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Preface

This book provides a rigorous treatment of the fundamentals of plane
geometry: Euclidean, spherical, elliptic, and hyperbolic. It is intended
primarily for upper-level undergraduate mathematics students, since they
will have acquired the ability to formulate mathematical propositions
precisely and to construct and understand mathematical arguments.

The formal prerequisites are minimal, and all the necessary background
material is included in the appendixes. However, it is difficult to imagine a
student reaching the required level of mathematical maturity without a
semester of linear algebra and some familiarity with the elementary
transcendental functions. A previous course in group theory is not
required. Group concepts used in the text can be developed as needed.

The book serves several purposes. The most obvious one is to acquaint
the student with certain geometrical facts. These are basically the classical
results of plane Euclidean and non-Euclidean geometry, congruence
theorems, concurrence theorems, classification of isometries, angle addi-
tion, trigonometrical formulas, and the like. As such, it provides an
appropriate background for teachers of high school geometry.

A second purpose is to provide concrete and interesting realizations of
concepts students have encountered or will encounter in their other
mathematics courses. All vector spaces are at most three-dimensional, so
students do not get bogged down in summation signs and indices. The
fundamental notions of linear dependence, basis, linear transformation,
determinant, inverse, eigenvalue, and eigenvector all occur in simple
concrete surroundings, as do many of the principal ideas of group theory.
Also, students will be in a better position to integrate geometry with
topology and analysis after having worked with the projective plane and
the metric space axioms.

A third purpose is to provide students not only with facts and an
understanding of the structure of the classical geometries but also with an
arsenal of computational techniques and a certain attitude toward geomet-
rical investigation. They should not be concerned merely with questions of
existence (e.g., whether two figures are congruent) but with questions of
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construction (finding the isometry relating two figures in terms of the given
data). Many of the proofs and exercises take this approach. This point of
view makes it clearer whether or not a student’s “proof” is valid. In
addition, it is more appropriate for applications in areas such as computer
graphics and computer vision. Although this book does not treat such
applications explicitly, the concepts and techniques used are playing an
important role in these fast-growing areas of computer science. (See, for
example, Foley and van Dam [14], Chapters 7 and 8, and [36].)

The fourth purpose is to provide a link between classical geometry and
modern geometry, with the aim of preparing students for further study and
research in group theory, Lie groups, differential geometry, topology, and
mathematical physics. From this viewpoint the book is actually a study of
the real two-dimensional space forms, the (flat) Euclidean plane, the
sphere (constant positive curvature), and the hyperbolic plane (constant
negative curvature). The isometry groups studied are Lie groups, and the
notion of homogeneous space implicitly underlies much of the discussion.
Although differential calculus is not used in the book, all the constructs
lend themselves easily to differential-geometric treatment.

Our approach to the hyperbolic plane allows one to “do” analytic
geometry there without burdensome calculations, thus removing some of
the mystery of hyperbolic geometry. Familiarity with the concepts and
computational techniques of hyperbolic geometry is an asset to any student
of modern geometry and topology. Such central areas as Thurston’s work
on 3-manifolds and Penrose’s work on relativity require a working
knowledge of hyperbolic geometry. (See Thurston [32] and Penrose [27]
for an introduction to these topics.)

In this book each of the geometries is developed separately. Each
geometry has the notion of point, line, distance, perpendicularity, ray,
angle, triangle, reflection, congruence, and so forth. The amount of detail
with which each topic is treated varies with the setting and generally
decreases as the book progresses and readers get their bearings. Some
topics have been treated extensively in one setting and very briefly in
another. Other topics are merely introduced in the exercises. I have tried
to avoid repetition of similar arguments in different settings while allowing
readers to see a good variety of methods and viewpoints. For theorems
presented in a particular setting, readers should ask themselves the
questions: Does the statement make sense in other settings? If so, is it
true? Does the same proof work? What modifications are required?
Certain unifying notions become evident (e.g., the three reflections
theorem, true in all settings for all types of pencils), whereas other
statements (e.g., that the perpendicular bisectors of the three sides of a
triangle are concurrent) are not universally true, but an appropriate
reformulation may be.

The entire book may be covered in a two-semester course. In a



one-semester course I usually cover Chapter 1, part of Chapter 2, the first
half of Chapter 4, Chapter 7, and those sections of Chapters 5 and 6
relevant to Chapter 7. There are numerous opportunities for excursions
into areas of interest to the instructor (e.g., projective geometry, Galilean
geometry, Lorentzian geometry, geometry over the complex numbers or
finite fields). Some source materials for such excursions are listed in the
references.

The exercises are closely related to the text material. Some of them
require specific numeric computations and provide a means of testing the
students’ understanding of the formulas presented. Others require students
to supply proofs that have been omitted in the text. Students should do a
sufficient number of these so that they are confident that that they could do
the others on an examination if required. The rest of the exercises extend
the results of the text in some way. They can be omitted without loss of
continuity. However, these are the most enjoyable exercises, and students
are encouraged to work on as many of them as time permits.

[ would like to thank several generations of students at the University of
Notre Dame and Indiana University at South Bend, whose interest in
geometry provided the impetus for developing the material and whose
reactions have helped to shape the book. Thanks are also due to a long list
of typists at these institutions and at McMaster University who have
worked on the various preliminary versions of the manuscript as well as the
final one. Finally, I am grateful to those colleagues and students who have
made helpful comments on various versions of the manuscript or assisted in
its preparation in other ways: in particular, Nancy Bridgeman, Michael
Brown, Kristine Broadhead, Thomas Cecil, H. S. M. Coxeter, K. Nomizu,
and Debra van Rie.

PATRICK J. RYAN
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Notation and
special symbols

General Remarks: Points are denoted by uppercase Roman letters. Lines
are denoted by lowercase script letters and lowercase Greek letters. Angles
are denoted by uppercase script letters. Figures are usually denoted by
uppercase script letters. Some symbols are used in more than one way.

Specific Symbols:

R
RZ’ RJ’ R"

0(2), 03)
S0(2), SO(3)
GL(3), GL(n)
SL(3), SL(n)
PGL(2)
GAL(2)

§;

the set of real numbers

the vector space of all ordered pairs (respectively
triples, n-tuples) of real numbers; also called the
Cartesian plane (resp. three-space, n-space)

the Euclidean plane (resp. three-space, n-space)

the two-sphere

the projective plane

the hyperbolic plane

the Klein disk model of H?

the orthogonal group of R? (resp. R?)

the special orthogonal group of R? (resp. R%)

the group of all invertible 3 X 3 (resp. n X n) matrices
the special linear group

the group of collineations of P?

the Galilean group of R?

the symmetric group of permutations of three letters
the cyclic group of order m

the dihedral group of order 2m

the group of all affine transformations of R?

the group of all similarities of E2

the group of all translations of E?

the group of all isometries of a geometry M

the group of all symmetries of a set A

the group of all affine symmetries of a set A

the group of all translations along the line €

XV
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special symbols

XVi

REF(2)

ROT(P)
DIS(2)

KRS S

|

F

d(P, Q)
d(P, €)
d(€, m)

(x, y)
(A)
|al
|x]
(v]
[a]
(a, b]
(a, b]
(v, w]
[G:H]
[P; Q « R]

[P; Q — R]
[C; € — €]
(a, b)

(a, b)

(PQ)

PQ

(POR)

T(A) or TA
PO

PQ

m

a(r)
A+ B

the group generated by reflections in all lines of the
pencil 2

the group of all rotations leaving P fixed

the group of all parallel displacements determined by
the pencil 2

the set of all points

a pencil of lines

the set of all lines

a figure

the distance between the points P and Q

the distance between P and the closest point of ¢
the smallest number of the form d(P, Q) where P € ¢
and Q € m

the inner product of two vectors in R"

the group generated by a set of elements A

the absolute value of a number a

the length of the vector x in R”

the set of all multiples of the vector v

the equivalence class to which a belongs

the closed interval of real numbers r satisfyinga<r<»b
the interval of real numbers r satisfyinga < r < b
the vector space spanned by vectors v and w

the index of a subgroup H in a group G

the affine reflection of E? that leaves P fixed while
interchanging Q and R

the shear of E? that leaves P fixed and sends Q to R
the perspectivity with center C mapping € to ¢’

the interval of real numbers r satisfyinga < r < b
the point of R? with coordinates a and b

the permutation that interchanges P and Q

the segment whose end points are P and Q

the cyclic permutation that sends Pto Q, Q to R, and R
to P

the set of all points of the form TP, where P € A
the line containing points P and Q

the ray with origin P that contains Q

the natural projection determined by an equivalence
relation, m(a) = [a]

the number (approximately equal to 3.14) that is the
smallest positive number 6 satisfying sin 6 = 0

a plane

parametric representation of a line

the set of all vectors that can be obtained by adding an



xeA
El, €2y ...y Ey

€1 om
¢ m

Qe
Ty

ref 0
rot 6

Hp

uXv
XPOR
APQOR

det A
det(u, v, w)

Gx = Orbit(x)
G, = Stab(x)
L

#A

= Q

mm

element of A to an element of B. If A = {P} is a
singleton, A + B may be written P + B

x is an element of the set A

standard unit basis vectors for R”

the identity matrix; the identity transformation

the complex structure on RZ. In fact, J = rot(w/2)
the rectilinear completion of a figure #

in R?, if v = (v, v,), then v* = (—vy, vy)

the set of all vectors orthogonal to every element of A
€ is perpendicular to s

¢ is parallel to »

end of a proof

reflection in the line ¢

translation by the vector v

reflection in the line through the origin with direction
vector (cos 0, sin 6)

the rotation about the origin that takes (1, 0) to
(cos 6, sin 0)

the half-turn about P

the cross product of vectors u and v in R?

the angle with vertex Q and sides é_i” and Q_I}
a triangle with vertices P, Q, and R

the determinant of the matrix A

the determinant of the matrix whose rows are u, v, and
w

the orbit of a point x by a group G

the stabilizer of a point x in a group G
summation sign

the number of elements in a set A

the empty set

the transpose of the matrix A

congruence of figures

isomorphism of groups

Theorem Numbers: When theorems are referenced outside of the chapter
in which they occur, their numbers are prefixed with the chapter number.
For example, Theorem 4.21 refers to Theorem 21 of Chapter 4.

Notation and

special symbols

XVii



Historical introduction

In the beginning, geometry was a collection of rules for computing lengths,
areas, and volumes. Many were crude approximations arrived at by trial
and error. This body of knowledge, developed and used in construction,
navigation, and surveying by the Babylonians and Egyptians, was passed
on to the Greeks. Blessed with an inclination toward speculative thinking
and the leisure to pursue this inclination, the Greeks transformed geo-
metry into a deductive science. About 300 B.c., Euclid of Alexandria
organized some of the knowledge of his day in such an effective fashion
that all geometers for the next 2000 years used his book, The Elements, as
their starting point.

First he defined the terms he would use - points, lines, planes, and so on.
Then he wrote down five postulates that seemed so clear that one could
accept them as true without proof. From this basis he proceeded to derive
almost 500 geometrical statements or theorems. The truth of these was in
many cases not at all self-evident, but it was guaranteed by the fact that all
the theorems had been derived strictly according to the accepted laws of
logic from the original (self-evident) assertions.

Although a great breakthrough in their time, the methods of Euclid are
imperfect by modern standards. To begin with, he attempted to define
everything in terms of a more familiar notion, sometimes creating more
confusion than he removed. The following examples provide an illustra-
tion:

A point is that which has no part. A line is breadthless length. A straight line is a line which
lies evenly with the points on itself. A plane angle is the inclination to one another of two lines
which meet. When a straight line set upon a straight line makes adjacent arigles equal to one
another, each of the equal angles is a right angle.

Euclid did not define length, distance, inclination, or “set upon.” Once
having made his definitions, Euclid never used them. He used instead the
“rules of interaction” between the defined objects as set forth in his five
postulates and other postulates that he implicitly assumed but did not state.
Euclid’s five postulates were the following:
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I. To draw a straight line from any point to any other point.
II.  To produce a finite straight line continuously in a straight line.
III.  To describe a circle with any center and distance.
IV. That all right angles are equal to each other.

V. That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which the angles
are less than two right angles.

Euclid did not feel it necessary to enunciate the following postulate, even
though he used it in his very first theorem.

Two circles, the sum of whose radii is greater than the distance between their centers, and the
difference of whose radii is less than that distance, must have a point of intersection.

It is natural to ask why Euclid singled out his five postulates for explicit
mention. After Euclid, mathematicians attempted to make explicit the
assumptions that Euclid had neglected to mention. The fifth postulate
attracted much attention. It was cumbersome but intuitively appealing,
and people felt that it might be deduced from the other assumptions of
Euclid. Many “proofs™ of the fifth postulate were proposed, but they
usually contained a hidden assumption equivalent to what was to be
proved. Three such equivalent conditions were:

i.  Two intersecting straight lines cannot be parallel to the same straight
line. (Playfair)
ii. Parallel lines remain at a constant distance from each other. (Proclus)
iii. The interior angles of a triangle add up to two right angles. (Legen-
dre)

In 1763 a man named Kliigel wrote a dissertation at Gottingen in which
he evaluated all significant attempts to prove the parallel postulate in the
2000 years since Euclid had stated it. Of the 28 proofs he examined, not
one was found to be satisfactory. Of particular interest was the work of the
Jesuit Saccheri (1667-1733). Saccheri assumed the negation of the fifth
postulate and deduced the logical consequences, hoping to arrive at a
contradiction. He derived many strange-looking results, some of which he
claimed were inconsistent with Euclid’s other postulates. Actually, he had
discovered some fundamental facts about what we now call hyperbolic
geometry.

Gauss (1777-1855) was apparently the first mathematician to whom it
occurred that this negation might never lead to a contradiction and that
geometries differing from that of Euclid might be possible. The thought
struck him as being so revolutionary that he would not make it public. In
1829 he wrote that he feared the ‘“‘screams of the dullards,” so entrenched
were the ideas of Euclid. Lobachevsky (1793-1856) and Bolyai (1802-
1860) independently worked out geometries that seemed consistent and



yet negated Euclid’s fifth postulate. These works were published in 1829
and 1832, respectively. Experience proved that Gauss had overestimated
the dullards. They paid no attention to the new theories.

Almost 40 years later Beltrami (1835-1900) and Klein (1849-1925)
produced models within Euclidean geometry of the geometry of Bolyai and
Lobachevsky (now called hyperbolic geometry). It was thus established
that if Euclid’s geometry was free of contradiction, then so was hyperbolic
geometry. Because hyperbolic geometry satisfied all the assumptions of
Euclid except the parallel postulate, it was finally determined that a proof
of the postulate was impossible.

With this branching of geometry into Euclidean and non-Euclidean, it
became useful to categorize results according to their dependence on the
fifth postulate. Any theorem of Euclid that made no use of the parallel
postulate was called a theorem of absolute geometry. It was equally valid in
Euclidean and hyperbolic geometry. By contrast, certain Euclidean
theorems that depended only on postulates I, II, and V became known as
affine geometry. Theorems common to absolute and affine geometry are
called theorems of ordered geometry.

The study of central projection was forced upon mathematicians by the
problems of perspective faced by artists such as Leonardo da Vinci
(1452-1519). The image made by a painter on canvas can be regarded as a
projection of the original onto the canvas with the center of projection at
the eye of the painter. In this process, lengths are necessarily distorted in a
way that depends on the relative positions of the various objects depicted.
How is it possible that the geometric structure of the original can still
usually be recognized on the canvas? It must be because there are
geometric properties invariant under central projection. Projective geome-
try is the body of knowledge that developed from these considerations.
Many of the basic facts of projective geometry were discovered by the
French engineer Poncelet (1788-1867) in 1813 while a prisoner of war,
deprived of books, in Russia. Affine and projective geometry are also
closely related, because the study of those properties of figures that remain
invariant under parallel projection also leads to affine geometry. This
aspect of affine geometry was recognized by Euler (1707-1783).

Because progress in geometry had been frequently hampered by lack of
computational facility, the invention of analytic geometry by Descartes
(1596-1650) made simple approaches to more problems possible. For
instance, it allowed an easy treatment of the theory of conics, a subject
which had previously been very complicated. Since the time of Descartes,
analytic methods have continued to be fruitful because they have allowed
geometers to make use of new developments in algebra and calculus.

The scope of geometry was greatly enlarged by Riemann (1826-1866).
He realized that the geometry of surfaces provided numerous examples of
new geometries. Suppose that a curve lying on the surface is called a line if

Historical introduction
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each small segment of it is the shortest curve joining its end points. Then,
for instance, if the surface is a sphere, the lines are the great circles. In this
geometry, called double elliptic geometry, the following theorems are valid:

i. Every pair of lines has two points of intersection. These points are
antipodal; that is, they lie at the opposite ends of the same diameter.
ii. Every pair of nonantipodal points determines exactly one line. An
antipodal pair has many lines through them.
iii. The sum of the angles of a triangle is greater than . It is possible for a
triangle to have three right angles.

Riemann and Schlafli (1814-1895) considered higher-dimensional
Euclidean and spherical spaces, and in his celebrated inaugural lecture at
Gottingen in 1854, Riemann laid the foundations of geometry as a study of
general spaces of any dimension, which are now called Riemannian
manifolds. These spaces are the principal objects of study in modern
differential geometry. As the name suggests, the methods used depend on
calculus. The geometry of Riemann was used by Einstein (1879—-1955) as a
basis for his general theory of relativity (1916).

Although Gauss observed the relationship between the angle sum of a
triangle and the curvature of the surface on which it occurs, Riemann and
those who followed him carried these ideas over to Riemannian manifolds.
Thus, curvature is still an important phenomenon in differential geometry,
and it indicates how much the geometry of the space being studied differs
from being Euclidean.

Although Euclid believed that his geometry contained true facts about
the physical world, he realized that he was dealing with an idealization of
reality. He did not mean that there was such a thing physically as
breadthless length. But he was relying on many of the intuitive properties
of real objects. In order to free geometry from reliance on physical
concepts for its proofs, Hilbert (1862—1943) rewrote the foundations of
geometry in 1899. Hilbert started with undefined objects (e.g., points,
lines, planes), undefined relations (e.g., collinearity, congruence,
betweenness), and certain axioms expressed in terms of the undefined
objects and relations. Anything that could be deduced from this by the
usual rules of logic was a geometrical theorem valid in that particular
geometry. The choice of axioms was a matter of taste. Of course, some
geometries would be interesting and some not, but that is a subjective
judgment. The theorems do not depend on the nature of the undefined
objects but only on the axioms they satisfy.

Seeing all these geometries around him, Klein, in 1872, proposed to
classify them according to the groups of transformations under which their
propositions remain true. Since then, group theory has been of increasing
importance to geometers. The new geometries of Riemann gave rise to
complicated groups of transformations. Soon techniques were developed



to study these groups in their own right. Much work on the subject was
done by Sophus Lie (1842-1899), and these groups became known as Lie
groups in his honor.

Lie groups and differential geometry are active areas of current
mathematical research.

Three approaches to the study of geometry

1. THE AXIOMATIC APPROACH

Following Hilbert, we start with some undefined objects, relations, and an
axiom system. Then we deduce the logical consequences. We shall make
some use of this approach. However, we need some motivation in order to
know which axioms to choose and how to interpret our results. Without
this, the study will not be very interesting.

2. THE ANALYTIC APPROACH

A point is represented by an ordered pair, triple, and so forth, of real
numbers (or, more generally, elements of some other algebraic structure).
Points are defined to be collinear if they satisfy an equation of a certain
type. Then every algebraic equation that one can derive will have some
geometrical interpretation. In this approach, linear algebra and matrices
are used to facilitate computation.

3. THEEMPIRICALAPPROACH

Our goal is to discover geometrical facts about the world we live in. We use
only those facts that we can observe and their logical consequences. Thus,
one can conceive of trying to discover whether the parallel postulate is true
or false in the world of physical space. Gauss, in fact, tried to do this by
locating mirrors on three distant mountain peaks and measuring the sum of
the angles of the large triangle formed by light rays sent from one peak to
another. His results were inconclusive because the limits of experimental
error were larger than the deviation of his measurement from .

An example from empirical geometry

Our experience of the external world comes to us through our senses,
especially vision and touch. As we move around and view objects from
various places, the objects usually appear to change shape. An important
exception is the straight line whose shape appears unchanged by a change

An example from
empirical geometry
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in viewpoint. Three aspects of collinearity present themselves. Three
points are collinear if they appear to be “in line;” that is, viewing one from
another obscures the third. Secondly, if one begins at point A and moves
“straight ahead” towards B, one will traverse all points on the line segment
AB. Finally, if we stretch an elastic band from A to a suitable close point B,
the elastic will fall along the segment AB.

If our main goal were to describe the properties of physical space, it
would be valuable to construct and study many axiomatic geometries to see
which ones best fit our observation. In physics one can never be completely
sure that a certain theory is right. One can only say that it fits the
observations better than any other known theory.

A basic question is this: What can we rightfully deduce about the nature
of our space by observation? We can shed light on this problem by
proposing a hypothetical universe and studying the system from the
outside. For a long time it was believed that the earth was flat. However, if
we go to a point P in the ocean, sail straight ahead 500 miles to Q, then
turn right and go 500 miles to R, then return straight to P, we will find that
the distance from R to P is about 667 miles. Checking our results with
Pythagoras’ theorem, we see that it does not hold for the right-angled
triangle POR. Thus, we see that it is possible to conduct an experiment to
show that the geometry of our earth is not Euclidean.

Suppose now that our earth had been a circular cylinder rather than a
sphere. If we had performed the same experiment, we would have found
that the distance from R to P was about 707 miles, as predicted by
Pythagoras. Our experiment would not prove, of course, that our earth
was a plane. However, it would not contradict that hypothesis. A more
ambitious experiment would be to try to answer the following question. If
you start at a point and go straight ahead, is it possible that after a while
you will begin to get closer to your starting point? Can you actually reach
your starting point in this way?

Nature of the book

Although we will be dealing with many of the aspects of geometry
mentioned in the historical sketch, we will not discuss them in chrono-
logical order. We will rely heavily on analytic techniques that, of course,
were not available to Euclid. The group concept will frequently be used to
make our discussions more transparent. Linear algebra, an indispensible
tool for any modern treatment of geometry, will be used on almost every
page.

The book begins with a thorough investigation of the Euclidean plane.
Here we set the pattern for our study of the non-Euclidean geometries.
Points, lines, reflections, and distance are defined. Questions of parallel-



ism, perpendicularity, and symmetry are studied. Isometries (distance-
preserving transformations) are classified, and the structure of the isometry
group is determined.

Many of the facts derived about the Euclidean plane are already familiar
to those who have studied geometry from another approach. However, the
‘same format can be used to investigate the projective and hyperbolic
planes. The results are beautiful and, in some cases, surprising.

When we have completed our construction of the three consistent
models of plane geometry, we will have some appreciation for the kind of
experiments in empirical geometry with which two competing models of
the universe could be tested. Although we have limited ourselves to the
two-dimensional case by studying planes, it is not too hard to see how
higher-dimensional Euclidean, elliptic, and hyperbolic spaces could be
studied. Modern cosmology attempts to describe the universe in terms of
the geometrical properties of a four-dimensional “spacetime.” Although
discussion of such models is beyond the scope of this book, we hope that
the techniques and thought patterns developed by studying this book will
be useful to those who might later wish to work in this area. An interesting
nontechnical reference is Rucker [28].

For further reading on the ideas discussed in this introduction, readers
are referred to Coxeter [8], Faber [13], Greenberg [16], Meschkowski [23],
Tietze [30], and Euclid’s Elements as presented by Heath [18].

Nature of the book



Plane Euclidean
geometry

The coordinate plane

We start with the familiar plane of analytic geometry. Each ordered pair
(p1, p») of real numbers determines exactly one point P of the plane. The
point determined by (0, 0) is called the origin.

The ordered pair (p;, p,) is also referred to as the coordinate vector of P.
Although mathematically equivalent, the words “point™ and “‘vector” have
different connotations. A vector is usually thought of as a line segment
directed from one point to another. We may think of the vector (p,, p,) as
the line segment beginning at the origin 0 and ending at P. We shall regard
the words “point” and “vector” as interchangeable, using whichever
suggests the more appropriate picture. The set of all vectors is denoted by
R

The vector space R?

If x = (x4, x;) and y = (y;, y,), then we define
x+y=(x1+y,x+y)
If ¢ is a real number and x is a vector, then we define
cx = (cxy, €x3).

These operations are called vector addition and scalar multiplication,
respectively. In particular, if ¢ = —1, the vector cx is denoted by —x.

The vector 0 = (0, 0) is called the zero vector. The operations of vector
addition and scalar multiplication enjoy the following familiar algebraic
properties:

Theorem 1. For all vectors x, y, and z, and real numbers ¢ and d,
i. +y)+z=x+(y + 2).
ii. x+y=y+x



jii. x+ 0=x.

iv. x+ (—=x)=0.

v. Ix=ux.

vi. ¢x +y) =cx + cy.
vi. (¢ + d)x = cx + dx.
viil. ¢(dx) = (cd)x.

The inner-product space R?

Given two vectors x and y, we define

(x,y) = xyy1 + X202

~ The number (x, y) is called the inner product of x and y. It is sometimes

also called the dot product or scalar product of x and y.
The following identities concerning the inner product may be easily

checked.

Theorem 2.

i (x,y+2z)=(x,y) + (x,2) forallx,y, z € R%

ii. (x,cy) =c(x,y) forallx,y e R*andall c € R.

ii. (x,y) = (y,x) forall x,y € R%.

If (x, y) = 0 for all x € R?, then y must be the zero vector.

?.

Remark: Theorem 1 says that R? is a vector space. Theorem 2 says that the
inner product is bilinear, symmetric, and nondegenerate. See Appendix D
for further discussion of these notions.

For any vector x € R? we define the length of x to be

x| = Vx? + x3.
Note that
x| = (x, x),

so that length and inner product are intimately related.

Theorem 3. The length function has the following properties:
i. |x| = 0 for all x € R%

ii. If |x| = 0, then x = 0 (the zero vector).

iii. |ex| = |c||x| for all x € R? and all ¢ € R.

We now state and prove a less immediate property of the inner-product
function and its consequence for length.

The inner-product
space R?




iii. x+0=x.

iv. x+ (=x)=0.

v. lx=ux

vii c(x +y) =cx + cy.
vii. (¢ + d)x = cx + dx.
viii. ¢(dx) = (cd)x.

The inner-product space R?

Given two vectors x and y, we define

(x,y) = xy;y1 + x295.

The number (x, y) is called the inner product of x and y. It is sometimes
also called the dot product or scalar product of x and y.

The following identities concerning the inner product may be easily
checked.

Theorem 2.

i. (x,y+2z)=(x,y) +(x,z) foralx,y,ze R

ii. (x,cy) =c(x,y) forall x,y € R*>and all c € R.

iii. (x,y) = (y, x) forall x,y € R%.

v. If (x,y) = 0 for all x € R?, then y must be the zero vector.

—

Remark: Theorem 1 says that R? is a vector space. Theorem 2 says that the
inner product is bilinear, symmetric, and nondegenerate. See Appendix D
for further discussion of these notions.

For any vector x € R? we define the length of x to be

Ix| = Vx? + x3.
Note that
x> = (x, x),

so that length and inner product are intimately related.

Theorem 3. The length function has the following properties:
i. |x| =0 forall x € R%

ii. If |x| = 0, then x = 0 (the zero vector).

iii. |cx| = |c||x| for all x € R? and all ¢ € R.

We now state and prove a less immediate property of the inner-product
function and its consequence for length.

The inner-product
space R?
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Theorem 4 (Cauchy—Schwarz inequality). For two vectors x and y in R* we
have

|€x, ) < Ixllyl.
Equality holds if and only if x and y are proportional.
Proof: We restrict our attention to nonzero vectors x and y, the assertion

being obviously true when either x or y is zero.
Consider the real-valued function f defined by

flt) = |x + ty|> for 1€R.

Using the properties stated above, we observe that f(¢) is nonnegative for
all r and that f(r) assumes the value 0 if and only if x is a multiple of y.
On the other hand, f is a polynomial of degree 2. Specifically,

fit) = xP? + 2e(x, y) + ¢*|y)? (1.1)

and as such remains nonnegative only if (x, y)? < |x|?|y|%; that is, |(x, y)|
< |x|lyl.

In addition, f(f) assumes the value zero only if |(x, y)| = |x|[y|. Thus,
[{x, y)| = |x||y| if and only if x and y are proportional. O

Corollary. For x, y € R?,

e + yl < |x| + [yl (1.2)
Equality holds if and only if x and y are proportional with a nonnegative
proportionality factor.
Proof:

Ix + yI* = x| + 2(x, y) + |yP
< |x* + 2lx|ly| + [y]? (1.3)
= (x| + lyD%

hence, |x + y| < |x| + |y|.
If equality holds here, then we must have

(x, y) = Ixl [yl-

From our work on the Cauchy—Schwarz inequality, we see that x and y
must be proportional. But x = cy leads to

(x,y) = cly, y) = clyP
and
Ixllyl = lellyllyl = lellyl*.

Thus, ¢ must be equal to |c|; hence, ¢ = 0. 0



The Euclidean plane E?

The plane has both algebraic and geometric aspects. When we think of the
algebraic properties, we are thinking of the vector properties of R

We now turn to the geometric concept of distance. If P and Q are points,
we define the distance between P and Q by the equation

d(P, Q) = |Q - P|.

The symbol E? will be used to denote the set R* equipped with the distance
function d.

The concept of distance is a fundamental one in geometry. We will now
derive the most important properties of distance. They are stated in the
following theorem.

Theorem 5. Let P, Q, and R be points of E*. Then

i. dP, Q) =0.

ii. d(P, Q) =0ifandonlyif P= Q.

ii. d(P, Q) = d(Q, P).

iv. d(P, Q) + d(Q, R) = d(P, R) (the triangle inequality).

Proof: Because d(P, Q) = |Q — P| =|—(Q — P)| = |P — Q|, the first three
properties follow from Theorem 3. The fourth property is equivalent to
showing that

[@~ P+ IR — @ =|(@— B+ (R~ Q) =R~

This, of course, follows from the corollary to Theorem 4. Furthermore,
equality holds if and only if Q — P = u(R — Q) for some nonnegative
number «. In the next section we will see that this implies that P, Q, and R
are collinear. O

Lines

A line in analytic geometry is characterized by the property that the vectors
joining pairs of points are proportional. We define a direction to be the set
of all vectors proportional to a given nonzero vector.

For a given vector v let

[v] = {w] r € R}.
If P is any point and v is a nonzero vector, then
€= {X|X - Pe[v} (1.4)

is called the line through P with direction [v]. See Figure 1.1. We also write
(1.4) in the form

Lines

-
-

Figure 1.1 Theline € = P + [v].

11
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Figure 1.2 The line PQ and a direction
vector v.

alt) =

1 -t

-~ ——""‘I‘g

Figure 1.3 a(1) = (1 — )P + 1Q.
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€ =P+ [v].

When ¢ = P + [v] is a line, we say that v is a direction vector of €.
If € is a line and X is a point, there are many phrases used to express the
relationship X € €. The following are synonymous:

i. Xied.
ii. € contains X.
ii. X lies on €.
iv. € passes though X.
v. X and ¢ are incident.
vi. X is incident with €.
vii. € is incident with X.

Remark: In axiomatic geometry one usually takes points and lines as
fundamental objects and incidence as a fundamental relation. Then an inci-
dence geometry would consist of sets #and ¢ and a relation in 2 X %.
The relation is assumed to satisfy certain properties from which other
properties of the axiomatic system are deduced. See Greenberg [16]. We
are being more specific here, but our propositions occur as axioms or
propositions in axiomatic developments of plane geometry.

A fundamental property of a line is that it is uniquely determined by any
two points that lie on it. Thus, it is important to mention the following:

Theorem 6. Let P and Q be distinct points of E*. Then there is a unique
line containing P and Q, which we denote by PQ.

Proof: Let v be a nonzero vector. The line P + [v] passes through Q
if and only if Q — P € [v]. This means that [Q — P] = [v]. Hence, the line
P + [Q — P]is the unique line required. See Figure 1.2. O

Thus, a typical point X on the line £ = Fé is written

a) =P+ HQ — P) = (1 — P + 1Q. (1.5)

(See Figure 1.3 for a vector addition interpretation.) This equation may be
regarded as a parametric representation of the line. As t ranges through the
real numbers, a(f) ranges over the line. The parameter is related to
distance along € by the formula

d(a(h), a(t)) = |6z — 1]|Q — Pl. (1.6)

IfX=(1—-1)P+1Q,where 0 <t<1, wesay that X is between P and Q.
This algebraic characterization of betweenness is equivalent to the
following geometrical one.



Theorem 7. Let P, X, and Q be distinct points of E*. Then X is between P
and Q if and only if

d(P, X) + d(X, Q) = d(P, Q).

Proof: Suppose first that X is between P and Q. Then for some ¢ € (0, 1),
X=(0-09P+ Q.
Then
d(P, X) = |X - P = |(Q — P)| =4Q — P|.
Also,

dX, Q) =10-X[=[|0-0Q-P|=010-09lQ - P,
hence,

d(P, X) + d(X, Q) =1Q — P| + 1 - 1|Q — P|
=1Q - P| = d(P, Q).

Conversely, suppose that X is a point of E? satisfying d(P, X) + d(X, Q)
=d(P, Q). As we saw in Theorem 5, there is a positive number u such that

X - P=ulQ - X).
‘ Solving for X gives

1 u

ohal we 1+u

Q.

Setting t = u/(1 + u), we see that 0 < t < 1, while 1 — ¢ = 1/(1 + u), so that
X=(1-1t)P+tQ. Thus, X is between P and Q. a

Remark: Theorem 7 is illustrated in Figures 1.4 and 1.5.

Let P and Q be distinct points. The set consisting of P, Q, and all points
between them is called a segment and is denoted by PQ. P and Q are the
end points of the segment. All other points of the segment are called
interior points.

If M is a point satisfying

d(P, M) = d(M, Q) = 3d(P, Q),

then M is a midpoint of PQ. It follows easily from Exercise 8 that each
segment has a unique midpoint, namely,

M =P + Q).

If two lines € and » pass through a point P, we say that they intersect at P
and P is their point of intersection. From this point of view we restate part
of Theorem 6.

Lines

P

Figure 1.4 d(P,X) +d(X, Q) >
d(P, Q). X is not between Pand Q.

Figure 1.5 d(P,X)+d(X, Q)=
d(P, Q). X is between Pand Q.

13
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X =
Figure 1.6 Theorem 9.
x={x,v)v+ (x,w)w.
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Theorem 8. Two distinct lines have at most one point of intersection.

As we shall see later, two lines in E? may have no point of intersection at
all.

If three or more lines all pass through a point P, we say that the lines are

concurrent. If three or more points lie on some line, the points are said to
be collinear.

Orthonormal pairs

Two vectors vand w are said to be orthogonal if (v, w) = 0. It is frequently
desirable to have a vector available that is orthogonal to a given vector. If
v = (vy, v,), we define v* = (—v,, v;). Clearly, v and v* are orthogonal
and have the same length. We also easily see that

vt = -,
A vector of length 1 is said to be a unit vector. A pair {v, w} of unit
orthogonal vectors is called an orthonormal pair.
Theorem 9. Let {v, w} be an orthonormal pair of vectors in R*. Then for
all x € R?,
x = {(x, v)v + (x, w)w.
Proof: Because vand w are linearly independent, they form a basis for R?
(see Appendix D). Thus, for any x € R?, there exist unique constants A and

w such that x = Av + pw. But then, using the fundamental properties of the
inner product, we get

(x, v) = Av, v) + pl{w, v) =\
and

(x, w) = NMu, w) + p(w, w) = p. O

Remark: Theorem 9 is illustrated in Figure 1.6.

The equation of a line

If € is a line with direction vector v, the vector v* is called a normal vector
to €. Clearly, any two normal vectors to the same line are proportional. We
now derive a characterization of a line in terms of its normal vector. See
Figures 1.7 and 1.8.



Theorem 10. Let P be any point and let {v, N} be an orthonormal pair of
vectors. Then P + [v] = {X|(X — P, N) = 0}.

Proof: By Theorem 9 we have the identity
X-P=(X-P,v)v+ (X - P,N)N

for any point X in R%. We show that X lies on the line P + [v] if and only if
(Xx-P,N)=0.
First, suppose that X = P + tv for some real number ¢. Then

(X = P,N) = (v, N) = t{v, N) = 0.
Conversely, if (X — P, N) = 0, the identity reduces to
X—-P=(X-P, vy,
so that

X=P+(X—-P, vy €P+ [y O

Corollary. If N is any nonzero vector, {X|(X — P, N) = 0} is the line
through P with normal vector N and, hence, direction vector N*.

Proof: Just observe that (X — P, N) = 0if and only if (X — P, N/[N|) =0
and apply the theorem. O

We recall from elementary analytic geometry that {(x, y)lax + by + ¢
= 0} should represent a line, provided that a* + b* # 0. This fits into our
scheme as follows:

Theorem11. Leta, b, and c be real numbers. Then {(x, y)|ax + by + ¢ = 0}
is
i. the empty setifa=0,b =0, and c # 0,
ii. the whole plane R* ifa = 0,b = 0, and ¢ = 0,
iii. a line with normal vector (a, b) otherwise.

Proof: Cases (i) and (ii) are obvious. Consider now the case where
@ + b% # 0. One can check that the set in question is not empty. In fact, at
least one of the points (—¢/a, 0) and (0, —¢/b) must be defined and satisfy
the equation.

Let P = (x,, y;) be any point satisfying the equation. Then ¢ =
—(ax, + by,). Thus ax + by + ¢ = Oif and only if a(x — x;) + b(y — y1) =
0. Letting N = (a, b), we see that the set in question is just the line through
P with normal vector N. O

The equation of a line

Figure 1.7 (X — P,N) # 0. X does not
lieon € = P+ [v].

N
.”)

A
v -

Figure1.8 (X — P,N) =0. Xlieson
€=P+[v.

15
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Figure 1.9 Perpendicular lines and their
orthonormal direction vectors.

Figure 1.10 Dropping a perpendicular
to € from X.
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Perpendicular lines

Two lines € and 2. are said to be perpendicular if they have orthogonal
direction vectors. In this case we write € L . Two segments are
perpendicular if the lines on which they lie are perpendicular.

An important manifestation of perpendicularity is the famous theorem
of Pythagoras.

Theorem 12 (Pythagoras). Let P, Q, and R be three distinct points.
Then |R — P> = |Q — P> + |R — QJ if and only if the lines QP and
RQ are perpendicular.

Proof: We recall formula (1.3):

lx + yI? = |x]* + 2(x, y) + |y

We note that |x + y|*> = [x|*> + |y|? if and only if (x, y) = 0. Now put
x=Q —-Pandy = R — Q. We see that x + y = R — P, and, hence,
IR — P*=|Q — P>+ |R — Q]*if and only if (Q — P, R — Q) = 0. This
means that the segment PQ and the segment QR are perpendicular. O

The next property of perpendicular lines is more evident intuitively than
Pythagoras’ theorem but more difficult to prove. See Figure 1.9.

Theorem 13. If € L s, then € and » have a unique point in common.
Proof: Let€ = P + [v] and » = Q + [w]. We may assume that vand w are
unit vectors, so that {v, w} is an orthonormal set. We write

P—Q=(P-0Q,vjv+ (P-0Q, ww,
and, hence,

P—(P-Q,v)v=0+ (P - Q, ww.
Setting

F=P = {(P=0,uw=0% (P=Q,ww,

we see that F lies on both € and »:.

Fis the only common point, because if there were two, by Theorem 8 the
lines would have to coincide. O

This result allows us to obtain a result motivated by a construction of
Euclid.

Theorem 14. Let X be a point, and let € be a line. Then there is a unique
line »n through X perpendicular to €. Furthermore,



i. m = X + [N], where N is a unit normal vector to €;

ii. € and s intersect in the point F = X — (X — P, N)N, where P is any
point on &;

ii. d(X, F) = |(X — P, N)|.

Remark: The construction of » when € and X are given is called erecting a
perpendicular to € at X if X happens to lie on €. Otherwise, it is called
dropping a perpendicular to € from X. In this case the unique point of
intersection of € and » is called the foot F of the perpendicular. Theorem
14 is illustrated in Figures 1.10 and 1.11.

Theorem 15. Let € be any line, and let X be a point not on €. Let F be the
foot of the perpendicular from X to €. Then F is the point of € nearest to X.
(See Figure 1.12.)

Proof: Let P be any point on €. Because PF 1L FX, Pythagoras’ theorem
gives | X — P|* = |X — F|> + |F — P|%. Thus, |X — P|* = |X — F[? with
equality if and only if P = F. O

Definition. The number d(X, F) is called the distance from the point X to
the line € and is written d(X, €).

Remark: d(X, €) is the shortest distance from X to any point of €.

Corollary. Let € be a line with unit normal vector N. Let X be any point of
R%. If P is any point on €, then

d(X, €) = |{(X - P, N)|.

We now present another useful construction involving perpendicularity.
Let PO be a segment. The line through the midpoint M of PQ that is

perpendicular to I"_é is called the perpendicular bisector of the segment
PQ. See Figure 1.13.

Remark: The perpendicular bisector consists precisely of all points that
are equidistant from P and Q.

Parallel and intersecting lines

Two distinct lines € and » are said to be parallel if they have no point of
intersection. In this case we write € || 2.

In light of the exercises for the section on lines, if € is any line, P is any
point on ¢, and v is any direction vector of ¢, then € = P + [v].

We have the following criterion for parallelism.

Parallel and
intersecting lines

Figure 1.11 Erecting a perpendicular to
€at X.

: \ 2
F P
Figure 1.12  Fis the point of ¢ closest to
X.

e ey e e e e e e v

|
Figure 1.13 The midpoint and
perpendicular bisector of a segment.
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Figure 1.15 €| » and » L » imply
€ Ln.

PEPN, i, N c; S~

Figure 1.16 € L »,m L n,and € || m.
d(X, €) = d(Y,m) = d(€, m).
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Theorem 16. Two distinct lines € and » are parallel if and only if they have
the same direction. (Recall that the direction of a line P + [v] is the set [v].)

Proof: Suppose that € and »2 have a common point F. We may write
¢ = F + [v] and » = F + [w] for nonzero vectors vand w. Because € and »
are distinct, [v] # [w].

Conversely, suppose that € and » have different directions [v] and [w)].
Let P be any point of ¢, and let Q be any point of »:. Because vand w are
not proportional, there exist numbers ¢ and s such that P — Q = tv + sw.
(See Appendix D.) This means that P —tv=Q + sw. Let F=P —tv =
Q + sw. Then Fis a common point of € and ». O

Parallel lines come in families, one for each direction. A line s
perpendicular to one member ¢ of the family is also perpendicular to all the
others. Thus, it is possible to parametrize the family by the real numbers,
essentially by measuring distance along »:. Although these facts are
intuitive and familiar, it is necessary to point them out explicitly here in
order to compare them to the analogous situations in non-Euclidean
geometries.

We leave the proofs of these to the exercises. Cases (i)—(iii) are

illustrated in Figures 1.14-1.16, respectively. Figure 1.16 also illustrates
Theorem 18.

Theorem 17.

i. If € || » and m || », then either € = » or € || ».
ii. If€| mand m L n,then € L n.
iii. If€ L nandm L n, then €| m or € = .

Theorem 18. Let € and » be parallel lines. Then there is a unique number
d(€, ) such that

d(X, €) = d(Y, m) = d(€, m)

forall X € s and all Y € €. In fact, if N is a unit normal vector to € and .,
then for any points X on » and Y on ¢,

(X = Y, N)| = d(€, m).

Thus, parallel lines remain “equidistant.” Intersecting lines, on the
other hand, behave as follows:

Theorem 19. Let € be any line, and let » be a line intersecting € at a point
P. Let vand w be unit direction vectors of € and », respectively. Let a(t) =
P + tw be a parametrization of ». Then d(«a(t), €) = |t||{(w, v*)|. Thus as
X ranges through », d(X, €) ranges through all nonnegative real numbers,
each positive real number occurring twice. See Figure 1.17.



Reflections

Any subset of the plane is called a figure. Naturally some figures are more
interesting than others. Figures with a high degree of symmetry are most
interesting, not only because of aesthetic considerations but also because
they occur in nature. Snowflakes, molecules, and crystals are three
examples of objects with symmetric cross sections.

The simplest kind of symmetry that a plane figure can have is symmetry
about a line. See Figure 1.18. We now formulate this notion precisely. Let
¢ be a line passing through a point P and having unit normal N. Two points
Xand X' are symmetrical about ¢ if the midpoint of the segment XX" is the
foot F of the perpendicular from X to €. See Figure 1.19. In other words, X
and X’ are symmetrical about € if we have

X+ X')=F.
By Theorem 14 this means that
IX+3Xx =X - (X - P, N)N,
1X' =4X - (X - P, N)N,
X' =X-2(X- P, N)N.

In order to consider symmetry about various lines, it is convenient to
adopt a dynamic approach by expressing the relationship between X and
X' in terms of a transformation that takes X to X'.

Definition. For a line € the reflection in € is the mapping Q. of E* to E?
defined by

QX = X — 2(X — P, N)N,

where N is a unit normal to € and P is any point of €.

If & is a figure such that Q, % = #, then we say that Z is symmetric
about €. The line € is called a line of symmetry or axis of symmetry of Z.
We now investigate some of the properties of reflections.

Theorem 20.

i. d(QeX, QYY) = d(X, Y) for all points X, Y in E>.
i. QeQeX = X for all points X in E*.

ii. Qg E* — E? is a bijection.

Proof:
i QX -QY=X-Y—-2(X—-Y, N)N. Thus,

|QeX—QcY)? = |X-Y[>*-4({X-Y, N))*+4({X-Y, N))*(N, N)
= Y8,

Reflections
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Figure 1.18 A figure that is symmetric

about the line €.
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Figure 1.19 X and X’ are related by
reflection in the line €.
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Figure 1.20 Successive reflections
0.Q,.
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7

ii. Write Q,X = X — 2AN, where A = (X — P, N). Then

QNeX =X —2A\N — 2(X — 2AN — P, N)N
=X —2\N — 2(X — P, N)N + 4\(N, N)N
=X — 2AN — 2AN + 4\N
= X.

iii. We first show that (), is injective. If Q. X = Q,Y, then Q,Q.X =
Q,0,Y and X = Y, by (ii). To show that €, is surjective, let Y be any
point of E% Let X = Q.Y. Then Q,X = Y, so that Y is in the range of
Q. O

Theorem 21. QX = X if and only if X € ¢.

Proof: X — 2(X — P, N)N = X if and only if (X — P, N)N = 0; that is,
(X — P, N) = 0. The statement now follows from Theorem 10. O

Remark: A fixed point of a mapping T is a point X satisfying 7X = X.
Thus, Theorem 21 says that the fixed points of a reflection are those which
lie on its axis.

Remark: Theorem 20 shows that reflections are involutive distance-
preserving bijections. We study distance-preserving bijections (isometries)
in the next section. To say that a mapping T is involutive means 72 = TT
= I, the identity mapping of E%. (See also Appendix B.)

Congruence and isometries

If .7 is any figure and (), is any reflection, then ), # is called the mirror
image of # in the line €. The figure and its mirror image are observed to
have the same ‘“size” and “shape.” If ), is a second reflection, then
Q. Q. Zis again the same size and shape as Z. (See Figure 1.20.) One may
think of moving .# “rigidly” in the plane so that it coincides with Q_Q, #
The key property that makes precise our intuitive notions of size, shape,
and rigid motion is that the distance between each pair of points on .7 is
equal to the distance between the corresponding pairs of points on
Q,Q,%. We introduce the general concept of distance-preserving map-
ping or isometry as follows:

Definition. A mapping T of E* onto E? is said to be an isometry if for any X
and Y in E?,

d(TX, TY) = d(X, Y).



Definition. Two figures #, and %, are congruent if there exists an Symmetry groups
isometry T such that T#, = %,.

We showed in the previous section that every reflection is an isometry.
Although not every isometry is a reflection, we shall see later that every
isometry is the product (composition) of at most three reflections. Thus,
reflections are the basic building blocks of isometries.

Every isometry T is a bijection of E? onto E?. In fact, if TX = TY, then

0 = d(TX, TY) = d(X, Y),

so that X = Y. Therefore, the inverse mapping T~! exists. In fact, 7" is
also an isometry because

d(T™'X, T°'Y) = d(TT"'X, TT"'Y) = d(X, Y).
Furthermore, if 7 and S are isometries, then
d(TSX, TSY) = d(SX, SY) = d(X, Y).
We now state these results formally.
Theorem 22.
i. If T and S are isometries, so is TS.

ii. If T is an isometry, so is T~".
ii. The identity map I of E? is an isometry.

In other words, the set of all isometries is a group called the isometry

group of E%. It is denoted by #(E?). Figure 1.21  An equilateral triangle and
its axes of symmetry.

Symmetry groups !

Let # be a figure in E. Then the set
S (F)={Te SEB)TF= %)

is a subgroup of #(E?) called the symmetry group of #. The fact that
#(F) is a subgroup can be easily verified. The size of the symmetry group
of # is a measure of the degree of symmetry of the figure. We shall show, !
for example, in a later chapter that an equilateral triangle (Figure 1.21) has B M c
asymmetry group of order 6 generated by reflections in the three medians. Figure 1.2 An isosceles triangle and its
The isosceles triangle ABC (Figure 1.22) has a symmetry group of order 2 axis of symmetry.

generated by reflection in the median AM. The circle has an infinite

symmetry group generated by reflections in all diameters. For an

elementary discussion of symmetry groups, see Alperin [2]. 21




Plane Euclidean geometry

22

Translations

Is there a simple way to describe the product of two reflections? In this
section we answer that question affirmatively in the case where the axes of
reflection are parallel.

Specifically, if »z and » are parallel lines, we may choose P arbitrarily on
» and choose Q to be the foot of the perpendicular from P to ». Then if N
is a unit normal vector to »z (and hence to »), we get

Q.0x = Qx — 2{Qux — P, N)N
=x—-2(x—-—Q,N)N-2(x—-P,N)N +4(x — Q, N)(N, N)N
=x+2(P - Q, N)N
=x+2(P - Q). (1.7)

The last step uses the fact that PQ is perpendicular to .

Definition. Let € be any line, and let » and » be perpendicular to €. The
transformation Q,Q), is called a translation along €. If »m # =, the
translation is said to be nontrivial.

Remark: When two lines in E? are perpendicular to ¢, they are, of course,
parallel. On the other hand, when two lines are parallel, there is a line (in
fact, infinitely many lines) perpendicular to both. In the geometries we will
study later in this book, these properties will fail to be true. In the
projective plane, for example, two lines can be perpendicular to a third line
but still not be parallel. In the hyperbolic plane, on the other hand, there
are parallel lines with no common perpendicular. Thus, if our terminology
here seems more specific than necessary, it is being set up so that it will be
applicable to the other geometries we study as well.

We now see that in the Euclidean plane, a translation does not
determine a line uniquely, although it does determine a parallel family. In
the exercises you will be asked to prove the following:

Theorem 23. Let T be a translation along €. If €' is any line parallel to ¢,
then T is also a translation along €'.

We also observe that each translation along ¢ has the effect of adding a
direction vector of € to each vector in the plane.

Theorem 24. Let T be a nontrivial translation along €. Then € has a
direction vector v such that

Tx =x+ v (1.8)



for all x € E*. Conversely, if v is any nonzero vector and € is any line with
direction vector v, then the transformation T determined by (1.8) is a
translation along €.

Proof: Let N be a unit direction vector for €. Let P be an arbitrary point of
E Let a and B be lines perpendicular to €. (See Figure 1.23.) Let a and b
be the unique numbers such that P + aN € a and P + bN € B. Our formula
(1.7) becomes

Q.Qpx =x + 2(P + aN — P — bN)
=x + 2(a — b)N.

If T # I, we must have a # b, so that 2(a—b)N is the required direction
vector.

Conversely, suppose that for each real number A we define a mapping 7
by

Thx = x + AN. (1.9)

If a and b are any two numbers such that A = 2(a — b), we construct
«=P+aN + [N*]and B = P + bN + [N*] and observe that T, = (,{g.
0O

We now investigate the group of all isometries generated by reflections
in lines perpendicular to €. First we must introduce some new terminology.

Definition.  The set of all lines perpendicular to a given line € in E? is called a
pencil of parallels. The line € is a common perpendicular for the pencil. See
Figure 1.24.

We note that taking any line » in E? together with all lines parallel to »
would be an equivalent construction.

So far we have discovered that the product of two reflections in lines of a
pencil of parallels is a translation along the common perpendicular €. We
now investigate further the algebraic structure of the set of isometries
formed by reflections of such a family.

We begin with the translations. We denote the set of all translations
along € by TRANS(¢).

Theorem 25. TRANS(€) is an abelian group isomorphic to the additive
group of real numbers.
Proof: 'We adopt the notation of Theorem 24. Then

TK°T“(X)=TA(X+LLN)=X+;LN+)‘N
=x+ (n+ MNN =T,

Translations

Figure 1.23 Q,Qg is the translation
along € by an amount equal to twice
d(a, B). Three successive positions X, X',
and X" of a typical point are shown.

Figure 1.24 A pencil of parallels with
common perpendicular €.
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Similarly,
TP- ° T)‘(x) = TH,“(X).

Because A + p = p + A, translations along ¢ commute.
Further, setting A = 0 yields Ty = I and T, ° T_, = Ty = I, so that

(1)~ = T,

Thus, TRANS(¢) is a subgroup of .# (E?). Furthermore, the mapping
N — T, of R to TRANS(¢) is an isomorphism. This is seen by observing
that T() - l, T)\_] = T_)‘, and TAT’L = Tx.;,u. O

Let 2 be the pencil of all lines that are perpendicular to a line €. We
denote by REF(2) the group generated by all reflections of the form (2,,,
where » € 2. In other words, REF(2) is the smallest subgroup of .# (E?)
containing all such €,,. In turn, TRANS(¢) is a subgroup of REF(Z).

In order to discuss the algebra of REF(#), we need to be able to
compute the product of any number of reflections in the family determined
by 2. We already know that in our notation, ,Qg = T,.

We now take three lines, a, B, vy, of 2 corresponding to the numbers a,
b, and c. Then

QGQBQ'V = Qa 2 TZ(b—c)’

Q.050.x = Qu(x + 2(b — ¢)N)

Q.(x + uN), where p = 2(b — ¢),
x+ uN — 2(x + pN — P — aN, N)N
x —2(x — P, N)N + (2a — p)N
=x—2(x—P,N)N +2(a—-b+c)N
=x—-2(x—(P+ (a— b+ c)N), N)N.

We recognize the right side as the formula for reflection in the line d € 2
passing through the point P + dN, where d = a — b + c.

Thus, the product of three reflections in lines of 2 is a fourth reflection
in a line of the same pencil 2. This is our first instance of a three reflections
theorem, which plays such an important role in classifying the isometries of
plane geometries.

Theorem 26 (Three reflections theorem). Let «, B, and vy be three lines of a
pencil 2 with common perpendicular €. Then there is a unique fourth line d
of this pencil such that

Q.00 = Q.
There are many ways in which a given translation may be represented as

the product of two reflections. Using the three reflections theorem, we can
exhibit this flexibility precisely.



Theorem 27 (Representation theorem for translations). Let T = ,{s be
any member of TRANS(€). If s and » are arbitrary lines perpendicular to
{, there exist unique lines »' and »' such that

T=Q,.9,.=Q/.,.
Proof: Apply the three reflections theorem to », «, and B to produce a

unique line »' such that Q,,Q,Qg = Q,,.. Then multiplying both sides by
0, yields Q,Qg = Q,,Q,,.. The line »' is obtained analogously. O

Corollary. Every element of REF(2) is either a translation along € or a
reflection in a line of 2.

Proof: This is clear from the following group multiplication table, which
summarizes the facts we have established.

| Q, T,
Q'a T2(a —-b) ‘Qa -2
TX nb+ N2 T)\ +p

Here, we have temporarily indexed the reflections {2 by numbers rather
than lines. Thus, for example, ), is short for Q,, where « = P + aN +
[N*]. O

Let v be any vector in E2. We define 7,, the translation by v, by
TX =X + w

(If v= 0, 7, = I, and we have the trivial translation.) Although all
translations arise in the manner we have described, it is possible to discuss
in an elementary way the product of two translations that are not along the
same line. We get

Theorem 28. The set 7 (E?) of all translations is an abelian subgroup of
S(E?).

Proof: The following equations are easy to verify and imply the
conclusions of the theorem:

L. 7% = Tyswe

2 To = I

3. t_,=(,)"". O

Corollary. 7 (E?) is isomorphic to the group R* with vector addition.

Translations
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Rotations

We now investigate the product of reflections in two intersecting lines.
Let € = P + [v] be a line with unit direction vector v. There is a unique
real number 6 € (—m, =] such that

v = (cos 0, sin 8). (See Theorem 1F.)
The unit normal v* can be written as
N = (—sin 6, cos ).
We now try to express {2, in terms of 6. First note that

Qex =x — 2(x — P, N)N,
Qex — P=x—-P—2(x — P, N)N.

Let €, be the line through 0 with direction [v]. Then
Q¢x = x — 2(x, N)N.
Thus, we see that
Qex — P = Qg (x — P),
or
Qex = Qe (x — P) + P.
In other words,
Qe = 7pQ,7_p. (1.10)

We first deal with €}, and use (1.10) to return to the original situation.
For any x note that

(x, N) = —x; sin & + x, cos 0.
Thus, writing our vectors as column vectors, we get

X, -xl _ _ .
an[xz] -xz] 2(—x; sin 6 + x, cos 0)[

—sin 0]
cos 0

_ [(1 — 2 sin? 0)x, + (2 sin 6 cos B)xz]
L(2 sin B cos 8)x; + (1 — 2 cos® O)x,

_[cos 26 sin 20][x,]
" Lsin 20 —cos 20]lx,)" (.10

In other words, Q: R? — R? is linear. We denote its matrix (see
Appendix D) by the symbol ref 8. This matrix represents reflection in the
line through the origin whose direction vector is (cos 6, sin ):

TN g [cos 20  sin 20]'

sin 20 —cos 26



We now investigate the matrix algebra of these reflections. First we
wnsider another line » through P and the associated line »,. Then if
(cos &, sin &) is a direction vector of »,

cos 2(0 — ¢) —sin 2(0 — ¢)]

TEEO TEE = [sin 20 — &) cos 2(8 — &)

We have a special symbol, rot 8, for a matrix of the form

cos & —sin 6]

Xop g = [sin 6 cos®

Because this linear mapping takes the standard unit basis vector g
tov= (cos 0, sin 0) and takes &, to v* = (—sin 6, cos 8), it is reasonable to
think of rot 0 as a rotation by 0 radians in the positive sense. We must keep
inmind, however, that definitions of angle, radians, or sense have not yet
been given. We now define rotation in such a way that rot 0 is a rotation
about the origin.

Definition. If o and B are lines passing through a point P, the isometry
0.0 is called a rotation about P. (See Figure 1.25.) The special case a =
is allowed so that the identity is (by definition) a rotation about P no matter
what P is. If a rotation is not the identity, we refer to it as a nontrivial
rotation. If o L B, the rotation Q,Qg is called a half-turn.

Theorem 29. The set of all rotations about the origin is an abelian group
called SO(2).

Proof: Using the formulas from Appendix F, it is easy for us to check that
the identities
rot 6 rot & = rot(6 + ¢) = rot(d + 6) = rot ¢ rot 6,
rot(0) = 1,
(rot 8)~! = rot(—6)
hold. O

The symbol SO(2) stands for the special orthogonal group of EZ.

Theorem 30.
i. ref@rotd = ref(

NI-G-
\_/

N|c
\_/

ii. rot 0 refd = ref(

ii. ref @ ref  ref Y = ref (6 — & + V).

Rotations

Figure 1.25 (2,0 is the rotation about
P by twice 8. Three successive positions
X, X', and X" of a typical point are
shown.
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Proof: (i)

[cos 20 sin 20][cos b —sin ¢]

sin 20 —cos 20JLsin & cos &

_ [cos(29 - ¢) sin(20 — ¢)]
~ Lsin(26 — &) —cos(20 — &))°

Equation (ii) is essentially the inverse of (i). Finally, applying (i), we can
verify (iii) directly as follows:

ref 8 ref & ref ¥

ref 0 rot 2(é — V)
ref(6 — & + ). O

Theorem 31. Tke set of all rotations about the origin and reflections in lines
through the origin is a group called the orthogonal group and is denoted by
0(2). SO(2) is a subgroup of index 2 in O(2).

Proof: The following group multiplication table is drawn from the facts we
have established.

ref & rot B
ref 6 rot 2(6 — ¢)  ref (0 - %)
rot ref(d) + %) rot(a + B) O

The set of reflections is a coset complementary to the coset SO(2).

Let P be any point. The set 2 of all lines through P is called the pencil of
lines through P. We denote by REF(#) = REF(P) the smallest group of
isometries containing all (,, where € € . We denote by ROT (P) the set
of all rotations about P.

Theorem 32. Let 2 be the pencil of all lines through a point P. Then
REF(Z) = 0(2) and ROT(P) = SO(2).

Proof: Foreach T € O(2), 7p° To1_pisin REF(P). In fact, Tpref87_pisa
reflection, whereas 7p rot 8 7_p is a rotation.

It is easy to verify that this provides an isomorphism of O(2) onto
REF (P) and of SO(2) onto ROT(P). O

We are now ready to prove the analogues of Theorems 26 and 27 for
pencils of concurrent lines.

Theorem 33 (Three reflections theorem). Let o, B, and vy be three lines
through a point P. Then there is a unique line d through P such that



Proof:  If

and

Q.00 = Q5. Glide reflections

tp(ref 8)1_p, Qg = 7p(ref d)7_p,

QY = TP(ref d")T—Pv

we should choose & so that

Qs = 7p(ref(6 — & + ¥))7_p.

In other words, & is the line through P with direction vector

(cos(® — & + V), sin(6 — & + V)). a

Theorem 34 (Representation theorem for rotations). Let T = (g be any
member of ROT(P), and let € be any line through P. Then there exist unique
lines » and "' through P such that

T= Q(QM = Q,,'n.(.

Proof: This is similar to the proof for translations. 0

Glide reflections

We now have three basic types of isometries: reflections, translations, and Vo
rotations. A fourth type, the glide reflection, is defined to be a reflection =
followed by a translation along the mirror. See Figure 1.26. Specifically, if
{ = P + [v], the glide reflection defined by € and v is given by

7Qex = x — 2(x — P, N)N + v,

\

\

where N is the unit vector v*/|v|. Note that glide reflection with axis €.

Qrx=x+v—2(x+v—- P, N)N
=x+v—-2(x— P, N)N

because (v, N) = 0. Thus, the reflection and translation making up the
glide reflection commute. It will be shown that every isometry is one of the
four types: reflection, translation, rotation, or glide reflection. Because
7, = I is a possibility, each reflection is also a glide reflection. However,
glide reflections of this type are said to be trivial.

We have dealt with products of reflections in three lines of the same
pencil (parallel or concurrent). As an illustration of the power of the tools
we have now developed, we analyze the product of reflections in any three

lines.

7
>

Figure 1.26 A figure and its image by a
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Theorem 35. Let «, B, and vy be three distinct lines that are not concurrent
and not all parallel. Then Q,QgQ). is a nontrivial glide reflection.

Proof: Assume first that a meets B at P. Let € be the line through P
perpendicular to y. Let F be the point of intersection of € and -y. Using the
representation theorem for rotations, we know that there is a line »
through P such that

0.0 = 0,0, and Q.00 = 0,00,

Let » be the line through F perpendicular to », and let »" be the line
through F perpendicular to ». Now

Q(Q’ . 9.,'0,, e HF,
the half-turn about F. As a consequence,
2,00, = Q,0,90,.

Note that ., is a translation along ». Because F does not lie on », »’
and » are distinct. Thus, 2,04, is a nontrivial glide reflection.

If « does not meet B but, instead, B meets v, apply the same argument to
02,00, = (2,950,)". If we deduce that 2.Q5Q,, = 7,0, then 2,00,
= (1,027 = Qe7_, = 7_,Q is also a nontrivial glide reflection. O

Theorem 36. Let T be a glide reflection, and let Q) be any reflection. Then
Q.T is a translation or rotation.

Proof: Let € be the axis of the glide reflection T. There are two cases to
consider.

CASE 1: ¢ intersects a. Let P be a point of intersection. By the
representation theorem for translations, we may write T = Q,(,(),, where
a passes through P, and both < and # are perpendicular to €. Then

Q.T = Q,00,0,.

But now a, ¢, and « all pass through P. By the three reflections theorem
there is a line ¢ through P such that

Q. T = Q.Q.
Thus Q,T is either a translation or a rotation.
CASE2: € || a. Then
Q.T = 2,20,0, = Q,0.0,0,.

Noting that # L ¢ and « L a, we see that Q,(, and Q,(), are distinct
half-turns. By Exercise 26, 1, T is a translation. O



Definition. An isometry that is the product of a finite number of reflections
is called a motion.

Theorem 37. Every motion is the product of two or three suitably chosen
reflections.

Proof: Suppose that a sequence of reflections is given. If the sequence has
length greater than three, we choose any four adjacent elements of the
sequence. Applying either Theorems 35 and 36 or one of the three
reflections theorems, we can write the product of these four reflections as
the product of two. This procedure can be continued until fewer than four
reflections remain. a

Corollary. The group of motions consists of all translations, rotations,
reflections, and glide reflections.

Structure of the isometry group
Our main theorem in this section is the following:
Theorem 38. Every isometry of E* is a motion.

Proof: Let T be an arbitrary isometry. We consider several cases.

CASE1: T(0) = 0. In this case we show in the next lemma that 7 = rot 6
or ref O for some value of 6. In other words, T € O(2).

CASE 22 T(P) = P for some point P. Then 7_pT7p is an isometry
leaving 0 fixed and is, hence, a member of O(2) by Case 1. Thus,
T = tp(rot 8)1_p or T = 7p(ref 0)7_p. In either case, T is a motion.

CASE3. T has no fixed points. Let P = T(0). Then 7_p° T leaves 0 fixed
and is, hence, either rot 0 or ref 0. In any case, T = 1prot 8 or T = 1pref 6,
so that T is a motion. O

Remark: Case 2 could have been handled as part of Case 3. However, the
representation obtained this way is more useful.

We now prove the lemma referred to in Case 1. Although the notion of
isometry depends only on distance, the lemma shows that an isometry
leaving the origin fixed has a particularly nice algebraic form — it must be
linear.

Structure of the
isometry group
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Lemma. If T is an isometry with T(0) = 0, then
i. (Tx; Ty) = (x,y).
ii. T =rot6orT = ref 6 for some 6.

Proof:
i. By the polarization identity (see Exercise 29),
(x, y) =3 + |yl - Ix — yP),
(Tx, Ty) = 3T + |TyP? - |Tx - TyP).

Now
|Tx| = d(0, Tx) = d(T(0), Tx)
= d(0, x) = |x|.
Similarly,
Tyl = Iyl-
Also

|Tx — Ty| = d(Tx, Ty) = d(x, y) = |x — y|.

ii. Lete, =(1,0)and e, = (0,1). Ifx = x;&; + x;6,, then {Te,, Te,} is an
orthonormal basis for E2. Hence,

Tx = (Tx, Te,)Te, + (Tx, Te,)Te,.
Using the result of (i), we obtain
Tx = (x, €;)Te; + (x, €3)Te; = x,Tey + x;T¢,.
Now T¢, is a unit vector. Writing
Tey = Ny + Apes,

we see by Theorem 9 and the Cauchy-Schwarz inequality that

I\ = [(Tey, &1)] < |Teyles| = 1.
Similarly,

A2l =1 and |Tey|? = A3 + A3,
so that

A+ A =1.

As in our discussion of rotations, there is a unique 6 € (—m, ) such
that A\; = cos 6 and A\, = sin 6. Now

(Tey, Tey) = (&2, 1) = 0,
so that

Te, = £(Tey)*t.



In other words,
Te; = x=((—sin 0)e; + (cos 0)e;).

Writing this in matrix form, we have that either

_[cos & —sin 6][,:,] -
Ix= [sin 0 cos 0llx] T (ot O)x

_[cos &  sin 0][::,]_( 1)
Tx_[sine —cos 0]lx,] — ret ¥

for all x € E%.

or

Fixed points and fixed lines of isometries

Theorem 39.

i
ii.
iii.
iv.
V.

Proof:

A nontrivial translation has no fixed points.

A nontrivial rotation has exactly one fixed point, the center of rotation.
A reflection has a line of fixed points, the axis of reflection.

A nontrivial glide reflection has no fixed points.
The identity has a plane of fixed points.

and 0. In the first case

for all x, so that Tx = x if and only if (/ — rot 8)x = P. But

Now sin?(8/2) = 0 if and only if rot 8 = 1. Thus, unless rot 6 = I, the
equation (/ — rot 8)x = P has a solution (see Appendix D), and thus T has
a fixed point. Because T has no fixed point, rot 8 = I and T = 7p.
Conversely, of course, a nontrivial translation has no fixed point.

We now examine the second case, T = 7p ref 6. Observe that T is the
product of three reflections. Using Theorem 35, we see that T is a
nontrivial glide reflection. Conversely, a nontrivial glide reflection can
have no fixed points. For if 7, is a glide reflection with € = P + [v], and

x=Qdx+v)=x+v-2(x+v— P, N)N,

Tx = (rot 8)x + P

det(I — rot 8) = (1 — cos 8)* + sin® 0

=2—2cose=4sin2%.

then, because (v, N) = 0,

v=2(x — P, N)N.

Suppose that T is an isometry with no fixed points. As we have
shown in the previous section, T = 7p rot 8 or T = 7p ref 6 for suitable P

Fixed points and
fixed lines of isometries
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But then
(v, v) =2(x — P, N)(N, v) =0,

so that v = 0.

Thus, an isometry has no fixed points if and only if it is a nontrivial
translation or glide reflection. In particular, statements (i) and (iv) hold.

Let T be an isometry with just one fixed point P. From Case 2 of the
previous section, T is a rotation about P or a reflection in a line through P.
By Theorem 21 the fixed point set of a reflection consists ot the axis of
reflection itself. Hence, T must be a rotation. Conversely, a nontrivial
rotation has exactly one fixed point. For if

T = 7p(rot 8)7_p,
then x is a fixed point if and only if
x = P + (rot 0)(x — P);
that is,
(I — rot 8)(x — P) = 0.

Again, because det (I — rot 8) # 0, the only possibility is x — P = 0; that is,
x = P. Thus, an isometry has exactly one fixed point if and only if it is a
nontrivial rotation. This implies (ii).

Statement (iii) is just Theorem 21, and statement (v)is trivially true. This
completes the proof. O

Corollary. The fixed point set of an isometry must be one of the following:
i. a point (rotation)

ii. a line (reflection)

iii. the empty set (translation or glide reflection)

iv. the whole plane E? (the identity).

If € is any line and T is an isometry, then T¥€ is a line, as we will see in
Chapter 2. An isometry induces a bijection T: ¥— % of the set .Z of lines
onto itself. If € is a line such that T¢ = €, we say that € is a fixed line of T. It
is useful to classify the isometries of E? with respect to their fixed lines.

Theorem 40.

i. A nontrivial translation along a line € has a pencil of parallels as its
fixed lines. This pencil consists of all lines parallel to €.

ii. A half-turn centered at C has the pencil of lines through C as its set of
fixed lines. A nontrivial rotation that is not a half-turn has no fixed
lines.

iii. A reflection (), has the line » and its pencil of common perpendiculars
as its fixed lines.



iv.
v.

A nontrivial glide reflection has exactly one fixed line — its axis.
The identity leaves all lines fixed.

When trying to understand the effect of a particular isometry, de-

termination of its fixed points and fixed lines is a good starting point. These
notions and techniques apply in a wider context and will be pursued further
in later chapters.

We will defer the proof of Theorem 40 until we have developed more

convenient algebraic machinery.

EXERCISES
1. Prove Theorem 1.
2. Prove Theorem 2.
3. Prove Theorem 3.
4. Fill in the details required to obtain the expression for f(f) in formula
(1.1).
5. Show that the result of the corollary to Theorem 4 can be used to
obtain the inequality
x| = Iyl < x = yl.
6. Although P and v determine a unique line €, show that € does not
determine P or v uniquely.
7. If€ =P+ [v] = Q + [w], how must P, Q, v, and w be related?
8. fO<tr<land X =(1-1¢)P + tQ, and P # Q, show that
dP,X) |P—X| 4P - Q| R
dX,Q) |X-0| (-9lP-0Q 1-r
Use this to find the point X that divides the segment PQ in the ratio
r:s. Illustrate using r = 2, s = 3, P = (-3, 5), O = (8, 4).
9. If vis a nonzero vector, show that there are exactly two unit vectors
proportional to v.
10. Find an orthonormal pair one of whose members is proportional to
(4, -3).
11. i. Find all unit normal vectors to the line 3x + 2y + 10 = 0.
ii. Find all unit direction vectors of the same line.
iii. If P=(5,2)and v= (3, %), find the equation of the line P + [v]
in the form ax + by + ¢ = 0.
12. If v= (vy, v,) is a direction vector of a line ¢, the number a = v,/v, is

called the slope of ¢, provided that v; # 0.
i. Show that the concept of slope is well-defined.

Fixed points and
fixed lines of isometries
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13:

14.

15.
16.

17

18.
19.

ii. Show that if € is a line with slope a, the vector (1, «) is a
direction vector of €.
iii. Show that the line through P = (x,, y;) with slope « has the

equation
y = n =alx —x).

d(X, €) seems to depend on the choice of P on ¢ and on the unit
normal vector N. Show that if N’ is another unit normal vector to ¢
and if P’ is another point on ¢, then

KX = P, N)| = [{X — P', N')|.

Let P + [v] and Q + [w] be intersecting lines. Let D be the matrix
whose first row is vand whose second rowisw. If P — tv = Q + swiis
the point of intersection, prove that (¢, s) = (P — Q)D~'. Here (1, 5)
and P — Q are regarded as 1 X 2 matrices. Use this method to find the
intersection point in the case P = (1, 5), Q = (3, 7), v = (8, 1),
w = (6, 2).

Prove Theorems 17-19.
Let € and » be parallel lines. Let

n={3X+Y)Xet€ and Y € m)}.

Prove that ~ is a line parallel to € and » and lying midway between
them. In other words, d(s, ») = d(€, »).

The definition of (), seems to depend on P and N. Show that if P’ is
another point on € and N’ is any unit normal to €, then, for all points
Xv

(X - P,N)N=(X—-P, N)N.
(Compare with Exercise 13.)
Prove Theorem 23.

Let 2 be a pencil of parallels as discussed in Theorems 25-27.
i. Show that REF(2) is isomorphic to the multiplicative group of
2 x 2 matrices of the form

O
0 1y

where the reflection (2, corresponds to the matrix

%o ¥

o )

and T, corresponds to



2.
21.

2.

2.

26.

27.

29.

31.

32.

ii. Observe that TRANS(€) is a subgroup of index 2 in REF(2).
Verify the statements in Theorem 28 and its corollary.

Prove that

i. 7 (E?) is a normal subgroup of .#(E?).

ii. If € is a line, TRANS(€) is not a normal subgroup of .#(E?).
Let € = P + [v] be aline. Let » = Q + [v]. Show that if [u| = 1, then

Q.Q, =1, where w=2(P - Q, v')v',
and
Q,,,Qe = Tews

Let 1, be any translation. Let € = P + [w*] be any line having w
as a normal vector. Show that if » = P — 3w + [w*] and »' =
P + iw + [w'], we have

Qen- = Q,,,'Qc = Tw-

Show that the identity is the only rotation that can be described as a
rotation about two different points. The unique point P determined
by a given nontrivial rotation is called the center of rotation.

Verify the statements made in the proof of Theorem 32.

i. Show that two distinct reflections Q, and 2, commute if and
only if 2 1L €.
ii. Let P be any point. Prove that the half-turn about P is given by

Hpx = —x + 2P forall x e E%
iii. Show that the product of two distinct half-turns is a translation
along the line joining their centers.
If H,, H,, and H; are half-turns, prove that

H|H2H3 s H3H2H1.

Describe the product of two glide reflections whose axes are parallel.
The polarization identity

(x, y) = 3l + [yl = Ix = yP)
allows us to express the inner product in terms of lengths. Prove it.

We know that each element of .#(E?) can be written uniquely in the
form 7pa, where a € O(2) and P € R% Show that the function
Tpa— a is a homomorphism of .# (E?) onto O(2). What is the kernel?

Prove that the matrix rot  has a nonzero eigenvalue if and only if
rot 6 = £/.

Let a be an isometry such that «” = /. If n is an odd integer, what can
you say about a? Explain.

Fixed points and
fixed lines of isometries
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33.

34.
35.

36.

37.

Describe the group generated by K in the following cases:

i. K= {7,}.

ii. K= Q,.

ii. K= {Q, Q,}, €L .

iv. K= {1, 7.}

v. K={1,°Q¢, €=P+ [v].

If €, »2, and » are lines of a pencil, prove that Q,Q,Q, = Q,Q,.Q,.
Let p be a nontrivial rotation with center P. Let vbe any vector. Show
that 7,p is a rotation. Find its center in terms of the given informa-
tion.

Let P, Q, R, and S be four points, no three of which are collinear. Let
A, B, C, and D be the respective midpoints of the segments PQ, OR,

RS, and SP. Prove that fTéII CD and A—l’)"é_é or they coincide.

i. Prove the remark following the definition of perpendicular
bisector.

ii. Find the perpendicular bisector of the segment joining (-2, 6)
and (4, 8).



Affine transformations
inthe Euclidean plane

Affine transformations

In Chapter 1 we discussed the two fundamental aspects of geometry: the
incidence aspect based on the notion of collinearity, and the metric aspect
based on the notion of distance. Isometries are the transformations that
respect these features.

In this chapter we want to enlarge our world of transformations to
include those that respect incidence but do not necessarily preserve
distance. There are two reasons for doing this. First, we want to be able to
recognize and classify figures according to their shapes rather than insisting
on the stronger condition of congruence. For example, we want to have
transformations that relate similar triangles. The second reason is com-
putational convenience. The algebraic conditions that determine an
isometry are more difficult to work with than those based merely on
incidence.

Definition. A collineation is a bijection T: E* — E? satisfying the
condition that for all triples P, Q, and R of distinct points, P, Q, and R are
collinear if and only if TP, TQ, and TR are collinear.

Although this definition, like the original definition of isometry, is
appealing because of its geometric flavor, it does not lend itself immediate-
ly to computation. We need a more algebraic version.

Definition. A mapping T: E* — E? is called an affine transformation if
there is an invertible 2 by 2 matrix A and a vector b € R? such that, for all
teR%:

Tx = Ax + b.

Remark: By Theorem 1.38 every isometry is an affine transformation.
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Remark: The matrix A and the vector b mentioned in the definition are
uniquely determined by 7. In fact, b = T(0) and the columns of A are the
vectors Tg; — b, i = 1, 2. We call A the linear part of T, and b the
translation part of T.

Theorem 1. Every affine transformation is a collineation.
Proof: The following identity, which can be easily checked, directly shows
that affine transformations are surjective.

AA™(x — b)) + b = x.

On the other hand, if Ax + b = Ax + b, then A(x — ¥) = 0. Because A is
invertible, we must have x = ¥. Thus, affine transformations are injective.

Finally, for any points P and Q and any affine transformation 7, it is easy
to check that

(1 - 0P +tQ)=(1 — )TP + tTQ (2.1

for all real ¢. Thus, if R is a point collinear with P and Q, TR will be
collinear with TP and TQ. Conversely, if R" is a point collinear with TP
and TQ, there is (because T is surjective) a unique point R with TR = R".
But now we know that

TR = (1 — TP + 1TQ (2.2)

for some number ¢. Because T is injective, (2.1) and (2.2) yield

R=Q0 - 0P + 1Q,
and R is collinear with P and Q. O

Corollary. Every isometry is a collineation.
Theorem 2. Every collineation is an affine transformation.
The proof of Theorem 2 is too technical to present here but is included in

Appendix E. From now on in this chapter we will treat the word
“collineation™ as a synonym for affine transformation.

Fixed lines

If T is an affine transformation and € is a line, then T¢ is a line. We now
show how to compute this line in terms of the data determining 7 and ¢.

Theorem 3. Let T be an affine transformation, and let € = P + [v] be a line.
Then T¢€ is the line TP + [Av], where A is the linear part of T.



Proof: Let b be the translation part of T. For real ¢,
T(P + tv) = AP+ tv) + b = TP + (Av.

From this equation we can see that every point of T¢ lies on TP + [Av],
and conversely. Note that T¢ is in fact a line because Av # 0. 0O

Corollary. Let T be an affine transformation with linear part A and
iranslation part b. A line P + [v] is a fixed line of T if and only if v is an
eigenvector of A and (A — I)P + b € [v]. (The notion of eigenvector is
discussed in Appendix D.)

Theorem 4.

i. If two fixed lines of an affine transformation intersect, they do so in a
fixed point.

ii. If two fixed lines of an affine transformation are parallel, every line in
the pencil containing these lines is fixed.

ii. If two lines are parallel, their images under any affine transformation
are parallel.

The reader may prove these facts as an exercise. (See Exercise 2.)
We now have the machinery required to prove Theorem 40 of Chapter 1:

Proof (of Theorem 1.40): Let € = P + [v] be a line, and let T be an affine
transformation with linear part A and translation part b.

CASE 1: T is a nontrivial translation, so A = [ and b # 0. Then v is
automatically an eigenvector of A, and € is a fixed line if and only if b € [v].
Thus, the fixed lines of T are those with direction [b].

CASE2: If Tis a half-turn about a point C, then from Exercise 1.26, A =
-l and b = 2C. Again, v is automatically an eigenvector, and € is a fixed
line if and only if —2P + 2C € [v]; that is, C € P + [v]. Thus the fixed lines
of T are those that pass through C.

Now consider the case of a rotation having A = rot ® # £/. Then A has
no nonzero eigenvectors (Exercise 1.31); therefore, T can have no fixed
lines.

CASE 3: T is a reflection with axis . Clearly, » is a fixed line.
Furthermore, if » = Q + [w], where |w| = 1, then for all real ¢,

Q.0 + wh) = Q + wt — 2(wt, wh)w' = Q0 — .

Thus, Q + [w*] is a fixed line. In other words, (1, leaves fixed all lines
perpendicular to ». By Theorem 4(i), any fixed line not perpendicular to »
must meet the pencil of perpendiculars to » in fixed points. Because (1,
has no fixed points except on » (Theorem 1.21), £, can have no additional
fixed lines.

Fixed lines
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CASE4: T =, is a glide reflection consisting of reflection in a line
with unit direction vector w and a translation by a nonzero multiple of w.

We first show that » is a fixed line. Let Q be any point of . Then for
real ¢,

TQ+mw)=Q,(Q+w+kw)=0Q+ (t+ k)w—2((t + k)w, w*)w
=0 + (t + k)w.

Thus, the line »: is a fixed line.
Because T has no fixed points, any other fixed line would have to be
parallel to ». Let € = Q + sw* + [w] be a typical line parallel to ». Then

T(Q + sw' + w) = Q,(Q + sw' + (t + k)w)
=Q+swh+ (t+ kw —2(sw* + (t + k)w, wh)w
=Q —swt + (t + k)w.

Note that € cannot be fixed unless s = 0. O

The affine group AF(2)

We now look at the result of successively applying two affine trans-
formations. If

Tx = Ax + b and Tx = Ax + b,
then
TTx = A(Ax + b) + b = (AA)x + Ab + b.

Thus, the composition of two affine transformations is again an affine
transformation. One can arrange that 7T = [ by choosing A = A~' and

b = —A~'b, thus showing that the inverse of an affine transformation is
also an affine transformation. To summarize, we have proved

Theorem 5. The set AF(2) of all affine transformations of R? is a group,
called the affine group of R

Elements of AF(2) may be conveniently represented by matrices as
follows: Write

A= [a“ alz] and b = [b'].
az ax b,

If y = Ax + b, we may easily check that the 3 by 3 matrix equation
N ay ap b X1

Y| =\|an ax b X2 (2.3)
1 0 0 1 1



folds and that the composition operation in AF(2) corresponds to matrix
multiplication of the associated 3 by 3 matrices.

If GL(3) denotes the group of all invertible 3 by 3 matrices, then AF(2) is
asubgroup of GL(3). This representation may be abbreviated as

A b
r=[5 1)
0 1
where the sizes of the various matrices are understood from the context.
These ideas are formalized in Exercise 6.

Fundamental theorem of affine geometry

Affine geometry consists of those facts about E? that depend only on
incidence properties and not on perpendicularity or distance. Although
affine geometry is interesting in its own right, we will be concentrating here
on those aspects that will help us to solve problems of congruence and
symmetry of figures.

The fundamental theorem gives a clear and simple criterion for existence
and uniqueness of affine transformations, namely, that any two triangles
can be related by a unique affine transformation.

At this point it is useful to highlight a fact that arose in the proof of
Theorem 1 — affine transformations preserve order along lines.

Theorem 6. Let P and Q be points, and let T be an affine transformation.
Then

i. For any real number t,
(1 — P + Q) = (1 — )TP + (TQ. (2.1)
ii. A point X lies between P and Q if and only if TX lies between TP and
TQ. Furthermore,

d(P, X) _ d(TP, TX)
d(P, Q)  d(TP, TQ)

We are now in a position to derive an important uniqueness property of
affine transformations.

Theorem 7.

i. If an affine transformation leaves fixed two distinct points, then it leaves
fixed every point on the line joining these points.

ii. Ifan affine transformation leaves fixed three noncollinear points, it must
be the identity.

Fundamental theorem of
affine geometry
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Proof:  The first claim is immediate from formula (2.1). Now, let P, Q, and
R be three noncollinear points that are left fixed by an affine transforma-

tion 7. Let X be any point not lying on any of the lines PQ, OR, or RP. Let
z:t_pe the midpoint of the segment PQ. Now XA cannot be parallel to both

OR and RP; hence, it meets one of these lines in a point B (distinct from
A). Because X is on a line containing two fixed points A and B, X itself
must be a fixed point. We conclude that T leaves every point in the plane
fixed and therefore is the identity. O

Our proof of Theorem 7(ii) is a synthetic proof. It uses geometric ideas
derived earlier and geometric arguments.

In following the proof it is helpful to make your own diagram. An
alternative proof using linear algebra is suggested in Exercise 7.

We now come to the fundamental theorem, which asserts the existence
of a unique affine transformation relating any two triangles.

Theorem 8. Given two noncollinear triples of points, PQR and P'Q'R’,
there is a unique affine transformation T such that TP = P', TQ = Q', and
TR = R'.

Proof: Because {Q — P, R — P} and {Q' — P', R’ — P'} are bases for E
(Appendix D), there is an invertible 2 by 2 matrix A such that A(Q — P) =
Q' — P'and A(R—- P) =R — P'.Let T = 1pA1_p. Then TP =
TpA(P — P) = P'. Similarly, TQ = Q' and TR = R’. Thus, we have
constructed an affine transformation with the required property.

We now show that there is only one such transformation. Suppose that 7
agrees with Ton P, Q, and R. Then T~ T is an affine transformation that
leaves P, Q, and R fixed. By Theorem 7, T~'T= [; thatis, T = T. 0

Affine Reflections

Let P, Q, and R be noncollinear points of E*. The unique affine
transformation (guaranteed to exist by the fundamental theorem) that
leaves P fixed while interchanging Q and R is called an affine reflection and
is denoted by the symbol (used in [8]).

[P; O < R]

(see Figure 2.1). Clearly, every ordinary reflection is an affine reflection. In
fact, let € be any line, P any point on €, Q any point not on €, and R =
Q,Q. Then it is easy to verify (Exercise 8) that

Q = [P; Q & R]. (2.4)



We shall soon see that not every affine reflection is an isometry. However,
affine reflections share some of the properties of ordinary reflections. To
begin with, an affine reflection T must be involutive because T? has three
noncollinear fixed points. In addition, we have

Theorem 9. Let M be the midpoint of a segment QR, and let P be any point
not collinear with Q and ﬁ Then the affine reflection [P; Q < R]

leaves fixed every point of PM but no other points.

Poof: We first check that M is a fixed point. To see this, write
Tx = Ax + b as usual. Then

Q=TR=AR+ b and R=TQ = AQ + b.
Hence,
Q+ R=A(Q + R) + 2b;
that is,
M=AM + b =TM,

and M is a fixed point. By Theorem 7(i), PM consists entirely of fixed
points. On the other hand, the affine reflection is not the identity, so it
cannot have any additional fixed points, by Theorem 7(ii). O

Theorem 10. The afﬁne reflection [P; Q < R| leaves fixed the line PM

and all lines parallel to QR and no other lines. (Notation is as for Theorem
9.)

Proof: Because TQ and TR determine the same line as Q and R, we see

that the line € = QR is fixed. Each line €’ parallel to € meets PM in a fixed
point M’. Thus, T¢’ passes through M’ while remaining parallel to T¢ = €
(Theorems 4(iii) and 1.17). This guarantees that T¢' = ¢'; that is, €' is a
fixed line. Finally, suppose that €” were a fixed line not parallel to € but

distinct from PM. Then € meets €' and € in fixed points. This contradicts
the fact that all fixed points are on PM. 0O

Theorem 11.  The affine reflection [P; Q < R] is an isometry if and only if
PM L QR.

Proof: Suppose that the given affine reflection is an isometry. Because it
has a line of fixed pomts it must be an ordinary reflection with axis PM by
Theorem 1.39. But QR is a fixed line of this reflection, and thus it must be
perpendicular to PM by Theorem 1.40.

Affine reflections
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Conversely, suppose that PM 1 OR. Let m = PM. We show that Q,,
interchanges Q and R and thus, by the fundamental theorem, must
coincide with the given affine reflection. To this end, note that

2,.0=0-2(Q - M N)N,
where N is a unit vector in the direction [Q — R]. But

Q-M=13Q-R).

Thus,

2.0=0-(0-RNN=0-(Q-R)=
Also QR =Q,.Q, Q0 = Q. Hence, Q,, interchanges Q and R. O
Shears

The fundamental theorem of affine geometry can be used to define other
classes of affine transformations. Let P, Q, and R be noncollinear points.
The unique affine transformatlon that leaves fixed every point on the line
through P parallel to QR and that takes Q to R is denoted by [P; Q — R]
and is called a shear. See Figure 2.2.

Theorem 12. The shear [P; Q — R) has the line through P parallel to é—l} as
its set of fixed points. The fixed lines are those belonging to the pencil of
parallels determined by QR.

Proof: Let T be the shear in question. T can have no fixed points other
than those on the line » = P + [Q — R]. Otherwise, it would be the
identity.

Let € = Q + [Q — R]. Because € || » and T = m, T€ is the unique line
through R = TQ parallel to ». In other words, 7¢ = €, and € is a fixed line.

Fmally, let X be any point lying neither on € nor on s, and let X' = TX.
The line XX’ must be parallel to »; otherwise XX’ would have to meet
ina ﬁxed point B and XB = X'B would be a fixed line. But now the fixed
lines QR and XB would have to intersect in a fixed point, which is
impossible. This shows that TX lies on X + [Q — R] and, hence, that

X + [Q — R} is a fixed line. Our argument also shows that no other lines
of E? can be fixed. 0

Remark: The line of fixed points of a shear is called its axis.

Theorem 13. A shear whose fixed points lie along the x,-axis has a matrix
of the form



1 A 0
ss=10 1 0]. (2.5)
00 1

Poof: Because the origin is a fixed point, the translation part is 0. Also,
the vector €, is a fixed point, and this determines the first column of the
matrix. Finally, the shear must take €, to a point on the horizontal line
& + [€,]. This determines the form of the second column. O

Remark:

i. Every matrix of the form s,, A # 0, determines a shear.

i. If T is a shear with axis €, and p is any affine transformation, then
pTp~! is a shear with axis p€.

These facts follow easily from the fundamental theorem (Exercise 9). A
shear whose axis is a horizontal line through a point P can be written

Tx = P + s,(x — P), (2.6)

and a shear whose axis passes through the origin and has direction vector
(cos @, sin 8) = (rot 8)e; can be written

Tx = (rot 0)s\(rot (—90))x,
s0 that any shear with axis P + [(rot 8)e,] can be written in the form
Tx = P + (rot 0)s,(rot (—0))(x — P) 2.7)

for some real number A # 0.

Dilatations

A dilatation is an affine transformation with the property that for each line
¢, either T€ = € or T¢ || €. The identity is said to be a trivial dilatation.

Theorem 14. A dilatation that leaves two points fixed must be the identity.

Proof: Suppose that P and Q are distinct fixed points of a dxlatauon T.
Then every point on the line PQ is fixed. Let X be any point not on PQ
Then T takes the line PX to a line through P with the same direction. In

other words, PX is a fixed line. By the same argument QX is a fixed line,
and so X is a fixed point. Because T has three noncollinear fixed points, it
must be the identity.

Thus, a nontrivial dilatation can have at most one fixed point. A
dilatation with exactly one fixed point is called a central dilatation, and the
fixed point is called its center. See Figures 2.3 and 2.4.

Dilatations

Figure 2.3 Two triangles related by a

central dilatation.
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Theorem 15.
i. A central dilatation with center C may be written in the form

Tx = C + x(x — C). 2.8)

The number || is called the magnification factor of T.
ii. A dilatation that has no fixed points is a translation.

Proof: Let T be a central dilatation with center C. Because T is a
dilatation, every vector v € R? must be an eigenvector of A (the linear part
of T). Thus, there is a nonzero real number « such that A = k/ (Exercise
10).

Because TC = C, the translation part of T is equal to C — kC, so that for
all x € E?,

Ix =kx + C — kC = C + k(x — C).

This proves (i). Further, if k # 1, the equation kx + b = x has a solution
x = (—1/(x — 1))b. Hence, every dilatation is either a translation (k = 1) or
has a fixed point. O

Theorem 16. The fixed lines of a central dilatation are precisely those that
pass through its center.
Proof:  First, note that

T(C + [v])) = TC + [v] = C + [v],

so that all lines through C are fixed. On the other hand, if any fixed line ¢

does not pass through C, pick an arbitrary point X on this line. Then CX
and ¢ are fixed lines intersecting in X. Because X cannot be a fixed point,
we have a contradiction. O

Remark: A half-turn is a special central dilatation having k = —1.

Similarities
Definition. A mapping T: E* — E? is called a similarity (with magnifica-
tion factor x > 0) if, for all X, Y € E?,
d(TX, TY) = kd(X, Y).
A similarity can be accomplished in two stages: first, a central dilatation

(to make objects the right size); then an isometry (to move objects to the
right position).



Theorem 17. Every similarity is a central dilatation followed by an
sometry. In particular, every similarity is an affine transformation.

Proof: Let T be a similarity with magnification factor k. Let § be the
central dilatation defined by

SX = iX
K
Then
d(TSX, TSY) = kd(SX, SY)

K%d(x, Y) = d(X, Y).

Thus, 7§ is an isometry, and, hence, T is this same isometry preceded by
the central dilatation S~ '. a

Theorem 18.

i. If Ty and T, are similarities with respective magnification factors k, and
Ky, then T\ T, is a similarity with magnification factor kk,.

i. If T is a similarity with magnification factor x, then T " is a similarity
with magnification factor 1/x.

Proof: Exercise 11. O

Corollary. The set of similarities of E* is a group, which we denote by
Sim(E?).

Definition. Two figures # and %, are similar if there is a similarity T such
that TF y = 2 2-

Affine symmetries

Let Z be any figure. An affine transformation leaving # fixed is called an
affine symmetry of #, and the set of all affine symmetries is a group called
the affine symmetry group of %. We use the notation

AL (F) = {T € AFQ)|TF = #F)}.
Because every isometry is an affine transformation, we have
L (F) C AL (F) C AF(Q).

In the next section we will set up a framework for classifying the affine
symmetries of a wide class of figures. In the meantime we will examine the
symmetries of some very simple figures.

Affine symmetries
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Theorem 19. Let F be the set consisting of a single point. Then o ¥ (F) =
GL(2), the group of 2 by 2 invertible real matrices.

Proof: Let P be the point. If T € & (%), then 7_pT7p leaves 0 fixed, and
its translation part is 0. We write 7_pT7p = A, where A is linear, and
conclude that T = 7pAT_p; thatis, Tx = P + A(x — P) for all x € E2. Itis
now a routine matter to check that the mapping that takes 7 to A is an
isomorphism (Exercise 12). O

Theorem 20. Let F be a set consisting of two points. Then A4S (F) is
isomorphic to the group of 2 by 2 matrices of the form

+
[-1 "] with . # 0. 2.9)
0 p

Writing

1 A B =f X
T;-'*z[o u] and T“‘:[ 0 u]’

one can verify that the 7y, form a subgroup of &% (#). Some other
interesting subsets are

i. the subgroup #(#) determined by A = 0, p = *1,
ii. the subgroup {7)",|pn = 1} consisting of all shears leaving the two
given points fixed together with the identity,
iii. the set {7y ,|n = —1} of affine reflections leaving the two points
fixed,
iv. the subgroup {7y .\ = 0, p > 0} consisting of stretches in the
direction of the x,-axis, including the identity as a special case.

Remark: After we have studied projective geometry (Chapter 5), we will
be able to see that these transformations are merely the affine versions of
the projective collineations leaving a line pointwise fixed. In projective
geometry these break down into two types: homologies and elations.

Rays and angles

Let P be a point of E?, and let v be a nonzero vector. Then
+= {P + nft = 0} (2.10)

is called a ray with origin P and direction vector v. Clearly, every line
through P is the union of two rays with origin P. Their direction vectors are
negatives of each other.

The union of two rays 2; and 2, with common origin P is called an angle



with vertex P and arms 2, and 2,. We allow the possibility 2, = 25, in which
wse we refer to the angle as a zero angle. If 2, and ¢, are two halves of the
ume line, we say that they are opposite rays and that the angle is a straight
angle. Finally, if 2; L 2, we call the angle a right angle. (Two rays are
perpendicular if their direction vectors are orthogonal.)

Given two distinct points P and Q, there is a unique ray with origin P
that passes through Q. We denote this ray by @ The angle with vertex Q
and arms Q_I; and Q_I’? is denoted by X POR or, equivalently, X RQP. Rays
and angles may be represented as shown in Figures 2.5-2.8.

It is now time to define a numerical measure for angles. This must be
done in terms of analytic concepts, taking care not to appeal to our
pictorial notions of angle measurement.

Definition.  Let .o/ be an angle whose arms have unit direction vectors u and
v. The radian measure of &/ is defined to be

cos™(u, v). (2.11)

Remark: If we write u = (cos 0, sin 6) and v = (cos ¢, sin ¢), then the
radian measure « is the unique number in [0, 7] such that

(rot a)u = v or (rot a)v = wu.

In other words, there is a rotation by a taking one arm of &/ to the other.
(See Exercise 14.)

Theorem 21. Let </ be any angle. Its radian measure o is
i. 0if and only if o/ is a zero angle,

ii. wif and only if o is a straight angle,

iii. between 0 and w otherwise.

Furthermore, o = /2 if and only if < is a right angle.

Definition. An angle of is acute if its radian measure is <m/2. It is obtuse if
its radian measure is >m/2. See Figures 2.9-2.11.

Theorem 22. Let o/ = X PQR be an angle. Then
i. %PQR is acute if and only if (P — Q, R — Q) is positive.
ii. %PQR is obtuse if and only if (P — Q, R — Q) is negative.

Definition. Let </ be an angle with vertex P and radian measure o. Let u
and v be unit direction vectors of its arms chosen so that (rot a)u = v. Then
a ray with origin P and direction vector rot(o/2)u is called a bisector of <.

Remark: A straight angle has two bisectors. Any other angle has a unique
bisector.

Rays and angles

”

Figure 2.5 A straight angle.

-—

Figure 2.6 A zero angle.

/
;,

Figure 2.7 The ray P_é

%4

Figure 2.8 An angle with vertex P.



Affine transformations in Theorem 23. For any angle </ there is a unique reflection that interchanges
the Euclidean plane its arms, namely, the reflection in the line containing the bisector(s) of <.

R Proof: Let u, v, and « be as in the previous definition. If P is the vertex of
o, set T = 7p(ref((6 + ¢)/2))7_p, where u = (cos 6, sin 8) and v = (cos ¢,

sin ¢). Then
f s (ref(6 ; d)))m
\

Q ((59)
s
Figure 2.9 An obtuse angle. i At 2 \£ot-0)ss

P + t(rot ¢)€|

T(P + t)

Il

=P+

for all real r. Thus, T2, = 25 and, by symmetry, T2, = ?,.

R To show uniqueness, let T be any other reflection that interchanges
A and 2,. Then TT leaves the rays 2, and 2, fixed. Hence, their point of
’ intersection P is fixed. Because TP = P, we have that TP = P. Thus, the

axis of the reflection T passes through P, and 7T is a rotation about P. Now
‘ the only rotation that leaves a ray fixed is the identity (Exercise 21), and we
5]— === conclude that 7T must be the identity. Thus 7= T. O

Figure 2.10 A right angle.
Rectilinear figures

A union of finitely many segments, rays, and lines is called a rectilinear
figure. Familiar examples are triangles, squares, and angles. We will study
R these in detail later. First, we develop some techniques for computing
A symmetry groups that are applicable to all rectilinear figures.
/ Let # be any rectilinear figure. The figure # consisting of all lines that
contain lines, segments, or rays of # is called the rectilinear completion of
/ Z. A rectilinear figure .# is said to be complete if, whenever a segment is in
[ i B - Z, the line containing it is in #. Then # is clearly the smallest complete
Q P rectilinear figure containing #. See Figures 2.12 and 2.13.
Figure 2.11 An acute angle.
Theorem 24. Let T be an affine transformation, and let F be a rectilinear
figure. Then T maps the set of lines of # bijectively to the set of lines of TF

Proof:  We first show that the map is surjective. Suppose that T¢ is a line of

Tf but € is not in #. Then for each line » of #, T»» meets T¢ in at most

one point. Because T".# N T¢ is contained in the union of all the Ty, it can

contain only finitely many points. But this is impossible because T¢

contains at least a segment of 7% and, hence, an infinite number of points
52 of T#.



It only remains to show that if » is any line of Z, then Ts is a line of
7. First note that » contains a segment s that is contained in &#. Then
wo is a segment in T#. Thus, T # contains the line determined by Tu,
ely, Ton. a

lary. Suppose T is an affine symmetry of a rectilinear figure . Then
permutes the lines of its rectilinear completion %.

nition. Suppose that F is a rectilinear figure. A point of F where two
of Z intersect is called a vertex of .

. m25. Let F be a rectilinear figure and T an affine transformation.
Then T maps the set of vertices of F bijectively to the set of vertices of TF.
If T is an affine symmetry of F, then T permutes the vertices of F.

Proof:  We need only show that T maps vertices of # to vertices of T #.
‘The rest is trivial.

Let P be a vertex of #. Then TP is a point of T#. Because P is the
intersection of two lines of #, TP is the intersection of their images, which,
by Theorem 24, are in T #. Thus, TPis a vertex of T.#. O

Corollary.

i. Every affine symmetry T of a rectilinear figure F is also an affine
symmetry of #.

i. Every affine symmetry of a rectilinear figure F permutes the set of
vertices of # that are not vertices of F.

Proof:

i. Because T permutes the lines of # and # is the union of these lines,
we must have T# = #.

i. Because T is an affine symmetry of %, T must permute the set of
vertices of #. But T being an affine symmetry of # must permute the
vertices of # among themselves (i.e., this set is invariant under the
permutation). Hence, T must permute the remaining vertices of g
among themselves. O

Corollary. If F is a rectilinear figure having at least three noncollinear
vertices, then o S(F) is a finite group.

Proof: Denote the three noncollinear vertices by P, Q, and R. Then each
permutation of the vertices of # can be realized by at most one affine
transformation. The only possible candidate is the unique affine
transformation (guaranteed by the fundamental theorem) that agrees with
the given permutation on P, Q, and R. In general, of course, this candidate

Rectilinear figures

/

Figure 2.12 A rectilinear figure.

Figure 2.13 Completion of the
rectilinear figure in Figure 2.12.
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may fail to agree with the permutation on some other vertex. Even if it
accomplishes the permutation of the vertices, it may fail to be a symmetry
of #. In any case, the affine symmetry group has at most n! elements,
where 7 is the number of vertices. a

Remark: If all the vertices of a rectilinear figure % are collinear, then

A S(F) is still a finite group, but the preceding proof will not work.

Complete figures of this form can be described explicitly, and we shall
explore these in Chapter 3, Exercise 7.

The centroid

Let F be a finite set of points of E>. For x € E? define
flx) = ¥ d(x, PY. 2.12)

PeF

Theorem 26. There is a unique point of E* where the function f achieves its
minimum value. This point is called the centroid of F.

Proof: Let n be the number of points of F. Then
fix)y=Y (x— P, x— P)
P

ZP:(III2 ~ 2(x; P) + |PP®)

nlx|?> — 2(x, EP) + Z|P|*.
Write C = (1/n)LP and b = (1/n)Z|P].

Then
ftx) = n(|xl> = 2(x, C) + b)
= n(lx* = 2(x, C) + |C]* + b — |C])
=nlx — C* + n(b — |CP).
Clearly, f(x) is minimum precisely when x = C. O

Remark: 1If # is a rectilinear figure with a finite number of vertices, the
centroid of the set of vertices is often referred to as the centroid of #.

Theorem 27. Suppose that Z is a rectilinear figure having a finite nonzero
number of vertices. Let C be the centroid of #. Then, for any isometry T,
TC is the centroid of T#.

Proof: First, note that P is a vertex of % if and only if TP is a vertex of
T#. Also, the quantity



Y x — TP? = X|TT 'x — TP = L|T"x - P|?
P

bas its minimum value when T~ 'x is the centroid C of #; that is, x = TC.
Thus, 7C is the centroid of T#. O

torollary. If T is a symmetry of a rectilinear figure F with a finite number
of vertices, then T leaves the centroid of F fixed.

Symmetries of a segment

Let PQ be a segment. We compute its symmetry group #(PQ). First of all,
we know that any affine transformation T takes the segment PQ to a
wgment P'Q’, where P’ = TP and Q' = TQ. We first show that T
permutes the set {P, Q}.

lemma. A segment determines its end points; that is, if PQ and PQ denote
the same segment, then {P, Q} = {P, Q}.

Poof: Interchanging P and Q if necessary, we may write
P=(Q-0P+1tQ and Q= (1 — s)P + sQ,

where 0 < ¢ < s < 1. Now, there exist 7 and § in [0, 1] such that
P=(0-0DP+iQ

1 -0 -0P+1Q) + KA — s)P + sQ)
=P+ (t+i(s—1)Q - P).

Because Q # P, we must have ¢ + #(s — ) = 0. But the conditions t = 0,
i=0,s — t> 0imply that t = 0 and #(s — ¢) = 0; that is, f = 0. This proves
that P = P. The proof that Q = Q is similar. ]

There are two isometries that leave {P, Q} pointwise fixed: the

reflection €, with axis € = l%, and the identity. On the other hand, there
are exactly two isometries that interchange P and Q. Clearly, one is the
reflection ., whose axis » is the perpendicular bisector of PQ. But if T'is
any other isometry interchanging P and Q, the composition 2, T leaves P
and Q fixed. This gives

Q0. T=1 and T=1Q,,
or
Q.T = Q( and T = Q(Q- = HM,

where M is the midpoint of PQ. Thus, &(PQ) consists of four elements:
two reflections, a half-turn, and the identity. The multiplication table for
this group is

Symmetries of a segment
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1 Q, 0. Hy,

I I Q, Q,, Hyy
Q, Q 1 Hy Q.
o (4. wy - 6
Hy, Hyy Q. Q, 1

The abstract group having this multiplication table is called the Klein
four-group.

We state the results we have outlined as a theorem. You will be asked to
fill in the details of the proof in Exercise 23.

Theorem 28. The symmetry group of a segment has four elements: two
reflections, a half-turn, and the identity. The group multiplication table is as
indicated beforehand.

Symmetries of an angle

Let .o be an angle other than a straight angle. In this section we compute
the symmetry group (/).
We first prove a uniqueness lemma.

Lemma. Let o/ be an angle with vertex P. Suppose that an affine symmetry
T of o leaves both lines of s/ fixed. Then T leaves both arms of < fixed.

Proof: Let €, and €, be the lines and 2; and 2, the associated rays.
Let v and w be unit direction vectors of ¢; and 2,, respectively. Write
Tx = Ax + b. Because TP = P, we get AP + b = P, so that we may write

Tx = A(x — P) + P.

Because ¢, is a fixed line, [Av] = [v] (Theorem 3). Thus, there is a real
number A such that Av = Av. Now T(P + v) = Av+ P = P + \v. Because T
maps &/ into o/, P + v must be in /. Hence, \ is positive, and T2, = »,.
Similarly, T2, = 2,. O

Corollary. [n the lemma if T is an isometry, then T is the identity.

Proof: The string of equalities
1=|v =d(P + v, P) = d(T(P + v), TP) = d(P + \v, P) = Ay =\

yields Av = v. By symmetry, Aw = w, and, hence, A is the identity matrix.
Finally, for all x,



Ix=Ax—-P)+P=x—-—P+ P=x,
sothat T'is the identity. O

Remark: If . is a straight angle, then (as a set of points) ./ is just a line. If
d is a zero angle, then &/ is a ray.

Theorem 29. Suppose that T is an affine symmetry of an angle </. Then T
permutes the arms of .

Remark: In case .2/ is a zero angle, we interpret this to mean that 7 leaves
the one arm of &/ fixed.

Proof: Let 2, and 2, be the arms. Let €; and ¢, be the lines containing 2,
and 2,, respectively. Let »z be the line that contains the bisector of /. By
the corollary to Theorem 23, T permutes the lines €, and ¢,. If T¢, = ¢,
and T¢, = ¢, then the lemma implies that T leaves fixed 2; and 2,. If T¢, =
fand T¢, = €,, then (1, T leaves fixed €, and ¢, and, hence, 2; and 2,. But
then

Ty = Q,0,Tyy = Q2 =2,
and

Ty = 0,0, T, = Q2% = 4. O
Corollary. (<) consists of two elements (),, and I.
Proof: If T € ¥(&), then either T leaves 2; and 2, fixed and is therefore
the identity, or ,, T leaves ¢2; and ¢, fixed and is therefore the identity. In

the latter case, T = (},,. O

Remark: This also shows that if 2 is any ray, then &(2) consists of two
clements: reflection in the line of 2, and the identity.

The following will be useful when we discuss triangles.

Theorem 30. Let X POR be an angle. Suppose d(P, Q) = d(Q, R). Let »
be the line containing the bisector of X PQR. Then Q,, interchanges P and R
while leaving Q fixed.

Proof: Write P — Q = |P — Qluand R — Q = |R — Ql|v, and use the
notation of Theorem 23. It is sufficient to check that )P = R.

Q. P= TQ(ref(e ; ¢))7_QP

Symmetries of an angle
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Tp(ref(e ; d))>|P - Qlu

Q+|P-Qv=0Q+|R-Ql
=Q+R-Q=R. O

Barycentric coordinates

Let P, Q, and R be noncollinear points. For each point X € E? there is a
unique triple (A, p, v) of real numbers such that

X =P + pQ + vR (2.13)
and A + p + v = 1. The association

A
X—>|p
v

is called a barycentric coordinate system, and POR is called the triangle of
reference. (See Exercise 25.)

Remark:
i. . This generalizes the fact that points on a line 1% may be uniquely
written as AP + pnQ, where A + p = 1.
ii. We will see that the values of the barycentric coordinates A, p, and v

relate in a nice way to the position of X with respect to the triangle of
reference.

ili. Barycentric coordinates have a physical interpretation. If weights of
\, i, and v are placed at P, Q, and R, respectively, the center of mass
of the resulting configuration will be at X. This also applies, of course,
to the case of a line, as described in (i).

Theorem 31. Let I"_Q’ be a line, and let R be any point not on l"_é Using

PQR as a triangle of reference, we have, for any point X with barycentric
coordinates \, ., v,

i. v = 0if and only if X lies on l%
ii. v>0ifandonly if XRN PQ = .

Proof: If v = 0, this means that
X=AP+p0 =0 —-pP + pno, (2.14)

and, hence, X lies on l"_é Conversely, if X lies on ;’6 then (2.14) holds
for some value of p, and by uniqueness of the representation in (2.13), we
must have v = 0.



Ifv>0,then, forO0<tr=<1,
A-0DX+R=0-OAP+ (1 -0pQ + (1 — )vR + (R.

Because (1 — f)v + ¢ > 0, XR cannot intersect !"—Q) On the other hand,
fv < 0, there is a value of ¢ satisfying (1 — f)v + ¢ = 0; that is,

Note that 0 < —v/(1 — v) < 1. Thus, PQ N XR # @. 0

Definition. Let € be a line, and let R be a point not on €. The half-plane
determined by € and R is the set of X such that XR N € = . See Figure 2.14.

Theorem 32.

i. Every line € determines two half-planes. The reflection () interchanges
the half-planes.

i. Let € be a line, and let P and Q be arbitrary points on €. Let R be any
point not on €. Then the half-plane determined by € and R is the set of
points having v > 0. (Again the triangle of reference is PQR.) The set of
points having v < 0 is the half-plane determined by € and Q1¢R. The two
half-planes are said to be opposites of each other.

Remark: When two points are in the same half-plane, we say that they are
on the same side of €. Points in opposite half-planes are said to be on
opposite sides of €.

Definition. A point X is said to be in the interior of an angle X POR if A > 0
and v > 0. See Figure 2.15.

Remark: This is the same as saying that X and R are on the same side of
PQ while X and P are on the same side of OR.

Theorem 33 (The crossbar theorem). Let X be a point in the interior of

the angle X PQR. Then the ray QX intersects the segment PR. (See Figure
2.16.)

Proof: Using POR as triangle of reference, we obtain

Q+1uX—-Q)=(010-0Q + AP + tpQ + tvR
=P+ (1—-1t+ 1n)Q + tvR.

We need to choose a positive value of ¢ so that 1 — ¢ + . = 0; that is,

Barycentric coordinates

N,
w ;
=]

Figure 2.14 A half-plane consisting of
all points X such that XR N € = .

N

Figure 2.15 The interior of an angle.

A\

Figure 2.16 The crossbar theorem.
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% XQOR to form X POR.
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Because 1 — w = N\ + v > 0, this value of ¢ is indeed positive. Furthermore,
A= N1 —-p)>0and vt = v/(1 — p) >0, so that Q + t(X — Q) lies on
PR. -

Addition of angles

Theorem 34.

i. Let XPQOR be an angle and X a point in its interior. Then the radian
measure of X PQOR is the sum of the radian measures of X PQX and
XRQOX. (See Figure 2.17.)

ii. Let X POR be a straight angle and X any point not on the line % Then
the sum of the radian measures of X PQX and X RQX is equal to .

Remark: In (ii), X PQX and X RQX are said to be supplements of each
other. We speak of the pair as a pair of supplementary angles.

Proof: (i) Let 0, 6,, and 6, be the respective radian measures. There is no
loss of generality in assuming thatu = P — Q,v=R — Q,andw =X — Q
are unit vectors and that (rot 8)u = v. Because X is in the interior of
% POR, we may write

X-Q0=NMP-0)+ pR- Q)
that is,
w = Au + pu,

where A and . are positive. According to the definition of radian measure,
there are four possibilities:

1. (rot8;)u = w and (rot 8;)w = v. Then (rot(6, + 0,))u = vand 8, + 6,
= 0 (mod 2w). But 0 < 6; + 6, < 2, so that, in fact, 6, + 6, = 0, as
required.

The other three possibilities cannot occur. We examine them in turn.

2. (rot 8;)u = w and (rot 6,)v = w. Then

0 <sin 8, = (u*, w) = wlut, v)
and
0 < sin 8, = (v, w) = A (v, u).

But (u*, v) = (u**, v*) = —(u, v'), so we have a contradiction.

3. (rot 8;)w = u and (rot 6,)w = v. This is similar to case (2). We get the
same expressions for the negative numbers sin(—6,) and sin(—9,) and,
thus, a contradiction.



{. (rot 8;)w = u and (rot 6;)v = w. In this case,
0 < sin 8; = A{(u, v*) asin (2).
But
0 <sin 8 = (u*, v) = —(u, v*),

a contradiction.
For part (ii) with X PQR a straight angle, we have no expression for w in
terms of u and v. But v = —u and v* = —u*. This makes the proof easier.
For (1), ® = w and 6, + 6, = w by the same argument. For (2),

0 < sin 0; = (u*, w) = —(v*, w) = —sin 6, < 0,

1 contradiction. Case (3) is similar. Case (4) can occur and gives
91 + 02 =m

sin (1). O

Triangles

let P, Q, and R be noncollinear points of E2. The triangle PQR
(sometimes written APQR) is the rectilinear figure consisting of the
egments PQ, OR, and PR. These segments are called the sides of the
inangle.

Theorem 35. Let PQR be a triangle. Using PQR as the triangle of reference

for a barycentric coordinate system, we have that

i. A point X € E? is a vertex of APQR if and only if exactly two
barycentric coordinates are zero.

i. A point X is on the figure APQR if it is a vertex or if one barycentric
coordinate is zero and the others are positive.

Definition. A point is in the interior of APQR if it is in the interior of all
three angles determined by P, Q, and R.

Remark: Points in the interior of the triangle are characterized by having.

il three barycentric coordinates positive. Figure 2.18 shows the whole
plane divided into seven regions characterized by the signs of the
barycentric coordinates X, ., v. For example, the interior of the triangle is
characterized by the combination +++.

Theorem 36. An affine transformation T takes a triangle APQR to the
triangle AP'Q'R’, where P' = TP, Q' = TQ, and R' = TR.

Triangles

Figure 2.18 Regions of the plane as
characterized by the signs of the
barycentric coordinates.
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Affine transformations in Proof: A PQR is the union of three segments belonging to three distinct
the Euclidean plane lines. According to Theorem 6, these segments are transformed by 7 to the
respective segments making up AP'Q'R’. The fact that P, Q', and R’ are
noncollinear and thus form a triangle relies on knowing that 7' is an

affine transformation and thus preserves collinearity (Theorems 1 and 6).
g

Symmetries of a triangle

Let A be a triangle. If T is an affine symmetry of A, then 7 permutes the
vertices of A. Conversely, by the fundamental theorem, every permutation
of the vertices is realized by a unique affine transformation. Thus .«Z.%(4)
is the group of six elements known as the symmetric group S;. Algebraical-
ly, we may describe the group as {/, «, o?, B, aB, a’B}, where Ba = o’f
and o’ = L. In terms of permutations we can set

a = (POR), B = (PQ).

Clearly, B is the affine reflection [R; P <> Q]. Note also that the product of
the two affine reflections

[R; P o Q], [P; Q < R]

corresponds to the permutation (PQR) = «. Here is the multiplication
table for the group S;:

62

We now investigate #(A). Clearly, #(A) is a subgroup of «/.%(A).

Definition.

1 o’ B af o’B

1 1 o? B af o’B
a a I aff o’B B
o? o? « o’B B ap
B B aB 1 o? a
af afd o’B « 1 o?
B | o?B B o’ a 1

A triangle is

i. scalene if all three sides have different lengths;
ii. isosceles if exactly two sides have equal lengths;
iii. equilateral if all three sides have the same length.

Theorem 37. ¥(A) consists of

i. The identity only if A is scalene.



i. (I, Q) if Ais isosceles with d(P, Q) = d(P, R). Q is the affine reflection

[P; Q < R]. Of course, Q) is an actual reflection (isometry) in this case.
i, All elements of o #(A) if A is equilateral. In this case, two elements are
nontrivial rotations about the centroid, three are reflections (one in each
median), and the sixth is the identity. (A median is a line that passes
through a vertex and the midpoint of the opposite side.)

Poof: Because we already know the affine symmetries, it is only neces-
ary to check which of these are isometries. If T = [P; Q < R] is an
sometry, we must have d(P, Q) = d(TP, TQ) = d(P, R), so that at least
wo sides of A must be of equal length. The same holds for the other two
iffine reflections.

If T is an isometry that permutes the vertices cyclically, then

d(P, Q) = d(TP, TQ) = d(Q, R), say,
= d(TQ, TR) = d(R, P),

o that A must be equilateral.

Thus, when A is scalene, only the identity can be an isometry. If A is
sosceles, then [P; Q < R] is an isometry (Theorem 11 and Exercise 8).
Finally, if A is equilateral, all three affine reflections are isometries.
The cyclic permutations, being products of reflections, are ordinary
rotations. O

Corollary. Let A be an equilateral triangle with centroid C. Then ¥(A)
consists of
i. the identity,
ii. the three reflections in the medians of A,
ii. rotations by +2m/3 about C.
Proof:  First note that
C=4P+Q+R)=4P +3(30Q + iR). (2.15)

Similarly,

C =130 +3@3P +1iR)
and

C =14R +3(P + 10).

This exhibits C as a point on all three medians. Thus, the product of two
reflections in #(A) is a rotation about C. In fact, if we write

T = 7p(rot 0)T_51,
then

T2 = 1p(rot 20)1_p and T> = Tp(rot 30)T_py.

Symmetries of a triangle
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Now T2 = [if and only if rot & = rot (+2/3). 0

We have also deduced the following well-known property of the
centroid.

Corollary. For any triangle the centroid lies on each median and divides it
in the ratio of 2:1.

Congruence of angles

Theorem 38. Two angles are congruent if and only if they have the same
radian measure.

Proof: Let </ and # be congruent angles, and let T be an isometry such
that T/ = #. By Theorem 24, T maps the two lines of & to the two lines
of 4 and, hence, the vertex of  to the vertex of %#. Let u and v be unit
direction vectors for the arms of /. If A is the linear part of T, the arms of
2 must have Au and Av as direction vectors. Because A is orthogonal, that
is, (Au, Av) = (u, v), the two angles have the same radian measure.

Conversely, suppose that angles &/ and # have the same radian
measure. We may assume that (rot 8)u = v and (rot 8)u’ = v, where the
arms of &/ (respectively, %) have unit direction vectors u, v (respectively,
u', v'). Let & be a number such that

u' = (cos d)u + (sin d)u* = (rot d)u.
Then
v = (rot O)u' = (rot(6 + &))u
= (rot ¢)(rot B)u = (rot d)v.
Let P and Q be the respective vertices of o/ and #. Then fort =0,

To(rot &)7_p(P + tu) = 7p(rot d)tu
= 1o(tu’) = Q + (tu')

Similarly,
To(rot d)1_p(P + tv) = Q + 1.
Thus, o/ and % are congruent. O

A line that intersects two lines in distinct points is called a transversal to
these lines. Let ¢, and ¢, be parallel lines with direction vector v. Suppose
that » is a transversal meeting ¢, and ¢, in P, and P,, respectively. Let
Q=P +vand R = P, — v. Then XP,P,Q and XRP,P, are called
alternate angles. Note that a transversal determines two pairs of alternate
angles. (See Figure 2.19.)
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Theorem 39. When a transversal meets two parallel lines, the pairs of
dternate angles they determine are congruent.

Proof: Use the notation mtroduced in t the paragraph precedmg Theorem
1. Note that Hp 7p,— p, takes P,Q to PzR and P,Pz to PzP, O

Remark: The isometry Hptp,_p, is in fact a half-turn about the midpoint
of PP,.

Congruence theorems for triangles

We now prove the well-known congruence theorems of Euclidean
geometry. The first one (sometimes referred to as the SSS theorem) says
that two triangles whose vertices can be matched in such a way that
cworresponding sides have equal length must be congruent.

Theorem 40. Let APQR and AP'Q'R’ be such that d(P, Q) = d(P', Q'),
d(P,R) = d(P', R"), and d(Q, R) = d(Q’, R’). See Figure 2.20. Then there
is an isometry T such that TP = P', TQ = Q', and TR = R

Proof: Our method of proof is like that of Euclid, making use of
isometries to carry out the ‘“‘superposition” on which the ancient proof
relies. The proof is divided into four steps.

I. Given two lines ¢,, ¢, there is an isometry T such that T¢, = ¢, (i.e.,
J(E?) is transitive on the lines of E?). To see this, note that if ¢, ||¢,,
reflection in the line lying halfway between them will interchange ¢,
and ¢,. On the other hand, if €, intersects €5, a reflection in any of the
bisectors of the angles they form will interchange ¢, and ¢,.

2. If PQ and P'Q’ are collinear segments of equal length, there is an
isometry T such that TP = P’ and TQ = Q". This can be done by 7p-_p
or Hp7p _p (Exercise 32).

3. Suppose that d(P, R) = d(P, R') and d(Q, R) = d(Q, R'). Then there
is an isometry leaving € = I"—’Q pointwise fixed and taking R to R". In
fact, I or Q, will do (Exercise 33).

4. Choose an isometry T taking Fé to P*'_Q". Then choose T, to take T\ P
to P’ and T,Q to Q'. Let T3 map T,T;R to R’ while leaving P.'_é'
pointwise fixed. Then T = T3T,T, accomplishes the desired effect. [

Another famous assertion of Euclid proves congruence based on lengths
of two sides and the angle they determine (the SAS theorem). In order to

prove this, we first derive the so-called Law of Cosines.

Lemma. Let P, Q, and R be three points of E%. Then

Congruence theorems
for triangles

Ql
Figure 2.20 The SSS theorem.

65



Affine transformations in
the Euclidean plane

Figure 2.21 Theorem 42. The angle sum
of a triangle is .

66

d(P, R)* = d(P, Q) + d(Q, R)* — 2d(P, Q)d(Q, R) cos 6, (2.16)
where 0 is the radian measure of X POR.

Proof: Apply the polarization identity (Exercise 1.29) withx = P — Q and
y=R - Q,s0 thatx — y = P — R. Also, recall that

(P-~0.R —0)
|P = QIR — Q"

from (2.11). O

cos B =

2.17)|

Theorem41. Let APQR and AP'Q'R’ be such thatd(P, Q) = d(P', Q')
d(Q, R) = d(Q', R"), and XPQR = X P'Q'R’ (in radian measure). Then
there is an isometry T such that TP = P', TQ = Q', and TR = R'.

Proof: Apply the Law of Cosines to both triangles. The given conditions
say that the right sides of (2.16) are equal. Hence, d(P, R) = d(P', R"), and
the SSS theorem may be applied. O

Corollary. The base angles of an isosceles triangle are congruent.

Proof: Apply the SAS theorem to APQR and ARQP, where d(P, Q) =
d(Q, R). O

Angle sums for triangles
The major result of this section is the following:

Theorem 42. The sum of the radian measures of the three angles in any
triangle is equal to .

Proof Let POR be a triangle. Then the unlque line through P parallel to

QR is the union of the rays PA and PB where A = P + R — Q and
B = P + Q — R. Note that Q is in the interior of X BPR because Q = B +
R — P. By Theorem 34 the radian measure of X BPR is equal to the sum of
the radian measures of X BPQ and X RPQ, whereas X BPR and % APR are
supplementary. Finally, we apply Theorems 38 and 39 to the alternate
angle pairs X BPQ = X POR and X APR = X PRQ to complete the proof.
These constructions are illustrated in Figure 2.21. a

Corollary. If two angles of a triangle are respectively congruent to two
angles of another triangle, then the remaining angles are also congruent.



Remark:© When we study non-Euclidean plane geometry, we will discover
that Theorem 42 is one of the few results that is false in non-Euclidean
planes. In fact, from an axiomatic approach, this criterion can be used to
distinguish Euclidean from non-Euclidean planes.

EXERCISES

1.

11
12.
13.

Find the fixed points and fixed lines of the indicated affine trans-
formations.

_T1 2 _[l]
|A—_21,b— 1)

M2 _[2]
il A—LOI'b-O'

_[1 2] _[]
i A_LOI’b_l

Prove Theorem 4.

Let T be a glide reflection with axis ». Show that a line € # » satisfies
T¢||€ if and only if €||» or € L .

Let € be a line of E2. Let G be the set of isometries T of E? satisfying
T¢ = €. Describe the elements of G explicitly and give the group
multiplication table.

i. Given two intersecting lines, prove that there is a rotation that
takes one to the other. Is it unique?

ii. Given two parallel lines, prove that there is a translation that
takes one to the other. Is it unique?

Verify that the mapping described following Theorem 5, which
associates to each affine transformation a 3 by 3 matrix, is an injective
homomorphism of AF(2) into GL(3).

Prove Theorem 7(ii) by a direct computation using linear algebra.

Verify formula (2.4), which shows that every ordinary reflection is an
affine reflection.

Verify the statements in the remark following Theorem 13.

If every nonzero vector in R? is an eigenvector of a 2 by 2 matrix A,
show that A is a multiple of the identity matrix.

Prove Theorem 18.
Complete the proof of Theorem 19.

Work out the multiplication table for the group of transformations of
Theorem 20 and its subgroups.

Verify the remark following the definition of radian measure.

Angle sums for triangles
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15.
16.

17.

18.
19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

Prove Theorem 22.
Let P = (1,2), Q = (0, 0), and R = (2, 1). Show that the radian
measure of X POR is cos™! (4/5).

Find the bisectors of a straight angle in terms of its vertex and the unit
direction vectors of its arms.

What is the bisector of a zero angle?

If a’ is a bisector of ar angle X POR, rrove that X POX and X RQX
have the same radian measure, namely, half the measure of X POR.

Prove that the ray Q—z’Y of Exercise 19 is the only ray having the
property described there, unless X POR is a straight angle.

Prove that a rotation about P that leaves a ray with origin P fixed
must be the identity.

Compute the centroid of the following set of points: {(1, 4), (2, 4),
(1, 0), (2, 0), (9, 7)}.

Prove Theorem 28. Fill in the details omitted in the text.

Prove that there is a reflection interchanging any two lines. Is it
unique?

Prove that barycentric coordinates are well-defined.

With respect to the triangle of reference P = (-1, 0), Q = (1, 0),
R = (0, 1), find the barycentric coordinates of the points: (0, 0),
(1, 1), (V2, V2), (0, 5), (2, -1), (-3, =)

Let a, b, and c be three numbers, not all zero. Show that the set of all

points whose barycentric coordinates satisfy a\ + bp + cv = 0 isa
line.

Let P be a point and N a unit vector. Show that {X|(X — P, N)
= 0} is a half-plane.
Prove Theorem 32.

Prove that every point in the interior of an angle lies on a segment
joining points of the arms of the angle.

Prove that every point in the interior of a triangle lies on a segment
joining points on two sides of the triangle.

If PQ and P'Q" are collinear segments of equal length, prove that
either 17p-_p or Hp7p_p takes PQ to P'Q’.

Let P, Q, R, and R’ be four distinct points such that d(P, R) =
d(P, R') and d(Q, R) = d(Q, R'). Prove that R’ = Q/R, where
¢ = PQ.

Let T be an affine transformation and € a line. Prove that the points

M = }(P + TP) (as P ranges through ¢) are all distinct and collinear,
or that they all coincide. Express the locus of M (i.e., the line or

a%



3.

3.

3.

41.

42.

point) in terms of the data determining T and €. This result is called
Hjelmslev’s theorem, although most treatments assume that T is an
isometry.

If [Cy; Py = Q4] = [Cy; P, = Q;], what relationships must hold
among the points in question?

Show that Theorem 27 and its corollary hold true for affine trans-
formations and affine symmetries.

Suppose that an affine transformation has three concurrent fixed
lines. Prove that it is a central dilatation or the identity.

Extending the notation of Theorem 13, let
Sxw = TuSx, for A € Rand ve R%

i. Verify the identity

sk.usu.u = s)\+u.w'
where w = s, ,v. Thus show that the set of all s, , is a group.

ii. Show that s,, is a shear with horizontal axis if and only if
[v] = [ed].

ili. Show that every shear with horizontal axis may be written in the
form s, ,.

iv. Show that {s, ,|{(v, e;) = 0} is a group (the case A = 0 is included
here).

Remark: The group defined in Exercise 38(i) is called the Galilean
group GAL(2). It arises in classical kinematics when describing
uniform motion in a straight line. The subset of affine geometry
consisting of those facts of Euclidean geometry that continue to make
sense when the figure in question is subjected to transformations by
the Galilean group is called Galilean geometry and is the subject of
an interesting book by I. M. Yaglom [34].

Let 4, and 4, be parallel segments. Find a central dilatation taking s,
to g,

i. by a geometric construction,

ii. in terms of the end points of the given segments.

Can there be more than one such dilatation?

Prove that any affine transformation that preserves perpendicularity
must be a similarity.

Prove Pasch’s theorem: If a line intersects one side of a triangle, it
must also intersect one of the other sides.

Let POR be a triangle. Let F be the foot of the perpendicular from P

Angle sums for triangles
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43.

45.

to é—é Prove that F is between Q and R if and only if X POR and
X PRQ are acute angles.

Let P and Q be distinct points. Show that Fé N 6;’ = PQ.

Let T be an affine transformation taking APQR to AP'Q'R’ as in

Theorem 36. Prove the following facts:

i. Forany X € E? the barycentric coordinates of TX with reference
to AP'Q'R’ are the same as those of X with reference to A PQR.

i. If

P a”P + a2,Q + a;,R,
Q' = apP + a»Q + ank,
R' = a|3P + (123Q + 033R,

then the barycentric coordinates of X” = TX (with reference to
APQR) are related to those of X by the equation

A ay ap ap A
’ —

B = | G axn ax; B

v’ asy asx as; v

Prove Heron’s theorem: Let € be a line, and let A and B be points nol
on ¢. Among all points X on ¢, the quantity d(A, X) + d(X, B) is
minimum when X is on the segment AB or X is on the segment AB',
where B' = Q¢B.



Finite groups of
isometries of E?

Introduction

So far we have been studying particular figures or transformations with
only secondary emphasis on the group structures involved. We shall now
turn our attention to the study of groups of transformations and apply our
results to get geometrical conclusions. Our main result is to determine
precisely the finite groups of isometries of EZ.

Cyclic and dihedral groups

Let m be any positive integer, and let « = rot (2m/m). The smallest
subgroup of O(2) containing « is denoted by C,,. We observe that C, = {I},
but if m > 1 then C,, consists of the distinct elements /, a, o?, ..., a2,
«""! because o« = I. Any group isomorphic to C,, is called a cyclic group
of order m.

Now let B = ref 0. The smallest subgroup of O(2) containing both « and

B is denoted by D,,,.
Theorem 1. In the group D,, the identity Ba = o~ 'R holds.
Proof: By Theorem 1.30 we have, for any 0, ¢,

ref 6 rot ¢ = ref(e - -‘;;) = ref(() + (_T¢)) = rot(—d)(ref 6).
Setting ¢ = 27/m and 6 = 0 yields the desired result. O
Theorem 2. The index [D,,:C,,] of C,, in D,, is equal to 2.

Proof: The group C,, consists of m distinct rotations. The coset BC,,
consists of m distinct reflections. Because the identity
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Ba/Bak = a/B% = o~/

holds, the union of the cosets BC,, and C,,, is the group D,,,. O
Any group isomorphic to D,, is called a dihedral group.

Remark:
i. The symmetry group of an angle (other than a straight angle) is
isomorphic to D,. It consists of the identity and a reflection.
ii. The Klein four-group (which we obtained in Theorem 2.28 as the
symmetry group of a segment) is isomorphic to D,. It consists of the
identity, a half-turn, and two reflections.

ili. The symmetry group of an equilateral triangle (Theorem 2.37) is
isomorphic to Ds.

Conjugate subgroups

Let G be a group. Two subgroups H and K are said to be conjugate in G if
there exists an element g € G such that K = g~ 'Hg.

Theorem 3. Let g and T be isometries of E>. Then
i. If T is a reflection, so is g~ 'Tg.

ii. If T is a rotation, so is g~ 'Tg.

iii. If T is a translation, so is g~'Tg.

Proof:
i. Let T = Q, be a reflection. For any x € g~ '¢,

g 0pr=g"1gx=1x,

so that g~ '€ is pointwise fixed. On the other hand, g~'Q,g cannot be
equal to the identity. Because it has this particular fixed point
behavior, g7'(0g must in fact be the reflection in the line g '¢
(Theorem 1.39).

ii. Suppose that T = Q. is a rotation with center P. Then

g7'Tg = (87'0)(g7'2..8),
a rotation about g~'P.

iii. Suppose that T = Q) is a translation. Then g~'Tg is the product of
reflections in the parallel lines g~ '€ and g~ ' . O

Groups of isometries that are conjugate in #(E?) are said to be
geometrically equivalent. This definition is motivated by observations of the
type made in Theorem 3. Conjugate elements perform the “same”
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jometries with respect to “different” positions. The group of all rotations
sbout a point P is conjugate to the group of all rotations about any other
point Q.

An example of two groups that are algebraically equivalent (i.e.,
somorphic) but not geometrically equivalent (conjugate) is given by D,
ad C,. Because both have order 2, they are isomorphic. But C; is
generated by a half-turn «, and D, by a reflection B. Any equation of the
form g 'ag = B would be impossible because B has a line of fixed points,
but « (and hence g~ 'ag) has only one fixed point.

The groups C4 and D, have the same order but are not isomorphic. This
wn be seen by observing that every element g € D, satisfies the relation
¢ = I, which is not satisfied by a € C,.

The groups C,,, and D,, have the same number of elements for each m.
[fm > 2, Cyy is abelian, but D, is not. Thus, D,, and C,,, are never
geometrically equivalent and are isomorphic only if m = 1.

Theorem 4. Let a = rot(2mw/m), B = ref 0, and y = ref 0. Then the group
({a, y}) generated by a and v is conjugate to the dihedral group
Dy = ({(!, B})

Poof: Intuitively speaking, we can realize a reflection in the mirror of vy
by first rotating by —8, then reflecting in the x,-axis, and finally rotating
back by 6. Algebraically, by Theorem 1.30

rot 0 ref .

rot 0 ref 0 rot(—0) >

i %_
ref(2 + 5] = ref 0. O

It is not surprising that congruent figures have geometrically equivalent
symmetry groups.

Theorem 5. Let  be a figure, and let g be an isometry of E%. Then (%)
and S(gF) are conjugate in  (E?).
Proof: Let h be a symmetry of #. Then

ghg™'g F = ghF = g #,

and, hence, ghg~' is a symmetry of g#. Conversely, if 4 is a symmetry of
g Z, we have

g g F=ggF=%.
Thus, g~ 'L (g F)g = L (F). O

Conjugate subgroups
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Remark: For economy of language we will sometimes substitute ““is” for
“is geometrically equivalent to™ when speaking of groups of isometries.
For instance, we say “the symmetry group of the equilateral triangle is
D5, even though this is strictly true only for an equilateral triangle with
centroid at the origin and with the x,-axis as a line of symmetry.

Orbits and stabilizers

Let X be a set, and let G be a group of transformations of X. Let x be 2
member of X. Then

Gx = {gxlg € G)

is called the orbit of x by G. When G is understood from the context, we
may write Orbit(x) for Gx. The set

G, = {g € Glgx = x}

is called the stabilizer of x in G. The stabilizer is also sometimes written
Stab(x).

Theorem 6. For any x € X the stabilizer of x in G is a group. There isa
natural bijection of the set of cosets determined by Stab(x) onto Orbit(x).

Proof: The fact that G, is a group is easy. Now consider the mapping
7:G — Orbit(x) defined by 7g = gx. Then 7 is clearly surjective. Lel
m:G — G/G, be the natural homomorphism. We now set ¥mg = g and
note that 7 is well-defined as a map from G/G, to Gx. To check this,
suppose that mg = mg are two representations of an element of G/G,.
Because g and g belong to the same coset, they satisfy ¢~ 'gx=x. But then

18 = gx = (887 ")gx = §(g7'g)x = gx = 4.

Hence, 7 is well-defined. Surjectivity is clear. Furthermore, 7 is injective
because Tmg = Tmg means that 7g = 74. In other words,

gx=gx, §'ex=x, g'2€ G, and mg = wg. O

Theorem 6 allows us to complete our earlier assertions about symmetry
groups of rectilinear figures.

Theorem 7. If # is a rectilinear figure having just one vertex, then & (F) is
a finite group.

Proof: Let P be the only vertex of #. Then % contains a finite number of
lines (say m) through P. Note that m = 2. Let Q be some point of # other



L R o A A

than P. Then the stabilizer of Q, consisting of isometries leaving P and Q
fixed (Theorem 1.39) has at most two elements: the identity and possibly

| the reflection in Fé The orbit of Q by #(#) consists of points on % whose

distance from P is d(P, Q). Because % has only m lines through P, there
can be at most 2m such points. Thus

#S(F) < #Stab(Q)-#Orbit(Q) < 2(2m) = 4m.

This estimate is the best possible because a regular polygon with 2m
vertices determines m lines through its center and has symmetry group of
order 4m. The figure consisting of these m lines alone has the same
symmetry group. (Regular polygons are discussed in the next section.) [

Remark: Let Z be a figure consisting of m rays with a common origin P.
Then (%) has at most 2m elements.

Definition. Let G be a group of transformations of a set X. If there is a
point xo € X that is a fixed point of every transformation in G, we call x, a
fixed point of G.

Remark: The orbit of the fixed point x is {xo}. The stabilizer of x; is the
whole groun G

Theorem 8. Let F be a rectilinear figure with at least one vertex. Then
S(F) has a fixed point.

Leonardo’s theorem

We now turn to the question, what finite groups can occur as symmetry
groups of figures? The answer was known to Leonardo da Vinci ([31],
p. 99). Although groups had not been invented in his day, he was aware
that the only symmetries of a finite figure were rotations about a certain
point and reflections in lines through that point.

We noted that symmetry groups have the fixed point property. We now
show that all finite isometry groups have that property.

Theorem 9. Let G be a finite subgroup of AF(2). Then G has a fixed point.

Proof: Choose a point x € E%. Let n = #G, and C = (1/n)Z,gx. That is,
Cis the centroid of the orbit of x. Any 7 € G permutes the elements of the

orbit of x. A calculation similar to that of Theorem 2.27 gives us the fact
that TC = C. O

Leonardo’s theorem

75



Finite groups of
isometries of E?

76

Corollary. Every finite subgroup of .#(E*) consists of rotations about a
certain point and reflections in lines through that point.

Theorem 10. Every finite subgroup G of #(E?) is cyclic or dihedral. If C is
a fixed point of G, then G is generated by a rotation about C (possibly
trivial) and/or a reflection in a line through C.

Proof: First consider the case C = 0. Then G is a subgroup of O(2). If
G N SO(2) = {1}, then either G = {I} or G = {I, B} (where B is some
reflection), because if G contained more than one reflection, it would have
to contain a nontrivial rotation as well.

Suppose now that G contains a nontrivial rotation. Let ¢ be the smallest ‘
positive number such that rot & € G. If rot s is another element of G, we
may choose an integer € so that

b << (€+ 1),
that is, ‘

0y — b < o.

Now rot (y — €4) = (rot ¥)(rot &)~ is a member of G. Hence, ¢ — €d =10,
and we conclude that all rotations in G are powers of rot ¢. The same
calculation with = 27 shows that there is a positive integer m such that|
md = 21; that is, & = 2m/m. Thus, we have shown that G N SO(2) = C,,

Now if G contains a reflection 3, we see that the coset C,,3 contains m
distinct reflections. Every reflection in G lies in C,,8 because if -y is sucha
reflection then yp is a rotation in C,, and y = (yB)B € C,,B8. Thus, every
element of G may be written in the form o/B*, where a = rot(2m/m),
0<j<my,and 0 = k < 2. ’

The identity Ba = a~'B can be easily verified as in Theorem 1, and thus
G is either C,, or D,,.

Finally, if C is a point other than the origin, G is conjugate to the group
7_cG7c, which does leave the origin fixed, and the first part of the proof
applies. O

Regular polygons

As we have just discovered, only the cyclic and dihedral groups can occur
as symmetry groups of figures. We will now describe a family of figures
having precisely these symmetry groups. These are based on the familiar
notion of regular polygons. Intuitively, we may imagine tracing out a figure
by moving a unit distance, then turning through an angle of 2w/m, and
repeating this process m times. (This is the “turtle geometry” approach
(1)

We now make the formal definition.



Definition. Let m be a positive integer greater than 2. Let P and Q be
distinct points of E*. For each integer k let

2k
O = TP(TOt %)T—PQ,

and let q; be the segment QyQy.1. The union of all q, is called a regular
polygon. See Figures 3.1-3.2.

Observing that Qy ., = Ok and qx+m = g for all k, we see that there are
m distinct Qy (called vertices of the polygon) and m distinct g, (called
edges or sides of the polygon). The expression “polygon with m sides” is
sometimes abbreviated “‘m-gon.” But a regular polygon also is a rectilinear
figure, and the concept of vertex has already been defined in Chapter 2.
We must show that the two definitions are consistent. As a first step, we
show that the centroid of the Qy is P.

Theorem 11. Let {Qy} be the vertices of a regular m-gon. Then

LiQk=P-

m -,

Proof:  First note that
Qi =P+ d{Q - P),
where « = rot(2w/m). Thus,
Qi = mP + (Za¥)(Q — P).

The proof normally used to derive the formula for the sum of a geometric
series applies here to show that the matrix equation

holds. This completes the proof. O

Theorem 12. Let {Q,} be the vertices of a regular m-gon. Let €, = Q;Qy .y
be a line determined by consecutive vertices. Then the whole polygon lies on
the same side of €.
Proof: Let v = Qp — P. Then, we may write

Qi+1 = P + (rot O)v, Q; = P + (rot d)v,
where ® = 2m/m and & = (j — k)0. Now

Qi1 — Qx = (rot 6 — v = 2<sin g)](rot g)"

Regular polygons

Figure 3.1 A regular 11-gon - symmetry

group is dihedral.

Figure 3.2 A regular 7-gon — symmetry

group is dihedral.
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and

Qi — O = 2(sin g)!(rol —g) v.
The equation of the line ¢, is
(x = O, N) =0,
where N = J(Qx+1 — Q). We compute

(Qj — Ok, N) = 45sin g sin §<J(rot g)v —(rot g)v>

-t o259 )
—4smzsm2 rot 5 v, Ju

because J> = —/ and J = rot (w/2) commutes with the other rotations. But

(rot 25-2)o = ({eos 251 + (sin 252)1)u

therefore,

(Qj — O, N) = 4(sin g)(sin g)(sin 5 ; 9)I.Iulz.

At this stage we remark that sin(3/2) and sin((d — 0)/2) cannot have
different signs. At worst, one can be zero, and the other nonzero. We
conclude that (Q; — Qy, N) = 0 for all j, and that all the Q, lie on the same
side of €,. Furthermore, equality occurs if and only if 8 = 0 (i.e., Q=0
ord=0(i.e., Q= Qxs1). O

Corollary. The line € does not intersect any segment of the form Q;Q;.,
except for the following cases:
L Qj = Ok, Q,'+| = Qk+1s
i, Q= Qgu,
ii. Ok = Q.

Corollary. The vertices of the polygon are precisely the m points {Q,),
VN N SO

Similarity of regular polygons

When computing the symmetry group of a regular polygon, it is legitimate
to assume that its center is at the origin and one of its vertices is al
€; = (1, 0). The reason is that if 2 and 2’ are two regular m-gons, then
#(?) and ¥(2') are conjugate in F(E?). We will now justify this
statement.
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side of €,. Furthermore, equality occurs if and onlyifd =0(i.e., Q; = Q)
ord=0(i.e., Q= Qxs). O

Corollary. The line € does not intersect any segment of the form Q;0;+
except for the following cases:
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Corollary. The vertices of the polygon are precisely the m points {Qj}),
T= 3525 vaseims

Similarity of regular polygons

When computing the symmetry group of a regular polygon, it is legitimate
to assume that its center is at the origin and one of its vertices is at
€1 = (1, 0). The reason is that if 2 and 2’ are two regular m-gons, then
&(?) and ¥(2') are conjugate in £(E?). We will now justify this
statement.



Theorem 13. Any two regular m-gons are similar.

Proof: Let P, Q and P’, Q' be, respectively, the center and a vertex of two
regular m-gons 2 and 2’'. Then 7_p# and 7_p- 2’ are regular m-gons
congruent to 2 and Z’. Let ¢ and ¢’ be chosen so that (rot ¢)t_p 2 and
(rot ¢")r_p: 2" are regular m-gons centered at the origin with one vertex on
the positive x,-axis (i.e., the ray with origin 0 and direction vector ¢,). Call
the new polygons 2, and 2,

Now if Q = (¢, 0) and Q' = (¢q', 0), let S be the central dilatation given
by

’

Sx = -q—x.
q

We claim that S2, = 2. First note that if Q; and Q] are the vertices of %,
and 2, respectively, then

SQ; = S(rot j8)Q = (rot je)gq—'Q

= (rot jO)Q" = Q),

where 8 = 27/m. Thus if g; and g; are the edges of 2, and 2, respectively,
then

Sq; = q;.
We conclude that SZ, = 2. Putting all this together we see that
S(rot ¢)1_p2 = (rot ¢')r_p?';
that is,

Tp(rot(—d')S(rot d)1_p 2 = 2. O

Theorem 14. The symmetry groups of any two regular m-gons are conju-
gate in F(E?).

Proof: Let T be the similarity constructed in the previous theorem. Then
#(#2) and ¥ (2') are conjugate in the group of similarities. This is not
enough. However, if g € (2), then

8 = Tp€0T-p,

where gy € O(2). This is because g leaves P fixed. Now

TgT™' = 1p(rot(d — &"))St_prpgor—prpS~ ' (rot (¢’ — &))7_p
Tp(rot(d — $'))SgeS ™ (rot (" — &))r_p-.

We observe that § commutes with every member of O(2). Hence,

TgT™' = 1p(rot(d — &"))7_pgrp(rot (¢’ — d))r_p = TgT~',

Similarity of regular
polygons
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where T is an isometry. This shows that %(2) and S (2'") are in fact
conjugate in .#(E?).

Symmetry of regular polygons

Theorem 15. Ler 2 be a regular m-gon. Then & (#) = D,,.
Proof: By Theorems 12 and 13 we may assume that the vertices of 2 are
of the form

(rot%)e,. k=0,1,2,...,m— 1.
m
Clearly, rot(2m/m) permutes the vertices. In fact,
2w
(rOt ;)Q/ = Qj+1-
Secondly, ref 0 permutes the vertices. Specifically,

(ref 0)Q; = Q.

Adjacent vertices remain adjacent under both of these transformations. In
particular,

2
(rot ’—n'ﬂ)q,' = gj+1» (ref 0) gj = @m—j-1.

Thus, the edges are permuted by rot (2m/m) and ref 0. Because each of
these transformations is in ¥ (2), we must conclude that D,, C ¥ (2). But
Leonardo’s theorem shows that #(2) is cyclic or dihedral because the
centroid must be left fixed. If &(£) contains a rotation other than those in
C,, (call it rot 6), then rot § must permute the vertices. In particular,
(rot 8)Q must be a vertex and so must be equal to rot(2mj/m)g, for some j.
Thus, rot € C,,, and the proof is complete. O

Leonardo’s theorem together with Theorem 7 shows that the only
groups that can occur as symmetry groups of rectilinear figures (having at
least one vertex) are D, and C,,.

The work on regular polygons shows that every dihedral group can be
obtained as the symmetry group of some figure.

We now ask whether every cyclic group C,, can occur as the symmetry
group of a figure. The answer can be seen as follows. A regular m-gon has
2m symmetries, m rotations, and m reflections. We change the figure in
such a way as to destroy the bilateral symmetry while retaining the
rotational symmetry. This can be done by attaching a tail to one end of
each of the edges.



Let Q; be defined as before, but let g; be the ray with origin Q; and Figures with no vertices
direction vector Q;+; — Q;. One can check that no new vertices are
itroduced by this procedure. See Figures 3.3 and 3.4. However,

2
(rOl 2"?) ql = qi"" and (I’Ot ;) Q, = Qj+|‘

Thus C,, C #(F). As before, these are the only rotations in ().

If any reflection ref & were a symmetry of #, it would have to permute
e vertices of Z as well as leaving the centroid (the origin in this case)
ixed. At most, two vertices could be fixed by ref ¢. Thus, for some j # k,
we would have

Figure 3.3 A modified regular 11-gon -
symmetry group is cyclic.

(ref $)Q; = Ox.
Then
(ref $)Q,41 = ref d(rot 8)Q; = rot(—06)(ref ¢)Q;
(rot(—6))Qx = Ox—s-

Thus, ref ¢ sends the ray Q,_é,-ﬂ to the ray (Q—kék_,. which is not in the
figure 2. We conclude that & (2 ) contains no reflections, and (2) = C,,.
We can now state

Theorem 16.  Every finite cyclic or dihedral group is the symmetry group of
a rectilinear figure.

Figure 3.4 A modified regular 7-gon -
symmetry group is cyclic.

Figures with no vertices

A complete rectilinear figure with no vertices must consist of a finite
mmber of parallel lines. Let & be such a figure, and let [v] be the direction
of the lines.

Because T, is a symmetry of &, we have an example of a rectilinear
figure with an infinite symmetry group.

Theorem 17. Let F be a figure consisting of a finite number of parallel
lines with direction [v]. Let 7 be the set of translations in (¥ ). Then

T = {1,|w € [v]}.

Proof: % is the union of lines of the form P + [v]. Now
TP+ [v]) =P+ [v)+w=P+ [v].

On the other hand, if 7, € 7, then 7,,P = P + w must be in P + [v]. Thus
we [v]. O 81
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mmber of parallel lines. Let # be such a figure, and let [v] be the direction
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Theorem 18. Let F be the figure of Theorem 17. Then (%) N O(2) has at
most four elements.

Proof: Let A be a member of the group in question. Because A permutes
the lines of #, we must have Av = *v. Thus, A is a symmetry of the
segment joining v and —v. By Theorem 2.28 there are at most four
possibilities: two reflections, a half-turn, and the identity. In our case the
identity and the reflection that interchanges v and —v necessarily belong to
& (F). The other two transformations will belong only if the lines are
placed in a certain way.

Theorem 19. Let F be a complete rectilinear figure with no vertices, and lei
T be the set of translations in (). Then

i. 7 is a normal subgroup of ¥(F),

. S(F) T has at most four elements.

Proof: The homomorphism that sends each symmetry onto its linear part
has 7 as its kernel and ¥ (%) N O(2) as its range. Thus, Z is normal, and
the quotient group is isomorphic to (%) N 0(2).

EXERCISES

1. A parallelogram is a rectilinear figure consisting of four segments
(sides) AB, BC, CD, and DA, where AB||CD and BC||DA. Prove that
there is an affine transformation relating any two parallelograms.

2. Find the affine symmetry group of the parallelogram.

3. A rhombus is a parallelogram in which all four sides have equal
lengths. A rectangle is a parallelogram in which adjacent sides are
perpendicular. A parallelogram that is both a rhombus and a rectangle
is called a square. Find the symmetry groups of all types of parallelo-
grams.

4. Let € be a line. Show that TRANS(€) U {Hp|P € €} is a group, and
write down a multiplication table for it. Show that TRANS(¢) is a
normal subgroup, and describe the quotient group.

5. Let P and Q be distinct points. Describe the group G generated by
{Hp, Hp}. Show that the set of translations in G is a normal subgroup
and describe the quotient group.

6. Let # be the union of three segments AB, BC, and CD. Given that
d(A, B) =d(C, D), AB 1 BC, and BC L CD, what can you say about
S (F)?

7. Let # be a complete rectilinear figure having two or more vertices, all
of which are collinear. Show that ¥ (#) is a finite group having one,



two, or four elements. Describe the configuration in each of these
cases.

. Verify the equation )} o* = 0 in Theorem 11.
k=1

Figures with no vertices
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Geometry on the
sphere

Introduction

We now turn to a study of spherical geometry. Although the analytic
geometry of the sphere is best formulated by considering it as a subset of
three-dimensional space, our intuitive motivation must be intrinsic. In
other words, our geometrical statements must be concerned with the
sphere itself, not the points of space that lie inside or outside it. Our point
of view is that of a small bug crawling on the two-dimensional surface of
the sphere. Concepts of point, line, distance, angle, and reflection will be
chosen to coincide with the bug’s experience. (See [1], Chapter 5; [30],
Chapter 2.)

Preliminaries from E>

Of course, there is a three-dimensional Euclidean geometry analogous to
the geometry of E*, which is worthy of study in itself. In this book,
however, we are restricting our attention to two-dimensional geometries.
It is convenient for computational purposes to regard some of these
geometries as subsets of E?, and thus a few facts about the geometry of
E’ will be developed. In a manner quite similar to that used in Chapter
1, we introduce the coordinate three-space R® (also a vector space),
an inner product, and the concept of length of a vector. In particular, if
x = (x1, X2, x3) and y = (yy, y, y3), then

x+y=(x+y, X+ y,x3+ y3),
cx = (exy, cxz, cx3),

(X, ¥) = x1y1 + X292 + x393,
| = V{x, x).

Theorems 1-8 of Chapter 1 apply equally well in this setting. The reader

fc
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n easily check this by using the same proofs or trivial modifications of
em.

The theorem of Pythagoras (Theorem 12, Chapter 1) is equally valid in
*with the same proof. The definition of v* is peculiar to E?, however.
stead, we have the cross product, which is treated in the next section.

he cross product

he problem of finding a vector perpendicular to two given vectors is
lved as follows:

efinition. Let u and v be vectors in R®. Then u X v is the unique vector z
ch that, for all x € R?,

(z, x) = det(x, u, v).
heorem 1.
. u X vis well-defined.
. (u X v, u) = (u x v, v) =0. (See Figure 4.1.)
L uXv=—-vXu
v'
1

. (u X v, w) = (u, vXw).
C(uxv)xw= (u whv— (v, wu.

oof: We first recall a result from linear algebra; namely, that every
near function from R? to R can be expressed in the form
x— {x, z)
or some fixed vector z (Theorem 8D). As we know, the function
x — det(x, u, v)

linear for each fixed choice of u and v. This proves (i). Identities (ii)—(iv)
an be easily deduced from the properties of determinants. On the other
and, (v) (often called the vector triple product formula) is rather
omplicated, but detailed computation can be avoided by exploiting the
nearity. First, observe that

€ X €, = €3, € X €3 = €&;, and €3 X g = &;.
hus,

(51 X €2) X €3 = 0 = (g, e3)es — (&2, €3)ey,

(e2 X €3) X €3 = —gy = (&, €3)€3 — (€3, €3)€2,

(e3 X €&1) X &3 = g1 = (&3, €3)&; — (€, €3)¢3.

Figure 4.1

The cross product

uXv

The cross product u X v.
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By linearity we have
(u X v) X &3 = (u, e3)v — (v, e3)u.
By symmetry the analogous identity is true when &5 is replaced by ¢, or «,.

Finally, by linearity

(u X v) X w= (u, wv — (v, whu. O

Corollary.

i. u X v=0ifand only if u and v are proportional.
ii. Ifuxv#0,then {u, v, u X v} is a basis for R>.
. (uXv,wxz)=(u w)(v,z) — (v, w){u, z).
lu x of? = |uPlpf? = (u, v)*.

?.

This last statement is known as the Lagrange identity. Note that it yields
another proof of the Cauchy-Schwarz inequality.

Proof: (i), (iii), and (iv) can be easily deduced from the results of the
theorem. (See Exercise 1.) For (ii) we will show that the set of vectors in
question is linearly independent. Then general results from linear algebra
(Appendix D) can be applied.

Now if there exist numbers A\, w, v with

Au+ pv+ v(u X v) =0,
we can take inner product with 4 X v to obtain
vlu x v =0,

and, hence, v = 0. Further, taking cross products with v and u, respective-
ly, yields

AMu X v) =0, plvxu) =0,
sothatA = pn = 0. O

Orthonormal bases

A triple {u, v, w} of mutually orthogonal unit vectors is called an
orthonormal triple.

Theorem 2. If {u, v, w} is an orthonormal triple, then for all x € R?,

x = {(x, u)u + (x, v)v + (x, w)w.

The proof of this is similar to that of Theorem 9 in Chapter 1. In light of
this result we usually refer to such a triple as an orthonormal basis.



Theorem 3. If u is any unit vector, there exist vectors v and w so that
{u, v, w} is an orthonormal basis.

Poof: Let &€ be any unit vector other than *u. Then let vbe u X § divided
byits length, and w = u X v. Noting that |u x v|? = |u]*|v]* — (u,v)? =1,
we see that {u, v, w} is orthonormal. 0

Planes

A plane is a set I1 of points of E* with the following properties:

i. Il is not contained in any line.
i. The line joining any two points of I lies in II.
ii. Not every point of E* is in II.

Theorem 4.

i. Ifvand w are not proportional, and P is any point, then P + [v, w]is a
plane. We speak of the plane through P spanned by {v, w}.

i. If P, Q, and R are noncollinear points, there is a unique plane 11
containing them. In this case we speak of the plane POR.

ii. If N is a unit vector and P is a point, then {X|(X — P, N) =0} isa
plane. We speak of the plane through P with unit normal N. See Figure
4.2.

Notation: [v, w] = {tv + sw|t, s € R} is called the span of {v, w}.

Proof:

i. Suppose that a = P + [v, w] is a set as described in (i). We show that «
is a plane. First of all, let Q = P + vand R = P + w. Then, because
Q — P and R — P are not proportional, the points P, Q, and R are
not collinear and « is not contained in any line. Secondly, if X =
P + v X w, we see that X ¢ a because {v, w, v X w} is a linearly
independent set. Thus, not every point of E* is in a. Thirdly, let

X=P+X|U+XZW. Y=P+y|v+y2w
be points of «, and let r be any real number. Then

(1=0DX+tY=(1=0P + P+ ((1 —0nx; + ty)v
+ (1 =0xs+ty)w=P+((1 = 0x; +ty)v+ ((1 — Dxa + ty)w.

This exhibits a typical point of XY as a member of a and concludes
the proof that « is a plane.

ii. Let P, Q, and R be noncollinear points. Let v = Q — P and w =
R — P. Then, by (i), P + [v. w] is a plane containing P, Q. and R. We

Planes

Figure 4.2 X lies on the plane through P

with unit normal N.

87



Geometry on the sphere

88

now show that this plane is unique. Let IT be any plane containing P,
Q, and R. Then

P+A+puw=P+\NQ-P)+ uR - P)
=(1—-XA-pP+1r0 + pR

=(1-)\—p.)P+()\+p.)()‘:uQ+)\:uR).

This exhibits a typical point of P + [v, w] as a point on the line PX.
where

A
At R

B
+ R
0 A+

is a point on é?% Thus, any plane containing P, Q, and R mus!
contain P + [v, w]. But now if [T contains a point S not in P + [v, w),
then {§ — P, v, w} is a linearly independent set. If Z is any point of
E’, Then

Z—-P=\ v+ pw+ v(S — P) for some numbers A\, p, and v.

One can now check that

Z=vS+(1—v)(P+livv+ P w),

1—v
which shows that every point of E* is on a line joining S to a point of
I1. This is impossible because IT does not contain all of E>. We
conclude that [T = P + [v, w] and that the plane containing P, Q, and
R is unique.

ii.  Finally, we relate characterizations (i) and (ii) of planes. Suppose the
unit normal N is given. Then (by Theorem 3) we may choose v and »
so that {N, v, w} is orthonormal. For any X in E* we may write, by
Theorem 2,

X-P=(X-P,NN+ (X—-P vyv+ (X - P, ww,

which shows that X — P lies in [v, w] if and only if (X — P, N) = 0.
Thus, {X|(X — P, N) =0} is a plane. 0

Incidence geometry of the sphere

The sphere S* on whose geometry we will be concentrating is determined
by the familiar condition

$2= {xe B |x] =1).

If one begins at a point of S? and travels straight ahead on the surface, one
will trace out a great circle. Viewed as a set in E?, this is the intersection of



§? with a plane through the origin. However, from the point of view of our Incidence geometry
bug on 2 it is more appropriate to call this path a line. This motivates the of the sphere
following definition.

Definition. Let & be a unit vector. Then
¢ = {x € S’l(& x) = 0}
is called the line with pole & We also call € the polar line of &.

Remark: Spherical geometry is non-Euclidean. This means that whenever
we represent a figure by a diagram, distortions are inevitable. Diagrams
that faithfully represent one aspect (e.g., straightness of lines) will distort
some other aspect (e.g., lengths and angles). You are cautioned against
basing arguments on a diagram, but you are encouraged to use them to
suggest facts that can then be verified rigorously. Often it is desirable to
have more than one diagram of the same situation, each providing insight,
yet containing some misleading information. Figures 4.3 and 4.4 show two  Figure4.3 A point and its polar line £,
ways of thinking about a point and its polar line. first view.

Two points P and Q of §? are said to be antipodal if P = —Q. Lines of S?
cannot be parallel, and two lines intersect not in just one point but in a
pair of antipodal points. We assert the following facts that you may verify £
as exercises (Exercise 5).

Theorem 5.
i. If & is a pole of €, so is its antipode —E&.
ii. If P lies on €, so does its antipode —P.

However, once these facts are noticed, there are no further anomalies, N 2

w i i : -

and we get the following analogues of the Euclidean results Flguredid' ;A point Eanditspolarline t;
second view.

Theorem 6. Let P and Q be distinct points of S* that are not antipodal.
Then there is a unique line containing P and Q, which we denote by PQ.

Proof: In order to determine a candidate for i’_é, we need a pole &. This
must be a unit vector orthogonal to both P and Q. Because P and Q are not
antipodal, we may choose £ equal to (P x Q)/|P x Q|. Clearly, the line
with pole £ passes through P and Q.

We now consider uniqueness. If 1 is a pole of any line through P and Q,
we must have

(n, P) = (n, Q) = 0.
Thus, by the triple product formula, in Theorem 1, 89
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Figure 4.5 Two intersecting lines € and
e, first view,

»7i

Figure4.6 Two intersecting lines € and
w2, second view.

Figure 4.7 Even lines with a common
perpendicular are not parallel, first view.

90

mx(PxQ)=0,

and, hence, n is a multiple of the nonzero vector P X Q. Because |q| = I,
«—>
we must have n = £, Thus, PQ is uniquely determined. O

Theorem 7.  Let € and s be distinct lines of S*. Then € and » have exacily

two points of intersection, and these points are antipodal. (See Figures 4.5
and 4.6.)

Proof:  Suppose & and m are poles of € and », respectively. Because ¢ and
m are distinct, £ # %, and, hence, £ X m # 0. But clearly, both points
*(£ X m)/|€ X m| lie in the intersection. Any third point, however, could lic
on at most one of € and » by the uniqueness part of the previous theorem.

g

Corollary. No two lines of S* can be parallel.

Remark: Even lines that have a common perpendicular will intersect. See
Figures 4.7 and 4.8 for two views of this situation.

Distance and the triangle inequality

The distance between two points P and Q of §? is defined by the equation
d(P, Q) = cos™ (P, Q).

This definition reflects the idea that the measure of the angle subtended at
the center of the sphere by the arc PQ should be numerically equal to the
length of the arc. See Figures 4.9 and 4.10. The following theorem should
be compared with Theorem S of Chapter 1.

Theorem 8. If P, Q, and R are points of S*, then
i. d(P,Q)=0.
ii. d(P, Q) =0ifandonlyif P= Q.
ii. d(P, Q) = d(Q, P).
iv. d(P, Q) + d(Q, R) = d(P, R) (the triangle inequality).

Proof: Properties (i)—(iii) follow from the Cauchy-Schwarz inequality
and the properties of the cos ™' function. (See Appendix F.) The details are
left to the reader as exercises. We concentrate our attention on the triangle
inequality.

Let r = d(P, Q), p = d(Q, R), and g = d(P, R). By the Cauchy-
Schwarz inequality we have



(PxR, QxR?=<|PxRP|Q xR
Applying Theorem 1, we get that the left side reduces to

((P, @)(R, R) = (P, R)(R, Q))* = (cos r — cos q cos p)’,
and the right side is

(1 = (P, R))(1 - (Q, R)?)

(1 — cos® g)(1 — cos® p)
sin? ¢ sin? p.

Thus,
cos r — COS g cos p =< sin g sin p,

and, hence,

cos r < cos(q — p)-

Because the cosine function is decreasing on [0, w], we have r = g — p,
nd, hence, r + p = q, provided that 0 < g — p < . Butif g — p <0, then
¢<p <r + pin any case. Furthermore, ¢ — p > w is impossible.

We conclude therefore that

d(P, Q) + d(Q, R) = d(P, R),

srequired. O

Corollary. If equality holds in (iv), then P, Q, and R are collinear.

proof: In the proof of (iv), r = ¢ — p implies that the Cauchy—Schwarz
iequality is an equality. Thus, P X R and Q X R are proportional.
Assuming that P X R # 0 (otherwise P, Q, and R are automatically
wllinear), we see that the pole of the line PRis proportional to P X R and,
hence, to Q X R. This shows that Q lies on ﬁ?’ O

Remark: In the case of E? we get the further conclusion that Q is between
Pand R (Theorem 1.7). In spherical geometry we shall see that a similar
result holds if we make the right definitions. (See Theorem 35 in this
chapter.)

Parametric representation of lines

Just as in E2, it is often convenient to describe lines in parametric form.
Suppose that € is a line with pole £. Let P and Q be chosen so that {§, P, O}
is orthonormal. Then set

a(t) = (cos t)P + (sin 1)Q.

Parametric representation
of lines

L h

Figure 4.8 Even lines with a common
perpendicular are not parallel, second
view.

P
0
P Q
N J
Figure 4.9 Distance in spherical
geometry, first view.
6 Q
P
Figure 4.10 Distance in spherical
geometry, second view.
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Figured4.12 Parametrization of a line,

second view.
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Parametrization of a line,

Theorem 9.
i. €= {a(r)|t € R}.
il. . Each point of € occurs exactly once as a value of a(t) while t ranges
through the interval [0, 2m).
. d(a(h), a(t)) = |ty = 6| if 0 < |t, — 1| < 7.

This essentially says that « is a unit-speed parametrization of the line ¢
See Figures 4.11 and 4.12.

The function « is said to be a standard parametrization of €. Each line
has many standard parametrizations. P may be any point on ¢, and for :
given P there are two choices of Q.

Perpendicular lines
Definition. Two lines are perpendicular if their poles are orthogonal.

We recall that in the Euclidean plane a pencil of parallel lines could be
regarded as a pencil of lines with a common perpendicular. In the spherical

case we have the following situation. The proofs are left to the reader as
exercises.

Theorem 10.  Let € and m be distinct lines of S*. Then there is a unique line
#nsuch that € L » and m L n. The intersection points of € and » are the poles

Ofn.

Theorem 11.  Let € be a line of S?, and let P be a point. If P is not a pole of
€, there is a unique line m through P perpendicular to ¢.

Remark:

i. If Pis a pole of ¢, every line through P will be perpendicular to .

ii. Theorem 11 shows that as in E?, we can drop a perpendicular from a
point P not on ¢ to the line €. In E? the foot of the perpendicular is the
point of € closest to P. In spherical geometry the perpendicular line »
intersects € twice. We shall see later in this chapter that the points of
intersection are the points of € closest to and farthest from P. We must
postpone this discussion, however, until we have more machinery for
dealing with segments, angles, and triangles.

Motions of S?

Definition. For any line € the reflection in € is the mapping €}, given by

QX = X - 2(X, §€)¢,

wh

thi
tic

Ti

1i
il



where & is a pole of €.

It is not obvious that QX will actually be a point of S>. To take care of
this and other difficulties, we investigate the properties of the transforma-
fion of R® defined by the formula for Q.

Theorem 12. Let (£, £) = 1 and define T: R> — R? by
Tx = x — 2{x, &)¢&.

Then
i. Tis linear.
i. (Tx, Ty) = (x, y) forall x, y € R,

Poof: The linearity of T is an easy verification (Exercise 11); just use the
inearity property of the inner product. To see (ii), consider

(Tx, Ty) = (x — 2(x, £)§, y — 2(y, £)€)
= (xvY> - 2<xv g)(g’ }’) i 2(1, §)(}’, g) + 4<X, §)(y, g)(&v §)
=(x,y). o

Remark:

i. A mapping T: R® — R? satisfying (i) and (ii) in Theorem 12 is said to
be orthogonal. We study such mappings in general in a later section.

i. Property (i) says that if |x| = 1, then |Tx| = 1. Thus, QX is on §?
whenever X is a point of 8. Other consequences of property (ii) and
the algebra developed in Chapter 1 yield the following basic properties
of reflections.

Theorem 13.

i. d(QeX, QY) = d(X, Y) for all points X and Y in st
i. Q:0.X = X for all points X in S*.

ii. Q: 8* — 8% is a bijection.

Theorem 14. QX = X if and only if X € €.

We now investigate the product of two reflections. Let € and » be
distinct lines with respective poles &€ and m. Let P be one of the points of
intersection of € and ». Choose an orthonormal basis {e,, e;, ez} with
¢y= P. Then & and m are unit vectors in the span of {e,, ¢;}. As in Chapter
1, we may choose numbers 6 and ¢ so that

£ = (—sin 0)e, + (cos 0)e;, m = (—sin d)e; + (cos d)e,.
A routine calculation [essentially that of Chapter 1, (1.11)] gives

Qee, = (cos 20)e; + (sin 20)e,,

Motions of S?

93



Geometry on the sphere

94

e, = (sin 20)e; — (cos 20)e,,
Oes = es.

Thus, in terms of the basis {e;, e,, e3}, Q, has the matrix

cos 26 sin 20 0
sin 20 —cos 26 0|,
0 0 1

which we may abbreviate as

(ref 6 0]
0 11

Similarly, the matrix of (2, is

[ref & 0]
0 132

and, hence, Q,(,, has the matrix.
[rot 2(0 — ) 0]
0 11

We use the same definition for rotation as in EZ.

Definition. If o and B are lines passing through a point P, then the isometry
0.0y is called a rotation about P. The special case o = B determines the
identity, a trivial rotation. If o # B, the rotation is said to be nontrivial. We

denote the set of all rotations about P by ROT(P). Note that ROT(P) =
SO(2).

The above calculations reduce the algebra of rotations about a point P to

that used in E%. Thus, it is easy to verify the following important results
concerning rotations of §2.

Theorem 15 (Three reflections theorem). Let o, B, and vy be three lines
through a point P. Then there is a unique line & through P such that

Q"QBQY — Qs.

Theorem 16 (Representation theorem for rotations). Let T = (g be any
member of ROT(P), and let € be any line through P. Then there exist unique
lines » and ' through P such that

T = Q(Q“ = Q,,'Q(.

Definition. Let € be any line, and let »» and » be perpendicular to €. The



2S

iransformation (,,K), is called a translation along €. If » # =x, the
rranslation is said to be nontrivial.

Remark: Unlike the Euclidean plane, S? does not have parallel lines. In
fact, if two lines are perpendicular to €, then they intersect in the poles of
{. Thus, our study of products of two reflections simplifies tremendously.

Theorem 17.
i. Every translation of S? is also a rotation.
i. Every rotation of S? is also a translation.

The translations along a line € in E?> were parametrized by the real
numbers. If we take into account the periodic nature of our parametriza-
tion of lines of S?>, we can obtain the analogous relationships among
reflections in lines perpendicular to €.

Consider now two lines a and B perpendicular to €. Let P be an arbitrary
point of €. Let & be a pole of €, and let Q = £ X P. Then we may choose
numbers @ and b such that

(cos a)P + (sin a)Q € «, (cos b)P + (sin b)Q € B.

Then it is easy to check that (—sin a@)P + (cos a)Q is a pole of «, and
(=sin b)P + (cos b)Q is a pole of B. As we observed in dealing with
rotations,

cos 2a sin2a 0
Q,=|sin2a —-cos2a 0
0 0 1

with respect to the orthonormal basis {P, Q, &}, and, thus
cos 2(a — b) —sin2(a—-b) 0

Q.0 = | sin2(a—-b) cos2a@—b) 0
0 0 1

. [rot 2(a — b) 0]

i 0 1"

We denote the set of all translations along ¢ by TRANS (€). The group
generated by all reflections in the pencil 2 of lines perpendicular to € is
denoted by REF(2).

Theorem 18. TRANS({) is an abelian group that coincides with ROT(§),
where & is a pole of €.

As a consequence of the preceding discussion, we can assert and
interpret the following theorems.

Motions of S?
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Theorem 19 (Three reflections theorem). Ler «, B, and vy be three lines of i
pencil 2 with common perpendicular €. Then there is a unique fourth line’
of this pencil such that

Q.0:Q, = Q5.

Theorem 20 (Representation theorem for translations). Let T = Q.0 be
any member of TRANS(€). If » and » are arbitrary lines perpendicular 1o
€, there exist unique lines »' and »' such that

T=0,9, =Q,Q9,.

Corollary. Every element of REF(2) is either a translation along € or
reflection in a line of 2.

Definition. If a and B are lines perpendicular to a line €, then 0,00 is
called a glide reflection with axis €.

Remark: 1f {e,, e,, e3} is an orthonormal basis with e; a pole of ¢, then
Neey = e, ey = 3, Qeez = —es.

Corollary. With respect to an orthonormal basis of this type, a glide

reflection with axis € has the form

cosA —sinA 0
sin A cosA 0
0 0 -1

Definition. An isometry that is a product of a finite number of reflections is
called a motion.

Simplifying the proofs of Theorems 35-37 of Chapter 1 to take into
account the absence of parallelism yields a proof of the following basic
structure theorem for motions.

Theorem 21.  Every motion is the product of two or three suitably chosen
reflections.

Orthogonal transformations of E>

Definition. A mapping T: E* — E? is said to be orthogonal if
i. T is linear.

i. (Tx, Ty) = (x, y) forall x, y € E>.

S



Theorem 22. A linear mapping T is orthogonal if and only if its matrix A
(with respect to some orthonormal basis) satisfies A'A = 1.

Poof: Suppose that T is orthogonal and that {e;} is orthonormal. Then

3 3
<2 Ay i€, Z a¢,e¢»>

k=1 =1

( Te,', Te’>

3
= Z akﬂq(ek,et)
k=1

3
= Z ApiQy; = (A'A)ij-

k=1

But (Te;, Te;) = (e, €;). Thus, A'A = I.
Conversely, if A’A = I, with respect to some orthonormal basis, the
ume calculations show that

(Te;, Tej) = (e, ¢€).

Thus, for any x = Exe; and y = Lye;, the linearity of the inner product
sields (Tx, Ty) = (x, y). O

Definition. A 3 X 3 matrix satisfying A'A = I is called an orthogonal
matrix.

Remark: 1f A is an orthogonal matrix, then A™' = A’, so that AA" = [
dso. Finally, det(A‘A) = (det A)*> = 1, so that det A = *1.

Theorem 23.

i. The set O(3) of all orthogonal transformations of E* is a group called the
orthogonal group of R3.

i. The set SO(3) of orthogonal transformations with determinant +1 is a
subgroup of O(3) called the special orthogonal group.

Proof: To prove (i), we check that the set of orthogonal matrices is closed
under multiplication and the taking of inverses. First, note that if A and B
are orthogonal, then

(AB)AB = B'A'AB = B'B = I,
50 that
(AB) = (AB)™".
Next, if A is orthogonal, then

(A—I)IA—I o (AI)IAI = AAI = l.

Orthogonal
transformations of E®
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so that A" is orthogonal. This completes the proof of (i).
To prove (ii), note that A, B € SO(3) gives det(AB) = (det A)(det B) =
1 -1 =1, so that the product AB is in SO(3). Secondly, if A € SO(3), then

det(A™") = 1/det A
=11
=1,
so that A ™" is also in SO(3). u|

Euler’s theorem

Earlier, we observed that every reflection and hence every motion may be
regarded as arising from an orthogonal transformation. In this section we
show the converse — every orthogonal transformation induces a motion of
st

It turns out that SO(3) corresponds precisely to the set of rotations
whereas orthogonal transformations with determinant —1 correspond to
reflections and glide reflections.

We first prove the following theorem of Euler.

Theorem 24. For each T in SO(3) there is an x in S such that Tx = x.

Proof: 'We begin by trying to solve an apparently harder problem. We
attempt to find all nonzero vectors x in R* such that 7x and x are
proportional. This means that we must solve the equation

Tx = \x;

that is, (T — A )x = 0 for some real number A.

We know from Appendix D that a nontrivial solution would require that
A satisfy det(T — AI) = 0. The expression on the left is a polynomial of
degree 3 in X\ called the characteristic polynomial. Write

char(¢) = det(T — tI).

There are two possibilities for factoring the polynomial:

1. char() = (\; — 1)(A\2 = 1)(A;3 — 1) (three real roots).

2. char(f) = (A = 1)(p — 0)( — 1) (one real and two complex conjugate
roots).

In either case there is, for each real root A, a unit vector x such that Tx =
Ax. In case (1)

1= |Txf? = Mlaf? = 22,

so that A; = 1. On the other hand, the product of the roots must be equal
to the determinant of T, and, hence, at least one of the roots must be +1.



In the second case the product of the roots App = A|r|> must again be
+1. Therefore, A = +1. O

Corollary. For any T € SO(3) the restriction of T to S? is a rotation.
Poof: By Euler’s theorem there is a point of §? that is mapped to itself by

T. Choose an orthonormal basis {e,, e,, es} with Te; = e;. Then for
suitable choice of 6,

Te, = (cos 0)e; + (sin 0)e,,
Te, = =((—sin 8)e; + (cos 8)ey),
Te3 = e3

by the same argument we used in the lemma to Theorem 38, Chapter 1.
Because det T = 1, the positive sign should be used in Te,, and, hence, the
matrix of 7 is

cos® —sin® 0
sin® cos6 0
0 0 1

Because T can be factored into the product of two reflections, it is clearly a
rotation. a

Remark: Because every rotation arises from the product of two orthogon-
il transformations, it must be the restriction of a member of SO(3).

For all practical purposes SO(3) may be identified with the set of all
rotations. In the future we will frequently use “is”” when we really mean
“arises from”” or *‘is the restriction of,” leaving it to the reader to make the
distinctions when necessary.

Not all orthogonal transformations are rotations, of course.

Definition. The antipodal map E is the transformation defined by
Ex = —x.

With respect to any orthonormal basis, E has the matrix

-1 0 0]
0 -1 0]-:
0 0 -1}

The antipodal map is a glide reflection because it can be factored

-1 0 01 O OJ[L 0 O
o10f|lo -1offo1 o
001]lo o0 1f[foo -1

Euler's theorem
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as the product of the three reflections in lines whose poles form an
orthonormal basis. (Three lines of this type are said to form a self-polar
triangle. Each vertex is a pole of the opposite side.) However, this glide
reflection does not have a unique axis. Every line is an axis.

The antipodal map E is a convenient tool for analyzing orthogonal
transformations.

Theorem 25. Every orthogonal transformation restricts to a motion of $*.

Proof: Let T be orthogonal. If det T = 1, then T is a rotation and, thus,
motion. If det 7= —1, then ET is a rotation p. Thus, T = Ep. (Note that E
is its own inverse.) This exhibits 7 as a motion. C

Isometries

Definition. A function T: 8* — §? is an isometry if

d(Tx, Ty) = d(x, y)
for all x, y in S*.

We recall that every reflection and hence every motion is an isometry.
Further, we recall that every orthogonal transformation restricts to 2
motion of §%. Because each orthogonal transformation is determined by its
value on unit vectors, each isometry is the restriction of at most one

orthogonal transformation. We now announce the major result of this
section.

Theorem 26. For every isometry T, of S* there is an orthogonal trans.
formation T coinciding with T, on S*.

Proof: Let {e,, e,, e3} be any orthonormal basis of E*. Because Ty is an
isometry, we have (Toe;, Toe;) = (e;, €;). Each point of E* is of the form \x
for some x € 8% and A = 0. Define T: E* - E* by

T(Ax) = ATox if Ax # 0,
7(0) = 0.

We must now check that T is orthogonal. First we deal with linearity. For
any x € 82, Tx = Tox and

Tx = Y, (Tx, Te;))Te; = Y, (x, e;)Te;

because {7e;} is also an orthonormal basis. Thus,



T(A\x) = ATox = ATx = A Y (x, €;)Te;

Z (M. e,') Te,-.

lnother words, for any u # 0 in E* (and also more obviously for u = 0) we
have

Tu = Y, (u, e;)Te;.
This expression is clearly linear in u. Furthermore, if v is another vector in
F.
(Tu, Tv) = ¥, (u, &) (v, ¢){Te;, Te;)
= ¥ (u, e)(v, &) = (u, v),

wthat T is orthogonal. O

fixed points and fixed lines of isometries

We now characterize the various types of isometries according to the
ature of their sets of fixed points and fixed lines.

Theorem 27.

i. A nontrivial rotation has exactly two antipodal fixed points.
i. A reflection has a line of fixed points — its axis.

A glide reflection has no fixed points.

. The identity leaves all points fixed.

=:

Theorem 28. An isometry T leaves a line with pole & fixed if and only if T¢
= +§

Theorem 29.

i. A half-turn leaves fixed lines all through a point (the center) and their
common perpendicular.

i. A nontrivial rotation other than a half-turn leaves fixed only the polar

line of its center.

ii. A reflection leaves fixed its axis and all lines perpendicular to it (same

fixed lines as half-turn).

iv. A glide reflection other than the antipodal map leaves only its axis fixed.

v. The antipodal map and the identity leave every line fixed.

Further representation theorems

Because the rotations constitute a subgroup of #(S?), it is clear that the
product of two successive half-turns is a rotation. It may surprise you to

Further representation
theorems
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learn that the converse is also true. Specifically, we have the following
representation theorem for rotations:

Theorem 30. Every rotation can be written as the product of two half-turns.

Proof: Let T be a rotation. By Theorem 16 there are lines € and »: such
that T = Q,(},,. Let » be a common perpendicular to € and », meeting {
and » in points P and Q, respectively. Then

T = QQ-Q,Q,Q,, — HPHQ. O
Remark: In E? the product of two half-turns is a translation, and even
translation can be so represented. Theorem 30 points out an instance i
which it is more productive to think of elements of SO(3) as translations
rather than rotations. The construction is illustrated in Figure 4.13.
Theorem 31. Let P be a point of S*. Then for all x € S*,
Hpx = —x + 2(x, P)P.

Proof: Let & and m be poles of perpendicular lines through P. Ther
{€ m, P} is an orthonormal basis, and the identity

x = (x, P)P + (x, ) + (x, n)n
holds on §*. Now it is a straightforward calculation that

Hpx = x — 2(x, £)£ — 2(x, ).

Putting these two results together yields the desired expression for Hpx. C

Corollary. Let P be any point of 8%, and let € be its polar line. Then
Qer == Hp()( - E.

where E is the antipodal map.

Proof: The result of Theorem 31 may be written
Hpx = —x — 2(—x, P)P = —(x — 2(x, P)P)
for all x € 8% In other words,
Hp = QE = EQy;
that is,
QHp = Hp)y = E. O

We have shown that the antipodal map may be represented as the
product of a half-turn and a reflection. We have also determined precisely



what combinations can occur in the representation. We now do the same
for arbitrary glide reflections.

Let T be a glide reflection other than the antipodal map E. Suppose that
is axis € has a point P as a pole. We speak of P as a pole of T.

Theorem 32.

.. For each line s through P there is a unique point Q such that Q,,H, =
T. The point Q will necessarily lie on €.

i. For each point Q on ¢, there is a unique line » such that ),,Hy = T.
The line » will necessarily pass through P.

Remark: For any line » and any point Q, (1,,Hy is a glide reflection
whose axis is perpendicular to » and passes through Q.

Segments

In spherical geometry the notion of betweenness is ambiguous. Given any
three collinear points, it is possible to regard any one as being between the
other two.

On the other hand, a choice of two points on a line € induces a
decomposition of € into two subsets that behave much like segments do in
E%. We adopt the following definition.

Definition. A subset s of S* is called a segment if there exist points P and Q
vith (P, Q) = 0 and numbers t, < t; with t, — t; < 2m such that

s = {(cos t)P + (sin 1)Q|t; < t < 1,}.

Remark: All points of a segment are collinear. Each segment determines a
unique line. On the other hand, a segment does not determine the data P,
0, t;, 1 uniquely. In fact, we have

Theorem 33. Let o be a segment determined (as in the definition) by P, Q,

i ; and also by P, Q, t,, . Then

i. t —t =t — ty. This number is called the length of the segment.

i. If we write a(t) = (cos f)P + (sin £)Q and &(f) = (cos )P + (sin 00,
we have

{a(t), a(t)} = {a(h), &)}

These points are called the end points of s. All other points of s are
called interior points of 4.

ii. PxQ==PxQ.

These points are the poles of the line on which s lies.

Segments
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Proof:  First, note that replacing Q by its negative, and [f,, 5] by [—f, —1)
do not change conditions (i)—(iii). This allows us to assume that there is a

number ¢ such that P = a(d) and Q = a(d + m/2). A short computation
now reveals that

a(u) = (cos (u + ¢))P + (sin (u + $))Q = a(u + ),

and, hence, that a([t; + ¢, 1, + ¢]) = a([t;, 12]). A fundamental property
of the trigonometric functions (see the lemma in Appendix F) shows that
the two intervals are translates of each other mod 2. In particular, they
have the same length and end points. Finally,

P x Q = ((cos $)P + (sin $)Q) x ((—sin &)P + (cos $)Q)
= (cos’ b +sin’ $)(P x Q) = P x Q. 0

Corollary. Let A and B be arbitrary points satisfying (A, B) = 0. Let s be

any segment lying on AB. Then there is a unique interval [a, b] such tha
0<a<2mand

s = {(cos 1)A + (sin f)Bla < t < b)}.

Proof:  First represent s as
{(cos )P + (sin 1)Q|t; < 1t < 1},
where
P = (cos $)A + (sin $)B and Q = (—sin &b)A + (cos ¢)B
for some number &. (This is possible because s is a segment.) Clearly,
(cos )P + (sin 1)Q = cos(t + &)A + sin(t + $)B
for all real r. Thus, we should choose a = t, + & mod 2 in the interval

[0,2m)and b =a + (& — 1,). o

Theorem 34. Let A and B be nonantipodal points. Then there are exactly

L
two segments having A and B as end points. Their union is the line AB, and
their intersection is the set {A, B}.

Proof: Let § be a unit vector in the direction [A X B], and set
Q = £ X A. Then there is a unique number L € (0, 27) such that B =
(cos L)A + (sin L)Q. The segments

{(cos DA + (sin Q|0 <t < L)
and
{(cos )A — (sin )Q|0 <t < 2w — L)

have A and B as end points. Because the second segment may be rewritten

N L ™M



{(cos )A + (sin )Q|0 =t = L — 27},

>
we see that the union of the segments is AB. The same observation shows
that the two segments have no interior points in common and thus intersect
only at their end points. O

Definition. Let A and B be nonantipodal points. The longer of the two
segments having A and B as end points is called the major segment AB. The
shorter one is called the minor segment AB. The two segments are said to be
complements of each other and may be referred to as complementary
segments. See Figure 4.14.

Definition.  If A and B are antipodal points, each of the (infinitely many)
segments having A and B as end points is called a half-line.

Remark: The length of a minor segment AB is d(A, B). The length of a
major segment AB is 2w — d(A, B). The length of a half-line is .

Remark: In spherical geometry it is ambiguous to speak of the segment
AB without specifying whether we mean the major or the minor segment.

Theorem 35. Let P, Q, and X be distinct points of S*. If P and Q are not
antipodal, a point X lies on the minor segment PQ if and only if

d(P, X) + d(X, Q) = d(P, Q). (4.1)
Poof: Choose P (orthogonal to P) so that the segment in question is
{(cos )P + (sin H)P|0 <t < L},

where L = d(P, Q).
Assume first that X lies on the segment. Then we may write

X = (cos &)P + (sin d)P, 4.2)
where & € (O, L). We now verify (4.1) by computing
d(P, X) = cos™' cos ¢ = ¢
and
d(X, Q) =cos 'cos (L —¢) =L — o.

Conversely, suppose that (4.1) holds. Then by the corollary to Theorem
8, X is on the line lg—Q. so the representation (4.2) holds for a unique
number ¢ € (0, 2m). It can be verified (Exercise 33) that L < ¢ < 2w
contradicts (4.1). The alternative, 0 < & < L, must therefore hold, and X
must lie on the minor segment PQ. 0

Segments

minor segment
B

major segment
Figure4.14 Complementary segments.
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Remark: If P and Q are antipodal, the identity (4.1) holds automatically
for all X on §°.

Theorem 36. Let P and Q be antipodal points. Let R be any other poini
Then the union of the minor segments PR and RQ is a half-line. If R' = —R.

the union of the four minor segments PR, RQ, PR’, and R'Q is the line FR'

Proof: Let P be a point on 1;71’ orthogonal to P such that
R = (cos L)P + (sin L)P,

where L = d(P, R). Then the minor segments in question are

PR = {(cos t)P + (sin )P|0 <t < L},

RQ = {(cos t)P + (sin f)P|L < t < =},

PR’ = {(cos )P + (sin t)(=P)|0 <t <= — L},

R'Q = {cos )P + (sin {)(=P)|w — L <t < =}.
But we may rewrite PR’ and R'Q as

PR’ = {(cos )P + (sin )P|—(w — L) <t < 0},

R'Q = {(cos f)P + (sin )P|-7 <t < —(w — L)}.
Now

PR = {(cos t)P + (sin )P|—mw < t < =)

is the union of the four segments. O

Theorem 37. Let T be an isometry. Then
i. Ifo is a minor segment, so is Ts.

ii. If s is a half-line, so is To.

iii. If s is a major segment, so is Ts.

Proof:
i. Let s be the minor segment AB. Then by Theorem 35
s = {X|d(A, X) + d(X, B) = d(A, B)}.
Thus,

Ts = {TX|d(A, X) + d(X, B) = d(A, B)}
= (TX|d(TA, TX) + d(TX, TB) = d(TA, TB))
= {Y|d(TA, Y) + d(Y, TB) = d(TA, TB)).

Again applying Theorem 35, we see that 75 is a minor segment with
end points TA and TB.



i. Letos be a half-line lying on a line € and having end points A and B.
Let C be any other point of 5. Then ¢ is the union of the minor
segments AC and CB. Thus, T5 is the union of the minor segments
with end point sets {TA, TC} and {TC, TB}. Furthermore, TA and
TB are antipodal. We conclude that 75 is a half-line.

ii. Suppose that A is a major segment with end points A and B. We know
that T takes the minor segment AB to the minor segment with end
points TA and TB. Because T takes the line € = A_é to the line
through TA and TB, it must take the complementary segment to the
corresponding major segment on T¢€. O

Rays, angles, and triangles

In spherical geometry we define a ray to be a half-line with one end point
emoved. The other end point is called the origin of the ray.

Suppose that PQ is a minor segment of length L represented in the
standard way by

{(cos )P + (sin )P|0 < ¢t < L}.
Then
PO = {(cos t)P + (sin H)P|0 < t < m}

is the unique ray through Q with origin P.
We can define angle just as we did in E2. In this case a straight angle (as a
set of points) is just a line with one point removed.

Definition. Let X POR be an angle. A point X is in the interior of the angle
if the minor segment XP does not intersect QR and the minor segment XR
does not intersect QP.

The set of points in the interior of an angle is called a lune. A pair of
distinct lines decomposes S? into four lunes.

Remark: Each line € decomposes S into two half-planes. Half-planes may
be defined as in E2, except that the segments used in the definition are
minor segments. A lune is the intersection of two half-planes. These ideas
are developed further in Exericse 35. See also Figures 4.15 and 4.16.

Because rays no longer have direction vectors, we must find another way
of defining the radian measure of an angle. Thinking in E3 for the moment,
we see that the vectors that are poles of two intersecting lines are unit
normals to these lines. Thus, the angle between the lines corresponds to
the angle between these unit normals.

Rays, angles, and triangles

)
\

Figure4.15 X isin the interior of
% PQR.

/

Figure 4.16 X is not in the interior of
%X POR.
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Geometry on the sphere However, when two lines intersect, they determine four angles. How to
choose the right sign when computing the radian measure of an angle is not
as intuitively clear. The correct definition is the following:

Definition. The radian measure of an angle X PQOR is

_11 Q%P Q%R
o (G G |

A

A

—

Let P, Q, and R be three noncollinear points. The triangle PQOR is|
defined to be the union of the three minor segments PQ, OR, and PR. The
segments are called sides of the triangle, and the length of each side is
equal to the distance between its end points.

The interior of a triangle is defined as in E”.

/
B

7 R
/ ‘\‘
-
a C /

Figure4.17 A triangle in spherical . - . .
geometry, first vicw_g P Remark: Our definition of triangle is not the only possible one. However,

it is the easiest to work with because it has the following properties:
i. Three noncollinear points determine a triangle.
ii. Every triangle lies in some half-plane.

4 Spherical trigonometry
b Let ABC be a triangle. Let a be the length of the side BC, b the length of
¢ AC, and c the length of AB. See Figures 4.17 and 4.18. Note that
|B x C|> = |BP|C]* = (B, C)> =1 — cos’* a = sin’ a
a (53

B and

Fi 4.18 A triangle in spherical

woomctey,sicvad view, | (A x B,AXC)=(B,C) - (A, C)(A, B)

= cos a — cos b cos c. (4.3)
Hence, we have the spherical version of the Law of Cosines:

cos a — cos b cos ¢

cos A = - -
sin b sin ¢

’

where we have written A as an abbreviation for the radian measure of

X BAC.
Now
1 —rcos A =cos(b—c) —cosa=25in2ﬁ
sin b sin ¢ 2
and
_cosa —cos(b +c¢c) 2 A
108 1 toesa = sin b sin ¢ =01508 2



Thus

A A k
oo I N B Lo e L
sin® A = 4 sin > cos T B

where k is the product of the two factors

-25inb_c+asinb—c_a and —25ina+b+csina_b-c
2 2 2 2 ’

futting @ + b + ¢ = 2s, we have

sin® A _ 4sin s sin (s — a) sm (s — b) sin (s — c)

sin’ a sin® a sin? b sin® ¢

and, hence,
sin A _ 2(sin s sin(s — a) sin(s — b) sin(s — c))“2 4.4)
sin a sin a sin b sin ¢ ’

Note that the right side is symmetric in a, b, and c, so that we may conclude
that

sinA _sin B _sin C

sina sinb sinc’

This is the Law of Sines for spherical trigonometry.

There is a nice relationship between angles and sides of a spherical
riangle that arises from the pole—polar correspondence. Each of the
formulas we have developed has a counterpart with the roles of angle and
side interchanged. In particular, we have the two versions of the Law of
Cosines. The first was proved earlier in this section. The second is Exercise
3.

Theorem 38. In the notation of this section we have

! cos a — cos b cos ¢
. cOsA = . - s
sin b sin ¢

cos A + cos B cos C (4:5)

sin B sin C

. cosa =

Corollary. The lengths of the sides of a triangle are completely determined
by the radian measures of its angles.
Rectilinear figures

We may define rectilinear figures as in Euclidean geometry. All the
definitions and proofs are either exactly the same or very similar. In

Rectilinear figures
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Figure 4.19 Theorem 40. Three
mutually perpendicular lines.

110

particular, every symmetry of a rectilinear figure permutes the vertices
The vertices of a complete rectilinear figure on S? occur in antipodal pairs.
Thus, every symmetry also permutes the set of antipodal pairs of vertices.

In particular, let A be a triangle with vertices POR. Let G be the
stabilizer of Pin #(A). Now G consists of rotations about P and reflections
in lines through P. Every member of G must permute the set {Q, R}. If F
lies on the perpendicular bisector » of QR, then Q,, will be in G.
However, if € = OR, Q, will not be in G. Thus, G = {I} or G = {I, Q)
Also, the orbit of P consists of at most three elements P, Q, and R. Thus,
#S(A) <3 x2=6.If Ais isosceles, then #%(A) = 2. If A is equilateral,
then #%(A) = 6. If A is scalene, #£(A) = 1.

These arguments show that as far as symmetry is concerned, spherica
triangles behave just like Euclidean triangles.

Theorem 39. Let F be a rectilinear figure having at least three noncollinear
vertices. Then & (F) is a finite group.

Proof: Every symmetry of # induces a permutation on the vertices. But
linear transformation is determined by its action on three linearly indepen-
dent vectors because they form a basis (Theorem 4D). Therefore, there is
at most one isometry realizing each permutation of the vertices of #. [

Theorem 40. Let & be the complete rectilinear figure consisting of three
mutually perpendicular lines. Then &(F) is a group of order 48.

Proof: Let P, Q, and R be poles of the three lines (Figure 4.19). Each
permutation of the set {P, Q, R} determines an isometry whose matrix
with respect to the orthonormal basis {P, Q, R} is a permutation matrix.
(Each row and column has one 1 and two 0's.) For each of the six
permutation matrices, there are eight ways of introducing minus signs into
the matrix. Each minus sign introduced corresponds to a reflection in one
of the lines of the configuration.

Clearly, the 48 matrices so obtained are orthogonal and so define
isometries of S%. The isometries permute the lines of % and so are
symmetries. On the other hand, any symmetry must permute the set of

antipodal pairs. It is easy to see that the given constructions yield all such
permutations. O

The group #(#) consists of 24 rotations, 9 reflections, and 15 glide
reflections, including the antipodal map.

The figure # decomposes S? into four pairs of antipodal triangles. The
symmetries of these triangles provide eight nontrivial rotations. There are
also three nontrivial rotations about each of the three antipodal pairs of
vertices. There are six half-turns about the midpoints of the segments of
the figure. Finally, the identity rounds out our list of 24 rotations.



Congruence theorems Congruence theorems

Now that we have defined some geometrical objects — segments, rays,
ugles, triangles — we return to our study of the group of isometries of s?
ad how they act on simple figures.

Theorem 41. Let P and Q be points of S*. Then there is a unique reflection
interchanging them.

poof: Let£ = (P — Q)/|P — Q| and let € be the line whose pole is €. Then
Q€P=P_2<P—Q,P>(P_Q)

P =0l
=P—2(1— (Q:P))(P—Q)
2(1 - (Q, P))
. _ Figure 4.20 The perpendicular bisector
=P-(P-0Q)=0. of PQ, first view. Q0 interchanges P and
Thus, Q, interchanges P and Q. o
To prove uniqueness, suppose that Q. and (,, are reflections that
mterchange P and Q. Then the rotation Q,2,, leaves both P and Q fixed. If
Pand Q are not antipodal, then Q,Q,, = I by Theorem 27, and € = ». If P
nd Q are antipodal, then the pole £ of € satisfies
P — 2(P, £) = —P. {
Thus, P = (P, £)£, and ¢ is the polar line of P. Because the same argument I{
applies to »2, we see that € = . ] :
|
Definition.  Let o be a segment. The perpendicular bisector of s is the unique P EL—‘ t 0
line € such that Q. interchanges the end points of s. See Figures 4.20 and ;
421. :
|
|
Remark: The perpendicular bisector of 4 is perpendicular to the line on i
which o lies. Figure 4.21 The perpendicular bisector
of PQ, second view. {), interchanges P
and Q.

Theorem 42. The perpendicular bisector of a segment is the set of all points
of $* that are equidistant from its end points.

Proof: This is essentially Exercise 7. O

Definition. The midpoint of a segment is its unique point of intersection
with its perpendicular bisector.

Remark:
i. The midpoint M of a segment s is the unique point of s that is
equidistant from the end points of 4. 117
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Figure4.22 Q,interchange Q—i’ and
OR.
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ii. A segment and its complement have the same perpendicular bisector.

Theorem 42 also suggests a method for constructing an isometry thal
interchanges two given lines.

Theorem 43. There are exactly two reflections that interchange a given pair
of lines.

Proof: Choose points P and Q so that the poles of the given lines are +/
and Q. The unique reflection that interchanges P and Q will interchang
their polar lines; so will the unique reflection that interchanges P with —Q
(and, hence, Q with —P).

On the other hand, any reflection that interchanges the lines must send Pl
to Q or P to —Q. Thus, the two reflections mentioned are the only ones
that interchange the given lines. E}
Theorem 44. For any angle of there is a unique reflection that mlerchanges
its arms. |

l

Proof:  We first look at the special cases — the zero angle and the straight|
angle. In both of these cases any such reflection must leave fixed the line ('
on which the arms lie and must also have the vertex as a fixed point |
Hence, it is either Q, or (Q,,, where » is the line through the vertexi
perpendicular to €. Clearly, (), leaves the zero angle pointwise fixed while‘
Q,, interchanges the arms of the straight angle.

Now let X POR be an angle that is neither a zero angle nor a straight
angle. To simplify the calculation, we may assume that (P, Q) = (R, Q)
= 0 and that P X R = |P x R|Q. (Geometrically, this expresses the fact
that PQ is the polar line of R.) Let € be the line whose pole is £ =
(P = R)/|P — R|. Note that (Q, &) = 0, so that Q,Q0 = Q. Also,

5 (B, P = R}

QP - PR

P—Z(P'§>§=
P-~(P=R)=

Similarly, because [P — R[> = 2(1 — (P, R)), we get that QR = Q, so thal
), interchanges the arms of .</. O

(P - R)

Definition. In the notation of Theorem 44 the ray QT(’ where X =

(P + R)/|P + R|, is called the bisector of the angle «/ = % PQR. See Figure
4.22.

Note that X is a point of € that lies in the interior of .o/.

Remark: Clearly, Theorem 44 provides a way of proving Theorem 43,
Furthermore, if P and Q are any two nonantipodal points, and R is a pole

of
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of Fé, the reflection that interchanges the arms of X PRQ will also
nterchange P and Q. Thus. we can also deduce Theorem 41 from Theorem
4. However, the proofs of Theorems 41 and 43 are easier, and we have
decided to include them separately.

We conclude this section with some results on angle addition. The proofs
are left to the exercises, and we will not use the results in subsequent
theorems. See also Theorem 7.42.

Theorem 45. If 55( is the bisector of an angle X PQOR, then XPQX is
congruent to XRQX.

Theorem 46. Let X POR be an angle, and let X be a point in its interior.
Then the radian measure of X PQOR is the sum of the radian measures of
L{PQX and XRQOX.

Remark: In spherical geometry the angle sum for a triangle varies with the
size of the triangle. It is easy to check, for example, that if {P, O, R} is an
othonormal basis, then each angle of APQR is a right angle, so that the
wm of the radian measures of the three angles is 3m/2. See Figure 4.23.

Theorem 47. Let P and Q be points on a line €. Then there is exactly one
ranslation along € that takes P to Q.

Proof:  Choose an orthonormal basis {e,, e, e3} such that e, = P, Q =
[cos B)e; + (sin 0)e;, for some 0 € [0, ], and e3 = e; X e, is a pole of €.
lfr € TRANS(€), there is a number ¢ such that the matrix of v with
respect to {e;, e, e3} is (by Theorem 17)

cosd —sind 0
singp cosd 0
0 0 1

If r takes P to Q, then
Q = 1e; = (cos d)e, + (sin d)e,.

Thus, ® = ¢ mod 2, and 7 is determined uniquely by this condition. a

Theorem 48. Let P, Q, P', and Q' be points (not necessarily distinct) lying
on a line €. Suppose that d(P, P') = d(Q, Q'). Then there is an isometry T
such that TP = Q and TP' = Q'.

Proof: By first applying a translation along €, we can arrange that P = Q.
Then P’ and Q' are points of € that are equidistant from P. If P' = Q', we
may choose T to be the identity, and we are finished. If not, let T = Q_,

Congruence theorems

Q

R

Figure 4.23 A triangle with three right

angles.
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the reflection that interchanges P’ and Q'. Then (),, leaves P fixed and
sends P’ to Q', as required. 0

Remark: According to the construction, 7 could be the identity, s
translation, or a reflection. |

Theorem 49. Two segments are congruent if and only if they have the sam:
length.

Proof: Let 4; and 4, be congruent minor segments. If 7 is an isometr
taking ¢, to 4,, then T takes the end points of s, to those of s, (see proof of
Theorem 37). As a result, s; and T5; = 4, have the same length. If two
major segments are congruent, so are their complements. Because we
know that the complements have equal length, say L, the original major]
segments must have equal length w — L.

Conversely, let 5; and 4, be segments of equal length. We may assume
that they are minor segments, because if we find an isometry taking 4, to 93.1
it must also relate their complements. First, apply a reflection (Theorem;
43) to move s, to the line determined by s,. Now translate along this line to/
make one pair of end points coincide (Theorem 47). If the other pair of end
points coincides, we are finished. Otherwise, they are equidistant from the
common end point, and the required isometry is completed by applying the
reflection that fixes the common end point and interchanges the other two.

C

Symmetries of a segment

Theorem 50. Let s be a segment lying on a line €. Let » be i
perpendicular bisector, and M its midpoint. Then ¥ (s) is the group
{1, Q¢, Q,,, Hy}. Its multiplication table is the same as that in Theorem
2.28.

Proof: Let s be the minor segment PQ. (The major segment has the same
symmetries.) It is easy to check that the four given transformations
permute the set {P, Q} and, hence, are symmetries of s. (Theorem 37
applies here.) On the other hand, suppose that T is any symmetry of ;.
Then T permutes its end points, so that T or €2,,T leaves P and Q fixed. By
Theorem 27 the only isometries of $? leaving P and Q fixed are Q, and /.
Thus, Tmustbe I, Q,, Q,,, 0r Q,Q = Hy,. O



t triangles

important property of right triangles in Euclidean geometry is given by
agoras’ theorem. In spherical geometry we have the following ana-
e. See Figure 4.24.

rem51. Let ABC be a triangle on S? with sides of length a = d(B, C),
=d(A, C), and ¢ = d(A, B). If AC is perpendicular to AB, then

cos a = cos b cos c.

femark: Note that this is a special case of Theorem 38. However, a direct
roof is instructive.

Poof: Let & be a pole of AB. Then {£, A, £ X A} is an orthonormal basis
vith respect to which we may write (after replacing & by —§ if necessary)

C = (cos b)A + (sin b)E.

B = (cos ¢)A * (sin ¢)(§ X A).

cos d(B, C) = cos cos ' (B, C)
(B, C) = cos b cos c. 0O

Cos a

Theorem 52. Let € be any line. Let X be a point that is neither on € nor a
pole of €. Let  be the line through X perpendicular to €. Of the two points
where € intersects m, let F be the one closest to X. Then for all points
Y# xFon ¢,

d(X, F) <d(X,Y) <d(X, —F).
Poof: We apply Theorem 51 with X = C, F = A, and Y = B. Note that

b < m/2, so that cos a and cos ¢ have the same sign. If both are positive, we
have

cos a = cos b cos ¢ < cos b,
and, hence,

b<a<mw-—b.

If both are zero, the same inequality holds because
b<a=m2<m-b.

Finally, if both are negative, we get b < m/2 < a and

Right triangles

B
c
A b c
Figure4.24 A right triangle,
cos a = cos b cos c.
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Figure4.25 Concurrence of the
perpendicular bisectors.
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cos(m — a) = cos b cos(m — ¢) < cos b,

sothatw —a > b, and, hence, b <a < m — b, as required. O

|
Remark: This means that F is the point of ¢ closest to X, and —F is the |
point farthest from X.

Definition. F is called the foot of the perpendicular from X to €. The
number d(X, F) is written d(X, €) and is called the distance from X to €,

Concurrence theorems

Theorem 53. The perpendicular bisectors of the three sides of a triangle ar:
concurrent. See Figure 4.25.

Proof: Let the triangle be APQR. Let M be a point where the perpen-
dicular bisectors of sides PQ and QR intersect. Now d(M, P) = d(M, Q)
and d(M, Q) = d(M, R). Thus, d(M, P) = d(M, R), and M lies on the
perpendicular bisector of side PR. 0

Remark: The same theorem with the same proof is valid in E°.

Theorem 54. Let P, Q, and R be noncollinear points of S*. Let j = OR,
g = PR ,and:» = i’_é be the three lines they determine. Let (), be a reflection’
that interchanges /. and 4, and let ), interchange q and ». Then there is a Iim‘
« concurrent with « and v such that S, interchanges s and 1. |

Proof: Let M be a point of intersection of « and », and let € be the line

through M perpendicular to ¢. Using the three reflections theorem, choose
« so that

.00, =Q,.
Then
V.f=Q080,/4=00g=Q,9 =1,

as required. O

Corollary. The lines containing the bisectors of the three angles of a triangle
are concurrent.



foof: Because there are two reflections that interchange # and 2, we need
aly check that « is the one containing the bisector of £ POR. This part of
lhe proof requires some further calculation and will be left as an exercise
[Exercise 40). Figures 4.26 and 4.27 illustrate the possibilities. O

Congruence theorems for triangles

Theorem 55 (SSS theorem). Let APQR and AP'Q'R' be such that
iP,Q) = d(P', Q'), d(Q, R) = d(Q', R'), and d(P, R) = d(P', R"). Then
lhe two triangles are congruent.

Theorem 56 (SAS theorem). Let APQR and AP'Q'R' be such that
iP, Q) = d(P', Q"), d(Q, R) = d(Q’, R'), and XPQR = X P'Q'R’ (in

ndian measure). Then the two triangles are congruent.

These two theorems are proved in a similar fashion to Theorems 1.40
and 1.41 by using the spherical versions of the tools used in the construc-
ion. Because sizes of angles determine lengths of sides in spherical
wometry (Theorem 38), we get an additional congruence theorem.

Theorem 57 (AAA theorem). Let APQR and AP'Q'R' be such that
(POR = XP'Q'R', £PRQ = XP'R'Q’', and XQPR = XQ'P'R' (in
ndian measure). Then the two triangles are congruent.

Corollary. Two angles are congruent if and only if they have the same
nadian measure.

Finite rotation groups

In plane Euclidean geometry we found a nice characterization of the finite
groups that occur as symmetry groups of figures. All finite subgroups of
#(E?) were shown to be cyclic or dihedral (Theorem 3.10).

The situation in spherical geometry is more complicated. In other words,
figures can have a richer symmetry structure. The standard figures in E?
having the largest symmetry groups are the regular polygons. In spherical
geometry we have, in addition to the regular polygons, the spherical
versions of the Platonic solids — the tetrahedron, cube, octahedron;
dodecahedron, and icosahedron.

We will restrict our attention to finite groups of rotations of S>. All other
finite subgroups of O(3) are generated by adjoining a suitable reflection.

Figure 4.26
bisectors.

Figure 4.27

Finite rotation groups

Concurrence of the angle

Concurrence of exterior

angle bisectors with remote interior angle

bisector.
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Theorem 58. Let G be a finite subgroup of SO(3). Then G falls into one of
the categories listed in the following table. ‘

Order of Number Number of Orders of

G G of orbits poles stabilizers |
cyclic n 2 2 n n
dihedral 2n 3 2n + 2 2 2 n
tetrahedral 12 3 14 2: 3.3
octahedral 24 3 26 2 3 4
icosahedral 60 3 62 2 39

Every finite rotation group is conjugate to one of the cyclic or dihedrd
groups or to one of the three specific groups listed. Our treatment i
incomplete. We will show that any finite rotation group has data fitting the
table, but we will not show uniqueness for these groups or, in fact, even
define the groups explicitly. For more details you may consult Benson and
Grove [4] or Yale [35].

We describe the cyclic and dihedral groups explicitly. With respect to an
orthonormal basis {e;, e,, €3} let a be the rotation whose matrix is

rotz—"r 0
n

0 1

Then o generates a cyclic group of order n consisting of rotations about e

Now let B be the half-turn about e,. Then « and B generate a group |

satisfying the relations o = B? = I, Ba = o~ 'B. It is easy to check that o*g|
. |
has the matrix

2k . 2kwm
cos — sin — 0
n n
sin — —cos Zk—ﬂ 0
n
0 0 -1 |

and so is a half-turn about the point (cos(km/n), sin (km/n), 0).

Now let G be a finite subgroup of SO(3). If T is a nontrivial rotation
about x, we call x a pole of T. If G has order n, there are 2(n — 1) ordered
pairs (7, x) consisting of a nontrivial rotation in G and one of its poles.

Lemma. G permutes the set of poles.

- T M ]



Poof: Let x be a pole of some rotation T € G, and let R be an element of
G. Then

Rx = RTx = (RTR Y)Rx.

Now RTR ! is a rotation in G having Rx as a pole. Thus, R maps poles to
ples. Similarly, x = R(R 'x), and R 'x is a pole of R™'TR. We conclude
that R is a permutation of the set of poles. O

Proof (of Theorem 58): For each pole x let v, = #Orbit(x), and n, =
#Stab(x). Then n,v, = n = #G. Now counting the ordered pairs (7, x)
gives

k

2n-1) =Y (n,—1) =L vlm — 1),
x i=1
where {x, ... x;} are representatives of the disjoint orbits that make up
the set of poles. Writing n; = n, and vy; = v,, we get

2n—1)= Yuyn, — Ly = ‘é (n — v).
Thus,
_% };(1__)=2(1-i)_ (4.6)

n;

This formula will allow us to determine the number and size of the orbits.
First, note that any fixed point of a nontrivial rotation T'in G is also a fixed
pint of 7~'. Thus, we may conclude that n; = 2 for all i. Clearly, the
number k of orbits cannot be 1 because 2 — 2/n = 1. On the other hand, we
| have

2 1 1

— =<1 and =z =1-—X<1,

kS
8

and, hence,
k Z" ( 1)
2 i=1 ' n; R

In particular, k < 4, and so the only possibilities for k are 2 and 3.
We first look at the case k = 2. Formula (4.6) reduces to

2—2=1——1—+1—-l-,
n 1 np
2_1,1
n n; ny
2=y +v

Finite rotation groups
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Thus, v; = v, = 1, n; = n, = n, and there are just two poles. G is a group of
rotations around this pair of antipodal points.

The remaining possibility is k = 3. We may assume that n, < n,
We first note that n, = 2 because n; = 3 would give

(i-4)sx(1-4)=252-1,

n; n

I

n;.

violating (4.6). With this simplification (4.6) becomes

b el il
n 2 ny ns

that is,
=— 4 —— =, 4.7

In order to make the right side of (4.7) positive, we must have n, < 3. If

n; = 2, then 2/n = 1/n3, and v3 = 2. Also, v; = v, = n/2. On the other hand, |
n, = 3 yields

N SO S | (438)

and so n3 < 6. Thus, the remaining possibilities for n; are 3, 4, and 5, |
Unlike the previous cases, each possible value for n; uniquely determines
the order n of the group G. Specifically, the possible combinations for
(n3, n) are (3, 12), (4, 24), and (5, 60), as can be easily seen from (4.8). [

Finite groups of isometries of S’

Let G be a finite group of isometries of $2. Assume that G does not consis! |
entirely of rotations. Choose an element B that is not a rotation. Then G =
Gy U BGy, where G is the set of rotations in G. Thus, the group G must
have order 2n, 4n, 24, 48, or 120, depending on the structure of G,. It is an
interesting exercise to determine the group structures that can occur.
Among the groups so obtained will be the symmetry groups of the regular
polygons of §% the “degenerate” regular polygons having all vertices
collinear and the regular polyhedra (Platonic solids) discussed earlier in
this chapter.

EXERCISES

1. Prove the properties of cross products stated in parts (i), (iii), and (iv)
of the corollary to Theorem 1.
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Prove Theorem 2.
Prove that lines P + [v] and Q + [w] intersect if and only if
(Q—-P,vxw)=0.

Assume that the lines of Exercise 3 do not intersect. Find the
(shortest) distance between them.

Prove Theorem 5.

Given three points P, Q, and R of S?, what calculation can you
perform to determine whether P, Q, and R are collinear? Apply it to

the points
SR = _
1 1 0 i

V2 V5
2 —2
3 ‘\/—5 9 and -\E

1 1
L Vi_ L 0 3 L. Vs
Let A and B be distinct points of S>. Show that
{X € $}|d(X, A) = d(X, B)}
is a line, and find an expression for its pole.
Verify statements (i)—(iii) of Theorem 8.

Prove Theorem 10.

Prove Theorem 11. In particular, show that
i. The poles of » are £(§ x P)/|& x P|, where £ is a pole of €.
ii. The points of intersection are

£ it (P’ §)§
AP

iii. The distances from P to € are

cos ~'(x(1 = (P, £))").

Prove Theorem 12, part (i) and Theorem 13.

Verify that Theorems 15 and 16 can be proved with the same
calculations as were used in the Euclidean case.

Prove Theorem 21.

Let P and Q be distinct nonantipodal points. Under what circum-
stances will the group generated by {Hp, Ho} be finite? (Note: A
half-turn on S? is again a product of reflections in two perpendicular
lines.)

Prove Theorem 27 concerning fixed points of isometries.
Prove Theorems 28 and 29 concerning fixed lines of isometries.

Finite groups of
isometries of S$2
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18.

19.

20.

21,

22.
23.

24.

25.

26.

27.
28.

29.
30.

31.

32

If an isometry of S? leaves P fixed and takes Q to —Q, show thal
(P, Q) =0.

Let P=(1,1,0)and Q = (3,2, 1) be points of E>. Let X = P/|P|, Y =
Q/Q|.

i.  Find an orthonormal basis with X as one element and the pole of
>
XY as another.

ii. Compute the matrices of Hy and Hy (as isometries of §%) with
respect to this basis.

Classify the isometries a of §? satisfying «* = /. (You may use the fac
that isometries, motions, and orthogonal transformations are essen-
tially the same thing.)

Find all isometries a of S such that «®> = I, but « # 1. Such an
isometry is said to be an involution. If « and B are involutions, is of
an involution?

Let P be a point of 8%, and ¢ a line of S2. Show that
(QeHp)* = 1
if and only if P is a pole of € or P € ¢.
Ife L #and ¢ L ¢, what is Q,0Q,Q.?
Verify the following formula for a half-turn:
HpX = 2(X, P)P - X.

Let € be a line of S with pole P. Show that {I, Hp, Q,, E} is a group,
and give its multiplication table. (E is the antipodal map.)

Without using Euler’s theorem, show that the product of two
rotations is a rotation.

Let y be a glide reflection. Prove that yE has exactly two (amipodal)\
fixed points unless vy is a reflection or y = E.

Let € be a line. Find & (¢). l

Let # = {P, Q, R} be a figure consisting of three mutually\
perpendicular points. Find ¥ (%). ‘

Under what circumstances will a reflection and a half-turn commute’
Prove or disprove the formula

HPHQHR = HRHQHP.
Let P be a point of §%. Show that the stabilizer of P in O{3) consists of

the rotations about P and the reflections in lines through P.

Let €, s, and » be mutually perpendicular lines, and let L, M, and
N be respective intersection points » N », » N €, and € N m
Show that {Q,, Q,,, Q,, H;, Hy, Hy, E, I} is a group and that
{H,, Hy, Hy, I} is a subgroup.
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Fill in the missing argument in the proof of Theorem 35.

Let P, Q, and R be distinct pomts of §2. Assume neither Q nor R
are antipodal to P. Prove that PQ PR if and only if P, Q, and R are
collinear, Q lies on PR, or R lies on PQ. (PR and PQ are taken to be
minor segments.)

Verify that {X|(X, &) = 0} is a half-plane. Does the crossbar theorem
hold in 8%?

Although a given angle can be represented in many ways, the
definition of its radian measure is independent of the representation.
Prove this.

Complete the proof of Theorem 38.

Adapt the Euclidean material on rectilinear figures (Chapter 2,
Theorems 24, 25, and their corollaries) to spherical geometry. Verify
that spherical triangles have the same symmetry properties as Eucli-
dean triangles.

Verify the remark following Theorem 46.

Show that the line « in the corollary to Theorem 54 contains the
bisector of X POR.

Prove that the product of reflections in the perpendicular bisectors of
the sides of a triangle is a reflection whose axis passes through a
vertex.

Finite groups of
isometries of §?
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The projective plane P

Introduction

We now come to a geometric structure that is more abstract than the
previous two we have dealt with. The geometry of the projective plane will
resemble that of the sphere in many respects. However, we regain the
Euclidean phenomenon that two lines can intersect only once. The
projective plane will also be a foundation for our study of hyperbolic
geometry in Chapter 7.

Although many of the properties of the projective plane are familiar,
one that will appear strange is that of nonorientability. In P? every
reflection may be regarded as a rotation. This has the intuitive conse-
quence that an outline of a left hand can be moved continuously to coincide
with its mirror image, the outline of a right hand.

The abstraction is involved in the fact that every point of P? is a pair of
points of $%. Two antipodal points of S are considered to be the same point

of P2

Definition. The projective plane P* is the set of all pairs {x, —x} of
antipodal points of S*.

|
Remark: Two alternative definitions of P?, equivalent to the preceding
one are
i. The set of all lines through the origin in E>.
ii. The set of all equivalence classes of ordered triples (x,, x, x3) of
numbers (i.e., vectors in E®) not all zero, where two vectors are
equivalent if they are proportional.

Let m: S — P? be the mapping that sends each x to {x, —x}. Then wisa
two-to-one map of S? onto P

A line of P? is a set of the form w¢€, where € is a line of §2. If £ is a pole of
¢, then =& is called the pole of w€. Clearly, mx lies on ¢ if and only if
(&, x) = 0. Two points are perpendicular if their representatives on S? are

per
lar
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perpendicular. Two lines are perpendicular if their poles are perpendicu-
lar.

Incidence properties of P*

Theorem 1.
i. Two lines of P*> have exactly one point of intersection.
i. Two points of P* lie on exactly one line.

Proof:

i. Let w& and 7m be poles of lines of P>. Because w& # 7, £ and m are
not antipodal. Thus, £ X m and —§ X 7 determine the two points of
intersection of the. corresponding lines of S* (Theorem 4.7).
But m(€ X m) and m(—£ X 7) are the same point of P*.

i. Again, let wX and 7Y be points of P2. Then X and Y are not antipodal,
so they lie on a unique line € of §? (Theorem 4.6). Thus, mX and wY lie
on . O

Homogeneous coordinates
Let {e,, €5, €3} be a basis of R®. Then every vector x € R? determines a
unique triple (x;, X2, x3) of real numbers according to the equation
X = X 6, + xpe; + Xx3e3.
If mx is a point of P?, \ is any nonzero real number, and
AX = uje, + use; + uzes,

then (uy, Uy, u3) is called a homogeneous coordinate vector of mx. We say
that u,, u,, usy are homogeneous coordinates of mx.

Let £ = (&, &, &) and x = (xy, X2, X3). Then (£, x) = 0 becomes the
equation of the line with pole w&. Homogeneous coordinates are often a
useful computational device. Their usefulness is primarily due to the

 following result.

Theorem 2. Let P, Q, R, and S be four points of P, no three of which are
collinear. Then there is a basis of R with respect to which the four points
have coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1).

Proof: Let vy, v,, and v; be any vectors in R? that are representatives of P,
0,and R, respectively. Because P, Q, and R are not collinear, these three
vectors are linearly independent. Let vy be any representative of S. Now
there must exist real numbers k;, k», k3, none of which is zero, such that

Homogeneous coordinates
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Figure 5.1
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Desargues’ theorem.

vy = ki + kvs + kaus.

Put e; = kjvy, e; = kyv,, and e3 = kavs. Then {ey, e,, ez} is the required
basis. 0

Theorem 3. Let x and y be homogeneous coordinate vectors of two points
of P2. Then \x + py (A, p. real ) is a typical point on the line they determine.

Two famous theorems

Having introduced the incidence structure of P? and having defined the
notion of homogeneous coordinates, we turn to two fundamental classica
theorems in projective geometry: Desargues’ theorem and Pappus
theorem. The elegance of the statements testifies to the unifying power of
projective geometry. Analogous results in E* would have to make allow-
ances for many special cases. The elegance of the proofs (which follow
Coxeter [7]) testifies to the power of the method of homogeneous
coordinates. In this section the word “triangle” denotes a set of three
noncollinear points. We have not yet defined segments in P2, so our oli
notion of triangle does not apply.

Theorem 4 (De&argue‘_g" theorem). Let POR and P'Q'R’ bf_friangles inf

P2, Suppose PP', QQ', and " are concurrent. Then PQ N P‘Tb’.
OR N Q"_I’i’, and PR N P'R’ are collinear. (See Figure 5.1.)

Proof: We may choose a basis for R* such that in the associated
homogeneous coordinate system P = (1,0, 0), Q = (0,1, 0), R = (0,0,1),
and X = (1, 1, 1), where X is the given point of concurrence. If X were

>
collinear with any two of these points, then two sides (such as PQ and.

P"_é’) would coincide, leaving the conclusion meaningless. Thus, we may |
assume that no three of P, Q, R, and X are collinear. Now P’ may be given |
coordinates (p, 1, 1) because |

ML 0,0) + u(1, 1, 1) = (N + p, p, p),

which is equivalent to
(421, 1).
T

Similarly, Q" = (1, ¢, 1) and R’ = (1, 1, ). Now the equation of l;a is
x3 = 0, and that of P'Q’ is

I-=g@xi + (1 -px;+ (pg — 1)x3 = 0.

e e A O™ OMTYN



These lines intersect in L = (p — 1, 1 — g, 0). Similarly, the other two
points of intersection are M = (1 — p,0,r —1)and N= (0,9 — 1,1 —r).
The three points L, M, and N are collinear because the sum of the three
wordinate vectors is zero. ]

Theorem 5 (Pappus’ theorem) Let A B,C, and AszCz be collinear triples
ofpomts Then the points A Bz N AZB, G, BzC, N B Cz = As, and
,C2 N AZC, = Bj are collinear. (See Figure 5.2.)

Proof: Assign homogeneous coordinates as follows:
A =(1,0,0), A, =(0,1,0), A;=(0,0,1),
G=@0,11), Bi=(p,1,1), B3=(,4q,1),
=(1,:15.7).
Then
C= 1-43 n BsAl = (pg, 9, 1),
G = A,Bz N AzB, = (pr, 1, r).
Because A,, B, and C, are collinear, we must have
CG=0,\0+d,1,n=0,x+1,0).
On the other hand,
G = (pq, 9. 1) = (pgr, qr, 7).
Thus, we ‘_Tust have pgr = 1.
Now A3B; consists of points of the form (0, 0, A) + (1, g, 1) =

(1,9, 1+ \). Because Cs = (pgr, q, rq) = (1, g, rq), it must be on this line.
0O

Applications to E?

One of the reasons for the invention of P> was to simplify the incidence
geometry of E2. To illustrate this, consider the following picture in E*>. We
regard the plane x5 = 1 consisting of all points in E? of the form (x,, x», 1)
asa model of E%. Every line through the origin of E? that is not parallel to
E? meets E? in a unique point. If (x, x5, x3) are homogeneous coordinates
for such a point of P?, then

(‘—‘ 3 1) (5.1)

x3' x3’

Applications to E?

= AZ

Figure 5.2 Pappus’ theorem.
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Figure 5.3 Quadrangle: Case 1.

Figure 5.4 Quadrangle: Case 2.

Figure 5.5 Quadrangle: Case 3.

128

is the corresponding point of E*. Conversely, each point of E? determines:
unique point of P2.

Every line of E* determines a unique plane through the origin in E* and,
hence, a unique line of P>. Every line of P?> determines a unique plane
through the origin in E* and, hence (with one exception), a unique line of
E’. The exception is the plane through the origin parallel to E2.

Let T: E> — P? be the map we have been discussing.

Theorem 6.
i. Denote by {.. the exceptional line of P>. Then T maps E? bijectively 10
P’ - (..
ii. Let Pand Q be points of E2. Then TP and TQ determine a line €' of P°
and T maps € = PQ bijectively to ¢’ — ¢..
iii. Let € and m be lines of E*. If € N on = P, then €' N\ on' = TP. If € || m,
then €' N =’ lies on ¢...

Remark: What this theorem says is that P? contains a subset that has the
same incidence structure as E*. Two lines will be parallel on E? if and
only if they correspond to lines meeting on ¢...

Example: A quadrangle PQRS in P? consists of four points, no three

colhnear and the six Imes drawn through pairs of vertices. The three

points PQ N RS PRN QS and PS N QR are called diagonal points of the

quadrangle. Now the corresponding figure in E? can take on many forms,

depending on where €. intersects the figure. We list the possibilities. They

are illustrated in Figures 5.3-5.7.

1. €. contains no vertex (P, Q, R, or S) and no diagonal point. In this
case we have an ordinary Euclidean quadrangle.

2. €. contains no vertex but one diagonal point. In this case two sides of
the quadrangle are parallel; the other two are not.

3. €. contains no vertex but two diagonal points. In this case we have 2
parallelogram.

4. ¢, contains one vertex and no diagonal points. Here we have three

ordinary points Q, R, and S, the lines &Q and 72?9 together with
parallel lines through Q and S, respectively.

5. €. contains two vertices P and Q. In this case one diagonal point is [
forced to be on ¢...

If We start with the general case (1) and gradually turn one of the llnes
say PS while leaving the others fixed, the point of intersection PS N QR
gets farther and farther away in E%. On P? the corresponding point is
getting closer to €... This is why €. is sometimes called ““the line at «.”
This also accounts for the statement “parallel lines meet at «.”

iii
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 Desargues’ theorem in E’ The projective group

The projective version of Desargues’ theorem has many interpretations in
I, depending on where the various lines cut €... For instance, if X is on

[., the theorem would read as follows. \s

Theorem 7. Let POR and P'Q'R’ be triangles in E*. Suppose that Fl;', M
00', and RR' are parallel. Theg_> R

i. If PQ || P'Q’ and QR || Q'R’, then PR || P'R’ (Figure 5.8). M

i. IfPQ]|| P'Q" but QRN Q'R' = N, then PR and P'R’' meet (say in M),
and MN is parallel to ﬁa (Figure 5.9). e

i. fPONPQ =L,QRNQ'R' =Mand PRN PR’ =N, then L, M,
and N are collinear (Figure 5.10).

Q
Figure 5.6 Quadrangle: Case 4.

Observe that the three cases correspond to the following in P2.

S
i. €. contains all three of L, M, and N. hse= \
i. €. contains one of L, M, or N. X
R

il. ¢, contains none of L, M, or N.

If X is not on €.. in Desargues’ theorem, it would read as follows.

Theorem 8. Let POR and P'Q'R’ be triangles in E*. Suppose Fi’)', (?Q”,
md RR' meet in X. Then the conclusions of Theorem 7 hold.

¥V
Q

If we take €., to be the line PP'X in Desargues’ theorem, we get the Figure 5.7 Quadrangle: Case S.

following:

Theorem 9. Let QRR'Q’ be a trapezoid (Q(_Q)'lll(a?,'). Let € and » be
parallel lines through Q and R. Let €' and ' be parallel lines through Q'
mdR'. Let X=€NE€,Y=mNom',and Z= QRN Q'R’'. Then X, Y, and
Z are collinear.

Theorem 10. Let QRR'Q’ be a parallelogram in E? (Q‘_é'”ﬁ’ and
ﬁ'll‘QTQ). Let € and »n be parallel lines through Q and R. Let €' and ' be
parallel lines through Q" and R'. If X = € N €' and Y = s N ', then Xy
is parallel to ‘Q_k

The projective group Figure 5.8 Affine consequences of
Desargues’ theorem: Case 1.

Let PGL(2) be the group of collineations of P2. (Use the same definition as

for E2.) Each invertible linear map A: R* — R?® determines a unique

collineation A in PGL(2) according to the definition 129
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Figure 5.9 Affine consequences of
Desargues’ theorem: Case 2.

L
s . S . B
N "\
. LR/ZI\R
M\
/ ‘\
// !
; \
A \\
4 e . B
0 Q'

Figure 5.10 Affine consequences of
Desargues’ theorem: Case 3.
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Amx = mAx. (5.2

The mapping A — A is a homomorphism of GL(3) — PGL(2) whose kernel
is

K = {kllk # 0 € R}.
It is a fact that this map is surjective (Exercise 17), so that
GL@3)/K = PGL(2).

This fact is equivalent to the characterization of affine transformations in
Theorem 2.2, whose proof is given in Appendix E.

Now if A = kI, then det A = k*. Because kK> = 1 if and only if k = 1, we
see that

1. Every member of GL(3) is equivalent to (is a multiple of) some
member of SL(3). In particular, if k = (det A) "3, we see that det(kA) =
1, so that kA € SL(3).

2. SLA NK={I}.

Thus, the homomorphism restricted to SL(3) is an isomorphism, and
SL(3) = PGL(2).

The subgroup of PGL(2) that fixes €.. may be identified with AF(2). In
fact, it is the image of AF(2) under the composition of the usual mappings:

AF(2) - GL(3) — PGL(2). (5.3

It is easy to check that this composite mapping is injective.

An element of PGL(2) is called a projective collineation or projective
transformation.

The fundamental theorem of projective geometry |

Theorem 11. Let PORS and P'Q'R'S’ be quadrangles. Then there is a
unique T € PGL(2) such that TP = P', TQ = Q', TR=R',and TS = §'.

Proof: Choose homogeneous coordinates of (1, 0, 0), (0, 1, 0), (0, 0, 1),

and (1,1, 1) for P, Q, R, and S, respectively. Then let A be a matrix whose
columns are coordinate vectors for P', Q', and R’, respectively. Call them
x, y, and z. Now

X, Y1 oz 1 00 X Y1z
X2 Y2 2z 01 0]=1|x2 y2 2
x3 y3 z3|]0 0 1 X3: Y3 23

it

Ly ™ "y



However,

xx oy n|[1] [x1 + 1+ 2
X2 2 2|1 =]|x2tytz),
x3 y3 z3 || 1] [os+tyst+zn

ad, for any A, p, v,

Ax; wyr vz [Ax; + py; + vz
AXy Wy2 V2 1] = | Axy + py, + vzy
Ax3 Py vz3 1 L)\xg, + pys + vz3

Choose A\, ., and v so that
w=AX+ ny + vz

sa coordinate vector for §’. The projective collineation whose matrix with
espect to P, Q, R, and S is

Axp wyr vz
Ax; py: vz
Ax3 wys vz

sthe required transformation 7. Uniqueness will be proved in Exercise 16.
O

Corollary. Let {P, Q, R} and {P', Q', R’} be two noncollinear triples of
points. Let € be a line not containing any of these points. Then there is a
unique projective collineation T such that TP = P', TQ = Q', TR = R’, and
Tt = €.

Proof: Let Fé and P('_é’ meet ¢ in A and A’, respectively. Let PR and
PR’ meet ¢ in B and B’, respectively. Then RQAB and R'Q'A’B’
are quadrangles to which the fundamental theorem may be applied.
The unique T so determined leaves € fixed. Furthermore, because P
-RB N QA, TP must be R'B' N 0'A’ = P'.

Conversely, any projective collineation satisfying the stated conditions
must take A to A’ and B to B’ and so must coincide with 7' O

Remark: When a choice of €., has been made, this corollary with € = €. is
just the fundamental theorem of affine geometry (Theorem 2.8).

A survey of projective collineations

In this section we will outline some of the facts about projective collinea-
tions. This material would occupy a whole chapter if done in detail.

A survey of projective
collineations
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Because our main emphasis in this book is on metric geometry, we wil

present the results with a minimum of discussion. All the necessar

background for proving the theorems as exercises has already beer
developed.

Theorem 12.  Every projective collineation has at least one fixed point ani
one fixed line.

In view of Theorem 12 it is useful to choose a point P and a line ¢ and
examine the group of all projective collineations, leaving them fixed. We
choose a homogeneous coordinate system in which P and ¢ have simple
representations. If P lies on €, let P = (1, 0, 0). If P does not lie on ¢, take
P = (0,0, 1). In either case we can arrange that ¢ has the equation x5 = (.
The next few theorems assume a homogeneous coordinate system satis
fying these conditions.

Theorem 13. If P does not lie on €, the group of projective collineations
leaving P and € fixed is isomorphic to GL(2). Each such collineation can be
uniquely written in the form

b 0
d 0|, ad — bc # 0.
0 1

SN 8

Theorem 14. Suppose that P lies on €. Then every projective collineation
leaving P and ¢ fixed is uniquely represented by a matrix of the form

a b p
0 c gqg|, ac#0.
00 1

Conversely, each such matrix determines a projective collineation leaving P
and ¢ fixed.

Taking € = €. allows us to regard this group as the group of affine
transformations leaving fixed one particular pencil of parallels, namely, the
lines parallel to the x,-axis. In fact, if two points (A, p) and (\, p) in E?
have the same x,-coordinate, then

a b pl[rx A aN + bp. + 1 aN + bp + 1
0 c gllp p|=|cn+g cp+ g ;
0 0 1 1 4 1 1

so that their images also have the same x,-coordinate. In affine terms this
transformation is a central dilatation (centered at the origin), followed by a
shear, and then a translation.

7



Of course, the transformation of Theorem 14 may have fixed points
other than P and/or fixed lines other than ¢. In fact,

Theorem 15.  The transformation of Theorem 14 has exactly one fixed point
ind one fixed line if and only if a = ¢ = 1 and bq # 0.

Theorem 16. A projective collineation with two fixed points may be written
Fin the form

a 0 p
0 ¢c ¢q
0 01

Such a collineation has at least two fixed lines.

Corollary. A projective collineation with two fixed points may be written in
the form

a 0 0
0 c g¢q
0 01

In this representation (1, 0, 0) and (0, 1, 0) are fixed points. The lines x, = 0

and x3 = 0 are fixed lines.

Theorem 17. If a projective collineation has three collinear fixed points, it
may be written

S O R

00
a q|, a#0.
0 1

Every point on the line x, = 0 is fixed. In addition, the line xy = 0 is a fixed
line.

The transformations of Theorem 17 are called perspective collineations.

A perspective collineation with axis € and center P is a projective
collineation that leaves fixed every point on ¢ and every line through P. We
may regard the identity as the trivial perspective collineation. All other
perspective collineations have a unique axis and a unique center. A
nontrivial perspective collineation is called an elation if its axis and center
are incident; otherwise, it is called a homology.

Theorem 18. When a perspective collineation is represented as in Theorem
17, it is
i. an elation if a = 1 and q # 0;

A survey of projective
collineations
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The projective plane P? ii. the identity if a = 1 and q = 0;
iii. a homology if a #+ 1. ] PC
\
Remark. 1f €., is taken to be the axis of a perspective collineation, elations
become translations and homologies become central dilatations. On the
other hand, if €.. is one of the other fixed lines, elations become shears and
homologies become stretches along one direction (see Theorem 2.20, case | D
(iv)) possibly composed with an affine reflection. The special homology |
giving rise to an affine reflection is called a harmonic homology.

Tl
The term “perspective collineation™ is explained by the following in
theorem. |
Theorem 19.  Suppose that a nontrivial perspective collineation with center
P takes X to X'. Then P, X, and X' are collinear.
Theorem 20. Let P be a point and € a line. Let X and X' be points
collinear with P. Assume that X and X' are not on € and not equal to P.
Then there is a unique perspective collineation with center P and axis € tha
takes X to X'.
Polarities S
Let b be a real-valued, symmetric, nondegenerate, bilinear function on E’,
If {e,, e5, e3} is a basis for R>. we have
3
b(x,y) = Y xiyble; ¢) t!
ij=1
3
L byxiy; = x'By = (x, By), (5.4
ij=1 d
where B = [b;] = [b(e;, ¢))). 8
Each such b determines a relation :
bcCPxP

consisting of those pairs (wx, my) such that b(x, y) = 0.
The relation b is called a polarity. If b(x, y) = 0, we say that mx and 'n)
are conjugate. For a given y the set

{mx|b(x, y) = 0}

is a line called the polar line of my. We call y the pole of the line with :
134 respect to b. :



Some polarities have self-conjugate points. The set of self-conjugate
points is called a conic determined by the polarity. For example, if

1 0 O
B=]101 0],
0 0 -1
then the conic determined by b is
{mx|x'Bx = 0} = {mx|x} + x3 — x5 = 0).

This conic in P? corresponds by formula (5.1) to the unit circle x] + x3 = 1
in E2.

Similarly,
2 0 0
0 3 0| givesthe ellipse 2x7 + 3x3 = 4,
_0 0 —4
=2 06 97
0 3 0| givesthe hyperbola —2x} + 3x3 = 4,
i 06 —=4]
7 10 0 —ZW
0 1 0| givesthe parabola x3 = 4x,.
-2 0 o

Some polarities do not have self-conjugate points. For example, if

1 00
B=101 0],
001

b(x, y) = xiy1 + X292 + x3y3 = (x, y),

and b(x, y) = 0 if and only if x} + x3 + x3 = 0. The fact the b has no
self-conjugate points translates to the fact that no line can be perpendicular
to itself in E>.

A polarity also induces a relation among the lines of P2. Two lines are
said to be conjugate if the pole of one lies on the other. A line that passes
through its own pole is said to be self-conjugate.

then

Theorem 21. Let P and Q be points of P> with respective polar lines 4 and
g. Then P lies on ¢ if and only if Q lies on f.

Proof: Let P = mx and Q = my. Then P lies on ¢ if and only if b(x, y) = 0.
By symmetry this is also the condition for Q to lie on . O

Polarities
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Theorem 22. Ler P and Q be self-conjugate points of P>. Then i’é cannol
be a self-conjugate line.

Proof:  Let £ and ¢ be the respective polar lines of P and Q. The lines
and ¢ are distinct because P and Q are dlstmct Let R be the point where
and ¢ intersect. This point is not on PQ Because R is conjugate to 0 both P
and Q, its polar line » must pass through both P and Q; that is, » = PQ The
line 2 is not self-conjugate because it does not pass through R. 0

Theorem 23. A line contains exactly one self-conjugate point if and only if
it is a self-conjugate line.

Proof: Let € be a line with exactly one self-conjugate point P = mx. Le
Q = my be any other point of €. Then for any real number A\,

b(x + Ay, x + \y) = b(x, x) + 2\b(x, y) + A*b(y, y)
= N2b(x, y) + Ab(y, y)).

Because there is only one self-conjugate point on ¢, we must have
b(x, y) = 0. Otherwise, one could solve the equation for a nonzero value of
A. Because the equation b(x, y) = 0 holds for all x with 7x on ¢, the pole of
€ is my. Hence, € is a self-conjugate line.

Conversely, if a line is self-conjugate, its pole is self-conjugate. By
Theorem 22 the line can have no other self-conjugate points. O

Definition. Let b be a polarity defining a conic €. A line that is self
conjugate with respect to b is called a tangent (o the conic €. The pole of this
line is called the point of contact. (See Figure 5.11 in which € and m are
tangents having respective points of contact L. and M.)

Corollary. A line meets a conic in at most two points.

Proof: This follows from considering a quadratic function of the type
occurring in Theorem 23. O

Definition. A line that meets a conic twice is called a secant.

Cross products

Conjugacy with respect to a polarity is a generalization of the theory of
perpendicularity with respect to an inner product. We recall that in order
to find a vector in E? that is perpendicular to two given vectors, we
construct the cross product.

fc
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If u and v are vectors in R, there is a unique vector w in R? such that,
jor all z € R?,

b(w, z) = \/|detB|det(z, u, v).

Here we may compute the right side by writing z, u, and v as column
wectors and taking the determinant of the resulting 3 X 3 matrix.

We call w the cross product (of u and v) with respect to b and write
w=u Xuv or simply w = u X vif b is clear from the context.

Clearly, the formulas

b(u X v, w) = b(u, v X w)
and
b(u, u X v) = b(v, u X v) =0
wre true. Thus the cross product is a device for computing poles of lines.

The following proposition is obvious.

Theorem 24. Let wu and wv be points in P>. Then the line joining wu and
w has pole w(u X v). (Again see Figure 5.11.)

Definition A triangle APQR of P? is said to be self-polar if each vertex is
e pole of the side opposite it. Any self-polar triangle gives rise to a basis
(e, €2, €3} of R? such that b(e;, ej) = 0 for i # j and b(e;, €;) = *1. Such a
basis is said to be orthonormal with respect to b.

Theorem 25.
i. Let {ey, e, e3} be orthonormal with respect to b. Then, after replacing
e3 by its negative if necessary, we have

e; X e; = b(es, es)es,

e; X e3 = b(ey, e))ey,

e; X e; ='b(ey, e;)e,.

i. For a given b the number of occurrences of —1 among the b(e;, €;) is
independent of the choice of orthonormal basis.

Definition. Let b be a nondegenerate, bilinear, symmetric function. Suppose
that {e;} is a basis orthonormal with respect to b. Suppose that +1 occurs r
iimes and —1 occurs s times among the b(e;, e;). Then the ordered pair (r, s)
is called the signature of b.

The following (vector triple product) formula is indispensable for com-
putation.

Cross products

Figure 5.11 Conic, tangents, pole, and

polar.
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Theorem 26. (1 X v) X w = (=1)°(b(u, w)v — b(v, w)u), where the
signature of b is (r, s).

Proof: Choose a basis of the type used in Theorem 25. Then

(e1 X €3) X e; = b(es, e3)e3 X e; = —b(es, e3)b(ey, €))e,,

(=1)'(b(ey, ex)e; — blez, e3)e)) = (—1)'(—=1)b(ez, ey)e;.

These are equal if and only if

b(ey, e)b(es, e3) = (—1)°ble, e2);

that is,

b(e, e1)b(ez, e2)b(es, e3) = (—1)".
The other combinations can be checked similarly. O
EXERCISES

ON: 1V (s

Prove Theorem 3.

Letx =(1,0,0),y=(1,1,0),z=(1,0,1), w= (1, 1, 1). Let € be the
line joining mx and my, and let » be the line joining 7wz and 7ww. Find
€ N .

Draw diagrams illustrating the various possibilities in Theorem 8.
Draw a diagram illustrating Theorem 9.
Draw a diagram illustrating Theorem 10.

Pappus’ theorem yields many distinct results in E* depending on the
position of €. State as many of these results as you can.

Let € and €' be distinct lines, and let C be a point not on either line.

The perspectivity [C; € — €'] is the mapping « that sends each point

P € € to the intersection of PC with ¢'.

i. Verify that the mapping « is well-defined.

ii. Verify that « is a bijection with exactly one fixed point.

iii. Verify that ™' is a perspectivity.

iv. Show that the composition of two perspectivities need not be a
perspectivity.

v. Given four distinct points P, Q, P’, and Q’, prove that there isa
unique perspectivity taking P to P’ and Q to Q.

A projectivity is a composition of finitely many perspectivities. Each

projectivity relates a pair of (not necessarily distinct) lines. For each

line € prove that the set of all projectivities that take € to itself is a

group. With respect to an appropriate choice of homogeneous

coordinates, find a matrix representation for this group.

10

11

12

14

1¢

1¢
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1.

A,

2.

Let P, Q, and R be distinct points on a line €, and let P, Q', and R’
be distinct points on a line €’. Prove that there is a unique projectivity
sending P to P, Q to Q', and R to R'.

If € and €' are distinct in Exercise 9, show that the required
projectivity may be expressed as the product of two perspectivities.
Show that any projectivity is the product of three or fewer perspecti-
vities.

Let A, B, C, and D be four collinear points. Show that there is a
unique projectivity that interchanges A and B and also interchanges
C and D.

Show that a projectivity relating distinct lines is a perspectivity if and
only if it has a fixed point.

Classify the projectivities of a given line € in terms of their fixed point
behavior.

Prove that a projective collineation that leaves fixed four points, no
three of which are collinear, must be the identity. (Hint: Choose €. to
be one of the fixed lines, and apply Theorem 2.2 to P? — ¢...)

Prove the uniqueness part of Theorem 11 — there is only one
projective collineation relating two specified quadrangles.

Prove that every projective collineation is of the form A for some
A € GL(Q3).

The fixed lines of a projective collineation A can be found by
computing the eigenvectors of A’. Justify this statement and use it to
prove Theorem 12.

Prove Theorem 13.

If T is a projective collineation, prove that the restriction of 7 to one
line € is a projectivity. Prove also that every projectivity arises in this
way.

Prove Theorem 14.

Show that the transformation of Theorem 14 preserves the rela-
tionships (@ — 1)x; + px3 = 0 and (¢ — 1)x, + gx3 = 0, in addition to
preserving the line x3 = 0. Thus, unless @ = ¢ = 1, there is an
additional fixed line. Use this to prove Theorem 15.

Prove Theorem 16 and its corollary.
Prove Theorem 17.
Prove Theorem 18.

A perspective collineation induces a projectivity on any fixed line.
Discuss the fixed point behavior of such a projectivity.

Show that the set of perspective collineations with a given axis and

Cross products
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Theorem 26. (u X v) X w = (=1)°(b(u, w)v — b(v, w)u), where th
signature of b is (r, s).
Proof: Choose a basis of the type used in Theorem 25. Then
(e X €3) X e; = b(es, es)es X e; = —b(es, e3)b(ey, e))ey,
(=1)'(ber, e2)e; — bley, er)er) = (—1)(—1)b(es, er)e;.
These are equal if and only if

bley, e))b(es, e3) = (—1)'b(ez, €,);

that is,

b(ey, e1)b(ea, e;)b(es, e3) = (—1)°.
The other combinations can be checked similarly. O
EXERCISES

Prove Theorem 3.

Letx=(1,0,0),y=(1,1,0),z=(1,0,1), w= (1,1, 1). Let € be the
line joining mx and wy, and let » be the line joining 7z and ww. Find
€ N .

Draw diagrams illustrating the various possibilities in Theorem 8.
Draw a diagram illustrating Theorem 9.

Draw a diagram illustrating Theorem 10.

Pappus’ theorem yields many distinct results in E* depending on the
position of €... State as many of these results as you can.

7. Let € and €' be distinct lines, and let C be a point not on either line.
The perspectivity [C; € — €'] is the mapping a that sends each point
P € ¢ to the intersection of PC with ¢'.

i. Verify that the mapping « is well-defined.
ii. Verify that « is a bijection with exactly one fixed point.
iii. Verify that ™' is a perspectivity.
iv. Show that the composition of two perspectivities need not be 2
perspectivity.
v. Given four distinct points P, Q, P’, and Q’, prove that there isa
unique perspectivity taking P to P’ and Q to Q’.

8. A projectivity is a composition of finitely many perspectivities. Each
projectivity relates a pair of (not necessarily distinct) lines. For each
line € prove that the set of all projectivities that take € to itself is a
group. With respect to an appropriate choice of homogeneous
coordinates, find a matrix representation for this group.

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20
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18.

Let P, Q, and R be distinct points on a line €, and let P’, Q’, and R’
be distinct points on a line €’. Prove that there is a unique projectivity
sending P to P', Q to Q', and R to R'.

If ¢ and ¢ are distinct in Exercise 9, show that the required
projectivity may be expressed as the product of two perspectivities.
Show that any projectivity is the product of three or fewer perspecti-
vities.

Let A, B, C, and D be four collinear points. Show that there is a
unique projectivity that interchanges A and B and also interchanges
C and D.

Show that a projectivity relating distinct lines is a perspectivity if and
only if it has a fixed point.

Classify the projectivities of a given line € in terms of their fixed point
behavior.

Prove that a projective collineation that leaves fixed four points, no
three of which are collinear, must be the identity. (Hint: Choose €. to
be one of the fixed lines, and apply Theorem 2.2 to P> — ¢...)
Prove the uniqueness part of Theorem 11 - there is only one
projective collineation relating two specified quadrangles.

Prove that every projective collineation is of the form A for some
A € GLQ@).

The fixed lines of a projective collineation A can be found by
computing the eigenvectors of A’. Justify this statement and use it to
prove Theorem 12.

Prove Theorem 13.

If T is a projective collineation, prove that the restriction of 7 to one
line € is a projectivity. Prove also that every projectivity arises in this
way.

Prove Theorem 14.

Show that the transformation of Theorem 14 preserves the rela-
tionships (¢ — 1)x; + px3 = 0 and (¢ — 1)x, + gx3 = 0, in addition to
preserving the line x3 = 0. Thus, unless @ = ¢ = 1, there is an
additional fixed line. Use this to prove Theorem 15.

Prove Theorem 16 and its corollary.
Prove Theorem 17.
Prove Theorem 18.

A perspective collineation induces a projectivity on any fixed line.
Discuss the fixed point behavior of such a projectivity.

Show that the set of perspective collineations with a given axis and

Cross products
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28.

29.

30.

31.
32.
33.

34.
35:

center (with the identity thrown in) is a group. Do these groups have
any finite subgroups?
i. Verify the remarks following Theorem 18.
ii. Show that the harmonic homologies are those having a = -1
and g = 0 in Theorem 18.
iii. Prove that the only projective collineations that are involutions
are the harmonic homologies.

When €.. is taken to be the axis of a harmonic homology, what affine
transformation of P* — €., results?

i. Prove that there is a unique harmonic homology with a given
center and axis.

ii. If a is a harmonic homology with center P and axis ¢ and Bisa
harmonic homology with center Q and axis s, prove thal
af = Ba if and only if Q lies on ¢ and P lies on .

Prove Theorem 19.

Prove Theorem 20.

Let b be a polarity, and let € be a non-self-conjugate line. For each
X € ¢, let a(X) be the point where the polar line of X intersects .
Prove that a is a projectivity. Show further that o = I; that is, « is an
involution.

Prove Theorem 23.
Prove Theorem 25.




Distance geometry on
P2

Distance and the triangle inequality

So far we have discussed only the incidence structure of the projective
plane. We now introduce a distance function.

Definition. For P and Q in P* define
d(P, Q) = cos™'|(x, y)I,
where x and y are points of 8% and wx = P, my = Q.
Remark: Because of the absolute value sign, the distance is well-defined.

The distance between {x, —x} and {y, —y} is the spherical distance
between the closest representatives. Also, all distances are <m/2.

Theorem 1. If P, Q, and R are points of P*, then
d(P, Q) + d(Q, R) = d(P, R).
Proof: Let r, p, and g be the respective distances. Choose representatives
P',Q’,and R’ so that (P', R') = 0and (Q’, R') = 0. As in Theorem 4.8,
|P" x Q'| =sinr, |[R" x Q| =sin p,
|P" x Q'|[R" x Q'| = (P' x Q', Q' X R)
= —(P, R’) + (Q', R')(Q', P').
If (P', Q') = 0, then we get the inequalities
sin 7 sin p = cos p cos r — cos q,
COs g = cOs p cos r — sin r sin p,
cos g = cos (p + r),

qs<p+r. 141
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Equality in this case would imply that
[Q" x R =[P x Q].

This means that P’, Q’, and R’ are collinear on §° and, hence, that P, Q,
and R are collinear on P2

If (P', Q') < 0, then use the Cauchy—-Schwarz inequality in the form
[P x Q'IR" x Q'] = (P', R') — (Q', R'){Q", P'), (6
which yields
sin r sin p = cos ¢ + cos p cos r,
cos(m — q) = cos(p + r),
T—qg<p-+r

Butg<=m/2,sothatg<m—g=<p+r. Equality can occur in this case only
if g = m/2 < p + r. As before, P', Q', and R’ will be collinear. 0

Remark: In this proof we have shown not only that the triangle inequality
holds on P but also the familiar notion that equality cannot occur unless
the three points in question are collinear. However, something unfamiliar

also pops up here. Not every triple of collinear points satisfies the equality.
The situation is as follows.

Theorem 2. Three points of P* are collinear if and only if they can be
named P, Q, and R in such a way that either

i. d(P, Q)+ d(Q, R) = d(P, R)

ii. d(P, Q) + d(Q, R) + d(P, R) = .

Proof:  Suppose that we are given three collinear points for which (i) does
not hold. Let e; be a pole of the line of §* determined by the three given
points, and let e, be a representative of one of the points, say P. Then we
may choose 6 and ¢ with 0 < 6, & < /2 such that the other two points are

Q = m((cos d)e, + (sin db)e,)
R = w((cos B)e; + (sin 0)e,),

and

where {e,, e,, €3} is an orthonormal basis.
Now

d(P, Q) = cos™'(cos d) = o,
d(P, R) = cos™'(cos 8) = 0,
and

d(Q, R) = cos '[cos(d + 0)|.

(7 rul |

-d



The minus sign cannot occur because it would imply that d(Q, R) =
4 — 6|, and, hence, an equation of the form (i) would be satisfied.
Similarly, if & + 6 < m/2, we would have d(Q, R) = ¢ + 6, another version
of (i). Thus, we must conclude that /2 < ¢ + 6 < m, so that

d(Q, R) = cos '(—cos(d + 8)) = cos™'(cos(m — (6 + b))
m—(0+d)=m— dP, Q) — d(P, R).

Conversely, if (i) holds, we showed in the proof of Theorem 1 that the
points must be collinear. If (ii) holds, we have p + r = m — ¢, so that
ws(m — q) = cos(p + r). By the same algebra as in Theorem 1, (6.1)
becomes an equality, and the three points are collinear. O

[sometries

Definition. A map T: P> — P? is called an isometry if d(P, Q) =
(TP, TQ) for all P and Q in P°.

Theorem 3. Let T be an isometry. If P, Q, and R are collinear, then TP,
10, and TR are collinear.

Poof: Let P, Q, and R be collinear points. Let P’ be the unique point on
this line such that d(P, P') = m/2. Then

d(P, Q) + d(Q, P') = d(P, P') = %
Hence,
d(TP, TQ) + d(TQ, TP') = d(TP, TP') = %

By the previous theorem, TQ must lie on the line determined by TP and
TP'. Similarly, TR must lie on this line. O

The isometries of P> are closely related to the isometries of S

Theorem 4. Let T: P> — P? be an isometry. Then there exists a unique
A € SOQ) such that T = A.
Proof: Choose e, e,, and e; on S? such that
Tne; = we; for each i.
Then

d(Tme;, Tne;) = d(we;, me;) = cos *[(e;, ).

Isometries
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But d(mwe;, we;) = cos™'[(e;, ¢;)|, and so |(e;, €,)| = |(e;, ¢,)|. 1f i # j, then
(ei, €;) = 0. Otherwise, (e;, ¢;) = 1. Thus, {e;} is an orthonormal basis of
R?. Let A be the orthogonal matrix such that Ae, = e, for each i. Then
A is an isometry of P>, and A~'T leaves me,, me,, and e, fixed. Lel
M = w(e; + €; + €3) and write

A7'TM = w(kie, + ke, + kaes),

where ky, k,, and k3 are some numbers, with k{ + k3 + k3 = 1. We claim
that the |k;| are all equal. To see this, note that

d(A™'TM, A~'Tme;) = cos™'|k,|.

But d(M, me;) = cos™'(1/\/3) and, hence, |k,| = 1/\/3 for all i. Let

ki, 0 0

B=V3|l0 k 0].

0 0 Kk

Then
BA~'Tne, = me; for each i,

and since each k? is 1/3, BA™'TM = M. 0

We will next prove that any isometry that leaves each ¢, and

(e, + €, + €3) fixed must be the identity. Assuming this for the moment,
we get

BA™'T = I,
that is,
T=(A"Y'B"'=AB"' = AB™".

But B~' = B. Hence, T = AB. Because AB is orthogonal, there is a unique
member of SO(3) that determines the same isometry.

Theorem 5. If T is an isometry of P? that leaves fixed each we,; and
(e, + €; + €3), then T is the identity.

Proof: Let us work in the homogeneous coordinate system determined by
€1, €, and €3. Then (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1) are fixed
points. We first check that all points on the line joining (1, 0, 0) and
(0, 1, 0) are fixed. A typical such point is x = (cos a, sin a, 0), where
0 < a < w. Write Tx = (cos B, sin B, 0), where 0 < B < 7. Then

d(Twe,, Tx) = d(mwe,, x),

cos”'|cos B| = cos™!|cos a;

md fbe Puin o



hat is, [cos B| = |cos a|. Thus, B = aor B =7 — a.
If B = a, we are finished. If B = m — «, then

Tx = m(—cos a, sin «, 0).

lee M = (1, 1, 1). Then

d(x, M) = cos™!

%(cos a + sin a)’ .

%(-cos a + sin a)!.

d(Tx, M) = cos™"

This is impossible unless a = /2, in which case a = B anyway. Similarly,
we can show that all points on the sides of the triangle of reference A are
ixed. Now each line of P? contains at least two fixed points because it
intersects A at least twice. Therefore, every line is fixed, and, hence, every
point is a fixed point. (]

Motions

Let € be a line of S%. Then the reflection in the line w¢ is the isometry of P’
defined by

Q.,,q = ﬂ(.

Theorem 6. ()., leaves fixed every point on w€ and the pole of w€. No other
points are fixed.

Poof: Choose an orthonormal basis of E* with respect to which

-1 0 0
Q( = 0 1 0 .
0 0 1

Now Qx = x if and only if x lies on the line joining (0, 1, 0) and (0, 0, 1).
Also Q.x = —x if and only if x = (1, 0, 0) or (=1, 0, 0). Thus, the fixed
points of () are as claimed. O

Let ¢ be a line of P?, and let £ be its pole. Then the product of two
reflections €,,(),, where » and » pass through £, is called a rotation about
¢. Because line goes through £ if and only if it is perpendicular to €, we also
all Q,.Q, a translation along €, and we call ,,Q,Q, a glide reflection. 1f
m L », then Q,,Q, is called a half-turn.

Theorem 7. The fixed lines of a reflection are the line of fixed points and all
lines perpendicular to this line.

Motions
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Proof: ~ A line is fixed if and only if its pole is a fixed point. O

Theorem 8. A rotation other than a half-turn or the identity has a unique
fixed point and a unique fixed line. The point is the pole of the line.

Proof: Let A be a typical rotation of P?>, where A € SO(3). Then we wil
have solved the problem if we can find all those points x € S such that
Ax = Zx. But this calculation was done in finding the fixed lines of 2
rotation of §2. If x is a fixed point of A, then mx is the unique fixed point of
A, and the line whose pole is mx is the unique fixed line of A. ul

Theorem 9.

i.  Every reflection is a half-turn, and every half-turn is a reflection.
ii. Every glide reflection is a rotation.

Corollary. Every isometry of P? is a rotation.

Remark: It is easy to show that the three reflections theorem and the
representation theorems for rotations and translations (Theorems 4.15, 16,
19, and 20) hold in P? (Exercise 6).

Elliptic geometry

The geometry of P? is traditionally called elliptic geometry. So far, we have
discussed its incidence properties, defined the notion of distance, and
classified the isometries. We have seen that elliptic geometry is a simplifica-
tion of spherical geometry.

Definition. A segment in P? is a set of the form ms, where 5 is a minor
segment in S*. The length of T is the length of 5. The end points of s are the
images by w of the end points of 4.

Theorem 10.
i. Each pair {A, B} of points in P* is the end point set of two segments.

The union of these segments is the line /ﬁ and their intersection is
{A, B}.

ii. For a segment of length L with end points A and B, we have
d(A, B) = L if L <m/2. Otherwise, d(A, B) = w — L.

Definition. A ray is a segment of length w/2 with one end point removed.
The remaining endpoint is called the origin of the ray.
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femark: The definitions of ray in Euclidean, spherical, and elliptic
gometry may seem at first to have little in common. There is a unifying
idea, however. Starting at the origin of the ray, we move in a particular
direction as long as the path we have traced out is the shortest path to this
origin. If this continues forever, as in the Euclidean case, the ray continues
forever. On the sphere, however, once we reach the point antipodal to the
ry's origin, we lose this uniqueness. In differential geometry the point
where this happens is called a cut point. In P* we reach a cut point at
distance /2.

Theorem 11. Let P and Q be points with d(P, Q) < m/2. Then there is a
unique ray with origin P that contains Q. We denote this ray by PQ.

The definition of angle in elliptic geometry is the same as our previous
definitions. The radian measure of an angle X PQR is determined by
thoosing a representative for Q, choosing the representatives for P and R
dosest to Q, and computing the radian measure of the spherical angle so
determined.

The notion of half-plane does not occur in P2. One can, however, define
the interior of an angle.

A triangle in elliptic geometry is a figure of the form wA, where A is a
spherical triangle.

Theorem 12. If P, Q, and R are three noncollinear points of P2, there is a
riangle having P, Q, and R vertices. The triangle is the union of three
segments.

Remark: Our treatment of elliptic geometry has been brief. Most of the
questions we have studied in Euclidean and spherical geometry have
amalogues that can be studied in the elliptic setting. Some of these are
explored in the exercises.

EXERCISES

1. Find the distance d(P, Q), where P = (—=1,0,1)and Q = (1, 1,0) in
homogeneous coordinates with respect to {€;, €2, €3}.

2. i. Prove that every pair of distinct lines in P> has a common
perpendicular. Only a slight modification of your proof of
Theorem 4.10 is required.

ii. Find the common perpendicular to the lines x; + 2x, = 0 and
ZXZ - X3 = 0.

Elliptic geometry
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10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

i. Prove the projective version of Theorem 4.11 concerning erect-
ing and dropping perpendiculars.
ii. Is the foot of the perpendicular the point on ¢ closest to P?

Let A: R* — R? be linear. Then define Amx = wAx so that A maps

P?> — P2 Under what conditions on A will A be an isometry?
Illustrate using the matrix

1 1 0
0 01
1 -1 0

Prove Theorem 9 and its corollary.
Verify the remark following Theorem 9 (that the three reflections and
representation theorems hold in P?).

i. Given three nonconcurrent lines a, 8, and y, show how to finda
point P and a line € such that 0,00, = Q.Hp.

. If Q¢Hp = Q, Hp, what relationships must hold among ¢, », P,
and Q?

Let P and Q be distinct points. Find Z({P, Q}).

Under what conditions will two rotations about distinct points
commute?

Let P, Q, and R be mutually perpendicular points of §%. Show that
there are four isometries T of P? that leave wP, wQ, and =R fixed
(Hint: Choose an appropriate orthonormal basis and compute the
possible forms of the matrix of 7.)

Find the symmetry group of the figure in P> formed by two perpen-
dicular lines.

Suppose that an isometry T of P? has three concurrent fixed lines.
Show that T must be a half-turn.

Prove Donkin’s theorem: Let POR be a triangle. Let «, B, and y be
rotations (translations) that take P to Q, Q to R, and R to P.
respectively. Then yBa is the identity.

Prove Theorem 10.
Prove Theorem 11.

Let P and Q be points with d(P, Q) < 7/2. Prove that Fé N Q—i’ is the
segment with end points P and Q and length d(P, Q).

Prove that the notion of radian measure for angles in P? is well-
defined.

What happens to Theorem 4.41 in P2?

i. Propose a definition for the perpendicular bisector of a segment

in P2.




2.

4.

2.

ii. Define the midpoint of a segment in such a way that each
segment has a unique midpoint.

Prove that there are exactly two reflections that interchange a given
pair of lines in P2.

Let € be a line of P, and let P and Q be any points not on ¢. Show
that there is a segment joining P and Q that does not meet €. (This is
why we do not attempt to define the notion of half-plane in P2.)

Define the interior of an angle in P?. Does the crossbar theorem
hold?

Define the interior of a triangle in P?. Show that P? may be regarded
as the union of four equilateral triangles (and their interiors). Each
triangle should have three right angles.

Prove Theorem 12. Is the triangle unique?

Prove that if X is a point in the interior of a triangle A, there is a
segment containing X whose end points are on A.

Prove that the perpendicular bisectors of the three sides of a triangle
are concurrent. In light of Exercise 18, what further results can be
obtained?

Prove that the congruence theorems for spherical triangles are valid
in P? as well (Theorems 55-57 of Chapter 4).

i. Show that the finite groups of isometries of P> may be identified
with those listed in Theorem 4.58.

ii. For each such group find a figure in P? of which it is the symmetry
group.

Elliptic geometry
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The hyperbolic plane

Introduction

The projective plane provides one alternative to Euclidean geometry. A
second alternative is explored in this chapter.

The three geometries are contrasted in the following example: Take ¢
segment P, P, as shown in Figure 7.1. Erect equal segments P,Q, and P,(,
perpendicular to P,P;,.

In E? the segment Q, Q- will have length equal to that of P,P,. However,
in P2, the length of Q,Q, will be less than that of P,P,. In H? we shall sce
that Q,0, will be longer than P,P,.

This construction is also related to the question of parallelism. Let €, be
a line, and let P be a point not on €,. Drop a perpendicular PP, from P to
€o, and let € be the line through P perpendicular to PP, (See Figure 7.2.)

In E?, € will be parallel to €,. In P, € will meet €,. In H? it will turn out
that € does not meet ¢,.

We will now proceed to construct the geometry H. It will again consist
of “points” and “lines™ with a “distance” function defined for each pair of
points. As in the case of E* and P2, we find that isometries of H? are
generated by reflections and satisfy the three reflections theorems.

Algebraic preliminaries

Our model of spherical geometry was a certain subset of R*, and the usual
inner product of R? played an important role. Our model of hyperbolic
geometry will also be a subset of R*. However, the bilinear form on which
hyperbolic geometry is based is defined by

b(x, y) = xiy, + x295 — x3y3

(see also Chapter 6). A function of this type is used in Einstein’s special
theory of relativity. (See Frankel [15] or Taylor—Wheeler [29].) This
explains some of the terms used in discussing its properties.




Definition. A nonzero vector v € R is said to be

i. spacelike if b(v, v) > 0. If b(v, v) = 1, it is a unit spacelike vector. An
example is €,.

i. timelike if b(v, v) < 0. If b(v, v) = —1, it is a unit timelike vector. An
example is €5.

ii. lightlike if b(v, v) = 0. An example is €, — €3.

We use the notation |v| for the “length” of a vector v (i.e., [v| =
b(v, v)]?). Unit vectors satisfy |v| = 1.

In this chapter we use the term “orthonormal” to mean orthonormal
with respect to b. Note that {e,, €5, €3} is orthonormal.

Theorem 1.

i. Every orthonormal set of three vectors is a basis for R

i. Every orthonormal basis has two spacelike vectors and one timelike
vector.

ii. For every orthonormal pair {u, v} of vectors, {u, v, u X v} is an
orthonormal basis. (The cross product is taken with respect to b.)

iv. For every unit spacelike or unit timelike vector v, there is an orthonor-
mal basis containing v.

Proof:
i. We need only show that an orthonormal set is linearly independent. If
an equation of the form

0= Ne; + her + Ases
holds, where {e,, e, €3} is orthonormal, then for each i,
0= b(O, e,') = Aib(e,‘, e,')

implies that A; = 0.
ii. First note that all three vectors cannot be spacelike. In fact, if all
b(e;, €;) are equal and

3
x = Y xe;,
i=1
we have

3
E Xlzb(eiv ei)'

i=1

b(x, x)

This would imply that all vectors are spacelike. Similarly, if all the ¢;
were timelike, every vector in R? would be timelike. We conclude that
any orthonormal basis has at least one spacelike vector and one
timelike vector.

Let {e,, e, €3} be an orthonormal basis. Suppose that ¢, is spacelike
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and ej is timelike. Then (e; X e3) X e, = 0, so that e, is a multiple of
e, X e3. Further,

bley X e3, e; X e3) = —b(ey, €,) b(es, €3) = 1,
so that e, X e3 (and hence e,) is spacelike.
iii. We note that
b(u X v, u X v) = —b(u, u) b(v, v) = *1,

and, hence, {u, v, u X v} is orthonormal.

iv. Suppose that v is spacelike. Let w be any unit timelike vector (e.g.,
g3 = (0,0, 1)). If b(v, w) = 0, we can use {v, w, v X w} as our basis.
If not, choose & = v + Aw, where A = —1/b(v, w). Then

b(a, i) = 1 + 2Ab(v, w) — A?
=1-2-2=—-(1+\).

If we set

v+ Aw
VI + A7

then {u, v, u X v} is an orthonormal basis.
Suppose now that v is timelike. A similar construction, using a unit
spacelike vector w, leads to an orthonormal basis {u, v, u x v}, where

u=(v+aw)/\V/1+ A\ and\ = 1/b(v, w). O

Theorem 2.
i. Forany x € R?,

-

x = ), b(x, e)b(e;, ¢)e; (7.1)
i=1

if {ey, ey, e3} is an orthonormal basis.
ii. Let v be a timelike vector. Suppose that w X v # 0 and b(v, w) = 0.
Then w is spacelike.

The Cauchy—-Schwarz inequality played an important role in E? and §°.
Here is the hyperbolic version.

Theorem 3. Let £ and n be spacelike vectors in R® such that EXmis
timelike. Then

b(&, m)* < b(&, £)b(n, ). (72)

Proof: Let P be a unit timelike vector in the direction [€ X m]. As in the
proof of Theorem 1.4, we consider the function

fl) = b(E + m, § + ).




Because b(¢ + m, P) = 0 for all real values of t and P X (§ + m) # 0,
Theorem 2 applies, and £ + m is spacelike. In other words, f(r) > 0 for all ¢
and

b(g, m)* < b(&, £)b(n, m). O

Remark: If we weaken the hypothesis to b(§ X m, £ X m) =< 0, the
tonclusion becomes

b(E, m)* < b(E, £)b(n, m).

However, equality can occur even if £ and m are not proportional. (See
Exercise 2.)

There is a similar result for timelike vectors.

Theorem 4. Let v and w be timelike vectors. Then

Bv, w)? = b(v, v)b(w, w). (7.3)

Proof: By Theorem 2, v X w is spacelike or zero. Thus
blv X w,vXx w)=0.
In other words,
b(v, v)b(w, w) — b(v, w)* < 0

with equality holding if and only if vand w are proportional. O

Corollary. If v and w are unit timelike vectors, then |b(v, w)| = 1. The
“inner product’” b(v, w) is positive if and only if b(v, €3) and b(w, €3) have
opposite signs.

Proof: The first statement is immediate from the theorem. To prove the
second, we introduce the following notation. Let v = (py, p2, r) and
¥ = (q1, g2, 5). Consider p = (py, p2) and g = (q;, g2) as vectors in R%.
Then

b(v, w) = (p, q) — rs.
Because (|p| + |g|)> = 0 with equality if and only if p = g = 0, we have
lp* + lg* = —2|pllql.
Adding 1 + |p|*|gq|? to each side yields
1+ [pPA + |gP) = (pllgl — D™
But |p|> — r?> = —1 and |g]* — s* = —1, so that
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(Ipllgl = 1)* < s (74

Suppose now that r and s are both positive but b(v, w) is also positive. Then

(P, @) = 1 + rs; that is, (p, g¢) — 1 = rs. By the Cauchy—Schwar
inequality for R?, we get

lpligl = 1 = rs,

which is incompatible with (7.4). We conclude that b(v, w) must be
negative when r and s are positive. The conclusion now follows from the
linearity of the function b. O

Incidence geometry of H>

The hyperbolic plane H? is defined as follows:
H? = {x eR%x;> 0 and b(x, x) = —1).

Thus, as a set, H? is just the upper half of a hyperboloid of two sheets.

Definition. Ler £ be a unit spacelike vector. Then
€ = {x € Hb(¢, x) = 0)

is called the line with unit normal (or pole) &.

Remark: Like the situation in spherical geometry, a line of H? is the
intersection with H? of a plane through the origin of R®. Not all planes
through the origin meet H>. However, if £ is timelike, it can be completed
to a basis orthonormal with respect to b (Theorem 1). In particular, there
are points x € H? such that b(, x) = 0. We will now proceed to a detailed
study of lines in hyperbolic geometry.

Theorem 5. Let P and Q be distinct points of H*. Then there is a unique
line containing P and Q, which we denote by PQ.

Proof:  Apply Theorem 2(ii) withv= Pand w = P x Q. The triple product
formula shows that P x (P x Q) # 0 and, hence, that P x Q is spacelike.
Let £ be a unit vector in the direction [P x Q). Then the line whose unit
normal is § must pass through P and Q. This is the only line through P and
Q because the unit normal to any such line must be orthogonal to P and (
(with respect to b) and, hence, must be a multiple of P x Q. O

Just as in spherical geometry, the cross product is used to find the point
of intersection of a pair of lines. However, if £ and m are spacelike unit
vectors, € X m need not be timelike, and therefore the lines may not
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intersect in HZ. In fact, all three possibilities for £ X m can occur. This is
what makes H? a richer incidence geometry than any we have studied
previously.

Definition. Let € and » be two lines with respective unit normals £ and .
We say that € and » are

i. intersecting lines if £ X m is timelike,

ii. parallel lines if & X m is lightlike,

ii. ultraparallel lines if & X m is spacelike.

Theorem 6. Intersecting lines have exactly one point in common. This
point is the unique point of H? that is a multiple of £ X .

Proof: Clearly, the point in question lies on both lines. If P is any other
point that lies on both lines, then

P x (§ x m) = —b(P, m)§ + b(P, &n = 0,
so that P is a multiple of £ X m as required. O

Remark: Neither parallel nor ultraparallel lines intersect.

[ Perpendicular lines

Definition. Two lines with unit normals & and v are said to be perpendicu-
lar if b(§, m) = 0.

Theorem 7. If two lines are ultraparallel, there is a unique line vy that is
perpendicular to both of them. Conversely, if two lines have a common
perpendicular, they must be ultraparallel.

Proof: Let & and m be unit normals of two ultraparallel lines. Let {
be the unit (spacelike) vector that is a multiple of £ X m. Then b(§, {) =
b(w, {) = 0, so the line with unit normal { is a common perpendicular to the
two lines.

Conversely, if the two lines have a common perpendicular, its unit
normal { is a spacelike vector satisfying { X (§ X m) = 0 and, thus, is a
multiple of £ X m. This means that £ X m is spacelike, and the lines are
ultraparallel. O

Theorem 8.

i. If € and m are perpendicular lines of H?, then € intersects m.

ii. Let X be a point of H and € a line of H>. Then there is a unique line
through X perpendicular to €.

Perpendicular lines
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Proof:

i. Let £ and m be unit normals to ¢ and , respectively. Then
{€. m, £ X m} is an orthonormal basis by Theorem 1. Hence, £ X qis
timelike.

ii. Let & be a unit normal to €. Let m be a unit vector proportional t
€ X X. This is possible because £ X X, being a nonzero vector
orthogonal to X, must be spacelike.

The line »= whose unit normal is m clearly passes through X but is
perpendicular to €. There is only one line with this property, because:
unit normal to such a line must be orthogonal to & and X and,
therefore, a multiple of their cross product. C

Definition. The point F where » intersects € is called the foot of the
perpendicular from X to € (provided X is not on €).

Remark: In the next section we define distance between two points of H.
As in E? we can use this to define

d(X, ¢) = d(X, F),

where F is the foot of the perpendicular from X to €.

Pencils

Definition. Let ¢ and m be a pair of distinct lines with respective uni
normals & and w. Then the set ? of lines whose unit normals L are
orthogonal to & X m is called a pencil of lines. 2 is called a pencil of
intersecting lines, a pencil of parallels, or a pencil of ultraparallels according
to whether & X v is timelike, lightlike, or spacelike.

Remark: At the moment this definition may look somewhat strange.
Clearly, if £ X m is timelike, then lines with unit normal { will be the lines
passing through the point of intersection, as expected. If £ X ) is spacelike,
the pencil will consist of all lines perpendicular to a certain line. However,
it is not yet evident what the pencil looks like when { X m is lightlike. When
we look at H? as a subset of P2, we will get a more concrete interpretation
for £ X m and the associated pencils.

Remark:

i. The set of all lines of H? perpendicular to a certain line of H? is a pencil
of ultraparallels.

ii. Any two lines of H? determine a unique pencil.




Distance in H>

We parametrize lines of H> much as we did in §%. Let e; be an arbitrary
point of H?. Let e, and e, be vectors of R? such that {e;, e,, €3} is an
orthonormal basis.

A typical point on the plane through the origin spanned by {e;, e} is
\e; + pe,. This point is on H? if and only if A > 0 and

b(es + pey, Ae3 + pey) = —1;
that is,
A2 =1+ p2

Using Theorem 3F, we may call A\ = cosh ¢ and p = sinh . Then as ¢
ranges through all real numbers, (cosh f)e; + (sinh f)e; runs through all the
points of the line. We define distance in such a way that t measures distance
dong the line.

Definition. For x, y in H? define
d(x, y) = cosh™'(=b(x, y)).

Remark: This definition is possible because b(x, y) < —1, as was shown in
the corollary to Theorem 4.

Theorem 9. Let a(t) = (cosh t)es + (sinh r)e,. Then
d(a(ty), a(t)) = |ty — B
Proof: Exercise 6. O

Definition. If t; < t < t,, then a(t) is between a(ty) and a(ty).

Now that we have defined distance between two points in the hyperbolic
plane, it is necessary to determine which of the properties of Euclidean
distance carry over to the hyperbolic case. The following is immediate from
the definition.

Theorem 10. If P and Q are points of H?, then
i. d(P,Q)=0.

i. d(P, Q) =0ifandonlyifP = Q.

ii. d(P, Q) = d(Q, P).

We now address ourselves to the triangle inequality. Our proof of the
iriangle inequality in the spherical case relied on the cross product
operation of E*. Here we use the hyperbolic cross product.

Distance in H?
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Theorem 11 (Triangle inequality). Let P, Q, and R be points of H>. Then
d(P, Q) + d(P, R) = d(Q, R) with equality if and only if P, Q, R are
collinear and P lies between Q and R.

Proof: 1f P, Q, and R are not collinear, then P X Q and R x Q will not be
proportional. Thus, (P X Q) X (R x Q) = b(P x Q, R)Q is timelike. We
may apply the hyperbolic Cauchy—Schwarz inequality (Theorem 3) to gel

b(Px Q,Rx QP <bPxQ,Px QbR xQ,Rx Q). (15
But
b(P x Q,R x Q) =b((P x Q) XR, Q)

= —b(P, R)b(Q, Q) + b(Q. R)b(P, Q)
= b(P, R) + b(Q, R)b(P, Q)

because b(Q, Q) = —1. Let d(Q, R) = p, d(P, R) = q, d(P, Q) = r.
Then
cosh p = —=b(Q, R), cosh r = =b(Q, P), cosh g = —b(P, R).
Thus,
b(P x Q, R X Q) = cosh p cosh r — cosh q.
Also

b(P x Q, P x Q) = —b(P, P)b(Q, Q) + b(R, Q)

= —1 + cosh? r = sinh? r.
and, similarly, b(R X Q, R x Q) = sinh? p. Equation (7.5) now becomes
(cosh p cosh r — cosh g)* < sinh® r sinh? p.
Hence,
cosh p cosh r — cosh ¢ < sinh r sinh p,
cosh ¢ = cosh(p — r),
q=p-r,
p<gq+r.

This is what we wanted to prove. Now if p = g + r, we have equality in
(7.5). From Theorem 3 this means that (P X Q) X (R x Q) is not timelike,
and, hence, b(P X Q, R) = 0; that is, R lies on PQ. The fact that P lies

between Q and R can be deduced easily from Theorem 9 and is left as an
exercise (Exercise 7). O

Remark: The properties of the hyperbolic functions used in this section
may be found in Appendix F.
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lsometries of H?

Amap T: H> — H? is called an isometry if for all X and Y in H?,
d(TX, TY) = d(X, Y).
As in the case of E?, §?, and P?, isometries preserve collinearity.

Specifically, we have the following.

Theorem 12. Let T be an isometry of HZ2. Then three distinct points P, Q,
ad R of H? are collinear if and only if TP, TQ, and TR are collinear.

Proof: Exercise 8. O

Reflections

Let « be a line of H? with unit normal £. For x € R? let

Q.x = x — 2b(x, &)E.

Theorem 13.

i 02 =1

i. Q. is a bijection of R® onto R>.

i. b(Qux, Q.Y) = b(x, y) for all x, y € R®.

Proof:
1. 0.0

Qox — 2b(Qex, E)E
x — 2b(x, £)€ — 2b(x, E)€ + 4b(x, E)b(E, £)
= x.

ii. Follows easily from (i).
iii. b(Qex, Qoy) = blx — 2b(x, E)E, y — 2b(y, £)E)
= b(x, y) — 2b(x, g)b(gv Y) — 2b(y, &)b(x, £)

+ 4b(x, §)b(y, £)b(E, §)
= b(x,y). a

Corollary. For any line o« of H* and x € R, we have the following:
i. If x is timelike, so is Q.x.

ii. If x is lightlike, so is Q.x.

ii. If x is spacelike, so is {).x.

v. If x is a unit vector, 5o is §).x.

v. If x € H?, 50 is Q.x.

Definition. Given a line a of H?, the restriction of Q, to W is called the
reflection in .

Reflections
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Theorem 14.  Every reflection is an isometry of H>.

Proof: For X, Y € H?,

d(Q.X, Q.Y) = cosh™! (=b(Q.X, O.Y))
cosh™'(=b(X, Y)) = d(X, Y). o

Theorem 15. Let B be a line of H? with unit normal v. Then
QB = {Xe Hb(X, Q) = 0};

that is, if B has unit normal v, then QB is a line with unit normal Q..

Proof: Let Y € €,B. Then for some X € B, Y = Q_X and
b(Y, Q.m) = b(QeX, Q) = b(X, M) = 0.

Conversely, if b(X, Qm) = 0, then b(Q, X, m) = b(Q.Q.X, Q) = 0.1In
other words, ,X € B and X € 8. O

Theorem 16.
i. Let x be a point of H>. Then Q.x = x if and only if x € a.
ii. Let B be aline of H. Then Q,B = B if and only if « = B or o L .

Proof:

i. x — 2b(x, £)¢ = x if and only if b(x, £) = 0.

ii. LetB = {x e Hb(x,n) =0}, where b(n,n) = 1. Then QB = B if and
only if m — 2b(w, £)§ = +v. This holds if and only if b(y, £ =0
or § = £m. The former means that « L B, and the latter means that
a=B. 0

Motions

As before, an isometry that is a product of reflections is called a motion. In
addition to reflections we distinguish four special kinds of motions.

Let « and B be lines of H2. If « and B intersect in a point P of H?, then
Q.Qg is called a rotation about P.

If a and B are parallel, then Qg is called a parallel displacement. If «
and B are ultraparallel with common perpendicular €, then Q.0 iscalleda
translation along €.

A glide reflection in H” is the product of reflection in a line € with a
translation along €. The line € is called the axis of the glide reflection.

Rotations

Let P be an arbitrary point of H2. The set of rotations about P is denoted
by ROT(P). We construct matrices representing each element of ROT(P)




and prove that ROT(P) is a group isomorphic to SO(2).
Choose an orthonormal basis {e,, €5, e;} so that e; = P. If a is a line
through P, we can write

where

Then

o« = {xlb(x, &) = 0},
= (—sin 0)e; + (cos 0)e,.
Q.e; = e; — 2(—sin 8)E = (cos 20)e; + (sin 20)e,,

Q.e; = e; — (2 cos B)E = (sin 20)e, — (cos 20)e;,

Qe = e;.

Thus, the matrix of (), with respect to {e;, e, e;} is

cos 26 sin 20 0 ref 0 0
sin20 —cos20 0| = . 0
0 0 1 0 0 1

Now, if B is another line through P with pole

M = (—sin d)e; + (cos d)ey,

then 2,()g takes a similar form with 6 replaced by ¢. By the calculations of
Chapter 1, the matrix of (g is

cos 2(6 — ) —sin2(6 — ) O 0
sin2(0 — ¢) cos2(6 — &) 0] - [m‘ 28 = ) o].

0 0 1 0 0 1

The function €}, — ref 6 determines an isomorphism of REF(P) (the
group generated by reflections of H? in lines through P) onto O(2). Under
this isomorphism ROT(P) goes into SO(2). Recalling the formulas of
Chapter 1 (Theorems 33 and 34), we conclude the following:

Theorem 17 (Three reflections theorem). Let «, B, and vy be lines through P
in H2. Then there is a fourth line & through P such that

Qnﬂaﬂy — Qa.

The related representation theorem for rotations holds.

Theorem 18. Let p be a rotation about P. Let € be a line through P. Then
there exist lines » and ' through P such that

p:= Q(‘lﬂ = Q.’Q(.

Rotations
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Figure 7.3 The Klein model. N D?
represents a line of the hyperbolic plane.

Figure 7.4 Intersecting lines.

Figure 7.5 Parallel lines.
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H’ as a subset of P’

As well as being an interesting subject of study in its own right, the
projective plane provides a framework in which other geometries can be
embedded, often allowing an approach that facilitates both computation
and understanding. In Chapter 5 we saw that it was possible to regard the
incidence geometry of E? as a subgeometry of P

We now show that the hyperbolic plane can also be regarded as a
subgeometry of P2. Let D? be the subset of P? determined by the condition
b(x, x) < 0. This set of points may be regarded as the interior of the conic
b(x, x) = 0. We will call the remaining points of P? (those with b(x, x) > ()
exterior points.

Theorem 19.
i. The usual projection w: R® — {0} — P?> maps H* bijectively to D.
ii. For each point X of P* exterior to D?, there is a unique pair {&, —&} of
unit spacelike vectors such that w§ = w(—&) = X. Conversely, each unil
spacelike vector determines such an exterior point.
iii. A vector v e R? is lightlike if and only if wv lies on the conic.

For most purposes we can look at D as the unit disk x] + x3 < 1 in the
plane x3 = 1 of E* and work in this model of E? rather than in P>. We use
the correspondence defined in Chapter 5, which relates E> and P? — €. In
terms of homogeneous coordinates, €., is the line x; = 0.

Theorem 20. [n terms of the model described in Theorem 19, if € is a line of
H? then =€ is a chord of the disk D*. The end points of the chord are, of
course, not included in D* nor in wl. (See Figure 7.3.)

Remark: 1f ¢ is a line of H?, then ¢ is contained in a unique line € of P*.
On the other hand, not all lines of P> determine lines of H?; only those thal
are secants of the conic.

Theorem 21. Let {, and ¢, be lines of H>. Then
i. €, and €, are intersecting lines if and only if €, and €, intersect in .
(See Figure 7.4.)
ii. €, and ¢, are parallel if and only if €, and €, intersect at a point on the
boundary of D?. (See Figure 7.5.)
iii. €, and ¢, are ultraparallel if and only if €, and €, intersect at a poin
exterior to D?. (See Figure 7.6.)

Theorem 22. Two lines €, and €, are perpendicular if and only if €, andi,
are conjugate.
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Theorem 23. Let € be a line of H2. Let P and Q be points of P* where ¢
meets the conic. Then the pole of € is the intersection R of the respective
tangents through P and Q.

Corollary. A line m of _H2 is perpendicular to € if and only if s passes
through R, the pole of €. Figure 7.7 illustrates this and the previous two
theorems.

Theorem 24. Each point of P> determines a unique pencil of H? as follows:

i. Each point wx = P of D? determines the pencil of intersecting lines
through x € H>.

i. Each point mv = P (where v is lightlike) determines a pencil of
parallels.

i. Each point wé& = P (where & is a unit spacelike vector) determines a
pencil of ultraparallels. The common perpendicular to this pencil
corresponds to the polar line of P.

In each case the pencil consists of all lines € of H? such that ¢ passes
through the designated point P of P*.

Remark: The pictures in Figures 7.8-7.10 give an intuitive idea of these
relationships.

The discussion of this section should provide a motivation for some of
the constructions we have been making in hyperbolic geometry. The
incidence geometry of D? is precisely that of H2, and this model of H? is
alled the Klein model. Unfortunately, the Klein model does not represent
sither distance or angle faithfully, so it is unwise to rely too heavily on it.
For example, a line is infinitely long, although it is represented in D’by a
(finite) chord.

Parallel displacements

Let 2 be a pencil of parallels determined by two lines with unit normals
¢ and m. Choose an orthonormal basis by setting e¢; = §, e3 € H?, and
e, = e3 X e;. If we write

N= )\el + Her + ves, with A\ = 0,

the conditions that b(n, ) = 1 and that £ X m is lightlike give p = *v and
A = 1. Hence,

M =-¢e + ple; = e3).

Parallel displacements

"/
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N /
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Figure 7.6 Ultraparallel lines.
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Figure 7.7 Two perpendicular lines, €
and .

Figure 7.8 A pencil of intersecting lines.
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Figure 7.9 A pencil of parallels.

\

Figure 7.10 A pencil of ultraparallels.

Figure 7.11 Two lines of a parallel
pencil.
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Theorem 25. In terms of the basis just described, suppose that 2 contains
lines with unit normals (1, 0, 0) and (1, pn, —) for some real number .
Then 2 consists precisely of those lines with unit normals of the form
(1, r, —r), where r ranges through the real numbers.

Proof: First note that
EXm=pler X e;— e Xe3) = —pule; — e),
so that £ X m is lightlike. Furthermore, if { = ¢, + r(e; — e3), then
b(L, € x m) = prb(e; — e3, e, — e3) = 0.

Conversely, if { is a unit spacelike vector orthogonal to £ X 7, it is easy to
check that = must be of the form (1, r, —r). O

Remark: The projective model of H? provides some insight into what is
going on here. The self-conjugate point P of P? through which all lines of
the pencil pass is (0, 1, —1). A typical line of the pencil has its pole on the
tangent to the conic at P. (See Figure 7.11.)

Note that a line of H? belongs to two distinct pencils. In our example
there is a second pencil through Q = (0, 1, 1). The same basis may be used,
but in this case the unit normals of lines of the pencil are (1, r, r).

We have shown that a pencil of parallels is parametrized by the set of
real numbers. Let o be a line of the pencil with pole (1, r, —r) in
homogeneous coordinates. Then

N.e, = e, — 2b(E, e))E = —e; — 2re; + 2re;,

Ooe; = e; — 2r(e; + re; — re3) = —2re; + (1 — 2r¥)e, + 2r%e;,

Noes = e3 — 2r(e; + re; — res) = —2re; — 2r’e; + (1 + 2r%)e;.
The matrix of € is

-1 =2r =2r
-2r 1 =22 =272 |. (7.6)
2r 292 1 + 2r2

If B is a second line of this pencil, a calculation shows that

1 2h 2h
Q0 =|-20n 1 -2 =20 | =D, (7.7)
2h 2% 1+ 2K

where B has pole (1, s, —s) and h = s — r. Thus, the parallel displacement
Q.0 is represented with respect to this basis by the matrix D,, of (7.7).
One can check that for real numbers h and k,

DDy = Dpy.




Theorem 26 (Three reflections theorem). Let «, B, and ~y be lines in a pencil
of parallels. Then there is a fourth line § in the pencil such that

Qaﬂﬂny = Qa.
Proof: With respect to an appropriate basis of R?, there exist real numbers

1,5, and ¢ representing «, B, and vy in the sense that (1, r, —r) is a unit
normal to a, and so forth. Now

Q.00 = Qy iff Q0 = 0. Q4;
that is,
Dl—s = Du—n

where u is the real number representing 3. If we choose u = r + t — s, this
last equation becomes true. Hence, the theorem is true, and the pole of the
required line d is represented by

ey + (r +t — s)(ex — e3). 0O
A representation theorem for parallel displacements holds also.
Theorem 27. Let p be a parallel displacement arising from a pencil 2. Let €

be a line of 2. Then there are lines s and »»' in P such that

p = QL,, = 0,
Proof: Exercise 18. O

Let REF(2) be the group generated by all reflections in lines of the
pencil 2. Let DIS(2) be the set of all parallel displacements determined
by the pencil 2. In Exercise 19 you will show that DIS(2) is a group and
investigate its algebraic properties.

Translations

Let 2 be an ultraparallel pencil with common perpendicular €. Let e, be a
unit normal of €. Choose e, and e; spacelike and timelike, respectively, so
that {e,, e, e3} is an orthonormal basis.

Let « be an arbitrary line of the pencil. Its unit normal can be written

& = (cosh u)e; + (sinh u)es.
Then
Quel

e, — 2b(ey, £)E = ey,

Q.e; = e; — (2 cosh u)((cosh u)e, + (sinh u)es)
= —(cosh 2u)e, — (sinh 2u)es,

Translations
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Qqe3 = (sinh 2u)e, + (cosh 2u)es.
1 0 0
Q. =10 —cosh2u sinh 2u |. (7.8)

0 —sinh 2u cosh 2u

If B is a second line of the pencil whose pole is parametrized by v, then

1 0 0
Q.0 = | 0 cosh 2k sinh 2k |, (7.9
0 sinh 2k cosh 2k
where k = u — v.
Denote this last matrix by 7. Then one can easily verify that

TiT = Teem:
Theorem 28 (Three reflections theorem). Ler o, B, and vy be lines of a pencil
of ultraparallels. Then there is a line § in the pencil such that

Q.050, = Q.
Proof: Exercise 21. O

Theorem 29 (Representation of translations). Let p be a translation alonga
line €. Let » be any line perpendicular to €. Then there exist lines o« and o'
perpendicular to € such that

Let # be a pencil of ultraparallels, and let € be the common perpendicu-
lar. The group generated by all reflections in lines of 2 is denoted by
REF(Z). Let TRANS(¢) be the set of translations along €. Properties of
TRANS(€) will be left to the exercises (Exercise 22).

Glide reflections

With respect to the basis used in the previous section, we construct the
matrix of the glide reflection ;7. One can easily check that

Q(C’] = =01 Q(Cz = €2, Q('eg = €3.
Thus,
-1 0 0
QT = 0 cosh 2k sinh 2k |. (7.10)

0 sinh 2k cosh 2k




Products of more than three reflections

In each of the geometries studied so far, any motion can be realized as the
product of two or three reflections. The same is true in H’. However, the
incidence structure of H? is more complicated. More cases must be
considered in the proof.

Our approach is to show that any product 2,3 Q5 of four reflections
can be reduced to a product of two reflections (as in Theorem 1.36). As a
first observation, if the pencil determined by « and  has a line in common
with the pencil determined by vy and 3, our representation theorems may be
applied to rewrite our product of four reflections in such a way that the
second and third reflections are the same.

We begin with

Theorem 30. Let P be a point of H?, and let 2 be a pencil. Then there is a
line through P belonging to the pencil ?. Except in the case of the
pencil of all lines through P, this line is unique.

Proof: If 2 is a pencil of intersecting lines or a pencil of ultraparallels, the
conclusion is given by Theorem 4 and Theorem 8, part (ii), respectively.
Now let 2 be a pencil of parallels determined by lines with unit normal §
and 1. Then & X m is lightlike, and P X (§ X m) is nonzero. By Theorem 2,
part (ii), P X (& X m) is spacelike. The line whose unit normal is in this
direction belongs to 2 and passes through P and is the only line satisfying
these conditions. a

Theorem 31. Let 2, be a pencil of parallels. Let 7, be the pencil con-
sisting of all lines perpendicular to a line y. If y ¢ 2y, there is a unique
line belonging to both pencils.

Proof: Choose an orthonormal basis as follows. Let e, be a unit normal to
y. Let w be a lightlike vector such that the unit normals £ to lines of 2, are
precisely those unit spacelike vectors satisfying b(§, w) = 0. See Figure
1.12.

We wish to choose e; € H? so that it lies in [w, e,]. To do this, note that
b(w X e, w X €) = b(w, €)* > 0

because y ¢ #2,. Choose e, to be a unit vector in the direction [w X e,], and
e;=e; X e,. There are two choices for e;, but only one that will ensure
that e lies in H>.

Now that we have this basis, it is easy to see that the line with unit
normal e, is the unique line belonging to both pencils. O

Products of more than
three reflections

Figure 7.12 Construction of a line
common to a parallel pencil and an
ultraparallel pencil.
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Figure 7.13 Theorem 7. Two ultra-

parallel pencils with a common line .

168

Remark: If the two pencils are related in such a way thaty € #,. then they
can have no line in common. (See Exercise 33.)

Theorem 32. Two distinct pencils of parallels have a unique line in
common.

Proof: Let vand w be lightlike vectors determining distinct pencils. Then
Theorem 5.26 gives

b(v X w, v X w) = b(v, w)?,

which is positive (Exercise 34). The line whose unit normal is a multiple of
v X w is the unique line common to both pencils. O

Remark: Two ultraparallel pencils have a line in common if and only if the
common perpendiculars to the two pencils are themselves ultraparallel.
See Figure 7.13 and Theorem 7. Thus, we have completed our analysis of
the question of when two pencils have a line in common. We now have
enough ammunition to attempt the task set out at the beginning of this
section.

Theorem 33. Let a, B, v, and & be lines. Then there exist lines u and v such
that

0.0:0,0; = 0,0,

Proof: 1f a = B ory = d, there is nothing to prove. Assume that a and §
determine a pencil 2,, whereas y and 3 determine a pencil #,. As
remarked at the beginning of this section, the result clearly holds if 2, and

2, have a line in common. In view of Theorems 30-32, we have still to

consider the following cases:

1. a and B have y as a common perpendicular, and & is parallel to y. In
this case ()3 commutes with €),, and Theorem 30 applies.

2. o« and B have a common perpendicular ¢, y and & have a common
perpendicular », and € intersects ». in a point P. Using Theorem 29,
we may replace the given representation by €1,.Q3.Q..€);., where §'
and vy’ pass through P. Then {23.€),- may be replaced by £2,£), for some
line » through P. Because o' is perpendicular to ¢. Theorem 30 now
applies.

3. « and B have a common perpendicular ¢, y and & have a common
perpendicular 4, but € is parallel to ».. In this case we let Q be the
point where ., intersects y, and we let B’ be the line through @
perpendicular to €. Then the motion can be written £,(g.Q. € for
some line a' L €. As in case (2) we may now write

00, = 0,0,

for some line ». Again apply Theorem 30. O




Remark: Because
(Qanenyﬂs)_l = QBQYQBQ(IY

the foregoing set of cases is exhaustive. For example, it is not necessary to
consider the case where a and B are parallel while y and 8 have a common
perpendicular.

Theorem 34. Let «, B, and vy be lines not belonging to any pencil. Then
0060, is a nontrivial glide reflection.

The proof of Theorem 34 uses techniques similar to those we have been
using in Theorem 33. It is left as an exercise (Exercise 35).
We can now assert the following classification of motions of H>.

Theorem 35. The group of motions of H? consists of all reflections,
rotations, translations, parallel displacements, and glide reflections. Every
motion is the product of two or three suitably chosen reflections.

Fixed points of isometries

Consider the isometry p = 0,03. Fixed points of p are found by solving for
X € H? the equation pX = X; that is, Q,X = QzX. Any solution must
atisfy b(X, £) = b(X, n)n. If b(X, £) = b(X, n) = 0, then X is a multiple
of § X m. This means that X is the point of intersection of a and 8 in H2. On
the other hand, if b(X, £) # 0 or b(X, n) # 0, £ must be a multiple of , and
50« = B. Thus, we can state

Theorem 36.

i. A nontrivial translation has no fixed points.

ii. A nontrivial rotation has exactly one fixed point, the center of rotation.
ii. A nontrivial parallel displacement has no fixed points.

V. A reflection has a line of fixed points, the axis of reflection.

v. A nontrivial glide reflection has no fixed points.

This result may be compared with the Euclidean analogue, Theorem
1.39. For the proof see Exercise 37.

Fixed lines of isometries

If Q is a reflection whose axis has unit normal &, then Q, will leave fixed
the lines whose unit normals { satisfy Q. = +{; that is, { must be
orthogonal to £ or { = *&.

Suppose now that « and B are lines with respective unit normals £

Fixed lines of isometries
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and m. Then p = Q.0 has a fixed line with unit normal £ if and only if
Q.0 = *Qgl. The condition Q,{ = —Qg{ is satisfied only if { =
b(Z, €)€ + b(L, m)n. But this implies that

b(L, €) = b(L, &)b(E, &) + b(L, m)b(x, &)

and

b(L, m) = b(L, €)b(L, m) + b(L, m)b(n, n).

These equations in turn give

b(L, m)b(x, &) = b(L, E)b(n. §) = 0.

Thus, either a L B or b(L, m) = b(L, &) = 0, which would imply { = 0, an
impossibility.

We conclude that Q. = —Qg{ if and only if « L B and { is in the span of
€ and m. This means that p is a half-turn, and the fixed line passes through
its center.

We now search for { with b(Z, {) = 1 and QL = Qg. Then b(L, £)E =
b(Z, m)m. If a # B, this implies that b({, &) = b({, ) = 0. Thus, the line of
H? with unit normal { is a common perpendicular of a and B.

Summarizing our results concerning isometries that are the product of
two reflections, we have

Theorem 37. Let o and B be distinct lines of H>. The isometry Q,Qg has the

following fixed line behavior.

i. If aand B intersect at P and a L B, every line through P is fixed. In this

case, 0, is the half-turn about P.

ii. If aand B intersect at P and a is not perpendicular to B, Q,Qg has no
fixed lines.

iii. If « and B are parallel, Q,Qg has no fixed lines. Thus, parallel
displacements have no fixed lines.

iv. If a and B have a common perpendicular €, then ,Qyg leaves € fixed
but has no other fixed lines.

Theorem 38. Let vy be a line perpendicular to two distinct lines o and p.
Then the nontrivial glide reflection 0,00, has v as its only fixed line.

Proof: 'We must determine the unit spacelike vectors { satisfying

Qul = Q0.1

A calculation similar to that used in Theorem 37 shows that the positive
sign cannot occur. With the negative sign { must be a unit normal to the
line y. The details are left to Exercise 38. O
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Segments, rays, angles, and triangles

Let P be a point. As we know, a line through P can be parametrized by
a(f) = (cosh f)P + (sinh 1)

for a suitable unit spacelike vector &. A set of the form a([0, L]), L > 0, is
called a segment of length L. The points «(0) and «(L) are called end
points. The point M = «(L/2) is the midpoint, and the usual definition of
perpendicular bisector holds. The set ([0, «)) is called a ray. The point
a(0) is called the origin of the ray. It is a not-quite-obvious fact that these
definitions have all the properties we should expect.

Theorem 39.

i. Two distinct points A and B are the end points of exactly one segment,
which we denote by AB or, equivalently, BA. The length of AB is
d(A, B).

i. Each ray has exactly one origin. For each pair of points A and B, there
is exactly one ray with origin A that passes through B. We denote this

ray by AB.

Definition. The unit spacelike vector & occurring in the definition of o is
called the direction vector of the ray a([0, *)). Note that b(P, &) = 0.

Remark: Each ray has a unique direction vector. Taking our inspiration
from the projective model of H?, we may think of & as a point “past
infinity”” toward which the ray is heading.

Angles and triangles are defined as in E? along with the associated terms
(straight angles, opposite rays, etc.). The radian measure of an angle is
cos~! b(£, M), where £ and m are the direction vectors of the rays making up
the angle. In Exercise 41 you will be asked to check that this is equivalent
to

& QOQxP QXR
£ lb(lePI’IQxRI)

for the angle X PQR. Note that Q X P and Q X R are spacelike vectors.

Definition. A half-plane bounded by a line € is a set of the form
{x € H|b(g, x) > 0},

where & is a unit normal of €.

Theorem 40. Each half-plane is bounded by a unique line. Each line
bounds two half-planes. The union of these two half-planes is H? - €. Two

Segments, rays, angles,
and triangles
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points of H> — € are in the same half-plane if and only if the segment joining
them does not meet €.

Definition. The interior of an angle X PQR is the intersection of the

half-plane bounded by Fé containing R with the half-plane bounded by IE—Q
containing P. (This definition does not make sense for straight angles or zero
angles. The interior of such an angle is undefined.)

Theorem 41. Let o/ = X PQOR be an angle whose interior is defined. Lel
& and m be direction vectors of its arms. Then the interior of <

consists of those points X such that the direction vector of QX is a posi-
tive linear combination of & and .

Proof: Let X be any point other than Q, and let { be the direction vector

of é_:\’ . Because the subspace {v € R*|b(v, Q) = 0} is two dimensional,
{€, m} is a basis, and there are unique numbers A and p such that

{ = A+ pm.

We claim that X is in the interior of .o/ if and only if A and p. are positive.
To see this, write

X = (cosh 1)Q + (sinh #){
and note that £ X Q is a unit normal to one arm, say Q_l; Then
b(X, &€ x Q) = (sinh 0)b((, & X Q) = p(sinh )b(n, £ X Q)

sinh ¢
sinh s

= p b(R, & X Q),

where s is the number satisfying R = (cosh s)Q + (sinh s)m. Thus, X and R
lie on the same side of PQ if and only if p. > 0. Similarly, X and P lie on
the same side of RQ if and only if A > 0. O

Addition of angles

Theorem 42.

i. Let o/ = XPQR be an angle with a point X in its interior. Then the
radian measure of </ is the sum of the radian measures of X PQX and
XROX.

ii. Let o/ = X PQOR be a straight angle, and let X be any point not on the
line Fé Then the sum of the radian measures of X PQX and XRQX is
equal to .




Proof:
i. Let &, m, and { be the respective direction vectors as in Theorem 41.
We need to prove the identity

cos™ ' b(E, L) + cos™! b(L, m) = cos™' b(£, M), (7.11)

using the fact that { = A§ + pm, where A and p are positive numbers
satisfying

b(L, 1) = A + p? + 2apb(g, m) = 1.
For convenience write a = b(§, m). Then b(§, {) = N + pa and b({, m)
= \a + p, so that our identity reduces to
cos '(\ + pa) + cos™'(Aa + p) = cos”! a, (7.12)

which can be verified by calculus (Exercise 44).

i. When X PQR is a straight angle, we have no expression for { in terms
of £ and m. We do not need one, however. The required identity
reduces to

cos™! b(E, ) + cos”! b(—£&, ) = m,

which is just one of the standard properties of the cos™" function. (See
Theorem 2F.) O

Remark: The Euclidean version of this theorem (Theorem 2.14) is
essentially the same thing. We could have used the preceding proof in
Chapter 2. On the other hand, if we fixed an orthonormal basis {e,, e,, e}
for R® with e3 = Q, the proof given in 2.34 can be easily modified to prove
Theorem 42. Both proofs have advantages and disadvantages. The first one
is more geometric. The second one is more direct but relies explicitly on a
computation involving differentiation, and therefore it is in some sense less
clementary.

Remark: All our Euclidean definitions of rectilinear figures and their
associated properties hold true in H%. Because of the incidence structure of
H?, however, some new types of figures are possible.

Triangles and hyperbolic trigonometry

In hyperbolic geometry triangles are easier to deal with than in spherical or
elliptic geometry because segments are simple. Each pair of points
determines a unique segment. Thus, we can define, as in E?, the triangle
APQR to be the union of the segments PQ, OR, and PR. Each triangle
has three angles. The interior of the triangle is the intersection of the
interiors of its three angles.

Triangles and hyperbolic
trigonometry
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Figure 7.14 Theorem 43. A hyperbolic
triangle.
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Theorem 43. Let ABC be a triangle. Let a, b, and c be the lengths of its
sides. Then, using the same notational conventions as in spherical trigo-
nometry (see Figure 7.14), we have

cosh b cosh ¢ — cosh a

. cos A = sinh b sinh ¢ X (7.13)

sin A _ 2(sinh s sinh(s — a) sinh(s — b) sinh(s — ¢))? (7.19)
sinh a sinh a sinh b sinh ¢ ’ :

cos A + cos B cos C
iii. cosh a = sin B sin C . (7.15)

Remark: Birman and Nomizu [5] have worked out trigonometric formulas
for Lorentzian plane geometry. Their formulas bear a relationship to
(7.13) and (7.14) analogous to that between plane Euclidean and spherical
(Theorem 4.38) formulas, This is related to the fact that H2 may be
regarded as a “sphere™ in Lorentzian three-space. (See Exercise 72.)

Asymptotic triangles

Each line belongs to two parallel pencils. However, each ray determines a
unique parallel pencil. In fact, if { is the direction vector of a ray PX , then
P + (s a lightlike vector with the property that {E|b(E, P + L) = 0} is the
set of unit normal vectors of a unique pencil. (The other pencil to which the
line PX belongs is determined by P — {.)

Let PQ be a segment, and let PX and Q—)" be parallel rays determining
the same pencil. Then the union of PQ and the two rays is called a (singly)
asymptotic triangle. Two views of an asymptotic triangle are shown in
Figure 7.15. You may think of an asymptotic triangle as an ordinary
triangle with one vertex “at «.”

A pair of rays PX and PY together with the line common to the parallel
pencils they determine is a doubly asymptotic triangle. See Figure 7.16. A
triply asymptotic triangle consists of three lines mutually parallel in pairs.
See Figure 7.17.

P+t

Figure 7.15 A singly asymptotic triangle, two views.




Figure 7.16 A doubly asymptotic triangle, two views.
|

Figure 7.17 A triply asymptotic triangle, two views.

Quadrilaterals

A convex quadrilateral ABCD is the union of four segments (sides) AB,
BC, CD, and DA that are placed in such a way that each side determines a

half-plane that contains the opposite side (See Figure 7.18.) Note that AC

intersects BD at an interior point of the figure. The other diagonal points
(in the sense of projective geometry) can be distributed in six distinct
'conﬁgurations as far as incidence is concerned. This together with the
possibilities for equality of various lengths and angles gives us a rich variety
of generalizations of the notions of parallelogram, rectangle, rhombus, and
square. We will only scratch the surface of this wealth of symmetric figures.

First, consider a convex quadrilateral ABCD in which opposite sides
have the same length. This is the best gengralization of the Euclidean
notion of parallelogram. The special case in which all four sides have equal
length is called a rhombus. (See Figure 7.19.)

A convex quadrilateral in which all four angles have equal radian
measure is called an equiangular quadrilateral. The equiangular rhombus is
the hyperbolic analogue of the square. (See Figures 7.20 and 7.21.)

Although convex quadrilaterals cannot have four right angles in hyper-
bolic geometry, there are several different figures that could be considered
analogues of the rectangle. The Saccheri quadrilateral ABCD has d(A, B)
= d(C, D), AB L BC, and CD L BC. (See Figure 7.22.) The Lambert
quadrilateral, on the other hand, has three right angles. It is shown in
Figure 7.23.

Quadrilaterals

S
“>D
r
B S v >

g

(64
Figure 7.18 A convex quadrilateral.

|
T

Figure 7.19 A rhombus.
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Figure 7.21 An equiangular rhombus.

A D
B C

Figure 7.22 A Saccheri quadrilateral.
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Regular polygons

A regular polygon with any number of sides can be constructed by taking
as vertices the orbit of a point Q under a cyclic subgroup of the group of
rotations leaving another point P fixed. The resulting figure has the same
symmetry group as in the Euclidean case. However, as the trigonometric
formulas show, the angles get smaller as d(P, Q) increases. In general,
there are regular m-gons whose angles all have radian measure equal to
any number between 0 and (1 — 2/m)1r that you wish to prescribe. For

example, there is a regular 7-gon all of whose angles are right angles. Sec
Figure 7.24.

Congruence theorems

Theorem 44. There is a unique reflection that interchanges a given pair of
points of H.

Proof: Let P and Q be the given points. Let » be the perpendicular
bisector of PQ. Note that the midpoint M of PQ is a unit timelike vector in
the direction [P + Q] and that the unit normal to » has direction [P — Q).
Itis a straightforward exercise (Exercise 51) to verify that 2, interchanges
P and Q. On the other hand, if Q.. is any reflection interchanging P and Q,
then (2,0, must leave P and Q fixed and, hence, by Theorem 36, must be
the identity. O

Theorem 45. There are precisely two reflections that interchange a given
pair of intersecting lines of H>.

Proof: Suppose that the two lines have unit normals £ and 1. Let a be the
line with unit normal in the direction [£ + m]. It is easy (Exercise 52) to
verify that (), interchanges the two given lines. On the other hand, if Q. is
any other reflection interchanging the given lines, the rotation Q.Q,
leaves both lines fixed. By Theorem 37, a and o’ must be perpendicular.
Note that o' is just the line whose unit normals have direction [§ —n]. O

Classification of isometries of H?

Our main result is that every isometry of H? is a motion. First, we have the
following uniqueness theorems.

Theorem 46. Let T be an isometry that leaves fixed a point P and a line ¢
through P. Let m be the line through P perpendicular to €. Then either T or
Q,.T has € as a line of fixed points.

o



Poof: Let X be an arbitrary point of € other than P. Let v be the unit
direction vector of PX. Then for some positive number s,

X = (cosh s)P + (sinh s)v.
Similarly, if Y is a third point on €,
Y = (cosh #)P + (sinh fjv

for some t. Because T¢ = ¢, the points TX and TY have similar
representations. Using the fact that b(TX, P) = b(X, P) and b(TY, P) =
b(Y, P), we see that these representations take the form

TX = (cosh s)P % (sinh s)uy, TY = (cosh f)P % (sinh f)v. (7.16)

But now, b(TX, TY) = b(X, Y), and, hence, the signs occurring in (7.16)
are either both positive or both negative. In the first case T leaves ¢
pointwise fixed. It is easy to check that 2, T has the same property in the
second case. ]

Theorem 47. Let T be an isometry of H>. Suppose that T has a line € of
fixed points. Then either T = Qg or T is the identity.

Proof: Assume that T is not the identity. Choose any point X not fixed by
T. Let A be the foot of the perpendicular from X to ¢, and let v be the unit

direction vector of AX. We may then construct an orthonormal basis
(e, €2, €3} with e3 = A, e; = v, and e, = e; X e3. Write

X = (cosh t)e; + (sinh f)e;, t> 0.
Choose s > 0 and consider on ¢ the points
Y = (cosh s)e; + (sinh s)e;, Y’ = (cosh s)e; — (sinh s)e;.
Using the fact that d(X, Y) = d(X, Y’) and, hence, d(TX, Y) =._f{(TX XY
we conclude that b(TX, e;) = 0. Thus, TX must lie on the line AX. Writing
TX = (cosh u)es + (sinh w)ey,

and using the fact that b(TX, A) = b(X, A), we get cosh s = cosh ; that is,
s = +u. From this it is clear that TX = QX and that T agrees with (), at
every nonfixed point of 7. It remains only to show that all fixed points of T
lie on €. To see this, suppose that Y is a fixed point of 7. Then

b(X, Y) = b(TX, TY) = b(Q.X, Y)
= b(X = Zb(X, ez)ez, Y)
= b(X, Y) — 2b(X, e2)b(Y, ey).

Because b(X, e,) # 0, we must have b(Y, e,) = 0; that is, Y lies on €. O

Theorem 48. Every isometry of the hyperbolic plane is a motion.

Classification of
isometries of H?

Figure 7.23 A Lambert quadrilateral.

Figure 7.24 A regular 7-gon with seven

right angles.
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Proof: Let T be an isometry. We shall construct a sequence of reflections
whose product coincides with T. First choose an arbitrary point P, and let
T, be the reflection that interchanges P and TP. Then T, T has P as a fixed
point (Theorem 44). (In the special case where T already has a fixed point,
we may shorten the construction by letting P be the fixed point and by
letting 7, = 1.)

The second step is to construct T, so that 7,7, T fixes P and a line ¢
through P. This may be arranged by letting T, be a reflection interchanging
an arbitrary line € through P with T,T¢ (Theorem 45). (If T, T already has
a fixed line ¢ through P, we may choose T, = I.)

Now, directly applying Theorem 46, we can choose a suitable reflection
T5 (or possibly T3 = I), so that T3T,T,T leaves € pointwise fixed. Finally,
by Theorem 47, we can choose Ty = Q or Ty = I, so that T,T5T,T, T is the
identity. Because each 7; is its own inverse, this means that T = T,T,T;T,,
as required. O

Remark: As we saw in Theorem 35, this product may be written as the
product of three or fewer reflections. In this case, however, we can observe
this fact more directly as follows. Using Theorem 17, we can see that
I>T5T, is either a rotation about P or a reflection in a line through P. Then,
depending on T;, we can conclude that T is a rotation, a reflection, or a
glide reflection. Furthermore, we have all the information necessary to
explicitly find the transformations 7.

Corollary. Every isometry of H> is one of the following: reflection,
rotation, parallel displacement, translation, or glide reflection.

Circles, horocycles, and equidistant curves

Definition. Let C be a point and r = 0 a number. Then

¢ = {X|d(X, C) = r} (7.17)
is called a circle with center C and radius r.
Theorem 49. Let 2 be the pencil of lines through a point C, and let P be

any point. Then the orbit of P by REF(2) is the circle with center C and
radius r = d(P, C). Conversely, every circle arises in this way.

Definition. Let s be a line and r a positive number. The portion of
{X|d(X, m) = r} (7.18)

lying in a half-plane determined by m is called an equidistant curve. The line
m is also (by definition) an equidistant curve corresponding to r = 0.




Theorem 50. Let 2 be the pencil of lines perpendicular to a line », and let
P be any point. Then the orbit of P by REF(2) is an equidistant curve.
Conversely, every equidistant curve arises in this way.

Definition. Let 2 be a pencil of parallels, and let P be any point. Then the
orbit of P by REF(2) is called a horocycle.

Remark: The horocycle may be thought of as a limiting case of a circle
having its center “‘at infinity.”

Theorem 51. Let v be a nonzero vector in R?, and let a be a number. If
{x € H}|b(v, x) = a} (7.19)

is nonempty, it is a circle, an equidistant curve, or a horocycle. Conversely,
each circle, equidistant curve, and horocycle has an equation of this form.

A higher-dimensional version of the results of this section is found in [6].

EXERCISES

1. Prove Theorem 2.

2. Find spacelike vectors £ and m such that £ X v is a nonzero lightlike
vector, but b(&, m)*> = b(&, £)b(n, ).

3. Verify that neither parallel nor ultraparallel lines intersect. (See the
remark following Theorem 6.)

4. Verify the remarks following the definition of pencils.

5. i. Let &€ = (1//2)(1, 1, 0) and m = (1/2V/3)(3, 2, 1). Find an
orthonormal basis with £ as one element and a multiple of £ X
as another.

ii. Let £ and m be the respective unit normals of lines of H. If the
lines intersect, find the point of intersection. If they are ultra-
parallel, find the common perpendicular.

6. 1. Prove Theorem 9.

ii. Prove that d(¢, ») = cosh™!|(&, m)|, where € and » are lines
with unit normals £ and .

7. Complete the proof of Theorem 11 by showing that d(Q, R) =
d(P, R) + d(P, Q) implies that P lies between Q and R.

8. Prove Theorem 12.
9. Verify that Theorems 17 and 18 hold.
10. Prove Theorem 19.

11. Prove Theorem 20 and the remark following it.

Circles, horocycles, and
equidistant curves
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12.
13.
14.
15.
16.

17.
18.
19.

20.
21
22.

23.
24.

25:

26.

27.

28.
29.

30.

Prove Theorem 21.
Prove Theorem 22.
Prove Theorem 23 and its corollary.
Prove Theorem 24.

Check that ={ must have the form (1, r, —r) as indicated in Theorem
25.

Verify formula (7.7).
Prove Theorem 27.

i.  Check that DIS(2) is a subgroup of REF(Z2).
ii. Show that if a is any line of the pencil 2, REF(2) = DIS(Z) U
{Q.D|D € DIS(2)}.
iii. Check that the mapping & — D), is an isomorphism of R (the
additive group of real numbers) onto DIS(2).
Verify formula (7.9).
Prove Theorems 28 and 29.
Let € be the common perpendicular of an ultraparallel pencil 2.
i.  Check that TRANS(€) is a subgroup of REF(Z2).
ii. Show that if « is any line of the pencil 2,

REF(2) = TRANS(€) U {Q, ° T|T € TRANS(¢)).

This means that TRANS(¢) is a subgroup of index 2. One coset
is TRANS(€), and the other is the set of reflections.

iii. Check that the mapping h — T, is an isomorphism of R onto
TRANS(¢).

If €, sz, and » are lines of a pencil, prove that 2,0,.0Q, = Q,0,.0Q,.
If H,, H,, and H; are distinct half-turns, prove that

H\H,H3 # H3H,H,.
If T € TRANS(s2) and € L », show that Q,T = TQ,. Verify formula
(7.10).

Using the matrix representation (7.10), show that a nontrivial glide
reflection i. has no fixed points,
ii. leaves fixed its axis and no other lines.

Prove that there is a unique reflection (), interchanging any two lines
# and ¢ of a pencil of parallels (respectively, ultraparallels).

What is the square of a glide reflection in H??

Describe the product of two glide reflections in H? with perpendicular
axes.

Let P and Q be points. Show that there is a unique translation taking
P to Q.




il.

2.

3.

3.

37.

%9.

41.

42.
43.

4.

14,

Show that two nontrivial rotations of H? commute if and only if they
have the same center.

Let P, Q, and R be three noncollinear points of H2. Discuss the
product of the half-turns Hp, Hp, and Hg. Given a rotation, show
that it can be expressed as the product of three half-turns.

Let y be a line. Explain why no line can be both parallel to y and
perpendicular to v.

Let v and w be nonproportional lightlike vectors. Prove that b(v, w)
# 0.

Prove Theorem 34.

Let P, Q, and R be three points lying, respectively, on three members
#, ¢, and 2 of a pencil of parallels. If P and Q are interchanged by
Q,, and Q and R are interchanged by (2,,, prove that

i. P, Q, and R cannot be collinear.

ii. €, interchanges P and R.

(Notation is as in Exercise 27.)

Prove Theorem 36.

Fill in the missing details in the proof of Theorem 38.

Prove Theorem 39.

Prove that a segment AB consists of A, B and all points between A
and B.

Verify the statements made in the text about the definition of radian
measure of an angle.

Prove Theorem 40.

Prove the crossbar theorem in H2.

Prove the identity (7.12) for @ € [—1, 1] and \, p € (0, ®).
Prove the formulas of hyperbolic trigonometry (Theorem 43).

Let ABC be a triangle in H? with sides of lengths a = d(B, C), b =
d(A, C), and ¢ = d(A, B). Prove that if AC is perpendicular to AB,
then

cosh a = cosh b cosh c.

Find a direct proof that does not make use of Exercise 45.

The angle sum for a triangle in H? is less than w. Prove this for
the special cases of an equilateral triangle and a right-angled
triangle.

The defect of a triangle in H? is the amount by which its angle sum
differs from . Let AABC be a triangle, and let F be a point between

A and C that is the foot of the perpendicular from B to AC. Prove
that

Circles, horocycles, and
equidistant curves
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49,

50.

51.
52.

53.

54.

55.

56.

57.
58.
59.

defect(AABF) + defect( ACBF) = defect(AABC).

Hence, prove that the defect of any triangle in H? is positive.

Remark: The analogous conclusion can be drawn in spherical
geometry or elliptic geometry. The angle sum is greater than m, and
the amount of the difference is called the excess. Defect and excess
can be used as measures of area in non-Euclidean geometry. The
excess cannot be greater than 2w, and in fact there are spherical
triangles whose areas are as close to 2w as we please. On the other
hand, the defect of a triangle in H? is less than m, and there are
triangles whose areas are as close to  as we please.

Draw some pictures indicating how four points ABCD might not
determine a convex quadrilateral.

Show that a Saccheri quadrilateral can be decomposed into two
Lambert quadrilaterals.

Fill in the missing details in the proof of Theorem 44.

Verify that the reflection (), in Theorem 45 interchanges the two
given lines.

i. Prove that there is a unique reflection interchanging any two
distinct rays with common origin.

ii. Prove that there are exactly two reflections interchanging two
intersecting lines.

Let AB, BC, and CD be three line segments with AB L BC and

BC 1 CD. Given that AB and CD have equal length, prove that

d(A, C) = d(B, D). Work in H?, although your results should be

equally valid in E2.

Find the symmetry group of

i. the rhombus,

ii. the equiangular quadrilateral,

iii. the equiangular rhombus,

iv. the Saccheri quadrilateral.

Formulate Hjelmslev’s theorem so that it makes sense in H”. Is it
true?

Verify that the SSS, SAS, and AAA congruence theorems hold in H,
What congruence theorems hold for asymptotic triangles?

Verify that the concurrence theorems (4.53 and 4.54) are valid in the
hyperbolic plane.
Let PQ and PX be perpendlcular segments Show that there is a

unique ray QY such that PQ, PX and QY form an asymptotic
triangle. If the radian measure of X Q is 6 and the length of PQ is d,

U N



b1.
62.

10.

.

show that sin 6 cosh d = 1. The number 6 is called the ‘“‘angle of
parallelism” determined by d. See Figure 7.25.

Prove Theorem 49.
Prove that a circle has only one center and one radius.

Discuss the various ways in which a circle can intersect a line or
another circle.

Prove Theorem 50.

Prove that an equidistant curve uniquely determines the line » and
the number r in (7.18).
Prove that a line meets an equidistant curve in at most two points.
Prove that a line meets a horocycle in at most two points.
Prove Theorem 51.
Identify the following curves in HZ.

i. x; + x, = \/2sinh (2).

. x3=2.
iii. Xy +x3= 2.
Prove that the groups ROT(Z2), TRANS(»2), and DIS(Z) would
have worked equally well in characterizing circles, equidistant curves,
and horocycles, respectively. What are the stabilizers in these cases?

Investigate the status of Theorems 49-50 and Exercises 61-66 in the
Euclidean, spherical, and projective settings.

Investigate the relationships suggested in the remark following
Theorem 43.

Circles, horocycles, and
equidistant curves
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Figure 7.25 The angle of parallelism.

183



APPENDIX A

184

The axiomatic
approach

In this book we have approached plane geometry from the analytic point of
view. The more traditional treatment of these topics (going back to Euclid)
is based on geometric axioms or postulates and synthetic proofs (i.e., not
using computation).

This approach is also instructive and complements our own. Essentially
the same set of theorems can be derived, and the reader is encouraged to
take the exercises from a book using the axiomatic approach and try to
solve them by using our methods.

An excellent book using the axiomatic approach is that of Greenberg
[16]. Following Hilbert, whose work we mentioned in the Historical
Introduction, he first introduces incidence axioms, which guarantee that
two points are incident with a unique line, that every line is incident with at
least two points, and that not all points are collinear. Then he introduces
axioms for betweenness from which segment, ray, half-plane, angle, and its
interior can be defined. These axioms are strong enough to allow one to
prove Pasch’s theorem and the crossbar theorem. The betweenness axioms
are already too strong to be consistent with the geometry of the sphere or
the projective plane, however. (A different set of betweenness axioms
would be necessary.) Then an (undefined) relation of congruence on
segments, angles, and triangles is introduced along with certain axioms that
congruence is to satisfy. Finally, continuity axioms are stated that essen-
tially guarantee that lines behave like the “‘real number line” of analytic
geometry. This is enough to force the geometry being discussed to be
either the Euclidean or hyperbolic plane, depending on whether or not
Euclid’s fifth postulate is satisfied. This approach is ideal for investigating
the dependence of geometrical results on the parallel postulate. Absolute
geometry can be derived first; then, by appropriate choice of parallel
axiom, Euclidean or hyperbolic geometry may be derived. In this develop-
ment, however, it is not easy to get to the point of dealing with isometries
or to compute with them once they have been defined.

A second approach, also axiomatic, has been taken by Ewald [12]. He
also begins with incidence axioms but then introduces the (undefined)




symmetric relation of perpendicularity in the set of lines. Perpendicularity
axioms equivalent to our Theorems 1.13 and 1.14 are given, except that the
result of dropping a perpendicular is not assumed to be unique. Next, the
notion of reflection is introduced. It is a collineation that preserves
perpendicularity and has a line of fixed points. Each line is assumed to be
the axis of exactly one reflection. One can consider two types of pencils —
the lines through a certain point and the lines perpendicular to a certain
line — and, hence, define rotation and translation. Several additional
reflection axioms are stated, essentially guaranteeing that two lines that are
related by a rotation or translation are also related by a reflection. This
axiom system is general enough to allow the Euclidean, elliptic, and
hyperbolic planes as models.

The three reflections theorem and representation theorem are satisfied
for both types of pencils. If the two types of pencils coincide, the geometry
is elliptic. If not, it may be hyperbolic or Euclidean, depending on whether
or not there exist two nonintersecting lines without a common perpendicu-
lar. In this latter case a third type of pencil can be defined merely by
requiring that the three reflections theorem be satisfied. All the usual
properties of pencils of parallels in hyperbolic geometry follow. Adding
suitable continuity axioms now forces the geometry to be (up to a
normalization factor) the Euclidean, elliptic, or hyperbolic plane studied in
the text.

The axiomatic approach
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Sets and functions

If A is a set, the number of elements (cardinality) of A is denoted by #A.
This number is allowed to be a nonnegative integer or . We will not be
concerned with different cardinalities of infinite sets.

Let A and B be sets. A subset fof A X Bis called a function from A to B
if every element of A occurs exactly once as a first member of a pair in f.
We use the notation

ffA—> B

to indicate that f is a function from A to B. The set A is called the domain
of f. (Functions are sometimes called mappings.)

For any element x of A there is a unique element y of B such that
(x, y) € f. Thus, the function may also be thought of as a means by which
each element x in A determines a unique element of B. This element is
usually denoted by f(x). We say that f maps x to f(x) or that f(x) is the
image of x under f. This terminology extends to sets as well. If S is a subset
of A, the image of S under f is denoted by f(S) and is defined to be

f(S) = {fx)| x € S}.

The function f is said to be surjective if f(A) = B; that is, every element
of B occurs in the image of A. In this case we also say that f maps A onto B.
The function f is said to be injective if no two elements of A map to the
same element of B. A function that is both surjective and injective is said
to be a bijective function or a bijection. A bijection provides a matching or
one-to-one correspondence between the sets A and B.

Notation: 'We sometimes omit the parentheses and write fx for f(x) and f§
for f(S).

Composition and inverse functions

Suppose we have f: A — B and g: B — C. Then the composite function

g°ffA>C




consists of those pairs (x, z) in A X C such that z = g(f(x)).
If f is a bijection, then

g = {(y; M(x, y) € f}

is also a bijection. It is easy to check that both g ° f and f ° g are identity
functions on their respective domains. In this case we say that f and g are
inverses of each other and write

f'=g and g7'=f

Identity functions will be denoted by /. The domain should be clear from
the context.

Permutations

A bijection from a set A to itself is called a permutation of A. Such a
bijection can be composed with itself any number of times. This leads to
the following algebraic notation:

f'=f P=fsf, F=fof. (B.1)

This notation may be extended to include zero and negative exponents by
setting

=1

and

A i) (B.2)

A function satisfying f> = I (but f # I) is called an involution.

Permutations are sometimes expressed in cyclic notation. Let {x;},
1 < i< n, be a set of objects. Then the permutation that maps x,, to x; and
all other x; to x;,, is denoted by (x;x; - - - x,,). Such a permutation is called a
cycle or cyclic permutation. This notation is used in Chapter 2 when
discussing symmetries of a triangle. Note that (PQR), (QRP), and (RPQ)
all denote the same permutation, and (PRQ), (QPR), and (RQP) denote
its inverse.

A cycle of length 2, such as (PQ), is called a transposition. Every
permutation of a finite set can be expressed as a product of transpositions.
If s is the number of transpositions, then (—1)° is called the sign of
the permutation. For example, the sign of (PQ) is —1, and the sign of

(PQR) = (PQ)(QR) is +1.

Relations

Let A be a set. A relation on the set A is a subset of A X A. A relation r on
A is said to be

Sets and functions
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i. reflexive if it contains all possible pairs of the form (a, a);
ii. symmetric if for each element (x, y) of r, the reversed pair (y, x) is also
in r;
iii. transitive if whenever (x, y) and (y, z) are elements of r, (x, z) is also a
member of r.

An equivalence relation is a relation that is reflexive, symmetric, and
transitive. Let r be an equivalence relation. For each element a in A, let

[a] = {x € A|(x, a) € r}.

Then one can verify that any two distinct sets of the form [a] must be
disjoint and that the union of all such sets is A. Thus, an equivalence
relation partitions A into subsets called equivalence classes. The set of
equivalence classes is called the quotient space A/r. The function that sends
each element of A to the equivalence class to which it belongs is called the
natural projection. The notion of equivalence relation is used several places
in the text — in particular, when discussing groups and the projective plane.




Groups

A group is a set G together with a function from G X G to G satisfying
certain conditions. In order to express these conditions in a compact way,
we adopt the following notation. If @ and b are elements of G, we denote
by a * b the result of applying the function to the ordered pair (a, b). The
conditions for G to be a group are

l. (@a*b)*c=a=(b=*c)foralla, b, and c in G. This is called the
associative law.

2. There is an element / of G such thata * [ = [ *a = aforallain G.
Such an element is called an identity.

3. For each element a in G there is an element b in G such thata * b =
b * a = I. The elements b and a are said to be inverses of each other.

Remark: It is not difficult to show that there is only one identity element in
a group and that each element has exactly one inverse.

When discussing group operations, we often use informal terminology
that exploits the analogy with mutiplication of numbers. For instance, a * b
is sometimes called the product of a and b. This should not mislead us into
thinking that = possesses all the properties of ordinary multiplication. For
instance, the commutative law a * b = b * a is usually false in the groups we
will be using. If two elements do satisfy this condition, we say that they
commute with each other. If this commutative law is satisfied for all pairs of
elements in the group, the group itself is said to be commutative or abelian.

It is common when dealing with groups to omit explicit mention of the
operator * when the meaning is clear from the context. For example, the
commutative law might be written ab = ba. Also, the constructions of
(B.1) and (B.2) may be applied to any element of any group (e.g., a* = aa,
a® = I, a' is the inverse of a, etc.).

Although the notion of group is a very general one and admits many
interpretations, the original motivation for the definition and the inter-
pretation with which we will be primarily concerned is that of groups of
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transformations. By this we mean that group elements are bijections of
some set to itself, and the group operation is composition of functions.

Theorem 1C. The bijections of any set to itself form a group.

Subgroups

Let G be a group as previously defined. A subset H of G is said to be a
subgroup of G if the following conditions are satisfied:

1. Ifa, b € H, then a * b € H (the closure property).
2. The identity / of G is in H.
3. Ifae H,thena' € H.

Informally, this means that the subset H with the operation inherited from
G is itself a group. Of course, property (2) follows from (1) and (3).

Remark: The intersection of any collection of subgroups of a group is a
subgroup.

Let G be a group and S any subset of G. The intersection of all
subgroups containing S is called the subgroup generated by S and is
denoted by (S). If S consists of a single element s, we use the notation (s).

Theorem 2C. Every element of (S) can be written as the product of a finite
number of elements, each of which is either an element of S or the inverse of
an element of S.

An element s of a group G is said to be of order n if #(s) = n. A group G is
of order n if #G = n.

Cosets
If H is a subgroup of a group G, and a is any element of G, we define the
left coset aH to be
aH = {ahlh € H}.
Theorem 3C.

i. Any two distinct left cosets are disjoint.
ii. Two left cosets aH and bH coincide if and only if a~'b € H.

Remark: {(a, b)laH = bH} is an equivalence relation, and the cosets are
the equivalence classes. (See Appendix B.)




Because G is the union of its left cosets and all left cosets have the same
cardinality, we have the following.

Corollary. Let G be a finite group, and let H be any subgroup. Then #H
divides #G. (Their quotient is the number of cosets and is called the index of
H in G and denoted by |G:H].)

Remark: Right cosets are defined analogously, and similar conclusions
hold.

Homomorphisms and isomorphisms

Let G, and G, be groups. A function
f: G, = G,
is called a homomorphism if for all a, b € G,,

fla * b) = f(a) * f(b);

that is, f respects the group structure. From this property it is not hard to
show that a homomorphism also satisfies f(/) = I and f(a™") = (f(a))™"
for all @ € G,.

A bijective homomorphism is called an isomorphism, and the groups
involved are said to be isomorphic.

Note that G, and G, are different groups, each having its own group
operation and identity element even though we have used the same
symbol.

Definition. Let f be a homomorphism of groups. Then

{alf(a) = I}
is called the kernel of f (abbreviated ker f).

Theorem 4C. Let f: G, — G, be a homomorphism. Then ker f is a
subgroup of G,, and f(G,) is a subgroup of G».
Quotient groups and normal subgroups

Definition. A subgroup H of a group G is said to be a normal subgroup if
aH = Ha for all a in G.

If H is a normal subgroup, the cosets form a group with the operation

(aH) *+ (bH) = (a * b)H.
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In checking that this operation on cosets is well-defined, we must use the
fact that H is normal.

The group of cosets is called the quotient group of G by H and is denoted
by G/H. The function m that takes each a € G to the coset aH to which it
belongs is a homomorphism called the natural projection of G onto the
quotient group G/H.

Theorem 5C. Let f: G, — G, be a surjective homomorphism. Let H be the
kernel of f. Then the mapping given by

T(aH) = f(a)

is an isomorphism of G,/H to G,. Furthermore, t o w = f.

Notation: The statement “G, is isomorphic to G,” is abbreviated G, = G,.




Linear algebra

Linear algebra for R?

Let A be a 2 X 2 matrix. Define T,: R - R? by
Tyx = Ax, (D.1)

where the right side is matrix multiplication of the 2 X 2 matrix A by the
2 X 1 matrix (column vector) x. One can verify that the following
properties hold for all x, y € R? and all r € R,

l. Ta(x +y) = Tax + Tpy,

2. Ta(rx) = rTyx. (D.2)

In other words, T, is linear. Conversely, let f: R? — R? be linear. Each
element x € R* may be written x = x,&; + X3€;, so that

fx = flx;g)) + flxae2) = x1feq + xafe;.

Let
ap a;
e.=[ ]and €z=[ ]
f az f a
Then
e [Xlau] 4 [Xzalz] - [allxl * a12x2]
X142, X202, axx; + axpx;
a;, apl|lx
_ [ 11 12][ 1] = Tsx,
ay; axpllx;
where

' A = [an alZ]
az ax
Thus, for each linear function f: R> — R? there is a matrix A such that
f = T4. Furthermore, A is uniquely determined by T,. To see this, note

|
]
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So, if T, = Tp, we have

a“] [b“] [012] [blz]'
[ 21 12 22 21’
that is, A = B. Finally,

ToTgx = ToBx = A(Bx) = (AB)x = Tupx. (D.3)

We summarize the above discussion as follows:

Theorem 1D.

i. The mapping A — T, that associates to each 2 X 2 matrix A a linear
function T4: R* — R? is a bijection from the set of all such matrices to
the set of all such linear functions. The columns of A are the images of
the standard basis vectors €; under T 4.

ii. Composition of functions corresponds to matrix multiplication; that is,
TA TB = TA B-

Corollary. Matrix multiplication is associative.

Proof: Consider the identity
(TaTp)Tc = Ta(TpTc),

which is true by definition of composition. This implies by (ii) of the
theorem that

TapTc = TaTpe, Tiasc = Tawo)
Because the matrix of a transformation is uniquely determined, we have
(AB)C = A(BC). (b.4) O

Definition. The set of linear functions from R* — R? that are bijections is
denoted by GL(2).

Theorem 2D. GL(2) is a subgroup of the group of all bijections of
R?> > R%

Proof: We need to show that
i. The composition of linear functions is linear,
ii. The inverse of a linear bijection is linear.




Because of the identity T,Tp = T 4p, the first point is clear. Also, 7; = I,
where the subscript / stands for the identity matrix.

Finding the inverse of a linear function is, in general, not an easy task.
However, for a 2 X 2 matrix, there is no difficulty. In fact, we have the

identity
[a b][ d —b] _ [ad — bc 0 ]
¢ dil—c a 0 ad — bc

and (D.5)

[ d —b][a b]_[ad—bc 0 ]
—c  alle dl ™ 0 ad — bcl”

The quantity ad — bc is called the determinant of the matrix. If the
determinant is not zero, the inverse of the corresponding linear function is
easily constructed (see the next corollary). If the determinant is zero, the
function sends the vectors

&) ana [72)
—C a
to zero and thus cannot be injective. O

Notation: The determinant of a matrix A is denoted by det A.

Corollary. Let A be a 2 X 2 matrix. Then
i. T, is a bijection if and only if det A # 0.
ii. The matrix

d -b
det A det A
B = (D.6)
—c a
det A det A
satisfies
AB = BA = I, (D.7)

and, hence, Ty is the inverse of T,.
iii. GL(2) is a group.

Definition. A set {v, w} of vectors in R? is a basis if for every vector x € R?
there exist unique numbers \, w such that

X = \v + pw; (D.8)

that is, x can be expressed uniquely as a linear combination of v and w.
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To verify the uniqueness part of the definition in a particular case, it is
only necessary to check the case x = 0. In fact, if

x=Mv+ muw and x = \uv + pow,
we have
0=M — NMv+ (p — p)w.

If we know that 0 can be represented in only one way, then we must have

A1 = Az and p; = po, so that x is also uniquely represented. We use this fact
in the next theorem.

The complex structure J

The linear function J: R* — R?, defined by

X —-Xx
=10
X2 X1
is sufficiently important to deserve a special notation. It is used in Chapter
3.

J has the special property that J> = —/ and can be used to identify the
matrix algebra of R? with the algebra of the complex numbers. The notion
also generalizes to higher dimensions, and any linear function satisfying
J? = —I is called a complex structure.

In R?, J coincides with rotation by m/2; that is, J = rot (m/2) in the
notation of Chapter 1. Also, Ju = v* for all vectors v, and, hence, J satisfies
the identity (Jv, v) = 0. In fact,

(Jv, w) = —(v, Jw)

for all vectors v and w.
Theorem 3D. Let {v, w} be a set of two vectors in R*. Let
A= ["‘ w‘].
v W
Then {v, w} is a basis if and only if det A # 0.

Proof: Suppose that det A # 0. Equations (D.5) imply that

A]U + pw = g1, sz =+ KW = g3, (Dg)

=L 2
K P2

where




is the inverse of A. Thus each of the standard basis vectors €,, €, (and
hence every vector) is a linear combination of {v, w}. Furthermore, any
equation of the form

AN+ pw =0
can be written as
al}] =0,
T8
which gives
BA[A] = 0;
1)

that is,

and {v, w} is a basis.
Conversely, if det A = 0, (D.5) shows that

wow—wvw=0 and —-wpw+ vyw = 0. (D.10)

This shows that there is more than one way of representing the zero vector
as a linear combination of vand w, and, hence, that {v, w} is not a basis. [

Definition. Two vectors v and w are proportional if v= Aw or w = pv for
some numbers \ and p.

Corollary. A set {v, w} of vectors in R? is a basis if and only if vand w are
not proportional.

Proof: First, suppose that v = kw for some number k. Then it is easy to
check that det A = 0 (where A is defined as in Theorem 3D). Conversely, if
det A = 0, (D.10) shows that vand w must be proportional. O

Linear algebra for R”

It would not be appropriate in this book to develop the fundamentals of
linear algebra. The preceding section on the two-dimensional case can be
approached from a naive point of view. It serves as a motivation and
concrete realization of some of the more abstract concepts we need.
The reader of this section should already be familiar with the notions of
vector space, linear function, linear dependence, and basis. Any linear
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algebra book covers these notions. The books of Hoffman—Kunze [19],
Nomizu [26], and Banchoff—Wermer [3] are recommended.

For convenience we collect some definitions and facts here.

Definition. Let S be a subset of a vector space V.

An element of V that is a sum of finitely many elements that are
multiples of elements of S is said to be a linear combination from S. The
set of such linear combinations is called the span of S and is denoted by
[S]. A typical linear combination would have the form

X = K,‘U,'. (D.ll)

or

where {v;} C S and {\;} C R. If the \; are not all zero, we speak of a
nontrivial linear combination.

S is a linearly dependent set if the zero vector can be written as a
nontrivial linear combination from S. Otherwise, S is linearly indepen-
dent.

Remark:

If S contains the zero vector, then § is linearly dependent because
0 = A\, where A} = 1, v; = 0.

If S contains two proportional vectors, then S is linearly dependent. If
v = kw, then v + (—k)w = 0.

Definition. A set S is a basis for V if every element of V can be expressed
uniquely as a linear combination from S; that is, S is a linearly independent
set spanning V.

Definition. Let n be a positive integer. A vector space V is said to be
n-dimensional if it has a basis with n elements.

Remark: For each positive integer n, R" is an n-dimensional vector space.
A basis is given by £; = (1,0,0, ...,0),& = (0,1,0, ..., 0), and so on.
This is called the standard basis of R".

Theorem 4D. Let V be an n-dimensional vector space. Then

i.
ii.
ii.
iv.
v.

Every basis for V consists of n elements.

Every linearly independent set of cardinality n is a basis.
Every set of cardinality n that spans V is a basis.

Every linearly independent set is a subset of some basis.
Every spanning set contains some basis.




Matrices and linear functions
I
Let f: V— V be a linear function from an n-dimensional vector space V to
itself. If {e;} is a basis of V, the matrix of f with respect to V is the matrix
whose columns are the vectors f(e;) expressed with respect to the basis {e;}.
In other words, if

' n
fle) = ¥ aje;, (D.12)
j=1
then the matrix A = [a;] is the matrix of f. If {¢;} is another basis for V, we
. may write

é,- = 2 p,~,e,-. (D13)

i=1
| If A is the matrix of f with respect to {¢;}, then

A= PTAP, (D.14)
Remark: Let A be an n X n matrix. As before, set T4x = Ax for x € R".

- Then A is the matrix of T, with respect to the standard basis {e;}.
- Theorems 1D and 2D hold true in the n-dimensional case as well.

The set of all linear bijective functions of R" — R" is a group denoted by
GL(n) (the general linear group). The group of all invertible n X n matrices
- with matrix multiplication as the group operation is essentially the same
thing. It is not so easy to write down the inverse of a matrix explicitly,
however.

Multilinear functions

: Definition. Ler V be a vector space, and let k be a positive integer. A

| k-linear function on V is a function

] fvEs R

|

’ that is linear in each variable separately. (V* denotes the Cartesian product
of k copies of V.) In other words, for each choice (vy, vy, . .., v) € V¥ the

. mapping

\

v_)f(vla Vo, «oes Viegy Uy Viggy - v vy vn)

is linear.

A function that is k-linear is sometimes said to be multilinear of degree k.
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A k-linear function is said to be symmetric if its values are unchanged
when its arguments are permuted. It is said to be alternating if its values are
unchanged in magnitude when its arguments are permuted but the signs
change according to the sign of the permutation.

Remark: A multilinear function is determined by its values on any basis.
For example, if f is a two-linear function on R? and {e,, e,, €3} is a basis,
the values of f are determined by the 3 X 3 matrix [f(e;, ¢)]. If fis
symmetric, then f(e,, e;) = f(e,, €;), and so on, so the matrix is symmetric.
On the other hand, if f is alternating, f(e,, €;) = 0, f(e;, ;) = —f(e1, €),
and so on. The matrix is skew-symmetric.

Remark:

i. The inner products defined on R? and R? are examples of two-linear
(or bilinear) functions. These functions are symmetric. Symmetric
bilinear functions are also used to define polarities in Chapter 5 and
the hyperbolic plane in Chapter 7.

ii. The determinant, considered as a function on the columns of a 2 X 2
matrix is bilinear and alternating. Because a bilinear, alternating
function on R? is determined by f(g,, €,), the determinant can be
characterized as the unique bilinear alternating function on R? satis-
fying f(g,, €;) = 1.

Determinants
The preceding remark leads to the following definition.

Definition. Let A be an n X n matrix. Let {v,, vy, ..., v,} be the columns
of A. Then its determinant det A is the value on (vy, ..., v,) of the unique
n-linear alternating function that assigns the value 1 to (g, €,, ..., €,).

Theorem 5D. The determinant function satisfies the following identities:
i. det(AB) = det A det B.

ii. det(/) = 1.

iii. det(A~') = 1/det A.

iv. det(A’) = det A.

Proof: See Nomizu [26], Theorems 6.8 and 6.10. O
Corollary. The determinant of the matrix of a linear function T: V — V is

independent of the choice of basis. Thus, we can define det T without
ambiguity.




eorem 6D.
Let T: V — V be a linear function from an n-dimensional space V to
itself. Then T is a bijection if and only if det T # 0.
Let A be an n X n matrix. Then the columns of A are a basis for R" if
and only if det A # 0.

emark: This shows that GL(n) is the set of all linear mappings of
" - R" having nonzero determinant. The subset having determinant
qual to 1 is a subgroup called the special linear group and denoted by
L(n). The group SL(3) is used in discussing the collineations of the
rojective plane in Chapter 5.

igenvectors and eigenvalues

n geometry we are often interested in computing fixed points and fixed
nes of geometric transformations. In what follows, V is an n-dimensional
ector space.

efinition. Let T: V — V be linear. A nonzero vector x € V is said to be an
igenvector of T if Tx is proportional to x. The number \ such that
X = \x is the associated eigenvalue.

Note that Tx = Ax is the same as (T — AM)x = 0, where [ is the identity
unction. We are thus led to consider the characteristic polynomial of T,
amely,

char () = det(T — ). (D.15)

Dne can verify that this is a polynomial of degree n in the variable . To find
n eigenvector x, find a value of ¢ for which det (7 — ¢/) = 0. Then, because
[ — tl is not injective, such an x exists.

In general, the theory of eigenvectors is complicated. Each root of the
haracteristic polynomial gives an eigenvalue. However, one eigenvalue
an correspond to a many-dimensional space of eigenvectors. In our case,
owever (dimensions 2 and 3), we can explicitly determine the eigenvalues
ind eigenvectors without much trouble. (See Theorem 4.24.)

Representing linear functions

Let b be a bilinear function on R”. Choose any vector £ € R" and consider
the function

he: R" - R
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defined by
hg(x) = b(§, x). (D.16)

Clearly, h is linear. In fact, this is (in part) what it means for b to be
bilinear. Of course, h could be the zero function. This will happen
obviously if £ = 0.

Definition. The bilinear function b is degenerate if there is some nonzero
& such that hg is identically zero. Otherwise, b is said to be nondegenerate.

Theorem 7D. Let {e;} be any basis for R". If b is a nondegenerate bilinear
function, then the matrix B = [b(e;, e;)] is invertible.

Proof: Suppose not. Then there are numbers &, . . ., &, (not all zero) such
that

£l

b(e;, ¢))&; = 0 for all j;
1

that is, b(§, ¢) = 0 for all j. This implies that h; = 0, contradicting
nondegeneracy. O

Theorem 8D. Let b be a nondegenerate bilinear function on R”". Lel
f: R" — R be linear. Then there is a unique vector £ € R" such that f = hg;
that is, f(x) = b(§, x) for all x € R".

Proof: Let {e;} be a basis for R". Consider the equations

2 b(e,-, e,-)§,~ = f(e,'), i = 1, 2, siaiiein b (D.17)

These equations may be rewritten BE = m, where n = ), f(e;)e;. But now
i=1
using the fact that B is invertible, we have £ = B~ 'v. Thus, we have taken
the original b and f, produced B and m, and £ = B~ 'v. It is easy to verify
that with this value of &, h; = f as required.
For uniqueness, note that if h; = hg, then he_¢ = 0. By nondegeneracy,
E=¢. -

The results of this theorem are used in Theorem 4.1.




Proof of Theorem 2.2

In this appendix we provide a detailed proof that every (affine) collineation
of E? is an affine transformation. This is Theorem 2 of Chapter 2. In order
to make this appendix self-contained, we restate the definitions.

Definition. A collineation is a bijection T: E* — E? satisfying the condition
that for all triples P, Q, and R of distinct points, P, Q, and R are collinear if
and only if TP, TQ, and TR are collinear.

Definition. A mapping T: E* — E? is called an affine transformation if
there is an invertible 2 by 2 matrix A and a vector b € R? such that for all
x e R% Tx = Ax + b.

Given a collineation 7, we may use Theorem 2.8 to find an affine
transformation S that has the same effect on 0, €;, and €,. Then S ™' Tis a
collineation that leaves 0, ¢,, and e, fixed. If we can prove that S™'7 must
be the identity, we will be finished.

Before stating the main result, we prove two lemmas.

Lemma 1. Let f be a collineation with f(0) = 0. If vand w are nonpropor-
tional vectors, then

flv + w) = flv) + fiw).

Proof: Because v + w is the intersection of € = v + [w] and » = w + [v],
f(v + w) must be the intersection of f(€) and f(#2). On the other hand, f(£)
passes through f(v) and is parallel to f([w]) = [f(w)], whereas f(s) passes
through f(w) and is parallel to [f(v)]. Because f(v) + f(w) satisfies both of
these conditions, it must be the unique point of intersection of f(£) and
f(s). Thus, f(v + w) and f(v) + f(w) are the same point.
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Remark: Lemma 1 is used in the proof of Theorem 1E. Our proof relies
on the fact that € and » are not parallel. Once we have proven the main
result of this appendix, we will see that Lemma 1 holds true without the
restriction on v and w.

Lemma 2. Let ¢: R — R be a bijection satisfying the conditions

o(s + 1) = @(s) + @(1), ¢(st) = @(s)e(r)

for all real s, t. Then ¢ is the identity function.

Proof:  First, note that the given conditions imply that ¢(0) = 0, ¢(1) = 1.
Furthermore, ¢(—1) = —1. We can prove easily by induction that
¢(n) = n for all positive integers n, and, hence, ¢(—n) = ¢((—1)n) =
¢(—1)¢(n) = —n. Now if ¢ = m/n is a rational number, ¢(m) = ¢(nq) =
¢(n)¢(q), so that ¢(q) = m/n. We conclude that ¢ is the identity on rational
numbers.

Next, we show that ¢ must preserve order in R. First, if a is positive,
then a = b? for some real number b. Then

¢(a) = ¢(b*) = (¢(b))* > 0.
Now, if t > s, then t — s > 0, so that
0 <ot —s) = o) + ¢(—s) = ¢(t) — ¢(s).

Suppose now that for some real number ¢, we have ¢(f) > t. Choose a
rational number g between ¢ and ¢(¢) so that

t< q < o).
Because ¢ preserves order, we must have
o) < ¢(g) = q,

which is a contradiction. We are forced to conclude that @(f) > f can never
occur. The condition ¢(f) < ¢ would lead to the same conclusion. Hence,
¢(f) = t, and ¢ is the identity. O

Theorem 1E. Let f be a collineation such that f(0) = 0, f(e,) = &,, and
f(e2) = €5. Then f is the identity.

Proof: Because the x;-axis is a fixed line, there is a function ¢ such that
f(te,) = @(t)e, for all real r. Similarly, there is a function  such that
f(tes) = W(f)e,. But now, f(te, + te;) = @(f)e; + W(f)e,. Because the line
X, = x; is fixed, we must have ¢ = . But now

flte, + se2) = f(te)) + f(se2) = o(t)e; + @(s)e,. (E.1)

In particular, for real m




fler + mey) = g + @(m)ey,
flxe, + xmey) = @(x)e; + @(xm)e,.
Because (1, m), (x, xm), and (0, 0) are collinear, so are (1, ¢(m)),
(¢(x), @(xm)), and (0, 0). Thus, ¢(xm) = ¢(x)¢(m). In particular,
(e(=1))* = ¢(1) = 1, so that (—1) = —1.
We will now show that ¢ also satisfies the identity
ot + 5) = o(1) + o(s). (E.2)

First, note that

fl(t + s)ey) = @(t + s)e;.
On the other hand,
flte, + se1) = f(te, + se; + se; — s¢,)
= f(te, + se;) + f(se; — s€3)
by Lemma 1, provided that t # —s. Again applying Lemma 1, we see that
this quantity is equal to
flte)) + flsez) + flser) + f(—sez)
= o(ey + ¢(s)e2 + @(s)e1 + @(—s)e2
e(Ne1 + ¢(s)e
because ¢(—s) = ¢(—1)o(s) = —¢(s). This completes the proof of (E.2).

An application of Lemma 2 shows that ¢ is the identity. Hence, by (E.1),
fis the identity. O

Corollary (Theorem 2.2). Every collineation of E? is an affine transforma-
tion.

Proof of Theorem 2.2
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Trigonometric and
hyperbolic functions

In this appendix we collect the facts about a special class of functions — the
trigonometric and hyperbolic functions — that we use in our geometrical
work. A rigorous treatment based on the fundamental properties of the
real number system can be found in Kitchen [20] pp. 385-439 or Lang [21],
pp. 65-77.

Sine and cosine

The cosine function is the unique function satisfying the differential
equation
f'x) + flx) =0, fl0) =1, f(0)=0.
The sine function is the unique solution to
f'x) + flx) = 0, f(0) =0, f(0) = 1.

These functions have domain R and range [—1, 1]. Their graphs are
shown in Figure F.1. (The words “sine”” and ‘“‘cosine” are usually abbrevi-
ated sin and cos.) The smallest positive number x such that sin x = 0 is the

0, 1)

N\ AREAN AW
\VARVEERY IRV,
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Figure F.1 (a) The cosine function (b) The sine function.




familiar number . In fact, this could be used as the definition of . The Trigonometric and

following identities are satisfied by these functions: hyperbolic functions
cos(8 + ¢) = cos 6 cos ¢ — sin 6 sin o,
(F.1)
sin(6 + ¢) = sin 6 cos ¢ + cos O sin ¢.
cos(—0) = cos 8, sin(—0) = —sin 6, (F.2)
cos’ 0 + sin® 6 = 1. (F.3)
From these, we can easily deduce
cos(6 — ¢) = cos 6 cos ¢ + sin 0 sin ¢,
in (0 ) in 6 0 si (F.4) (=1,m)
s — ¢) = sin 6 cos ¢ — ¢ sin ¢,
in ¢ i S @ os 0 sin ¢ \ . g)
cos 20 = cos’> 0 — sin” @ = 2cos> 0 — 1 = 1 — 2sin? 0, ) \
sin 26 = 2sin 6 cos 6. (1,9

The cosine function is decreasing on the interval [0, «]. It is thus a
bijection of [0, w] onto [—1, 1].
The inverse bijection is called the arccos or cos™" function. Its graph is

shown in Figure F.2. Note that u = cos™ v if and only if v = cos u and Figure F.2 The arccos function.
O<us=m

Theorem 1F. Let a and b be numbers such that a*> + b> = 1. Then there is a
unique number 0 in (—w, w| such that a = cos 0 and b = sin 6.

Proof: Let u = cos ~' a. Then cos u = a. Also sin u = (1 — cos? u)? =
(1 — a®"2 = |b|. Note that u € [0, 7). If b > 0. choose 6 = u. Otherwise,
choose 8 = —u. Then cos § = a and sin 6 = b. For uniqueness, note that
any solution 6 lies in (=, 0) if b < 0 and in (0, =) if b > 0. Because the
cosine function is injective on each of these intervals, only one value of 0 is
possible. When b = 0, 6 must be —m or 0. One of these is correct for a =
—1; the other is correct fora = 1. O

Theorem 2F. cos™' a + cos™ (—a) = = for all a € [—1, 1].

Proof: We compute

cos(m — cos™'(—a)) = (cos w)(—a) + (sin =) sin(cos™!(—a))

= (=1)(-a) = a.
Because w — cos™' (—a) is a number in [0, 7] whose cosine is equal to a,
we must conclude that it is equal to cos ™' a. O

The following lemma is used in Chapter 4 to establish uniqueness of
parametrizations of lines of S2. 207
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Figure F.3 The hyperbolic sine.

L/

0, 1)

Figure F.4 The hyperbolic cosine.

P

(1,0)

Figure F.5 The arccosh function.
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Lemma. Ler aft) = (cos ¢, sin t). Suppose that I and I' are closed intervals
of length < 2w such that a(l) = o(I'). Then I = I' mod 2.

Proof: Moving each interval by a multiple of 2m if necessary, we may
assume that I = [a, b] and I' = [a’, b'], where 0 < a, a’ < 2w. Note that
a' < b, because, otherwise, b < a’ < 2w and a(a’) cannot be in a(l). By
symmetry we also have a < b’'.

Assume now that @ < a’. Choose u > 0 so that u < @' — a and
u<2m—(b"—a'"). Thena < a' — u < b, so there is a number ve I’ such
that a(a’ — u) = a(v). This implies that @’ — u = v mod 2w, which is
impossible in light of the inequalities

a —u<a <v and a —u>>b - 2w =v - 2.

By symmetry, a’ < ais also impossible, soa = a’. O
ysy y p

Sinh and cosh

The hyperbolic cosine function cosh is the unique function satisfying

f'x) = fix) =0, f(0)=1, f(0) =0,

and the hyperbolic sine function sinh is determined by

f'x) = fix) =0, f(0)=0, f(0)=1

The hyperbolic sine is a bijection of R onto R whose graph is shown in
Figure F.3; cosh maps R onto [1, =), is decreasing on (=, 0], and
increasing on [0, ). Its shape is that of the familiar “hanging cable.” See
Figure F.4. The following identities are satisfied:

cosh(u + v) = cosh u cosh v + sinh u sinh v,

(F.6)
sinh(u + v) = sinh u cosh v + cosh u sinh v,
cosh(—u) = cosh u, sinh(—u) = —sinh u, (F.7)
cosh? u — sinh? u = 1. (F.8)
From these follow
cosh(u — v) = cosh u cosh v — sinh u sinh v, F9)
sinh(u — v) = sinh u cosh v — cosh u sinh v, '
and
cosh 2u = cosh? u + sinh® u
= 2cosh’ u — 1 = 1 + 2sinh? u,
(F.10)

sinh 2u = 2sinh u cosh u.




Vhen restricted to the interval [0, =), cosh provides a bijection of this
nterval onto [1, «). The inverse bijection is called the arccosh or cosh™!
unction. See Figure F.5. Note that u = cosh™'v if and only if v = cosh u
nd u = 0. The domain of cosh™ is [1, ®).

‘heorem 3F. Let a and b be numbers such that a*> — b*> = 1. Then there is a
inique number u such that a = *cosh u and b = sinh u.

>roof: Because sinh is a bijection, the equation b = sinh u has a unique
olution. For this value of u, cosh? u = 1 + sinh> u = 1 + b* = @, so
osh u = *a as required. a

Trigonometric and
hyperbolic functions
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AAA congruence theorem, 117, 182
abelian group, 23, 27, 73, 95, 189
absolute geometry, 3
acute angle, 51
affine
geometry, 3, 39-50, 203-5
group, 42, 130
plane, as subset of P2, 127-9
reflection, 44-6
symmetry, 49
transformation (collineation), 39, 67, 203
alternate angles, 64
alternating k-linear function, 200
analytic geometry, 3, 5
angle, 50, 107, 147,171, 184
acute, 51
addition, 60, 113, 172
bisector, 51, 112, 182
obtuse, 51
of parallelism, 183
radian measure of, 51, 108, 123, 147, 171
right, 51
straight, 51
sum (for triangle), 66, 181-2
symmetry group of, 56, 72
zero, 51
antipodal
map, 99, 122
points, 89
arms of angle, 51, 112
asymptotic triangle, 174, 182
axiomatic approach, 5, 12, 184
axis
of glide reflection, 29
of symmetry, 19
of shear, 46

barycentric coordinates, 58, 68
basis, 14, 195, 198

change of, 199

orthonormal, 14, 86, 137, 151
Beltrami, E., 3
betweenness, 12, 43, 157, 184
bijection, 186

bilinear function, 9, 150, 200-2
bisector of angle, 51, 112
Bolyai, J., 2

calculus, 4, 173
cardinality, 186
Cauchy-Schwarz inequality, 10, 32, 86, 90,
142, 1524
center
of dilatation, 47
of rotation, 37
central dilatation, 47, 134
centroid, 54, 63
change of basis, 199
characteristic polynomial, 98, 201
circle, 21, 178, 183
classification of isometries, 31-3, 100,
143-6, 176-8
closure property, 190
collinear points, 14
collineation, 39, 129, 203, see also
projective collineation
common perpendicular, 23, 147, 155
commutative law, 189
complementary segments, 105
complex structure, 78, 196
composition of functions, 186
concurrence theorems, 116, 149
concurrent lines, 14
congruence, 21, 65, 111, 149, 176, 184
congruent
angles, 64
segments, 68, 114
triangles, see AAA, SAS, SSS
congruence theorems
conic, 135
conjugate
lines and points, 134-5, 162
subgroups, 72
coordinate vector, 8
coordinates
barycentric, 58, 68
homogeneous, 125
coset, 190-1

cosh (hyperbolic cosine), cosh ™' functions,
208-9
cosine (cos), cos ' functions, 206
Coxeter, H.S.M., 7, 44, 126
cross product, 85, 136
crossbar theorem, 59, 123, 181, 184
cut point, 147
cyclic
group, 71, 118
permutation (cycle), 63, 187

defect of triangle, 181
Desargues’ theorem, 126, 129
Descartes, R., 3
determinant, 85, 97, 137, 195, 200
diagonal points of quadrangle, 128
diagrams, 89, 138, 163
differential geometry, 3, 147
dihedral group, 72, 118
dilatation, 47-8, 134
direction, 11
vector, of line, 12
vector, of ray, 50, 171
disk model of hyperbolic plane, 162-3
distance, 11, 90, 141, 150, 157
point to line, 17, 116, 156
domain of function, 186
Donkin’s theorem, 148
dropping perpendicular, 17, 92, 115, 148,
156, 184

eigenvalue, 37, 98, 201
eigenvector, 41, 98, 201
Einstein, A., 4, 150
elation, 50, 133
elliptic geometry, 141-9
empirical geometry, 5
end points of segment, 13, 103, 146, 171
equation of

circle, 178

conic, 135

equidistant curve, 178

horosphere, 178

line, 15, 36, 68, 125, 154
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equiangular quadrilateral, 175, 182
equidistant curve, 178
equilateral triangle, 21. 62
equivalence
class, 124, 188
relation, 188
erecting perpendicular, 17,92, 148, 156
Euclid, 1
postulates of, 2
Euclidean
geometry, 11-38, 50-69
plane, 11
Euler’s theorem, 98
excess of triangle, 182
exterior of conic, 162
Ewald, G., 184

figure, 19
rectilinear, 52, 109, 173
finite groups of isometries, 71-83, 118
fixed
line, 34,40-2, 101, 132-3, 145, 169, 201
point, 20, 33, 101, 132-3, 145, 160, 169,
201
point, of group, 75
foot of perpendicular, 17, 116, 148, 156
function 186, see also bijection, domain of
function, image of function, injective
function, surjective function
fundamental theorem
of affine geometry, 43, 131
of projective geometry, 130

Galilean geometry, 69
Gauss, C.F.,2,5
general linear group, 43, 130, 194, 199
geometrically equivalent groups, 72
glide reflection, 29, 96, 160, 166
Greenberg, M.J., 7,12, 184
group 189
dodecahedral, 118
generated by set, see subgroup
icosahedral, 118
Klein four-group, 57, 72
octahedral, 118
order of, 190
orthogonal, 28, 97
projective, 129
of similarities, 49
symmetric, 62
tetrahedral, 118
of transformations, 189
see also cyclic group, dihedral group

half-line, 105

half-plane, 59, 68, 107, 147, 171, 184
half-turn, 27, 37, 48, 102, 121, 145
harmonic homology 134

Heron'’s theorem, 70

Hilbert, D, 3,5, 184
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Hjelmslev's thecorem. 68, 182
homogeneous coordinates, 125
homology. 50, 133
homomorphism, 191
horocycle, 179
hyperbolic

functions, 208-9

geometry, 3, 154-83

trigonometry, 174
hyperboloid, 154

identity
function, 187
group element, 189
image of function, 186
incidence, 12, 89, 124, 128, 154, 163, 184
index of subgroup, 191
injective function, 186
inner product, 9, 150
interior
of angle, 59, 107, 147, 149, 172, 184
of conic, 162
of segment, 13, 103
of triangle. 61, 149, 173

intersection of lines, 13, 36, 90, 138, 155, 162

inverse 187, 189

invertible matrix, 39, 195, 201

involution, 20, 122, 187

isometry, 20, 100, 143, 159
group, 21, 30, 100, 143, 176-8

isomorphic groups, 72, 191

isosceles triangle, 21, 62, 66

kernel of homomorphism, 191
Klein, F., 3-4

four-group, 56, 72

model of hyperbolic plane, 162-3
Kligel, G.S.,2

Lagrange identity, 86
Lambert quadrilateral, 175, 177
Law of Cosines, 65, 108, 174
Law of Sines, 109, 174
Legendre, A., 2
length, 9, 103, 146, 171
Leonardo da Vinci, 3
theorem of, 75
Lie,S.,5
group, 5
lightlike vector, 151
line, 11, 89, 124,150, 154
atinfinity, 128
of symmetry, 19
linear algebra, 193-202
combination, 172, 198, 195
dependence, 198
function, 193, 199
Lobachevsky, N.I., 2
Lorentzian geometry, 174
lune, 107

magnification factor, 48
major segment, 105
matrix of linear transformation, 199
median, 21,63
midpoint, 13, 111, 149, 171
minor segment, 105
motion, 31,96, 95, 145, 160, 167-9
multilinear function. 199
multiplication table

of Klein four-group, 56

of 0(2), 28

of REF(#), 25

of §,, 62

natural homomorphism (projection), 74,
188, 192

Nomizu, K., 174, 200

nondegenerate bilinear function, 202

nonorientability of P, 124

normal vector, 14, 154

obtuse angle, 51
one-to-one, see injective function
onto, see surjective function
opposite
half-planes, 59
rays, 51
sides of line, 59
orbit 74, 118-19, 178
order of group, 190
ordered geometry, 3
origin of ray, 50, 107, 146, 171
orthogonal
group, 28, 97
matrix, 97
transformation, 93, 96
vectors, 14
orthonormal basis (pair, triple), 14, 86,
122, 137, 151

Pappus’ theorem, 127
parallel
displacement, 160, 163, 180
lines, 17, 155, 162
parallelogram, 82, 129
parametrization of lines, 12,91, 157, 171
Pasch’s theorem, 69, 184
pencil
of lines through point, 28, 156
of parallels, 23, 156, 164
of ultraparallels, 156, 164
permutation, 187
perpendicular
bisector of segment, 17, 38, 111, 148, 171
lines, 16, 92, 155, 162, 185
points, 124
perspective collineation, 133
perspectivity, 138
plane, 87
Platonic solids, 117



point, 8, 124, 154
of contact, 136
polar line, 134
polarity, 134
polarization identity, 32, 37
pole
of line, 89, 124, 134, 163
of rotation, 118
polygon
regular, 76, 176
regular, symmetry group of, 80
projective
collineation, 129-34
geometry, 3, 124-40
group, 129
plane, 124
projectivity, 138
proportional vectors, 10, 197
Pythagoras’ theorem, 6, 16, 115

quadrangle, 128
quadrilateral, 175
quotient space (group), 188, 192

radian measure of angle, 51, 108, 123, 147,
171
ray, 50, 107, 146, 171, 184
rectilinear
completion, 52
figure, 52, 109, 123, 183
reflection, 19, 92, 145, 159, 184
reflexive relation, 188
regular polygon, 76-80, 176
relation, 187, see also equivalence relation,
reflexive relation, symmetry,
transitive relation
rhombus, 82, 175, 182
Riemann, G.F.B., 3,4
Riemannian manifold, 4
right angle, 51
rotation, 27, 94, 145, 160

Saccher; G., 2
quadrilateral, 175-6, 182
same side of line, 59

SAS congruence theorem, 65, 117, 182
scalene triangle, 62
Schlafli, L., 4
secant of conic, 136
segment, 13, 55, 68, 103, 146, 171, 184
self-conjugate lines, points, 135
self-polar triangle, 100, 137
shear, 46-7, 69
sign of permutation, 187
signature of bilinear form, 137
similarities, group of,, 49
similarity, 48
sine (sin) function, 206
sinh (hyperbolic sine) function, 208
slope of line, 35
spacelike vector, 151
spacetime, 7
span, 87, 198
special linear group, 201
special orthogonal group, 97-9, 143
spherical
geometry, 84-123
trigonometry, 108
square, 82
SSS congruence theorem, 65, 117, 182
stabilizer, 74, 118-19
standard basis, 32, 198
parametrization, 92
straight angle, 51
subgroup, 190
generated by set, 38, 73, 121, 190
index of, 191
normal, 191
subgroups, conjugate, 72
superposition, 65
supplementary angles, 60
surjective function, 186
symmetric bilinear (k-linear) function, 9,
134,200
symmetry, 19
axis (line) of, 19
bilateral 19
group, 21
group, of angle, 56, 72
group, of regular polygon, 80

Index

group, of segment, 55, 114
group, of triangle, 62, 72, 123, 171
synthetic approach, 44

tangent to conic, 136
three reflections theorem, 24, 28, 94, 96,
146, 161, 165, 166, 184
timelike vector, 151
transformations, groups of, 74, 189-90
transitive
group action, 65
relation, 188
translation, 22, 25, 95, 134, 145, 160, 165,
180
transpose of matrix, 97, 139, 200
transversal, 64
trapezoid, 129
triangle, 61, 126, 173
angle sum, 66, 172
congruence of, see SSS, SAS, AAA
congruence theorems
defect of, 181
equilateral, 62
inequality, 11, 90, 141, 158
isosceles, 62
of reference, 58
scalene, 62
symmetry group of, 62,72, 171
vertex of, 61
trigonometric functions, 206-8
turtle geometry, 76

ultraparallel lines, 155, 162
unit vector, 14, 151

vector, unit, 14, 151

vector triple product, 85, 137-8
vertex, 51, 61

Yaglom, .M., 69

zero

angle, 51
vector, 8

215



This book gives a rigorous treatment of the fundamentals of plane
geometry — Euclidean, spherical, elliptical, and hyperbolic — from an
analytic point of view. It serves several purposes, the most obvious one of
which-is to acquaint the reader with certain geometrical facts, namely, the
classical results of plane Euclidean and non-Euclidean geometry, congru-
ence theorems, concurrence theorems, classification of isometries, angle
addition, trigonometrical formulas, and the like. In this capacity, it serves
as an appropriate background for teachers of high school geometry.
However. its treatment is broader than that: It supplies students not only
with facts and an understanding of the structure of the classical geometries
but also with an arsenal of computational techniques and a certain attitude
toward geometrical investigations. It also provides a concrete and interest-
ing realization of concepts readers have encountered or will encounter in
their other mathematics courses. It aims to link classical and modern
geometry to prepare students for further study and research in group
theory, Lie groups, differential geometry, topology, and mathematical
physics. Although the formal mathematical prerequisites are minimal and
all the necessary background material is included in the appendixes,
readers will find that a familiarity with linear algebra and elementary
transcendental functions is helpful to using this book.

This book will be welcomed by students enrolled in senior undergradu-
ate courses as preparation for high school mathematics teaching or for
graduate work in differential geometry, topology, or computer graphics.

CAMBRIDGE
UNIVERSITY PRESS
www.cambridge.org

78-0-521-27635-1

51%>

9 '780521"2763



