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Preface

The purposes and general plan of this book are set forth

in the Introduction. Its practicability as a text has been tested

and proved through use during two years in freshman courses

in Princeton University. Each year it has been revised as a

result of suggestions not only by the members of the staff but

also by the students, who have shown keen interest and help-

fulness in the development of the project.

An unusual feature of the book is the presentation of co-

ordinate geometry in the plane in such manner as to lead readily

to the study of lines and planes in space as a generalization of the

geometry of the plane ; this is done in Chapter 2. It has been

our experience that the students have little, if any, difficulty in

handling the geometry of space thus early in the course, in the

way in which it is developed in this chapter.

We have also found that students who have studied deter-

minants in an advanced course in algebra find for the first time

in the definition and frequent use of determinants in this book
an appreciation of the value and significance of this subject.

In the preparation and revisions of the text the author has

received valuable assistance from the members of the staff at

Princeton in particular, Professors Knebelman and Tucker

and Messrs. Tompkins, Daly, Fox, Titt, Traber, Battin, and

Johnson ; the last two have been notably helpful in the prepa-
ration of the final form of the text and in the reading of the

proof. The Appendix to Chapter 1, which presents the relation

between the algebraic foundations of coordinate geometry and
axioms of Hilbert for Euclidean plane geometry, is due in the

main to Professors Bochner and Church and Dr. Tompkins,

particularly to the latter, at whose suggestion it was prepared
and incorporated. The figures were drawn by Mr. J. H. Lewis.

It remains for me to express my appreciation of the courtesy
and cooperation of Ginn and Company in the publication of

this book.

LUTHER PFAHLER EISENHART
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Introduction

Coordinate geometry is so called because it uses in the treat-

ment of geometric problems a system of coordinates, which
associates with each point of a geometric figure a set of num-
bers coordinates so that the conditions which each point
must satisfy are expressible by means of equations or inequali-

ties ordinarily involving algebraic quantities and at times

trigonometric functions. By this means a geometric problem is

reduced to an algebraic problem, which most people can handle

with greater ease and confidence. After the algebraic solution

has been obtained, however, there, remains its geometric inter-

pretation to be determined ; for^ttigdPfpblem is geometric, and

algebra is a means to its solution, not the end.
4 '

This method
was introduced by Rene Descartes in La Geometric, published
in 1636 ; accordingly coordinate geometry is sometimes called

Cartesian geometry. Before the time of Descartes geometric

reasoning only was used in the study of geometry. The advance

in the development of geometric ideas since the time of Descartes

is largely due to the introduction of his method.

Geometry deals with spatial concepts. The problems of

physics, astronomy, engineering, etc. involve not only space but

usually time also. The method of attack upon these problems
is similar to that used in coordinate geometry. However,

geometric problems, because of the absence of the time element,

are ordinarily simpler, and consequently it is advisable that the

student first become familiar with the methods of coordinate

geometry.
The aim of this book is to encourage the reader to think

mathematically. The subject matter is presented as a unified

whole, not as a composite of units which seem to have no

relation to one another. Each situation is completely analyzed,

and the various possibilities are all carried to their conclusion,

for frequently the exceptional case (which often is not pre-

sented to a student) is the one that clarifies the general case

the idea epitomized in the old adage about an exception and a

ix



Introduction

rule. Experience in analyzing a question fully and being careful

in the handling of all possibilities is one of the great advantages
of a proper study of mathematics.

Examples included in the text are there for the purpose of

illustration and clarification of the text ; there is no attempt to

formulate a set of patterns for the reader so that the solution of

exercises shall be a matter of memory alone without requiring

him to think mathematically. However, it is not intended that

he should develop no facility in mathematical techniques ; rather

these very techniques will have added interest when he under-

stands the ideas underlying them. The reader may at first have

some difficulty in studying the text, but if he endeavors to

master the material, he will be repaid by finding coordinate ge-

ometry a very interesting subject and will discover that mathe-

matics is much more than the routine manipulation of processes.

Since, as has been stated, coordinate geometry involves the

use of algebraic processes in the study of geometric problems
and also the geometric interpretation of algebraic equations, it

is important that the reader be able not only to use algebraic

processes but also to understand them fully, if he is to apply
them with confidence. Accordingly in Chapter 1 an analysis is

made of the solution of one and of two equations of the first

degree in two unknowns ; and in Chapter 2 are considered one,

two, and three equations of the first degree in three unknowns.

In order that the discussion be general and all-inclusive, literal

coefficients are used in these equations. It may be that most,
if not all, of the reader's experience in these matters has been

with equations having numerical coefficients, and he may at

first have some difficulty in dealing with literal coefficients. At
times he may find it helpful in understanding the discussion to

write particular equations with numerical coefficients, that is,

to give the literal coefficients particular numerical values, thus

supplementing illustrations of such equations which appear in

the text. However, in the course of time he will find it unneces-

sary to do this, and in fact will prefer literal coefficients because

of their generality and significance.

In the study of equations of the first degree in two or more
unknowns determinants are defined and used, first those of the



Introduction

second order and then those of the third and higher orders, as

they are needed. Ordinarily determinants are defined and
studied first in a course in algebra, but it is a question whether

one ever appreciates their value and power until one sees them
used effectively in relation to geometric problems.

The geometry of the plane is presented in Chapter 1 in such

form that the results may be generalized readily to ordinary

space and to spaces of four and more dimensions, as is done in

Chapter 2.

Some of the exercises are a direct application of the text so

that the reader may test his understanding of a certain subject

by applying it to a particular problem and thus also acquire

facility in the appropriate techniques ;
others are of a theoretical

character, in the solution of which the reader is asked to apply
the principles of the text to the establishment of further

theorems. Some of these theorems extend the scope of the

text, whereas others complete the treatment of the material

in the text.

Of general interest in this field are A. N. Whitehead's

Introduction to Mathematics, particularly Chapter 8, and E. T.

Bell's Men of Mathematics, Chapter 3.





COORDINATE GEOMETRY

CHAPTER 1

Points and Lines in the Plane





1. The Equation of tKe First Degree in x and y

In his study of algebra the reader has no doubt had experi-

ence in finding solutions of equations of the first degree in two

unknowns, x and y, as for example x 2y + 3 = Q. Since we
shall be concerned with the geometric interpretation of such

equations, a thorough understanding of them is essential. We
therefore turn our attention first of all to a purely algebraic

study of a single equation in x and j>, our interest being to find

out what statements can be made about a general equation
of the first degree, which thus will apply to any such equation
without regard to the particular coefficients it may have. Ac-

cordingly we consider the eqtiation

(1.1) ax + by + c = 0,

where a, &, and c stand for arbitrary numbers, but definite in

the case of a particular equation. We say that a value of x and
a value of y constitute a solution of this equation if the left-

hand side of this equation reduces to zero when these values

are substituted. Does such an equation have a solution what-

ever be the coefficients? The question is not as trivial as may
appear at first glance, and the method of answering it will serve

as an example of the type of argument used repeatedly in later

sections of this book.

We consider first the case when a in (1.1) is not equal to

zero, which we express by a ^ 0. If we substitute any value

whatever for y in (1.1) and transpose the last two terms to

the right-hand side of the equation, which involves changing
tbeir signs, we may divide through by a and obtain the value

K -_ y . fkjg vaiue of K ancj the chosen value of .y satisfy
a

the equation, as one sees by 'substitution ; hence any value of

y and the resulting value of x constitute a solution. Since y

may be given any value and then x is determined, we say that

when a ^ there is an endless number of solutions of the equation.

The above method does not apply when a = 0, that is, to

the Aquation x + by + c = 0,

since division by zero is not an allowable process. The reader

may have been told that it is allowable, and that any number,

3



Points and Lines in the Plane [Chap. 1

for example 2, divided by zero is infinity ; but infinity defined

in this manner is a concept quite different from ordinary num-

bers, and an understanding of the concept necessitates an ap-

propriate knowledge of the theory of limits. If now 6^0, the

above equation may be solved for y ; that is, y = c/b. For

this equation also there is an endless number of solutions, for

all of which y has the value c/b and x takes on arbitrary

values. Usually the above equation is written by + c = 0,

which does not mean that x is equal to zero (a mistake fre-

quently made), but that the coefficient of x is zero.

If b 7* 0, no matter what a is, equation (1.1) may be solved

for y with the result y =
ax

~^~

c<
> the value of y corresponding

to any choice of x being given by this expression. Hence we
have the theorem

[1.1] An equation of the first degree in two unknowns in which

the coefficient of at least one of the unknowns is not equal to

zero has an endless number of solutions.

There remains for consideration the case when a and
6 = 0; that is, the equation

Evidently there are no solutions when c ^ 0, and when c =
any value of x and any value of y constitute a solution. The
reader may say that in either case this is really not an equation
of the first degree in x and y, and so why consider it. It is true

that one would not start out with such an equation in formu-

lating a set of one or more equations of the first degree to ex-

press in algebraic form the conditions of a geometric problem,
but it may happen that, having started with several equations,

and carrying out perfectly legitimate processes, one is brought to

an equation of the above type ; that is, equations of this type do
arise and consequently must be considered. In fact, this situation

arises in 9, and the reader will see there how it is interpreted.

However, when in this chapter we are deriving theorems con-

cerning equations of the first degree in x and y, we exclude the

degenerate case when the coefficients of both x and y are zero.

4



Sec. 1] The Equation of the First Degree in x and y

Any solution of equation (1.1) is also a solution of the

equation k(ax + by + c)
= 0, where k is any constant different

from zero. Moreover, any solution of this equation is a solu-

tion of (1.1) ; for, if we are seeking the conditions under which

the product of two quantities shall be equal to zero and one of

the quantities is different from zero by hypothesis, then we must
seek under what conditions the other quantity is equal to zero.

Accordingly we say that two equations differing only by a con-

stant factor are not essentially different, or are not independent,

or that the two equations are equivalent. In view of this dis-

cussion it follows that a common factor, if any, of all the co-

efficients of an equation can be divided out, or the signs of

all the terms of an equation can be changed, without affecting the

solutions of the equation processes which the reader has used

even though he may not have thought how to justify their use.

It should be remarked that the values of the coefficients in

equation (1.1) are the important thing, because they fix y when
x is chosen and vice versa. This is seen more clearly when
we take a set of values xi, y\ and seek the equation of which

it is a solution ; this is the inverse of the problem of finding

solutions of a given equation. Here the subscript 1 of Xi and

y\ has nothing to do with the values of these quantities. It is a

means of denoting a particular solution of an equation, whereas

x and y without any subscript denote any solution whatever.

If xi and yi is to be a solution of (1.1), the coefficients a, b,

and c must be such that

(1.2) axi + byi + c = 0.

On solving this equation for c and substituting in (1.1), we
obtain the equation

(1.3) ax + by - axi - byi = 0,

which is of the form (1.1), where now c is (axi + by\}, a con-

stant for any values of a and b, x\ and y\ being given constants.

When equation (1.3) is rewritten in the form

(1.4) a(x
-

*i) + b(y
-

yi) = 0,

it is seen that x = xi and y = yi is a solution of (1.3) whatever

be a and 6. Since a and b can take any values in (1.4), we see

5



Points and Lines in tKe Plane [Chap. 1

that an equation of the first degree in x and y is not completely
determined (that is, a, b, and c are not fixed) when one solution

is given.

Suppose then that we require that a different set of quan-

tities, x2 and >>2, be also a solution, the subscript 2 indicating

that it is a second solution. On replacing x and y in (1.4) by
#2 and y2 , we obtain

(1.5) a(x2
-

xi) + b(y2
-

yi) = 0.

Since we are dealing with two different solutions, either X2 ^ x\

or 3/2 7* y\ ; we assume that x2 ^ x\ and solve (1.5) for 0, with

the result

(1.6) a =

On substituting this value of a in (1.4), we obtain

This equation is satisfied if b 0, but then from (1.5) we have

a(x2 Xi) = 0. Since #2 ^ #1, we must have a = 0, contrary to

the hypothesis that a and b are not both equal to zero. There-

fore since b cannot be zero, it may be divided out of the above

equation, and what remains may be written

Multiplying both sides by #2 x\, the resulting equation may
be written

(1.8) (y2
-

yi)x
-

(x2
-

xi)y + (x2yi
-

Xiy2 )
= 0,

which is of the form (1.1), since *i, y\, x2 , and y2 are fixed

numbers.

Thus far we have assumed that x2 ^ x\ ; if now x2 = xi we
cannot have also y2 = y it since the two solutions are different,

and consequently from (1.5) we have b = 0. In this case equa-
tion (1.4) becomes a(x #1) = 0. We observe that this equa-
tion differs only by the constant factor a from x Xi = 0.

And the same is true of the form which (1.8) takes when

6



Sec. l] The Equation of the First Degree in x and y

we put #2 = Xi, namely, (jy2 y\)(x *i) = 0. But we have
remarked before that a common factor of all the coefficients

does not affect the solutions of the equation.

Accordingly we have the theorem

[1.2] Equation (1.8) is an equation of the first degree in x and y
which has the two solutions x\, y\ and *2 , y*.

We say "an equation" and not "the equation" because any
constant multiple of equation (1.8) also has these solutions ; in

this sense an equation is determined by two solutions to within

an arbitrary constant factor.

As a result of the discussion leading up to theorem [1.2] we
have the theorem

[1.3] Although an equation of the first degree in x and y admits

an endless number of solutions, the equation is determined

to within an arbitrary constant factor by two solutions, that

is, by two sets of values of x and y; for the solutions x\, y\

and X2, yz the equation is equivalent to (1.8).

NOTE. In the numbering of an equation, as (1.5), the number pre-

ceding the period is that of the section in which the equation appears,

and the second number specifies the particular equation. The same

applies to the number of a theorem, but in this case a bracket is used

instead of a parenthesis.

EXERCISES

1. What values must be assigned to a, b, and c in equation (1.1) so

that the resulting equation is x = ; so that it is equivalent to this

equation?

2. Find two solutions of the equation

(i) 2x-3;y + 6 = 0,

and show that equation (1.8) for these two solutions is equivalent to

equation (i).

3. Show that the equation *-2;y + 3 = does not have two dif-

ferent solutions for both of which x = 2 ; find an equation of the first

degree in x and y for which this is true.

7



Points and Lines in the Plane [Chap, l

4. Show that it follows from (1.1) and (1.8) that

a : b : c = y 2
-

y\ : *i - x 2 : x 2yi
-

Xiy 2 ,

where xi, y\ and x2t y2 are solutions of (1.1).

5. Criticize the following statements :

a. In obtaining solutions of an equation ax + by + c = Q t x may
take any value if a = 0, and only in this case.

b. x 3 = 0, as an equation in x and y, has the solution x = 3,

y = 0, and this is the only solution.

2. Cartesian Coordinates in the Plane

Having studied equations of the first degree in two unknowns,
we turn now to the geometric interpretation of the results of this

study. This is done by the introduction of coordinates, which
serve as the bridge from algebra to geometry. It is a bridge
with two-way traffic; for also by means of coordinates geo-
metric problems may be given alge-

braic form. This use of coordinates

was Descartes's great contribution

to mathematics, which revolution-

ized the study of geometry.
As basis for the definition of coor-

dinates, we take two lines perpen-
dicular to one another, as A'A and
B'B in Fig. 1, which are called the

x-axis and y-axis respectively ; their

intersection is called the origin.

Suppose that xi and yi are a pair of numbers. If x\ is positive,
we lay off on OA from a length OC equal to x\ units and draw
through C a line parallel to B'B

; if xi is negative, we lay off

from a length equal to x\ units on OA', and draw through
the point so determined a line parallel to B'B. Then, starting
from we lay off on OB a length OD equal to y 1 units if y l

is positive, or on OB '

a length yi units if y\ is negative, and
through the point so determined draw a line parallel to A'A.
These lines so drawn meet in a point PI, which is called the

graph of the pair xi, yi\ we say that P\ is the point (x\, >>i),

8
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Sec. 2] Cartesian Coordinates in the Plane

and x\ 9 y\ are called the coordinates of PI ; also xi is called the

abscissa of PI and y\ the ordinate. Evidently xi is the distance

of Pi from the j-axis (to the right if x\ is positive, to the left

if Xi is negative) and y\ is the distance of PI from the #-axis.

In specifying a line segment OC, the first letter indicates

the point from which measurement begins, and the last letter

C the point to which measurement is made. Accordingly we
have CO = OC, because for CO measurement is in the direc-

tion opposite to that for OC. (The question of sign may be

annoying, but in many cases it is important ; there are also

cases when it is not important, and the reader is expected to

discriminate between these cases.) If we take two points

Ci(#i, 0) and C2 (#2 , 0) on the #-axis, we see that the magnitude
and sign of the segment dC2 is x2 xi, since CiC2 = OC2 OC\.

When Ci and C2 lie on the same side of 0, OC2 OCi is the dif-

ference of two lengths ; when they are on opposite sides of 0,

it is the sum of two lengths. (The reader does not have to

worry about this, since x<2 x\ takes care of all of it.) CiC2 is

called the directed distance from Ci to C2 .

We observe that the coordinate axes divide the plane into

four compartments, which are called quadrants. The quadrant
formed by the positive #-axis and positive ;y-axis is called the

first quadrant ; the one to the left of the positive ;y-axis (and

above the x-axis), the second quadrant; the ones below the

negative #-axis and the positive *-axis, the third and fourth

quadrants respectively.

By definition the projection of a point upon a line is the foot

of the perpendicular to the line from the point. Thus C and D
in Fig. 1 are the projections of the point Pi upon the *-axis and

>>-axis respectively. The projection of the line segment whose

end points are Pi and P2 upon a line is the line segment whose

end points are the projections of Pi and P2 on the line. Thus

in Fig. 1 the line segment OC is the projection of the line seg-

ment DPi upon the #-axis.

Two points Pi and P2 are said to be symmetric with respect

to a point when the latter bisects the line segment PiP2 ; sym-

metric with respect to a line when the latter is perpendicular to

the line segment PiP2 and bisects it. Thus the points (3, 2)

9



Points and Lines in the Plane [Chap. 1

and ( 3, 2) are symmetric with respect to the origin, and

(3, 2) and (3, 2) are symmetric with respect to the #-axis.

The reader should acquire the habit of drawing a reasonably accu-

rate graph to illustrate a problem under consideration. A carefully

made graph not only serves to clarify the geometric interpretation

of a problem but also may serve as a valuable check on the accuracy
of the algebraic work. Engineers, in particular, often use graphical

methods, and for many purposes numerical results obtained graphi-

cally are sufficiently accurate. However, the reader should never for-

get that graphical results are at best only approximations, and of

value only in proportion to the accuracy with which the graphs are

drawn. Also in basing an argument upon a graph one must be sure

that the graph is really a picture of the conditions of the problem

(see Chapter 3 of W. W. R. Ball's Mathematical Essays and Recrea-

tions, The Macmillan Company).

EXERCISES

1. How far is the point (4, 3) from the origin? What are the

coordinates of another point at the same distance from the origin?

How many points are there at this distance from the origin, and how
would one find the coordinates of a given number of such points ?

2. What are the coordinates of the point halfway between the origin

and ( 4, 6) ? What are the coordinates of the point such that

( 4, 6) is halfway between it and the origin ?

3. Where are the points in the plane for which x > y (that is, for

which x is greater than y) ? Where are the points for which x2 + y2 < 4 ?

4. Where are the points for which < x ^ 1 and < y ^ 1 (the

symbol ^ meaning "less than or equal to")? Where are the points

for which < y < x < 1?

5. Where are the points for which xy = 0?

6. What are the lengths of the projections upon the #-axis and jy-axis

of the line segment whose end points are (1, 2) and ( 3, 4)?

7. A line segment with the origin as an end point is of length /.

What are its projections upon the *-axis and ^-axis in terms of / and

the angles the segment makes with the axes ?

8. Given the four points P1 (l,-2), P2 (3, 4), P8(- 5, 1), and

P4(0, 3), show that the sum of the projections of the line segments

10
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z, P*Pz, and PaP4 on either the *-axis or the ;y-axis is equal to

the projection of P\P* on this axis. Is this result true for any four

points ;
for any number of points ?

9. Given the point (2, 3), find the three points which are

symmetric to it with respect to the origin, and to the *-axis and

y-axis respectively.

3. Distance between Two Points.

Direction Numbers and Direction Cosines.

Angle between Directed Line Segments

Consider two points P\(x\, y{) and P2 (#2 , jy2), and the line

segment PiP2 joining them, as in Fig. 2, in which the angle at

Q is a right angle. The square of the distance between the

points, that is, the square of the line segment PiP2 ,
is given by

(PiP2 )
2 = (PiQ)

2 + (QP2 )
2 = (*a

- *0 2 + (ya
-

yi)
2

*

Hence we have the theorem

[3.1] The distance between the points (xi, y\) and (#2 , yz) is

(3.1) V(*2 -*i)
2+0>2 -;Ki)

2
.

The length and sign of the directed segments PiQ and PtR
in Fig. 2 are given by

(3.2)
PiQ = x2

PiR = JV2
-

R (XI

Pi (

FIG. 2

no matter in which quadrant

Pi lies and in which P2 ,
as

the reader will see when he

draws other figures. These

numbers determine the rec-

tangle of which PiP2 is a

diagonal, and consequently
determine the direction of PiP2 relative to the coordinate

axes. They are called direction numbers of the line seg-

ment PiP2 . In like manner x\ *2 and y\ y2 are direction

numbers of the line segment P2Pi. Thus a line segment has

two sets of direction numbers, each associated with a sense

along the segment and either determining the direction of the

11
*
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segment relative to the coordinate axes. But a sensed line seg-

ment, that is, a segment with an assigned sense, has a single

set of direction numbers.

Any other line segment parallel to PiP2 and having the same

length and sense as PiP2 has the same direction numbers as PiP2 ;

for, this new segment determines a rectangle equal in every

respect to the one for PiP2 . This means that the differences of

the *'s and the /s of the end points are equal to the correspond-

ing differences for PI and P2 . Since one and only one line seg-

ment having given direction numbers can be drawn from a given

point, we have that a sensed line segment is completely deter-

mined by specifying its initial point and its direction numbers.

There is another set of numbers determining the direction

of a line segment, called the direction cosines, whose definition

involves a convention as to the positive sense along the seg-

ment. If the segment is parallel to the #-axis, we say that its

positive sense is that of the positive direction of the x-axis.

If the segment is not parallel to the #-axis, we make the con-

vention that upward along the segment is the positive sense on

the segment. This is in agreement with the sense already estab-

lished on the ;y-axis. In Fig. 2 the distance PiP2 is a positive

number, being measured in the positive sense, and the distance

P2Pi is a negative number (the numerical, or absolute, value of

these numbers being the same), just as distances measured on

the #-axis to the right, or left, of a point on the axis are positive, or

negative. When the positive sense of a line segment is determined

by this convention, we refer to it as a directed line segment.

By definition the direction cosines of a line segment are the

cosines df the angles which the positive direction of the line seg-

ment makes with the positive directions of the x-axis and y-axis

respectively, or, what is the same thing, with the positive directions

of lines parallel to them. They are denoted respectively by the

Greek letters X (lambda) and n (mu). Thus, in Fig. 2, for the

line segment PiP2

(3.3)
X = cos A, fji

= cos B,

and also

PiQ = PiP2 cos A = PiP2 X,

PiR = PiP2 cos B = PiP2ju-

12
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If we denote the positive distance PiP2 by d, we have from

(3.4) and (3.2)

(3.5) *i = d\,

If we imagine PI and P2 interchanged in Fig. 2, this does not

alter X and JJL, since their values depend only upon the direc-

tion of the segment relative to the coordinate axes; and

consequently equations (3.5) become

xi x2 = d\, yiy* = dp,

where 3 is the distance P2Pi in the new figure and is positive.

Hence equations (3.5) hold also

if d is negative, that is, when J P*(x*yt) R(xi,y*)

PI is above P2 on the line and

the distance PiP2 is negative.

We consider now the differ-

ence, if any, in the above re-

sults when the positive sense

of the segment makes an ob-

tuse angle with the positive \

sense of the #-axis. Such a
FIG. 3

situation is shown in Fig. 3, where this angle is 180 C. In this

case we have

= QPI
= p1p2 cos C =

PiR = PiP2 cos B = PiP2 jtt,

which are the same as (3.4) ; and consequently equations (3.5)

hold in every case, with the understanding that d is the directed

distance PiP2. Thus a line segment is completely determined

by an end point, its direction cosines, and its length and sense

relative to the given end point.

Two line segments are parallel if their direction cosines are

equal, in which case their direction numbers are proportional,

as follows from (3.4). As a means of distinguishing line seg-

ments with the same direction but with opposite senses, some

writers reserve the term parallel for segments with the same

direction and the same sense, and use the term antiparallel for

the case when the senses are opposite; such distinction is

necessary in mechanics, for example.

13
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From the definition of the positive direction along a seg-

ment it follows that when PiP2 is not parallel to the *-axis /z

is positive, whereas X may take any value between 1 and

+ 1. When the segment is parallel to the *-axis, /*
= and

X = 1 ; in fact, the direction cosines of the #-axis and ;y-axis

are 1, and 0, 1 respectively.

From the definition of d and Theorem [3.1], we have

When the expressions from (3.5) are substituted in this equa-

tion, we obtain

(3.6) X2 + M2 = 1.

Accordingly we have the first part of the theorem

[3.2] The direction cosines X, JJL of any line segment satisfy the

equation X2 + ju
2 = 1

; JJL is never negative; when
/JL > 0,

1 < X < 1 ; when
fJL
= 0, X = 1 ; and, conversely, any

two numbers X and jj, satisfying these conditions are direc-

tion cosines of a line segment.

To prove the second part of the theorem we take any point

PI(XI, y\) and an arbitrary number d, and determine numbers
#2 and y2 from equations (3.5). Then X and /z are direction

cosines of the line segment PiP2 , where P2 is the point fa, y^)

and d is the directed distance PiP2 ; and the theorem is proved.
Consider now in connection with the line segment PiP2 an-

other line segment PI Pa, where P3 is the point fa, y$). We
denote by 6 (theta) the angle formed at PI by these sensed

segments ; and we note that if they have the same direction,

9 = or 180 according as the segments have the same or

opposite sense. We consider the case when 6 is not equal to

or 180, and denote by Xi, jui and X2 , ^2 the direction cosines

of the segments PiP2 and PiP3 respectively, and by di and d2
the directed distances PiP2 and PiP3 . We draw, as in Fig. 4,

from the origin two line segments, OP\ and OFV, parallel to

and of the same directed lengths as PiP2 and PiP3 respectively.

The direction cosines of these line segments are Xi, ^i and

14
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X2 , fjL2t and the coordinates of /Y and /Y are di\i, dipt and
d2\2 , d2 /jL2 respectively, as follows from equations analogous to

(3.5) with Xi = yi = ; and the an-

gle of these segments is equal to

the angle of the original line seg-

ments. By the Law of Cosines of

plane trigonometry applied to the

triangle in Fig. 4, in which /, /i,

and /2 denote the lengths of the

sides of the triangle, as distin-

guished from directed distances,

we have

(3.7) I
2 =

/i
2 + /2

2 - 2 /!/2 cos 6.

By means of Theorems [3.1] and [3.2] we have

(3.8) I
2 = (d2\2

-
diXx)

2 + (d2fji2
-

FlG> 4

= d22 + di
2 2 did2 (\i\2 +

From the definition of k and 12 it follows that k is equal to

di or di according as d\ is positive or negative, and similarly

for 12 ; from this it follows that /i
2 = di

2 and /2
2 = d2

2
. When

we equate the expressions (3.7) and (3.8) for /
2

, and simplify

the resulting equation, we obtain.

/i/2 cos 6 = did2 (\i\2 + MiM2)

If di and d2 are both positive or both negative, IJ2 = did2 ; and

if di and d2 differ in sign, hl2 = d\d2 . Hence we have the

theorem

13.3] The angle 6 between two line segments whose direction co-

sines are Xi, jui and X2 , ju2 is given by

(3.9) cos e = ^(XiX2 + /xiM2),

where e is + 1 or 1 according as the two segments have the

same sense (both positive or both negative) or opposite senses.

Here, and throughout the book, we use e in place of the sign

, because it enables one to state more clearly when the sign

is + and when .

15
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From Theorem [3.3] and equations (3.5) we have

[3.4] The angle between the directed line segments P\P<2 and

is given by

(3 10) cos e = (*2
~ *0(*3 - *0 + CV2

-
yi)(y* y\)

t

111?

where k and 12 are the lengths (not directed distances) of

the segments P\Pz and PiPa respectively.

As a corollary we have

[3.5] The line segmentsfrom the point (x\, y\) to the points (x%, y%)

and (#3, jy3 ) are perpendicular, if and only if

(3.11) (x*
-

xi)(*3
-

*i) + 0>2
-

yi)(ya
-

yi) = 0.

The phrase "if and only if" used in this theorem (and

throughout the book) is a way of stating that both a theorem

with "if" alone and its converse are true; that is, a statement

that A is true if and only if B holds means that A is true if B

holds, and B is true if A holds.

EXERCISES

1. Show that the triangle with the vertices (6, 5), (2,
-

4), and

(5,
-

1) is isosceles.

2. Find the point on the x-axis which is equidistant from (0, 1)

and (3, 3).

3. Find xi and ;yi such that PI(XI, yi), (0, 0), and (3,
-

4) are the

vertices of an equilateral triangle.

4. Find the direction numbers and direction cosines of the line

segment joining Pi(l,
-

2) to P2 (4, 2).

5. Find the coordinates of the point p(x, y) so that the line seg-

ment P\P has the same direction and is twice as long as the line

segment in Ex. 4.

6. For what value of a is the line segment from the point P\(2 y 1)

to the point P(3, a) perpendicular to the line segment PiP2 , where

Pa is the point (5, 1) ?

16
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7. Find the lengths and direction cosines of the sides of the

triangle whose vertices are (3, 6), (8, 2), and ( 1, 1) ; also the

cosines of the angles of the triangle.

8. Prove that (2, 1), (0, 0), (- 1, 2), and (1, 3) are the vertices of

a rectangle.

9. Find the condition to be satisfied by the coordinates of the

points PI(XI, y\) and ^2(^2, y2 ) in order that the line segment PiP2
shall subtend a right angle at the origin.

10. Derive equation (3.10) directly by applying the Law of Cosines

to the triangle with vertices at the points (x\ 9 y\), (x2 , y2 ), (xa, ya).

11. Find the coordinates of a point P(x, y) so that the segment
P\P has the same direction as the segment P\P* with the end points

(xi, y\) and (x2 , y2 ). How many points P possess this property, and

where are they ?

12. Find the coordinates of a point P(x, y) so that the segment
P\P is perpendicular to the segment P\P2 with the end points (*i, y\)

and (#2, 3^2). How many points P possess this property, and where

are they ?

4. Internal and External Division of a Line Segment

In this section we determine the coordinates of the point

P(x, y) which divides the line segment PiP2 in the ratio Ai/A2f

that is, such that

Since the triangles PiQP and PRP2 in Fig. 5 are similar, we

have, by a theorem of plane geometry, that corresponding

sides of these triangles are

proportional ; thus we have

(A 2^ rir = ri ** = P
.

v ; PP2 PR RP2

Since = x x\,

= Xz x,

= y- y\,

= yz
-

y>

~F
FIG. 5

17
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it follows from (4.1) and (4.2) that x and y are such that

(43)
h = x-xi= y-yi.

v ' '
A2 xz-x y2-y

From the equation of the first two terms we have

(4.4) fi (*2 -*) = *-*,
2

from which, on solving for x, we obtain

Xl +
h2*

2

(4 -5) * =

Proceeding in like manner with the equation consisting of the

first and third terms in (4.3), we obtain

(4.6) y

If the points PI, P2 ,
and P are on a line parallel to the *-axis

or are on the #-axis, the situation is expressed by (4.4), from

which (4.5) follows; similarly if these points are on a line

parallel to the jy-axis or are on the y-axis, we have (4.6).

In order to obtain the coordinates of the mid-point, we put
hi = h2 = 1 in (4.5) and (4.6), and have the theorem

[4.1] The coordinates of the mid-point of the line segment joining

the points (x\, y\) and (x2 , y2 ) are

(4.7)

Returning to the consideration of equations (4.3), we ob-

serve that they express the condition that the ratio of the seg-

ments PiP and PP2 is equal to the ratio of the first direction

numbers of these segments, and also to the ratio of the second

direction numbers. Suppose then that we consider in connec-

tion with the line segment P\P2 the line segment P2P, where

now P is the point (x, y) such that P*P has the same direc-

tion and sense as P {P2 ; then the ratio P\PJPP2 is a nega-
tive number, since the segments P\P and PP2 have opposite

18



Sec. 4] Internal and External Division of a Line Segment

sense, but their algebraic sum is equal to PiP2 . In this case

we again have equations (4.3), in which, however, the quantity

hi/h2 is a negative number, that is, either hi or A2 may be taken

as negative and the other positive; but the numerical value

of hi is greater than the numerical value of A2 , since the length
of PiP is greater than the length of PP2 . With this under-

standing about h\ and A2 , the coordinates of P in terms of those

of PI and P2 are given by (4.5) and (4.6).

It is customary to denote the numerical, or absolute, value

of a number a by |

a
\

; thus
|

2
|

= 2,
|

2
|

= 2. Then the

above statement about hi and h2 is expressed by |
hi

\
>

\

h2 |.

On the other hand, if we have equations (4.5) and (4.6) with

hi and /*2 differing in sign, and
|
hi

\

<
\
h% |,

this means that

x and y are the coordinates of a point P lying below Pi on the

line through PI and P2 , as the reader will see by considering

the above definition of P for the case
|
h\

\

<
\

A2 1,
and drawing

a figure. In accordance with custom we say that in these cases

P(#, y) divides the line segment PiP2 externally in the ratio

Ai/A2 ; and that when P is a point of the segment, it divides

the segment PiP2 internally. Accordingly we have the theorem

[4.2] The equations

give the coordinates of the point P dividing the line segment

PiP2 , with end points PI(XI, yi), P2 (*2 , y%), in the ratio

hi/h2, internally when hi and A2 have the same sign and

externally when h\ and h% have opposite signs; in either

case P lies nearer PI or P2 according as \h\\ is less or

greater than
\

A2 |.

EXERCISES

1. Find the coordinates of the points dividing the line segment

between the points (7, 4) and (5,
-

6) in the ratios 2/3 and - 2/3.

2. Find the coordinates of the two points which trisect the line

segment between the points (3, 2) and (-3, 1).

3. In what ratio does the point (3, 2) divide the line segment
between the points (5, 2) and (6, 4) ?
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4. Find the coordinates of the point P(x, y) on the line through
the points Pi (5,

-
3) and P2 (2, 1) such that P2 bisects the segment PiP.

5. Show that the medians of the triangle with vertices (- 1, 2),

(3, 4), and (5, 6) meet in a point by finding for each median the

coordinates of the point twice as far from the corresponding vertex

as from the opposite side, distances being measured along the median.

6. Is there a point on the line through P\(x\, y\) and P2 (x2 , y*)

dividing the line segment PiP2 in the ratio hi/h2 = 1 ?

7. Where are the points in the plane for which
|
x

\
> 2 and

UK 3?

8. Show that the points (x\,y\) and (x2t y2 ) are collinear with the

origin if and only if their coordinates are proportional.

9. Show that the points (xi, y\), (x2 , yz ), and (*3 , jVa) are collinear

when there are three numbers k\ 9 k2 , 3, all different from zero, such

that ki + k2 + kz = 0, ktfi + k2x2 -f fax* = 0, k&i + k2y2 + fejvs = 0.

10. Interpret the following statements :

a. For hi and h2 both positive x defined by (4.8) is the weighted

average of x\ and x2 with the respective weights h 2 and hi, and accord-

ing as h2 is greater than hi or less than hi the weighted average is

nearer x\ than x2 or vice versa.

b. x and y given by (4.8) are the coordinates of the center of gravity

of masses h2 at PI and hi at P2 .

11. What are the coordinates of the center of gravity of masses

mi, m2 , and w3 at the points (xi, ;yi), (x2 , y2 ), and (*3 , jVa) ; of n masses

at n different points? (Use mathematical induction.)

5. An Equation of a Line.

Parametric Equations of a Line

We have seen how any two numbers x and y define a point

in the plane, called the graph of the ordered pair of numbers.

Reversing the process, we have that any point in the plane

is the graph of an ordered pair of numbers, the coordinates

of the point, obtained by drawing through the point lines

parallel to the coordinate axes and taking for these numbers

the magnitudes of the intercepted segments with appropriate

signs, as OC and OD in Fig. 1. An equation in x and y imposes
a restriction on x and y, so that only one of these may take
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arbitrary values and then the other is determined by the equa-
tion. The graph of an equation is the locus (place) of all points
whose coordinates are solutions of the equation, in other words, the

locus of the graphs of ordered pairs of numbers satisfying the equa-

tion. Each of the points of this locus possesses a geometric

property common to all the points of the locus, and no other

points ; this property is expressed algebraically by the equation.

Just what this geometric property is in the case of a particular

equation is one of the interesting questions of coordinate geom-

etry. The converse problem is that of finding an equation
whose solutions give the coordinates of every point of a locus

when the locus is defined geometrically. All of this will become
clearer as we proceed to take up particular equations and

particular loci.

Since it requires an ordered pair of numbers to define a

point in the plane and any point in the plane is so defined, we

say that a plane is two-dimensional. A line is one-dimensional,

since any point on the line is defined by one number, for

example, its distance from a fixed point on the line. Similarly,

since any point on a curve is defined by one number, for

example, its distance measured along the curve (say, with a piece

of string) from a point of the curve, we say that any curve is one-

dimensional. The graph of an equation in x and y is some kind

of curve, or a line; for, as remarked above, only one of the

unknowns may be chosen arbitrarily, the other being determined

by the equation, and thus the equation picks out from the two-

dimensional set of points in the plane a one-dimensional set.

We consider now the graph of an equation of the first de-

gree in % and y. When one takes such an equation, and, having
obtained a number of solutions after the manner discussed in

1, plots their graphs, one observes that they seem to lie on

a straight line. In fact, one may have been told that all one

has to do is to plot two solutions and draw a straight line

through the two points, and that this is the graph of the equa-

tion in the sense that the graph of every solution is a point of

the line and every point of the line is the graph of a solution.

In order to prove that this is a correct statement, we consider

first the inverse problem of finding an equation of a line.
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Consider a line which is not parallel to either axis, and

choose upon it two particular points, PI of coordinates xi, y\

and P2 of coordinates x2 , y2 . We denote by P of coordinates

xt y any point on the line meaning that it may be placed

anywhere on the line while keeping PI and P2 fixed ; in this

sense we speak of P as a general or representative point, and use

x and y without subscripts to distinguish a representative point

from a particular point. Through PI, P, P2 we draw lines par-

allel to the axes, forming similar triangles, as shown in Fig. 6.

Since the triangles are similar, corresponding sides are pro-

portional, and we have

PiQ QP
(5 ' 1} P^ =

It should be observed that

the two segments in each

ratio are taken in the same

sense. We have PiQ = x xi, /*

Q2P2 = y2 yi. (Although FIG. 6

Fig. 6 has been drawn with all

the coordinates positive, the reader will readily verify that these

relations hold equally well when the figure is so placed with

reference to the axes that some or all of the numbers x\, y\, x,

y, X2, y2 are negative.) Consequently (5.1) is equivalent to the

equation _ __

(5.2) x x
=

v v
"

Although this result has been derived for the case when P lies

on the segment PiP2, by drawing suitable figures the reader

can assure himself that equation (5.2) holds when P lies on the

line but outside the segment PiP2. Equation (5.2) is reducible to

(5.3) (y2 yi)x (x2 x\)y + (x2y\ Xiy2) = 0.

This equation is satisfied by the coordinates of every point on the

line. Moreover, from the form (5.2) of the equation it follows

that any solution of the equation leads back to the ratios (5.1),

and consequently gives the coordinates of a point on the line.
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Although equation (5.3) was derived for a line inclined to

the coordinate axes, that is, when *2 ^ xi and jy2 ^ y\, it ap-

plies to the cases when the line is parallel to either axis. In

fact, if the line is parallel to the #-axis, we have ^2 = y\, x2 ^ xi,

in which case equation (5.3) is equivalent to

(5.4) y-yi = 0.

Also, when x% = XL, y^ ^ y\, equation (5.3) is equivalent to

(5.5) x - xi = 0,

which is an equation of a line parallel to the jy-axis. These
results follow also from (5.2), if we adopt the principle that

when in an equation of two ratios either term of a ratio is equal to

zero, the other term also is equal to zero. Thus if y% = y\, we must
have y y\ = 0. This does not say anything about the value

of the other ratio ; this value is determined by the values of

the terms of this ratio. Hence we have the theorem

[5.1] Equation (5.2), or (5.3), is an equation of the line through
the points (xi, y\) and (x%, yz).

Since x\ 9 y\, X2, and y<z are fixed numbers, equations (5.2)

and (5.3) are of the first degree in x and y, as are also (5.4)

and (5.5). Consequently we have the theorem

[5.2] An equation of a straight line is of the first degree in x and y.

We say "an equation/' and not "the equation/' because, if

we have an equation of a line, so also is any constant multiple

of this equation an equation of the line, since any solution of

either equation is a solution of the other.

Having shown that in an equation of any line the coeffi-

cients of x and y are not both simultaneously equal to zero, we
remark that if, as stated in 1, in deriving theorems in this

chapter we exclude from consideration the degenerate case of

equations of the first degree for which the coefficients of both

x and y are zero, we are not thereby restricting the considera-

tion of all the lines in the plane.
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We shall prove the converse of Theorem [5.2], namely,

[5.3] The graph of any equation of the first degree in x and y is

a straight line.

We consider the general equation of the first degree

(5.6) ax + by + c = Q

in which not both a and b are equal to zero. For a = 0, b ^ 0,

equation (5.6) is reducible to the form (5.4) (with a change of

notation), which is an equation of a line parallel to the jc-axis.

For a T 0, b = 0, equation (5.6) is reducible to the form (5.5),

which is an equation of a line parallel to the ;y-axis. In 1 it

was shown that when a ^ 0, 6^0, equation (5.6) can be put
in the form (1.8) in terms of two of its solutions x\, y\ and #2, y*.

But equation (1.8) is the same as equation (5.3). Hence any

equation (5.6) can be given one of the forms (5.3), (5.4), or

(5.5), and the theorem is proved.

Returning to the consideration of equation (5.2), we re-

mark that, when the line is not parallel to either axis, for each

point on the line the two ratios have the same value, this value,

say /, depending upon the values of x and y. If we put each

of the ratios equal to / and solve the resulting equations for

x and y, we obtain

(5.7) x = xi + t(x2
-

*i), y = yi + t(y2
-

yi).

Conversely, for each value of / the values of x and y given by
(5.7) are such that equation (5.2) is satisfied, as is seen by sub-

stitution, and consequently these values of x and y are the

coordinates of a point on the line. When the line is parallel to

the x-axis, equations (5.7) hold, the second equation reducing

to y = y\ ; and similarly for a line parallel to the ;y-axis. Thus
the single equation (5.2) of the line has been replaced by the

two equations (5.7) through the introduction of an auxiliary

variable /, called a parameter. Accordingly equations (5.7) are

called parametric equations of the line. Ordinarily, as will be

seen later, a curve in the plane is defined by one equation in

x and y, but sometimes it is convenient to define it by two

equations in x, y, and a parameter ; an example of this is found
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Sec. 5] Parametric Equations of a Line

in mechanics when the coordinates of a moving particle are

expressed in terms of time as parameter. When the equations
of a curve are in parametric form, it may be possible to obtain

a single equation in x and y by eliminating the parameter from

the two equations. Thus, if we solve the first of (5.7) for / and
substitute the result in the second, we get an equation reducible

to (5.2). Again, consider the locus of a point whose coordinates

are given by x = t
2

, y = 2 /, as / takes on all values. Eliminating

/, we get y
2 = 4 x, which the reader who has plotted curves in

his study of algebra will identify as an equation of a parabola.
The use of a parameter in defining a line, or a curve, em-

phasizes the fact that a line, or a curve, is one-dimensional in

that any point on it is specified by the appropriate value of a

single variable, a parameter. In fact, in plotting the graph of

a line, or a curve, defined by parametric equations one assigns

different values to the parameter and plots the points having
as coordinates the values of x and y thus obtained ; it is not

necessary first to eliminate the parameter from the two equa-
tions and then plot the resulting equation in x and y (see Ex. 11).

When equations (5.7) are written in the form

(5.8) x = (1
-

0*i + tx2 , y = (1
-

O^i + ty*>

we see that y is equal to the sum of the same multiples of y\

and y2 as x is of x\ and x2 . We say that x and y have the same

linear and homogeneous expressions in xi, x% and y i9 y2 respec-

tively, meaning that every term in each expression is of the

first degree in these quantities. Accordingly we have

[5.4] Any point of a line is expressible linearly and homogene-

ously in terms of two fixed points of the line.

Any two points of the line can be used for PI and P2 , that is,

as the basis for writing the equations of the line in the form

(5.8). The above theorem is the geometric equivalent of the

algebraic statement

[5.5] Any solution of an equation ax + by + c = is expressible

linearly and homogeneously in terms of any two solutions.
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EXERCISES

1. Obtain equations of the lines determined by the points :

a. (- 1, 8) and (4,
-

2). b. (3, 2) and (3,
-

1).

2. Show that the points (4,
-

3), (2, 0), (- 2, 6) lie on a line.

3. Find c so that the points (c,
-

2), (3, 1), and (- 2, 4) shall be

collinear, that is, lie on a line.

4. Where are the points for which x > 0, y > 0, and x + y < 1 ?

Where are the points for which 2 x 3y> 2?

5. Show that the equation of the second and third ratios in (4.3)

is reducible to equation (5.3). What does this mean?

6. Show that (4.8) are of the form (5.8) with / = hi/ (hi + h2 ).

7. In what ratio is the line segment with end points (2, 3) and

(3, 1) divided by the point of intersection of the line segment and

the line 3 x - 2 y- 6 = 0?

8. Show that the equation a(x x\) + b(y yi) = for each set

of values of a and b is an equation of a line through the point (xi, yi).

For what values of a and b is it an equation of a line parallel to the

y-axis ; an equation of the line through the point (x2 , y2 ) ?

9. Show that the line ax -f by + c = meets the *-axis and ;y-axis

in the points Pi( c/a, 0) and P2 (0, c/b) respectively; when c ^ 0,

the lengths OPi and OP*, that is, c/a and c/b, are called the

^-intercept and y-intercept respectively of the line.

10. Show that when an equation of a line is written in the form

- + * = 1

g
+

h
l '

where g and h are constants, g and h are the x- and ^-intercepts respec-

tively. When can an equation of a line not be given this form, which

is called the equation of the line in the intercept form ?

11. Plot the curve with the parametric equations x = 2 t
2

, y = 3 1;

also the curve x = 5 cos /, y = 5 sin /, using a table of natural sines

and cosines. What is the equation of the curve in each case when

the parameter is eliminated ?

12. Show that, if the expressions (4.8) for x and y are substituted in

an equation ax + by + c = 0, the value of hi/h2 obtained from the

result is the "ratio in which the segment PiP* is divided by the point
of intersection of the line ax + by + c = and the line through PI and
P2 . The reader should apply this method to Ex. 7.
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6. Direction Numbers and Direction Cosines of a Line.

Angle between Two Lines

The equation

of the line through the points (xi, yi) and (x2 , y2), obtained in

5, expresses the condition that the direction numbers of the

segments P\P and PiP2 are proportional when P is any point
on the line. In fact, in Fig. 6 the sensed segments PiQ and QP
give the direction numbers of PiP, and PiQ2 and Q2P2 the di-

rection numbers of P\Pz. Thus equation (6.1) is the algebraic
statement of the characteristic property of a line that any two

segments having an end point in common have the same direc-

tion. If we say that direction numbers of any segment of a

line are direction numbers of the line, it follows that a line has

an endless number of sets of direction numbers, but that the

numbers of any set are proportional to those of any other set.

The equation

(6.2)

which is satisfied by x\ and y\, being of the first degree in x

and y, is an equation of a line through the point (x\, y\} and

with direction numbers u and v. In order to find a segment of

which u and v are direction numbers, we have only to find x2

and y2 from the equations

X2
-

xi = u, y2 -yt = v.

Then PiP2 is a segment with end points PI(XI, y\} and P2 (x2 , y2)

having u and v as direction numbers ; and in terms of x2 and y2

equation (6.2) becomes equation (6.1). Since parallel lines

have the same direction by definition, it follows that

[6.1] // (xi 9 y\) and (x2 , y2 ) are any two points on a line, x2 x\

and y2 y\ are direction numbers of the line, and also of

any line parallel to it.

In defining the direction cosines of a line segment in 3 we

assigned sense to a segment, making the convention that for
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a segment not parallel to the x-axis upward along the segment
is positive and downward negative ; and for a segment parallel

to the x-axis the positive sense is to the right along the seg-

ment. Accordingly the positive sense along a line is upward,
that is, y increasing, when the line is not parallel to the

x-axis; and to the right, that is, x increasing, when the line

is parallel to the x-axis. Since all segments of a line have the

same direction, the direction cosines of all segments are the

same ; we call them the direction cosines of the line. Accord-

ingly the direction cosines X, ^ of a line are the cosines of the

angles between the positive direction of the line and the positive

directions of the x- and y-axes respectively.

From Theorem [3.2] we have

[6.2] The direction cosines X, ju of a line satisfy the equation

(6.3) X2 +M2 =1;

/x is never negative; when ju>0 1 < X < + 1 ; when

p = 0, X = 1 ; and, conversely, any two numbers X, /x satis-

fying these conditions are direction cosines of a line.

In Figs. 7 and 8

(6.4) X = cos A, fj, cos B.

FIG. 7 FIG. 8

Since equations (3.5) hold for all segments of a line with the

point (xi, y\) as an end point of the segment, and consequently
for the line, we have

[6.3] The equations

(6.5) x = xi + d\ y = yi + dp

are parametric equations of the line through the point (x\, y\)
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Sec. 6] Angle between Two Lines

and with direction cosines X and /z; the parameter d is the

distance from the point (%i, y\) to a representative point

(x, y), and is positive or negative according as the latter

point is above or below P\ along the line, or to the right

or left of PI when the line is parallel to the x-axis.

With the understanding that for any quantity A the symbol
means the positive square root of A, and that V^ =

|

a
|,

as defined in 4, we shall prove the theorem

[6.4] The direction cosines of a line for which u and v are any
set of direction numbers are given by

(6.6)

where e is + 1 or 1 so that ev is positive when v ^ 0, and

eu is positive when v = 0.

In fact, the quantities (6.6) satisfy the condition (6.3) of

Theorem [6.2]; and the requirement in Theorem [6.4] con-

cerning e is such that /JL
is positive when not equal to zero, and

that when ju
= 0, then X = 1, which proves the theorem.

From Theorem [3.3], using the Greek letter < (phi), we
have

[6.5] The angle <f> between the positive directions of two lines

whose direction cosines are Xi, jui and \2, ^2 is given by

(6.7) cos = XiX2 + MiM2.

From Theorems [6.5] and [6.4] we have

[6.6] The angle </> between the positive directions of two lines whose

direction numbers are u\, v\ and w 2 ,
v2 is given by

(6.8)

where e\ is + 1 or 1 so that e\v\ is positive when Vi 7* 0,

and e\u\ is positive when v i
=

; and similarly for 62.
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As a corollary of the theorem we have

[6.7] Two lines with direction numbers u\, v\ and u2 , v2 are per-

pendicular to one another, if and only if

(6.9) Uiu2 + ViV2 = 0.

Consider now an equation

(6.10) ax + by + c = Q

of a line. If the point (*i, y\) is on the line, c must be such that

axi + byi + c = 0.

Subtracting this equation from (6.10), we have as an equation
of the line

(6.11) a(x-xi) + b(y-yi) = 0.

When a and b are different from zero, and this equation is

written in the form x _ Xi y yi

~~T~
=

-a
'

we see that b and a are direction numbers of the line, and

consequently of any line parallel to it. Hence we have

[6.8] An equation of any one of the endless number of lines par-

allel to the line ax + by+ c = is

(6.12) ax + hy + d = 0;

a particular one of these lines is determined by the value of

the coefficient d.

For example, if we wish to find an equation of the line through the

point (3, 2) parallel to the line 4^-^ + 5 = 0, d is determined by
4(3)

- (- 2) + d = 0, that is, d = -
14, and hence an equation of the

desired line is 4 x y 14 = 0.

We seek next an equation of any line perpendicular to the

line with equation (6.10). If we denote by u and v direction

numbers of such a perpendicular, and note that &, a are di-

rection numbers of the line (6.10), it follows from Theorem [6.7]

that u and v must be such that

bu av = 0.

30
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This condition is satisfied by u = a, v = &, and by any constant

multiple of a and 6. Hence we have

[6.9] The geometric significance of the coefficients a and b of
an equation ax + by + c = Qofa line is that a and b are

direction numbers of any line perpendicular to the given line.

In particular, an equation of the line perpendicular to the

line with equation (6.11) at the point (x\, y\) of the latter is

x-xi = y-yi_
a b

This result, illustrated in Fig. 9, may be stated as follows :

[6.10] Either of the lines

(6.13) a(x
-

*i) + b(y - y$ = 0, ^^ = ŷ =fL

is the perpendicular to the other at the point (x\, y\).

FIG. 9

When the second of equations (6.13) is written in the form

(6.14) b(x
-

*i) -a(y- yi) = 0,

we see that the coefficients of x and y are b and a respectively.

Hence we have

[6.11] Any line perpendicular to the line with the equation

ax + by + c = Q has for an equation

(6.15) bx-ay + d = Q;

a particular line is determined by the value of d.
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EXERCISES

1. Find an equation of the line through the point (3, 0) and parallel

to the line 3x-y + 5 = 0.

2. What are the direction cosines of the line 3 x 4jy+l = 0;

of a line perpendicular to it?

3. Find an equation of all lines perpendicular to 2x + 5y 2 = 0,

and in particular of the one passing through the point (1, 1).

4. Find equations of the lines through the intersection of

x y -f 2 = and 4# y 1 = parallel and perpendicular respec-

tively to the line 2x + 5y-3 = Q.

5. Find the angle between the positive directions of the per-

pendiculars to each of the following pairs of lines :

a. 2x-7y + 3 = Q, 5x + y+l = Q.

6. Find the angles between the positive directions of the lines

in Ex. 5.

7. Show that the coordinates of any point on a line through the

origin are direction numbers of the line.

8. Show that equations (6.5) hold for a line parallel to either

coordinate axis if we make the convention that "the angle between"

the positive directions of two parallel lines is zero.

9. Show that for the lines in Figs. 7 and 8 the equation (6.3) is

equivalent to the trigonometric identity sin 2 A + cos2 A = l.

10. Show that

(x
~ *i)(*2

- *3) + (y
~ y^* - *) = o

are equations of two lines through the point (xi, y\) parallel and per-

pendicular respectively to the line through the points (#2 , yz) and

(*s, y*)-

11. Given the triangle whose vertices are A(a, 0), B(0, b), and

C(c, 0) ; prove that the perpendiculars from the vertices of the tri-

angle upon the opposite sides meet in a point ; that the perpendicular

bisectors of the sides meet in a point. Does this prove that these

results are true for any triangle ?

12. Discuss equation (6.2) and Theorem [6.4] when one of the

direction numbers is zero.
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7. The Slope of a Line

By definition the slope of a line, which is usually denoted

by m, is the tangent of the angle which the positive direction

of the line, as defined in 6, makes with the positive direction

of the #-axis ; it is the tangent of the angle measured from the

*-axis to the line in the counterclockwise direction (as is done
in trigonometry). In Fig. 7 the angle at PI is equal to A, and

consequently

(7.1) w

In Fig. 8 the angle at PI is the supplement of A ; consequently

tan (180
- A) =^ =

v '

which is equivalent to (7.1), since tan (180 A) = tan A.

It is customary to write (7.1) in the form

(7.2) y-yi = m(x- *i),

as an equation of the line expressed in terms of the slope and a

point (xi, yi) on the line.

When the line is parallel to the j-axis, the denominator in

the right-hand member of (7.1) is zero. Hence we say that the

slope is not defined for a line parallel to the jy-axis ; some writers

say that in this case the slope is infinite.

In equation (7.1) the quantities x x\ and y y\ are direction

numbers of the line segment P\P and consequently of the line ;

since P(x, y) and P\(x\, y\) are any points of the line, we have

[7.1] The slope m of a line not parallel to the y-axis is equal to the

ratio of the second and first of any set of direction numbers

of the line; in particular, m = (y2 yi)/(x* *i), where

(*i, y\) and (*2 , 3^2) are any two points of the line.

Equation (7.2) is a particular case of the equation

(7.3) y = mx+ h,

where h = y\ mxi. For a given value of m equation (7.3) is

an equation of all lines with the slope m, that is, a set of parallel
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lines, any line of the set being determined by a suitable value

of A. In particular, equation (7.2) is an equation of the line

of the set through the point (*i, ;yi). An equation

(7.4) ax + by + c = 0,

for which 6^0, can be put in the form (7.3) by solving the

given equation for y. Hence we have

[7.2] // an equation ax + by + c = Qofa line not parallel to the

y-axis is solved for y, the coefficient of x in the resulting

equation is the slope of the line.

As a consequence of theorems [7.1] and [6.7] we have

[7.3] Two lines with the slopes m\ and m^ are perpendicular to

one another, if and only if

(7.5) miw2 + l = 0;

that is, if either slope is the negative reciprocal of the other.

The proof is left to the reader.

We have introduced the concept of slope because of its

traditional use, and particularly because of its use in the appli-

cation of the differential calculus to the study of lines and curves

in the plane, an interesting subject awaiting the reader. On
the other hand, we have emphasized direction numbers and
direction cosines because they may be applied to any line with-

out exception, and, as we shall see in Chapter 2, are applicable
to the study of lines in space, whereas the concept of slope is

not used in this connection.

EXERCISES

1. Find an equation of all lines parallel to ^ = 3 # 5, and in

particular the one through the point (1,
-

3).

2. Find an equation of the line through the origin whose slope is

twice that of the line 3x-y + 2 = Q.

3. Find an equation of the line through the point (2,
-

3) whose

positive direction makes the angle of 60 with the positive *-axis.
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4. Find equations of the two lines through the point (1, 3)

forming with the x-axis an isosceles triangle with the point as vertex

and the base angles 30

5. For what value of m is the line (7.2) perpendicular to the line

joining the point (x\ 9 y\) to the origin?

6. Using the formula from trigonometry for the tangent of the

difference of two angles, show that an angle between two lines whose

slopes are mi and m2 is given by

tan = "*2 "" mi
.

1 -f

7. How is Theorem [7.3] a consequence of Ex. 6?

8. Find equations of the lines through the point (xi, y\) which

make angles of 45 with the line (7.2), and verify that they are per-

pendicular to one another.

9. Show that the graph of the equation ax2 + 2 hxy + by
2 = is

a pair of straight lines through the origin if h2 > ab. What are the

slopes of these lines ?

10. Draw the graph of a line and indicate the various quantities

appearing in equations (6.1), (6.2), (6.5), and (7.2).

8. Directed Distance from a Line to a Point

When a point P\(x\ 9 y\) is on the line

(8.1) ax + by + c = 0,

the expression ax\ + by\ + c is equal to zero, as we have seen.

When PI is not on the line, this expression has a value different

from zero. One might question whether perhaps this value has

something to do with the distance from the line to the point.

We shall answer this question by showing that this distance is

0*1 + y\ _, ancj gjve a meanjng to the algebraic sign of the
V02 + b2

resulting number.

When = and b^ in (8.1), that is, when the line is

parallel to the *-axis, the value of y for each point on the

line is c/6, and consequently the distance of Pi from the

line is y\ ( c/b), that is, y\ + c/&, and this distance is positive

or negative according as PI lies above or below the line ; we
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get this expression for the distance when we put a = in the

expression at the close of the preceding paragraph. When
6 = and a 7* 0, that is, when the line is parallel to the

.y-axis, the distance is x\ + c/a, which is positive or negative

according as P\ lies to the right or left of the line ; this expres-

sion follows from the one of the preceding paragraph on

putting b = 0.

We take up next the case when the line is inclined to the

#-axis, in which case a ^ 0, b ^ 0. In 6 we made the conven-

tion that the direction upward along a line inclined to the

axes is positive, and showed that the direction cosine JJL is

always positive, and that X is positive or negative according as

the line is inclined as in Fig. 7 or in Fig. 8. In consequence of

this result, and of Theorems [6.9] and [6.4], we have that the

direction cosines of a line perpendicular to the line ax + by+ c =
are given by

a h

(8.2) X =

where e is + 1 or 1 so that eb > when
when 6 = 0.

We consider first the case when

the line (8.1) is inclined as in Fig. 10, \
s

where P\(x\, y\) is a point above the

line and P2 (*2, y2 ) is the point in

which the perpendicular through Pi

to the line meets it. We denote by
d the distance from P2 to PI, d

being a positive number, since it is

measured in the positive direction

of the line P2Pi. Comparing this

and ea >

FIG. 10

line in Fig. 10, whose direction cosines are X and JJL, with the

line P\P in Fig. 7, we see that in place of (6.5) we have

(8.3) xi X2 = d\, yiy2 = dp,

from which and (8.2) we have

(8.4)
db
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Since (*2 , j2 ) is a point on the line (8.1), on substituting the ex-

pressions (8.4) in (8.1) and rearranging terms, we have

axi + byl + c - d (
a* + b*

\ = 0,

\eV02 + b2/

from which, on solving for d and noting that 1/e = e
t we obtain

When PI lies below the line, equations (8.3) hold equally
well provided d is a negative number, as the reader may verify by
drawing a figure and noting that when the line (8.1) is inclined

as in Fig. 10, X is positive.

We consider the other case when
the line (8.1) is inclined as in Fig. 11,

and this time take PI below the line,

so as to add variety to the discussion.

Comparing the line PiP2 in Fig. 11

with the line PiP in Fig. 8, we have

from (6.5)

_ x ^ dx - =d FlG< n

where d is a positive number, the directed distance PiP2 . Com-

paring these equations with (8.3), we see that the left-hand

members of these respective equations differ only in sign. Con-

sequently equations (8.3) apply in this case also, with the

understanding that d is negative; it is the directed distance

P2Pi, that is, PI is on the negative side of the line. The reader

may verify that equations (8.3) hold also when PI is above the

line in Fig. 11 and d is positive. Hence we have

[8.1]

(8.5)

The directed distance of a point PI(*I, y\) from the line

ax + by + c Qis given by

.__

where e is + 1 or 1 so that eb > if b ^ 0, and ea >
if b =

;
the distance d is positive or negative according as

the point lies above or below the line.
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As an example, what is the distance of the point (2, 1) from the

line x 3.y-f2 = 0? Since the coefficient of y is a negative number,

e = - 1 in (8.5), and we have

2 3

- VI6 VlO

Since d is positive, the point lies above the line, as the reader may
verify by drawing the graph.

We observe from (8.5) that the origin, that is, the point

(0, 0), is above or below the line according as ec is positive or

negative.

Consider now the equation

(8 .6)

where k is a constant. Since the equation is of the first degree

in x and y, it is an equation of a line. If P\(x\, y\) is any point

on this line, on substituting x\ and y\ for x and y in the above

equation and comparing the result with (8.5), we see that PI is

at the distance k from the line (8.1). Since this is true of every

point on the line (8.6), it follows that the line (8.6) is parallel

to the line (8.1) and at the directed distance k from it; that

the two lines are parallel follows also from the fact that equa-
tions (8.1) and (8.6) satisfy the condition of theorem [6.8].

EXERCISES

1. Find the distances from the line * - ;y + 5 = to the points

(1, -1) and (- 2, 4), and find equations of the lines through these

points parallel to the given line.

2. Find equations of the two lines parallel to 4 # 3 j> -f 5 =
at the distance 2 from this line.

3. Find the distance between the lines 2* ;y-f6 = and

4*-2;y-3 = 0.

4. Find the points on the *-axis whose distances from the line

4 x + 3 y - 6 = are numerically equal to 3.

5. How far is the origin from the line through the point (- 3, 2)

parallel to the line 3 x + y = 0?
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6. Find the points which are equidistant from the points (2, 6)
and ( 2, 5) and at a distance of 2 units from the line 7x+ 24y 50= 0.

7. Show that the circle of radius 2 and center (3, 4) is not inter-

sected by the line 4*-?:v + 28 = 0.

8. Find the area of the triangle with the vertices (2, 3), (5, 1),

(3, 1).

9. By what factor must the equation ax -f by 4- c = be multi-

plied so that it is of the form \x + w + p = 0, where X and M are

the direction cosines of any line perpendicular to the given line?

Show that p is the directed distance from the line to the origin.

10. Prove that the line 2 x 4y + & = Q bisects the portion of the

plane between the two lines *-2j> + 2=0 and x-2y + 6 = Q.

11. Prove that the line 3 * -f 4 ;y
- 12 = bisects the area of the

quadrilateral whose vertices are ( 4, 6), (7, ), (1,
- f), (8,

-
3).

9. Two Equations of tke First Degree in x and y.

Determinants of the Second Order

Having discussed in 1 the solutions of an equation of the

first degree in x and y, we now consider two such equations,

namely,

(9.1) ai* + biy + ci = 0, 2* + b2y + c2 = 0,

where a subscript 1 attached to a coefficient (as, for example, 0i)

indicates that it is a coefficient of the first equation and has

nothing to do with the numerical value of the coefficient;

similarly #2, &2, 2 are coefficients of the second equation ; this

device of subscripts enables one to use the same letter for the

coefficients of x in the two equations, the distinction being in-

dicated by the subscripts ; similarly for the coefficients of y
and the constant terms. In accordance with the discussion in

1, each of equations (9.1) has an endless number of solu-

tions ; x and y in the first equation represent any of its solutions,

and in the second x and y represent any of its solutions. When
the left-hand member of either equation is a constant multiple

of the left-hand member of the other, the two equations have

the same solutions, as remarked in 1 ; that is, they are not
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independent equations, and consequently x and y have the

same meaning in both equations. But when the equations are

essentially different, x and y have, in general, different mean-

ings in the two equations. To emphasize this fact, different

letters might more appropriately be used in place of x and y
in the second equation, but this is not the general practice;

we adhere to the customary practice of using the same letters

x and y in both equations and expect the reader to bear the

distinction in mind.

It may or may not be that for given values of the coefficients

there is a solution of the first which is also a solution of the

second; that is, the two equations may or may not have a

common solution. We assume that there is a common solution,

which we denote by x\, y\, and substitute it for x and y in the

two equations, obtaining

+ biyi + ci = 0, a2xi + b2yi + c2 = 0.(9.2)

Following the method with which the reader is familiar, we

multiply the first of these equations by b2 and from the result

subtract the second multiplied by hi ; in the resulting equation
the coefficient of y\ is zero, and we obtain

(0i 62
-

02&i)*i + (cib2
- c2bi) = 0.

By adopting the following shorthand notation for the quantities

in parentheses :

(9.3)
02

the above equation may be written

(9.4)
0i

02

Ci

c2

= 0.

In like manner, if we multiply the second of equations (9.2)

by 0i and from the result subtract the first multiplied by 2 ,

we obtain

(9.5)
0i

02

0i

02 C2

= 0,
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Sec. 9] Determinants of trie Second Order

where, similarly to (9.3), we have put

(9.6)
ai Cl

Q>2 C2

The square arrays defined by (9.3) and (9.6) are called deter-

minants. We use the sign of identity =, rather than the sign

of equality, to indicate that (9.3) and (9.6) are definitions.

We observe that the second determinants in (9.4) and in

(9.5) are obtained from the first on replacing the a's by c's

and the fr's by c's respectively.

We consider equations (9.4) and (9.5) in detail. Suppose
first that the 0's and &'s have such values that the determinant

ai 1
is not equal to zero. Then equations (9.4) and (9.5)

$2 U2

can be solved at once for x\ and y\, the common solution;

this is the process with which the reader is familiar, although

maybe not in this notation. Moreover, since any common
solution of equations (9.1) must be a solution of equations (9.4)

and (9.5), there is only one common solution in this case. We
call the above determinant, that is, the determinant of the

coefficients of x and y in equations (9.1), the determinant of the

equations. Accordingly we have

[9.1] When the determinant of two equations of the first degree in

x and y is not equal to zero, there is one and only one

common solution of the equations.

It is evident that two lines with equations (9.1) meet in one

point and only one point, that is, the lines intersect one an-

other, if and only if their equations have one and only one

common solution, in which case the point of intersection is the

graph of the common solution. Accordingly the geometric

equivalent of Theorem [9.1] is the following:

[9.2] The lines with equations (9.1) intersect one another, that is,

have one and only one point in common, if

(9.7)
** ^0.
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We consider next the case when the determinant of the equa-
tions (9.1) is equal to zero, that is,

(9.8)

If at the same time

01&2 02^1 = 0.

Ci

C2
or

01 c\

02 C2
0, it follows that

(9.4) or (9.5) cannot be true. This means that the assumption
that there is a common solution of equations (9.1) is not valid,

not that one has proved that zero is equal to a number which

is not zero. Hence we have the theorem

[9.3] Two equations (9.1) do not have a common solution if the

determinant of the equations is equal to zero and one of the

determinants

(9.9)
Ci

c2 62

0i Ci

c2

is not equal to zero.

We shall show that in this case the equations have a form which

is readily distinguishable, and to this end we consider separately

the case when a\ ^ and the case when a\ = 0.

Case 1. ai ^ 0. We cannot have 02 = 0, otherwise it fol-

lows from (9.8) that b2 = 0, and thus the second of equations

(9.1) is of the degenerate type which we have excluded from

our consideration (see 1). Since a2 ^ 0, a number k (^ 0) is

defined by k = 02/01, from which we have 02 = ka\. When
this value for 02 is substituted in (9.8), we obtain the second

of the following equations :

(9.10) 02 =

Case 2. ai = 0. From (9.8) it follows that 2 = 0, other-

wise bi = 0, and the first of equations (9.1) is degenerate. Since

62 7* for a similar reason, the second of equations (9.10) is

satisfied by k = b2/bi, and the first of equations (9.10) is satis-

fied identically, since 0i = 2 = 0.

Thus equations (9.10) are a consequence of (9.8), and, con-

versely, when the coefficients of equations (9.1) are related as
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in (9.10) for some value of k, equation (9.8) holds, as is seen

by substitution. Furthermore, when (9.10) holds and either

and ai Cl
is not equal to zero, we

02 C2

must have c% ^ kc\. Accordingly we have

[9.4] Two equations (9.1) are of the form

(9.11) aix + b\y + c\ = 0, k(a\x + fay) + c2 = (c2 ^*Ci),

where k is some constant different from zero, if and only if

the determinant of the equations (9.1) is equal to zero and
one of the determinants (9.9) is not equal to zero; in this

case there is no common solution of the equations.

If we divide the second of equations (9.11) by k and put
c2/k = d, then d ^ d. If then we say that the second of

(9.11) is a\x + b\y + d = to within a constant factor, we may
state Theorem [9.4] as follows :

[9.5] Two equations of the first degree in x and y have no com-

mon solution if to within possible constant factors they are

of the forms

(9.12) ax-\-by + c = Q, ax + by + d = Q (d^c).

In accordance with Theorem [6.8], two lines with equations

(9.12) are parallel ; that is, by the definition in 6 they have

the same direction. By Theorem [9.5] this definition is equiva-

lent to the definition that they do not have a point in common.

The reader may have been told that two parallel lines meet in

a point at infinity. A point at infinity so defined is not like the

points with which we are dealing ;
it is a concept sometimes

introduced by the geometer so that he may make the general

statement that any two noncoincident lines meet in a point.

We consider finally the case when all three of the determi-

nants in (9.4) and (9.5) are equal to zero, that is, when we have

equation (9.8) and

(9.13) Cife czbi = 0, 0iC2 atfi = 0.

In this case any value of xi and any value of y\ satisfy equa-

tions (9.4) and (9.5). This does not mean that any value of
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x and any value of y is a common solution of equations (9.1),

because we know from 1 that any value of x and any value

of y is not a solution of either equation. We shall show that it

means that either equation is a constant multiple of the other.

We have seen that equation (9.8) is equivalent to the two

equations (9.10). When the values for a% and 62 from (9.10)

are substituted in (9.13), we find that the latter are satisfied,

if and only if c2 = kci. From this result and (9.10) we have the

theorem

[9.6] All three of the determinants

(9.14)

are equal to zero, if and only if

(9.15)

0i

02

c\

2

01

C2

02

01

= = 9

with the understanding that if either term in any ratio is

equal to zero so also is the other term; for example, if

62 = 0, so 0/so is bi = 0.

This theorem is equivalent to the statement that all three

of the determinants (9.14) are equal to zero, if and only if

either of equations (9.1) is a constant multiple of the other, in

which case any solution of either equation is a solution of the

other. Hence we have the theorem

[9.7] Equations (9.1) have an endless number of common solu-

tions, if and only if all three of the determinants (9.14) are

equal to zero.

The geometric equivalent of theorem [9.7] is the following :

[9.8] Two lines with the equations (9.1) are coincident, that is,

coincide at every point, if and only if all three of the deter-

minants (9.14) are equal to zero.

The above discussion is set forth in the following table, the

last column giving the number of common solutions of the two
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equations (9.1), or, what is the geometric equivalent, the num-
ber of common points of two lines with these equations :

a2 b2

02 b2

One

=
C2 b2 \ 1 02 C2

not both zero None

0i,bi,a2 , b2 not all zero

Ici

&i|_|0i
C
I|= QJ

c2 b2 \ 1 02 c2 \

. . . An endless

number
Ci,c2 not both

zero . . . None

L
Ci = c2 = . . Any x and

anyjy

The case a\ b\ = 2 = 62 = was not discussed in the text,

that is, the case when both of equations (9.1) are degenerate,
but the situation in this case is given in the table so that the

algebraic treatment may be complete ;
the reader should verify

the statements made.

In illustration of some of the above results we consider the follow-

ing equations :

The determinant of these equations is 2( 5) 4(3) = 22. Hence,

in accordance with Theorem [9.1], these equations admit one and

only one common solution, given by equations (9.4) and (9.5), which

in this case are

- 22 *i + 11 = 0,
- 22 yi + 22 = 0,

that is, xi = 1/2, y\ = 1.

If now we take the first of the above equations, 2 x + 3y 4 = 0,

and the equation 4x-h6> + 3 = 0, we find that the determinant of

these equations is equal to zero, and the second determinants of (9.4)

and (9.5) are equal respectively to - 33 and 22 ; consequently the

given equations have no common solution, by Theorem [9.3].

When, however, we consider the equations 2* + 3;y 4 = and

4 * + 6 ;y 8 = 0, all three of the determinants in equations (9.4)

and (9.5) are equal to zero, and in accordance with Theorem [9.7] any
solution of either equation is a solution of the other ; this is seen to

be the case when we note that the second equation is the first mul-

tiplied by 2, an illustration of Theorem [9.6].
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EXERCISES

1. Find the common solution of the equations 2x 3.y + 4 =
and x + y + 2 = 0, using determinants, and check the result by solving

the equations by the method previously known by the reader.

2. Given the equations 2x y -f 4 = and ax 2 y + c = 0, for

what values of a and c have these equations one common solution ;

no common solution ; an endless number of common solutions?

3. Show that

I gai + hdi bi gai bi

gat b2

hdi

b2 b2 b2 1

4. What are equations of the diagonals of the quadrilateral whose

vertices are (0, 0), (0, 0), (a, b\ (0, b) ? Find their point of intersection

and show that they bisect one another.

5. For what values of a and b are the lines ax + 8 jy + 4 = and

2x + ay + b = Q coincident? For what values are they parallel?

6. Show that the angle <t> between the positive directions of the

perpendiculars to two intersecting lines (9.1) is given by

cos =

where ^ is -f 1 or - 1 so that e\b\ > if bi ^ 0, and ciai > if bi = ;

and similarly for e2 .

7. Show that the expression -2 (3 x +y- 5) + 5 (x -2y- 4) van-

ishes identically when x and y take the values of the common solution

of the equations 3# + :y 5 = and x 2 y 4 = 0. Is it necessary
to find the common solution to verify the above statement? Would
the statement be equally true if the multipliers 2 and 5 were re-

placed by any other numbers ?

8. Show that as a result of the whole discussion in 9 we may go
back and put

"
if and only if

"
in place of

"
if
"
in all the theorems of

9 in which "if" alone appears.

9. Using Ex. 3, show that

b\c2 a\d\ 4- b\d% I

-f- b2c2

is equal to the product of the determinants
ai

.

l

02
and

.*'
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10. The Set of Lines through a Point

From Theorem [9.2] and the other theorems in 9 it follows

that the lines with equations

(10.1) aix + biy + d = 0, a2x + b2y + c2 =

intersect, that is, meet in one point and only one point, if

and only if their determinant is not equal to zero; that is,

if (9.7) holds. Thus two intersecting lines determine a point. This

is called the dual of the theorem that two points determine a

line. Equation (5.3) gives the relation between the coordi-

nates x, y of any point of the line determined by the points

(xi, ;yi) and (x2 , y2 ) and the coordinates of these two points. As
the dual of this result there should be a relation between an

equation of any line through a point and equations of two lines

determining the point. It is this relation which we now obtain.

In connection with the equations (10.1) we consider the

expression

(10.2) ti (ai* + biy + ci) + t2 (a2x + b2y + c2),

where t\ and t2 are constants, not both zero. Since the left-

hand members of equations (10.1) are equal to zero when x

and y are given the values of their common solution, it follows

that the expression (10.2) is equal to zero for this common
solution whatever be t\ and t2 . Hence the common solution of

equations (10.1) is a solution also of the equation

(10.3) h fax + biy + ci) + t2 (a2x + b2y + c2) = 0.

This being an equation of the first degree in x and y, which is

seen more clearly when it is written in the form

(10.4) (hai + t2a2)x + (hbi + t2b2)y + (hci + fac2)
= 0,

we have that (10.3) for any values of t\ and f2 , not both zero, is an

equation of a line through the intersection of the lines (10.1)

(see 9, Ex. 7).

We show next that equation (10.3) for suitable values of

t\ and /2 is an equation of any particular line through the inter-

section of the lines (10.1). In the first place we remark that
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the first of the lines (10.1) is given by (10.3) when /2 = and

/i is any number different from zero, and the second of the lines

(10.1) when t\ = and t2 is any number different from zero.

Any other line through the intersection is determined by a

second point of the line, say (*i, y\). Equation (10.3) is an

equation of this line if t\ and t2 are such that the expression

(10.2) is equal to zero when x and y are replaced by x\ and y\ 9

that is, if ti and t2 are such that

(10.5) hAi + t2A 2 = 0,

where A\ and A 2 are the numbers defined by

Ai = 01*1 + biyi + Ci, A2 = 2*i + b2yi + c2 .

Both of these numbers are different from zero, since (*i, y\)

is not on either line (10.1). If we give t\ any value other than

zero and solve (10.5) for t2j we have values of t\ and t2 for

which (10.3) is an equation of the line of the set through

(*i, >>i). From the form of (10.5) it follows that the ratio

ti/t2 is a fixed constant, so that, if we choose another value of

ti and find the corresponding t2 from (10.5), the equation (10.3)

for these values differs from the equation for the former set

only by a constant factor. Hence any choice of h and the cor-

responding value of t2 give an equation of the line, and we have

the theorem

[10.1] When the lines (10.1) intersect in a point, that is, when
the determinant of equations (10.1) is not equal to zero, the

equation (10.3), namely,

/i (0i* + biy+ ci) + /2 (02*+ b2y+ c2) = 0,

for any values of the constants h and t2 , not both zero, is an

equation of a line through the point of intersection of the

lines (10.1) ; and (10.3) is an equation of any line through

this point for suitable values of ti and h.

Ordinarily the simplest choice of t\ in an equation such as

(10.5) is A 2 ,
and then t2 = AI. When these values are sub-

stituted in (10.3), we have the desired equation.
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For example, ifwe seek an equation'of the line through the point (2,1)

and the intersection of the lines * + 2>> 1=0 and 3^-^ + 2 = 0,

equation (10.5) is in this case fi3 + fe7 = ; and consequently an

equation of the line is 7(x -f 2 y - 1) 3(3 x - y + 2) = 0, which
reduces to - 2 x + 17 y - 13 = 0.

In order to find an equation of the line through the inter-

section of the lines (10.1) which is parallel to the jy-axis, t\ and
/2 in (10.3) must be chosen so that the coefficient of y in (10.4)

shall be equal to zero. If we take ti
= b2 , t2 = fei, and substi-

tute these values in (10.4), the resulting equation may be
written in the form

(10.6)
0i

02 b<2
-0,

which is the same as (9.4). This is not surprising, since we
obtained (9.4) by multiplying the first of (9.2) by b2 and sub-

tracting from the resulting equation the second of (9.2) mul-

tiplied by 61, which is equivalent to taking t\
= b2 and /2 = fa

in (10.4). In like manner, if we take t\ = #2, fe = 0i the

resulting equation (10.4) may be written

(10.7)
0i

02
y + 01 Ci

02 2

= 0,

which is the same as (9.5). Thus we have shown that the alge-

braic problem of finding the common solution of two equations
of the first degree in x and y, when there is one, has as its geo-

metric equivalent the finding of lines parallel to the >>-axis and

#-axis respectively through the point of intersection of the

graphs of the two equations.

Any two lines of the set (10.3) could have been used equally

well in place of the lines (10.1) as a basis for expressing an

equation of every line through the point of intersection in the

form (10.3), with the understanding, of course, that for a

particular line the values of h and t2 depend on which two

lines are used as basis. This result may be stated as follows :

[10.2] Given all the lines through a point, each line is expressible

linearly and homogeneously in terms of any two particular

lines of the set.
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This is the dual of Theorem [5.4].

We have remarked that when ti = in (10.3) the latter is

equivalent to the second of equations (10.1). With this ex-

ception ti is not equal to zero for any of the lines (10.3), and

consequently, if equation (10.3) is divided by t\ 9 and /2//i is

replaced by t, we have as a consequence of Theorem [10.1] the

following :

[10.3] When the lines (10.1) intersect, the equation

(10.8) (01* + hy + ci) + t(a2x + b2y + c2) = 0,

where t is any constant, is an equation of a line through
the intersection; and any line through the intersection, ex-

cept the second line (10.1), has an equation of the form
(10.8) when t is given an appropriate value.

This theorem may be proved independently by the same
kind of reasoning which established Theorem [10.1]. In the

case of Theorem [10.3] we have in place of (10.5) the equation
AI + tA 2 = ; and thus / is completely determined except
when A 2 = 0, in which case we are dealing with the second of

the lines (10.1). This makes the application of Theorem [10.3]
somewhat simpler than that of Theorem [10.1] in some cases,
and the reader may choose which theorem is better to apply in

a particular problem.
From a theorem in plane geometry we have that the locus

of a point equidistant from two intersecting lines is the bisectors
of the angles formed by the lines. Consequently this locus

consists of two of the set of lines through the point of inter-

section of the given lines. In order to find equations of the

bisectors, we take two equations (10.1). At least one of the
coefficients bi and b2 is not equal to zero, otherwise the lines

are parallel to one another, and to the ;y-axis.

We consider first the case when both bi and b2 are different

from zero. Let (*i, y{) be a point of the locus. Then its dis-

tances from the lines (10.1) are by Theorem [8.1]

(10 9) eiai
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where e\ and e2 are + 1 or 1 so that e\b\ > 0, e2b2 > 0. If (x\, y\)

lies above the two lines, both the numbers (10.9) are positive
and equal ;

if (xi, yi) lies below the two lines, both the numbers
are negative and equal; if (x\, y\) lies above one of the lines

and below the other, one of the numbers (10.9) is positive and
the other negative, but they have the same numerical value.

Since these results hold for every point on the bisectors, we have

[10.4] The bisectors of the angles formed by two intersecting lines

(10.1) for which bi^O and b2 ^ have the equations

a\x -f- b\y -f- Ci __ ,
a2x + b2y -f- c2

(10.10)
i

whgre e\ and e2 are such that e\b\ > 0, e2b2 > 0. The equa-
tion with the sign + is that of the bisector each of whose

points is above, or below, both of the lines (10.1) ; and the

equation with the sign is that of the bisector each of whose

points is above one of the lines (10.1) and below the other.

This theorem is illustrated in Fig. 12, where the lines (10.10)

with the signs + and are indicated by (+) and ( )

respectively.

When bi = or b2 = 0, e\ or e%

must be chosen so that e\a\ >
or e2a2 > 0. In this case the

equation (10.10) with the sign

+ is that of the bisector whose

points lie above one line and

to the right of the other, or

below the one and to the left of

the other ;
and equation (10.10)

with the sign is that of the

bisector whose points lie above, or below, one line and to the

left, or right, of the other, as the reader should verify.

For example, the bisectors of the angles between the lines

have the respective equations

(2V5 4)* + (V5 T 3)y
-

(3V5
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EXERCISES

1. Find an equation of the line through the intersection of the

lines x-2y + 7 = and 3x+.y-l=0 and the point (1,
-

1) ;

of the line through the intersection and the point ( 2, 7) ; of the

line through the intersection and parallel to the *-axis.

2. Find an equation of the line through the intersection of the

lines 2* :v + 8 = and x+y + 2 = and parallel to the line

5 x - y = 0.

3. Show by means of Theorem [10.1] that the line # + 5;y-4 =
passes through the intersection of the lines 2 x + y + I =0 and

4. What must be the value of a in the equation ax + y + 6 =
so that this line shall pass through the intersection of x + y + 4 =
and2x + 3^4-10 = 0?

5. Show that the lines ax + by + c = 0, whose coefficients satisfy

the condition a + b = kc, where k is a constant not equal to zero, pass

through a common point.

6. Show that when the lines (10.1) are parallel, (10.8) is an equa-

tion of a line parallel to the former for any value of /, except

/= 01/02 = b\ /b%. Why does this exception not arise when the lines

(10.1) intersect? Is every line parallel to the lines (10.1) so defined?

7. Find equations of the bisectors of the angles between the lines

8. Find equations of the bisectors of the angles between the line

4 * 5y + l = and the line perpendicular to it through the origin.

9. Find an equation of the line through the point of intersection

of the lines 5x + 2y + 1 = and x- y -5=0 such that the point

(5^ 4) is at the directed distance + 2 from the line.

10. Find the point of intersection of the bisectors of the angles of

the triangle whose sides have the equations

3x + 4y + 7 = 0, 4* + 3jy-21 = 0, 12 x-5y + 38 = 0,

that is, the center of the inscribed circle; find the radius of this

circle.

11. Draw the graph of the lines in Ex. 10, extending the sides of

the triangle, thus dividing the plane into seven compartments. Show

that in three of these compartments outside the triangle there is a

point which is the center of a circle tangent to the three lines ; find

the center and radius of each of these escribed circles.
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11. Oblique Axes

At the beginning of 2 we took the coordinate axes perpen-
dicular to one another, in which case they are said to be rec-

tangular, and defined the coordinates of a point by drawing

through the point lines parallel to the axes. We did not de-

fine the coordinates as the perpendicular distances of the point
from the jy-axis and #-axis respectively, although we remarked

that this is what they are when the axes are perpendicular to

one another. Consequently the definition of coordinates given
in 2 applies equally well when the axes are not perpendicular
to one another, in which case we say the axes are oblique.

The question of whether the axes are rectangular or oblique
does not arise in the case of lengths parallel to the axes, and

thus does not affect direction numbers, or equations of a line

not involving direction cosines satisfying equation (3.6) ; in

fact, equation (3.6) was derived from the expression (3.1) for

the distance between two points (#1, y\) and (*2 , ^2), which

presupposes that the axes are rectangular. The same assump-
tion was involved in deriving formulas for the angle between

lines and the distance from a line to a point. The reader will

find it instructive, and conducive to getting a clear picture of

the subject thus far, to take each theorem and determine

whether its proof depends upon the axes' being rectangular.

The subject of oblique axes is introduced here not only to

enable one to understand how much of what precedes is inde-

pendent of the angle formed by the

coordinate axes, but also because

the use of such axes in certain prob- /f<?(o,c)

lems leads to simpler algebraic treat-

ment of these problems. For example,
if one wishes to prove that the

medians of a triangle meet in a point,

it is advisable to choose two sides of

the triangle as axes, and denote the O/A(O,O) jpd.o) 2?(&,o)

"

vertices by (0, 0), (ft, 0), and (0, c),

as shown in the accompanying figure. Equation (6.1) applies,

because it expresses the equality of ratios of direction numbers.
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The equations of the lines BE and CF are

(11.1) ex + 2 by
- be = 0, 2 ex + by - be = 0.

If we subtract the first of these equations from the second, we

get an equation of a line through the intersection of these lines

by Theorem [10.1] ; this equation is

(11.2) cx-by = Q.

But this is an equation of the median AD, as the reader can

readily verify ;
and thus it is shown that the medians meet

in a point. Another method of proof consists in solving (11.1)

for their common solution; this is b/3, c/3, which evidently

satisfies (11.2). Moreover, one shows readily that the point

(6/3, c/3) divides each median in the ratio 1/2.

12. The Circle

By definition a circle is the locus of points each of which is at

the same distance, the radius, from a fixed point, the center.

In order to find an equation of a circle, we denote by r its

radius, by PO(#O, ;Vo) its center, and by x, y the coordinates of a

representative point, that is, any point on the circle. By means
of Theorem [3.1] we obtain as an equation of the circle

(12.1) (x
- * )

2 + (y
-

jo)
2 = r2

,

which may be written

(12.2) x2 + y
2 - 2 x x - 2 y y + (x

2 + yo
2 - r

2
)
= 0.

Evidently any solution x, y of this equation (and there is an
endless number of them) gives the coordinates of a point on the

circle with center at P and radius r. On giving XQ, y , r suit-

able values, equation (12.1) is an equation of any circle.

We remark that (12.2) is of the form

(12.3) x2 + y* + 2 fx + 2 gy + k = 0.

Conversely, we shall determine whether an equation of this

form for given values of/, g, and k is an equation of a circle. If

we add/2 + 2 to the left-hand member of (12.3), the resulting

expression may be written (x +/) 2 + (y + g)
2 + k. But then
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we must add f2 + g
2 to the right-hand side of (12.3), so as to

continue to have an equivalent equation. Consequently we can

replace (12.3) by its equivalent

(12.4) (x +f) 2 +(y + g)
2 =/2 + g

2 - *.

Comparing this equation with (12.1), we see that (12.4), and

consequently (12.3), is an equation of a circle whose center is

( /> g) and whose radius is V/2 + g
2

k. From the form

(12.4) of equation (12.3) it follows that the latter equation does

not have any real solutions when f2 + g
2 k < 0. But because

(12.3) is of the same form as in the case when there are real

solutions, we say that when f2 + g
2 k is negative (12.3) is

an equation of an imaginary circle ; we cannot plot such a

circle, only talk about it. When/2 + g
2 k 0, it follows from

(12.4) that x = f, y g is the only real solution of (12.4),

and consequently of (12.3) ; sometimes this point is called a

point circle, that is, a circle of zero radius. Thus only when

/
2 + g

2 k > is (12.3) an equation of what the reader would
call a genuine circle. But if one wishes to make a general state-

ment about the geometric significance of equation (12.3), one may
say that it is an equation of a circle whatever be the values of/,

g, and k, admitting the possibility of imaginary and point circles.

It is important that the reader get clearly in mind the form of

equation (12.3). Note that there is no term in xy, and that the

coefficients of x2 and y
2 are equal, in this case both equal to + 1.

If they were both equal to some other number (for example 3),

we could divide through by that number (which does not affect

the solutions of the equation) before putting the equation in

the form (12.4) by the process used above, and called completing

the square of the terms involving x, and of the terms involving^.

For example, if we have the equation

2x* + 2y2 -5x + 4y-7 = 0,

we divide by 2 and complete the squares, getting

*2 -f*+(f) 2 + rs + 23'+l = (f)
2 +l + f = f

When this equation is written in the form

it is seen that (f ,

-
1) is the center of the circle and ?V97 its radius.
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Geometrically we say that a line meets a circle in two points

or in no points or is tangent to it. Let us see what this means

algebraically. We take the equation of the line in the form

(12.5) y = mx + h,

in which case m is the slope and h the ^-intercept. Instead of tak-

ing a circle placed in general position with respect to the axes,

we take a circle of radius r with center at the origin (for the

sake of simplifying the calculations involved) ; its equation is

(12.6) x2 + y
2 = r2 .

The reader is familiar with the process of finding common
solutions of equations such as (12.5) and (12.6), namely, sub-

stituting the expression (12.5) for y in (12.6) and solving the

resulting equation. Making this substitution and collecting

terms, we obtain

(12.7) (1 + m2
)*

2 + 2mhx+ (h
2 - r2) = 0.

The geometric interpretation of this quadratic in x is that its

two roots are the ^-coordinates of the points in which the line

meets the circle. Applying the formula for the solution of a

quadratic equation to (12.7) and reducing the result, we have

x -

If r
2
(l + m2

) > A2
, (12.8) gives two real and distinct values

of x. These and the corresponding values of y obtained from

(12.5) on substituting these values of x are the coordinates of

the two points of intersection.

If r2 (l + m 2
) < A 2

, the two solutions (12.8) are imaginary,
as are the corresponding /s. In this case the line does not

meet the circle, or, as is sometimes said, it meets the circle in

two imaginary points; we cannot plot such points, although
we may talk about them.

We consider finally the remaining possibility, namely,
h2 = r2 (l +m2

). When h= rVl + w2
, the two solutions of (12.7)
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are equal to one another, as follows from (12.8) ; that is,

the two points coincide. In this case we say that the line is

tangent to the circle at the (doubly counted) point PI, whose
coordinates are

mh h

as follows from (12.8) and (12.5).

The line joining the center of the circle (that is, the origin)
to the point PI has xi, yi for direction numbers, as follows

from Theorem [6.1] (see 6, Ex. 7); and consequently from

(12.9) it follows that m, - 1 are direction numbers of this

line, being proportional to x\ and yi. In consequence of

Theorem [6.9], m, 1 are direction numbers of a line per-

pendicular to the line (12.5). Hence the tangent, as defined

above, is perpendicular to the radius of the circle at PI ; this

agrees with the definition of a tangent to a circle, with which

the reader is familiar. However, the latter definition is limited

to the circle, whereas the definition we have used is general in

its application.

Since similar results are obtained when h in (12.5) has the

value rVl + m2
, we have

[12.1] For each value of m the two equations

(12.10) y = mx 7 l + m2

are equations of two parallel tangents, of slope m, to the

circle x2 + y
2 = r2 .

This is illustrated in the ac-

companying figure. Equations

(12.10) are equations of tangents
to a circle only in case the

equation of the circle has the

form "(12.6). However, the same

process may be applied to an

equation of the circle in the

general form (12.3) (see Ex. 5

and 13, Ex. 23).
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When a point PI(XI, y\) is on the circle (12.3), the expression

Xl
2
4. yi

2 + 2fxi + 2 gyi + k is equal to zero ; but when PI is

not on the circle, this expression is a number different from zero.

We shall give a geometric interpretation of this number when

Pi lies outside the circle, as in Fig. 14. Denoting the center by

C, we have from (12.4)

Hence, since PiT = PiT', we have

[12.2] JF/^w a point P\(x\, y\) lies outside the circle (12.3), the

number x\
2 + y^ + 2fxi + 2 gyi + k is equal to the square

of the distance from P\ to the point of contact of each of the

two tangents to the circle from PI.

Since there are three independent coefficients, /, g, k, in equa-
tion (12.3) independent in the sense that each choice of these

coefficients gives an equation of a particular circle, and a change
of one or more of the coefficients chosen gives a different circle

it follows that a circle is completely determined by three

conditions. The definition of a circle involves the location of its

center and the length of its radius ; when these are given, the

values of/, g, and k are completely determined, as shown in equa-
tion (12.2). Also a circle is determined by three noncollinear

points (see Ex. 8) ; if the coordinates of these points are given
and these are substituted in (12.3), we obtain three equations
to be solved for the appropriate coefficients/, g, and k in (12.3).

Consider now the two circles

and in connection with them the equation

(12.12) h(x
2 + y* + 2fa +
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where t\ and t2 are constants not both zero. This equation may
be written also in the form

(12.13) (h + t2)(x
2 + y

2
) + 2(/i/i +

t2g2)y + (ti^ + /2*2 ) = 0.

If xi, yi is a common solution of equations (12.11), it is a solu-

tion of (12.12) whatever be the values of ti and /2 , since the ex-

pression in each parenthesis in (12.12) becomes equal to zero

when x, y are replaced by x\,y\. When t\ + fa ^ and equation

(12.13) is divided by (h + /2 ), the resulting equation is of the

form (12.3). Consequently equation (12.12) for ti + fa?*Q is

an equation of a circle passing through the points of intersection

of the circles (12.11) if the circles intersect, that is, if the com-
mon solutions of (12.11) are real.

In order to find the common solutions, if any, of equations

(12.11), we subtract the second of these equations from the first

and obtain

(12.14) 2(/t -/2)* + 2(ft
-

g2)y + (*i
- *2 )

= 0.

This does not mean that any solution of this equation is a com-

mon solution of equations (12.11), but that, if the latter have a

common solution, it is a solution of (12.14). We observe that

(12.14) follows from (12.13) when we take t2 = t\ and divide

out the factor ti ; consequently (12.14) is the reduced form of

(12.12) when t2 = t\. In view of this fact, if we have a com-

mon solution of (12.14) and either of equations (12.11), it is a

solution of the other. In fact, if xi, ;yi satisfy the first of (12.11)

and (12.12) with t2 = h, then the quantity in the first paren-

thesis is equal to zero when x, y are replaced by x\, y\ throughout
the equation, and consequently the expression in the second

parenthesis also. Hence the problem of finding the points of

intersection of the circles (12.11) reduces to that of finding the

points of intersection of either circle and the line (12.14). This

line is called the radical axis of the two circles. From considera-

tions similar to those applied to equations (12.5) and (12.6) it

follows that this line and the circles have in common two points

or no real points or one point (counted doubly), in which case

the two circles have the line for common tangent at the point.
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When the two points of intersection of the circles (12.11) coin-

cide, in which case the circles have a common tangent at this

(doubly counted) common point, each of the circles (12.12)

has the same tangent at this point.

Whether the circles have a point in common or not, the

radical axis exists. From Theorem [6.9] and the form of

(12.14) it follows that f\ /2, g\ 82 are direction numbers
of a line perpendicular to the radical axis. But by Theorem

[6.1] these are also direction numbers of the line joining the

points ( /i f gi) and ( /2 , 2), that is, the centers of the

circles. Hence we have

[12.3] Given two circles (12.11), equation (12.12) for values of ti

and /2 such that t\ + /2 ^ is an equation of a circle through

the points, if any, in which the circles meet; when t\ + ^2 = 0,

it is an equation of a line perpendicular to the line through

the centers of the two circles.

EXERCISES

1. Find an equation of the circle whose center is ( 2, 3) and

whose radius is 2.

2. Find an equation of the circle of radius 3 which is tangent to

the #-axis at the origin and lies below the #-axis.

3. Find the center and radius of the circle whose equation is

2x2 + 2y2 + 6x-5y = Q.

4. Show that a circle (12.3) is tangent to the x-axis, if and only
if k = /

2
. What is the condition that it be tangent to the jy-axis ?

5. Find equations of the tangents to the circle x2
-f y2 = 4 with

the slope 3 ; also the tangents to the circle x 2 + y 2 + 4 x 1 = with

the slope 2.

6. Find equations of the lines with the slope 3 which are at the

distance 4 from the origin.

7. Find equations of the lines through the point (2, 3) which are

at the distance 2 from the origin.

8. Show that the radius and center of a circle are determined by
three points on the circle.

9. Prove that an angle inscribed in a semicircle is a right angle,

taking x2 -f y
2 = r2 as an equation of the circle.
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10. Where are the points for which x 2 + y2

11. What is the locus with the equation

Is the locus of x2 + 2 xy + y2 - 4 = a circle ?

12. Find an equation of the circle through the three points (1, 1),

(1,
-

2), (2, 3).

13. Find the length of the tangent from the point (2, 1) to the circle

3x 2 + 3y 2 + 5x-2y + 2 = 0.

14. Show that an equation of any circle through the points of in-

tersection of two circles (12.11) is given by (12.12) for suitable values

of /i and /2, and that the centers of all these circles lie on a line.

15. Show that an equation of any circle through the points of

intersection of two circles (12.11), with the exception of the second

of the circles (12.11), is given by the equation

x2 + y2 + 2 fix + 2giy + h + l(x
2 + y 2 + 2f2x + 2 g2y + k2 )

= Q

for a suitable value of /.

16. Show that equation (12.12) is an equation of a circle even if

the circles (12.11) do not intersect, except when t\ -f t2 = 0, and that

in the latter case it is an equation of a line perpendicular to the line

through the centers of the two circles.

17. Of the circles through the points of intersection of the circles

x2 + y
2 - 4 x 4- 2 y + 4 = and x2 + y 2 + 6 x + 8 y = 0, find

(a) the one which passes through the point (1,2);

(b) the one whose center is on the #-axis ;

(c) an equation of the radical axis.

18. Show that the circles (12.11) are orthogonal to one another,

that is, that their tangents at each point of intersection are perpendicu-

lar to one another, if and only if 2(/i/2 + gig*) = k\ + k2 .

19. Find an equation of the circle which passes through the point

(0, 2) and is orthogonal to the two circles x 2 + y2 + 2x-4y-3 = Q

and x 2 + y
2 -6x + 2y + 6 = Q.

20. Show that, if (xi, y\) is a point within the circle (12.3), the ex-

pression xi
2 + yi

2
4- 2fxi + 2 gyi 4- k is a negative number, and that its

absolute value is equal to the square of one half of the chord through

the point (x\, y\) perpendicular to the radius through this point.

21. Determine whether each of the points (1,
-

), (2,
-

1), (1, 1)

is outside, on, or inside the circle
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13: Resume. Line Coordinates

As stated in the Introduction, coordinate geometry involves

the application of algebra to the study of geometric problems.
The first step consists in setting up the algebraic equations (or

equation) which express the conditions of a geometric prob-

lem, and solving these equations or reducing them by algebraic

processes to their simplest form. The second step is the geo-

metric interpretation of the result. Let us interpret some of the

results of this chapter in the light of this statement.
J A line in the plane is determined either by two of its points or

by a point and the direction of the line. We have established

the following equations of a line :

m(x xi)=y yi.

The first of these equations involves the coordinates (xi, yi) and

(#2, JV2) of two points on the line, the second and third a point

and a direction, the latter being expressed either by direction

numbers u and v, that is, numbers proportional to the cosines

of the angles which the positive direction of the line makes
with the positive directions of the axes, or by the slope, that is,

the tangent of the angle which the positive direction of the

line makes with the positive direction of the #-axis. Since

x2 xi and y2 y\ are direction numbers of the line, the first

equation is in fact a special case of the second equation. Con-

sequently, when the above data are given for a line, an equa-
tion of the line may be written, an equation of a line being an

equation each of whose solutions consists of the coordinates of

a point on the line, and conversely.

Each of the above equations is of the first degree in x and y,

and it has been shown that every equation of the first degree is

an equation of a line. Any such equation is of the form
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Suppose then that we have such an equation and wish to inter-

pret it geometrically. If we find any solution of it, say (x\, y\),

we can put the equation in either of the last two forms above,

provided we adhere to the

principle that, if in an equal-

ity of two or more ratios either

term of a ratio is equal to

zero, so also is the other

term a principle which has

been used several times in

this chapter. Also by means
of a second solution the equa-
tion may be given the first

of the above forms.
FIG. 15

Since any multiple of the above equation has the same solu-

tions as the given equation, any such equation is an equation
of the line ; and consequently we should expect that not only

a, ft, and c but also quantities proportional to them have

geometric significance. To overcome this ambiguity we write

the above equation in one of the following forms, of which

the first is possible only when a, &, and c are all different from

zero, and the second when 6^0:

(13.1) JL + -2- = l ; in other notation,
- + \ = 1.

2

a

(13.2)

(13.3)

notation, y = mx + h.

= 0,
e^/a2 + b2

where e is + 1 or 1 so that eb > when 6^0, and ea>0
when 6 = 0.

In (13.1) g and h are the x- and ^-intercepts respectively ; in

(13.2) m is the slope of the line and h its ^-intercept ;
in (13.3)

a/e^/a
2 + b2 and b/e^/a

2 + b2 are the direction cosines of any
of the endless number of lines perpendicular to the given line,

and c/e-^a
2 + b2 is the directed distance of the origin from the

line (see Fig. 15).
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Since the coefficients a, b, and c of an equation ax + by + c =
determine the equation, and consequently the line of which it is

an equation, we call a, b, and c line coordinates of the line. Since

an equation of a line is determined only to within a constant

multiplier, it follows that if 0, ft, and c are line coordinates of a

line, so also are ka, kb, and kc line coordinates of the same line

for every value of k different from zero. The line coordinates

I/ft !/*.
~ 1 in (13.1), m, - 1, h in (13.2), and a/eV02 + b2,

b/e^/a
2 + b2 , and c/e^/a

2 + b2 in (13.3), have in each case the

geometric significance mentioned in the preceding paragraph.
Now we may state Theorem [10.1] as follows: Line coordi-

nates of any line through the intersection of two lines with coordi-

nates 0i, fti, Ci and 02, 2, 2 are of the form t\a\ + /202, t\b\ + /2&2,

/i^i + /2C2- Thus line coordinates of each of the set of all the

lines through a point are expressible linearly and homogene-

ously in terms of line coordinates of any two lines of the set.

This is the dual of Theorem [5.4].

If the reader at some time takes up the study of projective

geometry, he will find that in this subject line coordinates are

as fundamental as point coordinates, and that corresponding

to any theorem concerning points and lines there is a dual

theorem concerning lines and points.

The two steps involved in coordinate geometry mentioned

in the first paragraph of this section are involved in the solution

of any locus problem, that is, in finding the answer to the

question : What is the locus of a point satisfying certain geo-

metric conditions? First of all the reader is expected to set

up the equation (or equations) satisfied by the coordinates of

any and every point meeting the conditions of the problem.

Ordinarily these conditions involve the distance between

points, or the distance of a point from a line, or the angle be-

tween two lines, formulas for which have been derived in the

text. The next step, after the equations have been solved or

reduced to simple forms, is to interpret the result geometri-

cally, stating whether the locus is a line, a circle, or some other

curve, as the reader can do when he knows the forms of equa-

tions of other curves, knowledge which he will acquire in later

parts of this book.
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As an example of the foregoing we refer to equations (10.10),

obtained as answer to the question : What is the locus of a point

equidistant from the intersecting lines (10.1)? We observed

that it consists of two lines, the bisectors of the angles between

the two given lines. Suppose again that we were asked to find

the locus of a point satisfying certain geometric conditions and

eventually obtained an equation of the form

x2 + y2 + 2fx + 2 gy + k = 0.

We should know from 12 that the locus is a circle and how to

specify its center and radius.

The resume given in the first part of this section is in no
sense a complete summary of this chapter. A good way for the

reader to get a picture of the chapter as a whole is by reading

successively the theorems given ; the same suggestion applies

to succeeding chapters.

In this chapter use has been made of theorems of plane

geometry assumed to be known by the reader, and the results

of their use have been translated into algebraic form. There has

been no attempt to develop coordinate geometry systematically
from a set of axioms. However, in the Appendix to Chapter I

(p. 279) the reader will find an exposition of the relation between

a set of axioms for Euclidean plane geometry and coordinate

geometry as developed in the present chapter.

EXERCISES

1. Find the locus of a point such that 3 times its distance from

the jy-axis plus 4 times its distance from the *-axis is equal to 12.

2. Find the locus of a point whose distance from the line y 6 =
is a constant times its distance from the ;y-axis.

3. Find the locus of a point the ratio of whose distances from lines

through the point (*i, y\) parallel to the .y-axis and *-axis respectively

is equal to u/v, where u and v are constants.

4. Given the isosceles right-angled triangle whose vertices are

(0, 0), (a, 0), and (0, 0), find the locus of a point the square of whose

distance from the hypotenuse is equal to the product of its distances

from the two legs of the triangle.
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5. Find the locus of the mid-point of a line of constant length

having its extremities on the positive parts of the axes.

6. Find the locus of a point which is twice as far from the line

2*-3;y-fl = Oas from the line x-2y + 4 = Q.

7. Find the locus of a point such that, if Q and R are its projections

on the coordinate axes, the distance QR is constant.

8. Find the locus of a point such that the mid-point of the segment

joining it to the point (0, b) lies on the circle x 2 + j
2 = 2

.

9. Show that the locus of a point whose distances from two fixed

points PI(XI, y\) and P2(*2, y%) are in constant ratio different from

unity is a circle. When this ratio is equal to unity, what is the locus ?

10. Find the locus of a point the sum of whose distances from the

sides of the triangle ^ = 0, 3jy-4*=:0, 12^ + 5^-60 = is

constant.

11. What is the locus of a point the sum of whose distances from

any number n of lines is constant ?

12. What is the locus of a point the sum of the squares of whose

distances from any number n of points is constant ?

13. Find two points on the ;y-axis four units distant from the line

3* + 4
>y-12 = 0.

14. The base of an equilateral triangle lies on the line 3x 2j + 5=
and the opposite vertex is (4, 1). Find equations of the other two
sides of the triangle.

15. Show that the four lines

ax + by + c = 0, bx + ay + c = Q,

ax by + c = 0, bx ay -f c =
form a square with center at the origin. What is the situation when
the axes are oblique?

16. Find the distance of the center of the circle

from the line 4x-3;y + 6 = 0, and determine thereby whether this

line lies above or below the circle, intersects the circle, or is tangent
to it.

17. Show that if a point P lies above or below each of two inter-

secting lines, the angle at P between the positive directions of the

perpendiculars upon the lines is the supplement of the angle in which
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P lies ; that if P lies above one of the lines and below the other, the

angle between the positive directions of the perpendiculars is equal
to the angle in which P lies.

18. Find what relation must hold in each case between the coeffi-

cients of the equation ax 4- by + c of a line in order that the line

(a) have the intercept 2 on the *-axis ;

(b) have equal intercepts ;

(c) be perpendicular to the line 2#-3j>-f-l = 0;

(d) pass through the origin ;

(e) pass through the point (5, 4) ;

(/) be at the directed distance 3 from the origin ;

(g) be at the directed distance 4 from the point (2, 3) ;

(h) pass through the intersection of the lines 3x + ;y 2 =
and x-2y + l=Q.

19. Find equations of the lines through the point (2, 3) which form

with the axes a triangle of area 16.

20. Given the triangle whose vertices are 0(0, 0), A(a, 0), (0, b),

prove that the line joining the mid-points of any two sides is parallel

to the third side and equal to one half of it
; that, if on the line joining

to the mid-point C of AB we take any point P and denote by D
and E the points in which AP meets OB and BP meets OA respectively,

then DE is parallel to AB. Which, if any, of the foregoing results hold

when the axes are oblique ?

21. Given the triangle whose vertices are A (a, 0), B(0, ft), and

C(c, 0), prove that the perpendiculars from the vertices of the triangle

upon the opposite sides meet in a point; that the perpendicular
bisectors of the sides meet in a point.

22. Given the rectangle whose vertices are 0(0, 0), A (a, 0), C(a, b),

B(0, b), if E and F are mid-points of OB and AC, prove that the lines

AE and BF trisect the diagonal OC. Does this result hold for the

figure OACB when the axes are oblique?

23. Find the condition upon the coefficients in the equations (12.3)

of a circle and (12.5) of a line so that the line shall be tangent to the

circle.

24. Prove that the radical axes of three circles whose centers are

not all on the same line meet in a point.

25. Find an equation of the circle circumscribing the triangle whose

sides are x = 0, y = 2x, 2 * + .y
- 8 = 0.
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26. Find an expression for the area of a triangle whose vertices are

(*i y\)> (*2, ^2), and (*3, jVs).

27. Prove that the line x 4- V3 y = bisects the triangle whose

vertices are (- 3V3, 3), (- 1,
- V5), and (1, V3).

28. Find an equation of the circle which passes through the point

(f , f ), is tangent to the line y = V3 x + 2, and whose center is on the

line x - 2 y = 0.

29. Find the coordinates of the point equidistant from the lines

5 x 12 y 5 = and 4 x 3 j 4 = 0, and at the distance 2 from

the origin.

30. Show that the curve with the equation

(2 x - y 4- 2) (3 * 4- 4 ^ - 1) 4- (2 * - j 4- 2)(* 4- j>)

4- (3 # 4- 4jy l)(jt 4- .y)
=

passes through the vertices of the triangle whose sides have the

equations

31. What is the significance of equations (10.10) when the lines

(10.1) are parallel?
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Lines and Planes in Space.
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14. Rectangular Coordinates in Space

The reader will agree that the position of any point in a
room is fixed by its distances from the floor and from two ad-

jacent walls. If the planes of the floor and the two walls are

thought of as extended indefinitely, the position of any point
in space is fixed by its distances from these three planes, pro-
vided that one has a means of indicating whether a point is

on one side or the other of a plane. A similar question arose

in the case of the points in the plane and was met in 2 by
using the concept of positive and negative distances from two

perpendicular lines, the coordinate axes. We generalize this con-

cept to points in space, and take as the basis of a coordinate

system three planes meeting in a

point 0, every two planes being per- f/\

pendicular to one another, just as in >

-* '

the case of the floor and two adjacent
walls of a room. Fig. 16 is the cus-

tomarywayof drawing three mutually ,

perpendicular planes, the line Oy

pointing in the general direction of

the observer. In Fig. 16 the lines of

intersection of the planes, namely, FIG. 16

Ox,,Vy, and Oz, are called the x-axis,

y-axis, and z-axis respectively. The plane of the two lines Ox
and Oy is called the xy-plane ; similarly we have the yz-plane

and the xz-plane. These are called the coordinate planes.

The figure corresponds to the case in which the eye of the

reader is in front of the %2-plane, to the right of the ;yz-plane,

and above the xjy-plane. Distances measured upward from the

ry-plane are taken as positive, downward as negative ; to the

right of the jyz-plane as positive, to the left as negative ; in

front of the #2-plane as positive, and back of it as negative.

The reader will get a picture of this situation by looking at a

lower corner of the room, and calling it ; the floor lines through
to the right and left correspond to the #-axis and j-axis re-

spectively, and the line of intersection of the two walls through
to the z-axis. The three planes divide space into eight parts,

called octants, just as eight rooms meet in one point when the
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room in which the reader is sitting is on the second floor and

the two adjacent walls at are inside walls.

Coordinate planes and coordinate axes having been chosen

as just described, the coordinates of a given point P are defined

as follows : Draw through P three planes

parallel to the coordinate planes, and

denote by PX9 Py ,
and Pz the points in

which these planes meet the x-axis, j/-axis,

and z-axis respectively. A unit of length

having been chosen, the lengths of the

directed segments OPXJ OPy ,
and OPZ are

by definition the x-, y-, and z-coordinates

of P. Each of these coordinates is posi-

tive or negative according as the directed

line segment on the corresponding coordinate axis is positive

or negative, as defined in the preceding paragraph.

Conversely, given any three numbers x, y, z, to find the point

of which they are coordinates we lay off from on the coordi-

nate axes Ox, Oy, and Oz distances of x, y, and z units respec-

tively, in the positive or negative direction in each case accord-

ing as the respective numbers are positive or negative, and

denote the end points by Px , Pyy and Pz respectively. Through
these points we draw planes parallel to the yz-, xz-, and ^-planes

respectively ; the point P of intersection of these planes is at the

directed distances x, y, z from the coordinate planes, since parallel

planes are everywhere equally distant. Consequently P is the

point with the coordinates x, y, z and is indicated by P(x, y, z).

An equivalent way of locating P(x, y, z) is as follows : Lay
off a length of x units on the #-axis in the appropriate direction

from ; at the end point Px of this segment draw a line in the

xy-plane perpendicular to the #-axis
; and on this line lay off

from Px in the appropriate direction a length of y units. At
the end point Pxy of this segment construct a line parallel to

the z-axis, that is, perpendicular to the jcy-plane, and on this

line lay off from Pxy in the appropriate direction a length of

z units. The end of this segment is the point P(x, y, z).

The coordinate planes, as defined, being mutually perpendic-

ular, the x-, y-, and 2-coordinates of a point are the perpendicular
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distances of the point from the yz-, xz- 9 and ry-planes respec-

tively. There may be times when it is advantageous to take

as coordinate planes three intersecting planes not mutually
perpendicular; in such cases the coordinates as defined in

the preceding paragraph are not the perpendicular distances

of the point from the planes (see 11). Throughout this book

mutually perpendicular planes are used as coordinate planes.
The point in which the perpendicular from a point P upon

a plane meets the plane is called the orthogonal projection of P
upon the plane ; thus, Pxy in Fig. 17 is the orthogonal projection
of P upon the ry-plane. The point in which the perpendicular
from a point P upon a line meets the line is called the orthogonal

projection of P upon the line
; thus, Px is the orthogonal pro-

jection upon the #-axis of the points P, Pxy , and PIZ . The pro-

jection of a line segment upon a line, or plane, is the line segment
whose end points are the orthogonal projections of the end

points of the given segment upon the line, or plane.

Two points Pi and P2 are said to be symmetric with respect

to a point when the latter bisects the segment PiP2 ; symmetric
with respect to a line when the latter is perpendicular to the

segment PiP2 and bisects it ; symmetric with respect to a plane

when the latter is perpendicular to the segment PiP2 and bisects

it. The reader can picture each of these situations geometrically,

but he is not in position yet to handle any one of these types of

symmetry algebraically for general positions of the points Pi

and P2. However, he is in position to discuss symmetry with

respect to the origin, the coordinate axes, and the coordinate

planes (see Ex. 3).

It is evident that it is not possible to represent a spatial

figure accurately on a plane. However, it is convenient to use

what is called parallel projection. In applying this method,

figures in the xz-plane and in planes parallel to it are represented

as they are ; for example, the point (*i, 0, 21) in the #2-plane is

placed at the distances x\ and z\ from the 2-axis and #-axis

respectively. On the other hand, the jy-axis and lines parallel

to it are drawn to make the angle 135 with the #-axis and

2-axis as in Figs. 16 and 17, andjengths in this direction are

foreshortened by the factor 1/V2; that is, for a length / in
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this direction the length //V2 is laid off on the jy-axis or a line

parallel to it, as the case may be. Thus, if squared coordinate

paper is used, distances along or parallel to the #-axis or

z-axis are laid off to their full amount with the side of a square

as unit, whereas distances along or parallel to the >>-axis are

laid off along a diagonal of a small square. On the paper the

length of a diagonal is V2, but since 1/V2 is the unit of

length along a diagonal in accordance with the described method
of representation, in such representation the length of the

diagonal is 2
; for, V2 /

~ = 2. The angle 135 and the re-

/ V2
suiting factor 1/V2 are chosen because they are simple to

handle, and because they have been found to give a clear

conception of a spatial figure.

This chapter deals with configurations of points, lines, and

planes in space defined geometrically, these definitions being

then translated into algebraic form involving the coordinates

of a representative point of the locus under consideration. In

the definition of coordinates we have used the concepts of

parallel and perpendicular planes, and of a line as the inter-

section of two planes, and have asked the reader to visualize

the definition by considering the walls and floor of a room as

planes, and their intersections as lines. In Chapter 1 we de-

fined a line as a locus determined by any two of its points

and having the same direction throughout. Also we explained

what was meant by saying that a plane is a two-dimensional

locus, but we did not define a plane. When we look upon a

plane as lying in space, we use Euclid's definition that a plane
is a two-dimensional locus such that every point of a line

which has two points in the locus is in the locus. A sphere i >

two-dimensional in the sense that any point on it can be fixed
4

by two numbers, for example, by latitude and longitude ; but

a sphere does not possess the above property, nor does any
surface other than a plane.

In the consideration of points, lines, and planes in general

position with respect to the coordinate axes, we are concerned

with such metric questions as the distance between two points,

the angle between two lines or two planes, and the distance
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of a point from a plane. These quantities having been ex-

pressed in algebraic form, the reader is enabled to convert a

geometric problem into an algebraic one, and by algebraic

processes, frequently by the use of determinants, to arrive at

the solution of a problem more readily than had he employed
purely geometric reasoning.

KXERCISES

1. What are the coordinates of the points 0, Px ,
Pv ,

P t , Pxy , Pyt,

andPZ2 inFig. 17?

2. Show that in Fig. 17 the line segment OPX is the projection of

the segment OP on the *-axis, and OPXZ the projection of OP on the

#2-plane.

3. What are the coordinates of the seven points whose coordinates

have the same numerical values as those of the point (1, 2, 3) but

with one or more of the coordinates negative ? Which pairs of these

eight points are symmetric with respect to the origin ; with respect

to the y-axis ; with respect to the xz-plane?

4. Where are the points for which x = y \ for which x < y ; for

which x = 3 and y = 2 ?

5. Where are the points for which x 2 + y 2 = 4 ; for which

x 2 + y* + z2 > 9?

6. Given the points Pi(l,
-

3, 4), P2 (4, 2,
-

2), P3 (0, 1, 5), and

P4 (6, 5,
-

3), show that the sum of the projections of the line seg-

ments PiP2 , P2Ps, and P3Pi upon the x-axis is equal to the projection

of PiP4 on this axis, and that the same is true of the projections on

the jy-axis and the 2-axis. Is this result true for any four points what-

ever? Is it true for any number of points?

7. A cube of side 5 has one vertex at the point (1, 0, 0) and the

three edges from this vertex respectively parallel to the positive

A:-axis, and the negative y- and z-axes. Find the coordinates of the

other vertices and of the center of the cube.

8. Plot to scale on a single sheet of squared paper the following

nine points : (3, 2, 3), (3, 4, 0), (3, 0, 0), (3, 0, 3), (3,
-

4, 3), (3,
-

2, 0),

(3,
-

2,
-

1), (3, 0,
-

1), (3, 3,
-

1).

9. Find an equation of the locus of a point which is twice as far

from the ry-plane as from the #2-plane. From geometric consider-

ations what is this locus?
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15. Distance between Two Points. Direction Numbers

and Direction Cosines of a Line Segment.

Angle between Two Line Segments

In deriving the formula for the distance between two points

PI(XI, y\, zi) and P2 (x2 , y* z2 ) we make use of Fig. 18. The
reader may get a good idea of this figure if he holds a box in the

room with its edges parallel to

the three lines of intersection

of two adjacent walls and the

floor, considered to be the co-

ordinate planes. We note that

the angle PiQP2 is a right angle,

and consequently

S(x2tyi,zi)

(PiP2 )
2 = (PiQ)

2

Also, the angle QRP2

being a right angle, we
have

c . FIG. 18
Since

/i r i \ f\p <p p O v v /?P 7

we have the following expression for the square of the dis-

tance PiP2 :

(15.2) = (QR)2 + (Pl Q)2
= (X2

-
X,)

2 + (y2

If the segment PiP2 were placed in any other octant, some of

the coordinates of PI and P2 would be negative, and also some
of the expressions in the above parentheses might be negative,

but the above formula would still hold true. When the line

is parallel to the ry-plane, z2 z\ = 0, and the above formula

reduces to the one in 3, as we should expect. When the line

is parallel to either of the other coordinate planes, the corre-

sponding term in (15.2) is equal to zero. Hence we have the

following theorem :
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[15.1] The distance between the points (x\, y\, z\) and (x2 , yi, 22) is

(15.3) V(*2
-

*i)
2 + (y2

~
yi)

2 + (22
-

zi)
2

.

This is a generalization of Theorem [3.1] in the plane.

The length and sign of the directed segments QR, P\Q, and

RP2 are given by (15.1) no matter in which octant PI lies and
in which P2 lies. These numbers determine the "box" of

which PiP2 is a diagonal, and consequently determine the di-

rection of PiP2 relative to the coordinate axes. They are called

direction numbers of the line segment. In like manner x\ #2,

y\ y<z> and z\ z2 are direction numbers of the line seg-

ment P*P\. Thus a line segment has two sets of direction

numbers, each associated with a sense along the segment and
either determining the direction of the segment relative to

the coordinate axes. But a sensed line segment, that is, a

segment with an assigned sense, has a single set of direction

numbers.

Any other line segment parallel to PiP2 and having the

same length and sense as PiP2 has the same direction numbers
as PiP2i for, this new segment determines a "box" equal in

every respect to the one for P\P%. This means that the differ-

ences of the x's, /s, and z's of the end points of such a parallel

segment are equal to the corresponding differences for PI and

P2 . Since one and only one line segment having given direc-

tion numbers can be drawn from a given point, we have that

a sensed line segment is completely determined by specifying

its initial point and its direction numbers.

There is another set of numbers determining the direction of

a line segment, which are called the direction cosines of the line

segment, whose definition involves a convention as to the posi-

tive sense along the segment. This convention is that, when
a segment is not parallel to the ry-plane, upward along the

segment is the positive sense on the segment ; when a segment
is parallel to the ry-plane but not parallel to the x-axis, toward

the observer in Fig. 18 is the positive sense on the segment (this

is the convention used in 3) ; when the segment is parallel

to the x-axis, toward the right is the positive sense. In Fig. 18

the distance PiP2 is a positive number, being measured in
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the positive sense, and the distance P2P\ is a negative number

(the absolute values of these two numbers are the same), just

as distances measured on the #-axis to the right, or left, of a

point on the axis are positive, or negative. When the sense on

a line segment is assigned by this convention, we refer to it as

a directed line segment.

By definition the direction cosines of a line segment are the

cosines of the angles of the positive direction of the segment and

the positive directions of the x-, y-, and z-axes respectively; that is,

of the angles made by the positive direction of the segment with

line segments drawn through any point of the given segment

parallel to and in the positive directions of the coordinate axes.

Thus in Fig. 18, if we denote by A, B, and C the angles SPiP2 ,

QPiP2 , and TPiP2 , the direction cosines X, /z, and v (nu) of the

line segment P\P2 are given by

(15.4) X = cos A, ,u
= cos B, v = cos C.

If we denote the positive distance PiP2 by d, we have

from (15.1) and (15.4)

(15.5) x2 #1 = d\, y-2 yi = rf/z, 22 21 = dv y

since QR = PiS = P\P2 cos A, and so on. If now we imagine

PI and P2 interchanged in Fig. 18, this does not alter X, ju,

and v, since their values depend only upon the direction of the

segment relative to the coordinate axes ; consequently in this

case equations (15.5) become

Xi-X2 =d\ yiy2=dfl, 2i-22 =di>,

where 5 is the distance P2Pi in the new figure and is positive.

Hence equations (15.5) hold also if d is negative, that is, when
PI is above P2 on the line, in which case the distance P\P2 is

negative.

We consider now the difference, if any, in the above results

when the positive sense of the segment makes an obtuse angle

with the *-axis or the ;y-axis. If the angle A for the segment

PiP2 is obtuse, then x2 < x\ and the first of equations (15.5)

is satisfied, since cos A is negative in this case ; similarly when
B is obtuse. Consequently equations (15.5) hold in every case,

with the understanding that d is the sensed distance PiP2 .
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Thus a line segment is completely determined by an end point,

its direction cosines, and its directed length measured from the

given end point. Parallel line segments have the same direction

cosines, and direction numbers of two such segments are equal
or proportional, as follows from (15.5).

From the definition of the positive sense of a line segment
it follows that when PiP2 is not parallel to the xy-plane v is

positive, whereas X and /z may take any values between 1

and + 1 ; when PiP2 is parallel to the ;ry-plane but not to the

#-axis, v = 0, /z is positive, and X may take any value between
1 and + 1

; when PiP2 is parallel to the #-axis, v /x
= 0,

X = l.

When the expressions for x2 Xi, and so on, from (15.5) are

substituted in (15.2), and we note that (PiP2 )
2

is d2
, we obtain

(15.6) X2 + M2 +"2 =1-

The converse of this result may be established as in the case

of Theorem [3.2]. Accordingly we have the theorem

[15.2] The direction cosines X, /z, v of any line segment satisfy

the equation X2 + M2 + v2 = 1
\ v is never negative; when

*> > 0, 1 < X < 1, 1 < /i < 1
; when \ v = and

/* ^ 0, then M > 0, 1 < X < 1
;
when ^ = ^ = 0, X = 1 ;

and, conversely, any numbers X, /z, v satisfying these con-

ditions are direction cosines of a line segment.

Consider in connection with the line segment PiP2 another

line segment PiPs, where P3 is the point (#3, jVa, 23). We denote

by 9 the angle formed at PI by the sensed segments PiP2 and

PiP3 ; and we note that if they have the same direction,

= or 180 according as the segments have the same or

opposite sense. We consider the case when the two segments
do not have the same direction, and denote by Xi, /ii, v\ and

X2, M2, ^2 the direction cosines of the segments PiP2 and PiPa

respectively, and by d\ and d2 their respective directed lengths.

If we draw from the origin two line segments OP\ and OP*

parallel to and of the same directed lengths as PiP2 and

PiP3 respectively, we have a graph like Fig. 4, with the differ-

ence that the points P\ and P2
'

are (rfiXi, d\^ 9 rfi^i) and
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0/2X2, <?M2, d2 v2). Now if /i and 12 again denote the numerical

lengths of 0/Y and 0/Y, we have equation (3.7), but in place
of (3.8) we have

P = (d2\2
-

</lX0
2 + (fi?2jU2

~
</lMl)

2 + (d2 V2
-

= t/2
2
(X 2

2 + M2
2 + *>2

2
) + </r(X!

2 + Mi
2 + "i

2

2 did2 (\i\ 2 + MiM2
= /2

2 + /i
2 2 did2 (\i\ 2 + MiM2 + ^1^2),

the last expression being a consequence of Theorem [15.2] and
the fact that k 2 = di

2 and /2
2 = d2

2
. From (3.7) and the above

expression for I
2 we have

(15.7) /i/2 cos = did2 (\i\ 2 + juiju2 + j/u/2).

If rfi and t/2 are both positive or both negative, IJ2 d\d2 \ if

d\ and rf2 differ in sign, /i/2 = ^1^2. Hence we have

[15.3] T/ze ow^ between two directed line segments which have

one end point in common and whose respective direction

cosines are Xi, //i, v\ and X2 , ^t2 ,
i>2 is given by

(15.8) cos 6 = e(Ai\ 2 + MiM2 + v\i>2\

where e is + 1 or 1 according as the two segments have the

same sense (both positive or both negative) or opposite sense.

From equations (15.7) and (15.5) we have

[15.4] The angle 6 between the line segments from the point

(xi, ;vi, 21) to the points (x 2 , y2 ,
z2 ) and (x3 , ;y3 , 23) is given by

(15.9)

COS = fe-^l)fe-^l) + (^2-^l)(^3-^l) + fe--^l)fe--^l)^
/1/2

where l\ and 12 are the respective lengths (not directed dis-

tances) of the segments PiP2 and PjP3 .

From (15.8) and (15.6) we have

(15.10) sin2 0=1- cos2 6 = (\!
2 + Ml

2 + ^ 2
)(X 2

2 + /x 2
2 + y2

2
)

Mi Mi

M2

as may be verified by multiplying out and reducing the first

of these expressions for sin2 6 and expanding the second.
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EXERCISES

1. Find the vertices of the "box" of which the line segment from

Pi(l, 2, 3) to P2(2, 4, 1) is a diagonal; find also the direction

numbers and direction cosines of this segment, and the directed dis-

tance PiP2 .

2. Find a so that the line segments from the point (3, 1, 5) to

the points (a, 2, 3) and (1, 2, 4) make an angle whose cosine is

4/5 ; so that the two segments shall be perpendicular.

3. Find the condition to be satisfied by the coordinates of the points

(xi, y\> Zi) and (x2 , y2 ,
z2 ) in order that the line segment with these as

end points shall subtend a right angle at the origin.

4. Show that the points (x\, y\, z\) and (x2 , y2 ,
z2 ) are collinear with

the origin, if and only if their coordinates are proportional.

5. Let P(x, y, z) be the point on the line segment PiP2 with end

points (x\, yi, z\) and fa, yz, z2 ) which divides the segment in the

ratio h\/h2 \ denote by Qi, Q, Q2 the orthogonal projections of Pi, P,

P2 on the xy-plane; show that Q divides the line segment QiQ2 in the

ratio hi/h2 ,
and that similar results hold when Pi, P, P2 are pro-

jected orthogonally on the yz- and xz-planes. Derive from these re-

sults and equations (4.5) and (4.6) the first two of the following

expressions for the coordinates of P in terms of the coordinates of

Pi and P2, and hi and h2 :

_ fayi -f hiy2 _ h2Zi 4-*- f ^" '

and derive the third by projection upon the yz- and *2-planes.

6. Show that, when h\ or h2 in equations (i) of Ex. 5 is a negative

number, these equations give the coordinates of a point on an exten-

sion of the line segment beyond PI or beyond P2 according as
| hi |

is less or greater than
|
h2 |, and that PiP and PP2 are in the ratio

hi/h2 \ in this case P is said to divide the segment PiP2 externally,

and when h\/h2 is positive, internally.

7. Find the coordinates of the mid-point of the line segment

of Ex. 5, and in particular of the line segment joining the points

(3,
-

2, 3) and (2, 2,
-

3). Find the coordinates of the points where

a segment is trisected.
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8. In what ratio is the line segment joining the points (2, 3, 1) and

(1, 5, 2) cut by its intersection with each of the xy- t yz-, and xz-

planes respectively, and what are the coordinates of these points of

intersection ?

9. If the line segment of Ex. 8 is produced beyond the second point

until its length is trebled, what will be the coordinates of its extremity ?

10. Show that the points (x\, y\, zi), (x2 , y2 , z2 ), and (*3 , ja, 23) are

collinear when there are three numbers k\, k2 ,
and 3, all different from

zero, such that

ki + k2 + 3 = 0, kixi + fe*2 + 3*3 = 0,

kiyi + k2y2 + fayz = 0, k\z\ + k2z2 + faz^ = 0.

11. Show that the medians of the triangle with vertices (x\, y\ t z\) t

(#2, y%, z2 ) t
and (*3, j3, 23) meet in the point with coordinates

(*! +X2 + Xz), JO'l + J2 4- jVs), ^(2i +Z2 + 23 ).

12. Explain why equations (i) of Ex. 5 may be interpreted as giving

the coordinates of the center of mass of masses h2 and hi at Pi and P2

respectively. Obtain the coordinates of the center of mass of masses

m\ t
m2 , mz at points Pi, P2 , PS. Do the same for n masses at n different

points, using mathematical induction.

16. Equations of a Line.

Direction Numbers and Direction Cosines of a Line.

Angle of Two Lines

Consider the line through the points PI(*I, y\, z\) and

^2(^2, JV2, 22 ) and denote by P(x, y, z) a representative point of

the line. We consider first the case when the line is not parallel

to any one of the coordinate planes, that is, x2 ^ x\, yz ^ y\,

and 22 ^ z\. The segments P\P and PiP2 have the same direc-

tion by a characteristic property of a line (see 6). Conse-

quently their direction numbers are proportional, as follows

from (15.5), that is,

(16.1)
-i

Xz *i y<2 y\ z2 Zi

These equations are satisfied by the coordinates x, y, z of any
point on the line, and by the coordinates of no other point;
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for, if P(x, y, z) is not on the line, the segments P\P and PiP2

io not have the same direction. From (16.1) we obtain the

three equations

y\ 22 zi

However, it is readily seen that, if given values of x, y, and z

satisfy any two of equations (16.2), they satisfy also the third;

that is, two at most of these equations are independent. The

geometric significance of equations (16.2) will be shown in 17.

We consider next the case when the line is parallel to the

ry-plane. In this case z2 = z\, and for any point on the line

ive have

(16.3) z - zt = 0.

The direction numbers of the segments P\P and P\P^ are

* %i, y yi 9 and x<2 %i, y% y\ 9 0, and the proportionality

3f these numbers is expressed by the first of (16.2). Conse-

quently this equation and (16.3) are equations of the line.

Similar results hold when the line is parallel to the >>2-plane

Dr the #2-plane.

When the line is parallel to the x-axis,

(16.4) y-yi = 0, z-z, =

are equations of the line ; and similarly for the cases when the

line is parallel to the jy-axis or the 2-axis.

Accordingly we have

[16.1] Equations (16.1) are equations of the line through the

points (xi, y\, z\) and (#2, 3^2, 2), with the understanding

that, if the denominator of any one of the ratios is equal to

zero, the numerator equated to zero is one of the equations

of the line; these exceptional cases arise when the line is

parallel to one of the coordinate planes or to one of the

coordinate axes.

Thus a line, which is one-dimensional, when considered as

lying in space, which is three-dimensional, is defined by two
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equations, whereas when considered as lying in a plane, which

is two-dimensional, it is defined by one equation, as in 5.

Since any two segments of a line have the same direction,

their direction numbers are proportional. By definition the di-

rection numbers of any segment of a line are direction numbers of

the line. Consequently there is an endless number of direction

numbers of a line, the numbers of any set being proportional

to the corresponding numbers of any other set. Thus, if u, v t w
are direction numbers of a line through the point (x\, yi, zi),

(16.5) U V W

are equations of the line, since these equations express the pro-

portionality of two sets of direction numbers of the line for

each point (x, y, z) of the line.

Conversely, for each set of numbers u, v, w, not all equal to

zero, equations (16.5) are equations of the line through the

point (*i, y\ 9 Zi) with direction numbers u, v, w. For, if we
define numbers x2 , y2 ,

z2 by the equations

(16.6) *2
- xi = u, y2 -yi =

v, z2 -zi = w,

in terms of x2 , y2 , z2 equations (16.5) are expressible in the form

(16.1), and thus are equations of the line through the points

(*i, y\ 9 21) and (x2 , y2 ,
z2). As a result of the above discussion

and the fact that any set of direction numbers of a line are

direction numbers also of any line parallel to it, we have

[16.2J If (*i> y\> zi) and (x2 , y2 ,
z2 ) are any two points of a line,

the quantities x2 x\, y2 yi, z2 zi are direction num-
bers of the line, and of any line parallel to it.

In defining direction cosines of a line segment in 15, we

assigned sense to a line segment. Since this applies to all seg-

ments of a line, we have that the positive sense along a line not

parallel to the ry-plane is upward, that is, z increasing ; when
a line is parallel to the ry-plane and not parallel to the *-axis,

the positive sense is the direction in which y increases; and

when parallel to the #-axis, the positive sense is the same as on

the x-axis.
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Since all segments of a line have the same direction, the di-

rection cosines of all segments are the same ; we call them the

direction cosines of the line. Accordingly the direction cosines X,

V, v of a line are the cosines of the angles which the positive

direction of the line makes with the three line segments from

any point on the line and parallel to the positive directions of

the #-, y-, and 2-axes respectively. Hence Theorem [15.2] holds

for direction cosines of a line. As a consequence of this theorem

we have

[16.3] // u, v, w are direction numbers of a line, the direction

cosines of the line are given by

. __u_ v

,_ _
x

~~

e^/u2 + v2 + w2
' M "~

"

where e is + 1 or 1 so that the first of the numbers ew, ev,

and eu which is not zero shall be positive.

In fact, since e2 = 1, the quantities X, /z, v given by (16.7) satisfy

the conditions of Theorem [15.2].

Since equations (15.5) hold for all segments of a line with

any particular point (x\, y\, z\) as an end point, we have

[16.4] The line through the point (x\, y\, z\) with direction co-

sines X, fji 9
v has the parametric equations

(16.8) x = *i + d\ y = yi + d, z = Zi + dp,

the parameter d being the directed distance from (x\, y\, z\)

to P(x, y, z).

Another set of parametric equations of a line is obtained from

equations (16.1) when we observe that, if the line is not parallel

to a coordinate plane, for each point (x, y, z) on the line the

ratios in (16.1) have the same value, say /, depending upon the

values of x, y, and z. If we put each of the ratios in (16.1) equal

to /, and solve the resulting equations for x, y, and z, we obtain

2, y =(1-0* + #2,
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Conversely, the values #, y, z given by (16.9) for any value of

/ are coordinates of a point on the line with equations (16.1), as

one verifies by substitution. Equations (16.9) hold also when
the line is parallel to a coordinate plane or coordinate axis, as

the reader can show, using a method analogous to that used in

connection with equations (5.7). Hence we have

[16.5] Equations (16.9) are parametric equations of the line

through the points (x\ 9 y\, z\) and (#2, >>2, 22) ; the coordi-

nates x, y, z of any point on the line are given by (16.9)

for a suitable value of /, and conversely.

Ordinarily two lines in space do not intersect, even if they
are not parallel. Two nonintersecting, nonparallel lines are

said to be skew to one another, and, for the sake of brevity,

they are called skew lines. If through a point of one of two

such lines one draws a line parallel to the other, each of the

angles so formed is called an angle of the two skew lines. Ac-

cordingly from Theorem [15.3] we have

[16.6] The angle <f> of the positive directions of two lines with di-

rection cosines Xi, jui, v\ and \^ jU2, ^2 is given by

(16.10) COS
</>
= XiX2 + /Zi//2 + V\V^,.

From this theorem and Theorem [16.3] we have

[16.7] The angle <f> of the positive directions of two lines with

direction numbers u\, v\, w\ and w 2 , 02, w2 is given by

(16.11) cos </>
=

(Hi
2 + Vi

2 + Wi
2
)(W 2

2 + V2
2 + W2

2
)

where e\ is + 1 or 1 so that the first of the numbers e\w\,

e\v\ t and e\u\ which is not zero shall be positive, and simi-

larly for 2.

As a corollary we have

[16.8] Two lines with direction numbers u\, v\> w\ and w2 , #2, w%
are perpendicular, if and only if

(16.12) UiU2 + v\V2 + w\W2 = 0.

86



Sec. 16] Angle of Two Lines

EXERCISES

1. Find the distance between the points (2,
-

1, 3) and (- 3, 2, 5),

and the direction cosines of the line through these points.

2. Find equations of the line through the points (2, 1, 3) and

(3,
-

2, 1) ; through the points (1,3,- 2) and (-2, 3, 1).

3. For what value of a do the points (a,
-

3, 10), (2,
-

2, 3), and

(6, 1, 4) lie on a line?

4. What are the direction cosines of the coordinate axes? What
are equations of the axes ? What are the direction cosines of the lines

through the origin bisecting the angles between the coordinate axes?

What are equations of these lines ?

5. Find the direction cosines of the lines equally inclined to the

coordinate axes.

6. Direction numbers of a line through the point (2, 1, 3) are

3, 1, 4 ; find the equations of the line in the parametric form (16.8).

7. Show by means of (16.9) that if the coordinates of two points

(x\, y\, Zi) and (#2, ^2, 22) are in the relation

x2 = kxi, y2 = ky\, z2 = kzi,

where k is some constant different from zero, the line joining the two

points passes through the origin. How does this follow from geo-

metric considerations without the use of (16.9) ?

8. Find the cosine of the angle of the positive directions of the

lines through the points (3,
-

1, 0), (1, 2, 1) and (- 2, 0, 1), (1, 2, 0)

respectively.

9. For what value of a are lines with direction numbers 1, 2, 2

and 2, 2, a perpendicular? For what value of a is the cosine of the

angle of the positive directions of these lines equal to 4/9?

10. Find the direction cosines of a line perpendicular to each of

two lines whose respective direction numbers are 3, 5, 6 and 1, 3, 4.

11. Show that equations (16.5) may be written

x = xi + ul, y = y\ + vl, z = zi + wl,

where / is a parameter. What relation does / bear to the directed

distance from (x\, y\, zi) to (*, y, z) ?

12. Show that equations (i) of Ex. 5, 15 are parametric equations

of the line through (xi, y\ 9 *i) and (*2 , y^ 22 ), and find the relation

between hi and h2 in these equations and / in (16.9).
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13. Show that the parameter / in (16.9) is equal to d/d2 , where d

and d* are the directed distances of the points (x, y, z) and (*2 , ;y2 , 22)

respectively from the point (x\, y\ t z\).

14. Find the locus of a point equidistant from the three coordinate

planes.

15. Find the locus of a point whose distances from the xy-, yz-, and

xz-planes are in the ratio 1:2:3.

16. Find the locus of a point P(x, y, z) so that the line joining P
to Pi(l, 2, 3) is perpendicular to the line through PI with direction

numbers 2, 1, 3.

17. Find the locus of a point at the distance 2 from the point

(1.
-

2, 3).

17. An Equation of a Plane

In defining coordinates in 14 we took it for granted that

the reader understood what is meant by a plane, and that

when two planes meet they intersect in a straight line. Euclid

proved the latter result by means of his definition of a plane

as a surface such that a straight line joining any two points

of the surface lies entirely in the surface, as stated in 14.

By means of this characteristic property of the plane we shall

prove the theorem

[17.1] Any equation of the first degree in x, y, and z is an equa-

tion of a plane.

Consider the equation

(17.1) ax + by + cz + d = 0.

It is understood that the coefficient of at least one of the un-

knowns is different from zero, that is, that we are dealing with

a nondegenerate equation (see 1) ; this understanding ap-

plies to all theorems concerning equations of the first degree in

x, y, z in this chapter.

Let PI(XI, yi, 21) and P2 (x2 , y2t 22) be any two points of the

locus defined by equation (17.1) ; then we have

(17.2) axi + byi + czi + d = 0, ax2 + by2 + cz2 + d = 0.
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In 16 it was shown that the coordinates x, y, z of any point
of the line through the points PI and P2 are given by (16.9)

for an appropriate value of the parameter /. When the expres-

sions (16.9) are substituted in the left-hand member of (17.1),

the resulting expression may be written in the form

(1
-

t)(axi + byi + czi + d) + t(ax2 + by2 + cz2 + d).

In consequence of (17.2) this expression is equal to zero for

every value of t. Hence the coordinates of every point of the line

through Pi and P2 satisfy (17.1) ; that is, every point of this line

is a point of the locus defined by (17.1). Since this result holds

for every pair of points PI and P2 whose coordinates satisfy

(17.1), the theorem follows from Euclid's definition of a plane.

We shall consider several particular forms of equation (17.1)

and in the first place prove the theorem

[17.2] When two and only two of the coefficients of x, y, and z

in equation (17.1) are equal to zero, the locus is one of the

coordinate planes or a plane parallel to it according as

d = or d ^ 0.

Consider, for example, the case when a = b = 0, that is,

the equation

(17.3) Qx + 0y + cz + d = (usually written cz + d = 0).

This equation is satisfied by z = d/c and any values of x and

y ; consequently it is an equation of the *jy-plane when d = 0,

and when d ^ of the plane parallel to the ry-plane and at

the distance d/c from it, above or below it according as

d/c is positive or negative. In like manner,

(17.4) ax + Oy + Qz + d = 0, Qx + by + Oz + d = Q

are equations respectively of the jz-plane or a plane parallel to

it and of the #z-plane or a plane parallel to it according as

d = Qord^O.
Next we prove the theorem

[17.3] When one and only one of the coefficients of x, y, and z

in equation (17.1) is equal to zero, the locus is a plane

through one of the coordinate axes or parallel to it according

as d = or d ^ 0.
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= (usually written by + cz + d = 0)

= Q (usually written ax + cz + d = 0)

Consider, for example, the case when c = 0, that is, the

equation

(17.5) ax + by + 0z + d = (usually written ax + by + d = 0).

The points (x, y, 0), where x and y are solutions of this equation,
lie upon a line in the ;ry-plane, namely, the line whose equation
in two dimensions, as discussed in Chapter 1, is ax + by + d = 0.

But any such pair x, y, say x\ and yi, and any z satisfy equation

(17.5) in three dimensions
;
hence the point (x\, y\, z) for any z

is on the line through (x\, y\, 0) parallel to the z-axis. Therefore

equation (17.5) is an equation of a plane perpendicular to the

;ty-plane and meeting the latter in the line whose equation in

two dimensions is ax + by + d = ; when d = 0, this plane

passes through the z-axis.

In like manner

(17.6) x + by + cz

and

(17.7) ax + Oy + cz

are equations of planes per-

pendicular to the ;yz-plane

and the #z-plane respectively.

Referring now to equa-

tions (16.2), obtained from

equations (16.1) of the line

through the points (xi,yi,zi),

(#2, y<2, z2), we observe that

these equations are equations
of planes, each containing

the line, and parallel to the

z- f y-, and #-axes respec- FIG. 19

tively, as shown in Fig. 19.

Next we shall prove the converse of Theorem [17.1], namely,

[17.4] Any plane is defined algebraically by an equation of the

first degree in x, y, and z.

In proving this theorem we remark that the ry-plane is de-

fined by (17.3) for d = 0, that is, by z = 0, and that any plane
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parallel to the ry-plane is defined by (17.3) with c and d numbers
such that d/c is equal to the directed distance of the plane
from the ry-plane. Any other plane intersects the ry-plane in

a line. In deriving an equation of such a plane we make use

of the property of a plane that it is completely determined by
three noncollinear points, that is, by three points not on the

same line, or, what is the same thing, by a line and a point not

on the line ; this property follows from Euclid's definition of

a plane, stated at the beginning of this section. The line in

which the given plane cuts the ry-plane is defined in this plane

by an equation ax + by + d = (in accordance with the results

of 5) when we are dealing with the geometry of the plane ;

but when we are dealing with the line in space, it is defined by
this equation and the equation z = 0. Consider then the equation

(17.8) ax + by + d + cz = Q,

where a, b, and d have the values from the above equation of

the line in the ry-plane, and c is as yet unassigned. Whatever
be c, by Theorem [17.1] this is an equation of a plane, in fact,

of a plane through the line, since the coordinates of any point
on the line satisfy ax + by + d = and z 0, and consequently

(17.8). Suppose now that (x\, y\, zi) is a point of the given

plane not on its line of intersection with the xy-plane; then

z\ 9 0. If now c is found from the equation

(17.9) 0*i + tyi + rf + c*i = 0,

and this value is substituted in (17.8), the resulting equation
is an equation of the given plane, since the plane with this

equation passes through the point (xi, y\, Zi), in consequence of

(17.9), and through the line ax + by + d = Q in the plane

z = 0; and the theorem is proved.

From Theorem [17.1] and equations (17.1) and (17.2) it

follows that

(17.10) a(x
-

xi) +b(y- yi) + c(z
- *0 =

is an equation of a plane containing the point P\(x\, y\, z\).

Since x x\, y y\, z Zi are direction numbers of the line

joining PI to any point (x, y, z) in the plane, it follows from

(17.10) and Theorem [16.8] that a, 6, c are direction numbers
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of a line perpendicular to every line in the plane which passes

through Pi ; hence the line through PI with direction numbers

a, 6, c is perpendicular to the plane at PI. We follow the custom

of saying that this line is the normal to the plane at PI. Since

PI is any point of the plane, a, b, c are direction numbers of

every normal to the plane; evidently all the normals are

parallel. Hence we have (a generalization of Theorem [6.9])

[17.5] The geometric significance of the coefficients a, b, c of an

equation ax + by + cz + d = of a plane is that they are

direction numbers of each of the normals to the plane.

From Theorem [17.5] and equations (16.5) we have

[17.6] The equation

a(x
-

xi) + b(y
-

;yi) + c(z
-

21)
=

is an equation of a plane through the point (xi, y\, z\), and

(17.11) *-*i=Z=J!l = L=li
^ '

a b c

are equations of the normal to the plane at this point.

Compare this theorem and Theorem [6.10],

If a line lies in a plane, or is parallel to a plane, it is per-

pendicular to the normals to the plane, and conversely. Hence

by Theorem [17.5] we have

[17.7] A line with direction numbers u, v
y
w is parallel to, or lies

in, the plane with equation (17.1), if and only if

(17.12) au + bv + cw = 0.

When two planes are perpendicular, the angle of the normals

to the planes at a point on their line of intersection is a right

angle, and conversely. Hence in consequence of Theorems

[16.8] and [17.5] we have

[17.8] The planes with equations

(17.13) a& + biy + ciz + di = 0, a2x + b2y + c2z + d2 =
are perpendicular to one another, if and only if

(17.14) aia2 + bib* + CiC2 = 0.
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If we wish to construct a plane through a point P parallel

to a given plane, we draw through P two lines parallel to the

given plane, and the plane determined by these two lines is

the plane desired. This construction is equivalent to that of

constructing the plane through P perpendicular to the line

through P which is normal to the given plane. Hence a line

normal to one of two parallel planes is normal to the other

also. In consequence of this result and of Theorem [17.5] we
have

[17.9] An equation of any plane parallel to the plane

ax + by + cz + d =
is

(17.15) ax + by + cz + e =

for a suitable value of the coefficient e.

We have remarked that a plane is determined by three non-

collinear points. Accordingly, if we wish to find an equation
of a plane through three noncollinear points, we have only to

substitute the coordinates of the points in equation (17.1) and
solve the three equations thus obtained for a, 6, and c. When
the resulting expressions are substituted in (17.1), d appears as

a factor, unless d = 0, which emphasizes the fact that an equa-
tion of the first degree in x, y, and z, and any constant multiple
of this equation, are equations of the same plane. More expe-
ditious methods of finding an equation of a plane when the

coordinates of three of its points are given are developed in

21 and 23.

EXERCISES

1. Find an equation of the plane through the points (2, 3, 0) and

(2, 1, 0) parallel to the 2-axis.

2. Find an equation of the plane through the three points (1, 1, 1),

(- 1, 1, 1), and (- 3,
-

7,
-

5). Is the plane parallel to one of the

axes?

3. Find an equation of the plane through the origin and the points

(1, 3, 2) and (2,
-

1,
-

1).
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4. Show that the points (1, 1, 1), (1, 2,
-

1), and (1, 3,
-

3) are

collinear, and find an equation of the set of planes containing these

points.

5. Find the intercepts on the coordinate axes of the plane

?+2+ = i

g h ^k
When can an equation of a plane not be put in this intercept form ?

6. Find the locus of a point whose distance from the ry-plane is

twice its distance from the ^z-plane.

7. For what value of the coefficient a are the planes

ax-2y + z + 7 = Q and 3x + 4;y-22+l =

perpendicular to one another?

8. Find equations of two planes through the point ( 1, 2, 0) per-

pendicular to the plane

(i) 2 % - 2 y + 5 z - 10 = 0,

one perpendicular to the ry-plane and the other perpendicular to the

>>z-plane. Using this result, find an equation of the set of planes through
the point perpendicular to the plane (i) .

9. Find an equation of the plane through the line

x-l = y+2 = z

2 -35
perpendicular to the plane x y + z + 2 = Q.

10. Find an equation of the plane parallel to the plane

7 x - 3 y + z - 5 =
and containing the point (1, 2, 3).

11. For what value of a is the plane 3x 2y + az = Q perpendicu-
lar to the plane 3x + 4y-7z+l = 0?

12. Find an equation of the locus of a point equidistant from the

points (8, 3, 4) and (3, 1, 2), and show that it is the plane per-

pendicular to the line segment joining the two points at the mid-

point of the segment.

13. Show that the angle of the positive directions of the normals

to the planes with equations (17.13) is given by

cos0 = ai 2+ blb* + ClC2

fteaVfa* + M + d 3
) (02

2 + fe
2 + c2

2
)

and state under what conditions d is + 1 or - 1, and e2 is -h 1 or - 1.

94



Sec. 18] The Directed Distance from a Plane to a Point

14. Show that when the expressions (i) of Ex. 5, 15 are substituted

in an equation of a plane, the resulting value of the ratio h\/h% gives

the ratio in which the segment P\P^ or the segment produced, is

divided by the point of intersection of the line of the segment and the

given plane. Find the ratio in which the line segment joining the

points (2, 3,
-

1) and (5,
-

6, 2) is divided by the point of intersection

of the line of the segment and the plane 3^ 2^ + 62 2 = 0; find

also the coordinates of the point of intersection.

18. The Directed Distance from a Plane to a Point.

The Distance from a Line to a Point

We shall establish the following theorem :

[18.1] The directed distance from the plane

(18.1) ax + by + cz + d =

to the point (xi, y\, z\) is given by

(18.2) I = axi yi czi
9

e^/a2 + b2 + c2

where e is + 1 or 1 so that the first of the numbers ec, eb,

ea which is not zero shall be positive.

When b = c = 0, equation (18.1) of the plane reduces to

x + - =
; that is, the plane is parallel to the ;y2-plane and at

a

the distance d/a from this plane. Consequently the distance

from the plane to PI is equal to x\ (
j
= x\ + - which

result follows from (18.2). In this case / is positive or negative

according as PI lies to the right or left of the given plane.

We consider next the case when c = 0, in which case the

plane is perpendicular to the #y-plane and passes through the

line ax + by + d 0, z = 0. It is evident that the distance

from the plane to P\(XI, y\, zi) is equal to the distance in the

ry-plane from the line ax + by + d = Q to the point (x\, yi, 0).

But as given by (8.5) this distance is the number obtained

from (18.2) on putting c = 0.
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We consider finally the case when c ^ 0, that is, when the

plane cuts the 2-axis. From Theorems [17.5] and [16.3] we
have that the direction cosines of a normal to the plane are

given by
a, b, c

(18.3)
+ b2 + c2

where e is + 1 or 1 according as c > or c < 0. If we denote

by P2(*2, JV2, 22) the point in which the normal to the plane

through PI meets the plane, we have from (15.5)

(18.4) xi x2 = /A, y\ y2 = /M, z\ z2 = /*>,

where / is the distance from Pz to Pi, positive or negative ac-

cording as Pi is above or below P2 on the normal. Solving

equations (18.4) for # 2 , j2, and 22 ,
and substituting the resulting

expressions in (18.1), we obtain, on rearranging the terms and

making use of (18.3),

axi + by, + czi + d = l(a\ + b + cv)

" *

-.

e\/a2 + b2 + c2

= leVa2 + fr
2 + c2

,

since 1/e = ^, from which we derive the expression (18.2) ; and

the theorem is proved.
We turn now to the problem of finding the distance d from

a line to a point P\(x\, >>i, zi). Let X, ju, v be direction cosines

of the line, and P2(*2, y*> 22) a point on the line. Denote by
6 the angle between the line and the line segment P2Pi ; then

(18.5) rf = PTP2~sin0,

where PiP2 denotes the length of the line segment. The direc-

tion cosines of the line segment PiP2 are, to within sign at most,

From these expressions, (18.5), and (15.10) we have as the

desired result

(18.6) d2 = s yi %2

fJ> V

22-
V

X
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EXERCISES

1. Find the distance from the plane 2 x y + 2 z 6 = to the

point (1, 1, 2), and the coordinates of the point in which the normal

to the plane from the point meets the plane.

2. Find an equation of the plane through the point (1, 2, 3)

parallel to the plane x + 2y 2z + 3 = Q. What is the distance

between the planes?

3. Find equations of the two planes at the distance 5 from the

origin and perpendicular to a line with direction numbers 1, 3, 2.

4. What is the distance between the planes 2 x y + z 5 =

5. Given two intersecting planes and a point P in one of the four

compartments into which the planes divide space, that is, one of the

four dihedral angles of the planes, show that the dihedral angle in which

P lies, and the angle </> between the positive directions of the normals to

the two planes through P are supplementary when P lies'on the positive

or negative sides of the two planes, and that these angles are equal when
P is on the positive side of one plane and the negative side of the other.

6. Determine whether the origin lies in an acute or obtuse

dihedral angle between the planes 2 x + 3 y 6 2 + 3 = and

8x-j> + 42-5 = 0.

7. Find equations of the planes which are parallel to the plane

2 x + 2 y 2 + 6 = and at the distance 2 from- it (see equation

(8.6)).

8. Find the locus of a point equidistant from the planes

a\x + b\y + Ci2 + d\ and a2x + b2y + c2z + d2 = 0,

and show that it consists of the two planes which bisect the angles

formed by the given planes when the latter intersect; discuss also

the case when the given planes are parallel. Apply the result to the

planes in Ex. 6.

9. Find the locus of a point which is twice as far from the plane

2x + 2;y-2 + 3 = Oas from the plane x-2;y + 22-6 = 0.

10. Show that for the plane containing the two lines

JL JL = JL, JL = JL = _L,
Mi V\ W\ U2 V2 tV2

lines with direction numbers k\u\ + k2u2t k\v\ + k2v2 , k\w\ + k2tuz for

any values of the constants k\ and k2 , not both zero, lie in this plane

or are parallel to it.
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11. Find the angle which the line
|
=
^
= -~ makes with its pro-

jection on the plane * + 2;y-3z = 0. This angle is called the angle

the line makes with the plane.

12. Find what relation or relations must hold in each case between

the coefficients of the equation ax + by + cz + d = Qof a plane in

order that the plane

(a) have the intercept 2 on the jy-axis ;

(b) have equal intercepts ;

(c) be parallel to the plane 2*-3;y + 22-l=:0;
(d) be perpendicular to the jyz-plane ;

(e) contain the point (5,
-

4, 2) ;

X V Z

(/) contain the line - = -= = r ;

Z i o

(g) be parallel to the x-axis ;

(h) be at the distance + 2 from the origin.

13. Show that if (x\, y\, z\) and (x2 , y^ 22) are points of two parallel

planes with equations ax + by + cz + di = and ax -f by + cz -f- d2 = 0,

the distance between the planes is the numerical value of

V02
-f b2 4- c2

Under what conditions is this expression a positive number ?

14. Show that the numerator in the expression (i) of Ex. 13 is equal
to d\ d2 , and that the number given by the expression (i) is equal to

the length of the segment between the two planes of any normal (the
end points of the segment being the projections upon the normal of

any point in each plane).

19. Two Equations of the First Degree in Three Unknowns.
A Line as the Intersection of Two Planes

Consider the two equations

(19.1) aix + bty + c\z + d\ = 0, a2x + b2y + c2z + d2 = Q.

Since by hypothesis the coefficient of at least one of the un-

knowns in each equation is different from zero, two of the

unknowns in either equation can be given arbitrary values, and
then the other can be found. Thus, when a\ ^ 0, if we give
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y and z any values in the first of equations (19.1), and solve

for the value of x, this value and the given values of y and z

constitute a solution of the equation. Although each of equa-
tions (19.1) admits an endless number of solutions involving
two arbitrary choices, it does not follow necessarily that the

equations have a common solution.

We assume that equations (19.1) have a common solution.

Instead of denoting it by xi, y\, z\ to make it evident that we
are dealing with a particular solution (after the manner fol-

lowed in 9), we count on the reader's thinking of x, y, and z

in what follows as the same set of numbers in the two equations.
If we multiply the first of equations (19.1) by b2 and from the

result subtract the second of (19.1) multiplied by bi, the final

result may be written

(19.2)
0i

02
X

b\ Ci

b2 Co
= 0.

This is the process followed in 9, leading to equation (9.4) ;

we refer to it as eliminating y from the two equations, meaning
that from these equations we obtain an equation in which the

coefficient of y is zero. If, in similar manner, we eliminate x

and z respectively from equations (19.1), we obtain

(19.3)

and

(19.4)

0i bi

a? b2

Ci 01

2 02

y- Ci 01

C2 02

2
y +

a\

02

2

d l

=

= 0.

If the determinant
02

is not equal to zero, when z in

equations (19.2) and (19.3) is given any value, these equations

can be solved for x and y, which values together with that

assigned to z constitute a common solution of equations (19.1).

Thus in this case there is an endless number of common solu-

tions of these equations. In like manner, if
c2

is not equal

to zero, equations (19.2) and (19.4) can be solved for y and z
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for any given value of x ; and if
0i

02
is not equal to zero,

equations (19.3) and (19.4) can be solved for x and z for any

given value of y. Hence we have

[19.1] Equations (19.1) have an endless number of solutions when

any one of the determinants

f f

02 b2 b2 c2 c2 02
(19.5)

is not equal to zero.

When one at least of the determinants (19.5) is not equal to

zero, the common solutions of equations (19.1) are coordinates

of points of the line of intersection of the two planes with the

equations (19.1). Hence we have

[19.2] Two equations (19.1) are equations of a line when one at

least of the determinants (19.5) is not equal to zero; this

line is the intersection of the planes with equations (19.1).

In 20 it will be shown how equations (19.1) can be put in the

form (16.5) when a common solution is known.

We turn now to the consideration of the case when all the

determinants (19.5) are equal to zero. By Theorem [9.6] this

condition is equivalent to the three equations

where / is some number, not zero. By means of (19.6) the last

determinants in equations (19.2), (19.3), and (19.4) reduce

to the respective values

-
bi(d2

-
tdi), ai(d>2

-
/</i),

If not all three of these quantities are equal to zero, one at least

of (19.2), (19.3), and (19.4) cannot be true when all three of

the determinants (19.5) are equal to zero, and consequently
the assumption that equations (19.1) have a common solution

is false. If d2 ^ tdi, all three of the above expressions can be

equal to zero only in case 0i = bi = Ci = 0, which is contrary
to the hypothesis that one at least of these coefficients is not

zero. If, however, d2 = td\, all the above expressions are equal
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to zero. But the equations d2 = td\ and (19.6) are the condi-

tions that the second of (19.1) is a constant multiple of the

first. Hence we have

[19.3] Two equations of the first degree in three unknowns neither

of which is a constant multiple of the other admit an endless

number of common solutions or none; the condition for the

latter in terms of equations (19.1) is

(19.7)
2 = 62^02 &

v '
1

with the understanding that if one a is zero so is the other a,

and similarly for the b's and c's.

If we say that two planes are parallel when they do not have

a point in common, Theorem [19.3] may be stated as follows:

[19.4] The planes with equations (19.1) are parallel, if and only if

#2 _ ^2 __ Cj2 x ^2 t

Another way of stating this theorem is

[19.5] A plane is parallel to the plane ax + by + cz + d = 0, if

and only if its equation is ax + by + cz + e = where

e ^ d, or any constant multiple of this equation.

This theorem is equivalent to Theorem [17.9], which was de-

rived from another, and consequently an equivalent, definition

of parallel planes.

Next we establish the following theorem, which is a generali-

zation of Theorem [10.1] :

[19.6] When two equations (19.1) are equations of a line, that is,

when the coefficients are not proportional, the equation

(19.8) /i (aix + biy + Ciz + d{) + t2 (a2x + b2y + c2z + d2) = 0,

for any values of the constants t\ and t2 , not both zero, is an

equation of a plane through the line defined by (19.1) ; and

(19.8) is an equation of each plane through this line for

suitable values of t\ and /2 .
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In order to prove the theorem, we rewrite equation (19.8) in

the form

(19.9) (0i/i + 02/2)* + (61/1 + b2 t2)y + (citi + c2t2)z

Since by hypothesis the coefficients of x, y, z in (19.1) are not

proportional, it is impossible to find values of /i and /2 , not

both zero, which will make all the coefficients of x, y, z in

(19.9) equal to zero. Consequently from Theorem [17.1] we
have that equation (19.9) is an equation of a plane for any
values of t\ and t2 ,

not both zero. Moreover, it is an equation

of a plane through the line with equations (19.1) ; for, the two

expressions in the parentheses in (19.8) reduce to zero when

x, y, and z are given the values of the coordinates of any point

on the- line. Hence the coordinates of every point on the line

satisfy equation (19.8) whatever be ti and /2 ; and consequently
for each choice of t\ and t2 equation (19.8) is an equation of a

plane containing the line.

Conversely, any particular plane containing the line is de-

termined by any point of the plane not on the line, say (x\ 9 y\ 9 Zi).

If the values %i, y\, z\ are substituted in (19.8), we obtain

(19.10) tiAi + t2A 2 = 0,

where A\ and A 2 are the numbers to which the expressions in

parentheses in (19.8) reduce when x, y, z are replaced by
xi, y\, z\. Moreover, not both A\ and A 2 are equal to zero,

since the point (x\, y\, z\) is not on the line. If the point

(x\ 9 y\y z\) is on the first of the planes (19.1), then A\ = 0, and

from (19.10) it follows that t2 = and that t\ can take any
value. Also, if (*i, yi, Zi) is on the second of the planes (19.1),

we have A 2 = and t\ = 0. For any other plane both A\ and

A 2 are different from zero. If then we choose any value other

than zero for t\, substitute this value in (19.10), and solve

for /2, the resulting value of t2 and the chosen value of ti are

such that when they are substituted in (19.8) the resulting

equation is an equation of the plane through the line with

equations (19.1) and the point (xi, y\, z\). Thus the theorem

is proved.
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If we take two sets of values of t\ and /2 which are not pro-

portional, the corresponding equations (19.8) are equations of

two different planes, and these two equations are equations of

the line (19.1). Hence we have

[19.7] Equations of any two of the set of all the planes through
a line constitute equations of the line.

EXERCISES

1. Find an equation of the first degree in x, y, and z which has

(1, 2, 3) for a solution but which has no solution in common with

the equation 5* + 2.y-3z+l = 0.

2. Find an equation of the plane through the point (3, 1, 2) and

parallel to the plane *-2.y + 7z + 2 = 0.

3. Find equations of the lines in which the three coordinate planes
are cut by the plane 3 x 4y + 5z 10 = 0.

4. Find an equation of the plane containing the line

2^-3^ + 2 + 2 = 0, 3* + 2j>-z + 2 =
and the point (1, 1, 1); containing the line and parallel to the

z-axis.

5. Find an equation of the plane through the line

3x-2.y--2-3 = 0, 2^ + ^ + 42+1 =
which makes equal intercepts on the x- and ;y-axes.

6. What is the locus of the equation (ax + by + cz + d)
2 = k2

,

when k = ; when k ^ ?

7. Show that the plane x + 2 z = is parallel to a plane contain-

ingtheline x _ 2y + 4z + 4 = 0> x + y + 2 _ s = Q>

and consequently is parallel to the line.

8. When the planes (19.1) are parallel, for what values of t\ and

/2 is equation (19.8) an equation of a plane parallel to the planes (19.1) ?

9. Find the condition upon ti and h in equation (19.8) so that it

is an equation of a plane parallel to the #-axis ; to the .y-axis ; to the

z-axis.

10. Show that, when (19.1) are equations of a line, equations (19.2),

(19.3), and (19.4) are equations of planes through the line parallel to

the y-, x-, and z-axes respectively.

103



Lines and Planes in Space [Chap. 2

20. Two Homogeneous Equations of the First Degree in

Three Unknowns

We consider next the particular case of equations (19.1) when

di = d2 = ; that is, we consider the equations

(20.1) 0i* + biy + ciz = 0, 02* + b2y + c2z = 0,

with the understanding that they are independent, that is,

that not all of the determinants (19.5) are equal to zero. We
say that each of equations (20.1) is homogeneous of the first

degree in the unknowns, since every term is of the first degree
in these unknowns. On putting d\ = d2 = in (19.2), (19.3), and

(19.4), we have

I lb2
I

x =
I
blC2

1

z
> I

Glb2
I y = ""

I aiC2 1

z
>

. . . .

\biC2 \y = \a\C2 I*,

where for the sake of brevity we have indicated only the ele-

ments of the main diagonal', that is,
|
0i&2

\

stands for

01 bi

02 b2

We have also made use of the fact that |ci02
1

=
\a\c% \.

These equations are satisfied by x = y z = 0, which is an

evident common solution of equations (20.1). But they are

satisfied also by

(20.3) x = /
1
biC2

| , y = - t
\
0iC2

1 ,
z = /

1
0i&2

1

for any value of t. Hence we have

[20.1] Two independent homogeneous equations of the first degree

in three unknowns admit an endless number of common solu-

tions; for equations (20.1) the solutions are given by (20.3),

which may be written in the form

(20.4) x : y : z =
\
biC2

|
:
-

1
0iC2

1

:
1
0162 1 ,

with the understanding that if any one of the determinants is

zero the corresponding unknown is zero for all common
solutions.

The reader should observe that (20.3) follows from (20.4),

just as (20.4) follows from (20.3).
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We return to the consideration of equations (19.1) when
one at least of the determinants (19.5) is not equal to zero, and
denote by x\ 9 y\> z { a common solution of these equations. Then

equations (19.1) can be written in the form

ai(x
-

*i) + bi(y- yi] + Ci(z- ii)
= 0,

a*(x
-

xi) + b2 (y
-

y\) + c2 (z
-

21)
= 0.

These equations being homogeneous of the first degree in

x Xi, y y\, and z z it it follows from Theorem [20.1] that

r90 CN x-xi __ y-yi __ z-zi~ ~ ~

These equations being of the form (16.5), we have

[20.2] Two equations (19.1), for which one at least of the de-

terminants

is different from zero, are equations of a line with these de-

terminants as direction numbers.

EXERCISES

1. Find the common solutions of the equations

2. Verify by substitution that (20.3) is a common solution of

equations (20.1) for every value of /.

3. Show that the point (1,
-

2, 0) is on the line

2^ + 3^-22 + 4 = 0, 2^-3^-52-8 = 0,

and derive equations of the line in the form (16.5).

4. Find equations of the line parallel to the line in Ex. 3 and

through the point (2, 1, 1).

5. Find an equation of the plane through the origin and perpen-

dicular to the line

4x-;y + 32 + 5 = 0, x-y-z = Q.

6. Show that the line with equations (20.5) is parallel to the xy-

plane, if and only if
|
0ife 1

= 0; parallel to the jyz-plane, or the xz-

plane, if and only if
| 6iC2 |

= 0, or
|
tfiC2 1

= 0. Under what conditions

is it parallel to the >>-axis?
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7. Using Theorem [20.2], show that the plane x + 2 z = is paral-

lel to the line

x-2y + 4z + 4 = 0, x+y+z-8=Q
(see 19, Ex. 7).

8. Given two nonparallel lines with direction numbers u\, vit w\

and U2 t V2, tv2) show that
|
VitV2 |, |

u\w2 |, |
u\Vz \

are direction

numbers of any line perpendicular to the given lines.

9. Show that if two lines with direction numbers ui, Vi, w\ and

^2, v2 , tv2 pass through the point (x\, y\, 21), any line through this

point and contained in the plane of the two lines has as equations

x- xi = y - y\ _ z- z\

t\U\ -f /2W2 tiVi -f /2^2 t\W\

for suitable values of /i and /2 ; and for any values of ti and /2 , not

both zero, these are equations of a line in this plane and through
the point.

10. Show that if the planes (19.1) intersect in a line the equation

aix + b\y + Ciz + d\ _ a2x + b2y -f

a\u + biV -f c\w a?.u -f b%v + 2^

is an equation of a plane through this line and parallel to any line

with direction numbers u, v, w. Discuss this equation when the planes

(19.1) are parallel.

21. Determinants of the Third OrJer.

Three Equations of the First Degree
in Three Unknowns

The determination of the common solutions, if any, of three

equations
0i* + b\y + Ciz + di = 0,

(21.1) 02* + b2y + c2z + d2 = 0,

$ =

is facilitated by the use of determinants of the third order. Such

a determinant is represented by a square array of 9 elements as

in the left-hand member of (21.2), and is defined in terms of
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determinants of the second order as in the right-hand member
of (21.2), which is called an expansion of the determinant:

(21.2)

01 01

a2 b2

3 b3

= 01
C2 Ci

3
03

We define the minor of an element in a determinant of the

third order to be the determinant of the second order obtained

on removing from the given determinant the row and column in

which the element lies; thus in the right-hand member of

(21.2) each of the elements of the first column is multiplied by
its minor.

It is convenient, as a means of reducing writing, to represent

the determinant (21.2) by \aib2Cz\, that is, by writing only
the elements of the main diagonal of the determinant, as was
done in 20 for determinants of the second order. In this

notation equation (21.2) is

(21.3) = 01 02
I + 03

|

It is evident that this abbreviated notation cannot be used when
the elements are particular numbers ; for, then there would be

no means of telling what the elements not on the main diagonal

are.

If we pick out the terms in the right-hand member of (21.2)

involving bi, b2 ,
and 63 respectively, we see that another way

of writing this right-hand member is

and consequently another expansion of the determinant is

given by

(21.4)
= bi a2c3 |

63
1
01^2

|

.

If, in like manner, we pick out the terms involving Ci, 2,

we get the expansion

(21.5) |
aib2c-3

1

= Ci
|

a2b3
|

- c

On the other hand, the following expansions of the determi-

nant are obtained according as we pick out from the right-
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hand member of (21.2) the terms involving the elements of the

first, second, or third rows :

(21.6) = - 02
1
biC3

\ + b2
\
0iC3

|

- c2

-
63

|
0lC2

| + C3

When we examine the six expansions of the determinant

given by (21.3), (21.4), (21.5), and (21.6), we note that each

element multiplied by its minor appears twice: once in the

expansions in terms of the elements of a column and their

minors, and once in the expansions in terms of the elements

of a row and their minors. Also, in both cases the algebraic

sign of the term is the same ;
and we note that if the element

is in the pth row and qth column the sign is plus or minus

according as p + q is an even or odd number. For example, a%

is in the second row and first column and, 2+1 being odd,

the sign is minus, as is seen to be the case in (21.3) and the

second of (21.6). If then we define the cofactor of an element

in the pth row and qth column to be the minor of the element

multiplied by ( l)
p+, all six of the above expansions are

equivalent to the theorem

[21.1] A determinant of the third order is equal to the sum of the

products of the elements of any column (or row) and their

respective cofactors.

As corollaries of this theorem we have

[21.2] // all the elements of any column (or row) are zeros, the

determinant is equal to zero.

[21.3] // all the elements of any column (or row) have a common

factor k, the determinant is equal to k times the determinant

obtained by removing this factor from all the elements of

this column (or row).

Consider now the determinant

01 02 03

i c2 Ca
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that is, the determinant obtained from (21.2) by interchanging
its rows and columns, without changing the relative order of

the elements in a row or column. When this determinant is

expanded in terms of the first row, we have an expression equal
to the right-hand member of (21.2), since interchanging rows

and columns in a determinant of the second order does not

change its value ; for example,

"2 c2

Hence we have

[21.4] The determinant obtained from a determinant of the third

order by interchanging its columns and rows without

changing the relative order of the elements in any column or

row is equal to the original determinant.

If this theorem did not hold, we could not use
|
a\biCi

\

to

denote the determinant (21.2), since the interchange of columns

and rows does not change the main diagonal.

We consider next the result of interchanging two columns

(or rows) of a determinant, and begin with the case of two ad-

jacent rows, say, the />th and (p + l)th rows, where p is 1 or 2.

An element of the qth column and pth row goes into an ele-

ment of the #th column and (p + l)th row. This interchange

does not affect the minor of the element ; but the cofactor of

the element is now the product of the minor by (

whereas in the original determinant the multiplier is (

Consequently the expansion of the new determinant in terms

of the elements of the (p + l)th row is equal to minus the

original determinant. The same result follows when there is

an interchange of adjacent columns. The interchange of the

first and third rows (or columns) may be effected by three

interchanges of adjacent rows (or columns), thus:

123 > 132 > 312 * 321.

Since three changes of sign result in a change, we have

[21.5] The determinant obtained by interchanging two rows (or

columns) of a determinant of the third order is equal to

minus the original determinant.
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As a corollary we have

[21.6] // all the elements of one row (or column) of a determinant

are equal to the corresponding elements of another row (or

column), that is, if two rows (or columns) are identical, the

determinant is equal to zero.

In fact, if these rows (or columns) are interchanged, the

determinant is evidently the same as before; and in conse-

quence of Theorem [21.5] it is equal to that number which is

equal to its negative, that is, zero.

We are now able to prove the theorem

[21.7] The sum of the products of the elements of a row (or

column) and the cofactors of the corresponding elements of

another row (or column) is equal to zero.

In fact, such a sum is an expansion of a determinant with

two identical rows (or columns), which by Theorem [21.6] is

equal to zero. This proves the theorem.

With the aid of these properties of determinants we are able

to find the common solutions, if any, of equations (21.1).

Assuming that they have a common solution, and letting x, y,

and z denote the common solution, we multiply equations

(21.1) by Ifecsl, l&iCalt and
|
bic2

\ respectively and add.

In consequence of (21.3) the coefficient of x is
|
a^c-s

1 ,
and the

constant term is
|
dib2C3

\
; and from Theorem [21.7] it follows

that the coefficients of y and z are equal to zero. Hence we have

(21.7) |
i&2C3 \X+\ rfl&2C3

I

= 0.

Likewise, if we multiply equations (21.1) by 1
2c3 1,

and
|
a\c<2

\ respectively and add, we get, in consequence of

(21.4) and Theorem [21.7],

(21.8) 1
01^3 \y + |

0irf2C3
1

= 0.

Again, if we use the multipliers 1
2 ft3 1, I

#1*3 1, and
|
a\bz |,

we obtain, in consequence of (21.5) and Theorem [21.7],

(21.9) 1
0i&2c3

1

z + 1 0iMs I

= 0.
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Sec. 21] Three Equations of the First Degree

We observe that in (21.7), (21.8), and (21.9) x, y, and z have
the same coefficient, namely, |

aib2c3
\

,
which we call the deter-

minant of equations (21.1). Moreover, the second determinants

in (21.7), (21.8), and (21.9) are obtained from the determinant

of the equations by replacing the 0's, &'s, and c's respectively

by <f s having the same subscripts.

Equations (21.7), (21.8), and (21.9) have one and only one

solution if
|
a\b2cz

|

^ 0. In this case the values of x, y, and z

given by these equations satisfy equations (21.1), as the reader

can verify (see 26, Ex. 8). Hence we have

[21.8] Three equations of the first degree in three unknowns have

one and only one common solution if their determinant is

not equal to zero.

The geometric equivalent of this theorem is

[21.9] Three planes have one and only one point in common if

the determinant of their equations is not equal to zero.

In 22 and 24 we analyze the case when the determinant of

equations (21.1) is equal to zero.

Theorem [21.8] and the processes leading up to it may be

applied to the problem of finding an equation of the plane

through three points (x { , yi, 21), (x2 , y2 ,
z2 ), (*3, JVs, 23 ). Thus

the coefficients a, b, c, and d in the equation

(21.10) ax + by + cz + d = Q

must be such that axi + by l + cz i + d = 9

(21.11) ax2 + by2 + cz 2 + d = 0,

0*3 + by3 + cz^ + d = 0.

These equations looked upon as equations in a, b, and c have

one and only one common solution if the determinant

xi yi z\

(21.12) x2 y* z2

*3 JV3 *3

is not equal to zero. If this condition is satisfied, we solve (21.11)

for a, b
y
and c in terms of d and substitute in (21.10) to obtain

an equation of the plane (see Ex. 10).
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EXERCISES

1. For what value of a is the determinant

1 2

36

equal to zero ? Is it always possible to choose the value of one ele-

ment in a determinant, all the others being given, so that the deter-

minant shall be equal to a given number ?

2. Show that

1

P
P 2

1

3. Show that

01 -I- 0i
'

bi

02 4" 02' b%

03 ~h 03' bz

I
+

I fli'&aCs I-

4. Show that the determinant

01

02 C2

/202

is equal to zero for any values of t\ and /2 .

5. Show that whatever be the constants k\ t

k\a\ H~ k%b\ -f- 3^1 ^i Ci

b$ 3

I
0iC2

1

I 03Ci
|

*3 I
^lfcC3

|

6. Show that

7. Show that equation (5.3) of a line in the plane through the

points (jci, ;yi) and (x2 , j2 ) can be written in the form

y 1

yi 1 = 0.
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Sec. 21] Three Equations of the First Degree

8. Without expanding the determinants in the following equations :

2 -6
-4 9

2 3

= 0,

x

-2
2

= 0, 1

3

2x
2

1

y
-1

2

= 0,

show that the first is an equation of the line through the points

(1, 2), ( 2, 3), and the second an equation of the line through the

points ( 4, 6), (2, 4). Of what is the third an equation?

9. Show that the planes

x + 2y-z + 3 = Q, 3x-y + 2z+l=Q, 2x-y+z-2=Q
have one and only one point in common. Find the coordinates of

this point by means of (21.7), (21.8), and (21.9), and check the result.

10. Show that when the determinant (21.12) is different from zero

for three points (xi, y\, z\), (x2t y2 , z2), and (*3, jVa, 23), an equation of

the plane determined by these points is

23

Xi

x2

Xz

y\

y* z

x\

X2

11. Show that if the planes (21.1) have one and only one point

in common, the equations

0i* + b\y + c\z + d\ _ 2* -f b2y + c2z + d? __ azx + b$y + c^z -f d*

a\u + b\v -f c\w aw -f b%v -f c^w a^u + fav -f c$w

are equations of a line through this point and with direction numbers

M, v, w (see 20, Ex. 10).

12. Using the notation = anbn 4- 012^21 + and so on,

show that
2fli.fi

202 t fc

V l V I* "V
^03ttM ^03i0i2 ^03i'

is equal to the product of the determinants

011 012 013

021

031

022

032

023

033

hi

hi

b22

13. Show that the result of Ex. 12 may be stated as follows : The

product of two determinants of the third order is equal to the deter-

minant of the third order whose element in the ith row and yth column

is the sum of the products of corresponding elements of the zth row of

the first determinant and the yth column of the second determinant.

Discuss the effect of interchanging the two given determinants.
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14. Show that if the planes (21.1) have one and only one point

in common, the equation

ti (dix+ biy -f Ci2+ di ) -f /2 (a**+ fe;y+ c2z+ fife) 4- fe (#3*4 fejv 4- c3z4 </a)
= 0,

for any values of /i, /2, and /3 , not all zeros, is an equation of a plane

through this point, and that an equation of any plane through this

point is given by the above equation for suitable values of t\, /2, and /3 .

15. Show that if the planes (21.1) have one and only one point in

common, an equation of the plane through this point and parallel to

the plane

(i) 04* 4 by 4 c42 4 (/4 =
is

| (0i* 4 biy 4 CiZ 4 di) 4 0Ac3 (a2x 4 b2y 4 c2z 4 efe)

4
|
aib2C4 I (3# 4 fejv 4 c32 4 ds ) 0.

Discuss the case when the plane (i) is parallel to one of the planes

(21.1); also when it is parallel to the line of intersection of two of

the planes (21.1).

22. Three Homogeneous Equations of the First Degree
in Three Unknowns

We consider in this section three homogeneous equations of

the first degree

(22.1) 2* + b2y + c2z = 0,

03* + fay + 32 = 0.

Since these equations are of the form (21.1) with the d's equal

to zero, it follows from Theorem [21.2] that the second de-

terminants in (21.7), (21.8), and (21.9) are equal to zero. Con-

sequently x = y = z = is the only common solution of equa-

tions (22.1) when the determinant of these equations is not

equal to zero.

We consider now the case when
1
016203 1

= 0. If any two
of equations (22.1) are equivalent, that is, if either is a con-

stant multiple of the other, the determinant
|

a ibzc^
\

is equal
to zero by Theorems [21.3] and [21.6]. In this case the common
solutions of two nonequivalent equations are common solutions

of all three equations. Thus, if the third of (22.1) is equivalent
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Sec. 22] Three Homogeneous Equations of the First Degree

to either of the other equations, by Theorem [20.1] the common
solutions of (22.1) are

(22.2) x = t\ bic2 \, y = -t\ 0iC2 1, z = /
1
0i&2

|

for every value of the constant /.

If now no two of equations (22.1) are equivalent, the com-
mon solutions of the first two of (22.1) are given by (22.2).

When these expressions are substituted in the left-hand member
of the third of equations (22.1), we obtain

/ (03 |
bid

|

~ b3
|
0lC2

|

+ C3 |
01*2

I )

The expression in parentheses is equal to
1
01*2^3

1 by (21.6).

Since by hypothesis this is equal to zero, the above expres-
sion is equal to zero for all values of /. Consequently, when

1
0ik>C3

1

= 0, the expressions (22.2) for every value of / are

common solutions of equations (22.1).

In consequence of Theorem [20.1] the common solutions of

the second and third of equations (22.1) are

(22.3) x = r
|
bzc-s

| , y = - r
\

a2c3
| ,

z = r\ 263
I

for every value of r, and of the first and third of (22.1)

(22.4) x = - s
|
biC's

| , y = s\ 0ic3
1 , z = s\ 0i&3

I

for every value of s. By the above argument these are common
solutions of all three of equations (22.1) when |0i&2C3 |

= 0.

The signs in (22.2), (22.3), and (22.4) are chosen so that the

determinants in these expressions are the cofactors of the ele-

ments in the third, first, and second rows respectively of (21.2.)

As a consequence of (22.2), (22.3), and (22.4) we have that

when
1
01&2C3 1

= the corresponding determinants in any two

of the sets t)f equations (22.2), (22.3), and (22.4) are propor-

tional (see 21, Ex. 6). Accordingly we have

[22.1] Three homogeneous equations of the first degree in three un-

knowns have common solutions other than zero, if and only

if the determinant of the equations is equal to zero; for

equations (22.1) the common solutions are given by

x : y : z =
|

(22.5) =
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From the foregoing discussion it follows that the three planes

(22.1) have the origin as the only common point if the deter-

minant of the equations, that is, \aib2C3\, is different from

zero, and that if their determinant is equal to zero the three

planes have in common a line through the origin. Equations
of such a line are r v 7Z = ..

u v w

Comparing these equations with (22.2), (22.3), and (22.4), we
have as the geometric equivalent of Theorem [22.1]

[22.2] Three distinct planes whose equations are (22.1) have the

origin as the only common point if the determinant of their

equations is not equal to zero; and if the determinant is

equal to zero the three planes intersect in a line through the

origin, having as direction numbers each set of three quan-
tities in equations (22.5).

As a consequence of Theorems [22.1] and [21.4] we have

[22.3] When a determinant aib2c-3
\

is equal to zero, there exist

quantities hi, h<2 , h$, not all zero, such that

(22 6} = 0,

and also quantities k\, 2 , k3 , not all zero, such that

(22 7)
kiai + k2 2 + *3^3 = ' klbl + k^2 + k '3b '

3 = '

*lCi + *2C2 + *3C8
= 0.

In fact, the A's are proportional to each set of three quantities

in equations (22.5). In like manner the 's are proportional to

the cofactors of the elements in each column of
|
aib2Cz \.

Theorem [22.1] is very important, and some of its applica-

tions may strike the reader as surprising. For example, if we
seek an equation of the line in the plane through the points

PI(XI, y\) and P2 (* 2 , ^2), we have for consideration three

equations

(22 8)
<*x + by + c = Q 9 a*i + by\ + c = 0,

0*2 + by2 + c = 0,
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Sec. 22] Three Homogeneous Equations of the First Degree

the first of which is an equation of the line whose coefficients

are to be determined so that the second and third hold. Apply-
ing Theorem [20.1] to the last two of equations (22.8), we have

y\

On substituting these values in the first of (22.8) and dividing
out the common factor /, we obtain

(22.9)
X2 y*

However, if we consider (22.8) as three homogeneous equations
of the first degree in a, ft, and c, the coefficients being x, y, 1 ;

xi, y\, 1
; x2 , y2, 1, it follows from Theorem [22.1] that, in

order that these equations shall have a solution other than

a = b = c = (in which case we have no equation of the line),

we must have

(22.10)

This is the same equation as (22.9), as is seen on expanding
the determinant (22.10) in terms of the elements of the first

row. Consequently we have found an equation of the line by
means of Theorem [22.1], without finding directly the expres-

sions for 0, &, and c (see 21, Ex. 7).

This is an interesting and subtle process, which may be

applied to some of the exercises below, and which is used in

the next section. Accordingly it is important that the reader

think it through so that he will have confidence in using it.

EXERCISES

1. Find the coefficient a in the first of the equations

so that these equations shall have common solutions other than zeros,

and find these solutions.

2. Show that three points (x, y), (xi, yi), (x2 , y*) are vertices of a

triangle, if and only if the determinant in (22.10) is not zero. Express

the result of 13, Ex. 26 by means of a determinant.

117



Lines and Planes in Space [Chap. 2

3. Show that the condition that the determinant in Ex. 2 shall

vanish is equivalent to the conditions of Ex. 9 of 4 that the three

points shall be collinear.

4. Show that three distinct nonparallel lines

Qix + biy -f n = 0, 02* 4- fay -f c2 = 0, a** + b*y + c3 =
meet in a point, if and only if

0i bi ci

02 fe C2 = 0.

03 fe 3

Compare this result with the discussion of equation (10.4) and with

Ex. 4 of 21.

5. Show that an equation of the plane through the origin and the

points (x\ 9 yi, z\) and fa, ;y2 , 22 ) is

x y z

=0.

6. Show that three points fa, y\, 21), fa,

a plane through the origin, if and only if

i yi 21

^ 22), fa, y^ 23) lie in

23

=0.

7. Show that the condition of Ex. 6 is satisfied when the three

points are collinear (see 15, Ex. 10). Interpret this result and Ex. 6

geometrically.

8. For what values of / do the equations

admit solutions other than zeros ? Find the solutions.

9. Show that if MI, v\, w\ ; w2 , v2 ,
tv2 ; w3 , v3 , w3 are direction num-

bers of three lines through a point P, the lines lie in a plane, if and

only if the determinant
Ul Vl Wl

U2 t/2 M/2

M3 Va

is equal to zero (see Theorem [17.7]).

10. Given three lines through a point P, and not in the same plane,

show that direction numbers of any line through P are expressible

linearly and homogeneously in terms of the direction numbers of the

given three lines.
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23. Equations of Planes Determined by Certain Geometric

Conditions. Shortest Distance between Two Lines

If we desire to find an equation of the plane determined by
three noncollinear points (xi, y it zi), (x2 , y2 , z2 ), (*3 , jVa, 23),

we may substitute these values for x, y, z in the equation

(23.1) ax + by + cz + d = 0,

solve the resulting equations for 0, b, and c in terms of d by
the method of 21, substitute the values of a, ft, and c so ob-

tained in (23.1), and get an equation of the plane, as in Ex. 10

of 21 ; or we may proceed as follows.

If we substitute xi, y\, z\ for x, y y
z in (23.1) and subtract

the resulting equation from (23.1), we obtain

(23.2) a(x
-

*i) + b(y
-

y{) + c(z
-

z,) = 0.

Expressing the conditions that the points (*2 , y2 ,
z2 ) and

(#3, Js, 23 ) are points of the plane (23.2), we have

(23 3^
a^2

~~ *^ + 6^2
""

yi) + C^2
~~

Zl) = 0>
( ' ;

a(x3
~ Xl ) + b(y3

-
yi) + c(z3

-
zi) = 0.

Looking upon equations (23.2) and (23.3) as homogeneous
equations in a, &, and c, we have in accordance with Theorem

[22.1] that these equations admit a common solution other than

zeros, if and only if their determinant is equal to zero ; that is,

(23.4)

x xi y y\ z -
= 0.

When this determinant is expanded in terms of the elements of

the first row, it is seen to be an equation of the first degree in

x, y, and z, and consequently is an equation of a plane ; and

it is an equation of the plane determined by the three points,

since the determinant is equal to zero when x, y, z are replaced

by the coordinates of each of the three points, in accordance

with Theorems [21.2] and [21.6].

Another way of obtaining equation (23.4) is to solve equations

(23.3) for a, b, c in accordance with Theorem [20.1] and to substi-

tute the result in (23.2), as the reader should verify. But the

method we have used leads to the result more immediately.
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Equation (23.4) is an equation in x9 y, and z unless the

minors of (x *i), (y >>i), and (z z\) are all equal to zero.

If they are equal to zero, the last two rows in (23.4) are pro-

portional, that is,

*2 - xi y2
-

y\

which is the condition that the three points shall be collinear.

Since there is an endless number of planes through a line, we
would not expect equation (23.4) to apply to this case. However,
since equations (23.3) are equivalent in this case, if we take

any values of a, b, and c satisfying either of equations (23.3)

and substitute these values in (23.2), we get an equation of a

plane through the three collinear points.

Accordingly we have

[23.1] Equation (23.4) is an equation of the plane determined by

three noncollinear points (x\, y\, Zi), (x2 , y2 , 22), (*3, yz, 23).

When the points are collinear, equation (23.2) for values of

a, 6, and c satisfying either of equations (23.3) is an

equation of one of the endless number of planes containing

the points.

We consider next two lines with the equations

(23.5)
n
MI

(23.6)
U2 V2 W2

and seek an equation of the plane through the first line and

parallel to the second. Since the plane passes through the point

(*it y\, 21), an equation of the plane is of the form

(23.7) a(x
-

*i) + b(y - yi) + c(z
-

zi) = 0.

If the line (23.5) is to be in this plane, and the line (23.6) is

to be parallel to the plane, any normal to the plane must be

perpendicular to both lines ; consequently a, b, and c, direction

numbers of such a normal, must satisfy the conditions

au i + *i + cwi = 0,

au2 + bv2 + cw<z =5 0,

120



Sec. 23] Shortest Distance between Two Lines

by Theorems [16.8] and [17.5]. Looking upon these equations
and (23.7) as homogeneous equations in a, b, and c, we have that

these equations admit solutions not all zeros, if and only if

(23.9)

-xi y-yi z-z
HI vi w l

= 0,

which is the equation sought.

When two lines do not intersect and are not parallel, by
constructing a plane through each line parallel to the other we
have the lines lying in two parallel planes, like the ceiling and
floor of a room.

The shortest distance between the lines is the length of the

segment they determine on their common perpendicular ; that

is, in the above analogy it is the length of the normal to the

floor and ceiling which meets the two lines. This length is

the distance between the two planes. If then we wish to find

the shortest distance between the lines (23.5) and (23.6), and

we observe that (23.9) is an equation of the plane through the

line (23.5) parallel to the line (23.6), it is clear that this short-

est distance is the distance of any point on the line (23.6) from

the plane (23.9), and in particular the distance of the point

(*2 , ^2, z2 ) from this plane. In accordance with Theorem [18.1]

this value of the directed distance is obtained by substituting

*2, ^2, 22 for x, y, z in the left-hand member of (23.9) and divid-

ing by the square root, with appropriate sign, of the sum of

the squares of the coefficients of x, y, and z in equation (23.9).

Hence we have

[23.2] The directed shortest distance from the line (23.5) to the

line (23.6) is given by

(23.10) Mi Vi

where D = eV I
v\w2

|

2 +
|
WiU2

1

2 +

e being + 1 or 1 according as \u\V2\ is positive or nega-

tive, and so on, as in [18.1].
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EXERCISES

1. Find an equation of the plane through the points (h, 1, 1),

(k, 2,
-

1), and (1,3, 3). For what values of h and k is there more than

one plane through these points ? Find an equation of one of the planes.

2. Under what condition is equation (23.9) satisfied by any values

of x, y, and z ? What does this mean geometrically ?

3. Show that an equation of a plane containing the line (23.5)

and perpendicular to the plane

(i) ax + by + cz + d =
is x xi y yi z zi

MI Vi w\ = 0.

a b c

Discuss the case when the line (23.5) is normal to the plane (i).

4. Find the shortest distance between the lines

x l__y + l -Z-2 * + 2 _y _ * - 3

2
~~

1
~
-2

' 3~~1~"5*
5. Show that an equation of the plane through the point (xi, y\ t z\)

and normal to the line

aix + b\y + c\z + di = 0, a2x -f b2y + c?z + d2 =
is x r

yi z z\

bi Ci

b2 C2

= 0.

6. Show that the lines (23.5) and (23.6) lie in the same plane, if

and only if x2 y\ y2 z\ z2

= 0.

U2 1/2 W2

7. Show that an equation of the plane through the point (x\, y\, z\)

and parallel to lines with direction numbers u\ 9 v\ 9 w\ and u2t v2 , w2 is

:
-

xi y-yi z-zi
MI Vi w\ = 0.

M2 V2 W2

8. Show that for the points P\(x\, y\, z\), P2 (x2t y2 , z2 ), and so on

X Xi X2 #3 X4 Xs

y yi y* yz y* y?>Q
z z\ z2 23 Z4 ZB

is an equation of a plane through Pi parallel to P2Pa and to P4P6 .
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9. Find the coordinates of the point or points common to the

two planes 2 x + 3;y + z + 3 = 0, * - 2;y
- 3 z - 2 = 0, and each of

the planes

= 0.

l = Q; (d) x + 5y + 4 z + 6 = 0.

What is the geometric relation between each set of three planes?

10. When u\ 9 t/i, w\ and u2 , v2 , tV2 in (23.5) and (23.6), are direc-

tion cosines, how may the expression (23.10) be written in conse-

quence of (15.10)?

11. Show by means of Ex. 3 that an equation of the plane contain-

ing the line (23.5) and perpendicular to the plane (23.9) is

x xi y - y\ z - zi

u\ v i w\

ViW2
I I WlU2 I I

UiV2
I

Show that this equation, and the one obtained from it on replacing

Xi, y\, z\\ u\, t/i, w\ by x2 , yi> z2 ; u2 , v2 , w2 respectively in the first

two rows, are equations of the common perpendicular to the lines

(23.5) and (23.6).

12. What equations replace (23.9) and the equation of Ex. 11 when
the lines (23.5) and (23.6) are parallel?

24. Tne Configurations of Three Planes

In this section we return to the consideration of three

equations aiX + biy + ClZ + ^ = 0,

(24.1) 02* + b2y + c^z + d2 = 0,

03* + &3JV + c$z + dz =

and seek the conditions upon the coefficients in these equations

corresponding to the various types of configurations of three

planes. In 21 it was shown that a common solution or solu-

tions, if any, of these equations satisfy the equations

I
tfifeca

|

x + |
dib2cz

I

= 0,

(24.2) |
01&2C3 \y+\ #1^3 I

= 0,

\aibzC3\z + \aib2d3 |

= 0;

and from these equations followed Theorem [21.9], that three

planes with equations (24.1) have one and only one point
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in common if the determinant of these equations, namely,

|
a\biCz

| , is not equal to zero.

It is evident geometrically that there are the following config-

urations formed by three planes, other than that of planes having
one and only one point in common : (1) two of the planes are

parallel, and the third intersects them in parallel lines ; (2) the

three planes are parallel ; (3) the three planes have a line in

common, or intersect in three parallel lines forming a triangular

prism. In accordance with Theorem [21.9] these cases must

correspond to the various ways in which the equation

(24.3)

0i

=02 02 C2

03 b% 3

is satisfied. We shall consider these various ways successively,

and observe first of all that if (24.3) is satisfied there is no com-

mon solution of equations (24.1) unless all the determinants

in (24.2) are equal to zero.

Case 1. The condition (24.3) is satisfied when any two
rows are proportional. If the first two rows are proportional,

that is, if
1
0i&2

1

=
1
biC2

1

=
1
01^2

1

= 0, by Theorem [19.4] the

first two planes are parallel or coincident according as di/d2

is not or is equal to the ratio of the other coefficients ; that is,

as one can show, when the minors of the elements 3 , fc,

and c3 in the determinants (24.4) are not or are equal to zero ;

although there are six of these minors, only three are distinct.

If the third row is not proportional to the other two, the third

plane meets the other two planes in two parallel lines or in

two coincident lines according as the first two planes are par-

allel or coincident. In these cases equations (24.1) have no

common solution or an endless number of common solutions

respectively.

Case 2. If all three rows in (24.3) are proportional, that

is, if the minors of all the elements in (24.3) are equal to zero,

the three planes are parallel, or two are coincident and parallel

to the third, or all three are coincident. These cases are dis-

tinguished from one another by the values of the ratios of the
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d's. Thus, if the minors of 3 , fe, c3 in the determinants (24.4)

are not all zero, the first two planes (24.1) are parallel (and not

coincident), and similarly for other pairs of planes. Only in

case all three planes are coincident do equations (24.1) have
common solutions.

Case 3. We consider finally the case when no two rows are

proportional. From Theorem [22.3] we have equations (22.7),

in which all the &'s are different from zero, since otherwise one

finds that two rows are proportional. If we solve equations

(22.7) for 03, #3, and c3 ,
and put ki/kz = /i, k2/kz = t2 , we

have

(24.5) 3 = tldi + t2Ct2 , b3 = tibi + t2b2 ,

*

C3 = tiCi + t2C2 .

When these expressions are substituted in the determinants

(24.4), the latter reduce respectively to

(24.6) k 6iC2 |, -k\aiC2 \, k\aib2 \,

where the common factor k is given by

(24.7) k = d* - Mi -
t2d2 .

We consider first the case when the three quantities (24.6)

are equal to zero, that is, when the determinants (24.4) are

equal to zero. Since by hypothesis the first two rows of (24.3)

are not proportional, we must have k = ; that is,

(24.8) d-3 = tidi + t2d2 .

From this result and (24.5) we have

+ t2 (a2x + b2y + c2z + d2 ).

Hence by Theorem [19.6] the three planes (24.1) have a line

in common.
When k 7* 0, that is, when the determinants (24.4) are not

zero, from (24.5), and (24.7) solved for d3 , we have

(24.9) 3* + fay + c3z + d3 = h (a\x + b\y + dz + d{)

+ t2 (a2x + b2y + c2z + d2 ) + k,

from which it is seen that the three equations (24.1) do not

have a common solution ; for, if there were a common solution,
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the expression on the left in (24.9) and the expressions in paren-
theses would be equal to zero for the values of x, y t

and z of

this solution, which is impossible for k ^ 0. Geometrically this

means that the three planes intersect in three parallel lines;

that is, they form a triangular prism (see Ex. 2).

The results of the foregoing discussion may be stated as

follows :

[24.1] When the determinant (24.3) of equations (24.1) of three

planes is equal to zero, it follows that :

(1) If the minors of the elements of any row are equal to

zero, the planes corresponding to the other two rows are

coincident or parallel according as the minors of the elements

of the corresponding rows in the determinants (24.4) are

equal to zero or not; if only two of the planes are parallel

and all three are distinct, the third plane intersects the other

two in parallel lines.

(2) If the minors of all the elements of all the rows are

equal to zero, the three planes are parallel, or two are

coincident and parallel to the third, or all three are coincident.

(3) If the minors of all the elements in the determinant

(24.3) are not all zero, the planes meet one another in one

line or in three parallel lines according as all the determi-

nants (24.4) are equal to zero or not.

We have also the algebraic theorem

[24.2] Three equations (24.1), not all of which are equivalent and

whose determinant is equal to zero, have an endless number

of common solutions or none according as all three de-

terminants (24.4) are equal to zero or not; in the former
case either two of the equations are equivalent or any one is

a linear combination of the other two, that is, a sum of con-

stant multiples of the other two.

Theorems [21.8] and [24.2] constitute a complete state-

ment about the common solutions of three nonhomogeneous

equations of the first degree in three unknowns, and Theorems

[21.9] and [24.1] give a geometric picture of this algebraic

problem.
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EXERCISES

1. Discuss Ex. 9 of 23 in the light of the above analysis.

2. Show that for any nonzero values of /i, /2 , and /3 the equation

t\(a\% + biy + Ci2 -f d\) + t2 (a2x + b2y + c2z + d2 ) + k =
is an equation of a plane parallel to the line

0i* + hy + Ciz + di = 0, 2* + b2y + c22 + </2 = 0.

(See 19, Ex. 7.)

3. Using Theorem [20.2], show that when (24.1) are equations of

three distinct planes and equation (24.3) is satisfied, the cofactors

of any row in the determinant of the equations are direction numbers
of the line, or lines, of intersection of the planes when such cofactors

are not all zero.

4. For what values of a, b, and c in the equations

ax + 2y + 3z-l=Q, 3* + fry + 2 + 2 = 0, llx + 8>> + C2-3 =

are the planes with these equations mutually perpendicular? For

what values do the planes meet in one line? For what values do they
meet in three parallel lines ?

25. Miscellaneous Exercises. The Sphere

1. Find an equation of the set of all planes through the point

(2,
-

1, 3) parallel to the line

2. Find an equation of the plane through the origin normal to

the line 3 x _^ + 42 + 5 =: o, x

S. Prove that the line

x + 2>>-2 + 3 = 0, 3x-
meets the line

4. Find the point where the line^ = ^= =^- meets the

plane x + y + 2 = 0. How far is this point from the point (3, 4, 5) ?
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= (P
-

</)(?
- r)(r

- P)(P + Q + r).

5. Show that

1 1 1

p q r

6. What is the locus of a point the sum of whose distances from

any number n of planes is a constant?

7. Show that the projection (see 14) of a line segment of length /

upon a line L is equal to / cos 0, where 6 is the angle of the line L and

the segment ; and that the projection upon a plane is / sin </>, where <f>

is the angle of the segment and a normal to the plane.

8. Find the projection of the line segment between the points

(2,
-

5, 1) and (4,
-

1, 5) upon the line = -=~ = ~=
; also

upon the plane 2x-y + 2z = Q.

9. Show that if g, h, k are the intercepts of a plane on the x-, y-,

and 2-axes respectively, and p is the distance of the origin from the

plane, I . 1 . 1 = 1
g
2
^

A2
"
1
"

k2 p 2
'

10. Given a fixed point P on a line in space through the origin and

equally inclined to the three coordinate axes, show that for every

plane through P meeting the three axes the sum of the reciprocals

of the intercepts has the same value.

11. Find the condition that the three lines

_*. = 2- = A. XL 2. A j y. jL

Q\ b\ Ci
'

#2 ^2 2
'

03 b$ 3

shall lie in a plane.

12. Show that the bisectors of the angles between perpendicular
lines through the origin and with direction cosines Xi, AH v\ and

X2, M2, v<i respectively have equations

z

13. Find an equation of the sphere of radius r and center at the

point (x , yo, ZQ ).

14. Show that

(i) x2 + y 2 + 2 2 + 2/x + 2 gy + 2 fe 4- e =
is an equation of a sphere. What are the center and radius?

(See 12.)

128



Sec. 25] Miscellaneous Exercises. The Sphere

15. Show that the points common to two intersecting spheres lie in

a plane which is perpendicular to the line through the centers of the

spheres. This plane is called the radical plane. Discuss this question
when the spheres do not intersect (see 12).

16. Show that the square of the length of any tangent to a sphere
with an equation (i) of Ex. 14 from a point (x\ t y\ t z\) outside the

sphere is equal to xi
2 +V -f *i

2 + 2 fx\ + 2gyi + 2hzi + e (see 12).

17. Find an equation of the plane normal to the radius of the

sphere x 2 + y 2 + z2 -2x + 4y + 2z + 2 = Q through the point

(1, 2, 1) of the sphere. This plane is called the tangent plane to the

sphere at this point.

18. Find an equation of the sphere which passes through the origin

and the points (1,
-

2, 3), (2, 0,
-

1), (4, 4, 0) ; of the sphere when
the last point is replaced by (3, 2, 5).

19. Let Si = and S2 = be equations of two spheres in the form

(i) of Ex. 14. Discuss the equation tiSi + /2S2 = when t\ and fe take

all values, not both zero, and in particular the case t\ fe.

20. Find an equation of the sphere inscribed in the tetrahedron

whose faces are the coordinate planes and the plane x 2y + 2z 4.

21. Find the locus of a point the square of whose distance from the

origin is equal to its distance from the plane x 2 y + 2 z = Q.

22. Find the locus of a point the sum of the squares of whose dis-

tances from the points (1, 0,
-

1) and (2, 1,
-

3) is 10.

23. What is the locus of a point the sum of the squares of whose

distances from any number n of points is a constant ?

24. Find an equation of the right circular cylinder of radius r and

with the line x - xi = 0, y - y\ = for axis.

25. Show that ax* -f by
2 + cz2 = 0, where a, b, and c do not all

have the same sign, is an equation of a cone with vertex at the origin,

by showing that if P\(x\, y\, z\) is a point of the locus, so also is every

point on the line joining the origin and Pi. Could the locus be one

or more planes?

26. Find the locus of a point whose distance from the 2-axis is equal

to its distance from the ry-plane. For what part of the locus are the

directed distances equal ?
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27. Find the locus of a point whose distance from the origin is

twice its distance from the ry-plane.

28. What is the character of the locus with the equation f(x, z) = 0,

where f(x, z) denotes an expression in x and z ; of the locus f(y) = ?

26. Determinants of Any Order

In 21 we defined determinants of the third order in terms

of the elements of the first column and their minors, these being

determinants of the second order, and derived various theorems

concerning determinants of the third order. In this section we
define determinants of the fourth and higher orders, and show
that the theorems of 21 apply equally well to these deter-

minants.

We begin with a determinant of the fourth order, represented

by a square array of 16 elements and defined as follows in

terms of determinants of the third order :

(26.1)

0i bi Ci di

#2 b'2 C'2 do

03 b'3 3 di

04 4 c^ <L\

b'2 C'2

b'3 3

+ 03 d'2

-02

-04

64

b'2 2

If we expand the determinants in the right-hand member of

(26.1) in terms of the elements of the first columns, and collect

the terms in b\, 62, 63, and 64 , we have, using the main diagonal
to represent a determinant,

(26.2)

2

04

04
1

|
02

|
Cid'3

I
+ 03

I

64
I
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This is an expansion of the determinant in terms of the ele-

ments of the second column and their minors.

If we expand the determinants of the third order in (26.1)
in terms of the elements of the second columns, and again in

terms of the elements of the third columns, and proceed as

above, we obtain

(26.3)

I
+ C/2

In the foregoing expansions it is seen that the element of

the pih row and qth column, for any values of p and q from 1

to 4, is multiplied by ( l)
p+ times the minor of the element,

which by definition is the determinant of the third order ob-

tained on removing from the determinant (26.1) the row and

column in which the element lies. For example, b-s is in the

third row and second column, in which case ( !)?+ =
( 1)

3+2

= 1, and we see that this checks with (26.2).

As in 21, we define the cofactor of the element in the pth
row and qth column to be ( l)

p+q times the minor of the ele-

ment. Accordingly, although the determinant was defined as

the sum of the products of the elements of the first column and

their respective cofactors, it is shown by (26.2) and (26.3)

that the determinant is equal to the sum of the products of the

elements of any column and their respective cofactors.

Since, as we have just seen, the terms involving any element

consist of the products of this element and its cofactor, it fol-

lows also, as in 21, that the determinant is equal to the sum
of the products of the elements of any row and their respective

cofactors (see Theorem [21.1]).

Just as determinants of the third and fourth orders have

been defined to be the sum of the products of the elements of

the first column and their respective cofactors, generalizing the

notation and terminology, we define a determinant of any order

to be the sum of the products of the elements of the first column

and their respective cofactors. Just as we have shown that
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it follows from the definition of determinants of the third

and fourth orders that the following theorem holds, so by pro-

ceeding step by step with determinants of the fifth order, and

so on, we can establish the following theorem for determinants

of any order :

[26.1] A determinant of any order is equal to the sum of the prod-

ucts of the elements of any row (or column) and their

respective coj'actors.

We consider in connection with the determinant (26.1) the

determinant obtained from (26.1) by interchanging rows and

columns without changing the relative order of the rows and

columns, that is, the determinant

(26.4)

a\ a<2 #3 #4

b\ 62 #3 64

Ci C2 C3 C4

d\ d2 d't d*

When this determinant is expanded in terms of the elements of

the first row, we have in place of the right-hand member of

(26.1) an expression obtained from the latter when the rows

and columns in each of the four determinants of the third order

are interchanged. But by Theorem [21.4] these determinants

of the third order are equal respectively to the determinants

from which they were obtained by the interchange. Hence the

determinant (26.4) is equal to the determinant (26.1). Pro-

ceeding step by step, we can show that this result holds for a

determinant of any order. Hence we have

[26.2] The determinant obtained from a given determinant by in-

terchanging its rows and columns without changing the

relative position of the elements in the rows and columns is

equal to the given determinant.

Consider now the effect of interchanging two adjacent col-

umns of a determinant. An element in the new determinant

is in the same row as originally, but the number of its column
is one less, or one greater, than in the given determinant. Con-

sequently, if ( l)
p + is the multiplier of its minor yielding its
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cofactor in the original determinant, the multiplier in the new
determinant is (_ l)*+-i or (- l)

p + +1
. Since (- l)p+-i

= - (- l)p+*= (- l)p+
+1

, it follows that in either case the

sign of the cofactor is changed. If then we expand the two
determinants in terms of the same elements, we have that the

new determinant is 1 times the original determinant.

Consider next the determinant resulting from a given de-

terminant by the interchange of any two nonadjacent columns,

say the rth and the 5th, where s > r. The elements of the 5th

column can be brought into the rth column by 5 r inter-

changes of adjacent columns. This leaves the elements of the

original rth column in the (r+l)th column, and then, by
5 r 1 interchanges of adjacent columns, these elements can

be brought into the 5th column. Since this interchange of the

rth and 5th columns can be accomplished by 2 (s r) 1 inter-

changes of adjacent columns, and since each such interchange
introduces 1 as a multiplier, the result is to multiply the

original determinant by 1 raised to the odd power 2(s r) 1 ;

that is, to multiply the original determinant by 1.

Since similar results are obtained when two rows are inter-

changed, we have the theorem

[26.3] The determinant obtained by interchanging two rows (or

columns) of a determinant is equal to minus the original

determinant.

As a corollary we have

[26.4] When two rows (or columns] of a determinant are iden-

tical, the determinant is equal to zero.

For, on interchanging the two rows (or columns) the sign is

changed, but we have the same determinant over again ; and

zero is the only number which is equal to its negative.

From Theorems [26.1] and [26.4J we have

[26.5] The sum of the products of the elements of any row (or

column) of a determinant and the cofactors of the correspond-

ing elements of another row (or column) is equal to zero.
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For, the sum of such products is an expansion of a determinant

with two identical rows (or columns).

Since each term in the expansion of a determinant contains

one element, and only one, from each column and each row,

it follows that

[26.6] The multiplication of each element of a row (or column)

of a determinant by a constant k is equivalent to the multi-

plication of the determinant by k.

Accordingly, if all the elements of a row (or column) have the

same factor k, the determinant is equal to k times the determi-

nant which results on removing this factor from each element

of this row (or column).
As a consequence of Theorems [26.4] and [26.6] we have

[26.7] When the elements of two rows (or columns) of a determi-

nant are proportional, the determinant is equal to zero.

In consequence of Theorem [26.1] we have (see 21, Ex. 3)

[26.8] // each element of any row (or column) of a determinant

is expressed as the sum of two quantities, the determinant

may be written as the sum of two determinants.

If one wishes to write a determinant of any order n, it is

convenient to designate an element by one letter having two

subscripts, for example, by a
ljt where i denotes the row and j

the column in which the element occurs. In this notation from
Theorem [26.8] we have

012022^33

Since the second of these determinants, having two columns

identical, is equal to zero, we have by similar procedure applied
to any two rows (or columns) the following theorem :
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[26.9] // to the elements of any row (or column) of a determinant

there be added equal multiples of the corresponding elements

of any other row (or column), the determinant is unaltered.

This result is frequently used to replace a determinant by an

equivalent one with one or more zero elements, an operation
which reduces the calculation involved in evaluating the deter-

minant. For example, consider the following determinant and
the equivalent one obtained by multiplying the second row by
2, subtracting the result from the first and fourth rows, and

adding the result to the third row :

= -1

O

8

-4
7

8

-4
7

-4
1

-4

-4 1

1 1

-4 1

If in the last third-order determinant we subtract the first row

from the second and third rows, the result is

-3
8-41
12 5

-100
= -3 -12 5

-1
= -15.

EXERCISES

1. Evaluate the following determinants : 1231-22132101221
-1 -1 -2 1

2 3-1-1
2. For what value of a is the determinant

a - 1

7

3

4

4 9

5 -2 -3
2 4-1724

equal to zero ?
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3. Show with the aid of Theorem [26.9] that each of the following

determinants is equal to zero :

6. Show by means of Theorems [26.6] and [26.9] that if d4
the determinant (26.1) is equal to

I
010*4

I I
fad* I I

cid
|

|
020*4 | |

M4
| |

C20*4
|

|
0304 | |

W4
| |

^30*4
I

c2fk c3fh
a2k a3h

b2k b$h

6. Find the ratio of the determinants

0i/g big cigk

a2fh b2h c2hk a\g

big

7. Show that a determinant is equal to an algebraic sum of all

terms each of which consists of the product of one element, and only

one, from each row and each column, and that every such product is

a term of the sum.

8. Show that, if the determinant
| aib2c3 ]

of equations (21.1) is

not equal to zero, and we multiply any one of these equations by

| a\b2cz |
and substitute in this equation the values of x, y, and z from

(21.7), (21.8), and (21.9), the result is expressible as a determinant of

the fourth order with two identical rows. Does this prove that these

values of x, y, and 2 constitute the solution of equations (21.1) ?

ijXiXj ~p

where A =
\ ai\a^a^ \

=
\
a

l} |,
and A tJ is the cofactor of a

l} in A.
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10. Show that the determinant in Ex. 9 is equal to

011 4" #1
2

012
'

021 4~ #2*1 022 4~ #2
2

023 4~ s
I 0;

031 4- #3*1 032 -f #3*2 033 4" #3
2

and that consequently the latter determinant is equal to

1,2,3

z, AijX\Xj 4~ A.

11. Show that if in Ex. 9 alt
= a

]V for all values of i and /, then

12. Show that the result of Ex. 10 holds for i, ; = !>..., n , where
n is any positive integer.

13. Show that the rule for the multiplication of two determinants

of the third order stated in Ex. 13 of 21 applies to two determinants

of any order, both determinants being of the same order.

27. Solution of Equations of the First Degree in Any
Number of Unknowns. Space of Four Dimensions

Consider the four equations

0i* 4- biy 4- dz 4- d\w 4- e\ = 0,

0,

3 = 0,

4- by 4- 42 + dw 4- 4 = 0,

with the understanding that not all the coefficients of x, yt z,

and w in any equation are equal to zero. These equations

may or may not have a common solution. We assume that

they have at least one common solution and that x, y, z, w
in equations (27.1) denotes a common solution. We multiply

equations (27.1) by the cofactors of a\ 9 a2 , 03, and 4 in the

determinant
|
a\b^c^d^ \ respectively and add the resulting

equations. In this sum the coefficient of x is
|
a\b2czd^ |,

the

determinant of equations (27.1), in consequence of Theorem

[26.1], and the coefficients of y, z, and w are equal to zero, in
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consequence of Theorem [26.5]. Hence we have the equation

(27.2) |
0162^3^4

|

x -f-
|
#i 62^3^4 = 0,

where
|
e\b^zd\

\

is the determinant obtained from
|
a\b<zd

\

on

replacing each by an e with the same subscript.

If in like manner we multiply equations (27.1) respective-

ly by the cofactors of b\, b2 ,
63 ,

and 64 in the determinant

I
0i&2C3</4

1

and add the results, we obtain the equation

(27.3) |
0162^3^4

| y + |
0102^3^4

|

= 0.

Similarly we have

|

2 +
|
d\b^^d\

|

= 0,

W -\-
|
01&2C304 I

= 0.
(27.4)

If the determinant
|
a^c^d^

\

is not equal to zero, these equa-
tions have one and only one common solution. Moreover,
this solution is a solution of equations (27.1). In fact, if we

multiply the left-hand member of the first of (27.1) by |

and substitute from (27.2), (27.3), and (27.4), we have

0i

When this is rewritten in the form

-d, + ei

it is seen to be the expansion in terms of the elements of the

first row of the determinant,

02

03

04

Ci

C2

with the first two rows identical, and consequently is equal to

zero. Since similar results follow for the other equations (27.1),

we have that equations (27.1) have one and only one common
solution when their determinant

|
a^Czdt \

is not equal to
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zero. Evidently this process may be applied to any number n
of equations of the first degree in n unknowns. As a consequence
we have the theorem

[27.1] n equations of the first degree in n unknowns have one

and only one common solution when the determinant of

the equations is not equal to zero.

When the determinant
|
aibzCzd*

\

is equal to zero, there is

no common solution of equations (27.1) if any one of the second

determinants in equations (27.2), (27.3), and (27.4) is not equal
to zero. A similar statement applies to n equations in n un-

knowns whose determinant is equal to zero.

We consider next the case when the equations are homo-

geneous in the unknowns, that is, when all the e's in equa-
tions (27.1) are equal to zero. We write them thus :

(27.5) ajc + bj + c>z + d,w = (i
= 1, 2, 3, 4).

In this case all the second determinants in (27.2), (27.3), and

(27.4) are zero; and, in consequence of Theorem [27.1],

x = y=. z w = is the only common solution of equations

(27.5) when the determinant of these equations, that is,

I
aibzCzdi |,

is not equal to zero.

In order to consider the case when the determinant
| aibtfsd^

is equal to zero, we denote by A\ the cofactor of a\ in this

determinant, by Cs the cofactor of c3 , etc. The equation

(27.6) a %A + b lB4 + c,C4 + d lD4 =

for i = 4 states that the determinant
|
a^czd*

\

is equal to zero,

in consequence of Theorem [26.1]. The three equations (27.6)

for = 1, 2, and 3 are identities in consequence of Theorem

[26.5]. When we compare equations (27.5) and (27.6) as i

takes the values 1, 2, 3, and 4, we see that a common solution

of equations (27.5) for which
|
afaczd* |

= is given by

(27.7) * = *A 4 , y = tB4 ,
* = /C4 , w = tf>4,

for each value of /. This result would seem to indicate that

zeros are the only common solution of equations (27.5) when
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A = B4 = 4 = D4 = ; but we shall show that this is not the

correct conclusion.

From equations (27.7) we obtain

(27.8) D4x = A 4w, D4y = B4 tu, D4z = C4w.

Since by definition A 4 ,
B4 , C4 , and D 4 are the cofactors of the

elements of the last row in the determinant (26.1), they are

, C4 =
|

aib2d3
|
,

(27 9)
B4 =

|
aiC2d3

| ,
D4 =

Accordingly equations (27.8) are those which one obtains when,

using the method of 21, one solves for x, y, z in terms of w
the three equations (27.5) as i takes the values 1, 2, 3. From
this point of view it follows that when A 4 = B 4 = C4 = D4 = 0,

either one of the three equations under consideration is a con-

stant multiple of one of the others, or any one of the equations

is equal to the sum of certain constant multiples of the other

two (see Ex. 7). In either case a common solution of two of

the equations (not any two in the first case) is a solution of the

third equation, and the three equations are not independent.

Accordingly we have established the theorem

[27.2] Three independent homogeneous equations

a\x + biy + dz + d\w = 0,

(27.10) a2x + b2y + c2z + d2w = 0,

03* + b3y + c3z + d*w =

admit an endless number of common solutions given by

(27.11) x :y :z :w = \biC2d3 :\aiC2d3 \: aib2d3
\

- \aib2c3 1;

and these are solutions also of the equation

ax + b4y + ctz + d4w = 0,

if and only if the determinant of the four equations is equal
to zero.

Observe that this theorem is a generalization of Theorem [20.1].

Returning to the consideration of equations (27.5), we re-

mark that if we replace A 4 , B4 , C4 ,
D4 in (27.6) by any one of
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the three sets A J9 B,, C; , Z), respectively, as j takes on the val-

ues 1, 2, and 3, the resulting equations are satisfied, one of them
because

|
a^c^d*

\

= 0, and the other three in consequence of

Theorem [26.5]. Hence not only does (27.7) give a solution

of (27.5), but also

x = tjA J9 y = tjBj, 2 = tjCJ9 w = tjDj

for j = 1, 2, 3. If for any j we have A }
= B

}
= C}

= Dj = 0, it

follows from the above discussion that the three equations

(27.5), as i takes on values different from the particular value

of j, are not independent.
The preceding arguments apply to a set of n homogeneous

equations of the first degree in n unknowns and we have

[27.3] When the determinant of n homogeneous equations of the

first degree in n unknowns is equal to zero and the cofactors

of the elements of any row are not all equal to zero, these

cofactors multiplied by an arbitrary constant constitute a

common solution of the equations, in addition to the solu-

tion consisting only of zeros.

As a consequence of Theorem [27.3] we have the following

generalization of Theorem [22.3] :

[27.4] When a determinant of the nth order is equal to zero, there

exist numbers hi, -, hn ,
not all zero, such that the sum

of the products of hi,
- -

-, hn and the corresponding ele-

ments in the 1st to nth columns of each and every row is

equal to zero; and likewise numbers k\, , kn , not all

zero, such that the sum of the products of k\,
- -,kn and the

corresponding elements of the 1st to nth rows of each and

every column is equal to zero.

We return to the consideration of equations (27.2), (27.3),

and (27.4) when the determinant
|
aibzCzd*

\

is equal to zero.

In accordance with Theorem [27.4] there exist numbers k\, 2,

3 , 4, not all equal to zero, such that when equations (27.1)

are multiplied by k\, 2, fa, k respectively and added, the

coefficients of x, y, z, and w in the sum are zero ; consequently
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the assumption that there is a common solution is valid only
in^

kiei + k2e2 + k3e3 + kei = 0.

This and
|
dibtfzdi

\

= are the conditions that the four equa-
tions (27.1) are not independent ; in other words, common solu-

tions of three of the equations are solutions of the fourth. But
three equations in four unknowns admit an endless number of

solutions of at least one degree of arbitrariness
; for, one at least

of the unknowns may be chosen arbitrarily, and then the others

are fixed by the equations.

Since all of the foregoing discussion applies equally to n

equations of the first degree in n unknowns, we have

[27.5] n equations of the first degree in n unknowns have one

and only one common solution, if and only if the deter-

minant of the equations is not equal to zero. If the determi-

nant is equal to zero, there are no common solutions, or an

endless number of one or more degrees of arbitrariness. If

in the latter case the equations are homogeneous, there is

an endless number of solutions.

In the preceding section and the present one we have shown
how the theory of determinants and of first-degree equations
which was developed in Chapter 1 in the study of the geometry
of the plane and in Chapter 2 in the study of the geometry of

space may be generalized algebraically to determinants of

any order and to linear equations in any number n of un-

knowns. In order to speak of these generalizations geomet-

rically, we introduce the concept of spaces of four, five, and any
number n dimensions. Although we may not be able to visu-

alize the geometry of such spaces, we may speak about it and
deal with it.

Since in two-dimensional space an equation of the first de-

gree defines a line, such an equation is sometimes called linear

and a line a linear entity. These terms are used in three di-

mensions to designate an equation of the first degree in three

unknowns and the plane represented by such an equation re-

spectively. In spaces of four, five, and higher dimensions it

is customary to call an equation of the first degree in the
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corresponding number of unknowns a linear equation, and the

locus defined by this equation a linear entity. Thus in two-

dimensional space a linear equation defines a linear entity of

one lower dimension a line. In three-dimensional space a

linear equation defines a two-dimensional linear entity the

plane; and two independent linear equations define a line.

Likewise in space of n dimensions one linear equation defines

a linear entity of n 1 dimensions, in the sense that each

solution of the equation gives the coordinates of a point in

this entity, and n 1 of the unknowns may be chosen arbi-

trarily, and then the other is determined. We say that the

space of n dimensions envelops such an n 1 linear entity, and

that this entity is embedded in the space; for example, the

ry-plane is a linear entity of two dimensions embedded in space
of coordinates x, y, z. Similarly, in n-space, that is, space of n

dimensions, two independent linear equations define a linear

entity of n 2 dimensions, and so on ; and, in particular,

n 1 independent linear equations define a line. In fact, if

we denote by x l

,

-

,
xn the coordinates of a representative

point of ^-dimensional space, and by x\
l

, #i
2

, , *i
n and

X2\ x2
2

,

-

,
x2

n the coordinates of two particular points, equa-
tions of the line through these points are

X 1
Xi

l _ X2
Xi

2 _ _ X n
Xi

n

X2 1
Xi

1 *2
2

Xi
2 #2

n
Xi

n

which are a generalization of equations (5.2) and (16.1).

Just as the concepts of direction cosines and direction num-
bers of a line introduced in Chapter 1 have been generalized

to space of three dimensions in this chapter, so they may be

generalized to space of any number of dimensions, and there-

from the measure of angle between lines. Thus the analogue

of Theorems [6.9] and [17.5] is that the coefficients a\, -, an

in the equation

+ <*nX
n + 6=0

are direction numbers of the normals to the n 1 linear entity

defined by the above equation, there being one of these normals

at each point of this entity.
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We speak also of a generalized sphere of radius r and center

at the point xo
1

,

-

, xo
n

, its equation being

(x
l - xo

1

)
2 + (x

2 - x 2
)
2 + + (x

n - * n
)
2 = r2

,

a generalization of (12.1) (see 25, Ex. 13).

These are only suggestions of the manner in which the geo-

metric concepts of three-dimensional space may be generalized

to a space of n dimensions. The subject is a fascinating one,

which the reader may pursue further either by himself (see

Exs. 9-15) or in consultation with books and articles dealing with

the subject (see the reference list which follows the exercises).

EXERCISES

1. Solve by means of determinants the equations

3x-2y + 6z + 5w = -l, x-lQy-3z-7w = 2.

2. Show that an equation of the plane determined by three non-

collinear points (x\, y\, 21), (*2 , y*> 22), (*3 , J>3, 23) is

x y 2 1

I ^ & 1
=0 -

* y$ 23 1

Show that this equation is the same as the one in Ex. 10 of 21. Dis-

cuss this equation when the three points are collinear (see 15, Ex. 10).

3. Show that a necessary condition that the four planes whose

equations are atx + bly + c,2 + dt 0, as i takes the values 1, 2, 3, 4,

shall have at least one point in common is
|
a\biCzdi

|

= 0. In what

manner can the above condition be satisfied without the four planes'

having a point in common ? Under what condition have the four planes

a line in common?

4. Given the tetrahedron whose vertices are 0(0, 0, 0), A(a, 0, 0),

5(0, b, 0), and C(0, 0, c), show that the six planes each passing through

an edge of the tetrahedron and bisecting the opposite edge meet in a

point. Is this result true when the axes are oblique, that is, when they

are not mutually perpendicular? Is it true for any tetrahedron?

5. Show that for the tetrahedron of Ex. 4 the six planes each bi-

secting one edge and perpendicular to this edge meet in a point.
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6.'Show that in the plane an equation of the circle through the

three noncollinear points (x\ 9 yi), (x2 , y2 ), (*s, yz) is

x y 1

x2

= 0.

Discuss this equation when the three points are collinear. What is the

corresponding equation of a sphere through four noncoplanar points?

7. Show by means of Theorem [22.3] that if A = 4 = C4 = Z>4 =
(see (27.9)) there is a linear relation between the three equations

(27.5) for t = 1, 2, 3.

8. Show that when all the determinants in equations (27.2),

(27.3), and (27.4) are equal to zero there is a linear relation between

two or more of the equations (27.1).

9. Show that the coordinates of any point of a line in w-dimensional

space are expressible linearly and homogeneously in terms of the co-

ordinates of two fixed points of the line (see Theorem [5.4] and

equations (16.9)).

10. In four-dimensional space of coordinates x, y, z, and w the en-

tity defined by ax -f- by + cz -f dw + e = is called a hyperplane. Show
that it possesses the property used by Euclid to characterize a plane

in 3-space (see 17).

11. Show that in four-dimensional space two equations

a\% + b\y 4- ciz -f d\w + e\ 0, a^x + b2y -f c2z -f d2w + e2 = 0,

such that the coefficients of the unknowns are not proportional, are

equations of a plane (see page 74).

12. Show that in four-dimensional space two planes ordinarily meet

in one and only one point. Discuss the exceptional cases.

13. Where are the points in space of four dimensions for which

0< x< 1, y = z = iv = 0; 0< x< 1, 0<y< 1, z = w = Q; 0<*<1,
Q<y<l t Q<z<l 9 tv = Q; x, y, z, w are all greater than zero and
less than 1 ?

14. Generalize to -space Theorems [15.1], [15.2], [16.3], [17.5],

[17.6], and [18.1].

15. How is a linear entity of r (< n) dimensions defined algebraically

in n-space ?
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28. Transformations of Rectangular Coordinates

In defining rectangular coordinates in the plane in 2 we chose

a point of the plane for origin, one line through it for the

#-axis, and the line perpendicular to the latter and through the

origin for the jy-axis, and defined the x- and ^-coordinates of

any point of the plane so as to be the directed distances of the

point from the j^-axis and #-axis respectively. Since the origin

and axes may be chosen arbitrarily, there is no such thing as the

coordinate axes for a plane, in the sense that a plane has a

definite set of axes predetermined. If then we set up two
different sets of axes, it is evident that a given point of the

plane will have different coordinates with respect to the two
sets of axes. Since an equation of a locus has for its solutions

the coordinates of every point of the locus, we should expect
the equations of a given locus for two different sets of axes

to be different. Just what the difference is will be revealed if

we know the relation between the coordinates of each point
with respect to the two coordinate systems. Knowing this re-

lation and because the choice of a coordinate system is arbitrary,

we are able at times to choose a coordinate system with respect

to which an equation of a locus is in simple form (see 32). It

is this relation which we shall obtain in what follows.

We consider first the case when
the two coordinate systems have ^y ^y

different origins but the %- and

jy-axes of the two systems are par-

allel, as shown in Fig. 20. is

the origin of the system of co-

ordinates x and y, and 0' of the

system of coordinates %' and y' ;

furthermore the coordinates of

0' in the ^-system are XQ and yo.

'

FIG. 20
Then for a representative point P
of coordinates x, y and x', y' in the respective systems we have

] (*',yy

x = TS + SP =

We use parentheses with a prime, as in Fig. 20, to denote

a point in the *'/-system.
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An equation of any line or curve referred* to the ry-system is

transformed into an equation of the line or curve referred to

the *y-system by the substitution

(28.1) x = x' + XQ, y = y + yQ.

Although these equations have been derived for the case when
P is in the first quadrant of each system, the reader can easily

verify that they are valid for any position of P.

When equations (28.1) are solved for x' and y', we obtain

(28.2) x' = x-x , y' = y yo,

which could have been obtained directly from Fig. 20 on

noting that the coordinates of relative to the ^'/-system are
~

XQ, yo. Also equations of the #-axis and jy-axis with respect

to the ^'/-system are y + y = and x' + XQ = respectively.

The transformation of coordinates (28.1), the inverse of

which is given by (28.2), is sometimes called a translation or

parallel displacement of the axes.

We consider next the general situation when the two sets

of axes are not parallel, as shown in Figs. 21 and 22. In each

\
FIG. 21 FIG. 22

case the direction cosines of the *'-axis relative to the ry-system
are cos 6 and sin 0, and an equation of the *'-axis is

cos sin 6

or in other form

(28.3) (y
-

jy ) cos 0-(x- XQ) sin = 0.
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In each case by Theorem [6.11] an equation of the /-axis,
which is the perpendicular to the #'-axis at 0', is

(28.4) (y
- yQ) sin + (x

-
xo) cos 9 = 0.

Since cos 9, the coefficient of y in equation (28.3), is posi-

tive for Fig. 21, and since sin2 + cos2 =
1, it follows from

Theorem [8.1] that for any values of x and y the expression

(y yo) cos 6 (x XQ) sin 6 is the directed distance of the point

P(x, y) from the *'-axis, and that it is a positive or negative num-
ber according as P is above or below this line. By definition this

is the coordinate y' of P in the ^'/-system. Hence we have the

relation

(28.5) / = (y
-

yo) cos 0-(x- x ) sin 0.

Moreover, since sin 0, the coefficient of y in (28.4), is positive

for Fig. 21, by the same kind of reasoning applied to (28.4)

we have

(28.6) x' = (y
- y ) sin 0+(x- x ) cos 0.

Consider now Fig. 22. Since sin is positive also in this case,

the right-hand member of (28.6) for any values of x and y is the

directed distance of the point P(x, y) from the /-axis, that is,

the line (28.4), the distance being positive or negative according

as P lies above or below the /-axis. Since the positive direction

of the #'-axis is above the /-axis, equation (28.6) holds for this

case also. Since cos is negative, when the coordinates x and y
of a point P above the line which is the #'-axis are substituted

in the left-hand member of equation (28.3), the resulting num-
ber is minus the directed distance from the line to the point, as

follows from the considerations of 8. In the *'/-system P lies

below the #'-axis, and consequently the/ of P is negative, and its

absolute value is equal to the absolute value of the left-hand

member of (28.3). Hence equation (28.5) holds also for Fig. 22.

Similarly it can be shown that (28.5) and (28.6) hold when the

^'/-system is in such position that lies between 180 and 360.

Solving equations (28.5) and (28.6) for x - XQ and y y ,

we write the result in the form

x = x' cos - / sin + XQ ,

y = x' sin + / cos + yQ .
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Hence an equation of any line or curve referred to the ry-system
is transformed into an equation in the *y-system when the

expressions (28.7) are substituted for x and y in the given

equation (see 40). Equations (28.1) are the special case of

(28.7) when = 0.

When, in particular, the origin 0' coincides with 0, equa-
tions (28.7) reduce to

(28.8) x = x' cos 6 - y' sin 0, y = x' sin + y
9

cos 6.

This transformation is sometimes referred to as a rotation of the

coordinate axes. In this case equations (28.6) and (28.5) are

(28.9) x' = x cos + y sin 0, y' = - x sin 6 + y cos 6.

These equations may also be obtained from (28.8) by inter-

changing x and y with x' and y
1

respectively and replacing

by 8, which is what we should expect from the fact that the

*-axis makes the angle 6 with the #'-axis.

Equations (28.8) and (28.9) of rotation of the axes may be

written in the condensed form

with the understanding that each equation (28.8) is obtained

by equating x (or y) to the sum of the products obtained by

multiplying the element in the square which is in the same row

as x (or y) by the coordinate x' or y' directly above the element.

Equations (28.9) are obtained by taking the sum of the ele-

ments in the same column as x' or y' after multiplying each of

them by the coordinate on its left.

Consider, for example, the transformation of coordinates when the

*'-axis is the line x + 2y 4 = Q and the origin 0' is the point (2, 1)

on this line. Then an equation of the jy'-axis is 2 % y 3 = 0, it being

the perpendicular to the *'-axis through the point (2, 1). The slope

of the *'-axis is negative ; and if we take as the positive sense of the

*'-axis that of the line x + 2 y - 4 = 0, we are dealing with the type
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represented in Fig. 22 in which the positive direction of the y-axis is

downward. Accordingly we have the second of the following equa-

tions, the first following from the fact that the positive direction of

the *'-axis is upward :

_ _ _
V5

~
V5

EXERCISES

1. Find an equation of the line 2 x 3 y 5 = with reference to

the *y-system with origin at the point (1, 1) and with axes parallel

to the x- and >>-axes.

2. Show that it follows from (28.8) that x2 + y2 = x' 2 + y'
2

, and

explain why the quantity x2
-f y

2 should be invariant under a rotation

of the coordinate axes.

3. Find an equation of the curve x2 + y
2 + 2 x 4jy = when re-

ferred to a coordinate system with axes parallel to the x- and .y-axes

and with origin at the point ( 1, 2).

4. Find an equation of the curve y2 + 2y &x 15 = when re-

ferred to a coordinate system with origin at the point ( 2, 1) and
with axes parallel to the x- and ;y-axes.

5. Find the transformation of coordinates to axes with origin at

(1, 1) and with the line 4* + 3;y 1=0 for the new jy-axis, the

positive sense along the latter being that of the line 4#-f3;y 1=0.

6. Find the transformation of coordinates of oblique axes into

axes parallel to them (see 11).

7. Two systems of rectangular coordinates, (x, y) and (*', /)', are

related so that the points (0, 0), (1, 0), (1, 1) in the ry-system are the

points (1, 1)', (1, 0)', (0, 0)' respectively in the *'y-system. Draw
a diagram showing the relative positions of the two sets of axes, and
find the equations of the corresponding transformation.

8. Show that equations (28.5), (28.6), and (28.7) for a negative

angle between 180 and are the same as those for an appropriate

e between 180 and 360.

9. Determine the translation of the axes such that the equation
2 x2 3 y2 4 x 12 y = is transformed into one in which there

are no terms of the first degree in x' and y'.
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10. Into what equation is the equation 9 x2+ 2V3 ry -f 11y - 4 =
transformed when the axes are rotated through 60?

11. Justify the following statement without carrying through the

transformation of coordinates involved : In terms of coordinates x'

and /, referring to a coordinate system with origin at the center of

the first of the circles (12.11), and with the line of centers of the two

circles for x'-axis, equations of the circles are

and from this result it follows that the centers of the circles (12.12)

lie on a line.

12. Show that equations (28.5) and (28.6) may be interpreted as

the result of a translation of the ry-system to the point (x , yo) for

new origin, and then a rotation of axes through the angle 0. What
are the equations if first there is a rotation of the axes through the

angle and then a translation to (x , jvo) as new origin ? Compare
the resulting equations with (28.7).

13. Find the transformation of coordinates from a rectangular xy-

system to oblique axes with the equations ax + by = 0, ex + dy = 0.

What is the area of the triangle whose vertices are (1, 0)', (0, 0)',

(0, 1)' in the new system?

29. Polar Coordinates in tRe Plane

Rectangular and oblique coordinate systems are not the only
kinds of coordinate systems which may be employed in the treat-

ment of geometric loci. Another system frequently used is one

in which the coordinates of a point P are its distance r from a

fixed point called the origin, or pole, p
and the angle which the line segment,
or vector, OP makes with a fixed vector

OM, the polar axis of the system, the r
\~^\ M

angle being measured from the axis in

the counterclockwise direction, r and "pIG 23
6 so defined, and called the radius vector

and vectorial angle respectively, are polar coordinates of P, and

(r, 6) denotes the point with these coordinates. The reader in

drawing graphs of algebraic equations in x and y may have

used graph paper with two sets of parallel lines, each set per-

pendicular to the other, which form an array of small squares.
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There exists also graph paper for polar coordinates ruled with

a set of concentric circles and with lines radiating from the

common center of the circles.

We observe that the point P may be defined also by r and

+ n 360 for any positive integer n. In this sense a point may
have many sets of polar coordinates, all referred to the same

pole and axis. Also negative values of may be used to assign

polar coordinates to a point, a negative angle being described

from the axis OM in the clockwise direction. Thus far we have

understood r to be a positive number, but it is advisable to give

a meaning to polar coordinates when r is negative. By defini-

tion, if r is negative, we lay off from the length |

r
\

not on
the vector making the angle with OM but on the vector mak-

ing the angle + 180. With this understanding - 2, and

2, + 180 are polar coordinates of the same point. The neces-

sity for a convention concerning negative values of r arises when
one seeks the graph of an equation in polar coordinates, that is,

the locus of all points with solutions of the equation as polar

coordinates.

Consider, for example, the equation

(29.1) r = cos (a> 0).

For a value of 0, say 0\ 9
in the first quadrant r is positive, and

r for 0i + 180 has the same numerical value but is negative ;

consequently, for two such values of one obtains the same

point. Similar reasoning applies when is in the second quad-
rant. Another way of stating this result is that as takes the

values from to 360 the curve is described twice. Clearly

there is no necessity in this case of taking values of greater

than 180, because of the periodic property of cos 0. This does
A

not apply to such an equation as r = cos ~ (see Ex. 6).

Consider next the equation

(29.2) r2 = 4 cos 0.

In order that r may be real, cos cannot be negative ; conse-

quently admissible values of are from 90 to +90. For

each such we have two values of r, namely, 2Vcos 0. Con-

sequently, on the line making such an angle with the axis OM
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there are two points of the curve on opposite sides of and

equidistant from it (see Fig. 24). The curve is symmetric with

respect to the origin, to the polar axis, and to the line 6 = 90.
In Fig. 24, on each line there is noted the angle which it makes
with the axis, expressed in degrees and in radians.

1ST

FIG. 24

When enters in an equation directly, and not as the argu-

ment of a trigonometric function, as, for example, in the case of

the spiral of Archimedes with the equation

(29.3) r = ad,

it is necessary to express the angle in terms of radians, since

both members of the equation must have the character of length.

In such cases takes on all possible values. Thus, if in (29.3)

we take a = 2, and takes, for example, the values + 2 nir,

^ + 2nw, (2n + I)TT, ^ + (2 n + I)TT, n being any positive or

negative integer, then the values of r are twice these values, and

the reader on plotting the curve will see that it is a double spiral.

Although the same point has the two sets of coordinates

(r, 0) and (- r, + 180), it may be that if one of these sets
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of coordinates satisfies an equation and thus determines a point
of the locus, the other set does not. This situation did not arise

for equations (29.1) and (29.2), but it does arise for the equa-
tion r = cos2 0. For, if r, 6 is a solution of this equation,
-

r, 6 + 180 is not a solution.

Polar coordinates are necessarily related in some way to rec-

tangular coordinates. A simple form of the relation is obtained

when the origins of both systems coincide and the axis of the

polar system is the positive *-axis of a rectangular system. In

this case for r positive the relation is

(29.4) x = r cos 0, y = r sin 0,

the x- and ^-coordinates of a point P being the projections of

the vector OP (Fig. 23) upon the respective axes. Suppose
now that r is negative ; then, as one sees by drawing an ap-

propriate figure,

x =
|

r
|

cos = r cos 0, y = \

r
\

sin 6 = r sin 6,

and equations (29.4) hold in this case also.

When polar coordinates of a point are given, we obtain

rectangular coordinates of the point directly from (29.4). If

rectangular coordinates are given, we must solve (29.4) for r

and 9. The first of these is obtained by squaring equations

(29.4) and adding the results ;
from this we obtain

(29.5) r = eVx2 + y
2

,

where e = + 1 or 1. And 6 must satisfy any two of the equa-

tions

(29.6) sin0 = .

y
> cos =

According as we take e = + 1 or 1 in (29.5) and (29.6), we
have two sets of polar coordinates, (r, 0) and ( r, + 180)
for any point whose rectangular coordinates are given. If we are

transforming an equation in polar coordinates into one in rec-

tangular coordinates, we must substitute directly from (29.5)

and (29.6). Then one of two things will happen: either e will

enter only as e2 and thus be replaced by + 1, or e itself will

appear. In the second case, if a polar equation admits both
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positive and negative values of r, there are, in fact, two equa-
tions of the locus in rectangular coordinates : one for e = + 1

giving the points for which r is positive ; the other for e = 1

giving the points for which r is negative. If in the second case

one solves the equation for e^/x 2 + y2 and squares the resulting

equation, one obtains an equation in x and y whose graph is the

complete locus of the given equation in polar coordinates.

For example, on substituting from (29.5) and (29.6) in (29.1), one

obtains x2 + y2 = ax, that is, a circle with center (a/2, 0) and passing

through the origin ; this equation is an equation of the locus of (29.1).

For the equation r = sin + % we have x 2 + y 2 = y + ^ e^/x 2 + y2
.

Consequently, when e = + 1 this is an equation of the part of the curve

for which r is positive ; when e == 1, the part for which r is negative.

If we solve the equation for eV*2
-f y 2 and square the result, we ob-

tain an equation in x and y of the complete locus.

For the equation r = cos 2 6 we have (x
2 + y2

)? = x2
, since r cannot

be negative and hence e = + 1. This equation in x and y is the equa-
tion also for r = cos2

6. In fact, the two polar equations are equa-
tions of the same curve, since cos2

(0 4- 180) = cos2 0.

When an equation of a locus is given in rectangular co-

ordinates, its equation in polar coordinates is obtained on

substituting the expressions (29.4) for x and y. Thus in polar

coordinates the equation of a line ax + by + c = is

(29.7) r(a cosO + b sin 6) + c = 0.

When c = in (29.7), that is, when the line passes through
the origin, we have for all values of r other than zero that

tan 6 = a/b ; and when 6 satisfies this condition the equa-
tion is satisfied by all values of r ; that is,

= const, is an

equation of a line through the origin. It should be remarked

that in polar coordinates an equation of a line is not of the first

degree in r and 6, as is the case when rectangular coordinates

are used ; in fact, (29.7) is not an algebraic equation in r and 9.

Since any trigonometric function is expressible algebraically

in terms of x and y by means of (29.6), it follows that when an

equation in polar coordinates is an algebraic function of r and
of one or more trigonometric functions of 0, the corresponding

equation- in rectangular coordinates is algebraic.
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EXERCISES

1. Draw the graph of each of the following equations for a positive,

using a table of natural trigonometric functions or radian measure, as

the case requires :

a. r = a sin 6. g. r = 0(cos sin 0).

b. r = 0(1 cos 0) (the cardioid). h. r = 2 a cos I (the limaQon).
c. r a sin 2 0. i. r = cos sec2 0.

d. r = a sin 3 0. j. r0 = a.

e.r = asec2 0. k. r2 = a0.

/. r2 = 2 a2 cos 2 (the lemniscate).

2. Plot separately the portions of the curve h in Ex. 1 for which
r is positive and r is negative; derive equations in rectangular co-

ordinates of each portion, and an equation of the complete locus.

3. For what values of k is r always positive for the curve

r = sin2 + k ;

for what values of k is r always negative ? Plot a curve of each set.

4. For which of the curves in Ex. 1 for a positive does r have posi-

tive, zero, and negative values; for which no negative values; for

which no positive values?

5. Find equations in rectangular coordinates of the curves in Ex. 1.

f\

6. What range for must be used for the equation r = sin - in order

to obtain the complete graph of the equation, a being some integer?

7. Let AB be a fixed line perpendicular to the axis of a polar co-

ordinate system meeting the axis in the point D ; denote by M the

point in which any vector through meets the line. The locus of the

points P and P' such that r = OM + /, r' = OM /, where / is a fixed

length, is called the conchoid. Find its equations in polar and also in

rectangular coordinates.

8. A circle of radius a passes through and has the polar axis for

diameter OA ; a line through meets the circle in Q, and the tangent

to the circle at A in R. The locus of P on the line OR such that

PR = OQ is called the cissoid. Find its equations in polar and also in

rectangular coordinates.

9. Find the points of intersection of the curves r = a cos and

r = a sin ; also of the curves r = a0 and r = aQ for ^ 0.
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30. Transformations of Rectangular Coordinates in Space

In this section we derive the equations connecting the co-

ordinates of a point in space with reference to two different

sets of rectangular axes.

We derive first the equations

connecting the coordinates of

a point with reference to two

sets of axes respectively par-

allel to one another, as shown
in Fig. 25. The origin 0' of

the x'/z'-system is the point

(XQ, yo, z ) with respect to the

xyz-system, and hence the origin

of the latter system is the

point (#0, yo, ZQ)' of the

#'/2'-system. As in 28, we
obtain the following equations :

FIG. 25

x' = x = x' +
(30.1)

Z
f = Z ZQ, 2 = Z' + ZQ.

If the expressions for x, y, and z in the second set are sub-

stituted in an equation in x, y, and z, one obtains the corre-

sponding equation in x', y', z
1

. A
transformation (30.1) is called a

translation of the axes.

We consider next the general

case, as shown in Fig. 26, for

which the origin 0' of the x'y'z'-

system is the point (XQ, yo, z0t ) with

respect to the ryz-system, and the

direction cosines of the axes O'x',

O'y', O'z' with respect to the xyz-

system are

A3 , FIG. 26
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respectively. Being direction cosines, they must satisfy the

equation (15.6) ; hence we have the three equations

(30.2) X,* + VL? + v? = 1 (i
=

1, 2, 3).

This notation means that one gives i the value 1 and gets one

equation ; then the value 2 and gets a second equation ; and
so on. Moreover, since the axes are mutually perpendicular,

in accordance with Theorem [16.8] we have

(30.3) Xi\3

= 0.

Equations (30.2) and (30.3) are the conditions that the

quantities involved are direction cosines of three mutually

perpendicular lines, but do not determine the mutual orienta-

tion of positive directions on these lines. Consequently we must

impose a condition to ensure that the mutual orientation of

the axes shall be the same in both systems, mutual orientation

being as defined in 14 and illustrated by the edges of a room

meeting in a corner of the floor, the corner being the origin

of the system. If we start with an ryz-system, it is evident

geometrically that, once the positive axes O'x', O'y' of a second

system are chosen, the positive axis O'z' is completely deter-

mined by the prescribed mutual orientation of the axes. Sup-

pose then that Xi, jui, v\ and X2, ^2, ^2 are given; if we

apply Theorem [20.1] to the second and third of equations

(30.3), we obtain

X3 =

(30.4) H3

Substituting these expressions in (30.2) for i = 3, we obtain

(30.5)

Since the axes O'x' and O'y' are perpendicular by hypothesis,

it follows from equation (15.10) that the expression in brackets

in (30.5) is equal to + 1, and consequently / is + 1 or 1,
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When we substitute the expressions (30.4) in the determinant

Xi MI

(30.6) Z>= X2 M2
X3 MS

and note that the expression in brackets in (30.5) is equal to

+ 1, we find that the determinant D is equal to t. When, in

particular, the axes of the Jt'/z'-system are parallel to those of

the ryz-system, as in Fig. 25, the determinant (30.6) is

1

1

,0 1

whose value is + 1. Consequently we impose the condition

that the determinant (30.6) be + 1, to ensure that if the axes

of the j'/z'-system, as shown in Fig. 26, are rotated about 0',

so that the axes O'x' and O'y
r become parallel to Ox and Oy re-

spectively, then the axis O'z* is parallel to Oz and has the same
sense.

When we put / = 1 in (30.4), we have that the right-hand
members of (30.4) are the cofactors of the corresponding left-

hand members in the determinant (30.6). It is readily shown
that similar results hold for the other direction cosines, so that

we have the theorem

[30.1] When the direction cosines of three lines satisfy the con-

ditions (30.3) and D = 1 in (30.6), any one of them is

equal to its cofactor in the determinant D.

With reference to the ^y^'-system the direction cosines of

Ox, Oy, Oz are Xi, X2, X3 ; MI, M2, M3 ; v\ 9 1*2, J>3. Consequently
we have also the equations

+ X2M2 + X3Ms = 0,

+ M2^2 + M3*>3 = 0,

= 0.

Xi
2+ X2

2 + X3
2 = 1,

(30.7) Ml
2 + M2

2 + MS
2 = 1,

These equations are in keeping with the above theorem, as is

readily verified.
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Equations of the /2'-plane, the *'2'-plane, and the *'/-plane
in the sjyz-coordinate system are respectively

Xi(x
-

*o) + MiCv - yo) + vi(*
-

*o)
= 0,

(30.8) X2 (*
-

*o) + M2CV - yo) + 2(z
- z )

= 0,

X3 (*
- X ) + /zaCv

-
^o) + "3(*

-
*o)
= 0.

When the axes O'x', O'y', O'z' are so placed that each of them
makes an acute angle with the positive direction of the axis Oz,

the direction cosines v\, P2, and j>3 are positive; consequently
we can apply directly Theorem [18.1] and have that the dis-

tances of the point P(x, y, z) from the planes (30.8), that is,

the coordinates x', /, z' in the new system, are given by
*' = Xi(* - x ) + fjii(y

- y ) + v\(z
- z ),

(30.9) y' = X2 (*
- * ) + /i2 (y

-
yo) + v*(z

- zQ),

z' =

When the new axes are not so placed, the above equations
hold just the same, as can be shown. For example, from the

discussion in 18 it follows that if v in any of the equations

(30.9) is negative, then below the corresponding plane is its

positive side with respect to the ryz-system ; thus if v\ is nega-

tive the positive #'-axis is directed downward. If for any posi-

tion of the new axes the signs of the coefficients in two of

equations (30.9) are chosen in accordance with the positive

directions of the corresponding new axes relative to the xyz-

system, the appropriate signs of the coefficients of the third

equation are determined in accordance with Theorem [30.1],

which assures that the positive directions of the axes in the

*'/2'-system have proper mutual orientation. For example,

suppose O'x' lies in the first, or principal, octant, in which case

Xi, /zi, PI are all positive, and O'z' is tilted forward so that O'y'

is directed downward. Now X3 is negative, since O'z' makes an

obtuse angle with Ox, and ju3 and v3 are positive. In accordance

with the above theorem, v2 = Xa/ii Xi/zs ; the right-hand

member of this equation is negative, and consequently 1/2 is

negative, as should be the case because of the position of O'y
9
.

The reader should verify the statement following (30.9) by
considering the other possible cases.
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If we multiply equations (30.9) by Xi, X2 , X3 respectively,

add the results, and make use of (30.7), we obtain the first of

the following equations, the others being obtained similarly,

using jui, /z2 , MS and v\> ^2, ^3 respectively as multipliers:

x2y + x3z' + *o,

(30.10) y = jui*' + M2/ + Ms*' + yo,

Z = ViX' + V2y' + V*Z' + ZQ.

These are the equations of the inverse of the transformation

(30.9). When, in particular, the center 0' of the x'/2'-system

coincides with the origin of the ;ryz-system, the equations of

the transformation are

x = Xi*' + X2/ + X3*',

(30.11) y = MI*' + M2/ + M3*',

z = v\x' + j/2y + vzz'.

The transformation (30.11) is sometimes referred to as that

corresponding to a rotation of the original axes. When the ex-

pressions (30.10), or (30.11), for x, y, and z are substituted in an

equation (or equations) of a locus referred to the #>>z-system,

the resulting equation (or equations) is an equation (or are

equations) of the locus in the *'/2'-system.

The inverse of a transformation (30.11) is

x' = Xi* + p,iy + viz,

(30.12) y

as follows from (30.9) on putting #
, ;vo, ZQ equal to zero.

The reader should observe that in any of the equations (30.11)

and (30.12) the coefficient of any term on the right is the cosine

of the angle between the axis of the coordinate which is multi-

plied by the coefficient considered and the axis of the coordi-

nate on the left-hand side of the equation. For example, from

the second of (30.11), and also from the third of (30.12) we have

that MS is the cosine of the angle between Oy and Oz'. This
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observation and equations (30.11) and (30.12) are set forth in

the following table :

x
f y z*

Any element in the square is the cosine of the angle between
the axes in whose row and column it lies. Moreover, an equa-
tion (30.12) is obtained by multiplying each element in the

same column as #', /, or z' by the coordinate in the same row
on the left, adding the results and equating this to the coordi-

nate at the top of the column. Equations (30.11) are similarly

obtained by using rows instead of columns.

EXERCISES

1. Transform by a suitable transformation (30.1) the equation
x2 + 4 y

2 + 3 z 2 - 2 x - 16 y + 12 z + 28 = so that in the resulting

equation there are no terms of the first degree. Is this possible for

the equation xy + 2 z 3 = 0?

2. Show that for the second of transformations (30.1), and also for

(30.11), the expression (15.2) is transformed into an expression of the

same form in the new coordinates. Why should one expect this to be

the case?

3. Show that the planes ^ + 2^ + 22 = 0, 2x + y-2z = Q,

2 x 2 y + z = Q may be used as coordinate planes of a coordinate

system, and find the equations of the corresponding transformation.

4. Show that the three planes x + y + z- 4 = 0, x-2
and x z = may be taken as the coordinate planes of a rectangular

coordinate system, and find the corresponding transformation of

coordinates.

5. Find the equations of a transformation of coordinates so that

the plane x -f y -f 2 = is the x'y'-plane in the new system.

6. Transform by means of (30.11) the equation of the sphere

x2
-f y2

4- 22 4- 2 fx + 2 gy 4- 2 hz -f e = and discuss the result.
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7. Interpret the transformation

x = *' cos 6 - / sin 0, y=x f
sin + / cos 0, z = z'

as a particular type of rotation of the axes.

8. How must 6 be chosen in a transformation of the type of Ex. 7

so that the equation ax 2 + by
2 + cz2 + 2 hxy + d = Q may be trans-

formed into one lacking a term in x'y' ?

9. Find equations of the line each point of which has the same

coordinates in two coordinate systems in the relation (30.11); inter-

pret the result geometrically.

10. Show that three lines with direction numbers 1, 2, 2 ; 2, 1, 2 ;

and 2, 2, 1 are mutually perpendicular, and find the transforma-

tion of coordinates to an #'yz'-system having lines with these direc-

tion numbers and through the point (2, 0, 3) for coordinate axes.

Apply this transformation to the equation

4 x2 + 4 y2 - 8 z2 + xy - 5 xz - 5yz + 9 = 0.

11. Show that the equations

x = x' (cos < cos ^ sin sin
\l/ cos 6)

y (cos sin \f/ -f sin </> cos ^ cos 6) + z' sin <f> sin 0,

y = x' (sin </> cos \f/ + cos </> sin \f/ cos 0)

y (sin sin ^ cos cos
\[/

cos 0) z' cos
<f>

sin 0,

z = x' sin ^ sin 6 + y' cos i/'
sin 6 + z' cos 0,

for any values of 0, 0, and ^, are equations of a transformation

(30.11). These equations are known as Ruler's formulas.

31. Spherical and Cylindrical Coordinates

In the study of certain phenomena in space there are systems
of coordinates other than rectangular coordinates which are

found to be more useful. We define

one such system and establish its

relation to a rectangular system,
as shown in Fig. 27. The position

of a point P is determined by its

distance r from a point 0, by the

angle <f>
which the vector OP makes

with a fixed vector Oz, and by the

angle 6 which the plane of the
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vectors OP and Oz makes with a fixed plane through Oz. When
is taken for origin, Oz as the positive 2-axis, and the fixed

plane through Oz as the *z-plane of a rectangular coordinate sys-

tem, the angle 6 is the angle between the #-axis and the projec-
tion of OP on the #>>-plane. We make the convention that 6 is

measured from Ox toward Oy. Hence we have the equations

(31.1) x = r sin <j> cos 0, y = r sin < sin 0, 2 = rcos0.

Squaring these equations and adding the results, we find that

(31.2) r =

Then from (31.1) we have as the other equations of the in-

verse transformation

(31.3) cos =
,

*
tan = 2.

The coordinates r, </>, and 6 as defined are called spherical co-

ordinates ; some writers call them polar coordinates in space.

From (31.2) it follows that the surfaces r = k as the constant

k takes different values are spheres with as their common
center. If we think of as the center of the earth, of the line

joining the center to the North Pole as the fixed vector of

reference Oz, and the plane through this line and Greenwich

as the fixed plane of reference, then 6 is the west longitude of a

point on the earth's surface, and 90 </> is its latitude
; </> is

sometimes called the colatitude of the point.

Another system of spatial coordinates is defined by the

equations

(31.4) # = rcos0, ;y
= rsin0, z = d,

from which we have as the inverse

(31.5) r=\/x2 + y2
,

tan 0=2, d = z.
Ai

In this system the surfaces r = k as the constant k takes differ-

ent values are cylinders with the z-axis as common axis. The

quantities r, 0, d defined by (31.5) are called cylindrical coordi-

nates. These equations have for basis a plane with a polar

coordinate system, and an axis perpendicular to the plane at

the pole of the polar system.
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EXERCISES

1. What are the surfaces 6 = const, in spherical coordinates ? What
are the surfaces < = const. ?

2. Discuss the several loci defined by the equations obtained when
two of the spherical coordinates are equated to constants.

3. Find the direction cosines with respect to the ryz-system of the

line from the origin to the point whose spherical coordinates are r, 0, 6.

4. Find the expression for the distance between two points in

spherical coordinates ; in cylindrical coordinates.

5. Find the spherical coordinates of the points whose rectangular

coordinates are (2, 4, 3), (3, 3,
-

2), (- 1, 2,
-

2).

6. Find the cylindrical coordinates of the points in Ex. 5.

7. Find equations in spherical coordinates of the loci whose equa-

tions in rectangular coordinates are

a. x2 + y2 = 5. d. x* + 2 y* + 3 z 2 - 6 = 0.

b. 3 x - 4 y + 5 z - 1 = 0. e. xy + yz + xz = 0.

c.4*2
-.y

a = l.
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a

32. A Geometric Definition of the Conies

In the preceding chapters we have obtained in a number of

cases an equation of the locus of a point which satisfies a certain

relation to points and lines defined with reference to a given

coordinate system, and we have given certain exercises to find

a locus so defined. An equation of such a locus depends for

its form not only upon the geometric character of the locus

but also upon the particular coordinate system used. In view

of the results of 28 it is clear that in finding an equation of a

given locus one is free to choose a coordinate system with re-

spect to which the fixed objects (points, lines, etc.) involved in

the definition of the locus have such position that the equation
of the locus, and the calculation involved, shall be as simple as

possible, provided that in so doing one is not imposing addi-

tional conditions upon the locus. For example, the results of

Ex. 21 of 13 hold for any triangle, because a rectangular

coordinate system can be chosen so that the coordinates of the

vertices of any triangle are as given in this exercise. On the

other hand, the results of Ex. 20 of 13 apply only to a right-

angled triangle if we are using rectangular axes, but the results

would be true for any triangle if shown to be true for a triangle

with vertices 0(0, 0), A (a, 0), B(b, c). We remark that a co-

ordinate system can be chosen so that any two points have

the coordinates (b, 0) and ( b, 0) by taking the line through
the points for the #-axis and the origin at the mid-point of the

segment connecting the two points ; accordingly the geometric
character of the locus in Ex. 9 of 13 is not changed, but its

equation is simplified, by taking (b, 0) and ( b, 0) as the

two points.

We make use of this idea of choice of an advantageous co-

ordinate system in deriving equations of the conies from the

following geometric definition:

Let F be a fixed point, called the focus, and d a fixed line, not

through the point, called the directrix; then a conic is the locus of

a point P such that the ratio of the distance FP to the distance of P
from the line d is a positive constant, e, called the eccentricity; it

is a parabola when e = 1, an ellipse when e < 1, and a hyperbola
when e > 1.
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Distance as used in this definition is numerical, or absolute,

distance. In 38 we show the equivalence of this definition

and the definition of the conies as plane sections of a right

circular cone.

From the above definition it follows that the quantities which

determine, and therefore can affect, the size and shape of a

conic are its eccentricity and the distance of the focus from the

directrix. Hence conies of all possible shapes and sizes are ob-

tained by taking all values of the eccentricity, a given line d

for directrix, and a given line / perpendicular to d for a line of

foci, a particular focus being determined by its distance from

d. If two other lines d' and /' are chosen for directrix and line

of foci respectively, a conic defined with respect to these lines

can be brought into coincidence with one of the set of conies

defined with respect to d and / by bringing d' into coincidence

with d and the focus into coincidence with one of the points

of/.

In order to obtain an equation of the conies, we take the

directrix as the jy-axis and the perpendicular to the directrix

through the focus as the #-axis, and denote the focus by (Jfe, 0).

The distances of a representative point (x, y) from the focus

and directrix are V(x K)
2 + y2 and

|

x
\ respectively. In ac-

cordance with the definition, we have

-*)*

where D denotes the foot of the perpendicular from P upon the

directrix. From the equation

upon squaring both sides, we obtain

(32.2) (1
-

e*)x> -2k

Suppose now that we consider in connection with equation

(32.2) an equation of a conic of eccentricity e with the y-axis

for directrix and for focus the point (tk, 0), where / is a positive
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constant. If we denote by P'(x', /) a representative point on
the conic, the equation of the conic is found to be

(32.3) (1
- *2)*'

2 - 2 tkx' + y'
2 + tW = 0.

If then we substitute

(32.4) x' = tx, y' = ty

in this equation, we obtain equation (32.2) multiplied by /
2

.

Hence to each point on either curve there corresponds a point
on the other such that the line joining corresponding points

passes through the origin, that is, through the point of inter-

section of the directrix and the perpendicular upon the latter

through the focus. Moreover, the distances of P and P' from
the origin are related as follows :

OP' = vV 2 + y'
2 = /V*2 + y2 = / OP.

Thus if / > 1 the second curve is a magnification of the first,

and vice versa if / < 1. In both cases, as a matter of conven-

ience, we say that either curve is a magnification of the other.

Two curves in a plane are said to be similar when there is a

point in the plane such that if P is any point on one curve,

the line OP meets the other curve in a point P', and the ratio

OPIOP
1

is a constant for all such lines. Also two curves are

said to be similar when either curve is congruent to a suitable

magnification of the other. Likewise in space two figures of any
kind are said to be similar if their points are related to a point

as above, or if either is congruent to a suitable magnification of

the other.

As a result of the discussion of equations (32.2) and (32.3)

and the definition of similar curves, we have

[32.1] Two conies having the same eccentricity are similar; in

particular, all parabolas are similar.

By a suitable translation of the axes we shall obtain in 33

an equation of the parabola, and in 35 equations of the ellipse

and the hyperbola, in simpler form than (32.2). When the

equations are in these simpler forms, the geometric properties

of the loci are more readily obtained.
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EXERCISES

1. Show that in accordance with the definition of a conic the line

through the focus perpendicular to the directrix is an axis of symmetry of

the curve ; that is, if P is any point on the conic, so also is the point

symmetric to P with respect to this axis (see 2). Show also geomet-

rically that there is one and only one point of a parabola on this axis,

and that there are two and only two points of an ellipse or hyperbola
on this axis. Verify these statements algebraically from equation (32.2).

2. Find an equation of the conies when the directrix is taken as

the x-axis, and the line perpendicular to the directrix through the

focus for the jy-axis, and the focus is denoted by (0, k).

3. Find an equation of the parabola whose directrix is the line

x 1 = and whose focus is (2, 3) ; also an equation of an ellipse of

eccentricity with this directrix and focus.

4. Find an equation of a hyperbola of eccentricity 2 whose directrix

is the line 4^ 3^4-2 = and whose focus is (1, 1).

5. Find an equation of the conic of eccentricity e whose directrix

is the line ax + by + c = and whose focus is the point (h t k), and
reduce the equation to the form

Ax2 + 2 Hxy + By2 + 2 Fx + 2 Gy + C = 0.

6. Given two triangles whose sides are proportional, show that a

point can be found with respect to either triangle such that a

suitable magnification of this triangle with respect to gives a triangle

congruent to the other.

33. The Parabola

Since a parabola is a conic for which the eccentricity e is

+ 1, equation (32.2) for a parabola may be written

(33.1) ^ = 2

In order to obtain an equation in simpler form, we make the

translation of the axes defined by

(33.2) *' = *- '=y=y>

and equation (33.1) is transformed into

/* = 2 fee'.
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In this coordinate system the axis of the parabola, that is,

the line through the focus perpendicular to the directrix, is

the x'-axis, and the point of the parabola on its axis, called the

vertex, is at the origin. Moreover, the focus, which is (k, 0) in

the ry-system, is (k/2, 0)' in the ^'/-system, as follows from

(33.2) ; and similarly, an equation of the directrix, which is x =
k

in the ry-system, is x' + 5
= in the #y-system.

L4

As we shall use only this new coordinate system in what

follows, we use x and y to denote the coordinates instead of

x f and y'. If then, in order to avoid fractions, we put k = 2 a,

an equation of the parabola is

(33.3) y2 = 4 ax,

its focus is the point (a, 0), and its directrix the line x + a = 0.

This is shown in Fig. 28 for the case when a is positive.

The perpendicular to the axis at

the focus, that is, the line x a = 0,

meets the parabola in the points

(a, 2 a) and (a, 2 a). The line seg-

ment with these points as end points

is called the latus rectum of the pa-

rabola ; its length is the numerical

value of 4 a. +
Since the >>-axis meets the pa-

rabola in the origin counted doubly, pIG
it is the tangent to the parabola at

its vertex. From (33.3) it is seen that a parabola is character-

ized geometrically as follows :

[33.1] A parabola is the locus of a point P the square of whose

distance from a line (its axis) is equal to four times the

product of the directed distances of P and the focus of the

parabola from its tangent at the vertex, this tangent being

the perpendicular to the axis at the vertex.

In consequence of this theorem an equation of a parabola is

determined by equations of its axis and of the tangent at the

vertex, and the distance of its focus from this tangent (see

Exs. 7, 8).
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EXERCISES

1. Find the focus and directrix of the parabola y2 8 x, and the

points in which it is intersected by each of the lines

2x-y-l=Q, 2x-;y+l=0.

2. Draw the graph of each of the following parabolas, and its focus

and directrix :

a. y2 = 12 x. c. x 2 = 8 y.

b.y* = -4x. d.x* = - 12 y.

3. Denoting by V and P the vertex and a representative point on

a parabola, show that if P 1
is the point of the line containing VP such

that VP' = tVPj where / is any constant not equal to zero, the locus

of P' is a parabola ; and determine the relation between the foci and

directrices of the two parabolas.

4. Find an equation of the parabola whose directrix is the *-axis

and whose focus is the point (0, 4), and find a transformation of co-

ordinates so that in the new ;t'/-system the equation of the parabola
is of the form (33.3).

5. Prove that each of the following is an equation of a parabola

with focus at the origin :

a. y 2 = 4 a(x + a). c. y 2 = - 4 a(x
-

a).

b. x 2 = 4 a(y + a). d. x 2 = - 4 a(y
-

a).

6. Find an equation of the parabola with vertex at the point (1,2)

and focus at the point ( 1, 2).

7. Given the lines y 4 = and x + 3 = 0, find an equation of the

parabola of latus rectum 8 which has these lines for axis and tangent

at the vertex, when the first line is the axis and the curve is to the right

of the second line ; when the second line is the axis and the curve is

below the first line.

8. Find an equation of the parabola with the lines x 2 >> -f 1 =
and 2 x+ y 3 = for axis and tangent at the vertex respectively,

with latus rectum of length 6, and which lies below the tangent at the

vertex.

9. Find an equation of the parabola whose directrix is the line

3*-4.y-l=0 and whose focus is (1, 2). What are equations
of its axis and of the tangent at its vertex ?
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34. Tangents and Polars

The coordinates of the points of intersection of the line

(34.1) y = mx + h

with the parabola (33.3) are found by solving their equations

simultaneously. Substituting the expression (34.1) for y in

(33.3) and collecting terms, we get

(34.2) m2x2 + 2(mh -2a)x + h2 = Q

as the equation whose roots are the ^-coordinates of the points
of intersection. When m = 0, that is, when the line is parallel

to the axis of the parabola, there is one point of intersection,

(h

2 \

-T'h)- When m ^ 0, we have from (34.2)

(34 3^ = (0 mh)
^

^ ' '
~~

m2

According as the quantity under the radical is positive or nega-

tive, there are two real points of intersection or none ; in the

latter case we say that the points of intersection are conjugate

imaginary.

When the line (34.1) intersects the parabola in two real

points, the ^-coordinate of the mid-point of the segment joining

these points, being one half the sum of the two values of x in

(34.3), is (2 a mh)/m2
; and the ^-coordinate of the mid-point

is found, on substituting this value of x in (34.1), to be 2 a/m.
Since this value does not depend upon the value of h in the equa-
tion (34.1) of the line, we have

[34.1] The mid-points of a set of parallel chords of a parabola lie

on a line parallel to the axis of the parabola.

When the quantity under the radical in (34.3) is equal to

zero, that is, when h = a/m, the two points of intersection

coincide and the line is tangent to the parabola at the point

( 2
'

)
(see 12 following equation (12.8)). Hence we have
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[34.2] For every value of m different from zero the line

[Chap. 4

(34.4) y = mx +' m
is tangent to the parabola y2 = 4 ax, the point of tangency

being (jL
\.

6
\m2 m I

The tangent (34.4) meets the *-axis (see Fig. 29) in the point

T(- a/m2
, 0), and the length of the

/ i \
segment TF of the axis is a( 1 H ^ J

The distance from the focus F to

the point of contact P(a/m2
, 2 a/rri)

is of the same length, as is readily

shown. Hence FTP is an isosceles

triangle with vertex at F. Since

the tangent makes equal angles

with the #-axis and any line par-

allel to it, we have
FIG. 29

[34.3] The tangent to a parabola at any point P makes equal

angles with the line joining the focus to P and with the line

through P parallel to the axis of the parabola.

When a parabola is revolved about its axis, the surface so generated
is called a paraboloid of revolution, and the axis of the generating

parabola is called the axis of the paraboloid. Each plane section of

the surface by a plane containing the axis is a parabola, and the

parabolas have the same focus. A mirror with such a curved surface

is called parabolic. Recalling from physics that the angle of reflec-

tion from a mirror is equal to the angle of incidence, we have from

Theorem [34.3] that rays of light parallel to the axis of a parabolic

mirror are reflected to the focus, and, conversely, when a light is placed

at the focus of a parabolic mirror, the rays emanating from it, upon
reflection by the mirror, emerge parallel to the axis. This phenomenon
is given practical use in reflecting telescopes and automobile headlights.

If we multiply equation (34.4) by 2 a/m and write the result

in the form o
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this equation of the tangent becomes in terms of the point of

contact Xi = a/m2
, yi = 2 a/m

(34.5)

When (xi, y\) is any point of the plane, equation (34.5) is an

equation of a line. The line so defined is called the polar of

the point (x\, y\} with respect to the parabola, and the point

(xi, ;yi) is called the pole of the line. In particular, the polar of

a point on the parabola is the tangent at the point. We shall

now find the geometric significance of the polar of a point not

on the parabola.

If we solve (34.5) for x and substitute the result in (33.3),

we obtain the quadratic

y
2 2 yiy + 4 axi = 0,

whose two roots are the ^-coordinates of the points of inter-

section of the line and the parabola. These roots are

y = yi Vyi 2 4 axi.

Hence the line meets the parabola in two real points or in two

conjugate imaginary points according as yi
2 4 axi is a positive

or negative number, that is, according as the point (x\, y\)

lies outside or inside the parabola. To prove the latter statement

we observe that when a is positive and x\ is negative, the quan-

tity under the radical is positive and the point P\(x\, y\) lies

to the left of the y-axis, which, as previously shown, is the

tangent to the parabola at its vertex, and consequently the point

lies outside the parabola. For x\ positive the line x x\ =
meets the parabola in two points (xi, y2 ) and (xi, ^2), where

y2
2 4 axi = 0, and consequently y\

2 4 ax\ is positive or nega-

tive according as yi
2

is greater or less than y2
2

, that is, ac-

cording as PI is outside or inside the parabola.

If (#2, 1X2) is any point on the polar of (xi, y\), we have

y&2 = 2 a(x2 + *i).

In consequence of the fact that xi, y\ and #2 , y2 enter sym-

metrically in this equation, it follows that the point (x\ 9 y\)

is on the polar of the point (*2 , ^2), namely, the line

y2y = 2a(x + x2).
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SK/

Hence we have

[34.4] // the polar of a point (xi, y\) with respect to a parabola

passes through the point (*2, yz)> the polar of (*2, ^2)

passes through the point (x\, yi).

By means of this theorem we derive the geometric significance

of the polar of a point (x\ 9 y\) lying outside the parabola. It

has been shown that the

polar of this point inter-

sects the parabola in two

real points. By the above

theorem (xi, y\) lies on the

polars of these two points,

but these polars are the tan-

gents to the parabola at

these points. Hence we have

(see Ex. 13) FIG. 30

[34.5] The polar of a point outside a parabola is the line joining

the points of tangency of the two tangents to the parabola

through the given point.

We have just shown indirectly that through any point

(*it y\) outside a parabola two tangents to the parabola can

be drawn. In order to obtain equations of these tangents, we
substitute xi, y\ for x, y in (34.4) and obtain the quadratic

m2
xi my i + a = 0,

whose two roots are the slopes of the two tangents. These

roots are

which are real and distinct when the point (xi, y\) is outside

the parabola. Substituting these values of m in (34.4), we
obtain the desired equations of the two tangents.

For example, for the parabola y2 = 12 x and the outside point

( 1, 2) the values of m are 1 and 3, and equations of the respec-

tive tangents are x - y + 3 = and 3* + >>-fl = 0.
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EXERCISES

1. Find an equation of the tangent with the slope 3 to each of the

parabolas y2 = g Xt y2 _. _ 4 x

Also find equations of the tangents to the first parabola at the points
for which x = 2, and of the tangents to the second parabola from the

point (3, 2), and the angles between the tangents in the latter two cases.

2. Find an equation of the tangent to the parabola y2 = 5 x which
is perpendicular to the line 3* + 2jf 1=0; also the coordinates

of the point of contact.

3. The line segment joining the focus of a parabola to any point P
of the parabola is called the focal radius of P. Find the coordinates

of the points of the parabola (33.3) whose focal radii are equal in

length to the latus rectum.

4. Show that x2 = 4 ay

is an equation of a parabola with the ;y-axis for the axis of the parabola
and the *-axis for tangent at the vertex. What are the coordinates of

the focus and an equation of the directrix? Show that the tangent
with the slope m is y

_. mx __ am2
f

and the point of contact is (2 am, am2
).

5. For what value of c is the line 2x + 3y + c = Q tangent to the

parabola x2 = 6 y ?

6. Show that a tangent to a parabola at a point P meets its axis

produced at a point whose distance from the vertex is equal to the dis-

tance of P from the tangent to the parabola at the vertex.

7. The normal to a curve at a point P is by definition the per-

pendicular to the tangent at P. Show that an equation of the normal

to the parabola (33.3) at the point (xi, yi) is

8. Show that the normal to a parabola at a point P meets the axis

of the parabola in a point whose distance from the projection of P upon
the axis is one half the latus rectum of the parabola. This segment of

the axis is called the subnormal for the point.

9. Show that the point of intersection of a tangent to a parabola

and the perpendicular to the tangent through the focus lies on the

tangent to the parabola at the vertex.
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10. Show that the segment of a tangent to a parabola between the

point of tangency and the directrix subtends a right angle at the focus.

11. Show that the tangents to a parabola at the extremities of any
chord through the focus meet at a point on the directrix. What rela-

tion does this result bear to Theorems [34.4] and [34.5]?

12. Show that the chord joining the points of contact of any two

mutually perpendicular tangents to a parabola passes through the

focus.

13. Let /i and 12 be two chords of a parabola through a point P
within the parabola, and let P\ and P* be the points of intersection of

the tangents to the parabola at the extremities of l\ and /2 respectively.

Show that the line PiP2 is the polar of P.

35. Ellipses and Hyperbolas

In accordance with the definition in 32 the locus of a point

P whose distance from a fixed point, the focus, is equal to a

positive constant e times its distance from a fixed line, the

directrix, is an ellipse when e < 1 and a hyperbola when e > 1.

In 32, on taking the ;y-axis for the directrix and the point

(jfe, 0) on the *-axis for focus, we obtained the equation

(35.1) (1
- e2)x

2 -2kx + y
2 = -k2

.

If we divide this equation by (1 e2) and complete the square
of the terms in x by adding k2/(l e2)

2 to both sides of the

equation, the result may be written

If, in order to obtain simpler forms of equations of ellipses and

hyperbolas, we make the translation of the axes defined by

(35.2) '=-rb' *-*
an equation of the conic in terms of x' and y' is

(35.3)
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The focus and directrix, which in the ry-system are the point

(k, 0) and the line x = 0, are given in the ^'/-system by

(35.4)

respectively, as follows from (35.2).

From the form of equation (35.3) it is seen that the x'- and

/-axes are axes of symmetry of the conic (see 2) ; that is,

if (#', /) is a point of the conic, so also are (x', y') and

( *', y'). This means geometrically that the two points in

which a line parallel to the /-axis meets the conic are at equal
distances from the #'-axis, and on opposite sides of the latter ;

and likewise the two points in which a line parallel to the

#'-axis meets the conic are at equal distances from the /-axis,

and on opposite sides of the latter. Also it follows from (35.3)

that the #'-axis meets the conic in the two points (
-z

e
^> )

/ ke V ^ l ~ e '

and L
__ 2

>

OJ ; the points with these coordinates are the end

points of a line segment of which the origin of the ^'/-system
is the mid-point. Hence an ellipse or a hyperbola has two axes

of symmetry, called the principal axes, the one (the #'-axis)

being perpendicular to the directrix, and the other (the /-axis)

being the line parallel to the directrix and through the mid-point
of the segment of the former axis (the #'-axis) whose end points
are points of the conic.

It is seen also from (35.3) that if (x
f

, y') is a point of the

conic, so also is ( x', /) ; that is, any chord of the conic

through the origin of the ^'/-system is bisected by the origin.

Consequently the intersection of the principal axes of an

ellipse or of a hyperbola is a point of symmetry of the curve.

It is called the center of the conic. Since there is no center of

a parabola in this sense, ellipses and hyperbolas are called

central conies.

If, in order to simplify the equation (35.3), we define the

quantity a by

(35.5) '-f^?'
and drop the primes in equation (35.3), that is, use x and y for
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coordinates in the new system (since only this new system is

used in what follows), this Aquation may be written

<35-6>

From this equation it follows that the curve meets the axis

through the focus (the x-axis) in the two points A'( a, 0) and

A(a, 0). Also from (35.4) it follows that the coordinates of the

focus and an equation of the directrix are respectively

(35.7) F'(-ae,0), x+- = 0.
a

Since, as remarked before, an ellipse or a hyperbola is sym-
metric with respect to its principal axes, which in the present

coordinate system are the x- and ;y-axes, it follows from con-

siderations of symmetry that for each of these curves there is

a second focus and a second directrix symmetric with respect to

the ;y-axis to F' and the directrix x + - = respectively. They
are given by

e

(35.8) F(ae, 0), x - - =
c

respectively. As a further proof of this result, we observe that

an equation of the conic with this focus and directrix is

which reduces to (35.6), as the reader should verify.

Thus far we have treated ellipses and hyperbolas simultane-

ously, but in proceeding further it is advisable at times to treat

them separately. In such cases the treatment will be given in

parallel columns, that on the left pertaining to the ellipse and
that on the right to the hyperbola, while statements which

apply equally to both types of conies will not be separated.
The quantity a2 (I - e2 ) appearing in equation (35.6)

is positive for an ellipse, since

e < 1. Consequently a real

number b is defined by

(35.9) ft
2 = a*(l

- e2),

is negative for a hyperbola,
since e > 1. Consequently a

real number b is defined by

(35.9') ft
2 =
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in terms of which, as follows from (35.6), equations of the re-

spective curves are

(35.10) j^+=l, (35.10') s-g-1,
in which it is understood that a and b are positive numbers.

t y

B
E

From (35.10) it follows that

an ellipse meets the jy-axis

in the points B'(Q r

~-
b) and

B(Q, b). Also it follows from

(35.9) that b < a. Accordingly
the line segment A'A of the

principal axis containing the

foci is called the major axis,

and the segment B'B of the

other principal axis, that is,

the perpendicular to the ma-

jor axis through the center of

the ellipse, the minor axis.

The numbers a and b are called

the semi-major and semi-minor

axes respectively, in the sense

that they are the lengths of

these segments. The points
A' and A, the extremities of

the major axis, are called the

vertices of the ellipse. (See

Fig. 31.)

FIG. 31'

From (35.10') it follows that a

hyperbola does not meet the

>>-axis. The segment A 'A of the

principal axis containing the

foci is called the transverse axis

of the hyperbola. The segment
with end points '(0, b) and

B(Q, b) of the other principal

axis, that is, the line through
the center perpendicular to the

transverse axis, is called the

conjugate axis of the hyperbola.
The numbers a and b are

called the semi-transverse and

semi-conjugate axes respec-

tively. The points A' and A y

the extremities of the trans-

verse axis, are called the ver-

tices of the hyperbola. The

geometric significance of the

end points B' and B of the con-

jugate axis is given in 37.

(See Fig. 31'.)

185



The Conies. Locus Problems [Chap. 4

From equations (35.9) and (35.9') we have that in the re-

spective cases the eccentricity is expressed in terms of the

semi-axes as follows :

(35.11)

2 -
(35.H

2 =

which emphasizes the fact that e < 1 for an ellipse and e > 1

for a hyperbola. If we denote by c the distance of either focus

from the center of each curve, then c = ae
y as follows from

(35.7) and (35.8), and we have from (35.11) and (35.11')

(35.12) c2 = a2 - (35.12') c2 =

When these results are considered in connection with Figs. 31

and 31', we see that

a circle with center at either

end of the minor axis of an

ellipse and radius equal to the

semi-major axis meets the

major axis in the two foci.

a circle with center at the cen-

ter of a hyperbola and radius

equal to the hypotenuse of

a right triangle whose legs

are the semi-transverse and

semi-conjugate axes meets the

transverse axis in the two foci

(see Fig. 35).

We shall now find an important relation between the lengths

of the focal radii of any point on these curves, that is, the

lengths F'P and FP.

The absolute distances of a point P(x, y) on either curve

from the directrices are the numerical values of

(35.13) x-Z, x + Z-

The focal distances of P, being e times the absolute distances

of P from the directrices, are the numerical values of

(35.14) ex ex
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For an ellipse the first of (35. 13)

is negative and the second posi-

tive, whatever be P, as is seen

from Fig. 31. Hence

FP = a- ex, F'P = a + ex,

from which it follows that

(35.15) FP + F'P = 2a.

Thus we have the theorems

[35.1] The sum of the focal

radii of any point of an

ellipse is equal to a con-

stant, the length of the

major axis.

For a hyperbola both of the

quantities (35.13) are positive

when P is on the right-hand
branch of the hyperbola (see

Fig. 31'), and both are nega-
tive when P is on the left-hand

branch. Hence in the first

case (35.14) are the focal radii,

and in the second case they are

the negatives of these quanti-
ties. Accordingly we have

(35.150 F'P-FP = 2a,

the + sign or the sign ap-

plying according as P is on the

right-hand or left-hand branch.

[35.1'] The numerical value of

the difference of the focal

radii of any point of a

hyperbola is equal to a

constant, the length of the

transverse axis.

These results make possible a continuous construction of the

central conies, as distinguished from a point-by-point construction.

For the construction of an ellipse two

thumbtacks are fastened through a sheet

of paper, and a loop of string is placed

loosely around the tacks; the string is

then drawn taut by the point of a pencil.

As the pencil is made to move, the string

being held taut, it describes an ellipse with

the tacks at the foci. In fact, if the dis-
FIG. 32

tance between the foci is denoted by 2 c and the length of the loop by
2 a H- 2 c, the sum of the focal radii is 2 a. Since c = ae, an ellipse

of given major axis 2 a and given eccentricity e is described when
the tacks are set at the distance 2 ae apart and the loop is of length

2 0(1 + e).
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For the construction of a hyperbola one end of a stick of length d

is pivoted at a point F' on the paper, and at the other end of the

stick is fastened one end of a string of

length d 2 a ; the other end of the

string is then fastened by a thumbtack

at a point F on the paper. If the string

is held taut by pressing it with the point

P of a pencil against the stick, the pencil

describes a branch of a hyperbola as the

stick rotates about the point F', since

F'P -FP = 2a. Again, since F'F = 2 ae,

a hyperbola of given transverse axis and F
given eccentricity can be drawn by

choosing the length of the string suitably and by setting the points

F' and F at the proper distance apart.

As a result of the foregoing discussion we have that Theorems

[35.1] and [35. 1'] state characteristic properties of ellipses and

hyperbolas, in the sense that these properties may be used to

define these central conies. The same is true of the following

two theorems, which are geometric statements of equations

(35.10) and (35. 10') respectively without regard to any co-

ordinate system :

[35.2] // d\ and d% denote the distances of any point on an ellipse

from its major and minor axes respectively, which axes have

the respective lengths 2 a and 2 b, then

(35.16) f +f- 1 '

and any curve all of whose points are so related to two per-

pendicular line segments, of lengths 2a and 2b and each

of which bisects the other, is an ellipse, whose eccentricity is

given by e2 = (a
2 b2

)/a
2 when a> b.

[35.3] // d\ and d2 denote the distances of any point on a hyperbola

from the lines of its transverse and conjugate axes respec-

tively, which axes have the respective lengths 2 a and 2 b,

then
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and any curve all of whose points are so related to two per-

pendicular line segments, of lengths 2 a and 2 b and each of

which bisects the other, is a hyperbola, whose eccentricity is

given by e2 = (a
2 + b?)/a

2
.

For example, an equation of the ellipse whose major and
minor axes are of lengths 6 and 4, and are on the lines x + 1 =
and >> 2 = respectively, is

The conies were studied extensively by the Greeks from a purely

geometric point of view, and many of their properties which now are

derived by means of coordinate geometry were discovered by geo-

metric reasoning (see 38). Following the adoption of the Copernican

theory of the planetary system, Kepler by laborious calculations from

observational data showed that the orbits of the planets are ellipses

with the sun at one of the foci. This enabled Newton to discover his

law of gravitation, so that now the orbits of the planets are obtained

readily from Newton's law by the use of coordinate geometry and the

calculus. We have seen that for an ellipse each focus is at the dis-

tance ae from its center, and thus the eccentricity determines the

departure of the focus from the center. For the earth e is about 1/60,

so that its orbit is almost circular. For the recently discovered planet

Pluto e is about 1/4, the semi-major axis of its orbit is nearly 40 times

that of the earth, and its period of revolution is approximately
250 years. The paths of the comets are practically parabolas, some

of them being ellipses of eccentricity almost equal to 1. In fact, for

the celebrated Halley's comet e = .98, the semi-major axis is almost

18 times that of the earth's orbit, and its period is 75 years ; its return

to the earth's neighborhood has been recorded many times.

EXERCISES

1. Show that equation (35.10) in which b > a is an equation of an

ellipse with semi-major axis b and semi-minor axis a, that (0, be) and

(0,
-

be) are the foci, and that y = b/e are the directrices, where

e* = (b
2 -

a*)/b*.

2. Find the vertices, center, foci, and directrices of the following :

a. 3 x 2 + 4 y
2 = 12. c. 5 x2 - 4 y

2 = 20.

b. 9 x2 + 5 y2 = 45. d. 9 x2 - 16 y* = 12.
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3. Find an equation of an ellipse whose foci are ( 3, 0) and (3, 0),

(a) when its minor axis is 8 ;

(b) when its major axis is twice its minor axis ;

(c) when its eccentricity is 2/3.

4. Find an equation of a hyperbola with directrix y = l, focus

(0, 3), and eccentricity 3/2.

5. Find an equation of a hyperbola whose transverse and conjugate

axes, of lengths 4 and 6, are on the lines x + 3 = and y 1 =
respectively.

6. Find an equation of the ellipse whose major and minor axes, of

lengths 8 and 6, are on the lines 3 # 4 jy + 1 = and 4*-f3jy-f-2 =
respectively.

7. Find an equation of the locus of a point the sum of whose dis-

tances from the points (c, 0) and ( c, 0) is 2 a \ also the locus when
the difference of these distances is 2 a.

8. By definition the latus rectum of an ellipse (or a hyperbola) is the

chord through a focus and perpendicular to the major (or transverse)

axis ; find its length in terms of a and b.

9. Show that, if the distance of a focus of an ellipse from the corre-

sponding directrix is h, the semi-major axis is given by a = he/ (I e2).

What is the semi-transverse axis of the hyperbola with the same focus

and directrix?

10. Show that the quantity ^- + ^-
- 1 is positive or negative

according as the point (xi, y\) lies outside or inside the ellipse (35.10).

What is the similar theorem for the hyperbola ?

11. In what sense is a circle an ellipse of eccentricity zero?

12. What is the eccentricity of a rectangular hyperbola, that is, one

whose transverse and conjugate axes are of equal length? What is

an equation of a rectangular hyperbola?

13. Prove that the distance of any point of a rectangular hyperbola

(cf. Ex. 12) from the center is the mean proportional to its distances

from the foci.

14. Find an equation of the ellipse with the point (2, 1) as focus,

the line 3^-4^-5 = as directrix, and eccentricity 1/2 ; also find

an equation of the hyperbola with this focus and directrix, and ec-

centricity 2. What is the major axis of this ellipse ; the transverse

axis of this hyperbola? (See Ex. 9.)
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15. Given the equation r = --- in polar coordinates; show
1 e cos 6

by means of (29.5) and (29.6) that an equation of the locus in rec-

tangular coordinates is

and that this is an equation of a conic of eccentricity e with focus at

the origin and the line x + - = for directrix. Show that the latus
rectum is of length 21.

e

16. Consider in space of three dimensions a circle of radius a with
center at the origin, and lying in a plane which cuts the ry-plane in

the x-axis and makes the angle 6 with this plane ; show that the or-

thogonal projection of the circle upon the ry-plane is an ellipse with
the equation ^2 2

"a
2
+

a2 cos2
= 1 '

Is the orthogonal projection of any circle upon a plane not parallel

to the plane of the circle an ellipse?

36. Conjugate Diameters and Tangents of Central Conies

We turn now to the consideration of sets of parallel chords

of a central conic and to the finding of equations of tangents.

The ^-coordinates of the points in which the line

(36.1) y = mx + h

meets the curves with equations (35.10) and (35.10') are given by

(36.2)
- a2mh d= abVft2 + a2m 2 - h2

a2m2 + b2

(36.2')

_ - a2mhab^/b2 - a2m2 + h'
i

a2m2 - b2

From these expressions and (36.1) we find as the coordinates

XQ, yo of the mid-point of the line segment connecting the

points of intersection

- a*mh, W2 - a2mh, - hb2= -2yo = '

a*m*-,

As h takes on different values for which the points of intersec-

tion are real, m remaining fixed, that is, for different parallel

chords, these expressions give the coordinates of the mid-point
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of each chord. By substitution we find that these are points

on the respective lines

(36.3)
ft
2

(36.30 ,_.
Each, passing through the origin, which is the center of the

curve, and hence being a line through the center of a central

conic, is called a diameter. If in each case we denote by m' the

slope of the line (36.3) or (36.3'), we have

(36.4) mm' = -

FIG. 34 FIG. 34'

Since these equations are symmetric in m and m', it follows

that the mid-points of the chords parallel to the lines (36.3)

and (36.30 are on the line y = mx in each case. Two lines

through the center of an ellipse, or of a hyperbola, whose slopes

are in the relation (36.4), or (36.4'), are called conjugate di-

ameters. Hence we have

[36.1] Either of two conjugate diameters of an ellipse, or of a

hyperbola, is the locus of the mid-points of chords parallel

to the other.

Equations (36.3) and (36.3') do not apply when m = 0, that

is, when the chords are parallel to the major axis of an ellipse

or the transverse axis of a hyperbola. But since the axes in

each case are axes of symmetry, for each curve either axis is

the locus of the mid-points of chords parallel to the other.

Consequently the axes are said to be conjugate.
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We leave to the reader the proof of the following statements,
with the aid of (36.2) and (36.20, calling his attention to the

derivation in 34 of similar results for the parabola :

The parallel lines

(36.5) y=

are tangent to the ellipse

(35.10) at the points

(36.6) (

The parallel lines

(36.5') y = mx

are tangent to the hyperbola

(35.100 at the points

(36.6')

On denoting by x\, y\ the coordinates of either point, the equa-
tion of the tangent at the point may be written in the form

(36.7)
Si

(36.7')
*L_m =
a2 b2

We now establish the following theorem, which shows that

the central conies possess a property somewhat analogous to

the property of the parabola stated in Theorem [34.3] :

[36.2] The focal radii of any point P of an ellipse, or of a hyper-

bola, make equal angles with the tangent to the conic ai P.

We prove this theorem by using straightforward algebraic

methods, which illustrate the power of coordinate geometry.

In order to handle the ellipse and hyperbola at the same time,

we use equation (35.6), that is,

(36.8) a2
'

a2
(l
- e2 )

= 1.

From equations (36.7), (36.70 and (35.9), (35.90 it follows

that an equation of the tangent to either conic at the point

PI(XI, yi) is rr , VVixx i ,

a2 .
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Hence direction numbers of this line are (see page 30)

Since the foci are F'( ae, 0) and F(ae, 0), direction numbers

of the focal radii are (see Theorem [6.1])

W2 = xi ae, v2 = jyi,

where the + sign holds for F'Pi and the sign for FPi. We
keep the sign in the expression for 2, in order that the result

later obtained shall apply to both F'Pi and FPi.

In order to apply formula (6.8), we first make the following

calculations :

^^

Substituting x\ and y\ for x and y in (36.8), solving for yi
2

, and

substituting in the last of the above equations, we have

U22 + v2
2 = (xi ae)

2 + a2
(l
- e2)

- *i
2
(l
- e2)

= a2 2 xiae + e
2
Xi

2 = (a + Xie)
2

.

When these expressions are substituted in (6.8), where now
is the angle between the tangent at PI and a focal radius, we
obtain

+ *i
2
(l
- e2)

2

Since the factor ( a + x^), in which the + sign refers to the

focal radius F'Pi and the sign to the focal radius FP\, does

not appear in the result, it follows that the angles which these

focal radii make with the tangent to the conic at the point PI
are equal, as was to be proved.

As a physical application of this theorem we have that a ray of

light emanating from one focus of an ellipse and meeting the ellipse

at a point P would be reflected by a mirror tangential to the ellipse

at P into a ray which would pass through the other focus.
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EXERCISES

1. Find equations of the tangents to the hyperbola

5 x 2 -
4;y

2 - 10 =

which are perpendicular to the line x + 3 y = 0.

2. Find equations of the tangent and normal to 3 x2 4 y
2 8 =

at the point (2,
-

1).

3. Find the extremities of the diameter of x 2 + 2 y 2 = 4 which is

conjugate to the diameter through the point (1, 1).

4. Find the two tangents to the ellipse 5 x2 + 9 y 2 = 45 from the

point (2,
-

2).

5. Show that equation (36.7) when the point (xi, y\) is outside

the ellipse is an equation of the line through the points of tangency
of the two tangents to the ellipse from (x\, y\). This line is called

the polar of the point (x\ t y\) with respect to the ellipse (see the latter

part of 34).

6. Do the results of 34, Ex. 13 hold also for an ellipse and for

a hyperbola ?

7. Show that any tangent to an ellipse meets the tangents at the

vertices in points the product of whose distances from the major axis

is equal to the square of the semi-minor axis.

8. Show that by a rotation of the axes (28.8) for = 90, equation

(35.10') is transformed into

and that in the #';y'-system the coordinates of the vertices are (0, a)'9

(0, a)' and of the foci, (0, ae)', (0, ae)
f

; and equations of the direc-

trices are / - = 0. Apply this result to the determination of the
e

vertices, foci, and directrices of the hyperbola 3 x2 4 y 2 = 12.

9. Given an ellipse (35.10), for which a> b, and the circle with

center at 0(0, 0) and radius a, through a point (x, y) on the ellipse

draw the line perpendicular to the *-axis, and denote by P the point

in which this line meets the circle, and by 6 the angle which the radius

OP makes with the *-axis. Show that x = a cos 8, y = b sin 0, which

therefore are parametric equations of the ellipse.
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10. Find the relation between the lengths of two conjugate diam-

eters of an ellipse and also between those of a hyperbola. Show
that when a hyperbola has a pair of conjugate diameters of equal

length, it is rectangular.

11. Show that the product of the distances of the foci from any
tangent to an ellipse is equal to the square of the semi-minor axis.

12. Show that the point in which a perpendicular from either focus

of an ellipse upon any tangent meets the latter lies on a circle with

center at the center of the ellipse and radius equal to the semi-major
axis.

13. Show that the sum of the squares of the reciprocals of two per-

pendicular diameters of an ellipse is constant.

14. Show that x 2

*rZ
for all values of / less than a 2

except b2
, defines a system of central

conies, all of which have the same foci. This system is called a system
of confocal conies.

15. Show that through each point in the plane not on either co-

ordinate axis there pass two conies of a confocal system, one being

an ellipse and the other a hyperbola, and that the tangents to these

curves at the point are perpendicular to one another.

37. Similar Central Conies.

The Asymptotes of a Hyperhola.

Conjugate Hyperbolas

Consider in connection with equation (35.10) the equation

(37.1) %+
y
i
= k>

where k is some constant. If k is positive, this equation may be

written X2
y2

a7* +
&'

2
= 1 '

where a 12 = ka2
,
b'

2 = kb2
, and consequently is an ellipse with

the same center (the origin) as the ellipse (35.10). Furthermore

if (x, y) is a point of (35.10), then (Vkx, V&jy) is a point of the

ellipse (37.1), and corresponding points lie on a line through
the center; that is, the ellipses (37.1) for positive values of k
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are similar (see 32). From (35.11) and 35, Ex. 1 it follows

that the ellipses (37.1) for all positive values of k have the same

eccentricity (see Theorem [32.1]).

When k = in (37.1), we say that it is an equation of a

point ellipse, since there is only one real solution of the equation,

namely, x = y= 0. However, in this case y = V^T~x, that is,
a

we have two conjugate imaginary lines. When k < in (37.1),

we say that it is an equation of an imaginary ellipse, since

there are no real solutions of the equation. Hence we have

[37.1] Equation (37.1) with k > is an equation of a family of

similar ellipses having the same center and respective prin-

cipal axes; equation (37.1) is an equation of a point ellipse

when k = Q, and of a family of imaginary ellipses when

k<0.

Similarly we consider in connection with (35.10') the equation

(37.2)
- = *

where k is some constant. Proceeding as in the case of equation

(37.1), we have that for each positive value of k equation (37.2)

is an equation of a hyperbola similar to the hyperbola with

equation (35.10') arid having the same center and respective

principal axes.

We consider next the case when k = 0, that is, the equation

(37.3)
iT2-f-2

= 0.

When this equation is written in the form

<> (M)(i +iH
it is seen that the coordinates of a point on either of the lines

are a solution of (37.3), and, conversely, any solution of (37.3)

is a solution of one of equations (37.5). Consequently (37.3) is

an equation of the two lines (37.5) (see Ex. 7). We shall study
the relation of these lines to the hyperbola (35.10').
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Since a and b are understood to be positive, the first of the

lines (37.5), that is, ay bx = 0, passes through the origin and

lies in the first and third quadrants. In order to find the dis-

tance d from this line to a point (x\, y\) on the hyperbola in

the first quadrant, we observe that it follows from (35.10') that

the ^-coordinate of this point is given by y\ = - a2 in

terms of XL Hence by Theorem [8.1] the distance d is given by
~
2 -*i)

(37.6) rf =

- a2 - *i)(V*i
2 - a2 +

As Xi becomes larger and larger, that is, as the point (xi, yi)

is taken farther out on the hyperbola, this distance becomes

smaller and smaller, and we say that the hyperbola approxi-

mates the line for very large values of x. Since the center of

the hyperbola, that is, the origin in this coordinate system, is

a point of symmetry of the hyperbola, it follows that the same
situation exists in the third quadrant for numerically large

negative values of x. The reader can show that the second of

the lines (37.5) bears a similar relation to the hyperbola in the

second and fourth quadrants.
The lines (37.5) are called

the asymptotes of the hyper-

bola; they pass through the

center of the hyperbola and are

equally inclined to its axes. For

a rectangular hyperbola (see

35, Ex. 12) the asymptotes
are mutually perpendicular, FIG. 35

and only for such a hyperbola.
The lines (37.5) by a similar argument are the asymptotes

also of the hyperbola

(37.7) -5
~ w = 1-
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The two hyperbolas (35.10') and (37.7) are said to be conjugate
to one another. They lie with respect to their common asymp-
totes as shown in Fig. 35, and the transverse axis of either

hyperbola is the conjugate axis of the other. Equation (37.2)

for any negative value of k is an equation of a hyperbola similar

to (37.7). Hence we have

[37.2] Equation (37.2) with k ^ is an equation of two families

of hyperbolas, the one family for k > having the x-axisfor
transverse axis of each hyperbola, and the other family for

k < having the y-axis for transverse axis of each hyper-

bola; all of these hyperbolas have the same asymptotes,

given by (37.2) for k = 0.

The proof of the last part of this theorem is left to the

reader as an exercise.

When the values b/a and b/a are substituted for m in

(36.5'), we get the equations of the asymptotes. However, in

the expressions (36.6') for the coordinates of the points of con-

tact the denominators become equal to zero for these values of

m, and consequently this treatment of tangents cannot prop-

erly be applied to the asymptotes. Sometimes it is said that

the asymptotes are tangent to a hyperbola at infinity, but we

prefer the statement that the hyperbola approximates the

asymptotes as distances from the center become very large.

EXERCISES

1. Find the center, vertices, foci, and directrices of the hyperbola

conjugate to 3 x 2 4 y 2 = 12.

2. Show that the circle in Fig. 35 meets the transverse axis of each

hyperbola in its foci, and meets each hyperbola in points on the direc-

trices of the other hyperbola.

3. Show by means of a transformation (28.8) that when the rec-

tangular hyperbola x2
y 2 = 2 a2

is referred to its asymptotes as

axes its equation is xy = a2
.

4. Show that the eccentricities e and e' of a hyperbola and its con-

jugate are in the relation + = !.
C
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5. Find the points where the diameter of x2 - 2 y* = 2 conjugate

to the diameter through (2, 1) meets the conjugate hyperbola.

6. Find equations of the tangents of slope + 1 to the hyperbola

4 x2 3 y2
-f 12 = and the points of contact ; for what values of

the slope are there tangents to this hyperbola ?

7. Show that the graph of the equation

fax + b\y + Ci)(a2x + b2y + c2) =
is the two lines a\% + b\y + Ci and a2x + b*y -f c2 = 0.

8. Show that if the angle between the asymptotes of a hyperbola
is denoted by 2 a, the eccentricity of the hyperbola is sec a.

9. Show that the portion of an asymptote of a hyperbola included

between the two directrices is equal to the length of the transverse axis.

10. Show that the distance of a focus of a hyperbola from either

asymptote is equal to the semi-conjugate axis.

11. Find the bisectors of the angles between the lines joining any

point on a rectangular hyperbola to its vertices, and determine their

relation to the asymptotes.

12. Show that the point of contact of a tangent to a hyperbola is

the mid-point of the segment of the tangent between the points in

which it meets the conjugate hyperbola.

13. Show that if a line meets a hyperbola in the points P' and P",

and the asymptotes in R' and R", the mid-points of the segments
P'P" and R'R" coincide.

14. Show that the product of the distances of a point on a hyper-
bola from its asymptotes is constant.

15. Show that the lines joining either vertex of a hyperbola to the

end points of its conjugate axis are parallel to the asymptotes.

16. Identify each of the loci defined by the equation

x 2 v2

kl
a2 + k*

J*
= fe

when each of the 's takes the values 0, + 1, and - 1 ; draw on one

graph all these loci for a = 1, b = 2.

17. Show that two equations (37.2) for values of k equal numeri-

cally but of opposite sign are equations of conjugate hyperbolas.

18. Show that the ratio of the semi-axes for each family of hyper-
bolas (37.2) as k > or k < is the same for all members of the

family. What relation does this ratio bear to the eccentricity of each

hyperbola?
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38. The Conies as Plane Sections of a Right Circular Cone

Consider a right circular cone with vertex and a section

MVN of the cone by a plane TT, as in Fig. 36 ; V is the point of

the curve MVN on the intersection DVKL of TT and the plane

perpendicular to TT through the

axis OA ; K is the intersection of TT

and OA, and C the point in which

the bisector of the angle KVO
meets OA. The point C is at the

same distance r from the element

OF of the cone and trom the line of

symmetry KV of the curve MVN ;

and the perpendicular from C upon
KV is normal to the plane TT, being
in a plane perpendicular to TT.

With C as center and r as radius

describe a sphere ; denote by F the

point where it is tangent to the

plane of the section and by B
the point where it is tangent to the

line 0V. Since the cone is right

circular, this sphere is tangent to

each element of the cone, and all the points of tangency are

on a circle BE. DG is the line of intersection of the plane of

the circle and the plane TT ; this line is perpendicular to ED.
Let P be any point of the curve in which the plane cuts the

cone, and PHO the element of the cone through P, H being

its point of tangency to the sphere. Since PF and PH are

tangents to the sphere from an outside point, they are equal,

as shown in solid geometry. Since all the elements of the cone

make the same angle with the plane EHB, the line PH makes

with this plane an angle equal to VBD. From P we draw PG

perpendicular to DG, which being parallel to the line KFD
makes the same angle with the plane of the circle EHB as the

latter line, that is, the angle VDB. If we denote by Q (not

shown in Fig. 36) the foot of the perpendicular from P on the

plane of the circle, we have
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PH = PQ
, PG = PQ

sin VBD sin VDB
Hence we have

PF PH sin VDB
' PG PG sin

The angle VBD is the complement of the angle AOB, and the

angle VDB is the angle which the plane of the section makes
with the plane of the circle EHB, which is a plane normal to

the axis of the cone. Since these angles do not depend in any

way upon the position of the point P on the curve, it follows

PF
from (38.1) that ;

= const., and thus the curve is a conic,
r(j

F being the focus and DG the directrix (see 32).

For the curve to be an ellipse, the plane must intersect all

the elements of the cone ; that is, the angle VDB must be less

than the angle VBD, in which case the ratio (38.1) is less than

1, as it should be. As the angle VDB is taken smaller and

smaller, the eccentricity becomes smaller and approaches the

value 0, in which case the plane is normal to the axis of the

cone and the plane section is a circle. This is in agreement
with (35.11), from which it follows that e = when a = b.

When the angle VDB is equal to the angle VBD, that is,

when the line D VL is parallel to the element OE, in which case

the cutting plane is parallel to OE, the ratio (38.1) is equal
to + 1, and the section by the plane is a parabola.

When the angle VDB is greater than the angle VBD, in which

case the ratio (38.1) is greater than +1, the plane intersects

only some of the elements of the cone and the section is one

branch of a hyperbola, the other branch being the section of

the cone obtained by extending the elements through 0. If we
take a plane through parallel to the cutting plane, it inter-

sects the two cones in two elements ; when these are projected

orthogonally upon the cutting plane, the resulting lines are the

asymptotes of the hyperbola, and their point of intersection,

that is, the projection of 0, is the center of the hyperbola.

When the conic section is an ellipse, there is a sphere above

the cutting plane which is tangent to the plane at a point F' on

the line VK and is tangent to the cone along a circle E', H', B',
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these points being on the elements through the respective

points E, H, B. Since the planes of the two circles are paral-

lel, the cutting plane meets the plane of the second circle in

a line D'G' parallel to Z)G, the points D' and G' being on the

lines VK and GP respectively. As in the preceding case,

PH' = PF', being equal tangents from P to the second sphere.

By the argument used above we show that F 1

is the other focus

of the ellipse and D'G' the corresponding directrix. Moreover,
for any point P the sum of PF and PF' is equal to the length

of the segment of an element of the cone between the planes
of the two circles ; and this length is equal to the length of the

major axis of the ellipse, as is seen when P is taken at V or at

V (the point in which VK meets the cone again) (see Theo-

rem [35.1]).

As previously remarked, when the conic section is a hyper-
bola one branch lies on each of the two cones which are a

prolongation of one another through 0. The focus within

each branch is the point of contact of a sphere in each cone

similar to the one first discussed in connection with Fig. 36.

We leave it to the reader to show that the difference of the

focal radii is equal to the segment of an element of the cones

between the planes of the two circles of tangency of the spheres

with the cones, the length of the segment being equal to the

length of the transverse axis of the hyperbola (see Theo-

rem [35.1']).

39. Equations of Conies Whose Axes Are Parallel

to the Coordinate Axes

It was remarked in 32 that an equation of a curve is de-

termined not only by the geometric character of the curve but

also by its position relative to the coordinate axes. The equation

(39.1) (1
- e2)*

2 + y2 - 2 kx + k2 =

was derived in 32 as an equation of a conic of eccentricity e,

when the directrix is the jy-axis, and the perpendicular through
the focus upon the directrix the #-axis, the focus being denoted

by (k t 0). Also in 33 and 35 it was shown that by a suitable
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translation of axes equation (39.1) was transformed into (33.3)

for a parabola (e=l), and into (35.10) and (35.10') for an

ellipse (e < 1) and a hyperbola (e > 1) respectively.

If the directrix of a conic is taken as the #-axis and the per-

pendicular through the focus upon the directrix as the jy-axis,

and the focus is denoted by (0, &), an equation of the conic is

(39.2) y? + (1
-

e*)y*
- 2 *y + A2 = 0,

as the reader can verify directly, or can obtain from (39.1) by
interchanging % and y.

Equations (39.1) and (39.2) are special cases of the equation

(39.3) ax2 + by
2 + 2 fx + 2 gy + c = 0,

in which not both a and b are zero. We consider this equation
for the two cases when either a or b is equal to zero, and when
neither is equal to zero.

Case 1. a = or b = 0. If a = and 6^0, on dividing

equation (39.3) by b and completing the square of the terms

involving y, we obtain

(39.4)

When/ 7* 0, and this equation is written

on applying the translation of axes defined by

equation (39.5) is transformed into

(39.7) y'
2 = 4a'x', where a' = --^r>

Zi

which is seen to be an equation of a parabola.
In the ^'/-system the vertex is at the point x' = 0, / = 0,

the focus at the point (a
f

, 0), and equations of the tangent at

the vertex and of the directrix are %' = and x' + a 1

re-

spectively. If then one desires the coordinates of these points

and equations of these lines in the ry-system, he has only to
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substitute from (39.6) and (39.7) the expressions for *', /, and
a' in terms of x, y, and the coefficients of equation (39.3).

When a = f = 0, equation (39.3) is

As a quadratic in y it has two solutions, say

y = klt y = k2 ,

and consequently the locus consists of two lines parallel to the

x-axis, distinct or coincident according as k\ ^ fa or k\ = fa ;

imaginary if k\ and fa are imaginary.

Accordingly we have

[39.1] An equation by
2 + 2fx + 2 gy + c = is an equation of

a parabola with axis parallel to the x-axis when f ^ ;

when / = 0, it is an equation of two lines parallel to the

x-axis, which may be coincident if real, or which may be

imaginary.

Similar reasoning applied to equation (39.3) when a ^
and b = yields the theorem

[39.2] An equation ax2 + 2fx + 2 gy + c = is an equation of a

parabola with axis parallel to the y-axis when g ^ ; when

g = 0, it is an equation of two lines parallel to the y-axis,

which may be coincident if real, or which may be imaginary.

Consider, for example, the equation

2y 2 + 3x-4y + 4 = 0.

On dividing the equation by 2 and completing the square in y, we have

(y-l)> = -i*-l = -i(* + ).

Hence the locus is a parabola with axis y 1 = (that is, its axis is

parallel to the *-axis) and with vertex ( 2/3, 1). Since the coefficient

of x is negative, the parabola lies to the left of the vertex, and the

focus is at the directed distance - 3/8 from the vertex, that is, the

focus is the point ( 25/24, 1) ; and an equation of the directrix is

* + -f = * +^ = 0.

In obtaining these results we have used the processes which led to

Theorem [39.1]. The reader should adopt this method in the solution

of any exercise.
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Case 2. a 7* 0, b 7* 0. On completing the squares in the x's

and in the /s in (39.3), we obtain

(39.8)

where by definition

(39.9) k = + -c.

If then we effect the translation of the axes defined by

(39.10) x' = x + ^> y' = y + ,

in the new coordinates (39.8) becomes

r '2 -,'2

(39.11)
2L + 2L = *.

a b

When we compare this equation with equations (37.1) and

(37.2), in consequence of Theorems [37.1] and [37.2J we have

[39.3] An equation

ax2 + by
2 + 2fx + 2gy + c = Q

in which a and b have the same sign is an equation of an

ellipse (or circle when a = ft), real or imaginary according

as k, defined by (39.9), has the same sign as a and b or a

different signfrom a and b, and of a point ellipse when k = Q;

when a and b have different signs, it is an equation of

a hyperbola or intersecting lines according as k ^ or

k = ; for a real ellipse or a hyperbola the principal axes

are on the lines

(39.12) J +
-f-

= 0, * + - = 0.

The last part of this theorem follows from (39.10).

Consider, for example, the equation

Completing the squares in the x's and in the /s, we have
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By Theorems [37.2] and [39.3] the locus is a hyperbola whose semi-

transverse axis 2/V3 is on the line % 1 = and semi-conjugate axis

V2 is on the line y + 2 = 0. Its center is the point (1, 2), and

equations of the asymptotes are

x- I V3Cv 4- 2) __ n x-l
,

/^ o /;r ' o '

V2 2 V2 2

For a hyperbola (37.7) the equation analogous to (35. 11') is

e2= (a
2+b 2

)/b
2

; hence for the hyperbola under consideration e=V5/2.
Since the foci are on the line x 1 = 0, and above and below the

center at the distance be, they are the points (l, 2 db VlO/3). Equa-
tions of the directrices are

y>L =

EXERCISES

1. Draw the graphs of the following equations after finding the

vertex, axis, and focus of each curve :

4^ 2 -32 x + 4^-63 = 0, 3 * 2 + 6* + 3y + 4 = 0.

2. Find equations of two ellipses with center at ( 2, 4), and prin-

cipal axes parallel to the coordinate axes, the semi-axes being 4 and 3.

3. Find an equation of a hyperbola with center at (2, 1), one end

of the transverse axis at (5,
-

1), and one end of the conjugate axis

at (2,
-

4). What is an equation of the conjugate hyperbola?

4. Find an equation of the parabola whose axis is parallel to the

;y-axis and which passes through the points (0, 0), (- 1, 2), and (2, 2).

5. Draw the graphs of the following equations, after finding the

center and principal axes of each curve :

9 x2 - 4 y
2 - 18 x - 8 y - 31 = 0,

4* 2
-.y

2 + 2x-3;y-2 = 0.

6. Determine h so that the line y = 2 x + h shall be tangent to the

first conic in Ex. 5. _
7. Show that the eccentricity of an ellipse (39.3) is \l 7 or

f ,
^

-
according as the major axis of the ellipse is parallel to the

a

*-axis or to the .y-axis (see equation (39,11)).
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8. Show that an equation of a parabola with axis parallel to the

*-axis and which passes through the noncollinear points (x\ t yi),

(x2 , ^2), and (*3 , yd is

y2 x y 1

y*
2

*2 y-2 1
= 0.

Discuss this equation when the three points are collinear (see 4,

Ex. 9). What is an equation of the parabola through these points

when its axis is parallel to the ;y-axis ?

9. How many points are necessary to determine an ellipse or a

hyperbola whose principal axes are parallel to the coordinate axes?

Using Theorem [27.2], derive for this case an equation analogous to

that of Ex. 8.

40. The General Equation of the Second Degree.

Invariants

The most general equation of the second degree in x and y
is of the form

(40.1) ax2 + 2hxy + by
2 + 2fx + 2 gy + c = 0.

In this section we shall show that any such equation is an

equation of a conic, including the case of two lines, called a

degenerate conic. In consequence of the results of 39 it follows

that all we have to do is to show that by a suitable rotation

of the axes equation (40.1) is transformed into an equation in

%' and y' in which there is no term in x'y'.

If now we apply the transformation (28.8) to equation (40.1),

we obtain

(40.2) a'x'2 + 2 h'x'y' + 2 b'y'
2 + 2f'x' + 2 g'y' + c' = 0,

where the coefficients are given by

a' = a cos2 + 2 h sin 6 cos 6 + b sin2 0,

h
f = (b

-
a) sin 6 cos + h(cos

2 6 - sin2 0),
( '* V = a sin2 6 - 2 h sin cos 6 + b cos2 0,

/' =/ cos + g sin 0, g'
= f sin B + g cos 0, c' = c.
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From the above expression for h
1

it is seen that for the coeffi-

cient of x'y
1

in (40.2) to be zero 6 must be such that

(40.4) (b
-

a) sin cos 9 + h (cos
2 - sin2 0) = 0.

When b = a, this equation is satisfied by cos = sin 9 ; that

is,
= 45. When b ^ a, if equation (40.4) is divided by cos2 0,

the resulting equation may be written

(40.5) h tan2 + (a
-

b) tan - h = 0,

from which we have, by means of the quadratic formula,

(40.6)

If for the moment we denote by 6\ and 2 the values of cor-

responding to the signs + and respectively before the radical,

we find that
tan 0, tan 2 = - 1.

This means that the #'-axis for the angle 6\ and the one for 2

are perpendicular to one another (see Theorem [7.3]). How-

ever, we are interested in finding a rotation of the axes so that

h' shall be zero, and consequently either solution (40.6) yields

the desired result. Since such a transformation is always pos-

sible, we have shown that any equation of the second degree

in x and y is an equation of a conic.

For example, if it is required to transform the equation

so that in the new coordinates there is no term in x'y', in this case

equation (40.5) is 2 tan 2 - 3 tan - 2 = 0. Solving this equation

by means of the quadratic formula, we obtain tan 6 = 2 or 1/2.

Taking the first root, we have sin 6 = 2/\/5, cos 6 = 1/V5, so that

the desired transformation (28.8) is

|-,
Substituting these expressions for x and y in the above equation and

collecting terms, we obtain as the new equation
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which, on completing the squares in x' and y', assumes the form

Consequently the curve is an ellipse, and with regard to the coordinate

system x', y' the center of the ellipse is at the point (1/VJ5, 1/2Vs)',

its semi-major axis is V372, and its semi-minor axis 1/2. The major
axis has the slope 2 in the ^-system.

From (40.3) we derive other results of importance. On add-

ing the expressions for a' and &', and making use of the fun-

damental identity

(40.7) sin2 + cos2 = 1,

we obtain

(40.8) a' + b' = a + b.

It is something of an exercise to calculate a'b
f

h'2 from (40.3),

but the reader will feel repaid when he finds that with the aid

of (40.7) the result is reducible to

(40.9) a'V - h'
2 = ab- h2

.

Thus we have found that when the coordinates in the general

expression of the second degree which is the left-hand member
of equation (40.1) are subjected to any transformation of the

form (28.8), the expressions a + b and ab h2 are equal to

the same expressions in the coefficients of the transform (40.2),

that is, the equation into which equation (40.1) is transformed.

In this sense we say that a + b and ab h 2 are invariants under
the transformation. Invariants are of fundamental impor-
tance in applications of transformations of coordinates, as we
shall see in what follows.

Returning to the general equation (40.1), we consider the

following three possible cases :

Case 1. ab h* = 0. From (40.9) it follows that in a co-

ordinate system for which h' = either a' or V must be zero,

but not both, otherwise (40.2) is of the first degree, and con-

sequently (40.1) is of the first degree. This latter statement

follows also from the fact that if a' = V = 0, then from (40.8)
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we have b = 0, and ab h2 = (a
2 + h2

)
= 0, which can

hold for real values of a and h only when both are zero. When
h' = 0, and either a' = or b' = 0, we have from Theorems

[39.1] and [39.2] that the curve is a parabola or two paral-
lel lines. Conversely, when the curve is a parabola or two

parallel lines, ob lfi
1

0, as follows from (40.9). This is an

example of the fact that when an invariant is equal to zero for

one coordinate system, it is equal to zero for every coordinate

system.
Case 2. ab - A2 > 0. When h

f = 0, it follows from (40.9)

that a' and b' are both positive or both negative, and in conse-

quence of Theorem [39.3] it follows that (40.1) is an equation
of a real or imaginary ellipse or a point ellipse.

Case 3. ab - h2 < 0. When h' = 0, it follows from (40.9)

that a' and V differ in sign, and in consequence of Theorem

[39.3] it follows that (40.1) is an equation of a hyperbola or

two intersecting lines.

Gathering together these results, we have the following

theorem :

[40.1] Equation (40.1) is an equation of a parabola or two

parallel or coincident lines when ab h2 = ; of a real

or imaginary ellipse or a point ellipse when ab h2 > ;

of a hyperbola or two intersecting real lines when ab h2 < 0.

This result may be given another form. We consider first

the case ab h2 = 0, from which it follows that a and b have

the same sign ; they can be taken as positive ; for, if they are

not positive, by changing the sign of every term in (40.1) we

make them positive. Consider now the terms of the second

degree in (40.1), that is, ax2 + 2hxy + by
2

. According as h is

positive or negative, when h is replaced by Va# or V06, the

above expression may be written (Va x V j)
2

; that is, the

terms of the second degree form a perfect square.

Ifab h2 7*Q and 6^0, the terms of the second degree are

equal to

| (by + hx + ^h2 -abx)(by + hx-
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as the reader can verify by multiplying these terms together.

These factors are real or conjugate imaginary according as

ab - h2 < or > 0. If b = 0, in which case ab - h2 < 0, the

factors of the terms of the second degree are x and ax + 2 hy,

both real and distinct. From this result and Theorem [40.1]

we have

[40.2] An equation (40.1) is an equation of a parabola or of two

parallel or coincident lines when the terms of the second

degree are a perfect square; it is an equation of an ellipse,

which may be real, imaginary, or a point ellipse, when the

factors of the terms of the second degree are conjugate imagi-

nary; it is an equation of a hyperbola or two real inter-

secting lines when the factors of the terms of the second degree

are real and distinct.

We consider now the equation

(40.10) (a& + btf + d)(a2x + b2y + c2 )
=

*,

where all the coefficients are real. In consequence of Theo-

rem [40.2], if the factors a\K + b\y and a2x + b2y of the terms

of the second degree are different, (40.10) is a hyperbola or

two intersecting lines according as k ^ or k = 0. When
k 7* 0, and the axes are rotated so that there is no term in

x'y', and an appropriate translation of the axes is made, if

necessary, each of the factors in (40.10) is transformed into a

factor homogeneous of the first degree, and these are such that

the terms of the second degree consist of the difference of a

multiple of x' 2 and a multiple of / 2
. Hence we have

(40.11) (ai'x
9 + fti'/X*!'*'

-
*,'/) = *.

From this result, the discussion leading up to Theorem [39.3],

and the definition of asymptotes in 37 it follows that the

lines whose equations are obtained on equating to zero the

factors in the left-hand member of (40.11), and consequently

those in (40.10), are the asymptotes of the hyperbola. Hence

we have

(40.3 J
An equation (40.10) for k ^ 0, such that the lines

(40.12) aix + btf + ci = 0, a2x + b2y + c2 =
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intersect, is an equation of a hyperbola for which these lines

are the asymptotes; and (40.10) for a suitable value of k

is an equation of any hyperbola having the lines (40.12) for

asymptotes.

The proof of the second part of this theorem is left to the

reader (see Ex. 4).

We consider next the case when the lines (40.12) are parallel

or coincident, in which case equation (40.10) may be written

(40.13) (ax + by + Cl ) (ax + by + c2 ) = *.

If we effect a transformation of coordinates for which

ax + by + Ci =

is the #'-axis, this equation becomes

where c2
' = if c2 = Ci, and c2

' ^ if c2 ^ CL In either case

this is an equation of two parallel or coincident lines, depending

upon the values of c2 ', k, a, and b. Hence we have

[40.4] An equation (ax + by + Ci)(ax + fry + c2 )
= & is an equa-

tion of two real or imaginary, parallel or coincident lines.

As a consequence of this result and Theorem [40.2] we have

[40.5] When the terms of the second degree in an equation (40.1)

are a perfect square, the locus is two parallel, or coincident,

lines or a parabola according as the equation can or cannot

be put in the form (40.13).

Consider the equation

(40.14) x* + xy-2y*-2x + 5y-2 = Q.

The terms of the second degree have the real factors x y and x + 2 y,

and consequently we seek constants d and e so that the above equation

shall assume the form

(40.15) (x -y + d)(x + 2y + e) = k.

When the two expressions in parentheses are multiplied together, we

get X2 + xy _ 2y* + (d + e)x + (2 d - e)y + de - k = 0.
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Comparing this equation with (40.14), we see that we must have

</ + 6 = -
2, 2 cf

-
<? = 5, de-k = -2;

from the first two of these equations it follows that d=l, e = 3, so

that for de - k to be equal to - 2, k must be - 1. Since k ^ 0, (40.14)

is an equation of a hyperbola and

* _.
>>, + 1

- and x + 2y-3 =
are its asymptotes. From these results it follows that the equation

obtained from (40.14), on replacing the constant term 2 by 3, is

an equation of two straight lines, since in this case k in (40.15) is

equal to zero.

In analyzing a general equation of the second degree for

which ab h 2 < 0, it is advisable to use the above process,

which yields the asymptotes when the locus is a hyperbola, and

equations of the lines when the locus is two intersecting lines.

EXERCISES

1. Determine the type of conic defined by each of the following

equations either by effecting a rotation of the axes or by using the

theorems of this section :

a. 5 x 2 - 4 xy + 8 y* + 18 x - 36 y + 9 = 0.

b. x 2 - 4 xy + 4 y
2 + 5 y - 9 = 0.

c. 2 x2 + 3 xy - 2 y 2 - 11 x - 2 y + 12 = 0.

d. x 2 + 2 xy + y 2 - 2 x - 2 y - 3 = 0.

e. x2 -4xy-2y 2 -2x + 7y-3 = Q.

2. Find the asymptotes of the hyperbola

2x2 -3xy-2y2 + 3x-y + S = Q,

and derive therefrom equations of the principal axes of the hyperbola.

3. Find an equation of all hyperbolas which have the coordinate

axes for asymptotes.

4. Show that a hyperbola is completely determined by its asymp-
totes and a point of the hyperbola, and apply this principle to find

an equation of a hyperbola whose asymptotes are 2 x 3 y + 1 = 0,

x + y 3 = and which passes through the point (1, 2).

5. Show that the centers of all hyperbolas whose asymptotes are

parallel to the coordinate axes and which pass through the points

(2, 5) and (3, 2) lie on the line 3x >~4 = 0; also find an equation

of the hyperbola of this set which passes through the point ( 2, 3).
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6. Find the eccentricity of a hyperbola with equation (40.10),

making use of Ex. 8 of 37.

7. Verify the following statement : An equation of a conic involves

a term in xy, if and only if the directrices (or directrix) are not parallel

to one of the coordinate axes.

41. The Determination of a Conic from Its Equation in

General Form

Having shown in 40 that the locus of any equation of the

second degree in x and y is a conic, or a degenerate conic, we
show in this section how one may determine whether a conic

is degenerate or not directly from the coefficients of its equa-
tion without effecting any transformation of coordinates. The
method used to establish these criteria gives at the same time

a ready means of drawing the graph of such an equation.

We consider then the equation

(41.1) ax2 + 2hxy + by
2 + 2fx + 2gy + c = 0,

and discuss first the case when b ^ 0, writing the equation in

the form

(41.2) by
2 + 2(hx + g)y + (ax

2 + 2 /* + c)
= 0.

Considering this as a quadratic in y with x entering into the

coefficients, and solving for y by means of the quadratic for-

mula, we have

(41.3) y=-** &
\^A,

where A is defined by

(41.4) A = (hx + g)
2 - b(ax

2 + 2fx + c)

= (h
2 -

ab)x
2 + 2(hg

-
bf)x + &

2 -bc.

For any value of x for which A is positive, the two values of y
given by (41.3) are the ^-coordinates of two points on the curve

having the given value of x for x-coordinate. For a value of x,

if any, for which A = 0, equation (41.3) reduces to
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that is, the point having for coordinates a value of x for which

A = and the value of y given by (41.5) is a point of intersec-

tion of the curve and the line

(41.6) hx + by + g = 0.

We may interpret (41.3) as follows: Draw, as in Fig. 37, the

graph of the line (41.6) ; at any point on the line whose

^-coordinate, say x\ 9 is such that A is positive, add and sub-

tract from the ^-coordinate of the point on the line the quantity
i
- VZi, where A\ is the value of A when x has been replaced

by xi ; the two values thus obtained are the ^-coordinates of

the two points on the curve for which the jc-coordinate is XL
In other words, these are the coordinates of the two points

in which the curve is met by the line x x\ = 0. If XQ is

such that for this value of

x the quantity A is equal

to zero, the two points

of intersection coincide

in the point on the line

hx +
for which y = j--

6
;

hence the line x #o =
is tangent to the curve at

this point (see 12, after

equation (12.8)) if the

curve is not a degenerate

conic. Fig. 37 is only sug-

gestive ; the position of pIG 37
the line hx+ by+ g= and

the position and shape of the curve depend upon the values of

the coefficients in (41.1).

From (41.3) it follows that (41.1) is an equation of two lines,

if and only if A is a constant or the square of an expression of

the first degree in x. In order that A shall be a constant, we
must have

/r -*fl. J. 1 /Z\AUi, i -t-^v^i;

(41.7) hg-bf=0,
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Sec. 41] The Determination of a Conic

in which case (41.3) is

(41.8)

which are equations of two parallel lines, real if g
2 bc> 0,

imaginary if g
2 be < 0, and of real and coincident lines if

g
2 -bc = 0.

We consider next the case when ab h2 ^ and A is a per-

fect square. The condition that A be a perfect square is

(41.9) (kg
-

bf)
2 -

(h
2 -

ab) (g
2 -

be) = 0.

The expression on the left reduces to

-
b(abc

- as
2 -

bf
2 - ch2 + 2jgh),

which is equal to bD 9 where D is defined by

a h f

(41.10) D = h b g

f

Since by hypothesis b ^ 0, we have that (41.9) is equivalent
to D = 0. When this condition is satisfied, equations (41.3)

are equivalent to

(41.11) by + hx + g^ (\fh
2 -abx+e\fg2 -bc) = 0,

since the square of the expression in parenthesis is equal to A
in consequence of (41.9), e being +1 or 1 according as

hg
-

bf > or < 0.

We consider now the above results for the various possi-

bilities as ab h2 is zero, positive, and negative, and also when
b = 0, in which case equation (41.1) is

(41.12) ax2 + 2hxy + 2fx + 2gy + c = Q.

As a result of this analysis the reader will be able to determine

completely the character of the locus of any equation of the

second degree from the values of the coefficients of the equa-
tion. It is suggested that, as he proceeds, he make a table of

the results of the analysis.

Case 1. ab - A2= 0. When b ^ and D = 0, we have (417),
as follows from (41.9), and consequently the locus is two parallel

or coincident lines (41.8). When 6 = 0, then h = 0, and (41.12)
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is an equation of two parallel or coincident lines, if and only if

g = 0, as follows from Theorem [39.2]. When b = h = g = 0, we
have D = 0. Accordingly we have

[41.1] When ab h2 = Q, the locus of equation (41.1) is a

parabola or two lines according as D ^ or D = ;

when D = and b ^ 0, the lines are parallel and real or

imaginary according as g
2 bc> or < 0, and real and

coincident if g
2 be = ; when D = and b = h = 0,

the lines are parallel and real or imaginary according as

f2 ac>Qor<Q, and real and coincident when/2 ac = 0.

The part of this theorem for D = 0, b 5* follows from (41.8).

When b = h = it follows from D = that g = 0. Hence we
have

which is obtained on solving (41.12) in this case.

Case 2. ab h2 > 0. Since this case does not arise when
b = 0, we have that when D = 0, equation (41.1) is equivalent
to two conjugate imaginary equations of the first degree (41.11),

whose common solution is real, and consequently (41.1) is an

equation of a point ellipse, which is a degenerate conic. When
DT* 0, (41.1) is an equation of a real or imaginary ellipse. In

order to distinguish these two types of an ellipse, we observe

that for the ellipse to be real there must be real values of x for

which A as defined by (41.4) is equal to zero, as follows when
one considers Fig. 37 for the case of an ellipse. The condition

for this to be so is that the left-hand member of (41.9) shall be

positive, that is, bD > 0. Hence we have

[41.2] When ab h2 > 0, the locus of equation (41.1) is a point

ellipse if D = ; if D ^ 0, it is a real or imaginary ellipse

according as bD > or < 0.

Case 3. ab h* < 0. When b ^ 0, it follows from (41.11)

and Theorem [40.1] that (41.1) is an equation of a hyperbola
or two intersecting lines according as D ? or D = 0. When
fr = 0, the factors of the second-degree terms in (41.12) are x
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Sec. 41] The Determination of a Conic

and ax + 2 hy. If then (41.12) is to be an equation of two

lines, there must exist numbers d and e such that

is equal to the left-hand member of (41.12). Multiplying these

expressions together and equating the coefficients of x and y
and the constant terms of the two expressions, we have

e + ad = 2f, hd = g, ed c.

Solving the first two equations for e and d and substituting in

the third, we have that the following condition must be

satisfied: ag2 + ch2 __ 2 fgh = t

which, since b = 0, is in fact D = 0. Hence we have

[41.3] When ab h2 < 0, the locus of equation (41.1) is a hyper-

bola or two intersecting lines according as D ^ or D = 0.

From the foregoing theorems we have

[41.4] An equation (41.1) is an equation of a degenerate conic, if

and only if the determinant D is equal to zero.

The algebraic equivalent of this theorem is the following :

[41.5] A quadratic expression

ax2 + 2hxy + by
2 + 2fx + 2gy + c

is equal to the product of two factors of the first degree, if

and only if D = 0.

It follows from this theorem that a quadratic form

ax 2 + by
2 + cz 2 + 2hxy + 2fxz + 2 gyz

is the product of two linear homogeneous factors in x, y, and

2, if and only if D = 0. (See page 267.)

When by means of Theorems [41.4] and [41.2] the reader

finds that the locus of a given equation is a degenerate conic

which is not a point ellipse, he should reduce the equation to

the product of two factors of the first degree in x and y, after

the manner of the exercise worked toward the end of 40, and

interpret the result geometrically.
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EXERCISES

1. Using the method of this section, draw the graphs of the equa-

tions of Ex. 1, 40.

2. For what value of c is

an equation of two intersecting lines ? Find equations of the lines.

3. For what values of k is D = for equations (40.10) and (40.13) ?

4. Show that when (41.1) is an equation of a real ellipse, the values

of x for which A, defined by (41.4), is positive lie between the roots

of the equation A ; when (41.1) is an equation of a hyperbola, the

values of x for which A is positive are less than the smaller of the two

roots and greater than the larger of the roots of A = if the roots are

real, that is, if bD> 0. Discuss the case when bD < 0.

5. Show that the line (41.6) is the locus of the mid-points of a set

of parallel chords of the conic ; and that when the conic is a parabola

it is a line parallel to the axis of the parabola (see Theorem [34.1]).

6. Show that when (41.1) with b ^ is an equation of a central

conic, the x-coordinate of the center is one half the sum of the roots

of the equation A = 0, where A is defined by (41.4), and that the

coordinates xQt y$ of the center are given by

_bf- hg _ag- hf

Discuss the case when 6 = 0.

7. Assume that a ^ in equation (41.1) ; consider the equation as

a quadratic in x with y entering in the coefficients, and discuss the

solution for x in a manner similar to that developed in this section.

8. Show that, when an equation of a hyperbola is written in the

form (40.10), equations of its principal axes are (see (10.10))

a\x + biy -f Ci = . a2x -f b2y + c2
1

<?2V02
2 + fc

2

Apply this result to find the principal axes of the hyperbola (40.14).

9. Show that when ab h2 ^ for an equation (41.1) there exists

a number c such that

ax 2 + 2hxy + by
2 + 2fx +

is the product of two factors of the first degree.
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10. Show that in consequence of Ex. 9 and (41.11) equation (41.1)

can be written

[(A + V/*2 -06)x + by + g + eVg2 - be] [(h
- VA2 - ab)x + by + g
- e^/g^-bc] = b(c

-
c),

where e is + 1 or - 1 according as hg
-

bf > or < 0. Show that for

the hyperbola (40.14) c = -
3, and obtain by this method the results

following (40.15).

11. Show that x 2 - 2 xy + 2 y 2 - 2 x + 4 y = is an equation of

an ellipse, and obtain its equation in the form (40.10) by the method
of Ex. 10.

42. Center, Principal Axes, and Tangents of a Conic

Defined by a General Equation

In accordance with Theorem [6.3],

(42.1) x = xi + tu, y = yi + tv

are parametric equations of the line through the point (x\ 9 y\)

and with direction numbers u and v, t being proportional to the

directed distance from (x\, y\) to a representative point (x, y).

In order to find the values of /, if any, for points in which the

line so defined meets the curve

(42.2) ax2 + 2hxy + by
2 + 2fx + 2gy + c = Q,

we substitute the above expressions for x and y and obtain the

equation

(42.3)

(au
2 + 2huv + bv2)t

2 + 2[(ax { + hy l +f)u + (kxi + by l + g>]/

+ (axS + 2 hxiyi + by{
2 + 2fxi + 2gyi + c)

= 0.

We make use of this result in the discussion of a number of

questions.

If (xi, y\) is to be the mid-point of the chord of the conic

with direction numbers u and v, that is, the line segment with

the points of intersection of the line and the conic as end points,

the two solutions of (42.3) must differ only in sign, and hence the

coefficient of / in (42.3) must be equal to zero ; that is,

(42.4) (ax, + hy l +f)u + (hXl + byi + g)v = 0.
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In order that (x\, y\) shall be the center of the conic, it must

be the mid-point of every chord through it, and consequently

(42.4) must hold for every value of u and v. This means that

the center (JCG , ;yo), if the conic has a center, is given by

(42.5) ax<> + hy +f=Q, hx + byo + g = Q.

By Theorem [9.1] these equations have one and only one com-

mon solution if ab h2 ^ 0. When this condition is satisfied,

the coordinates of the center are given by (see 41, Ex. 6)

If the conic (42.2) is not degenerate, these are the coordinates

of the center of an ellipse when ab h2 > 0, and of the center

of a hyperbola when ab h2 < 0.

If the conic is degenerate and ab h2 ^ 0, and (*o, yo) is

now the intersection of the two real or imaginary lines,

then the expression in the last parentheses in (42.3) is equal

to zero. Also, if u and v are direction numbers of either of the

lines, equation (42.3) must be satisfied for every value of /.

Consequently we have (42.4) holding, and also

au2 + 2huv + bv2 = 0.

From this it follows, as shown before, that the lines are real

or imaginary according as ab h2 < or > 0. Since (42.4)

must hold for the direction numbers of the two lines, we again
obtain equations (42.5). Consequently the coordinates of the

vertex, that is, the point of intersection of the lines, are given

by (42.6). When equation (42.2) is written in the form

(42.7) (ax + hy+f)x+(hx + by + g)y+fx + gy + c = 0,

it foUows from (42.5) that

(42.8) fxo + gyo + c = 0.

This equation and equations (42.5) have a common solution,

if and only if D = 0, where D is defined by (41.10) ; this result

is in accord with Theorem [41.4]. Hence we have

[42.1] When ab h2 ?* 0, the conic (42.2) is a central conic with

center (42.6) when D ^ 0, and is a degenerate conic with

vertex (42.6) when = 0.
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Sec. 42] Center, Principal Axes, and Tangents

When ab-h2 = 0, by Theorem [9.3] equations (42.5) do
not have a common solution unless hg bf = and hf ag = 0,

in which case the conic is degenerate, as follows from (41.9)

and (41.11). Thus, as stated in 35, a parabola does not have a

center. When the conic is degenerate, and consists of two parallel

or coincident lines, equations (42.5) are equivalent; they are

equations of a line of centers, that is, a line of points of symmetry.
Returning to the consideration of equation (42.4), we ob-

serve that for fixed values of u and 0, any point of the line

(42.9) (ax + hy +f)u + (hx + by + g)v = 0,

for which the values of / given by (42.3) are real when xi and

y\ are the coordinates of such a point, is the mid-point of the

chord through this point and with direction numbers u and v.

Hence we have

[42.2] Equation (42.9) is an equation of the locus of the mid-

points of the set of parallel chords with direction numbers

u and v.

In order that (42.9) shall be an equation of a principal axis,

that is, a line of symmetry of the conic (42.2), the line (42.9)

must be perpendicular to the chords it bisects ; consequently

u and v must be such that they are direction numbers of the

perpendiculars to the line. When equation (42.9) is written

(au + hv)x + (hu + bv)y + (fu + gv) = 0,

we observe that au + hv and hu + bv are direction numbers of

any line perpendicular to (42.9) by Theorem [6.9]. Conse-

quently u and v must be such that

au + hv = ru, hu + bv = rv,

where r is a factor of proportionality ;
r ^ 0, otherwise there

is no line (42.9). When these equations are written

(42.10) (a-r)u + hv = 0, hu+(b-r)v = Q,

we have that a solution u, v, not both zero, of these equations is

given for each value of r, other than zero, satisfying the equation

r h

h b-r
223
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as the reader can readily show. When this equation is expanded,
it becomes

(42.12) r2 - (a + b)r + (ab
- A2) = 0.

This equation is called the characteristic equation of equation

(42.2). We consider the two cases when ab h2 = Q and
ab-h2

9* 0.

Case 1. ab h* = 0. In this case r a -f b is the only non-

zero root, and from (42.10) we have

- = - = -
v~ b~ h

In consequence of this result equation (42.9) reduces to

(42.13) (a + b)(hx + by) +fh + gb = 0.

Hence we have (see 41, Ex. 5)

[42.3] When (42.2) is an equation of a parabola, (42.13) is an

equation of the principal axis of the parabola.

Case 2. ab-h*7 0. In this case the solutions of (42.12)

are found by the use of the quadratic formula to be

(42.14) r =

and are always real numbers. The two roots are different, un-

less o = b and h = 0, in which case the conic is a circle (see

12). In any particular case, other than that of a circle, with

the two values of r from (42.14) two sets of values of u and v

may be found from (42.10), which when substituted in (42.9)

give the two principal axes of the conic.

When the left-hand member of (42.2) is the product of two

factors of the first degree, in which case by Theorem [41.5]

D = 0, and a transformation of coordinates is effected, the re-

sulting expression in x f

, y' is the product of two factors of the

first degree, and consequently D' = for this expression, where

D' is the corresponding function (41.10). From this result it

does not follow necessarily that D = D' in general, but we shall

show that this is true, and consequently that D is an invariant
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under any transformation of rectangular coordinates. We prove
this not by direct substitution, but by the following interesting

device. We denote by f(x, y) the left-hand member of (42.2),

and consider the expression

(42.15) /(*,jO-r(*2 + y2 +l),

that is,

(a
-

r)x
2 + 2hxy+(b- r)y

2 + 2fx + 2gy+(c- r).

By Theorem [41.5] the condition that this expression shall be

the product of two factors of the first degree is that r shall be

such that a _ r h j
h b-r g = 0.

/ g c-r

This equation, upon expansion of the determinant, is

(42.16) r3 - /r2 + Jr - D = 0,

where

(42.17) / = a + b + c, J = ab + be + ac - h2 -f2 -
g
2

.

When a rotation of the axes (28.8) is applied to (42.15), we
obtain

(42.18) /'(*', /)-r(*'2 + /2 +l),

where /'(*', y') denotes the transform of f(x 9 y), that is, the ex-

pression into which f(x, y) is transformed. If (42.15) is the

product of two factors of the first degree, so also is (42.18) and

we have ^ _ //r2 + Jftf
_ D , = ^

where /', J', and ZX are the same functions of a',
- -

, c' as /,

/, and D respectively are of a,
- -

, c. Since r is not affected

by the transformation, it follows that / = /', / = /', D = D'.

Consequently /, /, and D are invariants under any rotation

of the axes.

When a translation (28.1) is applied to f(x, y), a, ft, and h are

not changed, and we have

/'(*', y') = ax'2 + by'
2 + 2 hx'y' + 2(ax + hy +f)x'

+ 2(hx + by<> + g)y' +/(*<>, JVo).
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For this expression D' is

a h

h b + g

If, considering f(xQ , yo) expressed in the form (42.7), we sub-

tract from the last row the first row multiplied by XQ and the

second multiplied by yQ , we have

a h axo

h b hx + by + g

f g fxo +
which is seen to be equal to D. Since any transformation of

rectangular coordinates is equivalent to a rotation and a trans-

lation, we have

[42.4] The function D of the coefficients of an equation of the

second degree in x and y is an invariant under any change

of rectangular coordinate axes.

Since, as shown in 40, a + b and ab h2 are invariants, it

follows that the roots of the characteristic equation are the

same in every coordinate system. When by a rotation of the

axes equation (42.2) is transformed into an equation without

a term in xy, it follows from (42.11) that the coefficients of

the terms in x2 and y2 are the roots of the characteristic equa-
tion. Hence, when one finds the roots of the characteristic

equation of an equation (42.2), one has obtained the numbers
which are the coefficients of the second-degree terms in an

equation without a term in xy into which (42.2) is transformable.

In accordance with the theory of algebraic equations it fol-

lows from (42.12) that

(42.19) ab-h2

where r\, r2 are the roots of (42.11). We consider the cases

when ab h2 ^ and ab - h2 = 0.

Case 1. ab-/i2 ^0. From (42.19) it follows that both

roots are different from zero, and from the results of 40 that

(42.2) is transformable into an equation of the form

ax2 + by
2 + c = 0.
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In this case r\ = a, r2 = b, and D = abc = rir2c. Consequently
in an appropriate coordinate system an equation of the conic is

(42.20) n*2 + r2y2 + = 0.
7ir2

Hence we have

[42.5] Equation (42.2) for which ab h2 ^ is 0w equation of

an ellipse or of a hyperbola, when D ^ 0, according as the

roots have the same or opposite signs; it is degenerate

when D = 0-

Case 2. ab 7z
2 = 0. From (42.19) it follows that at least

one of the roots is zero, and the reader can show that the other

is not zero (see Ex. 6). From the results of 40 it follows that

(42.2) is transformable into an equation of the form

ax2 + 2 by = or ax2 + c=* 0.

In both cases we may take TI = a, r2 = 0. In the first case

D = rife
2

; in the second case D = 0. Hence an equation of

the conic is

(42.21) ri*
2 + 2x y = or n*2 + c = 0.\ r\

The second equation is an equation of two parallel or coinci-

dent lines according as c ^ or c = 0. In the latter case every

point of the coincident lines is a point of symmetry and lies

on the locus. Consequently, if c in the second of equations (42.21)

is to be zero, the common solutions of equations (42.5) for a

given equation (42.2) must be solutions of the given equation.
The preceding results are set forth in the following table, in

which the canonical, or type, form of an equation of a conic

is given in terms of the roots of its characteristic equation :

ri*
2 +W2 + =

. . . Ellipse or hyperbola
ri/2

...... Two lines

=
. . . Parabola

a ~~ ~
= 0* ....... Two parallel or coin-

^
cident lines

*c = if (42.5) and (42.2) have a common solution.
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When in a particular problem one has found the values of the

roots, he is able to determine completely the form of the conic,

but in order to find its position relative to the given coordinate

axes it is necessary that he find the principal axes, or axis, by
means of (42.9) and (42.10).

We consider finally the case when (x\, y\) is a point of the

conic and (42.1) are equations of the tangent to the conic at

this point. Since the point (x\ y y\) is on the conic, the expres-

sion in the last parentheses in (42.3) is equal to zero. Conse-

quently one solution of (42.3) is / = 0, for which from (42.1)

we have the point (xi, y\). The other solution of (42.3) when
substituted in (42.1) gives the coordinates of the other point

in which the line meets the conic. If the line is to be tangent
at (*i, ;yi), this other solution also must be zero, that is, u
and v must be such that

(axi + hyi +f)u + (hx l + by, + g)v = 0.

From this it follows that hxi + by\ + g and (ax\ + hy\ +/),

being proportional to u and v, are direction numbers of the

tangent, and consequently an equation of the tangent at the

point (*i, ;vi) is

x-xi
|

y-yi =0

When this equation is cleared of fractions, and the expression

axi
2 + 2 hxiyi + by,

2
is replaced by -

(2fxi + 2gyi + c), to

which it is equal, as follows from (42.2), we have

[42.6] An equation of the tangent to the conic (42.2) at the point

(xi, y\) is

(42.22)

EXERCISES

1. Find the axis, vertex, and tangent at the vertex of the parabola

4x 2 -12xy + 9y 2 -3x-2y + 4 = Q.

2. Find the principal axes and center of the following :

a. 8 x 2 - 4 xy + 5 y 2 - 36 x + 18 y + 9 = 0.

b. 2 x2 -4ry - y
2 + 7x-2>> + 3 = 0.

Show that the axes are perpendicular to one another.
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3. Show that when (42.2) is an equation of a central conic, and a

translation of axes is effected by the equations jc = %' -f * , y = y
r + yo,

for which the point (* , .yo) is the center, in the resulting equation
there are no terms of the first degree in %' and y'. Apply this process

to the equations in Ex. 2.

4. Determine whether equations (34.5), (36.7), and (36.7') con-

form to Theorem [42.6], and formulate a rule for obtaining (42.22)

from (42.2).

5. Find equations of the tangent and normal at the point (2, 1)

to the conic 2* a -4*> + 3j a -2* + 3j'-12 = 0.

6. Show that not both of the roots of the characteristic equation

(42.12) can be zero.

7. By finding the roots of the characteristic equation determine

completely the form of each of the conies in Ex. 2 and also in 40, Ex. 1.

8. What is the character of the locus of equation (42.2), for which

ab h2 = 0, when it is possible to derive by a translation of axes an

equation in which there are no terms of the first degree in x
f and y' ?

9. Prove that the centers of the conies whose equations are

ax 2 + 2hxy + by
2 + 2 fix + 2 gty + c = 0,

as the parameter t takes different values, lie on a straight line through
the origin.

43. Locus Problems

In the closing paragraphs of 13 we explained what is

meant by finding the locus of a point satisfying certain geo-

metric conditions. In 32 it was stated that when a locus is

defined geometrically and without reference to a coordinate

system, the reader is free to choose any set of coordinate axes

in obtaining an equation of the locus, but that it is advisable

that axes be chosen in such manner relative to the geometric

configuration as to obtain an equation in simple form. In

some cases the choice of an axis of symmetry, if there is such,

as one of the coordinate axes tends toward simplicity in the

equation. We give below two examples to be studied before

the reader proceeds to the solution of the exercises at the end
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of this section. Before doing so he should understand that in

certain cases only a portion of the graph of an equation ob-

tained for a given problem is the locus, that is, some points

of the graph do not satisfy the geometric definition of the locus
;

and the reader must have this in mind as he interprets geo-

metrically any equation he has obtained.

1. Find the locus of the vertex of a triangle whose base is fixed

in position and length, and whose

angles are such that the product of

the tangents of the base angles is a

constant, not zero.

We choose the base of the

triangle for the #-axis and its

mid-point for origin. If we denote ^'(-a,o)
|

(*.o) A(a,o)

by 2 a the length of the base, its

end points are A'( a, 0) and

A (a, 0). In accordance with the problem (see Fig. 38),

tan PA'A - tan PAA' = k (* 0).

If, as in the figure, the base angles are acute, the constant k is

positive. If P lies so that one of the base angles is obtuse, k

is negative. In both cases we have from the above equation

When P lies below the #-axis, each y in the equation must be

replaced by y, but this does not change the equation. All

such considerations as these must be taken into account in

studying a problem, if one is to be sure that one is handling

every aspect of it.

When the above equation is written in the form

r2 v 2

+JL = 1

a2
T

ka2 '

it is seen that when k > the curve is an ellipse, and that A'A
is the major or minor axis according as k < 1 or k > 1

;
and

that when k < 0, the curve is a hyperbola with A 'A for trans-

verse axis. In both cases all points of the curve except A' and
A satisfy the definition of the locus.
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2. The base of a triangle is given in length and position, and
one of the angles at the base is double the other; find the locus

of the vertex.

We take the base as the *-axis

and its mid-point as origin, with ^x#>

the result that the coordinates

of the ends of the base are of

the form (- a, 0) and (a, 0). We "7^5 o B\x.o) &o)
denote the angle at ( a, 0) by
</> and the angle at (a, 0) by 2 c/>

(see Fig. 39). In accordance with F 3Q
the definition of the locus we have

(43.1) tan <f>
= 2> tan 2 = 2

a + x a x

Dividing the first equation by the second and solving for x, we
obtain

(A* ?\ r - ^(tan 2 - tan </>)

(^} X ~
tan 2

</> + tan </>

From this result and the first of (43.1) we obtain

MQTV _2 a tan tan 2
^ ' y "

tan 2 </> + tan </>

'

Thus % and y are expressed in terms of as a parameter, and

equations (43.2) and (43.3) are parametric equations of the locus.

In many locus problems, particularly those in which the

point P is defined with respect to movable points and lines, it is

advisable to use a parameter, and in some cases several para-

meters which are not independent but connected by n 1

relations, n being the number of parameters. By eliminating the

parameters from these equations and from the two expressions

for x and y in terms of these, we obtain an equation in x and

y of the locus.

In the above problem the equation of the curve in x and y
is obtained by eliminating from (43.2) and (43.3), or more

readily from (43.1) by using the formula from trigonometry

tan 2 = 2 tan </(! tan2 0). This gives the equation
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this equation is equivalent to y = 0, the *-axis, which is an evi-

dent solution of the problem, and to the equation obtained by
equating to zero the expression in parentheses. When this

equation is written

(43.4)

it is seen to be an equation of a hyperbola with center at the

point
(

,

0],
vertices at ( a, 0) and

h|,
V and semi-

conjugate axis 20/V3. Only the branch of the hyperbola

through the vertex (f ,
)
satisfies the conditions of the problem,w /

as one sees geometrically.

This problem is of historical interest because of its relation to

that of the trisection of an angle, a problem which goes back to the

Greeks, who endeavored to obtain a construction for trisecting an

angle, using only a ruler and a compass. Years ago it was shown

by algebraic considerations that this is impossible for a general angle,

but many people keep on trying to do it. We shall show that it can

be done by means of a hyperbola constructed not point by point but

continuously (see \ 35 after Theorem [35.1']).

Suppose that on a line A'( a, 0)A(a, 0) the hyperbola (43.4) has

been accurately constructed, as shown in Fig. 40. Through the

point A' and below the line A'A a

line is drawn making an angle of

90 - 6 with the line A'A, 6 being a

given acute angle. Denote by C the

point of intersection of this line and

the perpendicular to A'A at its mid-

point 0. With C as center and CA'
as radius describe a circle, meeting
the branch of the hyperbola through

(|
(A in the point P. The angle

A'CA is equal to 2 0; consequently

A'(-0,0)

FIG. 40

the angle A'PA is (360 -26) = 180 - 0. But by the above problem
the angle A'PA is 180 -30. Consequently = J 9, as was to be

shown.

From this result it follows that if a hyperbola could be constructed

continuously, instead of only point by point, by means of a ruler and
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compass, a given angle could be trisected by this means; since it

has been shown, as remarked above, that the latter is impossible, it

follows that a hyperbola cannot be constructed continuously by means
of ruler and compass, although it can be by other means (see 35).

EXERCISES

1. Find the locus of a point the sum of the squares of whose dis-

tances from two fixed points is constant.

2. Find the locus of a point whose distances from two fixed points
are in constant ratio.

3. Find the locus of a point the square of whose distance from a

fixed point is a constant times its distance from a fixed line not passing

through the fixed point.

4. Find the locus of a point the sum of the squares of whose dis-

tances from two intersecting lines is constant.

5. Find the locus of a point such that the square of its distance

from the base of an isosceles triangle is equal to the product of its

distances from the other two sides.

6. Find the locus of a point such that the length of a tangent

drawn from it to one of two given circles is a constant times the length

of a tangent drawn from it to the other circle.

7. Find the locus of a point the sum of whose distances from two

fixed perpendicular lines is equal to the square of its distance from

the point of intersection of the lines.

8. Find the locus of a point the sum of the squares of whose dis-

tances from two fixed perpendicular lines is equal to the square of

its distance from the point of intersection of the lines.

9. Find the locus of a point the product of whose distances from

two fixed intersecting lines is constant.

10. Find the locus of a point the sum of the squares of whose dis-

tances from two adjacent sides of a square is equal to the sum of the

squares of its distances from the other two sides.

11. Find the locus of a point which is the center of a circle passing

through a fixed point and tangent to a fixed line.

12. Find the locus of a point which is the center of a circle tangent

to a fixed line and to a fixed circle.
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13. Given two parallel lines LI and L%, and a third line L3 per-

pendicular to the first two, find the locus of a point the product of

whose distances from LI and L3 is a constant times the square of its

distance from L3 .

14. Given a circle which is tangent to a given line L at the point A ;

denote by B the other end of the diameter through A ; through A
draw a line and denote by Q and R its points of intersection with the

circle and with the tangent to the circle at B. The locus of the point

of intersection of a line through Q parallel to the line L and of a line

through R parallel to the diameter AB as the line through A is rotated

about A is called the witch of Agnesi. Find an equation of the locus

and draw its graph.

15. Through the point (2, 0) a line is drawn meeting the lines y = x

and y = 3 x in the points A and B. Find the locus of the mid-point of

AB for all the lines through (2, 0).

16. A variable line makes with two fixed perpendicular lines a

triangle of constant area. Find the locus of the point dividing in

constant ratio the segment of the variable line whose end points are

on the two fixed lines.

17. A variable line is drawn parallel to the base BC of a triangle

ABC, meeting AB and AC in the points D and E respectively. Find

the locus of the intersection of BE and CD.

18. A set of parallel line segments are drawn with their ends on
two fixed perpendicular lines. Find the locus of the point dividing
them in the ratio h : k.

19. One side of each of a set of triangles is fixed in position and

length, and the opposite angle is of fixed size. Find the locus of the

centers of the inscribed circles of these triangles.

20. Find the locus of the intersection of the diagonals of rectangles

inscribed in a given triangle, one side of each rectangle being on the

same side of the triangle.

21. In a rectangle ABCD line segments EF and GH are drawn pai
allel to AB and BC respectively and with their end points on the sides

of the rectangle. Find the locus of the intersection of HF and EG.

22. Find the locus of the mid-points of the chords of a circle which
meet in a point on the circle.
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23. Given the base AB of a triangle ABC, find the locus of the

vertex C,

(a) when CM 2 CB 2
is constant ;

(b) when CA 2 + CB2
is constant;

(c) when CA/CB is constant;

(d) when the angle at C is constant ;

(e) when the difference of the base angles A and B is constant.

24. Given the base AB and the opposite angle C of the triangle

ABC, find the locus of the point of intersection of the perpendiculars
from A and B upon the opposite sides.

25. AB is a fixed chord of a circle and C is any point of the circle.

Find the locus of the intersection of the medians of the triangles ABC.

26. AB is a line segment of fixed length and position, and C is any
point on a line parallel to AB. Find the locus of the intersection of

the three altitudes of the triangle ABC; also the locus of the inter-

section of the medians.

27. Through each of two fixed points P\(x\, y\) and PaOfe, ^2) lines

are drawn perpendicular to one another ; denote by A and B the points

in which these lines meet the j-axis and #-axis respectively. Find the

locus of the mid-point of AB. (Use the slope of either line as parameter.)

28. Show that the locus of a point the tangents from which to an

ellipse are perpendicular to one another is a circle. This circle is called

the director circle of the ellipse.

29. Find the locus of a point the tangents from which to the

parabola y
2 = 4 ax include an angle of 45. (Use the slopes m\ and m2

of the tangents as parameters.)

30. Find the locus of the extremities of the minor axes of the

ellipses which have a given point for focus and a given line for directrix.

31. Find an equation of the locus of

a point the product of whose distances

from two fixed points is a constant k2
.

Observe that as k2 takes on different

values, the curve varies in form ; these

curves are known as the ovals of Cassini.

When k is equal to half the distance

between the points, the curve is the

lemniscate (see 29, Ex. 1).
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32. Find the parametric equations of the cycloid, the locus de-

scribed by a point P on the circumference of a circle as the circle rolls

along a fixed line, using as parameter the angle at the center C of

the circle formed by the line CP and the perpendicular to the line on

which the circle rolls.

33. Through each of two fixed points PI and P2 lines are drawn so

as to intercept a constant length on a fixed line below PI and P2 ; find

the locus of the intersection of the variable lines. Can the line PiP2

be parallel to the fixed line?

34. Find the locus of the points of contact of the tangents drawn
to a set of confocal ellipses from a fixed point on the line of the major
axes of the ellipses (see 36, Ex. 14).

35. Given two concentric ellipses one within the other, and with

their principal axes on the same lines, if P is the pole with respect to

the outer ellipse of a line tangent to the inner ellipse, find the locus of P.

36. Find the locus of the centers of the conies

ax 2 + 2hxy + by
2 + 2 gy = 0,

when a, h, and g are fixed and b varies (see (42.6)).
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The Quadric Surfaces





it

44. Surfaces of Revolution.

The Quadric Surfaces of Revolution

When one thinks of a surface, among the first examples which

come to mind are the plane and the sphere. In 17 we showed
that any equation of the first degree in x, y, z is an equation of

a plane. In consequence of (15.2) an equation of a sphere of

radius a and center at the origin is x2 + y2 + z2 = a2 . In these

two cases the coordinates of any point of the surface are a

solution of a single equation in the coordinates. Whether we
use rectangular coordinates, or spherical coordinates, or any
other, we say that the locus of a point in space whose coordinates

satisfy a single equation is a surface. When rectangular co-

ordinates are used and one of the coordinates does not appear
in the equation, the locus is a cylinder whose elements are

parallel to the axis of this coordinate. For example, if z does not

appear in the equation, the locus is a cylinder whose elements

are parallel to the 2-axis. In fact, if (xi, y\, z\) is any point on

the surface, so also is (*i, y\ y
22 ), where z2 is any z, because the

equation imposes a condition upon x and y and none upon 2,

and after x and y have been chosen to satisfy the equation
these two and any z are coordinates satisfying the equation.

A line in space may be thought of as the intersection of two

planes. In fact, in rectangular coordinates a line is defined by
two equations of the first degree in x, y, and 2, as was done in

19. Thus a line is a special case of a curve, which may be

defined as the intersection of two surfaces ; that is, a curve in

space is defined by two independent equations. In the ry-plane

the circle with center at the origin and radius a has as an

equation x2 + y2 = a2
, but when thought of as a curve in space

it has in addition the equation 2 = 0. From the viewpoint

of space the former of these equations is a circular cylinder

with the 2-axis for its axis, and consequently the circle under

consideration is the intersection of this cylinder and the plane

2 = 0.

Ordinarily the curve of intersection of two surfaces, neither

of which is a plane, does not lie entirely in a plane. Such a

curve is called a twisted, or skew, curve, and one which lies

entirely in a plane is called a plane curve. Consider, for

239



The Quadric Surfaces [Chap. 5

example, the curve defined in terms of a parameter / by the

equations

(44.1) * = /, >>
= /

2
, z = /

3
.

This curve meets the plane

ax + by + cz + d = Q

in the points for which the parameter / has values which satisfy

the equation at + ^2 + Ct
3 + ^ _ Q

Consequently at most three of the points of the curve lie in any
one plane. The curve defined by (44.1) is called a twisted cubic.

When a plane curve in space is revolved about a line in its

plane, the surface generated is called a surface of revolution. For

example, when a circle is revolved about a diameter, the surface

generated is a sphere. If a curve lying in the ry-plane is re-

volved about the #-axis, each point of the curve describes a

circle with center on the #-axis. Let P(x, y, z) be a representa-

tive point of such a surface ; for all other points of the same

circle as P the coordinate x is the same and y and z are differ-

ent, but they are such that Vy2 + z2 is the same, since it is the

radius of the circle. When P is in the ry-plane, y is the radius

and 2 = 0. Hence an equation of the surface is obtained from

an equation of the curve in the plane z = on replacing y by

We apply this process to the parabola with the equation

y* = 4 ax in the plane 2 = 0, and get the equation

(44.2) y2 + z2 = 4 ax ;

the surface generated is called a paraboloid of revolution. If the

parabola is revolved about the .y-axis, by an argument similar

to the above we have

y2 = 4 aV*2 + z2 .

Squaring both sides, we obtain the equation of the fourth degree

y* = l6a2
(x

2 + z2),

and consequently the surface generated is said to be a surface

of the fourth degree. The preceding examples illustrate the

fact that when a curve is symmetric with respect to the line

about which it is revolved, the degree of the surface is the same
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as the degree of the curve, but when the curve is not symmetric
with respect to this line, the degree of the surface is twice that

of the curve. Another example of the latter case is afforded by
the rotation of the line ax + by = about the #-axis. The sur-

face generated is a cone, consisting of what the reader might
consider as two right circular cones with the #-axis as common
axis, an element of one cone being the prolongation through its

vertex of an element of the other. An equation of the surface is

(44.3) a2x2 = b*(y
2 + z2).

According as the ellipse ~+^ = l, z = 0is revolved about

the #-axis or the ;y-axis, the surface generated has as an equation

4- Z2 X2 4- Z2 V2T z i
Qr

* -f z
_i JL i

a2 ^fr2

When a > b, the first surface has a shape somewhat like a foot-

ball, and is called a prolate spheroid] the second surface is

discus-like in shape, particularly when b is much smaller than

a, and is called an oblate spheroid ; when a < b, the situation

is reversed.
2

According as the hyperbola
~

^1
= 1, 2 = is revolved

about the *-axis or the y-axis, the surface generated has as

an equation

The first surface consists of two parts analogous to Fig. 45, and

is called a hyperboloid of revolution of two sheets ; the second sur-

face is shaped somewhat like a spool of endless extent, and is

called a hyperboloid of revolution of one sheet. When the asymp-
totes are rotated simultaneously with the hyperbola, they

generate cones with the respective equations

,AAG\ % y z n * * :v_A
(44.6)

--i =0, -^----0.
In the first case the two sheets of the hyperboloid lie inside the

two parts of the cone, one in each part ; in the second case the

cone lies inside the hyperboloid.
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EXERCISES

1. Show that the curve (44.1) is the intersection of the cylinders

y = x* 9 z = x3
, y* = z2 .

2. Show that for each value of / the corresponding plane

3 t
2x - 3 ty + z - f

3 =
meets the curve (44.1) in three coincident points, and that ordinarily

through a point in space not on this curve there are three planes each

of which meets the curve in three coincident points.

3. Show that the curve x = a cos t, y = a sin t, z bt lies on the

cylinder x 2 + y 2 = a2
,
and that it is not a plane curve.

4. Find an equation of the cone generated by revolving the line

2# 3;y + 6 = about the #-axis. Find the vertex of the cone and

the curve in which the cone intersects the .yz-plane.

5. Find an equation of the torus generated by revolving about

the >>-axis the curve (x a)
2 + y2 b2 = 0, z = 0, where b < a.

6. Find the locus of a point equidistant from the point (a, 0, 0)

and the plane x -f a = 0.

7. Find the locus of a point equidistant from the 2-axis and the

plane z = 0.

8. Find the locus of a point the sum of whose distances from the

points (c, 0, 0) and ( c, 0, 0) is a constant ; also the locus when the

difference of these distances is a constant.

9. Find the points in which the surface x 2 + y
2 z2 + 7 = is

met by the line

by finding the values of / for which x, y, and z given by equations (i)

are coordinates of a point on the surface.

10. Find the points in which the surface x 2 2 xy + 3 z 2 5 y + 10=
is met by the line a 3 __ ^ + 2 _ z- 3

~~T~~ -2 ~~~2~'
and interpret the result.

11. Show that the curve of intersection C of the quadric

x 2 + y 2 - 5 z2 - 5 =
and the plane x = 3 z lies on the cylinders y2

-f 4 z2 5 = and

4 x2
-f 9 y2 45 = 0. What are the respective projections of C on

the coordinate planes, and what kind of curve is C?
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12. Show that the line x-l=y-2=z+l lies entirely on the

surface z2 -xy + 2x + y + 2z-l = Q.

13. Find equations of the projections upon each of the coordinate

planes of the curve of intersection of the plane * .y + 22 4 =
and the surface x2

yz + 3 x = 0.

45. Canonical Equations of the Quadric Surfaces

On interchanging x and z in (44.2), the resulting equation
is a special case of

(45.1) ax2 + by
2 = cz,

in which a and b have the same sign. A plane z = k, where k is a

constant, intersects the surface in the curve whose equations are

(45.2) ax2 + by
2 = ck, z = k.

The first of these equations is an equation of an elliptical cyl-

inder, and consequently the curve is an ellipse. In like manner
a plane y k intersects the surface in the curve

(45.3) ax* =

which is a parabola ; a similar result follows for a plane x = k.

When a and b in (45.1) differ in sign, the curve of intersection

(45.2) is a hyperbola, and the curve (45.3) is a parabola. The
surface (45.1) is called an elliptic paraboloid or a hyperbolic pa-

raboloid according as a and b have the same or different signs ;

these surfaces are illustrated in Figs. 42 and 43 respectively.

FIG. 42 FIG. 43
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Equations (44.4) and (44.5) are particular cases of the

equation

(45.4) ax2 + by
2 + cz2 = d.

When a, b, c, and d have the same sign, which may be taken

as positive in all generality, the intersection of the surface by
any one of the planes x = k, y = k,

or z = k is an ellipse, as shown by'

a process similar to that employed
above. In this case the surface is

called an ellipsoid (see Fig. 44).

When a and d are positive and b

and c are negative, a plane x k

intersects the surface in an ellipse,

real or imaginary according as ak2 d

is positive or negative ;
and a plane

y = k or z = k intersects the surface

in a hyperbola. The surface consists of two sheets, since when

k2 < - the plane x = k does not intersect the surface in real

points but in an imaginary ellipse. The surface is called a

hyperboloid of two sheets (see Fig. 45). The first of (44.5) is a

special case of this type of surface. When a, b, and d are

positive and c is negative, a plane z = k intersects the surface

in an ellipse and a plane x = k or y = k intersects it in a hyper-
bola. The surface is called a hyperboloid of one sheet (see Fig. 46).

The second of (44.5) is a special case of this type of surface.

FIG. 44

FIG. 45 FIG. 46
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When d in (45.4) is equal to zero, if (xi, y\ t zi) is a point of

the surface, so also is (txi, ty\, tz\) a point of the surface for

every value of /. Since all these points lie on the line through
the origin and the point (xi, y\, z\)> it follows that the surface

is a cone with vertex at the origin. The only real solution of

equation (45.4) with d = is (0, 0, 0) unless one or two of a,

b
y
and c are negative. In order to consider real cones, we may

in all generality assume that a and b are positive and c negative.

In this case a plane z = k (^ 0) intersects the cone in an ellipse,

and a plane x = k or y = k (^ 0) in a hyperbola.
The following is a list of canonical, or type, forms of equa-

tions of the surfaces just considered :

(45.5) ^ +^ = 2 02, elliptic paraboloid ;

n n

(45.6)
~ ~ = 2 cz, hyperbolic paraboloid ;

(A.^7\ -4- 2- 4- //
rea' imaginarY r point ellip-l-0 ^ "I- 2 -r

C
2
- a >

soid as d = + l
f

-
1, or 0;

(45.8) 2
+ ~ - ^ = !' hyperboloid of one sheet ;

r2 V2 ?2

(45.9) -3
~
^ -5

= 1 hyperboloid of two sheets ;

(45. 10)
~ +^ - ^ = 0, quadric cone.v a2

ft
2

c^

Other surfaces of the second degree are

(45.11) +
|s
= ! elliptic cylinder ;

(45.12)
2L 3L = 1, hyperbolic cylinder ;

(45.13) *2 4 dry = 0, parabolic cylinder ;

(45.14)
~ = 0, pair of intersecting planes ;

(45.15) x2 a2 = 0, pair of parallel planes.
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Since all the above equations contain a term in x2 and none

in x, it follows that if (x\ 9 y\> z\) is a point of any one of the

surfaces, so also is ( xi, y\, z\}, that is, the plane x = is a

plane of symmetry (see 14). Any plane of symmetry of a

surface is called a principal plane of the surface. From equa-
tions (45.7) to (45.10) it follows that ellipsoids, hyperboloids,

and quadric cones have three principal planes, each two per-

pendicular to one another ; they are the three coordinate planes

for these equations. From equations (45.5), (45.6), (45.11),

(45.12), and (45.14) it is seen that the paraboloids and elliptic

and hyperbolic cylinders have two mutually perpendicular

principal planes, as do also two intersecting planes; they are

the planes x = and y = for these equations. Parabolic

cylinders and two parallel planes have one principal plane, as

follows from (45.13) and (45.15), for which the plane x = is

the principal plane.

As a result of this discussion it follows that any quadric sur-

face, that is, any surface of the second degree, including the

degenerate quadrics consisting of two planes, has at least one

principal plane. It is evident geometrically that any plane

through the axis of a quadric of revolution is a principal plane.

For the surfaces with equations (45.7) to (45.10) the origin

is a point of symmetry ; that is, if (x\, y\, z\) is a point of any
one of these surfaces, so also is the point ( *i, jyi, z\). For

an ellipsoid or a hyperboloid the point of symmetry is the mid-

point of every chord of the surface through it ; such a chord is

called a diameter. Consequently the ellipsoids and hyperboloids

are called the central quadrics, the origin being the center in the

coordinate system used in this section. The point of symmetry
of a cone is the vertex, and each element of a cone extends

indefinitely in both directions.

For elliptic and hyperbolic cylinders with equations (45.11)

and (45.12), each point of the z-axis is a point of symmetry.

For, if we denote by P (0, 0, z ) a point on the axis, and if x\ 9 y\

are solutions of (45.11) or (45.12), then (x\ 9 y\, zo + t) and

( Xi, yi, ZQ are points of the cylinder and are symmetric
with respect to Po for every value of /. This line of points of

symmetry is called the axis of the cylinder in each case.
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EXERCISES

1. Find the foci of the ellipses in which the ellipsoid

6 x2 + 3 y
2 + 2 z2 = 6

is cut by the coordinate planes.

2. Find an equation of the cone obtained by revolving the line

x 2y + l = Q, z = about the #-axis. Effect a translation of the

axes so that the resulting equation of the cone in the j'^Y-system
is of the form (45.10).

3. Show that a real ellipsoid (45.7), for which a < b < c, is cut

by the sphere x2 + y
2 + z 2 = b2 in two circles.

4. Show that the semi-diameter r with direction cosines X, /* v

of an ellipsoid (45.7) is given by

i = ^?4_H? + !^
r2 a2 b2 c2

and prove that the sum of the squares of the reciprocals of any three

mutually perpendicular diameters of an ellipsoid is a constant (see

(30.2)).

5. Show that for the surfaces (45.7) to (45.10) the coordinate

axes are lines of symmetry
'

(see 14). Find lines of symmetry of the

other quadrics.

6. Show that, with the exception of equations of the central

quadrics and of quadric cones, the terms of the second degree in

equations (45.5) to (45.15) are the product of two real or imaginary

homogeneous factors of the first degree. Does it follow that the same is

true of equations of these surfaces in any rectangular coordinate system ?

7. Show by means of the argument preceding equation (45.5) that

ax 2 + by
2 + cz2 + 2 hxy + 2fxz + 2gyz = Q

is an equation of a cone with vertex at the origin, or of two planes

through the origin ; and that in consequence of Theorem [41.5] it is

an equation of two planes, if and only if the determinant

a h f
h b g

f g c

is equal to zero.

8. Show that xy + yz + zx = Q is an equation of a cone with vertex

at the origin, and find the cosine of an angle between the two lines in

which the surface is intersected by the plane ax -f by + cz = 0,
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9. Determine the value of b so that

2 x 2 + by
2 - 12 z2 - 3 xy + 2 xz + 11 jy*

=

shall be an equation of two planes through the origin (see Ex. 7) ;

and find equations of the planes.

10. Show that an equation of the cone whose vertex is at the center

of a real ellipsoid (45.7) and which passes through all the points of

intersection of the ellipsoid and the plane Ix + my + nz = 1 is

1 1. Show that the curve of intersection of the sphere x 2 +y
2+ z2= r2

and a real ellipsoid (45.7) for which a > b > c, lies on the surface

I 1\ 2 , /I 1\ 2 , /I 1\ 2 A
~~2
--

2 1* +
( IS

--
2 ^ + ~5

-- U2 = 0.
a2 r2/ \6

2 r2/ \c
2 r2/

Determine for what values of r this is an equation of a cone, and for

what values it is an equation of two planes (see Ex. 7) ; and show that

when this surface is degenerate and real, the curve of intersection

of the ellipsoid and the sphere consists of circles. What is the inter-

section when this surface is degenerate and imaginary ?

46. The Ruled Quadrics

The equation (45.6) of the hyperbolic paraboloid may be

written in the form

/5

\aa

Consider in this connection the two equations

(46.2) + = 2 c*f --| = fa b a b k

For each value of k other than zero these are equations of a

line which lies on the paraboloid. In fact, any set of values of

x, y, z satisfying (46.2) for a given value of k also satisfies (46.1),

as is seen on multiplying together equations (46.2) member by
member. And conversely, through each point of the parabo-
loid (46.1) there passes one of the lines (46.2), the corresponding
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value of k being obtained from either of equations (46.2) on

substituting in the equation the coordinates of the point. Con-

sequently the paraboloid has lying upon it an endless number
of lines, or rulings. In like manner, the lines whose equations are

M> f+f-* f-f-T
for values of / other than zero, lie on the paraboloid (46.1),

and through each point of the surface there passes a line of the

set (46.3). A surface having an endless number of lines lying

upon it, one through each point, is called a ruled surface. For

example, cones and cylinders are ruled surfaces. Since a hyper-
bolic paraboloid has two sets of rulings, it is said to be doubly

ruled.

In like manner, it can be shown that the set of lines whose

equations are

(46.4)
' +WH-J), _
a c \ b/ a c

lie on the hyperboloid (45.8), as do also the lines

(46.5)
* +1

Consequently a hyperboloid of one sheet is doubly ruled, a line

of each of the sets (46.4) and (46.5) passing through each point

of the surface. Hence we have

[46.11 Hyperbolic paraboloids and hyperboloids of one sheet are

doubly ruled surfaces.

By Theorem [20.2] we find that a, b, 2k are direction

numbers of the line (46.2), and a, b, 2/1 are direction numbers

of the line (46.3). If we denote by k\ and /i the values of k

and / for the lines through the point (x\, y\, z\) on the parabo-

loid (46.1), we have from (46.2) and (46.3)

(466^ ^4-^--2c, *I-2l-?-.
(4b 'b)

a
+

b
~ Z Ckl '

a b" I,
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The plane through the point (x\, y\, Zi) and containing the two

rulings through this point has as an equation (see 23, Exs. 6

7) x Xi y y\ z z\

a -b 2*i

that is,

= 0,

When the values of k\ and /i given by (46.6) are substituted in

this equation, the resulting equation is

Since (x\, y\ y Zi) is a point of the paraboloid (46.1), this equa-
tion is reducible to

The direction numbers of any line in this plane are a linear

homogeneous combination of direction numbers of the lines

(46.2) and (46.3) (see 20, Ex. 9). Consequently we have as

parametric equations of any line through (xi, y\, z\) and con-

tained in the plane (46.7)

x = xi + (h\a + h2d)t,

(46.8)
y = yi-t

'

where hi and A2 determine the line, and / is proportional to the

distance between the points (*i, y\, z\) and (x, y, z). When
these values are substituted in (46.1) in order to find the values

of / for the point in which the line (46.8) meets the paraboloid,

the resulting equation is reducible, by means of (46.6) and the

fact that x\ 9 y\ 9 21 is a solution of (46.1), to

*i*2/
a = 0.

Thus when h\ or h% is equal to zero, that is, when the line is

one of the rulings, every value of t satisfies this equation,
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meaning that every point of the ruling is a point of the parabo-
loid. When hi ^ and h2 ^ 0, the two solutions of the above

equation are t = 0, that is, each line for any values of hi and

*2, both different from zero, meets the surface in a doubly
counted point. Consequently every line in the plane (46.7)

through the point (xi, y\, z\), other than the rulings, is tangent
to the surface at the point; accordingly (46.7) is called the

tangent plane to the paraboloid at the point (xi, y\, z\} (see

Theorem [48.7]).

EXERCISES

1. Find equations of the rulings on the paraboloid x
2 2y2

-f 2 z = 0,

and in particular of the rulings through the point (2, 1, 1) ; find

also an equation of the tangent plane at this point.

2. Find equations of the rulings on the hyperboloid

x2 + 2 y2 - 4 z 2 = 4,

and in particular of the rulings through the point (0, 2, 1).

3. Find direction numbers of the rulings (46.4) and (46.5) of a

hyperboloid of one sheet (45.8), and show, using equations analogous
to (46.8), that an equation of the plane containing the rulings through
the point (xi, y\ t z\) is

*i* 4.m __ a? = i
a2 ^ b 2 c2

'

which consequently is the tangent plane at (x\ t y\, Zi).

4. Given the equation

where a > b > c, determine the values of / for which the surface is an

ellipsoid, a hyperboloid of one sheet, a hyperboloid of two sheets;

discuss in particular the cases / = b2 and / = c2 . Show also that each

of the coordinate planes intersects the set of quadrics (i) in confocal

conies (see 36, Ex. 14). This set of quadrics is called a set of confocal

quadrics.

5. Show that through every point in space not on one of the coor-

dinate axes there pass three of the confocal quadrics of Ex. 4, one an

ellipsoid, one a hyperboloid of one sheet, and one a hyperboloid of

two sheets.
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6. Show that xz yz z 2

~2 + -fi--2
= k

for k > is an equation of a family of hyperboloids of one sheet

(see 32) ; for k < 0, an equation of a family of hyperboloids of two

sheets ; for k 0, an equation of a quadnc cone. In what sense is

this cone the asymptotic cone of the two families of hyperboloids ?

7. Show that for a suitable value of m in terms of k each of the

planes

_
b c

passes through a ruling (46.4), and consequently equations (i) are

equations of the ruling. Show also that

be \ a) b

are equations of the rulings (46.5).

47. Quadrics \VHose Principal Planes Are Parallel

to tKe Coordinate Planes

Each of equations (45.5) to (45.15) is a special case of an

equation

(47.1) ax2 + by
2 + cz2 + 2lx + 2my + 2nz + d = Q,

with the understanding that a, b, c in this equation are not

the same as in equations (45.5) to (45.15). For example, if

c l = m d~Q and we replace a by I/a
2

,
b by I/ft

2
, and n

by c, we have equation (45.5). Now we shall prove that

(47.1), whatever be the coefficients provided only that a, 6,

and c are not all zero, is an equation of a quadric or degenerate

quadric, by showing that by a suitable transformation of co-

ordinates equation (47.1) can be transformed into one of the

forms (45.5) to (45.15). We consider the three cases, when

a, b, c are different from zero, when one of a, b, c is equal to

zero, and when two of them are equal to zero.

Case 1. a i 0, b ^ 0, c ^ 0. On completing the squares in

x, y, and z in (47.1), we have
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where k = - + ?~ + --d.
a b c

If then we effect the translation of axes defined by

' ' '

(47.2) x' =
a b c

we obtain the equation

(47.3) ax'2 + by'
2 + cz'

2 = k.

If k j* and a, b, c have the same sign, the surface is a real

or imaginary ellipsoid. If k ^ and two of the numbers a/k,

b/k, c/k are positive and one is negative, equation (47.3) is

either of the form (45.8) or one of the forms

_^+^ + ?! = i *!_ + ?_
2

= i
a2 b2 c

2 a2 b2
c
2

Consequently the surface is a hyperboloid of one sheet. If k^
and one of the numbers a/k, b/k, c/k is positive and the other

two negative, equation (47.3) is either of the form (45.9) or

one of the forms

_ **. -4-Z
2 ^= 1 _^!_^4.5? == 1

a2 b2 c2
'

a2
ft
2 c2

Consequently the surface is a hyperboloid of two sheets. In

every case, as follows from (47.2), the center of the surface is

at the point ( I/a, m/b, n/c).

If k = and a, b, c have the same sign, the surface is a point

ellipsoid (an imaginary cone). If k~Q and one or two of a,

b y
c are positive and the others negative, the surface is a quadric

cone with the vertex at the point ( I/a, m/b, n/c).

Case 2. a 5* 0, b 7* 0, c = 0. On completing the squares in

x and y, we have

I
2 m2

where k = d ----
j-

If n T and we effect the transformation defined by the

first two of equations (47.2) and z' = z + k/2 n, we obtain

ax'2 + by'
2 + 2nz' = 0,
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which is of the form (45.5) or (45.6) according as a and b have the

same or opposite signs. Consequently the surface is a paraboloid.

If n = and we effect the transformation defined by the

first two of equations (47.2) and z' = z, we obtain

ax'2 + by'
2 + k = 0.

Comparing this equation with equations (45.11), (45.12), and

(45.14), we have that the surface is an elliptic or hyperbolic

cylinder if k ^ 0, and two intersecting planes, real or imaginary,

if k = 0.

If one of the coefficients a, b, c other than c is equal to zero,

on using the above methods we get an equation obtained from

one of the equations (45.5), (45.6), (45.11), (45.12), and (45.14)

on interchanging x and 2, or y and z, as the case may be, with

the corresponding interpretation.

Case 3. a 5* 0, b = c = 0. When the equation is written in

the form

(47.4) afx + ^\
+ 2 my + 2 nz + k = 0,

72

where k d >

a

if not both m and n are zero and we effect the transformation

defined by

a ^/m2 + n2

the resulting equation is

(47.5) ax'2 + 2Vm2 + n2 / = 0.

Consequently the surface is a parabolic cylinder.

If m = n = 0, it follows from (47.4) that the surface is de-

generate, consisting of two parallel, real or imaginary, planes
if k 7* 0, and of two coincident planes if k = 0.

When any two of the coefficients a, ft, c are equal to zero,

similar results follow. Hence we have

[47.1] An equation ax2 + by
2 + cz2

in which not all the coefficients a, b, c are zero, is an equation

of a quadricj which may be degenerate; its principal plane
or planes are parallel to the coordinate planes.
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The last part of this theorem follows from the fact that in each

case equation (47.1) was transformed by a translation (30.1)

into one of the forms (45.5) to (45.15), except in Case 3, where,

however, the y'z '-plane is parallel to the yz-plane.

EXERCISES

1. Show that a surface with an equation

a(x
- x )

2 + b(y
- y )

2 + c(z
- z )

2 = 1,

in which a, b, c are positive, is an ellipsoid with the point (XQ, yQ , z )

as center ; discuss also the cases when a, b, c do not all have the same

sign, and find equations of the principal planes.

2. Show that a surface with an equation

a(x
-

*o)
2 + b(y

- y )
2 + c(z

- z )
= 0,

in which a, 6, c ^ is an elliptic or hyperbolic paraboloid according

as a and b have the same or different signs. Find equations of the

principal planes. What is the surface when c = ?

3. Identify the surface defined by each of the following equations,

and determine its position relative to the coordinate axes :

a. 9 x 2 + 4 y
2 + 36 z 2 - 36 x + 9 y + 4 = 0.

b. x 2 - 4 y
2 - z 2 - 4 x - 24 y + 4 z - 32 = 0.

c. x 2 + 4y 2 + 4x-8y-6z+U = Q.

d. x 2 -4z 2 + 5y-x + Sz = Q.

e. y2 -4 z2 + 4;y + 4z + 3 = 0.

4. For what values of a, b, c, and d is the surface

(i) ax 2 + by
2 + cz 2 + d =

a real ellipsoid ; for what values a hyperboloid of one sheet ; for what

values a hyperboloid of two sheets ?

5. Find the projection upon each of the coordinate planes of the

intersection of x 2 - 2 y 2 - 3 z2 - 6 = and x -3y + 2 2 = (see

44, Ex. 11). Of what type is the curve of intersection?

6. Find an equation of the projection upon each of the coordinate

planes of the intersection of the central quadric (i) of Ex. 4 and the

plane Ix + my + nz = 0, and identify each of these curves.
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7. Show that, if the line with equations

(i) x = xi + ut, y=yi + vt, z = zi + wt

meets a central quadric with equation (i) of Ex. 4 in two points, the

point (xi, y\ t z\) is the mid-point of the intercepted chord if it lies in

the plane

(ii) aux -f bvy + cwz 0.

Why is this plane appropriately called a diametral plane of the quadric,

and under what conditions is it perpendicular to the chords which it

bisects ?

8. Show that if (x\, y\ 9 *i) is a point on the intersection of the

plane (ii) of Ex. 7 and the quadric (i) of Ex. 4, equations (i) of Ex. 7

are equations of a tangent to the quadric at the point (x\ t y\, z\).

9. Find an equation of the plane which is the locus of the mid-

points of the chords of the elliptic paraboloid x 2 + 3 y 2 = 2 z whose

direction numbers are 1, 2, 3.

10. Let Pi and P2 be two points on a real ellipsoid (45.7) such that

P2 is on the diametral plane of chords parallel to the line OP\, where

is the center (0, 0, 0) ; prove that PI is on the diametral plane of

chords parallel to OP2 (see Ex. 7).

48. The General Equation of trie Second Degree
in x, y, and z. The Characteristic Equation.

Tangent Planes to a Quadric

The most general equation of the second degree in x, y, and z

is of the form

(48.1) ax2 + by
2 + cz2 + 2 hxy + 2fxz + 2 gyz

+ 2 IK + 2 my + 2 nz + d = 0.

We shall show that any such equation, for which not all the

coefficients of the terms of the second degree are zero, is an equa-
tion of a quadric. We prove this by showing that in every case

there exists a transformation of coordinates by which the equa-
tion is transformed into an equation of the form (47.1), which
was shown in 47 to be an equation of a quadric. In 45 we
observed that any one of the surfaces (45.5) to (45.15) has at
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least one plane of symmetry, and in Theorem [47.1] that the

plane or planes of symmetry for a quadric with an equation

(47.1) are parallel to the coordinate planes. Accordingly we seek

the planes of symmetry of the surface with an equation (48.1).

The equations

(48.2) x = xi + ut, y = yi + vt, z = zi + wt

are parametric equations of the line through the point (x\, y\, z\\
and with direction numbers u, v

y
w. If we substitute these ex-

pressions for x t y, and z in (48.1) and collect the terms in t
2 and /,

we have

(48.3) (au
2 + bv 2 + ctv2 + 2 huv + 2futv + 2 gvw)t

2

+ 2 [(ax, + hy, +fz, + l)u + (hx, + byi + gz l + m)v

where F(x\, y\, z\) denotes the value of the left-hand member
of (48.1) when x, y, and z are replaced by xi, y\ y

and z\ respec-

tively. For fixed values of xi, y\, z\ ; u, v, w equation (48.3) is

a quadratic equation in /, whose roots are proportional to the

distances from (jci, y\ 9 z\) to the two points of intersection, if

any, of the surface (48.1) and the line with equations (48.2). In

order that (x\, y\, z\) shall be the mid-point of the segment
between these two points, the roots of this equation must differ

only in sign ; hence the coefficient of / must be equal to zero,

that is,

(48.4) (0*1 + hyi +fzi + l)u + (hxi + byi + gzi + m)v
+ (fxi + gy\ + czi + ri)w = 0.

As a first consequence of this equation we prove the theorem

[48.1J The mid-points of any set of parallel chords of the surface

with an equation (48.1) lie in a plane.

In fact, since the quantities u, v, w have constant values for a

set of parallel chords, on reassembling the terms in (48.4), we

have that the coordinates of the mid-point of each chord satisfy

the equation

(48.5) (au + hv +fw)x + (hu + bv + gw)y

+ (fu + &v + cw}* + (lu + mv + nw) = 0,

which evidently is an equation of a plane.
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If this plane is to be a plane of symmetry (see 45) of the

surface (48.1), w, v, and w must be such that the chords are

normal to the plane. By Theorem [17.5] the coefficients of

x, y, and z in (48.5) are direction numbers of any normal to

the plane. Accordingly, if the chords are to be normal to the

plane, we must have

au + hv +fw _ hu + bv + gw _fu + gv + cw __
r

'

u w

when r denotes the common value of these ratios. When we
write these equations in the form

(48.7) hu+(b- r)v + gw = 0,

fu + gv + (c r)w;
= 0,

we have by Theorem [22.1] that they admit a common solution

u t v, w, not all zero, if and only if r is such that

!-r A /
A b-r g = 0.

/ g c-r

Thus r must be a solution of the cubic equation

(48.9) r3 - 7r2 + Jr - D = 0,

the coefficients 7, /, and D being defined by

/ = a + b + c,

(48.8)

(48.10) a h f
h b g

f g c

Equation (48.8) is called the characteristic equation of equation

(48.1). We now derive properties of the characteristic equa-
tion by means of which we shall prove that (48.1) is an equa-
tion of a quadric.

Let r\ and r2 be two different roots of this equation, and

denote by u\, v\, w\ and w 2 , #2, w2 solutions of equations (48.7)

as r takes the values r\ and r2 respectively. If in equations

(48.7) we replace w, v, w, and r by MI, v it u>i, and TI respectively
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and form the sum of these equations after multiplying them by
2, 02, and tu2 respectively, we obtain

ri (UiU2 + ViV2 + tVitV2 )
= 0.

If, in similar manner, we replace u, v, w, and r in (48.7) by
u2 , v2 , w2 , and r2 and form the sum of these equations after

multiplying them by Wi, v\, and w\ respectively, we obtain

the above equation with the exception that r\ is replaced by
r2 . Having obtained these two equations, if we subtract one
from the other and note that by hypothesis r\ ^ r2 , we have

(48.11) UiU2 + v\v2 + w\w2 = 0.

With the aid of this result we shall establish the important
theorem

[48.2] The roots of the characteristic equation of an equation of

the second degree whose coefficients are real are all real

numbers.

For, suppose one of the roots were imaginary, say r\ = <r + ir,

where o- and r are real numbers and i V^l. From the the-

ory of algebraic equations it follows that r2 = a ir also is a

root. If we replace r in (48.7) by r\ and solve the resulting

equations for ui, v\ 9
and w\ by means of Theorem [22.1], we

have that at least one of these quantities is imaginary; for,

if in (48.7) everything is real but r = a + ir and we equate
to zero the real and imaginary parts of each equation, we have

that r = unless u = v = w = Q. Accordingly we put

MI = or i + UK2 , fi = 181 + *02, wi = 71 + 172,

where the a's, /3's, and 7*5 are real numbers. When r in (48.7)

is replaced by a ir, a solution of the resulting equations is

u 2 = cti ia2 ,
v2 = j8i 1*182, M>2 = 71 172,

since the set of equations (48.7) for r2 is obtained from the

above set on changing i to i. For these two sets of solutions

it follows from (48.11) that

c*i
2 + /3i

2 + 7i
2 + <*2

2 + fo
2 + 72

2 = 0,
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which evidently is impossible, since all the quantities in this

equation are real and not all zero. Hence Theorem [48.2] is

proved. As a consequence of this result and equation (48.11)

we have

[48.3] Planes of symmetry of the surface (48.1) corresponding to

two unequal roots of the characteristic equation are perpen-

dicular to one another.

Another theorem which we need in the proof that every

equation of the second degree is an equation of a quadric is the

following :

[48.4] Not all the roots of the characteristic equation of an equa-

tion of the second degree with real coefficients are equal

to zero.

In order to prove it, we observe that if all the roots are zero,

equation (48.9) must be r3 = 0, that is, I = J=D = 0. In

this case 7* 2 / = 0, and from (48.10) we have

72 2 / = a2 + b2 + c
2 + 2 /

2 + 2 2 + 2 h2 .

This expression can be zero only in case a, b, c, /, g, h are all

zero, in which case equation (48.1) is not of the second degree;
and the theorem is proved.

From Theorems [48.2] and [48.4] it follows that at least one

of the roots of the characteristic equation is a real number
different from zero. For this root equations (48.7) admit at

least one solution u, v, w, not all zero, since (48.8) is satisfied.

If then the principal plane having equation (48.5) with these

values of u, v, and w is taken as the plane z' of a new rec-

tangular coordinate system, the transform of equation (48.1)

does not involve terms in x'z', y'z', or z', since, if (x\, y\ y z\]
is on the surface, then fa', yi', z\} is also. Hence the equa-
tion is of the form

(48.12) a'*'
2 + b'y'

2
-f cY2+ 2 h'x'y' + 2 /'*' + 2 m'y'+ d' = Q,

where some of the coefficient* may be equal to zero, but not
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all those of the terms of the second degree. If h' = 0, (48.12)
is of the form (47.1). If h' ^ and we effect the rotation of the

axes about the z'-axis defined by

x r = K" cos 6 - y" sin 0, / = *" sin 6 + y" cos 0, z' == 2",

where 6 is a solution of the equation (see 40)

h' tan2 6+ (a'- b
f

) tan
- A' = 0,

the resulting equation in #", y", and z" is of the form (47.1).

Hence we have established the theorem

[48.5] Any equation of the second degree in x, y, and z is an

equation of a quadric, which may be degenerate.

As a consequence of the preceding results we have

[48.6] When any plane cuts a quadric, the curve of intersection

is a conic, which may be degenerate.

In fact, given any plane, in a suitably chosen coordinate sys-

tem it is the plane z = 0. Solving this equation simultaneously

with (48.1), we have an equation of the second degree in x and

y which is an equation of a conic, as shown in 40.

We now make use of equation (48.3) to derive an equation
of the tangent plane to a quadric (48.1) at a point (x\, y\, 21),

proceeding as was done in 46 for a hyperbolic paraboloid with

equation (45.6). When (xi, y\, z\) is a point of the quadric

(48.1), F(XI, yi, zi)
= in (48.3). In order that the line (48.2)

shall be tangent to the quadric, / = must be a double root of

(48.3). Consequently we must have equation (48.4) satisfied

by u, v, and w ;
and for any set of values of u, v, and w satisfy-

ing (48.4) the corresponding equations (48.2) are equations of

a tangent line. This means that any line through (xi, y\ 9 z\)

perpendicular to the line through this point and with direction

numbers
0*1 + hyi +fzi + I,

(48.13) hxi + byi + gz l + m,
*

f*i + gyi + czi + n,
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is tangent to the quadric at (#1, yi, *i). From geometric con-

siderations we have that all these tangents lie in a plane,

called the tangent plane to the quadric. We prove this analyt-

ically by observing that if (x, y, z) is any point on one of these

lines, x xi,y yi,z z\ are direction numbers of the line.

Hence we have

+ gz 1 + m)(y-yi)
+ gyi + czi + ri)(z- zi)

= 0,

which is an equation of a plane.

On multiplying out the terms in this equation and making
use of the fact that x\, y\, z\ is a solution of (48.1), we have

[48.7] An equation of the tangent plane to the quadric (48.1) at

the point (x\> ji, Zi) is

(48.14) axix + byiy + cz^z + h(x }y + yix) +f(xiz + zix)

Since (48.13) are direction numbers of the normal to the

tangent plane at the point (x\, y\, 21), called the normal to the

quadric at this point, this normal has equations_x-xi_ _y-y\
hx\ + by\ + gz\ + m

fxi + gyi + CZI + H

EXERCISES

1. Find the roots of the characteristic equation of the quadric

2x2 + 5jy
2 + 3z2 + 4*3>-3;c + 4>>-6z-3 = 0;

determine the corresponding planes of symmetry, and a system of co-

ordinates in terms of which the equation has one of the canonical

forms of 45.

2. Show that when an equation of a quadric does not involve

terms in xy, xz, and yz t the roots of the characteristic equation are the

coefficients of the second-degree terms. What are the solutions of

equations (48.7) in this case?
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3. Show that the characteristic equation is unaltered by a trans-

lation of the axes, that is, by a transformation to parallel axes.

4. Prove that the normals to a central quadric ax 2 + by
2 + cz* = 1

at all the points in which the quadric is met by a plane parallel to

one of the coordinate planes intersect two fixed lines, one in each of

the other coordinate planes and parallel to the intersecting plane.

5. Denote by Q the point in which the normal to a real ellipsoid

(45.7) at a point P meets the plane z = 0. Find the locus of the mid-

point of PQ.

6. Find equations of the tangent plane and of the normal at the

point (1, 1, 2) to the quadric

x2 + y2 - z2 + 2 xy + xz + 4 yz - * + y + z + 4 = 0.

7. Prove that the line * - 2 = 0, 2-1=0 lies entirely on the

quadric xy + 3 xz 2 yz 3 x 6 z -f 6 = 0. Find an equation of the

tangent plane to the quadric at the point of this line for which y = y\

and show that the line lies in the tangent plane, and that as yi takes

different values one gets a family of planes through the line. May
one conclude from this that the quadric is neither a cone nor a cylinder ?

8. Find the conditions to be satisfied by u, v, w so that the line

(48.2) is a ruling of the quadric (48.1) through the point (x\, y\, *i),

that is, lies entirely on the quadric ; and show that when these con-

ditions are satisfied, the line lies entirely in the tangent plane to the

quadric at the point (x\, y\, z\).

9. Show that any of the quadrics (45.5) to (45.15) is cut by a set

of parallel planes in similar conies and that the principal axes of any
two of these conies are parallel. Is this true of a quadric with equa-

tion (48.1)?

10. Show that the normals at P to the three confocal quadrics

through a point P are mutually perpendicular (see 46, Ex. 4).

11. The plane (48.14) is called the polar plane of the point

Pi(*i, yif zi) with respect to the quadric (48.1), whether PI is on the

quadric or not ; and PI is called the pole of the plane. Show that if

the polar plane intersects the quadric and P3 is any point on the in-

tersection, the tangent plane to the quadric at P2 passes through Pi,

and the line through Pi and P2 is tangent to the quadric at P3 ; also

that the locus of all such lines through Pi is a quadric cone,
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12. Show, with the aid of (48.3), that if an endless number of tan-

gents can be drawn to the quadric (48.1) from a point PI(XI, y\, Zi)

not on the quadric, the points of contact lie in the polar plane of the

point Pi. Where do such points Pi lie relative to each type of quadric ?

13. Find the pole of the plane 3x-2y - 3 2 - 1 = with respect

to the quadric x 2
-f y

2 + z 2 + 4 xy 2 xz + 4 yz 1 = 0.

14. Show that the poles with respect to the quadric (48.1) of the

planes through a line are collinear.

15. Show that if PI(XI, y\, z\) is a point from which tangents can-

not be drawn to a quadric (48.1), the poles of three planes through PI

and not having a line in common determine the polar plane of PI

(see 34, Ex. 13).

49. Centers. Vertices. Points of Symmetry

Having shown that any equation of the second degree in

x, y, and z is an equation of a quadric, we shall establish in

this section and the next criteria which enable one to deter-

mine the particular type of quadric defined by a given equation.
As a step in this direction we seek the conditions upon the

coefficients of equation (48.1) in order that the quadric have a

center, that is, that there be a point (x\,y\,z\) not on the quadric
which is the mid-point of every chord (48.2) through the point,

whatever be u, v, and w. Referring to equation (48.4) and the

discussion leading up to it, we see that x\ 9 y\, z\ must be a

common solution of the equations

(49.1) hx + by+ gz + m = 0,

fx + gy + cz + n = 0.

In accordance with Theorem [21.8] these equations have one

and only one common solution when their determinant Z), de-

fined by (48.10), is different from zero. Since the property that

a point is a center is independent of the coordinate system

used, we may consider the case when the coordinate system is

such that / = g = h = 0. In this case D = abc, that is, the

product of the coefficients of x2
, y2

, and z2 . Applying the above
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test to equations (45.5) to (45.15), we see that ellipsoids, hyper-

boloids, and cones are the only quadrics for which D j* ; and
in the coordinate system of these equations the point whose
coordinates satisfy (49.1) is the origin. In the case of a cone

the solution of (49.1) is a point of the cone, the vertex, so

that ellipsoids and hyperboloids are the only quadrics which
have a center.

In order to discuss the case D ^ more fully, and also the

case D = 0, we denote by F(x, y, z) the expression which is the

left-hand member of equation (48.1), and note that it may be

written

(49.2) F(x, y, z)
- (ax + hy +fz + l)x + (hx + by + gz + m)y

+ (fx + gy + cz + n)z + lx + my + nz + d.

If xi, yi, z\ is a solution of equations (49.1), and the point is

on the quadric (48.1), it follows from (49.2) that x\, y\, z\ is a

solution also of the equation

(49.3) Ix + my + nz + d = 0.

From Theorem [27.2] for the case in which w = 1 it follows

that this equation and equations (49.1) have a common solu-

tion, if and only if A = 0, where by definition

h f I

/ m n d

A so defined is called the discriminant of F(x, y, z). From the

foregoing results we have the theorem

[49.1] When D ^ Q for an equation (48.1), the latter is an equa-

tion of an ellipsoid or a hyperboloid when A ^ 0, and of a

cone when A = 0. In either case the point whose coordinates

are the unique solution of equations (49.1) is a point of

symmetry of the quadric.

The latter part of this theorem follows from the fact that if

for a value of / the values of x, y, and z given by (48.2) are co-

ordinates of a point on the quadric, so also are the values when

/ is replaced by /, as follows from (48.3) and (49.1).
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Applying the method of 21 (p. 110) to equations (49.1), we
have in place of equations (21.7), (21.8), and (21.9)

Dx - L = 0, Dy - M = 0, Dz - N = 0,

where L, M, and Af are the cofactors of /, m, and n respectively

in A ; and D is seen to be the cofactor of d. Hence if D = 0,

equations (49.1) do not admit a common solution unless

(49.5) L =M=N = 0,

in which case A = 0. In accordance with the discussion in 24,

when D = and equations (49.1) admit a common solution,

the planes defined by (49.1) either meet in a line or are coin-

cident ; that is, there is a line or a plane all of whose points

are points of symmetry of the quadric. Accordingly we have

[49.2] When D = for an equation (48.1) of a quadric, and

equations (49.1) admit a common solution, A = also;

and the quadric so defined has a line or plane of points

of symmetry.

Since in either case there is at least one line of points of

symmetry, on choosing an #yz'-system of coordinates in which

this line is the z'-axis, we have that the corresponding equations

(49.1) must be satisfied by x' = 0, / = 0, and any value of

z', and consequently

If h' T in the equation of the quadric, by a suitable rotation

of the axes about the z'-axis we obtain a coordinate system in

terms of which an equation of the quadric is

a'*'2 + b'y'
2 + df = 0.

Comparing this equation with equations (45.11), (45.12),

(45.14), and (45.15), we have the theorem

[49.3] When D = for an equation (48.1) of a quadric, and

equations (49.1) have a common solution, the quadric is an

elliptic or hyperbolic cylinder, or is degenerate in the case

when this common solution satisfies equation (49.3).
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All types of quadrics except paraboloids and parabolic cylin-

ders are covered by Theorems [49.1] and [49.3]. Hence we have

[49.4] Paraboloids and parabolic cylinders do not have any
points of symmetry.

From the fact that the above theorems discriminate be-

tween geometric properties of the quadrics, it follows that if

D is not or is equal to zero in one coordinate system, the

same is true for any coordinate system ; the same observation

applies to A. In the next section we shall show that D
and A are invariants under any transformation of rectangular

coordinates.

50. The Invariants I, /, D, and Zl

In this section we show that 7, /, D, and A, as defined by
(48.10) and (49.4), are invariants under any change of coordi-

nates, in the sense that when a general transformation of coor-

dinates (30.10) is applied to equation (48.1) each of the above

functions of the coefficients in (48.1) is equal to the same func-

tion of the coefficients of the equation in the new coordinates.

We denote by f(x, y, z) the terms of the second degree in

(48.1) and consider the expression

(50.1)

that is,

(50.2) (a
-

r)x
2 +(b- r)y* + (c- r)z

2+ 2hxy+ 2fxz + 2 gyz.

From Theorem [41.5], which applies also to a homogeneous

expression of the second degree in three unknowns, it follows

that the equation

(50.3)

a-r h f
h b-r g

f g C-T
=

is the condition that the expression (50.2) be the product of
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two linear homogeneous factors ; that is, for each root of the

cubic equation (50.3), written in the form

(50.4) r3 - Ir2 + Jr - D = 0,

the equation obtained by equating (50.2) to zero is the equa-

tion of two planes through the origin.

When a transformation (30.11) is applied to (50.2), the latter

is transformed into

(50.5) /'(*', /, z
f

)
-

r(*

where /'(*', /, z') is the transform of f(x, y, z) ; that is, (50.5) is

(a
f -

r)x'
2+ (6'

- r)/
2 + (c'

-
r)z'

2 + 2 h'x'y' + 2f'x'z
f + 2 g'y'z'.

If (50.2) is the product of two homogeneous factors of the first

degree in x, y, z
y
each of these factors is transformed by a

transformation (30.11) into a factor of the same kind, that is,

(50.5) is the product of two such factors, and consequently we

have, analogously to (50.4),

r3 - 7'r2 + J'r
- D f = 0,

where 7', /', and D' are the same functions of a', &',, h' as

7, /, and D are of the corresponding coefficients without primes.

Since r is unaltered by the transformation, this equation and

(50.4) must have the same roots, and it follows that 7 ==
7',

/ = /', D = D'. Since a general transformation of axes may be

obtained by applying first a translation (30.1) and then a rota-

tion (30.11), and since the former transformation does not affect

the coefficients of the second-degree terms in (48.1), we have
established the theorem

[50.1] The functions 7, /, and D of the coefficients of the second-

degree terms of an equation of the second degree in three un-

knowns are invariants under any change of rectangular
coordinate axes.

We apply this theorem to the consideration of the case when
two of the roots of the characteristic equation (50.4) are equal
and not zero, that is, one of the roots, say r : , is a double root,
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and ri ?* 0. Considering it first as merely a root of the charac-

teristic equation, we find a solution of equations (48.7), and
take the principal plane so determined for the plane *' = of

a new rectangular coordinate system. Whatever be the other

coordinate planes, in the transformed equation we have

h' = /' = 0, so that the new characteristic equation is

(50.6)

a' ~r
V - r g'

g' c' - r

= 0.

In this coordinate system equations (48.7) are

(a'
-

r)u + v + w = 0, w + (&'
-

r)v + g'w;
= 0,

( ' ^
Ott + g'i>+(c'-i> = 0.

Since 1, 0, are direction numbers of any normal to the plane
x r = 0, for this solution of (50.7) r = a'. If we denote this root

by ri, the first of (50.7) is satisfied by any values of u, v, and w,

and the last two by 0, g', ri b'
y provided that

This is the condition that j\ (= a'} be a double root of (50.6),

as is seen when (50.6) is written in the form

If a plane whose normals have direction numbers 0, g', r\ V
is taken for the plane y

r = 0, without changing the coordinate

x', in this new jyz'-coordinate system, equations (50.7) must

be satisfied by 0, 1, 0, which are direction numbers of any
normal to the plane y

f

0, and consequently in this system
V = TI, g

f = 0, and c
f = r3 . If then any plane perpendicular to

the planes x' = and / = is taken for the plane z
r = 0, in

this final coordinate system the transform of (48.1) is

ri(x'
2 + /2

) + r32'
2 + 2 n'z' + d f = 0,

there being no terms of the first degree in x' and y', since the

planes x' = and y' = are planes of symmetry. Any plane
z' = const, which meets the quadric intersects it in a circle
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(which may be a point circle or an imaginary circle). Con-

sequently the quadric is a surface of revolution. Since the

geometric character of the surface is independent of the coor-

dinate system, we have the theorem

[50.2] When a nonzero wot of the characteristic equation (48.8)

of an equation (48.1) is a double root, the quadric is a sur-

face of revolution; for this root equations (48.7) admit an

endless number of solutions defining principal planes, all

passing through the axis of the surface.

We proceed now to the proof that the discriminant A of

F(x, y, 2), that is, of the left-hand member of (48.1), is an

invariant. To this end we consider the discriminant of the

equation

(50.8) F(x, yr z)
-

r(x
2 + y

2 + z2 + 1) = 0,

namely,

(50.9)

When the coordinates are subjected to a transformation (30.11),

equation (50.8) is transformed into

(50.10) ', /, z'}
-

r(x'
2 + y'

2 + z'
2 + 1)

= 0,

where F'(x', y', z'} is the transform of F(x, y, z). The discrimi-

nant of (50.10) is

As remarked at the close of 49, if the discriminant of the equa-
tion (50.8) is equal to zero, so also is the discriminant of equa-
tion (50.10). Equating these discriminants to zero, we have
two equations of the fourth degree in r. Since these two equa-
tions have the same roots, the equations can differ at most by
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a constant factor. However, in each equation the coefficient of

r4 is + 1 ; consequently corresponding coefficients are equal,

and thus A = A'.

When a transformation (30.1) is applied to F(x, y, 2), and
we denote the resulting expression by F'(x', /, z'), we have

*"(*', y', *')
= a*'2 + by'

2 + cz'
2 + 2 hx'y' + 2fx'z' + 2 gy'z'

+ 2(ax + hy +fz + /)*' + 2(hx + by + gz + m)y'
+ 2(fx + gyQ + cz + n)z' + F(x , y , z ).

The discriminant of F'(x' 9 y', z'} is

a h f ax + hy + fzQ + 1

h b g hx -f byo -f gzQ + m
f g c fxQ + gy + CZQ + n

+ hyQ hx + byQ fxQ + gyQ ,

If we subtract from the last row the first multiplied by XQ, the

second by yo, and the third by ZQ, we have, on considering

F(XO, yo, 20) expressed in the form (49.2), that the above de-

terminant is equal to

a h f axo + hyo + fzo + I

h b g hx + byo + gzo + m

I m n Ixo + myo + nzo+ d

which is readily seen to be equal to A. In view of these results

and the fact that a general transformation is equivalent to a

translation and a rotation, we have

[50.3] The discriminant A of an equation of the second degree in

three unknowns is an invariant under any change of rec-

tangular coordinate axes.

51. Classification of the Quadrics

We are now in position to analyze any equation of the second

degree and determine the character of the surface defined by it

and the position of the surface relative to the given coordinate

axes.
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In 48 it was shown that given any such equation a coordi-

nate system can be found in terms of which the equation is

of the form

(51.1) a'x'2 + b'y'
2 + c'z'

2 + 2 /'*' + 2 m'y' + 2 riz' + d f = 0.

In this coordinate system the characteristic equation (48.8) is

a' - r

(51.2) b'-r =0,
c'-r

of which the roots are a', V, c'. Thus when an equation of a

quadric is in the general form (48.1), and one finds the roots of

the characteristic equation (48.8), one has obtained the num-
bers which are the coefficients of the second-degree terms in an

equation (51.1) into which the given equation may be trans-

formed by a suitable transformation of coordinates.

In accordance with the theory of algebraic equations it

follows from (48.9) that

(51.3) D = n72r3 ,

where n, 72, ra are the roots of the characteristic equation. We
consider the two cases D ^ and D = 0.

Case 1. D ^ 0. By Theorem [49.1] the surface is an ellipsoid

or hyperboloid when A ^ 0, and a cone when A = 0. If we
effect a translation of axes to the center or vertex as new

origin, it follows from equations (49.1) that l = m = n = Q in

the new system. Hence under such a translation equation (51.1)

is transformed into an equation of the form

ax2 + by
2 + cz2 + d = 0.

For this equation we have from (49.4)

(51.4) A = abed = rir2r3rf.

Hence when A ^ an equation of the quadric is

(51.5) rue
2 + r2y2 + r3z

2 + -A- = 0,
TlWs

and when A = an equation is

(51.6) rlX
2 + r2y

2 + rzz
2 = 0,
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where in each case r\ 9
r2 ,

r3 are the roots of the characteristic

equation. Hence we have

[51.1] When for an equation of the second degree in x, y, and z

D 7* and A ^ 0, the quadric is an ellipsoid, real or im-

aginary, when all the roots of the characteristic equation

have the same sign, and a hyperboloid when the roots do not

have the same sign; when D ^ and A = 0, the quadric is

a cone or a point ellipsoid (imaginary cone) according as

the roots have different signs or all have the same sign.

If all the roots are equal, the quadric is a real or imaginary

sphere when A ^ 0, and a point sphere when A = 0. If two
and only two of the roots are equal and D ^ 0, the quadric is

a surface of revolution.

Case 2. D = 0. One at least of th'e roots of the characteristic

equation is equal to zero, as follows from (51.3). For the equa-
tion (51.1) this means that either a', V, or c' is equal to zero.

Suppose that c' = and that a' and V are not zero. By a

translation of the axes, as in 47, equation (51.1) can be

transformed into an equation of the form

(51.7) ax2 + by
2 + 2nz = 0,

or

(51.8) ax2 + by
2 + d = Q.

For equation (51.7)

(51.9) A = - abn2 = - rir2
2

,

and for (51.8) A = 0. Hence when A ^ an equation of the

quadric is

(51.10) n*2 + r2y
2 + 2 z = 0,

that is, the quadric is an elliptic or hyperbolic paraboloid ac-

cording as the nonzero roots of the characteristic equation have

the same or opposite signs. When A = 0, we have (51.8) and

an equation of the quadric is

(51.11) n*2 + r2y
2 + d = 0.
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By Theorem [49.3] the quadric is a cylinder or is degenerate

according as equations (49.1) and (49.3) have not or have a

common solution. It is an elliptic cylinder or two conjugate

imaginary planes when the nonzero roots of the characteristic

equation have the same sign; it is a hyperbolic cylinder or

two real intersecting planes when the nonzero roots have op-

posite signs.

When two of the roots of (51.2) are equal to zero, we may in

all generality take b
f = c

f = 0. As shown in 47, the #'-, /-, z
f-

coordinates can be chosen so that (51.1) is of the form

(51.12) riX
2 + 2my = 0,

or

(51.13) r 1x* + d = 0.

In both cases A = 0, and by Theorem [49.3] the quadric is a

parabolic cylinder or two parallel or coincident planes accord-

ing as equations (49.1) and (49.3) have not or have a common
solution.

Gathering these results together, we have

[51.2] When for an equation of the second degree D = and

A 7^ 0, the quadric is a paraboloid, which is elliptic or

hyperbolic according as the two nonzero roots of the char-

acteristic equation have the same or different signs; when

D = and A = and the characteristic equation has two

nonzero roots, the quadric is an elliptic or hyperbolic cylinder

or consists of two intersecting planes, real or imaginary;
when D = and A = and there is only one nonzero root

of the characteristic equation, the quadric is a parabolic

cylinder or consists of parallel, or coincident, planes.

The preceding results are set forth in the following table,

in which a canonical form of an equation of a quadric is given

in terms of the roots of the characteristic equation. When in a

particular problem one has found the values of the roots, one

is able to determine completely the form of the quadric, but in

order to determine its position relative to the given coordinate
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axes it is necessary to find the principal planes by the method
of 48:

i*
2 + r2y

2
-f rzz

2 H = . . Ellipsoid or hyper-
717273

boloid

Cone

rix
2 + r2y2 + 2~ 2 = . . . Paraboloid

> = O j i a 7-= v . . . . Elliptic or hyper-

f\x
2 + r2y

2 + d = 4 bolic cylinder

[ d = . . . . Two planes

A = 0\d * 0, or d = 0, as (49.1), (49.3)

have not, or have, a common solution.

(X
2 + 2 my = Parabolic cylinder

x 2 + d = Two planes

EXAMPLE 1. For the quadric

(i) x2 + 2 y2 + 3 22 - 4 xy - 4 yz + 2 = 0,

the characteristic equation is

r3 - 6 r2 + 3 r + 10 = 0,

of which the roots are 2, 5, 1. Since A = 20, it follows from

(51.5) that there is a coordinate system with Respect to which

an equation of the quadric is

(ii) 2 x2 + 5 y
2 z2 + 2 =

;

from this equation it follows that the quadric is a hyperboloid
of two sheets. In order to find this new coordinate system, we
observe that it follows from (49.1) that (0, 0, 0) is the center

of the surface in the original coordinate system. Equations

(48.7) for (i) are /i x o Av f w
(1 r)u 2 v = 0,

2 u + (r
- 2> + 2 w = 0,

2 v + (r
- 3)w = 0.

Solutions of these equations for the roots 2, 5, 1 are 2, 1, 2 ;

1, 2, 2; 2, 2, 1 respectively. The lines through the ori-

gin with these respective direction numbers are the x-, y-,

z-axes respectively of the coordinate system with respect to
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which (ii) is an equation of the hyperboloid. The three planes

through the origin and whose normals have as direction num-
bers 2, 1, 2 ; 1, 2, 2 ; 2, 2, 1 in the original coordinate

system are the principal planes of the hyperboloid.

EXAMPLE 2. For the quadric

(i) 2 x2 + 2 y2 -4 z2 -5 xy-2xz-2 yz-2x-2y+z=Q
the characteristic equation is

of which the roots are 9/2,
-

9/2, ; and D = 0, A = 729/16.
From (51.10) we have that an equation of the surface is

(ii) 3*2 -3;y2 + 2z = 0,

so that the surface is a hyperbolic paraboloid. For the roots

9/2 and 9/2 respective solutions of (48.7) are 1, 1, and

1, 1, 4. These are direction numbers in the original coordinate

system of the *-axis and jy-axis in the new system, and from

(48.5) we have that in the original system equations of the new

jyz-plane and #z-plane are respectively

(iii) x -y = Q, x + y + 4z = 0.

Since these two planes pass through the original origin, which

is a point of the surface, and the new origin lies on the surface,

as follows from (ii), the two origins coincide. Since the new

ry-plane is perpendicular to the planes (iii) and passes through
the original origin, an equation of the new ry-plane is

2x + 2y-z = 0.

EXAMPLE 3. For the quadric

(i) 2x2 -2y2 + 3z2 + 3xy + 7xz-yz+ 3x-4y-z + d = Q

we have D = and A = whatever be d. In this case the

characteristic equation is

r (T
2 _ 3 r _ ift = o.

Since the two nonzero roots are different, the quadric is an

elliptic or hyperbolic cylinder or two intersecting planes in ac-

cordance with Theorem [51.2]. Since D = 0, we have by
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Theorem [41.5] that the portion of the above equation con-

sisting of terms of the second degree is factorable. Factoring
this expression, we consider the product

In order that this expression shall be the same as the left-hand

member of equation (i), we must have

k + 2m = 3, 2A;-w = -4, 3 + w = - 1, km = d.

The first three of these equations are satisfied by k = 1,

m = 2. If then d = km = 2 in equation (i), the latter is an

equation of a degenerate quadric, namely, two intersecting

planes. If d ^ 2, equation (i) is an equation of a hyperbolic

cylinder, since the nonzero roots of the characteristic equation
differ in sign.

EXERCISES

Determine the form of each of the following quadrics and its rela-

tion to the coordinate axes :

2. x2 + y2 + 4 z2 - 2 xy + 4 xz - 4 yz + 4 x - 8 z + 7 = 0.

3. x2 + 2 y
2 - z 2 + 4 xy + 4 xz - 2 yz

- 2 x - 4 z - 1 = 0.

4. x2 -2y 2 + z2 + 2xy + 2xz

5. x2 + y
2 + z2 + xy + xz + jy*

= 0.

6. 2 *2 + 2y + 3 z2 + 2 xy-x + 6

10. Discuss the quadric of which the surface Vx ^/2~y + \Tz =
is a part.

11. For what value of d is

an equation of a cone?

12. For what value of a is ax 2 + 6 ;y
2 + 7 z3 4- 4 x* + 30 = an

equation of a surface of revolution ? Determine the form and position

of the surface for this value of a.
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13. Show that when for a general equation of the second degree

D = 0, the portion of the equation consisting of terms of the second

degree consists of two factors, distinct or not according as the char-

acteristic equation has one zero root or two zero roots.

14. Show that for the quadric (48.1) the quantity l
2 + m2 + n2

is

an invariant for any rotation of the coordinate axes.

15. Show that if three chords of a central quadric have the same

mid-point, either all the chords lie in a plane or the common mid-point
is the center of the quadric.

16. Find the most general equation of a quadric cone with vertex

at the origin and having the *-, y-, and 2-axes for elements.

17. Show that

is an equation of an elliptic paraboloid, a hyperbolic paraboloid, or a

parabolic cylinder according as > 1, a < I, or a = 1.

18. Show that a(x
-

y)
2
-f b(x

-
z)

2 + c(y
-

z)
2 = d2

is an equa-
tion of an elliptic or hyperbolic cylinder according as ab + be + ca is

positive or negative. Find equations of the line of points of symmetry
in each case. Discuss the case when ab + be -f ca = 0.

19. Find the locus of the centers of the quadrics

where /, m, and n are fixed numbers and / and g are parameters.

20. Three mutually perpendicular lines meet in a point P such that

two of them intersect the axes of x and y respectively, and the third

passes through a fixed point (0, 0, c). Find the locus of P.

21. Consider equation (48.1) with c ^ as a quadratic in z with x

and y entering in the coefficients ; solve for z and analyze the result

after the manner of 41.
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In Chapter 1 we made use of definitions and theorems of

Euclidean plane geometry to set up coordinate systems in which
a point is represented by an ordered pair of numbers, and
to prove that an equation of the first degree in two variables

represents a (straight) line, in the sense that the coordinates

of any point of a given line are a solution of a particular equa-
tion and every solution of this equation gives the coordinates

of a point of this line. The advantage of this set-up is the ease

with which it permits one to use algebra in the solution of

geometric problems. However, the reader may appropriately
raise the question: Do the methods of coordinate geometry
enable one to solve any problem in Euclidean plane geometry ?

This question will be answered in the affirmative if we show
that the processes which have been used imply a set of axioms

from which all the theorems of plane geometry can be derived

without making use (consciously or unconsciously) of any tacit

assumption in deriving these theorems.

Before listing and testing such a set of axioms we shall sketch

briefly the nature and development of the subject usually called

Euclidean plane geometry. This subject has been the object

of study from the eras of the intellectual glory of Egypt and
of Greece. In the fourth century before the Christian Era,

Euclid assembled in his Elements the results of the study of

plane geometry by his predecessors and added to these results.

The topic of Greek geometry was the description and inves-

tigation of different figures and their properties in the plane
and in space. Some of the figures were encountered as shapes
of material objects or generated by motion of bodies ; others

were produced by mechanical devices, and their properties

were suggested by and derived from experience with physical

phenomena.
It was the principal aim of Greek geometers to proceed with

logical rigor, and this implied for them the necessity of deducing

every geometric proposition from those previously established
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without undue reference to physical phenomena. However,

every logical deduction must have a beginning somewhere.

Accordingly, out of the accumulated knowledge and experience

Euclid drew up a set of definitions and first propositions called

axioms or postulates, and from these all subsequent propositions

were derived by purely logical processes without further refer-

ence to physical intuition. (Euclid made a distinction between

axioms and postulates, which, however, will be ignored in our

discussion. We shall use the words interchangeably.) Euclid

does not discuss the origin of the postulates or the philosophical

means of deciding their validity. In his Elements he is con-

cerned only with the possibility of deducing the known theo-

rems of geometry from the postulates given, no matter what
the origin of the latter might be.

For about two thousand years Euclid's Elements were ac-

cepted in most part as the final word in plane geometry. How-

ever, one point in Euclid was challenged from the earliest times ;

this was his parallel axiom : "If a straight line falling on two

straight lines makes the interior angles on the same side of the

line less than two right angles, the two straight lines if produced

indefinitely meet on that side on which the angles are less than

two right angles/'

Most critics required that an axiom, since it is accepted with-

out demonstration, should be sufficiently simple in its content

to be self-evident, and the parallel axiom did not appear to be

of that nature. For that reason many attempts were made to

divest the proposition of its character as an axiom by proving
it to be a logical consequence of the other axioms.

The most notable attempt was made by Saccheri (1733),

who tried to prove the axiom by reductio ad absurdum. He
tentatively replaced the parallel axiom by hypotheses opposed
to it, with a view to deducing conclusions which would be

obviously contradictory. The attempt was unsuccessful, but

this type of argument prepared the way for geometries in

which the parallel axiom would be replaced by an axiom op-

posed to it. The first concrete proposal was made independ-

ently about 1825 by the Russian mathematician Lobachevsky
and the Hungarian Bolyai, namely, a system of geometry
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equally valid with the Euclidean results when Euclid's parallel

postulate is replaced by the assumption that through a given

point A not on a given line / there pass at least two lines which

do not intersect /. This non-Euclidean geometry was studied

in detail, and proof of its logical self-consistency is implied in

the works of Cayley (1859). Consequently it is now known
that any attempt to prove the parallel postulate as a conse-

quence of the other Euclidean axioms must necessarily be futile.

These discoveries aroused anew widespread interest in plane

geometry and its logical foundations, and new results led to a

thorough overhauling of the axiomatic method. It was found

that Euclid's set of first principles was in some respects incom-

plete and in other respects redundant. It was incomplete in so

far as the results obtained by Euclid involved unannounced
axioms because of the part played by intuition in obtaining
these results. On the other hand, some of Euclid's definitions

do not serve any useful mathematical purpose. For instance,

Euclid states in the form of definitions: (1) a point is that

which has no part ; (2) a line is a breadthless length ; (3) a

straight line is a line which lies evenly with its points. These

definitions can only be meant to announce to the reader that

certain objects, as point, line, etc., will be studied henceforth.

The description of them has no mathematical value and, as a

matter of fact, Euclid never refers to these definitions in sub-

sequent definitions or theorems. All significant information

about these geometric objects is contained exclusively in the

axioms, as, for instance, in the axiom that any two points deter-

mine a straight line on which they lie. Consequently it seems

preferable to begin with the mere enumeration of certain mathe-

matical objects by name and then to state axioms describing

properties of these objects. The objects given at the outset

are not defined explicitly, but the axioms state the relations

which the objects have to one another. For instance, if we say

that a point lies on a line, or that the line goes through the

point, then we have an intuitive situation in mind. However,
from the standpoint of mathematical rigor we must not refer

to this intuition explicitly, but must realize that this funda-

mental relation is to be introduced and given by the axioms
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announcing it. Thus a modern set of axioms enumerates

undefined terms and enunciates axioms containing these terms.

(These undefined terms may designate either particular objects

or classes of objects or relations.)

At the close of the last century the German mathematician

Hilbert proposed a set of axioms, and since then has revised

them. Many other mathematicians have likewise proposed
sets of axioms. We give below a set of fifteen axioms for plane

geometry as published by Hilbert in 1930 (Grundlagen der

Geometrie, seventh edition), with some modifications for the

sake of clarity.

The undefined terms in the axioms are six in number : point,

line, on (a relation between a point and a line), between (a rela-

tion between a point and a pair of points), congruent (a relation

between pairs of points), and congruent (a relation between

angles).

As explanation but not as definition: The word "line" is

here used to mean a straight line not terminated but extended

indefinitely in both directions. A point B is said to be be-

tween the points A and C if it lies on the line AC and between

A and C in the order of points on that line. A pair of points

A, B is said to be congruent to a pair of points A', B' if the

straight-line distance from A to B is equal to the straight-line

distance from A' to B'. Two angles are said to be congruent
if they are equal in measure, for example, in degrees, or if

they are superposable one on the other. (As remarked, the

statements in this paragraph are not definitions, but are expla-

nations for the benefit of the reader who may be more familiar

with these ideas under somewhat different names; from a

logical point of view they not only can but should be omitted.)

Although congruence of angles is taken as an undefined term,

the term "angle" is not itself undefined, but a definition is

given for it below.

Following usual geometric terminology, in order to express

that a point A is on (or lies on) a line / we may also say that

/ passes through A or that / contains A. We shall also use the

phrase "the line AB" to designate the unique line which, ac-

cording to Axiom 1, passes through A and B.

282



Appendix to Chapter 1

We now proceed to the statement of the fifteen axioms, inter-

spersing them with definitions as necessary. The reader should

draw a figure for each axiom as a means of clarifying its meaning.

Axiom 1. There is one and only one line passing through

any two given (distinct) points.

Axiom 2. Every line contains at least two points, and given

any line there is at least one point not on it.

Axiom 3. If a point B lies between the points A and C, then

A, B, and C all lie on the same line, and B lies between C and A,
and C does not lie between B and A, and A does not lie between

B and C.

Axiom 4. Given any two (distinct) points A and C, there

can always be found a point B which lies between A and C,

and a point D such that C lies between A and D.

Axiom 5. If A, B, C are (distinct) points on the same line,

one of the three points lies between the other two.

DEFINITION. The segment (or closed interval) AC consists of the

points A and C and of all points which lie between A and C. A point

B is said to be on the segment AC if it lies between A and C, or is

A or C.

DEFINITION. Two lines, a line and a segment, or two segments,

are said to intersect each other if there is a point which is on both

of them.

DEFINITION. The triangle ABC consists of the three segments AB,

BC, and CA (called the sides of the triangle), provided the points A, B,

and C (called the vertices of the triangle) are not on the same line.

Axiom 6. A line which intersects one side of a triangle and

does not pass through any of the vertices must also intersect

one other side of the triangle.

Axiom 7. If A and B are (distinct) points and A' is a point

on a line /, there exist two and only two (distinct) points
B' and B" on / such that the pair of points A', B' is congruent
to the pair A, B and the pair of points A', B" is congruent to

the pair A, B
;
moreover A 1

lies between B' and B".
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Axiom 8. Two pairs of points congruent to the same pair of

points are congruent to each other.

Axiom 9. If B lies between A and C, and B' lies between

A' and C', and A, B is congruent to A', B', and B, C is congruent

B', C', then A, C is congruent to A', C.

DEFINITION. Two segments are congruent if their end points are

congruent pairs of points.

DEFINITION. The ray AC consists of all points B which lie between

A and C, the point C itself, and all points D such that C lies between

A and D. (In consequence of preceding axioms it is readily proved
that if C' is any point on the ray AC the rays AC' and AC are identical.)

The ray AC is said to be /row the point A.

DEFINITION. The angle BAC consists of the point A (the vertex of

the angle) and the two rays AB and AC (the sides of the angle).

DEFINITION. If ABC is a triangle, the three angles BAC, ACBt

CBA are called the angles of the triangle. Moreover the angle BAC
is said to be included between the sides AB and AC of the triangle

(and similarly for the other two angles of the triangle).

Axiom 10. If BAC is an angle whose sides do not lie in the

same line, and B' and A' are (distinct) points, there exist two

and only two (distinct) rays, A'C 1 and A'C"
,
from A' such that

the angle B'A'C is congruent to the angle BAC, and the angle

B'A'C" is congruent to the angle BAC] moreover if E f

is any

point on the ray A'C and E" is any point on the ray A'C",

the segment E'E" intersects the line A'B'.

Axiom 11. Every angle is congruent to itself.

Axiom 12. If two sides and the included angle of one triangle

are congruent respectively to two sides and the included angle

of another triangle, then the remaining angles of the first tri-

angle are congruent each to the corresponding angle of the

second triangle.

Axiom 13. Through a given point A not on a given line /

there passes at most one line which does not intersect /.

Axiom 14. If A, B, C, D are (distinct) points, there exist on

the ray AB a finite set of (distinct) points A\, A^ - -

, A n such

that (1) each of the pairs A, A\ ; A\ 9
A 2 ; A 2 ,

A3 ; ; A n_i, A
is congruent to the pair C, D and (2) B lies between A and A n .
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Axiom 15. The points of a line form a system of points such

that no new points can be added to the space and assigned to

the line without causing the line to violate one of the first

eight axioms or Axiom 14.

The first five axioms state the simplest properties of a line

and of the order possessed by points on a line. They assure in

particular the existence of an endless number of points on a

line, that a line is not terminated at any point, and that the

order of points on a line is not like that of points on a closed

curve such as a circle.

Axiom 6 also is concerned with order properties, but involves

points not all on one line, and thus gives information about the

plane as a whole in a way in which the previous axioms do not.

The congruence Axioms 7-12 are introduced so as to avoid

in the proof of a proposition the use of superposition, that is,

picking up a geometric figure and placing it upon another, as

is done in the customary treatment of elementary geometry.
Euclid himself used superposition, but even to Greek mathe-

maticians and philosophers the use of this process in proving
a theorem was open to question. Now mathematicians meet

the question by means of congruence axioms. This explains,

in particular, why Axioms 10 and 12 appear here as axioms

and not as propositions to be proved.
Axiom 13 is the equivalent of Euclid's parallel axiom previ-

ously stated. It should be noted that Axioms 1-12 (because

they lead to the essential properties of perpendicular lines)

enable us to prove the existence of at least one line which passes

through A and does not intersect /. Axiom 13 is required to

assure us that there are not two such lines.

Axiom 14 is known as the Axiom of Archimedes. It cor-

responds to the process of using a measuring stick to find the

distance from one point on a line to another, and insures that,

starting at one point and laying off equal distances (the length

of the stick) in succession towards the other point, the other

point will ultimately be passed.

Axiom 15 is an axiom of completeness, assuring that there

shall be on any line all the points necessary to constitute a
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continuum, which means that the points of any line may be

brought into one-to-one correspondence with the set of all real

numbers. In this sense Axiom 15 is equivalent to an axiom of

continuity in the field of real numbers. For a discussion of

this question the reader is referred to Part First of Fine's

College Algebra and in particular to 159, where the concept

of a Dedekind cut is explained (but without calling it such).

The question of continuity is fundamental in the calculus, and

there the reader will find it fully discussed. Axiom 15 might
be omitted from a set of axioms for elementary geometry since

the usual elementary theorems follow without it, but it is nec-

essary for the free use of real numbers in coordinate geometry,
and especially for application of the calculus to geometry.

Granted these fifteen axioms, all further propositions of

Euclidean plane geometry can be derived from them by a

rigorous process of inference without further appeal to intui-

tion. To carry this out in detail is, of course, a long story.

The reader may consult in this connection O. Veblen's The

Foundations of Geometry, Monographs on Topics of Modern
Mathematics, pp. 3-51, Longmans, Green & Co., 1911, and
H. G. Forder's Foundations of Euclidean Geometry, Cambridge
University Press, 1927 ; in the latter many theorems of plane

geometry are traced back individually to their axiomatic source,

but there is much additional material.

Returning now to the question with which we introduced

this Appendix, consider the following composite proposition

(A), the six clauses of which (I-VI) correspond to the six un-

defined terms used in Axioms 1-15* :

Proposition A. It is possible to construct a coordinate system
in the plane such that :

I. Every point has associated with it a unique pair of real

numbers (its coordinates) and every pair of real numbers is

associated with a unique point.

II. Every line has associated with it an equation ax+by+c=0
in which x and y are unknowns (variables), a, &, c are constant

* See in this connection O. Veblen's The Modern Approach to Elementary
Geometry, The Rice Institute Pamphlet, Vol. 21, 1934, pp. 209-222.
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coefficients, and a and b are not both 0. This equation is unique
to within a possible constant multiplier (?* 0), and every such

equation is associated with a unique line.

III. A point is on a line, if and only if its coordinates satisfy
an equation of the line.

IV. The point (x, y) lies between the points (xi, y\) and

(*2, y2), if and only if there is a number /, greater than and
less than 1, such that the following equations both hold :

,jx
x = (1

- 0*i + tx2 ,

y=(l- t)yi + ty2 .

V. The pair of points (*i, >>i), (x2,y2) is congruent to the

pair (*3 , jXs), (*4, y*)> if and only if

(2) (*2
-

*!)
2 + 0*

VI. The angle (x2 , y2)(xi, y\) (#3, jy3) is congruent to the

angle (xj, y2 ')(xi', yi')(*3, JVs'), if and only if

(x2
-

(y*
-

V(*2
7 -

*i')
2 + CV2

X - y

Proposition A, I necessitates Axiom 15 since, as previously

remarked, this axiom guarantees the existence upon any line

of points in one-to-one correspondence with all real num-
bers. As a matter of fact, points corresponding to a suitable

subset of real numbers satisfy Axioms 1-14, and such a subset

would suffice to give algebraic expression to the fourteen

axioms. However, we desire to deal with all real numbers and

thus have included Axiom 15.

The truth of Proposition A follows as a consequence of

familiar theorems of elementary Euclidean geometry (see Theo-

rems [5.2], [5.3], [3.1], [3.4] and equations (5.8)).

We shall now show conversely that Axioms 1-14 follow as

consequences of Proposition A entirely by the methods of al-

gebra and without use of other propositions of geometry. We
call the left-hand member of equation (2) the square of the
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length of the line segment (xi, y\) (x2 , y2), and the left-hand mem-
ber of equation (3) the cosine of the angle (x2 , yz)(xi, yi)(x3 , ;y3 ).

These names are applied to algebraic expressions involving

Xi, yi, and so on, not to geometric objects.

Axioms 1 and 2 follow from the algebraic definitions of point

and line in A and the results of 1.

For any real value of t > I equations (1) determine a point.

On solving these equations for x2 and y2 , we obtain

from which it is seen that (x2 , y2 ) lies between (x, y) and

(*i yi)> in accordance with the algebraic definition A, IV of

betweenness. Similarly, it can be shown that if / < 0, (x\ 9 y\)

lies between (x, y) and (x2 , ^2). Thus Axioms 3, 4, and 5 fol-

low from the algebraic definition A, IV.

Theorem [6.8] gives an algebraic definition of parallelism

satisfying Axiom 13. From this definition and the algebraic

definition of direction numbers of a line in terms of the coordi-

nates of any two points of the line, there follows the result that

direction numbers of parallel lines are proportional.

In the consideration of Axiom 6 we take on the side PiP2 of

the triangle with vertices PI(*I, >>i), P2 (x2 , y*\ P3 (*3, y*) a

point P(x, y) other than PI and P2 . Its coordinates are given

by (1) for < / < 1. If the line of the axiom is parallel to

P2P3 ,
it meets the side PiP3 in the point P' of coordinates

(1 0*i + txa, (1 t)y\ + ty3 , since direction numbers of the

line segment PP' are t(x&
- *2), t(y3

- y2), which are direction

numbers of P2P3 . Similar results hold for a line parallel to PiPa.

Suppose then that the line through P is not parallel to PiP3 or

P2P3 , and denote by P' and P" the points in which it meets the

lines PiP3 and P2P3 respectively. The coordinates of P 1

are of

the form

(1
-

r)xi + rxs, (1
-

r)yi + ry3 .

Since the line does not pass through PI or P3 ,
r is not equal to

or 1. If r lies between and 1, the conditions of the axiom are
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met. Suppose then that r < or > 1, in which case P' lies out-

side the segment PiP3 , and write the coordinates of P" thus :

Since the points P, P', P" lie on a line, there exists a number
u such that (see page 25)

(1
-

s)*2 + s*3 = (1
-

)[(!
-

0*i + to] + ul(l
-

r)xi + r*3],

and similarly for the /s. Since PI, P2 ,
P3 are not collinear,

there can be no linear homogeneous relation of their coordinates,

and consequently we must have

(l~w)(l-/) + w(l~r)=0, (1
_ W)f

-
(1
- 5 )

= 0, ur-s = 0.

The first of these equations is satisfied if the other two are.

Eliminating u from the second and third of these equations, we
obtain 1 _ /

r

Since < t < 1, and r < or > 1, by hypothesis, we have that

< 5 < 1
; that is, P" is on the segment P2P3 ; and the axiom

follows.

Axiom 8 is satisfied by the algebraic definition A,V of con-

gruence of pairs of points. If (jti, y\) and (x2 , yz) are the points

A and B of Axiom 7, (#3, jya) the point A' on the line /, and

a(x 3) + b(y y*) = an equation of the line /, the de-

termination of the points B' and B" is the algebraic problem of

finding the common solutions of the equations

(*2
- *0 2 + (y2

-
;vi)

2 =(x- *3)
2 + (y

- ^) 2

a(x *3 ) + 6(y JVs)
= 0.

It is evident that these equations have two and only two solu-

tions ;
and one can show that (#3 , yz) is the mid-point between

the points B' and B" (see Theorem [4.1]).

In the consideration of Axiom 9, we denote by (#i,;yi), (^2,^2)*

(xi
f

, yi'}> fa'* y*') the coordinates of A, C, A', C respectively.

Then B and B' are points (x, y) and (x' 9 y'), where

x = (1
- 0*i + tx2 , y = (l- t)yi + ty2,

x'=(l- /')*i' + t'xj, y'=d- t'W + t'y2
'

9

for suitable values of / and /' such that < ^ < 1, < ^ < 1.
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When now in accordance with A,V we express the congruence
of AB and A'B', and of BC and B'C', we find that /' = /, and

then that AC and A'C are congruent ; and the axiom follows.

If for Axiom 10 the angle BAG is (*2 , y*)(xi, y\)(x*, jVa) and

the points A', B' are (x\ 9 y\), (x2 , y2 ), the left-hand member
of equation (3) is a fixed number k which can be shown to be

such that
|

k
\
< 1, and we have to determine solutions #3 ', y* of

this equation. If we put

then

(4) x2
' = x

and for any positive value of d2 these equations give the coor-

dinates of a point on the ray A'B'
,
and for negative values of

d2 on the ray through A' in the opposite direction. If, in like

manner, we put

and require #', y' to satisfy equation (3), we obtain

k = uu 2 + M2.

If this equation is written in the form

(5) vv2 == k uu 2

and then squared, the resulting equation is reducible to

(u
- u2k)

2 =

u2
2 + v2

2 =
1, w2 + 2 = 1.

l k2
, we have from (5) and (6)

U U2k V2l, V = f2k T W2/.

Consequently there are two and only two solutions of the prob-
lem. The coordinates of points E f and E" on the respective rays
from A' forming with A'B' an angle congruent to the given

angle are given by

k + u2l),
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for positive values of ds and d. Since

\, / I d3 , , ,

1*3 + . . . *4 = *i +

.
_,

. 1 .
,

, 2t

03 + "4 03 + 4

it follows from (4) by A, IV that the segment E'E" has a point
in common with the ray A 'B' when k is positive, and with the

opposite of the ray when k is negative. Thus Axiom 10 fol-

lows from A,V and A, IV as Axiom 11 does directly from A,V.
We denote by /2

2 the left-hand member of equation (2),

which we have called the square of the length of the line seg-

ment (xi, 3>i) (#2, ^2), and similarly we denote by /i
2 and I

2 the

squares of the lengths of the segments (x\, yi)(xs, jys) and

(*2, ^2) (#3, JV3) respectively ; also we denote by cos A the left-

hand member of equation (3), which we have called the cosine

of the angle (#2, ^2X^1, y\)(xs, ^3). When these expressions are

substituted in the equation

(7) I
2 = /i

2 + /2
2 - 2 /i/a cos A,

it is found that this equation is an identity, that is, the Law
of Cosines is thus an algebraic identity. If in Axiom 12 the

vertices of the two triangles are (x\,y\), (^2,^2), (*s, jVs) and

(xi
f

, yi'), (x2
'

t j>2') (*3
7

, y*'), the expressions (2) for the lengths

(*i, yi)(x2, y2) and (xi' 9 yi')(x2, y/) are equal, and likewise for

(xi, yi)(xz, ^3) and (xi, jyiOfe', yz). The expressions (3) for

cos A and cos A' of the angles at (x\, y\) and (x\, y\) are

equal. Then from equation (7) we have the equality of the ex-

pressions for the lengths of the third sides. Having the expres-

sions for the lengths of corresponding sides of the triangles

equal, we obtain from equations of the form (7) the equality of

the expressions for the cosines of corresponding angles and by
A, VI the congruence of these angles.

If in Axiom 14 the coordinates of A and B are xi, y\ and
x2 , y2 respectively, and the coordinates of A\ are given by (1),

then t is equal to /i//2, where l\ and 12 are the lengths of the

segments CD and AB respectively. If then we replace / in (1)

by 2 1, 3 1, and so on, equations (1) give the coordinates of the
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points A2, ^3, and so on, of the axiom. Consequently this axiom
is satisfied by taking a sufficiently large integer n as multiplier of

t in equations (1).

Since it has now been shown that Axioms 1-15 follow as

consequences of Proposition A entirely by the methods of algebra

and without use of other propositions of geometry, the situation

is as follows :

Clauses I-VI of Proposition A provide algebraic correspond-
ents for each of the six undefined geometric terms. Given any

geometric term, write out its definition from the six undefined

terms, and in the definition replace each undefined term by its

algebraic correspondent ; the result will be the algebraic cor-

respondent of the given geometric term. Hence every geometric
term has its algebraic correspondent or representative. This

enables one to translate every geometric theorem into a corre-

sponding theorem of algebra. And in view of the algebraic

proofs provided for the theorems of algebra corresponding to

Axioms 1-15, the geometric proof of a theorem can be trans-

lated into an algebraic proof of the corresponding theorem of

algebra (although, as indeed often happens, a shorter algebraic

proof may be found in another way).
Thus the question which we raised concerning the adequacy

of the methods of coordinate geometry in the study of any

question of Euclidean plane geometry is answered in the

affirmative.
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Abscissa, 9

Absolute value, 12, 19

Agnesi, witch of, 234

Angle, between directed line seg-

ments, 15, 80; between nor-

mals to a plane, 94; between

positive direction of lines, 29,

35, 46, 86, of parallel lines, 32 ;

bisectors of, 51, 128; dihedral,

97, bisectors of, 97 ; line makes

with a plane, 98 ; trisection of,

232

Archimedes, axiom of, 285; spi-

ral of, 156

Asymptote. See Hyperbola

Asymptotic cone, 252

Axes, oblique, 53 ; rectangular, in

the plane, 8, 53, in space, 71 ;

choice of, 171, 229

Axiom of Archimedes, 285

Axioms of Hilbert, 282

Axis, polar, 154 ; of cylinder, 246
;

of surface of revolution, 178,

240; of symmetry, 174

BOLYAI, 280

Canonical equations. See Conies

and Quadric surfaces

Canonical form of equation, 227

Cardioid, 159

Cassini, ovals of, 235

CAYLEY, 281

Center. See Conies and Quadric
surfaces

Characteristic equation. See

Equations of the second degree

Circle, 54 ; equation of, 54, 145 ;

escribed, 52; imaginary, 55;

inscribed, 52; point, 55; tan-

gent to, 57

Circles, orthogonal, 61; radical

axis of, 59 ; system of, 59

Cissoid, 159

Cofactor. See Determinant

Collinear points, 20, 26, 82, 87

Completing the square, 55

Conchoid, 159

Cone, 129, 201, 245-248; asymp-
totic, 252 ; general equation of,

265, 273 ; vertex of, 246, 265

Conies, 171 ; as orbits of planets,

189; as plane sections, of a

cone, 201, of a quadric, 261;

central, 183; center of, 183,

222; confocal, 196; degener-

ate, 208, 219, 222 ; diameter of

central, 192 ; directrix of, 191,

215, see also Parabola, Ellipse,

Hyperbola ; eccentricity of,

171, 202 ; equation of, 172, 204,

208, polar, 191 ; equations of,

canonical, 227 ; parallel chords

of, 177, 191, 220, 223; prin-

cipal axis of, 223 ; similar, 173,

196, 263; tangent to, 228;
with axes parallel to coordinate

axes, 203. See also Equations
of the second degree, Parabola,

Ellipse, Hyperbola
Conjugate imaginary factors, 212

Conjugate imaginary lines, 197

Conjugate imaginary points, 177

Coordinate axes. See Axes
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Coordinate planes, 71

Coordinates, in the plane, Car-

tesian, 8, oblique, 53, polar,

154, rectangular, 8, transforma-

tions of, 149, line, 64; choice

of, 171, 229; in space, cylin-

drical. 167, polar, 167, rec-

tangular, 71, spherical, 166,

transformations of, 160

Curve, in the plane, 21 ; in space,

239, plane, 239, skew, 239,

twisted, 239

Cycloid, 236

Cylinder, 239, 266, 267, 275 ; axis

of, 246

Cylindrical coordinates, 167

A 217, 226, 258, 268

A, 265, 271

Determinant, the, of equations,

41, 111, 137; cofactorof, 108,

131; element of, 106, 131;

main diagonal of, 104, 107, 130 ;

minor of, 107, 131

Determinants, of the second order,

41; of the third order, 106-

110; of the fourth and higher

orders, 130-137 ; evaluation of,

135; product of, 46, 113, 137;

properties of, 108-110, 116,

132-136, 141; reduction of,

135; sum of, 46, 112

Diameter, of central conies, 192 ;

of central quadrics, 246

Diametral plane of central quad-

rics, 256

Dimensionality, 21 ; of a curve,

21,25; of a line, 21, 25, 83; of

a linear entity, 143 ; of a plane,

74 ; of space, 83 ; of spaces of

higher order, 142, 143

Directed line segment, 12, 78

Direction, positive, of a line, 28,

84 ; of a segment, 12, 77

Direction cosines, of a line, 28, 29,

85 ; of a line segment, 12, 77 ;

of normals to a plane, 96 ; of

perpendicular lines, 86; of

three lines, 162 ; in w-space, 143

Direction numbers, of a line, 27,

31, 84, 105, 127; of a line per-

pendicular to two lines, 106 ; of

a line segment, 11, 77; of nor-

mals to a plane, 92 ; of perpen-
dicular lines, 30, 31, 86; of

three lines through a point,

118; in n-space, 143

Directrix of a conic, 171

Discriminant, 265, 271

Distance, between points, 11, 76,

153, 165 ; directed, 9 ; from a

line to a point, 35, 96 ; from a

plane to a point, 95 ; shortest,

between two lines, 121

Division, internal and external,

of a line segment, 17, 26, 81, 95

Dual, 47

e, 15

Eccentricity, of a conic, 171

Ellipse, 171, 188; conjugate di-

ameters of, 192; construction

of, 187 ; director circle of, 235 ;

directrices of, 183, 184, 189;

eccentricity of, 186, 189, 202 ;

equation of, 182, 184, 185, 206,

227, parametric, 195, see also

Equations of the second de-

gree ; focal radius of, 186, 193 ;

foci of, 183, 184, 189; imagi-

nary, 197; latus rectum of,

190 ; major axis of, 185 ; minor
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axis of, 183 ; point, 197 ; polars

with respect to, 195 ; principal

axes of, 183 ; properties of, 187,

193, 195, 196; tangents to,

193 ; vertices of, 185

Ellipses, similar, 197

Ellipsoid, 244, 255, 275 ; of revo-

lution, see Spheroid; general

equations of, 265, 273 ; point,

273; properties of, 247; tan-

gent line to and tangent plane

to, see Quadric surfaces

Elliptic cylinder, 245, 266, 274,

275, 278

Embedded entity, 143

Endless number of solutions, 3

Equation of a line in the plane,

general, 23, 24, 31 ; in polar co-

ordinates, 158 ; intercept form,

26; parametric equations, 24,

25, 28 ; point-direction number

form, 27 ; point-slope form, 33 ;

two-point form, 22, 117. See

also pages 62, 63

Equation of a plane, 88-93 ; con-

taining, a line, 90, 102, one line

and parallel to another, 120, a

point, 91, two lines, 97; deter-

mined, by a line and perpendic-

ular to a plane, 122, by a point

and a line, 91, 102, by a point
and normal to a line, 122, by a

point and parallel to two lines,

122, by three points, 91, 93,

111, 113, 118, 119; intercept

form, 94, 128 ;
in 4-space, 145

Equations of a line, general, in

space, 100; in w-space, 143,

145 ; parametric, 85, 87 ; point-

direction number form, 84;

two-point form, 82

Equations of the first degree, in

two unknowns, 3, 39, degener-

ate, 4, 23, determined by solu-

tions, 5-7, 25, equivalent, 5,

essentially different, 5, 40, inde-

pendent, 5, 40, solutions of, 4,

39-45 ; in three unknowns, 88,

98, homogeneous, 104, 114,

solutions of, 99, 104, 110, 115,

126; in four unknowns, 137,

142 ; in n unknowns, 139-142

Equations of the second degree,

in two unknowns, 208, 229,

characteristic equation of, 224,

226, 229, determination of the

locus of, 208-229, invariants of,

210, 225, 226; in three un-

knowns, 254, 256, characteristic

equation of, 258-260, 262, 263,

270, determination of the locus

of, 256-261, invariants of, see

/, /, A and A
EUCLID'S definition of a plane, 74,

88

EUCLID'S Elements, 279

EUCLID'S parallel axiom, 280, 285

EULER'S formulas, 166

Focal radius, 181, 186, 193

Focus, 171

Graph, 8, 10 ; of an equation, 21 ;

of parametric equations, 25

Hilbert, axioms of, 282

Homogeneous equations. See

Equations of the first degree

Homogeneous expressions, 25, 219

Hyperbola, 171 ; asymptotes of,

198, 200, 212 ; conjugate, 199,

200; conjugate axis of, 185,
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199 ; construction of, 188 ; di-

ameters of, 192, conjugate, 192,

199; directrices of, 183, 184,

195 ; eccentricity of, 186, 199,

200, 207; equation of, 182, 184,

185, 195, 206, 212, 214; focal

radii of, 186, 193 ; foci of, 183,

184; latus rectum of, 190;

polars with respect to, 195;

principal axis of, 183, 220;

properties of, 187, 188, 193,

195, 196, 199, 200, 232; rec-

tangular, 190, 196, 198, 199;

tangents to, 193; transverse

axis of, 185; vertices of, 185, 195

Hyperbolic cylinder, 245, 266,

274, 275, 278

Hyperboloid, asymptotic cone of,

252 ; general equation of, 265,

273; of one sheet, 241, 244,

255, 275 ; of revolution, 241 ;

of two sheets, 241, 244, 255,

275 ; polar planes with respect

to, see Quadric surfaces ; prop-

erties of, 249 ; tangent line to

and tangent plane to, see Quad-
ric surfaces

Hyperplane, 145

7, 225, 258, 268

Intercept, 26, 94, 128

Invariant, 153, 210, 267. See also

I, J, Z>, and A

/, 225, 258, 268

Latus rectum. See Parabola, El-

lipse, Hyperbola
Law of Cosines, 15

Lemniscate, 159

Limagon, 159

Line, characteristic property of,

27, 28, 82; in the plane, see

Equation of a line in the plane ;

in space, see Equations of a line

in space ; parallel to a coordi-

nate plane, 83

Line coordinates, 64

Line segment, 9, 11 ; antiparallel,

13 ; division of, 17 ; mid-point

of, 18; parallel, 13, 79; per-

pendicular, 16

Linear dependence, 25, 116, 141,

145

Linear entity, 142, 145

Linear equation, 142

Linear expression, 25

Lines, in a plane, 118, 122, 128;

parallel, 27, 30, 33, 38, 84, 85 ;

perpendicular, 30, 31, 34, 86;

skew, 86 ; through a point, 47-

51, 85, 106; three, through a

point, 118

LOBACHEVSKY, 280

Locus, 21, 64, 171

Locus problems, 229-236

Magnification, 173

Mid-point of a line segment, 18

Minor. See Determinant

w-space. SeeSpace of n dimensions

Non-Euclidean geometry, 281

Normal, toa curve, 181 ; toa plane,

92 ; to a quadric surface, 262

Octants, 71

Ordered pair of numbers, 20

Ordinate, 9

Orthogonal projection, 73 ; of a

circle, 191

Ovals of Cassini, 235
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Parabola, 171, 175; axis of, 175,

177; directrix of, 175; equa-
tions of, 174, 175, 205, 208, 213,

see also Equations of the second

degree; focus of, 175; latus

rectum of, 175 ; normal to, 181 ;

polars with respect to, 179;

properties of, 178, 181, 182;

subnormal of, 181 ; tangents to,

175, 177, 180-182; vertex of, 175

Parabolas, similarity of, 173

Parabolic cylinder, 245, 267

Paraboloid, elliptic, 243, 255, 275,

general equation of, 274 ; hy-

perbolic, 243, 255, 275, general

equation of, 274 ; of revolution,

178, 240; polar plane with re-

spect to, see Quadric surfaces;

properties of, 249, 267; tangent

line to, 250 ; tangent plane to,251

Parallel line segments, 13

Parallel lines, 27, 30, 33, 38, 84, 85

Parameter, 24, 231, 235

Parametric equations, 24, 85, 231.

See also Equation, Equations

Perpendicular line segments, 16

Perpendicular lines, 30, 31, 34, 86

Plane, 74, 88 ; normal to a, 92 ;

parallel to a line, 89, 90;

through three points, 111, 113,

119. Seea/soEquationofaplane

Planes, parallel, 89, 93, 98, 101,

103, 105, 114 ; parallel to a line,

103, 106, 127; perpendicular,

90, 92 ; through a line, 101, 106 ;

three, configurations of, 123-

126, with a line in common, 116,

with one point in common, 111,

113, 114, 116, 119; four, with

a point in common, 144

Points, collinear, 20, 26, 82, with

the origin, 20, 87; conjugate

imaginary, 177

Polar, line called the, 179.' See also

Parabola, Ellipse, Hyperbola
Polar coordinates, 154; trans-

formation of, to rectangular

coordinates, 157

Polar plane, 263, 264

Pole, 154, 179, 263, 264. See also

Parabola, Ellipse, Hyperbola
Positive direction. See Direction

Positive sense. See Sense

Principal axis. See Conies

Principal plane. See Quadric sur-

faces

Projection, of a line segment,

upon a line, 9, 73, 75, 128, upon
a plane, 73, 128; of a point,

upon a line, 9, 73, upon a plane,

73 ; parallel, 73

Quadrant, 9

Quadratic expression, in two un-

knowns, 219; in three un-

knowns, 219

Quadratic form, 219

Quadric surfaces, 246 ; canonical

equations of, 245, 275 ; center

of, 246, 264 ; central, 246 ; clas-

sification of, 271-275 ; confocal,

251, 263 ; chords of, 278, paral-

lel, 257 ; degenerate, 246, 273-

275; diameter of, 246; dia-

metral plane of, 256; line of

symmetry of, 266 ; normal to,

262, 263; of revolution, 241-

242, 270; plane of symmetry
of, 266; plane section of, 261,

263; polar plane with respect

to, 263, 264; principal planes

of, 246, 254, 260, 270; ruled,
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248-250 ; tangent line to, 257 ;

tangent plane to, 251, 252, see

also Paraboloid ; with principal

planes parallel to the coordinate

planes, 252. See also Equations
of the second degree, Parabo-

loid, Ellipsoid, Hyperboloid

Radical axis of circles, 59

Radical plane of spheres, 129

Radius vector, 154

Ratios with zero terms, 23

Representative point, 22, 82

Rotation of axes, in the plane,

152 ; in space, 164

Ruled surface, 249

Ruling, 249, 263

SACCHERI, 280

Sense, along a segment, 11, 12, 77 ;

positive, 12, 77, along a line, 28,

84

Similar curves, 173

Similar figures, 173, 174

Simultaneous equation. See Equa-
tions

Skew curve, 239

Skew lines, 86 ; common perpen-
dicular to, 121, 123

Slope of a line, 33

Solutions. See Equation, Equations

Space, of four dimensions, 142,

plane in, 145 ; of n dimensions,

142, generalized sphere in, 144,

hyperplane in, 145, line in, 143,

145

Sphere, 128, 129, 273; general-

ized, 144

Spherical coordinates, 166

Spheroid, oblate, 241 ; prolate, 241

Spiral of Archimedes, 156

Surface, 239 ; degree of, 240 ; of

revolution, 178, 240-242, 270;

ruled, 249. See Quadric surfaces

Symmetric, with respect to, a line,

9, 73 ; a plane, 73 ; a point, 9, 73

Symmetry, line of, 266 ; plane of,

266; point of, 267. See also

Symmetric

Tangent, 57. See also Parabola,

Ellipse, Hyperbola, Paraboloid,

Quadric surfaces

Tangent plane, see Paraboloid,

Quadric surfaces ; to a sphere,

129

Tetrahedron, 144

Torus as a surface of revolution,

242

Transform, 210

Transformations of rectangular

coordinates, in the plane, 149,

into polar coordinates, 157 ; in

space, 160, into cylindrical co-

ordinates, 167, into spherical

coordinates, 167

Translation of axes, in the plane,

150; in space, 160

Triangle, condition that points are

vertices of, 117; perpendicu-
lars to sides of, 32

Trisection of an angle, 232

Twisted cubic, 240, 242

Twisted curve, 239

Vector, 154

Vectorial angle, 154

Vertex, of a cone, see Cone ; of a

conic, see Conies, Parabola, El-

lipse, Hyperbola

Witch of Agnesi, 234
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NON-EUCLIDEAN GEOMETRY

by Roberto Bonola

This is an excellent histoiical and mathematical view by a renowned

Italian geometer of the geometries that have arisen from a study of

Euclid's 5th postulate on parallel lines. Students, teachers and math-

ematicians will find here a ready reference source and guide to a

field that has now become overwhelmingly important.

NON-EUCLIDEAN GEOMETRY first examines the various attempts

to prove Euclid's parallel postulate by the Greeks, by the Arabs,

by mathematicians of the Renaissance. Then, ranging through the

17th, 18th and 19th centuries, it considers the forerunners and

founders of non-Euclidean geometry, such as Saccheri, Lambert,

Legendre, W. Bolyai, Gauss, Schweikart, Taurmus, J Bolyai and

Lobatschewsky In a discussion of later developments, the author

treats the work of Riemann, Helmholtz and Lie, the impossibility of

proving Euclid's postulate, and similar topics. The complete text of

two of the founding monographs is appended to Bonola's study

"The Science of Absolute Space
1 '

by John Bolyai and "Geometrical

Researches on the Theory of Parallels" by Nicholas Lobatschewsky.

"Firmly recommended to any scientific reader with some mathematical

inclination" JOURNAL OF THE ROYAL NAVAL SCIENTIFIC SERVICE

"Classics on the subject," SCIENTIFIC AMERICAN

Translation with additional appendices by H. S. Carslaw. 256 bib-

liographic footnote references Introduction by Federigo Ennques.

Index. 181 diagrams 431pp. 5% x 8.

S27 Paperbound $1.95



THE GEOMETRY OF RENE DESCARTES

This is an unabridged re-publication of the definitive English trans-

lation of one of the very greatest classics of science. Originally

published in 1637, it has been characterized as "the greatest single

step ever made in the progress of the exact sciences" (John Stuart

Mill ) ; as a book which "remade geometry and made modern geometry

possible," (Eric Temple Bell). It "revolutionized the entire conception

of the object of mathematical science," (J. Hadamard).
With this volume Descartes founded modern analytical geometry.

Reducing geometry to algebra and analysis, and conversely showing
that analysis may be translated into geometry, it opened the way
for modern mathematics. Descartes was the first to classify curves

systematically, and to demonstrate algebraic solution of geometric
curves. His geometric interpretation of negative quantities led to

later concepts of continuity and the theory of function. The third

book contains important contributions to the theory of equations.

This edition contains the entire definitive Smith-Latham translation

of Descartes' three books: Problems the Construction of which Requires

Only Straight Lines and Circles; On the Nature of Curved Lines; On
the Construction of Solid or Supersolid Problems. Interleaved page
by page with the translation is a complete facsimile of the 1637

French text, together with all Descartes' original illustrations, 248

footnotes explain the text and add further bibliography.

Translated by David E. Smith and Marcia L. Latham. Preface. Index.

50 figures. xiii+ 244pp. 5% x 8. S68 Paperbound $1.50



GEOMETRY OF FOUR DIMENSIONS

by H. P. Manning

Manning's GEOMETRY OF FOUR DIMENSIONS is unique in English as a

clear and concise introduction to a branch of modern mathematics now

in application as an indispensable part of mathematical physics (algebra,

analysis, relativity).

Proceeding by the synthetic method the author will make clear to you the

geometry of the fourth dimension, aiding you to reason about four-

dimensional figures. Treatment is based mostly on Euclidean geometry,

although in some cases, as hyperplanes at infinity, non-Euclidean geometry

is used. After a discussion of the history of dimensions, with references

to Moebius, Riemann, Lobatchevsky, and others, the author discusses the

foundations of fourth dimensional geometry; perpendicular and simple

angles; angles of two planes and of higher order; symmetry, order, motion,

hyperpyramids; hypercones; hyperspheres; Euclidean geometry, figures

with parallel elements; measurement of volume and hypervolume in hyper-

space; regular polyhedroids.

"Clearly written ... an excellent book," SCIENTIFIC AMERICAN. "Of

particular interest . . . The author shows that the knowledge of the new

geometries has clarified and sometimes corrected men's understanding

even of Euclidean geometry," MODERN SCHOOLMAN. "A standard

treatise for students of mathematics," SKY AND TELESCOPE.

Complete unabridged reproduction of the first edition. Preface. Historical

introduction. 179 footnotes, mostly bibliographical. Glossary of terms.

Index. 76 figures, including 3 full-page plates. ix+ 348 pp. 5% x 8.

SI 82 Paperbound $1.95



AN INTRODUCTION TO THE GEOMETRY
OF N DIMENSIONS

by D. M. Y. Sommerville

This is the only book in English devoted exclusively to the subject of

higher-dimensional geometry. Unavailable for many years, it has now

been reprinted in response to the current increased interest among

geometers, mathematicians, physicists and crystallographers in the

geometry of n dimensions.

To introduce this increasingly fruitful branch of investigation, Dr.

Sommerville selects and demonstrates several representative topics of

n-dimensional geometry which not only illustrate the extensions of

three-dimensional geometry, but reveal results which are unexpected

and where analogy would be a faithless guide. Each topic is de-

veloped at length. Both the metric and, to a slightly less extent, the

projective properties of n-dimensional geometry are dealt with.

In the first four chapters, Dr. Sommerville explains the fundamental

ideas of incidence, parallelism, perpendicularity, and angles between

linear spaces. (Chapter I also contains an excursus into enumerative

geometry.) Chapter V presents analytical geometry from the pro-

jective point of view, and contains some of the simplest ideas relating

to algebraic varieties, and a more detailed account of quadratics,

especially with reference to their linear spaces. Chapter VI treats

analytic geometry of n dimensions from the metric point of view, and

contains, in addition to the ordinary cartesian formulae, some account

and applications of the Plucker-Grassmann co-ordinates of linear

space, and applications to line-geometry. The remaining four chap-

ters deal with polytopes, and contain, especially in Chapter IX, some

of the elementary ideas in analysis situs. Chapter VIII treats of the

content of hyper-spacial figures. The final chapter establishes the

regular polytope.

Bibliography. Index. 60 diagrams. 196pp. 5 3
/s x 8.

Paperbound ($1.50 tent.)



THE ELEMENTS OF NON-EUCLIDEAN GEOMETRY

by D. M. Y. Sommerville

Almost immediately upon publication Dr. Sommerville's book became

the standard text in the field. It is renowned for its lucid yet meticulous

exposition and, unlike advanced treatises, it can, for the most part,

be understood by anyone who has a good knowledge of high school

algebra and geometry. The arrangement follows the traditional pat-

tern of plane and solid geometry where theorems are deduced from

axioms and postulates. In this way, the student can follow the devel-

opment of non-Euclidean geometry in strictly logical order, from a

fundamental analysis of the concept of parallelism to such advanced

topics as inversion and transformations.

Elementary hyperbolic geometry; elliptic geometry; analytic non-

Euclidean geometry; representations of non-Euclidean geometry in

Euclidean space; space curvature and the philosophical implications

of non-Euclidean geometry; the theory of the radical axes, homothetic

centres, and systems of circles; inversion, equations of transformation,

groups of motions; and the classification of conies are developed with

exceptional clarity.

Although this is primarily an elementary text, Dr. Sommerville treats

such important and difficult topics as the relation between parataxy

and parallelism, the absolute measure, the pseudosphere, Gauss'

proof of the defect-area theorem, geodesic representation, and others

with simplicity and ease. 126 problems at chapter endings give the

student practise in using the forms and methods developed in the text

and provide many important corollaries.

133 figures. 126 problems. Index, xvi + 274pp. 5% x 8.

S460 Paperbound $1.50



FAMOUS PROBLEMS OF

ELEMENTARY GEOMETRY

by Felix Klein

This expanded version of the famous 1894 Easter lectures at

Gottingen University has been accepted as a modern mathematical

classic, and has been translated into four different languages. Using

techniques of modern mathematics, it examines three famous prob-

lems which were intensely investigated in premodern mathematics:

doubling the volume of a cube, trisecting an angle, squaring a

circle.

Written with all Felix Klein's mathematical breadth, clarity, and

profundity, this volume provides answers to modern problems con-

nected with these three problems of the past. It is especially inter-

esting to the modern student in answering such questions as:

Under what circumstances is a geometric construction possible? By
what means can a geometric construction be effected? What are

transcendental numbers, and how can you prove that e and pi are

transcendental? Treatment is simple, and no knowledge of higher

mathematics is required.

CONTENTS. I. THE POSSIBILITY OF THE CONSTRUCTION OF AL-

GEBRAIC EXPRESSIONS. 1. Algebraic equations solvable by square

roots. The delian problem and the trisection of the angle. The divi-

sion of the circle into equal parts. The construction of the regular

polygon of 17 sides. General considerations of algebraic construc-

tions. II. TRANSCENDENTAL NUMBERS AND THE QUADRATURE OF
THE CIRCLE. Cantor's demonstration of the existence of transcen-

dental numbers. Historical survey of the attempts at the computa-
tion and construction of pi. Transcendence of the number e. Trans-

cendence of pi. Integraph and the geometric construction of pi.

Notes by R. C. Archibald discuss in detail Gaussian polygons, Fer-

mat's theorem, the irrationality of pi, and similar topics.

Translated by W. W. Beman, D. E. Smith from the second revised

edition. 16 figures, xi -f 92pp. 5 3
/a x 8.

T298 Paperbound $1.00



GUIDE TO THE LITERATURE OF
MATHEMATICS AND PHYSICS

Including Related Works on Engineering Science

by Nathan Brier Parke III

WHAT literature is available and WHERE can it be found? Fully revised

and for the first time available in a handy, inexpensive edition

this unique, up-to-date GUIDE TO THE LITERATURE OF MATHEMATICS
AND PHYSICS puts a comprehensive library catalogue at your finger

tips.

Over 5,000 entries (more than double the number in the first edition)

are included under approximately 120 subject headings, further sub-

divided by an average of 6 subheadings. Every branch of physics,

mathematics, and related engineering science is fully represented. For

example, 28 books appear under the subhead, Projective Geometry;

78 under Geometrical Optics; 22 under Cosmic Rays, not including

cross-references and general works.

All books were selected by a practicing mathematician and physicist

on the basis of current significance, fullness of treatment, and the

ability to give clues to further material on a subject. Citations are as

full as possible giving author, title, edition, publisher, place, data,

number of volumes or number of pages. Many recently available

Russian works are included. Discussions of the literature under each

heading define the subject matter and provide numerous cross-refer-

ences and suggestions for further investigation. The GUIDE also con-

tains an extensive listing of bibliographical aids- abstracts, indexes,

periodicals, reviews, bibliographies, directories, encyclopedias, docu-

mentary reproductions, guides, and library resources. A complete

Author and Subject Index allows instantaneous location of the biblio-

graphical data on any book.

This GUIDE will not only save you countless hours and help you locate

much difficult-to-find material; it will often help you shape your prob-

lem and prevent a duplication of work by showing you exactly what

has been done on a subject. With the literature grown to such huge

proportions, the GUIDE TO THE LITERATURE OF MATHEMATICS AND
PHYSICS has become an indispensable research assistant for every

physicist, mathematician, engineer, scientist, student, and researcher.

2nd revised edition. Over 5,000 entries. 71 -page introduction. Indexes.

464 pp. 5 3
/s x 8. Paperbound $2.49



Catalogue of Dover

SCIENCE BOOKS

DIFFERENTIAL EQUATIONS
(ORDINARY AND PARTIAL DIFFERENTIAL)

INTRODUCTION TO THE DIFFERENTIAL EQUATIONS OF PHYSICS, I. Hopf. Especially valuable
to engineer with no math beyond elementary calculus Emphasizes intuitive rather than

formal aspects of concepts Partial contents Law of causality, energy theorem, damped
oscillations, coupling by friction, cylindrical and spherical coordinates, heat source, etc

48 figures 160pp 53/8 x 8 S120 Paperbound $1 25

INTRODUCTION TO BESSEL FUNCTIONS, F. Bowman. Rigorous, provides all necessary material

during development, includes practical applications Bessel functions of zero order, of any
real order, definite integrals, asymptotic expansion, circular membranes, Bessel's solution
to Kepler's problem, much more "Clear useful not only to students of physics and

engineering, but to mathematical students in general," Nature 226 problems Short tables

of Bessel functions 27 figures x + 135pp. 5% x 8 S462 Paperbound $1.35

DIFFERENTIAL EQUATIONS, F. R. Moulton. Detailed, rigorous exposition of all non-elemen-

tary processes of solving ordinary differential equations Chapters on practical problems,
more advanced than problems usually given as illustrations Includes analytic differential

equations, variations of a parameter, integrals of differential equations, analytic implicit

functions, problems of elliptic motion, sine-amplitude functions, deviation of formal bodies,

Cauchy-Lipshitz process, linear differential equations with periodic coefficients, much more
Historical notes 10 figures 222 problems xv -f 395pp 5% x 8. S451 Paperbound $2.00

PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS, A. G. Webster. Valuable
sections on elasticity, compression theory, potential theory, theory of sound, heat conduc-

tion, wave propagation, vibration theory Contents include deduction of differential equa-

tions, vibrations, normal functions, Fourier's series Cauchy's method, boundary problems,
method of Riemann-Volterra, spherical, cylindrical, ellipsoidal harmonics, applications, etc

97 figures vu + 440pp 5% x 8 S263 Paperbound $2.00

ORDINARY DIFFERENTIAL EQUATIONS, E. L. Ince. A most compendious analysis in real and

complex domains Existence and nature of solutions, continuous transformation groups,
solutions in an infinite form, definite integrals, algebraic theory Sturmian theory, boundary
problems, existence theorems, 1st order, higher order, etc. "Deserves highest praise, a

notable addition to mathematical literature," Bulletin, Amer. Math Soc. Historical appendix.
18 figures vni + 558pp 53/a x 8. S349 Paperbound $2.55

ASYMPTOTIC EXPANSIONS, A. Erde~lyi. Only modern work available m English, unabridged
reproduction of monograph prepared for Office of Naval Research Discusses various proce-
dures for asymptotic evaluation of integrals containing a large parameter, solutions of

ordinary linear differential equations, vi -I- 108pp. 5% x 8. S318 Paperbound $1.35

LECTURES ON CAUCHY'S PROBLEM, J. Hadamard. Based on lectures given at Columbia, Rome,
discusses work of Riemann, Kirchhoff, Volterra, and author's own research on hyperbolic
case in linear partial differential equations. Extends spherical cylindrical waves to apply
to all (normal) hyperbolic equations. Partial contents: Cauchy's problem, fundamental for-

mula, equations with odd number, with even number of independent variables, method of

descent. 32 figures in + 316pp. 5% x 8. S105 Paperbound $1.75



CATALOGUE OF

NUMBER THEORY

INTRODUCTION TO THE THEORY OF NUMBERS, L E. Dickson. Thorough, comprehensive, witn
adequate coverage of classical literature Not beyond beginners chapters on divisibility,
congruences, quadratic residues and reciprocity, Diophantme equations, etc Full treatment
of binary quadratic forms without usual restriction to integral coefficients Covers infinitude
of primes, Fermat's theorem, Legendre's symbol, automorphs, Recent theorems of Thue,
Siegal, much more Much material not readily available elsewhere 239 problems 1 figure
VIM + 183pp 53/8 x 8 S342 Paperbound $1.65

ELEMENTS OF NUMBER THEORY, I. M. Vmogradov. Detailed 1st course for persons without
advanced mathematics, 95% of this book can be understood by readers who have gone
no farther than high school algebra Partial contents divisibility theory, important number
theoretical functions, congruences, primitive roots and indices, etc Solutions to problems,
exercises Tables of primes, indices, etc Covers almost every essential formula in ele-

mentary number theory' "Welcome addition reads smoothly," Bull of the Amer. Math
Soc 233 problems 104 exercises VIM + 227pp 5% x 8 S259 Paperbound $1.60

PROBABILITY THEORY AND INFORMATION THEORY

SELECTED PAPERS ON NOISE AND STOCHASTIC PROCESSES, edited by Prof Nelson Wax, U of

Illinois 6 basic papers for those whose work involves noise characteristics Chandrasekhar,
Uhlenback and Ornstem, Uhlenbeck and Ming, Rice, Doob Included is Kac's Chauvenet-
Prize winning "Random Walk

"
Extensive bibliography lists 200 articles, through 1953 21

figures. 337pp. 6Vs x 9V4 S262 Paperbound $2 35

A PHILOSOPHICAL ESSAY ON PROBABILITIES, Marquis de Laplace This famous essay explains
without recourse to mathematics the principle of probability, and the application of prob-
ability to games of chance, natural philosophy, astronomy, many other fields Translated
from 6th French edition by F W Truscott, F L Emory Intro by E T Bell 204pp 5% x 8

S166 Paperbound $1 25

MATHEMATICAL FOUNDATIONS OF INFORMATION THEORY, A I Khmchin For mathematicians,
statisticians, physicists, cyberneticists, communications engineers, a complete, exact intro-

duction to relatively new field Entropy as a measure of a finite scheme, applications to

coding theory, study of sources, channels and codes, detailed proofs of both Shannon
theorems for any ergodic source and any stationary channel with finite memory, much more
"Presents for the first time rigorous proofs of certain fundamental theorems quite
complete amazing expository ability," American Math Monthly VH + 120pp 5Vs x 8

S434 Paperbound $1 35

VECTOR AND TENSOR ANALYSIS AND MATRIX THEORY

VECTOR AND TENSOR ANALYSIS, G. E. Hay. One of clearest introductions to increasingly
important subject Start with simple definitions, finish with sure mastery of oriented
Cartesian vectors, Chnstoffel symbols, solenoidal tensors Complete breakdown of plane,
solid, analytical, differential geometry Separate chapters on application All fundamental
formulae listed, demonstrated 195 problems 66 figures vni + 193pp 5% x 8

S109 Paperbound $1 75

APPLICATIONS OF TENSOR ANALYSIS, A J. McConnell. Excellent text for applying tensor
methods to such familiar subjects as dynamics, electricity, elasticity, hydrodynamics Ex-

plains fundamental ideas and notation of tensor theory, geometrical treatment of tensor

algebra, theory of differentiation of tensors, and a wealth of practical material "The
variety of fields treated and the presence of extremely numerous examples make this

volume worth much more than its low price," Alluminio Formerly titled "Applications of the
Absolute Differential Calculus." 43 illustrations. 685 problems xn 4- 381pp

S373 Paperbound $1.85

VECTOR AND TENSOR ANALYSIS, A. P. Wills. Covers entire field, from dyads to non-Euclidean
manifolds (especially detailed), absolute differentiation, the Riemann-Chnstoffel and RICCI-

Emstem tensors, calculation of Gaussian curvature of a surface Illustrations from electrical

engineering, relativity theory, astro-physics, quantum mechanics Presupposes only working
knowledge of calculus. Intended for physicists, engineers, mathematicians 44 diagrams
114 problems, xxxii + 285pp. 53/a x 8 S454 Paperbound $1.75



DOVER SCIENCE BOOKS

PHYSICS, ENGINEERING
MECHANICS, DYNAMICS, THERMODYNAMICS, ELASTICITY

MATHEMATICAL ANALYSIS OF ELECTRICAL AND OPTICAL WAVE-MOTION, H. Bateman. By one
of century's most distinguished mathematical physicists, a practical introduction to develop-
ments of Maxwell's electromagnetic theory which directly concern the solution of partial
differential equation of wave motion. Methods of solving wave-equation, polar-cylindrical
coordinates, diffraction, transformation of coordinates, homogeneous solutions, electromag-
netic fields with moving singularities, etc. 168pp 5 3/s x 8. S14 Paperbound $1.60

THERMODYNAMICS, Enrico Fermi. Unabridged reproduction of 1937 edition Remarkable for

clarity, organization, requires no knowledge of advanced math beyond calculus, only familiar-

ity with fundamentals of thermometry, calonmetry. Partial Contents Thermodynamic sys-
tems, 1st and 2nd laws, potentials; Entropy, phase rule, Reversible electric cells, Gaseous
reactions- Van't Hoff reaction box, principle of LeChatelier, Thermodynamics of dilute
solutions- osmotic, vapor pressures, boiling, freezing point, Entropy constant 25 problems
24 illustrations, x + 160pp 5% x 8 S361 Paperbound $1.75

FOUNDATIONS OF POTENTIAL THEORY, 0. D. Kellogg. Based on courses given at Harvard,
suitable for both advanced and beginning mathematicians, Proofs rigorous, much material
here not generally available elsewhere Partial contents gravity, fields of force, divergence
theorem, properties of Newtonian potentials at points of free space, potentials as solutions
of LaPlace's equation, harmonic functions, electrostatics, electric images, logarithmic po-
tential, etc. ix -I- 384pp. 5% x 8. S144 Paperbound $1.98

DIALOGUES CONCERNING TWO NEW SCIENCES, Galileo Galilei. Classic of experimental scierice,
mechanics, engineering, as enjoyable as it is important Characterized by author as "superior
to everything else of mine "

Offers a lively exposition of dynamics, elasticity, sound, ballistics,
strength of materials, scientific method Translated by H Grew, A de Salvio 126 diagrams
xxi -t- 288pp. 53/8 x 8. S99 Paperbound $1.65

THEORETICAL MECHANICS; AN INTRODUCTION TO MATHEMATICAL PHYSICS, J S. Ames, F. D.

Murnaghan. A mathematically rigorous development for advanced students, with constant
practical applications Used in hundreds of advanced courses Unusually thorough coverage
of gyroscopic baryscopic material, detailed analyses of Corilis acceleration, applications of

Lagrange's equations, motion of double pendulum, Hamilton-Jacobi partial differential equa-
tions, group velocity, dispersion, etc. Special relativity included 159 problems 44 figures
ix + 462pp. b3/8 x 8. S461 Paperbound $2.00

STATICS AND THE DYNAMICS OF A PARTICLE, W. D. MacMillan This is Part One of "Theoret-
ical Mechanics "

For over 3 decades a self-contained, extremely comprehensive advanced
undergraduate text in mathematical physics, physics, astronomy, deeper foundations of

engineering Early sections require only a knowledge of geometry, later, a working knowledge
of calculus Hundreds of basic problems including projectiles to moon, harmonic motion,
ballistics, transmission of power, stress and strain, elasticity, astronomical problems 340
practice problems, many fully worked out examples 200 figures xvn + 430pp 5% x 8

S467 Paperbound $2 00

THE THEORY OF THE POTENTIAL, W. D. MacMillan. This is Part Two of "Theoretical Mechan-
ics

"
Comprehensive, well-balanced presentation, serving both as introduction and reference

with regard to specific problems, for physicists and mathematicians Assumes no prior

knowledge of integral relations, all math is developed as needed Includes Attraction of

Finite Bodies, Newtonian Potential Function, Vector Fields, Green and Gauss Theorems,
Two-la/er Surfaces, Spherical Harmonics, etc. "The great number of particular cases .

should make the book valuable to geo-physicists and others actively engaged in practical

applications of the potential theory," Review of Scientific Instruments xn -4- 469pp 5% x 8
S486 Paperbound $2.25

DYNAMICS OF A SYSTEM OF RIGID BODIES (Advanced Section), E. J. Routh. Revised 6th edi-

tion of a classic reference aid Partial contents moving axes, relative motion, oscillations
about equilibrium, motion Motion of a body under no forces, any forces Nature of motion
given by linear equations and conditions of stability Free, forced vibrations, constants of

integration, calculus of finite differences, variations, procession and mutation, motion of
the moon, motion of string, chain, membranes 64 figures 498pp 5% x 8

S229 Paperbound $2.35

THE DYNAMICS OF PARTICLES AND OF RIGID, ELASTIC, AND FLUID BODIES: BEING LECTURES
ON MATHEMATICAL PHYSICS, A. G. Webster. Reissuing of classic fills need for comprehensive
work on dynamics. Covers wide range in unusually great depth, applying ordinary, partial
differential equations. Partial contents laws of motion, methods applicable to systems of
all sorts, oscillation, resonance, cyclic systems, dynamics of rigid bodies, potential theory,
stress and strain, gyrostatics, wave, vortex motion, kinematics of a point, Lagrange's equa-
tions, Hamilton's principle, vectors, deformable bodies, much more not easily found to-

gether in one volume. Unabridged reprinting of 2nd edition. 20 pages on differential

equations, higher analysis. 203 illustrations xi + 588pp 5% x 8. S522 Paperbound $2.35



CATALOGUE OF
PRINCIPLES OF MECHANICS, Heinrich Hertz. A classic of great interest in logic of science.
Last work by great 19th century physicist, created new system of mechanics based upon
space, time, mass, returns to axiomatic analysis, understanding of formal, structural

aspects of science, taking into account logic, observation, a priori elements Of great
historical importance to Pomcar6, Carnap, Einstein, Milne 20 page introduction by R. S

Cohen, Wesleyan U
, analyzes implications of Hertz's thought and logic of science 13 page

introduction by Helmholtz. xln -I- 274pp 5% x 8 S316 Clothbound $3.50
S317 Paperbound $1.75

MATHEMATICAL FOUNDATIONS OF STATISTICAL MECHANICS, A. I. Khinchin. A thoroughly
up-to-date introduction, offering a precise and mathematically rigorous formulation of the

problems of statistical mechanics Provides analytical tools to replace many commonly
used cumbersome concepts and devices Partial contents- Geometry, kinematics of phase
space, ergodic problem, theory of probability, central limit theorem, ideal monatomic gas,
foundation of thermodynamics, dispersion, distribution of sum functions, etc "Excellent
introduction . . clear, concise, rigorous," Quarterly of Applied Mathematics. VIM + 179pp
53/8 x 8 S146 Clothbound $2.95

S147 Paperbound $1.35

MECHANICS OF THE GYROSCOPE, THE DYNAMICS OF ROTATION, R. F. Deimel, Prof, of Me-
chanical Engineering, Stevens Inst of Tech Elementary, general treatment of dynamics of

rotation, with special application of gyroscopic phenomena No knowledge of vectors
needed Velocity of a moving curve, acceleration to a point, general equations of motion,
gyroscopic horizon, free gyro, motion of discs, the damped gyro, 103 similar topics Exer-

cises 75 figures 208pp. 5% x 8 S66 Paperbound $1.65

MECHANICS VIA THE CALCULUS, P. W. Morris, W. S. Legge. Wide coverage, from linear motion
to vector analysis, equations determining motion, linear methods, compounding of simple
harmonic motions, Newton's laws of motion, Hooke's law, the simple pendulum, motion of

a particle m 1 plane, centers of gravity, virtual work, friction, kinetic energy of rotating
bodies, equilibrium of strings, hydrostatics, sheering stresses, elasticity, etc Many worked-
out examples 550 problems. 3rd revised edition xn + 367pp S207 Clothbound $3.95

A TREATISE ON THE MATHEMATICAL THEORY OF ELASTICITY, A. E. H. Love. An indispensable
reference work for engineers, mathematicians, physicists, the most complete, authoritative
treatment of classical elasticity in one volume Proceeds from elementary notions of exten-
sion to types of strain, cubical dilatation, general theory of strains Covers relation between
mathematical theory of elasticity and technical mechanics, equilibrium of isotropic elastic

solids and aelotropic solid bodies, nature of force transmission, Volterra's theory of

dislocations, theory of elastic spheres in relation to tidal, rotational, gravitational effects

on earth, general theory of bending, deformation of curved plates, buckling effects, much
more "The standard treatise on elasticity," American Math Monthly 4th revised edition

76 figures, xvm + 643pp 6Vs x 91/4. S174 Paperbound $2.95

NUCLEAR PHYSICS, QUANTUM THEORY, RELATIVITY

MESON PHYSICS, R. E. Marshak. Presents basic theory, and results of experiments with em-
phasis on theoretical significance. Phenomena involving mesons as virtual transitions

avoided, eliminating some of least satisfactory predictions of meson theory. Includes pro-
duction study of TT mesons at nonrelativistic nucleon energies contracts between ir and u
mesons, phenomena associated with nuclear interaction of ir mesons, etc Presents early
evidence for new classes of particles, indicates theoretical difficulties created by discovery
of heavy mesons and hyperons. viu + 378pp. 5% x 8. S500 Paperbound $1.95

THE FUNDAMENTAL PRINCIPLES OF QUANTUM MECHANICS, WITH ELEMENTARY APPLICATIONS,
E. C. Kemble. Inductive presentation, for graduate student, specialists in other branches of

physics. Apparatus necessary beyond differential equations and advanced calculus developed
as needed Though general exposition of principles, hundreds of individual problems fully
treated. "Excellent book ... of great value to every student . . . rigorous and detailed
mathematical discussion . . has succeeded in keeping his presentation clear and under-

standable," Dr. Linus Pauling, J. of American Chemical Society. Appendices: calculus of

variations, math, notes, etc. 611pp. 5Vs x 8%. T472 Paperbound $2.95

WAVE PROPAGATION IN PERIODIC STRUCTURES, L. Brillouin. General method, application to

different problems: pure physics scattering of X-rays in crystals, thermal vibration in

crystal lattices, electronic motion m metals; problems m electrical engineering. Partial

contents: elastic waves along 1-dimensional lattices of point masses. Propagation of waves
along 1-dimensional lattices Energy flow. 2, 3 dimensional lattices. Mathieu's equation.
Matrices and propagation of waves along an electric line. Continuous electric lines. 131
illustrations, xn + 253pp. 5% x 8. S34 Paperbound $1.85



DOVER SCIENCE BOOKS
THEORY OF ELECTRONS AND ITS APPLICATION TO THE PHENOMENA OF LIGHT AND RADIANT
HEAT, H. Lorentz. Lectures delivered at Columbia Univ

, by Nobel laureate Unabridged, form
historical coverage of theory of free electrons, motion, absorption of heat, Zeeman effect,
optical phenomena in moving bodies, etc 109 pages notes explain more advanced sec-
tions 9 figures 352pp. 53/8 x 8. S173 Paperbound $1.85

SELECTED PAPERS ON QUANTUM ELECTRODYNAMICS, edited by J. Schwmger. Facsimiles of

papers which established quantum electrodynamics, beginning to present position as part
of larger theory First book publication in any language of collected papers of Bethe, Bloch,
Dirac, Dyson, Fermi, Feynman, Heisenberg, Kusch, Lamb, Oppenheimer, Pauli, Schwmger,
Tomonoga, Weisskopf, Wigner, etc 34 papers 29 in English, 1 in French, 3 in German,
1 in Italian Historical commentary by editor, xvn + 423pp 6Vs x 9V4

S444 Paperbound $2.45

FOUNDATIONS OF NUCLEAR PHYSICS, edited by R. T. Beyer. 13 of the most important papers
on nuclear physics reproduced in facsimile in the original languages, the papers most often
cited in footnotes, bibliographies Anderson, Curie, Johot, Chadwick, Fermi, Lawrence, Cock-

roft, Hahn, Yukawa. Unparalleled bibliography. 122 double columned pages, over 4,000
articles, books, classified. 57 figures. 288pp 6Va x 9V4. S19 Paperbound $1.75

THE THEORY OF GROUPS AND QUANTUM MECHANICS, H. Weyl. Schroedmger's wave equation,
de Broglie's waves of a particle, Jordon-Hoelder theorem, Lie's continuous groups of trans-

formations, Pauli exclusion principle, quantization of Mawell-Dirac field equations, etc.

Unitary geometry, quantum theory, groups, application of groups to quantum mechanics,
symmetry permutation group, algebra of symmetric transformations, etc. 2nd revised edi-

tion xxn + 422pp 53/8 x 8. S268 Clothbound $4.50
S269 Paperbound $1.95

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg. Nobel laureate dis-

cusses quantum theory, his own work, Compton, Schroedinger, Wilson, Einstein, many
others. For physicists, chemists, not specialists in quantum theory Only elementary formulae
considered in text, mathematical appendix for specialists. Profound without sacrificing

clarity. Translated by C Eckart, F. Hoyt 18 figures 192pp 53/8 x 8
S113 Paperbound $1.25

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, Albert Einstein. Reprints
from rare European journals, translated into English. 5 basic papers, including Elementary
Theory of the Brownian Movement, written at request of Lorentz to provide a simple
explanation Translated by A D Cowper Annotated, edited by R Furth 33pp. of notes

elucidate, give history of previous investigations. 62 footnotes 124pp 5% x 8.

S304 Paperbound $1.25

THE PRINCIPLE OF RELATIVITY, E. Einstein, H. Lorentz, M. Minkowski, H. Weyl. The 11 basic

papers that founded the general and special theories of relativity, translated into English.
2 papers by Lorentz on the Michelson experiment, electromagnetic phenomena Mmkowski's
"Space and Time," and Weyl's "Gravitation and Electricity

"
7 epoch-making papers by Em-

stem- "Electromagnetics of Moving Bodies," "Influence of Gravitation in Propagation of

Light," "Cosmological Considerations," "General Theory," 3 others 7 diagrams Special
notes by A. Sommerfeld 224pp 5% x 8 S93 Paperbound $1.75

STATISTICS

ELEMENTARY STATISTICS, WITH APPLICATIONS IN MEDICINE AND THE BIOLOGICAL SCIENCES,
F. E. Croxton. Based primarily on biological sciences, but can be used by anyone desiring
introduction to statistics. Assumes no prior acquaintance, requires only modest knowledge
of math. All basic formulas carefully explained, illustrated, all necessary reference tables

included. From basic terms and concepts, proceeds to frequency distribution, linear, non-

linear, multiple correlation, etc Contains concrete examples from medicine, biology. 101
charts. 57 tables. 14 appendices. Iv -f 376pp. 5% x 8. S506 Paperbound $1.95

ANALYSIS AND DESIGN OF EXPERIMENTS, H. B. Mann. Offers method for grasping analysis of

variance, variance design quickly Partial contents Chi-square distribution, analysis of

variance distribution, matrices, quadratic forms, likelihood ration tests, test of linear

hypotheses, power of analysis, Galois fields, non-orthogonal data, interblock estimates, etc.

15pp. pf useful tables, x + 195pp. 5 x 73/8 . S180 Paperbound $1.45

FREQUENCY CURVES AND CORRELATION, W. P. Elderton. 4th revised edition of standard
work on classical statistics. Practical, one of few books constantly referred to for clear

presentation of basic material. Partial contents: Frequency Distributions, Pearsons Fre-

quency Curves, Theoretical Distributions, Standard Errors; Correlation Ratio Contingency,
Corrections for Moments, Beta, Gamma Functions, etc. Key to terms, symbols. 25 examples.
40 tables. 16 figures, xi + 272pp. 5Vz x 8Vz Clothbound $1.49



CATALOGUE OF

HYDRODYNAMICS, ETC.

HYDRODYNAMICS, Horace Lamb. Standard reference work on dynamics of liquids and gases.
Fundamental theorems, equations, methods, solutions, background for classical hydrody-
namics. Chapters: Equations of Motion, Integration of Equations in Special Gases, Vortex

Motion, Tidal Waves, Rotating Masses of Liquids, etc. Excellently planned, arranged, Clear,
lucid presentation. 6th enlarged, revised edition. Over 900 footnotes, mostly bibliograph-
ical. 119 figures, xv + 738pp. 6Vs x 91/4. S256 Paperbound $2.95

HYDRODYNAMICS, A STUDY OF LOGIC, FACT, AND SIMILITUDE, Garrett Birkhoff. A stimulating
application of pure mathematics to an applied problem. Emphasis is on correlation of

theory and deduction with experiment. Examines recently discovered paradoxes, theory of

modelling and dimensional analysis, paradox and error in flows and free boundary theory.
Classical theory of virtual mass derived from homogenous spaces; group theory applied
to fluid mechanics. 20 figures, 3 plates, xui + 186pp. 5% x 8. S22 Paperbound $1.85

HYDRODYNAMICS, H. Dryden, F. Murhaghan, H. Bateman. Published by National Research

Council, 1932. Complete coverage of classical hydrodynamics, encyclopedic in quality.
Partial contents: physics of fluids, motion, turbulent flow, compressible fluids, motion in

1, 2, 3 dimensions, laminar mo* ^n 'stance of motion through viscous fluid ddy
~c_ t;'

ri ifge of g*e- "
yjstacles, etc. Over 2900-item bibi <,&.**,. . 23

figures.' 634pp. 5 3/s x 8. S303 Paperbound "$2.75

ACOUSTICS AND OPTICS

PRINCIPLES OF PHYSICAL OPTICS, Ernst Mach. Classical examination of propagation of light,

color, polarization, etc. Historical, philosophical treatment unequalled for breadth and
readability. Contents- Rectilinear propagation, reflection, refraction, dioptrics, composition
of light, periodicity, theory of interference, polarization, mathematical representation of

properties, etc- 279 illustrations. 10 portraits. 324pp. 5% x 8. S170 Paperbound $1.75

THE THEORY OF SOUND, Lord Rayleigh. Written by Nobel laureate, classical methods here
will cover most vibrating systems likely to be encountered in practice. Complete coverage
of experimental, mathematical aspects. Partial contents. Harmonic motions, lateral vibra-

tions of bars, curved plates or shells, applications of Laplace's functions to acoustical

problems, fluid friction, etc. First low-priced edition of this great reference-study work.
Historical introduction by R. B. Lindsay. 1040pp. 97 figures. 5% x 8

S292, S293, Two volume set, paperbound $4.00

THEORY OF VIBRATIONS, N. W. McLachlan. Based on exceptionally successful graduate
course, Brown University Discusses linear systems having 1 degree of freedom, forced
vibrations of simple linear systems, vibration of flexible strings, transverse vibrations of

bars and tubes, of circular plate, sound waves of finite amplitude, etc. 99 diagrams. 160pp.
5% x 8. S190 Paperbound $1.35

APPLIED OPTICS AND OPTICAL DESIGN, A. E. Conrady. Thorough systematic presentation of

physical and mathematical aspects, limited mostly to "real optics
"

Stresses practical

problem of maximum aberration permissible without affecting performance Ordinary ray
tracing methods; complete theory ray tracing methods, primary aberrations; enough higher
aberration to design telescopes, low powered microscopes, photographic equipment. Covers
fundamental equations, extra-axial image points, transverse chromatic aberration, angular
magnification, similar topics. Tables of functions of N. Over 150 diagrams, x + 518pp.
5% x 8%. S366 Paperbound $2.98

RAYLEIGH'S PRINCIPLE AND ITS APPLICATIONS TO ENGINEERING, 6. Temple, W. Bickley.

Rayieigh's principle developed to provide upper, lower estimates of true value of funda-
mental period of vibrating system, or condition of stability of elastic system Examples,
rigorous proofs. Partial contents Energy method of discussing vibrations, stability. Per-

turbation theory, whirling of uniform shafts. Proof, accuracy, successive approximations,
applications of Rayieigh's theory. Numerical, graphical methods. Ritz's method 22 figures,
ix + 156pp. 5% x 8. S307 Paperbound $1.50

OPTICKS, Sir Isaac Newton. In its discussion of light, reflection, color, refraction, theories
of wave and corpuscular theories of light, this work is packed with scores of insights and
discoveries. In its precise and practical discussions of construction of optical apparatus,
contemporary understanding of phenomena, it is truly fascinating to modern scientists.

Foreword by Albert Einstein. Preface by I. B. Cohen, Harvard. 7 pages of portraits, facsimile

pages, letters, etc. cxvi + 414pp. 5% x 8. S205 Paperbound $2.00



DOVER SCIENCE BOOKS
ON THE SENSATIONS OF TONE, Hermann Helmholtz. Using acoustical physics, physiology,
experiment, history of music, covers entire gamut of musical tone relation of music
science to acoustics, physical vs. physiological acoustics, vibration, resonance, tonality,
progression of parts, etc. 33 appendixes on various aspects of sound, physics, acoustics,
music, etc. Translated by A J Ellis. New introduction by H. Margenau, Yale. 68 figures 43
musical passages analyzed. Over 100 tables, xix + 576pp 6Vs x 91/4.

S114 Clothbound $4.95

ELECTROMAGNETICS, ENGINEERING, TECHNOLOGY

INTRODUCTION TO RELAXATION METHODS, F. S. Shaw. Describes almost all manipulative re-

sources of value in solution of differential equations. Treatment is mathematical rather
than physical. Extends general computational process to include almost all branches of

applied math and physics. Approximate numerical methods are demonstrated, although high
accuracy is obtainable without undue expenditure of time. 48pp. of tables for computing
irregular star first and second derivatives, irregular star coefficients for second order

equations, for fourth order equations "Useful. . . . exposition is clear, simple ... no
previous acquaintance with numerical methods is assumed," Science Progress. 253 dia-

grams. 72 tables. 400pp. 5% x 8. S244 Paperbound $2.45

THE ELECTROMAGNETIC FIELD, M. Mason, W.. Weaver. Used constantly by graduate engineers
Vector methods exclusively, detailed treatment of electrostatics, expansion methods, with
tables converting any quantity into absolute electromagnetic, absolute electrostatic, prac-
tical units Discrete charges, ponderable bodies Maxwell field equations, etc 416pp
5% x 8. S185 Paperbound $2.00

ELASTICITY, PLASTICITY AND STRUCTURE OF MATTER, R. Houwink. Standard treatise on
Theological aspects of different technically important solids crystals, resins, textiles, rubber,
clay, etc Investigates general laws for deformations, determines divergences Covers gen-
eral physical and mathematical aspects of plasticity, elasticity, viscosity Detailed examina-
tion of deformations, internal structure of matter m relation to elastic, plastic behaviour,
formation of solid matter from a fluid, etc Treats glass, asphalt, balata, proteins, baker's

dough, others 2nd revised, enlarged edition Extensive revised bibliography m over 500
footnotes 214 figures, xvn + 368pp 6 x 9V4 S385 Paperbound $2.45

DESIGN AND USE OF INSTRUMENTS AND ACCURATE MECHANISM, T. N. Whitehead. For the
instrument designer, engineer, how to combine necessary mathematical abstractions with

independent observations of actual facts Partial contents instruments and their parts,
theory of errors, systematic errors, probability, short period errors, erratic errors, design
precision, kinematic, semikmematic design, stiffness, planning of an instrument, human
factor, etc. 85 photos, diagrams xn + 288pp 5% x 8 S270 Paperbound $1.95

APPLIED HYDRO- AND AEROMECHANICS, L. Prandtl, 0. G Tietjens. Presents, for most part,
methods valuable to engineers Flow m pipes, boundary layers, airfoil theory, entry condi-

tions, turbulent flow, boundary layer, determining drag from pressure and velocity, etc

"Will be welcomed by all students of aerodynamics," Nature Unabridged, unaltered An
Engineering Society Monograph, 1934. Index 226 figures 28 photographic plates illustrating
flow patterns, xvi + 311pp 53/8 x 8 S375 Paperbound $1.85

FUNDAMENTALS OF HYDRO- AND AEROMECHANICS, L. Prandtl, 0. G. Tietjens. Standard work,
based on Prandtl's lectures at Goettmgen Wherever possible hydrodynamics theory is

referred to practical considerations in hydraulics, unifying theory and experience Presenta-
tion extremely clear Though primarily physical, proofs are rigorous and use vector analysis
to a great extent An Engineering Society Monograph, 1934 "Still recommended as an
excellent introduction to this area," Physikalische Blatter 186 figures, xvi + 270pp
53/8 x 8. S374 Paperbound $1.85

GASEOUS CONDUCTORS: THEORY AND ENGINEERING APPLICATIONS, J. D. Cobme. Indispensable
text, reference, to gaseous conduction phenomena, with engineering viewpoint prevailing

throughout Studies kinetic theory of gases, lomzation, emission phenomena, gas breakdown,
spark characteristics, glow, discharges, engineering applications m circuit interrupters, recti-

fiers, etc Detailed treatment of high pressure arcs (Suits), low pressure arcs (Langmuir,
Tonks). Much more. "Well organized, clear, straightforward," Tonks, Review of Scientific

Instruments 83 practice problems Over 600 figures 58 tables xx + 606pp
53/fe x 8. S442 Paperbound $2.75

PHOTOELASTICITY: PRINCIPLES AND METHODS, H. T. Jessop, F. C. Harris. For engineer, spe-
cific problems of stress analysis. Latest time-saving methods of checking calculations in

2-dimensional design problems, new techniques for stresses in 3 dimensions, lucid descrip-
tion of optical systems used in practical photoelectricity Useful suggestions, hints based
on on-the-job experience included Partial contents- strain, stress-strain relations, circular

disc under thrust along diameter, rectangular block with square hold under vertical thrust,

simply supported rectangular beam under central concentrated load, etc Theory held to

minimum, no advanced mathematical training needed 164 illustrations, vin + 184pp.
6Ve x 9i/4. S137 Clothbound $3.75



CATALOGUE OF
MICROWAVE TRANSMISSION DESIGN DATA, T. Moreno. Originally classified, now rewritten,
enlarged (14 new chapters) under auspices of Sperry Corp Of immediate value or reference
use to radio engineers, systems designers, applied physicists, etc Ordinary transmission
line theory, attenuation; parameters of coaxial lines, flexible cables, tuneable wave guide
impedance transformers, effects of temperature, humidity, much more "Packed with informa-
tion . . . theoretical discussions are directly related to practical questions," U of Royal
Naval Scientific Service. Tables of dielectrics, flexible cable, etc. ix + 248pp. 5% x 8.

S549 Paperbound $1.50

THE THEORY OF THE PROPERTIES OF METALS AND ALLOYS, H. F. Mott, H. Jones. Quantum
methods develop mathematical models showing interrelationship of fundamental chemical
phenomena wtih crystal structure, electrical, optical properties, etc. Examines electron
motion in applied field, cohesion, heat capacity, refraction, noble metais, transition and
dt-valent metals, etc. "Exposition is as clear . . . mathematical treatment as simple and
reliable as we have become used to expect of ... Prof. Mott," Nature 138 figures, xin +
320pp. 5% x 8. S456 Paperbound $1.85

THE MEASUREMENT OF POWER SPECTRA FROM THE POINT OF VIEW OF COMMUNICATIONS
ENGINEERING, R. B. Blackman, J. W. Tukey. Pathfmdmg work reprinted from "Bell System
Technical Journal

" Various ways of gettmg practically useful answers in power spectra
measurement, using results from both transmission and statistical estimation theory. Treats.

Autocovanance, Functions and Power Spectra, Distortion, Heterodyne Filtering, Smoothing,
Decimation Procedures, Transversal Filtering, much more Appendix reviews fundamental
Fourier techniques. Index of notation. Glossary of terms. 24 figures. 12 tables 192pp.
5% x 8%. S507 Paperbound $1.85

TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell. For more than 80 years
a seemingly inexhaustible source of leads for physicists, mathematicians, engineers. Total
of 1082pp. on such topics as Measurement of Quantities, Electrostatics, Elementary Mathe-
matical Theory of Electricity, Electrical Work and Energy in a System of Conductors, Gen-
eral Theorems, Theory of Electrical Images, Electrolysis, Conduction, Polarization, Dielectrics,
Resistance, much more. "The greatest mathematical physicist since Newton," Sir James
Jeans. 3rd edition. 107 figures, 21 plates. 1082pp. 53/8 x 8. S186 Clothbound $4.95

CHEMISTRY AND PHYSICAL CHEMISTRY

THE PHASE RULE AND ITS APPLICATIONS, Alexander Findlay. Covers chemical phenomena of

1 to 4 multiple component systems, the "standard work on the subject" (Nature) Completely
revised, brought up to date by A N. Campbell, N Smith New material on binary, tertiary

liquid equilibria, solid solutions in ternary systems, quinary systems of salts, water, etc

Completely revised to triangular coordinates in ternary systems, clarified graphic representa-
tion, solid models, etc 9th revised edition. 236 figures. 505 footnotes, mostly bibliographic
xu + 449pp. 5 Ye x 8. S92 Paperbound $2.45

DYNAMICAL THEORY OF GASES, James Jeans. Divided into mathematical, physical chapters for

convenience of those not expert in mathematics Discusses mathematical theory of gas
in steady state, thermodynamics, Bolzmann, Maxwell, kinetic theory, quantum theory, expo-
nentials, etc. "One of the classics of scientific writing . . as lucid and comprehensive
an exposition of the kinetic theory as has ever been written," J of Institute of Engineers
4th enlarged edition, with new material on quantum theory, quantum dynamics, etc 28 figures.

444pp. GVa x 9V4. S136 Paperbound $2.45

POLAR MOLECULES, Pieter Debye. Nobel laureate offers complete guide to fundamental
electrostatic field relations, polanzability, molecular structure. Partial contents electric

intensity, displacement, force, polarization by orientation, molar polarization, molar refrac-

tion, halogen-hydrides, polar liquids, ionic saturation, dielectric constant, etc. Special

chapter considers quantum theory. "Clear and concise . . . coordination of experimental
results with theory will be readily appreciated," Electronics Industries 172pp 5% x 8.

563 Clothbound $3.50
564 Paperbound $1.50

ATOMIC SPECTRA AND ATOMIC STRUCTURE, G. Herzberg. Excellent general survey for chem-
ists, physicists specializing in other fields. Partial contents: simplest line spectra, elements
of atomic theory, multiple structure of line spectra, electron spin; building-up principle,

periodic system of elements, finer details of atomic spectra, hyperfme structure of spectral
lines; some experimental results and applications 80 figures. 20 tables, xiii + 257pp.
5% x 8. S115 Paperbound $1.95

TREATISE ON THERMODYNAMICS, Max Planck. Classic based on his original papers. Brilliant

concepts of Nobel laureate make no assumptions regarding nature of heat, rejects earlier

approaches of Helmholtz, Maxwell, to offer uniform point of view for entire field. Seminal
work by founder of quantum theory, deducing new physical, chemical laws. A standard

text, an excellent introduction to field for students with knowledge of elementary chemistry,
physics, calculus. 3rd English edition, xvi + 297pp. 5% x 8. S219 Paperbound $1.75
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DOVER SCIENCE BOOKS
KINETIC THEORY OF LIQUIDS, J. Frenkel. Regards kinetic theory of liquids as generalization,
extension of theory of solid bodies, covers all types of arrangements of solids, thermal
displacements of atoms, interstitial atoms, ions, onentational, rotational motion of mole-
cules, transition between states of matter Mathematical theory developed close to physical
subject matter. "Discussed in a simple yet deeply penetrating fashion . will serve as
seeds for a great many basic and applied developments in chemistry," J of the Amer.
Chemical Soc. 216 bibliographical footnotes. 55 figures xi + 485pp 5% x 8

S94 Clothbound $3.95
S95 Paperbound $2.45

ASTRONOMY

OUT OF THE SKY, H. H. Nininger. Non-technical, comprehensive introduction to "meteontics"
science concerned with arrival of matter from outer space By one of world's experts

on meteorites, this book defines meteors and meteorites, studies fireball clusters and
processions, meteorite composition, size, distribution, showers, explosions, origins, much
more vin + 336pp. 5% x 8. T519 Paperbound $1.85

AN INTRODUCTION TO THE STUDY OF STELLAR STRUCTURE, S. Chandrasekhar. Outstanding
treatise on stellar dynamics by one of greatest astro-physicists Examines relationship be-
tween loss of energy, mass, and radius of stars in steady state Discusses thermodynamic
laws from Caratheodory's axiomatic standpoint, adiabatic, polytropic laws, work of Ritter,
Emden, Kelvin, etc

, Stroemgren envelopes as starter for theory of gaseous stars, Gibbs
statistical mechanics (quantum), degenerate stellar configuration, theory of white dwarfs,
etc. "Highest level of scientific merit," Bulletin Amer. Math Soc 33 figures. 509pp.
5% x 8. S413 Paperbound $2.75

LES METHODES NOVELLES DE LA MECANIQUE CELESTE, H. Poincare. Complete French text
of one of Pomcar6's most important works Revolutionized celestial mechanics- first use of

integral invariants, first major application of linear differential equations, study of periodic
orbits, lunar motion and Jupiter's satellites, three body problem, and many other important
topics "Started a new era ... so extremely modern that even today few have mastered
his weapons," E. T. Bell. 3 volumes. Total 1282pp. 6Va x 9V4

Vol 1 S401 Paperbound $2.75
Vol 2 S402 Paperbound $2.75
Vol 3 S403 Paperbound $2.75

The set $7.50

THE REALM OF THE NEBULAE, E. Hubble. One of the great astronomers of our time presents
his concept of "island universes," and describes its effect on astronomy Covers velocity-
distance relation, classification, nature, distances, general field of nebulae, cosmological
theories, nebulae in the neighborhood of the Milky way, etc. 39 photos, including velocity-
distance relations shown by spectrum comparison. "One of the most progressive lines

of astronomical research," The Times, London New Introduction by A Sandage 55 illustra-

tions, xxiv + 201pp. 53/8 x 8. S455 Paperbound $1.50

HOW TO MAKE A TELESCOPE, Jean Texereau. Design, build an f/6 or f/8 Newtonian type
reflecting telescope, with altazimuth Couder mounting, suitable for planetary, lunar, and
stellar observation. Covers every operation step-by-step, every piece of equipment. Dis-

cusses basic principles of geometric and physical optics (unnecessary to construction),

comparative merits of reflectors, refractors. A thorough discussion of eyepieces, finders,

grinding, installation, testing, etc. 241 figures, 38 photos, show almost every operation
and tool. Potential errors are anticipated. Foreword by A Couder. Sources of supply, xin

+ 191pp. 6V4 x 10. T464 Clothbound $3.50

BIOLOGICAL SCIENCES

THE BIOLOGY OF THE AMPHIBIA, G. K. Noble, Late Curator of Herpetology at Am. Mus. of

Nat. Hist. Probably most used text on amphibia, most comprehensive, clear, detailed. 19

chapters, 85 page supplement: development; heredity, life history; speciation, adaptation;

sex, integument, respiratory, circulatory, digestive, muscular, nervous systems; instinct,

intelligence, habits, economic value classification, environment relationships, etc "Nothing
comparable to it;* C H. Pope, curator of Amphibia, Chicago Mus. of Nat. Hist. 1047 item

bibliography. 174 illustrations. 600pp. 5% x 8. S206 Paperbound $2.98

THE ORIGIN OF LIFE, A. I. Oparin. A classic of biology. This is the first modern statement

of theory of gradual evolution of life from nitrocarbon compounds. A brand-new evaluation

of Oparm's theory in light of later research, by Dr. S. Margulis, University of Nebraska,

xxv + 270pp. 5% x 8. S213 Paperbound $1.75



CATALOGUE OF
THE BIOLOGY OF THE LABORATORY MOUSE, edited by G. 0. Snell. Prepared in 1941 by staff

of Roscoe B Jackson Memorial Laboratory, still the standard treatise on the mouse,
assembling enormous amount of material for which otherwise you spend hours of research.

Embryology, reproduction, histology, spontaneous neoplasms, gene and chromosomes muta-
tions, genetics of spontaneous tumor formations, of tumor transplantation, endocrine secre-
tion and tumor formation, milk influence and tumor formation, inbred, hybrid animals,
parasites, infectious diseases, care and recording "A wealth of information of vital con-
cern . . . recommended to all who could use a book on such a subject," Nature Classified

bibliography of 1122 items 172 figures, including 128 photos, ix + 497pp 6Vs x 9V4.
S248 Clothbound $6.00

THE TRAVELS OF WILLIAM BARTRAM, edited by Mark Van Doran. Famous source-book of

American anthropology, natural history, geography, is record kept by Bartram in 1770's on
travels through wilderness of Florida, Georgia, Carolmas Containing accurate, beautiful

descriptions of Indians, settlers, fauna, flora, it is one of finest pieces of Americana
ever written 13 original illustrations 448pp 5% x 8. T13 Paperbound $2.00

BEHAVIOUR AND SOCIAL LIFE OF THE HONEYBEE, Ronald Ribbands. Outstanding scientific

study, a compendium of practically everything known of social life of honeybee. Stresses
behaviour of individual bees in field, hive Extends von Frisch's experiments on communi-
cation among bees Covers perception of temperature, gravity, distance, vibration, sound
production, glands, structural differences, wax production, temperature regulation, recogni-
tion, communication, drifting, mating behaviour, other highly interesting topics "This
valuable work is sure of a cordial reception by laymen, beekeepers and scientists," Prof.

Karl von Frisch, Brit J of Animal Behaviour Bibliography of 690 references 127 diagrams,
graphs, sections of bee anatomy, fine photographs, 352pp S410 Clothbound $4.50

ELEMENTS OF MATHEMATICAL BIOLOGY, A. J. Lotka. Pioneer classic, 1st major attempt to

apply modern mathematical techniques on large scale to phenomena of biology, biochem-
istry, psychology, ecology, similar life sciences Partial contents Statistical meaning of

irreversibility, Evolution as redistribution, Equations of kinetics of evolving systems, Chem-
ical, mter-species equilibrium, parameters of state; Energy transformers of nature, etc
Can be read with profit by even those having no advanced math, unsurpassed as study-
reference. Formerly titled "Elements of Physical Biology

" 72 figures xxx -4- 460pp 53/a x 8
S346 Paperbound $2.45

TREES OF THE EASTERN AND CENTRAL UNITED STATES AND CANADA, W. M. Harlow Serious
middle-level text covering more than 140 native trees, important escapes, with informa-
tion on general appearance, growth habit, leaf forms, flowers, fruit, bark, commercial use,
distribution, habitat, woodlore, etc Keys within text enable you to locate various species
easily, to know which have edible fruit, much more useful, interesting information "Well
illustrated to make identification very easy," Standard Cat. for Public Libraries Over 600
photographs, figures XIM + 288pp. 5 5/s x 6V2 T395 Paperbound $1.35

FRUIT KEY AND TWIG KEY TO TREES AND SHRUBS (Fruit key to Northeastern Trees, Twig key
to Deciduous Woody Plants of Eastern North America), W. M. Harlow. Only guides with photo-
graphs of every twig, fruit described Especially valuable to novice Fruit key (both deciduous
trees, evergreens) has introduction on seeding, organs invojved, types, habits Twig key
introduction treats growth, morphology In keys proper, identification is almost automatic

Exceptional work, widely used in university courses, especially useful for identification in

winter, or from fruit or seed only Over 350 photos, up to 3 times natural size Index of

common, scientific names, in each key. xvn + 125pp. 5 5/a x 8% T511 Paperbound $1.25

INSECT LIFE AND INSECT NATURAL HISTORY, S. W. Frost. Unusual for emphasizing habits, social

life, ecological relations of insects rather than more academic aspects of classification,

morphology. Prof. Frost's enthusiasm and knowledge are everywhere evident as he discusses
insect associations, specialized habits like leaf-rolling, leaf mining, case-making, the gall

insects, boring insects, etc Examines matters not usually covered in general works insects
as human food, insect music, musicians, insect response to radio waves, use of insects in

art, literature. "Distinctly different, possesses an individuality all its own," Journal of

Forestry. Over 700 illustrations. Extensive bibliography x + 524pp 5 3/e x 8

T519 Paperbound $2.49

A WAY OF LIFE, AND OTHER SELECTED WRITINGS, Sir William Osier. Physician, humanist,
Osier discusses brilliantly Thomas Browne, GUI Patm, Robert Burton, Michael Servetus,
William Beaumont, Laennec. Includes such favorite writing as title essay, "The Old Human-
ities and the New Science," "Books and Men," "The Student Life," 6 more of his best
discussions of philosophy, literature, religion. "The sweep of his mind and interests em-
braced every phase of human activity," G L Keynes. 5 photographs Introduction by G L

Keynes, M.D., F.R.C S xx + 278pp. 53/3 x 8. T488 Paperbound $1.50

THE GENETICAL THEORY OF NATURAL SELECTION, R. A. Fisher. 2nd revised edition of vital

reviewing of Darwin's Selection Theory in terms of particulate inheritance, by one of

greatest authorities on experimental, theoretical genetics Theory stated in mathematical
form. Special features of particulate inheritance are examined evolution of dominance, main-
tenance of specific variability, mimicry, sexual selection, etc. 5 chapters on man's special
circumstances as a social animal. 16 photographs, x + 310pp. 53/8 x 8

S466 Paperbound $1.85
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DOVER SCIENCE BOOKS
THE AUTOBIOGRAPHY OF CHARLES DARWIN, AND SELECTED LETTERS, edited by Francis
Darwin. Darwin's own record of early life; historic voyage aboard "Beagle," furore surround-
ing evolution, his replies, reminiscences of his son Letters to Henslow, Lyell, Hooker,
Huxley, Wallace, Kingsley, etc

,
and thoughts on religion, vivisection We see how he revo-

lutionized geology with concepts of ocean subsidence, how his great books on variation
of plants and animals, primitive man, expression of emotion among primates, plant fertiliza-

tion, carnivorous plants, protective coloration, etc
, came into being 365pp 5% x 8

T479 Paperbound $1.65

ANIMALS IN MOTION, Eadweard Muybridge. Largest, most comprehensive selection of Muy-
bridge's famous action photos of animals, from his "Animal Locomotion

" 3919 high-speed
shots of 34 different animals, birds, in 123 types of action, horses, mules, oxen, pigs,

goats, camels, elephants, dogs, cats guanacos, sloths, lions, tigers, jaguars, raccoons,
baboons, deer, elk, gnus, kangaroos, many others, walking, running, flying, leaping Horse
alone in over 40 ways. Photos taken against ruled backgrounds, most actions taken from
3 angles at once 90, 60, rear Most plates original size Of considerable interest to

scientists as biology classic, records of actual facts of natural history, physiology "Really
marvelous series of plates," Nature "Monumental work," Waldemar Kaempffert Edited by
L. S. Brown, 74 page introduction on mechanics of motion 340pp of plates. 3919 photo-
graphs. 416pp Deluxe binding, paper (Weight 41/2 Ibs ) 7Va x 10%

T203 Clothbound $10.00

THE HUMAN FIGURE IN MOTION, Eadweard Muybridge New edition of great classic in history
of science and photogran* ~'ection ever made from original Muybridge photos of

human action 478 *? 163 types of motion walking, running, lifting,
e*~ hi tir.^ eds up to l/6000th of a second Men, women,
cnno.ei,, ,. muscle positions against ruled backgrounds,
mostly taken ai , / was this a great work of photography, acclaimed
by contemporary crm*. . genius, but it was also a great 19th century landmark
in biological research Historical introduction by Prof Robert Taft, U of Kansas Plates

original size, full of detail Over 500 action strips 407pp. 7 3/4 x 10% Deluxe edition
7204 Clothbound $10.00

AN INTRODUCTION TO THE STUDY OF EXPERIMENTAL MEDICINE, Claude Bernard. 90-year old

classic of medical science, only major work of Bernard available in English, records his

efforts to transform physiology into exact science Principles of scientific research illus-

trated by specified case histories from his work, roles of chance, error, preliminary false

conclusion, m leading eventually to scientific truth, use of hypothesis Much of modern
application of mathematics to biology rests on foundation set down here "The presentation
is polished reading is easy," Revue des questions scientifiques New foreword by Prof

I. B Cohen, Harvard U xxv + 266pp 53/8 x 8 T400 Paperbound $1.50

STUDIES ON THE STRUCTURE AND DEVELOPMENT OF VERTEBRATES, E. S Goodrich. Definitive

study by greatest modern comparative anatomist Exhaustive morphological, phylogenetic
expositions of skeleton, fins, limbs, skeletal visceral arches, labial cartilages, visceral

clefts, gills, vascular, respiratory, excretory, penphal nervous systems, etc
,
from fish to

higher mammals "For many a day this will certainly be the standard- textbook on Vertebrate

Morphology in the English language," Journal of Anatomy 754 illustrations 69 page bio-

graphical study by C C Hardy Bibliography of 1186 references Two volumes, total 906pp
53/8 x 8 Two vol. set S449, 450 Paperbound $5.00

EARTH SCIENCES

THE EVOLUTION OF IGNEOUS BOOKS, N. L. Bowen. Invaluable serious introduction applies

techniques of physics, chemistry to explain igneous rock diversity in terms of chemical

composition, fractional crystallization Discusses liquid immiscibihty in silicate magmas,
crystal sorting, liquid lines of descent, fractional resorption of complex minerals, petrogen,
etc. Of prime importance to geologists, mining engineers, physicists, chemists working with

high temperature, pressures "Most important," Times, London 263 bibliographic notes
82 figures, xviu + 334pp 53/8 x 8 S311 Paperbound $1.85

GEOGRAPHICAL ESSAYS, M. Davis. Modern geography, geomorphology rest on fundamental
work of this scientist 26 famous essays present most important theories, field researches
Partial contents Geographical Cycle, Plains of Marine, Subaenal Denudation, The Peneplain,
Rivers, Valleys of Pennsylvania, Outline of Cape Cod, Sculpture of Mountains by Glaciers,
etc "Long the leader and guide," Economic Geography "Part of the very texture of geog-
raphy . . models of clear thought," Geographic Review 130 figures vi + 777pp 5% x 8

S383 Paperbound $2.95

URANIUM PROSPECTING, H. L. Barnes. For immediate practical use, professional geologist
considers uranium ores, geological occurrences, field conditions, all aspects of highly

profitable occupation "Helpful information . . . easy-to-use, easy-to-fmd style," Geotimes.
X + 117pp. 53/8 x 8. T309 Paperbound $1.00
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CATALOGUE OF
DE RE METALLICA, Georgius Agricola. 400 year old classic translated, annotated by former
President Herbert Hoover. 1st scientific study of mineralogy, mining, for over 200 years
after its appearance in 1556 the standard treatise. 12 books, exhaustively annotated, discuss

history of mining, selection of sites, types of deposits, making pits, shafts, ventilating,
pumps, crushing machinery; assaying, smelting, refining metals, also salt alum, nitre, glass
making. Definitive edition, with all 289 16th century woodcuts of original. Biographical,
historical introductions. Bibliography, survey of ancient authors Indexes. A fascinating book
for anyone interested m art, history of science, geology, etc. Deluxe Edition. 289 illustra-

tions. 672pp. 6% x 10. Library cloth. S6 Clothbound $10.00

INTERNAL CONSTITUTION OF THE EARTH, edited by Beno Gutenberg. Prepared for National
Research Council, this is a complete, thorough coverage of earth origins, continent forma-
tion, nature and behaviour of earth's core, petrology of crust, cooling forces in core,
seismic and earthquake material, gravity, elastic constants, strain characteristics, similar

topics "One is filled with admiration a high standard . . . there is no reader who
will not learn something from this book," London, Edinburgh, Dublin, Philosophic Magazine.
Largest Bibliography in print- 1127 classified items. Table of constants 43 diagrams.
439pp. 6Vs x 9V4 S414 Paperbouno* $2.45

THE BIRTH AND DEVELOPMENT OF THE GEOLOGICAL SCIENCES, F. D. Adams. Most thorough
history of earth sciences ever written Geological thought from earliest times to end of

19th century, covering over 300 early thinkers and systems, fossils and their explanation,
vulcamsts vs neptumsts, figured stones and paleontology, generation of stones, dozens of

similar topics 91 illustrations, including Medieval, Renaissance woodcuts, etc. 632 footnotes,
mostly bibliographical 511pp. 5 3/a x 8. T5 Paperbound $2.00

HYDROLOGY, edited by 0. E. Meinzer, prepared for the National Research Council Detailed,
complete reference library on precipitation, evaporation, snow, snow surveying, glaciers,
lakes, infiltration, soil moisture, ground water, runoff, drought, physical changes produced
by water hydrology of limestone terranes, etc Practical in application, especially valuable
for engineers 24 experts have created "the most up-to-date, most complete treatment of

the subject," Am Assoc of Petroleum Geologists. 165 illustrations, xi + 712pp. 6Vs x 9V4.
S191 Paperbound $2.95

LANGUAGE AND TRAVEL AIDS FOR SCIENTISTS

SAY IT language phrase books

"SAY IT" in the foreign language of your choice! We have sold over Vz million copies of
these popular, useful language books. They will not make you an expert linguist overnight,
but they do cover most practical matters of everyday life abroad

Over 1000 useful phrases, expressions, additional variants, substitutions

Modern! Useful! Hundreds of phrases not available in other texts. "Nylon," "air-condi-

tioned," etc.

The ONLY inexpensive phrase book completely indexed. Everything is available at a flip

of your finger, ready to use

Prepared by native linguists, travel experts.

Based on years of travel experience abroad.

May be used by itself, or to supplement any other text or course. Provides a living ele-

ment. Used by many colleges, institutions- Hunter College, Barnard College, Army Ordinance
School, Aberdeen; etc.

Available, 1 book per language:

Danish (T818) 75$ Italian (T806) 600
Dutch (T817) 750 Japanese (T807) 75C
English (for German-speaking people) (T801) 600 Norwegian (T814) 750
English (for Italian-speaking people) (T816) 600 Russian (T810) 750
English (for Spanish-speaking people) (T802) 600 Spanish (T811) 600
Esperanto (T820) 750 Turkish (T821) 750
French (T803) 600 Yiddish (T815) 750
German (T804) 600 Swedish (T812) 750
Modern Greek (T813) 750 **" (T808) 75C
Hebrew (T805) 600 Portuguese (T809) 750
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DOVER SCIENCE BOOKS
MONEY CONVERTER AND TIPPING GUIDE FOR EUROPEAN TRAVEL, C. Vomacka. Purse-size hand-
book crammed with information on currency regulations, tipping for every European country,
including Israel, Turkey, Czechoslovakia, Rumania, Egypt, Russia, Poland. Telephone, postal
rates, duty-free imports, passports, visas, health certificates, foreign clothing sizes; weather
tables. What, when to tip. 5th year of publication. 128pp. 3V2 x 5V4 . T260 Paperbound 600

NEW RUSSIAN-ENGLISH AND ENGLISH-RUSSIAN DICTIONARY, M. A. O'Brien. Unusually com-
prehensive guide to reading, speaking, writing Russian, for both advanced, beginning stu-
dents. Over 70,000 entries in new orthography, full information on accentuation, grammatical
classifications. Shades of meaning, idiomatic uses, colloquialisms, tables of irregular verbs
for both languages. Individual entries indicate stems, transitiveness, perfective, imper-
fective aspects, conjugation, sound changes, accent, etc. Includes pronunciation instruction.
Used at Harvard, Yale, Cornell, etc. 738pp. 5% x 8. T208 Paperbound $ 2.00

PHRASE AND SENTENCE DICTIONARY OF SPOKEN RUSSIAN, English-Russian, Russian-English.
Based on phrases, complete sentences, not isolated words recognized as one of best
methods of learning idiomatic speech. Over 11,500 entries, indexed by single words, over

32,000 English, Russian sentences, phrases, in immediately useable form Shows accent

changes in conjugation, declension, irregular forms listed both alphabetically, under mam
form of word. 15,000 word introduction covers Russian sounds, writing, grammar, syntax
15 page appendix of geographical names, money, important signs, given names, foods,
special Soviet terms, etc Originally published as U.S Gov't Manual TM 30-944. iv + 573pp.
5% x 8. T496 Paperbound $2.75

PHRASE AND SENTENCE DICTIONARY OF SPOKEN SPANISH, Spanish-English, English-Spanish.
Compiled from spoken Spanish, based on phrases, complete sentences rather than isolated

words not an ordinary dictionary. Over 16,000 entries indexed under single words, both

Castihan, Latin-American. Language in immediately useable form 25 page introduction

provides rapid survey of sounds, grammar, syntax, full consideration of irregular verbs.

Especially apt in modern treatment of phrases, structure 17 page glossary gives translations

of geographical names, money values, numbers, natronal holidays, important street signs,
useful expressions of high frequency, plus unique 7 page glossary of Spanish, Spanish-
American foods. Originally published as U.S. Gov't Manual TM 30-900. iv + 513pp. 5% x 8%.

T495 Paperbound $1.75

SAY IT CORRECTLY language record sets

The best inexpensive pronunciation aids on the market. Spoken by native linguists asso-
ciated with major American universities, each record contains.

14 minutes of speech 12 minutes of normal, relatively slow speech, 2 minutes of
normal conversational speed.

120 basic phrases, sentences, covering nearly every aspect of everyday life, travel

introducing yourself, travel in autos, buses, taxis, etc., walking, sightseeing, hotels,

restaurants, money, shopping, etc.

32 page booklet containing everything on record plus English translations easy-to-follow

phonetic guide.

Clear, high-fidelity recordings.

Unique bracketing systems, selection of basic sentences enabling you to expand use of

SAY IT CORRECTLY records with a dictionary, to fit thousands of additional situations.

Use this record to supplement any course or text. All sounds in each language illustrated

perfectly imitate speaker in pause which follows each foreign phrase in slow section,
and be amazed at increased ease, accuracy of pronounciation. Available, one language per
record for

French Spanish German
Italian Dutch Modern Greek

Japanese Russian Portuguese
Polish Swedish Hebrew

English (for German-speaking people) English (for Spanish-speaking people)

7" (33 1/3 rpm) record, album, booklet. $1.00 each.

SPEAK MY LANGUAGE: SPANISH FOR YOUNG BEGINNERS. M. Ahlman, Z. Gilbert. Records pro-
vide one of the best, most entertaining methods of introducing a foreign language to

children. Within framework of train trip from Portugal to Spam, an English-speaking child

is introduced to Spanish by native companion. (Adapted from successful radio program of

N.Y. State Educational Department.) A dozen different categories of expressions,, including

greeting, numbers, time, weather, food, clothes, family members, etc. Drill is combined
with poetry and contextual use. Authentic background music. Accompanying book enables
a reader to follow records, includes vocabulary of over 350 recorded expressions. Two
10" 33 1/3 records, total of 40 minutes. Book. 40 illustrations. 69pp. 5V* x 10V2.

T890 The set $4.95
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LISTEN & LEARN language record sets

LISTEN & LEARN is the only extensive language record course designed especially to meet
your travel and everyday needs. Separate sets for each language, each containing three 33 1/3
rpm long-playing records 1 1/2 hours of recorded speech by eminent native speakers
who are professors at Columbia, New York U

, Queens College

Check the following features found only in LISTEN & LEARN

Dual language recording 812 selected phrases, sentences, over 3200 words, spoken first

in English, then foreign equivalent Pause after each foreign phrase allows time to

repeat expression.

128-page manual (196 page for Russian) everything on records, plus simple transcrip-
tion. Indexed for convenience Only set on the market completely indexed

Practical No time wasted on material you can find in any grammar No dead words.
Covers central core material with phrase approach Ideal for person with limited time.

Living, modern expressions, not found in other courses Hygienic products, modern
equipment, shopping, "air-conditioned," etc Everything is immediately useable

High-fidelity recording, equal in clarity to any costing up to $6 per record.

"Excellent . . . impress me as being among the very best on the market," Prof Mario
Pei, Dept of Romance Languages, Columbia U "Inexpensive and well done ideal

present," Chicago Sunday Tribune "More genuinely helpful than anything of its kind,"
Sidney Clark, well-known author of "All the Best" travel books

UNCONDITIONAL GUARANTEE. Try LISTEN & LEARN, then return it within 10 days for full

refund, if you are not satisfied It is guaranteed after you actually use it

6 modern languages FRENCH, SPANISH, GERMAN, ITALIAN, RUSSIAN, or JAPANESE * one
language to each set of 3 records (33 1/3 rpm). 128 page manual Album

Spanish the set $4 95 German the set $4 95 Japanese* the set $5 95
French the set $4 95 Italian the set $4 95 Russian the set $5 95
* Available Oct. 1959

TRUBNER COLLOQUIAL SERIES

These unusual books are members of the famous Trubner series of colloquial manuals They
have been written to provide adults with a sound colloquial knowledge of a foreign lan-

guage, and are suited for either class use or self-study Each book is a complete course in

itself, with progressive, easy to follow lessons Phonetics, grammar, and syntax are covered,
while hundreds of phrases and idioms, reading texts, exercises, and vocabulary are included
These books are unusual in being neither skimpy nor overdetailed in grammatical matters,
and in presenting up-to-date, colloquial, and practical phrase material. Bilingual presentation
is stressed, to make thorough self-study easier for the reader

COLLOQUIAL HINDUSTANI, A H. Harley, formerly Nizam's Reader in Urdu, U of London 30
pages on phonetics and scripts (devanagan & Arabic-Persian) are followed by 29 lessons,

including material on English and Arabic-Persian influences Key to all exercises. Vocabufary.
5 x 7V2. 147pp Clothbound $1.75

COLLOQUIAL ARABIC, DeLacy O'Leary. Foremost Islamic scholar covers language of Egypt,
Syria, Palestine, & Northern Arabia Extremely clear coverage of complex Arabic verbs & noun
plurals, also cultural aspects of language Vocabulary, xvni + 192pp. 5 x 7V2.

Clothbound $1.75

COLLOQUIAL GERMAN, P. F. Doring. Intensive thorough coverage of grammar in easily-followed
form. Excellent for brush-up, with hundreds of colloquial phrases. 34 pages of bilingual
texts. 224pp 5 x 7V2 Clothbound $1.75

COLLOQUIAL SPANISH, W. R. Patterson. Castilian grammar and colloquial language, loaded
with bilingual phrases and colloquialisms Excellent for review or self-study 164pp 5 x 7V2.

Clothbound $1.75

COLLOQUIAL FRENCH, W. R. Patterson. 16th revised edition of this extremely popular manual.
Grammar explained with model clarity, and hundreds of useful expressions and phrases,
exercises, reading texts, etc. Appendixes of new and useful words and phrases. 223pp.
5 x 7V2. Clothbound $1.75
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COLLOQUIAL PERSIAN, L. P. Elwell-Sutton. Best introduction to modern Persian, with 90 page
grammatical section followed by conversations, 35 page vocabulary. 139pp. Clothbound $1.75

COLLOQUIAL CZECH, J. Schwarz, former headmaster of Lingua Institute, Prague Full easily
followed coverage of grammar, hundreds of immediately useable phrases, texts Perhaps the
best Czech grammar in print "An absolutely successful textbook," JOURNAL OF CZECHO-
SLOVAK FORCES IN GREAT BRITAIN. 252pp 5 x 7V2 Clothbound $250

COLLOQUIAL RUMANIAN, G. Nandris, Professor of University of London Extremely thorough
coverage of phonetics, grammar, syntax, also included 70 page reader, and 70 page vocabulary
Probably the best grammar for this increasingly important language 340pp 5 x 7 Viz

Clothbound $2.50

COLLOQUIAL ITALIAN, A. L. Hayward Excellent self-study course m grammar, vocabulary,
idioms, and reading Easy progressive lessons will give a good working knowledge of Italian

in the shortest possible time 5 x 7 Viz Clothbound $1.75

MISCELLANEOUS

TREASURY OF THE WORLD'S COINS, Fred Remfeld. Finest general introduction to numis-

matics, non-technical, thorough, always fascinating Coins of Greece, Rome, modern coun-
tries of every continent, primitive societies, such oddities as 200-lb stone money of Yap,
nail coinage of New England, all mirror man's economy, customs, religion, politics, philos-

ophy, art. Entertaining, absorbing study, novel view of history. Over 750 illustrations.

Table of value of coins illustrated List of U S com clubs. 224pp. 6V2 x 91/4

T433 Paperbound $1.75

ILLUSIONS AND DELUSIONS OF THE SUPERNATURAL AND THE OCCULT, D. H. Rawcliffe. Ra-

tionally examines hundreds of persistent delusions including witchcraft, trances, mental

healing, peyotl, poltergeists, stigmata, lycanthropy, live burial, auras, Indian rope trick,

spiritualism, dowsing, telepathy, ghosts, ESP, etc Explains, exposes mental, physical de-

ceptions involved, making this not only an expos6 of supernatural phenomena, but a valuable

exposition of characteristic types of abnormal psychology Originally "The Psychology of

the Occult." Introduction by Julian Huxley 14 illustrations 551pp 53/8 x 8

T503 Paperbound $200

HOAXES, C. D. MacDougall. Shows how art, science, history, journalism can be perverted
for private purposes Hours of delightful entertainment, a work of scholarly value, often

shocking Examines nonsense news, Cardiff giant, Shakespeare forgeries, Loch Ness monster,
biblical frauds, political schemes, literary hoaxers like Chatterton, Ossian, disumbrationist

school of painting, lady m black at Valentino's tomb, over 250 others. Will probably reveal

truth about few things you've believed, will help you spot more easily the editorial

"gander" or planted publicity release "A stupendous collection . and shrewd analysis,"
New Yorker New revised edition 54 photog/aphs. 320pp 5% x 8 T465 Paperbound $1.75

YOGA: A SCIENTIFIC EVALUATION, Kovoor T. Betran*m. Book that for first time gave Western
readers a sane, scientific explanation, analysis of yoga Author draws on laboratory

experiments, personal records of year as disciple of yoga, to investigate yoga psychology,

physiology, "supernatural" phenomena, ability to plumb deepest human powers. In this

study under auspices of Yale University Institute of Human Relations, strictest principles

of physiological, psychological inquiry are followed Forevyord byiW A Miles, Yale University
17 photographs xx + 270pp. 5Vs x 8 T505 Paperbound $1.65

Write for free catalogs!
Indicate your field of interest. Dover publishes books on physics, earth

sciences, mathematics, engineering, chemistry, astronomy, anthropol-

ogy, biology, psychology, philosophy, religion, history, literature, math-
ematical recreations, languages, crafts, art, graphic arts, etc.

Write to Dept. catr

__
Dover Publications, Inc.

Science B V_^| ^> ^ ' ' 180 Varick St., N. Y. 14, N. Y.

15





(continued ftotn inside front covet)

Introduction to Differential Equations of Physics, L. Hopf $1.25

The Continuum and Other Tyfces of Serial Order, h V Huntington $1.00

Ordinary Differential Equations, E L Ince $2.55

Table of Functions, E Jahnke cr F Emde $200

Theory of Sets, L Kamke $1 35

Foundations of Potential Theory, O D Kellogg $1 98

Modern Theories of Integration, H Kestelnian $1 75

Mathematical Foundations of Statistical Mechanics, A Khmchm $1 35

Mathematical Foundations of Information Theory, A. Khmchm $1 35

Lectures on the Icosahedron, Felix Klein $1 85

Infinite Sequences and Series, K Knopp $1.75

Elements of Theory of t unctions, K Knopp $1 35

Theory of Functions, K. Knopp Four volume set, $5.40

Dictionary of Conformal representations, H Kober $200

Numerical Solutions of Differential Equations, H Levy cr E Raggott $1 75

Elements of Theory of Real Functions, J Littlewood $1.25

Linear Integral Equations, H' L Lovitt $1.60

Higher Mathematics for Students of Chemistry and Physics, J. Mellot $225

Differential Equations, F R Moulton $200

Functions of a Complex Variable, James Pierpont $2J5

Lectures on the Theory of Functions of Real Variables, James Pierpont
Two Volume set $-1 90

Collected Works of Bernard Riemann (in German), 1! Riemann $285

A Table of the Incomplete Elliptic Integral of the Third Kind,
R G Selfndge & J, E Maxfield ^Clothbound $7 50

Elements of Non-Euclidean Geometry, D M Y Somnrerville $1 50

An Introduction to Geometry of N Dimensions,,D M ) Sommen'ille $1.50

Elements of Number Theory/ 1 Mr'Tinogradov $1 60

Theory of Functional, Tito* Kolterra $175

Partial Differential Equations of Mathematical />/ty>ws A G Webster $2.00

Vector and Tensor Analysis, Albeit P Wills $1 75

Advanced Cahulus, E H Wilson $245

Trigonometrical Series, A 7,ygmund $1.50

Available at your book dealer or write for free catalogues to Dept. TF1,
Dover Publications, Inc., 180 Varick St., N.Y. 14, N.Y. Please indicate

field of interest. Dover publishes over 75 new selections each year on

science, puzzles, art, languages, music, philosophy, etc.




