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Differential geometry is the study of curved spaces using the techniques of calculus. It is a mainstay
of undergraduate mathematics education and a cornerstone of modern geometry. It is also the lan-
guage used by Einstein to express general relativity, and so is an essential tool for astronomers and
theoretical physicists.

This introductory textbook originates from a popular course given to third-year students at Durham
University for over 20 years, first by the late Lyndon Woodward and then by John Bolton (and others).
It provides a thorough introduction by focussing on the beginnings of the subject as studied by
Gauss: curves and surfaces in Euclidean space. While the main topics are the classics of differential
geometry — the definition and geometric meaning of Gaussian curvature, the Theorema Egregium of
Gauss, geodesics, and the Gauss—Bonnet Theorem — the treatment is modern and student-friendly,
taking direct routes to explain, prove, and apply the main results. It includes many exercises to test
students’ understanding of the material, and ends with a supplementary chapter on minimal surfaces
that could be used as an extension towards advanced courses or as a source of student projects.

John Bolton earned his Ph.D. at the University of Liverpool and joined Durham University in 1970,
where he was joined in 1971 by Lyndon Woodward, who obtained his D.Phil. from the University of
Oxford. They embarked on a long and fruitful collaboration, co-authoring over 30 research papers
in differential geometry, particularly on generalisations of “soap film” surfaces. Between them, they
have over 70 years’ teaching experience, being well regarded as enthusiastic, clear, and popular
lecturers. Lyndon Woodward passed away in 2000.
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Preface

We believe that the differential geometry of surfaces in Euclidean space is an ideal topic
to present at advanced undergraduate level. It allows a mix of calculational work (both
routine and advanced) with more theoretical material. Moreover, one may draw pictures
of surfaces in Euclidean 3-space, so that the results can actually be visualised. This helps
to develop geometrical intuition, and at the same time builds confidence in mathematical
methods. One of our aims is to convey our enthusiasm for, and enjoyment of, this subject.

The book covers material presented for many years to advanced undergraduate Mathe-
matics and Natural Sciences students at Durham University in a module entitled “Differ-
ential Geometry”. This module constitutes one sixth of the academic content of their third
year. The two main prerequisites are basic linear algebra and many-variable calculus.

We have three main targets.

(i) Gaussian curvature: we seek to explain this important function, and illustrate the
geometrical information it carries. We further demonstrate its importance when we
discuss the Theorema Egregium of Gauss.

(i1) Geodesics: these are the most important and interesting curves on a surface. They are
the analogues for surfaces of straight lines in a plane.

(iii) The Gauss—Bonnet Theorem: among other things, this theorem shows that Gaussian
curvature (which is defined using local properties of a surface) influences the global
overall properties of that surface.

The Theorema Egregium and the Gauss—Bonnet Theorem are both very surprising, but
readily understood and appreciated. They are also very important and influential from a
historical perspective, having had a profound effect on the development of differential
geometry as a whole.

We have tried to present the material needed to attain these targets using the minimum
amount of theory, and have, for the most part, resisted the temptation to include extra
material (but this resistance has crumbled spectacularly in Chapter 9!). This means that we
have been rather selective in our choice of applications and results. However, each chap-
ter contains some optional material, clearly signposted by a dagger symbol T, to provide
flexibility in the module and to add interest and mental stimulation to the more commit-
ted student. The optional material also provides opportunities for additional reading as the
module progresses.

There should be time to cover at least some of the optional material, and choices may
be made between the technical, the slightly more advanced, and some interesting topics
which are not specifically needed to attain our three targets mentioned above. There is
also some optional material on surfaces in higher dimensional Euclidean spaces (and on
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‘ Preface

general abstract surfaces), which is designed to whet the appetite of the students, and help
the transition to more advanced topics.

In a forty lecture module, we would suggest that the material in the first four chapters
should be covered in the first half of the module (and perhaps a start made on Chapter 5),
with between four and six lectures on each of the first three chapters, and perhaps four
lectures on the material in Chapter 4.

The pace picks up in the second half of the module. We suggest seven lectures for Chap-
ter 5 and three for Chapter 6. Five lectures could be allowed for Chapter 7, and four
for Chapter 8. However, this may only be achievable if students are asked to read for
themselves the proofs of some of the results.

This may leave a couple of lectures to briefly discuss the contents of the optional Chap-
ter 9 (on minimal and CMC surfaces). Although the material in this chapter is more
advanced, it is included because the mathematics is so beautiful, and is suitable for self-
study by an interested student. It could also form the starting point of a student project at
senior undergraduate or beginning postgraduate level.

Our aim throughout is to make the material appealing and understandable, while at
the same time building up confidence and geometrical intuition. Topics are presented
in bite-sized sections, and concrete criteria or formulae are clearly stated for the vari-
ous objects under discussion. We give as many worked examples as possible, given the
time constraints imposed by the module, and have also included many exercises at the
end of each of the chapters (and provided brief hints or solutions to some of them).
On-line solutions to all the exercises are available to instructors on application to the
publishers.

We have been heavily influenced by the excellent text Differential Geometry of Curves
and Surfaces by Manfredo Do Carmo (Dover Books on Mathematics). However, we have
omitted many of the more advanced topics found in that book, and at the same time
have further elucidated, where we thought appropriate, the material we believe may be
reasonably covered in our forty lecture module.

Finally, our sincere thanks to Roger Astley and his team at Cambridge University Press,
who have been encouraging and patient throughout the rather long gestation period of the
book.

Please enjoy the book.

Internal referencing

There are inevitably very many definitions which have to be included in a book of this
nature. Rather than numbering these and referring back to them each time they are used,
we thought it best to italicise the terms being defined and then include all these terms in
the index.

Results and Examples are numbered in a single sequence within each section. A typical
internal reference might be, for instance, Theorem 3 of §2.5. If no section reference is
given, the result or example is in the current section. Equations to be referred to later in
the book are numbered consecutively within each chapter (so, for instance, equation (3.7)
is the seventh numbered equation in Chapter 3).
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This book provides an account of the differential geometry of surfaces, principally (but
not exclusively) in Euclidean 3-space. We shall be studying their metric geometry; both
internal, or intrinsic geometry, and their external, or extrinsic geometry.

As a preliminary, in this chapter we study curves in the vector space R” with its standard
inner product. For the most part n will be 2 or 3 since we wish to emphasize the geometrical
aspects in a way which can be easily visualized. The crucial properties of the curves we
study are that they are 1-dimensional and may be approximated up to first order near any
point by a straight line, the tangent line at that point. The intrinsic geometry of these curves
is somewhat simple, consisting of the arc length along the curve between any two points
on the curve, while the most important measure of the extrinsic geometry is the curvature,
the rate at which the curve bends away from its tangent line.

The ideas in this chapter are important for what follows in the rest of the book for several
reasons. Firstly, many of the ideas extend in a natural way to surfaces (and to the more
general study of n-dimensional objects called differentiable manifolds), and so a number
of important concepts are introduced here in the simplest possible situation. Secondly, the
intrinsic and extrinsic geometry of a surface are most easily and intuitively studied by using
curves on the surface. For instance, the geometry of a surface may be studied by means of
its geodesics, which are the analogues for surfaces of straight lines in the plane. Finally,
curves on a surface may often be regarded in a natural way as curves in the plane where
this latter is now endowed with a non-standard metric, and many of the ideas we develop
in this chapter may be extended to study this new situation.

There is a large and interesting body of work concerned with the local and global theory
of curves in Euclidean space, but we have been rather ruthless in our selection of material.
Other than the material on involutes and evolutes in §1.4 (some or all of which may be
omitted if desired, since the material is not used directly in the rest of the book), we have
restricted ourselves to those aspects of the theory that have most relevance to our study of
surfaces.

The layout of the chapter is as follows. After some preliminary definitions and examples
we consider the local theory of plane curves, where the notion of curvature is introduced.
We then seek to give some familiarity with the ideas in the optional section on involutes
and evolutes. Finally, we consider the local theory of space curves, where the behaviour is
governed by two invariants, namely the curvature and the torsion.



1 Curvesin R”

1.1 Basic definitions

For each positive integer n, let R” denote the n-dimensional vector space of n-tuples of real
numbers, with vector addition and multiplication by a scalar A carried out component-wise.
Specifically,

X1, X)) + 1Y) = (X1 + Y1500, X0 + V)
and

AMXt, . xy) = (AX1,. .., AXy) .

A smooth parametrised curve (henceforth called a smooth curve) in R” is a smooth map
a : I — R”", where [ is a possibly infinite open interval of real numbers. Thus a(u) =
(x1(w),...,x(n)), where x1,...,x, : I — R, are infinitely differentiable functions of u.
The variable u is called the parameter and the image a(/) C R” is called the trace of a.
Intuitively, we are thinking of a curve as the path traced out by a point moving in R”.

The metric properties of such a curve (or indeed a surface) are derived from the metric
properties of the containing Euclidean space R”. These are determined by the inner product
(also called the scalar or dot product) on R" which assigns to each pair of vectors v =
1,...,0y), w = (wy,...,wy,) the scalar v.w given by

vw =viwy + - Fvwy .

The length |v| of a vector v in R” is defined by |v| = /v.v, and the angle 6 between two
non-zero vectors v, w is given by

v.w = |v||w|jcosh, 0<O<m.

We let x’(u) denote the derivative of a function x(«). Then the tangent vector to a smooth
curve e at u is given by o' (1) = (xi W),....x, (u)). As mentioned at the start of the chapter,
the crucial property of the curves we wish to study is that they may be approximated up
to first order near any point by a straight line, the tangent line. For this reason, we shall
for the most part consider regular curves; these are smooth curves for which e’ (1) is never
zero. The tangent line is then the line though e(u) in direction o’(u), and the unit rangent
vector t to a (Figure 1.1) is given by

a/

t=—.
loe’|

In the above, and elsewhere when no confusion should arise, we omit specific reference
to the parameter u.

The trace of a regular curve



1.1 Basic definitions

We shall often think of u as a time parameter, in which case |&’| gives the speed, and ¢
the direction of travel along «.

Example 1 (Ellipse) Leta : R — R? be defined by
a(u) = (acosu,bsinu), uelR,
where a and b are distinct positive real numbers. Then
o = (—asinu,bcosu) #0,

so that
(—asinu,bcosu)
(a2 sin? u + b2 cos? u)!1/2’

and we see that « is a regular curve whose trace is the ellipse defined by the equation

A point at which a smooth curve has vanishing derivative will be called a singular point.

Example 2 (Cusp point) Let « : R :— R? be defined by

o) = u?), uek.

Cusp at ez (0)

Then « is smooth but not regular since &’(0) = 0. The trace of o (Figure 1.2) is the curve
y? = x? which has a cusp at a(0). This is an example of the type of behaviour we exclude
when we consider regular curves.

Of course, the restriction of the curve & in Example 2 to (0, 0o) and to (—o0, 0) are both
regular curves, as is the restriction of any regular curve to an open subinterval of its domain
of definition.

Example 3 (Helix) Leta : R :— R> be defined by
o(u) = (acosu,asinu,bu), ueclkR,
where a > 0 and b # 0. Then
o = (—asinu,acosu,b) #0,

so that
(—asinu,acosu,b)

(a2 + b2)1/2

)
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@

@R Helixon acylinder

and we see that « is a regular curve, called a helix (Figure 1.3); its trace lies on the cylinder
x2+y2=a?inR3.

The pitch of the helix is 27 b; this is the vertical distance between the points () and
a(u + 2m), one point being obtained from the other after one complete revolution of the
helix round the cylinder. We note that |e’| is constant, so with this parametrisation we travel
along the curve with constant speed.

Example 4 (Graph of a function) Let g : / — R be a smooth function defined on an open
interval I of real numbers. The graph T'(g) of g is the trace of the regular curve in R?
given by

o) = (u,gw)), uel.

For example, the graph of g(u) = u? gives the parabola y = x?.

The trace of the graph of a function g has equation y — g(x) = 0. It may be expected that
a wealth of other examples may be written down using equations of the form f(x,y) = c,
where c is constant and f(x, y) is a smooth function of x and y. In fact, an equation of this
type does not always give the trace of a regular curve (for instance x> + y*> = 0, or, as we
have seen, y3 = x2), and even when it does, we do not have a natural associated parameter.
For these reasons, we discuss sets of points satisfying equations in the next chapter in the
context of surfaces in R3.

We conclude this section with a slight extension of our treatment of curves. A smooth
(resp. regular) curve on a closed interval [a, b] is one which may be extended to a smooth
(resp. regular) curve on an open interval containing [a, b]. A closed curve & : [a,b] — R”
is a regular curve such that & and all its derivatives agree at the end points of the interval;
that is,

a@)=ald), d@=d®), od@=a®),....

For example, the restriction to [—m, 7] of the curve « in Example 1 is a closed curve —
it travels once round the ellipse, starting and ending at (—a, 0).



1.2 Arclength

1.2 Arclength

It is important to note that, as far as geometry is concerned, it is the trace (or image) of
a smooth curve which is of interest; the parametrisation is just a convenient device for
describing and studying this. A good choice of parametrisation is often helpful, however,
as this can lead to a great simplification of a given problem. In this section we describe an
intrinsic parametrisation for any regular curve; it is defined by taking the arc length in the
direction of travel measured from some given point on the curve. This parametrisation is
of fundamental importance in the general theory of regular curves but, as we shall indicate,
finding such a parametrisation is impracticable for most examples and so is usually best
avoided in explicit calculations.

Let o : (a,b) — R" be a smooth curve and let ug € (a,b). We define s : (a,b) = R by
integrating the speed of travel between a(ug) and a(u). Thus

s(u) = /u lo’ (v)|dv (1.1)

0

is the arc length along a measured from a(uq). Note that s(u) is positive for u > ug, and
negative for u < ugp.

Example 1 (Ellipse) Let a and b be distinct positive real numbers and let & : R — R? be
the ellipse

a(u) = (acosu,bsinu), uelk.

Then

o' = (—asinu,bcosu),

and so, if s(«) denotes arc length measured from «(0), then

u
s(u) :/ Va?sin? v + b2 cos2 v dv .
0

This integral cannot be expressed in terms of elementary functions such as trigonometric
functions, and serves to define a special class of functions called elliptic functions.

As the above example indicates, it may be difficult to write down explicit expressions
in closed form (that is to say, in terms of standard functions) for functions describing the
geometry, even in quite simple cases. In the following example, however, the calculations
are all fairly straightforward.

Example 2 (Cycloid) This is the curve in the plane traced out by a point on a circle which
rolls without slipping along a line (Figure 1.4).

Assuming that the radius of the circle is 1 and the circle rolls on the x-axis in R?, the
curve may be parametrised by & : R — R? where

o(u) = (u —sinu,1 —cosu) .



1 Curvesin R”

Cycloid

Then
o = (1 —cosu,sinu)

Lo u u u
= <251n —,2sin — cos —)
2 2 2

LU, u u
= 2sin - (sm —,COS —) ,
2 2 2
so that & has singular points when u = 2nm, where n is an integer. These singular points
correspond to the points where the cycloid touches the x-axis; at these points the cycloid
has the characteristic cusp shape pointed out in Example 2 of §1.1.
Furthermore,

lo| = ‘ZSinz‘
2
Lu
=251n5, forO <u <2m.
Thus, for 0 < u < 2x, if s(u) denotes arc length measured from «(0), then
u v
s(u) = / 2 sin —dv
0 2
u
=4(1 —cos—).
( 2)
In particular, the length of a single arch of the cycloid is 8.

We now show that we may use arc length s to parametrise a regular curve, and describe
some consequences of doing so. The most useful results we obtain are equation (1.4) and
its immediate consequence that when we parametrise a regular curve by arc length we
travel along it at unit speed.

We begin by noting that the arc length s(u) along a regular curve a(#) in R” is a smooth
function and, from (1.1),

ds ,
E=|a|>0. (1.2)

Hence s is an increasing function of u, and we may use arc length to parametrise the trace
of the curve in the same direction of travel. The chain rule for differentiation then tells us
that
d ds d
du — duds’
We now give a brief explanation of why (1.3) holds; this paragraph may be omitted by
those who are happy with the chain rule as stated in (1.3). Let a(u) be a regular curve, and

(1.3)



1.2 Arclength

parametrise it by arc length by letting &(s) be the point on the trace of & having arc length s
from a chosen base p01nt a(ug). Then a(u) = a(s(u)). More generally, given a function
f (s), we let f(u) = f (s(u)). Then, since the derivative of a composite is the product of
the derivatives,

ds
s(u) du

df| _df

d_u u dS
Following commonly used convention, we do not usually mention the points at which the
differentiation takes place, and also, when there is no danger of confusion, we omit the ~
and simply write

u

d f d f ds
du  ds du
which gives the operator equation (1.3). This completes the optional paragraph of
explanation of (1.3).
Returning to our account of the parametrisation of a regular curve using its arc length s,
the chain rule (1.3), together with (1.2), shows that

d 1 d
— =, (1.4
ds lo/| du
and, in particular,
do 1
—=—0a'=t, 1.5
ds  ja|” (1.5)

so that when we parametrise a regular curve by arc length we travel along it at unit speed.
With such a parametrisation, the arc length along & from a(sg) to a(s1) is equal to 51 — s¢.

Note that when, as above, we are considering two different parametrisations with the
same trace, the notation ’ for derivative must be used with care in order to avoid confusion
between d /du and d /ds. We shall always use ’ to denote d /du, the derivative with respect
to the given parameter u of the curve, and we shall use d/ds to denote differentiation with
respect to the arc length parameter.

We summarise the content of this section in the following theorem.

Theorem 3 Let oe(u) be a regular curve in R". Then we may parametrise the trace of o
using arc length s from a point a(ug) on a. If we do this, then do/ds is the unit tangent
vector t to a in the direction of travel. In particular, t is smoothly defined along o, and,
when using arc length as parameter, we travel along a at unit speed. The arc length along
o from a(sg) to a(sy) is equal to s1 — So.

It is important to note that if a curve is not regular then it cannot usually be parametrised
by arc length past a singular point. For instance, the unit tangent vector in the direction
of travel of the cycloid has discontinuities (and so is not smooth) at the singular points. A
similar comment holds for the cusp curve in Example 2 of §1.1.

As mentioned at the start of this section, and as we shall see later, the existence of the
arc length parameter is very important for theoretical work. However, arc length is not
usually a good choice of parameter to use in calculations since in general it is difficult to
find explicitly, as illustrated by Example 1.
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1.3 The local theory of plane curves

In this section we introduce the signed curvature x of a regular curve in the plane R2,
which describes the way in which the curve is bending in the plane. We then discuss the
fundamental theorem of the local theory of plane curves, which shows that a regular plane
curve is determined essentially uniquely by its curvature as a function of arc length. In
Chapter 6, we shall discuss Bonnet’s Theorem, which is the analogous result for surfaces
in R3.

The main goals of the first half of this section are to explain the moving frame equations
(1.6) and (1.7), and to give examples of their use.

Leta : I — R%2bea regular curve defined on an open interval /, and, as usual, let
d/ds denote differentiation with respect to arc length along «. As we have seen, the unit
tangent vector is given by £ = da/ds, and we let n be the unit vector obtained by rotating ¢
anticlockwise through 7 /2. Thus, if £ = (a, b) then n = (—b, a). Then {¢, n} is an adapted
orthonormal moving frame along « (Figure 1.5).

dt
Since t.t = 1, we may use the product rule for differentiation to deduce that d—.t =0.
s

Hence
dt

E =
for a uniquely determined smooth function « called the signed curvature (or simply the

kn (1.6)

dn dn
curvature) of . Similarly, —.n = 0, so that — is a scalar multiple of ¢. Differentiating
s
the expression £.n = 0 and applying (1.6) we see that

dn 17
i —Kt . (L.7)

As we shall see, k measures the rate of rotation of # (and ») in an anticlockwise direction
as we travel along the curve at unit speed.

Curvature is a measure of acceleration, and hence plays a big part in all our lives. For
instance, it shows itself as the sideways force we, and our coffee cups(!), feel as we go
round a bend on a railway train. When travelling at a given speed, the more the track
bends, the quicker the coffee cup slides (or falls over, if the curvature is really big). When
we are facing the direction of travel, the cup slides to our right if the curvature is positive,
and to our left if it is negative.

Equations (1.6) and (1.7), which give the rate of change of each element of the moving
frame {¢, n} in terms of the frame itself, are called the moving frame equations.

n

A moving frame
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Example 1 (Circle of radius r) The circle with centre a and radius r > 0 traversed in an
anticlockwise direction has constant curvature k = 1/r. For, parametrising the circle by
arc length, we have

s .S
a(s) =a-+r (cos —,sin —) ,
r r

so that
da .S s
t=—= (—sm—,cos—) s
ds r r
and
s .S
n=— (cos —,sin —) .
r r
Then
dt 1 ( s .S ) 1
— =——|(cos—,sin-u)=—-n,
ds r r r r

so that & has curvature 1/r. If the circle is traversed in a clockwise direction then it has
curvature —1/r.

We now give an example to show how we may find the curvature of a regular curve o
which is not parametrised by arc length. In this, and much of the following, we repeatedly
use equation (1.4). This equation will also be very useful in the following sections.

Example 2 (Cycloid) Recall from Example 2 in §1.2 that the cycloid may be parametrised
as

o(u) = (u —sinu,1 —cosu),
and that, using ’ for d/du as usual,

o' = 2sin 4 (sin E,cos E) .
2 2 2

Hence, for 0 < u < 2m,

.u u
t = (sm—,cos —) R
2 2

(—cos3o5in3)
n=|(—cos—,sin—}) ,
2 2

. u
lo'| = 2sin = .
2

Thus, using (1.4),

a1
ds ||
1 1( u . u)
=——— —(cos—,—sin—
2sin(u/2) 2 2 2
1

=———n.
4 sin(u/2)
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The curvature, for 0 < u < 2, is therefore given by

1
K=———7-—, O<u<?22m.
4 sin(u/2)
In fact, for all values of the parameter u,
_ 1
T 4]sin(u/2)]

Notice that the minimum of the absolute value |«| of the curvature for 0 < u < 27 is
1/4 at u = m, and that the curvature approaches —oo as u approaches 0 and 2. Indeed,
the absolute value of the curvature decreases from oo to 1/4 as u increases from O to
and then increases from 1/4 to oo as u increases from 7 to 27. This can be seen in the
diagram of the curve in Figure 1.4, as can the clockwise direction of rotation of the unit
tangent vector ¢ (which is why the curvature is negative).

Now that we have obtained the moving frame equations and given examples of their use,
in the remainder of this section we give a geometrical interpretation of the curvature «, and
then state and prove a basic existence and uniqueness theorem for regular curves in the
plane.

As may be seen from (1.6), the curvature « is a measure of how quickly the trace of the
curve is bending away from its tangent line when the trace is traversed at unit speed. This
is reflected in the following result.

Lemma3 The curvature k of a regular plane curve o is identically zero if and only if & is
a straight line.

Proof If x = 0 at each point of & then (1.6) shows that ¢ = ¢, a constant unit vector.
In this case, da/ds = ¢, so a(s) = b + sc, for some constant vector b. Thus « is the
straight line through b in direction ¢. Conversely, a line may be parametrised by arc length
as a(s) = b+ sc, where b is a point on the line and c is a unit vector in the direction of the
line. That ¥ = 0 at each point of & is now easily checked. O

As mentioned earlier, we may interpret « as the rate of rotation in the anticlockwise
direction of the unit tangent vector ¢, or equivalently of the unit normal vector n, as we
travel along the curve at unit speed. Here is the proof.

Lemma4 Ler ey, e; denote the standard basis vectors (1,0), (0, 1) respectively in R2. Ifo
is the angle from e} to t measured in an anticlockwise direction (or equivalently, the angle
from ey to n), then

de

K= —.
ds

Proof The unit tangent vector ¢ is given by (Figure 1.6)

t = (cosf,sinf), sel,
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A

For the proof of Lemma 4

and so, using the chain rule,

dt . do
— = (—sinf,cos6)— .
ds ds

Since n = (—sin#, cos 0), we see that

which completes the proof. O
Remark5 Using’ for d/du as usual, we may use (1.4) and (1.5) to show that

n/:|/| /

n /7
o|— = —«la'|t = —«ka ,
ds
so that |«| may be interpreted as the ratio of the speed of travel along the curve n to the
speed of travel along «. In Section 5.12 we shall see a similar interpretation of the Gaussian
curvature of a surface in R3.

Remark6 For a regular plane curve a(u), not necessarily parametrised by arc length,

dt 1 1\
—_ = — —0 .
ds /| \ |

and, using this, one can show (see Exercise 1.8) that if (1) = (x(u), y(u)) then
x/y// _ x//y/

€= Ay (1.8)

For example, it is now straightforward to use the parametrisation of the cycloid given in
Example 2 to confirm that the curvature of the cycloid is (—4| sin(u/ 2))~!, but we prefer
to use the calculation of the curvature along the lines indicated in Example 2 rather than
using formula (1.8), since the calculations given there illustrate the theory (and similar
calculations will be needed later on).

We now show that a regular plane curve is determined up to rigid motions of R? by its
curvature as a function of arc length. We can see this intuitively if we think of taking a
straight piece of wire which is to be bent in order to fit a given curve in the plane. In order
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to do this it suffices to specify the amount by which the wire has to be bent at each point;
that is to say to specify the signed curvature.

Theorem 7 (The Fundamental Theorem of the Local Theory of Plane Curves) Letx : I — R be a
smooth function defined on an open interval 1. Then there is a regular curve a : I — R?
parametrised by arc length s with curvature k. Moreover, « is unique up to rigid motions
of R2.

Proof We use the ideas introduced in the statement and proof of Lemma 4.

We first prove existence. Let & : I — R be an indefinite integral of « (so that 6
is a smooth function with 8’ = «), and let x1, x, be indefinite integrals of cos, sin6
respectively. If we let

o(s) = (x1(s),x2(s)) , sel,
then & is a smooth curve, and
o' = (cos@,sinb).
Hence

o’ =0'(—sinb,cosh),

so that e is parametrised by arc length and has curvature 6’ = .

We now prove the statement concerning uniqueness. So, let a1(s) and az(s) be
parametrised by arc length, both having the same curvature . We let ¢; = (cos 61, sin6)
and £, = (cos6y,sin6,) be the unit tangent vectors to o1 and ap respectively. Picking a
base-point so € I we may assume, by applying a suitable rigid motion of R?, that

a(so) = az(s0), t1(so) = t2(s0) .

Using Lemma 4, we see that d6,/ds = d6,/ds, so that 8; — 6, is constant and hence,
since 01(sg) = 62(sp) by assumption, we see that 8 = 6,, so that #; = ¢,. But then,
day/ds = day/ds, so a similar argument shows that «; = a3, and the uniqueness
statement is proved. O

We illustrate the existence part of the above proof by constructing directly all plane
curves with constant non-zero curvature.

Example 8 (Curves of constant curvature) If « is a positive constant, we set r = 1/i. Then, in
the notation of the previous proof, d6/ds = 1/r so that

0(s) = z +c¢, cconstant.
r
Thus
s . (S
a(s) = </ cos (— + c) ds,/ sin <— + c) ds)
r r

s s
= (r sin (— + c) , —F COS (— + c)) + b, bconstant,
r r
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and «(s) is the circle with centre b and radius r parametrised by arc length in an anti-
clockwise direction. If we assume that « is a negative constant, then the circle will be
parametrised in a clockwise direction.

Unfortunately, for a given non-constant « it is usually very difficult to determine «
explicitly, as you will find if you try the case where «(s) = s. In fact, this seemingly
simple example leads to a so-called Fresnel integral. Such integrals can’t be evaluated in
terms of standard functions.

1.4 Involutes and evolutes of plane curves

As indicated by the T symbol, the material in this section is not needed for the rest of
the book. However, it is included because of its historical and intrinsic interest, and to
provide practice at the type of local calculations which are useful in the study of differential
geometry. It should also help to build geometrical intuition, and we would recommend
covering at least the material up to and including Example 1, the calculation of the involute
of the cycloid.

We shall be considering two curves & and B in this section. To avoid confusion, we
denote objects corresponding to each curve by the appropriate suffix.

Leta : I — R? be aregular curve and let 8 : I — R? be defined by

Bu) = ot(u) — sa(u)ta(u), (1.9)

where s, denotes arc length along & measured from some point a(u¢). Then (Figure 1.7)
B is a smooth curve, and, if the curvature xy of & is never zero, the only singular point of
B is at u = ug (see Exercise 1.10). The curve B is called an involute of o. One physical
interpretation of B is that B is the path described by the end of a piece of string as it is
“unwound” from « starting at oe(u).

Example 1 (Cycloid) 'We shall consider the reflection in the x-axis of the cycloid considered
in Example 2 of §1.2. We parametrise this by

o(u) = (u —sinu,cosu — 1),

and we shall find the involute which starts at the lowest point (7, —2) (corresponding to
u = m) of the cycloid.

In terms of our physical interpretation of the involute; if we imagine a pendulum made
of a bob at the end of a piece of string of length 4 whose top end is supported at (277, 0)

Involute of o
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(0,0) (2m, 0)

Cycloidal pendulum

and which is wound around the cycloid so that the bob is at the lowest point (7, —2), then
we are finding the path traced out by the bob as the pendulum is left to swing under gravity
(Figure 1.8).

The calculation is as follows. Since

, LU/ u u
o =2sin— (sin—,—cos—) ,
2 2

it follows that for u € (ir,27),

= ()
o« = sm2, c:os2
and
u
sazf 2sin = dv
- 2
u
= —4cos — .
2
Hence

Bw) = a(u) + 4cos % (sin g, —cos %)

= (u —sinu,cosu — 1) + (2sinu, —2cosu — 2)

= (u+sinu,—3 — cosu)
= ((u — ) — sin(u — 1), cos(u — 1) — 1) +(T.-2).

Thus B is also a cycloid, obtained by translating the original one.

This example is of historical importance since it enabled Huyghens in the seventeenth
century to construct a pendulum, called the cycloidal pendulum, whose bob traces out a
cycloid. It is known that (neglecting friction) a particle moving under gravity on a cycloid
performs simple harmonic motion, so the period of a cycloidal pendulum is independent
of the amplitude of swing. Examples of clocks with this type of pendulum may be seen in
the British Museum.

This concludes the minimum amount of material that we suggested you cover from this
section. If you would like to continue, we shall now use the techniques given earlier to
find the relation between the geometrical quantities #g, ng, kg of an involute 8 of a regular
curve o and the geometrical quantities ¢4, By, k¢ Of . In these calculations, which are
quite intricate, we often make use of equations (1.2) to (1.7).
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Lemma2 Lete = sqky/|Sqkel (sothat € = 1 if syiq > 0 and € = —1 if syicq < 0). Then
tg=—€ngy, (1.10)
ng =ctgy, (1.11)
€
=—. 1.12
ks = (1.12)

Proof Following the method explained in Example 2 of §1.3, we first differentiate (1.9)
with respect to the given parameter © and obtain

B = — 54ty — sata
=o' — |°‘/|tot — Sats

’
= —Saly

= _Sa|“/|_

dsg

= _SocKoc|°5/| Ny , (1.13)

so that (1.10) and (1.11) now follow.
To find «g, we continue to follow our method for finding curvature. We first note from
(1.13) that

1B'| = |Sakel le'] , (1.14)

so, differentiating (1.10) with respect to sg, and using (1.11), we find that

dt 2
_ﬂ — — € na/
dsg Sakolo|
. 1 dng
T Seke dSq
1
= —1,
S
€
= —n s
Sa B
which gives our required expression (1.12) for «g. O

The definition of involute given in (1.9) defines B in terms of geometrical quantities
associated with a. We now obtain an expression for « in terms of geometrical quantities
associated with 8.

Lemma3

1
a=p+—ng. (1.15)
kg

Proof The definition (1.9) of B in terms of & gives that

@ =B+ Sty . (1.16)
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However, (1.11) and (1.12) show that
ty = —ng,
Sata - ng
and the result follows. O

For each parameter value u, the quantity 1/|«g(u)]| is called the radius of curvature of B
1

at u, and B(u) + —ng(u) is the centre of curvature of B at u. The circle with centre at the
K

centre of curvature of B at u and with radius 1/|xg(u)| has second order contact with 8 at
B(u).

The locus of the centres of curvature of a regular plane curve is called the evolute of
that curve. So, the evolute of a regular curve f(u) is the curve & given in Lemma 3. If we
imagine the curve B to be a light filament, then its evolute would be the curve in the plane
of maximum illumination. The evolute is often called the caustic.

Since the evolute of a curve is an important object associated with the curve, we restate
Lemma 3 as a proposition.

Proposition4  Let B be an involute of a regular curve o in R%. Then a is the evolute of B.

Example 5 (Cycloid) Example 1 would lead us to expect that the evolute of a cycloid is a
translate of that cycloid, and we shall verify this directly. As in Example 1, we parametrise
the cycloid as

o(u) = (u —sinu,cosu — 1),
and, as we have seen, for 0 < u < 27,

A U (.u u
le'| =2sin—, ¢ty =|(sin—,—cos—) .
2 2 2

Hence

u . u
nyg = (cos —,sin—) ,
2 2

and it quickly follows that

1
Kg = ——— .
4sin 5
The evolute B of « is thus given by
1
B=a+ —ng

Ka

u u u

= (u — sinu,cosu — 1) + 4sin — (cos—,sin —)
(u u u )+ > > >

= (u —sinu,cosu — 1)+ (2sinu,2 — 2cosu)
= (u +sinu, 1 — cosu)
={(u—m)—sin(u —m),cos(u —mw)—1)+ (7,2),

so that, as we anticipated, the evolute of the cycloid is another cycloid which is a translate
of the first (Figure 1.9).
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Evolute of a cycloid

Returning to our physical interpretation of the involute and the unwinding string, equa-
tion (1.10) shows that the direction of travel of the involute is everywhere orthogonal to the
direction of the unwinding string; put another way, the involute is an orthogonal trajectory
of the pencil of lines formed by the tangents to the original curve. We shall have more to
say about orthogonal trajectories in §3.5.

1.5 The local theory of space curves

In §1.3, we showed that a plane curve is essentially uniquely determined by one scalar
invariant, the curvature «. We did this by constructing an adapted orthonormal moving
frame {¢, n} along the curve, and using the moving frame equations (1.6) and (1.7).

In this section, we carry out a similar process for a regular curve a in R3. This time, we
need two scalar invariants, the curvature and the torsion, to describe the curve. The main
results of this section are the Serret—Frenet formulae (1.20), and the basic existence and
uniqueness theorem for regular curves in Euclidean 3-space given in Theorem 4.

Letar: I — R3bea regular curve defined on an open interval /, and, as usual, let d/ds
denote differentiation with respect to arc length along . Then the unit tangent vector is

dt dt
given by ¢ = da/ds. Since t.t = 1 we have d—.t = 0, so that o is orthogonal to £. We
s s
define the curvature k of a by

dt
ds

K =

Note that, in contrast with the case of plane curves, the definition of curvature « of a
space curve implies that « > 0. This is because the notions of “clockwise” and “anticlock-
wise” rotations (which we used to define the signed curvature of a plane curve) do not

apply in R3.
At points where k # 0 we define the principal normal n of « by setting
dt
— =«kn, 1.17
gy K (1.17)
and the binormal b of a by
b=txn, (1.18)

where we have used the vector cross product in R3 on the right hand side. Then {¢,n, b}
is the adapted orthonormal moving frame along a. Note that there is no natural choice of
principal normal or binormal to « at those points where the curvature is zero.
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Iyt

The moving frame along a helix

Figure 1.10 shows this frame at a typical point of a helix. As will be clear from Exam-
ple 2, the principal normal # is a horizontal unit vector pointing towards the z-axis. Hence
(anticipating some material from Chapter 3, but clear from intuition), n is orthogonal to
the cylinder on which the helix lies, so that £ and b are both tangential to the cylinder.

We now find the moving frame equations, of which (1.17) is the first, which describe the
rate of change of each element of the moving frame {¢, r, b} in terms of the frame itself.
We first differentiate (1.18) and use (1.17) to find that

db_ dtX n txdn —txdn
ds  \as " ds ] — ds’

and in particular

db ‘=

ds’
Also

b.b =1 sothat d—b.b=0.
ds

Thus

db

I =1n (1.19)

for some function t called the forsion of . (Please be aware that some authors use —t in
place of 7.) Since

n=bxt=—-txb,
we have, using (1.17) and (1.19),
dn dt db
—=—|—xb) -t x —
ds ds ds
= —xt—1h.

Thus we have our required moving frame equations, called the Serret—Frenet formulae. We
write them down grouped together for convenience.
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dt
ds
dn
ds
db
ds

= —«t —1b,

= ™. (1.20)

We now discuss the geometry of these equations. The line through e« (u) in direction #(u)
is the tangent line to a at a(u). As mentioned earlier, this is the line having first order
contact with &, and x measures the rate at which the trace of the curve is bending away
from this line when the trace is traversed at unit speed. The plane through a () spanned by
t(u),n(u) is called the osculating plane (from ‘osculans’, Latin for ‘kissing’) to « at ac(u).
As is clear from the first Serret—Frenet formula, this is the plane with which « has second
order contact at e(u), in the sense that the curve touches the plane there, and &’ and " are
both tangential to the plane (Figure 1.11).

Since b is the unit normal to the osculating plane, db/ds measures the rate of change
of the osculating plane. The third Serret—Frenet formula shows that the osculating plane is
rotating about the tangent vector ¢ at each point, and T measures this rate of rotation. This
is the rate at which the curve is twisting away from its osculating plane. Finally, the normal
plane at a(u) is the plane spanned by n(u), b(u); as we move along the curve, the normal
plane rotates about the binormal, the rate of rotation being measured by «.

The above comments on the osculating plane and its rate of change would lead us to sup-
pose that a curve should have everywhere zero torsion if and only if the curve is contained
in a plane, and we now demonstrate this.

Lemma 1 The torsion t of a regular space curve o is identically zero if and only if o is
contained in a plane.

Proof First suppose that « lies in a plane with unit normal by, say. Then, for some real
constant c,

Ol.bo:c.

<

n

Osculating plane and normal plane
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Differentiating with respect to arc length s along o, we find that

da d*a
—.bp=0 d —.bp=0.
ds 0 and gz

Thus, if & has nowhere vanishing curvature,
t.bp=0 and nby=0,

so that b = £bp and T = 0. All the osculating planes of « coincide with the plane in which
a lies.

Conversely, if & has nowhere vanishing curvature and if b is constant, say b = bg, then
da
—.byp=1t.bp=0,
s 0 0

so that a.by = c and « lies in a plane. O

We now give an example to illustrate a method of finding the curvature and torsion of
a regular space curve which is not parametrised by arc length. As with the corresponding
method for plane curves, it is not usually a good idea to attempt to re-parametrise the curve
by arc length (although, in this example it is rather easy). Rather, one should exploit the
chain rule by using equation (1.4).

Example 2 (Helix) Recall from Example 3 of §1.1 that this space curve may be parametrised
by

o(u) = (acosu,asinu,bu), uelk,
where a > 0 and b # 0. Then
o = (—asinu,acosu,b),
so that
o = (@® +b7)!/?

and
. (—asinu,acosu,b)
(a2 + b2)1/2

Also, using (1.4), we have

d 1 d
ds @+ )2 du’
Hence
dt 1 .
Kn = 7 = m(—a cosu,—asinu,0),
so that
K and n = (—cosu,—sinu,0).

T2+ 2
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But then
1
b=txn= m(bsinu,—bcosu,a) .
so that
db b ( . 0)
— = ———(cosu,sinu .
ds a?>+b? ’ ’
Hence
_ b
a2+ b2

The helix thus has constant curvature and constant torsion. If T < O then the helix is
right-handed; if T > 0 it is left-handed.

Remark3 For a regular space curve o(u), not necessarily parametrised by arc length, we
may find expressions for « and 7 directly in terms of o/, @” and &”’. In fact, in Exercise
1.15 you are asked to show that

|(¥/ X a//| (a/ X “//)'“///

|a/|3 ’ |0L/ X “//|2

where, as usual, X is vector cross product in R3. However, for the reasons given in Remark
6 of §1.3, we prefer to use the calculation of the curvature and torsion along the lines
indicated in Example 2 rather than using the above formulae.

The importance of the curvature and torsion of a space curve is that they determine the
curve up to rigid motions of R3. As with the case of plane curves we can see this intuitively
if we think of taking a straight piece of wire which is to be manipulated in order to fit a
given curve in R3. In order to do this it suffices to specify the amount by which the wire
has to be bent and twisted at each point; that is to say to specify the curvature and torsion
of the given curve.

Theorem 4 (The Fundamental Theorem of the Local Theory of Space Curves) Lerx : I — R,
T : I — R be smooth functions defined on an open interval 1, and assume that k > 0.
Then there is a regular curve a : I — R3 parametrised by arc length s with curvature k
and torsion t. Moreover, a is unique up to rigid motions of R>.

Proof The proof depends on the existence and uniqueness theorem for linear systems of
ordinary differential equations. We shall refer to this as the ODE theorem.

For a given « and 7, the Serret—Frenet formulae form a linear system of three first order
ordinary differential equations for the R3-valued functions ¢, rn and b, and the ODE the-
orem tells us that such a system has a unique solution {¢,n, b} on I for any set of initial
conditions {#(so), 7(so), b(so)}. Then the six quantities ¢. ¢, n.n, b. b, t.n, t. b, n. b satisfy
a linear system of six first order ordinary differential equations (one of which, for instance,
is %(t.b) =«n.b+ tt.n)forwhicht.t =n.n=5b.b=1, ttn =t.b=nb=0is
easily seen to be a solution. Thus, using the ODE theorem again, we see that any solution
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of the Serret—Frenet formulae with initial trihedron being right-handed orthonormal will
stay right-handed orthonormal.

We now prove the existence part of the theorem. For given functions « and 7, let {¢, n, b}
be a right-handed orthonormal solution of the Serret—Frenet formulae, and let e : 1 — R3
be an indefinite integral of ¢. Then a is a smooth curve with de/ds = t and d?e/ds*> =
dt/ds = kn. It follows that & is parametrised by arc length, that # is the unit tangent vector,
that n is the principal normal vector and « is the curvature. Thus b is the binormal, from
which it follows that & has torsion 7.

This completes the proof of existence, and we now prove uniqueness. Let a1 and a» be
smooth curves parametrised by arc length, both having the same curvature « and torsion t,
andlet {¢1,n1, b1}, {t2, n2, by} be the corresponding unit tangent vectors, principal normals
and binormals. Picking a base point sy € I we may assume, by applying a suitable rigid
motion of R3, that

o (s0) = az(s0), t1(so) =t2(s0), mi(so) =n2(s0), bi(so) = baso),

and the uniqueness part of the ODE theorem now shows that {¢{,n1,b1} = {t2,n7,b}. In
particular, ¢| = ¢, so thatdat1/ds = dan/ds, and it follows that a1 — a5 is constant. Since
we applied a rigid motion so that a1(sg) = a2(so) we see that a1 = a3, and uniqueness is
proved. O

It follows from Theorem 4 that helices may be characterised as those curves having
non-zero constant curvature and non-zero constant torsion. However, it is not hard to give
a direct proof of this (see Exercise 1.16).

This concludes our treatment of the local theory of plane and space curves.

Exercises

1.1 The subset of the plane satisfying x>/3 + y*/3 = 1 is called the astroid. Show that
o(u) = (cos3 u, sin’ u), u € R, is a parametrisation of the astroid. Show that the
parametrisation is regular except when u is an integer multiple of /2. Sketch the
astroid and mark the singular points of the parametrisation. Find the length of the
astroid between parameter values # = O and u = 7 /2.

1.2 For each positive constant r, the smooth curve given by
o(u) = 2rsinu — rsin2u, 2rcosu —rcos2u), u€R,

is called an epicycloid. 1t is the curve traced out by a point on the circumference
of a circle of radius r which rolls without slipping on a circle of the same radius.
Sketch the trace of the curve, and find the length of & between the singular points
corresponding to v = 0 and u = 2.

1.3 For each positive constant , the smooth curve given by

( ) :
oau) =
coshu

(ucoshu — sinhu, 1),

is called a tractrix.
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Exercises

1.4

1.5

1.6

1.7

1.8

1.9

1.10

Taking r = 1, show that, for u > 0, a(u) is the curve traced out by a stone
starting at (0,1) on the end of a piece of rope of length 1 when the tractor on the other
end of the piece of rope drives along the positive x-axis starting at (0, 0). In more
mathematical terms, show that (1) + #(u) is on the positive x-axis for u > 0 (and
that a(0) = (0, 1)). Sketch the trace of the curve for all real values of u.

Let g : I — R be a smooth function, and parametrise its graph by a (1) = (u, g(u)).
Use the method of Example 2 of §1.3 to show that the curvature « of « is given by

-3/2
= g// (1 + (g/)2>
Now check this by using the formula given in Remark 6 of §1.3 (and also given in
Exercise 1.8).

Show that, for u > 0, the curvature of the tractrix parametrised as in Exercise 1.3
(taking r = 1 for simplicity) is given by x = cosech u.

For each positive constant k, the smooth curve given by
u
o(u) = (u,kcosh E)

is called a catenary. The trace of a catenary is the shape taken by a uniform chain
hanging under the action of gravity. Use the same set of axes to sketch the catenary
given by various values of k. Find the curvature of the catenary a(«) = (u, cosh u).

Let a be a regular plane curve, and let £ be a real number. The corresponding parallel
curve to « is given by ey = a 4 £n. Show that the curvature k, of oty is given by

_ K
Tl =kl

K¢

Show that if (1) = (x(u), y(u)) is a regular plane curve, then its curvature « is given
by
B x/y// _ x//y/
ke = 24 2P

(This exercise uses material in the optional §1.4.) Let «(u) = (u,coshu) be the
parametrisation of a catenary discussed in Exercise 1.6. Show that:

(i) the involute of « starting from (0, 1) is the tractrix given in Exercise 1.3 (with
r=1)
(ii) the evolute of & is the curve given by

B(w) = (u — sinhu coshu,2 coshu) .

Find the singular points of 8 and sketch its trace.

(This exercise uses material in the optional §1.4.) Let a(u) be a regular plane curve
with nowhere vanishing curvature. Show that the involute of & starting from a(u¢) is
a smooth curve whose only singular point is at u = ug.
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1.1

1.12

1.13

1.14
1.15

1.16

(This exercise uses material in the optional §1.4.) For ease of calculation, in this
exercise you might prefer to consider the special case in which ug < u; < u and &
has positive curvature.

Let a(u) be a regular plane curve with nowhere vanishing curvature, and let uy,
u1 be real numbers in the domain of a. Let 8 and B, be the involutes of « starting
at a(uo) and a(u1) respectively. Use equation (1.12) to write down the curvature
of By and k1 of B in terms of arc length sp, s1 along o measured from et (uo), (1),
respectively.

Show that B is a parallel curve to B (as in Exercise 1.7), and check that the
expressions for kg and k] you have just written down satisfy the formula for the
curvature of parallel curves given in Exercise 1.7.

Let a(«) be the curve in R3 parametrised by
a(u) =e"(cosu,sinu,1), uek.

Sketch the trace of the curve.

If 0 < Ap < A1, find the length of the segment of o which lies between the planes
z = Ao and z = A;. Show also that the curvature and torsion of « are both inversely
proportional to e".

Let () be the curve in R3 parametrised by
o(u) = (coshu,sinhu,u), uelk.

Show that the curvature and torsion of « are given by

1 1

K= a2’ T =y q2.,
2cosh” u 2cosh” u
Find all regular curves in R with everywhere zero curvature.

Let a(u) be a regular curve in R3. Show that the curvature « and the torsion 7 of &
are given by

la’ x o’

= TRr

(a/ X a//).a///

’ | o X Ot”|2
where, as usual, ' denotes differentiation with respect to u, and x is vector cross
product in R3.

The cylinder with centre-line ¢ and radius @ > O consists of those points in R3
at perpendicular distance a from the line £. The generating lines or rulings on the
cylinder are those lines on the cylinder parallel to the centre-line. A helix on the
cylinder is a regular curve with non-zero torsion whose trace lies on the cylinder and
whose unit tangent vector £ makes a constant angle with the generating lines.

(i) Let o be a regular curve on the cylinder x> + y?> = a? (¢ > 0) which has a
parametrisation of the form

a(v) = (acosB(v),asinf(v),v+c), veR,
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1.17

1.18

1.19

1.20

where 6(v) is a smooth function of v and c is a constant (a parametrisation of
this form exists on any open interval for which « is nowhere perpendicular to
the generating lines of the cylinder). If «(0) = (a, 0, 0) show that the trace of «
is a helix if and only if & may be parametrised as in Example 3 of §1.1; that is
to say, in the form

o(u) = (acosu,asinu,bu), uelk,

for some non-zero constant b.

(ii)) We saw in Example 2 of §1.5 that a helix has constant non-zero curvature and
constant non-zero torsion. Conversely, without using the Fundamental Theorem
of the Local Theory of Space Curves, show that if « is a regular curve in R3
with constant non-zero curvature « and constant non-zero torsion 7, then o is a
helix on a cylinder of radius a = « /(k* + 72). To simplify calculations, you may
assume, without loss of generality, that e is parametrised by arc length s. (Hint:
first show that t# — kb is a constant vector, X, say, and then show that the curve
o + an is a straight line in direction Xy.)

Let o be a regular curve in R3 with non-zero curvature and torsion. Prove that the
tangent lines to o make a constant angle with a fixed direction in R? if and only if
k /T is constant. Such a curve is called a generalised helix. (Hint: if k/t = k for
some constant k, consider the vector ¢ — kb.)

Let ar(u) be a regular curve in R3 and assume that there is a point p € R3 such that,
for each parameter value u, the line through a(x) in direction n(u) passes through
p. Prove that « is (part of) a circle. (In this exercise you could assume, without loss
of generality, that a is parametrised by arc length. However, it doesn’t make much
difference in the solution.)

Regular curves a(u), B(u) in R3 are said to be Bertrand mates if, for each parameter
value u, the line through a(u) in direction ny(u) is equal to the line through B(u) in
direction ng(u). Prove that, if a(u) and B(u) are Bertrand mates then:

(1) the angle between ¢4 (1) and #g(u) is independent of u; and
(i) B(u) = a(u) + rng(u) for some constant real number r.

In this exercise, we extend the idea of involutes to space curves. Let a(u) be a regular
curve in R3, and let s, denote arc length along e measured from some point a(u).
Then the curve §(u) defined by

Bu) = a(u) — sq(u)te(u)
is the involute of a starting from (). Let a be the helix parametrised in the usual
way as
o(u) = (acosu,asinu,bu), a>0, b#0,

and let B be the involute of « starting from «(0). Show that  lies in the plane z = 0

and is the involute starting from (a,0,0) of the circle of intersection of the plane

z = 0 with the cylinder x* 4 y? = a?.
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121 Let a(s) be a regular curve in R? parametrised by arc length with nowhere vanishing
curvature « and torsion 7. Show that & lies on a sphere if and only if

r_d 1 dk
K ds \txk2ds )’
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Surfaces in R”

In this chapter we introduce the main objects of study in the book, namely surfaces in
R". The most easily visualised situation is that in which n = 3, so we give emphasis to
this. Indeed, if preferred, the reader may take n = 3 throughout this chapter, in which
case the second half of §2.4 should be omitted. However, many interesting and challenging
ideas emerge in the study of surfaces in higher dimensional Euclidean spaces, so we have
included material on this for those who are interested.

For us, surfaces are subsets of R” which, locally at least, can be smoothly identified
with open subsets of the plane R?. The crucial properties of the surfaces we study are that
they are 2-dimensional and may be approximated up to first order near any point by a flat
plane, the fangent plane at that point. In this book we shall study the metric intrinsic and
extrinsic geometry of surfaces, and the inter-relation between them. The intrinsic properties
we study include the lengths of curves on surfaces, their angles of intersection, and the area
of suitable regions. For the extrinsic geometry, we shall study various measures of the way
in which a surface is bending away from its tangent plane. As one would expect, and as
we shall see, these two aspects of the geometry of a surface are related in many interesting
ways.

We first give our definition of a surface in R”, and then spend most of the rest of the
chapter discussing methods of constructing and recognising surfaces. This will enable us
to build up a large number of examples. Although we postpone the formal definition of
tangent plane until the next chapter, the existence of these planes at all points of a surface
should be intuitively clear in the examples.

2.1 Definition of a surface

As mentioned above, a surface in R" is a subset of R" which locally looks like an open
subset of R? which has been smoothly deformed. Globally, however, a surface can be very
different from an open subset of R>.

We begin with the basic definitions. Let U be an open subset of R” and let

f=U1,....fu): U —>R"

be a map. The real-valued functions fi,..., f,, are the coordinate functions of f, and
f is smooth if all partial derivatives of all orders of each f; exist at each point and are
continuous. The image f(U) of U under f is given by

fWO) ={fw)eR":uecU}.
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Example 1 Let

X(u,v) = (cosv cosu,cosv sinu,sinv) .

Then x is a smooth map from R2 to R3, and, denoting partial derivatives by the
appropriate subscript,

X, = (—cosv sinu,cosv cosu,Q)

and

X, = (—sinv cosu, —sinv sinu,cosv) .

The image of x is the unit sphere S%(1) = {(x,y,z) € R3 : x> 4+ y2 + 22 = 1}.

We now define the basic objects we study. For the purposes of this book, a non-empty
subset S of R” is a surface if for every point p € S there is an open subset U of R? and a
smooth map x : U — R” such that p € x(U) and (Figure 2.1)

(S xU)c S,
(S2) there is an open subset W of R” with WNS = x(U) and a smoothmap F : W — R?
such that

Fx(u,v)=w,v), Yu,v)eU.

The above definition has been chosen to accord with our intuition of something which
is “2-dimensional”. Intuitively speaking, although the image of a smooth map may have
dimension less than that of the domain (for example, (x, y) — (x,0,0)), the image cannot
have higher dimension. Thus, the image of x has dimension at most two, but (S2) ensures
that it can’t be 1-dimensional since F must map the image of x back on to the whole of
the 2-dimensional set UU. Thus (S1) and (S2) ensure that surfaces do look “2-dimensional”
at all points. The idea is that x takes the open subset U of R? and moulds it smoothly onto
part of S in a way that may be smoothly reversed (this being the role of F'). For example,
as we shall see, the sphere Sz(r) of radius > 0 in R3 is a surface, but neither the cone
nor the “folded sheet” (Figure 2.2) are surfaces (although they are surfaces if the vertex is
removed from the cone and the fold line is removed from the folded sheet).

The condition WNS = x(U) in (S2) implies that, in our definition, a surface cannot have
self-intersections. In fact, we could include the latter situation (Figure 2.3), but it leads to
technicalities which we prefer to avoid.

For the definition of surface



2.1 Definition of a surface

Folded Sheet

Sphere S2(r)

The cone and the folded sheet are not surfaces

AKlein bottle: a “surface” with self-intersections

Example 2 (Hyperboloid) Let
S={xyeR :x+y’ =2 —1,2>0),

so that S is the upper sheet of a hyperboloid of two sheets (Figure 2.4).

Upper sheet of a hyperboloid of two sheets

If we let U be the whole of R?, and define x : U — R3 by
x(u,v) = (u,v,\/u2+v2+1), u,v eR,

then x may be thought of as pushing the (horizontal) (x, y)-plane vertically upwards onto
S. The way to reverse this process is to squash things flat again, so we take W = R3
and F : R® — RZ to be given by F(x,y,z) = (x,y). It is now very easy to check that
(S1) and (S2) both hold, and since every point of S is in the image of x, this shows that
S is a surface in R3. In fact, this surface is the graph of the function g : R> — R given
by g(u,v) = vu?+v%+ 1, and we shall see in §2.2 that this example may be easily
generalised to show that the graph of any smooth real-valued function defined on an open
set of R? is a surface in R3.

A smoothmap x : U — S € R” with the properties described in (S1) and (S2) is called
a local parametrisation of S.

Lemma3 A local parametrisation x of a surface S is injective. That is to say, if x(uy,v) =
x(uz,v2) then (ui,v1) = (u2, v2).
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Proof Taking notation from (S1) and (S2), if x(u1, v1) = x(u3, v2) then, applying F, we
see that (11, v1) = (u, v2). O

The image x(U) of a local parametrisation x, which may be regarded as being differen-
tiably equivalent to the open subset U of the plane, is called a coordinate neighbourhood
on S. Thus a surface is a subset of R” which may be covered by (possibly overlapping)
coordinate neighbourhoods. However, it is important to note that, as far as geometry is
concerned, it is the surface S as a subset of R” which is of interest; the role of the local
parametrisations is to help to describe and study the surface. (You may recall a similar
remark being made in Chapter 1 for regular curves.)

Example 2 is rather simple since the whole of S may be covered using just one coordinate
neighbourhood.

Example 4 (Sphere)  We shall show that the sphere
S2(r) = {(x,y,2) e R* : x* + y2 + 2> =12}

with radius » > 0 and centre at the origin of R is a surface. We begin by finding a
local parametrisation whose image covers the northern hemisphere, which consists of those
points of S%(r) with z > 0. To do this, we may proceed in a similar way to Example 2 and
regard the northern hemisphere as the graph of the function g : U — R defined on the
open disc U = {(u,v) € R? : u?> + v% < r?} given by g(u,v) = ~/r2 — u? — v2.
Specifically, we take
x(u,v) = (u,v, rz—uz—v2> . our 0t <t

Then, taking
W ={(x,y,2) e R®: 7> 0},

so that W N $2(r) is the northern hemisphere, and defining F : W — R? by

F(x,y,2) =(x,y),

N

Another two caps
front and back

Covering a sphere with six coordinate neighbourhoods
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we see that x and F are both smooth, x(U) = W N Sz(r) and Fx(u,v) = (u,v) for all
(u,v) € U. Thus conditions (S1) and (S2) hold for all points of the northern hemisphere.
To show by this line of argument that S?(r) is a surface, we have to show that every
point of S?(r) is in some coordinate neighbourhood. This may be done by using six local
parametrisations of the above type, each of which covers a hemisphere (Figure 2.5).

A surface may be covered by coordinate neighbourhoods in many different ways. For
instance, we shall see later that the sphere S(r) may be covered using just two coordinate
neighbourhoods, namely Sz(r)\{(O, 0,7)} and Sz(r)\{(O, 0, —r)}. In fact, it is often possible
to choose particularly nice local parametrisations for a surface, and this is an important
skill to acquire for both theoretical and calculational work. The interesting question of the
minimum number of coordinate neighbourhoods needed to cover a surface is related to a
topological invariant called the Lusternik—Schnirelmann category.

As mentioned in the introduction to this chapter, one crucial property of a surface is that
it may be approximated up to first order near any point by a flat plane, the tangent plane.
We shall see that this is the plane spanned by the partial derivatives x, and x, of a local
parametrisation x. For this to work, we first need to know that x,, and x, do indeed span a
plane.

Proposition5 Let x be a local parametrisation of a surface S. Then x,, and x, are linearly
independent at each point, and so span a plane.

Proof We first recall that two vectors are linearly independent if they are both non-zero,
and one is not a scalar multiple of the other. We shall prove the proposition for surfaces in
IR3, since the generalisation to surfaces in R” is clear but the notation in the latter case is
more cumbersome.

So, taking our notation from the definition of surface, and letting x(u,v) =
(x(u,v), y(u, v), z(u, v)), we have from (S2) that

F (x(u,v), y(u,v),z2(u,v)) = (u,v) .
Differentiating with respect to u and using the chain rule, we find
xyFy +yFy+z,F, =(,0),
while differentiating with respect to v gives
xyFy+yFy+z,F, =(0,1).

It follows that both x,, = (xy, Y4, z) and x,, = (xy, ¥y, Zp) are never zero, and, for instance,
(Xus Yu» zu) = A(xy, Yy, Zp) wWould give the contradiction that (1,0) = (0, A). ]

We conclude this section by noting that a suitable piece of a surface is itself a surface. A
subset X of a surface S in R” is said to be an open subset of S if X is the intersection of S
with an open subset of R". In Exercise 2.2 you are asked to prove the following lemma.

Lemma6 A non-empty open subset of a surface in R" is itself a surface in R".
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In each of the next three sections we discuss a particular method of constructing surfaces.
This will enable us to build up a large collection of interesting examples.

2.2 Graphs of functions

We begin by recalling that if g : U — R is a smooth function defined on a subset U of R?
then the graph I'(g) of g is the subset of R3 given by

I'(g) = {(u,v,g(u,v)) eR3: (u,v) € U} .

Proposition 1 Ler U be an open subset of R?, and let g : U — R be a smooth function.
Then the graph T'(g) of g is a surface in R3.

Proof We generalise the method of Example 2 in §2.1 as follows. Take W = R3, and let
x:U — R3, F :R?® - R? be the smooth maps defined by

x(u,v) = (u,v,g(,v)) , Fx,y,2)=(x,y). (2.1

Thenx(U) = WNI'(g) =I'(g),and Fx(u,v) = (u,v) for all (u,v) € U. Since every point
of ['(g) lies in the image of x, it follows from the definition that I"(g) is a surface in R3. O

Graphs provide quite simple examples of surfaces since they may be covered by a single
coordinate neighbourhood; this is not the case for the examples in the next section.
As an illustration of Proposition 5 of §2.1, we note that if x is as in (2.1) then

xuz(l,ovgu)7 xvz(O, lrgl))v

which are clearly linearly independent at all points.

Example 2 (Elliptic paraboloid) Let a, b be positive real numbers and let g : R> — R be
given by

2 U2
ﬁ9

u
gu,v) = — + u,veR.
a

@A Eliptic paraboloid



33

2.3 Surfaces of revolution

The graph I'(g) of g is an elliptic paraboloid (Figure 2.6),

I'(g) w v cR
={lu,v,—+— ) :u,v .
J a2 b2

Example 3 (Hyperbolic paraboloid) Let a, b be positive real numbers and let g : R> — R be
given by

o) 2 2 "
uv)=———, u,vek.
g a?  b?

The graph of g is a hyperbolic paraboloid, which is a saddle-shaped surface (Figure 2.7).

@R Hyperholic paraboloid

Figure 2.8

2.3 Surfaces of revolution

A surface of revolution in R3 is a surface S which is setwise invariant under rotations of
R about a line — the axis of rotation of S.

Let I be an open interval and let a(v) = (f(v),0,g(v)), v € I, be a regular curve
without self-intersections in the plane y = 0 in R3. We assume that f(v) > O forallv € I,
s0, in particular, & does not meet the z-axis (when f(v) would be zero). The subset S of
R3 swept out as we rotate & about the z-axis is given by (Figure 2.8)

Surface of revolution
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S ={(f(v)cosu, f(v)sinu,g)):uecR,vel}, 2.2)

which is clearly setwise invariant under rotations about the z-axis. We shall show in Propo-
sition 5 that S is a surface by covering S using just two coordinate neighbourhoods, namely
S\ trace & and S \ trace 8, where f is the reflection of « in the z-axis. Before doing this,
however, we give some examples.

Example 1 (Catenoid) This is obtained by rotating the catenary
a(v) = (k cosh %,0, v) , veER,

about the z-axis (Figure 2.9). Here, & is any positive constant.

QT hteni

Example 2 (Pseudosphere)  This is obtained by rotating the tractrix
a(v) = (sechv,0,v —tanhv), v >0,

about the z-axis (Figure 2.10). Motivation for the name “pseudosphere” will be given when
we study Gaussian curvature in Chapter 5.

@IIEELRT The pseudosphere
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If we rotate a regular curve in the xz-plane which intersects the z-axis, then we may
get singular points there; for instance, if we rotate the line z = x then we obtain a cone.
However, sometimes we do obtain a surface, as we see in the following example.

Example 3 (Sphere) The sphere S%(r) of radius r > 0 and centre the origin is obtained by
rotating the semicircle

. 7 b4
a(v) = (rcosv,0,rsinv), -3 <v< >

about the z-axis (Figure 2.11).

Sphere parametrised as a surface of revolution

Note that, in this example, we have rotated a curve defined on a closed interval whose
end points are on the axis of rotation. Points at which a surface of revolution intersects its
axis are called poles. We shall see in Chapter 4 that, in order for the surface to be smooth
at these points, the curve must intersect the axis orthogonally.

Example 4 (Torus of revolution) Let a, b be positive real numbers with a > b. Then the torus
of revolution 7, is obtained by rotating, about the z-axis, the circle of radius b and centre
(a,0,0) in the xz-plane (Figure 2.12).

A torus of revolution

Note that this example is also slightly different from the preceeding ones in that we have
rotated a closed curve rather than one defined on an open interval.

We now show that surfaces of revolution are indeed surfaces according to our definition.
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Proposition 5 Let I be an open interval of real numbers and let (v) = (f(v),0, g(v)),
v € I, be a regular curve in the xz-plane without self-intersections and with f(v) > 0 for
all v € 1. Then the set

S={(f(w)cosu, f(v)sinu,g)):u € R,vel}

is a surface in R3.

Proof 1In the course of the proof, and elsewhere in the book, we shall use the notation
A x B for the cartesian product of two sets A and B; specifically,

Ax B={(a,b):ae A,be B}.
Our first guess at a local parametrisation of S might be to define x : R x I — R3 by
x(u,v) = (f(v)cosu, f(v)sinu,g(v)), ueR,vel.

The image of this map certainly covers S, but Lemma 3 of §2.1 shows that x can’t be a local
parametrisation since x(u + 2w, v) = x(u, v). We overcome this difficulty by restricting
the domain of x; welet U = (—m, ) x I and definex : U — R3 by

x(u,v) = (f(v)cosu, f(v)sinu,g(v)), —-T7<u<m, vel. (2.3)

We now show how to find an open subset W of R? and a smooth map F : W — R? as
in condition (S2) for a surface. We take W = R3 \ I1, where IT is the half-plane on which
y = 0and x <0, and, in order to simplify the rest of the proof, we shall restrict ourselves
to finding a map F : W — R? as in condition (S2) for a surface in the following two
special cases:

Case1: «(v) = (f(v),0,v),
Case2: «(v) = (v,0,g(v)) (so, in particular, we assume v > 0).

The finding of F in these special cases contains the essential ideas, but avoids a technical
difficulty (which may be overcome by use of an important result, the Inverse Function
Theorem, taken from the theory of differential calculus of functions between Euclidean
spaces — more about this later).

Case 1: Here we let F : W — R? be given by
F(x,y,z) = (Arg(x +iy),2),

where —m < Arg < m denotes the principal argument of a complex number. Then x and F
are smooth, and, since we assume that f(v) > O forall v € I, it follows that WNS = x(U).
Also,

Fx(u,v) = F (f(v)cosu, f(v)sinu,v) = (u,v), (u,v)eU.

It now follows that (S2) holds, so that x is a local parametrisation of S.
Case 2: This time we take F : W — RZ to be

F(x,y,2) = <Arg(x +iy),/x%+ y2) ,

and a similar argument shows that (S2) holds, so that x is again a local parametrisation
of S.
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The price we pay for restricting the domain of x to (—m,7) x [ is that the image no
longer covers the whole of S (the trace of the reflection B of & in the z-axis is omitted).
In order to cover S with coordinate neighbourhoods we use another local parametrisation
which is given by the same formula as x but has a different domain of definition, namely
y :(0,27) x I — R3 given by

y(u,v) = (f(w)cosu, f(v)sinu,gw)), O<u<2m,vel. 2.4

The image of y omits the trace of ¢, but the two local parametrisations x and y given in
(2.3) and (2.4) cover the whole of S, which shows that § is indeed a surface. ]

For x(u, v) as in (2.3), we note that

x, = (—f)sinu, f(v)cosu,0),
xy = (f'(v)cosu, f'(v)sinu,g'(v)),

which, in accordance with Proposition 5 of §2.1, are easily seen to be linearly independent
at each point.

As already mentioned, the sphere discussed in Example 3 and the torus of revolution
discussed in Example 4 are slightly different from the surfaces of revolution considered in
Proposition 5. For the sphere, if we restrict the domain of definition of the curve & given in
Example 3 to —7/2 < v < m/2 then the standard local parametrisations discussed above
cover the whole of S%(r) except for the the two poles.

The torus of revolution discussed in Example 4 is obtained by rotating a closed curve,
namely, a circle. This circle (with one point omitted) may be parametrised by

a(v) =(a +bcosv,0,bsinv), —mw<v<m,

and the torus may be covered using four coordinate neighbourhoods corresponding to the
local parametrisations

x(u,v) = ((a + bcosv)cosu, (a+ bcosv)sinu, bsinv), (u,v)elU,
where U is taken in turn to be

0,27) x (0,27), (0,27) X (—m,m),

(—m,m)x0,27r), (—mw,m)x(—m,m).

Returning to the general situation of a surface of revolution, the curve a(v) =
(f(v),0, g(v)) is the generating curve of the corresponding surface of revolution. The cir-
cle swept out by a point of « is called a parallel, and the curve on S obtained by rotating «
through a fixed angle is called a meridian. Each parallel is the intersection of S with a hor-
izontal plane z = constant, while each meridian is the intersection of S with a half-plane
with boundary the z-axis. In particular, the parallels and meridians of the sphere $2(r)
described in Example 3 are the curves of latitude and longitude used in discussions of the
geography of the Earth.



38

2 Surfacesin R”

2.4 Surfaces defined by equations

Many surfaces in R3 can be defined by an equation. For example, the unit sphere has
equation x24+y2 422 =1,the ellipsoid has equation (x/a)* + (y/b)* + (z/c)* = 1, and
the hyperboloid of two sheets has equation (x Ja)? + (y/b)* = (z/c)* — 1.

However, not every equation defines a surface. For instance, the equation xy = 0 gives
the union of two of the coordinate planes while x> 4+ y% = 0 gives the z-axis.

In this section we look at conditions under which an equation defines a surface in R3
(and at the more general situation of surfaces in R").

We first recall that, if f : W — R is a smooth function defined on an open subset
W of R3, then the gradient grad f of f is the vector-valued function given by grad f =
(fx, fy» f2), where, as usual, partial differentiation is denoted by the appropriate suffix.

Theorem 1 Let W be an open subset of R® and let f : W — R be a smooth function. Let
k be a real number and let S be the subset of R? defined by the equation f(x,y,z) = k. If
S is non-empty and if grad f is never zero on S, then S is a surface in R3.

The idea of the proof of the theorem is to show that (maybe after re-labelling the axes
of R?) each sufficiently small piece of S is the graph of a function. The theorem (and its
generalisation below) is the first of several results in this section and the next whose proofs
use the Inverse Function Theorem. These proofs are not necessary for an appreciation of
the material in the book, and they are also quite technical. For this reason, we present the
proofs in an appendix of optional reading at the end of this chapter.

We note that if grad f does vanish at one or more points of the subset of R® defined by
the equation f(x, y,z) = k then we cannot conclude that this subset is not a surface; the
theorem simply gives us no information in that case (see, for example, Exercise 2.5).

Example 2 (Hyperboloids) Let a, b and ¢ be positive real numbers and let f(x,y,z) =

2x 2y 2z

poANEE ——2),whichis zeroifandonlyifx =y =z =0.
a c

2,2
X< y° oz
;—Fﬁ—c—z.Thengradf = (

Sy 2)=k>0

fxy2)=k<0
fy2=0

Hyperboloids and an elliptical cone
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Since f(0,0,0) = 0 and since f takes all real values, we see that the equation f(x,y,z) =
k defines a surface S for all real k # 0. If k > 0 then S is a hyperboloid of one sheet, while
if K < 0 then S is a hyperboloid of two sheets (Figure 2.13).

However f(x, y,z) = 0 is the equation of the elliptical cone formed by the lines passing

through (0, 0, 0) and the points on the ellipse in the plane z = ¢ given by
2 2
X Y
E={(x,y, eR: 4+
{(x,y,2) Pl
This fails to be a surface at (0, 0, 0), the point at which grad f is zero.

=1,z=c}.

There is a standard notation which applies in this situation. Those points of the domain
W of f at which grad f is zero are called critical points of f, and all other points of W
are regular points. The inverse image of a real number £ is the set of points p € W such
that f(p) = k, and k is a regular value of f if its inverse image is non-empty and consists
entirely of regular points. All other values of f are called critical values. Theorem 1 says
that the inverse image of a regular value is a surface.

Many surfaces are examples of more than one of the three types of surface we have
discussed in §2.2 to §2.4. For instance, if S is the graph of the smooth function g : U — R,
where U is an open subset of R?, then S is also defined by the equation z = g(x, ).

Another example is provided by surfaces of revolution obtained by rotating a regular
curve of the form

a@) = (f(),0,v), f(v) >0V,

about the z-axis. Such a surface is defined by the equation
2y = (f@)%

The methods in this section may be generalised to give a criterion for a system of equa-
tions to define a surface in R”. We now give a brief description of this, but this material
will not be used in an essential way in the book, so the rest of this section may be
omitted if desired.

In general, to describe a surface in R” we need a suitable system of n — 2 equations.

Theorem 3™ Let W be an open subset of R" and let f = (fi,..., fu—2) : W — R"2 be
a smooth map. Let (ky, ... ,kn_2) € R"2 and let S be the subset of R" defined by the
equations

fixt,.ox) =k, i=1,...,n-2.

If S is non-empty and if grad f1,. .., grad f,—; are linearly independent everywhere on S,
then S is a surface in R".

It should be clear how to define critical point, regular point, regular value and criti-
cal value of a function f : W — R"”~2 in such a way that Theorem 3 may be restated
in a similar way to Theorem 1, namely that the inverse image of a regular value is a
surface.
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Example 47(AtorusinIR4) Let r|, r» be positive real numbers and let S be the subset of R*
defined by the equations

2 2 2 2 2 2
X1"+x2"=r1", x3"+x4s=r".

Then a straightforward application of Theorem 3 shows that S is a surface in R*. In fact,
intuitively speaking, S is a product of two circles S = S](rl) X S](rz) C R? x R? and is,
in a natural way, differentiably equivalent to the torus of revolution discussed in Example
4 of §2.3. However, as we shall see, the local intrinsic metric properties of the two surfaces
are very different; the intrinsic geometry of the torus in R* described here is locally like
that of the plane (and so this surface is often called a flat torus), whereas that of the surface
in Example 4 of §2.3 is not. To convince yourself of this try moulding a flat piece of paper
onto a doughnut without crinkling the paper!

Example 57(Graphs of maps to R"~2) Let U be an open subset of R and let g =
(81,...,8n—2) : U — R"72 be a smooth map. Then the graph I'(g) of g is the subset
of R" given by

I'(g) = {(u,v,g(u,v)) € R" : (u,v) € U} .

It is quick to generalise the method used in §2.2 to show directly that I'(g) is a surface, but
this may also be proved using Theorem 3 by noting that I'(g) is defined by the system of
equations

Xit2 —gi(x1,x0) =0, i=1,....,.n—-2.

2.5 Coordinate recognition

The surfaces discussed in §2.2 and §2.3 come equipped with natural local parametrisa-
tions but those of §2.4 do not. It is sometimes rather difficult to check criterion (S2) for
local parametrisations because of problems associated with finding a function F with the
properties required by that criterion, so we now describe three useful (but rather technical)
results which help us to recognise local parametrisations without the need to verify that
(S2) holds.

In order to provide some motivation and intuition, we first recall that one of the reasons
for condition (S2) in the definition of surface is to ensure that the image x(U) of a local
parametrisation is 2-dimensional. In particular, we saw in Lemma 3 of §2.1 that x is injec-
tive, while Proposition 5 of §2.1 showed that x, and x, are linearly independent at each
point.

As we illustrate with some examples, it is often much easier to check the injectivity of
x and the linear independence of x, and x, than to construct a map F satisfying condition
(S2), and the motivation for the theorems we discuss in this section is that they will help
us decide to what extent one or both of these easier conditions enable us to conclude that x
is a local parametrisation of a surface. We shall be mostly interested in the case of surfaces
in R3, and here the vector cross product often provides a convenient way of proving linear
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independence since the vector product of two vectors in R3 is zero if and only if they are
linearly dependent.

The proofs of Theorems 1 and 3 in this section use the Inverse Function Theorem, and
may be found in the appendix to this chapter. As already mentioned, it is a matter of time
and taste as to whether the material in the appendix is included in a course of study.

Before stating the first theorem, we note that an open neighbourhood of a point g € R™
is simply an open set in R containing g.

Theorem1 Let x : U — R” be a smooth map defined on an open subset U of R%, and
assume that q € U is such that the vectors x,(q), x,(q) are linearly independent (or,
equivalently for a surface in R3, (x, x x,)(q) # 0). Then U contains an open neigh-
bourhood Uy of q such that x(Uy) is a surface S in R" and the restriction of x to Uy is a
parametrisation of the whole of S.

Example 2 (Enneper’s surface) This is an example of a minimal surface (the shape taken up
by a soap film); these surfaces are studied in Chapter 9. Enneper’s surface (for a picture,
see Figure 9.2) is defined to be the image of

ul v3
x(u,v) = <u -3 + uvz, —v 4+ 3 uzv, u? — v2> , u,velR. 2.5)

Here,
xu= (1 —u? 4+ 0%, —2uv, 2u), x,=Quv, —1 —u*>+v%, —2v),
and a short calculation shows that
Xy X Xy = (2u(1 +u? + 2, 201 +u® +0?), @+ v))? — 1) .

This is clearly never zero, so that x,, and x, are linearly independent at each point. Using
Theorem 1, we see that sufficiently small pieces of Enneper’s surface are indeed surfaces
according to our definition. However, the finding of the corresponding map F would be
daunting. We remark that the map x(u, v) given in (2.5) isn’t injective (although it is injec-
tive when restricted to sufficiently small open sets in the plane); Enneper’s surface has
self-intersections and so is not a surface according to our definition.

We now discuss two further criteria for recognising local parametrisations. These are
rather different from the one discussed above, since we need to know that we have a surface
before we can apply the criteria. Once again, we leave the proof of the first of these results
to the appendix to this chapter; the second result may be proved from the first by using
topological arguments involving paracompactness.

Theorem3  Ler S be a surface in R" and let x : U — R" be a smooth map defined on
an open subset U ofRz. If x(U) € S and if g € U is such that the vectors x,(q), X,(q)
are linearly independent (or, equivalently for a surface in R3, (xy X xy)(q) # 0), then
U contains an open neighbourhood Uy of q such that the restriction of x to Uy is a local
parametrisation of S.
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Theorem 4 (Parametrisation Recognition Theorem) Ler S be a surface in R". A smooth map
x : U — R" defined on an open subset U of R? is a local parametrisation of S if all of the
following conditions hold:

(1) x(U) < S,

(2) x is injective,

(3) x, and x, are linearly independent at all points (or, equivalently for a surface in R3,
X, X Xy IS never zero).

As mentioned earlier in this section, the converse to Theorem 4 is also true; if x(u, v) is
a local parametrisation of a surface, then conditions (1), (2) and (3) all hold.

Example 5 (Hyperboloid of one sheet) We saw in Example 2 of §2.4 that if f : R® — Ris
given by
2 2 2
X y Z
f(-xsysz)za_z—i_b_z_c_z,
then f(x,y,z) = 1 is the equation of a surface S (a hyperboloid of one sheet). This is not
a surface of revolution (unless a = b), but our experience with these latter surfaces would

encourage us to believe that the smooth map x : (—m,7) x R — R3 given by
x(u,v) = (acoshvcosu, bcoshvsinu, csinhv), -7 <u<m, veR,

would be a local parametrisation. The construction of a map F as in (S2) is not hard in
this case, but we wish to illustrate the use of Theorem 4 by checking the three conditions
required to apply that theorem.

First note that f(x(u,v)) = 1 for all (u,v) € U, so that the first condition of Theorem 4
holds. Also, x is injective since cos u, sinu determine # € (—m, ) uniquely while sinh v
determines v uniquely. Finally,

X, = (—acoshvsinu, bcoshvcosu, 0),

X, = (asinhvcosu, bsinhvsinu, ccoshv),
and the vector product
X, X Xy = coshv (bccoshvcosu, cacoshvsinu, —ab sinhv)

is clearly never zero.

The Parametrisation Recognition Theorem now shows that x is a local parametrisation of
S. In order to cover § with coordinate neighbourhoods we could take, in addition to x, the
local parametrisation which is given by the same formula as x but has domain (0, 27) x R.

2.6 Appendix: Proof of three theorems '

In this appendix we give a brief account of the Inverse Function Theorem, and show how
it may be used to prove Theorem 1 of §2.4 and Theorems 1 and 3 of §2.5. As mentioned
previously, this material is rather technical and could be omitted if desired.
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We begin by recalling the theory of differentiation of functions between Euclidean
spaces. So, let f(uy,...,u;) be a smooth R"-valued map defined on an open subset U
of R™, and, as usual, write

=0t

where fi,..., f, are smooth real-valued functions defined on U. The derivative of f at
p € U is the linear map df, : R™ — R" given by matrix multiplication by the Jacobian
matrix J f, of f at p. Specifically, using matrix multiplication on the right hand side of the
equation,

hy hy
dfp | | = |
hm hm
where
3 3
Lpy - Hp)
Jfp = : : . (2.6)
0fn 9fn
Mepy .. Mr(p)
The derivative of f at p € U is very useful because it gives us a good linear approxima-
tion to f on an open neighbourhood of p in the following sense. If h = (h1,...,h,) € R"

and if R(h) is the difference between f(p + h) and f(p) + df,(h), that is to say, if

R(h) = f(p+h)— f(p)—dfph),

then limy,_.o R(h)/|h| = 0.

Linear maps are usually easy to analyse, and the hope is that the behaviour of the linear
map df, will reflect the behaviour of f near p. The Inverse Function Theorem (Theorem 2)
is a prime example of this hope being realised.

We now recall the chain rule, which says that the derivative of a composite is the
composite of the derivatives.

Theorem 1 (Chain rule) Ler V be an open subset of R? and U an open subset of R™. If
f:V—=>R" g:U — R" are smooth maps then the composite map gf is smooth on
iU ={peVv: fp)eUy,
andif p € f~Y(U) then
d(gf)p = dgrpdfp -

Equivalently, in terms of Jacobian matrices and using matrix multiplication, J(gf)p, =
J&rp) I fp -

Let f : U — R”" be a smooth map defined on an open subset U of R™. If f(U) is an
open subset of R” and if there is a smooth map g : f(U) — U such that gf is the identity
map on U and fg is the identity map on f(U), then f is said to have a smooth inverse, and
g is called the inverse map. It is often important to know when f has a smooth inverse g
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because, if it has, then, in some sense, no information is lost when f is applied since this
action can always be reversed by applying g.

However, the problem of deciding whether f has a smooth inverse is often very diffi-
cult. For instance, it is clear that if f has a smooth inverse then f is necessarily injective
(not always easy to check), but this is not sufficient. The Inverse Function Theorem is
a very powerful theorem because it shows that, if p € U, then, on sufficiently small
open neighbourhoods of p, the difficult problem of existence of a smooth inverse may
be reduced to the easier problem of deciding whether the derivative df), is a linear isomor-
phism, or, equivalently, whether the Jacobian matrix J f}, is a square matrix with non-zero
determinant.

Theorem 2 (Inverse Function Theorem) Let U be an open subset of R™ and let f : U — R"
be a smooth map. Suppose p € U and that df), is a linear isomorphism (or, equivalently,
m = n and the Jacobian matrix J f, has non-zero determinant). Then U contains an open
neighbourhood Uy of p such that f(Uy) is open in R™ and the restriction of f to Uy has a
smooth inverse map g : f(Ug) — U.

Using this theorem, we can now prove Theorem 1 of §2.4 and Theorems 1 and 3 of §2.5.
In each case we take our notation from the statement of the relevant theorem.

Proof of Theorem 10f§2.4  As already mentioned, the basic idea is to show that (maybe
after re-labelling the axes of R?) each sufficiently small piece of S is the graph of a func-
tion. If p € S then the determinant of the Jacobian matrix at p of the map f defined
by f(x,y,2) = (x,y, f(x,,2)) is equal to (3f/dz)(p), which, by re-labelling the axes if
necessary, we may assume is non-zero. The Inverse Function Theorem applied to f now
shows that W contains an open neighbourhood W of p in R? such that f(W) is open in R?
and f : W — f(W) has a smooth inverse g : f(W) — W, which in this case is neces-
sarily of the form g(u, v, w) = (u,v, g(u, v, w)) for some smooth function g(u, v, w). By
taking W smaller if necessary, we may assume that f (W) is of the form U x (k — €,k +€)
for some open subset U of R2 and some € > 0 (Figure 2.14). We now show that § N W is
the graph of the function (u, v) — g(u, v, k).
To do this, we define x : U — R3 by

x(u,v) = gu,v,k) = (u,v,g(u,v,k)) . 2.7)

Then fx(u, V) = fg(u, v,k) = (u,v,k), so that f(x(u,v)) = k from which it is clear that
x satisfies (S1), and it follows immediately from (2.7) that (S2) is satisfied with F : W —
R2 defined by F(x, y,7) = (x, y). =

For the proof of Theorem 1 of §2.4
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The above proof may be easily generalised to give a proof of Theorem 3 of §2.4.

Proof of Theorem 10f §2.5 For simplicity we give the proof for the case n = 3, the general
case being proved in an entirely similar manner. We also assume, without loss of generality,
that the normal vector x,(g) X x,(g) to the plane spanned by x,(g) and x,(q) is not parallel
to the xy-plane. Thus if

x(u,v) = (x(u,v), y(u,v), z(u, v)) ,

we are assuming that (x,y, — xy¥u)(g) # 0. Now let & : R3 — R? be defined
by m(x,y,z) = (x,y). Then the determinant of the Jacobian matrix of wx at g is
(xy Yy — Xy yu)(q), which is non-zero. So, by the Inverse Function Theorem, U contains
an open neighbourhood Uy of ¢ such that U; = wx(Up) is open in R?2and 7x : Uy — U,
has a smooth inverse g : Uy — Uy (Figure 2.15). Let W = 7Y (Uy) and let F = g :
W — Up. Then F is smooth and Fx(u,v) = grnx(u,v) = (u,v) for all (u,v) € Uy. The
proof of the theorem now follows directly from the definition of a surface. O

Proof of Theorem 3 0f §82.5 For each ¢ € U, we show that U contains an open neighbour-
hood Uy of g such that there is a smooth map F : W — R? defined on some open subset
W of R" with (S1) and (S2) holding for x|Uj.

So, letg € U, and, by taking U smaller if necessary, assume that x(U) = W NS, where
W and F denote the set and map associated with a local parametrisation X : U— S
(Figure 2.16). Then, for each r € U, there is a corresponding point 7 € U such that
#(F) = x(r). Then ¥ Fx(r) = ¥ F¥(F) = ¥(F) = x(r), so that

iFx=x. (2.8)

For the proof of Theorem 1 of §2.5

For the proof of Theorem 3 of §2.5
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Using the chain rule (Theorem 1) and equation (2.8), we see that if Fx (g) = g then

Ji;J(Fx), = Jx, .

By assumption, the columns x, and x, of Jx, are linearly independent at ¢, so Jx, has
rank two. It follows that J (i’x)q also has rank two, and hence has non-zero determinant.
The Inverse Function Theorem now shows that U contains an open neighbourhood Uy of ¢
such that Fx|Ug has a smooth inverse g, say. Then g Fx is the identity map on Uy so that
(S2) holds for x|Ug with F = gF. Thus x|Up is a local parametrisation as required. ]

Exercises

None of these exercises require material in the Appendix.

2.1

2.2

23

Let S(1) denote the unit sphere in R3, and, for (u,v) € R?, let x(u, v) be the point
of intersection with S%(1) \ {(0,0, 1)} of the line in R3 through (u, v, 0) and (0,0, 1).
Show that

Qu,2v,u? + 02 =1)

*(u,v) = uz +0v2 41

Let P be the plane in R3 with equation z = 1, and for each (x, y,z) € R3 \ P, let
F(x,y,z) be such that (F(x,y, z),0) is the intersection with the xy-plane of the line
through (0,0, 1) and (x, y, z). Show that

F(x,y,2) = (x,y).

-z
Prove that Fx(u,v) = (u,v) for all (u,v) € R?, and deduce that x is a local
parametrisation of S2(1) which covers S2(1) \ {(0,0, 1)}.

A subset X of a surface S in R” is said to be an open subset of S if X is the intersec-
tion of S with an open subset of R”. Prove that a non-empty open subset of a surface
is itself a surface.

Consider the following two subsets of R3:

(a) the cylinder x4 y2 =1;
(b) the hyperboloid of two sheets x2 + y> = z2 — 1.
(i) Show directly from the definition that each subset is a surface.
(ii) Show that each subset is a surface of revolution.
(iii) Show that each subset is a surface S defined by an equation of the form
f(x,y,2) =0, where grad f does not vanish on S.

Sketch each surface, indicating the coordinate neighbourhoods you have used to
parametrise the surface in your answers to (i). Indicate also the coordinate neighbour-
hoods arising from the standard parametrisations (as in (2.3) and (2.4)) as surfaces
of revolution.
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2
24 Let a be a positive real number, and let f(x,y,z) = z* + (N/x2 +y2 — a) . Find

all points of R? at which grad f vanishes. Show that if 0 < b < a then the equation
f(x,y,z) = b* defines a torus of revolution. What happens if 0 < a < b? Draw a
picture of the set f(x,y,z) = b in this case.
25 (a) Let f(x,y,2) =(x+y+z—1)>%
(1) Find all points at which grad f vanishes.
(i1) For which values of k does f(x, y,z) = k define a surface?
(iii) Show that the set defined by f(x, y,z) = 0 is a surface.
(b) Repeat (i) and (ii) using the function f(x,y,z) = xyz2. Is the set xyz> = 0 a
surface?
2.6 (The tangent surface of a curve) Let a(x) be a regular curve in R3 with curvature
k, and consider the map

x(u,v) = a(u) + va'(u) .
The image of x (Figure 2.17) is called the tangent surface of a (although, as we shall
see, it isn’t actually a surface!). Show that x,, and x,, are linearly dependent at (u, v)
if and only if either «(#) = 0 or v = 0. Use Theorem 1 of §2.5 to deduce that at all
other points each sufficiently small piece of the image of x is a surface. In fact, if «

is non-zero then the image of x gives two surfaces (possibly with self-intersections)
with common boundary along the trace of a (which corresponds to v = 0).

27 Ifa, b, c > 0show that the ellipsoid S in R? defined by

is a surface. Show also that
x(u,v) = (acosvcosu, bcosvsinu, csinv), —-m<u<mn,—-n/2<v<mn/2,

is a local parametrisation of S using each of the following methods.

(i) Find a suitable map F as in (S2) of the definition of surface.
(ii) Use Theorem 4 of §2.5.

QIR Tangent surface
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2.8

29

2.10

(i) Show that the equation z = x> — y? defines a surface S in R (a hyperbolic
paraboloid, see Figure 2.7). If we take

x(u,v) = (v +coshu,v +sinhu, 1 4+ 2v(coshu — sinhu)), u,v € R,

show that x is a local parametrisation of S.
(i) Show that the equation xz + y? = 1 defines a surface S in R? (a hyperboloid of
one sheet, see Figure 2.13). If we take

x(u,v) = (cosu + v(l + sinu),sinu — vcosu,

cosu —v(l —sinu)), 0 <u < 2w, v e R,

show that x is a local parametrisation of S.

(The local parametrisations in (i) and (ii) may be written in the form x(u,v) =
a(u) + vB(u) with a(u) being a regular curve and B(u) never equal to zero. This
displays each surface as ruled surface, a surface swept out as a line is moved around
in R3. There is more on ruled surfaces in §3.6.)

Show that the equation x sinz = y cos z defines a surface § in R3. If

x(u,v) = (vcosu,vsinu,u), u,veR,
show that the image of x is the whole of S. Show also that x is a parametrisation of
S using each of the following two methods:

(1) use the Parametrisation Recognition Theorem (Theorem 4 of §2.5);
(i) find amap F : R3 — R? such that x and F satisfy conditions (S1) and (S2) for
a surface.

The surface S is a helicoid, a picture of which may be found in §3.6. Like the two
surfaces in the previous question (and the surface in Exercise 2.6), the helicoid is a
ruled surface.

(Mobius band) If we take a rectangle of rubber sheet which, for definiteness, we
take to measure 47 by 2, and join the two ends of length 2 together after performing
one twist, then (Figure 2.18) we have a model of a Mdbius band. A mathematical
model may be given as follows.

Let a be the parametrisation of the unit circle in the (x, y)-plane given by

a(u) = (sinu,cosu,0),
and let S be the image of the map f : R x (—1,1) — R3 defined by
[, v) =2a@) + vBu),

Mabius band
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Exercises

2.1

where

u u
B(u) = cos Eoc(u) + sin E(O’ 0,1).

Assuming that S is a surface in R3, use the Parametrisation Recognition Theorem
(Theorem 4 of §2.5) to show that S may be covered by two coordinate neighbour-
hoods. (It may help to first show that |B| = 1 and that B is orthogonal to o', which
enables you to deduce that f, is orthogonal to f,). Note that S is a ruled surface
(see the previous two exercises); the rulings are indicated in Figure 2.18.

(This exercise uses material in the optional second half of §2.4.) For positive real
numbers r; and r,, let S be the flat torus in R* (described in Example 4 of §2.4)
defined by the equations

2 2 2 2 2 2
X{+xy=nr", x3+x3=nr".

If x(u,v) = (ricosu,rysinu,rycosv,rpsinv), —m < wu,v < 7, use the
Parametrisation Recognition Theorem (Theorem 4 of §2.5) to show that x is a local
parametrisation of S. Find a system of local parametrisations covering S.
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Tangent planes and the first fundamental form

In the first section of this chapter we show that, at each point p of a surface S in R", the set
of vectors tangential to smooth curves on S through p form a 2-plane, the tangent plane of
S at p. As already mentioned, the existence of this plane is crucial in the development of
the geometry of surfaces.

We then discuss the measurement of length, angle and area on a surface in R”. These
fundamental intrinsic properties are derived from the restriction of the inner product on R”
to the tangent planes of S. However, the ideas presented here extend readily to the more
general study of abstract surfaces (which are not considered as subsets of R") or even the
study of length, angle and area on smooth manifolds of arbitrarily large dimension. (Mani-
folds are the generalisation of abstract surfaces to objects of higher dimension.) These
metric properties are the defining features of a branch of mathematics called Riemannian
geometry, named after B. Riemann (1826-1866), who may be regarded as the instigator of
this study via the work in his doctoral thesis.

As in Chapter 2, the reader may continue to take n = 3 throughout this chapter.

3.1 The tangent plane

Let p be a point of a surface S in R". A rangent vector (Figure 3.1) to S at p is a vector
X such that X = a’(0) for some smooth curve e(r) in R” whose image lies on S and has
a(0) = p. The main result in this section is Proposition 2, which says that the set of tangent
vectors to S at p form a 2-plane. We then go on to show how to find this plane for each of
the three types of surface discussed in Chapter 2, namely graphs of functions, surfaces of
revolution and surfaces defined by equations.

We begin with a lemma which will be useful in many situations. If x : U — R" is a
local parametrisation of S, then the image under x of a smooth curve y(t) = (u(t), v(¢)) in
U is the smooth curve a(t) = x (u(t), v(¢)) lying on S. We show that every smooth curve
in R" whose image lies on x(U) is of this form. This is an important result, because it
shows that if a(¢) is a smooth curve whose image lies on S then sufficiently small pieces
of a may be described using local parametrisations.

Lemmal Letx : U — R" be a local parametrisation of S and let a(t) be a smooth curve
in R" whose image lies on x(U). Then a(t) is the image under x of a smooth curve in U,
and hence may be written in the form

a(t) = x (u(r), v(1))

for smooth functions u(t), v(t).
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X and Y are tangent vectors to S at p

Proof We have seen (in Lemma 3 of §2.1) that a local parametrisation x is a bijective map
onto x(U). Hence, for each #, there exists a unique point y(¢) = (u(z), v(t)) € U such that

x(y(@) = o). 3.1

It remains to show that y(t) = (u(¢),v(t)) is a smooth function of ¢. To do this, let F :
W — R? be a map as in (S2) of the definition of surface. If we apply F to both sides
of (3.1), we obtain y as the composite Fa of two smooth maps between open subsets of
Euclidean spaces. It follows that y is itself smooth. O

From now on, by a curve on a surface S we shall mean a smooth curve in R” whose
image lies on S. If at(¢) is such a curve and if «(#p) is in the image of a local parametrisation
x(u,v) of S then continuity of « implies that there exists € > 0 such that the image of the
restriction of & to (fp — €, fy + €) is contained in the image of x. We shall often encounter
this sort of situation, and paraphrase by saying that if a(fp) lies in the image of a local
parametrisation x(u, v) then, locally at least, the image of « is contained in the image
of x.

The usefulness of Lemma 1 will be apparent in the proof of the following proposition,
which, as already mentioned, is crucial in the study of the geometry of surfaces.

Proposition2  Let x(u, v) be a local parametrisation of S and assume that x(q) = p. The
set of tangent vectors to S at p is the plane spanned by x,(q) and x,(q).

Proof We have already seen in Proposition 5 of §2.1 that x,(¢) and x,(g) are linearly
independent and hence do indeed span a plane. Now let a(¢) be a curve on S through p.
Then, locally at least, we may write a(t) = x (u(¢),v(¢)) as in Lemma 1. Thus, by the
chain rule, &’ = u'x, + v'x,, so that &’ is a linear combination of x, and x, (Figure 3.2).

Conversely, if A and p are real numbers, we let a(t) = x (y(t)), where y(t) = g +
t(X, ). Then, using the chain rule again,

o =Ax, + puxy,

so that, by definition, Ax, + ux, is a tangent vector. O

If x is a local parametrisation of S with x(¢) = p then the vectors x,(q) and x,(q) are
called the coordinate vectors at p, and Proposition 2 shows that we could have defined the
set of tangent vectors to S at p to be the plane spanned by the coordinate vectors x,(q)
and x,(g). However, as mentioned earlier, the surfaces are the objects of interest; the role
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Atangent plane

of the local parametrisations is to help describe and study them. So, if we had defined the
set of tangent vectors to S at p to be the plane spanned by x,(q) and x,(g), we would then
have had to prove that this plane is independent of the choice of local parametrisation x
(and we would still have to prove Lemma 1 in order to show that the tangent vector to any
curve on S lies in the tangent plane). We have avoided this difficulty by choosing to define
the set of tangent vectors without using a specific local parametrisation.

The set of tangent vectors to S at p is called the fangent plane of S at p, and denoted
T,S. Proposition 2 shows that 7}, S is indeed a plane, and it is spanned by x,(q) and x,(g).

Example 3 (Tangent planes of graphs of functions) Let g : U — R"~2 be a smooth function
defined on an open subset U of R2. We saw in §2.2 that the graph

S ={u,v,gu,v)) : (u,v) e U}

is a surface in R” which may be parametrised by x(u, v) = (u, v, g(u, v)). Thus the tangent
plane of S at (u, v, g(u, v)) is the plane spanned by (1,0, g,,) and (0, 1, g,).

As a specific example, if U = {(u,v) € R? : u? 4+ 12 < 1}andifg : U — Ris
given by g(u,v) = ~/1 —u? —v2, then S is the upper hemisphere x> + y> + z2 = 1,
z > 0, of the unit sphere. If p = (u, v, g(u, v)) then p = x(u, v) so that 7}, S is spanned by
(1,0,—*) and (0, 1, —;). In particular, if p = (0,0, 1) is the

V1—u? -2 V1—u? =2

north pole, then T}, S is spanned by (1, 0,0) and (0, 1,0), and so is horizontal, in agreement
with intuition (Figure 3.3).

Tangent plane to S2(1) at the north pole

The tangent plane of a surface at a point p, being a vector subspace of R", passes through
the origin of R"”. However (as in Figures 3.2 and 3.3), it is often helpful to visualise this
plane moved parallel to itself so that the tangent vectors are all based at p. This is the plane
which best approximates S near p in the sense that any smooth curve on S through p has
first order contact with this plane; the curve touches the plane there and its tangent vector
lies in the plane.
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Example 4 (Cone) We mentioned in §2.1 that the cone z2 = x2 + y2 isn’t a surface because
it doesn’t look locally like an open subset of the plane around the vertex (0, 0,0). This
is not hard to prove using a connectivity argument (removing the vertex disconnects the
cone, but an open subset of the plane cannot be disconnected by removing a point), but
we may also prove it using Proposition 2 by writing down three curves through (0, 0, 0)
which lie on the cone but whose tangent vectors do not all lie in a plane. Specifically, if we
take ae(t) = (£,0,1), B(t) = (¢,0,—1), and y(¢) = (0,1, 1), then ’(0), B/(0) and p’(0) are
linearly independent.

As we have seen in Example 3, it is easy to find the tangent plane at a point
of a surface which is the graph of a function because such a surface has a natu-
ral parametrisation. A similar comment holds for surfaces of revolution, which may
be parametrised as described in §2.3, but does not apply to surfaces defined by equa-
tions (as discussed in §2.4). However, a rather different method works nicely in this
case.

Proposition5 Let f : W — R be a smooth function defined on an open subset W of R3,
and let k be a real number in the image of f. Assume that grad f is never zero on the
subset S of R? defined by the equation f(x,y,z) = k (so that, by Theorem I of §2.4, S is
a surface inR3). If p € S, then T, S is the plane of vectors orthogonal to (grad f)(p).

Proof Let a(z) = (x(¢),y(t),z(¢)) be a smooth curve on S with a(0) = p. Then
f (x(@®),y(),z(t)) = k, so, differentiating, we obtain

fxx/+fyy/+fzz/ =0. (3.2)

However, grad f = (f, fy, f2), and &’ (t) = (x'(1), y'(t), (1)), s0, using the inner product
in R3, we see that (3.2) is equivalent to

o . grad f =0,

that is to say, o’ is orthogonal to grad f (Figure 3.4).

Since, by definition, every element of 7, S is equal to &’(0) for some smooth curve o on
S with «(0) = p, we now see that every element of T}, S is orthogonal to (grad f)(p). The
result now follows since T}, S is a 2-dimensional vector space and hence is the whole of the
orthogonal complement of (grad f)(p). O

grad f is orthogonal to S
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Example 6 (Sphere) Let S%(r) be the sphere of radius » > 0 with equation

x2+y2+z2=r2.
Ifp=(x,y,2) € S2(r), then T, S2(r) consists of those vectors orthogonal to (the position
vector of) p.

Example 7 (Ellipsoid) Let S be the ellipsoid with equation
2 2 2
X y b4

) + 0 + 2= 1.
Then the tangent plane at (xo,yo,z0) € S consists of those vectors orthogonal to
(2x0/a?, 2y /b?, 2z0/c?) and hence has equation

X0 Yo

2 T

The parallel translate of this plane to the plane of vectors based at (xo, yo, zo) has equation

Z
y—l——gz:O.
C

Yo 20

Y+ gi=1, (3.3)
and this is the plane with which the smooth curves on S through (xo, yo, zo) have first order
contact. As a particular example, we see from (3.3) that the tangent plane based at (0, 0, ¢)
is the horizontal plane z = c, in agreement with intuition.

X0
—X +
a2

3.2 The first fundamental form

Let p be a point on a surface S in R". The restriction to the tangent plane 7, of the inner
product on R" gives an inner product on 7, S (that is to say, a symmetric positive-definite
bilinear form on 7,S). Thus, if X and Y are in 7,§ then X.X > 0 if X is non-zero,
X.Y =Y.X,and XY is linear in both X and Y. The corresponding quadratic form given
by

I(X)=XX=|X)?
is called the first fundamental form or metric of S.

The intrinsic properties of S are determined by the first fundamental form, and we now
obtain expressions for the inner product and the first fundamental form in terms of a local
parametrisation x (u, v) of S. As we saw in Proposition 2 of §3.1, if X, Y are tangent vectors
to S at some point then, for some uniquely determined scalars A1, A2, (1, (2,

X =hxy, + Axy,
Y = pixy + poxy .
Thus,

XY = (A1xy + Aoxy)(1Xy + 2Xy)
=MUIE + A2+ 2ou)F + rusG,
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where

E=x,x,, F=x,xy,, G=x,.x,.
In particular, the first fundamental form [/ is given by
1(X) = |X|? = M2E + 20 M F + 226G . (3.4)

The functions E, F and G are determined by x and are called the coefficients of the first
Jundamental form with respect to x. Since x,, and x, are smooth, it follows that E, F and
G are smooth functions of u and v.

Example 1(Graph of afunction) Let S = I'(g) be the graph of the smooth function g : U —
R, and let x(u, v) be the (standard) parametrisation of S given by

x(u,v) = (u,v, g(u,v)) .
Then
x, =(1,0,8), x,=(0,1,80),
so that
E:l—i—guz, F=gugv, G=1+gU2.

So, for instance, the square of the length of 3x,, +4x, is 9(1 —i—guz) +24g,8,+16(1+ gvz),
while the angle 6 betweeen x, and x, is given by

Xy Xy F 8u8v
cosf = =

X%l - VEG VO + a0+ a0

Example 2 (Surface of revolution) Let S be the surface of revolution generated by the reg-
ular curve a(v) = (f(v),0,g()), f(v) > 0 Vv, and let x(u, v) be the standard local
parametrisation given by

x(u,v) = (f(v)cosu, f(v)sinu, g(v)) .
Then
¥y = (—f@)sinu, f@)cosu,0) . xy = (f'v)cosu, f'(v)sinu,g'(v)) ,
so that
E=(W)? F=0, G=(/0)+(E W)’ =w?.

Note that in this example the coefficients of the first fundamental form depend on only v,
and are particularly simple if the generating curve « is parametrised by arc length.

As already noted, the inner product on each tangent space is positive definite. This leads
to the following lemma.

Lemma3 Ler E, F and G be the coefficients of the first fundamental form of a surface S
with respect to some local parametrisation x. Then E, G and EG — F? are all positive.



56

3 Tangent planes and the first fundamental form

Proof 1tis clear that E > 0 and G > 0 since each is the square of the length of a non-zero
vector. Also, if 0 is the angle between x, and x,, then

EG — F? = |x,2|x0?(1 — cos? 0) = |x,|?|xy|*sin’6 > 0. O

3.3 Arclength and angle

As already mentioned, the intrinsic properties of a surface S are those that depend on
only the inner product on the tangent planes of the surface; or, equivalently once a local
parametrisation has been chosen, depend on only the coefficients E, F and G of the
first fundamental form. The intrinsic properties we study in this chapter are the length of
curves on S, the angle of intersection of two curves on S, and the area of suitable regions
of S.

The crucial point is that, once you know the coefficients of the first fundamental form,
you can carry out intrinsic metric geometry on the corresponding coordinate neighbour-
hood of § without needing to know the actual shape of the surface itself. Indeed, two
surfaces having local parametrisations with the same coefficients E, F' and G of the first
fundamental form have the same (local) intrinsic geometry. So, for instance, you cannot
tell whether you are on a plane or (a sufficiently small part of) a cylinder solely by compar-
ing lengths of curves and angles of intersection of curves on these two surfaces. Physically
speaking, you can mould a piece of paper round a cylinder without wrinkles or folds, but,
for instance, you can not do this round a sphere; the intrinsic geometry of the sphere is
different from that of the plane.

In this section we illustrate the use of the coefficients of the first fundamental form in
determining the intrinsic geometry of a surface S by describing how to use them to find
the length of a curve given in terms of a local parametrisation on S. We then show how to
determine the angle of intersection of two curves on S.

Let x : U — R” be a local parametrisation of a surface S in R”, and let a(t) =
x (u(t), v(t)) be a smooth curve on S lying on the coordinate neighbourhood x(U). Then

o = u/xu + U/xv >
so that
P =o' = Wxy+ v'xy).('x, + v'xy)

= Eu> + 2Fu'v + Gv'>. (3.5)

loe

Hence, using the definition given in equation (1.1) of the arc length function s measured
from some point a(#y) on &, we have

n
s() = / o (0)ldt
fo

n
- / (Eu> + 2Fu'v' + Gv>)'%dr . (3.6)
0]
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The following example illustrates the remark at the beginning of this section in that, if
we know E, F and G, we can find arc length along a curve on a surface without knowing
the shape of either the surface or the curve.

Example 1 Let x(u, v) be a local parametrisation of a surface S in R”, with coefficients of
the first fundamental form given by

E=1+4?*, F=-4uv, G=1+47, (3.7)
and let a(¢) be the curve on S given by
at)=x w@®),v@), tel-1,1], (3.8)
where
uty=t, v@)=t. (3.9
On the curve o, we then have
/

W =v =1, E=1+4>, F=—-4> G=1+4¢,

so that, using (3.6), the length of « is given by
! 2 2 2 172
/ (1 42 £ 2(—4D) 1+ 4t ) dt
-1

=\/§/1dt=2«/§.
-1

In fact, the above calculation may be verified by taking a specific surface with the above
E, F and G as follows.

Example 2 (Hyperbolic paraboloid) Let S be the hyperbolic paraboloid with equation z =
x2 — y2, and parametrise it as a graph in the usual way by taking
x(u,v) = (u, v,u2 — v2) .
Then
x, =0{1,0,2u), x,=(0,1,-2v),
so that E, F and G are given by (3.7). The line segment joining (—1, —1,0) to (1, 1, 0) lies

on the surface, and is parametrised by (3.8) and (3.9). The length of the line segment is (by
Pythagoras’ Theorem) equal to 2+/2, which agrees with the answer obtained in Example 1.

We now illustrate how a knowledge of E, F and G enables us to find the angle of
intersection of two regular curves on a surface S. We use the fact that, if «(¢) and B(r) are
regular curves on S with a(t;) = B(r1) = p, then the angle 6 at which they intersect at p
is given by

a/(t1).B'(r1) = |/ (t1)| |B'(r1)| cos 6, (3.10)

where, as usual, we use ' to denote differentiation with respect to the appropriate variable.
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Example 3 Let x(u, v) be a local parametrisation of a surface S with coefficients of the
first fundamental form given, as in Example 1, by

E=14+4”, F=—4uv, G=1+4". (3.11)
We shall find the angle 6 of intersection of the curves

a) =x2,15), Br)=x@r1).

We start by noting that since x is a local parametrisation it is also injective, so that the
two curves intersect at the single point e(1) = B(2) = x(2, 1). At this point

E=17, F=-8, G=5.

Also
o' () =2xy +3xy, B2 =wxu,
so that
o'(1).8'(2) =2E +3F =10,
and

/(D> =4E+12F+9G =17, | QP =E=17.

It now follows from (3.10) that

o 10 10 3.12)
cosf = = —, .
J17.17 17

so the curves a and B intersect at an angle of 0.94 radians (to two significant figures) or
54°.

The above calculation holds for any surface with a parametrisation having coefficients of
the first fundamental form given by (3.11). In particular, if we take S to be the hyperbolic
paraboloid z = x? — y? with parametrisation as in Example 2, then the curves & and § are
given by a(t) = (21,183,412 — t9) and Br) = (r, 1,72 — 1) from which the expression for
their angle of intersection in R3 may be calculated directly and seen to agree with (3.12).

We finish the section with a slight digression in order to explain some notation used by
many authors for the first fundamental form. This material can be safely omitted since it
will not be used elsewhere in the book.

It follows from equation (3.6) that, along a smooth curve a(¢) = x (u(¢), v(¢)),

() -+ or () () o (5

This is sometimes written in the form
ds®> = Edu® + 2Fdudv + Gdv? , (3.13)
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and ds? is then referred to as the first fundamental form. We can make sense of this equa-
tion of ‘infinitesimals’ if we consider du and dv as the linear functions defined on the
tangent plane of S by

du(x,) =1, du(x,)=0,
dv(x,) =0, dv(xy)=1.

The right hand side of (3.13) is then precisely the first fundamental form 7 as given in (3.4).

3.4 Isothermal parametrisations

We begin this section by stressing, once again, that the geometry of a surface (and the
curves on it) are the important considerations. A local parametrisation x(u, v) is just a
convenient device for investigating these.

However, it is clearly desirable to choose a local parametrisation whose coefficients
of the first fundamental form are as simple as possible, so it is an interesting ques-
tion as to how simple E, F and G can be made for a given surface by choosing a
suitable local parametrisation. For instance, can we prove that any surface may be cov-
ered using local parametrisations for which E = G = 1, F = 07? The answer, not
surprisingly, is “no”! In fact, since E, F and G determine the local intrinsic proper-
ties of a surface the existence of a local parametrisation with £E = G = 1, F = 0
would imply that the surface was (locally at least) metrically indistinguishable from a flat
plane.

We often aim, wherever practicable, to choose local parametrisations with ' = 0 (as
described in Example 2 in §3.2 for surfaces of revolution, for instance). Such parametri-
sations are called orthogonal parametrisations because at each point the vectors x, and
x, are orthogonal. Even better are isothermal parametrisations, which have £ = G and
F = 0; that is to say, at each point the coordinate vectors x, and x, are orthogonal and
have the same length.

Example 1 (Catenoid) We consider the catenoid S which may be parametrised as a surface
of revolution by taking

x(u,v) = (coshvcosu,coshvsinu,v), —-m<u<mn, velk.
It follows quickly from Example 2 of §3.2 that
E=G=cosh2v, F=0,

so that x is an isothermal parametrisation of S.

Example 2 (Sphere) Let S(1) denote the unit sphere in R3, and, for (1, v) € R?, let x(u, v)
be the point of intersection with S2(1) \ {(0,0, 1)} of the line in R3 through (#, v,0) and
(0,0, 1) (Figure 3.5).
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An isothermal parametrisation of the sphere S2(1)

In Exercise 2.1 you were invited to prove that x(u, v) is given by

Qu,2v,u® + 02 =1)
u2 +v2+1
and that x is a local parametrisation of $2(1) which covers S2(1) \ {(0,0, 1)}.

A routine computation shows that, for this local parametrisation x,

4
(u? +v2 + 1)? G149

x(u,v) =

)

so that x is an isothermal parametrisation of S%(1) \ {(0,0, 1)}. We may carry out a similar
process but considering lines from (0,0, —1), thus covering $2(1) with two isothermal
parametrisations.

We shall not prove the following proposition (since the proof is rather delicate; ulti-
mately using the theory of existence of solutions of elliptic partial differential equations).

Proposition3  Let S be a surface in R" and let p € S. Then there exists an isothermal local
parametrisation of S whose image contains p.

In some ways, Examples 1 and 2 are rather misleading, since finding an explicit isother-
mal local parametrisation is impracticable for most examples (you may remember a similar
remark in Chapter 1 concerning arc length parametrisations for regular curves). However,
the existence of isothermal local parametrisations is often useful for theoretical work.

The following lemma gives the main geometrical property of isothermal parametrisa-
tions.

Lemma4 Let x(u, v) be an isothermal local parametrisation (so that E = G and F = 0).
Then x preserves angles in the sense that if B,(t) and B,(r) are regular curves in R? in
the domain of x intersecting at an angle ¢ then ooy = xf8; and oy = x 8, intersect on the
surface at the same angle ¢.

Proof In the following proof, x,, x,, &/, &} and E are all evaluated at the point of
intersection of the curves. Assume that, at their point of intersection, /3’1 = (A1, 1) and
B, = (A2, u2). Then &y = Ayx, + p1x,, and &y, = A2x, + u2x,. The angle of intersection
0 of a1 and a5 is given by (Figure 3.6)
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N
}V
: S

UcR?

An isothermal parametrisation preserves angle

c0s 6 — (Aixy + p1xy).(Aoxy + poxy) Eids + pip2)
|Mxy + pmixollAaxy + w2xol  EG2 + i)V EGDE + 12?)
A1
_ 1A2 + i — cos . =

V2 + 112y 022 + 12?)
We shall see other examples of angle preserving maps in Chapter 4.

We now give a more substantial example of computing lengths and angles on a surface
using only the coefficients E, F and G of the first fundamental form. This example may be
omitted by those who are only interested in surfaces in R> (although this would be a pity
because the example is interesting and historically important!).

Example 57 (Hyperbolic plane) Let S be a surface in R” covered by the image of a single
parametrisation x : U — S, where U = {(u,v) € R2:v > 0}, and assume that the
coefficients of the first fundamental form are given by

1 1
E=—, F=0, G=-, (3.15)

(so that x is an isothermal parametrisation). Then, by Lemma 4, the angle of intersection
of any two curves on S is equal to the angle of intersection of the corresponding curves in
the upper half-plane U.

We now consider the lengths of two particular curves. For any positive real number vy,
we consider the curves on S given by

a(t) =x(0,1), t>vg,
and
B(r)y=x@r,vo), —mw<r<m.

These curves are the images under x of the lines in the upper half-plane illustrated in
Figure 3.7.

Hyperbolic plane
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Since x preserves angles, the curves a and B intersect orthogonally on S at x(0, vp),
but arc length measured along « and f is different from arc length measured along the
corresponding curves in the plane.

On the curve a, we have

W=0,v=1, E=G=1/>, F=0,

so that, for a real number v with v; > vg, the arc length of o between parameter values
vo and vy is

| = tog iy = togcwr /o)
vy

Note that, as vg — 0 or as v — oo the arc length of the restriction of & to [vg, v1] tends
to o0.

Similar calculations for 8 show that the length of this curve is given by 27 /vy, so that
as vg — oo the length tends to 0, while as vy — 0, the length of $ tends to co.

Finally, we shall consider curves on S which are images under x of arcs of concentric
semicircles in the upper half-plane which intersect the u-axis orthogonally (Figure 3.8).
Specifically, for ro > 0, let y(t) = x(rocost,rgsint). If 0 < 6y < 61 < m, then the length
of y fromt =6ytot =0 is

o q t 79 tan 971
/ ——dt = |logtan - = log 5 .
6, St 2 0 tan 70

Note that this length is independent of the radius r( of the circular arc in the (u, v)-plane.

;) by
0

The circular arcs have the same hyperbolic length

In all the above calculations, we do not need a formula for the parametrisation x. The
actual shape of the surface in R" is completely irrelevant for the calculations, what matters
is the metric. Changing our viewpoint by suppressing x, we may regard this whole example
as simply the upper half-plane {(x,v) € R? : v > 0} but with a non-standard metric
(that is to say, not coming from the standard inner product on the plane). This is called
the hyperbolic plane and is usually denoted by the letter H. The hyperbolic length of «
between parameter values vo and v; is then log(vy/vg), with similar comments for the
other curves B and y. However, as mentioned earlier, since E = G and F = 0, angles are
the same in both the hyperbolic and standard metrics.

It turns out that the circular arcs y(¢), 6y < t < 6, are curves on H of shortest hyperbolic
length between their endpoints (there is more on this in Example 10 of §7.3), so their length
gives the hyperbolic distance apart of these endpoints. As noted earlier, each of these arcs
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has the same hyperbolic length, so if the defining property of a railway track is that the
rails stay a constant distance apart, then for angles 6y and 61, the lines y = x tan 6y and
y = x tan @ are the two rails of a hyperbolic railway track!

Although not the standard metric, the hyperbolic metric on the upper half-plane may be
given a practical interpretation. For instance, if you are in a field bounded by a straight
impenetrable hedge and if the field gets more and more muddy the nearer you get to the
hedge in such a way that the effort required to make progress is inversely proportional to
the distance from the hedge, then the hyperbolic length of a path in the field will measure
the effort required to traverse that path. In particular, the path of least effort between two
points in the field will be the appropriate circular arc y as described above.

A deep result of Hilbert says that the whole of the hyperbolic plane cannot be realised as
a surface in R3. However, the part corresponding to {(u, v) € R: —m<u<mv> 1}
may be put in R? as the pseudosphere (see Figure 2.10), which, as we saw in Example 2 of
§2.3, is the surface of revolution obtained by rotating a suitable tractrix around the z-axis.

This tractrix may be parametrised by

1 (U2—1)1/2
ywy=|(-, 0, arccoschy - —— ), v>1, (3.16)
v v

where arccosh v is taken to be the positive number w with cosh w = v. A calculation using
the expressions for E, F and G of a surface of revolution found in Example 2 of §3.2 soon
shows that E, F and G for the resulting parametrisation of the pseudosphere as a surface
of revolution are given by (3.15). If we take the start point of & to be vy = 1, then & gives
the generating curve (3.16) of the pseudosphere, while, for each vy > 1, 8 gives a parallel
(Figure 3.9).

- ™

Correspondence with pseudosphere

Although Hilbert’s Theorem says that the hyperbolic plane cannot be realised as a sur-
face in R3, it follows from a theorem of Nash (known as the Nash Embedding Theorem)
that the hyperbolic plane can be realised as a surface in R” for some sufficiently large value
of n.

3.5 Families of curves

Letx : U — R” be a local parametrisation of a surface S in R”, and let ¢(u, v) be a smooth
real-valued function defined on U with grad ¢ never zero. The level curves ¢(u,v) =



64

3 Tangent planes and the first fundamental form

constant give a family of curves in U and hence, by applying x, a family of curves on
x(U) CS.
, d¢p 09 .

Example 1 (Coordinate curves) If ¢(u, v) = u, then grad ¢ = (E 5) = (1,0) is never
zero and the family of curves in U consists of the lines # = constant. The image of this
family under x is the corresponding family of coordinate curves (Figure 3.10). There are
two such families, the other family being given by taking v = constant. The coordinate
curve u = ug, where ug is a constant, has parametrisation of the form a(¢) = x (1o, v(¢)),
so the vectors tangential to this family are scalar multiples of the coordinate vector x,. The
members of the family v = constant may be parametrised in a similar way, so their tangent
vectors are scalar multiples of x,,.

//j const

_x ﬁ%s

In particular, the angle of intersection 6 of the two families of coordinate curves is given
by

Families of coordinate curves

Xy Xy = |xyu]|xy[cosO,
so that

F
cosf = ——. 3.17
= (3.17)

Example2 'We consider a surface S which admits a local parametrisation with coefficients
of the first fundamental form given by

E=1+4u*>, F=—4uv, G=1+&?%,

(see, for instance, Examples 1 and 2 of §3.3).

Let F be the family of curves on § determined by u?> — v> = constant. We shall find
the family of curves on S everywhere orthogonal to the curves in F. These are called the
orthogonal trajectories of F.

We begin by finding the tangent vectors to the family F. If a(r) = x(u(z), v(¢)) is a
member of F, then u?(t) — v2(r) = constant so that

o' () =u'x, +Vx,

with uu’ — vv’ = 0. Hence u’/v’ = v/u so that tangent vectors to the family F at x(«, v)
are the scalar multiples of vx, + ux,.
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Let B(r) be a curve on S everywhere orthogonal to the curves of . We now write the
coordinates u and v as functions of r (which will be different from the functions u(z), v(t)
used above for ) such that B(r) = x (u(r), v(r)). Then B(r) is an orthogonal trajectory of
F if and only if

dux —i—dvx (vxy, +ux,)=0
ar™"  dar’ P T ) =1

Using the expressions for E, F and G given above, this equation simplifies to give

du dv
ar’ " ar T
so, integrating up, the orthogonal trajectories of F are given by uv = constant.

This example may be given geometrical meaning if we note from Example 2 of §3.3 that
the above coefficients of the first fundamental form are those of the standard parametrisa-
tion of the hyperbolic paraboloid z = x* — y? as a graph. In this case, the family F of
curves u2 — v? = constant consists of the contour lines on the surface, and the family uv =
constant consists of the paths of steepest descent (or ascent).

0 s

A more general version of the above example is outlined in Exercise 3.22.

3.6 Ruled surfaces

A ruled surface is a surface S in R” which may be covered by a family of line segments;
that is to say, through each point of S there passes a line segment which stays on the
surface. Intuitively, a ruled surface in R” is the surface in R” swept out as a straight line
is moved around. A cylinder in R is an obvious example, and other examples appeared in
Exercises 2.6, 2.8, 2.9 and 2.10. In this section, we consider two of these examples in more
detail.

We first give a mathematical description of a ruled surface. Let I be an open interval and
let : I — R”" be a regular curve without self-intersections. Also, let § : I — R” be a
smooth map which is nowhere zero. If J is also an open interval, we definex : I xJ — R”
by

x(u,v)=aw)+vBwm), uel, vel. (3.18)
For each fixed u,
a(w)+vBw), veld,

is the line segment through e (u) in the direction §(u). As u varies, this line segment sweeps
out a subset of R” which, in many cases, is a surface (Figure 3.11).

Example 1 (Helicoid) Let b be a non-zero real number and let S be the surface in R3 with
equation

.z Z
xsin — = ycos — .

b b
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Aruled surface

Let
a(u) =(0,0,bu), P)=(cosu,sinu,0),

and let x(u, v) = a(u) + vB(u). Then
x(u,v) = (vcosu,vsinu,bu), (u,v)e R2 s

and an easy check shows that the image of x is contained in S (Figure 3.12).

==

Helicoid as a ruled surface

We now show that x is a parametrisation of S. We could do this using the Parametrisation
Recognition Theorem (Theorem 4 of §2.5), but we choose to use the original definition of
local parametrisation given near the beginning of Chapter 2. To do this we define a smooth
map F : R® — R? by

b4 z b4
F(x,y, :(—, cos — sin—),
(x,y,2) 5o X cos Fysing
and note that, for all («, v) € R?, Fx(u,v) = (u,v). Hence x is a local parametrisation of
S, and if (x, y, z) € S then

x(E xcosi—i- sini)—(x )
ba b y b —_— ’y,Z )

so that the image of x is the whole of S.

It follows from the description of S as a ruled surface that S is shaped like a “spiral”
staircase of infinite width and height. The surface S is a helicoid.

Note that, for all parametrisations of the form given in (3.18), the coordinate curves u =
constant are just the lines of the ruling. In the case of the helicoid, the coordinate curves
u = constant are the “treads” of the staircase, and the coordinate curves v = constant are
helices except for v = 0 which is the z-axis.
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In fact, we may define a rather nicer parametrisation of the helicoid by taking
%(u,v) = (bsinhvcosu,bsinhvsinu, bu), (u,v) € R?, (3.19)
which has coefficients of the first fundamental form given by
E~=G=b2c0sh2v, F=0.
Hence x is an isothermal parametrisation, and so gives an angle-preserving correspondence

between R? and the whole of the helicoid.

Incidentally, if we take b = 1 in the above example, the corresponding helicoid has the
same coefficients of the first fundamental form as the catenoid (found in Example 1 of
§3.4). This shows that, locally, the two surfaces have the same intrinsic geometry. It also
shows that the property of being a ruled surface is not intrinsic; you cannot tell by looking
solely at the first fundamental form whether or not a surface in R” is ruled.

Example 2 (Hyperboloid of one sheet) Let a, b, ¢ be non-zero real numbers, and let S be the
surface in R? with equation

38
38
S}

=1.

m|><
[\S]
@l%
38
qmlm

We let
o(u) = (acosu,bsinu,0),
and seek to find a smooth map B(u) such that a(u) + vB(u) lies on S for all (u,v) € R2
(Figure 3.13). To make the equations simpler, it makes sense in this case to write (i) =

(ar1(u), bro(u), cAz(u)) for smooth functions A1(u), Ao(u) and A3(u). Then a(u) + vB(u)
lies on S for all (u, v) € R? if and only if

(vA1 + cos u)2 + (vA 4+ sin u)2 - (v)»3)2 =1, VY(u,v)e R? .

@ITEERERT Hyperboloid of one sheet as a ruled surface
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This holds if and only if the coefficients of v and of v? in the above equation are both zero,
which gives

Arcosu + Apysinu =0 and A12+A22 —132 =0.

Since the vectors B(u) are determined only up to a scalar multiple, we may take A3 = 1, in
which case the above equations give that Ay = £ sinu and A, = Fcosu. It now follows
that if we define two smooth maps g1, B~ by

,Bi(u) = (asinu,—bcosu,+*c),

then a(u) + v,Bi(u) lies on S for all (u, v) € R2.
We now define two maps x* by putting

xi(u, v) = a(u) + vﬂi(u) = (a(cosu + vsinu), b(sinu — vcosu), *cv) ,

and show that, if we restrict u to lie in an open interval of length 2, then x* are both
local parametrisations of S whose images are the whole of S with just one line omitted
(and, of course, we can cover the omitted line by simply altering the domain of definition
of xE(u, v)).

We use the Parametrisation Recognition Theorem to do this. First note that, as shown
above, xi(u, v) lies on S for all (#,v) € R. The injectivity of both of xT is not hard to
check, as is the linear independence of xujE and xvi. Finally, it is an interesting exercise to
check that any point (x, y,z) on S lies on a line of both the family of lines determined by
x T and the family determined by x . Thus S is a doubly ruled surface.

In Exercise 3.24, you are asked to show that the hyperbolic paraboloid z = xy is also a
doubly ruled surface (that this is a ruled surface was first mentioned in Exercise 2.8).

There are some cases where x(/ x J) is not a surface (see, for example, Exercise 3.23).
However, as long as the intervals I and J are not too large, then we do obtain a surface
when we move a line segment in a direction tranverse to itself (so that &’ is never a scalar
multiple of ). In fact,

xuz(x/+vﬂ/’ xU=ﬂ7

so Theorem 1 of §2.5 may be used to show that S is a surface near to any point at which
o’ 4 vB’ isn’t a scalar multiple of B. In particular, if &’ is not a scalar multiple of 8 then S
is a surface in the vicinity of any point of the base curve a (this is the curve on § given by
taking v = 0).

3.7 Area

We use local parametrisations and integration of functions over suitable subsets of the
plane to define the concept of area for (and, more generally, integration of real-valued
functions on) surfaces. Like length and angle of intersection of curves on a surface, area
and integration are intrinsic properties.

Letx : U — R”" be a local parametrisation of a surface S in R”, and let Q be a subset of
U over which we can integrate continuous real-valued functions (so, for instance, Q could
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be a closed disc, the interior of a polygon together with the polygon that bounds it, or, more
generally, the closure of a bounded open set). We let R denote the image x(Q) of Q under
x and define the area A(R) of R by

A(R) = // VEG — F?dudv.
0

Our initial motivation for this definition is twofold. Firstly, when taking the standard
parametrisation of the plane, the above integral reduces to the standard expression for the
area of a region in the plane, and, secondly, as we show in Lemma 2 of §3.9, the above
expression for area is independent of choice of local parametrisation x.

The expression /EG — F2 du dv is often called the element of area and denoted dA.
The above equation is then written

A(R):f/ dA:f/ VEG — F2dudv . (3.20)
R 0

We may use the above procedure to define area for more general subsets of S; all we
need is that the subset may be broken up into (a finite number of) the type of pieces we
have considered above. We do not need to worry if curves are omitted (as in Example 2,
where we find the area of a torus of revolution) or if curves are covered twice, since these
will not contribute to the area.

Example 1 (Area of a graph) Consider a suitable region R of the graph of a smooth real-
valued function g(u, v) (Figure 3.14). If we parametrise this in the usual way by

x(u,v) = (u,v,8u,v)) ,

P

N ——
Q

Area of a graph
then a short calculation using the expressions for E, F and G found in Example 1 of §3.2

shows that EG — F? = 1 + g,> + g,%. Hence, if Q is the image of R under orthogonal
projection onto the xy-plane, then

A(R)=f/ V1+g?+ g?dudv,
0

in accordance with the usual formula for the area of a graph.

We now give a geometrical motivation for the definition of area. Consider a rectangle B
in Q (Figure 3.15) with opposite vertices at («, v) and (u + du, v + §v). The parallelogram
C in R" with adjacent sides x,du and x,dv is tangential to S at x(u, v) and is, in some
sense, the best approximating parallelogram to x(B). The area § A of C is given by

8A = |x,0u||x,év|sinf ,
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C

)

u

Geometrical motivation for area

where 6 is the angle between x,, and x,. However, using (3.17), we see that sin26 =
1 — (F%/EG) = (EG — F?)/EG from which it follows that

8A=+vEG— F%5ubv.

The usual procedure of taking the limit as we consider ever smaller partitions and add
the areas of each of the rectangles § A leads to the expression (3.20) for area.

Example 2 (Torus of revolution) 'We find the area of the torus of revolution 7, described in
Example 4 of §2.3. To do this we use the local parametrisation x : (0,27) x (0,27) — T, p
given by

x(u,v) = ((a + bcosv)cosu, (a + bcosv)sinu, bsinv) .
Then
E=(a+bcosv)’, F=0, G=0b,
so that the element of area is given by

dA =b(a+ bcosv)dudv .

The image of x is the whole of the torus with just two circles omitted, so

2w p271
A(Ta,b)=/ / b(a 4+ bcosv)dudv
0o Jo
=dn’ab .

More generally than just finding areas, we may integrate a real-valued function f defined
on a suitable region R of a surface S. This time we define

f/ fdA = f/ (fXWEG — F2dudv , (3.21)
R 0

where, as usual, fx denotes the composite of x and f.

Example 3 (Moment of inertia of rotating sphere) The moment of inertia of an object about a
given axis gives a measure of the difficulty of changing the angular motion of the object
about that axis. For an object of unit density, it is obtained by integrating the square of the
perpendicular distance of each point of the object from the axis. We calculate the moment
of inertia for the unit sphere about the z-axis. If we parametrise the unit sphere S%(1) as a
surface of revolution in the usual way via

x(u,v) = (cosvcosu,cosvsinuy,sinv), —-nm<u<mn, —a/2<v<mn/2,
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then we quickly compute that E = cos’v, F = 0, G = 1, so that VEG — F2 = cosv
(since —m/2 < v < m/2). The perpendicular distance of x(u, v) from the z-axis is cos v,
so the required moment of inertia is given by

/2 b4
/ cos> v dudv s
—7JT

—/2

which evaluates to give 87 /3 for the required moment of inertia.

If S is a surface in R, then we may use the vector cross product to determine the element
of area. In fact, using the vector algebra identity

(axb).(c xd)=(a.c)bd)— (ad)b.c),
we quickly see that
VEG — F2 = |xy x x|, (3.22)
so that, for a surface in R3,
dA = |x,; X xy|dudv . (3.23)

This gives a proof of the following proposition.

Proposition4  Let x(u, v) be a local parametrisation of a surface S in R3, and let Q be a
region in the domain of x over which we can integrate continuous real-valued functions. If

R = x(Q), then
A(R) = // dA = / |Xy X xy|dudv , (3.24)
R 0

// fdA = // (fx)|xy X xp|ldudv . (3.25)
R 0]

As remarked earlier, we much prefer to define geometrical notions on a surface without
using local parametrisations. However, we have not done this in our treatment of integra-
tion on surfaces, so we should show that the definition of integration as given above is
independent of the particular local parametrisation chosen. We do this in §3.9, but, since
this material is not needed in an essential way for the rest of the book, §3.9 may be omitted
if desired.

while

3.8 Change of variables '

As mentioned earlier, a good choice of local parametrisation can often lead to a simplifica-
tion of a particular problem. In this section we discuss how to obtain a new parametrisation
from a given one by a change of variables on the domain of the given local parametrisation.
As with the next section, the material in this section is not essential for understanding the
rest of the book, and so may be omitted if desired.
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D
2 AN
b

For the proof of Proposition 1

We first recall that a smooth map z : U — U between open subsets U, U of R? is called
a diffeomorphism if there is a smooth map g : U — U such that gh=1d:U — U and
hg =1d : U — U. In this case we call g the inverse map of h, and denote it by A~1. It
follows from the Inverse Function Theorem that % is a diffeomorphism onto its image if
and only if % is injective and the partial derivatives h,,, h, are linearly independent at each
point.

The setup in the following proposition is illustrated in Figure 3.16.

Proposition 1  Let x(u, v) be a local parametrisation of a surface S in R", and let X (1, D)
be a smooth map into R". If

x(u,v) =X (u(u,v),vu,v)) , (3.26)

where h(u,v) = (u(u,v),v(u,v)) is a diffeomorphism from the domain of x onto the
domain of X, then X (ii, V) is a local parametrisation of S with the same image as x.

Proof It is clear from (3.26) that the image of X is equal to that of x. We now produce a
map F for x as in condition (S2) of the definition of a local parametrisation of a surface.
So, let F be such a map for x and let F = hF. Then, noting from (3.26) that x = xh, we
have

F¥ =hF%¥=hFxh ' =hh™ ' =1d. O

If (3.26) holds, we say that X is obtained from x by the change of variables from (u, v)
to (i, v).

Example 2 (Hyperbolic paraboloid) The map x(u, v) = (u + v, u — v, u> — v?) is a parametri-
sation of the hyperbolic paraboloid S with equation z = xy. If we make the change of
variables from (u, v) to (i, V), where it = u + v, v = u — v, then the corresponding local
parametrisation X (iz, v) satisfying (3.26) is given by X (i, v) = (i, U, D).

Returning to the general case, if x(u,v) and X (i, v) are related as in (3.26), then the
chain rule shows that

Xy =Xy + X530, , Xy =Xjily + X500y, (3.27)

as may be easily checked for Example 2.
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Example 3 (Tchebycheff parametrisation) Assume that x(, v) is a local parametrisation of a
surface S with coefficients of the first fundamental form given by

E = sech®v , F=0, G= tanh® v . (3.28)

Consider the change of variables given by taking
L= 1( +v), 1= l( )
i=sutv), v=3@—v),

and let X(iz, V) be the corresponding local parametrisation satisfying (3.26).
It follows from the chain rule that

so that

Hence E=E+2F+G=1,andG=E —2F + G = 1.

A local parametrisation x (u#, v) with coefficients of the first fundamental form satisfying
E = G = liscalled a Tchebycheff parametrisation. In this case, if ug and vg are constants
then the coordinate curves u +— x(u, vg) and v — x(uq, v) are parametrised by arc length.
We also have that F' = cos 6, where 6 is the angle of intersection of the coordinate curves.
Intuitively, a Tchebycheff parametrisation may be thought of as moulding a piece of fabric
over the surface without stretching the fibres but changing the angle 0 at which the two sets
of fibres (the weft and the warp) meet.

Example 4 (Pseudosphere) We may obtain the pseudosphere by rotating the curve v +—
(sechv,0,v —tanhv), v > 0, about the z-axis as in Example 2 of §2.3. A short calculation
using, for instance, Example 2 of §3.2 shows that the coefficients of the first fundamental
form of the corresponding parametrisation of the pseudosphere as a surface of revolution
are given by (3.28). Hence, Example 3 shows that the pseudosphere may be covered using
Tchebycheff parametrisations.

3.9 Coordinate independence

We finish the chapter by showing that the definition of integration we gave in §3.7 is inde-
pendent of the particular local parametrisation chosen. As already mentioned, this material
is not needed in an essential way for the rest of the book and so may be omitted if desired.

The set-up for the following lemma is illustrated in Figure 3.17. The lemma is, in some
sense, a converse to Proposition 1 of §3.8. Its proof has similarities with that of Lemma 1
of §3.1.
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For the proof of Lemma 1

lemmal Letx : U — R", ¥ : U — R" be two local parametrisations of the same
surface S. If p € x(U) N x(U) and if p = x(ug,vg), then there is a diffeomorphism
h(u,v) = (u(u,v), v(u, v)), defined on an open neighbourhood of (ug, vo) in U such that

x(u,v) =X (u(u,v), v(u,v)) . (3.29)

Proof Let F : W — R2bea map for x as in condition (S2) for a surface, and let
F : W — R? be such a map for ¥. If we set

V ={wv)eU:x@u,v)e WNW},

then continuity of x implies that V is an open subset of R?, and injectivity of ¥ allows us
to define amap & : V — R? by setting

x(u,v) =x (h(u,v)) . (3.30)

If we apply F to both sides of (3.30), we obtain / as the composite Fx of two smooth
maps. Hence & is smooth, and its image is the open set

V={@uvel:x@i)ewWnw}.

We now show that i : V — V isa diffeomorphism. To do this we use injectivity of x to
defineh : V — V by setting

#3i,0) = x (ﬁ(ﬁ, 17)) .
Then £ is smooth, and, on V,
X =xh=xhh.

Injectivity of x now shows that ik is the identity map on V, and similar reasoning
shows that hh is the identity map on V. Hence 4 is a diffeomorphism, and the lemma is
proved. O

The diffeomorphism % in Lemma 1 is called the transition function from x to X. As in
the previous section, we have

xuziﬂﬁu +iﬁl~)u7 xvziﬁﬁv +-§f)ﬁv» (3.31)
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so,if E, F, G and E s F, G are the coefficients of the first fundamental form of S with
respect to the two local parametrisations x and X respectively, then

E = Ei,> 4+ 2Fii, v, + G1,°,
F = Eiiyiiy + F(iy 0y + tiyy) + Giudy ,
G = Eiiy> + 2F ity 0y + G2,

which we may write in matrix notation as follows

E F iy Oy Uy Uy
= .7 . . . 3.32
<FG> <“v Uv)< ><Uu Uv) 432
Lemma 2 The expression (3.20) for area and (3.21) for integration of a function are
independent of choice of local parametrisation x.

e e
Q™

Proof Taking determinants in (3.32), we find that
(i, v) |2

EG — F*=(EG — F?
d(u,v)

(3.33)

(i1, 0)
where ‘ 51 0)

is the modulus of the determinant of the Jacobian matrix ( ey )
Uy Uy

We now recall the formula for the change of variables in integration, namely, if O =
h(Q), then for a function f(u, v),

o(u,v)
f/ f(u v)dudv—/ f(u(u v), v(u, v))‘( o, ))’dudu,

from which we see, using (3.33) for the second equality, that

// VEG — deudv_f/ VEG — F? (8('2 m)‘dudv (3.34)

d(u,v)
=/ VEG — F*dudv . (3.35)
0
This shows that the definition of area we gave in §3.7 is independent of the choice of local

parametrisation. A similar method may be used to show that our definition of integration
of functions is also independent of choice of local parametrisation. O

Remark 3 If we had chosen to define the tangent plane at a point p to be the 2-plane
spanned by x, and x, at that point, then (3.31) would show that this definition was
independent of the choice of local parametrisation.

Exercises

3.1 Assume that x(u,v) = (u,v,u’> + v>) is a parametrisation of a surface S in R3. Is
there a point on S at which the tangent plane to S is perpendicular to (—1, 1, 0)?
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3.2

33

34

35

3.6

3.7

3.8

3.9

Let x(u, v) and S be as in Exercise 3.1. Show that (2, —1,3) € S and that (1, —1,1) €
T(2,—1,3)S. Find a vector (a, b, ¢) in T(2,—1 3)S which is orthogonal to (1, —1, 1).

Assuming that the equation 2x> — xy + 4y? = 1 defines a surface S in R?, find a
unit normal vector and a basis for the tangent plane at the point p = (0, 1/2,2).

Find those points on the ellipsoid

2 2 2

y Z
2 Tptas!

at which the tangent plane is orthogonal to (1, 1, 1).

=

Let S be the surface with equation x2 4 y*> — z2 = 1. Is there a point of S at which
the tangent plane is orthogonal to (1, 0, —1)? Find all points of S at which the tangent
plane is orthogonal to (1, 1, 1).

Let a, b, c, be non-zero real numbers. Show that each of the equations

X +y + 2 =ax,

x2+y2+Z2=by,

P4y 4+ =z,
defines a surface and that each pair of surfaces intersects orthogonally at all points
of intersection. (Note, incidentally, that each of these surfaces is a sphere.)

Find the equation of the tangent plane based at the point (a/2,b/2,c/~/2) of the
ellipsoid

Let S be a surface parametrised by

T b4
x(u,v) = (ucosv,usinv,logcosv +u) , -7 <v< 7 uelk.
Find the coefficients E, F' and G of the first fundamental form.
(This exercise uses the optional material in the second half of §2.4.) Let f : R* —
RR? be given by

2 2 2 2
fx1,x2,x3,x4) = (x17 +x27, %37 + x47) .

For each pair of positive real numbers r1, 7> show that (r12, r22) e R?isa regular
value of f. Let S be the surface in R* determined by the equations x12 + x5 = r;2,

X32 + X42 = r22, and let
x(u,v) = (ricosu,rysinu,rpcosv,rpsinv), 0 <u,v <?2m.

Use the Parametrisation Recognition Theorem (Theorem 4 in §2.5) to show that
x(u,v) is a local parametrisation of S, and compute the coefficients of the first
fundamental form.
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3.10 Assume that

3N

3.12

3.13

x(u,v) = (sinhvsinu,—sinhvcosu,u), —-m<wu<m, veR,

is a local parametrisation of (part of) the surface S in R® with equation x cosz +
ysinz = 0 (which is easily checked using the Parametrisation Recognition
Theorem), and let X (u, v) be the local parametrisation of a catenoid given by

X(u,v) = (coshvcosu,coshvsinu,v), —-mw<u<m, veR.
Show that
Xy =Xy, Xy=-—X4,,

and, for each 0 € R, find the coefficients of the first fundamental form of the surface
Sp parametrised by

xo(u,v) =cosf x(u,v) +sinf ¥(u,v), —-w<u<mw, veR.

In particular, show that the coefficients of the first fundamental form of Sy are inde-
pendent of 6, and show also that the tangent planes to each of the surfaces Sy at the
point determined by (u, v) are parallel.

(The surface S is an example of a helicoid or spiral staircase surface, as discussed
in Example 1 of §3.6. It turns out that both the helicoid and the catenoid are minimal
surfaces, and, as we discuss in Chapter 9, this exercise illustrates a general property
of such surfaces.)

Let x(u,v) and S be as in Exercise 3.8, and, for v € (=7, 7), let a,(t) = x(t,v).
Show that the length of e, from # = ug to t = u is independent of v.

Let x(u,v) be a local parametrisation of a surface S with coefficients of the first
fundamental form given by

E :2+sinh2u, F =sinhusinhv, G =2 +sinh?v .
(i) If a(t) = x(z,1), find the length of & between t = 0 and ¢ = 1.
(ii) If B(r) = x(r, —r), show that & and § intersect orthogonally.

Let x(u,v) be a local parametrisation of a surface S with coefficients of the first
fundamental form given by

4 4
E=1+4u2, F=§uv, G=1+§v2.

If 6 is the angle of intersection of the curves
o(t) = x(cost,sint), O0<t <2m,

and
B(r)=x(r,V3r), 0<r,
1
el

show that cos 0 = —
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3.14

3.15

3.16

3.17

3.18

3.19

Let x(u, v) be the local parametrisation of the ellipsoid

2 2 2
X y Z
2 Tptas!
given by
. . 3 T
x(u,v) = (acosvcosu,bcosvsinu,csinv), e <u< ik —nr/2 <v<m/2.

If L(u) is the length of the curve o, () = x(u, 1), —7/2 < t < /2, show that L has
stationary values at u = —m /2, 0, 7/2 and 7, and interpret this result geometrically.
It may help to use the result (often called ‘differentiating under the integral
sign’) which says that if f(u, v) is smooth then

d b J B bafd
E(/(; f(u,v) v)_/a E v

Let x : R> — R3 be the local parametrisation of the unit sphere S%(1) obtained in
Example 2 of §3.4. Verify that the coefficients of the first fundamental form of S%(1)
with respect to this local parametrisation are as given in that example.

Let x : R? — R3 be the local parametrisation of the unit sphere S2(1) obtained in
Example 2 of §3.4. By performing calculations as described in §3.3, and using the
expressions for E, F and G given in (3.14), find the length of the image under x of
the coordinate axis v = 0. (In fact, this image is a unit circle on S%(1) (with one point
omitted), so you should get 27 for your answer!)

Let f(z) be a holomorphic function of the complex variable z. If C? is identified
with R* in the usual way then the graph of f is a surface in R* which may be
parametrised by x(z) = (z, f(z)). Use the Cauchy—Riemann equations to show that
x is an isothermal parametrisation.

Let

x(u,v) = (vcosu,vsinu,u +v), u,velk,

be a parametrisation of a surface S in R3, and let F be the family of curves obtained
by intersecting S with the planes z = constant.

Show that the angle of intersection 6 of the coordinate curve v = constant with
T nTw ) 7
m ra E) satisfies cos 0 = irrz——}-9 .
Find the orthogonal trajectories of F in §, and decide whether the orthogonal
trajectory through (1, 0, 1) passes through the point (0, —m /2 ,0).

the curve in the family F at <

Let S be the surface in R3 defined by the equation x* 4+ (y — 1)> = 1, and let x(u, v)
be the local parametrisation of S given by

x(u,v) = (sinu,l —cosu,v), O<u<2m, vekR.

Let F be the family of curves on S, each member of which is obtained by intersecting
S with the paraboloid xz = Ay, where A is a constant.
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3.20

3.21

3.22

3.23

3.24

3.25

Find a function v (i, v) such that the family of curves given by ¥ (u,v) = con-
stant gives the orthogonal trajectories of F. Show that each curve in this family of
orthogonal trajectories lies on a sphere with centre the origin in R.

Let x(u, v) be a local parametrisation of a surface S. Show that, in the usual notation,
the vector ax, + Bx, bisects the angle between the coordinate curves if and only if

VG(¢E + BF) = £VE(«F + BG).
If
x(u,v) = (u, v,u2 — vz) s

find a vector tangential to S which bisects the angle between the coordinate curves
at the point (1, 1, 0).

Let

x(u,v) = (vecosu,vsinu,u)

be a local parametrisation of a helicoid. Find two families of curves on the helicoid
which, at each point, bisect the angles between the coordinate curves.

This exercise provides a generalisation of Example 2 of §3.5. Let x(u, v) be a local
parametrisation of a surface S and let F be the family of curves on S determined by
¢(u,v) = constant. Show that the tangent vectors to the members of F are scalar
multiples of ¢,x, — ¢,x,. Hence show that if x(u,v) = (u, v, $(u, v)) is the stan-
dard parametrisation of the graph S of the smooth function ¢(u, v) then the paths
x (u(r), v(r)) of steepest descent on S satisfy the equation

du¢ dv¢ —0
dr’’ dr’t T

As a particular example, find a smooth function 1 (u,v) so that the paths of
steepest descent on the graph of ¢(u, v) = u> + v3 are given by (1, v) = constant.

Let a(u) = (cosu,sinu,—1) and B(u) = (—cosu,—sinu,1). Sketch the shape
swept out by the lines through «(u) in direction B(u) as described in §3.6 on ruled
surfaces. This shape is the image of the map

x(u,v) =a)+vBum), u,velkR.

Prove that x, and x, are linearly dependent if and only if v = 1. Mark the
corresponding points on your sketch of the image of x.

Let S be the hyperbolic paraboloid with equation z = xy. If p = (p1, p2, p3) € S,
find conditions on the vector v = (v, vy, v3) so that the line in R3 through p in
direction v should lie on S. Hence show that S is a doubly ruled surface. Show that
the two rulings through a point p of S are mutually orthogonal if and only if p lies
on the intersection of S with the coordinate axes of R3.

Let / be an open interval in R and let & : I — R3 be a regular curve parametrised
by arc length. Let 8 : I — R3 be a smooth map with |8(u)| = 1 and B’(u) never
Zero.
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Consider the ruled surface S which is the image of the map x : I x R — R? given
by
x(u,v) = a(u) +vBu) .
(We recall from §3.6 that S is a surface near to any point at which x,, and x, are
linearly independent.)

(i) Show that x,, and x, are linearly dependent at (u, vo) if and only if

o' (uo) x B(uo) + voP’(uo) x Bug) = 0.

(ii) Using the hypotheses on 8, show that there exists a curve y : I — R3, with
y(u) € S for all u € I, such that

Y@ -Bwu)y=0, Vuel.

The curve p is called the striction curve of the ruled surface S. (Hint: you may
assume y(u) = o(u) + A(u)B(u) for some smooth function A(u).)
(iii) Consider the map into S given by

Y, v) =y@)+vBu),

where y is the striction curve found in (ii). Show that B’(u) is parallel to p’(u) x
B(u) for all u € I, and use this fact to show that the points where y, and y, are
linearly dependent are all located on the striction curve p.

3.26 Determine all surfaces of revolution which are also ruled surfaces.

3.27 Compute the area of the southern hemisphere of the unit sphere S2(1) by parametris-
ing $2(1) as a surface of revolution.

328 Let U = {(u,v) ceR2:0<u<1,0<v< 1} be the open unit square. Let x :
U — R”" be a local parametrisation of a surface S with coefficients of the first
fundamental form given by

1 1 1 1 1

= + , F= , = - .
u+v (1 —u)l—vo) u—+v u+v (14+u)l+v)

Find the area of the image of U under x.

3.29 Let S be the cylinder in R? with equation x>+ y? = 1, and let f be the map obtained
by restricting to S%(1) (minus the poles) horizontal projection onto S radially away
from the z-axis (Figure 3.18).

For Exercise 3.29
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3.30

3.31

Use the standard parametrisation of S 2(1) as a surface of revolution to show that
f is area preserving in the sense that f maps any region in S2(1) (minus the poles)
to a region in S of the same area. This is a theorem due to Archimedes, who liked it
so much that he had it engraved on his tombstone.

(This exercise uses the optional material in the second half of §2.4.) Let ry, rp be
positive real numbers and let S be the surface in R* determined by the equations
x1% + x22 = r1? and x32 + x4 = rp%. Then § is the flat torus described in Example
4 of §2.4. Assuming that

x(u,v) = (rycosu,rysinu,rpcosv,rpsinv), O<wu<2m, O<v<22m,

is a local parametrisation of the whole of S with two circles removed, show that the
area of the flat torus is 477 2rr).

(This exercise uses material in the optional §3.8.) The coordinate curves of a local
parametrisation x(u, v) of a surface S form a Tchebycheff net if the lengths of the
opposite sides of any quadrilateral formed by these curves are equal.

(i) Show that a necessary and sufficient condition for the coordinate curves to form
a Tchebycheff net is
0E_0G_,
av ou
To do this you may need to ‘differentiate under the integral sign’ as
described in Exercise 3.14.
(i) Suppose that the coordinate curves of a local parametrisation x(u,v) form a
Tchebycheff net and consider the change of variables from (u, v) to (i, v) given
by

u(u,v) = /‘u VE(@t,v)dt, v(u,v)= /v VGu,t)dt ,
uo Vo

where (ug,vp) is a fixed base point. If X(&,v) is the corresponding local
parametrisation satisfying x(u, v) = ¥ (u(u, v), v(u, v)), show that the two fami-
lies of coordinate curves of X (i1, V) are the same as the two families of coordinate
curves of x(u,v). Show also that if E s F s G are the coefficients of the first
fundamental form with respect to ¥ (iz, v) then

E:l, F=cos6, G=1,

where 6 is the angle between the coordinate curves.
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In this chapter we consider smooth maps defined on surfaces. There are two major reasons
for doing so. Firstly, the fundamental importance and interest of isometries (which are
smooth bijective maps between surfaces which preserve arc length of curves and area of
regions) and of conformal maps (which preserve angles at which curves intersect); and
secondly, the way in which a surface S curves in R3 may be studied using the Gauss map
N : S — §%(1) € R3, which is obtained by taking the unit normal to S.

In Chapter 5 we show how the rate of change of the Gauss map may be used to describe
the curvature of a surface in R3, and the importance of isometries will become clear when
we discuss the Theorema Egregium in Chapter 6 and undertake the study of geodesics in
Chapter 7.

Every isometry is a conformal map but the converse is false. Isometries are the analogues
for surfaces of rigid motions of the plane, while conformal maps are the analogues of
complex differentiable functions on the plane, since (away from points where the derivative
vanishes) these maps are angle-preserving.

The idea in much of what we do in this chapter (and beyond) is to use local parametrisa-
tions to transfer the (local) study of maps defined on surfaces to the more familiar situation
of smooth R"-valued maps defined on open subsets of Euclidean space. In this spirit, we
begin the chapter by using local parametrisations to define smoothness for R”-valued maps
defined on surfaces.

However, as we have prevously remarked, it is the surface S that is important; the
role of the local parametrisations is to help describe and study S. So, it is impor-
tant to check that any notions we define on S using a local parametrisation should be
independent of the choice of local parametrisation. For instance, having used a local
parametrisation to define the notion of a smooth map on a surface, we then obtain a geo-
metrical characterisation which shows that our definition is independent of choice of local
parametrisation.

We then define the derivative of a smooth map at a point, which, as will be expected,
gives a linear approximation to the map near that point. Isometries and conformal maps
are discussed next, with the role of local parametrisations again highlighted. Finally, in
two appendices, we give some more substantial examples which may be omitted if time is
short, since they are not needed in an essential way for the rest of the book.

Throughout the chapter we endeavour to find criteria, in terms of partial derivatives of
maps defined on open subsets of Euclidean space, for the various sorts of maps on surfaces
we consider.
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4.1 Smooth maps between surfaces

Our first task is to define the notion of smoothness for a map f : S — R, where S
is a surface in R”. For ease of application, we shall do this using a local parametrisation
x : U — S, and then give a characterisation of smoothness which will show that our
definition is independent of the choice of local parametrisation.

So, we say that amap f : § — R is smooth at x(u,v) € S if the composite fx is
smooth at (u,v), and we say that f is smooth if it is smooth at each point of S (Figure
4.1). The important point here is that the concept of smoothness is fine for fx (in terms of
partial derivatives as given in §2.1), since fx is an R™-valued function defined on an open
subset (namely U) of a Euclidean space (namely R?). We are then using this to define the
concept of smoothness for maps defined on a surface.

The first smooth map we consider is the Gauss map of a surface S in R?, which we now
describe. The unit normal at a point p € S C R3 is unique up to sign (Figure 4.2), and a
smooth choice of unit normal N gives the Gauss map of the surface (again, unique up to
sign). As already indicated, this is one of the most important smooth maps we consider,
since its rate of change may be used to describe how S is curving in R3.

A smooth choice of N can always be made on a coordinate neighbourhood in S. Indeed,
if x : U — §is alocal parametrisation of S, we may take

Xy X Xy

Nx=——"7/#¥—,
X, X Xyl

“.1)

and, since x,, x x, # 0, the right hand side of (4.1) is smooth on U. It now follows from
our definition that /V is smooth at each point of x(U).

UcR?

Smooth maps

N(p)

Gauss map
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Example 1(Gauss map of catenoid)  As we saw in Example 1 of §2.3, the catenoid x2 4 y% =
cosh? z may be parametrised as a surface of revolution by

x(u,v) = (coshvcosu,coshvsinu,v), —-m<u<mn, velR,
and a straightforward calculation shows that
X, X Xy = (cosh v cos u,coshvsinu, —coshvsinhv) .

Thus
Xy X Xy (cosu, sinu, — sinh v)

Nx = =
[x, X Xyl coshv

This example may be easily generalised.

Example 2 (Surface of revolution) If we parametrise a surface of revolution in the usual way,
namely

x(u,v) = (f(v)cosu, f(v)sinu,gv)) , —-w<u<mn, f)>0Vv,
then a short calculation on the lines given in Example 1 shows that
_ (g'cosu, g’ sinu, — ")
AT RE

In Exercise 4.2 you are invited to prove that the Gauss map of a surface S of revolution
maps parallels of S onto parallels of the unit sphere S%(1) and meridians to meridians.

Nx

It is often possible to define the Gauss map smoothly over the whole of a surface S in
R3. For instance, for the sphere we can pick the outward unit normal, and, more generally,
if a surface S in R3 is defined by an equation of the form f(x,y,z) = constant where
grad f is never zero on S, then N = grad f/|grad f| gives a smooth unit normal defined
on the whole of S. However, if we form a Mobius band by taking a rectangular strip of
paper, twisting it once and glueing the ends together (see Exercise 2.10 for a picture and
an explicit example), then we cannot define a unit normal smoothly over the whole band.
Such a surface is said to be non-orientable, while the sphere is an example of an orientable
surface. A particular choice N of one of the two Gauss maps defined on the whole of an
orientable surface S is called an orientation of S. We shall return to this topic (for surfaces
in R™) towards the end of §7.1.

We now consider another useful type of smooth map defined on surfaces. Before giving
the example, we note thatif x : U — S C R" is a local parametrisation of a surface S,
then the coordinate neighbourhood x(U) is itself a surface (which may be covered by just
one local parametrisation, namely x).

Example 3 (Inverse of a local parametrisation) ~ Since a local parametrisationx : U — S C R”
is a bijection onto its image x(U), there is an inverse map x ~! : x(U) — U which assigns
to each point p € x(U) the unique point g € U such that x(¢) = p. Then xx~'(p) = p for
all p € x(U) and x~'x(¢q) = ¢ for all ¢ € U (Figure 4.3). This latter condition, together
with our definition of smoothness, implies that x ~! is a smooth map from the surface x(U)
toU.
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x(U)

x L is smooth

Before we check that our definition of smoothness for maps defined on a surface § in
R”" is independent of choice of local parametrisation, it will be convenient to recall (from
§2.1) that an open subset of a surface S is defined to be the intersection of S with an open
subset of R”. For example, the upper hemisphere of the unit sphere S%(1) is an open subset
of S2(1), being the intersection of S2(1) with the open set z > 0 of R3. All coordinate
neighbourhoods are open subsets of S, and any surface is an open subset of itself. We noted
in Lemma 6 of §2.1 that a non-empty open subset of a surface is itself a surface. Finally,
an open neighbourhood of a point p in § is simply an open subset of S containing p.

We now check that our definition of smoothness for maps defined on a surface S in
R" is independent of the choice of local parametrisation by showing that, locally at least,
f S — R™is smooth if and only if f is the restriction to S of a smooth map on R”".
Rather more formally we show the following.

Proposition4 A map f : S — R™ is smooth on an open neighbourhood of a point p € S
if and only if there exists an open set W in R" which contains p, and a smooth map
g: W — R" such that f(q) = g(g) forallqg € SNW.

Proof Once again, it is important to note that we are investigating a new concept, namely
smoothness of maps defined on a surface, and we are doing this by using the familiar idea
of smoothness for maps defined on open subsets of Euclidean space.

Assume first, then, that a map g exists as in the statement of the proposition. Let x be a
local parametrisation of S whose image contains p and assume, without loss of generality,
that the image of x liesin S N W. Then fx = gx, so that fx is equal to the composite of
two smooth maps defined on open subsets of Euclidean spaces, and so is smooth. Hence,
by our definition of smoothness for maps on S, the map f is smooth on the image of x.

Conversely, assume that f is smooth on an open neighbourhood of a point p € S. Then
there is a local parametrisation x of § whose image contains p and is such that fx is
smooth. Let F : W — R? be a smooth map for x as in condition (S2) of §2.1, and let
g = fxF.Then g : W — R" is the composite of smooth maps fx and F defined on open
subsets of Euclidean spaces and hence is smooth. Also, if ¢ = x(u, v) then

g(q) = gx(u,v) = fxFx(u,v) = fx(u,v) = f(q),
so that f(g) = g(g)forallg e SNW. O
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This characterisation of a smooth map on S is often useful (and is independent of any
choice of local parametrisation).

If a smooth map f : § — R has its image on a surface S in R, then we say that
f is a smooth map from S to S. For instance, if S is a surface in R3, then the Gauss map
discussed earlier in this section is a smooth map from S to the unit sphere S2(1). As a
particular example, if the outward unit normal is chosen, the Gauss map of the unit sphere
is simply the identity map.

The next result follows quickly from the above geometrical characterisation of smooth-
ness (and the corresponding result for smooth maps between Euclidean spaces).

Lemma5 Ler f : S — Sy, g : S — S3 be smooth maps between surfaces. Then the
composite gf : S| — S3 is also smooth.

4.2 The derivative of a smooth map

We begin by recalling the motivation behind the theory of differentiation of a smooth map
f + W — R™ defined on an open set W of R" . The idea is that, near any given point
p € W, the derivative df), : R" — R™ provides a linear approximation to f near p;
the hope being that a study of the linear map df, (linear maps are usually relatively easy
to analyse) will yield information concerning the behaviour of the non-linear map f near
p (which is usually more difficult to study directly). The Inverse Function Theorem is a
classic example of this.

We wish to carry out the same procedure for a smooth map f : S — R™, where S is a
surface in R”. Again, perhaps the easiest (but maybe not the most satisfying) way of doing
this is to use a local parametrisation x(u, v) of S to define the derivative, and then prove
that the definition is independent of the local parametrisation used. So, if x(¢) = p € S
then the derivative df, : T,S — R™ of f at p is defined to be the linear map which has
the following effect on the basis vectors x,,, x, of T, S:

a(fx) a(fx)

s dfp(xv)z
u q dv q

dfp(xu) =

We often omit to mention the point at which we are differentiating; we simply write

df(x,) = (fX)u,  dflxy) =(fx), (4.2)

thus enabling us to find the derivative of a smooth map f defined on a surface by using the
partial derivatives of a smooth map, namely fx, defined on open subset of the plane.
When a parametrisation x has been chosen it is usual to omit mention of x, and write
f(u,v) rather than fx(u, v), thus regarding f as a function of u and v. In a similar spirit,
we write f;, and f, rather than (fx), and (fx),.
For instance, using this convention, we would write (4.1) as

_ Fu XXy (4.3)
[ X Xy]
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Example 1 (Gauss map of catenoid) This continues Example 1 of §4.1, where we found that

(cosu, sinu, — sinh v)

coshv
Thus

N,

>

B ((cos u,sinu,—sinhv)) _ (=sinu,cosu,0)

ou coshv coshv

while a short calculation shows that

N (—cosu sinh v, — sinu sinh v, —1)
v = .

cosh? v

As we shall see in §4.4, the Gauss map of the catenoid is very special in that it is an
angle-preserving map.

Returning to the general situation, the conventions described above lead us to write (4.2)
as

df (xy) = fu, df(xy) = fu, 4.4

which gives us the following explicit formula for the derivative of the map f applied to a
general tangent vector ax, + bx,:

df(ax, + bxy) = af, + bfy . 4.5)
Unless stated otherwise, we shall use the above conventions from now on.

We now show that, as we would hope, the tangent vector of a smooth curve & on S is
mapped by df to the tangent vector of the image curve fo (Figure 4.4).

Proposition2 Letr f : S — R™ be a smooth map defined on a surface S in R", and let a
be a smooth curve on S. Then

df @) = (fa) . (4.6)
Proof Let x(u,v) be a local parametrisation of S and let at(t) = x (u(z), v(t)). Then

df ey =dfWu'x, +v'x,).

df (o) = (foy

fe

d f maps tangent vectors to tangent vectors
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Also, fa(t) = fx (u(t),v(t)), so, using the chain rule and the notation mentioned in the
paragraph preceding Example 1,

(fa =u'f, +V' fy .

Equation (4.6) now follows immediately from (4.5). ]

In a similar spirit to earlier notational conventions, when a regular curve a(¢) has been
chosen, it is usual to write f’ (or df/dt) rather than (fea) for the rate of change of f
along «. Thus (4.6) will become

df @'y = f". 4.7)

The geometrical characterisation of derivative given in Proposition 2 shows that our
definition of derivative as the linear map defined using (4.2) is independent of choice of
local parametrisation. It may also be used to prove the following two propositions.

Proposition3  Let S be a surface in R" and let | be the restriction to S of a smooth map
g : W — R™, where W is an open subset of R". Then the derivative df, of f at a point
p € WN S is the restriction to T, S of the derivative of g at p.

The above proposition sometimes gives a quick way of finding the derivative of a smooth
map f defined on S, and may also be useful if we have no convenient local parametrisations
of S.

Proposition4 Let f : S — R™ be smooth. If the image of f is contained in a surface S in
R™, then, for each p € S, the image of df) lies in Tf(p)S‘. Hence the derivative of f at p
is a linear map df, : T,S — Tf(,,)S‘.

Proof Let p € Sand X € T,S. Then X = «’(0) for some smooth curve ee(¢) in S with
a(0) = p. It follows from (4.6) that df,(X) is tangential to the smooth curve fea in S
through f(p). The definition of tangent vectors given at the start of §3.1 now shows that
dfy(X) € Tr(p)S. O

Example 5 (Sphere and ellipsoid) Let S%(1) denote the unit sphere in R3, and, for positive real
2 2 2

numbers a, b, ¢, let S be the ellipsoid with equation ;C—2+% + i—z =1.Letf:5%1)—R3
be given by f(x,y,z) = (ax,by,cz). Then f is smooth since it is the restriction to S%(1)
of the smooth map g : R?> — R3 given by the same formula, and it is clear that f gives
a bijective correspondence between the points of S%(1) and S. Since g is a linear map, the
derivative of g at any point is simply g itself (the best linear approximation to a linear map
is the linear map), so the derivative df, of f at p € S2(1) is just the restriction to T, Sz(l)
of g. If p = (x,y,2) € S%(1) then, as noted in Example 6 of §3.1, T,S(1) is the plane
of vectors orthogonal to p, while, from Example 7 of §3.1, T'r( ,,)S‘ is the plane of vectors
orthogonal to (x/a, y/b, z/c). It is a nice exercise (see Exercise 4.8) to check directly that

df, maps T,S*(1) to T,«-(,,)S'.
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o

Poles of a surface of revolution

Example 6 (Surface of revolution) Recall from Example 3 of §2.3 that a pole of a surface of
revolution S in R3 is a point p at which S intersects its axis of rotation, which, as usual,
we assume to be the z-axis. Since the pole lies on the z-axis, it is fixed under rotations
about the z-axis, and, since these rotations are linear maps and hence are equal to their
derivatives, it follows that, if p is not a singular point of the surface, then T),S is also
(setwise) fixed by (the derivatives of) these rotations. Hence the tangent space 7, S at p is
orthogonal to the axis of rotation (Figure 4.5). Examples of surfaces of revolution whose
poles are not singular points are provided by the spheres, or, more generally, ellipsoids of
revolution with equation

I, 2 7

where a and c are positive real numbers.

We saw in Lemma 5 of §4.1 that the composite of smooth maps between surfaces is
smooth. We conclude this section by noting that the geometrical characterisation of deriva-
tive given in Proposition 2 shows that the usual chain rule holds for smooth maps, that is to
say the derivative of the composite is the composite of the derivatives. For future use, we
state this formally as a theorem.

Theorem 7 (Chainrule) Ler f : S; — S, g : S — S3 be smooth maps between surfaces.
Then the composite gf : S1 — 83 is smooth, and if p € S| then d(gf)p = dgrp)dfp.

We end with a summary of §4.1 and §4.2. We used a local parametrisation to trans-
fer the notion of a smooth map and its derivative from the familiar one for maps between
Euclidean spaces to the new one for maps defined on surfaces. We then obtained (in Propo-
sition 4 of §4.1 and Proposition 2 of this section) characterisations of these new concepts.
In particular, we showed that, locally at least, a smooth map f on a surface is the restriction
to the surface of a smooth map g defined on the containing Euclidean space. The derivative
of f is then the restriction to the tangent space of the surface of the derivative of g. The
characterisations show that our original definition of smooth map and its derivative on a
surface is independent of choice of local parametrisation, and also enabled us to deduce
several important properties of smooth maps on surfaces and the derivatives of these maps.
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4.3 Local isometries

In the next three sections we study two geometrically interesting and important types of
map between surfaces. However, for convenience, we begin with a few basic definitions.
We first recall from set theory that a bijective map f : A — B between sets A and B has
an inverse map f~' : B — A which assigns to each point ¢ € B the unique point p € A
such that f(p) = g. Then

ff ' g)=qg,VgeB, and f'f(p)=p,VpeA.

In particular, a smooth bijective map f : § — S between surfaces S and S has an
inverse map ! : S — S, and if f~!is also smooth then f is called a diffeomorphism.
The Inverse Function Theorem may be used to show that a smooth bijective map f is a
diffeomorphism if and only if the derivative df of f is a linear isomorphism at each point
of S, or, equivalently once a local parametrisation x(u, v) has been chosen, if and only if
fu and fy, are linearly independent at each point.

The chain rule shows thatif f : § — Sisa diffeomorphism and if p € S then

d(f s = @dfi". (4.8)

If there exists a diffeomorphism f : § — S, then the surfaces S and S are said to be
diffeomorphic. As far as properties concerning differentiability are concerned, the surfaces
are essentially indistinguishable.

We now consider smooth maps between surfaces which preserve the length of curves on
the surfaces. A smooth map f : S — S is a local isometry if whenever e is a smooth curve
of finite length on S then fe is a curve on S of the same length. We now find conditions on
the derivative of f which enable us to decide whether a given map f is a local isometry.

It follows from (4.6) that f is a local isometry if and only if df preserves the length of
tangent vectors, in that

|[df(X)| =|X|, forall vectors X tangential to S , 4.9)

and if we apply (the square of) (4.9) to tangent vectors X1, X, and X; + X, we obtain
the following proposition. Here, as usual, “.” denotes the inner product.

Proposition 1 A smooth map f : S — S is a local isometry if and only if. for all vectors
X1, Xy tangential to S at any point p € S,

df(X).df(X2) = X1.X> . (4.10)

Foreach p € S,df, : TpS — Tf(p)S’ is linear, so, in order to check condition (4.10),
it suffices to take a basis of T, S and check that (4.10) holds whenever X, X» are vectors
in that basis. Such a basis is provided by {x,, x,}, where x(u, v) is a local parametrisation
of S, so the following proposition is immediate from (4.4). This proposition provides a
very useful criterion in terms of partial derivatives for deciding whether or not a given map
is a local isometry.
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Proposition2 Letx : U — S be a local parametrisation of S. Amap f = S — S is a local
isometry on x(U) if and only if

fu-fu:E, fu-fv:F’ fv-fv:Ga (4-11)

where E, F and G are the coefficients of the first fundamental form of S.

Example 3 (Plane and cylinder) Let S be the xz-plane in R? and let S be the cylinder in R?
with equation x> + y?> = 1. Let f : § — S be the map defined by

f(x,0,z) = (cosx,sinx,z) .

Then f wraps the xz-plane round the cylinder an infinite number of times (Figure 4.6). In
terms of the parametrisation of S given by x(u, v) = (u, 0, v), we find that

f(u,v) = (cosu,sinu,v),

and condition (4.11) is easy to check.

p=(x0,2) fp)
(0,0,0)

S S

Wrapping a plane round a cylinder

Example 47 (Flat torus) This example concerns a surface in R*, and may be omitted if it
is wished to concentrate on the geometry of surfaces in R>. Let S be the surface in R*
discussed in Example 4 of §2.4. This is the product of two plane circles, and is defined by
the equations X124+ x% =12, x32+x4% = rp2, where r; and r are positive real numbers.
As mentioned in Example 4 of §2.4, this surface is differentiably equivalent to a torus of
revolution in R3. Let S be the xy-plane in R, and let f : § — S be given by

f(x,y,0)= <r1 cos ﬁ,rl sin ﬁ, ) COS l,rz sin 1) .
r r r r2
Using the local parametrisation of S given by x(u,v) = (u,v,0), we quickly see that
fu- fu = fu- fv = 1, while f,,. f, = 0, from which it follows that f is a local isometry
from the whole of the plane onto the flat torus. This has the effect of wrapping the plane
round the flat torus (a “doubly infinite” number of times) in such a way that lengths of
curves are preserved.

A bijective local isometry f : S — § is called an isometry; such a map provides a dif-
feomorphism between S and S such that corresponding curves have the same lengths, and,
as we shall see, corresponding regions have the same area. The inverse of an isometry
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is also an isometry and, in this situation, the surfaces S and § are said to be isomet-
ric. As far as intrinsic metric properties are concerned, isometric surfaces are essentially
indistinguishable.

Example5 Let S denote the xz-plane in R3 and let f be the map on S defined by
f(x,0,2) = (a(x), B(x),2) , z€R,

where x — (x(x), B(x)) is a regular curve in R2 parametrised by arc length (Figure 4.7).

[0

]
—_—
S !

If the curve has no self-intersections then the image of f is a surface S in R? and f:
S — S is an isometry. (Actually, as a small technicality, for S to be a surface, we need the
curve x — (a(x), B(x)) to be what is called a proper map.)

Isometric surfaces

We now seek to justify the terminology “local isometry”. In a natural sense, an isometry
f:S—- S preserves distances apart of pairs of points on the two surfaces. However, a
local isometry from S to S gives an isometry only between sufficiently small open subsets
of S and S, and, as can be seen from Example 3, only preserves the distance apart of points
locally. Similarly, if you have read Example 4 you will see that the local metric geometry
of the flat torus in that example is the same as that of the plane (which is the reason for
the name “flat” torus), but globally the metric geometry is very different. As an example
of this (see Exercise 4.12), any two points of S may be joined by a curve on S of length at

most n\/rl + r2 .

We remark that the rigidity of surfaces in R? is an interesting question with a long history
and an extensive associated literature. A surface S in R? is rigid if, whenever there is an
isometry f between S and a surface S in R3, then this isometry is the restriction to S of
a rigid motion of R3 (possibly followed by a reflection). It is clear from Example 5 that a
plane is not rigid; however, ellipsoids are rigid, which helps explain why an egg is strong
but a piece of paper is very floppy!

We finish this section by showing that isometries are area-preserving maps.

Proposition6 Let f : S — S be an isometry between surfaces S and S. Then, for a region
R of S, the area of the image f(R) is equal to the area of R.

Proof Letx : U — S be a local parametrisation of S, and let g € U. It follows from
Proposition 2, and from Theorem 3 of §2.5, that there is an open neighbourhood Uy of g in
U such that the restriction X of fx to Uy is a local parametrisation of S whose coefficients
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of the first fundamental form are the same as those of x. The proposition now follows from
the discussion of area in §3.7. O

The converse of Proposition 6 is not true; Exercise 3.29 gives an example of an area-
preserving map which is not an isometry.

4.4 Conformal maps

We begin by defining the main objects of study in this section. Let f : § — § be a smooth
map between surfaces S and S such that d f(X) is non-zero whenever X is a non-zero
tangent vector to S, and let &, § be regular curves on § intersecting at an angle 6. Then
fo, fB are regular curves on S, but their angle of intersection will usually be different
from 6. If f is such that the angle of intersection of fa, fB is the same as the angle of
intersection of & and B for all intersecting regular curves & and g on S (Figure 4.8), then
we say that f is a conformal map. Informally, conformal maps are angle-preserving. In
this section, we find conditions on the derivative of f which enable us to decide whether
f is conformal.

We have already seen many examples of conformal maps; if we identify R? with the
xy-plane in R3 in the usual way via (4, v) = (u, v,0), then Lemma 4 of §3.4 shows that an
isothermal local parametrisation is conformal. It is an isometry onto its image if and only
if E=G =1 (and F =0).

We now find conditions on the derivative of f which enable us to decide whether a given
map f is conformal. It turns out that all local isometries are conformal, but the converse
is not true. It is clear from (4.6) that a smooth map f is conformal if and only if, for all
p € S, the derivative df, : TS — Tf(p)S' is angle preserving in that if X, X, are
non-zero tangent vectors to S at p then df,(X1), df,(X>) are also non-zero and the angle
between them is equal to the angle between X1 and X».

Proposition 1 A smooth map f : S — S is a conformal map if and only if there exists a
strictly positive function A : S — R such that, for all vectors X1, X», tangential to S at
any point p € S, we have

df(X1).df(X2) = A2X1.X> . (4.12)

Proof This is an exercise in linear algebra, which we include here for those interested. We
begin by assuming that (4.12) holds at each p € S, and, for brevity, we let £ denote the

Conformal maps preserve angle of intersection
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linear map df,. We let 0 (resp. ¢) be the angle between non-zero vectors X1,X» € TS
(resp. £(X1),£(X2) € Typ)S). Then

5 0X1).0(X2) 12X 1.X»
0S = =

(X DI (X2 22| X1] [X2]
so that & = ¢ and f is conformal.

Conversely, assume that f is conformal and let {Y |, Y»} be an orthonormal basis of
T,S. Then any non-zero tangent vector X at p may be written as

= cosf ,

X = |X|(cos0Y| £sinfY>),

where 6 is the angle between X and Y ;. Conformality implies that the angle between £(X)
and £(Y 1) is also 6, and that £(Y 1) and £(Y,) are orthogonal. Hence, using linearity of ¢,

UX)-L(Y1)  cosOIX| LY DI  cosO|X| €Y )l

T O T @l 140.9]

Hence, if we put [£(Y1)| = A, we see that, for all tangent vectors X,

LX) = AlX] .
The proof of the proposition may now be completed as for Proposition 1 in §4.3 by

applying the (square of the) above equation to tangent vectors X1, X; and X1 + X,. [

The function X is called the conformal factor of the conformal map f. The following
corollary is immediate from Proposition 1 in this section and Proposition 1 in §4.3.

Corollary2 A map f: S — S is a local isometry if and only if f is a conformal map with
conformal factor equal to 1.

The next proposition follows from Proposition 1 for the same reason that Proposition 2
in §4.3 follows from Proposition 1 of that section. It provides a useful criterion in terms of
partial derivatives for determining whether a given map is conformal.

Proposition3 Ler x : U — S be a local parametrisation of S. Amap f : S — § is
conformal on x(U) if and only if there is a strictly positive function ). : U — R such that

fufu=2E, fufo=)F, fofo=2G. (4.13)
Moreover, f is alocal isometry on x(U) if and only if A = 1.
Example 4 (Gauss map of catenoid) We have seen (in Example 1 of §3.4) that the coefficients

of the first fundamental form of the catenoid with the standard parametrisation given in
Example 1 of §4.1 are

E:G:coshzv, F=0.

Easy calculations using the expressions for N, and N, obtained in Example 1 of §4.2
show that N,.N, = N,.N, = cosh™2 v, while N,.N, = 0. It now follows from
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Proposition 3 that N is a conformal map from the catenoid to the unit sphere S%(1) with
conformal factor cosh=2 v. In fact, as you are asked to prove in Exercise 4.4, N provides a
conformal diffeomorphism from the catenoid to the 2-sphere minus the two poles.

Example 5 (The plane) We identify C with the xy-plane in R? in the usual way. Recall from
the theory of complex analysis that a complex differentiable function f(z) is conformal at
those points where the complex derivative f/(z) is non-zero, and, in this case, the conformal
factor is | f/(z)|. The conformal diffeomorphisms of C consist of complex functions of the
form z — az + b, where a € C\ {0} and b € C, together with the conjugates of such
functions. The conformal factor A in this case is just |a|, so it follows that the isometries
of the plane form the Euclidean group, which is generated by rotations about the origin,
translations, and reflection in the real axis.

It is clear from the definitions that the composite of two conformal maps is conformal,
and the composite of two (local) isometries is a (local) isometry. It follows from Propo-
sition 1 that the conformal factor of the composite of two conformal maps is equal to the
product of the conformal factors of the two maps at the appropriate points.

4.5 Conformal maps and local parametrisations

Local parametrisations sometimes provide a useful way of constructing conformal diffeo-
morphisms and isometries between (open subsets of) surfaces. The process described in
the following proposition is illustrated in Figure 4.9.

Proposition1 Suppose x : U — S, X : U — S are local parametrisations of surfaces S, S
and that E,F,G and E, F,G are the corresponding coefficients of the first fundamental
forms. Then the bijective correspondence f from x(U) to x(U) given by

f(xu,v) =xw,v), @v)elU, (4.14)

is a conformal diffeomorphism if and only if there exists a strictly positive function M(u, v)
such that

E=)E, F=)F, G=..

Moreover, f is an isometry if and only if . = 1.

S f
0 —

N A E
>

Using local parametrisations to construct a conformal map
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Proof We first note that f is smooth since f = ¥x~! is the composite of two smooth
maps. Since we are dealing with two parametrisations here, we do not use our usual abuse
of notation; for instance, we do not write f,, since this could mean either (fx), or (fX),.

It follows from Proposition 3 of §4.4 that f is conformal if and only if, for some positive
function A(u, v), we have

() =2E, (fX)u(fX) =22F, (fx).(fx)y = 2*G, (4.15)

and, by Proposition 2 of §4.3, f is a local isometry if (4.15) holds with A = 1. But fx = ¥
so that (fx),.(fx), =X, X, = E, (fx),.(fx)y, = F,and (fx),.(fx), = G. Since f is
clearly a bijective map, the proof of the proposition now follows. O

We note that the local parametrisations x and X map a given curve in their common
domain U to curves in S and S which correspond under the bijective correspondence f. In
particular, f maps the coordinate curves of x to those of x.

Example 2 (Helicoid and catenoid) Let S be the helicoid in R? defined by the equation
xsinz = ycosz, and let S be the catenoid with equation x> 4 y> = cosh? z. Let
x R > Sandx : U — S’, U = (—m,m) x R, be the local parametrisations of S,
S respectively given by

x(u,v) = (sinhvcosu,sinhvsinu,u), (u,v)€ R? ,

and

X(u,v) = (coshvcosu,coshvsinu,v), (u,v)eU.
Then, as we found in Example 1 of §3.4 and Example 1 of §3.6,
E:G:coshzv, F=0; E:G:cosh2v, F=0,
and hence the map illustrated in Figure 4.10 and given by

f(sinh v cos u,sinh vsinu,u) = (coshvcosu,coshvsinu,v), (@,v)eU, (4.16)

U

Isometry from one twist of a helicoid to a catenoid

is an isometry from one complete twist of the helicoid to the catenoid (with one meridian
omitted). The coordinate curves u = constant on the helicoid give the rulings of S, and
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these map to the meridians # = constant on the catenoid. In a similar way, the helices v =
constant on S map to the parallels on S.

In Exercise 4.15, you are asked to investigate a 1-parameter family of isometries which
deforms one twist of a helicoid to give a catenoid (with one meridian omitted). The Gauss
map stays constant throughout the deformation. This behaviour is characteristic of sur-
faces of a certain type, namely minimal surfaces; these form the main topic of Chapter 9.
Animations of the deformation described here may be found on the internet.

We note that the formula given in (4.16) may be extended to the whole of R? to give a
local isometry from S onto S that wraps the helicoid round the catenoid an infinite number
of times.

We recall a remark made near the start of §3.3 to the effect that two surfaces having
local parametrisations with the same coefficients of the first fundamental form have the
same intrinsic metric geometry on the corresponding coordinate neighbourhoods. Propo-
sition 1 shows that in this situation there is an isometry between the two coordinate
neighbourhoods, and we will often say that the two surfaces are metrically equivalent on
these coordinate neighbourhoods. So, Example 2 shows that, locally, the helicoid and the
catenoid are metrically equivalent, although globally they are very different.

4.6 Appendix 1: Some substantial examples

In the following two appendices, we shall present some rather more advanced examples of
conformal maps and local isometries. These examples will not be needed in an essential
way for the rest of the book, and so may be omitted if desired. The most accessible material,
finding the conformal group and isometry group of the helicoid, may be covered by reading
Appendix 2 up to the end of Example 2. This material does not depend on Appendix 1.

Example 1 (Conformal maps of the sphere) In Example 5 of §4.4, we mentioned the relation
between complex differentiability and conformality for complex functions. In this example
we use this, together with some particularly nice isothermal local parametrisations of the
sphere $2(1) to construct smooth maps from $2(1) to itself which are conformal except
perhaps at a finite number of points (where the derivative vanishes).

Let x : R? — S$2(1) be the local parametrisation discussed in Example 2 of §3.4.
Specifically, x is a local parametrisation covering S2 \ {(0,0, 1)}, and, identifying R? with
C in the usual way,

Qu,2v,u? +v* = 1)
u? +v2 41
It is clear from the geometry of x as explained in Example 2 of §3.4 that the inverse
map x~! of x is given by stereographic projection wy from the north pole (0,0, 1) of
S2(1) onto the xy-plane. This latter map sends a point (x, y, z) of S2(1) \ {(0,0, 1)} to the
point of intersection of the line through (x, y, z) and (0, 0, 1) with the xy-plane, and a short
calculation shows that 77 (and hence x ) is given by

x(u+iv) = , u+iveC.



98

4 Smooth maps

x +iy
1-z°

x'xy. ) = v y.2) = (x,y,2) € S*(H)\ {(0,0, 1)} .
If f: C — Cis given by
fw)y=ag+---+aw", ag,...,a, €C, a, #0,
we define f : S2(1) — $2(1) (Figure 4.11) by

xfx~Yp), p#(0,0,1),
P, p=(0,0,1).

SX(1) -
7
E—

x‘ll
C

f(p)= { (4.17)

SX(1)

O
=)

Definition of f

It is clear that f is smooth on S%(1) \ {(0,0, 1)}, since its composite fx with x is a
smooth map from the plane. We now show that f is smooth at (0,0, 1) by considering a
local parametrisation of S2(1) whose image contains (0, 0, 1).

Specifically, let 75 denote stereographic projection from the south pole (0,0, —1) of
S%(1) onto the xy-plane. Then

x+1iy
I+z

ms(x,y,2) = . (63,2 € S\ {(0,0,- 1)},

and a short calculation shows that if y : C — S%(1) \ {(0,0,—1)} is the smooth map

given by

Qu,—2v,—u? —v? +1)
u? +v2+1

5

y(u +iv) =

then gy is complex conjugation on C.

It follows that y is a local parametrisation of S2(1) (whose image omits (0,0, —1)), and
y~!is given by g followed by complex conjugation. Another short calculation now shows
that y~'x : C\ {0} — C\ {0} is given by

y lx(w) = % , weC\{0}. (4.18)

This is the transition function between the two local parametrisations x and y.

Equation (4.18) indicates the reason we didn’t take y to be the inverse of stereographic
projection from the south pole; without complex conjugation, the transition function would
have been w — 1/w, which is not as nice as (4.18) since it is not complex differentiable.
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Notice that y(0) = (0,0, 1), so if we show that f y is smooth at 0 it will follow from
our definition of smoothness that f is smooth at (0, 0, 1). To do this, we first note that, for
w # 0, we have, using (4.18),

y  fyw) =y (o) w)

ao+ -+ + an()"

= (4.19)
aow" + - +ay

However, y ! fy(0) = 0, so even when w = 0, y~! fy(w) is given by (4.19). It follows
that y~! £y is smooth, indeed complex differentiable, at w = 0, so that fyisthe composite
of the smooth maps y and y~! fy and hence is smooth at 0. We may now conclude from
our definition of smoothness that f is smooth at (0, 0, 1) and hence smooth on the whole
of S2(1).

We now discuss conformality. As noted in Example 2 of §3.4, x is an isothermal local
parametrisation, and hence is conformal. Since f : C — C is complex differentiable, f is
also conformal except at the finite number of points where the complex derivative vanishes.
It follows that f is a conformal map of the sphere except at the corresponding points on
the sphere and possibly at the north pole. In fact, the complex derivative of y~! fy is zero
atw = 0 if and only if n > 2, so that f is conformal at the north pole if and only if n = 1.

As a specific example, if f(w) = w? then the corresponding map f may be described
geometrically as follows. A point p € S$2(1) with z-coordinate zg may be written as

(V1 —z02 €', z0) and, when f(w) = w?,

2
Ttz = (556, 220 ).

1+2z02 14202

Thus, points of $%(1) are moved around the sphere and towards to the poles by f .

We may extend the above ideas by considering rational functions rather than just poly-
nomials on the complex plane. So, if f(w) = g(w)/h(w), where g(w) and h(w) are
polynomials with no common factors, we may use the above ideas to define a correspond-
ing map f : S2(1) — S2(1). So, for instance, f(x(w)) = (0,0, 1) whenever h(w) = 0. In
fact, in complex analysis it is often convenient to consider complex functions as functions
defined on the extended complex plane C U {oo}. We may use the parametrisation x to
identify C U {oo} with § 2(1) (in this situation usually called the Riemann sphere) with oo
being identified with the north pole. Under this identification, f and f also become identi-
fied. The formula (4.18) for the transition function y~!x is the reason why the behaviour of
complex functions at oo is studied by replacing w with 1/w and then seeing what happens
when w = 0. For instance, if

anwn _I_ e + ao
fw)y= ——7—7—"7-"-—-,
b,w" + -+ by
with at least one of a,, b, being non-zero, and the numerator and denominator having no
common factors, then
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ap + - -+ + agw”
1 =—
fa/w) T

so that f(oco) = a,/b, (interpreted as oo if b, = 0). We shall say a little more about
the special case of Mobius transformations (for which n = 1) in Example 3 of the next
appendix.

All the above examples are orientation preserving maps of S(1) (except where the
derivative vanishes) in the following sense. If N is a choice of orientation on an orientable
surface S C R3 then a basis {X, Y} of the tangent space T,S at p € §Sissaid to be positively
oriented if X x Y is a positive scalar multiple of N(p). A smooth map f : S — Sis
orientation preserving if the derivative d f maps one (and hence every) positively oriented
basis at each point p € § to a positively oriented basis at f(p). We note that this concept
is independent of choice of orientation.

Orientation reversing conformal maps of S?(1) are obtained by considering rational
functions of the complex conjugate z.

Example 2 (Veronese surface) Let £ : S?(1) — R be the map defined by

[ y,2) = <yz,zx,xy, %(xz -, 2%@2 +y* - 212)) L Py =1
(4.20)

It follows easily that f(p) = f(gq) if and only if p = =gq, so that if we define the
real projective plane R P? to be the set of lines through the origin of R? then f defines a
bijective map from R P? to R’. The image of f is a surface S in R, and we now show that
f is a local isometry from S?(1) onto S. The surface S is called the Veronese surface, and
it has many interesting geometrical properties.

So, let a1 (1) = (x1(r), y1(¢), z1(1)), and aa(r) = (x2(2), y2(1), z2(1)) be curves on S%(1)
with a1 (0) = e2(0) = (x, y,2) € S2(1).

Then, for eachi = 1,2, we have that xiz + yiz + ziz =1, so that

xixi' +yiyi' +zizi’ =0, i=1,2. (4.21)
We now note that

df(ai) = (fay)

!/ / ! /
= ()’1 z1 +y1z21,21 X1 + z21x1,

1
xi'y1 + iy, xax)’ =y, %(xlxl/ +yiyi’ — 2le1/)> .

Using the similar expression for df (e2’), it follows that, evaluating all derivatives at ¢ = 0,

df (ei'(0) df (@;'(0)) ="z + vz )¥;'z + yz;") + @i'x + 2x) 2" x + 2x;)
+ (xi"y +xyi )y 4 xy) + exi” = yyi e = vy’

1 l 1 ’ l / l
+ g(xx,' +yyi — 2zz )xexj +yyj —2zz5)
z(xi/xj/+yi/yj/+zilzj/)(x2+y2+Z2)

1
+ 5(xx,~’ + yyi' + 2z xx;) + yy +225)
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Hence, using (4.21) and again evaluating all derivatives at t = 0,
df (ai'(0)) .df (a;'(0) = xi'x;" + yi'y;" + zi'zj" = &' (0).;(0) .

It follows that, as claimed, f is a local isometry of § 2(1) onto the Veronese surface. In a
natural sense, the Veronese surface is obtained by identifying antipodal points of S%(1), so
it follows that the Veronese surface has area 2.

Example 3 (Models of the hyperbolic plane) The hyperbolic plane H was discussed in the
optional Example 5 of §3.4. In that example, we described how to regard the hyperbolic
plane as the upper half-plane {(u,v) € R? : v > 0} which is equipped with a metric, the
hyperbolic metric, which differs from the Euclidean metric by the conformal factor 1/v.
So, at a point (1, v) € H, we take the inner product g given by

1
g (A1, 1), (A2, u2)) = E(MM + 1p2) .

In the hyperbolic metric, the length of a curve is not its Euclidean length, but the angle
of intersection of two curves is the same in both the Euclidean and hyperbolic metrics.

The coefficients of the first fundamental form of the hyperbolic metric are easy to work
out; for instance, E = g ((1,0),(1,0)) = 1/v2. We find that

1 1
E:—, F=O, G=—2
v

We now describe another way of putting a non-standard metric on a subset of the plane,
and then show that this is isometric to H. We identify C with R? in the usual way, and let
H denote the open unitdisc {w € C : |w| < 1}, equipped with metric g (again conformally
equivalent to the standard Euclidean metric) having E=G= 4/(1 — |w|2)2, F =0.We
shall show that the Mobius transformation

Z—1i
fa= z+i

is an isometry from H onto H. To see this, we first note that f maps the upper half-plane
onto the open unit disc. Then, differentiating with respect to z, we find that

We now recall that the Cauchy—Riemann equations from complex analysis give that

Ju=—ify = f/(Z),

$0, if f'(z) = a+ ib (which we identify with (a, b) € R?), where a and b are real numbers,
then

C+b 1P
(1= 1f(2)%)? (I —=1f@*)?

2 |? 1
(z+0)?

g§(fus fu) = 8(fo, fv) =4

=4

(1= 152
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_ 16

Tz il =z —i??
1

- (Im z)2

=E=G.

Also, g(fyu, fv) = 4(—ab+ab)/(1 — |f(z)|2)2 = 0 = F, so Proposition 2 of §4.3 shows
that f(z) is an isometry.

For obvious reasons, H is often referred to as the upper half-plane model of the
hyperbolic plane, while H is the disc model.

4.7 Appendix 2: Conformal and isometry groups '

As mentioned in the final paragraph of §4.4, the composite of two conformal maps is
conformal, and the composite of two (local) isometries is a (local) isometry. It is clear that
the conformal diffeomorphisms from a surface S to itself form a group under composition,
the conformal group of S, and that the isometries form a subgroup of this.

In Example 5 of §4.4, we found these groups for the plane. In this optional appendix,
we discuss the conformal group and the isometry group of a helicoid, the unit sphere, and
the hyperbolic plane.

Example 1 (Conformal group of helicoid) ~ As we saw in Example 1 of §3.6, the parametrisation
X(u,v) = (sinhvcosu,sinhvsinu,u), (u,v)e R? ,

gives an isothermal parametrisation of the whole of a helicoid S. Thus (Figure 4.12) the
map f + x fx~! gives a group isomorphism from the conformal group Cp> of R? to the
conformal group Cg of S. (This is a similar idea to that used in Example 1 of Appendix 1,
in that we have used an isothermal parametrisation to relate the conformal structure of the
helicoid to that of the plane.)

We saw in Example 5 of §4.4 that Cp> is made up of the (orientation preserving) maps

z—az+b, a,beC, a#0,

|
§ % i
>
C

Conformal diffeomorphisms of the helicoid

N
E
C



103

4.7 Appendix 2: Conformal and isometry groups "

and the (orientation reversing) maps
z—>az+b, abeC, a#0,

where ~ denotes complex conjugation. If f(z) = az + b witha = a; +iay, b = by +iby,
then

f(u+iv) =aju —axv + by +i(au +ayv+ by),
so that the corresponding orientation-preserving conformal diffeomorphism f = x fx~!

of the helicoid is given by

f(x(u, v)) = (sinh v cos i, sinh v sin iz, i1) ,
where
U=au—aw+by, vVv=aut+av+b.

Since |a| is the conformal factor A of f at each point of C, and cosh v is the conformal
factor of x at (u, v), it follows that the conformal factor A of f at x(u, v) is given by

5\,:

|a| cosh(ayu + ajv + by) . (4.22)
coshv

Example 2 (Isometry group of helicoid) We already know many isometries of the helicoid S,
namely the restriction to the helicoid of suitable screw motions of R? about the z-axis.
However, we may wonder if there are any more.

Since the previous example gives us the conformal group of the helicoid, we need only
check which of these are isometries. To do this we must find those conformal maps f of
the complex plane for which the corresponding map f has conformal factor A = 1. It thus
follows from (4.22) that f is an isometry if and only if

a=by =0, ay ==£1.
The orientation preserving isometries therefore come from the maps of the plane given by
(u,v) = (u+b,v) and  (u,v) = (—u + by, —v),

where b1 € R is arbitrary. Notice that the second of these is the map (u,v) — (—u, —v)
followed by the first. Thus, the orientation preserving isometries of the helicoid are either
of the form

(sinh v cosu, sinh v sinu, u) — (sinh v cos(u + by),sinhvsin(u + by),u + by) , (4.23)
or the composite of a map of this type with the map
(sinh v cos u, sinh v sinu, u) — (—sinh v cosu, sinh v sinu, —u) . (4.24)

We note that a map of the helicoid S of the form of (4.23) is the restriction to S of the
screw motion of R3 given by

X X 0
yl= ROy +]|0].
z z by
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where
cosf —sinfd O
R(@©) = | sin@ cosfd O
0 0 1

is rotation of R about the z-axis through an angle 6. Similarly, the map (4.24) is the
restriction to S of rotation of R? about the y-axis through an angle 7. This shows that each
orientation preserving isometry of the helicoid is the restriction of a Euclidean motion of
R3,

The case of orientation reversing isometries of the helicoid is left as an exercise.

Example 3 (Conformal and isometry groups of S>(1)) This example follows on from Exam-
ple 1 of the previous appendix, and uses the notation developed there. A Mobius
transformation is a rational function of the form

—, a,b,c,deC, ad —bc #0,

and in Exercise 4.19 you are asked to prove that the corresponding maps f are conformal
diffeomorphisms of $?(1). If we assume without loss of generality that ad — bc = 1, then
Exercise 4.19 also asks you to show that f is an orientation preserving isometry (that is to
say, a rotation) of S?(1) if and only if d = @ and ¢ = —b. Although we shall not prove it,
a standard result in complex analysis says that all orientation preserving conformal diffeo-
morphisms of S2(1) are induced by Mdbius transformations as described in this example.
The orientation reversing conformal diffeomorphisms are obtained by considering maps as
above followed by reflection in, say, the xy-plane.

Example 4 (The hyperbolicplane) Let H denote the upper half-plane model of the hyperbolic
plane discussed in Example 3 of Appendix 1. Identifying R? with C as usual, the conformal
diffeomorphisms of H are those Mdbius transformations that map the upper half plane to
itself, namely, f : H — H given by
az+b
cz+d’

Rather surprisingly, it may be shown (see Exercise 4.20) that every conformal diffeo-
morphism of the hyperbolic plane is actually an isometry.

f@) = a,b,c,d eR, ad —bc > 0.

Exercises

41 Using the parametrisation of the helicoid x sin z = y cos z given by
X(u,v) = (sinhvcosu,sinhvsinu,u), u,velR,

find the Gauss map N (u, v) of the helicoid, and show that it is not injective.

4.2 Show that the Gauss map of a surface of revolution S maps the parallels of S to the
parallels of S2(1) and the meridians of S to the meridians of S?(1) (where S%(1) is
considered as a surface of revolution with axis of rotation parallel to that of S).
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43

44

4.5

Find the image of the Gauss map of the surface with equation f(x, y,z) = 0, where:

(i) f(x,y,z) =x>+y?>—z (paraboloid of revolution);
(i) f(x,y,2) =x>+y>—z2—1 (hyperboloid of 1 sheet);
(i) f(x,y,z) =x>+y> —z>+1 (hyperboloid of 2 sheets).

In each case use the orientation determined by grad f. (Note that the image of the
Gauss map is a subset of $2(1). So, for example, the answer to (ii) is {(x, y,z) €
S*(1): 2] < 1//2})

Show that the Gauss map of the catenoid x2 + y% = cosh? z is an injective map onto
SA D\ {(0,0,£1)).

(Height functions) Let S be a surface in R”, and let v be a unit vector in R”. Let
h : S — R be given by h(p) = p.v. Show that & is a smooth function on § and that
the derivative dh, is zero if and only if v is orthogonal to S at p (Figure 4.13).

\/I”Z\ /:5

Height function

4.6

(Distance squared functions) Let S be a surface in R” and let ¢ be a point in R”. Let
f S — Rassign to each point p € § the square of the distance from p to ¢g. Show
that f is a smooth function on S and that the derivative df), is zero if and only if
either p = g or g — p is orthogonal to S at p (Figure 4.14).

S

Square of the distance function

4.7

4.8

Let S be a connected surface in R3. If all the lines in R having orthogonal intersec-
tion with S pass through some fixed point of R3, show that S is an open subset of a
sphere. (A surface § is connected if any two points of S may be joined by a smooth
curve on S. You may use the fact that if the derivative of a differentiable function f
on such a surface is everywhere zero, then f is constant.)

Complete Example 5 of §4.2 by showing directly that df, maps T), S2(1) to Tf(p)S’.
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4.9

410

41N

412

413
414

415

For each positive real number a, find a local isometry from the xy-plane in R? onto

the cylinder in R? with equation x2 + y? = a?.

Let b be a positive real number, and let S be that part of the cone z2 = b2(x% + y?)
for which z > 0. If § denotes the xy-plane in R3, and if n is a positive integer, show
that the formula f : S\ {(0,0,0)} — S given by

1
f(@rcosO,rsing,0) = —(rcosnf,rsinnd,br), r >0,
n

gives a well-defined map onto S. Show also that if b = +/n% — 1 then f is a local
isometry. How would you model the effect of the map f by using a sheet of paper?

(This exercise uses material in the optional Example 4 of §4.3.) Let S be the flat
torus discussed in Example 4 of §4.3, and let S be the cylinder in R? with equation
X242 =r2

If f:R> — R*is given by
f(x,y,2) = (x,y,r2008(z/r2), r28in(z/r2))

show that the restriction of f to S defines a surjective local isometry from S to S.

(This exercise uses material in the optional Example 4 of §4.3.) Show that any two
points of the flat torus S discussed in Example 4 of §4.3 may be joined by a curve in

S of length at most 7 +/r12 + r22.

Show that the Gauss map of the helicoid x sin z = y cos z is conformal.

(This exercise uses material in the optional Example 4 of §4.3.) Let S be the flat torus
discussed in Example 4 of §4.3, and assume that 24+ 2 =1.Let T, be the torus
of revolution in R? obtained by rotating the circle

x—aY+2=b, y=0,

about the z-axis, wherea = 1/riand b = ro/ry.

Let X = {(x1,x2,x3,x4) : x4 # 1} denote R* with the plane x4 = 1 omitted, and
let f : X — R3 be stereographic projection from (0,0, 0, 1) onto the plane x4 = 0
(so that, if p € X, then f(p) is the point of intersection with the plane x4 = 0 of the
line through p and (0, 0,0, 1)). Show (or assume that) f is given by

X1 X2 X3
fx1,x2,x3,x4) = ( ) .

l—)C4’l—X4’1—X4

Show that f defines a conformal diffeomorphism of the flat torus S onto the torus of
revolution T p.

Let x and X be the local parametrisations of (one twist of) the helicoid S and the
catenoid S given in Exercise 3.10, namely
x(u,v) = (sinhvsinu, —sinhvcosu,u), —-mw<u<m,veR,

X(u,v) = (coshvcosu,coshvsinu,v), —-mw<u<mm,velR.
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4.16

417

In Exercise 3.10 we found that x, = ¥, and x, = —X, and, for each 6 € R,
we showed that the coefficients of the first fundamental form of the surface Sy
parametrised by

xo(u,v) =cosf x(u,v) +sinf ¥(u,v), —-m<u<mw,veER,

are independent of 6. Use this to show that the correspondence fy (x(u,v)) =
xg(u,v) is an isometry from one twist of the helicoid S onto Sy. Show also that the
corresponding Gauss maps Ny are independent of 6. This provides a 1-parameter
family of isometries which deforms one twist of the helicoid to form the catenoid
(with one meridian removed) in such a way that the Gauss map remains constant
throughout the deformation. As mentioned in §4.5, this behaviour is characteristic
of surfaces of a certain type, namely minimal surfaces; these form the main topic of
Chapter 9. Animations of the deformation described in this exercise may be found
on the internet.

The following exercises use material in the optional appendices.

Let f : S2(1) — S2(1) be the map defined as in Example 1 of Appendix 1, with
f(w) = w + 1. Draw sketches of S%(1) showing the curves of intersection of S2(1)
with the coordinate planes, and their images under f. Provide justification for your
sketches.

(The hyperbolic plane for relativity theorists!) Let B be the symmetric bilinear form
defined on R? x R? by

B ((x1,x2,x3), (y1, y2, ¥3)) = X1y1 + X2y2 — X33

(this is an example of an indefinite metric on R?), and let S be the upper sheet of the
hyperboloid of two sheets given by

S = {(x1,x2,x3) € R : B ((x1,x2,%3), (x1,%2,%3)) = —1, x3 > 0},

(so that S is a “ sphere of radius /—1” in terms of the indefinite metric).

(i) Show that, if p € §, then B(X, p) =0 forall X € T,S. (It now follows from a
result in linear algebra called Sylvester’s law of inertia that the restriction of B
to the tangent spaces of S defines a positive definite inner product { , ) on each
tangent space of S.)

(i) Let (H, g) denote the disc model of the hyperbolic plane (see Example 3 of
Appendix 1) equipped with the metric g described in that example. For each
(u,v) € 1—~1, show that the line through (0, 0, —1) and (u, v, 0) intersects S at the
unique point

_(Qu,2v, 1+ u? 4 v?)

N 1 —u?—? '

Sfu,v)

(iii)) Show that f maps (H, g) isometrically onto (S, {, )). (This gives an alternative
way of showing that, as noted above, (, ) is positive definite on each tangent
space of §.)
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418 Let H = {(u,v) € R? : v > 0} be the upper half-plane model of the hyperbolic

419

4,20

plane discussed in Example 5 of §3.4 and in Example 3 of Appendix 1. Let S be the
pseudosphere obtained by rotating the tractrix

1 W — D72
a(v)=(-, 0, arccochv — — |, v>1,
v v

around the z-axis, where arccoshv is taken to be the positive number w with
coshw = v. Show that the map

1 1 w*— D2
f(u,v) = —-cosu, —sinu, arccochy - ——— |, v>1,
v v v

is a local isometry of the open subset H = {(u,v) € H: v > 1} of H onto S. This
local isometry wraps H round the pseudosphere an infinite number of times, rather
like the local isometry considered in Example 3 of §4.3 wraps the plane round the
cylinder an infinite number of times.

This exercise follows on from Example 1 of Appendix 1 and Example 3 of Appendix
2, and uses the notation developed there.

(1) Using the fact that the conformal factor of x at w is 2/(1 + |w|?), show that,
if f(w) is a complex differentiable function with non-zero derivative at w, then
the conformal factor of f at x(w) is

(14 [wH)]f'(w)|
1+ f(w)?
(i1) If f(w) is the Mobius transformation given by

aw + b

f(w)=cw+d,

show that the conformal factor of the corresponding map f at x(w) is equal to

(1 + |w|?) |ad — bc|
lcw +d|? + |law + b|2

(iii)) Assuming that f is smooth at (0,0, 1), show that f is conformal at (0, 0, 1) and
hence is a conformal diffeomorphism of § 2(1).

(iv) Assuming without loss of generality that ad —bc = 1, show that f is an isometry
of §2(1) if and onlyifd =aand c = —b.

Use the upper half-plane model of the hyperbolic plane H described in Exam-

ple 3 of Appendix 1, and the description of the conformal diffeomorphisms of the

hyperbolic plane given in Example 4 of Appendix 2, to show that every conformal

diffeomorphism of the hyperbolic plane is actually an isometry.
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In Chapters 3 and 4 we studied intrinsic properties of surfaces; those which depend on only
the inner product on each tangent space. In this chapter we study extrinsic properties of a
surface in R. These consider the measurement and consequences of the curvature of the
surface in the containing Euclidean space.

We saw in Chapter 1 that the bending of a regular curve « in R? is measured by the rate
of change of its unit normal vector n. In a similar manner, the way in which a surface S
is curving in R> at a point p € S may be measured by the rate of change at p of its unit
normal vector N. This is quite complicated, since it is given by the derivative d N , which is
a linear map from the tangent space 7, S to R3. However, we shall see that this linear map
may be used to define scalar quantities, the Gaussian curvature K and the mean curvature
H, which turn out to be of fundamental importance in describing the geometry of S.

In this chapter, we begin the study of these two measures of curvature, and relate them
to other quantities determined by the rate of change of N. This involves a discussion of
the second fundamental form I1 of S, and its role in determining the normal curvature ky,
of a regular curve o on S; this latter quantity may be thought of as a measure of the rate
at which S is curving in R? as we travel along e, or, as an alternative interpretation, the
minimum amount of bending & must do in order to stay on S.

The situation for surfaces in higher dimensional Euclidean spaces is rather more com-
plicated than for surfaces in R3, since here the normal space at a point is more than
1-dimensional so it is more difficult to measure the rate of change. However, although
beyond the scope of this book, much can be done and many of the results in this chapter
may be generalised.

In §5.2 to §5.6 we define various quantities determined by the rate of change of N,
and give several examples of how to calculate them. We then begin an investigation of the
geometric information carried by these quantities.

5.1 The Weingarten map

Let S be a surface in R? and let N : S — S2(1) be the corresponding Gauss map, which
gives a smooth choice of unit normal vector on S (and so is locally defined up to sign) as
described in §4.1, where some examples were given.

The rate of change of N at a point p € § is measured by the derivative

dN, : TpS — Ty S3(1),

and it is this map which captures the way in which S is curving at p.
In this section, we give some examples and first properties of dN .
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Example 1 (Plane) Let f(x,y,z) = ax + by + cz, where at least one of a, b, ¢ is non-zero.
Then, for each real number k, the equation f(x,y,z) = k gives a plane in R3 and, as
proved in Proposition 5 of §3.1,

. grad f . (a,b,c)

Clerad fl T Va2 ¥ b2+ 2
Thus N is constant and its rate of change is the zero map at each point p of S, reflecting
the fact that the plane doesn’t curve at all.

Example 2 (Unit sphere) The outward unit normal to S%(1) at a point p on S2(1) is equal to
the position vector of p (Figure 5.1); the corresponding Gauss map of S2(1) is simply the
identity map. Since this is the restriction to S?(1) of a linear map of R?, namely the identity
map, the derivative d N, is the inclusion map T}, S 2(1) < R3. In this book we shall always
use the orientation of S?(1) given by the outward unit normal.

We note that, for a general surface S in R3, both T,S and TN(,,)SZ(I) have the same
unit normal, namely N(p). It follows that, as illustrated in Figure 5.2, T p)Sz(l) =T,S.
Hence dN , is actually a linear map from 7, S to itself. This may also be seen by using a
local parametrisation x(u, v); since N.N = 1 we have that N,.N = 0 = N,.N, so that
N, and N, which span the image of dN, are bothin 7, S.

For each p € § the map

—dN, : T,S — T,S

is called the Weingarten map of S at p. The reason for the minus sign will become apparent
when we discuss normal curvature in §5.7.

A linear map is determined by its effect on a basis of tangent vectors, and, in terms of a
local parametrisation x(u, v), equation (4.4) shows that

—dN(xy) = —N,, —dN(xy)=—N,. (5.1)

N(p)

SX(1)

Gauss map of sphere

S

Gauss map of general surface
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Example 3 (Surface of revolution) Let S be the surface generated by rotating the curve
(f(v),0, g(v)), f(v) > 0 Vv, about the z-axis. Then S has a local parametrisation

x(u,v) = (f(v)cosu, f(v)sinu,g(v)), u € (=m,n),
and we saw in Example 2 of §4.1 that

Xy xXXxy  (g'cosu,g sinu,—f")
B X, X xy] B (f?+g2H1/?
If the generating curve is parametrised by arc length then

fP+g*=1 (5.2)

and

—dN(x,)=—N, = (g’ sinu, —g' cosu,0),
—dN(x,)=—N, =(—g" cosu,—g" sinu, ).

Differentiating (5.2), we obtain

f/f// + g/g// — O , (5.3)
from which it follows that, when the generating curve is parametrised by arc length,
g/ g// f//
_dN(xu):_7xu, —dN(xy) = _7xv = ?xv- 54

(We give two expressions for —d N(x,), so we can evaluate this at points where either f’
or g’ is zero.)

As already noted, the Gauss map of a surface in R is only defined up to sign. When, as
in the previous example, a local parametrisation has been chosen, we shall always take N
to be a positive scalar multiple of x,, x x,.

We now discuss a very important property of the Weingarten map —dN ,; it is self-
adjoint at each point p € S, or, in symbols,

dN,(X).Y = XdN,(Y), VX,Y€T,S. (5.5)

Theorem4  For each point p on a surface S in R3, the Weingarten map —dN, : TpS —
T,S is a self-adjoint linear map.

Proof It suffices to check (5.5) in the case in which {X, Y} is a basis of T}, S. So, if x(u, v)
is a local parametrisation whose image contains p, we need to show that
dN(x,).xy, =x,.dN(x,).
To do this, we note that N.x,, = 0 and N.x, = 0, so by differentiation,
Nyx, +Nx,, =0, Nyxy+Nxy, =0. (5.6)
Subtracting and using the fact that x,,, = x,,, we find that
Nyx,—N,x,=0, (5.7)

and the result follows from (5.1). ]
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It will be recalled from a first course in linear algebra that if V is an n-dimensional
vector space equipped with an inner product, and if £ is a self-adjoint linear map from V

to V, then it is always possible to find an orthonormal basis {wy, ..., w,} of V consisting
of eigenvectors of £, that is to say, there are real numbers A1, ..., A,, the corresponding
eigenvalues, such that £(w;) = A;w; for each i = 1,...,n. This is often very useful;

for instance it is the key fact which leads to the classification of conics in R? and, more
generally, quadrics in R". In our situation, for each p € § the self-adjoint map —dN
maps 7, S to itself, and so T, S admits an orthonormal basis {e1, e} of eigenvectors.

Example 5 (Surface of revolution) If we consider the standard parametrisation of a surface
of revolution when the generating curve is parametrised by arc length, then (5.4) shows
that {x,/f, x,} is an orthonormal basis of eigenvectors of —d N, and the corresponding
eigenvalues are —g’/f and —g" /f’.

It is clear that the eigenvectors and eigenvalues of the Weingarten map are going to be
important in describing how S curves in R3: we discuss these, and related quantities, later
in this chapter.

5.2 Second fundamental form

As was mentioned at the beginning of the chapter, the Weingarten map —d N, is crucial
in describing the way in which a surface S in R? is curving at a point p € S. Since the
Weingarten map is self-adjoint it may be studied by using the associated quadratic form,
the second fundamental form, which is defined for vectors X tangential to S using the inner
product by

11(X) = —X.dN(X) . (5.8)

In a similar way as for the first fundamental form, when a local parametrisation x (u, v)
has been chosen, the coefficients of the second fundamental form are given by

L=-—x,N,, M=—-x,Ny,=—-xy,N,, N=-x,.Ny, 5.9
so that

I11(ax, + bx,) = —(ax, + bx,).dN(ax, + bx,)
=a’L + 2abM + b*N . (5.10)

We obtain alternative expressions for the coefficients of the second fundamental form
by differentiating x,,.N = 0 and x,.N = 0. We find that

L=x,,N, M=x,,,N, N=xu,N. (5.11)

Example 1 (Surface of revolution) Let x(u, v) be the standard parametrisation of a surface
of revolution as considered, for example, in Example 3 of §5.1. Then, as stated in that
example,
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_ (g'cosu, g’ sinu, —f")
(/2 4™

N(u,v)

‘We also have that

Xy = (—f()cosu,—f(v)sinu,0),
Xup = (= f'()sinu, f'(v)cosu,0),
Xy = (f"()cosu, f’(v)sinu, g"(v)).

Hence
/
L=xu,.N= PP IR /8 3 )
(F2+D'

and in a similar way,
_ f//g/ _ f/g//
(f2+gHl2

5.3 Matrix of the Weingarten map

A linear map is often studied by considering its matrix with respect to some suitable basis.
A local parametrisation x(u, v) of a surface S in R3 provides us with a basis {x,,x,} of
each tangent space, and in this section we show how to use the coefficients E, F, G of
the first fundamental form and L, M, N of the second fundamental form to calculate the
matrix of the Weingarten map with respect to this basis. To aid the use of matrix notation
we shall write u1, u» in place of u, v; x1, x2 in place of x,,, x,; and N1, N3 in place of
Ny, Ny. In a similar spirit we replace E, F, G by g11, g12, g22, so that g;; = x;.x; for
i,j =1,2. We also replace L, M, N by hy1, h12, h22, so that, using (5.9) and (5.11),

h,-jzx,-j.Nz—xj.Niz—xi.Nj, i,j=1,2.

ar an
(aij) = ( )
ay ax
of the Weingarten map —d N with respect to the basis {x, x2} of the tangent space of S is
defined by setting

The matrix

—N| = —dN(x1) =anx; +axxy, (5.12)
—N3 = —dN(x3) = ajpx1 + axpxs, (5.13)

or, more compactly,

2
—Ni=—dN(x) =) apx;, k=12 (5.14)
j=1
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Example 1 (Surface of revolution) We see from (5.4) that the matrix of the Weingarten map
for the standard parametrisation of a surface of revolution when the generating curve is
parametrised by arc length is given by

<—g’/f 0 >
o —g"/f )

The above example is rather simple. If the matrix of the Weingarten map is not diagonal
then the entries are more difficult to find directly. To help with this, we obtain an expression
for the matrix (g;;) in terms of the coefficients E, F', G and L, M, N of the first and second
fundamental forms.

We first note that, using (5.14),

2
hik = —x; Ny = Zgijajk,
j=1

which gives the matrix equation

< hit hio ) _ ( g1 g2 )( ailr ap )
ha1 ho g1 &2 a1 axn )’

The first matrix on the right hand side of the above equation is non-singular since it has
determinant EG — FZ, which, by Lemma 3 of §3.2, is non-zero. Hence

—1
( ail  ap ) _ ( g1 g2 ) ( hit hio )
a1 an g1 &» hot hyn )’

If we now replace the g;; and the h;; by the coefficients of the first and second funda-
mental forms, the above equation gives the matrix (a;;) of the Weingarten map —dN in
terms of these coefficients as

-1
air  an E F L M
= , 5.15
<a21 azz) (F G) (M N) (5.15)
which leads to the following expression for the matrix of the Weingarten map.

Proposition2  Ler x(u, v) be a local parametrisation of a surface S in R3. Then the matrix
(aij) of the Weingarten map is given in terms of the coefficients of the first and second
fundamental forms of x by

(6111 a12> 1 < GL—-FM GM—FN )

= 5.16
ar ay EG — F? —FL+EM —-FM+EN ( )

Example 3 (Hyperbolic paraboloid) We consider the hyperbolic paraboloid (Figure 5.3) with
equation z = xy, and parametrise it as a graph,

x(u,v) = (u,v,uv), wu,velk.
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Hyperbolic paraboloid

Routine calculations then show that the coefficients of the first fundamental form are
given by

E=1+v2, F=uv, G=1+u>.

We may calculate the coefficients of the second fundamental form by showing that

Xy XX —v,—u,l
NG = e S U

where

D=1+u>+0?,
while

Xy =(0,0,0), x,, =(0,0,1), xyu, =(0,0,0),

so that

L=x,,,N=0,

M =x,,.N=D"1?,
N=x,,N=0.

A straightforward substitution now shows that the matrix of the Weingarten map is given
by
an an \ _ posp (0 —uv 1+ u?
ary a» 142 —uv ’

5.4 Gaussian and mean curvature

The individual entries a;; of the matrix of the Weingarten map are not, in themselves,
of geometrical significance since they depend on the choice of local parametrisation x.
However, the trace and determinant of this matrix are geometrically important quantities
because, as for any linear transformation of a finite dimensional vector space, they do not
depend on the choice of basis; they are quantities which depend on only the map itself.
The determinant has a geometrical interpretation as the scale factor by which area in the
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tangent space is multiplied under the Weingarten map; its sign indicates whether N, x N,
is a positive or a negative scalar multiple of x,, x x,.

The determinant of the Weingarten map —d N ,, at a point p € S is called the Gaussian
curvature K(p) of S at p, while the mean curvature H(p) is defined to be half the trace.
So, if (a;;) is the matrix of the Weingarten map with respect to any basis of the tangent
space, then

1
K =anaxn —apay, H= > (an +axn). (5.17)

Just to reiterate, since it is so important; K and H are functions defined on the surface
S, and are independent of choice of local parametrisation. However, as for all functions on a
surface, once a local parametrisation x (u, v) has been chosen, K and H may be considered
as functions of u and v, and we now obtain expressions for these functions in terms of the
coefficients of the fundamental forms of x.

Since the determinant of the product of two matrices is the product of the determinants,
equation (5.15) shows that the Gaussian curvature K is given in terms of the coefficients
of the fundamental forms of a local parametrisation by

K =det(—dN) = LN—_MZ , (5.18)
EG — F?
while (5.16) shows that the mean curvature H is given by
H:lHGdNyzlEN_ZFM+GL. (5.19)
2 2 EG — F?

Example 1 (Hyperbolic paraboloid) Following on from Example 3 of §5.3, the hyperbolic
paraboloid in that example has Gaussian curvature K and mean curvature H given by

K = det(—dN) LN — M 1/D?
= det(— = = — .
EG — F?
1 1EN —2FM + GL 3
H = —tr(—dN) = = = —uv/D? .
QU AN = S5 uv/

In particular, we note that the hyperbolic paraboloid has negative Gaussian curvature at all
points. The geometrical significance of this will be explored later in the chapter.

We note that, for an isothermal parametrisation, the expression for H takes a particularly
simple form.

Lemma2 Ifx is an isothermal local parametrisation of S, with E = G = A* (and F = 0),
then the mean curvature H is given by

_L+N
T2

Note that, for a general surface in R>, if N is replaced by —N then K remains
unchanged, but H changes sign. However the mean curvature vector H givenby H = HN
does not change. For example, the mean curvature vector H for the sphere S(r) is the
inward normal of length 1/r.
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Much of the rest of this book describes some of the geometry associated with the
Gaussian curvature K and the mean curvature H. For instance, we shall see that:

(1) Sisa“soap film” if H = 0, and is a “soap bubble” if H is a non-zero constant (these
surfaces are discussed in Chapter 9);

(ii) the sign of K at a point p € S determines whether a sufficiently small open neigh-
bourhood of p in S lies on one side of its tangent plane (think of a sphere, where the
answer is “yes”, and a hyperbolic paraboloid where the answer is “no”).

In fact, we shall see in the next chapter that K is much more important than you may
currently think; so important, indeed, that its study instigated and motivated a major branch
of modern mathematics, called Riemannian geometry.

5.5 Principal curvatures and directions

We saw in §5.1 that at each point p of a surface S in R3, the Weingarten map —d N p
is self-adjoint, so that the tangent space 7,S has an orthonormal basis of eigenvectors.
The eigenvalues of —d N, are called the principal curvatures ki, k2, of S at p, and the
eigenvectors of —d N, are called the principal vectors. The directions determined by the
principal vectors are the principal directions. The following lemma is a direct consequence
of the definitions.

Lemma1 A non-zero tangent vector X to a surface S in R3 is in a principal direction if
and only if

dN(X)=1X

for some real number M. In this case, —\ is the corresponding principal curvature. In
particular, if x is a local parametrisation of S, then x, is in a principal direction if and

only if
N, =ix,,

where —\ is the corresponding principal curvature (with a similar result, of course, for
Xy).

In this section we investigate the relation between the principal curvatures and the
Gaussian and mean curvatures.

Since we already have the expressions (5.18) and (5.19) for K and H in terms of the
coefficients of the fundamental forms of a local parametrisation, we begin by finding the
principal curvatures 1 and «3 in terms of K and H. If A is the matrix of the Weingarten
map with respect to some basis of the tangent space, and if I denotes the identity matrix,
then the principal curvatures are the roots of the characteristic equation det(A —« 1) = 0 of
the Weingarten map, which, using the fact that K and H are, respectively, the determinant
and half the trace of the Weingarten map, may be written as

k?—2Hk +K =0. (5.20)
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Since the Weingarten map is self-adjoint, this quadratic equation has two real roots
(allowing the possibility of one repeated root), namely the principal curvatures. The result
of the next lemma follows from the well-known formula for the roots of a quadratic
equation.

lemma2 H? — K > 0 and the principal curvatures are given by H + ~H? — K.

As is the case for K and H, the principal curvatures and directions are properties of
the surface itself. However, once a local parametrisation x(u, v) has been chosen, we may
regard them as functions of u and v.

Example 3 (Hyperbolic paraboloid) Using the expressions for K and H found in Exam-
ple 1 in §5.4, we quickly find that the principal curvatures of the hyperbolic paraboloid
parametrised by

x(u,v) = (u,v,uv), wu,velk,
are given by

CwvEV(A+ u?)(1 4+ v2)

ki, ko =H+VH?—K = D32 ,

where D = 1 + u? + 02 .

We have just seen how the principal curvatures x and k2 may be found in terms of K
and H. Conversely, since the left hand side of the characteristic equation (5.20) is equal to
(k — k1)(k — Kk2), we find the following.

Lemma4 The mean curvature H is the average of the two principal curvatures, and the
Gaussian curvature K is their product. In symbols,

1
H = E(Kl +x2), K =«kik>.

We note that Lemma 4 also follows immediately from the fact that the matrix of the
Weingarten map with respect to a basis of eigenvectors is diagonal, and the corresponding
eigenvalues k1 and k» are the entries down the diagonal.

The following result is now immediate from (5.4).

Corollary 5 Let S be a surface of revolution whose generating curve (f(v),0, g(v)),
f() > 0 Vv, is parametrised by arc length. Then the principal directions are given by
the coordinate vectors, the principal curvatures are given by

Ki=—8/f, ko==8"/f =1"/¢,

and the mean and Gaussian curvatures are given by

] g/ g// f//
H=—(S4+%), k==L,
2(f+f’> 7

In the next section, we generalise much of Corollary 5 to the case of a surface of
revolution whose generating curve is not necessarily parametrised by arc length.
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5.6 Examples: surfaces of revolution

In this section we give several examples of explicit calculations of the principal curvatures
and directions for a surface S in R? using a particular type of local parametrisation x (i, v).
As previously mentioned, we take the Gauss map N to be in the direction of x,, X x,.

As we have seen, we may use the coefficients of the first and second fundamental forms
to find K and H, and then use Lemma 2 of §5.5 (or factorise the characteristic equation)
to find the principal curvatures 1 and k. If we have a local parametrisation for which the
coordinate vectors x,, and x, are both in principal directions at each point, then «1 and x>
may be found more directly. For one of the statements of the following lemma, we have
to assume that we are not at an umbilic of S, that is to say, not at a point of S where the
characteristic equation has just one (repeated) root. We consider umbilics in §5.8.

Lemma 1 If a local parametrisation x(u,v) of a surface S in R3 has F = M = 0, then
the coordinate vectors x,, and x, are in principal directions. Conversely, at a non-umbilic
point, if x,, and x, are in principal directions then F = M = 0.

If F = M = 0 then the principal curvatures are L/E and N /G, and the matrix of the
Weingarten map with respect to x,, and x is given by

L/E 0
(5" we )

Proof A proof may be easily given using the expression (5.16) for the matrix of the Wein-
garten map in terms of the coefficients of the fundamental forms of x(u,v). However,
we prefer to present an alternative proof which reinforces several of the ideas we have
discussed.

First assume that F = M = 0. Then x,.N,, = —M = 0, so that N, is orthogonal to x,,
and hence, since F = 0, is a scalar multiple of x,,. A similar argument shows that N, is a

scalar multiple of x,. Hence x,, and x, are in principal directions, and, if x; and k» are the
principal curvatures, then

—N,=x1x,, —N,=rx,. (5.21)

Conversely, if the coordinate vectors x, and x, are in principal directions at a non-
umbilic point then, being eigenvectors corresponding to different eigenvalues of a self-
adjoint operator, they are orthogonal. Also, if k1 and k7 are the principal curvatures, then

M=—-N,x, =Kk1X,.xy,=0.
Assume now that F = M = 0. Then, using (5.21),
L=—-N,x,=xkix,.x, =K1 E,

so that k1 = L/E. The expression for x, follows in a similar manner, and the lemma is
proved. O
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Example 2 (Surface of revolution) We found in Example 2 of §3.2 and Example 1 of §5.2
that, for the standard parametrisation of a surface of revolution

x(u,v) = (f(v)cosu, f(v)sinu,gw)), wue(-n,7), f(v)>0Vv,
the coefficients of the first and second fundamental forms are given by

E=f, F=0, G=f"+¢",
/ "yl e
L=-— T8 M=o, n=Ll8ZT8
(f/ +g/ )1/2 (f/ +g/ )1/2
Hence, by Lemma 1, the coordinate vectors are in principal directions and the principal
curvatures are given by

(5.22)

_ g/ o — f//g/ _ f/g//
FU2+gH (f*2 42

It may be easily checked that if g’(v) > O then the following give alternative ways of
writing the formulae in (5.23) for «1 and «»:

(5.23)

1 7Y 1
__ D= (L . 5.24
NETTaE g (g) g (L1 (f//g)" ©.24)

If g’(v) < 0 then the formulae for «; and «; are the negative of those given in (5.24).

We now obtain an expression for the Gaussian curvature of a surface of revolution. This
generalises the formula obtained in Corollary 5 in §5.5 for the case in which the generating
curve is parametrised by arc length. The proposition may be proved by expanding formula

(5.25) in the statement of the proposition to obtain the product of x1 and «» as given in
(5.23).

Proposition3  Let S be the surface of revolution parametrised by

x(u,v) = (f(v)cosu, f(v)sinu,g()), f(v)>0Vv.

Then the Gaussian curvature K is given by

1 g? /
K=—~r 11—t - 5.25
2ff {f/2+g/2} ( )

The following proposition is easily proved using Lemma 4 of §5.5, and taking g(v) = v
in formulae (5.23) for the principal curvatures « and «».

Proposition4  Let S be the surface of revolution parametrised by

x(u,v) = (f(v)cosu, f(v)sinu,v), f(v)>0Vv.
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Then the mean curvature H and the Gaussian curvature K are given by

" 12 7
P G R
2f(L+ f15)32 f+ f72)?

We now consider some particular examples of surfaces of revolution.

Example 5 (Catenoid) We consider the catenoid obtained by rotating the catenary (cosh v,
0, v) about the z-axis. It follows quickly from Proposition 4 that this catenoid has constant
mean curvature H = 0 (as, indeed, do all the other catenoids — see Exercise 5.10). This has
great geometrical significance; it means that catenoids are minimal or soap-film surfaces.
Each catenoid is the shape taken up by a soap film suspended between two circular loops
of wire. The mathematics associated with minimal surfaces is very elegant, and involves
complex analysis in a crucial way. We discuss minimal surfaces in Chapter 9.

Example 6 (Torus of revolution) This is generated by rotating the curve given by
f(w)y=a+bcosv, gw)=bsinv, wu,ve(-m,7r), a>b=>0,
about the z-axis.
A short calculation using (5.23) shows that

cos v 1

Kl=———""7T"7"— K2 .
a+bcosv’ b

Example 7 (Pseudosphere) This is generated by rotating the tractrix, which may be
parametrised by taking
f()=sechv, g()=v—tanhv, v=>0,

about the z-axis (see Figure 2.10 for a picture of the pseudosphere).
In this case,

f' = —sechvtanhv, g’ = tanh’v,

so that
f' sechv 1
¢ tanhv  sinhv’
Hence, using (5.24),
cosh
K] = v = —sinhv,

(1 + sinh2v)1/2

while

1Y 1 1
Ko =—|= 5 = o
sinhv / tanh“v coth’v sinh v
In contrast to the unit sphere, which has constant Gaussian curvature K = 1, we see that

the pseudosphere has constant Gaussian curvature K = —1. This provides the motivation
for the name of this surface.



122

5 Measuring how surfaces curve

You may recall that we discussed the pseudosphere in (the optional) Example 5 of §3.4,
where we considered the hyperbolic plane. We described an isometry from part of the
hyperbolic plane to the pseudosphere, and we shall indicate the significance of this in the
next chapter, where we concentrate on the geometric information carried by the Gaussian
curvature.

5.7 Normal curvature

We now begin our investigation of the geometrical information which is contained in the
quantities we have defined.

In this section we define the normal curvature k, of a regular curve o on a surface S in
RR3, and show how it may be measured using the second fundamental form of S. As usual,
we let d/ds denote differentiation with respect to an arc-length parameter s along o.

We first consider the orthonormal moving frame {¢, N x ¢, N} along o, where t = dot/ds
is the unit tangent vector to «, and, as usual, N is the unit normal to S. This moving
frame, shown in Figure 5.4, reflects both the geometry of the curve and the geometry of the
surface on which it lies, whereas the orthonormal moving frame {¢, n, b} along « described
in Chapter 1 depends on only the geometry of the curve itself.

Since dt/ds is orthogonal to ¢, we have the decomposition

dt
T kgN x t +Kk,N (5.26)
s

of dt /ds into components, the first of which is tangential to S and the second is orthogonal
to S. Then k, is called the geodesic curvature of a, while «;, is the normal curvature of a.
We note that both «; and k,, change sign when N is replaced by —N.

In this chapter we shall consider normal curvature «,, and we begin by showing that &,
gives a measure of how the surface S curves in R3 as we travel along a.

Proposition1 Ler a be a regular curve on a surface S in R3 and let t = da/ds be the unit
tangent vector to a. Then the normal curvature k,, of o is given by

in = 11(t) . (5.27)
Proof Since t.N = 0, we have
dt dN
= — N=—t.—. 5.28
n ds ds ( )

An orthonormal frame
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However, from (4.7), dN/ds = dN(t), so the result follows from the definition of the
second fundamental form. O

Proposition 1 is perhaps rather surprising; dt/ds is the rate of change of the unit tangent
vector of & as we travel along « at unit speed, but (5.27) shows that the normal component
of this rate of change at a point p € S depends only on the tangent vector to a at the point
p itself. This gives a theorem due to Meusnier.

Theorem 2 (Meusnier) ~ All regular curves on a surface S in R through a point p on S
having the same tangent line at p have the same normal curvature at p.

We now see one reason why the Weingarten map is traditionally defined to be minus the
derivative of the Gauss map. Without this sign, the right hand side of (5.27) would have a
minus sign in it.

We recall that if « is the curvature of & as a regular curve in R3, then « = |dt/ds|, so it
follows from (5.26) that

2 2 2

K* =Kyt Ky . (5.29)
This leads to another interpretation of the normal curvature; it gives a measure of the mini-
mum amount of bending a curve a on a surface S must do in order to stay on S. We shall
see in Chapter 7 that geodesic curvature k, may be interpreted as a measure of the extra
bending that « does within S.

Finding the normal curvature of a curve a not necessarily parametrised by arc length is
straightforward since, in this case,
1

Ky = |a/|2a”.N , (5.30)

or, in terms of the second fundamental form,

in = 11(a/]0])
_ 11(a))

P (5.31)

If we have a local parametrisation x(u, v) of our surface S, we may use the coefficients
of the first and second fundamental forms to find the normal curvature «;, of a curve a(t) =
x (u(t),v(t)). In fact, using (5.10),

11@) = u’L +2u'v'M + >N, (5.32)

so that
WL+ 2u'v'M +v°N
 W?E +2u'v'F +v%G

(5.33)

Hence, in some sense, k,, gives the ratio of the second and first fundamental forms.
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Example 3 (Hyperbolic paraboloid) Continuing with Example 3 of §5.3; for each fixed 9, we
shall find the normal curvature at t = 0 of the curve a(¢#) = x(¢ cos8,t sinf). This curve
is the image under x of the line through the origin in the uv-plane making an angle 6 with
the u-axis (Figure 5.5).

Curves through (0, 0, 0) on a hyperbolic paraboloid

We first note that, at «(0),
E=G=1, F=0; L=N=0, M=1,
so the normal curvature of () at r = 0 is given by

_ cos20 L +2cosfsind M +sin20 N
0820 E +2cosfsinf F +sin’0 G
=2cosfsinf = sin26 .

If we have a surface S defined by an equation, then we do not necessarily have a conve-
nient local parametrisation. However, it follows from (5.30) that if grad f is never zero on
the surface with equation f(x,y,z) = c, then the normal curvature «, of a regular curve
a(t) on S is given by

4

o grad f
Kp = . .
lo/|2 " |grad f|

(5.34)

Returning to the general situation, if p € S and X € TS is a non-zero vector, then,
as we saw in Meusnier’s Theorem, all curves on S through p in direction X have the
same normal curvature, namely /7(X /| X]). For this reason, we say that /(X /| X])) is the
normal curvature k,(X) of S at p in direction X.

The following proposition illustrates the geometrical significance of the principal
curvatures and principal directions (which we defined in §5.5).

Proposition 4  The principal curvatures of S at a point p € S give the extremal values of
the normal curvatures of S at p; these values being taken in the principal directions.

Proof This is an exercise in linear algebra, which we include for completeness. Since
—dN p, is self-adjoint, we may choose an orthonormal basis {ej, e2} of 7, S consisting of
eigenvectors of —dN ,. We let k1, k2 be the corresponding eigenvalues. Then, for any unit
vector e(0) = cos 6 e + sin6 ey, we have
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—dN,(e) =k1cos0 e; +kysinb er . (5.35)
Hence

I1(e) = (k1 cosB e + kpsinf ep).(cosb e; + sinb ey)
=K cos? 6 + K2 sin? 6
= (k] — k2) 0% 0 + K> . (5.36)

If k1 # k3, then the extremal values of II(e) are k; and k7, and they occur when
cos? @ = 1 and 0 respectively, which correspond to e = +e; and e = +e» respectively. If
k1 = k7 then (5.35) shows that every non-zero vector is an eigenvector of the Weingarten
map, and (5.36) shows that the normal curvatures are the same in all directions. A point at
which «1 = «» is called an umbilic, and these will be discussed in the next section. O

Example 5 (Hyperbolic paraboloid) Referring back to Example 3, T(0,0,0)S is the xy-plane,
and the normal curvature of S at (0,0, 0) in direction (cos 6, sin, 0) is sin 26. This attains
its extremal values, namely +1, when 6 = +m /4.

This is in accord with Proposition 4, since, from Example 3 of §5.3, the matrix of the

1
(1) 0 ) , which has unit eigenvectors (1/ V2,41 / V2) with

Weingarten map at (0, 0) is (
corresponding eigenvalues £1.

In this example, the directions for the extremal values of the normal curvature are also
clear geometrically from Figure 5.5; travelling from the saddle point at the origin, the
direction of maximal upward curvature is along the ridge while the direction of minimal
upward curvature (that is to say, maximal downward curvature) is down the valley floor.
We note these two directions are mutually orthogonal, as must be the case since they are

eigenvectors corresponding to different eigenvalues of a self-adjoint linear map.

Returning to the general situation, formula (5.36) for the normal curvature in the direc-
tion of a unit vector e enables us to give further justification to the term mean curvature.
We have already seen that H is the average of the eigenvalues of the Weingarten map, and
we now show it is the average normal curvature over all directions on the surface at the
point in question.

Proposition6 Let p € S and for 0 < 6 < 2m, let e(9) be the unit vector in T, S making an
angle 0 with some fixed direction in T, S. Then

1 2
H= —/ 11 (e(0))do .
2 0
Proof Choose the fixed direction to be a principal direction. Then from (5.36),

2 2
/ 11 (e(9)do = (k] — Kz)/ cos® 0 d + 2mic)
0 0

=7k — kp) + 27K
=m(k1 +kp) =27 H. O
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Umbilics on a rugby ball

5.8 Umbilics

An umbilic on a surface S in R? is a point at which the characteristic equation (5.20) of
the Weingarten map has just one (repeated) root, or, alternatively, where H 2 =K. Atan
umbilic we have that —dN, = « Id, where k = k1 = ko and Id : T,S — TS is the
identity map (which follows, for instance from (5.35)). Hence every direction is a principal
direction and all normal curvatures are equal. This explains the name; umbilic comes from
the Latin umbilicus (which means navel), since the surface curves equally in all directions
at such points. For instance, every point of a sphere is an umbilic, whereas on an American
football or a rugby ball there are just two umbilics, namely the points where the axis of
rotation cuts the ball (Figure 5.6).

The question of the existence of umbilics on surfaces is a very interesting one. It is also
very important since, for instance, at such points the principal directions do not provide
two distinguished directions on the surface. It follows quickly from Example 6 in §5.6 that
the standard torus of revolution has no umbilics, whereas a consequence of the Hairy Ball
Theorem is that any surface in R3 that is diffeomorphic to a 2-sphere must have at least one
umbilic. So, what can we say if every point on a surface in R is an umbilic?

For the next theorem, we need to assume that our surface S is connected, that is to say
any two points on S can be joined by a smooth curve on S. It may be shown that any
surface in R” is a disjoint union of connected surfaces, so the condition is not particularly
restrictive, but it is clearly necessary for Theorem 1.

Here is how we use the connectedness assumption in the proof of Theorem 1. Firstly,
it follows easily from the chain rule (and the Mean Value Theorem) that a smooth func-
tion with everywhere zero derivative on a connected surface is constant. Secondly, some
elementary topology shows that if S is connected then S is not the disjoint union of two
non-empty open subsets.

Theorem 1 If every point of a connected surface S in R3 is an umbilic then S is an open
subset of a plane or a sphere.

Proof It is clear that the image of a connected set under a smooth map is connected, so,
in particular, every point of any surface is contained in a connected coordinate neighbour-
hood. So, let x(u, v) be a local parametrisation of S whose image V is connected, and let
N = x, X xy/|xy x xy|. The hypothesis that every point of S is an umbilic implies that
there is a smooth real-valued function A(u, v) such that

dN =A1d, (5.37)
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where 1d is the identity map of the appropriate tangent space. We show that A is constant
by showing that the derivative of X is everywhere zero. In fact, (5.37) is equivalent to

N,=dNx,) =Ax,, N,=dN(x,)=Ax,, (5.38)
and, by differentiating, we find that
Nuy = 2oXu +Axup . Now = AuXy + AXyy
Subtracting these equations, we obtain
AoXy = AuyXy ,

so, since x, and x, are linearly independent, we see that 1, = A, = 0. Hence XA has
everywhere zero derivative and so is constant.

Suppose first that A = 0. Then dN = 0 at all points in the image V of x. Hence N is
constant and V is contained in a plane (see Exercise 5.14).

Now consider the case in which A is not zero, and consider the map from V to R? given
by p — p — A~ !N. The derivative of this is given by Id — A~ A Id, and, since this is zero,
p — A~ N is constant, equal to @, say. Then V is an open subset of the sphere centre a
radius 1/A.

The above shows that every point of S has an open neighbourhood which is a subset of
either a plane or a sphere. We now use the connectivity of S to show that all points of S
lie on the same plane or sphere. So, let P denote either a plane or a sphere in R>, and let
Sp be the subset of S consisting of those points having an open neighbourhood which is a
subset of P. It is clear that Sp is open, and that if Q is a plane or sphere different from P
then Sp and S are disjoint. Since S is assumed connected, it follows that Sp is non-empty
for exactly one plane or sphere, and the result follows. 0

The above proof is just what a proof in differential geometry should be! We wrote
the assumption in the form of an equation, then we differentiated the equation, then we
deduced a local conclusion, and then we globalised it.

Remark 2 In Example 4 of §4.4, we proved that the Gauss map of the catenoid is con-
formal. In fact, using an orthonormal basis of principal vectors, it follows quickly from
condition (4.12) (which need only be checked when X, X, are members of that basis)
that the Gauss map of a surface S in R is conformal if and only if the principal curvatures
satisfy k1 = £xo # 0. If k1 = —«k» then (as is the case for the catenoid) the mean curvature
H = 0, while if k1 = x7 then every point of S is an umbilic, so that if S is connected then
S is an open subset of a sphere.

5.9 Special families of curves

A regular curve a(f) on a surface S in R3 is a line of curvature if its tangent vector o/ (r)
is always in a principal direction. It follows from Proposition 4 of §5.7 that, at each point,
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a line of curvature has maximal (or minimal) normal curvature of all curves on § through
that point.

There are two families of lines of curvature; they form an orthogonal net at all non-
umbilic points of S. For instance, the discussion in Example 2 of §5.6 shows that the the
parallels and meridians on a surface of revolution are also the lines of curvature.

The following theorem follows directly from our definitions and from (4.7), which says
that d N(et’) is the rate of change N’ of N along o.

Theorem 1 (Rodrigues) A regular curve a(t) on a surface S in R is a line of curvature if
and only if

N'(t) = Mt)a'(t) (5.39)

for some real-valued function A(t). In this case, —\(t) is the principal curvature of S in the

principal direction o' (t).

We now show how the lines of curvature on a surface S may be investigated using a local
parametrisation x(u, v) of S. The condition (5.39) that a regular curve a(¢) = x (u(t), v(¢))
be a line of curvature becomes

dANW'x, +V'x,) = Mu'x, +v'xy), (5.40)

and, using the formula (5.16) for the matrix of the Weingarten map —dN in terms of the
coefficients of the first and second fundamental forms, we may write condition (5.40) as

_ 1 GL—-FM GM—-FN u _ u
EG—-F?\ —FL+EM —-FM+EN ') v )
or, equivalently,
(GL—FM)u' +(GM — FN)' u

(—FL+ EM' +(—FM + ENY' v~

Cross-multiplying and simplifying, we obtain

(EM — FLYW> + (EN — GL)'v' + (FN — GMW* =0,

from which we obtain the following lemma.

Lemma2 The regular curve a(t) = x (u(t), v(t)) is a line of curvature on S if and only if

v/2 —u'v u/2
E F G |=0. (5.41)
L M N

Example 3 (Hyperbolic paraboloid) 'We shall again consider the hyperbolic paraboloid S with
equation z = xy, parametrised by x(u, v) = (u, v, uv).
As we saw in Example 3 of §5.3,
E=14v’, F=uv, G=1+u>,
L=0, M=(I+u>+vH)"1?, N=0,
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so x (u(t), v(t)) is a line of curvature if and only if

u/z v/2

—_—— ——=0.
1+ u? 1+ 02

Taking square roots and integrating, we obtain

/ I du _i/ 1 dv,
(I +ud)2dt A+v)2dr 7

or, using the substitution rule for integration,

/ du 4 / dv (5.42)
(I +ud)l/2 (1+v2)l/2° ‘

We saw in §3.5 how to describe, in the form ¢(u, v) = constant, families of curves on a
surface, and it follows from (5.42) that the two families of lines of curvature on S are given
by

arcsinh u = arcsinhv = const.

So, for instance, if we wish to find the two lines of curvature through (0, 0, 0), we should
take u = v = 0, so that the lines of curvature are given by

arcsinh u & arcsinhv = 0,

which immediately simplifies to give u = =v. Thus the lines of curvature through (0, 0, 0)
are a(t) = x(t,1) = (¢,1,¢%) and B(t) = x(t,—t) = (¢t,—t,—t%). One of these curves
travels up the ridge of the hyperbolic paraboloid, and the other travels down the valley.

We now consider other geometrically significant families of curves. A regular curve o (z)
on a surface § in R is called an asymptotic curve on § if its normal curvature is identically
zero. The following proposition is immediate from (5.31).

Proposition 4 A regular curve a(t) on a surface S in R3 is an asymptotic curve if and
only if
11 (o(1)) =0V1 .

Asymptotic curves may be found using a local parametrisation in a similar way to the
lines of curvature. The following lemma is immediate from (5.32).

Lemma5 The regular curve a(t) = x (u(t), v(t)) is an asymptotic curve on S if and only if

uW?L 4+ 20'vM +0*N =0. (5.43)

Example 6 (Catenoid) We consider the catenoid parametrised as a surface of revolution by
x(u,v) = (coshvcosu,coshvsinu,v) .

It is easy to check that L = —1, M = 0 and N = 1, so it follows from (5.43) that the
asymptotic curves are given by a(t) = x (u(t), v(t)) where

—M/2+U/2:O.
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Therefore
W =)W +u') =0,
so that
u+v =0.
Integrating, we see that the asymptotic curves are given by
u &+ v = constant,

and so may be parametrised by taking a(t) = x(t,c £ 1).

For instance, we might wonder if one or both of the asymptotic curves through (1,0, 0)
intersect the xz-plane again, and, if so, at what height above the equatorial circle. To decide
this, we note that the asymptotic curves through (1, 0, 0) satisfy u + v = 0, and so may be
parametrised by

t — (coshtcost,dcoshtsint,t).

After t = 0, these curves next intersect the xz-plane when t = s, which is at height
above the equatorial circle.

As we saw in Rodrigues’ Theorem, a regular curve a(¢) on a surface S is a line of
curvature if and only if N’ is a scalar multiple of &’. In contrast, we may use (5.28) to
obtain the following characterisation of asymptotic curves.

Proposition 7 A regular curve a(t) is an asymprotic curve on S if and only if, for all t,
N'(t) is orthogonal o' (¢).

Remark 8 1In Exercise 5.23 you are invited to obtain a characterisation of asymptotic
curves in terms of the geometry of the curves as space curves in R>.

Returning to the general situation, we note that there are no asymptotic curves through
a point where K > 0. This follows from Proposition 4 of §5.7, but may also be seen using
the fact that, at such points, LN — M? > 0o that (5.43) has only u’ = v’ = 0 as a solution.
For similar reasons, there are exactly two asymptotic curves through a point where K < 0,
and, in this case (see Exercise 5.22), the lines of curvature through the point bisect the
angles between the asymptotic curves.

In summary, in this section we have investigated curves on a surface S in R whose
tangent vectors are in geometrically significant directions at each point, namely those direc-
tions which maximise and minimise normal curvature, and those directions in which the
normal curvature is zero (these last directions are called asymptotic directions; they exist
at those points where the Gaussian curvature is non-positive).

In §5.11 we illustrate the significance of the asymptotic directions in terms of the
intersection of a surface with its tangent plane.
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5.10 Elliptic, hyperbolic, parabolic and planar points

We now begin our investigation of the geometry associated with the Gaussian curvature
K of a surface S in R3. Of course, since K is determined by the rate of change of the
unit normal, its value at a point will only reflect the behaviour of a surface S in R? in a
sufficiently small open neighbourhood of that point (and a similar comment holds for the
mean curvature H).

A point p € S is said to be an elliptic point it K(p) > 0, a hyperbolic point if K(p) < 0,
a parabolic point if K(p) = 0but dN,, # 0, and a planar point if dN, = 0. Since K
is the product of the principal curvatures, at an elliptic point the principal curvatures ki,
k> have the same sign, while at a hyperbolic point the principal curvatures have opposite
signs. Exactly one principal curvature is zero at a parabolic point, while both are zero at a
planar point.

Example 1 (Hyperbolic paraboloid) We saw in Example 1 of §5.4 that each point of the
hyperbolic paraboloid S with equation z = xy is a hyperbolic point.

Example 2 (Torus of revolution) In terms of the parametrisation
x(u,v) = ((a + bcosv)cosu,(a + bcosv)sinu,bsinv), u,v € (—n,w), a>b>0,

we found in Example 6 of §5.6 that the principal curvatures are given by

Ccos v 1

Kl=—""""""7T— K2 .
a+bcosv’ b

14 b4
Hence (Figure 5.7), the elliptic points correspond to -7 <v< R the parabolic points

i
tov = iE’ with the remaining points being hyperbolic points.

K =0 on highest
and lowest parallel

Torus of revolution

In terms of the coefficients of the second fundamental form, it follows from (5.18) that
LN — M? is greater than zero at an elliptic point, is less than zero at a hyperbolic point,
and equal to zero at a planar or parabolic point.
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N
N N
Ky h'2>0 K h"2<0 K]>0, H,2<O

Elliptic and hyperbolic points

We saw in Proposition 4 of §5.7 that the principal curvatures at a point p on S are the
extremal values of the normal curvatures of the curves in S through p. Hence, at a hyper-
bolic point the normal curvatures take both positive and negative values, while at an elliptic
point they all have the same (non-zero) sign. Since k, N is the component orthogonal to S
of the acceleration vector of a curve parametrised by arc length on S, at an elliptic point
these acceleration vectors all point to the same side of S. It would seem reasonable, there-
fore, that the points of S sufficiently close to an elliptic point should all be on one side of
the tangent plane at that point. Similar reasoning would indicate that, in any open neigh-
bourhood of a hyperbolic point there would be points of S on both sides of the tangent
plane.

Figures 5.3 and 5.7 add weight to these conjectures, and we now state and prove the
theorem which has been suggested by the above discussions.

Theorem3  Let S be a surface in R and let p € S.

(i) If p is an elliptic point then there is an open neighbourhood of p in S which lies
entirely on one side of the tangent plane T, S.

(ii) If p is a hyperbolic point then every open neighbourhood of p in S contains points on
both sides of Ty S.

Proof We shall need Taylor’s Theorem for functions of two variables, which gives
x(u’ U) = x(09 O) + uxu(ov 0) + va(o, O)

1 2 2 2 2
+5 (u %0(0,0) + 260X 14y (0, 0) + 1% (0, 0)) o +17), (5.44)

where o(u? + v?) stands for a remainder term R(u, v) with the property that
R(u,v)
im ——==0.
w0)—(0,0) u? + v?
For ease of discussion and notation, we translate S if necessary so that p = (0,0, 0). We
also choose (without loss of generality) a local parametrisation x (i, v) such that x(0,0) =

p, and such that {x,(0,0),x,(0,0)} is an orthonormal basis of principal vectors of T),S.
This assumption implies that

Xuu(0,0).N(p) = k1, x,y(0,0).N(p) =0, x4,(0,0).N(p) =«2, (5.45)

where k1 and «; are the corresponding principal curvatures at (0, 0).
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The sign of the inner product x(u, v).N(p) tells us which side of T}, S the point x(u, v)
lies, and, with the above assumptions on x, (5.44) and (5.45) imply that

x(u,v).N(p) = %(Kluz +1202) 4 o(u? + v?) . (5.46)

At an elliptic point, the principal curvatures «1 and «; have the same sign, and, in this
case, an elementary limiting argument may now be used to prove that x (u, v).N(p) always
has the same sign on some open neighbourhood of p in S. On the other hand, if x| and >
have opposite signs, then x(u, v). N(p) takes both positive and negative values on any open
neighbourhood of p in S. The theorem now follows. O

We now discuss a very nice theorem which will have important consequences in later
chapters. We need a little notation before stating it. A closed surface is a surface that is a
closed subset of its containing Euclidean space. So, for instance, ellipsoids, tori, catenoids
and helicoids are all closed surfaces, but the disc D = {(x,y,0) : X2+ y2 < 1} is not.
Intuitively speaking, a closed surface has no edges to fall off. Also, a subset W of R" is
said to be compact if it is both closed and bounded. So, ellipsoids and tori are compact
surfaces, but catenoids and helicoids are not.

The crucial property of compact sets for the proof of the following theorem is that if
f + W — Ris a continuous function defined on a compact subset W of R” then there
are points pg, p1 € W such that f(pg) < f(p) < f(py) for all p € W. This result,
Weierstrass’s Extremal Value Theorem, is usually stated as: any real-valued continuous
function on a compact set is bounded and attains its bounds.

Theorem4  Every compact surface S in R? has at least one elliptic point.

Proof We first describe the geometrical idea of the proof, which is illustrated in Figure 5.9.
Since S is compact, it is, in particular, bounded. This means that there is a sphere centred
on the origin of R*® which has S inside it. If we shrink this sphere until it first touches S
at the point py, say, then S and the sphere are tangential at p; and S is completely on one
side of their common tangent plane. This would lead us to hope that p; would be an elliptic
point.

The details of the proof are as follows. Let f : R3 = Rbe given by f(x) = |x 2. Then
f is continuous (in fact, differentiable), so, since S is compact, there is some point p; € S
with the property that, forall p € S, f(p) < f(p1). Leta : (—€,€) — S beacurve on S,
parametrised by arc length, with «(0) = p;. Then fa(s) = a(s).«(s) has a maximum at
s = 0 so that

a(0).0/(0) =0, «0).e”(0)+a'(0).a'(0)<0.

Pi

Sphere tangential to S at p
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Since these equations hold for all curves on S through pi, the first equation shows
that, as suggested by Figure 5.9, N(p1) = p1/|p1]. The second equation now implies
that a”’(0).N(p1) < —1/|p1|. However, from (5.26), &’ (0).N(p) is the normal curvature
kn (e’ (0)), from which it follows that all the normal curvatures of S at p; are strictly nega-
tive. In particular, the extremal values are both negative, so that their product, the Gaussian
curvature, is positive. O

5.11 Approximating a surface by a quadric ¥

In this section, we extend Theorem 3 of §5.10 by giving rather more quantitative informa-
tion about the way the principal curvatures influence the local behaviour of a surface. This
material is optional and could be omitted if time is short.

We begin by showing that any surface S in R3 may be locally parametrised near a point
p € S as the graph of a function.

Proposition 1 Let S be a surface in R? and assume that the unit normal N(p) at a point
p € S is not parallel to the xy-plane. Then there is a local parametrisation of an open
neighbourhood of p in S of the form

x(u,v) = (u,v,8(u,v)),

for some smooth function g(u, v).

Proof Lety : U — S be alocal parametrisation of an open neighbourhood of p in S,
and let 7 : R? — R2 be given by 7 (x, y,z) = (x, y). The derivative d (s y) is non-singular
at p, so the Inverse Function Theorem shows that, by taking U smaller if necessary, there
exists a smooth map % such that 7 y# is the identity map. It then follows that x = yh is a
local parametrisation of the required form. O

The following proposition gives a good description of a surface near any point p since it
shows that, after applying a suitable rigid motion of R3, the surface may be approximated
up to second order near p by the quadric with equation 2z = kx> + k2y®. Here, as
before, k1 and «; are the principal curvatures at p, and, in the statement of the proposition,
o(u? + v?) stands for a remainder term R(u, v) with the property that

R(u,v)
m —_ =
(u,0)—(0,0) u? + v2

Proposition 2 Ler S be a surface in R® and let k1 and k> be the principal curvatures at
p € S. By applying a suitable rigid motion of R® we may assume that p = (0,0,0), that
N(p) =(0,0,1) and that (1,0,0), (0, 1,0) are principal directions at p.

In this case, if k1 and ky are the principal curvatures at p, then there is a local
parametrisation of an open neighbourhood of p in S such that

x(u,v) = (u,v,8(u,v)),
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Intersection of a surface and its tangent plane

where

1
gu,v) = E(K1u2 + szz) + o(u2 + v2) . (5.47)

Proof Proposition 1 shows that if p = (0,0,0) and N(p) = (0,0, 1), then S has a local
parametrisation of the form

x(u,v) = (u,v, g(u,v)) (5.48)

for some smooth function g(u,v) defined on an open neighbourhood of (0,0) with
g(0,0) = £,(0,0) = g,(0,0) = 0. Under the remaining assumptions of the proposition,
equation (5.46) reduces to (5.47), and the proposition is proved. O

Remark3 1In Exercise 5.27, you are invited to prove that if a surface S is parametrised as
a graph x(u,v) = (u,v, g(u,v)) with g(0,0) = g,(0,0) = g,(0,0) = 0, then the second
fundamental form of S at (0, 0, 0) is equal to the Hessian H of g at (0, 0). Here, the Hessian
of g is the quadratic form used in the calculus of functions of two variables given by

H(u, v) = u? g (0,0) + 2uvgyy (0, 0) + v g,,(0,0) .

We end this section by giving an illustration of the significance of the asymptotic direc-
tions in terms of the intersection of a surface with its tangent plane. It is intuitively clear
(and may be proved using Proposition 2) that if p is a hyperbolic point on S then, in an
open neighbourhood of p, the intersection of § and its tangent plane 7, S is the union of
two regular curves through p. We now show (Figure 5.10) that the tangent vectors at p of
these curves give the asymptotic directions at p.

So, let a() be a regular curve lying on the intersection of S and 7, S and having a(0) =
p. Then, for all ¢, &’(¢).N(t) = 0 and &’(¢).N(0) = 0. Differentiating these two equations,
we find that

o"().N@t)+a'#t).N'(t)=0 and o"().N©O)=0.

Hence 11 (oe’(O)) = —a’(0).N’(0) = 0, and &’(0) is in an asymptotic direction as claimed.

5.12 Gaussian curvature and the area of the image of the Gauss
T
map

In this section, we investigate further the geometrical information carried by the Gaus-
sian curvature. Although geometrically interesting, this section may be omitted since the
material is not used elsewhere in the book.
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We remarked at the beginning of §5.4 that, since the Gaussian curvature is the deter-
minant of the Weingarten map, then |K| is the scale factor by which area in the tangent
space is multiplied under the Weingarten map. In this section we justify this comment (see
equation (5.50)), and then “integrate it up” to obtain expression (5.51) for the area of the
image of a region R of a surface S in R? under the Gauss map. We then indicate that, in
a sense made a little more precise below, |K(p)| gives the ratio of the area of the image
under the Gauss map N of a region R of S compared to the area of R itself, as the region
contracts down towards p (see equation (5.52)).

Remark1 We recall that in Remark 5 of §1.3, we interpreted the modulus of the curvature
k of a plane curve « as the ratio of |n’| and |e’|. Formula (5.50) is the analogue for surfaces.

Area and integration on a surface were discussed in §3.7, and we use the notation of that
section. Let R be the image under a local parametrisation x (u, v) of a suitable region Q in
the (u, v)-plane. Then, quoting (3.24), the area A(R) of R is given by

A(R) = // dA = // |x, X xy|dudv . (5.49)
R o)

In a similar way, the image N(R) of R under N, being the image of Q under Nx, has area
A(N(R)) = // IN, x Ny|dudv
0

(areas being counted with multiplicity, that is to say the number of times they are covered
by N(R)). However, from (5.12) and (5.13),

INy X Ny| = [(a11x, + az1xy) x (12X, + anxy)|
= |ajja — appazy| |x, X x4
=K |x, x xy], (5.50)

where we have used (5.17) for the last equality.
Hence, using (3.25),

A(N(R)):// |K||xy, X xy|dudv =// |K|dA . (5.51)
0 R

As mentioned in §3.7 (where integration on surfaces is discussed), we may extend (5.51)
to more general subsets of S; all we need is that the subset may be broken up into the types
of piece we have considered above. In particular, we may integrate | K| over the whole of
the surface (although the result is not necessarily finite if S is not compact).

The following proposition may be proved using (5.49) and (5.51), together with some
standard analysis involving double integrals.

Proposition2  If we consider a sequence of contracting regions R of S containing a point
p € S then, subject to suitable mathematical assumptions on the way the contraction is
made,

. AN®R)
|K(p)|_A(11grl>0—A(R) . (5.52)
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In order to prove the final theorem of this chapter, we must first quote a deep result con-
cerning compact surfaces (without self-intersections) in R3. The result is a 2-dimensional
analogue of (part of) a famous theorem concerning simple closed curves in the plane called
the Jordan Curve Theorem (a statement of which may be found in §8.6).

Theorem3  Let S be a compact connected surface (without self-intersections) in R3. Then
the complement R3\ S of S in R3 is the disjoint union of two connected sets; one of these
(the outside) is unbounded, while the other one (the inside) is bounded. Such a surface is
orientable, since a unit normal may be assigned smoothly over the whole of the surface
(either the outward unit normal or the inward unit normal).

Using this theorem, we may now prove the following.

Theorem4 Let S be a compact surface without self-intersections in R3. Then

/f IK|dA > 47 .
S

Proof The proof is similar to the first part of the proof of Theorem 4 of §5.10. We show
that every point of the unit sphere is in the image of the Gauss map N of S so that the area
of the image (counted with multiplicity) is at least 47. To do this, let g € $2(1), and let
h 1§ — R be given by h(p) = p.qo. (This map was considered in Exercise 4.5.) Since
S is compact, & has a maximum value on § taken at pg, say. Then, arguing as in the proof
of Theorem 4 of §5.10, it follows that, if we take N to be the outward unit normal, then
N(po) is equal to go. Thus the image of N covers every point of S%(1) at least once, and
the theorem now follows. U

Exercises
5.1 Find the coefficients L, M and N of the second fundamental form of the graph of a
smooth function g(u, v), when the graph is parametrised in the usual way by
x(u,v) = (u,v, g(u,v)).

Hence show that the graph of the function g(u,v) = u? + v? has everywhere
positive Gaussian curvature.

5.2 Enneper’s surface is the image of the map x : R — R3 given by

ul v3
x(u,v) = <u—?+uv2, v—?—i—uzv, uz—vz).

Show that the coefficients of the first and second fundamental forms are given by
E=G=(0+u*+v>?, F=0, and L=2, M=0, N=-2,

and deduce that Enneper’s surface has constant mean curvature H = 0. (In fact,
although sufficiently small pieces of Enneper’s surface really are surfaces, the whole
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53

5.4

5.5

5.6

5.7

of the image of x is not actually a surface as discussed in this book. This is because
x is not injective, so that Enneper’s surface, which is illustrated in Figure 9.2, has
self-intersections.)

Find the coefficients L, M and N of the second fundamental form of the helicoid
parametrised by

x(u,v) = (sinhvcosu,sinhvsinu,u), (u,v)e R2.

Hence find the mean and Gaussian curvatures, and the principal curvatures.

Find the Gaussian curvature K and the mean curvature H for a graph as parametrised
in Exercise 5.1.

(Developable surfaces) Show that each of the following types of ruled surface in
RR? has the property that the unit normal N is constant along each line of the ruling.
Such ruled surfaces are called developable surfaces.

(a) (Tangent surfaces) Let a(u) be a regular curve in R3 with nowhere zero
curvature «, and let S be the image of the map

x(u,v) = o) +va'(u), v>0.

(See Figure 2.17 for a picture of a tangent surface.)

(b) (Generalised cones) Let a(u) be a regular curve in R3 not passing through the
origin 0 of R3, and assume that /() is never a scalar multiple of a(u). Let S be
the image of the map

x(u,v) =va(u), v=>0.

(c) (Generalised cylinders) Let o(u) be a regular curve in R3 and let e be a non-
zero vector such that &’(u) is never a scalar multiple of e. Let S be the image of
the map

x(u,v) =a(u)+ve, veR.

Let S be a ruled surface. Show that the Gaussian curvature of S is identically zero if
and only if the unit normal N is constant along each line of the ruling. (So that S is
a developable surface, as defined in the previous exercise.) In Exercise 5.16 we see
that, conversely, every surface (not even assuming it is ruled) with K = 0 is locally
a developable surface away from the umbilics.

(Parallel surfaces) Let S be a surface in R? with Gauss map N, and for each real
number A let f* : S — R3 be given by

fAp)=p+AiN.

The image S* of f* is a parallel surface of S. At those points where S* is a surface,
show that:

(i) N*f* = N, where N* is the Gauss map of $*;

(ii) if X is a principal vector of S with corresponding principal curvature «, then

X is also a principal vector of S$*, but with corresponding principal curvature
k/(1 — Ak);
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58

59

5.10

(iii) the Gaussian curvature K* and the mean curvature H* of S* are given by
K A H —\K
=, H =,
1 —20H + A2°K 1 —2)0H + 22K
(iv) if S has constant non-zero mean curvature H, then the parallel surface obtained
by taking A = 1/(2H) has constant Gaussian curvature 4 H?.

K)\.

(Surfaces of revolution with constant Gaussian curvature) In this exercise we
find all surfaces of revolution § in R? with constant Gaussian curvature K. If K % 0
we may assume by re-scaling that K = £1. We also assume that S is generated by
rotating the curve a(v) = (f(v),0,g(v)), f(v) > 0 Vv, about the z-axis, with «
being parametrised by arc length.

(1) If K = 1 show that « may be parametrised by arc length in such a way
that f(v) = Acosv, for some positive constant A. By noting that | f'(v)] <

|a’(v)] = 1, show that the domain of « is (—m/2,7/2) N (—vg, vg), Where
0 < vp < m/2 and Asinvyg = 1 (this condition giving no restriction if
0<A<].

On the same set of axes, sketch the generating curve a(v) for A =1/2, A =1,
and A = 3/2.

(i) If K = 0 show that S is an open subset of a cylinder, a cone or a plane.

(iii) If K = —1 show that @ may be parametrised by arc length in such a way that
one of the following three cases occurs:

(@) f(v) = Acoshv, with A > 0and —vy < v < vg for some vy > 0;
®) f(w)y=e"" v>0;
(¢) f(v) = Bsinhv,with0 < B < 1and 0 < v < vg for some vy > 0.

In each of cases (a) and (c), determine the value of vg.

On the same set of axes, sketch the generating curve for A = 1 in Case (a), the
generating curve in Case (b), and the generating curve for B = +/3/2 in Case (c). In
each case assume that O is the infimum of the values taken by g.

Let S be a surface of revolution with a parametrisation of the form
x(u,v) = (vcosu,vsinu,g(w)), v>0.
Show that the Gaussian curvature K is given by
_ g/g//

v(l+g?)? "

Hence find the regions of the surface
1
1= —F—

14+ x24y2

where K > 0 and where K < 0. Indicate these regions on a sketch of the surface.

Up to rigid motions of R3, all catenoids are obtained by rotating a catenary
v
a(v) = (acosh—,O,v), veR, a>0,
a

about the z-axis. Show that all catenoids have constant mean curvature H = 0.
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5.12

5.13

5.14

5.15

5.16

5.17

Find conditions on real numbers a > b > 0 such that the torus of revolution defined
in Example 6 of §5.6 has points where the mean curvature H is equal to zero.

Let a, b be positive real numbers, and let f(z) be a positive function of z. Show that
the surface S in R? with equation

x2

y2 2
3 + i (f@)
has Gaussian curvature K > 0, K = 0, K < 0 respectively, at those points of S with
" <0, " =0, f” > 0respectively.

Let a(¢) be the curve on the cone x2 + y2 =72

, z >0, given by
a(t) = e'(cost,sint, 1), teR.

Show that the normal curvature of e is inversely proportional to ¢’ by either or both
of the following methods.

(i) Parametrise the cone as a surface of revolution and use formula (5.33).
(i) Use the definition of «;, namely (in the usual notation),

dt N
Kn=—.N.
" ds

Let V be a connected coordinate neighbourhood on a surface S in R3, and assume
that the unit normal N is constant on V. Show that V is contained in a plane. (This
is used in the proof of Theorem 1 of §5.8.)

Use the parametrisation given in Exercise 5.1 of the surface S with equation z =
x2 4+ y? to show that the curve

a(r) = (u(0), (0, 120) + V(1))
is a line of curvature on S if and only if
(uu’ + vv)w'v —uv) =0.

Hence find functions ¢(u, v), ¥ (u, v) so that the two families of lines of curvature
on S are given by ¢(u,v) = constant and ¥ (u,v) = constant. Give a sketch of S
illustrating the lines of curvature, and then say why you knew before you started that
these were indeed the lines of curvature.

Let S be a surface in R® with zero Gaussian curvature. Show that every non-umbilic
point of § has an open neighbourhood which is a developable surface; that is to say,
is a ruled surface with the property that the unit normal N is constant along each line
of the ruling. (See Exercises 5.5 and 5.6.) You may assume (correctly) that there is
a local parametrisation around any non-umbilic point of a surface S in R? such
that the coordinate curves are lines of curvature.

Show that, for Enneper’s surface as defined in Exercise 5.2:
(i) the principal curvatures are given by

2 2

Kl= ———————, Kp=—————;
SR IR 2T T 0+ ur oo
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5.18

5.19

5.20

521

5.22

5.23

5.24

5.25

(i1) the lines of curvature are the coordinate curves;
(iii) the asymptotic curves are given by u & v = const.

Prove that any pair of asymptotic curves, one from each family, have non-empty
intersection.

Use the parametrisation of the helicoid given in Exercise 5.3 to find the asymptotic
curves on the helicoid. Sketch the helicoid, indicating the asymptotic curves.

Use the parametrisation
x(u,v) = (sechvcosu,sechvsinu,v —tanhv), —m <u<mn, v>0,

of the pseudosphere S as a surface of revolution to show that the asymptotic curves
on § are given by # & v = constant. Hence show that the angle of intersection 6 of
the two asymptotic curves through x(u, v) is given by

cosf = 2sech’v — 1.

Show that any straight line lying on a surface is an asymptotic curve on the surface.
Deduce that the Gaussian curvature of a ruled surface in R? is everywhere non-
positive.

(Theorem of Beltrami-Enneper) Let S be a surface in R? and let K denote its
Gaussian curvature. If « is an asymptotic curve on S whose curvature is never zero,
prove that the modulus |7| of the torsion T of & is given by

el =v-K.

Let p be a point on a surface S in R? with K (p) < 0. Show that the lines of curvature
through p bisect the angles between the asymptotic curves through p. Show also that
the following three conditions are equivalent:

(i) the asymptotic curves through p bisect the angle between the lines of curvature
through p;
(i) the asymptotic curves intersect orthogonally at p;
(iii) H(p) =0.
Let o be a regular curve on a surface S in R?, and let n be the principal normal of
o as a space curve (as described in Chapter 1). Show that « is an asymptotic curve
on § if and only if n is everywhere tangential to S. (An equivalent condition is that

the osculating planes of an asymptotic curve on S coincide with the tangent planes
of S.)

(Theorem of Joachimsthal) Let S| and S, be two surfaces in R3 which intersect
along a regular curve C in such a way that, for each point p € C, the angle 6(p)
between their normals at p is never zero or 7 (§7 and $; are then said to intersect
transversally). If C is a line of curvature on Sp, prove that 6 is constant if and only if
C is also a line of curvature on S;.

(Monkey saddle) The graph of g(u, v) = u>—3uv? is called a monkey saddle (Figure
5.11). Show that the origin is a planar point, and every other point is hyperbolic.
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A monkey saddle

5.26

5.27

5.28

5.29

If S is the surface in R? with equation x* + y* +z* = 1, use (5.34) to show that each
of the six points (£1,0,0), (0, £1,0), (0,0, 1) is a planar point. Show also that all
other points of intersection of S with the coordinate planes x = 0, y = 0, z = 0 are
parabolic points, and all other points of S are elliptic points.

(This exercise uses material in the optional §5.11) Let S be a surface in R? which is
parametrised as a graph

x(u,v) = (u,v,8u,v)),

with g(0,0) = g,(0,0) = g,(0,0) = 0.

Show that the second fundamental form of S at (0, 0, 0) is equal to the Hessian H
of g at (0,0). Here, the Hessian of g is the quadratic form used in the calculus of
functions of two variables given by

H(u, v) = u?guu(0,0) + 2uvg,, (0, 0) 4 vy, (0, 0).

(This exercise uses material in the optional §5.12) Find the image of the Gauss map
of the paraboloid of revolution S with equation z = x>+ y?. Show that, in accordance
with (5.51),

// |K|dA = area of the image of the Gauss map.
N

(This exercise uses material in the optional §5.12) Let S be a compact surface with-
out self-intersections in R3. Show that the Gauss map N of S maps the union of the
elliptic, parabolic and planar points of § surjectively onto the unit sphere.
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In this chapter we consider one of the most important theorems in differential geome-
try, the Theorema Egregium of Gauss. Gauss’s name for the theorem is well chosen; the
word “egregium” comes from the Latin for “remarkable” (literally, “standing out from
the flock™), and the theorem has had a profound effect on the development of not only
geometry but other areas of mathematics, particularly relativity theory. There is no doubt
that Gaussian curvature is the most important and interesting notion, both historically and
mathematically, discussed in this book.

We recall from §5.4 that the Gaussian curvature K of a surface S in R3 is defined to be
the determinant of —d N, where N is the Gauss map of S; in terms of the coefficients of
the first and second fundamental forms of a local parametrisation of S,

_LN-M?
~ EG-F%’

It would appear that K is an extrinsic property of the surface, in that it seems to depend
on the coefficients of both the first and the second fundamental forms. However, the Theo-
rema Egregium states that K is actually intrinsic; two surfaces with local parametrisations
having the same E, F and G must have the same Gaussian curvature at corresponding
points. The theorem is proved by finding an explicit formula, the Gauss formula, for K
solely in terms of the coefficients of the first fundamental form and their derivatives. For
the case of an isothermal parametrisation, for example, we shall see that K is given by

1 (8> 9
KZ_E <m+m)logE.

It is clear that the functions E, F and G do not determine L, M and N; consider the
standard parametrisations of the plane and the cylinder, which have the same coefficients
of the first fundamental form but different coefficients of the second fundamental form.
However, as we shall see, the expression LN — M 2 js determined by E, F and G, which
gives the proof of Gauss’s Theorem.

This shows that the coefficients E, F', G of the first fundamental form and the coeffi-
cients L, M, N of the second fundamental form of a local parametrisation of a surface
in R3 are related in a rather subtle way. Relations between the coefficients of the two
fundamental forms are explored in §6.2 and §6.3.

We have already investigated some of the geometrical information carried by the Gaus-
sian curvature, and the fact that K is intrinsic makes it an even more important function on
a surface. It is therefore interesting to find as much information as we can about surfaces
of constant Gaussian curvature, and we consider this in (optional) §6.4.
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The Theorema Egregium is very important historically since it suggests (correctly!) that
Gaussian curvature can be defined for surfaces in R” and, more generally, abstract sur-
faces with metric with no reference to any containing Euclidean space. This observation
instigated and motivated the study of a major branch of modern mathematics, Riemannian
geometry. In (optional) §6.5, we indicate how to generalise the notion of Gaussian curva-
ture to surfaces in R” for n > 3, and show that all the results in §6.1 and §6.2, and all the
formulae except (6.1)—(6.3) and (6.6) (each of which has to be slightly modified) hold in
this more general setting. This implies that

the Theorema Egregium and its corollaries also hold for surfaces S in R” and S in R”".
Readers whose primary interest is surfaces in R may choose to omit §6.5.

In its simplest form, the Theorema Egregium may be stated as follows.

Theorem 1(Theorema Egregium of Gauss)  The Gaussian curvature K at a point p of a surface
S in R? may be expressed solely in terms of the coefficients of the first fundamental form
(and their derivatives) of any local parametrisation of S whose image contains p.

The following corollary is an immediate consequence of the Theorema Egregium.

CorollaryZ Assume thatx : U — S, % : U — § are local parametrisations of surfaces S,
S in R3 with coefficients of the first fundamental form satisfying E = E,F=F G=0G.
Then, for each q € U, the Gaussian curvature of S at X(q) is equal to that of S at x(q).

For instance, the corollary implies that the helicoid and the catenoid have the same
Gaussian curvature at points which correspond under the local parametrisations x and X
described in Example 2 of §4.5; this is not at all obvious from the actual shapes of the two
surfaces.

The next corollary is also important and useful.

Corollary3  Let S and S be surfaces in R3. If there is a local isometry f from an open
neighbourhood of a point p € S to S, then the Gaussian curvature of S at f(p) is equal to
that of S at p.

Proof of Corollary 3 Let x(u, v) be a local parametrisation of an open neighbourhood U of
p in S. It follows from Theorem 3 of §2.5 that, choosing U smaller if necessary, ¥ = fx
is a local parametrisation of an open neighbourhood of f(p) in S. Proposition 3 of §4.4
shows that the coefficients of the first fundamental form of ¥ are equal to those of x, and
the result follows from Corollary 2. ]

6.1 The Christoffel symbols

In this section we define the Christoffel symbols determined by a local parametrisation of
a surface in R3, and show that they can be expressed in terms of the coefficents of the
first fundamental form and their derivatives. The Christoffel symbols are of fundamental
importance in their own right, as well as helping us to prove the Theorema Egregium.

Let x(u, v) be a local parametrisation of a surface S in R>. Then any vector may be
written as a linear combination of x,,, x,, and N so, in particular, we may write
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Xuu = }yxy +T}xy + LN, (6.1)
Xy =Thx, +Thx, + MN, (6.2)
Xu = T3yx, + T3xy + MN,

Xyy =[x, + T3x, + NN, (6.3)

for suitable functions {Fl].‘j}. These functions are called the Christoffel symbols of S with

respect to the parametrisation x. Since x,, = X,,, it is clear that Fliz = Fél fori =1,2.
We shall be taking the inner product of the above equations with x,, and x,, and it will
be useful to note that

10
Xyu Xy = Ea(xwxu) = EEu s

d 1
Xyu Xy = a(xwxv) — Xy Xy = Fy — EEva

with similar expressions for the other inner products that occur. So, taking the inner product
of each of equations (6.1), (6.2), (6.3) with x,, and x,, we obtain the following three pairs
of linear equations.

1 2 1
ET} + FT} = 2By,

1 2 1
FT} + Gy = Fy = 5 By

1 2 1
ET},+ FT}, = S Ey .

1 2 1
FT},+GT], = 2Gu

1
ETY, + FT3, = F, — 5Gus
1
FTy, + GI3, = 5Gv- (6.4)

The determinant of each of the three pairs of linear equations for the szj is EG — F?
which, being non-zero, gives the following lemma.

Lemma 1 The Christoffel symbols {Ff‘j} are determined by the coefficients of the first
fundamental form and their derivatives.

This lemma is very important, and is not immediately clear from the definition of the
Christoffel symbols given at the start of this section.

Example 2 (Orthogonal parametrisations) For a local parametrisation with F = 0, the
Christoffel symbols are given by:
1E 1E 1G
1 1 1 v 1
Fn—EEM’ F12—F21—§E, Iy = EEM’
1E 1G 1G
2 v 2 2 u 2 v
Fll__z_’ FlZ_Fﬂ_EE’ 1"22 E_
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Example 3 (Tchebycheff parametrisations) A local parametrisation x(u, v) with coefficients
of the first fundamental form satisfying E = G = 1 is called a Tchebycheff parametri-
sation. In this case, the coordinate curves are parametrised by arc length, and F = cos#6
where 6 is the angle of intersection of the coordinate curves. Intuitively, a Tchebycheff
parametrisation may be thought of as moulding a piece of fabric over the surface without
stretching the fibres but changing the angle 6 at which the two sets of fibres (the weft and
the warp) meet.
When using a Tchebycheff parametrisation, equations (6.4) for the Fj. ; Teduce to

T, +T%cosd =0,
I‘}10059+F%1 = —6, sinb ;

ri, + T3, cos60 =0,

1,cos0 + 7, =0;
F%z + 1"%2 cosf = —6,sinf ,
[lycos6+T3  =0. (6.5)

These three pairs of equations are easily solved. In particular, the second pair of
equations imply that, for a Tchebycheff parametrisation,

12
F=Tp =0

6.2 Proof of the theorem

We prove the Theorema Egregium by showing that, having chosen a local parametrisation
x of a surface S in R3, then LN — M? is expressible in terms of the Christoffel symbols
{I"j.k} and the coefficients E, F, G of the first fundamental form and their derivatives.
This, together with Lemma 1 of §6.1, will show that we may write LN — M 2, and hence
the Gaussian curvature K, in terms of E, F', G and their derivatives.

Using (6.1), (6.2) and (6.3) we have

LN —M?>=LN.NN — MN.MN (6.6)
= (Xuu — thu - F%lxv)-(xvv - F%zxu - F%zxv)

— (X — F}zxu - F%zxv)(xuv - Fllzxu - F%va) > (6.7)
so that

2
LN — M~ =Xx,,.Xpp — Xyv-Xuv

k

+ terms involving the I'; i

E, F, G and their derivatives.
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However,

d d
Xyu-Xvy — Xy Xyy = _(xu-xvv) - _(xu-xuv)

ou Jdv
(e 12 (1,
Touw U 27") s \27
1
= _E(Evv - 2Fuv + Guu), (68)

which completes the proof of the theorem.

An explicit formula for K may be deduced quite quickly from (6.7) if one remembers
that, for instance, Ff 1Xu + Fflxv is the component of x,,, tangential to S, whereas x,, —
F%qu — F%zxv is orthogonal to S. Hence,

(e — T Xy — TF1x0).(x 00 — ooy — T5pxy)
=Xuu.(Xyy — F%zxu — F%zxv)
= Xyu-Xyy — xuu.(Fézxu + F%zxv)
= Xuu-Xvy — (T} Xy + D). (DX, + T5x,)
= Xuu-Xow — ET||Tyy — F(C[ T3, + T} 1) — GI TS,

A similar expression may be obtained for (x,,, — Fllzxu — F%zxv).(x w—T llzxM — F%zxv),
and, putting these together, we find that K is given by

|
(EG = F)K == 3 (Evy = 2Fuu + Gu) — E (r}lr52 - (r{2)2)
~F (Fhl"%z — 2T, + F%zl“fl) -G (Ffl I3, - (Ffz)z) . (69)

This is the Gauss formula for K .

Since the right hand side of (6.9) is determined by the coefficients of the first fundamen-
tal form, while the left hand side is equal to LN — M 2. the Gauss formula gives a relation
between the coefficients of the two fundamental forms. We investigate further relations of
this type in §6.3.

The Gauss formula is perhaps a little complicated in the general case, but for some types
of local parametrisation the formula for K takes a simpler form.

Example 1 (Orthogonal parametrisations) For an orthogonal local parametrisation, the
expressions for the Christoffel symbols given in Example 2 of §6.1 may be used to show
that the Gaussian curvature is given by

ol () e

In particular, if the local parametrisation is isothermal, so that E = G = A%, F = 0, then

1
K:—A—zAlogA, (6.11)
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CEENE

where A = Pyl +— is the Laplacian. We note that the surface has constant Gaussian
u v

curvature if and only if X satisfies Liouville’s equation,

1
7z Alog A = constant.

Formula (6.10) for K in terms of an orthogonal parametrisation is rather nice, in that the
Christoffel symbols do not occur explicitly.

Example 2 (Tchebycheff parametrisations)  This continues Example 3 of §6.1, where we wrote
down the equations satisfied by the Christoffel symbols when £ = G = 1 and F' = cos 6.
As already noted, the second pair of equations in (6.5) give that F112 = F%z = 0, and, using
this, we find that

(EG — FA)K = Fyy — T},T), — (T'},T3, + T3,T'7) cos§ — '} T3,
= Fyp — [3(T}; + 7, cos§) — T'3,(T'{, cos§ + I'})).
Hence, using the first pair of equations in (6.5),
(EG — F2)K = Fyy + 3,0, sin6.

However, the third pair of equations in (6.5) shows that F%z sinf = 6, cos @, so it follows
that

(EG — F)K = —0,, sin#, (6.12)

so that, for a local parametrisation with £ = G = 1, F = cos#,

K- _9,“) sin 0 _ qu .
sin” @ sin6
In particular, we note that K = —1 if and only if 6 satisfies the sine-Gordon equation,
Oy = siné. (6.13)

Equation (6.13), which may be thought of as a non-linear wave equation, is one of the basic
partial differential equations of soliton theory.

6.3 The Codazzi—Mainardi equations

As we have already noted (several times!), the main thrust of the proof of the Theorema
Egregium is to show that LN — M 2 is determined by E, F, G and the derivatives of E, F
and G. In this section, we consider the natural question of whether there are any other
relations between the coefficients of the two fundamental forms, other than that provided
by noting that LN — M? is equal to the expression on the right hand side of the Gauss
formula (6.9). This will lead us to a discussion of Bonnet’s Theorem, part of which says that
a surface in R3 is essentially completely determined up to rigid motions of R by its first
and second fundamental forms. This is the analogue for surfaces in R? of the Fundamental
Theorem of the Local Theory of Plane Curves.
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Equations (6.1), (6.2) and (6.3) imply certain consistency conditions determined by the
fact that mixed partial derivatives commute. For instance, since (x,,), = (X,y), We have
that

*uv-N = (Xyp)u-N,
s0, using (6.1) and (6.2) we find that
0= ([};xy +T3xy + LN)y.N — (Cix, + Thxy, + MN),.N
=T} %u.N+T3x,.N+ Ly, —T,x.N = THx,,.N — M,
=MD}, + NI} + L, — LT}, — MT3, — M,,
so that
Ly—M,=LT},—M (r}l - Ffz) — NI, (6.14)
Similarly, by considering the inner product of (x ), — (x,y), With N, we obtain
M, =Ny = LT, - M (1l = 1%) - N1, (6.15)
Equations (6.14) and (6.15) are called the Codazzi-Mainardi equations.

In the case of an orthogonal local parametrisation these may be written relatively simply
in terms of the coefficients of the first and second fundamental forms,

E,(L N\ M/[(E, G,
Ly—M, =2 (Z+=)-=(=-=2), 6.16
v 2(E+G> 2<E G) (6.16)
Gu. (L N\ M[(E, G,
My—N,=—2(Z+=)-=(=2-=2). 6.17
v 2<E+G> 2<E G) ©.17)

In the case of an isothermal local parametrisation with E = G = A% and F = 0, we saw
in Lemma 2 of §5.4 that the mean curvature H is given by 2H = (L + N)/A?, from which
it follows that the Codazzi—Mainardi equations become

Ly— M, =2H)M,  Ny—My=2Hl,. (6.18)

Returning to the general situation, the above working shows that the Gauss formula (6.9)
and Codazzi—Mainardi equations (6.14) and (6.15) are necessarily satisfied by a surface in
R3. The following theorem, which, as mentioned earlier, is analogous to the Fundamental
Theorem of the Local Theory of Plane Curves discussed in Chapter 1, shows that they are
also sufficient.

Theorem 1 (Bonnet) Let U be an open subset of R* and let E, F,G; L, M, N be smooth
real-valued functions defined on U with E > 0, G > 0 and EG — F?> > 0. Assume
that E,F,G; L,M, N satisfy the Gauss formula (6.9) and Codazzi-Mainardi equations
(6.14) and (6.15), where K = (LN — M*)/(EG — F?) and the {rj.k} are defined to be
the solutions to (6.4). Then, if p € U, there is an open neighbourhood V of p in U, and a
smooth map x : V — R3 such that

(i) x(V)is a surface S in R3,
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(ii) x is a parametrisation of S such that E, F,G and L, M, N are the coefficients of the
first and second fundamental forms of S, where L, M, N are determined using the unit
normal N in the direction of X, X X.

Moreover, if V is connected, x (and hence S) is uniquely determined by E,F,G;
L, M, N up to rigid motions of R3.

We shall not prove Bonnet’s Theorem, since this would carry us into the realms of
existence and uniqueness theorems for solutions of certain partial differential equations.

Example 2 (Tchebycheff parametrisations) We saw in Example 2 of §6.2 that a Tchebycheff
parametrisation of a surface with constant Gaussian curvature K = —1 gave a solution
0 of the sine-Gordon equation (6.13). Conversely, in Exercise 6.10 you are asked to use
Bonnet’s Theorem to show that if 6(u, v) is a solution of the sine-Gordon equation, then
there exists a surface S with K = —1 which is covered by a Tchebycheff parametrisation
X (u, v) such that

(a) F =cosH,
(b) the coordinate curves of x are the asymptotic curves of S.

Moreover, the local parametrisation x, and hence the surface S, is determined uniquely
by 6 up to rigid motions (and possibly a reflection) of R3.

6.4 Surfaces of constant Gaussian curvature '

Gaussian curvature is an important function on a surface S, so, as remarked in the introduc-
tion to this chapter, it is natural to try to find as much information as possible concerning
surfaces for which this function is constant. In this optional section we give a brief review
of the area, but have (rather reluctantly) restricted ourselves to the proof of just one of the
results, a theorem due to Liebmann. However, a proof of Minding’s Theorem (Theorem 6)
is given in §7.7.

Theorem 1 (Liebmann) Let S be a compact connected surface in R? with constant Gaussian
curvature K. Then K > 0 and S is a sphere.

Proof We first recall Theorem 4 of §5.10, which says that every compact surface in R>
has an elliptic point. Hence, if K is constant then K > 0.

We next recall that if x1 and «, are the principal curvatures, then K = kk> and the
mean curvature H = (k| + k2)/2. Hence H? — K = (k1 — k2)?/4 is non-negative and is
equal to zero only at umbilics. If H?> — K is everywhere zero, then every point of S is an
umbilic, and, by Theorem 1 of §5.8, S is an open subset of a sphere. However, since S is
compact, it is also closed, and since the sphere is connected, S is the whole of the sphere.

We now assume that H> — K is not identically zero. Since S is compact, the continuous
function H? — K attains a maximum value at some point p of S, and we shall show that
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the assumption that (H> — K)(p) > 0, or, equivalently, that p is not an umbilic, implies
that K(p) < 0. This contradicts the first paragraph of the proof.

In order to proceed with our proof, we use the fact (which we shall not prove) that
there exists a local parametrisation x(u, v) around any non-umbilic point of a surface in
R3 whose coordinate curves are lines of curvature. It follows immediately from Lemma
1 of §5.6 that such a parametrisation is characterised by having F = M = 0, and, using
Exercise 6.8, the Codazzi—Mainardi equations may be written as

(k1 —k2)Ey = =2E(k1)y , (k1 = k2)Gy = 2G(k2)us (6.19)

where k1, k7 are the eigenvalues corresponding to principal directions x,,, x, respectively.
We also assume, by interchanging # and v, and reversing the direction of the unit normal
N, if necessary, that k1 > k2 > 0 on some open neighbourhood U of p in S.

In the following, we shall be differentiating the principal curvature functions «; and k2
several times, so to avoid confusion with suffices, we shall write A and p rather than «;
and > for the two principal curvatures. Then A > u > 0 on U, and, since (A — u)? takes
its maximum value at p, so does A — u.

However, since K is constant,

A =|A K =Au (1 K
(_M)u—<_7>u— u(‘i‘ﬁ),

S0, in particular, A, (p) = 0.
Differentiating again we find that, at p,
K
= Wuu(p) = uu(p) [ 1 + 2 (p),
S0, since A — pu takes its maximum value at p, we see that A, (p) < 0. Similar methods
show that A, (p) = puu(p) = po(p) = 0, Ayy(p) < 0, and pyu(p) = 0.

It now follows from (6.19) that E,(p) = 0 and G,(p) = 0, so formula (6.10) for the
Gaussian curvature in the case of an orthogonal parametrisation gives that

1
K(p) = “3EG (Evy + Guw) (). (6.20)
However, differentiating (6.19) at p, we obtain

A= WEw(p) = =2Ern(p), G4 — wWGuu(p) = 2Guuu(p),

so that E,,(p) and G,,(p) are both non-negative. It now follows from (6.20) that
K(p) < 0, and we have established the contradiction needed to complete the proof of
the theorem. O

We now consider non-compact surfaces with constant Gaussian curvature, and begin by
considering the case K = 0. We have seen in Exercise 5.8 that a connected surface of
revolution has K = 0 if and only if it is an open subset of a plane, a cone or a cylinder.
As a generalisation of this, we saw in Exercise 5.16 that if p is a non-umbilic point on
a surface S with K = 0 then there exists an open neighbourhood of p which is a ruled
surface with the property that the unit normal is constant along each line of the ruling.
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Such a surface is called a developable surface. Conversely, if S is a developable surface
then O is an eigenvalue of d N, so that K = 0 for such a surface.

In Exercise 5.5, several types of example of developable surfaces are given; namely,
tangent developables of regular curves in R3, generalised cones, and generalised cylinders.
We recall, in particular, that a generalised cylinder is the image of the map into R3 given
by

x(u,v) =a(u)+ve, vek,

where a(u) is a regular curve in R3 whose tangent vector o(u) is never parallel to the
non-zero vector e.

The following theorem of Massey classifies all closed surfaces in R? with K = 0. We
recall (from §5.10) that a closed surface is a surface that is a closed subset of its containing
Euclidean space. Intuitively speaking, a closed surface has no edges to fall off. All compact
surfaces are closed, as are, for instance, cylinders, catenoids and helicoids. We note that
the tangent developable of a regular curve « is not closed (all points of & are omitted, since
these are singular points), and nor is a generalised cone (the vertex is a singular point).

Theorem 2 (Massey) Let S be a closed connected surface in R® whose Gaussian curvature
is identically zero. Then S is a generalised cylinder.

We choose to omit the proof, but would like to remark that it is accessible, and uses the
Codazzi—Mainardi equations.

We next consider surfaces in R? with constant negative Gaussian curvature. Exercise 5.8
gave a method of finding all surfaces of revolution with constant negative Gaussian curva-
ture, and these include the pseudosphere (see Example 7 of §5.6). However, none of these
examples are closed; for instance, the pseudosphere is not closed since it does not include
the unit circle x2 + y2 = 1, z = 0. In fact, we have the following.

Theorem 3 (Hilbert)  There is no closed surface in R® with constant negative Gaussian
curvature.

A crucial step in the proof of Hilbert’s Theorem is to show that any surface in R? with
K = —1 may be covered by a system of Tchebycheff parametrisations whose coordinate
curves are asymptotic curves. In the following example we outline a method of constructing
such a parametrisation of the pseudosphere, which, as we saw in Example 7 of §5.6, has
constant Gaussian curvature K = —1.

Example 4 (Pseudosphere) Let x(u, v) be the usual parametrisation of the pseudosphere S
as a surface of revolution given by

x(u,v) = (sechvcosu,sechvsinu,v —tanhv), —m <u<m, v>0.

Exercise 5.19 invited you to prove that the asymptotic curves are given by u+v = constant,
and that the angle of intersection 6 of the two asymptotic curves through x(u, v) is given
by cos @ = 2sech’v — 1. So, if we define a new parametrisation of S by taking

X, 0)=x@+v,0—0v), —-w<u+v<mw, >0,
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(this is a change of variables as described in the optional §3.8), it follows that the coor-
dinate curves of X are the asymptotic curves of S and the angle of intersection of the two
asymptotic curves through X (i, 9) is given by

cos O(it, v) = 2 sech®(ii — ) — 1. (6.21)

A routine calculation shows that the coefficients of the first fundamental form with
respect to x(u, v) are given by

E:sechzv, F=0, G:tanhzv,

and, since

fﬁ:xu +xy, f17:xu_xv, (6.22)

another routine calculation shows that E = G = 1, so that ¥ is a Tchebycheff
parametrisation of the pseudosphere whose coordinate curves are the asymptotic curves
of S.

The theory given in Example 2 of §6.2 now predicts that 6(ii, 7) should satisfy the sine-
Gordon equation

55 = siné, (6.23)

and this may be checked from (6.21) by direct calculation.

We now consider closed connected surfaces of constant positive Gaussian curvature. It
turns out (although we do not develop the tools to prove it) that such surfaces are nec-
essarily compact, so the following theorem is an immediate consequence of Liebmann’s
Theorem.

Theorem 5  Let S be a closed connected surface in R with constant positive Gaussian
curvature. Then S is a sphere.

Finally, we state Minding’s Theorem. Unlike the other theorems in this section, Mind-
ing’s Theorem is a local theorem; it doesn’t depend on any global assumptions such as
“closed” or “compact”. It says that if two surfaces S, S have the same constant Gaussian
curvature then, locally at least, they are isometric.

Theorem 6 (Minding) Ler S and S be surfaces in R3 having the same constant Gaussian
curvature. If p € S and p € S then there is an isometry from an open neighbourhood of p
in S onto an open neighbourhood of p in S.

In particular, then, a developable surface is locally isometric to a flat plane. This means
that a sufficiently small piece of any developable surface may be formed from a flat piece
of metal without stretching or compressing the sheet.

We need some material on geodesics (to be found in Chapter 7) before we can construct
the isometry needed to prove Minding’s Theorem, so we postpone the proof until §7.7.



154

6 The Theorema Egregium

6.5 A generalisation of Gaussian curvature

The Theorema Egregium tells us that the Gaussian curvature K of a surface in R* depends
on only the intrinsic metric properties of the surface. This suggests the possibility of defin-
ing a notion of Gaussian curvature for a surface in R” rather than just for a surface in R3,
and in this section we indicate a way of achieving this. As mentioned in the introduction
to this chapter, those wishing to concentrate on surfaces in R> may choose to omit this
section.

Let x(u, v) be a local parametrisation of a surface S in R”, and let N (x,), N (x,0),
N (x,,) denote the components of X, X, Xyy, respectively, orthogonal to S. It may
be checked using the methods employed in §3.9 that the expression N (x ;). N (X yy) —
N (x,). N (x,,) involving the inner products of these vectors transforms under a change
of local parametrisation in the same way as does EG — F2. It follows that if we set

_ N(xuu)~N(xvv) - N(xuv)~N(xuv)

K
EG — F?

(6.24)

then K is independent of choice of local parametrisation and hence defines a function on S.
This is the Gaussian curvature of a surface in R"; when n = 3, it clearly reduces to our
original definition of Gaussian curvature of a surface in R3.

If we modify the material in §6.1 and §6.2 by replacing LN, MN, and NN by
N(xu), N (xuy), N (x ), respectively, and replacing LN — M? by N (x,). N (x40) —
N (x,0). N (x,), then §6.1 and §6.2 hold in this more general situation. In particular, the
Gauss formula (6.9) is true, and it then follows that:

the Theorema Egregium and its corollaries all hold if we assume that S is a surface in
R"™ and S is a surface in R,

This is a highly significant and non-trivial fact which lies at the heart of differential
geometry.

Example 1 (Veronese surface) Recall from Example 2 of §4.6 that the image in R’ of the
map f : S2(1) — R> given by

fo,y,2) = (yz,zx,xy, %(x2 -, 217()62 +y7 - 2z2)> . Xy 2=,
is a surface S in R called the Veronese surface. We showed in that example that f is a local
isometry onto S and that f gives a bijective correspondence between the real projective
plane R P? of lines through the origin of R? and S. The generalisation of Corollary 3 of
the Theorema Egregium shows that the Veronese surface is a surface in R of constant
Gaussian curvature 1.

Example 2 (Flat torus) Recall from Example 4 of §4.3 that for each pair ry, rp of positive
real numbers, the subset of R* defined by

I 1 4. 2 2 ) 2 2
S (r1) x S (r) = {(x1,x2,x3,x4) € R" 1 x1” + x2" =117, x3° + 34" =127}
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is a surface in R*. We called this a flat torus, and showed that the map f : R> — §'(r|) x
S1(r») defined by

u .u v .V
f(u,v) = | ricos—,rysin —, rp cos —,rp sin —
r r ra )

is a local isometry. Thus the Gaussian curvature of the flat torus is zero, which provides
the motivation for its name.

In Exercise 4.14 we saw that there is a conformal diffeomorphism of this flat torus onto
a torus of revolution in R?. However, the generalisation of Corollary 3 of the Theorema
Egregium implies that there can be no isometry of S'(r;) x S!(r,) onto any surface in R3,
for any such surface would be compact and thus by Theorem 4 of §5.10 would have an
elliptic point. This means that, as a surface with metric, S'(r;) x S Y(rp) is an object that
can only be encountered once we consider surfaces in R"” for n > 3.

Examples 1 and 2 show that neither Liebmann’s Theorem nor Massey’s Theorem gener-
alise to the case of surfaces in higher dimensional Euclidean spaces. However, Minding’s
Theorem does hold in this more general situation. Indeed, it holds in the even more general
setting outlined in the next example.

Example 3 (Hyperbolicplane) In Example 5 of §3.4, we put a metric on the upper half-plane,
H={uv)eR*:v>0)

with E = G = 1/v%, F = 0. This gives us the hyperbolic plane H, which is an abstract sur-
face with metric with no reference to any containing R"”. However, we may use equations
(6.4) to define the Christoffel symbols {Ffj}, and then use the Gauss curvature equation
(6.9) to define a notion of Gaussian curvature K for surfaces with metric. If we do this,
a short calculation using (6.11) shows that the hyperbolic plane has constant Gaussian
curvature K = —1.

Although we shall not justify any of the following, it turns out that the corollaries of
the Theorema Egregium still hold in the more general situation of surfaces with metric. It
now comes as no surprise that the hyperbolic plane H has constant Gaussian curvature,
since it follows from Example 4 of §4.7 that the isometry group of H is transitive. That
this constant is equal to —1 is also to be expected since we saw in Exercise 4.18 that
there is a local isometry from part of the hyperbolic plane to the pseudosphere, which, as
we saw in Example 7 in §5.6, has constant Gaussian curvature K = —1. Although the
Nash Embedding Theorem implies that there is an isometry from H to a surface in some
sufficiently high dimensional Euclidean space, Hilbert’s Theorem says that there is no local
isometry from the whole of H to a surface in R3.

Exercises

6.1 The Theorema Egregium says that surfaces in R” which are locally isometric have
the same Gaussian curvature at corresponding points. Is the same thing true for the
mean curvature of surfaces in R*? Give a proof or a counterexample.
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6.2

6.3

6.4

6.5

6.6

Note that Exercises 6.2 to 6.5 hold with exactly the same proof for surfaces in R".
Let x(u,v) be a local parametrisation of a surface S in R3 such that E = 1 and

1 G
F = 0.Show that T3, = '3, = —=, ), = —=G,, T3, = ﬁ and that all

2G’ 2
the other Christoffel symbols are zero. Hence show that the Gaussian curvature K of
S is given by
(v Guu
VG

If the coefficients of the first fundamental form of a surface S in R are given by

K=-—

E=2+v, F=1, G=1,

show that the Gaussian curvature K of S is given by
_ 1
RS

Let x(u, v) be a Tchebycheff parametrisation of a surface S in R3 with E = G =1
and F = cosuv. Show that the Gaussian curvature K of § is given by

1

K =—- .
sin uv

Let x(u,v) be a Tchebycheff parametrisation of a surface S in R3. Show that the
Gaussian curvature K of S is given by
F(1— F?) + FF,F,
(1— F2)2

K =

It is natural to ask whether Corollary 3 to the Theorema Egregium has a converse.
That is to say, if f : S — S is a smooth map with the property that, for all p € S,
K( f(p)) = K(p), is it true that f is a local isometry? In fact, this is clearly not true;
simply consider any smooth map from the plane to itself or from the unit sphere to
itself. However, these could perhaps be rather special examples since K is constant
here. We now investigate a rather more substantial counterexample.

Let S be the helicoid x sinz = ycosz, and let S be the surface of revolution
obtained by rotating the curve

a(v) = (v,0,logv), v>0,
around the z-axis. Let
U={(u,v)€R2:—n<u<n, v > 0},
andletx : U — S, % : U — S be the local parametrisations defined by

x(u,v) = (vcosu,vsinu,u), (u,v)e U,

X(u,v) = (vcosu,vsinu,logv), (u,v)€U.
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6.7

6.8

6.9

Show that the correspondence x(u,v) <> X(u, v) is not an isometry, but does have
the property that, for all (u,v) € U, K (f(u, v)) =K (x(u,v)).

Let S be a connected surface in R covered by a single parametrisation x(u, v) whose
coefficients E, F, G, L, M, N of the first and second fundamental forms are all con-
stant. f L = M = N = 0 show that S is an open subset of a plane. Otherwise,
follow the route indicated below to show that EN —2FM + GL # 0 and S is (an
open subset of) a cylinder of radius |c|, where

EG — F?

“TEN-2FM+GL

(i) Show that K = 0.
(i) Show thatif notall of L, M, N are zero, then we may assume, by interchanging
u and v if necesary, that L # 0.
From now on, we assume that L # 0.
(iii) Show that @ = Mx, — Lx, is a non-zero constant.
(iv) Show that |a|> = L(IEN—2F M+GL), so, in particular, EN—-2FM+GL # 0.
(v) Show that

x.a
b=x—-——a+cN
a.a

is constant, where ¢ = (EG — F%)/(EN —2FM + GL).

(vi) Show that a is orthogonal to b.

(vii) Without loss of generality, assume that a = (0,0,a3) and b = (b1, b2,0), and
show that, writing x = (x1,x2, x3), S is an open subset of the cylinder

(x1 — b1)? + (x2 — b2)* = %

Let x(u,v) be a local parametrisation of a surface S in R? whose image contains
no umbilic points. If the coordinate curves are also lines of curvature show that the
Codazzi—Mainardi equations may be written as

(k1 —K2)Ey = =2E(k1)y ,
(k1 — k2)Gy = 2G(Kk2)y ,

where k1, kp are the principal curvatures corresponding to principal directions x,,,
x, respectively. These equations are used in the proof of Liebmann’s Theorem
(Theorem 1 of §6.4).

Let S be a surface in R® with constant mean curvature H, and suppose that S admits
an isothermal local parametrisation whose coordinate curves are also lines of cur-
vature. Use the equations obtained in Exercise 6.8 to show that if the image of the
local parametrisation is connected then the Codazzi—Mainardi equations reduce to
L — N = constant. (We shall see in §9.13 that if a surface has constant mean cur-
vature then such a local parametrisation exists on some open neighbourhood of any
non-umbilic point.)
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6.10

6.11

6.12

Let 6(u, v) be a solution of the sine-Gordon equation 6,, = sin6. Show that there
exists a surface S with constant Gaussian curvature K = —1 which is covered by a
Tchebycheff parametrisation x (u, v) such that
(a) F = cosb,
(b) the coordinate curves of x are the asymptotic curves of S.

Show also that x, and hence S, is determined uniquely by 6 up to rigid motions
(and possibly a reflection) of R3.

The following two exercises use material in the optional §6.4.

Show that the sphere is the only compact connected surface in R3 with constant
mean curvature and everywhere positive Gaussian curvature. (Hint: use techniques
employed in the proof of Liebmann’s Theorem.)

Let S be a closed connected surface in R3. If S has constant Gaussian and mean
curvatures show that § is either a sphere, a plane, or a (round) cylinder.
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Geodesic curvature and geodesics

In §5.7 we defined the geodesic and normal curvatures of a regular curve & on a surface
S in R3. The normal curvature «, is defined using the component of the acceleration of
a orthogonal to §, and was studied in Chapter 5. The geodesic curvature kg, on the other
hand, is determined by the component of the acceleration of « tangential to S, and we shall
see that, unlike «,, geodesic curvature is an intrinsic property.

In fact, although we shall not justify this remark, geodesic curvature may be defined for
curves on higher dimensional analogues of surfaces (which are modelled on open subsets
of R™ rather than Rz); we do not even need a containing Euclidean space R”; all we need
is a metric. Spaces modelled on open subsets of R™ are called manifolds, and if they have a
metric they are known as Riemannian manifolds. These are named in honour of Bernhard
Riemann, a student of Gauss, whose thesis laid the foundations for the major branch of
modern mathematics known as Riemannian geometry.

Curvature for curves in the plane, as discussed in Chapter 1, is a special case of geodesic
curvature for curves on a surface. When suitably parametrised, curves on a surface with
zero geodesic curvature are called geodesics; they are the analogues of straight lines in the
plane and as we shall show, the analogies are quite strong. For instance, a line segment in
a plane is the path in the plane of shortest length between its end points, and a (sufficiently
short) geodesic on a surface is the path of shortest length on the surface between its end
points.

There is also a close relationship with mechanics. In particular, Newton’s second law of
motion states that the acceleration of a body is directly proportional to, and in the same
direction as, the net force acting on the body. In the absence of an external force there
is no acceleration and the corresponding motion is in a straight line. For surfaces in R3,
Newton’s second law gives a characterisation of geodesics as the paths followed by smooth
particles moving freely on the surface, for if there is no tangential force there is no tangen-
tial acceleration and conversely. Furthermore, the equations of motion in the Lagrangian
formulation of mechanics are just the geodesic equations (see §7.3), and conservation of
energy corresponds to the fact that every geodesic is parametrised so that the speed of travel
along the curve is constant (see §7.2).

§7.1 to §7.5 contain basic material, and are needed for the final two chapters of the book.
§7.6 to §7.9 are optional, and a selection of some or all of them could be made, depending
on time and taste; they are independent of each other, except that §7.8 uses the material in
§7.7.
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7.1 Geodesic curvature

Recall that for a regular curve a(r) on a surface S in R? the geodesic curvature kg and the
normal curvature «,, are defined by

dt
azngxt—i—/an,

where s is an arc length parameter along «, t = do/ds is the unit tangent vector to «,
and N is the unit normal to S (defined, as usual, up to sign). It follows that, denoting inner
product in R” by a dot as usual,

dt
kg =N x1). (7.1)

Note that replacing N by —N changes the sign of both the geodesic and nomal curvatures.

We saw in §5.7 that the normal curvature «, at a point of a regular curve & on S is equal
to the second fundamental form acting on the unit tangent vector to « at that point. In
particular, rather surprisingly, «,, depends on only the tangent vector to a at the point in
question and may be interpreted as the minimum amount of bending that a regular curve
must do in order to stay on S. There is no similar restriction on «,; the geodesic curvature
may be regarded as a measure of the extra bending that & does within S.

A short calculation using (7.1) and techniques discussed in Chapter 1 shows the
following.
Lemmal1 The geodesic curvature of a regular curve o (t) on S is given by
kg =0 (N x o)/, (7.2)
where, as usual,’ denotes differentiation with respect to t.
Example 2 (Circles on a sphere)  Each circle on a sphere in R? is obtained as the intersection
of the sphere with a plane. For ease, we consider the circle C of intersection of the unit

sphere $2(1) with the plane z = sin vg for some constant vy with —7 /2 < vg < /2. Then
C may be parametrised as

a(t) = (cos vp cost,cos v sint, sin vp) ,
in which case
a’(t) = (—cos vy sint, cos vy cos ¢, 0) ,
so that |ot/(¢)| = cos vg. Also,
o’ (t) = (—cosvycost, —cosvgsint, 0) ,

while N (a(1)) = a(2).
A short calculation using (7.2) now shows that the circle C in $2(1) has constant
geodesic curvature kg = tan vo. In particular, the equator has zero geodesic curvature.
More generally, a circle on $>(1) which is the intersection of S?(1) with a plane
at perpendicular distance sin vy from the origin has constant geodesic curvature tan vg.
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Conversely, as you are invited to prove in Exercise 7.2, every curve of constant geodesic
curvature on a sphere is (part of) a circle. In particular, the curves of zero geodesic curvature
on a sphere are those curves which are the intersection of the sphere with a plane through
the centre of the sphere. These are the great circles on the sphere.

The next result is immediate, since if two surfaces in R? touch tangentially at some
point, then the normals to the surfaces coincide at that point.

Proposition3  Let S, S be two surfaces in R? which touch tangentially along the trace of a
regular curve a. Then the geodesic curvature of & as a curve on S is equal to the geodesic
curvature of a as a curve on S.

Example 4 (Torus of revolution) For positive real numbers a > b, let T, be the torus of
revolution obtained by rotating the circle (x — a)> 4+ z> = b? about the z-axis. A sphere
with centre on the z-axis and suitable radius R will touch the torus tangentially along the
trace C of a regular curve «. If the sphere has centre at the origin, then taking R = a — b
or R = a + b gives such a sphere; it touches the torus along the equator of the sphere
and along the innermost or outermost parallel of the torus. Hence these particular parallels
have zero geodesic curvature on the torus.

For a sphere as illustrated in Figure 7.1 with centre on the z-axis but not at the origin,
there are two spheres which touch 7,5 tangentially, and the curves C are again circles. It
follows from Example 2 that the geodesic curvature is again constant but this time non-
zero.

A sphere touching 7, 5, tangentially

Finally, consider the case of a sphere with radius » and centre on the core circle x2+y? =
a?, z = 0. Such a sphere touches the torus along a great circle of the sphere and a meridian
of the torus. Again, the geodesic curvature is zero.

Similar examples can be given for all surfaces of revolution; this is explored in
Exercise 7.5.
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The notion of geodesic curvature may be readily extended to regular curves on a surface
S in R”. First, however, we have to generalise the concept of orientation, which we have
defined as a smooth choice of unit normal N to a surface S in R3. This leads to a specific
choice for the positive direction of rotation in each tangent space which varies smoothly
over §; namely the rotation X — N x X should be rotation through /2 (rather than
37 /2). For instance, the unit normal (0, 0, 1) to the xy-plane in R3 leads to anticlockwise
as being the positive direction of rotation for tangent vectors at each point of the plane. We
generalise this to a surface S in R” by defining an orientation of S to be a choice for the
positive direction of rotation in the tangent spaces of S which varies smoothly over S.

We note that a local parametrisation of S determines an orientation of the corresponding
coordinate neighbourhood; the positive direction of rotation being chosen so that rotation
from x, to x, is less than 7. For a surface in R3, the orientation determined by a local
parametrisation x (i, v) is the same as that determined by the unit normal N in the direction
of x,, x x,. Following the terminology we have used for surfaces in R3, a surface in R”
which admits an orientation is said to be orientable, and when a choice of orientation has
been made then S is said to be oriented.

We define geodesic curvature k for a regular curve ¢ on an oriented surface S in R” by

setting
d’a X
kg =—7- X,

where s is an arc length parameter along o, and X is the unit tangent vector obtained by
rotating de/ds through /2 in the direction determined by the orientation. We note that
k¢ X is the component of d’a/ds® tangential to S, and if we choose the opposite orientation
on S then k, changes sign.

The following lemma gives a generalisation of formula (7.2), and is proved in a similar
way.

Lemma5 Ler a(t) be a regular curve on an oriented surface S in R", and let X be the unit
tangent vector obtained by rotating o’ /|’ | through 7w /2 in the direction determined by the
orientation of S. Then

1

Kg = |a/|2oc”. X. (7.3)

7.2 Geodesics

In this section we consider certain curves, namely geodesics, on a surface in R", and give
some examples. We also give a characterisation in terms of geodesic curvature and the
parametrisation of the curve. In subsequent sections we provide a much fuller description
of geodesics and their properties.

A smooth curve a(t) on a surface S in R” is called a geodesic on § if its acceleration
vector & is orthogonal to S at each point of o.
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Example 1 (Plane) Let a(r) be a regular curve in a plane P in R”". Then «’ and «” are
tangential to P so that e is a geodesic on P if and only if &” = 0, that is if and only if a is
a straight line parametrised so that |e’| is constant.

As may be seen from the above example, in deciding whether a curve is a geodesic the
actual parametrisation of the curve, as well as its trace, is important. Indeed, if a(?) is a
geodesic on S then &” is orthogonal to S, so, in particular, o”.a’ = 0, or, equivalently, |e’|
is constant.

If s(¢) denotes arc length along any smooth curve a(¢) then, quoting equation (1.2),
ds/dt = |a’], so it follows that || is constant, A, say, if and only if s(z) = Af + ¢, for some
constant c. For this reason, if |e’| is constant we say that & is parametrised proportional to
arc length; we have just seen that this is a necessary condition for a smooth curve a(f) to
be a geodesic.

Example 2 (Unit sphere) Let N be the outward unit normal to the unit sphere S2(1) in R,
so that if p € S%(1) then N(p) = p. A curve a on S2(1)is a geodesic if and only if

o = pe,
for some function w. But then
a@xa)=daxd +axa’ =0,
so that

axa =c,

where ¢ is a constant vector which is non-zero unless « is itself constant (Figure 7.2). In
particular, |&’| = |¢|, so that o is parametrised proportional to arc length, and

oac=0,

so that & is part of the great circle obtained by intersecting $2(1) with the plane through
the origin in R? orthogonal to c.

Great circles are geodesics

Conversely, a great circle on S2(1) which is parametrised proportional to arc length may
be written in the form

a(t) = X cos(At) + Y sin(At) ,
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where X is a non-zero constant and X and Y are a suitable pair of orthonormal vectors
in R3. Then a” = —2%a, which is orthogonal to S?(1) at each point of e, so that e is a
geodesic on S2(1).

This example shows that a non-constant curve on S2(1) is a geodesic if and only if it is
a great circle parametrised proportional to arc length. This accords with our interpretation
of a geodesic on a surface as the path followed by a smooth particle moving freely on the
surface; if we attach a particle to the origin of R3 by a massless rod of unit length (so as
to constrain the particle to travel on the unit sphere) then an impulse applied to the particle
will set it going round and round a great circle at constant speed.

Example 3 (Surface of revolution) A meridian a(¢) of a surface S of revolution lies on a plane
P containing the axis of rotation. Hence &’ and &” also lie on P. However, P intersects
S orthogonally, so that P is spanned by &’ and N. Thus if & is parametrised proportional
to arc length then ” is a scalar multiple of N. Hence all meridians, when parametrised
proportional to arc length, are geodesics.

Example 4 (Cylinder) Let S be the cylinder in R3 with equation x> 4+ y?> = r2 and let
a : R — § be the curve defined by

o(t) = (rcost,rsint, A\t +un), telR,
where A, u are constant. Then « is a helix if A 7 0 and a circle if A = 0. Also
o’ (t) = (—rcost,—rsint,0),

which is normal to S at (7). Thus « is a geodesic.

It is clear that any constant curve on a surface is a geodesic. The following proposition
provides a characterisation of all other geodesics.

Proposition 5 A regular curve a(t) on a surface S in R" is a geodesic if and only if it is
parametrised proportional to arc length and has zero geodesic curvature.

Proof  For surfaces in R? this follows from (7.2) since a” is orthogonal to S if and only if
a” is orthogonal to both &’ and N x &’. For surfaces in R” we may use (7.3) rather than
(7.2). O

This result is illustrated by Example 2 of §7.1 and Example 2 in this section; in the
former we saw that great circles are the curves of zero geodesic curvature on S%(1), while
the latter showed that the geodesics on S2(1) are the great circles parametrised proportional
to arc length.

7.3 Differential equations for geodesics

In this section we will obtain two equivalent sets of differential equations for geodesics in
a coordinate neighourhood on a surface S in R”. We will then use these to obtain existence
and uniqueness results for geodesics.
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Proposition 1 Let x(u, v) be a local parametrisation of S and let a(t) = x (u(t), v(¢)) be
a smooth curve. Then o is a geodesic on S if and only if both the following equations are
satisfied:

1 1

u"E + Eu/zEu +uVE,+V'F +v*(F, — 56 =0, (7.4)
1 1

VG + 5v’zcv +u'v' Gy +u'F +u*(F, — SEn=0. (7.5)

Proof We have that
o =u'x, +vxy,

so that

o =u"x, +u'Wxp VX0 FV Xy + VW x4y + VX0 . (7.6)
Thus, using the expressions discussed in §6.1 for x,,.x, and other similar quantities in
terms of the coefficients of the first fundamental form and their derivatives, we find that

1 1
o x, =u"E + Eu/zEu + W VEy +V'F +V(F, — EGu) ) (1.7)

A similar calculation shows that &”.x, is equal to the left hand side of (7.5) and, since o is
a geodesic if and only if &”.x,, = a”.x, = 0, it follows that « is a geodesic if and only if
equations (7.4) and (7.5) are both satisfied. O

The two equations given in the statement of Proposition 1 form a system of second order
ordinary differential equations for u(¢), v(t). They are not linear and cannot usually be
explicitly solved. However, the existence and uniqueness theorem for solutions of systems
of this type enables us to prove the following result.

Theorem2 Let p € S andlet X € T),S.

(i) There is a unique geodesic a : (a,b) — S with initial point «(0) = p and initial vector
a’(0) = X which is maximal in the sense that the domain of the geodesic cannot be
further extended. Here, a is either —o0 or a negative real number, while b is either oo
or a positive real number.

(ii) Any geodesic B with initial point p and initial vector X is the restriction of « to some
subinterval of (a, b).

This accords with our physical interpretation of geodesics as the paths followed by
smooth particles moving freely on a surface; in the absence of external forces, a trajec-
tory is determined by the initial position and velocity. It might not be possible to follow the
trajectory for all time, however; for instance, if S is the open unit disc then a freely moving
particle will soon fall off the edge!

Example 3 (Paraboloid of revolution) Let S be the paraboloid of revolution with equation
z = x> + y2. We saw in Example 3 of §7.2 that, when parametrised proportional to arc
length, all meridians are geodesics. Clearly, at p = (0,0,0) there is exactly one such
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meridian with a given non-zero tangent vector as initial vector. The uniqueness part of
Theorem 2 shows that all geodesics through (0, 0, 0) are of this form.

We now discuss some consequences of Theorem 2. It is clear from the definition (and
also follows from (7.4) and (7.5)) that if a(¢) is a geodesic then, for any real constant A,
so is the curve a(t) = a(At). The following lemma is now immediate from the uniqueness
part of Theorem 2.

Lemma4 If X is a tangent vector at a point p of a surface S in R", let ax (t) be the unique
maximal geodesic with initial point p and initial vector X. Then, for any real number A,

o, x() =ax(Ar).

Again, this agrees with intuition. If a particle leaves a particular point in a given direc-
tion with a given initial speed, then a particle setting off from the same point in the same
direction but with, say, twice the initial speed travels along the same path but travels along
it twice as fast.

Proposition 1 also shows that, although we defined geodesics extrinsically, that is to say
we used the containing Euclidean space, geodesics are actually determined by intrinsic
quantities. This is rather surprising, and, as in the case of Gaussian curvature, points to
the fundamental importance of the concept of geodesic in the study of general Rieman-
nian manifolds. It also leads to the following result, which is similar to Corollary 3 of the
Theorema Egregium.

Proposition5 Ler f : S — S be a local isometry of surfaces. Then f maps geodesics on
S to geodesics on S, that is to say if () is a geodesic on S then fo(t) is a geodesic on S.

Example 6 (Cylinder) Let S be the cylinder in R with equation x> + y> = r2, and let
f : R? — S be the local isometry defined by

X X
fx,y) = (r Ccos —, ¥ sin —,y) .
r r

Then the geodesics of S, being the images under f of the geodesics in R?, are of the
following type:

(a) the meridians of S (which are the images of the lines x = constant in R?);

(b) the parallels of S (which are the images of the lines y = constant in R2);

(c) helices (which are the images of lines in R2 of the form ax + by = c, where a, b, c are
constant with a, b # 0). These can be parametrised proportional to arc length as:

B(t) = (rcost,rsint, At + ),
where A, u are constants with A # 0.

Geodesics of types (b) and (c) have already been discussed in Example 4 of §7.2.

We note that, in contrast with the case of a plane, there are infinitely many geodesics
joining any two points of a cylinder (Figure 7.3). This is an example of the way in which
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Three geodesics with the same start point and the same end point

the topology of a surface is reflected in the behaviour of its geodesics. Indeed, consid-
eration of geodesic behaviour is often very useful in the investigation of the topology of
Riemannian manifolds.

A surface for which every maximal geodesic has domain the whole of R is said to be
complete. The cylinder of Example 6 is complete, but the surface obtained by considering
that part of the cylinder lying between the planes z = 1 and z = —1 is not complete. It
is not hard to prove that all compact surfaces are complete; in fact, all surfaces which are
closed subsets of R" are complete.

Example 7 (Cone)  An acetate sheet can be bent, but not stretched or compressed, and the
action of rolling up such a sheet to make a cylinder (which is modelled mathematically
in Example 6) gives a local isometry from the plane to the cylinder. Proposition 5 shows
that lines drawn on the sheet become geodesics on the cylinder, which enables us to “see”
the geodesics on the cylinder described in Example 6. In a similar way, by rolling up our
acetate sheet to make a cone, we may “see” the geodesics on a cone, which typically look
as illustrated in Figure 7.4.

S
W

A geodesic on a cone

It is interesting to investigate how the self-intersection properties of the geodesics on a
cone depend on the angle at the base of the cone. This and other properties of geodesics on
a cone are explored in Exercises 7.15 and 7.20.

Example 87 (Veronese surface and real projective plane) This example uses material in the
optional §4.6, and may be omitted if desired. Let f : S?(1) — S be the local isometry
of $2(1) onto the Veronese surface S in R defined in Example 2 of §4.6. We recall that the
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real projective plane R P2 is the set of lines through the origin of R3, and that f enables us
to identify the real projective plane with the Veronese surface. Each plane P through the
origin of R? intersects S2(1) in a great circle, and the image under f of this great circle is a
geodesic on S, covered twice. This geodesic corresponds in R P2 to the set of lines through
the origin in the plane P. It is clear that any two geodesics on S meet in a unique point
(since any two planes through the origin intersect in a unique line), and, through any two
points there is a unique geodesic. The resulting geometry, called projective geometry, is of
great historical importance.

The geodesic equations (7.4) and (7.5) of Proposition 1 may be written in an alternative
form using the Christoffel symbols {F;k} introduced in §6.1 (where, for surfaces in R”,
the quantities LN, MN, NN are replaced by the components of Xy, Xy, Xyy, respectively,
orthogonal to ).

Proposition9  Let x(u, v) be a local parametrisation of S and let at(t) = x (u(t), v(t)) be a
smooth curve. Then a is a geodesic on S if and only if both of