body roll or pitch to cause instability. When the 
instability happens on ground, it is called “ground resonance,” and when it 
happens in air, it is called “air resonance.” When the helicopter is on ground, 
it has a well-defined pitch and roll frequencies determined by the landing 
gear stiffness and the inertia properties of the helicopter. The rotor blade is 
flexible in flap, lag, and torsion modes, and the natural frequencies of these 
modes vary with the rotor speed of the rotation. Under a particular condition, 
the rotor low-frequency cyclic lag mode couples with the body mode, lead-
ing to a resonance condition. When the helicopter is in flight, the pitch and 
roll modes of the fuselage are coupled to both the low-frequency flap and the 
low-frequency lag modes. Sometimes, the nature of coupling will be quite 
different in air than in ground. Since ground resonance is potentially more 
dangerous than air resonance, avoiding these instabilities is an important 
design consideration. Generally, an external damper is provided in the lead–
lag mode to improve damping in the lag mode and avoid the instability. The 
resonance condition above 120% of the nominal rotor revolutions per minute 
(rpm) and below 30% of the rotor rpm is acceptable because the rotor rarely 
operates above 100% rpm. At a low rotor speed, the rotor has less energy, so 
one can pass through this resonance region without creating any large ampli-
tude motion. Therefore, for a fairly large range of rotor operating condition, 
resonance has to be avoided. Analytical treatment of coupled rotor–fuselage 
problem for ground and air resonance is quite a complex problem because the 
model must properly take into account blade dynamics, aerodynamic effects, 
and the surface condition of the ground. However, for the purpose of under-
standing, one can use a very simple model of a rotor supported on a platform 
having lateral and longitudinal translational motions, as shown in Figure 11.1.

Rotor aerodynamics can be neglected for ground resonance simulation 
because it is assumed that the blade does not generate any lift on ground. 
Damping in rotor and support structure are usually of mechanical type, as 
shown in Figures 11.1 and 11.2. Such a simplified model captures the essen-
tial features of ground resonance phenomenon. The basic analysis of a sim-
plified model was due to Coleman and Feingold (1958).

Consider a four-bladed rotor system supported on a platform (Figure 11.1), 
which can have longitudinal and lateral translational perturbation motions. 
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The blades are assumed to have only lag motion. The mass of the platform 
is MF; the stiffness along the x-direction is Kx and along the y-direction is Ky; 
and the damping along x,y directions, assumed to be of viscous type, are Cx 
and Cy, respectively. The rotor blade can be idealized as a uniform rigid blade 
having a root offset with a root spring Kς and a root damper Cς, as shown 
in Figure 11.2. Following the mathematical procedure given in section on 

CX/2

KX/2

KX/2

CX/2

KY/2

Ry

Y

Z

Ω

Rx

MF

X

CY/2

CY/2

KY/2

FIGURE 11.1
Simple model of rotor–fuselage system for ground resonance.
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ψi
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YH

X1

XH

Figure 11.2
Idealized model of the rotor blade in the lag mode.
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Isolated Lag Dynamics in Chapter 6 and using hub translational motions in 
longitudinal and lateral directions, the equations of motion of the coupled 
rotor lag and fuselage dynamics can be derived.

The equation of the motion of the ith blade in the lag mode can be written 
as

	  

ζ ζ ζζ ζ
i i

c g
i

c gC

I

K

I

MX e

I

MX R

I
+ + +







−

b b b bΩ Ω2

. .
 R Rx i y isin cosψ ψ−



 = 0 	 (11.1)

where

	 M mdr
e

R
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 MX r m drc g

e

R

.      = ∫
	

 I r m dr
e

R

b = ∫ 2    

	

 R R
R
R

R

Rx
x

y
y= =,

	

 ψ ψ π
i N

i= + −2
1( ) is azimuth location of the ith blade

The equations of the motion of the platform are obtained by summing 
the root shears due to all the blades and applying to the platform. The force 
along the x-direction is given by

	 P P Pi xi i yi

i

N

Hx = −
=

∑cos sinψ ψ
1

	
(11.2)

where Pxi and Pyi are the root shear loads at the root of the ith blade. 
Substituting the root shear loads, Equation 11.2 can be written as
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	 (11.3)
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The force along the y-direction is given as

	 P P Pi xi i yi

i

N

Hy = +
=

∑sin cosψ ψ
1

	 (11.4)

Substituting the root inertia loads of the blade, Equation 11.4 can be written as

	
P M e X R RXi c g c g i x i y iHy = + + − −sin cos sin. .ψ ζ ψ ψΩ2 2 

 {{ }{ }
+ − + −
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∑
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i c g i c g i x iM X X R

1

2cos sin. .ψ ζ ζ ψΩ 

 RRy icos ψ{ }{ }
	 (11.5)

Using multiblade coordinate transformation, the hub loads can be simplified as

	 P M X
N

RR Nc g xHx s= −


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
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
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Assuming that the number of the blades N = 4, applying multiblade coor-
dinate transformation to the blade lag equation (Equation 11.1), and writing 
only the cyclic mode equations (since collective and differential modes do 
not couple with body motion), we have four equations. They are two cyclic 
lag mode equations and two translational motion equations of the platform.

1 cosine cyclic lag mode:
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1 sine cyclic lag mode:

	   ζ ζ ζ ζ ζωζ ζ
1 1 1

2
1 12 1s

b
s c RL s

b
c+ + + −( ) + −

C
I

C
I

MXc

Ω Ω
.gg

x

R

I
R

b

 = 0 	 (11.9)

where
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is the rotating natural frequency of the blade in the lag mode.
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Translational equations of the platform:

x-direction:
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y-direction:
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Writing the Equations 11.8 to 11.11 in matrix form,
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where the mass, damping, and stiffness matrices are given by
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These are a set of homogeneous coupled differential equations. The eigen-
value of the system provides information about the stability of the system. 
Writing Equation 11.12 in a state-space form,

	 { } [ ]{ }q A q= 	 (11.13)

where the state vector and the system matrix are written as
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Solving for the eigenvalues of matrix [A] from the characteristic 
determinant,

	 |A − sI| = 0

one can obtain information about the stability of the system. The eigenvalues 
si appear as complex conjugates si = σi ± i ωi, where σi represents the damping 
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and ωi represents the frequency of the ith mode. When σi is negative, the 
mode is stable, and when σi is positive, the mode is unstable.

Ground resonance studies indicate that instability occurs when the rotor 
low-frequency lag mode couples with the body pitch mode or the roll mode. 
In addition, instability occurs only for soft in-plane or articulated rotor sys-
tem and not for stiff in-plane rotors. (However, it may be noted that a stiff 
in-plane blade in one range of rotor speed will become a soft in-plane blade 
at a high range of rotor speed.) Using the data given in Table 11.1, ground 
resonance study can be performed. In the following, a frequency diagram 
depicting ground resonance phenomenon is shown in Figure 11.3. These 
results have been generated by assuming zero damping in the blade and 
the fuselage. Therefore, when the system is stable, the eigenvalues will be 
complex pairs with a zero real part (σi = 0) for all modes. When the system 
becomes unstable, some eigenvalues will be complex with a positive real part 
(σi), indicating instability. When the low-frequency lag mode coincides with 
body frequency, there is instability. The range of instability will shift to a 
high range of rotor speed of rotation as the lag frequency in the nonrotating 

state is increased, that is, ω ζ
NRL

b

=
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







K

I
.

This simple example problem depicts the nature of ground resonance in 
helicopters. A detailed analysis must include the aerodynamic loads and the 
flap modes, in addition to body modes and lag modes.

Table 11.1

Data Used in the Example Problem

Parameter Value Units

MF: fuselage mass 3500 kg
M: blade mass 60 kg
N: number of rotor blades 4 –
R: radius of the rotor disk 6 m
e: hinge offset 0 m
Xc.g: center of gravity 3 m
Ib: blade moment of inertia 720 kg−m2

Cx: damping coefficient in the longitudinal mode 0 N/(m/s)
Cy: damping coefficient in the lateral mode 0 N/(m/s)
Cz: lag damping coefficient (in rotating frame) 0 N.m/(rad/s)
Nonrotating lag frequency 3 Hz
Rotor angular speed 50–2000 rpm
Kfx: stiffness factor in the longitudinal mode (ωx**2*Mf) kg−(rad/sec)2

Kfy: stiffness factor in the lateral mode (ωy**2*Mf) kg−(rad/sec)2

ωx: natural frequency in the longitudinal mode 2 Hz

ωy: natural frequency in the lateral mode 4 Hz
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Several studies on ground and air resonance problems address the effect 
of aeroelastic couplings on lag mode damping and how aeroelastic couplings 
can be tailored to improve the inherent damping in the lag mode. There are 
also several other problems associated with the practical aspect of operating 
the helicopter under different ground conditions, such as concrete, grass, 
snow, etc.
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Figure 11.3
Variation of an imaginary part of eigenvalues as a function of rotor rpm.
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