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PREFACE

hough this volume begins the study of modern differential geometry in

earnest, it ends just when we have gotten to the fanciest definition of a
connection, but have hardly begun to start spouting theorems. A glance at the
Table of Contents will show that the semi-historical path promised in Volume [
really has been followed. The most decisive encounters with classical differential
geometry occur in Chapters 3 and 4, which present the classical papers and then
explain them. While it is possible to get through this volume without reading
any of the classical works themselves, the easy way out certainly misses all the
fun!

There are no Problem sets in this volume, which is a shame, but much of
the material doesn’t lend itself to problems, and even if it did, I would have
gone berserk trying to produce them in any reasonable length of time. As com-
pensation for the lack of Problems, the final volume contains a comprehensive
bibliography of the literature of Differential Geometry, including texts where
problems may be found.
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CHAPTER 1

CURVES IN THE PLANE
AND IN SPACE

Volume I of these notes represents the “differential” part of differential
geometry. In this volume we finally get down to some geometry. For
the present we are going to study only the simplest geometric objects, curves,
and at first our approach will be terribly geometric. Nevertheless, the results
of this chapter span a couple hundred years, and we will end with some very
modern looking constructions.

We begin by considering only curves in the plane, and we further restrict
our attention to curves ¢: [a,b] — R? which are immersions, i.e., which satisfy
c'(t) = dc/dt # 0 for all t € [a,b]. For these curves, the arclength function
s: [a,b] = R,

t
5(0) = f ()| du,

is a diffeomorphism s: [a,b] — [0, L], where L = length of ¢. The curve
y = cos!is then a reparameterization of c; clearly y is parameterized by arc-
length, |y’ (s)| = 1. We have just introduced a convention to be used throughout
the chapter: for curves y: [a,b] — RR? with unit tangent vectors, we will usually
denote a typical point in [a, b] by s, even at the risk of confusing it with the arc-
length function defined above. We also emphasize that throughout this chapter
¥'(s) just denotes a vector in R?, not a tangent vector in R3, (), even though
we will often draw it that way.

Y ($)yes)

y(s)
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For an immersed curve ¢: [a,b] — R? we would like a way of measuring
the amount that ¢ is “curving” at any point. No matter how vague this, as yet

curving a lot

curving just a little

intuitive, term may be, we will surely all agree that

(a) a straight line is not curving at all,

(b) a circle of radius R > r is curving less than the circle of radius 7.

R

If we have to attach a numerical measure of curvature to these particular curves,
it seems reasonable to define the curvature of a straight line at any point to be 0,
and to define the curvature of a circle of radius 7 to be 1/r at any pomnt.

From these special cases we want to develop a definition that works for any
curve. We take as a clue the procedure which we use in a similar, but simpler,
case. We can easily define what we mean by the direction of a curve ¢: [a,b] —
R? at any time ¢. This direction is determined by the tangent line at c(t), which
is the limit of lines through ¢(t) and ¢(r) as ¢’ — t. This limit exists if /(1)

c(t")

c(t)
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exists and is non-zero. If, moreover, ¢’ is continuous at ¢, then this limit line can
be described as the limit, as 1,7, —> ¢, of the line through c(#1) and ¢(); for
this line is parallel to the tangent through c(§) for some & between £, and #,.

In order to determine the curvature of a curve we follow an analogous pro-
cedure. We find the circle which passes through three points c(f1), c(f2), ¢ (#3)
and then see if this circle approaches a limiting circle as 1, t,13 — ¢. If it does,
we can define the curvature of ¢ at ¢ to be the reciprocal of the radius of this
circle.

Before proving a precise theorem, we simply try to determine the position
of this circle, assuming it does exist. This can be done as follows. First of all,
since ¢ is an immersion, it is locally one-one, so for distinct 1, f2, 13 near ¢, the
points ¢ (1), ¢(£2), ¢(t3) are distinct. To be specific, let us say that /1 <, < 13.
Suppose also that ¢(#1), ¢(f2), ¢(r3) do not lie on a straight line, so that there Isa
unique circle through these three points, with center C (41,12, 13). Consider the
function

1> (c(t) = Cn, 1, 13), c(t) = Cln, 12, 13)).

At 1, 12, t3 this function has the same value, the square of the radius of the circle
through ¢(f), c(f2), c(t3). So its derivative must be 0 at points & € (#1,#2) and
& € (12, 13):

(1) 0= (c'(&), c&) — C(n, . 13)), & e (titiy), =12

Similarly, the function ¢ > {(¢/(7), ¢(t) — C(n1,t2,13)) must have derivative 0 at
some point 7 € (§1,&2):

(2) (), c(n) = Cltr,t2,13)) = —{' (), " (M)).

Now, if the points C (1, 12, 13) approach a point C as #1,£,t3 — ¢, and if c’ 1s
continuous, then (1) and (2) clearly imply that

V) (1), e(t) = C) =0

) ("(t), c(t) = C) = —{c'(t),c'(1)).
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The first of these equations shows that the circle through ¢() with center €
must be tangent to ¢ at ¢(¢), which is certainly to be expected. Thus C is already

C C ¢"(1)

(1)
c(r) c(r)

restricted to lie along a certain line. If ¢”(¢) is not a multiple of ¢’(¢), the second
equation then determines C, since it tells us the inner product of ¢(t) — C
with ¢”(¢). If ¢”(¢) is a multiple of ¢’(¢), then we obtain the contradiction

0 £ —(c'(1), (1)) = (" (t), c(t) — C) = constant - {¢'(¢), ¢(t) = C) = 0.

In other words, if ¢”(¢) is a multiple of ¢’(¢), this limiting position cannot exist.
Although equations (1), (2') could be solved for C, we can make things a lot
easier for ourselves by considering a curve ¢ parameterized by arclength, so that
l¢’(s)] = 1. (This means that ¢’(s) always lies on the unit circle S c R?, even
though we often picture it instead as a tangent vector.) Now the equation

(c'(8),¢'(s)) = 1
can be differentiated to give
(%) (" (5),¢'(s)) = 0.
In other words, ¢”(s) is always perpendicular to ¢’(s). In particular, c’(s)isa
multiple of ¢’(s) only when ¢”(s) = 0. Equations (I'y and () show that ¢"(s)
and ¢(s) — C are both perpendicular to ¢’(s). If ¢”(s) # 0, then we can write
¢(s) = C = a - ¢"(s). Substituting in (2) gives

a-{c"(s),c"(8)) = ={c'(8),c/(s)) = — L.
Since we also have
le(s) = C| = lal - 1¢"(s)1,

we easily deduce that

c(s)-Cl= ——.
le(s) 1 )]
In other words, our circle is perpendicular to ¢ at ¢(s), and has radius 1/ le” ().
Its curvature, and hence the curvature of ¢ at s, is thus [¢”(s)|. We are ready

to reverse the order of this reasoning, and take care of details which we have
ignored.
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1. THEOREM. Let c¢: [a,b] = R be a C? curve parameterized by arclength.
If ¢”(s) # 0, then for sy, 52, 53 sufficiently close to s, the points ¢(s1), c(s2), ¢(s3)
do not lie on a straight line. As s1,s2,53 — § the unique circle through the
points ¢(s;) approaches a circle passing through ¢(s), whose radius is 1/|¢"(s)l,
and whose center lies on the line through ¢(s) perpendicular to the tangent line
through c(s). If ¢”(s) = 0, then, even if the points ¢(s;) do not lie on a line,
the circles through them do not approach a limiting circle.

PROOF. We first show that if ¢”(s) # 0, then the points c(s1), c(s2), ¢(s3) can-
not lie on a line for sy, s2, 53 arbitrarily close to s. Whenever the points ¢(s;)
lie on a line, for s; < 52 < s3, there are points §; € (s1,52) and & € (s2,53)
where the tangent lines are parallel to this line (Cauchy mean value theorem).

c(s3)

c(&2)
c'(§1) = ' (§2)

e/ <Y / N’(n)
)<C(Sl) \ /

This means that the curve ¢’ in S has ¢’/(§) = ¢’(§&). For & and & close

enough to s, the image ¢’([&1,42]) can’t be the whole of S'. So there is a point

n € (&,&) where ¢’(n) is furthest from ¢’(§;) in some direction along the circle.

It follows that ¢ (1) = 0. This cannot happen for 1 arbitrarily close to s, so the

points ¢(s1), c(s2), ¢(s3) cannot lie on a line for sy, 52, 53 arbitrarily close to s.
Now let C be the unique point satisfying

('(s), c(s) —=C)=0
™) ((5), e(s) = C) = —{c'(9), () = —1.
For s; < 53 < 53 close to s, let C(s1,52,53) be the center of the unique circle
through the points ¢(s;). We have already seen that
(c'(§), c(§) — C(s51,52,53)) =0 § € (s1,9)
(" (), c(n) = C(s1,52,53)) = —{c'(), ¢’ () = —1 n € (s1,53).

Since ¢/(£) — ¢'(s) and ¢"(7) — ¢"(s) as s; — s, comparison of these equations
with () shows that C(sy, 52, 53) must approach C.

We have already shown that if ¢”(s) = 0, then C(sy, 52, 53) cannot approach
a limiting position as s; — 5. %
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The circle determined in Theorem 1 is called the osculating circle of ¢ at s
(“osculate” means to kiss). It is clearly the circle which best approximates the

c(s)

curve ¢ at ¢(s). This suggests that we define |¢”(s)] to be the curvature of ¢ at s;
even for ¢”(s) = 0 this gives the result we would like. With this definition, cur-
vature would always be non-negative, but we can modify the definition shightly
so that we obtain a signed curvature. We will henceforth use the notation t(s)
for ¢’(s), the unit tangent vector of ¢ at s. We use this notation only for curves
parameterized by arclength; recall once again that t(s) € S', even though we
usually draw it as an element of R3C(s). We then define n(s), the unit normal
at s, to be the unit vector such that n(s) is perpendicular to t(s), and [t(s), n(s)]
is the standard orientation of R%. Thus n(s) = (—t2(s),t'(s)). Now we define

t(s)

n(s)
t(s)

n(s)

the curvature «(s) of ¢ at s by the equation
t'(s) = k(s) - n(s).

Notice that
k()| = It'(s)| = [c" ()],

so that 1/[k(s)| is the radius of the osculating circle at s, for x(s) # 0. The
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significance of the sign of « is indicated in the figure below.

t(s)

n(s)
n(s) t(s)

t'(s)

For any curve ¢ we can define a curve ¢ “going in the opposite direction” by
é(s) = c(=s). If we use t(s) for ¢’(s), then clearly

t(s) = —t(—s), hence n(s) = —n(—s)
t'(s) =t'(—s).

This shows that the curvature < (s) of ¢ at s 1s
k(s) = —«(—s).

One can see this change of sign in the figure above. Traversing the left curve
in the opposite direction, and turning the figure upside down, one obtains the
curve on the right.

This relation can also be seen from explicit formulas for «, which are some-
times useful to have. To write these, we abandon our usual practice of indicating
component functions with superscripts, and instead write ¢(s) = (c1(s), c2(5)).

We have, of course, l«(s)| = v/(c1”(s))2 + (c2”(s5))?, but we can also develop a
formula for «(s) itself. Since |« (s)] is the length of ¢”(s), which 1s perpendicular
to the unit vector ¢’(s), clearly |«(s)| is also the area of the rectangle spanned
by ¢’(s) and ¢”(s). This area is given by det(c’(s), ¢"(s)) which, moreover,

N/(S)

clearly has the same sign as «(s). So

«(s) zdet(c‘l () (S)) — /e — er'er1().

() 2"(s)
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Until now we have been working exclusively with curves parameterized by
arclength. Theoretically this is sufficient, since we consider only curves which
can be reparameterized by arclength. In practice, however, it is usually very
inconvenient to actually perform this reparameterization, which involves the
inverse of a function defined as an integral. Moreover, since our formula in-
volves only derivatives, only the integrand of this integral should play any crucial
role. Consider any (immersed) curve ¢: [a,b] — R?. Letting s: [a,b] — [0, L]

be arclength, and defining y = ¢ o 57!, we have
c=yos
de , .ds ) dc , ds
=Y (S)E (l-e., Z([)_Y(s([))d_t([)>
d?c y ds\* , d%s
=Y (s) (E) +vy (s)?dt_z'
Thus
W=/ h
YW=

Fe dPsde [ds e de
, diz derdif] dt Gz %
y'(s) = = ,  say.

@ @

Denoting dc;/dt by ¢;(t), we have for the curvature «: [a,b] — R? of ¢,

k() = curvature of y at s = s(t)
= det(y'(s), 7" (s))
= (ds/dt)~} det(¢(r), &(t) — aé(t))
= (ds/dt) 3 det(é (1), E(1)).

Thus

("]52 - 6"251
K= -—F"T3217"
(612 + ,2)3/2

Naturally, this formula becomes meaningless for a non-immersed curve,
where ¢1(t) = () = 0. In such cases, we should not generally expect to
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have a meaningful notion of curvature, for there is nothing to stop the curve
from “changing its curvature” at this point.

Before examining the significance of the curvature function « further, we
pause for an observation. Since the osculating circle is the limiting position
of the circle through c(s1), ¢(s2), c(s3) no matter how sy, s2,53 — s, it is clearly
also the limiting position as s’ — s of the circle which is tangent to ¢ at ¢(s)
and which passes through c(s”). To see this, we just choose 51,52 much closer

c(s))

c(s)

to s than s’ is. The center of the osculating circle can thus be described as the
limiting position of the point S in the figure below as s — 5. These descriptions
of curvature go back to Huygens, Leibniz, and Newton.

c(s)

c(s)

We began our discussion of curvature by considering straight lines and cir-
cles, which were our original models of curves which ought to have constant
curvature. It is certainly clear that our definitions do assign curvature 0 to a
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straight line ¢, for ¢ = 0if ¢ is parameterized by arclength; and absolute
curvature k] = R to a circle of radius R, since the circle is its own osculating
circle. A really satisfactory measure of curvature ought to assign constant cur-
vature to these curves alone. It is clear that if ¢, parameterized by arclength,
has curvature 0 everywhere, so that ¢” = 0, then ¢’ is constant, so ¢ 1s a straight
line. The analysis of a curve ¢ with non-zero constant curvature « (which we
might as well assume positive) becomes frustratingly complicated if approached
in too straightforward a way. We assume, as usual, that ¢ is parameterized by
arclength. Let us introduce the components of the unit tangent vector curve,

t(s) = (@(s), B(5))-

Then

a/z + ﬂ/z — K.Z’
SO
(1) a/a// + ﬂ/ﬂ// —0.

Recall also that {t(s), t'(s)) = (¢'(s),c"(s)) =0, so
(2) aa’ + BB =0.

Equations (1) and (2) show that (e, ) and (", B") are always perpendicular to
(a', B, so one is a multiple of the other,

o (s) = pls)als)
B (s) = u(s)B(s).

(3)
Moreover, differentiating (2) gives

a/2 +ﬂ/2 +(X(X” +/3I3N =0
or
(4) kt +aa” + BB =0.

Substituting from (3), and using & + B% =1, gives pu(s) = —«2. Thus,

a + k%0 =0

)
ﬂ// 4 Kzﬂ =0.
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The solutions of the differential equation in (5) are s +> asinks+b cos ks, which
can also be written as s = 4sin(ks + B). In order to have a’ + B2 =1, we
clearly need 4 = 1 and

o(s) = sin(ks + B)
B(s) = cos(ks + B).

Thus t traverses a circle, which implies that ¢ itself is a circle of radius 1/k.

The complicated calculations in the preceding paragraph conceal a basic
principle which is much simpler. Suppose that we are given an arbitrary con-
tinuous function « : [a,b] = R. We can ask how many arclength parameterized
curves ¢: [a,b] = R? there are with curvature function equal to «, without nec-
essarily trying to find a specific formula for these curves. If there is one such
curve, then there are automatically others, for translating or rotating a curve
will not change its curvature. However, this is the only extent to which the curve
is not determined.

9. THEOREM. Let «: [a,b] — R be continuous. Then there i1s a curve
¢: [a,b] — R?, parameterized by arclength, whose curvature at s is k() for
all s € [a,b]. Moreover, if ¢ and ¢ are two such curves, then ¢ = Aoc¢ where 4

is some proper Euclidean motion (a translation followed by a rotation [an ele-
ment of SO(2)]).

PROOF. Theorem I.5-17 implies that there is a function t: [a, b] — R? with
() t'(s) = «(s) - (—ta(s), t1(s)).
We can choose t(a) arbitrarily; choose it to be a unit vector. Now
(t2 + %) =2t1t) + 26t

=2{(t;, ta), (t1', 2"))

= 2((t;, t2), K (—t2, 1))

=0.
So t(s) is a unit vector for all s. There is, again by Theorem 1.5-17, a curve
¢: [a,b] > R? with ¢’(s) = t(s). Since t(s) is always a unit vector, ¢ is parame-
terized by arclength. Equation (x) then says that t'(s) = «(s) -n(s), so that «(s)
is the curvature of ¢ at s.

If ¢ and ¢ have the same curvature functions «, then their unit tangent vec-

tors t and t both satisfy (x). Now if t is any solution of (¥), clearly Bot is also, for
any rotation B. Choosing B so that B(t(a)) = t(a), and using the uniqueness

of solutions of (x) with a given initial condition, we see that t = Bot. This
implies that ¢ differs from B o ¢ by a translation. <
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Notice that this theorem makes the previous calculation unnecessary: Since a
circle of radius R has constant curvature 1/ R, any curve with constant curvature
1/R differs from this circle by a Euclidean motion, and is consequently another
circle of radius 1/R. More generally, Theorem 2 seems to make further study
of curves almost pointless. Although one may still study properties of curvature,
there is clearly no point in introducing any similar concept; we would only be
interested in concepts that remained the same for ¢ and 4 o ¢, and all of these
are already determined by the curvature.

Despite these remarks, we are by no means ready to write off the study of
plane curves. Many interesting results remain, of which we will be able to
sample only a few. However, these results were all proved many years after the
study of curves had been initiated, and are all global results, rather than local
ones. To begin, we define certain kinds of curves, with which we will be almost
exclusively concerned.

A C! curve ¢: [a,b] — R? is called closed if c(a) = ¢(b) and ¢/(a) = ¢'(b).

(o)

these are

this is not
closed curves

a closed curve

One can also regard a closed curve as an immersion of S' in R%. A curve
is called simple if it is one-one. Finally, among the simple closed curves we
distinguish a special class of curves called convex. These are defined to be
the simple closed curves which always lie on one side of their tangent lines.

O &

a convex curve a non-convex curve

Although the property enunciated in this definition is precisely the one which
1s used in all proofs about convex curves, we will nevertheless take time out to
equate this definition with a more common one.



Curves in the Plane and in Space 13

Any subset 4 of R? is called convex if the line segment pg from p to g is

~

CONveEx sets Nnon-convex sets

contained in 4 whenever p,q € A. Suppose 4 is convex and p is a point in
the boundary of A. A line L through p is called a support line of A if 4 lies
completely in one of the closed half-spaces into which L divides R2.

4 support lines
of a convex set

3. PROPOSITION. If 4 is convex, and p is in the boundary of A, then there
is at least one support line L through p.

PROOF. If A has no interior points it lies on a line, and the proof is trivial.
If A has an interior point g, let I be the ray from ¢ through p, and let /” be the
part starting at p. Clearly I’ intersects A only at p, for if a point ¢’ on I" were

in A, then all points between ¢’ and the points in a neighborhood of g would
be in A4, so p would be an interior point of 4.
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Choose one side of I/, and consider angles 6 such that rays from p making
an angle of @ with I’ on this side do not intersect 4 except at p (it may be that
6 = 0 is the only possibility). Let 8; be the least upper bound of all such 6, and
let /; be the ray through p making an angle of ;. Let /; be the corresponding
ray on the other side of /.

We claim that the angle between /; and /; is > m, which will surely prove the
theorem. To prove the claim, note that there are points of 4 arbitrarily close
to (or perhaps even on) both /; and /5. If the angle between [ and I, were < T,

the triangle containing a suitable pair of such points, and ¢, would contain p
in its interior, which cannot happen, since p is not an interior point of A. ¢

Note (for those who are familiar with Banach spaces). This theorem is essentially the
Hahn-Banach Theorem. If 4 were symmetric about the origin, then 4 would
be the unit ball in R? for a Banach space norm || ||. If W C R? is the subspace
spanned by p, and A: W — R is the linear functional with A(p) = 1, then the
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desired support line is just a translate of the kernel of an extension A R2 5 R

of A with ||| = 1. Symmetry of A is really unimportant, for the Hahn-Banach
Theorem only requires a norm satisfying lavll = a|lv) for a > 0. The proof

given here is just a geometrical translation of the main step in the usual proof
of the Hahn-Banach Theorem.

We now want to show that a simple closed curve ¢ is convex if and only if the
set A consisting of all points on ¢ or inside ¢ is a convex subset of R2. This is
going to be pretty hard, since we have never defined the inside of a simple closed
curve, and are just assuming that the content of Corollary L.11-15 is intuitively
obvious. There is really no need to go through the proof of all this right now;
it is only necessary to accept the following fact:

Suppose ¢ is a simple closed curve, and [ is a ray from p which inter-
sects ¢ at just one point ¢ # p. Suppose, moreover, that the tangent
line of ¢ at ¢ does not lie along /. Then p is inside c.

p is not
inside ¢

p is inside ¢

4. PROPOSITION. Let ¢ be a simple closed curve, and let A be the set of all
points on or inside ¢. Then c¢ is convex (that is, ¢ lies on one side of each of its
tangent lines) if and only if A is convex.

PROOF. Suppose first that 4 is convex. Any point p on ¢ is a boundary point
of A, so there is a support line L of A through p. This line is clearly the tangent
line of ¢ at p, so c lies on one side of the tangent line through p.

Now suppose ¢ is convex. For each p on ¢, let Hp be the closed half-plane,
bounded by the tangent line through p, in which ¢ lies. Clearly 4 C (1, Hp.
Since the intersection (), Hp of all Hp is convex (any intersection of convex sets
is convex), it suffices to show that we actually have A = (1), Hp. So consider a
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point g which is outside 4. Let p be the point on ¢ closest to q. Clearly the
tangent line L of ¢ at p is perpendicular to the ray / from g through p. It

suffices to show that c lies on the opposite side of L from g, for then g ¢ H,.
Now if ¢ lay entirely on the same side of L as ¢, then ¢ could not intersect the
ray / at any other point; for it cannot intersect the open segment pg, since p
1s the closest point on ¢ to ¢, and it certainly could not intersect / at points on
the other side of L. By the remark preceding the Proposition, this would mean
that ¢ is inside ¢, a contradiction. «

Our first global results about curves depend upon a corresponding global
formulation of the curvature function for a curve ¢: [a,b] = R%. As usual, we
assume ¢ is parameterized by arclength, and consider its associated unit tangent
vector curve t: [a,h] — S'. Any point in S* can be described as (cos6, sin #)
for a real number 6. Of course, it is not possible to do this continuously. More
precisely, if we define u: R — S! by

R
1) = (cos@,sinb) € S*,
U
: Sl

then there is no continuous function f: S' — R with u o f = identity. On
the other hand, for our curve c: [a,h] — R? there is a continuous function



Curves in the Plane and in Space 17

f: la,b] = R with

w(f(s)) = t(s).

More generally,

5. PROPOSITION. Let y: [a,b] — S! be continuous. Then there Is a con-
tinuous function f: [a,b] = R with uo f = y. Moreover, if f and f are any

two such functions, then f — f = 2xk for some k.

PROOF. Tor any t € [a,b] there is an open connected subset I; of [a,b] con-
taining ¢ such that y(I;) is a proper connected subset of S!. Clearly u=1(y(I;))
15 then a disjoint union of connected sets and u restricted to each of them is a
homeomorphism onto y (I;). This shows that if we choose any number v with

—4r =2 0

y(I,) (1,0)

#(v) = y (1), then f can be defined uniquely on I, in such a way that it has the
value v at ¢, is continuous, and satisfies g o f =y on I;.

We first prove that if there are two continuous functions f and f with po f =
Vs then they must differ by 27k for some k. It obviously suffices to prove that
f=fif f(a) = f(a). Let A4 be the set of all ¢ € [a, b] such that f(r) = f_'(t).
Then 4 is closed, while the previous paragraph shows that 4 is open. Since
a € A and [a, b] is connected, this shows that 4 = [a, b].
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To prove existence, consider the set B ofall ¢ € [a, b] such that a continuous f
can be defined on [a,], and let fo be the least upper bound of B. There is
f, € B with ) < to and t € I,,. Define a continuous f on Iy, (with any value

v at to satisfying u(v) = y(t)). Then f_(tl) — [(t1) = 2km for some k. Now
f — 2k must equal / on [r1,f)], by the uniqueness proved previously. So we

can extend f to be f — 2k on [0,1]. This shows that 7o € B. If #p < b, then
we obtain an immediate contradiction by extending f to [a,fo] U Ir,. %

If f is the function given by Proposition 5 for the curve t: [a,b] — St so
that
c'(s) = t(s) = p(f(s)) = (cos [ (s), sin f(5)),

then

¢"(s) = (—f'(s)sin f(s), f(s)cos f(5)).
So

K(s) = i ()" (s) — €2 (5)er" ()
= cos f(s) - [(f(s) cos f(s)] = sin [ (s) - [ f"(s) sin f($)]-
We thus have
k(s) = f'(s).
Notice that this gives us an easy way to reconstruct the curve from its curvature
s

function: We first reconstruct f as f(s) = / k(0) dO; this gives us t(s) =

0
u( f(s)), so one more integration gives us the curve. Notice also that

b
1) f(a) = f /(s) ds

b
= / k(s)ds;

this quantity is called the total curvature of ¢. If ¢ is a closed curve, the function
t: [a,b] — S satisfies t(a) = t(h), so we may regard it as a map t: S’ — S'.
The total curvature then has a special interpretation.

6. PROPOSITION. The total curvature of a closed curve ¢: [a,b] - R? is
27 times the degree of the map t: S' — S'. (The degree of a map is defined
on pg. 1.275)
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PROOF. Since the form “d6” on S' has integral 27, the degree of tis

1 b 1 b
E‘f ﬁwm=——]'wOfrwm
T Ja 21 Ja

1 b * *
=Eﬁfwum

d )
s (Z\ ) = (—sinf,cosB) ) € Slu(G)?
t

this is a unit tangent vector of $'. on which d6 has the value 1. So
w*(de) =dt.

Thus
1 b
d ft=— *(dt
egree O 271]:, frdn

| b
= — "d
an;f !

1 &,
= —Z_I;[f(b) — f(a)]. %

eft-most figure

The degree of t is also called the rotation index of ¢. The 1
below illustrates the first of our global theorems.

f close to 47

f close to 27

rotation index | rotation index 2 rotation index 0
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7. THEOREM (THE HOPF UMLAUFSATZ). The rotation index of a sim-
ple closed curve is %1 (depending on the direction in which it is traversed).

PROOF. Let c: [0, L] — R? be the curve, parameterized by arclength, and let
A C R? be

A={(s1,52): 0851 <52 < Lj.

We define ¢: A — ST by

B = SIEN s and (05 % O.0)
Bs,5) = ¢/(5) = ()

$(0,L) = —c'(0) = —t(0).

Itis easy to see that ¢ is continuous. Now the map s = ¢ (s, 5) isjustt: [0,L] —
S!. On the other hand, this map is homotopic to the map y obtained by
applying ¢ to the curve which goes along the other two sides of the triangle,
from (0,0) to (L, L). So it suffices to compute the degree of y, which we break

into two pieces y; and y,, defined on [0, L] and [L,2L], say.

The rotation index of ¢ clearly does not change if we rotate or translate c,
so we can assume that ¢ lies in the upper half-plane, with ¢(0) = (0,0), and
that the tangent line at ¢(0) is the x-axis, as in the picture at the top of the next
page. We assume that ¢ is traversed in such a way that t(0) = (1,0). Now,
Y1(s) = ¢(0,s) clearly always lies in the semi-circle in the upper half-plane,
and y,(0) = t(0), while y;(L) = —t(0). Consequently, the function f given
by Proposition 5 clearly has its image in [0, 7], with f(0) = 0 and f(L) = 7.
Similarly, y, lies in the lower half-plane, so the f for y, satisfies /(L) = and
S(2L) = 2n. Thus the degree of tis 1/27 - [2mr — 0] = 1. o
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)

)

Using Theorem 7, we can now relate convexity and curvature.

8. THEOREM. A simple closed curve ¢ is convex if and only if its curvature «
satisfies k > 0 or ¥ < 0 (depending on the direction in which ¢ is traversed).

PROOF. Let c: [0,L] — R? be parameterized by arclength, and choose a
continuous f: [0,L] > Rwith po f =t

If « > 0, then f' > 0, so f is non-decreasing. Suppose that ¢ were not
convex, so that ¢ lies on both sides of the tangent line / through some point p.
There are points g1, ¢2 on ¢ which are furthest away from / on both sides of l.

q2

q1

The tangent lines at q; and ¢, are clearly parallel to /, so of the three unit
tangents at these points, at least two are identical, say t(s1) = t(s2) for 51 < 3,
with (s1, 52) # (0, L). Thus f(s2) — f(s1) is a multiple of 2. But f is non-
decreasing, and f(L) = f(0) + 27, by Theorem 7. So either f(s2) = f(51) or
f(s2) = f(s1)+2m. In the first case it follows that /" is constant on [s1, s2], so t is
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constant on [s1, 52]. This implies that ¢ is a straight line on [s1, 53], contradicting
the fact that none of the points p,gi,q> lies on the tangent lines through the
others. If f(s2) = f(s1) + 2m, the other arc of ¢ must similarly be a straight
line, which is again a contradiction. Thus ¢ must be convex.

Now suppose ¢ is convex. If there is 51 < 52 with f(s1) = f(s2), so that
t(s;) = t(s2), then there is also s with t(s) = —t(s1), since t has degree 1, and

7y
)

is consequently onto S!'. The tangent lines through two of the three points
¢(s), c(s1), ¢(s2) must coincide (otherwise ¢ would cross one of them). Thus ¢ 1s
tangent to the same line / at two points, ¢(f;) and ¢(f2), say. These two points
divide ¢ into two arcs, & and B. If I is perpendicular to /, and intersects /

between ¢(t;) and ¢(t2), then o and B must intersect /’; using convexity of ¢,
it is easy to see that o and B intersect /" exactly once. Clearly one arc, say «,
always intersects I’ at a point further away from / than the other, 8. We claim
that B lies along /. If not, consider the tangent line through the point P of 8

furthest from /. This tangent line is parallel to /, and ¢ would lie on both sides
of it, a contradiction.
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Now, since B lies along /, we have t(f1) = t(tz). Thus 1; = s and o = s2.
Since the curve lies along a line on [s1,52], we have f(s) = f(sy) forall s €
[s1,s2). Thus, f s non-decreasing. ¢

Our final global result about curves in the plane involves another local con-
cept. A vertex of a curve ¢ is a point where «'(s) = 0. It is easily seen that an
ellipse which is not a circle has exactly four vertices, at the ends of the major
and minor axes; these are the points where k has a local maximum or minimum
(though a vertex need not generally be of this type). Before proceeding with the
next theorem we need a preliminary observation. The curvature « is defined
by

t'(s) = «(s) - n(s);
the existence of such a number «(s) follows from the equation (t,t) = 1, by
differentiation. Similarly, from (n,n) = 1 we obtain

{n'(s),n) =0,

which implies that n'(s) is a multiple of t(s), say n'(s) = « - t(s). On the other
hand, from (t,n) = 0 we obtain

(t'(s),n(s)) + {t(s),n'(s)) =0,

or

k(s)+oa =0
hence,
(*) n'(s) = —«(s) - t.

9. THEOREM (THE FOUR VERTEX THEOREM). Every simple closed

convex curve has at least four vertices.

PROOF. 1f ¢: [0,L] — R? is the simple closed curve, parameterized by arc-
length, then ¢ has at least two vertices—namely, the maximum and minimum
points for the curvature. Choose the coordinate system so that the x-axis passes
through these two points. Now integration by parts gives the following equation,

i
N
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in which we are taking integrals of R?-valued functions by integrating each
component separately:

L L
/ K'(s) - c(s) = —/ k(s) - t(s)ds
0 0

L
= / n'(s)ds by (*)
0
=n(L) —n(0) =0.

Consequently, we certainly have

L
(9 [ ¢ewerds =o

If there are no other vertices, then «’ > 0 on one half of ¢ and «" < 0 on the
other. So «’(s){c(s), e2) has the some sign on both halves, contradicting ().
Thus ¢ must have at least one more vertex.

The argument just given actually shows that ¢ cannot be formed of two arcs
with &/ > 0 on one and «’ < 0 on the other; the same conclusion clearly holds
even if ¥/ > 0 on one and «’ < 0 on the other, since ¥’ # 0 somewhere. This
shows that ¢ must have a fourth vertex; if it had only three, then some pair
would divide ¢ into two arcs with « > 0 on one and «’ < 0 on the other.

We now turn our attention to curves in space, and ask, once again, how to
measure the curvature of ¢: [a,b] — R?®. We can still look for the limiting
position of circles through c(s1), ¢(s2), c(s3) as 81,582,583 — . If this limiting
circle exists, its center C must satisfy

(c'(s), c(s)—C)=0
(c"(5), c(s) = C) = —(c'(s),'(5));

the derivation of this necessary condition still works. However, for space curves
these equations do not even determine C; the first equation merely restricts C
to lie on a certain plane, not on a certain line. We must first see whether the
planes through the points ¢(s;) approach a limiting position.

10. PROPOSITION. Let ¢: [a,b] — R? be a C? curve parameterized by arc-
length, with ¢”’(s) # 0. For s1, 52, s3 sufficiently close to s, the points c(s1),¢c(s2),
¢(s3) do not lie on a line. As s; — s, the unique plane through the points c(s;)
approaches the plane P spanned by ¢’(s) and ¢”(s).
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Remark: The plane P should really be described as the plane through ¢(s) which
is parallel to the plane spanned by ¢’(s) and ¢”(s), but we will allow ourselves
the elliptical terminology suggested by the picture.

PROOF. Assuming for the moment that the points ¢(s;) do not lic on a straight
line, let P(s, 2, 53) be the plane spanned by these points, and let a(sy, 52,53)
be a unit vector perpendicular to P(sy, $2, s3). Then the function

(%) s > {(c(s), als1,s2,53))
is 0 for s = 5;. So we have
4y (c"(&i), a(s1,52,53)) =0 & € (si,8i41), =12

It follows that

2) (¢"(n), a(s1,s2,53)) =0 n € (&1,62).

Equations (1) and (2), together with continuity of ¢’ and ¢”, clearly show that
a(sy,s2,s3) approaches a unit vector perpendicular to ¢'(s) and ¢”(s), so that
P(s1,s2,53) approaches P.

If the points ¢(s;) do lie on a straight line, then we can choose a whole circle
of unit vectors a(si, 52, s3) for which the function (x) vanishes at s = s;. If this
were true for s; arbitrarily close to s, the remaining part of the argument would
imply that all of these vectors are nearly perpendicular to P, which is absurd. <

The plane described in Proposition 10 is called the osculating plane of the
curve at 5. Notice that, unlike the osculating circle, the osculating plane may
exist even if ¢”(s) = 0. For example, if ¢ is a plane curve which is not straight,
then the osculating plane certainly exists. The exact conditions for the existence
of an osculating plane are not very important for us, but we will pause to indicate
the actual state of affairs.
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The worst possible situation occurs for the curve
0 t=0

ety =14 (t,e™V?,0) >0
(t,O,e‘l/‘Z) t <0,

which can’t make up its mind whether to osculate in the (x, y)-plane or in the
(x,z)-plane. For this curve we have c¢®(0) = 0 for all kK > 2, which suggests
that we consider only curves with c¢®(s) # 0 for some k > 2. Notice that for
curves parameterized by arclength, (¢’(s), ¢"(s)) = 0 implies

{c(5),¢"(5)) +{c"(5),¢"(5)) = 0.

So if ¢”(s) = 0, we have ¢"'(s) perpendicular to ¢’(s). Similarly, ¢"’(s) = 0
implies that ¢ (s) is perpendicular to ¢/(s), etc. So the first non-zero higher
derivative ¢®(s) is the same as the first derivative which is linearly independent
of ¢’(s). Now suppose P is the plane spanned by ¢’(s) and this first non-zero
c®)(s). Let s1, 52,53 be parameter values on the same side of s, ie., s < s <
s3 < s3 (or 51 < 52 < 53 < ). If a(sy, 52,53) is a unit vector perpendicular to
all ¢(s;) — ¢(s), then, as before, we have

(C/(Sl')’ a(sl,sz,S3)) =0
(c"(n), a(s1,52,53)) = 0.

Now 1 € (s1,53) so n # s. Hence, if ¢”(s) = 0 we have 8 € (s, ) with
(”(0), a(si,s2,53)) = 0.
Continuing in this way, we finally obtain A € (s, s3) with
(), alsi,s2,5)) = 0.
As before, this shows that the plane through the points ¢(s;) approaches P, and
that the points ¢(s;) cannot lie on a line for s; arbitrarily close to 0.
If the s; are allowed to lie on both sides of s, this result is no longer true. For

example, consider the curve

c(t) = (1,14, 13).
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We have

¢'(0) = (1,0,0)
¢"(0) = (0,0,0)
¢”(0) = (0,0,6),

so (0,1,0) is perpendicular to the plane spanned by ¢'(0) and ¢”’(0). On the
other hand, for a vector perpendicular to the plane spanned by ¢(0), c(t),c(—t)
we can choose

normalized [c(t) — ¢(0)] X [c(—¢) — c(0)]
= normalized (¢, ¢%, %) x (—t,t*, —1%)
= normalized (—2¢,0, 26%)
— (0,0, 1).

This strange behavior is clarified by a look at the Taylor expansion

§3

c(s) = c(0) +s¢’(0) + 0+ Zc’”(O) + o(s%),

which shows that

St3 ts3 ! "
[e(s) = (O] x [e(t) — ()] = [7 - ?] ¢'(0) x ¢"'(0)

+ higher order terms.

When s and ¢ have the same sign, the dominant term is the first. But when s
and ¢ have opposite signs this is no longer true—this term may even be 0.
I suspect, but have not checked, that the parameter values s; may be picked on
both sides of 0 if and only if the first £ > 2 with ‘0 (0) # 0 is even.

For space curves c: [a,b] — R3 with ¢”(s) # 0, we now clearly have an
osculating circle, the hmit as sy, 52,53 = § of the circle through the points ¢(s;);
it lies in the osculating plane. We define the curvature  to be the reciprocal of
the radius of this circle, so that

K(s) = |t'(s)].

This definition, once again, determines a curvature even when c'(s) =t'(s) =
0. Unlike the case of plane curves, we cannot obtain a signed curvature, for
there is no natural way to pick a vector orthogonal to t(s). However, when
k(s) # 0, we can now define n(s) by the equation

t'(s) = «(s)n(s), n(s) = normalized t'(s).
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The vector n(s) is called the principal normal of ¢ at s. We also define the
binormal b(s) by
b(s) = t(s) x n(s),

so that (t,n,b) is always a positively oriented orthonormal basis.

Note that (b, b) = 1 implies that (b’,b) = 0, so that b’ is a linear combination
of t and n. We also have (b, t) = 0, which implies that

(b',t) = —(b,t') = —(b,n) = 0.

Thus b’ is actually a multiple of n, and we can define a new function z, the
torsion, by
b = —n.

Of course, we can define 7 only at points where n exists, i.e., where ¢” # 0.
This is analogous to the fact that « can be defined only at points where ¢’ # 0.
The reason for choosing the negative sign in this equation will be explained in a
moment; we first interpret the absolute value |z|. The function b: [a,b] — S?
has an arclength function

length of b on [a,s] = / |b’(1)| du

= /as lT(u)] du.

Consequently, |z(s)| is the derivative of this arclength function. Since b is the
perpendicular to the osculating plane, this derivative of the length of b can be
thought of as the rate at which the osculating plane is changing. Thus |t| measures,
in some sense, the rate at which the curve deviates from being a plane curve.
Classically, curvature and torsion were also known as first and second curvature,
and space curves were called curves of double curvature.
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To develop a formula for the torsion, we first recall that the cross product
v x w of v and w is defined by the equation
z

(%) (zyvxw)=det| v
w

[Since the ith component of v x w is {e;, v X w), this shows that v x w can be
obtained by computing the determinant

er ey e3

vxw=det| v va vi | =(vaws— wrvi)e;+---

w1 wy W3
purely formally] Using the fact that det is alternating, the left side of (¥), clas-
sically known as the “scalar triple product” (v, w, z), is seen to satisfy

(k) (z,v x w) = —(w,v x z) = (w,z X V).

Now for the torsion 7 of a curve ¢ parameterized by arclength we clearly

have

7 = (—n,b’) = (—n, (t x n)")

—ntxn')+ (—n,t' xn), wheret'xn=0

, c// I3
, o x| —
K
c 14 , K.c/// _ K_/‘_//
— " X —
' k2

— ﬁ(‘ﬂ’ ¢ x ‘_///)

{
{

c//
<
< !
1

or

7= _2_(‘_/ % ‘_//’ ‘_///)
K

This shows that T > 0 when t,n,¢” form a positively oriented basis for R3,
which is the same as saying that ¢ is on the same side of the osculating plane
as b. Now in Taylor’s formula,

h? n
(s +h) = c(s) + h'(s) + 7c”(s) + —6—0"’(s) +o(h?),

the term ¢(s) + he'(s) + h2¢”(s)/2 is in the osculating plane at s, so
h? h?
c(s+h) - [c'(s) + he'(s) + 7(‘”(s)] = ZCW(S) +o(h?)

points from the osculating plane to ¢(s + k). Consequently, if ¢"’(s) # 0, then
the curve pierces the osculating plane at s, and the points ¢(s + h) for small
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h > 0 are on the same side as ¢”’(s), while points ¢(s + /) for & < 0 are on the
other side. Together with our previous remarks, this shows that

if 7(s) > 0, then points ¢(s + h) for small 2 > 0 lie on the same side
of the osculating plane as b(s), while points ¢(s 4+ &) for small # < 0
lie on the opposite side.

Our formula for t shows that the torsion for the curve ¢ = s > ¢(—s) has
the same sign as that of ¢. This is because reversing directions also reverses the
binormal. For a curve with an arbitrary parameterization we obtain, proceeding
just as in the case of curvature, the formula

(¢ x ¢, ¢)
T= T 7 -
(¢ X ¢,¢ x ¢)

A standard and possibly illuminating way of examining the geometrical sig-
nificance of « and 7 is to examine the projections of ¢ on the planes spanned
by any two of t,n,b. The plane spanned by t and n is just the osculating plane.

The plane spanned by the principal normal n and binormal b is called, naturally
enough, the normal plane, and the plane spanned by t and b 1s called the
rectifying plane (this terminology is explained in Volume III, pg. 186). We can
choose a coordinate system for R? so that ¢(0) = 0 and so that the osculating
plane of ¢ at 0 is the (x, y)-plane. Further choosing ¢’(0) = (1,0,0) we obtain
c(0) = (0,0,0)
¢(0) = (1,0,0)
c"(0) = (0,«,0)
"0 =(—, —,x1),
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///)

the last equation following from the fact that w? = (¢’ x ¢”,¢"”), as shown

above. The three components of the Taylor expansion

2 3
c(s) = ¢(0) + s¢'(0) + %c”(O) + %c”’(O) ¥

give
cs)=s + terms of order 3 or more
’ K
ca(s) = Esz + terms of order 3 or more

KT
c3(s) = ?s3 + terms of order 4 or more.

So the projections look like

y= %xz up to order 2 on the osculating plane

z= K—gix3 up to order 3 on the rectifying plane 71

2172
22 = §—y3 up to order 3 on the normal plane. —
K

The figure below shows these projections for the curve on page 30.

osculating plane normal plane rectifying plane
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Just as in the case of plane curves, we now ask to what extent the curvature
and torsion determine a curve.

We note first that a curve ¢ (parameterized by arclength) with ¥ = 0 every-
where is a straight line—the proof is the same as before.

Moreover, a curve with T = 0 everywhere is a plane curve. To prove this, we
note that T = 0 means b’ = 0 so that b(s) = by, a constant vector. This implies
that (t,bo) = 0. But this means that

d

7, (€(9), bo) =0,

s0 {c(s),bg) = a where a is a constant. Thus ¢ lies in the plane
{peR’: (p,bo) = aj.

Unlike the case of plane curves, we should not expect a curve with constant
curvature to be a circle, unless the torsion is 0. To get some idea of the variety of
possibilities, we will examine only one special class of curves, the helices, given
by the formula

c(u) = (acosu,asinu,bu). \/
2mh :

c'(u) = (—asinu,acosu,bu),

We have

SO

lc'(w)l = Va* + b2 = D,

and the reparameterization y by arclength is given by

y(s) = c(s/D),

with

b
y'(s) = (—i sin %, 2 cos )

D D DD
" _{_ 4 a 8
y (s)—( 2 cosD, 2 st, O)
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Thus

els) = ")l = 4

(yl e y//’ y///) b

K2 D*

Notice that neither « nor t depend on the sign of a. Changing a to —a merely
rotates the helix through an angle of m around its axis, which is the same as
moving it a certain distance in the direction of this axis. However, changing
from b to —b changes the helix from “right handed” to “left handed” or vice-
versa, and accordingly changes the sign of 7.

ato—a bto —b

By choosing suitable @ and b, we can make la|/ D?* and b/ D?* equal to any de-
sired pair (k, 7) with k¥ > 0. So helices give examples of curves with any desired
constant curvature (> 0) and constant torsion. Are they the only such curves?
Rather than imitating the calculations for the simpler question answered pre-
viously, we will immediately ask the more general question, whether x and 1
determine ¢ up to a proper Euclidean motion.

We begin with a recapitulation of the definitions:

t' =«n

b’ = —n.
Notice that we have expressed the derivatives of t and b in terms of the original
vectors t,n,b. We can do the same for n. First, since (n,n) = 1, we obtain

(m',n) =0, so n is some linear combination of t and b. Now, from (n,t) =0
we obtain

m,t) = —(n,t’) = —(n,kn) = —«,

(we already obtained this equation for the case of plane curves); and from
{n,b) = 0 we obtain

(n’,b) = —(n,b’) = —(n, —tn) = 1.
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Thus we have, altogether,

t' = Kn
n = —«t + b
b = —1n

These are called the Serret-Frenet formulas. They were obtained independently
by Serret in 1851, and by Frenet, in his thesis of 1847, an abstract of which
appeared in 1852. Before Serret and Frenet, many geometric properties of
curves were investigated with great laboriousness, but afterwards many of these
investigations became routine, because, as our next theorem shows, everything
about space curves 1s contained in these formulas.

11. THEOREM. Let «,7: [a,b] — R be continuous, with « > 0 on [a,b].
Then there is a curve ¢: [a,b] — R3, parameterized by arclength, whose cur-
vature and torsion functions are « and 7. Any two such curves differ by a proper
Euclidean motion (a translation followed by a rotation [an element of SO(3)]).

PROOF. Let us adopt the more systemnatic notation vi,Vvz2,v3 for t,n,b, and
define a matrix
0 —k(s) 0
ajj(s) = | k(s) 0 -1(s) |,
0 () 0

so that the Serret-Frenet equations become

3
(*) V,'/ = Zaj,-vj.
j=1

Now Theorem 1.5-17 implies that there is a function s = (vi(s), v2(s), v3(s))
on [a,b] satisfying (¥). We can choose v;(a) arbitrarily; choose them to be
orthonormal and positively oriented. We claim that v;(s) are orthonormal for
all s € [a, b]. This is the only significant point in the proof; the rest of the proof
is exactly like the proof of Theorem 2.

To prove that the v; are always orthonormal, we note that

3

Vi) =) ari(Vj. Vi) + agj (Vi, Vi)
k=1
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This shows that the functions B;; = (v;,v;) satisfy the differential equation

3
(%) Bif' =Y akiBjk + ak;Bik,

k=1

together with the initial conditions B;;(a) = 8i;. Since the solutions of (**) are
determined by their initial conditions, we can prove v; everywhere orthonormal
by showing that the functions B;;(s) = 6;; do satisfy (xx). In other words, we
want to show that
3
0="6;' =) aribjk + ax;ik
k=1
= aji + aij.

But this is true—the matrix (a;;) is skew-symmetric. ¢

The skew-symmetry of (a;;) gives an easy way to remember the Serret-Frenet
formulas: the formulas for t’ and b’ are by definition, and the formula for n' is
the one that makes the matrix skew-symmetric. If we think of t,n, b as column
vectors, so that (t,n, b) denotes a 3 x 3 matrix, then the Serret-Frenet equations
read

tll nl’ bll t1 n; b1 0 —« 0
(t, n, b)/ = tzl nzl bzl =1t m b2 | K 0 -7
t' n3’ by t3 n3 b; 0 0

Since t,n,b are orthonormal and positively oriented, the curve a(s) =
(t(s),n(s),b(s)) is a curve in SO(3), the identity component of the orthogo-
nal group O(3). Recall that the tangent space SO(n); = O(n)r = o(n) of
SO(n) at I is the set of skew-symmetric matrices. For A € SO(n), the tangent
space SO(n)4 is just Lg«(0(n)), which equals Ly - 0(n), since Ly is a linear
function. Thus SO(n)4 consists of all matrices 4 - M for M € o(n). Clearly,
A-M =L (M) is just M (4), where M denotes the left invariant vector field
with value M at I. Now the curve «: [a,h] — SO(3) must have its tangent
vector @'(s) in SO(3)y(s), SO we must have

o'(s) = a(s) - (skew-symmetric matrix).
As we have just seen, this skew-symmetric matrix 1s just

0 —K(s) 0
k(s) 0 —1(s)
0 () 0
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Moreover, this argument shows that skew-symmetry of this matrix is a necessary
consequence of the fact that t,n, b are orthonormal. By the same token, we can
now present a more illuminating proof that the equations

3
(¥) vi'=) apv
j=1

in the proof of Theorem 11 have an everywhere orthonormal solution. The
equation () for a(s) = (vi(s), v2(s), v3(s)) says that

o' (s) = a(s) - a(s).

This may simply be regarded as a differential equation on the manifold SO(3), of
the type considered in the Addendum to Chapter 5, so its solution is a curve
in SO(3).

The Lie group SO(3) is playing yet another, hitherto unmentioned, role in
Theorem 11. The fact that ¥ and 7 determine ¢ up to a proper LEuclidean
motion is equivalent to the fact that k¥ and 7 determine o = (t,n,b) up to an
element of SO(3), since ¢ is determined up to a translation by t. In other words,
if ¢ is another curve with corresponding & = (t, i, b), and ¥k = «, T = 1, then
for some 4 € SO(3) we have

(t,n,b) = Lyo(t,n,b), ie, @=Lgoa.

Now we already have a theorem telling us when the relation @ = L4 o  holds
between two maps «,@: [a,b] = SO(3). According to Theorem 1.10-18, this is
the case if and only if @*(w) = @*(w) for every left invariant 1-form @ on SO(3).
So k and T must have something to do with these left invariant 1-forms on SO(3).
In order to see what is going on here, we begin with a review of some facts about
Lie groups.

In Chapter 1.10 we defined the natural g-valued I-form @ on a Lie group G
by w(a)(X(a)) = X, where X is the left invariant vector field with X (¢) = X.
Thus @ is the unique left invariant g-valued 1-form such that w(e): G, - g =
G. is the identity. If Xj,..., X, 1s a basis of g, then we can write

n
w = E o' - X;
i=1

for certain ordinary left invariant 1-forms . This equation means that for any
tangent vector Y, € G4 we have

w@)(Yo) =) o'(Ys) X €g,

i=l1
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the dot denoting multiplication of X; € g by the real number @ (a)(Y ). Clearly
the @' are a basis for the left invariant 1-forms; in fact, the »’(e) are the dual
basis to Xi,..., Xx. So the natural g-valued 1-form w has all the left invariant
1-forms built into it.

Now for Lie groups G which are subgroups of some GL(n, R) we have an
explicit way of finding @, and hence a basis of left 1nvar1ant I-forms. Let P
(for “point”) denote the 1nclu510n map of G C GL(n,R) C R"” into R" Then
P: G — R" is an R" -valued function on G. Hence dP is an R" *-valued
1-form on G. We can also think of dP as a matrix of ordinary I-forms on G.
This matrix 1s just

P = (dx"),
except that dx% here denotes the differential of x”/|G. Notice that dP takes a
tangent vector in Gy, i.e., an n X n matrix M, into itself, so P corresponds to

the identity map of G into itself. For any 4 € G, the map PoLyg: G — R"’
1

PoL4(B)=A-B,
from which it is easy to see that
1 d(PoLy)=A-dP.

On G we also have the C® function B +> B~!, which we will denote (somewhat
confusingly, perhaps) by P~!. For 4 € G the map PloLs: G—>R" s

@) P loLyB)=(A-B)'=B"". 47" = (P71 A7")(B).

Finally, P! - dP is a matrix of 1-forms (or an R™ valued 1-form). From (1)
and (2) we have

La*(P7'-dP)= (P "o L) - Li*(dP)
= (P ' oLy)-d(Ls"P)
= (P VoLy)-d(PolLy)
=P ' 47" -A-dP
~1. 4P,
so P~ . dP is left invariant. Moreover, for any M € Gy we have

L dP(H(M) =17"-dP()(M) =

Hence P! . dP is the natural g-valued 1-form w on G.
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These considerations allow us to determine , but it must be remembered
that, unless G = GL(n, R), the forms dx* are not linearly independent on G.
Problem 1.10-24 determines w for G = GL(n, R), and 1.10-23 determines @ for
the group G C GL(2, R) consisting of all matrices

a b
(0 1) a#0

for this group, x!! and x!? can be taken as a coordinate system, and @ can be
expressed in terms of x!'! and x'2. The more general situation is illustrated
by Problem 1.10-25, which we shall repeat here. The special linear group
SL(n,R) C GL(n,R) is the set of all matrices of determinant 1. Its Lie al-
gebra, sl(n,R), consists of all matrices with trace 0. We can prove this from the
fact that
detexp M = e'r2ceM,

in the same way that we found o(n); the formula just given is proved in Prob-
lem I.10-15. Now we see that, if x!!, x12, x!, x2? are denoted by x, y,u, v, then
for SL(2, R) we have

prap=( YV VY. dx dy _ vdx — ydu vdy — ydv
—-u X du dv —udx+xdu —udy+xdv)’
Remember that x, y,u,v are not linearly independent, for the dimension of

3[(2,R), and hence of SL(2,R), is clearly 3. In fact, we know that xv — yu =1
on SL(2, R), which shows that

O0=d(xv—yu)=xdv+vdx — ydu —udy

on SL(2, R), i.e., the right side gives 0 when applied to a matrix M € SL(2, R)4
for any A € SL(2,R). Looking at the formula for P~1 . dP, this shows that
P~1.dP takes such a matrix M to a matrix of trace 0, as it must.

We will now use this circle of ideas to rederive our results about curves, in a
more systematic, if less geometric, way. In order to clarify the general nature
of the results, we begin once again with curves in the plane, but we now seek
the answer to a different classification problem. We already know that if 4 is a
proper Euclidean motion, and ¢: [a,b] — R? is any curve, then

(@) Aoc isparameterized by arclength whenever c¢ is; we express this fact by
saying that arclength is a “natural parameter for curves under the group
of proper Euclidean motions”.
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(b) For curves ¢ parameterized by arclength, the curvature function is in-
variant under proper Euclidean motions, i.e., the function « for 4 o ¢
equals the function « for ¢, whenever A is a proper Euclidean motion.
Moreover, the curvature is “a complete set of invariants for curves pa-
rameterized by arclength”: if & for ¢ equals « for ¢, then ¢ = A o ¢ for
some proper Euclidean motion A.

We now ask for similar results when 4 is allowed to be any “special affine
motion” [a translation followed by any member of SL(2, R)].

Consider a curve ¢: [a,b] — R? for which ¢’ and ¢” are always linearly
independent. Then det(c’,¢”) # 0 at all points. For simplicity we will assume
that det(¢’,¢”) > 0, to avoid writing absolute value signs in various formulas.
Our first task is to determine a curve a.: [@,b] — SL(2,R) analogous to the
curve (t,n): [a,b] — SO(2). Remember that t is just ¢’ when c¢ is parameterized
by arclength, while n is basically just chosen so that we will have (t,n) € SO(2).

For the case of the larger group SL(2,R) the choice of a should be easier.
In fact, the choice

(1) = ('), " (1)

will work if det(c’(¢),c” (1)) = 1. So we ask if there is a reparameterization of ¢
with this property. In other words, is there a function

o [a,b] — [0,{]
such that the reparameterization y = ¢ o 0~ satisfies

det(y’,¥") = 1.

Since
c=yo0
=0 (y oo)
"= (v eo)+d" (Y o0),
and thus
det(c’, ") = det(o” - (¢’ 0 0), 0" (y"oo)+0" (¥ 00))
= (¢')} det(y' 00, y" 0 0),
we want

det(c’,¢") = (0/).

We can thus define o, the “special affine arclength” by

o(t) =/ Vdet(c'(u), ¢ (1)) du.
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When ¢ satisfies det(¢’,¢”) = 1, we say that ¢ is “parameterized by special
affine arclength”, and the special affine arclength is a natural parameter for
curves under the group of special affine motions.

Now consider two curves ¢, ¢ parameterized by special affine arclength. We
will have é = Aoc for some special affine motion 4 = Bot, where B € SL(2,R)
and T is a translation, precisely when

az(t) = B - a.(t), a; = Lpoac.
By Theorem 1.10-18, this is equivalent to the condition
;" (') = ac (@)
for every left invariant 1-form o' on SL(2,R), and thus to the condition
az* (@) = a’M(w)

for the natural 8{(2, R)-valued from w = P~1.dP on SL(2,R).
We are thus interested in calculating a (P! . dP), which will be a matrix

of 1-forms on [a, b]
—dr ___dr\,
__dt ____dt )’

for simplicity we will write all the dt’s after the matrix.
To calculate a*(P~! - dP) we can either use our formula for P~!'.dP and
write

dx — yd dy —yd
Olc*(P_l-dP)zolc*( vax yau vay y U)

—udx+xdu —udy+xdv

z(voacd(xmxc)—--- )

or, what amounts to the same thing, calculate
a(P71-dP) = o - dae,
the entries of which are dr times

[ac(t)]_l . ac/(t)-
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" "
o r_ C1 C1
P

CZN CZW ’

and using Kramer’s rule, together with the fact that 1 = deta, = det(c’, ¢"),

We have

we find that ,
—1 " —a
o, = , , .
—C2 1
SO 1" " 1" 1
al. o = 2 - 1 1
c . = . .
c __Cz/ Cl/ CZ// CZ///
Since

1
1 =det(c’,¢") =ci'er” — e’ er”,
and thus also
O — CI/CZ/// _ CZ/CI///’

we obtain finally

» ) 0 CZ//CI/// — 1"y 0 - dCt(C”,Cm)
(0 73 . (Xc = = .
1 0 1 0

Thus, curves parameterized by special affine arclength are determined, up to a
special affine motion, by one function, the “special affine curvature”

x = det(c”, ™).

It is also possible to give a geometric interpretation of the curvature x, which
we only briefly indicate. We first note that a curve c, parameterized by o, with
constant curvature x satisfies

-1 ’ _ 0 —X
N a0 = (] )

aﬂm=wwrG ?).

One solution of this matrix differential equation is

ac(0) = exp {o . ((1) —Ox)} ,
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that 1s,

1 0 0 —x 02 (—x 0 o (0 —»x?
ac(0)=(0 1)+O(l O)+_27(0 —%)+§!_(% O)

( cos/xo  —+/xsinxo )
 \ Vxsinxo cos /%0
for % > 0, with a similar result involving hyperbolic trigonometric functions for

x < 0. For x = 0 we simply have

a.(0) = (; (1))

The first column of these solutions give

x =0:
(o) =(1,0)

¢(o) = constant + (o, 02/2), a parabola

x > 0:
¢'(0) = (cos Vxo, V/xsin/x0)
c(0) = constant + (1/+/x sin y/x0, —1/x cos Vxo), an ellipse

/\x+ =
N
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x < 0:

¢(0') = constant + (v/|x| cosh Vx|, 1/)x|sinh v|x|o), a hyperbola

el 7' x? = [k Py? =1

All other solutions a.: R — SL(2,R) are special linear transformations times
these, and hence are still conic sections.

Now it turns out that as 61, 07,03 — 0, the parabola through c(o1), ¢(02),
¢(03) approaches a given parabola, the osculating parabola, whose axis lies
in the direction of ¢”(s). And as o01,02,03,04 — 0, the conic through the
four points ¢(0;) approaches a given conic, the hyperosculating conic, whose
curvature x is that of ¢ at s. However, we will not prove these facts.

We can now return to curves in space, and apply these ideas to classify curves
under the group of proper Euclidean motions. With each curve ¢: [a, h] - R
we want to associate a curve dc: [a,b] = SO(3). Assuming det(c’, ¢”,¢”’) >0,
the obvious choice is to let @c(r) be the result of applying the Gram-Schmidt
orthonormalization process to these three vectors. Introducing the parameter-
ization by (ordinary) arclength, this means that

(e, €Oy €O
e(s) = (" O o €9 |c’(s)l)'

We now have

0 —k(s) 0
a'(8) = ac(s) - | k(s) 0 —1(s) |
0 t(s) 0

the 0 in position (3, 1) comes about because we chose ¢’, c”/|c”| as the first two
columns of a,, while all other features of the matrix are accounted for by the fact
that a.~! - @ = aX(P~! - dP) is skew-symmetric, since a.: [a,b] = SOQ).
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Clearly, curves parameterized by arclength are determined up to proper Eu-
clidean motions by k and ¢, and these functions are obviously just our old «
and 7. If we had bothered to compute o' - a,’ for the original curve, not
parameterized by arclength, then the entries in positions (2, 1) and (3, 2) would
have given us the formulas for « and 7, derived earlier, for curves with an arbi-
trary parameterization.

We can classify curves c: [a,b] — R” under the group of proper Euclidean
motions in a similar way. We assume first of all that det(¢/,..., ¢y > 0. To
obtain a curve ac: [a,b] = SO(n), we first introduce the parameterization by
arclength. The first two columns vi,v2 of o will be ¢’,c¢”/|¢”|. So the first
column of a.~! - ./, which expresses v;’ in terms of the v;, will be

0
ki
0

1

for ky = 1/]c”|. Using skew-symmetry, @' - .’ looks like

Since v3, the third column of a., is obtained by applying the Gram-Schmidt
orthonormalization process to vi, V2, ¢”’, it is clear that v,/ will be a linear com-
bination of v, and v3. So the second column of a7V - will be

—ky
0
k>
0
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for some function k2. Thus ot - o looks like

0 -k 0
ki 0 —ks

atal =10 ka 0 ><
. X

Continuing in this way, we find that

0 -k
P 0

ac—l . acl = k2 0
kn—1 0

for n — 1 different “curvature functions” ki,...,k,—1. These n —1 functions
classify ¢ up to proper Euclidean motion.

For this classification of curves in R” we have had to restrict our attention to
curves with ¢/,...,c® everywhere linearly independent. If we have a curve ¢
such that ¢® is linearly dependent on ¢,...,c%=D along a whole interval
[a,b], then it is easy to see that on this interval ¢ lies in some (k — 1)-dimen-
sional subspace of R”, so that we actually have an easier classification problem
on this interval.

The difficulties arise when we try to piece together the information we obtain
for the separate intervals, or if ¢®) s linearly dependent on ¢, . . ., ¢®=V at only
isolated points (or at some sequence of points, etc.). For example, how can we
hope to distinguish between the curve

0 =0
ct)y=1{ (e V00 >0
(t,0,e=V) 1 <0
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and the curve

0 r=0
ct) = {(t,O,e'l/’z) {40

using functions like curvature and torsion? Of course, for analytic curves these
difficulties cannot arise. If any small portion of one analytic curve differs by a
proper Euclidean motion from a small portion of a second, then the two analytic
curves themselves differ by this proper Euclidean motion. But for C* curves,
our restrictions are natural ones to make.

Finally, we will use these ideas to classify curves c: [a,b] — R” under the
group of special affine motions of R". We claim first that there is always a
function o : [a,b] = [0,/] such that the reparameterization y = coo ™' satisfies

det(y’,y",...,y™)=1.
In fact, since

c=yoo0
' =0"(y' 00)
" =) (Y e0o)+( )y o0
"= @)y o)+ () ¥ oo+ ()-y 00

we clearly need
det(c’, .. .,c(")) =0 (g’)2 c (0" = (O/)n(n+1)/2’

so we define the “special affine arclength” o in R” by

t
O,(t) ___/ nin+1)/2 det((‘/,...,(‘(")).
a

Now if we consider only curves c: [a,b] — R" with det(c’,... ,¢™) =1, then
we can define «.: [a,b] — SL(n,R) by

U = (C/a e ’C(n))’
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where each ¢@ is considered as a column vector. Solving the equation

o) = a,

we see that the first column of a must be

0
1
0

o e

the second must be

SO = o O

0
and so forth. The last column is arbitrary, except that the matrix @ must have
trace 0, so o~ ! - o,/ must be of the form

0 0 — X1
1 0 —X2
o Ve =10 1 :
; —Xn—1

0 0 ...1 0
for n — 1 “special affine curvature functions” »xi,. .., xn—1; they determine a
curve, parameterized by affine arclength, up to special linear affine maps of R".

The special affine arclength ¢ in R” can be introduced only when
det(c, ..., c™) #0,

If along some interval the k vectors ¢/, ... ,¢® are linearly independent, while
the vectors ¢/, .. LB ckAD gre linearly dependent, then it is easy to see that
along this interval the curve ¢ actually lies in some k-dimensional plane in R",

and we can therefore introduce the special affine arclength for R* along this
interval.

The theory runs into troubles when there are isolated points at which

det(c’,...,c™) =0.
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In this respect it is similar to the ordinary theory of curves, but the situation
is still different, because in the special affine case the function o which we
choose as the special affine arclength will actually depend on the number k for
which ¢,...,c% are linearly independent—for curves in higher dimensional
Euclidean spaces the special affine arclength involves more derivatives. The
special affine curvature functions s, x2, x3, ... also involve higher derivatives
than the corresponding curvature functions ky, k2,3, ... . This is just what we
ought to expect—since the group SL(n,R) is bigger than SO(n), we have to
build more complicated things from our curve ¢ before we can find something
which is invariant under SL(#n, R).



CHAPTER 2

WHAT THEY KNEW ABOUT
SURFACES BEFORE GAUSS

aving traversed nearly the whole history of the study of curves, in one
Hchapter, we now turn back to the beginnings of surface theory, and start
the long journey toward the modern theory of higher dimensional manifolds.
Even though the study of surfaces had begun long before the Serret-Frenet
formulas appeared in 1847, the theory of plane curves, at least, was well under-
stood.

The initial study of surfaces in R* began in a way that seems natural enough.
Since we have a theory of curves in the plane, we may hope to describe surfaces
by investigating the curves in which the surface intersects various planes. Indeed
it turns out that we can describe the curvature of such curves in a surprisingly
nice and precise way.

The first results along this line, due to Euler; date from 1760. Through a
point p on a surface M C R? we construct the line / which is perpendicular
to M,. For each unit vector X € M}, we can then consider the plane through p

!
in
D\~
which contains both X and /. The intersection of this plane and M is the
image of a curve cx with ¢x(0) = p; we will also suppose ¢ parameterized by
arclength, so that cx’(0) = X. We orient all these planes through / by choosing
a vector v, perpendicular to M, and orienting the plane through X and [ so
that X, v, is positively oriented. Then cx has a signed curvature at 0, which
will be denoted by «x.
When we replace X by —X, the curve c_x is just cx traversed in the op-
posite direction. Since the plane through X and v, now receives the opposite
orientation, the curvature x_y equals the curvature ky. Thus, X' — «x may

be thought of as a function of directions in M. Euler discovered a striking fact
about the curvatures in these different directions:

49
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1. THEOREM (EULER). If the kx are not all equal, then there is precisely
one direction, represented by a unit vector X1, say, in which xx has a minimum
value k; = kx,, and one in which it has a maximum value k> = kx,. These two
directions are perpendicular, and if X makes an angle of 6 with X, then

ky =k cos® 6 + k» sin® 6.

(Notice that we can just as well write ky = k> cos? ¢ + ki sin® ¢, where ¢ is the
angle which X makes with X3, since ¢ = /2 — 6, and consequently cos®f =
sin ¢ and sin? @ = cos? . There is also a certain ambiguity in the statement of
Euler’s theorem which does not affect the final result: If we change the vector vp
so that it points in the opposite direction, then all curvatures kx are changed
to their negatives.)

I do not know Euler’s proof of his theorem, and for reasons that will appear
later, I am sure that the proof to be presented here is much simpler than the
original. Nevertheless, it is sufficiently classical in spirit to serve as an historical
substitute for Euler’s.

PROOF. We begin by choosing our coordinate system so that p = (0,0,0)
and so that the tangent plane at p is the (x, y)-plane, which means that in a
neighborhood of p the surface M is {(x, y,z) : z = f(x, »)}, where

£(0,0)=0
af B
5-(0,0)=0
a—f(o, 0) = 0.
ay

We now maintain that by rotating the (x, y)-plane we can arrange to have

32f
dxay

(0,0) = 0.

To see this, we first recall that rotation through an angle of 6 radians is the linear
cosf —sind
sin® cost
by an angle of 6, then M becomes the graph of

transformation Ry with matrix ( ) . If we rotate the (x, y)-plane

Jfo = /o Ry,
fo(x, ) = f(xcosf — ysin6, xsind + ycosb).
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So
Y 1) = D1 (= sin0) 4 D2 Yeost)
; Jo (x,y) =D f(, (=sinfBcosO)+ D2 f(, )~ sin? 6 + cos? 9]
+ Dy f(, )sinf cosB)
; ? (0,0) = (cos20) Dy £(0,0) + D27 0.9) ; DijO.9 o .
In order to have 3% f5/3x3y(0,0) = 0, we just choose 6 so that
_ 2D12f(0a O) .
tan 20 = D“f(O, O) — Dzzf(0,0) if Dllf(OaO) 75 Dzzf(0,0)
0 =mn/4 if D11 f(0,0) = D2, f(0,0).

Having made this choice of coordinates, we now look at the various planes
containing /, i.e., containing the z-axis. First, the (x,z)-plane intersects the
surface in the curve

c(t) = (@, f(2,0)).

Its curvature at 0 is therefore

€162 — €264 9’/

1= 32 ﬁ(O’O)'
(C12 + C22) X
This result holds when we give the (x,z)-plane its usual orientation, which
is the same as the orientation making (e;)p, vp positively oriented when we
choose v, to be (e3)p. Similarly, the (y, z)-plane intersects the surface in the
curve c(t) = (¢, f(0,t)) with curvature
32
ky = f +—(0,0).

Finally, the plane through the z-axis Wthh makes an angle of 6 with the x-axis
intersects the surface in the curve

c(t) = (¢, f(tcosb,tsinb)),

%
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with curvature
2 92
dd—tzf([COSG tsin@) = cos’ 9 f(O 0) + sin® 9———(0 0)

= ky cos? 0 + k, sin? 6.

K =

This formula shows that « always lies between k; and k3, the curvatures in two
y )
perpendicular directions, and thus proves the whole theorem.

Notice that if 9% f/dx2,3%f/dy* > 0, so that the surface lies above the (x, y)-
plane near p, then our choice of v, makes k1, k2 > 0. In general, if a surface
locally lies on one side of its tangent plane through p, then the choice of v,
as a vector pointing toward this side makes ki,k> > 0. If our surface is the
boundary of a convex set in R, we must therefore choose the inward pointing
normal to obtain positive curvatures. If k; and k; are of different signs, there

1s generally no such way to distinguish a direction for vp.

The other main result about curves on surfaces, due to Meusnier, came shortly
afterwards, in 1776. Meusnier completed Euler’s investigations by finding the
curvatures of the curves obtained by intersecting the surface M with any plane
through p € M. If P 1s the plane through p which contains / and a unit vector
X € Mp, then any other plane Py which contains X can be described by giving
the angle ¢ which it makes with P. Let ¢ be the intersection of P and M, with
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¢(0) = p and ¢ parameterized by arclength, so that c’(0) = X, and let ¢y be
the corresponding intersection of Py and M. Meusnier’s theorem describes the
curvature kg of cg at 01in terms of the curvature kx of ¢ at 0:
K¢ - COSP = Kx.

For the case of the unit sphere, pictured above, the curve ¢ is a great circle, of
radius 1, while ¢y is a circle of radius cos¢, so that kg = 1/cos¢. Naturally,
in Meusnier’s theorem we must restrict ¢ to be less than m/2. At this angle,
the plane Py is just the tangent plane, and does not generally intersect M in
a curve at all; for ¢ close to /2, the plane Py intersects M in a curve of very
large curvature (if «x # 0).

For Meusnier’s theorem we supply a proof which 1s decidedly non-classical
in spirit, but which will be useful to have later on. We first define a function v
in a neighborhood U C M of p such that v(g) € R?® is a unit vector and
v(g)g € R%; is perpendicular to M, for all g € U. There are two choices for
each v(g); in order to obtain a continuous function v: U — M, we orient U,
and then pick v(g) so that v(g), v, w 1s positively oriented for vg, wy positively
oriented in M,.

For any curve ¢ in M with ¢(0) = p we have
(c'(8),v(c(s))) =0  foralls.

Differentiating this equation, we have

d
(c"(0),v(p) = —<c’(0), L(dc(i)) >
§ 5=0
Now the vector dv(c(s))/ds|s—q, with components dv'(c(s))/ds| _, , depends

only on ¢'(0) = X; in fact, it equals (X", X(v?), X(v3)). To see this, Just
remember that to operate on a function f: M — R with a tangent vec-
tor X, € M, we can take any curve ¢ with ¢/(0) = X, and then X,(f) =
df(c(t))/dt|,_o. We can thus write

() (" (©0),v(p)) =a(X) X =c(0).

Meusnier’s theorem follows directly from this equation:
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2. THEOREM (MEUSNIER). Let P be the plane through v(p) and X € M,
and let kg be the curvature of the curve on M cut out by a plane Py contain-
ing X and making an angle of ¢ with the plane P. Then

Kg - COSP = Kx.

PROOF. First apply (%) to the curve ¢ cut out by P. The second derivative ¢”(0)
of this curve is in P, and is also perpendicular to ¢’(0) = X. Consequently, it
is a multiple of v(p). Since P has been oriented so that X, v(p) is positively
oriented, it follows that ¢”(0) = «xx - v(p), so

a(X) = (c"(0),v(p)) = kx.
On the other hand, since ¢4'(0) = ¢’(0) = X, equation (x) also gives
(1) kx = a(X) = (cp"(0), v(p)).

We can write ¢3”(0) = k¢ - vy where vy is a unit vector which lies in Py and
is perpendicular to X. Then vy makes an angle of ¢ with v(p), which means
that

2) {vg,v(p)) = cos¢.
Combining equations (1) and (2), we obtain

kx = (cg"(0),v(p))
= (kg - Vg, V(D))

=Kgp - COSP.

Despite the appealing simplicity of these results, there is something dissatis-
fying about this whole approach of dissecting a surface into curves; we never
seem to really get our hands on the surface itself. To do this, we must move
forward 5o years in time.



CHAPTER 3

THE CURVATURE OF
SURFACES IN SPACE

A. HOW TO READ GAUSS

he single most important work in the history of differential geometry is

Karl Friedrich Gauss’ paper, in Latin, of 1827: Disquisitiones generales circa
superficies curvas. The following translation of (part of) this paper is basically
the one published* by The Princeton University Library, 1902, except that it
adheres even more closely to the notation and typographic disposition of the
original.

In addition, it has been supplemented with remarks designed to make this
first confrontation with classical differential geometry much less painful. The
translation of Gauss’ paper appears to the right—on odd-numbered pages—
while corresponding remarks appear to the left.

Although Part B of this chapter is an exposition of Gauss’ results, in modern
notation, a preliminary reading of Gauss’ great work is heartily recommended,;
and since many of the difficulties will be clarified in Part B, as a general rule it
is a good idea to read on, even if a particular section makes very little sense!

* A reprinting was produced in 1965 by Raven Press, but this is also out of print.

35
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REMARKS ON GAUSS’ PAPER

§1. Notice that (1), (2), (3) are used as the names of certain points [(1) =
(1,0,0), etc.], a circumstance that is easy to forget later on.

3)

K.@
im

§2. This section gives a complicated proof, using spherical trigonometry, that
the volume of the pyramid shown below is

',y 2') 4 (", y",2")
b ’

2 X5 ¥, 2
| x y oz (%3, 2)
i det| x* ¥ 2|1,
X" y// "

and also includes remarks about the significance of the sign of the determinant.
This result is equivalent to the well-known fact that | det 4] is the volume of the
parallelepiped spanned by the rows of A.

Almost all of this section can simply be skipped, except for noting that the
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GENERAL INVESTIGATIONS
Oor

CURVED SURFACES

1.

Investigations, in which the directions of various straight lines in space are
to be considered, attain a high degree of clearness and simplicity if we employ,
as an auxiliary, a sphere of radius = 1 described about an arbitrary center, and
suppose the different points of the sphere to represent the directions of straight
lines parallel to the radii ending at these points. As the position of every point
in space is determined by three coordinates, that is to say, the distances of the
point from three mutually perpendicular fixed planes, it is necessary to consider,
first of all, the directions of the axes perpendicular to these planes. The points
on the sphere, which represent these directions, we shall denote by (1), (2), (3).
The distance of any one of these points from either of the other two will be a
quadrant; and we shall suppose that the directions of the axes are those in which
the corresponding coordinates increase.

2.

It will be advantageous to bring together here some propositions which are
frequently used in questions of this kind.

I. The angle between two intersecting straight lines is measured by the
arc between the points on the sphere which correspond to the directions of the
lines.

II. The orientation of any plane whatever can be represented by the great
circle on the sphere, the plane of which is parallel to the given plane.

III. 'The angle between two planes is equal to the spherical angle between
the great circles representing them, and, consequently, is also measured by the
arc intercepted between the poles of these great circles. And, in like manner,
the angle of inclination of a straight line to a plane is measured by the arc drawn
from the point which corresponds to the direction of the line, perpendicular to
the great circle which represents the orientation of the plane.

IV. Letting 2, y, 2; 2', y', #’ denote the coordinates of two points, r the
distance between them, and L the point on the sphere which represents the
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expression cos (1)L, which will also appear later on, means the cosine of the
angle 6 between the ray from (0,0,0) through the point L = (a,b,¢) on the

L 4

sphere and the ray from (0,0,0) through (1) = (1,0, 0). Thus, for the usual
inner product { , ) on R? we have

a={(L,(1)) =1-1-cosb,

so cos (1)L is the first component of L, and similarly for cos (2) L and cos (3)L.

[The original contains cos (1)L? instead of cos? (1)L, etc., and multiplication
is always indicated with a low dot . rather than a centered dot.]
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direction of the line drawn from the first point to the second, we shall have
' =x4+rcos(DL, y =y+recos@L, 2z =z+rcos@)L
V. From this it follows at once that, generally,
cos? (DL + cos? @)L+ cos® BL=1
and also, if L’ denote any other point on the sphere,
cos (DL - cos (1)L’ + cos (2)L - cos (2)L' + cos (3)L - cos 3)L" = cos LL'

V1. Tueorem. If L, L', L", L denote four points on the sphere, and A the
angle which the arcs LL', L" L" make at their point of intersection, then we shall
have

cosLL" -cosL'L" —cosLL" -cos L'L" = sin LL' - sin L"L" - cos A
Demonstration. Let A denote also the point of intersection itself, and set
AL — t’ AL/ — t/’ AL” — t”, AL/H — t/”

Then we shall have

cosLL” =costcost” +sint sint” cos A
cosL’'L"” = cost'cost” +sint'sint"” cos A
cosLL"™ =costcost”+sint sint"cos A
cosL'L” =cost’cost” +sint’'sint” cos A

and consequently,

cos LL" -cos L'L" — cos LL"" - cos L'L”
= cos A(costeost” sint' sint” + cost’ cost” sintsint”
—costcost” sint'sint” — cost’ cost” sintsint™)
= cos A(costsint’ —sintcost')cost” sint” — sint” cost™)
=cosA-sin(t’ —t)-sin(t"” —t")
=cosA-sinLL' -sinL"L"
But as there are for each great circle two branches going out from the point A,

these two branches form at this point two angles whose sum is 180°. But our
analysis shows that those branches are to be taken whose directions are in the
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sense from the point L to L', and from the point L” to L"; and since great circles
intersect in two points, it is clear that either of the two points can be chosen
arbitrarily. Also, instead of the angle A, we can take the arc between the poles
of the great circles of which the ares LL’, L"L" are parts. But it is evident that
those poles are to be chosen which are similarly placed with respect to these
arcs; that is to say, when we go from L to L’ and from L” to L™, both of the two
poles are to be on the right, or both on the left.
VII. LetL,L’, L" be three points on the sphere and set, for brevity,

cos(DL =z, cos@L =y, cosBL =z
cos(DL' =x', cos@L =y, cos@L =2
cos(DL" =x", cos@L" =y", cos B)L" =z"

and also

xy/z// + xfy/!z + x//yz/ —_ xy”z/ _ xfyz// _ x/!y/z — A
Let \ denote the pole of the great circle of which LL" is a part, this pole being
the one that is placed in the same position with respect to this arc as the point (1)
is with respect to the arc (2)(3). Then we shall have, by the preceding theorem,
yz' —y'z =cos(\ - sin (2)(3) - sin LL’, or, because (2)(3) = 900,

y2' —y'z = cos(Dx-sinLL’, and similarly
zx' —2'x = cos(2)\ - sin LL'

xy’ —x'y = cos (3N -sinLL’

Multiplying these equations by «”, y", =" respectively, and adding, we obtain,
by means of the second of the theorems deduced in V,

A = cosAL" -sin LL’

Now there are three cases to be distinguished. First, when L" lies on the great
cirele of which the are LL’ is a part, we shall have AL" = 90°, and consequently,
A = 0. If L” does not lie on that great circle, the second case will be when L" is
on the same side as \; the third case when they are on opposite sides. Inthe last
two cases the points L, L', L” will form a spherical triangle, and in the second
case these points will lie in the same order as the points (1), (2), (3), and in the
opposite order in the third case. Denoting the angles of this triangle simply by
L, L’, L" and the perpendicular drawn on the sphere from the point L” to the
side LL’ by p, we shall have

sinp = sinL -sinLL” =sinL’ -sinL’'L", and A\L" = 90° £ p
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§3. This section merely defines (or tries to define) a differentiable surface, and
its tangent plane at a point.

§4. Atapoint 4 = (x, y, z) in the surface we have a unit normal vector v4, and
v e S2 c R? is what Gauss calls L. The expression cos (1) L means the cosine of

TV

the angle between the rays from (0, 0,0) through L and through (1) = (1,0,0)
(c.f. page 58). So X,Y, Z are just the components of L. Thus X,Y, Z can be
considered as functions on the surface [X(A4) = first component of v, for v4 a
unit normal at 4, etc.].

Gauss now nonchalantly introduces infinitely small quantities. The goal of his
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the upper sign being taken for the second case, the lower for the third. From
this it follows that

+A = sin L-sin LL'-sin LL"” = sin L'-sin LL'-sinL’L" =sinL"-sinLL"-sin L'L"

Moreover, it is evident that the first case can be regarded as contained in the
second or third, and it is easily seen that the expression +A represents six time
the volume of the pyramid formed by the points L, L', L" and the center of the
sphere. Whence, finally, it is clear that the expression j:%A expresses generally
the volume of any pyramid contained between the origin of coordinates and the
three points whose coordinates are x, ¥, 2; x',y,z2ha",y", 2"

3.

A curved surface is said to possess continuous curvature at one of its
points A, if the directions of all the straight lines drawn from A to points of
the surface at an infinitely small distance from A are deflected infinitely little
from one and the same plane passing through A. This plane is said to touch
the surface at the point A. If this condition is not satisfied for any point, the
continuity of the curvature is here interrupted, as happens, for example, at the
vertex of a cone. The following investigations will be restricted to such surfaces,
or to such parts of surfaces, as have the continuity of their curvature nowhere
interrupted. We shall only observe now that the methods used to determine
the position of the tangent plane lose their meaning at singular points, in which
the continuity of the curvature is interrupted, and must lead to indeterminate
solutions.

4.

The orientation of the tangent plane is most conveniently studied by means
of the direction of the straight line normal to the plane at the point A, which is
also called the normal to the curved surface at the point A. We shall represent
the direction of this normal by the point L on the auxiliary sphere, and we shall
set

cos(l)L =X, cos@@L=Y, cos BL=27

and denote the coordinates of the point A by x, ¥, 2. Also let x + dx, y + dy,
# + dz be the coordinates of another point A’ on the curved surface; ds its
distance from A, which is infinitely small; and finally, let \ be the point on the
sphere representing the direction of the element AA’. Then we shall have

de =ds-cos ()N, dy=ds-cos@\, dz= ds - cos (3)\
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initial manipulations is the equation
Xdx+Ydy+Zdz=0.

If x,y,z are considered as functions on the surface (that is, as the restriction
to the surface of the standard coordinate functions on R?), then this equation
is literally true, interpreting dx,dy,dz as modern differentials. It should be
easy to see this (remember how X,Y, Z are defined). Also try to follow Gauss’
argument.

The rest of section 4 gives formulas for X, Y, Z in terms of different descrip-
tions of the surface; in each case the formulas are paired with their negatives,
since there are two different choices for the unit normal vector:

(1) If the surface is {p € R* : W(p) = 0}, for W: R} — R, then

P
X = where P = D\W, Q = D, W, R = D3W, etc.

- VP4 QP+ RY

[The original has XX +YY +ZZ =1,and PP+ QQ+ RR for P2+ Q’+R?,
and so forth, with a superscript 2 used only for the square of a term that is not
a single letter.]

(2) If the surface is the image of f: R? — R? [Gauss writes dx for d(xo f) =
df!, etc] and
a:lel, a/:szl

b=Df% b =D,f?
c‘=D1f3, C/=D2f3
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and, since AL must be equal to 900,
Xcos (DN +Yeos @A+ Zecos(BA =0
By combining these equations we obtain
Xde+Ydy+2Zdz=0

There are two general methods for defining the nature of a curved surface.
The first uses the equation between the coordinates x, y, 2, which we may suppose
reduced to the form W = 0, where W will be a function of the indeterminants x,
y, 2. Let the complete differential of the function W be

dW = Pdx+ Qdy + Rdz
and on the curved surface we shall have
Pdrx+Qdy+Rdz =0
and consequently,
Peos()A+ Qeos (2N + Rcos (3N =0

Since this equation, as well as the one we have established above, must be true
for the directions of all elements ds on the curved surface, we easily see that X,
Y, Z must be proportional to P, Q, R respectively, and consequently, since

X241vY247%=1

we shall have either

_ P _ Q __ Rk
TP+ Q2 +R2 T P2+ Q@ +RY J(P*+ Q%+ R?)
or
. -P -Q -R

= Y=o — L= ——
V(P2 + Q@+ R V(P*+Q? +R?) V(P2 +Q + R?)
The second method expresses the coordinates in the form of functions of two
variables, p, ¢. Suppose that differentiation of these functions gives
de =adp+a’'dg
dy=>bdp+b'dg
dz=cdp+c dg
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then be! — cb’

X = ,
A

etc.

(3) If the surface is {(x, y,2z) : z = f(x,y)} for f: R? — R3, then

t
X=———, wheret =Dy f, u= Df, etc.

V1402w

It should not be hard to work out these results, using our terminology. Again,
it is instructive to follow Gauss’ derivations as well.

§5. This section talks about orienting the surface, so that one can choose be-
tween the two unit normals.



C. E Gauss: General Investigations of Curved Surfaces 67

Substituting these values in the formula given above, we obtain
@X +bY +cZ)dp+ (@ X +bY +c¢'Z)dg=0

Since this equation must hold independently of the values of the differentials dp,
dgq, we evidently shall have

aX +bY+c¢Z=0, ¢’ X+b'Y+c'Z=0
From this we see that X, Y, Z will be proportional to the quantities
be' —cb’, ca’ —ac’, ab — ba’
Hence, on setting, for brevity,
V((be' —eb)? + (ca’ — ac)? +(ab’ — ba')?) = A
we shall have either

be' —cb’ ca' —ac’ ab'—ba’
X = Y = =
A’ A’ Z A

or

cb’' —bc’ __ac'—ca’ ba' —ab’
A’ A’ A

X =

With these two general methods is associated a third, in which one of the
coordinates, z, say, is expressed in the form of a function of the other two, x, ¥.
This method is evidently only a particular case either of the first method, or of
the second. If we set

dz=tdx +udy

we shall have either

> —t —u 1
==t o y___=* z___ 1
VA + 8 +u?) VA +12 +u?) V1 +2 4 u?)

or

X = t _ u _ -1
~/(1+t2+uz)’ \/(1+t2+112)’ VA + £ +12)

5.

The two solutions found in the preceding article evidently refer to opposite
points of the sphere, or to opposite directions, as one would expect, since the
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§6. In this section Gauss considers the map v, from the surface to S 2 which
takes A to the unit vector v which is normal to the surface at that point. The
map v can be used to take any subset R of the surface to a subset v(R) of S2.
The area of v(R) is referred to by Gauss as the tofal curvature of R. Then the
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normal may be drawn toward either of the two sides of the curved surface. 1f
we wish to distinguish between the two regions bordering upon the surface, and
call one the exterior region and the other the interior region, we can then assign
to each of the two normals its appropriate solution by aid of the theorem derived
in Art. 2 (VII), and at the same time establish a criterion for distinguishing the
one region from the other.

In the first method, such a criterion is to be drawn from the sign of the
quantity W. Indeed, generally speaking, the curved surface divides those
regions of space in which W keeps a positive value from those in which the
value of W becomes negative. In fact, it is easily seen from this theorem that,
if W takes a positive value toward the exterior region, and if the normal is
supposed to be drawn outwardly, the first solution is to be taken. Moreover, it
will be easy to decide in any case whether the same rule for the sign of Wisto
hold throughout the entire surface, or whether for different parts there will be
different rules. As long as the coefficients P, Q, R have finite values and do not
all vanish at the same time, the law of continuity will prevent any change.

If we follow the second method, we can imagine two systems of curved lines
on the curved surface, one system for which p is variable, g constant; the other
for which ¢ is variable, p constant. The respective positions of these lines with
reference to the exterior region will decide which of the two solutions must be
taken. In fact, whenever the three lines, namely, the branch of the line of the
former system going out from the point A as p increases, the branch of the line of
the latter system going out from the point A as g increases, and the normal drawn
toward the exterior region, are similarly placed as the , y, z axes respectively
from the origin of abscissas (e.g., if, both for the former three lines and for the
latter three, we can conceive the first directed to the left, the second to the
right, and the third upward), the first solution is to be taken. But whenever the
relative position of the three lines is opposite to the relative position of the x, y,
z axes, the second solution will hold.

In the third method, it is to be seen whether, when z receives a positive
inerement, x and y remaining constant, the point crosses toward the exterior or
the interior region. In the former case, for the normal drawn outward, the first
solution holds; in the latter case, the second.

6.

Just as each definite point on the curved surface is made to correspond to a
definite point on the sphere, by the direction of the normal to the curved surface
which is transferred to the surface of the sphere, so also any line whatever, or
any figure whatever, on the latter will be represented by a corresponding line
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curvature at a point 4 in the surface is defined as

total curvature of R

area of R

where R is the “surface element” at A, which is supposed to have infinitely
small area. As a first approximation to what Gauss 1s trying to say, we might
define the curvature as

total curvature of R
lim

area of R

where the limit is taken as R approaches the point 4. It is not a priori so clear
whether this limit exists, or if it depends on the way in which R “approaches” A.
Gauss also gives considerable discussion to the sign of the curvature.
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or figure on the former. In the comparison of two figures corresponding to one
another in this way, one of which will be as the map of the other, two important
points are to be considered, one when quantity alone is considered, the other
when, disregarding quantitative relations, position alone is considered.

The first of these important points will be the basis of some ideas which
it seems judicious to introduce into the theory of curved surfaces. Thus, to
each part of a curved surface inclosed within definite limits we assign a total or
integral curvature, which is represented by the area of the figure on the sphere
corresponding to it. From this integral curvature must be distinguished the
somewhat more specific curvature which we shall call the measure of curvature.
The latter refers to a point of the surface, and shall denote the quotient obtained
when the integral curvature of the surface element about a point is divided by
the area of the element itself; and hence it denotes the ratio of the infinitely
small areas which correspond to one another on the curved surface and on the
sphere. The use of these innovations will be abundantly justified, as we hope,
by what we shall explain below. As for the terminology, we have thought it
especially desirable that all ambiguity be avoided. For this reason we have
not thought it advantageous to follow strictly the analogy of the terminology
commonly adopted (though not approved by all) in the theory of plane curves,
according to which the measure of curvature should be called simply curvature,
but the total curvature, the amplitude. But why not be free in the choice of words,
provided they are not meaningless and not liable to a misleading interpretation?

The position of a figure on the sphere can be either similar to the position
of the corresponding figure on the curved surface, or opposite (inverse). The
former is the case when two lines going out on the curved surface from the same
point in different, but not opposite directions, are represented on the sphere by
lines similarly placed, that is, when the map of the line to the right is also to
the right; the latter is the case when the contrary holds. We shall distinguish
these two cases by the positive or negative sign of the measure of curvature.
But evidently this distinetion can hold only when on each surface we choose a
definite face on which we suppose the figure to lie. On the auxiliary sphere we
shall use always the exterior face, that is, that turned away from the center; on
the curved surface also there may be taken for the exterior face the one already
considered, or rather that face from which the normal is supposed to be drawn.
For, evidently, there is no change in regard to the similitude of the figures, if on
the curved surface both the figure and the normal be transferred to the opposite
side, so long as the image itself is represented on the same side of the sphere.

The positive or negative sign, which we assign to the measure of curvature
according to the position of the infinitely small figure, we extend also to the
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§7. In this section Gauss finds a formula for the curvature k at 4. His answer,
at the top of page 77, is given for a surface which is the graph of /' R? — R3.
In this case, the functions X and Y can be thought of as functions on R? (that
is, we consider X o f and Y o f), and Gauss’ answer is

L OXaY Xy

= a9y v ax [= Di(X o f/)D2(Y o f) = Da(X o [)D1(Y o f)].
x dy 0y ox

[The notation %, etc., in the original has been preserved. Similerly, a few
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integral curvature of a finite figure on the curved surface. However, if we wish
to discuss the general case, some explanations will be necessary, which we can
only touch here briefly. So long as the figure on the curved surfaceis suchthat to
distinct points on itself there correspond distinet points on the sphere, the defi-
nition needs no further explanation. But whenever this condition is not satisfied,
it will be necessary to take into account twice or several times certain parts of
the figure on the sphere. Whence for a similar, or inverse position, may arise an
accumulation of areas, or the areas may partially or wholly destroy each other.
In such a case, the simplest way is to suppose the curved surface divided into
parts, suchthat each part, considered separately, satisfies the above condition; to
assign to each of the parts its integral curvature, determining this magnitude by
the area of the corresponding figure on the sphere, and the sign by the position
of this figure; and, finally, to assign to the total figure the integral curvature
arising from the addition of the integral curvatures which correspond to the
single parts. So, generally, the integral curvature of a figure is equal to f kdo,
do denoting the element of area of the figure, and k the measure of curvature at
any point. The principal points concerning the geometric representation of this
integral reduce to the following. To the perimeter of the figure on the curved
surface (under the restriction of Art. 3) will correspond always a closed line on
the sphere. If the latter nowhere intersect itself, it will divide the whole surface
of the sphere into two parts, one of which will correspond to the figure on the
curved surface; and its area (taken as positive or negative according as, with
respect to its perimeter, its position is similar, or inverse, to the position of the
figure on the curved surface) will represent the integral curvature of the figure
on the curved surface. But whenever this line intersects itself once or several
times, it will give a complicated figure, to which, however, it is possible to assigna
definite area as legitimately as in the case of a figure without nodes; and this area,
properly interpreted, will give always an exact value for the integral curvature.
However, we must reserve for another occasion the more extended exposition
of the theory of these figures viewed from this very general standpoint.

7.

We shall now find a formula which will express the measure of curvature
for any point of a curved surface. Let do denote the area of an element of this
surface; then Z do will be the area of the projection of this element on the plane
of the coordinates x, y; and consequently, if d is the area of the corresponding
element on the sphere, Z d3 will be the area of its projection on the same plane.
The positive or negative sign of Z will, in fact, indicate that the position of the
projection is similar or inverse to that of the projected element. Evidently these
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. : dd dd 32 92z
lines later the expressions Fx—g and dx_jy stand for 7% and Txdy>

Gauss obtains this answer by considering an infinitesimal triangle “do” with
one vertex at (x, y, f(x, ¥)), one vertex at (x +dx, y+dy, f(x+dx,y+ dy)),
and one at (x +8x, y + 8y, f(x +8x,y+8y)). Itis a challenge both to follow
Gauss’ reasoning, and to put it in modern terms. Either way, one needs Gauss’
preliminary observation that

etc.]

area v(do) _ area of projection on (x, y)-plane of v(do)

arcado  area of projection on (x, y)-plane of do

This mysterious equation really says that the tangent plane of M at A is parallel
to the tangent plane of S? at v(A). If this hint does not help, simply accept the
formula for k, which will be derived later, using modern terminology.

The remainder of section 7 evaluates k in terms of partial derivatives of f
(which Gauss denotes by z).



C. E Gauss: General Investigations of Curved Surfaces 75

projections have the same ratio as to quantity and the same relation as to position
as the elements themselves. Let us consider now a triangular element on the
curved surface, and let us suppose that the coordinates of the three points which
form its projection are

, Y
x+de, y+dy
x+8x, y+0oy
The double area of this triangle will be expressed by the formula
de -8y —dy - dx

and this will be in a positive or negative form according as the position of the
side from the first point to the third, with respect to the side from the first point
to the second, is similar or opposite to the position of the y-axis of coordinates
with respect to the x-axis of coordinates.

In like manner, if the coordinates of the three points which form the projec-
tion of the corresponding element on the sphere, from the center of the sphere
as origin, are

X, Y

X+dX, Y+dY

X +38X, Y+3Y
the double area of this projection will be expressed by

dX -8Y —dY -8X
and the sign of this expression is determined in the same manner as above.
Wherefore the measure of curvature at this point of the curved surface will be

_ dX-3Y-dY-3X
T de-dy—dy-dx

If now we suppose the nature of the curved surface to be defined according to
the third method considered in Art. 4, X and Y will be in the form of functions
of the quantities x, y. We shall have, therefore,

—(—)dv+( )dy
—(—)8r+( )8?/
dY—( )dv—l—( )dy

3Y = (H)Sx—l— (—d—g;)&y
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When these values have been substituted, the above expression becomes

_ AXydy,  dX,dy
k_(dx)(dy) (dy dx)

Setting, as above,
A, &
de ~  dy
and also
ddz _ o _ddz

ddz
de2 rvinid

de-dy dy?
or
dt = Tdx+Udy, du=Udx+Vdy

we have from the formulz given above

X=—tZ, Y=-uZ (++ud)Z%=1

and hence
dX = -Zdt—-tdZ
dY = —Zdu —udZ
A+2+4HAZ + Z¢dt +udu) =0
or
dZ = —Z3¢ dt +udu)
dX = —730 +ud dt + Z3tudu
dY = +Z3tudt — 231 + &) du
and so

4X _ 73— (1 +4®)T +tul)

dx

‘;—j = 73(= A +u®U +tuV)
% = Z23@¢uT — (L +tHU)

dY

Y _ 2ul — (1 +t5V)
dy

Substituting these values in the above expression, it becomes

k= 250V — UD + £ +ud) = 22V - UH = =0
(14824 u?)?
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§8. This section, except for the last theorem, was already done in Chapter 2.
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8.

By a suitable choice of origin and axes of coordinates, we can easily make
the values of the quantities ¢, u, U vanish for a definite point A. Indeed, the
first two conditions will be fulfilled at once if the tangent plane at this point be
taken for the wy-plane. If, further, the origin is placed at the point A itself, the
expression for the coordinate z evidently takes the form

2= 3T+ Uty + 1v%2 4 0
where ) will be of higher degree than the second. Turning now the axes of z
and y through an angle M such that

2070

tan2M = 700

it is easily seen that there must result an equation of the form
= LTa? + VP40

In this way the third condition is also satisfied. When this has been done, it is
evident that

L. If the curved surface be cut by a plane passing through the normal
itself and through the x-axis, a plane curve will be obtained, the radius of
curvature of which at the point A will be = %, the positive or negative sign
indicating that the curve is concave or convex toward that region toward
which the coordinates z are positive.

II. In like manner % will be the radius of curvature at the point A of the
plane curve which is the intersection of the surface and the plane through the
y-axis and the z-axis.

ITI.  Setting ® = 7 cos ¢, Y = rsin g, the equation becomes

¢ = 5(Tcos’ ¢ + Vsin? ¢)r? + Q)

from which we see that if the section is made by a plane through the normal at A
and making an angle ¢ with the x-axis, we shall have a plane curve whose radius
of curvature at the point A will

1
Tcos? o+ Vsin®y

IV. Therefore, whenever we have T — V, the radii of curvature in all the
normal planes will be equal. But if 7 and V are not equal, it is evident that, since
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§89, 10, 11. These sections are essentially calculations, involving no new ideas.
Every once in a while Gauss calculates a differential instead of some partial
derivatives, but this should cause no difficulties.

The goal is the very last, four-line-long, equation at the end of section 11.
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for any value whatever of the angle ¢, T cos? ¢+V sin® ¢ falls between 7 and
V, the radii of curvature in the principal sections considered in I and II refer to
the extreme curvatures; that is to say, the one to the maximum curvature, the
other to the minimum, if 7 and V have the same sign. On the other hand, one
has the greatest convex curvature, the other the greatest concave curvature,
if T and V have opposite signs. These conclusions contain almost all that the
illustrious EuLer was the first to prove on the curvature of curved surfaces.

V. The measure of curvature at the point A on the curved surface takes
the very simple form k = TV, whence we have the

TuroreM. The measure of curvature at any point whatever of the surface
is equal to a fraction whose numerator is unity, and whose denominator is the
product of the two extreme radii of curvature of the sections by normal planes.

At the same time it is clear that the measure of curvature is positive for
concavo-concave or convexo-convex surfaces (which distinetion is not essential),
but negative for concavo-convex surfaces. Ifthe surface consists of parts of each
kind, then on the lines separating the two kinds the measure of curvature ought
to vanish. Later we shall make a detailed study of the nature of curved surfaces
for which the measure of curvature everywhere vanishes.

9.

The general formula for the measure of curvature given at the end of Art. 7
is the most simple of all, since it involves only five elements. We shall arrive at
a more complicated formula, indeed, one involving nine elements, if we wish to
use the first method of representing a curved surface. Keeping the notation of
Art. 4, let us set also

ddW — P, ddW =qQ, ddW - R
da? dy? da?
ddW 5 ddW ddw 5,
dy-dz_P *odeedz dx-dy_R
so that
dP=P de+R"dy+ Q"dz
dQ=R"dx+ Q' dy+ P"dz
dR=Q"de+ P"dy+ R' d=
Now since t = —g, we find through differentiation

R*dt = —RdP+PdR = (PQ" — RP")dx+(PP" —RR")dy+ (PR —RQ")dz
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[As you can probably figure out for yourself, 6 is an alternate form of §.]
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or, eliminating dz by means of the equation P dx+Qdy+Rdz =0,
R3dt = (— R2P' + 2PRQ" — P*R")dx + (PRP" + QRQ" — PQR’ — R*R")dy
In like manner we obtain
R3du = (PRP" + QRQ" — PQR’' — R2R")dx + (- R*Q’ + 2QRP" — Q*R") dy
From this we conclude that

R3U = PRP"+ QRQ" - PQR — R*R"

Substituting these values in the formula of Art. 7, we obtain for the measure of
curvature k the following symmetric expression:

(P2 + Q>+ R®%k
— PZ(Q!R! _ PHZ) + QZ(P!R! - QHZ) + RZ(P!Q! - RHZ)
+ ZQR(QHRH - P!PH) + ZPR(PHRH . Q!QH) + ZPQ(PHQH — R!RH)

10.

We obtain a still more complicated formula, indeed, one involving fifteen
elements, if we follow the second general method of defining the nature of a
curved surface. It is, however, very important that we develop this formula
also. Retaining the notations of Art. 4, let us put also

dde _ o dde _ o, dde o,

dp? 7 dp-dg ’ dg?

ﬂ‘y = 6’ ——‘ddy = 6,’ E—g = 6”

dp? dp-dg dg?

ddz _ ddz _ , ddz _ _u
;=" dp-dq_'Y’ dqz—'Y

dp
and let us put, for brevity,
be' —cb' = A

ca' —ac' =B
ab’ —ba' =C
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First we see that Adx+Bdy+Cdz = 0,0r dz = = dx B dy, thus, inasmuch
as z may be regarded as a function of x, y, we have

dz
dx
dz
dy

Il
I
|

I

3

Il

|
Qlw Qlke

Then from the formule de = adp + a’ dg,dy = bdp + b’ dg, we have

Cdp= b'de—a'dy
Cdg=-b de+a dy

Thence we obtain for the total differentials of ¢, u

C3dt = (AE_ Cd—A)(b’dx a dy)—l—(C———A—)(b dz — ady)

C3du (B“C C )(b de —a’ dy) +(C——B—)(bdx—ady)

If now we substitute in these formulse

44 _ og +by —c6 —b'y
dp
gé — C!6r + b,yrr C6H — br !
dg
dB _ a'y +eca’ —ay —c'a
dp
Q_Bi — a!‘yl + Ca” — a,YH —_ c!a!
dq
€ _po +aB —ba' —a'6
dp
€ pa +a8” — ba” —a'6’
dg

and if we note that the values of the differentials d¢, du thus obtained must
be equal, independently of the differentials dx, dy, to the quantities T dx +
Udy, Udx + V dy respectively, we shall find, after some sufficiently obvious
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transformations,

C*T = aAb? 4+ 6Bb'? +yCb'2
~ 20" Abb’ — 26’ Bbb' — 2v'Cbb’
+ a”Ab® + 6" Bb® + y"Cb?
C3U = —aAa'b’ - 6Ba’b’ — vCa'b’
+ o’ Alab’ + ba') + 6'Blab’ + ba') + y'C(ab’ + ba')
—o"Aab — 6"Bab — vy"Cab
C3V = «da'’®+6Ba? + vyCa'?
— 20’ Aaa’ — 26’ Baa’ — 2vy'Caa’
+«"Ad® + 6" Ba? + v" Ca?

Hence, if we put, for the sake of brevity,

Ao +B6 +Cy =D . . . . . . . . .Q

Ad' +B6' +Cy =D . . . . . . . . .®
Ad" +B6"+Cy"'=D" . . . . . . ... @®

we shall have
C3T = Db —2D'bb' + D"b2
C3U = -Da’b’ + D'(ab’ + ba’) — D"ab
C3V = Da’? —2D'aa’ + D"a2

From this we find, after the reckoning has been carried out,
CYTV — U?) = (DD" — D'®)ab’ — ba')? = (DD" — D'%)C?

and therefore the formula for the measure of curvature

_ DD"-D%
(AZ+ B4 (C2)2

11.

By means of the formula just found we are going to establish another, which
may be counted among the most productive theorems in the theory of curved
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surfaces. Let us introduce the following notation:
a2 +1* +& =E
aa’ +bb +ec’ =F
a? +b?% +¢? =@

ac +b6 +ecy =m . . . . . . . . .@
ac’ +b6" +cy' =m’ . . . . . ... (5B
ac” +b6" +cy' =m" . . . . . . . . .(®
a'a +b6 +cy =n . . . . . . .. .
a'a' +b0'6" +cy =n'" . .. . . . . . . @®
a'a” +b'6" +c'y'=n" . . . . . . .. .9

A* +B? +C* =EG-F’=A
Let us eliminate from the equations 1, 4, 7 the quantities 6, y, which is done
by multiplying them by bc’ — ¢b’, b'C — ¢'B, ¢B — bC respectively and adding:

in this way we obtain

(A(be’ —cb')+a(b'C —¢'B)+a’(¢cB — bC))«
= D(bc' —cb") + mb'C — ¢'B) + n(cB — bC)

an equation which is easily transformed into
AD = cA +anF — mG) + a'(mF — nE)
Likewise the elimination of o, y or «, 6 from the same equations gives

BD = 6A + b(nF — mG) 4+ b'(mF — nE)
CD =~vyA + c(nF — m@) + ¢'(mF — nE)

Multiplying these three equations by o”, 6", " respectively and adding, we
obtain

DD" = (aa” + 66" +yy")A + m"(nF — mG) + n"(mF — nE). . . (10
If we treat the equations 2, 5, 8 in the same way, we obtain

AD'=ad'A+am’'F —m'G) +a'(m'F — n'E)
BD' =6'A+b(n'F —m'G) + b'(m'F — n'E)
CD'=vA+cW'F—m'@)+c¢'m'F —n'E)
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§12. If M, N c R? are surfaces, then a development of M on N is simply a map
f: M — N which is an isometry (with respect to the induced Riemannian
metrics),
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and after these equations are multiplied by o', 6', y' respectively, addition gives
Drz — (arz + 6!2 + 'Y’Z)A + m!(an _ er) + nr(mrF _ an)
A combination of this equation with equation (10) gives

DDH _ Drz — (aarr + 66!/ + 'Y'Y” _ arz . 6!2 _ 'Y’Z)A
+ E’(n’2 —an"Y+ Fnm" —2m'n" + mn") + G(m’2 —mm”)

1t is clear that we have

dE _ m, d—E:Zm’, E=m’-|—n, E=m”-|—n’, E=2n’, 4G _ oy
dp dg dp dg dp dg
or
m—l(.iE m’—-l@ m”—d_F__ld_g
T 2dp’ T 24d¢’ T dg  Zdp
dF 1dFE , _ 1dG n__ 146G
= — 5 n = g5— n' =z—
dp 24dg’ 2dp’ 2dq

Moreover, it is easily shown that we shall have

" " w2 a2 2 _dn dn _dm” _dm’
ao” + 66" + vy o 6 Y “d¢ dp dp dq

1 ddE | ddF 1 ddG

2 dgz  dp-dg 2 qp?
If we substitute these different expressions in the formula for the measure of
curvature derived at the end of the preceding article, we obtain the following for-
mula, which involves only the quantities E, F, G and their differential quotients
of the first and second orders:
22— pEE .46 _gdF 4G, dG)?
AEG— F*Yk = E(dq aq de dq-l—(dp) )
dE dG dE dG dE dF dF dF dF dG
ER TR T T P T T PR T
dE 4G o dE dF | dE2
MR TI I TR
ddE ddF ddG

2
— — ddf o adf |, ddb
2BG ~ P~ 20, 0t 4

12.

Since we always have

da? +dy? +ds? = Edp® +2F dp - dg + Gdg?
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it is clear that JEdp? +2Fdp -dg+ G dg¢?) is the general expression for the
linear element on the curved surface. The analysis developed in the preceding
article thus shows us that for finding the measure of curvature there is no
need of finite formulee, which express the coordinates x, y, z as functions of
the indeterminants p, ¢; but that the general expression for the magnitude of
any linear element is sufficient. Let us proceed to some applications of this very
important theorem.

Suppose that our surface can be developed upon another surface, curved or
plane, s0 that to each point of the former surface, determined by the coordinates
x, Y, 2, Will correspond a definite point of the latter surface, whose coordinates
are x', y', 2. Evidently «’, ', 2’ can also be regarded as functions of the
indeterminants p, g, and therefore for the element N (dx'? + dy’2 +dz'%) we
shall have an expression of the form

J(E' dp? +2F dp -dq +Gdg®)

where E’, F’, G’ also denote functions of p, g. But from the very notion of the
development of one surface upon another it is clear that the elements corre-
sponding to one another on the two surfaces are necessarily equal. Therefore
we shall have identically

E=E, F=F, G=G

Thus the formula of the preceding article leads of itself to the remarkable
TuroreM. Ifa curved surface is developed upon any other surface whatever,
the measure of curvature in each pOINt remains unchanged.
Also it is evident that any finite part whatever of the curved surface will
retain the same integral curvature after development upon another surface.
Surfaces developable upon a plane constitute the particular case to which
geometers have heretofore restricted their attention. Our theory shows at once
that the measure of curvature at every point of such surfaces is equal to zero.
Consequently, if the nature of these surfaces is defined according to the third
method, we shall have at every point
ddz ddz _( ddz 2
de? dy?  de-dy

a criterion which, though indeed known a short time ago, has not, at least to our
knowledge, commonly been demonstrated with as much rigor as is desirable.
13.

What we have explained in the preceding article is connected with a particu-
lar method of studying surfaces, a very worthy method which may be thoroughly
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§14. Throughout this section Gauss uses x, y,z to denote xoc¢, yoc, zoc, for
the curve ¢ under consideration. The integral in the second display, involving
both d and §, is what we would write as

dL(a(u)) / Ba (u t) d
S odu —0_ u=0
3! (0,1) 0% (0,1) dct 3%al(0,1)
b p — —— -
:/ du dudt dr :/ dr dudt di.
a

321 (0,1)\
ﬁ ou )+

de! . dx %t (0,1)  9%a'(0,1) . déx
us, — 1is =

ar S0 M Tawar T atw  [rdu]

show what this becomes after integration by parts. The integral is

b 1
da dc'/dt
“J WOV (—f)*“d’?
a

. The next two lines

8
h
ere (O 1S —— [8 ul’



C. F Gauss: General Investigations of Curved Surfaces 95

developed by geometers. When a surface is regarded, not as the boundary of
a solid, but as a flexible, though not extensible solid, one dimension of which is
supposed to vanish, then the properties of the surface depend in part upon the
form to which we can suppose it reduced, and in part are absolute and remain
invariable, whatever may be the form into which the surface is bent. To these
latter properties, the study of which opens to geometry a new and fertile field,
belong the measure of curvature and the integral curvature, in the sense which
we have given to these expressions. To these belong also the theory of shortest
lines, and a great part of what we reserve to be treated later. From this point
of view, a plane surface and a surface developable on a plane, e.g., cylindrical
surfaces, conical surfaces, etc., are to be regarded as essentially identical; and the
generic method of defining ina general manner the nature of the surfaces thus
considered is always based upon the formula J(Edp? +2F dp -dg + Gdg?),
which connects the linear element with the two indeterminants p, g. But before
following this study further, we must introduce the principles of the theory of
shortest lines on a given curved surface.

14.

The nature of a curved line in space is generally given in such a way that
the coordinates x, y, z corresponding to the different points of it are given in the
form of functions of a single variable, which we shall call w. The length of such
2 line from an arbitrary initial point to the point whose coordinates are , ¥, 2, is
expressed by the integral

dw 2 dy 2 dz\2
Jdw- JED +@) +G))
If we suppose that the position of the line undergoes an infinitely small variation,
<0 that the coordinates of the different points receive the variations dx, dy, 8%,
the variation of the whole length becomes

_fdx~d8x+dy~d8y+dz~d8z
Va2 +dy? +d22)
which expression we can change into the form

do-dr+dy-dy+dz-8z

J(@daZ +dy? +dz?)
dx dy dz
(- d—————+3d -d——/+8z-dz—7—)
f( Jda? +dy? +d?) + oy J@da? +dy? +dz?) Jda? +dy +d2?)

We know that, in case the lineis tobe the shortest between its end points, all that
stands under the integral sign must vanish. Since the line must lie on the given
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Notice that Gauss has given dL(&(u))/du|u=0 for an arbitrary variation in
3-space, not just a variation through curves in the surface. His x = xoc¢ is a
coordinate function of ¢ in 3-space, not a coordinate function with respect to
some coordinate system on the surface. If the surface is {p : W(p) = 0} for
some W: R?® - R, so that on the surface we have

0=dW =Pdx+ Qdy+ Rd:z P=D\W, Q=D,W, R=D;W,
then for variations « through curves on the surface we will have

da!

dW(éx,8y,6z) =dW (——
ou

a 2 3
0.0, 2% 0,0,% 0,0} =0,
ou ou

and any set of da’/du(0,t) with this property comes from some variation on
the surface. Using this, Gauss deduces a necessary and sufficient condition for
a curve y, parameterized by arclength, to be a geodesic on the surface. Unlike
our equations for geodesics, this condition [the next-to-last displayed formula
in this section] is expressed in terms of quantities which make sense only in R3:

ylll(t) _ yZII(t) _ )/3//([)
X(y@) Y@@) Zyo)y

i.e., y"(t) is a multiple of the normal vector at y(t). It takes a little detective
work to see that Gauss is really considering a curved parameterized by arclength.
Try to prove Gauss’ result by modifying our proof of Euler’s equations.

§815. The proof in this section is essentially our (first) proof of Gauss’ Lemma
(.9-12). There are two main differences. First, Gauss uses the condition of
section 14 rather than our equations. Second, for a surface it is unnecessary to
choose a curve v: R — M, and manufacture the variation o that occurs in the
proof of Lemma [.9-12. Instead, we just use

;
a(r,¢) = point with “polar coordinates” (r, @). /\4’
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surface, whose nature is defined by the equation Pdx +Qdy + Rdz = 0, the
variations dzx, 8y, 82 also must satisfy the equation P dx + Qdy+Rd2=0,and
from this it follows at once, according to well-known rules, that the differentials

Jd2+dy2+dz2) Ve +dy? +d22) JdeP+dyt+d2?)

must be proportional to the quantities P, Q, R respectively. Let dr be the
element of the curved line; X the point on the sphere representing the direction
of this element; L the point on the sphere representing the direction of the
normal to the curved surface; finally, let & m, { be the coordinates of the point X,
and X, Y, Z be those of the point L with reference to the center of the sphere.
We shall then have

de = £dr, dy =mdr, dz={dr

from which we see that the above differentials become d§, dm, d{. And since the
quantities P, Q, K are proportional to X, Y, Z, the character of shortest lines is
expressed by the equations

dg  dn _ df

XY z
Moreover, it is easily seen that J@E +dn? + d¢?) is equal to the small arc on
the sphere which measures the angle between the directions of the tangents at
the beginning and at the end of the element dr, and is thus = d{, if p denotes
the radius of curvature of the shortest line at this point; thus we shall have

pdé =Xdr, pdn=Ydr, pdl =Zdr

15.

Suppose that an infinite number of shortest lines go out from a given point
A on the curved surface, and suppose that we distinguish these lines from one
another by the angle that the first element of each of them makes with the first
element of one of them which we take for the first. Let ¢ be that angle, or, more
generally, a function of that angle, and r the length of such a shortest line from
the point A to the point whose coordinates are x, ¥, 2. Since to definite values of
the variables r, ¢ there correspond definite points of the surface, the coordinates
x, y, 2 can be regarded as function of 7, ¢. We shall retain for the notation A,
L, & w (, X, Y, Z the same meaning as in the preceding article, this notation
referring to any point whatever on any one of the shortest lines.
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All the shortest lines that are of the same length » will end on another line
whose length, measured from an arbitrary initial point, we shall denote by ».
Thus » can be regarded as a function of the indeterminants r, ¢, and if A’ denotes
the point on the sphere corresponding to the direction of the element dv, and
also £, v, {’ denote the coordinates of this point with reference to the center of
the sphere, we shall have

do v dy r Ay dz . do
=% R de _p. Qv
de d¢  de A de do
From these equations and from the equations
E gy E y a C
we have
dz da  dy dy o
dr de ' dr de ' dr de = COSAN' - —
dr dq>+dr dq>+dr d = (& +mm’ +CC) =c i

Let S denote the first member of this equation, which will also be a function of
r, ¢. Differentiation of S with respect to r gives

S _dde dx ,ddy dy  ad. az , q GGG +GD)
dr a2 de  dr? de | a2 de 2 de

_4d¢ de  dm dy  d0 dz ] dE+PHD)

Tdr de ' dr de ' dr de ' 2 de

But € + w2 + & = 1, and therefore its differential = 0; and by the preceding
article we have, if p denotes the radius of curvature of the line r,

¢ _x  dn_y dL_ 2z
p’ dr P dr #

dr — P’
Thus we have

dQ
ar

1 (Xg + Y + Z0) - § v _ 1 osIN - g” 0

P ¢

since N’ evidently lies on the great circle whose pole is L. From this we see that

S is independent of r, and is, therefore, a function of ¢ alone. But for » = 0 we

evidently have v = 0, consequentlygE = 0,and S = 0 independently of ¢. Thus,
¢

in general, we have necessarily S = 0, and so cos A\’ = 0,1.e., A\\’ = 90°. From
this follows the
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Gauss also gives a “geometric” proof of the lemma, using infinitesimal trian-
gles. Perhaps the easiest way to make this rigorous would be to use our second
proof of Gauss’ Lemma.

§16. This section states a generalization of Gauss’ Lemma, which has also been
given in Problem 1.9-28.

§17. In terms of a coordinate system (p, ¢) on a surface, the Riemannian metric
that it acquires as a subset of R? has the expression

(,)=FEdp®dp+ Fdp®dg+ Fdq®dp+Gdq®dg,

so that

| | =VEdp-dp+2Fdp-dq+ Gdq-dq.
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TuroreM. Ifon a curved surface an infinite number of shortest lines of equal
length be drawn from the same initial point, the lines joining their extremities
will be normal to each of the lines.

We have thought it worth while to deduce this theorem from the fundamen-
tal property of shortest lines; but the truth of the theorem can be made apparent
without any calculation by means of the following reasoning. Let AB, AB' be
two shortest lines of the same length including at A an infinitely small angle,
and let us suppose that one of the angles made by the element BB’ with the
lines BA, B'A differs from a right angle by a finite quantity. Then, by the law
of continuity, one will be greater and the other less than a right angle. Suppose
the angle at B is equal to 90° — , and take on the line AB a point C, such that
BC = BB’ - cosecw. Then, since the infinitely small triangle BB’'C may be
regarded as plane, we shall have CB’ = BC - cos w, and consequently

AC+CB =AC+BC-cosw =AB—BC-(1-cosw)=AB'—BC-(1 —cosw),

i.e., the path from A to B’ through the point C is shorter than the shortest line,
QE.D.

16.

With the theorem of the preceding article we associate another, which we
state as follows: If on a curved surface we imagine any line whatever, from the
different points of which are drawn at right angles and toward the same side an
infinite number of shortest lines of the same length, the curve which joins their
other extremities will cut each of the lines at right angles. For the demonstration
of this theorem no change need be made in the preceding analysis, except that
¢ must denote the length of the given curve measured from an arbitrary point;
or rather, a function of this length. Thus all of the reasoning will hold here also,
with this modification, that S = 0 for » = 0 is now implied in the hypothesis
itself. Moreover, this theorem is more general than the preceding one, for we
can regard it as including the first one if we take for the given line the infinitely
small circle described about the center A. Finally, we may say that here also
geometric considerations may take the place of the analysis, which, however,
we shall not take the time to consider here, since they are sufficiently obvious.

17.

We return to the formula +/(E dp? + 2F dp - dg + G dg?), which expresses
generally the magnitude of a linear element on the curved surface, and inves-
tigate, first of all, the geometric meaning of the coefficients E, ', G. We have
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Gauss uses o to denote the angle between d/dp and 9/9q (thus, w is a function
on the surface). Gauss’ formula for cos @ should be clear. Gauss also mentions

that
=+VvEG-—F*dpArdg,

a special case of the formula on pg. 1.311.

To interpret the last two formulas in this section, we must divide ds, dp, and
dq by dt in all places; it is to be understood that dp/dt = (poc)'(t), etc., where ¢
is the curve we are considering It is simplest to assume that ¢ is parameterized
by arclength, so that the terms ds/dt are 1. If

0
6(s) = angle between ¢’(s) and —

then Plew
/3> ) | pdacs)
cosf = ds = ds ’
i E
since

o _dpe(s) 3 da(e) §
ds dp ds dq
Moreover, the area of the parallelogram spanned by ¢’ and 3/dp is

sinf - K , and also dVv (i, c’) ,
ap ap

from which we obtain

dq(c(s))
VEG - F? ——
vE

sinf =

§18. In this section Gauss deduces the conditions for a curve y (having the
component functions y! = poy, y? = goy) to be a critical point for the length
function.

Unlike the condition in section 14, the result is expressed totally in terms of
the Riemannian metric { , } on the surface, and is essentially the condition for
a geodesic that we obtained in Chapter 1.9. However, the derivation is different,
because the geodesic is assumed to satisfy q(y (1)) = y2(t) =t [“we regard p
as a function of ¢”].

It is not necessary to actually follow the derivation. The really important
point is simply the equation that constitutes the first line that appears in the
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already said in Art. 5 that two systems of lines may be supposed to lie on the
curved surface, p being variable, ¢ constant along each of the lines of the one
system; and ¢ variable, p constant along each of the lines of the other system.
Any point whatever on the surface can be regarded as the intersection of a line
of the first system with a line of the second; and then the element of the first line
adjacent to this point and corresponding to a variation dp will be = VE - dp,
and the element of the second line corresponding to the variation dg will be
= /G -dgq. Finally, denoting by w the angle between these elements, it is easily
seen that we shall have cosw = TG Furthermore, the area of the surface

element in the form of a parallelogram between the two lines of the first system,
to which correspond ¢, ¢ + dg, and the two lines of the second system, to which
correspond p, p + dp, will be v/ (EG — F?) dp - dg.

Any line whatever on the curved surface belonging to neither of the two
systems is determined when p and ¢ are supposed to be functions of a new
variable, or one of them is supposed to be a function of the other. Let s be
the length of such a curve, measured from an arbitrary initial point, and in
either direction chosen as positive. Let 6 denote the angle which the element
ds = (Edp? +2F dp - dg + G d¢?) makes with the line of the first system
drawn through the initial point of the element, and, in order that no ambiguity
may arise, let us suppose that this angle is measured from that branch of the
first line on which the values of p increase, and is taken as positive toward that
side toward which the values of ¢ increase. These conventions being made, it is
easily seen that

Ed d
Cose'ds:\/E'dp+\/G-COSw-dq:—ij—M

sin®-ds = /G- sinw-dg = UE

18.

We shall now investigate the condition that thisline be a shortest line. Since
its length s is expressed by the integral

§= f\/(Ede +2Fdp-dg+ quz)
the condition for a minimum requires that the variation of this integral arising

from an infinitely small change in the position become = 0. The calculation, for
our purpose, is more simply made in this case, if we regard p as a function of g.
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second large display on page 105 (after the words “Thus we have”). For a curve
parameterized by arclength, this equation says that

2

dc! dc! dc? d
P e (%) + 250 con G G + rteon (G )
p s
d 2
=22 [Eeon + Feen’]

It is a very useful exercise to write out the equations on pg. 1.329 for the case
of a 2-dimensional manifold, with g1 = E, g1 = F, g22 = G, and show that
the first of these equations (the equation for k = 1) yields the above equation (it
will be necessary to perform the differentiation on the right side).

Although Gauss performs various further manipulations, it is only necessary
to follow the next step,

d [ _dc! dc d
2% |:Ed F—K] —2$\/EC050,

where 6 is defined in the previous section.

§19. In this section Gauss rewrites formulas from preceding sections for the case
of a coordinate system (p,q) which is “orthogonal” ((3/dp,d/3q) = F = 0).
The important case for us is the last he considers, in which the coordinates are
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When this is done, if the variation is denoted by the characteristic 3, we have

‘ aG |, .
(d—E—'-dp2+M‘dp-dq+—G-dq2)8p+(2EdP+2qu)d8p
dp dp dp
88=f 2ds
dE ., 2d4F 4G
22 Apr+ = dp-dg+—dg?
Edp+Fdg  f5 3 Py dg g g g Edr+Fdg,
- ds p p 2ds ds

and we know that what is included under the integral sign must vanish indepen-
dently of dp. Thus we have

dE 2, 2dF . dG 5 2 ) .Edp+qu
—(E-dp + i dp dq+dp dg® =2ds - d —a
=2ds-d-JE-cos9=d—s%ﬂe—2ds-d9-\/E-sin9
Edp+Fdg)dE
:(_pJ'E—'D——Z\/(EG—Fz)-dq-de
Edp+qu

=(——)- (— dp +— dg) — 2J/(EG — F?)-dg - de

This gives the following conditional equation for a shortest line:

which can also be written

JEG—F?. d9=}-£-dE+%-d-§-dp—d—F-dp— 1.6 44

From this equation, by means of the equation

cotf = E -% F
VIEG-F2) dg  J(EG-F?)

it is also possible to eliminate the angle 6, and to derive a differential equation
of the second order between p and g, which, however, would become more
complicated and less useful for applications than the preceding.

19.

The general formulze, which we have derived in Arts. 11, 18 for the measure
of curvature and the variation in the direction of a shortest line, become much
simpler if the quantities p, g are so chosen that the lines of the first system cut
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the “polar coordinates” (r,¢) defined in terms of the geodesics emanating from
a point A of the surface. Here Gauss obtains the formula

_ 1 #e
~ /G o

and

ds ~ or ds

6 3V/G dg(c(s)

where 6 is the angle the geodesic ¢ makes with the lines ¢ = constant. Notice
that (r, ¢) is not a coordinate system on a whole neighborhood of 4; we must
delete one geodesic ray, including the point 4 itself. Consequently, VG and

84/ G /dr are not even defined at 4. Gauss’ final assertions in this section should
be interpreted as saying that

Jim /o =0

. 3/G
lim

B—>A4 dr

(B) = 1.
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everywhere orthogonally the lines of the second system; i.e., in such a way that
we have generally o = 90°, or F = 0. Then the formula for the measure of
curvature becomes

1Bk = B E+E(—) +G. 4846 @+G(—) ZEG(M—F‘MG)

and for the variation of the angle 6

.de=1.4& 146G
VEG-do =3 a7 dp -5 - ap -dg
Among the various cases in which we have this condition of orthogonality,
the most important is that in which all the lines of one of the two systems, e.g.,
the first, are shortest lines. Here for a constant value of g the angle 8 becomes
= 0, and therefore the equation for the variation of 8 just given shows that we

must have % = 0, or that the coefficient £ must be independent of ¢; i.e., &

must be either a constant or a function of p alone. It will be simplest to take for
p the length of each line of the first system, which length, when all the lines of
the first system meet in a point, is to be measured from this point, or, if there is
no common intersection, from any line whatever of the second system. Having
made these conventions, it is evident that p and ¢ denote now the same quantities
that were expressed in Arts. 15, 16 by » and ¢, and that £ = 1. Thus the two
preceding formulae become:

4Gk _(dG) —ZGM

VG- de_—l & dq

or, setting /G = m,

1 ddm dm
Generally speaking, m will be a function of p, ¢, and m dq the expression for
the element of any line whatever of the second system. But in the particular
case where all the lines p go out from the same point, evidently we must have
m = 0 for p = 0. Furthermore, in the case under discussion we will take for g
the angle itself which the first element of any line whatever of the first system
makes with the element of any one of the lines chosen arbitrarily. Then, since for
an infinitely small value of p the element of a line of the second system (which
can be regarded as a circle described with radius p) is = pdq, we shall have for
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§20. Ifyou have come this far, there should be no problem with this final section.
Here is the picture.




C. E Gauss: General Investigations of Curved Surfaces 109

an infinitely small value of p, m = p, and consequently, for p = 0, m = 0 at the
same time, and % =1.

20.

We pause to investigate the case in which we suppose that p denotes in a
general manner the length of the shortest line drawn from a fixed point A to
any other point whatever of the surface, and g the angle that the first element
of this line makes with the first element of another given shortest line going
out from A. Let B be a definite point in the latter line, for which ¢ = 0, and C
another definite point of the surface, at which we denote the value of ¢ simply
by A. Let us suppose the points B, C joined by a shortest line, the parts of which,
measured from B, we denote in a general way, as in Art. 18, by s; and, as in the
same article, let us denote by 8 the angle which any element ds makes with the
element dp; finally, let us denote by 00, 0’ the values of the angle 0 at the points
B, C. We have thus on the curved surface a triangle formed by shortest lines.
The angles of this triangle at Band C we shall denote simply by the same letters,
and B will be equal to 1800 — @, C to 0’ itself. But, since it is easily seen from our
analysis that all the angles are supposed to be expressed, not in degrees, but by
numbers, in such a way that the angle 57917'45", to which corresponds an arc
equal to the radius, is taken for the unit, we must set

O=nw—-B o=C

where 2w denotes the circumference of the sphere. Let us now examine the
integral curvature of this triangle, which is = f kdo, do denoting a surface
element of the triangle. Wherefore, since this element is expressed by m dp-dg,
we must extend the integral f f m dp - dg over the whole surface of the triangle.
Let us begin by integration with respect to p, which, because k = —% . Qd(;—zn,
gives dq - (Const. — %ﬁ), for the integral curvature of the area lying between
the lines of the first s§stem, to which correspond the values g, ¢ + dq of the

second indeterminate. Since this integral curvature must vanish for p = 0, the
constant introduced by integration must be equal to the value of %’3 forp =0,

ie., equal to unity. Thus we have dg(1 — %%), where for % must be taken the
value corresponding to the end of this area on the line CB. But on this line we
have, by the preceding article, %ﬁ .dg = —d#, whence our expression is changed

into dq + d6. Now by a second integration, taken from g = 0to g = A, we find
that the integral curvature = A 4+ 6’ — =A+B+C—m.
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The integral curvature is equal to the area of that part of the sphere which
corresponds to the triangle, taken with the positive or negative sign according
as the curved surface on which the triangle lies is concavo-concave or concavo-
convex. For unit area will be taken the square whose side is equal to unity (the
radius of the sphere), and then the whole surface of the sphere becomes = 4.
Thus the part of the surface of the sphere corresponding to the triangle is to the
whole surface of the sphere as (A + B+ C — ) is to 4. This theorem, which,
if we mistake not, ought to be counted among the most elegant in the theory of
curved surfaces, may also be stated as follows:

The excess over 180° of the sum of the angles of a triangle formed by shortest
lines on a concavo-concave curved surface, or the deficit from 180° of the sum
of the angles of a triangle formed by shortest lines on a concavo-convex curved
surface, is measured by the area of the part of the sphere which corresponds,
through the directions of the normals, to that triangle, if the whole surface of the
sphere is set equal to 720 degrees.

More generally, in any polygon whatever of n sides, each formed by a
shortest line, the excess of the sum of the angles over (2n — 4) right angles,
or the deficit from (2n — 4) right angles (according to the nature of the curved
surface), is equal to the area of the corresponding polygon on the sphere, if the
whole surface of the sphere is set equal to 720 degrees. This follows at once from
the preceding theorem by dividing the polygon into triangles.
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B. GAUSS’ THEORY OF SURFACES

This part of the chapter presents Gauss’ results in modern dressing. It can
be read completely independently of the first part, but there are frequent com-
parisons with Gauss’ original paper. Some of Gauss’ notation will be changed;
in particular, we will use K for Gauss’ k.

We consider a 2-dimensional submanifold M of R3 withi: M — R3? the
inclusion map. We also assume that M has been oriented. Since all our results
will be local ones, we merely need an orientation in a neighborhood of each
point, so this assumption does not place any real restriction on M. (However,
we must still investigate to what extent our results depend on the choice of the
orientation.)

At each point p € M there is a unique unit vector v(p) € R? such that

(I) v(p), € R, is perpendicular to Mp

(2) v(p), v, w is positively oriented in R? whenever vp, w, € M), is positively
oriented.

We thus have the normal map v: M — R3, which actually goes to the unit
sphere, v: M — S§? C R3. Notice that in his paper Gauss uses X, Y, Z for
v(p)p

v(p)

E

v(p), v2(p), v3(p). The idea of using this map may have been suggested to
Gauss by astronomical practices, as he indicates in an abstract of the paper (also
included in the Princeton University Library translation, and the Raven Press
reprint). At any rate, the map v turns out to play such a crucial role that 1t is
often called the Gauss map.

An explicit formula for v: M — S? can be obtained from various explicit
descriptions of M. For example, if M = {p € R? : W(p) = 0} for some
function W: R* — R, then dW =0 on M, i.e., dW(vy) = 0 for all vy € M,.
This means that

D\W(g) - v' + D,W(g) - v2 + DsW(g) - v* =0

aw ow ow for all v, € M.
a—x(fI)'Ul+—EE(‘I)'U2+'—,(‘I)'U3=0 ! !
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This equation can be written

oW, oW W
<(-5;(q), —B_y—(q)’ -52—((1)) , v> =0 for all v, € My.

Consequently,

) W oW W
v(g) = normalized | ——(¢), =—(9) —@ ),
dx dy 0z

which is precisely the formula Gauss gives.
We can also find v in terms of a coordinate system X. To avoid confusion, we
will denote the standard coordinate system in R2 by (s,¢) [Gauss uses (p,q)]

and we will denote the inverse function xR > M C R} by f. Itis
naturally necessary to consider the component functions of f, considered as a
map into R3, in order to obtain a formula for v; we cannot obtain a formula
for v totally in terms of x, since this coordinate system tells us nothing about
the way M is situated in R3. Note that if ¢ = f(s,1), then

d _ af _ af1 af? af3
i (a(“’)q = (Ta's_(s”)’ o5 &0 —a;(s’”),,
3| () = (Lo Lo L)
aXZ . = (E(sat))q - ( at (S,t), at (S,t), at (S,t) q'
Consequently,

v(f(s, ) = normalized cross product
o o ) (00 88 9
95 8 Bs or At o)
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Thus we have

afraft  arrasf’

U(f(S,t)) =+ 8s 8[ 8IA8S ’ ’ ,

for
A = norm of the cross product,

exactly as in Gauss.
Finally, if M is the graph of g: R? — R, so that

M ={(x,y,g(x,y):x,y € R?},

then M is the image of f: R? — R3 defined by

S(s, 1) = (s,1,8(s,1)).
It follows that

ad ad
v(x, y, g(x, y)) = normalized cross product (1,0, %) X (O, 1, %) .

We are now ready for a preliminary, non-rigorous, definition of the curvature
K(p) of M at p:
. area v(4
K(p) = lim 4()

A—>p area A
where the limit is taken as the region 4 around p becomes smaller and smaller.
There would be considerable difficulties involved in making this definition rig-
orous. In the first place, we would have to prove that the limit exists. More
crucial, the “area of v(4)” needs some interpretation; in the figure below we
want “area of v(A4)” to be negative, because v is orientation reversing near p.

However, even with this non-rigorous definition we can find the curvature of
certain surfaces.
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Consider first the surface S2. The map v: $? — S? is just the identity, so at

each point p € §% we have

K(p) = i area v(A) , area A i
= lim ————~ = lim =1.
P A—I>np area A A—parea A

For the case of the sphere S2(r) of radius r, we have

area U(A) SZ(V)

K(p)=lm —— v(A
() A5y arca 4 / 3 S? A
_ 1/r? . area A S AR R Pt
~ area d

1

which certainly seems reasonable.
Next we consider a plane P. The function v: P — S? is constant, so

K =X

. area v(A) . 0
(P) Al—I>np area A Al—I>np area A

s

the plane does not curve.
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Finally, we consider a cylinder Z. In this case, the function v: Z — S?%is
not constant, but the image of v always lies along a certain arc in S2, s0 for all

RRKK
/A A AA

points p € Z we have

K(p) = i area v(A4) ’ 0 0
= lim —— = 11 = U,
P A—>p area A A—p area A

The cylinder, too, does not curve! It begins to look as if we have the “wrong”
definition of curvature; only later will Gauss ¢xplain why this is the “right”
definition.

The manner in which we produce a rigorous definition of curvature is really
very simple. Since M is a submanifold of R3, which has the usual Riemannian
metric { , ), we can give M the induced Riemannian metric i*{ , ). Together
with the orientation which we have given M, this metric determines a 2-form
“dV” on M, namely

dV(q)(vg, wq) = signed area of the parallelogram spanned by v and w.

On the sphere S? we also have a volume element, coming from its induced
Riemannian metric and its usual orientation. As a glance at pg. 1.264 will
show, this is just the 2-form which we have denoted by o'

We now define the Gaussian curvature K(p) of M at p to be

v (p),
K(p) = v

in this equation, the division of 2-forms makes sense because any 2-form on
the 2-dimensional manifold M is a multiple of the non-zero 2-form dV. If the
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vectors vp, wp € M), are orthonormal, then our definition says that

K(p) = v*(0")(p)(vp, wp)
=0’ (v(p))(VaUp, VxWp) for orthonormal vp, wp.

This definition of K(p) involves v, and hence the orientation 4 which we picked
for a neighborhood of p. Choosing the opposite orientation —u changes v to
—v = Aov, where 4: §% — S? s the antipodal map, and consequently changes

V¥ e’) to v*(4*(0’)) = —v* (o).

On the other hand, dV is also changed to —d V, so K(p) does not depend on
the choice of orientation.

Notice that if v is one-one in a neighborhood of p, then for every region A4
contained in that neighborhood we have

areav(A4) = / o’

v(4)

— 1 [ v (o) depending on whether v is
T orientation preserving or reversing

Consequently,

area v(A) _ iL V(")

area A / AV
A

We thus recover our original “definition”, provided that

ﬂ:LU (o) 3 i”*(al)(])) _ LK(p):

lim

A—>p /dV T dV(p)
A

although this result seems reasonable, by continuity of v*(c’) and dV, we will
not worry about the exact manner in which A4 must approach p in order for
the limit to work out. If v is not one-one in a neighborhood of p, then we must
have v,(p) = 0, so the rigorous definition gives K(p) = 0, which is more or less
what one would expect from the intuitive definition.

Although we will eventually obtain a neater expression for K, we begin by
deriving Gauss’ first formula for K, using essentially the same reasoning as
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Gauss uses. We first observe that the tangent plane M, is parallel to the tangent
plane S2,(p) of S? at v(p). The reason is very simple: the tangent plane S2,(,)

<

oo
NG

is perpendicular to v(p), and so is M, by the very definition of v(p). In the
previous two sentences we have used the identification of R?, with R3, the
identification of M), with i, M, C R3,, etc. Without further warning, we shall
continue to do so, to avoid cluttering up the page with extra symbolism.

If vp, wp € M, are linearly independent, then

area of parallelogram P spanned by v,vp, viw,

K =
() area of parallelogram Q spanned by v,, wp

Since M,, is parallel to S2,(p), this implies that

area of projection of P on (x, y)-plane

K =
(r) area of projection of Q on (x, y)-plane

(provided the denominator is not zero). In particular, suppose M is the graph
of g: R? > R, and consequently the image of f: R? — R? defined by

J(s,0) = (5,1, 8(5,1)).

af dg
V= a—s = (1,0, g)

af ag
w-gt-—(o,l,-a—t-)

We choose
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and consider vp, wp € Mp, for p = f(s,1). Then

area of projection of Q on (x, y)-plane
= area of parallelogram spanned by (1,0) and (0, 1)

=1.
On the other hand,
af

d
U*(Up) = Vx (a_s p) = vy f5 (a_s)

:(UOf)*(aiS)

_(3(U0f)) _(3(U10f) 3o f) 3(U30f))
B s v(p) B s 3 " Bs v(p)

(Here all partial derivatives are to be evaluated at the point (s, t).) Similarly,

(0y) = dw' o f) 3?0 f) B(v3o f)
U*w”_( R T )v(p)'

Consequently,

K(f(s,t)) = area of projection of P on (x, y)-plane

= area of parallelogram spanned by

(B(UIOf) 3(v20f)) and (3(v10f) a(u20f))

ds ds ot ot
_dw'o ) A(WEo f) B Iw'o f)a(2o f)
B s At ot ds

This is precisely the formula Gauss obtains, at the top of page 77. If we use the
formula

0 0
v(x, y,g(x,y)) = normalized cross product (1,0, a—g) X (O, 1, f) ,
X )

we obtain, after a little calculation,

azg azg ( azg )
ax29y2  \axdy

(%) K(x,y,g(x,y)) =
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We can compare this with the results of Chapter 2, in which we picked our
coordinate system so that

p =(0,0,0) = (0,0, g(0,0))
dg . dg .
5-(0.0) = @(0,0) =0

¢ 0,0)=0

axay
In this case, we obtained the result that the minimum k; and maximum k>
of all curvatures cut out by normal planes through p are the minimum and
maximum of 9%2g/9x2(0,0) and 8%g/3y2(0,0). Now for our special choice of
coordinates in R?, formula (*) becomes
9’g d°g
K(p)=—— = =k k.
() X2 32 1 K2
(Notice that, just as K does not depend on the orientation of M, neither does
the product ki - ka, even though k; and k; individually do). We thus have the
following result:

The Gaussian curvature K(p) at any point p € M is the product of the
extreme curvatures of the curves through p cut out by normal planes.

at origin

AN

ky = +1/a 17 i ‘.‘ I i
T 3 __k» = Fa
__ at origin

i hof - = ax? _ay’
cylinder of radius a sphere of radlusla grap ) 2
K=k -ky=0 K:kl-k2=—2 K(0,0,0):kl-kzz—az
a

To prove this result we have followed Gauss’ exposition. In particular, the
proof of Euler’s Theorem which appeared in Chapter 2 is Gauss’. Undoubtedly,
this proof is considerably simpler than Euler’s, for Gauss remarks with pride
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“These conclusions contain almost all that the illustrious Euler was the first to
prove on the curvature of curved surfaces.” Nevertheless, later developments
provided a nicer way of obtaining these results, which will consequently now be
rederived.

The definition of curvature involves the map v: M — §? C R?, but even
more important, it involves the map v,: M, — S%,(,). We can also think of v
as an R3-valued function v: M — R3, and we then have a map

dv: M, — R,
namely
dv(vp) = (dv' (vp), dv3(vp), dv*(up))
= (0, (v"), 0, (v7), 5, (V).

We claim that dv is essentially the same as v; to be precise,

M

Vi (vp) = dv(Up)u(p)- LT

- N <
t Vx (Up)

dv(vp)

Probably the easiest way* to see this is to take a curve ¢ in M with ¢'(0) = vj,.

Then
t=0)v(p>

* A more formal way is to introduce the inclusion map j: S* — R3, and observe that
we are really trying to prove that

v (Up) = (0 €)' (0)

_(d('oc)
_( dt

d(vtoc)

d(v?oc)
t=0, dt ,

- =0 dt

= (Up(Ul), Up(”z)a Up(”3))V(p)'

Jxvs(Vp) = d(jo V)u(p)-

The result then follows from Problem I.4-3, applied to the component functions of v.
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Taking advantage of the identification of R? with R3,, we can introduce one
more confusion, and consider dv as a map

dv: M, - R*,.

Since dv(vp) is parallel to v4(vp) € Szv(,,), and since Szv(p) is parallel to Mp,
we see that we actually have a map

NN

dv(vp) at p

"
U*(Up)

52 ,
dv: M, > M,.

dv(vp)

Despite the tortuous process used to define this map, the net result can be
described very simply: dv(vp) is just v,(v,) moved back up to a parallel vector
in Mp.

The map dv: M, — M, is sometimes called the Weingarten map. Using it,
we can define a tensor IT on M which is covariant of order 2: for vy, w, € M,
we define

I(p)(vp, wp) = —(dVv(vp), wp).

Notice that II does depend on the choice of v, and hence on the orientation
picked for M. This tensor II is called the second fundamental form of M. But,
as we shall soon see, it is not alternating, and hence not a 2-form. We can see the
reason for the word “form” in the classical terminology by looking at another
tensor that you may be worrying about. The first fundamental form I of M
is just the induced Riemannian metric i*( , ) on M (where { , ) is the usual
Riemannian metric on R?). Thus

I(P)(Up, wp) = (Up’ wp) [= (v, w)]

Classically, one worked not with I and II but with the functions v > I(v, v) and
v > II(v,v), which are “quadratic forms” in the components of v (compare
pg [.314).

The second fundamental form provides us with a name for a quantity that
appeared in Chapter 2:
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0. PROPOSITION. Let ¢ be a curve in M which is parameterized by arc-
length. Let ¢(0) = p, and let X = ¢’(0) € M,. Then

(c"(0),v(p)) = II(X, X) [le, I(p)X,X)].

Consequently, II(X, X) is the signed curvature «x of the curve cut out on M
by the normal plane through v(p) and X (with X, v(p) positively oriented).
Moreover, if «g is the curvature of the curve ¢y cut out by the plane which
contains X and makes an angle of ¢ with the normal plane, then

K¢ - COSP = Kyx.
PROOF. Clearly

dv(c(s))

(1) & |

= dv(X).

Since

(¢'(s),v(c(s))) =0  foralls,

differentiation yields, using (1),

("(0), v(p)) = =(c(0), dv(X))
—(X,dv(X))
= 1(X, X).

This, of course, is precisely the result (proved in precisely the same way) which
was derived in Chapter 2. The rest of the theorem is proved just as before. «

Unlike Meusnier’s Theorem, which involves II in a trivial way, Euler’s The-
orem involves a crucial property of II:

1. THEOREM. The second fundamental form II of M is symmetric,
(p)(Xp,Yp) = (p)(Yp, Xp) for Xp,Y, € M.

FIRST PROOF. Near p we can represent M as the image of a function f: R? —
R3. Let N = vo f, so that N is “v, considered as a function on R2”. Then

()< (1 (2)) 1 (2) = =2
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af

Differentiating with respect to s gives

22f AN of af\ of
<N’8_ﬁ_t> <8s 3t> _<dv(8) 3t>

Exactly the same argument gives
of 3/
o=,
( o’ ds )

32
@) <N’E%>=
ar af\ . (0 8
(220 u (22,

Thus

Since 9f/ds,df /0t are a basis for the tangent space of M at each point, II
is symmetric. For later use we also note that similar arguments lead to the
equations

af of 92 f
(b) II(a as) <N5s—2>

af af\ _ [ S

Equations (a)—(c) are called the Weingarten equations.

Now we clearly have

af of
I (as 8[)

SECOND (COORDINATE FREE, FANCY) PROOF. Let Y be a vector field in a
neighborhood U C M of p whose value at p is Yp, and such that Y(q) € M,
for all ¢ € U. Since

(v,Y)=0 onU,

we have
0= X,({(v,Y)) = (Xp(v), Yp) + (v(p), Xp(Y))
= (dv(Xp), Yp) + (v(p), Xp(Y)),

where X,(Y) denotes the vector whose i component is Xp (YY), for Y the i
component of Y. This shows that

I(p)(Xp, Yp) = (v(p), Xp(Y)).

If a vector field X is picked similarly, then we have a corresponding equation,
and it follows that

I(p)(Xp, Yp) — I(p)(¥p, Xp) = (v(p), Xp(¥) — ¥p(X)).
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It is easy to check that in R” we have X,(Y) — Yp(X) = [X, Y](p), so that
H(p)(Xp, Yp) — I(p)(Yp, Xp) = (v(p), [X,Y](p)).
But the right side is 0, since [X, Y](p) € Mp. %

The symmetry of 1I states an important property of the map dv: M, — Mp;
this map 1s self-adjoint,

(dv(X),Y) ={X,dv(Y)), X,Y e Mp.

Recall that if V is a vector space with an inner product { , ), then a linear
transformation 7: V — V is called self-adjoint (with respect to { , )) if

(Tv,w) = (v, Tw) forall v,w e V.

This is equivalent to saying that the matrix of T is symmetric with respect to
any orthonormal basis. It is an elementary fact that eigenvectors vy and v of T
with distinct eigenvalues must be orthogonal, for if Tv; = A;v; with Ay # A3,
then

(v, v2) = (T, v2) = vy, Tvz) = Az{vy, v2).

The main theorem about self-adjoint transformations (the “spectral theorem”)
states that a self-adjoint 7: V — V has a basis of eigenvectors vy, ..., v,. We
have seen that eigenvectors with distinct eigenvalues are orthogonal. If two or
more eigenvectors have the same eigenvalue, then all vectors in the subspace
they span are eigenvectors, so we can select an orthogonal collection spanning
the subspace. If we also choose our eigenvectors to be of unit length, we thus
obtain an orthonormal basis of eigenvalues. Applying this to dv: M, — M),
we see that there is an orthonormal basis X1, X2 of M, with
dU(X,') = )\.,‘X,'.

This fact is what 1s behind

2. THEOREM (EULER). The curvatures kx have a minimum k; in one di-
rection and a maximum k; in a perpendicular direction. For a direction X
making an angle of 6 with the first direction we have

kx = ky cos® 0 + ko sin? 6.
PROOF. Let X, and X; be unit eigenvectors of II. Then by Proposition 0
kx, = II(X;, Xi) = —(dv(X;), Xi)
= —{(Ai - Xi, Xi)
= —A;.
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If we express any other unit vector X' € M), as
X = (cosB)X] + (sin ) X5,
then

kxy =11I(X, X) = —(dv(X), X)
= — (A1 (cosB) X7 + A2(sin ) X3, (cosB)X] + (sin6)X?)

= —A;cos’6 — Aysin 6.
As before, this completes the proof* «s

To connect the curvatures ki, k2 with K, we first note that K can be expressed
very succinctly in terms of dv.

3. PROPOSITION. The Gaussian curvature K(p) at p € M 1s
K(p) = determmmant of dv: M, — M,.

PROOF. If Y1,Y, € M, are linearly independent, then

v*(a)(p)(11, 12)
dV(p)(11,Y2)

_ o' (p) (11, v )
dv(p)(Y1,Y2)

K(p) =

Using the fact that S2,(,) is parallel to M,, and remembering that we are
considering dv as a map into M), this can be written simply
_ dV(p)dv(1), dv(Y2))

dV(p)(Yla YZ)

K(p)

Since dV is a 2-form, this ratio is indeed just detdv. +»

* Notice that we have reduced Euler’s Theorem to a fact about the eigenvalues A; < A5
of a self-adjoint transformation 7: V — V on a 2-dimensional vector space:

A1 = min {Tv,v), Ar = max (Tv,v).
lvi=1 Jvll=1

For higher dimensions there is a minimax definition of the various eigenvalues. See
Courant, Uber die Abhdngigkert ..., Nachrichten, Konglichen Gesselschaft der Wis-
senschaften zu Géttingen, Math. Phys. Klasse 1919, pp. 255-264.
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4. COROLLARY. Let Y;,Y2 € M, be orthonormal. Then

K = deth, ) = e (B0 1) T,

PROOF. Since II(Y;,Y;) = (—dv(Y;),Y;), the matrix of dv with respect to
Y], Y2 iS

—H(Yl, Y]) —H(YZ, Yl)
-1I(Y1,Y,) -1(Y2,Y2) )’

which has the same determinant as the matrix (II(Y,', Y,)) o

5. COROLLARY. Let Y1,Y; € M), be linearly independent. Then

o et ) _ der1(¥ 1))
P) = Ger ) da(¥, 1))

PROOF. Corollary 4 proves the formula for orthonormal X1, X,. If ¥; =
Zj aij Xj, then replacing Xi, X2 by Y1, Y, multiplies both numerator and de-
nominator by det(a;;). %

6. COROLLARY. FYor any p € M we have
K(p) = ki - k.

PROOF. Apply Corollary 4 when Y1,Y2 € M, are the orthonormal basis of
eigenvectors of dv, with eigenvalues —k1, —k>. Then

-k 0

K(p) =det( 0 —k

):k1 cky. %

Corollary 5 allows us to develop an explicit formula for K, which involves
some standard symbolism to be introduced first. If x = (x,y) isa coordinate
system on M, then we write the first fundamental form I as

[=Edx®dx+ Fdx®dy+ Fdy®dx +Gdy ®dy.

If f: R? — R?is the inverse of y, so that

8 _f
dax  Os
9 af

ay o
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then
A=Y TAY
s={5 )= (%)
S ariaf
(*) F=) 35

[Notice that the left sides of these equations really mean E(f(s, 1)), etc. (the
functions E, F, G themselves are defined on M). This is just the form we want.
For example, to compute dE /dx at ¢ = f(5,1) we have

oF
g(q) = Dl(E o X_l)(X(‘I))
= Di(E o [)(x(q))
oFE _ _ .
= X(S,f),

the E on the last line denotes the same function on R? which appears in the
equations (*)].

The symbols E, F, G were introduced by Gauss himself (at the beginning of
section 11 of his paper), and they have remained standard ever since. There are
also standard symbols for the second fundamental form:

M=ldx®@dx+mdx®@dy +mdy®@dx+ndy @dy.

To obtain formulas for /, m, n, we look at the Weingarten equations in the first
proof of Theorem 1, and note that

3

of df *f ‘ azf’
I_H(as as) <N 32> ; V(S (s,0)

th
() m = Z V(5 0)5

3 ; 32fi
= ZU (f(S,f))?;

i=1
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formulas for vi( f(s,?)) have already been given on pages 113-114. Using Corol-
lary 5, we now have the classical formula

In — m?

Ko =%6-F

(p).

The symbols I, m, n do not appear in Gauss, who instead uses the symbols
D, D', D" for certain quantities proportional to them. These symbols are
introduced on page 87; it is easy to see that Gauss’ formula for K on this
page is equivalent to the one we have just derived, although Gauss obtained it
in a different way, by beginning with the formula which we derived on page 119.

Our next theorem probably requires an apology in advance. The result looks
amazingly unappetizing; it’s hard to see why anyone would want it even if he
had it, and the proof is merely an involved calculation. Nevertheless, we will
justify its existence soon after proving it. The calculation appearing in the proof
should be a lot easier to follow than Gauss’.

7. THEOREM. Let (x,y) be a coordinate system on a neighborhood of p €
M C R3, and let

I=i",)=FEdx®dx+ Fdx®dy+ Fdy®dx+ Gdy ®dy.

Then
dEJG _OFIG (3G
MEG-F»YK=E|——— —2——+ | —
( ) (ay 3y Tdx 8y+(8x))
(aE G JEAG _IAEIF IFIF _OF BG)

- = = el
5x 9y  dydox  “dyay  ‘axdy  ox ox
dE 3G _OE dF 2
G (2E0G _,0EDF | (OF
dx 0x dx dy dy
PE _®F PG
ay? dxdy  ox% )’

—2(EG - F?) (

PROOF. Consider the inverse f: R? - R? of the coordinate system (x, ). To
save space we will denote

Pr_p f simplyby fi
Bsat = 12 1mply by 12,
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and similarly for other partial derivatives. We have

K- In — m?

~ EG-F¥
where, by (),
VEG — F?

l=<fu,N>=<fu, S x fa >

m={fiz, N) =<ﬁz,%>
n={fa, N) =<f22,M>.
EG — F?

Thus
K(EG — F?? = (fir, fi X f2) - {f22, fi X o) — (fizs i X f2)?

() =)o) (%)
=det| fi |-det| fi | —det| fi | -det| £ }.
f f f /2

In this equation each f; and f;; is considered as a row of the matrix. If we use
fi* and f;;* to denote the columns with the same entries, then we also have

S fiz
K(EG—F?*»? =det| fi ) ~det(f224, i, £2Y) — det ( A ) ~det(f124, i, oY
\ /> )2

v
= det fi |2 AL AY
L\ /2

Ji2
— det A ] A A
S2

(i1, f22) (i ) (A f2)
=det | (/1. f22) E F
(f2, f22) F G
(fiz, f1i2)  {fiz, 1) (S, o)
—det( (f12, f1) E F )
(fiz, f2) F G
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((ﬁlafZZ)_(ﬁZaﬁZ) (ﬁl’.fl) (ﬁlafZ))
= det (f1, f22) E F
(f2, f22) F G
0 (fizo 1) (N2, f2)
—det((flz,fl) E F )
(N2, f2) F G

But from the definitions of E, F, G in () we have

(fm, NY =3E,  (E,=0E/ds)
(fizy N) =3 Ex

(S22, o) =

(fiz, f2) = —Gl

(M, o) =F1 — 3E;

(fo2, i) = F, = 3G\,

Moreover, from the fourth and fifth equations we obtain

a
3G = a(le,fZ) = (fiz1, f2) + (N2, f21)

0
Fiz—3Epn= 5;(f11,f2) = (fuz, 2} + (i1, J22).
Subtracting the first of these from the second, we then obtain
(fir, f2) = (frzs fr2) = =3Gn + Fia — 3 En.

So we have, finally,

-G+ Fao—3En 1E, F—1E,

2 2
K(EG — F?)? = det F, — 3G, E F
3G, F G
0 1E, 3G
—det| 3E;, E F |,
1GG F G

which gives the formula in the statement of the theorem! ¢
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From Theorem 7 we can deduce an immediate Corollary, which appears on
page 93 of the translation:

“Thus the formula of the preceding article leads of itself to the remarkable

THEOREM. Ifa curved surface is developed upon any other surface whatever,
the measure of curvature in each point remains unchanged.”

The Latin word for ‘remarkable’ has become part of the traditional name for
this result:

8. COROLLARY (THEOREMA EGREGIUM). If f,g: M — R? are two
imbeddings (or even immersions) such that f*( , ) = g*( , ), then the Gauss-
ian curvature of f(M) C R3 at f(p) equals the Gaussian curvature of g(M)
at g(p).

The Theorema Egregium justifies the close attention which we have given
to the Gaussian curvature K of a surface. Although defined in terms of the
imbedding of the surface in R3, it turns out to depend only on the Riemannian
metric induced by that imbedding. This shows why the Gaussian curvature of
a cylinder must be 0—there is a (local) isometry from the plane to the cylinder:

If the cylinder Z C R? is

Z ={(x,y,2): x* + y* =a?}, ]

then a local isometry f: R?> — Z is given by

s .S
f(s,t):(acos;,asm;,t). e,

It is easily checked that f; is an isometry at any point, but the result should be
clear without any calculations whatsoever. To prove that Z is locally isometric
to R2, just take a piece of paper, and roll it up into a cylinder. The map which
takes a point on the flat piece of paper into the corresponding point on the
rolled up piece of paper is an isometry. The isometric properties of this map
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are expressed by the everyday experience that paper cannot be stretched, but
merely bent.

&

The Theorema Egregium is often expressed by saying that Gaussian curva-
ture is a “bending invariant”. Anyone who has ever made a paper dunce hat
knows (though he may not know that he knows) that the cone is also locally
isometric to the plane, and hence has Gaussian curvature 0.

image of

normal map S~ -__X

Map makers, and anyone who has had to wrap a spherical object, know that
a piece of paper cannot be bent onto even a small portion of a sphere. A math-
ematical proof follows immediately from the Theorema Egregium, for a sphere
has non-zero Gaussian curvature. The situation for surfaces is thus completely
different from that for curves. All 1-dimensional Riemannian manifolds are lo-
cally isometric to R!, for if we choose an immersed curve ¢ in the manifold,
then the arclength function of ¢ is an isometry into R!. So there are no inter-
esting bending invariants of a curve; all the interesting characteristics of a curve
are invariants under the group of Euclidean motions. The Gaussian curvature
is, of course, an invariant under the group of Euclidean motions, but it is also
invariant under the much larger (but still important) group of maps which are
merely defined on the surface, and are isometries there. (As a contrast, the
mean curvature %(kl + k2) 1s invariant under the group of Euclidean motions,
but it is not a bending invariant; for example, the plane has mean curvature 0,
while a cylinder of radius @ has mean curvature a/2.)
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In the previous paragraph we appealed to the Theorema Egregium to prove
that a sphere is not locally isometric to the plane. But it is also possible to
give a much more elementary proof of this fact, that will convince some one
who knows a little geometry. If there were an isometry from a neighborhood
of p € S? into the plane, then a small triangle 4 BC around p, with portions

of great circles as sides, would have to be mapped into an ordinary triangle
A’B’C’ on the plane, since great circles are geodesics on the sphere. The angles
at A4, B,C would also have to equal the angles 4’, B’,C’. This is impossible,
since ZA+/B+£C > m, while ZA"+ /B’ + ZC’ = m. This phenomenon turns
out to have a generalization to arbitrary surfaces, a result that Gauss felt “ought
to be counted among the most elegant in the theory of curved surfaces”. In
deriving this result we will essentially follow Gauss, but we will use some of our
previous results about geodesics, and suppress some of the additional formulas
which Gauss obtains along the way, so that the argument may appear somewhat
simpler.

In expounding the theory of geodesics, Gauss derives two conditions, of en-
tirely different natures, for a geodesic on a surface. Although the first of these
conditions is not necessary for our final goal, it is an interesting exercise in the
calculus of variations, as well as an interesting result in its own right. We con-
sider a curve ¢: [a,b] — M and a variation « keeping endpoints fixed. Looking
at the energy function (Gauss looks at length instead), we have

b
u02f< (u, 1), — (ut)>dt
b 2
f < 0,520, r>> dr

- / < "(t), ~ (0, z)> di,  using integration by parts.
a

dE @(u))
du

_4
u=0_du

This result holds for any variation & keeping endpoints fixed. The final integral
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must therefore be zero whenever da/du(0,1) € M, () for all ¢, since there is
then a variation a through curves on M with these values of da/du(0,1). In other

%‘

words, y is a geodesic on M if and only if
b
[ @a@ndi=o for every y saisying (ne).v(r @) = 0
a

In particular, we can choose

() = pO[y" () = " O, vy ) vy (1))]

where ¢ is a C* function on [a, b] with ¢ > 0 on (a,b) and ¢(a) = ¢(b) =0.
We then obtain

b
0= f SO0, 7" () = Oy )] dr.

Since v(y(f)) has length 1, the Schwarz inequality (Theorem I.9-1(2)) shows
that the term in brackets is always < 0. Since ¢(f) > 0 on (a, b), the term in
brackets must actually be 0 everywhere. This implies that y”(f) and v(y (¢)) are
everywhere linearly dependent. In other words,

The curve y on M is a geodesic if and only if
y” 1s always perpendicular to M.

Notice that this condition makes sense only for a surface in R3: the vector y”
has no meaning for an abstract Riemannian manifold.



136 Chapter 3, Part B

We now pass to the equations for a geodesic on any 2-dimensional Riemann-
ian manifold. However, we will work with a special coordinate system. Consider
a neighborhood of p € M which is exp(U), where U C M, is a neighborhood
of 0 on which exp is one-one. Identify M, with R? by choosing an orthonormal
basis for M,. Introducing polar coordinates (p, ¢) on M, (minus some ray), we
obtain a coordinate system (r, ) = (p,¢) o exp~! on exp(U) (minus some geo-
desic ray), where p is now chosen so that p = 1 for vectors in M, with norm 1.

72—

This implies that |d/dr|| = 1. We also know that (3/dr, 3/d¢) = 0, by Gauss’
Lemma. So we have

(,)=dr®dr+Gdep®dy

for some function G. The function G is just G(g) = (3/0¢ly,3/3¢l,). Clearly, G
can be considered as defined on exp(U) — {p}, even though any particular
coordinate system (r, ) can be defined only on exp(U) minus some geodesic
ray. In terms of the g;; notation we have

gn=1, gl=1
gn=gn=0 gl=g"=0
1
82 =0, g? = G
An easy calculation from the definitions (pp. 1. 326 and I.328) then gives
10G
12,2] = [22,2] = - —
12,2 = (22,2 = 3 3
194G
2,1 = —~—
[22.1] 2 0r
all other [ij, k] = 0;
1 G
F122 = F221 =26 ar
190G
My =—-—
22 2 0r

all other Ffj =0.
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The equations for a geodesic (pg. 1.329) thus give

d?y! 18G d
() = =5 (())(V)

Now suppose y 1s some curve parameterized by arclength, and let 6(s) be
the angle between y'(s) and 8/dr|,, (. Clearly

a
(2) cosf(s) = <y’(s), — >
ar v(s)
[ Lar e s
ds 3r y(s) ds 3(p y(s)’ ar y(s)
dy!
T ods
For a geodesic y we obtain from (1) and (2),
1 BG dy? d cosB(s)
3 - - 7
3 Zoon (- ) il
= —sinf(s) G(S)

Finally, note that the area of the parallelogram spanned by the unit vectors y’'(s)
and 9/dr|, (5 equals

(4)  sinf(s) andalso equals dV J , Y (s)
0

dy' d

y(s)’ ds ar

dy? Kl
() ds dg

9
= VG(y(s))dr ndg (5

V(S))

d
=Gy ()T
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So we obtain

189G dy?\ dy? df
S22y (s))(—y—) = VG N2

2 or ds ds ds’
G
d9 1 8r 2
and thus
do VG
(*) ds = —( (s ))—

for any geodesic y. This is the equation Gauss finally obtains, on page 107 of
the translation.

Gauss also obtains the expression for K in this special coordinate system.
Theorem 7 now takes the much simpler form

2
4GK = (3‘;) ~2628

ar o2’

which gives

LEF«/E
JG ot

() = —

It will now be necessary to obtain some further information about the func-
tion VG, for which Gauss gives very brief arguments. We will find it convenient
to express G “as a function of p and ¢”; that is, we consider

g=Goexpo P,

where P: Mp—ray — (0,8]x(0,2w) is P = (p, ), so that g2(po, do) is G(expv),
where v € M), has polar coordinates (oo, ¢o). At times it will also be convenient
to use (p, ¢) to stand for a point in M), as well as standing for the coordinate
functions themselves.

The function g can be considered as defined on (0,8] x [0,27] (with the
same values at (p,0) as at (p,2m)). What we want to examine is the behavior
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of g near (0,¢). We do this by comparing distances on M, with those on M.
On the vector space M, we have an inner product { , )p; since the tangent
space (M), of M, at v € M, can be identified with M,, we can use { , )p to
obtain a Riemannian metric on M,. To keep things straight, we will use v, w
to denote elements of M,, and X, Y to denote tangent vectors in the tangent
space (Mp)y. For each X, € (Mp)y we thus have a certain norm, which we
will denote by [| Xyll. Now recall that exp,: (Mp)o = M, is the identity map
(when we identify (Mp)o with Mp), so that we certainly have

I Xoll = llexp,(Xo)lp,  Xo € (Mp)o.

If & > 0, it follows that for v € M, sufficiently close to 0 and Xy € (Mp)y of
unit norm ||| ||| we have

[IXoll = llexp, (Xo)llexpwy | < &

so that for any Yy € (Mp)y we have

[l = llexp, (Yo)llexpewy | < & - MYl

Noting that exp, (3/3¢|,) = 3/3¢|exp(v) » we have

0 sl ] - el << 1
— — —_— 8 . —_— s
8¢ v 8(p exp(v) 8¢ v
for all sufficiently small v, while clearly
9 =1
ANQUEIN
0
% x| v pv) =1

= lvll, = p(v). w /\U
N

5

v

M,
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Dividing all terms of (1) by p yields

il__g’_<
o

for all sufficiently small p. Since this is true for all & > 0, we have thus shown
that

3

(2) VE(p,$) =p+o(p),

where o(p) denotes a function on (0, 8] x [0, 27] such that

lim O—(Q

=0 (uniformly in ¢).
him = (uniformly in ¢)

Clearly /g remains continuous on [0, 8] x [0,2r] if we define

(kxx) J/80,¢)=0.

Notice, moreover, that equation (2) now immediately implies that

(sksk k) af

——(0,4) =1

(where 0./g/0p(0, $) really denotes a right hand derivative). However, we want
to know that 8,/g/dp is actually continuous on [0, 8] x [0, 27]; the argument for
this will require another step.

From equation (%) we have, on (0,8] x [0, 27],

32\/— [where exp(p, ¢) really means
—2(p,¢) = —V/2(p,¢) - K(exp(p,¢))  exp(v), where v € M) has
polar coordinates (p, ¢)],

which shows that 82.,/g/3p?(p,$) — 0 as p — 0. It follows, in particular, that
32./g/0p* is bounded. For p > 0 we have

52
f( ) = f(¢)—f f(,(p)d,
)
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which immediately implies that

N

ll)i_r)r}) 8_,0 (p,¢) exists.

By a standard theorem of calculus (see e.g., Spivak, Caleulus, 3 ed., pg. 200), the
limit must be 3./g/9p(0, ¢), which equals 1, by (#**x*). It follows, in particular,
that

PO 2 PO
(Hxxk0k) /0 \/—(p ¢)dp = hm/ (P $)dp
~ lim & f( 9) — i(po,m
=1- a—‘/g(po,d’).
o

We are ready to prove a theorem.

9. THEOREM. Let A, B, C be three points of exp(U), where U is a convex
neighborhood of 0 € M4, on which exp is a diffeomorphism, and let & be a
geodesic in exp(U) between B and C. Denote the geodesic segment from A
to C by B and the geodesic segment from A4 to B by y, and let AABC be the
“geodesic triangle” bounded by a, B, y. Also let Z4 denote the angle between g

and y, etc. Then
C

/ KdV =/A+ /(B + LC — 7.
AABC

A
PROOF. Let b,c € M, be the vectors with exp(b) = B and exp(c) =
Choose the polar coordinates p,¢ on M, so that ¢(b) = 0. Then ¢(c) is
just ZA.

0(£LA4)

\ 0(0)
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It is easy to see that @ cannot intersect the same geodesic ray through 4
twice, so it must be the image under exp of a curve in My which is the graph
p = f(¢) of some function in the polar coordinates p, ¢. Let 6(¢) be the angle
between d/dr|, and «’(q), where ¢ is exp of the vector with polar coordinates

(f(#),9)
We clearly have

6(ZA)

f#(0) =nm — 4B, 6(£4) = £LC. N0

Consequently,

/ KdV:/ exp*(KdV)
AABC exp—1(AABC)

y | 2ve
exp— 1 (AABC) \/E apz

ZA fl¢) 52
=/ (/ - a“f(p,wdp) d¢
0 0 0

JgdpAdp by (xx)

LA P
= [T (1- @) by v
0 0
ZA do
- [) (1 + %up)) dé by ()

— LA +6(LA) — 6(0)
=LA+ LC+ /LB —m. %

According to Theorem 9, on a surface with everywhere positive curvature
the sum of the angles of a triangle with geodesic sides is always > n, while
on a surface with everywhere negative curvature the sum of the angle is al-
ways < 7. This certainly looks like the case in pictures, and one can even see

that the bigger the triangle, the bigger the difference between Z4 + ZB + £C
and 7.
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@)

Notice that in the proof of Theorem 9 we are essentially converting an integral
over the region AABC into an integral over (one of) its sides—this looks suspi-
ciously like Stokes” Theorem. In Volume III, we will indeed be able to present a
much nicer proof of Theorem 9, which does not depend on a special coordinate
system, and which makes explicit the role of Stokes’ Theorem. Moreover, we
will be able to derive other important consequences of the same results. How-
ever, for the moment, we are more interested in two questions. How did Gauss
think of the Theorema Egregium? and What does 1t really mean?

The paper which we have just examined was based on an earlier paper which
Gauss did not publish (also included in the Princeton University Library trans-
lation). From the earlier paper it appears that Gauss first proved the result in
Theorem 9. Notice that this result gives the Theorema Egregium as a corollary,
for it implies that

K(p) r LA+ /B+/C — 1
= lim
P AABC—>p area AABC ’

and this limit is defined totally in terms of the Riemannian metric on the sur-
face. After realizing this, Gauss probably said to himself: “Since K depends
only on the metric, it should be possible to show this by a direct computation;
and if any one can do the computation, I certainly can.”

To answer the second question—What does the Theorema Egregium really
mean?—requires a more serious effort. The original definition of K seemed
perfectly satisfactory—it has immediate geometric appeal and is even fairly easy
to compute. The only defect of the definition is that the concept being defined
turns out to be too good; it turns out to be invariant under isometries, while its
definition is not.

One of the dogmas of modern mathematics is that for any object that is invari-
ant in any sort of way, a definition must be found that exhibits this invariance
directly (even if such a definition is harder to understand than the original!).
The definition of determinants is a good example. An elementary treatment of
determinants usually begins by defining the determinant of a matrix, either by
writing down a messy formula, or in an inductive way that really amounts to
the messy formula. It is then shown that det(4 - B) = det 4 - det B; from this
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it follows that one can define the determinant of a linear transformation to be the
determinant of its matrix with respect to any basis. This naturally leads one
to seek a definition of the determinant of a linear transformation T: V — V
which does not require a choice of basis. After one has defined Qk(V), it is
possible to define det T to be the constant such that T*: Q*(V) — Q"(V)
is det T times the identity. This definition is indeed independent of a choice
of basis, but when one looks a little harder at it, one sees that it isn’t all that
different from the messy formula defining the determinant of a matrix. Indeed,
one proves that dim Q"(V') # 0 by writing down an explicit non-zero element
of it (in terms of a basis!) which involves permutations in exactly the same way
as the original definition of determinants. Finally, if one can tolerate even more
complicated constructions, the “exterior algebra” of V can be used to produce a
definition of det T which is completely independent of bases, and does not even
mention permutations. In fact, the sign of a permutation ¢ can then be defined
as the determinant of the linear transformation 7': R* — R” with T'(e) = e4(y).
This approach is expounded in Chevalley’s book, The Construction and Study of
Certain Important Algebras.

The definition of curvature follows a similar course. We first defined the cur-
vature of a surface in a way which depends on an imbedding in R?; our final
goal is a definition of curvature which depends only on the Riemanman met-
ric on the surface. It should be noted that we already have a candidate—the
formula in the Theorema Lgregium may be used as a definition of curvature!
It must still be checked that this definition does not depend on the coordinate
system (an uninviting task), but at least the definition involves only a coordinate
system on the surface, not an imbedding of the surface in R®. Presumably, few
mathematicians would accept this definition as a reasonable one. As we pro-
ceed to frame more acceptable definitions of curvature, we will rely, just as in
the case of determinants, on more complicated and abstract constructions, so it
is important that we follow the historical evolution of the definition of curvature,
in order not to lose sight of its geometric significance.

One further comparison with the case of determinants will point out the di-
rection which our investigations will have to take. It seems safe to assert that the
modern invariant definitions of determinants would never have come into being
if mathematicians had always considered only determinants of 2 x 2 matrices—
our perception of the structure is complicated too much by the simplicity of this
special case. Similarly for curvature. The essence of curvature is revealed more
fully only when one transcends the limits of intuition and considers manifolds
of arbitrary dimensions, conceived as existing in their own right, not as subsets
of a Euclidean space.
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ADDENDUM

THE FORMULA OF
BERTRAND AND PUISEUX;
DIQUET’S FORMULA

Consider the function /g which was used in the proof of Theorem 9. This
function is defined on some [0, §] x [0, 2] and

() VE(p,0) = /g(p,2m) for p € [0,5]
(2) J2(0,9)=0
3) f Vg

(0¢)—1m -, ¢) =1
dp
We have also noted that on (0, 48] x [0,27] we have

2
@ ? f

(p,9) = —/&(p,¢) - K(exp(p,d))
= —J/2(p,9) - K(p,p), say.

This shows (appealing once again to the standard theorem of calculus used
before) that

g PVE,
(5> apz - p-—>0 apz (p’ ¢) - O

Differentiating equation (4) yields

33f 0v/g

6) (p,$) = ——ap—(p,¢)-12(p,¢) V& (p, ¢) (p ).

We note that the term 9K/9p(p,¢) makes sense even for p = 0; it Is just a
directional derivative of K, which is a C*® function on M,. Consequently,
0K /dp(p, d) approaches a limit as p — 0. From (6) we thus obtain
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9 .k
o D0 =t S 00)
P p—
using (2) and (3), and noting that
=-K _
P Ko.4)= K(p).

Using (2), (3), (), (7), we now have the Taylor polynomial expansion

K 3
Vg, 9) =p— % + 0(p?).

[There is still a technical detail which must be taken care of. We actually want
to know that the remainder

K 3
R(p) = Ve(p,¢) —p+ %

satisfies
, (,0)
im
p—0 p

-0 uniformly in ¢.

This can be seen from the proof that the Taylor polynomial approximates the
function; the proof involves L’Hopital’s Theorem, which in turn depends on
the Cauchy mean value theorem (Calculus, pg. 201), whose role will be made
explicit. We have

/g - ,
JEod) —p+ K(pos  ap PP 1H KR/
lim 3 = lim —
p=0 1Y p—0 3,0
0 < p < p, by the
Cauchy mean value theorem
2J/g - :
a‘/z—(p,tb) + K(p)p i
= lim -2 = O<p<p
p—0 6p
93
f(p ¢) + K(p) o
= })i_rf}) 5 0O<p<p
=0,

with the final equality coming from (7).]
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10. PROPOSITION (BERTRAND AND PUISEUX; 1848). Let C(p) be the
circumference of the “geodesic circle” of radius p around p € M, consisting of
the endpoints of geodesic segments of length p which start at p. Then

2mp — C(p)

K(p) = lim 3
(p) Limy >~

PROOF. Clearly

2
Cm=f
Y exp(p,9)

B 2n B K(p)p3 2n 3
=[" (v ED2Y g+ [ o) ag

3
=27 (p - %) + 0(p%).

2
d¢ = V&(p, ¢)dé

0

dg

So ,
2mp—C
np —C(p) 4 0(,03 )' o

K(p)=3-
(p) 0 p

According to Proposition 10, on a surface of positive curvature, like a sphere,
geodesic circles are always “too small”, while on surfaces of negative curvature,

A
sphere of
radius 1

geodesic circle
of “radius” p.
The radius in
R3 is sin p.

p radians

they are always “too large”. Notice that Proposition 10 gives another interpre-
tation of curvature totally in terms of the Riemannian metric on M. There 1s
yet another formula of the same type.

11. PROPOSITION (DIQUET; 1848). Let A(p) be the area enclosed by the
geodesic circle of radius p around p € M. Then

mp’ — A(p)

K(p) = lim 12-
(p) Lim, o
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PROOF. Clearly

ao=[ av=| - [ vEw.srdoae

region

[ ) e [ s

2 4
o (p K(p)p

> i ) +o0(p),

which easily yields the desired result. <



CHAPTER 4

THE CURVATURE OF
HIGHER DIMENSIONAL MANIFOLDS

A. AN INAUGURAL LECTURE

O n June 10, 1854 the faculty of Géttingen University heard a lecture entitled
Uber die Hypothesen, welche der Geometrie zu Grunde liegen (On the Hypotheses
which lie at the Foundations of Geometry). This lecture was delivered by Georg
Friedrich Bernhard Riemann, who had been born just a year before Gauss’
paper of 1827. Although the lecture was not published until 1866, the ideas
contained within it proved to be the most influential in the entire history of
differential geometry. To be sure, mathematicians had not neglected the study
of surfaces in the meantime; in fact, Gauss’ work had inspired a tremendous
amount of work along these lines. But the results obtained in those years can
all be proved with much greater ease after we have followed the long series
of developments initiated by the turning point in differential geometry which
Riemann’s lecture provided.

A short account of the life and character of Riemann can be found in the
biography by Dedekind* which is included in Riemann’s collected works (pub-
lished by Dover). His interest in many fields of mathematical physics, together
with a demand for perfection in all he did, delayed until 1851 the submission
of his doctoral dissertation Grundlagen fiir eine allegemeine Theorie der Functionen einer
verdnderlichen complexen Grisse (Foundations for a general theory of functions of
a complex variable). Gauss’ official report to the Philosophical Faculty of the
University of Gottingen stated “The dissertation submitted by Herr Riemann
offers convincing evidence of the author’s thorough and penetrating investiga-
tions in those parts of the subject treated in the dissertation, of a creative, active
truly mathematical mind, and of a gloriously fertile originality.”

Riemann was now qualified to seek the position of Privatdocent (a lecturer
who received no salary, but was merely forwarded fees paid by those students

* Even for those who can only plod through German, this is preferable to the account
in E. T. Bell’s Men of Mathematics, which is hardly more than a translation of Dedekind,
written in a racy style and interlarded with supercilious remarks of questionable taste.

149
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who elected to attend his lectures). To attain this position he first had to sub-
mit an “inaugural paper” (Habilitationsschrift). Again there were delays, and it
was not until the end of 1853 that Riemann submitted the Habilitationsschrift,
Uber die Darstellbarkeit einer Function durch eine trigonometrische Reihe (On the repre-
sentability of a function by a trigonometric series). Now Riemann still had to
give a probationary inaugural lecture on a topic chosen by the faculty, from a
list of three proposed by the candidate. The first two topics which Riemann
submitted were ones on which he had already worked, and he had every reason
to expect that one of these two would be picked; for the third topic he chose the
foundations of geometry. Contrary to all traditions, Gauss passed over the first
two, and picked instead the third, in which he had been interested for years.
At this time Riemann was also investigating the connection between electric-
ity, magnetism, light, and gravitation, in addition to acting as an assistant in
a semuinar on mathematical physics. The strain of carrying out another ma-
jor investigation, aggravated perhaps by the hardships of poverty, brought on a
temporary breakdown. However, Riemann soon recovered, disposed of some
other work which had to be completed, and then finished his inaugural lecture
in about seven more weeks.

Riemann hoped to make his lecture intelligible even to those members of
the faculty who knew little mathematics. Consequently, hardly any formulas
appear and the analytic investigations are completely suppressed. Although
Dedekind describes the lecture as a masterpiece of exposition, it is questionable
how many of the faculty comprehended it. In making the following translation *
I was aided by the fact that I already had some idea what the mathematical
results were supposed to be. The uninitiated reader will probably experience a
great deal of difficulty merely understanding what Riemann is trying to say (the
proofs of Riemann’s assertions are spread out over the next several chapters).
We can be sure, however, that one member of the faculty appreciated Riemann’s
work. Dedekind tells us that Gauss sat at the lecture “which surpassed all his
expectations, in the greatest astonishment, and on the way back from the faculty
meeting he spoke to Wilhelm Weber, with the greatest appreciation, and with an
excitement rare for him, about the depth of the ideas presented by Riemann”.

*The original is contained, of course, in Riemann’s collected works. Two English
translations are readily available, one in Volume 2 of Smith’s Source Book in Mathematics
(Dover), and one in Clifford’s Mathematical Papers (Chelsea).
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On the Hypotheses which lie at
The Foundations of Geometry

Plan of the Investigation.

As is well known, geometry presupposes the concept of space, as well as
assuming the basic principles for constructions in space. It gives only nominal
definitions of these things, while their essential specifications appear in the form
of axioms. The relationship between these presuppositions is left in the dark;
we do not see whether, or to what extent, any connection between them is
necessary, or a priori whether any connection between them is even possible.

From Euclid to Legendre, the most famous of the modern reformers of
geometry, this darkness has been dispelled neither by the mathematicians nor by
the philosophers who have concerned themselves with it. This is undoubtedly
because the general concept of multiply extended quantities, which includes
spatial quantities, remains completely unexplored. I have therefore first set
myself the task of constructing the concept of a multiply extended quantity
from general notions of quantity. It will be shown that a multiply extended
quantity is susceptible of various metric relations, so that Space constitutes only
a special case of a triply extended quantity. From this however it is a necessary
consequence that the theorems of geometry cannot be deduced from general
notions of quantity, but that those properties which distinguish Space from other
conceivable triply extended quantities can only be deduced from experience.
Thus arises the problem of seeking out the simplest data from which the metric
relations of Space can be determined, a problem which by its very nature is not
completely determined, for there may be several systems of simple data which
suffice to determine the metric relations of Space; for the present purposes,
the most important system is that laid down as a foundation of geometry by
Euclid. These data are — like all data — not logically necessary, but only of
empirical certainty, they are hypotheses; one can therefore investigate their
likelihood, which is certainly very great within the bounds of observation, and
afterwards decide upon the legitimacy of extending them beyond the bounds of
observation, both in the direction of the immeasurably large, and in the direction
of the immeasurably small.

I. Concept of an nfold extended quantity.

In proceeding to attempt the solution of the first of these problems, the
development of the concept of multiply extended quantity, I feel particularly
entitled to request an indulgent hearing, as I am little practiced in these tasks
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of a philosophical nature where the difficulties lie more in the concepts than
in the construction, and because I could not make use of any previous studies,
except for some very brief hints on the subject which Privy Councilor Gausshas
given in his second memoir on Biquadratic Residues, in the Gottingen Gelehrte
Anzeige and in the Gottingen Jubilee-book, and some philosophical researches
of Herbart.

1.

Notions of quantity are possible only when there already exists a general
concept which admits particular instances. These instances form either a con-
tinuous or a discrete manifold, depending on whether or not a continuous tran-
sition of instances can be found between any two of them; individual instances
are called points in the first case and elements of the manifold in the second.
Concepts whose particular instances form a discrete manifold are so numerous
that some concept can always be found, at least in the more highly developed
languages, under which any given collection of things can be comprehended
(and consequently, in the study of discrete quantities, mathematicians could
unhesitatingly proceed from the principle that given objects are to be regarded
as all of one kind). On the other hand, opportunities for creating concepts whose
instances form a continuous manifold oceur so seldom in everyday life that color
and the position of sensible objects are perhaps the only simple concepts whose
instances form a multiply extended manifold. More frequent opportunities for
creating and developing these concepts first occur in higher mathematics.

Particular portions of a manifold, distinguished by a mark or by a boundary,
are called quanta. Their quantitative comparison is effected in the case of
discrete quantities by counting, in the case of continuous quantities by measur-
ement. Measuring involves the superposition of the quantities to be compared; it
therefore requires a means of transporting one quantity to be used as a standard
for the others. Otherwise, one can compare two quantities only when one is a
part of the other, and then only as to “more” or “less”, not as to “how much”.
The investigations which can be carried out in this case form a general division
of the science of quantity, independent of measurement, where quantities are
regarded, not as existing independent of position and not as expressible in terms
of a unit, but as regions in a manifold. Such investigations have become a
necessity for several parts of mathematics, e.g., for the treatment of many-
valued analytic functions, and the dearth of such studies is one of the principal
reasons why the celebrated theorem of Abeland the contributions of Lagrange,
Pfaffand Jacobi to the general theory of differential equations have remained
unfruitful for so long. From this portion of the science of extended quantity,
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a portion which proceeds without any further assumptions, it suffices for the
present purposes to emphasize two points, which will make clear the essential
characteristic of an nfold extension. The first of these concerns the generation
of the concept of a multiply extended manifold, the second involves reducing
position fixing in a given manifold to numerical determinations.

2.

In a concept whose instances form a continuous manifold, if one passes from
one instance to another in a well-determined way, the instances through which
one has passed form a simply extended manifold, whose essential characteristic
is, that from any point in it a continuous movement is possible in only two
directions, forwards and backwards. If one now imagines that this manifold
passes to another, completely different one, and once again in a well-determined
way, that is, so that every point passes to a well-determined point of the other,
then the instances form, similarly, a doubly extended manifold. In a similar
way, one obtains a triply extended manifold when one imagines that a doubly
extended one passes in a well-determined way toa completely different one, and
it is easy to see how one can continue this construction. If one considers the
process as one in which the objects vary, instead of regarding the concept as
fixed, then this construction can be characterized as a synthesis of a variability
of n + 1 dimensions from a variability of » dimensions and a variability of one
dimension.

3.

I will now show, conversely, how one can break up a variability, whose
boundary is given, into a variability of one dimension and a variability of lower
dimension. One considers a piece of a manifold of one dimension — with a fixed
origin, so that points of it may be compared with one another — varying so
that for every point of the given manifold it has a definite value, continuously
changing with this point. In other words, we take within the given manifold a
continuous function of position, which, moreover, is not constant on any part of
the manifold. Every system of points where the function has a constant value
then forms a continuous manifold of fewer dimensions than the given one. These
manifolds pass continuously from one toanother as the function changes; one can
therefore assume that they all emanate from one of them, and generally speaking
this will occur in such a way that every point of the first passes toa definite point
of any other; the exceptional cases, whose investigation is important, need not
be considered here. In this way, the determination of position in the given
manifold is reduced to a numerical determination and to the determination of
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position in a manifold of fewer dimensions. It is now easy to show that this
manifold has » — 1 dimensions, if the given manifold is an nfold extension. By
an ntime repetition of this process, the determination of position in an 7 fold
extended manifold is reduced to % numerical determinations, and therefore
the determination of position in a given manifold is reduced, whenever this is
possible, to a finite number of numerical determinations. There are, however,
also manifolds in which the fixing of position requires not a finite number, but
either an infinite sequence or a continuous manifold of numerical measurements.
Such manifolds form, e.g., the possibilities for a function in a given region, the
possible shapes of a solid figure, etc.

II. Metric relations of which a manifold of » dimensions
is susceptible, on the assumption that lines have a length
independent of their configuration, so that every line
can be measured by every other.

Now that the concept of an » fold extended manifold has been constructed,
and its essential characteristic has been found in the fact that position fixing
in the manifold can be reduced to » numerical determinations, there follows,
as the second of the problems proposed above, an investigation of the metric
relations of which such a manifold is susceptible, and of the conditions which
suffice to determine them. These metric relations can be investigated only
in abstract terms, and their interdependence exhibited only through formulas.
Under certain assumptions, however, one can resolve them into relations which
are individually capable of geometric representation, and in this way it becomes
possible to express the results of calculation geometrically. Thus, although an
abstract investigation with formulas certainly cannot be avoided, the results can
be presented in geometric garb. The foundations of both parts of the question
are contained in the celebrated treatise of Privy Councilor Gauss on curved
surfaces.

1.

Measurement requires an independence of quantity from position, which can
occurin more than one way. The hypothesis which first presents itself, and which
I shall develop here, is just this, that the length of lines is independent of their
configuration, so that every line can be measured by every other. If position-
fixing is reduced to numerical determinations, so that the position of a point in the
given »n fold extended manifold is expressed by » varying quantities x;, xg, ©3,
and so forth up to ), then specifying a line amounts to giving the quantities
as functions of one variable. The problem then is, to set up a mathematical
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expression for the length of a line, for which purpose the quantities x must be
thought of as expressible in units. I will treat this problem only under certain
restrictions, and I first limit myselfto lines in which the ratios of the quantities du
— the increments in the quantities x — vary continuously; one can then regard
the lines as broken up into elements within which the ratios of the quantities d«
may be considered to be constant, and the problem then reduces to setting up a
general expression for the line element ds at every point, an expression which
will involve the quantities « and the quantities dx. 1 assume, secondly, that the
length of the line element remains unchanged, up to first order, when all the
points of this line element suffer the same infinitesimal displacement, whereby
I simply mean that if all the quantities dx increase in the same ratio, the line
element changes by the same ratio. Under these assumptions, the line element
can be an arbitrary homogeneous function of the first degree in the quantities
dx which remains the same when all the quantities dx change sign, and in which
the arbitrary constants are functions of the quantities x. To find the simplest
cases, I first seek an expression for the (n — 1)fold extended manifolds which
are everywhere equidistant from the origin of the line element, i.e., I seek a
continuous function of position which distinguishes them from one another. This
must either decrease or increase in all directions from the origin; I will assume
that it increases in all directions and therefore has a minimum at the origin. Then
if its first and second differential quotients are finite, the first order differential
must vanish and the second order differential cannot be negative; I assume that
it is always positive. This differential expression of the second order remains
constant if ds remains constant and increases quadratically when the quantities
dx, and thus also ds, all increase in the same ratio; it is therefore = constant. ds®
and consequently ds = the square root of an everywhere positive homogeneous
function of the second degree in the quantities dx, in which the coefficients are
continuous functions of the quantities x. In Space, if one expresses the location
of a point by rectilinear coordinates, then ds = V 2(dx)?, Space is therefore
included in this simplest case. The next simplest case would perhaps include
the manifolds in which the line element can be expressed as the fourth root
of a differential expression of the fourth degree. Investigation of this more
general class would actually require no essentially different principles, but it
would be rather time consuming and throw proportionally little new light on the
study of Space, especially since the results cannot be expressed geometrically;
I consequently restrict myself to those manifolds where the line element can be
expressed by the square root of a differential expression of the second degree.
One can transform such an expression into another similar one by substituting
for the n independent variables, functions of » new independent variables.
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However, one cannot transform any expression into any other in this way;
for the expression contains » "jl coefficients which are arbitrary functions of
the independent variables; by the introduction of new variables one can satisfy
only 7 conditions, and can therefore make only % of the coefficients equal to

given quantities. There remain n 5= L others, already completely determined by

the nature of the manifold to be represented, and consequently n—zl functions
of position are required to determine its metric relations. Manifolds, like the
Plane and Space, in which the line element can be brought into the form \/Zdacz
thus constitute only a special case of the manifolds to be investigated here;
they clearly deserve a special name, and consequently, these manifolds, in
which the square of the lines element can be expressed as the sum of the
squares of complete differentials, I propose to call flat. In order to survey
the essential differences of the manifolds representable in the assumed form,
it is necessary to eliminate the features depending on the mode of presentation,
which is accomplished by choosing the variable quantities according to a definite
principle.

2.

Forthis purpose, one constructs the system of shortest lines emanating from
a given point; the position of an arbitrary point can then be determined by the
initial direction of the shortest line in which it lies, and its distance, in this line,
from theinitial point. It cantherefore be expressed by the ratios of the quantities
dx, ie., the quantities dx at the origin of this shortest line, and by the length s
of this line. In place of the dx one now introduces linear expressions de formed
from them in such a way that the initial value of the square of the line element will
be equal to the sum of the squares of these expressions, so that the independent
variables are: the quantity s and the ratio of the quantities da. Finally, in place
of the da choose quantities x;, xy, ..., &, proportional to them, but such that
the sum of their squares equals s%. If one introduces these quantities, then
for infinitely small values of x the square of the line element = Xda?, but the
next order term in its expansion equals a homogeneous expression of the second
degree in the n 5= ” 1 quantities (x; deg — xp diy), (2 deg — xg dxy), ..., and is
consequently an mﬁmtely small quantity of the fourth order, so that one obtains
a finite quantity if one divides it by the square of the inﬁnitel_y small triangle
at whose vertices the variables have the values (0, 0, 0, ...), (x1, x2, x3...),
(dwy.dag,dg, . ..). This quantity remains the same aslong as the quantities x and
dx are contained in the same binary linear forms, or as long as the two shortest
lines from the initial point to & and from the initial point to dwx remain in the
same surface element, and therefore depends only on the position and direction
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of that element. It obviously = zero if the manifold in question is flat, i.e.,ifthe
square of the line element is reducible to >dx?, and can therefore be regarded
as the measure of deviation from flatness in this surface direction at this point.
When multiplied by —%— it becomes equal to the quantity which Privy Councilor
Gauss has called the curvature of a surface. Previously, n’—lg—l functions of
position were found necessary in order to determine the metric relations of
an nfold extended manifold representable in the assumed form; hence if the
curvature is given in n"T”l surface directions at every point, then the metric
relations of the manifold may be determined, provided only that no identical
relations can be found between these values, and indeed in general this does not
occur. The metric relations of these manifolds, in which the line element can be
represented as the square root of a differential expression of the second degree,
can thus be expressed in a way completely independent of the choice of the
varying quantities. A similar path to the same goal could also be taken in those
manifolds in which the line element is expressed in a less simple way, e.g., by the
fourth root of a differential expression of the fourth degree. The line element in
this more general case would not be reducible to the square root of a quadratic
sum of differential expressions, and therefore in the expression for the square of
the line element the deviation from flatness would be an infinitely small quantity
of the second dimension, whereas for the other manifolds it was an infinitely
small quantity of the fourth dimension. This peculiarity of the latter manifolds
therefore might well be called plainness in the smallest parts. For present
purposes, however, the most important peculiarity of these manifolds, on whose
account alone they have been examined here, is this, that the metric relations
of the doubly extended ones can be represented geometrically by surfaces and
those of the multiply extended ones can be reduced to those of the surfaces
contained within them, which still requires a brief discussion.

3.

In the conception of surfaces, the inner metric relations, which involve only
the lengths of paths within them, are always bound up with the way the surfaces
are situated with respect to points outside them. We may, however, abstract
from external relations by considering deformations which leave the lengths of
lines within the surfaces unaltered, i.e., by considering arbitrary bendings —
without stretching — of such surfaces, and by regarding all surfaces obtained
from one another in this way as equivalent. Thus, for example, arbitrary
cylindrical or conical surfaces count as equivalent to a plane, since they can
be formed from a plane by mere bending, under which the inner metric relations
remain the same; and all theorems about the plane — hence all of planimetry
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— retain their validity. On the other hand, they count as essentially different
from the sphere, which cannot be transformed into the plane without stretching.
According to the previous investigations, the inner metric relations at every
point of a doubly extended quantity, if its line element can be expressed as the
square root of a differential expression of the second degree, which is the case
with surfaces, is characterized by the curvature. For surfaces, this quantity
can be given a visual interpretation as the product of the two curvatures of
the surface at this point, or by the fact that its product with an infinitely
small triangle formed from shortest lines is, in proportion to the radius, half
the excess of the sum of its angles over two right angles. The first definition
would presuppose the theorem that the product of the two radii of curvatures
is unaltered by mere bendings of a surface, the second, that at each point the
excess over two right angles of the sum of the angles of any infinitely small
triangle is proportional to its area. To give a tangible meaning to the curvature
of an nfold extended manifold at a given point, and in a given surface direction
through it, we first mention that a shortest line emanating from a point is
completely determined if its initial direction is given. Consequently we obtain
a certain surface if we prolong all the initial directions from the given point
which lie in the given surface element, into shortest lines; and this surface has
a definite curvature at the given point, which is equal to the curvature of the
nfold extended manifold at the given point, in the given surface direction.

4.

Before applying these results to Space, it is still necessary to make some
general considerations about flat manifolds, i.e., about manifolds in which the
square of the line element can be represented as the sum of squares of complete
differentials.

In a flat n fold extended manifold the curvature in every direction, at every
point, is zero; but according to the preceding investigation, in order to determine
the metric relations it suffices to know that at each point the curvature is zero
in n'ig—l independent surface-directions. The manifolds whose curvature is
everywhere = 0 can be considered as a special case of those manifolds whose
curvature is everywhere constant. The common character of those manifolds
whose curvature is constant may be expressed as follows: figures can be moved
in them without stretching. For obviously figures could not be freely shifted
and rotated in them if the curvature were not the same in all directions, at all
points. On the other hand, the metric properties of the manifold are completely
determined by the curvature; they are therefore exactly the same in all the
directions around any one point as in the directions around any other, and thus
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the same constructions can be effected starting from either; consequently, inthe
manifolds with constant curvature figures may be given any arbitrary position.
The metricrelations of these manifolds depend only onthe value of the curvature,
and it may be mentioned, as regards the analytic presentation, that if one denotes
this value by a, then the expression for the line element can be put in the form

1
1+ §Za?

\/dez

5.

The consideration of surfaces with constant curvature may serve for a
geometric illustration. It is easy to see that the surfaces whose curvature is
positive can always be rolled onto a sphere whose radius is the reciprocal of the
curvature; but in order to survey the multiplicity of these surfaces, let one of
them be given the shape of a sphere, and the others the shape of surfaces of
rotation which touch it along the equator. The surfaces with greater curvature
than the sphere will then touch the sphere from inside and take a form like
the portion of the surface of a ring, which is situated away from the axis; they
could be rolled upon zones of spheres with smaller radii, but would go round
more than once. Surfaces with smaller positive curvature are obtained from
spheres of larger radii by cutting out a portion bounded by two great semi-
circles, and bringing together the cut-lines. The surface of curvature zero will
be a cylinder standing on the equator; the surfaces with negative curvature will
touch this cylinder from outside and be formed like the part of the surface of a
ring which is situated near the axis. If one regards these surfaces as possible
positions for pieces of surface moving in them, as Space is for bodies, then pieces
of surface can be moved in all these surfaces without stretching. The surfaces
with positive curvature can always be so formed that pieces of surface can even
be moved arbitrarily without bending, namely as spherical surfaces, but those

with negative curvature cannot. Aside from this independence of position for |

surface pieces, in surfaces with zero curvature there is also an independence of
position for directions, which does not hold in the other surfaces.

IIT. Applications to Space.

1.

Following these investigations into the determination of the metric relations
of an n fold extended quantity, the conditions may be given which are sufficient
and necessary for determining the metric relations of Space, if we assume
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peforehand the independence of lines from configuration and the possibility of
expressing the line element as the square root of a second order differential
expression, and thus flatness in the smallest parts.

First, these conditions may be expressed by saying that the curvature at
every point equals zero in three surface directions, and thus the metric relations
of Space are implied if the sum of the angles of a triangle always equals two right
angles. ‘

But secondly, if one assumes with Euclid not only the existence of lines
independently of configuration, but also of bodies, then it follows that the cur-
vature is everywhere constant, and the angle sum in all triangles is determined
if it is known in one.

In the third place, finally, instead of assuming the length of lines to be
independent of place and direction, one might assume that their length and
direction is independent of place. According to this conception, changes or
differences in position are complex quantities expressible in three independent
units.

2.

In the course of the previous considerations, the relations of extension or
regionality were first distinguished from the metric relations, and it was found
that different metric relations were conceivable along with the same relations of
extension; then systems of simple metric specifications were sought by means
of which the metric relations of Space are completely determined, and from
which all theorems about it are a necessary consequence. It remains now to
discuss the question how, to what degree, and to what extent these assumptions
are borne out by experience. In this connection there is an essential difference
between mere relations of extension and metric relations, in that among the
first, where the possible cases form a discrete manifold, the declarations of
experience are to be sure never completely certain, but they are not inexact,
while for the second, where the possible cases form a continuous manifold, every
determination from experience always remains inexact — be the probability
ever so great that it is nearly exact. This circumstance becomes important when
these empirical determinations are extended beyond the limits of observation
into the immeasurably large and the immeasurably small; for the latter may
obviously become ever more inexact beyond the boundary of observation, but
not so the former. _

When constructions in Space are extended into the immeasurably large,
unboundedness is to be distinguished from infinitude; one belongs to relations
of extension, the other to metric relations. That Space is an unbounded triply
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extended manifold is an assumption which is employed for every apprehension
of the external world, by which at every moment the domain of actual perception
is supplemented, and by which the possible locations of a sought for object
are constructed; and in these applications it is continually confirmed. The
unboundedness of space consequently has a greater empirical certainty than
any experience of the external world. But its infinitude does not in any way
follow from this; quite to the contrary, Space would necessarily be finite if one
assumed independence of bodies from position, and thus aseribed to it a constant
curvature, as long as this curvature had ever so small a positive value. If one
prolonged the initial directions lying in a surface direction into shortest lines,
one would obtain an unbounded surface with constant positive curvature, and
thus a surface which in a flat triply extended manifold would take the form of a
sphere, and consequently be finite.

3.

Questions about the immeasurably large are idle questions for the expla-
nation of Nature. But the situation is quite different with questions about the
immeasurably small. Upon the exactness with which we pursue phenomena into
the infinitely small, does our knowledge of their causal connections essentially
depend. The progress of recent centuries in understanding the mechanisms
of Nature depends almost entirely on the exactness of construction which has
become possible through the invention of the analysis of the infinite and through
the simple principles discovered by Archimedes, Galileo, and Newton, which
modern physics makes use of. By contrast, in the natural sciences where the
simple principles for such constructions are still lacking, to discover causal
connections one pursues phenomenon into the spatially small, just so far as
the microscope permits. Questions about the metric relations of Space in the
immeasurably small are thus not idle ones.

If one assumes that bodies exist independently of position, then the curva-
ture is everywhere constant, and it then follows from astronomical measure-
ments that it cannot be different from zero; or at any rate its reciprocal must be
an area in comparison with which the range of our telescopes can be neglected.
But if such an independence of bodies from position does not exist, then one
cannot draw conclusions about metric relations in the infinitely small from those
in the large; at every point the curvature can have arbitrary values in three
directions, provided only that the total curvature of every measurable portion
of Space is not perceptibly different from zero. Still more complicated relations
can oceur if the line element cannot be represented, as was presupposed, by the
square root of a differential expression of the second degree. Now it seems that
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the empirical notions on which the metric determinations of Space are based, the
concept of a solid body and that of a light ray, lose their validity in the infinitely
small; it is therefore quite definitely conceivable that the metric relations of
Space in the infinitely small do not conform to the hypotheses of geometry; and
in fact one ought to assume this as soon as it permits a simpler way of explaining
phenomena.

The question of the validity of the hypotheses of geometry in the infinitely
smallis connected with the question of the basis for the metric relations of Space.
In connection with this question, which may indeed still be ranked as part of the
study of Space, the above remark is applicable, that in a discrete manifold the
principle of metric relations is already contained in the concept of the manifold,
but in a continuous one it must come from something else. Therefore, either
the reality underlying Space must form a discrete manifold, or the basis for the
metric relations must be sought outside it, in binding forces acting upon it.

Ananswer to these questions can be found only by starting from that concep-
tion of phenomena which has hitherto been approved by experience, for which
Newton laid the foundation, and gradually modifying it under the compulsion
of facts which cannot be explained by it. Investigations like the one just made,
which begin from general concepts, can serve only to insure that this work is not
hindered by unduly restricted concepts, and that progress in comprehending
the connection of things is not obstructed by traditional prejudices.

This leads us away into the domain of another science, the realm of physics,
into which the nature of the present occasion does not allow us to enter.
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B. WHAT DID RIEMANN SAY?

Upon a first reading, Riemann’s lecture may appear to have almost no math-
ematical content. But this is only because the analytic investigations, which
occur in Part II, have been drastically condensed, while Part I explains, in gen-
eral philosophical terms, important mathematical concepts which succeeding
generations of investigators were eventually able to express with mathematical
precision; finally, Part III of the lecture deals with applications of the mathe-
matical discoveries to questions in physics, a process which is perhaps not yet
complete.

In this commentary on Riemann’s lecture, we will follow closely the order of
Riemann’s exposition, referring often to the various sections (1, 2, etc.) within
each part (I, II, IIT). It should not be expected that all details will be cleared up,
even in the remaining portions of this chapter, for the complete consideration of
Riemann’s ideas will occupy several of the succeeding chapters. Consequently,
the remaining parts of Chapter 4 may be the hardest reading encountered in
either of the two volumes of these notes. Nevertheless, we hope that in the end
a clear view of all these ideas will be obtained.

In the “Plan of the Investigation”, Riemann begins by accounting for the
confusion over the status of non-Euclidean geometry, which at this time was still
not completely accepted. In 1829, Lobachevsky and Bolyai had independently
constructed a system of geometry which began by assuming that through a
point not on a line there was more than one line parallel to it (as opposed to the
assumption that there is only one parallel line, which is equivalent to Euchd’s
Fifth Postulate); but it was still supposed by some that contradictions in this
system would eventually be found.

Riemann attributes the difficulties encountered in the study of non-Euclidean
geometry to the fact that geometers had never separated what we would call
the topological properties of space from its metric properties; in the axiomatic
development of geometry, even the notion of space itself is undefined, and its
properties are developed through the axioms.

Riemann proposes to distinguish the metric properties from the topological
properties, and promises that we will discover how different metric structures
can be put on the triply extended quantity which constitutes Space, so that one
cannot possibly expect to deduce the parallel postulate of Fuclid from topolog-
1cal considerations alone. This implies that experimental data must be used to
determine what metric properties Space actually has, and raises the question
which data we should seek, and what we can expect to say about the regions of
Space too distant, or too small, to be investigated experimentally.
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In Part I, “Concept of an # fold extended quantity”, Riemann is clearly trying
to define a manifold.

It is impossible to tell from this lecture, intended for non-mathematicians,
how far Riemann had advanced toward the precise solution of this problem,
and whether he had any way of expressing concretely the notion of a metric or
topological space, which is essentially prerequisite to the definition of a manifold.
However, it is quite obvious that the notion was thoroughly clear in his own
mind and that he recognized that manifolds were characterized by the fact that
they are locally like n-dimensional Euclidean space. It is also clear that he
understood the importance of infinite dimensional spaces, such as the set of
all real-valued functions on a space (it is interesting that quite recently some
of these infinite dimensional spaces have been given the structure of “infinite
dimensional manifolds”, and differential geometric methods have been applied
to them with great success).

Part II contains nearly all the mathematical results, and the discussion of this
Part will take up most of the present chapter.

The difficulties in Part II begin right with the title, “Metric relations of which
a manifold of n dimensions is susceptible, on the assumption that lines have a
length independent of their configuration, so that every line can be measured by
every other”. To understand what Riemann means, it is necessary to recall the
process by which lengths are assigned to curves in the plane or 3-dimensional
space of analytic geometry. In this case, we begin with the notion of distance
between pairs of points, which amounts to saying that we first assign a length to
straight lines; the length of other lines is then defined as the least upper bound
of inscribed curves made up of straight lines, a process which can be reduced
to integration. In this method of assigning lengths to curves, it may be said that
all curves are measured by means of straight lines.

By contrast, Riemann proposes to consider a uniform method of assigning
lengths to all curves in a manifold, a method which does not depend on first
distinguishing a particular class of curves. This is to be done by measuring the
lengths of tangent vectors, so that the lengths of curves can be defined by an
ntegral (a restriction to C! curves is first indicated). Riemann assumes that
this “length” function f is continuous on each tangent space and also positive
homogeneous—the length f(Av) of Av is |A| times the length f(v) of v.

Now there are many kinds of positive homogeneous functions on a finite
dimensional vector space; any subset of the vector space which is symmetric
with respect to the origin, and intersects each ray through 0 just once, can be
used as the set of vectors of length 1. Riemann notes that the partial derivative
of f? (with respect to some basis of the tangent space M) must vanish at
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0 € M, and that the matrix of second order partial derivatives is positive semi-

- vectors of length 1

definite. He then assumes, as the simplest possibility, that it is actually positive

definite. This means that / can be expressed as \/fgij (p)dx® - dx’ for certain
numbers g;;(p). An assignment to each tangent space M, of such a norm, or
more precisely the inner product from which it comes, is, of course, what we
now call a Riemannian metric on the manifold M.

Riemann points out that it is merely to save time, and to allow geometric
descriptions of the results, that he restricts his attention to the special case.
Certain more general cases, though not the most general of all, were investigated
by Finsler in his thesis (1918), and are now known as Finsler metrics; it seems
clear, however, that Riemann must have already known the basic facts about
these more general metrics (some information on Finsler metrics is given in the

Addendum).

Having restricted his attention to “Riemannian manifolds”, Riemann now
asks the crucial question: when does the introduction of a new coordinate sys-
tem change the metric Y gi;dy’ ®dy’ into some given metric ¥ a;;dx' @dx7;
in other words, when are two Riemannian manifolds locally isometric? Rie-
mann here presents one of his famous “counting arguments”, which enabled
him to guess results that in some cases were not rigorously proved until a hun-
dred years later. Rlemann argues that the expression ) gijdx' ® dx/ contains
n"Jrl functions (not n2, for g;; = gj;) while a new coordinate system involves
only n functions, so that we can change only n of the gij, leaving n— other
functions which depend on the metric; consequently, Riemann argues, there
should be some set of n% functions which will determine the metric com-
pletely.

In section 2 of Part II, Riemann indicates how such functions are to be
found. We are going to apply a standard technique for the study of differentiable
functions—we examine the Taylor polynomials approximating the functions ;.
If xisa Coordmate system on M, with x(p) = 0, and the Riemannian met-
ric is given by ( , ) = " gijdx’ ® dx/, then for the Taylor expansion of the
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' R"” - R we have

function g;j o X~

gij o x7H(1) = (gij 0 Xx)(0) + Y Di(gyj o x~)(0)eF
k=1

l n
+ = ) Dralgij o x O3 +o(lt ).
2 k=1

Hence on M we have

" dgij I 0%gy
® g =8P+ ai',ﬁ (x4 ) ax,i';,(p)xkxl +o(x[),
k=1 k=1

where o(|x|?) denotes a function f on M such that

f@)

p X2

However, and this is the important device Riemann introduces, we will select
a very special coordinate system around each point p € M. We choose an
orthonormal basis Xi, ..., X, € M,, and define a coordinate system x: M, —
R" on M, by X(ZaiXi) = (a',...,a"). Then we let x be the coordinate

system X o exp~'. (This coordinate system is introduced at the very beginning

of section 2, but it takes a little work to decipher Riemann’s description of it.)

The coordinate system x is not uniquely determined, for it depends on the
choice of the orthonormal basis Xi,..., X, € Mp; but any two differ by an
element of O(n), so it will not be hard to take into account the way any of our
results depend on this choice. These coordinate systems are called Riemannian
normal coordinates at p. Notice that since exp,: (Mp)o — M) is the identity
(upon 1dentifying (Mp)o with Mp), we have

d
W :eXp*X,-:X,' EMP'
i 14

We can quickly give some information about the first two terms in the expan-
sion (%) of g;;:
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1. PROPOSITION. In a Riemannian normal coordinate system x at p we
have

gij(p) = dij
agij
=0.
Bk (p)

PROOF. The first set of equations is clear, for

d
gij(p) = <5;

To prove the second set of equations, we recall the equations for a geodesic y:

d
R

> = (X, Xj) = d;j-
P

n

d2yk X d)/i d)/j
72 + Z F,-j()’(f))'zt——dt- =0.

i,j=1

In Riemannian normal coordinates the geodesics through p are just exp o ¢,
where ¢ is a straight line in Mp. This means that for all n-tuples (£, ..., M),
the geodesics through p are the curves y with y* (1) = £kr. Hence

n
Z ["l‘j (y()EE =0 for the geodesic  y* (1) = g4,
i,j=1
In particular, since p = y(0) is on all these geodesics, we have
e . .
Y rh(p)g'e/ =0 for all n-tuples (E',.. . EM.
i,j=1

This shows that all [';‘j (p) are 0: choosing all §% = 0 except £ = 1 gives F{‘i =0
then choosing all §* = 0 except gl =&/ =1 gives

0 =& (p) + TX(p) + Th(p) + T (p) = 2T (p).
It follows that

n
[ij,k]1= gul} =0 atp.
a=1

Making use of equation (¥) on pg. I.331, we have finally,

0gij
dxk

= [ik, j]1+ [jk.i]=0 at p. %
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In view of Proposition 1, we can now use () to expand the squared norm
2
I I as

n
I 12= )" gidx'dx’

i,j=1

n
=Y dx'dx'+ - / xkxldxtdx? + o(1x|?).
2 : Z gl () (IxI%)
i=1 i, jik, 1
[This is an equation for tangent vectors near p, and o(|x|?) now denotes a
function f on tangent vectors; in order to have
v,
S(vg) 0

lim =
—>p |x]|

b

we must restrict vg to be of some bounded length.] Riemann’s main assertion
mnvolves the term

1 82 .. R . : ;
3 Z 8x’§91jcl (p)x*xldxidx) = Z c,-j,klxkxldx’dx’, say.
ijik,l ijik,l

Riemann asserts that there are numbers Cj; g such that we can write

Z c,-j,klxkxldx"dxj = Z C,-j,kl(xkdx" —xtdx*y . (x'dx) — xTdx").
i,jk,l ijk,1

This assertion immediately suggests three questions—Why did Riemann suspect
this was true? How did he prove 1t? What 1s its significance?

We will begin by giving a partial answer to the third of these questions. No-
tice that the equation in question 1s supposed to hold for all tangent vectors v
at all points ¢ in a neighborhood of p. Consequently, the numbers dx’(v)
[and x/(g)] can take on all [sufficiently small] values. The coordinate sys-
tem x and the Riemannian metric { , ) are used to obtain the n* numbers
Cijkl = %82g,-j/8xk8xl(p); but beyond this, the above equation has nothing
to do with the manifold at all. If we define a quadratic polynomial Q in 2n
variables bv

QX.Y)=Q(Xi.... Xy Y1, ) = Y cijuXiX; Yy,
i,jik,l
then Riemann is asserting that this quadratic polynomial can be written as

QX.Y)= Y Cyu(Xi¥i — XY (X;Y1 — XiY)).
ijikd
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To obtain the geometric consequences of this fact, we observe what it says when
we select two vectors Up, wp € M), and let X; = dx*(vp) and ¥; = dx’ (wp);
denoting Q(X,Y) by Q(vp, wp), we have

Q(vp,wp) = Z cij k1 dx' (vp) dx? (vp) - dx* (wp) dx' (wp)
i, ik,

= Z C,-j,kl[(dx" A dxk)(vp,wp)] . [(dxj A dxl)(vp,wp)].
i, jik,d

[We can also write

0= i g dxidx] @ dxFdx! = Cii xi(dx’ A dx®y . (dx? A dxh),
Js Js
i,jik,l i, jik,d

a little more simply.] Now suppose v'p,w’p € Mp span the same subspace as
Up, Wp, SO that we can write
!
Vp =anvp +anwp

det(a,'j) £ 0.

w'p = aiavp +anwp
The right side of the above equation for Q(vp, wp) shows that
Q(U/P’ w/p) = [det(aij )]2 : Q(Upa Wp),

since each dx® A dx# is multiplied by the factor det(a;ij). If we use |lvp, wp | to
denote the area of the parallelogram spanned by vp and wp, then we also have

2 2 2
10 p, w'pll* = [det(aij)]” - llvp, wpll”

Consequently, .

Q p W p) _ Q(Upa wp)

15 wpli2 " llup, wpl®
We therefore have a way of assigning a number to every 2-dimensional subspace
of the tangent space at p. (Riemann sticks to the original quadratic function
of the x' and dx’, which puts him in the position of having to divide by the
squared area of a very strange triangle, with one vertex at x’, and one at dx".)

It is easy to see that if we pick a different Riemannian normal coordinate sys-

tem at p, then the resulting function on the 2-dimensional subspaces of Mp will
be the same, for Q(vp, wp) = Qdx'(vp), . .. ,dx"(vp), dx' (wp), . ... dx"(wp))
will change by (det B)%, where B € O(n), so that det B = +1. We will ex-
amine later the significance of this new function on 2-dimensional subspaces of
the tangent space. For the present we take up the other questions—Why did
Riemann think it was true, and how did he prove it?
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Of course, an answer to the first question is not only doomed to be mere
conjecture, but is always foolhardy to put forth, for there is no accounting for
genius. The best suggestion I can offer is that the dependence of Q(vp, wp) on
the span of v, and w) alone is certainly an attractive one, and as we shall see
later, in one special case which Riemann may have investigated first, the result
appears In a rather natural way. It is also impossible to say for sure how Rie-
mann proved the result, for his own investigations were never published. I have
used the remarks by H. Weber in Riemann’s collected works (pp. 405-409),
as well as the commentary given by Herman Weyl in a special edition of Rie-
mann’s lecture. There are two parts to the proof, a purely algebraic one about
quadratic functions, which determines what relations the numbers ¢;; & ought
to satisfy, and an analytic one which establishes these relations.

For the algebraic part, we will be considering a quadratic function Q of 2n
variables

QX Y)=0(X1,..., X, Vi, Y = Y i XiXg i)
i,jik,l

Note that for our Q we have
Cij .kl = Cjikl = Cij Ik,

(using gij = gji, and 82/3x*3x! = 82/3x!ax*). If A = (a;) is a 2 x 2 matrix,
we will use A(X, Y) to denote the 2n-tuple

AX,Y) = (anX +an?, annX +anY)
= (auXi +auti, ..., anX, +anty,, apnXi +anh, ..., aXy +anty,).

2. PROPOSITION. Let Q be a quadratic function of 2n variables,

QXYY =Y cijuXiX;Yi¥,

ijik,d
where
(0 Cij .kl = Cjikl = Cijlk-
Then

Q(A(X,Y)) = (det A)*Q(X, Y)

for all 2 x 2 matrices 4 if and only if:

(2) Cij .kl = Ckl,ij
(3) Cli,jk + Clj ki + Cik,ij = 0.
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PROOF. First of all, the equation Q(A(X,Y)) = (det 4)2Q(X,Y) clearly holds
for all 2 x 2 matrices A if and only if it holds for the non-singular ones, since
both sides of the equation are continuous functions of A, and the non-singular
matrices are dense.

Now it is well known that all non-singular 2 x 2 matrices can be written as a
product of the matrices

a 0 1 0 0 1 1 0 11

0 1)’ 0 a)’ 1 0)° 1 1) 0 1)’
[This comes from the fact that any non-singular matrix can be obtained from
the identity matrix by a sequence of elementary row operations, and every row
operation may be accomplished by multiplying by one of the above matrices.]

So our condition holds for all 4 if and only if it holds for the above matrices.
We can disregard the last matrix, since

(6 )= 0)G D0 )

For the matrix A = (O 1) , the condition Q(A(X,Y)) = (det A)*Q(X,Y)

becomes simply
Q@X,Y)=a’Q(X.Y),

which is automatically true. The same result holds for the second matrix on
our list, so all the conditions finally come down to

@) O(Y, X) = Q(X.Y) A=(? (‘))
(b) O(X +Y.Y) = Q(X,Y) Az(i ?)

Now equation (a) becomes
Z cij it Xi Xj Y'Y = Z cijkt YiY; Xp X
i,jik.l i,Jkl

Since this must be a polynomial identity, we obtain (2) immediately, by looking
at the coefficient of X;X;YxY; on both sides.
Equation (b) becomes

Z cipga(Xi + Y (X; + Y)Y Yo = Z ¢ij kit Xi Xj Yi X1,
ijik,l i,jsk,1
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or
Y i aal XYy YiYs + X YiYeYs + YiY; Y Y] = 0.
i, jik,1

Letting X = 0, we obtain

(bl) Y cijaYiYiYa¥r =0
i, jik,l

and then, in consequence,

(b2) Y XYY + XYY Y] = 0.
i,fik,d

On the other hand, (b2) implies (bl), so (b) is equivalent to (b2) alone. Finally,
since ¢;j kI = ¢ji,kl, equation (b2) is equivalent to

(b3) Y XYY Y =0,
i,fik,1

Looking at the coefficient of a particular X;Y;Y;Y¥; we obtain
Cij kl  Cij Ik + Cik,jl F Cik,1j + €il, jk + Citkj = 0.

Using the symmetry with respect to the last two indices, this is equivalent to
equation (3). <

3. PROPOSITION. A quadratic function

OX.Y)= Y cijuXiX;Yi¥i
i, 5k,

with
() Cij.kl = Cjikl = Cij .kl

satisfies the two equivalent conditions of Proposition 2 if and only if it can be
written as

OX.Y)= Y CyuXi¥y - XYy - (X;Y) - X1Y)).
ijik,d
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PROOF. If Q can be written this way, then we will clearly have Q(A(X,Y)) =
(det A)2Q(X,Y) for all A. Conversely, suppose this holds for all 4, so that we
also have

(2) Cij kI = Cklij

(3) cli, jk + c1jki + Cik,ij = 0-

We begin by writing four equivalent expressions for Q:

QX,Y) =Y cijuXiXiYili

= chk,ilXijYin
=Y cup XiXiY; Y
= ext,ij Xk X1 YiYj.

Now, by (3) we have

Cik,il = —Cji,lk — Cjl.ki>
SO
Y craXpXe¥i¥i == Y cinXiXe¥i¥i = 3 ki X Xe YY)
i,j.k,l i,j.k,1 i,j.k,1
=- Z cji ik Xj X Yi ¥y — Z ek, ji Xj XiYip
i,j.k,l i,jkl

(interchanging j and k in the second sum)

=-2 Z cijkt Xj X YiXl, using (1) and (2).
i,j.k.l
If we apply a similar process to the third expression for Q, use (2) on the fourth,
and leave the first unaltered, we obtain

Q(X, Y) = Zcij,leinYkYI
%Q(X’Y) = —Zc‘ij,leijYin
%Q(X, Y)= —ZCU,HX,-X[Y]-Y,(

QX.Y) = cipha X Xi YY)
Adding, we obtain the desired result,

30X =Y cju(XiYe — XX - (G ¥ = XiX)).
i, ik,
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We now proceed with the hardest part of the investigation, a hairy calculation
indeed.

4. PROPOSITION. In a Riemannian normal coordinate system x at p, the
numbers 22
_ 1 9%
Cij .kl = 3 8x"8x1 (P)

satisty
Cijkl = Ckl,ij
i, jk + Cljki + Ciie,ij = 0.
PROOF. We begin with an equation derived in the proof of Proposition 1. For
the geodesic vk = g%t we have
Z TE(y))E'E =0;
i,j=1
multiplying by 2, we have
Z TE (@) (r()x/ (y(2)) = 0.
i,j=1

Since these geodesics go through all points in a nelghborhood of p, we have
the following relation between the functions F and x':

n
) Y Thxix/ =o.

Lj=1

Since the tangent vector to the geodesic y¥(t) = £*t has constant length, we

also obtain
<dy dy) Z(s 7,

which leads, in the same way, to the equation

) Z giyxixl = Z(\ ).

i,j=1
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Now equation (1) leads to

n
3 fij, klx'x! =0,

i,j=1
1e., to
n

Z ! (3g,-k_ + ——agﬂ.‘ _day xix! =0.

Lo \ax T oaxt axk

i,j=1
Interchanging the indices i and j in the second term, we can write

Z ag k 1 ag
Ysik _ 1954 L —

®) ”2_:1 ( axj 2 0oxk ) X )

Our penultimate goal is to break this equation up into two sums, each of which
is individually 0; the conditions on the ¢’s, which are our ultimate goal, will then
follow fairly easily. To achieve this, our antepenultimate goal is to prove that
xP =Y, gpax®; these equations are at least reasonable, for they imply (2). To
prove these relations, we first introduce the functions ¥# defined by

n
P = Z gpa X
a=1

Note that
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Now by (2) and the definition of %%, we have

so we obtain

n ook
0= __8x _x/ — xk
ax/
j=t
“ 8(5ck — xk) :
= n x7/.
“ ax/
Jj=1

This equation shows that along any geodesic y(t) = £'t we have

dizt — @) _
dt -

so that x¥ — x¥ is constant along the geodesic. Since gij(p) = 8, we clearly
have ¥%(p) = x¥(p). Moreover, these geodesics pass through all ponts ina
neighborhood of p. Thus %% = x* in a neighborhood of p, so that we finally
obtain the desired equations

n
(4> Z gkaxa = xk-
a=l
Now we differentiate (4) to obtain
n

dgk
5 =X+ grt = Sk

a=l1 X

multiplying by x/ and summing, we obtain

n
agka N \_[
axt 7

a.l=1

n

1 1

= E —grX + 8y x,
=1

which, together with (4) gives

n
0
gka N \_[

k ko
VIR —x" 4+ x" =0,

a.l=1
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and we have thus obtained the first part of our penultimate goal,

0
(5) ag;f xixl =0,
i,j=1

Together with (3), it implies the other part,

n 9 G
(6) Z —g%x’xf =0.

— Ox
i,j=1

We now obtain the desired equations as follows. Along the geodesic vk =
gkt we have, by (6),

de;
™ Z By )Ese =0
i,j=1
This implies that
dgi
®) Z Sy =0
i,j=1

for t # 0, and hence even for ¢ = 0, by continuity. Differentiating (7) with
respect to ¢ gives

0= 3 B0 e+ Y L Ganse

i,j=1 i,j. =1
n a ;
= Y iLapgee, by @)

i,j, =1

consequently,
n a ;
0= Y sy OEEE
i, j,i=1

for all £ # 0, and hence also for ¢ = 0. Setting ¢ = 0, we obtain

n 92 ;
Y s lpEEE =0

i,f, =1
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This equation holds for all n-tuples gl,...,&" From this we easily derive
(A) Cij ki + Cil jk + ¢t ik = 0.
Applying the same process to (5), we obtain
(B) Cki,jl + Ckjti + Cki iy = 0.
In (B) we interchange k and /, to obtain
Cli, jk + Clj ki + Ckiij = 0.
Comparing this equation with (A), we obtain the first of the desired relations,
Cij kl = Ckl ij-

Moreover, using this relation with either (A) or (B), we obtain the second of the
desired relations,

Cli,jk + ¢ty ki + Cicij = 9.

And thus we are done!

When we put all these results together we see that the quadratic function

1 , ,
Q(vp, wp) = 3 dx'(vp) dx’ (vp) dxk(wp) dxl(wp)

LK,

can be written

1 . .
Q(vp. wp) = 5 Y cijratdxt Adx¥y - (dx) A dx")(vp, wp).
i, jik,l

We thus see that the quadratic function Q, obtained from the Taylor expan-

sion of || ||> in Riemannian normal coordinates, has special properties which
allow us to define, for any 2-dimensional subspace W C Mj, a number
Vp. Wp) .
QW) = Qp-wp) Up, Wp any basis for W.

”Upswpnz

The work of the last four Propositions, which establishes this fact, is completely
suppressed in Riemann’s account, where the final result is merely stated, at the
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beginning of section 2 of Part II. Riemann then makes some remarkable claims.
First, Riemann interprets Q for a surface:

() If M is 2-dimensional and W = M, then —3Q(W) is just the Gaussian
curvature K(p) given by Theorem 3-7; we thus have an intrinsic def-
inition of K, obtained by picking a special class of coordinate systems
determined by the metric. (Riemann needs the factor —3/4 because he
divides Q(vp, wp) by the square of the area of the triangle spanned by vp
and wp.)

At the end of section 2, Riemann interprets Q for an n-manifold:

(2) If M is n-dimensional, W C Mp is a 2-dimensional subspace, and @ C
W is a neighborhood of 0 € W on which exp is a diffeomorphism, then
—3Q(W) is the Gaussian curvature at p of the surface exp(©9), with the
metric it inherits as a submanifold of M.

But the most important claim is made in section 2. In an n-dimensional vector
space there are n% “independent” 2-dimensional subspaces: if vi,...,Vn Isa
basis, we can choose the subspaces spanned by v; and vy, for i < j. Riemann
claims that the metric { , ) is determined if Q(W) is known for n"—;l indepen-
dent 2-dimensional subspaces W C My at each point g, for example, if Q is

known for the subspaces spanned by each 3/9x'|4 and 8/0x7 |q (i < j).

A very special case of this general claim is the following, which we will hence-
forth call the Test Case:

(3) If M is n-dimensional and Q =0 for n% independent 2-dimensional
subspaces of each Mg, then M is flat, that is, M is locally isometric to R”
with its usual inner product.

In connection with the Test Case, it should be pointed out that a local isometry
with R” is the best we can hope for, since there are Riemannian manifolds
which are not homeomorphic to R”, but which are locally isometric to R", and
hence have Q = 0 everywhere. The simplest example of such a manifold, the
“flat torus”, is constructed as follows. The torus T' can be obtained from R? by
identifying (x, y) with (x', ') if and only if

y -y, X —-xel

(compare pg 1.372). The map m: R? — T, defined by taking (x,}) to its
equivalence class, is locally a diffeomorphism, and there is clearly a unique
metric { , ) on T such that 7*( , ) is the usual Riemannian metric on RZ
consequently, (T,( , )) is locally isometric to R2? with its usual Riemannian
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metric. Notice that the usual torus in R?, with the induced Riemannian metric,
is not flat; it has positive Gaussian curvature on the part furthest from the axis,

and negative Gaussian curvature on the part nearest the axis. However, if we
consider S C R2, then it is easy to see that ' x §' C R? x R?, with the
induced Riemannian metric, is flat.

One other remark should probably be made about the Test Case. At first
sight, the Test Case might seem to be little more than a theorem about func-
tions whose second partial derivatives are everywhere zero. However, it is ac-
tually quite different from this simple sort of result, since the value of Q at
different points is defined in terms of different coordinate systems, each chosen
specifically for one point.

Now our aim in the rest of this chapter is to prove assertions (1), (2), and (3).
(The general claim that Q determines the metric will be considered later, as will
the information given in sections 4 and 5 of Part 1I.) However, we will defer the
proofs of assertions (1), (2), and (3) to another section of this chapter, not only
in order to provide ourselves with a brief respite, but also to allow Riemann to
add one or two more brilliant ideas.
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C. A PRIZE ESSAY

The second edition of Riemann’s collected works includes an unpublished
paper, in Latin, which was submitted to the Paris Academy in 1861, to compete
for a prize on a question involving heat conduction. In 1868, ten years after it
had been offered, the prize was finally withdrawn. Because the way of obtaining
the results of his essay were not fully explained, the prize was not awarded to
Riemann, whose health prevented the more detailed handling of the subject
which he had intended.

An extract from this paper is given below* It should not be very hard to
read, but the significance of the equations obtained there is only suggested by
Riemann’s final remarks; in the next part of this chapter we will have a great deal
more to add. In the translation I have made some minor changes of notation.

An Extract From Riemann’s Paper of 1861

Second Part

On the transformation of the expression Z gij dy' dy’
]
into the given form ) a;; dat dad.
)]

When the inquiry of the third Academy is restricted to homogeneous bodies,
in which the resuiting conductivities are constants, we develop the first condition
that the expression ) _ g;; dy' dy’, in which the y* are functions of the &', can be

iJ
transformed into the form ) a;; dx' dx’ with given constant coefficients a;;.
LJ
The expression Z ajj dx! da/, if it is, as we shall suppose, a positive form in
L)
the dat, can always be put in the simplified form Z (dx))?. Thus if Z gi;dy' ' dy/

can be transformed into the form ) a;; dx' "di/, it can likewise be reduced to
1)
the form ) _ (d +1)2 and vice versa. We therefore ask whether it can be put in the

3
form > (dx').
i

* Certain omissions, indicated by = ... ", are considered in Addendum 2 to Chapter 6.
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Let G = det(g;;) and let ;; be the cofactor; in this way ) _g;;v;; = G and
i
Y gijvie =015 2 k.
1

If ng dy' dy! = Z (dx')? for arbitrary values of the da!, substituting

iJ
d + & for d leads also to Z gij dy' 8yl = Z dx' 8z for arbitrary values of the
ij
dx' and &'

Consequently, if the dy' are expressed in terms of the dxt and the 8x' in
terms of the 8y', it follows that

axB _

(1) — ng

and consequently

8yi Yai dxh

2 Oy _ N Yai 027
@ dxP  ~ G Jy~

Thus we further deduce, seeing that

dyt G dy' dx® oo

Z Y 8y = and Z—a;a_d—y] =0 if sz,

ox® dx® dut oyl iy

(3) —— = = gij, 4) oYy oy _ Yy
dyt dy’ : ~ Jx® du® G

and differentiating formula (3),

02 Ja® 0P dx® gy
Zaiakﬁ+z(yi3,k'ai:all;?'
= 0y oyt oy = dyloy* oy Y

Now from these expressions for

Agij  dgik gk
gk’ oyl dy

we can write

PP dx gy | dgi Ok

(5) 2y = 4 :
Z,: dylayk dyt ayk oyl ay
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and if these quantities are designated by p;i, then

920 oy
(6 ZW = Z 5;6;1%1&"
13

Differentiating the quantities p;j; again yields

Ipijk 0Pt _ 3 Par P 23" N
oyl dyk dyJ dyk aytay dyl oyl dytoyk’

14 v

whence finally, substituting the values found in (6) and (4),

Rgi | Pgy dPgu P
dyloyl  dylayk  oyiayk  dy'dy!

1 Y
¢) t5 Z (Paji PBik — pailpﬁjk)—gﬁ =0.
a’B

The functions g;; must necessarily satisfy these equations whenever
Y Gij dy' dy’ can be transformed into the form 3 (dax')?: we denote the left

17.7
side of this equation by
(¥7,kD).

... Given an acquaintance with the traditional methods, it is demonstrated
without difficulty that these ... conditions when they are satisfied, suffice . . ..
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D. THE BIRTH OF THE
RIEMANN CURVATURE TENSOR

All the developments in this part of the chapter have their origin in the fol-
lowing question, which Riemann considers in the paper of Part C: When is a
Riemannian manifold (M, { , }) flat (locally isometric to R” with its usual Rie-
mannian metric)? In other words, when is there a coordinate system x!,..., x"
on M for which

M ()= dx'®dx'?

i=1

We are going to seek an answer to this question in as straightforward a manner
as possible; the quadratic function Q will not be used at all, but at the end it
will make a surprise appearance.

We begin by choosing an arbitrary coordinate system y, in terms of which
the metric { , ) can be written

(2) ()= gijdy @dyl;

i,j=1

and we then seek conditions on the g;; in order for (1) to hold for some co-
ordinate system x. Since this is a purely local question, we can assume that
y',...,y" is just the standard coordinate system on R”.

If we express the dx in terms of the dy/, and equate the coefficients of
dy' ® dy’ in (2) with the resulting coefficients in (1), we find that the coordinate
1 ...,x™ has the desired property if and only if

system x°,
ox% ox“
3 Ty

From equation (3) we can immediatelv derive another, for we obtain

281‘ ’38»(/3
_Za} 8¥“= -

3y/ vk 3xY 9x §y/ 9yk
> g




The Curvature of Higher Dimensional Manfolds 185

which shows that if the coordinate system x',...,x" has the desired property,
then
ayt ay’ --
4 - =g
@ Xﬂ: axPaxp ¢

Conversely, (4) implies (3). These results are just the equations (3) and (4) that
Riemann obtains. Notice that Riemann begins with the square of the norm
12 =3 gij dy' - dy’, and then uses polarization to obtain the inner prod-
uct, which he writes as ) gi; dy' §y/. Riemann also treats the two coordinate
systems x and y on an equal footing throughout, so that his derivations of (3)
and (4) are somewhat different. From (4) we obtain

Zglj__.—_.‘ A~ A ~ 1 3
= oyt dyJ 9xB 0xB dy! oy

;0xH axY Z dyt dy/ oxH ax?
S J

=2 _ %8
f

and thus the coordinate system x!, ..., x" has the desired property if and only
if
;- 0x# 0xV
l y_ =
@) 2y gy = e

This equation, which we will find more useful than (4), can be derived directly
from (3) in the following way. If A={(aij) = (9x?/0y’), and G = (gij), then (3)
says that

A4 =G,

where At is the transpose of A; this is equivalent to
G—l — A—l . (At)—l,

and hence to
AGTTA =1,

which is just (4'). In particular, this shows immediately that (4') is equivalent
to (3).

Now equation (3) is a partial differential equation for the functions x%. In
Chapter 1.6 we developed a general theory for partial differential equations,
but we notice at once that (3) is not an equation of the type to which our theory
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applies. Our first task will thus be to obtain from (3) an equation that we
do know how to handle. The situation is very much like, and may profitably
be compared to, that which occurs in Problem 1.7-19, where the analysis of a
certain set of partial differential equations is reduced to Theorem L. 6-1, together
with the Poincaré Lemma. To treat equation (3), we begin by differentiating
(about all we can do), to obtain

Z Px Ix Z °x* 9x*  dgy
dylayk dyJ dpJayk dyt — ayk’

o o

By writing down this equation for

dgij  Ogik gk
ayk’ oyl oy’

and combining, we obtain an equation equivalent to Riemann’s,

82x°‘ ax“ 1 ag,-,- ag,-k ag,-k)
5 E e LA — = el T = .k, 1.
o — dyioyk oyt 2 (ay" Ty T oy k1]

Thus, the symbols [jk, ], which came up naturally in the calculus of variations,
also come up naturally in this different context. After Riemann’s Habilitations
lecture was published, in 1866, several mathematicians independently derived
his results or considered related questions. Christoffel, in particular, introduced
these combinations of the partial derivatives of the g;;’s, and the symbols [i ], k]
and F{‘j are called the Christoffel symbols of the first and second kinds, re-
spectively (Christoffel actually used [’,f] and {’Z}, which do not accommodate
themselves to the summation convention). In the next chapter we will see one
important use which Christoffel made of these symbols.

At this point we will depart slightly from Riemann’s treatment, in order to
obtain equations to which Theorem I.6-1 directly applies. From (5) we obtam

9xA 923 9x® Ix* .
v rik il = o 2 TR iy
lZy:g gy K] azy 817 9y% 8r7 8,7
92y Ix® Ix*
_ OX" 0X" iy
B ; 9yJayk (IZV: ayi 8}'Vg )
92xo

=L gugete B
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so we obtain, finally,

3%x* “ x
=Y : ¥
©) dyidpk Lk ayY

y=1

(which is easily seen to be equivalent to Riemann’s equation (6)); we will also

write this equation as
ax*
) o
A7) gy oxt
oy y=1 Ty

Notice that the index A plays no special role here; all functions x* satisfy the
same equation. Thus, for each A the n-tuple of functions

ax* ax*
=|-—,....,— - R* - R”
() e

satisfies the set of partial differential equations

0
(%) 5;’7@) = iy, a(y),

where fi: R" x R" — R" is given by
) n
flpo=)Y Thy -2
y=1

Since this is true for every A, the equation (¥) has n solutions whose initial values
at some point, 0 say, are linearly independent. Since constant linear combina-
tions of solutions of (¥) are also solutions, it follows that (x) has solutions with
arbitrary initial conditions at 0. From Theorem 1.6-1 we thus obtain necessary
integrability conditions,

afk afl . afk s
vl ayk + d-H /
n=1 u=1

n 8f1 u
gen e =0

In our case. looking at the ™ components of these equations, we obtain

S BF]?’k - BF]?', SN Ly ~ vy
ZWZY—ZWZY+ZFJkZF#1:y_ZFJ"X;FM(: =0.
y=1 - y=1 y=

y=1 =1 =1
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Since these relations must hold for all z = (z!, ..., z"), we obtain

ory, ory
(+%) 0=R"; &

n
+—§:(r“r” ~TETY)
u=1

as necessary conditions that Y g;; dy'®@dy’ = 3 dx'®dx* for some coordinate
system x = (x!,...,x™). Notice that the set of equations RYji = 01s equivalent
to the set of equations

def
Rijuc = thy Yite = 0.

The quantities R;jx can be expressed in another way, after a little calculation.
Note first that

n

n aFV 9 n a ;
Zg”’a —a—y,(X_:gin,?k) 2T Sy

y=1 ay

]k i Z ([il, y]1+ [¥1,11)-

Substituting into (), and remembering the definition of [ij, k], we obtain

1 [ g g g gk
(k) Rijic = = - - — - - —
ayfa)” dyidyk  dyiayk  dyiay!

+ Z P(Ul.al - [ik. B1 = [il, ] - [k, B1).
«,B=1
The condition R;jx = 0 is just the condition (I) which Riemann obtains (note
that Riemann’s p;jx equals 2[jk,i])—the quantity which we have denoted by
Rijik is what Riemann denotes by 2(ij, kl); the factor of 2 is not particularly
significant, nor is the interchange of / and k, for it is easily seen that Ry =
—Riji-
The notation R'jx; has been picked in anticipation of the following result.

5. PROPOSITION. On a Riemannian manifold (M, { , }) there 1s a tensor
of tvpe ( ) whose components in any coordinate system ) are
_ BF’ BF’k "
R = al.k - ] Z(Fﬁl‘;k F“ Fll)

(where ( ,) =Y gij dv' ® dv/, and the Christoffel symbols I' are defined as
usual).
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PROOF. We just compute that the components transform “correctly”!! In other
words, ift R jx are defined by the same formula, with respect to the coordinate
system )’, we show that

To do this, all one needs is the result from Problem 1.9-22,

vy o
F/aﬂ =

Ayl 9yl By~ Pyt 9y
g 0y oy’ oy +Z Y Y
i,j,k u=1

Sy ayB ok T 2 By o

and plenty of perseverance.
SLIGHTLY MORE MOTIVATED PROOF. Begin with the equation

> g dy’ ody =(,)=) gyd" ®dy”,

i iJ

and repeat the whole sequence of computations which we performed in the
special case that g';; = 8;j. The result will be the desired transformation law.
(The integrability conditions (x*) then follow as a necessary condition for the
existence of a coordinate system y' with g’;; = &;j, for in such a coordinate
system we clearly have R jk; = 0, which in turn implies that all Rijp =0.) %

We have thus stumbled onto a new tensor, the Riemann curvature tensor,
which in the coordinate system y equals

. , d
Z lekl dy’ ®dyk®dyl®é—;.
ikl Y

Eventually we hope to have a useful invariant definition of this tensor; this will
involve an enormous amount of exploration. For the time being, we simply ac-
cept the classical definition, which arises naturally as an integrability condition,
and explain how it is connected with curvature. In the process we will obtain
an invariant, but extraordinarily clumsy, definition of the curvature tensor.

It will be convenient to introduce a bit of modern terminology, and denote
by R the tensor with components R!jx;. Since this tensor is of type (3) it may
be regarded as a function taking three vectors to another vector. The value
of Ron X,Y,Z € M, will be denoted by

R(Y,Z)X € M,,
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and hence we have
d

9
R|—| , —
(ay" » Oy ,,) ayd |,

(the reason for choosing the notation R(Y, Z)X comes out in Proposition 6).
The numbers R;jx; = Zg,-y R i1 are also the components of a tensor, of

Z Riju(p) - ‘

i=1

type ( ), but it is unnecessary to perform any calculations to verify this. Clearly

d d d 0
Rijki(p) ={R| - — ,
! < (ayk P P) 0y’ 1, P>

b ayl b ayi
so the tensor in question is just the multilinear map

This function of four tangent vectors is closely connected with the quadratic
function introduced in Part B of this chapter:

(X,Y,Z, W) (R(Z, W)Y, X).

6. PROPOSITION. Let x be a Riemannian normal coordinate system at p,
and Q the quadratic function on M, x M), defined by

OX,Y)= Y cijuadx'(X)dx) (X)dx*(¥)dx'(Y),
ijik,d

where
1 a2g,-,-
2 9xkaxt’

Cij kl =
Then :
PROOF. We have seen that
30(X.Y) = Z cijri(dxt A dxk) - (dx) A dx')(X,Y)
i,j.k,l
= Y cyurdx (X)dx! (X)dx* (V) dx'(¥)
i,f.k,l
+ Y ey dxF () dx (X)) dxF(Y) dyT(Y)
i, j.k.,1

~ 3 G dxd (X) dx*(X) dx (V) dx'(Y)
i.j.k.,l

— Y ey dx (X)dx (X) dxT (V) dxF ().
i,j.k.,l
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By switching indices we can rewrite this as

. . * t
3000Y) = Y e dx (X) dx! (1) dx*(X) dx'(Y) [interchange
i, j.k,l ] and k]
. » [interchange
- _Zklcﬂ,xk i and /]
i,j.k,
- Z iy » [change i to [;
ijklll’]k jtoi;ltoj]
_ Z Cip i ” [change i to k;
o e ktol;1 toi]
ik,
= Y (Cikjt + CiLik = Cil jk ~ cipn) dx! @ dx! @ dx* ® dx' (X, Y, X,Y).
i,j.k.l

Now in Riemannian normal coordinates, the Christoffel symbols [ij, k] are all 0
at p, since all Bg,-j/axk are 0 at p. Referring to equation (%) we thus have

30X, Y) = Y Riji(p) dx' @ dx’) @ dx* @ dx'(X,Y, X,Y)
i,j. k.l
== 3 Ryu(p)dx’ @dx) @ dx @ dx"(X,Y,X.Y)
i,j.k,l
= —(R(X, Y)Y, X). %

We are now ready to verify some of Riemann’s claims.

7. PROPOSITION. Let (M,{ ,))bea 7-dimensional Riemannian manifold,
and let X, Y € M), be lincarly independent. Let ||.X, Y || denote the area of the
parallelogram spanned by X and Y. Then

(R(X, Y)Y, X) [= (R(X, V)Y, X)if X and Y
K(p) = X, 7)Y, 4

X, Yl are orthornomal]
is the same as the Gaussian curvature at p defined by the formula in Theo-
rem 3-7 (in particular, this proves that the formula in Theorem 3-7 is indeed
independent of the coordinate system).

FIRST PROOF. Let (x,y) be a coordinate system on a neighborhood of p. It
obviously suffices to verify the theorem when X = 9/dx|p and ¥ = 3/9y\p,
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since by Proposition 6, and the results of Part B, the numerator is multiplied
by the same factor as the denominator when we change to any other pair of
vectors. In this case,

d d d d
(R(X,Y)Y,X)=<R(a— . )'a— oy >
Xlp WVip) OVip 9Xip
= Ri212(p).

If we write

(,)=FEdx®@dx+ Fdx®dy+Fdy®dx+Gdy ®dy,

so that
gun=E-
gun=gn=F
gn =0,

then (by the formula on pg. 1.308)
IX,Y|>=EG - F?,
$O we must prove that
4R1212(EG — F?) = 4(EG — F?)’K,

where the right side is given by the formula in Theorem 3-7. This is a fairly
straightforward calculation from (xx*) on page 188. The first term in (x**)
corresponds to the last in the formula for 4(EG — F?)?K. and the second cor-
responds to the first three in the latter formula. In carrying out the calculation,
note that

gll — G
EG — F?
_F
12 _ 21 __
8 =8 TEG_F?
E
22 i
& = EG-F2

the denominators cancel out the unwanted factor in 4R1212(EG — F?).
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SECOND PROOF (OUTLINE). Let (r,¢) be the coordinate system around p

which is introduced on page 136. We know that in this coordinate system
(,)=dr®dr+Gdp®dy

for some function G, and (see page 145) that

VG
K(p)=——5 ()

Introduce a Riemannian normal coordinate system x!, x? by the equations

x!' =rcosgp, x*>=rsing.

We can then calculate the g;; in terms of G, and use these results to show that
0

th( qualltlty

is equal to —K(p)/3. The result then follows from Proposition 6. ¢

8. PROPOSITION. Let (M,{ ,)) bea Riemannian manifold, and let W be
a 2-dimensional subspace of My, spanned by X,Y € Mp. Let O C W be a
neighborhood of 0 € M, on which exp is a diffeomorphism, let i: exp(0) —
M be the inclusion, and let R be the Riemann curvature tensor for exp(©@) with
the induced Riemannian metric i*{ , ). Then

(R(X,Y)Y,X) = (R(X,Y)Y, X).
Consequently,
(R(X,Y)Y,X)
X, Y|
is the Gaussian curvature at p of the surface exp(0).

FIRST PROOF. Tt obviously suffices to prove the theorem when X and Y
are orthonormal. Choose a Riemannian normal coordinate system at p with
X = 0/0x!p, Y = 3/3x?%|p; then x!',x2 is a coordinate system on exp(O).
Now we are trying to prove that Ri212(p) = Ri2i2(p). But in (k*%), the terms
involving Christoffel symbols vanish at p. The theorem is now obvious, since
the functions g;; (i, j = 1,2) defining the metric i*({ , ) are just the correspond-
ing g;; restricted to exp(9), and they have the same mixed partial derivatives
with respect to x' and x2.

SECOND PROOF. Tt is even more obvious that the quadratic form QO associated
with (exp(0),i*( , )) is the restriction to W of the quadratic form Q on Mp,

for they are the second non-zero terms in the Taylor expansion of the same
metric. ¢
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9. COROLLARY. Let (M,{ , }) be a Riemannian manifold, let X,Y € M),
span a 2-dimensional subspace W of M), and let @ C W be a neighborhood
of 0 on which exp is a diffeomorphism. If Q is the quadratic form on M
defined previously, then
30(X.Y) _ (RX,V)Y,X) _
X, Y| X, vz

where K is the Gaussian curvature at p of the surface exp(©).

The quantity (R(X,Y)Y, X)/[| X, Y||* appearing in Corollary 9 is called the
sectional curvature K(W) of W. It would seem that the function (X,Y)
(R(X, Y)Y, X) contains only a small portion of the total information contained
in the curvature tensor, but Propositions 10 and 12, which follow, show that R
satisfies certain identities which allow it to be determined in terms of the metric
( , ) and the quadratic function Q which it determines.

10. PROPOSITION. The curvature tensor satisfies the following identities:
(1) R(X,Y)Z =—-R(Y,X)Z, hence
(RIX,Y)Z, W) =—(R(Y, X)Z,W).

2) (RIX,Y)Z, W)= —(R(X, Y)W, Z).
(3) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0, hence

(RIX,Y)Z, W)+ (R(Y,Z)X, W)+ (R(Z, X)Y,W) =0.
@) (RIX,YZ,W)=(R(Z,W)X,Y).

PROOF. In a coordinate system x, these relations are equivalent to

(1) Ry =—Ry or Rk =—Riu

(2) Rijki = —Rjiki

(3) Rijgi+ Ruj+ Rijk =0 or  Rij + Rigtj + Rije =0
(4) Ruiiij = Riji.-

These are immediate from (x*) and (xxx). o

Notice that (R(X,Y)Z, W) is skew-symmetric in both (X,Y) and (Z, W),
which again shows that (R(X, Y)Y, X') changes by det(a;;)? when X and Y are
replaced by a1 X + a2 Y,a21X + a»Y. For later use, we insert a result which
shows that the fourth property of R is a formal consequence of the others.
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11. PROPOSITION. Let V be a vector space and ®: V x Vx V xV — R
a multilinear map satisfying

(1) RX,Y,Z,W)=R(Y,X,Z,W)
(2) RX,Y,Z,W)=R(X,Y,W,Z)
(3) RX,Y,Z,W)+RY,Z, X, W)+ R(Z,X,Y, W) =0.

Then ® also satsifies
4) RX,Y,ZW)=R(Z, W, X,Y).

PROOF. The proof is a tricky manipulation, cleverly systematized by the fol-
lowing diagram from Milnor’s Morse Theory.

R(X,Y,Z, W)

R, W, Z,X) pPR(Y, Z, X, W)

RX,W,Y, Z) 'u/////////////////%%// R(Z,X,Y, W)
(R(Z, W, X.,Y)

Equation (3) shows that the sum of the numbers at the vertices of triangle W
is zero. The sums of the vertices of triangles X, Y, and Z are also seen to be
zero, using (1) and (2). Adding these identities for the top two triangles, and
subtracting the identities for the bottom ones, we see that twice the top vertex
minus twice the bottom vertex is zero. <

12. PROPOSITION. Let V be avectorspaceand ®;: VxVxVxV — Riwo
multilinear maps satisfying (1)—(4) of Proposition 11. Suppose ®(X,Y, X,Y) =
Ro(X,Y, X,Y) forall X,Y € V. Then R; = R».

PROOF. Tt clearly suffices to prove that a multilinear ® satisfying (1)—(4) is 0 if
R(X,Y,X,Yy=0forall X,Y € V. Now we have
0=R(X,Y + W, X,Y + W)
=RX,Y, X, )+ RX,Y, X, W)+ RX, W, X, Y)+ R(X, W, X, W)
=RX,Y, X, W)+ R(X,W,X,Y)
—2R(X,Y, X, W).
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Using (1) and (2), we easily see that ® is alternating, and hence skew-symmetric.
Consequently, (3) gives

3R(X,Y,Z, W) =0.

Propositions 10 and 12 tell us that the curvature tensor R is completely de-
termined by the values of (R(X,Y)Y, X}, and hence by the quadratic func-
tion Q. [This means that in a sense we can frame a coordinate-free definition
of the curvature tensor, but it would certainly be an awkward one. Moreover,
given a multilinear map ®: V x V x V x V — R, satisfying (1)-(4), it is a
fairly difficult exercise to work out a formula for ® in terms of the quanti-
ties R(X,Y, X,Y).] In terms of a coordinate system, we see that the tensor
R(X,Y,Z,W) = (R(X,Y)Z,W) is determined by the components R;j;;, of
"2;1 with i < j. According to Riemann, these n% func-
tions must determine the metric completely; in other words, the tensor ® must
determine the metric.*

which there are n

Recall that we have selected one special case of this assertion as our Test
Case, which can now be restated as follows: If R = 0, then the manifold is flat.
We are ready to present the first, and longest, of our proofs of the Test Case.
It 1s separated 1nto three Steps, and all our subsequent proofs, no matter how
elegant and brief, essentially contain these same three Steps.

Recall that for a coordinate system y!, ..., p” we have the formula (pg. I.331)
dgij 0 o
) 50— lik, 1+ Uik, 1,
y

which 1s equivalent to the definition of the Christoffel symbols, as well as the
formula (pg. I.331)

og" — i) lj i
(¥x) == Z(g Flk + g7 Tp),
=1

ayk

which can be derived from it.

*This is not really the same as saying that R determines the metric, since we can’t
determine R(X,Y)Z from R(X,Y,Z, W) = (R(X,Y)Z, W) unless the metric is al-
ready known! In fact, any numbers R;ji; satisfying the identities of Proposition 6 can
be realized as the components, at a point, of R for some metric (the R;jx; determine
the second derivatives of the metric at the point).
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13. THEOREM (THE TEST CASE; FIRST VERSION). Let (M,{ ,)) be
an n-dimensional Riemannian manifold for which the curvature tensor R is 0.
Then M is locally isometric to R” with its usual Riemannian metric.

PROOF. This is a purely local question, so we assume that M is R”, with the
standard coordinate system y!,...,»", and the Riemannian metric

n

i,j=1

Step 1. We claim that there are functions (h1,. .., hy,), with any desired initial
conditions (h;(0), . . ., h,(0)), satisfying the equations

(¥ Z Clichy.

The reason for this is, of course, that the relations RY jjx = 0, which express the
vanishing of R, are just the integrability conditions for (), as we have already
seen.

In particular, for @ = 1,...,n we can choose such a set (h(“)l,...,h(“),,)
satisfying the initial condition

(h®1 ), . hF®u(0))0 = Xa,
where Xi, ..., Xa € R% is orthonormal with respect to { , Yo.
Step 2. We claim that if (hy, ..., hy,) satisfies (x), then h = dx for some func-
tion x, i.e., hj = dx/dy’. In terms of the form
n=hydy' + -+ hndy",

we are just saying that 1 is exact. We know (Corollary L 7-15) that this is true if
and only 1f

oh; Oy
ayk - ay] ’
Glancing at (¥), we see that this is indeed true, since I'}, =T}

Now choose functions x® with #®); = 9x®/8y/. Then the functions x*
satisty

) Z [these are the equations (6),
yj ay jk ayV obtained earlier, page 187]
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and ¥
(axa ) ~ ( .
a 7 - . >
y X,
this matrix is non-singular, so xt, ..., x" is a coordinate system 1n a neighbor-
hood of 0.

Step 3. We claim that x is the desired coordinate system, 1.e., that

B OxMax®
&) v = Z g” 8);" ai}. [equation (4), page 185].
i,j=1

We know that this equation holds at 0, by the choice of the initial conditions
3x*/3y7(0). So it suffices to show that the right side of (£) has all partial deriva-
tives 3/dy* equal to 0. But

d - dxH ax? ag 9xH dx?
. ij OX OX
ay* (Z,g 0y ayf) 2 3y a7
o 0%xH 9x? dxH  9%xV
ij Ix
+I_Z]_:g 3y ayk ayf+izj,:g ayT aylayk
g’/ dx* dxV g y OxH x?
Tk oyt ayl IZ Z 9y dyi

y OxH dx?
ij
+Zg Dhayay O

Switching some indices, we thus have

d o OxH 9x? dxH dx? (dgh i
~ L Y — @ ] = A v Fl IVF]
e (250507 ) = X v iy (e + ST r)

=0 by (**)

This completes the proof of the theorem. &
As a brief review of the proof, we note that

Step 1 uses the integrability conditions, R = 0, to obtain certain forms
> h'9; dy’, with any desired initial conditions;
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Step 2 uses symmetry of the Christoffel symbols, F{‘j = F]k,-,
Y, h@; dy’ = dx® for some x*;

Step 3 uses the definition of the Christoffel symbols [ij, k] to prove that the
vectors 8/0x® are orthonormal.

to prove that

Despite its length, the proof is essentially a straightforward application of the
integrability conditions for partial differential equations. As Riemann says, at
the end of the section in Part C, “Given an acquaintance with the traditional
methods, it is demonstrated without difficulty that these ... conditions, when
they are satisfied, suffice.”

We have thus proved one special case of Riemann’s assertion that the curva-
ture determines the metric. We will not return to the more general assertion
until Chapter 7, for our immediate task will be to begin systematizing all the
results which have been uncovered so far.
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ADDENDUM
FINSLER METRICS

A Minkowski metric on a vector space V is a function F: V — R such that
F(v) >0 forallv#0
F(Av) = |A| F(v).

Clearly F is completely determined by its “unit sphere” {v : F(v) = 1}; the unit
sphere is symmetric with respect to 0 € V, and intersects every ray through 0
exactly once. Moreover, any such set is clearly the unit sphere for some F. The

SUE

function F is never C*® at 0, but F? may be, in which case we will simply say
that F is C*°. The general metric which Riemann mentions is essentially an
assignment of a C® Minkowski metric F), to each tangent space M, in such a
way that F, varies smoothly with p. We will call such an assignment simply a
“metric” on M.

If ¢: [a,b] - M is a curve in a manifold M with such a metric, then we can
define the length of ¢ to be

b
/ Fon(c'(0) dr.

If p: [5,5] — [a, b] is an increasing diffeomorphism, and we denote Fory(c'(1))
by g(¢), then
b
length ofcop= /: Fc(p(,))((c‘ ) p)/(t)) dt

a

b
=[ Fe(pan(p'(1) - c'(p(t)) dt

p ()
= f p()g(p(n)dt
p~(a)

b
= / g(t) dt =length of c.
a
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The same result clearly holds if p is decreasing; thus, the length of a curve is
independent of parameterization. It is to insure this result that we require our
metric to satisfy F(Av) = [A]- F(v).

Although a C*° metric F on a manifold M is not a tensor, it can be used
to construct a tensor on the manifold TM. To do this, we first consider a C*°
function f: V — R on a vector space V. For any two vectors v, w € V we can
form the second derivative

d2
fu@W) = 5| S0 +1w);
dt =0
this is a sort of second order directional derivative at v. If vq,..., vy is a basis

for V, and ¢: R" — R is defined by

¢(al, ah) = f(Zaiv;),
i=1

then

" ", 32¢ .
f**(zblvi)(zclvi) = L Hxioxd (b) - e’
=1 i=l1 i, j
The map fux(v): V — Riis called the Hessian of f at v € V. When F is a
Minkowski metric, it is clear from the definition that

(F?)a(0)(v) = 2[F).

[This Hessian may be compared with the Hessian fys defined in Prob-
lem 1.5-17 for a function f: M — R, ata point p € M where fip = 0. The
latter is a bilinear function on M, whereas the present Sy (V) is @ quadratic
function on V. The associated bilinear function is easily seen to be

2

(wy,w2) = 57—

3501 f(v+sw1+th),

(s,)=0

and in terms of a basis it is given by

. i : i ¢ igj
(i;c v,-,izzld v,-) > ;axiaij.c d’,

the same formula which occurs in Problem I.5-17. Our Hessian is defined
even at points where fy # 0 because we are working with a vector space, and
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identifying it with its tangent space at v; this amounts to saying that we are
considering only linear changes of coordinates, all of which leave the quantity
defined by this formula invariant.]

Now if M is a manifold, with a C® metric F, and v € M), then the tan-
gent space (TM)y of TM at v can be identified with Mp; in accordance with
this identification, we denote a vector in (TM), by wy. We can now define a
tensor ¥ on TM by

1
F(wy) = E(F‘”Z)**(U)(w)'

If F is the norm || || associated with a Riemannian metric { , ), then it is easy
to see that
‘?'(wv) = (vvw)pv

and in general we always have
[F(vp))? = F (w).

If x is a coordinate system on M, and (x o, X) is the corresponding coordinate
system on TM (defined on pg. 1.81), then

F= gijdst-di/,
i,j=1

where o
1 9°(Fp°)
——L - (vp).
2 9xFax/
Classically, one dealt only with the functions g;;, defined by this formula, and
checked that the function

gij(vp) =

n

Z ax' Z g”blbj

i=1 i,j=1

was independent of the coordinate system x.

A Finsler metric is defined to be a metric F such that the quadratic function
F: (TM), — R is positive definite for all v € TM. In terms of a coordinate
system x, this means that

2,5 2
(gij (vp)) = (‘3 (11(; ])( p)) is a positive definite matrix.

To interpret this condition geometrically, we consider once again a function
f:V — R. Suppose that for all v we have fi(v)(w) > 0 for all w # 0.
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Then for all v, and each straight line through v, the function f obtained by
restricting f to this line has an everywhere positive second derivative. By a

f )
graph of f ~~ graph of 7

L

standard theorem (Calculus, pg. 220) this means that the function f is convex
(the set of points above or on its graph 1s a convex subset of the plane). It is easy
to see that consequently the function f itself must be convex (the set of points
on or above its graph is a convex subset of ¥ x R). Conversely, convexity of f
implies that fi«(v)(w) = 0. Our stronger condition fys(v)(w) > 0 might be

called “very-strict-convexity of /7.
When we apply this to a Finsler metric, we see that each function Fp? is

convex on Mp, so that each Cp = {(v,r) e Mp xR :r > sz(v)} is a convex
subset of M, x R. It is easy to see that this is equivalent to convexity of the
“unit ball” {w : Fp(w) < 1}, which may be regarded as the intersection of Cp
and the hyperplane r = 1 in M, x R. Note that convexity of the unit ball is
equivalent to the “triangle inequality”

Fp(wy +w2) < Fp(wi) + Fp(w2).

In general, a function || ||: V - Rona finite dimensional space V is called a

Banach space norm if
vl >0 forv#0
Al = 1] - lv]l
lv+wll < vl + lwll
(if V is infinite dimensionat, the definition is more involved). So a Finsler metric

on M is a C*® Banach space norm on each M, varying smoothly with p (and
with the unit balls on each M), satisfying a very-strict-convexity requirement).
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Although we will not develop the theory of Finsler, or more general, metrics
here, we will mention a few facts. In the case of a Finsler metric, since the
matrix (g;j(vp)) is non-degenerate, we can define g' (vp) so that

n
Y g7 (wp) - gk (vp) = 8.
=t

The reader may seek an invariant description of the g%/ (v,). We can also define
the symbols

ogik | 98k 98
[ij, k1= (8x1 + axi  gxk

rf = Zg"’[z‘j,ll,
I=1

as before, except that they are now functions on TM. It turns out that the
critical paths for length are curves c: [a,b] = M which, when parameterized
by arclength, satisfy

=0.

d’x k(C(S)) Z rE((s)) - dx! (C(S)) dxt(c(s))

ds
i,j=1

It also turns out, just as in the Riemannian case, that sufficiently small pieces of
these critical paths are actually paths of shortest length. However, this is false
for more general Minkowski metrics.

We shall not pursue the subject of Finsler metrics much further, but we
will add some remarks about Minkowski metrics F on a vector space V. A
Minkowski metric F can be used to define a “distance” function on V x V,
by (v,w) > F(w — v) (however, it is easy to see that this distance function
satisfies the triangle inequality, and is consequently a metric, if and only if F is
a Banach space norm on V). This is just the procedure by which, in analytic
geometry, we define the distance between two points in R”; in this case, we
choose F(x) = (3 (x)?)!/2, motivated, of course, by the Pythagorean Theo-
rem. After the Pythagorean Theorem has been incorporated into our defimtion
of distance in this way, it is interesting to ask what content, if any, remains to
this theorem. The answer is, that the Pythagorean Theorem has been declared
true only for right triangles with sides parallel to the axes, but remains true for
all right triangles. This is because, when F(x) = (3_(x%)?)!/2, the isometries
of R” are transitive on the unit sphere. That is to say, if p and ¢ are in the unit
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sphere, then there is a linear transformation ¢: R* — R" with ¢(p) = ¢ and
F(¢(x)) = F(x) for all x.

This same transitivity property holds for any F which is the norm || || as-
sociated to a positive definite inner product { , ) on an n-dimensional vector
space V, since there is an isomorphism f: R* — V such that /*( ,) is the
usual inner product on R” (Theorem 1.9-3). It turns out that this property ac-
tually characterizes the Minkowski metrics F which arise from inner products.
To prove this, we need an auxiliary concept, and a result from linear algebra.

An ellipsoid on a vector space V is a set of the form {v € V : (v,v) < 1}
for some positive definite inner product { , ). In particular, consider such an
inner product { , ) on R", which also has its standard inner product { , ).
The ellipsoid {v € V : (v,v) < 1} really looks like an ellipsoid, because of the

N
\
\
\
A .
Y ”’
\ .
4” Y
Q;//
.- \

4” 1

\

following well-known result:

14. PROPOSITION (EXISTENCE OF PRINCIPAL AXES). If { , ) is any
positive definite inner product on R”, then there is a basis for R” which is
orthonormal for { , ) and also orthogonal with respect to { , ).

PROOF. Yor each x € R", the map y > (x, ) is a linear functional, so there
is a unique T'x € R” such that

{Tx,y)={(x,p for all y.
It is easy to see that x > T'x is a linear transformation 7': R" — R". Moreover,
(Tx,y) = (x,3) = {p,x) ={Ty,x) ={x,Ty),

so T is self-adjoint with respect to { , ). Thus 7 has a basis X1,...,Xn of
eigenvalues, Tx; = A;x;, and the x; can be picked orthogonal with respect
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to{, ). Now

Ajlxi, x5) = MdT xi, xj) = Aidj{xi, xj)
= Ai{xi, Txj)

=A;(x;,xj).

So (xi,x;) = 0if A; # A;. On the other hand, if two or more x; have the
same A;, then in the m-dimensional subspace which they span we can pick m
eigenvectors which are orthogonal with respect to { , ). So we can assume that
(xi,x;) =0for i # j. Now we just normalize each x; with respect to ( , ). %

We now use this result to prove the basic lemma for our main assertion.

15. LEMMA. Let B be a bounded neighborhood of 0 in an n-dimensional
vector space V. Then among all ellipsoids containing B there exists a unique
one of smallest volume. (We assign a volume to the ellipsoids by choosing an
isomorphism of V with R". Choosing a different isomorphism clearly does not
change the property of having the “smallest volume”.)

PROOF. First we prove existence. We might as well assume that V = R”.
Moreover, we can assume that B 1s closed, since an ellipsoid containing B also
contains B. Choose r and R so that

{xeR":|x|<r} Cc B C{xeR":|x| <R}

Every orthogonal basis b = (vy, ..., Us) of R” determines an ellipsoid E (b) with
principal axes v1,..., U, [equivalently, b determines an inner product on R”,
namely the one which makes vy, ..., v, orthonormal]. To prove existence it obvi-
ously suffices to consider only ellipsoids of volume < a R", where « is the volume
of the unit ball. Now the principal axes vy, ..., v, of any ellipsoid containing B
must have lengths a; > r. Consequently, if this ellipsoid has volume < ¢ R”, so
that []; @; < R", then each a; < R"/r"~}.

Consider the set {b = (v1,...,v,) : B C E(b) and length v; < R" /r" 1},
This 1s a compact subset of the n-fold product R” x --- x R”. Hence b
volume E takes on its mimimum on this set. This proves existence.

Now consider two different ellipsoids containing B, with the same volume.
Choose an isomorphism of V with R” which makes the first of these ellipsoids
correspond to the ordinary unit ball {x € R” : fi(x) < 1}, where fi(x) =
Z(xi )2, Proposition 14 shows that after a rotation of the axes, the second of
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the ellipsoids corresponds to {x € R" : f>(x) < 1}, where

ﬁ(x)=a](x1)2+,..+an(xn)2. \.‘/é
R \;

fi=1

The volume of this ellipsoid is []{_; 1/+/a; times the volume of the unit ball.
Since the two ellipsoids are assumed to have the same volume, this means that

n
l—lai =1.
i=1
Now consider the ellipsoid

E={xeR” f‘+f2( )<1}

Clearly E also contains B. Now the semi-axes of E have length
1

I+ a; ’
2
so the volume of E is the volume of the unit ball times

M=

i=1

1+a,
2

Recall that for a, b > 0 we have

b
Jab <2 ; with equality if and only if a = b.
Consequently,
n n
[ <l
2

and strict equality holds if some a; # 1, ie., if the original two ellipsoids are
different. This means that if two different ellipsoids containing B have the same
volume, then there is another ellipsoid containing B with smaller volume. This
clearly proves uniqueness of the ellipsoid with smallest volume. ¢
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16. THEOREM. Let F: V — R be a continuous Minkowski metric on an
n-dimensional vector space V. Suppose that for all p and ¢ in the unit sphere
fv e V : F(x) = 1}, there is a linear transformation ¢: V' — V such that
¢(p) =q and F(¢p(v)) = F(v) forallv e V. Then F is the norm determined
by some positive definite inner product.

PROOF. Let B = {v: F(v) < 1}, and let E be the unique ellipsoid contain-
ing B of smallest volume. Clearly, there must be some point p with F(p) = 1
and p € boundary E. Let g be any other point with F(q) = l,and ¢: V — V

E

a linear transformation with ¢ (p) = g such that F(¢(v)) = F(v) forallve V.
It follows easily from the latter property that ¢(E) D B. Moreover, ¢(B) = B,
so ¢ is volume preserving. By uniqueness of the ellipsoid E, it follows that
¢(E) = E. Consequently, ¢ = ¢(p) € boundary E. In other words, every
point g with F(g) = 1 is in boundary E. This means that E = B. %



CHAPTER 5

THE ABSOLUTE DIFFERENTIAL
CALCULUS (THE RICCI CALCULUS);
OR, THE DEBAUCH OF INDICES

Ithough Riemann essentially defined the curvature tensor, the (classical)
notion of a tensor did not even exist in his time. The development of the
«Cialculus of Tensors” is due mainly to Ricci, and was carried out in the years
1887-1896; in 1901 he and his student Levi-Civita gave a detailed description
‘0 a memoir Methods de calcul differential absolu et leurs applications. In addition to
a comprehensive use of tensors, what distinguished the Absolute Differential
Calculus, and gave it its name, was an important construction which greatly
simplified all the concepts of Riemannian geometry, especially the curvature
tensor. Instead of checking that the horrible formula used to define R jki trans-
forms correctly, we are going to check that an equally mysterious—but not quite
so horrible—formula transforms correctly, and thus defines a tensor; then we
will define the curvature tensor in terms of this one.
In 1869, in one of the earliest papers which took up Riemann’s ideas, Christof-
fel had already made the observation which Ricci made the basis for his calculus.
Suppose that Y is a vector field, and

" d
Y = i
ZA dx/
Jj=l1
n
=) :A’j—a—..
4 ax’t
j=l1

Consider the following symbols, defined in terms of the Christoffel symbols of
the second kind for the coordinate systems x and x:

, arns e
)\j;h='a—x;+Z)» sz

v=1

, YW n .
)\.U;h — ax/h +Z)\'lvrliv.
v=1

209
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It is easy to check that for these symbols—the sums of partial derivatives of the
A/ and certain linear combinations of them—we have

n

. 9xh gx'e
A g = A -
? h§=:1 o' dxi

For the calculation we use the formula on page 189 together with the formula
a
-3V
ax/
when we compute 91/ /3x'#, the extra terms involving second partial deriva-
tives of the x’® just cancel out with the extra terms in the transformation formula

for the Christoffel symbols. This calculation shows that there is a certain tensor

field of type (;) which equals

Z Mypd" @ — J
AxJ
h,j=1

in the x coordinate system. In classical terms, “if the A/ transform like a tensor
of type ( ), then the A/, transform like a tensor of type ( ). Similarly, if the A;
transform like a tensor of type ( ), then the quantities

i = axh ZA Ty

are easily seen to transform like a tensor of type (g), so that there is a tensor of
type ( ) which equals

n
Y hppdx' ® dx"
i,h=1

in the x coordinate system. Generally, given a tensor of type (¥), with compo-
nents
J1--Ji
iy...dg?
k+1 :
there is a new tensor, of type (%] ) with components

Ji-

o dA; S
JiJr 11 IA E : ]: Wis+1---JipJs
Ail...ik;h - + Z A Fhv

s=1v=l1

v
—ZZ ’r 1Virgt.. l—‘hir'

r=1v=1
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The proof is again just an enormous calculation. At the other extreme from
this most general case is the special case of a tensor ficld of type () on M, ie.,
a function /: M — R. Here we simply define

af

= axk’

Son

so that in this case at least the identity of the tensor field

n n af
gf;hdxh=gmdxh

is no mystery—it is just df.

The tensor of type (kTI) which we thus obtain from a tensor A4 of type (ll‘)
s called the covariant derivative of A, since it is covariant of one order greater
than A. Itis also called the “absolute derivative” of A; here the word “absolute”
means that it doesn’t depend on a particular coordinate system. Various nota-

tions for the covariant derivative are encountered—one sometimes sees )‘{l B> OF
A, or even )\'l{h' Use of a semi-colon should avoid all possible confusion!

A partial answer to the question “What does the covariant derivative really
mean?” is given by the following observation.

1. PROPOSITION. Let x be a Riemannian normal coordinate system at the
point p € M, and A a tensor of type (ll‘) on M, with

Coe . a a
_ JyeJi iy - ik I - _
A=Y A7 dx @ @dx @ T @ ® o
Then the components at the point p of the covariant derivative of A are just the
ordinary partial derivatives

J1.--J1
e i
t¢) Al{[l...i]k,:h(p) = #(P).

PROOF. Tn a Riemannian normal coordinate system at p, the Christoffel sym-
bols [ij, k], and hence also the I’;‘j, are all 0 at p. &

Proposition 1 can even be used to define covariant derivatives. The Riemann-
ian normal coordinate systems at p are a natural set of coordinate systems,
determined by the metric { , ); any two such systems at p differ only by an
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element of O(n), and it is easy to see from this that a definition of the covariant
derivative by means of (*) would not depend on which one was picked. With a
little work, one could then deduce the general expression for the components of
the covariant derivative of 4 in any coordinate system. In succeeding chapters
we will be giving still other interpretations of the covariant derivative.

The operation of covariant differentiation obeys many rules analogous to
those for ordinary differentiation.

2. PROPOSITION. Covariant differentiation is a derivation and commutes
with sums and contractions. For example, if 4 and B are tensors of type (;)
and C is a tensor of type ( ), then

( ]1]2C]3)h _A]1]2 C]3+A]1]2C

12 l]lzh 11z 13h

(Ajuz + B““). Amzh + B.j‘.jz

iz iz i1i2; iyissh
n
§ : vj2 _ § : vj2
( Allv) - Ailv;h'
v=1

Consequently, we have, for example,
n n
]1 j2 — JiJ2 Vv ]l]2
(Z Avlz lz) - ZAVlz hC Av12 Cz;h
v=1 hov=t

PROOF. Compute. Because of Proposition 1, the computations become trivial
if one uses Riemannian normal coordinates. «¢

There is one tensor which we have on any manifold, the identity map of
each M, into itself, with coordinates ] in any coordinate system. For the
covariant derivative we have

n
i _ _ itv
J J
_Fhi r
=0,

which shouldn’t be very surprising (what else could it be?). Aside from these
general formulas, there are two of crucial importance. The first of them is about
the covariant derivative of the tensors { , } and { , }*.
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3. PROPOSITION (RICCI’S LEMMA). The gij and g” behave like con-
stants in covariant differentiation; that is,

gijk =0
gij k= 0.
PROOF. The proof s, of course, a calculation. For the g;j we have
n

dgi; i
Lijk = —% - ngjr;é,' - Zgivrj‘c)j
dx v=1 v=1
0gij ., . .
=ik lik, j} = Lk, i}
=O,

by equation (*) on page 196. Similarly, the second equation is equivalent to
the following equation (x). It can also be obtained from the first equation and
Proposition 2, since ) _; g"gj =8} and 8 =0 %

The second crucial formula involves “second order” covariant derivatives.
If A4 is a tensor of type (I;)’ with components A{l‘.'.'.',.”, then the operation of

k
covariant differentiation can be applied to the tensor B with components

Jreedi _ gdredi
il...ikh - Ai]...ik;h’

there results a tensor C with components

Jleedi  _ pdtedt _ ( gdve-di
Cil...ijhn - Bil...ikh;n - (Ail...ik;h);n'

These components are denoted by

Jredi
iy dp hnt

Ju---Ji
fr...dcchn

or simply 4

For example, if we start with a function f [a tensor of type (g)], then

_

T o9xt

5 (_BL)

o0x') O
fij = Uiy = —_—ax)j -2 a'{v Lji
v=1

i

and

I

Ixiaxt axv I
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Notice that

Jii = fiji
by symmetry of the I'j;. The same result definitely does not hold for other
tensors; instead we have the following basic result.

4. PROPOSITION (RICCI’S IDENTITIES). If the A’ and A; are compo-
nents of tensors of type (?) and ((l)), respectively, then

n
. . L
Mk =My ==Y MRy
1=1

A-i',jk ij ZA-IRuk,

where
BF’ BF’ n

i
Bxk 8x’ Z Fkn FIIL'

Ry =

(There are similar identities for tensors of type ( ), but we will ignore them.¥)

PROOF. Compute. <

[The second identity is a consequence of the first, for if we are given A; and

define
n n
= ng)‘“’ sothat A; = Zg,-a)\“,
a=l1 a=1

then
n
A-i;jk ij = (Zgza ) - (Zg,-a)\“)
]k a=1 ,k]

= Z Sia A%k — A% kj) using Proposition 2

a=1

*For those who cannot bear to be left in ignorance, the general Ricc identity is

n

Jvedi  _ gdiedi E:E: Jredt E:E: Jreds—1Vis+1edi 15

Ai; dihn AI[ dis Ylh_ Ai[...ir_lvir+|..i;‘ Irh'l Ah Jy R hn
r=1v=1 s=1 v=1
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n n
== Z Z giah R

a=1]=1
n
= - Z)‘IRiljk (by definition of Rijk)
I=1
n
= ZA’ Ryijk by Proposition 4-10
I=1

n n
= Z Z gla)‘l R%jk

=1 a=1

n
= haR%jk,
a=1

and similarly the first identity is a consequence of the second.]

5. COROLLARY. The R!;; are the components of a tensor of type (7).
PROOF. Let Z be a vector field, with

n ,-3

and let A4 be the tensor field with components A’.jx. The first equation in

Proposition 4 shows that
a 0 a 0 a 9
Bl —,— |=4l— — ) -4\ 77—
) (Bxf axk) (Bxf axk) (axk 8x1)
n ) ' 9
= Mok — M) 7
;( ik ,kj) Ixi

n n ) a
_ Ipi Y Y
= ;(;A R ljk) 5l
L n l n ; . a
= ;A (;Rl}kax")'

This shows, in particular, that B(3/dx’ |,,,a/axk|,,) does not depend on the
vector field Z, but on the vector Z(p) alone. So if we define

R(X,Y)Z = -B(X,Y),
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then R is a tensor of type (%), and

d
B
(axf Bxk)

a 0
9x7 9xk

o
g (axf 82") 5?6—1

Since this is true for all n-tuples {A'}, comparison with equation (%) shows that
the components of R are indeed R'jjx. %

[Classically, this corollary would be deduced from the following general princi-
ple (compare Problem 1.4-5(1)):

Suppose we are given a set of numbers T%j;; for the coordinate sys-
tem x, a set T"j for the coordinate system x’, etc. Suppose also
that

n

!
]k = Z)» T! lik ]k Z)»/ T”[lk, etc.,
I=1

are the components of a tensor for all tensors of type ((1)) with com-
ponents A’ in the coordinate system x, and components M in the
coordinate system x’, etc. Then T"}jx are the components of a tensor.

The classical proof is by a calculation. We have

" . 9x'® dx/ 9xk
18 1 _ _
Z)‘ T"spy = C/%V = Z Cik axi 9x'B ax'7

§=1 i,j.k
P j k
_ Z AIT’lk dx/ dx
TR 9xi ax'B dx'y

i,j.k,1

ax! ax’® ax/ 9xk

— § )"/STII]k )
x'8 i /B 1y
ijdd.8 ax dx’P ox

Since this is true for arbitrary A, we can choose all 2’8 but one equal to zero;
this gives the desired transformation formulas.]

Corollary 5 represents only one minor application of the Ricci identities.
A more significant application is obtained when we consider a manifold with
vanishing curvature tensor. In this case, we have

)‘i;jk = )‘i;kj
Aisjk = Aisky.
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Thus, in manifolds with a vanishing curvature tensor (and only in such mani-
folds) the order of covariant differentiation is immaterial, so that in this respect
covariant differentiation behaves like ordinary partial differentiation.* This en-
ables us to give a more direct proof of

6. THEOREM (THE TEST CASE; SECOND VERSION). Let (M,{ ,))
be an n-dimensional Riemannian manifold for which the curvature tensor R
is 0. Then M is locally isometric to R” with its usual Riemannian metric.

PROOF. As before, we assume we are in R”, and choose the standard coordi-
nate system y', ..., y" around 0.

Step 1. We claim that we can find 1-forms n = 3" A; dy?, with any desired initial
value 1(0), satisfying

(*) )»,';jZO i,j=1,...,n.

To prove this, we begin by finding A;(»,0,...,0), with the prescribed value for
y =0, and such that

i (y,0,...,0)
(*1) Oz)ni;1(y,0,...,0)=T_
_ Zkv(y,o, 0% (»,0,...,0).
v=1

This just involves solving a set of ordinary differential equations, which is even
linear, so that solutions exist for all y where the I'’s are defined.

/_\X)\i(y,O,...,O) defined here
N

* At first sight, it might appear that this should always be the case, since covariant
differentiation is the same as ordinary partial differentiation in a Riemannian normal
coordinate system around p. However, the relation Al; = dA!/3x/ holds only at p, so
generally A’ jx(p) # A1 axd axk (p).
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Next we find A;(y1, »,0,...,0), with the initial values 4;(1,0, ..., 0) just ob-
tained, satisfying
(x2) 0=~Ai2(¥1,»,0,...,0)
_ 0Ai(y1,2,0,...,0)
= T

n
= A1, 3.0, 03 (31, ,0,...,0).
v=1

AT,
U

We continue in this way until we eventually obtain A;(y1,. .., Yn—1,y) satisfying
(*n> O= )\i;n(yl """ yn—l’y)'
We now claim that, in addition to the relation A;1(»,0,...,0) = 0 given

by (1), we actually have
)\i;l(YI,y,O,~~~,O) =0.
To see this, we first note that we have

a}\.. n n
Aigr =i = 8;12 - Z)\v;Zrlvi - Z)‘i:vFIvZ'
v=1 v=1l

Since 0 = A;2(y1, ¥,0,...,0) by (x2), we obtain
n
}\i;ZI =_Z}\'i;vrl‘)2 at (yl,)’,O,---,O)-
. v=1
Since R = 0, the Ricci identities then imply that

n
Ailz = Ajpr = — Z AiwT], at (»1,»,0,...,0),

v=1
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ie., that

n n n

- Z)\'V;lr;i - Z)\'l;vr;l = - Z)"l;vrlvz at (ylayao’ .. ’O)a

v=1 v=l1 v=1

so that
ax 1
akri} Z’\v T =0 at(y1,,0,...,0).

Since we have the initial conditions Az1(»1,0,...,0) = 0, it is clear that the

solution of this equation is just the desired one,
A1, »,0,...,0)=0.
Proceeding in the same way, we next obtain
Ait (31,12, 3,0,...,0) = Aip(y1, ¥2, 3, 0., 0) = Aiz(01, 32, ,0,...,0) =0,
and, eventually,
0=Aii=hin=-=Aim at(y,...,Yn-1,)

This completes the proof of the claim.
Yor « = 1,...,n we now choose r]("‘) =3 A@), dy*, so that

X, = (A@,0),...,A9%(0),

are orthonormal with respect to { , )o.

Step 2. We claim that if’ A;;; = 0, then ) ; 4, dy' = dx for some function x.
This is because we have

0=A ij = 8}] Z)» ji>

v=1
which shows that
dki  0A;
ayl oyt
Now choose functions x® with A@; = 9x%/3y’. As before, the x* are a

coordinate system in a neighborhood of 0.
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Step 3. We claim that x is the desired coordinate system, i.e., that

n

8 = Z ijf)x_"_&x_" — Xn: i), 3 ).
nwy — 4 ay, ay] - 4 U J
i,j=1 i,j=1

As before, we just have to prove that the right side of this equation has all partial
derivatives 3/3y* equal to 0. But

ayik (’X]: QW) )L(v)j) _ (,Xj: 2, A(v)j);k
_ Z g9 M A0 gl p ), K
R A
by Proposition 2

=0 by Ricet’s Lemma and equations (x). <

Comparing this proof of the Test Case with the first proof, we see that

Step 1 uses the conditions R = 0 to obtain the forms ) _; A®; dy* satisfy-
ng (x). Instead of appealing to Theorem 1.6-1, we essentially reprove
this theorem; the Ricci identities make the proof almost as easy as the
proof of Theorem 1.6-0, the only complication being that the “mixed
covariant derivatives” A;.1 depend on all A;.;, not just on A;.1.

Sltep 2, precisely the same as before, uses symmetry of the Christoffel symbols,
rk =1k,
j ji

Step 3 uses the definition of the Christoffel symbols [ij, k] to prove that the
vectors d/0x® are orthonormal. The proof is simpler because some of
the calculations have been absorbed into the proof of Proposition 2,
while the calculations using () on page 196 have been incorporated
into Ricei’s Lemma.

The absolute differential calculus turned out to be so useful (for many other
applications besides the one just given) that it was soon exploited in the way
all successful mathematical theories are—it was generalized. Notice that the
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possibility of defining covariant derivatives depends only on the equation

Y- Z rk axi ax) XY o 0%xH XV
of Vox gx/B gxk T L dxdx'P dxk”

(%)

i,j.k

it does not depend on the particular way that the I‘,-kj are defined in terms of
the g;;. This observation suggests that we focus our attention on the trans-
formation law (%) itself. Quantities which transform in this way are classically
called connections. More precisely:

A (classical) connection on a manifold M is an assignment of n® num-
bers to each coordinate system, such that equation () holds between
the n® numbers I‘ikj assigned to the coordinate system x and the n’
numbers I’ {‘] assigned to the coordinate system x’.

Although this definition is exceedingly unappealing, classically it was motivated
in the following way. If f is a function, then the quantities 9/ dx’ are the
components of a tensor, but if Al are the components of a tensor, then the
quantities dA'/dx7 are not. If we attempt to construct a tensor by adding linear
combinations of the A, thus obtaining

) R ;
axJ Z )‘urjw

u=1

we find that these quantities are the components of a tensor provided that the I‘!‘j
transform according to (¥).

Once we are given a connection (whatever in the world this connection may
mean), we can imitate most of the work already done in this chapter for the
special case where the I‘ikj are the Christoffel symbols, and in addition we can
generalize other considerations from Riemannian geometry. What follows is a
brief outline of this program.

We note first that, in contrast to the special case where the F,-"j are the

Christoffel symbols, a general connection need not satisfy I‘ikj = I‘]kl How-
ever, it is easy to see that the quantities

k _ 1k _k
T =Ty = Tji

are the components of a tensor T, the torsion tensor of the connection. (In the
next chapter, we will see the reason for the term “connection”, but no one seems
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to have a good explanation for the term “torsion” in this case.) A connection

F,.kj is called symmetric if the torsion tensor is zero. In this case, T,'j‘ = 0 for
every coordinate system, so F{‘j = ij,. for every coordinate system. Conversely,

if F{‘j = Fﬁ. in a set of coordinate systems which cover M, then the connection
is symmetric.

The following result gives at least a little geometric significance to symmetry
of a connection.

7. PROPOSITION. The torsion tensor T' of a connection satisfies T(p) = 0
if and only if there is a coordinate system around p with

rk(p) =0 forall i, j, k.

PROOF. 1If Ffj (p) =0,then T(p) =0, so T’f.‘j = 0in any coordinate system x’,
which means that F’Zﬂ = F’ya.

Conversely, suppose that F,-kj (p) = Fj'.‘i (p) for all i, j,k n a coordinate sys-
tem x. Define x’* by

k@) = @) - F N+ 5 Y THOI @) — ¥ ()] @) = ()]
i,j=l1

Using Fikj(p) = Fﬁ.(p), we compute that

g’k — gk ¢ rk i i
ot =0+ LT =X (p)]
ax/k

oy P = 5.

This shows that x’ is a coordinate system in a neighborhood of p. Moreover,

azx/k

k
PR (p) =T;(p).

Substituting into (*), we see that F’Zﬂ (p) =0. %

Proposition 7 becomes more significant when we introduce the concept of
geodesics. In our treatment of Riemannian metrics, we defined geodesics as
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critical points for the energy function. For a general connection F,.kj, we can
simply define a geodesic as a path y satisfying

dy* dy' dy’
Tt 2T g =
i,j=1

a calculation shows this condition does not depend on the coordinate system.
The basic theorems on differential equations show that geodesics through p
are uniquely determined by their tangent vectors ¥'(0) € Mp; we can thus
define exp: M, — M as before.¥ We can also introduce “Riemannian normal
coordinates” at p; we choose any basis Xj, ..., X, for M, define x: Mp — R”
by x(Xr,4'X;) = (d',...,a"), and let x = x o exp~'. As in Proposition 4-l,
we note that the geodesic vk(@) = £*¢ satisfies

Y Th@)EE =o,

i,j=1
so that

Y rk(p)EEl =0 for all n-tuples (¢,...,8").

i,j=1
This implies that
Tk (p) + Tfi(p) =0;

if we also have T(p) = 0, then we deduce that F,-kj (p)=0.

We define covariant derivatives of tensors and the curvature tensor R for a
connection by the formulas on pages 210 and 214. Notice that Proposition 1
holds for a symmetric connection, while Proposition 2 holds for any connection.
Naturally, Proposition 3 has no analogue for general connections. For non-sym-
metric connections, the comparison of mixed covariant derivatives becomes a

little more complicated. Recall that for a function f/: M — R we have

T xiax/ ot axv It

s 2,
i /

When the connection is not symmetric, we can express fij — fji In terms of
the torsion tensor, which is also involved in the new Ricci identities.

*Many global results about geodesics for a Riemannian metric do not hold for more
general connections; see Chapter 8, Addendum 2.
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8. PROPOSITION. For a connection F,-"j, with curvature tensor R and torsion
tensor T, we have

n
af
fig = fui =2 55T
v=1

n n
Mok = Nag ==Y MR+ ) MuTy,
=1 =1

n n
Mizjk = Miskj Z MR i+ Z Ai lek'
=1 =1

PROOF. Compute, compute.

(For all these relations it is, of course, extremely important that, in the defini-
tions, care is given to the order of the subscripts in the I'’s))

Finally, we wish to consider the properties of the curvature tensor which are
given in Proposition 4-10. Two of these have no analogue for a general connec-
tion, since they involve a metric, but there is an additional relation, involving
the covariant derivative, which holds for any connection.

9. PROPOSITION. The curvature tensor for any connection satisfies the fol-
lowing 1dentities:

1) Rk = =R
(2) (Bianchi’s first identity)
R+ Rigj + Rk

n
= (Tpj + Ty + Tie) + Z(T,‘/tc Tt + T T + Tj Tur)
u=I

(3) (Bianchi’s second identity)
(RMyka + Ry + RPujig)

n
+ ) (T RMiut + T{ Ry + T R i) = 0.
u=1
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In particular, if the connection is symmetric, then we have the much simpler
relations

(2) Rijg + Rikij + Rijjx =0
(3) Rbyjkg + Rbipry + RMjjp = 0.
Classically, (3') alone is known as “Bianchi’s identity”.

PROOF. Equation (1) follows immediately from the definition. In the case of a
symmetric connection, equation (2) is also easy to verify (we have already done
it in Proposition 4-10). It is even simpler to verify if we use Riemannian normal
coordinates at p; in this case the definition (page 214) gives

i
kj
ax!

RE. ( _Llij -
ik (P) = 5% (») (»),

which yields (2') at once. Using Proposition 1, for a symmetric connection, we
also obtain

h T, T
R ijk;I(P) = 'ax—laF(p) - W(P),

which gives (3').
The proof of (2) and (3) in general is considerably more complicated. To

begin with, notice that T;il = _Tll;u S0

mopi u i uoi
ST = 2 ThTu+ 2T T
u u u
We also have
i _aTjik ZFI TIL_ZFILTI' _ZFI"TI'
jkil T il + 1wl jk 11 uk Ik ju
I u u
From these equations we see that the right side of (2) equals

T} :

jk Ui the two terms obtained by

( ax! t Z Tjkrlﬂ) + cyclically permuting j, k, /.
n

Using the definition of Tjik’ this is easily seen to equal the left side of (2).
To prove (3), we note first that (1) gives

Z 71][;; Rhiﬂl = Z F].“th,'ILI + Fll:j Rhﬂ“.
u u
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We also have

8R ik 2 : h
RMyja = ” + E  R* tjkrlu Z:Rhwkr § :Rh"i*krl‘j'_ R4juT-
n [

From these equations we see that the left side of (3) equals

IR"; ]k u A the two terms obtained by
( + Z R ’Jkrlu Z R ujk i cyclically permuting j, k1.

Plugging back into the definition, we find that this is zero.

Believe it or not, the Bianchi identity will be useful later on, and crucial
in the last chapter of Volume V. Even more surprising, in Chapter 7 we will
present a derivation of the Bianchi identity which will make it seem like a natural
result. With the present proof of the Bianchi identity we end our summary
of the classical theory of connections. The presentation was made mainly as
background for the succeeding chapters, in which the same results will begin to
take on a more modern appearance.



CHAPTER 6
THE V OPERATOR

he contents of this chapter really differ very little from those of the previous

one, but everything will look quite different. The clean modern symbol-
ism which gets introduced here is abandoned only in those parts of the chapter
which compare the present treatment with that given previously. This refur-
bishment of the classical theory, due to Koszul, is effected by singling out for
invariant treatment just one of the concepts introduced previously, and then
defining the other concepts in terms of it. We will begin with a definition, and
then compare it to the classical one.

A (Koszul) connection on a C* manifold M is a function V (read
“dell”) which associates a C* vector field Vx Y to any two C* vector
fields X and Y, and which satisfies

1
2
3
4

—~
RNuud- N2

Vxiox,Y = Va, Y + Vi, Y
Vx(Y1 +Y2) = VxY1 + Vx 1,
VixY = f-VxY
Vx(fY)=f-VxY +X(f) Y.

P
~

Notice that V is assumed linear over the C® functions in the argument X. By our

standard theorem (I.4-2) this means that for any given vector field ¥ we can
define

VX,,Y € Mp

for every X, € Mj so that
VXy = pH= VX,, Y.

Alternatively, one can define a Koszul connection to be a map V which assigns
avector Vx,Y € M) to every X, € M, and every C* vector field ¥, and which
satisfies

1) Vx,+x; ¥ = Vx, Y + Vy ¥
(2) Vx,(Y1 + Y2) = Vx, Y1 + Vx, 12
227
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(3") Vax,Y =aVy,Y foralla e R

@) Vx, (SY) = f(p) Vx, Y + Xp(/) - Y

(5") If X and Y are C* vector fields, then so is p > Vy, Y.
We then define VxY by VxY(p) = Vy,Y.

As one example of a Koszul connection, we take M to be R” and let Vy, Y
be the directional derivative of Y in the direction X, (computed by taking
the directional derivative of the component functions of Y). It is clear that
properties (1)—(5’) hold for this V. However, the most important justification
for the particular conditions required of a Koszul connection comes from a

comparison with classical connections. If x!,...,x" is a coordinate system
on M, and we define I’;‘j by

(%) V3 i.:ir.".i

then from (1)—(4) it i1s an easy exercise to deduce that I’;‘j- are the components of
a (classical) connection; conversely, given a classical connection, we can use (%)
and (1)-(4) to determine a well-defined V. In the coordinate system x, if

n 9
R
then

n n . a
VxY = 1;(,; a’kk;i) S

For a given vector field Y we have a tensor VY of type ( ), that is, a collection
of linear transformations VY (p): M, — M), given by

VY(p)(Xp) =Vx,Y (= VxY(p)).
Clearly
k
7 (5) - Z v

we can also write this as

VY—ZA" dx' @ —

ik=1 a
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which shows that VY is the tensor classically described in terms of its compo-
nents A¥,;.

The covariant derivatives of all other tensors are now going to be defined
in terms of this covariant derivative, which we have made the cornerstone of
our new definition of a connection (and not merely in terms of the I’fj which
it determines). There are two completely different ways of doing this, each of
which has its advantages. The first way is purely formal:

1. PROPOSITION. Let X be a C*® vector field on a C* manifold M with a

Koszul connection V. Then there is a unique operator
A VyA
from C® tensor fields to C® tensor fields, preserving the type (Ilc), such that
) Vxf=X()
2) VxY is the vector field given by the connection V
3) A+ VyAis linear over R
4) Vx(A®B)=VxA® B+ A®VxB
5) For any contraction C, we have Vy o C = C o Vy.

(
(
(
(

Moreover, each Vy A is linear over the C® functions in the argument X, so for
every tensor field 4 of type (11‘) and every X, € M, we can define
Vx, 4 € T (Mp)
with
Vy, 1 x4 =Vx,A+ Vy, A
Vaox,A =aVx,A.

PROOF. Essentially, this is Problem L.5-15. If we define

Df = X(f)

DY = VyY,
then D does satisfy the condition

D(fY)y=fDY+Df-Y 1e., D(f®Y)=f®DY+Df®Y

which is assumed for this problem. Briefly, the proof that D = V can be
extended uniquely is as follows. For a 1-form @ we want

X(@(Y)) = D(w(Y)) = D(contraction of ® ® ¥)
= contraction of [Do ® Y + @ ® DY]
= Dw(Y) + o(DY)
= Do(Y) + o(Vx Y),
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so we want
(Vxw)(Y) = Do(Y) = X((Y)) — o(VyY) for all Y.

Since any A is a sum of functions times tensor products of vector fields and
1-forms, conditions (3) and (4) determine Vy A.

Following through the proof in detail, it is easily checked that Vy A4 is linear
over the C* functions in the argument X. &

In view of Proposition 1, for any tensor 4 of type (l;) we can define a new
tensor VA of type (k;rl) by

VA(p)(le’ L) ka’ Xp) = VXpA(le’ s ’ka)'

If =Y ;A;jdx/ is a tensor of type ((1)), and we set

n
Vyw=) adx,

ax [=1
_‘—.A.k - a t t1o f ® k
; contraction ol @w -

ax!

. d d
=contract10nof(Vaw ®— +w®Vy, —)
Py dxk = Oxk
x dx

n
=a; + Z F;Z)»,,,,
n=1

so we obtain

We can also write this as
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which shows that Ve is the tensor classically described in terms of its compo-
nents Ag;. Similarly, we easily see that if
o ) 9
_ Jredt g 0 oy he—er—R - ® ——
A=Y alldx g @dxk @ = ® - ® 57
then
L . X 0 d
_ J1eJi 1 i h R —_—
VA—ZAil...ik:h dX ® ®ka®dx ® an’ ® ® axj'l'

The uniqueness clause in Proposition 1 1s precisely what accounts for its use-
fulness: all properties of VA should be derivable from properties (1)~(5), since
these properties characterize VA. On the other hand, the proposition gives no
idea what is going on geometrically. To obtain such a picture we introduce
another extremely important concept.

First consider a curve ¢: [a,b] — M. By a vector field V along ¢ we mean a
function V on [a,b] with V; = V(1) € M. In a coordinate system (x,U) we

can write
n

d
V=) uilt) 5

i=1
We call V a C® vector field along c¢ if the functions v are C*® on [a, b]; this 1s

equivalent to saying that 7 — Vi(f) is C* for every C* function f on M.
Now suppose that V is a C* vector field on a neighborhood of c([a, b]). Then

|
S \1 i
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is a C® vector field along ¢. This vector field is called the covariant derivative
of V along c¢; we will denote it by the convenient symbolism

DV
dt’
which involves all the classical ambiguities. We would like to generalize this

covariant derivative along ¢ to vector fields V' which are themselves defined
only along c.

2. PROPOSITION. There is precisely one operation V +— DV/dt, from C*
vector fields V along ¢ to C™ vector fields along ¢, with the following properties:

DV +Ww) DV DW

@) dt dr U dt
D(fV) df 0
(b) o T +f——foC f:la,b] > R

(c) If Vi = Y, for some C® vector field Y defined in a neighborhood
of ¢(¢), then

PROOF. 1If x is a coordinate system around p = c¢(to) then for ¢ sufficiently
close to fy we can write

n

Viey=) v @) 9

dxJ
j=1

c(t)

for unique functions v/. If (a), (b), (c) are to hold, then we must have

DV & D
WZZ ( ©- ax/ c(z)) by @
j=
dvi 9 d
I £ T S by (b)
j=l{ dt dx/ C(t) dt 3x1 C(I)}
“|dv a 8
— h J
]:

NP
— dt 0x/

]
+ vf(t)z dt 0 W}

e 8\. )

-
I
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and thus

21% " [ dv* S det B
_ = _— K ATy _
a g( ds +,-; feOra (”) xk

c(t)

So there is at most one such operation. Conversely, it is easy to check that this
formula does have the required properties.

Remark: There are two things which should be noted about this Proposition,
and the interest of the first tends to overshadow the significance of the second.

(1) The Proposition assigns a value to DV /dt even at points where dc/dt = 0.
This value is not necessarily 0. In fact, if ¢ is a constant curve, c(t) = p for
all ¢, then a vector field V along ¢ is just a curve in Mp, and DV /dt is just the
ordinary derivative of this vector-valued curve.

(2) When dc/dt # 0, so that ¢ is an imbedding in a neighborhood of t, we can
always write Vy = Ye(s) for some ¥ defined in a neighborhood of ¢(¢). But Y is
not unique, so even now condition (c) does not by itself determine DV /dt—we
also need conditions (a) and (b). This result is very similar to our basic principle
for defining tensors (Theorem 1.4-2): in the proof of that result we expressed

all vectors in terms of the d/dx’; in the present case we €Xpress all vector fields
along ¢ in terms of the a/0x oy

We say that a vector field V along ¢ is parallel along ¢ (with respect to V) if
DV /dt = 0 along ¢c. When M = R" and V is just the directional derivative,
we obtain the standard picture of a parallel vector field. In general, given a

curve ¢: [a,b] = M, and a vector Vi € Mc(q), there is a unique vector field |4
along ¢ which is parallel along ¢. This is because the equations

k n i
*) dv*(t) + Z dct ()

dt dr TE )/ () =0

i,j=l1
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are linear differential equations with unique solutions v/, defined on all of [a, b],
for given initial conditions; the desired vector field V' is then

no P
V_E: iy .
,—j=1v(t) ax/

The vector V; € M, is said to be obtained from V, by parallel translation
along c. Itis clear from equations (x) that (V+W), = V;+W, and (A-V), = A-V;
for A € R. We therefore obtain a linear transformation

T Mc(a) e Mc(,) Va = V;

c(t) '

Clearly, 7, is one-one, for its inverse is just parallel translation along the reversed
portion of ¢ from ¢ to a. Thus, along any curve ¢ we obtain an isomorphism
between any two tangent spaces Mc(,) and M,,); this possibility of compar-
ing, or “connecting”, tangent spaces at different points gives rise to the term
“connection”. It was invented by Levi-Civita, who used the equations () as the
definition.

The parallel translation ; is defined in terms of V, but we can also reverse
the process.

3. PROPOSITION. Let ¢ be a curve with ¢(0) = p and ¢’(0) = Xp. Then

R
Vy,Y = ;Lnloz(r,, Yoy — Yp)-

PROOF. Let Vi,...,Vy be parallel vector fields along ¢ which are linearly in-
dependent at ¢(0), and hence at all points of ¢. Set

Y(e() =) vy @) Vit).
i=1

Then

h—0 h

lim (' Yoy — Yp) = lim —[Zy Wt~ 'With) —y (O)V(O)]

= lim —[Z Y (Vi) ~y (O)V(O)]

Ny YD 1O

- Vi(0
h—0 h ’( )

]_

= Z W o) =

Z Yy (OVi)
=0 ;=1

== VXI’ Y. ...



The NV Operator 235

Motivated by Proposition 3, we now define Vy, A where A is any tensor field
of type (ll() We have
A(q) € TF(My)  forallg,

and the isomorphism
Ty . MC(O) — Mc(t)

gives rise to an isomorphism
T (@) T (Me) = T (M)

therefore we can define
N . _
Vi, A = lim —([7* ()] A(c() = A(p).

If we regard A(g) as a function of k tangent vectors in My and ! vectors in Mg*,
this means that for vy, ..., € Mp and Ay,..., A € Mp* we have

(Vx, A1, .., Vi Ay A7)
m —[A(c(m)(Thv1, .., ThO Th A - ThAk)

1
=1
hl—>0h
— AP,V Ay AR ]

4. PROPOSITION. This Vy, A coincides with that given by Proposition 1.

PROOF. Tt suffices to prove properties (1)=(5) for the new Vy, A. This is left to
the reader [the proof of (4) and (5) involves the usual trick which one uses in the
proof of the product rule for derivatives]. ¢

[Note that without this result it would not be at all obvious that Vy, 4 is linear
in Xp.]

5 COROLLARY. Let 4 be a tensor field of type (11‘) If Yi,..., Y are vector
fields, then

k
(Vx, D (Y1ps - Yip) = Vi, (AN, .., Ta)) — Z A(Yip,. s VX, Yis s Yip).

i=1
PROOF. Use Proposition 1, noting that A(Y1, ..., Yk) can be obtained by ap-
plying & contractions to
ARY1® - @ Yi.

(It is also instructive to obtain a proof from the definition in terms of parallel
translations.)
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Our definition of Vx 4 may be compared to the definition, in Problem 1.5-14,
of LxA. In the latter case, the maps ¢*, given by the vector field X play
the roles of the parallel translations 75 in the present instance. Notice that
Problem I.5-15 can be used in both cases to formally extend the operation from
vector fields to arbitrary tensors.

After these preliminaries, the further study of Koszul connections proceeds
quite rapidly. We first define, for vector fields X and Y,

T(X,Y)=VxY - VyX — [X,Y].

A simple calculation shows that T is linear over the C™ functions, so that it de-
termines a tensor. Clearly this is just the classical torsion tensor; as usual, the
invariant definition involves a bracket, which disappears in the expression in
coordinates.

We now want to distinguish the connection determined by the Christoffel
symbols for a metric. Suppose we are in a Riemannian manifold (M, ( , }).
We will call a connection compatible with ( , ) if the parallel translations
7 Moy & M, along any curve c: [a,b] — M are isometries (with respect
t0 { , Ye(@ and { , )e@))-

6. LEMMA. A connection V is compatible with a metric { , ) if and only if it
satisfies the following condition: If ¥V and W are vector fields along any curve c,

then d DV DW
—(V, W)y ={—,W V,—).
dz( W) < dt >+< dt >
PROOF. Suppose V satisfies this condition. Then if V is parallel along ¢ we

have J DV
—(V.Vy=2{—,V) =0,
dt( Vi <dt >

so (V, V) is constant along ¢. Thus each 7 is norm preserving, and hence an
isometry.

Conversely, suppose V is compatible with the metric. Choose parallel vector
fields Pi,..., P, along ¢ which are orthonormal at one point of ¢, and hence
at every point of ¢. Let

n n
Vi=) VOP,. W=D wOF;.
i=l| j=1

Then
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and by Proposition 2 we have, remembering that DP; /dt =0,

DV &K dv DW < dw!
77=Z—UP' —=) P

DV DW "o(dvto, dw d
DV s\ v, 2N S (i v S ) = (VW) %
<dt’ >+<’dt> Z(dzw” dt) "W

7. COROLLARY. The connection V is compatible with { , } if and only if
Xp (Y. Z) = (Y, ¥, Zp) + (Y. V5, 2)

So

for all vector fields Y, Z and vectors X, € Mp.

PROOF. Apply the Lemma to a curve ¢ with ¢'(0) = Xp. <

8. LEMMA (FUNDAMENTAL LEMMA OF RIEMANNIAN GEOME-
TRY). On a Riemannian manifold (M, ( , )) there is a unique symmetric
connection compatible with { , ).

PROOF. Suppose V is compatible with (, ). Choose a coordinate system
(x,U). By Corollary 7

) agfk_i<a 8\ _ [y, @ 3\ [ o 9
axi  oxi\oxi axk| %Bxf’axk axi’ é%axk'

Cyclically permuting i, j, k, and using

d d
v i, 77 = VA 5e (from symmetry),
dx ax’
we obtain »
d d
; _ R Y

2Ty = <Vii axI’ axk> =4
I=1 dx

which implies that
n
rl, =) g"lij.kl.
k=1

Thus the s for V must be the Christoffel symbols.

We know that the Christoffel symbols do indeed satisfy (*), which shows that
the equation in Corollary 7 does hold. (In fact, this equation is equivalent to
Ricci’s Lemma, 5-3.) <
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The unique connection of Lemma 8 obviously ought to be called the Christof-
fel connection for { , ); instead, it is called the I.evi-Civita connection* for
( , )! Naturally, Lemma 8 is more impressive before reading the proof than
after. Nevertheless, it is still a very nice result. Perhaps its only defect is the
restriction to symmetric connections; in Addendum 1 to this chapter we present
some justification for this restriction. We have already given one interpretation
of symmetry; but the following will be more useful for present purposes. For
a C® function s: R? — M (a “parameterized surface” in M), we define a
vector field V along s to be a function V with

Vix,y) € Ms(x,y)-
In particular, we have the vector fields
s 0 s 0
Penf) §e(3)
For any C* vector field V along s, we define

D—V __ covariant derivative along c(t) = s(z, y)
0x Jixy) of t > V(.y), evaluated at r = x,

e
{s(0,1)} K {s(1,0)}

and we define DV/dy similarly.

8. PROPOSITION. If V is symmetric, then
D ds D s
dx 9y  dyox’

PROOF. Express both sides in terms of a coordinate system and compute. <

*This is an historical mix-up, due to the fact that the collection of parallel translations
determined by V was called “Levi-Civita’s connection” for V.
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We are now ready to define the curvature tensor for a Koszul connection V.
If X,Y, Z are vector fields, we consider the vector field

R(X,Y)Z =Vx(Vy2Z)—Vy(VxZ) - Vix n\Z.

A straightforward computation shows that (because of the bracket term) R is
linear over the C® functions in all three variables, so it defines a tensor R, the
curvature tensor of V. Obviously, this definition is somehow related to the
Ricci identity (Proposition 3-8)

n n
(x) )‘i:jk - )‘i:kj =~ Z )‘lRllfk + Z )‘i:l lek:
I=1 I=1

but at first sight we seem to be missing a term for the torsion. To see why this
is so, recall that if

n 9
2= Mg
i=1

then A’; are the components of VZ, i,

VLZ=Xn:AiU~ i

dxi’
ax’ i=l1

Now Al jx = Al.j are not the components of Vy .k (Vy/5,i Z); rather they are
the components of V(VZ). So

0 0
= Vi. (VZ (W)) - VZ(VL W) by Corollary 5
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Consequently,

Vo (VLZ) Vs (V_a_Z)
dx/ dx* dx* ax’

Since

I=1
we obtain simply

VL(VLZ)_VL(VLZ)ZZ;(IX:AIRi”"‘)%
= =1

ax/  axk dx ax/
_R a a 7
o axJ’ axk )

so the definition does agree with the classical one. At the same time, it is clearly
preferable, in that it does not involve the torsion.

[Classically, there is practically no way to even name the quantity

Vi (V 3 Z),
since A’y is automatically interpreted as the components of the tensor VV Z.
For a vector field Y = ¥, 579/9x', we can write the components of

Vy (VvZ) as (Zki;,b’) ,
4 =1 3

ax’

the summation over / making it clear that we are taking covariant derivatives of
the tensor field with components u' = 3, A7;b!. However, for the special case

VL(VLZ)v
ox’ axk

)
=1 i

the expression

is about the best we can do.]
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The following result will be our analogue of the Ricci identities.

9. PROPOSITION. Lets: R? = M be a parameterized surface, and V a C*°
vector field along s. Then

D D D D ds ds
"y - ZZy=R{—,— |V
dx dy ByBxV (Bx By)

PROOF. Compute in a coordinate system.

It should come as no surprise to learn that we can now prove the Test Case;
it may be surprising, however, to see how simple the proof becomes.

10. THEOREM (THE TEST CASE; THIRD VERSION). Let (M,{ ,})
be an n-dimensional Riemannian manifold for which the curvature tensor R
(for the Levi-Civita connection) is 0. Then M is locally isometric to R” with its
usual Riemannian metric.

PROOF. We assume we are in R”, with y!,..., " the standard coordinate
system.

Step 1. We claim that we can find vector fields X, with arbitrary values X(0) €
R"o, satisfying
Vino for all i,
ay'
and hence
VzX=0  fordl Z.

To do this we first choose X (3,0, ...,0), with the desired initial value, so that
it is parallel along the y'-axis.

1AL
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For each fixed y!, we then choose X (31, »,0,...,0), with the values X(»',0,
...,0) just obtained, so that X is parallel along the curves y — O, »,0,...,0).
The vector field X is now defined on the surface

RRFyTAR

sty =01 ph0,...,0).

Clearly DX /dy? is 0 along s, while DX /dy! is 0 along {s(y,0)}. Now we have

D D D D _R(as E) _0
oyl 9y? dy2 oyt " ay!’ dy? o
)
D D
il
dy2 Iy

This means that DX/dy' is parallel along the curves y s(y',y). Since
DX /3y is 0 at s(p',0), we have DX /dy! = 0 along s.

We can clearly continue in this way to obtain the desired X. Now choose
Xi,..., X, with this property so that X;(0),..., X(0) are orthonormal with
respect to { , )o. Clearly, Xi,..., X, are linearly independent in a neighbor-
hood of 0.

Step 2. Since the connection V associated with ( , ) 1s symmetric, we have
0=VyxX; - Vx, Xi — [Xi, Xj].

But VzX; = 0forall Z. So [X;, X;] = 0. This means that there is a coordinate
system x'. ..., v with X; = 9/0x,

Step 3. We claim that x is the desired coordinate system, i.e., that the X; are
everywhere orthonormal. This is obvious, for they are orthonormal at 0 and
parallel along any curve, and parallel translation preserves the inner product

( R ).0:0
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This proof is completely analogous to the first two proofs of the Test Case,
except that it is “dual” to them in the sense that we find the vector fields 9/9x
instead of the 1-forms dx’.

Step I uses the conditions R = 0 to obtain the parallel vector fields Xj, in
a way completely analogous to, but simpler than, Step 1 in the second
version.

Step 2 now uses symmetry of the connection to prove that [X;, Xj1 =0, a
condition which is dual to exactness of the 1-forms obtained in the
previous Versions.

Step 3 uses the definition of the Levi-Civila connection to prove that the vec-
tors X; are everywhere orthonormal. As we have already pointed out,
the fact that parallel translation preserves the inner product ( , ) is
equivalent to Ricci’s Lemma, which we used in Step 3 of the second
version.

Notice that the proof shows that if we can find 7 everywhere linearly indepen-
dent vector fields Xi, ..., X, which are parallel (i.e., which satisfy VzX; =0
for all Z), then the manifold is flat. Consequently, such vector fields generally
cannot be found. This means that parallel translation of a vector along two dif-
ferent curves with the same end-points generally gives different results; for if X,
were the parallel translate of Xp along both the curves shown below, we would
clearly have both

Vi X(p)=0 and V43 X(p)=0.

ax! ax?

This phenomenon can also be described by saying that parallel translation of
a vector along a closed curve generally brings it back to a different vector. In
Volume III we will see some more quantitative statements of this fact.

Our next two results are simply Proposition 5-9 and 4-10. They are reproved
here in a spirit more in keeping with the present treatment of connections, but
it is not hard to see that they are essentially the proofs given before. As a matter
of notation, if we are given an expression A(X, Y, Z), we will let ZA(X, Y, Z)
denote the cyclic sum

SAX,Y,Z) = AX,Y,Z) + A(Y, Z,X) + A(Z, X, Y).
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11. PROPOSITION. Let V be a connection with torsion T and curvature R.
Then for all vector fields X, Y, Z, W we have

() RX,Y)Z =—R(Y,X)Z
(2) (Bianchi’s first identity)

S{RX,VNZ}=3{(VxT)(Y,Z2)} + SAT(T(X,Y)Z)}

(3) (Bianchi’s second identity)

SA{(VZzR)(X, Y, W)} + S{R(T(X,Y),Z)W} =0.

In particular, if T = 0, then
(2) S{R(X,Y)Z} =0
(3" S{(VzR)(X,Y, W)} =0.

PROOF. (1) is clear from the definition.
To prove (2), we first note that

T(T(X,Y),Z)=T(VxY,Z)— T(VyX,Z) - T([X,Y], Z)
= T(VxY,Z)+ T(Z,VyX) - T([X,Y], Z).

We also have, by Corollary 3,
(VzTYX,Y)=Vz(TX,Y)-T(VzX,Y)-T(X,VzY).

From these equations we obtain

SAT(T(X,Y), Z)} = —2A(VzD)(X, )} + 3{Vz(T (X, Y)) - T([X, Y], Z)}.

The second term on the right side equals

S{Vx (V¥ Z) - Vy(VxZ) = Vix 1 Z} + S{X, Y], Z]} = S{R(X,Y)Z} +0,

since the Jacobi identity states that 2{[[X, Y], Z]} = 0.
To prove (3), we first use (1) to obtain

S{R(T(X,Y), Z)W}

=3{R(VxY,Z)W + R(Z,Vy X)W — R([X, Y], Z)W}
=S{R(VzX, Y)W+ R(X,VzY)W} — S{R([X, Y], Z)W}.



The V Operator 245

By Corollary 5 we also have

(VzR)(X,Y,W) = Vz(R(X,Y)W) - R(X,Y)VzW
— R(VzX, Y)W — R(X,VzY)W.

From these equations we have

S{R(T(X,Y), Z)W} = —S{(VZR)(X,Y, W)}
+ 3{VZ(R(X,Y)W) — R(X,Y)VzW
— R(X,Y),Z)W}.

Now
VZ(R(X,Y)W) — R(X,Y)VzW — R(X,Y),Z)W

= V2 Uy W = VoV I W | V2 VW
Uy Uy VoW + Ty Tx VW +

+ V[[X’y]’z] W.

Writing [Vy, Vy] for the operation W — VyxVyW —VyVx W (asonpg L 155),
we can write this as

Vz([Vx, V¥ W) — [Vx, V¥1(Vz W) + Vix y, 21 W.
The cyclic sum of these quantities is 0, because of the Jacobi identity
S{llX.Y). 2]} =0,
and the “Jacobi identity”
3{[Vz, [Vx, VyIIW} =0

(recall that in any ring, if we define [a,b] = ab — ba, then [ , ] satisfies the
Jacobi identity). %

12. PROPOSITION. For the curvature tensor R of the Levi-Civita connec-
tion V associated to a Riemannian metric { , ) we also have
@) (R(X,Y)Z, W) =(R(Z,W)X,Y).
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PROOF. Lquation (1) i1s equivalent to
(RIX,Y)Z,Z)y=0 forall X,Y,Z.
It suffices to prove this when [X, Y] = 0. In this case
(RIX,Y)Z,Z) = (Vx (VY Z) - Vy(Vx 2), Z),

so we must show that (Vx(Vy Z), Z) i1s symmetric in X and Y.
Now YX(Z,Z) is symmetric in X and Y, since [X,Y] = 0. But

X(Z,2)=2VxZ,Z),
SO
YX(Z,Z)=2VyVxZ,Z)+2(Vx Z,Vy Z).
Since the right-most term is symmetric in X and Y, so is (VyVy Z, Z).
Equation (2) follows from (1), Proposition 12, and Proposition 4-11. «»
To complete our treatment of Koszul connections, we define a geodesic for V
to be a path y: [a,b] > M with
Dd
Ddy _
dt dt
thus, the tangent vector dy/dt must be parallel along y. In the coordinate
system X we immediately obtain the equations for a geodesic,
n

d2yk X d)/i dyj
r« At S
dr? + Z i (r ) dr dt

i,j=1

The existence of a unique geodesic, with given initial vector y'(0) € M, follows
immediately. Since parallel translation is an isomorphism, the tangent vector
dy/dt of a geodesic y is nowhere zero (except when ¥ is a constant path). If V
is any vector field along y, then we can write

v e >R
dt

and

bv _dfdy .Ddy _dfdy
dt ~ dr dt dt dt — dt dt’
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This is 0 only if f is linear. Consequently, a reparameterization y =y op of y
is also a geodesic only if p is linear.*

We know that this result can be made more precise for the Levi-Civita con-
nection V associated to a metric { , ), and the proof of the more precise result
is now especially easy: We have
d <dy dy>

dt’ dt

- <E;17’ dt

Ddy dy
bt )
so |ldy/dt| is constant, ie., y is parameterized proportionally to arclength
(Theorem 1.9-12). The reader is invited to investigate how the proof of Gauss’
Lemma (I.9-15) is simplified in the present set up. We will complete our study
of the V operator by providing the invariant description of the First Variation
Formula promised so long ago.

13. THEOREM (FIRST VARIATION FORMULA). Let y: [a,b] = M be
a piecewise C* path and a: (—¢,¢) x [a,0] > M a variation. Let

0 ..
W, = 55(0, 1), the “variation vector field”
u
d .
V= %, the “velocity vector of y”
D [13 : kA
Ay = —Jt—V,, the “acceleration vector of y”.

Also choose @ = tp < - -+ < ty = b to include all discontinuity points of ¥, and
set

AV =VEH) - VE) i=1,...,N—1
AIOV = V(t0+)
Ay V ==V(NT).

Then N
) b
dE(@(u) =—f (Wi Ay dt =3 (Wi, Ay V),
du u=0 a i=0

PROOF. We will give the proof when V' has no discontinuities, leaving to the
reader the simple auxiliary argument for the general case.

* Again we point out that certain global theorems about geodesics for Riemannian
metrics do not generalize to arbitrary connections; see Chapter 8, Addendum 2.
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0 (B ) (Do D
du\or’ dr| “\owor or
we obtain

dE(&(u))_l_cf_/b<8_a8_a dt_/b Dda da\
du  2du J, \9t d “Ja \Ou o

b
D da 0
:/a <Ea—z, a—(:> dt by Proposition 9.

From

Now the identity

9 [ou da\ _(Dia da\ [da D
9r \du’ dr | \0rou 0t du’ ot ot

implies the following analogue of integration by parts:
/b D da 8a>dt_ da dar\|"=" _/b da D da dr
2 \0t 3’ Ot T \ou’ o |-, o \Ou drdt]|

dE(a(u))
du

Thus

b
__ / (Wi, A2y di — (W(a), V(@) + (W(b). V(b))

u=0

which is the desired formula. &
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ADDENDUM 1
CONNECTIONS WITH THE SAME GEODESICS

Let V and V be two connections on M. We define
D(X,Y)=VxY — VxY.

A simple computation shows that D is linear ozer the C* functions in both argu-
ments, so it determines a tensor D, the difference tensor of the two connections.
In a coordinate system x we have

_ : . 0
D:ZFZ—FZ dx’®dx’®a—x?.

As is well known, there is a unique way to write D = S + 4 with § symmetric
and A alternating, namely

S(X,Y) =
AX,Y) =

[D(X,Y)+ D(Y, X)]
[D(X,Y) — D(Y, X)].

S ST

Note that if 7 and T are the torsion tensors of ¥V and V, then

(%) 2A(X,Y) = VyY —Vx¥ = VyX + VyX
=TX,Y)+[X,Y]-T(X,Y) - [X,Y]
=T(X,Y)-TX.Y),

so V and V have the same torsion if and only if 4 = 0.

14. PROPOSITION. The following are equivalent:

(a) The connections ¥V and V have the same geodesics [with the same pa-

rameterizations]
b) D(X,X)=0foral X
(c) §=0.

PROOF. (a) = (b): Given 0 # Xp € M. lety be the geodesic (for the connec-
tions V and V) with ¥’(0) = Xp. Let X be a vector field in a neighborhood
of p which equals dy/dr along the part of y in the neighborhood. Then

D(X,p, Xp) = Vx, X — Vx, X =0+0.
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(b) = (a): Let y be a geodesic for V, and let X" be a vector field which equals
dy/dt along a portion of y. Then

Vx, X = D(Xp, Xp) + Vx, X =0+0,

which shows that y is a geodesic for V.

(b) <= (c): D(X,X) =0 < S(X,X) = 0. The latter condition implies that
S =0, for we have

0=SX +Y,X+Y)=SWX,X)+S(¥,Y)+S(X,Y) + S(Y, X)
=2S(X,Y). %

15. COROLLARY. If the connections V and V have the same geodesics and
the same torsion, then V = V.

16. COROLLARY. FYor every connection V, there is a unique connection V
with the same geodesics and with torsion 0.

PROOF. Uniqueness follows from Corollary 16. For existence we define Vy Y
=VyY — %T(X, Y), checking easily that V is a connection. Since T is skew-
symmetric, D = %T must simply be 4, so S = 0, so V and V have the same
geodesics. Also, T =T —2A =0, so V has torsion 0. <

We thus see that if we divide all connections into equivalence classes, putting
all connections with the same geodesics in the same class, then each class has
exactly one connection with zero torsion. We can also say exactly how large
each class is: If V is a connection with torsion 0 and T is a skew-symmetric
tensor of type (g), then there is a connection V in the same class as V., but with

torsion T', namely

— 1 —
VxY =VyY + ET(X,Y).

It is also of interest to inquire when two connections V and V have the same
geodesics, with possibly different parameterizations. Such connections are called
“projectively equivalent”, because in ordinary space a projective map is one
that takes straight lines to straight lines.
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17. PROPOSITION (H. WEYL; 1921). The following are equivalent:

(a) The connections V and V have the same geodesics, with possibly differ-
ent parameterizations.

(b) For every X there is Ay with D(X, X) = Ax - X.
(c) There is a (unique) 1-form @ with S(X,Y) = o(X)Y + o(Y)X.

PROOF. (a) = (b): Given X, € M, let y be the geodesic for the connection V
with ¥’ = X, and let 7 be the reparameterization which makes it a geodesic

for V. Let X be a vector field which equals dy /dt along y and X a vector field
which equals d7/dt along y. Then along y we have X = /X for some f. So

D(X,, Xp) = Vx, X — Vyx, X
=Vy(px, /X =0
= (PN (f) - Xp + [(P)Vg, X]

= f(P)Xp(f) : Xp = Xp(f)Xp'

(b) = (a): Let ¥ be a geodesic for V, and let X be a vector field which equals
dy/dt along y. Then for p = y(t) we have

1) Vx, X = D(X,, X,) + Vx, X = Ay, X, = g(1)X,, say.
Let f(1) = e9® # 0, where G'(t) = g(t) so that
df
A !
@ =20/ (),
and let X be a vector field such that
_ 1 1 dy
3 Xy = — Xy = — —.
(3) 0= T %O = e
Then
Ve ¥ = vy 2
T N

- 10 () %+ 75 T x|
=70 P\7) P T

i df/dt i ]
=— | -=—_YX bv
f(t)[ VTR Ead B

_ _df/dt df/dt
SO [ f(1)? Xt ) X”]
= 0.
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Consequently, y is a geodesic for V if we reparameterize it as ¥ = y o p7!,

where p is chosen so that
dy -
dr = Ay

i.e., so that

d 1 d
(p~ YL 4

- 7 by (3).
dt |p-1qy  S(p7HO) dt | o1y v &

For this we need . .
P70 T S0y
or simply p’(s) = f(s) > 0 (compare Problem 1.9-27).

(c) = (b) is clear,

(b) = (c): We first establish the following algebraic

LEMMA. Let V be a vector space, and S: V x V — V a symmetric bilinear
map such that for each v € V there is A, € R with

S(v,v) = Ayv.
Then there is a unique ¢ € V* such that
S(v,w) =¢W)w + ¢(w)v.

PROOF. 1f ¢ exists, clearly ¢(v) = A, /2 for v # 0. Conversely, if this definition
makes ¢ linear we will be done, for then

Sw,n)+ Sw,w) +2Sw,w) =SW+w,v+w) = Ayppw(v+w)
= ()"U + A'l.l))(v + w)a
SO
20 (0)v + 20 (w)w2S (v, w) = 2¢(V)V + 2¢ (W)W + 2p (V)W + 2¢(w)v,
which vields
S, w) + d(v)w + dp(w)v.
We prove that ¢ is linear as follows. From
Avrw(V+w) = Ay + Ayw +2S5(v, w)
Ap—w(V — W) = Ayv + Apw — 25 (v, w)
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we obtain
Apgw +Ao—w — 2A9)v + Aogw — Av—w — 2hyw)w = 0.
For linearly independent v and w we thus have

)\v+w + )‘v—w — 24y =0
Avtw — Ay—w — 24w =0,

and hence Ayyw = Ay + Aw. This is clearly also true if v and w are linearly
dependent. Homogeneity is likewise trivial. Q.E.D.

When V is n-dimensional, we have the explicit formula

(%) P(v) =

trace of w > S(v, w),
n+1

which can be deduced as follows. Choose a basis vi,. .., Un with v = v;. Then
S(v1,vj) = ¢(v)v; + ¢ (vj)d1,
SO
n
trace of w > S(v,w) = Zj'h component of ¢(v1)vj + ¢(v;)vi;
j=1
this component is ¢(vy) for j # 1, and 2¢(vy) for j = 1.

Formula (#) clearly shows that

w(X) =

1
trace Y > S(X,Y)
n+1

is the desired C® 1-form on M. %

18. COROLLARY. The connections ¥V and V have the same torsion and
the same geodesics (suitably reparameterized) if and only if there is a (unique)
1-form w with

D(X,Y) =w(X)Y +o(Y)X.

Note, by the way, that for any connection V and any I-form o, the function
VY = VyY + 0o(X)Y +o(Y)X

always is a connection, with the same torsion as V.
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ADDENDUM 2

RIEMANN’S INVARIANT DEFINITION
OF THE CURVATURE TENSOR

In part C of Chapter 4 we presented an extract from Riemann’s paper of
1861. Our use of “ ... 7 near the end was rather deceitful, because one of
the omissions was by no means a minor one. In the deleted portion Riemann
gives a result, which, although it plays no further role in our development of
Riemannian geometry, is nevertheless extremely interesting, for it amounts to
another invariant definition of the curvature tensor. We therefore give below
an unabridged version of the second part of the extract, beginning with the last
paragraph in the version in Chapter 4C. It will present greater difficulties of
interpretation than any thing else we have read, and is followed immediately by
an exposition in modern terms.

* % %k %

The functions ¢;; must necessarily satisfy these equations whenever
> gijdy’ dy’ can be transformed into the form 3" (dx')?: we denote the left
¢

LJ
side of this equation by
(1g,k0).

To make the nature of this equation more transparent, we form the
expression

58 Zgif dy' dy’ — 2ds Zgi-i dy' 8y’ + dd Zgii Sy’ &y,
the variations of the second order d2, d8, 62 being so determined that
') gijdy' sy’ —8Y gijdy' 8y —d ) gi;dy's'y’ =0
5y gijdy'dy! —2dy gijdy' 8y =0
8> iy sy — 28 gy 8y 8yl =0,
&’ denoting an arbitrary variation. In this way the above expression becomes
(In) =) GikDdy' 8y’ — dy’ sy'xdy" 8y' — dy' 8y").

Now from the formation of this expression it is immediately evident that
a change of the independent variables changes it into a new form depending in
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the same way on the ) g;; dx'dxi. And if the quantities g;; are constant, all
coefficients of the expression (II) turn out to be equal to 0. Thusif 3 g;; dy' dy’
can be transformed into a similar expression with constant coefficients, it is
necessary that expression (II) vanishes identically.

In the same way it turns out that if the expression (I1I) does not vanish, the
expression

Lo G kD (dy' Sy’ — dy’ sy" )y 8y’ — dy' 8y
T2 . . T2
Y gijdy'dy’ Y gidy' by’ - (D gy oy’ )

does not change if the independent variables are changed, and moreover remains
unchanged if in place of the variations dy?, 8y*, arbitrary independent linear
expressions of them, a dy' + B sy', ydy' + 8y' are substituted. Moreover, the
maximum and minimum values of the function (III) of the same dy', &y* depend
neither on the form of the expression Y g;; dy’ dy’ nor on the values of the

(11D

variations dy’, 5y', whence from these values it can be determined when two
expressions of this kind can be transformed into each other.

These interpretations can be illustrated by what one might call a geometrical
interpretation, which, although it depends on unusual conceptions, it will
nevertheless help, as one goes along, to have touched upon.

The expression \/Z gij dy’ dy’ can be regarded as just the line element ina
generalized space of n dimensions transcending our intuition. If in this space at
the point (y1,...,y") all shortest lines are drawn, in which the initial elements
of variation of the y' are ady® + Boytady? + B&y2: ... ady" + BOY",
and B denoting arbitrary quantities, these lines make up a surface which can be
developed in the space of our common intuition. In this way the expression (I1I)
will measure the curvature of this surface at the point W .. Y.

If we now return to the case n = 3, the expression (II)is a form ofthe second
degree in

dy? 5y — diP 82, dyP syt — dyt byP, dy' Syt — dyP sy,

and in this case we obtain six equations, which the functions g;; are required to
satisfy if ) gi; dy' dy’ can be transformed into a form with constant coefficients.
Given an acquaintance with the traditional methods, it is demonstrated without
difficulty that these six conditions, when they are satisfied, suffice. It is to be
observed nevertheless that only three of them are independent.

X >k ok ok ok
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Riemann’s description of the curvature tensor is particularly difficult to deci-
pher because he is using classical notation from the calculus of variations. To
state it in modern terms, consider a function s: R? — M, with 5(0) = p € M.
This function s can be thought of as a “2-parameter variation of the point p”,
and on M it gives rise to 2 vector fields,

ﬁ_ d
Bx_s* dax

ﬁ_s(i)
dy ~ T\oy)’

This notation involves the usual ambiguities, and in conformity with this, the
function

(x,y) = <§—i(x,y), g—i(x,y)>
on R? will be denoted simply by
ds 0ds
(o 5]

Riemann directs us to consider the expression

0% [ds Os 02 [ds Os d [0s Os
(A) A e L e oo
dx2\dy dy dxdy \dx’ dy dy2 \dx  dx
If we let 3 3
s s
X = — Y: P
ax’ ay’

then the value of this expression at (x, y) = (0,0) can be written
Xp(X((Y,Y)) = 2X,(Y((X,Y))) + Y, (Y({X, X)),

or simply

(B) [XX({Y,Y)-2XY(X,Y)+ YY (X, X)](p).

On the other hand, to be certain that the expression (B) will equal (A) for some
s: R? > M, we need to know that [X,Y] = 0. Riemann does not consider
all s: R? — M, but only those with the following property: If o: R* - M is
o(x.y,0) = s(x, y), then

33_03_0 3303_0_3303_0_0
9z \dx’ dy dy dx’ 9z dxdy 9z

d [do OJo d [do do
E<WK>_2§<W¥>ZO at (0,0,0).
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Riemann claims that if s: R — M has this property, then the value of (A) at
(x, ) = (0,0) is =2(R(Xp, Y)Y}, Xp). (To account for the factor of —2 recall
that Riemann’s (i, k/) equals Riji/2 = —R,]k1/2 and note that Riemann has

(dy' A dy)) ® (dy* A dy') instead of dy' ® dy’ ® dyk @ dy'.) This assertion
can be rephrased as follows.

19. THEOREM (RIEMANN). For any linearly independent vectors Xp, Yp €
M,, there are vector fields X, Y extending them such that

(@) [X,Y]=0
(b) For every vector field Z with [X, Z}(p) = [Y, Z)(p) = 0 we have

) ZX,Y)-Y(X,Z)-X{Y,Z)=0
(2) Z(X,X)-2X(X,Z})=0 at p.
(3) Z(Y,Y)-2Y{(Y.Z) =
For any such vector fields X and Y we have
—2R(Xp, Yp)Yp, Xp) = [XX(Y,Y) —2XY(X,Y) + YY (X, X)l(p).
PROOF. Using Corollary 7, we see that equation (2) is equivalent to
UVZ X, X)—2(VxX,Z) - 2(X,VxZ) =0 at p

and hence to
(VxX,Z)=0 at p,

since VzX(p) — VxZ(p) =X, Z)(p) = 0. Thus equation (2) is equivalent to
(2" VxX(p) =0.

Similarly, (3) is equivalent to

(3" VyY(p)=0.

Finally, (1) is equivalent to the equality, at p,

(VzX,Y)+(X,VzY) —(Vy X, Z) - (X,Vy Z) — (VxY,Z)— (Y, VxZ) =0,

and hence to
(VxY +VyX,Z)=0 at p.
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This is equivalent to

0= VxY(p)+ VyX(p) =2VxY(p), since VyY —VyX =[X,Y]=0,
so (1) is equivalent to

(1) VxY(p) =VyX(p)=0.

We can obtain such vector fields X and Y, with given values Xp, Y, € M, by
mapping R? into M in such a way that the x and y axes go into two geodesics
in M with 5,(9/dy) parallel along the image of the x-axis and s,(3/9x) parallel
along the image of the y-axis.

Now for such vector fields we have

XX(Y,Y)(p) =2X(VxY,Y)(p) =2(VxVxY,Y)(p) + 2(VxY,VxY)(p)
=2{VxVxY,Y)(p)
YY(X,X)(p) = 2(VyVy X, X)}(p)
“2XY(X,Y)(p) = 2X((Vyr X, Y) + (X, VyY))(p)
= =2(VxVy X,Y)(p) — 2(Vy X, VxY)(p)
—2(Vx X, VyY)(p) — 2(X,VxVyY)(p)
= -2VxVy X,Y)(p) — 2(X, VxVyY)(p).

So the sum is

2[(VxVx Y, Y) = (VxVy X, )] (p) + 2 [(Vy VY X, X) — (Vx V¥ Y, X)] (p)
=0+2[(VyVxY, X) —(VxVyY, X)] (p)
since Vy X — Vy Y = [X, Y] = 0 everywhere
=2(R(Yp, Xp)Yp, Xp)
= —2(R(X,,Yp)Yp, Xp).



CHAPTER 7

THE REPERE MOBILE
(THE MOVING FRAME)

he previous chapter betrayed the historical development which we have

been following, for the V operator did not appear until very late in the
game, around 1954.* In the meantime, Elie Cartan had elaborated a completely
different theory, the method of the repére mobile. Despite the fact that this
theory was invented soon after the Ricci calculus, some of its features are most
casily understood by referring to the V operator which historically came so
much later.

Roughly speaking, the relationship between the results of Chapter 5 and those
of Chapter 6 can be characterized as follows. When working with V operators
we express results in terms of arbitrary vector fields, while in the classical theory
we always use the vector fields X; = 9/ dx! given by a coordinate system (x,U).
At each point p € U, these vector fields provide us with an ordered basis

(Xi(p),..., Xu(p))  for Mp.

In general, an ordered basis (vi,. .., vn) for a vector space V will also be called
a frame in V. Now the vector fields X; may be used to determine a function

p = (Xi(p)s .- Xu(P))s

whose values are frames in the various tangent spaces Mp; such a function is
called a moving frame. Conversely, every moving frame p = Fp determines
vector fields X1, ..., Xn by Fp = (X1(p), ..., Xu(D)). Consequently, as a matter
of convenience we will not distinguish between everywhere linearly independent
vector fields Xi, ..., Xa, and the moving frame they determine. In E. Cartan’s
theory, the basic idea, whose ramifications turn out to be extremely significant, 1s
to express everything in terms of an arbitrary moving frame Xi, ..., Xy, and not
just in terms of the “natural moving frame” X; = d/dx' given by a coordinate
system .x.

Notice that a moving frame X1, ..., X» need not be the natural frame for any
coordinate system, since we need not have [X;, X;] = 0. Also, a moving frame

* Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
259
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may exist on a region which cannot even be included in a coordinate system. For
example, there is a moving frame Xi, X3 on the whole torus. On a Riemannian

manifold (M, ( , )) we define an orthonormal moving frame Xi,..., X, to be
one such that each (X1(p),..., Xy(p)) is an orthonormal frame for M,,. The
frame illustrated above, on the torus, is an example. An arbitrary moving frame
Xi,..., X, gives rise to an orthonormal moving frame if we apply the Gram-
Schmidt orthonormalization process to it (Problem 1.9-11).

Given a moving frame X, ..., X, on (an open subset U of) M, we now ask if'it
1s possible to describe quantitatively just how the frame is moving. As a guide, we
first consider a moving frame Xj, ..., X in R". In this case, we can, with a little
abuse of notation, consider each X; as an R”-valued function X;: R* — R". If
we consider the identity map as an R”-valued function P: R" — R”, then the
R”"-valued i-form dP is just

dP(X,) = X.

Consequently, if we introduce 1-forms 6° by

1) dP=Y 06"-X; ie, dP(X,) =) 6'(Xa)- Xi(a) eR",
i=1

i=1

then 6 are just the “dual forms” to the Xj;, that is, 9i(Xj) = 5; We also
introduce 1-forms w; by

(1) dXj =) ol X;.
i=1

Clearly wj’:(Xa) is the X; component of dX;(X,). Since dX;(Xg) is just the
directional derivative of X; in the direction X, we can interpret wj’: (X,) as the
rate at which X rotates toward X;(a) as we move along a curve with tangent vector X,.

Now it is not possible to find a moving frame with arbitrary 6’ and wj’:; certain
integrability conditions must be satisfied:
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1. PROPOSITION. The I-forms 6 and w]’: for a moving frame Xi,..., X,
in R” satisfy the structural equations of Euclidean space:

i__ k i _ i k
Ao =3 0% Ao =) wp A0
k k
i i k
dw; = Zwk/\wj.
k

PROOF. Noting that the equation dP = Y 6% - X; can also be written dP =
3 0 A X; (for the R”-valued 0-form Xj), we have

0=d*P =d(29i /\X,-) =S a0t A X =) 60X ndX
i i k
=5 doix; =Y 65 A Y wpxi by (D
i k i

Setting the coefficient of each X; equal to 0, we obtain the first structural equa-
tion.
We also have

0=d?X; = doiX;— ) of AdXk
i k
= Zdw]':X,- — ijk /\Zw;;X,-,
i k i

from which we immediately deduce the second structural equation. <>

The structural equations can be written much more compactly if we use
slightly modified matrix notation. Henceforth, we will write matrices as 4 =
(Aj-), and define

(A4-B), =>_ 4} B,
k

so that our new A;( corresponds to the old Ay, If v = (v, ..., v,) is an ordered
n-tuple of vectors, and we define

§ : i
wj = Ajv,-,
i
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then the n-tuple w = (wy, ..., w,) will be denoted by v - A. We put the 4 on
the right because we have

[ (4B =) (A BYjui =Y ) A Bfwi
k

i i
=> B]’f(z A;;vi) =Y Bf(v- A
k i k
= [(v- 4) - B];,
which we can write simply as*
v-(AB)=(v-A)-B.

Naturally, if X = (X}, ..., X,) is an n-tuple of vector fields on a manifold M,
and 4 = (Aj.) is a matrix of functions (or a matrix-valued function, whichever
way you prefer to look at it), then X - A denotes the n-tuple of vector fields
X-4); =Y, 4 X,

We extend this notation to forms in the natural way. If @ = (a)]’:) and n = (r];)
are matrices of forms, of degree k and /, respectively, then @ A n is the matrix

of (k +/)-forms
(wAnM); = Zw,’( A r]}‘.
k

If 6 denotes the column vector of /-forms 6!, ...,6", then w A 8 is the column
vector of (k + /)-forms

(w/\@)":Zw]’:/\Gj.
j

With these conventions we can write the structural equations of Euclidean space
as

df = —-onf

do=-wAw.
Henceforth, we will use this notation whenever convenient; for a while the
reader may feel more secure rewriting things in standard form. Our very next

result justifies our characterization of the structural equations as “integrability
conditions”.

*We express this by saving that the n x n matrices act on the right on the set of all
n-tuples of vectors of V. On the other hand, suppose we choose a fixed basis vy,. .., Up
for V, and then define 4 - v for v € V by defining 4-v; =Y ; Aj- v; and extending by
linearity. In this case we will have (4 - B) - v = A - (B - v); so we say that the n x n
matrices act on the left on V.
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9. PROPOSITION. Let ® = (w}) be a matrix of 1-forms on R” which satisfy
the second structural equations

do = -0 Aw ie., dw}:—Zw,’(/\w;‘.
k

Then,

(1) Ina neighborhood of 0 there is a matrix 4 = (Aj-) of functions, with arbi-
trary initial condition A4(0), such that

dA=—wnA e, dAi==7) wAf.
k

2) Ina neighborhood of 0 there is a moving frame Xi,..., Xn with arbitrary
initial conditions X1(0), ..., Xx(0), so that the dual 1-forms @' satisfy the first
structural equation

A9 =-wnf  ie, doi=- wf A6~
k

PROOF. (1) Let y',...,y" be the standard coordinate system on R", and let
APPSR zj’: be the standard coordinate system on Rr* . Let Z be the matrix
of functions Z = (z}) and consider the matrix of 1-forms

() A=dZ +(wAnZ).
We have

dAN=doNZ —wANdZ
=—(WAO)ANZ -0 AN[A—(0A )] by (x) and the hypothesis
=-wAA.

By Proposition 1.7-14, the n-dimensional distribution
n
Ap= [ ker Aj(p)
i,j=1

in R is integrable. Since A, z,) = ( y1,..., y")-plane, the integral manifold
though any point (0, zo) is locally the graph of a function p — A(p) € R"* with
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A(0) = zo. Since dZ + (w A Z) = 0 on this graph, we conclude, as in the proof
of Theorem 1.10-17, that

(**) dA=—-w A A.
(2) Choose 4 to be non-singular at 0, and define 1-forms 6' by

o' = 3 A dy,
J

which we can write simply as
0 =Andy.
Then

df =dA ndy
=—-wAAAdy by (k)

=-—wA#b.

So we just define the moving frame Xi,..., X, by 9i(Xj) = 5; 9

For orthonormal moving frames we have one more relation:

3. PROPOSITION. The forms w]’: for an orthonormal moving frame Xi, ...,
X, in R” satisty .
w]'- = —wij ,

i.e., the matrix w is skew-symmetric.
PROOF. We have

0=d({Xi, X;)) = (dX;, Xj) + (Xi, dX;).
Here (dX;, Xj)}(X,) means (dX;(X,), Xj(a)). Since the X; are orthogonal,
clearly (dX;, X;)}(X,) is just the X; component of dX;(X,). This means that
(dXi, X)) = w]. &

Now consider a moving frame Xj,..., X, on a manifold M. We can still
define the dual 1-forms 6° by 6/(X;) = §'; equation (I) can now be rewritten as
X, = ¥, 01(X,) - Xi(g) for any Xg € My, or simply dP = 3,6 - X;, where
“dP” denotes the identity map of a tangent space into itself. We cannot use
equation (II) to define the forms wj, since “dX;” makes no sense on a general
manifold. However, Propositions 1 and 3 suggest a way of defining these forms
on a Riemannian manifold.
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4. PROPOSITION. Let Xi,..., X, be a moving frame on a manifold M, and
let 6 be the dual 1-forms. Then there exist unique 1-forms w] such that

J
(a) a)] = —w;

(b) do’ ZQk/\a)

PROOF. Suppose w;: satisfy (a) and (b). There are unique functions aj.k and
bj.k with

i _ i k
wj—Za;kf”
j k i____i
2: 18T AR, bl = b

Then (a) is equivalent to
i

@) a{k = —aj,
while (b) gives

1S b6 Aok =df' =) 0 noj = > a6’ NCAR

ik J ik
and hence
®) ay —ay; = bix-
Cyclically permuting i, j, k, we obtain from (a) and (b")
dly = LBl + by, — bly)-

This proves uniqueness.
Now suppose we define a) by

i _ i pk
wj =) @b,
k

where the a’ ik are as defined above, and hence satisfy (b’). It is easy to check

that equation (a’) holds, and hence that equation (a) holds. Moreover, from
equation (b") we have

ol (X)) — 0 (X)) = aly —aj; = bl
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it follows that

30" A o] (X5, Xie) = Y 6" (X))o (Xi) — 0 (Xi)w (X;)
/ /

= 8] (Xy) — 8t wi(X;)
!

= 0 (Xx) — 0 (X))
= by,

which is equivalent to equation (b). ¢

Although we have used Proposition 3 to motivate Proposition 4, the latter re-
sult seems to involve neither a Riemannian metric nor an orthonormal moving
frame. However the two are, in a sense, really there, since there is a unique Rie-
mannian metric on the domain of the moving frame Xi,..., X, which makes it
an orthonormal moving frame. Naturally, if we are already given a Riemannian
metric { , ) on M, then we will expect the 1-forms ! to have some significance
for this metric only when the moving frame is orthonormal with respect to it.

Let us therefore consider an orthonormal moving frame Xi,..., X, on a Rie-
mannian manifold (M, , )). The unique 1-forms w]’: given by Proposition 4
are called the connection forms for the moving frame Xi, ..., X,. They satisfy
wj': = —wij and the first structural equation, by their very definition. On the
other hand, there is no reason to expect them to satisfy the second structural
equation. Recognizing this, we define a matrix of 2-forms Q = (Qj-) by

dow = —wAw+ 2 ie., dwj':z—Zw;;/\w]’-‘+Q§.
k
The 2-forms Q; are called the curvature forms for the orthonormal moving
frame Xj,..., X,. The names “connection forms” and “curvature forms” are
explained by the very next theorem. Let us set

n
Vx X =) THXs
k=1

n
R(X:, X)) Xe =) Rl Xa,
I=1
where V is the Levi-Civita connection for ( , ), and R is its curvature tensor.
We use bold letters T and R to remind ourselves that these are not components
with respect to a coordinate system; thus, for example, we do not necessarily
have l",l‘j = l"}‘,- (but we clearly do have le,-j = lej,-).
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5 THEOREM. Let Xi,...,Xn be an orthonormal moving frame on a Rie-
mannian manifold (M, { , )), and let 0, a)j., Q; be the dual forms, connection
forms, and curvature forms for this moving frame. Then we have the structural
equations of (M, {,)):

o' = =Y wj nO* d6 = - A0
k

dwj-z—wac/\wj’.‘+Qj. do = -0 Ao+ 82,
k

where
. . o1 . .
vl = Zr;q.e", Q=3 ZR',-HG" N ZR',-HG" N
k k.l k<l
PROOF. By the uniqueness part of Proposition 4, we can prove the first struc-
tural equation by showing that if we define wj': =% l";'c ij , then the w;: do satisfy
conditions (a) and (b) of that proposition. Now by Corollary 6-7 we have
0 = Xi(Xi, Xj) = (Va, Xi, Xj) + (Xi, Vi Xj)
=T+ T

this immediately implies that w;: = -—w{ . which is condition (a).
As in the proof of Proposition 4, we have

36 A wj (X, Xi) = @) (Xi) = wi (X)),
1

while we also have

40 (X}, Xie) = X507 (Xe)) — Xie (67 (X)) — (X5, Xil)
by Theorem 1.7-13
—0—-0—60"(Vx; X — Vx, X))
= rj'k - rfcj
= w! (Xi) —wi (X));
this proves condition (b).

For the second structural equation we expand

S Rija Xi = R(Xi, X)X = Vi Vxi Xj = Vx, Vi, Xj = Vixe. x0 X
i
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to obtain

]kl Z(rku rl r“ )+Xk(r ) Xl(r;(]) —GI(V[Xk’X[]X])
Comparing with
[dw;: £ Y 0 A w;‘](xk, X)) = Xe(l (X)) — Xy(} (Xe)) — ([ Xk, Xi])
F23

+ ) [l (Xl (Xr) — o), (XD} (X,
I

we see that this does indeed equal Rijkl = Q; (Xi, Xp). <

Notice that the results of Theorem 5 can also be written
Vx Xj =) o0j(X)Xi
i

R(Xi, X)) X; =) Q5 (Xi, X0) Xi.
i

If we did not already have the V operator and its curvature tensor, then we
could, and E. Cartan did, use these equations to define R. Since the 67, hence
the a) , and finally the @, all depend on the moving frame, it is then necessary to
Check that the resulting deﬁmtlon of R depends only on the values of X;, X, X;
at a given point. We save until the end of the chapter some remarks about what
is involved in that. At the moment, we would like to point out that we are
already in a position to prove the test case, and thus begin to justify the epithet
“structural equations”.

6. THEOREM (THE TEST CASE; FOURTH VERSION). Let (M,{ ,))
be an n-dimensional Riemannian manifold for which the curvature tensor R
is 0. Then M is locally isometric to R” with its usual Riemannian metric.

PROOF. letY;,..., Y, be an orthonormal moving frame around p € M, and
let 6% and a);: be its dual forms and connection forms. By assumption, we have

i ik
dwj— Zwk/\w]-.
k
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Step 1. By Proposition 2, in a neighborhood of p there is a matrix 4 = (4}) of
functions with A(p) orthogonal and

(%) dA = —ow A A.

Let B = A" and define 1-forms ¢ =" B]’:9j, which we can also write as
J

6=ANd.
Step 2. We have

Andp=db — (dANP)

by (*) and
the first structural equation

=—wAAANP+(WANAND) by definition of 6
=0.

=—wAf+(wAAND)

So d¢ = 0, and consequently there are functions xi with ¢ = dx'.

Step 3. We claim that x!,...,x" is the desired coordinate system, i.e., that the
natural frame 9/9x!,...,9/9x" is orthonormal. To prove this, we first note that
the 1-forms ¢! satisfy ¢ (¥;) = Bj, so

J i
57 =) 4jY;.

i

Since the ¥; are orthonormal, it suffices to prove that (A;) is always an or-
thogonal matrix. This 1s a consequence of () and the fact that v = (w]’:) is
skew-symmetric. The argument for this conclusion has already been given on
page 36: if * denotes the transpose, we note that A - A* satisfies the differential
equation

d(A-A‘)=—(w/\A-A‘)—(A.(w/\A)‘) by (¥)
=—(wAA A —(4- A" A oY
——wA(A4-AY+(4-4AY ro,

with the initial condition 4- 4%(0) = I. By uniqueness, the solution is A- At = I

everywhere. <
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We leave it to the reader to correlate the three Steps in this proof with those in
previous sections. Note that the first structural equation involves the symmetry
of the connection, as shown by the proof of Theorem 5, and that skew-symmetry
of  is equivalent to the definition of the Christoffel symbols, since it is the
condition which determines the wj‘: i Proposition 4.

In contrast to previous chapters, in this one we are going to give more than
one proof of the Test Case. Although the proof just given is a natural use
of the structural equations as integrability conditions, it does not illustrate the
fundamental principle to be used in the method of the repére mobile, which is
to choose the moving frame most suitable to the particular problem. When we return to
the study of surfaces in 3-space, or submanifolds of Riemannian manifolds in
general, we will see many instances of this principle. In our present setup there
is one especially important moving frame, the investigation of which will take
some time.

Let Xip,..., Xyp be an orthonormal frame at Mp. In a sufficiently small
neighborhood of p we can define a moving frame Xy, ..., X, by choosing X;(q)
to be the parallel translate of X;, along the unique geodesic from p to g. The

moving frame Xi,..., X, is said to be adapted to the frame Xip,..., X,p. In
order to explore the properties of this moving frame, it is convenient to introduce
the map

O Rx M, - M

defined by
O(1, Xp) = exp(tXp)

(actually, of course, @ is usually not defined on all of R x M, but we will
continue to write : R x M, — M for convenience). On M, we introduce
the coordinate system ¢!,..., 1" by (Y a’ Xjp) = a', and we use ¢ for the
standard coordinate system on R; we then let (z, tt, ..., t") denote the obvious
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coordinate system on R x M,,. We now begin to describe the dual forms 6 and
the connection forms ; in terms of their pull-backs to R x M.

7. PROPOSITION. When we write ®*6’ and q>*w;1 in terms of dt',...,dt"
and dt, we have

o*0! =" dt + 0’
P* a)] =o',

J

where 6" and (Z)J’: are 1-forms which do not involve dt.
PROOF. We can always write

%0’ = fidt + 6

o* w = gijdt + w

it is only necessary to identify the f; and g;;. To do this, we fix a!,...,a" and
consider the geodesic

y(s) = exp(s ZaiXip), s € (—&,¢8).

This can be written as y = ® o ¢, where ¢: (=&,8) > R x M), 15 ¢(s) =

(s, ;@' Xip). So
y*0i(s) = c*@*0'(s) = fils,a',....a")dt
*0l(s) = P wi(s) = gij(s,a's...,a") dt.

On the other hand,
e (al) = (@
which shows that f; = t'. Also
y*o! (% s) = v} (Zk: o Xk(y(s))) = Zk: ri ",
this sum vanishes, because X; is parallel along y, which means that

0= VZ:a"’Xka = ZakvXka = Zak Zr;ch
k k k i

) 0" (Z a"Xk(y(s)))
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In our next result we will look at “partial derivatives” of the 6" and (Z)]’ If we
are given an expression

=igj dr,
j=1

then we will use the symbol

96 " dg;
N ¥ =2 P
5 for Do dr

j=1

and we will use similar symbols for the (Z); [this definition depends on the par-
ticular coordinate system(z, ', ...,1")]. Note that in

déi =Z(a§" dt +Z agf di )/\dtj,

j=1

the terms involving dt are precisely

d —_—
VAN 3

8. PROPOSITION. We have the following “structural equations in polar co-

ordinates”:

o= dr' +) " r*a, (0, X)=0 forall X € M,
B(Z)]’: i ipl i
- =) (Rjp 0 ®)'6 @{(0,X)=0 forall X € M,

PROOF. By Proposition 7 we have
* i *ni i 89_’ : :
()  ®*(db') =d(®*0')y=di' Adt + dt A m + terms not involving dt

=i

1)
2) o* (da) )= d(d)*w’) =dt A 7[1 + terms not involving dr.
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On the other hand, by the structural equations (Theorem 5) and Proposition 7
again, we have

(3) D) =Y Dwp A D6
k

= - @} ARde+6%)
k

; . 1 ;
(4 *(dw)) =—y Do A D W] + 57 (Z Rij 6% A 9’)
k k,d

) 1 . - _
=3 &) naf + 3 PRI ®)(ckdt +6%) A (e dt +6").
k k1

Comparing the coefficients of d¢ in (1) and (3) we obtain
90! ki
di' = —- = =Y iy,

which gives us the first equation in the theorem. Similarly, from (2) and (4) we

obtain '
0wt

1 . i} _
i _ ! i kil _ Jdgkyy.
dit n—= = ZZ(Rjk,od))[dt A (k6" — '0%));
k.l
together with the relation Ry = —Rijk, this gives the second equation.

Since ®(0,X) = p for all X € Mp, we have @y, x) = 0, which gives the
“initial conditions”

610, X) =0, @(©0,X)=0 %

9. COROLLARY. The forms #' satisfy the second order differential equation

926! . R
7 = > (R @)/ k!
t ik
with the initial conditions

61(0,X) =0
96" .
—(0,X) =dt".
5 0,X)=d

PROOF. Differentiate the first equation in Proposition 8 and substitute in from
the second. <
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It should not be hard to see that for all X € M, we have

a2 Yoo (3],
<*> ot o) ~ TP \ad |y )’

in this equation 3/3¢/ denotes a tangent vector in R x M, as well as one in M),
since we are using the same symbol ¢/ for a coordinate function on R x M, as
on Mp. We have also written ®, instead of ®,(1, X), etc. Equation (x) shows
that 6 is determined by exp, and §°(1, X). This makes Corollary 9 particularly

significant, since it determines G_i(l, X) in terms of the functions Rijkl o®. Asa
first illustration of this point, we bore ourselves to tears by twice again proving

10. THEOREM (THE TEST CASE; FIFTH VERSION). Let (M,{ , )) be
an n-dimensional Riemannian manifold for which the curvature tensor R is 0.
Then M 1s locally isometric to R” with its usual Riemannian metric.

PROOF. Step 1. Let Xi,..., X, be the moving frame adapted to an orthonor-
mal frame X p,..., Xyp for Mp,. From Proposition 8 we have

vt
— —9

240, X) =0,
Py , @;(0, X)

which shows that (Z)j’: = 0. This implies that wj’: = 0, since (x) shows that ®, is a
diffeomorphism at (1, X) and
v; = P*w; = w; o Dy
Step 2. Since wj’: = 0, the first structural equation shows that d6’ = 0. So
0= db'(Xj. Xi) = X; (6" (X)) — Xe(®" (X})) — 0'([ X}, X))
= —0"([X;, Xi]).

Thus [Xj, Xix] = 0 for all j,k, so there is a coordinate system x!

X; =9/0x.

y...,x" with

Step 3. This is the desired coordinate system, since the X; are obtained from the
Xip by parallel translation, and are consequently everywhere orthonormal.

In this proofit is still possible to separate the argument into the standard three
steps. But in the next proof everything happens at once.
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11. THEOREM (THE TEST CASE; SIXTH VERSION). Let (M, ( , )) be
an n-dimensional Riemannian manifold for which the curvature tensor R is 0.
Then M is locally isometric to R” with its usual Riemannian metric.

PROOF. Let Xi,...,Xn be the moving frame adapted to an orthonormal frame
Xips.. . Xnp for Mp. From Corollary 9 we have
926!
ar?

~; 36 ;
=0, 6%0,X)=0, 'aT(O’X):d"
which implies that

§i(t,X)=tdt’,  inparticular 6'(1,X)=dr".

; e
il | x) atJ
=0 (exp* (_8_ )) by ().
o’ |y

This shows that the value of the vector field X; at exp X is

]

Now the vector fields 8/37/ on M, are orthonormal with respect to the usual
Riemannian metric { , ) on Mp, so this equation shows that exp: (Mp.{ . })
— (M, { ,))is an isometry. &

So

8 =6'(1,X) (i

[for convenience we do
1.%) not write ®*4° (1, X)]

d
Xj(exp X) = exp, (W

Readers may sort out for themselves the vestigial forms in which the three
Steps appear in this last proof. One thing does seem worth pointing out explicitly.
In the two closely related proofs of Theorems 10 and 11 we use the device of
expressing the integrability conditions R = 0 in terms of the map ®. This 1s
roughly equivalent to the method outlined in Problem I.6-8, where we solve
a system of partial differential equations in R” by reducing them to ordinary
equations along lines through the origin.

The proof of Theorem 11, similar to the previous proof as it may be, is par-
ticularly important to us, for the methods used may be generalized to arbitrary

Riemannian manifolds (M, ( , }). To do this we introduce 1-forms 6! on M,
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by 0:"(X) = 6i(1, X). More precisely, if X € M, and vy € (Mp)x, then we
have a tangent vector
0,vx) € (R x Mp),x)

(recall that the tangent space of the product of two manifolds is isomorphic to
the direct sum of the tangent spaces of the manifolds), so we may define

fiux) [=0'(X)wx)] =0(1, X)((0, vy)).

In particular, we have (leaving out the arguments for §* and 0:’)

(**) Q:i (i ):éi i .
ot/ |y atJ a.x)

Now define a tensor { , ) of type (;) on M, by

(.)=) 0 o6
i=1

12. THEOREM. The map exp: (Mp,{ , }) = (M, ( ,)) is an isometry (in
a neighborhood of 0 € M, on which exp is a diffeomorphism).

PROOF. Since
(Caln, o) = Satn = Yo (San ) o (T wx,),
j=1 j=1 i=1 i=l1 j=1 j=1

we have ( , ) =Y, 0" ®6°. On the other hand, we also have

B "= (9 )
— = ' — ' | —
(3“ X) ; (3“ X) (3fk X)

LY {3
DI I L by (x4
,; (3” (1,x>) (3”° (1,x>)
= d ; d
=320 (o (5, ) # (o (], )
which means that

i=1
(,)= exp*(ZHi ®0i) =exp*( , ). %

9
x Otk
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Recall (page 194) that for a 2-dimensional subspace W C My of the tangent
space of a Riemannian manifold (M, ( , )) we define the sectional curvature
K(W) as
(R(A4, B)B, A)

4, Bl ~
Let p € M be some fixed point. For every X € M, and 2-dimensional subspace
V C M,, we will let L(X, V) be the sectional curvature K(W), where W C
Mexp x s the parallel translate of V along the geodesic 7 > exprX.

K(W) = A, B a basis for W.

13. COROLLARY (THE CURVATURE DETERMINES THE METRIC).
Let M and M’ be two Riemannian manifolds, and 7 : M, — M’p, an isometry
for some p € M and p’ € M’. Suppose that L(X,V) = L'(T(X), T(V)) for all
2-dimensional subspaces ¥V C M), and all sufficiently small X. Then there is an
isometry from some neighborhood of p € M to a neighborhood of p’ € M".

PROOF. Choose an orthonormal frame Xip,..., Xup € Mp, let Xi,..., X, be
the adapted moving frame in M, and let X'1,..., X", be the moving frame
in M’ adapted to T(X1p),..., T(Xnp). Let @: R x Mp — M and P’ R x
M’y — M’ be as defined previously, let 6' and 6’ be the corresponding forms
on R x My and R x M’y and let S: R x Mp — R x M’y be S(a, X) =
(a, T(X)). From the definition of Rijkl before Theorem 5 we see that

Riju = (R(Xk, X0) Xj, Xi).
The hypotheses of the theorem therefore imply that
Rijjjo®=R";;0(®oS) forali,,.
From Proposition 4-12 we deduce that
Rijpo®=Rjyo0(@0S) foralli,j,k,l

Now Corollary 9 (and the uniqueness of solutions of differential equations with
given initial conditions) implies that

and therefore that .
0 =0"oT.

This means that T is an isometry of (Mp,{ , }) and (M'p, { , }’). The result
then follows from Theorem 12. «
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This corollary is the main assertion made by Riemann in his Habilitations
lecture. We have proved a purely local result, but global results have also been
obtained; see Ambrose, Parallel translation of Riemannian curvature, Annals of Math.
64 (1956), 337-363.

The result of Corollary 13 is perhaps not what the reader may have under-
stood by the assertion that “the curvature determines the metric”, for it involves
the parallel translation in the manifold, and not merely the curvature. Notice,
however, that any rigorous statement about curvature determining the metric
must involve a map f: M — M’, so that we know what it means to compare
curvature in M with curvature in M'; in our case the map f is exp, o(exp p)‘l.
In this connection the following rather different question has always seemed to
me the more interesting one. Suppose we have a diffeomorphism f: M — M’
such that for every 2-dimensional V € M, we have K(V) = K'(f.(V)); then
is f an isometry? It is easy to see that as stated this is not true, because any
diffeomorphism f: R” — R" satisfies the hypothesis (when R” has its usual
Riemannian metric), but not necessarily the conclusion. It is also easy to obtain
other examples. Consider the sphere " C R"*! of radius @, with the induced
Riemannian metric. For n = 2, we know that K(S%,) = K(p) = 1/a®. If
n > 2 and O is a neighborhood of 0 in a 2-dimensional subspace V C M,
then exp(0) is isometric to a portion of S2, so we have K(V) = 1/a? for all
such V. Consequently, once again any diffeomorphism f: S" — S” satis-
fies the hypothesis of our question, but not necessarily the conclusion. As we
shall see in Addendum 2, there are also examples where all K(V') are the same
negative number.

In addition to these rather special counterexamples, it is simple to construct
infinitely many other 2-dimensional examples. If we have a 2-dimensional mani-
fold M such that the sets K = constant give a foliation of M, then we can choose

S M — M to be any diffeomorphism which keeps each folium fixed as a set.
There are also specific classical examples of 2-manifolds M, M’ which are not
isometric under any map, but for which there is a diffecomorphism f: M — M’
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with K'(f(p)) = K(p) [see pg 111.166]. Perhaps these examples are responsi-
ble for the fact that the higher dimensional cases remained unsettled for so long.
Though it might be natural to assume that this case is even more hopeless, just
the opposite is true: when n > 2, a diffeomorphism which preserves sectional
curvatures is, roughly speaking, an isometry, except for the special counterexam-
ples mentioned in the previous paragraph. For details the reader is referred to
R. S. Kulkarni, Curvature and Metric, Annals of Math. 91 (1970), 311-331.
Before we proceed further with the study of moving frames, we pause to note
that in the 2-dimensional case, Corollary 9 (and Corollary 13 which depends
on it) have really been available to us since Chapter 3. Recall that we chose
polar coordinates (p,¢) on M, and used them to introduce polar coordinates
(r,¢) = (p,P)o exp‘1 on a neighborhood of p [see page 136]. If we write

(,Y=dr®dr+Gdy ®dy,

and define g on R? by
g=Goexpo(p,9)7",

then we have the following formulas (collected together on page 145):

JEO,$)=0
d
M8 (0,)=1
p

82
7§(P,¢) = —J/&(p,$) - K(exp(p,9))-

These equations are easily seen to be equivalent to the equations in Corollary 9,
and can be used the same way. For example, if K = 0 in a neighborhood of p,

then
°/g
9p?

together with the initial conditions, this shows that /g = p, so

(0,9) =0;

{, )=dr®dr+r2d<p®d<p,

which is exactly the expression in polar coordinates for the usual Riemannian
metric on R2. Even the n-dimensional Test Case could be proved in this way, by
considering exp(V) for various 2-dimensional V' C Mp. However, the equations
of Corollary 9 are generally most useful in higher dimensions. As an exercise
in using them, Addendum | derives the form of the metric in an n-dimensional
manifold of constant curvature.
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Everything which we have done so far in this chapter has involved the Levi-
Civita connection associated to a metric { , }; moreover, we immediately in-
terpreted the connection and curvature forms in terms of concepts defined in
previous chapters. But the method of the repére mobile is meant to treat ar-
bitrary connections, and was used to define the curvature tensor before the V
operator had been invented. For the remainder of this chapter we will be con-
cerned with this independent development of the theory of connections. We
want to describe any connection in terms of “connection forms” w]’:, but we do

not necessarily want the matrix w = (a)]’:) to be skew-symmetric, so we do not
have Proposition 4 to guide us. We do want to have the equations

Vx X; =) oi(Xe)X;,
i

which are a consequence of Theorem 5; these equations can also be written
VX =) ol X
i

For convenience, we let X = (X, ..., X,,) and abbreviate this equation as
VX=X o (recall the notation introduced on page 2611F).

Now consider another moving frame X’ = X - a. We want to have

Zw’j.x’,- =VX', = V(Zaj.x,)
i )

_ ! ! [recall the formula for Vy fY
= Xl: dd} X + Xl: GVXLnd note that X( ) =df(x)).

Using our matrix notation, this means that we want

X o' =VX' =V(X-a)
=X-da+VX.a
=X-da+X-(w-a),

SO we want
X (aw) =X -a)o' =X =X (da + wa)
for all moving frames X. Thus we want the condition

() o =avda+a 'wa.
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Hence we are led to the following definition:*

A (Cartan) connection on a manifold M is an assignment of a matrix
w = (o) of 1- forms to every moving frame X such that equation ()
holds between the 1-forms w; assigned to the moving frame X and the
1-forms wj assigned to the moving frame X' =X - a.

Given a Cartan connection, and a moving frame X = Xi,..., X, the
1-forms a) which are assigned to X are called the connection forms for X,
and we deﬁne the dual forms 6° by 0°(X;) = 8; From these forms we can de-
fine all the tensors which arise in Chapters 5 and 6. What follows is an outline
of such a development of the theory of Cartan connections, independently of
previous considerations.

We begin with a simple observation about the consistency of the transforma-
tion laws (x). Suppose X” = X' -b = (X -a) - b = X - (ab) is another moving
frame, and that o', " satisfy

o =a'da+a'wa

" =b7'db + b lw'b.
Then

"=b'db+ b N a da + a ‘wa)b
=[b"'a " (da)b + b~ la~Ya(db)] + b~ la ' wab
= (ab)~'d(ab) + (ab)”'wab.

This shows that if we are given connection forms for a certain set of moving
frames whose domains cover M, and the various pairs of connection forms all
satisfy (¥), then there is a unicue Cartan connection that assigns these forms
to these particular moving frames. In view of this remark, it is very easy to
determine a connection from a Riemannian metric.

14. PROPOSITION. On a Eiemannian manifold (M, ( , }) there is a unique
Cartan connection with the property that the connection forms wj‘: for any

*We are using the term “Cartan connection” as a cony enient label, but the reader
should be warned that in the literature this term is used for a different concept.
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orthonormal moving frame X satisfy

i_
w; = —w;

0" => 60k Ao
k

PROOF. We already know, by Proposition 4, that for any moving frame there
are unique 1-forms w]’: with this property. We just have to check that if X and
X' = X - a are orthonormal moving frames, then

o' =alda+a 'wa.

In view of uniqueness, we just have to show that if the forms wj': satisfy the

are defined by this formula, then

conditions of the theorem, and the forms w’;

j
they satisfy the same conditions,

(a) w’; = w’]

(b) do’t = — Zw N

Since X and X’ are orthonormal, the matrix a is everywhere orthogonal,
a - at = I, where ! denotes the transpose. So if 0 denotes the zero matrix
we have

0=da-a'+a-da",

or
dat=—a' da-a* = —a' da-a.

Consequently,

0 (a” lda)t = (a'da) =da* a=-a'-da o' -a=—a" da=-a"‘da

2) (@ 'wa)' = (@'wa)t = a'v'la = —a'wa = —a ' wa.

Clearly (1) and (2) imply (a).
To prove (b), we first note that

0" (X)) = 9”’(2(a—‘)§‘X’k) = (@) =) (@ ek (xp),
k k

500" =3 (@ Miok, or
9 =al.6.
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Consequently,*

3) d6' = (—a™ -da-a” ) A0 +a"'db

=—al'darna'0— (@ o nb).
On the other hand,

(4) o' A0 =(a""da +a"'wa) A (a7'0)
—a'darna 0+ (@ o AD).

Clearly (3) and (4) mply (b). <

When we pass from the particular connection of Proposition 14 to a general
Cartan connection, both structural equations need correction terms. If w; are

the connection forms for a moving frame X, with dual forms 6', we deﬁne
2-forms ©% and Q; by

d0=-w0A0+0 e, dbif=-) o A0K+O

do=-wAw+Q 1e., dwj:—Za)};/\w]’-‘+Qj-.
k

We call the ® and Q’ the torsion forms and curvature forms for the moving
frame X. We now Compute the transformation formulas for these forms.

15. PROPOSITION. If ® and Q' ; are the torsion and connection forms for
another moving frame X’ = X - @, then

O=a'-0

Q' =a'Qua.

1

*To compute d(a~') we differentiate @ -a™" = I to obtain

da-a ' +a-dat) =0,
day=-a"'-da-a'.
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PROOF. We have

) o =alda+a 'wa
@) A = -wAf+©

3) A = —w' NG+ 6
(4) dw = —-w Aw+ Q

()

5 do' = -0’ "o’ + Q'

and, as in the proof of Proposition 14,

(6) 0 =a"'6

(7) d¥' = —a~'da naT'0 + a7 db.

So

8) d' = —a"'dana 'O +a (—o A0 +0O) by (2),(7)

We also have

9) db' = —' A0 + 0 by (3)
=—(@ 'da+alwayra 6+ 0 by (1), (6)
=—aldana'0—alwnd)+0.

Comparison of (8) and (9) gives a~'® = @'

T'rom (1) we obtain
(10 do' =[-a 'daa ' Adal+ (—a ' daa™") Awa
+a 'doa-a'w rda
= [—a'1 daa™' A dal + (—a 'daa ") Awa
+a N (—orw+Qa—-a'oAda by (4).
We also have
(1 do' = —o' "o’ + Q' by (5)
= —(a 'da+a'wa) A @ da +a'wa) + Q' by (1)
=—(a"'da na7'da) — (@ 'daa"' Awa) — (@ o A da)

— @ 'wAwa)+ Q.

Comparison of (10) and (11) gives a7 !Qa = Q. %



The Repére Mobile (The Moving Frame) 285

The three relations
() ' =a 'da+ alwa
2) © =a"'0
3) Q' =a"'Qa
are precisely what enable us to define
(1) VY for vector fields Y

(2) T(X,Y) for tangent vectors X, Y
(3) R(X,Y)Z for tangent vectors X,Y,Z.

We essentially know this already for the V operator, which we consider first.

Given a moving frame X = (X1,...,Xn) with connection forms w]'-, we define

VX=X o e, VXj=Y,0jX; or VxXj= Y0l (X)X ]
and extend this to arbitrary vector fields ¥ = 3; b’ X; by defining
V. (bex,-) =S db - X; + b VX
J J
For another moving frame X’ = X - a with connection forms w’j. we have

VX’:X’-w’:(X-a)-w’=(X-a)-[a_1da +a 'wal
=X [a- (@ 'da +a 'wa)]
=X-da+X (w-a)=X-da+X -w)-a
=X-da+VX.aq,

which shows that the definition in terms of the two moving frames are consistent
[this equation becomes

V(Za§X,~) = Zda;- - Xi +Z(Zw{‘a§)Xk
i i k i
= dal X; +)_d} VX
i i

when written out].
We next define

T(X;, Xe) = »_ O (X, X) - Xi
i
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and extend to arbitrary tangent vectors X = 3 b X;.Y =¥, c* Xy by lin-
carity,

T(X.Y) =) b *T(X;, Xp).
j.k

For the moving frame X’ = X - a we have
T(X'y X'y =) O°(X' 0, X)X,

P
=T Yo (Laix. Tk ) Yapx
Pl i k i

=Y alak Y O (X;. X)X
ik i

I

= alakT(X;, Xp),
.k

so the definitions in terms of the two moving frames are consistent. The ten-
sor T is clearly alternating, since the ®' are 2-forms.

Finally, we define

R(Xi, X1)X; =) Q@ (X X1 X;
i

and extend by linearity. For the moving frame X’ = X - ¢ we have
RX'w, X)X =) QX . X)X,

]
Y Y Q;na{(za,f;xk, Zagx,) Y dlx,
k ] i

b j,m

k I i
=Y akaba] QL (X X)) X,
ik,

which again shows consistency. Clearly R is skew-symmetric in the first two
arguments, since the 2} are 2-forms.
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If we now define
n -
VXka = ZI‘;U.X,-
i=1
n -
T(Xj, X) = »_ T Xi
i=1
n -
R(Xi, XDX; = ) R Xi,
i=l1

then we have
ty = 0} (Xk) or o = Zl‘};]—()k
k
. . . 1 . ,
T, =0'(X;. Xp) or O =3 > T A 0k
I
. . 1 .
Riju = Qj(Xi. X)) or Q=7 S ORG6k A6
k.l

Consequently, the “structural equations”
k k k
4o = = ol AF+ 0 = =D wf A6+ 2D Tt A0
k k Jk
dot = - Y 0f nof +9) = =Y of Aof + 5 ) Rt A e
k k k,l
i pk
=) _Ti;f
k

are purely a matter of definition. However, one can now casily reverse the
computations in the proof of Theorem 5 to show that

£
|

T(X,Y)=VxY —VyX —[X.Y]
R(X.)Z =Vx(VyZ) — V¥ (VxZ) - Vix 1 Z,

thus verifying that T and R are the torsion and curvature tensors for V as
defined previously. We leave this computation to the reader, as well as the task
of deriving the general form of the structural equations in polar coordinates.

Even though the structural equations are merely definitions in this approach,
we can derive new relations from them.
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16. THEOREM. We have the following relations between 8, w, ©, and Q:

(1) (Bianchi’s first identity)
dO+ oA =QA0

(2) (Bianchi’s second identity)
dQ+(w A Q) — (R Aw)=0.

(Notice that w A Q and Q A @ are not equal up to sign, because Q and w are
both matrices of forms and the order of matrix multiplication plays a role.)
PROOF. We have
0=d(df) =d(—w A0+ 0)
=—dw N0+ (wAdb)+dO
=—(—orAo+QDA0+[woA(—0oA0+0O)]+dO
=-QA0+wAO+dO.
Similarly,
0=ddw)=d(—worw+ Q)
=—doAw+ (wAdw)+dQ
=—(—oro+DArot+wor(—orw+ Q)] +dQ
=—-QA0+(@ARQ)+dQ. %
It takes quite a bit of calculation to convince oneself that the equations in
Theorem 16 really are the Bianchi identities. This calculation is left to those
readers who have more endurance than the author; we will merely consider the

special case of the first Bianchi identity for a connection without torsion. In this
case © =0, so the identity 1s just & A8 = 0. Thus we have

. . ; 1 . ;
0=(Qn0) =) Qinel= 5 DI AN NS
J NN
Applying this to (Xk, X7, X;) we obtain the familiar formula
1 . . . . . .
0= E{R'jkl — R + RYj — Ry + Rigy; — Rigpy}
= R'jis + Ry + Ry,
(and thereby see why cyclic permutations of the indices should be involved).
It turns out that taking the exterior derivative of the Bianchi identities does
not give us any new relations, which indicates that these identities are the only
general ones we should expect to find.

To complete the present chapter we also derive the relations satisfied by the
curvature tensor for the Levi-Civita connection.
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17. THEOREM. Let (M, ( , )) be a Riemannian manifold, and consider the
unique Cartan connection of Proposition 14. Then for every orthonormal mov-
ing frame we have

(1) Qi = -/,

Consequently, the curvature tensor R satisfies

(2) (RIX,Y)Z,W)=—(R(X, Y)W, Z)
(3) (RIX,Y)Z,W)=(R(Z,W)X,T).
PROOF. Equation (1) is immediate from the fact thata) = —w] (by assumption)

and the second structural equation,

i i k i

da)j = Za)k A wj +Qj-.
k

Since

(R(Xi, X1)X;, Xi) = <§: R* it X, X,->
"

=R = Q;(Xk, X)),

equation (1) implies (2). Then, as before, (3) follows from Proposition 4-11. <
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ADDENDUM 1
MANIFOLDS OF CONSTANT CURVATURE

A Riemannian manifold (M, ( , )) has constant curvature Ky if for all p €
M, and all 2-dimensional V C M, we have K(V) = Ko. If M is 2-dimen-
sional, this just means that K(p) = Ko forall p € M. In this case, we can easily
find the form of the metric ( , ) from the considerations on page 145. We use
geodesic polar coordinates (r, ¢) = (p, @) © exp~! so that the metric is

(,)=dr®dr+Gdyp ®@dyp.
If g on R? is defined by g = G o exp o (p,¢)™", then we have seen that
V2(0,¢)=0

f(0¢)-1

aw—

(p.9) = —Kovg(p,9).

The general solution of the last equation is

JE(p,¢) = crsiny/ Ko p +cacosy/Kop Ko >0
JVg(p,$) = c1 sinh /=Ko p + c2 cosh v —Ko p Ky < 0.

Taking into account the initial conditions, we find that

s(VIKol p)

Vg =
VKol
where
{sin whenever we are dealing with Ko > 0
s denotes .
sinh ” Ko < 0.

It follows that the metric is given by

s*(V1Kolr)
VKl

To obtain the analogous results in the n-dimensional case, we will return
to the equations of Corollary 9. However, we will need a preliminary result,

(,)=dr®dr+ do ® dy.
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which applies to spaces of constant curvature as a special case. A point p in
an n-dimensional Riemannian manifold (M, { , }) i called isotropic if the sec-
tional curvatures K(V) for all 2-dimensional V' C M), have the same value Ko;
this means that for all X,Y € M, we have

(R(X,Y)Y,X) = Ko- | X, Y I,

where |.X, Y| is the area of the parallelogram spanned by X and Y. Applying
the formula on pg. 1.308 (to the subspace of Mp spanned by X and Y), we can
write this equation as

(R(X,Y)Y, X) = Ko[(X, X (Y, Y) — (X, Y)?].

18. LEMMA. If p € M is isotropic, with all sectional curvatures equal to Ko,
then for all X,Y,Z, W € M, we have

(R(X,Y)Z, W) = Ko[(X, WYY, Z) — (X, Z)(Y,W)].

PROOF. Denote the right side of this equation by R(X,Y,Z,W). By hypoth-
esis, (R(X, Y)Y, X) = R(X.Y,Y, X). Tt is easy to check that ® has properties
(—(3), and hence (4), of Proposition 4-11. The desired result now follows from
Proposition 4-12. ¢

Although not necessary for our calculations, the following consequence of this
Lemma is a standard result, and is pertinent to the topic of constant curvature
manifolds.

19. THEOREM (SCHUR). If M isa connected Riemannian manifold of di-
mension n > 3 and all points of M are isotropic, then M has constant curvature.

PROOF. By Lemma 18 we have, in a coordinate system X,
Ruijic = Klgnjgik — gnkgijl

for some function K on M. Equivalently,
Rbji = K(5,'-'gik — 8k gij)-

Consequently, Ricci’s Lemma (Proposition 5-3) and the relation 5]'.‘;, = 0 imply
that

K
Rl = 5;(5,'-‘&/( —8hgir).
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From Bianchi’s identity (Proposition 5-9(3')) we then obtain
0K 0K 0K
0= 5;(5;'gik —8gi) + W(‘sﬁgil —8tgi) + é—x—k(&hgij —8hgu).

In this identity set # = k and sum over k, to obtain

O_BK(“ “)+8K(n4 4)+8K L _ 9K
™ 8ij — ngij ax) &gil — &il axlgl] axjgtl

aK 0K
=(n=2) |38~ 3181 |

Since n > 3 we have
0K _ 0K
Wgzl = Wgzp

ml K mi dK maK
v = L8 sugy = L™y =g

Choosing m = j # I, we obtain dK/dx! =0, for all /. So K is constant. «

Hence

To obtain the metric in a space of constant curvature Ky, we now consider
the equations of Corollary 9. By Lemma 18 we have

R = (R(Xg, X)) Xj, Xi) = Kol8kib1j — k;61:),
which implies that
Rij,‘j = —Rijj,‘ =Ko (j#1i); all other Rijkl =0.
So our equations become

320!

(*) T = —K()Zt (tk09' t 09k)

To solve even these simplified equations requires quite a bit of trickiness. We
first use the equations in Proposition 8 to obtain

%)

Zt dr’ +Ztkt' ok,
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and thus

/(z07)

— = Z fdr, using skew-symmetry of the (Z);; = Q*w;;.
1

Since ) ; 116! (0, X) = 0, we have
PNACA =IZtidti,
i i
and hence

2
(%) (Ztiéi) =6 =2y A drd = IZ(Ztidti)
i iJ ij i

2

We next obtain equations for the quantities 167 — 116", By (%) we have

921167 — 116

n
=3 = —KOZtkt"(tkéf — 11G*Y + R (kT — %)

k=1
d .- s -
=—Ko ) (*)('67 — 176"
k=1
= —Kop(1'67 — 176"),

where we have set

Together with the initial conditions

('67 —/6")(0,X) =0
o' — 16"

X____ij_ji
Y 0, X)=1"dt t)drt,

we obtain
L Lo S Kolt . . ..
i) — g = —(p—'°—|)(z' drl — ¢ dr).
P | Kol
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Recall that for a form 75, we use n? to denote the quadratic function X >
n(X)-n(X). Summing the squares of the equations just derived, we now obtain

s> (pV/1Kol 1) S dr — 1 diiy?
PRI
1 8%(ov/|Kol?) D
=-———— 2N (' dt) — ! di")?
T AR :

S N %[Z(z")z(éf)z (@) - 2z"zf9"'9'f]
Lj L,j

=Y (D@ =) ' difd) by (k)
i i

2

= o Xn:(ék)z _2 (Z tkdtk)
k=1 k

Since exp: (Mp, Yk O:k ® O:k) — (M, ( , )) 1s an 1sometry, and 9: 1s the value
of 8" when t = 1, the expression for || ||? in normal coordinates is obtained by

k in the above

seeing what Zk(ék)2 becomes when we set # = 1 and ¥ = x
equation. We let r denote what p becomes when we perform this substitution;

that 1s, we let

We then obtain

|Ko|r?

2 2
|| ||2=r12{(zxkdxk) L S WIKolr) V'KO")_Z(xfdxj_x,- x|
k

i<j

Notice that we have

2
(Sstast) =[St ] = Cstast sy,
k k

i<j
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consequently, we can write

2 v | [Kolr2 —s2(J/IKol r) -
Nl =Zk:(dx) —|: |K0|r4 Z(x dx — xJ dx*)%.

i<j

From the Taylor series for sin it is easy to see that the coefficient of the sum
iejxidx) — xJ dx)? is € (in fact it is analytic). This formula thus gives
a direct verification of Riemann’s assertion about the form of || | in normal
coordinates (page 168). On the other hand, this form of the metric is not the
one which Riemann mentioned in his lecture (page 159). We will consider this
metric in Addendum 2.
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ADDENDUM 2
CONFORMALLY EQUIVALENT MANIFOLDS

In a vector space V with a positive definite inner product { , ) we define the
angle Z(v, w) between two non-zero vectors v,w € V by

Z(v,w) = arccos ()6’4}))

lxl- iyl

It is easy to say when two metrics give the same angle measurements.

20. LEMMA. Let (, ); and ( , )2 be two positive definite inner products
on V. Then Z;(v,w) = £(v, w) for all non-zero v,w € V if and only if there
isa number ¢ > Owith { | Yo =c-(, ).

PROOF. If ( , Y2 =c-(, )1, then clearly Z2(v, w) = £;(v,w) for all v, w # 0.

Conversely, suppose Z2(v, w) = Zi(v,w) for all v,w # 0. Let vy,...,v, be
an orthonormal basis for V' with respect to ( , };. Then for i # j we have

£Lr(vi, vj) = Li(v;,v5) =0,
so (v;,vj) = 0. Define ¢; by (v;,vi) = ¢;. Then

Li(i vt +v;) = (vi, Vi + Vi )1 _ b
B Vv Vi v, v von V2

Ly vi + v7) (vi, vi +vj)2 Ci
2 i, Ui 2) = = .
v Vi, vid2 V{vi +vj, v 4 vj)2 Veiei +¢

It follows that ¢; = ¢j. &

Now a diffeomorphism f: (M1,{ ., })1) — (M, { , )2) between Riemann-
ian manifolds is called conformal if each f,, is angle preserving, and the two
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Riemannian manifolds are then called conformally equivalent. By Lemma 20,
a diffeomorphism f is conformal if and only if

(> Nn=A"(, )

for some positive function A: My — R. In particular, if a Riemannian manifold
(M, { ,)) is conformal to R” with its usual Riemannian metric, then around
each point p € M we can choose a coordinate system x such that gi; = Ad;j
for some positive function A: M — R. Such a coordinate system x 1s called
isothermal.

In 1822 Gauss showed that isothermal coordinates can be found at any point
of an arbitrary surface. His proof depends on a trick that works only for analytic
(C®) manifolds, and uses a little knowledge of complex function theory. It is
presented in Addendum 1 to Chapter 9 of Volume 1V, together with a (much
more involved) proof that works in the C* case. For n > 2 it is not true that
every n-manifold is locally conformally equivalent to R". But certain important
n-dimensional Riemannian manifolds are. In fact, in his lecture, Riemann states
that on a manifold of constant curvature K there is a coordinate system x with

Y (dx'y?
i=1

I l=—%—
1+ % >i(xh)?

or equivalently
n

dx! ® dx*
(=) —r ;-
i=1 [1 _|__422i(xi)2]

Thus, x is an isothermal coordinate system.

It wasn’t very hard for Riemann to guess this, because there is a very standard
coordinate system for S” which gives this metric (with Ko = 1). We consider S™
as the sphere of radius 1 around the point (0, .. .,0,1), so that S™ is tangent 1o
R” = R” x {0} C R"™. Let % be the “north pole”, * = (0,...,0,2) € S". The
stereographic projection

o:S" - {x} > R"

is defined geometrically as follows: for any p # x in 7, we let o(p) be the
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point where the line between p and * intersects R". It is easy to check (see the

2

pn+1
()

plane section on the right of the diagram) that

2p! 2p"
0 L P )

and that f = o~! is given by

. n 1 iy2
2 -1 — — —y.—,..., 4 NE EZ(y) )
@ o7 »M=s (1 +%Z(J")2 1+%Z(y')2 1+ %Z(y')z

If y', ..., y" denotes the standard coordinate system on R”, then the x' = y’oo

give a coordinate system on S” — {*}.
n+l1
Let i: S" — R"*! be the inclusion map, and { = Y dz' @ dz' the usual
i=1
Riemannian metric on R**!, so that i*{ , ) is the usual Riemannian metric
on S”. We find the expression

()= Z gijdxi®dxj

i,j=1

for i*{ , ) by writing

S (g Ndy @dy! = f*( > gydx'® dxf)
i,j=1 ij=l1
= [T, ) =S
n+l1 n+1

=/*) d@dd =) dff @df
i=l1

i=l

n+l n af, af,
=Z:Zayjay dy’ ® dy*,




The Repére Mobile (The Moving Frame) 299

and computing the 3/*/3y/ from (2). A forbidding looking computation finally
coalesces Into

n ; . n d ,®d i
Y (o Nd @dy =) )1} Y 35
i,j=1 i=1 [1 + ZZi(yi)z]

so that the expression for the metric i*( , ) 1s

" dx' @ dx*
.Z 1 2
i=1 [1 + Z Zi(xi)Z]

(A neater way of deriving this formula is presented in Volume IV, Chapter 70 1If
we were dealing with a sphere of curvature Ko, the factor 1/4 would be replaced
by Ko/4.

Of course, we still have to check that this formula gives a metric of constant
curvature Ko when Ko < 0. We will consider, more generally, all metrics on (a
subset of) R” which have the standard coordinate system as isothermal coordi-
nates, and determine just which of these have constant curvature.

Thus, we consider metrics on (a subset of) R” of the form

§is
gij = F;jz F nowhere 0.

Then g" = 8 F2. We also have
0gij _ —26;; OF _ —26;j dlog F
axk — F3 axk F*  oxk
Setting log F = f, and using the formulas on pp. 1.326 and 1. 328, we obtain
T A
— I't,=—- T, =T}=—+
axi’ 1 axi’ i Ji oxJ

From the formula on page 214 we obtain

. . 32 32 af \
Rijy = —Ripi= 9+ / —Z(f) i#j

ri = (i#j)  allother T} =0.

Oxdx] — Bxtdx e \OX
i -2f  of of .
Ry =—"Z_ - 9 n )
= axiax! T axi ax! i, j,1 distinct
. 32
R,j” - —f_ af af i) _])l diStinct

axiax! | axJ ax!

all other R'jp1 = 0.
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Now by Lemma 18, the metric has constant curvature Ko if and only if
Rijki = Ko(gikgj1 — &i1&jk)>
or equivalently
R = Ko(84gj1 — 81 gjk)
= o3 — 880,

and hence

Ko

i Rl — 29
Rjij—' Ruz—Fz

(j # i) all other R'jz; = 0.

So the metric has constant curvature Ko if and only if

2f  af of
- ——=0 j
dx/oax! ~ 9xJ gx! J#!

- —Z(af)z—K° i+ ).

Oxioxi = 9x/ox/ -~ \oxr) ~ F?
Since
©S a1 ¥ for all j,1
ax/ax!  dxJ ax!  F 9xJox! orat b
these equations hold if and only if
*F
1 —— =0 =
9*F 9 F " (OF
F. . — | = ) .
@) (ax’ax’ + Bxlaxf) K°+Z(axr) L#

r=I1

Equation (1) implies that F = Gy + - -+ + G,, where G; depends only on x/.
Using equation (2) for i,/ and then for j,/, we obtain

%G, G,

Axioxt  OxJoxi

So we must have
G = C)Ci2 + bix; + aj,
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for some c¢. From (2) we then obtain
Ko=) (4arc — b,).

r=1

There are two important special cases. If we choose ¢ = Ko/4, b; =0, a; =
1/n we obtain the metric { , ) = Y gij dx' @ dx’ which Riemann mentions,
with

8ij

.
[1 + 54—0 Z,-(xi)2]

Notice that for K¢ < 0, this metric is defined only on

gij =

M = {a eR":) (d') < —4/K0}.

i=1

Nevertheless, (M, { , }) is complete. To see this, we compute that the curve y

defined by

V| Kolt

1 sinh 5
y()=2
VKol t
V1Kol cosh Kol

2
Yi)y=0 i>1

is a geodesic through 0, parameterized by arclength, and defined for all ¢. Since
the metric { , ) is radially symmetric around 0, there are geodesics through 0
in all directions, which are defined for all 7.

When K, > 0, the same metric is defined on all of R”, but it is not complete,
since it is isometric to the n-sphere of radius \/70 with a point deleted. Some
theorems from Chapters 7 and 8 of Volume IV will throw more light on these
matters.

The other important case occurs when ¢ = @; = 0 and b; = 8in, so that the

metric 1S
n

Z dxi ® dxi

i=1 (xn)z ,
with constant curvature Ko = —1. The 2-dimensional case, in particular, gives
the nicest example of a non-Euclidean geometry (see Problem 1.9-41).
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ADDENDUM 3

E. CARTAN’S TREATMENT
OF NORMAL COORDINATES

In this Addendum we use moving frames to prove Riemann’s claims about
the form of the metric in normal coordinates, and in fact obtain stronger re-
sults; a special case of our result is represented by the form of the metric for
spaces of constant curvature which we found in Addendum 1. Throughout,
we will be working with a moving frame X, ..., X, adapted to an orthonor-
mal basis Xip,..., Xpp for Mp; the forms 0!, 6" are as defined previously, and

x!,...,x" denotes the Riemannian normal coordinate system determined by
Xip,..os Xnp.

21. PROPOSITION. The quadratic form || ||> - z:,-(cz')c")2 can be written as

a quadratic form in the differentials x"dx® — x*dx".

PROOF. Consider the functions Aj.k on R x Mj, which satisfy the equations

a;‘:;.k = Zr:(Rirjk o ®)11” + z;(Rirsl 0 @) Ajy "t
s,
(1 40, X) =0
We claim that
2) 0 =rdr’ + ) Apdldiv.

ik

To prove this, we simply note that if we define 8 by this formula, then an easy
calculation shows that the 8 satisfy the equations and initial conditions of Corol-
lary 9; since the solutions are unique, the result follows.

Now note, by skew-symmetry of R’;; in the' last two indices, that' A;k + A4;
satisfies a linear second order differential equation, with initial conditions

(A + 4300, X) =0

a . .
o (Al + 4;)(0,X) = 0.
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It follows that
(3) Al = — Ay

[The motivation for this proof is the following. The equations in Proposition 8
clearly imply that 6 — ¢t dt’ = 0 at (1,0). This means (by Lemma I.3-2) that
we can write 6 as in (2). Then the equations in Corollary 9 imply that the A
satisfy (1).]

Next consider the functions BJ;, which satisfy the equations

82
k .
az;] = (R7gjk o @) + 3 Rigydlt
u,l
(4) B,(0,X)=0
dB’.
sjk
—% 0, X) =0.
T )

We claim that
(5) Al = Z Bl t°.

This is proved by checking that if we define A7, by (5), then equations (4) imply
equations (1).

Using the skew-symmetry of R’ in j and k and the skew-symmetry of A
in j and k [equation (3)], we easily see that

) B = — By

Also, using skew-symmetry of R”;j in r and s, we see that
) g ymmetry J

) B{

5
S]k_ —B

rjk:
We know that the expression for || I? = Z,-(@i )? in the Riemannian normal

coordinate system x1, ..., x" is what Zi(éi)2 becomes when we set t = 1 and

' = x*. So by (2) we have

2
117 = "(dx")* + Z(Z Abxd dxk) + Z(Z ALy dx"x! dxk).
i i ik ro ik
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Now (3) implies that the first triple sum is a quadratic form in the x" dx* —
x*dx". The second triple sum can be written

Z BT x%dx" x7 dx*;

sjk
7,80, j

using (6) and (7), we see that this can also be written as a quadratic form in the

x"dx’ — x5 dx". &

For further developments, see E. Cartan’s Legons sur la Géométrie des Espaces de
Riemann, pp. 24211,



CHAPTER 8

CONNECTIONS IN
PRINCIPAL BUNDLES

he method of moving frames turns out to be surprisingly powerful, but it

leads us to a definition of a connection which does not have the “invari-
ance” property of the Koszul definition (although it is a big improvement over
the classical definition, simply because the transformation law can be stated so
much more elegantly). At the same time, we should note a certain deficiency
in our proofs of the Test Case. We certainly have enough of them (six so far),
and they use the integrability conditions R = 0 in many different ways. In
the first proof we use the classical integrability theorem, and in the second and
third proofs we essentially reprove this theorem. In the fourth proof we use the
differential form version of the Frobenius Theorem, and in the fifth and sixth
proofs we use the proof of the integrability theorem outlined in Problem 1.6-8.
However, in all this time we have never used the distribution formulation of the
Frobenius Integrability Theorem (I.6-5), although this is the most geometric
version of all.

These two phenomena will eventually turn out to be closely related, but for
the present we will concentrate on the first problem. The main step in the
solution of this problem was accomplished by Ehresmann* in 1950. With the
advantages of hindsight we can reconstruct the solution in a way that makes it
seem natural and almost obvious.

It will be helpful to begin by reconsidering the classical and modern def-
initions of vector fields. As we pointed out long ago, the snazziest modern
definition of tangent vectors is essentially the same as the classical definition, as
n-tuples of numbers which “transform” according to certain rules. On the other
hand, the modern definition of a vector field represents a definite improvement
over the classical definition. Instead of dealing with n-tuples of functions trans-
forming according to certain rules, we make the set of tangent vectors into a
new manifold, the tangent bundle, and define vector fields to be sections of this
vector bundle. The idea behind the modern treatment of connections is to ob-

* Ehresmann, Les connexions infinitesimales dans un espace fibre differentiable, Colloque de Top-
ologie, Bruxelles (1950), 29-55.
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tain a bundle whose sections are just the moving frames on M. To do this, we
will imitate the construction of the tangent bundle in a rather straightforward
way.

Recall that a frame u for M), is just an ordered basis v = (u,, ..., u,) for M,
Let F(M) denote the set of all frames u for all tangent spaces M),. We call F(M)
the bundle of frames of M, and define n: F(M) — M to be the map which
takes a basis 4 for Mp to n(u) = p. If (x,U) is a coordinate system on M and
p € U, then every frame u = (uy, ..., u,) for M, can be written uniquely as

n ) 9
uj = E xj(u) vl
o dax

The matrix (xj’: (#)) is non-singular, and any non-singular matrix can occur, so
the map

(u) .

u > (x'(m(u)), xi(u)) € R" x GL(n,R)

is a one-one map xy from 7~ (U) onto x(U) x GL(n, R). It is easy to see that if
(¥, V) is another coordinate system, then ygo(xy) ™" is C*, from xy(z7 = (UNV))
to yg(m =" (U N V)). This means that we can make F(M) into a C* manifold
in such a way that each xy is a diffeomorphism; with this C*® structure on
F(M), the map 7 is clearly C*®. Notice, finally, that we have a C*® map
F(M)xGL(1,R) — F(M), given by (u, A) > u- A, where (u-A); = ¥; Aluj;
we have u - A = A only when A = I, and the set of all « - A for A € GL(n,R)
is just 71w (u)).

Although we have called F(M) the “bundle of frames”, it is clearly not a
vector bundle; each fibre 7' (p) is diffeomorphic to GL(n, R), rather than to
some R¥. However, F(M) is another special sort of “bundle” which we will
now define.

Let M be a C*° manifold, and G a Lie group. A (C®) principal bundle
over M, with group G, 1s a triple (P, 7, -) where

(I) P isa C* manifold (the total space of the principal bundle)

(2) m: P - M is a C* map (the projection map of the bundle)
onto M (the base space of the principal bundle), satisfying

a(u-a) =n(a) forallue Panda e G

(3) the map - (the action of G)is a C*® map (4,a) > u - a from
P x G to P with

u-(@hb)y=wW-a)-b foralu e Panda,beG
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such that the following “local triviality” condition holds:

Yor each p € M there is a neighborhood U of p and a
diffeomorphism ¢: x='(U) - U x G of the form

t(u) = (w(u), ¢(u))

where ¢ satisfies ¢(u -a) = ¢(u)a [the latter product being
the product in G].

From the condition 7(u - a) = n(a) we see that {u-a :a € G} C n ™ (w(u)).
Using the property ¢(u - a) = ¢(u)a of the map ¢, we see that we actually
have {u -a : a € G} = ' (w(u)): for, if v € P satisfies m(v) = m(u), and
¢ (v) = d(u)a for a € G, then ¢p(v) =¢p(u-a) and n(v) =n(u-a),sov=u-a.
Notice also that if # - @ = u for some u € P, thena = e.

Each “fibre” =1 (p) of P is clearly diffeomorphic to G. If p = m(u) for
u € P,and i: n7'(p) — P is the inclusion, then the image of the tangent
space ix(m~1(p)y) is a subspace V, of P,, called the vertical subspace at u;
tangent vectors in this subspace are called vertical tangent vectors at u. Clearly
Y € V, is vertical if and only if 7Y =0.

oD

D
The simplest example of a principal bundle is M x G, withm: M x G —> M
the projection on the first factor, and (p,a)-b = (p,ab). This is called the trivial
principal bundle with group G. So far, we have given only one other example of
a principal bundle, the bundle of frames F(M), with group GL(n, R). However,
we can use the construction of this bundle to acquire many other examples. If
n: E — M is any C* vector bundle over M, we can let F(E) be the collection
of all frames u for the vector space w~!(p), for all p € M; the projection map
w: F(E) - M takes a frame u for 7~'(p) into w(u) = p. Consider, in
particular, the Mébius strip as a 1-dimensional vector bundle w: E — S ! over
S1. A frame in a 1-dimensional vector space is just a non-zero vector, so F(E)
consists of the Mébius strip with the 0-section deleted. This space is connected
(cut a paper Mobius strip along the center if you don’t believe it); more generally,

a vector bundle 7: E — M over a connected space M is orientable if and only
if F(E) is disconnected.
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Examples of a different sort are obtained if we begin with a vector bundle
n: E - M equipped with a Riemannian metric, and define O(E) to be the set
of all orthonormal frames u for = ~!(p), for all p € M. This is a principal bundle
over M with group O(n). In the case of a I-dimensional bundle n: E — M,
every fibre of O(E) has exactly 2 points, and O(1) = Z,; the action of the
non-zero element of O(1) on O(E) interchanges these 2 points in each fibre.
For the Mobius strip, the principal bundle O(E) looks like the picture below.

\ these two points T
/ are identified \)
@ n

or

More precisely, the total space of O(E) is a circle S!, and the projection map
S — S'is given by 6 > 26.

In the case of an oriented bundle =: E — M, these constructions can be
modified to give principal bundles SF(E) and SO(E), the bundle of positively
oriented frames, and positively oriented orthonormal frames, respectively. For
I-dimensional bundles, the total space SF(E) looks like M x (0, 00), while SO(E)
looks just like M. For 2-dimensional bundles, SO(E) has a circle above each
point of M; the action of 8 € SO(2) = S! rotates each circle through an angle
of 6.

Although examples in which the group G i1s discrete are the least interesting
for us, we will nevertheless give two more, as examples of principal bundles are
hard to come by. In the first example, the group is the integers Z, the total
space and base space are R and S!, respectively, and the map n: R — S! is

s

n(0) = (cosf,sinf). In the second example, we define 7: S? — P? to be



Connections in Principal Bundles 309

n(p) = {p, —p}; the group is Z3 and the action of the non-zero element is to
take p € §% to —p.

Before discussing principal bundles in particular, we need some generalities
about Lie groups acting on manifolds. Consider a Lie group G, a C* mani-
fold M, and a C*® map (p,a) — p-a from M x G to M. We say that G acts
on M on the right (via this map) if

(1) the map Ra: M — M defined by Ro(p) = p-aisa diffeomorphism for
alae G

2) p-(ab)y=(p-a)-bforall pe Manda,beq.

Condition (2) can also be written as Rap = Rp © Ry,: since each R, is a diffeo-
morphism, it follows easily that R, is the identity map of M. We say that G
acts effectively if ¢ is the only element a with R, the identity map of M, and
we say that G acts without fixed point if the following stronger condition holds:
if p-a= pforsome p€ M,thena=e.

Now let g be the Lie algebra of a Lie group G which acts on M on the right.
For every X € g, we have the curve ¢ — exp tX in G; for each p € M this
gives rise to a curve ¢p(t) = p - (exptX) = Rexprx (p). We denote cp'(0) by
o(X)(p); we thus have a vector field o(X) on M, and hence a map 0: g —
(vector fields on M). The 1-parameter group of diffcomorphisms generated by
o(X) is ¢i(p) = p - (exptX), by the very definition of o (X). It is important to
note that we can also describe o(X) as follows. For p € M, let 6,: G — M be
op(a) = p-a. Then

0 (X)(p) = 0pu(X).

To discuss this operation & we will also need to introduce an important map,

the “adjoint map”

Ad(a) = (LaRa_l)* = (Ra—lLa)*3 qg—4q,
where Lq and R, now denote left and right translations in G. Thus Ad(a) 1s the
differential at e of the map b + aba™' = LaRa"'(b) = Ry™' La(b). Usually
(Ad(a))(X) is denoted simply by Ad(a) X. If X is the left invariant vector field
on G with X(e) = X € g, then
Ad@X = (Rg™)s(Las X)(€) = (R X)(e),

since La*f = X. Consider, in particular, the special case where G = GL(n, R),

so that g = gl(n, R) is the set of all n x n matrices. For any n x n matrix N and
any A € GL(n,R) we have

Ad(A)N = ANA™!,

since L4y = L4g and Rygs = Ry, because Ly and Ry are linear functions
(compare Problem 1.10-19).
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1. PROPOSITION. Let G act on the right on M. Then

() The map o: g — (vector fields on M) is linear.

(2) o([X, Y]) = [0(X),0(Y)].

(3) If G acts effectively and X # 0, then o(X) is not the zero vector field.
(4) If G acts without fixed point and X # 0, then o(X) is nowhere 0.

PROOF. Linearity is clear from the equation o (X)(p) = 0p.(X).

To prove (2) we note that since the bracket of two vector fields is the same as
the Lie derivative (Theorem 1. 5-10), we have

O XYI=IF,710) = im 2 [V~ (Repun)s T @]
= ;EI_,H})% [Y — Ad(exp—hX)Y].

(Compare Problem 1.10-19.)
On the other hand, if R; now denotes the map p +> p -a from M to G, then
(2) Rexphx © 0p.(exp—hx)(@) = p - ([exp—hX]aexp hX).

Since ¢;(p) = p - (exptX) is the 1-parameter group of diffeomorphisms gener-
ated by o(X), on M we have

lo(X),0(N)](p) = }{l_r)r})% [0(¥)(P) — [Rexphx1:0(Y)(p)]

= ;in})% [OP*Y — 0p(Ad(exp —hX) Y)] by (2)
= ope Jim, 5 [Y = Ad(exp —hX)Y1) =0, (X, YD by ()
= o([X, Y.

To prove (3), suppose 6(X) = 0. Then for every p the 1-parameter group
of diffeomorphisms ¢;(p) = p - (exptX) must be ¢;(p) = p (for the unique
integral curve ¢ of o(X) through p is clearly ¢(p) = p). If G acts effectively,
this means that all exprX = 0,50 X = 0.

To prove (4), suppose o(X)}(p) = 0 for some p. Then p - (exptX) = p for
all . If G acts without fixed point, then all exptX =e,50 X =0. <
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Let us now apply this construction to a principal bundle 7: P — M, with
group G. The map - from P x G — P is an action of G on P to the right (the
map u > u-a is a diffeomorphism by condition (3) of the definition) and G acts
without fixed point (we have already pointed out that this follows from condi-
tion (3)). Therefore we have the fundamental vector field o (X) corresponding
to X for all X € g; for every u € P, the map X + o(X)(u) is an isomorphism,
since G acts without fixed point. Since the maps Rq: P — P take fibres to
themselves, the set of all 0(X)(u) is precisely the set of vertical vectors at u.

2. PROPOSITION. FYor all X € g and a € G, the vector field (Ra)«0(X) 1s
the fundamental vector field

(Ra)+0(X) = o(Ad(@™)X).

PROOF. Since ¢;(p) = p-exptX = Rexp:x(p) is the 1-parameter group of dif-
feomorphisms generated by o (X), it follows from Lemma 1. 5-11 that (Ra)0(X)
generates the 1-parameter group of difftomorphisms

-1
VY= Rgo Rexth oR; = Ry exptXa-

Now {a~! exptX a} is the 1-parameter group of diffeomorphisms of G gener-
ated by Ad(@™")X. So ¥, generates o(Ad(a™")X). %

The vector fields 0(X) are rather difficult to picture, especially since most
principal bundles themselves are impossible to visualize. Nevertheless they will
be very important, as we shall see upon returning to the structure which began
our whole discussion, the principal bundle of frames F(M). A section s of this
bundle over an open set U C M isa C® map s: U — F(M) with m o5 =
identity map of U. Clearly, a section s is just what we used to call a moving
frame on U. Note that, unlike a vector bundle, which always has a section
defined on all of M, namely the 0-section, a principal bundle need not have
such a section. In fact, if the principal bundle 7: P — M over M with group G
has a section s: M — P, then the bundle is trivial: we can let (p,a) e M x G
correspond to s(p) -a € P.

We can use some of this new language to give an alternative, but com-
pletely equivalent, definition of a Cartan connection: A Cartan connection
is an assignment of an # X n matrix-valued 1-form w; [= (a)s;)] to every section
s: U — F(M) in such a way that

(%) weq =a 'da+a 'lwga
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for every C* function a: U — GL(n,R). (Here s - a is the section (s - a)(p) =
s(p) - a(p), the - denoting the action of GL(n,R) on F(M).) This formulation
of the definition suggests how we may obtain a definition of a connection which
has all the advantages of the Cartan definition but which 1s also “invariant”.
We ask if there is an n X # matrix-valued 1-form @ on the manifold F(M) such
that for each section (moving frame) s we have

ws = S*(w);

notice that previously we used @ alone to denote the connection form for some
moving frame, but from now on we will have to be careful to use subscripts to
distinguish the forms on M from the form @ which we hope to find on F(M).
Since the forms ws for a Cartan connection satisfy (¥), our question is then the
following:

If we are given a collection of w;s satisfying (%), is there an @ on F(M)
such that each wy; = s*(w)? More generally, which n x n matrix-
valued 1-forms @ on F(M) have the property that for every section
s: U — F(M) and GL(n, R)-valued function @ on U we have

() s-a)*w)=alda+a 's*(w)-a?

In order to answer these questions, we need to know something about the
section § - a. If g has the constant value 4 € GL(n,R), then s -a = Rgq 03,
where Rq(u) = u - A, the dot denoting the action of GL(n,R) on F(M). So
for any tangent vector X, € M), we have (s - a)«(Xp) = Ras(s+Xp); when a is
not constant there is a correction term.

3. PROPOSITION. Let s be a section of F(M), over some open set U, and
let a: U — GL(n,R) be C*. Then for any tangent vector X, ata point p € U
we have

(s - @)+ (Xp) = Ra(p)s(s: Xp) + 0 (a(p)™" - Xp(@))(s(p) - a(p)).

[Note that X, () 1s an n x n matrix, so that a(p)~! - Xp(a) 1s also an n x n matrix,
and hence may be considered as an element of gl(n,R), so (r(a(p)_1 . Xp(a))
is a vector field on F(M).]

PROOF. Tor convenience, let
m: F(M) x GL(n,R) »> F(M)

be m(u, A) = u-A. Remember that the tangent space W of F(M)xGL(n,R) at
(u, 4) is isomorphic to the direct sum F(M), @& GL(n, R)4, so we can consider



Connections in Principal Bundles 313

every clement of W as a pair (¥1,Y;) = Y1 & I, where Y; € F(M), and
Y, € GL(n, R)4. Note that if
¢ is an integral curve in F(M) for Y;
¢z is an integral curve in GL(#, R) for Y,
then
t > m(ci(t), A) = c;(t) - A is an integral curve for X &0
t > mu,ca(t)) =u-cy(t) isan integral curve for 0@ Y.

Now let ¢ be an integral curve for Xp. Since s - @ = m o (s,a), we have

(s- a)*(Xp) = m*(s*(Xp), a*(Xp)) = m*(s*(Xp) o a*(Xp))

d
s(c(@)) -alp) + —

s(p) - alc(?))-

dt|,—o dt|,—o
The first term on the right can be written as
d ds(c(t))
4, R, t = Ra(p)«
FTA (p)(S(C( ) (r) ( dt o

= Ra(p)+ (s Xp).
To identify the second term, recall that for all u € F(M) we have
o(N)(u) = ou+(N), where o0,(4)=u-A for A € GL(n,R).
We write
s(p) -ale(t)) = s(p) - a(p) - [a(p)™" - alc))}.

The term in brackets gives a curve y(f) = a(p)™! - a(c(t)) in GL(n,R) with
y(0) = I; then y'(0) € GL(n, R); = gl(n,R) is the tangent vector corresponding
to the matrix

dt

d
a(p)™" -ale()) = a(p)™" - 7 a(e(t)) = a(p)™" - X,(a),

t=0

when we identify the n x n matrices with gl(n, R). Consequently,

t=0

i s(p)-a(p) - [a(p) 'alc@))]

t=0

d
s(p) -alc@) = -

t=0

d
= Os(p)-a(p)* (E a(p)_la(c(t)))

t=0
= Us(p)-a(p)=o<(a(p)_1 : Xp(a))
=o(a(p)™ - Xp(@)(s(p) - a(p)). &
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Remark: Proposition 3 can actually be formulated for any principal bundle
7. P — M over M, with group G. If s is a section over U and a: U — G is
C®, then for any tangent vector X, at p € U we have

(s -a)«(Xp) = Ra(p)*(s*Xp) +o0o (La(p)—l*a*(Xp)) (S(P) : a(P))-

With Proposition 3 at hand, let us reconsider our question. We want to know
which n x n matrix-valued 1-forms @ on F(M) have the property that for each
section s we have

(%) (s-a)*(w) =a'da+a 's*(w)a.
This is equivalent to saying that for every X, € M, we have
o((s - a)xXp) = a~ (p)Xp(a) +a” (Pl (si Xp)alp).

According to Proposition 3 this is equivalent to

©(Rapa(s:Xp)) + (0 (a(p)™ - X, @) (s(p) - a(p))
=a" (p)Xp(a) +a” (p)o(siXp)a(p).
We can extract two separate equations from this, as follows:

(1) First suppose that a(p) = I. Then we obtain
0(5: Xp) + 0(0(Xp(@)(5(p)) = Xp(@) + 0(s5:.Xp),
or

(Y w(o(Xp(@))(s(p))) = Xpla)  fora(p)=1.

(2) Now suppose a has the constant value 4. Then we obtain
(II) O(Rax(5: X)) = A (54 X) A.

Conversely, it is not hard to show that if @ satisfies (I) and (II), then w satis-
fies (%),

Now the equations (I) and (II) can be simplified considerably, resulting in
equations that do not involve s at all. In (I}, the matrix X,(a) can obviously
be any # X n matrix, since we just have to satisty a(p) = I. Since we can also
choose any s, we see that (I) is equivalent to

(1) o(@(N)u) =N  forall N € gl(n,R) and u € F(M).
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We claim that (IT) is equivalent to
(Ir') w(R4xY) = A"'w(Y)A  forall Y € F(M),.

To see this we note that by choosing s appropriately we can make s, Xp be any
vector in # = s(p) that is not vertical; since the vertical vectors are all of the
form o(N), equation (IT') for vertical vectors follows from (I') and Proposition 2,
remembering that for GL(n, R) we have Ad(4)N = ANATL

Summing up, we see that a matrix-valued 1-form w on F(M) satisfies

(s -a)"(w) =a"'da +a 's*(w)a

[and consequently the assignment of s*® to s is a Cartan connection] if and
only if

w(@(N)=N for all N € gl(n,R)
W(R4x(Y)) = A '0(Y)A = Ad(A Hw(Y) forall Y € F(M),.

We leave it to the reader to show that if we are given a Cartan connection
{ws}, then there is a unique such w on F(M) with w; = s*(w). (Define
w(Y,) = ws(Xp) whenever Y, = 54Xp, and use Proposition 3 and the trans-
formation rules for a Cartan connection to verify that w is well-defined.) We
are consequently ready for the final definition of a connection; since all our con-
ditions make sense in any principal bundle, our new definition is not only more
abstract, more elegant, and more incomprehensible, but also more general.

An (Ehresmann) connection in a principal bundle 7: P — M over M
with group G is a C* g-valued 1-form w on P such that

() w(o(X)) =X forall X eq

for all @ € G, and all
tangent vectors ¥ on E.

@) w(RgyY) = Ad@ o (Y)

If  is an Ehresmann connection, then the map w(u): P, — g is onto for
every u € P, by (1), so its kernel H, = kerw(u) is a subspace of P having
the same dimension as M. This subspace is called the horizontal subspace at u
(determined by the connection), and tangent vectors in Hy, are called horizontal.

Thus every Ehresmann connection @ on P gives rise to a certain distribution H
on P.
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4. PROPOSITION. If H is the distribution on P determined by an Ehres-

mann connection @, then

(I) Pu = Vu @ Hu
(2) Hy, = (Ra)*Hu
(3) H is a C* distribution.

Conversely, if H is a distribution on P satisfying (1)—(3), then H is the distribu-
tion determined by a unique Ehresmann connection w.

PROOF. Condition (1) 1s obvious from the definition of H, as ker w(u) (and the
fact that w(u) is onto g).
If Y € H,, then

o -a)(RaY) = w(RygiY)
= Ad(a Yo(Y) by condition (2) in the

definition of a connection
— O,

$0 RgxY € Hy.q. Since Ry, is one-one, and dim H, = dim Hy.q, it follows that
Hu-a = (Ra)*Hu-

To prove that H 1s a C* distribution, choose vector fields Y1, ..., Y, ..., Yypk
which span P, for all v in a neighborhood of u. Let X, ..., Xi be abasis for g,
so that we can write @ = 3 _; w’ - Xj for ordinary C*® 1-forms w’/ on P. Let ¥;
be the vector field

Vi=Yi =) o (1)o(X)).
j

The C* vector fields ¥; are clearly horizontal and span the distribution H in
a neighborhood of u.

Conversely, given H, we (must) define @ by @(Y) = 0 for Y horizontal and
w(o(X)) = X for X € g. Then w is C*, since w(Y) is C® when Y is a
horizontal vector field, or when ¥ = o(X), and these vector fields span the set
of all vector fields, over the C* functions. Condition (1) for a connection holds
by definition of w. To prove condition (2), we need only prove it for horizontal Y
and vertical Y. If Y is horizontal, then (R,).Y is also, by condition (2) on H,
so we have

o((Re)xY) = 0= Ad(aHo(Y).

When Y is vertical, we may assume that ¥ = o(X) for X € g. Then (R,).Y =
o(Ad(a™")X) by Proposition 2. So

®((Ra)+Y) = Ad(a™) X = Ad(a™(Y),

as desired. o
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Often, a connection is defined to be a distribution H satisfying (1)—(3) of Propo-
sition 4, and  is defined as in the second part of the proof—it is then called
the “connection form” for the connection H. Using the decomposition given
by (1) of Proposition 4, we can write, for any tangent vector Y € Py, a unique
expression

Y =v(¥)+h(Y)

where v(Y), the vertical component of Y, is vertical and h(Y), the horizontal
component of Y, is horizontal. As we noted in the proof of Proposition 4,

h(Y)=Y =) o (V)o(X)).
j

From this formula it is clear that #(Y), and hence v(Y), is C*® if Y is C*°.
From the decomposition P, = V;, @ Hy and the fact that V, is the kernel of
et Py = My, it is also clear that m,: Hy — My () 1s an isomorphism for
each u € P. Consequently, for every vector field X on M there is a unique
vector field X* on P such that X* is everywhere horizontal and m«(X™*y) =
Xp for all u € P; this vector field X * is called the lift of X. There are two
simple propositions about lifts. :

5 PROPOSITION. If X isa C® vector field on M, then X* is a C* vector
field on P, and for all a € G we have Rg(X™) = X*. Conversely, if Y isa
horizontal vector field on P such that Re(Y) =Y foralla € G, then ¥ = b &
for a unique vector field X on M.

PROOF. Using local triviality, we can choose a C* vector field X " on some
71 (U) C P such that my(X'y) = Xp) forall u € a1 (U). Then X* = h(X')
is also C®. The other parts are left to the reader. %

6. PROPOSITION. If X* and Y* are the lifts of vector fields X and Y on M,
then

(1) X*+Y*istheliftof X +7Y
(2) for every f: M — R we have (fX)=(fom- -X*
(3) h([X*, Y] = [X, YT".

PROOF. The first two parts are trivial. For the third, we note that X*and X
are m-related, so by Proposition 1.6-3,

Te(h[X*, Y1) = m((X*, Y1) = [X, Vna)- #
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Our aim now is to develop, and generalize, the material of the last three
chapters, from the point of view of Ehresmann connections. The topics to be
discussed include parallel translation, covariant derivatives, the curvature and
torsion tensors, the structural equations, and the Bianchi identities. Presumably,
somewhere along the way an elegant proof of the Test Case will also turn up.
Be prepared for some unappetizing complexity—this is the price of invariance!
One problem 1s that all the interesting information about a connection resides
in the horizontal subspaces, but formulas about forms on a principal bundle
also have to reckon with the vertical vectors [which is what clause (1) in the
definition of an Ehresmann connection is designed to do].

We begin with a discussion of parallel translation. A piecewise C' curve
y: [0,1] = P is called horizontal if all tangent vectors y'(t*) and y'(¢”) are
horizontal vectors. Now if ¢: [0,1] — M is piecewise C!, we define a lift of ¢
to be a horizontal curve ¢*: [0,1] — P such that c* covers c, i.e., such that
moc* =c. Notice that if ¢* is a lift of ¢, then so is Rg o c*, by Proposition 4(2).

(i

7. PROPOSITION. Let ¢: [0,1] - M be a piecewise C! curve, and choose
uo € P with m(uo) = c(0). Then there is a unique lift ¢* of ¢ with ¢*(0) = uy.

PROOF. Using local triviality of the principal bundle, it is easy to show that
there is a curve y: [0,1] —» P with y(0) = upand r oy = c. A lift ¢* of ¢
must be of the form ¢*(¢) = y(¢) - a(¢) for some a: [0,1] — G with a(0) = e.
Using the method of proof for Proposition 3 (see also the Remark following it),
we find that

(1) = Ray« (¥ (1)) + 0 (Logy—1,a' (1)) (c*(2)).
Consequently,

@' (1)) = Ad(a(®) Yoy () + Lagy-1,a"(1).
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Now c¢* is horizontal if and only if @(c*'(¢)) = 0; using the above equation, and
remembering the definition of Ad, this means that

La(t)—‘*a/(t) = _La(t)—l*Ra(t)*w(yl(t)),
d'(t) = = Raqys (¥ ().

In this equation, w(y’(¢)) is a given curve in g. If we introduce a coordinate
system on G, this equation becomes a differential equation for a, and we know
that a unique solution exists locally. So we can always find a lift ¢* defined in
a neighborhood of any ¢ € [0, 1], with ¢*(¢) = u for any given u € ' (c(t));
moreover, this lift is unique.

We now have to show that the lift can be defined on all of [0,1]; clearly
we just have to show that a lift on [0, fo) can be extended past fo. To do this,
pick a lift ¢* defined in a neighborhood of f (with any old initial condition
¢*(t9)). Choose 1; < fo so that ¢* is defined at 1, and then choose a € G with
c*(t) = ¢*(1) - a. Clearly we can extend ¢* past to by letting it be Rq © C*. %

Notice that the last part of this argument is just that used in the proof of
Proposition 1.5-17. The first part of the argument is much simpler when we
are looking for a lift in a neighborhood of a point ¢ with c'(t) # 0. Yor then (a
portion of) ¢ is the integral curve of a vector field X on M, and c¢* is just an
integral curve of the lift X*.

Using Proposition 7, we can now define parallel translation of fibres of the
principal bundle 7: P — M along any curve c: [0,1] > M. Yor any u €
77 1(c(0)) we let 7,(u) € w71 (c()) be ¢*(¢), where ¢* is the lift of ¢ with ¢*(0) =
u. In this way we obtain a map

1. 1 (c(0)) = 7 (c(2)).

It is clear that 7, o Rg = Ry o Ty, since Rg o ¢* is again a lift. The map 1, 1S a
diffeomorphism whose inverse is just the parallel translation along the reversed
portion of ¢ from ¢ to 0.

Consider, in particular, the principal bundle of framesw: F(M) — M. Every
frame u € F(M) determines an isomorphism from R” to Mz y; namely, we
send ¢; € R” to uj € My(,y. This isomorphism will be denoted by the same
letter, u: R — My (. It is easy to check that for § € R” we have

(u-a)§) =ula-¥),

where the product @ - § of an n x n matrix a and a vector £ € R" is defined in
the footnote on page 262. Now suppose ¢: [0,1] - M isa piecewise C' curve,
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X, € M, is a tangent vector at p = ¢(0), and ¢*: [0,1] — F(M) is a lift of ¢
with ¢*(0) = u. There is a unique £ € R” with c*(0)(§) = u(§) = Xp; we let

T (Xp) = c* (1)),

thus defining parallel translation of vectors. To check that this parallel trans-
lation is well-defined, we consider any other lift, which must be of the form
¢* = Rgoc*. Then

X, = c*(0)() = c*(0) -a(@™' - §)
=)™ - §),

so for the parallel translation 7, defined with respect to ¢* we have

T(Xp) =)@ &) =c*(t) -ala™ - E) = c*(e)(E)
= 7 (X)p).

If we choose c*(0) = u so that u((1,0,...,0)) = X,, we see that we can parallel
translate X, by making it the first vector in a basis, parallel translating the basis,
and then taking the first vector in the translated basis. It is also easy to see that
1s a vector space isomorphism.

Having defined parallel translation of vectors, we can now define covariant
differentiation of vector fields by the formula on page 234,

1

(%) Vyx,Y = }{lir}) 7 (o Yoy = Yp),

where ¢(0) = p and ¢’(0) = X,. It is not yet clear that this covariant differenti-
ation 1s the same as the one we obtained on page 285 from the corresponding
Cartan connection {s*w}; to prove this we will need a Lemma that is also
used frequently later on. Given the vector field Y, we consider the function
Jr: F(M) — R” whose value at a frame v is just the set of components of
Y (v) with resect to v—in symbols,

fr(@) = v (Yrwy)-

8. LEMMA. Let Y be a vector field on M, and let X, € Mp,. Then for any
u e F(M) with p = m(u) we have

Vx,Y = u(X"u(fy)),

where X*, € P, is the unique horizontal vector with m,(X*,) = X} [notice that
since f: P — R”, the value X*,(fy) of the vector X*, on fy is an element of
R”, so u(X*,(fy)) € M, makes sense].
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PROOF. Let ¢ be a curve with ¢(0) = p and ¢'(0) = Xp, and let ¢* be the lift
of ¢ with ¢*(0) = u, so that ¢*'(0) = . Recall the definition of the parallel
translation tj '(Yc(h)) of Y. along the reversed part of ¢ from 0 to h: we
choose § € R" with

Fh)E) =Yy or ) (Yem) =§
and then define

o (Yemy) = c*(0)(E) = u(®).

Consequently,
woc* ) Yemy) =t Yeqy)-

So we have

.
Vx, ¥ = lim o (77" Yem) — Y5]

o1 s _
= Jim [0 c" ()™ (Yeqw) —uou™ ()]
=u(hmo [c*(h)™ YWYemy) —u~ (Y,,)])

—u (hm ~[fr(c*(h) - fy(u)])

= u(X"u(fy)). %

9. PROPOSITION. The V defined by () is a Koszul connection; that is,
(1) Vx,4x,Y =Vx, ¥ +Vx ¥

2) Vx,(Y1+ 12) = Vx, 11+ Vx, 12

(3) Vax,Y = =aVy,Y foralla e R
(

4) Vx,(fY) = f(p)-Vx,Y + Xp(f) - Yp
(5) if X and Y are C* vector fields, then so is p Vx,Y.

PROOF. Equations (2), (3), and (4) are easy to prove from the definition. Con-
dition (5) follows from Lemma 8, since we can choose a C™® section p > u(p)

in a neighborhood of p. Equation (1) also follows from the Lemma, since we
have (Xp + X/p)* = X*, + X",
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Now let us compare this Koszul connection V with the one obtained from
the Cartan connection corresponding to an Ehresmann connection @ on F(M).
We can write @ = (wj':), where each wj': in the matrix 1s an ordinary 1-form on
F(M). Equivalently, we can write

_ i
w_z w; - E,
ihj

where E] is the matrix with zeros everywhere except for a 1 in the i 7w and
the j™ column, so that
iye _ sagi
(Ej)g =885

Let (x,U) be a coordinate system, and let s: U — F(M) be the “natural

section”
d
s(q) = (— ) .
ax! q g

Then the Cartan connection corresponding to @ assigns (s*wj':) to this moving

9
ax"

s ey

frame. So the operation V defined on page 285 is determined on U by

R A R B
W_Zs @i (ax") dxk _-Xk:wj (S*Bx")ac_’?

9
ax! k

10. PROPOSITION. These two connections are the same, V = V.

PROOF. 1t obviously suffices to show that _V—a/axi 3/dx/ = Vajoxi 3/dx7, since
V and V are both Koszul connections. Let f = Jaaxi- By Proposition 8, it

suffices to show that
d 9%
g =50 (( ) (f))
)) axk ], o ( 0x" / 5(p)

zet - 3
;[(aii*)s(p) (fk)] ' f’xi"

So we need to show that

d
k
wy (S* (axi

p)) - (3ii*)s(p) S
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Now, by definition of f we have

for all u = (u1,...,un) € F(M).

0
(%) ;f"(u)-uk =27

7 (u)

In particular,
S*isq) = 5.

Writing equation () for u = s(p) - exptN, and differentiating with respect to ¢,
we obtain

d
2@

k

+Zf"(s(p)) <i| ) exptN) =0,

=0

S*(s(p)-exptN) - -—
=0 dx

and hence

0
;o(ms(m(f") 9F

- ZS}‘(s(p) -N)g = —(s(p) - N);.
k
In particular,

v d
Xk:o(Eu)s(,,)(f") e

—_— v ﬂ a
=) By = —(EL); 25;5,,

d d
= 8f*y " —| =8 —
wJ Xﬂjaxﬂ » J gxH »
So
EV ky _ _8;‘1 k=”’
0( p,)s(p)(f )_ 0 k#ﬂ

Now the lift (3/3x%)* of 3/3x* at points s(g) is given by

3* 3 9 3 ,
W =h (S* (W)) = Sx (—é;l—) - ;w# (S* (5);)) G(EIL)'
So

9 d
(W ) (/%) = (f )~ Tof (s* (—' )) (s (/Y)
s(p)
a8k
(87) ))( 8

i a
J k
__ai—ngv(s(al
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There is no need to repeat here the definition of Vy A for arbitrary tensor
fields A; this can be defined in either of the two ways used in Chapter 6, and
we will use any results from that chapter which we require.

We return for a moment to a connection @ on a general principal bundle
m: P — M with group G. Consider a k-form « on P, with values in a vector
space V. We define a V-valued (k +1)-form D, the covariant differential of «,
by

D(X(Y], ey Yk+1) = (da)(hY1, e ,hYk+1),
where d is the ordinary differential and #Y is the horizontal component of Y.

In particular, we define the curvature form Q of w by Q = Dw. Thus Q is a
g-valued 2-form on P.

11. PROPOSITION. FYor all @ € G, we have R,*Q = Ad(¢™)RQ. In other

words, for all tangent vectors Yy, Y € P, we have
R*QY1, Y2) = Ad(@™H)Q(Y1, 1s)

[this makes sense since (Y7, Y2) € g].
PROOF. We have

R*Q(Y1, Y2) = Ry (dw)(hYy, hY)
= d(Rs*0)(hY, hY>)
= d(Ad(a™")w)(hY,hY)
= Ad(a_l)[dw(hYl,hYz)] §ince Ad(a_l): a—q

1s linear
=Ad(@ )R, T2).

We will eventually see that this  does indeed correspond to the Q in Chap-
ter 7, but we first introduce the analogue of ®. This analogue cannot be defined
for connections in all principal bundles, but only for connections ® in the bun-
dle of frames m: F(M) — M. On this bundle we have a certain R”-valued
I-form 6, defined by

0.(Yy) = u~ 1 (m, Yy).

We will call this 1-form the canonical form or the dual form of the principal
bundle F(M). To see the appropriateness of the latter term, consider a section
s: U — F(M) given by s = (X1,..., X,). For any tangent vector ¥, € M, we
have

$*0(Yp) = O5(p) (54 Yp) = s(p) ™ (1),
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so for the i™ component 6% of 6 we have

5*0'(Y,) = i™ component of s(p) ™" (¥,)
ith

component of Y, with respect to the basis Xy (p),---» Xn(p).

Thus, the s*6" are just the dual forms for the moving frame (Xj, ..., X»).
We now define the torsion form ® of a connection w on F(M) by ® = D6
(this depends on w, since 4, and hence D, depends on w).

12. PROPOSITION. For all 4 € GL(n,R) we have
Rif9=4"1.0, RfO=471-0.
In other words, for all tangent vectors Y3, Y2 € P, we have

R4*0(Yy) = A" - 6(Yy)
RO, Y2) =47 0(11,12)

[these equations make sense since 6(Y7), ©(Yy,Y2) € R™].
PROOF. Yor 6 we have

RA*G(Yl) = eu-a(RA*Yl) = (u . A)_‘(”*Yl)
=AYV u ()
=A"'.6(1).

Then for ® we have

R4O(Y1,Y2) = Re*(dO)(hYy, hY))
= d(R4*0)(hYy,hY?)
=d(A7' - 0)(hY;,hYs)
= A7' . dO(hYy,hYs)
=A"16(1,Y,). %

A connection @ in the bundle of frames F(M) also allows us to define certain
special vector fields in F(M). For £ € R” we define the basic vector field B(£)
corresponding to & by letting B(£), be the unique horizontal vector at u such
that m,(B(¢),) = u(§). In particular, B(e;), is the unique horizontal vector
at u which covers u;.
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13. PROPOSITION. For all £ € R" we have

1) 6(B(E) =¢
(2) RaxB(E) = B(A™!-§) for all 4 € GL(n, R).

Moreover, if & # 0, then B(£) 1s nowhere 0. Consequently, if &,...,&, is a
basis for R”, then B(&))y,..., B(€,). 1s a basis for H,.

PROOF. (1) and (2) are left to the reader. For the third assertion, note that if
B(¢), =0, then

0 =1 (B(€)u) = u(é),

so & = 0. The final assertion follows immediately. +

To prove the structural equations in our new setup, we need two lemmas; the
first involves fundamental vector fields and basic vector fields, but the second,
which holds for connections in any bundle, involves fundamental vector fields
and arbitrary horizontal vector fields.

14. LEMMA. Consider the basic vector fields determined by a connection on
the bundle of frames F(M). For every N € gl(n,R) and & € R" we have

[o(N), B(§)] = B(N - §).

PROOF. Since ¢;(u) = u - exptN = Rexpen(u) is the I-parameter group of
diffeomorphisms generated by o (N), we have

o1
[o(N), B®] = lim ~ [BE) — Rexpv+ BE)]
1
= thn}); [B(&) — B([exp —tN]- &)] by Proposition 13
_ .1 since & > B(&) 1s
=B (th—% ;(E ~ (ep 1Ny - E)) linear onto H,
=B(N -&). &
15. LEMMA. Consider a connection on any principal bundle P over M with

group G. For any X € g and any horizontal vector field Y on P, the vector
field [o(X), Y] is also horizontal.
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PROOF. We have
.1
[0(X),Y]= }_H,I})_z_ [Y - Rexth*(Y)] .

Since Y is horizontal, so is each Rexprx«(Y). <

16. THEOREM. Let @ be a connection on a principal bundle P over M.
If P is the bundle of frames, with the dual form 6, and the torsion form ©
determined by o, then we have the first structural equation:

do(Y1,Ys) = —{w(Y)) -0(Y2) —w(Y2) -6(M)}+ O, Y2) forall Y1,Y2 € Py

[where @(Y7) - 6(Y2) is the action of the matrix w(Y1) on A(Y>) € R™].

If P is any principal bundle, and  is the curvature form of , then we have
the second structural equation:

do(Y),Y2) = —[o(h),0(Y2)] + Q(1, 12) forall Y1,Y> € P,.

PROOF. Since each Y; is the sum of a vertical and a horizontal vector, and
since both sides of the first structural equation are skew-symmetric and bilinear,
we can prove this equation by considering 3 cases.

Case 1. Yy and Y, are horizontal. Then w(Y;) = 0, so the equation reduces to the
definition of ® as D6.

Case 2. Yy and Y are vertical. Then the right side is 0. If we extend ¥; and Y2
to vertical vector fields Yy and Y2, then the left side is the value at u of

Y1(8(Y2)) — Y2(0(11)) — 6([Y1, Y2]),

which is 0, since [Y, Y2] is also vertical.

Case 3. Y, is vertical and Y is horizontal. Let Y, = 6(N), for N € gl(n,R) and
let Y, = B(§), for £ € R®. Then

~{w(h) - 0(12) —0(12) - 0(N)} +O(11,12) = -N - £+ 0+0.
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while we have

do(Y1,Y2) = a(N)(B(B(§)) () — BE)O(a(N)(u) — 0([a(N), BE)]) ()
=0—-0—6(B(N -8&)(u) by Lemma 14
=—-N.&
This proves the first structural equation.
The second structural equation will be proved similarly.

Case 1. Y1 and Y, are horizontal. The proof is as before.

Case 2. Yy and Y, are vertical. Let Y; = 6(Xi), for X; € g. Then Q(Y;,Y2) =0,
while

dw(Y1,Y2) = 0 (X1)(w(0(X2)))(4)

— 0 (X2)(w(a(X1)))(u) — ([0 (X1),0(X2)]) (1)
=0-0—w(o([X1, X2]))(u) by Proposition 2
= —[X1, X2] = —[w(11), 0(Y2)].

Case 3. Yy is vertical and Y, is horizontal. Then the right side is 0. If we extend Y
to a horizontal vector field Y5 and let Y1 = 6(X), for X € g, then the left side
is the value at u of

a(X)(@(¥2)) - Na(w(6(X)) — o([o(X), T2]) =0, by Lemma 15. 4

The structural equations for a connection @ on the bundle of frames F(M)
can also be written in terms of ordinary forms. With respect to the standard
basis ey, ..., e, of R” we can write the R”-valued forms 6 and © as

9=> 0 e 0=) 0 ¢,

for certain ordinary forms ¢ and ©'. Similarly, with respect to the basis E ,’ of
gl(n,R) introduced previously, we can write

w=)Y o Ef Q=> Q- E.
L Lj
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It is easy to see that the structural equations can then be written

de"=—zwj.A9f+®"
j

dw}:—Zw;;/\wj’-‘+Q§.
k

Instead of introducing these forms explicitly, it will be convenient to write the
structural equations in the abbreviated form

df = —-ownrnB+0
do = —ow Ao+ Q.

For a section s: U — F(M) we obtain

d(s*0') = =) _s* o} A s*0) + 5% @'

]

* 0y __ * 0 * k *l
d(s*wj) = Zs SHVNCMCHE S R
k

Since s*0 are just the dual forms to the moving frame s, this shows that s*©*
and s*Qj- are precisely the torsion and curvature forms* for the moving frame §
which are determined by the Cartan connection which assigns s*w to s. Propo-
sitions 11 and 12 correspond to Proposition 15 of Chapter 7. Recall that the
formulas of this proposition allowed us to define the tensors T and R. Essen-
tially equivalent, but much neater, definitions will now be given directly from
Propositions 11 and 12.

Let o be a connection on F(M) with torsion form © and curvature form Q.
For X, X, € Mp, we let

T(X), X2) = u(0(X1, X2)) € Mp,

where X; € F(M), are any vectors with N*(Yi) = X;. This definition is inde-

*In Ehresmann’s original treatment, the torsion and curvature forms @ and € on
F(M) were defined by the structural equations. The definition in terms of D was
given by Ambrose and Singer, A Theorem on Holonomy, Trans. Amer. Math. Soc. 75
(1953), 428—443. This paper also introduced much of the convenient terminology, like
“horizontal vectors”.
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pendent of the choice of u, and of X; € F(M),. To see this, first note that
if X is replaced by X, with m,(X,) = X, then X, — X, is vertical, so

Oy — X\, Xo) = DO(Xy — Xy, ) =0

similarly, X, may be replaced by any X 2 with N*(f 2) = X2, without changing
the value of #u(®(X), X3)). Then note that if we change u to u - A, we can pick
R4, X; for the new X;, and we have

(u - A)(O(R4 X1, RaxX2)) = (u- A)(A7' - O(Xy, X2)) by Proposition 12
= u(®(X, X2)).

Since ® is a form, it is clear that T 1s skew-symmetric.

Similarly, for X1, X2, X3 € M, we let
R(X\, X2) X3 = u(Q(X, X2) - (u™' X3));

here Q(X), X2) € gl(n,R) is an n x n matrix, so it acts on # ™' X3 € R”. Just as
before, we see that the definition does not depend on the choice of X, or X.
If we change u to u - A, then by Proposition 11,

(u - A(QR4X1, RasX2) - ([u- A]7' X3))
= - A([A7'QX, X)A]- (A7 u™'(X3))
= u(Q(X), X2) - ™' X3)).

Since € 1s a 2-form, 1t 1s clear that R is skew-symmetric in X; and X;.

In Chapter 7, we mentioned that the structural equations could be used to
prove that the torsion and curvature tensors T and R, defined for a Cartan
connection in terms of @ and Qj., were just those derived from the V which
could also be defined for the Cartan connection. Here we will actually carry
out this proof for an Ehresmann connection.

17. PROPOSITION. FYor any vector fields X,Y,Z on M we have

T(X,Y)=VyY —VyX —[X,Y]
R(X,Y)Z =VyVyZ —VyVxZ — Vix. v, Z.
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PROOF. Recall that we defined fy: F(M) — R by fy(w) = U™ (Yrq)-
If Y* is the lift of Y, we can write fy (1) = 60(Y*u)- So Lemma 8 gives

VxY(p) = u(X*,(0(Y*)  forue 7 (p)-
Consequently,

T(Xp, Yp) = u(©X ", Y7u))
= u(DOX ", Y ™))
= u(df(X ", Y™0)
= u(X* O™ - Y (0(X) — 61X ", Y1)
=Vyx, Y — Vy, X — [X,Y]p,

since T ([X*, Y*) = [X, Y]

To prove the second equality, we note that since X* and Y* are horizontal,
we have

QX *, Yr) = do(X™, Y W)
= X ()W) — Y @)W = o([X*, YD)
= —o([X*, Y D).

If we set the vertical component of [X*,Y*] equal to
o[ X*, Y*() = 0(N)u for N € gl(n,R),

then we obtain

Q(X*ua Y*u) = “‘N,

SO

0 R(Xp, Yp)Zp = u(Q(X ", Y ") ' Zp))
=u(=N- fz(u)).

On the other hand, since we also have fz(u) = (Z*u), we obtain
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(2) VxVyZ(p) - VyVxZ(p) - Vix v1Z(p)
=u(X*(Y* fz) = Y*u(X* f7) — (h[X*,Y*)) fz)
= u((W[X*,Y*) fz).

The expressions in (1) and (2) are equal, since
1
o(N)ufz = tll_r)r(l)— [fz(u - exptN) — fz(u)]

—hm [(expzN)- fzw) — fzw)]

=-N-fz(u). %

One of the steps in this proof'is of sufficient importance to be stated explicitly,
along with a counterpart, in the following corollary of the structural equations.

18. PROPOSITION. If w is a connection on the bundle of frames F(M), and
By, B, are basic vector fields, then the horizontal component of [By, By|(u) is
the value of B(—® (B, Bay)) at u.

If @ 1s a connection on any principal bundle P over M, and Yi,Y; are

horizontal vector fields, then the vertical component of [Y;, ¥2](u) is the value
of 6(—Q(Y1y,Y2,)) at u.

PROOF. Since By and B, are horizontal, the first structural equation gives

©(B1u, Bau) = d0(By, B2)(u)
= B1(6(B2))(u) — B2(6(B))(u) — 6([B1, B2])(u)

= —0(h[B1, By](u)) since @ = 0 on vertical vectors.

Since we can always write h[ By, B2](u) as B(§), for some & € R”, the first result
follows from Proposition 13(1).
Since Y| and Y, are horizontal, the second structural equation gives

Q(Y1u, You) = do(Y1,Y2)(u) = —w([Y1, V2](u)),

which gives the second result. ¢
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Suddenly, we are ready for

19. THEOREM (THE TEST CASE; SEVENTH VERSION). Let (M, ( ,))
be an n-dimensional Riemannian manifold for which the curvature tensor R
(for the Levi-Civita connection) is 0. Then M is locally isometric to R” with its
usual Riemannian metric.

PROOF. On the bundle of frames F(M) we have a connection @ with ® =0
and © = 0, for which parallel translation preserves the inner product { , ).

Step 1. The second part of Proposition 18 shows that the bracket of two hori-
sontal vector fields is again horizontal. Thus, the distribution H is integrable. At
a point p € M choose an orthonormal frame u € m~1(p), and let N be the
(n-dimensional) integral manifold of H through u. Clearly, N is locally the
image of a section s U — F(M) with s(p) = u.

@N
s
Step 2. Consider the basic vector fields B(e;), for er,...,¢€n the standard ba-
sis of R”. Since they are horizontal, the bracket [B(ei), B(e;j)] is horizontal.
But the first part of Proposition 18 shows that the horizontal component is 0,
so [B(e:), Blej)] = 0. If we let Xi(g) = Jt*(B(e,')(s(q))), then we also have

[X;i, Xj] = 0, since B(e;) and X; are m-related. But, by definition of B(§), we
have

o (Blei)(s(q))) = s(g)(e)
— ih vector of the frame 5(g).
Thus, s = (X1, ..., Xn) where [Xi, X;j] = 0; hence there is a coordinate system
x!, ..., x" with X; = a/0x".
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Step 3. We claim this is the desired coordinate system. We just have to show
that s(g) is always orthonormal, so it suffices to show that s(q) is the parallel
translate of v = s(p) along any curve ¢ in U from p to q. This is obvious:
to translate u along ¢, we choose a hft ¢* of ¢ with ¢*(0) = u, and then the
translate of u is ¢*(1); but clearly ¢* = soc. o

To wrap things up, we present the new version of the Bianchi identities.

20. THEOREM. For a connection @ on the bundle of frames F(M), with
dual form 6, torsion form ®, and curvature form €2, we have

(1) (Bianchi’s first identity) D® = Q A 6. In other words, for X,Y,Z ¢
F(M), we have

2+ !

DO(X,Y,Z) = RN

-%-[Q(X, Y)-0(Z)—Q(Y,X) 6(Z)
+Q(Y,Z) - 0(X) - QZ,Y) - 6(X)
+QZ,X)-0(Y)-Q(X,Z)-6(Y)]

=QX,Y)-0(Z)+Q(Y,Z) - 6(X) + QZ,X)-0(Y).

For a connection @ on any principal bundle, with curvature form €, we have
(2) (Bianchi’s second identity) D2 = 0.

PROOF. Applying d to the first structural equation, df = —o A 0 + O, we
obtain

0=—(donrnbB)+(wAdf)+dO.
So
DO(X,Y,Z)=dOhX, hY hZ)

= (dw A O)hX,hY,hZ) — 0
= (QAO)X,Y, Z),

since dw(hA,hB) = Q(A, B) and 0(hA) = 6(A) for all 4, B € F(M),.

Applying d to the second structural equation, dw = —w A w + R, we obtain

0=—(dorw)+(wrdw)+dQ.
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So

DQX,Y,Z)=dQ(hX,hY hZ)
= (do Aw)(hX,hY,hZ) — (0 A dw)(hX,hY,hZ)
=0,

since w(hA) =0 for all 4 € F(M)u [but recall that (dw A @) — (0 Adw) 1s not
itself 0, since matrix multiplication is not commutative]. €
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SUMMARY

The diagram on the opposite page summarizes the relationship between the
various definitions of a connection:
(1) n? functions Ffj assigned to each coordinate system (classical),
(2) V operator on vector fields (Koszul),
3)
(4) nxn matrix-valued 1-form @ on F(M) (Ehresmann),
(5) distribution H on F(M).

n x n matrix of 1-forms (wj’:) assigned to cach moving frame (E. Cartan),

The relationship between (1) and (2) is immediate, as s the relationship be-
tween (4) and (5). In Chapter 7 we saw how to pass between (1)-(2) and (3),
and in this chapter we saw how to pass between (4)-(5) and (3). We can also go
directly from (5) to (1), since V is defined by parallel translation. It remains to
indicate how one passes directly from (1)-(2) to (5).

91. PROPOSITION. Let V be a Koszul connection on M. For u € F(M),
let

H, = {s:Xp: p=7(1) and Vy,s = 0}
[where Vx,s denotes (VXle,...,VXpX,,) if s = (Xi,...,Xn)]. Then Hy isa
subspace of Pu, and the distribution u — Hy defines a connection on F(M)
for which the covariant derivative is the given V.

PROOF. Suppose that s -a 1s another section with a(p) = I and Vx, (s ca) =0.
Then

I O=VXp(s-a):s'Xp(a)—I—(VXps)-a
=5 Xp(a),

which implies that Xp(a) is the zero matrix. So by Proposition 3 we have

(s - @)x(Xp) = 5+ Xp + 0 (Xp(@)(s(p))
= S*Xp.

Thus H, contains exactly one vector X*, with m(X*,) = Xp. Now given
vectors Ay, By € Hy, let meAdy = Xp and my By = Y. We can choose s with
s(p) =u and Vy,s = Vy,s =0; then we also have Vx,+v,8 = 0, and we must
have

Ay + By = 5 Xp +5:Yp = 5x(Xp + Yp) € Hy.
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Thus Hy i1s a subspace.* It has the same dimension as M, and contains no
vertical vectors except 0, so we have F(M), = V,®H,,. Itis clearthat R4, H, =
Hy.4 for all A € GL(n, R), since s - 4 also satisfies Vx, 5 - 4 = 0.

To prove that H is a C* distribution, we consider a C* vector field X on M,
and a C* section 5. We claim that there is a functiona: U — GL(n, R), defined
in some open set U, such that Vy (s-a) = 0 for all p € U. This is because
equation (1) shows that this condition is equivalent to

0=5s-Xp@)+(Vx,s) - a,

and this is a differential equation for a. For each 4 € GL(n,R) and p € U, let
ap, 4 be the solution with ap 4(p) = s(p) - A. For every u € F(M) we have
u = s(m(u))-A(u) for some A(u) € GL(n, R) which depends differentiably on u.
Then the vector field

X*(u) = [S : an(u),A(u)]*(Xn(u)) € F(M)u

is C*° since ap, 4 is C* in p and 4.

Thus the distribution H is a connection on F(M). For a curve ¢ in M,
consider a curve ¢* in F(M) with 7 o ¢* = ¢ and all ¢*'(¢) horizontal. By
definition of the connection, this means that for some X, € M, = M) we
have

c*'(t) = s4(Xp) where Vy,s =0.

Of course, Xp must be my5, X, = mec*' (1) = ¢'(t). So Vyys = 0. From
this it is easy to see that the components of ¢* are vector fields along ¢ which
are parallel along ¢, with respect to the original V. Hence parallel translation
defined with respect to the connection H is the same as parallel translation
for V. This implies that the covariant derivatives are also the same.

Proposition 21 gives the most geometric way of going from V to H, and
hence to w. We can also give a computational description of w, in terms of a
coordinate system (x,U) on M. Recall that xy = (x’ o 7, x]’:) 1s a coordinate
system on 7 ~'(U), where we write a frame u as

n . 3
uj = %W oo

i=1

m(u) ‘

At each u, the non-singular matrix (xj’: (#)) has an inverse matrix (yj’f (u)) =

(b))

*We can also define H, simply as 5,(M), where s is a section with s(p) = u and
(Vs)(p) = 0.
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22. PROPOSITION. Let Fk be the n3 functions assigned to the coordinate
system (x,U) by a classical COHIICCUOII on M. For the corresponding Ehres-
mann connection ® = (w}) = Z o} . E] we have

w) —Zn(dx +Z<Fwon)x7d(x“on)) on 7 '(U).

PROOF. lets = (a/ax ,8/9x™) be the natural section. We know that the

matrix of 1-forms (o ; )] for the corresponding Cartan conrection is given by

i i 9
My =@\ 350 )

and consequently the corresponding Ehresmann connection satisfies

i i J
v Fuy(P) = (s* (a—x—/‘ p)) .
If we write
9 ; 0 ; 0
sl aeim| | =229 5 om Fril
(ax“ P) z; dx'omlsny 17 L)
then
; 0 ; d(x' omos) ax! ;
=gl — fom) = =—| =4
@ =9 (ax“ p) (x" o) IxH p OxH, "
, 3 . 3(x} o 5) 98!
b '(57 ,,)‘xﬂ: ai | = O
P P
$O
9 9
S | — = }
oxH » I(xH o) |5(p)

A similar calculation shows that for any A € GL(n,R) we have

PR I I 0
s(P)~A—(s e \awrl,) = 4 \oxr

_9
d(xH om)

2)

)
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Now any u € 71 (U) can be written u = s(m(u)) - (x]’: (u)) = s(p) - 4, say. So

)

) 4 by definition of an

Ehresmann connection

for the matrix (w]’:) we have
. 9 ; d
l. _ peed . R .
(@) (a(x“ o) u) (w])( A S

= A—l(w'?)(i
T\ Oxn

= A7} (p)A by (1),

g

y (2)

so that

) Z(A )iThy () A

= Y M@, )x} ).
A,v

@i (B(x“ o)

This accounts for the coefficient of d(x* o ) in the desired expression for a)j’
Now let us write

o (E§)(u) = Za —A
] u

(clearly each B/Bx;‘ 1s vertical, since n*(a/ax}‘)(f) = B(fon)/ax;‘ =0,as form
1s constant on fibres; hence the 8/8x]).‘ span V). Then

a} = o (E5)(x})(u)

= ou(E)(x})
A «a A
xXHu-exphES) — xt(u)
_ i PB4
h—0 h

= \])‘ (u-Eg) = A" component with respect to s( (u)) of (u - ER);
— ¢ tH ) . Bl >t st Zuy(Eg)]y
¥

— B EH . EH E bH E uﬂ57
— A
= xgd7.

0
o(EfW) =) xj 57
A o lu
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Hence

8582 = (E)} = 0} (0 (E§)W))
d

(3
Ao
:Zxﬂ“’j(_x )
A x|,

[+
This is easily seen to account for the other term, ), » dxj).‘, in the expression

for wj’.. <
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ADDENDUM 1

THE TANGENT BUNDLE
OF THE BUNDLE OF FRAMES

The existence of a connection on the bundle of frames F(M) has some in-
teresting implications.

23. PROPOSITION. Ifthere is a connection on F(M), then the tangent bun-
dle of F(M) is trivial.

PROOF. The n® + n vector fields O(E]':) and B(e;) are everywhere linearly
independent. &

24. COROLLARY. Ifthere isaconnection on F(M), then M is paracompact.

PROOF. Since the tangent bundle of F(M) is trivial, there 1s clearly a Rie-
mannian metric on F(M). So F(M) is metrizable (Theorem 1.9-7), so every
component of F(M) is o-compact (Theorem I. A-l). Since n: F(M) — M 1s
a continuous map onto M, it follows that each component of M is o-compact,
so M is metrizable (Theorem 1. A-1). «»

Of course, a non-paracompact manifold M may still have a connection in
some principal bundle 7 : P — M with group G. For example, the trivial bundle
M x G — M has an obvious connection (the horizontal vectors Y are those
with 72, Y = 0, where m: M x G — G 1s projection on the second coordinate).

If M is paracompact, then there is a connection in any principal bundie
n: P.— M; this can be proved using partitions of unity, noting that any convex
combination of Ehresmann connections is also a connection (a convex combi-
nation of connections w; makes sense, since the values of w; are in the vector
space g). '

For the special case of a Riemannian manifold (M, ( , }), we have a specific
connection in F(M), the Levi-Civita connection. It 1s easy to see that the Levi-
Civita connection for a Riemannian metric can also be defined for an indefinite
Riemannian metric (a non-degenerate inner product in each tangent space); it
1s the unique symmetric connection for which parallel translation 1s an isometry,
and the F{‘j are given by exactly the same formula as the Christoffel symbols.
So Corollary 24 implies
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95 COROLLARY. If M has an indefinite Riemannian metric, then M is
paracompact.

This result cannot be proved by modifying the proof of Theorem 1.9-7, for
there may be paths of negative length between two points. For another proof
of the result, see Sachs and Wu, General Relativity for Mathematicians, section 8.2.1.
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ADDENDUM 2
COMPLETE CONNECTIONS

If @ is a connection on F(M), we define a geodesic, as usual, to be a curve ¢
such that dc/dt is parallel along ¢. The connection w is complete if every
geodesic segment can be extended to R. Unlike the Levi-Civita connection for
a Riemannian metric, a general connection on F(M) may not be complete
even if M is compact. To construct an example, we begin with the Levi-Civita
connection for the metric ( , ) = e* dx @ dx on R. A geodesic ¢ has constant
squared length

(), () ey = €O (1),

s0 e“®/2¢' (1) must be constant, and thus
c(r) =2 log(a + bt).

Thus, ( , ) is not complete (the geodesics run off to infinity in a finite amount
of time). If we identify the bundle of frames F(R) with R x (R — {0}), then the
integral manifolds of the horizontal distribution H of our connection are the
sets

(e, ¢/ )} = { (2 Togta + b, 22)
= {(x,2be™*/%)}.

Now we will identify x with x 4+ 1 for all x € R; the resulting manifold
is a circle S' and we have a map w: R — S! given by n(x) = equivalence
class of x. The distribution H on F(R) gives rise to an obvious distribution
on F(S'), which determines a connection on F(S'). The geodesics for this
connection are the curves

mwoc(t) =m(2 log(a + br)).

They cannot be extended to all of R, since they go around S! infinitely often
in a finite amount of time.

There are other anomalies for general connections. For example, even though
a connection w is complete, it may not be possible to join every pair of points
with a geodesic. If we consider a Lie group G, it is easy to see that there is a
unique connection @ on F(G) which makes all left invariant vector fields paral-
lel. Then geodesics through e are just 1-parameter subgroups. The connection
Is complete, since 1-parameter subgroups can be extended to all of R, but (Prob-
lem L.10-27) it is not necessarily true that every element lies on a 1-parameter
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subgroup. It is not known whether every two points can be joined by a geodesic
in a compact manifold with a complete connection.

Finally, it should be pointed out that results about geodesics for the Levi-
Civita connection of a Riemannian metric need not hold for the Levi-Civita
connection of an indefinite Riemannian metric. For example, there is an indef-
inite metric whose Levi-Civita connection is complete but for which not every
pair of points can be joined by a geodesic (see J. W. Smith, Lorentz structures on
the plane, Trans. Amer. Math. Soc. 95 (1960), 226-237).
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ADDENDUM 3
CONNECTIONS IN VECTOR BUNDLES

Suppose w: E — M is a C* vector bundle over M. We have already seen
how to form a principal bundle w: F(E) — M, in which* every u € w~!(p)
is a frame for 77'(p). We can then define a connection in the original vector
bundle E to be a connection in the principal bundle F(E). However, there is
a more direct way of defining a connection in E, which makes certain things
work out more simply, since the bundle of frames contains a lot of superfluous
stuff in it.

For a vector bundle n: E — M (as for a principal bundle) we define the
vertical subspace V, C E, at any point ¢ € E to be the image i«(m 7 (p)e),
where p = m(e); vectors in V, are called vertical, and V, is clearly the kernel
of n,: E. & M, For every frame u € w™!(p) and every & € R” we also have
u(€) € n1(p) defined by u(§) = b gyl Finally, for every non-zero o € R,
we let @: E — E be the diffeomorphism defined by @(e¢) = « - e. We define a
connection in E to be a distribution H such that

) Ee=H, ®V,foraleecE

(2) ax(He) = Hz(ey = Hy.. for all non-zerow € E

(3) H is a C*™ distribution.
The subspace H, is called the horizontal subspace at ¢, and vectors in H, are

called horizontal. Applying (2) with any & # 1, and using a local trivialization,
we see that if s: M — E is the zero section, then H;(p) must be s,(M)).

</ f P AN
AN

We will first show how such a connection arises from a connection @ on the
principal bundle F(M). Let H be the distribution on F(M) determined by w.

*This bundle is a special case of the “associated principal bundle”, which is used in the
theory of fibre bundles.
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Given e € 7~1(p), choose any frame u € 77! (p); then there is a unique § € R”
with u(£§) = e. Now we can define a map ¢¢: F(E) — E by ¢z(v) = v(§) for all
v € F(E); this map takes fibres of F(E) to fibres of E. We let He = @ex(Hy).
This is well-defined, for if we choose u - A instead of u, then we must choose
A~1 . & instead of §&; since

$a1(V) = V(A7 E) =0 ATE),
we have ¢q-15 = @ © Rg—1, 50

(¢A—1.§)*(Hu-A) = ¢S*RA'1*(HM'A)
= ¢z Hy, by Proposition 4.

We leave it to the reader to verify that these well-defined H, do satisfy conditions
), ), 3.

We also want to show that every connection H in E does arise in this way from
some connection H in F(E). To do this, we first consider parallel translation.
If ¢: [0,1] = M is a curve, then the parallel translation

0 w7 e(0) — 7 (e(p)

determined by H is defined in the obvious way: 7;(¢) = ct() where cf: [0,1] —
E is the unique curve with ¢f(0) = e such that each ¢'’(1) is horizontal; the
existence of ¢! in E is proved similarly to the existence of ¢* in a principal
bundle. Clearly ; is a diffeomorphism, whose inverse is the parallel translation
along the reversed part of ¢ from c(f) to ¢(0). From condition (2) for H it
follows that 7, ( - €) = «a - 7, (¢) for @ # 0. This is true even fora =0, 1e., 14
takes the zero vector at ¢(0) to the zero vector at ¢(?); this follows from the fact
that Hy(py = s+(Mp) when s is the zero section. It now follows that t; is a vector
space isomorphism, because of the following

CLEVER OBSERVATION: If f: R" — R™ is differentiable at 0 and satisfies
fla-v)=af(@) forall ve R” and & € R, then f is linear.

PROOF. Let T = Df(0): R* — R™. Then

T() = lim L[/ (@v) = /O] = lim ~ /(@)
a—>0 a—0

= lim f(v) = f(v). %
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We now define the connection H in F(E). Let u € w~!(p). For every C®
curve ¢: [0,1] - M with ¢(0) = p, we define the curve ¢*: [0,1] — F(E) by

(c*()i = T () (uy) i=1,...,n,

the subscript i denoting the i*" component of the frame. Then we define H, to
be the set of all vectors ¢*(0) for all such curves ¢. The reader may verify that H
1s an Ehresmann connection, and that it gives rise to the connection H on E (the
fact that 7, 1s a vector space isomorphism is used to prove that Rq« H,, = H,.4).

Given a connection H on E, we use the direct sum decomposition E, =
H, ®YV,, to define the horizontal component /4 X and vertical component v X of
any tangent vector X € E.. Condition (2) for H is equivalent to the equation
axhX = h(@,X), or to @,vX = v(@,X). Remember that the tangent space
n=Y(p)e at e of the vector space w~1(p) can be identified with = (p) itself.
Since vX € i (m~!(p).), we therefore can, and henceforth will, regard vX as
an element of 7~ '(p).

The equation @,vX = v(a,X) then becomes

(%) V(@ X) = -vX.

Now consider a section s: M — E of the bundle 7: E — M, and a vector
Xp € Mp. We define
Vx,s = vs(Xp) € 171 (p).

It is clear that Vy,s is linear in X}, and in 5. For a C® function f: M — R,
the analogue of Proposition 3 is the formula

() (f - )x(Xp) = f(P) (52 Xp) + Xp(f) - s(p),

where s(p) € 77'(p) is identified with a tangent vector in 71 (p) at f(p)-s(p);
to prove this formula, we introduce a local trivialization, and observe that it
becomes the product rule for the derivative. If we take the vertical component
of both sides of (xx) and use (*), we find that

Vx,(f - $) = f(P)Vx,s + Xp(f) - s(p).

Thus V is a Koszul connection. If the connection H in E comes from the
connection H in F(E), then this V is the same as that determined by H: this is
an easy consequence of Lemma 8 (although Lemma 8 is concerned only with
F(M) = F(TM). it is easy to see that it generalizes to any F(E)).

Finally. we point out that if we are given V, then H, is simply {s,(X; p)ip=
n(e) and Vy,s = 0}: it can also be defined as s+(Mp), where s is a section such
that Vs(p) = 0.
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ADDENDUM 4
FLAT CONNECTIONS

Consider the trivial principal bundle 7: M x G — M, and let m: M x
G — G be projection on the second factor. We can define the canonical flat
connection H on M x G by letting H(p 4 = kermu: (M x G)(p,a) > Ga.
It is easy to sce that the corresponding g-valued I-form @ on M x G 1s given
by o = m*(@'), where o’ is the natural g-valued I-form on G (defined on
peg. 1.403). Using the equations of structure of G, in the form given on pg. 1.404,
we now have, for all Y1, Y, € (M x G)u

do(Y1,Y,) = dmy* (@) (11, 12)
= 1" (dw')(Y1, 12)
= dw' (12, Y1, m24 12)
= —[0' (24 11), 0" (124 12)]

= —[w(11), w(Y?2)].

Comparing with the structural equations of the principal bundle M x G (The-
orem 16), we see that for this connection @ we have £2 = 0.

Conversely, suppose 7: P — M is a principal bundle with group G, and a
connection @ such that @ = 0. By Proposition 18, the distribution H corre-
sponding to @ is integrable. From this it is easy to see that around any point
p € M there is a neighborhood U and a diffeomorphism ¢: ' U)—>UxG
of the form t(u) = ((u),$(u)), where ¢(u - a) = ¢(u) - a, such that 1.(Hy)
is the horizontal subspace at ¢(u) for the canonical flat connection in U x G.
(One part of our final proof of the Test Case essentially used this fact.)

It should be noted that the second structural equation of Euclidean space
(Proposition 7-1), with which we began our whole investigation of moving
frames, could have been deduced from the equations of structure of GL(n, R),
by a process essentially equivalent to the deduction just given for the equation
dw(Y1,Ys) = —[o(Y1), w(Y2)]. To obtain the first structural equation, we would
have had to consider the equations of structure for the group of affine motions
[an “affine motion” is a translation followed by an element of GL(n,R)]. In
general, for a connection @ on F(M), the torsion form and the first structural
equation for @ can be interpreted in terms of a connection in the bundle 4(M)
of affine frames of M, where an “affine frame” of M, is a pair (v,u1, ..., Un),
for ve My, and (uy,...,uy) a frame for Mp. For this interpretation, the reader
is referred to Kobayashi and Nomizu, Foundations of Differential Geometry, Vol. 1,
pp- 125-130.






NOTATION INDEX

CHAPTER 1 v 63
b 28 w 102
dp 37 1), @), 3) 56
k],...,kn_l 45
n 6, 27 CHAPTER 3B
P 37 av 116
P 37 dv 121
P4 13 E,F,G 127
SL(n,R) 38 p 136
S ! g 138
sl(n,R) 38 1 199
t 6 11 122
vxw 29 K(p) 114, 116
V1,V2,V3 34‘ l, m, n 128
e 46 r, 0) 136
Y'($) 1 y 112
« 6,27 0(s) 137
* 41, 47 (0 ¢) 136
H 16 o' 116
o 39, 46 0 139
T 28
@ 36 CHAPTER 4A

CHAPTER 2 A(X,Y) 170

49 Qvp, wp) 169
x 1p, wpl 169
C¢ 53
Kx 49
s 53 CHAPTER 4D
v 53 K(W) 194
R(Y,Z)X 189
CHAPTER 3A Rijki 190
L
cos (1)L 62 R jki 188
dx 04
Jsx 94 CHAPTER 4. ADDENDUM
- do 74 F 202
L 62 f**(v) 201
V4 62 gij 202
X.Y.Z 62 gli 204
8x 94 rt, ik 204

351



352

CHAPTER 5
Jrdi
Ail...ik;h
Jr-Ji
iy...ighn

CXP

f
k
7
k
Fij
)\i;h
j
)‘ih
j
)‘i,h
j
)‘ilh
Ao

CHAPTER 6
AX,Y)
D(X,Y)
DV
dr
DV
ox
R(X.Y)Z
S(X,Y)

SAX,Y, Z)

Tx,Y)
k
Fl.j
Tt
ds
dx
ds
ay
v
VA
VY
Vx4
VyY

210

213

223
211

221

221
210

211
211
211
210

249
249

232

238

239
249
243
236
228
234

238

238

227
230
228
229

227

Notation Index

Vy, A

14

Vy, Y

P

CHAPTER 7

(4)

A-v

dp

G

g

KW)
L(X,V)
P:R* - R”
R(X,Y)Z
Ry

T(X,Y)

(AN 10|

& Re®

WA
wAb
39" 9
8 A
VY
Z(v, w)
(.)

235
227

261
262
960, 264
279
979
9277
977
260
285
266
9294
290
985
287
270
9262
962
266
283
260, 281
971
276
9293
270
266, 283
260

271
262
262

272

285
296
276



CHAPTER 8
Ad(a)
A(M)
B(§)

p

C*

ot

Do

E]

fr

F(E)
F(M)

H

H.

Hu

h(Y)
O(E)

Rq

R(X1, X2) X3
s-a
SF(E)
SO(E)

T (X1, X2)
u-A

309
349
325
309
318, 347
347
324
322
320
307
306
315, 346
346
315
317, 348
308
309
330
312
308
308
329
306

Notation Index

u: R" = My
Ve

Vau

v(Y)

X*

xh(u)

Xy

(i)

a

®

@i

0

9[

w:. F(E)- M
o(X)

o)

Vx, s

Vx, Y

14

319
346
307
317, 348
317
306
306
338
346
325
328
324
328
307
309, 311
320, 347

347

324
328
315
311
322, 328
348
320

353






INDEX

Absolute derivative, 211
Absolute Differential Calculus, 209
Acceleration vector, 247
Act
effectively, 309
on a manifold on the right, 309
on the left, 262
on the right, 262
without fixed point, 309
Action of the group of a principal
bundle, 306
Adapted moving frame, 270
Affine
arclength, 39; see also Special affine
arclength
curvature, 41; see also Special affine
curvature
frame, 349
motion, 39, 349
special, 39
Ambrose, W., 278, 329
Analytic
curve, 46
surface, 297
Angle, 296
rotation through an angle of 8, 50
Arclength function, 1
Arclength, special affine, 46
Area of v(A), 114
Associated principal bundle, 346

Ball, unit, 203
Banach space, 14
norm, 14, 203
Base space of principal bundle, 306
Basic vector field, 325
Bell, E. T, 149
Bending invariant, 133
Bertrand, J. and Puiseux, Formula of,
147
Bianchi’s
first identity, 224, 244, 288, 334
identity, 225
second identity, 224, 244, 288, 334

355

Binormal, 28
Bolyali, J., 163
Bundle
associated principal, 346
fibre, 346
of frames, 306
tangent bundle of, 342
principal, 306
connection in, 315
vector, connection in, 346

Calculus of Tensors, 209
Canonical

flat connection, 349

form, 324
Cartan, Elie, 259, 302, 304
Cartan connection, 281, 311
Chevalley, C., 144
Christoffel, E. B., 186, 209
Christoffel symbols, 186
Circle

geodesic, 147

osculating, 6, 27
Classical connection, 221
Clever observation, 347
Clifford, W. K., 150
Closed curve, 12

convex, 12

parallel translation of a vector along,

243

simple, 12
Compatible connection, 236
Complete

connection, 344

set of invariants, 39
Component

horizontal, 317, 348

vertical, 317, 348
Conformal, 296
Conformally equivalent, 297
Conic

hyperosculating, 43

section, 43



356

Connection
canonical flat, 349
Cartan, 281, 311
classical, 221
compatible with metric, 236
complete, 344
difference tensor of two, 249
Ehresmann, 315
convex combinations of, 342
flat, 349
canonical, 349
form, 317
forms, 266, 281
in principal bundle, 315
over paracompact space, 342
in vector bundle, 346
Koszul, 227
Levi-Civita, 238, 288
projectively equivalent, 250
reason for terminology, 234
summary of different definitions of,
337
symmetric, 222
with the same geodesics, 249
Constant
curvature, 10, 290
special affine curvature, 41
Convex
combination of Ehresmann connec-

tons, 342
curve, 12
function, 203
set, 13
in R3, 52
Courant, R., 126
Covariant

derivative, 211, 223

of a vector field along a curve,
232
differential, 324
differentiation, rules for, 212
Curvature

constant, 10, 290

curve of double, 28

determines the metric, 277
two-dimensional case, 279

double, 28

Index

firse, 28
form, 324
forms, 266, 283
functions
of a curve in R" , 45
special affine, 47
Gaussian, 116
formulas for, 119, 120, 126, 127,
129
in geodesic polar coordinates, 138
mean, 133
of a cylinder, 116
of a plane, 115
of a plane curve, 6
first, 28
formulas for, 7, 8
global, 16
second, 28
total, 18
of a space curve, 27
of a sphere, 115
of a surface, 70, 114, 116, 157
total, 68
of the intersection of a plane and a
surface, 49
Riemann’s invariant definition of|
254
second, 28
sectional, 194
preserving diffeomorphism, 279
tensor, 189, 223, 239, 286, 330
total, 18, 68

Curve

analytic, 46
closed, 12
parallel translation of a vector
along, 243
convex, 12
curvature of, 6, 27
firse, 28
global, 16
second, 28
total, 18
direction of, 2
global results about, 12 ff.
going in opposite direction, 7
horizontal, 318



Curve (continued)
immersion of] 1
in plane, 1
in space, 24
inside of, 15
length of, 200
lift of, 318
of double curvature, 28
parallel translation of fibres along,
319
parallel translation of vector along,
234
parallel vector field along, 233
projections of, 30
rotation index of, 19
simple, 12
Taylor expansion of, 27, 31
vector field along, 231
covariant derivative of, 232
Cc*, 231
vertex of, 23
Cylinder, curvature of, 116
C% Minkowski metric, 200
C* vector field along curve, 231

Debauch of indices, 209 ff.
Dedekind, R., 149, 150
Derivative

absolute, 211

covariant, 211

“partial”, 272
Determinant, 143
Development of a surface, 90
Difference tensor of two connections,

249

Differentiable surface, 62
Differential, covariant, 324
Diquet, 147
Direction of a curve, 2
Dogma, 143
Double curvature, 28
Dual

form, 324

forms, 260, 264, 281

Index
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Effectively, act, 309
Ehresmann, C., 305
Ehresmann connection, 315
convex combinations of, 342
Eigenvalues, 125
minimax definition of, 126
Eigenvectors, 125
Ellipse, 23
Ellipsoid, 205
of smallest volume, 206
Equations of structure of Lie group,
349
Euclidean motion, proper, 11, 34, 43
Euclidean space
structural equations of, 261
as integrability conditions, 262
Euler, L., 49
Euler’s Theorem, 50, 121, 123, 125,
126
Exterior algebra, 144

Fancy free, 124
Fibre, 307

bundle, 346

parallel translation of along a curve,

319
Finsler, P, 165
Finsler metric, 165, 202
First curvature, 28
First fundamental form, 122
First structural equation, 327
First structural equation of Euclidean
space, 349

First Variation Formula, 247
Fixed point, act without, 309
Flat

connection, 349

manifold, 179, 184

torus, 179
Four Vertex Theorem, 23
Frame, 259, 306

affine, 349

bundle of, 306

moving, 259
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Frenet, F., 34; see also Serret-Frenet
formulas

Fundamental form, see First and Sec-
ond fundamental form

Fundamental vector field, 311

Gauss, C. F, 49, 55 ff.,, 149, 150, 297
Gauss map, 112
Gauss’ Lemma, 247
Gaussian curvature, 116
formulas for, 119, 126, 127, 129
Geodesic, 135, 223, 246
circle, 147
connections with the same, 249
on a surface in R?, 135
polar coordinates, 290
curvature in, 138
triangle, 141
Geometry, non-Euclidean, 163
Global formulation of the curvature
function, 16
Global results about curves, 12 ff.
Gram-Schmidt orthonormalization,
43 260
Great circles, triangle of, 134

Hahn-Banach Theorem, 14
Hairy calculation, 174
Helix, 32
“left handed”, 33
“right handed”, 33
rotation of, 33
Hessian, 201
Horizontal
component, 317, 348
curve, 318
subspace, 315, 346
vector, 315, 346
Huygens, C., 9
Hyperosculating conic, 43

Index

Immersion, 1
Indefinite Riemannian metric, Levi-
Civita connection for, 342
Index, rotation, 19
Inequality
Schwarz, 135
triangle, 203
Infinitesimal triangle, 74, 100
Inside of a curve, 15
Integrability conditions, 262
Invariance of curvature under proper
Euclidean motions, 39
Invariants, complete set of, 39
Inward pointing normal, 52
Isothermal coordinates, 297
Isotropic, 291

Jacobi identity, 245

Kobayashi, S., 349
Kobayashi and Nomizu, 349
Koszul, J. L., 227

Koszul connection, 227

Kulkarni, R.S., 279

Left handed helix, 33
Left, act on, 262
Leibniz, G.W,, 9
Length of curve, 200
Levi-Civita, T., 209, 234
Levi-Civita connection, 238
for an indefinite Riemannian metric,
342
Lie group
equations of structure of, 349
review of, 36 ff.
Lift
of curve, 318
of vector field, 317
Linear group, special, 38
Lobachevsky, N.1., 163
Local triviality, 307



Manifold
flat, 179, 184
Riemannian, 165
Matrix notation, modified, 261
Mean curvature, 133
Metric
determined by the curvature, 277 ff.
Finsler, 165, 202
Levi-Civita connection for indefinite
Riemannian, 342
Minkowski, 200
Meusnier, J. B., 52
Meusnier’s Theorem, 54, 123
Milnor, J. W, 195
Minimax definition of eigenvalues, 126
Minkowskl metric, 200
Modified matrix notation, 261
Motion
affine, 349
Euclidean, 11, 34, 43
special afhne, 39
Moving frame, 259
adapted, 270
natural, 259
orthonormal, 260, 264, 266

Natural moving frame, 259
Natural parameter
for curves under the group of Eu-
clidean motions, 38
for curves under the group of special
affine motions, 40
Natural g-valued 1-form, 36
Newton, 1., 9
Nomizu, K., 349; see also Kobayashi
and Nomizu
Non-Euclidean geometry, 163, 301
Norm
Banach space, 203
Normal
coordinates, 302; see also Riemann-
ian normal coordinates
map, 112
plane, 30
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vector
inward pointing, 52
unit, 62

Opposite direction, curve going in, 7
Orthonormal moving frame, 260, 264,
266
Orthonormalization, Gram-Schmidt,
43, 260
Osculate, 6
Osculating
circle, 6, 27
parabola, 43
plane, 25

Parabola, osculating, 43
Parallel
translation of fibre along curve, 319
translation of vector along closed
curve, 243
translation of vector along curve,
234
vector field, 243
vector field along curve, 234
Parallelepiped, volume of, 56
Parameter
natural for curves under group of
Euclidean motions, 38
natural for curves under group
of special affine mo-
tionsl Oparameterized surface ,
238
vector field along, 238
“Partial derivatives”, 272
Permutation, sign of, 144
Plane
curvature of, 115
normal, 30
osculating, 25
rectifying, 30
Point, 37
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Polar coordinates
geodesic, 290
curvature in, 138
structural equations in, 272
Polarization, 185
Principal axes, 205
Principal bundle, 306
action of group of, 306
associated, 346
base space of, 306
connection in, 315
local triviality of, 307
over paracompact spaces, connec-
tions in, 342
projection map of, 306
total space of, 306
trivial, 307
Principal normal, 28
Projection map of a principal bundle,
306
Projections of a curve, 30
Projectively equivalent connections,
250
Proper Euclidean motion, 11
Puiseux, V. A. (Formula of Bertrand
and Puiseux), 147
Pythagorean Theorem, 204

Rectifying plane, 30
Repére mobile, 259
fundamental principle of, 270
Riccei, G., 209
Riccr Calculus, 209 ff.
Ricci’s identities, 214, 239
Ricci’s lemma, 213
Riemann, G. F B., 149 ff,, 209, 295,
301, 302
Riemann curvature tensor, 189
Riemannian manifold, 165
locally isometric, 165
structural equations of, 267
Riemannian metric, 165
connection compatible with, 236
determined by the curvature, 277 fI.

indefinite, 342
Levi-Civita connection for , 342

Riemannian normal coordinates, 166
Right

act on, 262

act on M on, 309
Right handed helix, 33
Rotation, 1, 34

index, 19

of a helix, 33

through an angle of 4, 50

Scalar triple product, 29
Schur, F, 291
Schwarz inequality, 135
Second curvature, 28
Second fundamental form, 122
symmetry of, 123
Second structural equation, 327
of Euclidean space, 349
Section, 311
Sectional curvature, 194
preserving diffeomorphism, 279
Self-adjoint, 125
Serret, J. A., 34
Serret-Frenet formulas, 34
Sign of a permutation, 144
Simple curve, 12
Singer, I. M., 329
Smith, D.E., 150
Smith, J. W,, 345
Space curve, curvature of, 27
Special affine
arclength, 39, 46
curvature, 41
constant, 41
curvature functions, 47
motion, 39
Special linear group, 38
Spectral theorem, 125
Sphere
curvature of, 115
unit, of Minkowski metric, 200
Stokes’ Theorem, 143



Structural equation(s). 287
first, 327
in polar coordinates, 272
of Euclidean space, 261
first, 349
second, 349
of Riemannian manifold, 267
second, 327
Subgroups of GL(#n,R), w for, 37
Subspace
horizontal, 315, 346
vertical, 307, 346
Summary of different definitions of
connections, 337
Support line, 13
Surface
curvature determines metric, 279
geodesic on, 135
parameterized, 238
Symmetric connection, 222, 238
Symmetry of second fundamental
form, 123

Tangent bundle of F(M), 342
Tangent space of O(n), 35
Taylor expansion of a curve, 27, 31
Taylor polynomial approximations of
gij. 165

Tensors, Calculus of, 209
Test Case, 179

first version, 197

second version, 217

third version, 241

fourth version, 268

fifth version, 274

sixth version, 275

seventh version, 333
Theorema Egregium, 132, 143
Torsion, 28

form, 325

forms, 283

formula for, 29, 30

tensor, 221, 236, 286, 330
Torus, flat, 179
Total curvature, 18
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Total space of a principal bundle, 306
Triangle

geodesic, 141

inequality, 203

infinitesimal, 74, 100

of great circles, 134
Triple product, scalar, 29
Trivial principal bundle, 307
Two-dimensional manifolds; curvature

determines the metric, 279

Two-parameter variation, 256

Unit
ball, of Finsler metric, 203
normal vector, 62
sphere, of Minkowski metric, 200

Variation
two-parameter, 256
vector field, 247
Vector
horizontal, 315, 346
vertical, 307, 346
Vector bundle, connection in, 346
Vector field
along a curve, 231
covariant derivative of, 232
along a parameterized surface, 238
basic, 325
fundamental, 311
lift of, 317
Velocity vector, 247
Vertex of a curve, 23
Vertical
component, 317, 348
subspace, 307, 346
vector, 307, 346
Volume of a parallelepiped. 56

Weber, H., 150, 170

Weingarten
equations, 124
map, 122

Weyl, H., 170, 251



